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Abstract 

Fibroblast growth factor receptors are encoded by four genes, FGFRl-4, which are 

alternatively spliced to produce a large number of variant isoforms. This project was 

designed to investigate the molecular mechanism of the FGFR-VT+ isoform compared to 

its counterpart FGFR-VT- and the expression of four additional isoforms (FGFR-PS+, 

FGFR-PS-, a-FGFRl and ~-FGFRI). FGFR-VT- and FGFR-VT+ differ only by a 

dipeptide (Val423-Thr424
) deletion. FGFR-PS- and FGFR-PS+ differ only by a dipeptide 

(Pro442-Ser443
) deletion. a-FGFR and ~-FGFR differ by the inclusion or exclusion of the 

first of the three immunoglobulin-like (lg-like) loops. 

Previous work has shown that overexpression of the VT + form in Xenopus embryos 

resulted in posterior truncations, whereas embryos overexpressing the VT- form 

developed normally. In an effort to elucidate the molecular basis of these deformities, 

expression patterns of Xenopus molecular markers known to be important for the 

development of the anterior-posterior axis were investigated. Of the markers studied 

(BMP-4, Xenopus forkhead, Goosecoid, Mix-1 , Noggin, Xenopus brachyury, Xwnt-8, 

Xenopus posterior), no difference in expression pattern was observed, as determined by 

RT-PCR. 

Expression during early embryonic development of the FGFR variants PS+/PS- and 

o.-FGFRl/~-FGFRI were also examined by RT-PCR. Results suggested that PS-is more 

abundant than PS+ (1 .3-1.8X higher) during early Xenopus development, however by 

stage 11.5 the ratio of PS-/PS+ approaches 1.0. Analysis of the lg variants indicated that 

the a -FGFRl form is the predominant transcript (2.5-4.1 X higher) in early development. 

As development proceeds into tadpole stages, ~-FGFRl shows an increase in expression 

levels approaching that of o.-FGFR1 at the same stage of development, with the ratio of 

a-FGFR1/~-FGFRI approaching 1.0. 
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1.1 Model System: Xenopus laevis 

Chapter 1 
Introduction 

Xenopus laevis, the African clawed frog, has been used as a model system for the 

analysis of early vertebrate development for decades (Deuchar 1975; Jones and Smith 

1999). Xenopus laevis present many features that make it appropriate for use in 

developmental biology studies: the females can be induced to lay large quantities of 

viable eggs both easily and repeatedly; the eggs are large (approximately 1 mm diameter) 

and this is favorable for such procedures as micro-injection and micro-dissection; in vitro 

fertilization using the shredded testes from a sacrificed male Xenopus provides large 

numbers of synchronously developing embryos; the rapid rate of development in 

Xenopufi means that results can be obtained quickly; the yolk supply that each egg 

contains serves as an energy source permits the eggs to be cultured in relatively simple 

salt solutions. Mesoderm induction is the primary developmental process being studied 

in this project, but before describing it in detail, a brief overview of early Xenopus 

development will be presented. 

1.2 Xenopus Development 

An overview of Xenopus /aevis lifecycle is pictorially represented in Figure 1.1. The 

unfertilized egg is already differentiated into an upper, pigmented half known as the 

animal hemisphere and a lower, unpigmented half known as the vegetal hemisphere, 

together forming a radially symmetrical sphere. Following fertilization of the egg by a 



Free-swimming tadpole (stage -151 

..... ~-"""-~ 
--~. 

Tailbud embryo (stage 26) 

41 1~125°C) OayJ 
alter 
terlllltallon 

I 

Egg 
(stage 11 

10 

20 IS 

Neurula 

(stage Hi) 
(dorsal VJeW) 

(stage 12) 

stage 10 
(Secbon) 

Figure 1.1: Life Cycle of Xenopus laevis. The inner scale represents the amount of 
time, in hours and days, required post-fertilization for Xenopus embryos to 
reach the standardized stages of development indicated. when cultured at 
25°C. (from Principles of Development, Lewis Wolpert ( 1998)) 
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sperm (Stage 1) a period of rapid cleavage commences. The cleavages are mitotic cell 

divisions which result in an increase in cell number without cell growth, hence a decrease 

in cell size. After approximately six hours of cell division, the embryo, now known as a 

blastula, has formed a fluid-filled cavity, the blastocoel, located above the larger yolk 

cells of the vegetal hemisphere (Stage 8). The germ layers -ectoderm, endoderm and 

mesoderm are now partly specified. During the next stage of development, gastrulation, 

the cells will undergo rearrangement as to achieve the proper orientation of the germ 

layers, with the endoderm moving inside, the mesoderm taking up the middle layer 

position and the ectoderm covering the entire surface of the embryo. Gastrulation is 

followed by neurulation, the stage during which the nervous system is established and 

other major body systems are specified at their future locations. These other body 

systems develop during the period referred to as organogenesis. Within three days post­

fertilization the embryo has developed into a free-swimming tadpole. Over the course of 

the next fifty to sixty days the tadpole will undergo metamorphosis and develop into an 

adult frog. (Wolpert et at. 1998) 

1.2.1 Fertilization and Post-Fertilization 

Fertilization is achieved when a single sperm penetrates the egg at any point on the 

animal hemisphere, referred to as the Sperm Entry Point (SEP). The SEP defines the 

future dorso-ventral axis of the embryo, with the future dorsal side developing opposite 

the SEP, reviewed in Jones and Smith (1999). The egg has two surface coats around its 

plasma membrane, an inner vitelline membrane and an outer jelly coat. After fertilization 
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the vitelline membrane lifts off from the egg surface, a process that allows the egg to 

rotate under the effects of gravity, moving the heavier yolk-laden vegetal hemisphere to 

the bottom. This occurs within fifteen to twenty minutes post-fertilization. Within an 

hour after fertilization, the embryo undergoes "cortical rotation", where a gel-like layer of 

actin filaments and associated materials collectively referred to as the cortex, rotates 

about thirty degrees towards the SEP relative to the inner cytoplasm (Vincent and Gerhart 

1987) (Figure 1.2). 

During cortical rotation the vegetal cortex opposite the SEP moves towards the 

animal pole. This region opposite the SEP becomes the future dorsal side and the SEP 

containing region becomes the future ventral side. The major developmental 

consequence of cortical rotation is the establishment of a signaling center in the vegetal 

region opposite the SEP. Referred to as the "Nieuwkoop Center", after the Dutch 

embryologist by that name, this center directs the dorso-ventral polarity of the blastula. 

1.2.2 Cleavage Stages 

The first cell cleavage occurs about 90 minutes after fertilization, beginning at the 

animal pole and dividing the cell (egg) into left and right halves. Subsequent cleavages 

occur at approximately 30-minute intervals. The second cleavage also begins at the 

animal pole and occurs at a right angle to the initial cleavage, separating the egg into 

dorsal and ventral halves. The third cleavage plane occurs perpendicular to the first two 

and separates the egg along the equatorial region into animal and vegetal halves. During 

these early cleavage stages, a small space forms between the animal and vegetal 

4 
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Figure 1.2: Fertilization and Cortical Rotation. (A) Fertilization indicating the sperm 
entry point (SEP). (B) Cortical layer rotating toward the SEP and 
establishing the Nieuwkoop Center. (adapted from Principles of 
Development, Lewis Wolpert (1998)). 
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hemispheres and becomes larger as cleavages continue to eventually become the 

blastocoel (reviewed in Jones and Smith 1999). 

The period of synchronous cell division lasts for a total of 12 cleavages, which 

corresponds to Nieuwkoop and Faber (1967) stage 8. At this time, known as Mid­

Blastula Transition (MBT), cleavage cycles become asynchronous and slow down 

significantly and are characterized by the onset of cell motility and zygotic transcription 

(Newport and Kirschner 1982; Kimelman et al. 1987). 

1.2.3 Gastrulation 

The blastula stage embryo next enters a period of extensive cellular rearrangement 

termed gastrulation. Gastrulation is first visible when some ofthe endodermal cells of 

the dorsovegetal region change shape and become known as bottle cells. These bottle 

cells involute to form a groove in the blastula known as the blastopore, specifically the 

dorsal lip of the blastopore. The layer of presumptive mesoderm and endoderm starts to 

move into the interior of the blastula, such that the lip forms an arc, a semi-circle and 

finally forms a complete circular blastopore. The first mesodermal cells to migrate are 

those at the dorsal side of the embryo that will give rise to head mesodermal structures. 

These cells migrate under the roof of the blastocoel in a single layer. It is only the 

leading mesodermal cells that migrate, the cells that follow undergo convergent 

extension. This band of presumptive mesodermal cells lie initially around the equatorial 

region of the embryo, they involute through the blastopore, converge into a narrow band 

along the dorsal midline and extend in the antero-posterior direction under the ectoderm 
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(Wolpert 1998). As these cells are migrating inward, the cells of the animal hemisphere, 

the pigmented upper half of the embryo, are undergoing epiboly, spreading/overgrowth 

and are converging upon the blastopore (Keller et al. 1992; Wolpert 1998). As all this 

cell movement and internalization proceeds, the blastopore becomes increasingly smaller 

until it is reduced to a slit. This closure of the blastopore is indicative of the end of 

gastrulation. At this point the three germ layers are appropriately positioned, the 

ectoderm (formerly animal hemisphere) now covers the entire external surface, the 

endodermal cells (formerly vegetal hemisphere) are completely internalized and the 

mesoderm (formerly equatorial region) forms a layer between the endoderm and 

ectoderm layers (reviewed in Jones and Smith 1999) (Figure 1.3). The endoderm layer 

will give rise to the lining ofthe gut and organs such as the lungs. The mesoderm will 

develop into notochord, muscle, heart, kidneys and blood-forming tissues. The ectoderm 

will give rise to epidermis and the nervous system. 

1.2.4 Mesoderm Induction 

Mesoderm induction is one of the first inductive interactions to occur in the 

developing vertebrate embryo. The early Xenopus embryo (pre-blastula) consists only of 

two cell types: presumptive ectoderm in the animal hemisphere and presumptive 

endoderm in the vegetal hemisphere. The formation of the third required germ layer, 

mesoderm, is derived from inductive interactions between the two existing cell types. 

Evidence for the origin of mesodermal tissues resulting from inductive interactions was 

achieved through the work ofNieuwkoop and colleagues (Nieuwkoop 1969; Sudarwati 

7 



A B 

Figure 1.3: Organization of the Xenopus laevis earJy embryo. (A) Represents the 
maternally determined Animal and Vegetal hemispheres. (B) Represents the 
germ layer (ectoderm, mesoderm, and endoderm) orientation following 
induction of animal cells by vegetal signaJs. 
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and Nieuwkoop 1971). The work showed that when cultured independently, animal pole 

cells from a blastula stage embryo form epidermal derivatives and the vegetal pole cells 

of the same blastula stage embryo form endodermal derivatives. When the animal and 

vegetal pole cells of a blastula stage embryo are co-cultured, a variety of mesodermal cell 

types are formed (Nieuwkoop 1969; Sudarwati and Nieuwkoop 1971 ). Evidence that 

mesoderm induction is a result of secreted, diffusible molecule(s) and not direct cell-cell 

interactions came from Slack (Slack 1991) while re-examining the animal-vegetal pole 

assay ofNieuwkoop. The co-culturing of animal and vegetal pole cells was repeated 

with the modification of separating the two cell types using a porous membrane ftlter. 

The filter prevented direct cell-cell contacts from forming but was porous and therefore 

permitted soluble molecule(s) to pass through. The results obtained were identical to 

those determined previously by Nieuwkoop. 

An additional contribution to the understanding of mesoderm induction was made in 

the 1970s when it was demonstrated that the type of mesoderm that forms when animal 

and vegetal cells are co-cultured depends on the origin of the vegetal pole cells. 

Boterenbrood and Nieuwkoop (1973) demonstrated, using an axolotl model, that dorsal 

vegetal pole cells from blastula stage embryos induce formation of dorsal mesodermal 

cell types (notochord and muscle) while lateral and ventral vegetal cells induce the 

formation of ventral mesodermal cell types (blood, mesenchyme and mesothelium). 

These findings were subsequently demonstrated in Xenopus models (Dale et al. 1985; 

Dale and Slack 1987). 
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1.2.4.1 Three-Signal Model 

The previously described work led to the development of the three-signal model of 

mesoderm induction (Smith and Slack 1983; Slack et al. I 984) (Figure 1.4). In this 

model, the first signal originates from the ventral-vegetal region to induce the marginal 

zone cells above to specify ventral mesodermal tissue types (blood, mesenchyme and 

mesothelium). The second signal, emanating from the dorsal-vegetal region known as 

the N ieuwkoop Centre, induces the marginal zone cells overhead to specify dorsal 

mesodermal tissues (notochord) and results in organizer (Spemann's Organizer) activity 

in this region. Evidence for the first two signals was derived from the work of 

Boterenbrood and Nieuwkoop (1973) and evidence for the existence of the third signal (a 

dorsalizing signal) comes from studies by Slack and Forman (1980) and Dale and Slack 

( 19~7) (Figure 1.4). Their work demonstrated that the dorsal marginal zone tissue of an 

early gastrula formed notochord with some muscle and neural tissue when cultured in 

isolation and the ventral marginal zone tissue formed blood, mesenchyme and 

mesothelium. However, when co-cultured the dorsal tissue continues to form notochord 

while the ventral tissue forms muscle. Therefore, these results establish the presence of a 

third signal emanating from the newly formed dorsal mesoderm (Spemann's Organizer) 

and moving horizontally to exert an effect on ventral mesoderm (Slack and Forman 

1980). 
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Figure 1.4: Three-signal model of mesoderm induction. 
VV: ventral vegetal~ DV: dorsal vegetal; 0: organizer. 
(as depicted in Smith et al. (1989)). 
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1.2.4.2 Mesoderm Inducing Factors 

Mesoderm induction is the first inductive interaction in amphibian development, 

when cells of the marginal zone are signaled to follow different developmental pathways. 

