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Abstract 

The use of longjtudinal studies is widespread, especially in biology and medicine. Sta

tistical analyses of these studies must account for the correlation that will usually be 

present within individuals measured across time. vVe present a Bayesian approach to 

studying these problems, based on methods that sample from the posterior distribu

tions of interest. Our work will involve models with continuous and binary responses, 

and will generalize some published methods using a probit model. Our results indi

cate that the simpler algorithms proposed in the literature perform as well as more 

complicated methods. Application to two numerical examples will be presented. 
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Chapter 1 

Introduction 

1.1 Introduction 

In longitudinal studies, repeated observations of a response variable and a seL of 

covariates are made on individuals across occasions. Because repeated observations 

are made on the same individual, the response variables will usually be autocorrelatcd. 

In analysing longitudinal data, this dependence must be accounted for in order to 

make correct inference. 

Longitudinal studies have applications to a wide variety of problems. Now we 

introduce two such data sets which have been chosen from the biological and health 

sciences to represent a range of challenges for analysis. These are described in more 

detail by Digglel Liang and Zeger (1994). 

First, we discuss the growth of Sitka spruce trees. The study objective is to assess 

the effect of ozone pollution on tree growth. As ozone pollution is common in urban 

areas, the impact of increased ozone concentrations on tree growth is of considerable 

interest. The response variable is log tree size, ,.vhere size is conventionally measured 

by the product of tree height and diameter squared. The trees were measured 13 

times over two growing seasons. 

As a second example, we consider data on the protein content of milk. In this 

1 
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data set, milk was collected weekly from 79 Australian cows and analysed for its 

protein content. The cows were maintained on one of three diets: barley, a mixture 

of barley and lupins, or lupins alone. The objective of the study is Lo determine how 

diet affects the protein content in milk. 

A wide variety of approaches to analyzing longitudinal data have been introduced 

in the statistical literature. In studies where the response is normally distributed, 

Laird and Ware (1982) and Lindstrom and Bates (1988) discuss non-Bayesian meth

ods of analysis. These focus on the use of a mixed effects model and the use of the 

EM (Expectation-Maximization) algorithm. In cases where the response is binary, 

Fitzmaurice and Laird (1993) describe a likelihood approach, based on the condit ional 

odds-ratios. Also with binary outcomes, Chib and Greenberg (1998) found maximum 

likelihood estimates by using a Monte Carlo-based EM algorithm. 

However, the structure of longitudinal studies lends itself to the use of Bayesian 

methods, hierarchical models in particular. An advantage of a Bayesian approach 

is it can help avoid difficult numerical integrations that may be needed to evaluate 

likelihoods. These integrations are often avoided through the use of Markov Chain 

Monte Carlo (MCMC) methods. For example, Chib and Jeliazkov (2001) and Chib 

and Carlin (1999) present MCMC based methods for continuous data. Zeger and 

Karim (1991) implement the Gibbs sampler for generalized linear models. Albert and 

Chib (1993) use the Gibbs sampler to study binary longitudinal data, and Chib and 

Greenberg (1998) implement an MCMC method for finding the posterior estimates 

when using binary data. 

This practicum will investigate a number of Bayesian algorithms for the analysis of 

continuous and binary longitudinal data. We exploit an identity used by Chib (1995) 

in the context of Bayes factor computation to show how the parameters in a gener

alized linear mixed model may be updated in a single block, improving convergence 

and producing essentially independent draws from the posterior of the parameters 

of interest. We also investigate the value of blocking in a c1ass of binary response 

data longitudinal models. The theoretical aspects of these algorithms, along with the 
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derivation of the needed posterior distributions, will be discussed in Chapter 2. fn 

Chapter 3, we will present some simulation studies to investigate the behaviour of 

the algorit hms under a variety of assumptions on the prior distributions. In Chapter 

4, we wilJ study a dataset of CD4+ cell numbers along with other variables collected 

longitudinally for AIDS infected men. The objective will be to determine what vari

ables are useful in predicting the CD4+ cell count . In Chapter 5, we will study a 

binary longitudinal dataset involving a child's wheeze status (yes, no) as well as in

formation about maternal smoking. The objective will be to determine t he effects 

of age, maternal smoking and the age-maternal smoking interaction on the wheeze 

status. 

We begin with some background to these problems, which will include a discussion 

on some MCMC procedures. 

1.2 Background 

We begin by assuming there is a prior distribution on the parameters of interest, 

denoted as 'll'(O). Then, combining this with the density function of the data, wtitten 

as f(yi O), we can derive the posterior distribution using Bayes Theorem: 

(01 ) = 1l'(0)f(y i0) 
1l' y f(y) 

n(O)f(y!O) 
- J n(O)J(yiO)dO 

(1.1) 

Here, 0 is the parameter of interest in our study. The functions n(O) and n(Oiy) 

represent our belief or information about the parameter 0 . As we can see, the data 

is used to update our prior belief on the behaviour of 0. 

In (1.1), the evalution of the integral is often very difficult, if not impossible, 

so we may not be able to express n(8ly) in closed form. We need to approximate 

'll'(Ojy), typically by simulating an approximate random sample from the posterior 

distribution. In general, this can be thought of as a MCMC procedure (Chib and 



4 

Greenberg, 1995). This sampling can be done in different ways. We will discuss two 

methods: t he Acceptance-rejection sampling and the Metropolis-Hastings algorithm 

(Chib and Greenberg, 1995). 

1.2.1 Acceptance-Rejection sampling 

Classical simulation techniques generate non-Markov (usually independent) samples; 

i.e. , the successive observations generated are statistically independent unless corre

lation is artificially introduced as a variance reduction device. An important method 

in this class is the Acceptance-Rejection (A-R) method, which can be described as 

follows. Suppose it is desired to generate samples from the target densiLy 1r(x), where 

x may be a vector. The method may be used when 7r(x) is known only up to a 

multiplicative constant and can be expressed as 1r(x) = f( x)/ K , where f(x) is the 

unnormalized density and K the (possibly unknown) normalizing constant. This is 

similar to (1.1) , where the integral in (1.1) can be considered the normalizing con

stant. Let h(x) be a density that can be simulated by some known method, and 

suppose there is a known constant c such that f(x) ~ ch(x) for all x. This means 

that ch(x) blankets, or dominates j(x). Then to obtain a random variate from 7r(.), 

we do the following: 

STEP 1: Generate a candidate Z from h(.) and a value u from U(O, 1) , the uniform 

distribution on (0,1); 

STEP 2: Return Z = y if u ~ f(Z)/ch(Z); otherwise go to STEP 1. 

It can be shown (Chib and Greenberg, 1995) that the accepted value y is a random 

variate from 7r(.). For this method to be efficient c must be carefully selected, and 

since the expected number of iterations of steps 1 and 2 to obtain a draw is given by 

c- t, the rejection method is optimized by setting 

f(x) 
c= s~p h(x); 

even this choice, however, may result in an undesirably large number of rejections. 
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This means we would have to run the A-R method for many more than c-1 iterations 

to generate a reasonably-sized sample from 1r(x). 

1.2.2 Metropolis-Hastings (M-H) algorithm 

The notion of a generating density also appears in the M-H algorithm, but before 

considering the differences and similarities we turn to the rationale behind MCMC 

methods. 

The usual approach to Markov chain theory is to start with a transition matrix Pii 

(when there are a discrete set of states and Lj Pii = 1) or a transition kernel p( x, y) 

(when the set of states is not discrete and J p(x, y)dy = 1) . A major concern of the 

theory is to determine conditions under which there exists an invariant distribution 

and conditions under which iterations of the transition matrix or kernel converge to 

the invariant distribution. In the discrete case an invariant distribution 1ri for the 

Pii is a distribut ion with the property 1r; = Li Pij1ri, and the nth iterate of Pii is 

defined recursively as p~j) = Lk p~~-l)Pki · When the number of states is finite, it 

is well known that the matrix of the probability distribu tion of the nth iterate is 

given by the nth power of the matrix composed of the Pii · In the nondiscrete case, 

the invariant distribution 7r(y) satisfies 7r(y) = f p(x, y)7r(x)dx, and the nth iterate is 

given by p<n>(x, y) = J p<n-l)(x, z)p(z, y)dz, where p(I>(x, y) = p(x, y) . Under certain 

conditions it can be shown that the nth iterate converges to the invariant distribution 

as n -t oo in both the descrete and the nondiscrete cases. 

MCMC methods turn the theory around: the invariant distribution is known-it 

is 1r(.), t he target density from which samples are desired-but the transition kernel is 

unknown. To generate samples from 1r(.), the methods find and utilize a transition 

kernel p(x, y) whose nth iterate converges to 7r(.) for large n . The process is started 

at an arbitrary x and iterated a large number of t imes. After this large number 

which is problem-dependent, the observations generated from the simulation can be 

regarded as observations from the target density. The problem then is to find an 
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appropriate p(x, y). Although this sounds difficult, the search is somewhat simplified 

by the following observation. Suppose p(x, y) is a density for a given x; i.e. p(x, y) > 0 

and f p(x, y)dy = 1. Then a p(x, y) that satisfies the reversibility condition, 

rr(x)p(x,y) =rr(y)p(y,x) (1.2) 

has rr(.) as its invariant distribution. Note that 

j 1r(x)p(x, y)dx = j 1r(y)p(y, x)dx = 1r(y) J p(y, x)dx = 1r(y). 

Intuitively, the left-band side of the reversibility condition (1.2) is the unconditional 

probability of moving from x toy, where x is generated from 1r(.), and the right-hand 

side of (1.2) is the unconditional probability of moving from y to x, where y is also 

generated from rr(.). The reversibility condition says tha,t the two sides are equal, 

and the above result shows that 1r(.) is then the invariant distribution for p(., .). 

We now have a sufficient condition to be satisfied by p(x, y), but we still need to 

find a specific transition density. We get one from the Metropolis-Hastings algorithm, 

which we now proceed to desc1ibe by exploi ting the logic of reversibility. 

The Metropolis-Hastings (M-H) algorithm was developed by Metropolis et al. 

(1953) and widely used by physicists. It was refined and introduced to statisticians 

by Hastings (1970); Tierney (1994) and Muller (1993) present theory and examples 

on the use of the M-H algorithm for exploring posterior distributions. 

As in the A-R method, suppose we have a density that can generate candidates 

from our posterior. Since we are dealing with Markov chains, however, we permi t that 

density to depend on the current state of the process. Accordingly, the candidate

generating density is denoted q(x, y), where J q(x, y)dy = 1. This density is to be 

interpreted as saying that when a process is at the point x, the density generates a 

value y from q(x, y). If it happens that q(x, y) itself satisfies the reversibility condition 

for all (x , y) , our search is over. But most lil<ely it will not. We might find, for example, 

that for some x and y, 

rr(x)q(x,y) > rr(y)q(y,x) (1.3) 
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In this case, the process moves from x to y too often and from y to x too rarely. 

A convenient way to correct this condition is to reduce the number of moves from 

x to y by introducing a probability 0 < a(x, y) < 1 that the move is made. We 

refer to a(x, y) as the probability of a move. If the move is not made, the process 

again returns x as a value from the target distribution. This contrasts with the A-R 

method in which, when a y is rejected, a new pair (y, u) is drawn independently of 

the previous value of y. Then 

q(x, y)a(x, y), x =I= y, 

can be regarded as a transition density, but we still need to determine a(x, y). 

