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ABSTRACT

The main object of this thesis is to study the
following extremal problem in number theory: Let n and
k be integers satisfying n > k > 3. Denote by £f(mn,k)
the largest positive integer for which there exists a set:

S of £f(n,k) 4integers satisfying

(1) s €{1,2,...,n} and
(11) no k mnumbers in S have pairwise

the same greatest common divisor.

We investigate the behaviour of £(n,k) in the
case where k + » with n. In particular we obtain
estimates for f(n,[log“n]) for fixed o > 0 and f(n,[na])

for fixed a, 0 < a < 1.

In the course of our investigations we make use

of certain intersection theorems for systems of finite

sets. We also include a number of new results concerning

these theorems.
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CHAPTER I

INTRODUCTION

.

The main object of -this thesis. is to study the
following extremal problem in number.theory: Let n and k
be integers satisfying n > k > 3, Denote by f(n,k) the
largest positive integer for which there exists a set S of

£(n,k) 1integers satisfying

(1) s€ {1,2...,n } eand
(i1) no k numbers in S have pairwise the same
greatest common. divisor.

The determination of f(n,k) appears to be a difficult. problem
and at the present time the existing upper and lower bounds
for f(n,k) are quite far apart. The various papers that have:
appeared on the subject have been devoted primarily to the
obtaining of estimates for f£f(n,k) for small fixed k and
large n. In this thesis we investigate the behaviour of
f(n,k) in the case whére k » » with n. Our results, however,
are by no means complete and much work still remains to be

done.,

In the course of our investigations we make use

of certain results concerning a combinatorial theorem of Erdds.

and Rado [4]. The ErdY¥s-Rado theorem can be formulated as

follows: Let n and k be positive integers with k > 3.

Then there exists a least integer ¢(n,k) such that 1if :ﬁ



is a family of more than ¢(n,k) sets, each set-with n
elements, then some k members of 3 have pairwise the same
intersection. That this theorem is closely related to the
nunber-theoretic problem formulated above can be seen as
follows: Letj'- { A19 Az"“'At } be-a family of distinct
sets, no k of which have pairwise the same intersection..

Let Ai = { &, 835:00, a, } and let Py, Py, ..., P, be
distinct primes. Then among the t numbers N;, N,, ""'Nt s

where N = TT Pj » there do not exist. k numbers
aje'Ai

which have pairwise the same.greatest common divisor. On

the other hand if- k members of j have pairwise the same

intersection then k of the numbers N, N2,_..., Nt will

have pairwise the same greatest common divisor.

In Chapter II of this thesis. we present a survey
of the known results concerning the Erd8s~Rado theorem.. 1In
addition we. include a. number of new results. In Chapter III
we return to our main problem, discuss some of the known

results and present some new results on the behaviour of-

f(n,k).




CHAPTER 11

INTERSECTION THEOREMS FOR SYSTEMS OF SEIS

§2.1 Proof of the Erdds-Rado Theorem

We devote this section to the proof of the
thecrem of Erdds and Rado stated in Chapter I. Let

e : be the sequence defined as follows
n O =

(2.1.1) T, = k=1, T = (k - 1) nT l-{k - 1){n - 1) for n=x2.

1 Ti n=

Then

Theorem 2,1.1 If 7 is a family of Tn + 1 digtinct sets,

each set with n elements, then some k members of # have

pairwise the same intersection.

Froof: The theorem is true for all k when n = 1. Assume
that it is true for all k when the number of elements in
each set of 3 ie = a. - l. If an element b appears in at

least T ) + 1 membars of } we may delate this element to
=

get a family of T“ + 1 sets, each set with n - 1 elements.

=1
By the inducticen hypothesis some k of these sets have pair-
wige the same intersection. Reinserting b gives a family
of T N 4+ 1 sets, each set with n elements, and some k

n-.

of these having pairwise the same intersection. Hence we

may assume that no element appears in more than Tn-l sets.




Let 4/ € J. Let F = (F:F€}, FNA #¢). Then

| Pl e nT - (n-1). Let j-’l =F- 3. Then aNF =4

for F€ 3"1 and IJTI

v

(k=2) n T - (k=-2)(n-1) + 1. Let
n=-1

%
A € JF). Then A;N4, = 0. Let JF, = (F

Then |}2| <n Tn—l- (n-1), Let 3: = j’l" _ }2. Then

, |
4,NF = ¢ for FE€F, and | Fy| > (k=3) n T - (k=3) (a-1)41,
n

13
Let A G} . Then ANA = A NA =ANA =&, Repeat this
3 V) 1 2 1 3 2 3

process, At stage k-1 we have sets Al’ Az' s ey Ak . such

' %
that 4 NA = ¢, 1 <1 <j<k-1,anda fanily Ji-, such
*
that AinF = ¢ for i=1,2,...,k-land every F € Jk-l and
% *
| 3‘k—1| > 1. Let A be any set in ]k-l' Then

Aif\A = ¢ for 1 <1 < j < k. This completes the proof of
3

the theorem.

