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Abstract 

An extensive classification of initial and final topologies characterizes chap­

ters one through three. The one exception is a generalization of the locally 

compact and Hausdorff concept which appears at the beginning of chapter 

three and plays a role of significance later in the thesis. Most of work in the 

first three chapters is standard material, the general theory is laid out and 

followed by specific constructions. Features of this treatment include an ini­

tial topology in the function space setting, several final topology constructions 

that satisfy convenient category criteria, and some basic properties of a spe­

cific product topology are explored in detail. Modification of the exponential 

law is the thrust of chapter four. There is a desire for a law which utilizes no 

assumptions on the spaces involved. A compact Hausdorff image-open topol­

ogy is defined to replace the standard compact-open topology on a function 

space. The x-open topology coupled with a x-product topology give life to 

a x-exponential law that has the usual exponential law as a consequence. A 

fifth chapter examines initial and final topologies in regards to their commu­

tativity. Improvements to the current body of knowledge are made in the area 

of product and identification commutative. In particular, an interesting case 

of initial and final commutation using fibred mapping spaces is explored. 
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Introduction 

Little time is spent on preliminaries, but there are certain points to be brought 

to the reader's attention. 

It should be noted that initial and final topologies are commonly referred 

to as weak and strong topologies in the literature. Be warned that the lat ter 

pair are used interchangeably at times, to the point of blatant discrepancy 

Christenson and Voxman [10]. 

There is a deliberate attempt to highlight the universal properties of ini­

tial and final topologies in general, and in regards to specific constructions. 

Both Massey [17] and Brown [7] have recognized the significance of universal 

properties. Indeed, usage of such properties is a running theme of this work 

thereby making proofs of many results significantly easier, shorter, and more 

intuitive. 

Let us fix our notation on certain fronts. The standard practice of calling 

a continuous function a map will be employed in this work. Fn(X, Y) and 

Map(X, Y) denote the set offunctions and maps from the space X to the space 

Y . XT denotes the topological space with underlying set X and topology T , 

when there is a possibility of confusion. The symbol ~ will be used exclusively 

to denote a homeomorphism. 

1 



Chapter 1 

INITIAL TOPOLOGIES 

f .· X--+ X· 
~ ~ 

1.1 Characterizing the initial topology 

Let us set the table. Let {Xi} be a family of inducing spaces and {/i : X -t Xi} 

be a family of inducing functions for each i E I, where I is an indexing set. 

An initial topology can be induced on the arbitrary set X . 

Definition 1 Let X be a set and {fi : X -t Xi}iEI be as above. The corre­

sponding initial topology on X , denoted I, has a subbase 

S = {fi- 1 (U) such that U open in Xi, fori E I}. 

2 



CHAPTER 1. INITIAL TOPOLOGIES 3 

The reader is directed to [23] or [10] for alternate descriptions. 

Proposition 1.1 The previous definition describes a well defined topology on 

the set X. 

Proof: Any collection of open subsets of a set X is a subbasis for a unique 

topology on X, it follows that the initial topology is a well defined topology 

on the set X. • 

Proposition 1.2 If X has the initial topology then the functions {fi}iEI are 

continuous. 

Proof: The result follows from the definition of the subbasis for T • 

Thus it is safe to describe {fi} as a family of mappings. 

Proposition 1.3 : Universal Property for Initial Topologies 

Given a set X with the initial topology relative to a set of corresponding 

maps and spaces {fi : X --+ Xi}iEI, and a function g : Z --+ X f or some space 

Z. Then the function g is continuous if and only if fi o g is continuous for all 

i E I. 

Proof: Assume the data. 

Let g be continuous. It follows from 1.2 that the composites f i o g are 

continuous for each i E I. 

Suppose each fi o g is continuous and let there be an open set U in X i. 

Then (fi o g)-1 (U) is open in Z. Now 
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Now fi- 1(U) is a typical member of the subbasis for X and g-1(fi-1(U)) Is 

open in Z for each fi- 1(U). It follows that g : Z --7 X is continuous. • 

In proving the next proposition, the reader should bear in mind that the 

initial topology satisfies the Universal Property for Initial Topologies. It is 

necessary to show that any topology satisfying this condition is unique. 

Proposition 1.4 The Universal Property for Initial Topologies is a charac­

terization for the initial topology on a set X. 

Proof: Let Tl and 7; be topologies on X both satisfying 1.3 for a family of 

mappings {fi}iEI· Consider the identity functions lx : x71 --7 x72 and l'x : 

X72 ---+ X 11 . Our hypothesis implies that f ; o lx = f; : X71 ---+ X; is continuous 

for each i E / . Similarly f; o l'x = f; is continuous. It follows by 1.3 that 

both lx and l'x are continuous. Thus Tl = 7;, thereby proving any topology 

satisfying this property is unique. Moreover, the initial topology satisfies 1.3; 

so any topology satisfying the Universal Property for Init ial Topologies must 

be the initial topology. • 

This universal property permits proof of the following proposition con­

cerning a composition rule or transitive rule which can be applied in certain 

situations. 

Proposition 1.5 : Composition Rule for Initial Topologies 

Let each set xi have an initial topology relative to {gk : X; --7 Xk}kEK; for 

all i E /. Then the initial topology on X relative to {f; :X --7 X;}iei coincides 

with the initial topology on X relative to {gk of; : X --7 Xk}iei,kEK;. 
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Proof: Let I 1 be the initial topology on X relative to the maps {fi :X --7 

Xi}iEI and let I 2 be the initial topology on X relative to the maps {gk o f i : 

X --7 Xk}iEl,kEK;. Consider the identity functions lx : Xr1 --7 Xr2 and 

lx: Xr2 -r Xr1 -

Associativity of function composition ensures 9k o (fi o lx ) = (gk o f i ) o lx = 

(gk o fi) : Xr2 --7 Xk where (gk o fi) is continuous for all i E I and all k E Ki· It 

follows that (fi o lx ) is continuous by way of 1.3 for Xi . Then lx is continuous 

by 1.3 for I 1 . 

For all maps fi and 9k every composite 9k o fi : Xr1 --7 Xk is continuous. 

Now 9k o fi = (gk o fi) o lx : Xr1 -r Xk is continuous. Thus lx is continuous 

by 1.3 for I 2 . Therefore the identity function is continuous in both directions, 

thus the topologies I 1 and I 2 must coincide. • 

A decomposition rule for initial topologies can be proven. If an inducing 

family of maps can be factored through a family of spaces, then an initial 

topology coincides relative to the latter family. 

Proposition 1.6 : Decomposition Rule for Initial Topologies 

Let X have an initial topology relative to {fi : X --7 Xi}iEJ. Let there be 

a family of spaces {Yi}iEJ and families of mappings {hi : Yi --7 Xi}iEJ and 

{ki : X --7 Yi}iEI such that hi o ki = fi fo r all i E /. Then X has an initial 

topology relative to { ki : X --7 YihEI· 

Proof: It will be proven that {ki :X --7 Yi } satisfies 1.3. Let g: Z --7 X be 

a function for an arbitrary space Z. 

Suppose that g is continuous, then ki o g : Z --7 }i is continuous for each 

i E /. 
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Now suppose that each k; o g : Z --+ }i is continuous. Then h; o (k; o g) : 

Z--+ X; is continuous. Moreover, 

Hence, g is continuous by 1.3 for {f; : X --+ X;}iEI · The result follows by 1.4 . 

• 
Proposition 1. 7 The initial topology is the coarsest topology on X ensurmg 

that each J; : X --+ X ; is continuous on X relative to {f; : X --+ X;}. 

Proof: Assume some other topology from I, say T , on X such that each 

j; is continuous. Universal property 1.3 ensures that the identity function 

1 : XT --+ Xr is continuous. So for all V E I, it follows that V E T , thus 

IcT. • 

It is possible to characterize several initial topology examples armed with 

the general results of section one. 

1.2 Initial-inverse topology 

The most immediate example of an initial topology is the inverse image topol­

ogy. However, to alleviate future confusion it is referred to as the initial-inverse 

topology. Induce an initial topology on X by taking any function f into any 

arbitrary space Y, f : X --+ Y. This leads to the characterizing theorem of 

this example of an initial topology. 
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Characterization 1.8 Let Y be a space} let X be a set and let f : X -t Y 

be a function. The following conditions each determine precisely the same 

topology on X: 

(i) X carries the initial topology r-elative to f : X -+ YJ 

(ii) Universal Property: Given any space Z and any function g : Z -t X } 

then g is continuous if and only iff o g is continuous} 

(iii) X has the coarsest topology such that f is continuous. 

Proof: It follows from 1.4 that (i){:}(ii) and 1.7 ensures that (i){:}(iii). • 

The unique topology satisfying conditions (i)-(iii) of the previous theo­

rem is called the initial-inverse topology. The following commutative triangle 

illustrates the universal property of this last proposition. 

z 

fog 
g 

X 
f 

y 

1.3 Subspace topology 

A specific case of the initial-inverse topology is the subspace or relative topol­

ogy. A topology is induced on any subset A, of an arbitrary topological space 

X via an inclusion. We have simply i : A Y X. Note that in this situation 

the inducing map is an injection. 
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Characterization 1.9 Let X be a space} let A be a subset of X and let i : 

A <......?- X be an inclusion. Th e following conditions each det ermine precisely 

the same topology on A: 

(i) A has the initial topology relative to the inclusion i : A 4 X J 

(ii) Universal Property: Given any space Z and any function g : Z -t A } 

then g is continuous if and only if i o g is continuous} 

(iii) A has the coarsest topology such that i is continuous. 

Proof: Similar to 1.8. • 
The unique topology satisfying (i)-(iii) of the previous theorem is called the 

subspace topology. The commutative diagram illustrates the universal property 

described in the previous theorem. 

z 

zog 
g 

A'------- X 

1.4 Product topology 

There are different points to be considered when an initial topology is induced 

on a Cartesian product of spaces. 
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Let I be a possibly infinite index set with i E I and let {XJ,EI be a family 

of inducing spaces. Take the underlying set to be of the form 

X = II, X, = { f : I -+ ~X, such that /( ') E X., \1, E I} 

Then define a family of projections {p, :X -7 X,},EI by 

Now it is possible to induce an initial topology on X. 

Characterization 1.10 Let {X,},El be a family of spaces, let X be the s et 

above and let {p, : X ~ X,},El be the family of projections as above . The 

following conditions each determine precisely the same topology on X: 

(i) X has the initial topology relative to the projections p, : X ~ X, for all 

(ii) Universal Property Given any spaceY and any function g: Y -7 X , 

then g is continuous if and only if p, o g is continuous for all i, 

(iii) X has the coarsest topology such that each p, is continuous for all L. 

Proof: Similar to 1.8. • 
The unique topology satisfying the conditions of this last proposition is 

called the Tychonoff product topology. The universal property of this situation 

is illustrated by the following commutative diagram. 
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y 

p. 0 g 
g 

X 

10 

x. 

Suppose I is a finite index set with i E I. The reader will recall that t he box 

topology on the set X = IIi Xi, where each Xi is a topological space, has as a 

basis all sets of the form U = ITiUi , where Ui C Xi is open for each i E I. The 

box topology is an initial topology induced by the family of natural projections 

{7ri: X--+ Xi}iEI· In this case, with I finite, the box topology coincides with 

the Tychonoff topology. Now suppose that I is an infinite set with t E I. It is 

not possible to express U = IT,U., where each U. C X. is open, as a union of a 

finite number of basic open sets. We direct the reader's attention to example 

2, page 98 [12]. Hence U c X= II,X, is not open in general in the Tychonoff 

topology, and the box topology on X is not an initial topology relative to the 

infinite family of natural projections. In practice, such a topology is too fine. 

It is possible to describe the Tychonoff topology in a box like manner. A basis 

for the Tychonoff topology can be described in a box like manner by adding 

further conditions on the basic open sets U = ITLU,: each UL is open in XL and 

all but finitely many UL = X L. 

1.5 Pullback space topology 

For spaces X 1 , X 2, andY a pullback space or fibred product space is formed in 

the following manner. 
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Let p1 : X 1 -t Y and P2 : X 2 -t Y be continuous functions. A subset of 

X1 X X2 is the underlying set of this situation. 

When no confusion can occur this is denoted by X1 n X2. Let j : X1 n X2 '-+ 

X1 xX2 be an inclusion. Then define the projection 1r~: X1 n X2 -t X1 by 

Similarly, we can define the projection 1r~ : X1 n X2 -t X2 by 

Then the following diagram commutes. 

X1 nx2 

7!"' 1 

---- x2 
7r' 2 

P2 

y 
Pt 

An initial topology can be induced on X 1 n X 2 by taking the projections 

7!"~ and 7!"~ as inducing maps and xl and x2 as inducing spaces. It is also 

possible to induce an initial topology on xl n x2 relative to the inclusion 

j : X1 n X2 <-+ X1 x X2. 

Proposition 1.11 The initial topology on X1 n X2 relative to 1r ~ and 1r~ co­

incides with the initial topology on xl nx2 relative to j ) i.e. xl nx2 regarded 

as a subspace of X1 X X2 . 
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Proof: The result follows from 1.5 with 91 = 7r~ , 92 = 7r~ and f = j. • 

Consider the following characterization theorem. 

Characterization 1.12 Let X1 and X2 be spaces1 let X = X1 n X2 and let 

1r~ and 1r~ be the projections as defined above. The following conditions each 

determine precisely the same topology on X: 

(i) X has the initial topology relative to 1r~ : X --+ X 1 and 1r~ : X --+ X2, 

(ii) X has the initial topology relative to j : X y xl X x2J 

(iii) Universal Property: Given any space Z and any function 9: Z--+ X, 

then X has the unique topology such that 9 is continuous if and only if 

7r~ o 9 and 1r~ o 9 are continuous1 

(iv) X has the coarsest topology such that 1r~ and 1r~ are continuous, 

(v) X has the coarsest topology such that j is continuous. 

