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THE STANDARD ALGEBRAS

by
HAZEL A.M. PRITGHETT

ABSTRACT

We discuss the tensor, symmetric, and exterior

algebras of a vector space.
Chapter O contains algebraic preliminaries.

In Chapter I we define the tensor product V@& W

of two vector spaces and then the tensor product of a finite
number of vector spaces. A theorem concerning the existence
and uniqueness of the tensor product is proved, Let \'\g
denote V®...®V (e times) . We define an operation
called multiplication of tensors which pairs an element of v*
and an element of V¥ with an element of \'*® . This
defines a multiplicative structure on the (weak) direct sum

OVz Re Ve VT & NeoV+VgVs... We call ®V the tensor
algebra of the vector space \Y} and prove a theorem
concerning its existence and uniqueness, Let V* denote
the dual space of A4 and \‘p)r denote V‘Q...O\l' \r times)
We show that \\“)r can be identified with \V‘\* , the
dual space of V' « This identification establishes the

pseudo product for the pair Yb. \Y"" .




(wo.. 0% Go. %Y = (iY- - (u %) .

In the final section we discuss the induced covariant and

contravariant homomorphisms.

We give parallel discussions for the symmetric
and exterior algebras. In Chapter II we give constructual
and conceptual definitions of NY! | the space of symmetric
contravariant tensors of degree ¥ , and show. the existence
and uniqueness of V‘" . We define an operation called
symmetric multiplication which pairs an element of V",
and an element of V“) with an element of V"*" . We

then have a multiplicative structure on the direct sum

OVz Re VW v, . yW

and we call OWV the symmetric algebra of WV . We
prove its existence and uniqueness. We discuss the duality
in the symmetric algebra and show that \VMV can be
identified with \\l")M . This establishes the pseudo
product for the pair v , W\r))"‘ . In fact, we

prove the formula
<\I’,o...ow, 3, ... o\ 7 = % ; (‘Ei. &1) (U'ﬂ. 3"

and show the relationship between this pseudo product and

the permanent function,

V -]

In Chapter III we define , the space




of antisymmetric (alternate) tensors of degree r . We
proceed as in Chapter II, Having defined exterior multiplication,

we have a multiplicative structure on the direct sum

AV = R4y, v, e

and we call AV the exterior algebra of WV . We
3 ) »

show that  (N“7) can be identified with (¥¥)™7

We prove that

Conea Ve, A aT Y2 L T lgna) (V% @ Y- - (%, 3,)

r e
and show the relationship between this pseudo product and

the determinant,
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PREFACE

Tensors are by no means new. Tensors, as well as
vectors, were first discovered and introduced by physicists,
In classical mechanics the "tension" of an elastic or quasi-
elastic body can be defined and turns out to be a "tensor" -
hence the choice of the term, Beside the stress and strain
tensors, the theory of relativity works with the tensor of
gravitation, the tensor of momentum energy and of the electro-
magnetic field, In differential geometry the curvature and
torsion of higher dimensional differentiable manifolds are

tensors. In topology homology - cohomology theory works with

tensors,

The physicist still defines his tensors in the
fashion of the nineteenth century when there was great over-
indulgence in coordinates and matrix computation., The trend
in the twentieth century, however, thanks to the now famous
Bourbaki group, is to give an invariant treatment which does
not concern itself with an irrelevant choice of a coordinate
system, We attempt to give such an invariant treatment since
the invariant approach in linear algebra not only results in
greater economy but also.preserves the geometric insight which
is all but lost in the maze of indices and coordinates of the
physicist.

In Chapter O we collect the various algebraic facts

~
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that will be needed and fix our terminology and notation.

In Chapter I we discuss the tensor algebra of a vector space.
The space of symmetric tensors discussed in Chapter II and
the space of antisymmetric tensors discussed in Chapter III

are subspaces of the space of contravariant tensors.

In differential geometry the exterior forms of
Chapter III are used when we consider submanifolds of a
differentiable manifold, We use the symmetric forms of
Chapter II when we consider higher order contact osculating

surfaces or "supermanifolds" of a differentiable manifold,

The exterior algebra was discovered by Grassman
in the nineteenth century but it was ﬁiie Cartan (1869-1951)
who rediscovered Grassman's work and applied it to analysis,
Cartan is the father of contemporary differential geometry
and introduced many new important tools into mathematical
research, for example, the exterior derivative of alternating
differential forms. Much of his work is still not fully

appreciated,

I acknowledge with deep gratitude my debt to
Mr, A.E, Fekete for his unfailing help and guidance in the
past four years and especially in the preparation of this
manuscript. I am also deeply indebted to various members
of the Department of Mathematics for their encouragement

and to the Bank of Montreal for its financial support.



ALGEBRAIC PRELIMINARIES

In this chapter we will collect the various
algebraic facts that will be needed and fix our terminology

and notation,

We shall be considering further dimensional vector
spaces over the field of the real numbers; this field will

be denoted by

A transformation $ of a vector space V into

a vector space 13 is called linear if

O.4 <“0V,+ )= &flv) + DHlea) V,, Vi €V
a,{en}

A linear transformation from one vector space to

another is also called a homomorphism and we have the following

classification of homomorphisms:

An injective (resp: a surjective, bijective)

homomorphism is called a monomorphism (resp: an epimorphism,

isomorphism).

A homomorphism ; Ve 2 is called

canonical, or more commonly, natural, if it depends only
on the properties of V,'l as vector spaces and not

on some further choice such as bases, etc.

Addition and scalar multiplication of homomorphisms



-
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are defined in the following way:
0.2 “"9) vz fuvsgv
(cf) v = ¢fiv) . veV, ceR

With this definition of addition and scalar
multiplication then, the set “0»-«‘\’. 2)  of homomorphisms

from a vector space V into a vector space Z is a vector

space.

Let V, W, (4 be vector spaces. A trans-
formation “.’ VW —» & is called bilinear if it is linear

in each variable separately, i.e.

03 Fflag+au, Ly +3u) s Q0 £lu,m) * Gl #G we)
At £, w) + a0 £, w0

VitaaV; &, weeW; G, 68,2 R
With addition and scalar multiplication defined
similarly to 0.2 the set Ho:wlv,bl 5 ) of all
bilinear transformations from Vx W into g 1is a vector

space,

We have the following natural isomorphisms:

0.9 Hon(V,:32) = Hom (V, HomiW,2)) 2 Howlhv, tomlv, 2))

lMore generally let V,, Vt.---. Vi be vector spaces,
A transformation f of Y.‘ Va, -y VR into a vector

space 'f is called multilinear if it is linear in each of its

variables separately. The set HDM (V1. Vo, - Va, : t )




of all multilinear transformations from Vc xVy x... *Vu.

into T is a vector space.

Let WV, w, & be vector spaces and let 4 V—=> W

be linear, The induced function

0. ¥ tone i, 2)

» Howv \v, 2)

. .
defined by F g = 9{' for every ge¢ Hom lw, %)

is linear.

