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Abstract 

This thesis examines the problem of the irregular sampling of images and the scat­

tered data interpolation or reconstruction of images from these irregular samples. 

Since in our tests only a small number of samples are taken, the entire process can 

be viewed as low bitrate image compression. We look at two different existing ir­

regular sampling algorithms, Farthest Point Sampling (FPS) and skewness-based 

sampling. We then propose two new progressive irregular sampling algorithms, gaps 

and Faster Farthest Point Sampling (FFPS). FFPS is, as its name suggests, quicker 

than FPS, while gaps addresses concerns regarding the quality of reconstructions 

from irregular samples. 

Note that reconstruction is the flip side of sampling. One existing fast recon­

struction algorithm called Multilevel B-Spline Approximation does not work well on 

irregular sampling techniques which take samples relatively far away from edges, so 

a new modification of this algorithm, called New Edge-Directed Multilevel B-Spline 

Approximation (NEDMBA), which uses image inpainting, is introduced. 

Finally, we apply Faster Farthest Point Sampling to digital image halftoning to 
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create a new algorithm called Farthest Point Halftoning. This new dither array 

generation algorithm is compared to other existing standards, for example the Mod­

ified Blue Noise Mask and the Void and Cluster method, and is shown to perform 

favorably. 
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Chapter 1 

Introduction 

1.1 General 

With the increasing digitization of image data in diverse fields, e.g. in aerial photog­

raphy and medical imaging, the quantity of image data is becoming unmanageable. 

Although larger storage devices and higher-bandwidth transmission lines can pro­

vide a partial remedy to this problem, the sheer quantity of image data requires 

more compact representations of images. For example, images from digital mam­

mography can occupy approximately 200 megabytes uncompressed per examination 

[1}. Thus it is easy to see that in just one hospital or medical centre, terabytes of 

digital image data for this application may be generated over a very short period of 

time: This, along with other similar examples, has provided the motivation for the 

use of image compression. 
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There are two types of image compression: 

• Lossless compression: No information is lost between the original and com­

pressed images. Examples are arithmetic coding, dictionary-based compression 

schemes, and lossless JPEG. 

• Lossy compression: The original image can only be approximately obtained 

from the compressed form. Some information in the image cannot be recon­

structed, but higher compression ratios may be achieved. Examples are fractal 

image compression and ordinary JPEG. 

For many applications, lossy compression is acceptable as the difference between 

the original and compressed images is below a threshold of visibility or of detail loss. 

Lossy compression may become necessary if storage space or transmission rates are 

limited. For example, for SLIP and PPP Internet connections, images from the World 

Wide Web, though potentially very important in content, can be bottlenecks as they 

may take a long time to transmit. Transmission after lossless compression could still 

be too slow, so it may become incumbent to reduce bandwidth requirements by using 

lossy compression. 

Low bitrate still-image compression can also play a major role in low bitrate video 

compression since some high compression image coding algorithms can be generalized 

from two to three dimensions, or can be combined with motion compensation for 

video coding (e.g. in MPEG-4). Some applications for which low bitrate image 

7 



and video compression (with high compression ratios) are necessary or advantageous 

are video-conferencing, cellular video-telephones, deep space communications and 

multimedia (for instance digital encyclopedias and electronic newspapers) [2, 3]. 

This thesis will focus on image coding with high compression ratios. The widely 

known compression standards from the Joint Photographic Experts Group (JPEG) 

are described in the following section in which we show why they are not necessarily 

suitable for low bitrate image compression. 

This thesis will also look at digital image halftoning, the problem of rendering or 

printing a continuous-tone (contone) or many-level image with fewer levels, often only 

two (black and white). Halftoning is studied as a result of the particular approach 

that is taken in this thesis with respect to low bitrate image compression (irregular 

sampling/interpolation) part of which (irregular sampling) can be applied to the 

problem of halftoning. 

1. 2 Motivation 

Though used widely as an image compression standard, the JPEG file format is not 

suited to low bitrates due to the presence of blocking artifacts and halos around 

edges (see Figure 1.1). JPEG is named after the acronym of its founding body, the 

Joint Photographic Experts Group. Blocking is a feature of most block-based image 

coding techniques, and though there have been many attempts, e.g. [4], to reduce 
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(a) Original camera­
man 

(b) Low bitrate cam­
eraman JPEG 

Figure 1.1: Example of blocking artifacts with low bitrate JPEG (app. 22:1 com­
pression ratio) 

the severity of this problem for JPEG, it is hard to completely eliminate. There 

is however a standard called progressive JPEG, also from the Joint Photographic 

Experts Group, which allows the progressive display of JPEG images with the same 

final image quality as non-progressive JPEG. The decoder for such images is currently 

implemented in most web browsers, but the blocking phenomenon still makes low-

bitrate JPEG unattractive. 

The Joint Photographics Expert Group also introduced JPEG 2000 which is based 

on wavelet technology. This was accepted as an international standard in December 

2000 [5]. JPEG 2000 converts the blocking artifacts evident with JPEG to fine 

lines and gradation of intensity or color within each block [6]. JPEG 2000 also 

provides Region of Interest (ROI) coding and progressive transmission. The cost, 

however, is a slower and more complex implementation than the Discrete Cosine 

Transform algorithm used by conventional JPEG. It is therefore desirable to devise 

9 



new low bitrate image compression schemes which combine the high efficiency of the 

commonly used JPEG with the less noticable artifacts of the JPEG 2000 standard. 

The major low bitrate image compression schemes used in practice fall into three 

categories: waveform, second generation and fractal coding techniques [3]. Each of 

these classes of methods however creates various artifacts in the compressed image. 

Thus in this thesis a less explored technique for low bitrate image compression is 

turned to, namely a combination of irregular sampling followed by scattered data 

interpolation. 

As mentioned in the previous section, this thesis also examines digital image 

halftoning, the reduction of color or gray level depth of an image. Halftoning has 

many applications, among them printing on bi-level printers, display on LCDs, the 

transmission of faxes, and image compression and transmission (where it is used in 

conjunction with inverse halftoning, the reverse process). Inverse halftoning can be 

achieved using various filtering approaches or neural networks, among other tech­

niques, but these are beyond the scope of this thesis. In this thesis, a new halftoning 

algorithm is compared to the standard available methods. 

1.3 Problem definition 

This thesis sticks to gray-scale images for the sake of simplicity, both for low bitrate 

image compression and halftoning. As mentioned in the body of this thesis, however , 
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many algorithms herein can be extended to operate on color images as well, despite 

the fact that color images are inherently more complex due to the presence of three 

color planes that are not necessarily correlated. The main problem that is explored 

in this thesis is the one of lossy compression of grayscale images with the maximum 

possible compression ratio (minimum possible bitrate) for use in low bitrate image 

compression/transmission without the noticable artifacts found in many methods. 

As will be seen in Chapter 6 of this thesis, irregular sampling can be used for 

the problem of halftoning, which has a rich and lengthy history. In the bilevel case, 

the visual illusion of different gray levels is created by using different configurations 

and/ or sizes of black and white dots. From a close proximity, it is obvious that the 

image is composed of only two shades. From a normal viewing distance, however, 

the human visual system cannot discriminate between the dots and instead visually 

integrates over them, creating the sensation of gray tones. The goal is to create 

halftones with as few visible textures and patterns as possible in reasonably short 

amounts of time. 

1.4 Approach to the Solution 

One way to compress an image is to record only the intensities of some pixels of the 

image while completely eliminating the intensity data for others. The problem then 

becomes one of deciding which pixels to keep and which to throw away in order to 
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simultaneously minimize the amount of information lost and the number of pixels 

retained. Such a process is known as sampling. 

One obvious method to sample an image is to do so regularly. For a one­

dimensional signal, regular sampling means that samples are taken at regularly 

spaced intervals. This is the same for two or higher-dimensional signals, but in 

these cases, samples are chosen on a regular grid, with spacings set to possibly dif­

ferent constants in each dimension. For both the 1-D and higher dimensional cases, 

if the sampling frequency is too low (below the Nyquist frequency, which is twice the 

maximum frequency in the spectrum of the image), then aliasing occurs, meaning 

that there will be some frequency distortion in the reconstruction from the samples. 

A regularly sampled image at two different relatively low rates and their reconstruc­

tions using an algorithm called Multilevel B-Spline Approximation (MBA) [7] are 

shown in Figure 1.2. Clearly if the spacing is too large, information is lost, but as 

the spacing decreases, the reconstruction becomes more faithful to the original image. 

The presence of step patterns in the reconstructions is a result of this reconst ruc­

tion algorithm acting on regular samples, but the main idea of aliasing comes across 

(frequency shifts are evident). The problem is with the sampling and not the MBA 

algorithm. Ideal reconstruction, though not implementable because of the infinite 

extent of the reconstruction filter, gives the same type of aliasing results. 

One method to avoid the aliasing associated with regular sampling is the use of 

irregular sampling, or sampling which is not on a regular grid. As observed in the 
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(a) Original Lena im­
age 

(b) MBA reconstruc­
tion of Lena regularly 
subsampled with pe­
riod 15 pixels 

(c) MBA reconstruc­
tion of Lena regularly 
subsampled with pe­
riod 4 pixels 

Figure 1.2: Aliasing on reconstruction with regularly subsampled Lena image 

paper by Robinson and Ren [8] the problem of choosing the best placement of samples 

for a given number of samples is ill-posed and NP-complete. Since the problem is 

NP-complete, the solution time is clearly super-polynomial. In fact , if n s samples 

of an m x n pixel image are to be taken , an exhaustive search of the "best" (giving 

the reconstructions of highest quality) ns locations requires C;:~) operations. So for 

images of typical dimensions, it becomes necessary to use strategies and heuristics 

to simplify the selection of a near-optimal solution. 

Sometimes images and other signals are irregularly sampled not by choice but by 

necessity. For example, it may be impossible to obtain astronomical images regularly 

through time because of atmospheric conditions, like cloud or rain [9]. This is also 

the case with ecological and environmental data because of the high cost of regularly 

sampling large areas of land or water in space and time as well as other practical 
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difficulties [10]. Such applications are not investigated in this thesis, but provide 

areas of extension of the methods presented herein. 

Once the irregular samples have been obtained, lossless compression can be per­

formed and the compressed samples may be transmitted or written to a file. Subse­

quen,tly, it becomes necessary to try to recover the original image from the sampled 

data with as high fidelity as possible to the original. This problem of recovery is 

referred to as scattered data interpolation, because in general the samples are not 

taken on a regular grid. Scattered data interpolation propagates the given informa­

tion at the samples to a usually fine regular grid; in the context of an image, to all 

the pixels of the original image grid. 

For further image compression, it is also possible to quantize the scattered data 

intensities either finely or coarsely, with the tradeoff of inferior reconstructed image 

quality. This can be viewed as lossy compression of the sample data. 

Irregular sampling and scattered data interpolation are tightly coupled problems, 

so it is not unusual for a sampling algorithm to be optimized for a specific reconstruc­

tion algorithm or vice versa. The quality of reconstructions for a given algorithm 

is also important because it potentially means that fewer samples need to be taken, 

and this increases the compression ratio. The entire process is shown in flow diagram 

form in Figure 1.3, adapted from [11]. 

As previously mentioned, the problem of digital halftoning is also looked at in this 

thesis, as an application of irregular sampling. There are many different approaches 
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Original Image 

Image Compression 

Irregular 
Samples of 

Original Image 

Lossless and/or 
Lossy 

Comp<ession of 
Samples 

Image Recovery 

Figure 1.3: Overall data flow for image compression/decompression 

to digital halftoning that appear in the literature, and these can be divided into two 

classes based on how the halftoning is performed [12] : 

• Point processes: The image to be halftoned is thresholded with a fixed array 

of values point-by-point. A point process uses ordered dither if the forma-

tion of the threshold array is completely deterministic, and is otherwise known 

as stochastic screening. Ordered dither processes can be further subdivided 

into clustered-dot and dispersed-dot methods. Ordered dither and stochastic 

screening techniques are more efficient and easily parallelizable than neighbor-

hood processes. 

• Neighborhood processes: As the name suggests, not only a given pixel 's inten-

sity in an image to be halftoned is needed; those in its immediate vicinity are 

also utilized. This makes neighborhood processes more powerful than point 

processes. The principal neighborhood process used for h alftoning is the pop-

ular error diffusion, first introduced by Floyd and Steinberg in 1975 [13] . 

In this thesis, a new progressive irregular sampling algorithm has been developed to 
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implement halftoning using a stochastic screen. 

1.5 Outline of Thesis 

There are seven chapters in this thesis. This first chapter is an introduction to the 

topic of image compression using irregular sampling and scattered data interpola­

tion, and halftoning. Chapter 2 gives an overview of existing irregular sampling 

algorithms in the literature, namely Farthest Point Sampling (FPS) and skewness 

based sampling. Chapter 3 introduces two novel progressive irregular sampling algo­

rithms- gaps and Faster Farthest Point Sampling (FFPS), both based on ideas from 

FPS. Test results comparing the existing and new methods are also included in this 

chapter. 

Chapter 4 presents a literature review on recent scattered data interpolation 

techniques, namely adapted 4-Nearest Neighbor Interpolation (adapted 4-NNI) and 

Multilevel B-Spline Approximation (MBA). A new scattered data interpolat ion tech­

nique based on MBA called New Edge-Directed Multilevel B-Spline Approximation 

(NEDMBA) is presented in Chapter 5 to improve the appearance of edges in the 

reconstruction of gaps, FFPS and skewness-based samples by MBA. A description of 

image inpainting using the Mumford-Shah model is included in this chapter as it is 

utilized by NEDMBA. As well, results of testing of NED MBA against the previously 

existing algorithms described in Chapter 4 are given in this chapter. 

16 



In Chapter 6, details of available methods for ordered-dither halftoning, the Mod­

ified Blue Noise Mask (MBNM), the Void and Cluster (VAC) method (both of which 

are stochastic screen algorithms) and Linear Pixel Shuffling (LPS) halftoning (a dis­

persed dot ordered-dither algorithm) are given. Then the application of FFPS to 

the problem of halftoning is described. A new halftoning algorithm called Farthest 

Point Halftoning is explained and testing results and comparisons are made with the 

existing standards. Finally, Chapter 7 presents conclusions based on the new results 

in Chapters 3, 5, and 6 and suggests areas for future work. 
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Chapter 2 

Irregular Sampling - Background 

2.1 Introduction 

Before discussing irregular sampling, it is important that it be motivated, and so 

it should be pointed out why regular sampling can be so poor. First the notion 

of sampling is reintroduced (actually resampling, since a digital image is already 

sampled regularly in space with period in both dimensions the distance between two 

adjacent pixels). Suppose the entire image is I , and that the image intensity at 

the pixel ( x, y) is I ( x, y). By sampling, it is meant that instead of representing the 

entire image I with the intensities of all of J's pixels, only some of the information, 

{ (xi, Yi ,I (xi , Yi)), 1 :::; i :::; N} is preserved, where N :::; N1, the total number of pixels 

in the image. Sometimes, it may be possible not to have to keep the information 

about the sample positions, and only record the sample intensities. In general, if 
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N < N1, then we would expect that there would be some loss of information. 

As mentioned in Chapter 1, regular sampling can lead to the appearance of 

aliasing in the reconstructions. In order to partially eliminate this phenomenon, 

an image can be sampled irregularly, i.e. not on a regular grid. This can be done 

uniformly, meaning that no region of the signal is preferred, for example with a 

jittered grid, where some randomness is added to the sample positions of a regular 

grid, or with a Poisson disk distribution [14]. This has been shown in practice to 

reduce aliasing at the cost of increased·noise. In fact , it can be shown that aliasing 

and noise satisfy a Heisenberg relation - below a certain limit, a decrease in one 

quantity is necessarily translated into an increase in the other [15]. Noise, especially 

high frequency "blue" noise, is less objectionable than aliasing to the human eye, so 

irregular sampling is a useful strategy for creating improved image reconstructions. 

For any signal, however, more information is carried in regions with high vari­

ation, for instance edges of an image. If these areas are sampled more densely, it 

is possible that less information would be lost . Such sampling is called adaptive 

sampling, whereas sampling which does not depend on the signal is non-adaptive. 

Image compression and irregular sampling techniques can also be divided into two 

other categories mostly related to the transmission of images: 

• Progressive compression/sampling : An approximation to the original image 

can be obtained if any prefix of the complete compressed file is used or the 
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transmission stopped at any point. The approximation grows more accurate 

as the compression/transmission process is stopped later, as there is a greater 

amount of pertinent information. In an irregular sampling context, only the 

first K samples are taken, where K is smaller than the total number of irregular 

samples. 

• Non-progressive compression: If compression is stopped at any point, the re­

construction from the file or transmitted sequence is not an adequate represen­

tation of the entire image. While this is the case with the standard GIF format, 

increasingly, file formats are becoming progressive because of its advantages. 

Progressive image compression/transmission is very desirable; for example on the 

Internet, the user can stop the loading of an image if he/she recognizes what it is 

and does not require any further detail. 

In an uncompressed image, it is possible for the pixel values to be stored in raster 

scan order. In general, however, when we take samples from an image, in addition to 

the intensities of the samples, it is necessary for the positions of the samples to also 

be transmitted. This decreases the compression ratio and bandwidth requirements 

for transmission. If an image is regularly subsampled, then the positions of samples 

do not have to be recorded if the starting position and the sampling periods (in each 

of the two dimensions) are transmitted. It is possible for much more complex and 

superior algorithms to exhibit the same property. This leads to two categories of 
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sampling algorithms: those requiring a point map, and those that do not, with those 

that do not clearly being favored. 

In this chapter, two existing irregular sampling methods for digital images are 

introduced - Farthest Point Sampling and skewness-based sampling. Farthest Point 

Sampling is a progressive image sampling strategy that does not require a point 

map. As will be seen, this strategy does not produce acceptable results for all 

images or all reconstruction algorithms. Skewness-based sampling is much faster, 

but unfortunately is not progressive in its published form, needs input parameters 

specific to the image being sampled, and requires a point map. A progressive version 

of skewness-based sampling is presented at the end of this chapter. 

2.2 Farthest Point Sampling 

In one dimension, in sampling a function on a finite length segment, it can be shown 

that the best progressive sampling strategy after n samples have been selected (where 

"best" means the one that leads to the least amount of information being lost from 

the original signal) is to choose the next sample (sample n+ 1) to be in the middle of 

the largest unsampled portion of the line segment [14] . This is assuming a stationary 

image model, meaning that the basic characteristics of the image do not change with 

position. This however is unrealistic for many real-world signals, especially images, 

and this strategy has to be modified as described on page 33. Such a characterization 
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of the best sampling strategy is not possible to obtain in closed form for two dimen-

sional signals [14], but by extension, the same process can be used in two dimensions 

and there is some confidence that it will still give good results. 

Definition of Voronoi Diagram Given a set of points P = {pi}~0 in 2-D space, 

the Voronoi diagram of P is a partition of the plane into tiles Ti such that Ti is a 

polygon, not necessarily bounded, containing all points which are closer to point Pi 

than to any of the other points Pk with k =J. i . A tile Ti is said to be contiguous with 

Ti if both Ti and Tj share a common edge. A vertex of a Voronoi diagram V D is any 

vertex of any tile of V D. 

i Vertex 

Figure 2.1: A simple labeled Voronoi diagram 

In practice, only bounded Voronoi diagrams are taken into consideration. These 

are formed when some bounded region R is divided into cells (i.e. tiles) and the 

plane outside of R is not looked at. This is done because the Voronoi diagrams will 

be taken over an image, which only has a finite extent. An example of a bounded 

Voronoi diagram with some of the relevant terms labeled is given in Figure 2.1. By 
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a theorem proven in [14], the point in R farthest from all points in a set of sample 

points S is guaranteed to be a vertex of the Voronoi diagram of S. This suggests 

that if SN = {si}~0 is a set of samples, the Voronoi diagram VDN of SN may be 

constructed, and then each of its vertices can be checked in turn to find the point 

which is the farthest from S N. This vertex can then be selected as the subsequent 

sample for a progressive sampling of R. Since some initial configuration has to be 

started with, samples at the four corners of the image Rand at a random point within 

the image are chosen. After selecting the next sample SN+l, the set of samples is 

SN+l = SN U SN+l, and the new Voronoi diagram V DN+l of SN+l must be created. 