Proof: It follows from 1.11 (i) <=> (ii) and from 1.4 that (i) <=>(iii ). Propo­

sition 1. 7 ensures that ( i) <=> ( iv) and ( ii) <=> ( v). • 

The unique topology satisfying the conditions of this theorem is called 

the pullback space topology. The universal property of this last situation is 

illustrated by the following commutative diagram. 
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z 

~ 

y 
P1 

The topology described above can easily be generalized for any finite index 

set I and family {Pi : Xi ~ Y}iu. Define 

A topology can be induced on this subset of IIiXi relative to projections of 

the form 7!'~ = 7l'i o j. 

Suppose that I is not finite. It is possible to generalize in a manner similar 

to the product topology by considering sets of functions. For L E I and a 

family of maps and spaces {pl : xl ~ Y} tEl define 

n,,X, ~ { g: I-->~ X, such that g(t) EX, and p, o g(t) ~ p,, o g(t'), 'It, ,• E I}. 

An initial topology is induced on this subset relative to {Pt o j}LEI where j is 

the inclusion of n p,Xl c IIlXl. 

1.6 Free range functional space topology 

To complete the initial topology exposition consider an example of greater 

interplay between initial topologies and function spaces. 
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For an arbitrary space ZT, define the space Zf, as having underlying set 

zw = Z U { w} for some w ~ Z, 

and topology 

'T' = {0} U {U U {w} such that U E 7}. 

For simplicity's sake the subscript is disregarded in future discussion. Let 

Y be an arbitrary space. For C closed in Y and any map f : C -t Z we can 

define a map fw : Y -t zw by 

r(y) = { ~(y) if y E C, 

if y ~C. 

For an arbitrary space B and any mapping q: Y -t B define the space 

and the set 

Y!Z = U Map(Y ib, Z). 
bEB 

If B is a T1-space, then we can define functions 

q!Z: Y!Z -+ B 

i : Y!Z -+ Map(Y, zw) 

by 

by 

(q!Z)(h) = b 

i(f) = Jw 
where h : Ylb -t Z, 

where f E Map(Yib, Z) . 

Note that i is well defined as a result of the T1 condition on B. It implies that 

each fibre Ylb is closed in Y. 

Characterization 1.13 Let Y and Z be spaces, let B be a T1 -space, and 

let zw and Y!Z be as defin ed above. Also, let q!Z : Y!Z --t B and i : 

Y!Z -+ Map(Y, zw) be the maps defin ed above. The following conditions 

each determine precisely the same topology on Y !Z: 
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(i) Y!Z has the initial topology relative to the functions q!Z : Y!Z -+ B 

and i : Y!Z-+ Map(Y, zw), 

(ii) Universal Property Given any space W and any function g : W -t 

Y!Z, then g is continuous if and only if q!Z o g and i o g are continuous, 

(iii) Y!Z has the coarsest topology such that q!Z and i are continuous. 

Proof: Similar to 1.8. • 
The unique topology satisfying the conditions of this theorem is the called 

free range functional or free range fibred mapping space topology. A more 

extensive discussion of this example is beyond the scope of this thesis; we refer 

the reader to [2] for more extensive details. 



Chapter 2 

FINAL TOPOLOGIES I 

g ··X·-+X J J 

2.1 Characterizing the final topology 

In the language of Spanier [19], a final topology on X is said to be coinduced 

by the family of functions and spaces indexed by J. 

Definition 2 Let J be a set and { Xj hEJ be a set of spaces indexed by J. Let 

X be a set and {gj : Xj -+ X}jeJ be as above . Then the corresponding final 

topology on X) denoted :F) consists of all subsets U C X such that gj1(U) 

is open in Xj for all j E J. 

Proposition 2.1 The previous definition describes a well defined topology on 

the set X. 

16 
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Proof: Let :F be the final topology on X with respect to a family of maps and 

spaces {gi: Xi -r X}jEJ· It follows that both 0 and X E :F, since g;t(0) = 0 

and gj1(X) =Xi for all j E J. 

Let {Ui} be a finite family of open sets from :F. Now 

Each gj1 (Ui) is open in each Xj, thus their intersection is open in each space. 

Lastly, take {Ut} as any indexed family of open sets in :F. Now 

Each gj1(UL) is open in each Xj for all j. It follows UL gj1(UL) is open in each 

Xj. Thus all the necessary conditions are satisfied and the final topology is a 

well defined topology. • 

Proposition 2.2 If X has the final topology, then the functions {gJliEJ are 

continuous. 

Proof: The result follows from definition 2. • 
We can utilize a closed set definition of this topology. Let us denote such 

by :F'. That is, a set CCX is closed in :F' only when each gj1(C) is closed in 

the corresponding space Xj. Some useful final topologies discussed in chapter 

three utilize a closed set definition of a final topology. 

Proposition 2.3 :F' is a well defined topology in the closed set sense. 
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Proof: Assume the closed set definition of this topology. Both 0 and Xj are 

closed in Xj for all j E J. Hence, both 0 and X E F'. 

Let { Ci} be any finite family of non-empty closed sets from :F'. Now 

Recall that each gj1
( Ci) is closed in each Xj for all j. Consequently any finite 

n 

union of such closed sets will be closed in each Xi. Hence U Ci E F'. 

As well, for any any family { C,} 

Now each gt(CL) is closed in each Xj, thus n Lgt (CL) is closed there as well. 

Thereby ensuring that nL CL E F' for any'-· Thus F' is closed under arbitrary 

intersections. Hence F' is a well defined topology. • 
The following proposition establishes a one-to-one correspondence between 

the sets of either collection F and :F'. 

Proposition 2.4 The open and closed set definitions for the final topology on 

X relative to {gj : X i -+ XlJEJ specify the same topology on X. 

Proof: Let X have the final topology relative to {gj : Xj -+ X}JEJ. Then 

for any U C X 

UE:F 

-{::} gj1(U) is open in each Xj 

-{::} Xj \gj 1 
( U) is closed in each Xj 

-{::} gj 1(X\U ) is closed in each Xi 

-{::} X\ U E :F'. 
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Thereby establishing the necessary correspondence between the topologies F 

andF'. • 
It is possible to prove several results which characterize the topology of 

this chapter. Consider a Universal Property for Final Topologies. 

Proposition 2.5 : Universal Property of Final Topologies 

Given a set X with the final topology relative to a set of corresponding maps 

and spaces {gj : Xj -+ X}jEJJ and a function f : X -+ Y for some spaceY. 

Then the function f is continuous if and only iff o gj is continuous for all 

j E J . 

Proof: Assume the data. 

Let f : X -+ Y be continuous. From hypothesis each gj is continuous, so 

the composition f o gj is continuous for all j E J. 

Now assume each f o gj : Xj -+ Y is continuous. Let U be open in Y. 

Then(! o gjt1(U) is open in each Xj. Now 

Thus gj1(!- 1(U)) is open in each space Xj. Since X has the final topology 

relative to each continuous gil it follows f- 1(U) is open in X by definition 2. 

Consequently f is continuous. • 
In fact, 2.5 is a characterization of the final topology. Indeed, it has been 

considered an alternative definition for a final topology [7]. The next proposi­

t ion verifies this property is a suitable characterization for such topologies. 

Proposition 2.6 The Universal Property for Final Topologies is a character­

ization for the final topology on a set X. 
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Proof: Let Tl and T2 be topologies on X both satisfying 2.5 for a family of 

mappings {gj : xj --+ XLo· Consider the identity functions lx : XTi --+ x72 

and 1~ : X72 --+ XTi. It follows from 1~ o 9i = 9i and lx o 9i = 9i that 

the identity function is continuous in both directions. Hence Tl = 72, and 

any such topologies satisfying this definition must coincide. Moreover, the 

final topology satisfies the Universal Property for Final Topologies, so any 

topology satisfying 2.5 is coincident with a final topology on X relative to 

{gi : Xi --+ X} iEJ. • 

There is a composition or transitive rule for final topologies. The initial 

terminology is favoured. 

Proposition 2. 7 : Composition Rule for Final Topologies 

Let each set Xj have a final topology relative to { hk : Xk --+ Xi hEI<; for all 

j E J. Then the final topology on X relative to {gj : Xj --+ XJio coincides 

with the final topology on X relative to {gj 0 hk : xk --+ XLEJ,kEKj. 

Pmof: Let X have a final topology relative to the {gj : Xj --+ X}Jo and let 

each Xj the final topology relative to the { hk : xk --+ xj hEKj' Let u be an 

open subset in X. Then gj 1(U) is open in each Xi · It follows that hT: 1 (gj 1 (U)) 

is open in Xk. Now hT:1(gj 1(U)) = (gj o hkt 1 (U) for all j E J and all k E Kj, 

then U is open in the final topology on X relative to {gj o hk} jEJ,kEKJ' This 

argument is reversible, thereby ensuring the desired result. • 
A result which mirrors 1.6 can be proven. It is shown that if a coinducing 

family of maps can be factored through a family of spaces then a final topology 

coinduced by that family of spaces coincides with the original final topology. 
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Proposition 2.8 : Decomposition Rule for Final Topologies 

Let X have a final topology relative to {gj : Xi -+ X}jEJ· Let there be 

a family of spaces {1'j LeJ and families of mappings {hi : Xj -+ Yj LeJ and 

{ki : Yj -+ X}jEJ such that 9i = kj o hi for all j E J. Then X has a final 

topology relative to { kj : Yj -+ X}JeJ. 

Proof: It will be proven that { kj : Yj -t X} satisfies 2.5. Let f : X -+ Z be 

a function for an arbitrary space Z. 

Suppose that f is continuous, then f o kj : Yj -t Z is continuous for each 

j E J. 

Now suppose that each f o kj : Yj -t Z is continuous for each j E J. Then 

(! o kj) o hj : Xj -t Z is continuous. Moreover 

Hence f is continuous by 2.5. The result follows by 2.6. • 
Finally a namesake property for this type of topology. 

Proposition 2.9 The final topology is the finest topology on X ensuring that 

each gj : Xj -+ X is continuous on X relative to {gj : Xj -+ X} 

Proof: Let T be some other topology on X such that each 9i is continuous. 

Consider the identity function on X, lx :X;:-+ Xr . Each composite lxogj = 

9i where each 9i is continuous, then 2.5 guarantees the continuity of lx . Thus 

any set open in 7 has an open preimage under the identity map in X with 

the final topology, i.e. T C :F. • 
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There are several final topology constructions to characterize using these 

general results. They are examined here and in chapter three. Particular 

attention is devoted to a non-standard product space topology toward the end 

of the third chapter. It will be employed in the chapters four and five. 

2.2 Final-inverse topology 

The final-inverse topology is the basic example of a final topology. Given any 

function g: X -t Y, a final topology can be coinduced on Y for any arbitrary 

space X. 

Characterization 2.10 Let X be a space, let Y be a set and let g : X -t Y 

be a function. The following conditions each determin e precisely the same 

topology on Y: 

{i) Y carries the final topology relative tog : X -t Y, z.e. if U C Y , then 

U is open in Y if and only if g-1(U) is open in X, 

(ii) Let C C Y, then C is closed in Y if and only if g-1 (C) is closed in X , 

{iii) Universal Property: Given any space Z and any function f : Y -t Z , 

then f is continuous if and only iff o g is continuous, 

(iv) Y has the finest topology such that g is continuous. 

Proof: Proposition 2.4 ensures (i){:?(ii) and 2.6 guarantees (i) {::? (iii). Then 

(i) {::? (iv) is verified by 2.9. • 
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The unique topology of this last theorem satisfying conditions (i)-(iv) is 

called the final-inverse topology. The following commutative diagram illus­

trates the universal property of this last characterization. 

z 

Jog 
f 

X y 
g 

2.3 Identification topology 

This final topology is coinduced on Y by a surjective function p: X -t Y. In 

this context, p is known as an identification and the topology on Y is called 

the identification topology. Note that the identification topology is a specific 

case of the final-inverse topology, where g is a surjective function. 

Characterization 2.11 Let X be a space} Y be a set and p : X -t Y a 

surjective function. The following conditions each determine precisely the same 

topology on Y : 

(i) Y carries the final topology relative to the surjection p : X -t Y J i .e. if 

U C Y J then U is open in Y if and only if p- 1(U) is open in X } 

(ii) Let C C YJ then C is closed in Y if and only if p- 1(C) is closed in X } 

(iii) Universal Property: Given any space Z and any fun ction f: Y -t Z ) 

then f is continuous if and only iff o p is continuous) 
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(iv) Y has the finest topology such that p is continuous. 

Proof: Similar to 2.10. • 
The unique topology of this last theorem satisfying conditions (i)-(iv) is 

called the identification topology. The following commutative diagram illus­

trates the universal property of the previous characterization. 

z 

f op 
f 

X y 
p 

A composition rule and a decomposition rule can be readily justified by 2.5 

in this context. 

Proposition 2.12 Let W 1 X and Y be spaces1 and let p : W ---1- X and 

q : X ---1- Y be identifications. Then q o p : W ---1- Y is an identification. 

Proof: It is necessary to show that 2.11 (iii) is satisfied. Let f : Y ---1- Z be a 

function and Z be an arbitrary space. 

Suppose that f is continuous, then f o ( q o p) : W ---1- Z is continuous. 

Now suppose that f o (q o p) = (f o q) o p is continuous. Then f o q is 

continuous by 2.11(iii); since pis an identification. It follows f is continuous 

by 2.11(iii); since q is an identification. Hence 2.11(iii) is satisfied for q o p, i.e. 

q o p : W ---1- Y is an identification. • 
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Proposition 2.13 Let Y have the identification topology relative top : W --7 

Y. Suppose there is a space X and maps g : W --7 X and q : X --7 Y such 

that p = q o g. Then Y has the identification topology relative to q : X --7 Y. 

Proof: For any point y E Y t here is a point go p- 1(y) E X such that 

q o go p-1(y) = y. Thus q is surjective. It will be proven that q : X --7 Y 

satisfies 2.11(iii). Let f : Y --7 Z be a function for an arbitrary space Z. 

