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ABSTRACT 

Sixty-day-old rats and guinea pigs and 75-day-old rats were 

tested on a brightness discrimination task to ascertain whether or 

not they exhibited the effects of proaction and/or retroaction. 

Proaction was evaluated by requiring ~s to 1) acquire a discrimina

tion to a criterion of 18 out of 20 responses; 2) learn its reversal 

to the same criterion; and 3) relearn the same problem to criterion. 

The corresponding control ~s rested while the experimental ~s 

acquired the first discrimination but learned the second and third 

problems in the same manner and to the same criterion as the experi

mental Ss. In the test for retroaction ~s were required to: 1) learn 

the discrimination to criterion; 2) learn the reversal of this dis

crimination to the same criterion; and 3) relearn the initial dis 

crimination, again to the same criterion. Subjects in the corres

ponding control groups acq~lred the initial and final tasks to 

criterion while the experimental group ~s were learning their respec

tive tasks, but rested during the second stage when ~s in the 

experimental group were learning the reversal. Twenty-four hours 

separated criterion performance and succeeding reversal tasks in 

all experimental and control groups. Analysis of variance on the 

percentage errors to criterion indicated that the 60-day-old rats 

exhibited proactive interference (PI) while the 75-day-old rats 

and the guinea pigs showed no PI effects. In contrast, all Ss 

displayed the effects of retroactive interference (RI). The results 
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were discussed in terms of the relation of the two mechanisms to 

improvement in SDR learning as \•lell as in terms of their relevance 

to other. studies which tested for proaction and/or re t roact ion in 

non-human species . 



INTRODUCTION 

Summary of Problem 

Performance on successive discrimination reversal (SDR) tasks 

has been related to phylogenetic status or cortical development 

(e.g., Bitterman, 1965a). Subsequent studies have shown that species 

capable of displaying progressive improvement on SDR also exhibit 

proactive interference (PI), whereas species which do not improve 

show no PI (Behrend, Powers, & Bitterman, 1970). Recently, however, 

it has been pointed out that, in addition to the phyletic level, 

the extent of physical development of the organism at birth (i.e., 

developmental rate) is also correlated with SDR performance. For 

example, ~raveman (1971), using daily reversals of a brightness 

discrimination, has found only marginal improvement in 60-day-old 

guinea pigs, early developing {precocial) organisms, while substan

tially better improvement was found in 60-day-old rats, late develop

ing (altricial) organisms. 

The present study was designed to test whether or not there 

were correlated differences in proaction between 60-day-old rats 

and guinea pigs. In addition, 75-day-old rats were also tes ted in 

order to assess the influence of maturational differences of the 

visual modality between rats and guinea pigs on the development of 

proaction. This interest evolved from the work of Campbell, Riccio, 

& Rorbaugh (1971) which indicated that maturational differences 

such as these appear to be influential in the retention of responses 

controlled by aversive stimuli . 
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Review of the Literature and Statement of Problem 

Successive discrimination reversal (SDR) and probability Jearn-

ing (PL) are both discrimination tasks which have been used to test 

the presence of higher mental processes in various organisms. Succes-

sive discrimination reversal involves alternating the conditions of 

reinforcement so that an instrumental response to a particular stimulus 

(or stimuli) is rewarded and, then, after a predetermined criterion 

has been reached, the response to another stimulus is rewarded. Once 

the criterion has been met for the second discrimination, the reward 

contingencies are reversed so that a response to the first stimulus 

is again rewarded. The SDR task, then, is one which involves alter-

nating the reward associated with the stimulus cues between discrimina-

tions. Similarly, PL is a task which involves the use of inconsistent 

rewards. The reward inconsistency in the PL task, however, is within 

a single discrimination rather than between discriminations in that 

the reward is associated with one stimulus on only a certain percen-

tage of the total trials and with the other on the remaining trials. 

The performance of different species on both SDR and PL has 

been described in terms of certain patterns of responses by which the 

organisms typically adapt to the lnconsistent reward. For example, 

depending on the species tested, SDR performance may reveal various 

degrees of progressive improvement on successive reversals. That is 

to say , some species may become more proficient at acquiring succes-

sive discrimination reversals in that they require fewer tr ials 

and/or make fewer errors to reach criterion. Moreover, for those 
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species which typically show progressive improvement, the SDR curve 

assumes a particular shape. Typically there is a performance deere~ 

ment on one of the reversals shortly after the original learning 

(OL). In most instances this performance decrement occurs on the 

first reversal while performance on succeeding reversals improves 

to the extent that on later reversals it is at least as proficient 

as that on OL. Sometimes, however, the improvement exhibited can 

be characterized as •steady', in that performance continues to improve 

beginning with OL, and, thus, there is no initial decrement, The per

formance of the •steady' improvers, however, has been attributed to 

habituation and, consequently, should not be considered equivalent 

to the performance of those that exhibit an ini t ial decrement 

(Mackintosh, 1969) . Finally, there are those species which do not 

appear to benefit from successive reversal training. These organisms 

tend to make as many errors and/or take as many t rials to reach 

criterion on later problems as they did on earlier ones . 

