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ABSTRACT 

The yolk granule is the most abundant membrane-bound organelle present in the 

eggs and embryos of many animals including avians, amphibians, insects, mollusks and 

echinoderms. The sea urchin yolk granules comprise about one-third of the volume ofthe 

egg. The classical view of the yolk granule is that it provides nutrition to the growing 

embryo, but the finding that the composition of the sea urchin yolk granule does not 

change until the later stages of larval development changed this view, suggesting that the 

yolk granules are not just benign storage organelles, but might be involved in some other 

cellular events occurring during embryonic development. 

Several studies have demonstrated that sea urchin yolk granules harbor several 

components destined for export. Therefore, we hypothesized that the yolk granules might 

be involved in transportation and fusion events. We have isolated a protein of 240 kDa 

present in the yolk granules of eggs from the sea urchin, Strongylocentrotus purpuratus, 

by ion exchange chromatography using the anion exchange resin, Q-Sepharose Fast 

Flow. Sodium dodecyl sulfate polyacrylamide gel electrophoresis of this protein under 

non-reducing conditions revealed that this was a complex composed of three 

polypeptides of 160 kDa, 120 kDa and 90 kDa. Western blots performed using the anti

toposome antibody demonstrated that the 240 kDa protein complex was the toposome 

which was proteolytically processed, while the 160 kDa polypeptide was the major yolk 

granule protein derived from it. Peptide mapping confirmed that the 240 kDa toposome 

was the precursor for the 160 kDa major yolk granule protein. 

We have biochemically characterized the calcium-dependent phospholipid 

binding and vesicular aggregating activity of the 240 kDa protein complex. As revealed 
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by liposome binding assays, the 240 kDa protein complex bound phospholipids in a 

calcium-dependent manner. Liposome aggregation assays demonstrated that this 240 kDa 

protein complex was capable of driving vesicular aggregation, which was also found to 

be a calcium-dependent process. The yolk granule aggregation assays allowed us to 

demonstrate that this aggregating activity was a physiologically relevant process. The 

anti-toposome antibody could specifically inhibit the calcium dependent phospholipid 

binding, liposome aggregation and the yolk granule aggregating activity of the 240 kDa 

protein complex. The exposure of yolk granules to trypsin inhibited aggregation 

suggesting that this process was driven by protein present in the outer surface of the yolk 

granule membranes. Analysis of the yolk granule membranes isolated by density gradient 

ultracentrifugation suggested that the membranes were rich in high molecular weight 

polypeptides of 160 k, 130 k, 120 k and 90 k. Collectively, these data suggest that the 240 

k:Da protein or the polypeptides derived from it could be the factor/s involved in vesicular 

aggregation and transportation events involving the yolk granule. 
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1.1 Sea urchin as a model system for developmental studies 

The sea urchin is an echinoderm that has been widely used to study 

developmental processes. The ease of obtaining large numbers of gametes made it an 

ideal model system for developmental studies. The fact that these can be fertilized in 

vitro and embryos can be grown makes it an attractive animal system to study. The 

embryos have a relatively small number of cells in comparison to more complex 

organisms. The pluteus stage embryos of Strongylocentrotus purpuratus consist of 

approximately 1,500 cells (Angrerer and Davidson, 1984). Cell lineage mapping has 

been performed and a number of molecular markers for specific genes and gene products 

are available to follow the differentiation of cells during development. For example, the 

cytoskeletal genes Cylll and Spec (Strongylocentrotus purpuratus ectoderm specific) are 

expressed by aboral ectoderm cells (Angrerer and Davidson, 1984). As well, the utility 

of the embryo has been enhanced by the ability to produce and culture transgenic 

embryos (Flytzanis eta/., 1985; Cameron and Davidson, 1991). 

The sea urchin is also a widely used animal model to study the function of yolk 

granules since it is a very abundant organelle in the eggs and embryos as well as early 

larvae ofthe sea urchin. Therefore it is possible to obtain a large am01.mt of material for 

the biochemical studies of yolk granule function. This has made the sea urchin an ideal 

system to study the function of yolk granules during embryonic and larval development. 

1.2 The yolk granule 

The yolk granule is a relatively large organelle, which is spherical or oval in 

shape having a diameter of 1-2 fliD· It is the most abundant membrane-bound organelle 
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present in the eggs, embryos and early larvae of the sea urchin, comprising approximately 

one-third of cytoplasmic volume. The membrane covering the yolk granule is 

approximately 9 nm in thickness (Armant et al., 1986). Yolk granules consist of 

substructures of small particles, some of which resemble membrane-bound vesicles 

(Armant et al., 1986; Ii et al., 1978, Yokota et al, 1993). As revealed by negative 

staining, these vary in diameter from about 10 to 50 nm (Ii et al., 1978). These vesicular 

yolk subparticles are commonly found throughout development and are considered to be 

lipoproteins present in the yolk granules. Most of the water soluble lipoprotein 

components in the egg are of yolk granule origin (Ii et al. , 1978). These constitute about 

40% of the total yolk material suggesting that yolk contains a large amount of lipid 

combined with lipoproteins. The sea urchin yolk lipoproteins resemble VLDL from 

human serum or hen yolk more than serum LDL because they contain a high triglyceride 

content (Ii et al. , 1978). 

Yolk is also found in several other invertebrates (e.g. insects, mollusks and 

crustaceans) as well as vertebrates (e.g. fish, amphibians and avians). In echinoderms, 

the yolk granules are found spread evenly throughout the cytoplasm of the eggs and 

embryonic cells while in most of the other animals the yolk material forms a separate 

compartment known as the yolk sac in which the yolk granules are housed. A single 

layer of serosal cells lines the yolk sac, separating the yolk material from the rest ofthe 

cytoplasm. 
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1.2.1 Yolk granules can be separated into two fractions of differing buoyant 

densities 

Annant et al. (1986) have developed a method for isolating yolk granules using 

sucrose density gradient centrifugation. When a crude yolk granule preparation was 

fractionated by sucrose density gradient centrifugation, the procedure revealed the 

presence of two major density classes of yolk granules. The more buoyant fraction of 

yolk granules was designated the "low-density yolk granule fraction" while the less 

buoyant class of yolk granules were designated the "high-density yolk granule fraction". 

The low-density yolk granule fraction was homogenous. The high-density yolk granule 

fraction was slightly contaminated with mitochondria. Similar results could be obtained 

by sucrose density gradient fractionation of the crude yolk granules isolated from various 

stage embryos including blastula, gastrula and pluteus. Electron microscopic analysis 

revealed that these two groups of yolk granules bear the same morphological structures. 

There is no indication of a change in the relative proportion of these two density classes 

of yolk granule during embryonic development. The reasons for the existence of two 

different density groups of yolk granules are not known. 

1.2.2 Morphology of the yolk granules changes during embryogenesis 

Sea urchin yolk granules can be classified into four types according to their 

morphology when viewed under the electron microscope: dense, intermediate, sparse and 

lysosomal yolk granules (Yokota et al. , 1993). Dense yolk granules have densely packed 

substructures consisting of coarse granules or micelles while the sparse yolk granules had 

loosely packed substructures. Yolk granules in sea urchins undergo morphological 
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changes during embryonic development as shown by the gradual replacement ofthe 

prevalent dense granules by the less dense structures · (Yokota et al., 1993). In 

unfertilized eggs, most of the yolk granules are dense granules whereas they are rarely 

observed in gastrulae. It is suggested that the yolk granules change from the dense state 

to the sparse state via the intermediate state, as embryonic development proceeds. 

Recent data suggest that the yolk granule is a dynamic organelle even during the 

early developmental stages. The biochemical changes occurring in the yolk granules may 

be responsible for the morphological changes occurring in the yolk granules. The 

glycoproteins present in the yolk granules of sea urchins are initially present as a very 

high molecular weight precursor, which is proteolytically processed as embryonic 

development proceeds (Yokota and Kato, 1988; Scott and Lennarz, 1988; Scott eta!., 

1990; Gratwohl et al., 1990; Reimer and Crawford, 1995). A study performed on lipid 

components present in the yolk granules of sea urchin embryos suggests that the lipid 

composition of the yolk granule undergoes dynamic changes (unpublished observations). 

These compositional changes of the yolk lipids are observed starting from 10 minutes 

post fertilization. Also, there is evidence suggesting that the yolk granule proteins are 

utilized for the membrane assembly during the embryonic development (Gratwohl et al., 

1990). These as well as other biochemical changes occurring during the embryonic 

development may account for the morphological changes occurring in the yolk granules 

observed through the course of embryonic development. Still, the exact reason for these 

morphological changes remain to be elucidated. 
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1.2.3 Acidification of yolk grannies during embryogenesis 

Studies done on yolk granules of sea urchin as well as insects (e.g. the stick insect 

Carausius morosus) suggest that the yolk granules become slightly acidified during the 

early stages of embryonic development. The time taken for the acidification of yolk 

granules varies from species to species. In Strongylocentrotus purpuratus, the 

acidification is completed by 6 hours post fertilization while in sea urchin, Lytechinus 

pictus it is completed by 48 hours post fertilization (Table 1 in appendix) (Mallya et al., 

1992). In Strongylocentrotus purpuratus, the observed decrease in the pH is 0.7 units, 

where it drops from about pH 6.8 to pH 6.1. In Carausius morosus it drops down to pH 

5.5- 5.8 following fertilization (Fausto et al., 2001a). The pH drop seems to be a 

transient event. 

According to the studies done with the stick insect Carausius morosus, not all the 

yolk granules in the embryo become acidified at the same time (Fausto et al., 2001). 

Acidified yolk granules are rather scarce and randomly distributed in vitellophages of 

early embryos. They tend to increase gradually in number as development proceeds to 

completion. 

How the yolk granule of sea urchin is acidified remains unclear (Yokota et al., 

1993). It is possible that a Na+/H+ ATPase is activated, which is already present in the 

yolk granule membrane. Fusion oflysosomes or other endosomal vesicles with the yolk 

granules is another possibility (Schuel et al., 1975). The presence oflysosomal-like 

hydrolases in the yolk granules with acidic pH optima supports the latter hypothesis. 

Yolk granule membrane fusion with the lysosomes to acquire the acidic environment is 

seen in other animals (Fausto et al., 2001a). In these animals, lysosomes play a major 
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role in yolk utilization. In the sea urchin system, there is little evidence to support the fact 

that the lysosomes play a major role in yolk degradation. Therefore it was believed that 

the proton pump is responsible for the sea urchin yolk acidification. 

Chloroquine is shown to be effective in dissipating proton gradients in a variety of 

biological systems by specifically interfering with the proton pump. Interestingly, the 

level of 160k:Da protein was unchanged when chloroquine was added to 

Strongylocentrotus purpuratus embryos 6 hours after fertilization (Mallya et al., 1992). 

According to this observation, the yolk acidification of sea urchin might be caused by 

Na+/H+ ATPase system. This result also provides strong indirect support for the ideathat 

acidification of yolk granules is important for the proteolysis of the major yolk granule 

protein. A study done with Carausius morosus has shown that chloroquine could 

interfere with yolk acidification suggesting that the proton pump is the main machinery 

involved in the process of yolk acidification. 

1.3 Yolk proteins 

Yolk protein comprises about 10-15% oftotal egg protein (Ichio et al., 1978; Kari 

and Rottmann, 1985; Ozaki, 1980; Harrington and Easton, 1982). The majority of the 

yolk proteins are glycoproteins. They range in molecular weight from about 35 k:Da to 

over 300 k:Da. The major protein component present in the sea urchin yolk granule is 

vitellogenin, a high molecular weight protein of220k - 270k (Malkin et al., 1965). This 

protein represents approximately 8% of the total egg protein (Kari and Rottmann, 1985). 

In several sea urchin species (Strongylocentrotus purpuratus, Lytechnius pictus and 

Strongylocentrotus droebachiensis), the predominant protein ranges from about 200 k:Da 

7 



to 300 kDa. (Harrington and Easton, 1980). Analysis ofthe protein fraction of yolk 

granules by SDS-PAGE has revealed that this major protein component stains positive 

for carbohydrates using periodic acid-Schiff (PAS) method suggesting that this is also a 

glycoprotein. 

The glycoproteins in the yolk granule are predominantly of the polymannose, N

linked type. The predominance of polymannose-type glycoprotein in yolk granules was 

further demonstrated by their staining with concanavalin A-colloidal gold in sectioned 

embryos. Comparison of the physical and chemical properties of these glycoproteins 

from different sea urchin species revealed striking similarities in amino acid and 

monosaccharide composition (Table 2 in appendix) and PI values (Table 3 in appendix) 

(Scott and Lennarz, 1988). Yolk glycoproteins in echinoderms contain a considerable 

amount of carbohydrate. The 160-90 kDa proteins from all sea urchin species showed 

decrease of 30 kDa upon deglycosylation (Scott and Lennarz, 1988). The major yolk 

glycoprotein in all three sea urchin species studied contained approximately 10 nmol of 

glucosamine and 40 nmol of mannose per nanomole of protein. Fucose is either absent 

(Arbacia punctulata) or present at low levels (Strongylocentrotus purpuratus and 

Lytechinus pictus). The amount of glucose present is variable (Table 2 in appendix) 

(Scott and Lennarz, 1988). Isoelectric point determination by two dimensional gel 

electrophoresis reveal that the PI of all the yolk glycoproteins were in the neutral to basic 

range (Table 3 in appendix) (Scott and Lennarz, 1988). 
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1.3.1 Deposition of yolk proteins in the oocytes 

In many animals, the main yolk glycoproteins have been shown to be maternally 

derived. The synthesis of yolk proteins in various other tissues and their accumulation in 

oocytes is known as vitellogenesis. Vitellogenesis has been extensively studied in 

vertebrate and invertebrate animals. In vertebrates it is synthesized in the liver of avians 

(Bergii1k et al., 1974; Tata, 1976) and amphibians (Wahli eta/., 1981). In invertebrates, 

vitellogenin is produced in the intestine of nematodes (Kimble and Sharrock, 1983) and 

echinoderms (Shyu et al., 1986) and in the fat body of the female insects (Wojchowski et 

a/., 1986). 

In sea urchins, yolk glycoproteins are deposited both in the testes and the ovary 

(Ozaki eta/., 1980; Unuma eta/., 1998). It is synthesized by the intestine and secreted 

into the coelomic fluid of the adult sea urchin where it is the major protein of the 

coelomic fluid (Harrington and Easton, 1982; Cervello et al., 1994). From the coelom, 

this protein is absorbed by accessory cells (nutritive phagocytes) ofthe gonad. Before 

gametogenesis, the protein is stored in the accessory cells, which is gradually translocated 

to the gametes by a process of endocytosis during their formation (Tsukahara, 1970). 

Studies done with the stick insect Carausius morosus have shown that 

vitellogenin is localized in the Golgi complex and the secretory granules in the fat body 

tropocytes prior to its deposition in the oocytes (Fausto et al., 2001b; Snigirevskaya et al., 

1997). The lysosomal system plays an important role in the termination of vitellogenesis 

in tropocytes by degrading biosynthetic organelles and secretory granules. At this point 

vitellogenin is found in tropocyte autophagolysosomes. The yolk protein precursors are 

then internalized by oocytes, which are found in the microvillus membrane, coated 
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vesicles, early endosomes and late endosomes from which it then goes to transitional yolk 

bodies. 

The oocytes are endowed with the capability of sequestering vitellogenin from the 

maternal blood-stream through a process of receptor-mediated endocytosis (Stifani et al., 

1990, Schonbaum et al., 1995). Following the selective uptake by the receptors, the 

vitellogenins are deposited in the developing oocytes. In mature yolk granules 

vitellogenin is found as vitellin, which is the crystallized storage form of vitellogenin. 

Although the key component of the uptake of vitellogenin is the receptor and 

although vitellogenins from a variety of organisms have been characterized, much less is 

known about their receptors. In vertebrates, one of the best studied receptor is the 

chicken oocytes 95kDa receptor which is shown to bind two components of chicken yolk, 

vitellogenin and very low density lipoproteins (VLDL) (Stifani et al., 1990). Recently, 

Bujo et al. (1994) have shown that the 95 kDa receptor is closely related to the 

mammalian VLDL receptor (VLDLR) (Schonbaum et al., 1995). Molecular 

characterization of mosquito vitellogenin receptor revealed that it has a high homology to 

the Drosophila yolk protein receptor (Sppington et al., 1996). 

1.3.1.1 Proteolytic processing of vitellins during yolk deposition 

Studies performed on vitellins from ovarian follicles and newly laid eggs of the 

insect Carausinus morosus suggest that the vitellins present as different variant forms and 

are comprised of polypeptides of various sizes (Giorgi et al., 1997; Fausto et al., 2001b). 

This is thought to be due to the post-endocytotic processing during yolk deposition. The 

ovarian follicles progressively more advanced in development exhibit a more complex 

10 



vitellin profile, showing a unique set of polypeptides for different stages of development 

(Fausto et al., 200lb). 

Also in Xenopus laevis, the vitellogenin is enzymatically split into a number of 

lipovitellins and phosvitin polypeptides upon entering the oocytes (Willey & Wallace, 

1981; Wallace, 1985, Wallace and Selman, 1985). The proteolytic processing of the 

newly endocytosed vitellogenin may be a precondition for the resulting polypeptides to 

be transferred to the yolk granules in a crystalline form. This model can still be applied 

to all oviparous species including most fishes in which yolk is stored in a fluid form. 

1.3.2 Processing of sea urchin yolk glycoproteins 

1.3.2.1 Toposome is the precursor for the major yolk granule protein 

Toposome, which is a form ofvitellogenin, is the major glycoprotein present in 

unfertilized sea urchin eggs. It is known that this is the precursor for the major yolk 

granule protein, a high molecular mass protein of 160k-180k that is abundant in the eggs 

(Yokota et al., 1993; Scott and Lennarz, 1988; Scott et al., 1990; Yokota and Kato, 

1987). Major yolk granule protein is also present in the coelomic fluid ofboth sexes of 

sea urchins at slightly higher molecular weight (195-200 kDa) than it is in the yolk 

granules of the eggs. It has been estimated to comprise greater than 50% of the total 

protein in the coelomic fluid (Harrington and Easton, 1982; Cervello et al., 1994). 

The toposome, as well as the major yolk protein, is further proteolytically 

processed by a protease present in the yolk granules. These are the precursors for the 

majority of the glycoproteins present in the sea urchin yolk granules. 
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1.3.2.2 Proteolytic processing of major yolk glycoproteins 

As mentioned earlier, the toposome is proteolytically cleaved giving rise to the 

major yolk granule protein, which is the major glycoprotein present in the sea urchin yolk 

granules of eggs and embryos in early stages. There are also less abundant proteins 

derived from the toposome, which are known as minor yolk granule proteins. As 

embryonic and larval development proceeds, these major and minor yolk granule proteins 

are processed by limited proteolysis, giving rise to smaller molecular weight cleavage 

products (Kari and Rotman, 1985; Armant et al., 1986; Scott and Lennarz, 1989; Lee et 

al., 1989). This results in changing the protein profile of the yolk granule as embryonic 

development proceeds (Scott eta/., 1990; Yokota eta/., 1993). The changes in the 

protein profile can be revealed by reducing SDS-PAGE analysis of the yolk proteins from 

different developmental stages. The protein profile is stage-specific. Electrophoretic 

analysis under non-reducing conditions has shown high molecular weight bands derived 

from toposome and the major yolk granule protein throughout embryonic development. 

Despite the proteolytic cleavage, the total mass of the toposome and the major yolk 

granule protein remain constant throughout embryonic development thereby maintaining 

its overall physico-chemical properties. Apparently, the polypeptide products remain 

covalently bound to each other by intermolecular disulfide bonds even after proteolytic 

cleavage (Armant et al., 1986; Scott and Lennarz, 1988). 

Studies done with different species of sea urchins revealed that the protein profile 

of the major yolk granule protein of each embryonic stage is species-specific. In 

Strongylocentrotus purpuratus, the major vitellogenin, the toposome is about 243 kDa 

while the major yolk granule protein, which is derived from this toposome, is about 160 
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kDa (Scott eta!., 1990; Scott and Lennarz, 1988). The major yolk granule protein gives 

rise to relatively smaller molecular weight species of 115 kDa, 108 kDa, 90 kDa, 83 kDa 

and 68 kDa as development proceeds. In Hemicentrotus pulcherrimus, the major yolk 

granule protein is a 178kDa species, which is processed to give rise to 114 kDa, 94 kDa, 

72 kDa and 61 kDa polypeptides (Yokota and Kato, 1987; Yokota eta!., 1993). 

