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Abstract 

In this thesis we study the Morris-Lecar equations with delay. We modify the 

original Morris- Lecar ODE model to simulate delayed recurrent (inhibitory 

and excitatory) feedback in a appropriate neuro- muscular feedback loop. The 

loop consists of two neurons and a muscle fibre, whereby a neuron excites 

a muscle fibre, which influences a second neuron which in turn excites or 

inhibits the first neuron. The effects of feedback are described in terms of the 

voltage across the membrane of the muscle fibre. The model is formulated 

in terms of delay differential equations with a single discrete time delay to 

account for impulse conduction and synaptic delays, and assumes the muscle 

fibre possesses two noninactivating conductances, one for Ca2+ and one forK+ . 

Each single- ion conductance system with delay is studied before analysing the 

model with both conductances operational. A dynamical systems approach is 

used to analyse the bifurcation structure of the systems as the delay parameters 

(p, and T) are varied, using both analytical and numerical techniques. The 

systems with delay are more complex than their non-delayed counterparts, 

and exhibit stability switching of equilibria, Hopf bifurcation leading to stable 

soft and hard oscillations, and multistability. The direction and stability of 

Hopf bifurcations are determined by applying the normal form theory and 
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the centre manifold theorem. Biophysical interpretation of results are also 

included. Applicability and limitations of the model are discussed, along with 

suggestions for future research. 
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Chapter 1 

Introduction 

Physiological systems use feedback as a control mechanism to regulate im­

portant functions. Virtually all essential processes employ feedback, includ­

ing enzyme synthesis, production of red blood cells, and neural interactions. 

A feedback model for the regulation of enzyme synthesis was introduced by 

Goodwin [15], and modified by Landahl [23] and MacDonald [27) . Models 

describing the control of production of red blood cells were initially studied by 

Chow [5], and' subsequently modified by Mackey and Glass [28]. The subject 

of neural feedback loops has a rich and extensive literature. A survey of re­

sults and literature in this area appears in [2] . As most biological cycles and 

interactions involve electrical and/ or chemical signals from the nervous and 

endocrine systems, most feedback loops are subject to temporal delays arising 

from transport and processing of such signals. For a nice overview of delays 

and feedback in physiological systems, see [1] and references therein. 

Delay differential equations (DDEs) provide an appropriate setting in which 

to formulate models with inherent time delay, since they incorporate non-

1 



CHAPTER 1. INTRODUCTION 2 

instantaneous interactions. Many models have been developed which demon­

strate the profound influence which time delays can have on the qualitative 

behavior of biological systems. Delay equations are capable of richer dynamics 

than ordinary differential equations (ODEs). Introducing a delay to an ODE 

system can lead to instabilities in the solutions, and even lead to oscillations 

or chaotic behavior in such models. 

In this thesis, we investigate an electrophysiology model with delayed re­

current feedback, a phenomenon commonly encountered in the nervous system 

used to coordinate electrical and mechanical processes. In particular, we con­

sider a neuro-muscular feedback loop involving two neurons and a muscle fibre. 

An excitatory neuron E activates a muscle fibre M, which in turn influences 

a second neuron (or interneuron) I, that either excites or inhibits the firing 

of E. Due to finite conduction velocities and synaptic transmission, the influ­

ence of I on E and then Eon M, is not instantaneous, and depends on the 

activity of M at a time T in the past. The effects of the recurrent feedback 

are studied by examining the potential difference (voltage) across the cellular 

membrane of the muscle fibre. The differential equations used to describe the 

voltage across the muscle fibre membrane are based on the Morris- Lecar Equa­

tions [24] . The original Morris- Lecar model is based on the historical model 

developed by Hodgkin and Huxley [21] to describe conduction and excitation 

in nerve. In the following sections, we introduce both the Hodgkin- Huxley and 

Morris- Lecar models, and formulate our model of the Morris- Lecar equations, 

modified to simulate delayed recurrent feedback. 
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1.1 The Hodgkin- Huxley Equations 

In the 1950's, Hodgkin and Huxley [21] developed a physiologically based, 

quantitative model describing the propagation of an electric signal along a 

squid giant axon. The first of its kind, their model accurately detailed the 

dynamics of the action potential from a phenomenological viewpoint, and is 

therefore capable of explaining the behavior of excitable cells. Excitable cells, 

such as neurons and muscle cells, respond to a sufficiently strong stimulus ( ap­

plied current or synaptic input) whereby the membrane potential goes through 

a large excursion before returning to rest. This large excursion is an action 

potential, which is an electrical signal. The ground-breaking work of Hodgkin 

and Huxley was an important landmark, and not only had a major influence 

on electrophysiology, but on the applied mathematics of excitable systems as 

well. 

The general approach taken by Hodgkin and Huxley was to model the cel­

lular membrane as a capacitor in parallel with an ionic current. In particular, 

the Hodgkin-Huxley neuron model incorporates two nonlinear voltage- and 

time-dependent ion conductances, one to describe the fast sodium (Na+) cur­

rent, and one for the slow potassium (K+) current. The remaining ions present, 

which play no significant role,· are lumped together into a membrane leakage 

conductance. The parameters and functions governing these conductance sys­

tems were measured and fitted from empirical data based on space- clamp 

and voltage- clamp experiments conducted by Hodgkin and Huxley. The full 

nonlinear system involves four ODEs, one describing the membrane potential 

which is coupled to three auxiliary equations used to describe membrane gating 

variables which affect the ionic conductances (commonly known as "relaxation 
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variables") . The full Hodgkin-Huxley system is given by 

CV(t) = - 9Nam3h(V- vN .. ) - gKn4(V - VK) - gL(V- VL) + Io, 

m(t) = am(V)(1 - m) - fim(V)m, 

n(t) = an(V)(1 - n) - fin(V)n, 

h(t) = ah(V)(1 - h)- f3h(V)h. 

4 

(1.1.1) 

The functions a and f3 describe the kinetics of the relaxation variables, and 

are logistic and exponential functions given by 

25 - v 
am(V) = 0.1 25- v , 

elil -1 
v 

f3m(V) = 4e- 1B, 

v 
ah(V ) = 0.07e-zo, 

1 
fih(V ) = 3o- v ' 

e---ro + 1 
10- v 

an (V) = 0.01 10_, , 

e10 -1 
v 

;Jn(V) = 0.125e-80. 

(1.1.2) 

In (1.1.1) , Vis the membrane potential, m , n, and hare ion gating variables, 

! 0 is the applied current, and VN.., VK, VL are equilibrium potentials. The 

sodium conductance is a function of the m and h gating variables, and is of 

the form gNa = gN .. m 3 h . Here, the 9Na is a conductance constant and the term 

m 3h describes the fraction of open Na+ channels, where each channel consists 

of three m gates and a single h gate. Each potassium channel consists of 

four n gates, and so the n4 term indicates the fraction of open K+ channels. 

The overall potassium conductance is described by the equation gK = §Kn4
. 

Furthermore, the sodium conductance is inactivating, meaning that when the 

membrane potential is high, the Na+- ion gates close to shut down the sodium 



CHAPTER 1. INTRODUCTION 5 

conductance. The variable m is the sodium activation variable, and his the in­

activation variable. The potassium conductance does not display this feature, 

and so this conductance is noninactivating, with n as the activation variable. 

Mathematical analysis of the Hodgkin- Huxley system (1.1.1) is difficult, 

since the system is 4-dimensional. However, many researchers have modified 

the equations so that they are easier to study, but successfully capture the 

dynamics of the full system. One route popularized by FitzHugh (12, 13], 

and Nagumo [31] in the 1960's involves analysing a 2-dimensional analogue of 

(1.1.1), by taking advantage of the different time scales ofthe two conductance 

systems. The V and m variables are fast-acting while n and hare slow. This 

allows one to reduce the dimension and consider a fast- fast sub-system, where 

V and m are varied and n and h are essentially fixed, and a fast- slow sub­

system, where the slow variables are combined and the fast variable m is 

considered to act instantaneously. There has been considerable work done on 

both of these simplified systems, and both successfully reduce t he dimension of 

the system while retaining some of the key features. There is a vast literature 

devoted to the analysis of the Hodgkin- Huxley equations, and the bifurcation 

structure of the model has been investigated in detail. Refer to [33] and 

references therein for more details. 

1.2 The Morris-Lecar Equations 

The Morris-Lecar model [24] is a Hodgkin- Huxley type model developed to 

describe voltage oscillations in barnacle giant muscle fibre. The model employs 

two nonlinear, non- inactivating, voltage- dependent conductance systems, one 
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for calcium Ca2+ and one for potassium K+. Calcium and potassium play 

important roles in electrical activity in muscle, in contrast to sodium and 

potassium in the Hodgkin- Huxley neuron model. Like the Hodgkin- Huxley 

model, the Morris- Lecar model is quantitative and physiologically based, de­

veloped using voltage- and space-clamp experimental techniques. The system 

consists of the following three non- linear differential equations 

dV 
C dt = - gcam(V - Yea) - gKn(V - VK) - gL(V - VL) + I 

m(t) = Am(V) (moo(V) - m] (1.2.1) 

n(t) = An(V) [noo(V) - n], 

where V = V(t) represents the voltage across the membrane, and the variables 

m = m(V(t)) and n = n(V(t)) represent the fraction of open Ca2+ and K+ 

channels, respectively. The functions Am(V), An(V), m00 (V) and n00 (V) , fitted 

using experimental data, are given by 

- (V - V1) Am(V) = Am cosh 2V2 

1 [ (V-111)] moo(V) = "2 1 +tanh V
2 

(1.2.2) 

- (v -v;) An(V) =An cosh 
2

V
4 

1 [ (V-V3)] n00 (V) = '2 1 +tanh V
4 

. 

(1.2.3) 

The gating variables m and n are analogous t o the m and n activation 

variables in Equation (1.1.1), but here each calcium and potassium channel 

are both composed of a single gate. The model parameters are listed below, 

and parameter values used in [24) are based on experimental data. 
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List of Model Parameters 

V = membrane potential in millivolts, (m V) 

m, n = fraction of open Ca2+ and K+ channels, respectively 

gL, gK, 9c .. = instantaneous conductance values for leak, K+, and Ca2+ 

pathways, respectively (mmhojcm2 ) 

VL, VK, Yea = equilibrium potentials corresponding to leak, K+, and Ca2+ 

conductances, respectively ( m V) 

m 00(V), n00 (V) = fraction of open Ca2+ and K+ channels at steady state 

Am (V ), An (V ) = rate constant for opening of Ca 2+ and K + channels, ( s-1 ) 

Am, An = maximum rate constants for Ca2+ and K+ channel opening (s- 1 ) 

V1, V3 = potentials at which moo = 0.5, n00 = 0.5, respectively (m V) 

7 

l/2, V4 = reciprocal of slope of voltage dependence of m00 and n00 , resp. (m V) 

C = membrane capacitance, (,uF / cm2 ) 

I = applied current (,uA/cm2) 

Morris and Lecar compared numerical simulations of (1.2.1) to their own 

experimental results, and found that they were in good agreement. Therefore 

their model had the power to accurately describe voltage responses of muscle 

fibre. To simplify the analysis, they first considered separately the dynamics 

of each conductance system in isolation from the other. This was done to 

gauge the contribution of each conductance system to the model with both 

systems operational. To prove that voltage oscillations are possible with both 

conductance systems active, Morris and Lecar successfully reduced the dimen­

sion of the system to two, and in doing so were able to invoke the theory of 

Poincare and Bendixson. They were also able to establish domains of oscil-
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latory behavior by varying certain model parameters, and to interpret their 

results biologically. Mathematical analysis of the original ion conductance sys­

tems, as well as the full two- dimensional Morris-Lecar model, is included in 

this thesis for comparison with the Morris- Lecar model with delay. 

The Morris-Lecar model, although relatively simple with only two non­

inactivating conductance systems, is quite versatile and exhibits a diverse spec­

trum of behavior when considered over a broad range of parameters. These 

include bistability and hysteresis, excitability and threshold behavior, and 

beating and bursting oscillations. A detailed study of these behaviors, as well 

as the bifurcation structure of the Morris-Lecar model, is conducted by Rinzel 

and Ermentrout in [34] . Tsumoto et al. further investigate bifurcations of the 

Morris- Lecar model in [39]. Most work done using this model has been done 

treating I, the applied current, as a bifurcation parameter. External stimulus, 

while artificial, can effectively simulate excitatory synaptic input. 

1.3 Formulation of the Model 

The model we propose is derived from the pre-existing Morris-Lecar ODE 

model. We intend to modify the Morris-Lecar equations by adding a suitable 

delay term to simulate the effects of delayed recurrent feedback . Here, we 

discuss physiological models with delayed feedback as a means to motivate 

our modification of the Morris- Lecar equations. 

The phenomenon we consider is a time- delayed recurrent loop composed 

of a muscle fibre and two neurons, depicted schematically in Figure 1.1. The 

excitatory nerve cell E initiates an action potential which stimulates the muscle 
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fibre M. If the signal received by the fibre M is above a certain threshold, 

then an action potential is generated, and will propagate along with membrane 

of the muscle fibre, causing muscle contraction. The depolarization of the 

membrane excites the interneuron I in close proximity to the muscle fibre. 

The synapses of I impinge upon E after a time delay T, and either excite or 

inhibit it. This completes the feedback loop, and in this way contraction of 

the muscle fibre is controlled through delayed feedback. 

Muscle F iber 

Figure 1.1: Schematic diagram representing the time- delayed recurrent neuro­

muscular feedback loop. 

We note that the phenomenon of recurrent inhibition is more commonly 

observed in physiological systems than excitation [29, 32] . Plant [32] comments 

that recurrent neural excitation might be responsible for causing seizures in 

the hippocampus. This might indicate that, in some physiological systems, 

recurrent excitation can have a destructive rather than a mediating influence, 

and may lead to unstable behavior. 

A model describing recurrent neural feedback in a system of two neurons 
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is considered by Plant [32] by implementing a delay into the FitzHugh equa­

tion [13] 

. 1 3 I v = v - - v - w + 
3 ' (1.3.1) 

w = p[v +a- bw]. 

In (1.3.1) , v represents membrane potential, w is an inactivation variable, a, b, 

and p are parameters, and I represents the membrane current. In this model, 

neuron 1 excites neuron 2, which in turn excites or inhibits neuron 1. To 

simulate synaptic feedback, Plant proposes the following modification: 

v(t) = v(t) - ~v3 (t) - w(t) + J.L[v(t- 7) - v0], 

w(t) = p[v(t) +a- bw(t)] . 
(1.3.2) 

In (1.3.2), the magnitude of J1. measures the strength of the feedback, and 

J.L > 0 represents excitatory feedback, while J.L < 0 inhibitory feedback. The 

time delay 7 > 0 is to account for the delay due to conduction time(s) and 

synaptic delay. The appearance of v0 in the delay term J.L[v(t- 7)- v0] results 

from the assumption that the magnitude of the current induced by the feedback 

is proportional to the distance of the voltage v from the resting potential v0 

of the system in the absence of feedback. Furthermore, Plant considers only 

"moderate" values of J1. and 7 , and imposes the restriction 

where :b measures the relaxation time of the system. This is based on an 

assumption that combined synaptic and conduction delays in a neural feedback 

circuit are greater than the duration of a single action potential. 
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In his investigation of (1.3.2), Plant focused on equilibrium point stability 

forT> 0, and treating M and r as bifurcation parameters, on the appearance 

of periodic solutions via Hopf bifurcation. Direction and stability of the Hopf 

bifurcation(s) was also studied, using the normal form method and the center 

manifold theory developed by Hassard, Kazarinoff and Wan [20). The results 

indicated that Hopf bifurcation occurs in the presence of both inhibitory and 

excitatory feedback, and both bifurcations are supercritical and branch to 

stable oscillations. Furthermore, the Hopf bifurcation structure of the model 

depends on the pair of delay parameters M and r. Similar results for both 

M > 0 and M < 0 are most likely due to symmetry in this simple system. 

Stable oscillations resulting from delayed recurrent inhibition are a result of 

anode break excitation, a commonly encountered phenomenon whereby the 

membrane rebounds from a strong hyperpolarization to generate an action 

potential upon removal of that hyperpolarization [32]. Plant comments that, 

while this model and assumptions are restricted in their application to actual 

physiological systems, it does successfully describe the dynamics of recurrent 

neural feedback, and does provide insight into the behavior of more complex 

models. 

To investigate the properties of multistability arising in delayed recurrent 

loops, Foss et al. [14) looked at a simple integrate-and-fire neuron model with 

delay, and, more notably, the classic Hodgkin- Huxley model with delay. Inter­

ested primarily in recurrent inhibition between a population of two neurons, 

their research largely consisted of numerical simulations to study the possibil­

ity of encoding memory into temporal patterning of neural spike trains. They 

found that multistability in delayed recurrent loops can arise from two different 
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mechanisms, depending on whether t he neuron is in t he excitable or periodic 

regime in the absence of recurrent input, which is determined by the value of 

the applied input current. They considered a loop with a time delay T, and 

commented on results obtained by selecting T less than and greater than the 

response time of the system. However, their main interest was to identify how 

changes in the initial function ¢ on the delay interval [ -T, 0] propagate in the 

solution, where ¢ is given the form of neural spike trains. 

The modification to the Hodgkin- Huxley equations Foss et al. proposed 

to simulate this delayed recurrent feedback was the following 

• 3 4 
CV(t) = -gNam h(V- VN,) - gKn (V - VK) - 9L(V- VL) + Io 

- J1V(t- T) 

m(t) = am(V)(l- m)- f1m(V)m 

n(t) = an(V)(l- n)- !1n(V)n 

h(t) = ah(V)(l- h)- i1h(V)h, 

(1.3.3) 

where the functions a, /1, variables and model parameters are given in (1.1.2) . 

The term -f.1V(t-T) is a feedback function which simulates delayed recurrent 

feedback with time delay T > 0, 1111 denotes the strength of the feedback, which 

is inhibitory for f.1 > 0, and excitatory for f.1 < 0. Note that the sign convention 

of f.1 is opposite to that employed by Plant [32] . System (1.3.3) represents the 

simplest modification of the original Hodgkin- Huxley system to incorporate 

delayed recurrent feedback. 

Mackey and an der Heiden investigate the dynamics of recurrent inhibi­

tion in [29]. They propose a model for a recurrent inhibitory neural feedback 

system using nonlinear DDEs. The model consists of three populations of 

neurons: presynaptic fibres which excite the postsynaptic cells, and inhibitory 
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interneurons which are activated by the postsynaptic cells. In turn, the in­

hibitory interneurons inhibit the postsynaptic cells. In particular, Mackey and 

an der Heiden model the dynamics of the inhibitory post synaptic potential 

(IPSP), to relate the frequency of arrival of action potentials at the interneu­

ron synaptic terminals to the frequency of generation of action potentials in 

the postsynaptic cell. The feedback loop is delayed, since a finite time delay 

is required for activity in the postsynaptic cell to be translated into activity 

at the synaptic terminals of the inhibitory interneuron. 

As a specific example, recurrent inhibitory feedback with delay is used to 

describe the excitatory-inhibitory neuronal interactions involving three pop­

ulations of neurons of the hippocampus. Here, the presynaptic mossy fibres 

excite the CA3 pyramidal cells, which in turn excite the interneural basket 

cells. The basket cells then inhibit the pyramidal cells via the neurotransmit­

ter GABA ('y- amino butyric acid) after a finite time delay 7(> 0), to account 

for impulse conduction and synaptic transmission. Their model is of the form 

dx 
dt = f(x(t- 7))- ax(t), (1.3.4) 

where the feedback function f is a non-monotone, "humped" function of 

x(t - 7). This implies that the the feedback is of mixed type, a combina­

tion of both positive and negat ive feedback. Using analytical and numerical 

methods, they detected interesting behavior, including periodicity and deter­

ministic chaos. The model proposed in [29] does not simulate exactly the same 

type of feedback as we are interested in, nor does it directly involve voltage 

across cellular membranes. It does, however, involve the process of recurrent 

inhibition in a population of more than two neurons, and therefore serves as 

a good example of this process which we hope to implement in our model. 
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Longtin and Milton [26] use a nonlinear DDE to model the human pupil 

light reflex with negative feedback. This reflex is governed by a neural feedback 

control mechanism, and exhibits a wide range of dynamical behaviors. 

The feedback loop operates as follows. Pupil size is controlled by a bal­

ance between constricting and dilating mechanisms. Constriction is caused 

by contraction of the pupillary constrictor muscle. This muscle is innervated 

by parasympathetic fibres, and is controlled by the Edinger- \Vestphal motor 

nucleus (in the oculomotor complex in the midbrain). According to Longtin 

and Milton, retinal light flux is transformed, after a time delay Tr, into neural 

action potentials which travel along the optic nerve. The afferent neural action 

potential rate gives rise to an efferent neural signal which is produced by the 

Edinger- Westphal nucleus after a time delay, Tt . The efferent neural signal is 

conducted to the pupillary constrictor muscle by parasympathetic fibres which 

generate muscle action potentials via the neurotransmitter acetylcholine. This 

initiates contraction of the pupillary constrictor muscle, after a time delay Tm · 

Pupil dilation is then regulated by two neural mechanisms, one which operates 

by inhibition of the activity of the Edinger- Westphal nucleus by sympathetic 

fibres. This inhibition then decreases the efferent neural signal which initiates 

contraction of the pupillary constrictor muscle. 

Thus, the pupil- light reflex functions as a time-delayed negative feed­

back system. This system involves two populations of neurons (the Edinger­

Westphal nucleus along with the parasympathetic fibres, and the sympathetic 

fibres) and a muscle fibre, and controls the size of the pupil, thereby regulating 

the amount of light which enters the eye. The total time delay of the model, 

the pupil latency time, is simply the sum of the time delays discussed, i.e. 
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T = Tr + Tt + Tm· The nonlinear DDE model developed by Longtin and Milton 

is of the form (1.3.4), and stability and bifurcation analysis of their model re­

vealed that stable periodic solutions arise via supercritical Hopf bifurcation as 

the equilibrium point of the system loses stability. This was observed in both 

cases of symmetric and asymmetric pupil light reflex. While no additional bi­

furcations were detected after the Hopf bifurcation in numerical simulations, 

they point out that other bifurcations leading to additional periodic, quasiperi­

odic, and chaotic dynamics may occur as parameters are varied. 

The model formulated and analysed in [26] does not study the pupil-light 

reflex in terms of voltage across the membrane of the pupillary constrictor 

muscle. However, the reflex does involve neuro-muscular interactions in a 

delayed negative feedback loop, involving multiple neurons (or populations 

of neurons) and the pupillary constrictor muscle. This is, in principle, the 

anatomical phenomenon we are hoping to model by adding a delay to the 

Morris-Lecar equations, and therefore represents an actual physiological pro­

cess to which our model might be applied. It also provides insight into the 

stability and bifurcation analysis of a physiological model involving nonlinear 

DDEs. 

These observations suggest that an appropriate modification to the Morris­

Lecar equations to simulate delayed recurrent feedback is 

dV edt= -gcam(V- Vca)- gKn(V - VK)- 9L(V- VL) + pV(t- T) 

m(t) = Am(V) [moo(V) - m] (1.3.5) 

n(t) = An(V) [noo(V) - n] 

where the functions m00 (V), n00 (V), Am(V) and An(V) are given in (1.2.2), 

(1.2.3), and model parameters are introduced in the List of Model Parameters 
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in section 1.2. The term p,V(t- r) represents the feedback function of the 

system, F(V(t- r)) = f-tV(t - r). The parameter 11-ll measures the strength 

of the feedback signal: f-t > 0 represents excitatory feedback, for which the 

feedback function is monotone increasing, while F is monotone decreasing for 

1-l < 0, which corresponds to inhibitory feedback. In either case, the feedback 

signal is subject to a time delay T > 0, which recognizes the non-instantaneous 

interactions associated with the feedback. Note that the applied current, I, 

which plays and important role in the original Morris-Lecar equations (1.2.1) 

without delay, does not appear in the delay model (1.3.5). Therefore, our 

analysis of the Morris-Lecar model with delayed recurrent feedback is carried 

out in the absence of applied current. This is done to limit the number of 

parameters which influence the system. Furthermore, we consider two distinct 

types of model parameters. Static parameters, which we do not vary, are those 

which are described in the List of Model Parameters. For these parameters we 

select a standard reference set of typical parameter values, cited in [24] . The 

dynamic parameters, which we do vary in our analysis, are those associated 

with the additional feedback term in (1.3.5) , namely 1-l and T . We wish to 

study the dynamics of the model as these parameters are varied, and in doing 

so we hope to isolate the effects of the delayed recurrent feedback, and compare 

them to the original model without delay. We note that system (1.3.5) does not 

account for spatio- temporal aspects of a distributed muscle fibre membrane. 

Therefore the investigation of the model in this thesis applies only to a space­

clamped patch of sarcolemma membrane. 

Of course, there are limits on the values of f-t and 1 for which (1.3.5) 

could be considered physiologically realistic. For example, the strength of the 
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feedback signal IJ.L I would certainly be bounded, as well as the value of the 

time delay T. However, establishing suitable parameter ranges on J.L and T is 

of secondary concern here, and the main goal is to study the dynamics of the 

model, to determine whether a physiologically based, quantitative model such 

as the Morris- Lecar equations (1.2.1) can support delayed recurrent feedback. 

Therefore, in our investigation we do not impose too many restrictions on these 

dynamic parameters. In particular, we consider J.L E JR, and only require that 

the time delay be positive, T > 0. Note that we do not impose the restriction 

that T be larger than the response time of the system, as Plant does in [32). 

Since we are using a specific set for the other model parameters, the results 

obtained are largely restricted to that particular set. However, in the analysis, 

an attempt is made to generalize the results to an arbitrary set of model 

parameters (which obey certain physiological criteria) whenever possible. 

System (1.3.5) is a set of three differential equations, two ODEs both cou­

pled to a DDE with a single discrete time delay. The results obtained from 

other nonlinear delay differential equation models describing delayed feedback 

indicate the presence of rich dynamics and bifurcation structure, with multi­

stability and periodicity being the most common and widely observed. In our 

analysis of (1.3.5), we interest ourselves primarily in the number, location, and 

stability of equilibria of the system, as J.L and T are varied. To investigate these 

properties we use both analytical and numerical techniques. Also, since the 

main motivation behind the development of the original Morris- Lecar model 

was to describe voltage oscillations in muscle fibre, and given the propensity 

to which similar models display periodicity, we take a vested interest in ex­

amining the potential for oscillations in the model with delay. Of course, the 
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presence of additional dynamical phenomena arising as a result of the feedback 

will also be addressed. 

In [24], Morris and Lecar first analyse the potassium and calcium con­

ductance systems in isolation before considering the model with both con­

ductances operational. Determining the dynamics of each sub-system before 

combining them provides insight into the contribution of each component to 

the full model. Then, Morris and Lecar study a reduced, two- dimensional 

model which incorporates both nonlinear, voltage- dependent potassium and 

calcium conductance systems. This reduction, described in Chapter 4, simpli­

fies the analysis of the model dynamics, by confining them to the (V, n )-phase 

plane. In the same fashion, we follow similar steps in our investigation of 

the model with delay, in that we provide a detailed analysis of each isolated 

conductance system, and then turn to the two- dimensional reduced model 

employing both conductances. 

With the derivation of the modeling equations in place, we present a brief 

discussion of DDEs before our analysis of the Morris- Lecar equations with 

delay. 

1.4 Delay Differential Equations (DDEs) 

Autonomous ODEs with independent variable timet are of the form 

x(t) = f(x(t), rJ), (1.4.1) 

where x(t) E JRn, 'fJ E JRk, and f : JRn X JR.k -t JR.n. In (1.4.1), 'fJ E JRk is 

a k-dimensional vector containing real parameters, and then components of 

x(t) are all real- values functions oft. Within systems of ODEs, both the 
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state variable x and its derivative i:; depend only on t, the current time of the 

system, and so interactions between the state of the system and rate of change 

of that state with respect to t are assumed to be instantaneous. Furthermore, 

solutions of (1.4.1) are uniquely determined by the value of x(t) at some fixed 

time t 0 , denoted by x(t0 ) = x0 , assuming f is moderately well-behaved, at 

least Lipschitz continuous. Since (1.4.1) is autonomous, any initial time t 0 

should suffice, however for our purposes we shall consider t0 = 0. For (1.4.1), 

the phase space is JR.n, which is real and has finite dimension n. 

However, the story becomes much more interest ing if we incorporate a time 

delay into the system, and allow the state variable x to depend not only on 

the current timet of the system, but also on some time(s) in the past. This 

can be done in a number of different ways. The entire history of the system 

can be considered, which results in a system of integra-differential equations, 

and the importance of certain delay times or intervals can be specified by an 

appropriate kernel, or distribution function(s). If the state variable x depends 

on a finite interval of time in the past, a system of distributed delay equations 

results. Thirdly, if x only depends on one or more specific time values in 

the past, then we obtain a system of DDEs with discrete time delay(s). All 

three types mentioned are all part of a larger class of equations known as 

functional differential equations. In this paper, we only consider the latter, 

that is, autonomous delay equations with a finite number of discrete time 

delay(s). 

Delay equations of this type are of the form 

x(t) = f(x(t), x(t - rl), x(t- r2), . . . , x(t- Tm), TJ), (1.4.2) 

where x(t) E JR.n, ryE W, and f : JRnx(m+ l) x JR.k -+ Rn . In this case, the state 
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variable x depends not only the current time of the system, t, but on the m 

discrete times in the past, denoted by r 1 , r 2 , ... , Tm- Note that the derivative 

of the state variable, x, depends only on the current time of the system and not 

on times in the past. Equations where the (highest order) derivative depends 

on time(s) in the past are called neutral functional differential equations, and 

are not considered here. Due to the dependency on the past, rather than 

prescribing a single value of x(t) at a fixed time t 0 , an initial function ¢(8), 

() E [ -T, 0], must be specified on an interval of length T = maJCi=I, ... ,m { ri} to 

ensure uniqueness of solutions. The initial function segment belongs to C = 

C( [ -T, 0], JRn) , the infinite-dimensional function space of continuous functions 

mapping the maximal delay interval [-r, OJ into JRn. If we integrate (1.4.2) to 

some timet, the function Xt E C with Xt(B) = x(t- B) , () E [-r, 0] defines the 

state of the system which then uniquely determines the future of the system. 

In this manner, delay equations of the form (1.4.2) are infinite-dimensional 

systems, and the phase space is C, an infinite- dimensional function space. 

A consequence of the transition from finite- to infinite-dimensional phase 

space is that DDEs are capable of exhibiting richer dynamics than ODEs. For 

example, a scalar delay equation may be capable of periodic, quasi- periodic, 

and chaotic behavior, which is not possible for scalar ODEs. This also implies 

that incorporating a delay into a system of ODEs may significantly complicate 

the dynamics. One of the most well-known instances of this involves t he 

logistic equation, whereupon introduction of a delay leads to periodic solutions 

if the delay is above a certain threshold, which depends on the parameters of 

the system. In fact, periodicity is commonly observed as a result of introducing 

a delay into a system of ODEs, and usually arise via Hopf bifurcation in the 
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system. 

Consider next an example which will play a prominent role in this paper, 

the all-potassium conductance system of the Morris-Lecar equations: 

CV(t) = -gL(V- VL) - gKn(V - VK) 

n(t) = An(V) [noo(V) - n], 
(1.4.3) 

where n00 (V), and An(V) are given in a previous section. This planar sys­

tem consists of two coupled ODEs, with x(t) = [V(t), n(t)]T E JR2
, 17 = 

[gL, gK, VL, VK, 113, v4, c, An ]T E JR8 . Therefore, an initial condition V(O) = Vo, 

n(O) = n0 = n00 (Vo) uniquely determines the solution for all time t 2: 0, and 

the dynamics of the system are confined to the (V, n )- phase plane. Further­

more, in the phase plane, trajectories must satisfy properties common to all 

ODEs, that is they must cross nullclines in a certain manner, they cannot 

cross each other, a closed curve in the phase space represents a periodic solu­

tion, etc. To simulate delayed recurrent feedback in the all-potassium system 

(1.4.3), we add a delay term to obtain 

CV(t) = -gL(V- VL)- gKn(V- VK) + p,V(t- r) 

n(t) = An(V) [noo(V) - n]. 
(1.4.4) 

Thus we now have a single DDE with a single discrete time delay T > 0 coupled 

to an ordinary differential equation. There are still only two equat ions in the 

system, but because of the J.-lV(t- r) term, to solve this system we must 

prescribe initial functions V (O) , n(O) = n00 (V(O)), 0 E [- r, 0] on the delay 

interval [- r, 0), and so the system is indeed infinite- dimensional. As such, the 

dynamics of the system are no longer confined to the (V, n )-phase plane. But 

we may project the system onto this plane, and in doing so gain some valuable 



CHAPTER 1. INTRODUCTION 22 

insight into the behavior of the system. Steady state solutions, or equilibrium 

points, (V*, n*) of the system are independent of the value of the delay 7, 

and are merely given by the intersection points of the nullclines of (1.4.4) 

with 'T = 0 in the (V, n )- plane. Studying the nullclines in this plane therefore 

reveals the number and value of steady state solutions of (1.4.4) . However, it is 

important to realize that trajectories of the DDE (1.4.4) in the phase plane are 

not subject to the same rules as those of the ODE (1.4.3), and so closed curves 

in the plane do not necessarily represent periodic solutions, and trajectories 

do not have to cross null clines in a specific manner, and can cross each other 

in the plane. In the actual infinite-dimensional phase space, trajectories may 

not cross each other, however, but may appear to in the (V, n)-plane since this 

is merely a projection of the trajectory onto the plane. To analyse periodic 

solutions, we will make use of the "delay phase plane" of (1.4.4), a convenient 

construction which plots the delay V(t - 7) versus V(t). Closed curves in the 

delay phase plane are indicative of periodic orbits of the system. In going from 

(1.4.3) to (1.4.4) we merely included a single discrete delay term. We shall 

see later on that this subtle addition significantly enriches the dynamics of the 

all- potassium system of the Morris- Lecar equations. 

This section has briefly discussed DDEs, and in doing so introduced the 

setting for our investigation of the Morris-Lecar equations with delay. Some 

additional properties of delay equations are presented throughout the course 

of our study, when these details are pertinent. 



Chapter 2 

The ali-K+ Conductance System 

The equations describing t he all-K+ conductance system with delay (J.-t :/= 0) 

are 

(2.0.1) 

n(t) = -An(V ) [noo (V ) - n], 

where n00 (V), and An(V) are given by 

1 [ (v- v3)] n00(V) = 2" 1 + tanh V4 , 

(2.0.2) 

Here the Ca2+-conductance system has been blocked, so that m = 0. Before 

investigating the all- potassium system with delay, we address the original all­

potassium conductance system without delay. 

23 
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2 .. 1 The all- K+ Conductance System 

without Delay 

24 

In their model without delay, Morris and Lecar found that muscle fibres in 

Ca2+-free solutions produce no voltage oscillations, even in the presence of 

external applied current. Their investigation revealed that the all-K+ system 

exhibits a graded response with a transient peak followed by a decay to a 

voltage plateau. Consider system (2.0.1) with J.1 = 0: 

CV(t) = - gL(V- VL) - gKn(V - VK) 

(2.1.1) 

n(t) = >-n(V) [noo (V) - n], 

with n00(V) and >-n(V) as given in (2.0.2) . This is simply the equations de-

scribing the all- K+ conductance system without delay, studied by Morris and · 

Lecar. We shall show that this system admits a single stable equilibrium point 

(node). Equilibria (V*, n*) are given by the intersection of the nullclines 

( 9LVL + gKVKn 1 [ (V - i/3)'J· V n) = and n(V) = n00 (V) = - 1 +tanh V, , 
9L + gKn 2 4 

where V(n) is monotone decreasing for 0 :::; n :::; 1, and n(V) is a monotone 

increasing function. Therefore the nullclines may intersect at most once for 

0 :::; n :::; 1, yielding at most one equilibrium point. Figure 2.1(b) shows the 

phase plane for the system with J.1 = 0, and indicates that the system admits 

a single equilibrium point. Taking x = V - V* and y = n - n*, the linearised 

system with equilibrium shifted to the origin is 

x (t) =-ax+ by 

(2.1.2) 

y(t) = ex - dy, 
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where 

- (V* - v3) d = .A.n cosh V, , 
\ 2 4 

x- (V* - Y3) (V*- Vs) c = 2~4 cosh 
2114 

sech
2 

V
4 

• 

A detailed linearisation of the system with delay is included in section 2.2.2 

- the linearisation presented here follows directly from that by setting p = 0. 

The characteristic equation for system (2.1.2) is 

.A? + (a + d)>..+ (ad- be) = 0. 

The equation has two roots, given by 

- (a + d) ± y'(a + d)2 - 4(ad- be) 
A± = . 

2 

The equilibrium point (V*, n*) is stable provided both eigenvalues have nega­

tive real parts. By the Routh-Hurwitz [3] conditions, this is satisfied as long 

as 

(i). a + d > 0 =} a> - d, and 

(ii) . ad- be> 0 =} ad> be. 

Since there are numerous parameters in the system, we employ a standard 

reference set for the original model parameters to facilitate our investigation. 

Table 2.1 contains typical values for the parameters for the all-K+ system, as 

reported by Morris and Lecar [24]. 

