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Abstract 

This research was performed to evaluate the cryptographic capabilities of the 

Chameleon CS2112 Reconfigurable Communications Processor. The CS2112 is a 

processor architecture which closely couples a general purpose microprocessor with a 

specialized reconfigurable core. 

To evaluate the architecture, five cryptographic algorithms were chosen for im­

plementation. The first algorithm, the Data Encryption Standard (DES), was the 

United States National Cryptographic Standard from 1977 until 2001 and has been 

the most widely used cryptographic algorithm in computing and communications en­

vironments. DES's successor, the Advanced Encryption Standard (AES or Rijndael) 

which was chosen in the fall of 2000, was also implemented. Since the CS2112 is 

targeted toward wireless communications applications the other three algorithms -

EO, KASUMI, RC4 - were chosen as they are currently used to provide security in 

common wireless protocols. The Bluetooth protocol, developed to provide a cheap 

and easy met hod for users to create wireless connections between devices, uses EO 

to secure connections. The RC4 algorithm is part of the 802.11b wireless data com­

munications standard and KASUMI forms an integral part of the authentication and 

privacy portions of the 3rd Generation GSM cell phone standard. 

DES and AES were fully implemented on the CS2112 and a working executable 

application was developed. Our efforts to exploit t he parallelism and pipelining ca­

pability of the CS2112 and multiple implementations are described for these two 

algorithms. The maximum throughputs for the DES and AES implementations were 
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found to be 322.5 Mbits/sec and 1.1 Gbitsjsec respectively. Also, although complete 

implementations were not finalized, preliminary implementations for EO, KASUMI, 

and RC4 were developed with a view to allow performance estimates to be made and 

provide a basis for future work. 

The Chameleon CS2112 implementations of the above algorithms performed re­

spectably and the architecture could be useful in cryptographic applications. How­

ever, the architecture does constrain design size considerably. Unfortunately, the 

CS2112 is no longer commercially available since Chameleon Systems Inc. has ceased 

operations. However, this architecture, with some modifications, could be used as the 

basis for a new general cryptographic accelerator. 
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Chapter ·1 

Introduction 

I can add colors to the chameleon, 

Change shapes with Proteus for advantages, 

And set the murderous Machiavel to school. 

- William Shakespeare, King Henry VI Pt. III 

At the beginning of 2003 there were more than 170 million hosts connected to the 

Internet and this number is expected to surpass the 200 million mark by the end of 

the year [1]. However, demand is also growing from a user 's perspective, not just for 

simple Internet connectivity, but also for high bandwidth, permanent connections. 

Gone are the days of dialing into a pool of modems at your local Internet service 

provider. Now, high speed data connection technologies offered by telecommunica­

tions and cable companies can give people a permanent link to the Internet in their 

homes making it a part of daily life for many people. This growth has, in turn, fuelled 

higher bandwidth demands from business. Online shopping and banking have become 

as commonplace as going to the market to buy bread or going to a bank to pay bills. 

Alongside the growing use of the Internet has come another trend - the desire for 

mobility. The wireless market worldwide is over a 120 billion dollar industry and it is 

estimated that by 2006 there will be 64 million mobile Internet subscribers [2]. This 

estimate does not include the users of devices employing technologies such as WiFi 
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(or 802.11b) or Bluetooth that allow easy setup of wireless local area networks in 

homes and allow printers to be connected to a PC without a cable. The speed and 

range of wireless devices is also constantly improving as new standards are developed. 

For example, the 802.1lb standard supports data rates of up to ll.Mbps whereas the 

802.1lg standard, which is currently under development, will support data rates of up 

to 54Mbps at a similar range. Such developments have the potential to make wired 

connectivity a thing of the past. 

A result of these two trends is the need for improved security. Internet users, for 

instance, worry about hackers gaining access to their credit card information from an 

online store's database or wonder if somebody connected to their network was observ­

ing the purchase they just made. If they are using a wireless connection, a malicious 

user could be observing their transactions from a great distance using a sensitive an­

tenna. In 1990 CERT [3] recorded only 252 security related incidents on the Internet. 

But by 2002 this number had swollen to over 80,000 with another 40,000 in only the 

first quarter of 2003 [4]. Of course, many more incidents were not recorded. Although 

most new communications protocols now include some mechanism for providing au­

thentication, data integrity and privacy, the demand formore bandwidth requires the 

development of new cryptographic algorithms and devices that can keep up at higher 

speeds. As well, wireless connectivity adds the extra complication of low power usage 

on system designers. 

To meet the needs of the market, the communications industry has been changing 

rapidly over the 1ast two decades. For example, Ethernet connection speeds have 

moved from 2.94Mbps to now lGbps and soon lOGbps [5] . System designers are now 

turning to hardware devices more than ever to meet the demanding requirements of 

the communications industry. To achieve these changes, designers have also been 

frequently turning to configurable devices, such as Field Programmable Gate Arrays 

(FPGAs), to improve their time to market and lower their development costs. As well, 
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such devices can be reconfigured as standards and requirements evolve. However, 

custom Application Specific Integrated Circuits (ASICs) are still used for the highest 

speed applications where large volume production is expected. 

In recent years, researchers have begun coupling a general purpose microprocessor 

with reconfigurable logic in order to gain the benefits of a hardware implementation 

while still having the flexibility of software. In a rapidly changing market this is a 

definite advantage. Initial research into reconfigurable microprocessors began at a 

university level. Such systems began at the board level with a microprocessor exter­

nally linked to an FPGA [6][7]. Over time, however, architectures began to evolve in 

which the processor and reconfigurable logic resided on the same chip [8][9][10]. As 

well, such architectures recently began to appear commercially when companies such 

as Triscend, BOPS and Chameleon Systems released reconfigurable microprocessors 

to the market. Unfortunately, many of the companies offering reconfigurable micro­

processor devices, including BOPS and Chameleon Systems, are no longer operating, 

A probable reason for their demise was their inability to provide the necessary devel­

opment tools to easily take advantage of the technology. Although they were able to 

"add colours to the chameleon, and change shapes with Proteus", it was not enough 

to become a king. 

Motivation, Scope and Organization of Research 

In the Fall of 2000, Chameleon Systems Inc. proposed that researchers at Memorial 

University of Newfoundland, led by Dr. Howard Heys and Dr. R. Venkatesan, study 

the suitability of their new product for cryptographic' algorithms. The Chameleon 

Systems CS2112 RCP chipwas considered the industry's first reconfigurable processor 

targeted at communications applications. Although designed for protocol processing 

and signal processing, potential cryptographic capabilities would further its suitability 

for communications applications. A number of cryptographic algorithms that are part 
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of current communications standards were selected for implementation on the CS2112. 

In total, five cryptographic algorithms were chosen for implementation, including the 

Data Encryption Standard (DES), a widely used cryptographic standard released in 

1977, and its successor the Advanced Encryption Standard (AES) which was finalized 

in 2001. As well, the algorithms EO, KASUMI and RC4 which are all utilized in 

current wireless protocols were chosen since the CS2112 is targeted toward wireless 

communications applications. The goal was to implement the chosen algorithms in 

hardware so as to achieve a performance increase over pure software implementations. 

Chameleon Systems provided Memorial with their proprietary set of design tools as 

well as a development board for testing the resulting designs. Although the company 

stopped production of the CS2112 in early 2002, Chameleon Systems still provided 

technical support as needed. In early 2003, Chameleon Systems Inc. ceased operations 

but all major research was completed before this occurred. 

The following is an outline of the research presented in the following chapters: 

• Chapter 2 presents a brief overview of cryptography as well as descriptions of 

the algorithms selected for implementation on the CS2112. 

• Chapter 3 provides some background in the field of reconfigurable computing 

and some recent results using such hardware for cryptographic purposes. 

• Chapter 4 details the Chameleon CS2112 processor architecture and gives the 

reader insight into the design methodology used when implementing algorithms 

on the CS2112. 

• Chapter 5 describes research efforts related to the implementation of the Data 

Encryption Standard. 

• Chapter 6 presents efforts in the development of Advanced Encryption Standard 

functions on the CS2112. 
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• Chapter 7 details some preliminary design work completed with three other 

ciphers used in current communications standards - the Bluetooth encryption 

algorithm EO, KASUMI, and RC4. 

• Chapter 8 summarizes the results of this research and provides recommendations 

for future work. 
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Chapter 2 

Cryptography Overview and Selected 

Algorithm Descriptions 

Cryptography, from the Greek kryptos meaning hidden and graphein meaning to 

write, is the art and science of making communications unintelligible to all except 

the intended recipient(s). Cryptographic techniques attempt to protect information 

by altering its form. The origins of secret writing can be traced back nearly four 

millennia to the hieroglyphic writing system of the Egyptians [11]. Until recently, the 

use of cryptographic methods to secure communication has been within the realm 

of governments and has been directed by their associated national cryptographic 

services. With the steady growth of the Internet and the ever-increasing private 

use of communications channels comes the need for public cryptographic standards. 

Without such standards, users are forced to improvise on their own which can lead 

to relatively insecure cryptographic methods being employed. The following sections 

provide a brief overview of some cryptographic principles as well as descriptions of 

the cryptographic algorithms studied in this research. 
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2.1 Cryptography 

As stated above, cryptography protects information by making it unreadable to all but 

the authorized parties. Encipherment (Ek) is t he process whereby the original text, 

called the plaintext (P), is replaced by random-looking text called the ciphertext 

(C). Both texts are composed of a concatenation of symbols from an alphabet. 

Decipherment (Dk) is the process whereby Cis transformed back into t he original P . 

Notationally: 

A cryptographic system is a family of transformations on plaintexts. The members 

of the family are indexed by a parameter called the key, k . Typically, the key is a 

sequence of symbols from an alphabet and the associated transformation Ek (or Dk) 

is an algorithm determined by k. A key is used since it is much simpler t o change a 

key than to change the entire algorit hm used t o protect the data. 

There are two general classifications for cryptographic algorithms: Public Key 

and Private (or Symmetric) Key [12]. In public key cryptography, the sender uses 

a publicly known key generated by the receiver to encrypt a secret message before 

sending it through an insecure communications channel. The receiver then uses a 

combination of a private key, known only to them, and the public key to decrypt the 

message. In general, public key algorithms are much more computationally intensive 

t han private key algorithms since the former rely on t he principle that it is infeasible 

to find the private key given the public key. If otherwise, it would be trivial for an 

attacker to decode the secret message. One example of such a suspected compu­

tationally infeasible problem used by public key algorithms is the factorization of a 

number composed solely of two very large prime numbers. The best known public key 

algorithm is RSA which was invented by Ronald L. Rivest; Adi Shamir, and Leonard 

Adleman in 1977. 
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Public key systems are typically used to share secret symmetric keys between two 

communicating parties so that a faster private key system can be used. In private 

key cryptographic systems, the sender and receiver share a secret key that is used 

to both encrypt and decrypt secret messages sent on an insecure channel. Private 

key systems rely on the principle that it is computationally infeasible to decrypt the 

encrypted message without knowledge of the private key. Two general classifications 

of private key ciphers, block ciphers and stream ciphers, are discussed in the following 

sections. 

2.1.1 Private Key Block Ciphers 

Private-key (also called symmetric-key) block ciphers are probably the most promi­

nent and important elements in many cryptographic systems. Such a cipher is a 

function that maps n-bit plaintext blocks into n-bit ciphertext blocks. The function 

depends on a k-bit key that is usually chosen at random from the key space K. Each 

key could define a different function output for a given plaintext but this is not nec­

essarily the case - multiple keys may give the same ciphertext result . However, to 

allow for unique encryption the function must be one-to-one. This means that for a 

specified key, only one ciphertext results from a specified plaintext [13] . 

Many modes of operation can be applied to any block cipher and are illustrated in 

Figure 2.1. The EB symbol in this figure represents a bitwise exclusive OR (or XOR) 

operation. In Electronic Code Book (ECB) mode, the blocks are simply encrypted or 

decrypted one at a time with a key. If the same key is used, each time a particular 

plaintext is encrypted it will result in the same ciphertext. But with Cipher Block 

Chaining (CBC) mode this is not the case. In this mode the previous ciphertext out­

put is XORed with the next plaintext to be encrypted before encryption takes place. 

The first plaintext is XORed with t he ciphertext of a non-secret initialization block, 

c0 . In this way, multiple ciphertexts for a particular plaintext will not necessarily 
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Figure 2.1: Block Cipher Modes of Operation 

be equivalent even if the same key is used. Another mode of operation is Output 

Feedback (OFB) mode in which a pseudo random sequence is produced by the block 

cipher algorithm. The resulting blocks generated by the algorithm are XORed with 

the plaintext blocks to produce the ciphertext. Given the block cipher algorithm 

and a non-secret initialization value or "seed" the pseudo random sequence can be 

reproduced. In this research only the ECB mode of operation was considered. 

2.1.2 Stream Ciphers 

In a stream cipher a sequence of bits called the keystream is generated randomly or 

by some algorithm that generates bits based on an initial seed value and/or previous 

ciphertext values. This keystream is then combined with the plaintext bits, usually 

with a simple bitwise XOR operation, to produce the ciphertext as illustrated in 

Figure 2.2. Decryption issimply the reverse process using the same keystream bits. 

In general, the most complex portion of a stream cipher system is the keystream 

generation algorithm. Stream cipher systems are used when it is advantageous to 
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bits 

_j I l ciphertext seedl Keystream Generator . ) bits 

Figure 2.2: Stream Cipher Operation 

process data on a bit-by-bit basis where, in such a situation, data would potentially 

have to be buffered before processing if a block cipher were used. As well, since 

stream ciphers operate on a bit level, error propagation is limited when compared to 

block ciphers. 

2.2 Data Encryption Standard 

In the early 1970s, a banking customer asked IBM to develop a system for encrypting 

Automated Teller Machine (ATM) data. IBM's team (with some help from the United 

States National Security Agency (NSA)) developed a new encryption algorithm that 

was submitted to the United States National Institute of Standards and Technology 

(NIST). It was adopted in 1977 as a national cryptographic standard: the Data 

Encryption Standard [14]. 

DES operates on 64-bit blocks of plaintext and utilizes a 56-bit key. The key is 

actually supplied to the algorithm as 64-bits, but 8 of these are parity bits. The in-

ternal operation of DES is based on two general concepts: product ciphers and Feistel 

ciphers. In a product cipher, the overall function is composed of anumber of simpler 

operations. Such operations could include bit transpositions, translations, arithmetic 

operations, modular multiplication and simple substitutions. These simple operations 

provide no security individually, but together they provide sufficient protection[13] . 

Fiestel ciphers are a special case of an iterated block cipher in which the ciphertext is 

calculated by repeated application of the same transformation or "round function" . 

Figure 2.3 shows the overall structure of DES and, as can be seen, it is composed 
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Figure 2.3: DES Structure 

of 16 inner rounds. The input block passes through an initial permutation (IP) stage 

before entering the first round of the cipher and an rp- l stage after round 16. In 

each round, 32-bits of data enter the F-function. Figure 2.4 illustrates the internals 

of this function. Inside the F-function, Sl-S8 are the 8 substitution mappings, called 

S-boxes, that map a 6-bit input into a 4-bit output. The 1st and 6th bits of the 

S-box input are used to select the row of the substitution table while the 2nd to 5th 

bits are used to select the column of the table. As an example, S-box Sl is given 

in Table 2.1. From this table, if the input to S1 is 101011 the S-box output would 

be found in row 3, column 5 which is 1001. As well , in Figure 2.4, E is a fixed 

S1 
14 4 13 1 2 15 11 8 3 10 6 12 5 9 0 7 
0 15 7 4 14 2 13 1 10 6 12 11 9 5 3 8 
4 1 14 8 13 6 2 11 15 12 9 7 3 10 5 0 

15 12 8 2 4 9 1 7 5 11 3 14 10 0 6 13 

Table 2. 1: DES S-Box S1 
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Figure 2.4: DES F-Function 

expansion permutation that maps the 32 input bits into 48 bits and P is another 

permutation over the 32 output bits of the S-Boxes. Tables 2.2 and 2.3 show the 

outputs of these two operations where the number in a cell represents the bit of the 

input word that now resides at this location. The tables are read from left to right, 

top to bottom with the cell (0,0) representing the MSB and cell (8,6) in theE table 

or (8,4) in the P table representing the LSB of the output. The subkeys Ki , where 

E 
32 1 2 3 4 5 
4 5 6 7 8 9 
8 9 10 11 12 13 

12 13 14 15 16 17 
16 17 18 19 20 21 
20 21 22 23 24 25 
24 25 26 27 28 29 
28 29 30 31 32 1 

Table 2.2: E Expansion 

1 :::; i :::; 16, are calculated from the original key, K, using a key scheduling algorithm 

as described in [14] . In the DES algorithm, decryption is accomplished by using the 

same algorithm with these subkeys in the reverse order. 
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p 

16 7 20 21 
29 12 28 17 

1 15 23 26 
5 18 31 10 
2 8 24 14 

32 27 3 9 
19 13 30 6 
22 11 4 25 

Table 2.3: P Permutation 

2.3 Advanced Encryption Standard 

After a number of years of controversy and successful attempts at breaking DES [15], 

the United States National Institute of Standards and Technology decided to seek 

submissions for a new block cipher, the Advanced Encryption Standard, to replace 

DES. The Rijndael cipher, designed by Vincent Rijmen and Joan Daemen, was chosen 

as the AES algorithm on October 2, 2000 by NIST [16]. 

The Rijndael cipher is an iterated block cipher with a variable block length of 128, 

192, or 256 bits and a variable key length of 128, 192 or 256 bits. The block and key 

length are independent of one another. The number of rounds of iteration depends 

both on the key and block lengths and can be determined from Table 2.4. 

Block Length 
Key Length 128 192 256 

128 10 12 14 
192 12 12 14 
256 14 14 14 

Table 2.4: Number of Rounds in Rijndael 

A typical round consists of a byte substitution, a column mixing operation, a row 

shifting operation and a key addition. Each of these steps performs operations on a 

rectangular array of bytes called the cipher STATE. Each column of the STATE is 32 

bits and the number of columns depends on the block length. Initially, the STATE is 

formed from the input bytes by placing the bytes (from MSB to LSB) into cells a0 ,0 , 
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a 1,0 , a2,0 , a3,0, a 0 ,1, a 1,1, etc., where cell ai,j represents the cell of STATE a at row i, 

column j. This arrangement is shown in Figure 2.5. The cipher key is also mapped 

ao,o ao,1 ao,2 ao,3 
a1,o a1,1 a1 ,2 al,3 

a2,o a2,1 a2,2 a2,3 

a3,o a3,1 a3,2 a3,3 

Figure 2.5: Example of STATE for a block size of 128 bits 

onto a rectangular array of bytes in the same way. The following sections detail these 

cipher operations as well as how the produce the overall algorithm. 

2.3.1 Byte Substitution 

The Rijndael byte substitution operation is a non-linear mapping that is applied to 

every byte of the cipher STATE. The substitution tables, or S-Boxes, operate on 8-bit 

inputs and produce 8-bit outputs. For the purposes of decryption, the inverse table 

is used. The S-box mappings can be found in [17]. 

2.3.2 Row Shift 

The row shift operation is a cyclical shift across each of the rows of the cipher STATE. 

The shifts for each row are determined by using Table 2.5 arid are a function of the 

block length. For decryption, the rows are shifted by ( # of columns)-(row shift from 

Table2.5) . 

Block Length Row 0 Row 1 Row 2 Row3 
128 0 1 2 3 
192 0 1 2 3 
256 0 1 3 4 

Table 2.5: Rijndael Row Shifts 
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2.3.3 Column Mixing 

T he column mix operation can be pictured as a GF(28 ) multiplication of the columns 

of STATE with a fixed polynomial c(x) = 03 · x3 + 01 · x2 + 01 · x + 02. The inverse 

is found by multiplying the columns of STATE with a fixed polynomial d(x) = 

OB · x3 + OD · x2 + 09 · x + OE. Further details of the mathemat ical principles involved 

in this operation can be found in the AES specification [17]. 

2.3.4 Key Addition 

At the end of each round, a round subkey is simply bit wise XORed with the STATE. 

The round subkey is derived from the cipher key through a key-scheduling algorithm. 

In total, the number of round key bits required is equal to t he block length multi­

plied by (the number of rounds+ 1). Since the key-scheduling algorithm was not 

implemented, it will not be discussed in this document. Further details of the key 

scheduling algorithm can be found in t he AES specification [17] . 

2.3.5 Rijndael Operation 

F igure 2.6 illustrates a typical Rijndael encryption cycle. As can be seen, the encryp­

tion begins with a key addit ion operation followed by a number of iterations of the 

"round function" consisting of the byte substitution, shift row, column mixing, and 

key addition steps described above. The final round of encryption is slightly different 

from the regular round in that no "mix column" operation is performed. This final 

round is included in the total number of rounds of iteration found in Table 2.4. 
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Figure 2.6: Rijndael Encryption 

2.4 Bluetooth Encryption Algorithm - EO 

In early 1998 a number of telecommunications companies (including Ericsson, Nokia, 

Intel, and Toshiba) formed a special interest group to develop a low-cost, short­

range wireless technology. Named "Bluetooth", this technology would allow end 

users to eliminate the cumbersome wires connecting their devices [18]. For example, 

a Bluetooth enabled cellular phone could transmit wireless information to a Bluetooth 

enabled headset; a printer could wirelessly send data to a personal computer. In 1999 

the Bluetooth SIG announced the Bluetooth LO specification and a host of Bluetooth 

enabled devices began to enter the marketplace. 

Within a Bluetooth packet the payload can be encrypted with a stream cipher 

called EO that is re-synchronized for every payload [19]. A general framework for Blue­

tooth encryption can be seen in Figure 2.7. The EO system handles the keystream 

generator initialization, keystream generation and payload encrytion/ decryption. The 
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encryption key, Kc is derived from the current link key, a ciphering offset number 

and a random number. The payload key is then derived from this encryption key. 

Key management and generation were not considered in the scope of this research 

and further details can be found in the Bluetooth Specification [19]. The keystream 

generator is based on the summation generator proposed by Rueppel. In this sys-

tern, four Linear Feedback Shift Register (LFSR) outputs are combined by a simple 

Finite State Machine (FSM) called the "summation combiner" . The four LFSRs 

have lengths of 25, 31, 33, and 39-bits with the feedback polynomials as specified 

in Table 2.6. Figure 2.8 illustrates the EO setup. As can be seen , the output of 

Summation Combiner 

,----
LFSR 1 

LFSR2 

lf$R3 XOR 

LFSR 4 

r~ 

'------

FSM f-+ 

Figure 2.8: EO 

the summation combiner is the key st ream sequence that is bitwise added to t he 

plaintext / ciphertext. 
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I LFSR I Length I Polynomial 

1 25 t25 + t20 + tl2 + t8 + 1 
2 31 pl + t24 + tl6 + tl2 + 1 
3 33 t33 + t28 + t24 + t4 + 1 
4 39 t39 + t36 + {2'd + t4 + 1 

Table 2.6: LFSR Feedback Polynomials 

2.5 KASUMI 

The 3rd Generation Partnership Project (3GPP) was formed in 1998 to facilitate the 

collaboration of a number of telecommunications standards bodies. Their mandate 

was to facilitate the development of a global standard for the 3rd generation mobile 

system based on an evolution of the current GSM networks and the radio access 

technologies that they support [20] . 

The 3GPP security architecture includes both a confidentiality algofithm, f8, and 

an integrity algorithm, f9, both of which are based on a block cipher called KA-

SUMI [21]. The 3GPP commissioned the Security Algorithms Experts Group (SAGE) 

to develop a security architecture for 3G networks. SAGE based the KASUMI cipher 

on the MISTY algorithm that was designed by Mitsubishi Electric Corp. in 1996 [22]. 

(In fact, 'KASUMI' is the Japanese word for 'MISTY'.) 

KASUMl operates on 64-bit blocks of data and utilizes a 128-bit key. Like DES, 

it has a Feistel structure and is composed of 8 rounds. Figure 2.9 illust rates the top 

level structure of the KASUMI algorithm. The round function, f i is composed of a 

number of subfunctions called F L, FO, and F I that are also associated with round 

sub keys K L, K 0, and K I respectively [23] . The following sections describe these 

subfunctions in more detail. 
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Figure 2.9: KASUMI Algorithm 

2.5.1 Function FL 

The function FL takes 32-bits of data, I, and a32-bit subkey KL as its inputs. Both 

I and K L are split into two 16-bit halves (R, L , K LR,K LL) and processed by the 

following operations where 1\ represents a bitwise AND operation: 

R' =REB ROL(L 1\ K LL) 

L' = L EB ROL(R' 1\ K LR) 

The RO L operation is a single bit rotation to the left. The 32-bit output of F L is 

the concatenation of R' and L' in the same order. 

