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Abstract

The use of longitudinal studies is widespread, especially in biology and medicine. Sta-
tistical analyses of these studies must account for the correlation that will usually be
present within individuals measured across time. We present a Bayesian approach to
studying these problems, based on methods that sample from the posterior distribu-
tions of interest. Our work will involve models with continuous and binary responses,
and will generalize some published methods using a probit model. Qur results indi-
cate that the simpler algorithms proposed in the literature perform as well as more

complicated methods. Application to two numerical examples will be presenied.
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Chapter 1

Introduction

1.1 Introduction

In longitudinal studies, repeated observations of a respunse variable and a set of
covariates are made on individuals across occasions. Because repeated observations
are made on the sainc individual, the response variables will usually be autocorrelated.
In analysing longitudinal data, this dependence must be accouuted for in order to
make correct inference.

Longitudinal studies have applications to a wide variety of problems. Now we
introduce two such data sets which have been chosen from the biological and health
sciences to represent a range of challenges for analysis. These are described in more
detail by Diggle, Liang and Zeger (1994}.

First, we discuss the growth of Sitka spruce trees. The study objective is to assess
the effect of ozone pollution on tree growth. As ozone pollution is commeon in urban
areas, the impact of increased ozone concentrations on tree growth is of considerable
interest. The response variable is log tree size. where size is conventionally measured
by the product of tree height and diameter squared. The trees werc measured 13
times over two growing seasons.

As a second examiple, we consider data on the protein contcut of milk. In this



data set, milk was collected weekly from 79 Australian cows and analysed for its
protein content. The cows were maintained on one of three diets: barley, a mixture
of barley and lupins, or lupins alone. The objective of the study is to determine how
diet affects the protein content in milk.

A wide variety of approaches to analyzing longitudinal data have been introduced
in the statistical literature. In studies where the response is normally distributed,
Laird and Ware (1982) and Lindstrom and Bates (1988) discuss non-Bayesian meth-
ods of analysis. These focus on the use of a mixed effects model and the use of the
EM (Expectation-Maximization) algorithm. In cases where the response is binary,
Fitzmaurice and Laird (1993} describe a likelihood approach, based on the conditional
odds-ratios. Also with binary outcomnes, Chib and Greenberg (1998) found maximum
likelihood estiinates by using a Monte Carlo-based EM algorithm.

However, the structure of longitudinal studies lends itself to the use of Bayesian
niethods, hierarchical models in particular. An advantage of a Bayesian approach
is it can help avoid difficuli numerical integrations that may be nceded to evaluate
likelihoods. These integrations are often avoided through the use of Markoy Chain
Monte Carlo (MCMC) methods. For example, Chib and Jeliazkov (2001) and Chib
and Carlin (1999) present MCMC based methods for continuous data. Zeger and
Karim {1991) implement the Gibbs sampler for generalized linear models. Albert and
Chib {1993) use the Gibbs sampler to study binary longitudinal data, and Chib and
Greenberg (1998) implement an MCMNC mecthod for finding the posterior estimates
when using binary data.

This praeticum will investigate a number of Bayesian algorithmy for the analysis of
continuous and binary longitudinal data. We exploit an identity nsed by Chib (1995)
in the context of Bayes factor computation to show how the parameters in a geuer-
alized linear mixed model may be npdated in a single block, improving convergence
and producing essentially independent draws from the posterior of the parameters
of interest. We also investigate the value of blocking in a class of binary response

data longitudinal models. The theoretical aspects of these algorithms, along with the



derivation of the needed posterior distributions, will be discussed in Chapter 2. In
Chapter 3, we will present some simulation studies to investigate the behaviour of
the algorithms under a variety of assumptions on the prior distributions. In Chapter
4, we will study a dataset of CD4+ cell numbers along with other variables collected
longitudinally for AIDS infected nien. The objective will be to determine what vari-
ables are useful in predicting the CD4+ cell count. In Chapter 5, we will study a
binary longitudinal dataset involving a child’s wheeze status (yes, no) as well as in-
formation about maternal smoking. The objective will be to deterinine the eHects
of age, maternal smoking and the age-maternal smoking interaction on the wheeze
status,

We begin with some background to these problems, which will include a discussion

on some MCMC procedures.

1.2 Background

We begin by assuming there is a prior distribution on the parameters of iuterest,
denoted as 7(8). Then, combining this with the density function of the data, written

as f(y|@), we can derive the posterior distribution using Bayes Theorem:

_ #(0)f(y|9)
*(O1y) = f(y)

__n(8)f(y16) |
~ [7(6)f(y|6)d6 (1.1)

Here, € is the parameter of intercst in our study. The functions #(€) and 7(8y)

represent our belief or information about the parameter 8. As we can see, the data
is used to update our prior belief on the behaviour of 8.

In (1.1), the evalution of the integral is often very difficult, if not impossible,
s0 we may not be able to express 7{8ly) in closed form. We need to approximate
7(@y), typically by simulating an approximate random sample from the posterior

distribution. In general, this can be thought of as a MCMC procedure {Chib and



Greenberg, 1995). This sampling can be done in diflerent ways. We will discuss two
methods: the Acceptance-tejection sampling and the Metropolis-Hastings algorithm
(Chib and Greenberg, 1995).

1.2.1 Acceptance-Rejection sampling

Classical simulation techniques generate non-Markov (usually independent) samples;
i.e., the successive observations generated are statistically independent unless corre-
lation is artificially introduced as a variance reduction device. An irnportant method
in this class is the Acceptance-Rejection {A-R) method, which can be described as
follows. Suppose it is desired to gencrate samples from the target density w(z), where
zr may be a vector. The method may be used when w(z) is known only up to a
multiplicative constant and can be expressed as n(z) = f(z)/K, where f(x) is the
unnormalized density and K the (possibly unkunown) normalizing constant. This is
similar to (1.1), where the integral in (1.1) can be considered the normalizing con-
stant. Let h(z) be a density that ean be simulated by some known method. and
suppose there is a known constant ¢ such that f(r) < ch(z) for all z. This means
that ch{x) blankets, or dominates f(z). Then to obtain a random variate from (),
we do the following:

STEP 1: Generate a candidate Z from h(.) and a value  {rom U(0, 1), the uniformn
distribution on {0,1);

STEP 2: Return Z = y if u < f(Z)/ch(2); otherwise go to STEP 1.
It can be shown (Chib and Greenberg, 1995) that the accepted value y is a random
variate from =(.). For this method to be efficient ¢ must be carefully selected, and
since the expected number of iterations of steps 1 and 2 to obtain a draw is given by

¢!, the rejection method is optimized by setting

¢ = sup ﬁfl;

h(z)

even this choice, however, may result in an undesirably large number of rejections.



This means we would have to run the A-R mnethod for many more than ¢! iterations

to gencrate a reasonably-sized sainple from 7{z).

1.2.2 Metropolis-Hastings (M-H) algorithm

The notion of a generating density also appcars in the M-H algorithm, but beforc
considering the differences and similarities we turn to the rationale behind MCMC
methods.

The usual approach to Markov chain theory is to start with a transition matrix p;,
(when there are a discrete set of states and 3; p;; = 1) or a transition kernel p(z, y)
(when the sct of states is not discrete and f p(z,y)dy = 1). A major concern of the
theory is to determine conditions under which there exists an invariant distribution
and conditions under which iterations of the transition matrix or kernel converge to
the invariant distribution. In the discrete case an invariant distribution n; for the
pi; 15 a distribution with the property n; = Y_; p;;mi, and the nth iterate of p;; is
defined recursively as pg‘) = 2% Pg:_l}pkj. When the number of states is Anite, it
is well known that the matrix of the probability distribution of the nth iterate iy
given by the nth power of the inatrix composed of the p;;. In the nondiscrete case,
the invariant distribution 7(y) satisfies 7(y) = [ p(z,y)m(z)dz, and the nth iterate is
given by p™ (x,y) = [ p™ Yz, 2)p(2, ¥)dz, where p¥{z,y) = p(x,y). Under certain
conditions it can be shown that the nih itcrate converges to the invariant distribution
as 1t — o0 in both the descrete and the nondiscrete cases.

MCMC methods turn the theory around: the invariant distribution is known-it
is (.), the target density from which samples are desired-but the transition kernel is
unknown. To generate samples from 7(.), the methods find and utilize a transition
kernel p(x, y) whose nth iterate converges to w{.) for large n. The process is started
at an arbitrary z and iterated a large number of times. After this large number
which is problem-dependent, the observations generated from the simulation can be

regarded as observations from the target density. The problen: then is to find an



appropriate p(z, y). Although this sounds difficult, the scarch is somewhat simplified
by the following observation. Suppese p(z, ¥) is a density for a given x; i.e. p(x,y) > 0
and [ p(x,y)dy = L. Then a p(z,y) that satisfies the reversibility condition,

m(@)p(z.y) = r{y)p(y, ) (1.2)

has 7(.) as its invariant distribution. Note that

[ w@ptz,v)dz = [rw)piy.a)dz = 7(y) [y, 2)dx = m(y).

Intuitively, the left-hand side of the reversibility condition (1.2} is the unconditional
probability of moving from z to y, where z is generated from =(.), and the right-hand
side of (1.2) is the unconditional probability of moving from ¥ to x, where y is also
generated from w(.). The reversibility condition says that the two sides are equal,
and the above result shows that #(.) is then the invariant distribution for p{.,.).

We now have a sufficient condition to be satisfied by p{x, %), but we still need to
find a specific transition density. We get one from the Metropolis-Hastings algorithm,
which we now proceed to describe by exploiting the logic of reversibility.

The Metropolis-Hastings (M-H) algorithm was developed by Metropolis et al.
(1953} and widely used by physicists. It was refined and introduced to statisticians
by Hastings (1970)}; Tierney (1994) and Miiller (1993) present theory and examples
on the use of the M-H algorithm for exploring paosterior distributions.

