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(ii) 

ABSTRAC'I' 

The main objective of this thesis is to investigate fixed points 

under non-expansive and some other tn>es of mapping; in metric spaces. 

During the course of this dissertation, several new results have been 

obtained. In order to illustrate some of the theorems proved, a few · 

j~: interesting examples have been constructed. 

Chapter I includes a brief survey of fixed point theorems for non-

·.· .. expansive mappings. In the end a few theorems, which seem to be new, 
·.: 

have been added. 

· .. : In Chapter II, a mapping considered by Kannan [20]has been 

observed and by introducing some more general forms of this mapping, 

a few interesting results on fixed points have been investigated. 

Furthermore, giving a brief account of multi-valued contraction 

mappings and their fixed points, a search for extending some fixed 

,,~ point theorems to their multi valued analogues has been made. 
·:· 

Chapter III deals with the convergence of seq_uence of mappings 
. :. ~· 

. ·~~; (contraction and Kannan type) and their fixed points. A few interesting 

generalizations of some known results have been investigated. 
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I~RODUCTION 

S. Banach [ 2 J , in 1922, formulated a simple but quite striking 

result known as Banach contraction principle which states: 

"A contraction mapping of a complete metric space into itself has 

a unique fixed point". 

This theorem has been extensively used in proving the existence 

and uniqueness of solutions to various functional equations particularly 

differential and integral equations. Because of its simplicity and 

usefulness, Banach contraction theorem has been generalized by 
....... 

·: ::..· several mathematicians such as Chu & Diaz [12,13], Edelstein [14,15], 

Rakotch [31], Bailey [ 1], Boyd & Wong [6 J, Browder [7 ] , Sehgal [34] 

and others. 

A mapping, called "Nonexpansi ve mapping" which is more general in 

nature than a contraction mapping has been studied by Cheney & Goldstein 

Ul], Edelstein [16], Belluce & Kirk [3,4)Kirk [4 ,23], KiWang Ng [ 29] 

and others. They have tried to obtain fixed points for such mappings 

in metric spaces. Browder ( 8, .9 1 Kirk [24] , Edelstein [17] and 
. ·· ;: 

others have considered nonexpansive mappings in Banach spaces and have 

concluded the existence of fixed points. 

In Chapter 1, we have given a brief survey of the fixed point 

theorems proven for contraction and nonexpansive mappings in metric spaces 
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In the later portion of the chapter we have given a generalization of a. 

theorem of . . :.·~ , [ 4] for the fixed point of a continuous and 

assymptotically regular mapping. Also we have proved two more new 

theorems giving fixed points for a continuous and densitying mapping 

[ 42] in complete metric spaces. 

In Chapter II, some different types of mappings and their fixed 

points have been studied. First section of this Chapter begins with 

the mapping introduced by Kannan l2o] i.e. T : X + X such that for 

all x, y E.X, 

(:T.) ....... d(Tx, Ty) ~ cx{d(x, Tx) + d(y, Ty)} , 

where 1 
0 ~ex < 2· Some more general forms of this mapping have been 

introduced and the fixed points are obtained under sufficiently relaxed 

conditions. We have generalized a theorem of Kannan f2oland have 

offered a simple example for the illustration. Further, we have extended 

our own theorem in the lines of Chu & Diaz [13] and have cited an 

example also for the verification. In the same continuation five more 

new theorems have been presented out of which the first two extend the 

results of Singh [ 39]respecti vely, and the remainingsbear a close 

similarity with the resuluof Rakotch [31], Belluce and Kirlcr4 ] =:.and 

K:!.~?-at:J.g·:;-Ng...~ f29-]~respecti vely. 

In the second section of Chapter II, we have given a brief account 

of some results on multi-valued contraction mappings due to Nadler [28). 

Also we have extended results of Kannan 12o] :aad Maia 126] respectively 
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to the multivalued mappings. 

In Chapter III we have considered ~he convergence of sequences 

of mappings and their fixed points. Besides a brief survey of the 

works of Bonsall [5 1 ,Nadler [ 27], Singh [ 36) , and Singh & Russell [38] 1 

we have extended the result of Bonsall to the sequence of mappings 
. . 

· .": 

··:.: 
satisfYing the condition of Rakotch [31]. Further, a more general 

theorem for the sequence of mappings satisfYing a localized version 

of the condition of Rakotch has been investigated. In addition
1
we 

have also given some new results for the sequence of mappings of 

the type (:f: ) The last theorem of this Chapter generalizes a 

theorem due to Singh [37] , and we have constructed an example also 

to verifY our generalization. 

:.: . .. '·· 
. ·_.:.·~: . 

. · .·; 

' I 



CHAPI'ER I 

NON-EXPANSIVE MAPPINGS 

1.1. Preliminary Definitions: 

Definition 1.1.1: Let X be a set and let R+ denote the positive 

reals. We define a distance function d : X x X+ R+ to be a metric 

if the following conditions are satisfied: 

(i) d(x, y) > 0 

(ii) d(x, y) = 0 

for all X, y f: X. 

iff X = y • 

(iii) d(x, y) = d(y, x). 

(iv) d(x, z) ~ d(x, y} + d(y, z) (triangle inequality). 

The set X with metric d is called a metric space and is 

denoted by a pair (X, d). We may denote the space by X alone when 

the metric d is understood with. 

Definition 1.1.2: A sequence · {x } of points of a metric space X is n . 

said to converge to a point x and we write x + x, if corresponding 
n 

to each e: > 0 there is a positive integer N such that for n ~ N, 

one has d(x , x) < e:. 
n 

In other words x + x 
n 

if lim d(x , x) = 0. 
n n-+OO 

Definition 1.1. 3: A sequence {x } of points of a metric space X is 
n 

\~ said to be Cauchy sequence if for each e: > 0 there is a positive 
•" '1'·' 

integer N such that for m, n > N implies d(x , x ) < e: . • 
m n 

Definition 1.1.4: A metric space (X, d) is said to be complete if 

every Cauchy sequence of points of X converges in X. 
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Definition 1.1.5: Given a vector space E, a norm on E is a mapping 

x + I l'xll, from E into the set R of positive real numbers which 

satisfies the following axioms : 

( i ) II x II = 0 if and only if x = 0. 

(ii) II Axil = 1).1 llxll for all A€' F and x € E, where 

F is either the field of real numbers or the field of complex 

numbers. 

(iii) llx + Yll ~ llxll + IIYII (the triangle inequality). 

A vector space on which a norm is defined is called a normed 

vector space, or simply a normed space. 

(Every normed space is a metric space with a metric d defined as 

d(x, y) = llx- Yll). 

Definition 1.1.6: A normed vector space E is called a Banach space 

if it is complete as a metric space. 

Definition 1.1.7: Let T be a *mapping of a set X into itself. A 

point x E X is said to be a fixed point of T if Tx = x. In other 

words, a point which remains invariant under a mapping is known as a 

fixed point • 

. :m· Definition 1.1. 8: A topological space X is said to have fixed point 
. :-.:·/' 
·:: 

:.·. property (or X is a fixed point space) if each continuous function of 
. ."): 

*Some authors have used the word "tram fo:nnation" in place of "mapping". 
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X into itself has at least one fixed point. 

(Example: The closed interval [ -1, 1] has fixed point property 

for let T : [-1, 1] + [-1, 1] be a continuous function. Define a new 

function F as F(x) = T(x)- x for each x ~ [-1, 1]. We see that 

F(-1) > 0 and F(l) < 0. Therefore by Weierstrass Intermediate-value 

Theorem there exists a point 

gives T(x ) = x ). 
0 0 

x e [-1, 1] 
0 

such that F(x ) = 0. This 
0 

Definition 1.1.9: Let X and X' be two metric spaces with the metrics· 

d and d1 respectively. Let T :X+ X' be a bijec~ion of X to X'. 

Then T is called an i3ometry if and only if 

d(x, y) = d'(Tx, Ty) for all x, y € X. 

In particular if X = X' and the metrics d and d' are the same 

then T X + X is an isometry if 

(l.lA) d(Tx, Ty) = d(x, y) for all x , y E. X. 

Definition 1.1.10: A mapping T of a metric ·space X into itself is 

said to be Non-expansive if for all x, y €. X 

(l.lB) d(Tx, Ty) ~d(x, y) . . 

Definition 1.1.11: A mapping T of a metric space X into itself is said 

to satisfY Lipschitz condition if there exists a real number k (known 

as Lipschitz constant) such that, 

(l.lC) d(Tx, Ty) ~kd(x, y) for all x, y e X. 

In the special case when 0 ~ k ~ 1, we call as a contraction mapping. 
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Remark: At a first glance to the mappings defined above one can Ss:J' 

that the Isometries (l.lA) and the Contraction mappings (l.lC) as . 

well;fall in the class of Non-expansive mappings (l.lB). Moreover, 

all of the mappings (l.lA), (l.lB), and (l.lC) are continuous on 

X. 

1.2. It is of great importance in the applications to find out if 

non-expansive mappings have fixed points. 

One of the best known theorems in connection with the fixed 

point of a mapping in a metric space is that gi ~n by Banach [2 ] and 

known as Banach's contraction mapping theorem. 

The statement and proof of the theorem is given as follows : 

Theorem 1.2.1. Let (X, d) be a complete metric space and T : X~ X 

a contraction mapping i.e . there exist s a reel number k, 0 < k < 1 

such that, 

d(Tx, Ty) ~kd(x, y) for a.ny two points x, y E. X. 

Then T has a unique fixed point (i.e. the equation Tx = x has 

a unique solution). 

Proof: Let x
0 

be an arbitrary point in X. Set x1 = Tx
0

, 

n 
x2 = Tx1 = T2x

0 
, ar.d in general let xn = Txn-l = T x0 • 

We shall show that the sequence 

fact, 

{x } is a Cauchy sequence. 
n 

I n 
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d(x , x ) = d(Tnx , ~x } 
n m o o 

n ( m-n } <kdx,T x 
- 0 0 

= knd(x , x } 
o m-n 

~kn{d(x0 , x 1} + d(x1, x2} + 

n ( ) 2 m-n-1 < k d X , X 1 {1 + k + k + • . • + k } . 
- 0 

(1}' 

Since k < 1, this quantity is arbitrarily small ·for sufficiently 

large n. 

Since (X, d) is complete, the sequence {x } converges in x. n 

Let limx = u. Then by 
n virtue of the continuity of the mapping T, 

n~ 

Tu = T lim xn = lim Txn = lim xn+l = u. Thus, the existence of a fixed 
n~ n~ n~ 

point is proved. To prove its uniqueness let v be a point in x 

such that 

Tv= v. Then d(u, v) = d(Tu, Tv) ~kd(u, v), where k < 1; 

this implies d(u, v) = 0, i.e. u = v. 

Hence the theorem. 

Remark 1.2.2: (i) The construction of the sequence {xn} and the 

study of its convergence are known as the method of successive 

approximations. 

(ii) Banach's contraction theorem has been applied to 

test existence and uniqueness of solutions to differential and integral 
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equations using the method of successive approximations • 

(iii) The method of successive approximations can be used not 

only for the proof of existence of unique fixed point u but also 

for finding an approximate value. Namely, the points X 
n 

are the 

successive approximations to u. The error of approximations may be 

estimated by the inequality, 

kn 
d(x , u) < 

1 
k d (x , x 1) ••••••••••••••••••••••••••••• (II) 

n - - o 

which is obtained by passing to the limit for m ~ ~ in the inequality 

(I). 

Due to its wide spread applicability, the Banach's contraction 

theorem has been generalized by several Mathematicians. We quote few 

of these generalizations without going into detail. 

Chu & Diaz (13] have given the following: 

Theorem 1.2.3. If T : X~ X is a function defined on a complete 

metric space X into itself such that the function Tn is a contraction 

for some positive integer n, then T has a unique fixed point. 

Remark 1.2.4: The function T in the above theorem is not necessarily 

contraction or continuous. The following example illustrates the 

Example 1. 2. 4: Let a 

Tx = D 
function T : [0, 2] ~ [0, 2] 

x E [o, 1] 

X €. (1, 2] • 

be de fined as , 
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We see that T is discontinuous at 1 and therefore it is not 

contraction on [0, 2] But T2 is contraction as T2x = 0 for 

all X E. ( 0 , 2) The unique fixed point of T is zero. 