Anthocidaris crassispina bears a major yolk granule protein of 180 kda, which is 

processed to give rise to 112 kDa, 92 kDa, 70 kDa and 56 kDa polypeptides (Yokota and 

Kato, 1987). When embryonic development proceeds, higher molecular mass species 

derived from the major yolk granule protein gradually disappear while the lower 

molecular mass species appear. 

Studies done with insect models have also shown that the yolk polypeptides 

undergo limited proteolysis to yield a number of cleavage products of lower molecular 

mass (Fausto eta!., 2001b; Cecchettini eta!., 2001). The yolk proteins are not 

exhaustively degraded within the yolk sack, but the yolk sac gradually decreases in size 

as a result of translocation of yolk polypeptides to the perivitelline fluid. 

hnmunolocalization studies have shown that the yolk polypeptides are initially associated 

with the vitellophages as well as the yolk granules contained in the vitellophages. By 

subsequent stages of development, the yolk granules appear to be present in the serosal 

cells lining the yolk sac and just underneath the plasma membrane of these cells 

suggesting that the yolk polypeptides are shuttled by serosal cells transcytotically from 

the yolk sac to the perivitelline fluid. These polypeptides are also associated with the 

vesicles budding from the Golgi apparatus suggesting an involvement of the trans-Golgi 
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network in the translocation of yolk cleavage products. The yolk cleavage products 

possibly undergo post-translational modification(s) in the Golgi apparatus. 

1.3.2.3 The enzyme responsible for yolk glycoprotein processing is present as an 

inactive pro-protease 

The mild acidification of the yolk granules occurring after fertilization has been 

shown to be the major factor influencing the activation of a dormant protease, which is 

involved in yolk glycoprotein processing (Medina et al., 1988; Mallya et al., 1992; 

Fausto et al., 2001a). The time taken for the acidification process and the activation of 

this dormant protease differ from species to species within the class Echinoidea. For 

example, in Strongylocentrotus purpuratus the yolk processing starts by 6 hours post

fertilization (HPF) while in Lytechinus pictus it starts by 48 hours post-fertilization 

(Table lin appendix) (Mallya et al., 1992). In Strongylocentrotus purpuratus the 

proteolysis is essentially complete by 18 hours. 

Studies done on insects (Fausto eta/., 2001a) as well as echinoids (Mallya et al., 

1992) have shown that the enzyme responsible for proteolytic processing of vitellins and 

the major yolk granule protein is a cathepsin-B-like protease. Studies performed using 

the stick insect Carausius morosus have shown that the protease is initially present as a 

pro-protease (Fausto et al., 2001a). In this study the pro-protease was identified by 

immunoblotting in yolk extracts of progressively more advanced embryos. A specific 

monoclonal antibody raised against this pro-protease was used to demonstrate that it was 

gradually processed to yield a lower molecular weight polypeptide as development 

proceeds to completion. This latter polypeptide was identified as a protease using 
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electrophoresis in polyacrylamide gels containing yolk extracts. Pro-protease labeling is 

gradually lost as the yolk granules are progressively more acidified as embryonic 

development proceeds. The yolk granules probed simultaneously for acidification and 

latent pro-protease yielded labeling patterns partially superimposed. These observations 

suggest that the enzyme responsible for the processing of yolk proteins is a protease, 

which is proteolytically processed in an acidic environment. 

In the sea urchin, the yolk protease was studied in vitro to identify the effect of 

pH (Mallya et al., 1992). The pH activity profile revealed that the enzyme is inactive at 

pH 6.8 and that maximal activity was observed at pH 6.1, which is the pH of the yolk 

granules at blastula stage. At 4.2, the pH at which most lysosomal enzymes are optimally 

active, this protease shows only 30% of maximal activity. Thus the drop of pH by 0.7U 

observed in vivo would be expected to afford optimum conditions for yolk protease 

activity (Table 1 in appendix). This study confirmed that the acidification of the yolk 

granules is shown to be the controlling step in the activation of this protease. 

As revealed by the studies performed using the stick insect Carausius morosus, 

the pro-protease was shown to be a maternally derived gene product since there was no 

evidence to show that it was synthesized in the egg or the embryos (Fausto et al., 2001 a). 

The molecular weight of the precursor was determined to be 57 kDa, which finally gives 

rise to the active protease of 40 kDa (Fausto et al. , 2001a). When a monoclonal antibody 

was specifically raised against the 57 kDa protein and tested by immunoblotting on 

different developmental stages, the 57 kDa protein was shown to exhibit a precursor 

product relationship with the 40 kDa protease. Appearance of this latter polypeptide 

could also be mimicked in vitro by partially digesting 57 kDa polypeptide with papain. 
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This indicated that pro-protease conversion may be triggered by an enzyme member of 

the papain superfamily. When newly laid eggs ofthe stick insect were incubated in vitro 

at 3 7°C for timed intervals ranging from 0 to 72 hours and the resulting extracts resolved 

by reducing SDS-PAGE, the results showed that vitellin polypeptides processed under 

these conditions reproduce the electrophoretic patterns yielded by yolk sacs during 

development (Fausto eta!., 200la). This suggests that the newly laid eggs are 

enzymatically autonomous, requiring no external supply to sustain vitellin proteolysis. 

Proteolysis seen in the embryos was clearly associated with the appearance of the 40 kDa 

polypeptide, which is the active form of the protease. 

The enzyme activity of the yolk protease was tested in the presence of several 

inhibitors to identify which class of protease it is belonged to (Table 4 in appendix) 

(Mallya et al., 1992). Inhibition by Z-Phe-Ala-CH2F confirmed that it is a cathepsin-B 

like protease. Leupeptin, which is a competitive inhibitor ofthiol proteases, completely 

inhibited the yolk protease. It seems likely that the enzyme responsible for yolk 

glycoprotein proteolysis cleaves at peptide linkages involving the carboxyl groups of 

lysine or arginine or both. The inhibition of the protease activity by serine protease 

inhibitors might be due to the inhibition of the enzymes responsible for the activation of 

the dormant pro-protease. 

1.3.3 Posttranslational modification of yolk proteins 

There is evidence showing that the yolk proteins are posttranslationally modified. 

Studies performed with insects suggest that the vesicles in the serosal cells carrying 

vitellogenin cleavage products are first targeted to the Golgi apparatus and only 
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subsequently delivered to the apical cell pole for exocytotic release (Fausto et al., 2001b; 

Snigirevskaya et al., 1997). The actual involvement of trans Golgi network in the 

vesicular translocation of vitellin cleavage products through the serosal cells suggest that 

they may have been posttranslationally modified either by proteolytic processing 

(Friederich et al, 1988; Steiner, 1998; Molloy et al., 1999) or by glycosylation (Dunphy 

et al., 1985; Varki, 1998). There is also evidence to show that the yolk polypeptides are 

covalently modified by the addition of sulfate or phosphate groups (Dhadialla and 

Raikhel, 1990; Niimi et al., 1994). 

Interestingly, the vitellin cleavage products acquire a neutral isoelectric point 

upon transfer to the perivitelline fluid (Cecchettini et al., 2001), whereas the vitelline 

polypeptides are highly electronegative as long as they are confmed within the yolk sac 

(Giorgi et al., 1999). these observations suggest that the vitellins are being 

posttranslationally modified in the Golgi apparatus leading to changes in their chemical 

properties. 

1.4 Functions of the yolk granule 

1.4.1 Yolk provides nutrition for the embryonic development of many animals 

The yolk is believed to be a nutrient store oflipid and protein materials. The 

classical view of the yolk material is that it provides nutrition for the embryonic and 

larval development. Generally, lipid components of the yolk granules are known to be 

the major energy source while proteins, mainly the vitellogenin serve as an amino acid 

supply (Reimer and Crawford, 1995). This is true for most living systems, which harbor 

yolk granules or yolk sacs. For example, in insects, the yolk provides storage ofraw 
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material to sustain embryonic development (Mc-Gregor and Loughton 1977; Yamashita 

and Indrasith, 1988). In amphibians and avians the yolk has been shown to provide a 

reservoir of raw materials used during embryogenesis (Willey and Wallace, 1981; 

Wallace, 1985). 

Because the general characteristics of yolk granules of sea urchin embryos are 

similar to those of the other species (Williams, 1967), a similar function has been 

assumed for the sea urchin yolk granules. Annant et al. (1986) suggested that in sea 

urchins, the yolk glycoproteins could be utilized during larval development if food was 

scarce. Functions for sea urchin yolk granules as a site of catabolism are suggested by the 

presence of several acid hydro lases, including acid phosphatase (Schue! et al., 1975). It 

is not clear whether these are originally of yolk granule or lysosomal origin. Such 

catabolic enzymes could be used to generate amino acids, fatty acids or carbohydrates 

from the stored macromolecular forms. However, there is little evidence supporting this 

view in the sea urchin system given that the composition of the yolk granule remains 

unchanged throughout development (Annant et al., 1986; Scott et al. , 1990). Analysis of 

the low density yolk granules isolated throughout embryonic development revealed little 

or no change in the mass of a variety of constituents including protein, lipid 

(phospholipid and triglyceride), carbohydrate (hexose and sialic acid) and nucleic acid 

(RNA) until the pluteus stage (Table. 1 in appendix) (Annant et al., 1986). Studies have 

shown that the rate of the yolk utilization is not related to the nutritional status of the 

embryo and early larvae, suggesting that it is not a ready-to-use food source in an event 

of starvation (Annant et al., 1986; Kari and Rotman, 1985). In Strongylocentrotus 

purpuratus, the yolk granules and associated glycoproteins usually disappear on the 71
h 
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day of the feeding larval stage. This process does not speed up in starvation, suggesting 

that providing nutrition to the growing embryo and larvae is not the main role of yolk 

(Armant et al., 1986, Scott et al., 1990). 

Large quantities of major yolk granule protein are produced in both male and 

female sea urchins, whereas vitellogenins are specific to females in other animal classes 

such as nematodes, insects and vertebrates, negating the possibility that major yolk 

granule protein serves as a vitellogenic store of amino acids (Shyu et al., 1986). These 

findings support the view that the yolk granules are not just benign storage organelles that 

feed the embryonic and larval stages of sea urchin development. At least in the 

echinoderm system, yolk proteins might be involved in biochemical processes other than 

those providing nutrition; however the functions of the yolk granule proteins in the sea 

urchin system are still not well identified. Different studies on sea urchin yolk granules 

suggest different functions for it, complicating its picture. 

1.4.2 The sea urchin yolk granule is not a site of synthesis 

The vesicular structure of the yolk granules suggested the possibility that these 

organelles function in either lipogenesis or membrane biogenesis. No enzyme activities 

required for lipid synthesis, such as fatty acyl coenzyme A lyase, glycerol phophate acyl 

transferase, choline phosphotransferase or ethanolamine phosphotransferase were 

detected, however (Armant et al., 1986). Therefore, it is unlikely that the yolk granule is 

a site of lipid synthesis. 

To determine any de novo synthesis of the yolk proteins, the sea urchin embryos 

were labeled with e5s)-methionine and the yolk granules were isolated and analyzed by 
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SDS-PAGE followed by autoradiography (Annant et al., 1986). Major yolk associated 

glycoproteins were not labeled indicating that they were not synthesized de novo during 

embryogenesis. Surprisingly, the sea urchin yolk granules harbor a considerable amount 

ofRNA, which accounts for approximately 12% of its weight (Annant et al., 1986). 

Studies identified unique classes of9S and 12S RNA in yolk granules of 

Strongylocentrotus purpuratus. Another important study was performed with RNA 

present in the yolk granules to investigate whether the yolk granule RNAs are 

translationally active. No translatable RNA was identified, since no translation products 

were detected in an in vitro translation system (Armant et al., 1986). Overall, this 

evidence strongly suggests that the yolk granule is not a site of anabolism of proteins or 

lipids. 

1.4.3 Major yolk granule protein is a nutrient store for sea urchin spermatogenesis 

During sea urchin gametogenesis (spermatogenesis in males and oogenesis in 

females), the vitellogenin is deposited in both types of gametes (Shyu et al., 1986). In 

females, the major yolk granule protein is retained during the vitellogenic phase of 

oogenesis from nutritive phagocytes to the growing oocytes where it is packaged into 

yolk granules and stored in mature eggs (Ozaki et al., 1986; Harrington and Ozaki, 1986; 

Unuma et al., 1998). 

It has been suggested that, in males, the major yolk granule protein serves as a 

nutrient store for spermatogenesis (Unuma et al., 1998). As immunohistochemical 

studies reveal, the major yolk granule protein depletes from the degenerating nutritive 

phagocytes in the follicular lumen during spermatogenesis. The protein is not detected in 
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the stored spermatozoa. The disappearance of the vitellogenins during spermatogenesis 

suggests that it provides nutrients for gametogenesis, at least for spermatogenesis. 

Although vitellogenin is deposited in both male and female gametes, since all the vitellins 

disappear by the stage of sperm maturation, almost all the vitellin in the embryos is 

maternally derived. 

1.4.4 Yolk granule proteins are utilized for the assembly of new membranes 

The important change resulting from cell division during development from egg 

to blastula is the formation of new membranes. The original membrane-bound 

toposomes are not diluted out during cell division, but rather replenished from an internal 

reservoir (Gratwohl et al., 1990). The origin of many proteins present in sea urchin 

embryonic cells is shown to be the yolk granule (Gratwohl et al., 1990; McClay and Fink, 

1982; Wessel et al., 2000; Alliegro and McClay, 1988; Fuhrman et al., 1992; Brennan 

and Robinson, 1994). 

The toposome is shown to have two different types of storage vesicles, the 

cortical granules and the yolk granules. In the yolk granules, these are present in the 

membrane as well as stored free in the interior compartment (Gratwohl et al. , 1990). 

Toposome, which is present in the cortical granules, is concised to the electron dense 

lammellar compartment (Gratwohl et al., 1990). It is suggested that the toposomes in the 

two compartments are destined for different structures and functions (Gratwohl et al. , 

1990). As visualized by immunogold labeling, fertilization results in a double layer of 

labeling. The glycoprotein in the lammellar compartment of the cortical granule is 

exocytosed at fertilization during the cortical reaction and found to become a part of the 
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double layer enveloping the embryo on the outside of the hyaline layer. These toposomes 

in the cortical granules are incorporated in to the hyaline layer as unmodified 160 kDa 

polypeptides. On the other hand, as explained earlier, the toposomes present in the yolk 

granules are proteolytically modified. The toposomes, which are processed in this way, 

are secreted in this form to all the external surfaces of newly formed cells. An 

immunogold labeling experiment, which was performed to trace these modified 

toposomes in the sea urchin embryo, demonstrated that it is transported and deposited in 

all cell surfaces, apical, lateral and basal (Noll et al., 1985). These observations suggest 

that the yolk granules act as the reservoir oftoposomes present in the newly formed 

membranes. About 25% of the toposomes from hatched blastula embryos were 

associated with purified membranes and 75% were associated with the cytoplasm. Both 

these fractions exhibited a similar degree of processing when analyzed by reducing SDS

p AGE (Matranga et al., 1986). The clusters of labeling identified in the cytoplasm not 

associated with the membranes or the yolk granules might be such toposomes in transit. 

These were often located over what appeared to be remnants of disintegrating granules, 

particularly near membranes or Golgi stacks near the apical surface. It was suggested 

that some of these structures might represent vesicles in the process of fusion with 

membranes. The labeling seen near the Golgi stacks support the hypothesis that the 

toposome and/or major yolk granule protein are being post-translationally modified in the 

Golgi network. 
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1.4.5 Role of the toposome as morphogenic cell adhesion particles 

Cell-cell adhesion is a highly specific interaction, which regulates differentiation, 

morphogenesis and embryonic development. Cervello and Matranga (1988) describe a 

function for the sea urchin, Paracentrotus lividus, toposome in mediating cell adhesion in 

the embryonic system. 

Dissociated cells from the sea urchin embryo have a remarkable ability to re

associate into a developing embryo (Herbst, 1900; Giudice, 1962). The biological 

significance of the 200 kDa and 180 kDa polypeptides isolated from the coelomic fluid of 

the blastula stage embryo were tested using a morphogenetic cell aggregation assay on 

dissociated blastula stage cells (Cervello and Matranga, 1988). The number and size of 

the aggregates determined the significance of the aggregation activity. Toposome 

precursors proved to be active in promoting cell adhesion even in its unprocessed form 

(Cervello and Matranga, 1988). This occurred even when cells wererendered 

aggregation-incompetent by non-cytolytic n-butanol extraction. These observations 

suggest that precursors ofthe toposomes contain all the epitopes of the contact site 

involved in cell aggregation. The antibodies raised against the toposome obtained from 

mesenchyme blastula embryos inhibited the aggregation activity, further supporting the 

finding that toposome or toposome-derived peptides are involved in aggregation. 

Since the precursors retain cell-adhesion promoting activity, processing may serve 

to generate positional diversities among the cells during embryogenesis. In 

immunohistochemical studies the toposome-specific monoclonal antibodies stained cell 

surface structures in a pattern consistent with a code specifying the position of a cell in 

the embryo (Matranga and Cervello, 1984; Noll et al., 1985; Matranga et al., 1987). It is 
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suggested that the extracellular toposomes rivet the apical lamina to the surface and 

underlying cytoskeleton of the microvilli while the modified toposomes from the yolk 

granules are responsible for position-specific cellular adhesion as they are released to the 

newly formed cells. The vitellogenins and the major yolk granule protein, which they 

found to be 200 kDa and 180 kDa polypeptides respectively in sea urchin Paracentrotus 

lividus, were shown to be a storage form of cell adhesion molecules. It was concluded 

that the toposome and the major yolk granule protein are probably involved in the 

important events related to positioning of the embryo. 

1.4.6 Storage and transportation function 

There is a possibility that the major yolk granule protein serves as a carrier of 

substances present in the cells. Yolk proteins are generally known to be important in 

regulating embryogenesis by sequestering diverse molecules for subsequent timed 

release. While the vitellogenins can be covalently modified with carbohydrates, 

phosphates and sulfates, they can also non-covalently bind lipids, hormomes, vitamins 

and minerals (Lagueux et al., 1981; Kunkel and Nordin, 1985; Byrne et al., 1989; 

Dhadialla and Raikhel, 1990; Niimi et al. , 1994). Yolk proteins of Drosophila 

melanogaster have been known to bind steroids and it has been proposed that breakdown 

of the major yolk granule protein leads to timed release of these hormones (Bownes et 

al., 1988). The major yolk granule protein of Drosophila malanogaster is found to be 

distinct from vitellogenins. 

24 



1.4.6.1 Storage and transportation of metal ions 

Higher concentrations of free iron and calcium in the living systems can cause 

harmful effects; therefore, these should be finely regulated to maintain the ideal free 

levels for the proper function of the organisms. The major yolk granule protein has been 

shown to act as a metal ion chelator, which also maintains a reservoir of these metal ions. 

The metal ions could be slowly released according to the cells needs, reducing the risk of 

having high concentrations of metal ions in the living cells. 

1.4.6.1.1 Storage and transportation of iron 

In vertebrates, transferrins are glycoproteins involved in reversible binding and 

transportation of iron. Vertebrate transferrins are monomeric glycoproteins (~80 kDa) 

that consist oftwo domains with similar amino acid sequence, each with a single iron 

binding site (Baker and Lindley, 1992). Crystallographic studies have shown that the 

iron binding sites are stabilized by many intrachain disulfides that coordinate iron binding 

(Baker and Lindley, 1992). 

As mentioned previously, the major yolk granule protein has historically been 

classified as a vitellogenin based on its abundance in the yolk granules. Although the 

physiological function ofthe major yolk protein in the sea urchin has been analyzed for 

over two decades, this classification as a vitellogenin has yielded conflicting results. The 

fact that major yolk granule protein is found in both sexes of sea urchins suggests that it 

should play a physiological role in embryogenesis, as well as in gametogenesis. 

