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Abstract

In this research, the variance of wave exciting rolling moment has been identified
using ship roll response only. The data of ship rolling motion were obtained from ship
rolling simulations as well as from ship model tests. The random decrement technique
has been used to extract the free roll decay curves from the stationary random response.
The roll damping and restoring moments can then be obtained from the extracted free
decay curves using a neural network technique. The predicted rolling parameters were
then used to calculate the variance of wave exciting rolling moment.

The simulated data are used to demonstrate the validity of the proposed method. The
application of the method to the experimental data showed the influence of the wave
model frequency, the wave height, and the GM value on the variance of the wave exciting
rolling moment in irregular beam waves. This method is only based on the time history of
the ship rolling displacement to estimate the variance of wave exciting rolling moment.
Moreover, the roll response of a ship can be easily measured using an accelerometer
while the ship is at sea. The analysis can be done on line at sea. The estimated variance

value will give captains an important parameter for the assessment of ship safety.
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Chapter 1

Introduction

1.1 Objective

Wave force is one of the most important factors in determining the stability and safety
of a ship at sea. Therefore, it is very helpful to study the characteristics of wave excitation
on a ship sailing in a realistic sea. The excitation of waves is a random process, which
may be described with the mean value, the variance, the correlation function and the
spectral density function. The variance is the most common variable to describe the
deviation of a signal away from its mean value. It is also a measure of the energy of the
wave., The measured wave excitation data can be used to determine the variance of wave
exciting rolling moment to a ship at sea. However, it is generally not possible to obtain
time records of the wave excitation to a full-scale ship sailing at sea. However, it is easy
to collect the rolling motion data when a ship is sailing in a realistic sea.

The main objective of this thesis is to develop a particular method for identification of
the variance of wave exciting rolling moment from the ship rolling time history.
Furthermore, the study of two ship model data showed the influence of the wave
frequency, the wave height, and the GM value on the variance of the wave exciting

rolling moment in irregular beam waves.



1.2 Research outline

Applying the Fokker-Plank equation to the nonlinear ship roll motion in random sea,
differential equations that govern the propagation of the expected value and the variance
of the nonlinear motion are obtained. For steady state, a formula is derived to identify the
variance of wave exciting rolling moment from parameters of nonlinear rolling equation.
Neural network technique was used to obtain a nonlinear function, G, from training the
random decrement equation, which is calculated from the random roll response. The
function, G, can be used to identify the parameters of nonlinear roll motion using
regression techunique. The identified rolling motion parameters are then used to estimate
the variance of wave exciting rolling moment.

The proposed method is applied to experimental data as well as to simulated data.
Model tests of “series 60” and “R-class Icebreaker” ship models are carried in the wave
tank at MUN. From the simulated data, the validity of the method has been proved. From
the experimental data, the effect of the wave frequency, the wave height, and the GM
value has been checked using multiple regressions.

1.3 Organization

Chapter 2 presents a review of the literature. In Chapter 3, the theoretical basis of the
proposed method is presented. In Chapter 4, the numerical simulation method is
introduced step by step. In Chapter 5, the experimental program and the analysis of the
experimental data are presented. In Chapter 6, the validity and accuracy of the proposed
method are examined using the simulation method; also a discussion of the experimental
results is presented. Finally, the conclusions and recommendations are presented in

Chapter 7.



Chapter 2

Literature Review

2.1 Ship Rolling Motion in Random Waves

Any particular ship’s motion time history can be represented by a combination of
the time histories of three translations (surge, sway and heave) and three rotations (roll,
pitch and yaw) about a right-handed orthogonal axis system. In these six displacements,
rolling motion may be the most severe angular motion, often exceeding the “small angle”
range of fifteen degree. By far, it is yet understood least, especially in irregular waves.

The shortcoming of the linear approach was widely recognized but further progress did
not occur until St. Denis and Pierson (1953) first introduced the linear-random theory to
the naval architecture field for the study of ship motions in irregular waves. The theory
for the response of a linear system to random excitation was developed in the field of
electromagnetic communications (Rice, 1944). St Denis and Pierson suggested that a ship
could be treated as a “black box” filter, which amplified or atienuated different frequency
components of the waves to produce ship motions as output. There are two crucial
assumptions underlying the theory. First, the short-term ocean waves are stationary, zero-

mean, Gaussian random process. Second, ship responses are linear transformations of the



wave elevation or slope. Based on these assumptions the probability structure and the
statistical parameters of the wave elevation and the ship response are constant in the short
term. In a stationary, zero-mean, Gaussian process, the only necessary statistical
parameter to describe the process is its variance. Linear-random theory is intended for
predicting the stationary statistics of the ship response. It is assumed that the filter is
“linear” in the sense that the output signal amplitude (the ship motion) at any given
frequency is linearly proportional to the input signal amplitude (the wave). However, this
general rule failed to recognize the rolling motion in random waves because viscous roll
damping is a nonlinear function of the roll velocity (Lloyd, 1998).

It is a typical method building a single-degree-of-freedom second-order nonlinear
differential equation to simulate the rolling motion of a ship in random waves. The
equation includes four parameters: the total moment of inertia, the damping moment, the
hydrostatic restoring moment, and the random wave excitation moment. Usually, the
equation is normalized with respect to the total moment of inertia. Then, only three
quantities are required to be determined. In principle it is possible to deduce all the
required parameters in a single degree of freedom ship roll model if a stochastic model of
the excitation is assumed (Roberts et al., 1991). For a linear model, it is easy to estimate
the linear roll natural frequency by spectral analysis method. And the linear damping
coefficient may also be estimated by applying the random decrement method (Vandiver
et al., 1982). For large amplitude motion, the estimation of rolling parameters is much
more difficult because the effects of nonlinearities are significant.

Since Froude (1955) demonstrated that nonlinearities exist in the damping and the

restoring moments, several forms have been presented in the literature to describe the



nonlinear term in the roll damping and restoring moment models. He suggested the linear
plus guadratic velocity dependent roll damping moment, which has not been doubted
about two decades as a classical form because of general supposition of the viscous
damping proportional to the square of the roll velocity. In 1971, Haddara introduced the
linear plus cubic velocity dependent roll damping moment to overcome some analytical
difficulties arising from applying the quadratic form. Further, Haddara (1984) presented a
linear dependence on the product of the roll angle and roll velocity and a quadratic
dependence on the angle of roll. It seems that none of these models is obviously better in
describing the roll damping as long as the model is used in the range of the experimental
data applied to estimate the parameters in the model (Haddara 1984; Mathisen et al.
1977). The method of slowly varying parameters and a least squares technique were used
to investigate various damping models to find an equation for the rate of decay curve as a
function of the damping moment (Haddara 1984). This method was not suitable for large
amplitude motion. Robert (1985) used a loss function to derive the parameters of the roll
damping moment by means of a least squares method. It is suitable for nonlinear
restoring moments, but failed to identify the angle-dependent components of the same
order of magnitude as the velocity-dependent component because of using the averaging
technique. Mathisen and Price (1984) used a perturbation method to identify the roll
damping parameters and approximate the free rolling response of a vessel. It assumes that
the nonlinear response is a small perturbation of the linear response that makes the
method valid for small nonlinearities only. Haddara (1989) investigated a set of

experimental data by the energy method to show the relationship between the damping



moment and rolling angle. The results explained why the linear plus cubic damping
model in many cases was more effective than the quadratic model.

Roli damping is derived from four sources: wave making, eddy shedding, skin friction
and the appendage forces. The wave making damping arises because the oscillating hull
radiate energy in the form of waves that travel away from the ship. Hull forms with
relatively sharp comers at the bilges and /or at the keel will shed eddies as ship roll,
which absorbs energy. Skin friction forces on the surface of the rolling hull may be
significant and appendages will generate drag and/or lift forces that provide contributions
to the roll damping. In strip theory, only wave making damping, which is a small fraction
of total dampiﬁg in some cases, 15 considered. Other three sources are neglected because
they result from the influence of viscosity. Wave making roll damping and the damping
due to the appendage forces are directly proportional to the roll velocity at high forward
speed. Viscous roll damping is nonlinear and is generally proportional to the square of the
roll velocity. This is why roll damping is so difficult to be recognized in the numerical

calculations and simulations. (Lloyd, 1998)

2.2 Random Decrement Technique

The random decrement technique has been used widely in the analysis of experimental
vibration data in the aerospace since Cole (1971) developed it. Through the analysis of a
specific case, Vandiver et al. (1982) established the mathematical basis for the random
decrement technique for vibration signature analysis. The basic concept of the random
decrement curve is based on the fact that a random response of a structure due to a

random mput is composed of two parts: 1) deterministic part, and 2) random part, which



is assumed to have a zero mean. By averaging enough samples of the same random
response, the random part of the response will filter out, leaving the deterministic part of
the response (Tbrahim, 1977). An equivalent definition of the random signature can be
obtained using the concept of ensemble averages. For a linear, time-invariant system
excited by a stationary Gaussian random process, the response will also be a stationary
Gaussian random process. The random decrement signature of the system is only the
product of the correlation function and the trigger level. Vandiver (1982) indicated that a
free decay curve could be obtained using the concept of ensemble average only when the
random process is ergodic. Accordingly, averages computed from a single time history
are equivalent to averages computed across the ensemble of all potential time histories of
the process. It means that the random decrement curve is simply the conditional expected
value of the random process. In conditioning the expected value, members of the
ensemble are excluded from the computation unless they possess the specified values for
the initial conditions. The choice of too low a trigger level would grossly increase the
error of the estimate if the noise were present. Vandiver believed that the random
decrement signature of the output would exactly represent the transient decay of the
system from a trigger level only when the input to the system is white noise. However, a
lightly damped single degree of freedom system, excited by a band-limited force often
yields results that are to a sufficient degree of accuracy equivalent to the response to
white noise.

Haddara and Wu (1993) studied the validity of the random decrement technique for the
ship rolling identification, which involved a lightly damped system under the band-

limited excitations. The technique was further tested by Haddara e al. (1994) using



model experiments and full-scale data. Haddara and Zhang (1994) extended the technique
to the case of a narrow band excitation. The general conclusion from these studies
indicates that a random decrement curve can be extracted to identify the ship roll
parameters. However, Haddara e al (1994) found a common problem that the damping
moments parameters did not always produce unique values especially when the number

of parameters to be identified is large.

2.3 Neural Networks Technique

A new identification technique, which is a combination of the neural networks
technique (Haddara, 1995) and the random decrement technique (Haddara, 1992), has
been developed to estimate the roll damping parameters from the stationary roll response
in random waves (Haddara, 2000). Neural networks technique is inspired by the human
brain functions to learn some rules through an off-line or on-line training process. A
network consists of several layers of neurons. The input feeds into each of the first layer
neurons, the outputs of this layer feed into each of the second layer neurons, and so on
(Hush et al. 1993). The neural networks technique provides a method to model complex
systems without a priori knowledge of the physical mechanisms. In the past decade,
neural networks have become a very popuiar choice as a universal “black box” model for
nonlinear systems (Ljung, 1999).

Individual neuron is the basic computing unit in the network structure. Static networks
are characterized by the memoryless neuron functions, thus the output is a function only
of the current inputs. Dynamic networks, on the other hand, are systems with memory.

Their neural functions are typically described by differential equations. In the multiplayer



perception network, which is the most widely used static network till now, individual
neurons are arranged in successive layers with the sigmoid nonlinearity as neuron
equation. Each layer is fully connected to the adjacent layers and mformation is passed
only forward from the input layer through the hidden layers to the output layer. Linear
neurons are commonly used in the output layer to make learning easier. The connecting
weights between the layers are the adjustable parameters that fully determine the
relationship between the inputs and the outputs. During the supervised learning process,
the neural network is presented with a set of input-output points and trained to implement
a mapping that matches the sample points as closely as possible. The most popular
learning method for multiplayer perception network is the backpropagation algorithm,
which uses a gradient technique to find the optimum values for the connecting weights. It
is an iterative process of computing the gradient and adjusting the weight values until a
minimum error is located or a maximum iteration times is reached. A “black box” model
is selected finally through the training process.

In the marine field, Haddara (1995) found an approach combining the neural network
technique with the free roll decay curves to identify the ship stability parameters. Further
applications are developed by Haddara & Hinchey (1995) to free roll decay curves and
Haddara (2000} to the stationary random roll response for identification of the damping
parameters. The results showed that the neural network technique is robust and produces

unique results for the damping moment.

2.4 Review Summary

An extensive review of the literature indicates that ship roll motion is a complicated

phenomenon because the roll damping is difficult to estimate or calculate in irregular



waves. Until now, the method, which combines the neural networks technique and the
random decrement technique, is the best choice to estimate the ship roll parameters in
random waves. The reason lies in the similarity of the neural networks and ship as a
“black box” model of nonlinear system. Another reason is that the method only uses

rolling time history and therefore can be applied at sea.

10



Chapter 3

Mathematical Analysis

This chapter presents the mathematical basis for a new method to estimate the variance
of the wave exciting rolling moment per unit virtual mass moment of inertia for a ship in
a random sea. Using the Fokker-Plank equation of the nonlinear ship motion in random
waves, the differential equations of the mean value and the variance of the motion are
derived (Haddara, 1974). For the steady state, a formula is derived to calculate the
variance of the wave exciting rolling moment per unit virtual mass moment of inertia of a

ship in random waves.