Few interesting examples to illustrate the above theorem are 

also given in [ 1~. 

According to a remark due to the same authors, the conclusion 

of the above theorem may be obtained even without assuming that Tn 

is contraction and X is a complete metric space. All that is needed 

is that Tn has exactly one fixed point. Thus one has: 

Theorem 1.~.5. Let s be any non empty set of elements and T be 

a single valued function defined on s and with values in s. Suppose 

that, for some positive integer n , the function Tn has a unique 

fixed point x • Then T also has a unique fixed point, namely x . 
0 0 

The proof is quite simple and short. In fact Tnx = x gives 
0 0 

TTnx = Tx 
0 0 

i.e. Tn+lx = Tx 
0 0 

i.e. Tnx = Tx 
0 0 

Thus Tx is a fixed point of Tn. 
0 

But Tn has only one fixed point namely x . Hence Tx = x 
0 0 0 

i.e. X is a fixed point of T. For uniqueness of X as a fixed 
0 0 

then 
n 

point of TJ let y be a point such that Ty = y, T y = y and 

hence y = X , since Tn has only one fixed point. 
0 

In another paper [12 ] , Chu and Diaz have also given the following: 
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Theorem 1.2.6. Let T be a function defined on a non empty set 

with values in S. Let K be another function also defined on S to 

S h th t K . ht . K-l , sue a possesses a r1g 1nverse ( -1 i.e. a function K 

such that KK-l = I, where I is the identity mapping of S). Then 

the fUnction T has a fixed point if and only ifi.the composite function 

K-l,_rK has a fixed point. The theorem gives the following useful 

. corollary. 

Corollary 1.2. 7: Let (X, d) be a complete metric space and T be a 

self mapping of X into X. Suppose that there exists a self mapping 

K of X into X which has . a right inverse K-l and which makes the 

composite function K-~K a contraction. Then T has a uni~ue fixed 

point. 

This result follows directly from Banach's contraction theorem 

and the preceeding theorem. 

Edelstein [ 14] has extended Banach's contraction theorem introducing 

the following definitions. 

Definition 1.2.8: A mapping T of a metric space X into itself is 

said to be locally contractive if for every X € X there exist €: and 

A (€: > 0, 0 ~A < 1) , which may depend on x such that, 

p, q E. s(x, €:) = {y : d(x, y) < d implies 

d(Tp, Tq) < Ad(p, q). 

Definition 1.2 .9: A mapping T of X into itself is said to be 

(€: - A)-uniformly locally contractive if it is locally contractive and 
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both E and A do not depend on x • 

Definition 1.2.10: A metric space X will be said to be E-chainable 

if for every a, b € X there exists an E-chain, that is a finite set 

of points a= x , x1, x2 , ••• , x = b (n may depend on both a and o n 

b) such that d(x. 1 , x.) < E 
1- l 

(i=l,2, ••• ,n). 

We state the theorem of Edelstein as follows: 

Theorem 1.2.11. Let (X, d) be a complete E-chainable metric space 

and T be a mapping of X into_ itself which is E-A uniformly 

locally contractive then there exists a unique point ; in X such 

that T; = ;. 

Next, we define a mapping introduced by Edelstein [15]which is 

more general than a contraction mapping. 

Definition 1.2.12: A mapping T of a metric space X into itself is 

said to be contractive if, 

(i) d(Tx, Ty) < d(x, y) for X, y €. X , X :# Y. 

It is to note that a contractive mapping of a complete metric space 

into its elf need not have a fixed point. For example, if 

X = {x : x ~ R, x ~ 1} and T : X -+ X is defined as Tx = x + l 
X 

then 

T has no fixed point, although T is contractive and X is complete. 

However,if a contractive mapping has a fixed point, it will 

always be unique. 
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Edelstein [ 1~ has given the following theorem for the existence 

of a fixed point for a contractive mapping. 

c; . Theorem 1.2.13. Let X be a metric space and let T be a contractive 
.. ' :·~ 

. ·. ·::_.'· 

. :11i 

3~t~ 

}I 
· .3:'-=:~~ 

~::\~:::.~ 

·-)~ ..... 1 

I 

,,,,.~ 

' . ··//;~ 

.j 
>:.·:~ · 

;~~I~-
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mapping of X into itself. If there exists a point X € X 
0 

its sequence of iterates {Tnx } h t b as a convergen su sequence 
0 

such that 
n. 

{T 1 x } 
0 

converging to a point ~ in X , then ~ is a unique fixed point 

of T. 

A simpler proof of this theorem than that due to Edelstein may be 

given as following: 

n 
Proof: Since {T 1x } converges to 

0 

mapping;is continuous on X therefore 

~ € X and T 

the sequence 
n.+2 

, being a contractive 
n.+l 

{T l X } converges 
0 

to T~ and consequently the sequence {T 1 x } c6nverges to T2 ~ • 
0 

Consider the sequence {d(Tnx , Tn+lx ) } t · 1 of. non-nega 1ve rea 
0 0 

numbers. ( n n+l ) If for any n, d T x , T x = 0, 
0 . 0 

there remains nothing 

to prove as comes out to be a fixed point of T. Thus we m~ 

assume without loss of generality that each term of this sequence is 

positive. Since T is contractive therefore for x :f Tx , we have 
0 0 

d(x , Tx) > d(Tx, T2x )> .... >d(Tnx, Tn+lx )> •.• i.e. 
0 0 0 0 0 0 

{d(Tnx , Tn+lx )} is a decreasing sequence of positive real numbers 
0 0 

bounded by d(x,Tx). 
0 0 

Hence it converges together with all its 

subsequences to some real number a • 

Now, assume ~ :f T~ , 
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· n. n.+l 
= d(l~m T 1 x , lim T 1 x -) 

1 0 i 0 

( ni Tni+xl ) . = lim d T x , 
i o o_ 

= a 
(~ n.+l 

_ -- 1 = ':lim d(T 1 x 
\....._..- i 0 

n.+l 
= d(lim T 1 x 

i 0 

= d(T~, T2 ~) 

< d( ~, T~ ) , 

n.+2 
T 1

x ) 
0 

n.+2 
lim T 1 x ) 
i 0 

a contradiction to the assumption. 

Hence ~ ~ T~ i.e. ~ is a fixed point of T. For uniqueness of ~ , 

let "f ::f ~ be a point in X such that T ~ = ~ • Then 

d( ~' U = d(T~, TU < d( ~, ~, a contradiction. Thus ~ is a unique 

fixed point of T. 

Hence the theorem . 

Corollary 1.2.14: If X is a compact metric space and T is a 

contractive mapping of X into itself then there exists a unique fixed 

point • 

The proof of this corollary follows from the theorem and the fact 

that each sequence in a compact metric space has a convergent subsequence . 

Remark 1.2.15: .As pointed out by the author [15]. an extra conclusion 

regarding the convergence of the sequence of iterates from the previous 

theorem may be drawn as follows: 

. ; 
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Let all the assumptions of the theorem hold. If 
n. 

contains a convergent subsequence · {T 1 p} then lim Tnp 
I1+co 

coincides with the fixed point ~ 

n. 

n {T p} , p € X, 

exists and 

Proof: By the previous theorem we have, lim T 1 p = ~ . Then for E > 0 
i-+«~ 

there is a positive integer N such that i > N implies 
n. 

d(~, T 
1
p) < E. 

If m = n. + R. (n. fixed, R. variable) is any positive integer > n. 
l. l l. 

then 
.... · n n.+R. n . 

/ , .... d(El, Tmp) = d(T~~, T 1 p ) < d( ~' T 1 p) < E, 
,. __ 

vhich proves the assertion. 

Rakotch [3l]generalized Banach's contraction theorem by allowing 

contraction constant A to vary in a restricted wa:;r. 

He has defined a family F1 of functions t.(x, y) satisfying the 

following conditions: 

(1) A(x, y) = t.(d(x, y)), i.e. A is dependent on the distance 

between x and y only. 

(2) 0 ~ A(d) < 1 for every d > 0. 

(3) A(d) is a monotonically -decreasing function of d. 

He gave the following result: 

Theorem 1.2.16. Let (X, d) be a complete metric space and let T be 

a mapping of X into itself such that, 

(2) d(Tx, Ty) ~ t.(x, y)d(x, y) , for all x, y € X, where 

A(x, y)€ F1 . Then T has a unique fixed point. 

: .. 

I 
I • 

i 
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Remark 1. 2.17: The conslusion of the a.bove theorem also holds when 

the i\mction A(x, y) is assumed to be monotone increasing and 

0 < A( d) < 1 for d > 0. This mey be seen as follows: 

Let x be an arbitrary point in X. Let x1 = Tx , 
0 0 

x2 = Tx1 = T2x and in general x = Tx = Tnx • Now by the 
o n n-1 o 

condition d(Tx, Ty) ..s_ A(x, y), V x, y E: X, one can easily infer for 

d(x, xl) > d(xl, x2 )> ••• >d(x 
1

, x )> ••• , and there-o n- n 

fore, as A is monotone 

increasing. Thus we have, 

d(x1 , x 2 ) 

d(x2 , x3) 

= d(Tx , Tx1) < A(x , xl)d(x
0

, xl), 
0 - 0 

= d(Txb Tx2) ..s_ A(xl, x2)d(xl, x2) 

< A(x , x 1)A(x , x 1)d(x , xl ) 
0 0 0 

i.e. 

In general, 

Now, since 

(A(X , xl)] 2d(x , X})• 
0 0 

0 < A(x , x 1) < 1, the sequence 
- 0 

{x } 
n 

is easily 

seen to be Cauchy. The rest of the proof goes parall el t o that as in 

the Banach's contraction theorem • 



· ... 

·····~ ?iit: 
. ·· ·.' ' 
' • ,;.:~: · 

-17-

In the end of this section we would like to have a look on the 

following two general contractive mappings introduced by Bailey [ 1 J. 

T : X + X, 

(i) T is continuous and 0 < d(x, y) => there exists 

n = n(x, y)€ It (set of positive integers) such that 

d(Tnx, Tny) < d(x, y). 

(ii) T is continuous and there exists E > 0 such that 

0 < d(x, y) < E => there exists 

d(Tnx, Tny) < d(x, y). 

t n(x, y) e I such that, 

He has given the following results: 

Th.l.2.18: If a mapping T of a compact metric space X into itself 

satisfies (i), then T has a tmique fixed point. 

Th.l.2.19: If a mapping T of a compact metric space X into itself 

satisfies (ii), then T has finitely many periodic points. 

1.3 In this section we will stuay the various conditions under which a 

non-expansive mapping (l.l.B) has fixed point in metric spaces. 

Cheney and Goldstein Ul] have given the following. 

Theorem 1.3.1 Let T be a mapping of a metric space X into itself 

such that, 

(i) T · o xp 1've 1' e d(Tx, Ty) _< d(x, y) for all lS n n-e ans •. 

x, Y€ X. 

(ii) if x ~ Tx then d(Tx, T2x) < d(x, Tx). 
co 

and (iii) for each xE X, the sequence {Tnx}n=l has a cluster point. 
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Then for each x, 
Q) 

. n 
the sequence {T x}n=l converges to a fixed 

point of T. 

In [16] , Edelstein has defined the following terms. 

Definition 1.3. 2 Let T be a mapping of a metric space X into 

itself. A point y e Y C X is said to belong to the T-closure of Y, 

Yc YT, 1"f T(Y)C Y . c and there 1s a point n e y and a sequence 

of positive integers, (n 1 < n 2 < •.• < ni< .•. ), so that 
n 

l!m T i(n) = y. 
l 

Definition 1. 3 • ~ A mapping T : X ~ X of a metric space X into 

{n.} 
l 

itself is said to be E-nonexpansive if condition, d(Tp), Tq) ~ d(p, q) 

holds for all p, q with 0 < d{p, q) < E • 

Definition 1. 3. 4 : A sequence {x.} C X is said to be isometric 
l 

{E-isometric) if the condition, d(xm' xn) = d(xm+k' xn+k) 

m, n , k = 1 , 2 , • • • ( for all m, n , k = 1 , 2 , ••• . , with 

holds for all 

d(x , X ) < E). 
m ·n 

A point x EX is said to generate an isometric (£-isometric) sequence 

..:~. T · f {Tnx} unu.er , 1 is such a sequence. 