19 



2.5.2 Function F I 

The function FI take..s a 16-bit data value, I, and a 16-bit subkey, KI, at its input. 

However, unlike the functions F Land FO, the data and subkey are split unequally 

into a 7-bit component and a 9-bit component. In the case of I, the left portion, L, 

is 9-bits and the right portion, R, is 7-bits whereas for the subkey the left portion, 

Kh, is 7-bits and the right, KI2 , is 9-bits. 

Two substitution boxes (or S-boxes), S7 and S9, are used in this function. S7 

maps a 7-bit input to a 7-bit output and S9 maps a 9-bit input to a 9-bit output. 

Their mappings can be found in [23]. The following series of operations define F I's 

output: 

£1 = R 

Lz = R1 E11 K Iz 

£3 = Rz 

L4 = S7[L3] E11 T R[R3) 

R1 = S9[L) EB ZE(R) 

Rz = S7[LI) EB T R(R1) EB K I1 

R3 = S9[Lz] ffi ZE(Rz) 

R4 = R3 

The operation ZE(x) pads a 7-bit value to 9-bits by adding two zero bits at the 

most significant end. TR(x) truncates a 9-bit value to 7-bits by discarding the two 

most significant bits. 

2.5.3 Function FO 

The function FO takes a 32-bit data input, I, along with two 48-bit subkeys, KO 

and K I, as its inputs. As in F L , I is split into two 16-bit halves, R and L. The 

48-bit subkeys are each split into three 16-bit subkeys where KO = K01 IKOziK03 

and KI = KI1 IKiziKh. 
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The following operations complete the function's operation: 

Lo=L 

~=R 

for j = 1 to 3 

Rj = FI(Lj-l E9 KOj, Klj) E9 Rj- l 

Lj = Ri- l 

output L3jR3 

2.5.4 Key Scheduling Algorithm 

The key scheduling algorithm in KASUMI, although relatively simple, was not con­

sidered for implementation in hardware. Hence, we do not describe it here and further 

details of this algorithm can be found in [23] . 

2.6 RC4 

RC4 (which supposedly stands for Ron's Code #4) is a proprietary algorithm created 

by Ron Rivest of RSA Data Security Inc. It is a keystream generator for use in 

a stream cipher that produces an arbitrarily long pseudo random sequence using a 

variable length key. In 1994, an anonymous source claimed to have reverse engineered 

the algorithm and posted their source code on the Internet [12]. The "alleged RC4" 

code produces an identical keystream to that of the original, but RSA Data Security 

Inc. claims that their algorithm is still a secret. Despite RSA's claims, this alleged 

version is widely assumed to be the RC4 standard. 

The RC4 algorithm is relatively simple. It operates as a stream cipher where 

its output is bitwise added to the plaintext to produce ciphertext. The algorithm 

performs a series of operations utilizing an 8 x 8 S-box (i.e. a table composed of 

256 1-byte values) to produce a byte of output. The following pseudocode sequence 
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describes the operation to produce one byte of output: 

i = ( i + 1) mod 256 

j = (j + Si) mod 256 

swap si and sj 

t = (Si + Si) mod 256 

k = St where k is the 8-bit output 

where Si represents the ith byte of the 256 byte 8-Box. The S-box is initialized by 

first filling all entries linearly so that S0 = 0, ... , S255 = 255. With K representing 

the key array the following operations are performed to complete the initialization: 

for ( i = 0 to 255) 

j = (j + Si + Ki mod 255) mod 255 

swap si and sj 

Although the original RC4 description dealt with 8-bit words and 8 x 8 (256 in­

put/output) 8-boxes, the algorithm can be easily extended to an n-bit form. For 

example, a 16-bit RC4 version would have a 16 x 16 S-box and 16-bit outputs. Since 

the core of the algorithm is not affected by the size of n, a larger value of n should 

yield a faster implementation. However, the keystream outputs for different values of 

n will not be equivalent [12]. 
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Chapter 3 

Cryptographic Algorithm Implementation 

Traditionally, communication system developers have had three standard implementa­

tion options available: ASICs, software running on a general purpose microprocessor , 

and FPGAs. One of the most common choices is to use a semi-custom or full-custom 

ASIC. Both of these devices use one of a variety of process technologies, such as 

CMOS and Gallium Arsenide, to produce analog or digital circuits on chip. Semi­

custom ASICs utilize pre-developed blocks that implement complex functions along 

with custom developed circuits to achieve their final purpose. On the other hand, 

full-custom ASICs are designed without using any precompiled blocks and can be op­

timized in terms of both area and performance [24]. Because ASICs are designed to 

perform a specific set of computations, they can execute them extremely quickly and 

efficiently. However, after fabrication the circuit cannot be altered. Hence, they must 

be redesigned and remanufactured if any part of t he algorithm is modified or if any 

part of the circuit is modified. The development cost for an ASIC is typically very 

high. Therefore, ASICs are only suitable in a high production volume application 

where high speed is required [8]. 

The second option is to use a general-purpose microprocessor and implement the 

algorithm in software. Microprocessors execute a set of instructions to implement 

an a lgorithm and by changing t hese instructions the implementation/ algorithm can 
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be altered without changing the associated hardware. However , with this added 

flexibility comes an overall lower level of performance and power efficiency when 

compared to an ASIC implementation. Secondly, since the set of available instructions 

is fixed when the microprocessor is fabricated, any other operations to be performed 

must be built from these instruct ions. This will result in a higher execution overhead 

for some operations when compared to a direct implementation. 

The final option when implementing an algorithm is to use a reconfigurable device 

such as a FPGA. FPGAs consist of arrays of Configurable Logic Blocks (CLBs) 

that implement the functions of logical gates. The logical functions performed by 

the CLBs as well as the interconnections between them can be altered by sending 

signals to the chip. The FPGAs and their CLBs can be reprogrammed repeatedly 

and long after fabrication [25] . FPGAs now contain millions of gates per chip and 

can be used to implement very complex computations on a single device. Dehon 

in [26] showed that reconfigurable technologies had a raw computational density that 

was an order of magnitude higher than programmable (microprocessor) technologies 

when performing the same operations from cycle to cycle. Since configurations are 

written in a Hardware Design Language (HDL) and then mapped to the FPGA, no 

manufacturing is required and the development cost is much lower than that of an 

ASIC. However, FPGAs cannot achieve the computational speed or efficiency of an 

ASIC implementation and FPGA devices cost more to produce than ASICs in high 

volume applications. 

Recent developments in the area of System On Chip (SoC) devices have given sys­

tem designers much greater flexibility to implement ASICs. T he development of soft 

instruction processors is one such advancement. Soft instruction processors allow the 

designer to quickly modify a pre-packaged processor core's instruction architecture. 

This core, when included in an ASIC design, can speed up development time and 

reduce costs dramatically [27]. 
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Recently, the advent of reconfigurable processors has added yet another option to 

designers. Such processors incorporate the advantages of microprocessor and FPGA 

technologies and have shown significant performance increases in the areas of image 

processing, compression, computational chemistry [25], object tracking, fuzzy con­

trollers [28], music [29] and cryptography. The following sections outline some recent 

developments in the areas of reconfigurable computing and its applications in the field 

of cryptography. 

3.1 Reconfigurable Processor Architectures 

An FPGA can act as a stand alone device in a system just as in ASIC implementations. 

However, devices that couple a general-purpose microprocessor with a reconfigurable 

logic device have started to emerge in the marketplace. These devices have the key 

feature of being. able to perform computations in hardware to increase performance, 

while retaining much of the flexibility of a software solution. More importantly it is 

possible, in some cases, for the configuration to change at run t ime. 

Wittig in [30] describes three general classes of reconfigurable systems: 

1. FPGA loosely coupled to a fixed host computer 

2. FPGA loosely coupled to a fixed, integrated CPU 

3. FPGA closely coupled to a fixed, integrated CPU 

While any reconfigurable system will fall under one of these categories, it is sometimes 

difficult to differentiate between classes 1 and 2. Instead, a classification system 

based on both the coupling level and type of interaction between t he general-purpose 

processor and reconfigurable logic can be used as out lined below [31] . 
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Stand Alone Processor 

In this case, the FPGA acts as a stand-alone processor as described in the previous 

section. Any communication between the FPGA and the CPU must be done through 

an I/0 interface. Since I/0 communication is relatively slow, it is only useful when 

communication between FPGA and CPU is infrequent. 

Attached Processor 

When the FPGA acts as an additional processor in a multi-processor system it is 

classified as an "attached processor". Typically, in this sort of system, the FPGA 

communicates with the other processors over a common bus. Hence, this form of 

system is more closely coupled than the stand-alone case since bus transactions are 

usually much more efficient than I/0 operations. 

Coprocessor 

In some systems, the FPGA may aid the CPU with certain computations and is acting 

as a coprocessor. Depending on the system, the FPGA can do these computations 

in parallel with the CPU and this can dramatically improve system performance. As 

well, in most cases these coprocessors have direct access to the CPU's main memory, 

further improving system performance. 

Reconfigurable Functional Unit 

As the level of integration for ASICs has increased the idea of placing both the CPU 

and the reconfigurable logic, orReconfigurable Functional Unit (RFU) , on the same 

chip has become a reality, In this arrangement, the RFU can be directly added to 

the processors execution pipeline in parallel with the existing CPU units. This allows 

new instructions to be created dynamically in the RFU that can be added to the 
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already existing instruction set. As the amount of logic that can be integrated with 

the CPU increases, reconfigurable system performance will improve substantially. 

It is possible to obtain significant speedups over software implementations by 

using reconfigurable hardware. However, this is only true when the communication 

overhead for implementing an algorithm in hardware is small compared to the amount 

of computation done in the reconfigurable hardware. Wittig in [30] quantified this 

with the following equations: 

where 

TH +Tov < Ts 

TH + Tov < 1 
Ts Ts 

Tov = time to comummunicate data and control overhead 

TH = time to execute function in hardware 

Ts = time to execute function in software 

This equation is only applicable when it is feasible to implement an algorithm in 

hardware (i.e., the overall execution time is smaller in hardware than in software) . 

In the fractional form of the above equation, the quantity ¥; represents the actual 

hardware computational speedup and the fraction TT; represents the granularity of 

the application implemented in hardware. Hence, an implementation with a small 

TT; ratio indicates that it has a larger grain size since less communication occurred 

between CPU and reconfigurable hardware. Systems with a small Tj?g' ratio need 

a smaller hardware speedup to have the same overall speedup as systems with a 

larger TTsv ratio. Therefore, the communications overhead plays a vital role in high 

performance applications utilizing reconfigurable devices. 

Until relatively recently, the available ASIC manufacturing processes did not sup­

port a level of integration necessary for the development of complex RFU systems. 

However, reconfigurable systems that closely couple a microprocessor with a relatively 

large reconfigurable core have begun to emerge in the market . Before considering the 
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implementation of algorithms on one such architecture, it is important to understand 

some of the architectural features that are common to all reconfigurable microproces­

sors. The addition of closely coupled reconfigurable logic not only adds new design 

issues but also complicates decisions that can be made quite easily in a software or 

ASIC and stand-alone FPGA implementations. The following sections detail some 

of the architectural options available when developing a system containing such a 

coupled reconfigurable device. 

3.1.1 Microprocessor Architecture 

There are a number of general requirements for any fixed CPU that is attached 

to reconfigurable logic, the most basic being speed and interfacing flexibility. The 

processor must be fast at executing instructions from its own instruction set as well 

as providing support fbr the instructions custom built in reconfigurable logic [32]. 

In particular, the CPU to reconfigurable logic interface must not be slower than 

the computational delay of the instructions implemented in reconfigurable hardware 

(i.e. a high T-?v ratio). Jeschke in [33] has found that the achievable speedup from a 
s . 

reconfigurable system can be severely limited by t he CPU-logic interface and suggests 

that the current state of the art microprocessor should be used in a design. In 

most cases, a fast Reduced Instruction Set Computer (RJSC) CPU is coupled with 

reconfigurable logic since the RISC CPU's limited instruction set allows designers to 

implement complex functions in reconfigurable logic on a per application basis. 

3.1.2 Logic Block Granularity 

Reconfigurable hardware is typically based on a set of computation structures that 

a re repeated to form an array. These structures, commonly called logic blocks or 

cells, vary in complexity from a very small and simple block that can calculate a 

function of only two inputs, to astructure that is essentially a 32-bit Arithmetic Logic 

28 



Unit (ALU). Some of these blocks are configurable themselves in that the performed 

operation is chosen from a configuration set. Other blocks perform fixed operations 

and their configurability lies in their interconnection. The size and complexity of the 

basic computing block is referred to as the block's granularity [34] . 

Figure 3.1 [35] shows an example of a fine grained logic block that is found in 

the Xilinx 3000 series of FPGAs [35]. This type of logic block is useful for fine-

Figure 3.1: Xilinx XC3000 Series Configurable Logic Block 

grained bit-level manipulation of data. These kinds of operations are frequently found 

in encryption and image processing applications. Also, because these cells are fine 

grained, computation structures of arbitrary bit widths can be created. Figure 3.2 

shows an example of a very coarse grained reconfigurable architecture, the Chameleon 

CS2112 that is discussed further in Chapter 4. The Chameleon CS2112 is not just a 

coarse grained solution. It is also termed a "heterogeneous" architecture since t here 

are not only data path units, but also multipliers, control logic and data memory 

residing in the reconfigurable portion of the chip. A "nonheterogenous" architecture, 

on the other hand, would be composed of totally identical reconfigurable logic cells. 

Typically, very coarse grained architectures are intended for the implementation of 
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Figure 3.2: CS2112 Example 

word-width data path circuits and will perform word sized computations much more 

quickly than a set of smaller CLBs connected to perform the same function. However , 

they are inefficient at performing operations on bit level data when compared to fine 

grained architectures. 

3 .1.3 Data Interconnection 

Another important component of a reconfigurable architecture are the routing struc-

tures used within the reconfigurable portion of the design. One group has argued 

that the interconnect should constitute a much higher proportion of the area in order 

to allow for successful routing under high logic utilization condit ions [36] . However , 

routing resources occupy a much larger part of the area of an IC than the logic re­

sources. As a result, the most area efficient designs will be those that optimize their 

use of routing resources rather than the logic resources. 

The two primary routing structures used in reconfigurable designs to provide both 

local and global routing resources are illustrated in Figure 3.3. The first is segmented 

routing in which short wires accommodate local communications traffic. These short 

segments can be connected together using switchboxes to emulate longer wires. The 

second form of routing is hierarchical routing. In this case, routing within a group of 

logic blocks is at the local level and at the boundaries of these groups longer wires 
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Figure 3.3: Segmented (A) and Hierarchial Routing (B) Examples 

are used to connect the groups together. Provided a good mapping has been made in 

hardware, the most common communication should be local in a hierarchical scheme. 

Both of t he above schemes are referred to as "island-style" routing architectures. A 

few alternatives use a one-dimensional routing scheme. One example is a bus-based 

scheme in which only vertical or horizontal busses connect t he configurable elements. 

In other systems multiple FPGAs are linked to form a reconfigurable device. These 

require not only an efficient internal routing scheme, but also an efficient external 

interconnection architecture. These systems are typically used when an algorithm is 

too large to fit on a single reconfigurable device. 

3.1.4 Reconfiguration Models 

Traditional FPGA structures have been single-context, allowing only one full-chip 

configuration to be loaded at a t ime. However, the designers using reconfigurable 

systems have found this style of configuration to be too limiting and/or slow to 

efficiently implement run-time reconfiguration. A number of methods that have been 
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developed to limit the overhead of changing configurations at run-time are discussed 

below. 

In a single context device, configurations are loaded using a serial stream of con­

figmation informat ion. Because only sequential access is supported, any change to 

a configuration on this type of device requires a complete reprogramming of the en­

tire chip. This type of access does simplify the reconfiguration hardware but it does 

create a high reconfiguration overhead when only a small part of the configuration 

needs to be updated. In order to implement run-time reconfiguration using a sin­

gle context device the configurations must be grouped into contexts, and each full 

context swapped into and out of the device as needed. Since swapping the contexts 

involves reconfiguring the entire device, great care must be taken in designing the 

configurations [37]. 

A multi-context device includes multiple memory bits for each programming bit 

location. These memory bits can be thought of as multiple planes of configuration 

information. One plane of configuration information can be active at a given mo­

ment, but the device can quickly switch between different planes of pre-programmed 

configurations. This system does allow for the loading of a configuration in the back­

ground while the active plane is running. In this case, the grouping of configurations 

into contexts is less critical because of both the background loading capability and 

the ability to switch contexts rapidly. However, it is still important to ensure that 

the configurations used in close proximity in t ime are loaded into the multi-context 

device at the same time [26]. 

In some cases, configurations do not occupy the all of the reconfigurable resources, 

or only a part of an active configuration requires modification. In these cases par­

tial reconfiguration would be useful. In such reconfigurable devices, the underlying 

programming layer operates like a RAM device where addresses are used to spec­

ify the target location of configuration data . In some cases, the unchanged portion 
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of the device can remain active while the new data is being loaded, further hiding 

configuration latency. A further modification of the above strategy is for the partial 

reconfiguration to occur in stages [38}. This type of reconfigurable hardware is called 

pipeline reconfig11rable or a stripped device. This type of structure also allows for the 

overlap of configuration and execution time as one pipeline stage is configured while 

the others are executing. 

While multi-context and partially reconfigurable devices reduce the time required 

to switch configurations, the fact remains that reconfiguration will occur during pro­

gram execution. A number of different tactics for reducing configuration overhead 

have been developed. First, the loading of configurations can be timed such that 

the configuration overlaps as much as possible with the execution of instructions by 

the host processor. Second, compression techniques can be introduced to decrease 

the amount of configuration data that must be transferred to the system. Third, 

the number of reconfigurations can be reduced through hardware optimizations that 

keep configurations that will be reused from being unnecessarily replaced by incoming 

configurations. Fourth, the actual process of transferring the data from the host pro­

cessor to the reconfigurable hardware can be modified to include a configuration cache, 

which would provide a faster reconfiguration [39]. Finally, Sakr in [37] proposed em­

ploying the use of optical channels to allow fast parallel loading of the reconfiguration 

control word as well as the migration of the configuration cache off-chip. 

3.1.5 Programming Models 

Significant gains in performance can be gained through using reconfigurable hard­

ware. However, application programmers will tend to ignore this potential unless 

they are able to easily incorporate its use into their systems. This requires a software 

design environment that aids in the creation of configurations for the reconfigurable 

hardware. This can range from a set of libraries to assist in the manual creation of 
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circuits to a complectly automated circuit design system. While the manual creation 

of circuits requires a great deal of background knowledge of the system being used, it 

allows for the creation of designs that are usually more efficient thari automatic com-

pilation systems. However, automatic compilation systems provide a simple means . 

for creating an application and, as such, make the use of reconfigurable hardware 

more accessible. 

Another complication in the development of an application for a reconfigurable 

system is that the program must first be partitioned into sections to be executed on 

the reconfigurable hardware and in software by the microprocessor. Wittig in [8] de-

scribed a software environment that any "user-friendly" reconfigurable system should 

include. This tool would automatically provide the user with the most efficient sys­

tem configuration; the user would only have to program the system in a high level 

language. Figure 3.4 illustrates the operation of this system. In the first stage, the 

Hardware Synthesis 

Operating System 

Figure 3.4: Ideal Software Development Environment for Coupled Reconfigurable 
Devices 
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preprocessor is used to identify sections of code that are candidates for execution in 

hardware. Essentially, the preprocessor attempts to perform the hardware/software 

partitioning. It should be noted that the preprocessor does not necessarily produce 

an optimal set of hardware functions. Next, the hardware is synthesized and mapped 

to the reconfigurable logic and the software is compiled. These hardware and software 

images are then given to the operating system (OS). In this scheme, the OS is respon­

sible for deciding what portions of the software code are to be executed in hardware 

and schedules operations so as to give the best overall performance. Hence, using 

this type of software environment, users could run their standard high level language 

applications on a reconfigurable system just like on a standard, fixed microprocessor, 

while benefitting from an optimal use of the reconfigurable hardware resources [8]. 

·Existing reconfigurable system software environments do not typically provide the 

level of automation described above. In systems where the function identification and 

extraction process is automated, the user is still usually required to select the most 

desired candidates from a complete list of synthesized functions. In the majority of 

commercially available systems, the user is required to complete the entire processes of 

selecting candidate functions, writing the configurations and, in some cases, mapping 

them to reconfigurable hardware. 

3.2 Reconfigurable Computing and Cryptographic 

Hardware 

As stated before, the explosive growth in the Internet and mobile communication has 

led to increased research and development in the area of cryptography. This research 

can be categorized into three broad areas based on cryptographic capabilities. In 

the most specific category are the designs which implement only a single algorithm. 

Typically, such implementations are developed on either ASICs, FPGAs or in software 
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and are used to evaluate and optimize the performance of a particular algorithm in the 

chosen medium. At the next level of capability is the cryptographic accelerator. These 

hardware devices implement multiple cryptographic algorithms and also accelerate 

processing at the communications protocol level. Finally, in the most general category, 

are the hardware devices which aim to accelerate cryptographic primitives but not 

specific algorithms. 

When a. new cryptographic algorithm is developed and during its useful lifetime, 

it is scrutinized not only from a. security perspective but also from an implementa­

tion point of view. The algorithm may be mapped to software, hardware or both, 

depending on its target application. For example, DES was designed as a general 

cryptographic standard and, as such, numerous hardware and software implementa­

tions have been developed since its release in 1977. Although developed for hardware 

implementation, DES has been successfully implemented in software with speeds of 

greater than 500 Kbps [40][41][42]. However, a much larger effort has been devoted 

to developing high speed hardware implementations of DES. Wilcox et al. in [43] de­

scribe an ASIC design that can achieve up to 10 Gbps throughput. As well, Leitold 

in [44] describes a single chip Triple-DES- a form of the algorithm in which data. is 

encrypted three times - solution that can operate at speeds of up to 155 Mbps. Also, 

a number of reconfigurable system implementations have been developed over the last 

26 years. Trimberger in [45] details the development of a DES FPGA core which has 

a throughput of up to 12 Gbps. Table 3.1 summarizes some of the results obtained 

with the other ciphers discussed in Chapter 2. 

The most recent development in the communications security marketplace has 

been the development of devices that accelerate a number of algorithms on a single 

chip. These devices are usually found in systems as an encryption coprocessor which 

is handed data to be encrypted/ decrypted, an inline processor which views all packets 

and performs security duties when necessary, or as a. portion of the network system 
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Cipher I Implementation I Throughput I 
AES with 128-bit blocks Xilinx Virtex-E FPGA [46] 7000 Mbps 

Xilinx Virtex FPGA [4 7] 353 Mbps 
ASIC [48] 1820 Mbps 

Altera FPD [49] 900 Mbps 
APEX FPD [49) 570 Mbps 

ASIC [50] 2360 Mbps 
Software (Pentium IV 2 GHz) [51] approx. 700 Mbps 

KASUMI ASIC [52) 1100 Mbps 
EO ASIC [53) 320 Mbps 

Software [53) 33 Mbps 
RC4 Software (DEC 3000/400) [54] 15.4 Mbps 

Table 3.1: Cipher Performance Figures 

processor itself [55]. Companies such as Broadcom [56), Cavium Networks [57] and 

Corrent [58] all produce boards aimed at accelerating IPsec and SSL/TLS protocol 

transactions. These protocols, which are widely used in packet data communications, 

contain a variety of public and private key algorithms, such as DES and AES, that 

are used to provide authentication, authenticity and privacy. Although these devices 

are typically implemented as ASICs, Andoni in [59] presents an FPGA based IPsec 

accelerator with impressive throughput capability. 

Since many of the primitive operations, such as bit pennutations, XORs and ta-

ble lookups, are repeatedly used in most private key cryptographic algorithms, it is 

very appealing to try to develop an architecture that is optimized for this subset of 

operations: As well, such architectures usually couple a microprocessor with a re-

configurable core to allow splitting the algorithm across hardware and. software in 

an optimum manner. Since some operations can be more efficiently implemented in 

software and vice versa this is an important attribute. Also; these architectures allow 

the developer to add new algorithms as specifications change and give the designer 

much more flexibility than an ASIC solution. One such example is the CryptoBooster 

coprocessor developed by Mosanya et al. in [60]. It is a modular architecture that 
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allows a user to load in various cryptographic modules needed to accelerate their ap­

plication. Another example is the PipeRench architecture developed by Taylor [61]. 

