
CENTRE FOR NEWFOUNDLAND STUDIES

TOTAL OF 10 PAGES ONLY
MAY BE XEROXED

(Without Author's Permission)

1+1 National Library
of Canada

Bibliotheque nationale
du Canada

Acquisitions and
Bibliographic Services

Acquisisitons et
services bibliographiques

395 Wellington Street
Ottawa ON K1A ON4
Canada

395, rue Wellington
Ottawa ON K 1 A ON4
Canada

The author has granted a non
exclusive licence allowing the
National Library of Canada to
reproduce, loan, distribute or sell
copies of this thesis in microform,
paper or electronic formats.

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this dissertation.

While these forms may be included
in the document page count,
their removal does not represent
any loss of content from the
dissertation.

Canada

Your file Votre reference
ISBN: 0-612-93019-X
Our file Notre reference
ISBN: 0-612-93019-X

L'auteur a accorde une licence non
exclusive permettant a Ia
Bibliotheque nationale du Canada de
reproduire, preter, distribuer ou
vendre des copies de cette these sous
Ia forme de microfiche/film, de
reproduction sur papier ou sur format
electronique.

L'auteur conserve Ia propriete du
droit d'auteur qui protege cette these.
Ni Ia these ni des extraits substantiels
de celle-ci ne doivent etre imprimes
ou aturement reproduits sans son
autorisation.

Conformement a Ia loi canadienne
sur Ia protection de Ia vie privee,
quelques formulaires secondaires
ont ete enleves de ce manuscrit.

Bien que ces formulaires
aient inclus dans Ia pagination,
il n'y aura aucun contenu manquant.

IMPLEMENTATION OF SELECTED CRYPTOGRAPHIC ALGORITHMS ON A

RECONFIGURABLE MICROPROCESSOR PLATFORM

St. John's

BY

@ ANDREW L. COOK

A Thesis submitted to the

School of Graduate Studies

in partial fulfillment of the

requirements for the degree of

Master of Engineering

FACULTY OF ENGINEERING AND APPLIED SCIENCE

MEMORIAL UNIVERSITY OF NEWFOUNDLAND

September 2003

Newfoundland

Abstract

This research was performed to evaluate the cryptographic capabilities of the

Chameleon CS2112 Reconfigurable Communications Processor. The CS2112 is a

processor architecture which closely couples a general purpose microprocessor with a

specialized reconfigurable core.

To evaluate the architecture, five cryptographic algorithms were chosen for im

plementation. The first algorithm, the Data Encryption Standard (DES), was the

United States National Cryptographic Standard from 1977 until 2001 and has been

the most widely used cryptographic algorithm in computing and communications en

vironments. DES's successor, the Advanced Encryption Standard (AES or Rijndael)

which was chosen in the fall of 2000, was also implemented. Since the CS2112 is

targeted toward wireless communications applications the other three algorithms -

EO, KASUMI, RC4 - were chosen as they are currently used to provide security in

common wireless protocols. The Bluetooth protocol, developed to provide a cheap

and easy met hod for users to create wireless connections between devices, uses EO

to secure connections. The RC4 algorithm is part of the 802.11b wireless data com

munications standard and KASUMI forms an integral part of the authentication and

privacy portions of the 3rd Generation GSM cell phone standard.

DES and AES were fully implemented on the CS2112 and a working executable

application was developed. Our efforts to exploit t he parallelism and pipelining ca

pability of the CS2112 and multiple implementations are described for these two

algorithms. The maximum throughputs for the DES and AES implementations were

11

found to be 322.5 Mbits/sec and 1.1 Gbitsjsec respectively. Also, although complete

implementations were not finalized, preliminary implementations for EO, KASUMI,

and RC4 were developed with a view to allow performance estimates to be made and

provide a basis for future work.

The Chameleon CS2112 implementations of the above algorithms performed re

spectably and the architecture could be useful in cryptographic applications. How

ever, the architecture does constrain design size considerably. Unfortunately, the

CS2112 is no longer commercially available since Chameleon Systems Inc. has ceased

operations. However, this architecture, with some modifications, could be used as the

basis for a new general cryptographic accelerator.

iii

Acknowledgments

This thesis owes its existence to the encouragement, support and inspiration of many

people. Firstly, I would like to thank my supervisors, Dr. Howard Heys and Dr.

R. Venkatesan, for their guidance and support through t he course of my studies and

research. Secondly, I would like to thank Chameleon Systems Inc. and Mark Rollins

for their financial and technical support . As well, I would like to thank all of my

friends and colleagues, most notably Darrell and Jason, for keeping me focused on

my work. Last, but not least, I would like to thank my family for their encouragement

and support throughout my university years; without them none of this would have

been possible.

lV

Contents

Abstract ii

Acknowledgments IV

Table of Contents v

List of Tables ix

List of Figures x

List of Abbreviations and Symbols xu

1 Introduction 1

2 · Cryptography Overview and Selected Algorithm Descriptions 6

2.1 Cryptography 7

2.1.1 Private Key Block Ciphers 8

2.1.2 Stream Ciphers . . 9

2.2 Data Encryption Standard 10

2.3 Advanced Encryption Standard 13

2.3.1 Byte Substitution . 14

2.3.2 Row Shift . . . 14

2.3.3 Column Mixing

2.3.4 Key Addition .

v

15

15

2.3.5 Rijndael Operation 15

2.4 Bluetooth Encryption Algorithm - EO . 16

2.5 KASUMI 18

2.5.1 Function FL 19

2.5.2 Function F I . 20

2.5.3 Function FO 20

2.5.4 Key Scheduling Algorithm 21

2.6 RC4 ••••• • ••• 0 • • ••• • 21

3 Cryptographic Algorithm Implementation 23

3.1 Reconfigurable Processor Architectures 25

3.1.1 Microprocessor Architecture 28

3.1.2 Logic Block Granularity 28

3.1.3 Data Interconnection . . 30

3.1.4 Reconfiguration Models 31

3.1.5 Programming Models . . 33

3.2 Reconfigurable Computing and Cryptographic Hardware 35

4 The Chameleon CS2112 Reconfigurable Communications Processor 39

4.1 Chameleon CS2112 Architecture . 39

4.1.1 Datapath Units 40

4.1.2 Multipliers .. . 41

4.1.3 Local Store Memories . 42

4.1.4 Control Logic Units . . 42

4.1.5 Data Path and Control Routing 42

4.2 CS2112 Design Methodology . 43

4.2.1 Software Model 44

4.2.2 Design Phase 45

vi

4.2.3 Synthesis and Mapping Phase . . .

4.2.4 Integration and Verification Phase .

5 Data Encryption Standard Implementation

5.1 Iterative Kernel

5 .1.1 Arc hi teet ure Description

5.1.2 Synthesis and Mapping .

5.1.3 Testing and Performance .

5.2 Multiple Pipelined Kernel

5.2.1 Architecture Descriptions

5.2.2 Synthesis and Mapping ..

5.2.3 Testing and Performimce .

5.3 Pipelined Kernel

5.3.1 Architecture Description

5.3.2 Synthesis and Mapping .

5.3.3 Testing and Performance .

5.4 Summary

6 Rijndael Implementation

6.1 Iterative Kernel

6.1.1 Synthesis and Mapping .

6.1.2 Testing and Performance .

6.2 Pipelined Kernel

6.2.1 Synthesis and Mapping .

6.2.2 Testing and Performance .

6.3 Summary

7 Bluetooth, KASUMI and RC4

7.1 Bluetooth Encryption Algorithm - EO .

Vll

47

48

50

51

51

59

60

60

62

65

66

67

67

69

70

71

72

73

76

76

77

80

81

81

82

82

7.2 KASUMI

7.3 RC4 ...

7.4 Summary

8 Conclusions

List of References

A ppendicies

A Verilog Examples

A.l Rotate 11 bits Left Module.

A.2 Pipelined Rotate 11 bits Left Module

B Chameleon Preprocessor Example

B.l Original Code

B.2 Chameleon Preprocessor Output .

C IP Data Path Verilog Module

D Test bench Examples

D.1 Verilog Testbench .

