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THE STANDARD ALGEBRAS 

by 

HAZEL A.M. PRITCHETT 

ABSTRACT 

We discuss the tensor, symmetric, and exterior 

algebras of a vector space. 

Chapter 0 contains algebraic preliminaries. 

In Chapter I we define the tensor product Ve W 

of two vector spaces and then the tensor product of a finite 

number of vector spaces. A theorem concerning the existence 

and uniqueness of the tensor product is proved. Let ~~ 

denote Ve ... ~'I \ "' t,·""ts) • We define an operation 

called multiplication of tensors which pairs an element of v~ 

and an element of 'Is with an element of 'l"•$ . This 

defines a multiplicative structure on the (weak) direct sum 

~v = ~. V+ '1. ~ 'le'i+"l .... v-...... We call ev the tensor 

algebra of the vector space V and prove a theorem 

concerning its existence and uniqueness. Let i""' denote 

the dual space of 'I and ~~ •) _. denote '1,.. .... "• \r- tit.c&J 

We show that , the 

dual space of • This identification establishes the 

,. "'. ht"' l ,. : pseudo product for the pair , \1 
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In the final section we discuss the induced covariant and 

contravariant homomorphisms. 

We give parallel discussions for the symmetric 

and exterior algebras. In Chapter II we give constructual 

and conceptual definitions of ~\~) , the space of symmetric 

contravariant tensors of degree r , and show. · the existence 

and uniqueness of V~) . We define an operation called 

symmetric multiplication which pairs an element of ~·~) 

and an element of ~ ls) with an element of 'I "'"+'I • We 

then have a multiplicative structure on the direct sum 

Ov: IR ... v \•I ... v'&, .......... 'llrJ 

and we call 0\/ the symmetric algebra of v • We 

prove its existence and uniqueness. We discuss the duality 

algebra and show that \ "' .. '\ .. can be in the symmetric 

identified with \'J•) ... , • This establishes the pseudo 

product for the pair \/\~) ' ~\r\),.. • In fact, we 

prove the formula 

(v~o ... o".-,~.o ... o\rt): f..~<~.~,) ... (vf\..~,') 

and show the relationship between this pseudo product and 

the permanent function. 

In Chapter III we define , the space 
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of antisymmetric (alternate) tensors of degree • We 

proceed as in Chapter II. Having defined exterior multiplication, 

we have a multiplicative structure on the direct sum 

1\\1 '=- IR -t- 'J t1'J ..., 'J'"'l..,.. . . ... \1 c...J 

and we call 1\V the exterior algebra of V 
I \.I Cr'l ) "' show that ,, can be identified with 

We prove that 

• We 

<\f."' "' \1., V ... A ... A \i',-): j_ 2: ~'-f') ("""' V ). • • ( ~ J,.) ~ '"• .. ...,. ' .. t! tr I - "fl f ' t, 

and show the relationship between this pseudo product and 

the determinant. 

.,., 
N 
' 
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PREFACE 

Tensors are by no means new. Tensors, as well as 

vectors, were first discovered and introduced by physicists. 

In classical mechanics the "tension" of an elastic or quasi­

elastic body can be defined and turns out to be a "tensor" -

hence the choice of the term. Beside the stress and strain 

tensors, the theory of relativity works with the tensor of 

gravitation, the tensor of momentum energy and of the electro­

magnetic field. In differential geometry the curvature and 

torsion of higher dimensional differentiable manifolds are 

tensors. In topology homology - cohomology theory works with 

tensors. 

The physicist still defines his tensors in the 

fashion of the nineteenth century when there was great over­

indulgence in coordinates and matrix computation. The trend 

in the twentieth century, however, thanks to the now famous 

Bourbaki group, is to give an invariant treatment which does 

not concern itself with an irrelevant choice of a coordinate 

system. We attempt to give such an invariant treatment since 

the invariant approach in linear algebra not only results in 

greater economy but also preserves the geometric insight which 

is all but lost in the maze of indices and coordinates of the 

physicist. 

In Chapter 0 we collect the various algebraic facts 

f .· 
I r: 

! 
!. 
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that will be needed and fix our terminology and notation. 

In Chapter I we discuss the tensor algebra of a vector space. 

The space of symmetric tensors discussed in Chapter II and 

the space of antisymmetric tensors discussed in Chapter III 

are subspaces of the space of contravariant tensors. 

In differential geometry the exterior forms of 

Chapter III are used when we consider submanifolds of a 

differentiable manifold. We use the symmetric forms of 

Chapter II when we consider higher order contact osculating 

surfaces or "supermanifolds" of a differentiable manifold. 

The exterior algebra was discovered by Grassman 
I 

in the nineteenth century but it was Elie Cartan (1869-1951) 

who rediscovered Grassman's work and applied it to analysis. 

Cartan is the father of contemporary differential geometry 

and introduced many new important tools into mathematical 

research, for example, the exterior derivative of alternating 

differential forms. Much of his work is still not fully 

appreciated. 

I acknowledge with deep gratitude my debt to 

Mr. A.E. Fekete for his unfailing help and guidance in the 

past. four years and especially in the preparation of this 

manuscript. I am also deeply indebted to various members 

of the Department of Mathematics for their encouragement 

and to the Bank of Montreal for its financial support. 
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ALGEBRAIC PRi:L IlViiNARIE S 

In this chapter we will collect the various 

algebraic facts that will be needed and fix our terminology 

and notation. 

We shall be considering further dimensional vector 

spaces over the field of the real numbers; this field will 

be denoted by 

A transformation .f of a vector space V into 

a vector space is called linear if 

0.4 .f ( a "• + \ "1. ) : Ill 1141. > + \ f t ",. > 

A linear transformation from one vector space to 

another is also called a homomorphism and we have the following 

classification of homomorphisms: 

An injective (resp: a surjective, bijective) 

homomorphism is called a monomorphism (resp: an epimorphism, 

isomorphism) • 

A homomorphism is called 

canonical, or more commonly, natural, if it depends only 

on the properties of as vector spaces and not 

on some further choice such as bases, etc. 

Addition and scalar multiplication of homomorphisms 

' 
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are defined in the following way: 

0.'2. \l., 7 > ~ -:. I""., f\T 

lcf) .r : tf hr} . , V c ~ It~ Ve- I 

With this definition of addition and scalar 

multiplication then, the set f~(v.~) of homomorphisms 

from a vector space V into a vector space ! is a vector 

space. 

Let V. W. 'l be vector spaces. A trans­

fonnation ~: v~w---.1) c is called bilinear if it is linear 

in each variable separately, i.e. 

0.3 .ff4,"f ••.v~, ~•"'- +1,.~) ::- Q1 l, /-lu,w1 } • 01 "' f(v;, ~) 

+ Q z. '· .f. { \11 , '"'•) 1- Q,_ &... f I""'' w.) 

With addition and scalar multiplication defined 

similarly to 0. 1. the set Ho~l V, W ; ~) of all 

bilinear transformations from V ,c ~ into l is a vector 

space. 

We have the following natural isomorphisms: 

Ivi.ore generally let 'f,, '~~, · .. , v,.. be vector spaces. 

A transformation f of V,, \1-a., ••• , Vtt into a vector 

space C is called multilinear if it is l inear in each of its 

variables separately. The set ffo~w (V,, '4 . ... , Va. ; ! ) 

· -·: 

·,. 
' '· 

' 
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of all multilinear transformations from 'J. 'K V-a. "'· .. -A V,._ 

into is a vector space. 

Let V, W, e be vector spaces and let ~ ·. v-.., w 
be linear. The induced function 

o.s 

defined by 

is linear. 

Similarly, if 

the induced function 

O.b 

defined by 

is linear. 

--="? IJo ,_, \ v, 1-) 

for every j f Ho,_ I tN, 'f:) 

9 ; 1-J -'? l is linear, the 

for every f ~ lfo....., l \1, .~) 

Let .s be a set of vectors in v • We say that 

\ 

is a linearly independent set of vectors if for every positive 

integer h , the relation 

0 ': c. U', + '"" u ... + • . . f-(11'\ \Jht 

implies C.,:"-= ... = c....~o 

Otherwise S is said to be linearly dependent. 