Wi tlil these de fini ti ons , he U6 J proved the following theorem. 

Theorem 1. 3. 5. If T : X+ X is a non-expansive (£-nonexpansive) 

mapping of a metric space h X€ X
T 

X into itself then eac 

an isometric (£-isometric) sequence. 

generates 

Remark 1.3. 6: P~though this theorem does not guarantee the existence 

. .. 
. ~ 
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of fixed*(periodic) points but it does generalize Theorem 1 1i5 J 

(Theorem 2, [ 15l) for if T is contractive ( e:-contracti ve) and 

x € XT then it is seen that x is a fixed (periodic) point of T. 

In the same paper an interesting theorem giving a fixed point of 

a non-expansive mapping is an Euclidean n-space En has been proved. 

The theorem is stated as follows: 

Theorem 1. 3. 7 : Let T En ~ En be a nonexpansive mapping and 

(~)T 1 $ Then 

(a) there is a point ~ G En such that T ~ = ~ • 

(b) if x E (En? a.nd V is the linear variety of smallest 

dimension containing {Tm(x)} then V contains a unique fixed point. 

As we have seen in [16) , a point of XT is fixed if T is a 

contractive mapping of a metric space X into itself. A corresponding 

statement for a non-expansive mapping does not hold necessarily unless 

some further condition is imposed on T. With this motivation, 

Belluee and Kirk [ 3 ] introduced the notion of "diminishing orbital 

diameted' on T. To define this term they required another term 

11limi ting orbital diameter» of T as described below. 

Diameter of a set A C X is defined as 

6(A) = sup{d(x, y) : x, y E. AL 

Let T be a mapping of a metric space X into itself. For each 

n f Tn(x) x E_ X, let O(T x) denote the sequence of iterates o i.e. , 

*A point X €. X ' ' d' 'f Tk ~s per~o ~c ~ x = x for some 
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co 

O(Tnx) = U. {Tix} 0 1 °( ) n = , , 2, .•• , whe::re T x = x. The 
i=n 

diameter o (O(Tnx)) of the sets O(Tnx), when :t'.inite, form a non-

increasing sequence of numbers. The limit r(x) = limo(O(Tnx)) is 
.n-+co 

a non-negative real number and is called the limiting orbital diameter 

of T at the point x. 

Definition 1.3.8: Let T :X+ X be a mapping of a metric space X 

into itself. If for each x€ X the limiting orbital diameter r(x) 

of T at x is less than o(O(x)) when o(O(x)) > 0, then T is 

said to have diminishing orbital diameters. 

(Contraction and contractive mappings are easy examples of the 

mappings having diminishing orbital diameters. Another example of such a 

mapping is the mapping T : X + X such that for each x € X there is 

an a(x), 0 ~ a(x) < 1 and d(Tx, Ty) ~ a(x)d(x, y) for each y € X.). 

Now we are in position to give the theorem of Belluce and Kirk [ 3] 

which says: 

Theorem 1.3.9. Let X be a metric space and let T be a nonexpansive 

mapping of X into itself which has diminishing orbital diameters. 
co 

Suppose for some x e X a subsequence of the sequence 
n 

{T x}n=l of 
00 

iterates of T on x has limit 
. n .. 

z. Then {T x}n=l has l1~t z and 

z is afixed point of T. 

Proof: 
ni 

Suppose lim T x = z. Thus z e. XT and therefore by Theorem 
i + co 

1.3.5 of Edelstein, z generates an isometric sequence. This means 

! . 
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that for given positive integers m and n, 

d(Tmz, Tnz) = d(Tm+kz , Tn+kz) k = 1, 2, 

Therefore if k is any positive integer, 

o(O(Tz)) =sup d(Tz, Tnz) 
n>l 

=sup d(Tkz, Tn+k-lz) 
n>l 

This implies, lim o(O(Tkz)) = r(z) = o(O(Tz)). But r(z) = r(Tz)), 
k+«' 

therefore r(Tz)) = o(O(Tz)) which gives due to the fact that T has 

diminishing oribt al diameters , tS ( 0 (Tz) ) = 0 and hence Tz is a fixed 
n.+l 

point of T. Continuity of T implies lim T 1x ~ Tz. Thus E > 0 
i + 00n.+l 

the e · 't' · t 1' such that d(T 1x , Tz) ""' "". r 1s a pos1 1ve 1n eger ~ ~ The 

fact that T( z) is a fixed point and T is nonexpansi ve implies, 

d(Tnx , Tz) < E if n > n. + 1. 
- 1 

. n 
since a subsequence of {T x} has limit 

Hence the theorem. 

n+co 

z, z = Tz • 

A simple corollary to this theorem is as follows: 

But 

Corollary 1. 3. 10: If X is any compact metric space and T is a non 

expansive mapping of X into itself which has diminishing orbital 

diameters, then for each xe X the sequence {Tnx} of iterates 

converges to a fixed point of T. 

Further, Kirk [231 proved the following theorem: 

i ·. 

'. 
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is continuous with dinimishing orbital diameters. Then for each x E. X, 
00 

some subsequence 
. n 

of the sequence {T x}n=l of iterates 

of x has a limit z which is a fixed point of T. 

Browder and Petryshyn [10] have introduced the following definition: 

Definition 1.3.12: A mapping T : X-+- X of a metric space X into 

itself is said to be assymptoticalJ.y regular on X if 

lim d(Tnx, Tn+lx) = 0 for each x EX. 
n-+-oo 

Belluce & Kirk* have observed that if X is compact and T : X -+- X 

nonexpansive then the conditions, "T has diminishil:tg orbital diameters 

on X" and "T is assymptotically regular on X" are equivalent. But 

this equivalence need not be true when T is not nonexpansive (no 

matter T is continuous and X is compact). 

They [ 4]have given the following theorem along with other results: 

Theorem 1. 3.13- Let (X, d) be a compact metric space and let T : X -+- X 

be a continuous mapping which is assymptotically regular on X. Then 
00 

. n 
every sequence {T x}n=l of iterates contains a subsequence which 

converges to a fixed point of T. 

We give a direct rather simple proof of this theorem. 

Proof: (X, d) is compact, therefore it is sequentially compact. Thus 

for any xc X the sequence 
n . 

{T x} has a convergent subsequence. Let 

*[4] 
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n. co 

{T ~x }i=l be such a subsequence converging to a point z E' X. Since T 
n. +1 co 

is continuous therefore the sequence {T 1 x }i=l converges to Tz. Thus, 

n. n.+l 
d(z, Tz} = d(lim T 1 x , lim T ~ } 

i i n. n.+l 
= lim d(T ~X T 1 x } -+ o, since the assymptotic ' 

co 

regularity of T . { ( n n+l ) on X g~ves that the sequence d T x, T x }n=l 
n. n.+l co 

{d{T ~x, T 
1
x }}i=l converges to 

and 

consequently one of its subsequence 

zero. 

Thus z is a fixed point of T. 

Hence the theorem. 

As we see below,the existence of a fixed pain~ in the above theorem 

can also be insured by replacing the compactness of the space with a 

weaker condition (condition(ii)in the following theorem). 

Theorem 1. 3.14. Let X be a metric space and T X -+ X be a continuous 

mapping of X into itself. Suppose, 

(i} T is assymptotically regular on X, 

(ii} for some X € X, 
0 

th · {Tnx } e sequence 

subsequence 
n. 

{T 1 x } 
0 

0 

converging to some point 

Then z is a fixed point of T . 

and 

of iterates has a convergent 

z . 

The proof follows in the same lines as in the previous theorem. 

The. theorem emits the following corollary: 
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Corollary 1.3.15: Let X be a metric space and let T : X~ X be a 

n0nexpansive mapping of X into itself such that conditions (i) and 

( ii) of the above theorem hold. Then z is a fixed point of T and 

the sequence converges to z. 

Proof: T is nonexpansive and is therefore continuous. Thus it follows 

from the theorem that z is a fixed point of T. The convergence of 
00 

the sequence {Tnx } to the fixed point z follows easily from 
0 n=l 

condition (ii) and the fact that T is nonexpansive, as has been seen 

earlier. 

Now, we give a few more interesting results which seem to be new. 

Let X be a metric space and A ·~ X be a bounded subset of X. 

Denote by a(A), the infimum of all e: > 0 such that a finite number 

of open spheres of diameter less than e: cover A. l25] 

Definition 1.3.16: A mapping T: X~ X of a metric space X into 

itself is said to be densifying if for each bounded subset A ~X with 

a( A) > 0 we get a(TA) < a(A). [42] 

. It is easily seen that 

l) 0 < a(A) ~ o(A) where o(A) is the diameter of A. 

2) a(A) = 0 and X complete ·imply A is compact. 

3) If A is compact then a(A) = 0. 

4) a(AU B) = max{a(A), a(B)}. 

5) If A is the closure of A then 

a(A) = 0 <=> aC~. ) = 0 • [ 42 ] • 
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Theorem 1.3.17. Let (X, d) be a complete metric space and let 

T : X -+- X be a mapping which is continuous1 densifying. If for all 

x, y e X, x :f y there is some n depending on x, y such that 

and for some r . n 
x -=- X 1 the sequence fr x }n=l 

is bounded then T has a unique fixed point. 

Proof: Let A= U 
. n 

{T x}, where T
0

x = x and A be the closure 
n=O 

of A. Let us assume cx(A) > 0 or equivalently ex( A) > 0. Then 

cx(TA) < cx(A), since T is densifying. But A = TA U {x} , therefore 

cx(A) = ma:>dcx(TA), ex( {x}) 

= max{cx(TA) , 0} 

= cx(TA), a contradiction. 

Thus cx(A) = 0. Since X is complete, it follows from property 2) that 

A is compact. Now, by continuity of T we get T(iD C. ffi) ~A . Let 

F be the restriction of T on A. Then F : A -+-A satisfies all 

the assumption of Theorem 1. 2.18 of Bailey giving that there is a 

unique fixed point in A. 

Hence the theorem. 

Theorem 1.3.18, Let (X, d) be a complete metric space and let 

T :X-+- X be a continuous, densifying mapping which has dinimishing 

th {Tnx} of orbital diameters. If for some xE X, e sequence 

iterates is bounded then T has a fixed point. 

co 

Proof: Denote U · {Tn(x)} by the set A. Exactly as in the above 
n=O 

theorem it is seen that the closure A of A is compact and 

:·. 
i 



-26-

T(A)C A. Thus it follows from the Theorem 1.3.11 of Kirk that T has 

a fixed point in A and hence in X. 

i 
! 
: · 
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CHAPrER II 

SOME DIFFERENT TYPES OF MAPPINGS AND THEIR FIXED POINTS 

2.1 We recall Banach's contraction theorem which states • . 
Let (X, d) be a complete metric space and T:X ~ X be 

a mapping of X into itself satisfying, 

d(Tx, Ty) ~ ad(x, y), '-lx,y€X, 

where 0 < a < 1. 

Then T has a unique fixed point. 

Recently, Kannan [20] gave the following: 

Theorem 2.1.1: Let (X, d) be a complete metric space and 

T:X ~X be a mapping of X into itself satisfying, 

d(Tx, Ty) ~ a{d(x, Tx) + d(y, Ty)}, Vx, y E: X, 

where a is a real number such that o· ~a < ~. 

Then T has a unique fixed point. 

The condition .(2.1A) im~lies the continuity of the mapping in 

the whole space but the condition (2.1B) does not necessarily. 

The following two examples illustrate thatconditions (2.1A) 

and (2.1B) are independent. 

Example 2.1.2: Let X= [0, 1]. Define T:X ~ X by 

;. 

i ·' 
;· 

r · 



· ... :::.• 
: :·.:~· 

· .. :·· 

··=·.· 
... · .. 

. . ~ .. 

-28-

for x € [o, ~) 

for x € [~, 1]. 