As in the A-R method, suppose we have a density thal can gencrate candidates
from our posterior. Since we are dealing with Markov chains, however, we permit that
density to depend on the current state of the process. Accordingly, the candidate-
generating density is denoted g(z,y), where [g{z,y)dy = 1. This density is to be
interpreted as saving that when a process is at the point z, the density generates a
value y from g(x, y). If it happens that g{x, y) itsclf satisfies the reversibility condition
for all (2, ), our search is over. But most likely it will not. We might find, for example,
that for some z and y,

m(xy(z,y) > 7{y)g(y, x) (1.3)



In this case, the process moves from z to y too often and from y to z too rarely.
A convenient way to correct this condition is to reduce the number of moves from
z to y by introducing a probability 0 < a(z,y) < 1 that the move is made. We
refer to ar,y) as the probability of a move. II the move is not made, the process
again returns  as a value from the target distribution. This contrasts with the A-R
method in which, when a y is rejected, a new pair (y,u) is drawn independently of

the previous value of ¥. Then
Q(I‘I y)a(:r1 y)! x ?‘é y!

can be regarded as a transition deusity, but we still need to determine af{z, y).
Consider again inequality (1.3). It tells us that the movement from y to 2 is not
made often enough. We should thercfore define a(y, z) to be as large as possible, and
since it is a probability, a(y,x) is set equal to 1. But now the probability of move
a(z,y) is determined: Set p(z,y) = ¢(z, y)a(z,y) and obtain from the reversibility

condition

H

m(z)p(z, y) m(y)p(y, T)
m()q(z, yle(z, vy = 7(ylgy, z)ely, )

m(x)g(z, y)a(z,y) = 7w(y)gly, )

hence, if n(x)g(r,y) > n{y)gly, x), set a{z,y) = n(y)g(y, z}/m(x)¢{z, y). Of course,
if the inequality in (1.3) is reversed, set a(z,y) = 1 and determine a(y, x) as above.
The probabilities @{z, %) and c(y, z) are thus introduced to ensure that the two sides
of (1.3} are in balance or, in other words, that the modified candidate-generating
density satisfies reversibility.

To complete the defiuition of p(x,y) given above, a small technicality must be
considered. Because there is a nonzero probahility that the process remnains at = (i.e..
p(z, 1) # 0), a density function is inadequate to represent all the transitions. But

this problemn is easily solved. The probability that the process remains at z Is given



by
r{a) =1- /q(xsv)&(r, y)dy.
Let é;(y) = 1if £ = y and 0 otherwise, and define g(z,z}a(x,z} = (). Then we can
define
plz,y) = q(z,y)a(z, y) + r(2)2(y). (1.4)

We have thus written the transition kernel as the sum of a reversible terin and
a term that places nonzero probability at the value . The result presented in {1.2)
that reversibility implies invariance can be generalized to expression (1.4); see Tierney
(1994).

To summarize, the probability of a move is

a(:l:,y) = min [:(T:Q(-‘F;) ’ 1] if ?T(-T)Q('-F: y) > 0;
otherwise.

Several imiportant points should be noted. First, the calculation of a{x,y) does
not require knowledge of the normalizing constant of 7(.), since it appears both
in the numerator and denominator. Second, in the important special case where the
candidate-generating density is symmetric, i.e. g(z,y) = ¢(y. x), the acceptance prob-
ability reduces to #(y)/m{z); hence, il #(y) > =(x), the chain moves to y, otherwise
it moves with probability given by n{y)/7(x).

We now summarize the M-H algorithin initialized with the (arbitrary) value {9

Repeat for j =1,2,..., V.

STEP 1: Generate y from g(z(,.) and U from U(0,1}.

STEP 2: Let 2U+Y = ¢ if U < a2V, y); otherwise let 20+1) = zU),

Return the values {x("""’l), ), ...,.’L‘(N)].

As in any MCMC method, the draws are regarded as a sample from the target
density 7(x) only after the chain has passed the transient stage and converged to the
target. For this reason, the first 1 values of the chain are ignored. This is sometimes
referred to as the burn-in period. There are many different ways to monitor the

behavior of the output to determine approximately the values of np and /¥. One simple



idea is to make 1y and N an increasing function of the first-order serial correlation
in the output. However, the specifics of the sampling design usnally have little cffect
on such summaries, such as the mean and standard deviation, calculated from the
sampled values.

As Chib and Greenberg (1995) discuss, theve are a number of choices available for
¢(z,y). In many cases a normal or t-distribution, with appropriate tuning parameters
chosen, will work reasonably well. In choosing the generating densily, it is desirable
to have it dominate the target density in the tails of its distribution.

In the M-H algorithm, the spread of the candidate-generating deusity affects the
behavior of the chain in at least two dimensions: one is the “staying rate” {the per-
centage of times a move to a new point is not made) and the other is the region of
the sample space that is covered by the chaiu. To see why, consider the situation in
which the chain has converged and the deusity is being sampled around the mode.
Then, if the spread is extreme, some of the generated candidates will be far from the
current value and will therefore have a low probability of being accepted. Reducing
the spread will correct this problemn. But if the spread is chosen too small, the chain
will take longer to cover the support of the density, and low probability regions will
be under-sampled. Both of these situations are likely to be reflected in high autocor-
relations across sample values. For these reasons, the candidate-generating density
should be tuned so that the staying rate is about 50%. If the chain still displays high
autocorrelations, it is nsually necessary to try a different class of caudidate-generating

densities.



Chapter 2

Longitudinal Models-Theory

2.1 Introduction

In this chapter we will introduce muodels thal are appropriate for the analysis of
continuous and binary longitudinal data. We will discuss a hierarchical Bayesian

structure for these models, and derive the needed posterior distributions for analysis.

2.2 Model for Continuous Data

Consider the Gaussian linear mixed model (Laird and Ware, 1982),

yi= X0+ Wb; +e (2.1)

where the y; are vectors of length n; containing the observations on the " unit, and
the €, are error vectors of the same length independently distributed as N, (0, 0%1,, ),
7 = 1,....,n. Therefore, we have a total of n subjects. In this mixed model, X, is
an n; X p design matrix of covariates and 8 is a corresponding p x 1 vector of fixed
eflects. In addition, W is a n; x ¢ design matrix (g typically less than p), and b; is a
g X 1 vector of subject-specific random effects. In a non-Bayesian setting, we would

usually assume that b; ~ N(0, D), where D is the covariance matrix of b; and b, is

10
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independent of €;, which implies the mean and variance of y; are

E(yi) = XiB
Var(y) = Var(W;b;) + Var{e;)
= W.DW! 4o,

However, we will conduct a Baycsian analysis of the model (2.1}, which means we
must specify prior distributions for the parameters. The hierarchical specification
of this model is completed by adding the prior distributions 3 ~ N,(8,.B,) and
o? ~ IG(v,/2,6,/2), where IG denotes the inverse gamma distribution with parame-
ters v, and §,. We also assume that b, is a random effects term, where b; ~ IV, (0, D),
D! ~ W,{po, Rop;') and W denotes the Wishart distribution with parameters p,
and R,. We note that the parameter values in these prior distributions need to be

specified.

2.3 Estimation Methods

Iit this section, we discuss Bayesian methods for simulating samples from the posterior
distributions, based on Chib and Carlin (1999).

2.3.1 Algorithm 1

The Gaussian lincar mixed modecl (2.1} lends itself to a full Baycsian analysis by
Markov chain Monte Carlo (MCMC) methods. One of the first such algorithms was
proposed by Gelfand and Smith(1990) which we snmmarize as follows, and refer to

as Algorithm 1:
1. Sample @ from B|y,b,0%, D

2. Sample b from {b;}|y,3,0%,D
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3. Sample D! from D!}y, 3,b, ¢?

4. Sample o2 from o?ly,3,b,D

5. Repeat Steps 1-4 using the most recent values of the conditioning variables.
Under the assumptions of (2.1) and the specified priors, we can derive explicit ex-
pressions for the posterior distributions in this algorithm, which we do below:
Posterior of 3

We begin with the posterior distribution of (8y, b, ¢2, D) where the prior distribution
of A is:

1
(V2m)? | B, |2

Given values of b, 4,0%, D, we know that,

g = exp{~1/2(8 — B,)B; (B - B,)]

Ely; | bi,ﬁ,ag,D] = X;8+ W;b;
Vlyi | b;,8,0% D]
Y: t (bia B: 025 D) ~ N(Xlﬁ + Wibi: 0'2111‘)

o’l,,

Therefore, we also know that,

; " 1
fbrbu it D) = I oamiteri

x exp{=1/2(y; — X, ~ Wib,)'o™(y; —~ X;8 — W,b;)]

The posterior distribution of A can be found using Bayes Theorcm:

(8 | y,b1,..bs, 0%, D) o M(B)f(y|b,.., bn,B8,0° D)
- (\/ﬁ)ﬂll B, |1/2 exp[~1/2(8 = B,)B; (B~ B,)]
n 1
I o, i
x exp[~1/2(y; — X8 — Wby)'a*(y; — X:B — W.by)]
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o« exp[-1/2(8'B;'8 - 28,B;' )]
x exp{—1/2(=23 yie*XiB + > A Xio X,
i=1 =1

T
+23) bWio*X;3)|

j=1

Next, we collect terms that involve 8:

(B | y.by,...bs, 0%, D) x exp[-1/2(8'(B;" + iX;a“QX,—)ﬁ

1=1
~2(8'B;t + i yio ' X + i biWis=2X,)8)]
- . (2.2)

From (2.2), we see that the exponent is

BB + 3 Xio X8 — 268 + L vlo K + LMW X9 (2.9)

i=) i=1 i=1

This is really a quadratic function of 8. Now, define

B: = (B;'+Y Xjo?X,)™!
=1

T T
a;, = (B,B; +3 yio X+ biWieT'X,)

i=1 i=1

We use By and a; and complete the square in (2.3) to find:
ﬁ’B;lﬁ - 2ﬁ,aé = (ﬁ - Bk&i)JBEI(ﬁ - Bka{) - a‘}Bka{ (2.4)

Based on {2.2) and {2.4) we can now say the posterior of distribution of

B | (y,by,...,b,, 0% D) can be cxpressed as
{8 |y,b,e? D) o« expl-1/2(8 - Bya;)B;'(8 — Bja,)] (2.5)

But (2.5), up to a multiplicative constant, is the density of a Gaussion distribution.