Note that the first Routh- Hurwitz condition is satisfied for any non­

negative a and d, provided a and An are both non- zero. That is, (i) holds 
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Parameter Set 

C = 20 JJF jcm2 >: = 1.. s- 1 
n 15 

gL = 3 mmhojcm2 gK = 8 mmho/cm2 

VL =-50mV VK = -70 mV 

V3 = -1.0 mV V4 = 14.5 mV 

Table 2.1: Morris- Lecar parameter set for the aU- K+ conductance system. 

for a general set of parameter values gL, gK, An, 1;3, V4 and C. Therefore, con­

dition (i) is satisfied for the specific parameter values given in Table 2.1. For 

condition (ii), note that (V*, n*) = ( -50.061, 0.001) for the parameters in Ta­

ble 2.1. Since V* > VK, then b < 0, which implies that (ii) is satisfied. Hence 

both eigenvalues have negative real parts and the equilibrium (V*, n*) is sta­

ble. It is a stable node since both eigenvalues are real, which follows from 

the fact that the discriminant of the roots .6. = 3.98 x 10-4 > 0. Also, any 

combination of parameters for which V* > VK will ensure that (ii) is sat isfied. 

Finally, this analysis is valid for any VK < VL. 
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2.2 The all- K+ Conductance System 

with Delay 

27 

Consider the delayed system (2.0.1), with p, =/=- 0. Then we have a system 

consisting of one delay differential equation coupled to an ordinary differential 

equation. Since both dependent variables V and n appear in the DDE, to solve 

the system we must prescribe initial functions on the delay interval [ - T , 0]. 

From a mathematical standpoint, the initial functions V (B) and n( B) for B E 

[-T,O] can be arbitrary elements of the function space C([-T,O], JR) . The 

physiological interpretation of the state variables V and n requires initial data 

to be selected appropriately, that is by choosing an initial voltage function 

V (B) = Vo, and then calculating noo(Vo) for n(B), so that the initial fraction 

of open K+ - channels corresponds to the initial voltage. For our purposes, we 

employ constant initial functions for V(B) and n(B). 

Analysis of the V(t) = 0 and n(t) = 0 nullclines in the (V, n)-plane provides 

information pertaining to the number and location of equilibria of (2.0.1) . In 

the following section we present a detailed discussion of the nullclines of the 

all- potassium conductance system, and how they change as p, is varied. 

2.2.1 The Nullclines of the all-K+ System 

To study the nullclines in the (V, n)- plane, we set V(t) = 0 and n(t) = 0 and 

consider V(t- r) = V(t): 

V(n) = gL VL + gK VKn 
gL + gKn- J.1 

1 [ (V - V3)] n(V) = noo(V) = 2 1 +tanh V
4 

. 

(2.2.1) 

(2.2.2) 
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\Ve wish to determine how t he nullclines change as the parameter J-l is 

varied. The variable n represents the fraction of open K+ channels, and so 

0 ::::; n ::::; 1. This in turn implies that the voltage V ( n) varies between 

and 

Note that, for certain parameter sets, these voltage limits may become infinite 

for certain values of 1-L· In this chapter, we interested in varying only the 

parameters 1-L and T to investigate how changes in the delay parameters affect 

the behavior of the system. For consistency, we use the reference parameter 

set listed in Table 2.1 for the remaining model parameters. 

The n(t) = 0 nullcline (2.2.2) does not directly depend on J-l, and n(V) is a 

sigmoidal-shaped, monotone increasing function of V for all J-l, and n(V) -+ 0 

as V-+ -oo, while n(V) -+ 1 as V -+ oo . On the other hand, the V(t) = 0 

nullcline (2.2.1) does depend on f-L, and the qualitative behavior of V(n) as a 

function of n changes as fJ- is varied. The V ( n) nullcline is simply a hyperbola, 

separated by a vertical asymptote at V = VK, except for one degenerate case, 

where it is reduced to a pair of vertical and horizontal lines. We are only 

interested in the physiological case where 0 ::::; n ::::; 1, and so depending on the 

value of f-L, one or both branches of the V - nullcline are significant. First, note 

that as J-l-+ ±oo, we have V-+ 0 and n-+ n00(0) ~ 0.53. For 

V(n) is a monotone decreasing function of n in the interval of interest, 0 ::::; 

n::::; 1, and the system admits a single unique equilibrium point, (V*, n*). The 

significant branch of the hyperbola lies to the right of the vertical asymptote, 
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and we can ignore the lower branch of the hyperbola, which is below the V ­

axis. For these values of fJ, we have VK < V*, and with the parameter values 

listed in Table 2.1, we obtain 

9L (1 - VL) = ~ . 
VK 7 

Figure 2.1 (b) shows the null clines in the (V, n )- plane for fJ in this range fJ < ~. 

Next we evaluate V(n) when fJ = 9L ( 1- tJ;): 

9L VL + 9K VKn __ VK (gL VL + 9K VKn) __ v;K 
V(n) = Vi 

9L + 9Kn- 9L + 9Lit 9KVKn + 9LVL ' 

and so the V(n)-nullcline is simply a vertical line at V = VK = -70 in the 

(V, n )-plane. Above we canceled the common factor 9L VL + 9K VKn, and in 

doing so, we assumed that this expression is nonzero. In the event that the 

factor is zero we have 

which is a horizontal line in the (V, n)- plane. With the parameter values in 

Table 2.1, the horizontal line is n = - ~~ < 0, which is outside the feasible 

range 0 ::; n ::; 1. Therefore, with fJ = 9L ( 1 - tt) = ~ , V* = VK and the 

equilibrium point of the nonlinear system is (V* , n*) ~ ( - 70, 0) , since the 

n(V) nullcline is nearly zero there. The nullclines of the system for fJ = ~ are 

depicted in Figure 2.1(c). 

The next parameter range is 

9L ( 1- ~:) < /J < 9Ll 

and with fJ in this interval, we find that V(n) is a monotone increasing function 

of n in the interval of interest . The function V(n) is still a hyperbola, and we 
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Figure 2.1: Plots ofthe V(n) (solid) and n(V) (dashed) nullclines of the all-K+ 

system (2.0.1) for representative values of f..l· 
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still ignore the lower branch which is below the V -axis. However, in this case 

the important branch is the part that is to the left of t he vertical asymptote. 

In this range, we obtain a unique equilibrium point (V* , n*), with n* still close 

to zero but V* < VK· Figure 2.1(d) shows the nullclines for J.t = 2, vvhich is in 

the present range. 

From equations (2.2.1) and (2.2.2), we can see that n -t 0 as V -t -oo. 

Hence (V* , n*) -t ( - oo, 0), as p -t gL, and so when J.t = gL the system does 

not have a finite equilibrium point. Moreover, the system will not have an 

equilibrium point if J.t is in the range gL ~ p ~ gL + gK. With J.t in this interval, 

V(n) is still a strictly increasing function of n but the lower branch of the 

hyperbola becomes important once it crosses the V -axis (i.e. when p passes 

gL)· For our parameter set in Table 2.1, the range of J.t for which the system 

does not have an equilibrium point is 3 ~ J.t ~ 11. This range can be obtained 

if we rearrange the V(n) nullcline and solve for n, to obtain 

This allows us to find the value of n where the voltage V becomes infinite, in 

other words the horizontal asymptote of the hyperbola in the (V, n)-plane: 

lim n(V) = Jl - gL. 
V~±oo gK 

(2.2.3) 

Hence as long as this limit is between zero and one, z. e. gL ~ p, ~ gL + gK, 

the system will not have an equilibrium point. However, asp, -t (gL + gK), the 

limit in (2.2.3) becomes 1, and here V -t +oo and n -t 1. 

The nullclines for J.t = 5 E [3, 11] shown in Figure 2.1 (e) are representative 

of the nullclines for the system with p in this parameter range. If J.t > gL + 
gK, the lower branch of the hyperbola intersects the sigmoidal nullcline and 
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we regain an equilibrium point (V*, n*), with n = 1- and V* > VK . In 

this parameter range, the branch of the nullcline which is to the right of the 

vertical asymptote is again significant. The nullclines for J-t = 15 are shown 

in Figure 2.1(f), where we see that, for J-t > 11, the system admits a single 

equilibrium point. 

This concludes the description of the nullclines in the (V, n )- plane for 

1-t E R The evolution of the nullclines as J-t is varied is shown in Figure 2.1. 

Figures 2.2(a), 2.2(b) depict the bifurcation diagrams for the all-potassium 

conductance system, indicating how both V* and n" and their stability change 

as 1-t is varied (forT= 0). 

400 
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(a) V vs. f-l· (b) n vs. 1-l· 

Figure 2.2: Bifurcation diagrams describing how V* and n* of the all-K+ 

conductance system (2.0.1) change as J-t is varied. Solid lines indicate stable 

equilibrium points while dashed lines represent unstable ones. 

The nullcline analysis of this section can be used to prove the following theo-

rem: 
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Theorem 2.2 .1.1. With parameters listed in Table 2.1, system ( 2. 0.1) admits 

at most one equilibrium point (V*, n*) for all f-1 E JR. The value n* E [0, 1], and 

V* > VK if f-1 < gr, ( 1- ~) or f-1 > 9L + gK, V * < 10< if 9L ( 1- ¥;) < f-1 < gr,, 

and V* = v;< if f-1 = gL ( 1 - ~) . Furthermore, if 9L ~ f-1 ~ 9L + gK, then 

( 2. 0.1) does not possess an equilibrium point. 

2.2.2 Local Stability and Bifurcation Analysis of the 

all- K+ System 

We wish to analyse the dynamics of the isolated conductance systems in the 

presence of delayed recurrent feedback. Not only will this reveal how the im­

plemented delay affects the dynamics of the systems, it should also indicate 

how each conductance system with delay contributes to the full delay model 

which incorporates both conductance systems. In this subsection, we take a 

look at the all- K+ system, to investigate the stability of the equilibrium point 

(V*, n* ) for certain parameter ranges. We shall also examine the system to 

determine whether or not it is capable of supporting oscillations. Periodic 

solutions commonly arise in delay differential equation models via Hopf bifur­

cation. The system studied by Plant in [32] serves as a case in point. As 

will become evident later, the system in [32] is very similar in form to the 

ion conductance systems of the Morris- Lecar model with delay. Therefore, 

we look for periodic solutions of (2.0.1) arising via Hopf bifurcation. It seems 

plausible that the Hopf bifurcation structure of the system will depend on the 

pair of delay parameters f-1 and T. 

Consider a two- dimensional autonomous delay equation with a single dis-
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crete time delay, 

x(t) = f(x(t), x(t - r), TJ), (2.2.4) 

where x(t) E JR2 , TJ E JRk, and f : R4 x JRk --?- JR2 . Steady state solutions, or 

equilibrium points, x(t) = x* E R2 of (2.2.4) are obtained as solutions of the 

nonlinear system 

f(x*,x*,TJ) = 0. 

The number and location of steady state solutions x* to a system of delay 

differential equations do not depend on the value(s) of the delay(s) . However, 

the stability of x* under (2.2.4) does depend on the value of the delay(s) . To 

study the stability of an equilibrium point x* , we linearise the nonlinear system 

(2.2.4) about x* and obtain the variational equation, which is a linear delay 

differential equation of the form 

y(t) = ::
0 
(x*, x*, ry)y(t) + ::1 (x*, x*, ry)y(t- r ), 

where f = f ( x 0 , x1 , TJ). To obtain the characteristic equation of the system, 

we substitute solutions of the form ve>..t into the variational equation to obtain 

( 
\f a f ( * * ) a f ( * * ) ->.T) O 
A - axo X , X , TJ + axl X , X , TJ e V = 

llvll = 1. 

This gives a nonlinear eigenvalue problem with characteristic matrix 

which we can rewrite to obtain the characteristic equat ion 

det(D.(-\)) = 0. (2.2.5) 
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Equation (2.2.5) is a transcendental equation, with an infinite number of roots. 

Therefore, system (2.2.4) linearised about x* has an infinite number of eigenval­

ues which determine the stability of x*. The equilibrium x* is asymptotically 

stable provided all roots of (2.2.5) have negative real parts, and is unstable if 

there exists a root with positive real part. If A = 0 is a root, then the system is 

degenerate, and the stability of the equilibrium cannot be determined in this 

manner. In general, the eigenvalues A E C and depend on the parameters TJ, so 

that >.(TJ) = a(TJ) + iw(TJ). As physical parameters TJ are varied, a bifurcation 

occurs when an eigenvalue crosses the imaginary axis, that is A= 0 or A = iw, 

w f 0. With this bifurcation, the stability of x* can change, and in the case 

>. = iw, w =I= 0, a Hopf bifurcation is likely, and a branch of periodic solutions 

may emerge. 

We now turn from discussion of steady state analysis of general delay equa­

tions of the class (2.2.4) to the specific analysis of the all- potassium system 

with delay (2.0.1). Assuming that f-t ~ [gL, gL + gK] = [3, 11], system (2.0.1) 

admits a single equilibrium point (V* , n*). To linearise the system about the 

origin, we shift the equilibrium point to the origin by taking x = V - V*, and 

y = n - n*. With this substitution we obtain 

Cx(t) -gL (x + V* - VL) - gK (y + n*) (x + V* - VK ) + f-t (x(t - r ) + V* ) 

-gLX- 9KXY - gKV* y + gKVKy- gKn*x + J-tX(t - 7) 

- V* (gL + gKn*- J-t) + gLVL + gKVKn* 

- gLX- 9KXY- gKV*y + gKVKy- gKn*x + J-tX(t- 7) , 
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y(t) = Ay(x) [Yoo(x) - y- n*] , 

where 
1 [ (x + V* - V3 ) ] Yoo(x) = 2 1 +tanh V4 

. - ( x + V* - 113) Ay(x) =An cosh 
2

V4 . 

The nonlinear system with equilibrium point at the origin (x*, y*) = (0, 0) is 

Cx(t) = -(gL + gKn*)x + gK(FK- V*)y- gKxy + J-lx(t- T) 

y(t) =An cosh ( x + ~~4- 1l3) x (2.2.6) 

[ ~ ( 1 + tanh ( x + ~ - 113 ) ) - y - n * ]· 

The n-coordinate of the (F*, n*) equilibrium point is in fact n* = n00(F*), 

and so in in the transformed variables, we have n* = Yoo(x) = Yoo(O) since 

x* = 0. 

To linearise system (2.2.6) about the origin, we linearise the hyperbolic 

functions using series expansion. Hence the equation for y(t) becomes 

An (V* -1/3) (V* -113) - (11* - 113) y(t) = 
2

V4 cosh 
2

V4 sech2 

114 x- An cosh 2V4 y 

in the linearisation. The variational equation associated with the nonlinear 

system (2.0.1) linearised about the origin is then 

Cx(t) = -(gL + gKn*)x + 9K(11K - V* )y + f-lX(t- T) 

An n -

iJ ( t) = T"T cosh ( u) sech ~ ( v) x - An cosh ( u) y 
2v4 

(2.2.7) 
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where u = v;v
4
v3 , and v = v·~ Va • Since the coefficients in the terms of 

(2.2.7) are constants for any given set of parameter values and equilibrium 

point (V*, n*) , let 

c = 2~4 cosh (u) sech2 (v), 

The equations become 

d = An cosh (u), 

x(t) = - ax + by + flx(t - 7) 

y(t) = ex- dy. 

(2.2.8) 

Note that the coefficients of the linearised system depend on the equilibrium 

point of the nonlinear system, which in turn depends on the value of f.L· 

From the restriction 0 :S n :S 1 we see that the voltage V satisfies V(l) < 

V < V(O) if the V(n)-nullcline is a monotone decreasing function of n for 

n E [0, 1]. This is true as long as f.L < gL ( 1 - {;t). On the other hand, V(n) is 

a monotone increasing function in the n-interval of interest if gL ( 1 - {;t) < 

f.L < gL, and also if f.L > gL + gK = 11. For f.L in either of these ranges, the voltage 

V varies between V(O) < V < V(l) . Collectively, these cases represent the 

situation where only one branch of the V ( n) hyperbola is significant, the upper 

branch in the first two cases, and the lower branch in the third case. Of course, 

there are no upper and lower limits on the voltage if f.L E [gL, gL + gK], where 

we have no equilibrium point, since the nullcline V (n) can become infinite for 

certain values of n, namely, the value of the the horizontal asymptote. 

Given that the coefficients of the variational equation are defined in terms 

of (V*, n*) and other parameter values, we can draw some conclusions about 
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the range of values these coefficients may assume. Since they are functions of 

the equilibrium point (V*, n*), they only exist for values of p, which admit a 

finite equilibrium point in the (V, n)-plane. From the definition of a and the 

parameter values in Table 2.1, we find that 

9L <a< 9L + 9K 
c- - c 

3 11 -< a< -20- - 20 

since n is restricted to [0, 1], and gL, gK are positive constants. In particular, 

a > 0 for any set of parameter values where the conductance constants are 

non- negative and capacitance is positive. 

To estimate the bounds on c, we use the properties of hyperbolic trigono­

metric functions. From the definition of c we see that 

An cosh (u) 
c =----

2V4 cosh2 
( v) 

where u = v;v
4
v3 • Note that v = 2u gives 

An cosh( u) An cosh( u) c - - - - --~---'--'----r;-c---

- 2V4cosh2 (2u) - 2V4 (cosh2 (u) +sinh2 (u))2 . 

Also, sinh2 (u) ?: 0, cosh(u) ?: 1 '1/u, it follows that 

and so 
cosh(u) < 

1 
(cosh2 (u) + sinh2 (u))2 -

'1/u. 

Since An> 0 in general, cosh(u) ?: 1 > 0 '1/u, and V4 > 0, we find that 

An 
0 < c < 2V4 . 
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Therefore, cis positive for any set of parameter values where V4 > 0. For our 

parameter set (Table 2.1), we obtain the bounds on c to give 

1 
0 < c < 435 

While a and c are in general finite positive quantities, the story is not as 

simple for the coefficients b and d. From the definition 

- - (V* - V3) d =An cosh (u) = An cosh 
2

V
4 

, 

we know that in general, d is positive. If we consider values of fJ for which the 

voltage V is bounded, that is either V(O) < V < V(1) or V(1) < V < V(O), 

then the range of values which d may assume depends on the values of IV(O)I 

and IV(l) l: the values of fJ for which IV(O)I < !V(l)l produce the inequalities 

- - (V(O) - V3) - (V(l) - V3) An :S An cosh 
2

V
4 

< d < An cosh 
2

V4 . (2.2.9) 

When IV(1)1 < IV(O) j, however, we have 

- - (V(l)- V3) - (V(O)- V3) An :SAn cosh 
2

V
4 

< d <An cosh 
2

V
4 

· (2.2.10) 

In either case, we see that d 2::: An > 0, and so in general d is a positive 

constant. However, as fJ --+- 9L or fJ --+- 9L + gK, V* -+ ±oo, and so d --+- +oo. 

Finally, for b we have 

~ (VK- V(O)) < b < ~ (VK- V(1)) (2.2.11) 

if fJ < 9L ( 1 - ~~), which implies V(1) < V (O), and 

~ (VK- V(1)) < b < ~ (VK - V(O)) (2.2.12) 
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if 9L ( 1 - it-) < J-L < gL, or if p, > 9L + gK, which implies V(O) < V(l). 

However, as J-L-+ gL, V* -+ -oo, and sob-+ oo, while b--+ - oo as J-L-+ 9L +gK, 

since in this case V* -t +oo. Also, from the definition we see that the sign of 

the coefficient b can be either positive or negative: if p, < 9L ( 1 - t{), then 

VK < V* and sob< 0, if p, = 9L ( 1 - ~~),then VK = V* and b = 0, and finally 

if J-L > 9L ( 1 - tt), then VK > V* and so b > 0. 

2.2.3 The Characteristic Equation 

To study the stability of the equilibrium point (V*, n*), we examine the eigen­

values of the system using the characteristic equation. This is obtained by 

considering (2.2.8), and assuming solutions of the form 

Therefore 

and so the characteristic equation for the system (2.2.8) is 

>.2 +(a+ d)>. + (ad- be)- P,>.e-A-r- P,de- >-r = 0. (2.2.13) 

Equation (2.2.13) closely resembles a transcendental characteristic equation 

studied by Plant [32], and the form of the linearised two-dimensional system 

obtained in that paper is similar to system (2.2.8). The characteristic equation 

obtained by Plant was 

z2 + pz + q + r(P,)ze- z + s(P,)e-z = 0, 
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which compares to our model via the substitutions z = AT, p = r ( a + d), 

q = T2(ad- be), r(fl) = - jlT and s(fl) = - jldT2
. However, in Plant's paper 

the coefficients of the linearised system are simply positive constants which do 

not depend on any model parameters. Therefore only the last two terms of 

his characteristic equation are functions of the parameter f.-t· Recall that all 

of a, b, c, and d of (2.2.8) depend on (V*, n*) , which in turn depends on J-t . 

Hence all coefficients of characteristic equation (2.2.13) depend on J-t, and so 

the analysis of the characteristic equation in [32], while elegant and effective 

in establishing Hopf bifurcation of solutions with respect to the parameter J.-t, 

cannot be applied to our model. 

To analyse (2.2.13) , we use theory developed by Cooke and Grossman [6] 

to study stability switching in delay different ial equations as the delay is var­

ied. The application of their results requires knowledge of the stability of 

the equilibrium point (V*, n*) of (2.0.1), when it exists, with zero time delay. 

This information is important when carrying out a Hopf bifurcation analysis of 

the system, since, according to Datko [7], for retarded functional differential 

equations the supremum of the real parts of the roots of the transcendental 

equation varies continuously with the delay. Therefore, as we vary T, a tran­

sition from stability to instability (or vice- versa) must correspond to a purely 

imaginary root of the characteristic equation. Hence, to determine if such a 

transition is possible, we must know whether the equilibrium point (V*, n*) of 

the model with T = 0 is stable or unstable. 
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2.2.4 The r == 0 Case 

With r = 0 we obtain the characteristic equation 

>.? + (a + d - p,) A + [ (ad - be) - P,d] = 0, (2.2.14) 

a quadratic polynomial, with roots 

P, - (a+ d)± J [(a + d) - p,p - 4[(ad - be) - P,d] 
A±= 2 . (2.2.15) 

Let b. = [(a+ d) - P,j2 - 4[(ad - be) - P,d], the discriminant of the roots 

in Equation (2.2.15) . The trivial solution of (2.2.6), and hence (V*, n*) of 

(2.0.1), is stable as long as both roots of (2.2.14) have negative real parts, i.e. 

ReA± < 0. This is true provided both Routh- Hurwitz conditions are satisfied : 

(i). a+d - P, > 0 :::::> P, < a+d, and 

( ii). (ad - be) - P,d > 0 :::::> P, < a - ~ . 

Note that (V*, n* ) is given by the intersection of two nonlinear nullclines, 

and we have no closed form expressions relating the values of V* and n* to the 

value of f.L· Hence, we have no explicit formula which expresses the coefficients 

in terms of f.L · To check conditions (i) and (ii) we must determine how the 

coefficients vary with J.L, which we do numerically using a program written 

in Maple which calculates the equilibrium point as J.L is varied, and then also 

computes the values of the coefficients and quantities in conditions (i) and (ii). 

Then, by plotting P,, a+ d and a- ~ versus J.L we can identify the ranges of the 

parameter J.L for which both conditions (i) and (ii) are simultaneously satisfied. 

Figure 2.3 contains the plots which compare how the values of a+ d, a- ~ 

and P, change with respect to J-t. The coefficients b and d become infinite as the 
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Figure 2.3: Checking the Routh- Hurwitz conditions: Plots of a+ d (solid 

curve), a - ~ (dashed curve), and fl (dotted line) against J.L for the two pa­

rameter ranges where system (2.0.1) (with T = 0) has a unique equilibrium 

point. 



CHAPTER 2. THE ALL-K+ CONDUCTANCE SYSTEM 44 

equilibrium voltage V* -+ ± oo, which occurs when J-L -+ gL and J-L -+ 9L + 9K· 

In this situation, calculating the quantity a - ~ in a computer program can 

become problematic. This can be averted by stopping the code with J-L close to 

9L or 9L + gK , and then using a limit to show that the curves for a - ~ and P, 

intersect as J-L approaches these values. This technique is used often with this 

analysis, and a detailed example is given in the following section. 

The plot in Figure 2.3(a) is for values of J-L less than 9L· In this range we 

have a unique equilibrium point, and find that both conditions (i) and (ii) are 

satisfied. Therefore with J-L < gL, both eigenvalues A+ and A_ of (2.2.14) have 

negative real parts, and it follows that (V* ,n*) of (2.0.1) is stable. 

We may distinguish the ranges for J-L < 9L for which the equilibrium (V*, n*) 

is a stable node (~ > 0) from those where it is a stable spiral (L\ < 0) by 

checking the sign of the discriminant. To determine the sign of L\, we plot 

[(a + d) - P,]2 and 4[(ad- be) - P,d] versus J-L in Figure 2.4. We see that 

[(a + d)- P,)2 > 4[(ad - be) - P,d] ::::} L\ > 0 for J-L < J-LD..u and for /-LD..2 < J-L < gL, 

and so for these values of J-L the equilibrium point is a stable node since both 

).+ and A_ are both real and negative. Estimating the values of J-LD..1 and J-L/.3. 2 , 

we find that J-LD..1 ~ - 14.0 and J-LD..2 ~ -0.05. For J-Ln1 < J-L < J-LD..2 , we have 

.6. < 0, and so both A+ and A_ are complex with negative real parts, indicating 

a stable spiral. 

Note that there are no plots for J-L between gL and gL + gK, since for these 

values, (2.0.1) does not have an equilibrium point, and so we have no linearised 

system and hence no a, b, e, and d. Figure 2.3(b) indicates how a + d, a - ~ 

and P, change with respect to J-L for J-L > 9L + 9K· From the graph we see that 

condition (ii) is never met, i.e. that P, > a - ~, which implies that (V*, n*) 
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Figure 2.4: Plots of [(a+ d) - j:t]2 (solid curve) and 4[(ad - be) - J1d] (dashed 

curve) versus 11 to determine the sign of the discriminant . 

is unstable. Also, this indicates that the discriminant of the roots .6. is always 

positive, and so the two roots )..+ and ).._ are always real. Therefore it follows 

that 

and ).._ < 0, 

and so the equilibrium point is an unstable saddle point for all 11 greater than 

9L + 9K· Finally, we note that, while these results are only shown for a "small" 

range of the parameter Jl, the programs used to obtain these results were run 

over larger ranges of 11 and no change in the results reported were observed. 

Also, the results presented here pertain only to the model with the specific 

parameter set given in Table 2.1. 

2.2.5 The System with Nonzero Delay r > 0 

Now we turn to the model with nonzero delay (2.0.1) with (2.2.13) as the 

characteristic equation. To study the bifurcation structure of t he model (2.0.1) 
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we apply results established by Cooke and Grossman [6] on general second 

order equations with a single time delay. Their equation was of the form 

d2x dx x(t- T) 
dt2 + a dt + b dt + ex(t) + dx(t- T) = 0, (2.2.16) 

a + b :f 0, e + d :f 0 

with characteristic equation 

Cooke and Grossman studied this equation in connection with a model con­

taining delayed friction and delayed restoring force . Equations of this form can 

be obtained from a nonlinear system with one delay, upon linearisation. The 

conditions a+ b :f 0, e + d :f 0 are required to ensure non- degenerate eigen­

values. Wei and Ruan [40] have applied the results of Cooke and Grossman to 

study steady state stability in a two--dimensional neural network model with 

delay, with equations similar in form to (2.0.1). 

To see that our model is in fact of this form, we convert the system (2.2.8) 

to a single, second- order delay differential equation in x(t) and x(t- T): 

x -ax+ by+ {Lx(t- T) 

x -ax+ b [ex- dy] + P,x(t- T) 

x -ax + b [ex-~ (x +ax- {Lx(t - T))] + {Lx(t - T) 

x -ax+ bex- dx- adx + {Ldx(t- T) + {Lx(t- T) 

0 x + (a+ d)x- {Lx(t - T) + (ad - be)x - {Ldx(t - T) 
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Thus for our model we obtain the equation 

d?x dx A x( t - 7) A 

dt
2 

+ (a+d) dt +(- J.£) dt + (ad - bc)x(t) +(- pd)x(t-7) = 0, (2.2.17) 

which is simply (2.2.16) with a replaced with a+ d, b replaced with - jl, c 

with ad - be and d with - jld, with characteristic equation (2.2.13). Hence 

the conditions a + b =!= 0 and c + d =!= 0 are replaced with jl =!= a + d, and 

jl =!= a - ~ , respectively. Figure 2.3 indicates that the second condition is 

violated when f£ = gL and p = 9L + gK, the parameter values which lead to 

equilibrium voltages of - oo and +oo, respectively, and that there is a single 

value of J1 where the first condition is not met. However, these violations 

occur for different values of p, and since both conditions are never violated 

simultaneously, the characteristic equation will possess non-degenerate roots 

for all p. In the instance where jl = a + d, the coefficient of the delayed 

"frict ion" term and the instantaneous "friction" term are equal in magnitude 

but opposite in sign. In t his case, with 7 = 0, the roots of the quadratic 

characteristic become 

A±= ±J -[(ad - be) - fld] . 

Since (ad - be) - jld < 0 for this value of f£, then both roots are real, with 

A+ > 0 and A_ < 0, indicating that (V* , n*) is an unstable saddle point. The 

value where this situation occurs is f£ ~ 21.57. 

To find changes in stability we look for purely imaginary roots A = iw of 

(2.2.13). Since complex roots occur in conjugate pairs, it suffices to look for 
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solutions with w > 0. Hence if A = iw is a root such that w =/=- 0, then 

0 = - w2 + i(a + d)w - iflw [cos(wT) - i sin(wT)] - jld [cos(wT) - i sin(wT)] 

+ (ad - be) 

0 - w2
- jlw sin(wT) - P,d cos(wT) + (ad - be) 

+i [(a + d)w - flw cos(wT) + jldsin(wT)] . 

Setting separately the real and imaginary parts to zero we obtain 

(ad - be) - w2
- jlwsin(wT) - fldcos(wT) = 0 

(a + d)w- flwcos(wT) + fldsin(wT ) = 0. 
(2.2.18) 

By rearranging equations (2.2.18), squaring both equations and adding, we 

obtain: 

(2.2.19) 

The roots of this quartic equation are 

1 ( ~2 2 d2 b ) - J-L - a - - 2e 
2 

1 

± { l (/l2
- a2

- d2
- 2be)

2
- ((ad- be) 2

- jl2d2
)} 

2 

.(2.2.20) 

Of course, the four roots are given by the ± square roots of w~ and w~, denoted 

±w+ and ±w_, respectively. 

According to Cooke and Grossman [6], there are two cases to consider: 

1. (ad- be)2 < jl2d2 :=;. jl2 > (a - !J)2
• In this case there is one 

imaginary root A+= iw+, with w+ > 0. 



CHAPTER 2. THE ALL-K+ CONDUCTANCE SYSTEM 49 

2. (ad - be?> [t2d2 ==;. {t2 < (a - ~) 2 . Here, there are two imaginary 

solutions A± = iw±, with w+ > w_ > 0, provided that 

(a) {t2
- (a+ d)2 + 2(ad - be) > 0 ==;. {t2 > a2 + d2 + 2be, and 

(b) [fl2 - (a+ d)2 + 2(ad- be)]
2 > 4 [(ad- be)2

- {t2d2
] 

and no such solutions otherwise. 

In Case 1, the magnitude of the coefficient of the state variable with delay 

(x(t- T)) in (2.2.17) is larger than that without delay, i.e. the instantaneous 

term x(t). That is, the delay term is dominant. Here, the discriminant of 

(2.2.20) is positive, and so w~ > 0 while w: < 0. With w~ > 0, we obtain 

two real roots, ±w+, one positive and one negative. For convenience, let w+ 

denote +W+ , the positive square root, since we are only interested in positive 

real roots of (2.2.19). The are no positive real roots of (2.2.19) associated with 

w:, since it is negative and its square root complex. Therefore in this case we 

obtain only one purely imaginary root A = iw+ of the characteristic equation 

(2.2.13), with w+ > 0. 

The roles of the coefficients of the delay ( x ( t - T)) and instantaneous ( x ( t)) 

state variable in (2.2.17) are reversed in Case 2, and so the non-delay term 

is dominant. The extra conditions (a) and (b) ensure that the discriminant 

of (2.2.20) is again positive, and that the term outside the square root ([t2 
-

(a+ d)2 + 2(ad- be)) is positive, so that both w! and w: are positive. This 

leads to four real roots of (2.2.19) , two positive (+w±), and two negative (-w±). 

Hence there are two purely imaginary solutions of (2.2.13), A± = iw±, with 
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w+ > w_ > 0. Here, we let w+ = +W+ and w_ = +W_, the positive square roots, 

for convenience. 

Note that these conditions are independent of the coefficients of the instan­

taneous and delay first-derivative terms, i;(t) and i;(t- T) of (2.2.17) . However, 

the magnitude of these coefficients does play a role in determining stability of 

the equilibrium point in the model with T = 0 ( cf. Section 2.2.4). As we shall 

see, this will in turn influence whether or not the predicted crossings of the 

imaginary axis are possible. Furthermore, if in Case 2 both sub- conditions (a) 

and (b) are not met simultaneously, then there will be no positive roots w > 0 

of (2.2.20), and hence no purely imaginary roots of (2.2.13). This, in turn 

implies no crossing of the imaginary axis, and therefore no change in stability 

of the equilibrium point. 

To find the parameter ranges where the model resides in Cases 1 and 2, we 

must determine the values of It for which fl2 > (a - ~) 2 , and those for which 

fl2 < (a- ~)2 . We employ a graphical analysis, and plot the values (a - ~) 2 

and {l2 versus ft in Figure 2.5. 

In Figures 2.5(a) and 2.5(b), we see that fl2 and (a- ~) 2 
intersect when 

ft =gLand ft = 9L +9K· For these respective values of ft, the equilibrium voltage 

tends to -oo and +oo, and so the program cannot compute the equilibrium 

voltages, or the values of coefficients b, c, and d. However, we can show using 

limits that in fact (a- ~) 2 
-+ ('% )2 

as ft -+ 9L· Recall that as ft -+ gL, 

V* -+ -oo and n* -+ 0. It immediately follows that, as ft -t gL, 

9L a-t - since n* -t 0. c 
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(a) JL < 9L = 3. (b) fL > 9L + 9K = 11. 

Figure 2.5: Plots of fl2 (dashed curve) and (a- ~) 2 
(solid curve) versus Jl, for 

the two parameter ranges of Jl where system (2.0.1) has a unique equilibrium 

point . 

Next we show that ~-+ 0 as V*-+ - oo: 

be 

d 

An9K(V, - V*)cosh (V*-V3 ) sech2 (V*-V3) 
2V4C K 2V4 v-4 

-:\cosh (v•-v3) n 2V4 

9K (VK - V*) 

- 2V4C cosh2 ( v·~v3 ) ' 

where we canceled the factor An cosh ( v;v
4
v3

), which is non- zero. Taking the 

limit we obtain 

l
. be 
liD -

V*--+-oo d 
1
. 9K (VK - V*) 
liD ---'----:---'-:-

V *--+-00 2V4C cosh2 ( v•i;v3) 
9K 

1
. - 1 

-- liD 
21f4C V*--+- oo 2 h (V*-V3 ) . ..l. · h (V* -V3) cos v4 v4 sm v4 

9K 1• - 1 0 - liD -
4C V* --+-oo · h (2(V*-V3 )) - ' 

sm v4 
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since sinh(u) -t -oo as u -t - oo, and we applied l'Hopitals Rule to evaluate 

the limit. Therefore 

( 
b 

)
2 ( b )2 2 2 . c . c 9L 9L . A 2 

hm a - - = hm a - - = (- - o) = ( -) = lim fJ, ' 
V*-t - oo d v •-t - oo d C C p,-tgL 

n"' ~ 0 

as desired. A similar limit computation with f-L -t 9L + gK, and V* -t oo, 

n* -t 1, verifies that the plots (a - ~) 2 
and fl2 in Figure 2.5(b) intersect as 

f-L--1- 9L + 9K· For f-L > 9L + gK, we find that jl2 is always above (a - .IJ) 2
, and 

so only Case 1 is possible with f-l in this range. 

Figure 2.5(a) indicates that there is a value of f-L < 0, which we denote by 

f-l*, for which fl2 > (a - ~) 2 
for all f-L < f-l*, and fl2 < (a - ~) 2 

for all values 

of ~-t* < fJ, < 9L· Therefore with fJ, < f-L* the system is in Case 1 for which a 

single crossing of the imaginary axis is possible, and hence only one change in 

stability. More accurately, at most one crossing is possible, since the crossing 

is not automatic - it depends on the transversality condition ( cf. Section 

2.2.6) and the analysis with T = 0. Note that an exact numerical value for f.J,* 

cannot be obtained, but using Maple we can approximate this value to two 

decimal places to obtain f-L* ~ -10.74. This gives us the ranges 

f-l < f-l* ~ - 10.74 and f-l > 9L + 9K = 11 

for f-L which lead to Case 1. To address the Case 2 dynamics of the system, 

we must determine if the additional criteria (a) and (b) are satisfied for all 

f-l E (~-t*, gL), or only for a subinterval. Again, this is done graphically by 

computing the quantities in criteria (a) and (b) of Case 2 for fJ, E (f-l* , gL), and 

then plotting the results. Figure 2.6 contains plots which are used to check 

conditions (a) and (b). 
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Figure 2.6: Checking conditions (a) and (b) for Case 2: Plots of [1,2 

(dashed curve) and a2 + d2 + 2bc (solid curve), versus p,, and plots of 

([L2 - a2 - d2
- 2bc)2 (solid curve) and 4 ((ad- bc)2

- [1,2~) (dashed curve) 

versus p,. Magnifications of both are also included. 
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From Figure 2.6(a), we see that condition (a) is not met for all f1, E (1-l*, gL)· 

A similar situation appears in Figure 2.6(c), in that condition (b) is not sat is­

fied on the entire interval. There are two sub-intervals where condition (b) is 

met, and one where it is not. Figures 2.6(b) and 2.6(d) are magnifications of 

Figures 2.6(a) and 2.6(c), and these diagrams indicate that the largest sub­

interval of (1-l*, gL) on which both conditions (a) and (b) of Case 2 are met 

simultaneously is (1-l*, 1-l**) . Like 1-l*, we cannot find the exact numerical value 

of 1-l** , but we can approximate this value as 1-l"* ~ - 4.37. Therefore with 1-l in 

the range 1-l* < 1-l < 1-l**, there are two imaginary solutions ). = iw± of (2.2.13), 

with w+ > w _ > 0, and it is in this interval where we may apply the theory 

for Case 2 presented in [6]. 