Bitterman's (1960, 1965a, 1965b) concern with the factors under

lying the type of performance exhibited by various species led him 

to the conclusion that the performance on SDR (and PL) tasks was 

determined by the extent of cortical development. He developed a 

behavioural taxonomy in which the rat and fish were chosen as stan

d~rds because they differed greatly in terms of cortical development, 

yet they were bo th amenabl e to test ing in analogous s ituations. At 

the same time , moreover , the rat and fish displayed behavioural 

tendencies wh ich were clearly distinguishable from each other 
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(Bitterman, Wodinsky, & Candland, 1958), The rat, for example dis

played progressive improvement in SDR and maximized, or non-randomly 

matched, in PL. The fish, on the other hand, failed to show progres

sive i~provement on SDR and randomly matched during PL acquisition. 

The performance of the species which were subsequently tested was 

dichotomized as fish-like or rat-like and produced the basis for a 

behavioural taxonomy which turned out to be consistent with the co~1on 

phyletic ordering. Several recent experiments with fish, however, 

have reported improvement in SDR (Mackintosh & Cauty, 1971; 

Setterington & Bishop, 1967; Squier, 1969; Woodward, Scheel, & 

Bitterman, 1971), a finding which seriously challenges the validity 

and generality of Bitterman's taxonomy. In each instance, however, 

the results can be traced to a procedural variation which appears 

to have been responsible for the reported findings. 

Even so, attempts at an explanation for the species differences 

which typically are found, have centered around the idea that per

formance on SDR is dependent not only on the learning of a given set 

of contingencies (Gonzalez, Behrend, & Bitterman, 1967; Bitterman, 

1968; Behrend, Powers, & Bitterman, 1971). That is to say, it has 

been argued that the level of performance attained by an organism 

ultimately depends on how well an organism can forget the immediately 

preceding problem. It seems to be a reasonable argument that the 

quicker or more completely~ can forget a response to one stimulus, 

the quicker he can make the same response to another stimulus, even 

in the presence of the first stimulus. Gonzalez, et al. (1967) have 
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suggested that species such as fish, which typically show no improve

ment in SDR, do not forget previously acquired responses. On the 

other hand, species such as the pigeon, \~hich do show improvement, 

do forget which stimulus was last rewarded. The differential ability 

of the two species to forget has been attributed by Gonzalez, et al. 

(1967) to the action of PI--the interference produced by some event 

learned prior to the learning of another event. 

The conclusions regarding PI in fish and pigeons were based on 

the results of an experiment by Gonzalez, ~2.!.· (1967) in which it 

was found that the retention differences postulated to exist between 

the fish and pigeon should be apparent in the analysis of performance 

by these species on reversal (R) and non~reversal (NR) days of a 

visual SDR task. The experiment was designed so that the stimulus 

associated with the reward was changed every two days. The first 

day of each reversal was the R day, i.e., the discrimination of the 

previous day was reversed, while the second was the NR day. It was 

predicted that if forgetting occurred, there would be a reduction 

in the strength of the performance established on the previous day. 

Thus, there should be a progressive decline in errors on R days and, 

at the same time, there should be an increase in errors on the NR 

days. The results of the experiment revealed precisely this function. 

To account for their results, Gonzalez,~~· suggested that 

after the acquisition of the OL, the second and subsequent problems 

were influenced by PI. Specifically it was maintained that once S 

had learned OLand its reversal (Rl), the next reversal (R2), which 
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was the same as OL, was easier than R1 because the retention of OL 

interfered with the retention of Rl causing it to be forgotten. 

Having forgotten R1, ~was then ready to acquire R2 without inter

ference from R1. Similarly, PI arising from R1 acted on R2 causing 

it to be forgotten and left~ ready to acquire R3 and so on. An 

important assumption at this point was that PI accumulated over the 

course of successive reversals and contributed an increasingly greater 

influence on each reversal. This assumption handled the problem 

raised by the fact that R1 having been previously forgotten was 

supposed to provide PI for the forgetting of Rz. As a consequence 

of PI accumulation, there was a greater likelihood that fewer errors 

were committed on later reversals than on earlier ones. In this way 

then, the role of PI was tied directly to performance on SDR. 

The retention decrement hypothesis suggested by Gonzalez, et al. 

(1967) has been questioned on logical grounds by Weiner and Hupert 

(1968), who pointed out that ~soften improve to such an extent that 

they acquire discriminations later in the series faster, or with 

fewer errors, than OL (e .g ., see Gossette, 1968). In such cases, 

they maintained, it was logically impossible for a PI of a previous 

reversal to reduce error scores to below the level of OL in that 

~s are not able to forget more than they have learned. At best, 

they claimed, the retention decrement hypothesis could only explain 

instances in which performance on later reversals was equal to 

that on OL. In addition, Gossette (1969) has supported Weiner and 

Hupert 1s argument with a replication of the study by Gonzalez,~~· 
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(1967) in ~1hich he was unable to sho~1 convergence between the R 

and NR funct i ens. In fact, in Gossette 1 s study NR performance was 

consistently superior to the R performance, indicating that the 

preference established on the R day was not forgotten but carried 

over to the NR day. 

