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Abstract

Linear regression is a commonly used method of statistical analysis. However, it is
not able to capture any spatial variations that may exist in the relationship between
explanatory and response variables. We will study geographically weighted regression,
which is a local regression method that can account for spatial non-stationarity that
may exist. We will describe the model, estimation and hypothesis testing, both in
theory and in simulation studies. We will also apply the method to analyze data

collected on housing prices in the Boston metropolitan area.
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Chapter 1

Introduction

1.1 Relationship between Variables

Applied statistics is a discipline where learning from data is one of the most relevant
and vital challenges. In many cases, the aim is to study the relationships among
measurable variables, where one is interested in assessing if a change in one (or more)
variable is associated with a change in another variable of interest. This relationship
can be of two types; one is a functional relationship and the other is a statistical
relationship (Neter et al 1985, p. 23-24). A functional relationship between two
variables is expressed by a mathematical formula. If X is the independent variable

and Y is the dependent variable, a functional relationship can be written in the form:
V= f(X)

Given a particular value of X, the function f indicates the corresponding exact
value of V', which is the characteristic of all functional relations. On the other hand,
a statistical relation, unlike a functional relation, is not perfect one. To study the
relationship among variables one of the important statistical methods is regression
analysis. In the underlying logic of regression analysis, one variable takes on the role
of a response (or dependent) variable, while all others are viewed as explanatory,

predictor or independent variables. By a statistical relationship, it is meant that the

1



observed values of the response variable in a regression model are generated by a
probability distribution that is a function of other variables. To demonstrate this,
suppose we have & set of observations {z;}, ¢ = 1,2,.. ., n, of an explanatory variable
z, and {y;} of a dependent variable y. Then the usual simple regression model can

be written as

Yi = bo + 012 + ¢ (1.1)

where ¢; is the error term.

In the study of the regression model (1.1), the explanatory variable z is used to
explain how the response variable y varies if the values of the explanatory variable are
changed. Regression analysis is used to estimate the quantitative functional relation-
ships between dependent variables and one or more independent variables from the
actual data, when the relationship among the variables is statistical in nature rather
than exact. Regression analysis is widely used in many fields of research. The goal of
regression analysis is to estimate the parameter values for a function that cause the

function to best (in a least squares sense) fit a set of observations that are available.

1.2 Regression and Spatial Data

In practice, the study of regression models consists of more than one predictor, and
hence the analysis is called the study of multiple regression. We are often interested
in examining more than one predictor of our response variable, and to determine
whether the inclusion of additional predictor variables leads to increase prediction
of the outcome variable. A common feature of this procedure is that it is applied
globally, that is, to the complete region under study. However, it is often desirable
to examine the relationship at a more local scale. For example, in studying the
relationship between house price and population density in a country, the relationship
between the two variables may differ, depending on the geographical location within

the country.



When data has been collected over a geographic region, there are often two issues
for which we need to account. One is spatial dependency, which is when observations
that are close in space exhibit spatial autocorrelation. This has been studied within a
regression framework by Odland (1988) and Anselin (1993).The second is spatial non-
stationarity, as discussed in detail by Bailey and Gatrell (1995). This indicates the
variation in relationships over space. That is, the parameter values change from region
to region, and hence the effect of the corresponding explanatory variable is not same
over the whole area under study. It has been recognized that failure to take necessary
steps to account for or ignore spatial autocorrelation can lead to serious errors in
the model interpretation (Anselin and Griffith, 1988; Arbia, 1989). Therefore, in
regression modeling, it is necessary to determine whether or not an identifiable spatial
pattern exists in the data set. Getis and Ord (1992) suggests that spatial modeling
should account for not only the dependence structure and spatial heteroskedasticity
but also assess the effects of several predictors on a spatial scale.

There are several reasons why parameter estimates from a regression model might
exhibit spatial variation. For instance, if a regression model is fitted to predict the
price of houses, it might be usual that the value of an extra room may not be same
in several towns. Similarly, if a particular type of illness (Fotheringham et al, 1996)
is considered to be affected by the socio-economic or socio-cultural practices of the
communities, the effect of certain predictor variables on the illness may vary from

place to place.

1.3 Measuring Spatial Patterns

There are many ways to test for the existence of a spatial pattern in a data set. For
example, we may test for such patterns by focusing on the locations of the sample
points, by studying the values associated with these locations given the sampling
pattern, or by combining these analyses. In many geographical analyses, the identi-

fication of spatial autocorrelation is performed through applying Moran’s I statistic



(Besag and Newell, 1991; Getis and Ord, 1992). For the study of local patterns in
spatial data, Getis and Ord (1992) introduced the G statistic and presented a com-
parative advantage between the G and I statistics with respect to the spatial pattern
in a data set. These general tests are concerned with the overall pattern in a large
study region, whereas a focused test concentrates upon one or more smaller regions
selected because of some factors that have been previously hypothesized to be asso-
ciated with the response variable. Besag and Newell (1991) discussed a focused test
procedure, and pointed out some difficulties for the I statistic.