While many years of developmental biology studies led to the formation of the three­

signal model, i.e., that proposed mesoderm induction and subsequent patterning resulted 

from the action/effects of three different inducing factors, it wasn't until J 987 that 

progress was made in determining the chemical nature of these factors. It was at this 

time that Slack et al. (1987) and Kimelman and Kirschner (1987) showed that bFGF 

(FGF-2) displayed mesoderm-inducing activity in vitro. Subsequent to this, FGF 

induction of mesoderm was shown to be concentration dependent, such that at low 

concentrations ventral mesoderm (e.g. mesothelium) is induced, while at high 

concentrations more lateral tissues (eg. muscle) are induced (Slack et al. 1987; Slal:k ~t 

al. 1988). Members of the FGF family are capable of inducing all mesodermal cell types 

except notochord, the most dorsal mesoderm (Godsave et al . 1988), and FGF inducing 

activity can be greatly increased by TGF-~ (Hopwood 1990; Woodland 1989). When 

FGF was shown to have this mesoderm inducing activity it was confidently expected that 

it would function similarly in vivo. However, while Slack's (1991) transfilter experiment 

suggested the factor being sought was secreted and soluble, it also suggested that bFGF 

(FGF-2) was not the factor released from the vegetal cells, as the inclusion of antibodies 

which inhibit bFGF in vitro, did not inhibit the natural signal in vivo. It may still have a 

role in mesoderm induction within the responding tissue, since maintenance of the early 

response gene Brachyury (Xbra) is dependent upon the expression ofFGF (Isaacs et al. 
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1994; Schulte-Merker and Smith 1995). Pownall et al. (1996) have shown that the 

overexpression of eFGF causes the upregulation of the posteriorly expressed genes 

Xcad3 and HoxA7. The biological activity ofeFGF and its expression in the posterior of 

the embryo suggest a potential role for it in patterning the anteroposterior axis (Pownall 

et al. 1996). Evidence also suggests that FGF may be required to function in conjunction 

with derriere for the formation of posterior regions (Sun et al. 1999; Zhang et al. 1998). 

XTC mesoderm inducing factor (XTC-MIF) (Smith 1987; Smith et al. 1988; Rosa et 

al. 1988) is, as the name implies, a mesoderm-inducing factor that is secreted by the 

Xenopus XTC cell line. Smith ( 1987) showed that animal cap explants, when cultured in 

XTC-conditioned medium, differentiated into muscle and notochord tissues. Smith et al. 

(1990) discovered that the active molecule in the XTC-conditioned medium was a 

member of the TGF-~ family, the Xenopus ortholog of Activin A (Smith et al. 1990). 

Although capable of inducing mesoderm in vitro, further work by Schulte-Merker and 

colJeagues (1994) suggested that activin was unlikely to function as an initial mesoderm 

inducer in vivo, as the use of an activin inhibitor did not prevent the formation of 

mesoderm in early embryos. 

The protein ofVgl is another candidate molecule. Vgl is a maternal mRNA that is 

restricted to the vegetal hemisphere (Rebagliati et al. 1985), is a member of the TGF-~ 

family (Weeks and Melton 1987) and shows great similarity to the deduced sequence of 

the decapentaplegic (dpp) gene product of Drosophila, another TGF-P family member 

(Padgett et al. 1987). V g l protein requires proteolytic cleavage to be activated. Several 

groups have shown that activated V g 1 protein, when injected into animal cap ex plants is 
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capable of inducing mesoderm (Kessler and Melton 1994; Forristall et al. 1995; Thomsen 

and Melton 1993). However, it has yet to be determined which regions of the embryo 

contain active Vgt protein endogenously, if any. 

VegT, is localized to the vegetal hemisphere of the mature oocyte and early embryo 

has been shown to be required for vegetal cells of the blastula to produce the endogenous 

vegetal signal(s) that cause animal caps to form mesoderm (Kofron et al. 1999; Zhang et 

al. 1998). As VegT is aT-box transcription factor, and as transcription of zygotic genes 

does not begin until after MBT and therefore mesoderm induction, a more plausible role 

for VegT is in determining mesodermal patterning and not as an initial mesoderm 

induction signal. 

P-catenin was initially identified as a cell membrane associated protein in vertebrate 

cells (Ozawa et al. 1989) and was later shown to be a vertebrate ortholog of the 

Drosophila protein, Armadillo. It was demonstrated in Xenopus embryos that depletion 

of maternal P-catenin results in development without dorsal structures (Heasman et al . 

1994). In Xenopus P-catenin mRNA and protein are maternally present (DeMarais and 

Moon 1992). Therefore P-catenin represents a potential early dorsal determinant 

involved in inducing organizer activity. The developmental process of cortical rotation 

seems to result in the cytoplasmic accumulation of P-catenin in the prospective dorsal 

side of the Xenopus embryo (Larabell et al. 1997) with subsequent nuclear accumulation 

in dorsal blastomeres beginning at the 16-cell stage and lasting until mid-blastula stage 

(Larabell et at. 1997). In the nucleus, P-catenin interacts with Tcf/Lefl proteins to 

activate expression of target genes (Molenaar et al. 1996). 
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The molecules described above represent candidates for the initial mesoderm inducer 

and molecules that are potentially involved in the mesoderm induction process. To date, 

no single molecule or group of molecules has been confirmed as the absolute mesoderm 

induction signal. Taking these and additional molecules into consideration, many models 

have been developed and improved upon to schematically represent the process of 

mesoderm induction, such as that represented in the following section. 

1.2.4.3 Mesoderm Induction - A Theoretical Model 

A considerable amount of effort has gone into identifying molecules that are 

responsible for mesoderm induction in vivo and elucidating the model pathways through 

which they act. As the views on some of the potential molecules and subsequent 

pathways remain controversial, the model presented in Figure 1.5 (adapted from Aguis et 

al. 2000) is representative of a current view of mesoderm induction in Xenopus laevis, but 

is by no means the only accepted view, as the evidence remains open to interpretation. 

Around stage 8 of development, the vegetally localized, maternal T -box transcription 

factor VegT induces the Nodal-related genes Xnr 1, Xnr2 and Xnr4 (Clements et al. 1999). 

The nodal gene, first detected in mouse embryos, encodes a secreted protein of the TGF-P 

superfamily. Several nodal-related genes are expressed in Xenopus laevis embryos, 

Xnrl-6, for which maternal transcripts cannot be detected (reviewed in Tiedemann et al. 

200 1). The maternal TGF-13 factor Vgl may also be required for Xnrl andXnr2 

expression (Agius et al. 2000). The presence ofp-catenin on the dorsal side ofthe 

embryo results in higher expression of Xnr I and Xnr 2 on the same side (Figure 1.5). By 

15 



stage 9, these hlgher levels of Xnrs, coupled with the presence of ~-catenin, result in the 

induction of dorsal mesoderm, whereas the lower levels in the ventral vegetal region 

result in the induction of ventral mesoderm. These molecules therefore fulfill the 

requirements as signals 1 and 2 of the three-signal model. The third signal deals with 

mesodermal patterning and the formation of a complete complement of mesodermal 

tissues initiated at approximately stage 10 of development (Figure 1.5). A current 

perspective on this signal is that the ventral mesoderm expresses BMP-4 (Dale and Jones 

1999) and Xwnt-8 (Christian and Moon 1993; Hoppler et al. 1996) both of which 

ventralize mesoderm. The Spemann Organizer, as the dorsal mesoderm is known, 

expresses Chordin, Noggin, Follistatin (all BMP inhibitors) and Frizbee, a wnt inhibitor. 

The presence of these molecules in the ventral tissues and their inhibitors in the dorsal 

tissues results in a gradient of activity through the mesoderm, which in turn results in the 

formation of the entire complement of mesodermal tissue. 

The current perspective on the role ofFGF in mesoderm induction suggests it may be 

required in the animal hemisphere as a competence factor for the complete range of 

responses to the vegetal inducing molecules. A dominant-negative form of the Xenopus 

type I FGF receptor was used to show that an FGF signal is required for the full 

induction of mesoderm by activin, with some genes requiring higher levels of FGF 

signaling than others (Cornell and Kimelman 1994). Umbhauer et al. (1995) 

demonstrated in Xenopus that FGF induced activation of MAP kinases is necessary and 

sufficient for mesoderm formation. In 1995, Cornell et al. presented evidence supporting 

a role for maternal FGF as a competence factor at the embryonic equator, interface of the 
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animal and vegetal hemispheres, allowing these cells to form mesoderm in response to an 

activin-type signal emanating from the vegetal hemisphere. LaBonne et al. (1995) used 

MAP kinase phosphatase to inactivate MAP kinase and found it to prevent the induction 

of early and late mesodermal markers by both FGF and activin. This indicated that FGF­

dependent MAP kinase activity plays an important role in establishing the responsiveness 

of embryonic tissues to mesoderm inducers. As reviewed in Isaacs (1997), current data 

suggests that maternally present FGF is required in the animal hemisphere of the early 

blastula to confer sub-threshold stimulation of the tyrosine kinase signal transduction 

pathway. This stimulation leads to the activation of Xbra transcription in the late 

blastula, Xbra then activates eFGF (FGF4) expression in the newly formed mesoderm 

and together these molecules establish an autocatalytic activation loop and play an 

important role in the formation of the mesoderm in the blastula. (Isaacs 1997) Further 

information about the role ofFGF came from studies by Isaacs et al. (1994). These 

authors demonstrated that the overexpression of eFGF in Xenopus embryos during 

gastrula stages results in a phenotype of reduced head and an enlarged posterior 

proctodaeum. Therefore showing that FGF signaling is required for anteroposterior 

patterning of the mesoderm. 
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Stage 8 

VegT, Vgl ~eaten in Xnr 

Stage 9 Stage 10 

Gradient of BMP-4, 
Xwnt-8 (ventral and 
laleral mesoderm) 

Figure 1.5: Model of mesodenn induction at the blastula stage by a dorsal to 
ventral gradient. (adapted from Aguis et al. 2000) 
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1.3 Fibroblast Growth Factors 

Research in the laboratory of Drs. Laura Gillespie and Gary Paterno has focused on 

the molecular role of FGF in regulating cell growth and differentiation. The following 

sections provide information about fibroblast growth factors and components of their 

signal transduction pathway, primarily the FGF cell surface receptor (FGFR). 

To date, fibroblast growth factors (FGFs) constitute a family of twenty-three 

structurally re lated proteins, FGFI-23, in mammals. The name Fibroblast Growth Factor 

is misleading. While some FGFs do indeed stimulate fibroblast proliferation, they induce 

proliferation of many other cells as well, and their actions are more general than 

proliferation. They are a family because they are structurally, but not necessarily 

biologically related. FGF was initially identified as an activity that stimulates the 

proliferation ofNIH3T3 cells (Gospodarwicz 1974). FGFs have since been shown to be 

involved in numerous processes including: developmental induction and differentiation; 

cell growth and migration; bone growth and development; neuronal differentiation; 

angiogenesis; wound healing; tumorigenesis (reviewed in Basilico and Moscatelli 1992; 

Burgess and Maciag 1989). Defining features of the FGF family include a strong affinity 

for heparin and heparin-like glycosarninoglycans (HLGAG) (Burgess and Maciag 1989) 

and a central core of 140 amino acids that fonns a compact cylindrical barrel of twelve 

antiparallel ~-strands (Zhang et al. 1991 ). Historical nomenclature was based on 

biological activity, however the current convention is to describe them as "FGFs" 

followed by a numerical designation (Baird and Klagsbrun 1991 ). Table 1.1 provides a 
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complete list of mammalian fibroblast growth factors and Table 1.2 provides a list of the 

identified Xenopus fibroblast growth factors. 

FGF-1 (acidic FGF) was initially isolated from bovine pituitary extract by 

Gospodarowicz (1975) by its ability to cause proliferation and delayed differentiation of 

myoblasts. It was later rediscovered by its ability to stimulate endothelial cell 

proliferation (reviewed in Gospodarowicz et a/., 1987). FGF -l does not have a signal 

sequence for targeting to the secretory pathway (Jaye et al. 1986), although it does 

contain a nuclear localization motif (Imamura et al. 1990), which appears to be important 

in FGF-1 induced mitogenesis. 

FGF-2 (basic FGF) was first identified in 1974 (Gospodarwicz 1974) for its ability to 

cause proliferation and transformation ofBALB/c 3T3 cells. FGF-2 maintains 55% 

sequence identity with FGF-1, and as with FGF-1, FGF-2 does not contain a signal 

sequence for secretion. 
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Table 1.1: Mammalian Fibroblast Growth Factor fami ly members. 

Current Nomenclature Historical Name Reference 

FGF-1 Acidic FGF (aFGF) Gospodarowicz et al. 1975 

FGF-2 Basic FGF (bFGF) Gospodarowicz et al. 1974 

FGF-3 INT-2 Dickson et al. 1984 

FGF-4 HST-1/kFGF Sakamoto et al. 1986 

FGF-5 --- Zhan et al. 1988 

FGF-6 HST-2 Maries et al. 1989 

FGF-7 KGF Rubin et al. 1989 

FGF-8 AIGF Tan aka et al. 1 992 

FGF-9 GAF Miyamoto et aJ. 1993 

FGF-10 --- Y arnasaki et aJ. 1 996 

FGF-1 1 FGF homologous factor - 1 Smallwood et aJ. 1996 

FGF-12 FGF homologous factor - 2 Smallwood et al. 1996 

FGF-13 FGF homologous faclor - 3 Smallwood et al. 1996 

FGF-14 FGF homologous factor -4 Smallwood et al. 1996 

FGF-15 --- Me Whirter et al. 1997 

FGF-16 - Miyake et al. 1998 

FGF-17 --- Hoshikawa et al. 1998 

FGF-18 --- Ohbayashi et al. 1998 

FGF-19 -- Xie et al. 1999 

FGF-20 --- Ohmachi et al. 2000 

FGF-21 --- Nishimura et al. 2000 

FGF-22 --- Nakatake et a!. 2001 

FGF-23 --- Yamashita et al. 2000 
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Table 1.2: Xenopus laevis Fibroblast Growth Factor family members. 

Current Nomenclature Reference 

XFGF-2 Kimelman et al. 1988; Kimelman and Kirschner 1987 

XFGF-3 Tannahill et al. 1992 

XFGF-4 Isaacs et al. 1992 

XFGF-8 Christian and Slack 1997 

XFGF-9 Song and Slack 1996 

XFGF-20 Koga et al. 1999 

1.4 Fibroblast Growth Factor Receptors 

The search for molecules involved in fibroblast growth factor signaling uncovered 

both low and high affinity FGF binding sites on the plasma membrane of cells. 

Fibroblast growth factors bind specifically and with nanomolar affinity (K0=2nM) to 

heparin sulfate proteoglycans and therefore constitute the low affinity binding site 

(Moscatelli 1987; Burgess and Maciag 1989). A group of receptor tyrosine kinases were 

shown to bind FGFs with picomolar affinity (Ko=20pM) and therefore constitute the high 

affinity site for FGFs on the cell surface (Moscatelli 1987; Burgess and Maciag 1989). 

1.4.1 Receptor Tyrosine Kinases - The High-Affmity Fibroblast Growth 
Factor Receptors 

There are presently more than 50 Receptor Tyrosine Kinases (RTKs) that belong to at 

least 13 different receptor families (Fedi and Aaronson 2001). The structural 

characteristics ofRTKs include a glycosylated extracellular ligand-binding domain, a 

single hydrophobic transmembrane region and a cytoplasmic region with a conserved 

tyrosine kinase catalytic domain (Fedi and Aaronson 2001 ; Ullrich and Schlessinger 
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1990; Wilks 1993). Included in this broad category of receptors are the four high-affinity 

Fibroblast Growth Factor Receptors, FGFR1-4. 