-

Similarly, if 9: N— ¢ is linear, the

the induced function

0.6 9, : Hom (VW) — o (v, 2)

defined by q, {-. 9‘)‘ for every f(- Hone (V, W)

is linear.

Let § be a set of vectors in V . We say that

is a linearly independent set of vectors if for every positive

integer h , the relation

D: c.\f' +c$\rt+°" "Chuh % U"e f » cie“(

implies ¢, :C=z... =G =0

Otherwise s is said to be linearly dependent.,

We denote the set of all linear conbinations
by LlS). We say that a set of linearly independent vectors
on V is maximal if Lis) = V We define a basis to be

a maximal set of linearly independent vectors,




If \l is a finite dimensional vector space then
¥ nas a basis. Any basis for V is a finite set and any
two bases have the same number of elements. This number is

called the dimension of ¥ and is denoted by dim VY .

A vector space Y is called metric if a scalar

product or, more commonly, a dot product is defined in

in the following way:

A dot product in V is a function which assigns

to each pair of vectors X, Yye V a real number '
denoted by X. Y having the following properties:
i) Xy = y-% fo all x.yeV

i) €x).y=clxy) 5 xyev, cel

ir) key). 2: X2 +y.2
X Ay+)z hyst 2, %oy eV
WM %X 20 but xxz0 if Ged aly F, x20

Every finite dimensional vector space has at least
one dot product. Since a basis can be chosen in many ways,
it is reasonable to expect that a finite dimensional vector
space will have many dot products. This is the case even

though different basis can lead to the same dot product.

If ReV | X.% has a unique square root
which is 2,0 since X.x 2 O this root is
denoted by ‘%.] and is called the length of R . The

length is sometimes called the norm or absolute value., A




vector X in V is called normal if its length is 4

or, equivalently, if X.x ¢4

Let Y be a vector space with a fixed dot product.
Two vectors X,y in V  are orthogonal if X.4 = O
A basis in WV is orthogonal if each two distract basis

vectors are othogonal. A basis in WV is orthonormal if

it is orthogonal and each basis vector is normal., We remark

that every metric vector space has an orthonormal basis.

If %Xy are non-zero vectors in V , the

Schwarz inequality gives
0.% -4 $ XY gy

Wiyl
We may therefore define the angle ® between % and y
by

- X,
Coce = v , 0sosT
\xll\jl

This gives the formula

0.8 X.y = Ixllyl cet®

For any vector space Y\ the vector spaceHomlV,R)

is called the dual space of V and is denoted by V*.

The elements of V¥ are called linear forms on \VJ and

we denote them by W, We adopt a standard notation
09 v lv) = <\r, U7  veV, FeV*

and refer to this as the "pseudo-dot product™ of the covariant




vector V and the contravariant vector

For any vector space, the vector spaceHDtn\V', iR)

is called the bidual space of V and is denoted by V*”.

Let L Ve V¥¥ be defined as follows:
-V is the linear form on V" determined by

040 (¢ av) :x v ¢) FeV*

Then, if W is finite dimensional, M. is a natural
isomorphism. We shall use this natural isomorphism for the

purposes of identification

0.44 V'* =V

and this will be manifested by the fact that the pseudo product

is commutative, i.e.

042 {vi ¥Y= (¢ )
The function <\r, v is then defined in the
Cartesian product V% v* taking scalar values and is

bilinear; i.e.
043 (av,+bv, ,GY = a4y, gYy+ b (w. &)Y
(%, GT +3T,72 a(u.d s (v
| Vv eV 3 N, heVT L aber

Taking "2=IR in 0.5 we have the following:

Any linear transformation -f»' V= W induces a




.
1l inear transformation 'f ZV*l——W* defined such
that for &5 € N*'
* ] )
‘f W = t\:{
*
“ is unique, i.e. the diagram V_____,w

"z

is commutative. In other words, for all v‘.v‘ N‘W’.
044 G, )= (v ')

Let V be finite dimensional and let fe., cee, 6.}

be a basis for VYV . Then there is a uniquely defined base

se",. o, Q‘“ § in V* which satisfies the conditions

O.is <e£,?j) = 8

o, &,
(1]
—"Y
ab
-~
=,
1]
Qo ,

This basis of V‘ is called the dual basis of V* relative

to the given basis for V,

If \ is a metric vector space the relation ‘f: V- V¥
defined such that (v, duws Y : vw = (P w Y
is a natural isomorphism which is always used to identify\"
with V ; then the pseudo dot product is identified with the

dot product and a self-dual basis with an orthonormal basis.

We remark that if v is a finite dimensional

vector space, then

0.4b d;,,., N = O i V¥ . (S N



We make only two further remarks in this chapter.
We recall that the coinage of a linear transformation
F , wWritten Q‘)M{ , is defined by Crim{ = Vlh where
K= lw{ . For every homomorphism § ¢ ldonv [V, w)

we have a natural isomorphism
F: tnm f —n i f

defined by ﬂf. ler) = Ffv , br all veV,

This natural isomorphism is always used as an identification:

041’ Gy { 3 "fm#

An algebra is a vector space V on which we
define a further operation called multiplication which
assigns to every pair of elements Y~.\1€V an element

‘L\j €N called their product. This multiplication is
associative and there exists a (unique) unit element 4e&V

such that {4 = w4s % for all x eV,

Let V and W be algebras. A linear transformation
{". NV —> W is called an algebra homomorphism if
flxy) s Hn) fiy)
for all eV and if F‘ is the unit element
of W ; le.e. (' preserves multiplication and units as

well as addition and multiplication by scalars.




THE TENSOR ALGEBRA OF A VECTOR SPACE

1. The tensor product
Definition 1.1.1.

Let v, W

be vector spaces and suppose
that a vector space & with a given bilinear map{&: Vew—> 2

exists satisfying the following universal factorization
property:

For an arbitrary vector space X and for any
bilinear map od: VW » X

there corresponds one, and only one, linear map

¥:

2 —» AR
such that

o = ?ﬁ
i.e, we say that every diagram

Vaw L5 2

can be uniquely embedded in the diagram

which is commutative.

If such is the case, % is called the tensor product
of the vector spaces V and W ;

in symbols, €= VOW
The bilinear map will be denoted by

blv,w) = vouw

for every V&V, e W
The elements V\ ©w

of VoW

are called tensors.
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Remark 1.1.2.:

The function {3 establishes a natural isomorphism
between the vector spaces Honl V, W ¢, %) and Hom\Vew,X)

The identification Hon AVRW ox) = Hon (| VOWw .« X) can be

regarded as the implicit definition of the tensor product

Theorem 1.1.3.:

For every choice of V¥V and W , their tensor

product V@N exists and is uniquely determined to within

isomorphism.