V DN+l could just be generated from scratch, but in fact the addition of SN+l only 

changes V D N in a local manner, meaning that the information in V D N can be used 

for the creation of V DN+l· The method to do this was outlined in [16], and is 

described in more detail here. The theoretical discussion which follows is made more 

concrete by an example starting from page 29. 

Description of Incremental Voronoi Diagram Construction 

Definition of contiguity list For each point Pi in the Voronoi diagram, we main­

tain a contiguity list, CL(pi), which holds the information of the other points in the 

diagram to which Pi is adjacent. A point is considered to be adjacent to another point 

if their respective tiles share an edge. The points in this list are kept in counter­

clockwise order around Pi, making it easier to update the contiguity list when adding 
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a new vertex. The Voronoi diagram of a set of points can be fully recovered from 

the set of contiguity lists of its points, because each edge of a t ile is accounted for by 

the contiguity between t he two points on either side of the edge. In fact , this edge 

is the perpendicular bisector of the line joining the two points. 

Elaboration of constraints Since only bounded Voronoi diagrams are being dealt 

with - in this case Voronoi diagrams bounded by the extent R of the image we a re 

sampling - constraints, corresponding to the four lines forming the boundary of the 

rectangular region R, must also be taken into account. These constraints may appear 

in the contiguity lists of points, because the boundary of a vertex's tile can include 

part of a constraint if the tile is on the edge of R. Moreover, the four line constraints 

{ci}i:!_4 are permitted to have their own contiguity lists, so they are treat ed as 

points in their own right. The constraints are indexed with negative integers so 

that all objects in the VD are uniquely identified by their index, where objects are 

either samples or constraints. This generalization of allowing the constraints to have 

contiguity lists of their own makes updating the Voronoi diagram upon the addition 

of new vertices more straightforward. Whenever a new sample s is added, and the 

tile which is built up for this new sample has an edge on a constraint, t he constraint 

can be thought of as being a virtual point, the point being located at the reflection of 

s about the constraint. Observe that the position of this virtual point depends on the 

location of the sample s we are adding. In this way, the concept of contiguous points 
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can be generalized by the following. For all adjacent objects to s, the boundary 

between s and the neighboring object is made up of the perpendicular bisector of s 

and either: 

1. the object itself if it is a point or 

2. the virtual point associated with the object if it is a constraint. 

Updating V DN to V DN+l The procedure for updating a Voronoi diagram V DN 

to create V DN+l upon the addition of SN+l follows. A thorough description is 

included here since this full description of the updating of contiguity lists is not 

given in reference [16] where this incremental algorithm was first presented, and 

doesn't appear to be included anywhere else in the literature. The contiguity list 

of SN+l, CL(sN+l), is built up in clockwise order, and SN+l should be inserted into 

the contiguity lists of objects with which it ends up being contiguous. First , find 

the point (Jc of V DN which is the closest to SN+l· The notation (Jc is used because 

it starts with the same letter ('s') as sample, but it may also be a virtual point if 

the closest object to SN+l is a constraint. Let (70 = (Jc · (Jo is guaranteed to be in 

CL(sN+l), so that is why we start by considering it. Initialize the contiguity list of 

SN+1 to be empty. Go through the next 5 steps for each (Ji, where we start with 

·i = 0, and increment i with each loop: 

1. Take the perpendicular bisector P B i of SN+ l and (Ji (where (Ji can be a virtual 

point) . 
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2. Go through all the objects in the contiguity list of O"i, CL(O"i) and choose 

the one O"i+I whose perpendicular bisector with SN+l crosses P Bi the earliest, 

keeping in mind that we are traversing the boundary of the tile of SN+l in a 

clockwise direction. The determination of "earliest" is given below. As with 

most computational geometry algorithms, we must make comparisons between 

coordinates of points, and since these can be very close to each other, for the 

incremental Voronoi diagram construction, we used the long double type. In 

the implementation we used, the long double type took up 12 bytes, and so is 

more precise than the standard double type when distinguishing between near 

but distinct values. A long double value v1 was considered to be greater than 

another v2 if v1 > v2 + E, where we chose E = 2 x 10-11
. This value of E was 

selected because if it is too small, rounding errors may cause two equal points 

to be regarded as distinct , while if it is too large, then two distinct points may 

be considered to be equal. The latt er case may cause problems because when 

going around the new tile, we look for the next distinct vertex of the new tile. 

If the next vertex is very close to the previous one and is regarded as equal, 

then perhaps there will be no next distinct vertex, and the construction of the 

new tile cannot continue. Now we move on to the description of finding O"i+l , 

the next object in our march around the new tile. 

• If O"i is strictly to the right of SN+l (using the above E value) , then we 

26 



let ai+l to be the element of C L( ai) whose perpendicular bisector with 

SN+I intersects PBi below the midpoint of a line between SN+1 and that 

element of CL(ai), and the closest to this line's midpoint. To be strictly 

to the right of SN+I, the x-coordinate of ai must be greater than t hat of 

• If ai is at the same horizontal position as sN+l• then there are two cases 

depending on whether ai is below SN+l or above it (using the £ value) . If it 

is below, then we choose as cri+l the element of CL(ai) whose perpendic­

ular bisector intersects P Bi the closest to and to the left of the midpoint 

of a line between sN+ l and that element. If it is below, we choose t he one 

whose perpendicular bisector intersects P Bi the closest and to the right 

of this midpoint. 

• Finally, if CTi is strictly to the left of SN+l (once again using c), then we 

let ai+l be the element of CL(ai) whose perpendicular bisector with sN+l 

crosses P Bi above and closest to the midpoint of SN+ I and that element 

3. Now since SN+l is adjacent to cri, it must be inserted into its contiguity list. 

• If O"i is a virtual point while CTi+! is a x·egula r point, insert sN+ l in the 

cont iguity list of the constraint associated with cri after ai+l · 

• Otherwise, insert SN+l in the contiguity list of cri before a i+l · 
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4. Insert CJi at the end of the contiguity list of SN+1· 

5. If i > 0, O"i-1 and O"i+l (or the defining constraint if one is a virtual point) 

will sometimes no longer be contiguous because SN+l is now between them. If 

O"i-1 and CJi+l were indeed contiguous, then wait until the entire tile of SN+l 

has been formed. The contiguity is deleted if and only if the edge forming the 

border between O"i-1 and O"i+1 lies entirely in the new tile of SN+l· If this ends 

up being the case, then O"i+1 is deleted from the contiguity list of O"i-1 and O"i -1 

from the contiguity list of O"i+l· Before performing this deletion, also check 

that the boundary of the Voronoi cell of SN+l is not complete and a triangle, 

because if this is the case, the adjacency of CJi- l and CJi+l should be maintained. 

6. Repeat steps 1 to 5 until O"i+l = O"o. 

It is necessary to verify that the old boundary edge between the objects whose 

contiguity is being deleted ( o1 and o2) lies completely within the tile formed by the 

newly added sample, before the contiguity is deleted. If it does lie completely within 

the new tile (and the two were indeed contiguous before) , then more contiguities 

have to be considered for deletion. 

Call the following rule (consisting of this entire paragraph) D: If the contiguity 

between o1 and o2 was deleted, then o1 had to be in CL(o2 ) and o2 had to be in 

CL(o1) . If the element before o1 (remembering the lists are circular) in CL(o2) is not 

SN+l , then consider the contiguity between o2 and this object for deletion, otherwise 
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consider the contiguity between o2 and the element two before o1 in C L ( o2). The 

same is done for the element one after or two after o1 in CL(o2), and symmetrically 

consider the contiguities between o1 and the elements one or two before and after 02 

Then the contiguity list for the new sample is in clockwise order, so it is reversed 

to make it conform to the order of the previously existing contiguity lists of VDN. 

The contiguity between the first object in the contiguity list of SN+l and 0'1 (now the 

second last object, after reversal) is deleted in SN+l 's contiguity list, because of the 

cyclic nature of the list, and since the information was initially unavailable about 

the last element of the list when we were looking at 0'0 . Once again, the conditions 

for non-deletion are checked. 

Example of Incremental Voronoi Diagram Construction 

This algorithm is clarified through the use of an example of the addition of a seventh 

point to an already constructed bounded Voronoi diagram V D5 of six points. Before 

the addition of the 7th point (numbered sample 6 in Figure 2.2 since sample 0 is the 

first sample), the contiguity lists of all the samples and constraints are as given in 

Table 2.1. In that table, the constraints are labelled with negative integers, as in 

Figure 2.2. Samples are labelled with non-negative integers, and only the indices are 

included in the lists. Also note that the first four samples are located at the corners 

of the image region R, as per the convention. 
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Figure 2.2: Incremental Construction of Voronoi Diagram using Green and Sibson's 
Method 

Constraint/Sample Index Contiguity List 
-4 -1,0,3,-3 
-3 -4,3,5,2,-2 
-2 -3,2,4,1,-1 
-1 -2,1,0,-4 
0 -4,3,5,4,1,-1 
1 -1 ,0,4,-2 
2 -2,4,5,-3 
3 -3,5,0,-4 
4 1,0,5,2,-2 
5 2,4,0,3,-3 

Table 2.1: Contiguity lists for objects in Figure 2.2 before Sample 6 added 

The new sample (number 6) is closest to constraint -4, so O'o is the reflection of ss 

in the left-handed constraint. P Eo is the part of constraint -4 marked with arrows 

in Figure 2.2. The object in the contiguity list of constraint -4 whose perpendicular 

bisector with s6 crosses PB0 the first, going upwards, is so , which becomes 0'1 . 

Because O'o was a virtual point, insert s6 into the contiguity list of constraint -4 after 
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Constraint/Sample Index Contiguity List 
-4 -1,0,6,3,-3 
-3 -4,3 ,5,2,-2 
-2 -3,2 ,4,1,-1 
-1 -2,1,0,-4 

0 -4,6,1,-1 
1 -1,0,6,4,-2 
2 -2,4,5,-3 
3 -3,5,6,-4 
4 1,6,5,2,-2 
5 2,4,6,3,-3 
6 3,5,4,1,0,-4 

Table 2.2: Contiguity lists for objects in Figure 2.2 after Sample 6 added 

0. P B1 is the perpendicular bisector of s6 and s0 , and the object in C L( IJo) whose 

perpendicular bisector crosses P B1 first is s1. IJ1 = s0 is a sample, so s6 is inserted 

in CL(s0 ) (contiguity list 0) before s1 (1). This is ~J2 , so the contiguity between IJ2 

and p0 has to be considered for deletion. This is done after the formation of the new 

tile. 

The rest of the formation of the tile of s6 is not too complicated. From here 

on, only the indices of the points and constraints are used , and CL(i) = CL(si) 

for i 2:: 0, and CL(i) = CL(ci) for i < 0. Four is the object in CL(1) whose 

perpendicular bisector with 6 crosses P B2 first . So insert 6 in contiguity list 1 

before 4. The contiguity between 0 and 4 has to be considered for deletion. Then, 

insert 6 in CL(4) before 5, and consider the contiguity between 5 and 1 for deletion. 

Continuing on, insert 6 in CL(5) before 3, and mark the contiguity between 3 and 

4 as a candidate for deletion. The next object in the march around the new tile of 
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86 is -4, and since this was the closest object to 86 , the formation of the new tile is 

complete. Insert 6 in C £(3) before -4 and consider the contiguity between 5 and -4 

for deletion. Every neighboring object that is encountered is inserted into C£(6) in 

order, so that we get C£(6) = -4, 0, 1, 4, 5, 3, after which it is reversed. Also the 

contiguity between 3 and 0 has to be considered for deletion. 

Now it only remains to check which contiguities among the contenders have to 

be deleted. The contiguity between a2 and a0 , namely -4 and 1 does not have to 

be deleted, since they were not contiguous to begin with. The contiguity between 0 

and 4 is deleted because the edge between the tiles of the two samples lies entirely 

within 6's new tile (see Figure 2.2). This means 4 is removed from C£(0) and 0 is 

removed from C£(4). By RuleD, contiguities between 0 and 5, 0 and 1, 4 and 5, and 

4 and 1 have to be considered. These additional possibilities are added to the set of 

contiguities that are considered, and the original candidates are now looked at more 

closely. 5 and 1 were not contiguous, so this adjacency doesn't have to be removed. 

The same is the case with 3 and 4, and 5 and -4. Finally, 3 and 0 were contiguous 

and the edge between the two lies entirely within the new tile of 86 , so this contiguity 

is eliminated. By ruleD, contiguities between the pairs of objects 3 and 5, 3 and -4, 

0 and -4, and 0 and 5 have to be looked at. None of these contiguities are categorized 

as having edges completely within the new tile, except that between 0 and 5, which 

was one of the pairs to be considered by the first use of rule D. So it is only necessary 

to examine the pairs of objects which were candidates from the initial application of 
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rule D. Of these pairs, 0 and 5 is the only one which has to be deleted. Another 

(recursive) use of rule D is needed, but this does not add any more deletions. After 

performing all of the above steps, the contiguity lists of all the objects are as shown 

in Table 2.2, and the same procedure is followed for the addition of the next sample, 

sample 7, which is necessarily a vertex of this new updated Voronoi diagram V D 6 • 

Adaptive Farthest Point Sampling As was mentioned at the beginning of this 

section, the Farthest Point strategy is only valid for a stationary model of the image 

being sampled, and is not good for typical images, where we would want more samples 

closer to details and fewer in smooth regions. Farthest Point Sampling on its own 

does not change the sample density depending on the image but does clearly break 

up the regular grid of regular sampling. To take into account the characteristics of 

the image being sampled, a weighted distance was proposed in [14]. This distance is 

defined to be as follows. If v is any vertex of the Voronoi diagram at any stage, then 

its weighted distance from all samples can be calculated by 

N ( v) is the set of the three nearest samples to v taken so far , and R( v) is the 

minimum distance from v to the samples taken so far. B min is a lower bound on the 
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bandwidth, calculated by 

I(p) is the image intensity at point pin the image and M is the maximum intensity 

permitted in the image, for example 255 for 8-bit grayscale. d(p, q) is the Euclidean 

distance between points p and q and it is assumed without loss of generality that 

I(q) 2: I(p). N(v) can be easily found. Suppose the weight of a vertex v is being 

calculated. If it is defined by three samples (and is thus their circumcentreL then 

these three must be the elements of N(v). Otherwise, v must lie on a constraint. It 

has been proven by this author that N(v) is contained in a very limited subset of the 

samples in the entire Voronoi diagram. The point v is a vertex, and so is a corner of 

a set of tiles Tv. Then only the set of samples whose tiles border Tv, along with the 

samples whose tiles are in Tv have to be checked. The three closest samples must be 

included in this set of samples. 

Now the motivation for this formula for the weight of a vertex is examined more 

closely. Obviously, the further a vertex is away from the previous samples, the higher 

the weighted distance will be, due to the presence of the R2(v) factor. The higher 

that J(q) is, the greater the first arcsin term will be in Bmin(P, q) , and the lower that 

I(p) is, the lower the second arcsin term in Bmin will be. So the greater variation 

there is in the intensities of pixels in N(v), the greater Bmin(· , ·)will be, and thus the 
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greater that W ( v) will be. So regions with high variation in the image will be sam-

pled more densely than uniform regions. At each step of the incremental construction 

of the Voronoi diagram, the vertex with the maximum weighted distance is chosen. 

To do this, it is necessary to go through all of the vertices of the Voronoi diagram. 

Only contiguities are recorded- to get the vertices, the generalized circumcentres are 

computed of any object and any two consecutive items in its contiguity list, where 

the first and last elements of a contiguity list are also considered to be consecutive. 

By generalized circumcentre, it is meant that virtual points are substituted for con-

straints. Given three points, {Pi = (xi,Yi), 1 ~ i ~ 3}, the circumcentre (xc,Yc ) is 

given by [17]: 

When the weighted distance is used to select the next vertex in FPS, the sampling 

method is known as adaptive Farthest Point Sampling as it depends on the image. 

Simply selecting the farthest point at each step without reference to any image is 

referred to as nonadaptive or uniform Farthest Point Sampling. From now on, if it 

is not explicitly stated, the adaptive algorithm is assumed. Finding the vertex of the 

Voronoi diagram with the largest weight is potentially a very slow operation if the 

naive approach is taken and all.of the vertices of the Voronoi diagram are searched 
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through at each iteration. Instead, a great improvement in speed can be made if a 

balanced binary tree of all the vertices in the Voronoi diagram is used; this can be 

accomplished by using the set container in STL [18] (The C++ Standard Template 

Library written by Silicon Graphics), sorted in decreasing order by vertex weight, 

since set uses a red-black balanced binary tree to store its elements. 

Although the reconstructions from samples obtained from Farthest Point Sam­

pling are not necessarily as good as those from other sampling methods, one advan­

tage of FPS over other sampling techniques - for example skewness-based sampling 

which is described next - is that it does not require the transmission of the point set. 

As long as the position of the first non-corner random sample is known, the rest of 

the samples are uniquely determined. This is obvious for the nonadaptive version of 

FPS, but it also holds for the adaptive version. This is because the points in the con­

structed Voronoi diagram V DN at any stage N are only previously selected samples. 

Thus, the weighted distances of each of the vertices of the diagram, depend only on 

the distance of the vertices to the previous samples, and the intensities and distances 

between the three closest samples to each of the vertices. After transmitting the 

gray-levels of the four corners and the position and gray-level of the first random 

point, it is only necessary to transmit the intensities of the subsequent samples. 

An example of taking 3035 samples of the zelda image with adaptive Farthest 

Point Sampling is given in Figure 2.3, where the samples are overlaid on the original 

image as white dots. These samples represent about a 21.6:1 compression ratio. 
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Figure 2.3: 3035 Farthest Point samples of zelda 

2.3 Skewness-based Sampling 

2.3.1 Basic algorithm 

In 2001, in response to the supposed high complexity of Farthest Point Sampling, 

Ramponi and Carrato devised a new irregular sampling algorithm based on local 

skewness [11]. This sampling algorithm, however , was designed primarily for recon­

struction based on 4-Nearest Neighbor Interpolation ( 4-NNI) which is described in 

the same paper. As well, unlike Farthest Point Sampling, it is not truly progressive 

(samples are not generated one at a time), so it is not possible to control a priori 

how many samples will be taken. Finally, certain parameters for the algorithm are 

image specific and must be chosen at least partly based on trial and error and on 

previous knowledge of the image characteristics. 

37 



In the field of statistics, the sample skewness of a set X = {Xi, 1 ::; i ::; N } is 

defined to be sk(X) = 1; 2::::1(xi- J.t)3 , where f-1, is the mean of the elements of X. 

For an image I, the local sample skewness is based on a 2-D mask centered on a point. 

The mask is a set of points centered on the mask origin (0,0) which sp~cifies which 

points around ( i, j) are used to compute the skewness. For this application, we use 

a 5x5 square mask, so that M = {(i, j)li,j E Z, Iii ::; 2 and IJI::; 2}, and the sample 

skewness of the point (i , j) is sk((i,j)) = 
1
11

1 
I:,(i',j')EM(I(i + i',j + j')- J.t(i , j))3

. 

It turns out that pixels in an image which are either close to or exactly on edges 

have skewnesses with high absolute values. For 4-NNI, in order to retain the most 

information about the original image with the fewest number of samples, it is not 

desirable to have any samples in uniform or linearly varying areas, or exactly on edges, 

but it is desirable to have many samples close to edges and in heavily textured regions. 

These specifications correspond exactly to pixels with high absolute skewness values 

except for those precisely on edges, which may also have high skewness magnitudes. 

Since the goal is to obtain sampling grids with image-dependent concentrations, 

pixels with low skewness absolute values are sampled more sparsely than those with 

high skewness absolute values. To expand upon this, a multiresolution approach 

is used, with differing skewness thresholds and radii of exclusion for each level. A 

sampling grid from level 1 to level n is built up. First, the skewness sk(i,j) of 

each pixel (i,j) is calculated and then normalized to sk(i,j) = sk(i,j\ c , "' ) ' 
max(i' ,j') E l s t ,) 

where I is the entire image. At level l, all pixels which have Bt- l < s-k(i , j) < 81 
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(1 :::; l :::; n), where the ek 's are skewness thresholds, are taken, but only if they 

satisfy another condition. They must satisfy a radius of exclusion r1, specific to the 

level l. This means that the sample that is chosen next is at least a distance of r 1 

away from all samples already selected, either in lower levels or in the current level. 