There are four known mammalian genes that encode receptor tyrosine kinase FGF 

receptors, referred to as fgfr 1-4 (refer Table 1.2). The gene for FGFR-1 was initially 

described as an fms-like gene (flg) by Ruta et al. (1988) when it was isolated by low 

stringency hybridization using a eDNA probe corresponding to the tyrosine kinase 

domain of the CSF-1 (colony-stimulating factor 1) receptor. It was described as a FGF-2 

receptor when the chicken form of the protein was isolated by FGF-2 affinity 

chromatography (Lee et al. 1989), it has since been shown to bind with high-affinity to 

FGF-1 and FGF-2 (Ruta et al. 1989). The FGFR-2 gene was initially described as 

bacterially expressed kinase (bek), for which a partial eDNA was first isolated by 

phosphotyrosine antibody screening of a mouse liver expression library (Kornbluth et al. 

1988). Full-length eDNA for human and chicken bek were later described (Dionne et al. 

1990; Pasquale 1990; Houssaint et al. 1990) and shown to bind with high-affinity to 

FGF-1 and -2 (Houssaint et al. 1990; Dionne et al. 1990; Mathieu et al. 1995). The third 

known FGFR (FGFR-3) was originally named chicken embryo kinase-2 (CEK-2) as it 

was isolated by phosphotyrosine antibody screening of a chicken embryo expression 

library (Pasquale 1990; Pasquale and Singer 1989) and has been shown to bind both 

FGF-1 and FGF-2 with high-affinity (Mathieu et al. 1995). The most recently identified 

receptor, FGFR-4, was cloned from human erythroleukemia cells (Partanen et al. 1991) 

and was shown to bind FGF-1 with high affinity but not FGF-2 (Partanen et al. 1991). 

eDNA encoding Xenopus orthologs of fibroblast growth factor receptor- I , -2 and -4 have 
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been cloned (Musci et al. 1990; Friesel and Brown 1992; Shiozaki et aL 1995). The 

interactions of the numerous FGFs and the multiple forms of the FGFRs are being widely 

studied, but an in-depth description of the multitude of interactions is beyond the scope of 

this project's research and will not be discussed in this thesis. 

Table 1.3: Fibroblast Growth Factor Receptors 

Numerical Designation Historical Names References 

FGFR-1 Mammalian fig Ruta et al. 1988 

Chicken cek-1 Pasquale 1990 

FGFR-2 murine and human bek Kornbluth et al. 1988 

Dionne et al. 1990 

Chicken cek-3 Pasquale 1990 

FGFR-3 murine fig-2 Avivi et al. 1991 

chicken cek-2 Pasquale 1990 

FGFR-4 --- Partanen et at. 1991 

1.4.2 Fibroblast growth factor receptor structure 

The high affinity FGFR is a monomeric molecule characterized by the presence of an 

extracellular ligand-binding domain composed of three immunoglobulin-like domains 

(Ig-loops), an acidic box domain between Ig-loops I and II, a transmembrane segment 

that functions to anchor the receptor in the cell membrane, ajuxtamembrane region, and a 

split tyrosine kinase domain (Figure 1.6). The tyrosine kinase domain is the most highly 

conserved region of the receptor molecule. The insert sequence that spli ts the kinase 

domain is highly conserved between species for specific receptors and is believed to 
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regulate interactions between the receptor and cellular substrate proteins. (Reviewed in 

Ullrich and Schlessinger (1990)). 

1.4.3 Multiple forms of FGFR 

Generally speaking, each of the four fibroblast growth factor receptors is capable of 

binding and subsequently being activated by more than one fibroblast growth factor. To 

further enhance and diversify the FGF-FGFR system, each of the four FGFR genes can 

be alternatively spliced to present a number of variant isoforms. One of the well­

documented splice variants includes those that exclude the first of the three lg-like 

domains (Figure 1. 7 A). As mentioned, the primary structure for the FGFR contains an 

extracellular domain with three lg-like loops. It has been shown that an alternative­

splicing event occurs in both FGFR-1 and - 2 that results in receptors with truncated 

extracellular domains (Johnson et al. 1990; Eisemann et al. 1991; Friese} and Dawid 

1991; Musci et al. 1990). These truncated receptors lack the amino-terminal lg-like loop 

(loop I) leading to the formation of a 2 lg-like domain FGFR (Fi.gure 1. 7). The three and 

two lg loop receptor forms have been termed a. and ~ respectively. The functional 

significance of the exclusion of the first Ig loop is uncertain as the truncation does not 

prohibit ligand binding and the receptor appears to function in a normal capacity 

(Chellaiah et al. 1999; Duan et al. 1992; Wang et al. 1995a), however it does appear to 

modulate ligand-binding affinity (Coutts and Gallagher 1995; Wang et al. 1995b). 

Another known splicing event occurs in the carboxy-terminus of the third lg-like domain 

which is encoded by three exons, of which two are alternatively spliced (Johnson and 
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---• PM 

TK1 

TK2 

Figure 1.6: General structure of type 1 fibroblast growth factor receptor. Depicted here 
are the three extracellular immunoglobulin-like domains (I. n, Ill). the 
acidic box (AB), the transmembrane domain (TM) and the intracellular split 
tyrosine kinase domain (TKI and TK2). The transmembrane domain passes 
through the plasma membrane (PM), with the Juxtamembrane (JM) region 
located just inside the PM. 
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Figure 1.7: Variant forms of FGFRl. (A) a-FGFR, 3 lg form of the receptor~ B­
FGFR, 2 lg form of the receptor. (B) FGFR-Illa, truncated. soluble lbrm 
of the receptor; FGFR-llJb and FGFR-Illc, fully functional receptors \\ ith 
differing FGF binding affinities. (C) FGFR-PS+ and FGFR-PS-, differing 
only by the inclusion or exclusion ofProline_..n_Serine.t43 dipeptide. 
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Williams 1993). The variants that differ in the second half of their third lg loop have 

been termed rna, Illb and lllc respectively and have been shown to differ in their ligand 

binding affinities (Figure I. 7). The FGFR Ilia variant is a truncated soluble form of the 

receptor that cannot transduce an intracellular signal. However, the Ilia receptor variant 

has been demonstrated to bind FGF-2 with a higher affinity than FGF-1, which may 

suggest it functions to sequester released FGFs (Beer et al. 2000). The Illb and Illc 

variants have been shown to dramatically alter the FGF affinity of a given receptor. 

These variants have been described for FGFR I, 2 and 3. In studies utilizing FGFR2-IIIb 

and -lllc, the IIIc variant binds aFGF and bFGF with equal affinity, however the IIIb 

variant binds bFGF with 1000-fold less affinity, aFGF is still bound and it also binds 

KGF (FGF-7) (Dell and Williams 1992; Yayon et al. 1992; Omitz et al. 1996; Beer et al. 

2000). 

1.4.4 FGF-FGFR Interactions/Signaling 

Fibroblast growth factors exert their effects on cells through the binding of the high­

affinity transmembrane receptors that initiates an intracellular signaling cascade. The 

generalized sequence of events involved in the FGF-FGFR signal activation is outlined 

here in Figure 1.8. The FGF binds to its high-affinity receptor and results in receptor 

dimerization. The cytoplasmic domains are brought into close proximity due to the 

dimerization and subsequently autophosphorylate each other's cytoplasmic domains at 

distinct tyrosines. This state of autophosphorylation results in activation of the receptor 

dimer to phosphorylate cytoplasmic substrates and initiate intracellular signaling 
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pathways. (Reviewed in Jaye et al. 1992; van der Geer et al. 1994) (Figure 1.8). These 

pathways include phospholipase C-gamma (PLC-y), Ras and the less well understood 

phosphotidylinositol 3-kinase (PIJK) pathways. 

When PLC-y is activated, it cleaves phosphatidyl-inositol-4,5-bisphosphate (PIP2) 

into inositol triphosphate (IP3) and diacylglycerol (DAG). The IP3 facilitates the release 

of calcium from intraceUular stores that in combination with DAG activates protein 

kinase C (PKC) (Powers et al. 2000), these molecules then activate additional molecules 

and thereby bring about the desired processes such as transcription. 

The Ras pathway is activated by receptor dirnerization and autophosphoryJation. 

Growth factor receptor .Qinding protein~ (Grb2) forms a complex with the cytoplasmic 

molecule ~on Qf ~evenless (SOS), this complex then binds to the phosphotyrosine of the 

receptor through the SH2 domain of Grb2. The receptor Grb2-SOS combination then 

activates Ras. Ras activation then takes the pathway through the subsequent activation of 

Raf, MEK and MAP kinases. The signal has then traveled to the nucleus where MAP 

kinase activates transcription factors via phosphorylation. (Gilbert I 997; Lewin 2000) 

The enzyme PIJK is thought to interact with the phospho tyrosine of an active 

receptor dimer via the p85 subunit of Pl3K. PBK is also shown to act in the FGF 

signaling pathway downstream of Ras and in parallel to the MAP kinase signaling 

(Carballada et al. 2001 ). In general, interaction with the receptor brings PBK into close 

proximity with various membrane phosphoinositols which in turn activate particular 

proteins. Some of the proteins activated by this pathway include: a Ser/Thr kinase, Akt 

(PKB), which is known to activate GSK3; p7056
k (p 70 ribosomal S6 kinase) that 
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phosphorylates the S6 protein component of the 40S ribosomal subunit during mitogenic 

responses and may contribute to the regulation of other cellular processes; PKC and PRK 

(fKC-related kinases). (Vanhaesebroeck et al. 1997) 

1.4.5 Xenopus FGFRs 

Three RTK FGFR genes have been cloned in Xenopus, the FGFR-1 gene is expressed 

throughout early Xenopus development (Musci et al. 1990), the FGFR-2 is first detected 

during gastrulation (Friesel and Brown 1992) and FGFR-4 is expressed throughout 

development but in a manner that differs from FGFR-1 and FGFR-2 (Shiozaki et at. 

1995). Two previously cloned isofonns ofXFGFRl in Xenopus include a three lg 

domain XFGFR-A I (Musci et al. 1990) cloned from an oocyte library and a two Ig 

domain XFGf'R-A2 (Friesel and Dawid 1991) cloned from a Xenopus cell line. A 

dominant negative mutant of XFGFR was also produced for Xenopus from Musci' s 

XFGFRI. The mutant, known as XFD contains only intact extracellular and 

transmembrane domains and has been shown to successfully inhibit FGF signaling in the 

Xenopus oocyte (Amaya et al. 1991 ). Amaya et al. used this dominant negative receptor 

to examine the role ofFGF in early Xenopus development. The studies went on to show 

that explants from embryos expressing XFD failed to fonn mesoderm in response to FGF 

and in whole embryos XFD resulted in gastrulation and posterior development defects. 
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Figure 1.8: The signal transduction pathways activated by the binding of two FGFs to 
the FGF receptors. The ras G protein signals the transcription of new 
mRNAs, phospholipase C- gamma (PLC-y) is activated to cleave PIP2 into 
IP3 and DAG, and PI3K sir,ats cellular regulatory molecules. (adapted from 
Developmental Biology, 6L Ed, Scott F Gilbert) 
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While undertaking studies to investigate the molecular mechanisms involved in 

mesoderm induction, through the initial determination of which FGFR genes are involved 

and how FGFR signaling is regulated, the research group of Drs. Laura Gillespie and 

Gary Paterno isolated a eDNA clone that encoded a variant form ofXFGFR, named 

FGFR-VT- (Gillespie et al. 1995). 

1.4.6 Review of FGFR-VT-

Compared structurally to the two previously cloned Xenopus type 1 FGFR, XFGFR­

Al and XFGFR-A2, FGFR-VT- contained a deletion ofVal423-Thr424 (VT) in the 

juxtamembrane region. Through sequencing of the genomic fragment containing the VT 

region and subsequent analysis, it was concluded that the most likely mechanism for the 

production ofthe two isoforms is the use of alternative 5' splice donors (Gillespie et aL 

1995). Potential for amino acid position 424 as a phosphorylation site was investigated 

by in vitro kinase assays using PKA and PKC. Short peptides for both FGFR-VT- (AA 

417-428) and FGFR-VT+ (AA 417-430) were constructed and an in vitro assay revealed 

that neither peptide was phosphorylated by PKA and that the FGFR-VT + (AA 417 -430) 

peptide was phosphorylated by PKC (Gillespie et al. 1995). For comparison, a full­

length FGFR 1 was constructed that contains 3 lg-like domains and Val423
- Thr424 and thus 

differs from FGFR-VT- only by the presence ofVal423-Thr424
, referred to as FGFR-VT+ 

(Figure 1 . 9). Full-length proteins were both phosphorylated by PKC, but the VT + form 

displayed twice the Jevel of incorporation ofVT- (Gillespie et al. 1995). The spatial and 

temporal expression patterns of VT + and VT- were examined in embryos at stages when 
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mesoderm induction was known to take place. VT- expressed predominantly jn the 

marginal zone (presumptive mesoderm) and VT + expressed throughout the embryo as 

determined by RNase protection assay (Paterno et aJ. 2000). At 4.5 hours post 

fertilization VT + is the major isoform, this switches at 5 hours post fertilization when 

VT- becomes the predomjnant form, then at 5.5 hours post fertilization and all 

subsequent times studied, VT +returns as the predominant form as determined by RT­

PCR. The effect of overexpressing each receptor isoform in Xenopus embryos was 

studied. Control embryos and those overexpressing FGFR-VT- developed normally, 

while less than 10% of those embryos overexpressing FGFR-VT+ developed normally 

(Paterno et al. 2000). The abnormal phenotype, a severe posterior truncation, was similar 

to that resulting from the overexpression of a dominant negative FGFRl, XFD, that 

consists of an extracellular domain, transmembrane domain and the first 7 amino acids of 

the intracellular domain (Figure 1.9) and when overexpressed in embryos, inhibits 

endogenous FGFR (Amaya et al. 1991). Those abnormalities were shown to be the result 

of a reduction in posterior mesoderm development. The effect of VT + and VT­

overexpression on mesoderm formation in vitro was investigated. FGF-2 dose-response 

was measured in explants from embryos overexpressing either VT+ or VT- and compared 

to normal embryos. It was deduced that VT+ overexpressing explants required a 2-fold 

higher concentration of FGF-2, while VT- overexpressing explants required a 5-fold 

lower concentration of FGF-2, than control ex plants to achieve 50% mesoderm induction 

(Paterno et al. 2000). Overexpression of VT + decreased sensitivity to FGF, while 

overexpression ofVT- greatly increased sensitivity, and further examination revealed that 
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Figure 1.9: Structure of the fibroblast growth factor receptor isoforms FGFR-VT+ and 
FGFR-VT- and the dominant-negative FGF receptor XFD. 
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the sensitivity to FGF was directly correlated with the relative expression levels of the 

two isoforms. Thereby demonstrating that VT + can function to negatively regulate 

mesoderm formation and therefore the abnormal phenotype that resulted may have been 

the consequence of a deficiency in mesoderm formation (Paterno et al. 2000). 