It follows from theorem 2.1.1 that ¢(n,k) exists

and satisfies

(2.1.2) : ¢(n,k) < Tn
and
(2.1.3) ¢(n,k) < (k=1) n ¢(n-1,k) = (k=1)(n-1).

Moreover, one can show easily by induction on n, that (2.1.3)

implies

%
F e, FNaéel.

28BS ix” L B
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n n-1
(2.1.4) ¢(n,k) < nl (k=1) o1~ ] -t
t=l (t+l)! (k-1)t J-

The upper bound for ¢(n,k) given by (2.1.4) has not in
general been improved, but some known values of ¢(n,k)
indicate that this result 1s not best possible. We shall

return to this in section 2.3 where we discuss some known

values of ¢(n,k).

§2.2 Lower bounds for o¢(n. k)

Theorem 2,.2.1 For all positive integers a,b and k, with

k > 3, we have:

(2.2.1)  o(a+b,k) > o(a,k)é(b,k),

Proo Let Ja = {Al' Ay voes Ad;(a,k)} and
]% a {Bl, Bys cons B¢(b,k)} be families of
sets having the desired property (that is, no k of the
A's and no k of the B's have pairwise the same intersection).
As the notation implies, each A has a elements dnd each
B has b elements. We also take for granted that
Ai()B:l = ¢ for all 1 and j.
Let Fe {AiUBjsi-l,Z,....o(a,k). 31,2, ...,4(b,k)}
It is clear that the number of sets in j’ is ¢(a,k)¢(b,k)
and th,at each Qemb'er of 3! has a+b elementg. The 'ptoof'

of the theorem will be complete i1f we show that no k members

of i have pairwise the same intersection.

5
\




Suppose there exist distinct sets F , F ,...,F in H
1 2 k

and a set S CV 3} such that
(2.2.2) . P NF S, 1,421,2,00.,k, 1 # §.

Let Fi= Am v Bn for i=1,2,...,k. Partition the elements of S
i i

into two sets S, and S,, an element being placed in 3§, if it
belongs to L’JL and in §, if it belongs to Llji. Then it

is not difficult to see, using (2.2.2) that

(2.2.3) A NA =S, 1,§j31,2,...,k, 1 ¥ §.
mi n 1 B
and ] ¢
{
By
(2.2.4) B NB =8,, 1,ij=1,2,...,k, 1 # j. A
n a 2 4
i j - i
If the sets A , A ,...,A are all distinct, or if the sets :
m. m m -
i 2 k : T
Bn ,Bn sconvsB are all distinct, then we have a contradiction. j

n ’
1 2 k

Hence two of the A must be 1dentical and two of the Bn must
m

i i

be identical. Thus in view of (2.2.3) and (2.2.4), we have

L swvae. .

m1 2 my 1 n2 nk'

A = A = ... = A and B = B = ... B

m n
Hence F1 = F2 B .. B Fk. This contradicts the fact that the
F's were chosen as distinct subsets of_j. The proof of the

theorem is now complete.

Theorem 2.2.1 and the fact that ¢(1,k)=k-1 implies that

(2.2.5) s(a,k) > (k=1)".

This result was obtained by Erd8s and Rado, but by a different

argument. It 1s clear, however, that any improvement on (2.2.5)

for a fixed value of n will automatically yield a better lower

bound for ¢(n,k) for all larger values of n. With this




in mind we turn our attention to the derivation of a new

lower bound for ¢(2,k). We prove

Theorem 2,2.2

(2.2.6) 6(2,k) _>(
k

(k=1)2 + K22 4f k is even
)
(k-1), 1f k 1is odd.

Proof We first take the case where * 18 even and let-

3

k = 24 ., Let
i
3= ((4,1) ¢ 12841,.0., 22 S1; 4=38 ..., 42 -1}
s
3i= {(i,§) : 22 <1 < j < 3¢ -1},

LD s 1= 1,2,00., 5 3228 +1,..., 42°-1)

{(1,4) 2 + 1 <1 <3 < 22}

Then clearly

| 3| = a(22 -1)

| #,| = 2 & -1)

%] = 151 = b

Let 3 = }1 v }2 uj; u};. Since the families 3%, ]2, }3.

and j‘“ are disjoint we have || = H‘ll + I.‘I"'o_| + IF:J + ljl'*l
= 4(24 -1)+z(£—1)+2(§)

= (k=1)2 + k=2.
(k=) “Z

It is not difficult to check that 1f 1 < t 2 42 - 1 then t.

appears in at most k-1 members of :f. Hence if k members

of F are to have pairwise the same intersection they must be

pairwise disjoint. This contradicts the fact that

-

4

A4
B A



2k = 48 >hg-1 =|LL}| 0 This completes the proof for k

even.