When 1-l is in the range (1-l**, gL) the model does not fall under Cases 1 

or 2. There is a subinterval of (1-l**, gL), denoted by (p,**, f.ti) for which the 

discriminant in (2.2.20) is negative, and so the roots of (2.2.19) are imaginary. 

This implies that there are no purely imaginary roots ). = iw of characteristic 

equation (2.2.13), and therefore no change in stability of the equilibrium point. 

The same is true if p is in (Pi, gL), only here the discriminant in (2.2.20) is 

positive (i. e. condition (b) is met), meaning that in (2.2.20) wi are real but 

negative (since condition (a) is not met). Hence the roots W± are all imaginary 

and so there are no purely imaginary roots of (2.2.13), and hence no change 

in equilibrium point stability with p in this range. 

The theory does not include any conclusions for the case [1,2 = (a - ~) 2 . 

Consider the case where [1,2 = (a - ~) 2 =f 0. Then (2.2.19) is reduced to 
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the roots of which are the square roots of 

and 

Thus, we obtain a double zero eigenvalue, .A = 0 (multiplicity two), and a pair 

of purely imaginary eigenvalues. We shall see that , in some cases, the zero 

eigenvalues occur for a different value of the delay than the pure imaginary pair, 

there is no degeneracy. The cases where this situation occurs are addressed as 

they arise in the analysis. 

2.2.6 The Transversality Condition 

The transversality condition indicates the direction of change of the real part 

of the eigenvalue on the imaginary axis, and is determined by the sign of the 

quantity 

d(~:A) IA=iw 

A positive sign indicates crossing of the imaginary axis from left to right, while 

a negative sign indicates crossing from the right to left. If all other eigenvalues 

besides the complex conjugate pair which cross the axis have negat ive real 

part, then this crossing marks a change in stability of the equilibrium point 

from stable to unstable if the crossing is from left to right, and from unstable 

to stable if it is right to left. Furthermore, a Hopf bifurcation occurs provided 

the sign of the derivative is non-zero, and if either all other eigenvalues (of 

the linear variational equation) have nonzero real parts, or if for (J.-t , T) where 

the crossing occurs, there are no additional purely imaginary roots of (2.2.13) 

which are integer multiples of iw±· At those values where a Hopf bifurcation 

occurs, a branch of periodic solutions emanates. 
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From Equation (2.2.13), we have 

d). - it(>.+ d)>.e->.r 
dr 2).. + (a + d) + P,[r(>. +d)- 1]e- >.r' 

which, along with the fact that a, b, and d are not all zero, indicates that all 

purely imaginary roots are simple. Also, 

(
d).) - l = p, - [2>. +(a+ d)]e>.r _ '!._ . 
dr P,>. ( >. + d) ).. ' 

>.r P,(>. +d) 
e = 

).. 2 + (a + d)).. + (ad - be) · 

From [6], we know that 

sign { d(::A) Lw = sign { Re ( ~~ r L .. 
. {R [ -(2>.+(a+d)) ] 

sign e >.()..2 +(a + d),\+ (ad - be)) >.=iw 

+Re [>.(>. ~ d)L=iw} 

. { (a +d)2 -2((ad-be) - w2 1 } s1gn -
(a + d)2w2 + (w2 - (ad- bc))2 w2 + d2 

= sign {(a + d)2
- P,2 - 2(ad - be)+ 2w2

} , 

where Equation (2.2.19) was used in the last step. If we insert expression 

(2.2.20) for wi, we obtain 

. { d(Re>.)} s1gn d = 
7 >.=iw 

sign {(a+ d)2
- P,2 - 2(ad - be) + P,2 

- (a+ d? 

+2(ad- be)± A} 
sign {±A}, 
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where~ = ([1,2 - (a+ d)2 + 2(ad - bc))2 - 4 ((ad - bc)2 - P,2d2 ) is the discrim­

inant of (2.2.20). Hence we see that the sign is positive for w~ and negative 

for w:. 

2.2. 7 Analysis of the System in Case 1 

To summarize the results for the bifurcation analysis ofthe all- K+ conductance 

system, we have 

Case 1 (ft2 > (a - ~) 2 ). This case is satisfied for J.t < ~t* and It > gL + gK, 

for which we have only one purely imaginary root ,\ = iw+ (with w+ > 0) of 

(2.2.13). Therefore only one crossing of the imaginary axis is possible, and by 

the transversality condition it follows that this crossing is left to right as r is 

increased. This indicates that the only change in stability of the equilibrium 

point can be from stable to unstable. Consider first f.t > gL + 9K· Since the 

equilibrium point is unstable for T = 0, we already have eigenvalues with 

positive real part (i.e. on the right- hand side of the imaginary axis) for r > 0, 

and so a left-to-right crossing of the imaginary axis has no bearing on the 

stability of the equilibrium point, and therefore cannot induce a change in 

stability. Hence an unstable zero solution of (2.2.6), and therefore an unstable 

non-zero equilibrium point of (2.0.1)) for r = 0 cannot become stable with 

increasing T. Hence for J.t > gL + gK, (2.0.1) admits a unique equilibrium point 

which is unstable for all r 2: 0. 

On the other hand, the equilibrium point (V*, n*) of (2.0.1) is stable for 

T = 0 provided J.t < gL, and, in particular, for It < ~t*, which is the range for 

Case 1. Hence the left-to- right crossing of the imaginary axis as 1 is increased 

will induce a change in stability of (V*, n*), which becomes unstable at the 



CHAPTER 2. THE ALL-K+ CONDUCTANCE SYSTEM 58 

smallest value of T for which an imaginary root exists, say T*, and remains 

unstable for all T > T*. \Vhen T = T*, the system possesses a pair of purely 

imaginary eigenvalues ±iw+, and all other eigenvalues have strictly negative 

real parts. Since the transversality condition is satisfied, the Hopf Bifurcation 

Theorem for DDEs [17] indicates that the system undergoes a Hopf bifurcation 

at (p,, T*), resulting in the emergence of periodic solutions. The calculation 

required to determine the direction and stability of the bifurcating periodic 

solutions is presented at the end of this chapter, in section 2.2.9. 

The analysis of section 2.2.9 reveals that, for p, < p,*, the Hopf bifurcation 

which occurs at (p,, T*) is supercritical, and the bifurcating periodic solutions 

are stable. Supercritical Hopf bifurcations are such that the bifurcating peri­

odic solutions exist for T > T * , and stability of the periodic solutions refers to 

orbital stability. Thus, for each J.t < p,*, there exists aT* > 0, depending on p,, 

for which the solution of (2.0.1) is non-periodic forT< T*, and periodic for 

T > T*. Once T is increased past T*, stability of the equilibrium point cannot 

be regained, since we have only one pair of purely imaginary eigenvalues. 

The second equation in (2.2.18) can be used to obtain an expression of 

T*, the bifurcation value of T for a given p, ~ -10.7 4, in terms of the model 

parameters and root w+: 

_ _2_ ~- l { aw! + d(ad- be)} , 21rn 
Tn - COD A ( 2 d2) T 

w+ p, w+ + w+ 
(n = 0, 1, . . . ). (2.2.21) 

Note that T * = To from this sequence of time delays, and that T * depends 

directly on p,. Therefore, expression (2.2.21) indicates how the pair of parame­

ters (p,, T) are related. If T is increased past T*, then the terms in the sequence 

(2.2.21) past T "' =To mark the delay times where additional eigenvalues cross 

the imaginary axis. These additional crossings do not change the stability of 
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the equilibrium point, which is unstable after the initial crossing, and cannot 

regain stability. The bifurcation delay times;* can be found using (2.2.21) for 

1-t < ~-t*, and from these times we can generate a bifurcation diagram for the 

system. This diagram, which plots r * with respect to J-t, is shown in Figure 2. 7. 

Note that, in order to find ;* for a given J-t < ~-t*, we must first evaluate the 

root w+ using (2.2.20). These calculations support our estimate of ~-t*, the 

critical value separating the Case 1 and Case 2 dynamics of the system. A 

single purely imaginary root is obtained provided J-t ::=; - 10.74, and J-t = -10.73 

revealed two imaginary roots, ,\.± = iw±, indicating that the system is in the 

realm of Case 2. 

1 .5 

0 .5 

oL-~--~--~--~--~~--~--~--~ 
-20 -19 -18 -17 -16 -15 -14 -13 - 12 - 11 

~ 

Figure 2.7: Bifurcation Diagram plotting ; * vs. J-t for system (2.0.1) with 

J.1 < ~-t" ~ -10.74 (Case 1) . 

A final remark for this case is that periodic solutions emerging through 

Hopf bifurcation (in Case 1) in this conductance system are only possible for 

a feedback signal which is inhibitory, since ~-t* ~ -10.7 4 < 0. 

Figure 2.8 illustrates the numerical results for Case 1, by showing the 
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numerical solution of (2.0.1) with J-l = -10.8 and different values of r. Model 

parameters J-l and r are specified for each plot, and other model parameters 

are as in Table 2.1. The delay initial conditions, that is, the functions V(O) 

and n( 0) for -r :::; 0 :::; 0, are set as the constant functions V ( 0) = - 50 and 

n(O) = n 00 (V(O)) = n00 (- 50) = ~ [1 +tanh ( -SOV~ V3)], 
chosen to correspond to the original initial conditions for this conductance 

system used by Morris and Lecar. The software package XPPAUT [11] was 

used for numerical simulations, and all results were confirmed using the DDE 

solver dde23 [36] for Matlab. All numerical simulations included in this thesis 

plot the numerical time- series solution V(t) versus t, along with the delay 

phase plane V (t- r) versus V(t). 

In Figure 2.8(b) we see that with J-l = -10.8 and a delay of T = 3, the 

system settles down to a stable equilibrium point after a few transient oscilla­

tions. However, by increasing the delay only slightly toT= 4 in Figure 2.8(d), 

we find that the stability of the equilibrium point has been lost, and the 

system exhibits periodicity; note the limit cycle in the delay phase plane in 

Figure 2.8(c). The simulations reveal that periodic solutions only appear as 

r is increased through r*. Furthermore, the periodic solution is stable, and 

exists for r > r*, in agreement with the detailed Hopf bifurcation analysis. 

Therefore the system passes through a Hopf bifurcation at (J-L = -10.8, r*), 

where 3 < r* = 3.6 < 4. Also, increasing r further will not change the sta­

bility of the equilibrium point, and so (V*, n*) is unstable for all time delays 

r > r*. The low Hopf bifurcation value of r in this particular case is due to the 

relatively large magnitude of J-l, which measures the strength of the feedback 

term. 
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(a) V (t - r) vs. V. (b) V (t) vs. t for r = 3. 

(c) V (t - r) vs. V. (d) V (t) vs. t for r = 4. 

Figure 2.8: Numerical simulation of (2.0.1) with the parameters in the range of 

Case 1: J.L = -10.8 with delay r increased from r = 3 tor= 4 ms, illustrating 

a change in stability of the equilibrium voltage as T is increased. 
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Before examining the Case 2 dynamics of (2.0.1), we comment on the values 

of fL for which [1,2 = (a - ~) 2 . These values are J-l = ~-t*, which separates Case 

1 from Case 2, and J-l = gL, J-t = gL + gK, for which the equilibrium voltages 

approach - oo and + oo, respectively. We are not concerned with the latter two 

cases, which are physiologically unrealistic. Consider the special case J-t = ~-t*. 

We saw in Section 2.2.5 that the condition [1,2 = (a - ~)2 
leads to a double 

zero eigenvalue and a pair of purely imaginary eigenvalues. By examining the 

equation defining 7 * of Case 1, (2.2.21), we find that the two zero eigenvalues 

occur for a different value of 7 than the pure imaginary pair. In fact, as 

w+ --+ 0, it appears that 7° --+ oo, where 7° represents the delay value where 

the zero eigenvalues occur. Therefore for 7 = 7*, which corresponds to the pair 

of purely imaginary eigenvalues, there is no degeneracy. As such, a change in 

equilibrium point stability and a Hopf bifurcation is expected as 7 is increased 

through 7*. For the approximate value ~-t* ~ -10.74, numerical simulations 

indicate that the equilibrium point (V*, n*) is stable for all 7 < 7* = 3.6, and 

loses stability at 7 * via a supercritical Hopf bifurcation, which gives rise to 

stable periodic solutions. That is, the dynamics are qualitatively similar to 

the Case 1 dynamics discussed in the previous section. 

2.2.8 Analysis of the System in Case 2 

Case 2 (112 < (a - ~) 2). The model satisfies the condition listed for all J-t 

such that ~-t* < J-t < gL. The additional conditions 

(a) p,2 > (a + d)2 - 2(ad - be), and 
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are satisfied provided J.L* < f1 ::::; J.L** = - 4.37. Recall that, for these values of 

J.L, the equilibrium point (V*, n*) of (2.0.1) is a stable spiral forT = 0. In Case 

2 there are two purely imaginary roots A± = iw± of (2.2.13) with w+ > w _ > 0, 

and that sign{ d(~~ >-)} . is positive for w! and negative for w:. . The crossing 
>-=tw 

of the imaginary axis from left to right with increasing T occurs whenever T 

assumes a value corresponding tow+, and crossing from right to left occurs for 

values of the delay T corresponding tow_. In this case, there are two sets of 

values of T for which there are imaginary roots of the characteristic equation, 

obtained from Equation (2.2.18): 

_ __!__ _1 { aw! + d(ad - be)} 27rn 
Tn,1 - COS ~ ( 2 ..J... d2) + 

w+ f1 w+ , w+ 
(n = 0, 1, · · ·) 

(2.2.22) 

_ __!__ _1 { aw:_ + d(ad- be)} 27rn 
Tn 2 - COS ~ ( 2 d2) + . ' w _ f1 w_ + w_ 

Since the zero solution of (2.2.7) is stable forT= 0 with fl* < f1 ::; fl**, then we 

must have To,1 < To,2. That is, the initial left-to- right crossing of t he imaginary 

axis occurs as T is increased through To,1 , and the initial right-to-left crossing 

occurs as T is further increased through To,2· Also, since 

271 271 
Tn+l 1 - Tn 1 = - < - = Tn+ l 2 - Tn 2, 

' ' w+ w_ ' ' 

there can only be a finite number of switches between stability and instability, 

after which instability prevails (for more details on this stability switching, 

refer to [6]). 

Consider f1 E (J.L*, J.L**] . To determine the number of stability switches 

possible for a given value of f1 in this interval, we compute the terms of the 
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sequences Tn,1, Tn,z, and look for two consecutive left to right crossings of the 

imaginary axis, i.e. find k such that Tk,l < Tk+l,l < T k,Z· When this occurs, 

Tk,I will mark the final stability change, to give a total of 2k + 1 stability 

switches. For f.1 E (J-l", - 5.02), only one change in stability is possible, from 

stable to unstable as T is increased. With f.1 in this interval, the results are 

qualitatively similar to those reported for Case 1, in that as T is increased 

through r* = To, the equilibrium point (V*, n*) loses st ability and remains 

unstable if T is increased further. Also, the Hopf bifurcation which occurs at 

(J-l , r*) is supercritical and branches to stable oscillations. 

On the other hand, if -5.02 ~ f.1 ~ J-l**, multiple switches in stability are 

evident: for most values of J-l in this range near the lower end of the interval, 

three changes in stability occur as T is increased before instability persists. For 

values of f.1 in the upper portion of this interval, the number of stability switches 

increases to 5, 7, 9, 11, 13 as f.1 ---+ J-l** from the left, and up to 27 stability 

switches are possible with f.1 = - 4.37, the approximate value of Jl**. These 

results were obtained by considering f.1 in this range accurate to two decimal 

places. As IMI increases, the delay times marking the changes in stability 

decrease, and as the number of possible stability switches increases, the time 

delay where the final switch to instability occurs increases. For example, with 

J-l = - 4.37, 27 stability changes are possible, and the final switch occurs when 

T ~ 645 ms. But for Jl = -5.02, only three changes in stability are observed, 

and the final switch occurs when T ~ 41 ms. 

By computing the terms of the sequences in (2.2.22), we can generate 

bifurcation diagrams which describe how the delay times vary with J-l· In 

Figures 2.9(a) and 2.9(b), the plots of r 0,1 and r 0,2 versus Jl are shown for 
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p, E (J.t*, J.t**] . Since there is no gap between the values of J.t which place the 

system in Cases 1 and 2, we expect the curve describing r 0,1 vs. J-l to be a 

smooth continuation of the r* vs. p, curve obtained in Case 1, since both 

times correspond to the w+ root. This is confirmed in Figure 2.9(c), which 

combines the curves of T* = To,1 of Case 1 along with r 0,1 and r 0,2 of Case 2. 

Computing these roots and values of r in the sequences supports our earlier 

estimation for J-l** ~ -4.37, since no real roots were found for J.l = -4.36. 

The final bifurcation diagram we include demonstrates the stability switching 

properties of the model with J.t E [-5.02, -4.37]: Figure 2.10 contains the 

terms of the sequences Tn,l and Tn,2 which give rise to stability changes in the 

equilibrium point for J.t in the indicated range, and up to 13 stability switches 

are included. Note that the intervals of J.t exhibiting more stability changes 

get smaller as the number of switches increases. 

We remark that no change(s) in stability occur at the cusp points in Fig­

ure 2.10. At these points, we have Tk,z = Tk+l ,l (k E {0, 1, .. . , 6}, since up 

to 13 switches are possible), and so as T . is increased through this common 

critical value, there are two pairs of purely imaginary eigenvalues, one pair 

corresponding to a left to right crossing of the imaginary axis, the other to a 

right to left crossing. The pair of eigenvalues which cross from right to left 

are the same pair which crossed from left to right at Tk,l· As r is increased 

through Tk,2 = rk+1 ,1, the left to right crossing maintains the instability in the 

equilibrium point, and for those values of J.t where a cusp point arises, the final 

stability switch occurs when T = Tk,l · 

The system undergoes a Hopfbifurcation when the equilibrium point (V*, n*) 

changes stability, which occurs when the delay T assumes the values r 0,1 and 
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Figure 2.9: Bifurcation Diagrams: The values To,1 and To ,2 versus J-L for Case 

2, and shown together along with the T* values of Case 1. 
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Figure 2.10: Bifurcation Diagram plotting the terms of Tn,l and Tn,2 which give 

rise to stability changes forME [-5.02, -4.37]. The values of M for which the 

model exhibits up to 13 stability switches are indicated. 

T0,2 . The Hopf bifurcations which occur with the Tn,1, sequence are supercriti­

cal and branch to stable oscillations, while those associated with Tn,2 sequence 

are subcritical and branch to stable oscillations. These results are obtained 

from the detailed Hopf bifurcation analysis carried out in section 2.2.9. There 

is numerical evidence to suggest that the periodic solutions emanating from 

the subcritical Hopf bifurcation(s) at Tk,2 are from the same branch of stable 

solutions which appeared via the supercritical Hopf bifurcation at Tk,l · With 

T just above To,1, the amplitude of the periodic solution increases, but further 

increasing T causes the amplitude to decrease. As T -t T0,2 , the amplitude 

decreases and appears to approach zero. 

To summarize, forM E [- 5.02, M**] system (2.0.1) possesses a single equi­

librium point (V*, n*), which is stable for all T < 70,1 . \Vhen T is increased 

through To,1 , the equilibrium point loses stability, and a branch of stable pe-
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riodic solutions emerges via a supercritical Hopf bifurcation. ViTith To,1 < T < 

To,2 , the system possesses an unstable equilibrium point and a stable limit 

cycle. As T is increased through T0,2 , the equilibrium point regains stabil­

ity and a branch of stable periodic solutions disappears through a subcritical 

Hopf bifurcation. Then, with To,2 < T < T1,1 , the system admits only a stable 

equilibrium point, but a branch of stable periodic solutions emanates from a 

second supercritical Hopf bifurcation at T1,1 when the equilibrium point loses 

stability. This trend continues until the final stability switch. Figure 2.11 con­

tains a schematic bifurcation diagram illustrating this conjectured bifurcation 

sequence for the case where three stability switches are possible. Bifurcation 

diagrams such as Figure 2.11 concisely depict the behavior of a system as a 

parameter is varied. In schematic bifurcation diagrams appearing in this the­

sis, solid lines represent stable equilibria, and dashed lines represent unstable 

equilibria. Stable periodic orbits are represented by filled circles, and unstable 

periodic orbits by unfilled circles. 

• • • .. . . .. . . .. • •••• • • 

--------=·- --------·----------=·- --------
70,1 70,2 71,1 

Figure 2.11: Conjectured bifurcation structure of system (2.0.1) with three 

stability switches as T is increased. 

Numerical simulations are included in Figure 2.12 to illustrate the stability­

switching phenomenon predicted for this model. Here, we examine the spe-
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cific case J-L = -4. 7, which is in the range where we expect multiple stability 

switches. With J-L = - 4. 7, the Cooke-Grossman theory predicts changes in 

stability occur when the delay 7 is increased through the values 7 0,1 = 13.9, 

7 0,2 = 34.8, and r 1,1 = 48.4. Included in Figure 2.12 are the time-series solu­

tions for four different values of r: 7 = 10, 20, 43, and 55. \Vith delay T = 10 

ms, we find that the solution settles down to a stable constant equilibrium 

voltage after a few transient oscillations. Note that this initial time delay is 

less than r 0,1 , which marks the first change in stability of the equilibrium point. 

The first stability change is observed by increasing the delay tor = 20, which 

is above r 0,1 , and included in Figure 2.12(d). Here, we see that the equilibrium 

voltage is unstable, and the system exhibits stable periodic solutions, as a re­

sult of the supercritical Hopf bifurcation. Two further stability changes can 

be seen by taking 7 = 43 E [70,2 , 71,1] and 7 = 55 > T1,1, the value where the 

final stability switch occurs. The equilibrium voltage cannot re-gain stability 

once 7 is increased beyond this value. The sequence of figures shown here 

compliment the schematic bifurcation diagram in Figure 2.11, which depicted 

the dynamics of (2.0.1) with three stability switches. The initial functions in 

Figure 2.12 are V(O) = - 20, n(O) = n00 ( -20), 0 E [-r, 0] to illustrate the 

local behavior of the system near the equilibrium point. 

With J-L E (J-L*, -5.02), the model satisfies all conditions of Case 2, but 

only one change in stability is possible, since 71,1 < 70,2 . In this respect, the 

results for the model with p, in this range are similar to the results for those 

p, < p,* where Case 1 occurs. Figure 2.13 is a numerical simulation of system 

(2.0.1) with J-L = -8, a representative of this case. Initial conditions are as in 

Figure 2.8. With a delay of 7 = 4 ms the equilibrium voltage is stable, and 
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Figure 2.12: Numerical simulation of of system (2.0.1) with J.L = - 4.7 (Case 

2), illustrating the stability switching of the (V*, n*) as T is increased. 
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the solution approaches a constant value after a brief transient period. If the 

delay is increased to T = 6 ms, then stability of the equilibrium is lost, as the 

system has passed through a supercritical Hopf bifurcation (at T = 5.3) and a 

stable periodic solution has emerged. 

(a) V(t - r ) vs. V . (b) V(t) vs. t forT = 4. 

(c) V(t - r ) vs. V . (d) V(t) vs. t for T = 6. 

Figure 2.13: Numerical simulation of (2.0.1) with the parameters in the range 

of Case 2: J1 = -8. With delay T = 4 the equilibrium point is stable, but 

becomes unstable if we increase the delay to T = 6. Periodic solutions arise as 

the system undergoes a Hopf bifurcation. 

Since 11** ;:::::;; - 4.37 < 0, stability switching is only possible for the all­

K+ conductance system (2.0.1) with inhibitory feedback. Therefore, sustained 

oscillations arising through Hopf bifurcation are possible in the all-K+ con-
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ductance system (2.0.1) with inhibitory feedback. 

Finally, we consider fJ in a range where the model does not satisfy the 

criteria for Case 1 or Case 2. This occurs for values JJ** < fJ < gL, an interval 

which includes both inhibitory and excitatory feedback. Recall that, with fJ 

in this range, the equilibrium is stable for 7 = 0. Since there are no purely 

imaginary roots of (2.2.13), then there are no crossings of the imaginary axis 

and hence no changes in equilibrium point stability. Thus we expect (V*, n*) 

to be stable for all7 > 0, and do not anticipate periodic behavior. Figures 2.14 

and 2.15 show the solution to the model with inhibitory feedback (JJ = -2.5) 

and excitatory feedback (JJ = 2), respectively, for values of fJ in this range. 

In both cases, we find that the equilibrium voltage of the model is stable, 

and even a ten- fold increase in the magnitude of the delay has no affect on 

the long- term stability of the equilibrium. Here, the strength of the feedback 

is relatively weak, and it appears that no value of the delay 7, no matter 

how large, can cause the equilibrium to lose stability. Initial conditions for 

Figures 2.14 and 2.15 are as in Figure 2.8. 

No additional behavior was detected for the all-potassium system. A large 

sample of initial conditions all led to t he same behavior as the numerical 

simulations presented here, and hence we conjecture that the full dynamics 

of the system are accounted for by the Cooke-Grossman theory relating to 

equilibrium point stability, and by the Hopf bifurcation theory for DDEs. 

Of course, this is not true for those values of JJ where the system does not 

have an equilibrium point, and for these cases we observed that in numerical 

simulations, the voltage approached ±oo. The biophysical interpretation of 

the voltage V --+ ±oo is discussed in Chapter 5. 
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(a) V (t- T) vs. V . (b) V(t) vs. t forT= 20. 

I 

(c) V (t - T) vs. V. (d) V(t ) vs. t forT = 200. 

Figure 2.14: Numerical simulation of system (2.0.1) for weak inhibitory feed­

back. Here, J.1 = - 2.5, and the delay is increased from T = 20 to T = 200, 

illustrating that the equilibrium remains stable as the delay is increased. 
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(a) V(t - r) vs. V . (b) V(t) vs. t for r = 20 . 
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(c) V(t - r) vs. V . (d) V(t) vs. t forT= 200. 

Figure 2.15: Numerical simulation of system (2.0.1) for weak excitatory feed­

back. Here, p, = 2, and the delay is increased from T = 20 to T = 200, 

illustrating that the equilibrium remains stable as the delay is increased. 
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The main results of this chapter (including Section 2.2.9), with respect to 

equilibrium point stability and Hopf bifurcation, can be summarized by the 

following theorem: 

Theorem 2.2.8.1. Assume that parameters in system (2.0.1) are as in Ta­

ble 2.1. Then we have the following: 

1. If f-L < f-L*, then (V*,n*) is stable for all T E [O,r*), where f-L*, r* are 

defined earlier, and unstable for all T > r* . A supercritical Hopf bifurca­

tion occurs at T = r*, and the emerging periodic solutions are orbitally 

stable. 

2. If f-L* < f-L < f-L**, then (V*, n*) is capable of a finite number of stability 

switches before instability persists ( p,** defined earlier). Transitions from 

stability to instability occur with Tn,I terms of (2.2.22), while those from 

instability to stability occur with Tn,2 terms, n = 0, 1, .... A total of2k+ 1 

switches is possible, where k satisfies Tk, I < Tk+l ,I < Tk,2 . At each Tn,l 

( Tn,2 ) where a stability change occurs, a supercritical (subcritical) Hopf 

bifurcation occurs, and the emerging periodic solutions are orbitally stable 

(stable). 

3. If f-L** < f-L < gL, then (V*, n*) is stable for all T ;::: 0. 

4- If p, > 9L + gK, then (V*, n*) is unstable for all T :2: 0. 

The following section 2.2.9 contains the detailed Hopf bifurcation analysis 

of system (2.0.1), while physiological implications of the results presented here 

are addressed in Chapter 5. 
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2.2.9 Direction and Stability of Hopf Bifurcation 

The previous sections indicate that system (2.0.1) is capable of undergoing 

Hopf bifurcation when J1 < 11**. Furthermore, whenever stability of the equi­

librium point (V*, n*) changed, a Hopf bifurcation occurred. In this section, 

we present a detailed Hopf bifurcation analysis to study the direction, stability, 

and the period of bifurcating periodic solutions. We wish to verify that, for 

J1 < - 5.02, only one supercritical Hopf bifurcation takes place as 7 is increased 

past 7* , and that alternating super- and sub-critical Hopf bifurcations occur 

as 7 is increased through the values 7n,1, 7n,2, n = 0, 1, ... , respectively, if J1 is 

in the range -5.02 ::; J1 ::; -4.37. The method used to analyse these features 

is based on the normal form method and the center manifold theory developed 

by Hassard, Kazarinoff, and Wan [20]. 

Consider system (2.0.1) with J1 < 11**. Recall that the Cooke-Grossman 

theory ensures that all eigenvalues other than ±iw+ have negative real parts 

when 7 = 70,1 . Similarly, when 7 = To,2 , the system possesses a pair of 

purely imaginary eigenvalues ±iw_, and all other characteristic roots have 

strictly negative real parts. In Sect ion 2.2.6 we verified that the transversality 

condition is satisfied in each case. The system (2.0.1) also satisfies the required 

conditions on the continuity of the nonlinearity, and so all hypotheses for the 

DDE Hopf bifurcation theorem [17] (Theorem 11.1) are met. Therefore we 

conclude that a Hopf bifurcation occurs for system (2.0.1) when 7 = To,1 and 

7 = 7 0,2. The same is true as T is increased through the delay times 7 n ,1, and 

Tn,2 , n = 1, 2 . .. , while Tk,2 < 7k+l,l' k = 1, 2, . . . , the condition which specifies 

the number of stability switches. We noted earlier that, for the cusp points 

in Figure 2.10, no change in stability takes place since there is a simultaneous 
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left to right and right to left crossing of the imaginary axis. Since there are 

two pairs of purely imaginary eigenvalues in these cases, the Hopf bifurcation 

theorem for DDEs is not met, and hence no Hopf bifurcation occurs at these 

points. Such Hopf-Hopf interaction points have been studied in neural network 

models with delay [37], but we do not investigate these points of our model 

further. 

Having determined that Hopf bifurcation(s) are possible when T = Tn,l 

and Tn,2, n = 0, 1, ... , we turn to the direction and stability of periodic orbits 

emanating from these bifurcations. The analysis which follows is similar to 

that by Plant (32] and Wei and Ruan [40] . We consider the eigenvalues to be 

a function ofT, and when T = Tn,1 , n = 0, 1, ... , the root 

A(T) = o:(T) + iw(T) 

of (2.2.13) satisfies a:( Tn,1) = 0, w( Tn,1) = w+, and has the property 

da(Tn,l) O 
dT > ' 

where n = 0, 1, ... , which is simply the transversality condition considered 

earlier. In the case ofT= Tn,2 , the root A.(T) satisfies a(Tn,2) = 0, w(Tn,I) = w_, 

and has the property 
da(Tn,2) O 

dT < ' 

where n = 0, 1, .... If we let T = Tn,l + "/, 'Y E JR, n = 0, 1, . . . , then 'Y = 0 is 

the Hopf bifurcation value for (2.0.1). The same is true if we letT= Tn,2 + 'Y· 

For convenience, assume that T = Tn,l or T = Tn,2 , n = 0, 1, . . . , and let w be 

the corresponding root of (2.2.19), that is w = w+ or w = w_, to carry out the 

analysis. The actual values ofT and w are only important once the calculation 
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is complete. We choose the phase space to be C = C([-r, 0] , JR? ), and concern 

ourselves with only real solutions. Expanding the hyperbolic trigonometric 

functions, we may write (2.2.6), the nonlinear system with equilibrium point 

shifted to the origin, in the form 

where 

dx 
-=-ax+ by+ P,x(t - r) - axy 
dt 
dy c ( 1 ) 2 d dt = CX - dy - 1;4 f3v - 2,f3u X -

2114 
f3uXY 

c [ 5 ( 1 ) l 3 d 2 I 4) - ~2 
24 

+ f3v 2f3u - f3v X - 8~2 x Y 1 O(x , 

f3u = tanh(u), f3v = tanh(v), 
V*- v3 

U= 
21;4 

V* - Va 
V= v4 

(2.2.23) 

and the coefficients a, b, c, d and p were defined earlier for the linearised 

system (2.2.8) . For ¢ = [¢1 , ¢2? E C, let 

(2.2.24) 

and define 

+ 
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By the Riesz representation theorem, there exists a 2 x 2 matrix-valued func­

tion 'fl(·, !) : [- T, 0] -t JR22 = JR4 whose components are functions of bounded 

variation such that 

Ly¢ = L: d'fl (O, !)¢(0) 

for all¢ E C . Specifically, we choose 

[ 
- a b l , 
c -d 

(j = 0, 

[~ ~]O(B + T), BE [-7,0), 

where c5 is the Dirac- delta function. For¢ E C1([-T, 0], IR2), define 

and 

d¢(0) 
--;{()' (j E [-T, 0), 

0, (j E [- T, 0) 

R(J)¢(0) = 

F(!, B) , (} = 0. 

Hence, we can rewrite (2.2.23) in the form 

(2.2.25) 

where X= [x,y]T and Xt = X(t+B) for(} E [- T,O]. Let C* = C 1([0, T],IR2 ) 
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and define, for 7/J E C*, the adjoint operator A*(O) of A(O) by 

A*(0)7j;(s) = 

d7j;( s) 
-~ , s E (O,r], 

I: dr?(s,0)7j;( - s) , s =O, 

80 

where rJ T is the transpose of rJ. For ¢ E C and 7/J E C*, define t he bilinear 

form 

(1/J, ¢) = .)J(0)¢(0) - t L, .pT (~- O)d~(O),P(()dl;, (2.2.26) 

where rJ(O) = ry(O, 0). Therefore, A(O) and A*(O) are adjoint operators, and as 

usual, we have 

(7/J , A(O)¢) = (A*(0)7/J, ¢). 

If we assume that >.(0) = iw is an eigenvalue of A(O), then it follows that -iw 

is an eigenvalue of A* (O). Then 

A(O)q(O) = iwq(O), and A*(O)q*(s) = -iwq*(s), 

where q( 0) and q* ( s) are the eigenfunctions corresponding to eigenvalues iw of 

A(O) and - iw of A*(O), respectively. We directly compute the eigenfunction 

q(O), and obtain 

q(O) = [ ~ ] e"', where /3 = cd - icw. 
d2 +w2 

To find q*(s), we let q(s) = [v11 v2]eiws, and the equations (q*, q) = 1 and 
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(q*, ij) = 0 under the standard inner product (2.2.26) lead to 

1 = 

0 

~] J(O+r) [ ~] eiw'dEdB, 

~ ] J(B + r) [ ~ ] e- '"'dEdB 

Integration of these equations yields 

i11[1 + jlr cos(wr)- ijlr sin(wr)] + f3i12 = 1, 

il1 [1 + ~ sin(wr)] + ~il2 = 0. 

Solving these equations for il1 , il2 , we obtain 

and 

where e1 = 1 + jlr cos(wr) - ijlr sin(wr) and e2 = 1 + § sin(wr). Taking the 

complex conjugates of il1 and il2 , we obtain 

where 

L1 = jl [drcos(wr) + sin(wr) ( wr - ~)] , 
Lz = w (2 + jlrcos(wr )) + jlsin(wr)(1 - dr). 

A centre manifold C0 for (2.2.25) at 1 = 0 is a locally invariant, at tracting 

two-dimensional manifold in C, whose coordinates are computed as follows. 
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Let Xt be the solution of (2.2.25), and define 

z(t) = (q*,Xt), and W(t, 0) = Xt(O)- 2Re{z(t)q(O)}. 

Then, for r = 0, on the centre manifold C0 we have 

where z and z are local coordinates for the centre manifold Co in C, in the 

direction of q* and ij*. Note that we are only interested in real solutions, and 

if Xt is real, then W is real. 

According to [25], the existence of the centre manifold allows us to reduce 

(2.2.25) to an ordinary differential equation 

z(t) (q*, A(O)Xt + RXt) 

We rewrite this as 

where 

iwz + (q"(O), F(W + 2Re{z(t)q(O)})) 

iwz + ij*(O)F(W ( (z, z, 0) + 2Re{ z(t)q(O)}) 

d ef iwz + ij*(O)F0 (z , z). 

z(t) = iwz(t) + g(z, z), 

(2.2.27) 

~ P ~z 
9(z, z) = ij*(O)Fo(z, z) = 92o

2 
+ 9uzz + 9o22 + 9212 + · · · . (2.2.28) 

From (2.2.25) and (2.2.27), we have 

w = Xt- zq- zij = { A(t)W- 2Re{ij*(O)Foq(e)} , 

A(r)W- 2Re{iJ.*(O)F0q(O)} + Fo, 

def A(r)W + H(z, z, 0) , 

0 E [-T,O) 

o = o, 
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where 

Expanding the above series and equating like coefficients, we obtain 

(A(r) - 2iw)W2o(B) = - H2o(B), 

A(r)Wn (B) = - Hn (B), 

(A(!') + 2iw)Wo2(B) = - Ho2(B), · · · . 