Proof: (i) The proof of the existence is a construction
yielding an isomorphic copy of the tensor product. Such a

construction is discussed in (3] pages 204-5.

(ii) Uniqueness:
’
Suppose two vector spaces &, t satisfy the

universal factorization property above., Then we consider the

wa—ﬁ—s:b

_(é.-,"e
N ¢ ' A PR
) {.‘(’ \F'=gqp G\*z' Bey'e

two following commutative diagrams:
VoW

Hence

"t‘ B=f= $@= Wlep) s Wy ' ie gy 1y
Similarl ‘ha =

imilarly \‘, g = 1%

Hence \ is an isomorphism and % and %' are isomorphic;

in fact they are naturally isomorphic and the uniqueness of

the tensor product & : VW (to within isomorphism)

is proved.
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Definition l.1.1. gives the tensor product of two
vector spaces. We now define the temnsor product of a finite

number of vector spaces.

Definition 1.1.4.:

Let V..V;,..., V,, be vector spaces and suppose
that a vector space z together with a multilinear trans-
formation b VixV, %o wVpy —> 2
exists satisfying the following universal factorization property.
For every vector space X and an arbitrary multilinear
> X

there exists one, and only one, linear transformation

\e . z = *

such that %= Yh

transformation & : VyxVyn...xV,

|

.e.

the diagram \f, xV, %... wV,, LS T

o(\) x

can be uniquely embedded in the diagram

Vax Vax...x Vn D

t
d\)):(,v

If such is the case we call t the tensor product

which is commutative.

of V,. Vo, -, Vo and write = V,® V3 &®... ® Va

d
Eople e,

Theorem 1.1.5.:

The tensor product of any finite number "W’ of

crey \TN) b4 \yi 901 ®'~~©UN
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vector spaces exists and is unique (to within isomorphism).

Proof: (1) Existence: The proof of the existance is again
a construction yielding an isomorphic copy of the tensor
product. We omit the details but such a construction can be

found in [3] (p. 219).

(ii) Uniqueness:
We show that if two vector spaces & and &'
satisfying the universal factorization property exist then z
and .1. are isomorphic. The proof is exactly similar to

the proof of l.l1.3. and so we omit the details.

Theorem 1.1.6.:
The tensor products U© (V® W) and (U@V) © W

are naturally isomorphic.

Proof: Hom |(UoVI®W, ) = Horv ( UeV, How (w,2))
= Hom U,V Hom (W, 2)) = Hone (U, Hom AV, W 5 2))
: Hony (U, Hom (Vew, 2)) = Hom U lVew], t)

Hence (Ugv)®W = u®\Vew)

Thus from 1.1l.6., the tensor product is associative.

Before we develop the tensor algebra we shall state

and prove a theorem concerning the dimension of

Theorem 1,1.7.:

If WV,W are vector spaces of dimension "™ and h

respectively then N® W is of dimension Wn . If
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‘Q,'..., €.y and ‘fq,..., £ 3 are bases of V and W

respectively, then ‘ee © ‘]‘ S L AP JrAd- b
form a base of VW
Proof: Let \e,, cre em‘, ‘ Fc. ;—v" be bases of V

and W . Define the bilinear map ‘{’.-‘- : Ve W —> R

t‘ ' ! - .
by \P“ ‘eu.fQ\= S._ 8" k= 4, ..., b
"l‘- - {o L) Ll
By bilinearity \P“ is defined for any element of WxW.

These bilinear maps are linearly independent in H‘Dmh!,w; R)

For, if E a"i \P“I‘ =0 a‘i e R

we have .
S ¢ ¢}
O = .2- a"l' ‘P-“' ‘eu. F;): Z. a.‘,‘ (3 ‘SL = qu,
o Cu)
Hence the vector space Hor LV, W ¢ R) is of
. »
d imension 2 bn ) “.¢. Veow) is of
&
dimension % Mma . But Ve w) has the

same dimension as Vo W which is £ mn,

It follows that the dimension of VOW ismn,
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2. The tensor algebra

Tensor products of copies of VY and V" are of
particular interest. We consider spaces of the formV,®... OV

where each Vi is either V o V¥,

If there are F copies of V and § copies of V¥
then the space is called a tensor space of type \v,g) ; ¥

is called the contravariant degree and S the covariant

degree. We write

2.4 "o .. oV V'®... V"
V; = Vo.-..eV ® \'®... ®
"cﬂn'c,s SC.o],"gs

Observe, however, that the integers \¥,$8) do not
determine the space. The order in which the spaces occur

matters; we distinguish between Vo V* and V¥ oV

v
In particular, Vo is called a contravariant tensor of degreef

\J; is called a covariant tensor of degree S

We also make the convention that: \lo - R
° -

Given two tensor spaces \’, Q... & Vg of type

(v, s) and \I.'m... @V,: of type \v', s') , the
associative law for tensors defines a bilinear map

V: Vo...oVw) x(Ve.. ow) — ive. .oy oly'e... oW)

where V ©-.. eV ®V, ©... ©Viu is a tensor space

of type \vaer', seq) -

This operation is called multiplication of tensors.

The product of a tensor of type (r, s) with a tensor of type
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\V'. ¢') is a tensor of type Lrar, s+s)
i.e. this bilinear map defines a multiplicative structure

on the (weak) direct sum of all tensor products of \'

¥ .
and A . We denote this space by OV e
1. 2. 2. OV 2R +Vav¥s vou s vVigutaVev's.. .
We note that in general @ V is infinite dimensional,

Definition 1.2.3.:

The space OV together with its multiplicative

structure is called the tensor algebra of the vector space,

We may also state the definition of the tensor
algebra of a vector space in terms of a universal factorization
property. We call this definition the conceptual definition

of the tensor algebra of a vector space:

Definition 1.2.4.:

Suppose @V is an algebra and 1 V - ®V
is an algebra homomorphism satisfying the following universal

factorization property:

Given any algebra A and an algebra homomorphism

f. Y~ A , there exists one and only one
algebra homomorphism ¥ - ®V > A
such that - i
i.e, \P makes the follow.ing diagram commutative,

V—l—-»®.\l
—i

then @V is called the tensor algebra of the vector spaceV,
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Theorem 1.2.5.:

The tensor algebra OV of a vector space V

exists and is uniquely determined to within isomorphism.

Proof': (i) Existence of ©V can be shown by construction,
In fact ®V= R +Va V¥e VoV + V¥@V* 4.\1@\,*4-...
together with 1 the inclusion map, satisfies the universal

factorization property given in 1.2.4.

(ii) Uniqueness:
Suppose that two tensor algebras OV and OV
satisfying the universal factorization property of l.2.4.

exist. Consider, then, the following commutative diagrams:

V15 Vv V> ®v
_ TR \ Ly (§=93)
1\ vt T N
v ©V
Then dgy § = 7= %j= $l§7I -9 4
Hence VY 1ew

Similarly ? ‘f - "GN

It follows that \f is an isomorphism and so ®V and ®V

are isomorphic; in fact they are naturally isomorphic.