Consider again inequality (1.3). It tells us that the movement from y to x is not 

made often enough. We should therefore define a(y, x) to be as large as possible, and 

since it is a probability, a(y, x) is set equal to 1. But now the probability of move 

a(x, y) is determined: Set p(x, y) = q(x, y)a(x, y) and obtain from the reversibility 

condition 

~(x)p(x,y) - ~(y)p(y,x) 

~(x)q(x,y)a(x,y) - ~(y)q(y,x)a(y,x) 

~(x)q(x, y)a(x, y) - ~(y)q(y, x); 

hence, if 1r(x)q(x, y) > 1r(y)q(y, x), set a(x, y) = 1r(y)q(y, x)j1r(x)q(x, y). Of course, 

if the inequality in (1.3) is reversed, set a(x, y) = 1 and determine a(y, x) as above. 

The probabilities a(x, y) and a(y, x) are thus introduced to ensure that the two sides 

of (1.3) are in balance or, in other words, that the modified candidate-generating 

density satisfies reversibility. 

To complete the definition of p(x, y) given above, a small technicality must be 

considered. Because there is a nonzero probability that the process remains at x (i.e., 

p(x, x) i= 0), a density function is inadequate to represent all the transitions. But 

this problem is easily solved. The probability that the process remains at x is given 
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by 

r(x) = 1- j q(x, y)a(x, y)dy. 

Let 8x(Y) = 1 if x = y and 0 otherwise, and define q(x, x)a(x, x) = 0. Then we can 

define 

p(x, y) = q(x, y)a(x, y) + 1·(x)6x(y). (1.4) 

We have thus written the transition kernel as the sum of a reversible term and 

a term that places nonzero probability at the value x. The result presented in (1.2) 

that reversibility implies invariance can be generalized to expression (1.4); see Tierney 

(1994). 

To summarize, the probability of a move is 

a(x, y) = mm ?r(:r)q(x,y), l 1f x q x, y > , 
{ 

· [?T(y}q(y,x) 1] 'f ( ·) ( ) O· 
1 otherwise. 

Several important points should be noted. Fi1·st, the calculation of a(x, y) does 

not require knowledge of the normalizing constant of 1r(.), since it appears both 

in the numerator and denominator. Second, in the important special case where the 

candidate-generating density is symmetric, i.e. q(x, y) = q(y, x), the acceptance prob

ability reduces to 1r(y)j1r(x); hence, if 1r(y) ~ 1r(x), the chain moves toy, otherwise 

it moves with probability given by 1r(y)j1r(x). 

We now summarize the M-H algorithm initialized with the (arbitrary) value x<0>: 

Repeat for j = 1, 2, ... , N. 

STEP 1: Generate y from q(xW, .) and U from U(O, 1). 

STEP 2: Let xU+ t) = y if U ~ a ( x(j), y); otherwise let xU+l) = xU>. 

Return the values {x<no+t>,x<2>, ... ,x<N>}. 

As in any MCMC method, the draws are regarded as a sample from the target 

density 1r(x) only after the chain has passed the transient stage and converged to the 

target. For this reason, the first no values of the chain are ignored. This is sometimes 

referred to as the burn-in period. There are many different ways to monitor the 

behavior of the output to determine approximately the values of n0 and N. One simple 
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idea is to make n0 and N an increasing function of the first-order serial correlation 

in the output. However, the specifics of the sampling design usually have little effect 

on such summaries, such as the mean and standard deviation, calculated from the 

sampled values. 

As Chib and Greenberg (1995) discuss, there are a number of choices available for 

q(x, y). In many cases a normal or t-distribution, with appropriate tuning parameters 

chosen, will work reasonably well. In choosing the generating density, it is desirable 

to have it dominate the target density in the tails of its distribution. 

In the M-H algorithm, the spread of the candidate-generating density affects the 

behavior of the chain in at least two dimensions: one is the "staying rate" (the per

centage of times a move to a new point is not made) and the other is the region of 

the sample space that is covered by the chain. To see why, consider the sit uation in 

which the chain has converged and the density is being sampled around the mode. 

Then, if the spread is extreme, some of the generated candidates will be far from the 

current value and will therefore have a low probability of being accepted. Reducing 

the spread will correct this problem. But if the spread is chosen too small, the chain 

will take longer to cover the support of the density, and low probability regions will 

be under-sampled. Both of these situations are likely to be reflected in high autocor

relations across sample values. For these reasons, the candidate-generating density 

should be tuned so that the staying rate is about 50%. If the chain still displays high 

autocorrelations, it is usually necessary to try a different class of candidate-generating 

densities. 



Chapter 2 

Longitudinal Models-Theory 

2.1 Introduction 

In this chapter we will introduce models LhaL are appropriate for the analysis of 

continuous and binary longitudinal data. We will discuss a hierarchical Bayesian 

structure for these models, and derive the needed posterior distributions for analysis. 

2.2 Model for Cont inuous Data 

Consider the Gaussian linear mixed model (Laird and Ware, 1982), 

(2.1) 

where the Yi arc vectors of length ni containing the observations on the ith unit, and 

the €.i are error vectors of the same length independent ly distributed as Nnt(O, a 2ln.), 

i = 1, ... . , n. Therefore, we have a total of n subjects. In this mixed model, ~ is 

an ni x p design matrix of covariates and /3 is a corresponding p x 1 vector of fixed 

effects. In addition, W i is ani x q design matrix (q typically less than p), and bi is a 

q x 1 vector of subject-specific random effects. In a non-Bayesian setting; we would 

usually assume that bi rv N(O, D ), where D is t he covaiiance matrix of bi and bi is 

10 
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independent of €1, which implies the mean and variance of Yi are 

E(y i) - X i/3 

Var(yi ) - Var(W ibi) + Var(€i ) 

However, we will conduct a Bayesian analysis of the model (2.1), which means we 

must specify prior distributions for the parameters. The hierarchical specification 

of this model is completed by adding the prior distributions /3 rv Nv(/30 , B o) and 

cr2 "'IG(v0 /2,60 /2), where JG denotes the inverse gamma distribution with parame

ters V0 and 00 . We also assume that bi is a random effects term, where hi rv Nq(O, D ), 

n-1 ""Wq(p0 ,R 0 p; 1
) and W denotes the Wishart distribution with parameters Po 

and R 0 • We note that the parameter values in t hese prior distributions need to be 

specified. 

2.3 Estimation Methods 

In this section, we discuss Bayesian methods for simulating samples from the posterior 

distributions, based on Chib and Carlin (1999). 

2.3.1 Algorithm 1 

The Gaussian linear mixed model (2.1) lends itself to a full Bayesian analysis by 

Markov chain Monte Carlo (MCMC) methods. One of the first such algorithms was 

proposed by Gelfand and Smith(1990) which we summarize as follows, and refer to 

as Algorithm 1: 

1. Sample {3 from f31y , b, cr2 ,D 
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3. Sample D - 1 from D - 1 ly , ,6, h , a2 

4. Sample a2 from a 2ly,,6, h, D 

5. Repeat Steps 1-4 using the most recent values of the conditioning variables. 

Under the assumptions of (2.1) and the specified priors, we can derive explicit ex

pressions for the posterior distributions in this algorithm, which we do below: 

Posterior of ,6 

We begin with the posterior distribution of (,B iy , h , a 2 , D) where the prior distribution 

of ,6 is: 

Given values of h, ,8 , a 2, D , we know that, 

E[yi I h i, ,B,a2 ,D] - ~,6 + W ibi 

V[yi I hi, ,6, a 2
, D] - a 2

I n; 

Yi I (h i, ,6, a 2
' D) rv N(Xi,B + W ibi, a 2In.) 

T herefore, we also know that, 

n 1 

g ( J27r)n; I a2Ini 11/2 

x exp(-1/2(yi- ~,6- W ibi)'a- 2(Yi - Xi,B - W ihi)] 

T he posterior distribution of ,B can be found using Bayes Theorem: 

II (,B I y , h 11 ... , h n, a 2
, D ) ex IT(,B)J(y I h 1, ... , hn, ,6, a2

, D) 

($)1' ~ B o ji/2 exp[-1/ 2(,6 - ,60 )'B;;
1
(,6- ,80 )] 

n 1 

X !! ( J21i)ni I a2I n; 11/ 2 

x exp(-1/2(yi - X i/3- W ihi)'a·-2 (Yi- X i/3- W ihi)] 
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ex: exp[-1/2(~'B;;-\B- 2~~B;;- 1~)) 
n n 

x exp[-1/2( -2 2:y~o--2Xi~ +I: ~'X~o--2Xi~ 
i=l i=l 

n 

+2 L b~W~o--2Xi~)J 
i= l 

Next, we collect terms that involve ~: 

n 

II(.B I y , h 1, ... , bn,o-2, D) ex: expi-1/2(~'(B;;- 1 + 2:X~o--2Xi).8 
i=l 

n. n 
-2(~~B;;-1 + LY~o--2Xi + L b~W~o--2Xi)~)] 

i = l i=l 

(2.2) 

From (2.2), we see that the exponent is 
n n n 

~'(B;;- 1 + L X io--2 X i),B- 2(.B~B;;-1 + 2.: y~o--2Xi + 2.: biW~o- -2Xi).B (2.3) 
i = l i=l i=l 

This is really a quadratic function of f'. Now, define 
n 

B k - (B;;- 1 + 2::X~o--2Xi)-1 
i = l 

n 7l 

~ = (~~B;;- 1 + L: y~o--2Xi + L b~W~o--2Xi)' 
i=l i=l 

We use B k and ai and complete the square in (2.3) to find: 

Based on (2.2) and (2.4) we can now say the posterior of distribution of 

~ I (y, b11 ... , bn, o-2
, D ) can be expressed as 

But (2.5), up to a multiplicative constant, is the density of a Gaussian distribution. 