1.5 Target Genes of FGF Induction 

The initial response to mesoderm induction is rapid changes in levels of gene 

expression, in particular, genes that encode classes of proteins that are likely to be 

involved in mesodermal differentiation, such as transcription factors and growth factors. 

immediate early response genes represent the frrst genes to be transcribed after a cell or 

population of cells has been stimulated by a growth factor. RNA expression analysis of 

cells that have been treated with growth factor alone or growth factor in the presence of 

protein synthesis inhibitor, such as cycloheximide, is normalJy performed to confirm an 

immediate early gene. Expression of an immediate early target will be induced by 

growth factor in both the absence and presence of cycloheximide, as was shown to be the 

case for Xbra, an immediate early target of FGF signaling (Smith et al. 1991 ). The genes 

that become expressed in response to mesoderm induction therefore double as markers or 

indicators of induction. 

The abnormal phenotype observed for the embryos overexpressing FGFR-VT+ is a 

posterior truncation with normal head development and is the result of a reduction in 

posterior mesoderm. Therefore, part of this project studied the effect of overexpressing 

FGFR-VT+ on the expression patterns of genes expressed in these affected regions. As 
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there are many genes known to be expressed at this time, I started with markers known to 

be affected by XFD, as the VT + phenotype is similar to that produced by overexpression 

of XFD (Paterno et al. 2000). 

Brachyury is aT-box gene required for formation of mesoderm and notochord in 

mouse, the Xenopus ortholog is known as Xbra (Herrmann et al. 1990; Wilkinson et al. 

1990). Through molecular analysis it was revealed that Xbra is an immediate early 

response gene to Activin and FGF (Smith et al. 1991 ) and is maintained by a feedback 

loop with FGF (Isaacs et al. 1994; reviewed in Technau 2001). Xbra is considered an 

excellent marker of early mesoderm as transcripts first appear at MBT, with highest 

levels of expression observed during gastrulation in the presumptive mesodermal cells 

around the blastopore lip (Smith et al. 1991). Overexpression of the dominant-negative 

Xenopus type 1 FGF receptor, XFD, is shown to inhibit expression of brachyury (Amaya 

et al. 1993). Therefore we anticipated seeing a decrease in Xbra expression in our 

analysis. 

Xwnt-8 is a Xenopus Wnt-1-related gene that is expressed in the ventral-lateral 

marginal zone after MBT and is involved in a Wnt pathway required for patterning of the 

mesoderm (Christian and Moon 1993; Christian et al. 1991; Hoppler et al. 1996). This 

gene is expressed in the region of the embryo missing or truncated by VT + 

overexpression, we anticipated a reduction in its expression. 

Bone morphogenetic Qroteins (BMP) are maternally expressed in Xenopus embryos 

(Nishimatsu et al. 1992; Dale et al. 1992). BMP-4 has been shown to induce ventra l 

mesodermal tissues in a standard mesoderm induction assay (Dale et al. 1992; Jones et al. 
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1992). Evidence suggests that BMP signaling is not essential for initial mesoderm 

induction, but is involved in the dorsoventral organization of mesoderm (Graff et al. 

1994). Therefore this gene is involved in patterning the region of the embryo missing or 

truncated by VT + overexpression and we anticipated a reduction in its expression. 

Zygotic expression of noggin occurs at the correct place and time for it to have a role 

in the functions of the Spemann Organizer, which among other things dorsalizes ventral 

mesoderm (Smith and Harland 1992). Noggin protein has been shown to function by 

antagonizing BMP signaling by direct binding to BMP molecules (Smith et al. 1993). 

This gene is expressed in the apparently normally developing region of the VT+ 

overexpressing embryos, we anticipated no change or a possible increase in its 

expression. 

Goosecoid (gsc) is a homeobox gt::nt:: ~hown to encode a DNA-binding protein. The 

gsc gene is expressed in the Spemann organizer of Xenopus embryos as a primary 

response to mesoderm inducing factors (Cho et al. 1991 ). Goosecoid is expressed at the 

right time and place for mesoderm specification and can pattern mesodermal 

differentiation through a concentration gradient (Niehrs et al. 1994). Overexpression of 

the dominant-negative receptor XFD has been shown to have no effect on goosecoid 

expression in Xenopus (Amaya et al. 1993). As the XFO receptor was shown to have no 

effect, we expected a similar result from overexpressing our receptor. 

Mesoderm induced homeobo~ 1 (Mix. !) behaves as an immediate early response to 

induction and the gene encodes a transcription factor (Rosa 1989; Lemaire et al. 1998). It 

has been shown that Mix.J mediates the ventralization effect ofBMP-4 during mesoderm 
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formation (Mead et al. 1996). As this gene is shown to be linked to BMP-4, we 

anticipated seeing a decrease in its expression. 

Keno pus :QQSterior (Xpo) is an immediate early marker of ventral and lateral 

mesoderm that is activated at or shortly after MBT (Sato and Sargent 1991 ; Amaya et al. 

1993). It has been demonstrated that overexpression of the dominant-negative receptor 

XFD, inXenopus, results in an inhibition ofXpo expression (Amaya et al. 1993). As 

XFD was shown to inhibit expression of this gene, we expected a similar result from the 

overexpression of our receptor. 

1.6 Hypotheses and Objectives 

Previous findings demonstrated that FGFR-VT + negatively regulates mesoderm 

formation when overexpressed in Xenopus embryos and results in severe r~uuctions in 

trunk and tail structures. The primary objective of my project was to investigate the 

molecular basis of the abnormal pattern of development observed in the Xenopus 

embryos overexpressing FGFR-VT +. Based on the abnormalities observed in the VT + 

overexpressing embryos, it was hypothesized that distinct misexpression of molecular 

marker(s) known to be required for, or a consequence of, normal mesoderm formation 

would be observed. 

A second objective for this project was to investigate the expression patterns of other 

known FGFRI isoforms and was based on the hypothesis that FGFR isoforms have 

distinct function and therefore would be differentially expressed during embryonic 

development. We examined the temporal and spatial expression of two additional 

38 



receptor variants. One of these variants ctiffered from the reported sequence by the 

deletion of Proline 442 -Serine 443 (Figure I . 7). We felt this might be of interest as the 

serine residue represents a potential phosphorylation site that may regulate receptor 

function. The other FGF receptor variant involves the extracellular immunoglobulin-like 

(lg) domains. These variants represent the a-form (3 Ig-like domains) and the P-form (2 

lg-like domains) of the fibroblast growth factor receptors that differ by the inclusion or 

exclusion of the first of the three Ig domains. These variants are of interest because they 

may have different ligand binding specificities and affinities. 
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Chapter 2 
Materials and Methods 

2.1 Xenopus laevis: artificially-induced ovulation and in vitro fertilization 

Materials: Xenopus laevis were purchased from Nasco, Fort Atkinson. Wisconsin. 

Methods: Approximately 16 hours prior to the time the eggs were required, female 

Xenopus laevis were given a subcutaneous injection of750 l.U. of Human Chorionic 

Gonadotrophin (Sigma) into the hind leg, just above the cloaca, and held in tanks at room 

temperature. Within 12-18 hours, the females began to lay eggs in their holding tanks. 

During this time period, females were manuaJly stripped of their eggs. These recovered 

eggs were then fertilized in a petri dish using a macerated piece of testes from a sacrificed 

male Xenopus laeivs. The fertilized embryos were chemically dejellied using 2.3% L-

cysteine hydrochloride (pH 7.8-8.1), washed with deionized-distilled water and 

transferred to a petri dish containing NAM/20 Xenopus culture medium (Tables 2.1 and 

2.2). The embryos are then cultured at room temperature. 

Table 2.1: Composition of lOx Normal Amphibian Medium (NAM) Stock 

Salt Per liter of stock 
NaC/ 65 g 
KC/ 1.5 g 

Ca(N03)2·4H20 2.4 g 
MRS04·?H20 2.5 g 

0.5M EDTA (pH 8.0) 2 ml 
I M He pes (pH7. 5) 100 ml 
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Table 2.2: Xenopus Embryo Culture Mediums 

per 100 ml final volume NAM NAM/2 NAM/20 
lOx NAM salts 10 ml 5 ml 0.5 ml 
O.lM NaBicarb 1 ml l ml 1 ml 

Gentamycin (lOmg/ml) 0.25 ml 0.25 ml 0.25 mJ 

Sterile dH20 up to 100 ml up to 100 m1 Up to 100 ml 

2.2 Synthesis ofVT+ and VT- cRNA 

Materials: Ribomax™ Large Scale RNA Production System - SP6 was purchased from 

Promega Corporation, Madison, Wisconsin. 

Method: In vilro transcription reactions were performed as described in the Ribomax™ 

kit insert. 

Template Linearization. The DNA templates (SP64T-VT- and SP64T-VT+) were 

linearized in a reaction using restriction enzyme Xbal. A 50 J!l digestion reaction was 

setup in a I. 7 ml eppendorf tube (containing 5 J.1} lOX REact 2 digestion buffer; 3 J!l XbaJ 

(1 OU/J.tl); 30 J!l DNA template (0.5 J.lg/J.tl); 12 J.tl DEPC-treated water) and was incubated 

at 37°C for 2 hours. 1 !J.l of digested template was then run on a 0. 7% agarose gel to 

ensure complete linearization. 200 J!l DEPC-treated water was then added to each of the 

digestion reaction tubes. This was followed by extraction with equal volume of 

Phenol/ChloroformllAA (Invitrogen). The aqueous phase was transferred to a new 1. 7 

ml eppendorf tube and the linear DNA template was precipitated with 2X the volume of 

ethanol and 1
/ 10 the volume of 3M NaOAc at -20°C overnight. The linear DNA template 

was then collected by centrifugation, washed with cold 70% ethanol, dried under vacuum 

and resuspended in 1 50 J!l DEPC-treated water. 
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In vitro Transcription. Transcription reactions were carried out in 100 p.l volumes. 

For each DNA template, a master mix was prepared in a 1.7 ml eppendorftube that 

contained the following: 20 J.d SP6 Transcription 5X buffer; 27.5 ~1 rNTP mix (5 ~I each 

lOOmM rATP, 100 mM rCTP, l OOmM rUTP, 2.5 ~llOOmM rGTP and 10 ~130mM CAP 

analogue); 10 ~I Enzyme Mix, SP6 RNA Polymerase. To this mix 15 J.Ll linear DNA 

template was added and the volume made up to 100 ~I with DEPC-treated water. The 

reaction mixture was gently pipetted to mix and then incubated at 37°C for 3 hours. At 

the end of the incubation, the DNA template was removed by digestion with RQ I RNase­

free DNase. RQ 1 was added to the reaction tube to a concentration of l U per l ~g of 

initial DNA template and incubated at 3 7°C for 15 minutes. After incubating, 150 J.Ll of 

DEPC-treated water is added to each tube. This is followed by extraction with equal 

volume ofPhenol/CWorofonn!IAA. The aqueous phase was transferred to a new 1.7 ml 

eppendorf tube and the linear DNA template was precipitated with 2.5X the volume of 

ice cold 100% ethanol and 1
/10 the volume of 3M NaOAc at -20°C for 30 minutes. The 

RNA was then collected by centrifugation, washed with cold 70% ethanol, dried under 

vacuum and resuspended in 100 ~I DEPC-treated water. 

Spectrophotometric Quantitation. The final concentration of the resuspended eRN A 

was determined through spectrophotometric quantitation. Readings for 300 and 600 fold 

dilutions of cRNA were prepared and the absorbance read at 260 run and 280 nm 

wavelengths (A260 and A2so). One A260 unit equals 40 ~glml of RNA and the ratio of A 260 

and A2so readings should equal 2.0 barring the presence of contaminating protein or 

phenol. 
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2.3 In Vitro Coupled Transcription-Translation 

Materials: TNT™ SP6 Coupled Reticulocyte Lysate System was purchased from Promega 

Corporation. 2X SSB contains 5ml stacking gel buffer (0.5M Tris, pH 6.8), 5ml 

20%SDS, 2.5 ml P-mercaptoethanol (BDH Inc., Toronto, Ontario), 5 mJ glycerol, 5 ml 

dH20 and a few bromophenol blue crystals. 

Method: The in vitro transcription-translation reaction mixture contained 12.5 )..ll TNTTM 

Rabbit Reticulocyte Lysate, I )..ll TNTTM Reaction Buffer, 0.5 )..ll 1 mM Amino Acid 

Mixture minus Methionine, 0.5 )..ll RNAguard, 1 )..lg FGFR cRNA, 2 )..ll 35S-methionine 

(PerkinEimer Canada Inc., Woodbridge, Ontario) and DEPC-treated water to a final 

volume of25 )..ll. TNTTM SP6 RNA Polymerase was omitted from this reaction since the 

starting material was an RNA sample and therefore the transcription step was not 

required. The reaction mixture was incubated at 30°C for 90 minutes. Determination of 

percent incorporation of the radioactive label analysis and sodium dodecyl sulfate­

polyacrylamide gel electrophoresis (SDS-P AGE) analysis of the translation products 

were conducted. 

2.3.1 Determination of Incorporation of Radioactive Label 

Method: 2 )..ll of the above translation products and 98 )..ll of 1 N NaOH/ 2% H20 2 ( 1 00 )..ll 

I ON NaOH, 67 )..ll 30% H20 2 and sterile dH20 to 1000 )..ll fmal volwne) were mixed by 

vortexing and incubated at 37°C for 10 minutes. Following the incubation 900 )..ll of ice 

cold 25%TCA/2% Casamino acids were added to precipitate the translation product, this 

mixture was incubated on ice for 30 minutes. The precipitated translation product was 
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then collected on Whatman GF/A glass fiber filters under vacuum and washed 3X with 

1ml ice cold 5%TCA followed by 1 ml ice cold 100% ethanol. The filter was allowed to 

dry under vacuum. For determination of35S incorporation, the filter was placed in 3 ml 

of scintillation fluid in a glass scintillation vial and counted in a Beckman LS 3801 liquid 

scintillation counter. 

2.3.2 SDS-Polyacrylamide Gel Electrophoresis (SDS-PAGE) 

Method: 5 Jll of the above translation products and 30 Jll of 1.5X SSB (sample buffer) (3 

parts 2X SSB and 1 part dH20) were mixed. An 8% SDS-Polyacrylamide gel (Table 2.4) 

is topped with a Stacking gel (Table 2.5) and set with a comb to form the wells into 

which the samples are loaded. Samples were denatured for 5 minutes in a boiling water 

bath and then loaded onto the gel. Electrophoresis was performed for 1.5 hours at a 

constant current of 30mA supplied by BIO-RAD Model 1000/500 Power Supply until the 

blue dye front migrated to the bottom edge of the gel. The gel was then fixed (Table 2.6) 

for 15 minutes, destained (Table 2.6) for additional 15 minutes and finally soaked in 

Amplify (Amersham) for 30 minutes. The gel was then transferred to a small piece of 

Whatman 3mm Chromatography paper and dried at 80°C under vacuum for 1.5 hours. 