TR 1 1
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3. Duality in the tensor algebra

From now on we shall be concerned with only pure
{covariant or contravariant) tensor algebra. First we shall
discuss problems arising from duality. We shall show that(V’)*
can be identified with Nk)y and we adopt a neutral notation

V\p for it.

We recall that by l.l.2. we have a natural isomorphism
between the vector spaces Hor \V, w : X) and
\-\U"“‘Vew‘ x) . In particular, then, we can
identify Hon \ v, W i R and Hone ( VoW . R)
by the definition of the dual space WQ W)*‘-‘ Howe (VoW R)

It follows that we have a natural isomorphism
»
between \V@W) and Hosmv\V,w,R) which we shall always

use for the purpose of identification.

Theorem 1.3.1.:

There is a natural isomorphism

¥Y: View 5> Hor AV, W) defined by
‘{’\\7’ Ow) = (\T—,\r)w’ for all Uve V.
Proof: Let the natural transformation
V: V'ow —s Honr L Vi W) be defined by
\f\\? ©w) = <\?,U’) (X 4 for all VeV,
Clearly this defines a linear form and P is linear,

If \Q.,. cen € and §¥4. ey f..3 are bases of ¥V
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and W and ‘eqo RRY e».} is the dual bases of v*
we know that a basis for V®W is given by
se.-@f-i-f ’ Vg, oo, o . j:4,..., ~ and a basis for

(V%W) is given by
Ré{@"is t‘...'ﬁr;i‘:",-..,’v

Using this basis we verify that \‘) is an

isomorphism.

Theorem 1.3.2.:

»
There is a natural isomorphism between (VQW\
and N ¥® w¥

Proof: IV@OW)™ = HomlV.w: R) = Hoa lv: Hone \w, 1R1)
Hom (V,W7) = Vieow?™

We shall always use this isomorphism for the purpose of

identification:

(\/@W\* = Vew"™

Thus we can write

3.3 <v’@m Toms Yz (v i) (&) ;

VeV, TeV"* wewW weW
Clearly this can be extended to any further number

*-
of factors by linearity. In particular, we can identify \V')
*
and \V*)v . The fundamental bilinear relation between \V.’)
and \\l")y is given by
3.9 {ve.ew Fe.oi)s (v.3Y... (v,
We identify \V")* and N“\r and adopt a neutral
notation \lr for ik,
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4. The induced homomorphism,

For fe Hom iV, V') and G € Hom| W) e
define the induced function ‘PQQ: Vew — Vow' by
141 Heg)tvew) = fu ®gu
where Vew 1is a generator of V@W

‘@g is clearly a homomorphism.

Proposition l.4.2.:
T fogq:Vew— Vow' sna flog': vView' — vipw"
then Heq) Lfog) = ff ®gy

Proof: L“.®ﬁ') ‘fﬁﬁ)] Vr®w = (‘F@Q') EH‘®9) (VQW)J
=feg') | frwoguw)= {IfNog'lgw)= §f)re by v
= (f'f ©9'9)lvow)

We may now define the induced contravariant and the

induced covariant homomorphisms.

p * »
i - . V, = VE©. ...V
We write Y Vo...oV Gnd q
as before, b copies 9 coprus

Definition 1l.4.3.:

For -f~ e Hon 1V, W) we define the induced
contravariant homomorphism of degree }, , in symbols f
g P P p
to be . e where = e ®
P copres
For ‘F e Hom\ Vv, 1N) we define the induced
covariant homomorphism of degree q , in symbols ‘F‘i
*
to be -‘1: V., ¢— N¢ where Fiz-[@...tsf‘
4 S

‘1 c‘Or:t$
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P. P 4 P
Properties: For 'f N — NP v 9 ¢ W — U,
"q: Vq‘—"NQ ' 94‘-""4‘—““&.

ﬂv H V_—.a,V

we have the following formulae:
(1) G 7= gPF"
(1i)  @)° =
(111)  (9t)q = 4 9
(iv) \ﬂv)q - ﬂva’

Proof: (1 (gff - gf & 0gf = go-09) Yo oh) = 5t
b “P’“ b copres p copies
(i) 0,)" - e 0l = ﬂv'& - D,
.. |’ “Ps&s |"‘—°|""s
(iii) (‘j})‘t s Wf)@ @Q}) (fo 0*’)‘90 eg " . %%’
(iv) qr °°P"—3 (“ "-‘—opm q Copnts
@), - [\,0 MJV = Do oor = Oy

—
‘1 Co'»t: q Copies
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THE SYMMETRIC ALGEBRA OF A VECTOR SPACE
r
O. The permutation group on ¥ letters acting on V.

Let VY be a vector space of dimension h . We r
v
consider the space V, of contravariant tensors of order r ;

4
for simpler notation we write V¥  for V,

The permutation group on ¥ letters, W, , acts
| ¥

on the space VY : Given any permutation Te T, , and any

tensor of the form ¥, ®... ®X, , we define
200010 v‘xg &-. . w") - 10-',’ @... 9 xrb’)

t.
and extend by linearity to all of v . Thus we have a

representation of I on V'

Let C.L\n) < Homiv,v) denote the group

of automorphisms of the ™M -dimensional vector space vV .
It is easy to see that the above representation of i, on

\(\r commutes with the tensor product representation of

i.e. for any tev', Te T and ge GLinm)
2.0.2. ot = rgt
where 9(: is 9@,.,@9 ( v times) acting on t.

It follows from 2.0.2, that any simultaneous

ei'genvector of H., i.e. any tensor satisfying

2.0.3. Gt = r \o) t
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where P is some numerical function on r‘, is taken

by 9 into another tensor satisfying the same equation:

0‘94’.: 9¢t= qe\rl kb = p(r)gé
The two important cases are

2.0.4. P(’) = 4

and

2.0.5, ()(v)-.- fgve = [ 0‘} G 15 even
-4 5'- ¢ s odd
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1. The space of symmetric (contravariant)
tensors of degree

We consider the case given by 2.0.4. i.e.p(0)=4

Then 2.0.3. becomes Tt=bt In this case we say that Gt
is symmetric.