So, 

(2.6) 



Posterior of h i 

The prior distribution of ~ is: 

We also know that 

1 
-

( J21f)n. I a2In; jl/2 

x exp[-1/2(y,- Xi/3- W ,bi)'a-2(Yi- Xi/'3- W ibi)) 

The posterior distribution of b , can be written as 

II[bi I (y, ,B,a2, D)] <X II(bi)f(Yi I bi,,B,a2, D) 

( J21f)q11 D 11/2 exp[-1/ 2(b:n - lbi)] ( J21T)n• t a2In, p12 

x exp[-1/2(Yi- ~,8 - W ibi)'a-2 (Yi- X.,,B- W ibi)] 

ex: exp[- 1/2(b~D- 1bi - y~a-2Wibi + ,B'X~a-2Wibi 

-b~W~a-2yi + b~W~a-2Xi,B + b~W~a-2Wibi)) 

14 

As in the derivation of the posterior distribution of ,8, we collect the terms involving 

b ,: 

II(bi I (y, ,8, a2
, D)) <X exp[-l/2[b~(D- 1 + W~a-2Wi)bi 

-(y~a-2Wi- ,B'X~a-2Wi)bi- b~(W~a-2yi- W~a-2Xi,B)]] 

- exp[-1/2(b~(D- 1 + W~a-2Wi)bi 

(2.7) 

Now we define, 

H k - (D - 1 + W~a-2Wi)- 1 

~ - (W~a-2yi - W~a-2Xi.8) 
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Vve use H k and ai to rewrite (2. 7) by completing the square: 

Based on (2.7) and (2.8) we can say the posterior distribution of hi I (y , {3 , CJ2 , D ) can 

be written as: 

However, (2.9) is proportional to the density of a Gaussian distribution, so we can 

say 

b,i I (y 1/3 , 0"
2, D) rv Nq(Hk~l H k) 

Nq(H k W~CJ-2 (Yi- X i/3 ), H~c) (2.10) 

Posterior of D- 1 

Next, we derive the posterior distribution of D - 1
1 (y , {3, b, cr2

) where the prior distri

bution of D - 1 is (Muirhead, 1982, p. 85): 

-
2CPoq)f21fq(q-l)f4IR o/ PoiPo/2 Til= I I'(Po + 1 - i)/2 

<X jD - lj{p.,-q-l )/2 exp[ - 1/2(tr(poR; 1D - 1 )J]!R o/ Poi-Po/ 2 

The prior distribution of bi is: 

II(bi) ex: ID~112 exp[-l/2(b~D-1bi)] 
- IDI-1

/
2 exp(-1/2(b~D- 1bi)] 

Then, assuming b1, .. .. .. bn are independent, their joint prior distribution is: 

n 

II (b1, ..... bn) ex: jD j-n/2 exp(-l/2(L: b~D-1bi)] 
i=l 

(2.11) 

(2.12) 
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We can rewrite the exponent in (2.12) as follows: 

n n 

"L:b~D-1 bi - tr[L b~D- 1bi] Since b~D-1hi is scalar 
i=l i=l 

n 
- 2::: tr(b~D- 1 bi) 

i=l 
n 

- L tr(D-1bib~) Since tr(AB) = t1·(BA) 
i=l 

n 

- tr[D - 1(2::: bibD] 
i=l 

Therefore, (2.12) becomes 

n 

II(b b ..... bn) ex: ID I- n/2 exp[-1/2(tr(D - 1(L bibD))J (2.13) 
i=l 

We now consider the joint posterior distribut ion of o -1 and (b l> ... .. bn), using (2.11) 

and (2.13): 

TI(D - 1
, h 1, ..... bnJY, /3 , 0"

2 ) ex: JD- lJ(Po- Q-l}/2 exp(-1/2[tr(poR ; 1D - 1 )]JJR o/ Poi -Po/2 
n 

x JD (n/2 exp[-1/2(trD - 1(LbibD)J 
i=l 

xf(y JD , /3, b1, ... .. bn, 0"
2

) 

- JD -lJ(Po- q- l}/2JDJ-nf2 JRo/ PoJ-Po/2 
n 

X exp[-l/2[tr(poR ; 1D - l + o-1 (LbibDJJ 

xf(y JD , {3 , h 1, ..... bn, 0"
2) 

JD -lJ(Po+n-q- 1}/2 JRo/ PoJ-Po/2 
n 

i=l 

x exp[-1/2(trD - 1 (p0 R ; 1 +I: bib~)]] 
i= l 

where f(y JD , {3 , b b ..... bn, 0"
2) can be found using the fact that Yi I (bi, {3 , a-2, D) rv 

N(X i/3 + W ib i,0"21nJ 

Then, if we also condition on b 1, .. .. . b n, we find the posterior distribut ion of o-1 : 
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n 

exp[-1/2{tr(D- 1 (PoR~ 1 + L bibD)J] (2.14) 
i=l 

If we compare (2.14) to (2.11), we see that the posterior distribution of n-1 has the 

form of a Wishart distribution. In particular, 

n 

n -l f'.J Wq(n +Po, (poR ;;-1 + Lbib~t1 ) (2.15) 
i==l 

Posterior of u2 

Finally, we derive the posterior distribution of u2 where the prior distribution of a2 

is: 

(2.16) 

Given (2.16) and the distribution of Yi given earlier, we can express the posterior 

distribution of a 2 as 

IT(a2 I (y, {3 , bi, D)) <X (a-2)(vo/2)+l exp[-bo/2a2] 

x fl
1 
a2I~, 1112 exp[- 1/2(Yi- Xif3- W ibi) 'a - 2 

(Yi- Xi/3- Wibi)] 

i=l 
n 

X exp[-1/a2((bo/2) + c~= IIYi- X if3 - W ibiW)/2)] 
i=l 

i = l 
n 

x exp[-1/a2((6o/2) + (L IIYi- X if3- W ibill 2)/2)] 
i=l 

n 

(vo/2) + (L 74/2) + 1 
- (a-2) i=l 

n 

x exp[-1/a2 ((6o/2) + (L IIYi- X if3- W ibdl2)/2)] 
i=l 
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n 

((vo + L ni)/2) + 1 
(o--2) i=l 

x exp[-1/o-2 ((<50 /2) 
n 

+(2: IIYi - ~{3 - Wibill2)/2)] (2.17) 
i=l 

If we compare (2.17) to (2.16), we see the posterior distribution of o-2 has the form of 

an inverse gamma distribution. In particular, we can say, 
n n 

o-2 I (y , {3, hi, D ) "' IG[(vo + 2: ~)/2, (oo + L IIYi - Xif3- W ibiW)/2) 
i=l i=l 

(2.18) 

Based on our derivations, we note that all the priors are conjugate priors. 

2.3.2 Algorithm 2 

It is recognized that Algorithm 1 is relatively easy to implement, but it can suffer 

from slow convergence if the parameters are highly correlated, or if the information in 

the likelihood and prior is insufficient to completely determine the model parameters 

(Chib and Carlin, 1999). For this reason, we now describe a new Algorithm, denoted 

as Algorithm 2. 

Algorithm 2 is identical to Algorithm 1 except for the change in the sampling 

of {3. This minor refinement can be important, however, and improves the behavior 

of the MCMC output . Besides, it requires no hierarchical centering because {3 is 

sampled without conditioning on the random effects and the entire sampling is still 

from tractable distributions. 

Algorithm 2 relies on the use of blocking for Gaussian mixed models. We begin 

our investigation into the value of blocking in longitudinal models by considering 

the distribution of Yi marginalized over the random effects. Due to the conditional 

Gaussian structure we know that, 

(2.19) 
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where Oi = a 2I n; + W iDWi. This implies that the posterior distribution of {3 will 

be conditioned on a2 and D (but not on hi) (Lindley and Smith, 1972). It is possible 

to sample the 'fixed effects {3 and the random effects hi in one block, but retain the 

essential Gibbs structure, as follows. Vve will denote this as Algorithm 2: 

1. Sample {3 and h from {3, {hi}jy ,a2 , D by sampling 

(a) {3 from f3iy,a2 , D 

(b) h from {hi}jy ,{3, a 2, D 

2. Sample n - 1 from n - 1 jy ,{3, h,a2 

3. Sample a2 from a 2 jy , {3 , h , D 

4. Repeat Steps 1-3 using the most recent values of the conditioning variables. 

Now, we will derive the posterior distributions for th is algorithm. 

Posterior of {3 

As before, the prior distribution of {3 is: 

IT({3) = (J21r)P ~ B o jl/2 exp(-1/ 2({3- {30 )'B ;
1
({3- {30 )] 

We know from (2.19) that, 

n 1 

l] ( J21f)n• I ni 11/2 

exp[-1/2(yi- Xif3 )'0 i 1 (Yi- Xif3)] 

Then the posterior distribution of {3 is, 

IT ({3 I y , D , a2
) ex ll ({3)f(y I {3 , D , e1

2
) 

- (J21r)P ~ B o jl/2 exp[-1/2({3 - f3 o)'B -;;
1
({3 - {3 0 )] 

(2.20) 



X fJ (J27T)n•l l ~ jl/2 exp[-1/2(yi- Xi.BYOi 1
(Yi - Xs.B)] 

oc exp[-1/2{,8 - ,80 )'B;;1(,8 - ,80 )) 

n 

IT exp(-1/2(yi- Xi.B)'Oi 1(Yi- Xi,B)] 
i=l 

- exp[-l/ 2(,B'B;;\B - ,B~B;;1.B - ,B'B-;; 1,80 + /3~B;; 1 ,60)] 
n n 

X exp(-1/2(Ly~!lj 1yi- Lf3'X~Oi1Yi 
i=l i=l 

n n 

- LY~n;- 1~.8 + L:.B'X~Oi1Xi.B)I 
i=l i=l 

exp[-1/ 2{/3'B;;1,8- 2,B~B;;1/3 + .B:B-;; 1/30 )] 

n n n 
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X exp[-1/2(2:~0j1Yi - 2 LY~0j 1Xs.B + .B' 2:X~Oj 1~,B)) 
i=l i=l i=l 

As in Lhe previous derivation of the posterior of ,8, we collect terms involving ,B. This 

yields 

n 

TI(.B I y, D, o-2 ) oc exp[-1/2(,B'(B;; 1 + 2:X~Oj1Xi).B 
i = l 

n 

-2(.B~B;; 1 + LY~n;1Xi).B)J (2.21) 
i=l 

From (2.21), we see the exponent of TI(.B I y , D , o-2) is: 

n n 

.B'(B;;1 +I: JGOi 1X;),B- 2(.B~B;; 1 + LY~n;1Xi).B {2.22) 
i=l 

Now define 

i=l 

n 

Bk - (B ;;1 + I:x~n; 1Xi)- 1 

&= L 
n 

~ - (.B~B;;1 + LY~n;1Xi)' 
i=l 

n 

- (B;;t,eo + Ex~n;ty•) 
i=l 

This allows us to rewrite (2.22) as 
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Using (2.21) and (2.23) we find 

Therefore, 

1'£ 

- N(Bk(B ;;1,30 + 2:X~fli1Yi), Bk) (2.24) 
i=l 

Since steps l(b) and 2-4 in Algorithm 2 are the same as in Algorithm 1, the posterior 

distributions of b , n-1 and a2 are given in (2.10), (2.15) and (2.18), respectively. 

2.3.3 Algorithm 3 

While Algorithm 2 is an improvement on Algorithm 1, it does not address the cor

relation between n-1 and b that can lead to slow mixing for the unique elements of 

n-1 (Chib and Carlin, 1999). To deal with this problem we can use an approach that 

allows one to sample all parameters in one block from the joint posterior distribution. 

The idea is to use the following decomposition of the posterior distribution 

where the last two densities are the same as in Algorithm 2. The first density is 

not in closed form, but can be updated by the Metropolis-Hastings algorithm (see 

for example Hastings, 1970, or Chib and Greenberg, 1995) , which was discussed in 

Chapter 1. By definition, 

where 

f(ylu2
, D) j f(yi,S, a2

, D)I1(,3)d,3 

ex IV I-1
/

2 exp[(y - X,B0 )'V - 1(y- X,B0 )] 
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andy= (y~, ... ,yn)', X= (X~, ... , X~J', V = (XB01X'+!l) and n = diag(!l1, ... ,!ln) · 

Recall that ni was defined following (2.19). One way to evaluate tl:lls density is to 

recognize that f(yla2, D ) is the normalizing constant of IT(.BIY, cr2
, D). A similar idea 

is used by Chib (1995) in his approach to find the marginal likelihood of the model 

(2.1). Hence, we may write f(y la 2, D) as a ratio of three terms; 

IT(,B.)f(y i,B*, a 2 , D) 
IT(,B*Iy , a 2 , D) 

c/>p(.B*I.Bo, Bo) Tii=l <l>ni (Yi lxi.B*, Vi) 
c/>p(.B*i/3, B) 

Where {3* is any point (preferably a high density point such as the posterior mean 

from Algorithm 2) and c/>p(t !J.t, :E) is density of the p-variate normal distribution with 

mean vector J.t and covariance matrix :E. This leads to the following single block 

algorithm for sampling the posterior density of the Gaussian hierarchical model. Vve 

refer to this as Algorithm 3. 