This architecture is a pipelined reconfigurable fabric that is optimized for many of 

the operations commonly used in private key cryptography. PipeRench also utilizes a 

virtual hardware scheme so that large hardware configurations can be supported on 

limited physical hardware. A third example is CYPRIS, a reconfigurable micropro­

cessor developed by Lockheed Martin Corp [62]. The CYPRIS architecture contains 

a high speed RISC processor and a reconfigurable logic block on the same die. Its 

primary goal was to provide security in hand held radio and other radio communi­

cation devices. In all cases, a number of ciphers were implemented and significant 

performance gains were achieved over purely software implementations. However, the 

algorithms from Chapter 2 were not discussed so performance comparisons could not 

be made. 
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Chapter 4 

The Chameleon CS2112 Reconfigurable 

Communications Processor 

In the late 1990s, Chameleon Systems Inc. began work on a new reconfigurable pro­

cessor architecture targeted toward the communications marketplace. Their chip, the 

Chameleon CS2112 RCP released in 2001, was considered the world's first reconfig­

urable communications processor. The CS2112's reconfigurable logic was optimized 

for signal and protocol processing applications and was accompanied by a proprietary 

set of tools to aid system designers in developing their applications. The following 

sections detail the architectural features of the CS2112 and give a brief description 

of the process involved in developing a CS2112 application. 

4.1 Chameleon CS2112 Architecture 

The CS2112 processor includes an embedded 32-bit RISC-based CPU capable of 

operating at 100 MHz and a proprietary reconfigurable logic fabric in the device 

architecture. The workhorse of the CS2112 is its reconfigurable logic. Because the 

reconfigurable logic is full-custom 32-bit data path oriented, the CS2112 requires 

far fewer configuration bits than conventional single-bit oriented FPGAs [63]. Each 

slice on the CS2112 can store two complete sets of configurations (i.e. multi-context 
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device), an active configuration and a background configuration. This type of dual 

plane system can be quickly swapped in just one clock cycle, enabling the fabric to 

be easily reconfigured on demand to perform whatever function is required at the 

current point of execution in the application. 

Figure 4.1 depicts the high-level view of the CS2112 architecture. The CPU is 

an Argonaut RISC Core (ARC) that is a full 32-bit , 4-stage pipelined processor. As 
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Figure 4.1: CS2112 High Level Architecture 

can be seen in Figure 4.1, the reconfigurable fabric is divided into 4 slices and each 

logic slice is further subdivided into 3 tiles. Each t ile is identical and consists of seven 

32-bit Data Path Units (DPUs) , two 16 x 24 single-cycle Multiplier Units (MULs) , 

four Local Store Memorys (LSMs) and a Control Logic Unit (CLU). The CS2112 is 

considered a coarse-grained architecture since its smallest functional unit is a fairly 

complex AL U. 

4.1.1 Datapath Units 

The DPU, a detailed view of which is shown in Figure 4.2, is a data processing module 

that directly supports a variety of C and Verilog operations. Each DPU operation 

can utilize 2 input operands and produces a single 32-bit result. It supports 32-

bit operations, some 16-bit operations and some 16~bit Single Instruction Multiple 
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Figure 4.2: CS2112 DPU 

Data (SIMD) operations. The DPU also includes a 32-bit barrel shifter that is capable 

of performing bit shifts, word swaps, byte swaps and word duplication. As well, the 

DPU contains two 32-bit AND/OR mask operators/registers (one for each input 

path). 

4.1.2 Multipliers 

The two 16x24 single-cycle MULs operate in two modes: 16 x 16-bit mode and 24 x 16-

bit mode. In the 16 x 16-bit mode, the MULs implement a signed multiply with a 

32-bit result. In 16 x 24 mode, the 40-bit signed product is truncated to 32-bits by 

rounding the 8 least significant bits. 
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4.1.3 Local Store Memories 

There are also four 32-bit wide by 128 words deep LSMs per tile as shown in Figure 4.1. 

LSMs can be chained to build wider and/or deeper memories if required. The LSMs 

can be accessed by certain DPUs in the same tile as well as by the DMA subsystem. 

Each LSM has four ports that allow for simultaneous access by the DMA subsystem 

and DPUs. The DPU access ports can be configured as either 32-bit, 16-bit, or 8-bit 

ports. 

4.1.4 Control Logic Units 

The fabric's control structure allows the simultaneous control of all fabric resources 

and the CL U is constructed to allow state machines to operate in parallel. Within 

each CLU there is a muxing plane, a Programmable Logic Array (PLA), a number of 

state register blocks and Control State Memories ( CSMs). The muxing plane is used 

to select control signals for the PLA which has 16 inputs, 32 outputs, and 32 product 

terms. Each of the outputs of this PLA drives one of the state register blocks. Each 

of these state register blocks is 4 bits wide and can be used as either state bits of 

a state machine or as state machine control logic. The CSMs contain configuration 

information for each of the DPUs or MULs in a tile. Up to eight configurations for a 

DPU and four for a MUL can be stored in a Control State Memory (CSM). Thestate 

machine control logic bits of the state register blocks are used to select the .current 

active configuration from the CSM [63] . 

4.1.5 Data Path and Control Routing 

The Chameleon CS2112 uses a hierarchical routing scheme inside the reconfigurable 

fabric to route data between DPUs and MULs. Within a slice, nearby DPUs and 

MULs are connected with a full crossbar interconnection. Vertical intra-slice routes 
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and horizontal inter-slice routes allow OPUs and MULs outside of the local intercon-

nect to communicate. Figure 4.3 [63] illustrates the interconnection scheme. Any 

data using a path outside of the local interconnects will encounter a single clock de-

lay since inputs to a DPU must be registered if the path utilizes a global routing 

interconnect. 

n1eo 

Tile1 

Too2 

Global Interconnection 

9><321>! 
Vertical data buses 

8Jii32bi( 
Horizontal da!a buSes 

Local Interconnection 
From the B OPU!Tv1Ul T above 

u 
4 

DPU 5 

MULTH 

F rom lhe 7 OPU/MUL T below 

Figure 4.3: CS2112 Fabric Routes 

4.2 CS2112 Design Methodology 

The development of a hardware fabric function, or kernel, usually proceeds in four 

phases: the C Code Model Development Phase, the Design Phase, the Synthesis and 

Mapping Phase, and the Verification and Integration Phase. Chameleon Systems 

provided a number of tools called the C"'Side™ Tools, to facilitate the develop­

ment of fabric functions. Figure 4.4 illustrates these phases and their relation to the 

software tools. Within these tools Chameleon provides a set of behavioral models 

of tile components (OPUs, MULs, LSMs) to facilitate the development of a fabric 

43 



SYNTHESIS & MAPPING DESIGN PHASE 

VERIFICATION & INTEGRATION 

Figure 4.4: Design Flow 

function. A detailed knowledge of the reconfigurable fabric is then required to decide 

on a hardware/software boundary as well as to write an efficient configuration. The 

following sections provide a more detailed description of the above phases along with 

some simple design examples. 

4.2.1 Software Model 

The Chameleon Systems design group recommends that the development of a fabric 

function, or kernel, begin with the development of a C code model of the system. 

Once this model is verified, it can be used as a reference model against which the 

Verilog implementation can be tested. 

There are a number of C design requirements that must be met to form a "legal" 

fabric function. Firstly, the whole function body must be converted to a fabric func­

tion. A block of code within a C function cannot be converted. Secondly, a function 
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to be converted must be a leaf function- it cannot call any functions itself. This 

means recursive calls are also illegal. Thirdly, the function can only communicate 

with the rest of the program through its arguments and if a function returns a value 

it must do so through a function parameter. Fourthly, all array function arguments 

must be aligned to a 128-bit memory boundary. Lastly, floating-point values are not 

supported within a kernel function and cannot be used as arguments. 

4.2.2 Design Phase 

After a software model has been completed a behavioral Verilog model is developed. 

This model is broken down into two main components (as with most digital designs): 

data path and control. Data path logic is described by instantiating data path ele­

ments from the Chameleon primitive library (some Verilog operators can be converted 

directly) and control logic is described using RTL state machines. 

Chameleon Systems provide a set of Verilog hardware primitives to assist in de­

velopment. They are dpDPU, dpLSM, dpMUL, dpSRB and dpiOB (for representing 

the chip's I/0 pins). These allow the user to have total control over the resources of 

the RCP. For example, the dpDPU module has 8 40-bit instruction inputs that are 

used to configure the DPU's operation. With their latest tools release, Chameleon 

Systems also provides higher level Verilog objects- CS2112_DPU, CS2112_LSM and 

CS2112J\1UL - that encapsulate t he previously described primitives to simplify de­

sign entry. Further informabon about the specific use of these primitives can be found 

in [64]. 

As stated above, the control logic is implemented in the CLUs of tiles. State 

machines are essentially implemented in the PLAs with control registers sequencing 

CSM instructions. The PLA determines the next state based on DPU flags , the 

output of a DPU /MUL, state registers, or inputs from external data on Programmable 

I/0 (PIO) lines. Two types of state machines can be implemented in the fabric: 
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FSMs and sequencers. FSMs, in which only a single state is active at a time, can be 

implemented on the fabric and are typically written as Moore machines; states can be 

encoded in a variety of ways. Multiple FSMs, generating outputs and fabric control 

signals, can be active at one time. Communication between these state machines 

can be accomplished by broadcasting FSM outputs across the fabric using the global 

routing lines discussed previously. A sequencer is a simpler form of an FSM. Since 

many of the designs on the CS2112 are highly pipelined, many states are used in the 

control unit to wait for data to fill or leave a pipeline and the state transitions in these 

sections uncondit ionally move to the next state. The use of a sequencer to implement 

this portion of the control logic reduces the hardware required to implement the design 

in the CLU. 

As an example, consider the implementation of function which rotates the 32-bit 

input data by 11 bits to the left. No rotate function is directly available in a DPU; 

however, logical shifts to the right or left can be performed by the DPU hardware. A 

single DPU with two instructions could be used to perform the operation as shown in 

Figure 4.5, assuming the input data is held at the input for 2 clock cycles. The first 

instruction logically shifts the data on the "B" side input of the DPU by 11 bits to the 

left and passes the result in the DPU output register. The second instruction t akes 

the same input data and logically shifts it to the right by 21 bits before the ALU ORs 

it with the result of the previous instruction. The output of the OR operation, which 

is stored in the DPU output register, is the 11-bit rotated result. A simple FSM can 

be used to toggle from instruction 0 to instruction 1 after a clock cycle since each of 

the above instructions is performed in a single clock cycle. This operation can also 

be done in two DPUs, each of which implements one of the instructions above. A 

pipeline register is added to the second DPU's instruction to buffer the input data 

for one clock cycle. In tllis case, no FSM is necessary to control the operation since 

each DPU has only one configuration. However, in both cases the rotation operation 
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takes two clock cycles to complete. Verilog modules, which implement both of the 

examples above using the provided hardware primitives, can be found in Appendix A. 

4.2.3 Synthesis and Mapping Phase 

In the synthesis and mapping phase, the Verilog kernel is compiled by the Chameleon 

v2b tool to create the configuration bitstream. This compilation process involves 

synthesis, mapping, and placement. In this process the elements of the Verilog de-­

scription are mapped to specific fabric resources. The v2b tool's placement algorithm 

usually does not produce a routable kernel for complex designs. Chameleon provides 
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a "worksheet" on which the designer can manually decide on the placement of their 

data path elements. This worksheet can then be used in combination with a graphical 

placement tool to achieve a routable design [64]. Figure 4.7 is an example screenshot 

Figure 4.7: Cr-vSide™ Graphical Floorplanner 

of the placement tool's graphical flom·planner. Fabric elements such as DPUs and 

MULs can be moved to different slices or tiles on this screen while the tool decides 

on the new data routes required to accommodate the changes. 

4.2.4 Integration and Verification Phase 

In the integration and verification phase, the kernel bitstream is linked with appli­

cation code, written in C, for verification of the bitstream and integration into the 

overall application. Chameleon provides a custom C preprocessor and a number of 
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software libraries, called the eBIOS libraries, to facilitate application development. 

The developer can use the provided preprocessor to simplify the fabric interface. In 

the application code two "pragma" lines are inserted to substitute a software function 

with an equivalent kernel function - one to define the function and another to make 

the call. For example, the following code: 

#pragmaCMLN..FUNC..DEF spne(int in dp.sboxl.lsm[NJ, int in dp .sbox2 . lsm[NJ , 

int in dp.sbox3 .1sm[NJ , int in dp .sbox4 . 1sm [NJ , 

int in dp .xor_dpu.dpu .o, int in dp . key_lsm.lsm [8], 

int out •dp.xor_dpu .dpu.o) 

defines a kernel function called 'spne' with 5 32-bit array inputs, a single 32-bit input 

and a single 32-bit output. To make a call to this function, the following line would 

be placed in the application code in place of the software function call: 

#pragma CMLN..FUNG_CALL spne () 

The preprocessor then expands this into the eBIOS calls necessary to configure the 

fabric resources, start the hardware function and transfer any data to and from the 

fabric [64] . The application developer can also use the eBIOS fabric interface library 

directly to utilize their fabric function. The preprocessor output code for the above 

example is given in Appendix B. Once the application code has been compiled, 

Chameleon provides both a software chip simulator, as well as a test board which 

houses a CS2112, to verify the final application. 
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Chapter 5 

Data Encryption Standard 

Implementation 

In this chapter, the design and implementation of three DES kernels are discussed. 

The development of a DES kernel began by dividing the kernel into three distinct 

blocks as shown in Figure 5.1, . with multiple iterations of the middle block completing 

the "rotmds" of the cipher. The following sections discuss the development of: 

• A purely iterative design 

• A design involving multiple kernels and pipelined data 

• A consolidated design that supports pipelined data 

The implementations described below vary functionally in terms of the path that 

data takes through the kernel as well as the quantity of data that passes through the 

kernel at one time. 
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Figure 5.1: Iterative DES Kernel 
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5.1 Iterative Kernel 

The first attempt at implementing DES on the CS2112 involved the development of a 

fabric function that would encrypt a single 64-bit plaintext. As such, it would mimic 

the capability of a purely software implementation. After a single plaintext had been 

passed into the fabric from the software application it would pass through the IP 

stage hardware. After passing through the IP stage, the data would then iterate in 

the inner round hardware 16 times before passing through the IP-1 hardware. The 

encrypted data would then be passed from the fabric back to the software application. 

In order to simplify the design, the key scheduling algorithm was not implemented 

in the CS2112 fabric . Instead, the complete set of 16 round subkeys was to be 

constructed by the software application and passed into the hardware function where 

they were stored in LSMs. Hence, if multiple plaintexts were to be encrypted with 

the same key, the same set of round subkeys would be used in each encryption and 

the key scheduling algorithm need not be executed if the subkeys had been held in 

microprocessor memory. 

5.1.1 Architecture Description 

Since DES's inception in the 1970s, a number of hardware and software implementa­

tions of the algorithm have been developed and published. Hardware implementations 

of DES typically involve bit-level operations, particularly in the IP and IP-1 portions 

of the algorithm. The DPUs, however, provide 32-bit functionality and performing 

bit-level operations in the DPUs is quite costly in terms of fabric utilization. There­

fore, a high speed 32-bit C++ software implementation, developed by Richard Out­

erbridge, was used as a basis for the architecture of the kernels described below [12]. 

In this software implementation, the 64-bit permutations in the IP and IP- 1 stages 

and the 48-bit operations in the F-function are all performed using 32-bit operations 
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and operands. 

As stated above, the iterative kernel was to operate on a single 64-bit plaintext . 

The C++ implementation chosen as a basis for development contained a simple single 

plaintext encryption function that was replaced by the iterative kernel. The iterative 

DES kernel can be looked at as being composed of 5 main blocks as shown in Fig­

ure 5.2. The following sections give an overview of the architecture of these blocks 

and their associated control. 

Figure 5.2: Iterative DES Kernel Blocks 

Data Input and Output 

Data to be processed by CS2112 kernels can either be passed into the fabric and 

stored in DPU registers, loaded into LSMs or placed on PIO inputs. In t he iterative 

kernel case, only a single 64-bit plaintext, which could be split into two 32-bit halves, 

was to be processed by the fabric at one time. Hence, the init ial data values were 

simply loaded into the input registers of the first two DPUs of the IP stage. The 

output of the kernel is again two 32-bit halves that are retrieved from the output 

registers of the last two DPUs of the IP- 1 stage. 
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IP and IP-1 

At the bit level as described in the standard, the IP and IP-1 stages are simple wire 

crossings. Using 32-bit operations, a permutation across 64-bits is not so trivial. 

However, utilizing 32-bit operations these permutations can be accomplished using 

a number of bit shifts, simple logical operations, and bit masks. The pseudocode 

sequences that describe the operations necessary to perform these two permutations 

are shown in Algorithms 5.1.land 5.1.2. 

Algorithm 5.1.1 IP 

work = ((left >> 4) - right) & OxOFOFOFOF; 
right -= work; 
l e ft -=(work << 4 ); 
work= ((l eft>> 16) - right) & OxOOOOFFFF; 
right - = work; 
left-= (work << 16); 
work= ((right >> 2) - l e ft) & Ox33333333 ; 
l eft -= work; 
ri g ht · = (work < < 2); 
work = ((right >> 8)- left) & OxOOFFOOFF ; 
l e ft ·= work; 
right - = (work < < 8); 
right = ( ( r i g h t < < 1 ) I ( ( rig h t > > 31) & 1 )) & OxFFFFFFFF; 
work = (left - right) & OxAAAAAAAA; 
l e ft -=work; 
right - = work ; 
l e ft = ((l e ft < < 1) I ((left >> 31 ) & 1)) & OxFFFFFFFF ; 

Algorithm 5.1.2 rp- 1 

right = (right - < < 31 ) I (right >> 1) ; 
work = ( l e ft - right) & ·oxAAAAAAAA; 
l e ft -=work; 
right -= work; 
l eft = (left < < 31 ) I (l eft >> 1) ; 
work = ((left >> 8) - right) & OxOOFFOOFF ; 
right -= work ; 
l eft -= (work << 8); 
work = ((l e ft > > 2) - ri g ht) & Ox33333333; 
right - = work; 
left · = (work << 2 ) ; 
work = ((right >> 16) - l e ft ) & OxOOOOFFFF; 
l eft ·= work ; 
right ·= (work < < 16) ; 
work= ((right > > 4) . l e ft) & OxOFOFOFOF; 
l eft · = work ; 
ri g h t ·= (work << 4 ) ; 

As an example of the mapping processes used to convert the above pseudocode 

(using C constructs) to hardware, let us examine the first three instructions of the IP 
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stage. Only three DPUs, each with a single configuration, are required to implement 

this code in hardware as shown in Figure 5.3. For this hardware to work correctly, the 

left right 
I 

Figure 5.3: Example Hardware Mapping for a Subset of IP Stage Pseudocode 

inputs on the DPUs performing steps 2 and 3 needed to buffer the initial values of left 

and right to allow for the 1 clock cycle delay in calculating the work value. Continuing 

the mapping process as described above, t he the IP and Jp- l were mapped to the 

CS2112 fabric. The complete hardware configuration for the IP stage is shown in 

Figure 5.4. All of the DPUs shown require only a single configuration and no control 

inputs. Also, this section of hardware is able to operate on a continuous stream of 

data on the two inputs and will produce a continuous stream of output data after an 

initial14 clock cycle delay. The complete IP stage data path Verilog module is given 

in Appendix C as a further example of CS2112 design implementation. 

Inner Round 

Since the operations inside of the F-ftmction operate on data of widths larger than 

32-bits, it could not be implemented directly using fabric resources. Instead, t he E 
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Figure 5.4: IP Hardware Configuration 

expansion, subkey addition, S-box subst itution and P permutat ion were performed 

as in the C code model and the pseudocode for these operations is presented in 

Algorithm 5.1.3. In this case, theE expansion is accomplished by passing the odd and 

evenS-boxes modified versions of the 32-bit r ight operand. This requires a modified 

key generation algorithm that splits each round subkey into two 32-bit values instead 

of a single 48-bit value. Therefore, the algorithm now uses 2 subkeys per round for a 

total of32 subkeys. The oddS-boxes are passed segments a 4-bit rotated version of t he 

right operand which has been XORed with the first round subkey. The evenS-boxes 

are passed segments of a non-rotated version of right which has been XORed with 

the second round subkey. These two groups of operations perform the E expansion 

and subkey addition portion of the F-function. 
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Algorithm 5.1.3 F-Function Internals 

work =(right<< 28 ) I ( right >> 4); 
work • = *keys++; 
fval = SP7 [ work & Ox3fL J; 
fval I= SP5[(work >> 8) & Ox3fL]; 
fval I= SP3[(work >> 16) & Ox3fL]; 
fval I= SPl[(work >> 24) & Ox3fL]; 
work = right · *keys++; 
fval I= SP8[ work & Ox3fL]; 
fval I= SP6[(work >> 8) & Ox 3fL]; 
fval I= SP4 [(work >> 16) & Ox3fL]; 
fv a l I= SP2[(work >> 24) & Ox3fL]; 
left "= fval; 

Also, in the DES algorit hm description, the S-boxes produced 8 4-bit outputs 

which then passed through the P permutation to form the 32-bit F-function output. 

As stated previously, bit permutations are not efficiently implemented in the 32-bit 

data path available. However, in this case, it is possible to combine the permutation 

into the S-Box outputs, as shown in Figure 5.5, since the LSMs produce 32-bit values. 

Hence, the inner round function can be further subdivided into three blocks as shown 

..... ---:. 

' 

' ' 

' 

S-box 
Inputs 

S-Box 

...... _ 

\ New 5-box that 

\ ---- indudes. P 
' .. .......--- permutation 

......... ___ _ 
---------------------------------------------... 

P Permutation 

Bits of 4-bit 5-box output 
other 28-bits set to zero 

-..... ........ ... 

Figure 5.5: S-box and P Permutation Combination 

in Figure 5.6. The S-boxes, which form the main component of the inner round, are 

implemented in LSMs that contain 32-bit values with a single DPU for access. These 

DPUs perform shift and mask operations on their inputs so that the proper 6-bit 

segment of the input occupies bits 2-7 of the LSM address. The segment must be 

moved to bits 2-7 of the address since the DPU can only be bytewise addressed. As 
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Even Key 

Figure 5.6: DES Round Function Block Diagram 

an example, S-Box 7 requires bits 0-5 of the work variable. Therefore, the addressing 

DPU must shift the work variable by 2 bits to the left and then mask the input with 

Oxfc. 

Also, in this portion of the kernel, key production units handle the loading of 

subkeys into the data path so that they can be XORed with the input for the round. 

A simple control unit handles the sequencing of this operation. As well, a number 

of DPUs are required to perform the above mentioned XORs, the assembling of the 

S-Box outputs into a single 32-bit value, and the XOR of the output of the round with 

the other half of the input data. These units comprise the supporting logic block. The 

total configuration for the inner round portion of the fabric is shown in Figure 5. 7. 

It should be noted that two configurations are required for the key generation DPUs 

to generate and hold the subkey values. 
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Control 

The control unit for this kernel was divided into a master controller and a number 

of slave controllers. The master controller receives the start signal from the ARC, 

sequences the slave controllers and generates the done signal once the encryption has 

been completed. The IP and rp- l portions of the kernel each have a simple sequencer 

which signals the master controller when the data has finished passing through each 

stage. The inner round portion of the kernel is comprised of three slave controllers 

which handle the iteration of the data through the multiple rounds and the subkey 

sequencing. 

5.1.2 Synthesis and Mapping 

As this was the first complex implementation I developed for the CS2112, there were 

a number of problems which prevented the placement and routing of the kernel on 

fabric. Although there were enough functional units (DPUs, LSMs, etc) available 

to accommodate the kernel, the limited global data and control routes prevented 

the completion of the mapping process. As well, the FSMs in a slice only have 

access to the PLAs within a tile and limited inter-slice routes are available for the 

communication of state bits between tiles in a slice. The master and slave controllers 

developed required more product term resources and inter-slice routes than available 

in t heir slice and could not be mapped to the fabric. 

Although the synthesis process was not completed and a complete kernel produced , 

the DPU, LSM, and MUL utilization can be found via the Verilog model. However it 

is difficult to obtain an accurate estimate of the PLA and global route usage without 

a finalized kernel. The data in Table 5.1 gives a summary of the fabric utilization for 

the design. It should be noted that this design uses 96% of the available DPUs in the 

fabric. 
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I Resource I Slice 0 I Slice 1 I Slice 2 .j Slice 3 I Totals I 
DPU 20 21 20 20 81 
LSM 2 5 5 2 14 
MUL 0 0 0 0 0 

Table 5.1: Iterative Kernel Resource Utilization 

5.1.3 Testing and Performance 

Since a working kernel could not be completed for this design, it could only be tested 

at the Verilog model stage. The completed Verilog model was tested via a behavioral 

Verilog testbench using test vectors generated by the C model used with the design. 