We denote the set of all linear conbinations 

by Lls). We say that a set of linearly independent vectors 

on \1 is maximal if Lls) -: V We define a basis to be 

a maximal set of linearly independent vectors. 

, 
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If ~ is a finite dimensional vector space then 

'/ has a basis. Any basis for \1 is a finite set and any 

two bases have the same number of elements. This number is 

called the dimension of 'I and is denoted by dim V • 

A vector space ~ is called metric if a scalar 

£reduct or, more commonly, a dot product is defined in 

in the following way: 

A dot product in \1 is a function which assigns 

to each pair of vectors a real number 

denoted by ~. '1 having the following properties: 

i) ~. ':J : ':/· "'/.. .f.,. 4 I I ~, 'l E V 

i i) lC ')() . ~ ~ c \ ~ . 'j ) ; X I 'I '" v I c '= li'( 

;;;) ~.~':1>· ~~ ~.cT'f.e 

~ .. I '1 + r > -= -A.··"' +:, 'i. 1r ., ·~ ,· 'i'~ 1:. !t:;· v. 

Every finite dimensional vector space has at least 

one dot product. Since a basis can be chosen in many ways, 

it is reasonable to expect that a finite dimensional vector 

space will have many dot products. This is the case even 

though different basis can lead to the same dot product. 

If ~~ \J "'£.. ")( has a unique square root 

which is ~ 0 since ~. "'/.. 1., 0 this root is 

denoted by \~I and is called the length of ~ • The 

length is sometimes called the QQrm or absolute value. A 
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vector X in V is called normal if its length is 1 
or, equivalently, if 

Let V be a vector space with a fixed dot producto 

Two vectors ~, '1 in V are orthogonal if JC. '1 : 0 

A basis in \1 is orthogonal if each two distract basis 

vectors are othogonal. A basis in 'I is orthonormal if 

it is orthogonal and each basis vector is normal. We remark 

that every metric vector space has an orthonormal basis. 

If are non-zero vectors in V , the 

Schwarz inequality gives 

0.1 -~ < ..... "· "'J 
\~I \ "J I 

We may therefore define the angle Q between " and '1 

by 

--
This gives the formula 

0.& --
For any vector space \/ the vector space~l",llll 

is called the dual space of V and is denoted by 'l,... 
The elements of 'I* are called linear forms on \1 and 

we denote them by \r . We adopt a standard notation 

o.q v I"'" l : ( "· v ) 
and refer to this as the "pseudo-dot product" of the covariant 

:,: 

i ... ~ 

'· i 
.• 
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vector ~ and the contravariant vector ~ 

For any vector space, the vector space 1-lo""" \ vv-, I~) 

is called the bidual space of v and is denoted by 'I •,.. 

Let ...t\. . • "~ 'ly."' be defined as follows: 

..ra..v is the linear form on 'I,. determined by 

o ... 0 < \i, ...n. \T' ) ~ ~ u-, v-) " ' \,I,. 

Then, if \1 is finite dimensional, is a natural 

isomorphism. We shall use this natural isomorphism for the 

purposes of identification 

o ..... 

and this will be manifested by the fact that the pseudo product 

is commutative, i.e. 

o. 4 '2.. <v, \;):. (~,\1") 

The function < \1, \i) is then defined in the 

Cartesian product taking scalar values and is 

b il inear ; i. e. 

0-~3 ( Q\11 .. \ "~ • c: ) : 
< \S~ I Q. ~ + \ ""1. ) : 

~ < \(t I v. ) ... t, ( "~ I J. ~ 

~ ( \1 .. , \it ) .. \ < "1. "~) 

. e.. 'b E: ·~ 
' 

Taking · i,.: IR in 0.5 we have the following: 

Any linear transfiormation f--: '\/~ W induces a 

. ..... ~ 
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linear transformation defined such 

that for 

~·is unique, i.e. the diagram 

is commutative. In other words, for all v~v, '1•w•. 

(tv, ;; ) : 

Let \1 be finite dimensional and let fe ... ... , t.,. ' 
be a basis for V • Then there is a uniquely defined base 

0.45 

in '1.,. which satisfies the conditions 

-- if C:j 
if '•; 

This basis of \Jlt 
~ is called the dual basis of 'J"' relative 

to the given basis for V. 

If " is a metric vector space the relation~: V-> v"' 
defined such that 

is a natural isomorphism which is always used to ident ify~• 

with \f ; then the pseudo dot product is identified with the 

dot product and a self-dual basis with a n orthonorma l bas i s. 

We remark that if '\/ is a finite d i mensiona l 

vector space, then 

.. .. . .... .. . ~ 



We make only two further remarks in this chapter. 

We recall that the coinage of a linear transformation 

f written c.n·~ f , is defined by Cn~ f: 'V/11 where 

t( -: lu.t/ For every homomorphism f • l+o~ ( V, w} 

we have a natural isomorphism 

~ : Ccnrw f ___., 1~ f 

defined by 

This natural isomorphism is always used as an identification: 

An algebra is a vector space \1 on which we 

define a further operation called multiplication which 

assigns to every pair of elements ~, '1 E. V an element 

""'"J ~'I called their product. This r:rtultiplication is 

associative and there exists a (unique) unit element .f"'V 

such that 1 ~ ~ ..,_ 4 : ~ for all )( f: V. 

Let \f and ~ be algebras. A linear transformation 

f~ \1 _..., w is called an algebra homomorphism if 

t\~ 'j): ~' ~) f '':1) 
for all '"A I "1 ~ " and if f-t is the unit element 

of ~ ; i.e. f preserves multiplication and units as 

well as addition and multiplication by scalars. 

.': 

·> 

;~ 

- ..... ....... . . ... . .. ... . ..~ ~---- .~-- --~ 
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THE TENSOR ALGEBRA OF A VECTOR SPACE 

1. The tensor product 

Definition 1.1.1. Let ~. ~ be vector spaces and suppose 

that a vector space l with a given bilinear map~: Vrt w-., l 
exists satisfying the following universal factorization 

property: 

For an arbitrary vector space ')( and for any 

bilinear map ol : 'I<J( W ~ X 

there corresponds one, and only one, linear map 

such that 

i.e. we say that every diagram "" w -C-., t 

~~x 
can be uniquely embedded in the diagram 

""w • 
which is commutative. ~~~¥ 

If such is the case, 1 is called the tensor product 

of the vector spaces V and W ; in sy.mbols, 1:. V®W 

The bilinear map will be denoted by 

for every V" ~ V, IJ t N 

The elements are called tensors. 

' ..... .. ... . ··:- ··- - ... ·:..- ..... --:---.~----- ·- · ::· ·~- -.., 
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Remark 1.1.2.: 

The function ~ establishes a natural isomorphism 

between the vector spaces t-'o~\ V, W •, X) and Hof\... \ VeDw,") 

The identification 1-h~ I \l,w •.")() ~ "4D~ l V cw ., )( l can be 

regarded as the implicit definition of the tensor product 

Theorem 1.1.3.: 

For every choice of V and W , their tensor 

product V®W exists and is uniquely determined to within 

isomorphism. 

Proof: (i) The proof of the existence is a construction 

yielding an isomorphic copy of the tensor product. Such a 

construction is discussed in l3] pages 204-5. 

(ii) Uniqueness: 

1' "1.' Suppose two vector spaces L satisfy the 

universal factorization property above. Then we consider the 

two following commutative diagrams: . 
v .,... w _(l., 1: 'I" w -!L, 1: 

Hence ~ 

1' 

Similarly 

' ~ , . v· 
tt.' ~ 'f \ ~\ \1 ~) ............ : 

~ t' ~ ~ ~· 

• Hence 'f is an isomorphism and t and l are isomorphic; 

in fact they are naturally isomorphic and the uniqueness of 

the tensor product 

is proved • 

t: \J fDW (to within isomorphism) 
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Definition 1.1.1. gives the tensor product of two 

vector spaces. We now define the tensor product of a finite 

number of vector spaces. 