The distance function d is defined in the usual way by 

d(x, y) = lx- Yl· Here T 1 is discontinuous at x = 2; consequently 

condition (2.1A) is not satisfied. But it is easily seen that condition 

(2 .lB) is satisfied by taking a = t [ ::uJ • 

Example 2 .1. 3: 
. X 

Let X= [0, 1], T:X +X be defined by Tx = 3• 

The distance function is the usual distance. Here condition (2.1A) is 

satisfied but the condition (2.1B) is not satisfied for x = ~ and 

y = o.[21], 

However, if ~ < ~ then (2 .lA) implies (2 .lB). 

The condition (2 .lB) motivates to give a similar condition for 

the existence of fixed points of two mappings T1 and T2 simultaneously. .. 

The following theorem due to Kannan (20] is worth mentioning. 
; . 

Theorem 2 .1. 4 : Let (X, d) be a complete metric space. If T1 
I 
I . 

and T2 are two mappings of X into itself satisfYing 

(2 .lC) 

where T1, T2 are two mappings of X into itself and a is a real 

number such that 1 
0 < a < 2' then T1 and T 2 have a unique common 

fixed point. 

The proof follows from successive iteration pr~cedure. (Taking 

x0 € X and setting x1 = T1xo, x2 = T2x1, x3 = T1x2, x4 = T2x3 

and so on
1 

tbe sequence {x }~ so obtained, is shown to be Cauchy, 
n n=l 
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which, due to completeness of (X, d) converges in X, giving the 

unique common fixed point of T1 and T2). 

Remark 2 .1. 5: If in the above theorem, mappings T1 and T2 fail 

to satisfY condition (2.1C) but, however, the condition (2.1D) (appearing 

in the next theorem) is satisfied, still the conclusion of the theorem 

holds. 

Thus we give a modified version of the preceding.•- theorem as 

follows: 

Theorem 2.1.6: Let T1 and T2 be two mappings of a complete metric 

space (X, d) into itself. If there exist two positive real numbers 

a and a such that a + a < 1 and, 

(2.1D) 

then T1 and T2 have a unique common fixed point. 

Proof: Let x0 be an arbitrary point in X. Set a sequence 

. }~ T {xn n=l of points in X as x1 = T1xo, x2 = 2x1, 

x4 = T2x3 and so on. 

Then, d(xl, x2) = d(Tlxo, T2x1) 

~ ad(x0, T1x0) + Sd(xl, T2x1) 

= ad(xo, xl) + Sd(xl, x2) 

· d(xlt x2) ~ 1~8 d(xo, xl). 

d(x2, x3) = d(T2x1, T1x2) 

~ ad(x2, T1x2) + Sd(xl, T2x1) 

= ad(x2, x3) + Sd(xl, x2) 
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• •• d(x2, x3) ~ l~a d(xl' x2) 

~ l~a . 1~8 d(xo, xl). 

Similarly, d(x3, x4) ~ 1~8 • l~Cl • 1~8 d(xo, x1). 

In general, 
n n 

d(xn, xn+l) ~ ( 1~8 )'2" • ( l~a)f d(x0 , x1 ), when n is an 

even positive integer. 
n+l n-1 

and, d(xn' xn+l) ~ (1~8 )_2_ • (1~a)_2_ d(xo, x 1), when n is an odd 

positive integer. 

For simplicity, put 1~8 = k and 

the above two inequalities as: 
n 

a.8 
..... , 1--....;8 }r:-;(..:;;..1--Cl ..... } = y and rewrite 

d(x
0

, xn+l) ~ y'T d(xo, xl), when n is an even positive integer •••• (i) 

n-1 
and d(xn' xn+l) < ky~ d(x0 , x1), when n is an odd positive 

integer. •• (ii) 

Now, for m > n; m, n both even, we have 

. . . . . . . . . . . . + d(x 
2

, x 
1

) + d(x 
1

, x ) • 
m- m- m- m 

n n + 1 
d(xo, x1) + k yT d(xo, x1) + yT d(xo, x1) 

~1 ( ) ~ -1 ( ) ~ -1 ( ) +ky d XQ, Xt + ••••••••+ y d XQ, XI + ky d XQ, Xl • 

n m-n 
= y ~ d(x0 , x1) . {1 + y + y2 + ...•••• + y:r-- 1 }. 

n m-n · 
'!" ) . 2 """T""-1 } + k y d(x0 , x1 {1 +y + y + • ••••••• + Y • 

., 
I 
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. ·• For m > n and n-even , we have : 
n n 

( ) 2 ky'Z' 
d xn, xm ~ l-y d(x0 , x1) + 1: Y d(x0 , x1) . . .. (iii) 

Similarly for m > n and n-odd, we can have: 

k n-1 n+l 
d(x , x ) < -1 • y -z- d(x0 , x1 ) + ..!.,- . y -r . d(x0 , x1 ) n m -· -y 1-y ... ( i v) 

Since a, a > 0 and a+ a < 1, it follows that 

a a 
l-a < 1, l-a < 1 and consequently y < 1. 

:. · for large n the terms on right hand sides of both the 

inequalities (iii) and (iv) become arbitrarily small. 
. co 

Thus {xn}n=l 

is a Cauchy seq_J.<ence. Since the space X is complete, the sequence 
. co 
{xn}n=l converges to some point uE X. 

Now, d(u, T1u) ~ d(u, xn) + d(xn, Tlu) 

= d(u, xn) + d(T2xn-l' Tlu), 
:·. 

where n is chosen to be even positive integer. 

! 

or, (1-a)d(u, T1u) < d(u, x ) + ad(x 1 , x ). 
- n n- n 

or, d( T ) 1 d(u, X ) + a d(x l' X~) u 1u <- n - n-' -1-a 1-a n-
< _j._d(u, xn) + r. kyz-d(xo, 

1-a k 
(By inequality (ii)) 

< 
1 

1-a 

Therefore (u, T1u) + 0, as n + co, which gives T1u = u 

i.e., u is a fixed point of T1. 
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In the similar wa:y, taking the triangle inequality 

d(u, T2u) ~ d(u, xn) + d(xn' T2u), and n an odd positive integer, 

we can show that u is a fixed point of T2• 

Thus u is a common fixed point of T1 and T2• To show that 

u is a unique common fixed point of T 1 and T 2, let v be a point 

Then, d(u, v) = d(Tlu, T2v) 

~ ad(u, T1u) + Sd(v, T2v) = 0 

:. u = v. 

Hence the theorem. 

To illustrate the above Remark 2 .1. 5 and Theorem 2 .1.6, 

we give a simple exemple as follows : 

Example 2 .1. 7 : Let T1, T2 : [0, 1] ~ [0, 1], be defined 

respectively as, 

and 

X 
T1x = -

. 3 

-X T2x - 4 . 

The distance function d is defined :in the usual way as 

d(x, y) = lx- Yl· The space X= [0, 1], being a closed subset of 

a complete space R (set of reals) is complete. 

It is easily seen that condition (2 .lC) is not satisfied by 

these mappings for any 

on taking a = ~ and S 

. 1 
a<-

2' 
11 

= 30 

if we take x = 1 and y = 0. But 

so that a + S ~ 1, we see that 

... 
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condition (2.1D) is satisfied for all the points in [0, 1), and 

the unique common fixed point of T1 and T2 is seen to be zero. 

Remark 2 .1. 8: The conditions of the above theorem also imply that 

both T1 end Tz have only one fixed point, namely u. For, if u 

is a point in X such that T1u = u then, 

d(u, u) = d(Tlu, T2u) 

~ ad(u, T1u) + B(u, T2u) = 0 

:~~ u = u, i.e., u is a unique fixed point 

of T1. Similarly it can be shown that u is a unique fixed point 

Thus in the enunciation of the theorem "unique common fixed point" 

may be replaced by "common unique fixed point". 

Remark 2.1.9: In the previous theorem, 

(i) If a = B, we obtain Theorem 2.1.4 as a corollary to our 

Theorem. 

(ii) If T1 = T2 = T , we get a similar generalization of Theorem 

2.1.1. 

(iii) If T1 = T2 = T and a= B ~ we get Theorem : 2.1.1 as a 

simple corollary. 

Next, if the condition ( 2.1D) in the last theorem, is not 

satisfied by T1 and T2 , but it is satisfied by some iterates T1p 

and T2P (p is a positive integer) of T1 and T2 respectively, 
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even then the conclusion of the theorem holds. 

Thus we have , 

Theorem 2.1.10: Let T1 and T2 be two mappings of a complete 

metric space (X, d) into itself. If there exist positive reals a 

and a, a+ a < 1 and a positive integer p such th~t, 

(2.1E) d(T~x, T~y) ~ ad(x, T~x) + Sd(y, ~y), Vx, y ~ X, 

where TY and T~ stand for pth iterates of T1 and T2 

respectively, then T1 and T2 have a unique common fixed point. 

Proof: By the previous Theorem 2 .1.6 and the Remark 2 .1. 8, we 

conclude that T~ and T~ have a common unique fixed point. Let u 

be such a point. It follows from a theorem of Chu and Diaz [13] 

that u is a unique fixed point of T1 as well as of T2. 

Hence the theorem. 

In order to illustrate this theorem we take the following example: 

Example 2.1.11: Let Tb T2: [0, 1] ~ [o, .1] be defined respectively 

as Tpc: = ~ and T2x = ~ for x € [0, 1]. The metric d is defined 

as d(x, y) = lx- Yl· It is easily seen that condition (2.1D) is not 

satisfied by T1 and T2 for x = 0 and y = 1. But it is satisfied 

by Tf and T~ for all the points in 
1 2 

[0, 1], when a= 4 and B = 5· 

The common unique fixed point of T1 and T2 is 0. 

A generalization of Theorem 2.1.6 in the lines of Chu and Diaz 



-35-

may be given as follows : 

Theorem 2.1.12: Let T1 and T2 be two mappings of a complete metric 

space (X, d) into itself. Suppose that T1 and T
2 

are such that 

there exists a mapping K of X into itself which has a right inverse 

K-1 and that the composite maps K-1T1K and K-1r2K satisfY, 

:?or all X, y ~ X , where a > 0 , 8 > 0 and a + 8 < 1. 

Then T1 and T2 have a unique common fixed point. 

implied by Theorem ( 2 .1.6) and R~mark 2 .1. 8. If . u is such a point 

then by a corollary to a theorem of Chu and Diaz [12] , u is a unique 

fixed point of T1 and T2. Hence the theorem. 

We give another extension of Theorem 2.1.4 by permitting a 

1 
to be equal to 2· 

Theorem 2.1.13: Let (X, d) be a metric space and T1, T2 be two 

continuous mappings of X into itself. Suppose, 

(i) d(Tlx, T2y) < ~ {d(x, T1x) + o.(y, T2y)} ~ x, Y E:: X. 

and (ii) there is a point x
0 
~ X such that the sequence 

and so on with 
(I) 

X "f. X r s 
when 

r f. s, has a convergent subsequence · {x } , converging to 
~ k=l 

a point ~ in X. 
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Then T1 and T2 have ~ as a unique common fixed point. 

Moreover, the sequence {xn} n=1 also eonverges to the point ~. 

Proof: We see that, 

i.e.' 

d(xl, x2) = d(Tlxo, T2x1) 

1· 
< 2 {d(xo, T1xo) + d(x1, T2x1)} 

1 1 = 2d(xo, xl) + 2d(xl, x2) 
1 1 2 d(xl, x2) < 2 d(x0 , x1) 

d(xh x2) < d(xo, x1). 

+ d(x2 , T1x2) 

1 
+ 2 d(x2, x3) 

i.e., d(x2, x3) < d(xl, x2) 

d(x2, x3) < d(xl, x2) < d(xo, xl). 

Proceeding in the same wa;y we have in general, 

00 

Thus · {d(xn' xn+l)}n=l is a monotonic decreasing sequence of 

non-negative real numbers, moreover it is bounded above by d(xo, xl). 
00 

Therefore the sequence · {d(x , x 
1

)} 
1 

converges to some non-negative 
n n+ n= 

real number. 

Let, lim d(x , xn+1) = Tl n 
n~ 

Now, lim X = ; (by condition (ii)) 
k~ ~ 
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and T1 is continuous. 

where ~ is chosen to be 

even positive integer.* 

i.e. 