So,

B|{y,bo* D) ~ N(Bja,By) (2.6)



Posterior of b
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The prior distribution of by is:

(b)) =

We also know that

f(Yz l bitﬂ1021D) =

(\/Q_w)qll D {12 exp{=1/2(bD""b;)]

1
(V2m)m | 0?1, |1/
x exp[—1/2ly; — X;8 — W;b,Yo *(y; — X;8 — W,b;)]

The posterior distribution of b; can be written as

H[bi ] (yr ﬂ: 02! D)]

o TI(b)f(y: | bi, 8, 0% D)
o I !
= Wam o AR b

x exp{—1/2(y; - Xi8 — W.b;)'o™*(y; — X, — W;b,)]
x exp[—l/?(b;D‘lbg — y;O'“QW,:b;' + ﬁ'X’io‘QWibi
—biWio 2y, + biWio2X;8 + biWio?W,b,)]

As in the derivation of the posterior distribution of 8, we collect the terms involving

b;:

I(b: | (v, B,0%, D))

Now we define,

o exp[-1/2[bi(D™! + Wioc *W,)b,

—(yio T*W, — X0 Wb, - b{(Wio %y, - Wio ?X,8)]]
= exp{—1/2(b{{D~! + Wiz ?*W;)b;

—2by(Wio %y, — Wia ?X,))] (2.7)

Hy = (D' + W *W,)™!
a; = (Wi yi - Wio7?X,8)



We use Hy and a; to rewrite (2.7) by completing the square:

biH'b; — 2bla; = (b; - Hea;)Hi (b; — Hya;) — ajH,a,

15

(2.8)

Based on (2.7) and (2.8) we can say the posterior distribution of b; | (y. 3, %, D) can

be written as:

(b | (y,B,0°, D)) o exp[—1/2[(b; ~ Hya;)'H; ' (b; — Hya;)]]

(2.9)

However, {2.9) is proportional to the density of a Gaussian distribution, so we can

say

bi | (Ye ﬁ:021D) ~ i\rQ(Hka'i:Hk)
= N(HWjo *(y; — X;8),Hy)

Posterior of D~}

(2.10)

Next, we derive the posterior distribution of D~*|{y, 8, b, 0?) where the prior distri-

bution of D! is (Muirhead, 1982, p. 85):

D H{{pea~ 172 expl—1/2[tr (g, R D]
2ot PR o, o TII, Ty + 1 = /2
o [DTHem D2 exp(—1/2(tr (R, D H]IIRo/ 0o 7o

I(np™Y =

The prior distribution of b; is:

1 -
I1(b;) WEKP{—U?(IJ:D 'by)]
= D2 exp[~1/2(b{D"by)]
Then, assuming by, ...... b, are independent, their joint prior distribution is:

M(by,....by) o 1D|—“f’2exp[—1/2(ib;D"1bs)]

i=l

(2.11)

(2.12)
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We can rewrite the exponent in (2.12) as follows:

n n
Y biD7'b; = tr[> biD7'b;] Since b{D~'b; is scalar
=1

i=1

n
= Ztr(b;D"lbi)
=1
T
= Z tr(D7'b;b]) Since tr(AB) = tr(BA)
i=1

= D bib)]

i=1

Therefore, (2.12) becomes

We now consider the joint posterior distribution of D~! and (by, .....b,), using (2.11}
and (2.13):
(D™, by, ... baly, B,6%) o D7 4= D2 exp{—1/2[tr(p,R; D~ ")]]|Ro/ po| '
x|D{™"? exp[~1/2(trD~* (3" b;b)))]
i=1
xf(y|D,B,by,....b,, %)
= DUt DD AR,
Ti
x exp|-1/2tr(p,R;'D™" + D73 bb})]]
i=1
xf(YlD?ﬂablv """ bﬂiaz)
—_ |D—}|(Po-l'n,—q—-l)j2lR0/pO|*ﬂo/2
n
x exp[-1/2rD" (o, R; ! + Y b))
=1
xf(YiD!ﬂ)bh """ bn:‘72)
where f{y|D,B.by,....b,,0%) can be found using the fact that y; { (b;, 8,02, D) ~
N(X,ﬂ + Wb, 0211“).

Then, if we also condition on by, .....b,, we lind the posterior distribution of D™} :

H(D_li(Y:bl: ----- bn,ﬂ,a2) x |D_l|(ﬂu+n—q-—l)]2
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exp(—1/20tr (D (poR; " + 3" bib))]] (219

=]
If we compare (2.14) to (2.11), we sce that the posterior distribution of D! has the

form of a Wishart distribution. In particular,

T
D!~ W+ pon (0BG + 3 ib) ™) (2.15)

i=1

Posterior of ¢?

Finally, we derive the posterior distribution of 2 where the prior distribution of o2

is:
(o) o (o H)/3+t exp[—8y/207] (2.16)
Given (2.16) and the distribution of y; given earlier, we can express the posterior

distribution of ¢? as

M(c? | {y,8,b;, D)) (a‘z)f“*’“ Lexp[—do /207
H | QI 1[},2 exp[v—l/ll(yi - X;‘ﬁ — Wibi)’(‘)’_z
( Y Xeﬁ i s)}
— (O.-2){vof2)+l ﬁ | e |-1;2

i=1

x expl—1/a*((64/2) + (i lly: — Xi8 — W;b;11%)/2)]

_ (0,-2)(00;‘2)+1 f[ g-ni/2)

i=1

x exp[—1/a*({d4/2) + Z lly; — X:8 — Wibi[*)/2)]

n

(vo/2) + (3_mi/2) +1

= (@)

x exp[—1/a%{(6y/2) + (i lly: — Xi8 — W;bi|1%)/2)]
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((uﬁém)m 1

= (o7
x exp|—1/c*{(d0/2)
+(3 Ilys ~ XiB - Wiby|[*)/2)] (2.17)
i=l1

If we compare (2.17) to (2.16), we sec the posserior distribution of ¢ has the form of
an inverse gamina distribution. In particular, we can say,

1 (v, BbuD) ~ IG[(wo+ 3 1)/2. (60 + 3 lly: — X — Wibi{[?)/2

i=1 =1

(2.18)

Based on our derivations, we note that all the priors are conjugate priors.

2.3.2 Algorithm 2

It is recognized that Algorithm 1 is relatively ecasy to implement, but it can suffer
from slow convergence if the parameters are highly correlated, or if the information in
the likelihood and prior is insufficient to completely determine the model parameters
{Chib and Carlin, 1999). For this reason, we now describe a new Algorithm, denoted
as Algorithm 2.

Algorithm 2 is identical to Algorithm 1 except for the change in the sampling
of #. This minor refinement can be important, however, and improves the behavior
of the MCMC output. Besides, it requires no hicrarchical centering because 8 is
sampled without conditioning on the random effects and the entire sampling is still
from tractable distributions.

Algorithm 2 relics on the use of blocking for Gaussian mixed models. We begin
our investigation into the value of blocking in longitudinal models by considering
the distribution of y; marginalized over the random effects. Due to the conditional

Gaussian structure we know that,

yil8,D,6% ~ N, (X,8,62,) (2.19)
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where Q; = o*I,;, + W, DW/. This implies that the posterior distribution of 8 will
be conditioned on ¢? and D (but not on b;) (Lindley and Smiith, 1972). It is possible
to sample the fixed effects B and the random effects b, in one block, but retain the

essential Gibbs structure, as follows. We will denote this as Algorithm 2:
1. Sample 8 and b from B, {b;}|y,¢? D by sampling

(a) B from Bly, 0%, D
(b) b from {b;}ly, 8,02, D

2. Sample D! from D~ ]y, 8, b, o?
3. Sample ¢? from ¢%y,3,b,D
4. Repeat Steps 1-3 using the most recent values of the conditioning variables.

Now, we will derive the posterior distributions for this algorithm.

Posterior of 8

As before, the prior distribution of 8 1s:

p) = exp(—1/2(8 — B,)B.' (B - B,)]

1
(V2m)P | B, |72
We know from (2.19) that,

fv18D.) = 1 m)ml, o

expl—1/2(y; ~ X:8)Q;  (y: — X:8)] (2.20)

Then the posterior distribution of 3 is,

(8 |y,D,0%) « H(B)f(y!|B.D,o?
= (m)pll B |1{f:2 exP[_l/z(ﬁ - ﬁa)}B;l(ﬁ - ﬁa)]




° 1

g ;=Hl (V2m)m | |12 exp[-1/2(y: - X:BY Oy -

o< exp[-1/2(8 - B,)B; ' (8 - B,)]
[T expi=1/2(y: - X:B)07 (3 ~ X,8)

= ;;lp[ 1/2(3’B—la B.B;'8 - 8B4, + F,B
x exp{—1/2( Z yiQ 'y Z BX My,

i=1 1=l
- Zy: i ‘X'lﬁ + Zﬁ xsnﬂlxﬁﬁ)]
- exp[-.1/2(a'13~1ﬂ - 2;3013;*19 +8,B;8,)]

x exp|— 1/2(2 YOy - 23y X8 + ZX

e=1

20

X.8)]

;. XiB))

As in the previous derivation of the posterior of 3, we colleet terms involving 8. This

vields
{8 |y, D,0%) o exp[-1/2(8'(B;" + > Xi07'X,)8
=1

LB + Y v X,)B))

i=1
From (2.21), we sec the exponent of TI(8 | y, D, 0?) is

A'(B;'+ Z X0 X)8 - 2(8B; + Z yi0'X,)A
i=1

=1

Now define

B, = (B;—l + ZXQQ{‘X,-)"‘

i=1

a;, = (8,B, +Zy’ﬂ X
= (B;lﬁwzxiﬂf‘yi)
=1

This allows us to rewrite {(2.22) as

8'B;'B-2f'a = (B-B:a)B;'(B - Biai) — a,Ba]

(2.21)

(2.22)

(2.23)
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Using (2.21) and (2.23) we find
H(ﬁ | Y, D:o'z) & (‘X]’)[—l/?(ﬂ - Bkat)fB;;Fl(B - Bkai]]
Therefore,

B | (y!Dsoj) ~ N(Bkai)Bk)
= N(B«(B,'8,+ Y X 'y}, By) (2.24)
i=1

Since steps 1(b) and 2-4 in Algorithm 2 are the same as in Algorithin 1, the posterior
distributions of b, D~! and ¢ are given in (2.10), (2.15) and (2.18), respectively.

2.3.3 Algorithm 3

While Algorithm 2 is an improvement on Algorithm 1, it does not address the cor-
relation between D! and b that can lead to slow mixing for the unique elements of
D~! (Chib and Carlin, 1999}, To deal with this problem we can use an approach that
allows one to sample all parameters in one block from the joint posterior distribution.

The idea is to use the following decomposttion of the posterior distribution
O(e*, D71, 8,bily) = I(o* D7Yy)I(Bly,o" D)II(bi]y.B8,0% D)

where the last two densities are the same as in Algorithm 2. The first density is
not in closed form, but can be updated by the Metropolis-Hastings algorithmn (sce
for example Hastings, 1970, or Chib and Greenberg, 1995), which was discussed in
Chapter 1. By definition,

(e, D7 Yy) « (¢ D7) f(yls®, D)
where

f¥leD) = [ f(y|3,0% D)N(B)AB
o |[V[™Y?expl(y - XB,)'V 7y — XBo)]
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andy = (y!,...¥.}), X = (X{,..,X,), V = (XB;'X'+Q) and @ = diag(€, ..., ).
Recall that £2; was defined following {2.19). One way to evaluate this density is to
recognize that f(y|c?, D) ig the normalizing constant of [I(8|y, 0%, D). A similar idea
is used by Chib (1995) in his approach to find the marginal likelihood of the model

(2.1). Hence, we may write f(y|o? D) as a ratio of three terms;

(3" f(y|B",o*.D)
II(B%|y, 0, D)
65(8718g; Bo) ITi=1 8n: (y:x:87, Vi)
$p(8"18, B)

Where 3% is any point (preferably a high density point such as the posterior mean

f{yle®, D)

from Algorithm 2) and ¢,(t|u, Z) is density of the p-variate normal distribution with
mean vector u and covariance matrix X. This leads to the following single block
algorithm for sampling the posterior density of the Gaussian hierarchical model. We

refer to this as Algorithm 3.

