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Abstract 

End-tethered polymer layers are formed when a collection of polymers is anchored by 

one end to a surface, with the reminder dangling into solvent. These systems have 

been studied extensively both experimentally and theoretically, and numerical self­

consistent field (nSCF) theory can now explain much of their structure and physical 

behavior very well. However, the surface pressure is not yet understood. 

Bijsterbosch et al. performed experiments in which they examined a series of 

polystyrene-poly(ethylene ) (PS-PEO) diblock copolymers at the air-water interface 

with varying length of PEO block. They found that surface pressure excess varies 

smoothly and slowly with polymer density. On the other hand, Kent et al. in­

vestigated systems of diblock copolymer poly(dimethylsiloxane-styrene) (PDMS-PS) 

spread as a monolayer at the free surface of ethyle benzoate (EB). In t hese systems 

PDMS lies flat on the top of EB, with PS dangling into EB which is a good solvent 

for PS . They reported that surface pressure excess varies smoothly and slowly at lovv 

density, then quickly at high density. 

All theoretical treatments except one give weak variation similar to observations 

of Bijsterbosch and coworkers. The exception is the nSCF calculation of Baranowski. 

In this thesis, nSCF calculations have been performed to examine Baranowski's work, 

and to model Kent's experiments. The results are in good agreement wit h predictions 

of the scaling theories for the surface pressure isotherms, which are also compatible 

v 



with experimental measurements performed by Bijsterbosch et al. 
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Chapter 1 

Introduction 

1.1 General Remarks 

Polymer science is a typical multi-disciplinary subject, with increasing influence on 

our lives. All substances referred to as polymers, or macromolecules, are giant 

molecules with molar masses ranging from several thousands to several millions. Be­

cause of the diversity of functions and structures, macromolecules have been grouped 

under two major categories, natural and synthetic. In both cases, the molecules are 

constructed from structural units called monomers, which are covalently bonded to­

gether. When only one type of monomer is used, t he product is called a homopolymer: 

on the other hand, if two or more types of monomers are used~ the result is known 

as a copolymer. Both of those kinds of polymers can be linear or branched [1]. The 

number of monomers is called the degree of polymerization, and it can affect the 

properties of polymers. 

The behavior and the structure of polymers adsorbed onto surfaces from solution 

are important and have been studied extensively, both experimentally [2- 25,95 -101 ] 

and theoretically [26 - 70] . Properties of polymer systems near surfaces and interfaces 

1 



CHAPTER 1. INTRODUCTION 2 

are of increasing importance in many technological and biological applications. Sta­

bilization of colloidal suspensions, blends, lubrication, adhesion, tailoring the bending 

of biomembranes, and biomedical uses like extending lifetimes of delivery vehicles in 

the blood stream - all of which are of great importance - represent promising aspects 

of polymer adsorption. 

1.2 Polymers in Solution 

An arbitrary polymer molecule may or may not dissolve in an arbitrary solvent. 

The quality of the solvent can be specified by the affinity that exists between the 

monomers of the chain molecules and the solvent molecules, or in other words the 

interactions between polymer monomers and solvent molecules. These interactions 

are responsible for classifying solvents as good, poor and 8 solvents, according to the 

ability of a polymer of infinite molecular weight to be dissolved. 

One can think of three effects associated with solution: 

1. There are monomer-solvent interactions. The effective interactions are normally 

repulsive. 

2. However, there is an important effect due to the mixing of polymer chains 

and solvent molecules: the entropy of mixing increases when a solution forms. This 

increase can overcome the repulsive interactions between the polymer and solvent. 

3. The configurational entropy of the chains is a maximum when the chains are 

described by random walks. If a good solvent penetrates into the chains, then they 

expand. This reduces the number of configurations available to the chains. As a 

consequence of this, the entropy of configuration of the system decreases. 

In · a good solvent, the net decrease in the free energy due to the increase m 

entropy exceeds the increase due to the interactions, and the polymer dissolves. In 
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poor solvent the net increase in the internal energy overcomes t he entropic effects, 

and the polymer does not dissolve. If there is a balance between energy and entropic 

effects , we have a e solvent. 

Any measurement on polymer systems involves contributions from many molecules 

in a variety of conformations. An important property of polymers is the radius of 

gyration of the molecule, R9 , which is a measure of the average size of a molecule. 

For a given type of molecule in a given environment, R9 scales as 

(1.1) 

where Z is the degree of polymerization, the value of v depends on the polymer 's 

environment, and b is called the mean statistical segment lengt h. 

Polymers in 8 solvent can be described by random walks, in which case the radius 

of gyration scales as l"v Z 112 . On the other hand, for good solvent polymer chains can 

be described by self-avoiding random walk, and here R9 rv Z 315
. In poor solvent, the 

exponent in Eq.(l.l) reduces to v ~ 1/3. 

1.3 Polymers at Surfaces 

One can distinguish between . two kinds of surfaces, solid and liquid. The conforma­

t ional and thermodynamic behavior of chain molecules at a surface depends, among 

other things, on the quality of the solvent and the surface-polymer interactions [47] . 

If the polymer molecules show a tendency to aggregate near a surface, the surface 

is said to be attractive and an adsorption layer will form. On the contrary, if the 

surface is repulsive then the polymer molecules exhibit a depletion region near the 

surface and the chains remain in solution. In some cases, the effects of the surface 

are neutral. In general, the range of these interactions can be short or long-range, 
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and this affects the types of conformations near surfaces or interfaces. 

1.3.1 Adsorbed Homopolymers 

When a solution of polymer chains is in contact with a surface, one can expect that , 

when each monomer can adsorb at the surface, the polymer sticks to the wall and 

cannot be desorbed by washing with the pure solvent. At low surface concentrations 

when neighboring adsorbed chains do not overlap, the conformation of the macro­

molecules is well-determined by the value of adsorption energy of each monomer [27]. 

Increasing the surface coverage will introduce other factors which affect the structure 

of the adsorbed layer, such as monomer concentration, chain flexibility, and polymer­

solvent interaction, as well as the molecular weight of the chains. 

When a polymer adsorbs on a surface, only part of it makes contact with it. The 

structure of an adsorbed layer is described in terms of "trains", "loops" and "tails" 

[71 J. A train is a series of consecutive segments, all in contact with the surface. A 

loop is constructed from segments all extended into the solvent; it is bound by a train 

on each side. A tail is terminally bound to a train; the outer end dangles into the 

solution. In the case of interacting layers adsorbed on two neighbouring surfaces, 

sections can form bridges [69]. 

Theoretical study of the behavior of these systems can be technologically impor­

tant and, furthermore, it enables the explanation of experiments [8, 12, 20] as well 

provides the ability to predict the physical behavior of systems under investigation. 

1.3.2 End-Tethered Polymers 

When one end of each polymer chain is strongly attached to the surface, but the 

surface is otherwise repulsive or neutral, an end-tethered polymer layer is formed. 
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End-anchored polymer layers are obtained in two ways, either by chemical graft-

ing or by diblock copolymer adsorption. The latter case depends very strongly on 

the quality of solvent for each block of copolymer. Depending on the interaction 

parameters between solvent molecules and both blocks of the copolymer, one can 

distinguish between two types of solvent: non-selective and selective. If these inter­

actions between the solvent molecules and both blocks are the same, the solvent is 

called non-selective. Here, one block adsorbs onto the surface, while the other block 

dangles into the solvent. 

For a non-selective solvent, the solvent penetrates into the adsorbed layer. This 

adsorbed layer can be treated in a similar way as an adsorbed homopolymer. On the 

other hand, the dangling block which is called the "buoy" block, is often handled as 

an end-grafted homopolymer [36]. This treatment can be applied for either selective 

or non-selective solvent. 

The physical structure of the adsorbed layer is characterized by the density profile 

of each block, thickness of the layer, the adsorbed amount, r, which i s defined as the 

total number of monomers per unit area which belong to the adsorbed layer, as well 

as free energy of the system. Most analytical and numerical procedures focus on the 

Helmholtz free energy, F . Usually it is expressed as a sum of two contributions -

the interaction energy, which represents the interactions among all components of the 

system in addition to the interaction with the surface, plus the entropic contribution. 

Within this approach, the surface tension "! can be calculated using 

(oF) ry- -
- aA T,\/,N,. 

(1.2) 

where A is the total area of the interface, T is the temperature, V is the volume of the 

system and each NK, is the number of molecules of species "- present in the system. 

The primary factors which determine the physical properties of dangling blocks 
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(a) 

d 

(b) 

Figure 1.1: Polymer chains attached by one end to nonadsorbing surface. Mushroom 

(a) and brush (b) regimes. The brush height is h . The details of this 

figure relate to the scaling theory discussed in section 1.5.1 

are the degree of polymerization of that block, Z , the quality of the solvent, and the 

average area per tethered molecule, 2:. It is practical to introduce the reduced surface 

concentration, C5*, defined by 

(1.3) 

where R9 is the radius of gyrat ion of an unperturbed dangling block of polymer in 

the solvent . Since 

(1.4) 
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this implies that 

( 1.5) 

where d is the average distance between grafted sites on the surface. To within a 

numerical factor, a* is the ratio of the cross sectional area of unpert urbed dangling 

block of polymer molecule in solution to the average area associated with it in the 

grafted state. Values of this ratio can be used to ident ify two well-known limits of 

grafted macromolecules. These two limits are schematically presented in figure 1.1 . 

In the first, a* « 1, the average distance between anchoring sites is greater than 

R9 . This low limit of a* describes isolated chains, with no overlap. Each isolated 

chain occupies roughly a half-sphere with radius comparable to R9 . This limit is 

known as the "mushroom regime" [30]. 

If the number of end-grafted polymers per unit area is high, the chains stretch 

normal to the planar surface. This stretching restricts the configurat ions available 

to the polymer, and the entropy of the system decreases. This interplay betwen the 

entropy loss due to stretching and the steric interactions determines the equilibrium 

layer thickness. The result is a thick layer, a so-called brush [28]. This limit is 

associated with a* » 1. In this regime, overlapped coils stretch away from the 

surface, and the conformations in good solvents are determined by excluded-volume. 

In terms of the average area per adsorbed molecule, 2:, this limit can be written as 

(1.6) 

or, equivalently, d « R9 . 

1.3.3 Applications of Polymers at Surfaces 

In many natural and technical processes, the behavior of polymers near surfaces and 

interfaces plays an important role. This can be used in many medical and industrial 
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applications. For example, one can prevent the adsorption of bare particles from 

solution by grafting polymers onto a surface. This can be used in medical glassware 

that is inserted in a body for a prolonged period, for instance catheters. A harP 

glass surface is vulnerable for adsorption of bacteria (60]. After a period of time the 

result of such bacteria adsorption and subsequent multiplication can be an infect ion . 

Grafting polymers may prevent adsorption of bacteria on the glass, and therefore 

reduce the risk of an infection during a prolonged period of insertion. 

In a similar way, liposomes, which are small containers made up of surfactant 

molecules in which a drug can be placed, can be coated by end-grafted polymers. 

When inserted in the blood stream the liposomes eventually adsorb on the surface of 

arteries, change their conformation and release the encapsulated drugs. The grafting 

of water-soluble polymers to the liposome surface can increase the period of circulation 

in the blood stream significantly. The kinetics of drug release can thus be controlled 

via grafting polymers on the liposomes. 

In industry, one can find different applications for polymers at surfaces, such 

as adhesion, in which adhesion strength is maximized with an intermediate surface 

density and high molecular weight which allows for interpenetration and entanglement 

with matrix chains. 

Another example, is lubrication, which can be best achieved with short chains at 

very high packing density such that little energy dissipation occurs when contacting 

a sliding surface (20]. 

1.4 Analytic Theories of Polymers at Surfaces 

The goal of theories of polymer adsorption is to develop predictive equations for the 

structure of the layers, to relate their physical properties to all the factors which affect 
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them, and to explain the behavior of these layers in different types of solvents. 

Two groups of theories, commonly referred to as "scaling theories" and "mean-field 

theories", are used in the literature to provide a description of the density profiles of 

the layer and of the polymer-induced forces between surfaces [69]. Mean field theories 

are subdivided into two main categories, asymptotic self-consistent mean-field theory 

and numerical self-consistent mean-field theory. In this section, we review the scaling 

and analytic mean field theories. 

1.4.1 Scaling Theory 

I ) Adsorbed Homopolymer As a precursor to studying end-tethered polymers, 

we briefly consider adsorbed homopolymer. The scaling theory [32, 52, 73-77] of ho­

mopolymer adsorption in good and 8 solvents was developed by de Gennes [32, 74]. 

It is based on the concept of a correlation length, ~b , for semidilute polymer solutions 

[27}, which describes the concentration fluctuations of polymer in the system. He 

assumed that D, the thickness of an isolated adsorbed polymer chain, sat isfies [26] 

(1.7) 

where a is a lattice parameter of a Flory-Huggins lattice used to model the monomer 

size. Eq. (1. 7) puts limits on the validity of the calculations. The first inequality 

represents a limit of weak-coupling between monomers and surface. In this weak­

coupling limit, results are independent of the details of the model. 