Because samples in the same level are considered when accounting for the radius of 

exclusion, some ordering for the current level's samples must be taken- a raster scan 

order is chosen for its simplicity, and Ramponi and Carrato report that this doesn't 

have much of a detrimental effect on the results, despite the fact that it is not as 

general as possible. An additional limitation on the samples is that they must have 

gradient magnitude (measured for example by the Sobel operator, see Section 3.1.2 

for more details) less than a threshold e9 , given below The skewness thresholds e1's 

are an increasing sequence of numbers with eo = 0 and en = 1. The rz's are strictly 

decreasing positive numbers. 

At each levell, a raster scan is performed and a sample chosen only if it satisfies 

the gradient, skewness and radius of exclusion requirements. Because the r 1's are 

decreasing and the e1's increasing, pixels with higher skewnesses (except those pre­

cisely on edges) are sampled more densely than those with low skewness magnitudes, 

as desired. The net effect of this sampling algorithm is to sample linearly varying 

and uniform regions very sparsely, with double rows of samples around the contours 

of the image. An example is given in Figure 2.4, where the double rows can be 

clearly seen. Note that the same number of samples are taken as in Figure 2.3. The 
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parameters for this sampling are n = 3, Bs = [0.0015, 0.004, 0.008], r = [15, 11 , 7, 2], 

and ()9 = 128. 

Figure 2.4: 3035 Skewness-based samples of zelda 

2.3.2 Progressive Skewness-based Sampling 

As stated previously, one of the drawbacks of the skewness-based sampling given 

in [11] is the fact that despite its multiresolution nature, samples are not chosen 

progressively. All the samples at a given level have to be transmitted before the next 

higher resolution image can be reconstructed because the samples in any given level 

are generated in raster scan order. Using Linear Pixel Shuffling [19], it is possible 

to remedy this problem. It is proposed in [11] that the bitstream be selected in a 

pseudo-random sequence, but this is not followed up on; using LPS as a method by 

which the weaknesses of raster scan sampling can be overcome is proposed for the 
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first time here. The aim of the LPS method by Anderson is to efficiently order the 

pixels in an image so that the image is "jumped" about; pixels which are close to 

each other are far apart in the ordering. The details are now given. 

Let Go = 0, G1 = G2 = 1 and Gk = Gk-l + Gk-3 for k > 2. The negative 

indices of G can be determined by the same rearranged Fibonacci-like recurrence 

equation, namely Gk-3 = Gk - Gk-l · If the input image is r rows by c columns, 

we define a square table with sides Gn (Gn ;::=: max(r, c)) such that the entire image 

can be fit inside the table. Tpq is set to (pGn-2 + qGn-l)(mod Gn)· It can be shown 

that values that are close in number are far apart in distance in the table. So if 

the pixels with entry 0 in the table are sampled first, then those with entry 1, etc. , 

all parts of the image will be visited without discriminating agm(ns~:~:1 p::::l)ar 

section. To go through the pixels in this order, the matrix M = 

G_n Gn-2 

is used. Simply perform the following algorithm to change the raster-scan ordering 

of the skewness-based samples to a progressive scheme (in the code ' indicates 

transposition): 
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for i = 0 to G_n do 
for j = 0 to G_n do 

(x, y)' = M* (i, j)'; 
if (x, y)' is a sample from skewness-based sampling, 

take (x, y)' as the next LPS sample. 
end if 

end do 
end do 

2.4 Conclusions 

In this chapter, two previously existing irregular sampling algorithms- Farthest Point 

Sampling and skewness-based sampling were presented. Farthest Point Sampling has 

two forms - non-adaptive and adaptive. The sampling densities of both adaptive 

FPS and skewness-based sampling conform to local image characteristics; basically 

portions of the image with high variation are sampled more densely than those which 

are more uniform. Irregular sampling grids resulting from these methods for some 

test images will be given in Chapter 3, compared with the results of new progressive 

irregular sampling methods developed in that chapter. The details of an improvement 

to skewness-based sampling, making it progressive, were also given in this chapter. 
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Chapter 3 

New Progressive Irregular Sampling 

Methods 

3.1 The gaps method for irregularly sampling an 

. Image 

3.1.1 Introduction 

This section presents a new progressive irregular sampling technique called gaps 

which was developed to give good reconstructions, and to be reasonably computa-

tionally efficient. The originating motivation was to approximately emulate unopti-

mized Farthest Point Sampling by means of a less computationally complex method. 

The idea behind the gaps method is that at any stage in the progressive sampling, 

samples already chosen influence the closest distance of a pixel to any sample only 
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for pixels close to them. In other words, if a sample is far away from a pixel, then it 

is unlikely that it is the closest one to that pixel and so can be safely ignored. The 

gaps algorithm can be run, like FPS, in both adaptive and non-adaptive modes. The 

following section contains a detailed description of gaps with experimental results 

given in Subsection 3.4.2. 

3.1.2 Algorithm Description 

Calculation of gap magnitudes 

As noted in the introduction, the simplifying assumption of gaps is that a given 

sample is the closest sample to a position in an image only for positions that are 

close by. For simplicity, we can say that a sample is close to a pixel if it is within 

a certain distance horizontally or vertically from it . So around each already chosen 

sample, a cross structure is created, as shown in Figure 3.1. 

Each of the four lines in the cross is of length max(i,j)EI G(i, j)f V'i, where G(i, j) 

is defined below to be the gap magnitude of pixel ( i, j); the gap magnitude function 

G(i,j) varies with iteration number. I is the set of pixels in the entire image. 

G varies with iteration number because as samples are chosen, the maximum gap 

magnitude changes if the new sample cuts off the previously existing gap of maximum 

magnitude. 

To implement the method, linked lists of column numbers of samples influencing 
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Figure 3.1: Intermediate state of gaps algorithm for a 256x256 sized image 

each row are stored for each row of the image while linked lists of row numbers of 

samples influencing each column are stored for each column of the image. Ri is the 

row list for the ith row, while Ci is the column list for the jth column of the image. 

For example, in Figure 3.1, the list for column 33, C33 , has entries containing row 

numbers 0, 62, 205 and 255. 

In a manner similar to the Farthest Point Sampling (FPS) algorithm, the four 

corner pixels are selected as the first four samples. The horizontal and vertical gap 

values, which roughly measure how far away each pixel is to the closest sample 

horizontally or vertically, are then calculated for each pixel in the image. To find 

the horizontal gap value of the pixel ( i, j) the row list Ri is examined to find which 

two samples 81 and 8 2 in the row list R;, that pixel ( i, j) lies between. Then the 

perpendicular bisector of these two samples is taken. Which of the two samples 8 1 or 
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82 lies on the same side of the perpendicular bisector as the pixel ( i, j) is determined 

and the horizontal gap value GH(i , j) is calculated to be the Euclidean distance of 

this closest sample to the pixel ( i, j). A similar procedure is used to find the vertical 

gap value Gv(i,j) for each image pixel. The overall gap magnitude G(i , j) of the 

pixel (i,j) is defined to be G(i,j) = min(GH(i,j),Gv(i,j)). In fact, the calculation 

of Gn can be more easily made by letting GH(i,j) = min{d((i,j) , 81), d((i,j), 82)} 

since this encapsulates the bisection and nearest point operations described above. 

Here, as before, d(x, y) denotes the Euclidean distance between the pixels x and 

y. In Figure 3.2, GII(i,j) = min(GH1,Gm) and Gv(i , j) = min(Gv1,Gv2), so that 

Figure 3.2: Calculation of the gap magnitude of a pixel ( i , j ) 

A special case occurs when ~ or Cj is empty, or when the first entry of one of 

these lists is not 0, or the last entry is not equal to the maximum possible value 

(the width or height of the image for row and column lists, respectively). If a row or 
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column list falls into one of the last two cases, it is said not to have a proper endpoint. 

For simplicity, suppose that a row list is being considered. Define the row group "/i 

for an empty row i to be the set of adjacent consecutive rows with lists which are 

empty, and "'i for a row with no proper endpoint to be the set of adjacent consecutive 

rows with lists which have the same first or last entry as row i . Those adjacent rows 

with the same first entry are taken if the first entry of the row under consideration is 

not 0 or those with the same last entry if the last entry of the row being considered 

is not equal to the maximum possible value, namely the width. The intersection of 

both these sets is taken if the row list has neither first entry 0 or last entry the width 

of the image. 

A new parameter for the algorithm, fillfactor, must be introduced. The closest 

sample which is within fill factor x max(i,j)EI G( i, j)/ ../2 of row i is used to fill in "'i· 
Suppose that the closest sample to the row is below it. By filling in, we mean that 

an entry for the closest sample is inserted into each of the row lists which are either 

empty or up to the top row in "'i· If any rows continue to have no proper endpoint , 

these are recursively filled in if possible using the same procedure. 

After the filling-in stage, there may still be rows which are empty or which have 

no proper endpoint. If there are empty rows, the gap magnitude of the pixels in 

these rows are computed as being the distances to the closest samples. If there are 

rows with no proper endpoint, then the gap magnitude is taken to be the distance to 

the sample closest to that row's gap. This sample must satisfy the further condition 
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that it (the closest sample) is to the left of the first sample in the lists of the rows of 

'Yi if the row has no proper endpoint on the left, and to the right of the last sample 

in the lists of the rows of 'Yi if the row has no proper endpoint on the right . After 

this procedure, all rows and columns have correctly defined row and column lists 

respectively. 

Next, in the non-adaptive scheme, the weight W of each pixel is defined to be 

W( . . ) = F ( G(i, j) ) 
~, J ., ., 

max(i' ,j')EI G(~ , J) 
(3.1) 

where typical examples of the function F(x) are .ifX and arctan(llx;~J+arctan(3) . The 

second example is chosen principally because of its inflection point, and we will 

justify the use of a similar type of function in the paragraph before Equation 3.5. We 

included a multiplicative factor in [20], i.e. W(i,j) was described by the equat ion: 

W(i,j) = Ma x F( G(i,ihc' ')) but further investigation showed that this is 
max(i', i ')E l t 'J 

unnecessary as only the relative weights of the image pixels are important. 

Adaptive Gaps 

Unlike non-adaptive gaps, in adaptive gaps, the edge magnitude of the pixel being 

considered as well as those in its neighborhood have an effect on W(i , j ). T his 
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function can be computed using the general formula: 

W(i,j) = H(i, j, l, {G(i', j')}(i',i')EJ, {hMask(i' , j')}(i',j')EJ, I(i, j)) (3.2) 

Notice that W(i,j) depends as well on the iteration number l in the case of 

this general formula. For the calculation of W( i, j), H should be increasing with 

respect to G(i,j), since G(i,j) roughly approximates the distance of (i ,j) t o the 

closest sample, and the larger this number is, the more likely that this pixel should 

be sampled next. hMask(i,j) is a function of the Sobel edge magnitudes in a mask 

centered on pixel (i , j), and once again H should increase with increasing hMask for 

any given position. 

We briefly digress to discuss the Sobel operator. Horizontal (Sx) and vertical 

(Sy) Sobel masks of dimensions 3x3 are shown in Figure 3.3. Each of these masks is 

convolved with the image. An Ex value is obtained from convolution of Sx with the 

image and an Ey value is obtained from convolution of Sy with the image. The final 

gradient magnitude is found by the formula Sob( i, j) = .J E; + E;. The higher the 

calculated gradient magnitude of a pixel is, the stronger is the "edgeness" character­

istic of that pixel. 

We now return to our discussion of the pixel weights for adaptive gaps. One 

example of a function hMask(i , j) is Sob~~~k (i, j), where Sob~~~k(i, j) is the maximum 

Sobel edge magnitude in the mask centered on pixel (i,j), so that pixels within the 
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S= y 

1 

0 

-1 

2 1 

0 0 

-2 -1 

(b) Vertical 3x3 Sobel Mask 

Figure 3.3: 3x3 Sobel Masks 

mask radius of strong edges are heavily weighted. Another example is Sob~:~k( i , j ) -

Sob(i,j) . This function tends to weight more heavily pixels which are in smooth 

regions close to strong edges. This second example for h Mask ( i, j) is a good function if 

the gaps samples are to be used with adapted 4-NN interpolation (described in more 

detail in Section 4.2) because one of the criteria listed in Ramponi and Carrato's 

paper [11] for sample selection for this type of interpolation is that there should be 

many samples close to edges but not exactly on them. 

Observe that the above weight function depends on l , the number of the sample 

we a re currently choosing. The purpose of this iter ation d ep endence is to increase 

the adaptivity of the sampling process as it progresses. At the beginning, not much 

information about any part of the image is known, so sampling should be done rather 
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regularly, ensuring that no portion of the image is omitted. Only after this do we 

wish to obtain the edge information. The values i and j come into play because 

G( i, j) and hMask( i, j) are extremely important parts of the weight calculation. We 

call the initial phase where the image is sampled rather regularly the quasi-adaptive 

stage, while the latter phase, the adaptive stage. The transition point between the 

two phases depends on an image-dependent parameter (i.e. , an iteration number) 

called cutoff which is described more fully later by Equation 3.11. The weight of 

each pixel in the adaptive stage has two terms, while the weight of each pixel in 

the quasi-adaptive stage has three terms, both based on the general form of W(i, j) 

given by Equation 3.2. We now give and describe the weight expressions for both the 

adaptive and quasi-adaptive stages, starting with the adaptive stage as its formula 

is simpler. The exact form of H will be expanded upon for both these stages. The 

presence of J(i,j) or the image intensity at pixel (i,j) has not been explained - it is 

present only in the expression of H for the quasi-adaptive stage, and it will become 

clear why it is needed when we go into further detail of that stage. 

Adaptive stage Recall from Equation 3.2 that the weight W of a pixel (i,j) in the 

image I being sampled depends in general on the gap magnitudes G and the hMask 

of all the pixels in I as well as the position of the pixel and the iteration number 

l. After a certain number of iterations (i.e. after iteration cutoff), the form of the 
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weighting function W for pixel ( i, j) can be simplified as follows: 

W(i ') = M xF ( G(i, j) )+M xE ( hMask(i, j) ER k( . ·)) , J c ., ., E ., ., , an z, J , 
max(i',j')EI G(z, J) max(i' ,j')EI hMask(z, J) 

(3.3) 

where Me is the gap coefficient and Ms is the edge coefficient, with both parameters 

being experimentally determined, and E and Fare functions that we now give. Note 

the lack of dependence on the iteration (sample) number l for this adaptive stage. 

For efficiency reasons, we keep theE(·) term in Equation 3.3, for both the adap-

tive and quasi-adaptive stages. The ERank function will be elaborated upon from 

the bottom of page 59, but basically measures how important hMask(i ,j) is relative 

to the other hMask values in the image (its rank amongst the sorted hMask values 

divided by the total number of pixels in the image). The E( ·) term should be larger 

for large hMask and ERank values and smaller for small such values. It is also desired 

that the ERank value has more influence than the raw hMask value of a pixel, since if 

a pixel has low BRank and high hMask it should be weighted less than one with low 

hMask and high ERank, which is more important overall to the image. To achieve 

these goals, we let 

E(x,y) = \}x+yv"Y (3.4) 

Next, the function F taking the gap magnitude G(i,j) as an argument should 

not distinguish too much between large and medium sized gaps, and pixels with 
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extremely small gaps should not be weighted heavily. So we let 

F(x) = arctan(20x- 3) + arctan(3) 
arctan(17) + arctan(3) 

0.8 

/------------- -- ··-

/ 
I 0.6 

~(x) 

0.4 I 
I 

0.2 _/1 
0 0.2 0.4 X 0.6 0.8 

(3.5) 

Figure 3.4: Function F(x) used for gap magnitude contribution to pixel weight after 
iteration cutoff 

As shown in Figure 3.4, this function F(x) ranges from 0 to 1 on [0,1], while 

E(x , y) ranges from 0 to 2 on its domain, [O,l]x[O,l]. An alternate formula for W(i , j ) 

can be formed by taking the product of the two terms in the expression for W(i , j ) 

instead of the sum, but this has not been experimented with. 

In [20], Shahidi and Moloney argued that after W( i, j) has been found for all 

image pixels, each value should be multiplied by a uniformly distributed random 

number between 0 and 1. This step is not necessary if random number generation 

is not available. Instead, as stated earlier, the pixel with the largest W( i, j) can 

be chosen . In some experiments, the use of random multiplication of W(i, j ) and 
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simply taking the largest W( i, j) without multiplication are compared. In terms of 

efficiency, it is better not to use the random multiplication step since if we do use it , 

the possibility of an optimization of gaps using a balanced binary tree is eliminated. 

If the W value of each pixel were to be multiplied at each iterat ion by a random 

number, then it would be impossible to store the calculated values from step to step. 

However, if the random multiplication is not used, then the pixel with the greatest 

resulting W is chosen as the next sample. There will be more details on this later in 

Section 3.4.2. 

As with nonadaptive gaps, only the relative magnitudes of the weights are impor-

tant, so we can eliminate one of the parameters in Equation 3.3 by normalization, 

Quasi-adaptive stage In the previous subsection, the formula for the weight func-

tion for iterations greater than cutoff was given. Now we give the weight function 

for the initial quasi-adaptive stage. This weight function is more complex than that 

for the adaptive stage and has the form: 

W(i ') = M ( hMask(i, j) z) X F ( G(i ,j ) ) 
) J G h ( ., '') ) l G( ., '') max(i', j')El Mask z ,) max(i',j ')El z ,J 

(3.6) 

+M , E( hMask(i , j) ER k( ' ·)) 
EX . ( ' ' '')' an Z,J 

max(i' ,j ' )EI hMask z , J 

B ( · . l G(i, j) h!v!ask(i, j) I ( . ·)) 
+ z, J, ' G('' '') ' h ('' '')' t, J . max(i',j')EJ z ,J max(i',j')El Mask z , ] 
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We want to sample those pixels with lower hMask values more frequently in this 

stage since they will not be sampled as often later on. It may be argued that it would 

be better to sample those pixels with low Sob values instead, but this does not turn 

out to be a good strategy for masks which contain pixels more than distance 1 away 

from their centres, because such pixels will have both high hMask and low Sob values 

which means that they will be too heavily favoured. Though low hMask pixels are 

preferred in the initial stages, theE term remains for these iterations, and this term 

is high for large hMask and BRank values, meaning that the pixels with low Sob and 

high hMask values will have a much greater chance of being sampled. 

0.8 

0.6 
(x) 

0.4 

0.2 

0 0.2 0.4 X 0.6 0 .8 

Figure 3.5: Function F cutoff (x) used for gap magnitude contribution t o pixel weight 
2 

at iteration cut;!! 

For the quasi-adaptive stage, the weight has three terms which are added together 

as in Equation 3.6. One (the second t erm), exclusively involves the edge magnit udes 

of the image, and is identical to the corresponding t erm in t he adaptive stage. In the 

adaptive stage weight computations, another term (the first) uses the gap magnitudes 
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G( i, j) of the image with a fixed weight Me for this term. Before the cutoff, the 

coefficient Me of this term is gradually decreased to its final value at the adaptive 

stage, with this decrease dependent not only on iteration number but also on the 

hMask value of the pixel. The higher hMask is, the lower the weight should be. As 

well, the function F1 is an arctan curve shifted from right to left. This is shown in 

Figure 3.5, and is done to increase the likelihood of large gaps over smaller gaps being 

chosen at the beginning. So, instead of the term Me x F( e(i,jhc' .,) ) where Me 
max(i' .i')E 1 t ,J 

is a constant, and F does not depend on iteration number, as used in the adaptive 

stage (see Equation 3.3), the more complex formula: 

M ( hMask(i, j) z) X F. ( G(i, j) ) (3.7) 
e max(i',j')EJ hMask(i', j') 1 

max(i',j')EJ G(i', j') 

is used in the quasi-adaptive stage. 