D.2 C Testbench

Vlll

85

90

94

95

99

106

107

107

108

110

110

111

113

123

123

124

List of Tables

2.1 DES S-Box S1 11

2.2 E Expansion . 12

2.3 P Permutation 13

2.4 Number of Rounds in Rijndael . 13

2.5 Rijndael Row Shifts 14

2.6 LFSR Feedback Polynomials . 18

3.1 Cipher Performance Figures 37

5.1 Iterative Kernel Resource Utilization 60

5.2 IP Kernel Resource Utilization .. 65

5.3 SRK Kernel Resource Utilization 65

5.4 IP- 1 Kernel Resource Utilization 66

5.5 Pipelined Kernel Resource Utilization . 69

6.1 Resource utilization for iterative Rijndael design 76

6.2 Resource utilization for pipelined Rijndael design 80

lX

List of Figures

2.1 Block Cipher Modes of Operation

2.2 Stream Cipher Operation .

2.3 DES Structure . .

2.4 DES F-Function .

2.5 Example of STATE for a block size of 128 bits .

2.6 Rijndael Encryption . . .

2.7 Bluetooth Stream Cipher .

2.8 EO

2.9 KASUMI Algorithm

3.1 Xilinx XC3000 Series Configurable Logic Block

3.2 CS2112 Example

3.3 Segmented (A) and Hierarchial Routing (B) Examples

3.4 Ideal Software Development Environment for Coupled Reconfigurable

Devices

4.1 CS2112 High Level Architecture

4.2 CS2112 DPU

4.3 CS2112 Fabric Routes

4.4 Design Flow

4.5 Single DPU Rotate Left by 11 Bits

4.6 Pipelined Rotate Left by 11 Bits . .

4.7 G·,-BideTM Graphical Floorplanner

X

9

10

11

12

14

16

17

17

19

29

30

31

34

40

41

43

44

47

47

48

5.1 Iterative DES Kernel 50

5.2 Iterative DES Kernel Blocks 52

5.3 Example Hardware Mapping for a Subset of IP Stage Pseudocode 54

5.4 IP Hardware Configuration 55

5.5 S-box and P Permutation Combination 56

5.6 DES Round Function Block Diagram . 57

5.7 DES Round Function Fabric Configuration 58

5.8 Pipelined Multi-Kernel DES Kernel Swapping 61

5.9 Circular Pipeline Concept 63

5.10 SRK Delay Illust ration .. 64

5.11 Pipelined DES Data Path 68

5.12 Pipelined DES Floorplan . 70

6.1 Table Address Generator Instructions . 74

6.2 Iterative Rijndael Kernel Data Path Configuration . 75

6.3 Iterative Rijndael kernel floorplan 76

6.4 Pipelined Table Address Generator Instructions 78

6.5 Slice 0 Data Path Config,1uation for Regular Round 79

6.6 Pipelined Rijndael kernel floorplan . . 80

7.1 MSB Generation Data Path Structure 84

7.2 Shifting LFSR and Combining with New MSB 85

7.3 F I Subfunction 86

7.4 KASUMI PO Subfunction 88

7.5 KASUMI FL Subfunction 89

7.6 Full KASUMI Data Path . 90

7.7 Iterative RC4 Kernel High Level Diagram 91

7.8 RC4 Operation Timing 93

XI

List of Abbreviations and Symbols

3GPP 3rd Generation Partnership Project

AES Advanced Encryption Standard

ALU Arithmetic Logic Unit

ARC Argonaut RISC Core

ASIC Application Specific Integrated Circuit

ATM Automated Teller Machine

CBC Cipher Block Chaining

CLB Configurable Logic Block

CLU Control Logic Unit

CSM Control State Memory

. DES Data Encryption Standard

DPU Data Path Unit

ECB Electronic Code Book

FPGA Field Programmable Gate Array

FSM Finite State Machine

LFSR Linear Feedback Shift Register

LSM Local Store Memory

xii

LUT Lookup Table

MUL Multiplier Unit

MSB Most Significant Bit

NIST United States National Institute of Standards and Technology

NSA United States National Security Agency

OFB Output Feedback

PIO Programmable I/0

PLA Programmable Logic Array

RFU Reconfigurable Functional Unit

RISC Reduced Instruction Set Computer

SAGE Security Algorithms Experts Group

SoC System On Chip

SRK Single Round Kernel

SIMD Single Instruction Multiple Data

Xlll

Chapter ·1

Introduction

I can add colors to the chameleon,

Change shapes with Proteus for advantages,

And set the murderous Machiavel to school.

- William Shakespeare, King Henry VI Pt. III

At the beginning of 2003 there were more than 170 million hosts connected to the

Internet and this number is expected to surpass the 200 million mark by the end of

the year [1]. However, demand is also growing from a user 's perspective, not just for

simple Internet connectivity, but also for high bandwidth, permanent connections.

Gone are the days of dialing into a pool of modems at your local Internet service

provider. Now, high speed data connection technologies offered by telecommunica

tions and cable companies can give people a permanent link to the Internet in their

homes making it a part of daily life for many people. This growth has, in turn, fuelled

higher bandwidth demands from business. Online shopping and banking have become

as commonplace as going to the market to buy bread or going to a bank to pay bills.

Alongside the growing use of the Internet has come another trend - the desire for

mobility. The wireless market worldwide is over a 120 billion dollar industry and it is

estimated that by 2006 there will be 64 million mobile Internet subscribers [2]. This

estimate does not include the users of devices employing technologies such as WiFi

1

(or 802.11b) or Bluetooth that allow easy setup of wireless local area networks in

homes and allow printers to be connected to a PC without a cable. The speed and

range of wireless devices is also constantly improving as new standards are developed.

For example, the 802.1lb standard supports data rates of up to ll.Mbps whereas the

802.1lg standard, which is currently under development, will support data rates of up

to 54Mbps at a similar range. Such developments have the potential to make wired

connectivity a thing of the past.

A result of these two trends is the need for improved security. Internet users, for

instance, worry about hackers gaining access to their credit card information from an

online store's database or wonder if somebody connected to their network was observ

ing the purchase they just made. If they are using a wireless connection, a malicious

user could be observing their transactions from a great distance using a sensitive an

tenna. In 1990 CERT [3] recorded only 252 security related incidents on the Internet.

But by 2002 this number had swollen to over 80,000 with another 40,000 in only the

first quarter of 2003 [4]. Of course, many more incidents were not recorded. Although

most new communications protocols now include some mechanism for providing au

thentication, data integrity and privacy, the demand formore bandwidth requires the

development of new cryptographic algorithms and devices that can keep up at higher

speeds. As well, wireless connectivity adds the extra complication of low power usage

on system designers.

To meet the needs of the market, the communications industry has been changing

rapidly over the 1ast two decades. For example, Ethernet connection speeds have

moved from 2.94Mbps to now lGbps and soon lOGbps [5] . System designers are now

turning to hardware devices more than ever to meet the demanding requirements of

the communications industry. To achieve these changes, designers have also been

frequently turning to configurable devices, such as Field Programmable Gate Arrays

(FPGAs), to improve their time to market and lower their development costs. As well,

2

such devices can be reconfigured as standards and requirements evolve. However,

custom Application Specific Integrated Circuits (ASICs) are still used for the highest

speed applications where large volume production is expected.

In recent years, researchers have begun coupling a general purpose microprocessor

with reconfigurable logic in order to gain the benefits of a hardware implementation

while still having the flexibility of software. In a rapidly changing market this is a

definite advantage. Initial research into reconfigurable microprocessors began at a

university level. Such systems began at the board level with a microprocessor exter

nally linked to an FPGA [6][7]. Over time, however, architectures began to evolve in

which the processor and reconfigurable logic resided on the same chip [8][9][10]. As

well, such architectures recently began to appear commercially when companies such

as Triscend, BOPS and Chameleon Systems released reconfigurable microprocessors

to the market. Unfortunately, many of the companies offering reconfigurable micro

processor devices, including BOPS and Chameleon Systems, are no longer operating,

A probable reason for their demise was their inability to provide the necessary devel

opment tools to easily take advantage of the technology. Although they were able to

"add colours to the chameleon, and change shapes with Proteus", it was not enough

to become a king.

Motivation, Scope and Organization of Research

In the Fall of 2000, Chameleon Systems Inc. proposed that researchers at Memorial

University of Newfoundland, led by Dr. Howard Heys and Dr. R. Venkatesan, study

the suitability of their new product for cryptographic' algorithms. The Chameleon

Systems CS2112 RCP chipwas considered the industry's first reconfigurable processor

targeted at communications applications. Although designed for protocol processing

and signal processing, potential cryptographic capabilities would further its suitability

for communications applications. A number of cryptographic algorithms that are part

3

of current communications standards were selected for implementation on the CS2112.

In total, five cryptographic algorithms were chosen for implementation, including the

Data Encryption Standard (DES), a widely used cryptographic standard released in

1977, and its successor the Advanced Encryption Standard (AES) which was finalized

in 2001. As well, the algorithms EO, KASUMI and RC4 which are all utilized in

current wireless protocols were chosen since the CS2112 is targeted toward wireless

communications applications. The goal was to implement the chosen algorithms in

hardware so as to achieve a performance increase over pure software implementations.

Chameleon Systems provided Memorial with their proprietary set of design tools as

well as a development board for testing the resulting designs. Although the company

stopped production of the CS2112 in early 2002, Chameleon Systems still provided

technical support as needed. In early 2003, Chameleon Systems Inc. ceased operations

but all major research was completed before this occurred.

The following is an outline of the research presented in the following chapters:

• Chapter 2 presents a brief overview of cryptography as well as descriptions of

the algorithms selected for implementation on the CS2112.

• Chapter 3 provides some background in the field of reconfigurable computing

and some recent results using such hardware for cryptographic purposes.

• Chapter 4 details the Chameleon CS2112 processor architecture and gives the

reader insight into the design methodology used when implementing algorithms

on the CS2112.

• Chapter 5 describes research efforts related to the implementation of the Data

Encryption Standard.

• Chapter 6 presents efforts in the development of Advanced Encryption Standard

functions on the CS2112.

4

• Chapter 7 details some preliminary design work completed with three other

ciphers used in current communications standards - the Bluetooth encryption

algorithm EO, KASUMI, and RC4.

• Chapter 8 summarizes the results of this research and provides recommendations

for future work.

5

Chapter 2

Cryptography Overview and Selected

Algorithm Descriptions

Cryptography, from the Greek kryptos meaning hidden and graphein meaning to

write, is the art and science of making communications unintelligible to all except

the intended recipient(s). Cryptographic techniques attempt to protect information

by altering its form. The origins of secret writing can be traced back nearly four

millennia to the hieroglyphic writing system of the Egyptians [11]. Until recently, the

use of cryptographic methods to secure communication has been within the realm

of governments and has been directed by their associated national cryptographic

services. With the steady growth of the Internet and the ever-increasing private

use of communications channels comes the need for public cryptographic standards.

Without such standards, users are forced to improvise on their own which can lead

to relatively insecure cryptographic methods being employed. The following sections

provide a brief overview of some cryptographic principles as well as descriptions of

the cryptographic algorithms studied in this research.

6

2.1 Cryptography

As stated above, cryptography protects information by making it unreadable to all but

the authorized parties. Encipherment (Ek) is t he process whereby the original text,

called the plaintext (P), is replaced by random-looking text called the ciphertext

(C). Both texts are composed of a concatenation of symbols from an alphabet.

Decipherment (Dk) is the process whereby Cis transformed back into t he original P .

Notationally:

A cryptographic system is a family of transformations on plaintexts. The members

of the family are indexed by a parameter called the key, k . Typically, the key is a

sequence of symbols from an alphabet and the associated transformation Ek (or Dk)

is an algorithm determined by k. A key is used since it is much simpler t o change a

key than to change the entire algorit hm used t o protect the data.

There are two general classifications for cryptographic algorithms: Public Key

and Private (or Symmetric) Key [12]. In public key cryptography, the sender uses

a publicly known key generated by the receiver to encrypt a secret message before

sending it through an insecure communications channel. The receiver then uses a

combination of a private key, known only to them, and the public key to decrypt the

message. In general, public key algorithms are much more computationally intensive

t han private key algorithms since the former rely on t he principle that it is infeasible

to find the private key given the public key. If otherwise, it would be trivial for an

attacker to decode the secret message. One example of such a suspected compu

tationally infeasible problem used by public key algorithms is the factorization of a

number composed solely of two very large prime numbers. The best known public key

algorithm is RSA which was invented by Ronald L. Rivest; Adi Shamir, and Leonard

Adleman in 1977.

7

Public key systems are typically used to share secret symmetric keys between two

communicating parties so that a faster private key system can be used. In private

key cryptographic systems, the sender and receiver share a secret key that is used

to both encrypt and decrypt secret messages sent on an insecure channel. Private

key systems rely on the principle that it is computationally infeasible to decrypt the

encrypted message without knowledge of the private key. Two general classifications

of private key ciphers, block ciphers and stream ciphers, are discussed in the following

sections.