T2 is also given to be continuous, 

T2(T1~) = ·T2 lim xn+l =lim T2x +l =lim x +2 ........... (II) 
k-+oo K k-+oo ~ k-+oo nk 

Now, 

Assume ~I- T1~ i.e. d(~, T 1 ~) ·> 0. 

d(~, T1~) = lim d(x , x 1 ) 
k-+oo ~ ~+ 

= lim d(x +l x 2 ) 
k-+c~~ ~ , ~ + 

= d(Tl~, T2T1~), 

< d(~, T 1 ~), for 

(By (I) and (II)) 

d(Tl~' T2T1~) < ~· {d(~, T1~)+ d(Tl~' T2T1~)} 
1 1 

or 2 d(T 1 ~, T2T 1 ~)< 2 d(~, T1~) 

i.e., d(T 1 ~, T2T1~) < d(~, T1~). 

Hence the contradiction to our assumption. 

00 

* Had the subse~uence ' {x } not contained, for large k, the terms x , 
~ k=l ~ 

with ~ even, we would have chosen ~, an odd integer and have operated 

X~ by T2 • 

,. 

~I 



.· .. :: .. ~ .; . 

: \ .... 

"·. ·:~~i-ill4 

-38-

Also, the relation d(.;, T1.;) = d(T 1.;, T2T1s) tmder T1.; =.; 

gives 0 = d(.;, T2.;) i.e., T2s = .;. Thus .; is a common fixed point of 

T1 and T2. For uniqueness of .;, let .; be another common fixed point 

of T1 and T2. 

Then, d(.;, ~) = d(Tl.;, T2~) 

< ~{d(.;, T1.;) + d(~, T2'f)} = 0, a contradiction. 

Thus .; is a unique common fixed point of T1 and T2. 

co 

Next, we have to show that the sequence · {xn}n=l (xl = T1xo, 

X2 = T 2x 1 , X 3 = T 1 X2 , •••.• ) converges to .;. 
I 

co 

Since the subsequence · {x } converges to .;, given E > O, 
~ k=l 

there is a positive integer N such that, for all k > N, 

d( X , _;) < €. 

~ 

If m = ~ + R. (~ fixed, R. variable), is any positive 

integer >~ then, 

d(x , .;) = d(x +n .;) 
m ~ N' 

< d(x~ + R.-l, .;) , (By condition (i) 

= d(T 2xn, + R.-2' T 1.;) 
k 

< d(x~ +R.-2 , .;) , (By Condition (i) 
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< d(x , ~) 
~ 

<€ 
' which proves that {xn }n=l 

converges to ~. 

Hence the theorem. 

Corollary 2.1.14: Putting T1 = T2 = T , we get the result due 

to Singh [ 39 J , as follows : 

Let (X, d) be a metric space and T :X -+ X be a mapping of 

X into itself. If 

(i) d(Tx, Ty) < ~ {d(x, Tx) + d{y, Ty)}, 'r/ x, y ~X, 

and (ii) there is a point x0 G X such that a subsequence 

converges to a point ~ E. X, then 
. n oo 

{T (xo)}n=l converges to ~ and 

T has ~ as its unique fixed point. 

Remark 2 .1 •. 15 : The mapping satisfying condition (i) and the above 

Corollary under this mapping may be considered as respective analogues 

of the contractive mapping and the corresponding result due to Edelstein 

[ 15] • 

For the mappings satisfying condition ( i) of the above Corollary 

a simple and interesting result similar to that due to Rakotch [ 31, 

Theorem 1] for the contractive mappings may be given as follows: 

·Theorem 2.1.16: Let (X, d) be a metric space and T:X-+ X be a 

mapping of X into itself satisfying, 
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(a) d(Tx, Ty) < ~{d(x, Tx) + d(y, Ty)}, V x, y~ X. 

If there exists a subset M c X and a point x0 e M such that 

(b) 

and T maps M into a compact subset of X, then T has a unique 

fixed point . 

Proof: Suppose Tx0 :f. x0• and let, 

n 
1, 2, 3, X = T xo, n = ...... . n 

i.e. xn+l = Txn' (n = 0, 1, 2, .... ) (I) 

Since T maps M into a compact subset of X, it suffices 

to show that x
0 

E M, n = 1 , 2, • • • , 

directly from the previous Corollary. 

for then the theorem follows 
l 

Now, d(xi, x2 ) = d(Txo, Txi)< 4{d(xo, Txo) + d(xi, Txi)} 

= ~ d(x0, xi) + ~d(xi, xz) 

i.e., d(xb x2 ) < d(xo, xi), since xo :f. XI· 

d(x2 , x 3) = d(Txb Tx2 )< ~{d.(xi, Txi) + d(xz, Txz)} 

= ~d(xi, x2 ) + ~d(xz, x3) 

or d(x2 , x3) < d(xi, xz) 

d(x2 , x3) < d(xi, x2) < d(xo, xi). 

Continuing in the same way we can show that, 
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By triangle inequality we have, 

< 2d(xo, x1) + d(Txo, Tx ) ; (By (I) and (II)). 
n 

i.e. d(xo, xn)- d(Txn, Tx0) < 2d(x0 , Tx0), 

which, in light of condition. (b) gives that xn <: M for all n = 1, 2, . . • . 

Thus the theorem. 

The next theorem gives a generalization of Theorem 2 .1.13 

by relaxing condition (i) to replace the strict inequality'<' by'<'. 

Theorem 2.1.17: If T1, T2 are two continuous mappings of a metric 

space X into itself such that, 

(ii) if x; T1x then, 

and (iii) there exists a point x0 € X such that the sequence 

with xr ; x
8 

when r ~ s , 

co 

has a subsequence {x } , converging ~o a point ~ in X. 
~ k=l 

Then ~ is a unique common fixed point of T1 and T2 and 
co 

sequence · {x } · converges to ~. n n=l ., 

Proof: As in previous theorem, we can easily show with the help of 
co 

condition (i) that · {d(x x ) } is a monotonic nonincreasing 
n' n+l n=l 

sequence of non-negative real numbers and is bounded above by d(xo, x1). 

Therefore it converges to some non-negative real number. 
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Let lim d(x , x ) = 
n+oo n n+l n~ 

Since lim Xn = ~ and T 1 is continuous . 
k+oo k . 1 

we have, 

Then, 

=lim 
k+oo 

T2 is also continuous. 

(where ~ is chosen to be even). 

= d(T 1 ~, T2T 1;) , which is contrary to condition {ii) 

unless ~ = T 1 ~, and then , 0 = d{~, T2;) i.e. ; = T2; • 

Thus ~ is a common fixed point of T1 and T2 • 

The uniqueness of ; follows easily from condition (i). Also the 
00 

convergence of the sequence {x } to ; can be easily shown with 
n n=l 

the help of condition (i) as in Theorem 3.1.13. Hence the Theorem. 

Corollary 2.1.18: In case T1 = T2 = T, we get a result due to Singh(39]. 

Further we prove the followi ng: , 

: .: 

~ I 
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Theorem 2.1.19: Let (X, d) be a metric space and let T be a 

continuous mapping of X into itself such that, 

(i) d(Tx, Ty) ~~· {d(x, Tx) + d(y, Ty)} for all x, y€ X. 

(ii) T • t · 1s assymp ot1c regular on X i.e., 

lim d(Tnx, Tn+lx) = 0 
n-+co 

for each x E X. 
co 

and (iii) for some . n 
x0 € X the sequence {T xl of iterates has 

6 n=l n oo 
a convergent subsequence {T kx } converging to some point z G X. 

0 k=l 

Then lim Tnx = z and z is a unique fixed point of T. 
0 n-+oo 

Proof: Continuity of T with condition (ii) and (iii) ·gives that z is 

a fixed point of T (see Theorem 1. 3.14 of previous chapter). The 

uniqueness of the fixed point z is given by condition (i) forJ if z 

is another fixed point of T then, 

d(z, Z) = d(Tz, Tz) ~ ~d(z, Tz) + d(z, Tz)} = o. 

Now it remains to show that z • 

n. . 
It is given that lim T 1x

0 
= z j therefore for e -;. 0 there is a positlve 

i-+co 
integer N such that for i ~ N d(T ~x0 , z) < E . 

Let m = n. + ~ (n. fi~ed, ~ variable) be any positive integer 
1 1 

greater than n. and therefore greater than N (as ni ~ i ~ N) then 
1 

d(Tmx , z) = d(Tmx , Tz) < ~21 d(Tm-lx , Tmx ) + d(z, Tz)} . (By condition 
0 0 ~ - 0 0 

(i)). 

But d(z, Tz) = 0 as z is a fixed point of T, 

( m ) 1 ( m-1 m ) dTx,z <-2 dT x ,Tx
0 0 - 0 
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1 (Tm-1 ) m ~ 2fd x
0

, z + d( z, T x
0

)} 

(...m · m 1 
d ~X , z) < d(T- X , z). 

0 - 0 

Continuing in the same way we have, 

d(Tmx , z) < d(Tm-lx , z) < d(Tm-2x , z) < 
0 - 0 - 0 

which proves the assertion. 

I n. 
< d(T 

1
x , z) 

- 0 

Remark 2.1.20: Since the condition (i) and the condition of non-

expansiveness are independent of each other, the above theorem is different 

from Coro;tlary 1. 3. 15, previous chapter (an alternative result to Theorem 

1 of Belluce & Kirk [ 3]). 

The indepencency of these conditions is seen by the following 

examples. 

X 
Let T : [0, 1) -+ [0 , 1] be defined by Tx = 2 for each 

x ~ [0, 1] . The metric is the usual distance. We see that T is 

contraction and therefore it is non-expansive. But it can be easily 

. 1 
seen by taking x = 0 and y = 2 that T does not satisfy condition 

( i) of the above theorem. 

Next, let T 

1 x e [o, 3) 

[0, 1] -+ [0, 1] be defined e.s Tx = j for 

and Tx = ~ for x E [t, 1] . 

Clearly condition (i) is satisfied for all x €" [0, 1] , but T 

. t 1 
is not non-expansive as it is discontinuous at the po1n 3 · 
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In the end of this section we give a similar result analogous to 

a theorem of Ki Wong Ng [ 29] as follows: 

Theorem 2.1.21: Let T be a continuous mapping of a metric space X 

into itself. 

Suppose, 

(i) d(Tx, Ty) ~~d(x, Tx) + d(y, Ty)} for all x, yin X. 

(ii) for XfY, thereissome n dependingon x,ysuch 

that d(Tnx, Tny) < d(x, y). 
co 

(iii) there exists some x in X such that the sequence · {Tnx } 
o o n=l 

n. co 

of iterates has a convergent subsequence {T 1x } converging 
0 i=l 

to some point z in X. 

Then z is a unique fixed point of T and lim Tnx = z. 
0 

Proof: We have by condition ( i) , 

d(Tx , T2x ) < ~12 d(x . Tx ) + d(Tx , T2x )} o o - o· o o . o 

or d(Tx , T2x ) < d(x , Tx ). 
0 0 - 0 0 

Similarly, d(T2x , T3x ) 
0 0 

< d(Tx T2x ) 
- 0 ' 0 

d · al d(Tnx
0 

, Tn+lx
0

) an 1n gener , ( n-1 n ) <dT x ,Tx
0

• 
- 0 

Therefore d(x , Tx ) > d(Tx , T2x ) > d{Tnx Tn+lx ) > o o- o o- o' o-
co 

Thus · {d(Tnx , Tn+lx )} is a monotone nonincreasing sequence 
o o n=l 

of reals and therefore it con~erges along with all its subsequences to 

some non negative real a • 
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Now_, for some n depending on ( z, Tz) we have by condition (ii), 

d(z, Tz) > d(Tnz, Tn+lz) if z f Tz • 

= z 

Thus we have, 
n. n.+l 

d(z, Tz) = d(limT 1x, lim T 1 x 
i 0 i 0 

n· n.+l 
= lim d(T 1x , T 1 x ) 

i 0 0 

= a 

ni+.,. n.+n+l 
= lim d(T x , T 1 x ) 

0 0 i 

giving a contradiction unless z = Tz . 

Thus z is a fixed point of T. Uniqueness of z as a fixed point of 

T is obvious by condition (i). 

CXI 

The convergence of the sequence {Tnx } to z can be shown 
0 n=l 

exactly as in the previous theorem. 

2.2 Multi-valued contraction mappings. 

A multi-valued function · F : X+ Y is a correspondence which to 

each x in X assigns one or more points of Y. For every x in X, 

F (x) will denote the set of all "images" of x. 