Suppose that f is continuous, then f o q: X --7 Z is continuous. 

Now suppose that f o q: X --7 Z is continuous. Then(! o q) o g: W --7 Z 

is continuous. Now 

(! 0 q) 0 g = f 0 ( q 0 g) = f 0 p, 

and f is continuous by 2.ll(iii) for p. The result follows by 2.ll(iii). • 

2.4 Quotient topology 

The quotient topology is a specific type of identification topology. One must 

be careful when reading the literature. We need only look to the exposition of 

Bourbaki [6) concerning identification spaces to verify this last point! 

A quotient topology is constructed by defining an equivalence relation on 

an arbitrary space X. It is then possible to coinduce a final topology relative 

to the natural projection of X into its equivalence classes. Such a projection 

is surjective, thus ensuring the validity of our earlier statement relating iden­

tifications. We prove this notion formally after characterizing this topology 

and illustrating its universal property. 
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Characterization 2.14 Let X be a space, let X(R be a set of equivalence 

classes of X under an equivalence relation R, and let 1r : X -4- X(R be the 

projection of X into the corresponding equivalence classes. The following con­

ditions each deteTmine precisely the same topology on X (R: 

(i) X(R carries the final topology relative to the projection 1r : X -4- X(R, 

i.e. if U c X/R, then U is open in X/R if and only if 1r-
1 (U) is open 

in X , 

(ii) Let C c XjR, then C is closed in X/R if and only if 1r-
1(C) is closed 

in X, 

(iii) Universal Property: Given any space Z and any function f : X / R -4-

Z, then f is continuous if and only iff o 7r is continuous, 

(iv) x;n has the finest topology such that 7r is continuous. 

Proof: This is a special case of 2.11 with p = 1r and Y = X(R. • 

The unique topology of this last theorem satisfying conditions (i)-(iv) is 

called the quotient topology. The following commutative diagram illustrates 

the universal property of the Characterization 2.14. 

z 

f 

X ----X/R 
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Proposition 2.15 Let Y have the identification topology coinduced by p : 

X --1- Y for an arbitrary space X and surjection p. Define a relation R on X by 

x 1 "'x2 if and only if p(xt) = p(x2). Let 1r : X --1- X/R be the projection of X 

into classes, where (x] denotes the equivalence class of x. Define(}: Y --1- XjR 

by (}(y) = (x] for y = p( x). Then (} is a homeomorphism such that (} o p = 1r . 

Proof: Clearly R is a well defined equivalence relation, i.e. it is reflexive, 

symmetric, and transitive. Moreover, (} is bijective. 

Now(} o p(x) = (x] = 1r(x), so(} o p = 1r. Since 1r is continuous, it follows 

() o p is continuous . Then () is continuous by 2.11(iii). Since (} is a bijection 

e-1 exists. Now p = e-1 o () o p, t hus p = e-1 o 1r. Since p is continuous, the 

composite e-1 o 1r is continuous. Then e-1 is continuous follows from 2.14(iii). 

Consequently () is a homeomorphism such that () o p = 1r. • 

2.5 Sum topology 

The sum topology is a final topology coinduced upon the set X = U Xi for 
j 

a family of disjoint sets Xj, where J is an arbitrary indexing set. This final 

topology is coinduced by a family of inclusions of disjoint topological spaces, 

ii: Xi y. X. 

Characterization 2.16 Let {Xi} jEJ be a family of disjoint spaces, let X be 

the set given above, and let { ij : Xj '--+ XlJeJ be a family of inclusions. The 

following conditions each determine precisely the same topology on X: 
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(i) X carries the final topology relative to the inclusions { ij : Xj -t X} jEJ, 

i.e. if U c X, then U is open in X if and only if i"t(U) is open in X i 

forallj, 

(ii) IfC C X, then Cis closed in X if and only ifij1(C) is closed in Xj for 

all j, 

(iii) Universal Property: Given any space Y and any function f : X -t 

Y, then f is continuous if and only iff o i1 : Xj -t Y is continuous for 

all j, 

(iv) X has the finest topology such that ij is continuous for all j. 

Proof: Similar to 2.10. • 
The unique topology of this last theorem satisfying conditions (i)-(iv) is 

called the sum topology. In the case of the sum of just two spaces the universal 

property is illustrated by the following commutative diagram. 

z 

f 

2.6 Adjunction space topology 

Intuitively, an adjunction space is formed from attaching two disjoint spaces 

by identifying a closed subset of one space with a subset of the other space. 
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It is possible to describe this space as a type of identification space (7], or 

by using a quotient topology (14]. Another approach which utilizes simpler 

inducing spaces is favoured here. However, the quotient topology approach is 

highlighted due to its frequency in the literature. 

Consider two disjoint spaces X and Y. Suppose there is a map f : A -r Y 

where A is some closed subspace of X. We can define an relation"' on XU Y 

by x "' y if and only if x E A and f ( x) = y. Now "' generates the equivalence 

relation R. Set X u 1 Y :=Xu Y/R. The projection 1fJ: XU Y -r X UJ Y is 

surjective. Then it is possible to give X u1 Y the quotient topology relative to 

7f 1. Alternatively, let us take into account the inclusions ix : X c.......t XU Y and 

iy : Y c.......t XU Y. It is possible to realize a final topology on X Uf Y where the 

coinducing functions are taken as the compositions 7f f o ix and 7f f o iy, and X 

andY are coinducing spaces. Note that the compositions 1fJoix and 1fJo i y are 

each continuous. Moreover, 1r1oiy is injective and 1r1 oix is injective whenever 

f is injective. The following commutative diagram describes the situation. 
A y 

f 

z 7f f o Zy 

x xu1 Y 
7f f 0 zx 

Our approach to adjunction spaces coincides nicely with the quotient topol-

ogy approach. 

Proposition 2.17 The final topology on X U f Y relative to 7f f o ix : X -r 

X U f Y and 7f f o iy : Y -r X U f Y coincides with the final topology on X U f Y 

relative to 1fJ: XU Y -r X UJ Y. 
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Proof: The result follows from 2.7 with h1 = ix, h2 = iy and g = 1rJ· • 

Characterization 2.18 Let X andY be disjoint spaces, let f: A-+ Y be a 

map for some closed subset A in X and let rr f, ix and iy be the maps defined 

above. The following conditions each determine precisely the same topology on 

X Uf Y: 

(i} X u1 Y carries the final topology relative to 1rJ o ix :X UJ Y-+ X and 

1r f o iy : X U f Y -+ Y, i.e. if U C XU f Y , then U is open in XU f Y if 

and only if ( 1r f o i x )- 1 ( U) is open in X and ( 1r f o i y )-1 
( U) is open in Y, 

(ii) Let C C XU 1 Y, then C is closed in XU f Y if and only if ( 1r 1 o i x )-1 (C) 

is closed in X and (rr1 o iv)- 1(C) is closed in Y , 

{iii} X U f Y carries the final topology relative to 7f f : X U Y -+ X U 1 Y, i.e. 

if U C X UJ Y, then U is open in X UJ Y if and only if rrj 1(U) is open 

in XU Y, 

(iv} Let C C X UJ Y, then C is closed in X Uf Y if and only if rrj 1(C) is 

closed in XU Y, 

(v} Universal Property: Given any space Z and any function g : X UJ 

Y -t Z, then g is continuous if and only if g o ( 7f 1 o ix) : X -+ Z and 

go ( rr 1 o iy) : Y -+ Z are continuous, 

(vi} XUJ Y has th e fin est topology SUCh that 1fJOix and 1fJOiy are COntinUOUS. 

Proof: It follows from 2.4 that (i){:}(ii) and (iii){:}(iv). Proposition 2.17 

ensures (i)~(iii), 2.6 guarantees (i)~(v), and 2.9 provides that (i)~(vi). • 
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The unique topology satisfying conditions (i )-(vi) of this last theorem is 

called the adjunction space topology. The following commutative diagram is 

illustrative of the universal property in the context of Characterization 2.18. 

A XU1 Y 
f 

7r j o Zy 

z 
A topological sum of two spaces can be described in terms of an adjunction 

space topology. Take A = 0 C X and consider the empty map ¢ : 0 -+ Y. 

Then X U0 Y = X U Y. 

2. 7 Wedge space topology 

Let { Xj, x0J jEJ be an indexed family of disjoint topological spaces with base 

points. A wedge product or one-point union [14], is formed by identifying each 

base point Xoj to a single point Wo within uj xj with the sum topology. In 

this situation, the underlying set is taken as 

V Xj = U(Xj\{xoJ) U {w0 }. 

j j 

Define a projection r..p : Ui Xi -+ Vi Xi by 

r..p(x)= { x 
wo 

x E Xj \{xoJ , 

x ~ Xj\{xoi }. 
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The wedge space topology is the final topology on V j Xi coinduced by com­

posites { cp o ii :Xi -+ Vj XihEJ where {ii :Xi Y Uj Xiho is the family of 

inclusions. However, it is possible to characterize it in a different manner. 

Proposition 2.19 The final topology on Uj Xj relative to cpoij: Xj-+ V X j, 

for all j E J, coincides with the final topology on V Xj relative to cp : Uj X j -+ 

v jxJ. 

Proof: The result follows from 2. 7 with g = cp and hj = ij for all j. • 

Characterization 2.20 Let {(Xj, x0J}JEJ be a family of disjoint spaces with 

base points, let X = V Xi, and let ij : Xj -+ U Xj and cp : U Xj -+ Vi Xi be 

as defined above. The following conditions each determine precisely the same 

topology on X: 

(i) X carries the final topology relative to the composites cp o ij : Xj -+ X, 

i.e. if U C X, then U is open in X if and only if (cp o ij)- 1(U) is open 

in Xj for all j, 

(ii) If C C X, then C is closed in X if and only if ( cp o i j) -l (C) is closed in 

Xj for all j, 

(iii) X carries the final topology relative to the composites cp : Uj Xi -+ X, 

i.e. if U C X, then U is open in X if and only if cp- 1 (U) is open in 

ujxj, 

(iv) If C c X, then C is closed in X if and only if cp-1 (C) is closed in Ui Xj, 
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(v) Universal Property: Given any space Z and any base point preserving 

function f : X -+ Z, then f is continuous if and only iff o ( <p o i j) is 

continuous for all j, 

(vi) X has the finest topology such that <p o ij is continuous for all j. 

Proof: Proposition 2.19 ensures (i)~(iii). The remaining details of the proof 

are similar to 2.18. • 

The unique topology satisfying conditions (i)-(vi) is called the wedge space 

topology. In this new space V Xj, each Xj retains its original topology. In 

the case of two spaces, the universal property is illustrated by the following 

commutative diagram. All maps are taken as base point preserving in this 

situation. 

z 

f 

The wedge of two spaces can be expressed in terms of an adjunction space 

topology. Take A= { *} C X and the basepoint preserving map f: { *}-+ Y, 

then X V Y = X U f Y. 
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2.8 Union of an expanding sequence of sub-

spaces 

Let J be a set of non-negative integers and {Xj} be a sequence of spaces 

such that the predecessors of each space in the sequence are its subspaces, 

i.e. X 1 c X 2 c X 3 c .... Take the set X to be Ui Xj, i.e. the union of 

the underlying sets of the spaces X 1 , X2 , X3 , . . .. A final topology on X is 

realized by taking {XJ as the family of coinducing spaces and coinduce a 

final topology via inclusions { ij : Xj '-+ X}jo . 

Characterization 2.21 Let {Xj}jEJ be an expanding sequence of subspaces, 

let X = Ui Xi and let { ii : Xi '-+ X}J0 be the family of inclusions. The 

following conditions each determine precisely the same topology on X: 

(i) X carries the final topology relative to the inclusions ij : Xj -t X, z. e. 

if U C X, then U is open in X if and only if i"j1(U) is open in Xj for 

all j, 

(ii) If C C X, then C is closed if and only if ij1 (C) is closed in Xj for all 

), 

(iii) Universal Property: Given any spaceY and any function f :X -t Y, 

then f is continuous if and only iff o ij = f iXi is continuous for all j, 

(iv) X has the finest topology such that ij is continuous for all j. 

Proof: Similar to 2.10. • 



CHAPTER 2. FINAL TOPOLOGIES I 35 

In the case of a union of an expanding sequence of subspaces, notice the 

universal property takes a form similar to that for the topological sum of 

a denumerable family of spaces. The universal property in this case being 

illustrated by the familiar commutative diagram. 

Xi '----------..... 
2j 

f 

z 

X 



Chapter 3 

FINAL TOPOLOGIES II 

3.1 A useful local property 

There is a desire for a nicer form of compactness and Hausdorffness. It is 

possible to consider every point in a space to be contained in a compact and 

Hausdorff neighbourhood. 

Definition 3 A topological space X is locally compact-Hausdorff if for 

any neighbourhood, Nx, of each x E X there is an open set U C X such that 

U is both compact and Hausdorff where x E U C U C Nx · 

The reader should note that if X is a Hausdorff space, then the locally 

compact-Hausdorff and locally compact and Hausdorff concepts coincide. Ev­

ery locally compact and Hausdorff space is locally compact-Hausdorff, but in 

general the converse is false. Consider the following nontrivial counterexample 

of a locally compact-Hausdorff space. 

36 
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Example 3.1 Let X= (-oo,O) U ([O,oo)x{1}) U ([O,oo)x{2}). 

X 
[O ,oo)x{2} 

( -oo, 0) 

[O,oo)x{1} 

A basis for the open sets of X is given by sets of the following three types: 

(i} (a,{3) with a< {3::; 0, 

(ii) (a,O) U ([0,{3) x{i}) with a< 0, {3 > 0 fori= 1 and 2, 

(iii) (a,{3) x{i} with 0 < o: < {3 fori= 1 and 2. 

For any point x E X there is an open subset U containing x such that [J is 

compact and Hausdorff. About the point (0, 1) take U = ( -t:, 0) U ([0, t:)x{1}) 

for any t: > 0. Then [J = [- t:, 0) U ([0, t:] x {1} ). Thus X is locally compact­

Hausdorff. 