Definition 2.1.1.:

r
The subspace of A consisting of those tensors

satisfying Gt =t will be denoted by v\ and will

be called the space of symmetric (contravariant) tensors of

degree V.

r
There is a natural projection gv of Vv onto

)
vy given by

2.1.2. Sl = 4 at . tevt

‘ ]
r. TeN,

Theorem 2.1.3.:

For every te V' ¢ (&) is symmetric
i.e. for any ¢'e M, o' Sy te) = Sele) . Moreover,

, is a section i.e. S-S,

Proof: For any permutation ¢ e, we have
' 4 .
T Yr‘t) = T z 0”0“: - 4 gt = gr ey

L 254
%)
<
"
e
l-—
i
Lo ]
S
ol
N
S’
»
Mo
~ | M
2
v
<
|
a

) vl
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We may regard 2.1.1. as the constructual definition |

\r) ir
of V . We now give a conceptual definition of \' :

Definition 2.1.4,.:

Suppose that a vector space - together with a
symmetric f,ransformation .
: VW 2 '
exists satisfying the following universal factorization
property:
For every vector space X and every symmetric
transformation

kp: Vr—> X

there corresponds one, and only one, linear transformation

f. 72 -——>-¥
such that \f"‘“lv
A

i.e. every diagram Vi 5t
\f\’ L Y4

can be uniquely embedded into a commutative diagram

Vi —t 52

Vg
\ {
\¢ X
If such is the case, we write !

z - Vlf)

Remark 2.1.5.:

The function < establishes a natural isomorphism
between the space of all symmetric linear transformations
\f g Vh—) X and the space of all linear trans-

formations {—: V‘V\ »X We denote the space of all




B R T R e T ey I T S e Y L I A
- i 2 e g .
LR PN RS R . ] )
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- - ‘ . r
symmetric linear transformations \P tV —=nX by

IVM \ vr' X) . Then the identification
fyre [V, X) = Hom VY7, %)

implicit definition of VM.

can be regarded as the

Theorem 2.1.6.:

For any vector space Vv, vin exists and is

unique (to within isomorphism).

Proof: (i) Existence* We have shown that V"’ exists by
actually constructing it, It is clear that the AL defined
in 2.1.1. together with the natural projection Sy A VY——’; V\"

given by 2.1.2, actually satisfies the universal factorization

property 2.l.4.

(ii) VUniqueness: Suppose two vector spaces V"’, y®)

satisfy this universal factorization property. Consider, then,

the follow1 % commutative diagrams:
—t5 gy v, e
[

\ 1
4 '
- ¥ =y !
LR v\ v
fig. (i) . fig. (ii)

From fig. (i) <

Then 4§l_‘;’ ..i, - ,;l,‘

i+ ; from fig. (ii) 4= [+
fv: SITP=-UD+

follows that _‘r - 1_
vir)
Similarly -
&'{. * ‘1v\r) —
Hence { is an isomorphism and V¥ and Y™ are

naturally isomorphic.

3y




Remark 2.,1.7.:

If the dimension of N is ©h , then the
. V\r) N4y -4
dimension of is v N namely, if

t\en RN eh} is a basis for V , then a basis for

W) . .
VV) is given by {ﬂ-‘oe‘;o...af‘-’ :45;'.<Cz_<...<t‘,.‘n.i

where €¢'°,,, QC.;' = ‘,v \Q‘; ®... 0 &)

e

PR~




2. The symmetric algebra

We will define an operation called symmetric

cq s . . . ir)
multiplication which pairs an element of V¥ "' and an

Vv \s)

element of with an element of Vhﬂs'

We recall the natural projection S.r of ' into

V\" given by f.le\ = -1-'- 2 &t . teV"
! Te N\,
Also we recall that if XxeV' and ‘j&V‘ , then

| 4
from the definition of the tensor multiplication X ®y e V s

Definition 2.2.1.:

We define the symmetric product X 0% by the

formula that .
X oy = S;(Xﬂ\j) . xeV', YeV

Remark 2.2.2.:

The symmetric product X ©Y4 jis clearly an
s
element of V \r+s) if XeV', YeV
Remark 2,2,3.! X o y= Yyox.

Thus this operation, symmetric multiplication, pairs
an element of V\H and an element of V‘s’ with an element
of V\r'”, . Then we have a multiplicative structure on

the direct sum

V9, VALR IR VAL S N VA

We write OV s V'@ FERVALLIRRVAL - +y"!

note that, in general oV is infinite dimensional.

P
i
i
b

RO PR S S e T ?..'A-;-:.'_.-“l \

S )

7
S

1
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Definition 2.2.4.:

We call oV (as defined above) the symmetric

algebra of the vector space V o

We have also the following conceptual definition

of the symmetric algebra.

Definition 2.2.5.:

Suppose OV  is an algebra and z Ve~ OV

is a symmetric algebra homomorphism satisfying the following

universal factorization property:

shoisamiiiiza

Given any algebra A and an algebra homomorphism

# t VN—s A , there exists one, and only one, algebra

homomorphism \f: OV e—> A such that = !” .
i.e. ‘? makes the following diagram commutative
V —> 0oV
A 4
™~

Then O\/ is called the symmetric algebra of the vector space.

Theorem 2.2.6,: i

For every vector space \Y/ , OV  exists and is

L L T

unique (to within isomorphism).

Proof: (i) Existence: It can be shown that a choice of
ON = V\O‘ 4.\]“) PR \J“\ together with the inclusion
f: V=3 Q\ satisfies the universal factorization property
of 2.2.5.

a—

(ii) Uniqueness: Suppose ON and OV both




satisfy the universal factorization property of 2.2.5. Then

we have the following commutative diagrams:

V > O.V \Y —J-—»ox
' v
- S Y —\\ ¥
1 oV T Sov
fig. (i) fig. (ii)
Then from fig. (i) f 7] ; from fig. (ii)y=@f
Hence 4ﬁi= f‘-““’: \fl\fj):(\lli)f
it follows that V¢ = 4‘& ' ‘
Similarly q ¥ = 40\!
Hence \f is an isomorphism and so oV and OV

are naturally isomorphic.




3. Duality in the symmetric algebra

my* ) br}
In this section we shall show that \V ) - ‘V )

and we shall adopt the neutral notation V\ﬂ for it,

V ir) R .
We may construct in a different way.

Actually we may put A IPRRYA l ker Sy where S

is the symmetric linear transformation Y ¢ V¥ > V"
i.e. v\ . V'.lb.r S = Com S - This construction
of V\') satisfies the universal factorization property

of 2.1.4.

the Uanv § and Any $

For simpler notation we write § instead of §,

From 0.4-.} we have a natural isomorphism between

, we can identify them. Then we

have a natural isomorphism

2.3.1. + o ov'r!

induces a

> v §

Also the linear transformation S : VY —> yir!
linear transformation

S"‘; vv)r‘ S \V‘)lrl

so that we have a natural isomorphism

2.3.2. ’*‘ : \V*)lr' —_— v S*

Furthermore from the definition of the dual space

V™. Hom (v!”. R

and by Remark 2.1.5. we may identify H'om\V"',- n) and?qm\\f'."?)

where

\Vr. R)is the vector space of all symmetric linear
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linear transformations S; \["’_., R

Hence we have a natural isomorphism

2.3.3. P‘i !lev'. R) ———> \V"’)’t

Since we wish to show that we have a natural
Ir}) ¥ )
isomorphism between \V ') and \V )b) , we now need

. . . . ¥
only to show that a natural isomorphism exists between 1w $

and F},M VY, 1R)