In linear regression analysis, the data may be drawn from geographical units
and a single regression equation is estimated. In general, the ordinary least squares
(OLS) technique is used to produce the global estimates of parameters which are
considered to apply equally over the whole region. That is, the relationships being
measured are assumed to be stationary over space. However, relationships which
exhibit spatial non-stationarity create problems for the interpretation of the OLS
estimates of parameters from the regression model. Naturally, it is of interest to
combine these ideas: regression modeling that attempts to allow us to describe spatial
non-stationarity in data. Along this line of thinking, we will discuss the technique
of geographically weighted regression (GWR), in which the coefficients of a linear
regression model are estimated by a weighted least squares procedure. The location
in geographical space is used to produce the weight function and, therefore, GWR
allows us to obtain the local estimates, rather than global, of the parameters in the
regression model. Brunsdon et al (1998, 1999), for instance, suggested this method
for analyzing a spatially antoregressive model.

It is our interest in this practicum to study the technique of GWR including its
underlying theory, estimation and inference, and practical application. In Chapter 2,
we discuss the theoretical aspects of GWR including several weight functions, band-
width selection, estimation and testing procedures. The results of simulation studies
are described in Chapter 3, where we concentrate on finding the GWR estimates of

parameters, and to determine the power and size of the tests. With the purpose of



observing the performance of tests, we apply testing methods to data simulated using
a single explanatory variable in the model, and with three explanatory variables. In
Chapter 4, we choose a widely used socio-economic data set on Boston house prices
for application of the GWR methods. We will compare these results to those found
using the typical linear regression model. We will also use some model selection pro-
cedures to help determine a smaller number of explanatory variables to use in the
GWR procedure. We will give our conclusions, and thoughts on possible future work,

in Chapter 5.



Chapter 2

Theory of GW

2.1 Introduction

As mentioned in Chapter 1, geographically weighted regression (GWR) is an alternate
method of estimation that can incorporate the spatial non-stationarity in relationships
over space. In this chapter we will study the theoretical aspects of GWR, focusing
on parameter estimation and hypothesis testing, but the choices of weight function
and bandwidth are also necessary parts of the methodological development. Since
the spatial non-stationarity in relationships is the key issue, we will present in detail
two statistical procedures to test for spatial variation in the parameter values of the

GWR model.

2.2 Model for GWR

In spatial analysis the data are often assumed to be non-stationary over space. Ge-
ographically weighted regression is one of the statistical techniques through which
the presence of spatial non-stationarity is examined. The statistical model of global

regression can be written as



k
Y = b() -+ Z bjxij -+ €; (21)

j=1
where y; represents the i (1 = 1,2,...,n) response related to the j% (j =1,2,...,k)
predictor z;;. The corresponding regression coefficient in (2.1) is &; and an uncon-
trolled random error is ¢;.

GWR extends the usual regression framework of equation (2.1) that allows local
rather than global parameters to be estimated (Fotheringham et al, 1998). Therefore,

the model for GWR can be written as

k
vi = bolus, vi) + Z b {us, vi)wi; + € (2.2)
j=1

where (u;,v;) indicates the coordinates of the i* point on the surface. If the entire
study area is considered as a continuous surface of parameter values and the spatial
variability of the surface is obtained through measurements of this surface at certain
points, then b;(u;,v;) indicates the realization of the continuous function of bj(u, v)
at point 4. That is, in the analysis of spatial data, the parameters are assumed to be
function of the locations at which the observations are obtained. Obviously, equation
(2.1) is a special case of equation (2.2), where the parameter values are considered to
be constant over space. Thus, the equation (2.2) can be approximated by the equation
(2.1) considering the i region on the surface. When estimating a parameter for a
given point 7, an ordinary least squares (OLS) regression can be performed with a
subset of the points in the data set that are close to . Accordingly, an estimate
of b;(ui,v;) is obtained for region ¢ in the usual way, whereas for the next 7, a new
subset of nearby points is used, and so on. Thus, equation (2.2) is a recognition of
the GWR expression through which one attempts to assess whether spatial variations

in relationships exist (Fotheringham et al, 1998).



2.3 Estimation

The regression model in (2.2) leads to a probabilistic model for a given region, specified
by i, on the surface. Specifying such a model for several points of the study area causes
problems associated with estimating coefficients, and hence, model fitting. Unlike
the OLS regression model in equation (2.1), this model (2.2) allows the parameters
to vary in space. However, the model (2.2) consists of more unknown parameters
than observations, and hence, being in unconstrained form it is not implementable
directly. This is related to the notion of underdetermined regression models (Sneddon
1999). Hastie and Tibshirani (1990) have carried out work with these type of models.
Also, the estimate of b;(u;, v;) for the i** point involves some degree of bias since the
coefficients of equation (2.2) recognize local behaviour rather than global. However,
if the sample size is large enough for a specified location, the corresponding standard
error of the parameter estimates will reduce. That is, the larger the local sample,
the smaller the standard error of the estimates. Hence, the sample size of the local
subset plays a key role in the estimation process of (2.2). The sample size works as a

compromizing factor of increasing bias and decreasing standard error of the estimates.

2.3.1 Bias-Variance Compromise: Prediction Error Approach

The idea of a bias-variance compromise is discussed in many works where sampling is
one of the vital platforms for research. Fotheringham et al (1998) present an extensive
explanation using a diagram similar to Figure 2.1.