1. Run Algorithm 2 for G = 500 iterations (say) and let 8" = G™! ):le BY . Also
letp =G 'L, 09 and T = G-' £, (89— ) (89 — Y, where 8 = (02, ),
and 1 = vech(D™!'} denotes the unique elements of D2,

2. Sample @, 8 and b from [0, 8, bly] by sampling

(a) @ from I1{@}y} using the Metropolis-Hastings algorithm with proposal den-
sity given by ¢(0) = fuvr(0lu, 72L, v), where fysvr is the multivariate-t
density with v degrees of freedoni, and 72 and v are tuning parameters.
Given the current value 8°, first draw €' from ¢(@) and move to the point

8" with probability given by

f(YIU'Z"'a Dt)H(O'H, D—t)q(oic, Dc)
" f(ylo¥, De)I{o*, D~¢)g(c*, D)

af@°, 6°) = min [1
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(b} Sample 8 from NP(B, B,) where 3 = Bya,,

T
B, = (B;'+Y Xo7'X)™!

i=1
a; = (BJ'B,+ ) X 'y))
i=1
(¢) Sample b; independently from N,(b;, C;) where b; = C;[W!o~(y, - X:8)]
and C; = (D' 4+ Wlo2W,)~L.

3. Repeat Step 2 using the most recent values of the conditioning variables.

2.4 Model for Binary Data

In this section we consider various blocking schemes for the class of probit longitudinal
binary random effccts models. A Bayesian analysis of these models using a version of
Algorithm 1 is provided by Albert and Chib (1996), and by Zeger and Karim (1991)
under the logit link.

Consider a sequence of binary measurements y, = {y;, -..... ¥in, ), Where 3, = 0 or 1,
on the i** unit taken at n; specific time points. Let the probability Pr(y; = 1|b;) be
modeclled by the probit link:

x'43 + W'if,bf) ’ (2.25)

Pr(y: =1{b)) =@ ( p

where, ® is the standard normal cdf, x';; and w'; are the tth rows of X; and W,
respectively. X; is an n; x p design matrix of covariates and 3 is a corresponding
p x 1 vector of fixed effects. In addition, W, is a n,; x g design matrix and b; isa g x 1

vector of subject-specific tandoin effects. For this model, the likclihood contribution

f(y:|8,D) is given by

o w8 + w'abi Y] X8+ Wb \] ¥
i () s (3

t=1 g

{b:)db; (2.26)
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where TI(b;} is the prior distribution of b;. The integral in (2.26) is expensive to
evaluate when b; is multi-dimensional. One way to deal with this problem is via a
latent variables approach (Albert and Chib, 1993, 1996; Carlin and Polson, 1992).

Let z;; denote independent latent variables such that
zy|b; ~ N(X'38 + w,itbi:oj): 1<t<n;1 <1<,
Let the observed response y;; be given by

1 ifZ,‘g‘)'U
0 ifz; <0

e =

Then it can be seen that the y;, satisfy model (2.25).
In their paper Chib and Carlin (1999) considered ¢? = 1. This means there is no
prior, and hence no posterior distribusion for ¢2. This seems to be quite restrictive,

Thercfore, in our investigations, we consider a more general case for o2

2.4.1 Algorithm 4

With the introduction of the latent data, the probit model is similar to the Gaussian
model discussed in Section 2.2 and the posterior distribution of the parameters (3, D)
may be sampled in parallel fashion. Let Z = (2, ..., Z,,) and Z; = (21, ..., Zin,). Then
an MCMC scheme analogous to Algorithm 1 is defined as follows. We denote this as

Algorithm 4:
1. Sample 8 from B8|Z,b,02?,D
2. Sample b from {b;}{Z, 3,02, D
3. Sample D! from D~ }|b
4. Sample ¢? from ¢°|Z,3,b,D

Sample {z;} from zulyy, 8,0%,b,D

[



25

6. Repeat Steps 1-5 using the most recent values of the conditioning variables.

Note that step 4 is not given by Chib and Carlin (1999). The first four conditional
distributions follow the same form as those given in Algorithm 1: (2.6), (2.10), (2.15)
and (2.18) except the latent variable vector z; replaces y; in those expressions. The
posterior distribution in step 5 is given by a sequence of independent truncated normal
distributions, namely Nig ooy (X8 +w'ubi, 0?) if yir = 1, 0r N_oo 0y (/1.8 + W'y by, %)
if yi = 0.

2.4.2 Algorithm 5

A refinement to Algorithm 4 is based on marginalizing the distribution of z; over the

random effects b;. Then,
z; ~ N, (X8, () (2.27)

where ; = ¢%1,, + W;DW! and the model is similar to thc multivariate probit
model analyzed by Chib and Greenberg (1998}. The resulting algorithm is similar
to Algorithm 4 except that 8 is sampled from B|(Z,0?, D), and the latent variable
z; comes from the multivariate normal distribution IV, (x;3, ;) truncated to the re-
gion implied by the vector y;. We follow Chib and Greenberg (1998} and sample this
truncated multivariate normal vector from a sequence of (full conditional} univariate

truncated normal distributions. This cau be done by recognizing

fla, .., z) = f(zsi)f(zsﬂ3;1)----f(3£:fzu---Z:'{aﬂ))

where each distribution on the right-hand side is univariate normal, and can be found
using a standard result on the conditional distributions arisiug from a Gaussian distri-
bution (Johnson and \Vichern, 1992, p. 138). Thus, in this case, integrating out the
random effects does not lead to a reduction in the number of blocks in the sampling

(relative to Algorithmn 4). Nonetheless, marginalization over the b, can be expected
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to improve the sampling of the fixed effects for the reasons discussed in earlier sec-
tions. This is similar to the improvement that Algorithm 2 is intended to show over
Algorithm 1. We summmarize this algorithm, which we call Algorithin 5, as follows:

1. Sample B and {2z} from [8, {z;}|y,o? D by sampling

(a) A fromi By, z,0%,D
(b) {z;} from z;|y;, 8,02, D

bJ

. Sample b from {b;}ly,z,8,0%. D

=

. Sample D! from D1|b

M

. Sample ¢? from ¢?ly,z,3,b,D

on

. Repeat Steps 1-4 using the most recent values of the conditioning variables.

The posterior distributions that are used in this algorithm are the same as those
derived in Algorithin 2: (2.24), (2.10), (2.15) and (2.18), except the latent variable

vector z; replaces y, in those expressions.

2.5 Conclusion

In this chapter, we have presented several algorithms for generating samples from the
posterior distributions of interest for two longitudinal models. In the next chapter we

will present some simulation studies on the performance of these aigorithms.



Chapter 3

Simulation Studies

3.1 Introduction

In this chapter, we conduct several stimulation studies on the MCMC algorithms
presented in Chapter 2. In the longitudinal models, we will study the performance

of the posterior estimates, as well as the autocorrelations of the MCMC samples of

each algorithm.

3.2 Simulation Design and Generation of the Con-
tinuous Data

We usc the Gaussian linear mixed model (2.1) in this section. Under model (2.1), we
will use n = 50 and n; = 5 measurements on cach subject. In our simulations for
Algorithms 1-3, we sitnulate our data under the following prior assumptions on our

parameters:
B~ Ni(B,,B,), by ~ N2(0,D), D! ~ Wa(po, Rop; ') and 02 ~ IG(1,/2,6,/2).

27
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where 3, = (0,0,0,0)', B, =1, g, = 50 and

1
R, =

=

;)

In our analyses, we examine our results under a variety of choices for the other
prior parameters. In each case, we will run Algorithms 1-3 of Chapter 2 for 500
iterations. No burn-in-period was used in any simulations, although it may have
been of some assistance in Algorithm 3. In all simulations, one set of simulated g,
values was used. Finally, our simulations focus on changing the prior of o2. Because,

in our work, we found that changing ¢? had the most dramatic affect on the results.

3.3 Simulation Results-Continuous Data,

We will begin our simulations with the posterior means and variances of the param-
eters under Algorithins 1-3. These are given in Tables 3.1 to 3.3. These tables refer
to Cases 1-3, which are defined as follows:

Case 1: v, = 100, 6, = 5. Thercfore the prior mean of o = 0.053.

Case 2; v, = 3, 8, = 100. Therefore the prior mean of ¢? = 20.

Case 3: v, = 5, &, = 5. Thercfore the prior mean of 0% = 1.

We examine the results on the posterior estimates for Algorithin 1, which are
given in Table 3.1.

As we examine the results in Table 3.1, we see that changing the prior of ¢% has
some effect on mean(B). Increasing the prior mean of ¢? causes var(3), mean(6?),
var(?) to increase, but it has little effect on mean(D) and var(D).

Next, we examinc the results on the posterior estimates for Algorithm 2, which
are presented in Table 3.2.

As we examine the results in Tahle 3.2, we see that changing prior of ¢* does
not have a large cffect on mean(B). Increasing the prior mean of 0% causes var(3),
mean(5*) and var{(6?) to go up, as we might expect. However, there is little cffect

on mean(D) and var(D).



Parameters

Cases 3o o1t B2 35 6° Dun Du Dy
Case 1 | Mean | 0.78 -0.44 -1.73 -436 210 128 -0.73 1.30
Var | 0.10 055 040 023 0.116 0.04 0.03 0.04
Case 2 | Mean | -0.50 -0.86 -0.92 -0.76 16.21 1.39 -0.69 1.38
Var ; 030 0.71 066 063 242 007 0.04 0.07
Case 3 | Mean | 0.51 -0.65 -147 -3.53 315 127 -0.70 1.30
Var | 0.13 0.8 0.44 031 026 004 0.03 0.04

Table 3.1: Posterior means and variances of parameters in simulations nsing Algo-

rithm 1.

Finally, we present the results of Algorithm 3 in Table 3.3. As we examine the
results in Table 3.3, we see that changing the prior of ¢® has some effect on mean(8),
but the results of the 3 cases do not differ greatly. Increasing the prior mean of o2
causes var(A), mean(6?) and var(6?) to increase. It has little effect on mean(D) and
var{D).