The adsorbed layer is divided into three regions: 

1. The proximal regime x < a, very near to the surface where the adsorbed chains 

expedence constraints on their configurations and their density distribution is very 

sensitive to the details of the monomer-surface interaction. 



CHAPTER 1. INTRODUCTION 10 

2. The central regime, D < x < 6. Here, the density profile obeys a universal 

power law and becomes independent of </Jb, the volume fraction in the bulk. 

3. The distal regime, x > ~b· Here the density profile, ¢(x): approaches the bulk 

¢b exponentially. 

For the central regime, the theory uses ideas applicable to a bulk system. In the 

bulk, ~b scales with the volume fraction of the polymer, </Jb, as 

~b ""' { ¢~314 
good solvent 

a ¢[;1 e solvent 
(1.8) 

De Gennes generalized this for this inhomogeneous system, by assuming that there 

is a local~ ' and it scales with the local ¢as 

~(x) ""'[¢(x)t3/4 (1.9) 

in good solvents. Next, he chose ~(x) ex x, which is the distance from wall, and this 

leads to 

x ex [¢(x)t3/4 (1.10) 

This implies that 

¢(x) ex x-4/ 3 (1.11) 

which gives the density profile. 

The adsorbed amount, r, is obtained by integrating (¢(x) - ¢b) over the distance 

from the surface. Furthermore, one can obtain expressions for the free energy and 

interfacial tension, I· Assuming that a true equilibrium in the system is achieved, it is 

possible to have consistent scaling laws for density profiles of polymer near a surface. 

The structure for the adsorbed layer is nearly independent of the bulk concentration , 

and self-similar. 
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II ) End-Tethered Polymer 

In 1980, de Gennes modeled uncharged end-tethered polymers [30], see figure 

1.1. He assumed that the polymer does not adsorb on the surface. The chains are 

immersed either in a pure (good) solvent or in a solution of the same polymer. 

Using scaling laws constructed by Alexander [78), he studied the conformations 

and the concentration profiles for long, flexible homopolymer chains grafted at one 

end to a surface using "blob" model. 

The definition of a blob is a string of monomers which are unperturbed by inter­

molecular interactions. Successive blobs are considered as hard spheres [27] . 

In this theory, the diameter of the blobs is equated with the average distance 

between anchored polymers, d. He introduced a dimensionless measure of the number 

of chains per unit area as 

(1. 12) 

For the brush limit and for a good solvent, the thickness, h, of the grafted layer, often 

called brush height , is given by 

(1.13) 

It depends on the number of chains grafted per unit area as well as on the molecular 

weight. 

In this regime of stretched chains, the concentration profile is essentially fl at , 

except for two adjustment regions at the ends. This implies that the chains are uni­

formly stretched and their ends are located at the edge of the brush. This assumption 

of the well-defined homogeneity of the brush layer, namely all chains in the brush are 

equally stretched with their terminals located at a distance, h , from the grafting 

surface, is a major simplification [28]. 
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The surface pressure 7r of the brush depends on the number of blobs per unit area. 

The Alexander and de Gennes (ADG) model takes into account the correlations of 

the monomers inside the blob, which leads to 

(1.14) 

To summarize, scaling theory predicts two regimes for end-grafted chains in good 

solvents, one unstretched and one stretched, depending on the average area per teth­

ered chain, E. In both regimes a depletion layer near the wall has been predictt>d, 

although each chain must reach the grafted surface. At high coverage, 1r ex: Z(J1116
. 

1.4.2 Mean Field Theories 

I ) Adsorbed Homopolymer 

In mean field theory, all instantaneous intermolecular interactions are replaced by 

time average interactions. Mean field theories of polymers do not include fluctuations 

in the total density, but can include chain fluctuations. 

The mean-field models can be analytical or numerical [69]. They are based on the 

earlier works by Edwards [79] . 

A key element of most mean field theories is the probability distribution function 

which describes the probability that a polymer of length T ends at r' if it begins at 

r. This function obeys a modified diffusion equation, which can be solved in terms of 

eigenfunctions and eigenvalues. In the ground state dominance approximation, only 

the lowest eigenvalue and eigenstate are retained in the solu tion. 

Edwards and Dolan [80] applied the mean-field theory to the interactions between 

surfaces bearing polymer chains [69]. Jones and Richmond [110] studied adsorption 

from good and 8 solvents onto a planar surface, using the self-consistent field the­

ory (SCF) of Edwards and Dolan. Their procedure is based on the ground state 
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dominance approximation for the solution of a diffusion equation. 

Semenov et al. [51, 81] went beyond the ground-state-dominance approximation, 

and introduced the so-called two-order-parameter theory. These order parameters 

describe the monomer and the chain end distributions. The theory can be used 

to estimate the forces between two polymer layers in full equilibrium with a bulk 

solution, as has been done by Bonet-Avalos et al. [82]. 

The mean-field theories can predict qualitative information on the structure and 

physical properties of the adsorbed layer, in addition to describing forces among 

components of the system at conditions where steric interactions dominate (at high 

surface concentrations). On the other hand, at conditions where bridging interac­

tions become important (at low coverages), the mean-field theories fail to predict the 

bridging attraction between the surfaces [69]. 

II ) End-Tethered Polymer 

By the end of 1980's, the brush had been treated theoretically by analytical 

(asymptotic) self-consistent field theory (aSCF). This model has been developed in­

dependently and simultaneously by Milner, Witten and Cates (MvVC) [41, 87], and 

Zhulina, Borisov, Priamitsyn and Birshtein [88]. 

In the aSCF model, it is assumed t hat the grafting density of the brush is suf­

ficiently high to make the grafted layer laterally homogeneous. Consequent ly, t he 

monomer density is solely a function of the distance from the graft ing surface. T he 

key point of the aSCF theory is based on an analogy between the configuration of 

the polymer chains and the trajectories of a classical part icle moving in a harmonic 

potential. In this analogy, the monomer number T corresponds to the time T of the 

moving particle. The grafted chain with Z segments requires Z "timesteps" to reach 

the surface, irrespective of where it st arts. 

In the mechanical analogue, the chain path , x( r) , becomes the particle trajectory. 



CHAPTER 1. INTRODUCTION 14 

The particle reaches the surface in a "time" T that is independent of its star ting point.. 

This "equal time" potential is therefore harmonic. 

In the aSCF theory for good solvent conditions, only binary interactions between 

polymer segments are taken into account [64]. Because the general form of an equal­

time potential field is quadratic, and for low polymer density the effective potential 

in the aSCF model is proportional to the monomer density, it follows that the com­

position profile of the polymer density is parabolic in good solvent. It then follows 

that the brush scales the same way as in scaling theory, h "'"' Za113
. 

However, there is a slight difference between the aSCF prediction for surface pres­

sure of the brush, which scales as 

(1.15) 

and the ADG scaling theory Eq. (1.14). 

It must be noted that these results should apply to the limits of high molecular 

weight Z, and moderately high surface coverage, a* , and weak excluded-volume inter­

actions. The aSCF procedure neglects the polymer depletion layer near the surface. 

and the existence of the smooth , st retched tails of the layer ends. 

As seen above, both the MWC model and the ADG model give the same scal­

ing relationships for the thickness of the brush, but they predict different numerical 

prefactors. However, the power law exponents of 1r as a function of a differ slightly. 

Moreover, they predict different shape profiles. 

It should be clarified that aSCF model does have some defects. The most serious 

one is its assumption that all the chains are in t heir most probable conformation: 

no fluctuations around this conformation are considered. In a particular case, the 

aSCF formalism neglects the interpenetration of brushes on opposing surfaces. This 

predicted picture of compression is another approximation. 
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1.4.3 Diblock Copolymer Adsorption 

The discussions in the previous sections for homopolymer adsorption and the brush 

regime can be used to describe the adsorption of diblock copolymers. 

Mean-field and scaling predictions of diblock copolymer adsorption from selective 

and nonselective solvents were originally suggested by Marques et al. [36, 64]. In the 

first step, they studied the adsorption of an A-B diblock copolymer from a dilute 

solution onto a solid surface in a nonselective solvent. The solvent was considered to 

be good for the two incompatible blocks. 

The solid surface was assumed to interact differently with each block. It strongly 

attracts the A block and strongly repels the other block. When thermodynamic 

equilibrium is achieved and for a dilute solution, the structure of the adsorbed layer 

is specified essentially by the asymmetry of the copolymer. 

For non-selective solvents the asymmetry parameter is the ratio 

(1. 16) 

Where they used v = ~ and ~ for mean field and scaling theories respectively. While 

RA and RB are the radii of gyration of adsorbed and buoy block, respectively. In the 

mean-field theory, the radii of gyration are 

( 1.1 7) 

where ZA and ZB are the degrees of polymerization of A and B blocks, respectively, 

and b is the statistical segment length, which is assumed to be the same for both 

blocks. In this model it has been al·ways assumed that f3 » 1. They studied two 

limits depending on the parameter, {3 . 

The first is {3 < ZI)2
. Here, they found that the anchored layer in contact with 

the surface is a continuous "fluffy" layer, in which the density profile decays in a 
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way similar to adsorbed homopolymer layer. However, the existence of the dangling 

block in the solution reduces the number of adsorbed A blocks, and prevents this layer 

from reaching the same equilibrium surface coverage as a corresponding homopolymer 

layer. This results in the thickness of the adsorbed layer being smaller for block 

copolymers than for homopolymers. The dangling block, B, forms a brush layer with 

height, h, scaling linearly with molecular weight. 

The second regime occurs when the nonadsorbing block is much larger than the 

adsorbing one, i.e, f3 > zij2
. Then, the anchored A block breaks into individual 

chains forming a discontinuous fiat "pancake" on the surface and this anchored layer 

has a thickness on the order of monomer size a, forming a quasi-two-dimensional 

polymer solution which is either dilute or semidilute. 

In a highly selective solvent the adsorbed A block is in a poor environment. This 

forces it to collapse onto the surface to make a molten layer on the solid wall, where 

the solvent does not penetrate into the layer. The B block is in a good solvent, which 

causes it dangle into the solution and form a brush attached to the molten layer. The 

physical structure of the adsorbed layer is predicted by the chemical potential of the 

dangling block in solution. 

The dominant interaction in this case is the van der Waals interaction between 

the surface and the molten A layer. The asymmetry between the two parts of the 

copolymer is measured by 

z3l 5 

f3 = zf12 
A 

(1.18) 

which drives the formation of the molten layer. If this ratio is large enough, the 

thickness of the molten layer results from a balance between the van der Waals energ:v 

and the stretching energy of the brush. 
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1.5 Experimental Studies of End-Tethered Poly-

mers 

The physical properties and structure of the air-liquid interface of polymer solutions 

with good and e solvents have been examined extensively experimentally. For exam­

ple, the adsorption from solution of polydimethylsiloxane (PDMS) homopolymer in 

good (bromoheptane) and 8 (bromocyclohexane} solvents was investigated by Kent 

et al. [7]. Using x-ray evanescent wave induced fluorescence (XEWIF), the effects of 

molecular weight, bulk concentrations and solvent quality on the adsorbed profiles of 

the polymer near the interface were probed. 

They found the adsorbed amount in dilute solution for near 8 conditions is about 

four times larger than in a good solvent, with the profile decaying much more slowly 

with depth than in the case of good solvent. 

In good solvent, and in dilute solution, they found that the region of the profile 

nearest to the surface ( rv 4 nm) is roughly independent of molecular weight, in agree­

ment with theoretical predictions. On the other hand, for the near-8 conditions, and 

for dilute solution, they found that there is a stronger dependence of the adsorbed 

amount on the molecular weight for the region of the profile within ( rv 4 nm) of the 

surface [7] . 

In another study of t he surface tension of polymer solutions, Ober et al. [108], 

explored the adsorption from solution of poly(dimethylsiloxane) PDMS in toluene 

and polystyrene (PS) in toluene for att ractive and repulsive surfaces, respectively. 

Toluene is a good solvent for both polymers. They found that PS adsorbs at the free 

surface and a concentration excess appears there, while the density of PDMS at the 

surface was lower than in the bulk. 

Various techniques have been used to study layers of tethered polymers. An 
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important one is the surface force measurements on layers of adsorbed copolymers by 

Hadziioannou et al. [95], Israelachvili et al. [2], Patel et al. [96], Marra et al. [97], 

and Taunton et al. [98]. The first measurements focused on studying t he long range 

forces between layers of adsorbed copolymers, and on probing the relat ion between 

these forces and the thicknesses. The analysis of these experiments was done using 

the aSCF theory and scaling theory. Subsequent experimental work includes small­

angle neutron-scattering (SANS) [4, 6, 100], and neutron reflectivity measurements 

[3, 5, 8, 101]. 

Auroy [4] used small-angle neutron-scattering to determine the scaling behavior of 

polydimethylsiloxane chains tethered to porous silica. They examined two categories 

of solvents: bad solvents, in which they observed h rvZa-, and good solvents in which 

they found h rvZa-113 . These results provided the first experimental evidence of the 

brush limit. 