2.1.1 Private Key Block Ciphers

Private-key (also called symmetric-key) block ciphers are probably the most promi

nent and important elements in many cryptographic systems. Such a cipher is a

function that maps n-bit plaintext blocks into n-bit ciphertext blocks. The function

depends on a k-bit key that is usually chosen at random from the key space K. Each

key could define a different function output for a given plaintext but this is not nec

essarily the case - multiple keys may give the same ciphertext result . However, to

allow for unique encryption the function must be one-to-one. This means that for a

specified key, only one ciphertext results from a specified plaintext [13] .

Many modes of operation can be applied to any block cipher and are illustrated in

Figure 2.1. The EB symbol in this figure represents a bitwise exclusive OR (or XOR)

operation. In Electronic Code Book (ECB) mode, the blocks are simply encrypted or

decrypted one at a time with a key. If the same key is used, each time a particular

plaintext is encrypted it will result in the same ciphertext. But with Cipher Block

Chaining (CBC) mode this is not the case. In this mode the previous ciphertext out

put is XORed with the next plaintext to be encrypted before encryption takes place.

The first plaintext is XORed with t he ciphertext of a non-secret initialization block,

c0 . In this way, multiple ciphertexts for a particular plaintext will not necessarily

8

ECB
Mode

CBC
Mode

OFB
Mode

P,

Co Ek
c,

P,

·~--0 r:·· ~

P2.

Ek --')

c2

p 2

l)C2

I Ek -->

Figure 2.1: Block Cipher Modes of Operation

be equivalent even if the same key is used. Another mode of operation is Output

Feedback (OFB) mode in which a pseudo random sequence is produced by the block

cipher algorithm. The resulting blocks generated by the algorithm are XORed with

the plaintext blocks to produce the ciphertext. Given the block cipher algorithm

and a non-secret initialization value or "seed" the pseudo random sequence can be

reproduced. In this research only the ECB mode of operation was considered.

2.1.2 Stream Ciphers

In a stream cipher a sequence of bits called the keystream is generated randomly or

by some algorithm that generates bits based on an initial seed value and/or previous

ciphertext values. This keystream is then combined with the plaintext bits, usually

with a simple bitwise XOR operation, to produce the ciphertext as illustrated in

Figure 2.2. Decryption issimply the reverse process using the same keystream bits.

In general, the most complex portion of a stream cipher system is the keystream

generation algorithm. Stream cipher systems are used when it is advantageous to

9

plaintext
bits

_j I l ciphertext seedl Keystream Generator .) bits

Figure 2.2: Stream Cipher Operation

process data on a bit-by-bit basis where, in such a situation, data would potentially

have to be buffered before processing if a block cipher were used. As well, since

stream ciphers operate on a bit level, error propagation is limited when compared to

block ciphers.

2.2 Data Encryption Standard

In the early 1970s, a banking customer asked IBM to develop a system for encrypting

Automated Teller Machine (ATM) data. IBM's team (with some help from the United

States National Security Agency (NSA)) developed a new encryption algorithm that

was submitted to the United States National Institute of Standards and Technology

(NIST). It was adopted in 1977 as a national cryptographic standard: the Data

Encryption Standard [14].

DES operates on 64-bit blocks of plaintext and utilizes a 56-bit key. The key is

actually supplied to the algorithm as 64-bits, but 8 of these are parity bits. The in-

ternal operation of DES is based on two general concepts: product ciphers and Feistel

ciphers. In a product cipher, the overall function is composed of anumber of simpler

operations. Such operations could include bit transpositions, translations, arithmetic

operations, modular multiplication and simple substitutions. These simple operations

provide no security individually, but together they provide sufficient protection[13] .

Fiestel ciphers are a special case of an iterated block cipher in which the ciphertext is

calculated by repeated application of the same transformation or "round function" .

Figure 2.3 shows the overall structure of DES and, as can be seen, it is composed

10

Figure 2.3: DES Structure

of 16 inner rounds. The input block passes through an initial permutation (IP) stage

before entering the first round of the cipher and an rp- l stage after round 16. In

each round, 32-bits of data enter the F-function. Figure 2.4 illustrates the internals

of this function. Inside the F-function, Sl-S8 are the 8 substitution mappings, called

S-boxes, that map a 6-bit input into a 4-bit output. The 1st and 6th bits of the

S-box input are used to select the row of the substitution table while the 2nd to 5th

bits are used to select the column of the table. As an example, S-box Sl is given

in Table 2.1. From this table, if the input to S1 is 101011 the S-box output would

be found in row 3, column 5 which is 1001. As well , in Figure 2.4, E is a fixed

S1
14 4 13 1 2 15 11 8 3 10 6 12 5 9 0 7
0 15 7 4 14 2 13 1 10 6 12 11 9 5 3 8
4 1 14 8 13 6 2 11 15 12 9 7 3 10 5 0

15 12 8 2 4 9 1 7 5 11 3 14 10 0 6 13

Table 2. 1: DES S-Box S1

11

Figure 2.4: DES F-Function

expansion permutation that maps the 32 input bits into 48 bits and P is another

permutation over the 32 output bits of the S-Boxes. Tables 2.2 and 2.3 show the

outputs of these two operations where the number in a cell represents the bit of the

input word that now resides at this location. The tables are read from left to right,

top to bottom with the cell (0,0) representing the MSB and cell (8,6) in theE table

or (8,4) in the P table representing the LSB of the output. The subkeys Ki , where

E
32 1 2 3 4 5
4 5 6 7 8 9
8 9 10 11 12 13

12 13 14 15 16 17
16 17 18 19 20 21
20 21 22 23 24 25
24 25 26 27 28 29
28 29 30 31 32 1

Table 2.2: E Expansion

1 :::; i :::; 16, are calculated from the original key, K, using a key scheduling algorithm

as described in [14] . In the DES algorithm, decryption is accomplished by using the

same algorithm with these subkeys in the reverse order.

12

p

16 7 20 21
29 12 28 17

1 15 23 26
5 18 31 10
2 8 24 14

32 27 3 9
19 13 30 6
22 11 4 25

Table 2.3: P Permutation

2.3 Advanced Encryption Standard

After a number of years of controversy and successful attempts at breaking DES [15],

the United States National Institute of Standards and Technology decided to seek

submissions for a new block cipher, the Advanced Encryption Standard, to replace

DES. The Rijndael cipher, designed by Vincent Rijmen and Joan Daemen, was chosen

as the AES algorithm on October 2, 2000 by NIST [16].

The Rijndael cipher is an iterated block cipher with a variable block length of 128,

192, or 256 bits and a variable key length of 128, 192 or 256 bits. The block and key

length are independent of one another. The number of rounds of iteration depends

both on the key and block lengths and can be determined from Table 2.4.

Block Length
Key Length 128 192 256

128 10 12 14
192 12 12 14
256 14 14 14

Table 2.4: Number of Rounds in Rijndael

A typical round consists of a byte substitution, a column mixing operation, a row

shifting operation and a key addition. Each of these steps performs operations on a

rectangular array of bytes called the cipher STATE. Each column of the STATE is 32

bits and the number of columns depends on the block length. Initially, the STATE is

formed from the input bytes by placing the bytes (from MSB to LSB) into cells a0 ,0 ,

13

a 1,0 , a2,0 , a3,0, a 0 ,1, a 1,1, etc., where cell ai,j represents the cell of STATE a at row i,

column j. This arrangement is shown in Figure 2.5. The cipher key is also mapped

ao,o ao,1 ao,2 ao,3
a1,o a1,1 a1 ,2 al,3

a2,o a2,1 a2,2 a2,3

a3,o a3,1 a3,2 a3,3

Figure 2.5: Example of STATE for a block size of 128 bits

onto a rectangular array of bytes in the same way. The following sections detail these

cipher operations as well as how the produce the overall algorithm.

2.3.1 Byte Substitution

The Rijndael byte substitution operation is a non-linear mapping that is applied to

every byte of the cipher STATE. The substitution tables, or S-Boxes, operate on 8-bit

inputs and produce 8-bit outputs. For the purposes of decryption, the inverse table

is used. The S-box mappings can be found in [17].

2.3.2 Row Shift

The row shift operation is a cyclical shift across each of the rows of the cipher STATE.

The shifts for each row are determined by using Table 2.5 arid are a function of the

block length. For decryption, the rows are shifted by (# of columns)-(row shift from

Table2.5) .

Block Length Row 0 Row 1 Row 2 Row3
128 0 1 2 3
192 0 1 2 3
256 0 1 3 4

Table 2.5: Rijndael Row Shifts

14

2.3.3 Column Mixing

T he column mix operation can be pictured as a GF(28) multiplication of the columns

of STATE with a fixed polynomial c(x) = 03 · x3 + 01 · x2 + 01 · x + 02. The inverse

is found by multiplying the columns of STATE with a fixed polynomial d(x) =

OB · x3 + OD · x2 + 09 · x + OE. Further details of the mathemat ical principles involved

in this operation can be found in the AES specification [17].

2.3.4 Key Addition

At the end of each round, a round subkey is simply bit wise XORed with the STATE.

The round subkey is derived from the cipher key through a key-scheduling algorithm.

In total, the number of round key bits required is equal to t he block length multi

plied by (the number of rounds+ 1). Since the key-scheduling algorithm was not

implemented, it will not be discussed in this document. Further details of the key

scheduling algorithm can be found in t he AES specification [17] .

2.3.5 Rijndael Operation

F igure 2.6 illustrates a typical Rijndael encryption cycle. As can be seen, the encryp

tion begins with a key addit ion operation followed by a number of iterations of the

"round function" consisting of the byte substitution, shift row, column mixing, and

key addition steps described above. The final round of encryption is slightly different

from the regular round in that no "mix column" operation is performed. This final

round is included in the total number of rounds of iteration found in Table 2.4.

15

PLAINTEXT

Add Round Key

.! ··············f·· .. ······-···-··-...
I Byte Substilulion I

; R-1
0erations

! i I Shffi·R~
~ ~ ~
. "- ; \1 I ~ix COlumn
1 0:: . ~

'

g I Byte Subslilulion I
§ f

~0- I I ::; ShiftRow

a: •

~ I Add Round Key J

I CIPHERTEXT

Figure 2.6: Rijndael Encryption

2.4 Bluetooth Encryption Algorithm - EO

In early 1998 a number of telecommunications companies (including Ericsson, Nokia,

Intel, and Toshiba) formed a special interest group to develop a low-cost, short

range wireless technology. Named "Bluetooth", this technology would allow end

users to eliminate the cumbersome wires connecting their devices [18]. For example,

a Bluetooth enabled cellular phone could transmit wireless information to a Bluetooth

enabled headset; a printer could wirelessly send data to a personal computer. In 1999

the Bluetooth SIG announced the Bluetooth LO specification and a host of Bluetooth

enabled devices began to enter the marketplace.