(2.2.30) 

Note that q*(O) = [v1, v2], and 

x(t) = W(1)(t, 0) + q1 (0)z(t) + q1(0)z(t) = w<1)(0) + z + z, 

y(t) = w<2)(t, 0) + q2(0)z(t) + tl2(0)z(t) = w<2)(0) + j3z + /3z, 

since q(O) = [q1 (0), q2(0)]T = [1, ,B]T, where 

2 -2 

w<1
) (0) = W (l)(t , 0) = wJ6) (0) ~ + W{i) (O)zz + lVJi) (0) z

2 
+ · · · , 

2 - 2 

w<2)(o) = w<2)(t,o) = wJ5) (o)~ + wg)(o)zz + wJ;) (o)~ + · ··, 

and 

- ax(t)y(t) 0 

Fo = + + · · · , 

Ax2 (t) - Bx(t)y(t) 

where 

A=-~ (f3v- ~/Ju)' B = 2~/Ju, 
D = ~2 [ 2

5
4 + f3v ( ~ f3u - f3v)] ' G = 8~l ' 
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for convenience. Therefore, it follows that 

9(z, z) - q*(O)Fo 

- - ax(t)y(t)D1 + [Ax2 (t) - Bx(t)y(t)- Dx3(t)- Gx2 (t)y(t) ] D2 

+0(x4
) 

- [AD2- f3(aD1 + BD2) ]z2 + [2AD2- ((3 + i3)(aD1 + BD2)]zz 

+[AD2 - i3(aD1 + BD2)]z2 + [ WJ~) (0)~ (2AD2 - i3(o:D1 + BD2)) 

+T¥R)(O) (2AD2- f3(aD1 + BD2))-W2~)(0)~(aD1 + BD2) 

+Wii)(O)(aDl + BD2) - D2 (G(2{3 + i3) +3D)] z2z. 

Comparing this to the expansion of 9(z, z), i. e. (2.2.28), and equat ing like 

coefficients, we have 

92o = 2(AD2- f3(aD1 + BD2)], 

9n = 2AD2- (/3 + i3)(o:D1 + BD2) , 

9o2 = 2[AD2 - i3(o:D1 + BD2)], 

921 = 2 [wJ~)(O)~ (2AD2- i3(o:D1 + BD2)) (2·2·31) 

+WR)(O) (2AD2- (3(aD1 + BD2))- wJ5)(0)~(aDl + BD2) 

- W}i)(O)(aD1 + BD2) - D2 (G(2(3 + i3) +3D)] . 

To compute W20(0) and W11 (0) for 0 E [-r, 0), we have 

H (z, z, 0) - 2Re{q*(O)F0q(O} = -9q(O) - gq(O) 

- (92o ~ + 9nZZ + 9o2 ~ + · · ·) q(O) 

- ( 92o ~
2 

+ 9n zz + 9o2 ~
2 

+ · · ·) q(O). 
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Equating like coefficients with (2.2.29) gives 

From (2.2.30), it follows that 

and solving this differential equation for W20 (0) we obtain 

w2o(O) = _ ~20 q(O)eiwB _ 9?2 q(O)e- iw8 + Ee2iw8 . 
~w 3zw 

Similarly, we obtain 

Wn(O) = ~11 q(O)eiwB- ~11 q(O)e-iwB +F. 
~w ~w 

85 

(2.2.32) 

(2.2.33) 

In (2.2.32) and (2.2.33), E = [E1 , E2]T and F = [F1 , F2]T are two-dimensional 

vectors, and can be determined by setting () = 0 in H. Since 

H(z, z, 0) = -2Re{q*(O)F0q(O)} + Fo, 

this gives 

and 

[ 
-20!/3 ] H2o(O) = - g2oq(O) - 9o2iJ(O) + , 

2(A - f3B) 

Hn (0) = -gnq(O) - 9nii(O) + [ -o:(/3 + i3) _ ] , 
2A- B(/3 + (3) 

(2.2.34) 

(2.2.35) 

where q(O) = [1, f3]T, and A and B were defined above. From (2.2.30) and the 

definition of A('y), we have 

b ] W20 (0) + [ jl O ] W2o( - T) = 2iwW2o(O) - H2o(O), (2.2.36) 
-d 0 0 
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and 

[ 
- a b J [ P, 0 J Wn(O) + Wu(- r) = - Hu(O). 
c -d 0 0 

(2.2.37) 

Substituting (2.2.32) into (2.2.36) , we obtain 

[ 

- a + p,e-2iwT - 2iw b J 
c -(d + 2iw) 

E = - g2oq(O) - .9o2il(O) - H2o(O) , 

since 

[ 

-a + p,e- iwT - iw b J 
q(O) = 0. 

c - d- iw 

With H20 (0) given in (2.2.34), we obtain 

[ 
-a+ p,e-

2
iwT- 2iw b J [ - 2af3 J 

c -(d+2iw) E =- 2(A-f3B)' 

which gives the set of equations 

cE1 - (d + 2iw)E2 = -2(A- f3B). 

Solving these equations for E 1 and E2 gives 

E = 2af3(d + 2iw)- 2b(A- (3B) 
1 be+ (d + 2iw) [p,e- 2iwT- (a+ 2iw)] 

and 
E = 2af3c + 2(A - (3B) [p,e-2i""'7 - (a+ 2iw)] 

2 bc+(d+2iw)[p,e- 2iw7 -(a+2iw)] · 

Solving for the components ofF in a similar manner, we obtain 
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which leads to 

b(2A - B(f3 + fi)) - ad(f3 + fi) 
(ad - be) - P,d 

(a - P,)(2A - B(f3 + fi)) - ae(f3 + fi) 
(ad - be) - P,d 
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Now we see that all of the 9i/s in (2.2.31) are determined by the parameters 

and delay in the nonlinear system (2.2.6). vVe employ the formulas of Hassard, 

Kazarinoff and Wan [20) to compute the quantities 

( ) i ( 12 1 2) 921 cl 0 = 2w 920911- 2lgu - 3l9o21 + 2' 
Re{C1(0)} 

p,2 = - Re{ .\'(0)} ' (2.2.38) 

!32 = 2Re{C1 (0)}, 

T2 = _I_ (Im{C1 (0)} + p,2Im{X(O)}), 
w 

where .\(1) = a('y) + iw('y) is a solution of (2.2.13), where T = Tn,l + /, or 

T = Tn,2 + /, n = 0, 1, . .. , satisfying a(O) = 0, w(O) = w. Applying the 

results of Hassard, Kazarinoff and Wan [20), we know that p,2 determines the 

direction of the Hopf bifurcation: if p,2 > 0 ( < 0), then the Hopf bifurcation 

is supercritical (subcritical) and the bifurcating periodic solutions exist for 

T > r* ( < r*) . The stability of periodic solutions on the centre manifold are 

determined by the sign of the Floquet exponent /32 : the bifurcating periodic 

solutions are orbitally stable if /32 < 0, and unstable if (32 > 0. Finally, the 

period of the bifurcating periodic solutions is given by T2, and the period 

increases if T2 > 0, and decreases if T2 < 0. We are mainly concerned with 

the direction and stability of the bifurcating periodic solutions. 



CHAPTER 2. THE ALL-K+ CONDUCTANCE SYSTEM 88 

To conclude this chapter, we present some sample calculations to illustrate 

the results of the Hopf bifurcation analysis. The first example is for J.-t < J.-t* , 

where the model is in Case 1. Under this case, stability of the equilibrium 

point is lost for good when T = T* = T0,1, and a branch of periodic solutions 

emerges from a Hopf bifurcation. Consider J.-t = - 10.8 as a representative 

from Case 1. For this value of J.-t, the purely imaginary root is .A+ = iw+ = 
i x 0.5441, and the delay time for the bifurcation is 7* = To,1 = 3.6 ms. The 

component (3 of the eigenfunction q(O) is (3 = 0.000283- i x 0.00206, and 

v1, v2 of q*(s) are v1 = 0.274 + i x 0.273, v2 = 9.37- i x 12.39. For the 9ii 

coefficients, we obtain 920 = 0.00123+i x 0.00150, 911 = 0.000715 + i x 0.00109, 

902 = 0.000205 + i x 0.000680, and 921 = - 0.00222 + i x 0.00284. This gives 

cl (0) = - 0.00111 + i X 0.00142, and hence Jl-2 = (0.00111)(Re{ X(O)} )-1 > 0, 

since Re{X(O)} > 0, and (32 = - 0.00223 < 0. Therefore, the Hopf bifurcation 

at To,1 for p, = -10.8 is supercritical (p,2 > 0) and the bifurcating periodic 

solutions branch to stable oscillations ((32 < 0). Similar results were obtained 

for a large sample of values of J.-t < p,* . These results are consistent with 

numerical simulations for this case. 

Next consider p, = -4.7, an example discussed in detail in section 2.2.8. 

For this value of p, we found that three stability changes are possible, and occur 

as we increase T through the values T0,1 = 13.9, To,2 = 34.8, and T1,1 = 48.4. At 

each of these bifurcation values we also obtain a branch of periodic solutions 

from a Hopf bifurcation. Note that both To,1 = 13.9 and T1,1 = 48.4 correspond 

to the w+ root, which has value w+ = i x 0.182, while To,2 = 34.8 corresponds 

to the w_ root, where w_ = i x 0.0875. Tables 2.2 and 2.3 report the values 

for important quantities to determine the direction and stability for all three 
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Hopf bifurcations. 

II Value II ro,l = 13.9 To 2 = 34.8 , II 
/3 0.00121 - i X 0.00260 0.00329 - i X 0.00339 

vl 0.201 + i X 0.107 0.106 + i X 0.0177 

v2 1.12 - i X 21.7 - 9.63 - i X 13.9 

920 0.000289 + i X 0.00162 - 0.000625 + i X 0.00127 

911 - 0.00138 + i X 0.00121 - 0.000845 + i X 0.000862 

902 -0.000565 + i X 0.000802 - 0.00106 + i X 0.000455 

921 -0.00261 + i X 0.00282 -0.00203 + i X 0.00112 

C1(0) - 0.00131 + i X 0.00140 - 0.00101 + i X 0.000558 

J.l2 (0.00131) (Re{ X (0)} )-1 (0.00101) (Re{ A'(O)} )-1 

!32 - 0.00261 - 0.00201 

Table 2.2: Detailed Hopf bifurcation analysis: sample calculations for the first 

two Hopf bifurcations which occur for J.t = - 4.7 (Case 2, multiple stability 

switches) . 

For the Hopf bifurcation which occurs at T = r0,1 = 13.9, ~t2 > 0 since 

Re{X(O)} > 0, and so the Hopf bifurcation is supercritical, and since /32 < 0, 

the bifurcating periodic solutions branch to stable oscillations. The same is 

true for the bifurcation at T = ru = 48.4. While the bifurcation at r0,2 = 34.8 

branches to stable oscillations (/32 < 0), we find that ~t2 < 0, since Re{A'(O)} < 

0, and so the the direction of the Hopf bifurcation is subcritical. A large 

sample of values of J.t E [-5.02, -4.37] (approximately 20- 25 values) were 

tested and all produced similar results. That is, Hopf bifurcations occurring 

with delay times Tn ,1 , n = 0, 1, ... are all supercritical and branch to stable 
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II Value I T1 1 = 48.4 
' II 

/3 0.00121 - i X 0.00260 

l/1 0.0680 + i X 0.0427 

l/2 0.948 - i X 7.58 

920 0.000143 + i X 0.000561 

911 - 0.000017 4 + i X 0.000482 

902 -0.000178 + i X 0.000296 

921 - 0.000845 + i X 0.00105 

C1(0) - 0.000423 + i X 0.000525 

J..l2 (0.000423) (Re{ X (0)} )-1 

/32 -0.000846 

Table 2.3: Detailed Hopf bifurcation analysis: sample calculations for the 

third Hopf bifurcation which occurs for J..t = - 4.7 (Case 2, multiple stability 

switches). 
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oscillations, while those for Tn,2 , n = 0, 1, ... are subcritical and branch to 

stable oscillations. Also, numerical simulations presented in section 2.2.8 are 

in agreement with the results reported here. 



Chapter 3 

The all-Ca2+ Conductance 

System 

In this chapter, we explore the dynamics of the all-Ca2+ conductance system. 

This investigation will illustrate how the all- Ca2+ and all- K+ conductance 

systems with delay differ from each other, how the dynamics of the all- Ca2+ 

system with delay differ from the original model without delay, and will help 

demonstrate how the all- Ca2+ with delay contributes to the full-2D model 

with delay. The equations are similar in form to those describing the aU-K+ 

system, and so the analysis of the all- Ca2+ conductance system is very similar 

to that of the aU- K+ system. 

The original single-ion conductance systems of the Morris- Lecar model 

without delay exhibit qualitatively different behavior. The all-K+ system ex­

hibits a graded response with a transient peak followed by a decay to a voltage 

plateau, while the all- Ca2+ system has bistable responses and a characteristic 

threshold (24]. These differences are due largely in part to differences in pa-

92 
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rameter values. It is important to note that Morris and Lecar [24] change the 

values of some parameters which overlap between the aU- K+ and all-Ca2+ sys­

tems, most importantly the leakage equilibrium voltage. In the original aU-K+ 

system without delay, they set VL = - 50 m V, but used the value VL = - 35 

m V for the original all- Ca2+ system without delay. This was done to illustrate 

different behaviors displayed by the the two isolated conductance systems, 

and in the system where both systems are active. For consistency, we shall 

use VL = -50 for both single- ion conductance systems. This will also allow 

us to better compare the dynamics of the conductance systems with delay. 

The all-Ca2+ conductance system with delay is governed by the system 

(3.0.1) 

m(t) = Am(V) [moo(V) - m], 

with voltage--dependent functions moo (V ), Am (V) described by 

1 [ (v- V1)] moo(V) = 2 1 +tanh V2 , 

(3.0.2) 

This system is obtained by setting n, the fraction of open K+ channels, to 

zero in the three- dimensional Morris Lecar system with delay (1.3.5). Before 

addressing the dynamics of (3.0.1), we present a brief overview of the behavior 

of the original system without delay. 
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3.1 The all- Ca2+ Conductance System 

without Delay 
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In the absence of delay, the calcium conductance system displays more compli­

cated dynamics than the potassium system. While voltage oscillations are still 

not possible in this isolated system, Morris and Lecar found that the all-Ca2+ 

system exhibits bistable responses and a characteristic threshold. With J-l = 0, 

system (3.0.1) is reduced to the original Ca2+ conductance system without 

delay: 

(3.1.1) 

m(t) = Am(V) [moo(V) - m], 

with Am(V) and m00 (V) as in (3.0.2). For system (3.1.1), three equilibria are 

obtained in the (V, m)- phase plane, given by the intersection of the nullclines 

V(m) = gLVL + 9caVcam and m(V) = moo(V) = ~ [1 +tanh (v ~ vl)]· 
9L + 9cam 2 2 

Them = 0 nullcline, is a monotone increasing function m = m 00(V) which is 

similar in shape to the n(V) nullcline of the all-K+ system, differing only in 

steepness and a slight shift along the voltage axis. The nature of the V = 0 

nullcline is the cause for the different behavior between the Ca2+ and K+ 

conductance systems without delay. With VK < VL, the 1i = 0 nullcline of the 

aU- K+ system is monotone decreasing and hence the nullclines can intersect 

at most once. On the other hand, since Vca > VL, the V = 0 nullcline of t he 

all- Ca2+ system is monotone increasing, and so the nullclines can intersect 

one, two, or three times, depending on the value of the applied stimulus. 
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With I = 0, the system admits three equilibrium points, as indicated by the 

phase plane diagram depicted in Figure 3.1(b). We shall refer to the lower 

equilibrium point as (Vi , ml), the middle as equilibrium point as cv;, m2), and 

the upper as (V3, m 3) . 

Morris and Lecar state that the upper and lower equilibrium points are 

stable nodes while the middle equilibrium point is an unstable saddle. They 

also add that this pattern of equilibria leads to bistable behavior since the 

separatrix solutions associated with the saddle point separate the phase plane, 

so that trajectories starting in different regions are attracted to different stable 

equilibrium points. To verify the stability of each equilibrium, we first linearise 

the system about the origin. Let (V*, m*) be an equilibrium point of (3.1.1). 

Taking x = V - V*, y = m - m* and linearising, we obtain 

x = - ax+ by 

iJ =ex - dy, 

where a, b, e, and d are given by 

9L + 9c .. m* a = =------=--
C 

b = 9c .. (Vc .. - V*) 
c ' - (V* -Vi) d = Am cosh 

2112 
, 

~ (V*- V1) (V*- Vi) c = 2~ cosh 
2112 

sech
2 1l2 . 

The characteristic equation is simply 

A 2 + (a + d) A + (ad - be) = 0, 

and by the Routh- Hurwitz conditions [3], (V*, m*) is stable provided 

(i). a+d > 0 ::::} a> - d, and 



CHAPTER 3. THE ALL-CA2+ CONDUCTANCE SYSTEM 96 

(ii). ad - be > 0 =? ad> be. 

For the model parameters of system (3.0.1) , we use a standard parameter listed 

in Table 3.1. 

Parameter Set 

C = 20 11F /cm2 x- = 1.. s-I 
m 10 

9L = 3 mmho/cm2 9ca = 4 mmho/cm2 

VL=-50mV Vc .. = 100 mV 

V1 = 10.0 mV V2 = 15.0 mV 

Table 3.1: Morris-Lecar parameter set for the all-Ca2+ conductance system. 

From the definition of a, and since the conductance constants 9L and 9ca 

and capacitance C are non-negative, it follows that a is positive. Furthermore, 

d is also non- negative since Am > 0. Therefore, like the all-potassium case 

system without delay, condition (i) is always satisfied for each of the three 

equilibria of the all- calcium system without delay (3.1.1) , and specifically for 

the parameter set in Table 3.1. 

To check condition (ii), we examine each of the three equilibrium points 

separately. The lower equilibrium point (Vt, mi) = ( - 49.932, 0.000), and so 

Vt < Vca =? b > 0. Computing the coefficients a, b, c, and d we find that 

ad> be, confirming (ii), and so (Vt , mr) is a stable equilibrium point. To show 
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that (Vt, mi) is a stable node, we must show that the roots of the characteristic 

equation, 
-(a+ d)+ yf(a + d) 2 - 4(ad - be) 

A±= 2 ' (3.1.2) 

are real-valued. This is true provided the discriminant .0..1 = (a+ d)2- 4(ad­

be) of (3.1.2) for (Vt, mi) is positive. For (Vt, mi), we find that .0..1 = 0.053 > 

0, and it follows that .A_ < .A+ < 0, and both roots are real, indicating that 

(Vt, mt) is in fact a stable node. Similarly, for (113*, m3) = (34.299, 0.962), we 

find that ad> be::::} condition (ii) is met, hence (Vt, m3) is stable, and for this 

singular point .0..3 = 0.077 > 0, which confirms that we have a stable node. 

On the other hand, for (V';*, m~) = (10, 0.5), ad- be< 0, and since condition 

(ii) is violated then (V';*, m;) is unstable. Furthermore, both eigenvalues A± 

of the system corresponding to ("V;*, m~) are real, since the discriminant ~2 = 
0.263 > 0. This implies that .A_ < 0 and .A+ > 0 from which it follows that 

(V2*, m~) is an unstable saddle point. 

3.2 The all- Ca2+ Conductance System 

with Delay 

We return now to the conductance system with delay (3.0.1). To determine 

the number and location of equilibria of the all- calcium system (3.0.1), we 

analyse how the null clines in the (V, m )-plane change as the parameter J.t is 

varied. 
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3.2.1 The Nullclines of the all- Ca2+ System 

The nullclines of system (3.0.1) in the (V, m)- plane are obtained by setting 

V = 0, and rh = 0. This gives 

V(m) = gLVL + 9c .. Vc .. m 
9L + 9cam- f1 

1 [ (V - V1)] m(V) = m00 (V) = "2 1 + tanh V2 · . 

(3.2.1) 

(3.2.2) 

The function V(m) represents the V = 0 nullcline, while m(V) represents the 

rh = 0 nullcline. Since 0 ::; m ::; 1, the voltage of the system varies between 

the limits 

and V ( 1) = 9L VL + 9ca Vca . 
9L + 9ca.- J1 

For certain values of f.l these voltage limits may become infinite, in which case 

the voltage itself may approach infinite values. 

The m(V) nullcline is a sigmoidal shaped, monotone increasing function of 

V, with limit 1 as V --+ +oo and 0 as V --+ - oo. This nullcline differs only 

slightly from the n = 0 nullcline of the all- potassium system, in steepness and 

position on the voltage axis. This nullcline does not depend on Jl, and so any 

change in the number of equilibria must be attributed to changes in the V(m) 

nullcline. The qualitative behavior of V(m) changes as f1 is varied. V(m) 

nullcline is a hyperbola, separated by a vertical asymptote at V = Vca, except 

for one degenerate case, where it is reduced to a pair of vertical and horizontal 

lines. Since m E [0, 1], we are only interested in the portions of the hyperbola 

which lie in this range. We have already seen that for 11 = 0, the system admits 

three equilibria, a saddle point between two stable nodes. For large values of 

Jl, both positive and negative, V(m) --+ 0 and m(V) --+ m00(0) ~ 0.21. 
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There are several regions to consider for finite J-l· If 

then V ( m) is an increasing function of m, and is t he portion of the upper 

branch of the hyperbola which lies in the range 0 ::; m ::; 1. We do not 

consider the lower branch, since it is below the V -axis. With J-l in this range, 

either one, two, or three equilibria are possible. A saddle-node bifurcation 

occurs at a value of J-l < 0, say P,, so that the system has a single equilibrium 

point (Vt, mi) if J-l < P,, and three equilibria (~*, m:), i = 1, 2, 3, if P, < J-l < gL, 

where 9L < gL ( 1 - ~) . The bifurcation is of the saddle-node variety because 

the emerging equilibria are a saddle point and a node: we shall see later 

that, for system (3.0.1) with zero time delay, ("V;* ,m~) is a saddle point and 

(V3*, m3) is a node. With the parameter set specified in Table 3.1, 9L = 3, 

9L (1 - ~"J = ~'and the value of p, is approximately -2.22. Also, for J-l in 

this range, all equilibrium voltages~*, i = 1, 2, 3 are below Vca· Furthermore, 

note that 'V;_* ---+ - oo as J-l ---+ gL, and the lower equilibrium point (Vt, m'D 

is lost once J-l 2:: 9L· Thus, for 9L < J-l < 9L (1- ;;;..) , system (3.0.1) has 

two equilibria, an unstable saddle (V2*, m2) and a stable node (V3*, m3), with 

"V;* , "'3* < Yea· This claim is proved in a later section. Figure 3.1 contains plots 

of the nullclines for the a11-Ca2+ conductance system, for values of J-l, including 

representative values for the three separate cases for J-l < 9L ( 1 - :;a) . Also, 

once J-l > gL, the lower branch of the hyperbola is above the V - axis and in the 

interval of interest (0, 1], but does not intersect the sigmoidal m(V) nullcline. 

With both branches of t he hyperbola significant, the voltage of the system is 

no longer bounded, and by rearranging V (m) and solving form, we can find 
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the value of m where the voltage becomes infinite: 

m(V) = 9L(VL- V) + p,V 
9ca(V- Vca) 

lim m(V) = p, - gL . 
v~±oo 9ca 

100 

(3.2.3) 

With p, > gL, the limit in (3.2.3) is greater than 0, and so for each J-L E 

(gL, 9L ( 1 - ~)), there is a value of m E [0, 1] where the voltage V of the 

system becomes infinite. 

The nullclines reduce to a pair of lines V = Vca = 100 and m =- 9L~L = 
9Ca•Ca 

~ < 0, if 

J-L = 9L (1 - VL ) = ~ . 
Vca 2 

For this value of p, there are two equilibria, a stable node (11;* , m;), with 

11;* = Vc .. = 100, and a saddle (11;*, m2), with\!;* < V0 .. . Stability here refers 

to the stability of the equilibria of system (3.0.1) with zero t ime delay. The 

nullclines for this special case is displayed in Figure 3.1 (d). 

With p, in the range 

9L (1 - VL ) < J-L < 9L + 9ca, 
Vca 

the V(m) nullcline is a decreasing function formE (0, 1], and both upper and 

lower branches of the hyperbola are significant and intersect the sigmoidal 

m(V) nullcline. There are two equilibria, a saddle point (V2*, m2) with \!;* < 

Vca, and a stable node ("Y;* ,mj), with V3* > V0 ., . Using the parameter values 

in Table 3.1, t his range is ~ < J-L < 7, and the nullclines for a representative 

case are shown in Figure 3.1(e). 

As J-L -+ 9L + 9ca, 11;* -+ +oo, and so once J-L passes this value then the upper 

equilibrium point (1;;*, mj) disappears. Furthermore, with p, > gL + 9ca, the 
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Figure 3.1: Plots of the V(m) (solid) and m(V) (dashed) nullclines of the 

all- Ca2+ system (3.0.1) for representative values of f_l,. 
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upper branch of the hyperbola is above the line m = 1, and so is not in the 

interval of interest. The lower branch is significant, is monotone decreasing 

for m E [0, 1], and intersects the m(V) sigmoidal nullcline to yield a single 

unstable saddle point (V2*,m2), with 11;* < Vca· Refer to Figure 3.1(f) for an 

example of the nullclines with f-l in this range. 

This analysis has shown that, as f-l is varied, the shape and position of 

the V(m) nullcline changes, which in turn influences the number of equilibria 

of the system. Figure 3.1 shows a sequence of nullcline plots to indicate the 

evolution of the nullclines in the (V, m )- plane as f-l is varied. The number 

of equilibria for a given value of f-l can be concisely depicted in bifurcation 

diagrams as a branch of steady-state solutions, and are presented in Figure 3.2. 

Figure 3.2(a) indicates how the equilibrium voltage(s) V* change as f-l is varied, 

while Figure 3.2(b) shows how the equilibrium fraction of open Ca2+ channels, 

m* varies with f-l· 

As a final note in this section, we remark that for weak inhibitory and 

excitatory feedback, the all- Ca2+ system with delay (3.0.1) admits multiple 

equilibria. Moreover, the system exhibits bistability in this case, with two 

stable nodes (Vt, mi) and ("V;*, m3) separated by an unstable saddle (V2*, m;). 

Again, the stability we refer to is in the case of zero time delay, and these 

claims are verified in the following section. These observations can be clearly 

drawn from Figure 3.2(a). If the feedback strength is increased, then only a 

single equilibrium point remains in the inhibitory case, while a single unstable 

steady state exists if the feedback is excitatory. 
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(a) V vs. p,. (b) m vs. p,. 

Figure 3.2: Bifurcation diagrams describing how V* and m* of the all­

Ca2+ conductance system change as J.L is varied. The solid curve represents 

(Vt, mi) the dashed curve represents (V2, m;), and the dotted curve represents 

(V3*, m;). Stability of equilibria is not indicated. 
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The results of this section, stated as a theorem, are given by: 

Theorem 3.2.1.1. With parameters listed in Table 3.1, system {3.0.1} admits 

up to three equilibrium points as J-l is varied: 

1. If f.-L < P,, then (Vi*, mi) is the only equilibrium point of the system, with 

2. A saddle- node bifurcation of steady states takes place at J-l = p,, giving 

rise to two additional equilibria. If p, < J-l < g L' then system ( 3. 0.1) 

admits three equilibria, (Vi*, m;), i = 1, 2, 3, with each of Vi* < Vca, 

i = 1, 2, 3; 

3. If 9L < f.-L < 9L ( 1 - f!), then system {3.0.1} admits two equilibrium 

points, (V';*, m;) and (V3*, m3) with V';*, "V;* < Vca; 

4- If f.-L = 9L (1- f!), then system (3.0.1} admits two equilibrium points, 

(V';*, m;) and ("V;*, m3) with V';* < Vca 1 "V;* = Vca; 

5. If gL ( 1 - %;:) < f-L < 9L + 9ca, then system (3.0.1} admits two equilib­

rium points, (V2*, m2) and ("V;* , mj) with V';* < Vca, "V;* > Vca; 

6. If f-L > g L + g ca, then system ( 3. 0.1) possesses a single equilibrium point 

(V';*, m;) where V2* < Vca· 

For all cases, mi E [0, 1], i = 1, 2, 3. 
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3.2.2 Local Stability and Bifurcation Analysis of the 

all-Ca2+ System 

In this section, we address the delay- dependent stability of the equilibria of 

(3.0.1). In the previous section, we referred to stability of the equilibria for 

zero time delay, that is system (3.0.1) with 7 = 0. Here, we prove the claims 

pertaining to the stability and type of equilibria for the model with zero time 

delay. We then examine the stability of (~*, mi), i = 1, 2, 3 for 7 > 0, and also 

determine whether or not the all- Ca2+ conductance system with delay (3.0.1) 

is capable of supporting stable oscillations. 

We begin by linearising system (3.0.1) about the origin, noting that, for 

all /1- E R., the system admits at least one equilibrium point (V* , m*) in the 

CV, m )- phase plane. The linearised system is similar to that obtained for the 

aU-K+ system. Let x = V - V* and y = m - m* and linearise to obtain 

with the coefficients 

9L + 9cam* 
a = =-----'--

C 

x(t) = -ax + by+ jlx(t- 7) 

(3.2.4) 

y(t) =ex- dy, 

b = 9ca(Vca - V*) 
c ' - (V*- Vi) d = Am cosh 

2112 
, 

Am ( V* - Vi) 2 ( V* - Vi ) c = 2"2 cosh 2V
2 

sech V
2 

, 

as the linearised system with equilibrium at the origin. In the event the sys­

tem admits more than one equilibrium point, a separate stability analysis is 

required for each equilibrium. Note that (3.2.4) , the linearisation of (3.0.1), is 
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identical in form to the linearised version of the all-K+ conductance system, 

with the exception of the parameters appearing in the coefficients. This is not 

surprising, since the equations in the nonlinear systems have almost identi­

cal forms, and hence we expect a similar representation in the linearisation. 

Also, the coefficients depend on the equilibrium point (V*, m*) of the nonlinear 

system, which in turn depends on the delay parameter tJ-. 

Since 0 ~ m ~ 1, the voltage V = V (t) satisfies V(O) < V < V(1) if 

fJ- < gL, and V(l) < V < V(O) if fJ- > 9L + 9ca· The voltage is unbounded 

if 9L < tJ- < 9L ( 1 - %':) , and may become infinite t hrough the horizontal 

asymptote of the V ( m) nullcline. The coefficients a and c are bounded for any 

value of tJ-, with 

which are simply 

9L < a < 9L + 9ca 
c - - c 

Am 
and 0 < c < 

2112 
, 

3 7 
-<a<-
20 - - 20' 

..l. 1 
and 0 < c < - 1

-
0

- = -
2(15) 300 

for our parameter set (Table 3.1) . While the numerical ranges do depend on 

the parameter set used, these ranges specified in terms of the parameters are 

true for any general parameter set where the conductance constants are non­

negative, and as long as the capacitance C and parameters V2 and Am are all 

positive. 

The coefficient dis bounded if the voltage is, and the bounds depend on the 

values of IV(O) I and JV(l) j. In this case we obtain inequalities similar to (2.2.9) 

and (2.2.10), with An, V3, and ~ replaced with Am, Vi, and V2 , respectively. 

Thus d 2: Am > 0 for all P-· Also, in the linearisation of the system about 

(Vt, mr), Vt ---+ -oo as fJ----+ gL, and so d---+ oo. Similarly, in the linearisation 
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of the system about ("V;*, m3), V3* --+ +oo as f1 --+ 9L + g0 .. , and d --+ +oo. Since 

the value of \!';* is always finite, the coefficient d in the linearisation about 

(V2*, m;) is always bounded, above and below. The range d E [0.1, 0.106] is 

obtained by considering the limiting case \!';* = 0. 

If V is bounded, then b is bounded, and we obtain inequalities similar to 

(2.2.11) and (2.2.12), replacing 9K with 9ca and VK with V0 .. . In the linearisation 

of (3.0.1) about (11;_*, mt), the sign of b does not change, since Vt < Va .. for all 

/1 where (Vt, mi) exists, and so b > 0. The lower bound on b can be obtained 

by considering the limiting case Vt = 0, and so we have b > gc .. (V~-vn 

9c~c .. = 20. As J.l --+ 9L, \lj_* --+ - oo, and so b --+ +oo. 

For the middle equilibrium point, (\!';*, m;), b is finite because V2* is always 

finite, and positive since \!';* < Vc .. for all f1 where (II';*, m;) is an equilibrium 

point of (3.0.1). We find that b is confined to the approximate range (16.5, 20), 

where the upper bound is found using the limiting case \!';* = 0, and the lower 

bound is obtained using f1 = jj, the point where (V2*, m;) is generated via a 

saddle-node bifurcation. 

In the linearisation about the upper equilibrium point (V3*, mj), we find 

that b is positive if f1 < 9L ( 1- ~), since "V;* < Vca, b = 0 when f1 = 

9L ( 1- ~), since 1;;* = V0 ., here, and b < 0 for f1 > 9L ( 1- ~), since 

"V;* > V0 ... As f1 --+ 9L + g0 .. , V3* --+ +oo and b --+ - oo, and so b is unbounded 

from below. Using f1 = jj, we obtain the upper bound 16.5 forb, and so in the 

linearisation about ("V;*, m3), b < 16.5. 

Motivated by the results obtained for the all-K+ conductance system, we 

expect the bifurcation structure of the all- Ca2+ system to rely on the pair of 

delay parameters f1 and r. Considering the linearised system (3.2.4) , we make 
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the usual ansatz x = 6 e>.t, y = 6e>.t and obtain the characteristic equation 

).2 +(a + d)>.+ (ad - be) - P,>.e->.7 - P,de- >.7 = 0. (3.2.5) 

Aside from the definitions of the coefficients a, b, c, and d, equation (3.2.5) 

is of the exact same form of the characteristic equation obtained for the all­

K+ system, (2.2.13), since both characteristic equations were obtained from 

identical linearised systems. We apply the Cooke-Grossman theory to study 

the delay-dependent stability of the all- calcium system with delay. 

Before seeking purely imaginary roots, we first determine the stability of 

the equilibrium point(s) of system (3.0.1) with zero time delay. 

3.2.3 The r == 0 Case 

Given J.-l E JR., we must determine the stability of the equilibrium point(s) of 

system (3.0.1). The stability of an equilibrium point (V* , m*) is preserved in 

the linearisation, and so the problem is reduced to studying the stability of 

the zero solution of the linearised system (3.2.4). With T = 0 the system is 

reduced to two ordinary differential equations, and the characteristic becomes 

the quadratic polynomial 

,\
2 +(a+ d - p,).\ + [(ad - be) - P,d] = 0, (3.2.6) 

with roots 

, _ P, - (a+ d)± J[(a +d) - flF- 4[(ad - be) - P,d] 
A± - 2 • (3.2.7) 

The zero solution of (3.2.4) is stable provided the Routh- Hurwitz conditions 

are met. These conditions are 
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(i). a+ d - jl > 0 :::::? fl <a+ d, and 

(ii). (ad - be) - jld > 0 :::::? fl < a - ~Jj . 
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Recall that the coefficients of system (3.2.4) arising from the linearisation 

of (3.0.1) about an equilibrium point (V*, m*) depend on the equilibrium point 

of the nonlinear system, which in turn depends on the value of J.l. So all of 

a, b, e, and d are functions of J.l· To check conditions (i) and (ii) , we follow 

the same procedure outlined in the all-potassium section. We compute the 

coefficients and quantities in conditions (i) and (ii) for a large range of J.l and 

then plot the results in Figure 3.3. These figures show that the plots of jl 

and a - t;f intersect when J.l = gL for (v;_*, mi), when J.l = Jl (the saddle-node 

bifurcation point) for (V';*, m;), and when J.l = Jl and gL + 9ca for (Vs* , m;). 

Since Vj* ~ - oo as J.l ~ 9L and V3* ~ + oo as J.l ~ 9L + 9ca, we use limits to 

show that the a - PJ- and fl curves intersect when J.l assumes these values. 

Both Routh- Hurwitz conditions are met for (v;_*, mi) and (V3*, m;). Fig­

ure 3.3(a) plots both the conditions for the lower equilibrium point (Vt, mi) 

for - 20 < J.l < gL = 3, while the conditions are shown for (V3~, m;) on -2.22::::::: 

Jl < J.l < gL + 9ca = 7, its entire interval of definition, in Figure 3.3(c). There­

fore, both (v;_*, mi) and (l/3*, m3) are stable for (3.0.1) with T = 0. Meanwhile, 

from Figure 3.3(b) we can see that condition (ii) is never met, and so (V';*, m2) 

is unstable for (3.0.1) with zero time delay. The conditions are plotted on the 

sample interval - 2.22 < J.l < 20. Furthermore, it is easy to classify (V';*, m2) 

as an unstable saddle point. Let .6.2 = [(a + d) - flF - 4[(ad- be) - jld], the 

discriminant of the roots (3.2. 7) obtained in the linearisation about (V';*, m2) . 

Since condition (ii) is never met, then the discriminant of the roots is always 

positive L\2 > 0, and so the roots of the characteristic equation A± are both 
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(b) Conditions for (V2*, m2) with 

-2.22 ~ p < 1-L < 20. 

-----

(c) Conditions for (V3*, m3) with 

-2.22 ~ P < 1-L < 9L + 9ca = 7. 

Figure 3.3: Checking the Routh-Hurwitz conditions: Plots of a + d (solid 

curve), a - Pif (dashed curve), and P, (dotted line) against f.J for each of the 

equilibrium points (Y;*, mi), i = 1, 2, 3. 
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always real-valued. Initially, we see that condition (i) is met, fl < a + d, 

and then after some point this condition is violated, that is jl > a + d. In 

either case, it follows that A+ > 0 while .A_ < 0, indicating that (V2*, m;) is an 

unstable saddle point for all values of 11 > fl. 