A point x is said to be a fixed point of F if x ~ F(x). 

Several interesting results on fixed points of multi-valued 

functions have been given by various mathematicians. In 1941, 

Kakutani [19] proved that if M is a compact convex subset of 

Euclidean n-space and F : M + M, a continuous multi-valued function 



such that for every x in M, the set F(x) is convex, then F has 

a fixed point. This result m~ be considered as an extension of 

Brouwer's fixed point theorem for Euclidean n-space from single-valued 

to multi-valued function. In 1946, Eilenberg and Montgomery [1.8] 

generalized Kakutani's result to acyclic absolute neighbourhood retracts* 

and upper semi-continuous mappings F such that F(x) is non-empty, 

compact and acyclic** for each x. 

Strother [41], in 1953 showed that every continuous multi-valued 

mapping of the unit interval I into the non-empty compact subs~t of I 

has a fixed point but that the analogous result for the square I x I 

is false. 

Plunkett [30},Ward [43] and others have studied the spaces having 

fixed point property for continuous, compact set valued mappings. 

Recently Nadler Jr. f28J introduced the notion of multi-valued 

contraction mappings and gave some interesting results on existence of 

their fixed points. He has used the following.notations and definitions: 

2.2.1. If (X, d) is a metric space, then 

(i) CB(X) = {c!c is a non-empty, closed and bounded subset 

of X} • 

(ii) 2X = {c!c is a non-empty compact subset of X} • 

* See page 15, T. Van Der Walt, "Fixed and Almost Fixad Points", 

. ::.:·~;;} Mathematical Centre Tract~, 1967-• 
. \ '::;.::_ 

**As above . . . .. · .. 
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(iii) N(e:, C) = {x E: Xjd(x, c) < e: for some c in C} , 

where e: > 0 and c e CB(X). 

(iv) H(A, B) = in f { e: I A C N ( e: , B) and B C N( e:, A)} 

where e: > 0 ; A and B € CB(X). 

The function H is a metric (see [ ~l.] ) , called the Hausdorff 

metric. It is to notice that the metric H depends on the metric for 

X and that two equivalent metrics for X m~ not generate equivalent 

Hausdorff metric for CB(X). 

Definition 2.2.2. Let (X, di) and (Y, d2 ) be two metric spaces. A 

multi-valued mapping F X -+ CB(Y) is said to be continuous at a point 
00 

x in {x} in X, converging. to x (with 
n n=l 

X, if a sequence 

respect to metric d) implies the convergence of the sequence 
co 

{F(x ) } to F(x) (with respect to metric H for CB(Y)). F is 
n n=l 

said to be continuous in X if it is continuous at each x in X. 

Definition 2.2.3. Let (X, d1) and (Y., d2 ) be metric spaces. A 

function F : X -+ CB(Y) is said to be multi-valued Lipschitz mapping 

of X into Y iff H(F(x), F(z)) ~ ad1(x, z) , for all x, z in X, 

where a > 0 is a fixed real number. If Cl < 1, then F is called a 

multi-valued contraction mapping (abbreviated as m.v.c.m). 

Since the mapping i :X-+ CB(X), given by i(x) = {x} for each 

·>ii~W x in X , is an isometry, the fixed point theorem for the multi-valued 
. ··.\~+ 

.. . · . . . , .. . 

mappings are generalizations of their single-valued analogues . 
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Nadler Jr. [ 28] gave the following theorem as a multi-valued 

analogue of Banach's contraction theorem. 

Theorem 2.2.4. Let (X, d) be a complete metric space. If F : X + CB(X) 

is a multi-valued contraction mapping, then F has a fixed point. 

Proof: Let a < 1, a positive real number, be a contraction constant 

for F and p be an arbitrary point in X. Choose a point 
0 

PI in F(p
0

). Since F(p
0
), F(pl) E CB(X) and p 1 E 

there is a point p 2 in F( p 1) such that, 

F(P ) , 
0 

* d ( p 1 , p 2) 2, H ( F( p 
0

) , F( p 1) ) + a 

Now, since F(p 1), F(p2) E. CB(X) and p 2 G F(p
1
), there is a 

point p 3 in F(p 2) such that, 

Proceeding in the same way we get a sequence {p.} of points 
l ·i=l 

of X such that pi €. F(pi-l) and 

*If A, B <: CB(X) and a ~ A n > 0, then it is a simple consequence = ' 

of the definition of H(A, B) that there exists b in B such that 

i 
d( a, b) 2. H(A, B) + n. Here a and subsequently a play the role 
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< a2d(pi-2' Pi-1) + 2a
1 

< -
............ 

< aid(p~, p 1) + ia i all for i = 1' 2' -

i+j-1 ( ) + a d p
0

, p 1 + (i + j - l)ai+j-1. 

= aid(po, pl) {1 + ~ + a2 + •.. + aj-1} 

+l·ai{l+ + 2 .1-1} a a + ••• + a 

i . i i+l 
< a d( ) + .;g__ + a . 
- -1 - a Po' p 1 1 ~1 ) 2 - a \.L - a 

For large i, the quantities on right hand side of the above 

inequality are sufficiently small. 
00 

Therefore {p.} is a Cauchy sequence. Since 
l . , 

l=.L C) 

complete, the sequence {p.} . converges to some point 
l i=l 

F being m.v.c.m. is continouos. Therefore the sequence 

(X, d) is 

X in X. 
0 

(X) 

{F(p.)} 
l i=l 

converges to F(x ) 
0 

and since for all i = 1, 2, ... , 

it follows that x 6 F(x ) , i.e. x is a fixed point of F. 
0 0 0 

Hence the theorem. 

Remark: The theorem does not guarant.ee t he uniqueness of fixed point. 

A localized version of the above theorem, as a generalization of 

the theorem of Edelstein [14] to multi-valued mappings has also been 

given by Nadler Jr. [ 28] • 
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First he gives the following definition which was modeled after 

Edelstein's definition for single-valued mapping. 

Definition 2.2.5. A function F : X+ CB(X) is said to be (e - A)-

uniforo~~r locally contractive multi-valued mapping (where e > 0 and 

0 <). < 1) provided that if, x, yin X and d(x, y) < e, then, 

H(F(x), F(y)) ~ ).d(x, y). 

Theorem 2.2.6. Let (X, d) be a complete e-chainable metric space. 

I:f F : X + 2X is an ( e - ). )-uniformly locally contractive multi-

valued mapping, then F has a fixed poj.nt. 

Proof: For (x, y) in X x X, define, 
n 

= inf{I d(x. 
1

, x.)} 
i=l 1- 1 

where infimum is taken over all e-chains x = x , x1 , x2, • • • , x = Y, o n 

joining x and y. 

It is easily seen that d is a metric fur X satisfying, 
€ 

(i) d(x, y) ~ dE(x, y) for all x, y in X 

and (ii) d(x, y) = dE(x, y) if d(x, y) < E • 

Since (X, d) is complete, from (i) and (ii) it follows that 
X 

(X, dE) is complete. Let HE be the Hausdorff metric for 2 
X 

obtained from dE It can be easily seen that if A, BE 2 and 

H(A, B) < € then H (A, B)= H(A, B). 
€ 

Now, let x, y €. X 

€-chain joining x to y. Since 

be an 

d(x. 
1

, x.) < E for all i = 1, 2, •.• , n, 
1- 1 
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H(F(x
1
._1 ), F(x

1
.)) _< Ad(x

1
._

1
, x

1
.) < E , for all i- 1 2 

- ' ' .•• ' n. 
n 

HE(F(x),'F(y}) ~iil HE(F(xi-l)' F(xi)) 

n 
= l H(F(x. 

1
), F(x.)) 

i~l l- l 

n 
<A I d(x. 

1
, x.) 

i=l l- l 

Since x = x
0

, xl, x2, •.. , xn = y is an arbitrary E-chain joining x 

to y , it follows that, 

H (F(x), F(y}) < Ad (x, y}. This proves that F is a m.v.c.m. 
€ - E 

with respect to d and H 
E E 

Then by previous theorem F has a 

fixed point. 

Thus the proof. 

Let 'liS recall a theorem of Kannen C2oJ , which says that if 

(X, d) is a complete metric space and f, a mapping of X into it-

self, satisfying, 

d(f(x), f(y} ~ a{d(x, f(x)) + d(y, f(y))} , V x, y eX, 
1 where 0 < a < -- 2 

then f has a unique fixed point. 

We have been successful in generalizing this theorem to multi-

valued mappings, under the similar notion of CB(X), Hausdorff metric 

H, etc. as used by Nadler. 

We denote the distance of a point x € X, from a set A C X by 

o(x, A) which is defined as 

o(x, A)= inf{d(x, y)jy£A}. 

Thus we give: 
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Theorem 2.2.7: Let (X, d) be a complete metric space and let 

F : X + CB(X) be a continuous multi-valued mapping satisfYing, 

(a) H(F(x), F(y)) ~ a{o(x, F(x)) + o(y, F(y))} , 

for all x, y E X , where 

Then F has a fixed point. 

Proof: Let p be an arbitrary point in X. 
0 

Pick up a point Pl ~ F(p ). Since F(p) F(pl) E. CB(X) and 
0 0 

Pl E. F(p
0
), there exists a point p 2 €. F(p1) such that, 

(see foot note page ~'I; we 
d(pl' Pz) ~ H(F(po)' F(pl)) + 1 ~ a 

( 0: )i 
1- a have taken , a. and subsequently 

... - a 

in place of n ) • 

Again since F(pl), F(pz) <:: CB(X) and pz €. F(pl), there exists 

a P?int p 3 E. F(p 2) such that 

d(pz, P3) ~ H(F(pl)' F(pz)) + (1: a)2 

Continuing in the same wa:y we get a sequence 
{p. } of points 

~ i=l 

of X such that, 

Now for all 

p. € F(p. 1) 
~ ~-

................... (I) ' 

and, 

for all i = 1, 2, •••. 

i, o(p., F(p.)) = inf{d(p., y) IY e F(P;)} 
1 ~ 1 • 

< d(p.' p. ) .......••.•..•.... (II)' 
- 1 ~+1 

since pi+l G. F(pi) . 

The inequality (I) in light of condition (a) gives, 
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or, (1 - a)d(pi' pi+l) .::_ ad(p. 1' p.) + (__!!.._/ 1- 1 1 - a 

i.e. d(pi' pi+1) .::_ 1 -aa d(pi-1' pi)+ (1a~ a)i+l 

· a i-1 
Similarly, d(pi' pi-1) ~J:--:-ad(pi-2' pi-1) + (la- a)i 

Proceeding in the same way, we have, 

( 
(:( i i 

d pi' pi+1) ~ (1 ~a) d(po' Pl) + i (la- a)i+l 

i.e. 

a i . i+l 

d(pi' p1'+l) < ( - a) d(po' Pl) + ~ (2--) - l a l - a 

Now, 

i . i+l i+l '+1 i+2 
< ( a } ( ) + ~-a ) +(-a ) ( 1 a . d p Pl d 1Jo,pl)~(-l ) 
- 1 - a o ' a 1 -a 1 - a - a - ct 

ct i + j-l i + j - 1 ct i + j 
+ ·" + (

1 
) d(p , Pl) + (-) -ct 0 ct 1-ct 

Since 
1 a a < -
2 

, therefore < 1; and putting for simplicity, 
1 - ct 

a = y( < 1) 
1 - a 

we have, 

1 i+2 2 j 2} + - Y {1 + 2Y + 3Y + .••• (j - l)Y -
a 

i • i+l 1 

~ 1 ~ y d(po' Pl) + ~ ri - y) +a 

i+2 
y 2 

(1 - y) 

Since y < 1, the q_uantities on right hand side of the above 

ineq_ua.li ty are sufficiently small for large i. Therefore 
{p.} is 

1 i=l 
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a Cauchy sequence. 

co 

Since (X, d) is complete, the sequence · { p. } converges 
l i=l 

to some point x
0 

E. X. According to our assumption F is continuous 
co 

in X , therefore the sequence {F(p. } 
l . 1 l= 

converges to 

for all i = 1, 2, . . . , it follows that 

i.e. x is a fixed point of F. 
0 

Hence the theorem. 