Within a Bluetooth packet the payload can be encrypted with a stream cipher

called EO that is re-synchronized for every payload [19]. A general framework for Blue

tooth encryption can be seen in Figure 2.7. The EO system handles the keystream

generator initialization, keystream generation and payload encrytion/ decryption. The

16

0

"§
(])

Initial
c

Payload Key Keystream ization Values
OJ

c.:>
>-
OJ Key Stream Generator

"' "0

"' 0
>.

"' 0..

Figure 2.7: Bluetooth Stream Cipher

r

PI
Ci

aintexU
phertext

\.,/

Ci phertexU
Plaintext

encryption key, Kc is derived from the current link key, a ciphering offset number

and a random number. The payload key is then derived from this encryption key.

Key management and generation were not considered in the scope of this research

and further details can be found in the Bluetooth Specification [19]. The keystream

generator is based on the summation generator proposed by Rueppel. In this sys-

tern, four Linear Feedback Shift Register (LFSR) outputs are combined by a simple

Finite State Machine (FSM) called the "summation combiner" . The four LFSRs

have lengths of 25, 31, 33, and 39-bits with the feedback polynomials as specified

in Table 2.6. Figure 2.8 illustrates the EO setup. As can be seen , the output of

Summation Combiner

,----
LFSR 1

LFSR2

lf$R3 XOR

LFSR 4

r~

'------

FSM f-+

Figure 2.8: EO

the summation combiner is the key st ream sequence that is bitwise added to t he

plaintext / ciphertext.

17

I LFSR I Length I Polynomial

1 25 t25 + t20 + tl2 + t8 + 1
2 31 pl + t24 + tl6 + tl2 + 1
3 33 t33 + t28 + t24 + t4 + 1
4 39 t39 + t36 + {2'd + t4 + 1

Table 2.6: LFSR Feedback Polynomials

2.5 KASUMI

The 3rd Generation Partnership Project (3GPP) was formed in 1998 to facilitate the

collaboration of a number of telecommunications standards bodies. Their mandate

was to facilitate the development of a global standard for the 3rd generation mobile

system based on an evolution of the current GSM networks and the radio access

technologies that they support [20] .

The 3GPP security architecture includes both a confidentiality algofithm, f8, and

an integrity algorithm, f9, both of which are based on a block cipher called KA-

SUMI [21]. The 3GPP commissioned the Security Algorithms Experts Group (SAGE)

to develop a security architecture for 3G networks. SAGE based the KASUMI cipher

on the MISTY algorithm that was designed by Mitsubishi Electric Corp. in 1996 [22].

(In fact, 'KASUMI' is the Japanese word for 'MISTY'.)

KASUMl operates on 64-bit blocks of data and utilizes a 128-bit key. Like DES,

it has a Feistel structure and is composed of 8 rounds. Figure 2.9 illust rates the top

level structure of the KASUMI algorithm. The round function, f i is composed of a

number of subfunctions called F L, FO, and F I that are also associated with round

sub keys K L, K 0, and K I respectively [23] . The following sections describe these

subfunctions in more detail.

18

64

RO 32 32 LO

c

Figure 2.9: KASUMI Algorithm

2.5.1 Function FL

The function FL takes 32-bits of data, I, and a32-bit subkey KL as its inputs. Both

I and K L are split into two 16-bit halves (R, L , K LR,K LL) and processed by the

following operations where 1\ represents a bitwise AND operation:

R' =REB ROL(L 1\ K LL)

L' = L EB ROL(R' 1\ K LR)

The RO L operation is a single bit rotation to the left. The 32-bit output of F L is

the concatenation of R' and L' in the same order.

19

2.5.2 Function F I

The function FI take..s a 16-bit data value, I, and a 16-bit subkey, KI, at its input.

However, unlike the functions F Land FO, the data and subkey are split unequally

into a 7-bit component and a 9-bit component. In the case of I, the left portion, L,

is 9-bits and the right portion, R, is 7-bits whereas for the subkey the left portion,

Kh, is 7-bits and the right, KI2 , is 9-bits.

Two substitution boxes (or S-boxes), S7 and S9, are used in this function. S7

maps a 7-bit input to a 7-bit output and S9 maps a 9-bit input to a 9-bit output.

Their mappings can be found in [23]. The following series of operations define F I's

output:

£1 = R

Lz = R1 E11 K Iz

£3 = Rz

L4 = S7[L3] E11 T R[R3)

R1 = S9[L) EB ZE(R)

Rz = S7[LI) EB T R(R1) EB K I1

R3 = S9[Lz] ffi ZE(Rz)

R4 = R3

The operation ZE(x) pads a 7-bit value to 9-bits by adding two zero bits at the

most significant end. TR(x) truncates a 9-bit value to 7-bits by discarding the two

most significant bits.

2.5.3 Function FO

The function FO takes a 32-bit data input, I, along with two 48-bit subkeys, KO

and K I, as its inputs. As in F L , I is split into two 16-bit halves, R and L. The

48-bit subkeys are each split into three 16-bit subkeys where KO = K01 IKOziK03

and KI = KI1 IKiziKh.

20

The following operations complete the function's operation:

Lo=L

~=R

for j = 1 to 3

Rj = FI(Lj-l E9 KOj, Klj) E9 Rj- l

Lj = Ri- l

output L3jR3

2.5.4 Key Scheduling Algorithm

The key scheduling algorithm in KASUMI, although relatively simple, was not con

sidered for implementation in hardware. Hence, we do not describe it here and further

details of this algorithm can be found in [23] .

2.6 RC4

RC4 (which supposedly stands for Ron's Code #4) is a proprietary algorithm created

by Ron Rivest of RSA Data Security Inc. It is a keystream generator for use in

a stream cipher that produces an arbitrarily long pseudo random sequence using a

variable length key. In 1994, an anonymous source claimed to have reverse engineered

the algorithm and posted their source code on the Internet [12]. The "alleged RC4"

code produces an identical keystream to that of the original, but RSA Data Security

Inc. claims that their algorithm is still a secret. Despite RSA's claims, this alleged

version is widely assumed to be the RC4 standard.

The RC4 algorithm is relatively simple. It operates as a stream cipher where

its output is bitwise added to the plaintext to produce ciphertext. The algorithm

performs a series of operations utilizing an 8 x 8 S-box (i.e. a table composed of

256 1-byte values) to produce a byte of output. The following pseudocode sequence

21

describes the operation to produce one byte of output:

i = (i + 1) mod 256

j = (j + Si) mod 256

swap si and sj

t = (Si + Si) mod 256

k = St where k is the 8-bit output

where Si represents the ith byte of the 256 byte 8-Box. The S-box is initialized by

first filling all entries linearly so that S0 = 0, ... , S255 = 255. With K representing

the key array the following operations are performed to complete the initialization:

for (i = 0 to 255)

j = (j + Si + Ki mod 255) mod 255

swap si and sj

Although the original RC4 description dealt with 8-bit words and 8 x 8 (256 in

put/output) 8-boxes, the algorithm can be easily extended to an n-bit form. For

example, a 16-bit RC4 version would have a 16 x 16 S-box and 16-bit outputs. Since

the core of the algorithm is not affected by the size of n, a larger value of n should

yield a faster implementation. However, the keystream outputs for different values of

n will not be equivalent [12].

22

Chapter 3

Cryptographic Algorithm Implementation

Traditionally, communication system developers have had three standard implementa

tion options available: ASICs, software running on a general purpose microprocessor ,

and FPGAs. One of the most common choices is to use a semi-custom or full-custom

ASIC. Both of these devices use one of a variety of process technologies, such as

CMOS and Gallium Arsenide, to produce analog or digital circuits on chip. Semi

custom ASICs utilize pre-developed blocks that implement complex functions along

with custom developed circuits to achieve their final purpose. On the other hand,

full-custom ASICs are designed without using any precompiled blocks and can be op

timized in terms of both area and performance [24]. Because ASICs are designed to

perform a specific set of computations, they can execute them extremely quickly and

efficiently. However, after fabrication the circuit cannot be altered. Hence, they must

be redesigned and remanufactured if any part of t he algorithm is modified or if any

part of the circuit is modified. The development cost for an ASIC is typically very

high. Therefore, ASICs are only suitable in a high production volume application

where high speed is required [8].

The second option is to use a general-purpose microprocessor and implement the

algorithm in software. Microprocessors execute a set of instructions to implement

an a lgorithm and by changing t hese instructions the implementation/ algorithm can

23

be altered without changing the associated hardware. However , with this added

flexibility comes an overall lower level of performance and power efficiency when

compared to an ASIC implementation. Secondly, since the set of available instructions

is fixed when the microprocessor is fabricated, any other operations to be performed

must be built from these instruct ions. This will result in a higher execution overhead

for some operations when compared to a direct implementation.

The final option when implementing an algorithm is to use a reconfigurable device

such as a FPGA. FPGAs consist of arrays of Configurable Logic Blocks (CLBs)

that implement the functions of logical gates. The logical functions performed by

the CLBs as well as the interconnections between them can be altered by sending

signals to the chip. The FPGAs and their CLBs can be reprogrammed repeatedly

and long after fabrication [25] . FPGAs now contain millions of gates per chip and

can be used to implement very complex computations on a single device. Dehon

in [26] showed that reconfigurable technologies had a raw computational density that

was an order of magnitude higher than programmable (microprocessor) technologies

when performing the same operations from cycle to cycle. Since configurations are

written in a Hardware Design Language (HDL) and then mapped to the FPGA, no

manufacturing is required and the development cost is much lower than that of an

ASIC. However, FPGAs cannot achieve the computational speed or efficiency of an

ASIC implementation and FPGA devices cost more to produce than ASICs in high

volume applications.

Recent developments in the area of System On Chip (SoC) devices have given sys

tem designers much greater flexibility to implement ASICs. T he development of soft

instruction processors is one such advancement. Soft instruction processors allow the

designer to quickly modify a pre-packaged processor core's instruction architecture.

This core, when included in an ASIC design, can speed up development time and

reduce costs dramatically [27].

24

Recently, the advent of reconfigurable processors has added yet another option to

designers. Such processors incorporate the advantages of microprocessor and FPGA

technologies and have shown significant performance increases in the areas of image

processing, compression, computational chemistry [25], object tracking, fuzzy con

trollers [28], music [29] and cryptography. The following sections outline some recent

developments in the areas of reconfigurable computing and its applications in the field

of cryptography.