We now take the case of k being odd and let
k = 22 +1. Let
;1- {(1,3)
Fo= (1,1

Let J= AUF . Then |F| = [F1+ 1 B1 =k Y+ (E)=k (k-1).

To complete the proof we need to show that no k members of

1st<g sk} Then |J] = (B

k+1<1i <3 < 2k}. Thenljél = ( 5 ).

.o

3 have pairwise the same intersection. Now each of
1,2,...,2k appears 1in k-1 members of,}. Hence 1f k sets
are to have pairwise the same intersection they must: be.
pairwise disjoint, but this would contradict the fact that
2(2+1) > 24 +1 = k = IU]” = IU}ZI Hence no k sets have
pairwise the same intersection. The proof of the theorem

is now complete.

Theorem 2.2.3

n
. ¢(2,k)7 , 1f n 18 even
(2.2.7) ¢(n,k) > n-1
' (k-1)¢(2,k) Z , if n is odd.
Proof" This theorem can be easily proved by using (2.2.1)

and iterating.

It is clear that (2.2.6) and (2.2.7) will yield a
better lower. bound for ¢(n,k) than that given by (2.2.5) for

all k > 3 and n > 2.

2 BN e tm Aw
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,The preceeding three theorems, with the exception
of the second part of theorem 2.2.2, which is new, were
proved by H.L. Abbott [2].

While the known ﬁpper and lower bounds for ¢(n,k)
are quite far apart, we can still gain a little more insight
into £he behaviour of ¢(n,k). We prove the following theorem
which was brought to the attention of H.L. Abbott in a

written correspondence from P. Erdos.
1

Theorem 2.,2.4 For fixed values of k lim ¢(n,k)“ exists.
>
Proof For a - fixed k we denote ¢(n,k) by ¢(n) and let
1
¢ = lim inf ¢(n)" < lim sup ¢(n)* = B,
e e 1] fe -

It follows easily from (2.2.1) that
b
(2.2.8) o (bL) > ¢(2) .

Suppose first that B < ®., Let ¢ > o be given. Let 1 be the

least positive integer for which
I
(2.2.9) o(e)” > B-e |

Let n=b2 +1r, 0 < < 2% -1, Then $(n)=¢p(br+r)> ¢(b2).

1

1 1
Hence ¢(n)n = ¢(bl +r)E T ¢(be) r

>

1 1 | 1
- ¢(b2)FT ( T+ r7EI) > (8-¢)TF T/DF

MM LD s AT Y
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where we have used (2.2.8) and (2.2.9).
1
Hence o =.1lim inf ¢(n)R > B -€,
n-+o

Since & 1is arbitrary we have a = B,

The case where B = = can be disposed of in a very.
gsimilar manner. Let N ©be a positive number and let 2
be the least integer for which ¢(2)% >. N. Then 1if n=bg + r,
0 <r.<4&-1we get, by the same argument used above,

L
n

¢(n) > N 1/1+B%

It follows that & > N and hence that o = = .

Py W S W Gy Y

This completes the proof of the theorem.

~

r

_\.’- .

§2.3 Exact values of ¢(n,k)

It is obvious that ¢(l,k) = k-1 for all values

N
.
&
N

of k. Erdss and Rado [4] observed that

Theorem 2.3.1

(2.3.1) $(2,3) = 6
Proof That ¢(2,3) < 6 follows from (2.1.4) and it is

not difficult to see that in the family

£€1,2), (1,3), (2,3), (4,5), (4,6), (5,6)}
no three sets have pairwise the same intersection.

Up to the present these were the only known

values of ¢(n,k) and the evaluation of ¢(n,k) for larger
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values of n- and k seems to be a very difficult prob-
lem. However, we have.been able to evaluate ¢(2,4) and
$(3,3). We state the results and. some consequences, but

since the proofs are somewhat long we do not present them

here. A sketch of the argument used is found in the

Appendix.

Theorem 2.3.,2
(2.3.2) $(2,4) = 10,

Note that ( 2.1.4) yields only ¢(2,4) < 15.

Corollary

(2.3.3) 6(ns4) snt 3" Js-1m3t ¢
9 9 Z(t-i-l)! 3T-2
)

Proof This follows easily from (2.1.3) and (2.3.2).

Theorem 2.3.3

(2.3.4) ¢(3,3) = 20,
Note that (2.1.4) yields only ¢(3,3) < 32,

Corollary
(2.3.5) ¢(n,3) < n! Zn{ZQ -1 ?if t }

)12 8 (t+1l)! 2t=3
t=3

Proof This follows easily from (2.1.3) and (2.3.4).

Any result of this type will not improve. the

general upper bound by more than a constant factor.

However, Theorem 2.3.3 together with (2.2.1) yilelds a

L2 L3N A AT Y

o~
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substantially better lower bound for ¢(n,3). We have the

following

Corollary n
(2.3.6)  ¢(n,3) > ¢(20) °.