Considering the context of GWR, if X; represents a set of predictors in location 1
on the surface, and b is a set of coefficient estimators, then ¥; = X%FE is an estimate
of the response y at that location. Due to the random nature of y;, the estimator
b, and hence, ¥ are random. Therefore, § can be observed through its distributional
pattern, which is characterized by its expected value E(y) and standard deviation
SD(g). When for all X, E(§) = E(y), the estimator is said to be unbiased. If for an

estimator ¥, once unbiasedness holds, the lower the SD(§) values the more efficient
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v is. Figure 2.1 presents an interpretation of two different estimators of y, say ¥
and ¥y, respectively, in terms of bias and variance. The probability distributions of §;
and y9 are visualized by two boxplots. Considering the horizontal line for true y, it is
obvious that ¥ is unbiased. Although ¥, is a biased estimator, its overall variability
is less than that of ¥5. Therefore, the estimator y; is presenting less prediction error
of y even though ¥, is more advantageous as its distribution is centered at y. Due to
the longer tails of the prediction squared error (PSE) of ¥2, one may choose y; even
if it is biased.

However, introducing more bias caused by a large sample approximation still seems
to be a drawback of the estimation method. To reduce this effect, another adjustment
is possible to consider. A weighted OLS estimation can be used so that it provides
a means of computing localized regression estimates. This technique works well if
the points further from region 7 are more likely to have coefficients differing from
those closer to region . If the estimation is performed through applying a monotone
weighting function, then observations further from the point ¢, at which the parameter
as well as the model is being estimated, receive less weight that observations closer
to point 7. Thus, estimation of equation {2.2) measures the relationship inherent in
the model around each point 3.

According to regression theory, the OLS estimate of coefficients in model (2.1), if

written in matrix form, is given by
b= (X7X) X"y

where b represents an estimate of b, whereas X contains values of the predictor
variable with 1's in the first column and y contains values of the response variable.
However, if we do not want to place the same emphasis on each observation, a similar

estimate for model (2.2) will be of the form
Blui, v;) = [XTW (g, v) X" XTW (u, vy

where W {u;,v;) is an n x n weight matrix whose off-diagonal elements are zero.

The diagonal elements of W(u;,v;) indicate weights for observations corresponding
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to point i in the study area. The role of the weight matrix W{u;, v;) is to place
different emphases on different observations to obtain parameter estimates. Hence,
introduction of this geographical weight matrix W (u;, v;) leads to the estimation in
such a way that the observed data near location ¢ are weighted more than the observed
data farther away. It is very important to choose an appropriate weight function to
obtain a good estimate b{w;,v;). The choice of weighting matrix is discussed in the

next subsection.

2.3.2 Spatial Weighting Function

As noted above, even if a bias-variance balance is possible to meet through selecting
a reasonably large sample, there is still an indication of increasing bias. This can be
controlled when an appropriate weighting function is used for estimation. The choice
of weighting function is one of the vital issues to estimate coefficients and later on to
investigate spatial variability.

A simple but natural choice of weighting function at a specific location is to exclude
those observations that are farther than some pre-specified distance. If we let w;; be
the (i, 7)™ element of W, this kind of weighting function is called a binary weighting

function, and can be defined by

1 if dik <r
Wik = (23)
{ otherwise

where d;;, represents the distance between the 3t

and k' locations on the surface. To
explain the weight function in equation (2.3): if 7 represents any point on the surface
at which parameters are estimated, and & represents a specified point in space at
which data are observed, then observations that are within some distance r from the
locality ¢ have a weight of unity, and observations whose distance exceeds this quantity
7 have weight zero. In the global model, where no spatial variation is considered, each
observation has a weight of unity.

The binary weight function is a step function, which suffers from the problem of
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discontinuity over the study area. This leads to a very sudden change of the spatial
association between variables. One way to overcome this problem is to introduce a
continuous weight function. One such function is the exponential weighting function

given by

wix = exp(—diy,/26%) (2.4)

The function (2.4} is called a Gaussian distance-decay-based weighting function. This
is a continuous and monotone decreasing function of dj, because the larger the dis-
tance d;, the smaller the value of the weight. The weight would decay gradually
with distance. More precisely, if 7 represents a point at which an observation was
made, the weight assigned to that observation will be unity and the weights of the
other points will decrease according to a Gaussian curve as d;; increases. In the GWR

estimation process, another weight function of the form

wyy, = exp(—di/B)

is also used. This is an alternative but very similar weighting function to equation
(2.4).
Rather than considering an exponential form, another continuous function, which

is known as a kernel function, is often used. The form of this function is

(2.5)
otherwise

{ 1= (dix/B)? if dy <7,
Wig =

The kernel function is denoted by K; that is,

wi = K (dzk)
The usual features of a kernel function K are (Brunsdon et al, 1998):
(i) K(0)=1

(1) limge K(d) =0
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(iii) K is a monotone decreasing function for positive real numbers.

The weighting function in equation {2.5) indicates setting the weights to zero
outside a distance r and to decrease monotonically to zero with r as d;; increases.
Therefore, the kernel function (2.5) is a compromise between the weight functions of

the binary (2.3) and exponential (2.4) forms.