A smooth transition from quasi-adaptive to adaptive sampling is preferred, so 

that there is no sudden jump between the two states. Let C(Z) = (cut~ff ) 2
. Then, to 

satisfy all the desired criteria, the functions for this term (Equation 3. 7) are defined 

as follows: 

Me(h,l) - 7.0 - 4.3C(l) - 2.0h(l- C(l)) (3.8) 

(3.9) 
arctan(20x- (17- 14C(l))) + arctan(17- 14C(l)) 

= 
arctan(3 + 14C(Z)) + arctan(17 - 14C(Z)) 
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The final term B(i,j, l, {G(i',j')}(i',j')EI, {hMask(i',j')}(i' ,j')EI,I(i,j)) in the 

weighting function before iteration cutoff tries to increase the weight for pixels in 

bright homogeneous areas, but also ensures that the distance to previous samples is 

not too small. The formula for this term is: 

B (· . l G(i, j) hMask(i, j) J(i ·)) = 
~. J, , ., ., , ., ., , , J 

max(i',j')El G(z, J) max(i' ,j')El hMask(~, J) 
(3.10) 

2_0 3 G(i, j) (1 _ C(l)) ( 1 _ hMask(i, j) ) (I(i , j)) 
maX(i',j')EI G(i', j') max(i',j')EI hMask(i', j') M 

All the variables in the above equation have been discussed, except for M, which 

is simply the maximum gray-level of the image. The higher I(i,j) and the lower 

hMask( i, j) are, the higher this B term is overall, and this B part of the entire weight 

decreases to 0 quadratically. The use of a linear decrease instead of C(Z) was found 

to make the sampling switch to full adaptivity too quickly. Finally, the first part 

of the product is 3 G(i,j~('' .,) , where clearly as G increases, meaning that the 
max(i',i')EI • ,J 

pixel is further away from previously selected samples, the higher this part of the 

product becomes. 

Adaptive Gaps Parameters As already mentioned, when an image is being sam-

pled with gaps or any other algorithm, it is generally true that it is desirable to 

sample the image fairly regularly at first, not adapting too much to its specific char-

acteristics. Only after this do we want to capture the edge information - this helps 
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improve the progressive nature of any irregular sampling scheme, so that if the sam-

pling is stopped at any stage, the reconstruction is more faithful to the original. In 

the gaps algorithm, the transition between the two stages is image-dependent. 

Multilevel B-Spline Approximation (MBA) is a scattered data interpolat ion algo-

rithm which is explained in Section 4.3. There, it will be seen that the spline surface 

for each level is constructed to minimize the sum of squares deviation of the control 

grid values from zero. It is necessary therefore to sample homogeneous regions of 

higher intensity more densely than those with low intensity. In order for gaps to work 

well with MBA, the intensity distribution of the pixels with low edge magnitudes in 

the image is used. Let U = {(i,j)ihMask(i,j) < T}, where Tis a parameter that is 

set to 40, since hMask values below this are quite low, as determined experimentally. 

Let the image haveN pixels and the average intensity of the pixels in U be U. Then 

the cutoff between quasi-adaptive and adaptive sampling is determined as follows: 

KUIUI 
cutoff = LCm + N J (3.11) 

where Cm is the minimum possible cutoff, and K is a proportionality constant de-

termining how fast cutoff varies with respect to 0~1. For our tests, Cm was set to 

150 and K was set to 600. The higher that U is, the higher the cutoff is. This is 

what would be expected since as already said, homogeneous bright regions have to 

be sampled more densely than dark ones, and so if U is higher, so should be the 
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cutoff for quasi-adaptive sampling. Note that some pixels with hMask = 0 will be 

those exactly on edges, but since the number of such pixels is very low, and the 

brightnesses of these pixels are very close to those in the regions they enclose, this 

does not have much of an effect. Additionally, when lUI, the cardinality of U, is 

larger, this means that there are more homogeneous regions to sample, so the cutoff 

should also be higher. 

Now we move on to the explanation of the ERank function . As the name suggests, 

the ERank function measures the rank of hMask of its argument among all the hMask 

values in the image. Because there are many pixels with very low hMask values, the 

approach is taken of putting the hMask values in different bins, so that ERank( i , j) 

is not very high for pixels with very low (less than T) hMask values. Assume N (i,j) 

is the number of the bin that corresponds to pixel (i,j). Then N(i,j) is determined 

as follows: 

{ 

0 
N(i,j) = 

l hMas~~j)-T J + 1 

if hMask(i,j) < T 
(3.12) 

otherwise 

where NB is the number of hMask values in each "bin". "Bins" are used in order to 

treat pixels with similar hMask values in the same manner (at least for their edge 

terms in their gap magnitude calculations) . If there are many pixels with hMask 

values close to each other, then their ranks will differ widely, while their raw edge 

magnitudes will not. The value of NB is set to 10. This value is experiment ally a 

good one, determined over our image test set, because it is not good for N B to be so 
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small that it differentiates too much between pixels with similar hMask values, while 

at the same time it should not be too coarse. Let Sk = {(i, j)IN(i,j) = k}. Then 

ERank(i,j) = 'L:~~rij)-liSkl, measuring how important hMask(i,j) is in relation to 

the entire image. The reason for using the ERank function is that in some images, 

especially but not exclusively graphical ones, there are pixels whose raw hMask values 

are very low, but which are very important (see, for example, the text "jumped over 

the" in the graphical test image qbf later in Figure 3.7(g)). In Chapter 4, it will be 

demonstrated how using the ERank function improves the quality of reconstructions 

from gaps samples. 

Good values for the edge coefficient ME and the adaptive-stage gap coefficient 

Me were found to be ME= 4.5 and Me= 2.7. Other than that, the mask used is 

circular with radius 2, and hMask (i ,j) is t aken to be Sobt;J~~k(i , j ) - Sob(i,j). Finally, 

f i llfactor = 1.4. It should be greater than 1 to be able to find close by samples, 

but other than this should be arbitrary. This value was not experimented too much 

with since it was found not to be crucial to the success of gaps. 

3.2 Faster Farthest Point Sampling (FFPS) 

While gaps is an approximation algorithm to Farthest Point Sampling, we have 

discovered that it is possible to exactly emulate the behavior of FPS (up to pixel 

position discretization errors) with a new algorithm we call Faster Farthest Point 
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Sampling (FFPS) and to do so at a speed even faster than gaps. The description of 

the non-adaptive algorithm is very simple and follows next, after which the adaptive 

algorithm is presented, which is only a slight modification of the non-adaptive version, 

and which is basically the same as adaptive gaps. 

As with gaps and FPS, the first four samples are chosen to be the corners of 

the image being sampled, and the fifth sample to be positioned randomly. Setting 

gm1 to be an array at iteration l of the same dimensions as the input image, the 

array gm5 is initialized so that gm5(i,j) is the distance of pixel (i,j) to its closest 

sample out of the initial five. To speed up the algorithm, a lookup table for the 

distances is used, since only distances between points with integer coordinates need 

to be considered. Let l commence as the index of the next sample to be chosen, 

in this case, 6. Then the following steps are repeated until the required number of 

samples have been chosen: 

1. Let rz = max(i,j)EJ gm1
-

1(i ,j) . 

2. Let s1 = (it, j1) = arg max(i,j)EJ gm1- 1(i , j) . This is the next sample. 

3. Let gm1(i,j) = gm1- 1(i , j) for all i,j. 

4. For all (di,dj) E Dr1 = {(i, j) E Z li2 + j 2 ::; rf} , update gm1 as follows: If the 

Euclidean norm of ( di, di) is denoted by I ( di, di) I, then let gm 1 (it + di, ) t + dj) = 

min(l(di, dj)l,gm1
-

1(i t + di ,Jt + dj )) . 
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5. Let l = l + 1. 

Unlike FPS, the efficiency of this algorithm does not go down as the number 

of samples increases. In fact , the efficiency improves. An example of the addition 

of a sample and the updating of the gm at the lth iteration is shown in Figure 

3.6. As is demonstrated by the diagram, only the gm values of those pixels within 

max(i,j)EI gm1- 1 ( i, j) of the new sample (inside the circle) have to be recalculated. 

existing samples 

* ~J 
* * 

Figure 3.6: Updating of gm1 in FFPS 

Theorem 

After any iteration l of the above algorithm, gm1(i,j) always contains the distance 

of the pixel (i,j) to the closest sample already chosen from {si}i=t· 

Proof (by induction) 

Let l be the iteration number, starting at 5. Clearly for l = 5, gm1 has the 

required property by its definit ion. Assume that the property holds for l = n. 

Let d!nin(i, j) be the minimum distance from (i,j) to any of the first l samples. 
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It suffices to show that at iteration l = n + 1, gm1(i, j) = d~in(i , j). Obvi-

l dn+l( · ") OUS y, rnin ~, J = min( d~in ( i, j), d( ( i, j), Sn+l)) = min(gmn(i, j), d( ( i, j), Sn+l )), 

where d(x, y) is the Euclidean distance between points x and y. Since 

gmn(i,j) for all (i,j) such that 

d((i,j),sn+l) > rn+l· All the other (i , j) can be labelled as (in+l + di,Jn+l + dj) 

Since the construction of d~1~(i , j) is identical to that of gmn+l(i ,j), they are 

identical for all (i,j), and thus the result follows. 0 

At least one idea exists to make FFPS adaptive. Instead of choosing Sn+l as 

the pixel with the maximum gmn, it is also possible to consider the Sobel edge 

magnitudes Sob(i, j), and pick the sample with the maximum weighted combination 

of gmn and hMask, using the same parameters as gaps, including the time varying Ma 

and F(x) for the quasi-adaptive stage. Unfortunately, the functions and parameters 

for adaptive gaps do not work directly with adaptive FFPS, so more experimentation 

is needed in order to find suitable functions to make this idea work. One advantage 

of adaptive gaps and FFPS over skewness based sampling and adaptive FPS is that 

instead of relying on local skewness or bandwidth, the adaptation depends solely 

on the Sobel edge magnitudes. These magnitudes can also be generalized to color 

images, see for example [21], whereas it is not immediately clear how to do this with 
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the other measures. 

Theoretically, non-adaptive FFPS and FPS have the same order of complexity, 

namely 0( n log n) because they both use balanced binary trees. However, timing 

tests between the two show that FFPS is more efficient than FPS for the same 

number of samples. The high efficiency and simplicity of FFPS as opposed to FPS 

also means that it is better suited to a hardware implementation. 

We can find the complexity of the main part of non-adaptive FFPS (not including 

the maintenance of balanced binary trees) using the following argument. Suppose 

that the image being sampled has dimensions r x c pixels. Then the Principal 

Wavelength [22], or average distance between samples, after k samples have been 

chosen is approximately >..k = }!;· In [14], it is proven that the maximum ratio 

between the maximum and minimum distances between samples in a non-adaptive 

FPS sampling pattern is 2. So the maximum dist ance between samples after k 

samples have been chosen is at most >..t1 = 2A.k. Thus, for the kth sample that is 

chosen, we have to update approximately 1r(A.f;1)2 elements of gm. Integrating from 

1 to n means that overall, t he main part of the algorithm requires about 47rr c ln n = 

O(logn) operations. In Section 3.4.3, we experimentally compare the running t imes 

of the nonadaptive versions of the two algorithms. 
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3.3 Test Set 

To test the efficiency and the performance of the various sampling, reconstruction 

and halftoning algorithms described in this thesis, a test set of 8 gray-scale images as 

shown in Figure 3.7 was used. The names of these images are chirp, antarctica, 

cameraman, femme, mri , peppers, qbf , and zelda. The chirp image is a sampling 

of a mathematical function with formula: J(i,j) = 0.5cosC0
1
00((i- 127.5)2 + (j-

127.5)2 )) + 0.5 where the image intensities have the range [0,1], and the size of the 

image is 256x256 pixels (0::::; i,j ::::; 255). All the remaining test images were obtained 

from various sites on the World Wide Web. mri is a medical Magnetic Resonance 

Image of the head, antarctica a digital elevation model (DEM) of the Antarctic 

continent, and qbf a typical graphical image. The remaining pictures are natural 

photographic images. The images are all 256x256 pixels except for peppers , which 

is 255x255 and antarctica which is 209x250. 

3.4 Test Results 

3.4.1 Arrangement of Samples 

On page 68, in Figure 3.8, t he irregular sampling grids for zelda are given, with 3035 

samples taken from the adaptive version of each algorithm. The samples are shown 

as white dots overlaid on the original zelda image. As expected , since the sampling 
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(a) chirp (b) antarctica (c) cameraman 

(d) femme (e) mri (f) peppers 

The quick brown 

jumped over the 

Lazy dog 

(g) qbf (h) zelda 

Figure 3.7: Test Set of 8 gray-scale images 
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algorithms are all adaptive, there are more samples closer to image contours than 

in uniform regions. It is interesting to compare the constellations for all of the al­

gorithms- it is apparent that there is less clustering to image details with Farthest 

Point Sampling and unoptimized gaps as opposed to the other algorithms. This clus­

tering refers to the fact that for a given edge, there are less samples close to the edge 

in FPS and unoptimized gaps than for the other two sampling algorithms, and there 

are more samples in regions with lower edge magnitudes with FPS and unoptimized 

gaps. However for FPS, the configuration is a lot more jittered and irregular, espe­

cially as compared to the skewness-based samples, which are arranged with double 

rows of samples along contours. Gaps also has this same double-row property to 

some extent, except that the row on each side is not at a fixed distance away from 

the edge. This is because a constant radius of exclusion is used for skewness-based 

sampling, but for gaps, samples can be located anywhere in the mask not exactly on 

the edge. We include the results for both non-optimized gaps, where pixel weights 

are each multiplied by a uniformly distributed random number, and optimized gaps, 

where this mult iplication is not performed. For zelda, there is clustering evident in 

the samples taken with optimized gaps, this is because adaptivity increases as the 

algorithm proceeds, but we will see this does not have a significant impact on the 

reconstruction from these samples. This did not occur with t he oth er test images, 

since such a large number of samples (3035) was not taken. 
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(a) 3035 samples taken from zelda using 
FPS 

(c) 3035 samples taken from zelda using 
unoptimized gaps 

(b) 3035 samples taken from zelda using 
skewness-based sampling 

(d) 3035 samples taken from zelda using 
optimized gaps 

Figure 3.8: Irregular sampling grids for different algorithms 
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Skewness-based sampling takes very few samples in uniform regions- this means 

that the reconstructions in these areas may not be as good as those from FPS and 

gaps. The quality of reconstructions from this image and the other images in the 

test set will be compared in the following chapter. 

The number of samples that will be taken with skewness-based sampling cannot 

be predetermined given a set of skewness thresholds and radii of exclusion, whereas 

the other sampling methods are truly progressive, which means that they can be . 

stopped at any number of samples. So first some good parameters for zelda (or any 

image) with skewness-based sampling are selected and then it is seen how many sam­

ples are taken using these parameters. The sampling using the other two algorithms 

(FPS and gaps) is stopped at this same number. The 88 and r parameters for the 

skewness-based sampling of the test images are given in Table 3.1. The parameters 

used for the femme and peppers images are the same as those in [11], except that 

the skewness thresholds are smaller by a factor of 100. This is due to an error in [11] 

as confirmed by correspondence with the first author. Also, the ()9 parameter which 

is a threshold for determining which pixels have high gradient magnitude (and thus 

are not included in the sampling grid) , was not given in [11], but was found to be 

()9 = 128 once again by correspondence with the first author. 
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3.4. 2 Experimental Results 

All experiments in this chapter and the next were performed on an AMD 1700XP per­

sonal computer. Timings obtained for various algorithms are CPU times, as these are 

more amenable to comparison. These times are given in Table 3.2. Skewness-based 

sampling times are not given since they are extremely small (almost instantaneous) 

compared to the other two algorithms. The parameters for skewness-based sampling 

used are shown in Table 3.1. 

Though the gaps sampling times are the highest, they are still not unreasonable. 

As well, there may be opportunity to further optimize the implementation of this 

algorithm. One optimization was made when the maximum gap magnitude didn't 

change in an iteration. In this case, the crosses are not modified, and thus the gap 

magnitudes only have to be recomputed for pixels bordering the cross of the new 

sample. A balanced binary tree was also used to store the pixel weights. These two 

optimizations together have led to significant speed-up as evidenced by Table 3.2. 

Also, the use of simpler functions, especially in the quasi-adaptive stage would lead 

to a further improvement in efficiency. In fact, most of the time utilized by gaps is 

spent in t he quasi-adaptive stage; if this could be made faster through the use of 

simpler functions than the arctan, then it should be possible to make gaps as fast as 

FPS. 
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Image Skewness e s parameters Skewness r parameters 
chirp [0.0025,0.0063] 15,8 ,3 
antarctica [0.001 ,0.005] 15,6,2 
cameraman [0.0025,0.0048,0.0063] 15,8,4,2 
femme (0.00125,0.0038,0.005] 15,11,7,2 
mri (0.00125,0.0038,0.005] 15,11,7,2 
peppers [0.0025,0.0063] 15,8,2 
qbf [0.0025,0.0063] 15,8,2 
zelda (0.0015,0.004,0.008] 15,11,7,2 

Table 3.1: Parameters used for skewness-based sampling of test images 

Image No. of Samples FPS (opt.) time (s) gaps t ime ( s) gaps (part. opt .) time (s) 
chirp 2611 8.63 119.93 30.73 
antarctica 1439 4.13 65.31 16.63 
cameraman 2064 6.47 96.82 28.89 
femme 2108 6.26 97.95 28.32 
mr i 1874 5.55 85.75 21.49 
peppers 2523 8.13 112.74 35.20 
qbf 2612 8.23 125.20 38.65 
zelda 3035 10.79 140.51 35.35 

Table 3.2: CPU times for irregular sampling algorithms 

3.4.3 FPS vs. FFPS 

As mentioned in Section 3.2, both FPS and FFPS have the same order of complex-

ity, namely 0( n log n). Figure 3.9 compares the running times of FPS and FFPS 

for 500, 1000, 2000 and 3000 samples. Clearly, FFPS is quicker, and since the con-

figurations of samples are the same up to rounding error , they will both have the 

same minimum distance properties. As a result , nonadaptive FFPS can be used for 

many applications where such distributions are needed, e.g. positioning of plants 

within populations and stippling (23] . In Chapter 6, a generalization of FFPS will 

be applied to halftoning. 
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Unfortunately, adaptive FFPS, either by using the closest distance to a sample 

as the gap magnitude in gaps, or using the same formula as in [14] for the weighted 

distance of each pixel does not yield sharp reconstructions. For image sampling, the 

subpixel resolution becomes more important , and the rounding in adaptive FFPS is 

too damaging. It should be possible to fix this however, with the addition of random 

deviations from the integer lattice for example. 

Comparison ol running times ot non- adaptive FPS and FFPS 
10r---r--....:.._~....:.._.......::.,--.:..._:_.....:.:.;..---..::..:....:...----.,---, 

.§ 

.~ 5 

5 a: 

500 \000 1500 2000 
Number ol samples 

~ 
~ 

2500 3000 

Figure 3.9: Timing Comparison between FPS and FFPS 

3.5 Conclusions 

It is reported in [11] that the Farthest Point Sampling algorithm in [14] has high 

complexity. In its optimized form, it was found that this is not the case. R arnponi 

and Carrato's skewness-based sampling addressed this perceived problem of speed, 

but unfortunately, parameters must be chosen specific to the images, and it is not 
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always possible to do this without a priori knowledge of the image characteristics. 

Also, the number of samples we wish to take cannot be chosen beforehand, as this 

depends on the chosen parameters, and the relationship between the parameters 

and the number of samples cannot be predicted. The gaps sampling algorithm was 

created to address both the problems of Farthest Point Sampling and Ramponi's 

skewness-based sampling. Many combinations of parameters were not tested for 

gaps - it is very well possible that others may lead to even better results. 

