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Abstract 

In an adaptive clinical trial research, it is common to use certain data dependent 

design weights to assign individuals to treatments so that more study subjects are 

assigned to the better treatment. These design weights must also be used for con­

sistent estimation of the treatment effects as well as the effects of other prognostic 

factors. In practice, there are however situations where it may be necessary to collect 

binary responses repeatedly from an individual over a period of time and to obtain 

consistent and efficient estimates for the treatment effects as well as the effects of the 

other covariates. In this thesis, we introduce a binary response based longitudinal 

adaptive design for the allocation of individuals to a better treatment, and propose 

a weighted generalized quasi-likelihood (WGQL) approach for the consistent and ef­

ficient estimation of the regression parameters, including the treatment effects. We 

also introduce a binary longitudinal adaptive mixed model assuming that given the 

treatment effects and the unobservable individual random effect, repeated responses 

of an individual are longitudinally correlated. An extended WGQL approach is also 

used to obtain consistent and efficient estimators for the regression parameters and 

the variance component of individual random effects. 
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Chapter 1 

Introduction 

1.1 Motivation of the Problem 

A clinical t rial is basically an experimental design to evaluate the effects of a new 

medical treatment or intervention. For clinical trials on human beings, it is highly 

desirable that one uses certain data-dependent treatment allocation rules which ex­

ploit accumulating information to assign individuals to treatments so that more study 

subjects are assigned to the better treatment. More clearly, even though the main 

objective of the clinical experiment is to identify a better treatment, the experiment 

is designed in such a way so that more study subjects are likely to be assigned to 

the better treatment during the process for ethical reasons (cf. Armitage (1975), 

Anscombe (1963), Colton (1963), and Cornfield, Halprin, and Greenhouse (1969) ). 

This type of experimental design may be referred to as a sequential adaptive design, 

where the allocation of treatment to an incoming subject is defined by what has 

already been learned at earlier stages. There exists a vast literature on the develop­

ment of such sequential adaptive designs. For example, Zelen (1969) introduced the 

play-the-winner(PW) rule, which prescribes that a success with a given treatment 

generates a future trial with the same treatment, while a failure generates a trial 

with the alternative treatment. If the patients respond to the treatments without 

much delay, the PW rule specifies that after each success we continue to use the 

1 
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same treatment and after each failure we switch to the other treatment. Zelen (1969) 

called this rule the modified play-the-winner (MPW) rule. The MPW rule tends to 

assign more patients to the better treatment, but it is deterministic and may bias 

the trial in various ways. The MPW rule maximizes the selection biases because the 

experimenter knows the next assignment for sure. Simon, Weiss, and Hoel (1975) 

proposed a non-deterministic plan based on the likelihood function , but it is rather 

complicated for practical use. 

As a modification of Zelen's (1969) PW rule, Wei and Durham (1978) and Wei 

(1979) proposed a randomized play-the-winner (RPW) rule (see Chapter 2 for details) 

which has advantages that it is not deterministic and is less vulnerable to experimental 

bias, and it is also easily implemented in a real trial. One disadvantage of the RPW 

scheme is that it does not include the balance over the covariates or prognostic factors 

which may affect the response of the patient to the treatment. In conducting a 

clinical trial, it is desirable that the trial should be balanced, not only with respect to 

the overall assignment of patients t o treatments but also with respect to the various 

prognostic factors, such as age, sex, and major indicators of clinical condition. Biased 

coin schemes which do force balance over both treatments and prognostic factors are 

given by Pocock and Simon (1975) and Efron (1980) . The properties of the design 

have been elucidated by numerical studies and they are now being increasingly used 

in clinical trials. However, the designs suffer from the disadvantage that they rely on 

arbitrary functions to achieve the desired balance. The procedures thus lack a firm 

theoretical framework. Begg and Igelewicz (1980) introduced an alternative approach 

in the presence of the prognostic factors, which uses optimum design theory to suggest 

a deterministic design criterion, which is then modified for computational convenience. 

Atkinson (1982) suggested an optimum design theory to provide a procedure of the 

biased coin type for an arbitrary number of treatments in the presence and absence 

of prognostic factors. This has the theoretical advantage of obviating dependence on 

a series of arbitrary functions. Smith (1984) showed how martingle methods may be 

used to study the procedures of Wei (1978) and a number of generalizations of these 
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methods. 

Later on, by using different inference procedures, many authors, for example, Wei, 

Smythe, Lin, and Park (1990) and Smythe and Rosenberger (1995) studied the effects 

of the treatment on the binary responses, where the treatment is assigned by using the 

RPW rule based adaptive designs on the binary responses. Recently, some authors 

have modified the RPW rule to accommodate the contributions of other possible 

ordinal covariates (prognostic factors) in constructing the adaptive designs for the 

assignment of the treatment to the incoming patients and for the examination of the 

treatment effect on discrete or continuous responses. For example, Bandyopadhyay 

and Biswas (1999) and Bandyopadhyay and Biswas (2001) have accommodated the 

suitable prognostic factors in constructing the adaptive designs for binary and normal 

responses, respectively. Remark that the construction of the adaptive designs in all 

of the above works is however confined to the non-longitudinal (cross-sectional) set 

up. That is, once the treatment was assigned to an individual, the individual was 

expected to provide only one response. 

In practice, there are however clinical trial experiments where it may be useful to 

register the study subjects sequentially over time as in the above studies, but collect 

repeated binary responses from each study subject. While the responses under an 

adaptive design may be normal, binary, or count, in the present thesis, we consider 

the adaptive design for longitudinal binary responses because of its wide range of 

applications. For example, in a psychological study, once an individual enters into 

the study sequentially, the individual may be asked to report daily over a period 

of 7 days on the presence of 'anxiety' . Here the 'yes' or 'no' status of 'anxiety' of 

an individual on a given day is a binary response. To address such problems, in 

this thesis, our motivation is to construct a longitudinal adaptive design by using 

the available repeated binary responses and covariate information such as age and 

education level, for the purpose of assigning more study subjects to a better treatment. 

Here it is also of interest to compute the treatment effect as well as the effects of the 

other covariates based on all covariate information and the responses available at the 
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end of the study. We do this in the spirit of Liang and Zeger (1986), Sutradhar and 

Das (1999) and Jowaheer and Sutradhar (2002), where they proposed generalized 

estimating equations approach to obtain the consistent and efficient estimators of 

the regression parameters in the class of generalized linear models under a classical 

longitudinal set up. Furthermore, the longitudinal correlation computed from the 

repeated binary data will be utilized to obtain consistent as well as efficient estimates 

of regression effects. 

1.2 Objective of the Thesis 

As the analysis of binary longitudinal data in adaptive clinical trials is not adequately 

addressed in the literature, in this thesis, we propose a simple longitudinal adaptive 

design so that more study subjects may be assigned to the better treatment . The 

construction of such a longitudinal adaptive binary design may be considered as an 

extension of the existing adaptive design in the non-longitudinal set up constructed 

on the idea of the RPW rule. The existing adaptive designs in the non-longitudinal 

(cross-sectional) set up are discussed in brief in Chapter 2. 

In Chapter 3, we deal with the longitudinal adaptive clinical trial studies. More 

specifically, in Chapter 3, we construct the so-called longitudinal adaptive designs so 

that more study subjects are assigned to the better treatment. The performance of 

this type of design is examined through a simulation study. To accommodate the 

longitudinal correlations, we follow Sutradhar and Das (1999) (see also Jowaheer and 

Sutradhar (2002)) and use a general auto-correlation structure for the repeated bi­

nary responses and take these correlations as well as the longitudinal adaptive design 

weights into account for consistent and efficient estimation of the regression parame­

ters of the models through a weighted generalized quasi-likelihood(WGQL) approach. 

We also examine the performance of the WGQL estimation approach, mainly for the 

estimation of the treatment effect. In the same chapter, the misspecification effects 

of the longitudinal adaptive designs are also examined through a simulation study. 
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Note that it has been assumed in Chapter 3 that the repeated responses of an indi­

vidual patient are likely to be correlated following a general autocorrelation structure. 

But, as there may be situations in practice where repeated responses from an indi­

vidual may also be affected by an individual random effect, in Chapter 4 we consider 

a more general correlation structure which is constructed by accommodating the in­

dividual random effect as well as the repetition of the data. The adaptive weights 

are constructed accordingly. Next we discuss the WGQL approach to estimate the 

dispersion parameter of the individual random effect and the regression parameters 

involved in the mixed model, consistently and efficiently. Similar to Chapter 3, the 

performance of the WGQL approach is also studied by a simulation. Longitudinal 

correlations are still estimated by the moment method as in Chapter 3. 

We conclude the thesis in Chapter 5 with some remarks on the usefulness of the 

longitudinal adaptive designs that we constructed in Chapters 3 and 4. In the same 

chapter, we also provide some remarks on the possibilities of future research in this 

area. 



Chapter 2 

On Existing Adaptive Clinical 

Trials in Cross-Sectional Set up 

Adaptive clinical trials have attracted the attention of practitioners mainly because 

of ethical reasons, as this type of design allows the incoming patients to receive the 

better treatment with greater likelihood. More specifically, in any sequential medical 

experiment on a cohort of human beings, there is an ethical imperative to provide the 

best possible medical care for individual patient. This ethical imperative may not be 

satisfied if a 50-50 randomized allocation scheme is used. Adaptive designs have long 

been proposed to remedy this situation. 

Adaptive designs that have been developed over the past few decades are based on 

single response of treatment from each study subject . These responses may be either 

discrete or continuous. Moreover, covariates or prognostic factors that may influence 

the response of an individual are not considered in all adaptive clinical trials so far 

developed. In the following sections, we briefly describe the existing adaptive clinical 

trials with single discrete or continuous response from an individual patient in the 

presence or absence of prognostic factors . 

6 
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2.1 Adaptive Clinical Trials with Discrete Response 

Variables 

In many clinical trials, discrete responses are collected from the patients involved in 

the experiment. Consequently, most of the available works on adaptive clinical trials 

are based on discrete responses. This type of adaptive design can be described through 

the generalized P6lya urn (GPU). The play-the-winner (PW) rule for dichotomous 

responses in clinical trials introduced by Zelen (1969) is a special case of the GPU. 

Later on, as a modification of Zelen's rule, Wei and Durham (1978) and Wei (1979) 

proposed the idea of a randomized play-the-winner (RPW) rule. Further works in 

this direction are due to Wei, Smythe, and Mehta (1989), Wei (1988), and Begg 

(1990) . In all the above works and almost all other works available in the literature 

on clinical trials, it is assumed that the entering patients are homogeneous. But, in 

practice, there may be many prognostic factors like age, sex, blood pressure, heart 

beat, blood sugar etc. which usually make the patients involved heterogeneous. The 

construction of an adaptive design in the presence of prognostic factors requires much 

more attention as compared to the construction of the adaptive clinical design in the 

absence of prognostic factors . The treatment allocation problem in the presence of 

prognostic factors was considered by Begg and Iglewicz (1980) and Atkinson (1982), 

among others. Begg and Iglewicz (1980) proposed a treatment allocation procedure 

based on the minimization of a function that is an easily evaluated approximation to 

the variance of the treatment effect in a linear model relating the outcome variable to 

the chosen prognostic factors and selected interactions, whereas Atkinson (1982) used 

optimum design theory to provide a procedure of the biased coin type for an arbitrary 

number of treatments in the presence of prognostic factors. Bandyopadhyay and 

Biswas (1999) proposed an adaptive RPW (ARPW) rule to incorporate the presence 

of prognostic factors. They considered both the cases where prognostic factors are 

non-stochastic and stochastic. In the following subsection, we describe some of the 

existing important adaptive designs for discrete response variables in the absence of 
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prognostic factors. In the next subsection, we describe similar existing designs in the 

presence of prognostic factors. 

2.1.1 Adaptive Clinical Trials with Discrete Response Vari­

ables in the Absence of Prognostic Factors 

2.1.1.1 Generalized P6lya Urn (GPU) 

The randomized adaptive designs are constructed to assign the incoming patients to 

a better treatment with greater likelihood. A large family of randomized adaptive de­

signs is developed from the generalized P6lya urn (GPU) model (originally designated 

by Athreya and Karlin, 1968, as the "generalized Friedman's urn"). For simplicity, 

consider a clinical experiment with two treatments. To develop the adaptive design 

for this experiment, Athreya and Karlin (1968) considered a GPU model which can 

be described as follows. Suppose that an urn contains two types of particles with 

initial number as n0 = ( n01 , n02 ) particles where nom denotes the initial number of 

particles of type m, m = 1, 2. A particle is drawn or split at random from the urn. Its 

type is observed and the particle is put back to the urn. When a particle of type m 

(m = 1, 2) is drawn, it is said that a type m split occurs. Following the type m split, 

suppose that Rmm' particles of type m', form' = 1, 2, are added to the urn, or gen­

erated. Thus, if type m is drawn at the first draw (i=1), then n1 = (n11 , n12) would 

represent the composition of the urn after the first draw. Here, n 1m' = nom' + Rmm', 

for m' = 1, 2. In the most general sense, Rmm' can be random and can be some 

function of the responses of patients. A particle must always be generated at each 

stage, in addition to the replacement so that Pr{Rmm' = 0, m ' = 1, 2} is assumed to 

be zero. 



Allocation Probability 

Let us define the indicator variable Or for the rth draw as follows: 

{ 

1, if type 1 particle is drawn 
Or= 

0, if type 2 particle is drawn · 

9 

After i splits and generations, the urn composition is given by the vector ni = ( ni1 , ni2) 

where nim, form= 1, 2, represents the number of particles in the urn of type m after 

i splits given by 
i 

nim =nom+ l:::[orRlm + (1- Or)R2m]· 
r=l 

Thus the proportion of type m splits after K splits is I:~=~r;;Km . For given all the pre­

vious draws ( 01 , ... , o K), let w K +1 be the conditional probability that type 1 particle 

is drawn at the (K + 1)st draw. Then 

nK1 
WK+l = 2 . (2.1) 

L m=l nKm 

Note that in terms of assigning an incoming patient, this WK+l would represent the 

probability of assigning the (K + 1)st patient to the type 1 treatment , whereas 

(1 - WK+l) would represent the probability of assigning this patient to the type 2 

treatment. 

Athreya and Karlin (1968) showed that 

nKm 
2 -t lim, 

Lm=l nKm 
(2.2) 

almost surely as K -t oo, where lim is the mth (m = 1, 2) element of the left eigen 

vector ll = (ll11 ll2) with I:~=Illm = 1 (see, e.g. Gantmacher, 1959) such that the 

eigen vector ll is constructed corresponding to the maximal eigen value, say p, of the 

matrix E = [E(Rmm; )]. 

Allocation Performance 

Once the w/s are constructed, all o's become known. Then 2::~1 8
r indicates the 

proportion of patients who receive the type 1 treatment and I::-~l-8r) indicates the 
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proportion of patients who receive the type 2 treatment. It can be shown that 

and 

almost surely as K -1- oo, where Vm (m = 1, 2) is defined as before (cf. Athreya and 

Karlin (1968) ). 

The above two proportions can be re-expressed by using a single formula. For 

this, let xi be a categorical variable such that xi = m if the ith split is type m, 

m = 1, 2 and let lim = 1 if Xi = m and l im = 0 otherwise. Then the proportion of 

type m splits after K splits is osiK) = 2:; I;m . Thus 

(2.3) 

almost surely as K -1- oo, where Vm is defined as before. 

GPU Rule Applied to Binary Case 

Consider a clinical experiment where binary responses are collected from the subjects. 

Let Yi = 1 if the response of the ith subject is a "success", 0 otherwise. The total 

proportion of successes with the type 1 treatment will be then L~1 or and with 

the type 2 treatment it will be E:-~l-or). These two proportions can be expressed 

through a single formula by using the notation lim . It then follows that the total 

proportion of successes with treatment m, form= 1, 2, in the trial is L~}(I;m . 
Note that one may be interested to estimate Pm, where Pm = Pr{Yi = 1!Xi = m}, 

for i = 1, . .. , K and m = 1, 2. It can be obtained by the maximum likelihood 

estimation approach (cf. Rosenberger and Sriram (1997)). The maximum likelihood 

estimator of Pm is given by 

~ L~1 Yilim (2.4) 
Pm= . K . ' 

Li=l lim 

which is the observed proportion of successes on treatment m. Rosenberger and Sri-

ram (1997) have shown that p"m is strongly consistent for Pm· For p = (p1,p2)', Rosen­

berger, Flournoy, and Durham (1997) have shown that the vector K~ (p- p) is asymp­

totically normal with mean vector 0, and diagonal covariance matrix, diag[~, E1!11.], 
Vl Vz 
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where qm = 1-Pm· By Slutsky's theorem, it further follows that [bsm(K)]t(.Pm -pm) 

has asymptotically a univariate normal distribution with 0 mean and variance Pmqm. 

In the same manner as for the independent case, one may make asymptotic inference 

on the Pm's using the usual contrasts and the x2 statistic. 

2.1.1.2 Randomized Play-the-Winner (RPW) Rule as a GPU 

Model: A Binary Case 

The randomized play-the-winner (RPW) rule is an adaptive design introduced by 

Wei and Durham (1978) , motivated as an extension to Zelen's (1969) play-the-winner 

rule. Wei (1979) first noted that the RPW rule can be formulated as a GPU model, 

which can be described for the case with two treatments as follows: 

The GPU rule is described in the previous sub-section § 2.1.1.1. Let A and B 

denote two treatments and the response of each patient to treatment is dichotomous, 

either a success or a failure. To construct the RPW rule as a special case of GPU, one 

can start with a particles of each type, i.e. n0 = (a, a) in the urn. When a patient is 

available for an assignment, a particle is drawn at random and replaced. If it is type 

m, then treatment m is assigned to this patient, where m A, B. When the response 

of a previous patient to treatment m is available, we change the structure of the urn 

based on the following rule: if this response is a success, then additional {30 particles 

of type m and additional a0 particles of type m' are put in the urn; if this response 

is failure, then additional a0 particles of type m and {30 particles of type m' are put 

in the urn, where {30 2:: a0 2:: 0, m, m' = A, B, and m' =/= m. It is to be noted that 

after each response, exactly a0 + {30 additional particles are added to the urn. This 

rule is denoted by RPW(a, a0 , {30 ). It is also applicable when responses are delayed. 

Allocation Probability 

Based on the above RPW(a, a 0 , {30 ) , we now show how to compute the probability 

for an incoming subject to be assigned under treatment A or B. For this purpose 
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define indicator variables (bi, li) as: 

bi = { 

1
' 

0, 

if the ith patient is assigned to A 

if the ith patient is assigned to B 

and 
_ { 1, if the ith patient's response is success 

li-
0, if the ith patient's response is failure 

Let SKm and FKm be the number of successes and failures with treatment m after K 

assignments, respectively, where m =A, B . Then 

K K 

sKA = L:oili, FKA = L bi(1-li) , and 
i=l i=l 

K K 

SKB = 'L:(l- bi)Yi, FKB = 'L:(1 - bi)(1- Yi). 
i=l i=l 

Further let nKA and nKB be the number of particles of types A and B in the urn, 

respectively, after K responses. Then 

(2.5) 

Hence, after K responses the total number of particles in the urn will be nK where 

nK = nKA +nKB = 2a+ (a0 + f30)K. Given all the previous assignments (0"1 , ... , bK) 

and responses (y1, . . . , y K), let w K +1 be the conditional probability of assigning the 

(K + 1)st patient to the treatment A. Then 

(2.6) 
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Allocation Performance 

Let the probability of a single t rial success for treatment m is Pm, where 0 < Pm < 1 

and m = A, B, i.e. PA = Pr{successiA}, PB = Pr{successiB}, qA = 1 - PA, and 

qB = 1 - PB · The random variables nKA form a stochastic process with transition 

probabilities 

(2.7) 

From (2. 7) we have the following recursive relations for expectations 

(2.8) 

Recall from (2.3) that 8sA(K) denotes the total number of patients assigned to 

treatment A after K assignments. It then follows (Wei and Durham (1978)) that by 

(2.5) we have 

E [8sA(K)] [E(nKA)- a - K(f3oqB + etoPB)l/ 

[(PA- PB)(f3o- eto)), (2.9) 

where PA =I= PB and f3o =I= ao. 

Without any loss of generality, one can assume that PA ?:: PB· By (2.8) and lemma 

6.6 of Freedman (1965), it can be shown that 

limit E[nKA] (aoPB + f3oqB) 
K -t 

00 
K = (1 - (PA - PB)(f3o - ao)/(ao + f3o)]. (

2
.
10

) 

It then follows from (2.9) that 

limit E[8sA(K)] etoPB + f3oqB 
K -t 

00 n = [ao(PA + PB)+ f3o(qA + qB)]. (2.1l) 
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It is to be noted that (2.11) is increasing in f30/a0 and tend to QB/(qA + QB) as 

(30 / a0 -+ oo. Therefore, if (30 is large with respect to a0 , we force the trial to put 

more patients on the better treatment. It is also interesting to note that for the rule 

RPW(a, 0, (30), (2.11) becomes QB/(qA + QB), which is the asymptotic proportion of 

patients treated by A when the play-the-winner (PW) rule is utilized. The PW rule 

prescribes that a success with a given treatment generates a future trial with the same 

treatment, while a failure generates a trial with the alternative treatment. It follows 

that, for a large trial, the RPW(a, 0, (30 ) is as good as the modified play-the-winner 

(MPW) rule for placing more patients on the better treatment, where MPW specifies 

that after each success we continue to use the same treatment and after each failure 

we switch to the other treatment. 