Clearly X is not compact, but it is locally compact. For any neighbourhood 

V C X, V is a compact subset of X. Since there are no disjoint open sets 

containing the points (0, 1) and (0, 2), it follows that X is not Hausdorff. 

Thereby confirming our earlier assertion of a false converse. 

3.2 k-space topology 

The older theory of k-spaces is mentioned briefly before studying compactly 

generated spaces in greater detail. 
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In this section there is deviation from denoting the topology of a space with 

a subscript. The original theory of k-spaces is based on a definition which is 

reminiscent of final topologies. Consider a standard definition [23]. 

Definition 4 X is a k-space provided the following condition is satisfied: A C 

X is closed if and only if An I< is closed in I< for each compact subset I< C X. 

This definition is quite comparable to a characterization of a final topology on 

X. 

Characterization 3.1 Let X be a space, let {Ka}aEA be the family of com­

pact sub spaces of X and let { ia : I< a Y X} be the family of inclusions of these 

subspaces into X. The following conditions each determine precisely the same 

topology kX on the set X: 

(i) kX carries the final topology relative to the inclusions ia : I< a Y X, i.e. 

if U C X, then U is open in kX if and only if i ·;/ ( U) is open in I< a for 

all a, 

(ii) If CCX, then C is closed in kX if and only if i·;/(C) is closed in I<a 

for all a, 

(iii} Universal Property: Given any space Y and any function f : kX -t 

Y , then f is continuous if and only iff o ia is continuous for all a, 

(iv) kX has the finest topology such that ia is continuous for all a. 

Proof: Similar to 2.10. • 
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The unique topology satisfying conditions (i)-(iv) of this last theorem is 

called the k-space topology. The universal property for k-spaces is illustrated 

in the next section. A space X endowed with the above k-space topology is 

denoted by kX. In practice, X is a k-space if X ~ kX. Moreover, kX is 

always a k-space. This last fact is proven next. 

Proposition 3.2 In general, kX ~ kkX. 

Proof: There is the following diagram which commutes: 

Ka Ka C kX 
1Ka 

kX kkX 
1 

The result follows from Characterization 3.1(iii) and the fact that identity 

1Ka is a homeomorphism for all o:. • 
This section concludes with a nice result similar to a theorem of Kelley [16]. 

A contrapositive method is employed to prove sufficiency for Characteriza­

tion 3.l(ii). 

Proposition 3.3 If X is locally compact-Hausdorff then X is a k-space . 

Proof: Let C be closed in X where X is a locally compact-Hausdorff space. 

Then i~ 1 (C) = C n I<a is closed in each I< a by the continuity of each i 0 • 

Next we assume that C C X is not closed and will prove that C n Ka is 

not closed in X for some compact K a C X. 
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Assume that C C X is not closed. Then there exists x ~ C which is a limit 

point of C. By definition 3 there exists a compact Hausdorff [! C X such 

that x E U C [! where U is open. Since x ~ C n [! is a limit point of 

this set, it follows that C n [! is not closed. Now [! E CH. Hence, C is 

not closed implies that i~ 1 (C) = C n Ka is not closed in Ka· Consequently 

Characterization 3.l(ii) is satisfied and X is a k-space. • 

3.3 Compactly generated topology 

By using a convention similar to that employed in the k-space section, a suit­

able characterization of compactly generated spaces is realized. Instead of 

coinducing a final topology relative to inclusions of compact subspaces, a fi­

nal topology is coinduced relative to all incoming maps of compact Hausdorff 

spaces. 

Henceforth, let CH be the category of all compact Hausdorff spaces. Now 

coinduce a final topology on any space X by retopologizing X relative to 

the family of functions {ka : K -t X}aEA for all K E CH and all maps 

ka E Map(K, X) for an arbitrary index A. 

Characterization 3 .4 Let X be a space, let CH be the category of all compact 

Hausdorff spaces and let ka E Map(K, X). The following conditions each 

determine precisely the same topology KX on the set X : 

(i) KX carries the final topology relative to mappings kCJt : K -t X, z. e. if 

U C X, then U is open in KX if and only if k;; 1(U) is open inK for all 

K E CH and all a, 
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(ii) If C C X} then C is closed in KX if and only if k;; 1 (C) is closed in I< 

for all I< E CH and all a} 

(iii) Universal Property: Given any space Y and any function f : KX -T 

Y
1 

then f is continuous if and only iff o ka is continuous for all a 1 

(iv) KX has the finest topology such that ka. is continuous on each I< E CH 

for all a. 

Proof: Similar to 2.10. • 
The unique topology satisfying conditions (i)-(iv) described above is called 

the compactly generated topology on X or cg-ification of X, and is denoted by 

KX. A space X will be said to be a compactly generated space or cg-space 

if X ~ KX. The universal property commutative diagram in this instance 

closely resembles that of the past examples. 

z 

f 

J{ --- - - KX 
kQ 

The universal property for k-spaces is illustrated by the diagram above 

when J{ C X is compact and ka. = ia for all a. 

Proposition 3.5 In general} KX ~ KXX. 

Proof: The following diagram commutes: 
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K ----KcKX 
1g 

KX----KKX 
1 

42 

The result follows from 3.4(iii) and the fact that identity 1K is a homeomor-

phism for all K E C1-l. • 

Proposition 3.6 The identity function 1 : KX ~ kX is continuous. 

Proof: Let X be an arbitrary space. For any K E C1-l and ka E Map(K,X), 

ka(K) is a compact subspace in X. Then the diagram below commutes: 

K 

KX----- kX 
1 

It follows from 3.1(i) that ia : ka(K) <-7 kX is continuous for each K E C1-l 

and each ka E Map(K, X). Thus each composite ia o ka is continuous for all 

a; whence 1 o ka : K ~ kX is continuous for all ka. Hence 3.4(iii) ensures 

that 1 : KX -t kX is continuous. • 
Proposition 3. 7 Let X be Hausdorff. Then the identity function 1 : kX ~ 

KX is continuous. 
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Proof: Assume that X is Hausdorff. Let A be a compact subspace of X, 

then the following diagram commutes. 

A A 

kX---- KX 
1 

Now A is a compact Hausdorff space, by 3.4(i) ko: is continuous. Thus each 

composite ka o 1A is continuous. Hence 1 o io: : A ~ KX is continuous. It 

follows by 3.1(iii) that 1 : kX ~ KX is continuous. • 

The two previous propositions justify the following result. 

Proposition 3.8 Let X be Hausdorff then X is a k-space if and only if X is 

a compactly generated space. 

Proof: The result follows directly from 3.6 and 3.7. • 
Proposition 3.9 In general} the identity function: 1x : KX ~X is continu-

ous. 

Proof: Let X be an arbitrary space. Consider the identify function lx : 

KX ~ X. Then the following diagram commutes for all K E CH and all 

ka E Map(K, X). 
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X 

lx 

Kcx ------ KX 
kcx 

With respect to this diagram, lx o kcx kcx where each kcx is continuous 

by 3.4(i). Thus each composite lx o kcx : K -+ X is continuous for all K E C1-l 

and all kcx E Map(K, X). It follows by 3.4(iii) that lx : KX -+X is continuous . 

• 
Proposition 3.10 Let X be an arbitrary space and K E CH. Then a function 

k : K -+ KX is continuous if and only if k( = lx o k) : K -+ X is continuous. 

Proof: Assume the hypothesis. 

Let k : K -+ KX be continuous. It follows from 3.9 that lx : KX -+ X is 

continuous. Hence lx o k = k : K-+ X is continuous. 

Let k : K-+ X be continuous. Then from 3.4(i) it follows k : K -+ KX is 

continuous. • 

Let us consider one more result for this section, a special case of the Com­

position Rule for Final Topologies. 

Proposition 3.11 Let X have the final topology relative to {gi : X i -+ X} iEJ, 

where J is an arbitrary set. If each Xj is a cg-space, then X is a cg-space. 

Proof: Now 3.9 gives that lx : KX -+ X is continuous. To verify the 

proposition it is necessary to prove that lx : X -+ KX is continuous. 
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Each Xj has a final topology relative to {ka : I< -t Xj}oEA where I< E CH, 

k"' E Map(K,Xj), and A is an arbitrary index set. Now 9i o k"' E Map(K,X) 

for all j E J and all a E Aj, i.e. each composite is a coinducing map for the 

cg-topology on KX. Hence the following diagram commutes. 

KX 

lx 

I< Xi X 
ka 9j 

It follows from the diagram above that l x o gj o k"' is continuous for all j E 1 

and all a E Aj. Then lx o 9i is continuous by 3.4(iii). It follows that l x is 

continuous by 2.5. Hence the result. • 

3.4 x-product topology 

We shall define a specific final topology on the Cartesian product of two spaces 

and explore some of the more redeeming qualities of such a topology. The 

origin of this product is in (8]. However, the examination contained herein is 

in the more categorical flavour of (5]. 

Let X andY be two arbitrary topological spaces. On the set XxY induce 

a final topology by taking as coinducing maps the inclusions: 

ix : {X} X Y '-+ X X Y 'ilx EX, 

and the maps: 

lx xk: XxK -t X x Y VK E CH, Vk E Map(K, Y). 
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We will denote the inclusion ix simply by i when no confusion can occur. 

Before proceeding with some important results and properties concerning this 

final product topology, consider the usual characterizing theorem. 

Characterization 3.12 Let X andY be arbitrary spaces and let i and 1x xk 

be as defined above. The following conditions each determine precisely the 

same topology on the set X x Y: 

(i) X x Y carries the final topology relative to i : { x} x Y <-+ X X Y and 

1 x x k : X x K -+ X x Y 1 i.e. if U C X x Y 1 then U is open in X x Y if 

and only ifi-1(U) is open in {x} xY for all x EX and (1xxkt 1 (U) is 

open in XxK for all K E CHand all k E Map(K, Y) 1 

(ii) If C C X X Y 
1 

then C is closed in X x Y if and only if i- 1 (C) is closed 

in {x}xY for all x EX and (lxxkt1 (C) is closed in XxK for all 

K E CH and all k E Map(K, Y) 1 

(iii} Universal Property: Given any space Z and any function f : XxY-+ 

Z 
1 

then f is continuous if and only iff o i : { x} X X -+ Z is continuous 

for all x EX and fo(lx xk): XxK-+ Z is continuous for all K E CH 

and for all k E Map(K, Y) 1 

(iv) X has the finest topology such that each i : { x} x Y <-+ X x Y and each 

1x x k :X x K-+ X x Y is continuous for all x and all k. 

Pr·oof: Similar to 2.10. • 
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The unique topology of this last theorem satisfying conditions (i)-(iv) will 

be named the x-pr-oduct topology for reasons which will be made clear in the 

following chapter. Henceforth denote the set XxY with the x-product topology 

by X Xx Y. There is the usual commutative diagram illustrating the universal 

property. 
z 

f 0 i 
f 

fo(lx xk) 

{x} xY ..___ XxxY XxK 
lx xk 

The reader should be made aware that the diagram above commutes for 

all x EX and K E Map( I<, X). First, the x-product is proven to be natural. 

Proposition 3.13 Let A, B, X andY be arbitrary spaces and let f: A----t X 

and g : B ----t Y be mappings. Then the function f Xx g : A Xx B ----t X Xx Y 

is continuous. It is defined by 

(! xx g)(a, b)= (!(a), g(b)) Va E A, Vb E B. 

Proof: A Xx B has the final topology relative to the mappings 

i: {a} x B 4 A Xx B Va E A, 

l Ax k: Ax I<--+ A xx B VI< E CH,Vk E Map(K,B). 

X x x Y has the final topology relative to the mappings 

j:{x}xYe-rXxxY VxEX, 

lx xh : XxK--+ X xx Y VI< E CH, Vh E Map(K, Y). 
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Then the following diagrams commute for all a E A, all K E CH, and all 

k E Map( I<, B). 

{a}xB--
fxg 

So 

{f(a)}xY A xi< XxK 

J lx x (go k) 

(f Xx g) o i = j o (f x g) , and 

(f Xxg) o(lA xk) = [lx x (gok)]o(f x lg). 

Now fxg: {a}xB ----7 {f(a)}xY is continuous and the inclusion j is continuous 

by the 3.12(i). It follows that each composite j o (f x g): {a} x B ----7 X Xx Y is 

continuous for all a E A. In the second diagram each k is continuous by 3.12(i). 

Then the composite [lx x (go k )] o (f x lg) : Ax K ----7 X Xx Y is continuous 

for all K E CH and all k E Map(!{, B). Hence all mappings (f X x g) o i and 

(f Xx g) o (lA x k) are continuous. It follows by 3.12(iii) that the function 

f Xx g: A X x B ----7 X Xx Y is continuous. • 

Commutativity and associativity of the x -product are examined next. 

Proposition 3.14 The natural projections 1rx :X Xx Y ----7 X and 7ry :X Xx 

Y ----7 Y are continuous. 

Proof: Let XxY have the x-product topology. Then the following diagrams 

are commutative for all x EX, all K E CHand all k E Map(K, Y). 
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X 

7rx 

{x}xY ...__ XxxY Xx[{ 
l x x k 

y 

'Try 
'Try 

{x } xY ...__ XxxY Xx[{ 
lx x k 
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The four functions 1r x : { x} x Y -+ X, 1r x : X x [{ -+ X, 'Try : { x} x Y -+ Y, 

and k o 7rK : X x [{-+ Y are continuous. The continuity of 1rx and 7ry follows 

by 3.12(iii) . • 
Lemma 3.15 Let X be a non-empty space. The natural projection 'Try :X Xx 

Y -+ Y is an identification. 

Proof: It can be shown that 7ry satisfies 2.11(iii). Let f : Y -+ Z be a 

function into an arbitrary space Z . Suppose f is continuous, then J o 1ry : 

X Xx Y-+ Z is continuous. Now suppose that f o 1ry is continuous. Then f 

is the composite Y ~ { x} x Y '-t X x x Y -+ Z which is continuous for each 

x E X. It follows that 7ry is an identification. • 

Proposition 3.16 If X is an arbitrary space then X Xx { *}~X. 
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Proof: Proposition 3.14 provides for the continuity of 1r x : X x x { *} -T X 

when Y = { * }. Clearly 1rx is bijective in this situation. It is necessary to 

prove that 1rx is an open mapping in order to show it is a homeomorphism. 