Field et al. [9] used neutron reflectomet ry to measure the density profile of four PS­

PEO copolymers adsorbed on quartz from deuterated toluene. The densi ty profiles 

of the dangling PS could be well-described by a parabolic or error function with 

maximum at the surface and an exponential-like tail. 

Two sets of results for good solvent cases are of particular importance to this 

thesis, one by Kent et al. [8, 12, 102] and the other by Bijsterbosch et al. [ll). 

The system studied by Kent et al. is shown in Figure 1.2. They used poly( dimethyl­

siloxane)-polystyrene (PDMS-PS) diblock copolymers with ethyl benzoate as the sol­

vent. In this case, the PS-block is the dangling block and the PDMS-block anchors 

the polymer to the air-liquid surface. In these experiments, both molecular weight 

and surface coverages were varied independently, each over an order of magnitude. 

They reported that in these experiments the maximum attainable surface cover­

ages were limited by a sharp rise in surface pressure, so a-* varied from about 1 to 
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Figure 1.2: Illustration of the monolayer system formed by PDMS-PS dib lock copoly­

mer on EB 

. 12. This means that , in these and other experiments on layers formed from polymers 

in dilute solution, the maximum value for the reduced surface concentration, a* , is 

about 12. They also concluded that the thickness of the tethered layer does not scale 

as Za113 as predicted by (aSCF) model and de Gennes scaling theory. Instead, they 

found that it scales approximately as Z0
·
86a 0

·
22 [12]. 

Polymer chains adsorbed at the surface reduce the surface tension. This change 

can be interpreted as t he two-dimensional pressure, 1f . Kent et al. measured rr, ancl 

then subtracted the contribution due to the adsorbed block, thereby extracting the 

excess surface pressure due to the dangling block, Lln. This procedure is discussed 

in chapter 3. They found that Lln as a function of coverage increases up to a certain 

threshold but, beyond that, Lln increases sharply, much more rapidly than predicted 

by scaling and aSCF theories. However, it is still approximately a power law. The 

value of exponent ranges from approximately 4.2 to 6.6, and increases slightly with 

Z. These values are much larger than the values of 11/ 6 or 5/ 3 predicted by scaling 

and aSCF theories. 

Bijsterbosch et al. [11] used neutron reflectivity to study a series of polystyrene 
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-poly-(ethylene oxide) (PS-PEO) diblock copolymers in water, with varying lengths 

of the PEO-block. In this system, the PS anchors to the air-water interface, and the 

PEO dangles into the water which is a good solvent. They reported three regions for 

surface pressure. The first is at low surface density, where the pressure 'is very low and 

is due to intermolecular interactions. The second is at intermediate coverage, where 

the PEO block gradually desorbs to form a brush, and the pressure increases. Finally, 

it begins to increase again at coverage where the brush is laterally compressed. Currie 

et al. (60] subsequently showed that these results in this third region are compatible 

with aSCF theory with ~71" rv a513 • In their experiments Bijsterbosch et al. reached 

high reduced surface coverages, up to a* .:S 27. This contrasts with the upper limit 

of a* :::::::12 for end-grafted layers formed from polymers in dilute solut ion, obtained 

by Kent's experiments. 

More details on the results obtained by Kent et al. and Bijsterbosch et al. will 

be presented in chapter 3, taking into account the results calculated using (nSCF) 

theory done in this thesis. 

1.6 Numerical Models 

The experimental results just discussed suggest that numerical calculations are needed 

for quantitative agreement. Grest [49) carried out molecular dynamics simulations of 

4 chain lengths in good and 8 solvents, with Z ranging from 25 to 200 and surface 

concentration of a* .:S 20. His results for the dependence of the surface pressure on 

the grafting density were somewhat stronger than predicted by scaling theories. For 

a good solvent, and for high surface coverage of tethered chains which were strongly 

stretched, Grest concluded that the height of the brush h, was in reasonable agreement 

with a scaling of h ex: Z a 113 , while the surface pressure scaled as 1r ex: a2 5 . Baranowski 
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and Whitmore (39] subsequently showed that the height of the brush in Grest's work 

shows a weaker molecular weight dependence than he originally concluded . 

Numerical self-consistent field (nSCF) theory incorporates finite molecular weight 

effects [38, 47, 50, 91, 92] . The first nSCF theories used Scheutjens and Fleer's lattice 

mean-field theory [34, 83, 84] and its variations [85] . Scheutjens and Fleer originally 

studied simple homopolymer adsorption using first-order Markov chain statistics [34, 

83, 84]. Van der Linder et al. [86] extended the pioneering theory of Scheutjens and 

Fleer to semi-flexible polymers, taking into account bond correlations. 

Studies have been performed using nSCF theory to investigate the behavior of 

tethered layers in good solvents under non-adsorbing conditions. The results of the 

layer thickness generally differ from those obtained by aSCF theory, i.e. , h rv Zu113
. 

In one study using this model in addition to Monte Carlo calculat ions [111], fi t ting 

to the sets of results gave 

(1. 19) 

where v = 0.86 and f.-t = 0.27, consistent with previous work performed using the 

same model [39] in which v = 0.81 and J.-t = 0.24. These results agree well with Kent's 

experiments. 

Carignano and Szleifer [47], applied single-chain mean-field theory to study the 

behavior of a mobile and tethered chain in different solvent qualities. They performed 

numerical calculations to examine the pressure isotherms in good and 8 solvents, 

for chains of Z = 50 and surface coverages up to u* = 40, obtaining very good 

quantitative agreement with results of the MD simulations of Grest [49]. They found 

that the lateral pressure for good solvent for very low surface coverage ( u* <t: 1), can 

be described approximately by a power law with exponent equal to 2. On the other 

hand, for intermediate surface coverage up to u* ;S 18 the exponent is 1.9, whereas 
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1r ex: a-2·1 for surface coverage 19 ~ a-* ~ 40. Comparisons with the aSCF model 

showed good agreement only when the parabolic density profile is used in the full 

virial equation, and only for the intermediate and high surface coverage regimes. 

In their later st udy, [50] Carignano and Szleifer investigated another 4 chain 

lengths with Z ranging from 30 to 100 and surface coverages of a-* ~ 20. Their 

predictions for both the brush height and lateral surface pressure as a function of 

surface coverage were compared to the results obtained by Kent et al. [12]. They 

found excellent agreement for the height of the brush for all surface coverages, since 

their results scaled as h rv Z 9110CJ114 , which is consistent with the nSCF predictions. 

They showed that the experimental lateral pressures multiplied by the square of the 

bulk radius of gyration, i.e. L\1r R~ , is a universal function of the reduced surface 

coverage, a-* . They reported that L\1r is in good agreement with the experimental 

results of Kent et al. up to CJ* rv 8. Fat higher reduced surface coverages their theo"' 

retical results deviate from what had been found by the experiments . They attributed 

this deviation to non-equilibrium conditions in the experiments. However, in Kent 's 

experiments, it is found that the rapid rise in surface pressure occurs for different 

values of CJ* . For example, for 4-30 PDMS-PS copolymer it occurs at CJ* ,..._, 4, while 

for 28-330 PDMS-PS and 4.5-60 PDMS-PS copolymers it occurs at a-* rv 7. 

An important set of calculations for work in this thesis is one done by Baranowski 

[72]. He used nSCF calculations, and found a rapid increase in excess pressure, in 

semi-quantitative agreement with experiments of Kent et al. but in disagreement 

with all other theories and with t he Bijsterbosch experiments. Fig. 1.3 shows the 

behavior of the surface pressure excess as a function of the number of chains per unit 

area for the 28-330 PDMS-PS copolymer as calculated by Baranowski [72]. It shows 

two distinct regimes. In the first one, L\1r can be described approximately by the 

power law dependence predicted by aSCF theory i.e., 5/3. On the other hand, m 
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Figure 1.3: Two regimes for surface pressure excess, 6..1r as a function of the nurhber 

of chains per unit area for the 28-330 PDMS-PS copolymer. The solid 

line is fit ted to the calculations done by Baranowski. While the dashed 

line is the line of t he best fit of 5/3 power law dependence. 

the second regime a sudden sharp rise is noted, still described by a power law, but 

with an exponent of 7.2. However, Currie et al. [60), used the Scheutjens-Fleer nSCF 

model to model the experiments carried out by Bijsterbosch et al. [11]. They found 

semi-quantitative agreement with the experiments and with the aSCF predictions, 

1f rv cr5f3 and h rv cr1/ 3 , with surface pressure and thickness depend on density. 

The case of a PEO-block with 700 monomers is an illustrative example, Currie 

et al. [60), found that the surface pressure isotherms when plotted on a double 

logarithmic plot, had some interesting features. For a good (x = 0) and a 8 solvent 
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(x = 1/2), where xis known as the Flory-Huggins interaction parameter, and taking 

into account that Xsur face, which is the interaction of homopolymer or one block 

of copolymer with the surface, is set zero for both solvent qualities, the isotherm 

showed, at low densities, that the surface pressure is proportional linearly to the 

grafting density, and is independent of the solvent quality. This indicates that the 

system under these conditions exhibits an ideal gas behavior for non-interacting coils. 

This contrasts with the result found by Carignano and Szleifer [47], in which they 

showed a quadratic dependence of the surface pressure on the grafting densi ty at very 

low densities . Currie et al. claimed that this unrealistic physical result arose from 

the incorrect expression for the surface pressure used by Carignano and Szleifer [4 7]. 

At higher coverages, Currie et al. found the power law exponent to be very close to 

5/3, as predicted by the aSCF theory, and in contrast with Baranowski's result of a 

second region. 

1. 7 Objective and Outline of this Work 

The goals of this thesis are to re-examine Baranowski's calculations [72] and confirm 

his results. What is the behavior of the excess surface pressure, 2l. 7T, as a fuuct iou 

of density? Does nSCF theory produce the results observed by Kent et al., and 

calculated by Baranowski as shown in Fig. 1.3, or those observed by Bijsterbosch et 

al., and all other theories? In order to address these questions, we use the following 

procedure. 

All the important system parameters that are needed are known best for the 

system studied by Kent et al. , namely PDMS-PS in EB. Used in nSCF theory, they 

gave excellent agreement for the density profiles and layer thicknesses. For these 

reasons, we focus on this system and use nSCF theory. 
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We first model the homopolymer PDMS/EB system with an attractive surface 

interaction, and calculate, using nSCF theory, the surface pressure as a function of 

coverage. Then, we model PDMS-PS/EB system, and calculate the surface pres­

sure. The excess surface pressure, ~7T , is then calculated as the difference between 

the surface pressure for the diblock copolymer system and the system when only the 

homopolymer exists. In carrying out all these calculations, the author used Bara­

nowski's computer code to model systems under investigation. As will be described 

later, there are two approximations that were examined in order to probe the dif­

ference between Baranowski's results [72] and results obtained in this thesis. These 

approximations are reflected in two parameters, which are described in section 3.2.5. 

Then we compare the results obtained by nSCF calculations for the Kent et al 

experiments with the experimental results reported by Bijsterbosch et al., which have 

been modeled using nSCF theory by Currie et al. [60]. 



Chapter 2 

Numerical Self-Consistent Field 

Theory 

2.1 Introductory Remarks 

Real systems comprised of a large number of polymer macromolecules and solvent 

molecules interacting with each other can be well-understood using numerical ap­

proaches. Generally speaking, the descript ion of the system can be determined as the 

following: 

1. Specification of the various microscopic configurations of the system which 

correspond to the macroscopic state, and for each configuration, calculation of its 

energy. 

2. Evaluation of the configurational part of the partition function Z . 

3. Determination of the Helmholtz free energy 

(2.1 ) 

Once the free energy is calculated, other physical quantities can be determined . 

26 
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Polymer configurations can be modeled as walks in continuous space or as walks 

on a discrete lattice. The first choice leads to a continuous (nSCF) theory. The second 

choice leads to a lattice model, which is represented by Scheutjens and Fleer theory 

(34, 83, 84]. Each step in the walk is determined with two factors, a local entropy of 

mixing and an energy factor describing the short-range interactions with the nearest 

neighbors. The lattice sites are filled by either monomer or a solvent molecule. A set 

of self-consistent equations is derived and solutions have to be found numerically. 

The nSCF theory based on continuous space curve representation of the polymers 

is presented here. The formalism is based on the SCF theory introduced by Ed­

wards and Dolan [79, 80] and further developed by Hong and Noolandi [31], Helfand 

et al.,[l03], Ohta and Kawasaki (104], Whitmore and Noolandi (40, 43], and Banaszak 

[105]. In order to give a full statistical description for polymer/solvent systems, one 

needs to describe the various microscopic configurations of the system. In doing so, 

one needs to first specify models for linear flexible polymer chains and their interac­

tions. These interactions are divided into kinds: 

1. The energy explicitly due to the sequence of bonds along the chains. It includes 

local chain connectivity constraints, trans-gauche bond sequence energies, etc. This 

energy can be conceptualized as that required to put the monomers down sequentiall.v. 