2.1.2 Adaptive Clinical Trials with Discrete Response Vari­

ables in the Presence of Prognostic Factors 

Note that a selected treatment may work differently on a subject if there is a pos­

sibility that the response of a subject may also be affected by certain covariates 

(prognostic factors). One disadvantage of the RPW rule described in § 2.1.1.2 is 

that it does not include the prognostic factors that may affect the response of a pa­

tient. Pocock and Simon (1975), Efron (1980), Begg and Iglewicz (1980), Atkinson 

(1982), and Bandyopadhyay and Biswas (1999) considered prognostic factors in de­

signing the adaptive clinical trials. Bandyopadhyay and Biswas (1999) proposed an 

adaptive randomized play-the-winner (ARPW) scheme in the presence of prognostic 

factors with a goal of allocating more patients to the better treatment in the course 

of sampling. In the following sub-section, we discuss the ARPW sampling scheme 

with non-stochastic prognostic factors. Furthermore, as prognostic factors may also 

be random, we consider this situation in § 2.1.2.2. 



15 

2.1.2.1 ARPW Rule with Non-Stochastic Prognostic Factors 

Construction of ARPW Rule 

Assume that there is only one prognostic factor C, which is non-stochastic, and the 

corresponding variable is either discrete or can be easily transformed to a discrete 

random variable with (G + 1) ordered grades 0, 1, . .. , G, defined with consulting a 

clinician. Grade 0 is for the least favorable and grade G for the most favorable 

condition. Clearly, the response of the ith patient depends not only on the treatment 

(A or B) by which the patient is treated, but also on the grade ui E {0, 1, ... , G} of 

the ith patient. Using this prognostic factor C with its (G +1) grades and treatments 

A and B, ARPW can be described through an urn model as follows: 

One can start with two types of balls A and B such that there will be a balls of 

each type. An entering patient, say the ith patient, of grade ui can be treated by any 

one of the two treatments by drawing a ball with replacement . If success occurs an 

additional (G- ui + {30)~ balls of the same kind and (ui + a0)~ of the opposite kind 

are added in the urn. On the ot her hand, if a failure occurs, we add an additional 

( G - ui + a 0) ~ balls of the same kind and ( ui + {30 ) ~ balls of the opposite kind in the 

urn. Thus for every entering patient, ( G + a 0 + {30 ) ~ balls are added in the total, G ~ 

for the grade and (a0 + {30)~ for a success or failure response. For G = 0, ui = 0, and 

~ = 1, this ARPW procedure reduces to RPW(a, a 0 , {30 ) . 

Bandyopadhyay and Biswas (1999) designed this ARPW rule by assuming a 0 = 0 

and {30 = T. For given (aj, T), they denoted their procedure as ARPW(aj, T). 

Allocation Probability 

One may be interested to compute the probability of assigning an incoming patient 

to a particular treatment. For this assignment we now explain the ARPW(a, ~' T) 

rule due to Bandyopadhyay and Biswas (1999). Suppose that there is a sequential 

chain of patient's entrance up to a maximum of K patients. Corresponding to the 

ith ( i = 1, ... , K ) entering patient with grade ui, let us define a pair of indicator 
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variables { bi, Yi} as follows: 

{ 

1, 
bi = 

0, 

if the ith patient is assigned to A 

if the ith patient is assigned to B 

and 
_ { 1, if the ith patient response is success 

Yi-
0, if the ith patient response is failure 

Suppose that at the treatment selection stage for the (i + 1)st patient, the total 

number of balls in the urn is ni, where ni = 2a+i(G+r)~. Also suppose that among 

the ni balls, the number of balls of type A is niA which is given by 

i i 

niA = a+ L bj}j(G - Uj + r)~ + L bj(1- }j)(G- ui)~ 
j=l j=l 

i i 

+ 2::(1 - bj)}juj~ + 2::(1- bj)(1- }j)(uj + r)~ 
j=l j=l 

- t(T + 2u;- G)O;-T t. Y;] . (2.12) 

Let wi+l be the conditional probability of bi+l = 1 given all the previous assignments 

{ 151 , ... , bi}, and all the previous responses {y1 , ... , Yi}· Then it follows that 

(2.13) 

Unconditional Allocation Probability 

Assume that 

(2.14) 

where a E (0, 1), called the prognostic factor index, is either known from past experi­

ence or can be estimated from past data and p1 ,p2 E (0, 1), the success probabilities 
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of treatment A and B respectively at grade G, are unknown. However, it is noted 

that under equivalence of treatment effects (i.e. when p1 = p2 = p), the bi's are iden­

tically distributed as Bernoulli with success probability ~ and Yi's are independently 

distributed as Pr(Yi = 1) = 1- Pr(Yi = 0) = paG-u;, and the 6/s are independent of 

Yi's. 

From the urn model, it is clear that w1 = ~- Now from (2.13), the distribution of 

bi (i = 1, . .. ,K) is given by 

1 
Pr(bi = 1) = 2, fori= 1, (2.15) 

and for i 2: 1, 
1 

Pr(bi+l = 1) = 2 - di+l, (2.16) 

where, by the method of induction, 

~ ( ) ~ G- u · ( 1 d ) . - + P2 - PI L....t a J - + j 
2a+t(G+T),8 j=l 2 

+ . . ~ - t[2Tp1aG-ui - (T + 2uj- G)]dj , (2.17) 
2a + t(G + T)j3 i=l 

(cf. Bandyopadhyay and Biswas (1999)) . 

Inference Based on ARPW Rule 

Suppose that one is interested in any one of the following decisions: 

H1 :A> B, H2 : B > A , (2.18) 

where 1 >1 means better than. Under H1 , we have p1 > p2 . For a E (0, 1) as in (2.14), 

let after K allocations, 
K 

TAK = L au;Yioi 
i= l 

K 

and TBK = L au;Yi(1- oi), 
i=l 

denote the total number of successes (in the presence of the prognostic factor) with 

treatment A and B respectively. Further, let 
K 

c5sA(K) = L oi = Total number of allocations wit h treatment A ' and 
i = l 
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K 

c5sB(K) = 2".:(1- c5i) =Total number of allocations with treatment B. 
i=l 

Then, form- A, B, 

(2.19) 

denotes the proportion of successes due to treatment m. 

For a particular treatment m = A, B, T mK not only accounts for the total number 

of successes, but also the grades from which the successes have occurred as au; is 

inversely proportional to the success probability at grade ui. Based on (2.19) , one 

may then develop the decision rules as follows: 

Rule 1: The terminal decision rule: This rule is to accept H 1 if 9AK > 9BK 

and H2 if 9AK < 9BK· If 9AK = 9BK, accept H1 with probability 
!. 
2. 

Rule 2: Termination rule with early stopping: Suppose that for m ::::: A, B, and 

after allocation of k ( k = 1, . .. , K) patients, one writes 

( ) 
Tmk 

and Qmk ll = Osm(k) + K- k - v ' 

where v = 0, 1, ... , K - k, indicates the number of patients treated by treatment m. 

In case Osm(k) = 0, consider Pmk(O) = Qmk(K - k) = 0. Here, Pmk(v) represents a 

possible value of 9mK where among the future (K- k) incoming patients (after the 

kth one) exactly v patients each of grade 0 will be treated by treatment m and for all 

of them the result will be success. Similarly, Qmk(v) is a possible value of 9mK where 

among (K - k) remaining patients (K - k - v) patients will be treated by treatment 

m and for each of them the result will be failure. We then stop sampling and accept 

A or B at the kth stage if 

min(QAk(v) - PBk(v)) > 0 or min(QBk(v) - PAk(v)) > 0, 
v v . 

respectively. So far it is assumed the prognostic factor to be non-stochastic. The case 

when it is stochastic is discussed in the following section. 
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2.1.2.2 ARPW Rule with Stochastic Prognostic Factors 

Suppose that the variable U corresponding to the prognostic factor has distribution 

function F(u), u = 0, 1, .. . , G. Recall from (2.13) that 

We now re-express this probability in the presence of the stochastic prognostic factor 

as follows: 

Based on the ARPW(a, ~' r), at the (i + 1)st selection stage, one may write 

(2.20) 

It then follows from (2.20) that given all the previous assignments (£51 , ... , bi) and 

responses (y1 , . . . , Yi), the allocation probability for the ( i + 1 )st patient is 

(2.21) 

where Eu(niA) denotes the expected value of niA over the distribution of U. 

To compute this allocation probability, Bandyopadhyay and Biswas (1999) defined 

¢1(a) = E[a0 -uU1] (provided it exists) and Pu(w), the probability generating function 

(p.g.f) of U. Then the marginal distribution of the b/s can be obtained from (2.15)­

(2.17) by replacing a0 - uiu; and aG-ui with ¢1(a) and a0 Pu(a- 1
), respectively, at 

every stage. Subsequent analysis can be carried out in a similar way. If we consider 

the simplest case where G = 1, then U follows a Bernoulli distribution with probability 

of success p. In this case we have E(a0 -u) = 1- q + qa and E(a0 - uU1) = q for each 

l, where q = 1 - p. 

All the ARPW rules with discrete response are discussed above by considering 

only one prognostic factor. If there are more than one prognostic factor, we can 

proceed in the following direction. Suppose there areS prognostic factors C1, ... , C8 

with grades 0, 1, .. . , G ,_ for the R.th factor. First, consider G + 1 = Ilf=1 ( G £ + 1) factor 

combinations. We can arrange these ( G + 1) combinations according to the favorable 

conditions 0, 1, . . . , G and carry out the same procedure discussed above. If G is 



20 

moderately large, the revised grading may be difficult as it involves the combination 

of different grades. In that case for an entering patient with grade U£j for the factor 

Ce,£= l, ... ,S, we have 

s 
Pr(}j = llc5j = h, U £j) = P2-h IT afruti, h = 0, 1, 

£=1 

(2.22) 

where we have ideas about the prognostic factor indices a1 , . . . , as from past expe­

rience. Then the same procedure can be carried out. However, it requires more 

modeling and knowledge about parameters. 

2.2 Adaptive Clinical Trials with Continuous Re­

sponse Variables 

Most of the available works on adaptive clinical trials in the literature are based on a 

discrete response variable. The urn models that we have discussed so far are applicable 

for binary or polychotomous responses. One may however collect continuous responses 

in some clinical trials. For example, it may be necessary to see the effect of treatments 

and other covariates on the blood pressure of patients. In this example, blood pressure 

is a continuous response variable. Rosenberger (1993) introduced a response-adaptive 

design for continuous responses, in the spirit of the RPW rule. Bandyopadhyay 

and Biswas (2001) considered the case of two competing treatments with continuous 

responses. We provide a brief discussion on these approaches below. 

2.2.1 Adaptive Clinical Trials with Continuous Response Vari­

ables in the Absence of Prognostic Factors 

Rosenberger (1993) developed a biased coin randomization scheme for continuous 

responses based on a liner rank statistic without considering prognostic factors. Ac:... 

cording to his scheme, at each stage of the trial, the next treatment assignment is 

generated from a rank-type statistic, giving the higher probability of assignment to 
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the treatment that is "winning" at that stage. Assume that there are two treatments, 

say A and B . Define for the ith patient ( i = 1, . . . , K) 

{ 

1, if the patient is assigned to treatment A 
t5i = 

0, if the patient is assigned to treatment B 

For 1 ~ i ~ j ~ K, suppose that the outcomes of j patients are available. Next, 

let rij be the rank for the ith patient among j patients. Also, let aij be the score 

functions corresponding to rij, where "L1=1 aii = 0, j = 1, ... , K. Define at = 

aijl(aij > 0), where I is an indicator function. Then, given all the previous assign­

ments (811 ... , t5i_1 ) and responses (y1, . .. , Yi-1), the probability that the ith patient 

is allocated to treatment A is wi given by 

1 { "L;::\ aj,i- I(t5i - ~)} 
- 1 + i-1 + . 
2 Lj=1 aj,i-1 

(2.23) 

Remark that each patient is randomized with a probability that is a function of the 

current value of the rank statistic. The better the responses of previous patients 

on treatment A, relative to those on B, the larger will be the probability for the 

next patient to be assigned to the treatment A. One can use a permutation test 

based on the rank scores to test the hypotheses of the treatment effect. The form 

of the test statistic is given in Rosenberger(1993) and simulations indicate that it is 

asymptotically standard normal. 

2.2.2 Adaptive Clinical Trials with Continuous Response Vari­

ables in the Presence of Prognostic Factors 

It is reasonable to assume that incoming patients to an adaptive clinical trials are 

heterogeneous with respect to some prognostic factors. Bandyopadhyay and Biswas 

(2001) considered the case of competing treatments with continuous treatment re­

sponses and proposed an allocation design provided by means of a link funct ion that 
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accommodates prognostic factors. The allocation design bridges the past allocation 

and response histories and present allocation pattern. Based on a normal linear model 

they discussed the allocation design as follows. 

Allocation Probability 

Suppose that there are two competing treatments A and B. For the ith patient, let 

bi = { 1, if the patient is treated by treatment A 

0, if the patient is treated by treatment B 

Also let Xi be the p x 1 vector representing the prognostic factors for the ith patient, 

which does not include the treatment covariate. Let Yi be the continuous variable 

representing the response of the ith patient, treated by either A or B following the 

adaptive design. Assume that responses are instantaneous and normally dist ributed. 

Suppose 11-A and J-LB are population characteristics representing the treatment effects 

of A and B, respectively. 

Initially, one may allocate the first 2k patients to the two treatments randomly, k 

to each treatment. This ensures that every treatment will have at least k allocations, 

and k is so chosen that estimates of parameters can be obtained from this initial 

sample. Now, for i ~ 2k, suppose that f1Ai and f1Bi are the estimates of J-LA and J-LB, 

respectively, on the basis of the responses Yi, ... , Y2k, ... , Yi, eliminating the effects of 

the prognostic factors. Let us consider a suitable link function which bridges the past 

histories to the ( i + 1 )st allocation. This may be a suitable cumulative distribution 

function G(·) that is symmetric about 0, that is, G(O) = ~ and G( -x) = 1 - G(x). 

A natural choice for G is the probit link function G(x) = <I>(x, C0), where <I> is 

the standard normal cumulative distribution function and the choice of the tuning 

constant C0 should be handled with care. 

One can allocate the (i+ 1)st patient to treatment A with probability G(f1Ai- f1Bi ) 

and to treatment B with probability 1- G(P,Ai - P,Bi) = G(P,Bi - f1Ai)· The allocation 

procedure favors the treatment doing better at that stage. This procedure is continued 
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up to a predetermined number K of patients. According to Bandyopadhyay and 

Biswas (2001), the responses of the patients are assumed to be linear models with 

normally distributed errors. Then the observation for the ith patient can be expressed 

as 

(2.24) 

where the c:/s are assumed to be independently and identically distributed N (O, o-2
) 

random variables. Then the sample means corresponding to treatments A and B up 

to the ith patients are 

Then, if 
i i 

bsA(i) = L bj, bsB(i) = 2:(1 - bj) , 
j = l j = l 

i i 

s~~ = L bj(Xj- XAi)(xj- XAi)' + L bj(Xj - XBi)(xj- XBi)' , 
j=l j=l 

1 

S~2 = L }jxj- bsA(i)Y AiXAi- bsB(i)Y BiXBi, 
j=l 

- - E~=l bjXj 
bj = 1- bj, XAi = Li c5. , 

j=l J 

then from (2.24), it can be shown that 

where 

(2.25) 

(2.26) 

Given the past allocation histories {61 , ... , c5i}, responses (y1 , . . . , Yi), and prog­

nostic factors (xll ... , xi) and based on the probit link function, the conditional prob­

ability that the ( i + 1 )st patient will be treated by treatment A is w i+l where · 

(2.27) 

where C0 being the tuning constant as mentioned before. 
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Unconditional Allocation Probability 

Note that given (81, ... , c5i), one may have (Bandyopadhyay and Biswas (2001)) 

PAi- PBi rv N {J.lA- J.lB , a
2 

( Os~(i) + Os;(i) + v)}' (2.28) 

where 

V = (xAi- XBi)' S~~- 1 
(xAi- XBi)· 

Assuming the x/s are independently and identically distributed as Np(J.lx, ~) , it can 

be shown that 
V = (c5sA(i) + c5sB(i)) P W 

c5sA(i)c5sB(i) i- p - 1 ' 

where W has the F- distribution, i.e. W"' F(p, i - p- 1). Thus given (81, ... , c5i) 

and W , one can show that 

ftAi- ftBi"' N {J.lA- J.lB, a2 ( c5sA(i)! c5sB(i)) ( 1 + i-;-1 W)} . 
Furthermore, it is well known that, in probability, as i-t oo, 

w 
. -t 0. 
z-p-l 

(2.29) 

Thus, if one takes expectation over ((h , . .. , c5i) and W, the unconditional probability 

that the ( i + 1 )st patient will be treated by treatment A will be 

Pr(c5i+1 = l) = E {<I? (ftAi ; 0ftBi)} 

(2.30) 

where U follows a standard normal distribution. Clearly this unconditional probabil­

ity reduces to 

E (<!? [ J.lA - J.lB l ) 
{C6 + a 2 (os~(i) + os~(i) ) ( 1 + ~w) } ~ ' 
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which equals ~ when /-lA = f.-tB· Thus, the allocation pattern is balanced only when 

there is no difference in treatment effects. In this case, the expected number of 

allocations to any treatment is ~. If treatment A is better than treatment B, that is 

PA > f-tB, the unconditional probability is skewed in favor of that better treatment. 

Remark that the construction of the adaptive design in all of the above works 

is based on the non-longitudinal (cross-sectional) set up. That is, once the treat­

ment was assigned to an individual, the individual was expected to provide only one 

response. In this thesis, we consider both longitudinal fixed and mixed models to 

analyze repeated binary responses in adaptive clinical trials which are discussed in 

details in Chapters 3 and 4, respectively. 



Chapter 3 

Longitudinal Fixed Model For 

Binary Data in Adaptive Clinical 

Trials 

In Chapter 2, we have summarized the adaptive designs developed so far, for clinical 

trials in the cross-sectional set up. Note however that in practice there may be clinical 

trials where patients enter the studies sequentially over a period of t ime and it is 

useful to collect repeated observations from each patient. Therefore, as opposed to 

the cross-sectional adaptive designs, it is important to construct longit udinal adaptive 

designs by using available repeated responses and covariate information of patients 

for assigning more patients to the better treatment. In this chapter, we introduce 

a longitudinal model for binary responses in the adaptive clinical trial by assuming 

that the repeated observations of an individual are likely to be correlated following an 

autocorrelation structure, · but the longit udinal data collected from individual patients 

are not affected by any unknown individual effect. Recently, Sutradhar and Biswas 

(2001) proposed a simple longitudinal adaptive design so that more study subjects 

may be assigned to the better treatment. The construction of such a longitudinal 

adaptive design may be considered as an extension of the existing adaptive designs 

based on the idea of RPW rule in the non-longitudinal set up. Following Sutradhar 

26 
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and Biswas (2001), we describe a longitudinal adaptive design for binary responses 

in § 3.2. We also study the performance of the proposed design in allocating study 

subjects to a better treatment, through a simulation study in § 3.3. Here it is also of 

interest to compute the treatment effect as well as the effects of the other prognostic 

factors based on all the covariate information and the responses available at the 

end of the study. With regard to the estimation of the effects of the covariates 

including the treatment effect, one must take the longitudinal adaptive design weights 

as well as the correlation of the repeated binary responses into account. In § 3.4, 

following Sutradhar and Das (1999)(see also Jowaheer and Sutradhar (2002)) we 

introduce a general auto-correlation structure for the repeated binary responses and 

take these correlations as well as the longitudinal adaptive design weights (to be 

discussed in § 3.2) into account for the consistent and efficient estimation of the 

regression parameters of the model (see also Sutradhar and Biswas (2001)). More 

specifically, we use a weighted generalized quasi-likelihood (WGQL) approach for 

such consistent and efficient estimation. In § 3.6, we examine the performance of 

the proposed W GQ L estimation approach through a simulation study. In the same 

section, similar to Sutradhar and Biswas (2001) , we also conduct a separate simulation 

study to examine the misspecification effect of the longitudinal adaptive designs. A 

simulation based coverage probabilities for the treatment effect are also reported in 

§ 3.6. 

3.1 Simple Random Sampling Design Based Bi­

nary Longitudinal Model 

Let Yi = (Yil, . .. , YitJ . .. , YiT ) ' be a vector ofT -dimensional repeated binary responses 

for the ith (i = 1, . .. , K) individual. Let xit = (xitl, ... , Xitu, . . . , Xitp)' be a vector of 

p covariates associated with the response Yit· As, in general, it is difficult to write the 

multivariate binary distribution for the repeated binary responses Yil, ... , Yit, ... , Yir, 
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Liang and Zeger (1986) by-passed the specification of the joint distribution and intro­

duced a 'working' correlation structure based generalized estimating equations (GEE) 

approach for the estimation of /3. This 'working' correlation approach has however 

many pitfalls which are discussed by Crowder (1995) and Sutradhar and Das (1999). 