3.1 Rolling Equation in Random Waves

The rolling motion of a ship in random waves is governed, at least approximately, by

the following nonlinear, single degree of freedom equation of motion (Roberts, 1982):

[g+ B+ CH)=M() @)

where ¢ denotes roll displacement of the ship; 7 is the total virtual moment of inertia
(including added fluid inertia) along a longitudinal axis, passing through the center of

gravity of the ship; B is the moment of the damping forces; C is the hydrostatic restoring

1



moment and M is the wave excitation moment. A dot over the variable ¢ indicates
differentiation with respect to time.
A more convenient form of the equation (3.1) is obtained by dividing throughout by /

(Haddara, 1992).

G+ N@+D@) =K@ (2

where K=M/I, is the wave exciting moment per unit virtual moment of inertia. D=C/1, is
the nonlinear restoring moments per unit virttal moment of inertia; N=B/I, is the
nonlinear damping moments per unit virtual moment of inertia;

The excitation K{(t), should be stationary random Gaussian process and satisfies the
following equations.

< K(t)>=0

<K(t)K(t,) >=yd(t, -1,) (3:3)

where < > means the ensemble average of the process; J'is the Dirac delta function; ¥ is
the variance of the wave exciting moment per unit virtual moment of inertia of a ship.
Furthermore, the excitation is assumed to be Gaussian. These assumptions, while
simplify the analysis greatly, do not limit the applicability of the results obtained. The

highly resonant nature of rolling justifies this.

Using the change of wvariables, Y| = @ and Y, = ¢ , One can rewrite

equation (3.2) as:

=X
. 3.4y
v, =K@)-N(y,)—D(y,)

12



The matrix form of the equation (3.4) is

Y = F(Y,t)+ E(t) 3.5)

r
Y:[y‘],zf—;iyz‘ \ ],E:lro ];
Y2 |- N(y,)-D(y))| | K (2) |

where

3.2 Fokker-Plank Equation
A stochastic process ¥(t), is called Markov process if the conditional probability that Y

lies in the interval (y,,y, +dy,) at time ¢,, given that Y is equal toy, at time f,,y, at
time ¢,,..., and y,, at time ¢ _,, depends only the values of Y at time

¢, ,(Haddara,1974). Thus, for a Markov process, one has

Yul) = Py (yotu|yat) (36

P (Yt Yatysees Yooy
where P, (yltli v,t,)dy, is the probability that ¥ will lie in the interval (y, +dy,} at time

t, given that ¥ =y, at time ;. Then the conditional probability density function P,

describes a Markov process completely.

A Markov process may also be associated with a first-order differential equation of the
form of equation (3.5). Then the two-dimensional stochastic process (y,,y,) of equation
{3.4) is Markov. The process may be described by conditional probability density

function P, (v, ymfyl, y,.t) where y,, and y,, are the initial values of the angle and

velocity of rolling motion.

13



It can be easily shown that the conditional probability density function that describes

the Markov process (y,,y, ) satisfies the following partial differential equation (Caughey,

1963):
a 2, 9 2, 9°
— == —(a,P b, P
=2 gy b ; .y it e
where
<Ay. > Ay.Ay .
a, =lim i b = ]imf_l‘__y.]_i
a0 A ? ¥ At—0 At

Haddara (1974) evaluated the averages of a and b as following:

L <Ay >
aq, _B—gno A =)
<~V+D)Ar+ [ Kwdu>
a, ‘=lim<Ay“>—hm t =—<N+D>
A0 At A—0 At'
b, = lim <&hdy>_,
At—0 At

t+dz ”
<AyAy, > < [—(N + D)Ar+£ K (u)du)>
—2 22" =lim

x]:;t-e() At Ar—0 At - Var(K(f)) akd

b, = lim Oiﬂz‘é&i
- t

=0

Substituting the above results of a and 4 into equation (3.7), one can obtain the following

partial differential equation:
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oP 0 o .. w o’P
—=—-—(y,P)+ N+D)YP+—

(3.8)

where the short hand notation P is used to replace P,(y,, }’20;)’57 ¥,,t). The solution of
equation (3.8) subject to the initial condition P(y,, ymly1 Yy By =6(t, —1,)0(t, —t,,) as
t — 0, yields the conditional probability density function which describes the process

(3,,y,) completely.
It is difficult to solve equation (3.8) directly except in some special cases. One can

convert this equation into a stochastic differential equation.
AP(Y10s Yool Y12 Y2: 1) = POgs Yool Vi Yoot +88) = P(Yygs Yo )

d 0 w o°P
=[~-2(y,P) + (N + D)P}+ L1
dy, 17 9y, 2 dy;

Jdt (3.9)

Equation (3.9) can be used to derive the differential equations that govern the propagation

of the mean values and vanances of y, and y,.

3.3 mean values propagation

Before integrating the equation (3.9), we assume the following boundary conditions:

. Ly e oP |, ..
¥ P20 = (N + D)P|2i, = e =0 (310
dy,
P12 =y, (N +D)YP} .2 =0, i=1,2 @311

Multiplying equation (3.9) by y, and integrating the equation with respect to y, and

y, from —to o, we have the left hand side of the equation as

i5



_E: .E, VP (Y- }’20!)’1’ Yo, bt +dt) = P(¥ig, Y29, 1)1dy,dy,
= p, (¢ +dt)~ pu, (1)

(3.12)

and the right hand side

wa*P
at| [ yl[—-———(sz)+———(N+D)P+ 25y

oo - — Py,
= dr{pty = |~ Pl vy, + [y + DYPday, + £ nG L

]d)’ld)’z

= )dy, }
= dtu, (3.13)

Then equations (3.12) and (3.13) are divided by df , to obtain

Y= U, (3.14)
where y, and 4, are the mean values of y, and y, respectively.
Using same process, we multiply the two sides of equation (3.9) by y, and integrate

the equation with respect to y, and y, from —ooto oo, to get

I_: _Eo Y2lP (Y50, yzol)’v Ya,t+dt) = P(yyy, Yy, t)ldy,dy,
= /uz(t'i' dt) '"/‘20‘)

(3.15)

T 9%P
de,j'_myz (sz)+ (N+D)P+—-¥2{-_5_2_]dyldy2

2

200

=dt{-—J_wy2(y2 N2y, + |y [N + DYP|RI 1y, —”{N+D)de1dy2

Y=o

l// m aP Y= l/f = ya=ee
+ ?I_m Yy, (5’;;‘! [ Vi~ > _«.P Y=o Vi }
=dt<-N-D> (3.16)

Then equations (3.15) and (3.16) are divided by df , to obtain
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®

My =—<N{y,)+D(y,)> (3.17)

Expanding equation (3.17) in its Taylor series about g, and 4, , and retaining the first-

order terms only, we have

4y = =< N(i,)+ D)+ (3, ~u1>5a—-<N+D)+<y2—u2>5@—<N+D>>

Y1 Y2

=~—=N(uy)—D(u;) (3.18)

Substituting equation (3.14) into equation (3.18), we obtain

M+ Nu)+D(u,)=0 (3.19)
From this equation, we can see that the mean value of the random roll motion satisfies a
first order approximation to the differential equation of its free roll motion. Based on this
principle, we apply the random decrement technique to the nonlinear roll motion of a ship

in irregular waves.

3.4 Variance propagation
Using the same boundary conditions in equation (3.10) and (3.11), we multiply the two
sides of equation (3.9) by yf/dt and integrate the equation with respect to y, and y,

from —eoto oo, The different result of the integration are given as:

-]

OP (V05 Voo |Vi>Vart) .
I J-)Hz = azot! L dy dy, =V, (3.20)

OO
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- | T yf—éa;—(sz)dyldyz = —fy (y,P2imydy, + 2| ]?ylszdygyz
-0 1 -0

=2V,

A

(3.21)

Hyl

dy, = jy (N +D)P|}227 1dy, =

(3.22)

v ,20°P VT 2 9P e _
_2--‘. J. }’1 dy ) d)’ 14y, = ?_‘[ay‘(-é—_z” }y'zz.ﬁ)dh =0 (323

Then, from equations (3.20) to (3.23), we have

Vi, =2V,

(3.24)

Multiplying the two sides of equation (3.9) by y22/dt and integrating the equation with

respect to y, and y, from —ooto e, we have:

oo

J‘I 2 aP()’m’)’zol}’ls)’za”
72 ot

dydy, =V, (3.25)

— oo

1

. d T -
[ yzzé;—(sz)dyldyz = j,z(szii’;%)dyz =0 (326
1 :

—oa
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| j y: ——-[(N + D)P)dy,dy, = j V2N + D)P= dy, - 2 j v, (N + D)Pdy,

==-2<y,(N+D)> 3.27)

—Ig—f—}i ys azf dy dy, = %‘[_]i y?(-;—]yﬁll ydy | "_[ _“ yz dy,]

= ——sz-[‘zyzpl i;:: dy, — 2_“—]ipdy1dy2]

(3.28)
=y
Then, from equation (3.25) to (3.28), we have
V, = =2 < y,(N +D)> +y (3.29)

Multiplying the two sides of equation (3.9) by y,y,/dr and integrating the equation

with respect to y, and y, from —coto oo, we have:

r; OP (Y195 Yoo |¥i» V2rt) :
[ v = gill ——dy,dy, =V, (3.30)

HJT yl}"zé‘a;‘(yzp)dyldyz_ J}xyz(y'; __@)d}’z"';‘.j-y,del},

=Vy (3.31)

- . - ]
[ [, 3,71V + D)Pldy,dy; = j y,9, [N + DYP|% . 1dy, - [ (N + D)Pdy,

=—-<y(N+D)> (3.32)
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oo

ZI—IT Y1Y2 %‘zg—d}xd)’z f ;Z::)d)’; —J' I yl dyld) 1

== f ylﬂih_@d)’l (3.33)

Then, from equation (3.30) to (3.33), we have

Vo, =Vy-<y (N +D)> (3.34)

L

where V,, , V,, , and V,, are the variance and covariance of y, and y, respectively.

3.5 Damping and Restoring Moment Model

A mixed linear-plus-cubic model is used to describe both the damping and the restoring
moment. This has been shown to be reasonable both qualitatively and quantitatively

{Haddara, 1980). Thus the damping and restoring moments are expressed as

® S 83
N(@) =2, (p+ & ¢ ) 235
D(§) = w,(p +£,0°)
where { and €; are the nondimensional linear and nonlinear damping coefficients

respectively. wn is the natural frequency. €; is the nondimensional nonlinear restoring

moment coefficient.

Substituting equation (3.35) into the ensemble averages on the right hand side of the

equation (3.29) and (3.34), we have
§ — 3 2 2 4
<Yy (N+D)y>=20w,<y,y, +EY Y, >+W, <y, +Ey, >

=20w,V,(A+&V,) + wf WV + 352V1?) (3.36)
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<Y, (N +D)>=2lw, <y)+&y,>+0 < y,y,+ &y, >
=2{w, (V, +3e V) + 0 V,(1+&,V,) (3.37)
For steady state, one has

Vy =V 5, =V, =0 (3.38)

V, =0 (3.39)

Then equation (3.36) change into
<y (N +D)>= w0V, +3&,V}) (3.40)
< y,(N +D)>=2{w (V,, +3eV,} (3.41)

Finally, substituting equations (3.38), (3.40) and (3.41) into equations (3.29) and (3.34),

we get

2 2
Vo =, (Vy, +38,V))) (3.42)
= 4w (V,, +36V.2)
4 (Voo Va2 (3.43)
The equation (3.43) shows that the variance i of the wave excitation would be
identified as long as ship roll parameters can be estimated in random waves. In the

following research, we will verify this method using ship roll response data obtained

from numerical simulation and ship model test in random beam waves.
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Chapter 4

Numerical Simulation Method

Numerical simulation with the variable parameters in the mathematical model is a
convenient way to test the validity and accuracy of the method proposed in the last
chapter to identify the variance of the wave excitation to a ship. In this research, the
random decrement and neural network technique is used to identify the ship roll

parameters in random waves.

4.1 Simulation of the Random Roll Response

Using the damping and restoring moment model in equation (3.35), the rolling motion
of a ship in random beam waves can be simulated using the following second-order

nonlinear ordinary stochastic differential equation.

b 2w [pred 1+ o [p+edl=k() @

k(t) is the random wave excitation per unit virtual mass moment of inertia. Based on

Borgman (1969), the expression of k(2) is written as follows:

k(t) =3 A4 sin(w,t +6,) (4.2)
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This equation shows that superposing a number of sinusoidal functions with the same
amplitude A,, varying frequencies oy and random phase angles 6, simulates the random

wave excitation.

- +.]£( —_
o, =0+ (@~ k=012,,n

(4.3)

®, and o, define a band-limited white noise. y is a uniform random number chosen

such that the phase angle 6, varies between 0 and 2m.