To classify the stable equilibria (Y;_*, mi) and (V3*, m3), we calculate the 

value of the discriminant corresponding to each point to see whether it is 

positive or negative. A positive discriminant indicates a stable node, while 

a negative discriminant yields a stable spiral. Let .6.1 and .6.3 denote the 

discriminant of the roots of (3.2.5) obtained by linearising about (Vt , mi) and 

(l/3*, m3), respectively. We plot the quantities [(a+d)- fl) 2 and 4[(ad- bc) - fld] 

versus 11 for both (Vt, mi) and CV3*, m3) in Figure 3.4. In each case, we see 

that [(a+ d) - flJ2 > 4[(ad- be) - fld], and so .6.1 > 0 and .6.3 > 0. Hence both 

eigenvalues A± for each of (Y;_*, mi) and (l/3*, m3) are real, with A+ < 0 and 

.A_ < 0 for each equilibrium point. It follows that both (Vt , ml) and (l/3*, m3) 

are stable nodes. This classification of the equilibria ("Vi*, m;), i = 1, 2, 3 for the 

(3.0.1) with T = 0 is only according to the particular parameter set included 

in Table 3.1. 

These results for (3.0.1) with T = 0 are similar to the all- calcium system in 

the original Morris-Lecar system without delay, in that, when three equilibria 

exist, the middle equilibrium point is always an unstable saddle, while the 

upper and lower equilibria are stable nodes. Also, in the lower parameter 

region, 11 < jl, there is only a single equilibrium point (Vt, mi) which is a 

stable node. The main differences in system (3.0.1) with zero time delay 

and the original Morris-Lecar calcium system is the parameter regions where 

there are two equilibria (V2*, m2) and C\13*, m3), which is the case if 9L < 11 < 
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Figure 3.4: Plots of [(a+ d) - jl,j2 (solid curve) and 4[(ad- be) - jld} (dashed 

curve) versus J.L to determine the sign of the discriminant for equilibrium points 

(Vt, mi) and (l's*, m3) . 

gL + 9ca, and the upper parameter range f.-t > 9L + 9ca where there is a single 

unstable saddle point (Y';*, m2) . Neither of these situations is encountered in 

the original calcium system without delay. Note that, when the system has 

two equilibria, the existence of the saddle (V2*, m2) gives rise to the behavior 

in which stability of the node (l's*, m3) is only local, and not global. The 

separatrix solutions associated with (Y';*, m2) separate the (V, m)- plane, and 

trajectories from some initial conditions escape to - oo instead of approaching 

(V3*, m3). Refer to Figures 3.1 (c) and 3.1 (e) for the null cline plots where this 

situation is encountered. 

We note that the theory is only valid for values of f.-t such that jl =I= a + d 

or jl =I= a - ~- From Figure 3.3(b), we see that jl = a+ d for J.L ~ 6.3, in 

the linearisation of (3.0.1) about (V2*, m; ), and in this case the roots in (3.2.9) 
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become 

wi = (ad - be) ± fld < 0, 

and so there are no positive real roots of (3.2.8). Also, from Figure 3.3, we 

find that P, = a - ~ when J.t = gL for (Vr*, mi), for J.t = P for (V2*, m2), and for 

J.t = P,, f.t = 9L + 9ca for (Y;*, m3). We neglect the physiologically unrealistic 

cases J.t = gL and J.t = gL + 9ca, and comment more on the special case J.t = p 

in Section 3.2.7. 

3.2.4 The System with Non-zero Delay T > 0 

In this section, we apply the Cooke-Grossman theory to investigate the delay­

dependent stability of the equilibria of the all-Ca2+ conductance system. We 

apply the results in [6] to analyse the degree-two transcendental characteristic 

equation of system (3.0.1). To look for purely imaginary roots of (3.2.5), we set 

A.= iw in characteristic equation (3.2.5). VVe discuss the results for a general 

equilibrium (V*,m*) of system (3.0.1) , and then address the specific details 

of each equilibrium point separately. The equations obtained are identical to 

those from the all- potassium system analysis, so after substitution, setting 

the resulting real and imaginary parts to zero, squaring both equations and 

adding, we obtain a quartic equation 

(3.2.8) 

with roots 

1 (A2 2 d2 ) 
2 J.t - a - - 2bc 

1 

{
1 (A2 2 d2 )2 (( )2 A2 2)}

2 
± 4 J.t - a - - 2bc - ad - be - J.t d (3.2.9) 
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Purely imaginary roots ,\ = iw of (3.2.5) with w > 0 correspond to positive 

real roots of (3.2.8) , i.e. the positive square roots of w~ and w: that are real, 

which we denote by w+ and w_, respectively. 

Recall that there are two cases to consider: 

1. Delay- dominant case: fl2 > (a - ~) 2 , which leads to one imaginary root 

,\+ = iw+, with w+ > 0. 

2. Case of non- dominant delay: fl2 < (a - ~) 2 , with additional conditions 

(a) fl2 > a2 + d2 + 2bc, and 

(b) (fl2
- a2

- d2
- 2bc)

2 > 4 ((ad - bc)2
- fl2d2

) . 

If all three criteria are met for this case, then there are two imaginary 

solutions A±= iw±, with w+ > w_ > 0. 

The discussion of why each case leads to one or two purely imaginary 

roots was addressed at length in the all-potassium chapter. The method 

of approach is the same, in that we look for the values of the parameter f.l 

such that the system falls under the dynamics described by Case 1 or Case 

2. However, since multiple equilibria are possible for this system, we do this 

separately for each of the lower, middle, and upper equilibrium points. For 

each equilibrium point we compute the values of {12 and (a - ~)2 
for a large 

range of f.1, or in the case of (y;*, m3), where the equilibrium point is defined, 

and plot the results. Comparing the curves resulting from these plots, we 

obtain the parameter ranges where Cases 1 and 2 occur. The relevant plots 

are included in Figure 3.5. 
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3.2.5 Results for the lower Equilibrium Point (v;*, mi) 

Figure 3.5(a) contains the plots of P,2 and (a- ~)2 versus 11 for coefficients 

a, b, c, and d arising in the linearisation of system (3.0.1) about the lower 

equilibrium point (Vt, mi). Note that (Vt, mi) is an equilibrium point of 

(3.0.1) provided f.l < gL, and is the only equilibrium point of the system if 

11 < p. As in the case with zero delay, the curves intersect when 11 = gL, 

corresponding to Vt = -oo, which we verified using limits. There is a value 

of f.L, say f.l-, such that P,2 > (a- PJ) 2
, if 11 < f.l- , but P,2 < (a - ~) 2 

for 

f.l- < 11 < 9L· Therefore, if f.l < 11-, then Case 1 is satisfied, and if /.l- < f.l < 9L 

then the first condition of Case 2 is met. The value separating the cases is 

approximately 11- ~ - 2.52 < p, and so Case 1 occurs for the lower equilibrium 

point (V{, mi) in a range where it is the only equilibrium point of the system. 

Also, since 11- < 0, the Case 1 dynamics of system (3.0.1) linearised about 

(Vt, mi) occur for inhibitory feedback only. 

Consider first system (3.0.1) with f.l < 11- . Here, the system is in Case 1, 

and it follows that for every 11less than 11- , there is a single purely imaginary 

eigenvalue ).+ = iw+, with w+ > 0. This eigenvalue comes from w~ > 0 of 

(3.2.9), while w: < 0 and therefore does not yield any positive real roots of 

(3.2.8). Therefore for every f.l < 11-, there is a value of 7 for which the system 

has a purely imaginary eigenvalue, and a pair of complex conjugate eigenvalues 

cross the imaginary axis. The value of 7 depends on the value of /1, and on the 

value of the w+ root. To determine the direction of the crossing, we check the 

transversality condition, the sign of the derivative of Re). with respect to 7 at 

..\ = ).+ . This derivative is identical in form to that computed in Section 2.2.6 



CHAPTER 3. THE ALL-CA2+ CONDUCTANCE SYSTEM 117 

for the all-potassium case, and so we have 

sign { d(~;J\)} >.=iw =sign { ±JX} ' (3.2.10) 

where .6. = (P,2 - (a+ d)2 + 2(ad- bc))2 -4 ((ad- bc)2 - fj2d2 ) is the discrim-

inant of (3.2.9). From (3.2.10), the sign is positive for w! and negative for w:_. 
In this case, only w! is significant, and so the crossing of the imaginary axis is 

from left to right. Recall that, for system (3.0.1) with r = 0, (11;_*, mi) is a sta­

ble node. Therefore, considering p < p- and increasing r, (Vt, mi) becomes 

unstable at the smallest value of r > 0 for which w+ is a root of (3.2.8), and 

remains unstable if r is increased further. There is a sequence of time delays, 

Tn, given by 

_ _!_ _1 { aw! + d(ad- be)} 27rn 
Tn - COS A ( 2 d2 ) + 

w+ p w+ + w+ 
(n = 0, 1, .. . ), (3.2.11) 

for which we expect purely imaginary roots. The only significant crossing 

occurs with the first term, r0 , which we label r* . A two-parameter bifurcation 

diagram illustrating how r* varies with p for p < p - appears in Figure 3.6. 

Also, solving for w+ to obtain the value of r* for p < p- supports our earlier 

estimate of the value of p- ~ -2.52. 

In addition to the change in stability, for p < p-, system (3.0.1) undergoes 

Hopf bifurcation when r is increased through r*. To see this, note that all 

eigenvalues of system (3.0.1) with r = 0 have negative real parts. Also, since 

the first and only crossing of the imaginary axis occurs when r = r*, all 

eigenvalues of system (3.0.1) have strictly negative real parts while r E [0, r*). 

There is only a single pair of complex conjugate eigenvalues with positive real 

parts when r > r *, and all other eigenvalues have strictly negative real parts. 

This is the pair that migrated across the imaginary axis for r = r* . And since 
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Figure 3.6: Bifurcation Diagram plotting r* vs. f-1 for system (3.0.1) linearised 

about (Vt, mr), with f-1 ~ -2.52 (Case 1). 

the transversality condition ( c.f. Section 2.2.6) is satisfied, all hypotheses of 

the Hopf bifurcation theorem for DDEs are met, and so (3.0.1) with /-1 < 

/-1- does indeed undergo Hopf bifurcation as r is increased through r*. The 

calculation to determine the stability and direction of the Hopf bifurcation is 

addressed at the end of this chapter in section 3.2.8, which also includes some 

sample calculations illustrating the results discussed here. 

Interestingly enough, two qualitatively different types of Hopf bifurcation 

occur for system (3.0.1) with f-1 < f-1-. If f-1 ~ - 3.7 then the Hopf bifurcation 

which occurs as r is increased through r* is supercritical, and the emerging 

periodic solutions branch to stable oscillations. Figure 3. 7 demonstrates these 

results for the representative value f-1 = -5. Here, we see that (v;_*, mi) loses 

stability as r is increased through r* = 11.7 ms, and stable periodic solutions 

emerge via a supercritical Hopf bifurcation. The initial functions used in this 

simulation were the constant functions V ( 8) = -17, and m( 8) = m00 ( - 17), 
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- T ~ () ~ 0, selected close to the equilibrium point to demonstrate the change 

in stability. 

, ·-·-----·-·--·-·-·-·-· ------~--------

(a) V(t - r) vs. V. (b) V(t) vs. t forT= 11. 

•····· --- -~ 

(c) V(t- r) vs. V . (d) V(t) vs. t forT= 13. 

Figure 3.7: Numerical simulation of system (3.0.1) with p, = - 5 (Case 1). The 

delay is increased from 'T = 11 to 'T = 13, illustrating the loss of stability of 

the equilibrium voltage, and the onset of stable oscillations. 

However, if -3.7 < p, < p,- ~ -2.52, then the Hopf bifurcation is sub­

critical, and the emerging periodic solutions are orbitally unstable. Hence for 

some T < 7*, the system possesses unstable periodic orbits along with the 

stable equilibrium point (Vt , mi). Moreover, numerical simulations of (3.0.1) 

with p, E ( -3. 7, p,- ) indicate the presence of stable periodic solutions for some 

T < 7* . Since the system admits only the single equilibrium point (11;.*, mi) 
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with f-L in this range, it must lie inside the nested periodic orbits, with the un­

stable limit cycle inside the stable limit cycle. In this way the system exhibits 

bistability with coexistence of a stable equilibrium and a stable limit cycle. 

Trajectories with initial conditions in the basin of attraction of (11;_*, mi) will 

approach the stable equilibrium point, while those outside this region will tend 

to the stable limit cycle. At T = T *, the equilibrium point loses stability, and 

the unstable limit cycle disappears via a subcritical Hopf bifurcation. The sta­

ble limit cycle remains, appears to be globally attractive, and is well-formed 

with a finite (and somewhat large) amplitude. This behavior is consistent with 

the emergence of a stable limit cycle prior to T*, which grows in amplitude as 

T is increased. These observations lead us to propose the following conjecture: 

Conjecture 3.2.5.1. Assume the parameter set listed in Table 3.1 for system 

(3.0.1). Then (3.0.1} linearised about (Vt,mi) with f-L E (- 3.7,J-L- ) {Case 

1) undergoes a periodic saddle-node bifurcation (PSNB) at some value of the 

delay T PsN < T*, where T* is given by the To term of sequence ( 3. 2.11). A pair 

of stable and unstable periodic orbits are generated at TpsN, and the system 

exhibits bistability with a stable equilibrium point (Vt, mr) and a stable limit 

cycle for TpsN < T < T * . Furthermore, the unstable periodic orbit formed at 

TpsN is lost in a subcritical Hopf bifurcation at T = T * . 

The conjectured qualitative dynamics of system (3.0.1) for -3.7 < f-L < f-L­

are illustrated in the schematic bifurcation diagram in Figure 3.8. Note in 

particular the PSNB at TpsN prior to T*, and the subcritical Hopf bifurcation 

at 7*. Without actually computing the branch of periodic solutions emanating 

from the Hopf bifurcation using a numerical continuation technique, we cannot 

verify that a PSNB is responsible for the observed behaviour. As such, we 
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cannot obtain an accurate estimate of the delay value where periodic solutions 

arise for (3.0.1) for a given f.-£ E (- 3.7,J.-£-) (rPsN if the orbits are generated by 

a PSNB). Even if a PSNB is responsible, we cannot determine the basin of 

attraction of the stable limit cycle while r is close to rPsN, since it will have 

a small region of attraction in comparison to the stable equilibrium point. 

Numerical simulations of (3.0.1) with f.-£ E ( - 3.7, f.-£-) provide only a rough 

estimate of rPsN, but more importantly they reveal existence of stable periodic 

orbits for r < r*, which, along with an unstable subcritical Hopf bifurcation 

at r*, provide evidence for a PSNB. Problems detecting stable limit cycles 

associated with a small basin of attraction were avoided by selecting initial 

conditions far away from the equilibrium point. Also, decreasing the strength 

of the inhibitory feedback signal decreased the value of the delay where periodic 

orbits arise. For example, with f.-£ = - 3.7, r* = 19.6, stable periodic orbits 

were detected at r = 19.4 ms, just before the Hopf bifurcation. But with 

f.-£ = - 2.52, r* = 652 ms, stable periodic orbits were detected for r = 36 ms, 

long before the stability of the equilibrium point changes. 

In Figure 3.9, we present a numerical simulation highlighting the dynamics 

of system (3.0.1) described above. With f.-£ = - 3, the system is in Case 1, 

and we have r* = 34.6, the delay value where the equilibrium point loses 

stability. A stable limit cycle is present when r = 28 < r*, and the Hopf 

bifurcation at r* is subcritical and unstable, which we verify in §3.2.8. With 

the delay just below r* and initial conditions close to the equilibrium point 

in Figure 3.9(d), we see that (V';*, mi) is stable, and coexists with the stable 
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Figure 3.8: Conjectured bifurcation structure of system (3.0.1) with parame­

ters in the range of Case 1 ( -3.7 < J-t < J-t-), as Tis increased. 

limit cycle. Increasing T just above 7 * leads to instability of the equilibrium 

point, and trajectories starting close to (~*, mi) eventually approach a stable 

limit cycle, see Figures 3.9(g) and 3.9(h). Numerical evidence suggests that it 

is the same limit cycle which formed earlier at T = 28, which has changed and 

grown in amplitude with the increase in delay. 

Multiple stability switches can only occur if the system has two purely 

imaginary eigenvalues. This is only possible for the Case 2 Cooke-Grossman 

results. Figure 3.5(a) indicates that the primary requirement for Case 2, i.e. 

[t2 < (a - ~) 2, is satisfied for all p such that J-t- < J-t < 9L· The plots 

required to check the additional criteria (a) and (b) associated with Case 2 

are included in Figure 3.10(a), where we find that j),2 < a2 + d2 + 2bc for all 

J-t E (J-t-,gL). Hence condition (a) of Case 2 is not satisfied for any J-t- < J-t < gL, 

while condition (b) is satisfied for all J-t in this interval. This implies that, for 

1-t- < J-t < gL, both w! and w: are real, but negative, and so there are no 

positive real roots of (3.2.8). 
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Figure 3.9: Numerical simulation of system (3.0.1) with f.J, = -3 (Case 1), 

illustrating that a stable limit cycle emerges before the equilibrium point loses 

stability as T is increased. 
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Therefore, system (3.0.1) linearised about (V';_*, ml) with p, in this range 

admits no purely imaginary eigenvalues, and consequently there is no change 

in the stability of (Vt , mi) . Since this equilibrium point was shown to be 

stable for T = 0, we conclude that the lower equilibrium point (Vt, mi) of 

system (3.0.1) for a given p,- < p, < gL is stable for all T ~ 0. Also, for 

those f.1 E (f.l-, gL) where (Vt, mi) is the only equilibrium point of (3.0.1) , 

i.e. for f.l- < f.1 < jj, the system cannot undergo Hopf bifurcation. As such, 

any periodic solutions of the system must arise from a different bifurcation. 

Stability of (V';.*, mi) for increasing T is illustrated in the numerical simulations 

presented in Figures 3.11. Here, we consider f.1 = -2.3, and plot the solution 

for two different time delays, T = 50 and T = 200 ms. No change in stability 

was detected, even with a four- fold increase in the magnitude of the delay. 

With the higher time delay, more transient oscillations are observed initially, 

but the solution eventually settles down to the constant equilibrium voltage 

ll;_* . The initial conditions V(B) = - 25 and n(B) = n00 ( - 25) are selected close 

to (Vt, mi) = ( - 27.67, 0.0065) to specifically demonstrate its local stability 

properties. 

Figure 3.11 also indicates some interesting additional dynamics of (3.0.1) 

with f.l- < f.1 < jj. While (ll;_*, mi) remains stable for all T ~ 0, this stability 

is only local, and (ll;_*, mi) is not globally attractive for all T > 0. Instead, 

the system exhibits bistability, with a stable equilibrium point and a stable 

limit cycle. We conjecture that the stable periodic orbit emerges via a PSNB 

for some value of the delay TpsN, similar to that observed in the Case 1 for 

f.1 E (-3.7,f.1- ). However, for system (3.0.1), there is less evidence to support 

this conjecture than Conjecture 3.2.5.1 , since for f.1 E (f.l- , jj) there is no loss of 
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Figure 3.10: Checking conditions (a) and (b) of Case 2 for (~*, mi'): Plots 

of jt2 (dashed curve) and a2 + d2 + 2bc (solid curve), versus f.-L, and plots of 

(jt2 - a2 - ~- 2bc)2 (solid curve) and 4 ((ad - bc)2
- jt2d2

) (dashed curve) 

versus f.-L· Magnifications of both are also included. 
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Figure 3.11: Numerical simulation of system (3.0.1) with J-L = - 2.3, and the 

delay increased from T = 50 to T = 200 ms. Initial data are specified in each 

sub- figure. 
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an unstable periodic orbit via a subcritical Hop£ bifurcation subsequent to the 

appearance of stable periodic orbits. As such, we cannot be sure that a pair of 

stable/unstable orbits are generated together. If we do suppose that a PSNB 

occurs, then the unstable periodic orbit generated at 7psN must be present 

for r > TpsN, since there are no purely imaginary eigenvalues to facilitate its 

vanishing through a subcritical Hop£ bifurcation. Therefore with J-l- < J-l < p, 

the stable equilibrium (Y;_*, mi) persists along with the stable limit cycle for all 

T > 7 psN, and the system displays bistability over a large range of delay. Also, 

numerical simulations showed no indication of decrease in the amplitude of the 

stable limit cycle. The schematic bifurcation diagram in Figure 3.12 illustrates 

the qualitative dynamics conjectured here. This behavior was detected for 

system (3.0.1) with p E (J-L- , p), the interval whereby system (3.0.1) is outside 

Case 1 for which (Vt, mi) is the only equilibrium point of the system. There 

is some additional behavior to report for the system with p < J.t < gL, but we 

leave a discussion of these results until the stability of the upper equilibrium 

point, ("Y;*, n3), with non- zero time delay, has been addressed. 

Note that for J-l = J-l- , and J-l = gL, we have j),2 = (a- ~) 2 , and the 

Cooke- Grossman theory makes no assert ions pertaining to equilibrium point 

stability. The latter case J-l = 9L is unphysical, since Vt ---+ -oo as J-l ---+ 9L· 

The value p = J-l- marks the end of the Case 1 dynamics for system (3.0.1) 

linearised about (Vt, mi), and this situation resembles the J-l = J.t* case for the 

aU-K+ system ( c.f. Chapter 2). Here we obtain a double zero eigenvalue, along 

with a pair of purely imaginary eigenvalues. The zero eigenvalues occur for 
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Figure 3.12: Bifurcation diagram illustrating the behavior conjectured for sys­

tem (3.0.1) with J-L E (J-L-, P,), as Tis increased. 

infinite values ofT, different from the T * value where the purely imaginary pair 

occur. Since there is no degeneracy, the lower equilibrium point does undergo 

a stability change and a Hopf bifurcation as T is increased past 7 *. For the 

approximate value of 1r ~ -2.52, numerical simulations indicate that (Vt, mi) 

is stable for T < T * = 652, and loses stability at T* via a subcritical Hopf 

bifurcation, and that the bifurcating periodic solutions are orbitally unstable. 

Numerical results also indicate the presence of stable periodic solutions for 

T < T *, and so we again conjecture that the stable/unstable limit cycle pair is 

generated via a PSNB for some TpsN < T* . 

We summarize the results proved in this section, along with the results pre­

sented in section 3.2.8, in the following theorem: 

Theorem 3.2.5.2. Assume that parameters in system (3.0.1} are as in Ta­

ble 3.1. Then for f.1, < f.l,-, (V';_*,mi) is stable for all T E [O ,T*), where f.l,- , 

T* are defined earlier. For all T > T*, (V';_*, mi) is unstable, and the system 

undergoes a Hopf bifurcation at T = T *. If f.1, :S -3.7 ( -3.7 < f.1, < f.l,- ), the 

Hopf bifurcation at T * is supercritical (subcritical}, and the emerging periodic 
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solutions are orbitally stable (unstable}. If 1-r < f.L < 9L: then (v;_*, mi) is 

stable for all 7 2: 0. 

3.2.6 Results for the middle Equilibrium Point (Vii<, m;) 

We first recall that (V2*, m2) is an equilibrium point of (3.0.1) for all f.L > jl , and 

that this middle equilibrium point is unstable for 7 = 0. Stability switching 

of such an equilibrium point is only possible if the system satisfies all the 

requirements of Case 2, so that both >.+ = iw+ and >._ = iw_ are roots of the 

characteristic equation, for which both left to right and right to left crossings of 

the imaginary axis are possible. An unstable equilibrium point with 7 = 0 may 

undergo multiple (finite) stability switches before instability persists, provided 

the initial crossing is in the right to left direction. \¥hen the system falls under 

Case 1, there is only a single crossing of the imaginary axis with >.+ = iw+, 

and this crossing is left to right by the transversality condition Lemma 2.2.6. 

Since (V2*, m2) is unstable with 7 = 0, the system linearised about (V2*, m2) 

must have at least one eigenvalue with positive real part for 7 2: 0. Therefore, 

a left to right crossing as 7 increases will have no bearing on the stability of 

the equilibrium point. 
? 

In Figure 3.5(b) , we see that [1,2 > (a-!~[)- for f.L > 7+, which indicates the 

single requirement for Case 1 is satisfied. By the reasoning above, the predicted 

crossing of the imaginary axis does not affect stability of the equilibrium point, 

and so the unstable equilibrium point cannot become stable with increasing 

7 . Therefore, with f.L in this range, the middle equilibrium point (V2*, m2) is 

unstable for all 7 2: 0. Note that (11;*, m2) is the only equilibrium point of 

system (3.0.1) for f.L > 9L + 9ca· 
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The primary requirement for Case 2, p,2 < (a - ~) 2 , is met for fJ, < J.L < 

9L + 9ca, as indicated in Figure 3.5(b). The plots required to check the ad­

ditional criteria associated with Case 2 are included in Figure 3.13. From 

Figure 3.13(a), it is clear that [1,2 < a2 + d2 + 2bc for all fl E (P,, 9L + 9ca), 

meaning that (a) is never satisfied. Therefore, the characteristic equation has 

no purely imaginary roots, since both w! and w-:_ are both real but negative. 

Hence stability changes in the equilibrium point are not possible with increas­

ing T . Thus for any f.L E (P,, 9L + 9ca), the middle equilibrium point (\!;*, m;) 

is unstable for all r ;::: 0. Moreover, this equilibrium point is unstable for all 

T ;::: 0 whenever it is an equilibrium point of the system, i.e. for J.L > fJ, . These 

results lead to the following theorem: 

Theorem 3.2.6.1. Assume that parameters in system (3.0.1) are as in Ta­

ble 3.1. Then (l!;*,m;) of system (3.0.1) is unstable for all J.L > P,, for all 

T;::: 0. 

When f.L = fJ, and J.L = 7+, we have [1,2 = (a - ~) 2 , and the system possesses 

a double zero eigenvalue, and a pair of purely imaginary eigenvalues. In each 

case, the equilibrium voltages are finite, but for f.L = 7+, (V2*, m2) is unstable 

for all T ;::: 0, and so whether or not the zero eigenvalues occur for a different 

value of r than the purely imaginary eigenvalues is not really relevant. The 

results for f-l = fJ, are addressed in the following Section 3.2. 7 which deals with 

the results for the upper equilibrium point ( V3-~<, m3). 
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Figure 3.13: Checking conditions (a) and (b) of Case 2 for (V2*, m;): 

Plots of [1,2 (dashed curve) and a2 + d2 + 2bc (solid curve), versus Jl, and 

([1,2 - a2 - ~- 2bc)2 (solid curve) and 4 ((ad- bc)2 - [1,2~) (dashed curve) 

versus /.1>· 
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3.2. 7 Results for the upper Equilibrium Point (~*, m;) 

In this section we address the delay-dependent stability of the upper equi­

librium point, (V3*, m3). This equilibrium point exists for the system when 

Jt < J..t < 9L + g0,., and was found to be stable for T = 0. According to 

Figure 3.5( c), there is a small interval where the criterion for Case 1 is met, 

p, < J..t < J..t- - ~ - 1. 73. With J..t in this interval, we obtain one purely imaginary 

root of the characteristic equation, )..+ = iw+. Along with the transversality 

condition, this indicates a left to right crossing of the imaginary axis by an 

eigenvalue of the system. Since all eigenvalues of the system linearised about 

(V3*, m;) have negative real part with T = 0, a transition to instability is ex­

pected at the smallest value of the sequence (3.2.11). That is, for J..t E (P,, J..t--), 

there exists a T* = To of sequence (3.2.11), depending on J..t, such that (11;*, m3) 

is stable for all T < T *, and unstable for T > T*. Furthermore, stability 

of the equilibrium point cannot be regained once T > T* , since no right to 

left crossings of the imaginary axis occur. Calculating the initial terms To 

of the sequence (3.2.11), we obtain a bifurcation diagram ofT* versus J..t for 

p, < J..t < J..t--, which appears in Figure 3.14. This figure describes how T* varies 

with the strength of the feedback signal, J..t, and indicates where stability of 

(11;* , m3) changes in terms of the bifurcation pair (J..t, 7*) . 

For J..t E (P,, J..t-- ), the system exhibits some additional interesting dynamics. 

As T is increased past T*, the upper equilibrium point (V3*, m3) loses stability, 

and the system undergoes a Hopf bifurcation. However, with J..t in this range, 

the system admits two additional equilibria, (11;*, mi), which is stable for all 

T 2: 0, and (V2* , m2), which is unstable for all T ~ 0. If we consider the system 

with T < 7*, then both (11;*, mi) and (Vg*, m3) are stable equilibrium points, 
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Figure 3.14: Bifurcation Diagram plotting 7* vs. J-t for system (3.0.1) linearised 

about (V3*, m3), with jj < f-t < J-t-- (Case 1). 

and so the system exhibits multistability. Furthermore, numerical simulations 

also indicate the emergence of periodic solutions of system (3.0.1) prior to the 

loss of stability of (V3*, m3) at 7* . The mechanism is believed to be the same 

as that observed for (Vt, mi) in Case 1, that is, via a PSNB at for some value 

of the delay TpsN < 7* : 

Conjecture 3.2. 7 .1. Assume the parameter set listed in Table 3.1 for system 

(3.0.1}. Then (3.0.1} linearised about (V3* , m3) with J-t E (jj, f.L-- ) (Case 1} 

undergoes a periodic saddle- node bifurcation (PSNB) at some value of the 

delay TpsN < T*, where 7* is given by the To term of sequence (3.2.11}. A pair 

of stable and unstable periodic orbits are generated at T psN, and the system 

exhibits tristability with a two stable equilibria (Vt, mi), (V3*, m3) and a stable 

limit cycle for TpsN < T < 7* . Furthermore, the unstable periodic orbit formed 

at TpsN is lost in a subcritical Hopf bifurcation at T = 7 * . 

As mentioned in Conjecture 3.2.7.1, the Hopf bifurcation at 7 * was found 
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to be subcritical and unstable, which would facilitate the loss of an unstable 

periodic orbit generated at TpsN, thereby supporting our claim. Therefore, 

we propose that the system is bistable with two locally stable equilibria for 

0 ~ T < TpsN, and for TpsN < T < r* the system is tristable with two locally 

stable equilibria and a locally stable limit cycle around the upper equilibrium 

point. Stability of (V3*, mj) is lost if T is increased past r*, and the system 

reverts back to a bistable state, only this time we have a locally stable limit 

cycle coexisting with the locally stable equilibrium ("V;_*, mi) - In numerical 

simulations with r just above r *, trajectories starting with initial conditions 

close to (V3, mj) appeared to approach the same stable limit cycle generated 

at TpsN, which had grown in amplitude with the increase in delay. This further 

supports our PSNB conjecture. 

To demonstrate the occurrence oftristability in system (3.0.1), we present 

a numerical simulation of system (3.0.1) with J-l = -2.2 in Figure 3.15. For this 

value of J-l, r * = 47.7, the value of the delay where (v;*, m;) = (19.29, 0.78) 

loses stability. If we take T = 45 ms, then trajectories were observed to 

approach one of the two stable equilibria, and periodic solutions were not 

detected. But if we consider T = 46 < r*, with initial conditions V ( 0) = 

-100, m(O) = m00(-100), then the trajectory approaches a stable limit cycle 

(dotted curve) . If we use V(O) = - 35, m(O) = moo( - 35) with T = 46, then 

the trajectory tends to the stable equilibrium point (1";_*, mt) (solid curve), 

and with with V(O) = 20, m(O) = m00 (20), and T = 46 then the trajectory 

approaches (V3*, m3) (dashed curve). The three solutions with these initial 

data are included in Figure 3.15. 

As a final remark for system (3.0.1) with J-l E (p, ,_,-_- ), we note that the 
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Figure 3.15: Numerical simulation of system (3.0.1) with 11 = - 2.2 and T = 

46 < 7 *, illustrating the occurrence of tristability in the all- Ca2+ system. 

domains of attraction of the locally stable equilibrium points ('V;_*, mi) and 

(V3'~', m3) are delay-dependent. As a consequence, t rajectories starting from 

the same initial data can be made to approach different stable equilibria simply 

by increasing the delay. A numerical simulation presented in Figure 3.16 of 

system (3.0.1) with 1-" = - 2 illustrates this point. For this value of /1, 7 * = 67.6. 

With initial conditions V(B) = 50, m(O) = m00(50) and T = 15, the trajectory 

tends to (V3*, m3) (dashed curve), but with T = 20 we find that the solution 

with the same initial conditions approaches the lower equilibrium (Vt , mi) 

(solid curve). 

In Figure 3.5(c), it is clear that P,2 < (a- t;{) 2 
for all 11 such that 1-"-- < 

f.1 < 9L + 9ca, the remainder of t he interval where the upper equilibrium point 

(V3*, m3) exists. However, checking conditions (a) and (b) of Case 2 in Fig­

ure 3.17 reveals that (b) is satisfied while (a) is not, implying that both w! 
and w:_ are real but negative. Thus, there are no purely imaginary roots of 
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Figure 3.16: Numerical simulation of system (3.0.1) with f-l = -2, with the 

delay increased from T = 15 to T= 20, using the same initial condit ions. This 

illustrates the domain of attraction of the equilibria are delay- dependent . 

the characteristic equation, and so (V3*, m;) does not change stability as T is 

increased, and is locally stable for all T 2: 0. 

However, with f-l E (J-l--, 9L + 9c .. ), t he complete dynamics of the system are 

not governed simply by the one stable equilibrium (V3*, m3) if f-l E (gL, 9L +gc,..), 

or the two stable equilibria (Vt, mi) and (V3*, m3) if f-l E (J-l-- , gL). There are 

sub-intervals of (J-l-- , 9L + g0 .. ) where the system admits different qualitative 

dynamics. 

Consider J-l-- < J-l < 9L· We can further sub- divide this interval into 

two regions, f-l-- < J-l :::; - 1.4, and - 1.4 < f-l < 9L· With f-l-- < f-l :::; 

-1.4, and small delay, the system appears to be bistable with two stable 

equilibria, ("V;_*, mi) and (V3*, m3). However, increasing the delay leads to the 

onset of stable periodic solutions which coexist with the stable equilibria, and 

the system is tristable. We conjecture that a PSNB at some value TpsN > 0 is 
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Figure 3.17: Checking conditions (a) and (b) of Case 2 for (~*,m3) : Plots 

of p,2 (dashed curve) and a2 + d2 + 2bc (solid curve), versus f.l, and plots of 

([1,2 - a2 - cP- 2bc)2 (solid curve) and 4 ((ad - bc)2
- fJ,2d2

) (dashed curve) 

versus f-1 , and a magnification of 3.17 (b) . 
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responsible for this. The system exhibits tristability for a large range of the 

delay, r > TpsN, since an unstable periodic orbit which might be generated at 

TpsN cannot be lost in a subsequent subcritical Hopf bifurcation. 

We were not able to find any numerical evidence of a delay-induced PSNB 

with - 1.4 < J-1- < YL· No periodic solutions were observed with J-1- in this 

range, and the system is bistable with two stable equilibria and one unstable 

equilibrium. If YL < J-1- < YL + Yea, then the lower equilibrium (Vt, mi) is 

no longer present, and the system admits two equilibria, (Y';*, m;), which is 

unstable for all T 2: 0, and (V3*, m;), which is stable for all r 2: 0. 

The values of J-1- for which fl2 = (a- ~) 2 
are J-1- = jj, J-1- = J-1---, and 

f-1- = YL + Yea· It was shown earlier that this situation leads to a double zero 

eigenvalue and a pair of purely imaginary eigenvalues. vVe disregard the latter 

case, since V3* --7 + oo as ,u --7 YL +Yea· The value J-1- = J-1--- marks the end of 

Case 1 dynamics for system (3.0.1) linearised about (V3*, mj). Qualitatively, 

the results for this parameter value are similar to the results obtained in Sec­

tion 3.2.5 for J-1-- , in that the double zero eigenvalue and pure imaginary pair 

occur for different values of r. The double zero roots appear as r --7 +oo, and 

since there is no degeneracy, we predict that a stability change and Hopf bifur­

cation occur as r is increased past r* = 1473, the delay value corresponding to 

the pair of purely imaginary eigenvalues. However, the situation surrounding 

J-1- = jj is more interesting: as J-1- --7 jj, the Hopf bifurcation and steady- state 

saddle--node bifurcation coalesce in what appears to be a Takens- Bogdanov 

interaction [37]. Here, we expect T 0, the delay value corresponding to the 

zero eigenvalues, to approach a finite limit, f 0
, as w --7 0. This differs from 

other cases where jl2 = (a - ~) 2 , where r0 --7 oo as w --7 0. Since we cannot 
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obtain an exact numerical representation for p, and since the limit is difficult 

to evaluate analytically, we estimate the limit using the approximate value 

p ~ -2.22. With this value we obtain 7° = 46, and conjecture that the point 

(p, 7°) is a Takens-Bogdanov point. 

The phenomenon of bistability was observed in the original all-calcium 

conductance system studied by Morris and Lecar, in which the V(m) nullcline 

was monotone increasing and the system possessed three equilibria, an unsta­

ble saddle between two stable nodes. They showed that a trajectory starting 

with initial conditions could be made to approach different stable equilibria 

by including an impulse of current to raise the voltage past the region where 

the separatrix of the saddle point intersects the voltage axis. However, this 

requires non- zero applied current (I =f. 0). We were able to obtain bistabil­

ity in the all- calcium system with delayed recurrent feedback and no applied 

current, indicating that the feedback alone is capable of producing bistabil­

ity. Furthermore, the all-calcium system with delay, (3.0.1), is even capable 

of demonstrating tristability, between two stable equilibria and a stable limit 

cycle. The original system without delay did not exhibit such diverse and 

complex behavior. 