Let j3 be the p x 1 vector of regression parameters of interest. For known functional 

forms ai(·), let E(Yit) = J.l.it = a~(Oit) and var(Yit) = CJi? = ¢-1 a~'(Oit) where Oit = 

xi,//3, a~(Oit) and a~'(Oit) are, respectively, the first and second derivatives of ai(Oit) 

with respect to (}it, and¢ is a possibly unknown scale parameter. In many important 

situations, ¢ may be assumed to be known. For example, one may use ¢ = 1 for 

binary and Poisson data. We therefore consider the case ¢ = 1. In the longitudinal 

set up, the components of the vector Yi are repeated responses, which are likely to 

be correlated. In practice, this longitudinal correlation structure is unknown, which 
1 l 

makes it difficult to estimate /3 . Further, let 1:i,(p) = A[C(p)Af be the true covariance 

matrix of Yi (i = 1, . . . , K), where Ai = diag[var(Yi1), ... , var(Yit), ... , var(YiT )] and 

C (p) is the T x T correlation matrix characterized by the p correlation parameters. 

In the longitudinal set-up, C(p) is usually considered as an autocorrelation matrix of 

the form 
1 P1 PT-1 

1 P1 PT-2 (3.1) 

PT- 1 PT-2 PT- 3 1 

(cf. Sutradhar and Das (1999)) where for f = 1, ... , T - 1, P£ is referred to as the 

autocorrelation of lag £. Here one is interested to study the dependence of the binary 

responses on the covariates, the time dependence among repeated measurements for 

an individual being of secondary interest. This set up covers the exponential family 

model with canonical link functions. For the case when covariates are fixed, the 

covariate effects j3 may be estimated by solving the generalized quasi-likelihood (GQL) 
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estimation equation 

K 

L: xt AiL:;-1(PI , . .. , h-I)(Yi - f.1i ) = o, (3.2) 
i=l 

(Sutradhar and Das (1999)) where xt = (x;l, . .. ,x;t, ... ,xiT) is the p X T matrix, 
1 1 

I:i(PI, ... ,fJT- 1) = A[C(!Jt, ... ,fJT_I)A[ with P£, a consistent estimator of P£, and 

J.Li = (f.1ib . .. , /-Lit, ... , f.1iT )' with f.1it = E(Yit). Because the responses are binary, a 

logistic regression model for each response is quite a natural choice. More formally, 

we assume that 

fn{J.1it/(1- f.1it )} = x;;/3, (3.3) 

where f.1it = E(Yit) = Pr{Yit = 1lxit, /3} is the probability of 'success,' say, for the tth 

response of the ith individual. The GQL estimator obtained from (3.2) is consistent 

as well as highly efficient. The consistent estimator of the longitudinal correlation 

parameter P£ can be achieved by using the method of moments, that is, by solving 

the estimating equation derived by equating the sample covariance to its population 

counterpart. To be specific, the moment estimator of pp_ is given by 

~ ~~1 ~f=-/ YitYi(t+t/ (T - f ) 
P£ = K T *2/T ~i=l ~t=l Yit 

(£=1, .. . ,T-1), 

(cf. Jowaheer and Sutradhar (2002) , equation (3.8)) where Yit = [ . r~~tti)p12 . tt .. t /.Itt 

3.2 Adaptive Design in Longitudinal Clinical Trial 

Set up 

In the context of adaptive clinical t rials, additional problems. get mounted as the 

individuals enter the study in a sequence and one or more covariates, such as the 

treatment, for the incoming individuals are determined based on the outcomes of the 

past individuals. For example, in clinical trial studies, it is highly desirable that one 

uses certain data-dependent treatment allocation rules which exploit accumulating 

information from the past, and assign incoming individuals to treatments so that 
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more study subjects are assigned to the better treatment. Once the study subject 

is assigned to a treatment, the individual remains under the same treatment during 

the study period. Consequently, the repeated responses for an individual do not 

only depend on the design weights used to choose his or her treatment group, they 

become correlated among themselves as they are repeatedly collected from the same 

individual under a fixed treatment. These longitudinal correlations along with design 

weights of the individuals must be taken into account in estimating the effects of 

covariates, including the particular treatment effect. 

The purpose of this section is to introduce a longitudinal adaptive design appropri­

ate for repeated binary data in a clinical trial set up. This we do following Sutradhar 

and Biswas (2001). In § 3.3, we study the performance of the adaptive design dis­

cussed in this section. We will return to the estimation of the regression effects in 

§ 3.4, where we introduce a weighted generalized quasi-likelihood (WGQL) approach 

as an extension of the GQL approach of Sutradhar and Das (1999, § 3) [see also 

Jowaheer and Sutradhar (2002)] to the clinical trial data in order to accommodate 

the design weights, for the consistent estimation of the parameters of the model. 

Let the ith (i = 1, ... , K) patient enter the clinical trial at the t ime point i and 

give T consecutive responses. Thus, the whole clinical trial will be completed at time 

point K + T- 1. Suppose xit = (oi , xit )' with Xit = (xit2, .. . , Xitu , . . . , Xitp)' . Here 

oi is the treatment covariate and the other p - 1 covariates are treated as prognostic 

factors. In all, there will be N = KT binary longitudinal responses in the clinical 

trial. Note that as the ith patient enters the system at the ith time point, under 

the present sequential set up, the tth response of the ith patient is actually collected 

at time point i + t - 1 for t = 1, ... , T. Consequently, Yit may be explained as the 

response of the ith patient at the tth time sequence where t = i, i + 1, . . . , i + T- 1. 

We however will explain Yit as the tth (t = 1, . . . , T) repeated response of the ith 

individual, where the ith individual enters the trial at the ith time point. Further 

note that the treatment covariate oi does not depend on t . This is because, once a 

patient is assigned to a treatment, the patient remains under the selected treatment 



31 

for the complete duration of T periods. 

For simplicity, suppose that there are two treatments A and B , and for i = 
2, ... , K, the ith patient is allotted to either of the two treatments depending on 

the longitudinal outcomes of all i- 1 patients and their covariates information. Also 

suppose that A is the better treatment. The first patient is allotted to A or B 

randomly with equal probability. Let 

oi = { 
1

' 
0, 

if the ith patient is assigned to treatment A 

if the ith pat ient is assigned to treatment B 

with 

where YH indicates the history of the past i - 1 patients. It will be assumed that 

w1 = ~· In general, fori= 2, ... , K, the distribution of oi will depend on { o1, ... , oi_1} 

and available responses Yrt (r = 1, ... , i- 1; 1 ::; t::; min(T, i- r)) along with their 

corresponding covariate vector Xrt· Vole now provide the t reatment allocation rule and 

show how to construct the design weights Wi (i = 2, ... , K) for the selection of the 

treatment for the ith individual. 

3.2.1 Construction of the Longitudinal Adaptive Design Weights 

(wi) 

Our longitudinal adaptive design is motivated by the popular randomized play-the­

winner (RPW) rule (Wei and Durham (1978)). As in the RPW rule, we illustrate 

the proposed procedure as an urn design. We start with an urn that will reflect the 

relative performance of the two treatments A and B at any time point and accordingly 

the urn proportion will determine the probability for an entering patient to get treated 

by one of the two treatments. As in the beginning we have no reason to believe that 

any particular treatment is better than the other, we take the initial urn composition 

in a 50:50 fashion. Thus, the urn will have two types of balls, say a balls of each type 
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at the outset, and the probability that the first patient will be treated by treatment A 

is 0.5, i.e., Pr(<h = 1) = w1 = 0.5. Note that the objective of the present longitudinal 

design is to treat the entering patient by one of the competing treatments in such a 

way that eventually the better treatment is applied to a larger number of patients. 

This means that the selection of the treatment for the ith patient ready to enter the 

trial will be based on its past performance in treating the patients from 1 to i - 1. 

Here i ranges from 2 to K. Note that in the present longitudinal set up, a patient 

provides T consecutive responses. Furthermore, it is assumed that the responses are 

instantaneous in the sense that the first response (at t = 1) of the existing ( i - 1 )th 

( i = 2, ... , K) patient is obtained before the entry of the ith patient. Suppose that 

at the selection stage of the ith patient, {Yrt} denotes all available responses for 

r = 1, ... , i- 1 and 1 ~ t ~ min(T, i- r). The range oft here depends on the value 

of r. For example, for the selection time of the ith ( i = 2, ... , K) patient, t = 1 when 

r = i - 1. Similarly t = 1, 2 for r = i- 2. Also suppose that at this selection stage 

we take all these available responses into account and for a suitable T value and for 

specific available response Yrt, we add YrtT balls of the same kind by which the patient 

was treated, and add (1 - Yrt)T balls of the opposite kind in the urn. Thus, at this 

stage, we add T balls for each and every available response. 

On top of the past responses, it may also be sensible to take into account the con­

dition of certain covariates which, along with the treatment (A or B) were responsible 

to yield the past responses Yrt· Partition the p- 1 covariates into two subsets of p1 

and p2 covariates, so that p1 + p2 = p - 1. More specifically, 

( )
I (-I - I )' 

Xrt = Xrt2, · · · , Xrtp . = Xrtl' Xrt2 ' 

with Xrn = (Xrt2, .. . , Xrt(p1+1))' and Xrt2 = (Xrt(p1 +2), ... , Xrt(p1 +pz+l) )
1

• Also suppose 

that for a suitable known function '1/J(·) , 

where Urt is a non-stochastic continuous quantity with the domain being [0, G]. Here 

Urt measures the condition of the covariate vector Xrt2 corresponding to the past 
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response Yrt for r = 1, ... , i- 1, 1 :::; t :::; min(T, i- r). More specifically, suppose that 

a greater value of Urt implies a better condition of the rth past patient and it was a 

more favorable condition of the patient to treat. In the same token, a smaller value 

of Urt means that the patient was serious. Now to make sure so that this better or 

serious condition of the past patient does not influence the selection of the treatment 

for the present ith patient, we add G-Urt balls of the same kind by which the patient 

was treated and Urt balls of the opposite kind in the urn. This means for every { Urt} 

corresponding to every past {Yrt} we add G balls to the urn before the selection of 

the treatment is made for the ith patient. 

Now one may update the urn combination in light of the past response Yrt and the 

condition of the corresponding covariates Urt, for r = 1, ... , i-1, 1 :::; t :S min(T, i-r), 

by adding { ( G - Urt) + YrtT} balls of the same kind by which the rth patient was 

treated, and { Urt + (1 - Yrt)T} balls of the opposite kind in the urn. Thus for every 

available response of the past patients, we add G + T balls in the urn, G balls for 

the covariate dependent condition or grade and _T balls for the response. We refer to 

this design as simple longitudinal play-the-winner (SLPW) design. We are now ready 

to use this SLPW design to compute the treatment selection probability for the ith 

patient as follows. 

Recall that the probability that the first patient is assigned to treatment A is 

w1 = Pr(61 = 1) = 1/2. As mentioned earlier, at this stage we have a balls of each 

type in the urn. Now to compute wi for i = 2, ... , K, it is necessary in the present 

longitudinal set up to derive its formula for two cases, first for the case when 2 :::; i :::; T 

and then for i > T, T being the total number of repeated responses recorded from 

each patient. 

Case 1. 2 :::; i :::; T 

As the selection of the ith patient is made at the ith time point, by this t ime, the 

( i - 1 )th patient has yielded one response, the ( i-2)th patient has yielded 2 responses 
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and so on. Thus, at this treatment selection stage for the ith patient, there are 

i - 1 i-r 1 
2a + L l:(G + T) = 2a + 2i(i- 1)(G + T) = n;_1 

r=l t=l 

(3.4) 

balls in total in the urn. Among these balls, there are 

i-1 i-r 

a+ L L[Or{(G- Urt) + YrtT} + (1-:- Or){Urt + (1- Yrt)T}] = n;- 1,1 (YH) (3.5) 
r=lt=l 

balls of first type, where YH indicates the history of responses from the past i - 1 

patients. Consequently, given YH, the conditional probability that oi = 1 is given by 

( ni-1l(YH) 
wi=PrOi=liYH)= '* , 

ni-l 
(3.6) 

by (3.4) and (3.5). 

Case 2. i > T 

Under this case, at the treatment selection stage for the ith patient, there are 

i - TT i-1 i -r 

2a + L L( G + T) + :L l:(G + T) = fii-1 (3.7) 
r=1t= 1 r=i - T + 1 t= 1 

balls in total in the urn. Among these balls, there are fii- 1,1 (YH) balls of first type, 

where 

i - T T 

a+ :L L[Or{(G - Urt) + YrtT} + (1 - Or){Urt + (1- Yrt)T}] 
r = lt= l 

i - 1 i - r 

+ :L L[Or{(G - Urt) +YrtT} 
r = i-T+ l t=l 

+(1 - Or){ Urt + (1- Yrt)T }]. (3.8) 

Consequently, one can obtain the design weights wi as 

(3.9) 

by (3.7) and (3.8). 
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3.3 Performance of the Proposed Adaptive Design 

3.3.1 Limiting Behavior of Design Weights Wi 

Note that it follows from (3.9) that as i -t oo, 

Wi+l. . 1 ---t . 
Wi 

Again the sequence { wi, i ~ 1} is bounded by 0 from the left and by 1 from the right. 

Hence there exists a subsequent Wk(i) which is convergent. Suppose that it converges 

to w. Then from the above limiting result , we have 

.limit wk(i)+l 
'/, -t 00 = 1, 

Wk(i) 

implying for some E > 0, 

w(1 - E) ~ limit inf Wk(i)+l ~ limit sup Wk(i)+l ~ w(1 +E), 

and hence 

limit sup Wk(i)+l - limit inf Wk(i)+l ~ 2wE. 

Since E is arbitrary, we conclude that { wi, i ~ 1} is convergent. Suppose that it 

converges to w* . 

To have some feelings about w*, we now make an attempt to derive a closed form 

c l c h" t t 1 t * - E('7 I J: J: ) - exp(x;~/3) b 10rmu a 10r t IS convergen proper y. e Prj - . I. rj ur, .. . , u1 - 1 ( •' /3 ) e 
+exp xrj 

the conditional probability for the binary response Yri given the treatment bn . . . , <51 . 

Further for br = 1, let p;j reduce to Prjl and to Prj2 for br = 0. At this stage we 

assume that, as i -t oo, 

(1) 
1 i - T T 

"T L LPrjl -t 1ft, 
'/, r = l j = l 

(2) (3) 
1 i - T T 

T L LUrj -t u*. 
'/, r = l j=l 

Next, 

[ 
1 i - T T l 

+w* iT L ?= Prjl - 1f1 -t 0, 
r = l J = l 



as i -t oo. It then follows that 

(4) 

(6) 

(5) 

1 i-T T 

'T L L UrjWr -t u*w*. 
'l r=1 j = 1 

Using the above limiting results from (1) to (6) in (3.9), one obtains 

yielding 

w* = -G 
1 

[(G- u* + 1r1 r)w* + (u* + (1- 11'2)7)(1- w*)], 
+7 

* u* + (1 - 1r2)7 w = ---:-..:..,_ _ ___:_-----:-_ 
2u* + (2 - 11'1 - 1r2)7' 
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which is primarily a function of 7. In fact, this w* is the limiting value of the proba-

bility of allocation to treatment A. This can be viewed as the limiting proportion of 

allocation to treatment A in this adaptive allocation scheme. For example, if u* = 2.0, 

1r1 = 0.8,11'2 = 0.2, and 7 = 2.0, w* reduces to 0.6. Similarly, for u* = 2.0, 1r1 = 0.8, 

1r2 = 0.2, and 7 = 4.0, w* reduces to 0.65. Remark that w* > 0.5 indicates that more 

study subjects will be assigned to the better treatment A. 

3.3.2 Allocation performance of the proposed design 

In the last subsection, we have computed the limiting value of wi as i -t oo. As in 

practice, a large but limited number of patients are considered in a clinical trial study, 

we examine the performance of the proposed adaptive design for various K as large 

as K = 200, where K is the total number of patients involved in the clinical trial 

experiment. More specifically, we consider K = 75, 100, and 200. The performance of 

the proposed design will be examined through a simulation study. To be specific, we 

will consider 1000 simulations and examine the distribution of 08 = ~~1 oi where wi = 

Pr(Ji = lJyH) are the design weights defined in § 3.2:1. Note that the longitudinal 

adaptive design proposed in § 3.2.1 is expected to assign more subjects to the better 

treatment. For this to happen, bs = ~~1 Ji, say, has to be greater than K /2. 
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For the purpose of examining the performance of 88 , we require to compute wi for 

i = 2, .. . , K by using (3.6) or (3.9). The computation of wi (i = 2, . . . , K ) however 

requires knowledge of the past responses Yrt (r = 1, .. . , i- 1; 1 :::; t :£ min(T, i- r)) 

as well as x;t = (8r , Xrt2, . . . , Xrtp)' where 8r is known and Xrt2, ... , Xrtp are known 

prognostic factors. To ensure that A is the better treatment we choose (31 = 1.5, for 

example. The regression coefficients of three other prognostic covariates are chosen 

to be (32 = 0.0, /33 = 0.2, and (34 = 0.1, for example, and the prognostic covariates 

themselves are chosen as in § 3.6. Remark that under the present set up, all Yil 

( i = 1, . .. , K) are generated following the logistic binary model given by 

exp(x;: (3 ) 
Pr(Yil = 1l8i, ... , 81) = ( , (3) 

1 + exp xi_ 

p;, (say), 

assuming that Xit = xi. for all t = 1, ... , T. However, for a given i, to generate Yit 

for 2 :£ t :£ T, one must ensure that Yil , ... , YiT satisfy the underlying longitudi­

nal correlation structure appropriate for repeated binary data. For example, if the 

repeated responses follow AR(1) binary correlation structure with correlation param­

eter p (Zeger, Liang and Self (1985)), then one generates Yi2 , . . . , YiT as follows . If 

Yil = 0, then generate Yi2 with probability p;(1 - p), otherwise generate Yi2 with 

probability p; + p(1- p;) . Continue this to get yi3 depending only on Yi2 and so on. 

This assures that the lag f = 1, 2, .. . , T- 1 correlation between Yit and Yi,t+£ is p£. 

In the present simulation study, we choose T = 4 and p = 0.3, 0.5, 0. 7, and 0.9 to 

represent small as well as large correlations. 

Note that the computation of Wi (i = 1, ... , K) further requires the knowledge of 

a, G, r, and the non-stochastic function Urt for (r = 1, .. . , i -1; 1:::; t:::; min(T, i - r)). 

As the Urt functions are constructed from the prognostic covariates, we also refer to 

§ 3.6 for their choices along with the choices for the covariates. The choice of Urt 

functions however yielded G = 3.0. Next for simplicity, we choose a = 1.0. As far as 

the choice of r is concerned, we recall from the previous subsection that the design 

weights wi in the limit primarily depend on r. Consequently, we now choose two 
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values of r, namely r = 2.0 and 4.0 in order to see the effect of small and large r 

values on the construction of Wi (see § 3.2.1). 

Note that once wi is known, the corresponding c5i is generated from a binary 

distribution with probability wi· As mentioned earlier, to understand whether the 

proposed design can allocate more individuals to the better treatment, we now com­

pute 68 = 2:~1 c5i under each of the 1000 simulations. The simulated mean and 

standard deviation of 65 for various choices of K, r, and pare shown in Table A.l. 

It is clear from Table A.1 that irrespective of correlation values, the proposed 

design allocated more individuals to the better treatment A. For example, for K = 75, 

r = 2.0, and p = 0.9, 44 individuals out of 75 were assigned to treatment A. Thus 

about 59% individuals were assigned to the better treatment. Similarly for K = 200, 

r = 2.0, and p = 0.9, 117 individuals were allocated to treatment A which is about 

59%. Remark that allocation gets better for larger r. For example, for the same 

K = 200, and p = 0.9, the allocated number of individuals to treatment A is 125 for 

the case with r = 4.0, whereas the allocated number is 117 for r = 2.0. Thus the 

proposed design works well in assigning more subjects to a better treatment. 

Note that we have considered 65 = 2:~1 c5i > Jf as the criterion to examine the 

performance of the proposed allocation scheme. Although the mean of 65 statistic 

was found to reflect the goodness of the scheme, this approach however produced 

relatively large standard error. As a remedy it seems that Js = 2:~1 0
i would be a 

much more stable statistic whose mean will be greater than 0.5, but standard error 

will be relatively smaller. 