§2.4 Some unsolved.problems-econcerning ¢(n,k)

In this section we state some unsolved problems
and make some brief statements about them.
1. Does there exist an absolute constant ¢, such that
¢(n,k) < c® (k-1)" ?

Erd¥s and Rado [4] conjectured that such a constant does.

exist.

2. Let Ay, A3y <o, A¢(n,k) be sets, no :( of)which

have pairwise the same intersection and let A = ‘llr Ai-
i=1l

Can one give bounds for IA] in terms of n,k or ¢(n,k)?
What other information could one give concerning the

structure of A7

3. can the existence of ¢(n,k) be established solely
by using a special case of Ramsay's Theorem [7] , which

can be formulated as follows?

Let t and k > 3 .be positive integers. Then
there exists a least positive integer h(t,k) such that if
G is a complete graph with more than h(t,k) vertices

and if the edges of G are colored in any way in k colors

Lfin A ¥

.

~. I

VvV i
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then there results a complete subgraph of G with k.
vertices all of whose edges hdve the same color.

Let {A1, Ap, ey Am(n. } bea family of sets
such that each set has n eI;A;;ts and no k of the sets

ot
S

have pairwise the same intersection.,  Form all possible

intersections A111 A, 1 ¢ 3, and denote the family of

j’
distinct intersections by {11, | PN It}. Let: G be

a complete graph with vertices P;, Py, +es, P .
S ¢ (n,k)
Color the edges of G in t colors cl.ﬁcz, ceny Ct

i

if Ai{1 Aj =1 . Then a simple argument shows that G
r

contains no complete subgraph on k vertices all of whose

by coloring the edge joining P and Pj dolor Cr

edges have the same color. . It follows that
(2.4.1) h(t,k) > ¢(n,k).
In proving (2.4.1) we are making use of the

fact that ¢(n,k) exists. Can,one use Ramsay's Theorem to

prove the existence of ¢(n,k)?
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CHAPTER III

AN EXTREMAL: PROBLEM IN NUMBER THEORY

§3.1
For the convenience of the reader we restate the
problem here. Let - n and k be positive integers with
n > k > 3. Denote by f(n,k) the largest positive integer for
which there exists a set S of f(n,k) integers satisfying
(1) s € {1,2,...,n} and
(11) no k members of S have pairwise the

same greatest common divisor.

The problem of determining f(n,k) appears te be difficult:
and at the present time all known upper and lower bounds for
f(n,k) are quite far apart. P. Erd¥s [3] proved that there

is an absolute constant c.>1 such that for every €>0 and

every fixed k.

log n :
log log n 3 L.
(3.1.1) c < f(n,3)<f(n,k)<n¥

provided n > no(k,e). "H,L. Abbott [2] proved that  for

every £€>0 and every fixed k and m

log n
(mte) log log n.

(3.1.2) £(n,k) > {¢(mk)} '

provided n > no(k,m,e)

A _BEIIIN AAIX T
o ey v Lo Ji L n




-]5-

We now investigate partially the case where kow.

with n. We prove the following theorems:

O R PN LTI Y

Theroem 3.1.1 Let >0 and >0 be given. Then
g. ‘- 2(!+3.|. e
1+a 20+4
(3.1.3) n < f£(n,[log%]) <n :
provided D2 (oye)e ?
Theorem 3.1.2 Let t > 2 be an integer. Then
1 .
t (1 -e)n ¢
(3°1°4) f(nb[n ]) > (108 n)t I:
for every e€>Q provided n> no(t,e). E
To prove thebrems 3.1.1 and 3.1.2 we need the g
following lemma: é

N i g AN

Lemma. Let t and .k be positive integers and let

£ Voo

Pl’ Pz’ casy Ptk~be the first tk primes. (Pr denotes the

rth prime). Let §; be the set of the. kt numbers

P ene P where (s=1)k+1l < isti sk for s=1,2,...t.

1 12 it

Then no k+l1 members of S5, have pairwise the. same greatest

common - divisor.

Proof The lemma is obviously true when t=1l.

Aésume that the lemma- holds for all positive integers

< t. Suppose 5., has . k+l members A;, Ay, :ve) Ak+1

which. have pairwise the: same greatest common divisor. Let
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Ai =-N1P£, where NiG'Stvand the P; are primes satisfying

]
Ptk+1 = Pi = P(t+l)k. Let (AI,AZ)-(AI,’A3)=-oc=(Ak,Ak+l)=d(SaY)-

Since there are k+l primes Pi chosen from a set of k primes
these cannot all be distinct. Suppose, without loss of

generality, that Pi-Pé. Then P&, (A;,4;) and hence Py |d.