The contents of t he data output LSMs could not be accessed directly by the test bench. 

Therefore , the data values entering the data output module were used to verify correct 

operation, assuming the LSM writing process occurred without error. 

The performance of the kernel was estimated from the Verilog model by determin-

ing the number of clock cycles to process a single 64-bit plaintext in the VerilogXL 

simulator. Approximately 233 clock cycles were needed to encrypt a single 64-bit 

plaintext. Hence if the CS2112 is running at 100 MHz the throughput is approx­

imately 27.5 Mbits/sec. It should be noted, however , that this performance figure 

does not include the overhead involved with loading the kernel into the fabric as well 

as the time required to load the data into and out of the fabric. 

5.2 Multiple Pipelined Kernel 

The encryption of singular plaintexts, as discussed in the previous section, limits the 

performance capability of a kernel since it does not exploit the pipelining or paralleliz-

ing capability of the reconfigurable logic. Therefore, a second design that attempted 

to process a stream of plaintexts was developed. Initial hardware estimates indicated 

that a completely pipelined and loop unrolled version the entire DES algorithm would 

exceed the hardware available in the CS2112 fabric. For example, a fully loop unrolled 

60 



and pipelined kernel would require 16 x 8 = 128 S-Boxes, each containing 64 x 4 = 256 

bits of data. Due to limitations in LSM addressing and size, only a single S-Box can 

be placed in an LSM so a total of 128 LSMs would be needed for a fully unrolled and 

pipelined design. With only 48 LSMs available on the fabric a fully unrolled version 

is an impossibility. 

As stated in Section 4.1, the CS2112 fabric has two configuration planes that can 

be swapped in a single clock cycle. When this swap occurs, the data located in the 

LSMs remains in place and is available to the new active configuration for processing. 

By using this dynamic reconfiguration ability and splitting the DES algorithm across 

multiple kernels, each of the individual kernels would have access to additional fabric 

resources. This extra available hardware can then be used to improve the throughput 

of the individual kernels and, in turn, the complete function via the pipelining of data 

path elements. As stated above, the DES algorithm is naturally partitioned into three 

main blocks. These blocks - IP, rp- l and the "Inner Rounds" -were implemented as 

individual kernels, each of which processes a maximum of 128 plaintexts before the 

following kernel is made active or the IP-1 kernel completes. Figure 5.8 illustrates the 

DES kernel swapping process, The IP and IP- 1 kernels require a block of 128 64-bit 

Active Kernel 

Input Data 

Output Data 

Kernel Loading to 
Background Plane 

Configuration 
Swapping Time 

Figure 5.8: Pipelined Multi-Kernel DES Kernel Swapping 

data values at their input and they produce 128 64-bit outputs. The ''inner rounds" 

are implemented as Single Round Kernels (SRKs) that complete a single round of 
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DES per invocation. For reasons discussed in · the following sections, two different 

SRK fabric layouts are needed to produced the desired output, although they are 

functionally identical. 

As with the iterative design discussed in Section 5.1 the key scheduling algorithm 

was not implemented in the CS2112 fabric. Instead, the subkeys were calculated by 

the software application and the subkeys relevant to a particular invocation of the 

SRK were passed into the function for use. As well, all 128 blocks had to be encrypted 

using the same key. 

5.2.1 Architecture Descriptions 

The iterative kernel architecture described above was used as a basis for the develop­

ment of a pipelined multi-kernel design. The IP and IP- 1 stages previously developed 

already supported pipelined data and required little modification to produce individ­

ual IP and rp- I kernels. The SRK required more modification to the previously 

developed inner round hardware section since it only supported processing a single 

word at a time. The following sections describe these kernels in more detail. 

IP and IP- 1 Kernels 

As stated above, the previously developed portions of the iterative kernel already 

were able to process pipelined input data. These sections of the data path hardware 

were separated from the iterative design and modified to produce a stand alone kernel 

for both the IP and rp- l stages. Hence, this new design needed to process a total 

of 128 plaintexts and each individual kernel must therefore process 128 input data 

blocks. Data input units that produced a stream of 128 plaintexts were added to the 

beginning of the previously developed data paths. As well, an output unit was added 

to accommodate the storage of a stream of 128 outputs in an LSM. 

The above kernels required very simple control hardware to process a stream of 
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data. After the start pulse was received, each kernel's data input unit would begin 

producing the input data from an LSM. Once a counter determined that the head of 

the data had reached the output unit , it was told to begin writing to the output LSM 

and after all 128 blocks were stored the done signal was asserted. 

Single Round Kernel 

Of the three kernels developed in this design, the SRK involved the most modification 

to the previously developed iterative data path and control elements. In the previous 

design, the left side data was held in a DPU register before being XORed with the 

data that passed through the F-function portion of the data path. Also, the right 

side data was held since it was to become the new left side data in the next round. 

Therefore, t he previously developed hardware could only support the processing of a 

single data value during an iteration. However, since the SRK was to process multiple 

data values, it would be more efficient to process more than one data value at a t ime. 

After the development of the iterative kernel it was obvious that the fabric could not 

accommodate the hardware required to implement all16 inner rounds of DES in the 

SRK. Instead of processing a continuous stream of dat a as in the IP and rp-l kernels, 

the SRK was designed to process 128 64-bit inputs in smaller blocks. 

Internally, the hardware was arranged to form a circular pipeline as illustrated in 

Figure 5.9. The SRK contained 13 pipeline stages and was able to accommodate the 
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Figure 5.9: Circular Pipeline Concept 
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processing of a block of up to 13 data values at a time. Hence, to process all 128 
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inputs the SRK would have to process 9 full subblocks (i.e. 13 data values) and one 

partial subblock of data. To create such a circular pipeline, two delay structures were 

added to the right and left side of the data path as shown in Figure 5.10. Each of 

Circular 
Route 

Figure 5.10: SRK Delay Illustration 

these units used an LSM buffer unit to delay the data by 11 clock cycles on the left 

and 12 on the right. The one clock cycle difference was necessary since the left data 

was XORed with the output of the S-boxes before the round is complete. Other than 

the addition of these delay units, no further modifications to the iterative data path 

were necessary to complete the SRK data path. 

The control unit in the SRK case was very similar to the portion of the previously 

developed iterative control unit. In this case, the control unit was again responsible 

for sequencing the production of the subkeys from the key generation units. Now the 

control unit was also responsible for the loading and writing of blocks of dat a into 

and out of the circular pipeline. Since each kernel is completing only a single round 

of the algorithm, there was no need for counting the round number in this case. 
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5.2.2 Synthesis and Mapping 

The three kernels involved in this design were more easily mapped to the CS2112 hard-

ware as a result of their smaller size when compared with the unified iterative design. 

As well, since less control logic was required to sequence each kernel's operation, no 

problems were encountered with control logic synthesis and mapping. However , a 

modification had to be made at this stage ofthe design process due to a property of 

kernel swapping. As stated above, when a kernel is swapped from the background 

plane into the active plane the LSM contents remain in place. This meant that the 

SRK kernels could not be identical from one round to the next. Instead, two separate 

mappings of the kernel hardware were developed so that the next kernel to become 

active would read its data from the LSM to which the current active kernel was writ-

ing data. No functional modifications were required to accommodate these separate 

mappings. Tables 5.2 through 5.4 detail the resource utilizations of the three kernels 

involved in this design. Notice from these tables that the hardware utilization within 

each kernel is substantially lower that the previously discussed iterative design. Also, 

note that the delay structures added to the SRK did not significantly increase the 

kernels hardware utilization. 

Resource Slice 0 Slice 1 Slice 2 Slice 3 Total 
DPU 20 4 0 0 24 
LSM 2 2 0 0 4 
MUL 0 0 0 0 0 

State Bits 3 0 0 0 3 

Table 5.2: IP Kernel Resource Utilization 

Resource Slice 0 Slice 1 Slice 2 Slice 3 Total 
DPU 16 14 0 0 30 
LSM 6 6 0 0 12 
MUL 0 0 0 0 0 

State Bits 14 8 0 0 22 

Table 5.3: SRK Kernel Resource Utilization 

65 



Resource Slice 0 Slice 1 Slice 2 Slice 3 Total 
DPU 20 7 0 0 7 
LSM 2 2 0 0 4 
MUL 0 0 0 0 0 

State Bits 3 0 0 0 3 

· Table 5.4: IP-1 Kernel Resource Utilization 

5.2.3 Testing and Performance 

After the synthesis and mapping process was completed, the kernels were linked to 

application code for testing. In this case the eBIOS library calls were written manually 

into the C code as opposed to using the \#pragma calls discussed in Section 4.2.4 

because the provided tools did not handle kernel swapping efficiently. The design was 

tested by first generating plaintext/ciphertext pairs, using the software version of the 

function, and then checking the hardware outputs against these values. Using both 

the chip simulator and development board, the finished application was tested and 

returned correct results in all cases. 

The overall performance of the final application running on the development board 

could not be accurately measured due to a software "bug" in the libraries provided by 

Chameleon Systems with their development environment. Since the company stopped 

production of the CS2112 in early 2002, a fix was not provided by the company. 

Instead, the performance of the kernels was estimated from the Verilog model. As 

before, this does not take into account the kernel configuration loading overhead nor 

does it take into account the overhead involved in switching kernels. Although the 

kernels could be swapped from the background plane into the active plane in a single 

clock cycle and the data being processed remained in the LSMs, after the SRKs 

were swapped new subkeys had to be loaded into the kernel's key production LSMs. 

The IP kernel and and IP- 1 kemels required 146 and 151 clock cycles respectively 

to process 128 64-bit plaintexts. The SRKs required 2380 clock cycles to process 

128 64-bit plaintexts. Hence, ignoring configuration swapping overhead a total of 
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2677 clock cycles were required to encrypt 128 plaintexts using the multiple pipelined 

kernels. Therefore, with the CS2112 running at 100 MHz, the overall throughput was 

approximately 306 Mbits/sec. 

5.3 Pipelined Kernel 

The design and implementation of a pipelined multiple kernel version of DES led to 

the development of a third implementation. Although the IP, rp- l and single round 

kernels of the previous design each occupied a significant portion of the reconfigurable 

fabric, an attempt was made to unify these kernels and improve the overall perfor­

mance of the design. Again, as described previously, this kernel was to process a 

complete block of 128 plaintexts using a single key. Also, as with previous designs 

the round subkeys were to be calculated by the ARC processor and passed into the 

kernel for processing. However, in this case no kernel swapping was required so the 

overhead involved in switching kernels was eliminated. 

5.3.1 Architecture Description 

The data path portion of the pipelined kernel simply reused the hardware from the 

multiple kernel design. The IP, rp- I and SRK kernels were combined into a single 

design. As with the SRK, the kernel processed 128 inputs in blocks of 13 plaintexts. 

However, the IP and rp- l portions of the kernel now processed these smaller blocks 

instead of the continuous stream of data that their stand alone kernel forms processed. 

Figure 5.11 shows a snapshot of the unified design's data path. The majority of the 

work involved in this design came in the form of control unit development and careful 

hardware mapping. The control unit had to perform 4 major tasks. Firstly, the 

controller had to signal the input data generators to output a block of 13 plaintexts. 

Secondly, it had to deteqnine when a block of data had completely passed through 
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the IP stage so that the circular pipeline performing the round calculations could 

close. Thirdly, the control unit had to signal the key generation hardware to produce 

the correct sequence of round subkeys. Finally, when the data that had completed 

all 16 rounds of processing passed through the Jp- l stage of the algorithm, the data 

writer units were signalled to write the block of 13 plaintexts to LSMs. Since the 

data path occupied 80 of the 84 available DPUs in the fabric and the free DPU 

locations were fixed, it was very difficult to develop a controller that used DPUs 

as counters to sequence operations. The first control unit developed used entirely 

state bits and PLA resources to sequence tasks, but it quickly overloaded the control 

resources available since a large number of states were required. Therefore, a second 

design was developed that utilized the remaining free DPUs to perform counting 

operations. While this change complicated control unit placement, it simplified the 

control hardware sufficiently to allow for the synthesis and mapping stage to proceed. 

5.3.2 Synthesis and Mapping 

As with the previous designs, after the architectural issues were resolved, the Verilog 

design was synthesized and mapped onto the CS2112 after it was fully tested. The 

manual mapping process required much more time to complete with this design since 

approximately 98.8% of the DPUs were used and a significant amount of global data 

and control routing was required. However, the design was eventually successfully 

m~pped to the fabric with the final fioorplan as shown in Figure 5.12. Table 5.5 

shows the overall resource usage for the pipelined kernel. 

Resource Slice 0 Slice 1 Slice 2 Slice 3 Total 
DPU 21 21 21 20 83 
LSM 2 6 6 2 16 
MUL 0 0 0 0 0 

State Bits 9 20 3 5 27 

Table 5.5: Pipelined Kernel Resource Utilization 
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Figure 5.12: Pipelined DES Floorplan 

5.3.3 Testing and Performance 

After the kernel bitstream was produced, it was linked to the previously developed 

application test code. The Verilog testbench and C application test code for the 

pipelined design are given, as an example, in Appendix D. In this case, however, the 

kernel did not perform encryptions correctly and was corrupting data. After some 

investigation, it was determined that t he kernel itself was correct but a hardware 

or software "bug" prevented the correct routing of data inside a slice. This er ror 

was eventually attributed to the v2b compiler and could not be resolved. Hence the 

completed application could not be fully tested . 

For the above reason, and for the problem discussed in Section 5.2.3, the perfor­

mance of the kernel had to be estimated based on the Verilog model. The pipelined 

kernel required 2540 clock cycles to encrypt 128 64-bit plaintexts. Hence, with the 

CS2112 running at 100 MHz, the kernel throughput was estimated to be 322.5 Mbit­

s/ sec. 
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5.4 Summary 

The above sections presented three implementations of DES on the Chameleon 

CS2112. A 32-bit C implementation was used as the basis for all three kernels. 

This code performed the IP and rp-l operations using a series of 32-bit instructions 

and modified the F-function operations so that 32-bit operands could be used. The 

first kernel encrypted a single 64-bit plaintext and did not utilize the CS2112 fabric's 

pipelining capability. This implementation, although not fully completed, was esti­

mated to have a throughput of 27.5 Mbitsjsec. The next kernel attempted to simplify 

the overall design by splitting the implementation into three kernels. This gave each 

kernel access to a greater number of fabric resources and simplified the placement 

and routing process. Also, each of these kernels utilized the pipelining capability of 

the CS2112 fabric to improve performance. When combined, the throughput of the 

multiple kernel design was estimated at 306 Mbits/sec. The final design attempted 

to unify the multiple kernels developed in the previous implementation. The unified 

design showed an improved throughput of 322 Mbits/sec. 
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Chapter 6 

Rijndael Implementation 

In this chapter, we examine the development of two different implementations of 

Rijndael, the cipher selected as the Advanced Encryption Standard by the United 

States National Institute of Standards and Technology. The development of the 

Rijndael kernels began with a 32-bit software model that had a fixed key length of 128 

bits and plaintext block length of 128 bits. From Table 2.4 it can be seen that a total 

of 10 rounds were required to perform an encryption. Initially it may look somewhat 

complex to implement the round operations on a 32-bit machine efficiently. However , 

the Rijndael specification document [17] details a method by which the entire round 

fw1ction can be replaced by lookups into four 256~entry tables (TO-T3) with entries 

that are 32-bits wide. 

The Lookup Table (L UT) strategy can be described by the following equation for 

the round function: 

Where e1 is the column of the output STATE for that round, a i,j is the input STATE 

at row i , column j , ki is the column of the expanded subkey, and Tk is a LUT. The 

values of C1, C2 and C3 are fixed at 1, 2, and 3 respectively. Hence for a 128-bit 
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input plaintext, 16 table lookups are required to find the 4 columns of the output 

STATE per round. 

As stated in the algorithm description, in the final round the mix column step is 

removed. There are two methods to perform this final round using LUTs. Firstly, a 

second set of tables (T FIN ALO - T FIN AL3) can be used for the final round with 

again 16 lookups into four 256-entry tables with each entry 32-bits wide. Secondly, the 

same set of tables can be used for all rounds; in the final round bit masks and shifts can 

be used to eliminate the mix column step from the table outputs. Decryption can be 

accomplished in a similar way using a different set of LUTs. Fortunately, numerous C­

code models were freely available and an implementation written by Vincent Rijmen 

was chosen. In this code, L UTs were used to perform the round function and the final 

round was accomplished using a . second set of tables. This code served as a basis for 

the development of the two kernels discussed in the following sections. 

6.1 Iterative Kernel 

As with the previously discussed DES implementations the development of a Rijndael 

kernel began with a purely iterative implementation. This kernel was to process a 

single 128-bit plaintext using a 128-bit key. Since the number of DPUs required to 

perform the round operations was too large to fit into the CS2112 fabric , a LUT 

strategy was used with a second set of tables to implement the final round. Hence, 2 

LSMs were required to implement each T table and 2 LSMs for each T FINAL table 

for a total of 16 LSMs to represent both round functions. To perform a complete round 

in parallel a total of 64 LSMs would be required because 16 lookups were needed in 

parallel (4 lookups into 4 sets of tables) with 32 LSMs for the regular round and 32 

LSMs for the final round functions. However, only 48 LSMs were available on the 

fabric , and only a partial round could be completed in parallel. 
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The first design focused on an iterative kernel, with no pipelining ability, that 

used a single set of tables for the regular round and another set for the final round. 

Each pair of tables, Ti and T FIN ALi, was connected to a single address generator 

DPU with the values ofT; in the lower 256 locations and T FIN ALi in the upper 256 

locations. Therefore, in the final round Ox00000400 was added to the input address to 

switch to the upper table outputs. Figure 6.1 illustrates these two address generator 
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Figure 6.1: Table Address Generator Instructions 

DPU configurations. 

After the design of the table lookup units was complete, it was a fairly simple 

matter to complete the design. Figure 6.2 shows the DPU connections required to 

perform an encryption (NOTE: the muxing layer DPU inputs are round dependant). 

Three additional LSMs were used to hold data. To simplify the init ial "add round 

key" operation, the 4 plaintext columns (32 bits each) were stored in an LSM. The 11 

128.:bit expanded round keys were also stored in an LSM as 4 32-bit v alues occupying 

44 locations in the LSM. Each entry in the key LSM was basically a column of 

the expanded key. As with DES, the subkey generation algorithm could not be 

implemented in parallel with the round function so subkeys were generated in software 

on the ARC processor and passed to t he fabric . Finally, the ciphertext exited the 
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Figure 6.2: Iterative Rijndael Kernel Data Path Configuration 

round function as a series of columns that were written to a third LSM. 

A round of Rijndael proceeded in a number of stages and can be followed in 

Figure 6.2. The buffer DPUs were used to hold the columns of the STATE for the 

current round. The buffer DPUs loaded their particular column of ST ATE as the 

column exited "add round key" operation. Once all four columns had been loaded 

into the buffers, the MUX DPUs perform a sequence of operations to load the couect 

columns of STATE into its associated table lookup unit. The table outputs were 

XORed and then passed through an "add round key" operation, with 4 columns 

·passing through sequentially. This output was then either written as ciphertext, if 10 

rounds had completed, or passed through another round as described above. Control 

logic was added to the design to sequence these operations. 
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6.1.1 Synthesis and Mapping 

The iterative kernel was synthesized and mapped using the C"'SideTM tools without 

any major difficulty. A view of the finalized floorplan taken from the manual routing 

tool is shown in Figure 6.3, along with a summary of the hardware usage in Table 6.1. 

Note that roughly 50% of the fabric resources were used by the iterative kerneL 

Figure 6.3: Iterative Rijndael kernel floorplan 

Resource Slice 0 Slice 1 Slice 2 Slice 3 Total 
DPU 12 8 0 0 20 
LSM 11 8 0 0 19 
MUL 0 0 0 0 0 
State Bits 27 14 0 0 41 

Table 6.1: Resource utilization for iterative Rijndael design 

6.1.2 Testing and Performance 

As with the DES kernels, a software bug prevented measurement of the AES iterative 

kernel's performance in the final application. Instead, the clock cycles to complete 
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a 128-bit plaintext encryption were fonnd from the Verilog simulation. The iterative 

kernel can encrypt a single 128-bit plaintext with a 128-bit key in 170 clock cycles. 

Therefore, ignoring configuration overhead, the throughput was approximately 75 

Mbits/sec at a clock speed of 100 MHz. 

6.2 Pipelined Kernel 

Since the iterative kernel resource utilization was relatively low, a pipelined version 

of the kernel was investigated. To develop a fully pipelined version of 10 round 

Rijndael, each round of table lookups would have to be done in parallel and all 10 

ronnds would have to fit on the fabric. Since each round needed 16 lookups, 160 

tables were required. Each table would occupy 2 LSMs in the CS2112 fabric so a 

total of 320 LSMs would be needed to fully pipeline the algorithm. Obviously, this is 

not possible with the current chip. Therefore, a circular pipeline strategy was used 

similar to that used in the DES design. 

The initial goal was to be able to output a single column of the output STATE 

in a slice. This required the completion of all four table lookups within a single slice. 

In the iterative design, two tables were used to represent the two round functions and 

this required 16 LSMs to store the tables. In order to fit all 4 lookups in a single 

slice, the second method of computing the final round, mentioned in Section 6, was 

used. To achieve this, the operations performed by the lookup table DPUs and the 

XOR DPUs had to be changed. As well, each of the tables would have to t ake in a 

different input. Figure 6.4 illustrates these changes in the third table lookup DPU 

and XOR DPU following it. Similar modifications were made to the rest of the DPU 

configurations. 

After these modifications, it was possible to compute an entire column of the 

output state in a single slice. Hence, across four slices, the full 4 columns of the 
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Figure 6.4: Pipelined Table Address Generator Instructions 

output STATE could be computed. The design was, therefore, partitioned into 

four distinct modules with each module computing a single column of e. Each of 

these modules included an LSM holding a number of columns of state, another LSM 

holding the expanded keys for that column, and a third LSM for holding the completed 

ciphertext. Figure 6.5 shows the DPU / LSM connections for the data path of slice 

0. (Note: final round configuration is not shown) This structure was essentially the 

same as shown previously in the iterative design, but now there was no need for a 

muxing layer. The circular pipeline in this case can hold up to 10 blocks of data. 

This structure was then repeated across the other three slices to complete the kernel. 

Within a slice, data flowed through a number of stages to complete a round and 

can be followed in Figure 6.5. The block of 128-bit input plaintexts were divided into 

columns and loaded into t heir appropriate LSMs, with the slice 0 plaintext column 

generator holding input data columnO, slice 1 holding column1, and so on. A block 

of 10 columns was then started out of the plaintext column generator in each slice. 

After exiting the column generator, the columns of STATE passed through an initial 

"add round subkey" operation. This occurred in all slices simultaneously. After 

exiting this ''add round key" operation, the blocks passed through a buffer DPU. 
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Figure 6.5: Slice 0 Data Path Configuration for Regular Round 

The buffers held all four of the columns of STATE that were exiting the initial 

"add round subkey" operation in each slice. Three of these columns were passed to 

the slice via global connections with the other slices. On the next clock cycle the 

columns of STATE in these buffer DPUs were passed to the LUT portion of the 

pipeline. Mter passing through the "add round subkey" operation again, the new 

columns of STATE were loaded into the buffers as described above. To complete 

the final round, the instructions associated with the buffers, LUTs and XOR units 

were changed as the head data in the pipeline began to pass through. The completed 

ciphertext columns in each slice were then written to LSMsbefore being passed back 

to the ARC processor. 
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6.2.1 Synthesis and Mapping 

Since the pipelined design was slice based, a single slice of the design was first syn-

thesized, mapped and tested before a complete kernel was produced. The single slice 

was mapped to the fabric without any problems. When the other slices were added, 

however, the limited global routing lines required that the resources in slices 2 and 

3 be mapped as a mirror image of slices 0 and 1. The finalized fioorplan is shown 

in Figure 6.6. Table 6.2 lists the hardware usage for the pipelined kernel across all 

slices. Note that the pipelined kernel DPU usage jumped to almost 95%. 