We define
2.3.4. T i 8 > Lm (V' R)
which is defined for every E e vm S* such that
Pt (veo...o%) = (Gweo. o, k)
where V,®... ©V, 1is a generator of V',

Extend this definition by linearity and then clearly
Frte HomtiVv' R)

In fact, rt e gqm\vv' R) for any Te W,
\Tt)ﬁ‘\\f,g..,ow) = t (rly, ®... ©v)) = (v ®©...0uw), k)
: (v®.0vn ™t): (Vo..e¥ td: NtIVie...ov)
i.e. Ct) v= rt for every @
i.e. Tt is symmetric Mt e Sym (V' R)
Moreover, T is a homomorphism:

F‘CE+c‘t')(V,©...g>U,) = (\I‘@.,,@\:,' ckec't')

= C(“q@--- a\’v' t7 ¥ C‘ <\&®.,.€)Jr' t|)

¢, c'eR

e
A N AL R

STRRENINE )

"
T
i,
L3
e
L
bl
-4
i
i
:
3
2
3
i
A
:

clrlye... ova + ¢ Lre) [V, @.c v =) << FE)) o0V |
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i.e, r‘CE«-c't') = c(re)_,c'(rt') so that © 3
is a homomorphism. ,
To show that F is bijective (and hence an :
isomorphism) we define its inverse function
. S r _— ur §F
B : Symiviw) D
for every T € g‘i"'\ tv*, R) by the formula
(Go..ov, BTY: T V®...0w)
It is clear from 0,10 that such a covariant tensor
v P
exists; BT € Hom V. R) in fact, it is 4
- . [
symmetric. BT & Inv § for

4&... 0y, BTY= (Tle...0%), BTY= T(olv@...0u0)
(T lv,o...ov) =2 TlvuD...0%) = <\.r,a...e\r,,8t)

»
Now BT is the identity of ’n §

; for everyt,
<V4®-..®\f. gIrt) = re (Vue...ovw) = (v, O-.-. v, kY

i.e. RE = 4

i S™

Similarly, "8 is the identity of gqh.\V'. w) ;
for every T « Sym (V' W), !
rg) t (v, @... ®v,) = <\r,®.,.®\fr,8't)= TlwuS...ov)

i.e. rB =

P
|

S."Ih\ ‘V’, '2)

This means that [ is bijective, hence a natural
isomorphism, We then have a product of three natural

isomorphisms

2.3.5. \[3* s W*)M S (V)
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\r) * »
\V') t S tw s* r > S‘\.'m ‘V., R) -—‘E.—')(V""'-

We shall use this product for the purpose of identification:

Q‘F C+Y =1 Then we write
2.3.6. \V\rl"- - \Vx)\r! - V"

The identification 2.3.6. will be used in order to
. . V W) ‘ i) )‘
establish the pseudo product for the pair , vV

In doing so we shall also have occasion to use the natural
isomorphism Y CLonw s > Ay S with
4 VMo...ov) = S\yo..0v)

(foorioby, G0 o Y2 (Yonnody, 6" 4 (V005 ))

= <V.o...,o\f¢' $ lr4 17, e...05)) ) = (l‘-}"lf/,.»..«&,), flvie... ow))
S (r\**{ G, 0...0%1), Slv,0... 0v))
(sly,@..00), s*I7 ©...63,) )

(s\v.o...cu'). Uy ©...05 )

(ris*le..ow)) slv,e..eu)
(S‘zhf,o...sv.,), U, .00 )

L (Zeo o, § o)

=1 - g i v =
W;(ﬁ@"l Qur" v. Q-..“‘r7 r—" zf <\r¢.'v‘s"‘ (uf'. lf, )
wherein various
steps have various justifications.
We have proved the formula

2.3.70 <\’| o... °“r, ‘7'°°" 0\7' 7= —4;' Z (\&
r.

It is often more convenient, however, to use this

pairing without the factor "r‘T so that we replace the

TR ST T NI AT AT T

—
E
i

;

:
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pairing ( , ) by the pairing < | ) ; this new
pairing is defined by

2.3.8, <‘\7= ARSI

e

€.

2-3-9-(";9...0\& Iﬁo.-.oay 7 = ; (W. ' 8” et (U““ ‘?' ’

Or, we may write + +

2.3.10. (%, 0Y (%, %Y - (v, 0,y

("ﬁ. WY (Uﬁ..‘?" e (u'n |
<U. O...0Up l \7‘ 0. 0Vy » = . . : :

(\fq-.,\?, Y (W‘,. T ("4‘9. Ve 7

where denotes the permanent.

The permanent is obtained by making all the negative signs

in the determinant positive.

Thus  (vo..00 | To 08 Y 2 por (v, %Y




I\

i

;

&

4, The induced homomorphism e-i

To every homomorphism 4'- V— W there ;

. . . { I Ir) W) 4
is an induced homomorphism : V' —> W

defined by

\v)
2.4.1. { = {"5

1
Given homomorphisms '} t Ve w , 9° W—u
the induced homomorphism \qﬂ‘” .y -—-3\-1‘” has

i
paes

the property that

2,42, (94) R gir!

For, 9 = "5 (')
= B \s 5
= vr}r) (Y8
= @) S

- ﬁ})\r)

Also given 4\, R/ 5\ , the induced homomorphism

SYUEIRS FY AN & L E S

ir) has the property that
Uy vv— v P

2.4.3, )
L3 \4,) = A

ST T ey e ATy T T T T
s
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THE BXTERIOR ALGEBRA OF A VECTOR SPACE

1. The space of antisymmetric (alternate)
tensors of degree

r
We will now study the subspace of \ corresponding

to the second simultaneous eigen value

2.0.5, 1i.e, (:\(r): th!;‘: §+1 |'[£ T 1S even
-4 u'f T 15 odd

R e R L

Then 2.0.3. becomes Tct- @9" v) ¢

In this case

we say that t  is anti-symmetric or alternate.

Definition 3.l.1,:

r
The subspace of \') consisting of those tensors

satisfying @bt = (sr, o) & will be denoted by V )

and will be called the space of anti-symmetric tensors of

degree ¥ or the space of alternate tensors of degree r,

r
There is a natural projection l'-\r of Y onto

V ]
given by

312, A = A DT (e dle) eV
r.' Tely

Theorem 3,1.3.:
For every tevt , A, le) is alternate;
i.e. for any T e n,, g A, L) = \f@rv ') A Y)

Moreover, Ar is a section,i.e. B, RA,= A8,
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Proof: For any T'e W, we have

T A = (5 Z'; \sgna) T10) ) = fr—, % fgaa) o' lE)
- W . ) \

= -‘F-‘- % \sonm) @Ok - A ("{"");“5""”"’ = Sgv ' B, 1t),

r!