Figure 4.1 Simulated Roli Angle History of case 511
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Random rolling records were generated using MATLAB function “ode45”(see
Appendix B Simulation Programs). One example of the simulated roll motion records is
shown in Figure 4.1; and the selected roll angle curve from 300 second to 320 second has
been expanded in Figure 4.2. Total of 31 cases are designed to verify the proposed
method. Table 4.1 shows all the parameters used to simulate the rolling motion. Time is
the sample record length (4000 seconds) and At is the time interval (0.05 second) to be

used in the integration.
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Table 4.1 Parameters applied in the simulations

Case ®n C £ € ®, M  AD A,  Time at
rad/sec radfsec  radfsec rad/sec Meter Second Second
511 5 0.06 0.01 0.0t 3 6 0075 0.2 4000 0.05
513 5 0.06 0.01 003 3 6 0075 02 4000 0.05
515 5 0.06 0.01 0.05 3 6 0.075 02 4000 0.05
531 5 0.06 0.03 001 3 6 0.075 02 4000 0.05
533 5 0.06 0.03 0.03 3 6 0.075 02 4000 0.05
535 5 0.06 003 0.05 3 6 0075 0.2 4000 0.05
551 5 0.06 0.05 0.01 3 6 0075 0.2 4000 0.05
553 5 006 005 003 3 6 0.075 0.2 4000 0.05
555 5 0.06 0.05 0.05 3 6 0.075 0.2 4000 0.05
51010 5 0.06 0.1 0.1 3 6 0075 0.2 4000 0.05
611 3 0.06 0.01 0.01 1.5 45 0075 0.08 4000 0.05
613 3 0.06 0.01 0.03 L5 45 0075 0.08 4000 0.05
615 3 0.06 0.01 0.05 1.5 45 0075 0.08 4000 0.05
631 3 0.06 0.03 0.01 1.5 4.5 0.075 0.08 4000 0.05
633 3 0.06 0.03 0.03 1.5 45 0075 0.08 4000 0.05
635 3 006 063 0.05 15 45 0075 0.08 4000 0.05
651 3 0.06 0.05 0.01 L5 4.5 0.075 .08 4000 0.05
653 3 0.06 0.05 0.03 L5 45 0075 0.08 4000 0.05
655 3 0.06 0.05 0.05 1.5 4.5 0.075 0.08 4000 0.05
61010 3 006 0.1 0.1 1.5 45 0075 0.08 4000 0.05
61050 3 0.06 0.1 0.5 15 45 0075 0.08 4000 0.05
63050 3 006 03 0.5 1.5 45 0.075 0.08 4000 0.05
411 3 0.04 0.1 0.1 1.5 45 0.075 0.08 4000 0.05
413 3 004 0.1 63 1.5 45 0075 0.08 4000 0.05
415 3 0.04 0.1 0.5 L.5 4.5 0.075 0.08 4000 0.05
431 3 0.04 03 0.1 1.5 45 0075 0.08 4000 0.05
433 3 0.04 03 0.3 1.5 4.5 0.075 0.08 4000 0.05
435 3 004 03 0.5 I.5 4.5 8.075 0.68 4000 0.05
451 3 0.04 05 0.1 1.5 4.5 0.075 0.08 4000 0.05
453 3 004 05 03. 15 4.5 0.075 0.08 4000 0.05
455 3 0.04 05 0.5 1.5 4.5 0.075 0.08 4000 0.05
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4. 2 Random Decrement Signature.

A random decrement curve is simply the trace formed by a waveform averaging a
number of specially selected segments from an observed time history. Each of the
segments shares the common atfribute of known initial condition for the angle, but
different initial slope (Vandiver et al, 1982). In this research, the rolling motion data from
the simulation were processed to obtain the roll random decrement signature. A rolling
motion record is divided into N equal length t segments with same trigger value ¢, and

then these segments are ensemble averaged to get the conditional expected value.

u(r) = —]%—ZN; g.(t,+ 1) 4.4

A MATLAB program was written to obtain the random decrement curves consisted of
three steps: 1) interpolating trigger value ¢. to find start time t, of each segment; 2)
drawing out each segment from each start time t; to time length t; 3) calculating the
ensemble average value p of all segments in a rolling motion record.

In this research, the trigger values were chosen 0.16 or 0.2 radians with the purpose of
finding enough large number of segments (at least 100). Time length 1 is 4 or 7 seconds.
There were 80 or 140 data points in every random decrement signature with the time
interval of 0.05 second. One example of the results has been shown in Figure 4.3. u is

the roll angle randorm decrement curve.
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Figure 4.3. The Random Decrsment Cumve of case 511
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4. 3 Estimation of the Parameters Using Neural Networks.

The Neural Networks technique is inspired by the human brain functions to learn some
rules from the training process. In practical, training a neural network is the process of
adjusting the values of the weights between input and output data.

Using equations (3.19) and (3.35), it can be shown that the expected value p of the

random roll motion approximately satisfies the following differential equation.

pU+2w [pu+e p l+oilpy+e,u’l=0 (4.5)

Equation (4.5) is replaced by an equivalent linear equation given by,

p+ 20, ptoiy=0 4.6)
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where @, is the equivalent linear natural frequency, C. is the equivalent linear damping
coefficient.
In order to apply the neural networks, we define a new function, G,

Glup)=(@ —0Hu+2{ 0,4 @7

The random decrement equation can be written as follows:
g+ oip+ Gp,p)=0 (4.8)

Then wg4 can be easily obtained from the random decrement curve. The function G was

identified using a neural network method shown in Figure 4.4.

G

»

Figure 4.4: Neural Network
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The aij and Bj are called the synaptic weights. The inputs are a bias, 1, and the mean
values of roll angle and roll velocity, which can be obtained from the random decrement
curve. G is the oufput. The relationship between the input vector and hidden layer input is

given as:
X, =a, ,ta, pu+ta, u 4.9
The sum x; is then passed through an activation function z,(x;). The hyperbolic

tangent function is used for the activation function.

X ;

l—-¢ ™
Z(x;)=— 4.10
The network output is calculated as:
G(u,u)=Y (B,Z)) (4.11)
J=1

The purpose is to find the value of G, which could be substituted into equation (4.8),

and get the equal values for £{ and p as those obtained from the random decrement curve.
The process of training the neural network to get G includes three steps. First, a random
set of weights was introduced into the neural network to obtain a value of G. Second,
using the obtained value for G integrates equation (4.8) is integrated to obtain data for p.
Third, a steepest descent technique is applied to adjust the weights oy; and B; to minimize
the square error between the integrated u and the measured p. A Fortran program (see
Appendix B) for neural networks was written by Dr. M.R. . Haddara (see Haddara 1995) to

determine G.
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Substituting &), = @, 1- é’ : into equation (4.7) and letting h= ¢ ,, one can

easily obtain the following equation.

uh’ +2uh-G =0

4.12)

Using the input and output data (1, £{ and G) of the neural network, solving equation

(4.12), one can obtain the values for h. Then, the equivalent natural frequency and the

equivalent damping coefficient can be identified by the following equations.

w, =0 +h

{ =hilw,

(4.13)

Table 4.2 shows one example of the calculation process for w, and . in Microsoft Excel.

Table 4.2: Calculation for w, and . of case 511

30

time n du G h @, ¢, @,
0.00 0.1980 | 0.1180 | 0.2941 | -1.9525 4.8332
0.05 0.1980 | -0.1150 | 0.1808 | -0.5374
0.10 0.1860 | -0.3430 | 0.0607 | -0.0865
0.15 0.1640 | -0.5500 | -0.0585 | 0.0536 | 4.8335 | 0.0111
0.2C 0.1320 | -0.7240 | -0.1696 | 0.1184 | 4.8347 | 0.0245
0.25 0.0924 | -0.8550 | -0.2656 | 0.1566 | 4.8358 | 0.0324
0.30 0.0475 | -0.9340 | -0.3408 | 0.1833 | 4.8367 | 0.0379
0.35 -0.0001 | -0.9570 | -0.3811 | 0.2043 | 4.8375 | 0.0422
0.40 | -0.0473 | -0.9230 | -0.4137 | 0.2228 | 4.8384 | 0.0461
0.45 |-0.09151 -0.8340 | -0.4079 | 0.2414 | 4.8392 | 0.0499
0.50 | -0.1300 | -0.6940 | -0.3746 | 0.2634 | 4.8404 | 0.0544
0.55 |-0.1600 | -0.5150 | -0.3163 | 0.2937 | 4.8421 | 0.0607
0.60 |-0.1810 -0.3050 | -0.2373 | 0.3522 | 4.8460 | 0.0727
0.65 |-0.1900 | -0.0800 | -0.1427 | 0.5425 | 4.8636 | 0.1116
0.70 {-0.1890 | 0.1480 | -0.0390 | 1.6882 | 5.1196 | 0.3298
4.8640 | 0.0728 | Average




4.4 Comparison of the Regular Responses

To validate the technique, the predicted equivalent natural frequency ®. and the

equivalent damping coefficient £, in Table 6.1 are substituted into the following equation.

¢+20 0, ¢+ wi¢=F, sin @  (4a14)
Equation (4.14} is integrated to obtain the value of the roll angle. This angle is compared

with roll angle obtained from the integration of the following equation

o . 3
P+ 20w [p+ £, ¢ 1+ w![p+¢e,0°]=F,sin ot (4.15)
The values of the parameters in equation (4.15) are the same as those used to obtain the
roll motion simulation in irregular waves. The initial conditions and excitations for two
equations are same. For all cases, F is taken 12; ® is 7 radians per second; time is 20

seconds and time step is 0.02 second.

4. 5 Estimation of the Variance of the Wave Exciting Moment
For the stationary case, using the linear terms of equations (3.42) and (3.43), the
variance, Y, of the wave exciting rolling moment per unit virtual mass moment of inertia

can be predicted from equation (4.16),

w =4 wV,, 416

V, =0V, (4.17)

22
where Vy; and V,, are the variances of the roll angle and roll velccity, respectively. Vi,

is the covariance of roll angle and roll velocity.
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The variance of the wave exciting rolling moment can be calculated from equation

(4.18),

n A;
v, =2

2~ (4.18)

where Ay is the wave excitation amplitude used in the simulation, which values are

shown in Table (4.1). The value of n is 41 for all cases.

32



Chapter 5

Ship Model Experiments

The validity and accuracy of the method to identify the variance y of the wave
exciting moment per unit virtual mass moment of inertia using simulated data has been
verified in the last chapter. In this chapter we apply the technique to experimental data.
Real data reflect the physical response of a system to natural environment whereas
simulated data are obtained from an assumed equation. Ship model experiments in a
wave tank can simulate to a certain extent the behaviour of real ships at sea, and also
allow the method to be tested in a controlled environment. Furthermore, model
experiments enable us to assess the variation of the wave excitation for different models

under various loading conditions and various wave excitations.

5.1 General Arrangement

The ship model tests were performed in the towing tank of Memorial University of
Newfoundland using two ship models. One is a 1:40 ‘R-class icebreaker’ ship model, and
the other is a 1:40 series-60 ship model (without appendages). The facility consists of a

large wave tank, an instrumented towing carriage, and a fuily equipped control room.
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The interior dimensions of the tank are 58.27m in length, 4.57m in width, and 3.04m in
depth. At one end of the wave tank is the hydraulically operated, piston-type wave
generator installed behind the waveboard. The waveboard is fabricated from aluminium
with a watertight Teflon seal around its periphery. At the other end of the wave tank is a
parabolic beach consisting of an aluminium frame covered by wooden slats. This wave-
absorbing beach 1s intended to reduce the energy contained in the reflected wave, thus
maintaining a minimum reflection coefficient. Both regular and irregular waves, in a
frequency range between 0.3 and 1.2 Hz, can be generated through the translatory motion
of the waveboard driven by a hydraulic actuator. Electronic control for the waveboard is
provided from the control room. Computer in the control room generates control signals
for irregular wave spectra and the resultant time series are transferred to a
microcomputer-controlled digital to analog converter, which allows reproduction of any

theoretical spectrum.

<] ]

Wavemaker Tezt Area Beach

Condrol Reom

Figure 5.1: Towing Tank Layout
The experiments were conducted at zero forward speed, so the models were positioned
across the tank at the test area, whose centre is 20m away from the wavemaker end (see
Figure 5.1). The waves generated by the wavemaker at one end of the tank approached

the model from its starboard with an encounter angle of 90 degree, namely a beam sea. In
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every test run, two parameters were measured and recorded in the form of time history.
They are:

» Wave Height {cm)

* Angular roll displacement (degree)

A vertical gyroscope is used to measure the roll response of the ship models. A wave
probe is employed to monitor the time history of the wave profile. Data from the vertical
gyroscope and wave probe are recorded in analog format on one or more multi-channel
instrumentation recorders, and simultaneously digitized with a multi-channel analog to
digital converter and a computer, which are installed on the towing carriage. The

measuremernt range of the gyroscope is 30 degree.

5.2 Ship Models Descriptions

3 (cm)

-%.5 -2 1.5 -1 -0.5 1] o5 1.5 2 25
Haif-breadth (cm)

Figure 5.2: Body Plan of “R-class Icebreaker” Ship Model
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One of the models used for the tests is a 1:40 scale ‘R-class icebreaker’. The hydrostatic
particulars of the ship model are presented in Table 5.1, and the body plan is shown in

Figure 5.2. The model hull was made of glass reinforced plastic.