3.3.3 Expected Design Weights Under Binary Models 

Recall that the adaptive design weights wi are given by (3.6) for 2 :::; i .:S T and 

by (3.9) for i > T, T being small in the present longitudinal set up. The design 

weights given by (3.9) satisfy { w~~1 } --+ 1 as i --+ oo. Further it has been shown 

in § 3.3.1 that in the limit as i --+ oo, Wi --+ w*, which is primarily a function of 

r. However, as wi is a function of the past responses Yrt and the covariates Xrt 
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for ( r ---: 1, ... , i - 1; 1 ::=:; t ::=:; min(T, i - r)), it may be of interest to examine the 

difference between wi and its expected value E( wi) = wiO , say, under the true 

model that generates all the past responses Yrt· In the present set up, we consider 

a correlated binary model for all Yrt, (r = 1, ... , i- 1; 1 :S t :S min(T, i- r)). This 

issue of examining the difference between wi and wiO is particularly important in a 

situation where one would like to use wi as an estimator of wiO in any statistical 

analysis, such as in estimation of {3, the effects of covariates. For this purpose, for 

all i = 1, ... , K (with K = 75, 100, or 200) we will compare the wi computed using 

the sample binary responses as in the last sub-section with their expected values Wio 

where wiO is computed as 

(3.10) 

Since E8iJ81 , ... ,8;_1 (bi) = Pr(bi = 1lbi-1, ... , 61) = wi, where the w/s are defined in 

(3.6) and (3.9), it then follows that for r = 1, ... , i- 1, 

(3.11) 

h * _ E(Y. lr r) _ exp(x;~f3) "th , * _ (r )' S w ere Prt - rt Ur, . .. 'Ul - ( ·' R) WI xrt - Un Xrt2, . .. 'Xrtp . uppose l+exp xrw 

that Zrt = x;tl8r=I and z;t = x;t l8r=O· The expectation in (3.11) then reduces to 

where Prtl = exp(~~tf~) . By similar calculation, it can be shown that 
l+exp zrt 

E(1 - br)(1- Yrt) = (1- Wro)(1 - Prt2), 

(3.12) 

(3.13) 

where Prt2 = exp(z/;3~). Now by applying (3.12) and (3.13) to (3.10), it follows from 
l +exp zrt 

(3.6) that for 2 :::; i :::; T, the unconditional expectation of Wi is given as 

a + I:~-:,\ I:~;;;;~[{(G - Urt) + PrnT}Wro + {urt + (1 - Prt2)T}(1- Wro) ] (3.14) 
Wio = 2a + ~i(i - 1)(G + T) 
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Similarly, it follows from (3.9) that for i > T, the unconditional expectation of wi is 

given by 

{ ( T+1)}-1[ i-TT 
Ww 2a + (G + 7)T i- -2- a+~ ~{(G - Urt + Prt17)Wro 

i -1 i - r 

+(Urt + (1- Prt2)7)(1- Wro)} + L L{((G- Urt) + Prn7)Wro 
r=i-T+1 t=1 

+(urt + (1- Prt2)7)(1 - Wro)}] . (3.15) 

Note that fori= 1, . . . , K, Wio in (3.14) and (3.15) are the unconditional expecta­

t ions of Wi under the present binary model. Further note that although f3 is unknown, 

it remains the same all through the experiment. In the next section, we will consider 

the estimation of this unknown parameter (3. In this sub-section, we however com­

pare the wi values with their corresponding ww values for known f3 as well as for 

other given parameters such as 7 and p. It is clear that wi is a function of binary 

responses for the past i - 1 patients that we simulate in the manner similar to that of 

§ 3.3.2. Here, the simulations of the binary responses depend on f3 and p parameters 

of the correlated binary model. As opposed to wi, ww is however not dependent on 

the responses, rather it directly depends on the parameters of the underlying binary 

model such as (3 . For given (3, 7, p, a, G, and non-stochastic function Urt as given 

in the last § 3.3.2, we now compute the wi and WiQ values for all i = 1, . . . , K, with 

K = 75,100, and 200. The graphs for wi and wio are shown in Figure C.1, C.2, and 

C.3 forK= 75, 100, and 200 respectively. In each of these three figures, we show the 

graphs for two values of 7 = 2.0 and 4.0 and for two values of p = 0.5 and 0.9. 

Remark that as ww is the expected value of wi under the binary model, the value 

of ww changes with regard to i (i = 1, .. . , K) only through the prognostic factors 

x;t (r = 1, ... , i- 1; 1 ~ t ~ min(T, i- r)) and the non-stochastic Urt functions con­

structed using x;t. For convenience of numerical computations, as in § 3.6, we gen­

erated the prognostic factors Xrt2 ,Xrt3 , and Xrt4 following certain suitable probability 

models. This leads to three different sets of prognostic factors as well as Urt functions 
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for three choices of K = 75, 100, and 200. Consequently, for given values of (3, T, a:, 

and G, Figures C.1 to C.3 exhibit three similar but slightly different graphs for wio 

for three choices of K = 75, 100, and 200. As opposed to wio, the value of wi changes 

depending on the past binary responses Yrt (r = 1, . . . , i - 1; 1 ::; t ::; min(T, i - r)) 

which are likely to be different under different simulations. They are also different 

because they are generated with different values of longitudinal correlations such as 

p = 0.9 and 0.5. For a given i, the average of wi over 1000 simulations are displayed 

in Figures C.1-C.3 for K = 75, 100, and 200 respectively. It is clear that for given 

values of T and p, the value of wi converges to wio for large i ::; K. The convergence 

is quite satisfactory for large i, specially for the values of i close to large K, such as 

for 100 ::; i ::; K, where K = 200. This happens irrespective of the choices of the 

values ofT and p, although the convergence is quicker for larger r = 4.0 and smaller 

p = 0.5 as compared to smaller r = 2.0 and larger p = 0.9, respectively. For small 

values of K such as K = 75, there always remains a difference between wi and wiO 

even for large i. These differences however get smaller as the value of r gets larger 

and the value of p gets smaller. ForK= 100, the situation is better as compared to 

K = 75, which is expected. 

3.4 WGQL Approaches For Parameter Estimation 

Including the Treatment Effect 

Recall that in§ 3.2, we have proposed an adaptive longitudinal design which assigns 

the ith (i = 1, .. . , K) individual to treatment A (between A and B) with probability 

wi given by (3.6) for 2 ::; i ::; T and by (3.9) for i > T. By treating A as the better 

treatment between A and· B, we have also examined the performance of the proposed 

design by a simulation study and found that the proposed design allocates more study 

subjects to the better treatment. In practice, however one may be interested to know 

the effects of the treatment as well as the effects of other prognostic covariates. This 

means that one is interested to know the regression parameter vector (3 which invisibly 
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contributes to generate binary responses Yrt (r = 1, ... , i- 1; 1 ~ t ~ min(T, i- r)) 

necessary for the construction of wi· Note that the longitudinal correlations of the 

repeated responses have to be taken into account in estimating this (3 parameter 

consistently. We provide a weighted generalized quasi-likelihood (WGQL) approach 

in the following sub-section for such consistent estimation of the regression effects. 

3.4.1 WGQL Estimation Approach for Regression Effects 

Let Yi = (yil , ... , Yit, ... , YiT )' be aT x 1 vector of repeated binary responses for the 

ith (i = 1, ... , K) individual. Note that this individual is assigned to treatment A 

with probability Wi = Pr(6i = 1JyH) given by (3.6) for 2 ~ i ~ T and by (3.9) for 

i > T. Here, Yit is the tth response of the ith individual. Further note that since wi 

depends on the responses from the past i - 1 patients, the unconditional expectation 

of Yit may be computed as 

(3.16) 

It then follows by (3.10)-(3.13) that 

WwPitl + (1 - wiO)Pit2 

= Pit, say, (3.17) 

where Wio is given by (3.14) for 2 ~ i ~ T and by (3.15) fori > T, and Pitl and Pit2 

are given as 
exp ( z~tf3) exp ( z;; (3) 

P itl = 1 ( , (3) and Pit2 = 1 + ( *' (3) , + exp zit exp zit 
(3.18) 

respectively, with z~t = (6i,Xit2, ... ,Xitp)lo;=l and z;; = (6i,Xit2, ... ,Xitp)lo;=O· Let 

Pi= (Pii , ... ,Pit, ... ,Pir)' where Pit is given by (3.17) for all i = 1, .. . , K , so that 

E (Yi) = E(}i1, ... , Yir )' 

(3.19) 
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Next, we compute the unconditional covariance matrix of }i where }i = (}i1, . . . , Yit, . .. , Yir )'. 

For this purpose, following Sutradhar and Das (1999, §3) we now assume that con­

ditional on 1\, ... , 61, the repeated responses Yit and Yiv at two time points t and v 

(t , v = 1, .. . , T) have longitudinal correlation structure given by 

(3.20) 

where Pit-vi denotes the lag It - vi auto-correlation. Note that the auto-correlation 

structure considered in (3.20) is general as it accommodates the Gaussian AR(1), 

MA(1), and exchangeable type auto-correlation structures as special cases. It then 

follows that the unconditional covariance between Yit and Yiv is given by 

(3.21) 
. I 

where E(Yit l6i, . .. , 61) =Pit = exp(~itf,~) and var (Yit l6i , .. . , 61) = Pitqit by (3.8) with 
1+exp xit 

qJt = 1 - Pit · After some algebra, the equation (3.21) reduces to 

cov (Yit, Yiv) = Pit-vi [iuio{Pitlqit1Piv1qivd! + (1- Wio){Pit2qit2Piv2qiv2 }!] 

aitv, say, (3.22) 

When t = v, the covariance aitv in (3.22) reduces to the variance of Yit given by 

(3.23) 

where qit = 1- Pit with Pit as defined in (3.17). Let ~i denote the covariance matrix 

of }i, which may be expressed as 

(3.24) 
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fort, v = 1, ... , T, where CJitv are given by (3.22) and (3.23). 

Next for known I;i, one may write the quasi-likelihood (QL) estimating equation 

for (3 as 

(3.25) 

(McCullagh (1983), Wedderburn (1979)), where Pi is the T x 1 vector given by (3.19) 
I 

and ?fl is the p x T first derivative vector of p~ with respect to (3. Note that, in 

practice, however I;i is unknown and it is a function of Wio, (3, and p, where wiO again 

depends on (3 . Also Pi vector is a function of Wio which contains (3. Now in solving 

(3.25) for (3, in the spirit of the GEE (generalized estimating equations) approach 

(see Liang and Zeger (1986)) were-express the QL estimating equation (3.25) as 

~8p~(wiO)I;-l( ~)( ( )) {:r 
8

(3 i Wio, P Yi -Pi Wio = 0, (3.26) 

and we refer to this as the weighted generalized quasi-likelihood (WGQL) estimating 

equation for (3, where p is a consistent estimator for the longitudinal correlation 

parameter p. 

Note that to solve (3.26) for (3, one may consider the following three scenarios: 

first , for some initial (3, wiO is known in the spirit of GEE; second, Wio is unknown 

but it can be replaced with the adaptive design weight wi as E( wi) = wioi third, Wio 

is an unknown function of (3. The estimator of (3 as the solution of (3.26) under the 
~ ~ ~ 

above three scenarios will be denoted by f3waQLb f3waQL2, and f3waQL3 respectively. 

These solutions may be obtained by using iterative equations 

[~8p:(wi0) "_1 ( ~)( ( ))] x f:' 
8

(3 L.Ji ww, P Yi -Pi Wio , 
-1 m 

(3.27) 

where ~(m)aQL is the value of (3 at the mth iteration and [·]m denotes that the expres­

sion within brackets is evaluated at ~(m)aQL . Remark that to compute ~WGQL1 and 
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SwcQL2, the first derivative vector ap:~;iO) has the formulas 

Bi, say, (3.28) 

and 

(3.29) 

respectively, where ZI = (zil, . .. , Zit, . . . , ZiT) and Z{ = (ziu ... , zit, . . . , zir ) are p x T 

matrices, Ail = diag(pm Qm, . .. , PiT1 QiTl], and Ai2 = diag[pi12Qi12, . . . , PiT2QiT2] are 

TxT matrices. Moreover, in (3.28) and (3.29) , P i l = (pill , . .. ,Pin , .. . ,PiT1)
1 

and 
I I 

. _ ( . . . )' 'th . _ exp(z;tf3) d . _ exp(zj1 {3) 
P~2 - P~12, . . . , P~t2, . .. , PtT2 , Wl Pttl - 1+ ( ' !3) an Ptt2 - 1+ ( *'!3) · 

A exp zit exp zit 

To compute f3wcQLJ, one may simplify the first derivative vector as 

where for 2 s; is; T, 

and fori > T 

OWiQ 

8{3 

L~~~ I:~:;~ {(Prt1Qrt1ZrfTWro)- (Prt2Qrt2z;tr(l - Wro ))} 
2a + ~i (i- l)(G + r) 

{ ( T+l)}-1 

2a + (G + r)T i- -
2

-

(3.30) 

(3.31) 
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+ E ~ {(PrtlqrtlZrtTWro)- (Prt2qrt2Z;tr(1- Wro))}]. 
r=i-T+l t=l 

(3.32) 

This completes the construction of the estimating equation given in (3.26) under the 

above three scenarios. 

Note that the estimating equations for /3 require knowledge of p = (p11 ... , fJ.e, ... , PT-I) 

where P.e (£ = 1, ... , T- 1) may be obtained consistently as in § 3.5 by using the so­

called method of moments. Next, under some regularity conditions, it may be shown 

(Liang and Zeger (1986)) that for large K, ~WGQLl and ~WGQL3 have asymptotically 

p-dimensional normal distributions with mean /3 and covariance matrices given as 

K -1 

= [?=Bi~i1 (wiO,p)B~l , 
~=1 

(3.33) 

and 
K - 1 

var(~wGQL3) = [~ Di~i1 (ww, p)D~l , (3.34) 

respectively, where Bi and Di are given in (3.28) and (3.30) respectively. By similar 

arguments, one may show that ~WGQL2 also has an asymptotically normal distribu-

tion with mean vector /3 and a suitable covariance matrix which can be consistently 

estimated by 

[ 

K l-1 
v&,r(~WGQL2) = ~ Ci~i1 

( Wi, p)C: , (3.35) 

where ~i(wi), for example, is obtained from ~i(wiO) by replacing ww with its data 

based estimate W i, and Ci is given by (3.29). 
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3.5 Moment Approach For Longitudinal Correla­

tions 

Note that the estimating equation (3.26) or equivalently, the iterative equation (3.27) 

requires knowledge of p = (p1 , ... , P£ , ... , PT-d . For a given value of the estimate of 

(3, we now obtain a moment estimator p, which is consistent for p. To be specific, for 

the computation of /JwaQLl and /JwaQL3, p may be obtained by following Jowaheer 

and Sutradhar (2002, p. 394). That is, by (3.22), /J£, the fth (£ = It- vi = 1, ... , T-1) 

component of p has the formula given by 

(3.36) 

Similarly, for the computation of /JwaQL2, the fth component of p, i.e., /Je may be 

obtained from (3.36) by replacing Wio with the data based adaptive design weight wi 

(i = 1, ... , K). 

3.6 Performance of the WGQL Estimation Approaches: 

A Simulation Study 

Recall from § 3.2 that in a clinical trial set up, the adaptive longitudinal design 

is constructed such that more study subjects are assigned to the better treatment . 

Once the clinical trial is over, one is then ready to compute the actual effects of the 

covariates (prognostic factors) including the effect of t he treatment. Note that in 

the longitudinal study, the repeated responses are collected from the same individual. 

Consequently, it is important to take the correlations of the repeated data into account 

along with the adaptive design weights in estimating the regression effects. The 

WGQL approach discussed in § 3.4 takes these design weights as well as longitudinal 

correlations into account in estimating the effects of the covariates. In this section, 
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we conduct a simulation study to examine the performance of the WGQL estimator 

of {3 for different choices of cluster number (small and large), where {3 is the p x 1 

vector of effects of the covariates including the treatment. 

3.6.1 Simulation Design 

To understand the effects of small as well as large samples, we have chosen K = 

75, 100, and 200, where K is the total number of individuals in the adaptive longitu­

dinal clinical study. Next, we choose T = 4, where T denotes the number of repeated 

responses collected from each of the K individuals. As far as the covariates are con­

cerned, we choose p = 4 covariates: 1 treatment covariate and 3 others as prognostic 

factors. Let c5i denote the treatment covariate so that c5i = 1 indicates that the ith 

patient is treated by the better treatment and c5i = 0 indicates otherwise. The other 

3 covariates, that is, the prognostic factors are denoted by xit2, X it3 , and X i t4 for the 

ith individual at the tth (t = 1, .. . , T) data collection time. Note that the values of 

oi for all i (i = 1, 2, ... , K) are determined based on the adaptive longitudinal design 

such that 

where wi values are computed from (3.6) and (3.9) for 2 ::; i ::; T and i > T cases 

respectively and YH is the history of the responses from the past i - 1 patients. The 

prognostic factors are however chosen as follows. 

We consider chronic disease condition of an incoming patient as the first prognostic 

factor denoted by X i t2 . To generate Xit2 for all i (i = 1, 2, . .. , K), we consider ci as a 

binomial variable with parameters m and p, i.e., Ci "'b(m,p) , where Ci represents the 

number of chronic diseases for the ith patient at his or her entry time to the clinical 

trial. We choose, for example, m = 5 and p = ~. We then consider Xit2 = 0 for 

ci = 0, 1 and Xit2 = 1 for ci = 2, 3, 4, 5. Thus, the ith patient with a low occurrence of 

chronic disease has Xit2 = 0 for all t = 1, ... , T. If the ith patient however enters to 

the trial with a large occurrence of chronic disease, then X it2 = 1 for all t = 1, ... , T. 

To generate the 2 other prognostic factors, namely, Xit3 and Xit4 , we now consider 
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an age variable and generate an age between 20 and 80 from a uniform distribution. 

Next we create 6 age groups, namely 21-30,31- 40, ... , 71- 80 and define di as an 

ordinal variable such that di = 1, 2, . .. , 6, where, for example, di = 1 indicates that 

the age of the ith patient belongs to the first age group 21-30. To generate Xit3 and 

Xit4 , we consider the merging of two consecutive age groups into one age group and 

obtain 3 age groups, namely, 21-40, 41-60, and 61-80, which may be referred to as the 

young, middle, and old age groups respectively. We now define Xit3 = 1 and Xit4 = 0 

if the ith patient belongs to the young group 21-40, and Xit3 = 0 and Xit4 = 1 if the 

ith patient belongs to the middle age group, otherwise Xit3 = 0 and Xit4 = 0. 

In order to compute the adaptive longitudinal design weights wi (using 3.6 and 

3.9) we also require a non-stochastic continuous quantity with domain [0, G], say. 

More specifically, we require to construct Urt = 1j;(Xrt2 , Xrt3 , X rt4 ) , where Urt measures 

the condition of covariates Xrt2, Xrt3 , and Xrt4 through the 1/J function. Recall from 

§ 3.2 that 1/J function has to be chosen so that a larger value of Urt implies the better 

condition of the rth (r = 1, .. . , i- 1) patient. In the simulat ion study, we choose 

2 1 
Urt --:- Cr + 1 + dr ' 

for all t (1 :S t :S min(T, i- r)), where Cr is an implicit function of X rt2 , and similarly 

dr is an implicit function of Xrt3 and Xrt4· Note that as Cr = 0, 1, . .. , 5 and d r = 
1, 2, ... , 6, it then follows that Urt lies in the range of 0 to 3 yielding G = 3. Next, 

for simplicity we consider a = 1.0, and two values of T = 2 and 4. Remark that as 

the limiting value of wi mainly depends on T as shown in§ 3.3.1, we have considered 

two values of r. 

As far as the generation of Yrt [r = 1, . . . , i - 1; 1 :S t :S min{T, i - 1}] is con­

cerned, these repeated responses for the rth individual, namely, Yrl, . .. , Yr[min{T,i- r}] 

are generated from a multivariate binary distribution, as explained in § 3.3.2, with 

£th lag correlation P£ = l for selected values of p, namely, p = 0.3, 0.5, 0.7, and 0.9. 

We are now ready to compute the adaptive longitudinal design weights wi by using 

(3.6) and (3.9). In generating the design weights Wi and binary responses Yit for 

. all i = 1, ... , K and all t - 1, ... , T , we have used t he treatment effect parameter 
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(31 as (31 = 1.50. The other 3 regression parameters representing the effects of the 

prognostic factors were chosen to be (32 = 0.0, (33 = 0.20, and (34 = 0.10, respectively. 

3.6.2 Estimation Performance 

The purpose of the simulation study is to examine the performance of the estimators 

of f3 = ((31 , . . . , (3p)' and p = (p1, ... , Pr-1)' developed in § 3.4 and § 3.5. Remark 

that the estimating formulas for the regression parameters were constructed in § 3.4 

under 3 scenarios, and the estimation approaches were named as WGQL1, WGQL2, 

and WGQL3. We now conduct 1000 simulations and report the simulated means 

and standard deviations of estimators of f3 = ((31, (32, (33, (34)' and p = (p1 , pz , P3)' 

parameters in Tables A.2, A.3, and A.4 for K = 75, 100, and 200, respectively. We 

have also computed the estimated standard errors for the estimators of regression 

parameters (31, ... , (34 by using the asymptotic variance formula for ~ given by (3.33)­

(3.35). The simulated means of these estimated standard errors are also reported in 

the same tables forK = 75, 100, and 200. 