F(x ). 
0 

Since 

X £. F(x ) 
0 0 

We generalize the result of Maia [26] also, to multi-valued 

mappings as follows: 

Theorem 2.2.8. Let X be a set and, d1 and d2 ,be two different 

metrics on X (i.e. Xd and Xd be two metric spaces). If, 
1 2 

-+ CB(Xd
1

) is a continuous mapping of Xd
1 

into Xdi · 

and Xd is complete. 
1 

(ii) F Xd -+ CB(Xd ) is a multi-valued contraction mapping of 
2 2 

Xd into Xd with contraction constant a(O 2_ a 2_1). 
2 2 

and (iii) dl(x, y) ~d2(x, y} , y x, yE.X; 

then F has a fixed point. 

Proof: Let x ~ X. Pick up arrJ point x G. F(x0 ). Since F(x0 ) and 
0 

F(x 
1
) are non-empty closed and bounded subsets of Xd2 and x1 ~ F(xo), 

there exists a point X2 e F(xl) such that, 

dz{xl, xz) 2. H(F(x
0

) ~ F(xl)) + a 

Similarly F( X d , F( X2) ~ CB (Xd
2

) and X 2 C:. F( X l) , there is a 

point x
3 

EF(x
2

) such that , d2(x2 , x3) ~ H( F{ xl), F(xz )) + a
2 

· 
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00 

Continuing in the same way, we get a sequence {x.} in X 
1 i=l . 

such that x. e. F(x. 1) 
~ 1-

and d2 (x. , 
l 

x.+
1

) < H(F(x. 
1
), F(x.)) + a

1
• 

l - 1- l 

The sequence {x.} can be shown to be Cauchy with respect 
l i=l 

to d
2 

as in Theorem 3.2.4. By condition (iii) of the theorem it 
00 

follows that is also Cauchy sequence in Xd . 
00 1 

Since Xd 
1 

is 

complete, therefore the sequence {x.} is 
1

·1=1 

d 1-convergent to a point 

Since F is continuous on Xa
1 

, the sequence {F(x. )} 
l . 1 l= 

converges to F( a
0

) and since x. <=. F(x. 1 ) for all i = 1, 2, .•• , 
l l-

it follows that a €. F(a ) , i.e. a is a fixed point of F. 
0 0 0 

Hence the theorem . 



CHAPrER III 

SEQUENCES OF MAPPINGS AND FIXED POINTS 

3.1 The .o1ain objective of this chapter is to investigate the conditions 

under which the convergence of a se~uence of contraction mappings to a 

mapping T (these mappings may also be of the type (2.1B),~hapter II) 

of a metric space into itself implies the convergence of their fixed 

points to the fixed point of T. 

A partial solution to this problem has been given by Bons~ll [ 5 ] 

as follows: 

Theorem 3.1.1: Let (X, d) be a complete metric space. Let 

Tn(n = 1, 2, ••• ) and T be contraction mappings of X into itself 

with the same Lipschitz constant k < 1, and with fixed points un 

and u respectively. Suppose that 

Then lim u = u. 

lim T x = TX for every x€ X. 
n 

n-+<o 

n n-+<o 
As pointed out by Nadler [27], the restriction that all contraction 

mappings have the "same Lipschitz constant k < 1" is very strong for 

one can easily construct a se~uence of contraction mappings from the 

reals into the reals which converges uniformly to the zero mapping but 

whose Lipschitz constants tend to one. 

Considering separately the uniform convergence and the point­

wise convergence of a sequence of contraction mappings, i'fadler [27] 

gave the following two theorems which modifY the above result. 
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Theorem 3.1.2. Let (X, d) be a metric space, let T1 : X +X be a 

function with at least one fixed point ui for each i = 1, 2, . , . , 

and let T X + X be a contraction mapping with fixed point u . If 
m 0 0 

the sequence {T. } converges uni form.ly to T , then the sequence 
l i=l 0 

(I) 

{u.} of fixed points converges to u 
l i=l 0 

(I) 

Proof: {T.} 
l i=l 

converges uniformlY to T therefore for £ > 0, there 
0 

is a positive integer N such that 
i > N implies d(T. x, T x) < dl-<X ) 

- l 0 0 

for all x E. X, where a 
0 

< 1 is a Lipschitz constant for T 0 • 

We have, 

d(u
1

, u
0

) = d(T.u., T u) 
l l 0 0 

< d(T u T u ) + d(T u. , T u ) 
' '' ' Ol 00 - l l 0 l 

< d(T u T u ) + a d(u., u ) 
- i i' 0 i 0 l 0 

i.e . (1- a )d(u., u) < d(T.u., T u1.) 
0 1 0 - 1 l. 0 

i > N , (1 - a )d(u., u ) < £(1 - a0 ). 
0 1 0 

i.e. d(u
1

, u
0

) < £ since , 
(I) 

This proves that {u. } converges to 
l i=l 

0 < a <1. 
- 0 

u . 
0 

Th ( x, d) be a locally compact metric space, let 
eorem 3.1.3. Let 

for each 
A. : X + X be a contraction mapping wit h fixed point ai 

X + X be a contraction mapping wi th f i xed l 

i = 1, 2, ... and let 
co 

point a • 
0 

If the sequence . {A1} 
co i=l 

the sequence · {a
1

} converges to 
i=l 

converges pointwise to Ao ' then 

a . 
0 
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.~: Let e: > 0 be a sufficiently small real number so that 

K(a , e:) == {x € Xld(a , x) < e:} 
0 0 

is a compact subset of X. 

00 

{Ai} , being a seq_uence of contraction mappings.is an enui-
i=l , ~ 

continuous sequence of functions converging pointwise to A and 
co 0' 

K(a
0

, e:) is compact therefore the sequence {A.} converges 
l i=l 

uniformly* on K(a
0

, e:) to A
0

• Thus for e: > 0, there is a positive 

integer N such that i ~ N implies d (A. ( X) , A ( X)) < ( 1 - a )e: 
l 0 0 

for 

all x € K( a
0

, e:), where a 
0 

< 1 is Lipschitz constant for A0 : Now, 

for i ~ N and x 6 K( a , e: ) , 
0 

d(A
1

(x), a)= d(A.(x), A (a)) 
0 l 0 0 

~ d(A. (x), A (x)) + d(A (x), A (a ) ) 
l 0 0 0 0 

< e: (1 - a ) + a d(x, a ) 
0 0 0 

< e: (1 - a ) + a e: = e: , 
- 0 0 

which proves that \ maps K(a
0

, e:) into itself for i > N. Let 

B. be the restriction of A. to K(a , e:) 
1 l 0 

for each i > N. Thus B. 
l 

is a contraction mapping of K(a , e: ) into itself for i > N. Since 
0 

K(a
0

, e:) is compact, it is a complete metric space. Therefore Bi has 

a unique fixed point for each i ~ N, which must be ai because 

B
1 

== A
1 

on K(a
0

, e:) 

Hence a. €. K(a , e: ) 
1 0 

co 

for i ~ N and 

for each i > N. 

{ai} converges to a0 
i=l 

Hence the theorem. 

ai is a fixed point of Ai' 

It follows that the seq_uence 

* The pointwise convergence of an eq_uicontinuous seq_uence of functions 

on a compact set implies the uniform convergence of the seq_uence. See 

Rudin [ 32 ] . 
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~: A similar theorem for a sequence of contractive mappings con­

verging pointwise to a contraction mapping has been proved by Singh 

[36]. 

Remark 3.1.4: In the above theorem the condition of locall y compactness 

on the space is necessary. An example has been cited in~7] to show 

that in non-locally compact spaces, a sequence of contraction mappings 

me¥ converge pointwise to a contraction mapping without the sequence of 

their fixed points converging. 

Another approach to modify Theorem 3.1.1 of Bonsall is due to 

Singh [ 40] where the restriction that all the contractions have the same 

Lipschitz constant has been relaxed in the following·way: 

Theorem 3.1.5. Let (X, d) be a complete metric space and let 

T X ~ X be a contraction mapping with Lipschitz constant kn and 
n 

with fixed point un for each n = 1, 2, . . . . Furthermore, if 

k +1 < k for n = 1, 2, ... and lim T x = Tx for every x EX, 
n 

n-+a> 
into itself. Then T has a unique fixed n - n 

where T is a mapping of X 

{u } of fixed points converges to the fixed 
00 

point ana LSequence 
n n=l 

point of T. 

Proof: 
Since T is contraction with Lipschitz constant kn' 

n 

and thus 

Since 

d(T x, T y) < k d(x, y), 
n n - n 

·ror all x, y e x. 

lim d(T x, T y) < lim k d(x, y) 1 

n n - n n-+a> n-+<» 
for each n , it follows that lim kn < 1. 

n-+<» k < k < 1 
n+l - n 
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Hence lim T x = Tx is a contraction mapping. Moreover kl serves 
n n-+G) 

the purpose of a Lipschitz constant for all T (n = 1, 2, ) . 
n 

Thus the proof follows from Theorem 3.1.1 on replacing k by kl 

The theorem may be illustrated by taking the following example. 

Example 3 .1. 6 : Let T n 
[0, 1] ~ [0, 1] be defined by, 

1 T n X = 1 - n + l X fOr all X € [ 0 , 1) ; n = 1, 2 , 3, ... 

Obviously T is a contraction mapping of [0, 1] into itself, 
n 

with Lipschitz constant k = __!__ for each n = 1, 2, .•.. As we 
n n + 1 

observe k < k < 1 for each n, k1 = -12 will serve the purpose 
n+l- n 

of Lipschitz constant for all the mappings. The uni que fixed point for 

T is u = n for each n = 1, 2, .••• The limiting function 
n n n + 1 

T is given by , 

Tx = lim T x = 1 n 
for every x E [0, 1] . 

~ 

Now, lim u = lim n = 1 n . 
~ n-+oa n + 1 

point for T. 

where 1 is a unique fixed 

Remark 3.1.7: (i) If the Lipschitz constants are such that kn+l~ kn 

for each n, the theorem is, in general false. Russell [33] has given 

the following example to justify this remark. 

Let T n 

for all x E. E1 

El ~ E1 be defined as 

n 
Tnx = p + n + 1 x 

(n = 1, 2, ... ) , p > 0, 

, where E1 = (-~ ~ +~ ) . 
is a contract ion mapping, wi t h Li pschitz const ant 

We see that Tn 
k = n and with fixed point u = ( n + 1 )p for each n = 

1
' 

2 
' • • • • 

n n + 1 n 
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Now Tx = lim T x = p + x for every x ~ El • Thus under the 
n-+oo n 

mapping T, every point of E1 has been translated by a distance p 

and therefore T has no fixed point. Moreover, 

limu =lim(n+l)p= ... ~El. 
n-+<» n n -+oo 

Remark 3.1. 7: (ii) Singh [36] has further modified the last theorem 

by replacing the condition k 1 < k < 1 by k -+ k < 1. n+ - n n 

Further Singh and Russell [38] proved the following theorem far· a 

sequence of uniformly locally contractive mappings. 

Theorem 3.1.8. Let (X, d) be a complete E-chain~ble metric space and 

let T (n = 1, 2, ••. ) be a mapping of X into itself such that 
n 

d(x, y) < £ => d(Tnx, Tny) ~kd(x, y), 

where k is a real number such that 0 ~k < 1. 
If u is the fixed 

n 

point of T , for n = 1, 2, • . . , and lim T x = Tx for every x €. X, 
n n+a> n 

where T is a mapping of X into itself, then T has a unique fixed 

point and sequence 
{u } of fixed points converges to the fixed 

n n=l 

a> 

point of T. 

Now we want to extend the result of Bonsall to the sequence of 

mappings satisfYing the condition of Rakotch [31] · · 

Theorem 3.1.9. Let (X, d) be a complete metric space and let 

Tn (n = 1, 2, ... ) be mappings of X into itself satisfYi ng, 

(i) d(T x, T y) < ).(x, y) . d(x, y) for all x, Y E X. 
n n -
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where A(x, y) = A(d(x, y)) is a monotonic decreasing real valued 

function such that 0 ~ A(x, y) < 1. If un is the fixed point of 

T ( n = 1, 2 , ..• ) and lim T x = Tx for every x €. X, where T is 
n n n-+<» 

a mapping of X into itself, then T has a unique fixed point and 
ao 

sequence {u } of fixed points converges to the fixed point of T. 

n n=l 

Proof: Since lim T x = Tx for each x E. X and the function A(x, y) 
n 

n-+<» 
in condition (i) is the same for all n, we have 

d(Tx, Ty) = d(lim T x, lim T y) ~ lnim d(Tnx, Tny)~ A(x, y)d(x, y) 
n n n n 

for all x, y ~ x. Since (X, d) is complete, it follows from a result 

of Rakotch [31] that T has a unique fixed point u (say). 