2.3.3 Choice of

Introducing a weighting function, the estimate of coeflicients, when observations are

corresponding to location i, can be written as

b; = (XTW,X) ' X"W,y (2.6)
where
wy 0 - 0
W, = 0 w-i2 0
0 0 Win

Here, the weight matrix W, is a n x n diagonal matrix which consists of non-zero
diagonal elements to indicate the weights for estimating b; around region 7 in space.
In fact, this matrix plays a key role in estimation in the GWR model. Once each w;y
has been computed, the b; vector can be computed through repeated application of
expression (2.6) for each i. As noted previously, the weighting functions of continuous
type are preferable for analyzing spatial data, since the degree of weighting changes
with distance rather than suddenly dropping to zero. These functions include a
constant §, which is often called the kernel bandwidth.

The bandwidth g is a non-negative constant depicting the way the Gaussian or
kernel weights very with distance. For a given d;;, the smaller the 3, the less emphasis

placed on the observation at location k. Accordingly, an important weighting note



is struck here—choice of an appropriate bandwidth value has more influence on esti-
mation than the choice of weighting function (Simonoff 1996, p. 44). Our interest in
this section is to emphasize how to choose a reasonable 8 value. In some cases, there
is no theoretical basis of how to choose the value of 8, although the properties of b; is
greatly affected by the choice of 3. Silverman (1986) suggests a subjective choice of
3 if no prior idea is available. The method of mean squared error and cross-validated
sum of squared errors are used in this practicum to obtain the best possible 8 for
every individual data set. The mean squared error of the estimate of coefficient b is
defined by

MSE®) = E(b-b)?
= Var(b) + [Bias(b)]? (2.7)

Therefore, the MSE of an estimator can be decomposed into its variance and squared
bias. To compare estimators by looking at their respective mean squared errors,
naturally we would prefer one with smallest MSE. Hence, we are to choose a value
of B for which the MSE of b attains its minimum. However, (2.7) cannot be found in
practice, since the true b is unknown.

For a pre-specified weight function, let us consider the predicted value of y; from
GWR is denoted by #;(8) (as a function of 3). Then the sum of squared errors can

be written as

88(8) = 3 v — 9:(8))? (2.8)

)

A useful choice of # depends on a least square criterion. That is, we are to choose
the value of § for which the quantity SS(f) attains a minimum. In order to find the
predicted value ¢;(f8), it is necessary to estimate the b;(u;, v;) at each of the sample
points and then combine these with the x values at these points. However, a problem
is encountered when minimizing sum of squared errors 5S5(8). As f — 0, 4;(8) — u;;

that is, SS(f) in equation (2.8) is minimized when 5 — 0. This is because, for all



kernel functions,

Wik =

To overcome this problem, a cross validation approach is suggested by Cleveland
(1979) for local regression, and by Bowman (1984) for kernel density estimation; see
also Golub, Heath and Wahba (1979), Li (1986) and the references therein for discus-
sion of generalized cross validation in ridge regression. Let ¢;(3) be the predicted
value of y;, obtained by omitting the i observation from the model, when the GWR
estimation process is performed. Then the cross validated sum of squared errors is

defined by

CVSS(B) = D lvi — 9 (B))? (2.9)

The value of £ for which (2.9) attains its minimum is the logical choice that helps

to overcome the problem obtained through equation (2.8).

2.4 Inference with the GWR Model

As described in the previous sections, the GWR estimation technique provides a
means of computing localized regression estimates. It has been demonstrated to be
a useful means for detecting spatial non-stationarity (Paez et al, 2002; Leung et al,
2000; Bruunsdon et al, 1996). In GWR any spatial non-stationarity in the relationships
being measured is accounted for by allowing the estimated model to vary spatially.
From the statistical point of view, it is useful to assess the following two questions

(Leung et al, 2000):

(1) On the whole, do the parameters in the GWR model vary significantly over the

study region?

(2) Does each set of local parameters, b;; = b;(u;,v;), (1 = 1,2,...,n) exhibit signif-

icant variation over the study region?
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The first question can be modified as, “Does a GWR. model describe the data
significantly better than an OLS regression model?” This is, in fact, a goodness-of-fit
test for a GWR model. The second question indicates that the variability of the local
estimates could be thought of as a variance measure, and this is used to examine
the plausibility of the stationarity assumption which is to be considered in classical
regression. Furthermore, for any given j, the deviation of b;; (i = 1,2,...,n) can be
used to evaluate the variation of the parameters associated with the j% independent
variable. However, it is very difficult to determine the null distribution of the esti-
mated parameters. Therefore, a Monte-Carlo technique has been employed, called a

permutation or randomization test.

2.4.1 F-Test Statistic

The work of Brunsdon et al (1999) provides a significance testing procedure for the
GWR model. Following the conventional hypothesis testing framework, the notion of
residual sum of squares is used to formulate the goodness-of-fit test. We assume that
for calibrating the GWR model the weighting matrix is given. To find the distribution

of the test statistic, the following two assumptions hold.

Assumption 1. The error terms €y, €, €3, ..., €, are independent and identically dis-
tributed, following a normal distribution with zero mean and constant variance

o2

Assumption 2. Let 7j; be the fitted value of y; at location 2. Foralli=1,2,...,n, ¢;

is an unbiased estimate of y;. That is E(9;) = y; for all .