These findings were used by Gossette (1969) as evidence against 

the adequacy of the retention decrement hypothesis in the explanation 

of progressive improvement on SDR tasks. He suggested instead that 

there were two processes which operated simultaneously to produce 

improvement. Specifically, during the early discriminations, when 

error scores were above that for OL, PI was influencing SDR per

formance. During later reversals, however, when error scores were 

below the level of OL, the new source of stimulus control was the 

rever sa 1 habit i tse 1 f. In the 1 atter case, the cue for responding 

was the non-reinforcement of an incorrect response on the first 

trial of a new problem. This would suggest that, after extensive 

training, errors should not occur after the first trial of a rever

sal, a finding which has been reported by Gossette (1968) for several 

species. Furthermore, with some mammals it had heen found that 

the error score eventually dropped to zero (Gossette, 1969), sug

gesting that the first choice ~1a s a matter of chance wi th a ::; t rang 

win-stay/lose-shift aftereffect. 

Although Gossette (1968) and Gonzalez, ~ ~~-· (1967) differed 

in their conceptualization of how interference facilitated improve

ment in SDR performance, both agreed that PI was involved. That is 
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to say, Gonzalez,£!~· attributed improvement in SDR largely to 

PI, whereas Gossette pointed out that in addition to PI, retroactive 

interference (RI)--the interference of an interpolated task on the 

re-acquisition of a task--and the reversal habit also played a major 

role in performance on SDR. As noted by Gossette (1968), any effect 

Rl might have on performance, however, is not readily available 

for analysis since its effects are completely confounded with the 

effects of PI after the first reversal, i.e., performance on the 

second reversal could be either a function of PI produced by OL 

acti~g on the memory of the first reversal or a function of Rl pro

duced by the first reversal acting on the memory of OL. It is 

clear from this analysis, however, that both PI and Rl might be 

involved in the reversal process but, as yet, the function of these 

processes and their specific roles have not been empirically tested 

in situations outside the SDR paradigm. 

In summary, then, PI and/or Rl have been said to influence 

reversal learning by acting on the memory of a previous discrimina

tion which could interfere with the acquisition of a new discrimina

tion. That is, the absence of PI has been shown to be associated 

with SDR performance which characteristically shows no improvement, 

while the presence of PI has been correlated with progressive 

improvement on SDR . Furthermore, experiments not involving the 

SDR paradigm have d P.1~nstrated PI in the rat under certain condi

tions (Cole & Hopkins , 1968; Gl e itman & Jung, 1963; Mai er & Gleitman, 

1967; Rickard, 1965) and not under others (Gleitman & Ste inman, 1963). 
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The major difference is that in those studies whicil found PI, the 

~s were 60 days old (i.e., Rickard, 1965), while those studies in 

which PI was not found the ~s were between 90 and 120 days old. It 

is possible that the older ~s, by virtue of their more extensive 

extra-experimental experiences, would not show PI under the same 

conditions of testing as the younger ones (cf. Campbell, Riccio, 

& Rohrbaugh, 1971). Working with pigeons, Kehoe (1963) a lso failed 

to find Pl. In contrast, there has been little empirical work on 

the influence of Rl on SDR performance. However, both Crowder 

(1967), working with rats, and Kehoe (1963), working with pigeons, 

have found Rl in both species. 

Although the validity of the arguments proposed by Gonzalez, 

~~· (1967) and by Gossette (1968) is increased by the studies 

which independently demonstrate PI and/or Rl in species which 

typically show improvement in SDR, at least two problems still 

exist before one can conclude that the underlying relationship 

between Rl and/or Pi and SDR performance is a function of cortical 

development. First is the problem concerning studies which fail 

to show PI in rats and pigeons, ~s which typically show progressive 

improvement in SDR. A poss ibl e inference is that PI is not neces

sary for SDR improvement, as noted above. A second problem is that 

the assessment of cortical development has, for the most part, 

remained correlational in nature, i.e., it is confounded with 

phyletic level. In fact, an examination of Bitterman•s (1965) 

behavioural taxonomy suggested that there is, in addition to the 
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relationship bet1-1een phyletic status and performance on SDR and PL, 

a strong relationship between developmental rate and performance 

on these tasks (Braveman, 1971). Specifically, Braveman noticed 

that ~s which showed rat-like performance on brightness SDR and PL 

tasks tended to be organisms whose perceptual-motor development 

is not very advanced at birth (i.e., altricial), while those that 

showed fish-like performance tended to be fully developed at birth 

(i.e., precocial). These differences in developmental rate, more

over, produce organisms who, at tht: same chronoiogical age (CA) 

have vastly different kinds and amounts of prior experience. The 

altricial rat, for example, has its eyes closed for the first 

15-16 days of 1 ife (Bolles & Woods, 1964) and, therefore, at weaning 

(21 days) has had only 6-7 days of patterned vision. The precocial 

guinea pig, on the other hand, has its eyes open immediately after 

birth and can experience patterned vision within an hour after birth 

as demonstrated by the optomotor response (Katz, unpublished data). 

A 21-day-old guinea pig, then, has had 21 days of patterned vision-

more than three times the amount of a rat of equal CA. 

The relationship between performance on SDR and developmental 

rate, furthermore, was found not to be unique to Bitterman's data. 