The dried gel was exposed to X-ray film (Kodak X-AR film), overnight at room 

temperature in a Fisher Biotech Electrophoresis Systems FBAC 810 autoradiography 

cassette (Fisher Scientific). Exposed films were developed using a Kodak RP X-OMAT 

Processor in the Radiology Department of the Health Sciences Centre, MUN, St. John's, 

NF. 
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Table 2.3: Composition of SDS-PAGE Running Gel. 

Per 10 ml final volume 8% 10% 12% 15% 
30% Aery/amide 2.67 ml 3.33 ml 4.0ml 5.0 ml 

Running Gel Buffer 2.5 ml 2.5 ml 2.5 ml 2.5 rnl 
20%SDS 40 ).ll 40 ).ll 40J..d 40 f.ll 

Sterile dH20 4.72ml 4.06 ml 3.39 ml 2.39 ml 
10%AP 66 ).ll 66 f.!) 66 f.ll 66 f.ll 
TEMED 4)-ll 4 f.ll 4 f.ll 4 f.ll 

Table 2.4: Composition ofSDS-PAGE Stacking Gel 

per 5 ml final volume 
30% Aery/amide 0.66 ml 

Stacking Gel Buffer 1.25 ml 
20%SDS 25 f.ll 

Sterile dH20 3.03 ml 
IO%AP 33 ).ll 
TEMED 4 ).ll 

Table 2.5: Composition of SDS-PAGE gel Fix and Destain Solutions 

Fix per 100 ml final volume Destain 
45 ml 100% Methanol 20 ml 
10 ml Glacial Acetic Acid 6ml 
45 ml dH20 74 ml 

2.4 Microinjection of Xenopus embryos. 

Materials: Microinjection apparatus was a Drummond Nanoject II Microinjector from 

Fisher Scientific, Nepean, Ontario. Microinjection needles were prepared by pulling 3.5 

inch Drummond Glass Capillary tubes (Fisher Scientific) vertically using a Narishige 

Model PB-7 micropipette puller. Needle tips were beveled at a 20° angle with a 

Narishige EG-40 grinder. An injection plate that was fashioned using chloroform to 
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adhere a small section of fine plastic mesh to the bottom of a 60 x 15 mm Fisher brand 

disposable petri dish was used to hold embryos in the correct orientation during 

injections. The cRNA of fibroblast growth factor receptor variants VT + and VT- were 

produced in the lab of Drs. Gillespie and Paterno, as previously described. 

Method: Synthetic VT+ and VT- cRNAs were injected into the animal pole of Xenopus 

laevis embryos at stage 1, pre-first cleavage (Figure 2.1). Through an injection volume 

of 4.6 nl, each embryo received DEPC-treated water or 10 ng of VT +eRN A, VT- eRN A. 

Embryos were placed in NAM/2 (Table 2.2) + 4% Ficoll PM400 (Arnersham Pharmacia 

Biotech) for injections and subsequent culture. The embryos were left to develop at room 

temperature until they reached the desired stage of development. 

2.5 Total RNA extraction from whole Xenopw· embryos 

Materials: TRI Reagent™ - RNA/DNA/Protein Isolation Reagent was purchased from 

Invitrogen, Carlsbad, California. 

Method: Total RNA was extracted from whole embryos as described in the TRI Reagent 

package insert. Briefly, five Xenopus embryos at the same stage of development were 

transferred to a 1. 7 ml eppendorf tube and homogenized in 1 ml TRI Reagent by pipeting 

up and down and then stored at-70°C. Phases were separated by addition of0.2ml 

chloroform per 1 ml TRI Reagent, vortexing for 15 seconds and then the tube was left at 

room temperature tor 2-1 5 minutes. Tubes were then centrifuged at 4°C, I 2,000 rpm for 

15 minutes. After centrifugation the aqueous, RNA containing phase was recovered and 

pi petted into a new 1. 7 ml eppendorf tube. The total RNA was then precipitated out of 
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solution by adding 0.5 ml isopropanol per 1ml of initial TRI Reagent volume and 

incubating the tube at room temperature for 5-1 0 minutes. Tubes were then centrifuged 

at 4°C, 12,000 rpm for 20-25 minutes. The total RNA precipitate formed a gel like pellet 

on the side and bottom of the tube. The supernatant was decanted and the total RNA was 

washed once with cold 75% ethanol by vortexing the tube and then centrifuging at 4°C, 

12,000 rpm for 10-15 minutes. The ethanol was decanted off and the washed RNA pellet 

was dried briefly under vacuum (3-5 minutes maximun) then resuspended by pipetting up 

and down in 50 f • .t.l ofDEPC-treated water. The solubilized RNA was then treated with 

RNase-free DNase RQ 1 (Promega) at 37 °C for 15-20 minutes. This was followed by 

extraction with an equal volume of Phenol/Chloroform/IAA. The aqueous phase was 

transferred to a new 1. 7 ml eppendorf tube andre-extracted with an equal volume of 

Chloroform/IAA. The aqueous layer was transferred to a new 1.7 m1 eppendorftube and 

total RNA was precipitated with 2 times the volume of ethanol and 1
/ 10 the volume of 3M 

NaOAc at -20°C overnight. The total RNA was then collected by centrifugation, washed 

with cold 70% ethanol, dried under vacuum and resuspended in 30 )ll DEPC-treated 

water. I )ll RNAguard™ RNase Inhibitor (Amersham Pharmacia Biotech) was added to 

the resuspended RNA and stored at -70 °C. 

2.6 Reverse transcription of mRNA from Xenopus laevis embryos 

Materials: Random primer oligonucleotide (mostly hexamers- d(N)6), SX First Strand 

Buffer and Moloney Murine Leukemia Virus Reverse Transcriptase (M-MLV -RT), were 
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all purchased from Invitrogen. Dithiothreitol (DTT) was purchased from Sigma-Aldrich 

Canada Ltd., Oakville, Ontario. 

Method: 2 J.t) of d(N)6Random Primer (IOOng/J.tl) was added to 15 J.1l of the resuspended 

total RNA (2 J.tl total RNA + 13 J.tl DEPC-treated water). This mixture was heated to 

70°C for I 0 minutes and then quicked cooled in an ice-water bath for a minimum of 2 

minutes. This was followed by the addition of 8 J.tl 5X first strand buffer, 2 J.tl each 

1 OmM dNTPs, 4 J.tl 1 OOmM DTT, 1 J.tl RNAguard™ RNase Inhibitor and 2 J.tl M-ML V 

reverse transcriptase. This mixture was allowed to incubate at 37°C for 60 minutes. The 

reverse transcription products were used directly in PCR reactions. 
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Figure 2.1: Stages of Xenopus laevis embryonic development that were injected (Stage 
I) and from which total RNA was collected for the RT-PCR experiments 
described (Stages 8.5, 1 0.5. 11.5 & 15). 
Stage 1: Age 0 hr; length 1.4-1.5 mm~ one cell stage 
Stage 8: Age 5 hr; length 1.4-1.5mm; medium cell blastula stage 
Stage 9: Age 7 hr; Length 1.4-l.5 mm; frne ce1l blastula stage 
Stage 10.5: Age 11 hr; length 1.4-1.5 mm~ crescent-shaped blastopore stage 
Stage 11.5: Age 12.5 hr; length 1.4-1.5 mm; large yolk-plug stage 
Stage 15: Age 17.5 hr; length 1.5-1.6 mm; early neural fold stage 
(adapted from Nieuwkoop and Faber, 1967.) 
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2. 7 PCR of reverse transcribed Xenopus embryo mRNA for known molecular 

markers. 

Materials: The PCR machine used was the Hybaid PCR Express from VWR Canlab, 

Mississauga, Ontario. lOX PCR buffer, 50mM MgCh and Platinum Taq polymerase were 

all purchased from Invitrogen. lOOmM dATP, lOOmM dCTP, IOOmM dGTP, and 

1 OOmM dTTP were purchased from Invitrogen. Primers used are presented in Table 2.3. 

Deionized formamide was prepared by mixing 50 ml formamide and 5 g Mixed Bed 

Resin (Bio-Rad Laboratories (Canada) Ltd., Mississauga, Ontario) and gently stirring for 

30 minutes at 4°C, after which it was filtered twice through Whatman No. I filter paper. 

The finished product was stored in a foil wrapped 50ml Falcon tube at -20°C. 1 OX Tris­

Borate/EDTA electrophoresis buffer (lOX TBE) in 1 L final volume contains 108 g Tris­

HCI, 55 g Boric acid, 40ml 0.5M EDT A (pH 8.0) and sterile dH20. 

Method: PCR reactions were carried out in 50 J..l.l volumes at cycling parameters outlined 

in Figure 2.2. For each molecular marker examined a PCR Master Mix was prepared that 

contained the following: l 00 J..l.l 1 OX PCR buffer; 30 J..i.l SOmM MgCh: 80 J..l.l 2.5mM 

dNTPs (25 J..i.l each lOOmM dATP, IOOmM dCTP, lOOmM dGTP, and lOOmM dTTP plus 

900 J..l.l sterile DEPC-H20); 5 J..l.l Platinum Taq polymerase; 740 J..l.l sterile dH20; 5 Jll o.-

32P-dATP (PerkinElmer); 20 J..l.l 1 OOng/J-1.1 primer I ; 20 J..l.l I OOng/J-1.1 primer 2. For each 50 

J-1.1 PCR reaction, 48 J-1.1 of this Master Mix was added to a thin walled PCR tube 

containing 2 u1 of Reverse Transcription products that were described previously. After 

cycling was completed, PCR reactions were inactivated by the addition of 50J.tl STOP 

buffer (in final volume 10 ml, 400 J..l.l 0.5M EDTA; 9.6 ml deionized formamide; 5 mg 
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Xylene Cyanol (810-RAD); 5 mg Bromophenol blue (BDH)). The PCR products were 

separated by electrophoresis on 6% acrylamide DNA sequencing gels. 

2.7.1 Electrophoretic Separation ofthe PCR products 

The PCR reaction/STOP buffer mixture was denatured at 80°C-90°C for a minimum of 3 

minutes. 4 J.tl was then loaded onto a 6% acrylamide DNA sequencing gel (in 1 OOml 

final volume, 6% sequencing mix contains 48 g Urea, 15 ml 40% 19: 1 acrylamidelbis­

acrylamide (810-RAD), 10 ml 1 OX TBE and up to final volume with sterile dH20). 70-

80 ml of sequencing gel mix was polymerized with 44 J.l.l TEMED (N, N, N', N' ­

tetramethylethylenediamine) and 440 J.l.llO% electrophoresis grade ammonium persulfate 

(0.1 g dry weigh in 1ml sterile dH20). This mix was poured into a BIO-RAD 38x30 

Sequi-Gen® Cell and allowed to polymerize. Electrophoresis was performed for 1.5 

hours at 70W constant power, supplied by a BIO-RAD Model3000Xi Computer 

Controlled Electrophoresis Power Supply. When electrophoresis was completed the gel 

was fixed (I L final volume of 1 0% Glacial Acetic Acid, 10% Methanol), transferred to 

filter paper (Whatman 3mm Chromatography paper, 46x57 em) and dried under vacuum 

at sooc for 1.5-2 hours. The dried gel was exposed to X-ray film (Kodak X-AR film), 

overnight at -70°C in Fisher Biotech Electrophoresis Systems FBAC 1417 

autoradiography cassette with a Fisher Biotech L-Plus intensifying screen (Fisher 

Scientific). Exposed films were developed using a Kodak RP X-OMAT Processor in the 

Radiology Department of the Health Sciences Centre, MUN, St. John's, NF. 
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Figure 2.2: PCR cycling parameters. PCR reactions consisted of 1 cycle of94°C for 5 
minutes; 22 cycles of 60°C for 1 minute, 72°C for 1 minute, and 94°C for 1 
minute (for the Histone (H4) positive control); hold at 60°C until H4 
samples removed and cycling program resumed; 4 cycles of 60°C for 1 
minute, 72°C for 1 minute, and 94°C for 1 minute (additional cycles for 
Molecular marker PCR products); 1 cycle of 60°C for 1 minute, 72°C for 7 
minutes, and 30°C for 1 second. 
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Table 2.6: Sequences of upstream and downstream oligonucleotide 
primer pairs used in RT-PCR. 

Name Sequence References 
H4-1 5' - CGG GAT AAC ATT CAG GGT ATC ACT - 3' Turner & Woodland ( 1982) 
H4-2 5' - ATC CAT GGC GGT AAC TGT CTT CCT- 3' 

BMP-4U 5' - GCA TGT AAG GAT AAG TCG ATC- 3' Koster et a/. ( 1991) 
BMP-40 5' - GAT CTC AGA CTC AAC GGC AC - 3' 

Gsc-U 5'- GAG CAA AGT GGA GGA GGC AG- 3' Blumberg eta/. ( 1991) 
Gsc-D 5'- CCC ACA TCG TGG CAC TGC TG- 3' 

Mix1-l 5' - ATG TCT CAA GGC AGA GGT - 3' Rosa ( 1989) 
Mix1-2 5'- CAC TGA CAC CAG AAT CTG - 3' 

Nog- 1 5' - AGT TGC AGA TGT GGC TCT - 3' Smith & Harland ( 1992) 
Nog-2 5' - AGT CCA AGA GTC TGA GCA- 3' 

Xbra-1 5' - CAA GGA TCG TTA TCA CCT CTG- 3' Smith eta/. (199 1) 
Xbra-2 5' - TGT GTA GTC TGT AGC AGC AG- 3' 

XFkhl-1 5' - GCA GCTCTA TTA CCG ACA AG-3' Dirksen & Jamrich ( 1992) 
XFkhl-2 5' - GCA AAA GTC TGC TCC ATT GT - 3' 

Xpo-1 5' - CAC TTA GGG ATIGGTCTC AGG AGTC -3 Sato & Sargent ( 1991 ) 
Xpo-2 5' - TGA GGG AGG GCT ATG GTC TAG G- 3' 

Xwnt-SU 5' - CGA GAG TGC CTG CAA AGT GG- 3' Christian et a/. ( 1991) 
Xwnt-80 5'-TCC GGT GGC CTC TGT TCT TC - 3' 

T3.5 5' - GGG CTG CIT TTG TGT CCG CAA T - 3' Gillespie et a/. ( 1995) 
VT3' 5' - CAT TGA TGA GCT GGA GTC CCC TG- 3' 

TJ.,(TJo l) 5' - TAG CCA ACTTGG GATGTTCTC C - 3' Gillespie et a/. ( 1995) 
XFGFRm-754 5' - TGC CATTCTTCA GCCAGG GAA G - 3' 

FRPS-5'-02 5' - CAG CTC ATC AA T GAA CTC TGG AG - 3' Gillespie et a/. (I 995) 
FRPS-3' 5' - CAG TCT GTC CCT TGC CAC TTC C- 3' 

53 



Chapter 3 
Results 

3.1 Overexpression ofFGFR-VT+ and FGFR-VT-

It has been demonstrated previously that the micro injection of 650 pg/nl FGFR-VT+ 

cRNA into stage 1 Xenopus embryos resulted in > 90% developing into abnormal 

tadpoles, while controls injected with 650 pg/nl FGFR-VT- cRNA or DEPC-treated H20 

developed normally (Paterno et al. 2000). The abnormal phenotype presented itself at 

10-12 hours post-injection as incomplete gastrulation resulting in an enlarged blastopore 

with a protruding yolk plug (Paterno et al. 2000). The embryos continued to develop 

with clear reductions in trunk and tail structures in the resulting tadpoles (Paterno et al. 

