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Abstract 

This investigation of the characteristics of direct methanol fuel cells 

(DMFC) has led to significant improvement in their performance. The methanol 

permeability of Nation polymer electrolyte membranes has been measured in a 

DMFC by chronoamperometry. The activation energy for methanol diffusion was 

determined to be 25 kJ mor1
. 

Methanol crossover reduces the performance of the DMFC. Several 

polypyrrole/Nafion composite membranes were prepared and have been shown to 

be significantly less permeable to methanol. DMFC performances achieved with 

some of these polypyrrole/Nafion composite membranes have outperformed those 

for unmodified Nation membranes. However, their performances have been 

shown to be strongly affected by the modification method. Membranes modified 

by Fe3
+ oxidation of pyrrole have shown poor bonding with the electrodes, 

whereas use of H202 generally yields better results. The performance gains with 

the composite membranes are due to better cathode activity as a result of 

methanol crossover reduction. 

lil 



Acknowledgment 

I would like to express my sincerest appreciation to Dr. Peter Pickup for 

his supervision, guidance and support throughout the duration of my program. My 

great thanks also to my supervisory committee Dr. Niall Gogan and Dr. 

Christopher Flinn for their help and comments. 

I would also like to thank the members of Dr. Pickup' s research group for 

their help in my research and for the lovely time spent together for the past two 

years. 

Financial support from the School of Graduate Studies, the Chemistry 

Department, and NSERC are gratefully acknowledged. I would also like to thank 

H Power Corp. for donation of membranes and electrodes. 

IV 



Table of Contents 

Title 

Dedication 

Abstract 

Acknowledgment 

Table of Contents 

List of Abbreviations 

List of Tables 

List of Figures 

Chapter 1 -Introduction 

1.1 Introduction to Fuel Cells 

1.2 Direct Methanol Fuel Cells (DMFC) 

1.2.1 Introduction to Direct Methanol Fuel Cells 

1.2.2 Design and Characteristics of Direct Methanol Fuel Cells 

1.3 Catalysts for Direct Methanol Fuel Cells 

1.3.1 Direct Methanol Fuel Cell Anodes 

1.3.2 Direct Methanol Fuel Cell Cathodes 

1.4 Polymer Electrolyte Membranes for Direct Methanol Fuel Cells 

1.4.1 Perfluorinated Polymer Electrolyte Membranes 

1.4.2 Polybenzimidazole Polymer E lectrolyte Membranes 

v 

ii 

lll 

lV 

v 

IX 

XI 

XI 

1 

2 

4 

4 

5 

9 

9 

12 

14 

14 

17 



1.5 Methanol Electro-Oxidation Mechanisms 

1.6 Thesis Objectives 

Chapter 2 - Chemicals, Instrumentation and Methods 

2.1 Chemicals 

2.2 Electrochemical Instruments 

2.2.1 EG&G PAR 273A Potentiostat/Galvanostat and 5210 Lock

in Amplifier 

2.2.2 Direct Methanol Fuel Cell 

2.3 Membrane Electrolyte Assembly (MEA) preparation 

2.3.1 Nafion® cleaning procedure 

2.3.2 MEA preparation 

2.4 Testing ofMEAs 

2.5 Presentation of Data 

Chapter 3 - Characterization of Methanol Crossover 

through Nafion® Membranes 

3 .1 Introduction 

3.2 Experimental 

3.2.1 Electrodes and Catalysts 

3.2.2 Membrane Electrode Assembly (MEA) Preparation 

3.2.3 Crossover and Polarization Measurements 

Vl 

19 

21 

30 

31 

31 

31 

31 

32 

32 

32 

33 

34 

35 

36 

40 

40 

40 

41 



3.3 Results and Discussion 

3.3 .1 Electrochemical Measurement of Methanol Crossover 

3.3.2 Temperature Dependence (30, 40, 50, and 60 °C) 

3.3.3 Thickness Dependence (Nation® 112, 1135, 115, and 117) 

3.3.4 Concentration Dependence (Methanol Concentration 0.1, 0.3, 

0.6, and 1.0 mol L-1
) 

3.4 Conclusions 

Chapter 4 - Characterization of DMFC Performance and 

Methanol Crossover through Modified Membranes 

4.1 Introduction 

4.2 Experimental 

4.2.1 Electrodes, Catalysts and MEA Preparation 

4.2.2 Crossover and Polarization Measurements 

4.2.3 Resistance Measurements 

4.2.4 Preparation of Polypyyrole/Nafion Composite Membranes 

4.2.5 Preparation ofPoly(EDOT)/Nafion Composite Membranes 

4.3 Results and Discussion 

4.3.1 Oxygen vs Air Cathode Feed 

4.3.2 Performance of Polypyrrole/Nafion Composite Membranes 

Prepared by H202 Oxidation 

Vll 

41 

41 

46 

49 

52 

55 

59 

60 

60 

60 

61 

61 

62 

63 

63 

63 

66 



4.3.3 Performance of a Polypyrrole/Nafion Composite Membrane 

Prepared by Fe3
+ Oxidation 

4.3.4 Effect of Modification Method on Composite Membrane 

Performance 

4.3.5 Modification ofNonacidic Nation Membranes 

4.3.6 Performance of Poly(EDOT)/Nafion Composite Membranes 

Prepared by H20 2 and Fe3
+ Oxidations 

4.4 Conclusions 

Chapter 5- Diagnostics 

5.1 Introduction 

5.2 Experimental 

5.2.1 Anode Polarization Measurements 

5.2.2 Cathode and Anode Cyclic Voltammetry Measurements 

5.3 Results and Discussion 

5.3.1 Anode Polarization of Composite Membranes 

5.3 .2 Cathode CVs 

5.3.3 Anode CVs 

5.4 Conclusions 

Chapter 6- Summary 

Vlll 

70 

72 

78 

84 

87 

91 

92 

93 

93 

93 

94 

94 

98 

101 

101 

105 



List of Abbreviations 

AFC -Alkaline Fuel Cell 

CFP - Carbon Fiber Paper 

CV - Cyclic Voltammetry or Cyclic Voltammogram 

DHE- Dynamic Hydrogen Electrode 

DMFC - Direct Methanol Fuel Cell 

EDOT - 3,4-ethylenedioxythiophene 

EHM- Eisenberg-Hird-Moore model 

EIS- Electrochemical Impedance Spectroscopy 

EW- Equivalent Weight 

MCFC -Molten Carbonate Fuel Cell 

MEA - Membrane and Electrode Assembly 

NASA- National Aeronautics and Space Administration 

OCP - Open Circuit Potential 

P AFC - Phosphoric Acid Fuel Cell 

PBI - Polybenzimidazole 

PEFC - Proton Exchange Fuel Cell 

PEM - Polymer Electrolyte Membrane 

PTFE - Polytetrafluoroethylene 

RHE - Reversible Hydrogen Electrode 

SAXS - Small Angle X-ray Scattering 

IX 



SOFC - Solid Oxide Fuel Cell 

SPE - Solid Polymer Electrolyte 

X 



List of Tables 

Table 3.1 Methanol crossover measurements for Nafion membranes 

Table 3.2 Activation energy from Eq. 3.3 

Table 3.3 lum,anode values obtained from figure 3.5 

Table 4.1 Modification conditions, methanol crossover and resistance 

measurements for unmodified and modified Nafion 115 

Table 4.2. Characteristics of polypyrrole/Nafion 115 composite 

membranes, prepared with H20 2 and Fe3
+ 

Table 4.3 141 and 151 membrane characteristics 

Table 4.4 Na-form Nafion Composite membrane characteristics 

List of Figures 

Chapter 1 

Figure 1.1 A schematic diagram of a direct methanol fuel cell 

Figure 1.2 A schematic diagram of a fuel cell's blocks with serpentine 

flow-fields 

Figure 1.3 A schematic diagram of a membrane and electrode assembly 

(MEA) 

Xl 

45 

48 

51 

66 

73 

79 

82 

6 

7 

8 



Figure 1.4 Voltage (top) and power density (bottom) as a function of 

cunent density for a DMFC with the total Pt loading limited to 2.6 

mg cm-2
; air cathode at 2.0 atm back pressure and high flow 

stoichiometry; CMeOH = 0.5 M,/MeoH= 2.0 mL min-1 10 

Figure 1.5 The general structure ofNafion® 15 

Figure 1.6 The general structure of poly benzimidazole (PBI) 18 

Chapter 3 

Figure 3 .1 A schematic diagram showing the methanol permeation process 

and the electrode reactions involved in the electrochemical · 

measurement of crossover 37 

Figure 3.2 Voltammetric curves at 50 oc for the oxidation of methanol 

crossing through Nafion® 112 using 0.1 , 0.3, 0.6, and 1.0 M 

methanol solutions, step height = 5 m V, step time = 2.5 s 42 

Figure 3.3 Chronoamperometric potential time diagram 44 

Figure 3.4 Temperature dependence of methanol crossover for Nafion® 

117 47 

Figure 3.5 Thickness dependence of methanol crossover for a series of 

membranes using 1 mol L-1 methanol solution at different 

temperatures 50 

Figure 3.6 Concentration dependency of methanol crossover for a series of 

@ 
Nafion "' membranes at 60 °C 53 

Xll 



Figure 3.7 Polarization curves of a DMFC operated at 60 °C using a 

Nafion® 115 membrane with different methanol concentrations 

Chapter 4 

Figure 4.1 DMFC performances for unmodified and modified Nafion 115 

running with oxygen or air at 60 oc and at ambient pressure. 

CMeOH = 1 mol L-1 

Figure 4.2 DMFC performances for unmodified and modified Nation 115 

membranes running with oxygen at 60 oc and at ambient pressure. 

/oxygen = 12.3 mL min-I, C MeOH = 1 mol L-1 

Figure 4.3 DMFC perfonnances for utunodified and modified Nafion 115 

membranes running with air at 60 °C and at ambient pressure. 

/oxygen = 73.1 mL min-I, CMeoH = 1 mol L-I 

Figure 4.4 DMFC performances of Nafion 115 and Jhl028b membranes 

running with air at 60 °C and at ambient pressure, j~ir = 73.1 mL 

min-I, CMeOH = 1 mol L-1
. The corrected JHl 028b data has been 

adjusted to the same cell resistance as utunodified Nafion 115(0.16 

n cm2
) 

Figure 4.5 DMFC performance of 811 15 composite membrane running for 3 

days with air at 60 °C and at ambient pressure. fair = 73 .1 mL min-1
, 

54 

64 

68 

69 

71 

CMeoH = 1 mol L-1 74 

Xlll 



Figure 4.6 DMFC performances after running the cell for 3 days, for 

unmodified and modified Nation 115 running with air at 60 oc and 

at ambient pressure. fair= 73.1 mL min·\ CMeoH= 1 mol L-1 76 

Figure 4.7 Resistance corrected DMFC perfom1ances for 81115, 111115 

and 121115 membranes 77 

Figure 4.8. DMFC polarization curves for Nafion 115, 141 and 151 

running with air at 60 °C and at ambient pressure. fair = 73.1 mL 

. -I C 1 1 L-1 min , MeOH = mo 80 

Figure 4.9 DMFC polarization curves for Nation 115 and composite 

membranes running with air at 60 °C and at ambient pressure. 

fair= 73.1 mL min-1
, CMeOH = 1 mol L-1 83 

Figure 4.10 EDOT structure 84 

Figure 4.11 DMFC performances for Nafion 115 and modified Nation 115 

running with air at 60 oc and at ambient pressure . . fa ir = 73.1 mL 

. -1 C 1 1 L-1 m1n , MeOH = mo 86 

Figure 4.12 Resistance vs hm-I diagram for unmodified and modified 

Nation 115 membranes 88 

Chapter 5 

Figure 5.1. Anode performances for unmodified and modified Nafion 115 

prepared by H20 2 oxidation, running at 60 °C and at ambient 

pressure.fvilrogen = 25.6 mL min-1, CMeOH = 1 mol L-1 95 

XIV 



Figure 5.2. DMFC anode performances for unmodified and modified Nafion 

115 membranes treated with Fe3
+ at 60 oc and at ambient pressure. 