It may be pOssible to combine the fast time of optimized gaps with the slightly 

improved quality of unoptimized gaps. This could be done by simulating the mul­

tiplication of the pixel weights by uniformly distributed random numbers, by not 

always selecting the pixel with the highest non-randomized pixel weight, but instead 

one with a lower such weight. Another possibility is to use FFPS instead of gaps to 

estimate the distance of a pixel to the closest sample already chosen. Using the same 

functions and parameters as gaps and replacing the gap magnitude by the FFPS dis­

tance to the closest sample does not give good results, but using different functions 

and parameters should give an efficient companion algorithm to gaps. 
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Chapter 4 

Existing Scattered Data Interpolation 

Algorithms 

4.1 Introduction 

The problem of irregular sampling has already been discussed in the previous chap­

ters. Now the recovery (in these cases lossy) of an irregularly sampled image from 

its samples is considered. Suppose samples (xi, Yi, zi ), 1 s; i s; Ns have been taken, 

where Zi = !(xi, Yi ) is the image intensity at pixel (xi, Yi)· Then the problem of 

scattered data interpolation becomes one of extending the information known on the 

sampled pixels to all pixels in the image. The interpolated image Ir(x, y) may not 

even exactly match the data on the samples, so that Ir(X; , Y•) is not necessarily equal 

to Zi = !(xi, Yi) for all i, 1 ::::; i ::::; N 8 • Thus calling the recovery process interpolation 

may be somewhat of a misnomer, and instead the term scattered data approximation 
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should be used. But because scattered data interpolation is used so widely in the 

literature, we exclusively use this phrase. 

There are many applications of scattered data interpolation, for example image 

coding, map making, and computer vision [8]. To achieve the goal of reconstructing 

an image from its samples, many techniques have been proposed. These reconstruc­

tion methods can be classified as either local or global. A reconstruction algorithm 

is local if the addition of a sample only changes the reconstruction in a small region 

around the added point , whereas it is global if the entire reconstruction changes. 

In this thesis, two existing reconstruction techniques pertinent to irregular sam­

pling are looked at: 

1. Adapted Nearest Neighbor Interpolation (Adapted 4-NNI) 

2. Multilevel B-Spline Approximation (MBA) reconstruction 

The former is based on an inverse-distance weighting of the scattered data to 

the pixels to be interpolated, but is relatively slow, has to be recomputed upon the 

insertion of any new samples, and produces some artifacts, for example flat areas at 

sample positions and the appearance of level contours. MBA treats the interpolation 

of the image as a surface-fitting problem, and is very quick, but does not work well 

with certain distributions of samples. Adapted 4-NNI is essentially local because 

an added point will only be one of the four nearest neighbors of the pixel being 

interpolated for close-by pixels, and so only t hese have to be updated. However , 
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if a sample is added in a rather sparsely sampled region, then a large part of the 

reconstruction has to be changed. MBA is theoretically a global reconstruction 

algorithm since at the coarsest level, an added sample will influence the values of all 

control grid points, though since this influence will be very small, we can consider it 

to be local by only looking at the surface for finer levels. This will become more clear 

after both reconstruction methods are further described in the next two sections. 

4.2 Adapted 4-Nearest Neighbor Interpolation 

(Adapted 4-NNI) 

Four-Nearest Neighbor Interpolation was used in [14] to compare the quality of ir-

regular sampling techniques. This is a very basic interpolation algorithm first put 

forward by Shepard in 1968 [24], where for any pixel to be interpolated in the recon-

structed image, its four nearest neighbors among the samples of known intensity are 

taken, and the interpolated value is set to be a weighted sum of the four intensities 

of these nearest neighbors. The weight for each neighbor is inversely proportional to 

the distance from that neighbor to the pixel being interpolated. 

Mathematically, 

( 4.1) 
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Here I(i,j) is the image value at pixel (i,j), {(ik,Jk), 1 ~ k ~ 4} is the set of four 

nearest neighbors to (i,j), and 

1 1 
Wk(i,j) = dk(i,j) = d((i,j), (ik,Jk))' 

(4.2) 

where d(x, y) is the Euclidean distance between pixels x andy. This reconstruction 

algorithm is slow for irregular samples compared to MBA because for each pixel in 

the image, the four nearest neighbors have to be found by searching exhaustively 

through all the samples. This can be speeded up by using the Voronoi diagram 

of the samples [14, 25] but this adds significant implementation complexity to the 

algorithm. There is also another issue related to the fact that if we have a contour 

with one side bright and the other side darker, and two samples on each side of 

the edge, but close to each other, then pixels close to the edge and close to the 

samples, on the bright side of the edge, will be noticably darker than they should be, 

because the samples on the dark side of the edge will have undue emphasis for these 

pixels. Ramponi and Carrato [11] recognized this problem and suggested an improved 

algorithm called adapted 4-Nearest Neighbor Interpolation. The results of adapted 

4-NNI as compared to regular 4-NNI are shown in Figure 4.1 , taken and modified 

from [11] . In Figure 4.1(a), the sample positions are marked by dark squares, and the 

image being sampled is not shown. There is a double row of samples - the row closest 

to the lower right corner is sampling a brighter regions than the other samples in t he 
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1mage. The reconstruction using pure 4-Nearest Neighbor Interpolation is shown in 

Figure 4.1 (b), and we see here that the reconstructed edge is very spread out and not 

distinct. This is as opposed to the adapted 4-Nearest Neighbor Interpolat ion from 

the samples in Figure 4.l(a), where the edge is much sharper. 

In this adapted algorithm, the formula used to generate the value for a pixel is 

based on whether it is: 

1. Exactly on an edge. 

2. Close to an edge, or 

3. Far away from any edges. 

Let the pixel whose intensity is being interpolated be called p. Then first, it must 

be detected which type of pixel p is, in relation to the edges of the image. To do this, 

suppose that the maximum distance from any of the four nearest neighbors of p to 

p itself is dmax(p). Let the maximum distance between any pair of the four nearest 

neighbors of p be dmax(p). A threshold ()d > 2rn is selected, where rn is the radius of 

exclusion for the highest level n in skewness-based sampling. Then, we consider p to 

lie exactly on an edge if dmax(P) < ()d; pis identified as being close to an edge if the 

previous inequality is found not to hold and the inequality dmax(P) <()d is satisfied; 

finally, pis far from any edges if both dmax(P) 2: ed and dmax(P) 2: ed. Observe that 

there is no dependence on the sample intensities, just their positions, for determining 

the position of t he pixel to be interpolated with respect to the edges of the image. 
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(a) Zoom on example samples on contour 

(b) 4-NNI reconstruction 

(c) Adapted 4-NNI reconstruction 

Figure 4.1: Adapted 4-NNI as opposed to 4-NNI reconstruction. (a) Zoom on ex­
ample samples on contour, (b) 4-NNI reconstruction, and (c) Adapted 4-NNI recon­
struction. 

It is now examined how the position of a pixel with respect to edges influences in 

which way the pixel is interpolated. 

If the pixel p is exactly on an edge, then only samples on the same edge should 
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Figure 4.2: Interpolat ion of pixel p close to edge 

be counted, so the weight in Equation 4.2 becomes wk(i, j) = (dkd,j))3 . This creates a 

stronger dependence on the samples closer top. If pis far away from any edges, then 

the normal 4-NNI determination of the pixel's intensity is adequate. Finally, if p is 

close to an edge, the characteristics of the skewness-based sampling pattern are used 

to mainly take into consideration only the samples on the correct side of the edge. 

It is observed that for every sample on the wrong side of the edge, there is another 

sample on the right side of the edge which is closer to the pixel begin interpolated, 

and at a similar angle to the pixel being interpolated. This is used to weight the 

samples further away less t han they normally would be (the weights are divided by 

a parameter f). 

Assuming a pixel p close to an edge is being interpolated, it is necessary to detect 

when there is a pixel on the wrong side of the edge and weight it less appropriately. 

This is done by splitting the area around p, as shown in Figure 4.2, into 8 rectangular 

sectors. The sectors directly bordering p (horizontally or vertically) are only 1 pixel 
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wide. Then if there are two samples in either the same sector or two adjacent sectors 

such that the absolute value of the difference of their intensities is at least some 

threshold Bv, then the weight of the further pixel is divided by another parameter f. 

Though it is not specified in [11], a weight for a sample is divided by f at most once. 

For the non-image-specific parameters for adapted 4-NNI, the same ones given 

in the paper by Ramponi and Carrato [11] were chosen, namely ()d = 6, Bv = 40 and 

f =50. 

4.3 Multilevel B-Spline Approximation 

4.3.1 Introduction 

Multilevel B-Spline Approximation (MBA) was published as an algorithm in 1997 

[7]. before this reconstruction method came into existence, t here were many other 

algorithms in the public domain which attempted to perform scattered data inter­

polation, with varying degrees of success. According to Lee et . al. [7], there were 

however diverse problems with the previously existing methods, for example limita­

tions on the distribution of the scattered data, or very high complexity. MBA was 

designed to overcome these limitations. As will be seen at the end of this sect ion , 

Multilevel B-Spline Approximation was not found to be as flexible as proposed in 

[7]. 
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4.3.2 Overview 

In [7], a multilevel B-spline interpolator for scattered data called Multilevel B-Spline 

Approximation (MBA) was introduced. Each level consists of a uniform bicubic B­

spline surface defined on a control grid. The control grid at each level has points 

located on a regular grid, subsampling the image pixel grid. A coarse-to-fine hier­

archy is formed starting from the coarsest and lowest level and ending at the finest 

and highest level. 

The further apart the control grid points are, the more slowly changing the spline 

surface is at that level. The lowest levels are used to fit the broad changes in the 

scattered data while the higher levels fit to more rapid changes. The final surface 

that is created to approximate the data is the sum of the surfaces at all the levels. 

The control grid values are determined by the samples which are close-by using a 

least-squares criterion. The algorithm starts from the lower levels and works its way 

up, at each iteration subtracting the surface value at the samples to create residual 

sample values which are fitted by the higher levels. More details about the algorithm 

are found in the next subsection. 

4.3.3 The algorithm 

As already mentioned , MBA t reat s the problem of scattered data interpolation as one 

of surface approximation, consisting of surfaces at many levels which are summed. 
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Each levell, 0 s; l s; N, is a uniform bicubic B-spline surface on an m1 x n1 control 

grid <I>1. The control grid for each level (except possibly for the finest level) is twice as 

dense in each direction as the control grid for the previous level. Thus, for an image 

to be sampled and reconstructed of size r x c pixels, m 0 = n0 = 4 and ml = 2ml-l -1, 

n1 = 2nt-l - 1, 1 s; l s; N- 1 and mN = r + 3 and nN = c + 3. 

For the control grid at level l , i.e. <I>t , cPmn located at (cP~nn> cP~n) is the control 

point ·value on the mth column and nth row of the control grid, where the indices m 

and n start from zero. Suppose the horizontal coordinate in the image is represented 

by x and the vertical coordinate by y, where the vertical coordinate increases from 

top to bottom. Let the function L(x) take the value of the horizontal index of the 

control points directly to the left of x (if x lies exactly at the same horizontal position 

as a column of control points, then take the index of this column). Similarly, let U(y) 

be the vertical index of the control points directly above or exactly at y. Then, let 

X(m) be the x-coordinate of the mth column of the control grid, and let Y(n) be 

the y-coordinate of the nth row. Finally, let s and t be defined by the following two 

equations: 

s -

t -

x- X(L(x)) 
X (L(x ) + 1)- X(L(x))' 

y- Y(U(y)) 
Y(U(y) + 1) - Y(U(y)). 

(4.3) 

(4.4) 

An example of a small grid and the calculation of s and t are shown in Figure 
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•<floo 
(0,0) 

.<p01 
(0,40) 

<Jl,o • (40,0) 

q>11 • (40,40) 

'1>20 • • 

(80,0) 

q>21 • (80,40) 

<p02 <rlJ 2 *(56,72) 

• • e<1>22 
(0,80) (40,80) (80,80) 

Figure 4.3: Example control grid for Multilevel B-Spline Approximation 

4.3. Suppose the point with coordinates x = 56 and y = 72 is being considered. 

Then L(x) = 1 because column 1 of the control grid is immediately to the left of 

(56,72) . Similarly, U(y) = 1, because row 1 is immediately above y = 72. X(L( x)) = 

X(1) = 40 and X(L(x) + 1) = X(2) = 80. Additionally, Y(U(y)) = Y(1) = 40 and 

Y(U(y) + 1) = Y(2) = 80. So s = ~~=!~ = 0.4 and t = ~~=!~ = 0.8. 

Consider the following cubic polynomial functions: 

B ( ) = (1 - u)
3 

B ( ) = 3u
3

- 6u
2 + 4 B ( ) = -3u

3 + 3u
2 + 3u + 1 B ( ) = u3 

o u 
6 

, 1 u 
6 

, 2 u 
6 

and 3 u 
6 

. 

Then the spline surface at each level is of the form 

3 3 

f(x, y) = L L Bk(s)Bz(t)¢(i+k)(J+l), (4.5) 
k= O l= O 

where i = L(x)- 1 and j = U(y) - 1. 
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Figure 4.4: Elementary tensor-product B-spline 

In Figure 4.4, the resulting spline surface is shown when </>oo = 1 and all other 

</>ij are 0. Any arbitrary B-spline surface of the form given in Equation 4.5 with 

control grid values </>iJ is a sum of shifted and scaled versions of t his elementary 

tensor-product B-spline. There is a replica at each control grid position, and every 

replica is scaled by the value of the control grid at the corresponding point. 

As will be soon seen, the cont rol point values for the surface at each level are 

determined so that the sum of squares of errors in the contribution of the control 

grid values to surrounding sample values is minimized. Each sample can be used to 

determine the control grid values in its immediate proximity. There are in fact many 

possible combinations of control grid values around a sample which can interpolate 

the given sample value, but the spline surface at each level is chosen so that the 

sum of squares deviation of the control grid values from zero is minimized. This 

can be achieved either by using the pseudoinverse, or Lagrange multipliers. The 
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derivation by Lagrange multipliers is used here, as it relies on more elementary and 

better known mathematics. Suppose that a sample at pixel (xd, Yd) is given with 

intensity Zd · For the sake of slightly cleaner algebra, it can be assumed without 

loss of generality that (xd , Yd) lies in the upper- left corner of the image, so that 

it is between ¢u, ¢12,¢21 and ¢22 · In other words, ¢11 = ¢12 :S: Xd < ¢21 = ¢22 

and ¢i1 = ¢~1 ::::; Yd < ¢i2 = ¢~2 . This means that only the control grid points 

¢kz, 0 ::::; k, l ::::; 3 are used to determine the B-spline surface value at (xd , Yd) · 

If s and t are defined as above in Equations 4.3 and 4.4, then to successfully 

must be satisfied. Consistent with Equation 4.5, Wk! = Bk(s)Bt(t). Because the 

surfaces for each level are added, the deviation of the control grid values from zero 

for each level's surface is minimized. So F( ¢) = L:~=O L:~=O ¢f1 is minimized. In 

general, ifF(¢) is to be minimized subject to G( ¢) = c where c is a constant , the 

minimum is chosen as the solution to the system of equations 

{ 

VF(¢) = X\i'G 

G(¢) =c. 

(4.6) 

A A 

In this particular case, 2¢k1 = >..wkt ::} ¢kl = >..wkz, where >.. = ~ for the gradient 

equations, which upon substitution into the constraint equation (the second equation 
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The surface can be made to interpolate all the scattered data if they are suf-

ficiently far apart. This would occur when each control grid value has its value 

determined by at most one scattered datum point. In most cases, however, espe-

cially in lower levels where the control grid points are far apart, the above solution 

procedure will give more than one different value for some points of the control grid. 

Let the set of scattered data points be {Pd = (xd , Yd), 1 :::; d :::; N}. Supposing that 

hz = {diPd gives a value cPd =f. 0 to cPkz}, then if ht is empty, we set cPkt to 0. Oth-

erwise, a compromise between the different values assigned to cPkl is made. For a 

given scattered datum point Pd, once again assuming without loss of generality that 

contribution of cPkt to zd is given by cPktWkt· Since cPklWkt is associated with zd, label 

it as c/Jdwd. This is done for all indices in hz. Then cPkt is chosen to minimize the sum 

of squares error of the contributions to the scattered data values in hz , this error 

being LdEht ( cPktWd- c/Jdwd)2. The error is minimized when the derivative is equal to 

• L:dE l ¢dw~ 
zero, wh1ch here occurs when cPkt = I: kl 2 

dEl kt w d 

The value of the surface at each of the samples is subtracted from the sample 

value, and the residual sample values are used to fit a spline surface at the next level. 

The approximated image is taken to be the sum of the spline surfaces of all levels. 

The coarser levels t ake care of the broad changes in the image, while sh a rper d et ails 

are captured by the finer levels. 
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Figure 4.5: Why edges are sometimes blurred with MBA- a 1-D simplification 

Unfortunately, for certain sampling distributions, especially those for which sam-

ples are not taken exactly on edges, but instead a little further away, MBA can 

lead to the blurring of edges. Examples of algorithms generating these types of 

distributions are skewness-based sampling and gaps. This is a direct result of the 

coarse-to-fine hierarchy. In Figure 4.5, the vertical axis represents the intensity of 

the corresponding position on the horizontal axis. The values of two samples are 

shown with astericks. As shown in the figure, at a coarser level, since the samples on 

either side of the edge are rather far apart, it is possible for the more slowly varying 

spline surface to fit the sample values very well. If the samples were taken around 

an ideal step edge, shown dashed in Figure 4.5, its reconstruction will be fuzzy. This 

is because at higher-resolution levels of MBA, the residual values at the samples are 

very small, so the algorithm will not do much more, and the finer spline levels will 

not make much of a contribution to the final surface sum. So the broadly changing 

lower level curve will serve as the major part of the reconstruction of the edge. 
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(a) (b) 

Figure 4.6: Effect of the mask radius on the MBA reconstructions of gaps-sampled 
zelda: (a) Radius 2 and (b) Radius 1 

This problem with MBA can be remedied for gaps by changing the size of the 

mask used for calculation of the hMask value. For most of our experiments, a circular 

mask of radius 2 was used; if instead we use a circular mask of radius 1, then the 

samples will be closer to edges in the images. An example of doing this for a natural 

image, zelda, is shown in Figure 4.6, where once again 3035 samples with each of the 

two compared gaps algorithms with different circular mask radii. The reconstruction 

with mask radius 1 is clearly sharper than that for mask radius 2, however this 

comes at the cost of decreased Signal-to-Noise Ratio (SNR), a quantitative measure 

of image quality which is described in the next section (the SNR is 12.81 for mask 

radius 2 vs. 9.70 for mask radius 1). This is due to a lower quality reconstruction of 
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the background of the image in zelda. Since it is not possible to perform a similar 

adjustment of the skewness-based samples, the reconstruction algorithm is used to 

improve image quality. This we do in the subsequent chapter. 

Now some test results from the various irregular sampling algorithms and the 

scattered data interpolation techniques presented in this chapter are given. 

4.4 Test Results 

To compare the quality of different irregular sampling algorithms, images from scat-

tered data produced by different sampling methods must be reconstructed. To make 

this comparison, it is possible to look at qualitative aspects of the reconstructions, 

for example the quality of contours and details. But additionally, a quantitative mea-

sure can be made to illustrate the calibre of the resulting reconstruction using either 

the Mean-Squared Error (MSE) or the Signal-to-Noise Ratio (SNR), both of which 

compare the reconstruction to the original image in a global sense. Let the original 

image be 0 and the reconstructed image be R both with r rows and c columns. Let 

the intensity of the pixel at the ith row and the lh column of R be Rij and of 0 be 

Oii. Then the MSE is defined as 

(4.7) 
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The SNR (in decibels) is given by the formula [8]: 

""r-1 ""~-1(0·. _ 0)2 ""r-1 ""c- 1(0·. _ 0)2 
SN R = 10 lo L...it=O WJ=O tJ = 10 lo L...it=O WJ=O tJ (4.8) 

g10 ""r- 1 ""c-1(P .. - 0 ··)2 g10 rc X MSE 
L...it=O WJ=O 1 '-iJ tJ 

where 0 is the average gray-level of the original image. In this thesis, the SNR is 

used to evaluate the quality of reconstructions from irregular samples. 