The F-test is developed to test the null hypothesis that the coefficient b,(u;, v;) is
constant for all points (u, v) in the study area. No evidence of rejecting this hypothesis
suggests that an ordinary, global regression model is adequate to describe the data
set. Therefore, the hypotheses to be tested can be formulated as
_0b;  Ob;

HO."’a—’L‘L"'—-'_a*_’l}‘

=0 Vj
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versus
Hp%#@or%%i;éﬂ b4

The test statistic described in this section is produced by Brunsdon et al {1999)
considering twe models: the GWR model and the global regression model, where
no variations are assumed for different localities. As in section 2.3, similar matrix
notations are used here to provide a brief description of how to derive the appropriate
test statistic.

In the GWR model, the coefficients b;(u,v) vary across the study area. Following
the OLS notation for the GWR model, b(u,v) can be treated as vector of coeflicients
in the global model, so that b(,) is a vector function mapping 2, a two dimensional

Euclidean plane, onto R™, an m~dimensional Euclidean hyperplane. For the global

model, an OLS estimate of the vector of parameters b(u, v) is given by
b= (XTX)'xTy

Since no variation with respect to geographic space is assumed for global regression,
the estimate b is no longer a function of (u,v). Then the estimate of y can be written

as
¥ =X(XTX)"' X"y = Sy

where Sy = X(XTX) X7 is known as the hat matrix, or a smoothing operator since
it transforms, or smooths, the observed y into ¥.

A weighted OLS estimate of b(u, v) is obtained when the estimation is performed
with a weighting function W (u, v) such that the weighting changes as (u,v) varies.
If the diagonal matrix W (u, v) consists of the diagonal element corresponding to the

weighting for a particular (u,v), then

~

b(u,v) = [X"W{u,)X] "' X"W(u, v}y

For any given ;, if the i row of X is x! and the corresponding estimate is
b(us, v;), then
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b = xI (XTW (u, v)X) " XTW (u, v)y

The row vector x7 (XTW (u, v)X) "' XTW (u, v) takes the observed y and smooths it
to ;. Suppose S; is the smoothing matrix for the GWR model so that its it* row,
r; = %7 (XTW(u, v)X) " XTW (u,v). Then the estimate of y using the GWR model

can be written as

¥y =51y

Obviously, both the hat matrices 8y and S,, computed from the global regression
and GWR models, are independent of y. In either model, the residuals may be

expressed as
é=(I-8,)y

where z is either O or 1. Therefore, the sum of squared residuals can be expressed as

fe=y"(I-8,) 1-8.)y=y Ry (2.10)

where R, = (I—S,)T(I-S,). The expression for the sum of squared residuals
(2.8) is a quadratic form for both the GWR and classical regression models. If the
assumptions about ¢; hold, then equation (2.10) is a quadratic form of normal variates.
In this case, when both models can be expressed in the form of a hat matrix, Kendal

and Stuart (1977) present the test statistic, for normally distributed y, as

v ]
where v = Tr{Ry — Ry) and & = Tr(R,), and Tr is the trace of the matrix.

o [yTR@y ~ yTny] {yTRly} - (2.11)

The test statistic (2.11) has an approximate F distribution with degrees of freedom
(2], 8%/8"), where V' = Tr(Ry — Ry)?, & = Tr(R?). These degrees of freedom are

not necessarily integers; however, this does not affect the distributional assumption
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provided » > 0 and § > 0. The approximation of the test statistic (2.11) to an F
distribution depends on the fact that the numerator and denominator of (2.11) are
quadratic forms of normal variates. These are well approximated by a x? distribution
with degrees of freedom chosen so that their first and second moments agree with
those of the quadratic forms. Since there are hat matrices for both the GWR and
classical regression models, it is possible to compare these two models using the test
statistic (2.11). This is the extension of the conventional procedure of comparing
classical regression models, where one consists of more explanatory variables than
the other. In that case, the purpose is to fit the reduced model, where the F statistic
follows an exact F distribution, because the degrees of freedom are an integer. Hence,
an ANOVA table can be suggested for GWR-OLS comparisons, where the residual

mean squared error for both is being compared.

2.4.2 Randomization Test

In the previous section, the F statistic aims to test whether the coefficients are con-
stant over geographical space. Clearly, application of the F statistic (2.11) can pro-
duce a result of testing where the entire set of explanatory variables are used together
for estimation. In this section, a different testing technique is illustrated, which aims
to conduct similar inference but through inference on individual variables. Once a
final model has been selected, we can further test whether or not each set of param-
eters in the model varies significantly across the study region. Brunsdon et al (1998)
used the well established Monte Carlo techniques (Hope, 1968) to develop a method
to test
Hy: bj(u;,v;) = by, Vi
VErsus

Hy: bj{u;,v;) not all equal Vi

Testing of the above hypotheses actually measures the variability of b;(u;, v;) as ¢
varies for a fixed j. Since the individual coefficient is to be tested, the test statistic

is the variance of b;(u;, v;) across 4
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v; = 3 (b — by)%/n (2.12)

where B.ij is the GWR estimate of b;{u;, v;) and E,j is obtained by averaging those over
subscript i. The lower the value of v;, the stronger the evidence that the coefficients
corresponding to v; is fixed. The null distribution of v; is unknown, which leads
us to apply a randomization testing technique to find its approximate distribution.
Although Leung et al (2000) have used a transformation of »;, and approximated as
F distribution, we are not using this in our analysis. Under the null hypothesis, we
assume that b;; do not vary with ¢ for a fixed predictor j. That is, little difference
in the pattern of b;; is suggested if the estimation of the GWR model were to be
performed with locations of the observations randomly assigned to the predictor and
response variables. More precisely, the spatial location should not greatly affect the
parameter estimation if the b;; are fixed over space. As explained by Brunsdon et al

(1998), the randomization procedure, for given j, is as follows:

(a) Note the value of v; for the correctly located observations.