/ Nitrogen= 25.6 mL min·!, CMeOH = 1 mol L.1 

Figure 5.3. Resistance corrected DMFC anode performances for unmodified 

and modified Nafion 115 membranes treated with Fe3
+ at 60 °C and 

at ambient pressure.fNitrogen = 25.6 mL min· I , C MeOH = 1 mol L"1 

Figure 5.4. Cathode CVs for unmodified Nafion 115 and modified 91 

membranes treated with Fe3
+ at room temperature and at ambient 

pressure . /Hydrogen = 18.6 mL min·1,fiVitrogen = 25 .6 mL min·1
, step 

height = 2m V, scan time = 0.1 s 

Figure 5.5. Anode CVs for unmodified Nafion 115 and modified 91 

membranes treated with Fe3
+ at room temperature and at ambient 

pressure./Hydrogen = 18.6 mL min·1, / Nitrogen = 25 .6 mL min·1
, step 

height= 2m V, scan time= 0.1 s 

XV 

96 

97 

99 

102 



Chapter 1 

Introduction 
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1.1 Introduction to Fuel Cells 

Energy is an important requirement to build a modern and developed 

society. Recently, there is a growing demand for new energy sources that are 

environmentally friendly as well as highly efficient. Fuel cells have been shown 

to be an attractive technology to meet these requirements. 1'
2 

The invention of the fuel cell was reported in 1839 by Sir William Grove3 

who first presented the alkaline fuel cell. However, Francis Bacon first 

demonstrated a developed fuel cell device. Bacon's research led to the first 

application of fuel cells for space flights by the National Aeronautics and Space 

Administration (NASA) in the 1960s.4 

A fuel cell can be defined as an instrument that can continuously convert 

chemical energy to electrical energy through an electrochemical process between 

an oxidant (fuel) and an oxidizing agent (oxygen from air) using certain types of 

catalyst.5 For example, in a hydrogen fuel cell, the hydrogen will be oxidized at 

the anode, and oxygen will be reduced at the cathode. The half reactions in the 

fuel cell are as follows (in acid electrolyte): 

E 0 = 0.00 V Eq. 1.1 

Eo= 1.23 V Eq. 1.2 

Fuel cells have several enormous advantages over internal combustion 

engines. Fuel cells can reduce harmful emissions to zero,6
,7 and protect the 

environment. 8 Moreover, they can have no (or low) moving parts9 so noise 

pollution will be reduced.10 Theoretically, they are also more efficient; 
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furthermore, they are relatively safe with mild operation conditions. 11 These 

attractive advantages have led to widespread and intensive research to improve 

the performance of fuel cells. 

However, with all the bright advantages mentioned above, there are some 

frustrating difficulties that must be overcome in order to fully commercialize fuel 

cells. Cost is one of these hurdles and a big barrier to rise above; the catalysts, 12 

the membrane (polymer electrolytes) 13 as well as the fuel cell's hardware are 

expensive. In addition, the volume and the weight of fuel cells is a major defect 

that should be overcome in certain applications.14 

There are many different types of fuels cells. The classification can be 

based on the type of the fuel used, such as: Direct Methanol Fuel Cells (DMFC). 

Another classification is based on the operating temperature of the fuel cell. There 

are low temperatures fuel cells, such as: Alkaline Fuel Cells (AFC), Proton 

Exchange Fuel Cells (PEFC) and Phosphoric Acid Fuel Cells (PAFC). Molten 

Carbonate Fuel Cells (MCFC) and Solid Oxide Fuel Cells (SOFC) are classified 

as high temperature fuel cells. 15 

DMFC are the main concern of this thesis. Advantages, limitations, fuel 

cell design and the characteristics of this type of fuel cell will be discussed in 

detail. Furthermore, membrane electrolyte, catalysts and methanol electro

oxidation are also among the areas of focus in this thesis. 
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1.2 Direct Methanol Fuel Cells (DMFC) 

1.2.1 Introduction to Direct Methanol Fuel Cells 

Direct Methanol fuel cells (DMFC) operate on methanol as a fuel. 

Methanol is oxidized at the anode to carbon dioxide (C02) , while oxygen (from 

air) is reduced at the cathode to water (H20). The electrochemical reactions of a 

DMFC in acid electrolyte occur as follows: 

*Anode Reaction: 

--------1• COz + 6H+ + 6e- E 0 = 0.02 V95 Eq. 1.3 CH30H + HzO 

*Cathode reaction: 

3/202 + 6H+ + 6e- 3H20 ---------i· Eq. 1.4 

*The overall cell reaction: 

Eq. 1.5 

Using methanol as a fuel has tremendous advantages relative to hydrogen. 

Cost is a major incentive for using direct methanol fuel cells. Methanol is a liquid; 

for that reason it could be easily supplied through the gasoline storage tank 

infrastructure and allow rapid introduction of fuel cell technology.16
•
17 Simple 

system design and direct liquid feed of methanol into the fuel cell eliminate the 

processing complexity and safety requirements of hydrogen fuel cells. 18
•
19

•
20 

However, direct methanol fuel cells suffer from low power density as a 

result of slow oxidation kinetics and methanol permeation from the anode 

compartment to the cathode (crossover).Z1
•
22 Methanol crossover lowers the 

cathode activity toward oxygen reduction as a result of methanol oxidation. This 
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causes a mixed potential at the cathode, and therefore lowers the cell potential. 

Moreover, methanol crossover is responsible for fuelloss.23
'
24 

Methanol has been studied as a fuel since the 1950s. As methanol is more 

reactive in alkaline solution, the first studies used concentrated NaOH or KOH as 

the electrolyte?5 A drawback of alkaline electrolytes is carbonate formation as a 

result of reaction of the electrolyte with carbon dioxide formed from oxidation of 

methanol. This decreases its conductivity and adds more cost for regeneration. 

·Therefore, several studies used a concentrated sulfuric acid as electrolyte.25 

However, acid electrolytes suffer form poor performance due to the slow 

anode reaction which increases the internal resistance of the cell as well as 

contributing to the corrosion problems of the fuel cell system. In the 1980s, a new 

promising technology employing polymer electrolyte membranes (PEM) was 

developed to overcome many of the disadvantages of liquid electrolytes?6 The 

desired PEM should have high conductivity, be water insoluble, exhibit good 

mechanical properties, and have good chemical and thermal stability. In addition, 

reasonable cost and availability are also requisite.27
,
28

,2
9

,
30 

1.2.2 Design and Characteristics of Direct Methanol Fuel Cells 

A schematic diagram of a direct methanol fuel cell (DMFC) system is 

shown in figure 1.1. The system consists of four major parts: the gas (air or 

oxygen) supply, the fuel supply system (methanol), a control system to operate 
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the fuel cell (e.g. pumps, flow meters, temperature controllers, hoses, and 

electrical connections), and the DMFC itself. 

1M 
MeOH 
tank 

'· \ 

\ 

MeOH 
pre-heater 

Anode 

Thennocouple 

AirFlow 
o( 

Temperatw-e Controller 

Figure 1.1. A schematic diagram of a direct methanol fuel cell system. 

DMFC hardware is constructed mainly from graphite blocks (anode and 

cathode) with serpentine flow-fields as shown in figure 1.2. The key part of the 

fuel cell is the membrane and electrode assembly (MEA) which is sandwiched 

between these blocks by clamping them between two metal plates to seal the cell 

and support inlet/outlet fittings etc. The methanol (fuel) and the gas (air or 
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oxygen) are supplied to the MEA through the flow-fields, the geometry and the 

design of which have a considerable effect on DMFC performance.31 

Figure 1.2. A schematic diagram of a fuel cell ' s graphite blocks with 

serpentine flow-fields. 

A schematic diagram of a typical MEA is shown in figure 1. 3. It consists 

of the two electrodes and a polymer electrolyte membrane (PEM), such as 

Nation®*. Typically, the MEA is fabricated by a hot pressing procedure, so the 

catalyst layer is pressed into the Nation®. The MEA characteristics and structure 

have a significant effect on the fuel cell performance. 32 

*Nafion® is a registered trademark ofE.I. duPont de Nemours & Co? 3 
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Carbon-fibre 
paper 

Air or Oxygen .... 

Pt/black 

--Nation 
:rrenbrane 

..... :Nethanol 

Pt/Ru 

Figure 1.3. A schematic diagram of a membrane and electrode assembly 

(MEA). 
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Many factors control the performance of a DMFC. These include the 

operating conditions, the PEM, and the composition and structure of the catalysts. 

In addition, methanol crossover is responsible for lowering the efficiency of 

' 4 '5 36 ~7 DMFC performance~ .~ · (50% loss or more at low cunent densities) . ~ 

Thomas et a/. ,38 have investigated some of the factors that affect the 

performance of a DMFC. The cell was run at different operating temperatmes (80, 

100, 110, and 120 °C) with aPt loading of 2.6 mg cm·2. Figme 1.4 shows a typical 

example of cell polarization and power density plots of a DMFC at different 

operating temperatures. Even though a low concentration of methanol 

(0.5 mol L-1
) was used with a flow rate if'vfeOH) of 2.0 mL min-1, a peak power 

density of at least 0.15 W cm-2 was obtained at 100 oc. 

1.3 Catalysts for Direct Methanol Fuel Cells 

1.3.1 Direct Methanol Fuel Cell Anodes 

Methanol oxidation occms through a combination of multi electro-

oxidation steps involving several intem1ediates. Among these species, adsorbed 

carbon monoxide (CO) is particularly important and problematic. The methanol 

electro-oxidation process in acid electrolyte involves six electrons per molecule of 

methanol (see Eq. 1.3-5)?9 The best pure metal catalyst for methanol electro-

'd . . p 40 OXl at10n IS t. 
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Current density (A ern':~.) 

Figure 1.4. Voltage (top) and power density (bottom) as a function of 
current density for a DMFC with the total Pt loading limited to 2.6 mg cm-2

; air 
cathode at 2.0 atm back pressure and high flow stoichiometry; CMeOH = 0.5 M, 
/MeoH= 2.0 mL min-1

. 

Reprinted from Thomas, S. C.; Ren, X.; Gottesfeld, S.; Zelenay, P.; 
Electrochim. Acta 2002, 47, 3744. 

Copyright 2002. Reproduced with permission of Elsevier Science Ltd. 
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CO intermediate species are strongly adsorbed at the surface of Pt and 

poison the catalyst41 '42 even at extremely low CO concentrations (ca. 5-10 ppm).43 

Complete oxidation of CO to C02 requires an oxygenated species (e.g. water 

dissociation, see Eq. 1. 7) at the Pt surface, however, these species are available 

only at potentials above ca. 0.5 V (vs. RHE) (Eq. 1.7).44'45'46 This potential 

difference from methanol electro-oxidation which starts to occur at a potential 

value of ca. 0.2 V (vs. RHE)47 retards the complete oxidation of methanol to C02. 