This is called the "short range interactions". They are related to t he structural char­

acteristics of the macromolecule, considering bond types and the interactions between 

segments or neighboring atoms. These factors originate from steric repulsions, which 

limit the values of the internal angles of rotation of the bonds within the chain. Hence, 

the random coil will expand, in order to avoid such repulsions. 

2. Energy due to interactions between monomers which are far separated along a 

chain, but near to each other in space. This includes all other cont ributions to thP 

energy. This type is called "long range interactions" . 
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The long range interactions are mediated by the solvent, creating effective monomer­

monomer interactions. These effective interactions vanish at the 8 point, and the 

chains become 'ideal polymers" [106). 

We can also define the 8 point using the osmotic pressure. Consider a dilute 

solution of polymers in solvent. A dilute solution is defined as one in which the 

polymer concentration is small enough that the average distance between molecules 

is greater t han the size of a molecule. Now, let FM denote the free energy of mixing 

of the polymer and solvent. Then the osmotic pressure is defined as 

IIasmotic = - ( 
0
:; ) 

T,p,np 

. (2.2) 

where nP, p and T are the number of polymer molecules, external pressure and tem­

perature, respectively. The osmotic pressure can be expressed also in the form of a 

virial expression 

(2.3) 

where NA is the Avogadro's number, Cp is the polymer concentration and the Ai are 

the virial coefficients [27]. Equation (2.3) has the same form as the virial expansion 

for a gas. A2 is called the second virial coefficient. It has the form 

(2.4) 

In good solvent, A2 > 0. However, at temperature T = 8 , A2 = 0, and the dilute 

solution acts as an ideal gas of point particles. This temperature, 8 , is called C0 

temperature. 

One of the important quantities that describe polymer chain is the probability 

distribution function for the end-to-end vectors. A polymer in a 8 solvent is ideal. 

and the distribution function for each bond can be modeled as a Gaussian dist ribution, 
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defined as 

( 3 )3/2 ( 3r2) 
'1/J(r) = 2nb2 exp - 2b2 (2.5) 

where b is the effective bond length referred to as the statistical segment length. and 

r is the bond vector. 

2.2 Partition Function 

In this section, we introduce the general theory for the diblock copolymer spread as 

a monolayer at the air-liquid interface. The system which we are dealing with can be 

described by .Nc diblock copolymer chains and Ns solvent molecules in some volume 

v. 
A diblock copolymer consists of A and B blocks. Block A is characterized by its 

degree of polymerization, ZA , effect ive bond length, bA , and the number density of 

pure material, PoA, in monomers per unit volume. Similarly, block B can be specified 

by ZB, bB, and PoE · For solvent molecules, the density of pure material, Pos, has to 

be specified. Since the system consists of Nc chains, the total number of monomers 

of type K is N,. = NeZ,., K = A, B. 

At this point it is useful to introduce the incompressibility condition [31 J which 

ensures conservation of volume on mixing. This condition is equivalent to the local 

volume fractions adding up to unity everywhere 

2: < p,.(r) > = 1, 
r;, Por;, 

K=A, B, S (2.6) 

where py;, (r) is the local number density of species K for a given configuration, and 

< · · · > denotes the ensemble average. 

Assuming there is no volume change upon mixing, the configurational partit ion 

function can be written using functional integrals over all possible chain configurations 
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and locations of solvent molecules 

Z CIJ.s X;) j (fl drsi) x 
J IT brAj(·)P[rAj(-)]Q(rAj(O))brBj( ·)P [rBj(-) ] x 

J 

b (rBj(ZB)- rAj (ZA)) X (2.7) 

II b (1- 2: p,_(r)) x 
r K==A,B ,S PoK 

exp [-tnl) 

In this expression P [r,_j(·)] represents the Wiener measure for a chain with configu­

ration r,.j(·), br~~:j(·) denotes the integration over all possible chosen configurations, 

and the kinetic energy contribution of a solvent molecule or polymer chain is denoted 

by Z,_. The function Q(rAj(O)) is introduced here for convenience. It describes the a 

priori probability distribution for the free end of an A type chain. In most cases, it 

is simply Q = 1 everywhere. However, in those cases where, for physical reasons, the 

chain is localized to a particular interfacial region, it is convenient to use Q(r Aj(O) ) 

in the form 

if r j ( 0) ~ interface 
(2.8) 

0 < Q(rAj(O)) :S 1 if rJ(O) E interface . 

Thus from all possible conformations of chains, only these which have the A type 

end of every chain in the interface contribute. This explicit form is used only in the 

calculations of chapter 3 of this thesis. b (rBj (ZB) - rAj(ZA)) ensures that one end of 

each of the two blocks of each copolymer chain occupies t he same point in space, i.e., 

that they are bonded together at the joint [40]. The condit ion of incompressibilit.:y is 

imposed by the delta expression b ( 1 - ~P;~:) ) [104]. 

The potential f3V which appears in Eq. (2.6) is due to the long-range interact ions 

between all components present in the system and interactions with the boundaries. 
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It is a function of the microscopic part icle densities which are modeled as 

Ps(r) (2.9) 
i=l 

(2.10) 

where r "-J ( T) describes the position of monomer T of type r;; in j chain. 

As in most polymer theories, it is assumed that binary interactions are sufficient 

to describe real polymers in a solution [64]. The interaction potential energy can be 

written 

/3V = W ~ I L I dr I dr' p"'(r) w"'"'' (r- r')AI (r') + 
"'"' =A,B,S 

L I drp"'(r)u"'(r) 
K-=A,B ,S 

(2 .11) 

where W"'"'' ( r - r') defines the potential acting on a particle of type r;; at the position 

r due to a particle of type r;;' at the position r' , and u"' ( r) is the potential experienced 

by component r;; due to the surface. 

Equations (2.9) and (2.10) express the microscopic densities in terms of the indi­

vidual solvent molecules and chain segments. Since the polymer chains are modeled 

by continuous chains, it is essential to convert the microscopic densites to continuous 

functions. This can be done through the introduction, for each independent function 

p"' ( r), of a Dirac delta function 

II J (1 - L p"'(r)) exp [-w) = (2.12) 
r K-=A,B,S PoK, 

j {J~B,s Op,( )O[p.() - P.(·)]} I}" ( 1 - .JB,s p;::)) exp [-W( {p,(· )})] 
where W({p"'(·)}) is defined in Eq. (2.11) but for cont inuous {p"'(r)} . 

Using the Fourier transform for each Dirac delta function, in addition to the 

continuous functions p"' (·) , leads to the following form for the partition function [40, 
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105] 

z - CIT.s zt.;) xI [Jtl•p.()OwJJI] ory( l x 

Cns Q:·) X exp [! dr ry(r)(1- .J;,,s p;::))l X (2.13) 

exp [J=s.J dr w,(r)p,(r)] x exp[-W[{p,U}]] , 

where ry(r) is the Lagrange multiplier field arising from the incompressibility condi-

tion. 

For solvent 

Qs =I dr exp[-ws(r)] , (2.14) 

and for copolymer 

Qc = I OrA(-)c5ra(·)P[rA(-)]P[ra(·)]9(rA(O)) x 

exp [- /,zA dr wA[r( T )] } exp [- /, zB dr ws[r( r )] } x (2.15) 

o(ra(Za) - r A(ZA)) 

One can introduce the propagators 

Qr.(r, T I r ' , 0) = I Orn;( ·)o[rr.(r)- r]o[rr.(O)- r'J x 

exp {- fo
7 

dT' ( 2~~ I d:~) 1

2 

+ wr.;[rr.;(r')J)} (2.16) 

which satisfy the modified diffusion equation [106] 

with initial condition given by 

Q r. ( r, 0 I r' , 0) = o ( r - r') 
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It turns out that the Green function QK,(r, 1lr', 0), represents the configurational 

partition function for one K, block of the chain starting at r(O) = r' and ending at 

r(1) = r. 

The potentials wK,(r) which modify the diffusion equations include enthalpic in-

teractions between the molecules, written in terms of Flory parameters, plus a finite 

range correction which is of the order of a statistical segment length [31, 107), as 

well as interactions with the surface and terms arising from the incompressibility 

condition. 

With these assumptions the integral of the dist ribution function, Eq . (2 .15), can 

be written as 

Qc =I drdr' dr"Qs(r, Zslr', O)QA(r, ZAir", O)Q(r" (O)) (2.19) 

Finally, using the Stirling approximation, the partition funct ion can be written as 

Z = N I IT 6pK,(·)8wK,(·)61J( ·) exp[-FT[{pK,(·)}, { w"(-)} , 17(·)]] , (2.20) 
K= A,B,S 

where FT[{P~~:(·)} , {w~~: (·)},1J(-)] is the free energy functional (in units of k8 T ) given 

by 

with 

[w[{p,(·)}]- .£) dr w, (r)p, (r)] + 

L f.!" {In :Q -1} (2.22) 
~~:=C,S K, K 

and 

(2.23) 
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2.3 The Saddle Function Method: Mean Field Ap-

proximation 

The free energy of the system can be obtained by evaluating Eq. (2.20). However, this 

integration is too difficult to do completely. Instead, we use the saddle point method , 

keeping only those values of the fields that contribute most to the integral. This is 

equivalent to minimizing the free energy functional, :F7. Denote the corresponding 

values of the fields by {p~(r)}, {w~(r)} and 71°(r). The free energy, partition function 

and density distributions reduce to 

Z --+ Z 0 ex exp{ -:FT[ {p~(-)} , { w~(-)}, 71°(-)]} , (2.25) 

< Ps(r) > --+ Ns 6Qs I 
Qs bws(r) o 

Nc bQc I 
Qc 6wl\;(r) o ' 

where these last derivatives are evaluated at the minimum. 

(2.26) 

K=A,B ' (2 .27) 

To find the saddle point, :F7 has to be minimized with respect to each pl\;( r ) , w"' (r ) 

and 71(r) subject to an additional constraint, namely that the total number of particles 

of each component in the system remains fixed: 

J dr < pl\; (r) >= NJ\; K = S,A,B , (2.28) 

where Ns = Ns, NA = NcZA, and NB = NcZ8 . P roceeding with the minimization, 

the only part of :F7 that depends on 71(r) is G. Minimizing with respect to 71(r ) is 

thus equivalent to 

b 
67l(r) G = 0 ' (2 .29) 
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which requires immediately 

L p~ (r) = 1 

K-=A,B,S PoK-

(2.30) 

and hence 

G=O , (2 .31) 

so that 

(2 .32) 

The only part of :Fr that depends on wK,(r) is the corresponding QK, and the integral 

involving the wK,(r). Minimizing :Fr with respect to wK,(r) yields 

0 ( ) ilK, 6QK, 
PK, r + QK, 6wK,(r) = 0 . (2.33) 

Comparison of Eq. (2.33) with Eqs. (2.26) and Eq. (2.27) gives the very important 

result that the saddle point values of p~ (r) , which are what can be evaluated, are 

equal to the equilibrium density distributions < pK,(r) > in this approximation. The 

constraint of Eq. (2.28) becomes 

j drp~(r) = NK, r1, = S, A , B . (2 .34) 

2.4 Self-consistent Mean Field Theory of Tethered 

Polymer 

The general assumptions discussed in section 2.3 result in equations for the density 

profiles of every component in the system and a free energy expression written in 

terms of the densities and interaction parameters. To obtain the density distribu-

tions for copolymer, one needs to solve the modified diffusion equat ion (2.17) for 

the propagators QK,(r, Tir', 0) subject to geometry-dependent initial and boundary 

conditions. 
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The problem has to be solved self-consistently. The potentials are needed to solve 

the diffusion equation and calculate the densities, but the potentials are functions of 

the densities. 

Following the previous procedure, we are going to investigate the system studied 

by Kent et al. [7, 8, 12, 102], PDMS-PS spread as a monolayer at the free surface 

of EB. In this system EB is a good solvent for the PS block, and the air surface is 

repulsive for the PS. The PDMS (A-block) lies flat on the top of EB, and the PS (B­

block) dangles into the solvent. All the A- B joints lie in a very narrow interphase 

region of width a, estimated by Kent [8] to be on the order of 1 nm for all samples. We 

have assumed that all the joints are randomly distributed throughout this interface. 

By assuming that the system is t ranslationally invariant parallel to the surface, 

the problem becomes one-dimensional. In order to specify t he physical properties of 

the system, three density profiles should be determined: for the solvent, and for the 

A and the B blocks. The surface, x = 0, is defined as the plane at which the solvent 

and B-block densities reach zero. 

If one is interested only in the properties of the dangling B block, one can simplify 

the problem by assuming a simple model for ¢A(x), such as [43] 

x~ O (2.35) 

with the parameter l chosen to make the density profile for the anchored A block 

decrease to zero over the interface width of 1 nm. 