Brooks and Wessel (2002) recently presented the primary structure of the major 

yolk granule protein as predicted from cDNAs of sea urchin species and demonstrated 
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that instead of resembling vitellogenin, the major yolk granule protein contained 

transferring-like iron binding domains. It is suggested that major yolk granule protein 

transports iron to the ovary and testes to meet the proliferative demands of gametogenesis 

and embryogenesis. When the full-length deduced amino acid sequence of 

Strongylocentrotus purpuratus and the partial amino acid sequence of Lytechinus 

variegates were aligned to one another, 57.6% identity was shown in a 742 amino acid 

overlap. When these sequences were compared with the other proteins in the NCBI 

database, surprisingly no similarity to reported vitellogenins was found. It was noted, 

however, that the major yolk granule protein contained two transferrin-like motifs . Both 

species of sea urchin had a sequence identity between 24-28% to both vertebrate and 

invertebrate transferrins (sequence identity between vertebrate and insect transferrin is 

only 25-30%). It was therefore proposed that the major yolk granule protein is a member 

of the transferrin superfamily. The consensus sequence includes serum transferrin, 

melanotransferrin, ovotransferrin (from egg white) and lactotransferrin (from milk, white 

blood cells and other secretary fluids) from vertebrates and four transferrin domains from 

insects. 

The major yolk granule protein was able to bind iron as determined by iron 

overlay assay followed by phosphoimaging (Brooks and Wessel, 2002). Coelomic fluid 

showed distinct iron binding with bands that increased in intensity in accordance with an 

increase in protein concentration. Coelomic fluid of both sexes of sea urchin contained 

proteins capable ofbinding iron. Immunoprecipitation studies revealed that the major 

yolk granule protein in the coelomic fluid could bind iron. It was suggested that its 

function of major yolk granule protein is to transport iron ions in coelomic fluid. 
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It is worthwhile to recall that the major yolk granule protein occurs as a single 

species of high molecular weight in coelomic fluid that is processed into several distinct 

smaller fragments when embryonic development proceeds, and this processing is shown 

to be concomitant with the acidification of yolk granules that occurs during 

embryogenesis. Since many transferrins release iron at low pH, the major yolk granule 

protein processing maybe linked to iron release from this protein. 

These results partially help to resolve the mysteries of major yolk granule protein 

utilization in embryonic development and its occurrence in the male gonad. The 

packaging of major yolk granule protein into yolk granules may serve as a mechanism of 

iron delivery during gametogenesis and embryogenesis. Further, they suggest that major 

yolk granule protein packaging in coelomyocytes could have a dual function of providing 

bacteriostatic function in coelomic fluid as well as delivery of major yolk granule 

protein-bound iron to the gonads. The authors of this paper argue that the assignment of 

the major yolk granule protein as a vitellogenin was previously based on its abundancy in 

yolk granules, coelomic fluid and intestines but not on any protein sequence data. 

1.4.6.1.2 Storage and transportation of calcium 

Calcium ions are common messengers in intracellular signaling and transportation 

events and play a significant role in regulation of meiosis in mammalian oocytes. A 

study performed with pig oocytes (Petr et a!. , 2001) revealed that the yolk granule may 

function as a site of calcium storage. It was suggested that these deposits probably serve 

as a source of calcium for calcium-dependent events. 
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The ability of yolk proteins to bind calcium is supported by Cervello and 

Matranga (1988), who showed that the cell aggregation activity caused by the toposome 

is calcium-dependent. This study provides the first evidence that sea urchin vitellogenin 

binds calcium. Therefore the calcium deposits observed by Petr et al. (200 1) might be 

due to calcium binding by the vitellogenins and/or its derivatives. 

1.4.7 Function of yolk granules in the protein export pathway 

Several studies have shown that the yolk granules act as a storage compartment 

for many proteins destined for export. HLC-32, a major protein component of the 

hyaline layer and the basal lamina extracellular matrices ofthe sea urchin embryo, is 

present in the yolk granules of unfertilized eggs (Mayne and Robinson, 1998). Following 

fertilization, there is a coincidental loss ofHLC-32 from the yolk granules and its 

appearance in the extracellular matrices. Studies done with Xenopus leavis suggest that a 

lectin is localized to the yolk granules and some other vesicles in the egg, prior to its 

appearance on the cell surface (Outenreath et al., 1988). Echinonectin, a hyaline layer 

protein, has been localized to membrane-bound vesicles in the unfertilized egg (Fuhrman 

et al., 1992). It is believed that these proteins are exported from the yolk granules by a 

transport pathway involving yolk granules and/or associated vesicles. The sea urchin 

yolk granules also house RNA, which has been shown to be translationally inert (Armant 

et al., 1986). Additionally, there is evidence for the localization ofRNAse to yolk 

granules in bullfrog oocytes, suggesting that these organelles act as a cellular 

compartment for some cytoplasmic enzymes (Liao and Wang, 1994; Wang et al., 1995). 

Therefore, some structural protein components as well as functional protein components 
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destined for export have been shown to be associated with the yolk granules. 

Collectively, these findings suggest that the yolk granules, and perhaps additional 

membrane-bound vesicles, are involved in an export pathway to the embryonic cell 

surface. In this context, Cruetz et al. (1996) has demonstrated the association of a 

nematode annexin with yolk granules in Caenorhabditis elegans oocytes. A study done 

with Xenopus laevis identified the association of synexin ( annexin VII) with the yolk 

granules of the oocytes (Srivastava et al., 1996). Synexin is a calcium-dependent 

phospholipid-binding and membrane-fusion protein in the annexin gene family. It is 

capable of forming calcium channels and plays a role in exocytotic secretion. 

In the sea urchin embryo, immunogold labeling studies have shown that toposome 

is transported to the outer membrane of the embryonic cells (Cervello and Matranga, 

1988). This observation further supports the view that the yolk proteins are involved in 

an export pathway. Further work will be required to determine if the yolk granules and 

associated proteins play a crucial role in transportation events. 

1.5 Research focus 

Although the yolk proteins have been investigated for decades, the precise 

function of the yolk granules in the sea urchin embryo is not very clear (Kane, 1965; 

Infante and Nemer, 1968; Kondo, 1972; Kondo and Koshihara, 1972; Ii et al., 1978; 

Harrington and Easton, 1982; Karl and Rotman, 1985; Shyu et al., 1986; Armant et al., 

1986; Gratwohl et al., 1990). Being abundant in eggs and embryos, yolk protein should 

be involved in important cellular events occurring during fertilization and embryonic 

development. As many studies reveal, the yolk granule houses several proteins destined 
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for export. On the other hand, the vitellins have been shown to be an important 

component of yolk granule membranes as well as newly formed membranal structures 

including plasma membranes of embryonic cells. Based on these data, we hypothesize 

that the yolk proteins, mainly the toposorne and the major yolk granule protein, are 

involved in transportation and membrane fusion events. 

In mammalian systems, proteins involved in transportation and membrane fusion 

events are calcium-dependent, phospholipid-binding proteins (e.g. annexin VII). In this 

study, we investigated the capacity of yolk granule proteins to engage in membrane 

binding and aggregation reactions. A radiolabeled, calcium binding assay was used to 

investigate the calcium-binding capacity of yolk proteins. A multilarnellar liposome

binding assay was employed to investigate the calcium-dependent phospholipid-binding 

activity of the proteins, while a unilarnellar liposome-aggregation assay was used to 

investigate the vesicular-aggregation activity of these proteins. Western blots and peptide 

maps were created to identify precursor product relationship between the yolk proteins. 
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2.1 Materials 

All reagents were of the highest grade available. Acetone, chloroform, methanol, 

glacial acetic acid, potassium chloride (K.Cl), sodium chloride (NaCl), magnesium 

chloride (MgC}z), sodium bicarbonate (NaHC03), imidazole, urea, NP-40, sodium iodide 

{Nal) and ethylenediaminetetraacetic acid (EDTA) were purchased from Fisher Scientific 

(Fair Lawn, New Jersey, USA) and calcium chloride (CaCb), sodium azide (NaN3), 

cobalt chloride (CoCb.6H20), tris (hydroxymethyl) aminomethane (Tris), glycerol, 

glycine, dithiothreitol (DTT), ethylene glycol- bis (P-aminoethyl ether) N, N, N' ,N'

tetraacetic acid (EGTA), bromophenol blue (BPB), tween-20, bovine serum albumin 

(BSA), brain lipid extract, phosphatidyl inositol (PI), phosphatidyl serine (PS), 

phosphatidyl ethanolamine (PE) and phosphatidyl choline (PC) were obtained from 

Sigma-Aldrich Canada (Oakville, ON, Canada). Sucrose, acrylamide, bisacrylamide, 

sodium dodecyl sulfate (SDS), Coomassie brilliant blue (CBB) and anti-mouse IgG were 

purchased from Bio-Rad (Hercules, Canada), Q- Sepharose Fast Flow, Chelating 

Sepharose Fast Flow, silver staining kit and 45CaC}z were purchased from Amersham 

Biosciences (Uppsala, Sweden), 5-bromo-4-chloro-3-indolyl phosphate (BCIP) and nitro 

blue tetrazolium chloride (NBT) were obtained from Boehringer Mannheim corp. 

(Indianapolis, IN, USA) and benzamidine was purchased from Eastman Kodak Company 

(Rochester, NY, USA). 

Strongylocentrotus purpuratus was purchased from Seacology, Vancouver, 

British Columbia. Anti-toposome antibody was a kind gift from Dr. V. Matranga, 

'Institute di Biologia dello Sviluppo', Palermo, Italy. Troponin-C was a gift from Dr. D. 

Heeley, Department of Biochemistry, Memorial University ofNewfoundland. 
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2.2 Methods 

2.2.1 Growth of embryos 

Gametes were obtained from Strongylocentrotus purpuratus by intracoelomic 

injection of0.5 M KCl. Eggs were washed three times in ice-cold Millipore-filtered sea 

water (MFSW; 0.45 f.!m filter size) and fertilized with a 100-fold numerical excess of 

sperm. Embryos were cultured with constant aeration at 12°C in cylindrical chambers 

containing paddles rotating at 40 rpm. Samples were harvested at different times after 

fertilization. Eggs and embryos were stored frozen at - 70°C. 

2.2.2 Preparation of yolk granules by differential centrifugation 

Yolk granules were isolated from unfertilized eggs as described by Yokota and 

Kato (1998). Eggs were washed in ice-cold Millipore filtered sea water (MFSW), 

followed by calcium-, magnesium-free sea water (CMFSW). Yolk granules were 

prepared both in the presence and absence ofEDTA. The eggs were resuspended in a 

solution of either 0.5 M KCl (pH 7.0) or 0.5 M KCl containing 1 mM EDTA (pH 7.0) 

and homogenized in a hand-held Dounce homogenizer at OOC. The homogenate was 

centrifuged at 400xg for 4 min at 4°C and the pellet was discarded. The supernatant was 

centrifuged at 2,400xg for 10 min at 4°C. The pellet was resuspended in the same starting 

solution and centrifuged at 400xg for 4 min at 4°C. The supernatant was again 

centrifuged at 2,400xg for 10 min at 4°C. The final pellet contained yolk granules and 

was used for the preparation of yolk granule protein extracts and yolk granule membranes 

and for the yolk granule aggregation assays. 
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2.2.3 Preparation of protein 

2.2.3.1 Preparation of yolk granule protein extracts in the presence and absence of 

EGTA 

Yolk granules were suspended in 0.5 M KCl containing lmM CaCh for 30 

minutes at 0°C and centrifuged at 2,400xg for 10 min at 4°C. The resulting supernatant 

was centrifuged at 50,000xg for 1 hr at 4°C and the supernatant was termed the "yolk 

granule calcium extract". Yolk granules, pelleted at 2,400xg were extracted with 0.5 M 

KCl containing 5 mM EGTA and centrifuged at 2,400xg for 10 min at 4°C. The resulting 

supernatant was centrifuged at 50,000xg for 1 hr at 4 OC and the supernatant was termed 

the "yolk granule EGTA extract". 

2.2.3.2 Preparation of yolk granule membrane proteins 

2.2.3.2.1 Sucrose density gradient ultracentrifugation 

Sucrose density gradient ultracentrifugation was performed to isolate the yolk 

granule membranes using the method ofVater and Jackson (1989). Hypotonic lysis of 

the yolk granules was performed by suspending the granules in 20 mM Tris, pH 8.0 at 

0 °C for 45 min. The yolk granules, which were not lysed, were pelleted out by spinning 

at 2,400xg for 10 min and discarded. The supernatant, containing the contents of lysed 

granules (4.1 mL), was made 50% (w/v) sucrose using a 78% (w/v) sucrose stock 

prepared in 90 mM KCl, 10 mM benzamidine, 0.2% NaN3, 50 mM Tris-HCI (pH 8.0). 

This was layered under a discontinuous gradient of 40% (w/v) (9.5 mL), 25% (w/v) (5.5 

mL) and 0% (0.8 mL) sucrose in the same buffer. The gradient was centrifuged at 

87,000xg for 16 hrs at 4 °C. Fractions (0.5 mL) were collected starting from the bottom 
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of the tube. The 25/40% and 0/25% interfaces contain the yolk granule membranes. The 

fractions at these interfaces were pooled separately and diluted with 10 volumes of 10 

mM Tris-HCl, containing 0.05% NaN3 (pH 7.0) and centrifuged at 17,000xg for 1 hr at 4 

°C to pellet out the yolk granule membranes. The pellets were then resuspended in a 

small volume of 10mM Tris-HCl, containing 0.05% NaN3 (pH 7.0). 

2.2.3.2.2 Extraction of yolk granule membrane proteins 

a. Extraction with EDTA 

The membrane fraction was made 10 mM EDT A, incubated at room temperature 

for 30 min and centrifuged for 30 min at 30 psi in an air driven, bench top ultracentrifuge 

(Beckman airfuge ). The supernatant was termed the "yolk granule membrane EDTA 

extract". 

b. Extraction with salt 

Salt extraction was used to release proteins externally bound to the membranes. 

The membrane suspension was made 0.5 Min NaCl, incubated at room temperature for 

30 min and centrifuged for 30 min at 30 psi in the airfuge. The supernatant was termed 

the "yolk granule membrane salt extract". 

2.2.3.3 Extraction of surface proteins from eggs and embryonic cells 

Dissociation of Strongylocentrotus purpuratus embryos into single cells was 

achieved by the method ofMatranga et al. (1986). Embryos (1 mL) prepared in MFSW 

were pelleted and resuspended in dissociation medium of CMFSW containing 5 mM 

EDTA (3 mL) at 0°C. The embryos were dissociated by gently pipetting in and out. The 
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intact embryonic cells were isolated by differential centrifugation as follows: The intact 

embryos were pelleted by centrifuging at 150 xg for 10 min at 4°C. The pellet was 

discarded. The supernatant was centrifuged at 800xg for 10 min at 4 oc to pellet the 

embryonic cells. The embryonic cells were washed 3 times with CMFSW at 0°C by 

resuspending and centrifuging at 800xg. The embryonic cells were then extracted with 

C:MFSW containing 10 mM EDT A. The EDTA extract was centrifuged at 50,000xg for 1 

hr at 4 OC and the supernatant was named the embryonic cell EDTA extract. The eggs 

prepared in MFSW were washed 3 times with CMFSW by resuspending and centrifuging 

at 150 xg at 4°C. The eggs were then extracted with CMFSW containing 10 mM EDT A. 

The EDTA extract was centrifuged at 50,000xg for 1 hr at 4 OC and the supernatant was 

termed the "egg EDT A extract". 

2.2.4 Separation of proteins 

2.2.4.1 Anion exchange chromatography 

Q-Sepharose Fast Flow resin (Fast-Q) was equilibrated with 10 column volumes 

of 10 mM Tris (pH 8.0). Protein samples, which were dialyzed against equilibration 

buffer, were loaded onto the column. Unbound proteins were washed off the column 

with 5 column volumes of equilibration buffer and bound proteins were eluted using a 

step gradient ofNaCl, ranging from 0.1 M to 1M (step size- 0.1 M) in the equilibration 

buffer. 
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2.2.4.2. Immobilized metal ion affinity chromatography (IMAC) 

Chelating Sepharose Fast Flow resin was washed with 5 column volumes of 

distilled water, added 5 column volumes of0.2 M CoCh and again washed with 5 

column volumes of distilled water and equilibrated with 10 column volumes of 50 mM 

Imidazole containing 6 M urea (pH 7.0). The sample was extensively dialyzed against 

the equilibration buffer and loaded onto the column. Unbound proteins were washed off 

the column with 5 column volumes of equilibration buffer and the bound proteins were 

eluted with 1 M NaCl followed by a step gradient of guanidine thiocyanate ranging from 

1M to 5 M (step size- 1M) in the equilibration buffer. 

2.2.5 Determination of protein concentration 

Protein samples were precipitated with an equal volume of20% (w/v) trichloro 

acetic acid (TCA; AnalaR) on ice for 20 min, centrifuged in an eppendorf centrifuge at 

16,000xg for 10 min and the supernatants were discarded. The protein concentrations 

were determined by the method of Lowry et al. (1951) usingBSA as a standard. Optical 

density (OD) was read at 750 nm in a spectrophotometer (Spectronic 601, Milton Roy) 

2.2.6 Identification of proteins 

2.2.6.1 Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) 

Electrophoresis was carried out using a mini-gel electrophoretic apparatus 

(ThermoEC). SDS-PAGE was performed according to the method ofLaemmli (1970), in 

1.5 mm thick 10% (w/v) polyacrylamide [30% (w/v) acrylamide, 0.8% (w/v) 

bisacrylamide] slab gels. Protein samples were precipitated with an equal volume of 20% 
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( w /v) TCA on ice for 20 min, centrifuged in an Eppendorf centrifuge at 16, OOOxg for 10 

min and the supernatants were discarded. Pellets were resuspended in 30 111 of Laemmli 

solubilizing solution [0.1 M DTT, 0.2 M Tris, 2% (w/v) SDS, 32% (v/v) glycerol and 

0.1% (w/v) BPB] with an additional 5 111 of 10% (w/v) SDS. Samples were boiled for 3 

min and electrophoresed at a constant current of 20 rnA. Electrophoresis buffer 

contained 25 mM Tris, 200 mM glycine and 0.1% (w/v) SDS. Following electrophoresis 

the gels were stained at room temperature using a silver staining kit. Alternatively some 

gels including the gels used in quantitative assays were stained with 0.25% (w/v) CBB in 

45% (v/v) methanol and 10% (v/v) acetic acid for 30 min at 37 °C and destained in a 

solution containing 10% (v/v) acetic acid and 7% (v/v) methanol at 37 °C. The gels were 

photographed and analyzed (molecular weight analysis and densitometric analysis) in the 

Gel Documentation System (Alpha Innotech Corporation) using the Chemilmager 

software program. 

2.2.6.2 Western blots 

Protein samples were fractionated by SDS-PAGE on a 3%-12% (w/v) 

polyacrylamide gradient gel (Laemmli, 1970). The proteins were transferred on to a 

nitrocellulose membrane (Gelman Sciences) by electroblotting at 60V for 2 hrs at room 

temperature in a transfer buffer containing 25 mM Tris, 0.2 M glycine and 20% (v/v) 

methanol. Proteins of known molecular mass were excised and stained separately with 

0.1% (w/v) amido black in 45% (v/v) methanol, 7% (v/v) acetic acid and destained in a 

solution containing 45% (v/v) methanol, 7% (v/v) acetic acid. The membrane was 

blocked by overnight incubation in 50 mM Tris-HCl (pH 7.4) containing 150 mM NaCl, 
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3% (w/v) BSA at room temperature. The nitrocellulose membrane was probed with the 

anti-toposome antibody at 1: 500 dilution in wash buffer of 50 mM Tris-HCl (pH 7.4) 

containing 0.05% (v/v) NP-40, 0.1% (w/v) SDS, 20 mM Nal and 2% (w/v) BSA, for 6 

hrs at room temperature. The nitrocellulose membrane was washed overnight at room 

temperature in wash buffer, then 3 x 30 min in TTBS [20 mM Tris containing 0.5 M 

NaCl and 0.05% (w/v) tween-20 (pH 7.4)]. It was incubated for 1 hr in TTBS containing 

goat anti-mouse IgG conjugated with alkaline phosphatase at a dilution of 1: 3000, 

washed 2x 15 min in TTBS and then 2x 15 min in TBS [20 mM Tris-HCl containing 0.5 

M NaCl (pH 7.4)]. The antigen-antibody complex was visualized by treating the 

membrane in 100 mM NaHC03, 1 mM MgCb (pH 9.8) containing 0.03% (w/v) NBT and 

0.015% (w/v) BCIP in the dark. The color reaction was stopped by transferring the 

membrane into distilled water. 