One of the issue to address in Algorithm 3 is the Metropolis-Hastings step of
simulating approximate samples from [I{o%, D~!|y). Recall that the algorithm moves
to new posterior values for 02 and D with probability «(8°, 8"), where & contains o2
aud the unique elements of D~!. From our background in Chapter 1, we want e to
be neither too large nor too small.

In our simulations, under Case 1, we observe movement from 8° to 8" about 3%
of the time, about 48% of the time in Case 2, about 9% of the time in Case 3.
Therefore, 1t appears that Algorithm 3 docs not perform well in generating posterior
samples when the prior mean of ¢? is small. For tuning parameters, we use 72 = 0.1
and v = 10 in the multivariate-t distribution. We tried several other combinations,
but none perfomed better than the results presented here. We will investigate other

implications of this lack of movement in the Metropolis-Hastings step in the next

section.
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Parameters

Cases Bo & B> B3 c* Dun Dy Dy
Case 1 | Mean | -0.24 -030 -1.32 -0.93 058 138 -0.77 135
Var t 0.09 049 031 042 0.03 0.04 003 0.04
Case 2 | Mean | -0.62 -0.77 -0.92 -0.13 13.99 145 -0.70 1.34
Var | 0.27 071 0.63 067 254 0.07 004 0.06
Case 3 | Mean | -0.27 -048 -1.23 -0.74 152 137 -0.74 1.34
Var | 0.11 056 039 047 0.09 0.04 0.03 0.04

Table 3.2: Posterior means and variances of parameters in simulations using Algo-

rithm 2.

3.3.1 Comparison of Algorithms

If we compare Cases 1-3, we see that Algorithm 1 tends to give larger (in magnitude)
values for mean(B) than Algorithms 2 and 3, which give similar results. However,
var(f) is similar for all algorithms. Algorithm 1 provided larger values for mean(4?)
than the other two algorithms, particularly when the prior mean of ¢? was small. We
also see Algorithm 3 leads to smaller values of var(62), mean(D) and var(D) than

other two algorithins.

3.3.2 Graphs

Although we have examined some summary statistics on our posterior distributions,
it is also of interest to examine our posterior distributions visually. Therefore, we
now present histograins of a selection of the posterior distributions discussed earlier.

From Figure 3.1 (Algorithm 1, Case 1}, we found that posterior distributions of
all B estimates appear symmetric and normal. The posterior mean of ; is larger
than its prior mean and the postcrior means of 8;, §2, J; are less than their prior
neans.

From Figure 3.2 (Algorithm 1, Case 1), we found that the posterior distribution
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Parameters

Cases Bo B Ba B3 o? Dy, Dy, Do
Case 1 | Mean | -0.256 -0.16 -1.43 -0.97 030 1.08 067 1.07
Var | 009 040 023 049 001 0.002 0.002 0.003
Case 2 | Mean | -0.64 -0.73 -0.93 -0.13 1599 100 045 1.05
Var | 0.28 065 055 078 0.52 0.006 0.003 0.004
Case 3 | Mean [ -0.24 -048 -1.24 -0.86 132 110 054 1.10
Var { 0.11 055 035 046 0.02 0.01 0.002 0.004

Table 3.3: Posterior means and variances of parameters in simulations using Algo-

rithm 3.

of 0 doesn’t appear very skewed, but the posterior distributions of Dy, and Dy arc
skewed to the right as a x? distribution and the posterior distribution of Dy; (the off
diagonal elenient of the Wishart distribution} do not secm symunetric. The posterior
mean of o is larger than its prior mean and the posterior mecans of Dy, Ds; and Dy,
are very close to their prior means, which were 1, 0.5, and 1 respectively.

From Figure 3.3 (Algorithm 2, Case 3), we found that the posterior distributions
of all 8 estimates appear approximately normal, and the posterior means are less
than their prior means.

Fron Figure 3.4 (Algorithm 2, Case 3), we found that the posterior distributions
of 0%, D) and D,, are skewed to thc right as a x? distribution, but the posterior
distribution of Dy, appears asymmetric. The posterior mean of o2 is larger than its
prior mean while the posterior means of I\, Dy, and D9y are very close to their prior
means.

From Figure 3.5 (Algorithm 3, Case 2), we found that the posterior distributions
of all 3 estimates are approximately normal and the posterior means of 5y, 51, 52, 53
are less than their prior means.

From Figure 3.6 (Algorithm 3, Case 2), we found that the posterior distributions

of 0% and the elements of D all appear to be slightly skewed. Each posterior mean is
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very close to prior means.

3.4 Simulation Design and Generation of the Bi-

nary Data

We use the probit link model (2.25) in this section. Under model (2.25), we will use
n = 50 and n; = 5 measurements on each subject. In our simulations for Algorithms
4-3, we simulate our data under the following prior assumptions on our parameters:
B ~ Ny(B,,B.), by ~ N;(0,D), D™ ~ Wi(p,,Rop, ") and ¢ ~ IG(v,/2,6,/2),
where 8, = (0,0,0,0), B, =1, p, = 50 and

1 .8
R, = .
b1
In our analyses, we examine our results under a variety of choices for the other

prior parameters. In each case, we will run the algorithms 4-3 of Chapter 2 for 500

iterations.

3.5 Simulation Results-Binary Data

We will begin our simulations with the posterior means and variances of the param-
eters under Algorithms 4 and 5. These are given in Tables 3.4 and 3.5. These tables
refer to Cases 1-3, which are defined as follows:
Case 1: v, = 100, §, = 5. Therefore the prior mean of o = 0.05.
Case 2: v, = 5, 6, = 100. Therefore the prior mean of o2 = 20.
Case 3: v, = 5, 6, = 5. Therefore the prior mean of o? =

We examine the results of the posterior estimates for Algorithin 4, which are given
in Table 3.4.

As we examine the results in Tahle 3.4, we see that increasing prior of a2 causes

mean{B), var(B), mean(6?), var(6?), mcan{D) and var(D) to go down (in absolute
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Parameters
Cases o B Ba B3 o? Dy Dy Day
Case 1 | Mean | -9.03 -5.69 -4.80 -7.16 736.14 794.04 -684.85 597.54
Var | 380 1.83 149 296 7.5x10* 3.1x10° 1.9x10° 1.2x10°
Case 2 | Mean | -1.52 -1.56 -141 -1.47 47.41 1.70 -0.96 1.76
Var | 049 0.81 076 1.18 195.19 0.23 0.15 0.20
Case 3 | Mcan | -1.56 -1.59 -1.44 -1.61 50.46 1.87 -1.12 1.91
Var | 0.66 0.82 080 214 442.21 1.21 1.09 1.22

Table 3.4: Posterior means and variances of parameters in sitnulations using Algo-

rithm 4.

value). Case 1 provided larger posterior estimates for all parameters. This is especially

true for the variance components.

Parameters
Cases Po B Ba s o? Dy Dy Dy
Case 1 | Mean | -0.07 -0.69 -061 -061 197 154 -0.64 1.28
Var | 012 052 045 056 0.15 0113 0.04 0.05
Case 2 | Mean | -0.69 -1.16 -1.07 -0.40 1735 1.54 -0.97 1.56
Var | 0.32 0.64 068 075 36.26 0.105 0.06 0.09
Case 3 | Mean | -0.51 -1.07 -0.99 -0.41 1199 154 -0.74 1.53
Var | 0.28 0.61 0.63 0.71 2028 0.106 0.06 0.09

Table 3.5: Posterior means and variances of parameters in simulations using Algo-

rithm 5.

Table 3.5 gives the results of the posterior estimates for Algorithm 5. As we

examine the results in Table 8.5, we see that changing the prior of 6% has not had a

large effect on mean(B) and var(B). Increasing the prior mean of o? causes mean(4?)

and var{#?) to go up. It has little effcct on mean(D) and var(D).
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3.5.1 Comparison of Algorithms

If we compare Algorithins 4 and 5, we see that Algorithm 4 provided larger values
{in absolute terms) for the posterior means and variances of 8. There are also large
differences between the posterior results on o, and between the values of D in some
cases. It does appear that Algorithm 5 gives us more reliable results, based on these

findings.

3.5.2 Graphs

As in the previous section, we present some histograms on a suhset of our posterior
distributions.

From Figure 3.7 (Algorithm 4, Case 3), we found that the posterior distribution
of 3; is highly skewed to the left and the posterior distributions of &y, 81, 5, are
symmetric. The posterior means of f, 81, fa2, H3 are less than their prior means.

From Figure 3.8 (Algorithm 4, Case 3), we found that the posterior distributions
of 6%, Dy; and D, are highly skewed to the right, but the posterior distribution of
Ds; is highly skewed to the left. The posterior mean of ¢” is larger than its prior
mean. However, the posterior means of Dy, Dy and Ds, are slightly bigger than
their prior means.

From Figure 3.9 (Algorithm 5, Case 2}, we found that the posterior distributions
of all 8 estimates are approximately normal, with posterior means of that are less
than their prior means.

From Figure 3.10 (Algorithm 5, Case 2), we found that the posterior distributions
of 0% and the elements of D are skewed to the right. The posterior means of 2, Dy,

Dy, and D4y are very close to their prior means.



3.6 Autocorrelations of Posterior Estimates

We now study the behaviour of the autocorrelation values of the posterior estimates
in our simulation studies. As discussed by Carlin and Chib {1999), we want these
autocorrelations to be close to 0, since that will indicate approximate independence

in the movement of the Markov Chain.

Parameter | Algorithm 1 | Algorithm 2 | Algorithm 3
Jof} -.0023 .0209 0883
Az -.0094 -.0408 0252
B3 -.0522 00566 -.0277
B4 0227 -.0523 0569
o? 1749 .0983 .5880
Dy .3935 3588 .6590
Day; 3630 4017 .5861
Dy 3767 3788 5168

Table 3.6: Lag-1 autocorrelations of posterior estimates under Case 2, using contin-

uous data.

We will examine two components of the autocorrelation values of our MCMC Al-
gorithms. First, we will calculate the lag-1 autocorrelations of our posterior estimates.
As noted, lag-1 autocorrelations near 0 will suggest approximate independence in the
MCMC movement.