One can then determine the density of the dangling B-block by using integral 

representations of the propagators given by the Eq. (2.16), where the integrations 

are performed over all start ing positions [31]. Two propagators are needed. The first 

one is defined as 

Qo(r ,T) = qo(x ,T) = / dr'QB(r ,Tir' , O) (2.36) 
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and the second one is 

q1(r, r) = q1(x,r) = j dr'dr"QA(r",ZA !r' , O)Q(r')QB(r, rjr",O) (2.37) 

The propagators Qi also satisfy the diffusion equation 

(2.38) 

with the variable r having been mapped onto the interval [0,1]. These propagators 

reflect the propability distribution of B-block of the chain. The first, q0 (x, r) , is 

proportional to the probability that a B chain of length r ends at x given that it 

starts somewhere in the system, while q1 (x, r ) is proportional to the probability that 

a B chain of length r ends at x given that it starts in the interface. 

In addition to satisfying the diffusion equation, the propagators satisfy certain 

boundary and initial conditions. If the surface is repulsive, ¢8 = 0 at the upper edge 

of the interface region. One boundary condition, in this case, is then 

qi (O, r) = 0 . (2.39) 

Also, since the chains can extend only a finite distance into the solvent , this implies 

that 

qi ( 00, T) = 0 , (2.40) 

for the other boundary condition. In practice, this condition is applied at a finite 

distance, far enough to have no effect on the physical properties of the brush. 

Since we assumed that the A - B joints are restricted within the interface of 

width of a, and distributed throughout it in a random way, this implies that the 

initial condition for q1 is given by 

{ 

1, 
ql (x, 0) = 

0, 

O < x :S a 
(2.41) 

x >a . 



CHAPTER 2. NUMERICAL SELF-CONSISTENT FIELD THEORY 38 

Moreover, there are no restrictions on the position of the free end of B block, which 

leads to the initial condition for q0 given by 

qo(x, 0) = 1, x>O (2.42) 

With these initial conditions, the integral of the distribution function, Eq. (2.19), 

becomes 

Q = fooo dxq1 (x , 1) (2.43) 

According to this, the density of the dangling block can be expressed as 

(2 .44) 

In general, the monomers and solvent molecules interact with each other through some 

intermolecular potential , such as a Lennard-Jones or Morse type potential. However. 

in mean-field theories they are generally modelled as simple contact interactions, 

sometimes with a finite range correction. The result is that each pair int eraction 

can be modelled by a single parameter, the Flory parameter , Xr;.r;.', sometimes plus a 

gradient correction. 

The self-consistent potential w 8 ( x), which modifies the diffusion equation can be 

expressed using 

wa(x) = ;:: { Xas [cf>s(x) - 1- cf>a(x) + ~
2 

'l 2(4>s(x)- cf>a(x))l + 

(XAB- XAs) [cPA (x ) + ~
2 

'l
2
¢A(x)] }+ 

PoS ¢~ ( ) Pos ( ) - ln-- + us x --us x 
PoE cf>s (x ) PoB 

(2 .45) 

Here, an additive constant has been chosen so that w(x) -t 0 in the bulk , where 

cf>s (x) = 1. In Eq. (2.45) , XM', is the Flory-Huggins interaction parameter between 

components K, and K,
1

, defined with Pas as the reference density, and c/>r;. ( x) is the 

volume fraction of K, component. 
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Since the experiments [7, 8] suggested there was little evidence of any particular 

affinity of the B-block for the grafted surface, both XAB and XsA should be positive 

and of comparable magnitude. In cases where the interactions with the surface are 

negligible, we can choose XAB = XsA, and neglect ua(x) - [Pos/ Poa]'us(x). The 

potential can then be written 

we(x) = ::: {In </>s~x) + XsB [ </>s(x) - </>e(x) - 1 + ~
2 

( </>~(x) - </>~(x))]} 
(2.46) 

where xsa has been defined using the solvent for the reference density. 

Note that, in a bulk phase, only solvent is present, p~ = Pos and the self-consistent 

potential for solvent has to be constant, which can be set to zero. It is 

ws(x) = ln ( ¢s~x) ) (2.47) 

The parameter a 2 , whose dimensions are (length) 2 , characterizes the effective range 

of the interactions and its effects are usually very small. It can be chosen to be on 

the order of b2 , where b is the statistical segment length of the B-block. However , a 

in this thesis has been set be zero. 

Finally, to determine the density profile of the solvent, we use the incompressibility 

condition 

¢s(x) = 1- ¢A(::c)- ¢a(x) (2.48) 

In this model, and for a given copolymer system, which is characterized by L:, which 

is the average area per polymer, Zs, Xss, Pos, and PoE, a self-consistent solution has 

to be obtained for the problem by the modified diffusion equation, and Eqs. (2.36) 

to (2.48). 

In addition to the density profiles for each component of the system, the free 

energy of the brush is also of great interest. It is calculated using the terms in the 

free energy attributable to the B block. 
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The final expression for the free energy per unit area is given by 

PosKsT 
- {oo dx {<Ps(x) In <Ps(x) + ¢B(x)- XsB<P~(x)- PoE ws(x)¢B(x) } 

lo Pos 

-~ ln Q (2.49) 
L.JPoS 

In summary, we have a set of self-consistent equations describing the copolymer 

system through the use of the following assumptions: 

1. Each bond in the chain of the copolymer has a Gaussian distribution, with an 

effective bond length referred to as statistical segment length. 

2. The degrees of polymerization for the B block are assumed to be large so that 

the chain can be represented by a continuous space-curve. 

3. No local volume change on mixing is allowed, which means that the system is 

incompressible. 

4. The number of copolymer chains in the system is assumed to be large. 

5. There are no fluctuations in the thermally averaged density distributions. 

6. Only two-body interactions are taken into the account, and these interactions 

are assumed to act over a zero range, 0' = 0. 



Chapter 3 

Lateral Compression - Excess 

Surface Pressure 

3.1 Introduction 

In this chapter the lateral compression of homopolymers and copolymers at the air­

liquid interface is examined. Our investigation mimics the systems and methodology 

used by Kent et al. very closely. The difference is we use nSCF theory to generate 

the pressures, whereas they used experiments. We first describe in more detail the 

experiments of Kent et al. Next, we present the nSCF formalism, specific to the 

system being studied. Turning to the results, we first model adsorbed homopolymer, 

and calculate its contribution to the surface pressure. We then model t he copolymer 

system, calculate 1r, and then the excess surface pressure, 6.1r. Our results are dis­

cussed in t erms of power laws and compared with the experiments, other published 

calculations, and the previous results of Baranowski [72]. The chapter includes an 

analysis of different physical contributions to 6.1r. 

41 
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3.1.1 Experimental Studies on the Lateral Compression of 

Copolymers at the Air-Liquid Interface 

To examine the physical and the structural properties of copolymer systems at the 

air-liquid interface, Kent et al. [8 , 12] conducted several experiments in which simulta­

neous measurements of concentration profiles and the surface pressure were carefully 

made. The diblock system PDMS-PS was found to spread and to form monolayers 

on the surface of ethyl-benzoate(EB), which is a good solvent for PS but nonsolvent 

for PDMS. This results in a system of tethered PS chains, with the PDMS at the 

surface. Moreover, the surface tension of EB lies between that of the PS and PD MS 

and this explains the selectivity of the solvent. Since rPDMs < rEB, there is a strong 

driving force for the PDMS-block to remain at the surface. By contrast, rEB < r Ps , 

so PS dissolves into the bulk and does not adsorb at the surface. 

Two methods of spreading the copolymer monolayers were used in the experi­

ments. In most cases, the copolymers spread from a dry grain deposited onto the 

surface of the sub-phase. In the other cases, the spreading was accomplished using 

dilute solutions of the copolymers in chloroform, a good solvent for both blocks. This 

latter case provides better control over the surface coverage. The surface density 

was typically increased by adding further grains of copolymer to the surface, and 

decreased by aspirating the surface, rather than by compression and expansion of the 

surface area with a movable barrier. Virtually all the chains were adsorbed to the 

surface; the total volume fraction of copolymer in the bulk(sub-phase) was always 

estimated to be less than rv 10- 6 . 

The spreading behavior of homopolymer (PS and PDMS) was also examined. 

When a dry grain of PS homopolymer was deposited onto the surface of EB', the PS 

did not spread to form a monolayer, but dissolved into the solvent after a short period 
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of time. As well; no change in the surface tension was noted throughout this process. 

This indicated that the PS was not active at the surface, and no adsorption occurred . 

On the contrary, when a drop of PDMS homopolymer was deposited onto the 

surface of EB, the surface tension immediately dropped. This is due to the fact that 

t he PDMS established a stable Langmuir monolayer on the surface of this solvent, 

and this indicated that t he surface was attractive to the PDMS, which was active at 

the surface. 

The surface pressure-area isotherms of PDMS on EB were obtained for two dif­

ferent samples of molecular weights, i.e., lvfw = 25,000 and 100,000 (g/mol) , and six 

different copolymers, which are 4-30 PDMS-PS, 10-40 PDMS-PS, 4.5-60 PDMS-PS , 

21-169 PDMS-PS, 28-330 PDMS-PS, and 25-35 PDMS-PS, where the polymers are 

labeled by the block molecular weights, in kg/mol, of PDMS and PS blocks respec­

tively. If the PS blocks' contribution to the surface pressure was small, then the 

isotherms for the copolymers would coincide with these of the PDMS homopolymer, 

the case which did not happen. It was found that, for most of the samples, t here was 

a large deviation from the homopolymer isotherm; this indicated the effect of t he PS 

block in raising the surface pressure. 

As summarized earlier, Kent et al. measured both the homopolymer and copoly­

mer surface pressure isotherms, and then calculated the excess surface pressure as 

the difference. They found that 6.1r increases relatively weakly with polymer cover­

age up to a certain threshold but, beyond that, it increases much more rapidly, still 

as a power law corresponding to powers t hat depend slightly on Z , but range from 

approximately 4.2 to 6.6 [8, 12]. 

In their study, Bijsterbosch et al. [11], used a series of PS-PEO diblock copoly­

mers with different lengths of PEO block spread as a monolayers at the air-water 

interface. In order to get a full picture, both structural (neutron reflectivity) studies 
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and surface pressure measurements as a function of surface concentration of grafted 

chains, 1/L,, and chain lengths, Z, were done. The PEO-lengths which were used in 

the experiments were 90, 148, 250, 445, 700, 523. 

The experimental results for the surface pressure versus surface area per monomer 

showed several distinguishable regions. At low concentrations, the system showed a 

low pressure analogue to the pressure for an ideal two-dimensional gas of polymers. At 

intermediate coverages, where the PEO block gradually forms a brush, t he pressure is 

gently increasing. In the third region, where the surface coverages are high, and the 

brush is laterally compressed, the surface pressure begins to increase. Comparing 

the experimental results obtained by Bijsterbosch et al. [11], and the numerical cal­

culations, using a double-logarithmical plot, Currie et al. [60] studied the surface 

presssure of the brush (excess pressure) against the area per chain for Z = 700. To 

determine the excess pressure for this system, they examined the surface pressure for 

the saturated adsorbed homopolymer of PEO-chains, which was reported in exper­

iments to be equal to 9.8 mNfm, while it was estimated by the nSCF model to be 

8.2 mNfm. The power law exponent for the excess pressure as a function of grafting 

density is found to be 5/3 ;:::;; 1.67, if the surface pressure for the PEO homopolymer 

solution was taken t o be 9.8 mN /m. This result is exactly the same as predicted by 

aSCF model, and close to the scaling theory prediction of ;:::;; 1.83. The procedure 

used by Currie et al. to find the excess surface pressure for this system is to take 

the saturated surface pressure of a solution of long PEO chains, which is reported 

experimentally to be equal to 9.8 mN /m, and t hen subtract t his value from the 

surface pressure of the PS-PEO copolymer measured in Bijsterbosch's experiments . 

They used this method since the PS block is known not to spread on water, which 

means its contribution to the surface pressure is very little, while PEO blocks, which 

spread on the water surface, contribute more to the surface pressure. So in these 
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experiments, as the density of PS-PEO copolymer increases, the PEO blocks start 

to aggregate near the surface, and contribute to the surface pressure similar to the 

PEO homopolymer solution. Vvhen the pressure reaches a value of approximately 

10 mN/m, at which the surface density of PEO has reached its plateau, and upon 

further compression, the free ends of the PEO blocks start to extend into the solution 

and form a brush. So by using the previous procedure, we get only the excess surface 

pressure due to the dangling blocks of PEO. The experiments showed no evidence of 

a rapid raise in the surface pressure excess as reported by Kent et al. [12]. Instead, 

results are consistent with values predicted by aSCF theory [41, 87}. 