Table 5.1: Hydrostatic Particulars for “R-class Icebreaker” Ship Model

Length Between Perpendiculars (LPP) 2.1985m
Length of Waterline (LWL) 23250 m
Waterline Beam at Midships 0.4840 m
Waterline Beam at Maximum Section 0.4845 m
Maximum Waterline Beam 0.4845 m
Draught at Midships 0.1735m
Draught at Maximum Section 0.1745m
Draught at Aft Perpendicular 0.1790 m
Draught at Forward Perpendicular 0.1675m
Equivalent Level Keel Draught 0.1735m
Maximum Section Forward of Midships -0.1850 m
Area of Maximum Section 0.0773 m*
Center of Buoyancy Forward of Midships (LCB) - 0.0080 m
Center of Buoyancy above Keel (KB) 0.0970 m
Wetted Surface Area 1.3347 m*
Volume of Displacement 0.1990 m’
Center of Floatation Forward of Midships (LCF) -0.0175 m
Center of Floatation above Keel 0.1735m
Area of Waterline Plane 0.8990 m*
Transverse Metacentric Radius (BM) 0.1220 m
Longitudinal Metacentric Radius (BML) 2.4000 m
Center of Area of Profile Plane Forward of Midships -0.0195m
Center of Area of Profile Plane above Keel 0.0895 m
Area of Profile Plane 0.3580 m
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Table 5.2: Hydrostatic Particulars for “Series 60 Block 60” Model

Length Between Perpendiculars (LPP} 3.048 m
Length of Waterline (LWL) 3.092m
Waterline Beam at Midships 0.4065 m
Waterline Beam at Maximum Section 0.4065 m
Maximum Waterline Beam 0.4065 m
Draught at Midships 0.1625 m
Draught at Maximum Section 0.1625m
Maximum Draught 0.1625m
Draught above Datum 0.1625m
Maximum Section Forward of Midships 0.0380 m
Parallel Middle Body from Forward of Midships -0.0380 m
Parallel Middle Body from Aft of Midships 0.0380 m
Area of Midships Section 0.1295 m*
Area of Maximum Section 0.1295 m”
Center of Buoyancy Forward of Midships (LCB) 0.0455 m
Center of Aft Body Buoyancy Forward of Midships -0.5070 m
Center of fore Body Buoyancy Forward of Midships 0.5420 m
Center of Buoyancy above Keel (KB) 0.0870 m
Wetted Surface Area 1.5924 m
Volume of Displacement 0.1206 m’
Center of Floatation Forward of Midships (LCF) 0.1155m
Center of Floatation (aft body) Forward of Midships -0.5300 m
Center of Floatation (fore body) Forward of Midships 0.6290 m
Area of Waterline Plane 0.8767 m”
Transverse Metacentric Radius (BM) 0.07675 m
Longitudinal Metacentric Radius (BML) 3.4050 m
Center of Area of Profile Plane Forward of Midships -0.0175m
Center of Area of Profile Plane above Keel 0.0815m
Area of Profile Plane 0.4852 m>
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The second model used for the tests is a 1:40 “series-60 Block60” ship model (without
appendages). The hydrostatic particulars of the ship model are presented in Table 5.2
(Note: The information is courtesy of the Institute of Marine Dynamics of the National
Research Council of Canada).

Before the experiments, the models were prepared to meet the requirements specified
in the hydrostatic particulars list provided by the Institute for Marine Dynamics, National
Research Council of Canada. This work involved ballasting the model until the required
waterline is reached and then arranging the weights in the model to adjust the centre of
gravity and the radius of gyration. After being ballasted and trimmed in the above way,
each model has the proper draft, centre of gravity and roll natural frequency.

In the procedure of adjusting the mass distribution in the model, the centre of gravity
and the roll natural frequency need to be checked repeatedly. The roll natural frequency
of the model can be determined by conducting a free roll test and recording the time
required by the model to perform a specific number of roll cycles. The vertical position of

the centre of gravity is usually estimated from an inclining test.

5.3 Experimental Set-up

Two parameters, wave height and roll response, were recorded during model tests. The
wave height was measured using a capacitance type wave probe, which was attached to a
platform at a fixed location about 1.2m away from the model at the midship section in the
direction towards the wavemaker. Two different techniques are usually used for
measuring roll motion. One is to use a vertical gyroscope and the other is to use a

dynamometer. In the tests, roll angles were measured using the vertical gyroscope located

38



on the vertical line through the center of gravity of the model. The vertical gyroscope is
composed of a linear bearing, a pivot and an angular induction transducer. As shown in
Figure 5.3 and Figure 5.4, the modeis were tethered from its bow and stern by two strings
running through a pair of steel plates, which were securely attached and bent so that they
hang over the edge of the model. On each steel plate, holes are drilled at a height at the
same level as the center of gravity. To prevent the model from drifting down the tank
during tests, the cord joining the two tethering points in the bow and stern passes through
the center of gravity of the model. Two 2kg weights for “series 60” model and two 5kg
weights for “R-class icebreaker” model were fastened at the loose end of each cord,
which moves freely up and down in the water to restore the position of the model when
displaced. The sway and roll modes are normally coupled but this coupling was found to
be weak and negligible. During tests, the models were covered with plastic bags and
sealed with duct sealing tape to prevent water spray into the models when the models are
in severe waves. Moving a set of weights vertically in the model changed the center of
gravity of the model, while keeping the displacement constant. Thus the different GM
values were obtained. The signals from the vertical gyroscope and the wave probe were
sent through a filter and stored on a microcomputer. The microcomputer was connected
to a data acquisition unit: a two-channel digital signal analyzer.

Random wave generation consists of five steps: 1) definition of the target wave
spectrum; 2) synthesis of a random target wave train with energy distribution defined by
the target spectrum; 3) calculation of the control signal for wave machine; 4) generation
and measurement of the waves in the towing tank; 5) spectral analysis of the measured

wave train and comparison with the desired target spectrum.



In the simulation, the exciting moment departed from the Gaussian white noise, which
was assumed in obtaining the theoretical formulation. Evidence from previous work has
shown that the assumption of the white noise spectrum can be relaxed because of the
narrow bounded nature of the rolling motion. Haddara ez al. (1994), however, pointed out
that because of the narrow banded nature of rolling motion, the random decrement
technique could still be applied in this case. A typical wave in the North Atlantic has been
found under the Joint North Sea Wave Project (JONSWAP) from a series of wave
measurements at the North Sea. The unidirectional JONSWAP sea-spectrum was used for
random rolling experiments. The JONSWAP spectrum, expressed as a function of

frequency, is given by
_A4 4y, @
S(f)= ?S—GXP(—B/f )4

where

(f*fm)“]

ad=exp — -
Pl 20 £}

The JONSWAP spectrum depends on four parameters: significant wave height Hi,

wave modal frequency f, , peak enhancement factor ¥, and shape parameter 6. The

following value proposed by Ewing (1974) were used in the experiments:

y=3.3,

6=007for f<f,,
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6=009for f>f, .

Wave modal frequency f, or wave predominant frequency (PF) is the peak frequency
of a wave spectrum. In this research, the values of wave modal frequency f,, are 0.5, 0.6
and 0.7 Hz. The significant wave height H; is the average of the one-third highest waves,

which is defined as H, = 44/m, where m, is the area under the wave spectrum. In this

research, the values of Hs are 7, 10 and 13 cm.

Figure 5.3: “Series 60” Model Test
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Figure 5.4: “R-class Icebreaker” Model Test

5.4 Roll Tests in Towing Tank

The vertical gyroscope and the wave probe were calibrated. The rolling tests were
performed for each model at a series of GM values, wave modal frequencies and
significant wave heights. During the experiments, the mass of each model remained
constant but the center of gravity changed vertically to give a series of different GM
values. For each model at each GM value, the experiment included three parts: inclining

test, free roll tests and roll tests in random beam waves.
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5.4.1 Inclining Test

The GM value is a measure of the initial transverse stability of a ship. A low GM value
will put the ship in a dangerous situation, even capsizing. The purpose of the inclining
test is to check the value of the transverse metacentric height GM for each loading
condition. To avoid error from measurements, a weight was moved transversely through
five positions on the model and 9 measurements were taken for each case. The 2kg
weight was moved on the “R-class Icebreaker” model and the 1.234kg weight for the
“Series 60” model. The displacements of “R-class” and “Series 60” models are 128.1kg
and 73.61kg, respectively. Table 5.3 and Table 5.4 give the inclining test data for the two

models in each case.

Table 5.3: Inclining Test Data of “R-class Icebreaker” Model

Case 1 Case 2 Case 3
D (cm) © (degree) ¢ (degree) @ (degree)
0 0.12 -0.28 -0.11
7s 0.75 0.28 0.59
14s 1.39 0.86 1.32
7s 0.76 0.27 0.6
0 0.13 -0.28 -0.11
Tp -0.51 - 0.87 -0.85
14p -1.15 -1.44 - 1.55
Tp -0.52 - 0.89 - 0.86
0 0.12 -0.29 -0.12
GM 9.79 ¢cm 10.93 cm 8.66 cm
KG 12.11 cm 10.97 cm 1324 cm

[TIEIN

s”: moved weight towards starboard.

46,90,

p”’: moved weight towards port.




Figure 5.5: Inclining Result Plot for "R-class”
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Table 5.4: Inclining Test Data of “Series 60 Block 60” Model
Case 1 Case 2 Case 3
d (cm) @ (degree) @ (degree) ¢ (degree)
0 0.02 -1.52 -37
2s 0.58 -0.86 -3.08
4s 1.11 -0.23 -2.53
2s 0.61 -0.87 -3.13
0 0.07 -1.44 -3.71
2p -0.44 -2.09 -4.37
4p -1.02 - 2.67 -4.86
2p -0.47 -2.04 -4.36
0 0.06 -15 -3.73
GM 3.6lcm 343 cm 3.23cm
KG 12.76 cm 12.94cm 13.14cm

“s”: moved weight towards starboard.

86,23,

p”: moved weight towards port.




Figure 5.6: Inclining Result Plot for "Series 60"
wdA {cm)
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5.4.2 Free Roll Tests

In order to compare the results from the random decrement curves with those from the
free roll decay curve, a set of free roll tests was calculated. The model was heeled
respectively to port or starboard at 3 different initial angles: 5degree, 10 degree and 15
degrees in calm water and left to roll under its own inertia. Measurements were taken at a
rate of 50 points per second and the test duration was 25 seconds. The results of the free
decay test for all cases are shown in Figure 5.7 to Figure 5.12. The natural frequencies of

the ship response are also determined from the free roll response (see Table 5.5).
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Table 5.5: Natural Frequencies from Free Roll Tests

“R-class” “Series 60”
GM Frequency GM Frequency
(cm) (Hz) (cm) (Hz)
Casel 9.79 1.03 3.61 1.24
Case 2 10.93 1.15 3.43 1.22
Case 3 8.66 0.92 3.23 1.17

Figure5.7: 10 degree free decay for 'R-class’ casel

degree

Figure5.8: 10 degree Free decay for 'R-class’case 2
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Figure 5.9: 10 degree free decay for 'R-class' case 3
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Figure 5.12: 10 degree free decay of "Series 60" case 3
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5.4.3 Forced Reoll Tests in Random Beam Waves

Following the inclining tests and the free roll tests, the roll tests in random beam waves

were performed with the model at the same loading condition. The wave modal

frequency f,, was chosen as: 0.5 Hz, 0.6 Hz and 0.7 Hz, which are lower than the natural

frequencies in Table 5.5. The shape parameter ¢ was decided to be equal to 0.09 for
f > f,. In setting the JONSWAP wave spectrum, we chose three different significant

wave heights. These are 7cm, 10cm and 13 cm. Thus, each model in each loading
condition was subjected to 9 different wave excitations. A total of 54 cases were tested,
which were tabulated in the Table 5.6 (“Series 60” model) and Table 5.7 (“R-class
Icebreaker” model) with the corresponding experimental conditions.

The data sample rate in the random roll tests was kept the same as in free rol! tests at
50 points per second, while the sample duration of each record was 600 seconds in order

to ensure the stationary requirements and provide enough data for analysis.
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Table 5.6: “Series 60” Data Files and Experimental Conditions

Case File Name fn (Hz) H; (cm) GM (cm)
150870 0.5 7 3.61
S160h70 0.6 7 361
S170h70 0.7 7 3.61
S150n10 0.5 10 3.61
1 S160h10 0.6 10 3.61
S170h10 0.7 10 3.61
S150013 05 03 361
S160n13 0.6 13 3.61
S170n13 0.7 13 3.61
$250n70 05 7 343
S260n70 0.6 7 3.43
270070 0.7 7 3.43
S250010 05 10 3.43
2 $260R10 0.6 10 3.43
S270n10 0.7 10 3.43
S250n13 05 13 3.43
S260013 0.6 13 3.43
S270h13 0.7 13 3.43
S350070 0.5 7 3.3
S360n70 0.6 7 3.23
$370n70 0.7 7 3.23
S350n10 0.5 10 3.23
3 S360010 0.6 10 323
S370h10 0.7 10 3.03
S350n13 0.5 3 3.23
S360n13 0.6 13 3.23
S370h13 0.7 13 3.23
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Table 5.7: “R-class Icebreaker” Data Files and Experimental Conditions

Case File Name fr (Hz) H; (cm) GM (cm)

R550h70 0.5 7 9.79
R560K70 0.6 7 9.79
R570n70 0.7 7 9.79
R550h10 0.5 10 9.79

1 R560h10 0.6 10 9.79
R570h10 0.7 10 9.79
R550h13 0.5 13 9.79
R560h13 0.6 13 9.79
R570n13 0.7 13 9.79
R650h70 0.5 10.93
R660h70 0.6 10.93
R670n70 0.7 10.93
R650h10 0.5 10 10.93

2 R660h10 0.6 10 10.93
R670h10 0.7 10 10.93
R650h13 0.5 13 10.93
R660h13 0.6 13 10.93
R670R13 0.7 13 10.93
R750070 0.5 8.66
R760h70 0.6 7 8.66
R770h70 0.7 7 8.66
R750h10 0.5 10 8.66

3 R760h10 0.6 10 8.66
R770h10 0.7 10 8.66
R750h13 0.5 13 8.66
R760h13 0.6 13 8.66
R770n13 0.7 13 8.66
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5.5 Experimental Data Analysis Method

All data are analysed using a program “experimet/.m” (see Appendix B) to extract the
random decrement curves and find out the damped natural frequencies, wq, from the
curves. Then, the function G is obtained from each random decrement curve using a
neural network algorithm. The equivalent natural frequency and the equivalent damping
coefficient can then be identified using equations 4.13. Finally, the variance, y, of the
wave excitation is calculated using equation 4.15.