As a result, poor DMFC performance occurs. For that reason, the CO removal 

step (water activation) is the rate determining step for methanol electro

oxidation.48 Increasing the operating temperature of the fuel cell significantly 

decreases the CO poisoning effect. 49 

The electro-oxidation mechanism is often written as follows: 

Pt 
--------1~ Pt-COads + 4H+ + 4e-

(multiple steps) 

H20 + Pt ~ Pt-OHads + H+ + e-

Pt-COads + Pt-OHads ~ C02 + 2Pt + H+ + e-

Eq. 1.6 

Eq. 1.7 

Eq. 1.8 

The poisoning effect of CO on the surface of Pt can be minimized by 

using various Pt-metal alloy catalysts.50 Pt-Ru bimetallic catalysts have become 

the anode of choice for electro-oxidation of methanol. 51 Rolison et al., 52 claim that 

a 50:50 atom % Pt-Ru black catalyst has the best performance for methanol 

electro-oxidation. 
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The Pt-Ru bimetallic anode decreases the methanol oxidation 

overpotential by supplying the system with the needed oxygenated species which 

accelerate oxidation of adsorbed CO to C02 at a lower potential of ca. 0.2 V (vs. 

RHE) (Eq. 1.9).44 As a result, DMFC overall performance will be optimized. The 

Ru function is explained in the following equations: 

Eq. 1.9 

From Eq. 1.6 & Eq. 1.9, we obtain: 

Pt-COacts + Ru-OHacts ~ C02 + Pt + Ru + H+ + e- Eq. 1.10 

Many factors affect the catalytic activity of Pt-Ru anodes, such as the 

preparation method, structure, morphology, composition, uniformity, dispersion 

state and alloying state. 53 

1.3.2 Direct Methanol Fuel Cell Cathodes 

The cathode activity is very important for DMFC performance. Although 

the reduction of oxygen is relatively slow (see Eq. 1.4), Pt is still the best catalyst 

for oxygen reduction. In fact, many factors affect the catalytic activity of the 

cathode. As the methanol fuel is fully miscible with water, it readily crosses over 

from the anode to the cathode through the polymer electrolyte membrane. At the 

cathode, it consumes oxygen and can poison the cathode catalyst with carbon 

monoxide (CO) over time (see section 1.3.1), causing performance losses and a 

decreased open circuit potential. 54
,
55 
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Moreover, as water is dragged from the anode to the cathode by the proton 

flux, it may cause flooding of the cathode, which will significantly decrease its 

activity. Flooding is minimized by increasing the hydrophobicity of the cathode to 

enhance water removal. Polytetraflouroethylene (PTFE) is incorporated into the 

catalyst layer to add a hydrophobic characteristic and also act as a binding agent 

for cathode particles.56 Water flooding may also be overcome by increasing the 

flow rate of air (or oxygen), which is, from a design point of view, not desirable 

as the DMFC system will become more complex. 

Pt black is most commonly used as the cathode catalyst. The catalyst is 

prepared, simply, as an ink-like suspension and then spread over a piece of carbon 

paper (or carbon cloth) and left to dry. Adding Nafion® to the ink matrix will 

improve the cathode utilization as it enhances proton conductivity; however, it has 

poor electron conductivity and low gas diffusion which limit the amount that can 

be used.57 Furthermore, the characteristics of the backing layer (carbon paper or 

cloth) such as thickness, gas permeability and hydrophobic and hydrophilic 

balance properties of catalysts have an effect on the performance of the fuel cell. 

Different types of cathodes are employed in DMFC in addition to Pt black. 

Carbon supported Pt (Pt/C) cathodes are widely used. Pt alloy cathodes which 

improve the kinetics for reduction of oxygen are also used.47 
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1.4 Polymer Electrolyte Membranes for Direct Methanol Fuel 

Cells 

The polymer electrolyte membrane (PEM) has two major functions in a 

direct methanol fuel cell (DMFC). It acts as a solid separator and barrier for the 

fuel (methanol) and the oxidant gas (air or oxygen), so these membranes are also 

known as solid polymer electrolytes (SPE). The second function is to be an 

electrolyte conducting medium for transport of protons (cations) from the anode 

-g 
to the cathode.) 

A PEM should have certain desired properties to be qualified for fuel cell 

operation, such as high ionic conductivity, and good chemical and mechanical 

stability. A feasible price is also a benefit. 

This section describes the major types of polymer electrolyte membranes 

(PEM) that are employed in direct methanol fuel cells. 

1.4.1 Perfluorinated Polymer Electrolyte Membranes 

Several types of perfluorosulfonated membrane are available under 

different brand names, such as Nation®, Flemion®, Aciplex® and Dow®.59 The 

one most commonly used in proton exchange fuel cells as a polymer electrolyte 

membrane is Nafion®,60
'
61 a perfluorosulfonic acid polymer developed by E. I. du 

Pont de Nemours & Co. 

The structure of Nation® 1s shown in figure 1.5. It consists of a 

polytetrafluoroethylene (PTFE) backbone with perfluorinated side chains 
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terminated with sulfonic acid ( -S03 -H+) groups. The values of x and y are varied 

to produce membranes with different equivalent weights (EW). EW is the number 

of grams of polymer per mole of fixed sulfonate groups. These perfluorinated 

chains endow Nation® with good mechanical, chemical and thermal stability. 

Furthermore, they produce water insoluble membranes with high proton 

conductivity. 

-l.(CF2-CF2)x-(CF2 -rF)]y-

~ 
~F2 

)FCF3 

0 - CF2CF2S03H 

Figure 1.5. The general structure ofNation®. 

These tremendous chemical and physical properties qualify it for many 

different industrial applications, such as gas separation, gas sensors, 

electrodialysis, chlor-alkali cells, salt splitting as well as a solid electrolyte 

membrane in batteries and fuel cells. 62
•
63 

There are several models to describe the arrangement of ion aggregates 

within the Nation® conducting matrix, however, the exact structure is not well 
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defined.64 These models include the Yeager Three Phase Model,65 the Eisenberg

Hird-Moore (EHM) Model of Hydrocarbon Ionomers,66 the Gierke Cluster 

Network Model,67 and the Mauritz-Hopfinger Mode1.68 

The Gierke Cluster Network Model describes Nation® as containing 

spherical ion clusters(- 5nm in diameter) bridged by narrow channels (-lnm in 

diameter). On the other hand, the EHM model proposes that the ionic sites gather 

together to form multiplets.69
,7° The nano-morphology of Nation® has been 

studied using small angle X-ray scattering (SAXS) and through the use of neutron 

scattering experiments.71
'
72 In general, Nation® membranes consist ofthe polymer 

matrix (hydrophobic media), water filled pores (hydrophilic media), and an 

interfacial zone. 73 

The proton conductivity of Nafion® is highly dependant on the 

membrane's degree of hydration.74
'
75 This drawback of Nafion® limits its 

operation temperature to below the boiling point of water (i.e. 100 oc at 

atmospheric pressure), since at high temperature, water evaporation will decrease 

the water content, resulting in poor membrane conductivity, therefore lowering 

the fuel cell performance.76
,7

7 Another limitation of Nafion® membranes is their 

permeability to methanof8 which leads to performances losses. 

Water has two major sources in a DMFC. In addition to water introduced 

to the fuel cell system through the aqueous methanol feed, water is also produced 

as a product of oxygen reduction at cathode. Water transport within the membrane 

can occur by diffusion under a water concentration gradient, by electo-osmotic 
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drag when the fuel cell is passing current, 79
•
80 and by hydraulic permeation when 

there is a pressure gradient across the membrane.81 

The properties of Nafion® as a fuel cell membrane can be improved by 

using composite membranes. For example, Nafion® can be modified by in situ 

polymerization of 1-methylpyrrole82 or pyrrole, 83 or by forming 

inorganic/Nation® 20
•
84 hybrids. 

The high cost ofNafion® opens the door to alternative polymer electrolyte 

membranes (PEM) with the desired working, chemical and mechanical 

. 85 
properties. 

1.4.2 Polybenzimidazole Polymer Electrolyte Membranes 

The structure of polybenzimidazole (PBI) is shown in figure 1.6. PBI 

based membranes have high oxidative, mechanical and thermal stability. They are 

basic with a pKa value of 5.5. Doping of PBI with acids such as phosphoric acid 

(or sulfuric acid) has enormous positive effects on its conductivity and thermal 

stability. Delightfully, the acid doped PBI membranes exhibit methanol crossover 

® 86 rates that are ten times less than Nation . 

Acid doped membranes overcome the high temperature barrier ofNafion®, 

exhibiting high conductivities at temperatures up to at least 200 °C. Moreover, 

their electro-osmotic drag coefficient is almost zero.87 This minimizes water 

management problems that arise from water transport along with protons from the 
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anode to the cathode. As a result, the overall performance of the fuel cell is 

improved. 

H H 
n 

Figure 1.6. The general structure of polybenzimidazole (PBI). 

The physical and chemical properties of PBI membranes can be optimized 

by blending with other polymers. Blending PBI with sulfonated polysulfones 

increases its thermal stability and enhances its conductivity, besides lowering the 

cost of the polymer electrolyte membrane. 88
•
89 These fancy workable properties of 

PBI membranes, qualify it to be a promising membrane for direct methanol fuel 

cells. 

There are also other different types of PEM with a wide range of 

properties that are employed in proton exchange fuel cells.90
•
91 
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1.5 Methanol Electro-Oxidation Mechanisms 

Pt-Ru binary anode catalysts have been shown to be the best catalysts for 

methanol electro-oxidation (see section 1.3 .I). The synergistic effect of Pt and Ru 

has been explained by a bi-functional mechanism. Pt oxidizes methanol through 

multiple intermediate species to produce Pt-(CO)acts species (see Eq. 1.6), on the 

other hand, Ru provides oxygenated species at lower potentials (see Eqs. 1.9-

10).92 

The nature of the intermediate adsorbed species of methanol 

dehydrogenation is still unknown and they have not been identified clearly. 

However, Hirose eta!. ,93 reported that, besides CO species, there are also f01mate 

species on Pt. Another study claimed the formation of formaldehyde and formic 

acid species. 94'95 

Goddard et al. ,96 suggested a mechanism for methanol electro-oxidation 

using Pt-Ru alloy anode catalysts involving successive oxidation steps. Methanol 

molecules will be adsorbed at the surface of Pt then undergo successive oxidation 

half reactions ending with COacts species, as shown through Eqs.l.ll-14: 

(CH30H)acts ... (CH30)acts + W + e· Eq. 1.11 

(CH30)acts ... (CH20)acts + H+ + e· Eq. 1.12 

(CH20)ads ... (CHO)acts + H+ +e· Eq. 1.13 

(CHO)acts ... (CO)ads + H+ + e· Eq. 1.14 

Ru dissociates water at lower overpotentials than Pt alone and supplies the 

system with the required oxygenated species at a faster rate (Eqs. 1.15-16), thus 
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decreasing the concentration of COacts species and improving the performance of 

fuel cell. 

(HzO)ads 

(OH)ads 

------1111>• (OH)ads + H+ + e-

----illl>• (O)acts + H+ + e-

Eq. 1.15 

Eq. 1.16 

The oxidation of water to Oads and methanol to COacts and their 

combination according to Eq. 1.17 leads to the formation of C02: 

(CO)ads + (O)ads Eq. 1.17 

The equations mentioned previously (Eqs. 1.11-17) assume there are no 

side reactions, however, a possible combination pathway between Eq. 1.14 and 

Eq. 1.15 to obtain Eq. 1.18: 

(CO)ads + (OH)ads --Ill>• (COOH)acts----'111>• C02 + Hacts Eq. 1.18 

The role of Ru is significant, as it will enhance the oxidation of CO to C02 

through water decomposition at a lower voltage (~ 0.2 V vs. RHE), which is 

lower than pure Pt (above 0.5 V vs. RHE). 
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1.6 Thesis Objectives 

The main goals of this thesis are to understand and study the factors that 

influence the performance of a DMFC and to improve and modify it. 