3.2 Numerical Self-Consistent-Field Approach 

The general formalism for the nSCF theory was presented in chapter 2, in which we 

considered only the dangling block to be of interest. This assumption is responsible 

for the simple model of the adsorbed A-block(PDMS). However, in this chapter, we 

study the surface pressure of copolymers and homopolymers at the air-liquid surface , 

and the behavior of both blocks must be taken into account. Two cases have to 

be examined. The first is the pure homopolymer at the interface. The second is 

the diblock copolymer, in which the A-block is similar to the homopolymer, and the 

B-block is dangling into the solution. In order to probe the thermodynamic and 

structural properties of both cases, the density distributions and the free energy of 

the system have to be calculated. For the copolymers, the density distributions of 

both blocks are to be determined self-consistently. 
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3.2.1 The Homopolymer Spread as a Monolayer 

We consider a system comprised of NHA identical homopolymer chains (PDMS) de­

scribed by the density of the pure material, PoA, statistical segment length, bA, and 

degree of polymerization, ZA, and Ns solvent molecules (EB) characterized by PaS· 

The partition function, Eq. (2.6) , has the same form, with a few changes: Nc hai:i 

to be replaced by NHA, and the summation is restricted to one type of molecules: A 

type. Similarly, since the polymer consists of one type of monomer, then the c.:oudi-

tion of connectivity should be dropped, and the 6 ( · · ·) function has to be eliminated. 

Following the formalism of Eqs. (2.8)-(2.17), the integral of the distribution functiou, 

Eq. (2.19) , can be written as 

(3.1) 

The density distribution of the homopolymer is given by 

(3.2) 

The problem is considered as one dimensional, as before, which means the system is 

assumed to be translationally invariant parallel to the interface. Using the integral 

representation of the propagators, we can write the second propagator q1A as 

(3.3) 

and the initial condition for this propagator is 

QlA(x, 0) = / dr'&(r- r')9(r') = 9(x) (3.4) 

It should be noted that both propagators satisfy the diffusion equation, Eq. (2.38). 

Since in the experiments of Kent [12] the homopolymer forms a monolayer, it is 
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possible to assume that one end of every chain starts in the vicinity of the surface . so 

taking this into account , the propagator q1A (x, 0) is assumr-d t o satisfy 

(3.5) 

where Baranowski (72] chose a1 so that q1A(1, 0) = 0.01 at a distance of 1 nm from 

the surface. This choice is compatible with the estimated thickness of the interface 

which was on the order of 1 nm [72]. Some of the calculations in this thesis were done 

to test the effects of this choice. It was concluded that the results were not sensitive 

to it. 

In terms of q0A(x, T) and q1A(x, 0) the quantity QH can be expressed as 

I drdr'QH(r , Z lr')9(r') 

I dxdyd zq1 (x, Z) = A fooo dxq1 (x, ZA) 

AQ~ 

(3.6) 

where A is the total area of the adsorbing surface and the boundaries of the integral 

sweep out all possible locations of the mobile end of t he homopolymer. 

Another important quantity that is needed is the local volume fraction of ho-

mopolymer. It is given by 

(3. 7) 

where T has been mapped onto [0,1]. 

The concentration profile of the polymer in the vicinity of the surface depends on 

the nature of interaction between the chain and t he interface. For a repulsive surface, 

a polymer depletion layer is found near the surface. On the other hand , there will 

be adsorption for the polymer if the surface prefers the polymer molecules to the 

solvent, in which attractive interaction is dominant. According to the results of many 
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experiments conducted to study polymer systems, it can be assumed that , at x = 0, 

the density profile shows a local extremum (minimum or maximum) which implies 

~qiA(x,T)I =0 , 
uX x=O 

(3.8) 

for i = 0, 1. This boundary condition eliminates all configurations which cross the 

surface. Similarly, for the other boundary in the pure bulk it is set 

~ qiA(x, r)l = 0 . 
uX x=oo 

(3.9) 

In practice, this boundary condition is applied at some finite distance, L. This dis­

tance must be chosen to be large enough so that the calculated polymer density is 

zero at x = L. 

The potential which modifies the diffusion equation Eq. (2.38) for the homopoly-

mer calculations is given by 

( ) Pos [ ( ) ( )] Pos 1 ( ) Pos ( WAX = -XAS cf>s X - 1 - cf>A X + - . ln ~(· ) + UA X --Us X) 
PoA PoA 'f/S X PoA 

int ( ) Pos l 1 ( ) Pos ( ) ( ) WA X +- n ~( ) + 1.tA X --Us X 3.10 
PoA 'f/S X PoA 

which was obtained in the same manner as Eq. (2.45) . The parameter o-2 , which 

characterizes the effective range of the interact ions was, for simplicity, set to zero. 

3.2.2 Diblock Copolymer at the Air-Liquid Interface 

In this section the formalism for the diblock copolymer (PDMS-PS) at the air-liquid 

interface of solvent (EB) is introduced. The diblock consists of a block A charac­

terized by degree of polymerization, ZA, statist ical length , bA, and the density of 

pure material, Po A. Similarly, block B can be specified by Z 8 , b 8 , and PoE, and the 

solvent by its density, PoS· Moreover, it is assumed that all the chains in the system 

are adsorbed at the interface. This situation is consistent with Kent et al. [8 , 12] in 
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which the total concentration of the copolymer in the bulk was negligible. The total 

number of copolymer chains adsorbed at the interface is Nc and the total number 

of solvent molecules in the system is Ns. Both of the blocks are responsible for the 

total surface pressure, 1r. 

The adsorbed A-block is the same as the homopolymer considered in the previous 

section. The density distribution for the A-block of the copolymer is given by 

PA(r) = ~~ fozA dr {j dr' dr" dr"'QA (r , r Jr' , O)Q(r') 

QA(r" , (ZA- r)Jr, r)Q8 (r" , Zslr'" , 0)} (3.11) 

Similarly, the B-block density distribution is given by 

p8 (r) = ~~ fozB dr {j dr' dr" dr'"QA(r", ZA lr' , O)Q(r ') 

Q8 (r, r Jr" , O)Q8 (r"', (Zs- r) Jr, r) } (3.12) 

It should be noted that these density dist ribution functions are calculated at the 

saddle point. It is useful to use the integral representation of the propagators in 

which one integrates over all possible st arting positions. In the copolymer/ solvent 

system, four propagators are needed. The first one, denoted qA(x, r ), is defined as 

(3.13) 

Since it is assumed that the free end of the A-block is located near the surface, this 

means that Eq. (3.13) is ident ical to Eq. (3.3) and satisfies the same initial conditions, 

Eq. (3.4) or Eq. (3.5). The second propagator, q8 (x, r ) is defined as 

qs(r, r) = qs (x, r) = j dr'Q8 (r, rJr' , 0) . (3.14) 

This propagator q8 (r , r) express the fact that the free end of the dangling B-block is 

not localized, and can be found anywhere in solution. Another two propagators are 
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needed, and are defined as follows: 

(3 .15) 

and 

iiB(r, r) = iiB(x, r) = J dr'QB(r, rlr' , O)qA(r' , ZA) . (3.16) 

The initial conditions for any point within the semi-infinite region, x > 0, are 

iiA(x, 0) = qB(x, ZB) , (3.17) 

for ifA and 

(3.18) 

for the propagator ifB. As we assumed for the homopolymer, these propagators also 

satisfy the same boundary conditions as previously, Eqs. (3.8) and (3.9). The densities 

can be re-written in terms of the propagators q and ij as 

(3 .19) 

¢B(x) (3.20) 

The integral of the distribution functions, Qc, Eq. (2.19) , becomes 

(3.21) 

The self-consistent potential, which modifies the diffusion equation for the propaga­

tors for the A block is given by 

;:: { XAS [¢s(x )- 1 - c/JA(x)] + ¢B(x) [ (XAB- XBs )] + ln c/Js~x)} 
+uA(x) - PoS us(x) 

Po A 

int ( ) PoS l 1 ( ) PoS ( ) 
W A X + - n -;;:----( ) + UA X - - Us X 

PoA 'f/S X PoA 
(3 .22) 
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where w~t(x) represents the interaction with solvent and the B block, uA(x) is the 

surface-A-block interaction potential, and u8 (x) is the surface-solvent interaction po­

tential. The potential for the B block propagators is obtained from this expression 

by interchanging A and B. 

3.2.3 The Model of the Interaction with the Surface 

In the models used in this thesis, the planar surface is smooth, lacking the molecular 

roughness of a real surface. As a result, the problem is translationally invariant par­

allel to the surface, and the problem is one dimensional. Hence, the surface potential 

due to the presence of the surface depends on the linear distance x from the surface, 

and can be described in the mean-field model through energy and length parameters. 

Eq. (3.22) includes the interactions of the homopolymer or one block of the 

copolymer with the surface, and the interactions of the solvent with the surface. It 

follows from this equation that the effective surface-polymer potential i.e., external 

potential acting on the block K,, can be introduced as 

u~ff (x) ( ) int ( ) PoS I 1 
W" X - W" X -- n -;;:--( ) 

PoK, 'f'S X 

u"(x)- Pos us(x) 
PoK, 

(3.23) 

According to the behavior of homopolymer or one block of copolymer in a vicinity of 

the surface, we can distinguish between three types of surfaces: attractive, repulsive. 

and neutral. 

If u~ff(x) is attractive and arises from Lennard-Jones interactions between the 

surface and the molecules in the solution, then the long-range part of potential is of 

the form [109] 

(3.24) 
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For an attractive surface it can be modeled as 

eff( ) = { - Xs U,_ X _
3 

-xs ( 7) 
for x :::; I 

for x > I . 
(3.25) 

where xs is the energy (in units of kBT) and l is the length parameter. For the 

dangling block of a copolymer, we chose u11 (x) = 0, because the density of the 

dangling block very close to the surface is nearly zero. 

3.2.4 Free Energy of the System, Interfacial Tension and Sur-

face Pressure 

The general expression for the free energy of the copolymer /solvent system at the air­

liquid interface was derived in Chapter 2, and is given by Eq. (2.22). The potential 

energy of the system, W[{p,(·)}], is given by 

w = 
1 
'2 2.: W,,po,_N, + 

K=A,B,S 

~Pos 2.: x,,, I drcp,(r)cj;,, (r) + 2.: I drpon.¢,(r)u,(r) 
K,K' K=A,B ,S 

, (3.26) 

where 

wi\;K. =I drWM(r) ' (3.27) 

which is a measure of the overall strength of the interaction. 

In order to find the free energy, we substitute this equation in addition to Eq. 

(3.22) for the self-consistent potentials, w~~;(x), into Eq. (2.22). This yields 

F = 

(3 .28) 
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where Ns/Qs = PoS· 

For a pure system of N s molecules and the surface, this free energy expression 

has the simple form 

1 ( PoS ) j'00 

Fs = 2WssPosNs + Ns ln Zs - 1 + APos 
0 

dx'Us(x) 

Using this simple form, the free energy Eq. (3.28) can be written as 

F = 1 " . - ( Nc ) 
Fs + 2 ""(;-:,8 

W"'""Po""N"" + Nc ln Qc Zc - 1 

+APos hoo dx{ ~ EX""""'¢"" (x )¢""' (x) + c/Js(x) ln cPs (x) 

- L Po""w~nt(x)cjJ""(x)} 
K-==A,B Pos 

(3.29) 

(3.30) 

Since the densities and the potentials depend on the linear distance from the surface, 

x, one can divide Eq. (3.30) by the total area of the interface to get the free energy 

per unit area, f = FjA. In units of k8 T , f can be written as 

11 1( 1 ) f = fs + 2~ L W,;_x:PoK-Z~> + ~ ln ~Qx Z - 1 
K-=A,B C C 

+Pos hoc dx{ ~ E X""K.'cP""(x)¢x:' (x) + cPs(x) ln cPs(x) 

- L Pox: w~nt(x)¢x:(x)} (3.31 ) 
~>==A,B Pos 

The free energy of the multicomponent system with a surface can be writ t en as 

a Legendre transform of the internal energy with respect to entropy, which can be 

written as 

F = L P,x;Nx; - PV +/'A ' (3.32) 
x; 

and its total differential as 

dF = - PdV - SdT + L P,x;dNx; + /' dA ' (3.33) 
x; 
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where f-1,., is the chemical potential of the r;, component. In this representation , the 

interfacial tension, '"'/, is defined as the change in the total free energy when the 

interfacial area, A, is increased at constant temperature T , total volume of t he system, 

V, and constant numbers of particles in t he system , Ni . Since the free energy per unit 

area, and the volume fractions of all components all depend explicitly on E, rather 

than the total area of the interface, A, it is convenient to express the interfacial 

tension, '"'/, as 

(~:) T,V,N~ 
j + A(;~) T,V,N~ 
f N E ( a f ) ( 8E ) 

+ c oE T,V,A oA T,V,N" 
(3.34) 

Since A = NiE (i can be homopolymer , H , or diblock copolymer, C ) , the result for 

consant T and V is 

'Y = j + E ( ~~ ) , . 
T,v ,A 

(3 .35) 

It is apparent from Eq. (3 .35) , that all terms in f which are linear in 1/ E do not 

contribute to 'Y· 

For a pure solvent 

'Ys = Pos fooo dxus(x) (3.36) 

where us(x ) is the external potential due the interactions between the solvent molecules 

and the interface. With t his, t he expression for the interfacial tension can be written 

as 

(3 .37) 

where £ is given by 
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(3.38) 

As was mentioned before, the change in the surface tension --y5 - --y can be interpreted 

as a two-dimensional pressure, referred to as the surface pressure 

71 = Is - --y , 

which, according to the formalism presented above, has the form 

8£ 
71 = -£- E­

fJE 

(3.39) 

(3.40) 

If a constant value is added to the self-consistent potentials, the results will be the 

same. Taking this into account , and choosing the potentials of the A and B-blocks 

so that 

fooo dxw,.(x)¢,.(x) = 0, /'\, = A,B (3.41 ) 

then Eq. (3.38) can be written in detailed form as 

£ = Pos r)Q dx {PoA¢A(x )ue_/1(x) + PoB ¢B (x )u11(x) } + 
Jo Pos Pos 

+Pos fooo dx{ XAB¢A(x)¢B(x) + XAs¢A(x)¢s(x) + XBs¢B(x)¢s(x) } 

+ ~ ln (E~zJ + Pos fooo dx¢s(x) ln <Ps (x) (3.42) 

This equation can be interpreted physically. The first line represents the contribution 

due to the external potential which arises from t he interactions of all components of 

the system with the surface, the second line is the interact ion energy within these 

components, and the third line expresses the entropic contribution to the free energy. 