For example, an analysis of the results of several studies by 

Gossette (1968; 1969) revealed that altricial organisms made fewer 

total errors than precocial organisms on visual SDR tasks, _X2 (I) 

10, .E.< .01. Furthermore, direct examination of the influence of 

developmental rate on SDR performance of closely related rodents by 
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Braveman (1971) has led to similar conclusions. Comparisons, for 

example, between 60- and 101-day-old rats and guinea pigs on a bright

ness SDR task produced an interaction between age and species as a 

result of significantly more errors on 20 daily reversals by the young 

guinea pigs than by the other groups. The fewest errors, on the other 

hand, were exhibited by 101-day-old guinea pigs, while both age groups 

of rats were intermediate to these extremes. Braveman noted that 

these results were not merely the product of a failure of the young 

guinea pigs to acquire a visual discrimination in that he found that 

(1) they had indeed showed marginal improvement on SOR and (2) prior 

to daily reversals, they had acquired a simple discrimination faster 

and with fewer errors than any of the other groups. 

In light of these performance differences on SOR between the 60-

day-old guinea pigs and the 60-day-old rats, .and in light of the pos

tulated relationship between PI and/or Rl and SDR performance, the 

present experiment was designed to test for proaction and retroaction 

in these closely related ~s who develop at different rates. Employing 

the standard test for proaction and retroaction (e.g., Ellis, 1969), 

comparisons were made between 60-day-old rats, 60-day-old guinea pigs, 

and 75-day-old rats on a brightness discrimination. Comparisons 

between the 60-day-old guinea pigs and 60-day-old rats were between 

~s of different species at different stages of development who had 

developed at different rates. Comparisons between the 60-day-old 

guinea pigs and 75-day-old rats, on the other hand, were between ~s of 

different species and different developmental rates but who had 60 days 

of visual experience. Thus, in the first instance the comparisons were 
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between species at different stages of development, whereas the 

second involved comparisons bet~1een species that were supposed to 

be at equal stages of visual development. Based on the results 

of Braveman (1971) and others (e.g., Gonzalez, ~!l·• 1967) it 

was predicted that the 60-day-old guinea pigs would show less PI 

than the young rats but about the same as the 75-day-old rats. It 

was also predicted that the rats and guinea pigs would show Rl. 

However, there being no information available on the possible 

interactions that might occur between Rl and PI, no directional 

hypothesis could be made concerning the amount of Rl present as a 

function of age or species. 

METHOD 

Subjects. The .?_s v1ere 40 female guinea pigs and I10 female albino 

rats, 50 days old at the beginning of adaptation, and 40 female 

albino rats, 65 days old at the beginning of adaptation. The ~s 

were obtained from colonies maintained at the Medic3l School of 

11emorial University of Newfoundland and from the Canadian Breeding 

Laboratories. 

Apparatus. The apparatus consisted of two identical, single-unit 

T-mazes with start-boxes 20.6 em. long, 9.4 em. wide and 13.8 em. 

high. The 39.4 em. alleyway was the same height and 1~idth and led 

to goal-boxes l16.9 em. long, also of the same height and width . 

In one T-maze the 1~hite goal-box was on the left and the black 
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one on the right, while this arrangement was reversed in the other 

maze. The start-boxes and runways of both mazes were painted grey. 

Each maze had hinged, one-way doors between the start-box and the 

alleyway and between the choice point and each of the goal-boxes. 

In an attempt to reduce extra-maze cues, the T-mazes ~Jere housed 

in identical environments constructed of whi te linen. Three sides 

and the top were completely covered, while the fourth side was left 

partially open to allow easy access to the f· 

Procedure. On each of 10 days before the beginning of testing, all 

Ss were habituated to the maze for 30 min. per day with food and 

water available. On the last two days of habituation training, ~s 

were placed in the start-box and allowed to explore the maze for 

the regular 30 min. period but with no food or water available in 

the goal-boxes. All habituation training as well as all discrimina

tion training took place before the four-hour feeding period. Water 

was available on an ad lib. basis during all phases of the experi

ment. 

The task on which ~s were compared was a 100:0 brightness dis

crimination with 20 trials per day and an inter-trial interval 

averaging 5 mi,,, On the first day of discrimination training ~s 

were placed in the start-box and allowed to make a choice of one 

of the two unba i ted goa I ··boxes. A response was considered to have 

been a completed choice when ~s hind feet entered either goal-box. 

The brightness of the goal-box was considered its preferred bright

ness and Ss were detained there for 5 sec. Then, in order to 
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equalize exposure to both brightnesses, ~s were guided to their 

non-preferred goal-box, where they remained for an equal length of 

time. 

All trials began when~ was placed in the start-box and ended 

when three pellets of the appropriate food reward had been ingested 

(45 mg. Purina Guinea Pig Chow for guinea pigs and 45 mg . Noyes food 

pellets for the rats). No time limit was placed on the ~s in the 

start-box. However, once at the choice points, ~s were allowed 

only 30 sec. in which to select a goal-box. If ~s did not respond 

within the alloted time, they 1-1ere gently prodded in the direction 

they were facing. Any~ that was moving, however, even after the 

alloted 30 sec., was allowed to make an unaided response. If S 

selected an unbaited goal-box, i.e., made an incorrect response, 

it \'/as returned to the start-box and restarted. This procedure 

was followed until a correct choice was made and the reward con

sumed. Each error following the first on any trial was counted as 

a repetitive error. 