2.2. 7 Peptide mapping 

Partial peptide maps were generated using the method of Cleveland eta/. (1976). 

Proteins (1 0 Jlg) were electrophoresed on a 10% (w/v) polyacrylamide gel (Laemmli, 

1970), the gel was stained with CBB for 30 min at room temperature and destained for 

less than 1 hr at room temperature to visualize stained proteins with minimum acid 

hydrolysis. The 240 k:Da, 160 k:Da and 120 k:Da species were excised. The gel slices 

were soaked 30 min at room temperature with occasional swirling in 10 mL of a solution 

containing 0.125 M Tris-HCl, 0.1% (w/v) SDS and 1 mM EDTA (pH 6.8) and were 

placed at the bottom ofthe sample wells of a 12% (w/v) polyacrylamide gel containing a 

4 % (w/v) polyacrylamide stacking gel, which was 1cm in height. The gel slices were 
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then overlaid with 10 JJ.g/mL Staphylococcus aureus-V8 proteinase (Calbiochem) in 

0.125 M Tris-HCl containing 0.1% (w/v) SDS, lmM EDTA and 20% (v/v) glycerol (pH 

6.8). The amount of enzyme used for digestion varied depending on the molecular 

weight of the polypeptide substrates. The amounts of enzyme used to digest the 

polypeptides were: 

1. 240 k.Da-1 0 JJ.l (0.1 JJ.g) 

ii. 160 k.Da-5 JJ.l (0.05 JJ.g) 

111. 120 k.Da-4 JJ.l (0.04 JJ.g) 

Proteins were electrophoresed into the stacking gel for 20 min at a constant 

current of 10 rnA to bring the enzyme and the polypeptide substrate into contact. The 

current was turned off for 30 min to allow the digestion to take place. The resulting 

peptides were resolved in a 12% (w/v) separating gel by electrophoresing at a constant 

current of 20 rnA and the gel was silver stained. 

2.2.8 Biochemical characterization of proteins 

2.2.8.1 Calcium binding assay 

A dot blot assay was performed on the 0.4 M fraction (5 Jlg) eluted from the Fast

Q resin. Troponin-C (1 Jlg) and BSA (2 Jlg) were used as positive and negative controls 

respectively. The nitrocellulose membrane was equilibrated in the calcium-binding 

buffer containing 10 mM Imidazole and 60 mM KCl for 1 hr at room temperature and 

then was incubated in the same buffer containing 7.5 11M CaCh and 1 mCi/L of45CaCh 

for 15 min. The membrane was washed for 5 min in 1mM Tris-HCl, pH 7.5, air-dried 
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and calcium binding was detected using the phosphoimager (Alpha hmotech 

Corporation). 

2.2.8.2 Characterization of membrane binding and vesicular aggregation activities 

2.2.8.2.1 Preparation of liposomes 

Multilamellar liposomes were prepared using brain lipid extract containing 10% 

(w/w) PI, 50% (w/w) PS and several other brain lipids. Brain lipid extract was solubilized 

in 2:1 chloroform: methanol by vortex mixing for 4 min, the solvent was evaporated to 

dryness under nitrogen gas and dried under vacuum for 1 hr. The resulting residue was 

resuspended in the liposome binding buffer containing 50 mM Imidazole, 150 mM NaCl 

and 0.1 mM EGTA (pH 7.4) at a concentration of20 mg/mL, by vortex mixing for 4 min. 

Additionally, multilamellar liposomes were prepared containing the same 

phospholipid composition as yolk granule membranes of unfertilized sea urchin eggs 

(Table 5 in appendix). Phospholipid composition of yolk granules was determined using 

standard assays; phospholipids were separated using the method of Rouser et al. (1967) 

and individual classes were quantitated by the method of Bartlett et al. (1959). 

Cholesterol was not used as a component for the liposome preparation. Phosphatidyl 

serine, phosphatidyl choline, phosphatidyl ethanolamine, phosphatidyl inositol and 

sphingomyelin were mixed together at the ratio of3.9: 6.3 : 12.4: 3.1: 3.6 and dissolved in 

2:1 Chloroform: methanol by vortex mixing for 4 min. The solvent was evaporated to 

dryness under nitrogen gas and dried under vacuum for 1 hr. The resulting residue was 

resuspended in the liposome binding buffer; 50 mM Imidazole, 150 mM NaCl and 0.1 

mM EGTA (pH 7.4) at a concentration of20 mg/mL, by vortex mixing for 4 min. 
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Unilamellar PS liposomes were prepared by the method of Lee et al. (1997). 

Phosphatidyl serine stock solution was prepared in acetone at a concentration of 20 

mg/mL by vortex mixing for 4 min. The solvent was evaporated to dryness, the resulting 

residue was freeze-dried for 1 hr and solubilized in 8 mL of extrusion buffer of 10 mM 

Hepes, 100 mM NaCl and 100 f.!M EDTA (pH 7.2) by vortex mixing for 4 min to make 

multilamellar vesicles. Multilamellar vesicles were extruded once through two 0.2 f.!m 

millipore filters (nuclepore, Whatman) and then ten times through two 0.1 f.!m millipore 

filters using an extrusion apparatus (Lipex Biomembranes Inc.) under nitrogen gas to 

make unilamellar PS liposomes. The phosphate concentration of the unilamellar PS 

liposome preparations was determined by the method ofBartlet et al. (1959) and the 

molarity of the phosphate was calculated accordingly. 

2.2.8.2.2 Liposome binding assays 

Liposome binding assays were performed following the method of Spenneberg et 

al. (1998) with some modifications. Multilamellar or unilamellar liposomes (2 mg/mL) 

were incubated with the proteins in the binding buffer containing 50 mM Imidazole, 150 

mM NaCl and 0.1 mM EGTA (pH 7 .4) in the presence of 5 mM free calcium for 30 min 

at room temperature. The MAXChelator software program was used to determine the 

free calcium concentrations. Inhibition of liposome binding by the anti-toposome 

antibody was assayed by incubating the protein with 5 mM free calcium in the presence 

of the antibody at a concentration of 1 f.tg/mL. Liposomes were pelleted out in the 

airfuge by spinning at 30 psi for 30 min. Supernatants were saved and the pellets were 

resuspended and washed with binding buffer containing 5 mM CaCh (Calcium wash 
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buffer). The unbound fraction and the residual pellet were analyzed by reducing SDS

PAGE. 

2.2.8.2.3 Liposome aggregation assays 

Liposome aggregation assays were carried out by the method of Lee et al. (1997). 

Proteins were incubated with 1.25 mM CaClz in the aggregation buffer containing 40 mM 

histidine, 300 mM sucrose and 0.5 mM MgCb, (pH 6.0) for 12 min at room temperature. 

Unilamellar PS liposomes were added to the mixture to obtain a final concentration of 95 

~-tM and the OD was recorded at 350 nm in 2 min intervals for a total of 20 min. 

Inhibition ofliposome aggregation by anti-toposome antibody was determined by pre

incubating the proteins with the antibody for 20 min at a concentration of 1 j.lg/mL. In 

some experiments, the unilamellar vesicles were harvested by spinning in the airfuge for 

20 min at 30 psi, the pellet washed once with the aggregation buffer containing 1.25 mM 

calcium and the supernatant and the final pellet analyzed by SDS-PAGE to identify the 

proteins bound to the unilamellar PS liposomes. 

2.2.8.2.4 Yolk granule aggregation assay 

Crude yolk granule preparations were resuspended in a solution containing 40 

mM histidine, 300 mM sucrose, 0.5 mM MgC}z and 0.5 M KCl (pH 6.0). Aggregation 

assays were performed at room temperature in the presence of 1.25 mM calcium. 

Aggregation of yolk granules was monitored by m easuring the OD35o at 2 min intervals. 
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Chapter 3. Results 
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3.1 Analysis of yolk granule protein extracts 

All the solutions used in yolk granule protein preparations contained 0.5 M KCl to 

create an isotonic environment to reduce the osmotic lysis of granules. The yolk granules 

prepared in 0.5 M KCl were first washed with 0.5 M KCl containing lmM CaClz (yolk 

granule calcium extract) to extract any proteins non-specifically bound to the yolk 

granule membrane. The second extraction was performed with 0.5 M KCl containing 1 

mM EGT A (yolk granule EGTA extract), which is a specific chelator of calcium. Any 

proteins bound to the yolk granule membranes in a calcium-dependent manner should 

appear in the yolk granule EGTA extract; therefore, theoretically, the protein profiles of 

the two extracts should be different. Instead, as revealed by SDS-P AGE analysis, both 

the yolk granule extracts, yolk granule calcium extract and yolk granule EGTA extract, 

had almost the same protein profile (Fig.3.1). Despite using isotonic solutions, some yolk 

granules may have ruptured releasing their contents. The apparent molecular weights of 

the polypeptides in the extracts ranged between 17 k and 240 k as determined by SDS..: 

PAGE (Laemmli, 1970) under reducing conditions. The apparent molecular weights of 

the polypeptides present in the yolk granule extracts are indicated in Fig. 3 .1. 

3.2 Separation of proteins present in the yolk granule calcium extract 

Ion exchange chromatography was performed using an anion exchange resin, Q

Sepharose Fast Flow (fast-Q) to achieve a partial separation of the proteins present in the 

yolk granule calcium extract. After loading the column, the bound proteins were eluted 

with a step gradient ofNaCl ranging from 0.1 M to 1 M. Sodium dodecyl sulfate 
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Fig. 3 .1. Sodium dodecyl sulfate polyacrylamide gel electrophoresis of yolk granule 

extracts. 

The yolk granules prepared in 0.5 M KCl were first washed with 0.5 M KCl containing 

1mM CaCh (yolk granule calcium extract) and then with 0.5 M KCl containing 1 mM 

EGTA (yolk granule EGTA extract). Aliquots (5 1-Lg) of yolk calcium extract (Panel A) 

and yolk granule EGTA extract (Panel B) were fractionated in a 10% (w/v) 

polyacrylamide gel (Laemmli, 1970). The gel was silver-stained. The apparent molecular 

masses of the polypeptides are shown. 
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polyacrylamide gel electrophoresis (Laemmli, 1970), under reducing conditions, revealed 

that each fraction had a different protein profile (Fig. 3.2). 

3.3 Proteins present in the 0.3 M and 0.4 M fractions eluted from the fast-Q resin 

are components of a high molecular weight protein complex of 240k 

The liposome aggregation assays performed on the 0.3 M and 0.4 M fractions 

eluted from the fast-Q resin demonstrated that these fractions had the liposome 

aggregating activity (see section 3.8, Results). A wide range of chromatographic methods 

were attempted in order to further separate the proteins present in the 0.3 M and 0.4 M 

fractions eluted from the fast-Q resin. However, none of the methods were successful. 

These results led us to suspect that the proteins were present as a high molecular weight 

complex in the native state. To investigate this possibility, the 0.3 M and 0.4 M fractions 

eluted from the fast-Q resin were run in a 10% (w/v) polyacrylamide gel, following 

solubilization in Laemmli solubilizing solution (Laemmli, 1970) in the presence and 

absence ofDTT (Fig. 3.3). Dithiothreitol is a reducing agent, which is capable of 

cleaving intramolecular and intermolecular disulfide bonds. Sodium dodecyl sulfate 

polyacrylamide gel electrophoresis (Laemmli, 1970) under reducing conditions showed 

three major bands at 160 kDa, 120 kDa and 90 kDa in the 0.3 M and 0.4 M fractions (Fig. 

3.3) A different protein profile was seen in SDS-PAGE (Laemmli, 1970) under non

reducing conditions, where a major band was observed having a molecular weight of 240 

k (Fig. 3.3). This 240 kDa protein was largely absent when the 0.3 M and 0.4 M 

fractions eluted from the fast-Q resin were electrophoresed under reducing conditions. 
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Fig. 3 .2. Sodium dodecyl sulfate polyacrylamide gel electrophoresis of fractions eluted 

from the anion exchange resin. 

Anion exchange resin, Q-Sepharose Fast Flow (fast-Q) was equilibrated with 10 mM 

Tris, pH 8.0, at 4°C and protein present in the yolk granule calcium extract (1mg) was 

loaded onto the column. The column was washed with equilibration buffer and the bound 

proteins were eluted with a step gradient ofNaCI ranging from 0.1 M to 1 M (step size-

0.1M) in the same buffer. A1iquots (5)-!g) ofthe unbound fraction (lane 2), first wash 

(lane 3), and elutions from 0.1 M to 0. 7 M NaCl (lane 4 to lane 10 respectively) were 

fractionated in a 10% (w/v) polyacrylamide gel (Laemmli, 1970). The molecular mass 

markers were run in lane 1. The gel was silver-stained. 
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Fig. 3.3. Sodium dodecyl sulfate polyacrylamide gel electrophoresis of fractions eluted 

from fast-Q resin, under reducing and non-reducing conditions. 

Aliquots (5 J.tg) of the 0.2 M fraction (lanes 2 and 3), the 0.3 M fraction (lanes 4 and 5), 

the 0.4 M fraction (lanes 6 and 7) and the 0.5 M fraction (lanes 8 and 9) were boiled in 

Laemmli solubilizing solution containing DTT (lanes 2, 4, 6 and 8) and in Laemmli 

solubilizing solution without DTT (lanes 3, 5, 7, and 9) and fractionated in a 10% (w/v) 

polyacrylamide gel (Laemmli, 1970). The molecular mass markers were run in lane 1. 

The gel was silver-stained. 
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This result suggested that the 160 k, 120 k and 90 k polypeptides exist as a high 

molecular weight complex of 240 k associated through intermolecular disulfide bonds. 

An experiment was performed to determine milder reducing conditions that can 

be used to separate the polypeptides present in the 240k high molecular weight protein 

complex. The protein present in the 0.4 M fraction eluted from the fast-Q resin was 

incubated for 1 hr under different reducing conditions as follows: i) at room temperature 

in the presence of 10 mM DTT; ii) at room temperature in the presence of 100 mM DTT; 

iii) at 37°C in the presence of 100 mM DTT. The incubations were performed in 

duplicate. Following incubation, the protein present in each aliquot was precipitated 

using an equal volume of 20 % (w/v) TCA. The precipitates were fractionated in a I 0% 

(w/v) polyacrylamide gel (Laemmli, 1970), side by side after treating with different 

solubilizing conditions: one aliquot was boiled in the Laemmli solubilizing solution 

containing DTT while the other fraction was boiled in the Laemmli solubilizing solution 

without DTT (Fig. 3.4). Pretreatment of proteins with 100 mM DTT at 37°C for 1 hr 

could generate the same protein profile that was observed when the sample was treated 

with Laemmli solubilizing solution containing DTT. This demonstrated that when treated 

under these milder conditions, the 240 kDa protein could be reduced to give rise to the 

free polypeptides of which it was composed. 

3.4 The 240 kDa protein is the toposome of Strongylocentrotus purpuratus 

A Western blot experiment was performed using the yolk granule calcium extract 

and the 0.4 M fraction eluted from the fast-Q resin (Fig. 3.5). The protein (10 J.tg) present 

in the yolk granule calcium extract and the 0.4 M fraction eluted from the fast-Q resin 
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Fig. 3 .4. Determination of minimum reducing conditions required to separate the 

polypeptides present in the 0.4 M fraction eluted from the fast-Q resin. 

Aliquots (5 1-1g) of0.4 M fraction eluted from the fast-Q resin were treated with 10 mM 

DTT (lanes 2 and 3) at room temperature for 1 hr, 100mM DTT (lanes 4 and 5) at room 

temperature for 1 hr and 100 mM DTT at 37°C for 1 hr. The protein present in the 

samples were precipitated by adding an equal volume of 20% (w/v) TCA. The 

precipitates were boiled in Laemmli solubilizing solution containing DTT (lanes 2, 4, 6 

and 8) and in Laemmli solubilizing solution without DTT (lanes 3, 5, 7, and 9) and 

fractionated in a 10% (w/v) polyacrylamide gel (Laemmli, 1970). The molecular mass 

markers were run in lane 1. The gel was silver-stained. 
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Fig. 3.5. Western blot experiment on 0.4 M fraction eluted from the fast-Q resin. 

Panel A. Aliquots (5 ~g) of yolk granule calcium extract (lanes 3 and 4) and 0.4 M 

fraction eluted from the fast-Q resin (lanes 1 and 2) were boiled in Laemmli solubilizing 

solution containing DTT (lanes 2 and 4) and in Laemmli solubilizing solution, without 

DTT (lanes 1 and 3) and fractionated in a 3-12% (w/v) polyacrylamide gel (Laemmli, 

1970). The gel was silver stained. 

Panel B. Aliquots (10 ~g) of yolk granule calcium extract (lanes 3 and 4) and 0.4 M 

fraction eluted from the fast-Q resin (lanes 1 and 2) were boiled in Laemmli solubilizing 

solution containing DTT (lane 2 and 4) and in Laemmli solubilizing solution without 

DTT (lane 1 and 3) and fractionated in a 3- 12% (w/v) polyacrylamide gel (Laemmli, 

1970) and transferred onto nitrocellulose. The nitrocellulose was probed with the anti

toposome antibody at a dilution of 1: 500 (v/v). It was then incubated for 1 hr in TTBS 

containing goat anti-mouse IgG conjugated with alkaline phosphatase at a dilution of 1: 

3000 and the antibody was visualized by treating the membrane in 100 mM NaHC03, 

lmM MgCh, pH 9.8 containing 0.03% (w/v) NBT and 0.015% (w/v) BCIP in the dark. 

The apparent molecular masses of the polypeptides are shown. 
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were electrophoresed in a 3- 12% (w/v) polyacrylamide gel (Laemmli, 1970) following 

solubilizing the samples under reducing and non-reducing conditions and then 

electroblotted onto nitrocellulose. The antibody used in the Western blots was raised 

against the toposome of the sea urchin, Paracentrotus lividus and was a gift from Dr. V. 

Matranga, 'Institute di Biologia dello Sviluppo', Palermo, Italy. We expected that this 

anti-toposome antibody would cross react with the toposome of the sea urchin, 

Strongylocentrotus purpuratus. The 240 kDa and 160 kDa polypeptide bands in both the 

yolk granule calcium extract and the 0.4 M fraction eluted from fast-Q resin were 

prominent in the Western blot demonstrating that these two polypeptides cross reacted 

with the antibody (Fig. 3.5). These results suggest that the 240 kDa polypeptide is the 

toposome of the Strongylocentrotus purpuratus. The SDS-PAGE experiments performed 

under reducing and non-reducing conditions suggest that the 160 kDa polypeptide was 

covalently bound to the 240 kDa complex (Fig. 3.3). On the other hand, the 160 kDa 

polypeptide was abundant in our yolk granule protein extracts. Therefore, we suggest 

that the 160 kDa polypeptide is the major yolk granule-protein derived from the 240 kDa 

toposome. 

3.5 Precursor product relationship of the 240 kDa polypeptide with the 160 kDa and 

120 kDa polypeptides 

A partial peptide mapping experiment was carried out following the method of 

Cleveland eta/. (1976) with some modifications to determine if the 240 kDa polypeptide 

was the precursor for the 160 kDa and 120 kDa polypeptides. Protein present in the 0.4 

M fraction eluted from the fast-Q resin was electrophoresed in a 10% (w/v) 
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polyacrylamide gel following solubilizing under reducing and non-reducing conditions 

(Laemmli, 1970). The 240 kDa, 160 kDa and 120 kDa polypeptides were excised from 

the gel following brief staining with CBB. The proteins were digested with 

Staphylococcus aureus VB (SV8) protease as described in section 2.2.7, Materials and 

Methods. The resulting peptides were resolved in a 12% (w/v) polyacrylamide gel. The 

peptide map was visualized by silver staining. The resulting peptide maps (Fig. 3.6) 

showed that the 240 kDa polypeptide shared common peptides with the 160 kDa and 120 

kDa polypeptides. Some peptide fragments were shared by only 240 kDa and 120 kDa 

polypeptides (shown by red arrows), while some peptide fragments were shared by only 

240 kDa and 160 kDa polypeptides (shown by blue arrows). The other peptide fragments 

were common to all three proteins. This result provides strong evidence to suggest that 

the 160 kDa and 120 kDa polypeptides are derived from the 240 kDa protein. 