This latter part includes effects due to chain conformations, chain localization and 

solvent distribution. vVith this physical interpretion, Eq. (3.42) can be written as 

(3.43) 
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Using the condition of no local volume change upon mixing (incompressibility), and 

setting u11 (x) = 0, the first contribution can be written as 

(3.44) 

Equations (3.42) and (3.43) are applicable to the homopolymer/solvent system with 

appropriate modifications. Namely, for the homopolymer/ solvent system, Q(;. in the 

entropic part has to be replaced by QH-, and in the £int, since there is one type 

of blocks, there are no terms for AB and BS interactions. In the £ ext, for the 

homopolymer, there will appear only one type of block, and this part can be referred 

to as the anchoring energy. 

3.2.5 Approximations in Earlier nSCF Calculations 

As mentioned before, Baranowski used an approximation in his calculations in order 

to model Kent's experiments. First, he chose a 1, appearing in Eq. (3.5), which is the 

localization of the end of adsorbed block, so that q1A = 0.01 at a distance of 1 nm 

from the surface. Second, the calculations are, in principle, for a semi-infinite region 

[O,oo]. In practice, we use a finite region [0,£]. The boundary condit ions are t hen 

applied at x = L instead of x = oo, and spatial integrations carried over this finit e 

interval. L must be chosen large enough that its presence does not affect the tethered 

polymers. Otherwise, it is equivalent to a second surface located at x = L . 

3.3 Results and Discussion 

In this section, numerical results for PDMS homopolymer, and PDMS-PS at the 

EB/air interface are presented, discussed, and compared to the experimental data 

of Kent et al.[8 , 12]. Calculations were performed for two homopolymers, and six 
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copolymers. For each polymer, different surface densities were examined. The overall 

range in~ was from on the order of 10 to 5000 nm2 per chain. The densities were Pos 

= 4.21 molecules/nm3 for EB, PoA = 7.89 monomers/nm3 for the A-block (PDMS). 

and PoB = 6.2 monomers/nm3 for the B-block (PS). Since the observed radius of 

gyration of PS in EB is very similar to that in toluene (TOL), the measured PS-TOL 

interaction parameter, i.e., XBs = 0.44 was used. For the same reason, bB = 0. 71 nrn 

was chosen for the statistical segment length for the dangling block. For the anchored 

block, bA = 0.57 nm [72]. In the experiments, Kent et al. [8, 12] used 

(3.45) 

for the radius of gyration R9 of an isolated PS, where Mw is the (weight averaged) 

molecular weight, and the same expression was used here to calculate the reduced 

surface coverage, 0'*, for each E. It should be noted that the use of this expression 

is not fundamental but it provides a way of analyzing the results and comparing 

them to the experiments. Furthermore, the interaction parameters of systems under 

investigation were either measured or chosen in a reasonable way. The PDMS-EB 

interaction parameter has not been measured [72). Given that EB is a non-solvent for 

PDMS, then XAs = 0.7 was used. The PDMS and PS polymers are not compatible 

and again, a reasonable interaction parameter was chosen, and as such XA R = 0.1 

was used, which is typical of diblock copolymer systems [72] . Since the A-block of 

copolymer is confined to the narrow interface, and there is a little overlap between 

A and B blocks, the results should not be sensitive to these choices of XAs and XAB 

parameters. 

Furthermore, and due to the fact the B-block is extending into the solution and 

is not active at the surface, it was assumed that u'Jf f is negligible and was set to zero 

everywhere. 
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The surface is attractive for the PDMS, so ue_f f was chosen to be of the same form 

as Eq. (3.25). The parameters, xs and l, were based on many numerical calculations, 

to produce the best description of the surface pressure isotherm for the homopolymer 

presented in the next section [72). The result was 

eff . _ { - 0.4505 uK, (x) - _
3 

-0.4505 ( 0~7 ) 
for x ::::; 0.7 nm 

(3.46) 
for x > 0.7 nm 

For each system under investigation, which is characterized by the values of degree 

of polymerization of the homopolymer or the two blocks of the copolymer, t he material 

characteristics presented above, and the average number of chains per unit area, 1/ E, 

the self-consistent solution is found. The free energy of the system, Eq. (3 .42), is 

then calculated. The surface pressure isotherms as a function of the surface coverage 

are obtained by the numerical.. evaluation of Eq. (3.40). 

3.3.1 Surface Pressure Isotherms- Homopolymer 

To investigate the homopolymer at the interface, numerical calculations for two 

PDMS homopolymers specified by Mw = 25,000 and Mw = 50,000 g/ mol (ZA = 

337 and 675 respectively) at the surface of EB were performed. For each homopoly­

mer, the adsorbed amount, r A = ZA/E, was varied from just above 0 to almost 19 

monomers/nm2 . This value is an input to the SCF calculation. The adsorbed amount 

can also be calculated from the final solution, through 

r A = PoA fo oo dx[¢A(x)- ¢~) (3.47) 

with ¢~ = 0. The difference between the results obtained by r A = ZA / E and that 

obtained by Eq. (3.47) is one measure of the accuracy of the numerical calculations. 

In all the calculations presented here this difference was less than 1 x 10- 5%. 
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Figure 3.1: Surface pressure 1r as a function of the number of adsorbed chains per 

unit area for PDMS homopolymers, Mw = 25,000 and Mw = 50,000. 

(The lines are guides to the eye) . 

Figure 3.1 shows the surface pressure isotherms for these two homopolymers, as 

a function of the number of adsorbed chains per unit area, 1/ 2::. As expected, as the 

area per adsorbed chain decreases, i.e., the chains start to accumulate close to each 

other, then the surface pressure rises, but at high surface coverages it begins to level 

off. This occurs at 1/2:: ::::: 0.04 nm- 2 and 1/2:: ::::: 0.02 nm- 2 for lvfw = 25,000 and Afw 

= 50,000 homopolymer, respectively. 

In Figure 3.2, comparison between numerical results of the surface pressure isotherms 

for the two PDMS homopolymers as a function of the adsorbed amount, r A are pre-

sented. In this comparison, the isotherms are identical, indicating that they are 
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Figure 3.2: Surface pressure 1r as a function of the number of adsorbed monomers per 

unit area for PDMS homopolymers with Mw = 25,000 and Mw = 50,000. 

independent of the molecular weight of the homopolymer. For low coverages the 

surface pressure is zero except for very low r A · It increases with r A, reaching the 

plateau region at r A ~ 15 monomers/nm2
. 

The leveling off of the surface pressure at higher coverages occurs at a maximum 

value in the surface concentration for which all chains in the system are highly ex-

tended into the solution. However, as Figure 3.3 shows, the density profiles exhibit 

a qualitative change at about this level of coverage, r = 10. This figure shows the 

density profiles for six values of I: for the 25 PDMS homopolymer. It is obvious that 

at very low concentrations, the maximum density coverage at the surface is relatively 

very low but the thickness of the profile is on the order of the attractive well , i.e., 1 
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Figure 3.3: Density profiles for PDMS homopolymer with Mw = 25,000 for different 

values of the surface coverages. The surface coverage, ~' is expressed 

in units of nm2 , and the adsorbed amount r in numbers of adsorbed 

monomers per nm2 

nm. In ceasing the coverage, i.e., as ~ decreases, the thickness of the profile remains 

almost constant but the average density within the layer inceases, since within this 

range of concentrations the adsorbed chains are not forced to extend away of the 

surface. Beyond ~ ;:S 50 nm, the maximum density saturates and the thickness of 

the layer begins to increase. The leveling off of the surface pressure occurs for con­

centrations greater than a full monolayer, in which cases a significant fraction of the 

polymer falls beyond the attractive well. This behavior of density profiles in addition 

to the leveling off of the surface pressure is in a good agreement with the experimental 
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observations of Kent et al. [8, 12]. At full monolayer coverage, E 2::, 33 nm2, most 

of polymer chains are located in a region on the order of 1 nm from the adsorbed 

surface. 

As mentioned earlier, one of the goals of the current work was to examine the 

effect of a1 , the location of the end of adsorbed block, in Baranowski's calculations. 

For systems of low coverage, all the A-blocks are located within a width of 1 nm 

consistent with results of Kent's experiments. Increasing the surface concentrations 

of the polymer system leads to thicker layer. Beyond a full monolayer coverage, 

the thickness of the layer becomes greater than the width of the region where the 

chain ends were assumed to start. This means that the A-block is being stretched. 

The onset of this stretching coincided approximately with the onset of the steep 

rise in the surface pressure. In principle, therefore, this could have been the cause 

of this increase. In order to test for this, different choices for a1 were used. This 

parameter affects the initial conditions for the propagators used to calculate the 

volume fraction for the A block. Choosing different values for a1 changes the initial 

conditions. However, the density profiles for all copolymers studied did not change. 

This indicates that the density profiles are not sensitive to a1 . In these systems, the 

monolayer is filled out at high coverage, and beyond this concentration, the free ends 

of the chains start to extend into the solution. 

In summary, it has been found that the surface pressure isotherms for homopoly­

mer adsorbed at the air-liquid interface depend on the total number of adsorbed 

monomers per unit area, r , and are independent of the molecular weight of the ad­

sorbed chains, at least for relatively high molecular weights. 
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Figure 3.4: Surface pressure 1r as a function of the surface concentration, 1/E. The 

polymers are labeled by the block molecular weights in kg/mol, of the 

PDMS and PS blocks, respectively. 

3.3.2 Surface Pressure Isotherms - Copolymer 

In this section the lateral compression of diblock copolymer/solvent system relevant 

to the experiments of Kent et al. [8, 12) is presented, analyzed and compared to 

later work done by Bijsterbosch et al. [11}. In addition, the numerical results of 

this thesis are compared to previous theoretical work [72} done to investigate Kent's 

experiments. Numerical calculations of the surface pressure isotherms as a function 

of surface concentration were performed for PDMS-PS copolymers used in Kent 's 

experiments. The degrees of polymerization of each block are listed in table (3.1) . 

In Figure 3.4, the calculated surface pressure isotherms are shown as a function of 



CHAPTER 3. LATERAL COMPRESSION- EXCESS SURFACE PRESSURE 64 

Copolymer Mw 4-30 4.5-60 10-40 21-169 25-35 28-330 

ZA 54 61 135 283 337 378 

Zs 288 576 384 1623 336 3169 

Table 3.1: Polymers used in the calculations. The polymers are labeled by the block 

molecular weights, in kg/mol, of the PDMS and PS blocks respectively. 

surface concentrations for the diblock copolymers. In each curve, 1r varies slowly for 

small coverages and increases smoothly for higher coverages with no rapid increase 

or steep rise such as what occurred in the results of Baranowski [72) . 

To compare the surface pressure isotherms for the diblock copolymer with that 

for the homopolymer, it is useful to express the surface pressure as function of the 

surface concentration of PDMS-monomers. This comparison is presented in Figure 

3.5. For the 25-35 PDMS-PS copolymer, ZA ~ Zs and so the isotherm falls very 

close to the homopolymer curve. This can be interpreted as meaning real surface 

pressure is mainly due to the interactions among the A chains, and the contribu­

tion from the dangling B-block is negligible up to the surface concentration, r ~ 

12 PDMS monomersjnm2
, where the deviation from the homopolymer isotherm be­

gins. A remarkable note from Figure 3.5, is that for 28-330, 21-169, 10-40 PDMS-PS 

copolymers, the isotherms almost coincide with each other. 

3.4 Surface Pressure Excess 

From Figure 3.5, the surface pressure excess, 6.1r, for each copolymer can be calculated 

as the difference between the copolymer and homopolymer pressures at each r A. The 

results for each curve can then be converted to functions of E, and this surface pressure 
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Figure 3.5: Comparison of surface pressure, 1r as a function of the adsorbed PDMS 

monomers, for the diblock copolymer with homopolymer. The polymers 

are labeled by the block molecular weights in kg/mol, of the PDMS and 

PS blocks, respectively. T=300K as the ambient temperature was used 

to express the pressure in the units of (mN/m] . 

excess, which is due to the dangling PS blocks, is given by 

(3.48) 

The results are shown in Figure 3.6. 