A Multiple Regression method is used to check the significant levels of the three
variables: wave frequency, wave significant height, and GM value. The analysis process
of Multiple Regression is outlined here: 1) Checking the results to see if it has any outlier
in all estimated results when the variance  of the wave exciting moment is modeled as a
function of the three variables using ordinary least squares regression. 2) Checking the p-
values of all linear terms and interaction terms to test whether each variable had a
significant effect on the variance y, and whether there was an interaction between these
four variables. 3) Checking the R? values of each significant term to find their

contributions on the variability in estimating the variance y of the wave exciting moment.
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Chapter 6

Results and Discussion

This chapter will focus on: 1) the validation of the proposed estimation method from the
simulated roll motion data; 2) the effect of wave modal frequency, wave significant
height, and GM value on the estimated values of the variance y of the wave exciting

moment in JONSWAP beam waves.

6.1 Simulation Results and Discussion

6.1.1 Validation of Predicted Equivalent Linear Roll Parameters

As explained in section 4.4, the regular responses simuiated from equation (4.13) and
equation (4.14) are used to validate the method of predicting the equivalent linear roll
parameters. The comparison of the regular responses for one case is shown in Figure 6.1.
Other comparisons are given in Appendix A. The original parameters values and the
predicted equivalent values are shown in Table 6.1. The error in the prediction of the
peak amplitude for each case is also given in Table 6.1. We can see that the error in
predicting the amplitude in all cases is less than 7%, which means that the predicted
vaiues of the roll parameters are accurate enough for the method to be employed in the

analysis of actual roll data.
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Table 6.1: Comparison of the Regular Responses

Case Wy ¢ £ £ We Lo | ang%error
511 5 0.06 0.01 0.01 4.8640 | 0.0728 5.7262
513 5 0.06 0.01 0.03 4.8592 | 0.0711 6.2018
515 5 0.06 0.01 0.05 4.8599 | 0.0724 6.6230
531 5 0.06 0.03 0.01 4.8744 | 0.0797 5.0828
533 5 0.06 0.03 0.03 4.8717 | 0.0765 5.3849
535 5 0.06 0.03 0.05 4.8766 | 0.0770 5.5959
551 5 0.06 0.05 0.01 4.8703 | 0.0801 45309
553 5 0.06 0.05 0.03 4.8650 | 0.0751 48716
555 5 0.06 0.05 0.05 4.8504 | 0.0759 5.7398

51010 5 0.06 0.1 0.1 4.8570 | 0.0774 4.4617
611 3 0.06 0.01 0.01 2.9396 | 0.0640 0.0894
613 3 0.06 0.01 0.03 3.0138 | 0.0810 | -0.0380
815 3 0.06 0.01 0.05 2.9290 | 0.085% | -0.1098
631 3 0.06 0.03 0.01 2.9289 | 0.0655 0.2253
633 3 0.06 0.03 0.03 3.0080 { 0.0633 | -0.0056
635 3 0.06 0.03 0.05 2.9322 | 0.0661 0.0727
651 3 0.06 0.05 0.01 3.0077 | 0.0626 -0.0571
6853 3 0.06 0.05 0.03 3.0026 | 0.0634 | -0.0854
655 3 0.06 0.05 0.05 2.9979 | 0.0627 | -0.0914

61010 3 0.06 0.1 0.1 2.9296 | 0.0859 | -0.0920

61050 3 0.06 0.1 0.5 2.9987 | 0.0669 | -.0.3552

63050 3 0.06 0.3 0.5 2.9995 | 0.0704 -0.1774
411 3 0.04 0.1 0.1 2.9953 | 0.0469 | -0.3109
413 3 0.04 0.1 0.3 29986 | 0.0424 | 25166
415 3 0.04 0.1 0.5 2.9850 | 0.0430 -4.8043
431 3 0.04 0.3 0.1 3.0005 | 0.0488 | -1.0155
433 3 0.04 0.3 0.3 2.9962 | 0.0473 | -1.0875
435 3 0.04 0.3 0.5 2.999¢ | 0.0480 ! -0.8873
451 3 0.04 0.5 0.1 3.0698 | 0.0543 0.5013
453 3 0.04 0.5 0.3 3.0043 | 0.0494 | -1.0801
455 3 0.04 0.5 0.5 2.99689 | 0.0557 0.5153
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Figure 8.1: Compare the regular response of case 511
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6.1.2 Validation of the Variance y Prediction

From equation (4.15), we estimated the variance v, and from equation (4.16), the true
variance W, could also be determined for each case. The comparison between the
estimated variance y and the true variance y, of the wave exciting moment for all 31
simulated cases are shown in Table 4.4. We can clearly see that all errors are less than
7%. This indicates that the proposed method is good enough to estimate the variance y of

wave exciting moment acting on a ship in random waves.
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Table 6.2: Comparison of the estimated variance \y and the true variance v,

of wave excitation
Case | @, Ce | Vi1 | Va2 Y n A A % Error
511 14.8640(0.07280.0241| 0.5707 0.8078 41 0.2 0.82 1.49
513 {4.85920.071110.0242| 0.5723 0.7911 41 0.2 0.82 3.52
515 14.859910.0724{0.0243| 0.5731 0.8069 41 0.2 .82 1.58
531 14.87440.079710.0233| 0.5545 0.8616 41 0.2 0.82 -5.07
533 {4.8717 {0.0765]0.0235 0.5579 0.8318 41 0.2 0.82 -1.44
535 |4.876810.0770{0.0235] 0.5583 0.8391 441 02 0.82 -2.33
551 |4.87030.0801;0.0228| 0.5403 | 0.8436 41 0.2 0.82 -2.88
553 {4.865010.0751}10.0225| 0.5317 0.7775 41 0.2 0.82 519
555 14.850410.075910.0231 0.5445 0.8014 41 0.2 0.82 2.27
51010{4.8570(0.077410.0216 | 0.5098 0.7665 41 0.2 0.82 6.52
611 [2.939610.0640]0.0193| 0.1663 0.1253 41 0.08 0.1312 453
613 13.0138{0.0610{0.0193{ 0.1757 0.1291 41 0.08 0.1312 1.61
615 12.929010.0655{0.0192| 0.1649 0.1273 41 0.08 0.1312 2.96
631 |2.9288)0.0655[0.0192 0.1646 0.1264 41 0.08 0.1312 3.63
633 {3.0080:0.0633]0.0191| 0.1726 0.1314 41 0.08 0.1312 -0.18
635 |2.83220.06610.0189| 0.1627 0.1261 41 0.08 0.1312 3.89
651 |3.007710.0626{0.0120] 0.1715 0.1291 41 0.08 0.1312 1.61
653 |3.002610.0634!0.0190} 0.1715 0.1306 41 0.08 0.1312 0.47
655 2.997910.0827;0.0185 0.1687 0.1269 41 0.08 0.1312 3.32
610101 2.9296 {0.0653|0.0186 | 0.1597 0.1234 41 0.08 0.1312 585
610501 2.9987 10.0668{0.0173| 0.1554 0.1248 41 0.08 0.1312 5.00
63050{2.998510.070410.0166] 0.1490 0.125% 41 0.08 0.1312 4.05
411 }12.9953[0.046510.0271| 0.2431 0.1365 41 0.08 0.1312 -4.07
413 12.9986;0.042410.0283| 0.2542 0.1294 41 0.08 0.1312 1.35
415 12.995010.043010.0267{ 0.2394 0.1234 41 0.08 0.1312 5.98
431 |3.0005]0.0488]0.0239( 0.2153 0.1262 41 0.08 0.1312 3.84
433 12.996210.047310.0244} 0.2188 0.1241 41 0.08 0.1312 540
435 {2.9996 {0.0480{0.0244 | 0.2192 0.1263 41 0.08 0.1312 3.71
451 13.069810.0543{0.0214{ 0.2017 0.1345 41 0.08 0.1312 -2.54
453 13.0043(0.0494{0.0237 0.2142 0.1272 41 0.08 0.1312 3.03
455 12.99690.0557(0.0210| 0.1887 0.1280 41 0.08 0.1312 3.95
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6.2 Experimental Results and Discussion

The variance Y of the wave exciting moment has been obtained from the experimental
roll time history for the different cases of two ship models and the results are shown in
Table 6.3 for the “Series 60” ship model and in Table 6.4 for the “R-class Icebreaker”
ship model. Figures 6.2 to 6.19 show a plot of the predicted results as a function of the
different variables. In these figures, the points indicate the experimental results while
lines show the regression fits.

Figures 6.2 to 6.4 show the variance y of the wave exciting moment to “series 60”
model as a function of the wave model frequency (fy) and the wave significant height
(Hs). It can be seen that, in general, the variance v of the wave exciting moment
increases as the wave frequencies and the wave heights increase, except for the case of
GM value at 3.43cm, H; 10cm, f, 0.5Hz. A similar trend is shown for “R-class
Icebreaker” model in Figures 6.5 to 6.7, the variance W increase as Hs and Fm increase,
except for the case of GM value at 8.66cm, H; 10 cm, f, 0.5Hz. As the wave modal
frequency increases, it approaches the natural frequency of ship model rolling motion.
This will resuit in an increase of the variance y of the wave exciting moment. Also, as
the significant wave height increases, we expect the variance W to increase. It is difficult
to explain the anomalous behaviour of the cases of GM value at 8.66¢m, Hy 10cm and fiy
0.5Hz. Maybe, the reason is the value of the point (GM 8.66cm, H; 10 cm, f, 0.5Hz) is
abnormally big.

Figure 6.8 to Figure 6.10 show the variance y of the wave exciting moment for the

“series 607 ship model as a function of the GM value and the wave model frequency
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(Fm). Figure 6.11 to Figure 6.13 show the variance W for the “R-class Icebreaker” ship
model as a function of the GM and f;,. Figures 6.8, 6.12, 6.13 show that the wave modal
frequency (fn) has a minor effect on the variance y of wave exciting moment when H; is
the same and the GM is at lowest level in our experiments.

Figure 6.14 to Figure 6.16 show that the variance y of wave exciting moment to “series
60” ship model as a function of wave significant height (H) and the GM value. Figure
6.17 to Figure 6.19 show the variance y for the “R-class Icebreaker” as a function of the
H; and GM value. In general, it can seen from Figure 6.14 to Figure 6.19 that the
variance ¥ of the wave exciting moment increases as H; increases when fi, and GM are
same, except the point in Figure 6.17 corresponding the condition: GM 8.66¢cm, £, 0.5Hz,
H; 10cm. The variance Wy of the wave exciting moment for the two models showed
nonlinear dependence on the GM values. Figures 6.14 and 6.19 show that the maximum

variance  occurred at the middie GM value.
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Table 6.3: “Series 60” Ship Model Experimental Results

File Name % Ce \ Vo Ve v,
S150h70 7.316 | 0.050 | 0.006 | 0.262 | 3.5234 | 0.384
S160h70 7262 | 0.057 | 0.010 | 0.499 | 3.6251 | 0.827
S176h70 7393 | 0.085 | 0.012 | 0.592 | 3.3637 | 1.493
S150h10 7432 | 0.053 | 0.018 | 0.824 | 9.5701 | 1.297
S160h10 7.209 | 0.070 | 0.016 | 0.744 | 7.0206 | 1.492
S170h10 7407 | 0.105 | 0.021 0.971 | 7.0019 | 3.031
S150h13 7.384 | 0.073 | 0.015 | 0.698 11.54 1.504
S160h13 7401 | 0.098 | 0.022 | 0.958 | 11.2011 2.788
S170h13 7.288 | 0.145 | 0.023 | 0.952 | 11.802 | 4.020
S250h70 7.271 0.072 | 0.006 | 0.276 | 3.6504 | 0.581
S260h70 7.336 | 0.152 | 0.009 | 0.386 | 3.6391 | 3.437
S270h70 7262 | 0.056 | 0.014 | 0.662 | 3.3555 | 1.068
S250h10 7.461 0.101 0.016 | 0.753 | 9.5961 | 2.281
S5260h10 7.251 0.115 | 0.014 | 0.611 | 6.9374 | 2.029
S5270h10 7276 | 0.081 | 0.024 1.080 | 6.8179 | 2.561
S5250h13 7.386 | 0.079 | 0.014 | 0.603 | 11.3132| 1.403
S260h13 7330 | 0.077 | 0.024 1.040 | 11.5049 ; 2.350
S270h13 7.197 | 0.114 | 0.029 1.217 | 11.8215 | 4.004
S350h70 7.034 | 0.012 | 0.007 | 0313 } 3.5383 | 0.103
5360070 7.034 | 0.013 | 0.012 | 0.548 | 3.6922 | 0.208
S370h70 7.087 | 0.011 0.017 | 0777 | 3.4959 | 0.240
S350h10 7.143 0.030 ; 0.019 | 0.853 | 9.8563 ! 0.722
5360010 7.038 | 0.037 | 0.020 ; 0.897 | 7.1773 | 0.930
S370h10 7.162 | 0.064 | 0.029 1.298 | 7.3019 | 2.341
S350h13 7.145 0.035 0.017 | 0.771 ! 11.523 | 0.765
S360h13 7.119 | 0.089 | 0.027 1.163 | 11.9242 | 2.937
S370h13 7.020 | 0.097 | 0.037 1.497 | 12.351 | 4.061

*Vy is the variance of wave beight in the experiment.