Figure 6.6: Pipelined Rijndael kernel floorplan 

I Resource II Slice 0 I Slice 1 I Slice 2 I Slice 3 II Total I 
DPU 21 20 20 20 81 
LSM 11 11 11 11 44 
MUL 0 0 0 0 0 
State Bits 17 12 12 12 53 

Table 6.2: Resource utilization for pipelined Rijndael design 

80 



6.2.2 Testing and Performance 

Again using the Verilog simulation results, the pipelined Rijndael kernel could encrypt 

ten 128-bit plaintexts using the same 128-bit key in 114 clock cycles. Therefore 

ignoring configuration overhead, this kernel had a throughput of 1.1 Gbitsfsec if the 

CS2112's clock speed was 100 Mhz. 

6.3 Summary 

This chapter discussed the development of two kernels that implemented Rijndael. 

Although a Rijndael kernel could have been developed using bit and byte-level opera­

tions, as with the previously described DES designs, a 32-bit implementation method 

was used to allow more efficient mapping to the CS2112 hardware. The first de­

sign processed a single 128-bit plaintext using a 128-bit key using a LUT strategy 

in which one set of tables completed the first 9 rounds and another the final round. 

The overall throughput of this design was estimated to be 75 Mbitsfsec. The second 

implementation utilized the pipelining capability of the CS2112 to improve through­

put. The design was split across the four logic slices so that each slice performed 

identical operations, with the data interconnections varying, to produce 32 bits of the 

ciphertext. To lower LSM usage the double LUT strategy, used in the previous im­

plementation, was changed to use only a single set of L UTs to implement all rounds. 

The throughput of this pipelined design was estimated to be 1.1 Gbitsjsec. 
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Chapter 7 

Bluetooth, KASUMI and RC4 

After the implementations of DES and Rijndael were completed, three other encryp­

tion algorithms were considered for implementation on the CS2112 fabric. The three 

algorithms- EO, KASUMI, and RC4- were chosen because they are part of popular 

wireless standards. A complete software application, utilizing the hardware kernel , 

as with DES and Rijndael was not developed for these algorithms. The goal of this 

work was to evaluate the performance of these kernels in terms of hardware com­

plexity and speed. Therefore, an outline of each kernel's data path logic and control 

unit was developed from which performance estimates could be made. As well, these 

design outlines could be used as a basis for future work in this area. The following 

sections describe the results of this work. 

7.1 Bluetooth Encryption Algorithm - EO 

After t he successful development of two block cipher kernels, an attempt was made 

to implement a stream cipher on the CS2112. The first algorithm chosen for analysis 

was the recently developed EO keystreamgenerator. At first , it appeared as though 

the fabric would be able to easily accommodate EO. However, after more careful 

analysis its implementation proved to be much more difficult than first anticipated. 
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As discussed in Section 2.4 the data path of the keystream generator can be split 

into two main parts - the LFSRs and the summation combiner. The summation 

combiner is a simple FSM and can easily be implemented in a LSM lookup table. 

As well, the 25 and 31 bit LFSRs can each be implemented in a single DPU using 

the LFSR mode of operation available in the DPUs. The polynomials as given in the 

standard would have to be modified as the DPUs assume a Galois LFSR structure 

whereas the standard specifies a Fibonacci LFSR. The only modification required to 

convert the Fibonacci form to a Galois form is a change to the initial fill vector and 

a reversal of the tap weights [12). However, the LFSR mode of operation for DPUs 

could only accommodate LFSRs which were less than 32 bits wide so a single DPU 

implementation of the four LFSRs in the keystream generator was not possible. 

Since EO is targeted specifically at bitwise hardware implementation, very few 

software implementations exist for the algorithm. In fact, only a single software im­

plementation of EO developed by Saarinen [65) could be found. The initialization por­

tion of Saarinen's implementation was quite complex and did not lend itself to a high 

speed implementation on the CS2112. It was decided that only the post initialization 

portion of the algorithm that produces the keystream bits would be implemented in 

the fabric with the initialization values calculated in the ARC. The keystream bit 

generation portion of the software implementation is shown in Algorithm 7.1.1. 

As a further complication, Saarinen's code uses 64-bit integers to represent the 

LFSRs. Since the DPUs are 32-bits wide the LFSR clocking operations to generate 

eO_rl to eO_r4 need to be decomposed into a number of 32-bit operat ions. As an 

example, consider the code for generating the next value of eO_r4 in Algorithm 7.1.1. 

These operations can be further subdivided into the operations for generating the new 

Most Significant Bit (MSB) of the LFSR and merging it into the LFSR. The MSB is 

generated by XORing the bits of the LFSR as selected by the feedback polynomial. 

In this case, bits 38, 35, 27 and 3 are selected and XORed before the merge. Since 
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Algorithm 7.1.1 eO_clock() function 

int eO_clock () 
{ 

int t; 

eO_r1 = ((eO_r1 << 1) & Oxlfffffe) I 
((( e0.r1 >> 7) • (eO_r1 >> 11 ) • (eO _r1 >> 19) • (eO_r1 >> 24)) & 1); 

eO_r2 = ((eO.r2 << 1) & Ox7ffffffe) \ 
(((eO.r2 >> 11 ) • (e0-r2 >> 15)- (e0-r2 >> 23) • (e0-r2 >> 30)) & 1 ); 

e O.r3 = ((e0_r3 << 1)&0xlfffffffe ) I 
((( eQ_r3 >> 32) • ( e 0_r3 >> 27) • (eO_r3 >> 23) • (eO_r3 >> 3)) & 1 ) ; 

eO.r4 = (( eO_r4 << 1)&0x7fffffffffe) I 
(((eO.r4 >> 38) • (eO_r4 >> 35)- (eO_r4 >> 27) • (eO_r4 >> 3)) & 1) ; 

eO_x = (( eQ _r1 > > 23) & 1) I (( eQ_r2 > > 22) & 2) 
(( eO_r 3 > > 29) & 4 ) I (( e O. r4 > > 28) & 8); 

eO_state = eO_fsm[eO . state][eO.x]; 
t = eO_x • (eQ_x >> 2); 
t ·= t >> 1; 

return (t • ( eO.state > > 2)) & 1 ; 

the DPUs can only operate on 32-bit data, the LFSR must be split across 2 DPUs. 

Further, DPUs can then be used to select the bits and then XOR them together as 

shown in Figure 7.1. Once the MSB had been generated it could be merged into the 2 

G:J-' ; ~·- ; 
,----,,----.-, 

PASSB 

XOR XOR 

0 
----~'1-_. ____ j 

0 
MSBOUT 

Figure 7.1: MSB Generation Data Path Structure 

DPU wide LFSR as shown in Figure 7.2. The other LFSRs could be implemented in a 

similar fashion or where possible a single DPU could be used to save fabric resources. 
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Figure 7.2: Shifting LFSR and Combining with New MSB 

The overall performance of the algorithm is now very much limited by the per­

formance of the LFSR hardware. Although a single DPU LFSR could be used in 

two cases, the multiple DPU LFSRs would limit the speed of operation even with 

clocking done in parallel since all of the LFSRs must be finished before the algorithm 

proceeded. Therefore, after considering the other operations required to complete 

a round, it would take approximately 14 fabric clock cycles to generate a single 

keystream bit. Hence, the overall performance of such a kernel would be approxi-

mately 7.14 Mbitsjsecond at a clock speed of 100MHz. 

7.2 KASUMI 

As discussed in Section 2.5, KASUMI is an iterated block cipher with a Feistel struc­

ture and, as such, is very similar to DES. Many of the design principles used in the 

development of the previous DES kernels were applied in the preliminary develop­

ment of a KASUMI design. Since the key generation algorithm wa.'3 again relatively 

complex in itself, it was not to be implemented in hardware. Therefore, as in previous 

designs, it was assumed that the microprocessor would calculate and pass an entire 

set of round subkeys into the fabric. As in the DES kernels, the S-boxes inside the 

F I function were to be implemented inside LSMs as lookup tables rather than as 

boolean logic. Also, as with previous designs, the initial focus was the development 

of a purely iterative KASUMI design which would process a single 64-bit plaintext. 
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While performance would not be optimal in the purely iterative case, the data path 

proved to be much simpler and easier to develop than a pipelined design. As well, the 

iterative implementations usually prove to be a excellent basis for the development 

of a pipelined kernel. 

After the external interface and software/hardware boundary had been decided, 

the development of the KASUMI data path began by breaking it into the natural 

boundaries imposed by KASUMI's subfunctions. The F I subfunction was considered 

first with later functions building upon this data path hardware. Figure 7.3 shows the 

fabric resources required to implement F I. As stated in Section 2.5.2, F I contains 

Figure 7.3: Fl Subfunction 

two S-boxes which are of unequal sizes. The 7-bit input/output S-box could be 

implemented in a single LSM with a single DPU for accessing the table. The 9-bit 

S-box could not be stored in a single LSM and was held in 4 chained LSMs with a 

single DPU for accessing the table. The zero pad and truncate functions, Z E and 

86 



T R, required no additional hardware since the 7-bit values were already zero padded 

out to 32-bits and the 9~bit value could be truncated with a simple mask operation. 

The 16-bit subkeys K Ii were also stored in an LSM with two DPUs taking this subkey 

and splitting it into 9-bit and 7-bit components before XORing with their respective 

data. Once the key addition had been completed, the 7 and 9-bit components were 

simply recombined to form the 16-bit output. 

The FO subfunction contains three iterations of the previously described F I sub­

function. Since this is an iterative design, only a single copy of the F I hardware was 

required in the fabric. In a pipelined implementation multiple copies of this hardware 

would be necessary. The hardware required for this function was relatively simple in 

that the 32-bit data was simply split into two 16-bit halves before passing through 

three iterations of key additions and the subfunction F I . Again, as in the previous 

function, the 16-bit subkeys were stored in an LSM and retrieved at the appropriate 

time. Figure 7.4 illustrates the reconfigurable fabric data path configuration. After 

all iterations were complete, the resultant 16-bit halves were recombined to form the 

32-bit output value. 

The third and final subfunction of the KASUMI algorithm, F L, did not depend on 

the previously described functions. As with FO, the F L function takes a 32-bit input 

and produces a 32-bit output. Figure 7.5 details the data path elements required to 

implement this function. Since the output of the first instruction as described in 

Section 2.5.1 was used in the following instruction, the two instructions could not 

be completed in parallel. Hence, the hardware for only a single pipelined rotate, as 

described in Section 4.2.2, was necessary. As with previous functions, the subkeys 

used by F L were held in an LSM and were accessed by a single DPU. The remaining 

DPUs split the incoming data into its two 16-bit halves, held the new "right" and 

"left" values and performed the other logical operations required by the function 

definition. 
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Figure 7.4: KASUMI FO Subfunction 

Once all subfunctions had been mapped to fabric resources, they were assembled 

to complete the entire algorithm. Since this implementation was again iterative, only 

a single copy of the hardware for each subfunction was necessary. If any subfunction 

was required multiple times, the same hardware was simply reused in each execution. 

Figure 7.6 shows the complete KASUMI data path. Note that the order of execution 

of F L and FO depended on the current round and required an extra connection 

between the two subfunctions on the data path . Also, the single 64-bit input and 

output data was stored in two DPUs as in previously described designs. 

The performance of this KASUMI implementation was estimated by following a 

procedure very similar to the way it was designed. First, the execution time of each of 

the subfunction data paths was estimated; then these estimates were combined t o find 

the kernel's overall performance. The sub functions F I and F L were estimated to take 

14 and 11 fabric clock cycles, respectively. FO's total execution time was dependant 
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on FI and was estimated at 11 +FIx 3 = 11 + 14 x 3 = 53 clock cycles. Hence, the 

overall KASU:MI kernel would require 4+ 16+8 x (F L+ FO) = 16+8 x (11 +53) = 528 

clock cycles to encrypt 64-bits of data. With the CS2112 running at a clock speed 

of 100 MHz, the kernel would have an approximate throughput of 12.03 Mbitsj s. Of 

course, this estimate ignores the configuration and data transfer overhead that would 

be present in a finalized application. 

In order to improve the above performance figure, the algorithm's loops would have 

to be unrolled where possible and a pipelined data path developed. For example, the 

three iterations of the F I subfunction in FO could be done in three repetitions of the 

F I hardware instead of a single reused one. However, as with previous designs the 

CS2112 fabric does not have enough resources available to support a fully unrolled and 

pipelined version of KASUMI. In the best case scenario a single round of the algorithm 

could be pipelined, allowing a circular pipeline arrangement as described in the DES 
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Figure 7.6: Full KASUMI Data Path 

and AES kernels, but without further investigation no performance estimates can be 

made. 

7.3 RC4 

The RC4 algorithm was a very simple algorithm requiring few computational oper­

ations. The beginning of the algorithm involved a setup phase in which the 8-box 

was initialized using the private key. While an important part of the algorithm, this 

phase was only performed once at the start of encryption. Hence, this phase was 

to be implemented in software with the initialized 8-box being passed into a kernel 

that produced the output key sequence. RC4 was implemented on the CS2112 in an 

iterative kernel quite easily; however, there was some difficulty in developing a high 

speed implementation. As in the previous sections, this design focused primarily on 

the development of the kernel data path. Only a rough outline of t he control unit 

was developed. 
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The iterative kernel will produce a single 8-bit output with every iteration by 

performing the operations in the keystream stage of the algorithm. Since this phase 

is centered around a single substitution box, the design itself was developed in a 

similar manner. A high level diagram of the RC4 data path is shown in Figure 7.7. 

The data path memory requirement for the RC4 algorithm is extremely low and, as 

DPU for 
writingS; 

and si 
into S-box 

S-box 

Figure 7.7: Iterative RC4 Kernel High Level Diagram 

DPU for 
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and sl from 

S-Box 

----~~? 

kout 

can be seen in Figure 7. 7, the single 8 x 8 S-box used in the algorithm can be placed in 

a pair of chained LSMs with a 32-bit output port or a single LSM with a 8-bit output 

port. The previous configuration was chosen in this case for reasons discussed below. 

These LSMs are accessed by a pair of DPUs functioning as reader/writer units. Also, 

the variables i, j, Si, and Sj can be held in DPUs. However, some refinement of this 

approach is possible which both saves space and time. 

The variable i must be held in a DPU that either holds the current value or 

increments i by 1. A mask on the input of this DPU was used above to accomplish 
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the "mod 255" operation as shown in Figure 7. 7. This would introduce a single clock 

cycle period after an increment where the data at the output is not valid because 

in the dock cycle when the ADD operation takes place, the output of the ALU is 

not masked. This could be avoided if the reader/writer units consistently mask their 

inputs to perform the modulo operation before the address is passed to the LSM. 

Hence a combination of input masking on the reader /writer DPUs along with masking 

on the i DPU would work correctly. However, since we were using two LSMs in 32-bit 

output mode, another interesting method to eliminate the above masking presented 

itself. The LSMs only use bits 2-9 of the provided 32-bit address in 32-bit output port 

mode (bits 2-10 when two LSMs are chained together) to address a 32-bit position in 

memory. Hence, the LSMs themselves can be used to mask their input addresses and 

no input masking was required on either the j DPU or the reader/ writer DPUs. This 

would not have been possible if the LSM was configured in 8-bit mode, since bits 0-9 

would have been used to lookup a byte. In that case the above masking would have 

been required. The output of the j DPU can be t reated similarly. 

In the final step of the algorithm, a lookup into position Si + Sj produces the 

8-bit output for a round. This addit ion was initially computed in a separate DPU. 

However, this extra DPU was not necessary since the reader DPU could perform 

the addition before passing the result to the LSM. The LSM addressing mechanism 

described above handles the modulo operation. 

The performance limiting factor of this RC4 implementation was its iterative 

nature. A particular stag~ of the algorithm cannot proceed until the preceding stage 

has completed. So, for example, the calculation of j and the subsequent lookup of Sj 

cannot occur until the new value of i has been calculated. The diagram in Figure 7.8 

illustrates these timing constraints with the elapsed clock cycles on the horizontal axis 

and time increasing from left to right. There are also instances within a round where 

some parallelization can be achieved to reduce the latency. This parallelization can 
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Figure 7.8: RC4 Operation Timing 

be seen as overlap between two operations in Figure 7.8. The first round of RC4 takes 

15 clock cycles if the fabric setup time is ignored. Another level of parallelization can 

be achieved between rounds since the computations for the second round can start 

before the first round has completed. Hence after the first round, data was produced 

at -a rate of 8-bits every 10 clock cycles. Therefore, at 100 MHz the final throughput 

was approximately 80 Mbits/sec. It is very difficult to improve the performance of 

the RC4 kernel beyond that of the implementation described above because of the 

sequential nature of the operations involved. In fact , the greatest limitation to the 

algorithms performance is the swap of table values. Without this write, the table 

lookups could be interleaved or multiple copies of the table could be accessed at the 

same time to achieve a much higher performance figure. However, the swap of table 

values is a necessary part of the algorithm and cannot be ignored. 
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7.4 Summary 

This chapter presented the high level designs for three cryptographic algorithms. The 

first algorithm discussed was EO, a stream cipher used to provide security within the 

Bluetooth protocol. The keystream generation portion of the algorithm could be 

implemented using a number of DPUs to represent the LFSRs and a simple lookup 

table, stored in an LSM, to implement the FSM. This EO design was estimated to 

have a throughput of 7.14 Mbitsjsec. The second algorithm studied was KASUMI, 

a block cipher used in the 3rd generation GSM standard. A high level design of an 

iterative kernel was developed in a similar manner to the DES kernels, as both ciphers 

have a Feistel structure and utilize S-boxes. The developed KASUMI design was 

estimated to have a throughput of 12.03 Mbits/ sec. Finally, the stream cipher system 

RC4, an algorithm used in many security applications, was analysed. Although RC4 

is targeted toward high speed software implementation and mapped easily to the 

CS2112 fabric, its structure could not fully take advantage of the CS2112's pipelining 

capability. The high level design indicated that a RC4 kernel would have a throughput 

of approximately 80 Mbits/sec. 
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Chapter 8 

Conclusions 

Through the course of this research a number of cryptographic algorithm implemen­

tations were investigated on the Chameleon Systems CS2112 Reconfigurable Commu­

nications Processor. Both DES and AES were investigated thoroughly with multiple 

working kernels developed in each case. Preliminary design work was also completed 

for the EO, KASUMI and RC4 algorithms and estimates of kernel performance were 

made using these preliminary designs. The results of this work are summarized below. 

In total, three DES kernels were developed with two kernels passing the synthesis 

and mapping phase. These were tested with both the chip simulator and development 

board after a final application was completed. Unfortunately, difficulties were encoun­

tered which prevented a purely iterative version of t he kernel from being mapped to 

the CS2112 fabric resources. Also, the synthesized pipelined kernel malfunctioned 

due to either an error in the CS2112 synthesis tool or a bug in the CS2112 chip it­

self. The iterative kernel, as expected, performed poorly with a throughput of only 

27.5 Mbits/sec. The multiple pipelined kernel and pipelined kernel implementations 

both performed respectably with throughputs of 306 and 322 Mbits/ sec, respectively. 

The difference in throughput resulted from the data output writes that each of the 

intermediate kernels must perform in the multiple kernel case. This gap should be 

much wider on the actual chip since in the multiple kernel case the new key values, 
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as well as data, must be loaded into the newly activated kernels before processing 

proceeds. This would add further delay to the multiple kernel solution and, as a 

result, its throughput should decrease. 

Two AES or Rijndael kernels were developed and tested with the chip simulator 

and development board. Again the iterative version of the kernel performed quite 

poorly with a throughput of only 75 Mbits/sec. However, the pipelined kernel pro­

duced a throughput of 1.1 Gbitsjsec ~the highest throughput of any kernel developed 

during the course of this research. With approximately 96.4% of the available DPUs 

used in this kernel, it would be difficult to improve the performance beyond this point. 

As stated above, preliminary analysis was also completed on the ciphers EO, KA­

SUMI, and RC4. The EO kernel, with LFSRs having widths greater than 32-bits was 

very costly to implement on the CS2112 in terms of both hardware and time. As 

well, the initialization sequence was too complex to implement using the CS2112's 

available control units. Hence, if . initialization was completed in software and the 

starting values loaded into the kernel the throughput was estimated to be 7.14 Mbit­

s/sec. This is well above the Bluetooth version 1.1 specification which supports a 

maximum throughput of 720 Kbps. However, the EO kernel developed only imple­

ments a portion of the Bluetooth security architecture. The KASUMI kernel was 

also quite difficult to develop given the limited hardware resources avQ.ilable. The 

12.03 Mbitsjsec throughput of the iterative kernel could be greatly improved by un­

rolling theloops and developing a circular pipeline solution as in the DES case. In 

fact, its performance could be very close to that of the pipelined DES kernel if more 

hardware resources were available. RC4 presented a slightly different challenge since 

it is an algorithm targeted toward purely software implementation. However, this 

performance figure is still above the 2.4 Mbitsjsec connection speed available with 

3G devices. The table value swap portion of the RC4 algorithm proved to be a lim­

iting factor in the development of a high speed kernel and t he preliminary design's 
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estimated throughput of 80 Mbits/sec is almost maximal. Although the speeds ob­

tained in these preliminary designs were not as high as those obtained with DES 

and AES they should prove to be a good basis for future implementations on this or 

similar processors. 

In general, the Chameleon CS2112 performed quite well in cryptographic applica­

tions, considering it was originally developed for digital signal processing. However, 

there were a number of factors which limit the speed and complexity of algorithms 

implemented in the CS2112's fabric. Firstly, many of the developed kernels were lim­

ited in size by the amount of available fabric hardware. Resources such as DPUs and 

LSMs were quickly used up. If the DES, AES and KASUMI algorithms could have 

been fully unrolled the kernels could have operated on a continuous stream of data 

and would have produce a full ciphertext per clock cycle after the pipeline had filled. 

As well, the available control resources were not adequate to develop complex control 

units. Secondly, the global and local routing matrix was not extensive enough to 

allow the mapping of complex designs. A large kernel was difficult, if not impossible, 

to successfully map to the fabric and required careful design and placement practices. 

Thirdly, the tools provided for automated synthesis and placement of datapath and 

control resources were very poor. In all cases, manual placement of resources was 

required and with large designs this process was quite complex. As well, many of 

the operations performed by the DPU elements are not required in cryptographic 

applications and only a subset of their functionality was used. Finally, no hard­

ware was provided for performing simple bit level operations such as permutations. 

Hence, without further modifications to the architecture, the chip is constrained in 

cryptographic applications. 

The original intent of this research was to evaluate the performance of the CS2112 

in encryption applications and this work as been completed. However, the following 

are recommendations made for further research: 
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1. It is recommended that further algorithms are implemented on the CS2112 and 

that other modes of data input, such as PIO are investigated. However, since 

Chameleon Systems Inc. has ceased operations this may not be a possibility. 

2. It is recommended that implementations which process data at a packet level 

be developed. Again, this may not be a possibility. 