1. Run Algorithm 2 for G = 500 iterations (say) and let .8* = c-1 2:~=1 (3<9>. Also 

let J.t = c-l L:~= ! (J (g) and :E == c - l I:~=l((J(g)_ J.t)(fJ(g)_ J.t )', where (J = (a2, 1/J), 

and 1/J = vech(D- 1
) denotes the unique elements of D - 1. 

2. Sample 8, {3 and b from [8, ,8, bly J by sampling 

(a) 8 from IT(8 !y ) using the Metropolis-Hastings algorithm with proposal den

sity given by q(fJ) = fMVr(8 I ~J> , r 2:E, v), where !MvT is the multivariate-t 

density with v degrees of freedom, and r 2 and v are tuning parameters. 

Given the current value 8c, first draw et from q(8) and move to the point 

8' with probability given by 
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n 

B k (B; 1 + 2:X~n;1Xi)- 1 

i=l 
n 

~ - (B;\Bo + 2:X~Oi1Yi) 
i=l 

(c) Sample hi independently from N9 (bi, Ci) where bi = Ci [W~CJ-2 (yi-Xi.B)] 

and Ci = (D- 1 + W~o-2W i) - 1. 

3. Repeat Step 2 using the most recent values of the conditioning variables. 

2.4 Model for Binary Data 

In this section we consider various blocking schemes for t he class of pro bit longitudinal 

binary random effects models. A Bayesian analysis of these models using a version of 

Algorithm 1 is provided by Albert and Chib (1996), and by Zeger and Karim (1991) 

under the logit link. 

Consider a sequence of binary measurements Yi = (yil, ..... , YinJ' , where Yit = 0 or 1, 

on the ith unit taken at ni specific time points. Let the probability Pr(Yit = l jhi) be 

modelled by the probit link: 

Pr(Yit = l lhi) = <I> ( xlitf3: w'ithi) , (2.25) 

where, <I> is the standard normal cdf, x'it and w'it are the tth rows of Xi and W i, 

respectively. ~ is an ni x p design matrix of covariates and {3 is a corresponding 

p x 1 vector of fixed effects. In addition, W i is a~ x q design mat rix and hi is a q x 1 

vector of subject-specific random effects. For this model, the likelihood contribution 

f(Yii.B, D) is given by 

[ 

n i [ ( 1 .B I h ) l Yot [ ( I {3 I h ) ll-yitl I g ~ X it :wit i 1- ~ X it :wit i II(hi)dbi (2.26) 
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where II(b i) is the prior distribution of h i. The integral in (2.26) is expensive to 

evaluate when bi is multi-dimensional. One way to deal with this problem is via a 

latent variables approach (Albert and Chib, 1993, 1996; Carlin and Polson , 1992). 

Let Zit denote independent latent variables such that 

Let the observed response Yit be given by 

if zit> O 

if Zit ~ 0 

Then it can be seen that the Yit satisfy model (2.25). 

In their paper Chib and Carlin (1999) considered CJ2 = 1. This means there is no 

prior, and hence no posterior distribution for CJ
2 . This seems to be quite restrictive. 

Therefore, in our investigations, we consider a more general case for 0'2 . 

2.4.1 Algorithm 4 

With the introduction of the latent data, the probit model is similar to the Gaussian 

model discussed in Section 2.2 and the posterior distribution of the parameters (/3, D) 

may be sampled in parallel fashion. Let z = (Zll ... , Zn) and zi = (zil, .. . , Zin;). Then 

an MCMC scheme analogous to Algorithm 1 is defined as follows. We denote this as 

Algorithm 4: 

1. Sample f3 from /3IZ, b , 0'
2

, D 

2. Sample b from {bi } IZ, ,8, 0'2 , D 

3. Sample n-1 from n -1 lb 

4. Sample 0'2 from 0'2 IZ, ,8, b, D 
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6. Repeat Steps 1-5 using the most recent values of the conditioning variables. 

Note that step 4 is not given by Chib and Carlin (1999). The first four conditional 

distributions follow the same form as those given in Algorithm 1: (2.6), (2.10), (2.15) 

and (2.18) except the latent variable vector Zi replaces Yi in those expressions. The 

posterior distribution in step 5 is given by a sequence of independent truncated normal 

distributions, namely N(o,oo)(x'it.B + w'itb i, cr2
) if Yit = 1, or N(-oo,o)(x'it,B + w'itb i, cr2) 

if Yit = 0. 

2.4.2 Algorithm 5 

A refinement to Algorithm 4 is based on marginalizing the distribution of Zi over the 

random effects b i. Then, 

(2.27) 

where n i = cr2In, + WiDW~ and the model is similar to the multivariate probit 

model analyzed by Chib and Greenberg (1998). The resulting algorithm is similar 

to Algorithm 4 except that ,8 is sampled from ,B j(Z, a 2
, D ), and the latent variable 

zi comes from the multivariate normal distribution Nn; (Xi,B, n i) truncated to there

gion implied by the vector Yi· We follow Chib and Greenberg (1998) and sample this 

truncated multivariate normal vector from a sequence of (full conditional) univariate 

truncated normal distributions. This can be done by recognizing 

where each distribution on the right-hand side is univariate normal, and can be found 

using a standard result on the conditional distributions arising from a Gaussian distri

bution (Johnson and Wichern, 1992, p. 138). Thus, in this case, integrating out the 

random effects does not lead to a reduction in the number of blocks in the sampling 

(relative to Algorithm 4). Nonetheless, marginalization over the bi can be expected 
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to improve the sampling of the fixed effects for the reasons discussed in earlier sec

tions. This is similar to the improvement that Algorithm 2 is intended to show over 

Algorithm 1. We summarize this algorithm, which we call Algorithm 5, as follows: 

1. Sample ,Band {zi} from [,B, {zi}jy, a2 , D by sampling 

(a) ,B from ,Biy, z,a2 , D 

(b) {zi} fromzi1Yi, ,B,a2,D 

2. Sample b from {bi}jy,z,,B,a2 , D 

3. Sample D- 1 from n-1 jb 

4. Sample a2 from a 2ly, z,,B, b,D 

5. Repeat Steps 1-4 using the most recent values of the conditioning variables. 

The posterior distributions that are used in this algorithm are the same as those 

derived in Algorithm 2: (2.24), (2.10), (2.15) and (2.18), except the latent variable 

vector z i replaces Yi in those expressions. 

2.5 Conclusion 

In this chapter, we have presented several algorithms for generating samples from the 

posterior distributions of interest for two longitudinal models. In the next chapter we 

will present some simulation studies on the performance of these algorithms. 



Chapter 3 

Simulation Studies 

3.1 Introduction 

In thls chapter, we conduct several simulation studies on the MCMC algorithms 

presented in Chapter 2. In the longitudinal models, we will study the performance 

of the posterior estimates, as well as the autocorrelations of the MCMC samples of 

each algorithm. 

3.2 Simulation Design and Generation of the Con

tinuous Data 

Vle use the Gaussian linear mixed model (2.1) in this section. Under model (2.1), we 

will use n = 50 and Tti = 5 measurements on each subject. In our simulations for 

Algorithms 1-3, we simulate our data under the following prior assumptions on our 

parameters: 

(3 "'N4((30 , Bo), bi,....., N2(0 , D), n-t ""'W2(p0 , R0p~ 1 ) and a2 
rv IG(vo/2, bo/2), 

27 
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where /30 = (0, 0, 0, 0)', B 0 = I , Po= 50 and 

- ( 1 .5 ) Ro- . 
. 5 1 

ln our analyses, we examine our resul ts under a variety of choices for the other 

prior parameters. In each case, we will run Algorithms 1-3 of Chapter 2 for 500 

iterations. No burn-in-period was used in any simulations, although it may have 

been of some assistance in Algorithm 3. In all simulations, one set of simulated Yit 

values was used. Finally, our simulations focus on changing the prior of a'~-. Because, 

in our work, we found that changing a2 had the most dramatic affect on the results. 

3.3 Simulation Results-Continuous Data 

We will begin our simulations with the posterior means and variances of the param

eters under Algorithms 1-3. These are given in Tables 3.1 to 3.3. These tables refer 

to Cases 1-3, which are defined as follows: 

Case 1: v0 = 100, 00 = 5. Therefore the prior mean of a2 = 0.05. 

Case 2: v0 = 5, 00 = 100. Therefore the prior mean of a2 = 20. 

Case 3: v0 = 5, 00 = 5. Therefore the prior mean of a2 = 1. 

We examine the results on the posterior estimates for Algorithm 1, which are 

given in Table 3.1. 

As we examine t he results in Table 3.1, we see that changing the prior of a2 has 

some effect on mean(/3). Increasing the prior mean of a2 causes va1·(/3), mean(a2), 

var(a2) to increase, but it has little effect on mean(D) and var(D). 

Next, we examine the results on the posterior estimates for Algorithm 2, which 

are presented in Table 3.2. 

As we examine the results in Table 3.2, we see that changing prior of a2 does 

not have a large effect on mean(S). Increasing the prior mean of a 2 causes var(/3) , 

mean(a2) and var(a2 ) to go up, as we might expect. However, there is little effect 

on mean(D ) and var(D). 
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Parameters 

Cases f3o f3t !32 f3a (J2 Dn D21 D22 

Case 1 Mean 0.78 -0.44 -1.73 -4.36 2.10 1.28 -0.73 1.30 

Var 0.10 0.55 0.40 0.23 0.116 0.04 0.03 0.04 

Case2 Mean -0.50 -0.86 -0.92 -0.76 16.21 1.39 -0.69 1.38 

Var 0.30 0.71 0.66 0.63 2.42 0.07 0.04 0.07 

Case3 Mean 0.51 -0.65 -1.47 -3.53 3.15 1.27 -0.70 1.30 

Var 0.13 0.58 0.44 0.31 0.26 0.04 0.03 0.04 

Table 3.1: Posterior means and variances of parameters in simulations using Algo

rithm 1. 

Finally, we present the results of Algorithm 3 in Table 3.3. As we examine the 

results in Table 3.3, we see that changing the prior of u2 has some effect on mean({l), 

but the results of the 3 cases do not differ greatly. Increasing the prior mean of u2 

causes va1·({1), mean(a2 ) and var(a2 ) to increase. It has little effect on mean(D) and 

var(D). 

One of the issue to address in Algorithm 3 is the Metropolis-Hastings step of 

simulating approximate samples from IT(u2 , n - 1 ly). Recall that the algorithm moves 

to new posterior values for u2 and D with probability a(Bc, Bt), where 8 contains u2 

and the unique elements of n-1
. From our background in Chapter 1, we want a to 

be neither too large nor too small. 