3.6 Identification of calcium binding proteins present in the 0.4 M fraction eluted 

from the fast-Q resin 

Calcium binding experiments were carried out to determine if the polypeptides 

present in the 0.4 M fraction eluted from the fast-Q resin could bind calcium. This 

experiment was an approach to identify the proteins involved in calcium-dependent 

1iposome aggregation, since the polypeptides which bind calcium should be involved in 

this aggregation process. The proteins were incubated with 45Ca and the binding was 

detected by phosphoimaging. No labeling was detected when the calcium binding assay 

was performed using the 0.4 M fraction eluted from the fast-Q resin following 

fractionation by SDS-PAGE (Laemmli, 1970) under reducing conditions. The 
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Fig. 3.6. Partial peptide mapping of polypeptides present in the 0.4 M fraction eluted 

from the fast-Q resin. 

The 240 kDa, 160 kDa and 120 kDa polypeptides were excised from a 10% (w/v) SDS

p AGE gel following brief staining with CBB. The proteins were digested with 

Staphylococcus aureus VB (SV8) protease as described in section 2.2. 7, Materials and 

Methods. The resulting peptides were resolved in a 12% (w/v) polyacrylamide gel and 

silver-stained. Peptide patterns arising from the 240 kDa (lane 1), 160 k:Da (lane 2) 120 

k:Da (lane 3) polypeptides are shown and the position of the SV8 in the gel is indicated. 

The red arrows indicate the peptide fragments shared between 240 kDa and 120 kDa 

polypeptides while the blue arrows indicate the peptide fragments shared between 240 

kDa and 160 k:Da polypeptides. 
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denaturation occurring during SDS-P AGE may have accounted for the loss of calcium 

binding ability of the proteins present in the 0.4 M fraction. Therefore, a dot blot assay 

was performed in which the 0.4 M fraction eluted from the fast-Q resin was directly 

applied to nitrocellulose, followed by incubation with 45Ca to determine whether any 

proteins present in the 0.4 M fraction bound calcium. Labeling was seen using the 0.4 M 

fraction in a dot blot (Fig 3. 7). This result demonstrated that one or more polypeptides 

present in the 240 kDa protein complex was capable of binding calcium. The dot blot 

assay was performed by Dr. John Robinson. 

3. 7 Lipososome binding of yolk granule proteins 

Many proteins involved in membrane fusion and transportation events have the 

capacity to bind phospholipids in a calcium-dependent manner (Boustead et al., 1993). 

We were therefore interested in determining whether the yolk granule proteins exhibit 

calcium-dependent phospholipid binding. Liposome binding assays were performed to 

determine whether the proteins present in the yolk granule calcium extract and the 0.4 M 

fraction eluted from the fast-Q resin bind phospholipids in a calcium-dependent manner. 

The assays were performed using multilamellar liposomes prepared using a brain lipid 

extract. The brain lipid extract was composed of 10% (w/w) PI, 50% (w/w) PS and 

several other phospholipids. When a liposome binding assay was carried out on the yolk 

granule calcium extract, a range of proteins were shown to bind phospholipids in the 

presence of 5 mM calcium (Fig. 3.8). The apparent molecular masses of these proteins 

were detected as 160 k, 120 k, 112 k, 90 k, 68 k, 55 k and 32 k. The liposome binding 

assay performed on the proteins present in the 0.4 M fraction eluted from the fast-Q resin 
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Fig. 3.7. Calcium-binding assay on proteins present in the 0.4 M fraction eluted from the 

fast-Q resin. 

Calcium-binding assay was performed in a dot blot of the 0.4 M fraction eluted from the 

fast-Q resin. An aliquot (5 ~g) of the 0.4 M fraction was placed on nitrocellulose (2) and 

incubated with 7.5 ~M CaC}z containing 1 mCi/L 
45

Ca in calcium binding buffer. 

Troponin C (1 ~g) was used as the positive control (1) and BSA (2 ~g) was used as the 

negative control (3). Calcium binding was detected by Phospholmaging in the gel 

documentation system (Alpha Innotech Corporation). Troponin C used in the assay was a 

gift from Dr. David Heeley. The calcium binding assay was performed by Dr. John 

Robinson. 
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Fig. 3.8. Liposome binding assay on proteins present in the yolk granule calcium extract. 

An aliquot of yolk granule calcium extract (10 )lg) was incubated with multilamellar 

brain lipid liposomes for 30 min at room temperature in the presence of 5 mM calcium, 

the liposomes were pelleted in an airfuge and washed once with calcium wash buffer. 

The supernatant (lane 2), calcium wash (lane 3) and the bound fraction (pellet, lane 4) 

were fractionated in a 10% (w/v) polyacrylamide gel (Laemmli, 1970). Molecular mass 

markers were run in lane 1. The gel was silver-stained 
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revealed that polypeptides present in this fraction, mainly 160 kDa and 120 kDa, bind 

phospholipid vesicles in the presence of5 mM calcium (fig. 3.9). Liposome binding 

assays were also performed with the multi lamellar liposomes having the phospholipid 

composition of the yolk granule membranes (Refer to Table. 5 in appendix) (Fig. 3.10). 

The 160 kDa and 120 kDa polypeptides present in the 0.4 M fraction bound to these 

liposomes. Collectively, these data suggested that polypeptides present in the 0.4 M 

fraction eluted from the fast-Q resin were capable of binding to phospholipid vesicles in 

the presence of 5 mM calcium. 

Liposome binding assays were performed with different concentrations of 

calcium to determine the relationship between calcium concentration and the amount of 

protein binding. The unbound (supernatant) and bound (pellet) fractions were 

electrophoresed in an 8% (w/v) polyacrylamide gel (Laemmli, 1970) and the gel was 

stained with CBB. The 160 kDa bands were quantified by densitometry, the percentage 

bound was determined and then plotted against calcium concentration (Fig 3.11 ). The 

percentage bound showed a positive correlation with the calcium concentration in the 

medium and the maximum percentage binding of 25% was obtained at a free calcium 

concentration of 200 ~M. The apparent Kd for binding was approximately 25 ~M as 

calculated from the graph (Fig. 3.11). 

The binding assays described above were also performed in the presence of the 

anti-toposome antibody to determine if this antibody inhibits protein binding to 

liposomes (Fig. 3.9 and 3.1 0). The presence of this anti toposome antibody at a 

concentration of 1 ~g/mL inhibited the protein present in the 0.4 M fraction eluted from 

the fast-Q resin, binding to liposomes. 
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Fig. 3.9. Liposome binding assay on proteins present in the 0.4 M fraction eluted from 

the fast-Q resin with multilamellar brain lipid vesicles. 

An aliquot (5 IJ.g) of0.4 M fraction eluted from the fast-Q resin was incubated with 

multilamellar brain lipid liposomes for 30 min at room temperature in the presence of 5 

mM calcium. The liposomes were pelleted in an airfuge and both the unbound fraction 

(supernatant, lane 5) and the bound fraction (pellet, lane 6) were fractionated in an 8% 

(w/v) polyacrylamide gel (Laemmli, 1970). In parallel, a second liposome binding assay 

was carried out in the presence of anti-toposome antibody. An aliquot (5 IJ.g) of0.4 M 

fraction eluted from the fast-Q resin was pre-incubated with anti-toposome antibody for 

20 min and incubated with multilamellar brain lipid liposomes for 30 minutes at room 

temperature in the presence of 5 mM calcium. The unbound fraction (lane 3) and the 

bound fraction (lane 4) were fractionated in an 8% (w/v) polyacrylamide gel and then 

silver-stained. Lanes 1 and 2 contain molecular mass markers and anti-toposome 

antibody respectively. The anti-toposome antibody was a gift from Dr. V. Matranga, 

'Instituto di Biologia dello Sviluppo', Palermo, Italy. 
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Fig. 3.10. Liposome binding assay using proteins present in the 0.4 M fraction eluted 

from the fast-Q resin and multilamellar liposomes having the same phospholipid 

composition as that in the yolk granule membrane. 

The yolk granule membranes were analyzed for the phospholipid composition using 

standard assays (refer to Table. 5 in appendix). The phospholipid analysis was performed 

by Scott Pelley in Dr. Philip Davis's Lab. An aliquot (5 J..tg) of the 0.4 M fraction eluted 

from the fast-Q resin was incubated for 30 min at room temperature in the presence of 5 

mM calcium and multilamellar liposomes with the same phospholipid composition as the 

yolk granule membrane. The liposomes were pelleted in_ an airfuge and the unbound 

fraction (supernatant, lane 5) and the bound fraction (pellet, lane 6) were fractionated in 

an 8% (w/v) polyacrylamide gel (Laemmli, 1970). In parallel, a second liposome binding 

assay was carried out in the presence of anti-toposome antibody. An aliquot (5 J..tg) of0.4 

M fraction eluted from the fast-Q resin was pre-incubated with anti-toposome antibody 

for 20 min and incubated with multilamellar liposomes for 30 min at room temperature in 

the presence of 5 mM calcium. The unbound fraction (lane 3) and the bound fraction 

(lane 4) were fractionated in an 8% (w/v) polyacrylamide gel. The gel was silver stained. 

Lane 1 and lane 2 contain molecular mass markers and anti-toposome antibody 

respectively. The anti-toposome antibody was a gift from Dr. V. Matranga, 'Instituto di 

Biologia dello Sviluppo', Palermo, Italy. 
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Fig. 3 .11. Effect of calcium concentration on protein binding to liposomes. 

Aliquots (5 ~g) of the 0.4 M fraction eluted from the fast-Q resin were incubated with 

multilamellar brain lipid liposomes in the presence of different concentrations of calcium 

for 30 min. Liposomes were pelleted and the pellets and supernatants were fractionated in 

an 8% (w/v) polyacrylamide gel (Laemmli, 1970), stained with CBB and the 160 kDa 

band in the pellets and supernatants were quantified by densitometry, in the gel 

documentation system using the Chemilmager software program (Alpha Innotech 

Corporation) . The percentages of bound protein were calculated and plotted against 

calcium concentration. Apparent Kd for binding was approximately 25 ~M. The 

experiment was performed only once. 
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3.8 Liposome aggregation by yolk granule proteins 

Liposome aggregation assays were performed to investigate whether the proteins 

were capable of driving aggregation of vesicular structures in a calcium-dependent 

manner. The proteins of the yolk granule calcium extract demonstrated aggregating 

activity in the presence of 1.25 mM calcium (data not shown). Each time a liposome 

aggregation assay was performed, two control experiments were carried out; one with 

calcium in the absence of proteins to demonstrate that calcium alone was not able to drive 

liposome aggregation, and the other with protein in the absence of calcium to 

demonstrate that the aggregation driven by proteins was calcium-dependent. 

The aggregation assay was then performed on fractions eluted from the fast-Q 

resin (Fig. 3.12); in all assays, 5 J..Lg of protein was used. The fractions, eluted from the 

fast-Q resin in 0.3 M, 0.4 M and 0.5 M NaCl demonstrated liposome aggregating activity 

while the other fractions had little or no aggregating activity. Sodium dodecyl sulfate 

polyacrylamide gel electrophoresis (Laemmli, 1970) of these fractions under reducing 

conditions showed three major polypeptides in each fraction (Fig. 3.3). Polypeptides of 

160 kDa and 120 kDa were common to all three fractions suggesting that one or both 

these proteins might be involved in liposome aggregation. Both the 0.3 M and 0.4 M 

fractions eluted from the fast-Q resin had a polypeptide of 90 kDa, which suggested that 

this also might be involved in liposome aggregation. 

The polypeptides involved in aggregation may bind to the liposomes. Following 

liposome aggregation by the 0.4 M fraction eluted from the fast-Q resin, the vesicles were 

pelleted by centrifugation in the airfuge. The supernatant and the pellet were analyzed by 

SDS-PAGE (Laemmli, 1970) under reducing conditions. The 160 kDa, 120 kDa and 
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Fig. 3.12. Liposome aggregation assays on fractions eluted from the fast-Q resin. 

Aliquots (5 )lg) of fractions eluted from the fast-Q resin, i.e. the unbound (D), wash (A), 

and the 0.1 M (0), 0.2 M (+), 0.3 M (X), 0.4 M (• ), 0.5 M (-), 0.6 M (6), 0.8 M (e) 

NaCl eluates were incubated with 1.25 mM calcium in the aggregation buffer for 12 min. 

Unilamellar PS liposomes were then added and the OD350 was recorded every 2 min for a 

total of 20 min. A control experiment was carried out with calcium alone, omitting the 

protein, to demonstrate that calcium alone could not drive liposome aggregation at a 

concentration of 1.25 mM (0). This experiment was performed four times and the data 

presented in the figure are representative of the data obtained. 
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90 kDa polypeptides appeared in the liposome pellet suggesting that the 240 kDa 

complex was bound to the liposomes (Fig. 3.13). 

A liposome aggregation assay was performed with the 0.4 M fraction eluted from 

the fast-Q resin upon treating it with 100 mM DTT at 37 °C for 1 hr, to determine if the 

reduced form of the 240 kDa protein complex possesses liposome aggregating activity 

(Fig. 3.14). A good level ofliposome aggregating activity was observed in the reduced 

state as well (Fig. 3.14), suggesting that one or more polypeptides present in the 240 kDa 

complex were involved in liposome aggregation even in the reduced form. Analysis of 

the unilamellar liposome pellet by SDS-PAGE (Laemmli, 1970) revealed that all three 

polypeptides were bound to the liposomes (Fig 3.15). It is possible that all three 

polypeptides have the capacity to bind to liposomes and drive liposome aggregation. On 

the other hand, the polypeptides might remain associated by the help of other 

intermolecular bonds, which are not affected by DTT treatment (e.g. ionic, hydrophobic 

and hydrogen bonds). 

Liposome aggregation assays were performed to determine the effect of protein 

concentration on the rate of aggregation. The assay was performed with the yolk granule 

calcium extract and with the 0.4 M fraction eluted from the fast-Q resin. In both cases, 

the rate of aggregation was dependent on the concentration of protein. The initial rates of 

aggregation (.6.0D35o/ min) were calculated and plotted against the protein 

concentration for both the yolk granule calcium extract (Fig. 3.16. panel A) and the 0.4 

M fraction eluted from the fast-Q resin (Fig 3.16, panel B). The maximum initial rate of 

liposome aggregation was attained with ~50 f.!g/mL of protein present in the yolk granule 

calcium extract. Only ~25 Jlg protein from the 0.4 M fraction eluted from the fast-Q 
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Fig. 3.13. Sodium dodecyl sulfate polyacrylamide gel electrophoresis of the liposome 

pellet following the unilamellar PS liposome aggregation assay. 

An aliquot (5 Jlg) ofthe 0.4 M fraction eluted from the fast-Q resin was incubated with 

1.25 mM calcium for 12 min. Unilamellar PS liposomes were then added and the 

aggregation was monitored by measuring the OD at 350 nm. After 20 min, the liposomes 

were pelleted by spinning in an airfuge and the supernatant (lane 3), and the pellet (lane 

4) were fractionated in a 10% (w/v) polyacrylamide gel (Laemmli, 1970) under reducing 

conditions along with the 0.4 M fraction eluted from the fast-Q resin (lane 2) and the high 

molecular weight markers (lane 1). The gel was silver-stained. 
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Fig. 3.14. Liposome aggregation by the 0.4 M fraction eluted from the fast-Q resin, in its 

reduced form. 

An aliquot (5 1-lg) of the 0.4 M fraction eluted from the fast-Q resin was pre-incubated 

with 100 mM DTT at 37 °C for 1 hour and was then incubated with 1.25 mM calcium in 

the aggregation buffer. Unilamellar PS liposomes were then added and the aggregation 

was monitored by measuring the OD350 at 2 min intervals for 14 min ( + ). Control assays 

were performed with the 0.4 M fraction eluted from the fast-Q resin, without pre

incubating with DTT (..._),and the 0.4 M fraction eluted from the fast-Q resin, in the 

absence of calcium ( • ). This experiment was performed two times and the data 

presented in the figure are representative of the data obtained. 
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Fig. 3.15. Sodium dodecyl sulfate polyacrylamide gel electrophoresis of the liposome 

pellet following unilamellar PS liposome aggregation by proteins present in the 0.4 M 

fraction eluted from the fast-Q resin, in its reduced state. 

An aliquot (5 11g) of the 0.4 M fraction eluted from the fast-Q resin, was pre-incubated 

with 100 mM DTT at 37 °C for 1 hr and then was incubated with 1.25 mM calcium in the 

aggregation buffer. Unilamellar PS liposomes were then added and the aggregation was 

monitored by measuring the OD at 350 nm. After 20 min, the liposomes were pelleted by 

spinning in an airfuge and the supernatant (lane 3) and the pellet (lane 4) were 

fractionated in a 10% (w/v) polyacrylamide gel (Laemmli, 1970) along with reduced 0.4 

M fraction eluted from the fast-Q resin (lane 2) and the molecular mass markers (lane 1). 

The gel was silver-stained. 
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Fig. 3.16. Determination of the effect of protein concentration on liposome aggregation. 

Liposome aggregation assays were performed with the yolk granule calcium extract and 

the 0.4 M fraction eluted from the fast-Q resin, at different protein concentrations. The 

initial rates (.6.00350/min) of aggregation by the yolk granule calcium extract and the 0.4 

M fraction eluted from the fast-Q resin were calculated and plotted against the protein 

concentration (panel A and panel B respectively). This experiment was performed two 

times and the data presented in the figure are representative of the data obtained. 
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resin, was required to reach this maximum initial velocity, suggesting that the 

aggregating activity might be relatively more concentrated in this fraction. 

Calcium is known to aggregate liposomes on its own at higher concentrations. 

Two sets of liposome aggregation assays were carried out to determine the effect of 

calcium ion on aggregation: one with different concentrations of calcium in the absence 

of protein to determine the effect of calcium alone on aggregation, and the other with 

different concentrations of calcium in the presence of a fixed amount (5 1-1g) of protein 

present in the 0.4 M fraction eluted from the fast-Q resin, to determine the effect of 

calcium concentration on protein driven aggregation. In each case, the initial rates of 

aggregation (.6.0D35o/min) were determined and plotted against the calcium 

concentration (Fig. 3 .17). Calcium alone could drive liposome aggregation above 1.5 

mM, but was unable to cause liposome aggregation below this concentration. The 

protein present in the 0.4 M fraction eluted from the fast-Q resin was capable of driving 

liposome aggregation below 1.5 mM calcium, a concentration at which calcium alone 

could not drive liposome aggregation. In the presence of protein, the rate of aggregation 

was dependent on the calcium concentration used in the assay. The rate of protein driven 

aggregation was fast, and the effect of calcium itself was minimal at 1.25 mM calcium, 

which was the concentration of calcium used in our assays. 

Liposome aggregation assays were performed to investigate the effect of other 

metal ions on the aggregating activity of the proteins present in the 0.4 M fraction (Fig. 

3.18). Proteins present in the 0.4 M fraction could drive liposome aggregation in the 

presence of 1.25 mM barium while no aggregation was observed in the presence of 1.25 

mM magnesium. 
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Fig. 3.17. Determination of the effect of calcium concentration on aggregation. 

Two sets ofliposome aggregation assays were performed, one with a fixed amount (5 f.!g) 

of protein present in the 0.4 M fraction eluted from the fast-Q resin and different 

concentrations of calcium and the other with different concentrations of calcium in the 

absence of protein. The initial rates of aggregation (.60D350/min) with calcium alone 

( •) and protein in the presence of calcium (0) were calculated and plotted against the 

calcium concentration. 
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Fig. 18. Detetmination of the effect of the other metal ions on liposome aggregation by 

proteins present in the 0.4 M fraction eluted from the fast-Q resin. 