2000). Xbra expression had been observed, by in situ hybridization, to be undetectable or 

only very faintly detectable in embryo samples overexpressing FGFR-VT+. when 

compared to controls (Paterno et al. 2000). The primary objective of my research was to 

investigate the molecular basis of the abnormal pattern of development observed in the 

Xenopus embryos overexpressing FGFR-VT+. To accomplish this, FGFR-VT+ and 

FGFR-VT- injected embryos were analyzed by comparing the expression patterns of 

known molecular markers of mesoderm induction. 

The first step in conducting these experiments was to characterize the stocks of 

FGFRl cRNAs to ensure that they were equally well translated. To confirm the 

translational efficiency of the cRNA stock samples, microinjection experiments and 

TNT™ in vitro translation experiments were conducted. Figure 3.1 shows that when the 

cRNA samples are translated using the TNT™ Reticulocyte Lysate system, 35S-
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methionine incorporation are similar for VT + and VT- samples. Figure 3 .l A shows 

SDS-PAGE results for the translation products and no significant visual discrepancy is 

observed. Figure 3.1B displays the scintillation data of the radioactive label e5s­

methionine) incorporation levels into each sample. FGFR-VT+ incorporation of 35S­

methionine measured at an average of71499 cpm and incorporation into FGFR-VT­

averaged 76394 cpm over 6 repeated translation reactions from the stock VT+ and VT­

cRNA samples. These levels are not statistically different (p-value of 0.8799). 

Subsequently I verified that I could reproduce the reported abnormalities by 

microinjecting stage 1 embryos with 4.6 nl DEPC-H20 or 2.17 ng/ul FGFR-VT+ cRNA 

or 2.17 ng/ul FGFR-VT- cRNA. Figure 3.2 is a graphical representation of the 

phenotype data obtained. It reveals that 81.5% and 76.7% of the DEPC-H20 injected and 

FGFR-VT- overexpressing embryos developed normally, respectively, while it was 

observed that only 7.3% ofthe embryos overexpressing FGFR-VT+ form of the receptor 

developed into normal tadpoles. 

Sample embryos, representative of the developmental phenotype observed after 

microinjection with the various receptor isoform cRNAs are presented in Figure 3.3. 

Both the DEPC H20 control (Figure 3.3 A) embryos and the FGFR-VT- injected (Figure 

3.3 B) embryos display normal patterns of development. The embryos injected with 

FGFR-VT +eRN A display a range of abnormal development in the posterior portion of 

the embryo. Figures 3.3 C and D display less severe posterior truncation and splitting 

while Figures 3.3 E and F represent the more severe abnormalities observed in that the 

entire embryo posterior to the head has been truncated and twisted into an 
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in vitro translation of synthetic FGFR-VT+ and FGFR-VT- RNA. 
A. Representative electrophoretic gel of level of 35S-methionine 

incorporation in 5 J.lg ofFGFR-VT+ (VT+) and FGFR-VT- (VT-) stock 
cRNA in vitro translated. 

B. Scintillation data of 35S-methionine incorporation into each of the two 
FGFR isoforms. Values represent the average of 6 repeated translation 
reactions from stock cRNA samples. 
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Figure 3.2: Graphical representation of the phenotype expression in Xenopus embryos 
overexpressing FGFR-VT+ (VT+) and FGFR-VT- (VT-) and that of the 
DEPC-H20 (DEPC) control group. A total of 135 embryos (45 VT+, 45 
VT- and 45 DEPC) were used for each experiment, and averages and 
standard deviation (error bars) values of7 individual experiments are 
shown. Xenopus embryos at Nieuwkoop and Faber stage 40 of 
development. 
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Figure 3.3: Embryos representative of the developmental phenotype observed after 
micro injection with either of the receptor isofonn cRNAs or the control 
injection. A. DEPC H20 control injection - normal phenotype. B. FGFR­
VT- injection - normal phenotype. C- F. FGFR-VT + injection - various 
degrees of posterior truncation observed. Xenopus embryos at Nieuwkoop 
and Faber stage 40 of development. 
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undistinguishable mass of tissues. The majority of embryos injected with FGFR-VT + 

display severe reductions in trunk and tail structures. These results are in agreement with 

those reported previously by Paterno et al. (2000). 

3.2 Molecular Marker Analysis 

The primary objective of this project was to investigate the molecular basis of the 

abnormal pattern of development observed in the Xenopus embryos overexpressing 

FGFR-VT+. TotaJ RNA samples were isolated from batches of embryos injected with 

FGFR-VT-, FGFR-VT+ cRNAs or DEPC H20 (Control) at developmental stages 8.5, 

1 0.5, 1 1 .5 and 15 as described in Chapter 2: Materials and Methods (page 40). The 

embryos selected for these samples consisted of normally developing embryos from the 

controls, DEPC H20 and FGFR-VT-, and abnormally developing embryos from the 

FGFR-VT+ injection set. Embryos were sampled in this manner because we were 

investigating the possibility of gene expression differences between the abnormal and 

normal embryos that are overexpressing these two FGFR isoforms. The total RNA 

samples were reverse-transcribed into eDNA and then used for RT-PCR analysis. A 

series of Xenopus molecular markers known to have differential expression in the 

affected regions were chosen for analysis in an effort to elucidate a molecular basis for 

the observed abnormal phenotype. The amount of eDNA added to each PCR reaction 

was normalized using Histone 4 (H4). Equivalent H4 levels indicate equivalent eDNA 

input concentrations. This allowed for the comparison of samples within each marker 

primer set. With the input normalized, differences that appear in the PCR product levels 
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between samples represent differences in expression of the molecular markers, not 

differences in the overall eDNA input. This holds true provided that the PCR reaction 

has not reached a point of saturation. The PCR amplification reaction is not unlimited; 

the amplification target will gradually stop accumulating exponentially and it will enter a 

level phase known as the "plateau" (Innis and Gelfand 1990; Saiki 1989). If reactions 

have reached saturation, due to incorrect reaction parameters, then differences between 

product bands may be decreased or less obvious. 

Prior to commencing radio labeled PCR reactions, every total RNA sample collected 

and subsequently reverse transcribed was assayed initially for histone-4 (H4) expression. 

As an input control, it was empirically determined that 26 cycles produced a sufficient 

level of H4 for detection using a standard unlabeled PCR reaction. It was subsequently 

empirically determined that for radiolabeled PCR reactions, 22 cycles would produce 

sufficient levels for H4 detection and 26 cycles would produce sufficient levels of the 

molecular markers for detection. Every marker analyzed was examined in duplicate 

along with H4 input control using the labeled PCR protocol. The PCR product bands 

were analyzed by densitometry using AlphaEaseTM Stand Alone Software Version 3.2 on 

the Chemilmager 4000 Digital Imaging and Analysis System (Alpha Innotech 

Corporation) to quantify expression levels. 

BMP-4 expression levels are shown in Figure 3.4A and densitometric analysis results 

are graphically represented in Figure 3.4B. lt is shown that only subtle differences in 

expression levels were detected for BMP-4 within each stage of development for all three 

of the sample conditions. The pattern of expression between the DEPC H20 (Control) 
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Figure 3.4: A. RT-PCR analysis ofBMP-4 expression in stage 8.5, 1 0.5, 11.5 and 15 
Xenopus embryos injected with DEPC-H20 (OH) or overexpressing FGFR­
VT+ (VT+) or FGFR-VT- (VT-). Total RNA was extracted and analyzed 
from five embryos for each injection set at each stage indicated. Histone 
(H4) levels were used to normalize the eDNA input for each PCR reaction. 
PCR cycles: 22 Histone; 26 BMP-4. (Con) represents a negative control, 
PCR reaction without eDNA. B. Densitometric analysis of the expression 
level of BMP-4 normalized to I-14 for each sample presented in Figure 3.4A. 
Duplicate PCR analysis was performed on two separate injection 
experiments and a representative gel is shown above. 
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Figure 3.5: A. Rl-PCR analysis ofForkhead expression in stage 8.5. 1 0.5, 11.5 and 15 
Xenopus embryos injected with DEPC-H20 (01 I) or overexpressing FGFR­
VT• (VT+) or FGFR-VT- (VT-). Total RNA was extracted and analyzed 
from five embryos for each injection set at each stage indicated. Histone 
(I 14) levels were used to normalize the eDNA input for each PCR reaction. 
PCR cycles: 22 Histone; 26 Forkhead. (Con) represents a negative control. 
PCR reaction without eDNA. B. Densitometric analysis of the expression 
level of Forkhead normalized to 114 for each sample presented in Figure 
3.5A. DupJicate PCR analysis was performed on two separate injection 
experiments and a representative gel is shown above. 
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samples of the four stages examined followed the normal pattern of expression reported 

in the literature (Nishimatsu et al. 1992; Dale et al. 1992), i.e. BMP-4 gene expression 

begins around MBT stage 8.5, peaks during gastrulation and declines in level after that, 

however transcripts persist into early tadpole stages (stage 34). 

Xenopus Forkhead expression levels are presented in Figure 3.5A, with graphical 

representation provided in Figure 3.58. No difference in Xenopus forkhead expression 

level was detected for any of the sample conditions within each stage examined. The 

pattern of expression between the DEPC H20 (Control) samples for the stages examined 

followed the normal pattern of expression reported in the literature (Dirksen and Jamrich 

1992), i.e. gene expression commences at MBT, represented by stage 8.5, peaks between 

stages 10 and 12, and transcripts decrease from then on. 

Goosecoid expression levels are shown in Figure 3.6A, while Figure 3.68 provides 

graphical representation of the densitometry data. Goosecoid expression is barely 

detectable at stage 8.5 for all three injection samples; by stage 10.5 the expression level 

had peaked and was similar for all three samples within the stage. By visual evaluation 

of Figure 3.6A, Goosecoid levels at stage 11.5 appear to be elevated in the FGFR-VT­

injected sample when compared to FGFR-VT +and DEPC H20 (Control) samples at the 

same stage. Densitometric analysis of this sample (Figure 3.6B) revealed that the 

difference is subtle and is comparable to that observed at stage 1 0.5. By stage 15, the 

levels of expression are reduced, but the DEPC H20 (Control) sample maintains slightly 

higher expression than either FGFR-VT- or FGFR-VT+ (Figures 3.6A & B). The pattern 

of 
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Figure 3.6: A. RT-PCR analysis ofGoosecoid expression in stage 8.5, 1 0.5, 11.5 and 15 
Xenopus embryos injected with DEPC-H20 (DH) or overexpressing FGFR­
VT+ (VT+) or FGFR-VT- (VT-). Total RNA was extracted and analyzed 
from five embryos for each injection set at each stage indicated. Histone 
(H4) levels were used to normalize the eDNA input tor each PCR reaction. 
PCR cycles: 22 Histone; 26 Goosecoid. (Con) represents a negative control, 
PCR reaction without eDNA. B. Densitometric analysis of the expression 
level ofGoosecoid normalized to H4 for each sample presented in Figure 
3.6A. Duplicate PCR analysis was performed on two separate injection 
experiments and a representative gel is shown above. 
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Figure 3.7: A. RT-PCR analysis of Mix-1 expression in stage 8.5, 1 0.5, 11.5 and 15 
Xenopus embryos injected with DEPC-H20 (DH) or overexpressing FGFR­
VT+ (VT+) or FGFR-VT- (VT-). Total RNA was extracted and analyzed 
from five embryos for each injection set at each stage indicated. Histone 
(H4) levels were used to normalize the eDNA input for each PCR reaction. 
PCR cycles: 22 Histone; 26 Mix-1 . (Con) represents a negative control. PCR 
reaction without eDNA. B. Densitometric analysis of the expression level of 
Mix-1 normalized to 114 for each sample presented in Figure 3.7A. 
Duplicate PCR analysis was performed on two separate injection 
experiments and a representative gel is shown above. 
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expression in the DEPC H20 (Control) samples of the four stages examined followed the 

normal pattern of expression reported in the literature (Cho et al. 1991 ). 

Mix -1 expression levels are presented in Figure 3. 7 A and graphically represented in 

Figure 3.7B. It is shown that onJy subtle differences in expression levels were detected 

for Mix- I within each of stages 8.5, 10.5 and 11.5 for all three of the sample conditions 

and Mix-1 expression was not detected for any of the stage 15 samples. The observed 

expression pattern in the DEPC H20 (Control) samples for the stages examined 

corresponds with that reported in the literature for Mix-1, initially detected shortly after 

MBT (St. 8.5), peak expression at St. 10 and decays gradually to be undetectable by 

neurulation (Rosa 1989). 

Noggin expression levels are presented in Figure 3.8A and graphically represented in 

Figure 3.88. Noggin expression levels were similar for all three experimental conditions 

within each stage of development. The observed expression pattern in the OEPC H20 

(Control) samples for the four stages examined is consistent with that reported in the 

literature: low levels of expression in the oocytes (maternal transcripts) and higher 

expression by stage 11 due to zygotic transcription (Smith and Harland 1992). 

Xenopus Brachyury (Xbra) expression levels are shown in Figure 3.9A and graphical 

representation of the densitometric analysis is provided in Figure 3.9B. It is shown that 

no djfferences are detected in Xbra expression levels withln each stage of development 

for all three of the sample conditions. The expression pattern observed in the DEPC H20 

(Control) samples for the stages examined is consistent with that reported in the literature 

for Xbra, with it being initially detected at MBT (Stage 8.5), highest 
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Figure 3.8: A. RT-PCR analysis of Noggin expression in stage 8.5, 1 0.5, 1 1.5 and 15 
Xenopus embryos injected with DEPC-H20 (DH) or overexpressing FGFR­
VT+ (VT+) or FGFR-VT- (VT-). Total RNA was extracted and analyzed 
from five embryos for each injection set at each stage indicated. Histone 
(H4) levels were used to normalize the eDNA input for each PCR reaction. 
PCR cycles: 22 Histone; 26 Noggin. (Con) represents a negative control. 
PCR reaction without eDNA. B. Densitometric analysis of the expression 
level ofNoggin normalized to H4 for each sample presented in Figure 3.8A. 
Duplicate PCR analysis was performed on two separate injection 
experiments and a representative gel is shown above. 
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Figure 3.9: A. RT-PCR analysis of Xenopus Brachyury (Xbra) expression in stage 8.5. 
1 0.5, 11.5 and 15 Xenopus embryos injected with DEPC-H20 (DH) or 
overexpressing FGFR-VT+ (VT+) orFGFR-VT- (VT-). Total RNA was 
extracted and analyzed from five embryos for each injection set at each 
stage indicated. Histone (H4) levels were used to normalize the eDNA input 
for each PCR reaction. PCR cycles: 22 Histone; 26 Xbra. (Con) represents a 
negative control, PCR reaction without eDNA. B. Densitometric analysis of 
the expression level ofXbra normalized to H4 for each sample presented in 
Figure 3.9A. Duplicate PCR analysis was performed on two separate 
injection experiments and a representative gel is shown above. 
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expression levels occurring during gastrulation (Stage l 0.5 and 11.5) and expression 

levels declining after gastrulation into neurulation (Stage 15) (Smith et al. 1991 ). 