In our simulations, under Case 1, we observe movement from Be to ot about 3% 

of the time, about 48% of the time in Case 2, about 9% of the time in Case 3. 

Therefore, it appears that Algorithm 3 does not perform well in geuerating posterior 

samples when the prior mean of u2 is small. For tuning parameters, we use r 2 = 0.1 

and v = 10 in the multivariate-t distribution. We tried several other combinations, 

but none perfomed better than the results presented here. We will investigate other 

implications of this lack of movement in the Metropolis-Hastings step in the next 

section. 
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Parameters 

Cases f3o (31 (32 (33 ()"2 Du D21 D22 
Case 1 Mean -0.24 -0.30 -1.32 -0.93 0.58 1.38 -0.77 1.35 

Va.r 0.09 0.49 0.31 0.42 0.03 0.04 0.03 0.04 

Case2 Mean -0.62 -0.77 -0.92 -0.13 15.99 1.45 -0.70 1.34 

Var 0.27 0.71 0.63 0.67 2.54 0.07 0.04 0.06 

Case 3 Mean -0.27 -0.48 -1.23 -0.74 1.52 1.37 -0.74 1.34 

Var 0.11 0.56 0.39 0.47 0.09 0.04 0.03 0.04 

Table 3.2: Posterior means and variances of parameters in simulations using Algo

rithm 2. 

3.3.1 Comparison of Algorithms 

If we compare Cases 1-3, we see that Algorithm 1 tends to give larger (in magnitude) 

values for mean(i3) than Algorithms 2 and 3, which give similar results. However, 

var(i3) is similar for all algorithms. Algorithm 1 provided larger values for mean(0"2) 

than the other two algorithms, particularly when the prior mean of u2 was small. We 

also see Algorithm 3 leads to smaller values of var(i72), mean(D) and var(D) than 

other two algorithms. 

3.3.2 Graphs 

Although we have examined some summary statistics on our posterior distributions, 

it is also of interest to examine our posterior distributions visually. Therefore, we 

now present histograms of a selection of the posterior distributions discussed earlier. 

From Figure 3.1 (Algorithm 1, Case 1), we found that posterior distributions of 

all f3 estimates appear symmetric and normal. The posterior mean of f3o is larger 

than its prior mean and the posterior means of (31, (32, (33 are less than their prior 

means. 

From Figure 3.2 (Algorithm 1, Case 1) , we found tha.t the posterior distribution 
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Parameters 

Cases f3o /31 !32 /33 (72 D n D21 D 22 

Casel Mean -0.25 -0.16 -1.43 -0.97 0.30 1.08 0.67 1.07 

Var 0.09 0.40 0.23 0.49 0.01 0.002 0.002 0.003 

Case2 Mean -0.64 -0.73 -0.93 -0.13 15.99 1.00 0.45 1.05 

Var 0.28 0.65 0.55 0.78 0.52 0.006 0.003 0.004 

Case 3 Mean -0.24 -0.48 -1.24 -0.86 1.32 1.10 0.54 1.10 

Var 0.11 0.55 0.35 0.46 0.02 0.01 0.002 0.004 

Table 3.3: Posterior means and variances of parameters in simulations using Algo

rithm 3. 

of a 2 doesn' t appear very skewed, but t he posterior distributions of D11 and D22 are 

skewed to the right as a x2 distribution and the posterior distribution of D21 (the off 

diagonal element of the Wishart distribution) do not seem symmetric. The posterior 

mean of a 2 is larger than its prior mean and the posterior means of D 11 , D 21 and D 22 

are very close to their prior means, which were 1, 0.5, and 1 respectively. 

From Figure 3.3 (Algorithm 2, Case 3), we found that the posterior distributions 

of all f3 estimates appear approximately normal, and the posterior means are less 

than their prior means. 

From Figure 3.4 (Algorithm 2, Case 3), we found that the posterior distributions 

of a2, D 11 and D22 are skewed to the right as a x2 distribut ion, but the posterior 

distribution of D21 appears asymmetric. The posterior mean of a2 is larger than its 

prior mean while the posterior means of D u, D 21 and D22 are very close to their prior 

means. 

From Figure 3.5 (Algorithm 3, Case 2), we found that the posterior distributions 

of all f3 estimates are approximately normal and the posterior means of /30 , /31, /32 , /33 

are less than their prior means. 

From Figure 3.6 (Algorithm 3, Case 2), we found that the posterior distributions 

of a2 and the elements of D all appear to be slightly skewed. Each posterior mean is 
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very close to prior means. 

3.4 Simulation Design and Generation of the Bi

nary Data 

We use the probit link model (2.25) in this section. Under model (2.25), we will use 

n =50 and ni = 5 measurements on each subject. In our simulations for Algorithms 

4-5, we simulate our data under the following prior assumptions on our parameters: 

/3"' N4(/30 , B 0 ), hi rv N2(0, D ), n-1 "'W2(p0 , R op;;-1) and f7
2 

rv IG(v0 /2, bo/2) , 

where /30 = (0, 0, 0, 0)', B o = I , Po= 50 and 

- ( 1 .5) Ro- · 
.5 1 

In our analyses, we examine our results under a variety of choices for the other 

prior parameters. In each case, we will run the algorithms 4-5 of Chapter 2 for 500 

iterations. 

3.5 Simulation Results-Binary Data 

vVe will begin our simulations with the posterior means and variances of the param

eters under Algorithms 4 and 5. These are given in Tables 3.4 and 3.5. These tables 

refer to Cases 1-3, which are defined as follows: 

Case 1: v0 = 100, tJ0 = 5. Therefore the prior mean of f72 = 0.05. 

Case 2: v0 = 5, 80 = 100. Therefore the prior mean of a 2 = 20. 

Case 3: V0 = 5, 80 = 5. Therefore the prior mean of o2 = 1. 

We examine the results of the posterior estimates for Algorithm 4, which are given 

in Table 3.4. 

As we examine the results in Table 3.4, we see that increasing prior of a2 causes 

mean(/3), var(/3) , mean(a2 ), vaT(a2), mean(D) and vaT(D) to go down (in absolute 
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Parameters 

Cases flo (31 (32 (33 (J2 Da D21 D 22 

Case 1 Mean -9.03 -5.69 -4.80 -7.16 736.14 794.04 -684.85 597.54 

Var 3.80 1.83 1.49 2.96 7.5 X 104 3.1 X 105 1.9 X 105 1.2 X 105 

Case2 Mean -1.52 -1.56 -1.41 -1.47 47.41 1.70 -0.96 1.76 

Var 0.49 0.81 0.76 1.18 195.19 0.23 0.15 0.20 

Case3 Mean -1.56 -1.59 -1.44 -1.61 50.46 1.87 -1.12 1.91 

Var 0.66 0.82 0.80 2.14 442.21 1.21 1.09 1.22 

Table 3.4: Posterior means and variances of parameters in simulations using Algo

rithm 4. 

value). Case 1 provided larger posterior estimates for all parameters. This is especially 

true for the variance components. 

Parameters 

Cases f3o !31 /32 /33 (J2 Du D21 D22 

Case l Mean -0.07 -0.69 -0.61 -0.61 1.97 1.54 -0.64 1.28 

Var 0.12 0.52 0.45 0.56 0.15 0.113 0.04 0.05 

Case2 Mean -0.69 -1.16 -1.07 -0.40 17.35 1.54 -0.77 1.56 

Var 0.32 0.64 0.68 0.75 36.26 0.105 0.06 0.09 

Case3 Mean -0.51 -1.07 -0.99 -0.41 11.99 1.54 -0.74 1.53 

Var 0.28 0.61 0.63 0.71 20.28 0.106 0.06 0.09 

Table 3.5: Posterior means and variances of parameters in simulations using Algo

rithm 5. 

Table 3.5 gives the results of the posterior estimates for Algori thm 5. As we 

examine the resul ts in Table 3.5, we see that changing the prior of CJ2 has not had a 

large effect on mean(/3 ) and var(/3 ). Increasing the prior mean of CJ2 causes mean(a2 ) 

and var(Q-2 ) to go up. It has little effect on mean(D) and var(D). 
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3.5.1 Comparison of Algorithms 

If we compare Algorithms 4 and 5, we see that Algorithm 4 provided larger values 

(in absolute terms) for the posterior means and variances of {3. There are also large 

differences between the posterior results on a 2 , and between the values of D in some 

cases. It does appear that Algorithm 5 gives us more reliable results, based on these 

findings. 

3.5.2 Graphs 

As in the previous section, we present some histograms on a subset of our posterior 

distributions. 

From Figure 3.7 (Algorithm 4, Case 3), we found that the posterior distribution 

of [33 is highly skewed to the left and the posterior distributions of {30 , {31 , {32 are 

symmetric. The posterior means of {30, (31, (32, f3s are less than their prior means. 

From Figure 3.8 (Algorithm 4, Case 3), we found that the posterior distributions 

of (J2 , D11 and D22 are highly skewed to the right, but the posterior distribution of 

D21 is highly skewed to the left. The posterior mean of a 2 is larger than its prior 

mean. However, the posterior means of D11 , D21 and D22 are slightly bigger than 

their prior means. 

From Figure 3.9 (Algorithm 5, Case 2), we found that the posterior distributions 

of all {3 estimates are approximately normal, with posterior means of that are less 

than their prior means. 

From Figure 3.10 (Algorithm 5, Case 2), we found that the posterior distributions 

of (J
2 and the elements of Dare skewed to the right. The posterior means of a 2 , D111 

D21 and D 22 are very close to their prior means. 



35 

3.6 A utocorrelations of Posterior Estimates 

We now study the behaviour of the autocorrelation values of the posterior estimates 

in our simulation studies. As discussed by Carlin and Chib (1999), we want these 

autocorrelations to be close to 0, since that will indicate approximate independence 

in the movement of the Markov Chain. 

Parameter Algorithm 1 Algorithm 2 Algorithm 3 

{31 -.0023 .0209 .0883 

{32 -.0094 -.0408 .0252 

{33 -.0522 .0056 -.0277 

f34 .0227 -.0523 .0569 

a2 .1749 .0983 .5880 

Du .3935 .3588 .6590 

D21 .3630 .4017 .5861 

D 22 .3767 .3788 .5168 

Table 3.6: Lag-1 autocorrelat ions of posterior estimates under Case 2, using contin

uous data. 

We will examine two components of the autocorrelation values of our MCMC Al

gorithms. First, we will calculate the lag-1 autocorrelations of our posterior estimates. 

As noted, lag-1 autocorrelations near 0 will suggest approximate independence in the 

MCMC movement. 

The second component to be studied is a summary of the autocorrelation at all 

lags and the overall rate of decay, following Chib and Carlin (1999). This summary 

can be represented as 
00 

K. = 1 + 2 'E p( k) ' 
k=l 

where p(k) is the lag k autocorrelation of the posterior estimate of interest. The 

value K. is sometimes referred to as the autocorrelation time. We estimate K. using 

the sample autocorrelations estimated from the MCMC procedure, cutting off the 
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Parameter Algorithm 1 Algorithm 2 Algorithm 3 

f3t -.0397 -.0165 -.0130 

fJz .0013 -.0440 -.0212 

(33 -.0115 -.0273 .0002 

f34 -.0879 -.0668 .0517 

(J2 .2426 .2287 .9530 

Du .1531 .1176 .9529 

D21 .1185 .0687 .9386 

Dz2 .1920 .1214 .8855 

Table 3.7: Lag-1 autocorrelations of posterior estimates under Case 3, using contin

uous data. 

summation when the sample autocorrelations fall below 0.1 in magnitude. Using 

Kass et al. (1998, p. 99), r;, can be thought of as the relative increase in run length 

needed by the MCMC method to deal with the dependence. Ideally, r;, will be small. 