Now lim T x = Tx for every x €. X, therefore for e: > 0, there 

n-+<» n 
is a positive integer N such that n ~ N implies d(Tn u, Tu) < e: Tl 

where n =min {(1- A(u , u))}, obviously n is a real number such that 
n 

n>N 
o<n~l. 

i.e. 

Now for any n, d( un, u) = d(T u , Tu) n.n 

< d(T u , T u) + d(T u, Tu) 
- n n n n 

< ;l.{u u)d{ u , u) + d(T u, Tu) 
- n' n · n 

( ' ( ) ) d( u) < d(T u, Tu) 1-/\u,u u, - n n n 

For n _> N (1- ;l.{u , u))d{u , u) < e: n 
' n . n 

and therefore min{{l- A(un' u))} d(un' u) < e: n 
n>N 

i.e. nd(un, u) < e: n 

i.e. 

Hence 

d(u u) < e: , since n > 0. 
n' 

lim u = u. 
n-+ao n 

This completes the proof. 
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Remark 3.1.10: As discussed in Chapter I (Remark 1.2.18),the result 

of Rakotch holds also when the function A(x, y) is taken to be 

monotonic increasing on d(x, y) in place of monotonic decreasing. 

Thus the preceeding theorem will remain true, without loss of 

generality, when the rnonotonicity of the function A(x, y) taken is 

reversed. 

The next theorem deals with a sequence of mappings satisfying the 

localized version of the condition of Rakotch. In this case we will 

assume the usual function A(x, y) to be monotonic increasing. 

The notion of localization and that of e:-chainability of a metric 

space which we use is the same as mentioned earlier •. 

Theorem 3.1.11. Let (X, d) be a complete, e:-chainable (e: being a 

positive real number) metric space and let Tn (n = 1, 2, ••• ) be a 

mapping of X into itself such that, 

d(x, y) < e: => d(Tnx' Tny) ~ A(x, y)d(x, y), 

where A(x, y) = A(d(x, y)) is a real valued monotonic increasing 

function of the interval (0, e:] into the interval [0, 1). If un is 

1 2 and l im T x = Tx for every 
the fix.ed point of T for n = , ' · · · n n n~ 

x €. X where T is a mapping of X into itself, then T has a unique 

fixed point and the sequence 
{u } of fixed points of Tn converges 

n n=l 

co 

to the fixed point of T. 
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~: For (x, y) € X x X define, 

d (x, y) = inf { r d(xi-1' x.)} 'where infimum is taken over 
e: • -1 1 

. 1-

all e-chains x = x
0

, xl' x
2

, ••• , xp = y joining x and y. 

Obviously, d is a metric for X satisfying, 
e: 

(i) d(x, y) < d (x, y) for all x, ye. X, and 
- £ 

(ii) d(x, y) = d (x, y) for d(x, y) < e: . 
£ 

Since (X, d) is complete, from (i) and (ii) it follojrs 

that (X, d ) is complete. 
£ 

Now, for any x, ye_x and any e:-chain x = x0 , xl' x2 , ···, xp = Y 

joining x and y we have, 

d(x. 
1

, x.) < e: 
l.- 1 

(i = 1, 2, .•. , p). Therefore for 

all n = 1, 2, . . . ' 

d(Tnxi-1' Tnxi) ~ A(Xi-1' xi)d(xi-1' xi) < e 

(i=l,2, ,p). 

Hence T (x ), T (xl), 
n o n 

• • • , T (x ) n p 
is an e:-chain joining T {x) and n 

Tn (y), and 

d(T x, T y) 
e: n n 

< t d(T x. l, T x. ) L n 1- n 1 
i=l 

~ I A(xi-1' xi)d{xi-1' xi) 
i=l 

( ) 
~ d( ) (Since 

< A e: l x._l, xi 
. 1 l 
l= 

d( X ) < e: implies 
xi-1' i 

A(d(xi-1' xi)}= A(xi-1' xi)~ A(e:}J 

for i = 1, 2, · · • , P) 
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Now since is en arbitrary t-Chain, we 

have 

dE (Tnx' Tny) ~ A(e: )de: (x, y) 

where A (E) < 1. 

(n=l,2, •.. ), 

Thus Tn(n = 1, 2, ••• )are contraction mappings with respect to 

d • (X, d ) 
e: e: 

is a complete metric space. Then Tx = lim T x for n 
Il+-oo 

every xe X, is a contraction mapping with respect to d and with e: 

A (e:) as Lipschitz constant so that T has a tmiq_ue fixed point u (saY) 

and lim u = u by Theorem 3.1.1. 
JI+Ol n 

Hence the theorem. 

3. 2. We now investigate few interesting results as a solution to the 

problem posed in the beginning of this chapter for the mappings of the 

type: 

f :X -+X s.t. d(f(x), f(y}) ~ ll{d(x, f(x)) + d(y, f(y))} 

for all x, y E X, where a is a non-negative real number. 

Let us call a to be a mapping constant for f. 

Theorem 3.2.1. Let 
(X, d) be a metric space and let T be a mapping . n 

of X into itself with at least one fixed point u for each n 

n = 1, 2, .... Suppose there is a non-negative real number a such 

that, 

d(T x, T y) < ·aa(x, T x) + d(y, Tny)} for all x, Y~ X 
n n - n (A) 

(n = 1, 2, • . . ) . 

00 

converges pointwise to a mapping 
If the sequence {T } 

n n=l 
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T : X -+ X, with a fixed point u, then u is a unique fixed point of 

T and the sequence {uJ converges to u. 
n=l 

~: {T n} converges pointwise to T, there fore for e: > 0 a• .d 
n=l 

for ue X, there is a positive integer N such that n ~N implies, 

i.e. 

d(T u, Tn u) < ( 
1

\ a) , where a is the same as in condition (A). 

Now we have for any n , 

d(u, u ) = d(Tu, T u ) 
n nn 

< d(Tu, T u) + d(T u, T u ) - n n n n 

< d(Tu, T u) + a{d(u, T u) + d(u , T u )} - n n n nn 

d(u, u ) < (1 + a)d( u, T u ) , Since u and u n 
are fixed-

n - n 
points of T and T respectively. 

n 

e: 

Therefore for n > N - ' 
(1 + a) = e:. 

00 

i.e. {u } converges to u. 
n n=l 

To show that u is a unique fixed point of T, let v be 

another fixed point of T. 
Then in the similar wa:y · {u} converges 

nn=l 

to v which implies u = v • 

Hence the theorem. 

A simple corollary to this theorem assuring the existence of 

fixed points of the mappings T together, the convergence of the 
n 

sequence of the fixed points to the fixed point of the limiti ng function 

m~ be given as follows: 
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_..Co.;;.;.r;...;;o.;;;l~la.ry=..~._3~·~2:.:.. . .::.2 : Let (X, d) be a complete metric space and {T } 
n n=l 

be a sequence of mappings of X into itself satisfYing condition (A) 
00 

of the above theorem with O<a<!. 2 . If {T } converges pointwise 
n n=l 

to a mapping T : X -+ X with a fixed point u, then ( i) the fixed point 

u is unique, (ii) each Tn has a unique fixed point for n = 1, 2, ••• 

and (ii:i.) the sequence of fixed points of T converges to u. n 

Proof: The conclusion (ii) is implied directly by a result of Kannan 

[20] and ( i) and (iii) follow from the theorem. 

The condition (A) in the preceeding theorem can be relaxed by 

allowing the mapping constant 
a to change with T in the following 

n 

way generalizing thereby the above theorem. 

Theorem 3.2.3. Let (X, d) be a metric space and let Tn be a 

mapping of X into itself with at least one fixed point un and with 

mapping constant a 
n 

for each n = 1, 2, ••. , such that, 

d(T x, T y) <a {d(x, T x) + d(y, T y)} , for all x, Y ex, 
n n - n n n 

where a ·is a non-negative real number. 
n 00 

Suppose lim a = a ~ 0 and the sequence {T } · converges 
n-+«> n n n=l 

pointwise to a mapping T : X -+ X, with a fixed point u. Then u is 
00 

the unique fixed point of T and .the sequence 
{u } of fixed 

n n=l 

points converges to u. 
co 

Proof: · {T } converges pointwise to T, therefore for £ > 0 

n n=l 
u€ X, there is a positive integer N such that n ~N implies, 

and 
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d(Tu, T u) < .§.. 
n n 

where n is a positive real number 

defined as, 

n = max {(1 + a ) } 
n~ n 

Now, we have for ailY n, exactly in the same wa:y as in previous 

theorem, 

d(u, un) ~ (1 + a )d(Tu, T u) n n 

Therefore for n > N - , 

d(u, u ) < (1 + a ) 
n n 

e: 
n 

< max { ( 1 + a ) } 
- n>N n 
<.0 -

e: = n n 

Thus {un} converges to u. 

e: 
n 

: E • 

n = 1 
The uniqueness of u as a fixed point of T follows as in 

previo.us theorem. 

Hence the theorem. 

Next we give the following interesting result under the nniform 

convergence of the sequence of mappings. 

Theorem 3.2.4. Let 
(X, d) be a metric space and let T be a mapping n 

of X into itself with at least one fixed point u for each n = 1, 2, n 

Let T : X -+ X be a mapping with a fixed point u such that , 
~ . . . 
(B) d(Tx~ Ty) ~a{d(x, Tx) + d(y, Ty)l for all x, y € X, where 

a is a non-negative real number. 
If the sequence -{T } 

n n=l 
converges 

co 

uniformlY to T, then the sequence 
{u } of fixed points converges 

n n=l 

to u. 
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· ~: The condition (B) implies that the given fixed point u of T 

is unique for let v be another fixed point of T, then 

d(u, v) = d(Tu, Tv) 

~ a{d(u, Tu) + d(v, Tv)}= 0, 

which gives that u = v. 

co 
Since {T } converges uniformly to T, given e > 0 there 

n n=l 
is a positive integer N such that n ~N implies, 

d(Tnu, Tu) < 1 ! a 
, where a is the same as in condition (B). 

Now for any n , 

d(u, u ) 
n 

= d(Tu, T u ) n n 

< d(~u, Tu ) 
- n 

~ a{d( u, Tu) 

+ d(Tu , T u ) n n n 

+ d( u , Tu ) } + d(Tu , T u ) n n n n n 

= a • 0 + ad ( T u , Tu ) + d (T u , T u ) , nn n n nn 

since u and un are fixed points of T and Tn respectively. 

d( u, u ) < ( 1 + a)d(T u , Tu ) 
n - n n n 

Thus for n > N , d( u, u ) < (1 + a) • 
- co n 

(1 ! a) = e • 

Hence · {u} converges to u. 
n n=l 

This completes the proof. 
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Remark 3.2.5: Singh [37] has proved the above theorem under a 

1 restriction 0 <a < 2 on 'a' which in fact is not necessary, as 

is seen in the proof. 

We present an example also which justifies this remark. 

Example 3.2.6: Let T n 
[0, 2] + [0, 2] be defined as 

Also 

1 n 
Tx=- + 3n + 1 X n n 

Clearly the fixed point 

3n + 1 
un = 2n2 + 1 

Tx = lim T x = .!. x 
n-+eo n 3 

for all X €. (0, 2) 

(n = 1, 2, ) . 

of T is given by, 
n 

for each n = 1, 2, 

for all x € [0; 2] , 

and thus u = 0 is the fixed point of T. 

It is easily seen by taking x = 1 and y = 0 in condition (B) 

that T fails to satisfY this condition for a < ~ • . But for any real 

a~~ the condition is satisfied for all the points in (0, 2] · 

Also lim un = lim 2~ : i = 0 = u. 
n-+eo n-+eo 
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