Ftor!

rtor! rio@

We may regard 3.1l.1. as the constructual definition of Vc']

We now give a conceptual definition of V&]
Definition 3.1l.4.:
Suppose that a vector space z together with an

alternate transformation v
I". . '} — &
exists and satisfies the following universal factorization
property:

For every vector space )( and every alternate

transformation ) ‘f : \[" — K

there corresponds one, and only one, linear transformation

.2 > X

such that \f < {\ +

i.e., every diagram \/y__.-) 3
\>
A

can be uniquely embedded into a commutative diagram ¥V —>

| il
A, A, -'-(i ; \SJM")G‘) H;-, g ‘s’..rhr) = %_:_' ; Isqn O )0 p,.\‘?ﬁ‘

] ]

g
ot

FRSIRIT 21

L L R S

."
ey
T
i :i

e e T R R
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If such is the case we write 4= \/[":I

Remark 3.1.5.:

The function "* establishes a natural
isomorphism between the space of all alternate linear trans-

formations \f ! We> ¥ and the space of all linear

transformations . (‘"___ . We denote the space of
4 >

all alternate linear transformations Y . \IV-—-—>)( by
My \V", X) . Then the identification
PV, X) = Hom (VO X)) can be

regarded as the implicit definition of v(-']

Theorem 3.,1.6,:

¢ . .
For any vector space V, V " exists and is

unique (to within isomorphism).

Wl
Proof: (i) Existence: We have shown that V

exists by actually constructing it . It is clear that the
Vh] defined in 3.l.l. together with the natural projection
A, : v — v('] given by 3.1.2. actually satisfies

the universal factorization property 3.1.4.

| 6l G
(ii) Uniqueness: Suppose two vector spacesV ~ V vl

satisfy this universal factorization property. Consider, then,

the following commutative diagrams:

Vs v vyt
g \ Vof
v = -
V"E"'d '\l’ A V(v]
fig. (ii)

’~"“ﬁl\

s S LR B S B

g

bt




A

7

e

4

e oo i e b kT ST RIS T S

From fig. (i) ’f‘-
Then 4V1‘] { - { . .[»
f

it follows that

{‘* : from fig. (ii) ¥ = f.‘f-
4= f1F4) = ¥§) +

Similarly ‘} 4vtv1

Hence ‘f' is an isomorphism and so V"'J and Vt']

Ca
i
2

are naturally isomorphic.

b

Remark 3.1l.7.°

Ir N is a vector space of dimension K

Cs
then the dimension of \ ] is \.}- ) . Notably,

if ‘eq.c-;,’ cey Cn ; is a basis for vY then

23
N i
¥
3
N
L
P
"(
3
.:3;4

QQ{.A Q(, A... A e;" | Sil g\-;_ <... <\, $n2‘ wheve
Cy 4 Q\‘ta...al." < ‘}-\Q,'.@Q.“@..,o(.;r)

is a basis for V(']

RS L
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2, The exterior algebra

We will define an operation called exterior

1
multiplication which pairs an element of V and an

Y, (s]

element of with an element of V(H's]

We recall the natural projection A, :y* 5y ] it
given by A, (t) = ';-"T Z ‘fﬁhf) rie) ; teV”

Te Ny

e SR el e A T RS e A s

Also, if XeV' yeV?$ then x ey« VARL

by the definition of the tensor multiplication.

s,

Definition 3.2.1.:

We define the alternate product X A v by
the formula that
Xay=z Arlxwoy) : xev', yev’

Remark 3.2.2.:

The alternate product X a v is clearly an element
Cra sl

The sign of the permutation on {res) letters
which moves the first ¥ letters past the last $ is \—4)”
(the motion is obtained by moving each of the r letters
starting with the last of the ¥*'s through the s's , thus

by F.§ interchanges of adjoining letters). Thus

Arlyex) = €1 A, Ixoy) S0 that

Xage )7 yax

The operation, exterior multiplication pairs an




:
41 E

%) 3 ;
element of V and an element of \' <] with an %
L .
element of \Y resl . Then we have a multiplicative i

structure on the direct sum

\ & (3 R) + VO, 01, B ,

We write ANV =z R+ \lc“.|. \[c'ﬂ-g-.. . !-Vbl

Definition 3-20&0:

4
A
H

1

We call AV the exterior (or Grassman)

e L lr At

algebra of the vector space .

kA B 2

We have also the following conceptual definition

of the exterior algebra,. i

Definition 3.2.5,.:

Suppose AV is an algebra and 1 N—> AV
is an alternating algebra homomorphism satisfying the

following universal factorization property:

Given any algebra A and an algebra homomorphism
{3 V*—)ﬂ there exists one, and only one, algebra homomorphism

‘f: AV —» n  such that 'f: \Pl

i.e. \P makes the following diagram commutative

N —1, /\|\I
{

Y

§ A

Then /\V 1is called the exterior (Grassman) algebra of

the vector space \ . .




L2

Theorem 3.2.6,:

For every vector space V, NV exists and is
unique (to within isomorphism).
Proof: (i) Existence: It can be shown that a choice of

AV= IR+ V(d-t vOB3,... 4y together with the
inclusion 1 TV c——— V("] actually satisfies

the universal factorization property of 3.2.5.

(ii) Uniqueness: Suppose /\V, AV both
satisfy the universal factorization property of 3.2.5. then

we have the following commutative diagrams .

V —> AY V—ils Av

)
-, L v .\‘ ‘!?
d AV ) AV
fig., (i) fig. (ii)

Then, from fig. (i) a? : Y ; from fig. (ii)z‘z ‘?/-
sense A f 7= s VIF) WP T
it follows that ‘f‘;’ : 4,&
Similarly, ?Y - ‘I/\v
Thus \f is an isomorphism and AV and AV are

naturally isomorphic.

Remark 3.2.7.:

It V is dimension " , then AV has
dimension 2" since AVY = R +V"d4..-. - \lc'l
\rd h
and  Qine V? . \%) , da‘me: Cn. -, B VO (r)

so that
[

1 Y N = 2.

7

i
%
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Theorem 3.2.8.:

The exterior algebra A\ of an h  -dimensional

[ o
vector space \' is of dimension 2 . If \5.. oo, C.j
constitute a basis of \] , then a base of AN is

given by 4 and the elements.

<y N
3.2.9, € a3 TN e En
( Y
Y- 14 ey W
- e. . - M Q
Proof: The elemir:ts Al [ O-.-® Qh) s Q“ A.. . A €,'
obviously span \I . By the anticommutativity relation

3.2.3. it follows that Qd, A, A l‘;' with 15‘<... <y
\Jlf]

(s
span and ¥ = Q for ¥r5>rv . All we must show
is that the elements 3.2.9, are linearlv indenendent., Since
terms corresponding to different values of ¥ are obviously

independent we need consider only a fixed ¥ .

For Ye, €a...ab = ﬁle.ﬂa-..@&,\:{ o)

since e;; Q... ® Q\Z, are independent.