The second component to be stindied is a summary of the autocorrelation at all
lags and the overall rate of decay, following Chib and Carlin (1999). This summary

can be represented as
o ¥
k=142 plk),

k=1
where p(k} is the lag k autocorrelation of the posterior estitnate of interest. The

value x is sometimes referred to as the autocorrelation time. We estimate x using

the sample autocorrelatious estimated from the MCMC procedure, cutting off the
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Parameter | Algorithm 1 | Algorithm 2 | Algorithm 3
B -.0397 -0165 -.0130
3 .0013 -.0440 -.0212
3 -.0115 -.0273 .0002
B4 -.0879 -.0668 0517
o2 .2426 2287 .9530
Dy 1331 1176 9529
Doy 1185 .0687 .0386
Dy, 1920 1214 8855

Table 3.7: Lag-1 autocorrelations of posterior estimates under Case 3, using contin-

uous data.

summation when the sample antocorrelations fall below (0.1 in magnitude. Using
Kass et al. (1998, p. 99}, & can be thought of as the relative increase in run length
needed by the MCMC method to deal with the dependence. Ideally, x will be small.

Note that if we have strict independence, x = 1.

3.6,1 Results on Algorithms 1-3

Tables 3.6 and 3.7 contain the values of the lag-1 autocorrelations of the posterior
estimates using Algorithms 1-3 for Cases 2 and 3, while Tables 3.8 and 3.9 contain
the estimates of x for these situations.

From Tables 3.6 and 3.7, we obtained good performance for the 5’s in Algorithm
1-3. Algorithm 1 and Algorithm 2 perform better for o* and the elements of D than
Algorithm 3. Algorithm 3 in Table 3.6 performs better for ¢? and the elements of D
than in Table 3.7, because there is little inovemnent in the MCMC procedure in Table
3.7 for smaller values of o2.

From Tables 3.8 and 3.9, we obtained good performance for the ’s in Algorithms
1-3. Algorithms 1 and 2 perform better for o2 and the elements of D than Algorithm



Parameter | Algorithm 1 | Algorithm 2 | Algorithm 3
B 1 1 1
Ba 1.237 1 1
B 1 1 1.211
B4 1.313 1 1
o? 2.196 1 7.53%9
Dy 2.314 1.950 14.874
Doy, 1.726 2.563 10.591
Dy, 2.185 2.023 6.303
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Table 3.8: Estimates of x = 1 + 2332, p(k) for posterior estimates, Case 2, for

continuous data.

3. Algorithm 3 in Table 3.8 performs better for o2 and the elements of D than in
Table 3.9, because there is little movement in the MCMC procedure in Table 3.9 for

smaller values of o2,

3.6.2 Results on Algorithms 4 and 3

Tables 3.10 and 3.11 contain the values of the lag-1 autocorrelations of the posterior
estimates using Algorithms 4 and 5 for Cases 2 and 3, while Tables 3.12 and 3.13
contain the estimates of « for these sitnations.

From Tables 3.10 and 3.11, we observed better performance for the 5’s and the
elements of D for Algorithm 5 than Algorithm 4. Algorithm 4 and Algorithm 5

perform similarly for o*. The findings are similar for Tables 3.12 and 3.13.

3.7 Conclusions

We have conducted simulation studies to compare the performance of the algorithms

discussed in Chapter 2. In regards to the algorithms for continuous data, it does not



Parameter

Algorithm 1

Algorithm 2

Algorithm 3

B
a2
Ba

1
1.260
1
1.243
1.698
1.306
1.237
1.868

1

1

1

1
1.457
1.677

1
1.243

1
1.752
1.828

1

28.403
28.983
31.996
29.736

Table 3.9: Estimates of &

continuous data.
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= 14+ 2332, p(k) for posterior estimmates, Case 3, for

appear that Algorithm 3 is an improvement over Algorithms 1 and 2, since it secmus

difficult to get good performance from the Metropolis-Hastings step of the algorithni.

For the methods for binary data, it does appear that Algorithm 3 is an improvement

over Algorithm 4. Finally, the results on the binary data suggest the choice of prior

on o plays a role, and its value should not be set to equal 1 arbitrarily.
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Parameter | Algorithm 4 { Algorithin 5
& 1750 0760
2 0348 0035
Ba 0147 -.0106
B .3903 0968
o? 7108 0216
Dy 6351 5378
Do 6417 4460
Dy, 5970 4937

Table 3.10: Lag-1 autocorrelations of posterior estimates under Case 2, using binary

data.

Parameter | Algorithm 4 | Algorithme 5
B 3594 0801
Ba 0452 0030
J 0403 -.0100
B4 6416 1025
o? 8501 9249
Dy, 8927 .5398
Dy 9044 41068
Dy, .8893 4615

Table 3.11: Lag-1 autocorrelations of posterior estimates under Case 3, nsing binary

data.
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Parameter

Algorithm 4

Algorithm 5

o)
P2
s
B4

1.846
1
1
3.082
14.788
7.199
6.111
4.549

1.201
1
1
1
18.237
3.900
2.888
3.127

ol)

Table 3.12: Estimates of k = 1+ 2¥32, p(k) for posterior estimates, Case 2, for

binary data.

Parameter

Algorithm 4

Algorithm 5

Bi
B2
B3

2.741
1.208
1
3.653
14.591
8.034
8.276
8.141

1.209
1
1
1.205
18.925
3.858
2.744
3.189

Table 3.13: Estimates of xk = 1 + 2¥2, p(k) for posterior estimates, Case 3, for

binary data.



Chapter 4

Continuous Data: Example

4.1 CD4+ Data

The huinan immune deficiency virus (IITV) causes AIDS by reducing a person’s ability
to fight infection. HIV attacks an immune cell called the CD4+ cell which orchestrates
the body’s immunoresponse to infectious agents. An uninfected individual has around
1100 cells per millilitre of blood. CD4+ cells decrease in nuniber with time from
infection so that an infected person’s CD4+ cell number can be used to monitor
disease progression. Kaslow et al. (1987) collected values of CD4+ cell nuinbers
along with other variables longitudinally for 369 infected men in a Multicenter AIDS
Cohort study. Our goal is to analyze a portion of these data to determine what
variables are useful in predicting the CD4+4 cell count. The variables are discussed
by Diggle, Liang and Zeger (1994).

Since CD4+ cell count i1s a discrete variable, it is inappropriate to use model
(2.1), which is designed for continuous errors. However, Chib and Carlin (1999)
and Chib and Jeliazkov {2001) show the square root of CD4+ cell count is a suitable
transformation to allow one to use model (2.1}, so we will use the same transformation.

Under model (2.1), we will use n = 20, and we have between 2 and 12 measure-

ments on each subject. In our model, X; = {1, x:1,X, 2, X; 3, X; 4], where

o1



X;,1 represents recreational drug use {(x;y; = 1 if drugs used),
X2 represents CESD, which is a mental illness score.
X;3 is the subject’s age (relative to an arbitrary origin) and
X; 4 is the number of packages of cigarettes smoked per day.

In addition, we define W; as having the jth row (1, t,-J), where £;; is the time since
seroconversion for subject ¢. Therefore, X; is n; X 5 and W, is n; x 2.

We make the following prior assumptions on our parameters:
B ~ N3(8,,B,), by ~ Np(0,D), D' ~ Wy(ps, Rop; ') and o2 ~ IG(v,/2,8,/2),
where 8, = (10,0,0,0,0), B, =1 and p, = 50. In our analyses, we examine our
results under a varicty of choices for the other prior parameters. In each case, we will

run Algorithms 1-3 of Chapter 2 for 500 iterations.

4.2 Results

We now present our analyses of the CD4+ data set, beginning with the posterior
means and variances of the parameters under Algorithms 1-3. These are given in
Tables 4.1-4.3. These tables refer to cases 1-4, which are defined as follows:

Case 1. v, =1, §, = 100 and R, = diag(2,1). Therefore, o has a prior mean of 100.
Case 2: v, = 5, 6, = 100 and R, = diag(2,1). Therefore, o° has a prior mean of 20.
Case 3: v, = 1, 8§, = 100 and R, = diag(10,1). Therefore, 02 has a prior mean of
100.

Case 4: v, = 3, 8, = 100 and R, = diag(10, 1). Therefore, 02 has a prior mean of 20.

As we examine the results in Table 4.1, we see that, changing the prior of ¢* has
little effect on mean(B) and var(8). It also has little eflect on mean(5?), but leads
to a larger value of var(6?). Finally, it has little effect on mean(D) and var(D).
Meanwhile, changing R, to ding(10,1) causes mean(ﬁ) to stay about the same and
var(B) to drop slightly. It also causes mean(d?) and var(6?) to drop, and leads to a

drop iu mean({D) and var(D).



Parameters

Cases Bo B P Bs b o’ Dy Dy Dy
Case 1 { Mcan | 16.59 4.72 1.81 2.58 5.50 509.61 0.60 0.09 1.4d4
Var | 11.03 590 0.67 1.11 5.69 76524.67 0.02 0.03 0.15
Case 2 | Mean | 16.75 479 1.83 2.60 5.57 508.18 0.60 0.09 146
Var 1 13.34 6.06 0.68 1.14 598 8bH511.87 (.02 0.04 0.20

Case 3 | Mean | 16.62 4.60 1.79 2.32 5.62 463.28 0.11 0.02 1.48
Var | 9.34 481 057 093 514 5231744 (0.0006 0.0056 0.17
Case 4 | Mean | 16.78 4.66 181 233 571 461.62 0.11 0.02 1.51
Var | 11.03 4.84 0.58 0.87 535 5727048 0.0006 0.006 0.22

Table 4.1: Posterior means and variances of parameters in analysis of CD4+ Data

set, using Algorithm 1.

From our analysis, based on examining mean(8,)/var{B,), it looks like CESD,
age and cigarette smoking arc important variables in predicting CD4+ cell count. It
also appears that D # 0, so the b; term for time effect is needed in our model.

As we examine the results in Table 4.2, we see that changing the prior of o
has little effect on mean(B3) and var(B). It also has little effect on mean(5?) and
var(6?). Finally, it has little effect on mean(D) and var(D). Mcanwhile, changing
R, to diag(10,1) causes mean(B) and var(8) to drop, except for mean(5). It also
causes mean{6?) and var(42) to drop, and causes most clements of mean(D) and
var (D) to drop.

From our analysis, it looks like drug use and cigarette smoking are imiportant
variables in predicting CD4+ cell count, it also appears that the b, term for time
effect is needed in our model. Therefore, the prior specified for 6% has some effect on
our results.