3. It is recommended that the CS2112 architecture be used as the basis for a 

new architecture targeted toward cryptographic applications. With modifica­

tion, the CS2112 fabric's functional units and structure could produce a high 

performance cryptographic processor. 
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Appendix A 

Verilog Examples 

A.1 Rotate 11 bits Left Module 

II 
//Title: Rotate Data by 11 Left 
//Author: Andrew Cook 

II 
// D escription : - Rotates data on dat a_in O in put by 11 to the l eft 

II 
II 
II 

rot_ctl se lects between two instruc tions to perform rotate 
in st ru ct ion 0 must be followed by instruction 1 1 clock cyc l e l ater 

'include " CS2112 _lnstru c tions . include" 

module rotateleftbyll (elk, rst , data_inO, r otate d _o ut, roLctl ); 

input elk , rst; 
input [31:0] data_inO; 
input roLctl; 
output [31 :0] rotated _out ; 

w ire [31 :0 ] shift edlll; 

//setup the input registers and ou t put 
defparam roLdpu . A_REGJNITIAL_VALUE 
defparam rot_dpu. B..REG_lNJTIAL_VALUE 

r eg ister s 
32' h0 ; 
32'h0; 

d e fparam rot _dpu . O_REG_INITIAL_VALUE = 32 ' hO ; 

I/ defin e the instructions 

/I Instruct ion 0 
d efparam roLdpu .INSTRUCTIQN_O 

defpararn roLdpu . INSTRUCTIQN_l 

CS2112-DPU r oLdpu ( 
. r st(rst ) , 
. e l k ( c l k) , 
/ /A B input s 
. b _inO(dat lLinO) , 
. a_ inO ( rotated _o ut) , 
/ /Dpu Output 
.dpu_output(rotated _o ut) , 
/ / CSM address 

( 'OPA_l\IQ..REG I ' BO_I N I 'OPB..NO..REG 
'LSL 1 'SHFT ...AMT _n 1 'ALU_p ASSB 1 

'WADD..REG ) ; 

( 'AO_IN I 'OPA..NO..REG I ' BO_JN I 
'OPB..NO..REG I ' LSR I 'SHFT ...AMT ..21 
'ALU_QR I ' WAD_O..REG ) ; 
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) ; 

. csnLaddr( {2'b0 , roLct l }) , 
// Ism connect ions 
. lsm_addr () , 
. data_from~lsm () 

end module 

A.2 Pipelined Rotate 11 bits Left Module 

II 
//Title : Pipelined Rotate by 11 
//A utho.r: Andrew Cook 

II 
//Descr iption: Rotates data on data_inO input by 11 b i ts to the l eft 

II 
II 
II 

- no control lines necessary and ro t ated dat a appears 2 clock cycles after 
e nter ing r otator hardware 

' includ e "CS21 12 _lnstructions . inc l ude " 
module piperotateleftby ll (elk , rst, data_inO, rotated_out ); 

input e lk , rst ; 
input [31:0] data_inO; 
output [31:0) rotated _ou t; 

wire [31:0) s hift.edlll ; 
//------------------------------------
1/ sh i ft I eft by 11 

II 

defpararn s h ift_ieftlLdpu .A..REG..INITIAL_VALUE 
defparam shift_l eftlLdpu .B..REG..INITIAL_VALUE 
defparam sh i ft_left ll _dpu . O..REG..INITIAL_VALUE 

// Instruction 0 

32'h0; 
32'h0 ; 
32'h0; 

d e fparam s h ifLleftll _dp u . INSTRUCI'ION_O ( ' OPA._NO..REG I ' BO_IN I 'OPB..NO..REG 
'LSL I 'SHFT_AMLll I 'ALUYASSB I 
' LOAD_O..REG ) ; 

CS2112_DPU s hift_leftll _dpu( 
. r st (rst ), 

) ; 

II 

.c l k(clk) , 
//A B inputs 
. b _inO ( d ata _inO) , 
/ /Dpu Output 
. dpu_output(shift ed11 1) , 
/ /CSM address 
.csm_addr(3'b000) , 
// Ism connections 
. lsm_addr () , 
. d a ta_from _lsm () 

// s hift ri g ht by 2 1 
II ------~-------------

defparam s hi fL r ight2Ldp u .A..REGJNITIAL_VALUE 
d e fparam s hift_r i ght2Ldpu .B_REG..INITIALVALUE 
d e fparam sh ift _ri g ht 2 1 _dpu . Q_REG..INITIAL_VALUE 

32 ' h0 
32'h0 
32'h0 

// Ins truct io n 0 
d e fparam s hifLri g ht2l _dpu . lNSTRUCTION_Q ( ' AO_IN I 'OPA.N'O..REG I ' OPB..REG I 

'LOAD..B..REG I ' LSR I 'SHFLAML21 
'ALU_OR I ' LOAD_O..REG ) ; 
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CS2112J)PU shifLright2Ldpu ( 
.rst( r st), 

) ; 

.clk(clk), 
I /A B inputs 
. a~inO (shifted 111), 
. b_inO ( data_inO), 
I IDpu Output 
. dpu_output(rotated_out) , 
I /CSM: address 
. csm_addr ( 3 'bOOO) , 
//Ism connections 
. lsm_addr () , 
. data_from_lsm () 

end module 
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Appendix B 

Chameleon Preprocessor Example 

B.l Original Code 

#defin e N 16 
!*********************************************! 
I* d e f i n e the c h amel eon hardware f unc t ion here*/ 

!**************************~******************! 

#pra gma CMLN.FUNC..DEF spne ( int in d p. sboxl . Ism [N) , i n t in dp . sbox2 . Ism [N ) , 
int in dp. sbox3 . Is m [N) , int in dp . sbox4. Ism [N), 
int in dp .xor_dpu . dpu.o, int in dp.key _ls m . lsm [8], 
int out *dp . xor_d p u. dpu. o) 

i n t main(int a rgc, char *argv[]) 
{ 

I* give a pl ain t exh/ 

u n s igned int p ; 
uns igne d int c r e f ; 
uns igne d i n t ctest; 

int i, j; 
/* generat e a plaintex t */ 
fo r ( j = O; j < 10; j++) 
{ 

} 

p = rand (); 

/ * g enerate a random key matriX*/ 
fo r ( i = 0; i < 4; i ++) keys [ i ] = rand(); 

I******* ***.*************************** *I 
I* c all th e chameleon har dware fun c tion* / 
! ************ ********** * ***************! 
# pragma Cl'vfLN.FUNC_CALL s pne () SLICES = ( O: l) 

spne(SPl , SP2 , SP3, SP4, p, keys, &ctest) ; 

sp ne(SPl, SP2, SP3, SP4, p, keys , &cre f) : 

i f ( ctest == cref ) 
{ 

asm volatile ("mov_r8 , _ Ox l O" ); 
} 
e lse 
{ 

asm vo latile (" mov-r8 ,_Ox20" ); 
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B.2 Chameleon Preprocessor Output 

#define N 16 

!************* ********************************! 
/• (iefine the chameleon hardware f unction here*/ 
!*********************************************! 
//#pragma CMLN_FUNC..DEF spne(int i n dp.sboxl.lsm{Nj, i nt in dp .sbox2. lsm[Nj , 

int in dp. sbox3 .Ism [NJ , int in dp. sbox4 .Ism [NJ, 
int in dp.xor_dpu . dpu.o, int in dp.key _lsm.lsm [8], 
int o ut • dp. xor_dpu : dpu . o) 

int main(int argc, char •argv []) 

/• give a plaintext*/ 

unsigned int p; 
unsigned int cref; 
uns igne d int ctest ; 

int i , j; 
/* gen e rat e a p la intext•/ 
for (j = O; j < 10; j++ ) 
{ 

p = rand(); 

/* g enerate a random key matri x •/ 
for(i = 0 ; i < 4 ; i + +) k eys[ i ] = rand() ; 

!**** ****** ********* *** ****** ** ********! 
I* c all the chameleon hardware f u n ction • / 
!**************************************! 
// # pragma CMLNYUNC_CALL spne () SLICES=(O: 1} 

/ • spne(SPl, SP2, S P3, SP4 , p , keys, f3 c test);• / 

/• Beginning CMLN EBIOS Prim itives • / 
{ 

} 

s pne_cmln _O = CMLN_.ALLOCATKSLICE(O, 1 ,CMLN.BEQ) ; 
Cl\1LN..LOAD_CONFIG(SOCFGADR, 1 , Cl\1LN..ACTIVE-PLANE, spne_CMLN_CONFIG.J3IT ..STREAM); 
I* Load arr ays to hide load - config latency *I 
CMLNJ'v10VE..VOCIDR(SODCSRO , Cl\1LN.READ, SP1, 4•(N) , Ox600); 
CMLNMOVE..VOCIDR(SODCSRl , CMLN_READ, SP2 , 4 * (N), OxSOO); 
CMLNMOVE..VOCIDR(SODCSR2, CMLN.READ, SP3, 4 * (N) , Ox400); 
CMLN.l'v10VE..VOCIDR(SODCSR3 , Cl\1LN.READ, SP4, h(N), Ox200); 
CMLN_MOVE..VOCIDR(SlDCSRO, CMLN.READ, keys, 32, OxO) ; 
Cl\1LN.BET.DMA.AILOCATED ( spne_cml n ~O, Oxlf) ; . 
Cl\1LN_W AIT..FOR.CONFIG..LOADED( SOCSR , CMLN..ACTIVE-PLANE, CMLNYOLLING) ; 
CMLN.l'viOVE..SCALAR(Cl\1LNJlEAD , (unsigned long} p, SOTODPU50); 
CMLKWAIT..FOR.DMA( s pne _crnln _O , CMLN..ALL.Dlv1AS, CN!LNJ>OLLING) ; 
CMLN_FJRE..SLICE( spn e_cmln_O, SOCSR , 1 , CMLN.BEQ); 
CMLN_W AIT ...FOR.BLICE ( SOCSR , Cl\!LNJ>OLLING) ; 
CN1LN . .MOVE..SCALAR{ Cl\1LN_WRJTE, ( uns igned long) & c test. , SOTODPU50) ; 
CMLN.DEALLOCATKSLlCE(sp~e-cmln _O) ; 

I* Ending CMLN Prirni t i v e .s *I 

spne (SP1, SP2, SP3, SP4, p, keys , &c r ef); 

if ( ctes t == cre f) 
{ 
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asrn volatile ("rnov-r8 ,-OxlO") ; 
} 
else 

asrn volatile ( "mov- r8,-0x20") ; 
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Appendix C 

IP Data Path Verilog Module 

II 
I I In it i a) Permutation Datapath for DES 
I I Author: Andrew Cook 
I I Created : feb 26 , 2002 

II 
I I Description: 
I I IP Datapath for DES . .. Ope rates on 128 p l aintext values in two LSMs . . 

'include "CS2 112 _Instructions . include" 

module JP _dp( c lk , rst, data _gen _ct l, right_data_out , l e fLd a ta _out) ; 

input elk ; 
input rst; 
input [1 : OJ data_ge n _ctl; 

output [31 :0) righLdata_out, l e fLdata _o ut; 

//interna l wJrmg 
wire [31:0) r i g hLin , lefL in ; 
wire [3 1 : 0) dpuLout, dpu2_out, dpu3 _out , dpu4 _out; 
w ir e [ 31: 0) dpu5_out , dpu6 _out , dpuLout , dpu8_out; 
w ire [31 :OJ dpu9_out, dpulO_out , dpulLout, dpul2 _out; 
w ire [3 1:0) dpul3_out , dpu14 _out, dpu15_out , dpul6_out ; 
wire [ 3 1:0) dpul7_out , dpul8_out , dpu19_out, dpu20_out; 
wir e [ 31: 0) dpu2Lout , dpu22_out , dpu2 3_out; 

11-------- ------------
1/ DATA GENERA1DRS 

II 

pp_rd_ a ddr_g e n r ighLdata (.elk ( e lk), 
. rs t ( rst) , 
. data- o ut ( ri g h L in )., 
. add_ge n _ct l ( data_gen_ct l) ) ; 

pp _rd_a ddr_ge n l e fLd a t a ( . e l k (elk), 
. rst(rst) , 
. data_o ut( lef t_ in) , 
. a dd_g en _ct l ( dat a _g en _c tl) ) ; 

~-------------------------------
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// Inner IP DPU' s 
/1--------------------------------------

d efparain dpul. A_R.EG_INITIAL_VALUE = 32' h OfO fO f O f; 
/ / mask for l eft input 
d efparam dpul .B_R.EG_INITIAL_VALUE = 32 ' hOfOfOfOf; 
defparam dpul.O-REG_INITIALVALUE = 32 ' h0 ; 

// Instruct ion 0 
d e fparam dpul.INSTR.UCTION_O 

CS2112_DPU dpul ( 
.rst(rst) , 
.clk( c lk) , 
//A B inputs 

) ; 

. a _inO (righL in ), 

. b_inO(lefLin) , 
/ /Dpu Output 
. d pu_ou tput ( dpuLout), 
/ / CSM addre ss 
. csm_addr ( 3 'dO ) , 
/ /Is m connections 
. lsm_addr () , 
. data_from_]sm () 

( ' AO_JN I 'OPAAND.MASK I ' BO_IN I 'OPB..AND..MASK 
' LSR I ' SHFT .AMT A I 'ALU.XOR I ' LOAD_O_R.EG ) ; 

d e fparam dpu2 .A-REGJNITIAL_VALUE = 32 'hO ; 
//mask for l e ft input 
d efparam dpu2 . B-REG_INITIALVALUE = 32 ' hO ; 
defparam dpu2 . 0-REGJNITIALVALUE = 32 ' hO ; 

// Inst ru ction 0 
d efpar a m dpu2 .INSTRUCTION_O 

CS2112_})PU dpu2 ( 
.rst(rst) , 
. clk( c lk) , 
//A B inputs 
.a_inO(l efLin), 
. b_inO(dpuLout) , 
/ / Dpu Output 
. dpu_output .( dpu2_out), 
/ /CSl\1 address 

( ' AO_IN I ' OPA.REG I ' LOAD.A-REG I 'Bo_IN I ' OI:B..NO.REG I ' LSL I 
' SHFT .AMTA I 'ALU_)(OR I ' LOADD-REG ) ; 

. csm_addr( 3 ' d0) , // Ism co nn ections 

. lsm_addr () , 

. data_from _lsm () 
) ; 

defparam dpu3.A-REG_INITIAL_VALUE = 32'h0; 
//mask fo r l e ft input 
defparam dpu3 . B_REG_INITIAL_VALUE = 3 2 ' hO ; 
d e fparam dpu3 . 0 -REG_INIT1AL_VALUE = 32 ' h0 ; 

// Ins truction 0 
d e fparam dpu3. INSTR.UCTION_O 

CS2U2_DPU d pu;3 ( 
.rs t(rst) , 
.clk( c lk), 
//A B input s 
. a _inO( r i g h L in) , 
. b _inO (dpuLout), 
/ /Dpu Ou t put 
. dptLou tp ut ( dpu3_o ut) , 
/ /CBM address 

( ' AO_IN I 'OPA-REG I ' LOAD.A-REG I ' BO_IN I ' OPB..NO-REG I 
' ALU_)(OR I 'LOAD_O-REG ) ; 
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. csm_addr ( 3 'dO) , 
// Ism connections 
. lsm_addr (), 

//Ism connect ions 

. data _from_lsm () 
) ; 

defparam dpu4 .A_REG_INITIAL_VALUE = 32' hOOOOffff; 
// mask for b input 
defparam dpu4. B..REG.JNITIAL_VALUE = 32 'hOOOOffff; 
defparam dpu4. O..REG_INITIAL_VALUE = 32 'hO; 

// Inst ruction 0 
defparam dpu4. JNSTRUCTION_O = ( ' AO _JN I 'OPAAND..MASK I ' BO_JN I ' OPB..AND..MASK I 'LSR I 

'SHFT .AMT _16 I ' ALU.XOR I ' LOAD_O..REG ) ; 

CS2112_DPU dpu4 ( 
. rst(r s t) , 
.clk(clk), 
//A B inputs 
. a_inO ( dpu3_out), 
. b_inO ( dpu2_o ut) , 
/ /Dpu Output 
. dpu_o utput ( dpu4_out) , 
/ /CSM add ress 
.csm_addr(3 ' d0), //Ism con nect io n s 
//Ism con nect ions 
. lsm_addr () , 
. data_from _ls m () 

) ; 

d efparam dpu5.A_REG_INJTIAL_VALUE = 32 ' h0; 
/ / mask for l e ft in put 
defparam dpu5 . B_REG_INITIAL_V ALUE = 32 ' hO ; 
defparam dpu5. O..REG_INITIAL_VALUE = 32 ' hO ; 

/ / Instruction 0 
defpararn dpu5. INSTRUCTION_O = ( 'AO_I N I 'OPA..REG I ' LOAD..A..REG I ' BO_IN I ' OPB.NO..REG I ' LSL I 

' SHFT .AM'L16 I 'ALU.XOR I 'LOADD..REG ) ; 

CS2112..DPU dpu5 ( 
.rst ( rst), 
.c lk (clk), 
//A B inputs 
. a_ inO ( dp u2 _o ut) , 
. b_inO ( dpu4_out) , 
/ /Dpu Output 
. dpu_output ( dpu5-o u t), 
/ /CSM address 
. csm_addr ( 3 ' dO) , // Ism connections 
// Ism con nection s 
. lsm _a dd r () , 
. data_from _l sm () 

) ; 

defparam dpu6. A_R.EG _TNITIAL_VALUE 
//mask for l eft input 
defparam dpu6 . B_REG_INITIAL-VALUE 
defpararn dpu6 . O..REG_INITIAL_VALUE 

// Inst ru ctio n 0 

= 32' h0 ; 

32'h0 ; 
= 32 ' h0 ; 

defparam dpu6 . INSTRUCTION_O ( ' AO_IN I 'OPA..REG I ' LOAD.A..REG I 'BO-IN I 'OPB.NO..REG I 
' ALU.XOR I ' LOAD_OJ\EG ) ; 

CS2112_DPU dpu6 ( 
.rst(rst) , 
.clk( c l k ) , 

115 



) ; 

//A B inputs 
. a_i n 0 ( dpu3_out) , 
. b_inO ( dpu4-out) , 
//Dpu Output 
.dpu_output(dpu6_out ) , 
//CSM address 
. csnLaddr ( 3 ' dO), // Ism connections 
/ / Ism connect ions 
. lsm_addr () , 
. dat a_from-lsm () 

defparam dpu7. A_REG_INITIAL_VALUE = 32 ' h333333 33; 
// mask for l e ft input 
defpararn dpu7 . B..REG_INITIALVALUE = 32 ' h33333333; 
d efparam dpu7 . O_REG_INITIALVALUE = 32 ' hO ; 

// Instru c tion 0 
defpa.ram dpu7 .JNSTRUCTION_Q = ( ' AO_IN I ' OPA._AND..MASK 

'SHFT _AMT _2 I 'ALU..XOR 

CS2112-DPU dpu7 ( 
.rst(rst) , 
. c lk ( c lk) , 
//A B inputs 

); 

. a _inO ( dpu5_out ), 

. b_i nO ( dpu6_out) , 
/ / Dpu Output 
.dpu_output{dpu7_out), 
/ /CSM a ddress 
. cs m _addr{ 3' d0) , // Ism connections 
// Ism connections 
. lsm_addr () , 
. da.ta_from_l s m () 

d efpa ram dpu8 . A_REG_INITIAL_VALUE = 32 ' h0 ; 
/ / mask fo r l e ft input 
defparam dpu8 . B..REG_INITIAL_VALUE = 32 'hO ; 
defpara m dpu8. O..REG_INITIALVALUE = 3 2 ' hO ; 

/ / In s truc tion 0 

' BO_IN I 'OPB..AND..MASK I 'LSR I 
' LOAD_O..REG ) ; 

d efparam dpu8 . INST RUCTION_O = ( ' AO_IN I ' OPA..REG I ' LOAD_A..REG I ' BO_JN I ' OPB.NO..REG I 
'ALU..XOR I ' LOADD..REG . ) ; 

CS2112_DPU dpu8 ( 
.rst(rst) , 
. c lk{clk) , 
//A B inputs 
. a _inO ( dpu5_out) , 
. b_inO ( dpu 7 _out ), 
/ / Dpu Output 
.dpu _o ut put {dpu8_out ) , 
//CS.Vf. a ddress 
.cs m_addr{ 3 ' d0) , / / Is m conn ecti o n s 
// Is m co nn ect ion s 
. lsm_a ddr () , 
. data _from _ls m () 

) ; 

d efpa rarn dpu9 . A..REG_INITIAL VALUE = 3 2 ' hO ; 
//mask for l e f t input 
d efpa r a m dpu9 . B-REG_INITIAL_VALUE = 32 ' hO ; 
d e fparam dpu9. O_REG_INITIALVALUE = 32 ' hO ; 

// Ins tru c tion 0 
d e fparam d pu9 . INSTRUCI'ION_O = ( ' AO_I N I 'OPA..REG I ' LOAD_r\ ..REG I ' BO_IN I ' OPB.NO..REG I ' LSL I 
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' SHFT .AMT .2 I 'ALUXOR I 'LOADDJlEG ) ; 

CS2112..DPU dpu9 ( 
.rst(rst), 
. elk (elk) ' 
//A B inputs 
. a_inO ( dpu6_out) , 
. b_inO ( dpu7 _out) , 
/ /Dpu Output 
. dpu_output ( dpu9_out) , 
/ /CSM address 
.csm_addr(3 ' d0), // Ism connections 
//Ism connectio n s 
. lsm _addr () , 
. data_from_lsm () 

) ; 

defparam dpulO.A_REGJNITIALVALUE = 32 ' h00ff00ff; 
//mask for l eft input 
defparam dpulO.B_REGJNITIAL_VALUE = 32'h00ff00ff ; 
defparam dpulO.O-R.EGJNITIAL_VALUE = 32'h0; 

// Instruction 0 
defparam dpulO .INSTRUCTION_O = ( 'AO_JN I 'OPA.AND.l..fASK 

'SHFT .AMT _s 1 'ALU.XOR 

CS2112_DPU dpu 10 ( 
. rst(rst) , 
.clk( c lk ) , 
//A B inputs 
. a_ inO ( dpu8_out), 
. b_inO ( dpu9_out), 
/ /Dpu Output 
. dpu_output ( dpulO-out), 
/ /CSM address 
. csm_addr(3'd0) , / / Ism con n ections 
// Ism connections 
. lsm_addr () , 
. data_from_lsm () 

) ; 

d e fparam dpu12 .A-REG_INITIAL_VALUE 
/ / mask for l eft in put 
defparam dpu12 . B_REGJNIT IAL_VALUE 
defparam dpu12. O_REGJNITIAL_VALUE 

// Instr u ctio n 0 

32'h0; 

32' h0; 
32' h0; 

' BQ_IN I ' OPB.AND.MASK I ' LSR I 
' LOAD_OJlEG ) ; 

d e fparam dpul2 .JNSTRUCTION_O ( 'AO_IN I 'OPAJlEG I ' LOAD.AJlEG I 'BO_IN I ' OPB..NOJlEG I 'LSL I 
' SHFT .AMT ..8 I 'ALU...XOR I ' LOAD_O..REG ) ; 

CS2112_DPU dpul2 ( 
. r s t(rst) , 
. clk ( c lk ) , 

) ; 

/ / A B in p ut s 
. a _inO ( dpu9_o ut), 
. b _inO ( dpulO_out) , 
/ /Dpu Output 
.dpu_output(dpul2 _out) , 
/ / CSM addre ss 
. csm _addr( 3 ' d0) , / / Is m 
/ / Ism connec tions 
. ls m _addr () , 
. d a t.a _from _ls m () 

conne c t ions 

d efpa r a m dpull . A~REG_INITIAL_VALUE 3 2' h0; 
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//mask for left input 
defparam dpull .B_REGJNITIAL_VALUE = 32'h0 ; 
defparam dpull. O_REGJNITIAL_VALUE = 32 'hO; 

// Instruction 0 
defparam dpull .INSTRUCTION_O 

CS2112_DPU dpull ( 
.rst(rst), 
.clk(clk), 

) ; 

//A B inputs 
. a_inO ( dpu8_out), 
. b _i n O ( dpulO_out), 
/ /Dpu Output 
.dpu_outpu t(dpull_out), 
/ /CSM add r ess 
.csm_addr(3'd0) , / / Ism 
//Ism connections 
. lsm_addr () , 
. data_from-lsm () 

( 'AO_IN I ' OPA_REG I 'LOAD.A.REG I 'BO_IN I ' OPB..NO_REG I 
'ALU..XOR I 'LOAD-O..REG ) ; 

connections 

defparam dpul3 .A_REGJNITIAL_VALUE == 32'h0; 
//mask for left input 
defparam dpu13 .B_REGJNITIAL_VALUE = 32 'hO; 
defparam dpul3. O_REGJNITIALVALUE = 32 'hO; 

// Instruction 0 
defparam dpu13 . INSTRUCTION_O 

CS2112_DPU dpu 13 ( 
. rst(rst) , 
.clk(clk), 

) ; 

//A B inputs 
. a_ inO(), 
. b _inO ( dpul Lout) , 
//Dpu Output 
.dpu_output(dpul3_out) , 
//CSM address 
. csm _addr{3 ' d0) , / / Is m 
/ /Ism connect ions 
. ls m _addr () , 
. data _from_l s m () 

( ' BO_J N I ' OPB_REG I ' LOAD..B..REG 
'ALU_P ASSB I ' LOADD_REG ) ; 

connec tions 

defparam dpu14 . A_REGJNITIAL_VALUE == 32'h0; 
/ /mask for l e ft input 
d efparam dpul4 .B..REGJNJTIAL_VALUE = 3 2 'h0; 
d e fpa r a m dpul4 .O..REGJNITIAL_VALUE == 3 2 'hO; 

// In s tru c tion 0 
d e fpa ra m dpul4 .lNSTRUCTION_Q 

CS2112_DPU dpu14 ( 
. r s t(r s t), 
. c lk(clk) , 
/ /A B inpu ts 
. a _inO {) , 
. b _inO (dpul 2_out), 
/ /Dpu Output 
. dpu_output(dpu l 4_out) , 
/ /CSM a ddress 
.csm_addr(3' d0), // Is m 

( ' BO_lN I ' OPB..NO.REG I ' LSL I 'SHFT..AMT_l I 
' ALU_PASSB I 'LOAD_O_REG ) ; 

connecti ons 
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) ; 