Chapter three of this thesis investigates the permeability properties of 

Nafion® membranes. Methanol crossover properties were studied over a range of 

temperatures (from near room temperature up to 60 °C) and concentrations. The 

affect of membrane thickness on methanol crossover was also explored. 

Modification of Nation membranes by in situ polymerization with 

conducting polymers are showing promising results on DMFC performance, as 

these composite membranes decrease the methanol crossover. Chapter four 

describes the methods used for modification and characterization of these 

modified membranes, and their performance in a DMFC. 

Finally, chapter five analyses the effects of the modified membranes on 

the anode and cathode activity using electrochemical impedance spectroscopy 

(EIS). 
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Chapter 2 

Chemicals, Instrumentation and Methods 

30 



2.1 Chemicals 

All chemicals and gases (N2, 0 2, and air) were used as commercially 

delivered without any pretreatment. All aqueous solutions were prepared from 

distilled and deionized water. 

2.2 Electrochemical Instruments 

2.2.1 EG&G PAR 273A Potentiostat/Galvanostat and 5210 Lock

in Amplifier 

These instruments were used for measunng current/voltage curves 

(polarization, CV, etc.) for the direct methanol fuel cell. All data were collected 

and experiments controlled by EG&G/PAR 270A electrochemical software. 

Electrochemical Impedance Spectra (EIS), on the other hand, were collected by 

PAR Powersuit software. 

2.2.2 Direct Methanol Fuel Cell 

All experiments were performed on a commercial 5.29 cm2 fuel cell sold 

by ElectroChem. Inc. and constructed from electrochemical grade graphite blocks 

with serpentine flow-fields. A schematic diagram of these blocks is shown 

previously in figure 1.2. 
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2.3 Membrane Electrolyte Assembly (MEA) Preparation 

2.3.1 Nafion® cleaning procedure 

Unless stated otherwise, all the cleaning solutions were hot (close to 

boiling point). Nafion ® pieces or sheets were cleaned in hot 15% H20 2 solution 

for at least one hour (until the membranes were transparent and colorless, which 

sometimes required more than one hour). 

The clean membranes were then soaked in hot 1 mol L-1 nitric acid 

(HN03) solution for another one hour, and then soaked in hot 1 mol L-1 sulfuric 

acid (H2S04) for also one hour. The last step is to soak the membrane in hot 

water for at least 1 hour to remove the excess acid. The membranes were washed 

with water between each cleaning step. Finally, the clean membranes were stored 

in water at room temperature. 

2.3.2 MEA Preparation 

All MEAs were assembled by a hot pressing procedure, using a Carver 

Laboratory Press (model M) equipped with two heating elements (Carver model 

2102-1). 

A 5.29 cm2 home made die was used to simplify the process and to align 

the electrodes. The pressing temperature was 130 °C, under a force of 500 pounds 

for a time period of 90-180 seconds, unless otherwise specified. 
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2.4 Testing of ME As 

The DMFC experiments were performed at different concentrations of 

methanol (0.1, 0.3, 0.6, 1.0 mol L-1
). The methanol solution was supplied to the 

DMFC from a micro-mate interchangeable 50 mL syringe (Perfektum®, Popper & 

Sons, Inc.) using a compact infusion pump model No. 975 (Harvard Apparatus 

Co., Inc.), equipped with a changeable flow rate drive. Gases were supplied 

directly from the tanks with the inlet flow rate controlled by a Cole Parmer 

(model NO 42-15) flow meter. 

The temperature of the DMFC was controlled by a Cole Parmer Co. 

temperatme controller (model BA-2155-54). The temperature of the DMFC was 

allowed to stabilize for about 30-45 minutes before any experiments. 

The DMFC was operated with either oxygen or air passing through the 

cathode to obtain polarization curves. Polarization readings were measmed by 

applying a constant cmrent from the potentiostat/galvanostat. Voltage readings 

were recorded after a stabilization time of 3 minutes to achieve a stable and a 

steady value. 

Chronoamperometric experiments were performed to measure methanol 

crossover. Nitrogen (N2) gas was passed through the cathode compartment instead 

of oxygen (or air) and the potential of the DMFC cathode was stepped to values in 

the range of +0.7 to +0.9 V vs the DMFC anode (see section 3.3.1). As methanol 

crosses through the membrane to the fuel cell cathode which acts as an anode 

under these conditions, it is oxidized to produce carbon dioxide. Hydrogen gas 
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(H2) is evolved at the fuel cell anode, which acts as a cathode under these 

conditions and then behaves as a dynamic hydrogen electrode (DHE). The 

limiting current for methanol oxidation (crossover) was recorded by averaging the 

last 40 seconds of the current vs time curve. 

2.5 Presentation of Data 

Throughout this thesis, lines are drawn through data points as an aid to 

visualization. 
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Chapter 3 

Characterization of Methanol Crossover through 

Nation® Membranes 
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3.1 Introduction 

Methanol is introduced directly to a DMFC as an aqueous solution. As 

methanol is fully miscible with water, it readily crosses over from the anode to the 

cathode compartment through the hydrated Nation® membrane. This 

characteristic of PEM DMFCs is responsible for fuel losses and reducing the 

cathode catalytic activity over time, causing performance losses and a decreased 

open circuit potential. 1
•
2 Methanol crossover lowers the cathode activity towards 

oxygen reduction as a result of methanol oxidation which results in the formation 

of CO species which poison the Pt catalyst. This causes a mixed potential at the 

cathode.3 

Methanol permeation is one of the challenging problems affecting DMFC 

performance and many groups have investigated methanol transport.4 Methanol 

crossover can be monitored and determined indirectly by measuring the amount 

of C02 produced at the cathode as a result of methanol oxidation. C02 gas 

emission can be measured by electrochemical methods, 5•
6 by IR -detector 

methods7
•
8 and by chromatographic analysis.9 

A schematic diagram showing the electrochemical measurement of the 

methanol permeation process is shown in figure 3 .1 . Methanol crosses from the 

anode through the membrane to the cathode, which is operated under an inert 

environment by passing nitrogen gas through the cathode compartment. Under 

these conditions, methanol is oxidized to produce carbon dioxide. Hydrogen gas 

is evolved at the fuel cell anode, which serves as a cathode under these conditions 
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and behaves as a dynamic hydrogen electrode (DHE). The membrane 

permeability (P) is a function of the limiting current density (fum) and can be 

calculated from the following equation: 

d Eq. 3.1 

+ 

6H+ + 6e-

Figure 3.1. A schematic diagram showing the methanol permeation 
process and the electrode reactions involved in the electrochemical measurement 
of crossover. 
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Where Cn is the concentration of methanol within the membrane, Dm is 

the diffusion coefficient of methanol, Kdi is the drag coefficient, d is the 

membrane thickness, and F is the Faraday constant. 

The methanol flux is retarded by the migration of protons in the opposite 

direction. Values of Kdt then, are less than unity, and decrease with increasing 

methanol concentration. Ren has calculated a Kdt value of 0.8829 for 1 mol L-1 

methanol.5 

Many factors affect methanol crossover m a DMFC. The operating 

temperature has a great influence on methanol transport, as increasing the 

temperature will increase the diffusion coefficient of methanol, and so more 

methanol crossover occurs.10 Nation® (membrane) thickness has also been shown 

to affect methanol crossover. 8 Increasing the thickness minimizes methanol 

crossover. However, this is accompanied by an increase in the ionic resistance of 

the membrane which, unfortunately, causes performance losses.8 

Modification of Nation® membranes has been utilized to mm1m1ze 

membrane permeation towards methanol. Several approaches have been 

reported,11
'
12 and will be discussed in chapter 4. 

The objectives of the work described in this chapter were to study and 

investigate the influences of operating temperature, membrane thickness, and 

molar concentration of methanol on methanol crossover. Here, methanol 

crossover measurements were made by electrochemical methods. 
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The first scheme was the investigation of methanol crossover dependence 

on temperature. The DMFC was run at different operating temperatures (30, 40, 

50, and 60 °C). In general, increasing the temperature will cause an increase in the 

methanol crossover rate and affect the perfmmance of the cell. 

The second scheme was to study the membrane thickness affect on 

methanol transport. Four different thicknesses ofNafion® were investigated (112, 

1135, 115, and 117) and their permeability to methanol was measured. This 

terminology contains the equivalent weight (EW) of Nafion® polymer used, and 

the thickness of the membrane. The first two integers represent the EW (definition 

in section 1.4.1.) of polymer, and the other numbers give the membrane thickness 

in milliinch. For example, Nafion® 1135 indicates that the EW of the polymer is 

11 00 grams per mole of sulfonate groups, and the thickness is 3. 5 milliinch ( ~89 

11m). The membrane thicknesses are therefore: 112 (~51 11m) < 113 5 ( ~89 11m) 

<115 ( ~ 127 11m) <117 ( ~ 178 11m). All membranes have an EW of 1100 g eq-1
. 

The methanol feed (fuel) concentration influence on methanol 

permeability was investigated in the third scheme. Different molar concentrations 

of methanol (0.1, 0.3, 0.6, and 1.0 mol L-1
) were used in the DMFC. Generally, 

methanol crossover increases with higher concentration of methanol. On the other 

hand, using higher concentrations affects the performance of the cell. In order to 

explore these effects, cell polarizations (cell voltage vs current density) also were 

measured. 
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3.2 Experimental 

3.2.1 Electrodes and Catalysts 

Anodes and cathodes used in the experiments described in this chapter 

were supplied by Ballard Power Systems. Anodes consisted of a PTFE bound 

mixture of platinum black with a total Pt loading of 4.0 mg cm·2 and rhodium 

black with a total Rh loading of 1.3 mg cm-2 on carbon fiber paper (CFP, Toray 

T090) containing ca. 18% PTFE. Cathodes consisted of a PTFE bound mixture of 

platinum black with a total Pt loading of 4 mg cm-2 on CFP (Toray T090) 

containing ca. 11% PTFE. 

Although these electrodes do not provide very good DMFC performance 

(cf. chapter 4), they are adequate for studies of methanol crossover. Better 

eleCtrodes did not become available until later in the project. 

3.2.2 Membrane Electrode Assembly (MEA) Preparation 

Nation® membranes were cleaned as described in section 2.3 .1. MEAs 

were assembled according to the procedure described in section 2.3.2. However, 

the MEAs were first pressed at room temperature for 90 seconds under 1 000 

pounds force, followed then by hot pressing at 130 °C, under a force of 400 

pounds. 
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3.2.3 Crossover and Polarization Measurements 

Determination of methanol permeation rates through the membranes was 

accomplished by running methanol fuel through the anode, and an inert gas (N2) 

was run through the cathode compartment (see figure 3.1 for equations). All the 

experiments were performed with a methanol pumping rate ifweoH) of 2.25 mL 

min-1 and at N2 flow rate of23.2 mL min-1
. 

DMFC polarization curves were obtained by passing oxygen through the 

cathode at a flow rate of 6.5 mL min-1 and with a methanol pumping rate of 0.153 

mL min-1
. Polarization readings were measured by applying a constant current 

from the potentiostat/galvanostat. Voltage readings were recorded after a 

stabilizing time of 3 minutes to achieve a stable value. 