Table 6.4: “R-class Icebreaker” Ship Model Experimental Results

File Name ®, Le Vi Voo Vi v
R550h70 6.121 0.014 | 0.006 | 0.215 | 3.8801 0.075
R560h70 6.162 | 0.009 | 0.01t 0.403 4.327 0.087
R570h70 6.251 0.040 | 0.017 | 0.606 | 4.3233 0.602
R550h10 6.124 | 0.022 | 0.018 0.615 10.54 0.328
R560h10 6.130 | 0.044 | 0.020 | 0.748 8.0787 | 0.799
R570h10 6.307 | 0.073 0.032 1.139 8.432 2.092
R550h13 6.127 | 0.035 | 0.020 | 0.690 | 12.4544 | 0.594
R560h13 6.220 | 0.034 | 0.031 1.128 | 12.9774 | 0.547
R570h13 6.182 | 0.065 | 0.041 1.432 | 13.3817 | 2.308
R650h70 6.655 | 0.071 0.004 | 0.164 | 3.7423 | 0.308
R660h70 6.598 | 0.045 | 0.007 | 0278 | 3.7387 | 0.327
R670h70 6.643 | 0.040 | 0.010 | 0.407 | 3.4781 0.430
R650h10 6.690 | 0.039 | 0.013 0.518 | 9.7805 | 0.539
R660h10 6.548 | 0.027 | 0.013 0.521 7.186% | 0.365
R670h10 6.735 | 0.027 | 0.020 | 0.796 | 7.0194 | 0.578
R650h13 6.695 | 0.057 | 0.012 | 0457 | 11.7763 | 0.697
R660h13 6.642 | 0.036 | 0.021 0.827 | 11.8874 | 0.786
R670h13 6.645 | 0.047 | 0.034 1.270 12.543 1.574
R750h70 5.513 | 0.004 | 0.009 | 0255 | 4.0346 | 0.020
R76Ch70 5.578 | 0.002 ;| 0.014 | 0424 | 43952 | 0.019
R770h70 5.579 | 0.019 | 0.019 | 0568 | 4.3489 | 0.239
R750h10 5.582 | 0.030 | 0.028 | 0.828 | 10.9993 | 0.554
R760h10 5646 | 0.016 | 0.027 | 0.806 | 8.3907 | 0.293
R770h10 5.614 | 0.022 | 0.036 1.074 | 8.0558 | 0.535
R750h13 5.544 | 0.011 0.025 0.748 | 12.7223 | 0.177
R760h13 5.611 0.013 | 0.036 1.070 | 11.8633 | 0.323
R770h13 5.644 | 0.018 | 0.052 1.547 | 14.3029 | 0.623

*Vy is the variance of wave height in the experiment.
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Figure 6.2: Variance y vs. fm for "Series60" GM=3.61cm
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Figure 6.3: Variance y vs. fm for "Series60" GM=3.23cm
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Figure 6.4: Variance y vs.fim for "Series60" GM= 3.43cm
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Figure 6.5: Variance y vs fim for "R-class” GM= 8.66cm
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Figure 6.6: Variance y vs. fim for "R-class" GM= 9.79cm
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Figure 6.7: Variance y vs. fm for "R-class” GM= 10.93cm

25 -
2.0 - _ —&— Hs=7cm
1.5 - -- & --Hs=10cm
v 1.0 - i Hs=13cm
05 -
0-0 T T 1 ]
0.4 0.5 0.6 0.7 0.8 fm (Hz)

61




Figure 6.8: Variance y vs. GM for "Series60" Hs= 7cm

3.0 -
. ﬁIFO.SHzi
2.0 - ) -8+ fr=0.6Hz]
T e f1e0.7H
1.0 -
0.0 ' GM (1m)

32 33 34 35 36 37 38

Figure 6.9: Variance s vs. GM for "Series60" Hs= 10cm
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Figure 6.10: Variance  vs. GM for "Series60" Hs= 13cm
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Figure 6.11: Variance y vs. GM for "R-class" Hs= 7cm
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Figure 6.12: Variance y vs. GM for "R-class” Hs= 10cm
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Figure 6.14: Variance ¢ vs. Hs for "Series60" fm= 0.5
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Figure 6.15: Variance y vs. Hs for "Series60" fm= 0.6
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Figure 6.16: Variance v vs. Hs for "Series60" fm= 0.7
Hz
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Figure 6.17: Variance v vs. Hs for "R-class” fm= 0.5
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Figure 6.18: Variance y vs. Hs for "R-class" fin= 0.6 Hz
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Figure 6.8 to Figure 6.19 show the variance y of the wave exciting moment as a
function of GM value, wave modal frequency (f;) and wave significant height (Hs). From
these figures, we could not find any quantitative relationship that describe the variance y
as a function of GM, wave height and wave frequency. So, Multiple Regression method
1s applied.

The purpose of multiple regressions is to establish a quantitative relationship between a
group of parameters and a response. This relationship is useful for: 1. Understanding
which parameters has the greatest effect. 2. Knowing the direction of the effect (i.e.,
increasing x increases/decreases y). 3.Using the model to predict future values of the
response when only the parameters are currently known. Here, the multiple regression
method is used to find the significant level of each variable on the predicted value of the
variance y of the wave exciting moment.

Figure 6.20 shows the residuals plotted in case order for “Series60” model (upper part)
and “R-class Icebreaker” model (lower part). The case number in Fig 6.20 is the order
number from the upmost case to the lowest case in Table 6.3 and in Table 6.4
respectively. The 95% confidence intervals about these residuals are plotted as error bars.
The 12 and the 22™ estimated the variance y values for “Series 60” model, and the 15®
and 18% ones for “R-class Icebreaker” model are outliers since their error bars do not

cross the zero reference line.
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Figure 6.20: Residual vs. Case Number Plot

The corresponding experimental conditions are GM 3.23cm, Hs 7cm, fm 0.7Hz for

“series 60” 12" case; GM 3.43cm, Hs 10cm, fm 0.5Hz for “series 607 22™ case, which

point has been found unreasonable in former analysis; GM value 9.79cm, Hs 10cm and

13cm, fm 0.7Hz for “R-class Icebreaker” 15" case and 18% case, separately. I cannot

explain these four outliers after checking and comparing the original experiment data and

the each partial result in estimation process for these four cases with those for other cases.

So, these four cases were not thrown away from the further Multiple Regression analysis

(MR).
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Table 6.5: MR including all Interaction Terms

Terms Parameter p-value
Constant 4.7195 0.3044
Ship form 1.1169 0.0008
GM -0.2357 0.7048

H; -1.0551 0.0199

fm -14.7269 0.0536

GM*H; 0.0805 0.1818
GM*f, 1.1871 0.2456
H¥fn 2.4520 0.0014
GM*H*f, -0.1851 0.0654

The ‘parameter’ in Fig. 6.5 to Fig.6.9 is a coefficient that means a given constant value
for a specified variable (e.g. GM, H; or H*f;) in a regression model. The ‘p-value’ is the
probability of observing a value of the test statistic that is at least as contradictory to the
null hypothesis, and supportive of the alternative hypothesis, as the actual one computed
from the sample data. (McClave et al. 1957)

Table 6.5 shows that the Multiple Regression (MR) result returned from all 54 cases
data when the variance y of the wave exciting moment as a function depends on ship
form, GM, Hs, fm, and their interaction terms. For the data of ship form, we use “1” to
represent “Series 60” model and “-1” to represent “R-class” model in the multiple
regression analysis. The p-value of ship form term is 0.34%, which is far less than 5%
reference level. It shows that ship form is a significant factor in determining the variance

y of the wave exciting moment.

68



Thus, Table 6.6 showed the MR analyses results for the two ship models separately.
The p-values of all terms in Table 6.6 show that all linear and interaction terms are not

significant because their p-values are far bigger than 5% reference level.

Table 6.6: MR including Interaction Terms for Two Models

“Series 60” model “R-class” model
Terms Parameter p-value Parameter p-value
Constant 73.37 0.2443 -7.08 0.8007
GM -19.94 0.2771 0.85 0.7663
Hs -7.87 0.2004 0.61 0.8231
fm | -146.39 0.1629 13.29 0.7742
GM*Hs 2.07 0.2472 -0.088 0.7511
GM*fm 39.58 0.1945 -1.65 0.7263
Hs*fm 15.04 0.1411 -1.29 0.7747
GM*Hs*fm -3.85 0.1937 0.1931 0.6720

Table 6.7; MR Results for Two Models

“Series 60 model “R-class™ model
Terms Parameter p-value Parameter p-value
Constant -10.68 0.0007 -3.74 0.0025
GM 1.36 0.0827 0.28 0.1318
Hs 0.32 0.0000 0.11 0.0032
fm|  7.66 0.0000 3.16 0.0043

Then, deleting all interaction terms, MR results are shown in Table 6.7 for two models
separately. Table 6.7 shows that only GM term is not significant. From both Table 6.5

and Table 6.6, it also can be found that GM term, GM*H; term and GM*£, term are not
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significant in determining the variance y. So, GM term is deleted, and the variance y as a

function depends only on wave parameters.

Table 6.8: MR excluding GM Term for Two Models

“Series 60” model “R-class” model
Terms Parameter p-value Parameter p-value
Constant -6.03 0.000 -2.3923 0.0026
Hs 0.32 0.000 0.11 0.0039
fm 7.66 0.000 3.16 0.0052

The p-value in Table 6.8 shows that the variance y of the wave exciting moment
basically depends on wave significant height and wave modal frequency in JONSWAP
beam waves.

Now, returning to study Figure 6.2 to Figure 6.19, it seemed that the dependence of the
variance y on GM and H; is nonlinear. Then, GM? and Hs? terms are introduced, and H,”
term replaced with the variance Vy of the wave height in the experiment because the H.2
value is proportional to the Vy value. The multiple regression result is shown in Table

6.9.

Table 6.9: MR Results including GM?* and Vy Terms

“Series 60" model “R-class” model
Terms Parameter p-value Parameter p-value
Constant | -199.43 0.0431 -31.5142 0.0089
Vi 0.2190 0.0000 0.0790 0.0005
GM*| -16.2310 0.0537 -0.2923 0.0187
fm | 84785 0.0000 3.3380 0.0008
GM 112.48 0.508 5.8943 0.0159
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Table6.9 shows that the variance y of the wave exciting moment depends on Vy and
GM?* value. However, the p-values of GM and GM? term for the “Series 60” model are a
little bigger than the reference level 5%. The reason probably is too small changes
between the GM values of the “Series 60” model in our experiments.

Finally, the multiple regression model for “Series 60” ship model is shown as:
y =-199.43 + 0.219Vy + 8.4785f, +112.48GM — 16.231GM?
The multiple regression mode! for “R-class Icebreaker” ship model is shown as:

y = -31.5142+ 0.079Vy + 3.338f,, +5.8943GM — 0.2923GM?

Table 6.10: R? value for Different Function

Variables R? value
Series60 R-class
Vu, GM?%, fm, GM|  0.7244 0.6518
GM? fm, GM|  0.3471 0.3872
Vi, fm, GM|  0.6724 0.5497
Vi, GM%, GM|  0.3980 0.4113
Vy, GM?, fm|  0.6710 0.5437

The ‘R? value’ is called the coefficient of multiple determination, which is defined as:

. _ SSR _, SSE
SSTO ~ SSTO

Here SSTO is the total error sum of square; SSR is the regression error sum of square;

SSE is the error sum of square.

71



The general nonlinear model of the variance v as a function of Vi, Gm®, GM and fin
explained 72.44% of the variation of the variance y for the “Series 60” ship model in
random waves, and explained 62.14% of the variation of the variance y for the “R-class
Icebreaker” ship model (Table 6.10). The GM and GM?® terms contribute about 10% to
the variation of the variance y for the “Series 60” model, and above 20% to “R-class
Icebreaker” model. The main contribution comes from wave modal frequency and the

variance of wave height.
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Chapter 7

Conclusions and Recommendations

7.1 Conclusions

In this study, a new method has been developed for estimating the variance y of the
wave exciting moment per unit virtual mass moment inertia from the time history of the
roll displacement in random waves. The variation of the variance y depends on wave
frequency, wave height, ship form, and GM and GM square value in JONSWAP beam
waves.

The validation of the proposed method covered various waves and different nonlinear
restoring moments and damping moments to generate simulated roll data. The random
decrement technique and the neural networks technique were successfully combined in
the process of identifying equivalent linear restoring coefficient and equivalent linear
damping coefficient. The comparison between the estimated variance y value and the
true variance v value showed very small errors, which indicate that it is reasonable to use
the method for the variance y of the wave exciting moment identification in random

Waves.
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The method was used to predict the variance y of the wave exciting moment from
experimental data of “Series 60” and “R-class Icebreaker” ship models under different
JONSWAP beam waves. The method could not be verified using experimental results
because the wave excitation to the models could not be measured in the experiments.
However, through a series of Multiple Regression analyses combining with studying the
regression fit figures of the variance v, several conclusions can be achieved.

e Wave frequency and the variance of wave height are the main factors in
determining the variance y of the wave exciting moment in random waves.

e GM value shows quadratic nonlinear effect in determining the variance y of wave
exciting moment in random waves.

e No interaction terms between GM value, wave frequency and wave height are

significant in determining the variance y of the wave exciting moment.
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7.2 Recommendations
Based on this study, the following recommendations have been made and should be
studied in further research.

e Using sensitive instrument to measure the wave excitation in ship model
experiment, calculating the true variance y of wave exciting moment, further
verifying the proposed method.

e The effect of ship form on the variance v of the wave exciting moment should be
investigated through testing more ship models.

e The effect of GM value on the variance v of the wave exciting moment should be
investigated through testing more ship models and GM values.