3.1 Reconfigurable Processor Architectures

An FPGA can act as a stand alone device in a system just as in ASIC implementations.

However, devices that couple a general-purpose microprocessor with a reconfigurable

logic device have started to emerge in the marketplace. These devices have the key

feature of being. able to perform computations in hardware to increase performance,

while retaining much of the flexibility of a software solution. More importantly it is

possible, in some cases, for the configuration to change at run t ime.

Wittig in [30] describes three general classes of reconfigurable systems:

1. FPGA loosely coupled to a fixed host computer

2. FPGA loosely coupled to a fixed, integrated CPU

3. FPGA closely coupled to a fixed, integrated CPU

While any reconfigurable system will fall under one of these categories, it is sometimes

difficult to differentiate between classes 1 and 2. Instead, a classification system

based on both the coupling level and type of interaction between t he general-purpose

processor and reconfigurable logic can be used as out lined below [31] .

25

Stand Alone Processor

In this case, the FPGA acts as a stand-alone processor as described in the previous

section. Any communication between the FPGA and the CPU must be done through

an I/0 interface. Since I/0 communication is relatively slow, it is only useful when

communication between FPGA and CPU is infrequent.

Attached Processor

When the FPGA acts as an additional processor in a multi-processor system it is

classified as an "attached processor". Typically, in this sort of system, the FPGA

communicates with the other processors over a common bus. Hence, this form of

system is more closely coupled than the stand-alone case since bus transactions are

usually much more efficient than I/0 operations.

Coprocessor

In some systems, the FPGA may aid the CPU with certain computations and is acting

as a coprocessor. Depending on the system, the FPGA can do these computations

in parallel with the CPU and this can dramatically improve system performance. As

well, in most cases these coprocessors have direct access to the CPU's main memory,

further improving system performance.

Reconfigurable Functional Unit

As the level of integration for ASICs has increased the idea of placing both the CPU

and the reconfigurable logic, orReconfigurable Functional Unit (RFU) , on the same

chip has become a reality, In this arrangement, the RFU can be directly added to

the processors execution pipeline in parallel with the existing CPU units. This allows

new instructions to be created dynamically in the RFU that can be added to the

26

already existing instruction set. As the amount of logic that can be integrated with

the CPU increases, reconfigurable system performance will improve substantially.

It is possible to obtain significant speedups over software implementations by

using reconfigurable hardware. However, this is only true when the communication

overhead for implementing an algorithm in hardware is small compared to the amount

of computation done in the reconfigurable hardware. Wittig in [30] quantified this

with the following equations:

where

TH +Tov < Ts

TH + Tov < 1
Ts Ts

Tov = time to comummunicate data and control overhead

TH = time to execute function in hardware

Ts = time to execute function in software

This equation is only applicable when it is feasible to implement an algorithm in

hardware (i.e., the overall execution time is smaller in hardware than in software) .

In the fractional form of the above equation, the quantity ¥; represents the actual

hardware computational speedup and the fraction TT; represents the granularity of

the application implemented in hardware. Hence, an implementation with a small

TT; ratio indicates that it has a larger grain size since less communication occurred

between CPU and reconfigurable hardware. Systems with a small Tj?g' ratio need

a smaller hardware speedup to have the same overall speedup as systems with a

larger TTsv ratio. Therefore, the communications overhead plays a vital role in high

performance applications utilizing reconfigurable devices.

Until relatively recently, the available ASIC manufacturing processes did not sup

port a level of integration necessary for the development of complex RFU systems.

However, reconfigurable systems that closely couple a microprocessor with a relatively

large reconfigurable core have begun to emerge in the market . Before considering the

27

implementation of algorithms on one such architecture, it is important to understand

some of the architectural features that are common to all reconfigurable microproces

sors. The addition of closely coupled reconfigurable logic not only adds new design

issues but also complicates decisions that can be made quite easily in a software or

ASIC and stand-alone FPGA implementations. The following sections detail some

of the architectural options available when developing a system containing such a

coupled reconfigurable device.

3.1.1 Microprocessor Architecture

There are a number of general requirements for any fixed CPU that is attached

to reconfigurable logic, the most basic being speed and interfacing flexibility. The

processor must be fast at executing instructions from its own instruction set as well

as providing support fbr the instructions custom built in reconfigurable logic [32].

In particular, the CPU to reconfigurable logic interface must not be slower than

the computational delay of the instructions implemented in reconfigurable hardware

(i.e. a high T-?v ratio). Jeschke in [33] has found that the achievable speedup from a
s .

reconfigurable system can be severely limited by t he CPU-logic interface and suggests

that the current state of the art microprocessor should be used in a design. In

most cases, a fast Reduced Instruction Set Computer (RJSC) CPU is coupled with

reconfigurable logic since the RISC CPU's limited instruction set allows designers to

implement complex functions in reconfigurable logic on a per application basis.

3.1.2 Logic Block Granularity

Reconfigurable hardware is typically based on a set of computation structures that

a re repeated to form an array. These structures, commonly called logic blocks or

cells, vary in complexity from a very small and simple block that can calculate a

function of only two inputs, to astructure that is essentially a 32-bit Arithmetic Logic

28

Unit (ALU). Some of these blocks are configurable themselves in that the performed

operation is chosen from a configuration set. Other blocks perform fixed operations

and their configurability lies in their interconnection. The size and complexity of the

basic computing block is referred to as the block's granularity [34] .

Figure 3.1 [35] shows an example of a fine grained logic block that is found in

the Xilinx 3000 series of FPGAs [35]. This type of logic block is useful for fine-

Figure 3.1: Xilinx XC3000 Series Configurable Logic Block

grained bit-level manipulation of data. These kinds of operations are frequently found

in encryption and image processing applications. Also, because these cells are fine

grained, computation structures of arbitrary bit widths can be created. Figure 3.2

shows an example of a very coarse grained reconfigurable architecture, the Chameleon

CS2112 that is discussed further in Chapter 4. The Chameleon CS2112 is not just a

coarse grained solution. It is also termed a "heterogeneous" architecture since t here

are not only data path units, but also multipliers, control logic and data memory

residing in the reconfigurable portion of the chip. A "nonheterogenous" architecture,

on the other hand, would be composed of totally identical reconfigurable logic cells.

Typically, very coarse grained architectures are intended for the implementation of

29

Figure 3.2: CS2112 Example

word-width data path circuits and will perform word sized computations much more

quickly than a set of smaller CLBs connected to perform the same function. However ,

they are inefficient at performing operations on bit level data when compared to fine

grained architectures.

3 .1.3 Data Interconnection

Another important component of a reconfigurable architecture are the routing struc-

tures used within the reconfigurable portion of the design. One group has argued

that the interconnect should constitute a much higher proportion of the area in order

to allow for successful routing under high logic utilization condit ions [36] . However ,

routing resources occupy a much larger part of the area of an IC than the logic re

sources. As a result, the most area efficient designs will be those that optimize their

use of routing resources rather than the logic resources.

The two primary routing structures used in reconfigurable designs to provide both

local and global routing resources are illustrated in Figure 3.3. The first is segmented

routing in which short wires accommodate local communications traffic. These short

segments can be connected together using switchboxes to emulate longer wires. The

second form of routing is hierarchical routing. In this case, routing within a group of

logic blocks is at the local level and at the boundaries of these groups longer wires

30

A

r····· ··--~

L ._.!

B

Figure 3.3: Segmented (A) and Hierarchial Routing (B) Examples

are used to connect the groups together. Provided a good mapping has been made in

hardware, the most common communication should be local in a hierarchical scheme.

Both of t he above schemes are referred to as "island-style" routing architectures. A

few alternatives use a one-dimensional routing scheme. One example is a bus-based

scheme in which only vertical or horizontal busses connect t he configurable elements.

In other systems multiple FPGAs are linked to form a reconfigurable device. These

require not only an efficient internal routing scheme, but also an efficient external

interconnection architecture. These systems are typically used when an algorithm is

too large to fit on a single reconfigurable device.

3.1.4 Reconfiguration Models

Traditional FPGA structures have been single-context, allowing only one full-chip

configuration to be loaded at a t ime. However, the designers using reconfigurable

systems have found this style of configuration to be too limiting and/or slow to

efficiently implement run-time reconfiguration. A number of methods that have been

31

developed to limit the overhead of changing configurations at run-time are discussed

below.

In a single context device, configurations are loaded using a serial stream of con

figmation informat ion. Because only sequential access is supported, any change to

a configuration on this type of device requires a complete reprogramming of the en

tire chip. This type of access does simplify the reconfiguration hardware but it does

create a high reconfiguration overhead when only a small part of the configuration

needs to be updated. In order to implement run-time reconfiguration using a sin

gle context device the configurations must be grouped into contexts, and each full

context swapped into and out of the device as needed. Since swapping the contexts

involves reconfiguring the entire device, great care must be taken in designing the

configurations [37].

A multi-context device includes multiple memory bits for each programming bit

location. These memory bits can be thought of as multiple planes of configuration

information. One plane of configuration information can be active at a given mo

ment, but the device can quickly switch between different planes of pre-programmed

configurations. This system does allow for the loading of a configuration in the back

ground while the active plane is running. In this case, the grouping of configurations

into contexts is less critical because of both the background loading capability and

the ability to switch contexts rapidly. However, it is still important to ensure that

the configurations used in close proximity in t ime are loaded into the multi-context

device at the same time [26].

In some cases, configurations do not occupy the all of the reconfigurable resources,

or only a part of an active configuration requires modification. In these cases par

tial reconfiguration would be useful. In such reconfigurable devices, the underlying

programming layer operates like a RAM device where addresses are used to spec

ify the target location of configuration data . In some cases, the unchanged portion

32

of the device can remain active while the new data is being loaded, further hiding

configuration latency. A further modification of the above strategy is for the partial

reconfiguration to occur in stages [38}. This type of reconfigurable hardware is called

pipeline reconfig11rable or a stripped device. This type of structure also allows for the

overlap of configuration and execution time as one pipeline stage is configured while

the others are executing.