Hence P! | (A;,A,) for each 1,§=1,2,...,k+l. But P! is

1 ;
different from any prime divisor of any number in S¢. Thus ;
PL =P, = ..., = PL+1. Hence Nj, Np, ..., ¥ . are all 'ﬁ
different and have. pairwise the greatest common-divisor %; ﬁ

1 #

But this contradicts the fact that no. k+l members of St ﬁ
have pairwise the same greatest common. divisor. i
Thus no k+} members of S 47 have pairwise the ﬁ

B
SR

same greatest common divisor. This proves the lemma.

y v
B

Ovserve that the ldrgest number in §; is

N=PFP
2

«ssP + We thus have
k tk

k

(3.1.5) £(N,k+1) > kS,

We now prove. Theorem 3.1.2., Let t>2 be a fixed
1

t
n

positive integer and set k"[log n

J. Then by the Prime

Number Theorem (P~ r log r, [6] p.10) we have

TT t
N I I P 1 ~nJ mk log mk v t ( og k)

n=1 m=1

1 1 t i t
= t! n® log n’ }) < t!éL“')
log n log. n t

t
=

ro|s
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Hence, for all sufficiently large n, we have

(3.1.6) N <n,
also
1 t 1 - t
t T
(3.1.7) (b al mo | >l m 1> {=e)n :
log n log (log n) 2
provided . n > no(t,s).

Now (3.1.5),(3.1.6) and (3.1.7) imply

1 1 - _ .
f(n,[n E1) » £(N,[aE]) 2 £(Nk+D) 2 k5 2 HZEAE,
(log n)t :
This establishes (3.1.4) and Theorem 3.1.2 is proved. %
To obtain the lower bound in (3.1.3) choose 5
k = [logafJ - 1and t = log n é
(1+a) log log n. ﬁ
Then for all sufficiently large n, we have ﬁ
t t ‘
(3.1.8) N =1T—P < (l+e) 11— nk log mk
m=1 Bk m=1
t
<‘(l+e)t t! kb TT— log mk
m=1

< (1+9°% ¢! kF (log tk)® < m.

log n

log 1
(14a)log log n

(1+a)log log n ( alog log u,
e

Also, since {log%n)

o o
—— log n ==
= el+a = n a’ then for gsufficiently large n, we have
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e ~E
(301.9) kt > n1+a °

Now (3.1.5), (3.1.8) and (3.1.9) yield

o

£(n, [log%n]) > £(N,k+l) > k* > nT;E -E.

This establishes the lower bound in (3.1.3).

In order to obtain the upper bound given in (3.1.3)
we use a modification of the argument used by Erdds to obtain
the upper bound given.by (3.1.1).

Let {a.,, a a } be an arbitrary subset of
1 L

2’

2a+3 +e
{1,2,+...,n}, where 2 = n .

split the a's into two classes. In the first class put those

a's which have at 1east[ log n ]n u distinct prime

2(2+a)log log n
factors. Denote by Wis Woy oo the squarefree integers not
exceeding n which have exactly - u prime factors. Every number
of the first class is a multiple of some W, gence the num-
ber of integers of the first class is af most

E: ANE

Pi in Py

n
z W <n < n(log log ntB )u
i

i u! al

where B is & constant (see [6] p.351). Stirling's formula

- for-u! and some straightforward calculations show that

a_B2iiNLrAIK I
T T R s e

.-

N

s v 8.
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2a+ 3 + €

__'2 . 1 2a+ »
§ vy o n for every €>0 1f n 1s sufficiently o
\
large. ;
Hence the number of integers of the second class i
2043 L ¢
is greater thamn 1 . 2a+4 i
2
Consider the unique factorization é
(3.1.10) ay = AiBi’ (Ai’Bi) =1, é
Y
where each prime factor of Ai occurs -with an exponent greater ﬁ
than one and By is squarefree. It is known [5 ]that the ﬁ
number of integers m<n- all of whose prime factors occur ﬁ

with an exponent greater than one 1s less than c¢ n%, where

> v Be

¢ 1is a constant. Hence there are at least

a+ I‘, + e. :'
2a+4 ;
I S integers &, with the same Ai . That is, we have ;
2¢c j {
(3-1511) a = A B 1 .ij ..<-r’ ‘
i i ’
' 3 1
+1 -
+ &
r >Ln 2%¢I' » Ay = Al
2¢c i

Now the number of prime factors of the squarefree number B,

is less: than . u; For all sufficiently large 1, we have
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iq > u! [log% Y

Hence from (2.1.4) and the basic principle stated in:
Chapter I there are at least [log®n] B's and hence by
(3.1.11) at least [log®n] a's which have pairwise the
same. greatest. common divisor. This proves the upper

bound in (3.1.3) and completes the .proof.of Theorem

3'1.1.

h(2)+o(l)
It would be nice to prove f(n,[log%n]) = n

and determine h(a). However, we could not do it.

A paper based on this chapter has been accepted
for publication in the Canadian Mathematical Bulletin. The

referee of the paper suggested the following improvement. on

Theorem 3.1.2

Theorem 3.1.3 Let(Q < a <l. Then £(n,[n%]) =-(l+o(l))cu n,

where ¢ is a constant depending only on. a.