The temperature of the DMFC for all the experiments in this section was 

controlled manually with a ST ACO Inc. Variable Autotransformer (Model 

3PN1010). 

3.3 Results and Discussion 

3.3.1 Electrochemical Measurement of Methanol Crossover 

Initially, methanol crossover data were obtained by using staircase linear 

sweep voltammetry. This electrochemical method was used to detem1ine the 

potential range over which the limiting current occurs. Moreover, it provides 

information about the half wave potential (El!2) value. Figure 3.2 shows 
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voltammograms for a cell with a Nafion® 112 membrane operated at 50 oc using 

0.1, 0.3, 0 .6, and 1.0 mol L-1 methanol solutions. 
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Figure 3.2. Voltammetric curves at 50 oc for the oxidation of 
methanol crossing through Nafion® 112 using 0.1, 0.3 , 0.6, and 1.0 M 
methanol solutions, step height = 5 mV, step time = 2.5 s. 
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The current reaches its maximum value at ca. 0.6 V then drops to an 

approximately constant, limiting, value. The peak formation and the unsteady and 

decreasing limiting current values were major problems with this method. They 

result from the current not being allowed to reach its steady state value. The 

methanol concentration in the membrane is decreasing with time. To overcome 

these problems, the experiments may be performed at a lower scan speed to reach 

a steady state response but this was considered a too time consuming procedure. 

A chronoamperometric method was used to overcome the scan rate 

dependency of the linear sweep method and therefore reduce the experiment time. 

The current in the new method is measured at steady state in a relatively short 

time. Moreover, it involves measuring the current at different programmed 

potential step values to ensure that the limiting current is obtained. Figure 3.3 

shows a typical chronoamperometric potential time diagram. 

The values of E l , E2, and E3 are initially set at 0.7, 0.8, and 0.7 V, 

respectively. The experiment is carried out and then these potential values may 

need to be increased or decreased slightly to achieve the limiting current plateau. 

The cell was conditioned for 50 second (t1) at El , to deplete the methanol in the 

membrane, and approach the limiting current. Then, the first methanol crossover 

measurement is started and extends for 100 second (t2) at E2. The crossover 

measurement is repeated (at E3 for 100 second (t3)) in the same experiment to 

insure that the data correspond within 5% and represent the limiting current. 
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Figure 3.3. Chronoamperometric potential time diagram. 

The limiting current values were calculated by averagmg the current 

values for the last 40 seconds of the two potential step (E2 and E3) curves. Then, 

the values were divided by the area of the MEA and reported as current density 

values. 

Table 3.1 summarizes the methanol crossover measurements collected by 

chronoamperometry for different Nafion® membranes, tested over a range of 

temperatures, and methanol concentrations. f um is proportional to the diffusion 

coefficient and concentration as per equation 3 .1. 
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Table 3.1. Methanol crossover measurements for Nafion membranes. 

Methanol crossover (rnA em--) 

Nafion® Methanol @30°C @40°C @ 50°C @ 60°C 

membrane Cone. (M) 

0.1 
9.47 13.7 18.4 23 .9 

0.3 
25.5 36.2 47.6 59.5 

112 
0.6 

51.0 71.6 92.3 117 

1.0 85.3 118 153 192 

0.1 
3.43 7.20 9.72 12.6 

0.3 
1135 17.5 23.8 31.0 40.2 

0.6 
37.9 49.5 64.6 78.2 

1.0 
60.5 80.5 105 129 

0.1 
3.46 5.40 7.77 11.0 

0.3 
15.1 20.5 27.2 34.9 

115 
0.6 

31.6 42.5 55.8 69.7 

1.0 53 .8 73 .0 92.0 115 

0.1 
2.97 5.31 7.69 10.3 

0.3 
13.6 18.1 24.1 30.5 

117 
0.6 

26.4 36.8 48.2 60.0 

1.0 
47.6 63.5 80.6 99.2 
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3.3.2 Temperature Dependence (30, 40, 50, and 60 °C) 

In order to investigate the temperature effect on methanol crossover, the 

same MEA was operated with different methanol concentrations at 30, 40, 50, and 

60 °C. The relationship between the limiting current density and the temperature 

is controlled by Arrhenius equation: 

1 -A (-Ej RT) 
lim - e Eq. 3.2 

Where A is a constant, Ea is the activation energy, R is the gas constant, 

and Tis the temperature. 

By taking the natural logarithm of Eq. 3.2, a linear relationship between 

ln(JlinJ and l iT is obtained, as follows: 

ln(h,J= ln(A)- Ea _l_ 
R T 

Eq. 3.3 

Figure 3.4 illustrates the temperature dependence of methanol crossover 

for Nation® 117. Obviously, increasing the temperature is coupled with an 

increase in methanol crossover towards the cathode compartment. Methanol 

crossover values were increased more than 200% as the temperature was raised 

from 30 to 60 °C for all the membranes. This phenomenon is also observed and 

verified for Nation® 112, 1135, and 115. 

Increasing the temperature causes an increase in the methanol diffusion 

coefficient within the membrane along with that of water molecules. Ren et al. ,5 

have investigated the limiting current and diffusion coefficient of methanol over a 

range of temperatures. They reported the limiting currents for Nation® 11 7 at 30 
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Figure 3.4. Temperature dependence of methanol crossover for Nafion® · 
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and 50 °C usmg 1.0 mol L-1 methanol solution as 42.0 and 76.6 rnA cm·2, 

respectively. The diffusion coefficient increased by almost 178 % as the 

temperature was increased from 30 to 50 °C. Their crossover values are close to 

the measurements reported here for Nafion® 117 under the same conditions. 

Table 3.2 illustrates the activation energy values for the membranes 

calculated using Eq. 3.3. At 0.1 mol L-1 of methanol, the activation energy shows 

a maximum value, then it decreases with increasing concentration of methanol. 

This may be related to the hydration level of the membranes. However, it is not 

clear that the variations in table 3.2 are significant. The average value is 25 kJ 

1-1 mo . 

Table 3.2. Activation energies from Eq. 3.3. 

Activation Energy (kJ mor1
) 

Methanol 
0.1 0.3 0.6 

Cone. (M) 

112 26 24 24 

Nafion 1135 35 23 20 

membrane 115 32 24 22 

117 34 23 23 

1.0 

23 

21 

21 

20 

Several researchers have investigated the activation energy for methanol 

diffusion in Nafion. Ren and co-workers have reported values of 205 and 2413 kJ 
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mor1 which are similar to the values reported here. However, it seems to be 

affected by the experimental condition and environment. 14 

Despite the fact that methanol crossover causes performance losses and 

reduces the open circuit potential (OCP), increasing the temperature increases 

proton mobility in Nafion®.15 Therefore, operating the DMFC at a higher 

temperature increases the proton conductivity of the MEA, resulting in a better 

performance of the fuel cell as shown previously in figure 1.4. 

3.3.3 Thickness Dependence (Nation® 112,1135,115, and 117) 

Since the MEA can be considered as a physical barrier that separates the 

anode from the cathode, the current density (fum) is controlled and affected by the 

membrane thickness. The relationship between hm and membrane thickness is 

given by equation 3 .1. 

However, the limiting current density is also influenced by the anode 

(including the backing and the catalyst layers), which behaves as an additional 

diffusion barrier (/um.anode) . Therefore: 

1 1 + 1 d Eq. 3.4 

fum,anode 

Figure 3.5 shows a plot of the reciprocal of the limiting current density 

U!im-1)(from Eq. 3.4) versus thickness for a set of membranes at 30, 40, 50, and 60 

°C, using 1 mol L-1 methanol solution. The results do not fit the expected linear 

relationship closely. The deviation could be due to a number of factors such as, 
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variation in the electrode and the membrane characteristics. 

As expected, methanol crossover decreases with increasing membrane 

thickness. These results confirm that the methanol pumping rate was sufficient to 

overcome the high permeability of the thinner membranes. For a fuel cell of 5 

crn2
, fum has been reported to become independent of methanol flow rate at 

methanol feeds of more than 0.75 mL rnin-1
.
5 

Ren and co-worker5 have reported that f ttm,anode has no significant effect on 

the methanol crossover measurements. Therefore, the anode shows a high 

permeability to methanol and does not affect the anode performance. Table 3.3 

illustrates the hm,anode values obtained from the intercept of figure 3.5. The result 

shows that anode permeability is not that high and it does affect the methanol 

crossover. For example, if there were no anode (hm.anode goes to zero), the hm 

value for Nafion® 117 membrane at 60 °C would be 140 rnA crn·2 (instead of99.2 

rnA cm-2
), which is ca. 41% more. This may be related to the anode structure as 

Ren5 used a thin carbon cloth backing, while carbon paper is the backing for the 

anode used in the experiments reported here. 

Table 3.3. hm,anode values obtained from figure 3.5. 

Temperature (°C) lum,anode Standard Deviation 

30 110 19 

40 152 30 

50 204 42 

60 256 56 
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3.3.4 Concentration Dependence (Methanol Concentration 0.1, 

0.3, 0.6, and 1.0 mol L -t) 

The influence of methanol concentration on methanol transp01i had been 

investigated for ditierent Nation® membrane thickness at the same temperature. 

The hm was measured, and then plotted as a function of methanol concentration. 

Increasing the methanol feed concentration to the DMFC is expected to increase 

methanol crossover through the membrane and therefore reduce the overall 

performance and lower the fuel efficiency. 

Figure 3.6 shows methanol crossover measurements for a senes of 

Nation® membranes at 60 oc using different concentrations of methanol. 

Methanol crossover increased at least 8 times for Nation® membranes as the 

methanol concentration was increased from 0.1 to 1 mol L-1. 

As a matter of fact, the methanol crossover of a DMFC operated with low 

methanol feed concentrations (less than 2 mol L-1
) is decreased at high current 

densities, 13 and fortunately, the DMFC performance is improved. This may be 

explained by the fact that most of the methanol is consumed by oxidation at the 

anode before it can cross through the membrane to the cathode. 

Figure 3.7 shows polarization curves of a DMFC operated at 60 oc with 1 

mol L-1 methanol feed, using a-Nation® 115 membrane. At current densities up to 

ca. 20 mA cm-2, the performance of the cell is decreased as the methanol 

concentration is increased. Moreover, the OCP decreased from 742 to 521 mY as 

the methanol concentration was increased from 0.1 to 1 mol L-1
. 
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On the other hand, at high current densities, the performance of the DMFC 

was significantly improved by increasing the methanol concentration and the fuel 

cell provide best performance operating with 1 mol L-1 methanol solution. 

3.4 Conclusions 

Methanol crossover in a DMFC was measured directly by double-step 

chronoamperometry. This method minimizes the time required for the 

measurements and provides verified measurements of the steady state crossover 

CUITent. 

Methanol crossover was measured over a set of different temperatures. 

The results show a significant increase of methanol permeation through the 

membrane with increasing temperature. Moreover, an Arrhenius type relationship 

was observed. The activation energy of methanol diffusion was calculated and 

shows a value of 25 kJ mor1 (average value of 16 measurements). Ren and co

workers have reported values of 205 and 2413 kJ mor1 which are similar to the 

values here. 

The experimental results emphasized that methanol permeation 1s 

decreased as the thickness of membrane is increased. The crossover value 

decreased by more than 50% (at 60 °C and 1 mol L-1 methanol) as the thickness 

was increased from 51 (Nafion® 11 2) to 178 (Nafion®ll7) ~m. This improves the 

fuel efficiency of the cell, however, increasing the membrane thickness is 
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accompanied by an increase in resistance, 10 which therefore leads to Ohmic losses 

and poor performance. 