It is clear from Tables A.2, A.3 and A.4 that all three approaches, namely, 

WGQL1, WGQL2, and WGQL3 perform well in estimating longitudinal correla­

tions. For example, forK= 100, r = 4.0, and p = 0.7, the robust estimating formula 

(3.36) yields lag 1,2,and 3 correlations as 0.683, 0.460, and 0.304 respectively, whereas 

the true lag correlations are 0.7, 0.49, and 0.34 respectively. The simulated standard 

errors of these correlation estimators are reasonably small. For the above case, these 

simulated standard errors are 0.069, 0.117, and 0.149 respectively. With regard to 

the estimation of the effects of the prognostic factors for given K = 75, 100, and 200, 

all three approaches yield almost the same estimates. For example, for K = 100, 

T -:- 4.0, and p = 0.7, the WGQL1, vVGQL2, and WGQL3 approaches yield -0.05, 

0.23, and 0.09; 0.03, 0.28, and 0.15; and 0.07, 0.21, and 0.09, respectively for (32 , (33 , 

and (34, the true parameter values being 0.0, 0.2, and 0.1 respectively. 

For the estimation of the treatment effect , the performances of these three ap­

proaches are not quite the same. All three approaches appear to produce downward 
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biases for K = 75. When K increases to 100 or 200, they appear to yield upward 

biases except for the WGQL2 approach with K = 100. Note however that the bi­

ases for large sample cases are reasonably small. Nevertheless, we have computed 

the mean squared errors (MSE) of the estimator of /31 under all three approaches to 

understand their overall performances. These MSE's are reported in Table A.5. It 

is clear that as the sample size increases the MSE gets smaller. For example, for 

K = 75, T = 4.0, and p = 0.7, the WGQL1 produces MSE as 0.880, whereas for 

K = 100 and 200, this approach gives the MSE as 0.746 and 0.432 respectively. It is 

clear from Table A.5 that the WGQL1 approach, in general, produces treatment esti­

mates with smaller MSE followed by the W GQ L3 approach. Recall that the W GQ L1 

and WGQL3 approaches use adaptive weights as functions of (3, whereas the weights 

in the W GQ L2 approach are free from (3 as these are constructed based on past 

data. Consequently, although the WGQL2 approach trails the other two approaches 

with regard to the MSE for the estimation of /31 , the MSEs are however close to the 

MSEs of the other two approaches. Thus, from the viewpoint of practitioners, we 

recommend this data dependent weights based WGQL2 approach for the estimation 

of the regression parameters including the treatment effect. In the next subsect ion, 

we examine the misspecification effect of the adaptive design under the recommended 

WGQL2 approach. 

3.6.3 Design Misspecification Effect 

To examine the effect of using the non-adaptive design in estimating the regression 

parameters of the model, we obtain the regression estimates from the iterative equa­

tion (3.27) by using wi = 0.5 for all i = 1, ... , K, even though the longitudinal binary 

data were generated as before based on . the adaptive longitudinal design based vari­

able weights Wi· The mean squared errors (MSEs) of the regression estimates were 

computed for the· two cases : case 1) estimation was carried out based on weights 

following the adaptive longitudinal design; case 2) estimation was carriedout using 
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wi = 0.5 following the non-adaptive design with equal weights. The MSEs are re­

ported in Table A.6. It is clear from the table that the MSEs for the estimates of 

(32 , (33 and /34 are not so different under the two choices of the design weights. This 

is however not true for the estimation of the treatment effect /31 . This is because 

the MSEs of the /31 estimates are always larger when the estimation is carried out 

based on wi = 0.5 as compared to the estimation based on true weights following 

the adaptive longitudinal design. For example, for K = 100, T = 4.0, and p = 0.9, 

although the adaptive longitudinal design based MSE of /31 estimate is 0.884, it is 

1.045 for the working design (wi = 0.5) based estimate. Thus, it is clear that if the 

adaptive design based weights are ignored during the estimation, one would obtain 

an unreliable estimate for the treatment effect. 

3.6 . .4 Confidence Interval for Treatment Effect 

Recall from § 3.6.2 that the WGQL2 approach was found to be practically suit­

able for the point estimation of the regression parameters including the treatment 

effect. In this subsection, we take a further look on the interval estimation of the 

main parameter of interest, namely, the treatment effect . For this purpose, we recall 

from § 3.4 that ~ = (~1,WGQL2 , ~2,WGQL2 , ~3,WGQL2 , ~4,WGQL2 )' has asymptotically a 

4-dimensional normal distribution with mean f3 and a suitable covariance matrix that 

can be consistently estimated by (3.35) , namely, 

K -1 

cov(~WGQ£2) = [~CiEi1 (wi,p)C;] (3.37) 

Consequently, one may construct (1- a)lOO% confidence interval for /31 given by 

(3.38) 

where s.e. (~1,wGQL2) is computed from the first diagonal element of the 4 x 4 covari­

ance matrix in (3.37). 

Next to examine the performance of the interval estimation of /31 by (3.38), we 

conduct a limited Monte Carlo study with 1000 simulations. By using lzl} I = 1.96, 
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in each simulation, we computed the lower and upper limits for {31 given by (3.38) 

for true {31 = 1.5, and calculated the proportion of simulations with true value of 

{31 = 1.5 bounded by these limits. These proportions, which are known as coverage 

probabilities, are reported in Table A.7. For the selected values of K, T, and p, it is 

clear from the table that the coverage probabilities lie in the range between 93% and 

96%. More specifically, for K = 100, T = 4.0, and p = 0.5, the coverage probability 

was found to be 96% and forK= 200, T = 2.0, and p = 0.9, the coverage probability 

was 93%. For other cases the coverage probabilities were equal or close to 95%. This 

shows that WGQL2 estimation approach is quite satisfactory for the estimation of 

the treatment effect (31 . 

In this chapter, we have introduced a longitudinal adaptive design in order to 

assign more study subjects to a better treatment in the longitudinal clinical trial set 

up. The proposed design is constructed by generalizing the adaptive designs used so 

far in the literature in the non-longitudinal set up. We have studied various limiting 

properties of the proposed design weights as well as examined the performance of the 

proposed design in allocating incoming individuals to a better treatment through a 

simulation study. The design was found to work quite well in allocating more study 

subjects to a better treatment. 

This chapter also introduced a weighted generalized quasi-likelihood (WGQL) 

approach for the estimation of the effects of the prognostic factors including the 

treatment effect. The WGQL approach exploits both longitudinal design weights and 

· the longitudinal correlations of the binary responses yielding consistent and efficient 

estimates for the parameters involved. The performance of the WGQL approach 

was studied through a simulation study and it was found that this approach works 

quite well in estimating the parameters, including the treatment effect. The coverage 

probabilities for the treatment effects were also found to be highly satisfactory. 



Chapter 4 

Longitudinal Mixed Model For 

Binary Data in Adaptive Clinical 

Trials 

In the previous chapter, we introduced longitudinal fixed models in adaptive clinical 

trials where repeated responses from an individual patient are not affected by any 

unknown individual effect. But, it may happen in practice that the variability and 

the correlations of the repeated data may not be completely explained by the model 

parameters considered in Chapter 3. As a remedy, in this chapter we introduce a 

binary longitudinal mixed model for adaptive clinical trials under the assumption 

that conditional on a particular individual random effect, the repeated responses of 

an individual follow a correlation structure as in Chapter 3. Thus, unconditionally, 

the mean, variance, and covariances of repeated responses will also be affected by the 

random effects of the individuals under the study. 

Note that in the traditional simple random sampling set up (non-adaptive set up) , 

some authors have analyzed repeated binary and count data by assuming that con­

ditional on the random effects the repeated responses are independent. For example, 

we refer to Zeger (1988), Sutradhar and Das (1995), Heagerty (1999) , and Davis, 

Dunsmuir, and Wang (2000). But as discussed by Jowaheer and Sutradhar (2002), 

54 
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these random effects based models are not suitable to represent the auto-correlation 

structure (such as AR(l)) of the repeated data. There exist some studies (Sashe­

gyi, Brown, and Farrell (2000), Sutradhar and Sinha (2002), Sutradhar and Farrell 

(2003)) where the longitudinal correlations of the repeated responses of an individual 

are modeled conditional on the individual random effect. Note that these studies are 

however confined to non-clinical studies where adaptive designs do not play any role. 

Remark that as opposed to the analysis of longitudinal fixed model data collected 

from individuals, in the longitudinal mixed model set up, there are individual random 

effects on the longitudinal responses of individuals under study. Consequently, in the 

longitudinal mixed model set up, the correlations among the unconditional responses 

arise due to the variation in the random effects as well as the longitudinal correlations 

considered in the conditional set up. Note that the consistent and efficient estimation 

of the parameters of this type of longitudinal mixed model is however much more 

involved as compared to the estimation of the parameters under the longitudinal 

fixed model. Further, additional problems arise in the longitudinal adaptive clinical 

trial set up, where individuals enter the trials in sequence and individuals are assigned 

to the treatment based on the outcomes of the past individuals. The unconditional 

correlations (involving the variance of the random effects as well as the longitudinal 

conditional correlations) along with the design weights must be taken into account to 

estimate the parameters involved in the model. 

In this chapter, we consider the longitudinal mixed model for binary responses in 

adaptive clinical trials where incoming patients are assigned (i.e. adaptive design is 

constructed) to a better treatment on the basis of certain data-dependent rules. In 

§ 4.1, we introduce this longitudinal mixed model for binary data collected based on 

adaptive designs. The longitudinal mixed model, unlike the longitudinal fixed model 

discussed in Chapter 3, contains regression as well as the · variance component of the 

individual random effects as main parameters, and longitudinal correlations parame­

ters as nuisance parameters. In order to estimate the parameters, in§ 4.2, we provide 

a weighted generalized quasi-likelihood (WGQL) approach for the estimation of the 
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regression vector (/3) after taking the design weights and the longitudinal correlations 

into account. The WGQL estimator of f3 is consistent and highly efficient. In § 4.3, 

we exploit this WGQL approach and develop a unified estimating equation for the 

consistent and efficient estimation of the variance component of individual random 

effects. We also provide a consistent estimator for longitudinal correlations by the 

method of moments in § 4.4. We examine the performances of the WGQL estimation 

approach and the the method of moments approach through a simulation study in 

§ 4.5. 

4.1 Adaptive Design Based Binary Longitudinal 

Mixed Model 

As in Chapter 3, we consider two treatments A and B so that the probability that 

the ith ( i = 1, .. . , K) individual is assigned to the treatment A is wi given by (3.6) 

for 2 ::; i ::; T and by (3.9) for i > T where 

with 

{ 

1, 
oi = 

0, 

if the ith patient is assigned to treatment A 

if the ith patient is assigned to treatment B, 

and where YH indicates the history for the past i - 1 patients. Here Wi is referred to 

as the design weight for t he selection of a treatment for the individual. Recall from 

Chapter 3 that under the fixed longitudinal binary adaptive design, Yit> the response 

of the ith individual was assumed to follow the binary logistic model with 

( I 
* exp( xit' {3 ) 

Pr Yit = 1 oi, ... , 61) =Pit = ( *, {3 ), 
1 + exp xit 

where the ith individual was selected for treatment A with probability wi· In the 

present mixed model set up, we now assume that the ith individual has an unob­

servable random effect which naturally will affect the responses Yil, . . . , Yit, ... , YiT 
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collected longitudinally. To incorporate this individual random effect we now con­

sider that 
p ( lb b *) -* exp(xi/ {3 + ryi) 

r Yit = 1 i, · · · , 1; 'l'i = Pit = 1 + ( * '{3 + *) ' exp xit 'l'i 
(4.1) 

where ryi is the random effect of the ith individual. It will be assumed that ryi i.f.vd. 

N(O, o-2). Note that under the present set up, to initiate the construction of the 

estimating equations we will require the computations of the unconditional mean 

vector and the covariance matrix for the repeated responses of the individuals having 

a general autocorrelation structure conditional on the individual random effect and 

treatment effects. This we do in the following two sub-sections. 

4.1.1 Construction of the Unconditional Mean Vector 

Let Yi = (Yil, . . . , Yit, .. . , Yir)' beaT-dimensional vector of repeated responses to a 

treatment for the ith (i = 1, ... , K) individual. It then follows from ( 4.1) that the 

unconditional expectation of Yit may be computed as 

(4.2) 

where 'l'i = Jf i-f.d· N(O, 1). Now, by using (3.10) and (4.1), we obtain 

(4.3) 

where 
_ exp(zi/ /3 + O"'J'i ) 

and Pit2 = ( '{3 ) 1 + exp zit + O"'J'i 
( 4.4) 

respectively, with <t = (bi , Xit2, ... , Xitp) la;=l and zit' = (bi, Xitz, . •. , Xitp) la;=O and wiO 

as given in (3.14) for 2 ~ i ~ T and in (3.15) fori > T . The expectation over 'l'i in 

( 4.3) may be computed based on a simulation approach (Fahrmeir and Tutz (1994)) 

as 

1 ~ exp(z~tf3 + O"'J'i,~) ( . ) 1 ~ exp(zi/ {3 + O"/i,~ ) 
w ·o- .L..J + 1 - w ·o - .L..J 2 

M ~=l 1 + exp(zit f3 + O"'J'i,~) 2 
M ~=1 1 + exp( zit' {3 + O"/i,~) 
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1 ~ (t) 1 ~ (t) 
Wio M ~ 9il ({3, a, /i,~) + (1 - Wio) M ~ 9i2 ({3 , a, /i,~) 

~=1 ~=1 

Pit, say, (4.5) 

where for ~ = 1, . .. , M, (i,~ are 1\1 simulated values of (i from a standard normal 

distribution. Here M is usually large, say M = 5, 000. 

Now, by using the iht = E(Yit) from (4.5), one may construct the unconditional 

mean vector of Yi as 

- (- - - )' Pi = Pib · · · , Pit, · · · , PiT · (4.6) 

4.1.2 Construction of the Unconditional Variance and Co-
. variance 

In this subsection, we develop the formulas for the variance of Yit (t = 1, . . . , T) and 

the covariance between Yit and Yiv for t =/=- v. For this purpose, we first compute the 

covariances as follows. For given 8i , ... , 81 and individual random effect (i, the two 

responses Yit and Yiv are assumed to have correlation given by 

(4.7) 

The correlation structure defined in ( 4. 7) is general as it accommodates the Gaussian 

type AR(1), MA(l), and exchangeable auto-correlation structures as special cases. 

To compute the covariance between Yit and Yiv, that is, to compute 

(4.8) 

we simplify E(YitYiv) as follows: 
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(4.9) 

Now by (4.3), we compute the expectation over 6i, .. . , 61 and obtain 

E(YitYiv) = E"fi [wiOPit-vi (Pitliiit1Piv1iiiv1)
112 + (1- wiO)Pit-vi (Pit2ilit2Piv2iiiv2)

112 

(4.10) 

where ijitl = 1-Pin, ilit2 = 1-P it2· Now based on the simulation approach as shown 

in (4.5), we can simplify the above expectation as 

E(YitYiv) = WwPit- vi ~ f: ggv)(/3 , a, / i,() + (1- WiO)Pit-vi ~ f g~v)(/3, a, {i ,() 
(=1 {=1 

1 ~ (tv)(/3 ) ( ) 1 ~ (tv)(/3 ) +wiO M L.,; 9i5 , a, {i ,t; + 1 - Wio M L.,; 9i6 , cr, { i,{ , 
(=1 ( =1 

(4.11) 

where 
(tv)(/3 ) _ ( - - - - )1/2 9i3 , a, /i,( - P it1 ,( qiti ,( Piv1,( qiv1,( , 

(tv)(/3 ) _ ( - - - - )1/2 
9i4 , a, /i,{ - Pit2,~ qitz,~ Piv2,~ qiv2,~ , 

(tv)(/3 ) _ - -9i5 , a, {i,{ - Pitl,~ Pivl,(' 

and 
(tv)(/3 ) _ - -9i6 , a, {i, f, - Pit2,{ Piv2,{· 

Now by applying (4.5) and (4.11) into (4.8) , we obtain the covariance as 

( ) 1 ~ (tv) ( ) ( ) 1 ~ (tv) (/3 ) 
COV Yit, Yiv = WiQPit-vi M L,_; 9i3 /3 , cr, {i,~ + 1 - Wio Pit-viM L,_; 9i4 , cr, {i,( 

~=1 ~=1 

1 ~ (tv)(/3 ) ( ) 1 ~ (tv)(/3 ) __ +wiO j\1[ L.,; 9i5 , a, /i,{ + 1 - WiQ M L.,; 9i6 , a, {i,~ - PitPiv 
~1 ~1 

(4.12) 
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When t = v, (4.8) yields the variance of Yit given by 

(4.13) 

since E(Yit), by (4.5), is given as E(Yit) =Pit, and in (4.13), ifit = 1- Pit· Suppose 

that ti is the covariance matrix of Yi such that 

(4.14) 

fort, v = 1, . . . , T, where aitv and a-itt are defined as in (4.12) and (4.13), respectively. 

Note that all the elements of the t i matrix are computed by simulating normal 

random effects implying that ti may be referred to as the simulated unconditional 

covariance matrix. This ti matrix along with the unconditional mean vector Pi will 

be exploited in the next two sections to construct the weighted generalized estimating 

equations for the regression parameters f3 and the variance component of the random 

effects cr2
. The longitudinal correlation parameters P£ (£ = it- vi = 1, ... , T- 1) 

will be estimated by using the well-known method of moments. More specifically, 

a moment estimate of P£ will be obtained by equating the sample autocorrelation 

functions to their population counterparts (cf. Jowaheer and Sutradhar (2002) and 

Sutradhar and Kovacevic (2000)). 

4.2 WGQL Approach for Regression Effects 

In practice, ti is unknown and it is a function of wiO, fJ, cr, and p where wiD is again 

a function of f3 and cr. The mean vector Pi is also a function of {3, cr, and WiQ. Then 

for known p and a, the weighted generalized quasi-likelihood (WGQL) estimating 

equation for fJ may be written as 

K 

'L .Biti1(wi0, p, a)(Yi- Pi(wiO, a)) = o, ( 4.15) 
i = l 
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where Pi and ti are defined as in (4.6) and (4.14) respectively, and Bi = apj(;po,u) is the 

p x T first order derivative matrix. Remark that in Chapter 3, among three WGQL 

approaches, we recommended the data dependent weights based WGQL approach 

for practitioners for estimating the parameters, including the treatment effect. In 

this chapter, we follow this recommendation and use the data dependent weights 

based WGQL approach for estimating parameters involved in the model. In data 

dependent weights based WGQL approach, it is assumed that wiO is unknown, but it 

can be replaced by Wi as E( wi) = wiO , where Wi is given by (3.6) for 2 :::; i :::; T and 

by (3.9) fori> T . Then estimating equation (4.15) can be re-expressed as 
K 

I:6iti1(wi,p,8-)(Yi- Pi(wi,G-)) = 0, (4.16) 
i=l 

where ci = ap;~~;,u) Note that since Pi = (Pi1, ... ,Pit, . . . ,Pir)' the derivative of p~ 

with respect to f3 requires the derivative of Pit as defined in ( 4.5) with respect to (3. 

To be specific, ~ is the p x 1 vector given by 

8Pit _ 1 ~ 8 (t) 1 ~ 8 (t) 
{){3 - Wi M L....t {)(39i1 ((3, a, /i,d + (1- wi) M L....t {)(39i2 ([3, a, /i,€)· 

€=1 €=1 
As , following ( 4.5), 

(t) _ _ _ exp(z~tf3 + CT/ i,€) 
9i1 ((3, a, /i,€) - Pitl,€ - 1 + ( , (3 + ) ' 

exp zit a /i,€ 

and 
(t) _ exp(zit' (3 + a / i €) 

9i2 ((3, a, /i,€) = Pit2,€ = 1 + ( *'(3 + ' ) ' exp zit CT/i ,€ 
one obtains 

8ft it 1 ~ [ _ _ ( 1 ) _ _ * J 
8{3 = M L....t WiPitl,€Qitl ,€Zit + - Wi Pit2,€Qit2,€Zit ' 

€=1 
(4.17) 

where ijitl,€ = 1- Pin,{ and iiit2,€ = 1 - Pit2,€· Also in (4.17), Zit 

zit = xit lo;=O are p x 1 vectors of all covariates for the ith individual at t ime t . 

Consequently, 

(4.18) 
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where z: = ( Zi1 , . . . , Zit, ... , ZiT) and zt = ( z;1 , ... , z;u ... , z;T) are p x T matrices and 

Ail,~ = diag(pill ,~iiill,~, ... ,PiTI,~iiiTI,{) and Ai2.~ = diag(Pil2,d_il2,~, ... ,PiT2,~iiiT2,~) 
are T x T matrices. 

Next, let ~WGQL denote the weighted generalized quasi-likelihood estimator of (3 

which is the solution of the estimating equation ( 4.16). The solution of ( 4.16) , that is, 

~WGQL may be obtained by using the customary Newton-Raphson iterative method. 

Given the value ~WGQL(r) at the rth iteration, ~WGQL(r+ 1) may be obtained at the 

(r + 1)st iterat ion as 

~WGQL(r + 1) 
K 

~waQL(r) + [ 2: cJ:;-1(wi , ,a, a-)c:[1 

t=l 

K 

x [2: 6J;i1 (wi,J3, 8-)(Yi- Pi(wi, &))] , 
i= l r 

(4.19) 

where [-Jr denotes the fact that the expression in the brackets is evaluated at (3 = 
~WGQL(r) . 