Aliquots (5 J.tg) of0.4 M fraction eluted from the fast-Q resin were incubated with 1.25 

mM calcium ( •) 1.25 mM barium ( •) or 1.25 mM magnesium (X) for 12 min. Upon 

adding unilamellar PS liposomes, the aggregation was monitored by measuring the OD3so 

at 2 min intervals for 20 min. Control ( +) did not contain any metal ions. The experiment 

was performed only once. 
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The liposome aggregation assays were also performed in the presence of the anti

toposome antibody to determine the effect of this antibody on the aggregation driven by 

the proteins present in the 0.4 M fraction eluted from the fast-Q resin (Fig. 3.19). Anti

toposome antibody could specifically inhibit the aggregating activity of the proteins 

present in the 0.4 M fraction eluted from the fast-Q resin. The aggregation was 

completely inhibited when the proteins were pre-incubated with the antibody at room 

temperature for 20 min, at a concentration of 1 j..tg/mL. The inhibition of the binding of 

the protein present in the 0.4 M fraction eluted from the fast-Q resin to the liposomes 

could be attributed to the inhibitory effect of the antibody on aggregation (Figs 3.9 and 

3.10). 

3.9 The major yolk granule protein in Strongylocentrotus purpuratus is capable 

of aggregating liposomes 

hnmobilized metal ion affinity chromatography (IMAC) was employed to isolate 

the 160 kDa polypeptide. Copper was first bound to the Chelating Sepharose Fast Flow 

resin. After loading the 0.4 M fraction eluted from the fast-Q resin onto the column, the 

bound proteins were eluted with a step gradient of guanidine thiocyanate. The 160 kDa 

polypeptide was bound to the Chelating Sepharose Fast Flow resin and eluted at 3 M 

guanidine thiocyanate (Fig. 3.20). The 3M guanidine thiocyanate fraction was dialyzed 

extensively to remove the guanidine thiocyanate and a liposome aggregation assay was 

performed (Fig. 3.21). The protein demonstrated liposome aggregating activity in the 

presence of calcium, providing strong evidence to suggest that the major yolk granule 

91 



Fig. 3.19. Inhibition ofthe liposome aggregation caused by the protein present in the 0.4 

M fraction eluted from the fast-Q resin, by the anti-toposome antibody. 

An aliquot (5 J..tg) of 0.4 M fraction eluted from the fast-Q resin was incubated with 1.25 

mM calcium for 12 min. Unilamellar PS liposomes were then added and the aggregation 

was monitored by measuring the OD3so at 2 min intervals for 12 min (.a.). The effect of 

the anti-toposome antibody on the aggregation was tested by pre-incubating the protein 

present in the 0.4 M fraction with the anti-toposome antibody (1 J.lg/ mL) for 20 min 

before commencing the assay (X) and with the protein present in the 0.4 M fraction 

eluted from the fast-Q resin, in the presence of the anti-toposome antibody (1 J..tg/ mL), 

but without preincubating ( • ). An assay was performed with the 0.4 M fraction eluted 

from the fast-Q resin, pre-incubated with pre-immune serum (1 J..tg/ mL) for 20 min (1 

J..tg) to demonstrate that the pre-immune serum did not have an effect on the liposome 

aggregation caused by the protein present in this fraction ( • ). Two control assays were 

performed with the anti-toposome antibody (1 J..tg/ mL) alone (+)and pre-immune serum 

alone (0) omitting the protein present in the 0.4 M fraction eluted from the fast-Q resin, 

to demonstrate that the proteins contained in these fractions did not exhibit liposome 

aggregating activity. The curves resulted from these latter two control experiments are 

superimposed and indistinguishable from one another. This experiment was performed 

two times and the data presented in the figure are representative of the data obtained. 
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Fig. 3.20. Sodium dodecyl sulfate polyacrylamide gel electrophoresis of the fractions 

eluted from the Chelating Sepharose Fast Flow resin. 

Copper was bound to the Chelating Sepharose Fast Flow resin and was equilibrated with 

10 column volumes of 50 mM Imidazole containing 6 M urea (pH 7 .0). An aliquot (1 00 

j..tg) of the 0.4 M fraction eluted from the fast-Q resin, which was extensively dialyzed 

against the equilibration buffer was loaded onto the column. The unbound proteins were 

washed off the column using 5 column volumes of equilibration buffer and the bound 

proteins were eluted using 1 M N aCl and then using a step gradient of guanidine 

thiocyanate ranging from 1M to 5 M (step size-1M). Aliquots (5 flg) of the unbound 

fraction (lane 1), wash (lane 2), 1M NaCl eluate (lane 3) and guanidine thiocyanate 

eluates (lanes 4 to 8) were boiled in Laemmli solubilizing solution and fractionated in a 

10% (w/v) polyacrylamide gel (Laemmli, 1970) and silver stained. The molecular mass 

markers were run in lane 9. 
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Fig. 3.21. Liposome aggregation assay on proteins present in the 3M guanidine 

thiocyanate fraction eluted from the Chelating Sepharose Fast Flow resin. 

An aliquot (0.5 !lg) of the 3M guanidine thiocyanate fraction, eluted from the Chelating 

Sepharose Fast Flow resin was incubated with 1.25 mM calcium for 12 min. Unilamellar 

PS liposomes were then added and the aggregation was monitored by measuring the 

OD350 at 2 min intervals for a total of 20 min ( • ). A control experiment was performed 

with calcium alone omitting the protein (A.). The experiment was performed only once. 
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protein in the sea urchin was involved in calcium-dependent vesicular aggregation. The 

low molecular weight 29 k polypeptide appearing in the 3 M guanidine thiocyanate eluate 

(Fig. 3.20) was probably not involved in liposome aggregation, as it was not present in 

any of the fractions which demonstrated aggregating activity. Since the 29 kDa 

polypeptide was not present in the starting material, we suggest that it is a peptide derived 

from a protein present in the starting material during the chromatographic procedure. 

3.10 Yolk granule aggregation 

3.10.1 Proteins present in the 0.4 M fraction eluted from the fast-Q resin can drive 

yolk granule aggregation 

We have investigated the ability of the protein present in the 0.4 M fraction eluted 

from the fast-Q resin, to mediate aggregation of vesicular structures, which are naturally 

associated with the cells in order to determine the physiological relevance of the 

aggregating activity. Yolk granule aggregation assays were employed to reach this goal. 

The assays were performed using the yolk granules prepared in 0.5 M KCl in the 

presence (Fig. 3.22, panel B) and absence (Fig. 3.22, panel A) of EDT A. Since EDTA 

can chelate calcium, the yolk granules prepared in the presence of EDT A should be 

deficient of any membrane proteins, bound to them in a calcium dependent manner. The 

aggregation assay was performed in two steps as follows: Initially only calcium was 

added to the yolk granule suspension and aggregation was monitored by measuring the 

OD35o at 2 min intervals for 12 min. After 12 min, the protein present in the 0.4 M 

fraction eluted from the fast-Q resin was added to the yolk granule suspension and the 

aggregation was monitored for another 12 min. The experiment was performed with 
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Fig. 3.22. Yolk granule aggregation assays. 

Aggregation assays were performed using yolk granules prepared in 0.5 M KCl (panel A) 

and yolk granules prepared in 0.5 M KCl containing 1 mM EDTA (panel B). Aggregation 

was monitored by measuring the OD at 350 nm. At zero time, calcium was added to the 

yolk granule suspension and the OD was recorded at 2 min intervals for a total of 12 min. 

At 12 min, the protein (5 JJ.g) present in the 0.4 M fraction eluted from the fast-Q resin 

was added to the yolk granule suspension and the OD monitored for another 12 min. The 

experiments were performed with a series of calcium concentrations, i.e. 1 J.!M (D), 10 

J.!M (.A), 100 J!M (X), 500 J!M (.6.), lmM ( • ), 1.25 mM (+), 2 mM (0). A control 

assay was performed in the absence of calcium ( + ). The dip in absorbance observed upon 

the addition of protein was caused by the dilution effect. This experiment was performed 

two times and the data presented in the figure are representative of the data obtained. 
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different calcium concentrations to determine the effect of calcium concentration on yolk 

granule aggregation (Fig. 3.22). The yolk granules prepared in 0.5 M KCl were able to 

aggregate in the presence of calcium, suggesting that the yolk granules harbor proteins, 

which can drive aggregation in the presence of calcium. The rate of yolk granule 

aggregation was positively correlated with the concentration of calcium used in the assay 

(Fig. 3.23). Interestingly, the yolk granules prepared in the presence of EDT A were not 

able to aggregate at the same rate suggesting that the EDTA treatment strips off the 

proteins, which mediate the yolk granule aggregation (Fig. 3.23). Collectively these 

observations suggest that the proteins, which drive the yolk granule aggregation, were 

bound to the yolk granule membrane in a calcium-dependent manner. The aggregating 

activity of the protein as well, was shown to be calcium-dependent. 

Alternatively, another yolk granule aggregation assay was performed with the 

yolk granules prepared in 0.5 M KCl after extracting the granules with 0.5 M KCl 

containing 10 mM EGTA (Fig. 3.24). The yolk granules lost the aggregating activity 

upon the EGT A extraction. Supplementation of the yolk granules with the protein present 

in the EGTA extract could restore the lost aggregating activity of the yolk granules. A 

Western blot was performed on the EGTA extract using the anti-toposome antibody to 

identify the proteins present. The polypeptides of240 kDa, 160 kDa, 120 kDa and 32 

kDa appeared in the Western blot. The pattern of the Western blot of the EGT A extract 

was similar to that of the 0.4 M fraction eluted from the fast-Q resin (Fig. 3.25). 
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Fig. 3.23. The effect of calcium concentration on yolk granule aggregation. 

Aggregation assays were performed using the yolk granules prepared in 0.5 M KCl (Fig. 

22, panel A) and the yolk granules prepared in 0.5 M KCl containing 1 mM EDTA (Fig. 

22. panel B) in the presence of a series of calcium concentrations. The initial rates 

(.6..0D350/min) of the calcium-driven yolk granule aggregation by the yolk granules 

prepared in 0.5 M KCl ( •) and the yolk granules prepared in 0.5 M KCl containing 1 

mM EDTA (0) were calculated using the curves before protein was added and these 

values were plotted against the calcium concentration. This experiment was performed 

two times and the data presented in the figure are representative of the data obtained. 
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Fig. 3.24. The effect ofEGTA extraction of the granules on yolk granule aggregation. 

Yolk granules prepared in 0.5 M KCl were resuspended in aggregation buffer containing 

0.5 M KCl. The yolk granule suspension was made 1.25 mM calcium and the aggregation 

was monitored by measuring the OD350 at 2 min intervals for a total of20 min (.6..). The 

effect ofEGTA extraction of yolk granules was examined as follows. The yolk granules 

prepared in 0.5 M KCl were extracted with EGTA. Yolk granules were pelleted and the 

aggregation was performed with these yolk granules as explained above ( • ). In another 

assay, the protein present in the EGTA extract (10 /-lg) was added to the yolk granules 

which were extracted with EGTA before commencing the assay, to determine if the 

proteins present in this extract could to restore the calcium driven yolk granule 

aggregation ( + ). A control assay was performed with yolk granules prepared in 0.5 M 

KCl in the absence of calcium ( • ). The experiment was performed only once. 
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Fig. 3.25. Western blot analysis of the yolk granule EGTA extract. 

Aliquots (1 0 f.,!g) ofthe yolk granule EGTA extract (lane 1) and the 0.4 M fraction eluted 

from the fast-Q resin (lane 2) were boiled in Laemmli solubilizing solution containing 

DTT, fractionated in a 3-12% (w/v) polyacrylamide gel (Laemmli, 1970) and transferred 

onto nitrocellulose. The nitrocellulose was probed with the anti-toposome antibody at a 

dilution of 1: 500 (v/v). It was then incubated for 1 hour in TTBS containing goat anti

mouse IgG conjugated with alkaline phosphatase at a dilution of 1: 3000 and the antibody 

was visualized by treating the membrane in 100 mM NaHC03, lmM MgCh, pH 9.8 

containing 0.03% (w/v) NBT and 0.015% (w/v) BCIP in the dark. Molecular masses of 

the proteins are shown. 
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3.10.2 The anti-toposome antibody inhibits the yolk granule aggregation 

The effect of the anti-toposome antibody on yolk granule aggregation was determined by 

pre-incubating the yolk granules with the antibody as well as by pre-incubating protein 

present in the 0.4 M fraction eluted from the fast-Q resin, with the antibody. Pre

incubation of the yolk granules with the anti-toposome antibody inhibited the calcium

driven aggregation of yolk granules prepared in 0.5 M KCl (Fig. 3.26, panel A). This 

result suggests that the proteins responsible for aggregation present in the yolk granule 

membranes are exposed to the periphery of the yolk granules. This allows the antibody to 

react directly with the proteins, thereby inhibiting their aggregating activity. Although 

the protein present in the 0.4 M fraction eluted from the fast-Q resin could restore the lost 

aggregating activity of the yolk granules prepared in the presence of EDT A, pre

incubation of the 0.4 M fraction eluted from the fast-Q resin with the anti-toposome 

antibody abolished this action (Fig. 3.26, panel B). 

Collectively these data suggest that the aggregating activity of 240 kDa protein 

complex and/or one or more polypeptides contained in this protein complex is a 

physiologically relevant function. This result also suggests that the proteins responsible 

for the aggregation are originally present on the surface ofthe yolk granules. Both the 

membrane binding, as well as the aggregating activity, was shown to be mediated by 

calcium. Most importantly, we have demonstrated that the proteins present in the 0.4 M 

fraction eluted from the fast-Q resin are involved in yolk granule aggregation. 
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Fig. 3.26. Inhibition of yolk granule aggregation by the anti-toposome antibody. 

Yolk granule aggregation assays were performed using the granules prepared in 0.5 M 

KCl (panel A) or in 0.5 M KCl containing 1mM EDT A (panel B). At zero time, 1.25 mM 

calcium was added to the yolk granule suspension and the aggregation was monitored by 

measuring the OD350 at 2 min intervals for a total of 12 min. At 12 min, the protein (5 

J..lg) present in the 0.4 M fraction eluted from the fast-Q resin was added to the yolk 

granule suspension and the aggregation was monitored for another 12 min (+).The effect 

of anti-toposome antibody on yolk granule aggregation was tested in two ways; i.) Yolk 

granules were pre-incubated with the anti-toposome antibody for 20 min before 

commencement of the assay (X) ii.) The protein present in the 0.4 M fraction was pre

incubated with anti-toposome antibody for 20 min before adding to the yolk granule 

suspension ( • ). A control experiment was performed by pre-incubating the yolk 

granules with pre-immune serum to demonstrate that the pre-immune serum did not 

inhibit the yolk granule aggregation(~). The dip in absorbance observed upon the 

addition of protein was caused by the dilution effect. The experiment was perfonned only 

once. 
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3.10.3 Exposure of yolk granules to trypsin abolishes their calcium-driven 

aggregation 

Yolk granule aggregation assays were performed following exposure of the 

granules to trypsin. Trypsin, being membrane-impermeable, cleaves only the peripherally 

located membrane proteins. Yolk granule aggregation assays were performed using the 

granules prepared in 0.5 M KCl with different concentrations of trypsin (Fig. 3.27). 

Inhibition was not observed at a trypsin concentration of 0.2 j.tg/mL but a partial 

inhibition was observed at a trypsin concentration of 0.5 j.tg/mL, while a complete 

inhibition was seen with 1 j.tg/mL trypsin (Fig 3.27). These observations proved that the 

yolk granule aggregation was driven by proteins, which were susceptible to tryptic 

digestion and located at the periphery of the yolk granules. When yolk granules 

previously treated with trypsin, were supplemented with protein present in the 0.4 M 

fraction eluted from the fast-Q resin, the lost aggregation activity was restored 

successfully (Fig. 3.28). 

3.11 Analysis of yolk granule membrane proteins 

We were interested in finding whether the 240 kDa and 160 kDa polypeptides were 

components of the yolk granule membranes. Density gradient ultracentrifugation was 

employed to isolate yolk granule membranes. The fractions spanning the whole gradient 

were analyzed by SDS-P AGE (Laemmli, 1970) under reducing conditions to determine 

the protein profiles (Fig. 3.29). The 50% (w/v) and 40% (w/v) sucrose fractions (lanes 

from 3 to 25 and lanes from 27 to 35 respectively) had relatively higher concentration of 

low molecular weight and medium molecular weight proteins. The 30 k polypeptide, 
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Fig. 3.27. Determination ofthe effect of exposing yolk granules to trypsin on yolk 

granule aggregation. 

Yolk granules prepared in 0.5 M KCl were resuspended in the aggregation buffer 

containing 0.5 M KCI. To find the effect of exposing yolk granules to trypsin on yolk 

granule aggregation, the granules were pre-incubated with trypsin at 0.1 IJ.g/mL (0), 0.2 

IJ.g/mL (..6.), 0.5 IJ.g/mL (X), 1 IJ.g/mL (D) and 2 IJ.g/mL ( •) before commencing the 

aggregation assay. The yolk granule suspension was then made 1.25 mM calcium and the 

aggregation was monitored by measuring the OD350 at 2 min intervals for a total of 20 

min. A control assay was performed in the absence of trypsin ( • ). The experiment was 

performed only once. 
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Fig 3.28. Ability of the protein present in the 0.4 M fraction eluted from the fast-Q resin 

to restore the lost aggregating activity of yolk granules exposed to trypsin. 

The yolk granules prepared in 0.5 M KCl was resuspended in the aggregation buffer 

containing 0.5 M KCI. The effect of exposing yolk granules to trypsin on yolk granule 

aggregation was determined by two methods as following. i.) The yolk granules were 

pre-incubated with trypsin (1 Jlg) for 2 min at room temperature and the aggregation 

assay was performed as described below(~). ii) Trypsin (1 Jlg) was added at 10 min 

after initiation of the yolk granule aggregation assay ( + ). The ability of the protein 

present in the 0.4 M fraction eluted from the fast-Q resin to restore the lost aggregating 

activity of yolk granules exposed to trypsin was determined as following. Yolk granules 

exposed to trypsin (1 Jlg/mL) were pelleted by centrifuging in a bench top eppendorf 

centrifuge for few seconds and resuspended in the aggregation buffer containing 0.5 M 

KCl and the aggregation assay was performed. For the aggregation assays, the yolk 

granule suspension was made 1.25 mM calcium, the protein (5 Jlg) present in the 0.4 M 

fraction was then added and the aggregation was monitored by measuring the OD3so at 2 

min intervals for a total of 20 min ( • ). Control assays were performed with the yolk 

granules prepared in 0.5 M KCl in the presence of 1.25 mM calcium ( •) and absence of 

calcium to demonstrate that the yolk granule aggregation was calcium-dependent (X). 

The experiment was performed only once. 
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Fig. 3.29. Sodium dodecyl sulfate polyacrylamide gel electrophoresis of fractions 

collected from the sucrose density gradient. 

Yolk granules were lysed by suspending in a hypotonic solution of20 mM Tris (pH 7.0). 

The lysate was made 50% (w/v) sucrose using a 78% (w/v) sucrose stock and was 

layered under a discontinuous gradient of 40% (w/v) (9.5 mL), 25% (w/v) (5 .5 mL and 

0% (0.8 mL) sucrose. The gradient was centrifuged at 87,000xg for 16 hours and 

fractions of0.5 mL were collected starting from bottom of the tube. Aliquots (5 J..lg) of 

fractions spanning the gradient were fractionated in a 10% (w/v) polyacrylamide gel 

(Laemmli, 1970). The gel was silver-stained. The 25/40% interface (fraction No. 37 to 

42) and 0/25% interface (fraction No. 50 to 53) contained the yolk granule membranes. 