While multi-context and partially reconfigurable devices reduce the time required

to switch configurations, the fact remains that reconfiguration will occur during pro

gram execution. A number of different tactics for reducing configuration overhead

have been developed. First, the loading of configurations can be timed such that

the configuration overlaps as much as possible with the execution of instructions by

the host processor. Second, compression techniques can be introduced to decrease

the amount of configuration data that must be transferred to the system. Third,

the number of reconfigurations can be reduced through hardware optimizations that

keep configurations that will be reused from being unnecessarily replaced by incoming

configurations. Fourth, the actual process of transferring the data from the host pro

cessor to the reconfigurable hardware can be modified to include a configuration cache,

which would provide a faster reconfiguration [39]. Finally, Sakr in [37] proposed em

ploying the use of optical channels to allow fast parallel loading of the reconfiguration

control word as well as the migration of the configuration cache off-chip.

3.1.5 Programming Models

Significant gains in performance can be gained through using reconfigurable hard

ware. However, application programmers will tend to ignore this potential unless

they are able to easily incorporate its use into their systems. This requires a software

design environment that aids in the creation of configurations for the reconfigurable

hardware. This can range from a set of libraries to assist in the manual creation of

33

circuits to a complectly automated circuit design system. While the manual creation

of circuits requires a great deal of background knowledge of the system being used, it

allows for the creation of designs that are usually more efficient thari automatic com-

pilation systems. However, automatic compilation systems provide a simple means .

for creating an application and, as such, make the use of reconfigurable hardware

more accessible.

Another complication in the development of an application for a reconfigurable

system is that the program must first be partitioned into sections to be executed on

the reconfigurable hardware and in software by the microprocessor. Wittig in [8] de-

scribed a software environment that any "user-friendly" reconfigurable system should

include. This tool would automatically provide the user with the most efficient sys

tem configuration; the user would only have to program the system in a high level

language. Figure 3.4 illustrates the operation of this system. In the first stage, the

Hardware Synthesis

Operating System

Figure 3.4: Ideal Software Development Environment for Coupled Reconfigurable
Devices

34

preprocessor is used to identify sections of code that are candidates for execution in

hardware. Essentially, the preprocessor attempts to perform the hardware/software

partitioning. It should be noted that the preprocessor does not necessarily produce

an optimal set of hardware functions. Next, the hardware is synthesized and mapped

to the reconfigurable logic and the software is compiled. These hardware and software

images are then given to the operating system (OS). In this scheme, the OS is respon

sible for deciding what portions of the software code are to be executed in hardware

and schedules operations so as to give the best overall performance. Hence, using

this type of software environment, users could run their standard high level language

applications on a reconfigurable system just like on a standard, fixed microprocessor,

while benefitting from an optimal use of the reconfigurable hardware resources [8].

·Existing reconfigurable system software environments do not typically provide the

level of automation described above. In systems where the function identification and

extraction process is automated, the user is still usually required to select the most

desired candidates from a complete list of synthesized functions. In the majority of

commercially available systems, the user is required to complete the entire processes of

selecting candidate functions, writing the configurations and, in some cases, mapping

them to reconfigurable hardware.

3.2 Reconfigurable Computing and Cryptographic

Hardware

As stated before, the explosive growth in the Internet and mobile communication has

led to increased research and development in the area of cryptography. This research

can be categorized into three broad areas based on cryptographic capabilities. In

the most specific category are the designs which implement only a single algorithm.

Typically, such implementations are developed on either ASICs, FPGAs or in software

35

and are used to evaluate and optimize the performance of a particular algorithm in the

chosen medium. At the next level of capability is the cryptographic accelerator. These

hardware devices implement multiple cryptographic algorithms and also accelerate

processing at the communications protocol level. Finally, in the most general category,

are the hardware devices which aim to accelerate cryptographic primitives but not

specific algorithms.

When a. new cryptographic algorithm is developed and during its useful lifetime,

it is scrutinized not only from a. security perspective but also from an implementa

tion point of view. The algorithm may be mapped to software, hardware or both,

depending on its target application. For example, DES was designed as a general

cryptographic standard and, as such, numerous hardware and software implementa

tions have been developed since its release in 1977. Although developed for hardware

implementation, DES has been successfully implemented in software with speeds of

greater than 500 Kbps [40][41][42]. However, a much larger effort has been devoted

to developing high speed hardware implementations of DES. Wilcox et al. in [43] de

scribe an ASIC design that can achieve up to 10 Gbps throughput. As well, Leitold

in [44] describes a single chip Triple-DES- a form of the algorithm in which data. is

encrypted three times - solution that can operate at speeds of up to 155 Mbps. Also,

a number of reconfigurable system implementations have been developed over the last

26 years. Trimberger in [45] details the development of a DES FPGA core which has

a throughput of up to 12 Gbps. Table 3.1 summarizes some of the results obtained

with the other ciphers discussed in Chapter 2.

The most recent development in the communications security marketplace has

been the development of devices that accelerate a number of algorithms on a single

chip. These devices are usually found in systems as an encryption coprocessor which

is handed data to be encrypted/ decrypted, an inline processor which views all packets

and performs security duties when necessary, or as a. portion of the network system

36

Cipher I Implementation I Throughput I
AES with 128-bit blocks Xilinx Virtex-E FPGA [46] 7000 Mbps

Xilinx Virtex FPGA [4 7] 353 Mbps
ASIC [48] 1820 Mbps

Altera FPD [49] 900 Mbps
APEX FPD [49) 570 Mbps

ASIC [50] 2360 Mbps
Software (Pentium IV 2 GHz) [51] approx. 700 Mbps

KASUMI ASIC [52) 1100 Mbps
EO ASIC [53) 320 Mbps

Software [53) 33 Mbps
RC4 Software (DEC 3000/400) [54] 15.4 Mbps

Table 3.1: Cipher Performance Figures

processor itself [55]. Companies such as Broadcom [56), Cavium Networks [57] and

Corrent [58] all produce boards aimed at accelerating IPsec and SSL/TLS protocol

transactions. These protocols, which are widely used in packet data communications,

contain a variety of public and private key algorithms, such as DES and AES, that

are used to provide authentication, authenticity and privacy. Although these devices

are typically implemented as ASICs, Andoni in [59] presents an FPGA based IPsec

accelerator with impressive throughput capability.

Since many of the primitive operations, such as bit pennutations, XORs and ta-

ble lookups, are repeatedly used in most private key cryptographic algorithms, it is

very appealing to try to develop an architecture that is optimized for this subset of

operations: As well, such architectures usually couple a microprocessor with a re-

configurable core to allow splitting the algorithm across hardware and. software in

an optimum manner. Since some operations can be more efficiently implemented in

software and vice versa this is an important attribute. Also; these architectures allow

the developer to add new algorithms as specifications change and give the designer

much more flexibility than an ASIC solution. One such example is the CryptoBooster

coprocessor developed by Mosanya et al. in [60]. It is a modular architecture that

37

allows a user to load in various cryptographic modules needed to accelerate their ap

plication. Another example is the PipeRench architecture developed by Taylor [61].

This architecture is a pipelined reconfigurable fabric that is optimized for many of

the operations commonly used in private key cryptography. PipeRench also utilizes a

virtual hardware scheme so that large hardware configurations can be supported on

limited physical hardware. A third example is CYPRIS, a reconfigurable micropro

cessor developed by Lockheed Martin Corp [62]. The CYPRIS architecture contains

a high speed RISC processor and a reconfigurable logic block on the same die. Its

primary goal was to provide security in hand held radio and other radio communi

cation devices. In all cases, a number of ciphers were implemented and significant

performance gains were achieved over purely software implementations. However, the

algorithms from Chapter 2 were not discussed so performance comparisons could not

be made.

38

Chapter 4

The Chameleon CS2112 Reconfigurable

Communications Processor

In the late 1990s, Chameleon Systems Inc. began work on a new reconfigurable pro

cessor architecture targeted toward the communications marketplace. Their chip, the

Chameleon CS2112 RCP released in 2001, was considered the world's first reconfig

urable communications processor. The CS2112's reconfigurable logic was optimized

for signal and protocol processing applications and was accompanied by a proprietary

set of tools to aid system designers in developing their applications. The following

sections detail the architectural features of the CS2112 and give a brief description

of the process involved in developing a CS2112 application.

4.1 Chameleon CS2112 Architecture

The CS2112 processor includes an embedded 32-bit RISC-based CPU capable of

operating at 100 MHz and a proprietary reconfigurable logic fabric in the device

architecture. The workhorse of the CS2112 is its reconfigurable logic. Because the

reconfigurable logic is full-custom 32-bit data path oriented, the CS2112 requires

far fewer configuration bits than conventional single-bit oriented FPGAs [63]. Each

slice on the CS2112 can store two complete sets of configurations (i.e. multi-context

39

device), an active configuration and a background configuration. This type of dual

plane system can be quickly swapped in just one clock cycle, enabling the fabric to

be easily reconfigured on demand to perform whatever function is required at the

current point of execution in the application.

Figure 4.1 depicts the high-level view of the CS2112 architecture. The CPU is

an Argonaut RISC Core (ARC) that is a full 32-bit , 4-stage pipelined processor. As

[-----1 [~:ii l [-~=~~ ~ ~--~ia-j
._:".~ Loader i

-- J -] _ __ ___ j '-[--
[_L_1 ,-- ~~~-- ~ m_L_

[~ i j [_~~__] ~._I_

, 1 __ I - -- ---·1 ~ --- - ----
I ,----~
I

LOGIC I LOGIC

I
LOGIC I LOGIC/

SLICE SLICE SLICE I SLICE
0

i
1

l
2 ' 3

I
i l L.

B
TILE1. j ,-- I DPUO

IEJ
"'- I

DPU1 I

TILE2 ~ I DPU2 18
.... I DPU3 I
0

I 'I LSM2 I OCf- DPU4 <-z 5 => I DPU5 I (,)

IEJ I DPU6

I MULl II MUL2 I ~

Figure 4.1: CS2112 High Level Architecture

can be seen in Figure 4.1, the reconfigurable fabric is divided into 4 slices and each

logic slice is further subdivided into 3 tiles. Each t ile is identical and consists of seven

32-bit Data Path Units (DPUs) , two 16 x 24 single-cycle Multiplier Units (MULs) ,

four Local Store Memorys (LSMs) and a Control Logic Unit (CLU). The CS2112 is

considered a coarse-grained architecture since its smallest functional unit is a fairly

complex AL U.

4.1.1 Datapath Units

The DPU, a detailed view of which is shown in Figure 4.2, is a data processing module

that directly supports a variety of C and Verilog operations. Each DPU operation

can utilize 2 input operands and produces a single 32-bit result. It supports 32-

bit operations, some 16-bit operations and some 16~bit Single Instruction Multiple

40

I J ~ I I I 1 ~ I I_ I
"jiltOoO:::o -ro o n::e
.s@ 3 ~ ~ c·-----~ -g -3 -~ -~ ---r--l

, _L_t __ LLL __ .
7

\ !. J. l..J . .!. . ..