¢ A more accurate method is needed to predict the parameters of ship roll motion in
random waves.

¢ Using other time history records of ship motions (for example, pitch record) to

estimate the variance y of wave exciting moment.
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Appendix A

Comparison of Regular Response Curves
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Figure A.1: Compare the regular response of case 513
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Figure A.2: Compare the regular response of case 515
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Figure A.3: Compare the regular response of case 531
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Figure A5 Compare the regular response of case 835
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Figure A.7: Compare the regular response of case 553
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Figure A.13: Compare the regular responssa of case 831
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Figure A.15: Compare the ragular response of case 635
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Figure A.17: Compare the regular response of case 6532
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Figure A.19: Compare the regular response of case 51010
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Figure A.21: Compare the regular response of case 63050
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Figure A23: Compare the regular response of case 413

4 equivalent function results

original function resuits

B T R e kL N L L

(pey) 8lfiuy oy

time(s)

Figure A.24: Compare the reguiar response of case 415

# equivalent function results

B R R D R R LR e el R R

(pes) aibuy jjoy

time(s)

91



Figure A.25: Compare the regular response of case 431
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Figure A.26: Compare the reguiar response of case 433

4 eguivalent function results

B - e e e . —

{peJ) a)buy floy

time(s)

92



Figure A.27: Compare the regular response of case 435
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Figure A.29: Compare the regular response of case 453
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Figute A.30: Compare the regular response of case 455
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Appendix B

Computer programs
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The Following MATLAB program “simulation].m” was used to generate the roll
motion history from the random wave excitation, and also calculate the random
decrement curves. The program “xz/ oct3.m” was used to create ship roll motion
equation, which would be solved by “ode45” command in the program “simulationl.m”.
The FORTRAN 90 program “roll.f” was used for neural network training to identify the
damping function G. The MATLAB program “Compare.m” was used to compare the
regular response results of estimated parameters and original parameters. The programs
“xzI_Oct5.m” and “xzI_5.m” were used to create ship regular roll motion equation, which
would be solved by “ode45” command in the program “Compare.m”. Finally, the
MATLAB program “experiment!.m” was used to deal with the experimental data of each

case to calculate the random decrement curve.

Simulationl.m

%0ct3,2002

%simulation of ship roll motion
%Random decrement to extract the free roll decay curve
global zeta Wn Ak w g al a2
zeta=0.06;

Wn=5.00;

Ak=0.2;

w=3:0.075:6;

g=2*pi*rand (1,41}

al=0.01;

a2=0.01;

time=4000;

tspan={0:0.05:time];

¥0=[0.1,0.11;
[t,yl=0oded5('xzl Oct3', tspan,¥0);
z=y(:,2); % simulated Roll Angle
dz=y(:,1); % simulated Roll Velocity
nn=length{t);

dT=time/ (nn-1);

vll=sum(z.”2)/{(nn-1);

v22=sum{dz.”2)/ (nn-1};
vl2=sum{z.*dz)/ {(nn-1);

x0=0.2;
TT=4;
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num=round {TT/4T) ;
T=0;
for n=1l:num;
tn=n*dT;
T=[T,tn];
end
k=zeros (1,num+l};
kk=zercs!{l,num+l);
count=0;
dk=zeros (1, num+1);
dkk=zeros (1, num+1);
for m=1: (nn-numj};
if z(m)>0;
if (z{m}~-x0)*{z(m+1l)-x0)<0;
mm=m+Ium;
kk=z (m:mm) ;
k=k+kk';
dkk=dz {m:mm}) ;
dk=dk+dkk"';
count=count+1;
end
end
end
U=k/count;
dU=dk/count;
x11=U";
x22=d0°;
Tm=T"';

Pk=[x07];
Tt=[0];
for h=7: (num-1)
if U(h)>0
if (U(h)-U¢h+1))>0
if {U(h=1)-0U(h))*(U(h)-U{h+1))<0
Pk=IPk;U(h)];
tT=h*dT~dT;
Te=[Tt;tT];
end
end
end
end
NX=3;
PT=[Pk,Ttl:
Td= (Tt (NX)}-Tt (1)) / (NX-1});
Wd=2*pi/Td;

data={Tm,x11,x22];
save Novbll.dat data /ascii;

data_2=[Wd,vli,v22,v12];
save Nov51ll_rr.dat data_2 /ascii;

clf

figure (1)
subplot (211)
plot(t,z);



title{'Roll Angle 5117);
xlabel {'Time (sec)'):
ylabel {'Roll Angle (rad)'):;
grid

subplot {212)
plot{T,U);

title('the Shape of the Random Decrement 511°):

xlabel ('Time (sec)'):

ylabel ('Mean value U (rad)’);

grid

%ship roll motion equation

function dy=xzl Oct3(t,Y)
global zeta Wn Ak w g al a2

dy=zeros(2,1);

FF=Ak*sum{sin (w*t+q));

xzl _oct3.m

dy (1) =FF-Wn"2* (Y (2)+a2*Y(2)."3)-2*zeta*Wn* (Y {1)+al*Y (1)

$accelaration
dy(2)=Y(1): %velocity

% 1)is velocity:
% Y{2) is roll angle.

roll.f

* Input layer weight--->wi

* Qutput layer weight-->wo

* Suspension inputs---->ri

* Suspension ocutputs--->ro

* Middle layer outputs->rm

* Roll natural frequency>rr

* Time end & time step-->tend & delt
* Middle layer neurons-->Net

* Number of inputs---—=-~ >kin

* Number of outputs----- >kon
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variation of data peints~-> rate
# of iterations:kit, and Counter for iterations: it
Logical IF operator nig
Natural rell Frequency rr
If statment condition for RM(i) ~ power
Weight manipulator del
Number of input velocities,and angles data npoint
Use old or new wieghts CHOICE {choice < 0 old, chcice > 0 new)
Declare variables

implicit real*8 (a-z)

integer i,Jj,countl,kin, kon,net,met,Jjf

integer npeoint,mf,mig,kit,it,nfiles

LR B . A T T

character*20 ff,£ffl

dimension timer2 (2500), result3(2500), sense (25000}

dimension resl{2500),res2 (2500}

common/blockl/ met,net, kin, kon,big, choice,power,del, rr, tend,
delt, time, countl,mig,wig,wrong, yi(2),wo{15,15),wi(15,15), rm (15}
,xi{15),ro(15),k1(2),k2(2),k3(2),k4(2),rsim{2500,4),

*  resultl(2500),result2(2500),00(15,15,15),01(15,15,15)

* input constants and initial variable values
open(l,file="initial.d',status = 'old’)
read(l,*) rate,big,wig,mig,power,del
read(1l,*) net,kin, kon
read(l,*) delt,tend, kit
read(1l,*) choice,ddel

close (1)

print *,' rate:?????:',rate

print *,'# of Middle layer neurons: net = ', net

print *, *Number of inputs:kin = ',kin

print *, 'Number of outputs:kon = ?,kon

print *, 'Total time °,tend, ‘and time step’,delt

print *,‘big',big, 'wig',wig

print *,'# of iterations:',kit,’'Counter for iterations: it'
print *,'Logical IF operator mig: ',mig

print *,'If statment condition for RM(i): power = ',power
print *, 'Weight manipulator: del = ',del

print *,'Use old or new wieghts{choice > { old,; choice < 0 new)'’

-

print *, ‘choice = ',choice
openi{l,file="datal.d',status = "o0ld"’)

write(l,*)' rate:???77?:7,rate

write(l,*)'# of Middle layer neurons: net = ', net
write(l,*) "Number of inputs:kin = *,kin
write(l,*) Number of outputs:kon = ',kcn

write{l, *) 'Total time ',tend,‘'and time step’,delt
write(l,*)‘big’,big, 'wig',wig

write{l,*)'# of iterations:',kit, *Counter for iteraticns: it"
write(l,*)'Logical IF operator mig: ',mig

write(l,*)'If statment condition for RM(i): power = ',power
write(l,*) 'Weight manipulator: del = ',del
write(l,*}) 'choice = *,choice
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cleose (1)
* input weight inputs and outputs
met = net + 1
open(l,file="tt.txt®, status = ‘old")
read(l,*) nfiles
do jf = 1, nfiles

read(l,*) ff

££1 = trim(££) // *.d"

* input ship roll and roll rate

open (2, file= ffl ,status ='old'")

read(2,*) rr, npoint
do countl = 1,npoint
read(2,*) dumny,rsim{countl,l),rsim(countl,2)

end do
close (2)
do countl = 1, npoint
rsim(countl, 2) = rsim(countl, 2)
end do

npoint = 100
print *, 'Natural roll Frequency rr',rr

print *, 'Number of input velocities,and angles data = ',npoint
call intweight (ff)

it =1
crit = 1
sense (it) = 1
* do while {(it.lt.kit)

* loops to end of program
do while (crit.gt.ddel }
time = 0.d0

4

countl = 1

deep = 0.d0

resultl(l) = rsim(l,1)
result2(l) = rsim(1,2)
mf = 2

do while(time .lt. tend)
* call Middle layer and net output subzoutine
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= resultl{mf-1)
resultZ{mf-1)

-
™o
i

ri{kin}) = 1.d0
call mid net_out
call runge

result3i{mf - 1) = ro(l}
mf = mf + 1
resulti(mf-1)= ri(1)

resultzZ{mf~-1)= ri(2)
countl = countl + 1
wrong = ri(l} - rsim{countl,l)

if (mig.eq.0} then
deep = deep + wrong**2
else if (mig.eq.l)then
deep = deep + DABS {wrong)
end if
* do while time < tend loop ends
end do

it = it + 1
Sense (it) = sqrt(deep)/npoint

crit = sense(it)/rsim(1,1)
write({*,*) it,sense(it), crit
call wi oi(result3)

call wo_oo(timerZ, result3)
call corcalc{cor,rate)

if (it > kit) then

ge to 3

else if (it < kit) then

go to 5

end if

* do while it < kit loop ends

5 end do

3 call results{npoint,timerZ, result3, sense, kit,ff, ££1)
end do
close (1}
end

subroutine intweight (££)

implicit real*8 (a-z)

integer met,net,kin, kon,i,j,countl
integer mig

integer*4 iseed
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20

15

30

*

character*30 string,stringl

character*20 f£,££f3

common/blockl/ met,net, kin, kon,big, choice, power,del, rr, tend,

delt,time,countl,mig,wiqg,wrong,yi(2),

wo{15,15),wi{15,1i5),rm{15)}

,Ti{15),x0(15),k1{(2),k2(2),k3(2),k4(2),rsim{2500,4),

resultl{2500), result2(2500),00{15,15,15),

£f£f3 = trim(££) //".w"

If (choice.GE.0} Then

open{3,file=ff3,status = 'old")
read(3,5) string
format (a)
do 20 3j 1,met
de 20 1 1, kon
read (3,*) wo(j,1i)
continue
read(3,15) stringl
format (a)
do 30 3J 1, net
do 30 1 1,kin
read (3,%*) wi{j,i)
continue
close (3)

else

0i(15,15,15)

initialize random layer weight input and output

3

+*

iseed 123457

do 40 3 = 1,met

do 40 i = 1,kon
gwo = RAN({iseed)*big
wo {Jj,1)=gwo

continue
do 50 § = 1,net
do 50 1 = 1,kin
gwo = ran{iseed)*big
wi{j,1i) = gwo
continue
end if
raturn
end

subroutine mid net_out

implicit real*8 (a-z)

integer i,j,net,met, kin, kon,countl
integer mig

common/blockl/ met,net, kin, kon, big, choice,power,del, rr, tend,

delt, time, countl,mig,wig,wrong, yi(2),

we(15,15) ,wi{(15,15),rm(15)

,ri{l5),ro(l15),k1(2),k2(2),k3(2),k4{2),rsim(2500,4),
resultl (2500),result2(2500),00{15,15,15),0i(15,15,15)
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* middle layer output

do 60 1
rm(i) = 0.d0
do 70 j 1,kin
rm{i)= rm{i) + wi{i,3)*ri(j)
70 continue
if{rm({i).ge.power) then
rm{i)=1.040/(1.0d0+dexp (-rm(i)}}}
else if(rm{i).lt.power) then

1, net

ol

rm{i)=0.d0
end if
rm{i) = 2.d0*(rm(i)~ 0.5d0)
60 continue

rm{met)=1.0d0
* net ouput calculation
do 80 i=1l,kon
ro{i)= 0.d0
do 80 j=1,met
ro{il)= ro(i) + wo(j,i)*rm(3)
80 continue
return
end

Subroutine runge

implicit real*8 (a-z)

integer n,i,net,met, kin, kon, countl

integer mig

common/blockl/ met,net, kin, kon,big,choice,power,del, rr, tend,
delt, time, countl,mig,wig, wrong,yi(2),wo(15,15),wi{15,15),rm(15)
,ri(15),ro(l5),k1(2),k2(2),k3(2),k4(2),rsim(2500,4),