The fraction numbers and the corresponding sucrose densities are indicated in the figure. 
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which is an abundant low molecular weight species present in the yolk granules of the sea 

urchins, was present in larger quantities in these fractions. The latter fractions from the 

gradient contained relatively larger amounts of higher molecular weight species, 

including 160 k and 120 k polypeptides. According to Vater and Jackson (1989), as well 

as our observations, the membrane fraction was confined to both the 25/40% and 0/25% 

interfaces. Interestingly, the fractions from these interfaces mainly had high molecular 

weight proteins. The two sets of membrane fractions from the 25/40% and 0/25% 

interfaces were pooled separately (designated M1 and M2 respectively), diluted and 

centrifuged at high speed to pellet the membrane particles. When the final membrane 

preparation was analyzed by SDS-PAGE (Laemmli, 1970) under non-reducing 

conditions, both the M1 and M2 fractions were shown to contain 160 kDa, 130 kDa, 120 

kDa, 90 kDa and 55 kDa as major polypeptides (Fig. 3.30). These results suggested that 

the yolk granule membrane was composed of mainly high molecular weight polypeptides 

of 160k, 130k, 120k and 90k. When electrophoresed under non-reducing conditions, 

these preparations showed a totally different protein profile (Fig. 3.31). The high 

molecular weight polypeptides of240k and 160k were prevalent in the membrane 

preparations with some other high molecular weight polypeptides of 140k, llOk, 90k 

medium molecular weight polypeptides of76 and 62 k. These results demonstrated that 

the 240k high molecular weight protein complex and the 160 kDa major yolk granule 

protein were present in the yolk granule membrane. It is possible that the yolk granule 

membrane is composed of proteins generated from the toposome including the 160 kDa 

major yolk granule protein. 
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Fig. 3.30. Sodium dodecyl sulfate polyacrylamide gel electrophoresis of the yolk granule 

membrane fractions under reducing conditions. 

Yolk granule membranes were prepared by sucrose density gradient ultracentrifugation 

by the method of Vater and Jackson (1989). The 25/40% interface (fractions 37 to 42) 

and the 0/25% interface (fractions 50 to 53) containing the yolk granule membranes were 

pooled (M1 and M2 respectively) and centrifuged at 170,000xg to pellet the yolk granule 

membranes. The pellet was then resuspended in a small volume of 10 mM Tris-HCI (pH 

7.0) and aliquots (5 !lg) of the M1 (lane 1) and the M2 (lane 2) were fractionated in a 

10% (w/v) polyacrylamide gel (Laemmli, 1970) and silver-stained. Lane 3 has molecular 

mass markers. 
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Fig. 3.31. Sodium dodecyl sulfate polyacrylamide gel electrophoresis of yolk granule 

membrane preparations under non-reducing conditions. 

Aliquots (5 J.tg) of the M1 (Panel A) and M2 (Panel B) membrane fractions were 

fractionated in a 10% (w/v) polyacrylamide gel (Laemmli, 1970) after boiling in 

Laemmli solubilizing solution without DTT. The gel was silver-stained. The molecular 

masses of the proteins are shown. 
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The M1 membrane fraction was extracted with a buffer containing EDTA to determine if 

the proteins were bound to membranes in a calcium-dependent manner. The membranes 

were pelleted, and the supernatant (EDT A extract) and the pellet were analyzed by SDS

PAGE (Laemmli, 1970) under reducing conditions (Fig. 3.32). The 160 kDa, 130 kDa, 

120 kDa and 90 kDa polypeptides appeared in the supernatant suggesting that the 

membrane binding of these proteins was mediated by calcium. When a liposome 

aggregation assay was performed on the EDTA extract, an excellent 1iposome 

aggregation activity was observed, suggesting that one or more proteins present in the 

EDTA extract of the yolk granule membrane might be physiologically involved in 

aggregation of yolk granules (Fig. 3.33). When the Ml membrane fraction was washed 

with 0.5 M NaCl, the polypeptides of 160 kDa, 130 kDa, 120 kDa and 90 kDa were 

shown to be in the supernatant suggesting that these proteins could be eluted by high salt 

washes (Fig. 3.34). The high salt washes should release mainly the peripherally located 

proteins from the membranes. 

3.12 Analysis of the surface proteins in eggs and embryonic cells 

Immunocytochemical studies on sea urchin embryos have demonstrated that the 

yolk proteins are transported and present in the plasma membranes of the eggs and 

embryonic cells (Gratwohl et al., 1990). The embryos from different stages (1 hours post 

fertilization (HPF), 2 HPF, 7 HPF, 25 HPF, 44 HPF and 70 HPF) were dissociated by the 

method of Matranga et al. (1986) in order to separate the cells. The embryonic cells were 

isolated by differential centrifugation. The eggs and the embryonic cells were extracted 

with EDT A. We expected to see calcium-dependent proteins present on the surface of 
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Fig. 3.32. Sodium dodecyl sulfate polyacrylamide gel electrophoresis of EDT A extract of 

high density yolk granule membrane fraction. 

The M1 membrane fraction was made 10 mM EDTA, incubated at room 

temperature for 30 min and was centrifuged for 30 min at 30 psi in an airfuge. Aliquots (5 

)lg) ofthe EDTA extract (supernatant, lane 1) and the membrane pellet (lane 2) were 

fractionated in a 10% (w/v) polyacrylamide gel (Laemmli, 1970). A control assay was 

performed in parallel in the absence of EDT A (supernatant, lane 3 and pellet, lane 4). The 

gel was silver-stained. Lane 5 has molecular mass markers. 
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Fig. 3.33. Liposome aggregation assay on EDTA extracts of the yolk granule membrane 

fractions. 

Aliquots (5 J..Lg) of the Ml (X) and the M2 (+)membrane fractions were pre-incubated 

with 1.25 mM calcium for 12 min. Unilamellar PS liposomes were then added and the 

aggregation was monitored by measuring the OD350 at 2 min intervals for 14 -20 min. 

Control assays were performed with protein present in the EDTA extract ofM1, in the 

absence of calcium ( • ), protein present in the EDT A extract of M2 in the absence of 

calcium (0), and with 1.25 mM calcium in the absence of protein (.A). The expe1iment 

was performed only once. 
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Fig. 3 .34. Sodium dodecyl sulfate polyacrylamide gel electrophoresis of salt extract from 

yolk granule membrane fractions. 

The M1 membrane fraction was made 0.5 M NaCl, incubated at room temperature 

for 30 min and was centrifuged for 30 min at 30 psi in an airfuge. Aliquots (5 J..Lg) of the 

salt extract (lane 1) and the membrane pellet (lane 2) were fractionated in a 10% (w/v) 

polyacrylamide gel (Laemmli, 1970). A control assay was performed in parallel in the 

absence ofNaCl (supernatant, lane 3 and pellet, lane 4). The gel was silver-stained. Lane 

5 has molecular mass markers. 
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these cells in these EDTA extracts. Sodium dodecyl sulfate gel electrophoresis (Laernmli, 

1970) under reducing conditions demonstrated that these extracts were emiched with 

high molecular weight polypeptides including 240k, 160k (Fig. 3.35). As development 

proceeds, these high molecular weight proteins decrease while the low molecular weight 

proteins start to appear. The most striking change was the gradual disappearance of the 

160 k:Da polypeptide by 7 HPF, with the appearance of relatively lower molecular weight 

polypeptides ranging from 90 k to 44 k. 

A Western blot was performed on the EDTA extract of eggs and cells from 25 

HPF embryos using the anti-toposome antibody (Fig. 3.36). The anti-toposome antibody 

cross-reacted with 240 k:Da, 160 k:Da, 120 k:Da and 90 kDa polypeptides present in the 

egg EDTA extract (Fig. 3 .36, lane 1 ), while it cross-reacted with some lower molecular 

weight species of 55 k, 44 k and 32 kin the EDTA extracts ofthe cells from 25 HPF 

stage (Fig. 3.36, lane 2). This suggested that the lower molecular weight polypeptides 

present in the EDTA extract ofthe cells from the 25 HPF stage were derived from the 

toposome. Obviously the 240 k:Da toposome and the 160 k:Da major yolk granule protein 

present in the surface of the embryos are not been proteolytically processed while they 

are sitting on the cell surface, since the enzyme involved in yolk protein processing is 

located in the yolk granules. Therefore, this observation suggests that the yolk proteins, 

which are enzymatically modified, are continuously transported to the plasma membrane 

throughout the embryonic development. 
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Fig. 3.35. Sodium dodecyl sulfate polyacrylamide gel electrophoresis of egg and 

embryonic cell extracts. 

Embryos were dissociated using the method explained by Matranga et al. (1986). 

Embryonic cells were isolated by differential centrifugation. Eggs and the embryonic 

cells were washed with CMFSW and extracted with CMFSW containing 10 mM EDT A. 

Extracts were spun at 87,000xg to obtain the supernatants. Aliquots (5 J.Lg) of extracts 

from the eggs (lane 1) and the embryos of 1 HPF (lane 2), 2 HPF (lane 3), 7 HPF (lane 

4), 25 HPF (lane 5) and 70 HPF (lane 6) were fractionated in a 3-12% (w/v) 

polyacrylamide gel (Laemmli, 1970) and silver-stained. Lane 7 has molecular mass 

markers. 
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Fig. 3.36. Western blot analysis of EDT A extracts of eggs and cells from 25 HPF 

embryos. 

Aliquots (5 J.Lg) ofthe EDTA extracts of eggs (lane 1) and cells from 25 HPF embryos 

(lane 2) were fractionated in a 3-12% (w/v) polyacrylamide gel (Laemmli, 1970) and 

transferred onto nitrocellulose. The nitrocellulose membrane was probed with the anti

toposome antibody at a dilution of 1: 500 (v/v). It was then incubated for 1 hour in TTBS 

containing goat anti-mouse IgG conjugated with alkaline phosphatase at a dilution of 1: 

3000 and the antibody was visualized by treating the membrane in 100 mM NaHC03, 

1mM MgCh, pH 9.8 containing 0.03% (w/v) NBT and 0.015% (w/v) BCIP in the dark. 

Molecular masses of the proteins are shown. 

133 



1 2 

kDa kDa 

240---. 

160---. 

120---. 

90 ---. 

..__55 

..--44 

.- 32 

134 



A liposome binding assay was performed with the protein present in the 25 HPF 

embryonic cell extract. Sodium dodecyl sulfate polyacrylamide gel electrophoresis of the 

liposome pellet under reducing conditions demonstrated that the polypeptides of 90 kDa, 

55 kDa, 50 kDa, 44 kDa, and 32 kDa were present in this fraction. When the liposome 

pellet was analyzed by SDS-PAGE under non reducing conditions, a single band at 240 

kDa was observed (results not shown). This result suggested that the 240 kDa protein 

complex was capable of binding to the liposomes even after further proteolytic 

processing. Unlike the 240 kDa protein complex present in the eggs, this protein complex 

contains relatively lower molecular weight polypeptides of 90 k, 55 k, 50 k, 44 k, and 32 

k. The 160 kDa and the 120 kDa polypeptides were reduced in quantity in this protein 

complex suggesting that these polypeptides were proteolytically processed to give rise to 

the lower molecular weight polypeptides. 

A liposome aggregation assay was performed with the EDTA extracts of 

embryonic cells from different developmental stages to investigate whether the 

proteolytic processing of the yolk proteins affects the liposome aggregating activity (Fig. 

3.37). Protein (10 !-lg) was used in the assays after extensively dialyzing the extracts to 

remove EDT A. All the protein extracts exhibited liposome aggregating activity. The rate 

of aggregation was not significantly affected by the proteolytic processing of the 240 kDa 

protein. The liposome aggregation driven by the proteins present in the 25 HPF 

embryonic cell extract was inhibited when the protein present in this extract was pre

incubated with the anti-toposome antibody for 20 min prior to the aggregation assay (fig. 

3.37). These results suggest that the aggregation was driven by the 240 kDa complex or 

the polypeptides derived from it. 
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Fig. 3.37. The effect of proteolytic processing of the 240 kDa toposome on liposome 

aggregating activity. 

Aliquots (1 0 J..Lg) of the EDTA extract of eggs ( • ) and EDT A extracts of cells from 1 

HPF embryos (X), 7 HPF embryos ( •) and 25 HPF embryos (.A.) were incubated with 

1.25 mM calcium in the aggregation buffer for 12 min. Unilamellar PS liposomes were 

then added and the aggregation was monitored by measuring the OD350 at 2 min intervals 

for 18 min. Another aggregation assay was performed with the 25 HPF embryonic cell 

extract after pre-incubating the protein present in this extract with the anti-toposome 

antibody for 20 min (0). Control assays were performed with EDTA extracts of egg (D) 

and EDT A extracts of cells from 25 HPF embryos ( L.) in the absence of calcium. The 

experiment was performed only once. 
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Chapter 4: Discussion 
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4.1 Role of the yolk granule in embryonic development 

The yolk granule is the most abundant organelle present in the eggs and early 

embryos of many animals, including avians, amphibians, molluscs and echinoderms. The 

echinoderm yolk granules comprise about one third of the volume ofthe egg (Annant et 

al., 1986). Although the yolk granule has been studied for several decades, little is known 

about the function of this organelle in embryonic development. The classical view of the 

yolk granule is that it provides nutrition to the growing embryos. Of course, this fact is 

true for most of the other animals whose eggs house yolk granules. For example, the yolk 

granule of avians, insects and amphibians has been widely studied and is believed to 

serve as a storage site for raw material needed to sustain embryonic development (Willey 

and Wallace, 1981; Wallace, 1985, Mc-Gregor and Laughton, 1977). Based on its basic 

structure and composition, it is believed that the sea urchin yolk granules have the same 

function in embryonic development. 

Annant et al. (1986) observed that the composition of the yolk granules and yolk

associated contents, including protein, lipid, carbohydrate and nucleic acid remain 

constant throughout development until the ih day of larval development in the sea 

urchin, Arbacia punctulata. Starvation of the larvae did not speed up the process of yolk 

utilization suggesting that the yolk components were not to be used when food was 

scarce. The finding that the sea urchin yolk granules did not change in composition until 

later stages of larval development, even during starvation raised the question of the 

function of the yolk granule. 

The sea urchin yolk granule is not involved in anabolic processes, as it does not 

contain anabolic enzymes (Annant et al., 1986). The RNA present in the yolk granules is 
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translationally inert, suggesting that the yolk granule is not a site of de novo synthesis of 

proteins (Annant eta.!, 1986). Other reports examining yolk granule have proposed 

several functions for it, but whether these can be applied to all the animal systems is 

questionable. For example, in the sea urchin, vitellogenin is found to be present in 

gametes from both sexes (Shyu et a!., 1986) and the reason for its occurrence in male 

gametes was unknown, until Unuma eta!. (1998) found that it is involved in providing 

nutrition to the growing spermatozoa. Yolk proteins have been shown to bind lipids, 

hormones, vitamins and metal ions, thereby participating in storage and transportation of 

these materials (Laueux eta!., 1981; Kunkel and Nordin, 1985; Byrne eta!., 1989; 

Dhadialla and Raikhel, 1990 and Niimi et al., 1994). The finding that the major yolk 

granule protein is involved in iron binding suggests that the sea urchin yolk proteins are 

engaged in some important functions both in male and female gametes (Brooks and 

Wessel, 2002). 

Several studies have shown that the yolk granules house components destined to 

be exported. Mayne and Robinson (1998) have observed that HLC-32, which is a major 

component present in the extracellular matrices (both the hyaline layer and basal lamina) 

of the sea urchin, is initially present in the yolk granules. As revealed by 

immunohistochemical studies, this component gradually disappears from the yolk 

granules as development proceeds. This disappearance was shown to be concomitant with 

the appearance ofHLC-32 in the extracellular matrices, suggesting that it is exported 

from the yolk granules as development proceeds. In addition, echinonectin, which is a 

component of the hyaline layer is found to be associated with yolk granules (Fuhrman et 

a!., 1992). The RNA found in yolk granules, which is translationally inert (Annant et a!. , 
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1986), might be transported to and activated in the cytoplasmic compartment of the cell. 

These findings support the hypothesis that the yolk granule is involved in storage and 

transportation events in the embryo. In this context, Srivastava et al. (1996) identified 

synexin ( annexin VII) in yolk granules of Xenopus laevis embryos. Synexin is a calcium

dependent phospholipid binding protein, which forms calcium channels and is involved 

in membrane fusion events. It is thought to play a significant role in exocytotic secretion. 

Based on these data, we hypothesized that the yolk granule might be involved in 

intracellular transportation and membrane fusion and the yolk proteins might play a key 

role in these events. Findings that the yolk proteins are associated with yolk granule 

membrane as well as other membranal structures, mainly the newly formed cytoplasmic 

membranes of embryonic cells, partially supported our hypothesis. In further support of 

this hypothesis, Cervello and Matranga (1989) demonstrated that the toposome has the 

capacity to mediate embryonic cell aggregation, which is a calcium-dependent process. 

Our study was mainly focused on biochemical characterization of yolk proteins and 

especially, their role in membrane binding and vesicular aggregation. 

4.2 Biochemical characterization of yolk proteins 

4.2.1 Toposome in Strongylocentrotus purpuratus eggs is composed of three 

polypeptides 

The toposome is the precursor for the majority of the yolk proteins (Kari and 

Rotman, 1985; Armant et al., 1986; Scott and Lennarz, 1988; Lee et al., 1989; Yokota et 

al., 1993). It is found to be processed proteolytically, giving rise to lower molecular 

weight yolk proteins (Kari and Rotman, 1985; Armant et al., 1986; Scott and Lennarz, 
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1988; 1989; Yokota et al., 1993). A maternally-derived cathepsin-B like protease is 

found to be engaged in this limited proteolysis of the yolk protein precursors (Fausto et 

al., 2001; Mallya et al., 1992). Despite this proteolytic processing, the molecular mass of 

the toposome remains constant throughout embryonic development since the 

polypeptides derived remain bound to each other by disulfide links (Annant et al., 1986; 

Scott and Lennarz, 1988; 1989; Yokota et al., 1993). 

According to Scott and Lennarz (1988), the toposome of Strongylocentrotus 

purpuratus is a protein of243 kDa. We have isolated a 240 kDa species from the yolk 

granule protein extracts using anion exchange chromatography. The 240 kDa 

polypeptide was bound to the resin and was eluted mainly in the 0.3 M and 0.4 M salt 

fractions. Sodium dodecyl sulfate gel electrophoresis of this protein under reducing and 

non-reducing conditions demonstrated that it was composed of three polypeptides of 160 

kDa, 120 kDa and 90 kDa linked together by disulfide bonds. This observation is 

consistent with the finding of Scott and Lennarz (1988) who demonstrated that the 243 

toposome, which they have isolated from the sea urchin egg, was composed ofthree 

polypeptides of 160 kDa, 115 kDa and 90 kDa. It is not surprising that chromatographic 

procedures could not be successfully employed to separate these polypeptides present in 

the 0.4 M NaCl eluate since they remain covalently linked by disulfide bridges even after 

proteolytic processing. 

Anti-toposome antibody raised against the toposome of Paracentrotus lividus 

cross reacted with the 240 kDa, 160 kDa and 120 Iilla polypeptides in an immunoblot, 

suggesting that the 240 kDa polypeptide was the toposome in Strongylocentrotus 

purpuratus while the 160 kDa polypeptide was the major yolk granule protein derived 
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from the toposome. In addition, the 160kDa polypeptide was abundant in the yolk 

granule protein extracts, further suggesting that it is the major yolk granule protein 

present in Strongylocentrotus purpuratus. Peptide mapping confirmed that the 240 kDa 

polypeptide was the precursor for the 160 kDa and 120 kDa polypeptides since they 

shared common peptides with the 240 kDa polypeptide. According to our observations, 

as well as the findings of Scott and Lennarz (1988), the 160 kDa polypeptide is the major 

yolk granule protein derived from the 240k high molecular weight toposome of 

Strongylocentrotus purpuratus. 