Definition 1.1.4.: 

Let '1 •. v,.., ... , "~ be vector spaces and suppose 

that a vector space 2 together with a multilinear trans-

formation 

exists satisfying the following universal factorization property. 

For every vector space )(. and Qn arbitrary multilinear 

transformation --~ )( 

there exists one, and only one, linear transformation 

such that J..: 'f /'-
i.e. 

the diagram "· v. V,_" ... ..,.. v~ C :, l 

~))( 
can be uniquely embedded in the diagram 

which is commutative. 

~4" v,..,. ... "' v... :, l 
I 

~~ ~>>' 
If such is the case we call ~ the tensor product 

of "1· v ... t • • • vk. and write 1 : v. ® "').@ ... "v ... 
and 

" l "'·,\f-.' ... , v tow) 

The or em 1.1. 5. : 

.. .. 

The tensor product of any finite number '"1-\ . of 

.. ... . · ·: · - .. .. . . ....... : -·:--..·. 

; . 
' 
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vector spaces exists and .is unique (to within isomorphism). 

Proof: (i) Existence: The proof of the existance is again 

a construction yielding an isomorphic copy of the tensor 

product. We omit the details but such a construction can be 

found in l3] ( p. 219 ) • 

(ii) Uniqueness: 

We show that if two vector spaces l and 'l' 

satisfying the universal factorization property exist then ! 
"'1.1 

and " are isomorphic. The proof is exactly sin:ilar to 

the proof of 1.1.3. and so we omit the details. 

'l'heorem 1.1.6.: 

The tensor products U i> \" &l W) and (\..\® \1) fJ W 

are naturally isomorphic. 

Proof: HoM \lU.-&>'11 ®W, 1;) : f-'otvv \ U®V, 1-b-, lw, t)) 
: l.fotw l U, '/ j l.fo~ \ W, 't)) ~ ~t\o'¥ l U I f-fo....., l \1, \-,1 i '!)) 

: ~ \u, ~ l vew, 1:)) :: ~ l u"' \V@)w), t) 

Hence 

Thus from 1.1.6., the tensor product is associative. 

Before we develop the tensor algebra we shall state 

and prove a theorem concerning the dimension of 

Theorem l.l. 7 •. :. 

If V, W are vector spaces of dimension h"\ and h 

respectively then is of d i mension • If 

: -~ 
.·;: 
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'C1 , ••• , t~ \ and ~ f1, ... , ~ l 
respectively, then ~ f, i> f; l 
form a base of V ®W 

are bases of V and W 

t':: ...... , ~ ·, J~ ........ I-) 

Proof: 

and 

Let \e.,, · · ·, ~ \ , \ ft, · · ·, f~ l be bases of V 

• Define the bilinear map \f,i ~ V te W _.., ~~~ 

\o \ f \ rL' r f by , .:i e.~ , t : () .. () t 
... t ~ ~ .... , h 

By bilinearity \fli is defined for any element of V te W. 

These bilinear maps are linearly independent in 1-to""lv,w~ h'\) 

For, if 

we have 

Hence the vector space 

dimension . 
' 

dimension 

same dimension as 

a .. .. , E n 

• - . I 
~ 4Lj d~, d L -: QILt. 
"•I 

Ho""' ' v' w ~ til , 
Jt-.... e. . \\' ti) w ) 

is of 

is of 

But ~V®WJ,. has the 

which is S ~"'· 

It follows that the dimension of V ~ W is ""n. 

.. ~ 

,, 

·~ 

i·: 

.~ 
t •. . • • ... .::., 
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2. The tensor algebra 

Tensor products of copies of V "'" and V are of 

particular interest. We consider spaces of the form V, ~ ... ~\11c 

where each is either V ~ \1 v-. 

If there are .... · f \. 1 d S · of V" ' cop1es o v an cop1es 

then the space is called a tensor space of type \ \', s) ; t'" 

is called the contravariant degree and 

degree. We write 

s the covariant 

\J'" s -.. VfD ... ®'J 
..... -..... ~ .. 

Observe, however, that the integers \ v, s) do not 

determine the space. The order in which the spaces occur 

d . \..i &\ ",.. d "',.. ·~v matters; we istingu1sh between ,~ an ~ " 
\.Ito In particular, 1 is called a contravariant tensor of degree~ 

~= is called a covariant tensor of degree S 

We also make the convention that: \}: IK -.. 
Given two tensor spaces 'J. "' ... ~ """ of type 

\.·, s) and \J f , 

• ® ••• ® "· .. of type \ \'', s') the 

associative law for tensors defines a bilinear map 

~: ~.~ ... ~\I,J x { v; $) • •• ~v.:) -~ \v, e> ... ®\l) ~ \v,'.o ... ~"L') 

where v. 6b ... ®\},\. e \J,' tO· .. t!O v,~ 

of type l t 1- t '. s + ~ • ) • 

is a tensor space 

This operation is called multiplication of tensors. 

The product of a tensor of type (", 'S) with a tensor of type 

I~ ,, 
I ' 
: ·. 

I 
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\ 
'-' t c.') · t f • ~ 1s a ensor o type \ t-t"r', St._') 

i.e. this bilinear map defines a multiplicative structure 

on the (weak) direct sum of all tensor products of V 
and 'J"tf 

• We denote this space by i.&. 

~. ~. ~. 

We note that in general ~ V is infinite dimensional. 

Definition 1.2.3.: 

The space ® V together with its multiplicative 

structure is called the tensor algebra of the vector space. 

We may also state the definition of the tensor 

algebra of a vector space in terms of a universal factorization 

property. We call this definition the conceptual definition 

of the tensor algebra of a vector space: 

Definition 1.2.4.: 

Suppose ®V 
. 

is an algebra and 1 : V _.., ®V 

is an algebra homomorphism satisfying the following universal 

factorization property: 

Given any algebra A and an algebra homomorphism 

f : 'I -"> A , there exists one and only one 

algebra homomorphism 'f . ®\1 --:,A 

such that 

;~).· i.e. \f makes the following diagram commutative, 
.. _:.['~}). v j , ®" 

: }k;~: ..........._ ~ " 
- ~ t~~ 

... -· ·_.:,_; ___ t_h- en- -® '4 is called the tensor-:lgebr~ of ~he vectorspa~e V. ,, 
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Theorem 1. 2. 5.: 

The tensor algebra f:J\1 of a vector space V 

exists and is uniquely determined to within isomorphism. 

Eroof: ( i) Existence of 1/:J\1 can be shown by construction. 

In fact @\J : b'l. +'I-+ vv-.,. V®V +- '4" ti>'l,. + 'V g, V ""+ · · · 

together with 1 the inclusion map, satisfies the universal 

factorization property given in 1.2.4. 

(ii) Uniqueness: 

Suppose that two tensor algebras fD \1 -and ~'I 

satisfying the universal factorization property of 1.2.4. 

exist. Consider, then, the following 

v _j_~ ®\/ 

"'~ l 'f lj ~ 'fj) 
1 ®v 

Hence 

Similarly 

It follows that ~ is an isomorphism and so ® \1 -and ®v 

are isomorphic; in fact they are naturally isomorphic. 

• .• J 

.. . :. 
, .. .... 

, 



:, ?:.;. 

17 

3. Duality in the tensor algebra 

From now on we shall be concerned with only pure 

(covariant or contravariant) tensor algebra. First we shall 

discuss problems arising from duality. We shall show that\V~· 

can be identified with 

'\It for it. 

f\.llt) \--~ and we adopt a neutral notation 

We recall that by 1.1.2. we have a natural isomorphism 

between the vector spaces HD~ \ ~, W : X) and 
\~._, \ \Jg)W, x) In particular, then, we can • 

identify and Ho~ l VtoW • ·~) 

by the definition of the dual space ~V tD w) ll-~ f.b...., l V I)W ·, la1) 

It follows that we have a natural isomorphism 

between ~ ~W) '~~-and \-fo...., \ V, '*"' ~ 11t) which we shall always 

use for the purpose of identification. 