This concludes the detailed analysis of the all-calcium conductance system 

with delay. Addressed here, at length, was the stability of the equilibria, as 

well as other more complicated dynamics of the model. The all- calcium sys­

tem with delayed recurrent feedback exhibits a diverse spectrum of dynamical 

phenomena, and are much more rich than these of the original model without 

delay. Figure 3.18 provides a summary of the dynamics observed for system 

(3.0.1) as a sequence of schematic bifurcation diagrams. In the next chap-
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ter, we shall combine both conductance systems and study a two-dimensional 

model with delay, obtained from a simplification of the full three-dimensional 

system. 

. . . . .. · .. 
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Figure 3.18: Sequence of schematic bifurcation diagrams outlining the con­

jectured bifurcation structure of system (3.0.1) as p, and 7 are varied. Delay 

times for Hopf bifurcation (7*) and PSNB (7PsN) are indicated. 

The following theorem summarizes the results proved in this section: 

Theorem 3.2.7.2. Assume that parameters in system {3.0.1) are as in Ta­

ble 3.1. Then for [1 < p, < p,--, (V3*, m;) is stable for all 7 E [0, 7*), where 

[1, JL- - , 7* are defined earlier. For all 7 > 7*, (\13", m3) is unstable, and the 

system undergoes a subcritical Hopf bifurcation at 7 = 7*, and the em erging 

periodic solutions are orbitally unstable. If p,-- < p, < 9L + g0 ,., then (11;*, m3) 

is stable for all 7 2: 0. 
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3.2.8 Direction and Stability of Hopf Bifurcation 

In this section we examine the stability and direction of the Hopf bifurcation 

for the all-calcium conductance system with delay (3.0.1). Since the equa­

tions are identical in form to those of the all-potassium system with delay, 

aside from the parameters, the analysis required to determine the details of 

the bifurcating periodic solutions is identical to that presented in the chap­

ter on the aU- K+ system. The previous sections have shown that the system 

admits at most one pair of purely imaginary roots ± iw+ , and hence multiple 

stability switches are not possible for any equilibria of the system. Therefore, 

at most one (significant) Hopf bifurcation is expected for those f.l where the 

system linearised about the lower or upper equilibrium points has a pair of 

purely imaginary eigenvalues. Furthermore, we know from the transversality 

condition computed in Section 2.2.6 that any crossing of the imaginary axis is 

from left to right, i.e. if ..\(r) = a(r) +iw(r), then a(r*) = 0, w(r*) = w+, and 

da(T*) 
0 dT > . 

The lower and upper equilibrium points are capable of at most one change 

in stability, while the middle equilibrium point is unstable for all T 2:: 0. There­

fore, let (V*,m*) be an equilibrium point of (3.0.1) . Specifically, (V*,m*) = 

(~"', mi) if Jl < Jl- , and (V*, m*) = (\'s*, m3) if P, < f.l < f.l- - . The nonlinear 

system with equilibrium point shifted to the origin, and with the hyperbolic 
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trigonometric functions expanded is 

dx = -ax+ by + jlx(t- r ) - axy 
dt 

dy ( 1 ) 2 d dt = ex - dy - c f3v - 2f3u X - 2V4f3uXY 

c [5 (1 )] 3 d 2 4 - Vt2 24 + f3v 2f3u- f3v X - BViX y + O(x ). 

Here, 

f3u = tanh(u) , f3v = tanh(v) , U = 
2V2 

V*- Vi 
v = v2 
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(3.2.12) 

9ca a =c, 

and the coefficients a, b, c, d and jl were defined earlier for the linearised system 

(3.2.4). The calculation on the centre manifold is the same, and we obtain the 

same expressions for the 9ij terms, and hence the expressions for 112 , !32 and 

T2, the coefficients which determine the stability, direction and period of the 

bifurcating periodic solutions, are also identical. One must simply replace the 

coefficients for the all-potassium system with those of the all- calcium system, 

given above for (3.2.12) , to reproduce the analysis. 

Now we turn to the results of this important calculation. For the lower 

equilibrium point (11;* , mr), system (3.0.1) has a pair of complex conjugate, 

purely imaginary eigenvalues ± iw+ for (J.L, r*), where J.L < J.L- ~ -2.52, and 

r* is given by (3.2.11) . Recall that for Jl :S -3.7, the onset of stable periodic 

solutions was observed only as r was increased through r*, corresponding to 

the loss of stability of (11;* , mi) , the sole equilibrium point of the system. If we 

consider the specific example J.L = -5, then we expect to find a supercritical 

Hopf bifurcation (J.L2 > 0) at r = r*, and that the bifurcating periodic solutions 

are orbitally stable (/32 < 0). For this example, the purely imaginary root is 

,\+ = iw+ = i x 0.1786, and the delay time for the bifurcation is r * = 11.7 
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ms. For the q(B) eigenfunction, we obtain /3 = 0.00132 - i x 0.00164, and for 

q*(s) we have v1 = 0.2145 + i x 0.20'75, v2 = -2.74 + i x 30.37. For the 9ij 

coefficients, we obtain 920 = - 0.00045 - i x 0.001147, 911 = -0.000242 - i x 

0.001318, 9o2 = -0.000034 - i x 0.001489, and 921 = -0.00317 - i x 0.00395. 

Computing C1 (0) we obtain C1 (0) = -0.00159- i x 0.00198, and hence ~t2 = 
(0.00159)(Re{A'(0)}) - 1 > 0, since Re{.\'(0)} > 0, and {32 = -0.00317 < 0. 

Thus our predictions as to the direction and stability of the Hopf bifurcation 

are confirmed. Similar results were obtained for a sample of value of f.l ::; - 3. 7. 

On the other hand, for -3.7 < f.t ::; f.t - , stable periodic solutions were 

observed prior to the loss of stability of (ll;_*, mi), that is for 7 < 7*. We 

conjectured that these stable periodic solutions were generated by a PSNB for 

some value 7psN < 7*, along with an unstable periodic orbit. In this case, we 

expect to see a subcritical Hopf bifurcation (f.l2 < 0), and that the bifurcating 

periodic solutions are orbitally unstable (/32 > 0). Considering f.1 = - 3, we 

find that .\+ = iw+ = i x 0.0733, 7* = 34.6 ms, {3 = 0.00117 - i x 0.00050, 

l/1 = 0.1455 + i X 0.0769, l/2 = 13.77 + i X 16.96, 920 = 0.000268- i X 0.00049, 

9n = 0.000331 - i x 0.000456, 9o2 = 0.000394 - i x 0.000421, and 921 = 

0.00218 - i X 0.00395. For cl (0) we obtain cl (0) = 0.00109 - i X 0.00198, 

which yields J.L2 = ( -0.00109)(Re{.\'(O)} )-1 < 0, and {32 = 0.00218 > 0. This 

verifies that the Hopf bifurcation at 7* = 34.6 is subcritical, and that the 

bifurcat ing periodic solutions are orbitally unstable. A sample of values of 

f.t E ( - 3.7, f.t-) yielded similar results. 

With jj < f.t < f.t-- , (ll;_* , mi) is stable for all 7 ~ 0, but (1;3*, m3) loses 

stability as 7 is increased through the (Hopf) bifurcation value 7 *. Also, stable 

periodic solutions were detected for 7 < 7* most likely arising via PSNB. 
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For this case, we expect to find that the unstable periodic orbit formed at 

some TpsN < r* is lost via a subcritical Hopf bifurcation at r *. To see if 

this is the case, we calculate the coefficients ~-t2 and /32 for the sample value 

J.t = - 2.2. For this value of J.t we have )..+ = iw+ = i x 0.0215, r* = 48.8 ms, 

(3 = 0.0223 - i X 0.00458, v1 = 0.1133 + i X 0.2517, v2 = 9.10 + i X 40.62, 

920 = - 0.00177 + i X 0.00972, 911 = - 0.00262 + i X 0.00942, 902 = - 0.00347 + 
i X 0.00913, and 921 = 0.00651 - i X 0.0192. Computing cl (0) we obtain 

C1 (0) = 0.00423 - i x 0.0116. This gives ~-t2 = (-0.00423)(Re{X(0)})- 1 < 0, 

which indicates that the Hopf bifurcation is subcritical, and /32 = 0.00846 > 0, 

which implies that the bifurcating periodic solutions are orbitally unstable, as 

expected. Checking a large sample of values of jj < J.t < J.t- - produced similar 

results. 

The results of this detailed analysis are consistent with results obtained 

from numerical simulations, and verifies our earlier claims. The subcriti­

cal Hopf bifurcation branching to unstable oscillations was observed with 

- 3.7 < J.t < J.t- for (Vt,mr), and with jj < J.t < J.t- - for ("V;* ,m;). Along 

with numerically- detected stable periodic orbits for T < r * , the subcritical, 

unstable Hopf bifurcation(s) support our PSNB conjecture. However, this de­

tailed Hopf bifurcation analysis cannot provide evidence for a PSNB of the 

system with J.t-- < J.t < 9L + 9ca, since there is no Hopf bifurcation of the 

system for these values of f.t· Hence this phenomenon is a trend observed for 

jl < J.t < J.t- - , and is believed to persist with J.t E (J.t-- , - 1.4], based on results 

from numerical simulations. 



Chapter 4 

The Full-2D Model with Delay 

With both the calcium and potassium conductance systems operational, Mor­

ris and Lecar [24] found that the original model without delay is capable of 

supporting voltage oscillations. Analysis of the full three-dimensional model 

requires simultaneous adjustment of several parameters, making it even dif­

ficult to establish requirements for oscillations from numerical study of the 

full system in some generality. To facilitate their study of the model with 

both conductance systems active, Morris and Lecar successfully reduced the 

dimension of the system, invoking an inequality of Tikhonov [38] which allows 

reduction of the dimension of the phase space without changing the charac­

ter of the singular point of the system. They then were able to apply the 

Poincare-Bendixson theorem to prove the existence of periodic orbits of the 

reduced system. The physiological justification of such a reduction lies in the 

difference in relaxation times of the Ca2+ and K+ conductances. The calcium 

conductance operates on a much faster time scale than the potassium conduc­

tance, and so by assuming that g0 a is instantaneously in steady state at all 
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times, i.e. m = m00 (V) , we obtain the reduced two- dimensional system with 

delay 

CV(t) = - gL(V- VL) - gKn(V - VK)- 9camoo(V)(V - Yea) 

+ ,uV(t- r) 

n(t) = An(V) (noo(V) - n], 

with m=(V), n00 (V), and An(V) given by 

1 [ (V -Vi)] m00 (V) = 2 1 +tanh V2 , 

1 [ (v -vs)] noo(V) = 2 1 +tanh V4 , 

An(V) =An cosh (V 2~4V3) . 

(4.0.1) 

(4.0.2) 

System (4.0.1) with ,u = 0 is the original V, N reduced system studied by 

Morris and Lecar. In this thesis, we refer to the delayed system (4.0.1) as the 

full- 2D Morris- Lecar model with delay. In effect, m has been removed as a 

dependent variable. Inspection of system ( 4.0.1) reveals that it is basically the 

all- potassium system with delay (2.0.1), with an extra nonlinear term in the 

DDE to account for the steady- state calcium conductance. 

We have already established that each conductance system in isolation is 

capable of supporting voltage oscillations in the presence of delayed recurrent 

feedback. Since the original conductance systems were incapable of display­

ing periodic behavior, we conclude that the addition of a delay allows for 

more complex dynamics. The purpose of this chapter is to analyse the two-
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dimensional reduced model with delayed recurrent feedback, so that we may 

gain some insight to the effects of adding a delay to this more complex system. 

4.1 The Full- 2D model without Delay 

With J.l = 0, we obtain the original V, N reduced system proposed by Morris 

and Lecar: 

(4.1.1) 

n(t) = -Xn(V) [noo(V) - n] , 

with m00 (V), n00 (V), and -Xn (V) as given in (4.0.2) . Then = 0 nullcline is the 

same as that in the all-potassium system, 

1 [ (V-V3)] n(V) = noo(V) = "2 1 + tanh V
4 

. 

The equation of the V = 0 nullcline is 

V (n) = 9c • .Vc.,moo(V) + gKVKn + gLVL 
9caffioo (V) + 9L + gKn ' 

which is no longer a hyperbola, due to the hyperbolic tangent term. However, 

with J.l = 0 the nullclines still intersect only once in the (V, n)-plane, and 

so the system admits a single equilibrium point (V*, n*) . This is evident in 

Figure 4.1 (b), which contains a plot of the nullclines of ( 4.1.1). The parameter 

set used in the investigation of the full system is included in Table 4.1. 

To determine the local stability of the equilibrium point (V*, n*) , we let 
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II Parameter Set 

g0a = 4 mmho/cm2 gK = 8 mmho/cm2 gL = 3 mmho/cm2 

Vca = 100 mV VK = - 70 mV VL =-50 mV 

Vi = lOmV V3 = - 1.0 mV C = 20 J..LF/ cm2 

V2 = 15 mV 114 = 14.5 mV x- 1 -1 
n = 15 S 

Table 4.1: Morris- Lecar parameter set for the full two- dimensional system. 

x = V - V* andy = n - n*, and linearise to obtain 

dx 
dt 

dy 

dt 

Setting 

1 [ * ( ( *) (V* - Vaa) 2 ( V* - V1)) l - C 9L + gKn + 9ca. moo V + 2V2 sech V2 x 

+a; (VK - V*)y 

An (V* - V3) 2 (V* - V3) - (V*- V3) 
2
V

4 
cosh 

2114 
sech ll4 x - An cosh 

2114 
y. 

1 [ * ( ( *) (V* - Vc.,) 2 ( )) l a = C 9L + gKn + 9ca moo V + 2V
2 

sech t , 

c = ;. cosh (u) sech2 (v), d = An cosh ( u) , 

where u = v;v
4
v3 , v = V*~ Va , t = v·v; Vi , where t in this case is a parameter, 

not the independent (time) variable of the system. With these substitutions, 
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we obtain 

,\ 
2 + (a + d),\ + (ad - be) = 0 

as the characteristic equation of (4.1.1) . By the Routh-Hurwitz conditions, 

(V*, n*) is stable provided (i) a > -d and (ii) ad> be. 

The equilibrium of system ( 4.1.1) is (V*, n*) = ( - 49.995, 1.16 x 10- 3 ) . 

With this point and the parameter values cited in Table 4.1, we compute the 

coefficients a through d of the linearised system, which appear in Table 4.2. 

Since a and dare both positive, condition (i) a > - dis satisfied. Also, since b 

is negative and e is positive, condition (ii) is met as well, implying that both 

eigenvalues of the system have negative real parts. Furthermore, since the 

discriminant .6. = (a+ d)2 - 4(ad- be) = 4.52 x 10- 4 > 0 of the characteristic 

equation is positive, it follows that the single equilibrium point is a stable 

node. 

II Parameter Value 

a= 0.149 

b = -8.00 

e = 2.98 X 10-5 

d = 0.187 

Table 4.2: The values of the coefficients of the linearised system of ( 4.1.1) . 

4.2 The Full-2D model with Delay 

Consider (4.0.1) with non- zero J.t . As with the conductance systems, we begin 

our analysis of the full two- dimensional model with delay by examining how 
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the nullclines of the system change as the parameter p, is varied. This will 

indicate the number and position of the equilibria of the system in the (V, n )­

plane. 

4.2.1 The Nullclines of the System 

Since the second equation of ( 4.0.1) does not contain the parameter p,, the 

n = 0 nullcline is simply 

1 [ (V-V3
)] n(V) = n00 (V) = "2 1 +tanh V

4 
, (4.2.1) 

which is a monotone increasing sigmoidal function with horizontal asymptotes 

-1 and 1 as V ---7 - oo and +oo, respectively. This is the same as the nullcline 

obtained in the all-potassium conductance system. 

For the all- potassium conductance system, we obtained V as an explicit 

function of n for the V = 0 nullcline. In the case of the full system, such 

an explicit representation is not possible, due to the hyperbolic tangent term 

containing V. Therefore the nullcline V as a function of n is defined implicitly 

as 
V(n) = 9ca Vcamoo(V) + 9K VKn + 9L VL . 

9camoo(V) + 9L + gKn- 11-
(4.2.2) 

However, it is possible to express the V = 0 nullcline with n as an explicit 

function of V , which is convenient to study the null clines in the (V, n )- plane. 

We obtain 

n(V) = 9L(VL- V) + 9camoo(V)(Vc,.- V) + p,V. 
9K(V- VK) 

(4.2.3) 

For convenience, we shall label the n = 0 nullcline n 1 (V), and the V = 0 

nullcline n2(V). Note that the V = 0 nullcline is no longer a simple hyperbola, 
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but it still consists of two distinct parts, separated by a vertical asymptote at 

V = VK. There are two horizontal asymptotes for n2 (V), which we find by 

taking the limits as V -+ ± oo: 

1. (V) M- 9L 1m n2 = , 
V-t - oo 9K 

l . (V) /l - 9L - 9ca 1mn2 = . 
V-t+oo 9K 

To evaluate these limits, we used l'Hopitals rule along with the fact that 

tanh (vv
2
v1

) -+ -1 and 1 as V-+ - oo and oo, respectively, sech2 (vv
2
v1 ) -+ 0 

as V-+ ± oo, and 

(v - Vi) V sech2 V2 -+ 0 as V-+ ±oo. 

The behavior of the n2 (V) null cline as Jl is varied is very similar to that of 

the V = 0 nullcline of the aU- K+ conductance system. When we refer to the 

nullcline in each parameter region, we mean the portion of the nullcline which 

is in the interval of interest 0 ::; n ::; 1. If 

then the portion of the n2 (V) nullcline left of the vertical asymptote is below 

the V - axis, and is merely shifted vertically as Jl is varied. The part to the 

right of V = VK is in the interval of interest, and changes significantly as we 

vary Jl in this range. For large negative Jl, say Jl < - 9, this part is monotone 

decreasing and the n1 (V), n2 (V) null clines intersect once. As Jl approaches 

9c .. moo(VK) ( 1- ~) + 9L ( 1- ~~),then the right- most part of n2 (V ) has a 

cubic- like shape, due to the approximation of rapid activation of the calcium 

current (m = m 00 (V)). Such an N- shaped instantaneous current- voltage 
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relation is common of models of excitable membranes for which the voltage­

gated channels carrying inward current activate rapidly [34]. For some values 

of f.t the knee of the N - shaped null cline rises above the V -axis, but does not 

lead to any additional equilibria. Therefore, for all f.L < 9camoo (VK) ( 1 - ~) + 
9L ( 1 - it"), system ( 4.0.1) admits a single equilibrium point (V*, n*) in the 

(V, n)-plane, with V* > VK. Using the parameter values included in Table 4.1, 

we find that 

which is very close in value to ~ . In the all-potassium system, the value 

f.t = ~ separated the parameter range where the V = 0 nullcline was mono­

tone increasing from that where it was monotone decreasing, and marked the 

parameter value where the nullcline was reduced to a pair of vertical and hor­

izontal lines. A sample nullcline plot in the (V, n )-plane with p, in this range 

is included in Figure 4.1 (a). 

When f.t = g0 .. m 00 (VK) ( 1 - ~) + 9L ( 1 - ~) , the n2 null cline is reduced 

to a vertical line at V = VK, and an additional part given by 

The vertical line intersects the n1 (V) nullcline, leading to the equilibrium 

point (V*, n*) ~ ( -70, 0), since the n1 (V ) nullcline is nearly zero there. The 

additional part ( 4.2.4) lies mostly below the V - axis, but does protrude into 

the interval of interest. However, it does not lead to additional equilibria. 

Figure 4.1 (c) shows the null clines in the (V, n )-plane for this value of f.t · 

The part of the n2 (V) nullcline of interest is monotone increasing when J.t 
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Figure 4.1: Plots of the V (n) (solid) and n(V) (dashed) nullclines of the full-

2D system (4.0.1) for representative values of J.L. 
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is in the range 

9camoo(VK) ( 1- ~a) + gL ( 1- ~:) < Jt < gL, 

and consists of the branch left of V = VK. To the right of V = VK, n2 (V) does 

not intersect the n = 0 nullcline. Here, we again have a single equilibrium 

point (V*, n*) but the equilibrium voltage is below VK. Figure 4.1 (d) contains 

the nullclines for a value of J-l in this region. 

As Jt --+ gL, V* --t - oo, since the horizontal asymptote of n2(V) as V --t 

- oo approaches zero. When J-l = gL the nullclines do not intersect in the (V, n )­

plane, and there is no finite equilibrium point. The same is true while gL :::; 

J-l :::; gL + gK + g0 a., because with J-l in this range, the lower horizontal asymptote 

of n2 (V) is above zero, and the upper horizontal asymptote is between zero 

and one, inclusive. This can be seen in Figure 4.1 (e) , where the n1 (V) and 

n2(V) nullclines are positioned in such a way that they do not intersect. Note 

though, that when J-l = gL + gK + g0 ., the horizontal asymptote of n 2 (V) as 

V --t +oo has value n = 1. As J-l is increased above gL + gK + g0a, the right 

branch of n2 (V) intersects n1 (V), and the system has a single equilibrium 

point, (V*, n*), with n* close to 1 and V* > 0 > VK. Since the left branch 

of the n2(V) nullcline is above the interval of interest (the lower horizontal 

asymptote rose above n = 1 with J-l > gL + gK), it is not important. The upper 

branch flattens out at around Jt = 10, and becomes monotone increasing and 

concave down on the interval of interest. Figure 4.1(f) shows the nullclines of 

the system with J-l = 17. Here, the left branch is well above n = 1, and the 

right branch does indeed intersect the n1 nullcline. 

Comparing Figure 4.1 to Figure 2.1 of Chapter 2, we see that the qualitative 

behavior of the null clines of the full-2D system ( 4. 0.1) is similar to that of the 
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all-potassium conductance system (2.0.1). As such, system (4.0.1) with model 

parameters in Table 4.1 admits at most one equilibrium point in the (V, n)­

plane for any p E R Furthermore, the equilibrium point (V* , n*) of the full-

2D model ( 4.0.1) for a specific value of p is very close to the corresponding 

equilibrium point of the all- K+ conductance system (2.0.1) for the same p . 

Also, there is a parameter region of p where the system does not have any 

equilibrium point. This range depends on the model parameters appearing in 

the expressions for the horizontal asymptotes of n2 (V). These similarities are 

not surprising, since in the reduction of the full model we assumed that the 

potassium conductance system played a more prominent role than the calcium 

conductance. 

The results discussed in this section are summarized in Figure 4.2, which 

contains steady- state bifurcation diagrams indicating how V* and n* change 

with p. Stability of the equilibrium point (for T = 0) is also included, where 

solid lines represent stable equilibrium values and dashed lines unstable val­

ues. Stability properties of the equilibrium point of the model with zero time 

delay are verified in the next section. Notice the similarity between the bifur­

cation diagrams in Figure 4.2 to those for the all- potassium system depicted 

in Figure 2.2. It is evident that the full 2D model under this simplification is 

dominated by the potassium conductance, and it appears that the contribu­

tion of the calcium conductance is minimal, serving only to slightly raise the 

equilibrium voltage for a given value of p. 
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Figure 4.2: Bifurcation diagrams describing how V* and n* of the full- 2D 

model change as 11 is varied. Solid lines indicate stable equilibrium points 

while dashed lines represent unstable ones. 

With the results of this section, we have essentially established the following 

theorem: 

Theorem 4.2.1.1. With parameters listed in Table 4.1, system {4,0.1} admits 

at most one equilibrium point (V*, n*) for all J1 E R The value n* E [0, 1], 

and V* > VK if f1 < 9camoo(Vx) ( 1- ~) + 9L ( 1- ~) or f1 > 9L + 9K + 9ca1 

V* < Vx if 9camoo(V[() ( 1 - ~) + 9L ( 1 - ~) < J1 < 9LI and V* = v[( if J1 = 

9camoo(VK) ( 1- ~) + 9£ ( 1- ~). Furthermore, if 9L :::; J1:::; 9L + 9K + 9ca, 

then (4 .0.1) does not possess an equilibrium point. 
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4.2.2 Local Stability and Bifurcation Analysis of the 

Full- 2D Model with Delay 

Equilibrium points (V*, n*) of system ( 4.0.1) are given by the intersection of 

the nullclines (4.2.1) and (4.2.3) . In the previous section 4.2.1, we established 

that the system admits at most one equilibrium point. In part icular, there is 

one equilibrium point with finite equilibrium voltage provided f1, ~ [yL, YL + 
9K + 9ea], and no equilibrium point if f1, is in this range. 

Consider system (4.0.1) with f-L ~ [gL , YL + 9K +Yea]· To determine the 

local stability of the equilibrium point (V*, n*), we linearise the system. The 

nonlinear system with equilibrium point shifted to the origin is 

cdx 
dt 

dy 

dt 
\ h ( x + V* - Vs) 
An COS TT X 2q 

[
1 ( (x + V* - V3 )) -] 2 1 + tanh v4 - y - n * . 

Linearising, we obtain 

dx 1 [ * ( ( *) (V* - Ve .. ) 2 ( )) J dt =-C YL + 9Kn +Yea moo V + 
2112 

sech t x 

+ s:; (VK- V* )y + ~x(t- T) 

An 2 -
iJ(t) = 

2
V

4 
cosh (u) sech (v) - An cosh (u) y . 

(4.2.5) 

(4.2.6) 

(4.2.7) 
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where u = v·-v3 u = v·-v3 and t = v·-v1 • If we set 
2V4 ' V4 ' v2 

1 [ * ( ( *) (V* - Va .. ) h2 ( )) l a = C 9L + gKn + 9ca moo V + 
2
V

2 
sec t , 

c = ~~ cosh (u) sech2 (v), 
2v4 

then system (4.2.7) becomes 

d = An cosh ( u) , 

x(t) = -ax+ by+ {Lx(t - T) 

y(t) = ex- dy, 
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(4.2.8) 

which is identical in form to (2.2.8), the potassium conductance system lin­

earised about the origin. Therefore, the characteristic equation for system 

(4.0.1) is of the same form for the all- potassium conductance system, and 

we can apply the results of Cooke and Grossman to analyse stability of the 

equilibrium point. Comparing ( 4.2.8) to (2.2.8), coefficient a has a different 

definition, while all other coefficients have the same form but differ slightly 

in value from those of the all-potassium system for any given p, due to the 

change in equilibrium point from the single-conductance system to the full 

system. Since the behavior of the nullclines is qualitatively the same for both 

systems as J.1 is varied, the ranges for coefficients b, c, and d specified in the 

all-potassium chapter are valid for these coefficients appearing in ( 4.2.8). One 

must simply replace the values 9L ( 1 - ~~ ) and 9L + 9K in the all- potassium 

system with 9c .. moo (VK) ( 1 - ~) + 9L ( 1 - tt) and 9L + 9K + g0 M respectively, 

for the full two-dimensional system. We still find that b and d are unbounded 

as p, -+ 9L and 9L + 9K + g0 .. , both c and d are always positive constants, and 

b changes sign at a slightly different value than before. 
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vVe consider a separately, since it has a different form. Again, V* --+ - oo 

and n* --+ 0 as 11--+ gL. In this limit, the extra terms appearing in the definition 

of a tend to zero, and so we find that a --+ ~. Also, as 11 --+ gL + gK + gca, 

V* --+ + oo and n* --+ 1, and so a --+ YL+Y~+Yca. For large values of /1, posit ive 

and negative, V* --+ 0 and n* --+ n00 (0) ~ 0.53, and substituting these values 

in for V* and n* into the expression for a, we obtain a~ - 3.47 x w-2 , which 

is less than zero. While a can assume negative values, we note that this can 

only occur for large values of 1111 which are physiologically unrealistiC, say 

11 = - 100 and 11 = 80. Also, since the lowest value a can assume is very small 

in magnitude, it does not interfere with any of the analytical results. For our 

purposes, we may consider a to be a positive constant which is bounded above 

by the value YL+g~+Yca = 0. 75. 

The characteristic equation of (4.0.1) is 

-\
2 +(a+ d)>.+ (ad- be) - jl-\e->.7

- jlde- >.7 = 0, (4.2.9) 

with a, b, c, and d defined above. Consider first the system with zero time 

delay, (4.0.1) with T = 0. In this case, the system is reduced to a pair of 

coupled ODEs, and has a quadratic polynomial characteristic with roots 

A _ fl- (a+ d)± J[(a +d)- flF- 4[(ad- be) - jld] 
±- 2 . (4.2.10) 

The trivial solution of ( 4.2. 7) is stable provided the Routh-Hurwitz conditions 

(i) jl < a+d and (ii) jl < a- ~ are both satisfied. These conditions are plotted 

in Figure 4.3, where we find that both (i) and (ii) are satisfied provided 11 < gL. 

Therefore, with 11 in this range, (V *, n*) of (4.0.1) is a st able equilibrium point . 

Further investigation reveals that the equilibrium point is a stable node for 

most parameter values, but a stable focus for -1.21 < 11 < -0.04, which can 
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be determined from the plots of the discriminant 6. = [(a+ d) - itF- 4[(ad­

be) - {td] of (4.2.10) in Figure 4.4. 

-·------------·--------------------- { 
l I _.-· 

j _____ .. ----- ----·· 
----- - ---------.. 

- ---------- -
·I 0.5 

·1.5 

(a) JJ- < 9L = 3. 

Figure 4.3: Checking the Routh-Hurwitz conditions: Plots of a+ d (solid 

curve), a - ~ (dashed curve), and {t (dotted line) against f.1 for the two pa­

rameter ranges where system (4.0.1) (with T = 0) has a unique equilibrium 

point. 

For f.1 > 9L + 9K + 9ca, condition (ii) is never met and so the equilibrium 

point (V*, n*) is unstable. In fact, from Figure 4.3(b ), it is clear that jL ~ a- ~ 

for all f.1 ~ 9L + 9K + 9ca, from which it follows that (ad- be) - P,d:::; 0 for all 

J.L ~ 9L + 9K + 9ca· This implies that the discriminant b. ~ 0 for all J.L in this 

range, and so both roots A± are real with ).+ > 0, )._ < 0 and so (V* , n*) is 

an unstable saddle point for all J.L in this range. The Cooke-Grossman theory 

does not apply when 11::::::: 21.0, since for this value of J.L , we have jL =a + d. As 

in the previous chapters (Chapters 2 and 3), in this case there are no purely 

imaginary roots of the characteristic equation ( 4.2.9). The theory also fails if 
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OS 

Figure 4.4: Plots of [(a+ d)- p-]2 (solid curve) and 4[(ad- be)- [Ld] (dashed 

curve) versus J.t to determine the sign of the discriminant. Figure 4.4(a) mag­

nified in 4.4(b) to distinguish the ranges of J.t for which the discriminant is 

positive from those where it is negative. 
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P, = a - ~ which occurs when J-t = gL and gL + gK + 9ca, but these cases are 

physiologically unrealistic. 

Turning now to the model with delay, T > 0, we substitute A = iw into 

( 4.2.9) to search for purely imaginary roots of the transcendental characteristic 

equation. From previous analysis, we know that this leads to the quartic 

equation 

(4.2.11) 

the roots of which are the± square roots of wi, given by 

W±
2 1 ( h2 2 d2 b ) 

2 J-t - a - - 2c 
1 

± { ~ (P,2 - a2
- d2

- 2bc)
2

- ((ad - bc)2
- P,2d2

)} 

2

. ( 4.2.12) 

Purely imaginary roots A = iw (with w > 0) of (4.2.9) , occur with positive 

real roots of (4.2.11). To determine if system (4.0.1) admits purely imaginary 

eigenvalues, we check to see if the system satisfies the criteria for the cases 

outlined by Cooke and Grossman [6]. 

Case 1 (it2 > (a - ~) 2 ) . In this case, we obtain one purely imaginary root 

A+= iw+ of (4.2.9), corresponding to the single positive real root of (4.2.11), 

w+ > 0. To determine the range on the parameter J-t for which this case is 

satisfied, we plot P,2 and (a- ~) 2 
versus p, in Figure 4.5. 

Figure 4.5(b) indicates that the single criterion for Case 1 is satisfied for 

all p, > 9L + gK + 9ca· The plots for p, < 9L appear in Figure 4.5(a), where 

we find that there is a p,* < 0 such that P,2 > (a - ~) 2 , i.e. Case 1, provided 

p, < p,*, but p,2 < (a - ~) 2 
for p,* < p, < gL, which is the primary requirement 
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(b) f.J, ~ 9L + 9K + 9Ca. = 15. 

Figure 4.5: Plots of P,2 (dashed curve) and (a - ~)2 
(solid curve) versus J.L, 

for the two parameter ranges of J.L for which the system (4.0.1) has a unique 

equilibrium point. 

for Case 2. As in Chapter 2, we cannot obtain the exact numerical value of J.L*, 

but we can estimating the value to obtain JJ* ~ -7.39. Recall that the symbol 

J.L* was used in the chapter on the all-potassium conductance system, and 

represented the value of J.L which separated the Case 1 and Case 2 dynamics 

of the model. We re-use this label here to serve the same purpose. 

In this section we focus on the Case 1 dynamics of the model, for which 

the system has a single purely imaginary root )..+ = iw+, w+ > 0. By the 

transversality condition computed earlier, we know that sign{ d(~~>-+)} = 

sign { +v'LS"} > 0 for )..+, where .6. is the discriminant of (4.2.12). It follows 

that the crossing of the imaginary axis occurring with the purely imaginary 

root )..+ must be from left to right. With JJ > gL + gK + g0a, the equilibrium 

point of the system is an unstable saddle forT = 0. Therefore, with JJ in this 
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range, stability of the equilibrium point cannot be obtained by increasing T, 

and so (V*, n*) is unstable for all T ~ 0. 

Consider next the case where f.J, < f.J,*. With f.J, in this range we obtain a sin­

gle equilibrium point in the (V, n )- plane, which is stable for T = 0. Therefore 

(V*, n*) loses stability as T is increased though the smallest value for which 

_ ~ _ 1 {aw~ + d(ad- be)} 2rrn 
7 n - cos ~ ( 2 d2 ) + ( n = 0, 1, . . . ) . 

w+ f.J, w+ + w+ 

Denote this value by r* = To. Since there is only one purely imaginary root 

and one crossing, this is the only change in stability of the equilibrium point. 

Therefore, for every f.J, < f.J,*, there exists a time delay r* for which the equi­

librium point (V*, n*) of ( 4.0.1) is stable for all delays T < r*, but unstable if 

T is greater than r*. Stability of the equilibrium point cannot be regained by 

further increasing the delay. Figure 4.6 plots the bifurcation times r * versus 

f.J, for f.J, < f.J,*. 

i 

Figure 4.6: Bifurcation Diagram plotting r * vs. f.J, for system (4.0.1) with 

f.J, < f.J,* ~ -7.39 (the model is in Case 1). 

When T = r *, the system satisfies all requirements for the Hopf bifurcation 
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theorem for DDEs [17]. As the equilibrium point (V*, n*) loses stability, the 

system also undergoes a Hopf bifurcation as T is increased past 7*. Numerical 

simulations indicate the emergence of stable periodic solutions prior to the 

loss of equilibrium point stability. The system is originally monostable with 

a stable equilibrium point, but for some values of the delay less than 7* the 

system exhibits bistability with a locally stable limit cycle and a locally stable 

equilibrium point. To illustrate these results, we consider system (4.0.1) with 

J.-t = - 8 < J.-t*, and so the system is in Case 1. For this value of J.-t, T* = 4.4 ms. 

In Figure 4.7 we plot the solution V(t) versus t and delay phase plane V(t - T) 

versus V(t) forT= 4 < T*, and T = 5 > T*, and two different initial conditions 

for each time delay. The initial conditions V(O) = -16, n(O) = n00(-16), 0 E 

[ -7, 0] demonstrate the stability properties of the equilibrium point (V*, n*) = 

( - 16.53, 0.11), while the conditions V(O) = -50, n(O) = n00 ( - 50) highlight 

the presence of a stable periodic orbit before and after the bifurcation value 

T*. 

These results are consistent with those obtained for the all--calcium con­

ductance system, and so it seems plausible that the stable periodic orbits for 

T < 7* are generated by the same mechanism, namely a PSNB. Hence we 

propose the following conjecture 

Conjecture 4.2.2.1. Assume model parameters are as in Table 4.1. Then 

system (4-0.1) with J.-t < J.L* (Case 1) undergoes a periodic saddle- node bifur­

cation {PSNB) at some value of the delay TpsN < r*, where T* is given by the 

To term of sequence (3.2.11) . A pair of stable and unstable periodic orbits are 

generated at TpsN, and the system exhibits bistability with a stable equilibrium 

point (V*, n*) and a stable limit cycle for TpsN < T < 7 * . Furthermore, the 
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(a) V(t- r ) vs. V. 

(c) V(t -r) vs. V. 

(e) V(t-r) vs. V. 

(g) V(t -r) vs. 11. 

(b) V(O) = -16,n(B) = n 00 (- 16) with T = 4. 

(d) V (O) = -50,n(B) = n 00 (- 50) with T = 4. 

· - -· :· ~·;;··;;; li A-f · ·· ·· 
~vvvv vvv 

(f) V(B) = - 16,n(B) = n 00 (- 16) with T = 5. 

... . .. .. .. .. ... ... ... . ...... ... .. . . \ I 
II 

(h) 11(8) = -50, n(O) = n 00 ( - 50) with 7 = 5. 
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Figure 4.7: Numerical simulation of system (4.0.1) with J..L = - 8 (Case 1). The 

delay is increased from T = 4 to 5 ms, demonstrating evidence for a periodic 

saddle- node bifurcation. 
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unstable periodic orbit formed at TpsN is lost in a subcritical Hopf bifurcation 

at r = r*. 