//Ism connect ion s 
. lsm_addr () , 
. data_from_lsm () 

defparam dpu15.A_REGJNITIAL_VALUE = 32'h0 ; 
//mask for left input 
defparam dpu15.B_REGJNITIAL_VALUE = 32'h0; 
defparam dpu15. O..REGJNITIAL-VALUE = 32 ' hO; 

// Instruction 0 
defparam dpu15 .INSTRUCTION...O 

CS2ll2_DPU dpu l 5( 
.rst(rst), 
. e lk (elk) , 
//A B input s 
. a _inO(dpul4-out), 
. b_inO ( dpul2_out) , 
/ /Dpu Output 
.dpu_output (dpu15-out) , 
/ fCSM address 

( 'AO_JN I 'OPA.NO..REG I ' BO_JN 
'LSR I ' SHFT ..AMT ..31 I 'ALU_OR 

. cs m _addr (3 'dO), // Ism connections 
// Ism connect ions 
. lsm_addr (), 
. data_from _ls m () 

) ; 

defparam dpul6. A..REGJNITIAL_VALUE = 32 ' haaaaaaaa ; 
//mask for left input 
defparam dpu16 .B_REGJNITIAL_VALUE = 32 ' haaaaaaaa ; 
defpa ram dpu16.0_REGJNITIAL_VALUE = 32 ' h0; 

/ / Instruction 0 

' OPB..REG I ' LOAD...B..REG 
' LOAD_O..REG ) ; 

defparam dpul6 . INSTRUCTION_O ( 'Ao_IN 1 ' OPA..AND.MASK 1 'BO_IN 1 ' OPB..ANDJv1ASK 1 
'ALU..XOR I 'LOADD..REG ) ; 

CS2112_DPU dpu16( 
.rs t(rst), 
. elk( elk), 

) ; 

//A B inputs 
. a_inO ( dpu l3_out) , 
. b _inO ( dpul5_out.), 
/ /Dpu Output 
. dpu _o utput ( dpul6_out ), 
/ /CSM address 
. csm _addr ( .3 ' dO) , 
/ / Ism co nn ec tions 
. lsm_a ddr () , 
. data_from _fs m () 

defparam dpu1 7 . A_REG_JNIT IAL-VALUE = 32 ' hO; 
f /mask for l e ft input 
d e fparam dpu17 . B_REGJNITIAL_VALUE = 32 ' hO; 
defparam dpu17 . O..REGJNITIAL_VALUE = 32 ' hO; 

// Ins truction 0 
defpararn dpu 17. JNSTR.UCTION_O 

CS2ll2_DPU dpu17( 
.rs t(rs t) , 
.clk(clk) , 
j /A B in p u t s 

('AO_IN I 'OPA..REG I 'LOAD..A..REG I 'BO_IN I 'OPB.NO..REG I 
' ALU..XOR I 'LOADD..REG ) ; 
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) ; 

. a_inO ( dpul 3_out), 

. b_inO ( dpul6_out ), 
/ /Dpu Output 
. dpu_output ( dpu1 7 _o ut), 
/ /CSM address 
. csm_addr (3 ' dO) , 
J / Ism connections 
.lsm_addr () , 
. data_from_l s m () 

defparam dpul 8. A_REG_INITIAL_VALUE = 32 ' h0; 
J /mask for l eft i nput 
defpara m dpul8 . B-REGJNITIAL_VALUE = 32' h0 ; 
defpa ram dpul8.0_REGJNITIAL_VALUE = 32 ' h0 ; 

// In st ru ct ion 0 
defparam dpu 18 .INSTRUCTION_O 

CS2112.J)pU dpu18 ( 
. r st(rst), 
.clk(clk), 

) ; 

/ /A B inputs 
. a_ i nO ( dpuJ5 _o u t ) , 
. b_inO ( dpul6_out ), 
/ /Dpu Output 
. dpu_output ( dpul8_o ut ), 
J /CSM address 
. cs m_add r(3 'dO), 
J / Ism co n nections 
. ls m_a ddr () , 
. data_from_lsm () 

( 'AO_IN I 'OPA.llEG I ' LOAD.AJillG I ' BO_IN I ' OPB..NO..REG I 
'ALUXOR I ' LOAD_0..REG ) ; 

d e fparam dpul9.A_REG_INITIAL_VALUE = 
J / mask for l e f t in put 

32'h0; 

d e fpa ram dpu19 . B_REGJNITIAL_VALUE 
defpara m c:lpul9 . O_R.EG.JNITIAL_VALUE = 

32 ' h0; 
32 ' h0; 

// I nst ruction 0 
d e fparam dpul9 .INSTR.UCTION_O 

CS2112_DPU dpu1 9( 
.rst (rst), 
. cl k (cl k ), 

) ; 

//A B in p uts 
. a _in O () , 
. b _inO ( dpu17 _out), 
//Dpu Output 
. dpu_ou tput ( dpul9_out ) , 
/ /CSM address 
. csm _addr (3 'dO) , / / Ism 
// Is m co nn ect ions 
. ls m _a ddr () , 
. data_from _Js m () 

( ' BO_IN I ' OPB..REG I ' LOAD..B..REG 
'ALU_PASSB I 'LOAD_O..REG ) ; 

connections 

defp aram dpu20 . A..R.EGJNITIAL_VALUE = 3 2 ' hO ; 
//mask for l e f t input 
defparam dpu20 . B-REGJNITIAL_VALUE = 32 ' hO; 
defparam dpu20 . 0 _REGJNITIAL_VALUE = 32' h0; 

// Inst ruct ion 0 
defparam dpu20. INSTRUCTION_O = ( 'BO_JN I 'OPB..REG I ' LOAD..B..REG I 
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'ALU..PASSB I ' LOADD..REG ) ; 
CS2112_DPU dpu20 ( 

. rst(rst) , 

.c l k(clk), 
//A B inputs 
. a~ inO(), · 
.. b_inO ( dpul8_out) , 
/ /Dpu Output 
. dpu_output(dpu2Q_out), 
/ /CSM add r ess 
.csm_addr(3'd0), / / Is m connect ions 
// Ism con n ect ion s 
.. lsm_addr () , 
. data_from_lsm () 

) ; 

defparam dpu21.A..REGJNITIAL_VALUE = 32 ' hO; 
//mask for l e ft input 
defparam dpu2l.B-REGJNITIAL_VALUE = 32 ' hO; 
defparam dpu21. O..REG..INITIAL_VALUE = 32 ' hO; 

// Instru ct ion 0 
d efparam dp u21 . INSTRUCTION_O = ( 'BO .. IN I 'OPB..REG I 'LOAD .. RREG 

'ALU..PASSB I 'LOAD_O..REG ) ; 
CS2112_DPU dpu21 ( 

.rs t(rst), 

.clk(clk) , 
/ /A B inputs 
. a .. inO (), 
. b .. inO ( dpu20 .. out) , 
/ /Dpu Output 
. dpu_output ( righLdata .. o ut) , 
/ j03M. address 
. csrn_addr(3'd0) , / / Ism connect ions 
// Ism connections 
. lsm_addr (), 
.. d ata_from_lsrn () 

); 

defparam dpu22 . A..REG_JNITIAL..VALUE = 32 'hO; 
//mask for I eft input 
defparam dpu22 .. B_REGJNITIAL..VALUE = 32 ' hO; 
defparam dpu22. O..REGJNITIAL..VALUE = 32 'hO; 

/ / Instruct ion 0 
d e fpa ram dpu22. INSTRUCTION_Q = ( 'AO .. IN I ' OPA..NO..REG I ' BO_IN I ' OPB..NO..REG I 

' LSL I ' SHFT ....AMT _l I 'ALU..P ASSB I ' LOAD_O..REG ) ; 

CS2112_DPU dpu22 ( 
. rst(rst) , 

) ; 

.. elk (elk) ' 
/ /A B inputs 
.. a _inO (), 
. b _inO ( d pul9 .. out) , 
/ /Dpu Output 
. dpu_output(dpu2 2_o ut) , 
/ /CSM a dd r ess 
. csm _addr ( 3 ' dO) , 
//Ism conn e c t i o ns 
.. lsm _addr () , 
.. data .. from .. lsm () 

d e fpara.m dpu23 .. A .. REGJNITIAL .. VALOE 
//mask for l e ft input 
d e fp ar a m d pu23 .. B...REG..INITIAL..VALUE 

32 ' h0; 

3 2 'h0 ; 
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defparam dpu23. O_REG_INITIAL_VALUE = 32 'hO; 

/ / Instruction 0 
de[param dpu23 . INSTRUCTION_O 

CS2112_DPU dpu23 ( 
. rst ( rst) , 

) ; 

. elk ( cl k), 
//A B inputs 
. a_inO ( dpu22_out), 
. b_inO ( dpul9_out) , 
/ /Dpu Output 
. dpu_output ( l e ft_data_out), 
/ /CSM address 
.csm_addr(3'd0) , 
// Ism connections 
. lsm_addr (), 
. data_from_lsm () 

endmodule 

( 'AO_JN I ' OPA..NOJlliG I 'BO_I N 
'LSR I ' SHFLAMT _31 I 'ALUDR 

122 

'OPBJlliG I ' LOAD..BJlliG 
' LOADD.REG ) ; 



Appendix D 

Testbench Examples 

D.l Verilog Testbench 

% 
% P ipelined DES Verilog Testbench 
% 
% Creat ed by: Andrew Cook 
% 

module DEStb; 

r eg elk , rst; 
r eg start ; 
wire done; 

% pipel in ed des module 
DES destotal (.elk (elk) , 

. rst{rst ), 

. start (start), 

. done (done) ) ; 

initial e lk < = 1; a lways @(e lk ) elk<= #5 -e lk ; 

initial begin 
rst = 0; 

s tart = 0 ; 
%inpu t plainte xts 
'include " data2 . in c lud e" 

%input s-boxes and subkeys 
' inc lud e "s_box . include" 
' i nclude " key_Jsm . include" 
#10; 
rst =1'bl; 
# 10; 
rst = 1 ' bO; 
#80; 
%star t t h e fabri c funct i on 

end 

s tart 
# 10; 

1 ' bl; 

s t art 1 ' b0; 
# 4000 

$ finish ; 

%output s igna l s to .signal scan fil e 
i nitia l begi n 

$s h m _ope n( " DES . shm " ) ; 
$s hm_probe(" AS", destotal) ; 

e nd 
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endmodule 

D.2 C Testbench 

I* DES Testb enc h Main 
* Created by: Andrew Cook 

* 
*Mo difi cations also made to d3 des.c to a llow chameleon hardware ca ll s 

*I 

#include " d3des. h " 

int 
main (void) 

char key[ 8] = {O x 01 , 0 x 23, 0 x45 ,0 x67,0x89 , 0 x0ab,Ox0cd , Ox0ef}; 
int numPla intexts = 15; 
char p l a intext [num P iaintext s*8 ) ; 
char c iphertext [numPlaintext s *8]; 
char c iph er t ex t soft [ numPlaintexts *8] ; 
char si n g lept ( 8]; 
c h a r s i n g I e c t [ 8] ; 
int i , j; 
int okay = 1 ; 

f* ini t ialize th e pl a i n t exts*/ 
for ( i = 0 ; i < numPlaintext s *8; i ++) 
{ 

plaintext [i1 = (char) i; 
} 

f* call th e CS2112 hardware function in d3des. c * I 
des key (key ,ENO) ; 
desblock(p l a intext, c iphertext , numP!ai ntexts ) ; 

f* now do i t using soft ware fun ction for a check* / 

for ( i = 0; i < numPlaintexts; i ++) 
{ 

} 

for (j =0; j <8; H+) 
{ 

s ingl e pt (j 1= p lain text [8* i+j 1; 
} 
I* st i ll a software fun c tion 
des(si n g l ept, sing l e ct ) ; 
for(j = O; j < 8; H+) 
{ 

c a ll e d des *I 

c iph e rt ex t so f t [ i*8+j]=s in glect [ j 1 ; 
} 

for ( i = 0 ; i < numP!a int exts *8 ; i++) 
{ 

if ( c iphe rt ext [ i 1 ! = ciphert e xt s oft [ i 1 ) 
{ 

okay = 0 ; 
} 

I* f o llo wing code i s for D ev e lopment M odu le T est ing *I 
if ( oka y == 1) 
{ 

asm v o lat i le ( " mov~r8 , ~O x10 " ) ; 

} 
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else 
{ 

asm volatile ("mov-r8 ,-O xff" ); 
} 

return{O); 

I* Pip e lined DES T estbench 
* Original Code Modi f ied by: A n drew Cook 

*I 

I* DSDES (V5.09) 

* 
*A portable , p u bl ic domain , version of the Data Encryption Standard . 

* * Written with Symantec 's THINK ( Lightspe ed) C by Richard Outerbridge. 
* Thanks to: Dan Hoey for his excellent I nitial and I nverse p ermutati on 
* code; Jim Gil l ogly & Phil Karn fo r the DES key schedule code; D ennis 
* Ferguson, Eric Young and Dana How f or comp aring notes; and Ray L au , 
* f or humouring me on . 

* 
*Copyright (c) 1988,1989, 1990 , 1991 , 1992 by Richard O u t er bridge . 
*(GEnie OUTER; CIS: {7 1755 ,20 4}) Graven Imagery, 1992 . 

*I 

#include "d3des. h " 
#include <stdio .h> 

#pragma CMLN..FUNC..DEF DES( in long IP _datapath. right_data . lsm _O. Ism [ 1 6 J , in long IP _datapath. lefLda1 

static void scru n c h (unsig ned char *, uns igned long *); 
static void unscr un (unsigned long *, unsigned char *); 
stat ic void d esfun c {unsigned long *• unsigned long *) ; 
stat ic void coo key (unsigned long *); 

unsigned lon g __ attr ibu te- - ((al igned (16))) leftp l a int exts [13] ; 
unsigned long __ attr ibu te __ ((a l igned ( 16 ))) r igh tplaintexts [ 1 3]; 
unsigned long __ attribute __ (( a li gned (16))) eve nkeys[ 16]; 
unsigned long __ attribut e __ ((ali g n e d (16))) oddkeys[l6]; 
unsign e d long __ attr i b ut e __ ((a l i g n e d (16) )) l eftciphe rt exts [ 1 3]; 
unsigned long __ attr i b u te __ ((a li gned {16))) r i ghtciphertexts [ 1 3 ] ; 
static unsigned long __ at tribu te __ ((al i gned (16))) SP1[64 ] = { 

Ox01010400L , OxOOOOOOOOL, OxOOOIOOOOL, Ox01010404L, 
Ox01010004L , 0 x00010404L , 0 x00000004L , 0 xOOOlOOOOL , 
Ox00000400L, Ox01010400L , Ox 01010404L, Ox00000400L, 
Ox01000 404L, Ox 01010004L , OxOlOOOOOOL , Ox00000004L, 
Ox00000404L, Ox01000400L, Ox01000400L, Ox00010400L, 
Ox00010400L , Ox01010000L , Ox01010000L, Ox01000404L, 
Ox00010004L , Ox01000004L , Ox01000004L, Ox00010004L, 
OxOOOOOOOOL , 0 x00000404L , 0 x0001 0404L, 0 x01000000L, 
Ox00010000L , Ox0 1010404L, Ox00000004L , Ox01010000L , 
Ox01010400L, 0 xOlOOOOOOL , 0 x01000000L , 0 x00000400L , 
Ox 01010004L , 0 x 00010000L, 0 x00010400L , 0 xOl 0000041 , 
Ox00000400L , Ox 00000004L , Ox01000404L , Ox 00010404L, 
Ox01010404L , Ox0001000<1L , Ox01010000L, Ox 01000404L, 
Ox 01000004L , 0 x 00000404L , 0 x00010404L , 0 x 01010400L , 
Ox 00000404 L , 0 x01000400L , 0 x 01000400L , 0 xOOOOOOOOL , 
Ox 00010004L , 0 x00010400L , 0 xOOOOOOOOL , 0 x 01010004L } ; 

static unsigned long __ attribu te -- ((ali g n ed ( 1 6) ) ) SP2[64] = { 
Ox80108020L , 0 x80008000L , 0 x00008000L , 0 x00108020L , 
OxOOlOOOOOL , 0 x 00000020L, 0 x80100020L, 0 x80008020L, 

125 



Ox80000020L , Ox80108020L, 0 x80108000L , 0 x80000000L , 
Ox80008000L , 0 xOOlOOOOOL, 0 x00000020L , 0 x80100020L, 
OxOOl 080001 , 0 x00100020L , 0 x80008020L , 0 xOOOOOOOOL , 
Ox80000000L , 0 x00008000L , 0 x00108020L , 0 x80100000L, 
Ox00100020L , 0 x80000020L , 0 xOOOOOOOOL , Ox00108000L , 
Ox00008020L , 0 x80108000L , 0 x80100000L , 0 x00008020L , 
OxOOOOOOOOL , 0 xOOl 080201 , 0 x80100020L , 0 x001000001, 
Ox800080201 , Ox80100000L, 0 x80108000L , 0 x000080001 , 
Ox801000001 , 0 x80008000L , 0 x00000020L , 0 x801 080201 , 
Ox00108020L , 0 x00000020L , 0 x00008000L , 0 x80000000L , 
Ox00008020L , 0 x80108000L , 0 xOOIOOOOOL , 0 x80000020L , 
Ox00100020L , 0 x80008020L , 0 x80000020L , 0 x001000201 , 
Ox00108000L, 0 x000000001 , 0 x80008000L , 0 x00008020L , 
Ox80000000L , 0 x80100020L , 0 x80108020L , 0 x00108000L } ; 

static unsigned long __ attribute __ ( ( a li g n e d (16))) SP3[64] = 
Ox00000208L , 0 x08020200L , 0 xOOOOOOOOL , 0 x08020008L , 
Ox08000200L , 0 xOOOOOOOOL , 0 x00020208L , 0 x08000200L , 
Ox00020008L , 0 x08000008L , 0 x08000008L , 0 x00020000L , 
Ox08020208L , 0 x00020008L , 0 x08020000L , 0 x00000208L , 
Ox08000000L , 0 x00000008L , 0 x08020200L , 0 x00000200L , 
Ox00020200L , 0 x 08020000L , 0 x08020008L , 0 x00020208L , 
Ox080002081 , 0 x00020200L , 0 x00020000L , 0 x08000208L , 
Ox00000008L , 0 x08020208L , 0 x00000200L , 0 x08000000L, 
Ox08020200L , 0 x08000000L , 0 x 00020008L , 0 x00000208L , 
Ox 00020000L , 0 x08020200L , 0 x08000200L , 0 xOOOOOOOOL , 
Ox00000200L , 0 x00020008L , 0 x08020208L , 0 x08000 200L , 
Ox08000008L , 0 x00000200L , 0 xOOOOOOOOL , 0 x08020008L , 
Ox08 000208L , 0 x 00020000L , 0 x08000000L , 0 x08020208L , 
Ox00000008L , 0 x00020208L , 0 x 00020200L , 0 x08000008L , 
Ox08020000L , 0 x08000208L , 0 x00000208L , 0 x08020000L , 
Ox00020208L , 0 x00000008L , 0 x08020008L , o xooo202ooL } ; 

static unsigned long __ attribute __ ((ali g n ed ( 16 ) )) SP4[6 4 ] = { 
Ox0080200 1 L , 0 x00002081L , 0 x00002081L , 0 x00000080L , 
Ox00802080L , Ox00800081L, 0 x00800001L , Ox00002001L, 
OxOOOOOOOOL , 0 x00802000L , 0 x00802000L , 0 x00802081 L , 
Ox00000081L , 0 xOOOOOOOOL , 0 x 00800080L , 0 x00800001 L , 
OxOOOOOOOl L , 0 x00002000L, 0 x00800000L , Ox 00802001L, 
Ox00000080L , 0 x 00800000L , 0 x0000200 1 L , 0 x00002080L , 
Ox00800081L , OxOOOOOOOlL , 0 x00002080L , 0 x00800080L , 
Ox00002000L , 0 x00802080L , Ox 00802081L, 0 x00000081L , 
Ox00800080L , 0 x00800001L , 0 x 00802000L , Ox00802081L , 
Ox00000081 L , 0 xOOOOOOOOL , 0 xOOOOOOOOL , 0 x00802000L , 
Ox00002080L , 0 x00800080L , 0 x 00800081L , 0 xOOOOOOOl L , 
Ox00802001 L , 0 x00002081L , 0 x00002081 L , 0 x00000080L , 
Ox0080208 1L , 0 x00000081 L , 0 x OOOOOOOl L , 0 x00002000L , 
Ox00800001L , 0 x00002001L , 0 x00802080L , 0 x00800081 L , 
Ox00002001L , 0 x00002080L , 0 x00800000L , 0 x00802001L , 
Ox00000080L , 0 x 00800000L , 0 x00002000L , 0 x 00802080L } ; 

static unsigned long __ a ttribut e __ ( (alig n e d ( 16))) SP5 [64] = { 
Ox OOOOOJ OOL , 0 x02080100L, 0 x 0 2080000L , 0 x42000100L, 
Ox00080000L , 0 xOOOOOlOOL , 0 x40000000L , 0 x02080000L , 
Ox 40080100L , 0 x00080000L , 0 x02000100L , 0 x40080100L , 
Ox42000100L, 0 x 42080000L , 0 x0008 0100L , 0 x40000000L , 
Ox 02000000L , Ox40080000L, Ox4008 0000L, OxOOOOOOOOL, 
Ox 40000100L , 0 x4 2080100L , 0 x42080100L , 0 x 02000100L , 
Ox 42080000L , 0 x 40000100L , 0 xOOOOOOOOL, 0 x42000000L , 
Ox 02080100L , 0 x 02000000L , 0 x 42000000L , 0 x00080100L , 
Ox 00080000L , Ox 42000100L , Ox OOOOOlOOL , Ox02000000L, 
Ox 40000000L , 0 x 0 208 0000L , 0 x42000100L , 0 x40080100L , 
Ox020001 OOL , 0 x40000000L , 0 x42080000L , 0 x 02080 100L, 
Ox 40080100L , 0 xOOOOOlOOL , 0 x 0 2000000L , 0 x 4 2080000L , 
Ox 42080100L , Ox00080100L, Ox 42000000L, Ox42080 100L , 
Ox 0208 0000L , 0 x OOOOOOOOL , 0 x40080000L , 0 x42000000L , 
Ox 0008 0100L , Ox02000100L , Ox40000100L , Ox00080000L , 
OxOOOOOOOOL , Ox4008 0000L , Ox0208 0100L, Ox40000100L } ; 
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static unsigned long __ attribute __ ((ali gned (16 ) )) SP6[64) = 
Ox20000010L, 0 x20400000L , 0 x00004000L , 0 x20404010L, 
Ox20400000L, OxOOOOOOlOL , Ox20404010L, Ox00400000L, 
Ox20004000L, Ox00404010L , Ox00400000L , Ox20000010L, 
Ox00400010L , Ox20004000L , Ox20000000L, Ox00004010L, 
OxOOOOOOOOL, Ox00400010L , Ox20004010L , Ox00004000L, 
Ox00404000L, Ox20004010L, OxOOOOOOIOL, Ox20400010L, 
Ox20400010L, OxOOOOOOOOL, Ox00404010L , Ox20404000L, 
Ox0000401 OL , 0 x00404000L , 0 x20404000L , 0 x20000000L , 
Ox20004000L , 0 xOOOOOOlOL , 0 x20400010L , 0 x00404000L , 
Ox20404010L , 0 x00400000L , 0 x00004010L , 0 x20000010L , 
Ox00400000L, Ox20004000L , Ox20000000L , Ox00004010L, 
Ox20000010L, Ox20404010L , Ox00404000L , Ox20400000L, 
Ox00404010L, Ox20404000L , OxOOOOOOOOL , Ox20400010L , 
OxOOOOOOlOL, 0 x00004000L, 0 x20400000L, 0 x00404010L, 
Ox00004000L , 0 x00400010L, 0 x20004010L , 0 xOOOOOOOOL, 
Ox20404000L, Ox20000000L , Ox00400010L, Ox20004010L } ; 

stat i c unsigned long __ attribut e __ ((a li gned (16))) SP7[64] = { 
Ox00200000L , Ox04200602L , Ox04000802L , OxOOOOOOOOL, 
Ox00000800L , Ox04000802L , Ox00200802L, Ox04200800L, 
Ox04200802L , Ox00200000L, OxOOOOOOOOL, Ox04000002L, 
Ox00000002L, 0 x04000000L , 0 x04200002L , 0 x00000802L , 
Ox04000800L , Ox00200802L , Ox00200002L , Ox04000800L , 
Ox04000002L , Ox04200000L , Ox04200800L , Ox00200002L, 
Ox04200000L, Ox00000800L , Ox00000802L, Ox04200802L, 
Ox00200800L , Ox00000002L, Ox04000000L , Ox00200800L, 
Ox04000000L , Ox00200800L , Ox00200000L, Ox04000802L , 
Ox04000802L, Ox04200002L, Ox04200002L, Ox00000002L, 
Ox00200002L , 0 x04000000L , 0 x04000800L , 0 x00200000L , 
Ox04200800L , Ox00000802L , Ox00200802L, Ox04200800L, 
Ox00000802L, Ox04000002L , Ox04200802L, Ox04200000L, 
Ox00200800L, OxOOOOOOOOL, Ox00000002L , Ox04200802L, 
OxOOOOOOOOL , 0 x00200802L , 0 x04200000L , 0 x00000800L , 
Ox04000002L , Ox04000800L , OxOOOOOBOOL, Ox00200002L }; 

stat ic unsigned long __ attribute __ ((al igned {16))) SP8[64] = { 
Ox10001040L , OxOOOOlOOOL , Ox00040000L, Oxl0041040L, 
OxlOOOOOOOL , 0 x l0001040L , 0 x00000040L , 0 xlOOOOOOOL , 
Ox00040040L, Ox10040000L , Oxl0041040L , Ox00041000L, 
Oxl0041000L, Ox00041040L, OxOOOOlOOOL, Ox00000040L, 
Ox l0040000L, Oxl0000040L , Ox lOOO IOOOL , Ox00001040L, 
Ox00041000L, Ox00040040L , Oxl0040040L , Oxl0041000L, 
Ox00001040L, OxOOOOOOOOL , OxOOOOOOOOL, Oxl0040040L, 
Oxl0000040L , OxlOOOlOOOL , Ox00041040L, Ox00040000L, 
Ox00041040L , 0 x00040000L , 0 xl0041000L , 0 xOOOOlOOOL , 
Ox00000040L , Ox10040040L, OxOOOOIOOOL, Ox00041040L, 
OxlOOOlOOOL, Ox00000040L , Ox10000040L, Ox10040000L, 
Ox l0040040L , OxlOOOOOOOL , Ox00040000L, Ox l 0001040L, 
OxOOOOOOOOL , Ox10041040L , Ox00040040L , Oxl0000040L , 
Ox l0040000L , OxlOOOlOOOL , Oxl0001040L , OxOOOOOOOOL , 
Ox10041040L , Ox00041000L , Ox00041000L , Ox00001040L , 
Ox00001040L , 0 x00040040L , 0 xlOOOOOOOL , 0 x10041000L } ; 

s t at ic unsigned long Kn1[32] = { 01 } ; 
static unsigned long KnR[32] = { OL } ; 
static unsigned long Kn3 [ 32] = { OL } ; 
static unsigned char DLKey [24] = { 