The estimator ~WGQL is consistent and it is highly efficient for known (}2 and Pe 

(£ = 1, ... , T- 1). This is because ~WGQL is obtained by solving the estimating 

equation (4.16) , where the weight matrix :ti is the correct covariance matrix of the 

responses. If (}2 and Pe are unknown, which is usually the case in practice, the use 

of their consistent estimates in the weighted matrix in ( 4.16) still provides a highly 

efficient estimator of (3. As we discuss in the next section, the efficiency of the 

estimator of (}2 will however depend on the correct specification of a weight matrix 

(a fourth order moment matrix for longitudinal mixed model data) to be used for 

the construction of the estimating equation for (}2 . Note that if one could obtain the 

maximum likelihood estimator of (3, it would have been fully efficient. It is however 

extremely difficult to compute the maximum likelihood estimator, as the joint density 

of the longitudinal responses is unknown. 

Further, by arguments analogous to those given in Liang and Zeger (1986) , it may 

be shown that K~ (~WGQL - (3) has an asymptotic normal distribution with mean 
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vector 0 and covariance matrix given by 

(4.20) 

Remark that the computation of the estimate of f3 by (4.16) requires 0"
2 and Pe to 

be known, where for C = 1, ... , T -1, the p/s are longitudinal correlation parameters, 

which are treated as nuisance. In a manner similar to that of (4.16), in the next 

section, we develop the weighted generalized quasi-likelihood estimating equation for 

0"
2. A consistent estimator for P£ obtained by the method of moments is provided in 

§ 4.4. 

4.3 WGQL Approach for Variance Component 

To develop the estimating equation for 0"
2

, similar to Jowaheer and Sutradhar (2002), 

we use the squared and distinct cross-product responses of the ith individual ( i = 
1, ... , K) as data. Let !is = (yf1, ... , ylt, ... , YtrY be the T-dimensional vector of 

squares of the repeated observations and liP = (Yi1Yi2, ... , YitYiv, ... , YiT-lYiT )' be 

the T(~-l)_dimensional vector of distinct pair-wise-products of repeated observations 

for t, v = 1, . . . , T; t < v. Since observations here are binary, fis can be re-written 

as !is = (Yil, ... , Yit, . . . , Yir)'. Further let fi = Ufs, JIP)' be the T(~+l)_dimensional 

combined vector of squares and pair-wise products of repeated observations for the 

ith individual. Let mis = (mil, ... l mit, ... ' miT)' be the mean vector of !is with 

mit = E(Yit) and miP = (mil2 , .. . , mitv , ... , mi(T- l)T )' be the mean vector of f ip with 

mitv = E(YitYiv)· Also suppose that mean vector of combined vector fi is mi such 

that mi = (m;/, mip' )'. Let the covariance matrix of fi be ni. 

As explained in § 4.2, mi is a function of /3, O", p, and longitudinal design weights 

wiO defined as in (3.14) for 2 ~ i ~ T and in (3.15) for i > T. Here, like the pre­

vious section, we use the data dependent design weights because it is recommended 

in Chapter 3 for practical application. In other words, we use wi instead of WiQ. 

Note that in the present longitudinal mixed model set up, it is however impossible to 



64 

compute the fourth order moments matrix ~k This is because the joint distribution 

of repeated responses Yil, . . . , Yit, . . . , YiT is unknown. To overcome this problem, in 

the longitudinal set up, Jowaheer and Sutradhar (2002), following Prentice and Zhao 

(1991), approximated ni matrix by a normality based 'working' matrix n~N)' say. To 

compute n~N) matrix in the present set up, one may follow Jowaheer and Sutradhar 

(2002) and compute the elements of n~N) by pretending that Ei in ( 4.16) is the covari­

ance matrix of the normal vector Yi = (Yil, ... , Yit, ... , YiT )', whereas Yi is truly the 

vector of binary responses. The computation of n~N) matrix is however complicated. 

As opposed to the 'working normality' based fourth order moments matrix, we here 

propose a 'longitudinal independence' based working fourth order moments matrix 

n~I), say. Note that unlike the 'working normality' based approach, one retains the 

true nature of the responses in tact in computing the 'working independence' n~l) 

matrix. Moreover, the computation of the n}I) matrix is much more simpler than 

that of the n~N) matrix. Since, in the present set up, we use the 'working indepen­

dence' based approach, n~I) will be a function of /3, <J, and the longitudinal design 

weights WiQ. Like § 4.2, we also use the data dependent design weight based WGQL 

approach to estimate the variance component <J2 of individual random effects. Note 

that although, in the present approach, n~I) will be free from p, the mean function 

mi and its derivative vector i>i (with respect to <J2) are both functions of /3 , <J , and 

p. Then for known f3 and p, the weighted generalized quasi-likelihood estimating 

equation for <J2 is 

( 4.21) 

where wi is given by (3.6) for 2 ~ i ~ T and by (3.9) for i > T and Di is 1 x T(~+l) 

first order derivative vector emtJ;;·fi,p). In the following sub-sections we show how we 

can compute the elements of mi, i>i, and nVl, fori= 1, ... , K. 
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4.3.1 Construction of Mean Vector mi 
Recall that mi = (mi/, mjp')' where mis = (mib ... , mit, ... , mir)' with mit = E (Yit ) 

and m;p = (mi12, . .. 'mitv, .. . 'mi(T-l)T)' with mitv = E(YitYiv) for i = 1, ... 'K; t , v = 

1, . .. , T; t < v. It then follows from (4.5) and (4.11) that 

- - 1 ~ (t) . 1 ~ (t) 
mit - Wi !vi L...J Bil (/3, a, "Yi,~) + (1 - wi) M L...J 9i2 (/3, a, "Yi,{), 

~=1 ~=1 

(4.22) 

and 

1 ~ (tv)(/3 ) ( ) 1 ~ (tv)(/3 ) +wi M L...J 9i5 , a, "Yi,{ + 1 - Wi M L...J 9i6 , a, "Yi,~ , 
~=1 ~=1 

( 4.23) 

· 1 h (t) (/3 ) (t) (/3 ) (tv) (/3 ) (tv) (/3 ) (tv) (/3 ) respective y, w ere Bil , a, "Yi,{ , 9i2 , a, "Yi,{ , gi3 , a, "Yi,~ , 9i4 , a , "Yi,{ , 9i5 , a , "Yi,{ , 

and g~~v)(/3 , a, "Yi,{) are defined in§ 4.1.1 and§ 4.1.2. 

4.3.2 Construction of First Order Derivative Vector 8
8:i' 

The first order derivative of the mean vector m; (i = 1, .. . , K) with respect to the 

variance component a 2 can be defined as 

Omi' [ 0 * 1 0 * '] 
oa2 oa2 mis ' oa2 mip 

where Di is a 1 x T(~+l) vector. Since mis 

(4.24) 

(mil , .. . , mit, . .. , miT)' and m jp = 
(mi12, . .. , mitv, .. . , mi(T- l)T )', to compute Di it is sufficient to compute the deriva­

tives of mit and mitv with respect to a 2 where mit and mitv are defined as in ( 4.22) 

and ( 4.23) respectively. By direct calculations, these derivatives are given by 

omit a [ 1 ~ (t) 1 ~ Ct> ] 
oa2 - oa2 Wi M L...J 9i1 (/3, a, "Yi,~) + (1 - Wi ) M L...J 9i2 (/3 , a , "Yi,~) 

{ =1 { = 1 

(4.25) 
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where 

and 

a [ 1 ~ (tv) 1 ~ (tv) ) oa2 WiPit-vi M L...J 9i3 ({3, a, 'Yi,~) + (1 - wi)Pit-vl M L...J 9i4 ({3, cr, 'Yi.E. 
~=1 ~= 1 

1 ~ (tv) ( fJ ) ( ) 1 ~ (tv) (fJ )] 
+wi M LJ 9is , cr, 'Yi,~ + 1 - Wi M L...J 9i6 , cr, 'Yi,~ 

~=1 ~=1 

1 ~ (tv) ( ) ( ) 1 ~ (tv) ( ) 
WiPit-v12M L...J 9i9 fJ, a, 'Yi,~ + 1 - Wi Pit-vi 2M L...J 9i10 fJ, cr, 'Yi,~ 

cr ~=1 a ~=1 

1 ~ (tv) (fJ ) ( ) 1 ~ (tv) ( fJ ) 
+wi 2M L...J 9i11 , cr, 'Yi,~ + 1 - Wi 2M L...J 9i12 , cr, 'Yi ,~ , 

cr ~=1 a ~=1 
(4.26) 

where 
(tv)(fJ ) _ (- _ _ _ )1/2 (1 _ _ ) 

9i9 , cr, 'Yi,~ - 'Yi,~ Pitl,~qit1,t;Piv1 ,~qiv1,t; - Pit1,t; - Piv1,~ , 

(tv)(fJ ) _ ( - _ _ _ )1/2(1 _ _ ) 
9ilO , cr, 'Yi,t; - 'Yi,~ Pit2,t;qit2,t;Piv2,t;qiv2 ,f. - Pit2,~ - Piv2,~ , 

(tv) (fJ ) _ - - (2 - - ) 
9i11 , cr, 'Yi,~ - 'Yi,t;Pin,t;Piv1,~ - Pitll - Pivl ,~ , 

and 
(tv) (fJ ) _ - - (2 - - ) 9i12 , cr, 'Yi,~ - 'Yi,t;Pit2,~Piv2,~ - Pit2,~ - Piv2,t; , 

respectively. 

4.3.3 Construction of the 'Working' Covariance Matrix nY) 
Recall that ni is the covariance matrix of fi = U:s' JIP)' where !is is the vector 

of repeated observations and fip is the vector of distinct pair-wise-products of the 

repeated observations of the ith individual (i = 1, ... , K). Thus, to compute Oi, it 
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is sufficient to compute three matrices, namely, Oiss = var(Fis) , Oisp = cov(Fis, Fip ), 

and nipp = var(Fip) · In other words, ni can be expressed as 

(4.27) 

It then follows that for the construction of the n~I) matrix, one needs to compute n~!;' 
n~!~, and n~;~ matrices. This may be achieved by pretending that for given bi, . .. , o1 

and /i, Yit and Yiv are independent. This implies that 

(4.28) 

fort, v = 1, ... , T, t =/= v, although, in practice, Pit-vi may not be zero. 

Construction of n~;; Matrix 

Recall that ! is = (Yil' ... ' Yit' ... ' YiT) I for ( i = 1' . . . ' K). Then it follows t hat n;!~ is 

a T x T matrix defined as 

· · · · · · cov(Yit , Yir) ] · 

· · · · · · var(Yir) 

For the computation of n~!~, it is sufficient to compute cov(Yit , Yiv), (t , v = 1, .. . , T ; t =/= 

v) and var(Yit) · More specifically, the covariance may be computed from (4.12) by 

evaluating it at Pit-vi = 0 and wiO = wi . That is, 

1 ~ (tv) (/3 ) ( ) 1 ~ (tv)( /3 ) 
- W i M L 9i5 , CY, J i,f, + 1 - W i M L 9i6 , CY, "/i ,t; 

f.= l f.= l 

(4.29) 

where g;~v)(/3 , CY,r>(i ,t;) and g~~v) (JJ, CY,"fi,t; ) are defined in§ 4.1.2 and Pit= E(Yit ) = 

PitiwiO=w; where Pit is defined as in (4.5). Again, following (4.13), var(Yit) can be 
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computed as 

(4.30) 

Construction of O~!~ Matrix 

Note that o~;~ is the T X T(;- l) matrix of covariances between Fis and Fip, !is being 

the T x 1 vector of repeated observations and fip being the T(;-l) x 1 vector of distinct 

pair-wise-product of elements of !is· Then one can express O~!~ as 

[ 

cav(Yii, Yi1Yi2) 

cov(YiT;, Y;,Y;,) 

cov(Yii, Yir-1Yir) l· 
cov(Yir, Yir- 1Yir) 

To construct the elements of O~!~, it is necessary to compute E(Yit), E(YitYiv), and 

E(YitYivYir) fori= 1, .. . , K; t, v, r = 1, .. . , T. These expectations can be computed 

as follows. To be specific, by (4.5), 

( 4.31) 

Next, under the independence assumption, one may compute E(YitYiv), fort =J v, as 
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_ 1 ~ (tv)(/3 ) ( ) 1 ~ (tv)(/3 ) - Wi M L.J 9i5 'a, ri,f. + 1 - Wi M L.J 9i6 'a, fi,f. . 
f.=l f.=l 

(4.32) 

Similarly, E(YitYivYir) fort =I= v =I= r can be expressed as 

E(YitYivYir) = Wi! f:g]i3r)( j3,a,'Yi,f.) + (1- Wi)! f:gg~r)(j3,a,/i ,f,), 
f.=l f.=l 

(4.33) 

where 

and 
(tvr)(/3 ) _ - - -

9it4 , a, ri,f. - Pit2,f.Piv2,f.Pir2,f. · 

We now turn back to write the formulas for the elements of the n~;~ matrix by 

using the above expectations. One must consider the following cases for this purpose. 

Case I: t =/= v, v < r; t, v, r = 1, ... , T 

1 ~ (tvr) (/3 ) (1 ) 1 ~ (tvr) (/3 ) Wi M L.J 9i13 'a, 'Yi,f. + - Wi M L.J 9i14 'a, ri,( 
f.=l f.=l 

:::. [ 1 ~ (vr)(/3 ) ( ) 1 ~ (vr)(/3 )] -Pit wi M L..J 9is , a, / i,f. + 1 - Wi M L.J 9i6 , a, 'Yi,f. · 
(=1 f.=l 

(4.34) 

Case II: t = v, v < r; t, v, r = 1, . . . , T 

[1 - E(Yit)]E(Yitlir) 

( :::. ) [ 1 ~ (tr) ( ) ( ) 1 ~ (tr) ( )] 1 - Pit Wi M L.J 9is f3 , a, 'Yi,f. + 1 - Wi M L.J 9i6 f3, a, 'Yi,f. · 
f.=l f.=l 

(4.35) 
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Case Ill: t = r, v < r; t, v, r = 1, ... , T 

[1- E(Yit)]E(YitYiv) 

( -:::. ) [ 1 ~ (tv) ( ) ( ) 1 ~ (tv) ( )] 1- Pit Wi M ~ 9i5 /3 , 0", /i,~ + 1- Wi M ~ 9i6 /3, 0", /i,~ . 
~=1 ~=1 

(4.36) 

Construction of n~:~ Matrix 

Recall that n~~~ is the T(~-1) X T(~-1 ) covariance matrix of vector Fip = (Yi1Yi2, . .. 'YitYiv, 

. .. , Yir-1Yir)' which can be expressed as 

n,(I) = 
tpp 

( var(Yii Yi2) 

l cov(Yir-I~r, Y;,Y;,) 

· · · cov(Yi1Yi2; Yir-IYir) l· 
· · · · · · var(Yir-IYiT) 

Note that for the computation of elements of 0.~~~' we require to compute E(Yit), 

E(YitYiv), E(YitYivYir), and E(YitYivYirYis) fori= 1, .. . , K; t, v, r, 8 = 1, ... , T. The 

expectations, E(Yit), E(YitYiv), and E(YitYivYir), are already shown in (4.31), (4.32) , 

and ( 4.33) respectively, whereas E(YitYivYirYis) can be computed under the working 

independence assumption for t =I= v =I= r =/= 8 as follows. 

1 ~ (tvrs) (/3 ) (1 ) 1 ~ (tvrs) (/3 ) 
Wi M ~ 9i15 '0", /i,~ + - Wi M ~ 9 i16 '0", /i ,f, ' 

f,=l f,=l 

(4.37) 
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where 
(tvrs)((3 ) _ - - - -9i15 , u, ri,t; - Pitl,t;Pivl,t;Pirl,t;Pisl,t; 

and 
(tvrs)((3 ) - - - -

9i16 , u , ri,t; = Pit2,t;Piv2,t;Pir2,t;Pis2,t; · 

One must consider the following cases to compute the elements of the n~~~ matrix. 

Case I: t < v,r < s, t = r,v = s; t, v, r, s = 1, ... , T 

(4.38) 

Case II: t < v,r < s, t =/= r,v =/= s, t =/= s, v =/= r; t,v,r,s = 1, . . . ,T 

1 ~ (tvrs) ((3 ) (1 ) 1 ~ (tvrs) ((3 ) 
wi M ~ gils , u, ri,t; + - wi M ~ 9i16 , u , r i,f. 

f.= l f.= l 

[{ 1 ~ (tv)( ) ( ) 1 ~ (tv)( )} - · wi M ~ 9is (3 , u, ri,f. + 1 - wi M ~ 9i6 (3 , u, r i,t; 
f.= l f.= l 

(4.39) 
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Case III: t < v,r < s, t = r,v =/=- s; t,v,r,s = 1, ... ,T 

1 ~ (tvs)((3 ) ( 1 ) 1 ~ (tvs)((3 ) 
wi M L.J 9il3 , a, 'Yi,f, + - Wi M L.J 9il4 , a, 'Yi,F, 

f,=l f,=l 

( 4.40) 

Case IV: t < v,r < s , t = s,v > r; t ,v,r,s = 1, ... ,T 

1 ~ (tvr) ({3 ) (1 ) 1 ~ (tvr) ({3 ) 
- Wi M L.J 9 i13 , a, 'Yi,F, + - wi l\4 L.J 9 i l 4 , a, 'Yi,F, 

f,= l f,=l 

( 4.41) 

Case V:t<v,r<s, v=r,t<s; t,v,r,s = 1, .. ,, T 

1 ~ (tvs) ({3 ) (1 ) 1 #-.. (tvs) ({3 ) 
Wi M L.J 9 i13 , a, 'Yi,f, + - W i M L.J 9 i14 , a, 'Yi,F, 

f,= l f,= l 
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( 4.42) 

Case VI:t<v,r<s, v=s,t=j:.r; t,v,r,s=1, ... ,T 

1 ~ (tvr)(Q ) ( ) 1 ~ (tvr)(R ) 
Wi M L....,; 9i13 1-'l a, ri,f, + 1 - Wi M L....,; 9il4 1-'l a, Ti,f, 

f,=l f,=l 

( 4.43) 

This completes the construction of the 'working independence' based covariance ma­

trix n~I). 

Let 8-~GQL denote the weighted generalized quasi-likelihood estimator of a2
, which 

is the solution of the estimating equation ( 4.21). This estimator is consistent, but loses 

its efficiency slightly because of the use of a 'working' covariance matrix as the weight 

matrix in the estimating equation. Note that the degree of efficiency loss will depend 

on the extent of misspecification of the 'working' fourth order moments matrix to be 

used in the place of the true fourth order moments matrix. Remark that this problem 

of efficiency loss may arise in some situations only under the longitudinal mixed model 

(Sutradhar and Kumar (2001)) , but not at all for the generalized linear mixed model. 

This is because when T = 1, one can compute the exact fourth order moments mat rix. 
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Turning back to the asymptotic distribution of the variance component estimator, one 

may show, by similar arguments as in Liang and Zeger (1986), that K~ (8-tvcQL- a 2
) 

has a univariate normal distribution, as K -t oo, with mean zero and the variance 

which may be consistently estimated by 

K K 

[ 
- (I) -1 A - '] -2 [ - (I) -1 A A * A A L: Dini (wi, j3)Di :l:Dini (wi , f3)(fi- mi (wi, /3, p)) 

i=1 i=1 

(4.44) 

where m; is computed by using ~WGQL and 8-tvcQL in the formula for m; given in 

§ 4.3.1. 

4.4 Moment Approach for Longitudinal Correla­

tions 

Similar to Jowaheer and Sutradhar (2002) (see also Sutradhar and Kovacevic (2000)), 

the longitudinal correlations Pl (£ = 1, ... , T- 1) in the longitudinal mixed model 

are treated to be nuisance parameters. Nevertheless, it is evident from sections § 4.2 

and § 4.3 that the iterative solutions of the estimating equations ( 4.16) and ( 4.21) for 

j3 and a 2 , respectively, require a consistent estimator for the longitudinal correlation 

parameter Pl· This may be obtained using the method of moments and by solving the 

moment estimating equation derived by equating the unconditional sample covariance 

with its population counterpart given by (4.12) . One may then compute Pl (£ = 
It - vi = 1, .. . , T - 1), a consistent estimator of pe, by using the formula 

L~1 Ljt- vi=l[(Yit-Pit )(y;v- Piv )]/ K(T - l ) S 

A E1:1 E;'=l(yit - Pit)2 /KT - E1:1 E ;'=l(Pitii;t)/ K T 
Pe =--------~~~~--------------~======~--~-----, 

L~1 Ljt- vl=l w;-k L~Ig~~v)(/3,<T,'Y;,{l+(1-w;)tr L~lgi!v) (/3,o-;y; ,d / K(T-l) 
( 4.45) 

Li=l Lt=l (Pit iiit)/ KT 

where 

~K ~ 1 ~M (tv)(j3 ) ( ) 1 ~M (tv)(j3 ) - -S = L..,i=1 L.., jt-vj= l Wq;J L..,~=1 9i5 , a, ti,~ + 1 - Wi M L..,~=1 9i6 , a, ti,~ - PitPiv . 
K(T - £) 
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This correlation estimate is used in ( 4.16) and ( 4.21) to obtain further improved 

estimates of f3 and a2 respectively, which are in turn used here in ( 4.45) to obtain a 

further improved estimate of P£· This cycle of iteration continues until convergence. 