Refer to Figure 3.8 of Chapter 3 for the schematic bifurcation diagram 

depicting this behavior. Since there is only a single equilibrium point, a PSNB 

would generate a pair of nested stable and unstable periodic orbits which 

surround (V*, n*). Recall for the all-calcium conductance system (3.0.1), we 

found that the unstable periodic orbit produced prior to r* was lost via a 

subcritical Hopf bifurcation at r *, indicated by the detailed Hopf bifurcation 

analysis in section 3.2.8. The Hopf bifurcation analysis for the full-2D model 

( 4.0.1) appears at the end of this chapter in section 4.2.3. However, the results 

from this analysis indicate that the Hopf bifurcation at r* is supercritical and 

branching to stable oscillations, contrary to the expected result. It also does 

not guarantee the existence of an unstable periodic orbit for time delays below 

r *, and therefore cannot offer any support to our PSNB conjecture for the full-

2D model ( 4.0.1). Thus there is a discrepancy between the Hopf bifurcation 

analysis and numerical results for system (4.0.1). However, it seems apparent 

from numerical simulations that the Hopf bifurcation is not supercritical and 

branches to stable oscillations. If it were, then we should be able to detect 

a stable small amplitude periodic solution for system (4.0.1) when r is just 

above r*, and with initial conditions close to (V*, n*). No such stable periodic 

solutions were detected. Instead, trajectories with initial conditions very close 

to (V*, n*) approached a stable large amplitude periodic solution. Moreover, 

the large amplitude periodic solution for r > r* appears to be the same limit 

cycle generated prior tor*, which had since grown in amplitude as the delay 

increased. This is also illustrated in Figure 4.7. 
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We were unable to account for the discrepancies between the numerical 

results and detailed Hopf bifurcation analysis. It is likely that t here may be 

an error in the Hopf bifurcation analysis of section 4.2.3 that we could not find , 

given the tedious nature of the computation. As a result, the analysis revealed 

a Hopfbifurcation structure of (4.0.1) which was qualitatively identical to that 

obtained for the all-potassium conductance system with delay. However, the 

numerical results seem to indicate that the bifurcation structure mimics that 

of the delayed all-calcium conductance system, depicted in Figure 3.8. From 

our experience with the previous chapters, we are more inclined to accept the 

numerical results, especially given the ease at which errors may creep into the 

Hopf bifurcation analysis. However, this does not preclude the possibility that 

more complicated dynamical phenomena might be present. It might be that 

both the Hopf bifurcation analysis and numerical results are correct, giving 

a more complex bifurcation structure which differs significantly from both 

conductance systems. 

The emergence of stable periodic solutions of ( 4.0.1) for delay values below 

1* was observed for a sample of values of J.L < J.L* . As IJ.LI increases, 1* decreases 

and the value of TpsN estimated using numerical simulations gets closer to 1*. 

That is, the range of the delay over which the system exhibits bistability 

decreases as !J.LI increases. In general, estimating the value of TpsN is difficult 

since the stable limit cycle will have a very small basin of attraction just 

after it forms. A more accurate estimation of TpsN can only be obtained using 

a numerical continuation package for delay differential equations. However, 

such numerical packages have been developed only recently, and one was not 

available for this thesis research. 
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Before discussing the Case 2 dynamics of the full-2D model with delay, 

we comment on the dynamics of system (4.0.1) for values of fJ, where the 

Cooke-Grossman theory is not applicable. These values are fJ, = p*, p = gL, 

and p = 9L + 9K + 9ca, for which [1,2 = (a - PJ) 2. For the values p = 9L 

and 9L + gK + 9ca) V* -+ - oo and +oo, respectively, and so these cases are 

physiologically unrealistic. The value p* separates the Case 1 and Case 2 

dynamics of the model, and in this case we have a double zero eigenvalue 

along with a pair of purely imaginary eigenvalues. But like the case for p* 

in Chapter 2, the zero eigenvalues occur at a different value of T (actually 

as w --+ 0, r 0 -+ oo) than the purely imaginary eigenvalues. Thus, when 

T = r*, the delay value corresponding to the purely imaginary pair, there is no 

degeneracy. Hence as T is increased through r* the equilibrium point changes 

stability and a Hopf bifurcation occurs, and the result resembles the Case 1 

dynamics. For the approximate value p* = - 7.39, numerical simulations of 

indicate that the equilibrium loses stability as T is increased past r * = 4.8. 

Also, the system exhibits bistability, as a stable periodic orbit emerges for 

some T < r*, possibly via a PSNB. 

Case 2 (P-2 < (a- ~) 2). In this case, we obtain two purely imaginary 

roots A±= iw± of (4.2.9), corresponding to the positive real roots w+ and w_ 

of (4.2.11). The primary requirement for Case 2, [1,2 < (a - ~) 2 , is satisfied 

for all p such that f.J,* < p < gL, where p* :::::::: - 7.39. Checking the additional 

conditions (a) and (b) associated with Case 2 indicates that both conditions 

are simultaneously met when p* < p < f.J,**, where f.J,** :::::::: -3.66. The plots 

used to determine this range are included in Figure 4.8. 

Therefore, if f.J,* < p ::; p**, then there are two purely imaginary roots of 



CHAPTER 4. THE FULL-2D MODEL WITH DELAY 170 

0.0 5 

•• 
0~ 

I 
I 
! 

0.04 

: 

} ~· 
~ 02 

~ ------------ -----
0 ~ -· ·- -

) 
... , 

i 

:t~ 
I 
i 

-J 
0 

-OA ! 

·• ·2 
1 .... 

·2 

(a) Condition (a). (b) Condition (b) . 

Figure 4.8: Verifying conditions (a) and (b) for Case 2: Plots of [1,2 

(dashed curve) and a2 + d2 + 2bc (solid curve) , versus J.L, and plots of 

([1,2 - a2
- ~ - 2bc)

2 
(solid curve) and 4 ((ad- bc)2 - [1,2~) (dashed curve) 

versus J.l· 
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the characteristic equation, A± = iw±, and two crossings of the imaginary axis 

are possible. By the transversality condition, a left to right crossing occurs 

with the ,\+ root, while a right to left crossing occurs with the ,\_ root. We 

obtain two sequences of delay times, 7n,1 , which denote the time delays where 

a left to right crossing takes place, and 7n,2 , which marks the right to left 

crossings. These sequences are given by 

_ ~ _ 1 {aw! + d(ad- be)} 21m 
7n,l - COS A ( 2 d2) + . 

w+ {l w+ + w+ 
(n = 0, 1, · · ·) 

(4.2.13) 

_ ~ _ 1 { aw:_ + d(ad - be)}. 21rn 
7 n,2 - COS A ( 2 d2 ) + . 

w_ {l w_ + w_ 

Hence with {l in this range, multiple stability switches of the equilibrium 

point are possible as 7 is increased. Not every crossing of the imaginary 

axis leads to a change in stability of (V*, n*), and a finite number of stabil­

ity switches from stability to instability may occur before instability persists. 

The number of switches depends on the model parameters, and the switching 

behavior terminates with two consecutive left to right crossings. 

Only one stability change is possible if{"* < {l < - 4.11, since for these 

values of {l, 7 1,1 < 70,2 , and we have two consecutive left to right crossings of 

the imaginary axis prior to the first right to left crossing. VVith {l in this range 

the dynamics are similar to those encountered in Case 1. The equilibrium point 

(V*, n*) loses stability when 7 = 7* as a purely imaginary root migrates across 

the imaginary axis. In addition, the numerics indicate that a stable periodic 

solution emerges for some 7 = 7psN < 7*, and the system exhibits bistability 

for all 7 E (7PsN, 7*). We conjecture that a PSNB occurs at 7psN , and generates 

a pair of stable and unstable periodic orbits. When stability of (V*, n*) is lost, 
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only a stable limit cycle remains. However, similar discrepancies between the 

Hopf bifurcation analysis and the numerical results were also encountered for 

p in this range, and so we have no concrete proof that an unstable subcritical 

Hopf bifurcation occurs at T0,2 . 

A number of numerical simulations were run with samples of p E (p*, - 4.11), 

and all revealed the same qualitative behavior. In Figure 4.10 we consider 

the example p = -5, for which (V* , n*) ( -20.79, 0.06) and T* = 8.6. 

Initial conditions are V(O) = - 100, n(O) n00 (- 100) and V (O) = -20, 

n(O) = nco( -20), 0 E [-T, 0] , with the delay increased from T = 7 to T = 9. 

With T < 7, the system is initially monostable with a stable equilibrium 

point, and no stable periodic solutions were detected. This can be seen in 

Figure 4.9, where we plot the solution for p = -5, T = 6 and initial conditions 

V(O) = - 100, n(O) = n00 ( -100) . If T = 7, the system is bistable with a stable 

equilibrium and stable limit cycle, but if T is increased past T* then stability 

of the equilibrium point is lost, and only a stable limit cycle remains. Note 

the detection of a stable periodic orbit as the delay was increased from T = 6 

to T = 7. We do not claim that TpsN E (6, 7), and it is possible that T < 6. 

Rather, we have merely identified that, for a given initial condition, a stable 

periodic orbit becomes evident for T < T * . 

If - 4.11 ~ p ~ p**, the equilibrium point (V*,n*) of system (4.0.1) under­

goes multiple changes in stability before instability persists. A total of 2k + 1 

stability switches take place, where k E N is the smallest value for which 

Tk,l < Tk+l,l < Tk ,2 , and the final stability change occurs when T = Tk,l· The 

number of stability switches increases as p -+ p**. If p is close to - 4.11, then 

only three switches are possible, while as many as 31 switches are predicted 
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(b) V(t) vs. t. 
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Figure 4.9: Numerical simulation of system (4.0.1) with p, = - 5, T = 6 ms, 

illustrating a stable equilibrium point. 

for p, = -3.66, the approximate value of p,**. The number of stability switches 

(up to 11) for a given p, E [ - 4.11, p,**], as well as the values of the delay where 

the switches occur, are reported in Figure 4.11 . As in Figure 2.10 in the all- K+ 

chapter, neither stability switching nor Hopf bifurcation(s) occur at the cusp 

points of Figure 4.11, due to the presence of two pairs of purely imaginary 

eigenvalues. The initial terms To,1 and To ,2 of the sequences ( 4.2.13) are plot­

ted for - 4.11 < p, ~ p,** in Figures 4.12(a) and 4.12(b), and similar plots can 

be constructed for any terms in these sequences. In Figure 4.12(c) we show 

that the To,1 bifurcation curve of Case 2 is simply a continuous extension of 

the T* = To curve of Case 1, and that the To 1 and To 2 curves of Case 2 also 
' ' 

combine to form a smooth, continuous curve. 

To demonstrate the local stability switching of the equilibrium point (V*, n*) 

for a given p, E [-4.11, p,**], we present a numerical simulation carried out for 

p, = -3.8. For this value of p,, three changes in stability of the equilibrium 
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(a) V (t -r) vs. V. 

(b) V(fJ) = - 20, n(fJ) = n 00 ( - 20) with T = 7. 

(c) V(t - r) vs. V . 
(d) V(B) = - lOO,n(fJ) = n 00 (- 100) with r = 7. 

(e) V(t-r) vs. V. 
(f) V(fJ) = - 20, n(B) = n 00 ( - 20) with T = 9. 

(g) V(t - r) vs. V. 
(h) V(O) = -lOO,n(B) = n 00 (- 100) with r = 9. 

Figure 4.10: Numerical simulation of system (4.0.1) with J.L = - 5 (Case 2) . 

Only one stability change is possible and a periodic solution emerges prior to 

the loss of stability of (V*, n *). 
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Figure 4.11: Bifurcation Diagram plotting the terms of Tn,l and Tn,2 which give 

rise to stability changes for J.k E [ -4.11, - 3.66]. The values of 1-l for which the 

model exhibits up to 11 stability switches are indicated. 

(V*, n*) = ( - 23.57, 0.04) are possible, and these occur for the delay times 

T = 17.3, 35.5, and 59.5. To witness the stability changes, we increase the 

delay T through the values 15, 25, 50, and 70 in the numerical simulations 

in Figure 4.13. Initial conditions V(O) = -20, n(O) = n00 ( -20) , 0 E [-T, 0], 

are selected close to the equilibrium point, to emphasize that the stability of 

(V*, n*) is only a local phenomenon. 

Along with multiple changes in equilibrium point stability, we also observed 

some additional, more complicated dynamics. The bifurcation structure of the 

model appears to change significantly as J.k -t J.k** . With J.k near the lower end of 

the interval, say -4.11 ~ J.k ~ 4, the stability of the equilibrium point (V*, n*) 

changes three times, when Tis increased through To, 1 , T0,2 , andT1,1 , and at each 

of these delay times a Hopf bifurcation occurs. Stable periodic solutions were 

detected for values ofT E (0, To,d, while (V*, n*) is stable. There were no small 
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Figure 4.12: Bifurcation Diagrams: The values To,1 and r 0,2 versus p for Case 

2, and shown together along with the r* curve of Case 1. 
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(g) V(t - r) vs. V . 

(b) V(t) vs. t for r = 15. 

(d) V(t) vs. t for r = 25. 

(f) V(t) vs. t for r = 50. 

(h) V(t) vs. t for r = 70. 
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Figure 4.13: Numerical simulation of system (4.0.1) with 1-l = - 3.8 (Case 2). 

The delay 7 is increased from 7 = 15, 25, 50 to 70 ms, to illustrate multiple 

stability changes. 
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amplitude periodic solutions detected using initial conditions close to (V*, n*) 

for 7 just above 70,1, rather trajectories approached a large amplitude limit 

cycle. We conjecture that a PSNB occurs for some 7 psN < 7* , which generates a 

pair of nested stable and unstable periodic orbits surrounding the equilibrium, 

and that the unstable periodic orbit is lost in a subcritical Hopf bifurcation 

at 7 = r 0,1. Numerical simulations indicate that the system is bistable for all 

7 E (7PsN, 70,1), which is consistent with our conjecture. With 7 E (70,1, 7 0,2), 

the equilibrium point is unstable, and the system is initially monostable with 

a large amplitude limit cycle for 7 just above 70,1. Interestingly, based on 

numerical evidence, we propose that a second PSNB takes place for some 

7psN2 E (70 ,1 , 70 ,2), whereby we have nested stable, unstable, and stable periodic 

orbits of increasing amplitude surrounding an unstable equilibrium for 7 E 

( 7PsN2 , 70,2). To support this conjecture we include a numerical simulation 

with Jl = -4.06, for which stability of (V*, n*) changes at the delay times 

7 0,1 = 13.5, 70 ,2 = 45.3, and 71,1 = 48.8 ms. Figures 4.14(b) and 4.14(d) 

illustrate that, for 7 = 40 E ( 70 ,11 70,2), the system has two stable limit cycles 

of different amplitude. Initial conditions are specified in each plot. 

The smaller- amplitude stable limit cycle we believe is generated at 7 psN2 

decreases in amplitude as 7 ---+ 70,2, and we propose that it is lost via a sub­

critical Hopf bifurcation at 7 = 70,2 . With 70,2 < 7 < 7 1,1 , the system is 

bistable with nested unstable and stable periodic orbits surrounding a stable 

equilibrium point. Stability of the (V*, n*) is lost for good when r is increased 

past r 1,1 , and trajectories close to (V* , n*) with r just above r 1,1 approach 

the large amplitude limit cycle generated at TpsN, as indicated in Figure 4.16. 

Thus, we suspect that an unstable periodic orbit generated at TpsN2 is lost via 
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' 
(a) V(t- r) vs. V. (b) V(t) vs. t with V(B) = -23, n(B) = n 00 ( - 23). 

:~-\:b.:.· ---
• ! 
• ! 

I 

(c) V(t - r) vs. V . (d) V(t) vs. t, with V (B) =-50, n(B) = n00(- 50). 

Figure 4.14: Numerical simulation of system (4.0.1) with p, = - 4.06 (Case 2), 

and r = 40 ms, illustrating the presence of two different stable limit cycles 

Simulations run from t = 5000 to 10000 ms to discard transient behavior. 
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a subcritical Hopf bifurcation at T1,1 , and so the system is monostable with 

a large amplitude periodic solution for all T > T1,1 . No additional bifurca­

tions were detected after the final switching time. Considering the sequence 

of bifurcations described here, we propose the bifurcat ion structure depicted 

in Figure 4.15 for system ( 4.0.1) with - 4.11 :::; f.J, :::; - 4.0 . 

• 
0 

• Ill 
Ill 

0 0 0 

Ill ••• 
• • • • • • • Ill • • •• 

Ill Ill Ill 

0 0 
• • • 

0 •• 
0 .. 

0 

0 

0 
0 

---------+--------~0 -- -~ -----·r--------+o- - - --- - - - · 

TPSN 70•1 TPSN2 TQ,Z 71 ,1 

T 

Figure 4.15: Conjectured bifurcation diagram illustrating the behavior of the 

full- 2D model (4.0.1) for f.J, E [-4.11, - 4.0]. 

If -4.0 < f.J, < - 3. 76, then a different series of bifurcations appear to 

take place for system ( 4.0.1) as T is increased. There are still only three 

stability changes possible for (V*, n*), and we still observe a similar PSNB 

phenomenon for 0 < TpsN < r 0,1 . Also, we conjecture that an unstable periodic 

orbit generated at TpsN is lost via a subcritical Hopf bifurcation at To,1 , so that 

for T E ( To,b To,2), the system has an unstable equilibrium point and a stable 

limit cycle. But unlike the results witnessed for -4.11 :::; f.J, :::; - 4.0, numerical 

simulations seem to indicate that a stable limit cycle formed at TpsN decreases 

in amplitude as T ---t 70 ,2 , where we believe it is lost in a subcritical Hop£ 
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(a) V(t-T) vs. V. 

(c) V(t-T) vs. V. 

(e) V(t -r) vs. V . 

(g) V(t -T) vs. v. 

-·· 1'---------- --------------'i 

(b) V(t) vs. t for T= 48, V (O) = - 23, n00 ( -23). 

(d) V(t) vs. t for r = 48, V(O) = - 50, n 00 ( -50) . 

(f) V(t) vs. t forT = 52, V (O) = - 23, n00 ( - 23). 

(h) V(t) vs. t forT= 52, V (O) = - 50, n 00 ( - 50). 
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Figure 4.16: Numerical simulation of system (4.0.1) with J.L = -4.06 (Case 2). 

Increasing 7 from 48 to 52 ms, illustrates the system is bistable for 7 < 7 1,1 , 

but monostable for 7 > 7 1,1 . We believe that an unstable periodic orbit is lost 
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bifurcation. \Ale believe that, with T just above r 0,2 , t he syst em is monostable 

with a stable equilibrium (V*, n*), and no periodic solutions were detected. 

Based on numerical evidence, vve conjecture that a second PSNB occurs for 

some value 7psNz E (70,2 , 71,1), which generates a pair of nested stable and 

unstable periodic orbits surrounding the stable equilibrium. The system is 

bistable for all 7 E ( 7psN2, 71,1). Because large amplitude periodic solutions 

were detected for 7 just above 7 1,1, we speculate that an unstable periodic orbit 

generated at 7psNz is lost in a subcritical Hopf bifurcation at 71,1 · Furthermore, 

for 7 > 7 1,1 , we gathered evidence to support a third PSNB for some 7 psN3 > 

7 1,1, and with 7 above this value the system exhibits bistability with large 

and small amplitude periodic solutions. Figure 4.17 indicates that, for J.-l = 

- 3.8, the system appears to be monostable for 7 = 75 > 7 1,1 = 59.5, as 

trajectories with significantly different init ial conditions approach the same 

stable limit cycle. However, with the delay increased to 7 = 85, different long­

term behavior is observed for different initial conditions. Hence the system is 

(at least ) bistable, and there must be an unstable periodic orbit separating 

the small and large-amplitude stable oscillations. The bifurcat ion sequence 

we propose for (4.0.1) with J.-l in this range is concisely depicted in Figure 4.18. 

Numerical simulations indicate that t he bifurcation structure of the full-

2D system ( 4.0.1) becomes increasingly more complex as p -----t p**. Some very 

rich dynamics arise as the number of stability switches of (V*, n*) increases, 

and we make no attempt to classify all the behavior here. Figure 4.19 is a 

schematic bifurcation diagram outlining the qualitative dynamics conjectured 



CHAPTER 4. THE FULL-2D MODEL 'WITH DELAY 183 

]~-
' ! ~ I 

-~ 
1111 lll «< .Q , , 

(a) V(t-r) vs. V. 
(b) V(t) vs. t for r = 75, V (B) = - 23, n 00 (- 23). 

(c) V(t-r) vs. V. 
(d) V(t) vs. t for r = 75, V(B} = - 100, n 00 (- 100). 

' ! I 

i 
' 

(e) V(t- r) vs. V. 
(f) V (t) vs. t forT= 85, V(O) = - 23, n 00 (- 23) . 

(g) V (t -r) vs. V. 
(h) V(t) vs. t for r = 85, V(B) = -100, n 00 (-100) . 

Figure 4.17: Numerical simulations of system (4.0.1) with J-L = -3.8 (Case 

2). Increasing T from 75 to 85 ms demonstrates a PSNB takes place for some 

TpsNs > 7 1,1 . Simulations run from t = 17000 to 25000 to discard transients. 
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Figure 4.18: Conjectured bifurcation diagram illustrating the behavior ob­

served for the full-2D model (4.0.1) for J-L E ( -4.0, - 3.76) (Case 2) , where 

three stability switches are possible. 

for system (4.0.1) with J-L = -3.75 E ( -3.76, -3.7) , for which five changes 

in equilibrium point stability occur. Combinations of PSNB and subcritical 

Hopf bifurcations (stable and unstable) are suspected to largely govern the 

dynamics of the system with J-L in this range. The results discussed here for 

J-L E [-4.11, - 3.66] are based on observation from numerical simulations, and 

there are discrepancies between the numerical results and Hopf bifurcation 

analysis that we were unable to account for. A more complete picture of the 

bifurcation structure of the model could be elucidated with the use of an an 

appropriate numerical continuation package for delay differential equations, 

which would allow one to accurately estimate the delay times where PSNB(s) 

take place, and would indicate the existence and location of unstable periodic 

orbits. 

All that remains in the analysis of the full- 2D model is to comment on the 

dynamics of system (4.0.1) for J-L** < J-L < 9L· With J-L in this range, the primary 

requirement of Case 2 is met, but the sub- conditions (a) and (b) are not 
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Figure 4.19: Conjectured bifurcation diagram outlining the dynamics of the 

full-2D model (4.0.1) for -3.76 < J-l < -3.7 (Case 2), where five stability 

changes are possible. 

simultaneously satisfied. This implies that there there are no purely imaginary 

roots of the characteristic equation, and hence no changes in stability of the 

equilibrium point are possible. Since (V*, n*) is stable forT = 0, it follows that 

(V*, n*) is stable for all T ~ 0. Numerical results support this conclusion, and 

two examples are illustrated in Figure 4.20, one for weak inhibitory feedback 

(J-£ = -2.5) and one for weak excitatory feedback (J-£ = 1.5). For J-l = -2.5, 

we use initial conditions V(O) = - 20, n(O) = n00 ( - 20) and V(O) = -50, 

n(O) = n00 ( -50) for J-l = 1.5. In each case, the stability of the equilibrium 

point does not change, even with a 10-fold increase in the delay. 

However, for some values of J-l E (f.l**, gL), the system exhibits bistability 

over a range of the time delay. With J-l near the lower end of the interval, 

say f.l** < J-l < -3.37, numerical simulations indicate the existence of a stable 

limit cycle along with a locally stable equilibrium point. Since there is no 

Hopf bifurcation to account for a stable periodic solution, we speculate that 

a PSNB at some value of the delay TpsN > 0 is responsible. However, if 

we further increase T then the equilibrium appears to be globally attracting, 

and no periodic solutions were detected. We propose that a reversing PSNB 
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(a) V(t- r) vs. V. 
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(g) V(t - r) vs. V. 
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20 ~--------------------------~ 

=~~--------------------------~ 
(b) V(t) vs. t for p, = - 2.5, T = 20. 

(d) V(t) vs. t for p, = -2.5, T = 200. 

··~ \...-------------------------------1 

(f) V(t) vs. t for p, = 1.5, T = 20. 

v 

'0 .----------------------------. 
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(h) V (t) vs. t for p, = 1.5, T = 200. 
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Figure 4.20: Numerical simulation of system (4.0.1) with weak inhibitory and 

excitatory feedback. The values of f..t and T, are specified for each plot. In each 

case, stability of the equilibrium does not change as the delay is increased. 
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occurs as the delay is increased, whereby a pair of unstable and stable periodic 

orbits coalesce and annihilate each other, leaving only the globally attractive 

equilibrium point. A schematic bifurcation diagram describing these possible 

qualitative dynamics appears in Figure 4.21. This behavior seems to persist 

for a larger interval of the delay as 1~-tl increases. For example, with 11- = -3.65, 

we detected a stable periodic orbit for T = 12 to 26 ms, but for 11- = - 3.37 we 

could only detect a stable periodic orbit for T = 17 to 20 ms. 

• • • • • • • 

TPSN TPSN 

T 

Figure 4.21: Conjectured bifurcation diagram illustrating the behavior ob­

served for system ( 4.0.1) with ~-t** < 11- < - 3.37 (neither Case 1 nor Case 

2). 

To illustrate these dynamics, we consider the example 11- = -3.5. The 

equilibrium point (V*, n*) = ( -24.44, 0.04) is stable for all T ;:::: 0, but a 

stable limit cycle becomes evident as T is increased past 14, as demonstrated 

in Figure 4.22. Trajectories with initial conditions close to the equilibrium 

point tend to (V*, n*), while those with significantly different initial conditions 

approach a stable limit cycle. We believe that a PSNB occurs for some T < 14. 

If we increase T further, the equilibrium point remains stable but the stable 
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limit cycle cannot be detected for T ~ 24 ms. 

This concludes the analysis of the full-2D Morris-Lecar model with delay. 

Our investigation indicates that the model with both conductances operational 

displays a wide range of rich dynamics, and contributions of both conductance 

systems are evident. In the final chapter, Chapter 5, we interpret our results 

biophysically, address the contribution of each conductance system to the full-

2D model, and comment on how the Morris-Lecar model with delay compares 

to the original non- delayed model. A detailed Hopf bifurcation analysis of the 

full- 2D model (4.0.1) is presented in the following Section 4.2.3. 

To close this section, we summarize the proven results in the following theorem: 

Theorem 4.2.2.2. Assume that parameters in system (4.0.1) are as in Ta­

ble 4.1. Then we have the following: 

1. If J-t < f-/,*, then (V*, n*) is stable fo r all T E [0, r*), where J-t*, r* are de­

fined earlier. For all T > r* , (V*, n*) is unstable, and a Hopf bifurcation 

occurs at T = r * . 

2. If J-t* < 11- < 11-**, then (V*, n*) is capable of a finite number of stability 

switches, before instability persists ( 11-** defined earlier). Transitions from 

stability to instability occur with Tn,l terms of (4.2.13) , while those from 

instability to stability occur with Tn,2 terms, n = 0, 1, . . .. A total of2k+l 

switches is possible, where k satisfies Tk,l < 'Tk+l,l < Tk,2· At values of 

Tn, 1, Tn,2 where a stability change occurs, system (4.0.1) undergoes a Hopf 

bifurcation. 

3. If J-t** < 11- < 9L, then (V*, n*) is stable for all T ~ 0. 
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(a) V (t - T) vs. V. 
(b) V(O) = -100, n(O) = n 00 ( - 100) with T = 13. 
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· - ·---t---
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(c) V(t~T) vs. V. 
(d) V(B) = ~20, n(O) = n 00 ( ~20) with T = 14. 

(e) V (t-T) vs. V . 
(f) V (O) = -100, n(O) = n 00 ( - 100) with T = 14. 
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(g) V (t -T) vs. v. (h) V(O) = -100, n(O) = n 00 (-100) with T = 24. 

Figure 4.22: Numerical simulation of system (4.0.1) with J-L = - 3.5, to illus­

trate a double PSNB. 
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4. If Jt > 9L + 9K + 9ca1 then (V*, n*) is unstable for all T 2:: 0. 

4.2.3 Direction and Stability of Hopf Bifurcation 

We turn now to the direction and stability of the Hopf bifurcation associated 

with (4.0.1), the two-dimensional Morris- Lecar model with delay. The de­

tailed Hopf bifurcation analysis of this system is similar to that presented for 

the individual conductance systems, and follows the same steps presented in 

the all-K+ chapter. However, the delay differential equation of (4.0.1) has an 

additional nonlinear term representing a steady-state calcium conductance, 

which affects the calculations. Therefore, in this section we merely highlight 

the important changes. We note in particular that the conditions on the 

continuity of the nonlinearity of the system required by the Hopf bifurcation 

theorem for DDEs is met . Also, we comment that Hopf bifurcations do not oc­

cur at the cusp points of Figure 4.11. These are Hopf-Hopf interaction points 

where there are two pairs of purely imaginary eigenvalues, and the situation is 

similar to that encountered for the all- K+ conductance system in Chapter 2. 

Consider (4.2.7), the nonlinear system with equilibrium point shifted to 

the origin. Expanding the hyperbolic trigonometric functions in powers of x, 

we obtain 

~~ =-ax + by+ flx(t - r) - axy + Jx2 + Kx3 + O(x4
) 

~~ = ex - dy + Ax2 
- Bxy - Dx3 

- Gx2y + O(x4
) 

where f3u = tanh(u), f3v = tanh(v), f3s = sech2 (t), 

V* - V3 
u = 

2V4 

V* - v3 
V = ---

\14 
V* - V1 

t = V2 ' 

(4.2.14) 

d 
G=--2, 

8"'4 
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A = - ~ (~v - ~ ~u) ' B = 2~4 ~u, D = ~2 [ :4 + ~v ( ~ ~u -~v)] ' 
J = 9caf3s [(V* - Vc .. ) R _ 1] K = 9ca~s [(.? + V* -Yea (R _ 2(.?2)] 

21;2C V2 Pt ' 2V;lC Pt 3V2 Ps P t ' 

and the coefficients a, b, c, d and P, were defined earlier for the linearised system 

(4.2.8). For ¢; = [¢;1 , ¢;2)T E C, the definition of Ly¢; does not change, since 

the form of (4.0.1) linearised about the origin is identical to that of (2.0.1). 

However, in this case we define 

K¢f(O) 

+ 

The eigenfunctions q( 0) = [1, ~]T eiwO and q* ( s) = [v1, v2]eiws, with ~, v1 and 

v2 defined earlier, also assume the same form, since these are found using only 

the linear components of (4.2.14). Most important are the coefficients 9 i j for 

the full system, and we find these by evaluating 9(z, z) = q*(O)F0 . This gives 

92o = 2[Dl(J - a~)+ D2 (A - ~B)), 

9n = D1(2J- a(~ + ~))+ D2(2A - B(~ + ~)), 

9o2 = 2[Dl(J- a~) + D2(A- ~B)), 

921 = 2 [wJ~)(O) (vl (J - ~a~) +D2 (A - ~tJB)) 
+2W{i)(O) (vl (1- ~a~) + D2 (A- ~~B)) - wJ5)(0)~(avl + Bv2) 

- Wg)(O) (aD1 + Bv2) + 3Kvl- D2 (G(2~ + ~)+3D)] , 

where W20 ( 0), W11 ( 0) are given by 

w2o(O) = - ~2o q(O)eiwo _ 9~2 q(O)e-iwo + Ee2iwo, 
~w 3~w 
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and 

VVu (B) = ~11 q(O)eiwB- ~11 q(O)e-iwe +F. 
ZW 'tW 

The vectors E = [E1, E2]T and F = [F1 , F2]T have components 

E = 2(af3- J)(d + 2iw)- 2b(A- {3B) 
1 be + (d + 2iw) [fte-2iw7

- (a + 2iw)]' 

E = 2c(af3- J ) + 2(A- f3B) [fte- 2iwT - (a+ 2iw)] 
2 be + (d + 2iw) [{te-2iwT - (a+ 2iw)] ' 

F _ b(2A - B(/3 + ~))- d(a(/3 + ~)- 2J) 
1 

- (ad - be) - {td ' 

p. _ (a- ft)(2A - B(/3 + ~))- c(a(/3 + ~) - 2J) 
2

- (ad - bc) - {td · 

With the coefficients 9ii as functions of the model parameters only, we may 

compute C1 (0), along with J-t2 , and /32 , which indicate the direction and sta­

bility of the bifurcating periodic solutions, respectively. 

The results complied from numerical simulations of the full-2D model in­

dicate that the Hopf bifurcations associated with terms ofthe Tn,b n = 0, 1, . . . 

sequence are subcritical and branch to unstable oscillations, while those as­

sociated with the terms of the Tn,2 , n = 0, 1, ... sequence are subcritical and 

branch to stable oscillations. 

This is where we find discrepancies between our numerical results and 

Hopf bifurcation analysis. The results of the Hopf bifurcation analysis for the 

all- K+ and all- Ca2+ conductance systems matched perfectly with numerical 

results, and these methods complimented each other nicely. However, this is 

not the case for the analysis of the full-2D model with delay, as the following 

calculations illustrate. 
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We consider first an example where 11 < 11*. For these values of 11 the 

model is in Case 1, and one Hopf bifurcation occurs when the equilibrium 

point loses stability, that is when T is increased through 7*. We present a 

set of calculations for 11 = - 8, a representative value of this case considered 

earlier. For this value of Jl, the purely imaginary root is .A+ = iw+ = i x 0.4292, 

and the delay time for the bifurcation is 7* = 4.4 ms. The component /3 of 

the eigenfunction q(B) is /3 = 0.000399 - i x 0.00224, and v1 , v2 of q* (s) 

are v1 = 0.293 + i x 0.306, v2 = 12.3 - i x 16. 77. For the gii coefficients, 

we obtain g2o = 0.00419 - i x 0.00102, g11 = 0.00355 - i x 0.00147, go2 = 
0.00290 - i X 0.00193, and g21 = - 0.002152 + i X 0.00324. This gives cl (0) = 

-0.00106 + i x 0.00164, and hence 112 = (0.00106)(Re{X(0)})- 1 > 0, since 

Re{X(O)} > 0, and /32 = - 0.00213 < 0. This calculation indicates that the 

Hopf bifurcation at 7 * = 4.4 for 11 = -8 is supercritical (112 > 0) and the 

bifurcating periodic solutions branch to stable oscillations (/32 < 0) . Similar 

results were obtained for a sample of values with 11 < 11* using this calculation. 

However, numerical simulations of (4.0.1) with 11 in this range provide evidence 

for a PSNB followed by a subcritical Hopf bifurcation, contrary to what our 

Hopf bifurcation calculations show. 

With 11* < 11 < 11** , the system is in Case 2, and multiple changes in 

stability of (V*, n*) are possible. Only one stability change occurs if Jl* < 11 < 

-4.11, and calculations with 11 in this range indicate results similar to those 

for 11 < 11"' . For an example where multiple stability switches are possible, we 

consider 11 = -3.8, for which three changes in stability occur for the delay 

times To,1 = 17.3, To,2 = 35.5, and T1,1 = 59.5. At each of these delay t imes 

we also obtain a branch of periodic solutions from a Hopf bifurcation. Note 
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that both 70,1 = 17.3 and 71,1 = 59.5 correspond to the w+ root, which has 

value w+ = i x 0.149, while 70,2 = 35.5 corresponds to the w_ root, where 

w_ = i x 0.0838. Tables 4.3 and 4.4 report the values for important quantities 

to determine the direction and stability for all three Hop£ bifurcations. 

II Value II To,l = 17.3 7o2 = 35.5 
' II 

f3 0.00145 - i X 0.00246 0.00295 - i X 0.00281 

vl 0.201 + i X 0.105 0.125 + i X 0.0285 

v2 -1.23- i X 24.3 - 10.8 - i X 16.3 

920 0.000995 + i X 0.00121 - 0.000086 + i X 0.00119 

911 0.00055 + i X 0.00080 - 0.000331 + i X 0.000793 

902 0.000106 + i X 0.000392 -0.000576 + i X 0.000393 

921 - 0.00279 + i X 0.00319 - 0.00247 + i X 0.00158 

C1(0) -0.00140 + i X 0.00159 -0.00123 + i X 0.000783 

J-l2 (0.00140)(Re{ X(O)} )-1 (0.00123)(Re{ X(O)} )- 1 

!32 -0.00280 -0.00246 

Table 4.3: Detailed Hop£ bifurcation analysis: sample calculations for two of 

the Hop£ bifurcation which occur for J-l = - 3.8 (Case 2, multiple stability 

switches). 

Note that Re{X(O)} > 0 for 7o,1 and T1,b while Re{ X(O)} < 0 for 70,2 . Our 

calculations indicate that the Hop£ bifurcations which occur at 70,1 = 17.3 and 

71,1 = 59.5 are supercritical and branch to stable oscillations, since J-l2 > 0, 

{32 < 0. On the other hand, the results in Table 4.4 indicate that the Hopf 

bifurcation at To,2 = 35.5 is subcritical and branches to stable oscillations, since 

f-l2 < 0, {32 < 0. All values of J-l E ( -4.11, J-l"'*) which we checked produced 
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II Value I 71,1 = 59.5 II 
{3 0.00145 - i X 0.00246 

VI 0.0690 + i X 0.0415 

v2 0.0657 - i X 8.65 

920 0.000377 + i X 0.000407 

911 0.000212 + i X 0.000272 

902 0.000046 + i X 0.000137 

921 -0.000924 + i X 0.00118 

CI(O) -0.000462 + i X 0.000592 

/-l2 (0.000462)(Re{X(O)} )-1 

/32 -0.000925 

Table 4.4: Detailed Hopf bifurcation analysis: sample calculat ions for the 

third Hopf bifurcation which occurs for M = -3.8 (Case 2, mult iple stability 

switches). 
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similar results, in that Hopf bifurcations occurring with members of the Tn,1 , 

n = 0, 1, .. . sequence are supercritical and branch to stable oscillations, while 

those with the Tn,2 , n = 0, 1, . . . sequence are subcritical and branch to stable 

oscillations. The results for bifurcations with the Tn,2 , n = 0, 1, ... sequence 

match the behavior indicated by numerical simulations, while those for the 

Tn 1 , n = 0, 1, . .. sequence are opposite of what the numerics indicate. 
' 

The most likely cause of the discrepancies between the numerics and the 

Hopf bifurcation analysis is an error in the calculation for the full- 2D model, 

due to the tedious nature and numerous steps involved with the algorithm. 