Note that if we have strict independence, r;, = 1. 

3.6.1 Results on Algorithms 1-3 

Tables 3.6 and 3.7 contain the values of the lag-1 autocorrelations of the posterior 

estimates using Algorithms 1-3 for Cases 2 and 3, while Tables 3.8 and 3.9 contain 

t he estimates of r;, for these situations. 

From Tables 3.6 and 3.7, we obtained good performance for the /3's in Algorithm 

1-3. Algorithm 1 and Algorithm 2 perform better for CJ
2 and the elements of D than 

Algorithm 3. Algorithm 3 in Table 3.6 performs better for CJ
2 and the elements of D 

than in Table 3.7, because there is little movement in the MCMC procedure in Table 

3.7 for smaller values of CJ2 . 

From Tables 3.8 and 3.9, we obtained good performance for the f3's in Algorithms 

1-3. Algorithms 1 and 2 perform better for CJ2 and the elements of D than Algorithm 
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Parameter Algorithm 1 Algorithm 2 Algorithm 3 

{31 1 1 1 

{32 1.237 1 1 

!33 1 1 1.211 

{34 1.313 1 1 

(72 2.196 1 7.539 

Du 2.314 1.950 14.874 

D21 1.726 2.563 10.591 

D22 2.185 2.023 6.303 

Table 3.8: Estimates of "' = 1 + 2 E~1 p(k) for posterior estimates, Case 2, for 

continuous data. 

3. Algorithm 3 in Table 3.8 performs better for <J2 and the elements of D than in 

Table 3.9, because there is little movement in the MCMC procedure in Table 3.9 for 

smaller values of <J2 . 

3.6.2 Results on Algorithms 4 and 5 

Tables 3.10 and 3.11 contain the values of the lag-1 autocorrelations of the posterior 

estimates using Algorithms 4 and 5 for Cases 2 and 3, while Tables 3.12 and 3.13 

contain the estimates of "' for these situations. 

From Tables 3.10 and 3.11, we observed better performance for the {3's and the 

elements of D for Algorithm 5 than Algorithm 4. Algorit hm 4 and Algorithm 5 

perform similarly for <J2
. The findings are similar for Tables 3.12 and 3.13. 

3. 7 Conclusions 

We have conducted simulation studies to compare the performance of the algorithms 

discussed in Chapter 2. In regards to the algorithms for continuous data, it does not 
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Parameter Algorithm 1 Algor~thm 2 Algorithm 3 

{31 1 1 1 

{32 1.260 1 1.752 

{33 1 1 1.828 

{34 1.243 1 1 

(J2 1.698 1.457 28.403 

Dn 1.306 1.677 28.983 

D21 1.237 1 31.996 

Dzz 1.868 1.243 29.736 

Table 3.9: Estimates of "' = 1 + 2 E~1 p(k) for posterior estimates, Case 3, for 

continuous data. 

appear that Algorithm 3 is an improvement over Algorithms 1 and 2, since it seems 

difficult to get good performance from the Metropolis-Hastings step of the algorithm. 

For the methods for binary data, it does appear that Algorithm 5 is an improvement 

over Algorithm 4. Finally, the results on the binary data suggest the choice of prior 

on o2 plays a role, and its value should not be set to equal 1 arbitrarily. 



39 

Parameter Algorithm 4 Algorithm 5 

{31 .1750 .0760 

f3z .0348 .0035 

!33 .0147 -.0106 

{34 .3903 .0958 

(J2 .7108 .9216 

Dn .6551 .5378 

D21 .6417 .4460 

D22 .5970 .4937 

Table 3.10: Lag-1 autocorre]ations of posterior estimates under Case 2, using binary 

data. 

Parameter Algorithm 4 Algorithm 5 

!31 .3594 .0801 

!32 .0452 .0030 

!33 .0403 -.0100 

{34 .6416 .1025 

(J2 .8501 .9249 

Du .8927 .5398 

D 21 .9044 .4168 

D22 .8893 .4615 

Table 3.11: Lag-1 autocorrelations of posterior estimates under Case 3, using binary 

data. 
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Figure 3.1: Posterior Distributions of {3 estimates in Algorithm 1, Case 1. 
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Figure 3.7: Posterior Distributions of {3 estimates in Algorithm 4, Case 3. 
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Parameter Algorithm 4 Algorithm 5 

{31 1.846 1.201 

f3z 1 1 

{33 1 1 

{34 3.582 1 

(J2 14.788 18.237 

Dn 7.199 3.905 

D21 6.111 2.888 

D22 4.549 3.127 

Table 3.12: Estimates of K = 1 + 2 E~1 p(k) for posterior estimates, Case 2, for 

binary data. 

Parameter Algorithm 4 Algorithm 5 

{31 2.741 1.209 

!32 1.208 1 

!33 1 1 

{34 5.653 1.205 

(J2 14.591 18.925 

Du 8.034 3.858 

D21 8.276 2.744 

Dzz 8.141 3.189 

Table 3.13: Estimates of K = 1 + 2 E~1 p(k) for posterior estimates, Case 3, for 

binary data. 



Chapter 4 

Continuous Data: Example 

4 .1 CD4+ Data 

The human immune deficiency virus (HIV) causes AIDS by reducing a person's ability 

to fight infection. HIV attacks an immune cell called the CD4+ cell which orchestrates 

the body's immunoresponse to infectious agents. An uninfected individual has around 

1100 cells per millilitre of blood. CD4+ cells decrease in number with time from 

infection so that an infected person's CD4+ cell number can be used to monitor 

disease progression. Kaslow et al (1987) collected values of CD4+ cell numbers 

along with other variables longitudinally for 369 infected men in a Multicenter AIDS 

Cohort study. Our goal is to analyze a portion of these data to determine what 

variables are useful in predicting the CD4+ cell count. The variables are discussed 

by Diggle, Liang and Zeger (1994) . 

Since CD4+ cell count is a discrete variable, it is inappropriate to use model 

(2.1), which is designed for continuous errors. However, Chib and Carlin (1999) 

and Chib and Jeliazkov (2001) show the square root of CD4+ cell count is a suitable 

transformation to a1low one to use model (2.1), so we will use the same transformation. 

Under model (2.1), we will use n = 20, and we have between 2 and 12 measure

ments on each subject. In our model,~= [1, Xi,1, Xi,2, xi,3, Xi,4], where 
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Xi,I represents recreational drug use (xi ,tl = 1 if drugs used), 

x i,2 represents CESD, which is a mental illness score, 

Xi,3 is t he subject's age (relative to an arbitrary origin) and 

x i,4 is the number of packages of cigarettes smoked per day. 
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In addition, we define W i as having the jth row (1, tij), where tii is the t ime since 

seroconversion for subject i. Therefore, Xi is n i x 5 and W i is n i x 2. 

We make the following prior assumptions on our parameters: 

(3 "' Ns(f3 0 , Bo), hi "' N2(0, D), n-1 
"' W2(p0 , R0p~1 ) and a 2 

"' IG(v0 j2, 00 /2), 

where {30 = (10, 0, 0, 0, 0)', B 0 = I and Po = 50. In our analyses, we examine our 

results under a variety of choices for the other prior parameters. In each case, we will 

run Algorithms 1-3 of Chapter 2 for 500 iterations. 

4.2 Results 

We now present our analyses of the CD4+ data set, beginning with the posterior 

means and variances of the parameters under Algorithms 1-3. These are given in 

Tables 4.1-4.3. These tables refer to cases 1-4, which are defined as follows: 

Case 1: v0 = 1, 00 = 100 and R 0 = diag(2, 1). Therefore, a 2 has a prior mean of 100. 

Case 2: v0 = 5, 00 = 100 and R 0 = diag(2, 1) . Therefore, a 2 has a prior mean of 20. 

Case 3: v0 = 1, 00 = 100 and R o = diag(10, 1). Therefore, a2 has a prior mean of 

100. 

Case 4: v0 = 5, 00 = 100 and R 0 = diag(10, 1). Therefore, a2 has a prior mean of 20. 

As we examine the results in Table 4.1, we see that, changing the prior of a 2 has 

little effect on mean(S) and var(/3). It also has little effect on mean(G-2
), but leads 

to a larger value of var(G-2). Finally, it has little effect on mean(D) and va1·(D). 

Meanwhile, changing R o to diag(10, l ) causes mean(S) to stay about the same and 

var(/3) to drop slightly. It also causes mean(G-2
) and var(5-2

) to drop, and leads to a 

drop in mean(D ) and var(D ). 
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Parameters 

Cases f3o !31 !32 f33 !34 (J2 Du D21 D 22 

Case1 Mean 16.59 4.72 1.81 2.58 5.50 509.61 0.60 0.09 1.44 

Var 11.03 5.90 0.67 1.11 5.69 76524.67 0.02 0.03 0.15 

Case 2 Mean 16.75 4.79 1.83 2.60 5.57 508.18 0.60 0.09 1.46 

Var 13.34 6.06 0.68 1.14 5.98 85511.87 0.02 0.04 0.20 

Case3 Mean 16.62 4.60 1.79 2.32 5.62 463.28 0.11 0.02 1.49 

Var 9.34 4.81 0.57 0.95 5.14 52317.44 0.0006 0.0056 0.17 

Case4 Mean 16.78 4.66 1.81 2.33 5.71 461.62 0.11 0.02 1.51 

Var 11.03 4.84 0.58 0.97 5.35 57270.49 0.0006 0.006 0.22 

Table 4.1: Posterior means and variances of parameters in analysis of CD4+ Data 

set, using Algorithm 1. 

Ftom our analysis, based on examining mean(/3i) / .Jvar(/3i), it looks like CESD, 

age and cigarette smoking are important variables in predicting CD4+ cell count. It 

also appears that D f:. 0, so the bi term for time effect is needed in our model. 

As we examine the results in Table 4.2, we see that changing the prior of <J2 

has lit tle effect on mean(/3 ) and var(/3). It also has little effect on mean(a2 ) and 

vaT(G-2) . Finally, it has litt le effect on mean(D) and vaT(D). Meanwhile, changing 

R 0 to diag(lO, 1) causes mean(/3) and var(/3) to drop, except for mean(Po). It also 

causes mean(a2
) and var(a2

) to drop, and causes most elements of mean(D) and 

var(D) to drop. 

From our analysis, it lool<s like drug use and cigarette smoking are important 

variables in predicting CD4+ ceH count, it also appears t hat the hi term for time 

effect is needed in our model. Therefore, the prior specified for a 2 has some effect on 

our results. 