*  resultl(2500),result2(2500),900(15,15,15),01(15,15,15)

n= 2
ti = time
do 8¢ 1 = 1,n
yi(i) = ri(i)
20 continue
rslt = - rr**2* ri{(l) - ro(l)

kl1(1l) = delt*ri(2)
k1{2) = delt* rslt
do 100 i = 1,n
ri{i) = yi(i) + kl{i})/2.d0
continue
call mid_net_out
time = ti + delt/2
rslt = - rr**2*ri{l) - ro{l)
k2 (1) delt*ri(2)
k2({2) = delt*rslt
do 150 i = 1,n
ri(i} = yi(i) + k2(i)/2.40
150 continue
call mid net out
rslt = —rr**2* ri(l) - ro{l}
k3(1) = delt*ri(2)

[y
<
o

1
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k3(2} = delt*rsit

de 120 i = 1,n
ri(i) = yi{(i) + k3(1i}

120 continue

call mid net out

time = ti + delt

rslt = —rxr**2% ri(l) - ro(l)
k4 (1) = delt*ri(2)

k4(2) = delt * rslt

do 130 i = 1, n

ri(iy= yi{i) + (k1l{i) +2.d0*(k2{iy + k3(i))

* + k4(i))/6.40
130 centinue
call mid net_out
return
end

subroutine corcalc(cor,rate)

implicit real*8 (a-z)

integer n,i,net,met, kin, kon, countl

integer mig

common/blockl/ met,net, kin, kon,big,choice,power,del, rr,tend,
delt, time,countl,mig,wig,wrong,yi(2),wo(15,15),wi(15,15),rm(15)
,ri(15),ro(15),k1(2),k2(2),k3(2),k4(2),rsim(2500,4),

* resultl(2500),result2(2500),00(15,15,15),01{(15,15,15)

]

do i 1,kon

do j = 1l,met

cor = (co(j,i,1)=00(j,1,2))/2.d0/del
wo(j,1) = wo(j,1) - cor*rate

end do

end do

do i = 1,kin

do j = 1,net

cor = (o0i(3,1i,1)-0i(j,1,2))/2.40/del
wi(j,i) = wi(j,i) - cor*rate

end do

end do

return

end

subroutine wi_oi(result3)
implicit real*8 (a-z)
integer n,i,net,met,kin, kon,countl,ii,jj, kk
integer mig
dimension result3(2500),resultd {2500}, result5{2500)
* , resulté6 (2500}, resli2500),res2{2500)
common/blockl/ met,net, kin, kon,big,choice, power,del, rr,tend,
*  delt,time,countl,nig,wig,wrong,yi{2),wo(15,15),wi (15,15}, rm(15)
* ,ri(15),ro(l5),k1(2),k2{2),k3(2},k4(2),rsim(2500,4),
resultl (2500}, result2(2500),00(15,15,15),0i(15,15,15)

do 999 43 = 1,net

do 999 ii 1,kin
wi(ij,ii) = wi(jj,ii)+del
do 888 kk=1,2
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oi(j3j,1i,kk)=0.d0
time = 0.d0
countl = 1

result5{(1)
resultd (1)

= rsim{l,2)
rsim(1,1)

mf = 2

do while({time .1lt. tend)

ri{l) = resultd (mf-1)
ri{2} = result5(mf-1)
ri{kin) = 1.d0

call mid net_out
call runge
resulté{mf - 1) =
mf = mf + 1
resultd (mf-1)= ri(l)
results(mf-1)= ri(2)

ro{l)

countl = countl + 1
wrong = ri(l) - rsim(countl,l)
wrong = wrong/wig

if (mig.eq.0) then

0i(jj,1ii,kk)=0i(jj,1ii,kk)+wrong**2

else if (mig.eg.l)then

oi(jj,ii,kk)=0i(jj,1ii,kk)+DABS (wrong)

end if

* end of do while TIME loop

888

999

*

*

end do

wi(jj,ii)=wi(jj,1i)-2.d0*del
continue

wi(jj,ii)=wi(jj,ii)+del
continue

return

end

subroutine wo_oo({timer2,result3)
implicit real*8 (a-z)

integer n,i,net,met, kin, kon,ccuntl,ii,jj, kk

integer mig
dimension timer2(2500),
, resultB8(2500),resl(2500),res2(2500)

result3{(2500),result7(2500}

common/blockl/ met,net,kin, kon, big,choice, power,del, rr, tend,

delt, time, countl,mig, wig,wrong,vi(2),
k2(2),k3(2),k4{2),r3im{2500,4),

,ri(15}),ro(15),k1(2),

wo(15,15),wi(15,15), rm(15)

resultl {2500),result2(2500),00(15,15,15),01(15,15,15)

do 777 jj = 1,met
do 777 ii = 1,kon
wo(jj,ii} = wo(jj,ii)+del

do 666 kk=1,2
oco({ji,ii, kk)=0.d0
time = 0.d0
countl = 1

result8(l) = rsim(l,2)
result7(1) = rsim(1l,1)
timer2(l) = time
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mf = 2

do while(time .1t. tend)
ri{l) = result7{(mf-1)
ri{2) result8 (mf-1)

ri(kin) = 1.d0
call mid_net out
call runge
mf = mf + 1
timer2 (mf -1) = time
result7 (mf-1)= ri{l)
result8 (mf~-1)= ri{2)
countl = countl + 1
wrong = ri(l) - rsim{countl,1l)
wrong = wrong/wig
if(mig.eq.0)then
oo(jj,1i,kk)=00(j3,1ii, kk) +wrong**2
else if (mig.eq.l)then
oco(jj,ii,kk)=o00{3j,11i,kk)+DABS (wrong)
end if

* end of do while TIME loop

end do
wo({jj,ii)=wo(jj,1i)~2.d0*del
continue
wo(jj,ii)=wo{jj,ii)+del
continue
return
end

subroutine results (npoint,timer2,result3,sense,kit,ff, ffl)
implicit real*8{a-z)

integer 1i,Jj,net,met,kin, kon,countl,npoint, count3

integer mig, kit

character*20 ff,£ffl,ff2,ff3,£f4, f£5,ff6

dimension timer2(2500),result3(2500), sense (25000}

common/blockl/ met,net, kin, kon,big, choice, power,del, rr, tend,
delt, time,countl,mig,wig,wrong,yi{2),wo(15,15),wi{15,15),rm(15)

*  ,ri(l5),ro(15),k1(2),k2(2),k3(2),%k4(2),rsim(2500,4),

*  resultl(2500),result2{2500),00(15,15,15),01(15,15,15)

* print net outputs

140

££f2 = trim{ff) //".a"
£f£3 = trim(£ff) //".w"
£f£f4 = trim(ff) //".v"
ff5 = trim{ff) //".r"
£ff6 = trim{ff) //".e"

open{2,file=ff2,status = 'replace’
open(3,file=£f£3,status = ‘replace’

)

)
open(d,file=ff4, status ‘replace’)
)

)

open(5, file=£f5,status = 'replace’

open{6,file=££f6,status = 'replace’

doc 140 count3 = I, npoint

write(2,*) timer2(count3),rsim{count3,1l),resultl (count3)
continue

do 170 count3 = 1,npoint
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write(4,*) timer2{count3),rsim{count3,2),result2 (count3}
176 continue
do 180 i = 1, npoint
write(5,*) resultl(i),resultld (i)
180 continue
do 180 i =1, kit
write(6,*) sense(i)
180 continue
write(3,*} 'WO - Cutput layver weights’
do 150 j = 1,met
do 150 i = 1,kon
write(3,*) wo(3j,1i)
150 continue
write(3,*) 'WI - Input layer weights'
do 160 j = 1, net
do 160 i = 1,kin
write(3,*) wi(j,1i)
160 continue
close(3)
close(4)
close(2)
close(5)
close(6)
return
end

Compare.m

%$Compare Octb5,2002
global ze we FO0 w zeta Wn al a2

we=4.8604;
ze=0.073;

Err=(];

NN={];

for F0=12:12;

w=7;

time=20;

tspan=(0:0.02:time];

¥0={0,07;
ft,vel=oded5{ xzl _0Oct5', tspan,¥0);
Re=ye(:,2): % Equivalent Roll Angle
dRe=ye(:,1); % Equivalent Velocity

Pe={1];
num=length (Re} ;
for h=2: (num-1)
if Re(h)>0
if (Re{h)-Re(h+1})>0
if (Re(h-1)-Re(h))*(Re(h)-Re{h+l))<0
Pe=[{Pe;Re(h)];
end
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end
end
end

zeta=0.06;

Wn=5.00;

al=0.01;

a2=0.01;

ft,yl=oded45('xzl 5',tspan, ¥0);
R=y(:,2}; % Roll Angle
dR=y {:,1}; $ Velocity

P={]:
N=length(R};
for h=2: (N~-1)
if R(h)}>0
if (R{h)-R(h+1))>0
if {(R{h-1)-R(h})*(R{(h)-R(h+1))<0
P=[P;R(h)];
end
end
end
end
1 p=length(P);
1_pe=length(Pe);
error=sum(l-Pe(l_pe-9:1 pe)./P(1l_p~9:1 _p))*100/10;
Err=[Erxr;exrror];
NN=[NN; FO];
end
Peak=sum(P(1l_p-%:1_p))/10;
Error=[NN, Err]

figure(1l)

plot (t,Re, "*',t,R,'r")

xlabel('time(s)?);ylabel ('Roll Angle'};

legend{('equivalent functicn results',’'real function results')

title('Compare the reqular response of case 511°")
grid

¥zl OctS.m

$0ct . 05,2002
$Equivalent Linear Function

function dy=xzl Oct5(t,Y)
global ze we FO w

dy=zeros{2,1);

dy{1)=FQ0*sin{w*t)-we"2*Y (2} ~-2*ze*we*Y(1l); %accelaration
dy (2)=Y(1); $velocity
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% Y{ljis velocity;
% Y(2) is roll angle.

xzl 5.m

$original parameters function
function dy=xzl 5(t,Y)
global zeta Wn FO w al a2

dy=zeros(2,1);

dy (1)=FO*sin (w*t)~Wn"2* (Y (2)+a2*Y(2).73)~2*zeta*Wn* (Y (1)+al*Y(1l)."3);
$accelaration

dy(2)=Y(1); $velocity

% Y(l)is velocity;
% Y{2) is roll angle.

experimentl.m

§Feb2l, 2003

$“"R~class ilcebreaker” and “Series 60" models roll tests
% in the towing tank at MUN

%2analysis the experimental data

load j770hl3.dat

RA 1=3770h13(:,3)-mean{j770h13(1:300C,3)); %Roll angle
dt=1/50; 3time step
drRA 1=(RA 1(2:end)-RA_1(l:end-1l))/dt; %Roll velocity

RA 1=RA 1{300l:end)*pi/180; %degree to radian

dRA_ 1=dRA 1{3000:end)*pi/180; 3degree per second to radian per second
nn=length(RA 1};

time=nn*dt;

v1l=sum{RA 1.72}/(nn-1);

v22=sum{dRA_1.72)/(nn-1);

v12=sum{RA 1.*dRA 1)/ (nn-1);
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x0=0.1;

TT=10;

num=round (TT/dt);

T=0;

for n=1:num;
tn=n*dt;
T=[T,tn_;,:

end

t=[0.02:0.02:time};

k=zeros (1, num+l;};

kk=zercs (1, num+l});

K=zeros{l,num+t+l);

count=0;

dk=zeros (1, num+l);

dkk=zeros {1, num+l});

DK=zeros {1, num+1l) ;

DDk=zeros {1,num+1l);

for m=1:{nn-num);

if RA 1(m)>0;

if (RA_1(m)-x0)*(RA 1(m+1)~x0)<0;

mm=m+num;
kk=RA_1(m:mm) ;
k=k+kk’;
dkk=dRA 1 (m:mm);
dk=dk+dkk"®;

count=count+1;
end
end
end
U=k/count;
dU=dk/count;
Tm=T"';

Pk=[x0];
Tt={0];
for h=7: (num-1}
if U(h)>0
if (U{h)-U(h+1))>0
if (TU(h-1)-U(h))*(U(h)-U{h+1))<0
Pk=[Pk;U(h)]:
tT=h*dt—-dt;
Te=[Tt;tT];
end
end
end
end
NX=4;
PT=[Pk, Ttl;
X1=Pk{l);
K2=Pk (NX) ;
Td= (Tt (NX)-Tt (1)) /(NX-1);
Wd=2*pi/Td;
Tm=[0:0.02:2}"';
Ull=0(1:101)";
U22=d4u (1:101}"';
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data=[Tm,Ul1,U22];

save e770hl3.dat data /ascii;
data_2=[Wd,v11,v22,v12};

save e770h13_xrr.dat data_2 /ascii;

clf

figure(l)

plot (T, U);

title( 'the Shape of the Random Decrement(j770hl13}"');
¥label {'Time (sec)}'};

yliabel ("Mean wvalue U (rad)'):

grid

figure(2)

plot (t{10000:10300}),RA_1(10000:10300),'R',£{10000:10300),dRA_1(10000:103
00));

title{'Comparison of Roll Angle & Velocity'}:

xlabel ('Time (sec)');

vlabel (‘Roll Angle (rad) & Velccity({rad/s)');

legend{'roll angle', 'roll wveloccity');

grid
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