As we examine the results in Table 4.3, we sec that changing the prior of 0% lLias
some effect on mean(B) and var(B3), but it has little effect on mean(5?). From Cases

1 and 2, we see it has little effect on var(6?) and from Cases 3 and 4, it causes var(6?)
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Parameters

Cases Bo o) I3 O3 Ba o? D Dy Dy

Case 1 | Mean | 17.38 4.67 -0.10 0.27 180 341.88 111.59 -0.80 1.65
Var | 3.35 053 0003 002 014 638845 271447 31.14 1.17

Case 2 | Mean | 17.69 466 -0.10 0.26 1.76 327.03 105.45 -0.68 202
Var | 451 0.54 0.003 0.02 017 6718.29 3587.39 36.85 218

Case 3 | Mean [ 21.92 445 -0.07 005 1.15 17530 0.16 0.36 5.06
Var { 0.73 038 0.001 0.004 0.03 1061.95 0006 0.09 223

Case 4 | Mean | 21,92 445 -0.06 005 1.14 173.86 0.16 0.38 5.32
Var | 0.73 039 0.001 0.004 0.03 1022.04 0.006 009 2.42

Table 4.2: Posterior means and variances of parameters in analysis of CD4+ Data

set, using Algorithm 2.

to drop. Finally, from Cases 1 and 2, we see it leads to larger valnes of mean(D)
and var(D), from Cases 3 and 4, it has little change on mean(D) and causes var{D)
to drop. Meanwhile, changing R, to diag(10,1) has some effect on meen(3) and
causes var(A) to drop. It also causes mean(§?) and ver(62) to drop. From Cases 1
and 3, it leads to larger values of mean(D) and var(D) except for mean(Dy,) and
var(ﬁgg). In Cases 2 aud 4, it causes mean(f)) to drop except for mean(ﬁll) and
causes var{D) to drop.

In Algorithm 3, the MCMC procedure does not move to new values very often
(only about 4% of the time for Case 1, 5% of the time for Case 2, 6% of the time for
Case 3, 3% of the time for Case 4), because of larger values of 02 in CD4+ Data set.
From our analysis, it looks like there are no important variables in predicting CD4+
cell count in Cases 1 and 2, but drug use and cigarette smoking are important variables
in predicting CD4+ cell count in Cases 3 and 4. It also appears that D # 0, so the
b; term for time effect is needed in our model.

Since our Bayesian analysis vielded results with very large posterior estimates

of o2, it was of interest to see if similar results were observed with a non-Bayesiau



Parameters

Cases Bo B; B3 B3 Ba a? Dy Dy D

Case 1 | Mean | 21.20 1760 -0.65 -0.02 -1.77 33233 0.05 0.12 1.03
Var | 253.890 14449 113 0.22 70.24 799.47 0.02 0.003 0.005

Case 2 | Mean | 12.97 309 361 048 3.20 37852 0.13 1.02 9.16
Var | 1016.91 608.34 17.53 6.156 057.57 852.68 0.012 0.131 1.33

Case 3 | Mean | 22.24 433 -006 002 110 15777 7.16 0.64 .38
Var .35 027 0001 0.002 003 11646 0.13 0.609 0.0002

Case 4 | Mean | 22.35 427 -0.06 0016 1.09 150.71 755  0.65 0.36
Var 0.32 025 0001 0002 003 46.75 002 0.0013 0.00003

Table 4.3: Posterior means and variances of parameters in analysis of CD4+ Data

set, using Algorithm 3.

analysis. We used the estimates given by Robinson (1991) for model {2.1) and found

that % = 351.39, which is similar to our posterior mean.

4.2.1 Comparison of Algorithms 1-3

If we compare Cases 1 and 2, we see that Algorithms 1-3 give some similar results
for mean(f), but Algorithm 3 provided larger values for var(f) than the other two.
Algorithms 2 and 3 lead to smaller mean{5?) values. We also see that Algorithin 3
leads to a drop in var(&?). Finally, Algorithms 1 and 3 give the smallest values of
mean(D) and var (D).

From Cases 3 and 4, we see that Algorithms 2 and 3 have more similar values
for mean(B) and var(B) than Algorithm 1. The three algorithms differ quite a bit
among their 42 and D values in all cases. Finally, we note that Algorithm 1 tends to

-

give the largest values of var(f3) in Cases 3 and 4.



4.2.2 Autocorrelations of Posterior Estimates

As discussed in Chapter 3. it is also of interest to study the behaviour of the estimates
using their autocorrelation function. First, we present the lag-1 autocorrelation values

of the posterior estimates in Tables 4.4-4.7.

Parameter | Algorithm 1 | Algorithm 2 | Algorithm 3
Bo -0.020 0.719 0.952
B 0.023 0.079 0.955
B2 0.254 0.077 0.944
B3 0.214 0.256 0.931
B4 0.071 0.202 0.949
o? -0.062 0.184 0.956
Dy 0.434 0.780 0.971
Dy 0.474 0.911 0.955
Dasy 0.343 0.894 0.948

Table 4.4: Lag-1 autocorrelations of posterior estimates under Case 1, using CD4+

Data set.

From Tables 4.4 and 4.5, we see we are getting good performance for the g’s
and o® for Algorithm 1. Algorithm 2 does not perform as well, particularly for the
variance components. The results for Algorithm 3 are also very poor, mainly because
there is little movement in the MCMC procedure. Finally, we sce all algorithms give
high lag-1 autocorrelation values for the elements of D.

From Tables 4.6 and 4.7, we are getting better performance for most of the #’s in
Algorithm 2 and Algorithm 3 than in Algorithm 1. Algorithms 1 and 2 perform befter
for a? than Algorithm 3, because there is little movement in the MCMC procedure
in Algorithm 3. Finally, we see all algorithms give high autocorrelation values for the
elements of D.

To summarize the autocorrelations at all lags and their overall rate of decay, Tables



Parameter | Algorithm 1 | Algorithm 2 | Algorithm 3
B -0.014 0.789 0.967
By 0.023 0.058 0.969
1o 0.234 0.103 0.947
B3 0.207 0.319 0.953
B4 0.034 0.331 0.970
o? -0.035 0.303 0.954
Dy, 0.423 0.841 0.975
Dy 0.455 0.920 0.973
Dy, 0.311 0.898 0.960

Table 4.5: Lag-1 autocorrelations of posterior estimates under Case 2, using CD4+

Data set.

4.8 to 4.11 give the autocorrelation time £ = 1 + 2332, p(k) for each parameter in
Tables 4.4 to 4.7, where p(k) is the autocorrelation at lag k£ for the parameter of
interest. We estimated s as discussed in Chapter 3.

From Tables 4.8 and 4.9, we see Algorithin 1 does reasonably well for all the
parameters. Algorithm 2 does not perform as well. The results for Algorithm 3 are
also very poor, mainly because there is little movement in the MCMC procedure.

From Tables 4.10 and 4.11, we are getting betier performance for the /3’s for
Algorithm 2 than Algorithms 1 and 3, although the differences are not dramatic.
Algorithm 3 gives poor results for ¢% and D, again because there is little movement

in the MCMC procedure.



Parameter | Algorithm 1 [ Algorithm 2 | Algorithm 3
Bo -0.012 0.071 0.158
B 0.044 0.060 0.180
Ba 0.262 0.033 -0.067
By 0.241 0.066 -0.028
B4 0.076 -0.016 -0.022
o? -0.034 0.049 0.952
D 0.365 0.835 0.961
Dy, 0.497 0.799 0.941
Dy 0.358 0.515 0.923

Table 4.6: Lag-1 autocorrelations of posterior estimates under Case 3, using CD4+

Data set.
Parameter | Algorithm 1 | Algorithm 2 | Algorithin 3
Ba -0.004 0.062 0.099
5 0.046 0.044 0.144
3o 0.234 0.058 -0.064
33 0.233 .050 -0.035
B4 0.035 -0.039 -0.015
a? -0.010 -0.001 0.964
Dy 0.374 0.830 0.946
Dy, 0.493 0.797 0.974
Dy 0.332 0.513 0.915

Table 4.7: Lag-1 autocorrelations of posterior estiinates under Case 4, using CD4+

Data set.
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Parameter | Algorithm 1 | Algorithm: 2 | Algorithm 3
Bo 4.21 24.58 20.94
i) 2.67 1 23.21
o 1.83 l 27.17
B3 1.98 9.60 22.17
Jo! 2.13 8.21 19.95
o? 4.14 8.16 26.11
Dy, 2.34 23.69 28.40
Dy, 3.11 26.05 23.15
D2y 2.33 30.80 25.60
Table 4.8: Estimates of xk = 1+2 Y22, p(k) for posterior estimates, Case 1, for CD4+
Data set.
Parameter | Algorithm 1 | Algorithm 2 | Algorithm 3
Bo 4.01 28.91 27.32
B 2,76 1 27.23
A2 1.79 1.49 22.69
B3 1.98 12.68 21.21
Ba 2.10 13.67 30.85
o? 3.72 13.24 268.45
Dy 2.29 28.40 31.75
Dy 3.04 28.06 31.10
Dy, 2.23 32.17 26.08

Table 4.9: Estimates of x = 14+2 Y02, p(k) for posterior estimates, Case 2, for CD4+

Data set.



Parameter | Algorithm 1 | Algorithm 2 | Algorithm 3

Bo 3.58 1 2.60
B 1.78 1 1.98
B2 1.82 1 1
B3 2.45 1 1.47
B4 1.90 1.21 1.24
a’ 3.49 1 30.02
Dy 1.73 11.15 31.47
Dy 3.22 9.87 23.20

| Dy 2.28 3.16 20.76

Table 4.10: Estimates of £ = 1 + 2332, p(k} for posterior estimates, Case 3, for

CD4+ Data set.

Parameter | Algorithm 1 | Algorithm 2 | Algorithm 3

Bo 3.76 1 1

o 2.19 1.21 1.29
Bo 1.77 1.23 1

B 2.44 1 1.44
Ba 1.85 1 1.65
o? 3.39 1 31.83
Dy 1.75 11.09 24.07
Dgy 3.22 9.69 31.47
Dy 2.18 3.11 23.66

Table 4.11: Estimates of & =
CD4+ Data set.

1+ 252, p(k) for posterior estimates, Case 4, for



Chapter 5

Binary Data: Example

5.1 Six Cities data set: child’s wheeze status

Our data set conlains complele records on 537 children from Steubenviile, Ohio, each
of whom was examined annually at ages 7 through 10. This data set was previously
analysed by Zeger, Liang and Albert (1988). The repeated binary response is the
wheezing status (1 =yes, 0 =no) of a child at each occasion. Maternal smoking was
categorized as 1 if the mother smoked regularly and 0 otherwise. Although maternal
smoking is a time-varying covariate, it was treated as lixed at its value at the first
vear of study.