Although methanol crossover increases linearly with concentration, the 

performance of the cell substantially improves at high current densities. The best 

DMFC performance was obtain using 1 mol L-1 methanol, although, 0.6 mol L-1 

also shows a good performance. 

Several parameters affect methanol diffusion through the membrane, and 

therefore influence the overall performance of the DMFC. Methanol crossover in 

DMFCs operated with Nafion® membranes is still undesirable and causes high 

energy and fuel losses. Modification of Nation® membranes could probably 

reduce the crossover and improve the cathode activity. Also, the optimal 

operating conditions for DMFCs are still under investigation to improve DMFC 

performance. 
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Chapter 4 

Characterization of DMFC Performance and 

Methanol Crossover through Modified Membranes 
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4.1 Introduction 

Modification of Nafion® membranes has been utilized to mmumze 

membrane permeation towards methanol. For example, silicon oxide, 1 zirconium 

phosphate2 and conducting polymers3 have been incorporated into Nafion® 

membranes, to produce composite membranes with better properties, and 

therefore, a better overall DMFC performance. 

Composite membranes show less permeability to methanol and therefore 

methanol crossover is decreased and fuel efficiency is improved. Composite 

membranes prepared by using poly(l-methylpyrrole) reduce methanol crossover 

by as much as 50% without a significant increase in membrane resistance.4 

This chapter characterizes the performance of DMFCs operated with 

polypyrrole/Nafion composite membranes. Methanol crossover through these 

membranes is also investigated, and the results are compared with results obtained 

for unmodified Nafion® membranes. Composite membranes prepared using 3,4 

ethylene-dioxythiophene (EDOT) were also studied to some extent but require 

further investigation. 

4.2 Experimental 

4.2.1 Electrodes, Catalysts and MEA Preparation 

Anodes and cathodes used in the experiments described in this chapter 

were prepared by Brad Easton.5 Anodes consisted of a Nafion (15%) bonded 

mixture of 50% Pt and Ru black with a total loading of ca. 4 mg cm-2 on CFP 
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(Toray T090) containing 10% Nafion. Cathodes consisted of a PTFE bound 

mixture of Pt black with a total loading of ca. 4 mg cm·2 on CFP (Toray T090) 

containing 15% PTFE, and were sprayed with Nafion solution to give a 14% 

loading. 

Nafion® membranes were cleaned as described in section 2.3.1. MEAs 

were assembled according to the procedure described in section 2.3.2. 

4.2.2 Crossover and Polarization Measurements 

Dete1mination of methanol permeation rates through modified and 

unmodified membranes was accomplished as described in section 3.3.1 . However, 

the experiments were performed with a N2 flow rate of 25 .6 mL min-1
. 

DMFC polarizations were obtained by passing either oxygen (12.3 mL 

min-1
) or air (73.1 mL min-1

) through the cathode compartment, and with a 

methanol pumping rate of 0.153 mL min-1
. Polarization readings were measured 

as described in section 2.4. 

4.2.3 Resistance Measurements 

The resistance of the fuel cell was measured by Electrochemical 

Impedance Spectroscopy (EIS). The measurements were made while passing 

either oxygen, air or nitrogen through the cathode compartment and methanol 

through the anode. The results were not significantly influenced by the cathode 

gas (for example, the resistance of unmodified Nafion 115 with N2 and 0 2 was 
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0.169 and 0.159 n, respectively). Unless stated otherwise, the final resistance 

measurement is reported. 

4.2.4 Preparation of Polypyrrole/Nafion Composite Membranes 

Polypyrrole/Nafion membranes were prepared by in situ polymerization of 

pyrrole within Nafion membranes in the presence of H20 2 or Fe3
+ as an oxidizing 

agent. 

Some composite membranes prepared using H20 2 as the oxidizing agent 

were synthesized by Brandi Langsdorf and are coded as BLXXXX. On the other 

hand, Jeremy Hughes synthesized one of the composite membranes using Fe3+ as 

the oxidizing agent and it is therefore coded as JHXXXX. Several membranes 

were synthesized by myself using either H20 2 or Fe3
+ as the oxidizing agent and 

are therefore coded as XJ (e.g. 4J). 

The procedure of preparation of the composite membranes (prepared by the 

author), using either of the oxidizing agents, involves immersing a clean piece of 

Nafion membrane of the desired size in a pyrrole solution of certain concentration 

for a certain amount of time (minutes or hours). Following brief washing with 

water, the pyrrole impregnated membrane is immersed in a solution containing 

the oxidizing agent for several minutes or hours to achieve polymerization. 

All the composite membranes were washed with hot 1 mol L-1 H2S04 

solution several times until the acid remained colorless, in order to wash out any 

residual pyrrole and oxidizing agent in the membrane. The last step was to soak 
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the composite membrane in hot water for at least 1 hour to remove the excess 

acid. Finally, the composite membranes were stored in water at room temperature. 

4.2.5 Preparation of Poly(EDOT)/Nafion Composite Membranes 

A cleaned piece of Nafion was immersed in neat EDOT for 30 minutes, 

then washed with water and transferred to the oxidizing solution (Fe3+) for 30 

minutes. Another membrane was immersed in 0.1 M EDOT solution (50% 

acetonitrile/H20) for 15 minutes, then washed with water and transferred to 5% 

H20 2 solution for 5 min to achieve polymerization. The membranes were then 

washed and stored as in section 4.2.4. 

4.3 Results and Discussion 

4.3.1 Oxygen vs Air Cathode Feed 

Initially, DMFC performance was investigated by running pure 0 2 through 

the cathode compartment. 0 2 produces better DMFC performance than air and the 

performance differences between membranes can be more easily observed. 

However, running a DMFC using air is preferable from a commercial point of 

view as it reduces the operating cost, simplifies the system and is safer. 

DMFC performances for modified and unmodified Nafion 115 with 0 2 or 

air on the cathode are compared in figure 4 .1. For unmodified N afion 115, there 

was a 14% voltage loss at ca. 56 rnA cm-2 as the DMFC oxidant gas was switched 

to air; moreover, it decreased by 22% at ca. 94 rnA cm-2. 
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The BL2-91 composite membrane losses were greater (22% and 33% 

lower), while the performance with 2J decreased by only 4% and 6%, at the same 

current densities. 

These comparisons were performed at ambient pressure and a lower 

performance was always obtained when air was employed. This could be related 

to the difference in oxygen concentration in the cathode chamber. The test for 

Nafion and BL2-91 membranes was performed using air four months after it was 

tested with oxygen, however, for 2J the DMFC was tested with air after one day. 

This may explain the poor performance of these membranes with air. 

Running a DMFC with pure oxygen gas provides more oxidant species at 

the cathode side. The better DMFC performance running with 0 2 could be 

expected from thermodynamics (Nernest equation), as increasing the 

concentration of 02 in the cathode feed gas leads to an increase in the theoretical 

cell voltage. Moreover, this improves and speeds up oxygen mass transport to 

catalyst active sites, and therefore drives the cathodic reaction to reduce more 

oxygen. Advantageously, more oxygen improves the oxidation of COacts (formed 

at the catalyst surface as a result of methanol oxidation at the cathode) to C02, 

therefore decreasing the CO poisoning effect at the cathode, and therefore 

optimizes the overall cell performance. 

On the other hand, air provides an excess of gas to flush water from the 

cathode compartment. Moreover, a high airflow rate enhances the oxidation of 

methanol and reduces the effect of methanol crossover on the cathode catalyst.6 
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As well, increasing the gas pressure leads to better performance as the methanol 

crossover rate is decreased. 7 

4.3.2 Performance of Polypyrrole/Nafion Composite Membranes 

Prepared by H20 2 Oxidation 

Modification of Nafion 115 membranes with polypyrrole using H20 2 as 

the oxidizing agent shows good blockage of methanol. The composite membranes 

reduce methanol crossover by ca. 42-74%. However, the resistance of these 

membranes was variable and dependent on the modification procedure. Table 4.1 

summarizes the characteristics of the membranes tested in this work. 

Table 4.1. Modification conditions, methanol crossover and resistance 

measurements for unmodified and modified Nafion 115. 

Membrane Time in 0.2 M Time in 30% H202 lum @ 60 oe< R* 

pyrrole (min) (min) (rnA cm-2
) (0 cm2

) 

Nafion 115 - - 136 0.16 

1J 15 15 35.7 0.89 

2J 5 5 78.4 0.29 

BL2-91 5 5 70.3 0.34 

* Represent average values except for 1 J. 
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DMFC performances for these composite membranes are illustrated in 

figure 4.2. Although, 11, a modified Nafion 115 membrane, exhibits the best 

methanol blockage, it shows poor DMFC performance. This membrane was 

immersed in both the pyrrole and the oxidizing agent solution for a longer time 

than the other membranes, therefore more polypyrrole is present in the membrane 

which results a higher resistance than the other modified membranes. 

2J exhibits good DMFC performance. At low current densities ( < 20 rnA 

cm-2
), it shows a similar performance to unmodified Nafion Il5. The similar 

performance in this region may be related to the improvement of cathodic 

reactivity as a result of lower methanol crossover. On the other hand, the 

performance decreased with increasing current density. For example at ca. I 00 

rnA cm-2
, 2J only produced 455 mV compared to 492 mV for Nafion 115. The 

increased membrane resistance is responsible for these performance losses. From 

Ohm's law, a calculated 0.13 0 cm2 difference in membrane resistance decreases 

the cell voltage by I3 m V at ca. I 00 rnA cm-2
. Therefore, a resistance corrected 

potential value of 468 mV is obtained, which may be considered to be within 

experimental error ofthe value for Nafion 115. 

Figure 4.3 reveals the cell performances running with air. 2J shows an 

excellent performance. This membrane was the best membrane tested and 

outperforms Nafion 115 by ca. 11% at ca. IOO rnA cm·2. However, the 

performance ofBL2-9I was lower by about 4%, at the same current density. 
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Running DMFC with air rather than 0 2, increases the effect of methanol 

crossover on the cathode. The effect of the decreased crossover through the 

modified membranes is therefore more pronounced with air. 

4.3.3 Performance of a Polypyrrole/Nafion Composite Membrane 

Prepared by Fe3
+ Oxidation 

Several membranes were modified by Jeremy Hughes using the Fe3
+ 

oxidation method. However, data for only one will be presented here. Earlier 

membranes investigated employed inferior electrodes (as described in section 

3 .2.1) with low catalytic activity which produced poor cell performance. 

Furthermore, the modified membranes did not appear to bond well to these 

electrodes. Therefore, their data will not be discussed in this thesis. 

Composite membrane JH1028b shows an excellent performance and a low 

resistance value of 0.23 n cm2
. Although, its methanol crossover was high (114 

rnA cm-2), this membrane was the 2nd best membrane tested and outperformed 

Nafion 115 by 7% at ca. 100 rnA cm-2 as shown in figure 4.4. 

As expected from the membrane resistance, Ohmic voltage losses are 

small relative to the unmodified membrane as revealed by the resistance corrected 

curve. However, there is still a window for further modification to further reduce 

methanol crossover, as this membrane decreased it by just 16% (compared to 

Nation 115). 
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4.3.4 Effect of Modification Method on Composite Membrane 

Performance 

H202 modification produces composite membranes with high methanol 

blockage but with variable resistance values which often lead to Ohmic voltage 

losses and reduced cell perfmmance. On the other hand, Fe3
+ modification formed 

a composite membrane with low resistance but with only 16% methanol blockage. 