Theorem 1.3.1.: 

There is a natural isomorphism 
\D ••· \j lt' ,._, W .... I I .....__ \ V • h ) 'l ~ • ., no...... defined by 

~ \ v Eo w-l : ( \i-, \r) \J for all \T4: V. 

!:_roof: Let the natural transformation 

\f : V * ® W "> 14-oa-..- l V, W) be defined by 

't \~ @)w) :. (\r, v-) w for all ~£ V. 

Clearly this defines a linear form and 

If \ t"• ... , (~' and ~f ... ... , 

is linear. 

are bases of V 

:.) 

· .• 

' . ' . 
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and W and ~ ~. · · ., i~ J is the dual bases of y»-
we know that a basis for '\/® W is given by 

. ,. : ...... ' ~ ; ~~-~ .... ,,.., and a basis for ... 
\Y®W) is given by 

~ ii ® l; l 
Using this basis we verify that 'f is an 

isomorphism. 

Theorem 1.3. 2.: 

There is a natural isomorphism between {V~i>W ,,.. 
and 'J ¥ ® W"" 

We shall always use this isomorphism for the purpose of 

identification: 

Thus we can write 

t3. 3 < \rei) w' u- ® .:::s ) : < \T , v- ) ( ..s t ~ ) ; 

- l.o.l* w f:: w ' ""' t: ..... 

' Clearly this can be extended to any further number 

of factors by linearity. In particular, we can identify \~r)~ 
and \'J'') t • The fundamental bilinear relation between ~Vt),.. 
and \'I lr) "" is given by 

notation 

( V, ®· • • ®V"r, \J, {D. • • ®\ir) ': ( ~. \i, ~ • • ' ( ~~ 
1 

\j-() 

We identify \\1') • and ~·\ r and adopt a neutral 

\It for iL 

: ·: .. :.· . . · 

.. :. 

.f 

~ ti 
. l ., 

!· · 
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4. The induced homomorphism. 

For t ~ l-b"" I V, V') and q ~ ~~~ I W. rJ ') we 

d , 4C:\ 9 V"" W - "'-._, • by efine the induced function ~~ : ~ ~ ~~ 

1.4.1. lt®q) 1\f'_,~) = 1\T f&>9W' 

where \ri) W' is a generator of V ® W 

f®g is clearly a homomorphism. 

Proposition 1. 4. 2. : 

"'f f~9: V®W-"> "'~w' and {'~q': ~·®~·-._, V .. tc•·/' 

then U' i) 9 '} l f ~ 5) :: f'f ® 9 ·~ 

Proof: [ \f '®tj') l f "'9)] \r~ w- : {f'qg (j') [H·®9} ( "8> w) J 
-= l f I S>Cj. ) ( f \r C!) 9 ~ ) = { , ' f\i) ti) 9, \ '3 (At) = (f' f) \T to 9 ,~ J w 

: {f'f to g'~)l\J"CDW") 

We may now define the induced contravariant and the 

induced covariant homomorphisms. 

V" -- v We write ® · ·. tO \1 

as before. 

Definition 1.4.~: 

For f (: 1-h:>~ IV, W) we define the induced 
r 

contravariant homomorphism of degree p , in symbols f 
to be t., : 'Jp -'> w' where ~,:. f..® ... ® ~ '--, ..... ,. 

~ ~., lt.~ 

For f ~ Ho~nl V,H) we define the induced 

covariant homomorphism of degree 

to be where 

, in symbols ft;. 

f~ -= f ,. ® • . • ~ f J5. 

~---'1 t.or: .. ~ 

·. ~-
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Properties: For f': v' -"" w" 
~ct; v~ ' N~ 

11v : V --J.> V 

.Eroof: 

9•: NP ~ u 1>, 
9t:t.: w4 ~ u"'-, 

.: . . .. . . . · 

' ·.~ 

:·: 

:) 

, · 
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2 

THE SYMMETRIC ALGEBRA OF A VECTOR SPACE 

~ 

0. The permutation group on ~ letters acting on V¥ 

Let 'I be a vector space of dimension h . We 

"'"" consider the space "¥ 0 of contra.variant tensors of order r 

for simpler notation we write for vr-
0 

The permutation group on ~ letters, n~ acts 

on the space 
...... 
~ Given any permutation frt n .. and any 

tens or of the form "1(4 ., ••• C9~r we define 

2.0.1. CJ' \ "· 8> ••. ~~,) ~ la'liJ IS) ••• \0 ,c,...,.., 

and extend by linearity to all of vt-
• Thus we have a 

representation of rt.,. on V". 

Let denote the group 

of automorphisms of the "'~-\ -dimensional vector space V 
It is easy to see that the above representation of ~t 

\(t commutes with the tensor product representation of 

i.e. for any \.~\It- • ere i\, and 'J~ C..Lt..,) 

2.0.2. 

where ( r times) acting on~. 

It follows from 2.0.2. that any simultaneous 

ei·genvector of i.e. any tensor satisfying 

2.0.3. 

• 

on 

!": 

i 
' · r· 

' · 
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where f is some ~umerical function on n ... is taken 

by 9 into another tensor satisfying the same equation: 

The two important cases are 

2 .o. 4. 

and 

2.0. 5. (>(v) ~ Sj"" 0" :: I-t~ 
-4 

··f r:; IS ~"c.h 

if v '" odd 

• • • • • • • • • · .". . J 

. ' 
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l. The space of symmetric (contravariant) 
tensors of degree 

We consider the case given by 2.0.4. i.e.plv)-=. .f 

Then 2. O. 3. becomes V~ : t. In this case we say that t 

is symmetric. 

Definition 2.1.1.: 

Vr 
The subspace of consisting of those tensors 

satisfying (T~ : t will be denoted by v"l and will 

be called the space of symmetric (contravariant) tensors of 

degree Y. 

There is a natural projection 
y\rl 

given by 

2.1.2. ~ ... It) 

Theorem 2.1.3.: 

For every t ~ v~ 
t 

{t ll:J 

i.e. for any f", ~ n .. , <r' S r ll-: l 

l' .. is a section i.e. r" s. : s .. 

For any permutation 
~ 

<r' frlt)-: YT 

... -

of onto 

• 
' 

is symmetric 

~r lt) • Moreover, 

we have 

_..-..... ___ _ ____ ~~=-""""""',....,"'"'""''"~c,o;.--~r,:r,,T:'<-,.,.,~c;.,-,,.-:-=~·-.,-, .. ,, . .... , .-,.~-.-; · .-.- ·.·. ·::: .. ··: ·." , ·.· .< .: ... : .- .· ... ..... . :· . .-: . . : . ·:c. 

: :~ 
.... ·: 
. ' 

·n 
.:--

.. ; 
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We may regard 2.1.1. as the constructual definition 

of 
"'\r) \.I h·) 
~ We now give a conceptual definition of ~ 

Definition 2.1.4.: 

Suppose that a vector space 1: together with a 

symmetric transformation 

1 v ... _.., 1:: 

exists satisfying the following universal factorization 

property: 

For every vector space X and every symmetric 

transformation 'f : V .. -~> ~ 

there corresponds one, and only one, linear transformation 

f ·. 
such that 

i.e. every diagram 

can be uniquely embedded into a commutative diagram 
~r '1 :0, C 

' t 
~)~ 

If such is the case, we write 

Remark 2.1. 5.: 

The function iL establishes a natural isomorphism 

between the space of all symmetric linear transformations 

\D • \.It-\ • '4 _.., and the space of all linear trans-

: .. ! 

·~ 

~f 
. ~~ 
. ~ 

; :: ... 