The ~s of each age group and species were divided into sub

groups corresponding to the sequence of brightness discriminations 

they were required to learn, i.e., for proaction: group ABB 1 and 

group -BB 1
; for retroaction, group ABA 1 and group A-A 1

• The letters 

used to identify the groups refer to explicit phases of the tradi

tional exper imental procedure employed to evaluate the effects of 

proaction and retroaction. Task A consisted of a 100:0 black-white 

discrimination problem where the stimulus associated with the reward 
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was the brightness opposite to the one selected on day 1. Task B 

was also a brightness discrimination but the reward stimulus was 

the one which had not been rewarded in task A. Thus Ss in group 

ABB 1 learned task A first, then task B, and then relearned task 

B (B 1
). Similarly ~s in group ABA 1 were first required to learn 

task A, then task B, and then relearn task A (A 1
). Groups -88 1 and 

A-A• refp,r to the control groups required for proaction and retro-

action, respectively. That is, ~s in group A-A 1 first learned 

task A, then rested while ~s in ABA 1 learned task B, and then were 

required to relearn task A (A 1
). Subjects in group -BB 1

, on the 

other hand, rested while ~s in group ABB 1 were learn ing task A, 

then learned task Band were required to relearn task B (8 1
). Sub-

jects were required to acquire a l l discriminations to a criterion 

of 18 out of 20 correct responses before they were shifted to the 

next phase of the experiment, e.g., from tas k A to B. 

RESULTS AND DISCUSSION 

Proaction 

The percentage of errors to criterion on task s• was calculated 

for each~· A 2 x 3 (Treatment (T)--exper imental or control; group 

(G) - -60- and 75-day-old rats and 60-day-old guinea pigs) factori a l 

design analysis of variance revealed a significant interaction 

between T and G, [{2/54) = 3.8, ~ <.05. Inspect ion of Figure 1 

reveals that both experimental groups of rats made a greater percentage 
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Insert Figure 1 about here 

of errors than their corresponding control groups on task B'. The 

experimental group of guinea pigs, on the other hand, made fewer 

errors than its corresponding control. Neuman-Keuls multiple com

parisons, however, revealed that the only significant difference 

.was between the experimental and control groups of the 60-day-old 

rats (E. <.05). In addition, these comparisons revealed that the 

experimental groups of rats made significantly more errors than 

the experimental group of guinea pigs (E. <.05). The results of 

this analysis, therefore, support the conclusion that on ly GO-day

old rats showed any sign of Pl. On the other hand, based on the 

trends in these data, it appears that the 75-day-old rats showed 

a tendency toward PI and the 60-day-old guinea pigs revealed a 

tendency to1va rd proactive faci 1 i tat ion (PF). 

One possible reason for these findings, which is not related 

to any difference in retention between ~s, is that Ss in the experi

mental groups might have required more days to acquire the discrimina

tion on task B', and, hence made more errors than the corresponding 

controls. In order to evaluate this possibility, a 2 x 3 factorial 

design analysis of variance was calculated on the number of days 

Ss took to reach criterion on task B'. The results of this analysis 

revealed no significant differences for any of the ma in effects or 

interactions. Thus, it is unlikely that the results of the analysis 
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or the percentage errors to criterion, reported above, reflected 

differences in length of time (i.e., number of days)~~ required to 

attain task 8'. 

Another possible basis f.or the difference among the groups is 

that the acquisition of the first task B was differentially difficult 

for the three experimental groups. That is to say, the relative 

facility with which the guinea pigs learned task B' could merely 

have been the result of the fact that task B was easier for them 

than for the other ~s--possibly because they were better able to 

transfer information acquired on task A to task B. The performance 

of the various groups was compared with a 2 x 3 x 4 (Treatment (T)-

experimental or control; group (G)--60- and 75-day-old rats and 

60-day-old guinea pigs; block of 5 trials (B)) repeated .measures 

design analysis of variance which was computed on the percentage 

errors on task B. The results of the analysis revealed a signifi

cant T effect, f(l/54) = 38.94, R (.001, a significant B effect, 

f(3/162) = 35.16, R<·OOI, and a significant interaction between 

T and B, f(3/162) = 9.19, £<.001. It is evident from Figure 2 

that the experimental ~s tended to make a greater percentage of 

Insert Figure 2 about here 

errors on each trial block than the control ~s, and that the inter

ection resulted from the fact that the experimental ~s reduced 

their rate of errors more than the controls. A Neuman-Keuls ana lys is 
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revealed that the only significant differences between the experi

mental and control Ss occurred on the first two blocks of trials. 

This finding can be directly traced to the fact that the experimental 

Ss had previously acquired task A while the controls had not. Thus 

task B represented a reversal for the experimental ~s and original 

learning for the controls. By the time ~s had completed 15 trials, 

however, the effects of the previous experience on task A disappeared. 

The important finding from this analysis is that negative transfer 

from task A to task B did not occur differentially for the three 

groups of ~s. Thus task B was no more difficult for the 60-day-old 

rats, than for the 75-day-old rats, or the 60-day-old guinea pigs. 