Thus a combination of both treatments was employed to try to gain the benefits of 

each and, hopefully, fabricate a composite membrane with reasonable methanol 

blockage without increasing the membrane resistance significantly. 

Nafion membranes were modified by in situ polymerization of pyrrole 

using H20 2 as the oxidizing agent followed by further polymerization via Fe3
+ 

oxidation. The performances of 6 composite membranes with different 

modification procedures were investigated. The Nafion 115 membranes were first 

immersed in 0.2 mol L-1 pyrrole solution for 5 min, and then immersed in 30% 

H20 2 for 5 min. Then 5 of them were immersed in Fe(N03)3 solution for further 

polymerization for different time periods. Table 4.2 summarizes the 

characteristics of these composite membranes. 

The performances of the composite membranes improved greatly with 

time. The first run for each MEA in the DMFC gave a poor performance; 

however, an improved and stable performance was achieved after 3 days. A 

stability test of one composite membrane for two weeks over a set of temperatures 
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shows a peak performance after 3 days (compared to less than 1 day for 

unmodified membranes).5 

Table 4.2. Characteristics of polypyrrole/Nafion 115 composite membranes, 

Membrane Time in 0.08 M Fe;;+ (min) lum@ 60 °C* (rnA cm-2) 

Nafion 115 -

8J 

9J 

IOJ 

11J 

12J 

13J 

0 

1 

2 

3 

4 

5 

* Represents the last measurement obtamed. 
** Represents an average value. 

136** 

60.1 

45.0 

54.2 

48.2 

48.5 

54.2 

R* (0 em-) 

0.16** 

0.66 

1.3 

0.92 

0.88 

0.80 

0.85 

Figure 4.5 demonstrates the performance of 8J over a 3 days period. The 

performance improved with time and reached a steady value after 3 days. This 

appears to be related to the hydration level of the membrane during the test which 

affects its proton conductivity. 8'
9 In the first run the MEA is dry as a result of hot 

pressing during its preparation. With operation, the membrane gains water slowly 

and its conductivity increases accordingly. For example, the resistance of llJ 

decreased by 95% over 3 days of operation (17, 1.1 and 0.88 0). 
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In table 4.2, further polymerization of polypyrrole/Nafion composite 

membranes with F e3
+ is seen to decrease methanol crossover by a further ca. 17% 

relative to one treated with H202 only. This is a result of more polypyrrole 

formation inside the membrane. Performance was expected to improve with this 

further reduction of methanol crossover, however, the DMFC showed worse 

performance as shown in figure 4 .6. 

Surprisingly, the performance was very poor for all the membranes that 

had been further treated with Fe3
+. Although 91 was immersed in the Fe3

+ solution 

for the least time ( 1 min), it gave the worse performance. The performance, then 

improved as the immersion time was increased and reached its maximum 

performance with 111 and 121. 

Despite the reduction of methanol crossover for these membranes, their 

resistances were much higher than unmodified Nafion 115 which may be 

responsible for the poor DMFC performance. Although the resistance of 8J is 

higher than that of Nafion, it outperfmms Nafion at low current densities (up to 

ca. 40 rnA cm-2
). In figure 4.7, the cell potentials have been corrected to the 

resistance of Nafion 115 to investigate the resistance effect on DMFC 

performance. The resistance corrected performance is better. For example, it is 

improved, at ca. 100 rnA cm-2 by 14, 27 and 24% for 81, 111 and 12J membranes, 

respectively. 
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The corrected performance of SJ is almost the same as that of Nafion 115 

which indicates that Ohmic losses are responsible for the poor performance in the 

high current density region. On the other hand, the corrected cell potentials of llJ 

and 12J are still far away from the expectation based upon Ohmic losses. 

These composite membranes (treated with Fe3+) show poor bonding to the 

electrodes, and delamination was observed. Sata et al., 10 reported that polypyrrole 

is formed at the surface of the membrane in the presence of Fe3
+ ions. This 

decreases the Nafion character at the surface of the membrane which therefore 

inhibits its bonding to the electrodes and reduces catalyst utilization at both 

electrodes and also increases resistance. Poor interfacial bonding properties for 

the membranes treated with Fe3
+ severely reduce performance, and overcome the 

gains from methanol crossover minimization. 

4.3.5 Modification of Nonacidic Nafion Membranes 

Pickup et al. ,3 have reported that pyrrole undergoes a spontaneous reaction 

within Nafion membranes. The pyrrole monomer is protonated by the acidic 

nature of the ionic clusters and this leads to the formation of oligomeric and 

polymeric material during immersion ofNafion in the pyrrolesolution. 

The influence of membrane acidity on self polymerization can be 

minimized by cationic exchange of Nation's protons, such that pyrrole uptake is 

controlled by diffusion and not by reactions within the membrane. A nonacidic 

form of Nafionl15 (14J) was prepared by soaking the membrane in 1 mol L-1 
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NaOH solution for ca. 14 hours. Then, both acidic Nafion (15J) and 14J were 

heavily modified by in situ polymerization of pyrrole via Fe3
+ oxidation, followed 

by a washing procedure as in section 4.2.4. Table 4.3 summarizes the immersion 

times and results. 

Table 4.3. 14J and 15J membrane characteristics. 

Membrane Time in 0.2 M Time in 0.08 M 

Pyrrole (hr) Fe3+ (hrs) 

141 1 10 

15J 1 10 

Nafion 115 - -

* Represents the last measurement obtained. 
* * Represents an average value. 

Ir @ 60 °C* 1m 7 R* 

(rnA cm-2
) (Q cm2

) 

119 0.22 

37.6 1.8 

136** 0.16** 

Even though both membranes were treated in the same way, they exhibit 

quite difference properties. Methanol crossover was decreased by ca. 12% and 

72% for 141 and 151, respectively, and they have quite different resistances. The 

perf01mances of these membranes are shown in figure 4.8. 

Although modified 151 gives the best open circuit voltage (821 m V, 

compared to 791 and 775 mV for Nafion 115 and modified 141, respectively), it is 

clear that its performance is strongly affected by its high resistance, which is 

responsible for a performance loss of ca. 45% at ca. 100 rnA cm·2 as shown from 

the resistance corrected potential curve. On the other hand, the performance of the 
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modified 14J membrane is ca. 20% less than that of Nafion 115 at ca. I 00 rnA 

cm-2. This is difficult to understand since the resistance is close to unmodified 

Nafion 11 5 and so its performance losses are not Ohmic, as revealed from the 

corrected potential cmve. 

The poor performance could be explained by the difference in membrane 

acidity during the modification process. It is assumed that all of the H+ were 

substituted by Na+ in the 14J (Na-Nafion) and that 1 hom is enough time for 

pyrrole to fill the membrane pores. Therefore, pyrrole diffuses into 14J and fills 

the pores without reaction, while pyrrole in 15J (H-Nafion) spontaneously reacts 

with H+ in the Nafion pores to form polymeric material. The polymerization step 

with Fe3
+ causes the formation of a tight layer of polypyrrole at the surface of the 

membrane11 which may prevent further growth of the polymeric layer inside the 

membrane. 

It can be concluded that the 15J membrane will have more polymer inside 

the membrane than 14J, and that most ofthe pyrrole inside 14J remains unreacted, 

and will leach out dming the acid wash step. Moreover, the poor performance of 

modified 14J could be related to poor bonding of the membrane with the 

electrodes which leads to higher resistance and therefore poor performance (see 

chapter 5). 

The performance of 14J composite membrane reveals the possibility for 

further modification. Other composite membranes were prepared using higher 
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pyrrole concentrations and longer treatment times. Table 4.4 summarizes the 

characteristics of these membranes. 

Table 4.4. Na-form Nafion Composite membrane characteristics. 

Membrane Pyrrole Cone. (M) lum@ 60 °C* R* 

(dipping time 2 hrs) (rnA cm-2) (0 cm2
) 

16J 0.5 101 0.40 

17J 1.0 18.8 6.0 

18J 2.0 1.87 280 

19J 5.0 1.98 25 

j + -All the membranes were treated with 0.08 M Fe solutiOn for 10 hrs 
followed by acid wash as described in section 4.2.4. 

*Represents the last measurement obtained. 

DMFC performances of these membranes are shown in figure 4.9. 

Although the resistance of 16J was doubled relative to 14J, its performance is 

better by 18% at ca. 100 rnA cm-2. Moreover, methanol crossover was reduced by 

another 15%, and its performance is only slightly inferior to unmodified Nafion 

115. 

Further increases in pyrrole concentration show a steep reduction in 

methanol crossover and reaches its limit with 2 mol L-1 pyrrole concentration. 

However, a very poor performance was obtained for 171115, while 18J and 19J 

produced no current in the DMFC. It can be seen from figure 4.9 that the poor 

performance of 17J is only partially caused by its higher resistance. Poor 
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interfacial bonding for this membrane causes delamination of the catalyst layers 

which severely reduces the performance. 

These results suggest that the optimum modification of Nafion should 

produce a high level of polymeric material inside the membrane and high Nafion 

to polypyrrole character at the surface of the membrane. This would lead to good 

blocking of methanol and improve the electrode's cohesion with the composite 

membrane. 

4.3.6 Performance of Poly(EDOT)/Nafion Composite Membranes 

Prepared by H20 2 and Fe3
+ Oxidations 

Since heavy modification of Nafion membranes with polypyrrole has 

shown high resistance values, composite membrane conductivity may be 

improved by in situ polymerization of a less basic monomer, such as EDOT. The 

structure ofEDOT is shown in figure 4.10. 

1\ 
0 0 

s 
Figure 4.10. EDOT structure. 
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Two membranes were modified usmg different oxidants. 20J was 

modified by H202 oxidation, while 22J was treated with Fe3
+. Figure 4 .11 shows 

the DMFC performances for these poly(EDOT) composite membranes. 20J shows 

a performance similar to that of Nafion 115; even outperforming it at current 

densities below 40 rnA cm-2. The cell resistance was 0.17 n cm2 which is similar 

to unmodified Nafion 115, however, surprisingly, the methanol crossover was 154 

rnA cm-2, which is higher than unmodified Nafion 115. 

On the other hand, the resistance of 22J was 0.39 n crn2 and the methanol 

crossover was 100 rnA crn-2. Although the membrane characteristics are similar to 

16J, the performance was worse by about 18% at ca. 100 rnA crn-2. 

EDOT, as well as pyrrole, will diffuse into the membrane and fill the 

pores and decrease the porosity of the membrane. However, the electrostatic 

interaction between the negatively charged sulfonate groups on Nafion and the 

positively charged doped form of poly(EDOT) is less than for polypyrrole, since 

poly(EDOT) is less basic. Therefore, the pores are expected to be bigger in the 

poly(EDOT)/Nafion membrane, which may increase the membrane's hydration 

state and enhance its conductivity. However, heavy membrane modification using 

neat EDOT may affect the ionic cluster structure of the Nafion membrane, and 

consequently, the composite membrane's properties. Further investigation is 

required using, for example, diluted solutions for better understanding of the 

modification procedure. 
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4.4 Conclusions 

Polypyrrole/Nafion 115 composite membranes have demonstrated 

excellent performances in a DMFC. In fact, some composite membranes modified 

by in situ polymerization show better performance in a DMFC than untreated 

Nafion 115 membranes. On the other hand, our results show that the 

performances of composite membranes are strongly affected by the modification 

method. Moreover, poly(EDOT)/Nafion composite membranes also show 

encouraging results. 