... 
' 
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symmetric linear transformations 'f : Vt----.. X by 

J'l~ \ yt, )(') . Then the identification 

J'd~ l v ... ')() :. 1-lotw{ vtr', ')() 
implicit definition of vlr). 

can be regarded as the 

Theorem 2.1.6.: 

For any vector space V, 

unique (to within isomorphism). 

exists and is 

froof: (i) Existence:· We have shown that 'llrJ exists by 

actually constructing it. It is clear that the Vlr) defined 

in 2.1.1. together with the natural projection !'.. ·. "V.,. ___, V\t-) 

given by 2.1.2. actually satisfies the universal factorization 

property 2.1.4. 

(ii) Uniqueness: 
,, -

Suppose two vector spaces V rr, "Vl~t) 

satisfy this universal factorization property. Consider, then, 

the followin~ commutative 

" t" __:!:...., "h' 
diagrams: 

fig. ( i) 

From fig. ( i) 

' : f 
~ 

Then ~- ..i ~ ,.;r ~ 
"'"' r T follows that 

Similarly 

fig. (ii) 

from fig. (ii) ~- r ~ 
f \ f fl ~ lffJ i 

f f "- 1v \r) -
Hence -f is an isomorphism and V \rl and V'"l are 

naturally isomorphic. 

l;~ . ~~ 

. ' 
~! 

.. :.i 
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Remark 2.1.7.: 

If the dimension of 'J is 

dimension of 

~ e. • ... , ~~ 

"b·l is 

is 

t'·~·· J 

a basis for " 

h then the 

. namely, if . 
then a basis for 

v\y) . iS given by { f(
1 

0 f,~ o ... D f,~ : 1\ S 1,: < \."z_ < •• • <\~ ~t'\' 

where 

.V 
.,, 

· 'j 

. 4 

l·. 
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2. The symmetric algebra 

We will define an operation called symmetric 

l .,.,l .. t and mu tiplication which pairs an element of ~ an 

element of V \s) with an element of V lr -t sl 

We recall the natural projection into 

given by r, It:) : ..!.. 
Y! 

Also we recall that if X "V t- and , then 

" 

..... $ 
from the definition of the tensor multiplication X ®':J te 

Definition 2.2.1.: 

We define the symmetric product 

formula that 
X o ~ :. lr l X t0 ':J ) 

Remark 2. 2 • 2 • : 

')( o 'j by the 

The symmetric product X 0 'j is clearly an 

element of \J \r -t $) if X "- 'J .. , 'j " \J s 

Remark 2.2.3.: 

Thus this operation, symmetric multiplication, pairs 

an element of \J h·l and an element of V 1 s 1 with an element 

of \1 \r+S) Then we have a multiplicative structure on 

the direct sum 
\/\o\ "'") vh .. ) "\r·) 'I + +- ......... 

note that, in general ov is infinite dimensional. 

.; .. 

:-: •.. 

l 
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Definition 2.2.4.: 

We call 0\1 (as defined above) the symmetric 

algebra of the vector space V • 

We have also the following conceptual definition 

of the symmetric algebra. 

Definition 2.2.5.: 
. 

Suppose 0\/ is an algebra and 1: '/---. 0'1 

is a symmetric algebra homomorphism satisfying the following 

universal factorization property: 

Given any algebra A and an algebra homomorph i sm 

, there exists one, and only one, algebra 

homomorphism 'f: 0'-1 -~) A such that ~ = ~j 
i.e. makes the following diagram commutative 

\1 l ._ O'J 

~~¥ 
Then OV is called the symmetric algebra of t he vector s pace. 

Theorem 2.2.6.: 

For every vector space 

unique (to within isomorphism). 

v OV exists and is 

Proof: ( i ) Existence: It ca n be shown t hat a choi ce of 

()'I :.. \1\o) + 'l\t) ...... -t \jb\ together with t he i nc l usion 

i: 'I~ 0\1 satisf ies t he universa l f a ctor i zat i on property 

o f 2.2.5. 

0\J both 

'·· ·· 
i : ~ 
~ - ~ 
!' (.i 
i .:t 

·. :-~ 

. ) 

. ~ 

' -~ 
: •:; 

.. 1 . .. ~ 

~-~ .. (ii) Uniqueness: Suppos e 

-~·- · · ~~~" · '~_.;..· c.-.:~~: :::.;·,_:;;::_::·1 
0\J and 
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satisfy the universal factorization property of 2.2.5. 

we have the following 
v j..., ov 

I 

~ ~'f 
1 Ov 

fig. (i) 

commutative diagrams: 

\} 1 '> ov 
"- T­
:: ~ I 'f 
1 ov 

fig. ( ii) 

Then 

Then from fig. ( i) { -: 'f J ; from fig. ( ii) j: V j 
Hence ~oV j ~ { -:: 'f j :: 't ( 'f J) -:: l y lj) J 
it follows that 'f 'f : ~ov 
Similarly q 'f -:: ~0" 
Hence ~ is an isomorphism and so and OV 

are naturally isomorphic. 

. -~ 

; 

- t~ 
' .'· 

.···: 
:. ~ 

.; 
r·-:: 
~- ·:; 
·,;. 

·,: 

... 
. . :· 

.. ':~ 

'­
' 
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3. Duality in the symmetric algebra 

•v'•')• ,,,-.) tr• 
In this section we shall show that \ : ~ 

and we shall adopt the neutral notation for it. 

We may construct V h ·\ in a different way. 

Actually we may put 'I""' :. v~ I k.u s.. where ~r 

is the symmetric linear transformation v.-_., v' 
i.e. '1\rl :: Vr I w Sr :: <J\...., ~ ... This construction 

of "\r) satisfies the universal factorization property 

of 2.1.4. 

For simpler notation we write s instead of r .. 

From 0. A 'l we have a natural isomorphism between 

the and A'fw S , we can identify them. Then we 

have a natural isomorphism 

2.~.1. i • • 

Also the linear -transformation s v -') v' ... , 

induces a linear transformation 

~·= 
so that we have a natural isomorphism 

2. 3. 2. 

Furthermore from the definition of the dual space 

\V bt \ ,. -: 1-Jo.,._ \ v'r' ~ "~ ) 
a nd by Remark 2.1. 5. we may identify Ho ._ \ V lr,; f1l.l andr'IM h~ Ill) 
where ~ \~~IA) i s t he vector s pace of all symmetric l inear 

-~- ---... --... -.·:··~· · 

·~~-...... . , ......... -~.. .' ... . 

;. 
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linear transformations 

Hence we have a natural isomorphism 

2.3.3. 

Since we wish to show that we have a natural 
( '\1 lr)) • (1'/ •) b·) isomorphism between \ and \ , we now need 

only to show that a natural isomorphism exists between ~~ ~~ 

and r(fm \v". li\) 

We define 

2.3.4. 

• . s• which is defined for every t ~ •~ such that 

t'~ l\S • ., ... ~\5'r) -::. ( ~, .o ... ~"'' l: ) 

where is a generator of \(r 
• 

Extend this definition by linearity and then clearly 
r l '= 1-4oth' v ... eiu 

In fact, r~ E: S"'i.- \ 'V •. Ill) 

ltt) G"'\\f4f!) ..• .o'-f .. ) ~ rt (a--hr. liD·-· t!t)\1,)) '= 

for any G' ~ il... , 
( lr'hr,. i> ... ~\1r). l: ) 

: (\f.es> ... ~\f',, r-•t); < "" ® .•. ~\fr, t ) = rt lv. @) ••• €)~ ... ) 
i • e. t_rt ) q- :. rl: for every II 

i.e. r t is symmetric 

Moreover, r is a homomorphism: 

\(c.~+c'~')lv.() ... €)\1,.) -.: (\i~® ... C)\J'r, Cl:+''~') 

~ C. (v4e ... te"r, l) + c' (~ \i) .. . \IDs .. , l:;') 

= C\rt)l'J.e ... 'i)Vr)-+ c.'lrt')l\f1 Q ... \!.~ .. ) -:(c(nl -+(..'(re•))"'~· .. <f>\lr; 

,,,'~k\ 

~;~ 
.·.·· 
. :·:. 