Let V = V x { *} C X x x { *} be a non-empty open set for appropriate non­

empty V C X. Then it follows from 3.12(i) with K = { *} and k = 1{*} that 

(1xk)-1(V) = Vx{*} is open in Xx{*}. Thus Vis open in X by 1.10(i ). 

Consequently 1rx is an open mapping. Hence it is a homeomorphism. • 

It will be shown shortly that the x-product is not necessarily commutative. 

However, it is possible to prove a two sided identity. 

Proposition 3.17 IfY is an arbitrary space then{*} Xx Y ~ Y. 

Proof: Let Y be an arbitrary space, from 3.14 with X = { *} it follows 

that 7ry is continuous. The bijective nature of 7ry can be verified easily. Let 

U = { *} x U C { *} x x Y be open for an appropriate U C Y. It follows that 

{*}xU is open in { *} x Y by 3.12(i) and that U is open in Y from 1.10(i). 

Therefore 1ry is an open mapping, thus it is a homeomorphism. Hence the 

result. • 
Under certain conditions the x-product coincides with the S-product topol­

ogy of Brown including cases where the latter is known to be non-commutative. 

Definition 5 Let X and Y be Hausdorff spaces. The S-product topology is 

the final topology coinduced on the set X x Y by all mappings of the form 

i:{x} x Ye-rX x Y VxE X , 

1xxiB : X x B <-r X x Y VB C Y with B compact . 



CHAPTER 3. FINAL TOPOLOGIES II 51 

For specific details concerning this product the reader is referred to [8]. 

Proposition 3.18 The identity function 1 :X Xx Y --7 XxsY is continuous. 

Proof: The following diagrams commute for all x E X, K E CH, and 

k E Map(K, k(K)). 

{x}xY ---+ 

1 

{x}xY 

XxsY 

XxK Xxk(K) 
lx xk 

lx xk lx X ik(K) 

XxsY 
1 

The remaining details of the proof are similar to that of 3.6 and follow from 

the commutative diagrams above and from 3.12(iii). • 
Proposition 3.19 If Y is Hausdorff then the identity function 1 :X XsY --7 

X Xx Y is continuous. 

Proof: The following diagrams commute for all x E X and for all compact 

B~Y. 

{x}xY - - -+ 
~ 

{x} x Y 

~ 

XxsY - --X xx Y 
1 

XxB 

X x sY 

XxB 

---+-X xxY 
1 
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The remaining details of the proof are similar to that of 3. 7 and follow from 

the commutative diagrams above and 2.5 for the S-product . • 
The following proposition can be justified quite easily. 

Proposition 3.20 Let Y be Hausdor.ft then X xx Y ~X x sY. 

Proof: The proof follows from 3.19 and 3.18. • 
Now suppose that X is a compact Hausdorff space, and 1 is an uncountable 

discrete space. Then corollary 6.5 of [8] shows that the natural map of X XsRJ 

and RJ x sX is not a homeomorphism. Hence it follows that in general the 

x-product topology is not commutative. 

There are still more useful propositions to be proved. 

Proposition 3.21 The identity function 1 : X x x Y -+ X x Y is continuous . 

Proof: The result follows by way of 3.12(iii) since 1 o i = i and 1 o (1x x k) = 

1x xk. Alternatively, the result follows immediately from 3.14 and 1.10(ii). • 

A nice result pertaining to the preservation of Hausdorffness under the 

x-product topology can be proven. 

Proposition 3.22 If X andY are Hausdorff spaces then X Xx Y is a Haus­

dorff space. 
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Proof: Let (x,y),(x',y') EX Xx Y be two arbitrary points. Since X and 

Y are Hausdorff there exists open subsets x E U C X and x' E U' C X such 

that U n U' = 0; and y E V c Y and y' E V' c Y such that V n V' = 0. 

Then U x V and U' x V' are two subsets of X x x Y containing ( x, y) and ( x', y') 

respectively, such that (U x V) n (U' x V') = 0. Proposition 3.21 ensures that 

these two sets are open in X x x Y. Hence X x x Y is Hausdorff. • 

Proposition 3.23 In general1 the identity function 1xxY : K(XxY) -+X xxY 

is continuous. 

Proof: All mappings k : K -+ K(X X Y) where K E CH are of the form 

k =(!,g), where f: K-+ X and g: K-+ Yare continuous by 3.10. Then 

there is the following commutative diagram. 

K XxK 
(!, 1K) 

k=(f,g) 

K(XxY) 

1x xg 

---..X X x Y 
1 

From the diagram above 1 o k = (1x x g) o (!, 1K ). It follows from 3.12(i) 

that (lx x g) is continuous for all K. Both f and 1g are continuous therefore 

(!, 1g) : /{ -+ X x K is continuous for all K E CH. Hence the composite 

(1x x g) o (!,1K) is continuous. It follows 1 o k: /{ -+ X Xx Y is continuous, 

thus 1: JC(XxY)-+ X Xx Y is continuous by 3.4(iii) . • 

Proposition 3.24 If X x Y is a cg-space1 then X x Y ~ X X x Y. 
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Proof: Let X and Y be arbitrary spaces. It follows from 3.21 and 3.23 that 

there is a short chain of continuous identities. 

JqXxY) ~X xx Y ~ XxY. 

If XxY is a cg-space, i.e. JqXxY) ~ XxY. Thus 1: XxY-+ JqXxY) is 

continuous. Hence X xY ~X Xx Y. • 
Thus the x-product topology coincides with the standard product topology 

when spaces are compactly generated. However, it is possible to get the above 

result with weaker assumptions concerning X x Y. 

Proposition 3.25 JfY is locally compact-Hausdorff, then XxY ~X Xx Y. 

Proof: Let Y be locally compact-Hausdorff and X be an arbitrary space. 

We show the identity function 1 : X x Y -+ X x x Y is continuous. Select a 

point y E Y. By definition 3 there exists an open subset Vy C Y about y 

such that Vy is a compact and Hausdorff subset of Y. Then the composite 

j = (1 x k) o i : X x Vy ~ X x Vy -+ X x x Y is continuous, since the inclusion 

i is continuous. As well, 1 x k is continuous by 3.12(i). 

Let u c X Xx y be open, then j - 1(U) = u n (X X Vy) c X X Vy is open. 

All subsets of the form X x Vy for each y E Y are an open covering of X x Y. 

Moreover 

u = U u n (X x Vy), 
yEY 

where each U n (X x Vy) is open in X x Y . Since U is an arbitrary union of 

open sets in XxY, it is open in XxY. So any open subset in X Xx Y is open 

in X x Y, thus 1 :X x Y-+ X Xx Y is continuous . 
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Clearly it is bijective and its continuity in the reverse direction follows from 3.21. 

Consequently the identity function is a homeomorphism, that is, X x Y ~ 

X xxY. • 

By considering the previously mentioned chain it is possible to derive a 

result similar to 3.10. 

Proposition 3.26 Let [{ E CH and f : [{ ---+ Kf.._X X Y) be a function, then 

the following conditions are equivalent: 

(i) f : K ---+ X x x Y is continuous1 

(ii) f : K---+ X x Y is continuous1 

(iii) J : K ---+ Kf,_ X x Y) is continuous. 

Proof: Assume (iii) , then (i) follows by 3.23. Proposition 3.21 ensures (i) ::::} 

(ii) and 3.10 provides (ii) ::::} (iii). • 

The standard exponential law is employed to establish a useful lemma 

concerning the commutativity of the final topology and a specific product 

topology. We use this lemma to prove the associativity of the x-product. As­

sume for the time being that any function space has the compact-open topology 

(see section 4.1 for further details concerning the exponential law and proper 

definitions). Let X and Y be Hausdorff, Z be arbitrary, and additionally sup­

pose that Y is compact. Then there is a homeomorphism Map( X x Y, Z) ~ 

Map( X, Map(Y, Z)) given by the rule f "-"+ f' where J(x, y) = f'(x)(y) for all 

x EX and all y E Y. 
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Lemma 3.27 Let J be an indexing set and let X have the final topology rel­

ative to a family of functions {gj : Xj --+ X}iEJ. Also) let K be a compact 

Hausdorff space and let lg : K --+ K be the identity function on K. Then the 

product topology on X x K coincides with a final topology relative to the family 

of functions {gj x lg : Xj x K--+ X x K}jeJ· 

Proof: Let Z be an arbitrary space and cp : X xI< --+ Z be a function. It 

will be proven that ¢ is continuous if and only if each composite ¢ o (gj x lg) : 

Xj x K --+ Z is continuous for each j E J. Under the exponential law, if¢ is 

continuous there is a corresponding map ¢' :X --+ Map( I<, Z) such that 

¢(x,y) = ¢'(x)(y) Vx EX, Vy E Y. 

For a continuous map Oj : Xj --+ Map(K, Z) there is a corresponding map 

() j : Xj x J{ --+ Z such that for each j E J 

Assume that ¢is continuous. Recall that the hypothesis gives that lg and 

each 9i is continuous for all j. It follows that each composite ¢ o (gj x lg) : 

Xj x K --+ Z is continuous for j E J. Set ()j = ¢ o (gj x lK ). Next, let ()i be 

continuous for each j E J. Under the exponential law, there is a continuous 

map Oj : Xj --+ Map(K, Z) defined appropriately. Now 

for all Xj E x j and all k E I<. It follows by 2.5 that ¢' : X --+ Map( I<, Z) is 

continuous. 
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Apply the exponential law to ¢' and we see that ¢ : X x I< -t Z is continuous. 

Hence X X I< has a final topology relative to the family {gj X 1K : xj X I< -t 

X X I<} jEJ by 2.6. • 

Proposition 3.28 The x-product topology is associative. Given arbitrary 

spaces X 1 Y, and Z then (X Xx Y) Xx Z ~X Xx (Y Xx Z). 

Proof: Lemma 3.27 and 2. 7 permit a description of the final topologies on 

(X Xx Y) Xx Z and X Xx (Y Xx Z) in the following manner. 

(X Xx Y) Xx Z has the final topology relative to the mappings 

ixXiy X 1z: {x} x {y} xZ Y (X Xx Y) Xx Z, 

ix X 1 y X k : {X} X Y X J< ---+ (X X X Y) X X Z, 

1x xk' xk: Xxi<'xi<---+ (X Xx Y) xx Z, 

for all x E X, ally E Y, all I<, I<' E CH, all k E Map(I<, Z) and all k' E 

Map( I<', Y). 

X X x (Y X x Z) has the final topology relative to the mappings 

ixxiyx1z: {x} x {y}xZ Y X Xx (Y Xx Z), 

ix X 1 y X k : {X} X Y X J< ---+ X X X (Y X X Z), 

1x xk : Xxk---+ X Xx (Y Xx Z), 

for all x E X, all y E Y, all I<, K E CH, all k E Map( I<, Z) and all k E 

Map(K, Y Xx Z). 

Let 1 : (X xx Y) X x Z -t X X x (Y Xx Z) be the identity function and 1' be 

the identity function in the reverse direction. These functions will be shown 

to be continuous. 
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It is necessary to define some mappings for all I? E CH and all continuous 

maps k: I?~ Y Xx Z. Define k': I?~ Y by 

k'(w) = (11y o k)(w) Vw E !?. 

Define k" : I? ~ Z by 

k"(w) = (11'z o k)(w) Vw E k. 

Since k, 11'y, and 71'z are everywhere continuous, it follows that all mappings 

k' and k" will be continuous as well. Lastly, let ~ : k ~ k x k represent the 

continuous diagonal mapping. Then the following six diagrams commute: 

{X} X {y} X Z ---+ {X} X {y} X Z 
lxxly xlz 

ixxiyx1z ix xiy x 1z 

{x}xYxK - {x} xYxK 
lx X 1y X 1K 

ixxlyxk ixx1y xk 

(X Xx Y) Xx Z- X Xx (Y Xx Z) (X Xx Y) Xx Z- X Xx (Y Xx Z ) 
1 1 

XxK'xK -- XxK'xK {x} x {y}xZ- {x} x{y}xZ 
1xx1K'x 1K 1x xlyx1z 

lx x k' x k 1xxk' xk ix x iy x lz ixxiyx l z 

(X Xx Y) Xx Z- X Xx (Y Xx Z) 
1 

{x}xY x K - {x} xYx K 
lx XlyX l K 

ixxlyxk ixxlyxk 

X Xx (Y Xx Z)- (X Xx Y) Xx Z 
- 1' - -

XxK X x KxK 
1x x~ 

lx x k l xxk' x k" 
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Thus 

1 o (ixxiyX1z) = (ixXiyX1z) o (1x x 1yx1K), 

1o(ixX1y xk) = (1xX1yX1K)o(ixx1yxk) , 

1 o (1x X k1 X k) = (1x X k1 X k) 0 (1x X 1K' X 1K ), 

11 
O ( ix X iy X 1 z) = ( i x X iy X 1 z) 0 ( 1 X X 1 y X 1 K), 

11 o (ix X 1y X k) = (1x X 1y X 1K) o (ix X 1y X k) , 

11 
O ( 1 X X k) = ( 1 X X k1 X k") 0 ( 1 X X ~), 
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for all x E X, all y E Y , all K , K 1
, K E CH , all k E Map( I<, Z), all k1 E 

Map(K1
, Y), all k E Afap(K, Y xx Z), all k1 E Map(K , Y) and all k" E 

Map(K,Z). 

For each of the first three equalities the functions on the left-hand side are 

continuous. It follows by 2.5 that 1 : (X Xx Y) Xx Z ---+ X Xx (Y Xx Z) is 

continuous. Similarly the final three left-hand side functions are continuous. 