Although the H20 2 modification method shows good blockage of 

methanol, membrane resistances are variable. However, Fe3
+ modification can 

produce membranes with reasonable resistance values but methanol crossover 

remains too high. Overall, methanol crossover reduction improves the cathode 

activity and therefore improves the performance of the DMFC. 

Figure 4. 12 shows the membrane resistance vs hm-1 relationship for most 

of the membranes reported in this chapter. The best membranes should lie in the 

shaded region, as they will have lower resistance values with high h m-I· The best 

performances were obtained with 2J, JH1028b, BL2-91, 8J, 14J, and 20J, which 

do lie within this region. 

These results suggest that the optimum modification of Nafion should 

produce a high level of polymeric material inside the membrane and high Nafion 

to polypyrrole (or poly(EDOT)) character at the surface of the membrane. This 

would lead to good blocking of methanol (high h m-1 value) and improve the 
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electrode' s cohesion with the composite membrane which may also produce a 

membrane with a reasonable resistance. 
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Chapter 5 

Diagnostics 
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5.1 Introduction 

The cathode and anode activities are very important for DMFC 

perfonnance. However, slow electro-oxidation of methanol1 
·
2

•
3 and the poisoning 

effect of intermediate species on the Pt surface, especially CO species which are 

particularly problematic,4•
5 are considered challenging problems. Moreover, 

methanol permeation from the anode to the cathode decreases the fuel cell 

performance and poisons the cathode. 6·
7

•
8 

The poisoning effect of CO on the surface of Pt can be minimized by 

using various Pt-metal alloy catalysts.9 Many researchers have reported that the 

best anode catalysts for electro-oxidation of methanol are Pt-Ru bimetallic 

catalysts. 10
•
11 These catalysts decrease the methanol oxidation overpotential 

through a bifunctional mechanism12 (discussed previously in section 1.5), and 

therefore enhance the cell performance. 

Modification of Nafion® membranes has been utilized to m1mm1ze 

membrane permeation towards methanol. 13
·
14

•
15 Composite membranes show less 

permeability to methanol and therefore improve the activity of the cathode which 

leads to better cell performance. However, the modification ofNafion membranes 

has also shown a negative influence on the cell performance, which is unpredicted 

from thermodynamics or kinetics, and appears to be related to poor bonding to the 

electrodes. 

This chapter reports diagnostic experiments on some of the composite 

membranes studied in this thesis designed to explain their poor performance and 
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lead to better understanding. 

5.2 Experimental 

5.2.1 Anode Polarization Measurements 

DMFC anode polarizations were obtained by passing nitrogen with a flow 

rate of 25 .6 mL min-1 through the cathode, and with a methanol pumping rate of 

0. 153 mL min-1• Anode polarization readings were measured as described in 

section 2.4 for cell polarization measurements. In these experiments, the cathode 

behaves as a dynamic hydrogen reference electrode (DHE). 

5.2.2 Cathode and Anode Cyclic Voltammetry Measurements 

Cathode measurements were obtained by, initially, running the DMFC for 

about 1 hour at room temperature with hydrogen (H2) at a flow rate of 18.6 mL 

min-1 through the anode and with air through the cathode at a flow rate of 25 .6 

mL min-1
. Then, the cyclic voltammogrames (CV) were obtained, at room 

temperature, by passing N2 instead of air through the cathode with a flow rate of 

25.6 mL min-1
• Anode CVs were obtained by simply switching the gases and 

electrodes (i.e. H2 passes through the cathode and air then N2 through the anode). 

In these experiments, the H2 electrode acts as both a counter electrode and 

a reference electrode. 
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5.3 Results and Discussion 

5.3.1 Anode Polarization of Composite Membranes 

Figure 5.1 shows anode polarizations of composite membranes prepared 

by H20 2 oxidation. BL2-91 and 201 show good anode performance compared to 

unmodified Nafion 115, and their performance was lower by just 4 and 3% at ca. 

100 rnA cm·2, respectively. However, 81 shows poor performance at 18% lower 

than Nafion. Its resistance corrected anode performance is better by 12% at the 

same current density. 

The higher resistances of the modified membranes are mainly responsible 

for the losses in anode performance. However, the 81 corrected anode polarization 

is still less than expected from resistance differences; this may indicates that 81's 

anode has lower active area of the Pt/Ru catalyst than the other membrane's 

anodes. 

On the other hand, the composite membranes prepared or treated with 

Fe(N03)3 solution show different results as shown in figure 5.2. 1H1208b 

demonstrates the best anode performance among these membranes. The anode 

performances are seen to decrease with increasing membrane resistance and are 

worse with 91 and 151, as they have the highest resistances values (1.3 and 1.8 Q 

cm2
, respectively). 

Resistance corrected anode performances are shown in figure 5.3. As 

expected from the membrane resistance of 1H1208b, its corrected anode 
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performance overlaps with that ofNafion 115. This indicates that the performance 

losses are purely Ohmic. 

Although the corrected anode performances for the other membranes are 

improved, the anode performance losses are not parallel with the expectation 

based on membrane resistances. Poor anode performance is an indication of lower 

active area ofthe Pt/Ru catalyst. 

All these membranes were modified or treated with Fe3
+ polymerization. 

Tllis modification or treatment leads to the formation of a tight layer of 

polypyrrole at the surface ofthe membrane16
• This decreases the Nafion character 

at the surface of the membrane which therefore inlllbits its bonding to the anode. 

As a result anode delamination often occurs. 

Poor interfacial bonding properties reduce the Pt/Ru catalyst utilization 

and also increase the resistance, which therefore severely reduces the 

performance. This may explain the lower active area for the composite 

membranes prepared via the Fe3
+ method (JH1208b is excluded). 

5.3.2 Cathode CVs 

CVs of the cathode catalyst for the poorest membrane (9J) were obtained 

to investigate the effect of modification on cathode characteristics. Figure 5.4 

shows the cathode CVs for Nafion 115, and 9J membranes. 
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The Nafion 115 cathode exhibits a typical CV for a Pt catalyst. The 

current peaks in the potential region between ca. 20 and 340 m V are attributed to 

hydrogen adsorption and desorption. The current in the potential region between 

ca. 580 and 1020 m V is due to the oxidation and reduction of the Pt surface. 

On the other hand, the 91 cathode exhibits a very poor CV. The hydrogen 

adsorption/desorption and Pt oxidation/reduction peaks are not well defined and 

not separated. Moreover, the area under the CV curves is significantly decreased. 

This indicates that the catalytic activity of the Pt catalyst in the 91 cathode is 

considerably less than with unmodified Nafion 115, and that the active cathode 

area is severely decreased with the modified 91 membrane. As a result, a higher 

cell resistance is observed, and this causes voltage losses and produces poor cell 

performance. To correct for these Ohmic losses the 91 cathode CV is corrected for 

the uncompensated resistance using the feature on the potentiostat. Although the 

corrected CV (figure 5.4) shows some increase in peak areas, it is also poor 

relative to that for unmodified Nafion. 

Poor bonding of the cathode to 91 severely reduces the Pt catalyst 

utilization and is responsible for lowering the active area of Pt. These results 

explain the poor cell performance obtained for the modified 91 membrane. 

Overall, the cathode performances for the composite membranes prepaied by the 

Fe3
+ method are expected to be poor as a result of poor interfacial bonding 

properties. 
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5.3.3 Anode CVs 

Figure 5.5 reveals anode CVs for the modified 91 and Nafion 115 

membranes. The peaks for Nafion 115 are well defined. However, 9J's anode 

suffers as well as its cathode from low catalytic activity. Moreover the area under 

the CV curve is much less than for Nafion 115, which also indicates that the 

active area of the Pt/Ru anode catalyst is reduced with the modified 91 membrane. 

A resistance corrected anode CV was also obtained for 9J (figure 5.5). It 

shows that the anode performance losses are not just Ohmic. Delamination of the 

anode from the surface of composite membranes (as described in section 5.3.2) 

modified by the Fe3
+ method is responsible for these performance losses. 

Poor bonding of the anode to 91 severely reduces the Pt/Ru catalyst 

utilization and is responsible for lowering the active area of the anode. 

5.4 Conclusions 

Anode performances as well as cathode and anode CV data obtained for 

different composite membranes reveal the effect of poor bonding of the electrodes 

to the surface of the composite membranes on DMFC performance. 

Delamination of both electrodes has shown a severe effect on the catalytic 

activity of the electrodes, which increases the cell resistance and is responsible for 

a significant reduction of the overall cell performance. 
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Direct methanol fuel cell (DMFC) characteristics have been studied 

throughout this thesis. This investigation had led to a better tmderstanding of the 

fuel cell processes and significantly improved the performance ofthe DMFC. 

The methanol permeability of Nafion polymer electrolyte membranes 

(PEM) was measured in a DMFC by double-step chronoamperometry. This 

electrochemical method provides steady state measurements of methanol 

crossover relatively quickly. Several parameters have been shown to affect the 

methanol crossover. The results have shown a significant increase in methanol 

transport through the PEM with increasing temperature, as described by an 

Arrhenius type relationship. 

Methanol crossover IS roughly inversely proportional to membrane 

thickness. A 50% reduction in methanol crossover was obtained by increasing the 

thickness from 51 (Nafion 112) to 178 (Nafion 117) ~m, using 1 mol L-1 

methanol at 60 °C. 

The concentration influence on methanol permeation has been also 

explored. It has been found that methanol diffusion increases linearly with 

increasing concentration of methanol. Although this results in fuel losses in a 

DMFC, the best DMFC performance was obtain with 1 mol L-t methanol. 

Modification of the Nafion PEM with polypyrrole has shown a significant 

effect on DMFC performance. The composite membranes improve the fuel 

efficiency of the DMFC by decreasing methanol crossover. However, their 

properties and performances are strongly affected by the modification method. 
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Composite membranes prepared by Fe3
+ oxidation of pynole show 

reasonable resistance values but their methanol permeation is often still too high. 

Most of these membranes produce poor DMFC and anode performances, which 

are related to poor bonding of the electrodes with the modified membrane's 

surface. 

On the other hand, H202 modification produces composite membranes 

with good blockage of methanol. The resistance of these membranes, however, 

was variable and affected by the modification procedure. 

Some polypynole/Nafion composite membranes have shown excellent 

DMFC performance. Membranes prepared via the two modification methods have 

outperformed unmodified Nafion 115 by 7 and 11%, respectively. The 

performance gains with the composite membranes are due to better cathode 

activity as a result of methanol crossover reduction. Poly(EDOT)/Nafion 

composite membranes also show encouraging results. 

Cyclic voltammetry (CV) of the cathode and the anode with one of the 

worst membranes were investigated. The result show poor cathode and anode 

CV' s, and low active catalyst areas. This is primarily a result of poor bonding of 

the electrodes with the membrane, which causes delamination. This has shown a 

severe effect on the catalytic activity of the electrodes, which increase the cell 

resistance and is responsible for a significant reduction in the overall cell 

performance. 
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It can be concluded that the optimum modification of Nafion membranes 

should have a high level of polymeric materials inside the membrane and high 

Nation to polymer character at the surface of the membrane. This modification is 

expected to produce composite membranes with good blocking of methanol and 

improve bonding of the electrodes with the membrane surface. 

The conductivities of the modified membranes may be improved by using 

a less basic monomer. Nafion modification with poly(EDOT) has shown 

reasonable resistance values compared to pyrrole, however, further investigation 

is required. 
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