For ¥ ¢ ™ suppose there is a linear relation

of the form !
3 ® 2 Y 1 Og -E- a‘:'_" l“_ ec. A ® e ,\ Q" - o A:.;
L TTRN S :

where the summation is extended over all combinations

W,ce, by of 4, w

For a fixed set of indices Y,..o, {
1

let
1r... Vot 1.‘ be the complementary set.
Hultiply 3.2.40. by & A NG
With the exception of Q; A... A 0‘-r all terms in

the product will have repeated factors and will therefore







[ O
N PANRESA 9, S TR T

L5

e gl

s

Rt

3. Duality in the exterior algebra.

\n 18
In this section we shall show that (\’&) = W‘) ]

A

- Cv]
- V&] We may construct V in a different way.

Actually we may set \‘Cr] V‘ 3
= Vi A
AN . . v ) :
where v 1s the alternate linear transformation [, VoV
) v
i.e, N =V l\t.u A = Loy A, . This construction
of Vc'] will satisfy the universal factorization property

of 3.1.4.

For simpler notation let us write P instead of A,

Since from 0,4‘ we have a natural isomorphism
between Cpniny A and ITav A we can identify Cwnamvy A and

i~ A . Then we have a natural isomorphism

b)
3-3-10 + " ch —emaedy Y A
. . r ]
Also the linear transformation A: V¥V > V
induces a linear transformation AY. \v'll’ ____,,\V‘-)"’] ‘

so that we have a natural isomorphism
. %y Crd , *
3.3.2. + . W ) 5 Iy A

Furthermore from the definition of the dual space
V) = Hol© R)
] (.-‘]
and by Remark 3.1l.5. we may identify Hbm(v . RY  andPHiVt R)
where ™y \\" R) is the vector space of all alternate




L6

oo

-
e

R

. Cr)
linear transformations A: v —> IR

Hence we have a natural isomorphism
¢ v 3| *
3.3.3. : Atk v, RY —— (V

Since we wish to show that we have a natural
»* r)
isomorphism between \\J&J \ and (V") we need

‘ | J
only to show that a natural isomorphism exists betweenum A

and  Pir \V" R)

We define

3.3.4. D »wmA¥ > vV, R)

which is defined for every t in  wm R¥ such that
At(ve.. ev) = <\f4®... ey, t )

where V,®... ®5, is a generator of V",

By linearity this definition is extended and then e

At ¢ Honv LV, R) ., In fact OteAriv, R) :

for any Tefly, Ot O‘\V,@.., ov,) = Atlrly, 0... 9u)

g~ e <V'\V.9...®\M, £y = () (G @ 08, T );

T By, t) = Hne O (v e ev)
1.e. Ot o ggne) DE hence  Ate A (V' IR)

Moreover, £)\ 1is a homomorphism: by ¢,c'e R

A\t 4('\:’)(\1,@.-.@\:,) = (\7, ®--- 00, c\:+c'l:')
= C.(\I.@...sw,. £ )+ (U.@.,,@u,' E )

T OO ®... ovr) + ¢ AL (V®. o) = (Cat+cat) Ve .. ou)




L7

i.e. Aletac't) = c Bt +¢' bt so that A is a
homomorphism,

To show that L\ is bijective we define its

> W A%

inverse function & : MF |V', iR)
for every Te MF (V' R)

(V.e... oV, ET) = TlVieo..c0w)

It is clear from 0.10 that such a covariant tensor

ET &€ Hom IV, R) ; in fact it is alternate.

by the formula

exists;

EtT ¢ i A" for

(V®...00, , €T ) = §n o) ( FlV, ... 08 , ET) ={sS4n7) T MY .. .0W)

2 SN TN ... v ) = Son T T Y ©... ©W) = S (Y ... DV, £1)

Now O\ E is the identity of BtV R]);
for every T
‘AE) I‘V‘QOO' @“") = A‘at)‘\rﬂo"'s\sf) = (VQD-A-‘ @Ur, Et )

= Tluve... ©V.)

e, AE= g, g
Similarly, E@& is the identity of I~ A%

for everyt’
(\’.'Q...QU,' (en) t): Altlge..oun) = (‘—2 ... 0V, t)

i.e. Eb: 4 - A‘-

[X %

Thus /\ is bijective, hence a natural isomorphism.

We then have a product of three natural isomorphisms:
* ¥ W) WA\ *
3.3.5 " A 4¥: W) — \ '1)
nul At e Yyt
\/ ) L i A* s AV, R) — \} )

DE—

)
4
R
A
i
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This product will always be used as an identification:

- :
(I) Qo '1,‘: 4 Then we write

3.3.6. \V(ﬂ)"‘ - \V\*) (] - V[

r]

This identification 3.3.6., will be used to establish
the pseudo-dot product for Vc':' (V"'J)” . In the

following we shall also use the natural isomorphism

vY: bav A —> mA with 4 (Ya.. ave) = Ay o.. gw)

<\F‘A.../\'v'r. 'v-:a.... Aav, ) = (\QA....\U‘., Q'A“l"\-}:l\.-.a\&,) >

G CYSPRICI ATN'S TENPR.Y) BEN ONC TSN T TETRLY

= (AT, aq), AlGe..oumn) = ( B(A*(GE...00) Alue..ov)
= {(Alve... wur), A% I,e.. 08)) = (Al e ow), Ge...5))

n vi oG < . .
{ e ou), ¥ 0. ©3, P % <%Q$’9~d‘)a‘|\f,o... oV ), Y®..@ \'fr)

= {; ; gm0 ©... © Vg, |\ G ©... oT )
= 4 - -
2 Lm0 (g, 0y (5, Y
wherein various steps have various justifications.

We have proved the formula:

3.3.7. (\;....N,' Vone a¥ V= :‘\. ;g,..r)w”a,s.,, (v

V.0

If we replace the pairing ( , ) by a new
pairing < i ) defined by the forumla

3.3.8. (1) = (L)

%
i

o

._‘:‘_‘_ég! T

3 e S

P R

RIS )

Gy BRI

3 R T

E e e BT

A
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we have

3.3.9: (Gauav, [ §a. a8 Y :2(89~ )<, GY o, R

or, we have the following:

3.3 40 - ;
(0,00 €%, ) - (% g) é

Cw, &Y g, &) - - Cug, 5

(w, &Y (ug, 5y - (% 8D

<%A...o\\’r lU;A... 4\‘!,) =

Remark 3.3.11.:

The algebra AVY is called the algebra exterior

forms over V . |
1

Remark 3.3.12.:
We will define the pairing (1) of Avy
with AVY by x1gY =0 s xev®) vt
- 1% ] Ls]
b | ‘\V‘) ’ U‘)' ris

and by 3.3.10 if F=s,

wr‘"V”“”'—"'\m"':"_“-«-s’-'.""‘"‘ i N L A RN N S I
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