. ... . , 
-~ _., 

.. ., .. 
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:' c 'rt:) .... (I \ c-t I) so that r 
is a homomorphism. 

To show that 

isomorphism) we define 
8: 

r is bijective (and hence an 

for every 

its inverse function 

s"'""' ' v ~ ··~ , _.., 
\ v•. ti~) by the formula 

It is cle.ar from 0.10 that such a covariant tensor 

exists; 131 E: J.h,,_ \v•, no ; in fact, it is 
0- ' to"' symmetric. ~ l ~ 1""'"' ~ for 

(\1"4 ® ... \0\1..-, Bt) = (cr\v,.., ... • \f .. l, Bt )=- 't lo-lvtiD··· ~v .. J) 

=('let}\ \1'• 1) ... eV,) ::. 't \ \J• tD-·· ~\Sr) -:: <V'• il· .. 'i)V.-, 8t) 

Now 

< v .. ® •.. e\f t 

~ r is the identity of ··~ ~ ... ; for every~, 
8 ,- t ) ::. r~ ( \f-4 8> • .. @) Vr ) : ( V• \.') · - . to\/',, ~ ) 

• 

&r-: ~· 
·~ 

i.e. 

Similarly, rB is the identity of S"\f~ \ V•, fi~ l ; 

for every T Cir r"fh-o 'v•, "l ) I 

ttl3) t \Vi 8) •.. ~\f,.}: (v.®--·®\lr, G"r )~ 1: l V',. ~- .. \1Vr) 

i.e. rs =- 1 
r'f~ l v•, ·~ l 

This means that r is bijective, hence a natural 

isomorphism. We then have a product of three natural 

isomorphisms 

2.3.5. 

" ., 

.• : .... : . ·;. 
r ~; 

. ·.; 

.. _ •. \ 

., 
··. 
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We shall use this product for the purpose of identification: 
~· r ..... • -: ... ~ T 'l Then we write 

2.3.6. 

The identification 2.3.6. will be used in order to 

'' "'', \v"·').,. establish the pseudo product for the pair Y 

In doing so we shall also have occasion to use the natural 

~. : ten· 1\'v s ---'> ... ""' S' isomorphism T with 
1- \ "• 0 • • • 0 \lr ) "!: S \ \1~ Q) •. • (!) \Jr) 

( 't " ... o u ... v. o ... o J t' ) -: ( "• •••• o \S'.. • ~ • r 1,.. I v1 •••• " J, l ) 

:. (v,o .... o\f'r, ~·lri•tv:.o ... oi:,))):. (ri•tv,.o ... o\i'.,), flv,o ... oV',)) 

: ( r\;.•1 v,o ...• v,l), S'\v,~ ... i)\f,)) = (rl s'"(~lJ ... ~u .. )J, s(\/,~ ...• ~w,J) 

: (s\~e ... ~ur), \•lv; e ... ~O,l) = (S1 ,v.e ... ~v .. l, if,~ ... fi§)\1',) 

: < S\\14 8) ... ~\Sr), V1 tl) ... ®J, ) : f, ( ~crlvi®·~ ®Vrl, Vf ® ... ~iS,) 

::..!. 2.(~® ... ~\rr. , v, GD ••• eJ,): 1 2: ( \fv: V.) . . . ( "~ 41, ) 
..-! ,.. • ' r! rr •• "• 

wherein various 

steps have various justifications. 

We have proved the formula 

It is often more convenient, however, to use this 
1 -pairing without the factor so that we replace the 

' . . 

. ~: 
; . 
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pairing ( t ) by the pairing < ) this new 

pairing is defined by 

< ' ) - r~ ( • ) 
2.3.8. -

i.e. 

2 • 3 • 9 • (\f. o •.• o\.5r l \;. o •• . u \!, ) ~ ~ ( ""• , \!, ) • • • { U'f'r, \!, ) 

Or, we may write ... + 

2.3.10. (\&,, ~) ( \i'az , v. ) ( \l'r .. , 0'4) 

( "'·· v~) (\fvt, "•) ... 
( "'''". "") 

( \f1 o ... o\l'rl v, o .... o~r ) : 
. . . 

( V',-.. J r ) < \fG',_, ~ ) • .. ( \S't.,, tf, ) 

... 'f' 

where I I denotes the permanent. 

The permanent is obtained by making all the negative signs 

in the determi nant positive. 

Thus ( \1
4 0 ••• o\f',. \ v,o ... oJ,) : 
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4. The induced homomorphism 

To every homomorphism 

is an induced homomorphism 

t : V---'> W there 
r lr • lr- l l.- J 
1 : v -'> w 

defined by 

2.4.1. 

Given homomorphisms f' : V -"> W , 9 : W ___,) U 

the induced homomorphism ~qf) bl : 'J '•) -"')\.I ltl has 

the property that 

2.4.2. 

For, 

Also given 

~ltJ f le-l 

:. 

--

~y rr) (f"~ .. ) 
~t" :ft) \ S'r s~) 

~ .. ! .. ) r ... 
~f)y s ... 

ijt) b·) -.. 
'iv : V ~v 
l1v) \rt : \llr '-'> \1 \d 

~~u}\r) --
\ " \ 1\r) 

the induced homomorphism 

has the property that 

: ·•.,':' 

·, : 

. ~·~ 
•.:. 
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3 

THE EXTERIOR ALGEBRA OF A V~CTOR SPACE 

1. The space of antisymmetric (alternate) 
tensors of degree 

We will now study the subspace of \1 t- corresponding 

to the second simultaneous eigen value 

2.0.5. i. e. r \ v) ~ S~tv G' : f + -t 
l -4 

Then 2.0.3. becomes 

•"f rr • s e "u-. 
'f fT ~~ od.d 

In this case 

we say that t is anti-symmetric or alternate. 

Definition ).1.1.: ,, .. 
The subspace of .. 

satisfying o-t :. ls~ f") .t 

consisting of those tensors 

will be denoted by \J (..-) 
and will be called the space of anti-symmetric tensors of 

degree \"' or the space of alternate tensors of degree r. 

There is a natural projection A r- of " 
... 

onto 

given by 

3.1.2. . , t t: "" -t! 

Theorem 3.1.3.: 

For every l E: \1 t , Ar l ~) is alternate; 

i.e. for any cr' ~ l\.y, ~' A,. lt) : \S8tv o-') ~ l tl 

Moreover, A~ is a section,i.eo ~ .. A .. ~ t\~ 
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... ! t-! 

- t ! 2: ls'~ r)'" - 1 - \Sc,~ I") r : tl.,. - "'2.. !C - - -
... ! ... ! a--! r 

We may regard 3.1.1. as the constructual definition of V(~J 

We now give a conceptual definition of V~l 

Definition 3.1.4.: 

Suppose that a vector space r together with an 

alternate transformation 'l· 
exists and satisfies the following universal factorization 

property: 

F'or every vector space )( and every alternate 

transformation --~" )( 
there corresponds one, and only one, linear transformation 

~ : l _., )( 

such that 

i.e. every diagram 

can be uniquely embedded into a commutative 



If such is the case we write i : V h·l 

Remark 3.1.5.: 

The function ~ establishes a natural 

isomorphism between the space of all alternate linear trans-

formations u .· '·"-!loo ~ d ~ Y ., ~ an the space of all linear 

transformations f ~ 'J lt1_..., )( • We denote the space of 

all alternate linear transformations 

Then the identification 

A1l- \'It, X) : Herr. l ~ "'1, X) can be 

regarded as the implicit definition of 'J trl 

Theorem 3.1.6.: 

For any vector space 

unique (to within isomorphism). 

\.J v t~] 
v, exists and is 

(i) Existence: We have shown that 

by 

exists by actually constructing • It is clear that the 

'JuJ defined in 3.1.1. together with the natural projection 

given by 3.1.2. actually satisfies 

the universal factorization property 3.1.4. 