Now the various sampling and reconstruction algorithms are compared. For each 

ofthe test images in Figure 3.7, the SNRs of the MBA and adapted 4-NNI reconstruc-

tions are computed for the following sampling algorithms: skewness-based sampling, 

Farthest Point Sampling, and gaps. For all sampling algorithms, the same number of 

samples per image are used (the number determined by skewness-based sampling). 

Approximate bitrates (bits per pixel) are given in Table 4.1 for all sampled versions 

of images in the test set. Note that these bitrates, though low, are higher than they 

could be because no further lossless compression of the sample positions or intensities 

are taken. When this is done, along with quantization of sample intensities, a bitrate 

of 0.31 bpp is obtained for the femme test image, as reported in [11]. This is even 

with transmission of the point map which wasn't assumed in Table 4.1. Bar graphs 

for the SNRs of the reconstructions from these various sampling algorithms are given 

in Figure 4.7. Observe that the SNRs for gaps are slightly less for optimized gaps (no 

multiplication by a random number) as opposed to unoptimized gaps (where multipli-

cation by a random number is performed), but this difference is not too great. There 
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are only two test images for which the gaps algorithms are not the best in terms of 

reconstructed SNR, chirp and qbf. For chirp, the samples from the two gaps algo­

rithms give poorer reconstructions than the two existing sampling algorithms, FPS 

and skewness-based sampling, for both reconstruction methods (MBA and adapted 

4-NNI). For qbf, only the MBA reconstructions from the gaps algorithms are worse 

than skewness-based sampling but they are still better than FPS. The difference is 

not substantial for qbf, but for mathematical functions like chirp, gaps should not 

be used. Since mathematical functions are not however a major class of images, this 

is not too important, and with more work, this class of images should also be able 

to be sampled effectively with gaps. 

For the adapted 4-NNI reconstructions from gaps, the parameter ()d = 10 was 

used. The reconstructions of two representative test images, mri and qbf , are ex­

amined more closely. The mri image is chosen because it highlights the inability 

of skewness-based sampling to pick up the less visible but still important details of 

this image. The qbf image is selected because it demonstrates the ineffectiveness 

of Farthest Point Sampling for graphical images. Gaps was found to work better 

than skewness-based sampling and FPS for natural images as well, as is evidenced 

by higher reconstructed SNRs. These are shown later in Figure 4. 7. 
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Image Number of Samples Approximate Bitrate (bits per pixel) 

chirp 2611 0.966 
antarct ica 1439 0.661 
cameraman 2064 0.756 
f emme 2108 0.772 
mri 1874 0.686 
peppers 2523 0.931 
qbf 2612 0.957 
zelda 3035 1.111 

Table 4.1: Bitrates for given number of samples for images in test set , assuming 
transmission of point map, no quantization of sample intensities, and no lossless 
compression of image data 
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(a) SNRs of MBA reconstructions of test set from irregular samples of different algorithms 
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(b) SNRs of Adapted 4-NNI reconstructions of test set from irregular samples of different algo­
rithms 

Figure 4.7: Comparison of SNR.s of MBA and Adapted 4-NNI reconstructions of test 
images from skewness-based sampling1 Farthest Point Sampling, and Gaps 
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The recovered images from mri samples obtained with different irregular sampling 

algorithms using MBA and adapted 4-NNI are shown in Figures 4.8 and 4.9 respec­

tively. It is seen that in terms of SNR, both optimized and unoptimized gaps are 

better than FPS and skewness-based sampling. This holds for the two reconstruction 

algorithms, MBA and adapted 4-NNI. One advantage of gaps over skewness-based 

sampling is that in this case, for both reconstruction algorithms, the ridges of the 

brain are more visible in the reconstructions from gaps than the skewness-based sam­

ples. There are also two bright dots on the top of the brain in the original mri image 

which can't be seen in the reconstructions from the skewness-based samples, but 

which are visible in the reconstructions from gaps. Farthest Point Sampling gives 

the worst results for the given number of samples (1874), and this was found to be 

the case with all images in the test set except for chirp, for which gaps was found to 

be inferior to the remaining sampling algorithms. The interface between the brain 

and the skull is not completely black as it should be, and many of the details on the 

base of the skull cannot be seen. These types of details are very important especially 

for medical images, where diagnoses may be made based on this visual information. 

FPS is especially bad for adapted 4-NN interpolation. The edges are very jagged 

and not smooth. This is a direct result of the lack of structure in the sampling pat-

terns around edges, and was found to occur with a ll FPS-sampled test images with 

adapted 4-NNI. The edges from gaps reconstructions with adapted 4-NNI are less 

smooth than those from skewness-based sampling, but are still acceptable. 
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(a) 

(c) 

(e) 
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(b) 

(d) 

Figure 4.8: MBA reconstructions of the mri image (a) from (b) Skewness-based 
sampling, (c) Farthest Point Sampling, (d) Unoptimized Gaps and (e) Optimized 
Gaps 



(a) (b) 

(c) (d) 

Figure 4.9: Adapted 4-NNI reconstructions of the mri image from (a) Skewness-based 
sampling, (b) Farthest Point Sampling, (c) Unoptimized Gaps, and (d) Optimized 
Gaps 
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Figure 4.10: MBA reconstructions of the qbf image (a) from (b) Skewness-based 
sampling, (c) Farthest Point Sampling, (d) Unoptimized Gaps, and (e) Optimized 
Gaps 



(a) (b) 

"The quic;kbrown Tbe quick brown, 

(c) (d) 

Figure 4.11: Adapted 4-NNI reconstruct ions of the qbf image from (a) Skewness­
based sampling, (b) Farthest Point Sampling, (c) Unopt imized Gaps, and (d) Opti­
mized Gaps 
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qbf is a typical graphical image, and once again gaps outperforms both FPS 

and skewness-based sampling. The recovered images using Farthest Point samples, 

skewness-based samples and gaps (optimized and unoptimized) samples are shown in 

Figure 4.10 (for MBA reconstructions) and 4.11 (for adapted 4-NNis). Using MBA, 

gaps and skewness-based sampled qbfs are about the same- the edges of the MBA 

reconstruction from skewness-based samples are smoother than those from gaps- this 

is because the skewness-based samples are all at a fixed distance away from the edge, 

whereas there is more leeway for the placement of gaps samples (they are either 1 or 

2 pixels away from the edge) . On the other hand, the dot of the "j" in "jumped" is 

visible in the gaps reconstructions, but not the skewness-based reconstructions. 

There are severe problems with the reconstructions of qbf from Farthest Point 

samples. This is typical of FPS on most graphical images. The white background is 

undersampled, leading to many dark parts, due to the already mentioned behavior 

of MBA, which tries to minimize the deviation from 0 where there are too few 

samples. The black "q" and "br" are not sampled at all. This is because N ( v) for 

the vertices of the Voronoi diagram on these letters have all three nearest neighbors 

in the background, so the weight is 0 and these vertices are never chosen as the 

next sample. The light gray part of the text, "jumped over the", is also severely 

undersampled. Once again in the adapted 4-NNI reconstruction of qbf from FPS, 

there are many jagged edges. 
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4.5 Conclusions 

In this chapter, two existing scattered data interpolation algorithms, adapted 4-

Nearest Neighbor Interpolation and Multilevel B-Spline Approximation, were de­

scribed. Tests were performed using these two methods on our test set to compare 

the different irregular sampling algorithms. These showed that gaps had the good 

properties of FPS, for example a true progressive nature, and like skewness-based 

sampling, worked across all images (except for chirp, which does not represent a 

major class of images) . Gaps was superior to skewness-based sampling in that it 

sampled some parts of the image which had weak edges but were still important to 

the overall image, more densely than skewness-based sampling. Also image-specific 

parameters did not have to be chosen. 
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Chapter 5 

New Edge-Directed Multilevel B-Spline 

Approximation 

5.1 Introduction 

As mentioned at the end of the previous chapter, MBA has problems with sampling 

distributions in which samples are relatively far away on both sides of edges. New 

Edge-Directed Multi-level B-Spline Approximation (NEDMBA) is proposed in this 

thesis as a way to improve MBA. It is based on MBA, but with improvements 

adapted from two techniques from t he literature, namely an edge-preserving image 

zoomer (New Edge Directed Interpolation), and a technique called image inpainting. 

Explanations of both methods used as well as how they fit into the scattered data 

interpolator called NED MBA follow. A concise summary of NED MBA was published 

in [26] . 
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5.2 New Edge Directed Interpolation 

New Edge Directed Interpolation (NEDI) was proposed in [27] as a method to zoom 

in on a low-resolution image without the blurring artifacts evident in the commonly 

used bilinear or bicubic interpolation. The core of the NEDI algorithm only doubles 

the size of an image in each dimension. To zoom in K times on an image, the 

image size is doubled flog2 (K)l times, and then downsampled by the appropriate 

factor. Suppose X i,j is the low resolution r x c image and Yi,j is the zoomed image 

of size 2r x 2c. Then in the image doubling operation, Y2i,2j is set to equal X i ,j 

for 0 ::::; i ::::; r - 1, 0 ::::; j ::::; c - 1. Then it is assumed that Y2i+l ,2j +l is a linear 

combination of the four pixels around it with both indices even (i.e. these are values 

from the original image) . More precisely, suppose 

for some ak , 0 ::::; k ::::; 3. An estimate of the optimal MMSE values of the ak from 

[27) is: 

(5.2) 

C and iJ are obtained from the intensities in the low-resolution original image in 

an M x M neighborhood of the high-resolution pixel being interpolat ed . iJ is a 

vector containing the intensities of pixels in the M x M neighborhood, while the k t h 
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column of C contains the four interpolating neighbors (in counter-clockwise order 

and starting from the upper-left) of the kth pixel in '[j. After the pixels in Yi,i with 

both indices odd have been successfully interpolated, the pixels with exactly one odd 

index can be interpolated by repeating the above procedure except that the entire 

plane is rotated by i radians. Equation 5.2 is a specific instance of the Wiener-Hopf 

equation of adaptive filter theory. 

In personal communication with Wenmiao Lu, he stated that using an M x M 

neighborhood for finding a is equivalent to using a weighted-average filter and that 

this leads to blurring. So instead, only pixels on the same side of the edge of the pixel 

being interpolated should be used in the calculat ion of a [28] ; of course this means 

that a bigger window should also be used. A variant of this idea was used - instead 

of using a square window, low-resolution group G of pixels is grown around the pixel 

being interpolated, containing pixels with high edge magnitude. The constraint 

IGI 2: me is imposed, and the group is not allowed to grow beyond Me members. 

Here me and Me are thresholds. If G cannot be grown to at least me pixels, then 

the usual M x M square window is used. For NEDMBA, the parameter settings 

M = 4, me= 10 and Me= 40 were used. 
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5.3 The Main Algorithm New Edge Di-

rected Multilevel B-Spline Approximation 

(NED MBA) 

NEDMBA represents a hybrid of two interpolators, Multilevel B-Spline Approxima­

tion (MBA) and New Edge Directed Interpolation (NEDI) and incorporates image 

inpainting for image reparation stages. First the MBA control grid values <Pmn are 

generated at each level using MBA. Then the function values at the control grid 

points are computed by using Equation 4.5 with s = t = 0 and the control grid 

values in a 3x3 neighborhood of the control grid point. Using the function values 

at the control grid points, the 2x interpolator of NEDI is zoomed as many times as 

necessary and then downsampled to obtain a surface at pixel resolution. In other 

words, the function values defined by the spline surface are found at each of the 

control grid points and instead of using the spline surface to find the function (image 

intensity) at pixels not exactly located at control grid points, the function at the 

control grid points is zoomed as much as needed using NED I to the same size as the 

image. This is added to the surface sum from the previous levels and this process 

is continued until the finest level is reached. This finest level does not have to be 

processed with NEDI at all since the control grid coordinates coincide exactly with 

the pixels of the image. 
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As with NEDI, those pixels with both odd indices are first interpolated, and then 

those with exactly one odd index. Only a generic one of these stages is described 

for brevity. The variance of the function values in an Mv x Mv neighborhood of 

each point to be interpolated is calculated. Then NEDI is used to interpolate those 

pixels in the top Pv proportion of all the variances for the stage. If a pixel being 

interpolated doesn't belong to this top proportion, then regular MBA is used to find 

its value. In NEDMBA, the parameters Mv = 4 and Pv = 0.9 were chosen for all 

levels. 

Note that the function values and not the control grid values are used for the MBA 

interpolation - this doesn't affect the resulting intensity too much since this occurs 

in relatively homogeneous regions, but does result in lower SNRs, as is discussed in 

the experimental results section. 

5.4 Formation of Bright and Dark Spots 

NEDMBA using only NEDI and MBA is straightforward to implement but can lead 

to problems. The major difficulty is the formation of bright and dark spots in the 

reconstructed image. This is caused by the erroneous localization of an edge, as 

demonstrated in Figure 5.1 for the case of a bright spot. Because of poor edge 

localization in one of the levels, samples which are on the bright side of an edge can 

have a low intensity similar to the dark side of the edge. This means in the next 
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level of MBA the residual value of these samples will be very high. Then MBA will 

overcompensate for these high values, and in the next level the very bright values of 

these samples will be reflected in very bright control grid values in the vicinity which 

leads to excessive brightness where the cumulative image to that point was already 

bright as it should have been (since it was on the bright side of the edge). These 

bright spots persist because the cumulative sample values are close to what they 

should be starting from the level where the bright spot first formed. The scenario 

for dark spots is similar. 
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Figure 5.1: Figure showing mislocation of edge leading to formation of bright 
and dark spots 

Instead of NEDI, Weighted Bicubic Spline Interpolation [29], or other potentially 

more efficient interpolation algorithms can be used. Our multi-level image inpainting 

framework can be once again brought to bear on the formation of bright and dark 

spots. 
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5. 5 Selection of Extreme Regions to Fill In 

It would be good if the problem of the formation of bright and dark spots could 

be nipped in the bud so that they would not appear in the first place, however a 

less direct but potentially mathematically simpler approach is to post-process the 

image after each level to remove the extreme regions (bright and dark spots). The 

situation for bright spots is described, and the procedure for dark spots is analogous 

to this. There are several parameters, e.g. DFk and Pc which are used in the below 

discussion; they are clarified by their typical values in Section 5. 7. 

Now the criteria for finding which parts of the image are extreme bright regions 

are outlined. These extreme bright regions are the ones that have to be repaired 

by the inpainting process. Suppose that level k in the hierarchy of lattices in MBA 

is being considered. One thing to notice is that bright spots usually occur in level 

k in (connected) bright regions where there is a large spread in the values of the 

cumulative approximation up to that level. Let /k( i, j) be the intensity of the pixel 

in row i and column j in level k and ck(i,j) = ~7=o ft(i ,j) . First connected regions 

are grown of all pixels (i,j) where f k(i,j) is in the top P8 proportion of all intensities 

in level k. Region growing is done along the 8 compass directions (north, south, 

east, west, north-east, north-west, south-east, and south-west). Only regions where 

there is at least D fk difference between the maximum and minimum values of f 

are candidates to be post-processed. Let R be any one of these regions. Note the 
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dependence on the level k. Let mR = min(i,j)eRck(i,j) and MR = max(i,j)eRck(i,j). 

Let BR be the interior boundary of R. Let S be the set of samples either: 1) inside 

Rand within dSi pixels of BR or 2) outsideR and within dS0 pixels of BR. Finally, 

let GR be the subset of S of "good" samples, i.e. GR = {(i,j) E Slck(i, j ) < 

Pa · mR + (1 - Pa) · MR}· 

Then R is post-processed if and only if IGI ~ TGk or 11~/ ~ FG. This determines 

which spots are bright and have to be inpainted, and as previously mentioned, the 

same idea can be used to detect extreme dark spots to inpaint. 

5.6 Repairing of Extreme Regions by Image In­

painting 

The very bright and dark areas of the image formed by bad edge localization have 

to be removed somehow so that a suitable reconstruct ion is obtained. The best ap­

proach is to regard these regions as damaged and try to reconstruct their appearance 

using surrounding image data. This is a problem that has only recently been put 

forward in the digital domain and a solution methodology called image inpainting 

proposed, e.g. [30]. The method in [30] relies on the propagation of isophotes, or level 

curves, and is based on a PDE formulation . Unfortunately, this inpainting technique 

leads to blurring of edges inside regions being inpainted, and since edge-blurring is 

exactly what we are trying to eliminate, this is not a suitable choice for an inpainting 
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algorithm. 

Two other algorithms were however presented in [31] reconstruct edges sharply in 

the region being inpainted and so are potential candidates to be used in NEDMBA. 

These algorithms are based on the Mumford-Shah and Mumford-Shah-Euler mod-

els respectively. The Mumford-Shah-Euler model is a higher-order correction of the 

Mumford-Shah model which replaces the straight edge model in the Mumford-Shah 

model with smooth curves. Nevertheless, the increase in complexity caused by this 

correction makes the M-S-E model unwieldy, and because only relatively small re-

gions in the image are being inpainted, the M-S model suffices. 

Following the notation in [31], let 0 be the entire image and let D be the union 

of all the extreme bright and dark regions which are to be post-processed, or the 

inpainting domain. Suppose that u0 is the known image function outside of D and 

that )..Dis the characteristic function of 0\D (equal to 1 on 0\D, 0 otherwise). Let 

r be the edge set of the image and H 1(r) be the Hausdorff measure of r , which 

is basically its length. Then, to inpaint an image with the Mumford-Shah model 

involves minimizing the following energy functional: 

To make this tractable, r is approximated with the edge signature function z which 

is 1 on the entire image except for a small c: neighborhood of r where it is near 
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0. Then using this edge signature function, estimates of a pair of the terms in the 

expression for EMs can be made, namely: 

(5.4) 

and 

(5.5) 

Therefore, the functional: 

EM5 [u, z iu0
, D] = ~In An(x)(u-u0)2dx+~ In z2 i'Vui2dx+a In (ci'Vzl2+ (

1 ~Ez)
2 

)dx, 

(5.6) 

must now be minimized. 

Using the calculus of variations, the minimum is the solution of the following 

Euler-Lagrange system, 

0 (5.7) 

0. (5.8) 

This system is taken together with the following boundary conditions: 

(5.9) 
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where n is the outward unit normal from n. 

This system can be solved iteratively using a sequential strategy. First, an initial 

guess for z is made based on the computed edge magnitudes from u, where u on 

D is uniformly randomly distributed and u outside of D is given by the original 

image. Then u is solved for from the first equation in the Euler-Lagrange system, 

and after this the value obtained for u is used to solve for z. This is done for as 

many iterations as needed for u and z to converge. In practice, 15 iterations were 

used in our experiments. When MATLAB was used to directly solve PDEs with 

the assempde command, and solutions found alternately for u and z, blurring of the 

entire image resulted. Therefore, instead a finite difference scheme is used, where for 

each of 15 loops, 5 iterations of solving for u with the given z are performed, and 

then 5 iterations of the solution of z are executed. It is thought that performing a 

similar procedure with assempde would provide the same quality of results, but this 

takes too much computation time, so the finite difference technique is preferred. 

The solution of z , the edge signature function, is discussed first . From the second 

equation of the system, Mu z = 1 is obtained where Mu = (1+~)1V'u l 2 -4c26. This 

equation must be discretized. Let zf,i be the value of z at pixel ( i, j) and at iteration 

n. Then making the substitution (D.z)~,1· = z~ .+1 + z~ . 1 + z~+ 1 . + zn 1 . - 4z:"+
1 

• t ,J t ,J - t ,J t- ,J t ,J 

yields: 

(1 + 2eyiV'ul2)z :"+l - 4c2(zn '+l + z~. 1 + zn+1 . + zn 1 .- 4z~+1) = 1 a t ,J t,J t,J- t ,1 t- ,1 t ,J 
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1 + 4E2 (z??-.+1 + z??-._1 + zn+l · + z??-_1 ·) 
=} zn-:f-l = t,J t,J t ,3 t ,J 

t,J 1 + 16E2 + ~i'V'u \ 2 
(5.10) 

At each iteration, z and u are extended adiabatically, by padding with repetition for 

1 pixel on each side to satisfy the boundary conditions. 