When the responses are binary, a natural choice is to use a logit link function to
relate the marginal expectation of the responses to the covariates. Suppose we have
a sequence of binary measurements ¥; = (¥i1, ..., ¥in;)'» Where y;; = 0 or 1, on the i**

unit taken at ny specific time points. We define the logit link as:

Pr(yg =1) = t‘-XP[X’:‘:ﬁ + W’irbf]
Y T 1+ expxaB + wihy]

The covariates can be both timne-stationary, i.e. constant across occasions, and timoe-
varving. For example, in the Six Cities study (Ware et al., 1984), a child’s wheeze

status (ves, no) as well as information about maternal smoking were recorded annually
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for a sample of children from each of the participating cities. In this example, maternal
smoking is time-varying, since it can change from vear to year, whereas city is time-
stationary.

We are using a subset of data from the Six Cities study, a longitudinal study of
the health cffects of air pollution, in our model. Rather than using a logit link, we

will use the probit link discussed in Chapter 2:
Priya = 1lb;) = ‘I’(X'itﬁ + w'iyb;)

where ® is the standard normal cdf and x';, and w';; are the tth rows of X; and W;,
respectively. X, is an n; x p design matrix of covariates and 3 is a corresponding
p x 1 vector of fixed effects. In addition, W; is a n; X ¢ design matrix and b, is a
y x 1 vector of subject-specific random effects. Under our modecl, we have n = 537,
and we have n; = 4 measurements on cach subject.

The marginal expectation of the response is modelled as a probit function of three
covariates: age, maternal smoking, and the age-maternal smoking interaction. One
of the objectives of this study was to determine the effects of age, maternal smoking
and the age-maternal smoking interaction.

We make the following prior assuiuptions on our parameters:

B ~ Ni(B,.B,), b ~ Ni(0,D), D% ~ Wilpo, Rop;?). If D7 is Wi{po, Rop '),
then D~'/R,p;" is A2, and 6? ~ IG(v,/2,5,/2), where 8, = (10,0,0,0), B, = I and
g, = 00. In our analyses, we examine our results under a variety of choices for the
other prior parameters. In each case, we will run Algorithms 4-5 of Chapter 2 for 500

iterations.

5.2 Results

We now present our analyses of the Six Cities data set, beginning with the posterior
means and variances of the parameters under Algorithms 4-5. These are given in

Tables 5.1-5.2. Table 5.1 refers to Cases 1-5 for Algorithm 4 and Table 5.2 refers tu



cases 1-3 for Algorithm 5, which are defined as follows:

In Algorithm 4:

Case 1t v, = 1, §, = 100 and R, = 20. Therefore, o2 has a prior mean of 100.

Case 2: v, =5, 6, = 100 and R, = 20. Therefore, o? has a prior mean of 20.
Case 3: v, =5, §, = 5 and R, = 20. Therefore, o2 has a prior mean of 1.
Case 4: v, =5, §, = 10 and R, = 20. Therefore, o2 has a prior mean of 2.

Case 5: v, = 5, §, = 50 and R, = 20. Therefore, ¢? has a prior mean of 10.

In Algorithm 5:

Case 1: v, =1, d, = 100 and R, = 20. Therefore, o2 has a prior mean of 100.

Case 2: v, =5, d, = 100 and R, = 20. Thereforc, ¢? has a prior mean of 20.

Case 3: v, =5, 8, = 5 and R, = 20. Therefore, 0?2 has a prior mean of 1.

Parameters
Cases B B B By o? D
Case 1 | Mean | -0.38 -0.60 -0.41 -0.58 256.45 0.052
Var | 0.95 0.52 1.03 0,53 439.55 0.00011
Case 2 | Mean | -0.42 -0.45 -0.45 -0.44 152.78 0.054

Var | 092 052 099 0.53 150.86 0.00016
Case 3 | Mean | -1.26 -10.97 -1.28 -10.95 1.73x 107 4.04 x 107
Var | 1.46 3925 169 3915 3.17x 10 1.31 x 10%
Casc 4 | Mean | -1.25 -10.90 -1.28 -10.88 1.72x 107 4.04 x 107
Var | 1.46 40.81 1.69 41.04 3.533 x 10Y 1.51 x 10"
Case 5 | Mean | -0.42 -0.46 -0.45 -0.44 157.08 0.06

Var | 0.92 052 0995 0.53 170.76 0.00096
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Table 5.1: Posterior means and variances of parameters in analysis of Six Cities data

set, using Algorithm 4.

We include Case 3 for each algorithm because we hope the result will give us some
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insight into the assumption of Chib and Carlin (1999) to assume ¢? = 1. We are
placing a prior mean of 1 on ¢ in Case 3, and it will be of interest to see if the
posterior of ¢% changes from our prior assumption. If it does, the setting of 02 = 1
by Chib and Carlin {1999) will be scen as questionable.

As we examine the results in Table 5.1, for Cases 1 and 2, we see that mea.n(ﬁ),
var(B), mean(D) and var(D) are similar. Meanwhile, by decreasing the prior mean
of 02, mean(6?) and var(6?) decrease. For Cases 3 and 4, we see mean(B), var(3),
mean(&?), var{é*) remain unchanged. However, the values for mean(D) and var(D)
are large, and arc not sensible. Finally, Case 5 gives very similar results to Casc 2.
In all cases, there is little evidence to suggest that any of the variables are useful in
predicting wheeze status. The results for Case 3 also indicate that setting o = 1, as
Chib and Carlin {1999) would suggest, would give very unreliable posterior estimates

in this example.

Parameters

Cases o B A, N o? D
Case 1 | Mean | -0.35 -1.09 -0.33 -1.14 853.24 0.058
Var  1.02 056 1.06 0.56 9382.63 0.00016
Case 2 | Mean | -044 -0.75 -0.35 -0.80 456.79 0.055
Var | 1.03 053 094 0.56 49108.86 0.000096
Case 3 | Mean | -0.44 -0.70 -0.35 -0.76  405.59 0.168
Var | 1.05 052 097 0535 36957.7 0.1707

Table 5.2: Posterior means and variances of parameters in analysis of Six Cities data

set, using Algorithm 5.

As we examine the results in Table 5.2, comparing Cascs 1 and 2, we see mean(ﬁ),
var(B), mean(D) and ver(D) are similar. By decrcasing the prior mean of o
mean(d?) goes down, but var(é?) goes up. This is not what we would expect, and
the variance is proportional to the mean for a Gamma disiribution. From Cases 2 and

3, mean(B3), var(B), mean(6?) and vur(?) stay about same, but in Case 3 (where



the prior mean of o2 is 1), mean(D) and var(D) are larger than Cases 1 and 2.

5.2.1 Comparison of Algorithms 4 and 5

From Cases 1 and 2, we see that Algorithms 4 and 5 give similar values for mean(ﬁ),
var(B), mean(D) and var{D). However, Algorithm 4 gives smaller values for mean(5?)
and var(6?). In Case 3, Algorithm 4 provided larger values for all posterior estimates.
Also, just like with Algorithm 4, the variables do not appear uscful in predicting

wheeze status.

5.2.2 Autocorrelations of Posterior Estimates

Running our various MCMC algorithins for these data and model for 500 iterations
each produces the lag-1 autocorrelation summaries in Tables 5.3 and 5.4. These tables

show the lag 1 sample autocorrelations for Algorithm 4 and Algorithm 5 for some of

Qur Cases.
Case 1 Case 2
Parameter | Algorithm 4 Algorithm 5 | Algorithm 4  Algorithm 5
B -0.0616 0.0222 -0.0649 0.0181
Ba 0.0684 -0.0435 0.0645 0.0409
B3 0.0269 -0.0243 0.0299 -0.0095
Ba 0.0648 -0.0317 0.0625 £2.0921
ol 0.3118 0.9057 0.4694 ().9836
Dy 0.9093 0.9140 0.9167 0.8960

Table 5.3: Lag-1 autocorrelations of posterior estimates, using Six Cities data set.

From Table 5.3, we are getting similar performance for the §'s for Algorithms 4
and 5 in Cases 1 and 2. We also sec that both algorithms give high autocorrelation

values for ¢? and D.
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Case 3 Case 4 Case 5
Parameter | Algorithm 4 Algorithm 5 | Algorithm 4 | Algorithm 4

B3 0.2809 0.0144 (.2739 -0.0646
Ba 0.9642 0.0317 0.9676 0.0639
Bs 0.3712 -0.0028 0.3652 0.0301
Ba 0.9613 0.0809 0.9640 0.0632
o? 0.9729 0.9824 0.9775 0.4986
Dy 0.9340 0.9578 0.9475 (.9407

Table 5.4: Lag-1 autocorrelations of posterior estiates, using Six Cities data set.

In Table 5.4 for Case 3, when the prior mean of o2 is 1, Algorithm 5 provides
better results (lower autocorrelations) for the #’s than Algorithm 4. This should not
be a surprise, since Algorithin 4 gave very large, unstable values for mean(6?) and
var{é?). From Table 5.4 for Algorithm 4, we see when the prior mean of 6% is 1 or
close to 1, from Cases 3 and 4, Algorithm 4 shows high autocorrelation values for g’s
and o2. So, the prior assumption on ¢ has an effect on these algorithms.

Tables 5.5 and 5.6 give the autocorrelation time & = 1 + 2322, p(k) for each
parameter in the probit model, where p(k) is the autocorrelation at lag & for the
paratncter of interest. From Table 5.5, we obtained similar performance for the 3’s
for both algorithins, but we see all algorithms give high autocorrelation values for o2
and D. In Table 5.6 for Case 3, when the prior mean of o2 is 1, Algorithm 5 provides
better results for the #’s than Algorithm 4.

Again, we are sceing the prior assumption on the distribution of o does have
an effect on other posterior estimates, so we should not simply choose o® = 1 in all

applications.



Parameter

Case 1

Case 2

Algorithm 4  Algorithm 5

Algorithm 4 Algorithm 3

el
I
By
B

D].l

1

1

1

1
18.099
18.868

1
1.265
1.218
1.218

21.636
16.886

1

1

1

1
16.737
19.151

1
1.849
1
2.633
37.245
20.106

Table 5.53: Estimates of x =

data set.
Case 3 Case 4 Case §
Parameter | Algorithm 4 Algorithm 5 | Algorithin 4 | Algoritlhun 4
By 9.956 1 9.788 1
B2 26.955 1.804 25.372 1
33 11.782 1 11.293 1
Ba 27.381 1.965 25.557 1
a? 33.601 37.074 34.591 17.720
Dy 27.708 253.507 30.409 21.2G62
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1+ 2%712, plk) for posterior estimates, for Six Cities

Table 5.6: Estimates of x = 1 + 232, p(k)} for posterior estimates, for Six Cities

data set.
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