Again, by 2.5, 11
: X Xx (Y Xx Z)---+ (X Xx Y) Xx Z is continuous. 

Clearly 1 is bijective. Hence it is a homeomorphism, i.e. (X Xx Y ) Xx Z ~ 

X Xx (Y Xx Z) for arbitrary spaces X, Y and Z. • 



Chapter 4 

DEALING IN 

INCONVENIENCE 

The goal is a modified exponential law which utilizes less restrictions on the 

spaces involved. A law which can be safely applied in the usual category of 

topological spaces. The proof of 3.27 utilized an exponential law for map­

ping and product spaces. To apply the law it was necessary to utilize the 

compact-open topology and assume certain conditions on the spaces involved, 

i.e. compact and Hausdorff, or compactly generated. 

We commence with a clear account of an exponential law as an introduc­

tion. Key notions are highlighted in this section. They reappear in the proof 

of a modified exponential law. 

60 
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4.1 The exponential law: an .introduction 

Studies of function spaces in algebraic topology usually involve the compact­

open topology, introduced by Fox [13]. 

Definition 6 Let X and Y be arbitrary spaces. The compact-open topol­

ogy on Map(X, Y) has subbasis of the form 

M(K, U) = {f : X-+ Y such that f(K) c U} , 

where K ranges over the compact subsets of X and U ranges over the open 

subsets of Y. 

Henceforth, the set Map(X, Y) with the compact-open topology is denoted by 

Mapco(X, Y), with the exception of this section. 

There are two conditions associated with the exponential correspondence 

between Map(X x Y, Z) and Map(X, Map(Y, Z)). 

Definition 7 The Admissible Condition states that if X 1 Y and Z are 

arbitrary spaces and there is a map f' : X -+ Map(Y, Z) 1 then the rule 

f'(x)(y) = f( x,y) determines a map f: X xY -+ Z. 

Definition 8 The Proper Condition states that if X 1 Y and Z are arbitrary 

spaces and there is a map f: XxY -+ Z 1 then the rule f(x,y) = f'(x )(y) 

deter·mines a map f': X-+ Map(Y, Z). 

The proof of both the admissible and proper conditions comes down to the 

proof of the continuity of the following functions. 
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Definition 9 The evaluation function e : Map( X, Y) x X -+ Y is defined 

by 

e(J, x) = f(x) Vx EX, Vf E Map(X, Y) . 

Definition 10 The coevaluation function e' : X -+ Map(Y, X x Y) is de­

fin ed by 

e'(x)( y) = (x,y) Vx EX, Vy E Y. 

Continuity of the evaluation function is necessary to prove the admissible 

condition. While continuity of the coevaluation function is key to validating 

the proper condit ion. Once these conditions are satisfied, and some mild as­

sumptions concerning X and Y are made, we have the following well known 

results (19). 

Theorem 4 .1 : Exponential Correspondence 

Let X, Y and Z be spaces, and additionally suppose that either (i) Y 

is locally compact Hausdorff or (ii) X x Y is compactly generated. Then a 

function f : X x Y -+ Z is continuous if and only if the corresponding func tion 

f' : X -+ Map(Y, Z ) is continuous. The functions are related by the rule 

f( x, y) = f'(x)(y). The elements of Map( X x Y, Z) and Map(X, Map(Y, Z) ) 

are in bijective correspondence via the rule f "-"+ f' . 

If more assumptions concerning the spaces involved are made, then a much 

stronger result can be proven. 

Theorem 4.2 : Exponential Law 

Let X, Y , and Z be spaces that satisfy one of the conditions of the previous 

result. If X andY are Hausdor.JJ; then the rule f "-"+ f' is a homeomorphism, 

i.e. Map( X, Map(Y, Z))::: Map( X x Y, Z) . 



CHAPTER 4. DEALING IN INCONVENIENCE 

4.2 A modified exponential law 

63 

Several results need deriving before a conditionless version of 4.1 and modi­

fied exponential law can be proven. An essential step is modification of the 

compact-open topology. It is necessary to consider a particular case of a set­

open topology for Map(X, Y) [5]. The focus is a specific A-open topology 

where A= CH. 

Definition 11 Let X and Y be arbitrary topological spaces. The compact 

Hausdorff image-open topology on Map( X, Y) has subbasis of the form 

M(g(I<), U) = {f : X -r Y such that f o g(I<) C U}, 

where [{ ranges over CH, g ranges over Map(I<,X), and U ranges over the 

open subsets of Y. 

Henceforth we denote the set Map(X, Y) with the compact Hausdorff image­

open topology, or the x-open topology, by Mapx(X, Y) . 

Lemma 4.3 Let X and Y be arbitrary spaces. If X is HausdorjJ, then the 

x-open topology and compact-open topology on Map(X, Y) coincide. 

Proof: Let X be a Hausdorff space, [{ E CH, and g E Map(!{, X). Then 

the compact Hausdorff images g( I<) are precisely the compact subsets of X. 

Hence in that case Mapx(X, Y) ~ Mapco(X, Y). • 

4.2.1 Modified admissible condition 

The continuity of the evaluation function is key to a positive admissible con­

dition result. 
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Proposition 4.4 The evaluation function e: Mapx(X, Y) Xx X -t Y is con­

tinuous. 

Proof: First, set 1 = 1Mapx (X ,Y)· The reader will recall two facts. The 

function e : Mapx(X, Y) Xx X -t Y is defined by e(f, x) = f(x) for all 

f E Mapx(X, Y) and all x E X. The space Mapx(X, Y) Xx Y has the final 

topology relative to the mappings 

i: {f} xX Y Mapx(X, Y) Xx X Vf E Mapx(X, Y), 

1 x k: Mapx(X, Y) x K -t Mapx(X, Y) xx X VK E C1-l, Vk E Map(!{, X). 

It is necessary to show that the composites of e with these coinducing maps 

are continuous. 

For each f E Mapx(X, Y) we notice that eo i : {f} x X -t Y is the map 

given by (f,x) ~ f(x) where x EX. This is the composite of the canonical 

homeomorphism {f} x X -t X and f : X -t Y. It follows that e o i is 

continuous. 

For each K E CH define an evaluation function ek: Mapx(X, Y) x K -t Y 

by 

ek = eo (1 x k) Vk E Map(K,X). 

Let U be an open subset ofY and(!, z) E ej;1 (U) where z E K. So fok(z) E U 

implies that z E (! o kt 1(U). Since K E C1-l , i.e. K is compact Hausdorff, 

it follows that K is regular by the corollary to proposition 1 §9.2 [6]. Thus 

there exists an open subset V C K such that z E V C V C (! o kt1(U). V 

is compact and Hausdorff so k \ V is a mapping of a compact and Hausdorff 

space into X, i.e. kiV E Map(V, X) for V E C1-l. Then W = M(k(V), U) is a 

subbasic open set of Mapx(X, Y). 
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It follows that W x V is an open subset of Mapx(X, Y) X I< such that (!, z ) E 

W x V C eJ:1(U) for all k E Map( I<, X). Hence eJ;1 (U) is open; consequently 

ek is continuous. 

Now, e o i : {f} x X -+ Y is continuous for all f E Mapx(X , Y) and 

eo (1 x k) : Mapx(X, Y) xI< -+ Y is continuous for all k E Map(k , X). It 

follows by 3.12(iii) that e : Mapx(X, Y) Xx X -+ Y is continuous. • 

The proof of the admissible condition in this setting is an easy consequence 

of the last section. 

Proposition 4.5 : Modified Admissible Condition 

Let X, Y, and Z be arbitrary spaces. Iff' :X -+ Mapx(Y, Z) is continu­

ous, then the function f : X X x Y -+ Z defin ed by 

f(x,y) = f'( x )(y) Vx EX, Vy E Y, 

is continuous. 

Proof: Let 1y be identity function on Y. It follows by 3.13 that the function 

f' Xx ly : X Xx Y -+ Mapx(X, Y) Xx Y is continuous. Then the composite 

f = e o(!' Xx 1y): X Xx Y-+ Z is continuous by 4.4. Whence 

f( x, y) =e o(!' Xx ly )(x, y) = e(f'( x), y) = f'( x) (y) Vx EX, Vy E Y, 

as required. • 
4.2.2 Modified proper condition 

The proof of a modified Proper condition requires a familiar type of mapping 

space result. 
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Proposition 4.6 Let X 1 Y 1 and Z be arbitrary spaces and f : Y -t Z be a 

map. Then the induced function f* : Mapx(X, Y) -t Map x(X , Z) given by 

is continuous. 

Proof: Let W = M(g(K), U) be a subbasic open set for Mapx(X, Z) and 

f *(h) E W for some hE Mapx(X, Y). Then W' = M(g(K), f- 1(U)) is an open 

subset in Mapx(X, Y) such that h E W' C f *-1 (W) . Hence f* is continuous . 

• 
A toned down result by way of theorem 5.12 [16] plays a role in establishing 

the continuity of the coevaluation in our setting. 

Lemma 4. 7 Let X and Z be arbitrary spaces and let I< be a compact space. 

Also} let f: XxK -t z be a map with X EX) and f({x}xK) c u} where 

U is an open subset of Z. Then there exists an open subset V C X such that 

x E V and f(V x K) CU . 

Proof: It follows by theorem 5.12 [16] that there exists an open subset V C X 

such that x E V and V x K C f - 1(U). Hence f(V x K) C U. • 

Proposition 4.8 Th e coevaluation function e' : X -t Mapx(Y, X Xx Y) zs 

continuous. 

Proof: The function e'(x) : Y -t X Xx Y is the composite of the canonical 

homeomorphism Y -t { x} x Y and the coinducing map { x} x Y -t X x x Y . 
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Fix an x EX. Now e'(x) = i: {x} xY -r X Xx Y. Hence it is continuous 

for fixed x EX. Thus for an arbitrary x EX, e': X -r Mapx(Y,X Xx Y) is 

well defined. 

Let W = M(g(K),U) be a subbasic open set of Mapx(Y,X x x Y) where 

U is open in X Xx Y, g E JV!ap(K, Y) and K E CH. Select an arbitrary 

x E (e't1(W) then e'(x) E W 

::::? e'(x)(g(K)) r;;, U 

::::? {x}xg(K)c;;,U 

::::? (lxxg)({x} x K)c;;,U 

::::? {x} x K c;;, (lx x gt1 (U). 

The function 1 x xg : X xK -+ X x x Y is a coinducing map for X x x Y t herefore 

it is continuous by 3.12(i). Hence (lx xgt1(U) is open in XxK. By 4.7 there 

exists an open subset V C X such that x E V and V x K c;;, (lx xgt1(U ). 

Then (lx xg)(V, K) c;;, U 

::::? V x g(K) c;;, U 

=:;. e'(V)(g(K)) c;;, U 

::::? e'(V) c W = M(g(K) ,U). 

Hence e' : X -r Mapx(Y, X Xx Y) is continuous. • 
Proposition 4.9 : Modified Proper Condition 

Let X) Y) and Z be arbitrary spaces. Iff : X Xx Y -+ Z is continuous) 

then the function f' :X -r Mapx(Y, Z) defined by 

f'( x )(y) = f(x, y) Yx E X, Yy E Y, 

is well defin ed and continuous. 
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Proof: Since f is continuous, it follows by 4.6 that f* : Mapx(X, Y) -+ 

Mapx(X, Z) is continuous. Continuity of e' :X -+ Mapx(Y, X Xx Y) is ensured 

by 4.8. Thus the composite f* o e' : X -+ Mapx(Y, Z) is continuous. Now for 

each x EX andy E Y 

(!* o e')(x)(y) = f*(e'(x))(y) = (! o e'(x ))(y) 

= f(e'(x)(y)) = f(x,y) = f'(x)(y). 

Hence f' = f* o e', therefore it is well defined and continuous. 

4.2.3 x-exponential law 

Theorem 4.10 : x-Exponential Correspondence 

• 

Let X 
1 

Y and Z be spaces. Then there is a bijective correspondence between 

maps f: X Xx Y-+ Z and maps f': X-+ Mapx(Y, Z) determined by the rule 

f'(x)(y) = f(x,y) Vx EX Vy E Y. 

Proof: The result follows from 4.5 and 4.9. • 
There is one more result to consider before proving a modified exponential 

law. It can then be shown that the standard exponential law follows from the 

modified result. 

Proposition 4.11 Let X 1 Y and Z be arbitrary spaces. Then the composition 

function ( o) : Mapx(Y, Z) Xx Mapx(X, Y) -+ Mapx(X, Z ) defin ed by 

( o )(g, f) = go f Vf E Mapx(X , Y ), Vg E Mapx(Y, Z), 

is continuous. 
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Proof: It follows from 3.28, 4.4, and 3.13 that the following composite is 

continuous. 

(Mapx(Y, Z) Xx Mapx(X, Y)) Xx X_.; Mapx(Y, Z) Xx (Mapx(X, Y) Xx X) 
lxxxe e 
--f Mapx(Y, Z) Xx Y-+ Z. 

Then 4.9 ensures the continuity of 

For all x E X, all f E Mapx(X, Y), and all g E Mapx(Y, Z) it follows that 

( 0) (g, f) (X) = e 0 ( 1 X X e) (g ,/, X) = e (g ,j (X)) = g(f (X)) = (g 0 f) (X), 

as required. • 
Theorem 4.12 : x -Exponential Law 

Let X , Y and Z be spaces. Then there is a homeomorphism 

defined by 

¢(!') = f where f'(x )(y) = f(x, y), V x E X , Vy E Y. 

Proof: First we prove that¢ is continuous. It follows from 3.28, 3.13 and 4.4 

that the following composite given by (!', (x, y)) -v-+ f(x, y) is continuous. 

ex xl Y ( ) e 
---'-'--+ Mapx Y, Z X x Y -+ Z. 



CHAPTER 4. DEALING IN INCONVENIENCE 70 

Then 4.9 ensures the continuity of¢ : Mapx(X, Mapx(Y, Z)) ---+ Mapx(X Xx 

Y,Z). 