To solve for u , the fact that the image outside of the inpainting region is already 

known is taken advantage of. For each iteration, u is kept unchanged outside of D . 

Inside D , the first equation of the Euler-Lagrange system becomes: \7 · (z2'Vu) = 0. 

Away from edges, where z is close to 1, this equation becomes f:l.u = 0, or when 

discretized, u~j1 = H u~l,j + u~i+l + uf_l,j + u~i-1 ). To allow z to exert control over 

the evolution of u, the right hand side of the previous equation is replaced with a 

weighted average as in [32] so that: 

(5.11) 

is obtained. This weighted average is used to maintain edges inside D, without the 

image on one side of the edge propagat ing to the other side. 

5.7 Choice of Parameters and Uninpainting 

NEDI and inpainting are used only for levels 5 and above, where the first level is 

level 0. For levels 0 to 2, plain MBA is used, and for levels 3 and 4, blurring is 

implemented. It may seem counterintuitive to purposefully blur a reconstruction (or 
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at least an intermediate part of it), when the aim is to sharpen this reconstruction, 

but the explanation of this is done is quite simple. If the image is not blurred, then 

the sum of the coarser spline surfaces will approximate the sample intensities for 

those samples along an edge quite well (as in Figure 4.5) , and so the edges in the 

final reconstruction will be represented by this sum of coarser spline surfaces, and 

thus be blurred. If a blur is performed, however, then the coarser surface will be 

more slowly changing and the sum of surfaces will still leave some residual at the 

samples close to the edge. Thus, when NEDI is used and when a zoom is performed, 

the overall edge which is represented by the sum of all the levels to that point will 

be stronger. The blurring is executed by first finding the function values at the 

control grid points by using Equation 4.5 with s = t = 0, and the control grid 

values as done in Section 5.3. Then instead of using NEDI to zoom on the image, 

the function for this level is found once again using Equation 4.5 except using the 

newly computed function values Fij at the control grid points and not the control 

grid values, cpij. That is, the function for this level at all pixels in the image is found 

from the equation: 

3 3 

f(x , y) = L L Bk(s)BL(t)F(i+k)(J+l)· (5.12) 

k=O l=O 

In the selection of regions to fill in, the following parameters were used (where 

for 256x256 images, there are 8 levels, 0 to 7) : DFk = [40, 25, 18], dSi = 3, dSa = 1, 
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Pc = 0.5, TGk = [4, 2, 2], FG = 0.4. For inpainting, the parameters chosen were 

as follows: 1 = 0.0125, E = 1 and a = 0.00025. Finally, a good value for PB was 

found to be 0.025. These settings were set experimentally and found to work with 

the entire test set of images. 

Even with these parameters, however, sometimes a region is inpainted by mistake 

leading to aberrations in the reconstructed image. To stop this from happening, 

information from the original sample intensities in the region is used. Let there be 

N R samples in the region R, let { Oi, 1 ::::; i ::::; N R} be the set of original sample values 

and { 1fi, 1 ::::; i :s; N R} be the intensity of the ith sample in the region after in painting. 

Then if there is at least one sample in the region and median( loi -nil ) > Uk , the 

region is uninpainted, which means all pixels are returned to their original ck values. 

A good choice for the Uk's was found to be [55 , 35, 20]. 

5.8 Experimental Results 

Figure 5.2 shows the reconstructions of regular MBA vs. NED MBA for peppers , one 

of the 8 test images from Figure 3. 7. The reconstructions start from 2523 skewness­

based samples. The parameters for this sampling of peppers were the same as those 

used in Table 3.1: es = [0.0025, 0.0063], r = [15, 8, 2], ed = 6, Bv = 40 and f = 50. 

The skewness-based samples were chosen to test NEDMBA since they result in the 

most blurring when reconst ructed in MBA, and thus needed the most improvement. 
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Despite the fact that the edges from NEDMBA (Figure 5.2(d)) are visibly sharper 

than those from MBA (Figure 5.2(b)), the SNR of the NEDMBA result is lower 

(9.86) than that of MBA (10.89). This is because the intensities in the homogeneous 

regions are not as close to the original, but overall the NEDMBA image is superior, 

as more information is carried by the edges. The SNR is thus not a good measure of 

overall image quality, but it is included here as it is widely used. Figures 5.2(e) and 

5.2(f) show zooms of the bottom right of the long vertical pepper at the left of the 

image in Figure 5.2(a). The lower edge in the zoom of the NEDMBA reconstruction 

Figure 5.2(f) is a bit jagged relative to Figure 5.2(e), but this lack of smoothness 

is not visible when the image is viewed at its normal size. On the other hand, the 

edges are visibly sharper for NED MBA than for plain MBA. In Figure 5.2( c) , the 

result of NEDMBA on peppers with the inpainting step omitted is shown. As can 

be seen, the use of inpainting is necessary in order to prevent the presence of bright 

spots, for example on the top-left corner of the large bottom-centre pepper. 

Figure 5.3 shows the results of NEDMBA vs. the other algorithms. Here the 

adapted 4-NNI reconstruction of femme from 2108 skewness-based samples is also 

included. As with peppers, the MBA reconstruction from skewness-based samples 

in Figure 5.3(b) is very blurry. Adapted 4-NNI (Figure 5.3(c)) is an amelioration over 

this, but unfortunately the level curves on the face of the woman are very disturbing. 

NEDMBA (Figure 5.3(d)) is the best of all, with edges visibly sharper than those 

from MBA, superior details to MBA, for example the eyes and teeth, and without 
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any of the artifacts with adapted 4-NNI. 

NEDMBA also works well with samples from Farthest Point Sampling or Faster 

Farthest Point Sampling. The outcome of tests on these samples is shown in Figure 

5.4. The reconstruction in Figure 5.4(a) using MBA is very dark and blurred. The 

edges in Figure 5.4(b) are not smooth and very jagged, which means that FPS and 

Adapted 4-NNI are not compatible algorithms. The NEDMBA reconstruction of 

femme from FPS samples once again gives the best result - there are sharper edges 

and the eyes are brighter than in the MBA reconstruction, without the extreme 

jagged edges of the adapted 4-NNI reconstruction. 

5.9 Conclusions 

Experiments on a wide variety of images show that NEDMBA works on many dif­

ferent types of images, for example natural and medical ones, and can be used for 

improved image compression; that is using the same amount of data as MBA, it is 

possible to yield improved reconstructions from irregular samples. It is still some­

what slow (on the order of minutes, not seconds for one image), so it remains an open 

problem to try to improve its efficiency. Instead of NEDI, a different 2x interpolator 

could be used. As well, the use of weighted B-splines [29} is an attractive option. 

Finally, using a gridding method other than MBA followed by function evaluation 

at the control grid points is another possibility which could be explored. 
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(a) (b) 

(c) (d) (e) 

(f) 

Figure 5.2: (a) Original peppers image, (b) Entire MBA reconstruction from 
skewness-based samples, (c) NEDMBA reconstruction without inpainting, (d) 
NEDMBA reconstruction, (e) Zoomed portion of MBA reconstruction from (b), (f) 
Zoomed portion of NED MBA reconstruction from (d). 
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(a) (b) 

(c) (d) 

Figure 5.3: (a) Original femme image, (b) MBA reconstruction of femme from 
skewness-based samples, (c) Adapted 4-Nearest Neighbor Interpolation of femme from 
skewness-based samples, (d) NEDMBA reconstruction from these samples. 
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(a) (b) 

(c) 

Figure 5.4: (a) MBA reconstruction of femme from Farthest Point samples, (b) 
Adapted 4-Nearest Neighbor Interpolation of femme from Farthest Point samples, 
(c) NEDMBA reconstruction from these samples 
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Chapter 6 

Farthest Point Halftoning 

6.1 Introduction 

As mentioned in the introduction, digital halftoning refers to the display or printing 

of a continuous-tone or many-level image to fewer levels, often only two. It was found 

by Ulichney that the most pleasing halftoned (also known as dithered) images were 

the ones with dots arranged in a high frequency, or blue noise, pattern without low 

frequency artifacts [22] . Irregular sampling can be applied to this problem, so this 

thesis is rounded out by doing this. 

In this thesis, the halftoning of gray-scale images and not color images is exclu­

sively dealt with. As well, only halftoning algorithms which are point processes are 

looked at. A point process is used when each pixel in the image to be halftoned is 

thresholded against a fixed array of the same size as the image, and is taken to be 
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white if it is greater than the corresponding element of the array, or black otherwise. 

The advantage of such algorithms is their speed; there is the one-time cost of gener­

ating the threshold array, but after this, the point-by-point comparison can be done 

very rapidly for all images in graphics hardware. 

For each gray level, there is what is called a dot profile of the threshold array, 

which is formed by using the threshold array to halftone an array with all elements 

at that given constant gray level. The dot profile can be considered to be a binary 

image, with black pixels equal to zero, and white pixels equal to 1. Then, the gray 

level is the average of these 1 's and O's over the entire array, where a gray-level image 

with gray levels in the range [0, G- 1] is normalized to range [0,1]. Because of the 

definition of the dot profiles, if a pixel is 1 for one gray level 91 , it has to be 1 for all 

gray levels 92 with 92 > 91· 

For point processes, in order to have good quality halftoned images, the binary 

dot profiles should have blue noise spectra. In Figure 6.1, the spectrum for the initial 

binary pattern from the Void and Cluster method (the dot profile for gray level 0.5) 

is shown. In fact, this is a radially averaged power spectrum, which provides us 

with most of the information since the 2-D spectrum is mainly isotropic, with a 

low amount of directional dependence. A dot profile with such a spectrum has fewer 

noticeable low frequency structures which take away from halftone quality. A radially 

averaged power spectrum is obtained first by taking annuli of all radii that lie in the 

image, and averaging the power of all the pixels that are in an annulus of a given 
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.Radially Averaged Power Spectrum for Initial Binary Pattern from VAC method 
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Figure 6.1: A typical blue noise spectrum 

radius away from the centre of the spectrum (the DC component). A pixel is taken 

to be in an annulus of a specific integer radius if the floor function of its radius from 

the centre of the image is that integer. 

In the next section, the details of three existing algorithms, the Modified Blue 

Noise Mask, the Void and Cluster method and Linear Pixel Shuffling halftoning are 

given, after which a new technique called Farthest Point Halftoning is put forward 

based on the Faster Farthest Point Sampling (FFPS) algorithm of Chapter 3, which 

gives better results compared to the three above-named methods. 
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6.2 Existing Algorithms 

6.2.1 The Modified Blue Noise Mask 

The Blue Noise Mask (BNM) [33] was the first attempt to simulate the performance 

of neighborhood processes like error diffusion (which are of very high quality) with 

point processes (which are much quicker to implement, at least once the threshold 

array has been formed). The early BNM algorithm attempted to force the dot profiles 

to have blue noise characteristics (by approximating a given gray-level specific blue 

noise spectrum) using a filtering and swapping approach. Three years later, an 

improvement to this algorithm was reported [34] called the Modified Blue Noise 

Mask (MBNM) which was simpler conceptually, and gave better halftoning results. 

The latter algorithm is briefly described here. 

The Modified Blue Noise Mask starts off with a blue noise pattern for an inter­

mediate gray level 9i, 0 ::; 9i ::; 1. Then dot profiles are generated for all gray levels 

above gi, and subsequently for all those below. The final threshold array can be con­

sidered to be the sum of all these binary dot profiles. The initial blue noise pattern 

is generated using an iterative process called the BIPPSMA (Binary Pattern Power 

Spectrum Manipulating Algorithm) starting from a white noise arrangement of l's 

and O's. The centres of the largest clumps of ls and Os in the binary pattern are 

found by locating the extrema of a low-pass filtered version of the binary pattern at 

that iteration, after which these centres are swapped. This low-pass filtering is done 
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in the frequency domain via FFTs. The M 1s in the binary pattern with the highest 

filtered values and the M Os with the lowest filtered values are swapped, where the 

value of M starts off from an arbitrary value, say the highest power of 2 less than 

the number of minority pixels in the binary pattern. The mean squared error (MSE) 

is calculated for the filtered pattern with respect to the given gray level; if the MSE 

has gone up, then the value of M is halved, and otherwise M is not changed. 

The low-pass filter used takes the principal frequency for the gray level g as a 

parameter, the principal frequency being given by the formula j 9 = min( V§, y'l=g) . 

Two different shapes of low-pass filters were suggested in [34] , one is a Gaussian, 

and the other a Butterworth filter. The Gaussian is simpler and yields better dot 

profiles, so this is chosen for our discussion. The form of the Gaussian function in 

the frequency domain is 

u2±22 
F ( u , v) = e- 2" , (6.1) 

where u and v are frequency coordinates, and a= 0.4xj9 . In our tests, an anisotropic 

version of this filter , as suggested in [34]: 

F'(u, v) = F(u, v)[1 + 0.2 cos(48)] (6.2) 

was used. Here, fJ is the angle of the frequency position with respect to the the central 

DC point, and using F'( u, v) increases the resulting energy in the mask in diagonal 

directions, to which the human eye is less sensitive, improving halftone quality. 
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The upwards and downwards construction of the dot profiles is basically the 

same as BIPPSMA, except that in the swapping stage, it is ensured that the stacking 

constraint is always satisfied. Also, for the downwards progression, the binary pattern 

is inverted so that the Gaussian filter with the same principal gray level-dependent 

standard deviation IJ can be used 1. 

6.2.2 The Void and Cluster Method 

The Void and Cluster (VAC) method for halftoning was first put forward by Robert 

Ulichney in 1993 [36]. It tries to eliminate unwanted clumps and empty regions (i.e. 

without 1s) in the halftone threshold array and thus in the halftoned image itself. 

Unlike the Modified Blue Noise Mask (MBNM), it does this by filtering in the spatial 

domain instead of the frequency domain. Its description is much simpler than that 

of the MBNM, and it is also faster. Like the MBNM, the VAC algorithm needs to 

start with an initial binary pattern at an intermediate gray level 9i · This is done 

via the Initial Binary Pattern Generator. Notice once again that each gray level 

is labelled by the fraction of pixels contained in it that are 1s. The Initial Binary 

Pattern Generator starts off with an arbitrary pattern, say a white noise pattern 

with a fraction 9i of pixels turned on. Then clusters (groups of ls or "on" pixels) 

are broken up iteratively and the presence of voids (areas without any "on" pixels) 

is reduced. Clusters and voids are found by computing a circular convolution of 
1The lack of inversion of the binary pattern on the downwards progression was why it was 

incorrectly reported in [35] that the parameters in [34] did not work. 

126 



the binary pattern b(x, y) with a Gaussian filter for every position in the array. An 

explanation of why a circular convolution is taken is given below. This can be done 

very rapidly using a look-up table for the Gaussian function , and using the fact that 

the entries of the look-up table are only ever added together, and not ever multiplied 

- r2 

by any numbers other than 1 or 0. The Gaussian filter is of the form f(x , y) = e2.;T, 

where r 2 = x2 + y2 . A good value of C7 was found to be 1.5 by Ulichney [36]. The 

filter can also be restricted to have a finite support (the region where it is non-zero), 

since its elements are very close to 0 for larger r . At each stage, this convolution, also 

known as a cost function, is calculated for all pixels in the image (in fact the sum 

is not recomputed for all pixels, just appropriately incremented or decremented for 

surrounding pixels of the position where a change was made in the array depending 

on whether respectively a pixel was either turned on or off). The convolution is: 

M N 
2 2 

C(x, y) = L L b((M + x- m) mod M, (N + y- n) mod N)f(m, n). (6.3) 
m=-!Yf n=-Jf 

A circular convolution is used in order to allow smaller halftone arrays to be 

generated which can be tiled over a larger image, so that no boundary effects are 

created. For a given (x, y) it is clear that the more pixels that are on, the higher C 

becomes. Also, the closer an "on" pixel is to (x, y), the more that C will increase. 

This is because the maximum off occurs at (0, 0), and this is multiplied by b(x, y), 

so b(x, y) has the most influence on C(x, y). Since f tapers off, it is easy to see 
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that in general b(x, f)) will have more of an effect as (x, f)) approaches (x, y). So the 

minimum of C can be viewed as being the pixel that is farthest away from all "on" 

pixels, or the centre of the largest void, while the maximum of C can be regarded as 

being the centre of the tightest cluster. In the Initial Binary Pattern Generator, the 

centre of the tightest cluster is changed from 1 to 0, thereby somewhat breaking the 

cluster up, and then the centre of the largest void is found and is changed to a 1. In 

effect, the centres of the largest voids and clusters are being swapped. This process 

ends when after changing the centre of the tightest cluster to a 0, the centre of the 

largest void corresponds exactly to the pixel that was just modified. This means that 

there was no change in this iteration, and so the process has converged. 

The rest of the Void and Cluster algorithm is quite straightforward. First , the 

dot profiles for all gray levels greater than gi are built, and then they are constructed 

for those levels less than 9i· Figures 6.2 and 6.3 (adapted from [37]) show the upward 

and downward progression processes respectively. 

6.2.3 Using a Linear Pixel Shuffiing Screen 

Linear Pixel Shuffiing (LPS) [19] was already discussed in Subsection 2.3.2, in which 

skewness-based sampling was made progressive. LPS can also be used to create a 

halftone screen for a dispersed-dot ordered dither algorithm. The algorithm is the 

same as the upwards procession in Figure 6.2, except that it starts at level gi = 0, 

and the initial binary pattern is all zeros. The flow chart is followed exactly, other 
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Let g = gi and input 
initial binary pattem 

for level g1 ·from 
Initial Binary 

Pattem Generator 

NumThisLevel = 0, ·--.,·-··--· 
MaxTIIisLevel= Uk 11'---t 

where g is the klh 1\r---t 
highest level 

Change the 0 at 
the centre of the 
largest void to 1 

Num ThisLeve/ = 
No NumThisLevel + 1 

~ . ~isLevel= "-.......~ Max ThisLeven 

The current binary 
pattem is the dot 

prollle for level g. and 
we feed it in as the 
input to next level. 

Letg = g +,6g 

Figure 6.2: Construction of Void and Cluster method dot profiles for levels above gi 

(6.g = b)· 

than the fact that instead of placing a 1 i(n ::~::ge:.~:id), we change zeros to ones 

in the LPS order , using the matrix lvf = , as given in Chapter 2. 

G_n Gn- 2 

6.2.4 Kang's Microcluster Halftoning 

Kang outlines an algorithm in [13] for creating dispersed-dot ordered-dither arrays of 

arbit rary dimensions. Kang's algorithm is used for microclust er halftoning, a cross 
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Change the 1 at 
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NumThisLevel + 1 

The current binary 
pattern is the dot 

profile for level g. and 
we feed it in as the 
input to next level. 

Letg = g -~g 

Figure 6.3: Construction of dot profiles for levels below 9i ( tlg = §). 

between dispersed-dot and clustered-dot ordered dither. In his application, only very 

small (e.g. 5x5) masks need to be formed. 

Thus, efficiency was not a concern for Kang. His algorithm generates the dot 

profiles of the threshold array in an upwards fashion, starting at level 0 with an all 

zero mask; at each stage it chooses the pixel which is dispersed the most with respect 

to all the pixels previously turned "on" (or to a 1) . Whereas in Linear Pixel Shuffling 

(LPS) pixels can be visited in the order of their indices in a table, Kang's algorithm 
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chooses the next pixel to be the one with the smallest calculated dispersion. This 

dispersion is a function of the distances to the four closest pixels which are already 

1 's; this would be computationally inefficient for larger masks due to the fact that 

the four nearest neighbors would have to be recalculated for all pixels after a new 

pixel is turned on. Our approach, based on a generalization of Faster Farthest Point 

Sampling (FFPS) can solve this problem very quickly, as we discuss in Section 6.3. 

Kang defined the dispersion of a pL'<:el to be 

A(i .) = ~ Jdk(i , j)- d(i,j)J 
,J 6 d( .. ) ' 

k=1 z, J 
(6.4) 

where d( i, j) is the average distance to the four nearest neighbors. This tends to be 

low for positions which are far away from "on" pixels and where the variance of the 

distances to pixels already turned on is small. Unfortunately, the dispersion measure 

does not distinguish between pixels which are equidistant from their four nearest 

neighbors, since regardless of what this distance is, the dispersion is 0. For example, 

if the four nearest neighbors of two different pixels are at distances of ( 1,1 , 1,1) and 

( 4,4,4,4) respectively, they are treated identically. 