Finally, it is possible that the first tasks were not comparable 

for the experimental and control Ss and in some way contributed to 

the pattern of obtained results. A 2 x 3 factorial design analysis 

of variance on the percentage of errors to criterion on the first 

task for all groups revealed a significant main effect for experi

mental y~. control ~s, f(l/54) = 13.46, ~<.OJ. Neuman-Keuls multi

ple comparisons revealed that this effect was due to the experimental 

group of guinea pigs making significantly more errors on task A 

than the corresponding control group of ~son task B. Similar com

parisons were not significantly different for both groups of rats. 

It is therefore possible that because it took them longer to learn 

the task, the experimental group of guinea pigs learned more about 

the discrimination on task A than other Ss on the ir first task. 

This could have made task B relatively more easy for the experimentals 
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than for the controls and could have produced the tendency toward 

PF found in the guinea pigs. The previous analysis, however, has 

revealed that task B performance for the experimental group of guinea 

pigs was not different from task B performance of any other experi

mental ~sand, as a result, it is not likely that the first task 

performance influenced the results to any great extent. Thus, by 

the time ~s had acquired task B, the performance differences which 

had appeared on the initial discrimination for experimental and 

control s•Jinea pigs were equally as evident for experimental and 

control is in all groups. 

As a consequence of these analyses, it can be concluded that 

the differences in task 8 1
, previously reported, represented dif

ferences which were not artifacts of some other aspect of the 

experimental paradigm. From these results, then, it would appear 

that the 60-day-old rats showed PI, whereas no evidence of PI was 

found in the 75-day-old rats and 60-day-old guinea pigs~ Trends for 

the last two groups do, however, suggest a tendency toward Pt . in 

the former and PF in the latter. 

Retroaction 

The second analysis corresponds to the question concerning 

the existence of retroaction in the three groups. As before, a 

2 x 3 (Treatment (T)--experimental or control; group (~)--60- and 

75-day-old rats and 75-day-old guinea pigs) factorial design analysis 

of variance was done on the percentage errors to criterion on 

task A'. The only significant effect was that forT , f(l/54) = 101.38, 
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E <.0001. Inspection of the group means revealed that the experi

mental groups made a greater percentage of errors to criterion 

than the control groups (see Figure 3). This effect did not interact 

Insert Figure 3 about here 

with the groups of ~s, indicating that each of the groups tested 

showed similar degrees of Rl. 

In addition to the above analysis, a 2 x 3 factorial des ign 

analysis of variance was done on repetitive errors (i.e., the number 

of times Ss selected the unbaited goal-box before selecting the 

rewarded one following an initially unrewarded response). A simi lar 

analysis on the proaction data showed nonsignificant differences 

between groups, whereas the present analysis revealed a significant 

interaction between T and G, f(2/54) = 6.35, E {.OJ. Neuman-Keuls 

comparisons on the means involved in the interactions (see Figure 4) 

revealed that 60-day-old guinea pigs and 75-day-old rats in the 

Insert Figure 4 about here 

exper i menta 1 group made more repetitive errors than ~s in the cont-rol groups. 

This confirms, in part, the finding reported by Braveman (1971) 

that these ~s do not respond to the occurrence of a non-rewarded 

selection in the same way as the other ~s in that they tend to per-

severate following non-reward to a greater degree. 
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CONCLUSION 

The results of the present study revealed that, under similar 

conditions of testing, PI occurred in 60-day-old rats but was absent 

in 60-day-old guinea pigs and 75-day-old rats, whereas Rl occurred 

in all Ss tested. In part, the pattern of results suggests that PI 

appear5 to be related to the extent of visual experience, as noted 

by Campbell,~~· (1971), independent of the species factor. 

Specifically, the performance differences reported between the 60-

day-old rats and 60-day-old guinea pigs could be attributed to 

either species differences or to developmental rate differences. 

However, the performance differences between 75-day-old rats and 

60-day-o I d guinea pigs, i.e., ~s who had had the same amount of 

visual experience, were not statistically reliable. l~oreover, 

comparisons between ~s ~1ho had not had equivalent lengths of visual 

experience, i.e., between 60- and 75-day-old rats and between 60-

day-old rats and guinea pigs, revealed that the 60-day-old rats 

had shown evidence of PI, whereas the 75-day-old rats and guinea 

pigs revealed no reliable evidence of Pl. Thus, it appears that 

the experiencial factor is of greater importance in the determina

tion of performance than the species factor. 

On the other hand, consideration of trends in PI data from 

the 60-day-old guinea pigs and 75-day-old rats suggests that the 

species factor may have been important. That is, the fact that 

~s from different species, who had been equated for length of 
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visual experience, showed evidence of opposite types of proaction 

suggests that, in a more sensitive task, the species factor may 

Influence the type of proaction exhibited. It is possible, for 

example, that the primacy of visual experience~~ in the gu inea 

pig was an important influence in this respect. This point is in 

reference to the fact that even though the 75-day-old rats and the 

60-day-old guinea pigs both had had 60 days of visual experience, 

one major developmental difference between them was that the guinea 

pig was born with adult-like capacities while the rat was without 

vision for approximately the first 15-16 days of life. As such, 

the primary sensory experiences of the· rat are via other modalities, 

e.g., tactileJ.olfactory, kinesthetic (see Bolles & Hoods, 1964), 

whereas vision plays an important role in the sensory experiences 

of the guinea pig from birth. Thus, it is possible that when the 

rats began to use their visual inputs, a certain amount of informa

tion was transferred from the other modalities to t he visual mode. 