Next consider the function <p: Mapx(X Xx Y, Z)---+ Mapx(X, Mapx(Y, Z)) 

defined by 

<p(f) = f' where f(x,y) = J'(x)(y), Vx EX, Vy E Y 

The following composite given by(!, x) ~ (y ~ f(x, y)) is continuous by 4.8, 

3.13 and 4.11. 

Then 4.9 ensures the continuity of <p. 

Now, ¢ o <p = 1 and <p o ¢ = 1'. Hence, ¢ is a homeomorphism, I.e. 
<P 

Mapx(X, Mapx(Y, Z)) ~ Mapx(X xx Y, Z). • 

Corollary 4.12.1 If X and Y are Hausdor.ft then Mapco(X Xx Y , Z) ~ 

Mapco(X, Mapco(Y, Z)). 

Proof: The result follows by 4.12, 3.22 and 4.3. • 
The following result shows that under the normal assumptions on the 

spaces involved the usual exponential law can be proven using a modified 

exponential law result . 

Corollary 4.12. 2 If in addition, either (i) Y is locally compact or (ii) X x Y 

is a cg-space1 then Mapco(X x Y, Z) ~ Mapco(X, Mapco(Y, Z)) . 



CHAPTER 4. DEALING IN INCONVENIENCE 71 

Proof: Let Y be locally compact , then Y is locally compact and Hausdorff, 

it follows that Y is locally compact-Hausdorff. The result follows from 4.12.1 

and 3.25. 

Now suppose that X x Y is a cg-space. The result follows from 4.12.1 

and 3.24. • 



Chapter 5 

INITIAL AND FINAL 

COMMUTATIVITY 

A generalized version of 3.27 is key to many of the results of this chapter 

5.1 Product and final commutativity 

Theorem 5.1 and theorem 5.2 are two nice general results that are to be used 

as legs for the final chapter. 

Theorem 5.1 Let J be an arbitrary set and X carry the final topology relative 

to the family of functions {gj : xj ~ XLEJ. Further! suppose that for each 

x EX there exists an Xj E Xj such that gj(Xj ) = x for some j E J. Then for 

an arbitrary space W
1 

X Xx W carries the final topology relative to the family 

of functions {gj Xx lw : Xj Xx W ~X Xx W}JEJ· 

72 
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Proof: Let Z be an arbitrary space and f :X Xx W-+ Z be a function. 

Suppose that f is continuous and it follows from 3.13 that each function 

gj Xx 1 w is continuous. Thus f o (gj Xx lw) = () j : Xj Xx W-+ Z is continuous 

for each j E J. 

Conversely drop the assumption that f is continuous, but suppose each 

(}j is continuous. Theorem 4.12 ensures that for all j there is a continuous 

mapping Bj : Xj -+ Mapx(W, Z) defined by 

Define a function f' : X -+ Fn(W, Z) by 

J'(x)(w) = f(x, w) Vx EX, Vw E W 

The pseudo-surjectivity assumption implies that for each x E X 

Whence it follows that f'(X) C Mapx(W, Z). As well, for each j E J 

Then the following triangle is commutative for all j. 

Mapx(W,Z) 

(}'. 
J f' 

X· J X 
9j 
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It follows from 2.5 and the continuity of Bj that f' is continuous . Thus f 

is continuous. 

Hence X Xx W carries the final topology coinduced by {gj Xx 1w : Xj Xx 

W-+ X Xx W}jEJ· • 

Corollary 5.1.1 In addition to the hypothesis of 5.11 suppose that either (i) 

W is a locally compact-Hausdorff space or (ii) X x W is a cg-space. Then for 

an arbitrary space W 
1 

X x W carries the final topology relative to the family 

of functions {gj x 1 w : Xj x W-+ X x W}jEJ· 

Pr·oof: The result using (i) follows from 5.1 and 3.25. 

Assume condition (ii). It follows from 3.21 X Xx W ~ X xW and from 3.24 

it follows that 1 : X j Xx W-+ X j XW is continuous for each j E J. The diagram 

below commutes . 
Xj xx W--- XjxW 

1 

XxW 

Let f :X x W --+ Z be a function for an arbitrary space Z. 

Suppose f is continuous, then f 0 (gj X 1 w) : xj X w --+ z is continuous. 

Now suppose that f o (gj x 1w) is continuous. It follows from the equation 

[(! o (9i x lw)] o 1 = f o [(gi x1w) o 1] = f o (g Xx 1w), 

and 2.5 that f is continuous. The result follows from 2.6. • 
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5.2 Sum and final commutativity 

Theorem 5.2 Let J be an arbitrary set and X carry the final topology relative 

to the family of functions {gj : Xj -7 X}JEJ. Then for an arbitrary space W, 

X U W carries the final topology relative to the family of functions {gj U 1 w : 

Xi u W -7 Xu WhEJ· 

Proof: To prove this result we must show (i) that each composite 9) U 1w is 

continuous, and (ii) satisfy the universal property for final topologies. 

(i) There is the following commutative diagram. 
X..____ __ _ 

xuw ------' w 
zx zw 

9i U 1w 1w 

X · UW J - -----' w 
zw 

It follows for all j E J that 

ix o 9i = (gi U 1w) o ix
1

, 

iw o 1w = (gj U 1w) o iw . 

The functions ix, iw, 1w, and 9i for each j E J are continuous. From 2.16(iii) 

it follows that each 9i U 1 w is continuous for all j. 

(ii) Now, let f: XU'YV -7 Z be a function for an arbitrary space Z . Suppose 

that f is continuous, it follows that each composite f o (gj U 1 w) : X j U W -7 Z 

is continuous for all j E J. 
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Next suppose each f o (gj U 1w) is continuous. The composites (! o (gj U 

1w)) 0 ixj : xj -+ z and (! 0 (gj u 1w)) 0 iw : w -+ z are continuous 

by 2.16(iii). The continuity of (! o ix) o 9) for each j E J follows from 

(j o (g j U 1 W)) 0 i X j f o ( (gj U 1 w) o ixJ 

fo(ixogJ) 

(foix)ogj· 

Then 2.5 ensures f o ix is continuous. The continuity off o iw for each j E J 

follows from 

(! 0 (g j u 1 w)) 0 i w f 0 ( (g j u 1 w) 0 i w) 

fo(iwo1w) 

f o iw. 

Now 2.16(iii) ensures the continuity off : XU W -+ Z. The result follows 

by 2.6. • 

Some significant specific results follow from these general results. 

5.3 Sum and identification commutativity 

Theorem 5.3 If p : X -+ Y is an identification and Z an arbitrary space, 

then p U 1z :XU Z-+ Y U Z is an identification. 

Proof: Clearly, p U 1 w : XU W -+ Y U W is surjective. Then this is a special 

case of 5.2 with IJI = 1 where g1 = p: X ~ Y is an identification. • 

Corollary 5.3.1 If p : X -+ Y and q : W -+ Z are identifications, th en 

p U q : X U W -+ Y U Z is an identification. 
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Proof: Theorem 5.3 ensures that there are identifications p U 1 w : XU W -+ 

Y u W and q U 1y : W U Y -+ Z U Y. Moreover, 1y U q : Y U vV -+ Y U Z 

is an identification by the commutativity of disjoint topological sums. Then 

p U q = (p U 1 w) o ( 1 y U q) is a composite of identifications and the result 

follows by 2.12. • 

5.4 Subspace and product commutativity 

Theorem 5.4 Let X andY be arbitrary spaces and A be a closed subspace of 

X. Then the x-product topology on Ax Y! denoted by A Xx Y! coincides with 

the subspace topology on Ax Y relative to the inclusion j : A X Y Y X x x Y. 

Proof: It follows by 3.21 that 1 : A xx Y -+ Ax Y is continuous. It will be 

shown that 1 : A x Y -+ A Xx Y is continuous. 

Select J{ E C'H and k E Map(I<, Y). Now A is a closed subspace in X. It 

follows from i;;-1(AxY) = {a}xY, where a E A , and (1xkt 1(AxY) = A x !{ 

that A x Y is closed in X Xx Y by 3.12(ii). 

Let W be closed in A Xx Y, Za. be the restriction of ito i; 1(A Xx Y) and 1 x k 

betherestrictionof1xkto (1xk)-1(A xx Y). Theni; 1(W) = z;1 (W) = {a}xY 

is closed in {x} x Y and (1 x kt1 (W) = (1 x kt1 (W) is closed in X x K. It 

follows from 3.12(ii) that W is closed in X Xx Y, hence it is closed in A x Y 

as a subspace of X Xx Y. Hence 1 : A x Y-+ A Xx Y is continuous and the 

result follows . • 
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5.5 Product and identification commutativity 

Theorem 5.5 If p: X --+ Y is an identification and W is an arbitrary space, 

then p x x 1 w : X x x W --+ Y x x W is an identification. 

Proof: This is a special case of 5.1. Where IJI = 1 and g1 = p. • 
Corollary 5.5.1 In addition to the hypothesis of 5.5, suppose that either (i} 

W is a locally compact-Hausdorff space or (ii} Y x W is a cg-space. Then 

p x 1 w : X x W --+ Y x W is an identification. 

Proof: The proof of this result is similar to 5.1.1 and follows from 5.5. • 

It is a standard result that 5.5.1 holds when W is a locally compact and 

Hausdorff space. The result given here is an improvement on this known result. 

Corollary 5.5.2 Let W, X, Y and Z be spaces, and p: X--+ Y and q : W--+ 

Z be identifications. If either (i} W and Y are locally compact-Hausdorff, or 

(ii) X and Z are locally compact-Hausdorff, or (iii) Y x vV and Y x Z are 

cg-spaces, or (iv) X x Z and Y x Z are cg-spaces. Then p x q : X x W -t Y x Z 

is an identification. 

Proof: The result is proven for (i) only. The proof using condition (iii) uses 

a similar argument and follows via 5.5.l(ii). 

For (i), it follows by 5.5.1(i) that p x 1 w : X x W --+ Y x W and q x 1y : 

W x Y --+ Z x Y are identifications. Moreover, 1y x q : Y x W -t Y x Z is an 

identification by the commutativity of the standard product topology. 
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The mapping p x q : X x W --7 Y x Z can be factored into the above identifica­

tions, i.e. p x q = (p x 1 w) o (1v x q). Hence the result follows from 2.12. 

For (ii) and (iv), it is necessary to factor p x q : X x W --7 Y x Z as 

the composite of the identifications 1x x q and p x lz instead, otherwise the 

arguments are similar. • 

5.6 Adjunction and product commutativity 

Theorem 5.6 Let W and X be arbitrary spaces and A C X be closed. Let 

f : A --7 Y be continuous and let X U 1 Y have the adjunction space topology 

co induced by composites 7r 1 o iy and 7r 1 o i x. Then (X U 1 Y) x x W has the 

adjunction space topology co induced by composites ( 7r 1 o iy) X x 1 w and ( 7r 1 o 

ix) xx 1w. 

Proof: This is a special of 5.1 with Ill= 2, xl =X, x2 = Y, 91 = 1fJ 0 ix, 

and 92 = 1TJ o iy. • 
Corollary 5.6.1 In addition to the hypothesis of 5.6, suppose that either (i) 

W is a locally compact-Hausdorff space or (ii) (XU1 Y)xW is a cg-space. Then 

(XU 1 Y) x W is the adjunction space coinduced by the maps ( 1T f o i y) x 1 w and 

(tr1 oix) x 1w. 

Proof: The proof of this result is similar to 5.1.1 , but follows from 5.6. • 

If we use different coinducing maps and the same coinducing spaces, then 

we obtain a different adjunction space homeomorphic to the one realized in 

the previous theorem. 
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Define the relation"" on the set (X Xx W) U (Y Xx W) by (x, w)"" (y, w) 

if and only if x E A and f( x) = y. Now "' generates the equivalence relat ion 

R'. Define 

(X Xx W) U fxxlw (Y Xx W) :=(X Xx W) U (Y Xx W)jR'. 

In this situation 

'lrJ := 'lrfxxlw: (X Xx W) U (Y Xx W) ~(X Xx W) U (Y Xx W)jR' 

ix := ixxxW: X Xx W '-+(X Xx W) U (Y Xx W) 

iy := ivxxW : y Xx w '-+ (X Xx vV) u (Y Xx W) 

Then the following diagram commutes. 

A Xx W - ------ Y Xx W 
f Xx lw 

XxxW--
'lrfxxlw 0 ZXx xW 

The elements of (X Xx W) Ufx x lw (Y Xx W) can be described explicitly. 

For each class [(o:, w)J exclusively 

[(o:, w)] 

[(o:, w)] 

[(o:,w)] 

{(x, w) such that x E X\A, wE W}, or 

{(!(a), w) such that a E A C X , wE W}, or 

{(y, w) such that y E Y\f(A), wE W}. 

A similar description of the elements of (X u1 Y) Xx W is 

((o:],w) = {x such that x E X\A,w E W}, or 

((o:],w) {f(a) such that a E A C X,w E W}, or 

((o:J, w) {y such that y E Y\f(A), w E W}. 
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It is now possible to generate a result which shows that two adjunction spaces 

we have discussed are homeomorphic. 

Theorem 5.7 The function (3 : (XUJ Y) Xx W -7 (X Xx W )Uf xx 1w (Y Xx W) 

defined by the rule ([a], w) ~ [(a, w)] is a homeomorphism. That is, (X u1 

Y) Xx W ~(X Xx W) Ufx xlw (Y Xx W). 

Proof: Let (X UJ Y) Xx W have the adjunction space topology coinduced by 

( 1r 1 o i x) x x 1 w : X x x W -7 (X U 1 Y) x x W and ( 1r 1 o i y) x x 1 w : Y x x W -7 

(X UJ Y) Xx W. Then the function (3 is such that for each x EX, y E Y and 

wEW 

(3o ((1rJ oix) Xx 1w)(x,w) = f3([a],w) = [(a,w)] = 'rrf xx lw oix xxw(x,w), 

(3o ((1rJ oiy) Xx lw)(y,w) = f3([a],w) = [(a,w)] = 'rrf xx lw oiyxxw(y,w). 