Proof- It is well known. that the number of integers

<n all.of whose prime factors are Z n® 1s (1+o(1))c,n,

(c 1s a continuous function of a«). This set. of integers
u .

clearly does not contain a subset of 2 + m(n®) terms which

have pairwise the-same'greatest-common-divisor. Hence

(3.1.12) £(n, [n%]) > £(n,#(n%) +2)= (1+6(1))ecy n.
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Next we show that if 1<a,<...<ap <n, k>(ca+e)n, then there

1

is a subsequence aii< cer< 8y r>n® any two terms of which
r

have the same greatest common divisor. By the continuity
of c, as a function of o there is an nan(e) and a subser

quence aj1< RS aj , 8>.nn, so that the greatdst prime

8
(at €/2)
factor Py of-aj , 1 <u<s 1is greater than n : .
u.

u
l-a-¢/2,

Now consider. the numbers b, = aju//pju, bh <1

1 <u.<s, 8 >nn, Thus there is a d so that by = d has

more than nna +6/2‘>nm solutions .and this d is the

greatest. common divisor in question. It follows from this

that
(3.1.13) £(n, [n%]) < (c *e) n
and hence it follows from (3.1.12) and (3’1f13) that-

£(n, [0%]) = (L+o(1))e,n.
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APPENDIX

In this appendix we outline the proofs of theorems

2.3.2 and 2.3.3 which were stated in Chapter II.

Theorem 2.,3.,2 $(2,4) = 10.
Proof That ¢(2,4)> 10 follows from (2.2.6). To

prove that ¢(2,4) < 10 we consider any family of 1l sets,
each set with 2 elements. We assume that no 4 of these. sets

have pairwise the same intersection and wish to get.a con-

tradiction.

Clearly, we may assume that no element appears
in more. than 3 sets. If there are n, elements which appear.
exactly once, n, elements which appear exactly twice, and

ny elements which appear exactly 3 times then
(1) n, + 2n, + 3ng = 22,

Suppose 2 elements a,b appear. exactly once
and appear together, that is, in . the same set. Then

by (1) there must be at least one element ¢ which appears

at most twice.

We have at worst
(ab) (cd) (c-) (d-) (d-) (ef) (e~) (e-) (£-) (£-) (==)

where the underlined sets are pairwise disjoint. Hence Wwe

LRy

PO

AT ST g
LA T

T ST

r3
SR

4 Vs Sl RJINFRAN

v

b Rl e T a2 P A e 2 6 ap Al

P A rmza i e b fe e e 2D

SR H




- 23 -

may assume that 1f 2 elements appear exactly once they
do not appear together.

Suppose 2 elements a,b appear exactly once
and we have (ac),(bd) where c # d. Replace (ac) by
(be). Then 1f the resulting family is to have. 4 sets with
pairwise the same intersection these sets must include
(bc) and must be pairwise disjoint. That 1is (be), (pa),
(rs), and (tu) are pairwise disjoint. Thus ¢ does not
apﬁear among P,q,r,8,t,u. Moreover & does not appear
among pP,Q,X,s,t,u since a appears only once in the
original family. Hence (ac),{pq),(rs), and Stu) are. pair-
wise disjoint. Hence {f elements a and b appear
exactly once we must have (ac), (be). It also follows
from this that if a,b,c appear exactly once we must have

(ad), (bd), (cd) and that there cannot be 4 or more elements

which appear exactly once.

There are thus four cases to be considered:

(1) 3 elements a,b,c appear exactly once in which

case we have (ad), (bd), (~41)
(2) 2 elements a,b appear exactly once in which
case we have (ac), (be)

(3) 1 element appears exactly once

(4) no element appears exactly once.
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We present the details of the argument for case

1 only.

Case 1 If 3 elements a,b,c appear exactly once then, %

by (1), we have one of A §
(@) 2 elements each appear exactly twice %
®) 5 elements each appear exactly twice.

Case 1(a) Suppose 2 elements d,e each appear exactly

i S o i e e
S N R

twice. Then by (1) there are 5 elements £f,g,h,k,m say, ;g

each of which appears exactly 3 times. At worst we have Eé
(1) (_a_f_)(bf)(cf)(g_g)(dg)(e-)(g}}_)(g-> (h=) (h=) (==) ‘
¥ M
%} (11) (gi)(bf)(cf)(ia)(dh)(eg)(sﬁ)(g-)(h-)(::) ﬁ
3 (111) (if_)(bf)(cf)(gl_g)(dh)(_qlc_)(eg)(g-)(k-)(k-)(:_:) %
g (dv) (af) (bf) (cf)(dg)(dh)(ek)(em)(g-)(g—)(pq)(rS)- * |
: where in cases (1),(1i) and (iii) the underlined sets are
% pairwise disjoint. Im (iv) we take (af), (dé) one of 3
%} (ek), (em) and one of (pa), (rs) since one of k,m does é

"

RGN

not appear in one of. (pq), (rs). |

Case 1l(b)Suppose 5 elements d,e,£,8,h each appear exactly ;

twice. Then by (1) there are 3 elements k,m,n each of

which appears exactly 3 times. Clearly two of d,e,f,gsh

one of
say d and e, must appear together. Moreover

t we
f£,g,h, say f, does not appear with d or e. At wors
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RTINS

have
(g&)(bk)(ck)(Qg)(d-)(e-)(im)(f-)(m-)(m-)(;;).