OxOl ,Ox23 ,Ox45 ,Ox67 ,Ox89 , Oxab ,Oxcd ,O xef , 
Ox fe ,O xdc ,O xba ,O x 98 , Ox76 ,O x54 ,Ox32 ,Ox lO , 
Ox89 ,Oxab ,Oxcd , Oxef , Ox Ol , Ox23 ,Ox45 , Ox67 } ; 

stat ic unsigned short bytebit [8 ] = { 
0 200 , 0100 , 040 , 020 ,01 0 , 04,0 2, 01}; 

static uns igned long big byte [24 ] = 
Ox800000L , Ox400000L , Ox200000L , 

127 

OxlOOOOOL , 



Ox80000L, Ox40000L, Ox20000L, Ox10000L , 
Ox8000L, Ox4000L , Ox2000L, OxlOOOL, 
Ox800L , Ox400L, Ox200L, OxlOOL , 
Ox80L , Ox40L, Ox20L , Ox lOL , 
Ox8L , Ox4L , Ox2L, Ox1L } ; 

I* Use the k e y schedule specified in the Standard (ANSI X3.92-1981). 

static unsigned char pc1 [56] = { 
56, 48, 40, 32, 24 , 16, 8, 0, 57' 49, 41, 33' 25 , 17, 
9, 1 ' 58, 50' 42 , 34, 26, 18' 10 , 2, 59, 51 ' 43 , 35, 

62, 54, 46, 38, 30 , 22 , 14' 6, 61 , 53, 45, 37, 29 , 21 ' 
13, 5' 60, 52, 44, 36, 28, 20, 12' 4, 27, 19, 11 , 3 

static unsigned char totrot [16] = { 
1 ,2,4 , 6 ,8, 10 ,12,14 , 15,17,19,21 ,23 , 25 ,27,28 } ; 

static unsigned char pc2[48] -- { 
13 , 16 ' 10, 23, 0, 4' 2) 27, 14 , 5' 20, 9 ) 
22, 18, 11 ) 3, 25, 7, 15, 6 , 26, 19 , 12' 1 ' 
40, 51 ' 30, 36, 46 ' 54, 29 , 39 , 50, 44, 32, 47 , 
43, 48, 38 , 55, 33, 52, 4 5, 41 ' 49, 35' 28, 31 } ; 

void des key (key , ed f) 
unsigned char *key; 
short edf; 

I• Thanks to James Gillogly fj Phil Karnf •I 

{ 
register int i , j , I , m , n; 
unsigned char pc1m [ 56] , per [56] ; 
unsigned long kn [ 3 2]; 

for ( j = 0; j < 56; j ++ ){ 
l =pcl[j]; 

m = I & 07; 
pclm[j] = (key [! >> 3] & byt e bit[rn])? 1 0 ; 
} 

for( = 0 ; i < 16; i++) { 
if ( ed f == DEl ) rn = ( 15 - i) < < 1; 
else rn = i << 1; 
n = m + 1; 
kn [m] = kn [n] = OL; 
for( j = 0; j < 28; .i++) { 

l = j + t ot r ot [i] ; 
if( I < 28) pcr[.i ] = pclm[l ] ; 
else pcr[j] = pc1m[l - 28]; 
} 

for( j = 28; j < 56;j++){ 
I = j + totrot[i]; 
if ( I < 5 6 ) per [ j] = pclm [I] ; 
else pcr[j] = pclm!I - 28]; 
} 

for ( j = 0 ; j < 24; j ++ ) { 

} 

if( pcr[pc2[.i]]) kn[m] I= bigbyte [ j ] ; 
if( pcr[pc2 [j+24]]) kn[n] I= bigbyte [j]; 
} 

cookey (kn) ; 
return ; 
} 

static void cookey(raw1) 
register uns igned long * rawl; 
{ 

registe r unsigned long • cook , •rawO; 
unsigned long dough [ 3 2 ] ; 
register int i ; 

cook = doug h ; 

128 

}; 

•I 



for ( = 0; i < 16; i++ , rawl++) { 
rawO = rawl++; 
*COOk ( *rawO & 0 xOOfcOOOOL) << 6· 

' 
*COOk I= (*rawO & OxOOOOOfcOL) < < 10; 
*COOk I= (*raw1 & 0 xOOfcOOOOL) > > 10; 
*COok++ I= ( *TaW} & 0 xOOOOOfcOL) > > 6; 
*COOk = ( nawO & Ox0003fOOOL) << 12; 
*COOk I= (*rawO & Ox0000003fL) << 16; 
*COOk I= (*rawl & Ox0003fOOOL) > > 
*COOk++ I= (*rawl & Ox0000003fL); 
} 

usekey (dough); 
return; 
} 

void cpkey( into ) 
register unsigned long *into; 
{ 

register unsigned long * from, *endp; 

from= KnL, endp = &J<nL[32]; 
while ( from < endp ) *into++= *from++; 
return; 
} 

void use key (from) 
register unsigned long * from; 
{ 

register unsigned long *tO, *endp; 

t o = KnL, endp = &J<nL[3 2 1; 
while ( to < endp ) * to + + = *from++ ; 
return; 
} 

/ *ADDED BY Andrew Cooh/ 

4· 
' 

void desblock(unsigned char *inb lo c k ; unsigned char *Outblock , int numPlaintexts) 
{ 

unsigned long work [ 21 ; 

int i , j ; 

for ( j = numPlaint ex t s ; j >= 13 j = j - 13) 
{ 

/ * prepare t h e pla i ntexts*/ 
for ( i = O; i < 13; i++) 
{ 

.s crunch (in block , work); 
l e ftpl a int ex ts I i1 = work [ OJ ; 
r i g htpl a i n t e xts I i]=work [ 1 1; 
inblock+= 8; 

i *pre pare th e k e ys*/ 
for ( i = O; i < 16; i ++) 
{ 

oddkeys [ i] = KnL [2* i] ; 
ev e nke y s [ i]= l<nL[h i +1] ; 

/ *n ow c all fab ric f -u.n c t ion*/ 
# pragma CMLN..FUNC_CALL DES () SLICES = (0 :4 ) 

DES ( rig ht p l a intexts , l ef t p l a int exts , e vc nke ys , odd keys, SP 7 , SP5, SP 3 , SP l , 
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/*now put ciphertexts back into a char array*/ 
for(i=O ; i <13; i ++) 
{ 

if(j>O) 
{ 

work[O]= leftciphertexts [ i]; 
work [1]= rightciphertexts [ i J; 
unscrun(work , out block ); 
outblock +=8; 

/*there are still < 1 3 l e ft so prepare t h e plaintexts*f 
for ( i = O;i < j ; i++) 
{ 

} 

scrunch (in block, work); 
l eftp laintext s [ i ]=work (OJ ; 
rightplaintexts [ i] = work [1]; 
inblock+= 8; 

/* pre pare the k e ys*/ 
for ( i =0; i < 16; i++) 
{ 

oddkeys [ i ]=KnL[h i J; 
evenkeys [ i] = KnL[2* i +1]; 

f*now call fabric function* / 
# pragma CMLN_.FUNC_CALL DES() SLICES = (0: 4 ) 

DES( rightplaintex t s, leftplaintcxt s , evcnkeys , oddkey s , SP7 , SP5 , SP3 , SPl , 

/* now put ciphertexts back into a char array*/ 
for(i = O; i < j; i ++) 
{ 

} 

work [OJ = left ciph ert ex ts [ i ] ; 
work[l] = rightciphe rt e xt s [ i J; 
unscrun (work, out block); 
outblock+=8; 

void des(inblock, o u tb lock) 
unsigned char * in block, *out block; 
{ 

unsigned long work [ 2 J ; 

scrunch (inblock , work ); 
d esfunc(work, KnL); 
unscrun (work, out. b lo c k); 
return; 
} 

static void scrun ch(outo f , into) 
register unsigned char * o u t of; 
register unsigned long *into; 
{ 

* into = (*outof++ & OxffL) << 24; 
* int o I= (*outof++ & Ox ffL ) << 16; 
*into I= ( * Outof++ & OxffL) << 8; 
* into++ I= ('•outof++ & Ox ffL) ; 
* into = (*outof++ & OxffL ) << 24; 
* into I= ( * outof++ & OxffL) << 16; 
* into I= (*outof++ & Ox ffL) << 8 ; 
* int o l = (*outof & OxffL ) ; 
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return; 
} 

static void unscrun ( outof, into) 
register unsigned long *out of; 
register unsigned char *into; 
{ 

*into++= (*outof >> 
*into++= (*outof >> 
*into++ = (*outof >> 
*into++= *O utof++ 
* into++= (*outof >> 
*into++= (*outof >> 
*into++= (*outof >> 
*into = *Outof 
return; 
} 

24} & OxffL; 
16} & OxffL; 
8) & OxffL; 

& OxffL; 
24} & OxffL; 
16} & OxffL; 
8) & OxffL; 

& OxffL; 

static void desfunc (block , keys) 
register unsigned long *block , *keys; 
{ 

register unsigne d long fval, work, right, leftt; 
register int round ; 

leftt = b lock [OJ ; 
right = block[1] ; 
work = (( l e ftt >> 4} A rig ht} & OxOfOfOfOfL; 
right A= work; 
l eftt A= (work << 4); 
work = (( l e ftt > > 16) right) & OxOOOOffffL; 
ri g ht A= work ; 
l eftt A= (work << 16) ; 
work= ((right>> 2} A leftt) & Ox33333333L ; 
l e ftt A= work; 
right A= (work << 2); 
work = ((right > > 8) A leftt) & OxOOffOOffL ; 
l eftt A= work; 
right A= (work << 8); 
ri ght = ((right << 1) I ((right>> 31) & 11)) & OxffffffffL ; 
work = ( Ieftt A ri g ht ) & OxaaaaaaaaL; 
l eftt A= work; 
right A= work; 
l e ftt = (( leftt < < 1) I (( l eft t >> 31) & 1L)) & 0 xffffffffL ; 

for ( round = 0 ; round < 8; round++ ) { 
work = (right < < 28} I (right > > 4); 
work · = *keys++; 
fval = SP7[ work & Ox3fL J; 
fval I= SP5[(work >> 8) & Ox3fL]; 
fval I= SP3[( work >> 16) & Ox3fL]; 
fval I= SPl[(work > > 24) & Ox3fLI; 
work = ri g h t A *keys++; 
fval I= SPS[ work & Ox3fL]; 
fval I= SP6[(work >> 8} & Ox3fLI; 
fval I= SP4 [(work > > 16) & Ox3fL I ; 
f va l· I= SP2 [(work >> 24) & Ox3fL]; 
leftt A= fv a l ; 
work = ( l eftt << 28} ( Ieftt >> 4) ; 
work • = * keys++; 
f va l = SP7[ work & Ox3 fL I; 
fv a l I= SP5[(work >> 8) & Ox3fL]; 
fval I= SP3[(work >> 16) & Ox3fL] ; 
fv a l I= SPl[(work >> 24) & Ox3fL ] ; 
work = I eft t * keys ++; 
fval I= SPS[ work & Ox3fL); 
fval I= SP6[(work >> 8) & Ox3fL] ; 

131 



fval I= SP4 [ (work >> 16) & Ox3fL]; 
fval I= SP2 [ (work > > 24) & Ox3fL]; 
right · = fval ; 

right = (right < < 31) I (right > > 1); 
work= ( leftt • right) & OxaaaaaaaaL; 
l eftt · =work; 
right ·=work; 
l e ftt = ( leftt < < 31) I ( leftt > > 1); 
work = (( l eftt > > 8) • r ight) & OxOOffOOffL; 
right ·= work ; 
l eftt ·= (work < < 8); 
work = (( l eftt > > 2) · right) & Ox33333333L; 
rig ht · =work; 
leftt ·=(work << 2); 
work = (( ri ght >> 16) l eftt) & Ox OOOOffffL; 
l eftt · =work; 
right ' = (work << 16) ; 
work= ((right >> 4) - leftt) & OxOfOfOfOfL; 
l eftt ·=work; 
ri g h t · =(work < < 4 ); 
*block++ = ri ght ; 
* block = leftt ; 
return ; 

#ifdef D2_DES 

void des2key ( hexkey , mode) 
unsigned char * he x key ; 
short mode ; 

I* s t omps on Kn3 t oo * I 
I* u nsign e d c har [ 1 6 ] *I 

{ 
short revmod; 

revmod = (mode == ENO) ? DEl 
deskey(&hexkey [8], revmod); 
cpke y (KnR); 

ENO ; 

deskey (hex ke y , mode ); 
cpkey (Kn3) ; 
return ; 
} 

void Ddes(from , into) 
unsigned char *from , * into ; 
{ 

unsigned long wor k [ 2] ; 

s crunc h(from , work) ; 
d esfun c (work , KnL); 
d e sfunc (work, KnR) ; 
d es fun c ( work, Kn3 ) ; 
unscrun(work , in to ) ; 
return ; 
} 

void D 2 des (from , into) 
unsigne d char * from ; 
unsigned char * into ; 
{ 

u n s ig ned lon g * ri g h t , * 11 , swap ; 
unsigned long ] e ftt [2 ] , bufR[ 2 ]; 

r i g ht = bufR ; 
11 = & l e ftt [1]; 
scrunc h(from, l e ftt ); 
scru.nc h(& from [8] , right) ; 
d esfun c ( l e f tt , KnL ); 

I* K n3 = KnL *I 

I* u nsign e d ch ar [B j *I 

I * u n s ign e d char(16} *I 
I * unsigned ch ar [ 1 6} *I 
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desfunc(right , I<nL); 
swap = * 11 ; 
*1 1 =*right; 
*r ig ht = swap; 
d es func(l e ftt , I<nR); 
d esfunc (right , I<nR) ; 
swap = * 11; 
*ll=*right; 
* right = swa p ; 
desfu n c( leftt , Kn3); 
des func ( rig ht , Kn3); 
unscrun(l e ftt , into); 
unscru n( ri ght , & in to [8]); 
return ; 
} 

void makekey(aptr , kptr) 
register char * aptr ; I* NUL~terrni nated *I 

I* unsigned char {8} *I register unsigned char * kptr ; 
{ 

register unsigned char *store; 
register int first , i; 
unsigned long sav ek [9 6] ; 

cpDkey ( savek ) ; 
des2key ( DLI<ey, ENO); 
for( i = 0; i < 8; i ++) kptr[i] = DLI<ey[i]; 
fir s t = 1; 
while( (*aptr != '\0 ') II first) { 

s tor e = kptr; 
for( i = 0 ; i <8&&(*aptr != ' \ 0'); i + + ) { 

*Store++·= *apt r & Ox7f; 
*aptr++ = ' \0 '; 
} 

Ddes ( kptr , kptr); 
first = 0; 
} 

u seD key ( savek); 
return ; 

} 

void m ake2key ( aptr , kptr) 
r egister char * aptr; I* NUL~terrninated 

I * unsign ed ch aT {16} *I register unsigned char * kptr; 
{ 

r egister u nsigned char *sto r e; 
r e gister int fir st , i ; 
unsigned long savek [96] ; 

cpDkey ( savek) ; 
d es2key ( DLKey , ENO); 
for( i = 0; i < 16; i++ k ptr[i] DLKey[ i ]; 
f ir st = 1 ; 
while ( ( * apt r ! = '\ 0 ' ) II fi rst ) { 

store = kpt r ; 
for( i = 0 ; i < 16&&(* aptr != ' \0 ' ); i + + ) { 

*Store++ ·= * aptr & Ox 7 f; 
*aptr++ = ' \0 ' ; 
} 

D2des ( kpt r , kptr); 
first = 0 ; 
} 

useD key ( savek) ; 
return ; 
} 

#i fndef D3J)ES 
# i fd e f D2_DES 

I * DfLDES only *I 
I * iff D2_DES! *I 
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void cp2key (into) 
register unsigned long *into; I• unsigned long [64] •I 
{ 

register unsigned long •from, •endp; 

cpkey (into); 
into = &into [32]; 
from = KnR, endp = &KnR[32]; 
while( from < endp ) *into++= •from++; 
return ; 
} 

void use2key (from) 
register unsigned long *from; 

I• stomps on Kn3 too •I 
I* unsigned long [64] •I 

{ 

#end if 
#else 

register unsigned long *to, * endp ; 

usekey (from); 
from= &from [32]; 
to= KnR, endp = &KnR[32J; 
while ( to < endp ) *to++ = • from++; 
c pkey (Kn3); 
return; 
} 

I• iff D2_DES •I 
I• D3_DES too •I 

static void D3des(unsigned char *, unsigned char •) ; 

I• Kn3 = KnL •I 

void des3key ( hexkey , mode) 
unsigned char * hexkey; · 
short mode; 

I• unsigned char {24} •I 

{ 
unsigned char *first , • third; 
short rev mod; 

if ( mode = = ENO ) { 

else { 

revmod = DEl ; 
first = hexkey; 
third = &hexkey [16]; 
} 

revmod = ENO; 
fir st = &hexkey [16]; 
third = h exkey; 
} 

deskey(&hexkey [ 8] , revmod); 
cpkey(KnR); 
d esk ey (third , mode); 
cpkey (Kn3); 
d eskey(fir s t mode ); 
return; 
} 

void cp3key (in to) 
r e gister unsigned long • into ; I• unsigne d lon g {9 6 J • I 
{ 

register unsigned long •from, •endp ; 

cpkey (int o ) ; 
into = & int o [ 32 ] ; 
from = KnR, endp = &KnR[32] ; 
while ( from < endp ) • into ++ = • from+ +; 
from = Kn3, endp = &Kn3[ 32]; 
while ( from < endp ) *into++ = *from+ + ; 
ret~rn ; 
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void use3key (from ) 
register unsigned long *from; I* unsigned long [96} *I 
{ 

register unsigned long *to, * endp; 

usekey (from); 
from = &from[32); 
to = KnR, endp = &KnR[32]; 
while ( to < endp ) *to++ = *from++; 
to = Kn3 , endp = &Kn3[32]; 
while ( to < endp ) *to++ = *from++; 
return; 
} 

static void D3des(from, into) 
unsigned char *from; 

I * amateur theatrics *I 
I* unsigned char [24] *I 
I * unsigned char {2 4 ] *I unsigned char * into ; 

{ 
unsigned long swap, leftt (2] , middl [2], right [2 ]; 

scrunch (from , I eft t ) ; 
scrunch(&from [8], middl ); 
scrunch(&from[16], right); 
des func ( leftt , KnL) ; 
desfunc ( middl , KnL) ; 
des func(right , KnL); 
swap = I eft t [1] ; 
leftt [1] = middl [0]; 
middl[O] =swap; 
swap = middl [1]; 
middl [1] = right [OJ; 
right [OJ = swap; 
d es fun c ( l eftt , KnR); 
d esfunc ( middl, KnR); 
desfunc (right , KnR); 
swap = l e ftt [1] ; 
l eftt [1] = middl [OJ ; 
middl [OJ = swap; 
swap = middl [ 1]; 
middl [1] = ri g h t [OJ ; 
right [OJ = s wap; 
desfunc ( l e ftt , Kn3) ; 
desfunc(middl, Kn3); 
desfunc (ri g ht , Kn3) ; 
unscrun(l e ftt , into) ; 
unscrun(middl , &into [8]) ; 
unscrun(ri g ht , & into [16]); 
return ; 
} 

void make3key ( aptr , kptr) 
register char *aptr ; I* NULL-t erminat e d 

I* unsigne d char {24] *I register unsigned char * kptr; 
{ 

regi ster unsigned char *s t o r e; 
regi.ster int first , i ; 
unsigned long savek [96]; 

cp3key ( savek) ; 
d es3key(DLKey , ENO); 
for( i = 0 ; i < 24; i++ kptr[i] DLKey[ i J ; 
first = 1; 
while( ( * aptr != ' \0 ' ) II fir st ) { 

store = kptr; 
for( i = 0 ; i < 24 && (*aptr != '\0 ' ) ; i ++) { 

*S tore++ '= *aptr & Ox7f ; 
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#end if 
#end if 

*B.ptr++= '\0' ; 
} 

D3des ( kptr , kptr); 
first = 0; 
} 

use3key ( sa.vek); 
return ; 
} 

I* D3_DES *I 
I* D2-DES *I 

I* Val i dation sets : 

* 
* Single- l ength key, sing l e -l ength plaintext -
* Key 0123 4567 sgab c d e f 
* Plain 01 23 4567 89ab cde7 
* Cipher c957 4425 6a5e d3 1d 

* * Double-length key, single - l engt h pla i nt ext -
* K ey 01 23 4567 89ab c d ef fedc ba98 7654 3210 
* Plain 0123 4567 89ab cde7 
* Cipher 7f1d Oa77 826b Baff 

* * Double- l engt h .key, double-length plaintext -
* Key 01 23 4567 89ab cdef f edc ba98 7654 3210 
* P lain 0123 4567 89ab cd ef 0123 4567 89ab c dff 
* Ciph er 27a0 8440 406a df60 278 f 47cf 42<16 15d7 

* * Triple-length key, single-length p laintex t -
* Key 01 23 4567 89 ab c d ef f e dc ba98 7654 32 10 89ab cd ef 0 123 4567 
* Plain 01 23 4567 89 ab cd e 7 
* Cipher deOb 7 c06 ae5e 0 ed5 

* * T r iple- l engt h k ey, double-length p l a i n text-
* K ey 01 2 3 4567 89ab c d e f fedc ba98 7654 321 0 89ab c d ef 01 23 4567 
* Plain 0123 4567 8 9ab c def 0123 4567 8 9ab cdff 
* Cipher adOd 1 b30 ac17 cfO 7 0 ed1 1 c63 81 e4 4 d e S 

* * d 3 d es VS.Oa rwo 9208.07 18:44 Gr aven Imagery 
*************** **************** *** *************** ** ***** **************! 
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