Where both composites 1rf xx1w o ixxxW : (X Xx W) -7 (X Xx W) Uf xx lw 

(Y Xx W) and 'rrf xxlw oiyxxW: (Y Xx W) -7 (X Xx W) Uf xxlw (Y Xx W) are 

continuous. It follows by 2.18(v) that (3 is continuous. 

Consider the function (3- 1 defined by [(a, w )] ~ ([a], w ). For each x EX, 

y E Y and wE W 

/3- 1 
o (7rfx xlw c ixxxW )(x, w) = /3- 1([(a, w)]) 

=([a], w) = (1rJ o ix) Xx lw(x, w), 

/3- 1 o (7rJ xx 1w o iyxxw)(y, w) = /3-1([(a,w)]) 

= ([a], w) = (7rJ o iy) Xx lw(y , w) . 

Thus /3-1 :(X Xx W)UJx x1w (Y Xx W) -7 (XU! Y) Xx W is cont inuous. Clearly 

we have (3 o (3- 1 = 1 and (3- 1 o (3 = 1. Hence (3 is indeed a homeomorphism, 

• 
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5. 7 Expanding sequence of subspaces and prod­

uct commutativity 

Theorem 5.8 Let W be an arbitrary space} let X be the union of an expanding 

sequence of subspaces} i.e. X= UXi} and Xi is closed in Xi+l for all j. Then 

X x x W is the union of an expanding of sequence of subspaces. We have 

X Xx w = U(Xj Xx W) with xl Xx w c x2 Xx w c x3 Xx w c ... , and 

Xj Xx W is closed in Xj+l Xx W for all j. 

Proof: It follows, via 5.4. that this is a special case of 5.1 with 9i = ij : 

Xi'--+ X. • 

Corollary 5.8.1 In addition to the hypothesis of 5.8} suppose that either (i) 

W is a locally compact-Hausdorff space or (ii) XxW is a cg-space. Then XxW 

is the union of an expanding sequence of subspaces} i.e. X x W = U(Xj x W) 

where X 1 xW c X2 x W c X3xW c .... 

Proof: The proof of this result is similar to 5.1.1, but follows from 5.8. • 

5.8 Identifications, pullbacks and subspaces I 

To complete the final sections of this work it is necessary to introduce some 

notation from [2]. Let X and Y be arbitrary spaces, A be a subspace of Y, 

and p: X --1- Y be a map. Denote the subspace p- 1(A) of X by X lA, and the 

restriction of p to XIA by piA. 
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Proposition 5.9 If p : X -+ Y is an identification and A is a closed (or 

open) subspace of Y, then piA: XIA-+ A is an identification. 

Proof: Suppose firstly that A is closed. The following square commutes. 

XIA'----- X 

PIA p 

A y 

Now p: X -+ Y is continuous by 2.11(i). Then piA is the restriction of p 

to XIA, hence it is continuous. Let W be a subset of A, it follows from the 

continuity of piA that if W is closed in A then (piAt 1(W) is closed in X IA. 

Suppose that (piAt1(W) is closed in XIA. It follows from (piAt 1(W) = 

p-1(W) and 2.11(ii) that W is closed in Y. Hence W is closed in A as a closed 

subspace of Y and the result follows by 2.11(ii). 

The proof of the result employing the open condition of the hypothesis 

follows in a similar manner. • 
Recall that the usual topology on X n Y is the subspace topology relat ive 

to the inclusion i: X n Y y XxY. 

Definition 12 Let X nx Y denote the set X n Y with the subspace topology 

relative to the inclusion i : X n y '--7 X X X y. 

Theorem 5.10 Let X 1 , X 2 and W be arb itrary spaces and B be a Hausdorff 

space. Also, let p1 : X 1 -+ B, p2 : X 2 -+ B , and q : W -+ B be maps; 
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p : X1 --r X2 be an identification; and 1 w be the identity map on W. Then 

p nx 1w : xl nx w --r x2 nx w is an identification. 

Proof: There is the following commutative diagram. 

X1 n x W X1 Xx W 

P2 Xx q P2 Xx q 

6.B 

B is Hausdorff, thus 6.B is closed in B x B. It follows from 3.21 that 6.B is 

closed in B Xx B. Now P2 Xxq: x2 Xx w --r B Xx B is continuous by 3.13, and 

it follows that (P2 Xx q)-1(6-B) = x2 nx w is closed in x2 Xx w. Theorem 5.5 

ensures that p Xx 1w : X 1 xx W --r X 2 Xx W is an identification. Then the 

result follows by 5.9. • 
Corollary 5.10.1 In addition to the hypothesis of 5.10) suppose that either 

w is a locally compact-Hausdorff space or (ii) x2 X w is a cg-space. Then 

p n 1w : X 1 n W --r X2 n vV is an identification. 

Proof: The proof of this result is similar to 5.1.1 and follows from 5.10. • 
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Corollary 5.10.2 Let X 11 X 21 Y1 and Y2 be arbitrary spaces and B be a 

Hausdorff space. Also) let p1 : X1 ---1- B) P2 : X2 ---1- B) Qt : Y1 ---1- B and 

q2 : Y2 ---1- B be maps
1 

and p : X 1 ---1- X2 and q : Y1 ---1- Y2 identifications. 

If either (i) X 2 and Yi are locally compact-Hausdor.ft or (ii) X 1 and Y2 are 

locally compact-Hausdor.ft or (iii) X2 X Yi and X2 X }2 are cg-spaces1 or (iv) 

both xl X y2 and x2 X Y2 are cg-spaces. Then p n q: xl n Yi ---1- x2 n Y2 is an 

identification. 

Proof: The result is proven for (i) only. The proof using condition (iii) uses 

a similar argument and follows via 5.10.1(ii). 

For (i), it follows by 5.10.1(i) that p n 1y1 : X 1 n Yi ---1- X2 n Y1 and q n 1x2 : 

Y1 nX2 ---1- Y2nX2 are identifications. Moreover, 1x2 nq: X2nY1 ---1- X2n}2 is 

an identification by the commutativity of the standard product topology. The 

mapping pnq: X1nY1 ---1- X2nY2 can be factored into the above identifications, 

i.e. p n q = (p n 1vJ o (1x2 n q). Hence the result follows from 2.12. 

For (ii) and (iv) , it is necessary to factor p n q: X 1 n Y1 ---1- X2 n Y2 as the 

composite of the identifications 1x1 n q and p n 1y2 • • 

5.9 Identifications, pullbacks and subspaces II 

Consider the following special case of the definition 12 where B n Y is the 

pullback of maps q : Y ---1- B and 1B : B ---1- B. 

Lemma 5.11 Let Y be a cg-space. Then q*(lB) : B nx Y -t Y is a homeo­

morphism that identifies (1B)* (q) : B nx y ---1- B with q. 
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Proof: It follows from 3.14 that 1ry : B Xx Y -+ Y is continuous. Then 

q*(1B) is the restriction of 1ry to B nx Y, and hence it is continuous. 

The following diagram commutes for all /{ E CH., k E Map(K, Y) and 

y E Y. 

/{ 
(qok,1g) 

B xK 

k 1 x k 

y 
(q,1y) 

The composite (1xk )o( qok, 1g) : K -+ B x x Y is continuous. It follows that the 

composite i o (q, 1y) o k: K-+ B Xx Y is continuous. Characterization 3.4(iii) 

ensures the continuity of the composite i o ( q, 1 y) : Y -+ B x x Y. Hence 1. 9( ii) 

ensures the continuity of (q, l y) : Y-+ B nx Y. 

Now q*(1B): BnxY-+ Y is continuous and its inverse (q, 1y) is continuous. 

So q*(lB) is bijective, and hence is the desired homeomorphism. • 

Definition 13 Let Y!xZ denote the set UbeB Map(Yib, Z) with an initial 

topology relative to the functions 

q!Z: Y!Z -t B defined by (q!Z)(h) = b where h: Ylb-+ Z , and 

i : Y!Z -t Mapx(Y, z w) defined by i(f) = f w where f E Map(Yib, Z ). 

It is possible to generate a modified exponential law type result involving 

X nx Y and Y! xZ· 
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Theorem 5.12 : Fibred x-Exponential Correspondence 

Let X, Y, and Z be arbitrary spaces and B be a Hausdorff space. Let 

p : X --1- B and q : Y --1- B be maps. 

(i) If f : X nx Y --1- Z is continuous, then the function f' : X --1- Y!xZ 

defined by 

f'(x)(y) = f(x,y) Vx EX, Vy E Y, 

is well defined and continuous. 

(ii) Iff' : X --1- Y!xZ is continuous, then the function f : X nx Y --1- Z 

defined by 

f(x, y) = f'(x )(y) Yx E X, Yy E Y, 

is well defined and continuous. 

Proof: (i) Let f: X n x Y-+ Z be a map. Then f can be extended to a map 

J : X x x Y --1- zw given by 

j(x,y) = { ~(x,y) if p(x) = q(y), 

otherwise. 

It follows by 4.12 that the rule ](x, y) -v-+ ]'(x)(y) defines a map,]' : X --1-

Mapx(Y, zw). Note that ]'(x)(y) = w whenever p(x) =/- q(y). 

Define a function f' : X --1- Y!xZ by 

f'(x)(y) = { ]'(x)(y) if p(x) = q(y), 

undefined if p(x) =J q(y). 

So f'(x)(y) = ]'(x )(y) = ](x,y) = f(x , y) if and only if p(x) = q(y) . If 

p(x) = b, then f' is defined for each y E Ylb. Now (q!xZ) of' = p and 

i o f' = ]'. Now both p and ]'are continuous, so f' is continuous by 1.3. 
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(ii) Suppose on the other hand that p and ]' are continuous. We reverse 

the argument in (i), in the sense that a map f' :X -7 Y!xZ can be extended to 

a map ]' :X -7 Mapx(Y, zw), which determines an j and hence the required 

f. 
The result follows from (i) and (ii) above. • 

Theorem 5.13 Let Y be an arbitrary space1 X be a cg-space1 and B be a 

Hausdorff space. Let f : X -7 B be a map and q: Y -7 B be an identification. 

Then q* f : Y nx X -7 X is an identification. 

Proof: It will be proven that q*f: Ynx X -7 X satisfies 2.11(iii). Let Z be 

an arbitrary space and g : X -7 Z be a function. Suppose that g is continuous, 

then go ( q* f) is continuous. 

Now, suppose that go (q* f) is continuous. It follows from 5.12 that there 

is a continuous map, (go (q*f))': Y -7 X!xZ defined by 

(go (q* f))'(y)(x) =go (q* f)(y, x) = g(x) Vy E Y , Vx EX. 

Define a function 9b : XJb -7 Z by 

gb(x) =go ixlb(x) Vx EX such that f(x) =b. 

It follows from 3.13, 3.14, and the continuity of go ( q* f) that the following 

diagram commutes. 
(YJb) xx (XI~) ~ Y n x X 

ZYib Xx ZX Ib 

1rXjb 9 0 ( q* f) 

XJb---- z 
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The continuity of 9b follows from the commutativity of the diagram and 2.11 (iii), 

since 7rXIb : (Yib) Xx (XIb) -+ X lb is an identification by 3.15. 

So the rule b ~ 9b where 9b E X!xZ is a well defined function. Let 

g. : B-+ X!xZ represent this function. Then the following triangle commutes. 

X!x Z 

(g 0 ( q* f))' 
g. 

y B 
q 

So g. is continuous by 2.11(iii) . Next 5.12 ensures there is a continuous 

map g~ : B nx X -+ Z given by 

g~(b, x) = g.(b)(x) Vx EX such that f(x) =b. 

Lemma 5.11 now ensures that the the map (!, 1x) : X -+ B nx X is a 

homeomorphism. Moreover, for every f ( x) = b 

g~ o (!, 1x)(x) = g~(b,x) = g.(b)(x) = gb(x) =go ixlb(x) = g(x). 

Hence g : X -+ Z is continuous and q* f : Y nx X -+ X is an identification. • 

Corollary 5.13.1 The map q* f: Y n X-+. X is an identification. 

Proof: The result follows from 5.13, and 2.13 by way of 3.21. • 
Corollary 5.13.2 Let Y be a space, B a Hausdorff space, and A a compactly 

generated subspace of B. Let q : Y -+ B be an identification. Then qiA : 

YIA -+A is an identification. 
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Proof: This is a special case of 5.13 with X= A C B and f = i :A'--+ B . 

• 



Chapter 6 

Conclusion 

6.1 Closing thoughts and questions 

The theory presented in this work contains some improvements on known 

results, in particular the results concerning locally compact-Hausdorff spaces 

and some results concerning x-open topologies. It is the intention of the author 

to reformulate some of these results for publication. 

This study undertaken in this thesis is by no means complete. Indeed, one 

can explore further examples of commutativity of final and initial topologies. 

An immediate open question would be to determine sufficient conditions for a 

general result concerning Initial and Final Topology Commutativity. Another 

question arising is the possibility of replacing the x versions of product and 

mapping space topologies with 'local' x versions, i.e. consider incoming maps 

from the class of a locally compact-Hausdorff spaces. Would our theory work 

in this context? 

91 



CHAPTER 6. CONCLUSION 92 

6.2 Historical notes concerning the x-product 

The x-product of two spaces, X andY, as defined in section 3.4, is a particular 

case of the A-product, Definition 1.1 of [5]. In our case, we take A to be the 

class CH of all compact Hausdorff spaces. The A product traces its origin to 

the S-product of [8]. 

Several of our x-product results are particular cases of results in [5] . We 

list these coincidences here. Proposition 3.16 and 3.17 are particular cases of 

Proposition 1.2. Propositions 3.24 and 3.25 are particular cases of Proposition 

3.3. Proposition 3.28 is a particular case of Proposition 1.4. Propositions 4.5 

and 4.9 are particular cases of Propositions 2.3 and 2.1 respectively. And 

Theorems 4.10 and 4.12 are particular cases of Theorem 2.4. 
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