However, we were unable to identify mistake(s) in our calculations. 



Chapter 5 

Discussion 

In this final chapter, we provide a biophysical interpretation of our results 

from previous chapters. Since our model describes the dynamics of the neuro­

muscular feedback loop in terms of the potential across the membrane of the 

muscle fibre, our interpretations are based on membrane dynamics. We com­

ment on the contribution of each conductance system to the behavior of the 

full-20 model, and how the conductance systems and full-2D model with de­

lay compare to the systems of the original Morris-Lecar model. Some model 

limitations are also discussed, along with interesting avenues of possible future 

research. 

The all-K+ conductance system with delay is capable of more complicated 

dynamics than its non-delayed counterpart. Voltage oscillations were not pos­

sible in the all- potassium system without delay, which admitted at most one 

equilibrium point. \Vith external stimulus, the system exhibits a graded re­

sponse with a transient peak followed by a decay to a stable resting plateau, 

and with no stimulus the system simply approaches the steady state directly, 

197 
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with no early peak in the voltage. The aU-K+ system with delay does sup­

port voltage oscillations for inhibitory synaptic feedback. In fact, for J-L < 0 

the system with parameters in Table 2.1 is monostable for all delays T ~ 0, 

with either a single stable equilibrium point or a stable limit cycle surrounding 

an unstable equilibrium. The equilibrium point (V*, n*) corresponds to the 

membrane resting potential, which changes with the strength of synaptic feed­

back, IJ-LI· A stable rest state in this case corresponds to quiescent behavior 

where the membrane is polarized, while stable oscillations about t he rest state 

represent repetitive firing (graded depolarizations) of the membrane. In the 

case of J-L < 0, oscillatory solutions correspond to excitation due to recurrent 

inhibition. More specifically, it is due to the well-observed phenomenon of 

anode-break excitation, which is a form of post- inhibitory rebound [32, 35]. 

If the inhibitory feedback signal is weak, say J-L** < J-L < 0, then the rest 

state (V*, n*) is stable for all T ~ 0, and no voltage oscillations occur. Con­

versely, if the delay term is dominant (J-L < J-L*), then the feedback is strong, 

and the stability of the equilibrium is delay-dependent. The rest st ate is stable 

for small delays below a critical value r*, and is unstable for all delays greater 

than 7* . The value of 7* depends on J-L and other model parameters, and is very 

small when the delay is dominant. When the resting potential loses stability, 

stable oscillations emerge via a supercritical Hopf bifurcation. Oscillations 

arising in this manner are termed "soft" [16], (26], since they appear to grow 

from the rest state, in that they are small in amplitude if the delay T is just 

above the bifurcation time T*, and grows as the delay is further increased. We 

note that the oscillations encountered in the all- K+ conductance system do not 

have the same relaxation--oscillation shape typical of standard action poten-
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tials. Instead, the oscillations are graded with depolarized and hyperpolarized 

phases, which are produced by an oscillating outward potassium current. Such 

graded action potentials are common in synthetic membrane models with a 

single voltage- dependent conductance system [24] . The sequence of events 

that produce a typical relaxation-oscillation action potential are determined 

by the dynamics of two gating variables, one with a fast- activation time course, 

and the other with a slow- activation time course. However, in this case the 

fast-acting calcium conductance is inoperative, and so the oscillations of the 

all- K+ system are governed by only a single gating variable (n) and therefore 

only one (slow) time scale is operational. 

The story is more interesting when the delay term of the system is not 

dominant, which is true if p,* < p, < p,**. In this case, the feedback signal is 

strong enough to influence the dynamics of the system, but not strong enough 

to "take over" for small T > 0. If p, is near the lower end of this interval then 

the dynamics are similar to those for p, < p,*, however the bifurcation value 7* 

has a more modest value, and so the equilibrium point remains stable for larger 

delay values before relinquishing stability to a stable oscillation. However, a 

finite number of changes in stability of the equilibrium point are possible with 

more intermediate values of p, near the upper end of this range. For small 

delays the rest state is stable, and the membrane remains polarized. But as 

the rest state loses stability, a branch of stable soft oscillations appears and the 

membrane undergoes repetitive firing. Increasing the delay causes oscillations 

to cease via a subcritical Hopf bifurcation as the rest state regains stability. 

This sequence of events continues with increasing T but eventually stability of 

the rest state is lost for good, and a globally attractive limit cycle dictates the 
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repetitive firing along the membrane. 

No stable voltage oscillations were encountered for the aU-K+ system with 

excitatory feedback. This may seem somewhat counter- intuitive, since recur­

rent excitation might be expected to lead to repetitive firing, and has been 

observed in neural feedback models [32]. Instead, the system possesses a sta­

ble equilibrium point if 0 < 1-l < gL, no equilibrium if 9L :::; 1-l :::; 9L + gK, and 

a single unstable equilibrium for 1-l > gL + 9K· The equilibrium point (V* , n*) 

for 0 < p, < 9L corresponds to a rest state where the membrane is polarized, 

while that for J.1 > 9L + gK represents an excited state where the membrane is 

depolarized. The feedback signal is not strong enough to induce stable oscil­

lations if 0 < J.1 < 9L and the rest state is stable for all positive t ime delays. 

With p, > gL + 9K the signal strength is sufficient to cause the excited state to 

be unstable for all T ~ 0, and no stable oscillations were detected about this 

depolarized level. Solutions in numerical simulations for J.1 > 9L + 9K tended 

to +oo or -oo, which is obviously not possible in an actual physiological set­

ting. Rather, we interpret such behavior biologically as V --t V(l) or V(O), 

respectively, since the variable n represents the fraction of open K+ channels 

and must lie in the interval [0, 1]. The case V --t V(l) corresponds to a state 

where all potassium-ion channels are open, and so the conductance system 

is 100% operational. The opposite is true in the case V --t V (O) , where the 

potassium-conductance essentially shuts down, and all K+ channels are closed. 

The all- potassium conductance system does not admit an equilibrium point 

if J.1 E [gL, 9L + gK]· Trajectories in this case can escape to +oo or -oo for a 

value of n E [0, 1], which we also interpret as V -+ V (O), or V(l), depending 

on their values. That our model of recurrent excitation does not admit an 
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equilibrium point for even modest feedback strength is unrealistic, and an 

unfortunate by-product of how the delay was incorporated into the original 

Morris-Lecar equations. Therefore, we speculate that, while the Morris-Lecar 

model appears to describe the dynamics of recurrent inhibition nicely, it is 

incapable of supporting recurrent excitatory feedback as it has been proposed 

in our model. In addition, it is also unrealistic to have the equilibrium voltage 

V* ---+ -oo and +oo, which is the case for our model as p, ---+ 9L and 9L + gK, 

respectively. Some suggestions on how to improve the model so that these 

unrealistic scenarios are avoided are addressed later in this chapter. 

The isolated Ca2+ conductance system of the original Morris-Lecar model 

did not support voltage oscillations. Rather, the system had bistable responses 

with a characteristic threshold, with two stable equilibria separated by an 

unstable saddle point. Sustained oscillations are readily observed in the all­

Ca2+ conductance system with delayed inhibitory feedback. With p, < 0, the 

system admits up to three equilibria, and the number of equilibria can have 

a significant influence on the dynamics. For a moderate to strong feedback 

signal (p, < p,-) the delay term in equations (3.0.1) is dominant, and there 

is only one equilibrium point, which corresponds to the rest state where the 

membrane is polarized. In fact, the rest state is the only st eady state of the 

system for all p, < p,- . 

If the feedback is strong (p, < -3. 7) the rest state is stable for small to 

moderate values of the delay, but loses stability if the delay is increased past 

a critical value r*. When this happens, stable oscillat ions about the rest state 

ensue, driven by a supercritical Hopf bifurcation, which represents repetitive 

firing of the membrane. Recall that for soft oscillations arising in this manner, 
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t he amplitude of oscillation is related to the magnitude of the delay above the 

critical value 7*. As in the all-K+ system with delay, stable oscillations for 

p, < 0 result from excitation due to recurrent inhibition. The action potentials 

are graded due to the oscillatory nature of a single inward calcium current, 

which operates on a fast time scale. The slow-acting potassium conductance 

is not operational in this system. Therefore with strong inhibitory feedback 

the membrane operates in one of two stable modes: a stable rest state for 

small 7, and stable repetitive firing for large 7. 

With intermediate feedback strength ( - 3.7 ~ p, ~ 11- ) the delay is still 

dominant, and the rest state becomes unstable as the delay is increased past 

the critical value 7*. However, the system exhibits bistability with a stable rest 

state and a stable oscillation for some values of 7 < 7*. We conjecture that 

a PSNB occurs for some value of the delay (0 < TpsN < 7*) , which generates 

a pair of nested stable and unstable periodic orbits which surrounding stable 

rest state. Trajectories with initial conditions inside the unstable periodic orbit 

approach the rest state, while those with initial conditions outside approach a 

stable periodic state. An unstable periodic orbit arising from a PSNB could 

act as a threshold for repetitive firing. 

This threshold is believed to be lost along with stability of the rest state in 

a subcritical Hopf bifurcation at 7*. \V'hen 7 > r *, the system is monostable 

with a stable limit cycle, and the membrane fires repetitively. However, these 

oscillations are "hard" (16], [26] since they have large amplitude when the 

delay is just above 7* , in contrast to soft oscillations. A trajectory with initial 

condition leading to rest for 7 < 7 * will suddenly undergo large amplitude 

oscillations if the delay is increased above r * . This type of bistability and 
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subsequent hard oscillation which may result from a combination periodic 

saddle-node bifurcation and a subcritical Hopf bifurcation is in fact a common 

phenomenon of the reduced-2D Morris-Lecar model without delay, but not 

of the non- delayed all- Ca2+ system. Similar behavior can be observed in the 

original Morris-Lecar model model by treating the applied current I as a 

bifurcation parameter, and with an appropriate parameter set for the other 

model parameters [34]. 

There is a range where the feedback strength is too weak to induce in­

stabilities in the rest state, regardless of the magnitude of the time delay 

(J.L- < J.L < fl), and for which the rest state is the only equilibrium point of 

the model. In this case the delay is not dominant, and the system is initially 

monostable with a stable rest state for small time delays. We again observe 

bistability in the model possibly arising through a PSNB at some 7psN > 0, 

however since the rest state does not lose stability as 7 is increased, bistability 

in the model persists over a large range of the delay, 7 > 7psN· 

A saddle-node bifurcation of steady states occurs at J.L = fl (fl ~ -2.22) , 

which gives rise to two additional equilibria in addition to the rest state. An 

unstable saddle point representing an intermediate, slightly depolarized st ate, 

and an excited state corresponding to a voltage plateau, which represents 

a fully depolarized state of the membrane. For all fl < J.L < gL the rest 

state is stable for all time delays, which incorporates weak inhibitory and 

excitatory feedback, and the saddle is unstable for all delays. The excited 

state can undergo a change in stability with weak inhibitory feedback, that is 

if J.L E (Jl, J.L--). For certain parameter values we may obtain stable oscillations 

about the depolarized, excited state, which itself may or may not be stable. 
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With tt in this range and a small time delay, the system appears to be bistable 

with a stable rest state and a stable excited state. We believe that a PSNB 

takes place (at TpsN) as the delay is increased, after which the system is either 

tristable (for T E ( TpsN , T*)) with a stable rest state, stable excited state, 

and a stable periodic state about the depolarized level, or bistable ( T > T*) 

with a stable rest state and a stable hard oscillation about the depolarized 

level. A threshold for repetitive firing, an unstable periodic orbit possibly 

formed at TpsN, which would allow for the tristability, is most likely lost along 

with stability of the excited state via a subcritical Hopf bifurcation at T* . 

However, if the feedback is slightly reduced (tt-- < tt < - 1.4) so that the 

excited state does not lose stability as T is increased, then tristability in the 

system appears to persist over a large range of the delay (for all T > TpsN)· 

Tristability in the all- Ca2+ system with delay is an interesting feature of this 

system, and is not possible in the all-Ca2+ system without delay. However, 

the reduced-2D Morris-Lecar model without delay is capable of exhibiting 

tristability for certain model parameter sets and by treating the applied current 

I as a bifurcation parameter [34]. 

Stable oscillations about the excited state are abolished if the feedback 

strength is reduced further. For weak inhibitory and excitatory feedback 

( - 1.4 < tt < gL), the rest and excited states are both stable for all time delays, 

and the system seems to be bistable. No stable oscillations were detected. It 

is interesting that, while the rest state and excited state may change stability 

for certain (inhibitory) parameter ranges, neither state can undergo multiple 

changes in stability, a trend observed in the all- K+ conductance system for 

non- dominant delay. Thus with inhibitory feedback the all- Ca2+ conductance 



CHAPTER 5. DISCUSSION 205 

system displays a broad range of behavior, including multistability and hard 

oscillations, neither of which were possible in the all- K+ system with delay. 

However, problems start to creep into the model if we consider excitatory 

feedback. As J.l --7 gL, which corresponds to small feedback strength, the stable 

resting potential approaches -oo. Also, as J.t --7 9L + 9c .. , the stable equilibrium 

voltage of the excited state approaches +oo. For 9L ::; J.t ::; 9L + 9c .. the system 

has only a stable excited state and an unstable saddle point, and trajectories 

can escape to ±oo. As in the all-K+ system, these unphysical results are 

interpreted as the voltage assuming one of the limiting potentials V(O) or 

V(l) . Furthermore with strong excitatory feedback (J.t > 9L + 9ca) the system 

is unstable with only an unstable saddle with no stable rest or excited state(s) , 

and no stable oscillations. Therefore, similar problems to those identified for 

the aU-K+ system with excitatory feedback are present in the all-Ca2+ system 

with delay. 

Investigation of the full-2D model with delay revealed that it retained fea­

tures specific to each of the single-ion conductance systems, and that each 

system contributes significantly to the dynamics of the full- 2D model. How­

ever, the behavior observed was more complex than a straightforward com­

bination of the K+- and Ca2+-conductances would account for. This trend 

was observed when the potassium and calcium systems without delay were 

incorporated into the reduced- 2D original Morris- Lecar model. Despite hav­

ing two very simple components, t he original Morris- Lecar model was able to 

support sustained and damped oscillations rather than merely voltage-plateau 

responses. However, much of the diverse dynamical phenomena admitted by 

the original Morris- Lecar model was possible only through the application of 
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applied stimulus, that is by treating I as a bifurcation parameter. With I = 0, 

as we have here, the original Morris-Lecar model is in fact a very simple sys­

tem, and with the parameters in Table 4.1 admits only a single stable rest 

state and exhibits no periodic behavior. Hence its dynamics are by no means 

as complex as even those of either single- ion conductance system with delay. 

We shall comment more on the dynamics of the original Morris- Lecar model 

with I i= 0 after discussing the results of the full- 2D model with delay. 

One obvious feature of the full-2D model with delay is its similarity in 

form to the all-potassium conductance system with delay. Eliminating the 

calcium ion-gating variable m as a dependent variable of the full-3D system 

(1.3.5) reduced the model to system (4.0.1) , the full- 2D Morris- Lecar model 

with delay. Similarities in the form of systems (1.3.5) and (4.0.1), and in the 

steady- state bifurcation structure were addressed in Chapter 4 

However, the all-K+ system with delay was incapable of hard excitation 

and bistability, which were common in the all-Ca2+ system with delay. These 

phenomena were also readily observed in the full-2D model with delayed in­

hibitory feedback, and it stands to reason that these characteristics are con­

tributions of the all-Ca2+ system to the full-2D model. With J-l < 0, the 

equilibrium point corresponds to a rest state where the membrane is polar­

ized. In the presence of strong feedback (J-l < J-l*) the rest state is stable for 

only small delays, and loses stability as T is increased through a critical value 

7*. Also, we observe bistability with a stable rest state and a stable oscillation 

for some T < 7* . A PSNB at TpsN < 7* is believed to be responsible. An 

unstable periodic orbit generated at TpsN could act as a threshold for repeti­

tive firing, and may then be lost via a subcritical Hopf bifurcation at 7*. For 
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T > T*, numerical simulations indicate that the system is monostable with a 

stable hard oscillation. A similar sequence of events, namely a PSNB followed 

by a subcritical Hopf bifurcation, was proposed to cause similar behavior in 

the all-Ca2+ system with delay. 

More reminiscent of the aU-K+ system is the multiple changes in stability 

possible for the rest state with intermediate feedback (~-t* < J-t < ~-t**). In this 

case, the delay is non-dominant, and the rest state may change stability a 

finite number of times before instability prevails. With only a single change 

in stability the dynamics are similar to those for strong feedback. However, 

as the number of stability changes increases (as J-t -+ J-l**) the dynamics of 

the system become increasingly complex, involving the rest state and multiple 

periodic orbits. The system demonstrates bistability with a stable rest state 

and hard oscillations, or with two stable (hard) oscillations of different ampli­

tude surrounding an unstable rest state, depending on the value of the delay. 

We speculate that a series of PSNBs along with subcritical Hopf bifurcations 

(some branching to stable oscillations, others unstable) may be responsible for 

the occurrence of bistability over large ranges in the delay for J-t E (~-t*, ~-t**). 

Numerical simulations indicate that the Hopf bifurcation structure (direction 

and stability) is similar to that of the all- Ca2+ system with delay. Thus for in­

hibitory feedback, bistability is a commonly encountered in the full- 2D model. 

No instances of tristability were detected for the full- 2D model. 

With intermediate to weak feedback (~-t** < J-t < -3.37) the system demon­

strates bistability only over a small range of the delay. The system has a stable 

rest state for small delays, and also for large delays. There is a range of the 

delay where the system demonstrates bistability with a stable rest state and 
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stable periodic state. An unstable periodic orbit arising from a PSNB could 

provide a threshold for repetitive firing, and is believed to be lost in a second 

PSNB, whereby the nested stable and unstable periodic orbits from a first 

bifurcation coalesce and annihilate each other. For weak inhibitory feedback 

( - 3.37 < p, < 0), the rest state is stable for all values of the delay, and no 

stable voltage oscillations occur. 

The results for recurrent excitation in the full-2D model with delay are es­

sentially the same as those for the all-K+ system with recurrent excitation. As 

in the two conductance systems, the full-2D model with delay displays diverse 

dynamics with recurrent inhibition, but problems arise in the case of recurrent 

excitation. These problems are a result of how the delay was incorporated in 

to the original Morris-Lecar equations. Our results and discussion indicate 

that the Ca2+ -conductance system has a much more substantial influence on 

the dynamics of the full-2D model than originally anticipated, and that the 

full- 2D model with delay is more than merely a simple combination of both 

Ca2+- and K+-conductance systems. 

There are many modifications and improvements one could add to the 

model we propose here to simulate delayed recurrent feedback in the Morris­

Lecar model. However, there are still some interesting questions from our 

investigation that remain unanswered. First and foremost are the discrepan­

cies between the Hopf bifurcation analysis and numerical simulations for the 

full- 2D model with delay. Given the tedious nature of the Hopf bifurcation 

analysis, it is likely that an error in this calculation is responsible for these dis­

crepancies. However, we were unable to identify any mistakes in our analysis. 

Secondly, although we hypothesize the occurrence of a PSNB in the all- Ca2+ 
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system and full-2D model, and have some evidence to support these claims, we 

cannot be certain that this is the mechanism generating stable and unstable 

periodic orbits in these systems. It seems plausible, especially since this type 

of bifurcation is commonly encountered in the original model without delay, 

by treating the applied current I as a bifurcation parameter. To confirm that 

this is the actual mechanism responsible would require the use of a numerical 

continuation package for delay differential equations, such as DDE- Biftool (10] 

for Matlab. Numerical continuation packages can be powerful aids in eluci­

dating the dynamics and bifurcations of nonlinear differential equations, and 

can verify and compliment analytical results. While such packages are com­

mon for ODEs, numerical solvers capable of bifurcation continuation for DDEs 

have only recently been developed, and are presently in the beta- testing stage. 

This is why a package such as DDE- Biftool was not used in the thesis research 

presented here. However, once perfected, such packages should be reliable and 

have the capacity to reveal the existence and location of unstable periodic 

orbits, provide an accurate estimate for the value(s) of TpsN, and verify the 

direction and stability of Hopf bifurcations in systems of DDEs. With the 

methods discussed in this thesis, we have no way of accurately estimating TpsN 

bifurcation values, and are simply relying on thorough detective work with nu­

merical simulations to identify the emergence of stable periodic orbits which 

might arise from a PSNB. 

Another interesting aspect of this model which we did not pursue in de­

tail in this thesis are the codimension two bifurcations which occur for the 

single-ion conductance systems and the full- 2D model with delay. The cusp 

points of Figures 2.10 and 4.11 in Chapters 2 and 4, respectively, are codi-
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mension two bifurcation points where Hopf-Hopf interactions occur, that is 

the system(s) admit two pairs of purely imaginary eigenvalues. Interaction 

of such bifurcations can result in a secondary Hop£ bifurcation leading to the 

creation of a 2- torus [16]. References [4] and [37] discuss these points and their 

dynamical possibilities in more detail. For the all- Ca2+, there is evidence of 

a Takens-Bogdanov interaction at (jj, f *), which occurs with a double zero 

eigenvalue and a purely imaginary pair of eigenvalues. We briefly investigated 

this point in Chapter 3, and found a finite delay value was approached as 

/L ---+ jj, a steady-state saddle-node bifurcation point of the system. A similar 

situation arises in the Morris-Lecar model without delay, using the applied 

current I as a bifurcation parameter [11] . In this case, a steady- state saddle­

node bifurcation emerges along with a large amplitude periodic solution at a 

common parameter value. Takens- Bogdanov bifurcations are common codi­

mension two bifurcation points, and analysing these interactions may reveal 

some additional, complicated dynamics. 

An obvious modification to address in the Morris- Lecar equations with 

delay is the behavior of the model with different parameter sets. Our analysis 

is based on a single parameter set, and so our results are highly specific to the 

parameter set used. Throughout the thesis however, we have attempted to 

generalize results wherever possible. Rinzel and Ermentrout [34] have found 

that the original Morris- Lecar model is capable of many different dynamical 

phenomena, and the dynamics vary considerably with the model parameters. 

Certain parameters have a more profound influence on the dynamics, while 

other have only small to moderate influence. By varying other model param­

eters besides the delay parameters JL and T, one might uncover a different 
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spectrum of dynamics for the Morris-Lecar model with delay. The most sig­

nificant change would be expected for the full-2D model with delay. With 

different parameter sets from the one used here, the N- shape in the V = 0 

nullcline is more pronounced, and the system can admit up to three equilibria. 

In some cases the system is excitable, with a stable rest state, and an unstable 

excited state separated by an unstable saddle. Here, the stable manifolds of 

the saddle point (for T = 0) define a separatrix curve that distinguishes sub­

from super-threshold initial conditions. By tuning the bifurcation parameter 

J-l, a range of repetitive firing can be realised as the stable rest state and un­

stable saddle coalesce and disappear via a saddle-node bifurcation. As such, 

repetitive firing might even be achieved in the full- 2D model (4.0.1) with zero 

time delay using such a parameter set. Considering T > 0 in such a case could 

lead to some interesting and more complex dynamics than those reported in 

Chapter 4. 

The original Morris-Lecar model displays an impressive array of behavior, 

especially for a relatively simple model employing only two noninactivating 

conductances. Most research on the original model has focused on how the 

dynamics change as the applied current, I , is varied (e.g. [34, 39]). By treating 

I as a bifurcation parameter, the model exhibits excitable dynamics, multista­

bility (bistability and tristability) , and sust ained oscillations (repetitive firing 

of action potentials). Further variations in dynamics occur with different pa­

rameter sets. Here, we only considered recurrent input due to synaptic feed­

back, studying the dynamics of the model as the feedback parameters J-l and 

T were varied. With no applied current, solutions of the system represent the 

natural response and evolution of the membrane potential over time. It would 
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be interesting to consider the combined effects of synaptic feedback along with 

external stimulus (non-zero applied current) on the Morris-Lecar model by 

treating J-L, r , and I as bifurcation parameters. This is an obvious extension 

to our investigation, given the significance of I in the bifurcation structure 

of the original model without delay. What would make such an investiga­

tion interesting is that, for certain parameter ranges, an applied current might 

counterbalance the effects of synaptic feedback. For example, consider the 

all-K+ conductance system with inhibitory feedback. With J-L < 0, the V = 0 

nullcline in the (V, n)- plane is monotone decreasing on the interval of interest. 

As J-L ~ 0, the nullcline is shifted to the left, thereby lowering the equilibrium 

voltage. If we add a positive applied current I > 0, the V = 0 nullcline will 

shift vertically, thereby raising the equilibrium voltage of the system. Raising 

the equilibrium voltage in turn changes the values of the coefficients a, b, c, 

and d in the linearisation, which influences the parameter ranges where the 

model obeys the dynamics of Cases 1 and 2 of the Cooke- Grossman theory. 

Thus, adding a positive applied current in this case could change the long­

term behavior of the model, and eliminate stability switching of (V* , n*) which 

would have occurred with I = 0. Also, the values of W± and hence 7n,1, Tn,2 

(n = 0, 1, . .. ) in ranges where Case 1 and Case 2 are sat isfied would change 

as I is varied. Therefore, even if the external stimulus is inadequate to change 

the qualitative behavior of the model, it will influence the quantitative results 

by changing the delay times where stability changes in (V*, n*) occur. 

In addition, the number of equilibria in each of the aU- K+ system, the 

all- Ca2+ system, and the full-2D model with delay may change as I is varied. 

For example, while the all- K+ system with delay only admits at most a single 
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equilibrium point for all f.J, E JR, the system can admit multiple equilibria 

for non-zero I, which could lead to totally different dynamics in the system. 

Moreover, incorporating I into the single- ion conductance systems and full-2D 

model with delay might also alleviate some of the problems encountered with 

excitatory feedback. Recall that neither of the all-K+ conductance system 

and full-2D model with delay possessed an equilibrium point for a range of 

excitatory feedback strength, which was suggested as a limitation of our model. 

However, considering non-zero I with f.J, in these range(s) can shift the V = 0 

nullcline so that these systems do admit one or more equilibrium points, which 

may be stable or unstable. This may provide us with a way of studying the 

dynamics of recurrent excitation as they are proposed in our model, without 

too much modification. 

By reducing the 3D Morris- Lecar model with delay (1.3.5) to a 2D-system 

(4.0.1), the analysis of the model becomes more tractable while retaining many 

key qualitative features of the full model. However, it is natural to wonder 

how well the full-2D model approximates the full-3D model? Surely the quan­

titative results would be expected to differ between the 3D model and its 2D 

counterpart, since the calcium- activation time course is not assumed to be 

instantaneous in the full-3D model. A more important question is whether or 

not some new dynamical phenomena arise in the 3D system so that there is a 

significant difference in the qualitative dynamics of the two systems. Such a 

question can only be answered through a thorough investigation into the dy­

namics of the full- 3D Morris- Lecar model with delay (1.3.5), and comparing 

them with the results for the full- 2D model presented here. However, for the 

full- 3D model the transcendental characteristic equation of the system would 
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be a degree-three trigonometric polynomial, which is more difficult to analyse 

than the degree-two trigonometric polynomial characteristic equation of the 

full-2D model. 

In (33], Rinzel considers spatia-temporal distribution of voltage and ionic 

permeabilities in the Hodgkin-Huxley neuron model. In our present treatment 

of the Morris-Lecar model with delay, we have ignored spatia-temporal aspects 

of the muscle fibre membrane, and so our results describing the the voltage 

across the membrane apply only to a space-clamped patch of sarcolemma 

membrane. Also, a spatially uniform cell, or a network of identical, perfectly 

synchronized cells might be modeled using the methods discussed in this thesis. 

Consideration of such spatia-temporal aspects in conjunction with delayed 

recurrent feedback would result in a system containing a time-delayed non­

local partial differential equation, and might make for an interesting future 

study. 

The model studied here involves a DDE with a single discrete time delay. 

Employing this type of delay presupposes that the recurrent inhibitory/ excitatory 

(feedback) pathways all operate with an ident ical time delay of 7 ms. A 

more realistic treatment of time-delayed effects on our neuro-muscular feed­

back loop would involve the use of an integro- or distributed-delay differential 

equation, to account for distribution of axonal diametres, conduction pathway 

lengths, and synaptic transmission times. An appropriate modification of the 

original Morris- Lecar model incorporating these considerations would involve 

using a relation of the form 

F(V(t- 7)) = f.J-[~ V(u- 7)k(t- u)du (5.0.1) 

for the feedback function, rather than simply F(V(t- 7)) = f.J,V (t- 7). In 
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(5.0.1), k(x) is an appropriate kernel function describing the distribution of 

transmission times. While the model with this type of delay would be more 

realistic, analysis of the Morris- Lecar model with distributed delay would 

be more involved than the work presented here for the discrete delay case. 

Whether or not using a distribution of time delays rather than a single delay 

would produce different qualitative behavior has not been determined, and is 

an interesting topic for future consideration. 

To study the full range of dynamics of our model, we only required that 

the time delay be positive, T > 0. Many models concerning delayed recurrent 

feedback have been developed with additional conditions placed on the time 

delay, the most common being that it exceed the relaxation time of the system 

being considered. Our objection to this is that the relaxation time of a physio­

logical system modeled using the Morris-Lecar equations with delay would be 

highly parameter-specific, and rely on accurate estimation of numerous model 

parameters. A study only considering delays of a certain magnitude may not 

detect some important dynamics present for small time delays. For example, 

Plant (32] and Foss et al. (14] were mainly concerned with time delays greater 

than the duration of a single action potential. Plant asserts that the relax­

ation time of systems similar in form to (2.0.1), (3.0.1) , and (4.0.1) is roughly 

measured by the quantity ~' where d = An cosh ( v;v
4
v3

) for systems (2.0.1) 

and (4.0.1), and d =Am cosh (v;v
2
v1

) for (3.0.1). Imposing the restriction 

1 
T>d 

on our model might not reveal the presence of some important dynamical 

phenomena. For example, consider the aU-K+ system (2.0.1). If;;,<;;,*, the 

system is in Case 1, the equilibrium point (V*, n*) loses stability when T = T * , 
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and a stable limit cycle emerges. The value of T" for a given Jl < Jl* is very 

small, so that 7* < ~ · Considering only those delays T > ~ > 7* would reveal 

an unstable equilibrium point with a stable limit cycle oscillation, and so we 

would not observe the transition from a stable equilibrium point to a stable 

oscillation. Furthermore, for system (2.0.1) in Case 2 (J.-L* < Jl < Jl**), the 

value of ~ is greater than the delay marking the final change in equilibrium 

point stability, then an analysis of the model for delays T > ~ would not reveal 

the stability switching properties of the model for increasing T . We would only 

find a monostable system consisting of an unstable equilibrium and a stable 

limit cycle, and therefore would be unable to discern any qualitative change 

in behavior from Case 1 to Case 2. If in Case 2 the value of ~ is below the 

final switching time then a few (but not all) of the stability switches would 

be detected by considering only T > ~· Of course, with 1-L > J-L**, the results 

obtained by considering only T > ~would be the same as those for T > 0, since 

the qualitative behavior of the system with f-L in this range does not change 

with increasing T. 

Similar comments can be made pertaining to the limitations resulting from 

such an analysis of the all- Ca2+ conductance system and full- 2D models. In 

these cases, however, the dynamics observed would depend on the value of 

j in relation not only to the delay times where changes in equilibrium point 

stability occur, but also to the value(s) of TpsN, where the system is believed 

to undergo PSNB(s). In these cases, regions of monostability or multistability 

for certain ranges of 1-L might not be detected by considering only T > ~, and 

would not provide a complete picture of the model dynamics. Thus there 

would be pitfalls in not analysing the sub- systems and full- 2D model for all 
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T > 0. In any case, we have seen that studying the equations with zero time 

delay can be useful in the analysis of delay- dependent stability of equilibria. 

Therefore, to study the systems analytically it behooves us to consider the full 

range of positive discrete time delays T > 0. 

In their treatment of the dynamics of recurrent inhibition, Mackey and an 

der Heiden (29) employ a type of mixed feedback, by using a feedback function 

which is non- monotone. This corresponds to feedback which is neither purely 

positive or negative. The feedback function used in our model, F(V(t- T)) = 
J1-V(t- T) is monotone increasing if p, > 0, and monotone decreasing if f.1- < 0, 

thereby permitting pure positive and negative feedback, respectively. As we 

have seen, the dynamics of recurrent excitation are somewhat questionable 

for the model in its present form, and we have identified this as a possible 

limitation of our Morris- Lecar model with delay. It might be interesting to 

study the delayed Morris-Lecar model with mixed delayed feedback, by using 

a non-monotone feedback function, for example the one used by an der Heiden 

in [2] given by 

V(t- T) 
F(V(t- T)) = p, 1 + [V(t _ T)]n , n 2: 2. (5.0.2) 

Problems arose in the all- K+ system and full- 2D model wit h delay for p, > 0 

due to the appearance of the parameter p, in the denominator of the V = 0 

nullcline, for example 

V(n) = gLV~ + gKVKn 
gL T gKn - j.L 

for the all- K+ system. Considering a feedback function of the form (5.0.2), 

with say n = 2, we obtain for t he V = 0 nullcline 

n(V) = -gL(V- VK)(l + V 2
) + p,V . 

gK(V- VK)(l + V 2 ) 
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This modification might allow us to study a model with fewer limitations 

and problems like those encountered with the model we propose here. Also, 

analysis of nonlinear DDEs with mixed feedback of type (5.0.2) have revealed a 

rich structure of bifurcating periodic solutions and deterministic chaos [2, 29). 

Another interesting and physiologically relevant type of feedback we could 

study would be nonlinear mixed feedback with delay. In such a model, an 

example of a nonlinear feedback function would be F(V(t-r)) = J1 tanh(V(t­

r)). 

When Morris and Lecar [24] developed their original model, they used 

linear relations for the instantaneous current-voltage curves through open­

channels. However, in their own experiments with barnacle muscle fibre they 

found evidence for a nonlinear instantaneous Ca2+ current- voltage relation, 

and therefore used a suitable relation when analysing the all-Ca2+ conduc­

tance system. However, when considering the reduced-2D model with both 

conductance systems operational, they reverted back to the linear relations. 

The motivation behind this was supported by results which indicated that the 

operational K+-conductance system is enough to keep the Ca2+- system in the 

(nearly) linear region. In our analysis ofthe all-Ca2+ conductance system with 

delay we used the linear relation, because studying the all-Ca2+ with a nonlin­

ear current-voltage relation (such as the one suggested by Morris and Lecar) 

would have not provided a clear indication of the contribution of the all- Ca2+ 

system to the full-2D model, which employed the linear relation. Neverthe­

less, it might be interesting to examine the all- Ca2+ system with delay using 

a nonlinear instantaneous current-voltage relation, to see if it adds to the al­

ready rich dynamics of that system. Also, including the effects of Ca2+ - ion 
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accumulation in the analysis of the all-Ca2+ conductance system with delay, 

as considered in the original Morris- Lecar study, may prove fruitful. 

Also concerning the individual conductance systems, some authors [35] 

have suggested a modified potassium conductance system for models of Hodgkin­

Huxley type to account for calcium ion activation. Experimental results [24] 

indicate evidence for such a Ca2+ - activated potassium conductance, which 

might easily be implemented into our model with delayed recurrent feedback. 

In closing we comment on the applicability of our Morris- Lecar model with 

delay. The purpose of our investigation was to determine the effects of time­

delayed synaptic input on the dynamics of a muscle fibre model with two noni­

nactivating conductances. The original Morris- Lecar model as a mathematical 

means to study voltage oscillations in muscle fibre had predictive power, in 

that it was able to accurately describe many different, experimentally- observed 

voltage behaviors. The subsequent work of Rinzel and Ermentrout [34] suc­

cessfully identified new complex behavior capable of the Morris-Lecar model. 

However, Morris and Lecar [24] point out that there are aspects of the barna­

cle fibre voltage behavior which their model (1.2.1) was unable to account for. 

These included a bistable oscillation pattern, as well as the sort of oscillations 

which start small and grow in amplitude. Our model (1.3.5) is an improve­

ment of the original model since it is able to account for these complex voltage 

responses. Figures 4.7(f), 4.10(f), and 4.13(d) in Chapter 4 are numerical sim­

ulations of the full- 2D Morris- Lecar model with delay ( 4.0.1) which represent 

voltage oscillations which start small and grow in amplitude, while Figure 4.14 

of the same chapter demonstrates bistable voltage oscillations. Therefore, our 

modification of the Morris- Lecar equations enhances the predictive power of 
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the original model. 

The real test of the predictive power of our model (1.3.5) would lie in 

comparing the results gathered here to empirical results collected from a 

suitably-designed experiment involving an appropriate neuro-muscular feed­

back loop. We noted in the introduction (Chapter 1) that the constriction 

and dilation mechanisms which control the pupil-light reflex operate using a 

neuro-muscular feedback loop, and represents an actual physiological process 

to which our model might be applied. Applying a voltage-clamp to a patch 

of the muscle fibre of this loop along with the appropriate neural connections 

would provide an ideal set-up to test our results experimentally. However, 

it is not known whether the components of such a neuro- muscular feedback 

loop are amenable to voltage-clamp analysis. Alternatives to using a complete 

physiological feedback loop on its own could include using components from 

different loops for which voltage-clamp analysis is possible, or to artificially 

simulate the effects of delayed recurrent feedback in an experimental set-up 

like the one used by Morris and Lecar [24]. 
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