4.5 Performance of the WGQL Estimation Approach 

For Mixed Model: A Simulation Study 

In this section, we examine the performance of the weighted generalized quasi-likelihood 

(WGQL) approach for the estimation of the effects of covariates, including the treat­

ment effect and the variance component of individual random effects of the binary 

longitudinal mixed model under an adaptive clinical set up by conducting a simu­

lation study. As in Chapter 3, we consider two treatments A and B assuming that 

treatment A is the better treatment. In § 3.2.1 , we have shown how to construct 

the longitudinal adaptive design weights wi (i = 1, . . . , K) so that more study sub­

jects are allocated to the better treatment. Let bi be the treatment covariate. For 

i = 1, . . . , K, the treatment covariate bi is chosen to be 1 if the ith patient is allocated 

to the better treatment A and to be 0 otherwise. As in Chapter 3, the values of bi 

are determined based on the adaptive longitudinal design such that 

where wi values are computed from (3.6) for 2 ::; i ::; T and from (3.9) for i > T 

respectively and YH is the history of the response from past i- 1 patients. It is also 

noted that the treatment covariate bi does not depend on the timet. This is because 

once the patient is assigned to a treatment , the patient remains under the selected 

treatment for the complete duration of T periods. 

For the construction of wi fori= 2, . . . , K by using (3.6) and (3.9), we require the 

knowledge of past responses Yrt (r = 1, .. . , i - 1, 1 ::; t::; min(T, i - r)) and x;t = 

(br, Xrt2, ... , Xrtp) ' where br is known and Xrt2, ... , Xrtp are known prognostic factors. 

For our simulation study we consider K = 100, K being the number of individuals 
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in the longitudinal adaptive clinical study. Further we consider T = 4, the number 

of repeated data from each individual. Usually, under the longitudinal set up, the 

number of individuals K is large and the number of time periods T is small. For the 

sake of simplicity, we consider p = 1 covariate: the treatment covariate only. To ensure 

that treatment A is better, we choose (3 = 1.5, for example. As far as the variance 

component of the random effects is concerned, in this simulation study, we consider 

small as well as large values of a2 , namely, a2 = 0.1, 0.2, 0.5, 0.75, and 1.0. With 

regard to the correlations of the repeated data, for the present set up, we consider a 

binary AR(1) model with different values for the autocorrelation parameter p, namely, 

p = 0.3, 0.5, 0.7, 0.8, 0.9, and 0.95 to represent small as well as large correlation. 

Note that the computation of wi further requires the values of a , G, T, and 

the non-stochastic function of prognostic factors other than treatment covariate Urt 

(r = 1, ... , i -1, 1 ::::; t::::; min(T, i- r)), where G is the upper bound for the domain 

of Urt · Since, in this simulation, we only consider treatment as a prognostic factor, 

here, Urt = 0 and hence G = 0. For simplicity we choose a= 1.0 and T = 2.0. 

To generate the individual random effects, we generate independent 11 , ... , rK 
from N(0,1) forK= 100. Note that all Yil (i = 1, .. . , K) [the first observation in the 

cluster under the ith individual] are generated by using a logistic binary model given 

by 

since xit = xi_ for all t = 1, ... , T. In other words, xit = bi· To generate Yit for 

2::::; t::::; T, one must ensure that Yil, ... , Yit, . . . , YiT satisfy the underlying longitudinal 

correlation structure appropriate for the binary repeated data. If the repeated binary 

responses follow AR(1), the correlated binary responses (yi2, •• . , Yit, ... , YiT) for each 

patient i can be generated as follows. If Yil = 0, Yi2 will be generated with probability 

pi(1-p); ifyi1 = 1, then Yi2 will be generated with probability ili+p(1-p;). One may 

continue this to generate Yi3 depending on Yi2 and so on. This assures that the lag 

.e = 1, . .. , T - 1 correlation between Yit and Yi(t+£) is/. In the following sub-section, 

we report the performance of estimators of (3, a2 , and p = (p1 , . . . , Pe)' based on 500 
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simulations. 

4.5.1 Estimation Performance 

With starting values zero for longitudinal correlations and small positive values for 

regression and variance component parameters, we obtained the estimates of (3 and 

a2 by using (4.16) and (4.21) respectively and the estimate of lag-.€ (.C = 1, ... , T - 1) 

autocorrelation i.e. of P£, by using (4.45). The estimation procedure was repeated 

for 500 simulated runs as mentioned above. We report the simulated means and 

simulated standard errors of [3, a 2 , and p = (p1, p2 , p3 )' parameters in Table B.l. 

We have also computed the estimated standard errors for S and (J-2 by using the 

asymptotic variance formulas for S and (J-2 given by ( 4.20) and ( 4.44) respectively. 

The means of these estimated standard errors are also reported in Table B.l. 

It is clear from Table B.l that the robust estimating formula (4.45) for the au­

tocorrelations performs extremely well in estimating the autocorrelation parameters 

P£ ( .e = 1, . . . , T - 1) . As expected, these estimates appear to approximately sat isfy 

the AR(1) relationship P£ = /-. For example, for a 2 = 0.50 and p = 0.8, the moment 

estimating formula (4.45) yields the lag 1, 2, and 3 correlations as 0.797, 0.636, and 

0.507 respectively, whereas the true lag correlations are 0.8, 0.64, and 0.512 respec­

tively. The simulated standard errors of these correlations are 0.044, 0.084, and 0.115 

respectively, which are reasonably small. 

With regard to the estimation of the regression parameter (treatment effect), the 

weighted generalized quasi-likelihood estimating equation ( 4.16) appears to perform 

well. This method however appears to overestimate (3 slightly. The simulated stan­

dard errors of this regression estimator are smaller for small values of p and larger for 

large values of p, irrespective of the values of a2 (small or large). The estimates of (3 

are less biased for small values of 0'2 than for large values of a2 . 

To estimate the variance component a 2 , the weighted generalized quasi-likelihood 

estimation equation (4.21) appears to underestimate the large a2 and to overestimate 

the small a 2 . The performance of this method in estimating the parameter a2 is 
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relatively better for small values of a 2
, namely, a 2 = 0.1, 0.2 as compared to the 

cases with large values of a2 , namely, a 2 = 0.5, 0. 75, 1.0. For large values of a2 , the 

amount of bias appears to decrease as the value of p increases. On the other hand, 

the amount of bias in the estimate of a2 is insignificant for small values of a 2
• The 

simulated standard errors of the estimate of the variance component a 2 are small as 

expected. The simulated standard errors appear to be stable irrespective of the value 

of p (small or large). 

Further, to examine the performance of the estimated standard errors of the re­

gression estimator (treatment effect) ~and variance estimator 6-2
, we computed the 

averages of the estimated standard errors calculated from (4.20) and (4.44) respec­

tively. These values agreed closely with the simulated standard errors of the regression 

estimator and the variance component estimator, as shown in Table B.l. For exam­

ple, for a2 = 0.5 and p = 0.8, the estimated standard error of the treatment effect 

and variance component estimators are 0.407 and 0.123 respectively. These are close 

to the corresponding simulated standard errors 0.366 and 0.149, respectively. 

Note that the simulation results reported in Table B.1 clearly show that the 

WGQL approach performs well in estimating the treatment effect of the adaptive 

longitudinal binary mixed model. The performance of this approach in estimating 

the variance component is also satisfactory, even though the variance estimates are 

slightly biased in some cases, especially for large values of the true variance com­

ponent, along with small values of the longitudinal correlations. Further note that 

as the data dependent design weights wi (i = 1, ... , K) were already shown to be 

important in the adaptive set up, we included these weights under the present mixed 

model in order to obtain consistent and efficient estimates for the treatment effect as 

well as the variance component of the individual random effects. 



Chapter 5 

Concluding Remarks 

5.1 General Remarks 

In clinical trial studies, the individuals are included in the sample in sequence, and 

the available information about the treatment and other covariates are used to assign 

a new individual to a better treatment. Thus, the allocation of the treatment to an 

individual depends on an adaptive design as opposed to the simple random sampling 

design. It is of interest to examine the effects of the treatment and other covariates 

at the end of the clinical trial study. These statistical inferences are made by ex­

ploiting the adaptive design weights properly in the estimation and testing processes. 

Note that there are however situations where individuals are kept on the system for a 

small period of time after their enrollment under a particular treatment. This makes 

the repeated responses of an individual longitudinally correlated. Recently, Sutrad­

har and Biswas (2001) have introduced a longitudinal binary adaptive design and 

dealt with the inferences about the treatment effects. The estimat ion of the treat­

ment and other covariate effects, in this set up, requires adaptive design weights and 

longitudinal correlations of the responses to be known. With regard to the longitu­

dinal correlations, they have incorporated them following Sutradhar and Das (1999). 

But, these authors have exploited the expected design weights (instead of the data 

dependent design weights) for the estimation of parameters by using the weighted 

79 
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generalized quasi-likelihood (WGQL) approach. In Chapter 3, we have re-examined 

the WGQL estimation procedure of Sutradhar and Biswas (2001) by using the data 

dependent design weights in the estimation process. More specifically, in Chapter 

3, we have compared the performance of the data dependent design weights based 

WGQL estimation process with that of Sutradhar and Biswas (2001). It was found 

based on a simulation study that this data dependent design weights based WGQL 

technique performs better than other techniques based on the limiting design weights. 

Note that it may further happen that individuals under study may have unobserv­

able random effects which along with covariates may affect their repeated responses. 

This random effect issue under an adaptive set up is however not addressed in the 

literature so far. With this in view, in Chapter 4, we have developed a longitudinal 

binary mixed model under an adaptive clinical trial set up assuming that given the 

treatment effects and individual random effect, the repeated responses of an individual 

follow a specific autocorrelation structure. Remark that in the adaptive longitudinal 

fixed model, for given design weights, regression effects and longitudinal correlations 

are the only parameters to be estimated, whereas, in the adaptive longitudinal mixed 

model, along with these parameters the variance component of the random effects 

of individuals is also to be estimated. In practice, obtaining consistent and efficient 

estimates of the parameters involved in such an adaptive longitudinal mixed model 

is much more complicated as compared to the estimation of parameters of the adap­

tive longitudinal fixed model. This is because, unlike the adaptive longitudinal fixed 

model, in the adaptive longitudinal mixed model, it is essential to take the individual 

random effects into account for the estimation. 

In the non-adaptive longitudinal mixed model set up, recently Sutradhar and Far­

rell (2003) and Sutradhar and Sinha (2002) [see also Sashegyi, Brown, and Farrell 

(2000)) studied the estimation procedure for the estimation of regression effects, the 

variance component of the individual random effects, and the longitudinal correla­

tions. Thus, our adaptive longitudinal mixed model, introduced in Chapter 4, may 

be considered as a direct generalization of the longitudinal mixed models considered 
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by Sutradhar and Farrell (2003) and Sutradhar and Sinha (2002). Note that, unlike 

these authors, we have estimated the covariate effects and variance component of 

individual random effects by using the adaptive design based WGQL approach. We 

have exploited the method of moments to estimate the nuisance conditional longitu­

dinal correlations. To examine the performance of the adaptive design based WGQL 

approach to estimate the regression and variance component parameters and the 

method of moments to estimate the longitudinal correlations, we have conducted a 

limited simulation study. It was found that the moment method performs extremely 

well in estimating the longitudinal correlations under the adaptive longitudinal mixed 

model. The WGQL approach appears to slightly overestimate the treatment effect 

with small standard error. For small values of the variance component, the WGQL 

approach performs well to estimate the parameter a-2 , whereas for large values of 

variance component, this approach underestimates the parameter a 2 • The estimated 

standard errors of the estimator of a-2 were found to be small in magnitude as expected. 

In conclusion, our proposed adaptive design based WGQL approach performs well in 

estimating all the parameters of the proposed adaptive longitudinal binary mixed 

model. 

5.2 Proposal for Future Research 

As discussed in Chapters 3 and 4, in this thesis, we have analyzed the longitudinal 

fixed and mixed model-based binary data obtained from adaptive clinical trials. Note 

that, under the proposed models, the repeated responses were collected from an indi­

vidual admitted to the adaptive clinical trial. It may however be necessary to include 

the members of a family instead of an individual, and to collect data over a period 

of time. This type of multidimensional data exhibits two-way correlations: first, the 

individuals of a family are likely to share a common random family effect causing fa­

milial correlations among the responses of the family; secondly, the repeated responses 

of the individuals of the same family are likely to be longitudinally correlated due to 
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the repetition, causing the familial correlated data also be longitudinally correlated. 

The analysis of this type of data is possible by generalizing the proposed adaptive 

longitudinal binary mixed model for a large number of individuals to the cases with 

large number of families. This is however beyond the scope of this t hesis. 



Appendix A 

Tables: Adaptive Longitudinal 

Binary Fixed Model 
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Table A.1: Simulated means and standard errors of 6s (total number of patients 
receiving the better treatment) for selected values of the true correlation parameter 
p under AR(l) binary model with /31 = 1.5, /32 = 0.0, {33 = 0~2, and /34 = 0.1; and 
adaptive design parameters a = 1.0, G = 3.0, and T = 2.0, 4.0; for different values of 
K = 75, 100, 200. 

K T p Mean Standard Error 

75 2.0 0.3 43.638 7.024 
0.5 43.480 7.022 
0.7 43.672 7.101 
0.9 43.839 7.190 

4.0 0.3 46.595 7.339 
0.5 46.023 7.701 
0.7 46.549 7.576 
0.9 46.566 8.135 

100 2.0 0.3 58.703 8.505 
0.5 58.634 8.376 
0.7 58.632 8.588 
0.9 58.890 8.745 

4.0 0.3 62.483 8.779 
0.5 62.528 8.857 
0.7 62.348 9.047 
0.9 62.825 9.745 
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(Table A.1 contd .. .. ) 

K T p Mean Standard Error 

200 2.0 0.3 116.660 11.097 
0.5 116.657 11.331 
0.7 116.291 11.451 
0.9 116.887 11.485 

4.0 0.3 124.693 11.668 
0.5 124.310 12.347 
0.7 123.675 12.349 
0.9 124.839 13.004 
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Table A.2: Simulated means(SM), simulated standard errors (SSE), and estimated 
standard errors (ESE) of the WGQL1, vVGQL2, and WGQL3 estimates for the regres-
sion and correlation parameters for selected values of the true correlation parameter 
p under AR(1) binary model with {31 = 1.5, {32 = 0.0, {33 = 0.2, and {34 = 0.1; and 
adaptive design parameters a = 1.0, G = 3.0, and T = 2.0, 4.0; for K = 75 subjects. 

Estimates 
Method T p Statistic {31 {32 {33 {34 ih P2 P3 

WGQL1 2.0 0.3 SM 1.421 0.030 0.272 0.156 0.263 0.042 -0.021 
SSE 0.893 0.443 0.490 0.526 0.133 0.170 0.196 
ESE 1.350 0.460 0.535 0.555 

0.5 SM 1.407 0.017 0.297 0.155 0.469 0.203 0.078 
SSE 0.962 0.495 0.538 0.582 0.118 0.172 0.207 
ESE 1.525 0.528 0.596 0.619 

0.7 SM 1.379 0.071 0.277 0.124 0.681 0.460 0.306 
SSE 0.952 0.530 0.589 0.635 0.082 0.140 0.585 
ESE 1.718 0.585 0.688 0.708 

0.9 SM 1.300 0.059 0.328 0.246 0.892 0.793 0.708 
SSE 1.048 0.604 0.720 0.724 0.044 0.087 0.119 
ESE 1.940 0.676 0.795 0.802 

4.0 0.3 SM 1.499 0.012 0.226 0.126 0.255 0.028 -0.036 
SSE 0.852 0.458 0.529 0.550 0.135 0.177 0.204 
ESE 1.253 0.482 0.557 0.566 

0.5 SM 1.468 -0.007 0.246 0.125 0.464 0.197 0.070 
SSE 0.920 0.512 0.582 0.613 0.124 0.171 0.204 
ESE 1.412 0.549 0.632 0.639 

0.7 Mean 1.442 0.031 0.257 0.109 0.678 0.454 0.302 
SSE 0.936 0.556 0.630 0.651 0.083 0.141 0.177 
ESE 1.590 0.616 0.714 0.729 

0.9 SM 1.331 0.063 0.294 0.202 0.892 0.793 0.707 
SSE 1.021 0.605 0.744 0.752 0.044 0.088 0.120 
ESE 1.816 0.697 0.832 0.845 
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(Table A.2 contd .. .. ) 

Estimates 
Method T p Statistic /31 !32 f3g !34 ih P2 P3 

WGQL2 2.0 0.3 SM 1.360 0.061 0.299 0.184 0.276 0.058 -0.006 
SSE 0.893 0.420 0.474 0.526 0.123 0.162 0.193 
ESE 1.305 0.443 0.511 0.496 

0.5 SM 1.332 0.047 0.333 0.193 0.477 ·0.213 0.089 
SSE 0.999 0.486 0.530 0.558 0.117 0.175 0.210 
ESE 1.438 0.495 0.565 0.586 

0.7 SM 1.299 0.091 0.331 0.177 0.686 0.469 0.321 
SSE 0.972 0.514 0.572 0.627 0.080 0.136 0.174 
ESE 1.594 0.559 0.652 0.673 

0.9 SM 1.213 0.094 0.362 0.282 0.895 0.799 0.715 
SSE 1.004 0.589 0.688 0.719 0.040 0.079 0.108 
ESE 1.805 0.644 0.749 0.774 

4.0 0.3 SM 1.415 0.055 0.279 0.181 0.271 0.050 -0.015 
SSE 0.891 0.424 0.498 0.518 0.127 0.166 0.196 
ESE 1.252 0.447 0.522 0.537 

0.5 SM 1.329 0.051 0.321 0.205 0.477 0.216 0.092 
SSE 0.948 0.497 0.538 0.559 0.122 0.182 0.209 
ESE 1.283 0.502 0.573 0.582 

0.7 SM 1.330 0.070 0.329 0.193 0.684 0.466 0.317 
SSE 0.956 0.538 0.582 0.624 0.083 0.141 0.177 
ESE 1.477 0.572 0.655 0.668 

0.9 SM 1.229 0.095 0.367 0.270 0.895 0.798 0.714 
SSE 0.976 0.569 0.684 0.711 0.042 0.082 0.115 
ESE 1.611 0.650 0.746 0.767 
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(Table A.2 contd .... ) 

Estimates 
Method T p Statistic !31 !32 /33 !34 P1 P2 P3 

WGQL3 2.0 0.3 SM 1.452 0.017 0.265 0.152 0.257 0.034 -0.031 
SSE 0.941 0.454 0.508 0.528 0.141 0.179 0.209 
ESE 1.124 0.459 0.537 0.544 

0.5 SM 1.431 0.009 0.289 0.142 0.464 0.196 0.070 
SSE 1.007 0.504 0.543 0.597 0.124 0.181 0.217 
ESE 1.265 0.521 0.597 0.618 

0.7 SM 1.481 0.036 0.262 0.101 0.670 0.441 0.286 
SSE 1.110 0.568 0.624 0.676 0.099 0.164 0.202 
ESE 1.529 0.609 0.714 0.740 

0.9 SM 1.339 0.061 0.312 0.218 0.890 0.791 0.704 
SSE 1.238 0.632 0.773 0.795 0.046 0.089 0.121 
ESE 1.771 0.693 0.851 0.863 

4.0 0.3 SM 1.554 -0.009 0.201 0.111 0.244 0.014 -0.050 
SSE 0.933 0.489 0.558 0.573 0.145 0.193 0.216 
ESE 0.995 0.485 0.569 0.568 

0.5 SM 1.536 -0.029 0.212 0.094 0.451 0.178 0.047 
SSE 1.045 0.538 0.622 0.652 0.137 0.196 0.236 
ESE 1.171 0.556 0.660 0.666 

0.7 SM 1.531 -0.002 0.226 0.084 0.670 0.440 0.282 
SSE 1.068 0.603 0.665 0.699 0.095 0.161 0.204 
ESE 1.315 0.631 0.738 0.748 

0.9 SM 1.432 0.023 0.259 0.172 0.889 0.787 0.700 
SSE 1.182 0.653 0.799 0.811 0.048 0.094 0.128 
ESE 1.543 0.713 0.861 0.865 
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Table A.3: Simulated means(SM), simulated standard errors (SSE), and estimated 
standard errors (ESE) ofthe WGQL1 , WGQL2 , and WGQL3 estimates for the regres-
sion and correlation parameters for selected values of the true correlation parameter 
p under AR(1) binary model with (31 = 1.5, (32 = 0.0, (33 = 0.2, and (34 = 0.1; and 
adaptive design parameters a = 1.0, G = 3.0, and r = 2.0, 4.0; for K = 100 subjects. 