(b) Randomly ‘scramble’ the locations p; among the observations, and calculate v;.
(c) Repeat the previous step P-1 times, noting v; each time.

(d) Compute the rank of v; for the correctly located case, R.

(e) The p-value for the randomization hypothesis is R/P.

Once the value of the bandwidth 3 is found by minimizing (2.9), the randomization
test would be carried out following the steps as described above. In practice, a
large number of random arrangements or scramblings is often required, so the overall

computational requirements of this approach may be large.
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2.5 Conclusion

In this chapter, we have demonstrated the GWR model and its methodology. The
method of GWR can be used to produce localized parameter estimates, which appear
to be a useful means to explore variation of parameters over space, and demon-
strate complex spatial patterns. We have presented the details of two approaches
of inference to assess spatial non-stationarity in relationships. In comparison to the
linear regression model, GWR will provide less efficient estimates in the case when
there is no spatial non-stationarity. However, it should be noted that when spatial
non-stationarity is present, the classical regression model cannot provide a consistent

estimate of the true model (Brunsdon et al, 2000).



Chapter 3

Simulation Studies

3.1 Introduction

The application of the estimation techniques and testing procedures to measure spa-
tial non-stationarity is now described with simulated data. Qur interest is to obtain
estimates of the GWR coeflicients and perform goodness-of-fit and randomization
tests. The power and size of the tests will be studied empirically. This chapter
presents results considering two different models: one with a single explanatory vari-
able, and the other extended to three variables. Application of the weighting functions

including choice of bandwidth, 3, is also performed by using several methods.

3.2 Estimation in Single Predictor Model

The general form of the model with a single predictor, which is being simulated, is
given by

Y = big -+ bill',; -+ €; (31)
where i = 1,2,...,n; and ¢ ~ N(0,0%). The value 0? = 1 is chosen arbitrarily.
The values of the independent variable z are drawn randomly from a uniform (0, 1)

distribution. The spatial region of interest consists of coordinates (u;, v;) taken from

22



1 2 3 4
Figure 3.1: A grid with 4 x 4 Lattice Points

a square, two-dimensional grid. The simulation is performed in such a way that the
grid consists of m x m lattice points with unit distance between any two of them
along the horizontal and vertical axes. Figure 3.1 presents the lattice points in the
study region to illustrate how the spatial region can be considered. Throughout this
chapter, ¢+ = 1 refers to the location in the upper-left hand corner of the grid, i = 2 is
the point to its right, and so on.

In the first case, we take m = 4, so we have n = m? = 16 observations in the
study region. The spatial variation in the intercept and slope are chosen following a

step changing approach. The by and &;; values for this case are considered as follows:

1, fore=1,...,4

2, forie=5,...,8

3, fori=29,...,12
4, fori=13,...,16

3

D0 =

and
1, fori=1,...,8
by =
-1, fori=9,...,16
The value of the response variable y;,¢ = 1,...,16, is generated by the model (3.1).

Up to the stage of parameter estimation, we have used the weight functions of binary
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Table 3.1: Summary statistics of parameter estimates: Binary weight function with

r=2.0.
Intercept (bg) Slepe (b)

Points Mean St. dev. Mean St. dev.

i 1.723867 0.7838555 0.16604608 2.7338022

2 2.040854 0.6518693 -0.75787009 2.0100607

3 1.427912 0.6323068 0.90988045 1.0969543

4 1.231453 0.9695123 1.34819799 1.5703363

5 2.638822 0.6019597 -1.72037161 2.3612661

6 1.729607 0.4943086 0.97533019 0.8855057

7 1.841316 0.5422269 0.64377685 0.8858988

8 1.885211 0.7323107 0.62930668 1.1309353

9 2.438261 0.4896704 0.05075030 0.9974085

10 2.519601 0.4874250 -0.03684399 0.8666078

11 2.064949 0.6313220 0.79236817 0.9421332

12 2.482459 0.8763860 0.10675806 1.2172196

13 2.903235 0.6368353 0.05988004 1.1723625

i4 3.014368 0.6207160 -0.28456138 1.0017228

15 3.254563 0.6785262 -0.69086805 1.0163031

16 4.014788 2.4692781 -1.40686089 2.8325846
Global statistic  2.168051 0.4349696 0.4388659 0.7490353

(2.3) and Gaussian (2.4) type. However, the latter one is used in the determination
of power and size of the tests.

In the analysis, the BEuclidian distance between points on the square grid (see
Figure 3.1) are computed. Referring to the binary weight function in equation (2.3),
the value of r is specified to 2 units. That is, to estimate the parameters of the GWR
model corresponding to point 4, a weight equal to 1 is considered for those points that
are within 2 units of location 4, and 0 for the points farther away. The estimates of
bio and b;; at 16 different points are computed from each of 500 simulated data sets.
The mean and standard deviation of the estimates are presented in Table 3.1.