In Figure 3.6, it appears that the surface pressure excess, .6.n , increases smoothly 

as a function of the number of chains per unit area, 1/E, and there is again no 

rapid increase at high coverage. Qualitatively, this agrees with the aSCF and scaling 
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Figure 3.6: Surface pressure excess, ~7r , as a function of the number of chains per 

unit area 1/~. 

theories. To make a quantitative comparison, the results of Fig. 3.6 are plotted on a 

double-logarithmic plot, Fig. 3.7. All curves have the same overall behavior. 

Except at very low densities , each set of results falls approximately on a straight 

line, which indicates a power law behavior. The fitted powers are shown on the 

Figure. They all range from about 1.5 to 1.8, quite close to the aSCF values of 5/3. 

The deviation from power law behavior at low coverage may be an artifact due to the 

subtraction of two small values of surface pressure, or a real effect reflecting the very 

low polymer density. 

These powers are much smaller than those obtained in the experimental studies 

of Kent et al. [12]. They reported that the excess surface pressure still scales as a 



CHAPTER 3. LATERAL COMPRESSION- EXCESS SURFACE PRESSURE 67 

10 
,........, 

t 
.........., 1 
1:::::: 
<::] 
Cl:l 
Cl:l 
Q.) 
u 
>< 
~ 0.1 

Q.) 
~ 
::::s A 
Cl:l 
Cl:l 
Q.) 
~ 

~ * Q.) 0.01 u 
~ 
~ 
::::s 

tl) 

0.0<6~001 

0 

0.01 

* 28PDMS - 330PS 
A 21PDMS- 169PS 
o 4.5PDMS - 60PS 
• 4PDMS - 30PS 
+ 10PDMS- 40PS 

1 

• 
• 1 71 

-------· -(1/I:) . 
1.62 

-------- -( 1/I:) 
-------- -(1/I:)1.71 

-------- -(1/I:rs1 
-------- -( 1/I:)l.78 

10 

Figure 3. 7: Surface pressure excess, .6.n, as a function of the number of chains per 

unit area 1/~, on a double-logarithmic scale for different copolymers. The 

dashed line is the line of the best fit using an assumed exponent power 

law dependence. 

power law with exponent ranges from approximately 4.2 to 6.6. As shown in Fig. 

1.3, Baranowski's nSCF study reported two regions for .6.n [72]. At low coverage, .6.n 

obeyed a power law with an exponent of 5/3, while at higher coverage, the exponents 

ranged between 5.3 to 7.2. These results were in semi-quantitative agreement with 

Kent's experiments. Our new results can be compared directly with Baranowski's by 

comparing Fig. 3.7 with Fig. 1.3. For each polymer, we find only one regime with 

a power of about 5/3. Other theoretical and experimental studies also found only 

small powers. Currie et al. [60] reported a scaling exponent of 5/3 for Bijsterbosch's 
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experiments [11], and these results were confirmed by their nSCF study. In the 

numerical study of Grest [49], a value of 2.5 for the exponent of il1r , was obtained for 

all polymers and CJ* ;S 20, while Carignano and Szleifer [47] obtained a value of 2.4 

exponent over a similar range of Z and CJ*. Calculations used in this thesis showed 

one region with a power law exponent of about 5/3, and no rapid rise in 6.1r. 

3.5 Surface Pressure Contributions 

The surface pressure of copolymer can be analyzed in terms of the three contributions 

represented by Eq. (3.43). Using this equation, the surface pressure expression, Eq. 

(3.40) , can be written as 

7r = 7r ext + 1rint + 7r ent (3.49) 

where each term corresponds to a contribution to the .C in Eqs. (3.42) and (3.43) , 

and has the corresponding physical interpretation. 

In Figure 3.8 the contribution 1rext as a function of r A is presented. All the curves 

are nearly identical and the same as for the homopolymer. Hence, the external 

interactions have very little effect on the excess surface pressure of the copolymers. 

Figure 3.9 shows the contribution due to the interactions between all components in 

the system. The homopolymer isotherm shows quadratic behavior in the range 6::; r 

=:;8, while it increases linearly for the positive values. For the 10-40, 21-169, and 28-

330 PDMS-PS copolymers, there is a plateau in the range 6::; r ::;8. The 4.5-60 and 

4-30 PDMS-PS copolymers do not have a plateau and a negative contribution to the 

surface pressure still exists for high surface coverages for those copolymers. Figure 

3.10 shows 1rent, the entropic contribution to the surface pressure. The dominant 

factors that control all the curves in this figure are the size of the anchored A-block 

and the asymmetry ratio. It is obvious from Figure 3.10 that the isotherms of 10-40, 
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Figure 3.8: The contribution 1fext to the surface pressure 1r as a function of the number 

of PDMS monomers per unit area adsorbed onto the surface. 

21-169, and 28-330 PDMS-PS copolymers have a local maximum at r = 6, while 

4-30 and 4.5-60 PDMS-PS copolymer isotherms increase faster as a function r. It is 

obvious that the 25-35 PDMS-PS copolymer has a negative values for r > 8. 

3.6 Comparison with Earlier nSCF Calculations 

In his study of lateral compression of polymer layers, Baranowski [72] used nSCF 

theory to calculate the surface pressure excess, ~7r, for copolymers investigated by 

Kent and coworkers. First a homopolymer/solvent system was studied. He found 

the surface pressure as a function of surface coverages, then he modeled the diblock 
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Figure 3.9: The contribution 'lri n t to the surface pressure 1r as a function of the number 

of PDMS monomers per unit area adsorbed onto the surface. 

copolymer/solvent systems. Then, he found ~7r. He found a semi-quantitative agree-

ment with values obtained in Kent's experiments. Baranowski found that for the 

entropic contribution, the surface pressure isotherms have a steep raise at high cover-

ages except for the 25-35 PDMS-PS copolymer isotherm which has a similar behavior 

like the homopolymer. 

In this thesis, nSCF calculations were made to study the systems investigated by 

Kent et al. using t he same procedure followed by Baranowski. No rapid rise in ~7r 

was found. The surface pressure isotherms showed only one region with ~7r r-v 0"513 

as predicted by aSCF theory. 

To analyze these results, in order to find the reason for this deviation from Bara-
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Figure 3.10: The contribution 1fen t to the surface pressure 1f as a function of the 

number of PDMS monomers per unit area adsorbed onto the surface. 

nowski 's work, we first examined different values of a 1 as described in section 3.2.5. 

Almost the same surface pressures 1f, for all values of a 1 , were obtained. This is an 

indication that this is not the reason for this deviation. In the course of the work, the 

computer code were extensively re-examined, and no errors were found. We probed 

the effect of L , which is the separation of the two surfaces in the calculations. There 

is only one surface in the experiments, so L needs to be large enough that it has no 

effect on the calculations. It was discovered that the rapid increase in .6.1r obtained 

by Baranowski was probably a result of choosing L to be too small. The author of 

this thesis found that, when L is small enough to perturb the tethered layers, the 

effect is to cause a sudden increase in .6.1r as reported by Baranowski and shown in 
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Fig 1.3. The transition from region of weak dependence on 2: to strong dependence 

occurs when the polymer begins to encounter this second surface. 



Chapter 4 

Concluding Remarks 

To investigate the physical and structural properties of polymer/ solvent systems near 

surfaces and interfaces, numerical self-consistent field calculations were performed . 

Moreover, results obtained in this thesis were compared to other experimental and 

theoretical studies found in the literature [7, 8, 11 , 12, 60, 72, 102]. A major focus was 

on understanding the density profiles and the surface pressure isotherms for both 

homopolymer and copolymer systems. Results obtained by nSCF theory were com­

pared to these predicted by aSCF models for the surface pressure excess. This chapter 

summarizes and concludes the work performed in this t hesis. 

4.1 Summary of the Results 

A key issue in the brush models is the monomer density profie, which is a study of 

the variation of the density as a function of the distance from the surface. To give a. 

quantitative description of these profiles, polymer configurations are idealized a.s space 

curves and the partition function is written as a. functional integral over t he range 

of the configuration space. The introduction of the concept of incompressibility as 

73 
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well as the mean field approximation eliminates the fluctuations in the local volume 

fractions and results in a set of coupled equations for the density profiles of every 

component, self-consistent potentials and a free energy expression written in terms of 

the densities and interaction parametres. 

In chapter 3, the lateral compression of homopolymer and copolymers at the 

air-liquid interface is studied. In various solution conditions, Kent et al. [7, 8, 12, 

102), probed diblock copolymer monolayers, in which the adsorption from solut ion 

of PDMS in good solvents at the air-liquid interface was explored. They determined 

the density profile as a function of the surface density, the molecular weights of PS 

and PDMS blocks, and the solution conditions. They reported a disagreement with 

analytical profile forms and scaling prediction, in addition to a deviation from the 

predicted surface pressure power law. They noted a rapid increase in the surface 

pressure excess as a function of grafted chains per unit area. In their investigations, 

they found that the strong-stretching limit assumed by the aSCF calculations and 

scaling theories is not valid over this O"* range [20). By cont rast, Currie et al. [60] 

found a semi-quantitative agreement between nSCF calculations and experimental 

surface pressure isotherms of PS-PEO diblock copolymers at the air-water interface 

measured by Bijsterbosch et al. [11]. In these theoretical studies they found that 

the scaling relations are corroborated experimentally for long PEO-chains, provided 

that cont ributions to 1r arising from the PEO adsorption at the air-water interface 

are taken into account . No sudden increase in the surface pressure was reported and 

the pressure isotherms were increasing smoothly as a function of the grafted chains 

per unit area. 

In a nSCF study performed by Pepin and Whitmore [111], they found that the 

brush height scales as hrms rv Z 0·860"0·27 ) in good agreement with the thickness of the 

brush layer concluded by Kent et al. , which scales approximately as h rv Z 0
·
86

0"
0

•
22

. 
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These values are consistent with a previous nSCF ones of h0·81 a 0·24 [39] . 

Moreover, another prediction made by the single-chain mean-field theory (SCMF) 

[50] for the height of the brush is in very good agreement with the Kent's experiments 

for all surface coverages. Their predictions for the brush thickness scales as h ex 

zo.9 (J0.25. 

The analytic pictures predict that the surface pressure for asymmetric copoly­

mers should scale as (1/E)513 , the result which is confirmed by nSCF calculations 

performed in this thesis and by Currie et al. [60], in which the surface pressure in­

creases smoothly as a function of the chains per unit area and no sharp pressure 

isotherms were predicted. The SCMF model obtained similar results, agreeing with 

Kent's results for the surface pressure excess up to values of surface coverages of a* ~ 

8. The reason for the deviations at higher coverage may arise from the way of in­

vestigating the power law dependencies of the surface pressure and brush height, as 

explained by Currie et al [60] . Alternatively, Carignano and Szleifer suggested that 

these deviations are due to non-equilibrium effects, [47]. 

Another problem is the determination of the adsorbed amount of polymer on the 

surface. Bijsterbosch et al. [11], deposited the PS-PEO block copolymer on the air­

water interface using chloroform as a solute. The deposited amount can be determined 

with a reasonable accuracy, since both chloroform and PS are highly hydrophobic and 

they do not mix with water. 

Kent et al. used either a polymer solution, which had a density higher than the 

organic bulk phase, or dry block copolymer [12, 102]. The polymer density is not 

directly known during the experiment, due to loss of polymer during deposition, so 

the density was determined via integration of the neutron reflectivity curves. This is 

inaccurate, especially at low polymeric densities [60]. This inaccuracy is important 

in measuring the surface pressure or layer thickness. 
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From nSCF calculations done in this thesis, we found t hat t here is no rapid increase 

in the surface pressure excess, 6:71' , as a function of the surface coverage. Instead, the 

density dependence scaled as L).7r rv a513 , which is compatible with results predicted 

by aSCF theory. By testing different values for the width of the interface, we found 

that the density profiles for the PDMS homopolymer did not change. On the other 

hand, decreasing the linear dimension of the system results in increasing the excess 

surface pressure. This is the probable reason for the results obtained by Baranowski 

[72] . 

4.2 Future Work 

End-tethered polymers need more extensive work, experimentally as well as theoreti­

cally. Physical behavior of these systems needs more investigation in order to give an 

exact description for the surface pressure excess, in addition to subt le determination 

of brush height for highly stretched polymer chains. The SCF theory used in this 

thesis can be extended to include lateral fluctuations. Do we get a quantitative expla­

nation if we include these fluctuations in the surface pressure calculations? How can 

we be certain if the systems, under investigation, reached the equilibrium? Moreover , 

it should be emphasized that, considering polymer systems near surfaces to be in 

one dimension is a simplification. This leads to attempt to study these systems near 

surfaces in two or three dimension. 

Complicated polymer systems under the influence of several factors, which affect 

the interactions among the constitutions of these systems, should be considered. 
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