1
. - i

\ _________ _/' \ _____ r-__

BRegi:~

I
I

~~]~~]
c~~~~-:~)

______ ..J LSM
Rd Data

I
I
I r -~..----'· -~l__,_

ALU ----- ctN-----· J'

~ --:t~---5 --
LSM

WrData

1 T ~ ~~-~
'---··- - ··-··--...1

LSM
RJW Addr

Figure 4.2: CS2112 DPU

Data (SIMD) operations. The DPU also includes a 32-bit barrel shifter that is capable

of performing bit shifts, word swaps, byte swaps and word duplication. As well, the

DPU contains two 32-bit AND/OR mask operators/registers (one for each input

path).

4.1.2 Multipliers

The two 16x24 single-cycle MULs operate in two modes: 16 x 16-bit mode and 24 x 16-

bit mode. In the 16 x 16-bit mode, the MULs implement a signed multiply with a

32-bit result. In 16 x 24 mode, the 40-bit signed product is truncated to 32-bits by

rounding the 8 least significant bits.

41

4.1.3 Local Store Memories

There are also four 32-bit wide by 128 words deep LSMs per tile as shown in Figure 4.1.

LSMs can be chained to build wider and/or deeper memories if required. The LSMs

can be accessed by certain DPUs in the same tile as well as by the DMA subsystem.

Each LSM has four ports that allow for simultaneous access by the DMA subsystem

and DPUs. The DPU access ports can be configured as either 32-bit, 16-bit, or 8-bit

ports.

4.1.4 Control Logic Units

The fabric's control structure allows the simultaneous control of all fabric resources

and the CL U is constructed to allow state machines to operate in parallel. Within

each CLU there is a muxing plane, a Programmable Logic Array (PLA), a number of

state register blocks and Control State Memories (CSMs). The muxing plane is used

to select control signals for the PLA which has 16 inputs, 32 outputs, and 32 product

terms. Each of the outputs of this PLA drives one of the state register blocks. Each

of these state register blocks is 4 bits wide and can be used as either state bits of

a state machine or as state machine control logic. The CSMs contain configuration

information for each of the DPUs or MULs in a tile. Up to eight configurations for a

DPU and four for a MUL can be stored in a Control State Memory (CSM). Thestate

machine control logic bits of the state register blocks are used to select the .current

active configuration from the CSM [63] .

4.1.5 Data Path and Control Routing

The Chameleon CS2112 uses a hierarchical routing scheme inside the reconfigurable

fabric to route data between DPUs and MULs. Within a slice, nearby DPUs and

MULs are connected with a full crossbar interconnection. Vertical intra-slice routes

42

and horizontal inter-slice routes allow OPUs and MULs outside of the local intercon-

nect to communicate. Figure 4.3 [63] illustrates the interconnection scheme. Any

data using a path outside of the local interconnects will encounter a single clock de-

lay since inputs to a DPU must be registered if the path utilizes a global routing

interconnect.

n1eo

Tile1

Too2

Global Interconnection

9><321>!
Vertical data buses

8Jii32bi(
Horizontal da!a buSes

Local Interconnection
From the B OPU!Tv1Ul T above

u
4

DPU 5

MULTH

F rom lhe 7 OPU/MUL T below

Figure 4.3: CS2112 Fabric Routes

4.2 CS2112 Design Methodology

The development of a hardware fabric function, or kernel, usually proceeds in four

phases: the C Code Model Development Phase, the Design Phase, the Synthesis and

Mapping Phase, and the Verification and Integration Phase. Chameleon Systems

provided a number of tools called the C"'Side™ Tools, to facilitate the develop

ment of fabric functions. Figure 4.4 illustrates these phases and their relation to the

software tools. Within these tools Chameleon provides a set of behavioral models

of tile components (OPUs, MULs, LSMs) to facilitate the development of a fabric

43

SYNTHESIS & MAPPING DESIGN PHASE

VERIFICATION & INTEGRATION

Figure 4.4: Design Flow

function. A detailed knowledge of the reconfigurable fabric is then required to decide

on a hardware/software boundary as well as to write an efficient configuration. The

following sections provide a more detailed description of the above phases along with

some simple design examples.

4.2.1 Software Model

The Chameleon Systems design group recommends that the development of a fabric

function, or kernel, begin with the development of a C code model of the system.

Once this model is verified, it can be used as a reference model against which the

Verilog implementation can be tested.

There are a number of C design requirements that must be met to form a "legal"

fabric function. Firstly, the whole function body must be converted to a fabric func

tion. A block of code within a C function cannot be converted. Secondly, a function

44

to be converted must be a leaf function- it cannot call any functions itself. This

means recursive calls are also illegal. Thirdly, the function can only communicate

with the rest of the program through its arguments and if a function returns a value

it must do so through a function parameter. Fourthly, all array function arguments

must be aligned to a 128-bit memory boundary. Lastly, floating-point values are not

supported within a kernel function and cannot be used as arguments.

4.2.2 Design Phase

After a software model has been completed a behavioral Verilog model is developed.

This model is broken down into two main components (as with most digital designs):

data path and control. Data path logic is described by instantiating data path ele

ments from the Chameleon primitive library (some Verilog operators can be converted

directly) and control logic is described using RTL state machines.

Chameleon Systems provide a set of Verilog hardware primitives to assist in de

velopment. They are dpDPU, dpLSM, dpMUL, dpSRB and dpiOB (for representing

the chip's I/0 pins). These allow the user to have total control over the resources of

the RCP. For example, the dpDPU module has 8 40-bit instruction inputs that are

used to configure the DPU's operation. With their latest tools release, Chameleon

Systems also provides higher level Verilog objects- CS2112_DPU, CS2112_LSM and

CS2112J\1UL - that encapsulate t he previously described primitives to simplify de

sign entry. Further informabon about the specific use of these primitives can be found

in [64].

As stated above, the control logic is implemented in the CLUs of tiles. State

machines are essentially implemented in the PLAs with control registers sequencing

CSM instructions. The PLA determines the next state based on DPU flags , the

output of a DPU /MUL, state registers, or inputs from external data on Programmable

I/0 (PIO) lines. Two types of state machines can be implemented in the fabric:

45

FSMs and sequencers. FSMs, in which only a single state is active at a time, can be

implemented on the fabric and are typically written as Moore machines; states can be

encoded in a variety of ways. Multiple FSMs, generating outputs and fabric control

signals, can be active at one time. Communication between these state machines

can be accomplished by broadcasting FSM outputs across the fabric using the global

routing lines discussed previously. A sequencer is a simpler form of an FSM. Since

many of the designs on the CS2112 are highly pipelined, many states are used in the

control unit to wait for data to fill or leave a pipeline and the state transitions in these

sections uncondit ionally move to the next state. The use of a sequencer to implement

this portion of the control logic reduces the hardware required to implement the design

in the CLU.

As an example, consider the implementation of function which rotates the 32-bit

input data by 11 bits to the left. No rotate function is directly available in a DPU;

however, logical shifts to the right or left can be performed by the DPU hardware. A

single DPU with two instructions could be used to perform the operation as shown in

Figure 4.5, assuming the input data is held at the input for 2 clock cycles. The first

instruction logically shifts the data on the "B" side input of the DPU by 11 bits to the

left and passes the result in the DPU output register. The second instruction t akes

the same input data and logically shifts it to the right by 21 bits before the ALU ORs

it with the result of the previous instruction. The output of the OR operation, which

is stored in the DPU output register, is the 11-bit rotated result. A simple FSM can

be used to toggle from instruction 0 to instruction 1 after a clock cycle since each of

the above instructions is performed in a single clock cycle. This operation can also

be done in two DPUs, each of which implements one of the instructions above. A

pipeline register is added to the second DPU's instruction to buffer the input data

for one clock cycle. In tllis case, no FSM is necessary to control the operation since

each DPU has only one configuration. However, in both cases the rotation operation

46

Data In

T
~

0

Instruction 0 Instruction 1

Figure 4.5: Single DPU Rotate Left by 11 Bits

Data In

~---··- - .,

~ ~

\?.~
@J

Figure 4.6: Pipelined Rotate Left by 11 Bits

takes two clock cycles to complete. Verilog modules, which implement both of the

examples above using the provided hardware primitives, can be found in Appendix A.

4.2.3 Synthesis and Mapping Phase

In the synthesis and mapping phase, the Verilog kernel is compiled by the Chameleon

v2b tool to create the configuration bitstream. This compilation process involves

synthesis, mapping, and placement. In this process the elements of the Verilog de-

scription are mapped to specific fabric resources. The v2b tool's placement algorithm

usually does not produce a routable kernel for complex designs. Chameleon provides

47

a "worksheet" on which the designer can manually decide on the placement of their

data path elements. This worksheet can then be used in combination with a graphical

placement tool to achieve a routable design [64]. Figure 4.7 is an example screenshot

Figure 4.7: Cr-vSide™ Graphical Floorplanner

of the placement tool's graphical flom·planner. Fabric elements such as DPUs and

MULs can be moved to different slices or tiles on this screen while the tool decides

on the new data routes required to accommodate the changes.

4.2.4 Integration and Verification Phase

In the integration and verification phase, the kernel bitstream is linked with appli

cation code, written in C, for verification of the bitstream and integration into the

overall application. Chameleon provides a custom C preprocessor and a number of

48

software libraries, called the eBIOS libraries, to facilitate application development.

The developer can use the provided preprocessor to simplify the fabric interface. In

the application code two "pragma" lines are inserted to substitute a software function

with an equivalent kernel function - one to define the function and another to make

the call. For example, the following code:

#pragmaCMLN..FUNC..DEF spne(int in dp.sboxl.lsm[NJ, int in dp .sbox2 . lsm[NJ ,

int in dp.sbox3 .1sm[NJ , int in dp .sbox4 . 1sm [NJ ,

int in dp .xor_dpu.dpu .o, int in dp . key_lsm.lsm [8],

int out •dp.xor_dpu .dpu.o)

defines a kernel function called 'spne' with 5 32-bit array inputs, a single 32-bit input

and a single 32-bit output. To make a call to this function, the following line would

be placed in the application code in place of the software function call:

#pragma CMLN..FUNG_CALL spne ()

The preprocessor then expands this into the eBIOS calls necessary to configure the

fabric resources, start the hardware function and transfer any data to and from the

fabric [64] . The application developer can also use the eBIOS fabric interface library

directly to utilize their fabric function. The preprocessor output code for the above

example is given in Appendix B. Once the application code has been compiled,

Chameleon provides both a software chip simulator, as well as a test board which

houses a CS2112, to verify the final application.