\JU.l -r;l 
(ii) Uniqueness: Suppose two vector spaces~ , V 

satisfy this universal factorization property. Consider, then, 

the following commutative diagrams: 
V.- j ~ "l.rl 

. ~ · 

·, 

· -?..;. . . ~.: 
··i 

:i . 
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ti --
From fig. (i) 'l': ; from fig. (ii) i ~ fl 
Then 1~1 1 ":: 

-. f;. f \ f ~) \ff)~ 1 ~ ': --
it follows that fi - ivr,l -
Similarly f~ ~ 1vl,, 

Hence f. is an isomorphism and so 

are naturally isomorphic. 

Remark 3 .1. 7.: 

If is a vector space of dimension h 

then the dimension of 

if ~~ •• ""-· ... , (.., ~ 
~ e,· "' t,:.. " . . . 1\ e., . .. ,. 

is a basis for 

. ., ~ '· ~ \.~ < ... 

( \, "'\ ((L .1\ • • • " t '~ ~ 
is a basis for 'J (.r)• 

Notably, 

then 

·.~. 
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2. The exterior algebra 

We will define an operation called exterior 
\I C..l multiplication which pairs an element of 1 and an 

element of V ls'J with an element of V lt·+ s J 

We recall the natural projection A.,.! 'V ... -"> yCr] 

given by At ( t} = .i. 2.. <rt,., ,.> rt~> . ~ .. ~ 
~! cr .. n..... ' 

Also, if then 

by the definition of the tensor multiplication. 

Definition 3.2.1.: 

We define the alt.ornate product 

the formula that 

Remark 3.2.2.: 

by 

The alternate product 

of 'I c, .. s] 

'X.~ 'J is clearly an element 

Remark 3. 2. 3. : 

The sign of the permutation on 

which moves the first r letters past the last S 

letters 

is l- 4) '"" 

(the motion is obtained by moving each of the t"' letters 

starting with the last of the ~·s through the s's , thus 

by t-• .s interchanges of adjoining letters). Thus 

so that 

The operation, exterior multiplication pairs an 

. . -~ -

.•! 
·-'~ 

:-~~ .. 
:·.~ 

) 

·-. : 

1 
_;, 

·i 
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element of and an element of with an 

element of Then we have a multiplicative 

structure on the direct sum 
~ CCS1 (: ~) + \l(i1 ~ \f(2.'] +... .. V G-1 

We write 1\\J _ ~ ... \} C•1 \JC').l "U.] 
"'"" ... +··· .... 

Definition 3.2.4.: 

We call the exterior (or Grassman) 

algebra of the vector space V 

We have also the following conceptual definition 

of the exterior algebra. 

Definition 3.2.5.: 

Suppose 1\ V is an algebra and 1: 'I~ f\\1 

is an alternating algebra homomorphism satisfying the 

following universal factorization property: 

Given any algebra A and an algebra homomorphism 

f: "-">A there exists one, and only one, algebra homomorphism 

~: 1\\J-'> A such tha t 

i.e. \f' makes the followjng diagram commutative 

Then 1\\1 is ca lled the exterior (Grassman) a lgebra of 

the vector space \J 

'I 
: j -

! 
: i 
~-

J .:_·~. 

., ,, 
·.r 

. :~· .. , 
.· ; 
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Theorem 3. 2.6.: 

r,or every vector space v, 1\\1 

unique (to within isomorphism). 

exists and is 

froof: (i) Existence: It can be 

1\" ~ lil.,.. vl1'l v t1l vbl .. .. ... + 

inclusion i : V ___.,;,. 'I(.~) 

shown that a choice of 

together with the 

actually satisfies 

the universal factorization property of 3.2.5. 

(ii) Uniqueness: Suppose /\V, 1\ V both 

satisfy the universal factorization property of 3.2.5. then 

we have the following 

v I :0, "" 

~ t" a ~ "-" 
fig. ( i) 

commutative diagrams . 
V _j_~ AV 

~ 

fig. 

' -~ v 
AV 
(ii) 

-a· = YJ ; from fig. ( ii) i= \r i Then, from fig. (i) 

Hence 

it follows that 

Similarly, 

~~ : lf I V j 1 : (If cf J J~ 
'f v : ., Av 
'1 y ': .,"" 

Thus is an isomorphism and /\V and 

naturally isomorphic. 

Remark ~.2.:z.: 

If " is dimension "' , then 

dimension 2."' since "": IR + V C.i 1 .... ~ . .. 
and o...·~ VC\ll : t ~) d.. t.t1 \~) .. . ·n-v" - . 

' - " ' 
so that 

: . . . _ . :. 

-
"" are 

1\V has 

~Crl 

\t-3 l~) ct..·hov v ':. 

"· '•;f. 

:··~ 
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Theorem 3. 2.~...!_: 

The exterior algebra /\\} of an 

vector space \J ~h 
is of dimension , 

constitute a basis of \1 , then a base of 

given by 1 and the elements. 

3.2.9. €· D 

-dimensional 

:r \e •. ... , e...l 
1\V is 

'• J\ • • • '\ \'). 

t":: ...... "' , 

£roof: The elements A~!j <g) ••• \i) f.' ) ~ t: A ••. o\ l.'r 
'I t~1 . • lr -,. '1 

obviously span ~ By the anticommutativity relation 

3.2.3. it follOWS that e~. A'" with ,, < • • . < "" 

snan \llc-'l and \lb-'l ~ 0 for Al l we must show 

is that the eJ.ements 3.2.9o are linearly indenendent. Since 

terms corresponding to different values of r are obviously 

independent we need consider only a fixed ~ 

since e\· ® ... ® (,· . ~~ 
are independent. 

For \" <. h suppose there is a linear relation 

of the form 

'~ 
~. ( ... ( " .. 

a. . 
"• ... 'l-

where the summation is extended over all combinations 

\, , . . . , l·.. o{ ~ , . . . , "'-

For a fixed set of indices 
. . 
\ ...... l .. , let 

be the complementary set . 

lvlul tiply 3. 4.fQ, by ~.. "... " ~ ...... 
With the exception of f~ 1\. ... 1\ f\• all terms in 

' t" 
·'' the product will havP. repeated factors and \<\rill there f ore 

. ·.\~:.: 

. ··: :i·~·BS:~.: 
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vanish by anticommutativity. 

Thus CA.; .. . t..'r e l.~ 1\ ••• A (\.r j\ e J~ ... 
= t a, ... ".y e. i\ . . • "' t" -= o 

so Q~ ... ... · ... : 0 

This proves the theorem. 

Theorem 3.2.11.: 

A necessary and sufficient condition t hat the 

vect.ors X-4, .•. , ""r be 1 inearly dependent is t hat 

~ .. " • .. i\ "r : 0 

Proof: If the vectors are dependent then we can expr ess 

one in terms of the others, say ..... 

thus 

'1.r :. ~ {l X ... k.. ll: .. 

.... 
"• "' . . . " 2- a ... ""' 

...... -- ~ Q"- ~.. A •• , 4\ ltt. 1 1\ "" 

fu 
Each summand of t he last sum has t wo repeated f actors a nd 

is therefore zero. Hence "'1(4 "' ••• ~ 'IC., : D 

On the other hand, if x,, . . . 
I 

1'.,.. are l i nearly 

i ndependent, we ca n always f ind xt"; , . .• , """ 
s o tha t 

'14 

)(.4 , .. .. , ""' 
f orm a ba se f or " By 3 . 2.8 t hen , 

~. A· ~ .1\ ~"' t 0 so x. 1\ ... 1\ "'-r ~ o. 

.. q. 

·· ··.1 

. :·.: 

.) 
::: 

'·. 

: ... 
·< ... 

•. 
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3. Duality in the exterior algebra. 

In this section we shall show that = V t\IC..l).. t ,.)c..] 