For example, activities such as food-getting behaviours, which 

prior to vision had been under the control of ol factory and tactual 

inputs, come under the additional control of visual inputs once 

the rats 1 eyes are open. In contrast, the entire developmental 

sequence of the guinea pig involved vision as wel l as the other 

sensory modalities. It is possible, then, that this sequence

related difference in the maturational characterist ic of the two 

species is an important factor and influences whether or not the 

facilitory or inhibitory effects of proaction are exhibited. 
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Consistent with this idea is the suggestion made by Campbell,~~· 

(1971) that the extended visual experience of the guinea pig is 

important in the formation of non-specific proactive pools of exper

ience, which, in turn, influence the ability to retain certain infer

mat ion. 

The method used to equate the animals could also have been 

the basis for the differences in trends exhibited by the 60-day-old 

guinea pigs and 75-day-o I d rats. Spec if i ca 11 y, Bo II es & ~foods ( 1964) 

have reported that rats first opened their eyes at 15-16 days. It 

was assumed from this that the animals also began to use their 

visual system for pattern vision at this time. If true, it follov1s 

that the 75-day-old rats and 60-day-old guinea pigs both have had 

60 days of visual experience with patterned stimuli since, as pre

viously pointed out, the guinea pig can see patterns within an hour 

after birth. Observations by the present investigator, however, 

cast doubt on this simplistic formula for equating rats and guinea 

pigs on patterned visual experience. For example, it has been 

observed that although rats do open their eyes for the first time 

at approximately the age of 15 days , they do not keep them open 

nor do they make use of the visual modality consistentl y until 

several days later. Starting at 15 days, then, the rat appears to 

undergo a transition from a complete reliance on other modalities 

to a partial reliance on the visual system. Based on these observa

tions, the 75-day-old rat cannot be said to be equivalent to the 

60-day-old guinea pig. Thu3, it is possible that differences in 
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trends as divergent as those reported for the 60·day-old guinea pig 

and the 75-day-old rat would have resulted from either the fact 

that they had not been equated for visual experience or from the 

fact that species differences ~~were important in determin!.ng 

whether !s exhibited the inhibitory or facilitory aspects of pro

action. 

The analysis of the number of repetitive errors to criterion 

also suggests that the developmental differences between the rats 

and guinea pigs could have produced differences in the type of pro

active pool of reward-related information which may be formed during 

development. The results of the analysis suggested that the guinea 

pigs formed more extensive visual reward-related proactive pools 

than the 60-day-old rats. Specifically, when the guinea pigs 

were required to reverse their responses to the brightness stimul i , 

they tended to repeat incorrect responses more than !s in other 

groups. It could be that the persisting memory of previous contin

gencies between visual stimuli and reward allowed the animals to 

consistently respond to the currently non-rewarded stimulus. The 

60-day-old rats, on the other hand, not having had as much visual 

experience, and presumably having a smaller proactive pool of 

information, made exactly the same number of repetitive errors 

when the task followed a rest period as when it was the reversal 

of an immediately preceding task. In addition, the 75-day-old 

rats once again followed the eXample of the guinea pigs and pro~ 

duced significantly more repetitive errors when acquisition of a 
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discrimination was the reversal of an immediately preceding discrim

ination rather than when it followed a rest period (see Figure 4). 

The results of the present study, in conjunction with those 

reported by Braveman (1971), provide an extremely interesting pat

tern. For example, Braveman demonstrated marginal improvement in 

the 60- day-old guinea pig on a brightness SDR task and normal 

improvement in the 60-day-old rat . The results of the present 

experiment reveal that the 60-day-old rats were influenced by the 

effects of PI and Rl, while the 60-day-old guinea pigs and 75-day

old rats were influenced by the effects of Rl only. In one sense 

these findings substantiate the position taken by Gonzalez, ~!l· 

(1967) in that another species, the rat, exhibiting progressive 

improvement on SDR, also exhibited the effects of PI in an experi

mental paradigm independent of the SDR paradigm. 

The fact that the~? in the present study also exhibited Rl 

supports the suggestion made by Gossette (1968) that it is possible 

for progressive improvement in SDR to be related to two processes 

instead of one. The results of the present experiment also suggest 

that thcs~ precesses may be two different aspects of an interference 

phenomenon--namely retroaction and proaction. However, conclusions 

regardi ng the action of retroaction are not immediately clear. 

From the present results it is known that all ~s tested are influ

enced by Rl to the same extent. Therefore, it could be argued that 

retroaction effects do not appear to be important in differenti ating 

SDR behaviour. Given that Rl ef fects are present, however , the 



-30-

question arises concerning the way in which Rl influences SDR per

formance. Cossette (1968) has suggested that Rl acts on later 

reversals when performance falls below the level attained on Ol. 