Kang's algorithm sequentially selects pixels with the lowest dispersion until there 

are only single pixel "holes", whose 4 immediately adjacent horizontal and vertical 

positions are on. Then, the holes which are closest to the others and with the smallest 

dispersion are selected. The problem with this approach is that even before all the 
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remaining pixels to be filled are "holes", there are many ties, as many candidate 

pixels have the same 4 closest distances. In effect, for the higher gray levels, the 

dispersion contains less information about the best pixel to choose next. 

Next our new halftoning technique called Farthest Point Halftoning is discussed 

which is based on Kang's microcluster halftoning but solves many of the problems 

with his method. 

6.3 Farthest Point Halftoning 

Farthest Point Halftoning is a new halftoning algorithm based on Kang's [13] micro­

cluster halftoning. The Farthest Point Sampling method was introduced in [14] for 

effective irregular sampling of an image and was described in full detail in Chapter 

2 of this thesis. To exploit it for halftoning, the key observation is that in general a 

good set of irregular samples will have a blue noise spectrum, which is the desired 

characteristic of the spectra of good dot profiles for halftoning. An irregular sam­

pling method applied to halftoning might start from the dot profile for gray level 

0 and work its way up, at each point choosing the next pixel to be the one that 

is farthest from all previously selected pixels. This idea is not practical however, 

because of the extreme amount of time needed to sample the entire image for the 

formation of all the dot profiles of all gray levels. Also, not enough information is 

held by the distance to the closest pixel already selected (as with the strictly upward 
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Kang algorithm), especially for higher gray levels where the closest distance to an 

"on" pixel is 1 for a large number of the points not chosen to that stage. 

In the next subsection, our new Farthest Point Halftoning (FPH) algorithm is 

introduced, and its performance is compared to those of existing algorithms: the 

Modified Blue Noise Mask (MBNM) [34], the Void and Cluster (VAC) method [36], 

and halftoning with an LPS threshold array [19]. 

6.3.1 The Algorithm 

For simplicity, it is assumed that the dot profiles are generated upwards from an 

all-zero (except for four randomly chosen "on" pixels) level to an intermediate level 

9i· This will be made more clear below, but the important thing to note is that it 

is being assumed in this short discussion that pixels are being turned from "off' ' to 

"on". To begin, dk(i,j) is defined as as the distance (Euclidean) of the kth closest 

"on" pixel to (i,j). Kang's dispersion is a function of {dJt=I· It may seem that 

finding the four closest distances for any pixel would be inefficient, but this is not 

the case. A generalization of the Faster Farthest Point Sampling algorithm can be 

used, with the small change that we appropriately update the four closest dist ances 

for all pixels in an image I which are within max(i,j)EI d4 (i, j) of the pixel just changed 

to 1. This makes it possible to generate reasonably sized dither arrays, for example 

128x128, in about the same time as or faster than the existing MBNM and VAC 

algorithms. Though t his is a good characteristic, it is not vital, since the threshold 
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array is only formed once, after which it can be reused for multiple images. However, 

if it is wished to halftone images of different gray level depths, then this becomes 

more important. In addition, our threshold array of a fixed size can easily be t iled 

for larger images using a toroidal topology. 

Because of the problems with Kang's dispersion measure, a new dispersion mea-

sure A' is developed: 

4 
-dt(~,j ) w 

A'(i,j) = w1A(i , j)+w2 L e 2 "' + d ( .
3 

.) +w4cb(i,j)+wso(i,j)+w6.6.(i , j ), (6.5) 
k=l 4 Z,J 

where A, cb, o and .6. are defined below. 

The weights Wi used in the above equation should be selected as a function of the 

size of the dot mask; for example, in all our experiments with 128x128 grids a conve-

nient choice was w = [0.8, 1.6, 1.0, 0.45, 0.7, 0.6]. These weights were experimentally 

determined to give good results, along with a value of a of v'3. The modified dis-

persian in [38] was of the same form as Equation 6.5, but included none of the cb, o 

or .6. terms. In Equation 6.5, 

cb(i,j) ={: if turning (i,j) on (or off) forms a checkerboard pattern 
(6.6) 

otherwise 
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o(i,j) ~ { 
1 if dl(i,j) = 1 

0 otherwise 

{ 

1 if dl(i,j) = J2 
!::.( i, j) = 

0 otherwise 

(6.7) 

(6.8) 

The d (1 .. ) term is included in order to reduce the appearance of checkerboard 
4 t,J 

patterns, for example when switching a pixel on or off with all closest neighbors 

J2 away. However this does not prevent the formation of checkerboards by turning 

on or off pixels in other parts (not the centre) of the texture. So the checkerboard 

suppression term cb(i,j) is added. That is, cb(i,j) = 1 if turning (i,j ) on forms 

a checkerboard pattern in the upwards progression, or if turning (i , j) off forms a 

checkerboard pattern in the downwards progression. If this checkerboard suppression 

term is not included, then the dispersion of the pixels forming the checkerboard term 

is too low. Thus, the formation of checkerboard patterns not brought into existence 

by turning on the middle pixel is too favorable at levels far away from the middle level, 

where these patterns are better tolerated. Figure 6.4 shows an example of a pixel 

whose cb value is 1. When turning on or off a pixel it also has to be checked whether 

some pixels which before had cb(i,j) = 1 have now changed to have cb(i,j) = 0 and 

v1ce versa. 

But if checkerboard patterns are penalized, then horizontal and vertical arrange-

ments also become too highly favoured. So another penalty term for the formation 
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--·--· 
I I 

~-J 
cb(i,j) = 1 

Figure 6.4: Example of a pixel forming a checkerboard 

of these arrangements is used, which can be easily identified by checking to see if 

the closest distance to a pixel with the same binary value (as the value that we 

wish to change the current pixel under consideration to) is 1. The same is done for 

diagonal configurations by penalizing arrangements with closest distance equal to 

.J2. Observe that the exponential terms used in the computation of A' are similar to 

the Gaussian filter in the VAC method [22], except that a larger standard deviation 

is used. We have optimized the parameters for a 128x128 mask size, but have not 

considered how the parameters depend on the dimensions of a general-sized array. 

Additionally, because of the problems with a strictly upward progression m 

Kang's method, a two-step procedure is used around an intermediate level 9i m 

the [0, G - 1] luminance range of the original image to create the dot profiles. If 

gi = L ~ J, as is recommended, then dispersions are always taken with respect to 

minority pixels. The two-step process is now described in more detail: 

1. Create the dot profiles for all levels up to and including an intermediate level 

gi, starting from level 0, picking the pixel with the lowest dispersion at each 
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stage. Start off with 4 randomly pixels turned on. 

2. Build the dot profiles from level G - 1 down to level 9i + 1. Note that the dot 

profiles must satisfy a stacking constraint. So whenever a pixel is turned off, it 

must be already off in the dot profile for level 9i· The downward process starts 

with an initial pattern for level G- 1 with all pixels on except for four random 

pixels chosen from those which are off at level 9i· Then pixels are turned off 

which have the lowest dispersions (A') with respect to off pixels. When enough 

pixels have been turned off in a level ( rv ~n for an m x n image) , the level is 

decremented, and so on until the dot profile for level 9i + 1 is formed. 

Finally all the individual dot profiles are summed to produce the threshold array 

against which an input gray-level image is compared for halftoning. In fact , by t he 

definition of the dot profiles of the threshold array, the dot profiles should be added 

to form the sum array s(i,j), and then inverted to get the threshold array using 

the formula t(i,j) = M- s(i,j) , where M is the maximum gray level. However, 

inverting does not change the power spectrum, so we can just use s(i, j) as our final 

mask. 

The name Farthest Point Halftoning (FPH) is given to the entire process , that 

is the threshold array generation followed by the actual halftoning. Of course, as 

already mentioned, the threshold array, once generated , can be used for numerous 

halftonings; it may also be used in a tiled implementation against a larger image, as 
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in the results in the figures of the next section. 

6.4 Results 

6.4.1 Frequency Weighted Mean-Squared Error (FWMSE) 

The most widely used metric for halftone quality is Frequency Weighted Mean-

Squared Error (FWMSE), which is described in [13 , 39]. Before proceeding, the 

caveat must be made that the FWMSE is not a particularly effective measure of 

halftone quality, partly because it is a global measure. However, this measure is 

used in Section 6.4.2, despite its limitations. This quantitative comparison must 

be tempered by visual inspection of the real halftone results, in order to judge the 

effectiveness of each of the halftoning methods. 

The FWMSE metric in the form we use (see Equation 6.9) measures the difference 

between an original contone image and its respective halftone, according to a model 

of perception by the Human Visual System (HVS). More precisely, if o is the original 

M x N contone image, and hits halftone, then the FWMSE E(o, h) is given by the 

equation 

M - 1 N - 1 M-1 N-1 

E(o, h)= 2::: 2::: ((v * (o- h))(m, n)]2 
= J N L 2::: IV(k, l) · (O(k, l)- H (k, l)) l

2 

m = O n=O k=O l= O 

(6.9) 

The function v is an impulse response approximating the behaviour of the Human 
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Visual System .(HVS) by an LSI system response, and the functions denoted by 

capital letters are the Discrete Fourier Transforms of the corresponding lowercase 

functions. The time and frequency domains in Equation 6.9 are linked by Parseval's 

Theorem. The frequency response of the HVS uses the modified Mannos-Sakrison 

visual model [13, 39], which is given by: 

{ 

1 - 0.00242fr 
A(fr) = 

A(fr) 

if 0 :S fr < 7.891 
(6.10) 

if Jr ~ 7.891 

A(fr) is the Mannos-Sakrison visual model on which the modified Mannos-Sakrison 

visual model is based. This function, found by regression, is given by: 

A(fr) = 2.6(0.0192 + 0.114fr )e-(0
·
114fr )l.l. (6.11) 

Then V(k,l) = A(Jn + J?),o :::; k :::; l ~J,O :::; l :::; ll¥J, with the usual DFT 

symmetry conditions: V(M- k, l) = V(k, N -l) = V(M- k, N- l) = V(k, l) for 

these values of k and l. fk = 2DRtan(0.5°)k/M and ft = 2DRtan(0.5°)l/ N , where 

D is the viewing distance in inches and R is the printing or display resolution in dots 

per inch (39, 40]. For our calculations the values R = 300 dots/in and D = 12 in 

are used. A plot of the Human Visual Frequency Response is given in Figure 6.5. 

Note that it is lower in the diagonal orientations than the horizontal and vertical 

ones. Now that the FWMSE metric has been fully defined, it is applied to the 
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quantitative evaluation of the quality of halftone masks, as well as the comparison 

of the qualitative aspects of halftones generated with these masks. 
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Figure 6.5: The Modified Mannos-Sakrison Model of the Human Visual Frequency 
Response 

6.4.2 Halftoned Images and Quality Comparison 

Figure 6.6(a) is a 256-gray level Modified Blue Noise Mask tiled to 256x256 pixels 

from a 128x128 mask. Figure 6.6(b) shows a 256x256 mask formed using Linear Pixel 

Shuffling Halftoning. In Figure 6.6( c), a 128x128 256-gray level mask generated by 

the Void and Cluster algorithm tiled to 256x256 pixels is shown. Finally, another 

256x256 256-gray level mask formed by tiling a smaller 128x128 mask from Fart hest 
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Point Halftoning is shown in Figure 6.6(d). 

To compare the quality of these masks, the FWMSEs of the dot profiles for every 

8 levels are looked at, starting from level 8 and ending at level 248. This gives us a 

good idea as to how the different halftoning algorithms perform for the entire range 

of possible gray levels, which may not be possible when looking at a given specific 

image. These FWMSE calculations are done on the 128x128 masks, not the tiled 

versions. The FWMSEs of the LPS halftoning mask are also computed, even though 

the entire array is not meant to be tiled, and the periodic nature of the DFT means 

that this tiling is assumed. This may affect the FWMSE results for this mask, though 

the situation should not be too grave, because the FWMSE is a global measure, and 

there are only problems on the boundary of the mask. Figure 6. 7 gives a plot of the 

FWMSEs for the range of gray levels. 

From Figure 6.7, it is observed that the lowest and thus the best FWMSE curve 

is the one from the Modified Blue Noise Mask, followed closely by the LPS mask, 

then that of our new algorithm, Farthest Point Halftoning, and finally the Void and 

Cluster curve. However, it is well known [39] that the FWMSE is not a completely 

accurate quality measure due to its averaging effect. Thus, all our test images are 

halftoned and some representative results (those from cameraman and femme , Figures 

6.8 and 6.9 respectively) are shown, from which it is clear that FPH gives results 

which are superior. Measures that better reflect the characteristics of the halftone 

other than the FWMSE can be used, e.g. the texture metric of [41], but this example 
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(a) A typical 256x256 256-
gray level Modified Blue 
Noise Mask, formed by 
tiling a smaller 128x128 ar­
ray 

(b) A typical 256x256 256-
gray level threshold array 
created using Linear Pixel 
Shuffling 

(d) A typical 256x256 256-
gray level Farthest Point 
Halftoning threshold ar­
ray, formed by tiling a 
smaller 128x128 array 

(c) A typical 256x256 256-
gray level Void and Cluster 
threshold array, formed by 
tiling a smaller 128x128 ar­
ray 

Figure 6.6: Threshold arrays from different halftoning algorithms (printed at 1200 
dpi) 

has the limitation of only being able to identify the presence of specific textures which 

have to be given, so this concept was not pursued in this thesis. 

In Figure 6.8, showing halftone results of cameraman, it can be observed that 
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Figure 6.7: FWMSEs of dot profiles of different masks 

the halftoned version using the Modified Blue Noise Mask (Figure 6.8(b)) is of quite 

poor quality. The transition from the slightly brighter part of the sky above the 

cameraman's head to the section of the sky in the right of the image is not very 

smooth, and the grass is not as uniform as it is in the original contone image. The 

halftone results for femme with the MBNM (Figure 6.9(b)) are equally bad - the 

face is splotchy and there are snake patterns (long connected white patterns) in 

the background. The Linear Pixel Shuffling halftones for both cameraman (Figure 

6.8(c)) and femme (Figure 6.9(c)) contain disturbing and disruptive regular textures 

and patterns, which are especially evident in the uniform regions of the images. The 

Void and Cluster algorithm gives the best results out of the three existing halftoning 
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(a) Original 256 gray-level 
cameraman image 

(b) Halftoned cameraman 
using the Modified Blue 
Noise Mask 

(c) Halftoned cameraman 
using Linear Pixel Shuf­
fling 

(d) Halftoned cameraman 
using a Void and Cluster 
threshold array 

(e) Halftoned cameraman 
using Farthest Point 
Halftoning 

Figure 6.8: cameraman image halftoned using screens from different algorithms 
(printed at 1200 dpi) 

methods, but there is still evidence of some textures. For example, there are some 

coral patterns on the woman's face in femme (Figure 6.9(d)) and for cameraman 

(Figure 6.8(d)), these textures appear in the same problem areas as for the MBNM. 

For these two images, FPH (Figures 6.8(e) and 6.9(e)) gives the best results as none of 

the obvious patterns apparent for the other three algorithms appear in the halftone. 
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(a) Original 256 gray-level 
femme image 

(b) Halftoned femme using 
the Modified Blue Noise 
Mask 

(c) Halftoned femme using 
Linear Pixel Shuffling 

(d) Halftoned femme using 
a Void and Cluster thresh­
old array 

(e) Halftoned femme using 
Farthest Point Halftoning 

Figure 6.9: femme image halftoned using screens from different algorithms (printed 
at 1200 dpi) 

Similar results are obtained for other images in the test set. 
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6.5 Conclusions 

Farthest Point Halftoning was introduced in this chapter and found to perform better 

than the existing standards. Apparent artificial structures and textures are not 

introduced in the halftones. One possible improvement is the use of Manhattan 

distance instead of Euclidean distance - this would favor diagonal patterns to which 

the HVS is less sensitive. However, even without this potential improvement, the 

quality of halftoned images is very high. Better dispersion measures may also be 

possible, and it could be advantageous to have a gray level-dependent dispersion 

function. It is also important to derive parameters for a mask of general size, t hough 

this was not done here. 

146 



Chapter 7 

Conclusions 

7.1 Discussion of Results and Observations 

This thesis has developed new techniques for the irregular sampling of digital images, 

the reconstruction of images from these irregular samples, and the bilevel halftoning 

of images based on irregular sampling. These new techniques were compared to 

existing methods and gave favorable results. 

In Chapter 2, the Farthest Point Strategy and skewness-based sampling for irreg­

ular sampling of digital images were presented. In experiments in Chapter 4 , FPS 

was shown to perform poorly on graphical images, especially when used with adapted 

4-Nearest Neighbor Interpolation. Skewness-based sampling had the problems of the 

need of image-specific parameters and lack of flexibility in choosing the bitrate. In 

order to address these problems, a new irregular sampling algorithm called gaps was 
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developed which was truly progressive, in that samples are generated one at a time. 

While there are similarities with FPS, gaps worked better on a wider range of images 

than FPS and with all reconstruction algorithms. 

Both skewness-based sampling and gaps lead to blurry recovered images when 

using Multilevel B-Spline Approximation (MBA). Since at times there is no control 

over the placement of samples, new reconstruction methods have to be developed. 

This was done in Chapter 5 of this thesis, which introduced New Edge-Directed Mul­

tilevel B-Spline Approximation (NEDMBA) is introduced. This algorithm maintains 

the positive features of MBA, for example locality, while giving sharper edges in the 

reconstructions. 

Finally, a new technique for digital image halftoning was introduced in Chapter 

6. A point-process approach was followed, which leads to very fast halftoning once 

the threshold array is formed. A more efficient irregular sampling algorithm known 

as Faster Farthest Point Sampling, based on FPS was given in Chapter 3. A gen­

eralization of FFPS was used for a new halftoning algorithm called Farthest Point 

Halftoning, which gives halftones with fewer of the textures and regular structures 

evident in the previously existing algorithms. 

Irregular sampling, scattered data interpolation and halftoning are important 

p roblems on which much previous work has been done. This thesis presents a state-

of-the-art summary of the field, and contributes new algorithms; gaps, NED MBA and 

Farthest Point Halftoning. This thesis can provide foundations for further research 
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so that better image compression and rendering become a reality. 

7.2 Future Work 

As mentioned in previous chapters, the sampling and reconstruction algorithms can 

be extended from gray-level to color images. In fact, it should even be possible to 

generalize Farthest Point Halftoning to color halftoning using similar ideas to [13, 42], 

where a different mask is used for each color plane. 

While gaps is a very good and reasonably efficient progressive sampling algorithm, 

it may be improved by removing the requirement that the point map be transmitted, 

as is done with Farthest Point Sampling. This is practical since there are in general 

four relatively close samples used in the calculation of the gap magnitude of a pixel. 

A formula for the weight of a pixel similar to that used for adaptive Farthest Point 

Sampling can be used involving the intensities and locations of these samples. Faster 

Farthest Point Sampling has the attractive properties of fast execution time along 

with a lack of a point map, but the sample placement for a given number of samples 

is not as good as gaps. 

In this thesis, new techniques have been presented for both irregular sampling 

and scattered data interpolation. The work could be extended to include a com­

parison of these techniques with respect to a coding scheme (e.g. with quantization 

and arithmetic coding) as in [11] in addition to comparing the performances of all 

149 



algorithms with JPEG at a given bitrate. 

NEDMBA should be speeded up, and this could be done by using an interpolator 

other than New Edge Directed Interpolation (NEDI) . This is because NEDI has to 

be called repeatedly (it only doubles the size of the image with each call) to create 

the zoomed image of the same size as the original. A more thorough analysis of 

why NEDMBA makes some edges sharper than others is needed, which may provide 

for an improvement in the appearance of all edges in reconstructions. A hybrid 

between adapted 4-Nearest Neighbor Interpolation (close to edges) and Multilevel 

B-Spline Approximation (in homogeneous areas) is another possibility that should 

be explored. 
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