As we examine t he results in Table 4.3, we see that changing the prior of a 2 has 

some effect on mean(/3) and var(/3), but it has little effect on mean(a-2
) . From Cases 

1 and 2, we see it has little effect on var(a2 ) and from Cases 3 and 4, it causes var(a2 ) 
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Parameters 

Cases f3o {31 f32 {33 {34 0'2 Dn D21 D22 

Case 1 Mean 17.38 4.67 -0.10 0.27 1.80 341.88 111.59 -0.80 1.65 

Var 3.35 0.53 0.003 0.02 0.14 6388.45 2714.47 31.14 1.17 

Case2 Mean 17.69 4.66 -0.10 0.26 1.76 327.03 105.45 -0.68 2.02 

Var 4.51 0.54 0.003 0.02 0.17 6718.29 3587.39 36.85 2.18 

Case3 Mean 21.92 4.45 -0.07 0.05 1.15 175.30 0.16 0.36 5.06 

Var 0.73 0.38 0.001 0.004 0.03 1061.95 0.006 0.09 2.23 

Case4 Mean 21.92 4.45 -0.06 0.05 1.14 173.86 0.16 0.38 5.32 

Var 0.73 0.39 0.001 0.004 0.03 1022.04 0.006 0.09 2.42 

Table 4.2: Posterior means and variances of parameters in analysis of CD4+ Data 

set, using Algorithm 2. 

to drop. F inally, from Cases 1 and 2, we see it leads to larger values of mean(D) 

and var(D), from Cases 3 and 4, it has little change on mean(D) and causes var(D) 

to drop. Meanwhile, changing R 0 to diag(10, 1) has some effect on mean(S ) and 

causes var(S ) to drop. It also causes mean(&2 ) and var(&2
) to drop. From Cases 1 

and 3, it leads to larger values of mean(D) and var(D) except for mean(D22) and 

var(D22 ). In Cases 2 and 4, it causes mean(:D) to drop except for mean(D11 ) and 

causes var(D) to drop. 

In Algorithm 3, the MCMC procedure does not move to new values very often 

(only about 4% of the time for Case 1, 5% of the time for Case 2, 6% of the time for 

Case 3, 3% of the time for Case 4), because of larger values of a 2 in CD4+ Data set. 

From our analysis, it looks like there are no important variables in predicting CD4+ 

cell count in Cases 1 and 2, but drug use and cigarette smoking are important variables 

in predicting CD4+ cell count in Cases 3 and 4. It also appears that D =f 0, so the 

b i t erm for time etl"ect is needed in our model. 

Since our Bayesian analysis yielded results with very large posterior estimates 

of a 2 , it was of interest to see if similar results were observed with a non-Bayesian 
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Parameters 

Cases f3o f3J ,62 f3a !34 o-2 Du D21 D22 

Ca.se1 Mean 21.20 17.60 -0.65 -0.02 -1.77 332.33 0.05 0.12 1.03 

Var 253.89 144.49 1.13 0.22 70.24 799.47 0.02 0.003 0.005 

Case2 Mean 12.97 3.09 3.61 0.48 3.20 378.52 0.13 1.02 9.16 

Var 1016.91 608.34 17.53 6.15 57.57 852.68 0.012 0.131 1.33 

Ca.se3 Mean 22.24 4.33 -0.06 0.02 1.10 157.77 7.16 0.64 0.38 

Var 0.35 0.27 0.001 0.002 0.03 116.46 0.13 0.009 0.0002 

Case4 Mean 22.35 4.27 -0.06 0.016 1.09 150.71 7.55 0.65 0.36 

Var 0.32 0.25 0.001 0.002 0.03 46.75 0.02 0.0013 0.00003 

Table 4.3: Posterior means and variances of parameters in analysis of CD4+ Data 

set, using Algorithm 3. 

analysis. We used the estimates given by Robinson (1991) for model (2.1) and found 

that &2 = 351.39, which is similar to our posterior mean. 

4.2 .1 Comparison of Algorithms 1-3 

If we compare. Cases 1 and 2, we see that Algorithms 1-3 give some similar results 

for mean(/J) , but Algorithm 3 provided larger values for var(/J) than the other two. 

Algorithms 2 and 3 lead to smaller mean(&2 ) values. We also see that Algorithm 3 

leads to a drop in var(&2). Finally, Algorithms 1 and 3 give the smallest values of 

mean(D) and var·(D). 

From Cases 3 and 4, we see that Algorithms 2 and 3 have more similar values 

for mean(/J) and var(/3) than Algori~;hm 1. The three algorithms differ quite a bit 

among their &2 and f> values in all cases. Finally, we note that Algorithm 1 tends to 

give the largest values of var(/J) in Cases 3 and 4. 
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4.2 .2 Autocorrelations of Posterior Estimates 

As discussed in Chapter 3, it is also of interest to study the behaviour of the estimates 

using their autocorrelation function. First , we present the lag-1 autocorrelation values 

of the posterior estimates in Tables 4.4-4.7. 

Parameter Algorithm 1 Algorithm 2 Algorithm 3 

f3o -0.020 0.719 0.952 

f3t 0.023 0.079 0.955 

!32 0.254 0.077 0.944 

,83 0.214 0.256 0.931 

/3tJ 0.071 0.202 0.949 

0"2 -0.062 0.184 0.956 

D11 0.434 0.780 0.971 

D 21 0.474 0.911 0.955 

D22 0.343 0.894 0.948 

Table 4.4: Lag-1 autocorrelations of posterior estimates under Case 1, using CD4+ 

Data set. 

From Tables 4.4 and 4.5, we see we are getting good performance for the /3's 

and o-2 for Algorithm 1. Algorithm 2 does not perform as well, particularly for the 

variance components. The results for Algorithm 3 are also very poor, mainly because 

there is little movement in the MCMC procedure. Finally, we see all algorithms give 

high lag-1 autocorrelation values for the elements of D . 

From Tables 4.6 and 4.7, we are getting better performance for most of the /3's in 

Algorithm 2 and Algorithm 3 than in Algorithm 1. Algorithms 1 and 2 perform better 

for a 2 than Algorithm 3, because there is little movement in the MCMC procedure 

in Algori thm 3. Finally, we see all algorithms give high autocorrelation values for the 

elements of D . 

To summarize the auto correlations at all lags and their overall rate of decay, Tables 
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Parameter Algorithm 1 Algorithm 2 Algorithm 3 

f3o -0.014 0.789 0.967 

/31 0.023 0.058 0.969 

{32 0.234 0.103 0.947 

/33 0.207 0.319 0.953 

/34 0.034 0.331 0.970 

a2 -0.035 0.303 0.954 

Du 0.423 0.841 0.975 

D21 0.455 0.920 0.973 

D22 0.311 0.898 0.960 

Table 4.5: Lag-1 autocorrelations of posterior estimates under Case 2, using CD4+ 

Data set. 

4.8 to 4.11 give the autocorrelation time f), = 1 + 2 E~1 p(k) for each parameter in 

Tables 4.4 to 4.7, where p(k) is the autocorrelation at lag k for the parameter of 

interest. We estimated f), as discussed in Chapter 3. 

Fl.'om Tables 4.8 and 4.9, we see Algorithm 1 does reasonably well for all the 

parameters. Algorithm 2 does not perform as well. The results for Algorithm 3 are 

also very poor, mainly because there is little movement in the MCMC procedure. 

From Tables 4.10 and 4.11, we are getting bet ter performance for the f3's for 

Algorithm 2 than Algorithms 1 and 3, although the differences are not dramatic. 

Algorithm 3 gives poor results for a 2 and D 1 again because there is little movement 

in the MCMC procedure. 
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Parameter Algorithm 1 Algorithm 2 Algorithm 3 

f3o -0.012 0.071 0.158 

f3t 0.044 0.060 0.180 

fJ2 0.262 0.033 -0.067 

f3s 0.241 0.066 -0.028 

!34 0.076 -0.016 -0.022 

u2 -0.034 0.049 0.952 

Du 0.365 0.835 0.961 

D21 0.497 0.799 0.941 

D22 0.358 0.515 0.923 

Table 4.6: Lag-1 autocorrelations of posterior estimates under Case 3, using CD4+ 

Data set. 

Parameter Algorithm 1 Algorithm 2 Algorithm 3 

fJo -0.004 0.062 0.099 

fJI 0.046 0.044 0.144 

{32 0.234 0.058 -0.064 

fJs 0.233 0.050 -0.035 

fj4 0.035 -0.039 -0.015 

u2 -0.010 -0.001 0.964 

Dn 0.374 0.830 0.946 

D21 0.493 0.797 0.974 

D22 0.332 0.513 0.915 

Table 4.7: Lag-1 autocorrelations of posterior estimates under Case 4, using CD4+ 

Data set. 
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Parameter Algorithm 1 Algorithm 2 Algorithm 3 

f3o 4.21 24.58 20.94 

{31 2.67 1 23.21 

!32 1.83 1 27.17 

{33 1.98 9.60 22.17 

/34 2.13 8.21 19.95 

a2 4.14 8.16 26.11 

Du 2.34 23.69 28.40 

D 21 3.11 26.05 23.15 

D22 2.33 30.80 25.60 

Table 4.8: Estimates of "' = 1 + 2 2:~1 p( k) for posterior estimates, Case 1, for CD4+ 

Data set. 

Parameter Algorithm 1 Algorithm 2 Algorithm 3 

f3o 4.01 28.91 27.32 

{31 2.76 1 27.23 

!32 1.79 1.49 22.69 

!33 1.98 12.68 21.21 

{34 2.10 13.67 30.85 

a2 3.72 13.24 28.45 

Du 2.29 28.40 31.75 

D21 3.04 28.06 31.10 

Dn 2.23 32.17 26.08 

Table 4.9: Estimates of r;, = 1 +2 2:~1 p(k) for posterior estimates, Case 2, for CD4+ 

Data set. 
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Parameter Algorithm 1 Algorithm 2 Algorithm 3 

f3o 3.58 1 2.60 

f3t 1.78 1 1.98 

!32 1.82 1 1 

{33 2.45 1 1.47 

{34 1.90 1.21 1.24 

(12 3.49 1 30.02 

Dn 1.73 11.15 31.47 

D21 3.22 9.87 23.20 

D 22 2.28 3.16 20.76 

Table 4.10: Estimates of K- = 1 + 2 Ek:,1 p(k) for posterior estimates, Case 3, for 

CD4+ Data set. 

Parameter Algorithm 1 Algorithm 2 Algorithm 3 

f3o 3.76 1 1 

f3t 2.19 1.21 1.29 

!32 1.77 1.23 1 

/33 2.44 1 1.44 

{34 1.85 1 1.65 

(12 3.39 1 31.83 

Dn 1.75 11.09 24.07 

D21 3.22 9.69 31.47 

D22 2.18 3.11 23.66 

Table 4.11 : Estimates of K- = 1 + 2 L:k:,1 p( k) for posterior estimates, Case 4, for 

CD4+ Data set. 



Chapter 5 

Binary Data: Example 

5.1 Six Cities data set: child's wheeze status 

Our data set couLaiu~ complete records on 537 children from Steubenville, Ohio, each 

of whom was examined annually at ages 7 through 10. This data set was previously 

analysed by Zeger, Liang and Albert (1988). The repeated binary response is the 

wheezing status (1 =yes, 0 =no) of a child at each occasion. Maternal smoking was 

categorized as 1 if the mother smoked regularly and 0 otherwise. Although maternal 

smoking is a time-varying covariate, it \Vas treated as fixed at its value at the first 

year of study. 