To interpret the result presented in Table 3.1, a close look at the parameter values

and estimates of the corresponding points will help us to see the bias associated with



the GWR estimation method. As described previously, the true value of by at each of
the first four points is 1, whereas the means of the GWR estimates are 1.72, 2.04, 1.43
and 1.23 respectively. That is, for these points, the GWR estimates of the intercept
term overestimate the true values, so there is positive bias with the estimates. For
the next four points, the means of the by estimates are 2.64, 1.73, 1.84 and 1.86
respectively, whereas the true value for each is 2. The estimate of by at the fifth point
has positive bias, while the other three have small negative bias. The true by at the
next four points is 3 and of the last four is 4. It is obvious that the GWR estimate
of by at the 16" point shows slight positive bias, whereas the other 7 estimates are
negatively biased. The standard deviations of the by estimates are similar at each
location except the 16" point on the grid.

Unlike the by estimates, the results obtained for by display greater departure from
the true values. We know the coefficient b; equals to 1 at each of the first 8 locations
and -1 at each of last 8 locations. Therefore, the two negative values of by averages
corresponding to the second and fifth locations, whereas positive values corresponding
to location 9 and 11-13 are not what we would expect. Also the standard deviations
of the b; estimates are larger than those of bo.

The last row of Table 3.1 presents the statistics of by and b, assuming the parameter
values are unchanged over the study region. That is, these are simply the mean and
standard deviation of the ordinary least squares (OLS) estimates of by and b;. Since
no variation in parameter values are assumed for the OLS estimation, the model
is called the global regression model and the statistics computed from estimates are
known as global statistics. Obviously, many of the GWR estimates and corresponding
parameter values are quite different from the respective global averages of by and b;.

Figure 3.2 displays the distribution of the by values at locations 1, 5, 9 and 13.
Figure 3.3 presents the distribution of the by values at the corresponding locations. It
is apparent that at each location the shape of the distributions of EA)O and by are very
close to normal. As well, they are centered close to the true by values, and reasonably

close to the true b; values.
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We have also used the Gaussian-distance-decay function (2.4) for analyzing this
simulated data. Therefore, the bandwidth 8 had to be determined before parameter
estimates were determined. The  value is first determined by the method of mean
squared errors, and thereafter by the cross validation approach. Although the 3 values
obtained from the latter approach are used in our analysis, choosing S based on the
minimum attainable MSE in equation (2.7) gives an intuitive idea of cross checking
the cross validation approach.

For empirical computation, the dj, distance between the 1™ and k** points (4,k =
1,...,4) on the square grid (Figure 3.1) is computed, and used to determine the
Gaussian weight function (2.4). Initially, an arbitrary value of f is chosen to determine
w;,. Once the GWR estimates of by and b, are obtained at each of 16 points on the
grid by using the Gaussian weights, we determine the MSE and CVSS. Following the

definition of MSE in (2.7), we can write its empirical formula as

MSE; = %Z(% — b;)?

j=1
where b; is the true value of b;, and ZA)W- is the corresponding GWR estimate of b. For
each of 16 points on the grid, the MSE of 50 and 31 are estimated by using n = 500
simulated data. Trials over a range of 8 values help us to obtain the § for which
the MSE attains its minimum. The results corresponding to three different choices
of 8 are presented in Table 3.2. The MSE is minimized most often for f = 2. We
determined this by examining a wide range of 8 values, but only three of those choices
are presented in Table 3.2.

To find the empirical value of CVSS scores, we have used the formula in (2.9).
Once the GWR estimates of by and b; are found, the computation of y; — §;y(68),
i=1,2, ..., 16, is performed easily. Summing up the quantity y; — ) (8) over i gives
the CVSS for a specific data set. Repetition of the same procedure on each data
set gives 500 CVSS values, while the computational trials with several § values are
performed to pick up the value of S which minimizes CVSS.

Table 3.3 presents the means of the CVSS scores and the number of times CVSS
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Table 3.2: Mean squared errors of by and b; corresponding to bandwidths 38 = 1.0,

1.5, 2.0
8=1.0 pf=1.5 B=2.0
Points mse 80 mse 131 mse 80 mse 131 mse 130 mse 51
1 0.9445774  2.093401 | 0.8344093  1.904298 | 0.7972115 1.4213389
2 0.8492792  2.137797 | 0.7469554  1.666718 | 0.8347536 1.2306280
3 4.5083120 8.812332 | 1.1692373  2.355303 | 0.9781568 1.2615225
4 19.1430513 50.836072 | 4.1119758 10.081826 | 1.3039886 2.0325877
5 1.3513548  2.137544 | 0.6492579  1.223976 | 0.4500557 1.1441368
6 0.8432945 1.671443 | 0.5027079  1.310045 | 0.5069929 1.5000168
7 2.2272753  4.495173 | 0.8262826  2.385633 | 0.7322085 2.2523445
8 13.3924956 28.378601 | 1.7542282  4.160823 | 1.0101686 3.0100945
9 1.1625503  2.258186 | 0.5655855  1.311947 | 0.4158165 1.2179893
10 1.3647600  2.096101 | 0.8608799  1.282856 | 0.5229588 0.9904287
11 2.2547807  4.659374 | 1.3445963  2.227735 | 0.7554245 1.2614566
12 5.4224494  9.697872 | 1.9648944  3.627675 | 1.0422258 1.8922757
13 1.1444721  4.903224 | 0.7484456  2.763793 | 0.6216082 1.5520608
14 1.0527807 4.973747 | 0.7432572  2.881863 | 0.6053905 1.8284279
15 1.2130773 4.476111 | 0.8607963  3.451822 | 0.6596120 2.3585991
16 3.6127100 10.766331 | 1.3867159  4.896241 | 0.8205366 3.0764862