Xwnt-8 expression levels are presented in Figure 3.10A and Figure 3.108 provides 

graphical representation of the data. It is shown that only subtle differences in expression 

levels are detected within stages 8.5 and 10.5 of development for all three experimental 

conditions. Stage 11.5 displays an apparent decrease in Xwnt-8 expression for the DEPC 

H20 (Control) sample. At stage 15 only subtle differences are detected between the three 

experimental conditions and as expected all samples show lower expression than stage 

11 .5. The pattern of expression between the DEPC H20 (Control) samples for the four 

stages examined followed the normal pattern of expression for Xwnt-8 as reported in the 

literature. Expression is initially detected in the stage 8.5 sample (blastula), expression 

has increased dramatically by stage 10.5 (gastrula) and expression levels begin to decline 

by stage 15 (neurula) (Christian et al. 1991 ). 

Xenopus posterior (Xpo) expression levels are presented in Figure 3.11A and 

graphically represented in Figure 3.1 18. No differences are observed in Xpo expression 

levels within each stage of development for all three experimental conditions. The pattern 

of expression in the DEPC H20 (Control) samples for the stages examined followed the 

normal pattern of expression for Xpo as reported in the literature. Expression is initially 

detected around M8T (stage 8.5), expression begins increasing at the onset of 

gastrulation (stage 10.5 and 11.5) and peaks during neurulation (stage 15) (Sato and 

Sargent 1991 ). 
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Figure 3.10: A. RT-PCR analysis ofXwnt-8 expression in stage 8.5, 10.5, 11.5 and 15 
Xenopus embryos injected with DEPC-H20 (DR) or overexpressing FGFR­
VT+ (VT+) or FGFR-VT- (VT-). Total RNA was extracted and analyzed 
from five embryos for each injection set at each stage indicated. Histone 
(H4) levels were used to normalize the eDNA input for each PCR reaction. 
PCR cycles: 22 Histone; 26 Xwnt-8. (Con) represents a negative control, 
PCR reaction without eDNA. B. Densitometric analysis of the expression 
level ofXwnt-8 normalized to H4 for each sample presented in Figure 
3.1 OA. Duplicate PCR analysis was performed on two separate injection 
experiments and a representative gel shown above. 
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Figure 3.1 1 :A. RT-PCR analysis of Xenopus posterior (Xpo) expression in stage 8.5, 
10.5, 11.5 and 15 Xenopus embryos injected with DEPC-H20 (DH) or 
overexpressing FGFR-VT+ (VT+) or FGFR-VT- (VT-). Total RNA was 
extracted and analyzed from five embryos for each injection set at each 
stage indicated. Histone (1 14) levels were used to normalize the eDNA input 
for each PCR reaction. PCR cycles: 22 Histone; 26 Xpo. (Con) represents a 
negative controL PCR reaction without eDNA. B. Densitometric analysis of 
the expression level ofXpo normalized to H4 for each sample presented in 
Figw-e 3.11 A. Duplicate PCR analysis was performed on two separate 
injection experiments and a representative gel is shown above. 
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In summary, there was very little or no difference in the molecular marker expression 

pattern between the FGFR-VT+, FGFR-VT- and DEPC-treated water injected embryos 

(Table 3.1). Some of the possible reasons for this will be discussed in Section 4.1 , p. 74. 

Therefore, I did not pursue investigation of the molecular mechanisms involved in the 

abnormality caused by overexpression ofFGFR-VT+. 

T bl 31 S a e . . f k tt b f ummary o mo ecu ar mar er express10npa em o serva 1ons. 
Mole4!ular Marker Observation 

BMP-4 Subtle differences between samples; overall, the controls display 
no difference from expected pattern. 

Xenopus Forkhead No differences between samples; overal l, the controls display no 
difference from expected pattern. 

Goosecoid Subtle differences between samples; overall, the controls display 
no difference from expected pattern. 

Mix-1 Subtle differences between samples in stages 8.5, 10.5 and 11 .5, 
not expressed at stage 1 5; overall, the controls display no 
difference from expected pattern. 

Noggin Subtle differences between samples; overall, the controls display 
no difference from expected pattern. 

Xenopus brachyury No differences between samples; overall, the controls display no 
difference from expected pattern. 

Xwnt-8 Decreased expression in control sample at stage 11 .5, compared 
to VT- and VT + samples; overall, the controls display no 
difference from expected pattern. 

Xenopus posterior No differences between samples; overall, the controls display no 
difference from expected pattern. 

3.3 Expression Analysis of Additional FGFR Variant Forms 

As previously mentioned, the secondary objective of this project was to investigate 

the expression patterns of other known FGFR isoforms that may have functional 

significance. The next FGFRl variant examined differs from the reported FGFRI 
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sequence by Proline442-Serine443 deletion, an aspect of interest as the serine residue 

represents a potential phosphorylation site. The final variant examined, actually a variant 

pair, represent the a- and P-forms ofFGFR, an aspect of interest as these receptor forms 

may have different FGF binding affinities and/or specificities. To accomplish this 

analysis, total RNA samples were collected solely from normally developing Xenopus 

laevis embryos at stages 1-8, 8.5, 9, 10, 10.5, 11, 11.5, 12, 13, 16, 25,38 and 42. For this 

experiment, Xenopus eggs were obtained via artifically induced ovulation and 

subsequently in vitro fertilized, but were not otherwise manipulated until time of 

collection and processing for RNA. This RNA panel was subsequently reverse 

transcribed and used to analyze the temporal expression patterns of the FGFR isoforms 

indicated. The product bands were also analyzed by densitometry using AlphaEase TM 

Stand Alone Software Version 3.2 on the Chemilmager 4000 Digital Imaging and 

Analysis System (Alpha Innotech Corporation) to determine a ratio of expression levels 

within each stage. 

The first analysis looked at the expression of FGFR 1 isoform that differed from the 

reported sequence by the deletion ofPro442-Ser443
, subsequently referred to as FGFR-PS-. 

For the purpose of this analysis, the reported sequence containing Pro442-Ser443 is referred 

to as FGFR-PS+. Figure 3.12A represents the temporal expression pattern of the FGFR­

PS+ and FGFR-PS- isoforms at the various stages throughout early Xenopus development 

previously mentioned. Duplicate PCR analysis was performed on a single set of embryo 

RNAs collected as described above. The results of this analysis compare the ratio PS­

:PS+ within each sample as indicated (Figure 3.12); for this reason, an input control such 
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as Histone-4 levels was not used in this analysis. The expression pattern observed in 

Figure 3. 12 show that during early development the PS- variant expression level is 1.3-

1.8X higher than that of the PS+ variant at the same stage of development. By stage 

11.5, the ratio of the expression level ofthe variants approaches 1.0. 

The second analysis looked at the expression of two variants ofFGFRl that involve 

differences in the immunoglobulin-like (Ig-like) domains. The use of alternative splice 

sites results in either the inclusion or exclusion of the first of the three immunoglobulin­

like domains. For the purpose of this analysis these FGFR isoforms are termed o.-FGFR 

(3 Ig-like domains) and P-FGFR (2 Ig-like domains). Using the previously mentioned 

panel of total RNA from various stages throughout early Xenopus development, the 

temporal expression of o.-FGFR and P-FGFR were examined, comparing the ratio of o.:P 

within each stag~ but not b~tw~en :stag~s, therefore an input control such as Histone 4 

was not used in this analysis. The results of this analysis (Figure 3.13) indicated that the 

o.-FGFR variant is the predominantly expressed isoform through early development 

(stages 1-13), with an expression level approximately 2.5-4.1X higher than that ofP­

FGFR. By tadpole stages (stages 38-42) the P-FGFR variant shows an increase in 

expression levels approaching that of the a-FGFR variant at the same stage of 

development, with the ratio of o.-FGFR to P-FGFR approaching 1.0. 
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Figure 3.12: A. RT-PCR analysis ofFGFR-PS+ and FGFR-PS- temporal expression 
patterns during Xenopus laevis development. Total RNA was extracted and 
analyzed from five embryos for each stage of development indicated. Stage 
numbers represent the Nieuwkoop and Faber (1967) stages of development 
from which the sample was taken; PS+. FGFR-PS+; PS-, FGFR-PS-. Duplicate 
PCR analysis was performed on a single RNA set and a representative gel is 
shown. B. Densitometric analysis of the PS-:PS+ ratio for each sample 
presented in Figure 3.12A. 
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which the sample was taken. Duplicate PCR analysis was performed on a 
single RNA set and a representative gel is shown. B. Densitometric analysis 
of the a.-FGFR:~-FGFRratio for each sample presented in Figure 3.13A. a. 
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In addition to the temporal patterns, spatial expression patterns for these variant 

FGFR isoforms were also analyzed. Total RNA samples were collected from normally 

developing Xenopus laevis embryos (stage 8.5) that were dissected into Animal Cap, 

Marginal Zone and Vegetal Cap. Total RNA was also collected from whole embryos 

from the same batch. Figure 3.14A represents the spatial expression pattern observed for 

the FGFR-PS-, FGFR-PS+, a-FGFR and ~-FGFR isoforms. The results of this analysis 

suggest that FGFR-PS- is the predominant form in the Animal cap tissues being 

expressed at approximately 1.8X higher levels (Figure 3.148) when compared to FGFR­

PS+. The ratio of FGFR-PS- to FGFR-PS+ expression levels approaches 1.0 in both the 

Marginal zone and Vegetal cap tissues (Figure 3.148). The expression in the whole 

embryo sample suggests that FGFR-PS- is expressed at a higher level (~1.8x) than the 

FGFR-PS+ form (Figure 3.148). The spatial expression patterns ofa-FGFR and 13-FGFR 

presented in Figure 3.14A indicate that the a-FGFR variant is predominantly expressed in 

all three spatial zones examined as well as the whole embryo sample. The expression 

levels of a-FGFR are approximately 2.5-3.5X higher than the P-FGFR isoform 

expression levels (Figure 3.148) for all four samples examined. The potential 

implications of these findings will be discussed later. 
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Figure 3.14: A. RT-PCR analysis ofa.-FGFR, ~-FGFR, FGFR-PS+ and FGFR-PS­
spatial expression patterns. Total RNA was extracted and analyzed from 
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whole embryos (Embryo). Histone (H4) levels were used to normalize the 
eDNA input for each PCR reaction. PS+, FGFR-PS+; PS-. FGFR-PS-. 
Duplicate PCR analysis was performed on a single RNA set and a 
representative gel is shown. B. Densitometric analysis of the PS-:PS+ ratio 
and the a-FGFR:~-FGFR ratio for each sample presented in Figure 3.14A. a, 
a; b, ~· 
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Chapter 4 
Discussion 

4.1 Molecular Marker Expression Analysis of Embryos Overexpressing FGFR-VT­
and FGFR-VT+. 

The abnormal phenotype observed in Xenopus embryos overexpressing FGFR-VT + 

may be a consequence of a deficiency in mesoderm formation (Paterno et al. 2000), 

therefore the markers being studied all represent early markers of mesoderm induction 

(Table 4.1). The set of markers representing various regions of the mesoderm were 

assessed for potential deviations from normal expression patterns, in an effort to elucidate 

the molecular pathway that was adversely affecting development in the embryos 

overexpressing FGFR-VT+. 

Table 41 R · . egaon o fE xpress10n 0 e o ecu ar fth M I M k E ar ers . d xamme . 
Marker Expressed in 
BMP-4 Ventral-lateral mesoderm 

Xenopus Forkhead Organizer 
Goosecoid Organizer 

Mix-1 Presumptive endoderm and mesoderm 
Noggin Organizer 

Xenopus brachyury Early mesoderm 
Xwnt-8 Ventral-lateral mesoderm 

Xenopus posterior Posterior mesoderm 

As previously stated, the complete set of markers examined for this project displayed 

only subtle deviations from their normal, expected pattern of expression. This may in 

part be due to any one or combination of factors, such as: no effect on this particular set 

of markers, or limitations on the methodology employed, or consistency of the RNA 

sample. 
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It is conceivable that there is no effect on any of the markers in the set evaluated. 

However, this was not anticipated as Xbra expression had previously been observed to be 

undetectable or only very faintly detectable in embryo samples overexpressing FGFR­

VT +, when compared to controls, as determined by in situ hybridization (Paterno et al. 

2000). It poses some question as to whether or not the RT-PCR results for the remaining 

molecular markers are reliable. Additional means of re-examining these markers might 

include procedures such as whole mount in situ hybridization, northern blot analysis, or 

RNase protection assay. These procedures will be discussed in further detail in the 

potential future directions of this research, Section 4.3.1, p.8l. 

Limitations on the methodology used include translational efficiency; RNA may be 

present but is it translated? The RT-PCR procedure would amplify RNA that is present 

but the question of whether or not this RNA is being translated into protein in vivo 

remains. In addition, the RT-PCR procedure amplifies target messages as well as any 

errors or contaminations present, subsequently affecting the accuracy and reliability of 

the data. Therefore, consistency of the RNA sample collected represents another possible 

limitation. This project investigated the molecular basis of the abnormal phenotype 

observed in embryos overexpressing FGFR-VT +. Therefore embryos collected were 

phenotypically nom1al for the control samples (DEPC-H20 and FGFR-VT- injected 

embryos) and phenotypically abnormal for experimental samples (FGFR-VT +injected 

embryos). The reason for this selection method is that we were looking directly at the 

RNA pool of these embryos for possible gene misexpression, that is differences in gene 

expression patterns between the control (normal) and experimental (abnormal) embryos. 
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The potential for a problem presents itself in that if a single normal embryo is collected 

with the abnormal sample, it may "contaminate" this sample with copies of genes that are 

being misexpressed in the abnormal embryos. The methodology employed, radio labeled 

RT-PCR would amplify these normal copy genes and the expression pattern presented 

would not be a truly representative pattern. The reason that this represents a possible 

problem is that the abnormal phenotype does not present until gastrulation at which time 

it can present as a severely abnormal exogastrulation event or as a subtle slowing of 

gastrulation movements. All embryos collected prior to gastrulation appear normal and 

as development proceeds to gastrulation and beyond, abnormal development becomes 

obvious. While much care was taken during sampling to avoid this, it remains as a 

possible reason for lack of differences observed. Furthermore, PCR analysis may have 

been too sensitive a method to employ in analyzing marker expression under the 

sampling protocol implemented, i.e. for pooled embryo samples. Subsequent analysis 

should consider the plausibility of sampling individual embryos as controls or for 

comparison to pooled embryo samples. 