: v"-l We may construct "b) in a different way. 

Actually we may set 

where A" is the alternate linear transformation A ... : V"-> \} l~>l 

i.e. 

of 

of 3.1.4. 

This construction 

will satisfy the universal factorization property 

For simpler notation let us write A instead of A.,.. 

Since from 0 ~ we have a natural isomorphism . " l 
between ~-~ A and we can identify Cu\...., A and 

1~ A Then we have a natural isomorphism 

3.3.1. .J. •• \J C.rl __ ...., , A 
.,.. y ~ ·~ 

Also the linear transformation A~ '1,. -'> V U.l 

induces a linear transformation A*: \'1" }~ __, \~._.) (.t'] 
so that we have a natural isomorphism 

3. 3. 2. 

Furthermore from the definition of the dual space 

t~(~c .. :~. R) 

and by Remark 3.1.5. we may identify Hc~(vc.-1.1l\ and Ait-IV~ ~) 

where is the vector space of all alternate 

. ~· . ·. 

·--~ 
1.~· 
;.; 

., 
;~ . 
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linear transformations 

Hence we have a natural isomorphism 

3.3.3. 

Since we wish to show that we have a natural 

isomorphism between t \/U..l \ • and (V"~-) Cr] we need 

only to show that a natural isomorphism exists between~ A • 

and PrH· \v'", ~\ 

We define 

3.3.4. 

which is defined for every ~ in •~ ~ • such that 

6 ~ ( v;.S> ... €)\f..-) ~ < v:. ~-·. E)\.f., t ) 

where \[ ~ -- ~ is a generator of vr. 
~ ~·· • ~""r ..... 

By linearity this definition is extended and then 

~l ~ ~~ \'I'", li\) . In fact ~t ~AU· I v•, ~t\ : 

for any G"t-1\r, ~'=' !r \ v. ®··· to\Jr \ :. b ~ lrh.r,. (0 •.• ti)U',.)) 

= '9tov r ( o-\ v.~ ... \!)v,.\ I t) = (s~.,_9"") (\It «>·~· ~\S",., G".,.. t- ) 

~ .rqN .. ( \/, ~ .. u 6)\1..- I ~ ) ~ r,,...,,. b~ ( V1 {I) • • • $\1..-) 

i.e. ~t ,. : (r~ ..... r) b~ ; hence At~ Att l v~ II~) 

Moreover, .f:::,. is a homomorphism: .ft,r c., c.' ~ "' . ;; 

A \ ct. -+ c.' l' ) ( ut ®. ~ . ® " .. ) : ( \J, ~. . • ~urI '~ + '' l' ) 

':' (_ ( V, 6>• .. \'PV•, t ) "- C.
1 

( \Ja ®·- \!)\lr k' } , 
-: C~t.\\f.ep ... 'E)\fr) +,.At' l~.®-· ~",.) : ~Cbt+c.'ot')I~CS) ... "'\1.,) 

·~~ .. . 
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i.e. ~ lc..l: + c.'l') -: so that 0. is a 

homomorphism. 

To show that · !:;:,. is bijective we define its 

inverse function E. : Ai t-- l V'", li~) :, '~ A* 

for every t ~ Ait \" ... \~) by the formula 

(~.a> ... t!)\1,, Et): "t\~~···.Our) 

It is clear from 0.10 that such a covariant tensor 

exists; ; in fact it is alternate. 

£ "t ~ ,~ r.\ • for 

( V4 e · .. \'D\.fr 
1 
~ 't ) ~ ~9rv ct") ( q- ( \/, ~· · · W)\Sr) , £'t) :: (S'"'G") "C ( """ C·• · 1)\lrl) 

= ser-q-\'t.r)(V', () ... -!)\J'r \ :. r~~ G" t( v. '~>· •• '!>\Jr): S's~ a-< v .. tD··· ti)\f',., £'t) 

Now l:i £ is the identity of A llo- l \1 .. , lil) ; 

for every "t 
\6 E.) l. \" C>. •• \!>\lr) :. A \E. 't) \ \f4 .:> • .. ®\Srl :- ( V, ~·- \'n\Sr, E't. ) 

I.e. AE. : -~~IV .. ~' • 
Similarly, 

for every C 
( \14 8>._ tg\J ... , lED) t): 
i.e. 

£~ is the identity of l'en- A.,. 

Thus ~ is bijective, hence a natural isomorphism. 

We then have a product of three natural isomorphisms: 

~· l:l. ;. V- : ~'lt-) t.-'l --l'> 
3.3.5. 

t\1 .. ) lt-'1 i Yr l) 

; .:· 



This product will always be used as an identification: 
..r..• " ~ 0. ;.-: -t Then we write 

3.).6. 

This identification 3.).6. will be used to establish 

the pseudo-dot product for V c ... :s, lV(r) }., . In the 

following we shall also use the natural isomorphism 

l : ~ A --:1> ~~A with 1 l \f4 ~. •• "\fro) '= A\~ 10-· ~v .. l 

(v .. ~ ... A.:r, ~"·- ~ \i.,.) = {"""···"-"' .. , t•-6...,.•(~"'···"'-"'rl) 
': ( V4 A • • • A \fr I f. ( ~ ~ ') l ~A,,, A \i',i') : ( b 1-'It\~ 1\,. •"'- \r,), f ( ~jL,, ,A \l'r)) 

: (A \i-., \f .. A ••• AJ .. ))' A~~ C) ... nrrl) = ( b {AW.( ~e ... ~cr .. )J. JlfV.(!). .. t!)\Jr)) 

~ (f.\\ \J4 G!) ... t!)~r) , A • I \11 "··· 'l'~r)) '= ( ,ql l \.~ _, .. , ti>Ut-}. \f.~ . .. '-D~r)) 
.... ; 
. :..z 

~ ( (.\ \ V4 ® ... .0\Sr) 1 \;. {0 .. • .,~.,. ) : ~ ( ~(t'ftowl/') ~l \f, fD ... ""') 
1 

J. fa) ... ~ 0:. ) 
. ·' 
: : 

wherein various steps have various justifications. 

We have proved the formula: 

If we replace the pairing < ,) by a new 

pairing < ) defined by the forumla 

3.3.8. < • ) - t-~ (,) -
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we have 

3 • 3 • 9 • <~ 4 • .. " \f r I V. 4 . - " \:f.r ' • c:;:- (~ ~ -' (. " ,-;. ) ( - ) I - .t::._ • ..., v, "'~ ~1 • , • • ~- V'r r ., ~ •. 

or, we have the following: 

3. 3, .fO 

Remark 3.3.11.: 

<~ t ~.) 
<~ ·""-) 

< v,.l, \1.' 
( "'"~. ;~) 

... 

. . . < "'r ' \(, \ 
( "r .. , \1~ ") 

The algebra 

forms over V 

1\\1 • is called the algebra exterior 

Remark 3.3.12.: 

We will define the pairing { I) of AV 

with by 

and by 3.3.10 if .. :: s. 

---- :·-·-··-..-·-.···---·· -

.,, 
' . 
f 

( 
t 
! 
i 
i 
! 
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4. The induced homomorphism. 

To every homomorphism 

an induced homomorphism 

t; Y-'> W there is 

f b) . vu., L-1 . -~w 

defined by 

3.4.1. 

Given homomorphisms f ~ V---'> W, q : W -"> IJ 

((Jf) Lt-1 •• v c..., (a.1 the induced homomorphism 7 --~~~ u J 

has the property that 

\~f) 
(a..) 'i {.,J f &1 --

9()-] f (,} - ~"Ar) (f~At-) -For, 

Also, given 

homomorphism 

property that 

': \ l:lt- ~)(A .. A..-) 
': ~9y f•) A .. 
- ~f) t Ar -

Crl , lq{) 
1" .. v '>" 

\ 1v \c..) ~ \1 C..')__, 'J lr1 

1 1 U.l 
\ v J :. 

the induced 

has the 

.-:· 

· ... 
:> .. 
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