When the responses are binary, a natural choice is to use a logi t link function to 

relate the marginal expectation of the responses to the covariates. Suppose we have 

a sequence of binary measurements Yi = (Yit, ..... ,Yin,)', where Yit = 0 or 1, on the i'h 

unit taken at ni specific time points. We define the logit link as: 

P ( 
. _ 

1
) _ exp[x 'it,B + w'itbi) 

r Ytt- - · 
1 + exp[x 'it.B + w'itbi) 

The covariates can be both time-stationary, i.e. constant across occasions, and time

varying. For example, in the Six Cities study (~fare et al. , 1984) , a child's wheeze 

status (yes, no) as well as information about maternal smoking were recorded annually 
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for a sample of children from each of the participating cities. In this example, maternal 

smoking is time-varying, since it can change from year to year, whereas city is time

stationary. 

We are using a subset of data from the Six Cities study, a longitudinal study of 

the health effects of air pollution, in our model. Rather than using a logit link, we 

will use the probit link discussed in Chapter 2: 

where ~ is the standard normal cdf and x 'it and w'u are the tth rows of X i and Wi, 

respectively. X i is an ni x p design matrix of cova.riates and {3 is a corresponding 

p x 1 vector of fixed effects. In addition, Wi is a ni x q design matrix and bi is a 

q x 1 vector of subject-specific random effects. Under our model, we have n = 537, 

and we have ni = 4 measurements on each subject. 

The marginal expectation of the response is modelled as a pro bit function of three 

covariates: age, maternal smoking, and the age-maternal smoking interaction. One 

of the objectives of this study was to determine the effects of age, maternal smoking 

and the age-maternal smoking interaction. 

We make the following prior assumptions on our parameters: 

{3 "' N4({30 ,Bo), bi "'N1(0,D), D-1 "'Wt(Po,Rop;;1
). If D- 1 is Wt(Po,Rop-;;1

), 

then D-1 /Rop-;; 1 is X~a and a2
"' IG(vo/2, oo/2), where /30 = (10, 0, 0, 0), Bo = I and 

Po = 50. In our analyses, we examine our results under a variety of choices for the 

other prior parameters. In each case, we will run Algorithms 4-5 of Chapter 2 for 500 

iterations. 

5.2 Results 

We now present our analyses of the Six Cities data set, beginning with the posterior 

means and variances of the parameters under Algorithms 4-5. These are given in 

Tables 5.1-5.2. Table 5.1 refers to Cases 1-5 for Algorithm 4 and Table 5.2 refers to 



cases 1-3 for Algorithm 5, which are defined as follows: 

In Algorithm 4: 

Case 1: V0 = 1, 00 = 100 and R0 = 20. Therefore, a 2 has a prior mean of 100. 

Case 2: v0 = 5, 00 = 100 and R 0 = 20. Therefore, a2 has a prior mean of 20. 

Case 3: Vo = 5, 00 = 5 and Ro = 20. Therefore, a 2 has a prior mean of 1. 

Case 4: Vo = 5, 00 = 10 and Ro = 20. Therefore, a 2 has a prior mean of 2. 

Case 5: Vo = 5, 00 = 50 and R0 = 20. Therefore, a 2 has a prior mean of 10. 

In Algorithm 5: 

Case 1: Vo = 1, 00 = 100 and R0 = 20. Therefore, a 2 has a prior mean of 100. 

Case 2: V 0 = 5, 00 = 100 and Ro = 20. Therefore, a 2 has a prior mean of 20. 

Case 3: 1/0 = 5, 00 = 5 and Ro = 20. Therefore, a 2 bas a prior mean of 1. 

Parameters 

Cases f3o {31 /32 {33 (]2 D 

Case1 Mean -0.38 -0.60 -0.41 -0.58 256.45 0.052 

Var 0.95 0.52 1.03 0.53 t139.55 0.00011 

Case 2 Mean -0.42 -0.45 -0.45 -0.44 152.78 0.054 

Var 0.92 0.52 0.99 0.53 150.86 0.00016 

Case 3 Mean -1.26 -10.97 -1.28 -10.95 1.73 X 107 4.04 X 107 

Var 1.46 39.25 1.69 39.15 3.17 X 10t3 1.31 X 1014 

Case 4 Mean -1.25 -10.90 -1.28 -10.88 1.72 X 107 4.04 X 107 

Var 1.46 40.81 1.69 41.04 3.53 X 1013 1.51 X 1014 

Case5 Mean -0.42 -0.46 -0.45 -0.44 157.08 0.06 

Var 0.92 0.52 0.995 0.53 170.76 0.00096 
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Table 5.1: Posterior means and variances of parameters in analysis of Six Cities data 

set, using Algorithm 4. 

We include Case 3 for each algorithm because we hope the result will give us some 
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insight into the assumption of Chib and Carlin (1999) to assume a 2 = 1. Vve are 

pla.cing a prior mean of 1 on a 2 in Case 3, and it will be of interest to see if the 

posterior of a2 changes from our prior assumption. If it does , the setting of u2 = 1 

by Chib and Carlin (1999) will be seen as questionable. 

As we examine the results in Table 5.1, for Cases 1 and 2, we see that mean({3) , 

var({3 ), mean(D) and va1·(D) are similar. Meanwhile, by decreasing the prior mean 

of u2
, mean(a2

) and var(a2
) decrease. For Ca.c;es 3 and 4, we see mean(/3 ), var(/3) , 

mean(a2 ), var(a2 ) remain unchanged. However, t he values for mean(D) and var(D) 

are large, and are not sensible. Finally, Case 5 gives very similar results to Case 2. 

In all cases, there is lit tle evidence to suggest that any of the variables are useful in 

predicting wheeze status. The results for Case 3 also indicate that setting a2 = 1, as 

Chib and Carlin (1999) would suggest, would give very unreliable posterior estimates 

in this example. 

Parameters 

Cases f3o f3t (3.}. f3a (J2 D 

Casel Mean -0.35 -1.09 -0.33 -1.14 853.24 0.058 

Var 1.02 0.56 1.05 0.56 9382.63 0.00016 

Case2 Mean -0.44 -0.75 -0.35 -0.80 456.79 0.055 

Var 1.03 0.53 0.94 0.56 49108.86 0.000096 

Case3 Mean -0.44 -0.70 -0.35 -0.76 405.59 0.168 

Var 1.05 0.52 0.97 0.55 36957.7 0.1707 

Table 5.2: Posterior means and variances of parameters in analysis of Six Cities daLa 

set, using Algorithm 5. 

As we examine the results in Table 5.2, comparing Cases 1 and 2, we see mean(/3) , 

var(/3 ), mean( D) and var(D) are similar. By decreasing the prior mean of rJ
2

, 

mean(a2 ) goes down, but var(a2) goes up. T his is not what we would expect, and 

the variance is proportional to the mean for a Gamma distribut ion. From Cases 2 and 

3, mean(/3) , var(/3), mean(a2
) and var(a2

) stay about same, but in Case 3 (where 
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the prior mean of a2 is 1) , mean(D) and var(D) are larger than Cases 1 and 2. 

5.2.1 Comparison of Algorithms 4 and 5 

From Cases 1 and 2, we see that Algorithms 4 and 5 give similar values for mean({J), 

var(/3) , mean(.D) and var(D). However, Algorithm 4 gives smaller values for mean(a2 ) 

and var(a2
) . In Case 3, Algorithm 4 provided larger values for all posterior estimates. 

Also, just like with Algorithm 4, the variables do not appear useful in predicting 

wheeze status. 

5.2 .2 Autocorrelations of Posterior Estimates 

Running our various MCMC algorithms for these data and model for 500 iterations 

each produces the lag-1 autocorrelation summaries in Tables 5.3 and 5.4. These tables 

show the lag 1 sample autocorrelations for Algorithm 4 and Algorithm 5 for some of 

our cases. 

Case 1 Case 2 

Parameter Algorithm 4 Algorithm 5 Algorithm 4 Algorithm 5 

(3, -0.0616 0.0222 -0.0649 0.0181 

(32 0.0684 -0.0435 0.0645 0.0409 

/33 0.0269 -0.0243 0.0299 -0.0095 

{34 0.0648 -0.0517 0.0625 0.0921 

a2 0.5118 0.9057 0.4694 0.9836 

D n 0.9093 0.9140 0.9167 0.8960 

Table 5.3: Lag-1 autocorrelations of posterior estimates, using Six Cities data set. 

From Table 5.3, we are getting similar performance for the (3's for Algorithms 4 

and 5 in Cases 1 and 2. We also see that both algorithms give high autocorrelation 

values for a2 and D. 
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Ca.se3 Case 4 Case5 

Parameter Algori thrn 4 Algorithm 5 Algorithm 4 Algorithm 4 

f3t 0.2809 0.0144 0.2739 -0.0646 

!32 0.9642 0.0317 0.9676 0.0639 

!33 0.3712 -0.0028 0.3652 0.0301 

{34 0.9613 0.0809 0.9640 0.0632 

(J2 0.9729 0.9824 0.9775 0.4986 

Dn 0.9340 0.9578 0.9475 0.9407 

Table 5.4: Lag-1 autocorrelations of posterior estimates, using Six Cities data set. 

In Table 5.4 for Case 3, when the prior mean of (J2 is 1, Algorithm 5 provides 

better results (lower autocorrelations) for the f3's than Algorithm 4. This should not 

be a surprise, since Algorithm 4 gave very large, unstable values for mean(a2) and 

var(a2 ). From Table 5.4 for Algorithm 4, we see when the prior mean of (J2 is 1 or 

close to 1, from Cases 3 and 4, Algorithm 4 shows high autocorrelation values for {3's 

and (J
2. So, the prior assumption on (J

2 has an effect on these algorithms. 

Tables 5.5 and 5.6 give the autocorrelation time r;, = 1 + 2 L:k::1 p(k) for each 

parameter in the probit model, where p(k) is the autocorrelation at lag k for the 

parameter of interest. From Table 5.5, we obtained similar performance for the {3's 

for both algorithms, but we see all algorithms give high autocorrelation values for a2 

and D. In Table 5.6 for Case 3, when the prior mean of a 2 is 1, Algorithm 5 provides 

better results for the {3's than Algorithm 4. 

Again, we are seeing the prior assumption on the distribution of (J2 does have 

an effect on other posterior estimates, so we should not simply choose a 2 = 1 in all 

applications. 
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Case! Case2 

Parameter Algorithm 4 Algorithm 5 Algorithm 4 AJgmithm 5 

flt 1 1 1 1 

/32 1 1.265 1 1.849 

fla 1 1.218 1 1 

/34 1 1.218 1 2.633 

(J2 18.099 21.636 16.737 37.245 

Dn 18.868 16.886 19.151 20.106 

Table 5.5: Estimates of K. = 1 + 2 L:k:,1 p(k) for posterior estimates, for Six Cities 

data set. 

Case3 Case 4 Case 5 

Parameter Algorithm 4 Algorithm 5 Algorithm 4 Algorithm 4 

fJI 9.956 1 9.788 1 

!32 26.955 1.804 25.372 1 

fla 11.782 1 11.293 1 

!34 27.381 1.965 25.557 1 

(J2 33.601 37.074 34.591 17.720 

Dn 27.708 25.507 30.409 21.262 

Table 5.6: Estimates of K. = 1 + 2 L:k:1 p(k) for posterior estimates, for Six Cities 

data set. 
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