4.2. Expression Pattern Analysis ofFGFR Variant Forms. 

4.2.1 Analysis FGFR-PS+ and FGFR-PS- Isoforms. 

Study into the expression pattern of this variant pair was undertaken as Serine443 

represents a potential phosphorylation site and therefore differential expression of these 

isoforms may be functionally significant. As determined by NetPhos 2.0 predictions, 

amino acid position 443, occupied by serine residue in the PS+ variant is located within a 
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phosphorylation consensus sequence (Blom et al. 1999). Comparison with consensus 

sequences for several Ser/Thr kinases revealed that amino acid position 443 was located 

within a consensus sequence for phosphorylation by PKA (Kennelly and Krebs 1991). In 

FGFR-PS+, a serine is located in position 443, however in the FGFR-PS- form a Lys 

occupies this position. 

Temporal expression of FGFR-PS variants revealed that the PS- variant is the 

predominant form up until stage 11.5 after which time little or no difference in expression 

levels between the two forms is detected. The spatial expression analysis revealed that 

the PS- variant is the predominant form present throughout the stage 8.5 embryo. This 

raises question into the possibility of functional differences between these receptor 

isoforms. 

It has been previously demonstrated for receptor isoforms that differ from each other 

by a dipeptide sequence, FGFR-VT+ and FGFR-VT-, when one of these amino acids 

positions falls into a phosphorylation consensus site, the isoforms can differ in their 

ability to be regulated by phosphorylation (Gillespie et al. 1995). Phosphorylation 

represents an important mechanism for regulating FGFR activity, for this reason these 

variants, FGFR-PS+ and FGFR-PS- may function differently in addition to being 

expressed differently. To date there is no evidence in the literature for a differential role 

of these isoforms (PS+ and PS-) during mesoderm induction specifically or during 

development in general. 
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4.2.2 Analysis of a-FGFRl and Ji-FGFRl Forms. 

The expression analysis of the FGFRl variants that differ in their number of 

immunoglobulin-like (lg-like) domains, the a-form (3 lg-like domains) and the P-form (2 

lg-like domains) is of interest because they may also differ in their ligand binding 

specificities and affinities. The second Ig loop, the linking sequence and the NH2 

terminus of the third Ig loop comprise the minimal structural requirement for the binding 

ofFGF family ligands in general. The COOH-terminus of the alternatively spliced third 

Ig loop determines the specificity for particular FGFs (Wang et at. 1995a; Wang et al. 

1995b). It has been demonstrated that human and rat a -FGFR shows an affinity for FGF-

1 that is 12.5 % of that of P-FGFR in the presence of heparin and shows no affinity for 

FGF-1 in the absence of heparin (Shi et al. 1993). 

The results ofthis analysis indicate that both the a-FGFRl and P-FGFRl variants are 

expressed through early development (stages 1-16), however the a-FGFRJ isoforrn 

displays a greater than 2.5-fold increase in expression level as compared to the P-FGFRl 

isoforrn during this timeline. By tadpole stages (stages 38-42) the P-FGFRl variant 

shows an increase in expression levels approaching that ofthe a-FGFRl variant at the 

same stage of development. The spatial expression pattern results indicated that the a­

FGFR 1 variant is predominantly expressed in all three spatial zones examined as well as 

the whole embryo sample. 

These results may be a consequence of ligand availability. The a-FGFRI form may 

be predominantly expressed during early stage Xenopus development in response to the 

presence ofFGFs that preferentially bind a-FGFRl. As development stages progress and 
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additional FGFs begin to accumulate, the ~-FGFR1 form may be up regulated to respond 

to these new ligands. ln evaluating the concept of differential expression of a- and ~­

FGFR 1 in the early stages of Xenopus development being related to ligand preference 

and availability, a review of current literature is required. Presently, Xenopus 

homologues ofFGFs 2, 3, 4, 8, 9 and 20 have been shown to exist and their expression 

patterns documented (Isaacs et al. 1992; Kimelman et al. 1988; Kiefer et al. 1993; Slack 

and Isaacs 1989; Tannahill et al. 1992; Kimelman and Kirschner 1987; Song and Slack 

1996; Slack et al. 1996; Christen and Slack 1997; Koga et al. 1999), these are 

summarized in Table 4.2. Unfortunately, little information seems to have been published 

in the literature to-date regarding a- or ~-FGFR binding specificity of the Xenopus 

homologues, with the sole exception ofXFGF3. XFGF3 has been shown to interact with 

a.-XFGFR2 Illb and Hie isoforms with high affinity and are suggested to be the most 

likely partner for XFGF3 at physiological conditions (Mathieu et al. 1995). The same 

report (Mathieu et al. 1995) also showed that XFGF3 affinities for mouse a- and P­

FGFR2-11Ic were very similar, which contrasts results by Shi et at. (1993) that reports 

FGF1 has an 8-fold higher affinity for ~-FGFR1 than for a-FGFR1. 

All six of the known Xenopus FGF homologues are present from gastrulation (stage 

12) to neurula (stage 16) (referenced in Table 4.2), the timeframe in which we have 

reported a-FGFRI as the predominant transcript. This could suggest that the a-form may 

be the principle receptor for these ligands. However, XFGF-2, XFGF-4, XFGF-8 and 

XFGF-20 all display decreased expression later in development when P-FGFRl is more 

abundant. This might be suggestive of the ~-FGFRI receptor being the most likely 
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partner for these FGFs. A decrease in FGF expression occurring concurrently with an 

increase in FGFR expression, would maintain a likelihood of an FGF-FGFR interaction. 

Undoubtedly, further research into the binding affinities between these prospective 

ligand-receptor partnerships will be required. 

Table 4.2: Documented Expression Patterns of Xenopus FGF Homologues. 

XenopusFGF Expression Reference(s) 
homologue 

XFGF-2 abrupt increase at MBT and maintains Kimelman et al. 1988; 
a stable level through gastrulation and Kimelman and Kirschner 1987 
neurulation. 

XFGF-3 expressed just before the onset of Tannahill et al. 1992 
gastrulation through to pre-larval 
stages. 

XFGF-4 sharp increase at onset of gastrulation Isaacs et al. 1992 
and falls after stage 12. 

XFGF-8 first strong expression in early Christian and Slack 1997 
gastrula, persists into late neurula, 
decreases at early tail bud, further 
decrease at late tailbud. 

XFGF-9 detected from early cleavage Song and Slack 1996 
(indicative of maternal expression), 
detected at neurula and tailbud stages 
as zygotically expressed. 

XFGF-20 initial detection at blastula, strongest Koga et al. 1999 
intensity at gastrula, decreases a 
neurula and continues to decrease 
subsequently. 
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4.3 Future Considerations 

4.3.1 In Investigating the Abnormal Phenotype Presented in Embryos 
overexpressing FGFR-VT+. 

This project has many different directions it can follow as a means to accomplishing 

the goal of uncovering the molecular basis of the observed abnormal phenotype in FGFR-

VT + overexpressing embryos. Presented here are some of the methodologies that might 

be considered in continuing this project. 

Characterization of the stock FGFRl cRNAs was conducted using an in vitro 

translation system. While this provided a measurement of translation in an in vitro 

system, it does not provide any information on how efficiently the message will be 

translated in vivo. A subsequent check could have been conducted using a myc-tagged 

construct which could be injected into embryos, total embryo protein could then be 

extracted from the sample extract and subjected to western analysis using an anti-myc 

antibody to determine the efficiency of in vivo translation. 

An initial step that might be considered in future work on the marker analysis is to 

increase the pool of markers being analyzed. For obvious reasons, increasing the test 

pool would increase the likelihood of uncovering a gene misexpression pattern. Some 

markers that might be considered include: chordin a gene whose expression can be 

activated by organizer-specific homeobox genes and which is initially expressed in the 

dorsal lip and subsequently tissues derived from the organizer (Sasai et al. 1994); Xnr3, is 

member of the TGF-f3 superfamily that is expressed specifically in the Spemann 

organizer (Smith et al. 1995); Xnot, a homeobox gene that is initially expressed 

throughout the embryo but whose expression becomes restricted to the organizer region 
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and presumptive mesoderm as development proceeds, transcription peaks at the onset of 

gastrulation, show a marked decrease by the end of gastrulation but remain detectable 

into tai lbud stages (von Dassow et al. 1993 ); Xcad3 is an immediate early target of the 

FGF-signaling pathway that is required for normal posterior development in Xenopus 

embryos (Isaacs et al. 1998). 

An additional consideration in detennining what other markers to study might be to 

conduct histological analysis on the embryos presenting the abnormal phenotype in an 

effort to elucidate what tissues may be missing or deformed. Observing the phenotype in 

conjunction with such a histological analysis may aid in the selection of additional 

markers to screen. As some of the FGFR-VT+ overexpressing embryos are observed to 

have what could be described as a "kink" in the spine or tail region. It is conceivable that 

this phenotype results from a disruption in a pathway that regulates bone/cartilage or 

somite development. This phenotypic observation and a histological analysis may 

provide evidence for selecting different sets of candidate molecules for analysis, such as: 

Xmyf-5 a gene expressed in dorsolateral marginal zone in early gastrula and is later 

found in the most dorsal and ventral tips of the somites (Hopwood et al. 1991); XmyoD, 

zygotic expression of XmyoD begins in early gastrula. XmyoD is shown to be restricted 

to the gastrula mesoderm and to the somites of neurulae and tail bud embryos. 

Transcription is activated following mesoderm induction, and XmyoD is early muscle­

specific response to mesoderm-inducing factors (Hopwood et al. 1989). The intital 

activation of MyoD transcription has been shown to require eFGF (Xenopus homologue 

ofFGF4) (Fisher et al. 2002). 
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RT-PCR offered a means of analyzing a large set of samples in a relatively short 

period. We analyzed eight known molecular marker expression patterns in three different 

embryo injection sets (FGFR-VT-, FGFR-VT+ and DEPC-H20) through four stages of 

development. As previously mentioned, additional methodologies might be employed to 

further examine this set of molecular markers. These could include, but are not limited 

to, northern blot analysis, RNase protection assay and whole mount in situ hybridization. 

Northern blot analysis can be used to determine the size and amount of any specific RNA 

and therefore represents another means of studying the collected RNA pools. RNase 

protection is a sensitive technique used for the quantitation of specific RNA from total 

cellular RNA and represents another method of studying the given RNA pool. The 

northern blot and RNase protection assays may suffer from the same potential problem as 

RT-PCR for the pooled RNA samples. Therefore whole mount in situ hybridization may 

be the preferred methodology of choice. The whole mount in situ hybridization protocol 

is more detailed and time consuming than that ofRT-PCR, in that it requires the synthesis 

of a specifically labeled nucleic acid probe, which has to then be hybridized to cellular 

RNA. However, it would provide a method of analyzing both temporal (stage of 

development) and spatial (location within the embryo) expression patterns. An additional 

advantage to whole mount in situ hybridization is that it permits analysis of individual 

embryos as opposed to a sample collected from a pool of several embryos. 

We have been focusing our analysis at the RNA level, another consideration in future 

direction of this project might be to look at the proteins encoded by the RNA. Western 

blot analysis of total protein samples from the same type of embryo injection sets as used 
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in this project could yield some findings of interest. Whole mount antibody staining for 

the products of the molecular marker genes analyzed represents another means of 

focusing on the protein level as opposed to RNA levels and pennits observation of spatial 

and temporal expression patterns in individual embryos. 

Fibroblast growth factor receptor signal transduction, like other receptor tyrosine 

kinases, results in the activation of several intracellular signaling pathways, such as, the 

phosphatidylinositol 3'-kinase (PI3'K) pathway, the phospholipase C gamma 1 (PLCyl) 

pathway and the Ras/MAP kinase pathway (Ryan et al. 1998; Huang et al. 1995; 

Umbhauer et al. 2000). Using methodologies to analyze an embryo sample for proteins 

known to be phosphorylated (activated) in these pathways via FGFRl signaling, such as 

MAP kinases for which phospho-specific antibodies are available, one could narrow the 

potential search field by detennining the precise pathway(s) involved. 

These pathways might also be a consideration for a VT +rescue experiment. Such an 

experiment would be designed to detennine if activation of the FGF-FGFR signaling 

pathway, initiated at a point below the receptor could rescue embryos overexpressing the 

FGFR-VT+ fonn of the receptor to develop with a nonnal phenotype. 

4.3.2 In Analyzing FGFR-PS+ and FGFR-PS- Variant Forms. 

In continuing investigation into the characterization of the FGFR-PS+ and FGFR-PS­

receptor forms, a similar approach to that taken by Gillespie et al. (1995) might be 

utilized. Analysis to determine if the predicted phosphorylation site (Ser443
) is in fact 

phosphorylated will be required. A strategy that could be used to investigate this 
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possibility would be to immunoprecipitate the FGFR I from whole embryos under non­

denaturing conditions and follow this with Western blotting employing an antibody that 

recognizes phosphoserine (eg., monoclonal Anti-Phosphoserine available from Sigma). 

Should it be shown that Ser443 is indeed phosphorylated in vivo, subsequent functional 

assays would be required to ascertain any functional differences between the isoforms 

due to the presence or absence of this residue. 

4.3.3 In Analyzing the a-FGFRJ and IJ-FGFRl Forms. 

In further evaluating the concept of differential expression of a.- and~- XFGFRI 

being related to ligand preference and availability in the early stages of Xenopus 

development, binding assays should be conducted to determine if the isoforms display 

any preference for particular Xenopus FGFs. As the PCR analysis conducted for this 

project distinguished only between a.- and~- XFGFRI , additional analysis to distinguish 

between the a.-XFGFRl-IIIb and illc forms and between ~-XFGFRl-llfb and Illc forms 

might be an important consideration. Finally, injection experiments using in vitro 

synthesized cRNA of the a.- and ~- XFGFR isoforms could be undertaken to determine, 

if any, the developmental effects of overexpressing the a.- or the ~-XFGFR isoforms in 

Xenopus embryos. As the results presented in this thesis suggest that a.-FGFR is the 

predominantly expressed isoform through early development, the effect of 

overexpressing the ~-form might be of some significance. Hypothetically speaking, if the 

a.-form is the functional form during early development, overexpressing the ~-form 

might saturate the system, resulting in primarily a.-~ heterodimeric complexes instead of 
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functional a.-a. homodimeric complexes. If this was the case, one might expect to 

observe developmental abnormalities in the ~-FGFR overexpressing embryos. 

While investigated as individual isoforms, it is important to point out that the 

variations discussed may occur in any number of combinations, such as a-FGFR­

IllcNT+/PS- or ~-FGFR-IIIbNT-/PS+, for example. Currently, it is not known which 

particular combinations are expressed during development. However, this represents an 

important question for further research as differential expression of such receptor 

isoforms may provide a more precise means of regulating developmental events. 
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