At the same time, Cossette maintains that the action of PI is strong

est on early reversals before performance returns to the level 

attained on Ol. Although the present data do not refute this con

jecture, the question concerning the action of Rl on~ reversals 

is left unanswered. One possibility is that Rl might somehow have 

an effect on within-day learning. In Braveman•s (1971) data, for 

example, even though there were significant differences between 

the rates of improvement over reversals exhibited by the various 

ls, all the ls appeared to improve at approximately the same rate 

within daily sessions (Braveman, personal communication). If daily 

improvement were a function of proactive events and if different 

groups of ls showed different amounts of proaction, then the func

tions describing daily improvement should be different for the 

different groups. They were, however, very similar in shape and 

slope, suggesting that whatever produced them affected all 5s to the 

same extent. Since Rf has been shown to influence all Ss to the 

same extent, it is suggested that Rf acted on within-day improvement. 

This conclusion is only speculative as is the conceptualization of 

how Rl might function on SDR learning. It is suggested, for example, 

that when~ acquires the new discrimination, interference from it 

acts retroactively on the memory of the previous problem causing 

the latter to be forgotten and, as a result, leaving l more 
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favourably disposed to learning the new discrimination more com

pletely. 

Relationship of the Present Study with Other RI-PI Studies 

As noted in the introduction, other studies have attempted to 

discover whether or not Rl and/or PI can be found in organisms 

phyletically lower than the humans. The results of the present 

experiment appear to be consistent with certain of these studies 

and at variance with others. For example, as in Kehoe 1s (1963) 

experiment with pigeons and Crowder 1s (1967) study with rats, Rl 

was found for all ~s tested. Similarly, so far as the 75-day-old 

rats and 60-day-old guinea pigs are concerned, the present experi

ment is consistent with others which have been unable to demonstrate 

PI in rodents and pigeons (e.g., Gleitman & Steinman, 1963; Crowder, 

1967; Kehoe, 1963). One notable exception to this is that the 60-

day-old rats in the present experiment showed strong PI effects. A 

possible reason for this discrepancy between this group and the 

other studies could be the age of the ~s. This assumption is, in 

part, confirmed by the results of a study involving young rats in 

which PI was found (Cole & Hopkins, 1968). However, age cannot be 

the sole determinant of whether PI will be found since Maier & 

~1 e i tman ( 1967) have a I so found PI in .~s who were 100-120 days old-

~s of the same age as those in studies in which no PI was found. 

Thus, with the exception of t he Maier & Gl ei tman study, it would 

appear that PI is an age-related phenomenon in rodents. It is 
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possible, however, that Maier & Gleitman's findings were a function 

of the task employed . Whereas T-mazes were used in all the rodent 

studies cited above, Maier & Gleitman used a bar-press situation . 

AT-maze allows the organism to bu i ld up a repertoire of stimulus 

cues associated with different aspects of the maze, including pro

pr ioceptive and visual feedback .from running in the alleyways, 

turning corners, and pushing through swinging doors. At the same 

time brightnesses are changing from grey in the start-box-runway 

area to black and white at the choice point, to either black or 

wh i te after a choice has been made. The Skinner box, on the other 

hand, provides minimal visual stimulation other than the stimulus 

cues for reinforcement or non-reinforcement. The simultaneous pre

sentation of the stimulus cues in a Skinner box, as in the Maier & 

Gleitman (1967) study, is analogous to only one small part of the 

maze situation--namely, the point in time when S is at the choice 

point. 

Perhaps, then, the difference in the amount of information 

available to ~s in the maze and Skinner box can account for why 

older and, thus, more exper ienced ~s failed to show PI in certa in 

experimental situations yet showed it in others . For example, when 

an animal has had a l imited amount of visual experience on which 

to base ongoing behaviour, either because of age or because of 

experimental manipulation, newly- learned responses can become con

fused with previously-learned responses which would allow PI to be 

demonstrated. In contrast, the older animal, by virtue of his 
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greater experience, has formed certain response habits which are 

not easily disrupted by newly-learned responses. As a result, 

newly-learned responses and formerly-learned responses do not inter

fere with each other but remain separate . Thus, it would pe more 

difficult to demonstrate PI in these organisms. However, placing 

the older Ss into a restrictive test environment, as was the pro

cedure in the Maier & Gleitman study, could have neutralized the 

benefits of prolonged visual experience resulting in the disrupt ion 

of newly-learned habits and, hence, Pl. 

In conclusion, then, it must be stressed that although retro

action and proaction effects were found in the present study, on ly 

proaction, includ ing the evidence from the trends, allows one to 

differentiate between species and age groups. If PI, or PI along 

w!th Rl, is the mechanism underlying the improvement on SDR, then 

testing animals on the many discriminations involved in SDR seems 

redundant. If the results of the present study are r.el iable and 

differentiation among species with PI and Rl is possible, then all 

that would be necessary in order to compare different species in a 

manner comparable to that of the SDR proponents would be to test 

for proaction e.ffects in different species. Species could then be 

placed on a continuum ranging from PI to PF and not be dichotomi zed 

as rat-like and fish-like or improvers and non-improvers. 
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