Estimates 
Method T p Statistic (31 (32 (33 (34 ih P2 P3 

WGQL1 2.0 0.3 SM 1.541 -0.002 0.215 0.101 0.263 0.040 -0.025 
SSE 0.787 0.396 0.425 0.415 0.125 0.157 0.181 
ESE 1.051 0.426 0.430 0.418 

0.5 SM 1.502 0.021 0.232 0.103 0.474 0.211 0.085 
SSE 0.805 0.408 0.459 0.466 0.096 0.136 0.169 
ESE 1.179 0.473 0.480 0.472 

0.7 SM 1.523 -0.003 0.257 0.115 0.677 0.450 0.287 
SSE 0.918 0.507 0.537 0.530 0.075 0.128 0.166 
ESE 1.402 0.557 0.557 0.553 

0.9 SM 1.428 0.061 0.262 0.124 0.894 0.798 0.713 
SSE 0.930 0.511 0.602 0.597 0.037 0.070 0.097 
ESE 1.520 0.605 0.640 0.623 

4.0 0.3 SM 1.544 -0.017 0.211 0.099 0.266 0.042 -0.021 
SSE 0.718 0.417 0.433 0.429 0.117 0.149 0.175 
ESE 0.933 0.431 0.432 0.421 

0.5 SM 1.539 -0.005 0.214 0.085 0.473 0.208 0.081 
SSE 0.758 0.445 0.489 0.488 0.096 0.141 0.172 
ESE 1.065 0.487 0.493 0.483 

0.7 SM 1.580 -0.047 0.228 0.094 0.676 0.449 0.288 
SSE 0.860 0.538 0.558 0.545 0.072 0.122 0.157 
ESE 1.251 0.578 0.571 0.557 

0.9 SM 1.501 0.020 0.233 0.109 0.893 0.796 0.710 
SSE 0.928 0.550 0.638 0.611 0.037 0.072 0.099 
ESE 1.464 0.647 0.664 0.644 
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Estimates 
Method T p Statistic /31 /32 /33 /34 ih P2 P3 

WGQL2 2.0 0.3 SM 1.465 0.036 0.251 0.128 0.275 0.057 -0.009 
SSE 0.810 0.374 0.403 0.407 0.120 0.150 0.176 
ESE 1.034 0.403 0.414 0.407 

0.5 SM 1.471 0.052 0.249 0.121 0.478 0.217 0.092 
SSE 0.872 0.387 0.462 0.463 0.098 0.141 0.172 
ESE 1.188 0.451 0.472 0.466 

0.7 SM 1.439 0.053 0.290 0.146 0.684 0.461 0.303 
SSE 0.920 0.465 0.506 0.509 0.070 0.120 0.151 
ESE 1.312 0.512 0.526 0.523 

0.9 SM 1.365 0.107 0.286 0.162 0.895 0.802 . 0.718 
SSE 0.976 0.493 0.576 0.569 0.035 0.067 0.094 
ESE 1.497 0.574 0.609 0.590 

4.0 0.3 SM 1.485 0.032 0.243 0.120 0.274 0.053 -0.010 
SSE 0.761 0.387 0.417 0.427 0.116 0.149 0.177 
ESE 0.920 0.406 0.419 0.414 

0.5 SM 1.489 0.045 0.243 0.109 0.477 0.214 0.088 
SSE 0.832 0.410 0.483 0.486 0.099 0.146 0.176 
ESE 1.069 0.457 0.487 0.481 

0.7 SM 1.478 0.026 0.282 0.147 0.683 0.460 0.304 
SSE 0.851 0.483 0.519 0.512 0.069 0.117 0.147 
ESE 1.164 0.519 0.531 0.524 

0.9 SM 1.400 0.087 0.289 0.159 0.895 0.801 0.716 
SSE 0.935 0.509 0.606 0.585 0.037 0.070 0.099 
ESE 1.1361 0.586 0.623 0.604 
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Estimates 
Method T p Statistic f3I !32 /33 /34 {h P2 P3 

WGQL3 2.0 0.3 SM 1.550 -0.007 0.212 0.098 0.261 0.039 -0.027 
SSE 0.793 0.401 0.434 0.420 0.128 0.158 0.182 
ESE 0.855 0.421 0.432 0.418 

0.5 SM 1.540 0.004 0.216 0.095 0.469 0.202 0.074 
SSE 0.862 0.426 0.488 0.478 0.106 0.154 0.189 
ESE 0.966 0.471 0.486 0.472 

0.7 SM 1.578 -0.024 0.243 0.104 0.671 0.440 0.276 
SSE 0.976 0.526 0.560 0.558 0.082 0.140 0.180 
ESE 1.143 0.553 0.561 0.551 

0.9 SM 1.501 0.030 0.235 0.112 0.892 0.794 0.707 
SSE 1.025 0.535 0.621 0.604 0.038 0.074 0.103 
ESE 1.342 0.628 0.658 0.633 

4.0 0.3 SM 1.567 -0.027 0.202 0.092 0.262 0.037 -0.026 
SSE 0.751 0.438 0.453 0.450 0.125 0.157 0.180 
ESE 0.738 0.428 0.439 0.427 

0.5 SM 1.557 -0.016 0.208 0.081 0.470 0.203 0.075 
SSE 0.807 0.460 0.498 0.496 0.100 0.149 0.178 
ESE 0.844 0.486 0.495 0.484 

0.7 SM 1.635 -0.067 0.214 0.085 0.672 0.441 0.278 
SSE 0.915 0.554 0.568 0.551 0.078 0.134 0.170 
ESE 0.984 0.570 0.567 0.552 

0.9 SM 1.580 -0.014 0.203 0.100 0.890 0.792 0.704 
SSE 1.013 0.577 0.683 0.616 0.040 0.078 0.106 
ESE 1.157 0.647 0.671 0.637 
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Table A.4: Simulated means(SM), simulated standard errors, (SSE) and estimated 
standard errors (ESE) of the WGQL1 , WGQL2 , and WGQL3 estimates for the regres-
sion and correlation parameters for selected values of the true correlation parameter 
p under AR(1) binary model with /31 = 1.5, /32 = 0.0, /33 = 0.2, and /34 = 0.1; and 
adaptive design parameters a = 1.0, G = 3.0, and T = 2.0, 4.0; for K = 200 subjects. 

Estimates 
Method T p Statistic /31 /32 /33 /34 {h P2 P3 

WGQL1 2.0 0.3 SM 1.575 -0.025 0.199 0.101 0.272 0.054 -0.011 
SSE 0.613 0.325 0.289 0.310 0.095 0.118 0.138 
ESE 0.743 0.320 0.290 0.304 

0.5 SM 1.560 -0.016 0.203 0.093 0.479 0.217 0.085 
SSE 0.662 0.343 0.326 0.323 0.077 0.112 0.139 
ESE 0.837 0.358 0.325 0.339 

0.7 SM 1.538 -0.026 0.223 0.124 0.686 0.464 0.310 
SSE 0.720 0.393 0.365 0.400 0.060 0.102 0.131 
ESE 0.939 0.405 0.364 0.382 

0.9 SM 1.580 -0.046 0.241 0.116 0.894 0.798 0.712 
SSE 0.821 0.465 0.421 0.434 0.029 0.055 0.077 
ESE 1.135 0.479 0.420 0.446 

4.0 0.3 SM 1.571 -0.028 0.195 0.095 0.274 0.057 -0.009 
SSE 0.556 0.337 0.289 0.314 0.089 0.114 0.133 
ESE 0.665 0.323 0.292 0.306 

0.5 SM 1.563 -0.029 0.199 0.090 0.480 0.219 0.087 
SSE 0.610 0.365 0.331 0.331 0.076 0.108 0.134 
ESE 0.748 0.362 0.326 0.341 

0.7 SM 1.537 -0.038 0.219 0.112 0.686 0.465 0.312 
SSE 0.656 0.402 0.374 0.406 0.055 0.093 0.118 
ESE 0.840 0.410 0.366 0.383 

0.9 SM 1.621 -0.063 0.208 0.085 0.893 0.797 0.711 
SSE 0.748 0.466 0.431 0.456 0.028 0.053 0.075 
ESE 1.044 0.499 0.436 0.465 
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Estimates 
Method T p Statistic /31 /32 /33 /34 P1 P2 P3 

WGQL2 2.0 0.3 SM 1.558 0.003 0.208 0.109 0.275 0.058 -0.008 
SSE 0.682 0.304 0.282 0.308 0.097 0.122 0.143 
ESE 0.769 0.311 0.286 0.303 

0.5 SM 1.558 0.008 0.216 0.103 0.480 0.219 0.087 
SSE 0.736 0.320 0.322 0.320 0.080 0.116 0.142 
ESE 0.902 0.349 0.322 0.337 

0.7 SM 1.522 0.006 0.235 0.132 0.688 0.468 0.313 
SSE 0.771 0.356 0.361 0.397 0.055 0.094 0.125 
ESE 0.973 0.390 0.358 0.377 

0.9 SM 1.514 0.004 0.265 0.138 0.896 0.801 0.717 
SSE 0.856 0.424 0.405 0.429 0.029 0.054 0.077 
ESE 1.122 0.449 0.409 0.434 

4.0 0.3 SM 1.561 0.000 0.207 0.101 0.275 0.058 -0.009 
SSE 0.637 0.313 0.283 0.311 0.096 0.123 0.146 
ESE 0.694 0.315 0.290 0.306 

0.5 SM 1.569 -0.003 0.216 0.103 0.478 0.217 0.084 
SSE 0.710 0.343 0.328 0.330 0.084 0.121 0.150 
ESE 0.798 0.352 0.325 0.340 

0.7 SM 1.525 -0.001 0.238 0.133 0.687 0.468 0.315 
SSE 0.756 0.372 0.370 0.394 0.057 0.096 0.124 
ESE 0.894 0.395 0.363 0.380 

0.9 SM 1.585 -0.007 0.229 0.110 0.894 0.798 0.711 
SSE 0.842 0.424 0.433 0.457 0.031 0.059 0.083 
ESE 1.052 0.458 0.424 0.446 
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Estimates 

Method T p Statistic f3I !32 /33 !34 {>J P2 P3 

WGQL3 2.0 0.3 SM 1.575 -0.025 0.199 0.101 0.272 0.054 -0.011 
SSE 0.612 0.326 0.289 0.310 0.095 0.118 0.138 
ESE 0.605 0.316 0.289 0.303 

0.5 SM 1.576 -0.023 0.198 0.092 0.477 0.213 0.080 
SSE 0.683 0.353 0.330 0.325 0.084 0.121 0.148 
ESE 0.686 0.356 0.326 0.339 

0.7 SM 1.563 -0.038 0.220 0.120 0.683 0.460 0.305 
SSE 0.750 0.407 0.367 0.403 0.064 0.110 0.137 
ESE 0.776 0.405 0.365 0.383 

0.9 SM 1.629 -0.060 0.225 0.101 0.892 0.795 0.707 
SSE 0.872 0.475 0.449 0.468 0.032 0.060 0.085 
ESE 0.950 0.482 0.432 0.458 

4.0 0.3 SM 1.570 -0.027 0.195 0.095 0.275 0.058 -0.008 
SSE 0.552 0.336 0.289 0.314 0.088 0.112 0.131 
ESE 0.515 0.317 0.292 0.305 0.478 

0.5 SM 1.574 -0.035 0.195 0.089 0.478 0.216 0.083 
SSE 0.631 0.376 0.335 0.332 0.086 0.120 0.152 
ESE 0.585 0.360 0.329 0.341 

0.7 SM 1.550 -0.044 0.215 0.110 0.685 0.464 0.311 
SSE 0.672 0.411 0.378 0.407 0.056 0.095 0.121 
ESE 0.658 0.406 0.367 0.383 

0.9 SM 1.648 -0.074 0.202 0.075 0.892 0.795 0.708 
SSE 0.788 0.487 0.441 0.0476 0.030 0.056 0.079 
ESE 0.796 0.486 0.435 0.459 
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Table A.5: Comparison of mean squared errors (MSE) for the estimators of the 
treatment effect(,BI) under three weighted generalized quasi-likelihood approaches, 
based on 1000 simulations. 

T = 2.0 T = 4.0 
p p 

K Method 0.3 0.5 0.7 0.9 0.3 0.5 0.7 0.9 

75 WGQL1 0.803 0.934 0.921 1.137 0.726 0.847 0.880 1.071 
WGQL2 0.817 1.026 0.985 1.090 0.800 0.929 0.943 1.026 
WGQ£3 0.888 1.019 1.232 1.560 0.874 1.093 1.142 1.401 

100 WGQL1 0.621 0.648 0.843 0.871 0.518 0.576 0.746 0.862 
WGQL2 0.657 0.761 0.850 0.970 0.579 0.693 0.724 0.885 
WGQ£3 0.631 0.745 0.958 1.051 0.569 0.654 0.855 1.033 

200 WGQL1 0.381 0.442 0.519 0.681 0.315 0.377 0.432 0.573 
WGQL2 0.468 0.545 0.594 0.732 0.410 0.509 0.572 0.716 
WGQ£3 0.380 0.473 0.566 0.777 0.310 0.404 0.454 0.643 
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Table A.6: Comparison of SLP\¥ and randomized designs based mean squared errors 
(MSEs) of the estimates of the regression parameters of a binary AR(1) longitudinal 
model with true regression parameters /31 = 1.5, {32 = 0.0,/33 = 0.20, {34 = 0.10 
and AR(1) correlation parameter p = 0.5, 0.9, based on two selected values ofT = 
2.0 and 4.0, for K = 75, 100, and 200 subjects. 

Estimates 
True design Working design K T p fJl f32 /33 /34 

Wi 2: 0.5 Wi 2: 0.5 75 2.0 0.5 1.026 0.238 0.299 0.320 
0.9 1.090 0.347 0.500 0.550 

4.0 0.5 0.928 0.250 0.304 0.324 
0.9 1.026 0.333 0.496 0.534 

100 2.0 0.5 0.761 0.152 0.216 0.215 
0.9 0.970 0.254 0.339 0.328 

4.0 0.5 0.692 0.170 0.235 0.236 
0.9 0.884 0.267 0.375 0.346 

200 2.0 0.5 0.545 0.102 0.104 0.102 
0.9 0.733 0.180 0.168 0.185 

4.0 0.5 0.509 0.118 0.108 0.109 
0.9 0.716 0.180 0.188 0.209 
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Estimates 
Thue design Working design K T p !31 !32 {33 !34 

Wi 2: 0.5 Wi = 0.5 75 2.0 0.5 1.047 0.215 0.275 0.304 
0.9 1.220 0.321 0.447 0.485 

4.0 0.5 0.985 0.227 0.290 0.312 
0.9 1.198 0.346 0.471 1.503 

100 2.0 0.5 0.887 0.170 0.219 0.214 
0.9 1.008 0.250 0.371 0.311 

4.0 0.5 0.962 0.165 0.217 0.216 
0.9 1.045 0.251 0.382 0.329 

200 2.0 0.5 0.869 0.103 0.100 0.112 
0.9 0.954 0.152 0.146 0.156 

4.0 0.5 1.085 0.107 0.105 0.121 
0.9 1.004 0.149 0.153 0.167 
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Table A.7: Coverage probabilities for fJ1 using WGQL2 approach based on 1000 
simulations. 

K T p Coverage probability 

100 2.0 0.3 0.94 
0.5 0.95 
0.7 0.95 
0.9 0.96 

4.0 0.3 0.95 
0.5 0.96 
0.7 0.95 
0.9 0.95 

200 2.0 0.3 0.95 
0.5 0.94 
0.7 0.96 
0.9 0.93 

4.0 0.3 0.96 
0.5 0.96 
0.7 0.95 
0.9 0;95 
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Table B.1: Simulated means(SM), simulated standard errors (SSE), and estimated 
standard errors (ESE) of the WGQL estimates for the variance component of random 
effect, regression and correlation parameters for selected values of variance component 
0'

2 and the true correlation parameter p under AR(1) binary model with f3 = 1.5, and 
adaptive design parameters a = 1.0, G = 0.0, and r = 2.0; for K = 100 subjects. 

Estimates 
(]'2 p Statistic (J2 f3 PI P2 P3 

0.10 0.30 SM 0.128 1.514 0.298 0.0764 0.010 
SSE 0.175 0.289 0.086 0.109 0.136 
ESE 0.168 0.292 

0.50 SM 0.142 1.518 0.490 0.242 0.118 
SSE 0.147 0.341 0.084 0.123 0.153 
ESE 0.191 0.327 

0.70 SM 0.142 1.541 0.689 0.470 0.317 
SSE 0.129 0.422 0.065 0.110 0.136 
ESE 0.108 0.381 

0.80 SM 0.131 1.523 0.796 0.632 0.496 
SSE 0.160 0.410 0.045 0.081 0.116 
ESE 0.136 0.393 

0.90 SM 0.112 1.556 0.899 0.807 0.720 
SSE 0.119 0.424 0.035 0.065 0.093 
ESE 0.126 0.473 

0.95 SM 0.109 1.554 0.950 0.901 0.854 
SSE 0.155 0.448 0.023 0.046 0.068 
ESE 0.191 0.456 
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Estimates 
(J2 p Statistic a-2 (3 ih P2 P3 
0.20 0.30 SM 0.192 1.524 0.296 0.081 0.015 

SSE 0.160 0.286 0.089 0.111 0.133 
ESE 0.120 0.299 

0.50 SM 0.209 1.530 0.491 0.244 0.120 
SSE 0.165 0.355 0.082 0.120 0.149 
ESE 0.227 0.335 

0.70 SM 0.201 1.571 0.691 0.474 0.323 
SSE 0.214 0.450 0.066 0.112 0.143 
ESE 0.235 0.399 

0.80 SM 0.206 1.600 0.794 0.626 0.491 
SSE 0.271 0.527 0.053 0.098 0.133 
ESE 0.322 0.466 

0.90 SM 0.191 1.614 0.898 0.804 0.718 
SSE 0.186 0.586 0.037 0.067 0.094 
ESE 0.135 0.510 

0.95 SM 0.199 1.585 0.952 0.903 0.857 
SSE 0.240 0.534 0.023 0.049 0.070 
ESE 0.161 0.507 
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Estimates 
(J2 p Statistic (j-2 (3 PI P2 /33 
0.50 0.30 SM 0.392 1.574 0.297 0.083 0.023 

SSE 0.195 0.308 0.090 0.110 0.135 
ESE 0.167 0.326 

0.50 SM 0.393 1.581 0.492 0.248 0.125 
SSE 0.169 0.359 0.078 0.110 0.134 
ESE 0.103 0.359 

0.70 SM 0.423 1.584 0.691 0.477 0.328 
SSE 0.202 0.431 0.064 0.107 0.138 
ESE 0.120 0.405 

0.80 SM 0.416 1.574 0.797 0.636 0.507 
SSE 0.149 0.366 0.044 0.084 0.115 
ESE 0.123 0.407 

0.90 SM 0.435 1.625 0.895 0.801 0.718 
SSE 0.144 0.519 0.036 0.070 0.094 
ESE 0.143 0.483 

0.95 SM 0.462 1.617 0.949 0.900 0.855 
SSE 0.147 0.569 0.025 0.050 0.071 
ESE 0.156 0.518 
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Estimates 
(72 p Statistic a-2 f3 i'I P2 P3 
0.75 0.30 SM 0.570 1.606 0.298 0.088 0.025 

SSE 0.165 0.300 0.086 0.108 0.132 
ESE 0.090 0.343 

0.50 SM 0.573 1.600 0.494 0.250 0.132 
SSE 0.187 0.348 0.080 0.109 0.132 
ESE 0.109 0.370 

0.70 SM 0.617 1.593 0.694 0.481 0.328 
SSE 0.169 0.345 0.055 0.094 0.124 
ESE 0.124 0.397 

0.80 SM 0.656 1.636 0.793 0.627 0.495 
SSE 0.168 0.436 0.050 0.091 0.126 
ESE 0.143 0.443 

0.90 SM 0.680 1.588 0.898 0.806 0.727 
SSE 0.117 0.408 0.033 0.063 0.088 
ESE 0.159 0.442 

0.95 SM 0.704 1.683 0.948 0.900 0.851 
SSE 0.149 0.566 0.025 0.050 0.073 
ESE 0.178 0.517 



104 

(Table B.1 contd ... . ) 

Estimates 
a-2 p Statistic a-2 (3 fh h P3 
1.00 0.30 SM 0.784 1.627 0.301 0.091 0.029 

SSE 0.174 0.311 0.088 0.110 0.136 
ESE 0.100 0.361 

0.50 SM 0.803 1.626 0.494 0.250 0.128 
SSE 0.142 0.354 0.079 0.110 0.136 
ESE 0.115 0.387 

0.70 SM 0.876 1.613 0.694 0.480 0.327 
SSE 0.173 0.353 0.055 0.096 0.125 
ESE 0.137 0.412 

0.80 SM 0.893 1.644 0.792 0.623 0.497 
SSE 0.175 0.418 0.049 0.089 0.114 
ESE 0.159 0.450 

0.90 SM 0.918 1.665 0.894 0.799 0.715 
SSE 0.199 0.490 0.036 0.069 0.096 
ESE 0.182 0.481 

0.95 SM 0.937 1.621 0.949 0.900 0.856 
SSE 0.205 0.436 0.024 0.048 0.068 
ESE 0.191 0.475 
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Figure C.l: Adaptive design weights (wi) and expected weights (wio) for K 75: 
wi: ; wiO: .. .. ..... , for selected T(tau) and p(rho). 
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