LS e rah A

Cases 2,3, and 4 can be disposed of in a very

similar manner.

We turn our attention now to the proof that

$(3,3) = 20, The proof depends heavily on the following 3%

Lemma E

(a) Let J be a family of 6 sets, each set with ,é

z 2 elements, no 3 members of # having pairwise the same f;

é_ intersection. ig

- i

% Then i
| F = {(ab),(ac),(be),(de), (df),(ef)}. S
: (b) Let 3 be a family of 5 sets, each set with )
T X
% 2 elements, no 3 members of 3 having pairwise the same lfA 2
gt_ intersection. é ;
%: Then either E ;
I F = {(ab),(ac),(be),(de), (dE)} Lo
& -3 :
1 o i
§ F = ((ab),(ac),(bd),(ce)(de)) I

Proof: (a) Let {(ab),(cd),(ef),(gh),(ij),(kl)} be

?K a family of sets having the desired property. Clearly no :

3. element appears in. 3 or more sets. We may also assume that é

J j
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no element appears in exactly one set, since i1f this were

the case we would have three sets which are pairwise disjoint.
We may therefore assume that each element appears in exactly.
two sets and in view of this we may assume, without loss

of generality, that a = c and b =-e.

The case d = £ clearly leads to a family whose
structure is the same as that given in the statement of
the lemma. We may therefore assume d ¢ £ dnd also without

loss of generality that d = g. We then have
{(8b)s(ad).(bf)’(dh)p(ij),(kl)}.

Now £ = h is impossible since it implies (13) = (kl). We

may therefore assume f = 1, say. Then h =3 is impossible

since this would imply k and 1 appear once only. Hence we

must have h = k and j = 1, say- The resulting family is.

{(ab),(ad),(bf),(dh), (£]) » (h1) }

in which 3 sets (ab),(dh) and (£j) are palrwise disjoint.

This completes the proof of the.first part of the lemma.

The proof of part (b) is similar and will there-

fore be omitted.
Now we prove

Theorem 2.3.3 $(3,3) = 20,
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Proof That ¢(3,3) > 20 follows from the fact that in
the following family of sets, no 3 sets have pairwise the

same intersection:

{(abe), (abd), (ace), (adf), (aef), (bef), (bde),
(bef), (cde), (cdf), (mnp), (mnq) ’ (mpr), (mgs), (mrs),

(nps), (nqr), (nrs),(pqr),(pgs) }.

To show that ¢(3,3) < 20 we consider am arbitrary
family J of 21 sets each with 3 elements. We have to show

that 3 of the sets have pairwise the same intersection.

1t is clear that if an element appears in more

than 6 members of JF there is no problem. Hence we may

assume that each element appears in at most 6 sets. Also

if no element appears in more than 4 members of 7 we have,

at worst,

(a C)(a--)(a--)(a--)(b--)(b--)(b--)(c--)(c--)

(cen) (def) (d==) (d-=) (d==) (e==) (e==) (e==) (£-7)
(£--) (£=-) (z=2)

where the underlined sets are pairwise disjoint.

The importance of the lemma now becomes clear.

If an. element a appears im 6 sets then these sets are com-

pletely determined and in. fact must be.

(abc)(abd)(acd)(aef)(aeg)(afgL

A - v
JUPRURSREPEY Hape-IRL AR e O IO
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In addition, 1f an element a appears in exactly 5 sets

we must have one of

(a) (abc) (abd) (acd) (aef) (aeg)

(b) (abc) (abd) (acf) (ade) (aef),

Suppose (abc) is a member of 3 and that a,b and c 3

each appear in 6 sets. Then we must have ;

% = {(abc), (abd),(acd),(aef),(aeg),(afg),(becd),

(bpq),(bpr),(bqr),(cxy),(cxz),(cyz)}

as a sub family of }. If e,f,p,q,X,y are all different

e ms A wm s am &

the sets (aef),(bpq) and (cxy) are pairwise disjoint. Hence ;

without loss of generality we. may assume & = Pp. Lf

e el oo -

e,f,q,r,x,y are all different the sets (aef),(bqr) and (cxy)

are pairwise disjoint. Hence we may assume either f=gq

or f = xor q =x. If £f=gqor f = x then f appears in at

most 2 members of F - .% . Also e appears in at most

2 members of J- ]} and d in at most 3. Thus, in viev of |

the fact that |§| = 13 there is one member of # -.ﬁ which 3

does not contain any of a,bycyd,e,f. This set and the sets

(aef) and (bcd) are therefore pairwise disjoint. The case

where q = x can be disposed of in a very simile manner and

we find that one member of F - % and the sets (acd) and .
!