4.2.2 Calcium-dependent phospholipid binding and vesicular-aggregating activity 

of the toposome 

We were interested in defining a biological role for the yolk granule in the sea 

urchin embryonic system, mainly by investigating whether the yolk granule-associated 

proteins are involved in membrane binding and vesicular aggregation events. Many 

proteins involved in membrane aggregation, fusion and intracellular transportation belong 

to the family of annexins. These proteins, which are involved in membrane fusion events, 

bind acidic phospholipids in a calcium-dependent manner (Grewal et al. , 2000; Filipenko 

and Waisman, 2000; Mailliard et al., 1995; Stradal and Gimona, 1999, Boustead et al., 

1993; Spenneberg et al., 1998; Creutz et al, 1996; Maekawa et al., 1994; Koster et al., 

1993). Calcium binding provides positive charges for the proteins, which can mediate 

acidic phospholipid binding (Lee et al., 1997; Spenneberg et al. , 1998; Boustead et al., 

1993; Filipenko and Waisman, 2000). 
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To achieve our goal, a liposome-binding assay (Spenneberg et al., 1998) was 

employed to characterize the calcium-dependent binding of yolk granule protein to 

multilamellar liposomes. In addition, a unilamellar phosphatidyl serine aggregation assay 

(Lee and Pollard, 1997) was utilized to investigate the ability of yolk proteins to drive 

vesicular aggregation. The aggregation assays performed with the individual fractions 

from the fast-Q separation demonstrated that the 03 M, 0.4 M and 0.5 M salt-elutions 

contained liposome aggregating activity (Fig. 3.12). All of these fractions had three 

major polypeptides, as revealed by reducing SDS-PAGE analysis (Fig. 3.2). The 0.3 M 

and 0.4 M fractions had the same protein profile comprising 160 kDa, 120 kDa and 90 

kDa polypeptides (fig. 3.2). On the other hand, the 0.5 M fraction had a slightly different 

protein profile having polypeptides of 160 kDa, 120 kDa, 112 kDa and also a minor 

polypeptide of 55 kDa (Fig. 3.2). Non-reducing SDS-PAGE analysis demonstrated that 

all the 0.3 M, 0.4 M and 0.5 M fractions contained a high molecular weight polypeptide 

of240 k (Fig. 3.3). Studies done on the insect, Carausius morosus have demonstrated 

that the vitellogenin can occur in different variant forms, which are composed of different 

sets of polypeptides (Giorgi et al., 1997). It is possible that, in Strongylocentrotus 

purpuratus, there are two variant forms ofthe toposome which give rise to the 160 kDa 

major yolk granule protein. Observation of the 160 kDa major yolk granule protein and 

the 120 kDa polypeptide in all the three fractions suggest that one or both of these 

proteins could be involved in liposome aggregation. Possibly, the 90 kDa polypeptide 

appearing in the 0.3 M and 0.4 M fractions and 112 kDa and 55 kDa polypeptides 

appearing in the 0.5 M fraction are also involved in liposome aggregation. 

144 



We were then interested in biochemically characterizing the phospholipid binding 

and vesicular aggregating activities of the 240 kDa polypeptide, which is the toposome of 

Strongylocentrotuspurpuratus. Liposome binding assays performed on the proteins 

present in the 0.4 M fraction eluted from the fast-Q resin demonstrated that the 240 kDa 

complex could bind liposomes in a calcium-dependent manner (Figs. 3.9 and 3.10). One 

can clearly see that the extent of binding is dependent on the concentration of free 

calcium present in the medium (Fig. 3.11 ). Maximum binding of 25 % was observed at a 

calcium concentration of 200 j..tM. Above the concentration of 200 !J.M, the percentage 

bound remained constant at 25% possibly because the binding sites on the liposomes 

were limiting (Fig. 3.11 ). 

The calcium concentration in the unfertilized sea urchin egg is 0.1 !J.M (Torok et 

a!., 1998). Even durillg calcium influx that occurs in a few milliseconds after fertilization, 

the intracellular calcium level rises only to 2 j..tM (Torok eta!., 1998). We have observed 

that the calcium concentrations required for the vesicular binding as well as aggregation 

assays were higher than the physiological intracellular calcium concentration. This is 

consistent with the work from other laboratories (Lee and Pollard, 1997; Koster et a!., 

1993). This is not surprising since in vitro systems are incomplete systems, which are 

deficient in important factors responsible for mediating phospholipid binding and 

vesicular aggregation. On the other hand in vivo systems most probably utilize efficient 

mechanisms to bind phospholipids even at lower calcium concentrations. 

The 240 kDa protein complex was also capable of driving calcium-dependent 

unilamellar liposome aggregation (Fig. 3.12). The rate ofunilamellar liposome 

aggregation was clearly dependent on the protein concentration (Fig. 3 .16). Analysis of a 
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unilamellar liposome pellet by SDS-PAGE revealed that the whole 240 kDa protein 

complex was associated with the liposomes (Fig. 3.13). The percentage binding reached 

approximately 90%. In contrast, the liposomes prepared using brain lipids bound only 

about 25% of protein present in the 0.4 M fraction eluted from the fast-Q resin. This 

result suggests that, the liposomes prepared using phosphatidyl serine strongly interact 

with the protein. Brain lipids on the other hand are composed of only 50 % of 

phosphatidyl serine (Refer to 2.2.8.2.1). It must be noted that the proteins involved in 

membrane fusion events (especially annexins) have a high affinity for acidic 

phospholipids (Lee et al., 1997; Spenneberg et al., 1998; Boustead et al., 1993; Filipenko 

and Waisman, 2000). 

Calcium, which is a positively charged ion, has been shown to mediate binding of 

annexin like proteins to the acidic phospholipids. The 240 kDa protein complex, in its 

non reduced state, was capable of binding calcium as shown by a radiolabe1ed calcium 

binding assay (Fig. 3.7). We then examined the effect of the other metal ions on liposome 

aggregation driven by the 0.4 M fraction eluted from the fast-Q resin. According to Lee 

and Pollard (1997), liposome aggregation is a divalent cation-dependent process. It was 

demonstrated that barium, but not magnesium, supports annexin driven liposome 

aggregation (Lee and Pollard, 1997). We have demonstrated that the liposome 

aggregation driven by protein present in the 0.4 M fraction eluted from the fast-Q resin 

was dependent on calcium as well as barium, but not magnesium, supporting the view 

that the protein present in this fraction has annexin like properties (Fig. 3 .18). 

The liposome binding as well as the aggregating activity may be mediated by only 

one or two polypeptides present in the 240 kDaprotein complex. There is evidence to 
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show that the polypeptides derived from the toposome remain bound to each other by 

disulfide bonds even after the proteolytic processing (Yokota eta!., 1993; Scott and 

Lennarz, 1988; Scott et al., 1990). We suggest that the disulfide linkages between the 

polypeptides present in the 240 kDa protein complex could be reduced by treating the 

protein complex with 100 mM DTT at 37°C for 1 hour (Fig. 3.4). When the 0.4 M 

fraction eluted from the fast-Q resin treated as above was used in the liposome 

aggregation assay, a good level of liposome aggregating activity was observed (Fig. 

3.14). As revealed by SDS-PAGE analysis under reducing conditions (Laemmli, 1970), 

all three polypeptides were found to be associated with the liposome pellet, despite using 

the 0.4 M fraction eluted from the fast-Q resin, treated with DTT (Fig. 3.15). It is 

possible that all three polypeptides have the capacity to bind to liposomes and drive 

liposome aggregation. On the other hand, the polypeptides might remain associated by 

the help of ionic, hydrophobic and/or hydrogen bonds. 

The yolk granule aggregation assay allowed us to directly observe the 

physiological relevance of the aggregating activity of the 240 kDa protein complex. The 

yolk granules used in the assay were prepared in 0.5 M KCl in the presence and absence 

ofEDTA. The observation that the yolk granules prepared in 0.5 M KCl, preserving its 

membrane bound protein, aggregated in the presence of calcium suggested that the 

protein originally contained in the yolk granule membrane was involved in granule 

aggregation (Fig. 3.22). In contrast, the yolk granule aggregation could be decreased by 

extracting granules with EDTA or EGTA. This suggested that the proteins responsible for 

granule aggregation were bound to yolk granule membranes in a calcium-dependent 

manner and washed offby EDTA or EGTA treatment (Fig. 3.22 and Fig. 3.24 
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respectively). One can see that the rate of yolk granule aggregation is dependent on the 

calcium concentration in the medium (Fig. 3.22). Supplementation ofthe yolk granules 

prepared in the presence of EDT A with the proteins present in the 0.4 M fraction eluted 

from the fast-Q resin, restored the aggregating activity of the granules (Fig. 3.22). Based 

on these observations, we suggest that, the 240 kDa protein complex, which is the 

toposome of Strongylocentrotus purpuratus, plays a major role in yolk granule 

aggregation. This action could be physiologically relevant since the 240 kDa protein 

complex is found to be a component present in the yolk granule membrane (Figs. 3.30 

and 3.31). By mediating yolk granule aggregation and possibly fusion, the 240 kDa 

protein complex may play a role in an export pathway involving these granules. 

Exposure of yolk granules to trypsin completely abolished the calcium-driven 

yolk granule aggregation, demonstrating that the granule aggregation was a protein

dependent process (Figs. 3 27 and 3.28). It is worth noting that trypsin, which is 

membrane impermeable, could only cleave peripherally located membrane proteins. 

Therefore, these observations suggest that the proteins responsible for yolk granule 

aggregation are located on the outer surface of the yolk granule membranes. 

The anti-toposome antibody blocked the calcium-dependent phospholipid binding 

activity of the 240 kDa protein complex, suggesting that the antibody can specifically 

interact with the complex to reduce the binding of the protein to the multilamellar 

liposomes (Figs. 3.9 and 3.10). The liposome aggregation driven by the 240 kDa protein 

complex was decreased in the presence of anti-toposome antibody (Fig. 3 .19). We have 

also observed that yolk granule aggregation could be reduced by pre-incubating yolk 

granules with the anti-toposome antibody (Fig. 3.26). The inhibition may have resulted 
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from antibody blocking the binding sites of phospholipids or calcium in the 240 k:Da 

protein complex. 

4.3 Yolk granule membrane is rich in high molecular weight yolk proteins 

The yolk granule proteins are thought to be utilized for the assembly of new 

membranes. (Gratwohl eta!., 1990). It has been also noted that the yolk proteins are 

constituents of yolk granule membranes (Gratwohl et al., 1990). We have isolated yolk 

granule membranes by sucrose density gradient ultracentrifugation following the method 

ofVater and Jackson (1989). According to Vater and Jackson (1989), as well as our 

observations, the yolk granule membranes could be separated into two fractions of 

differing buoyant densities. This may be a consequence of the occurrence of two buoyant 

classes of yolk granules as observed by Armant et al. (1985). Sodium dodecyl 

polyacrylamide gel electrophoresis of the two different classes of yolk granule 

membranes suggested that the protein present in both the yolk granule membrane classes 

were qualitatively similar. Both the yolk granule membrane classes contained high 

molecular weight proteins where we mainly observed polypeptides of 160 k:Da, 130 k:Da, 

120 k:Da and 90 k:Da (Fig. 3.30). Sodium dodecyl sulfate gel electrophoresis under non

reducing conditions revealed that the both the yolk granule membrane classes contained 

polypeptides of240 k:Da, 160 k:Da, 140 kDa, 110 kDa, 90 kDa, 76 k:Da and 62 kDa (Fig. 

3.31). According to these observations we propose that the yolk granule membrane 

contains the proteolytically processed 240 k:Da toposome. Two different classes of yolk 

granule membranes may have resulted from quantitative compositional differences ofthe 

protein present in the yolk granule membrane. 
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The proteins present in the membrane particles could be washed off the yolk 

granule membranes using EDT A, suggesting that the proteins were bound to the 

membrane in a calcium-dependent manner (Fig. 3.32). The majority of the proteins 

present in the yolk granule membranes could be eluted using high salt washes, leading us 

to believe that these are peripherally attached membrane proteins (Fig. 3.33). The protein 

present in the EDTA washes was capable of driving liposome aggregation in a calcium

dependent manner suggesting that one or more proteins attached to the yolk granule 

membranes might be involved in yolk granule aggregation (Fig. 3.34). 

4.4 Plasma membranes of eggs and embryonic cells contain yolk proteins 

Immunocytochemical localization of the toposome in hatched blastula embryos of 

the sea urchin ·has shown that the toposome is present in the plasma membranes of 

embryonic cells (Gratwohl et al., 1990). The method of Matranga et al. (1986) was used 

to dissociate the embryonic cells from various stage embryos. The intact cells were 

isolated by differential centrifugation and extracted with EDT A. We expected to fmd the 

calcium dependent membrane binding proteins in these extracts. Sodium dodecyl sulfate 

polyacrylamide gel electrophoresis (Laemmli, 1970), under reducing conditions, 

demonstrated that the protein profile ofthe EDTA extracts changes as embryonic 

development proceeds (Fig. 3.35). A Western blot performed using anti-toposome 

antibody demonstrated that these extracts had the 240 kDa polypeptide which was 

proteolytically processed as development proceeds (Fig. 3.36). Relatively lower 

molecular weight polypeptides cross reacted with the anti-toposome antibody at the 25 

HPF stage. 
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Several studies have revealed that the protein profile of the yolk granule changes 

as development proceeds (Scott et al., 1990; Yokota et al., 1993). This occurs due to the 

proteolytic processing of the yolk protein precursors (Medina et al., 1988; Mallya et al., 

1992; Fausto eta!., 200la). As we have observed, the protein profile of the embryonic 

cell EDTA extracts changes as embryonic development proceeds (Fig. 3.35). Since the 

protease responsible for the yolk protein processing is localized to the yolk granules 

(Medina et al., 1988; Mallya et al., 1992; Fausto et al., 2001), we propose that the 

toposome, which is proteolytically modified while it is present in the yolk granules, is 

continuously transported and deposited in the plasma membranes. 

Liposome binding assay demonstrated that the 240 kDa protein complex present 

in the 25 HPF embryonic cell extract was bound to the liposomes in the presence of 

calcium (results not shown). Proteins that are present in the EDT A extracts of eggs and 

those from cells of embryos at different stages demonstrated calcium-dependent liposome 

aggregation (Fig. 3.37). The liposome aggregation driven by the proteins present in these 

embryonic cell extracts was inhibited in the presence of the anti-toposome antibody 

suggesting that the aggregation was driven by the 240 kDa complex or the polypeptides 

derived from it (Fig. 3.3 7). This result demonstrates that the yolk protein proteolytic 

processing has no effect on its aggregating activity (Fig. 3.37). The toposome, which was 

highly processed in the later stages of development, demonstrated the same aggregating 

activity, as the toposome that was partially processed in the egg extract (Fig. 3.37). 

Therefore, we suggest that, no matter what the degree of proteolytic processing, the 

toposome may play a role in vesicular aggregation and possibly fusion events throughout 

embryonic development. 
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4.5 General conclusions 

As mentioned earlier, the yolk granules have been shown to harbor many 

components destined for export. Therefore, we hypothesized that the yolk granule is 

involved in the export pathway. The yolk proteins may play a role in transportation and 

membrane fusion events. Therefore, the focus of this study was the biochemical 

characterization of the phospholipid binding and vesicular aggregating activity of the 

yolk proteins. 

We have identified, and isolated, the partially processed toposome in 

Strongylocentrotus purpuratus eggs, and biochemically characterized the calcium

dependent phospholipid binding and vesicular aggregating activity of this abundant high 

molecular weight yolk protein, which is the precursor for the majority of yolk proteins. 

The 240 kDa protein complex has the ability to bind calcium in its non-reduced state. It 

also binds to liposomes in a calcium-dependent manner. The protein complex was 

capable of aggregating liposomes in a calcium-dependent manner, which is a property of 

annexins. The toposome was shown to be actively participating in vesicular aggregating 

events regardless of its continuous proteolytic processing occurring in the yolk granule 

during embryonic development. The yolk granule may be involved in a continuous 

budding and fusion process with the membranal structures, including the plasma 

membranes, leading to the release of yolk granule contents. The 240 kDa protein 

complex may play a role in the export pathway involving yolk granules. 
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4.6 Future directions 

According to our observations, the high molecular weight yolk granule protein, 

toposome, may play a role in an export pathway involving the yolk granules by mediating 

vesicular aggregation and perhaps fusion events. The toposome isolated from sea urchin 

eggs was composed of three major polypeptides of 160 kDa, 120 kDa and 90 kDa. These 

polypeptides should be isolated and characterized individually to identify which 

polypeptide/s is/are involved in phospholipid binding and vesicular aggregation. The 

actual molecular weight of the polypeptides derived from the toposome and the 

sequences of these polypeptides may be determined by mass spectroscopic analysis. Mass 

spectroscopy can also be utilized to generate the peptide maps of purified polypeptides 

and identification of peptide fragments. Once the amino acid sequences of the 

polypeptides are determined, the genes coding these polypeptides can be isolated from 

the sea urchin genome. These genes can then be analyzed to identify the consensus 

sequences responsible for phospholipid binding and calcium binding. This will help to 

determine if the polypeptides present in the 240 kDa protein complex are homologous to 

the annexin family of proteins. 

Nuclear magnetic resonance studies can be used to determine the structural 

properties of the protein domains. These data will be important in understanding the 3D 

structure of these membrane binding proteins. In addition, circular dichroism 

spectroscopy can be performed to determine the conformational changes occurring in the 

proteins upon calcium binding and phospholipid binding. 

We have demonstrated that the anti-toposome antibody could inhibit the 

phospholipid binding (Figs. 3.9) and vesicular aggregating activity (Fig. 3.19) ofthe 
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toposome. Most importantly, we have observed that the anti-toposome antibody could 

decrease the yolk granule aggregation, when the yolk granules were exposed to this 

antibody (Fig. 3.26). Therefore, we suggest that the anti-toposome antibody could be 

used for blocking the physiological action of the toposome in in vivo assays utilizing live 

embryos. This would allow us to investigate the physiological function of this abundant 

yolk protein in embryonic development. 
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Strongylocentrotus purpuratus L ytechinus pictus 
Time ofharvest 

pH of YG pH change pHofYG pH change 

Egg 6.8 7.0 

12 h (blastula) 6.1 -0.7 

24 h (hatched blastula) 6.1 -0.7 7.2 

42 h (mid gastrula) 7.2 

48 h (late gastrula) 6.2 

72 h (prism) 6.5 

Table 1. Changes in pH during embryonic development of Strongylocentrotus 

purpuratus and L ytechinus pictus. 

(Adapted from Mallya et al., 1992) 

+0.2 

+0.2 

-0.8 

-0.5 
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nmol CHO/nmol protein Normalized ratio* 
Monosaccharide 

SP LP AP SP LP AP 

Fucose 0.27 0.72 0.00 0.10 0.17 0.00 

Galactosamine 0.51 1.25 0.65 0.19 0.30 0.09 

Glucosamine 5.47 8.26 14.55 2.00 2.00 2.00 

Galactose 0.62 0.69 0.84 0.23 0.17 0.11 

Glucose 4.54 3.90 4.34 1.66 0.94 0.60 

Mannose 22.81 31.24 67.01 8.34 7.56 9.21 

Table 2. Comparison of carbohydrate compositions of 160 to 170kDa yolk glycoproteins. 

CHO = carbohydrate, SP = Strongylocentrotus purpura/us, LP = Lytechinus pictus, AP = 

Arbacia puntulata 

*Values normalized assuming that the oligosaccharide chains contained two N

acetylglucosamine residues. 

(Scott and Lennarz, 1988) 
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Molecular mass 
Species pi range 

(kDa) 

Strongylocentrotus purpuratus 160 7.2-7.8 

115 7.6-8.0 

108 7.2-8.0 

90 6.7-8.0 

Lytechinus pictus 160 6.9-7.8 

115 7.2-7.8 

108 6.3-7.6 

90 6.9-7.6 

Arbacia punctulata 170 6.8-7.6 

112 6.2-6.8 

90 6.2-6.9 

Table 3. Comparison of molecular masses and isoelectric points of yolk glycoproteins. 

(Scott and Lennarz, 1988) 
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YP-160 proteolysis 
Inhibitor Class of enzyme inhibited 

inhibited 

Anti pain Yes Thiol proteinase 

Leupeptin Yes Thiol/Serine proteinases 

Z-Phe-Ala-CH2F Yes Thiol proteinase (cathepsin-B) 

Pepstatin No Aspartic proteinase (pepsin) 

Chymostatin No Serine proteinase (chymotrypsin) 

Elastatinal No Serine proteinase (elastase) 

TLCK Yes Serine proteinase (trypsin) 

Banzamidine Yes Serine proteinase (trypsin-like) 

Table 4. Effect of enzyme inhibitors on YP-160 proteolysis in vivo and the class of 

proteinase they inhibit. 

YP- yolk protein, TLCK- Tosyl Lysyl Chloromethylketone 

(Mallya et al., 1992) 
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mole% 

Phosphatidyl choline 29.5 

Phosphatidyl ethanolamine 11.5 

Phosphatidyl serine 18.3 

Phosphatidyl inositol 14.6 

Sphingomyelin 20.5 

Cholesterol 6.0 

Table 5. The lipid composition of the yolk granule membrane in unfertilized sea urchin 

egg. 

The phospholipid analysis was performed by Scott Pelley in Dr. Philip Davis's lab. 
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