Table 3.3: CV §S scores for several values of bandwidth

3 values Mean (CVSS)

Number of times CV 5SS minimized

1 35.6428 78
1.5 26.9710 170
2.0 26.6153 163

5.0 31.9602 51

10.0 33.5571 5
20.0 33.9868 33
Total simulations 500
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was minimized corresponding to the six different values of 5. The means of the
CVSS are obtained by averaging 500 CVSS scores under each value of 5, where the
least CVSS are computed separately for each data set over the six CVSS values
corresponding to the values of 5. Obviously, CVSS is minimized most often for J
values equal to 1.5 and 2.0, which coincides with the least mean squared errors for
B= 2.0. The smallest mean CVSS is 26.62, which is also found for = 2.0. The next
smallest mean CVSS is 26.97, which is observed when = 1.5. However, the MSE
quantity can only be calculated in simulation studies, when the true b; values are

known.

3.2.1 Binary versus Gaussian Weighting Function

As explained above, § = 2.0 is preferred based on minimum MSE and CVSS. We
would like to compare the results when using the Gaussian weight function to what
would happen if the binary weight function is used. Table 3.4 presents the average of
the estimates of by and b;; using the Gaussian weight function with 5 = 2.0. These
results can be compared to those in Table 3.1.

The average values obtained by using the Gaussian weight function seem to follow
a downward trend within each of the four categories of true values of the intercept.
For the slope, the first 8 are similar in value, as are the final 8 values. On the other
hand, no such trend is observed for the binary weighting function. Rather, it shows
large fluctuations among estimates in several points. Figures 3.4 and 3.5 display line
diagrams separately for the by and b, estimates and the corresponding true values at
the 16 points on the grid.

Interestingly, the lines of bo and b; obtained by using the Gaussian weight function
show a trend along the corresponding lines with the true parameter values and include
a reasonable amount of positive and negative bias. However, the lines of the by and
b, estimates obtained using the binary weight function display large variability, in

particular for by.
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Table 3.4: Summary statistics of parameter estimates: Gaussian weight functions
with 8= 2.0

Intercept (b)) Slope (by)

Points Mean St. dev. Mean St. dev.
1 1.761542 0.5367068 0.4559723999 1.0569348
2 1.718736 0.4994881 0.5884239226 0.8840573
3 1.640726 0.5473830 0.7605585314 0.9348922
4 1.525283 0.6557580 0.9785509492 1.0890110
5 2.059301 0.4722311 0.4013111474 0.8768544
6 1.995405 0.4606587 0.4990330045 0.7930556
7 1.912957 0.5066025 0.6263274860 0.8419422
8 1.819782 0.6003668 0.7726153581 (.9699079
9 2.487690 0.4662753 0.1029101711 0.8653345
10 2.381392 0.4553227 0.2435643254 0.7933064
11 2.281535 0.4880002 0.3643364632 0.8102761
12 2.225218 0.5748977 0.4424444235 0.8968705
13 2.965182 0.5547447 -0.3029614687 0.9833593
14 2.834534 0.5148213 -0.1260060126 0.8822922
15 2.727228 0.5191510 -0.0016574621 0.8533367
16 2.724838 (.6466617 -0.0001706193 0.9274530
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Figure 3.4: Pattern of by estimates: Binary versus Gaussian weight function
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Figure 3.5: Pattern of b; estimates: Binary versus Gaussian weight function

3.3 Performance of Tests

In order to detect the presence of spatial variation among parameter values, two dif-
ferent statistical testing methods were described in chapter 2. We will now empirically
study the performance of these tests. At this stage, a note of distinction between the
two tests should be mentioned here. When one would like to apply goodness-of-fit
test or the randomization test on local variation, the former one is used to make

simultaneous inference on all parameters, whereas the latter assesses the contribution

of an individual explanatory variable.

3.3.1 Power and Size of Tests: Single Predictor Model

To assess the performance of testing procedures of spatial non-stationarity, both the
goodness-of-fit test and randomization test are applied to the data simulated by
model (3.1). As described in section 2.4.1, the hypotheses to be tested under the

goodness-of-fit testing procedure are
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Hy : The coefficients b(w;, v;) are constant for all points (u;,v;) in the study area
VErsus

H, : The coefficients b(u;, v;) are not constant for some of the points (u;, ;).

The power and size of tests are two well-known statistical tools through which one
can justify the level of acceptance of a test. Since for the simulated data the true state
of nature of the parameter values are known, the power and size of tests are possible
to determine. The power of a statistical test is the probability of rejecting the null
hypothesis when in fact it is false and should be rejected. On the other hand, the size
of a test is the probability that the test will lead to the rejection of the null hypothesis
when the null hypothesis is true. To obtain empirically the power of the test, we have
chosen by and