(beq) are pairwise disjoint.

The above discussion indicates the type of argument




- 29 -

that is to be used. We select a set (abc) in F and specify %
‘the number of sets containing a, b, and c. Let

]1 = {F:F € 2 ,F N (abc) #0}. The structure of }1 is ‘
then largely determined. We then show that either three l

. members of .?1 are pairwise disjoint or one member of F- ]1

and two members of }1 are pairwise disjoint.

We present the detalls of the argument in what
is the most difficult case, namely, the case where a,b and ﬂ
|

¢ each appear in 5 sets. By the Lemma, 7 must be ome of y

the following: al

1. {(abc),(abd),(acd).(aef),(aeg),(bcd),(bpq),
(bpr),(e=-), (c=-)} :

2. {(abc),(abd),(acd),(aef),(aeg).(bCQ);(bdr),(bqr),
(c-=),(e=m)}

3. {(abc).(abd).(acd).(aef).(aeg).(bpq),(bpr),(bqr), !
¢==), (c==), (c==)}

4, {(abc),(abd),(ace),(adf).(aef),(bcd),(bpq).(bpr),

(e=-), (c==)}
{(abc),(abd),(ace).(adf),(aef).(bpq).(bpr>.(bqr),

(c==),(c==), (c=-)}
{(abc),(abd),(ace),(adf),(aef),(bcq>.<bdr>,<bqr>.

(e==) o(c"') }.

In case 1, d appears in at most 2 members of P - }1,

p appears in at most 3 and q in at most &. Since I f1|= 10
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there is a set in JF - jl which does not contain any of-
a,b,c,d,p,q. This set and (acd) and (bpq) are therefore

pairwise disjoint.

In case 2, d appears in at most 2 member of J- jl and
q and r each appear in at most 3 members of F - }1.

Hence (acd),. (bqr) and a set in J - -}1 are pailrwise

disjoint.

In case.3, d,p and q each appear in at most 3 members of
¥ - -}1. Since | fll = 11, (acd), (bpq) and a set

in J - fl are pairwise diéjoint.

In case 4, d appears in at most 2 members of F - .%1 and

e and £ each appear in at most 3. Hence (aef),(bed) and a

set in F - F , are pairwise disjoint.

In case 5, we observe first that e is different

from at least two of pyqsr. Thus (ace) and (bpq), say, are

disjoint. Also e,p, and q each appear'in at most 3 members

of F - ¥ 1 Since | jll = 11, (ace), (bpq) and a set

in F - F , are pairwise disjoint.

Case 6 presents some additional difficulties and

we must examine more closely those members of- 3‘1which

contain ¢. Suppose one of the sets containing ¢ (other than

(abc),(ace).(bcq)) does not contain d and let this set be

(cxy). Then (abd) and (xy) are disjoint. Now d appears in

e e i o AL LM AP SR AR £ SR T
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at
most 2 members of F - .fl and x and y each appear

in at most 4. Since | f1| = 10 there is a set in ¥ - b 1

which is disjoint from (abd) and (cxy). Hence we may assume

that d appears in the two hitherto unspecified sets containing

c. If f ¢ q the sets (adf) and (bcq) are disjoint. Since d ‘
|

appears in at most 2 members of J - }1 and f and q each

appear in at most 3, there is a set in F - 3 1 which 1is
disjoint from (adf) and (becq). We may therefore assume f = q.

Similarly we may assume e = T. The lemma then shows that

Y

the two remaining sets containing c must be {cde) and (cdf).

Hence we have l
|

7, = {(abe), (abd), (ace), (adf) , (aef), (bef), (bde),

(bfe), (cde),(cdf) ],

Observe that every set in jz ig disjoint from every set in-

] - 7. 1f no element appears in more than 4 members

of F - fl then 2 members of F - fl are disjoint

and we have finished. Hence we may assume there is an

element p which appears in 5 members of F - F 1+ By

the lemma, 3 of the sets containing p must be of the form

(pqr)(pq-),(pr—). If q or r appear in at most 4 sets then

there is a set in J - F , which 1s disjoint from (pqr)

and we have finished. Hence we may assume that each of q,T ;

appear in 3 members of f - 7 1 e Let

72 - {F:F € J - F i+ F N (pqr) #¢}. We can mnow treat ]2

ated }1. I1f cases

in exactly the same way that we have tre
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1 - 5 hold there are two sets in .fz which are disjoint and
we have finished. Otherwise we have
F, = {(pqr),(pas),(prt),(psv),(ptv), (qrv),
2

(qst), (qvt),(rst),(rsv)}.

However we now have (abc) (pqr) and the remaining member of

(F - }1 ) - fz pairwise disjoint.

{
!
;
z
!
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