49

Chapter 5

Data Encryption Standard

Implementation

In this chapter, the design and implementation of three DES kernels are discussed.

The development of a DES kernel began by dividing the kernel into three distinct

blocks as shown in Figure 5.1, . with multiple iterations of the middle block completing

the "rotmds" of the cipher. The following sections discuss the development of:

• A purely iterative design

• A design involving multiple kernels and pipelined data

• A consolidated design that supports pipelined data

The implementations described below vary functionally in terms of the path that

data takes through the kernel as well as the quantity of data that passes through the

kernel at one time.

,-- ,---
32 32

~ Inner Rounds x
M; IP ~

~ IP-1 JI
~ " 32

c3
'-- '---

Figure 5.1: Iterative DES Kernel

50

5.1 Iterative Kernel

The first attempt at implementing DES on the CS2112 involved the development of a

fabric function that would encrypt a single 64-bit plaintext. As such, it would mimic

the capability of a purely software implementation. After a single plaintext had been

passed into the fabric from the software application it would pass through the IP

stage hardware. After passing through the IP stage, the data would then iterate in

the inner round hardware 16 times before passing through the IP-1 hardware. The

encrypted data would then be passed from the fabric back to the software application.

In order to simplify the design, the key scheduling algorithm was not implemented

in the CS2112 fabric . Instead, the complete set of 16 round subkeys was to be

constructed by the software application and passed into the hardware function where

they were stored in LSMs. Hence, if multiple plaintexts were to be encrypted with

the same key, the same set of round subkeys would be used in each encryption and

the key scheduling algorithm need not be executed if the subkeys had been held in

microprocessor memory.

5.1.1 Architecture Description

Since DES's inception in the 1970s, a number of hardware and software implementa

tions of the algorithm have been developed and published. Hardware implementations

of DES typically involve bit-level operations, particularly in the IP and IP-1 portions

of the algorithm. The DPUs, however, provide 32-bit functionality and performing

bit-level operations in the DPUs is quite costly in terms of fabric utilization. There

fore, a high speed 32-bit C++ software implementation, developed by Richard Out

erbridge, was used as a basis for the architecture of the kernels described below [12].

In this software implementation, the 64-bit permutations in the IP and IP- 1 stages

and the 48-bit operations in the F-function are all performed using 32-bit operations

51

and operands.

As stated above, the iterative kernel was to operate on a single 64-bit plaintext .

The C++ implementation chosen as a basis for development contained a simple single

plaintext encryption function that was replaced by the iterative kernel. The iterative

DES kernel can be looked at as being composed of 5 main blocks as shown in Fig

ure 5.2. The following sections give an overview of the architecture of these blocks

and their associated control.

Figure 5.2: Iterative DES Kernel Blocks

Data Input and Output

Data to be processed by CS2112 kernels can either be passed into the fabric and

stored in DPU registers, loaded into LSMs or placed on PIO inputs. In t he iterative

kernel case, only a single 64-bit plaintext, which could be split into two 32-bit halves,

was to be processed by the fabric at one time. Hence, the init ial data values were

simply loaded into the input registers of the first two DPUs of the IP stage. The

output of the kernel is again two 32-bit halves that are retrieved from the output

registers of the last two DPUs of the IP- 1 stage.

52

IP and IP-1

At the bit level as described in the standard, the IP and IP-1 stages are simple wire

crossings. Using 32-bit operations, a permutation across 64-bits is not so trivial.

However, utilizing 32-bit operations these permutations can be accomplished using

a number of bit shifts, simple logical operations, and bit masks. The pseudocode

sequences that describe the operations necessary to perform these two permutations

are shown in Algorithms 5.1.land 5.1.2.

Algorithm 5.1.1 IP

work = ((left >> 4) - right) & OxOFOFOFOF;
right -= work;
l e ft -=(work << 4);
work= ((l eft>> 16) - right) & OxOOOOFFFF;
right - = work;
left-= (work << 16);
work= ((right >> 2) - l e ft) & Ox33333333 ;
l eft -= work;
ri g ht · = (work < < 2);
work = ((right >> 8)- left) & OxOOFFOOFF ;
l e ft ·= work;
right - = (work < < 8);
right = ((r i g h t < < 1) I ((rig h t > > 31) & 1)) & OxFFFFFFFF;
work = (left - right) & OxAAAAAAAA;
l e ft -=work;
right - = work ;
l e ft = ((l e ft < < 1) I ((left >> 31) & 1)) & OxFFFFFFFF ;

Algorithm 5.1.2 rp- 1

right = (right - < < 31) I (right >> 1) ;
work = (l e ft - right) & ·oxAAAAAAAA;
l e ft -=work;
right -= work;
l eft = (left < < 31) I (l eft >> 1) ;
work = ((left >> 8) - right) & OxOOFFOOFF ;
right -= work ;
l eft -= (work << 8);
work = ((l e ft > > 2) - ri g ht) & Ox33333333;
right - = work;
left · = (work << 2) ;
work = ((right >> 16) - l e ft) & OxOOOOFFFF;
l eft ·= work ;
right ·= (work < < 16) ;
work= ((right > > 4) . l e ft) & OxOFOFOFOF;
l eft · = work ;
ri g h t ·= (work << 4) ;

As an example of the mapping processes used to convert the above pseudocode

(using C constructs) to hardware, let us examine the first three instructions of the IP

53

stage. Only three DPUs, each with a single configuration, are required to implement

this code in hardware as shown in Figure 5.3. For this hardware to work correctly, the

left right
I

Figure 5.3: Example Hardware Mapping for a Subset of IP Stage Pseudocode

inputs on the DPUs performing steps 2 and 3 needed to buffer the initial values of left

and right to allow for the 1 clock cycle delay in calculating the work value. Continuing

the mapping process as described above, t he the IP and Jp- l were mapped to the

CS2112 fabric. The complete hardware configuration for the IP stage is shown in

Figure 5.4. All of the DPUs shown require only a single configuration and no control

inputs. Also, this section of hardware is able to operate on a continuous stream of

data on the two inputs and will produce a continuous stream of output data after an

initial14 clock cycle delay. The complete IP stage data path Verilog module is given

in Appendix C as a further example of CS2112 design implementation.

Inner Round

Since the operations inside of the F-ftmction operate on data of widths larger than

32-bits, it could not be implemented directly using fabric resources. Instead, t he E

54

' I

- --'-'~ -- I Ll
·-· , ~{!3 I

I
~ I

~ ~
r~~- l

~~J

~)ICOf't !
i I L __________ J

L-------------·------- ··--------------- -----·-·-

Figure 5.4: IP Hardware Configuration

expansion, subkey addition, S-box subst itution and P permutat ion were performed

as in the C code model and the pseudocode for these operations is presented in

Algorithm 5.1.3. In this case, theE expansion is accomplished by passing the odd and

evenS-boxes modified versions of the 32-bit r ight operand. This requires a modified

key generation algorithm that splits each round subkey into two 32-bit values instead

of a single 48-bit value. Therefore, the algorithm now uses 2 subkeys per round for a

total of32 subkeys. The oddS-boxes are passed segments a 4-bit rotated version of t he

right operand which has been XORed with the first round subkey. The evenS-boxes

are passed segments of a non-rotated version of right which has been XORed with

the second round subkey. These two groups of operations perform the E expansion

and subkey addition portion of the F-function.

55

Algorithm 5.1.3 F-Function Internals

work =(right<< 28) I (right >> 4);
work • = *keys++;
fval = SP7 [work & Ox3fL J;
fval I= SP5[(work >> 8) & Ox3fL];
fval I= SP3[(work >> 16) & Ox3fL];
fval I= SPl[(work >> 24) & Ox3fL];
work = right · *keys++;
fval I= SP8[work & Ox3fL];
fval I= SP6[(work >> 8) & Ox 3fL];
fval I= SP4 [(work >> 16) & Ox3fL];
fv a l I= SP2[(work >> 24) & Ox3fL];
left "= fval;

Also, in the DES algorit hm description, the S-boxes produced 8 4-bit outputs

which then passed through the P permutation to form the 32-bit F-function output.

As stated previously, bit permutations are not efficiently implemented in the 32-bit

data path available. However, in this case, it is possible to combine the permutation

into the S-Box outputs, as shown in Figure 5.5, since the LSMs produce 32-bit values.

Hence, the inner round function can be further subdivided into three blocks as shown

..... ---:.

'

' '

'

S-box
Inputs

S-Box

...... _

\ New 5-box that

\ ---- indudes. P
'--- permutation

......... ___ _
---...

P Permutation

Bits of 4-bit 5-box output
other 28-bits set to zero

-.....

Figure 5.5: S-box and P Permutation Combination

in Figure 5.6. The S-boxes, which form the main component of the inner round, are

implemented in LSMs that contain 32-bit values with a single DPU for access. These

DPUs perform shift and mask operations on their inputs so that the proper 6-bit

segment of the input occupies bits 2-7 of the LSM address. The segment must be

moved to bits 2-7 of the address since the DPU can only be bytewise addressed. As

56

Even Key

Figure 5.6: DES Round Function Block Diagram

an example, S-Box 7 requires bits 0-5 of the work variable. Therefore, the addressing

DPU must shift the work variable by 2 bits to the left and then mask the input with

Oxfc.

Also, in this portion of the kernel, key production units handle the loading of

subkeys into the data path so that they can be XORed with the input for the round.

A simple control unit handles the sequencing of this operation. As well, a number

of DPUs are required to perform the above mentioned XORs, the assembling of the

S-Box outputs into a single 32-bit value, and the XOR of the output of the round with

the other half of the input data. These units comprise the supporting logic block. The

total configuration for the inner round portion of the fabric is shown in Figure 5. 7.

It should be noted that two configurations are required for the key generation DPUs

to generate and hold the subkey values.

57

' ····------- -- --. - .J .l ---

3

§
-- ~----t -------

"

58

~-n..l
-o--LY

Control

The control unit for this kernel was divided into a master controller and a number

of slave controllers. The master controller receives the start signal from the ARC,

sequences the slave controllers and generates the done signal once the encryption has

been completed. The IP and rp- l portions of the kernel each have a simple sequencer

which signals the master controller when the data has finished passing through each

stage. The inner round portion of the kernel is comprised of three slave controllers

which handle the iteration of the data through the multiple rounds and the subkey

sequencing.

5.1.2 Synthesis and Mapping

As this was the first complex implementation I developed for the CS2112, there were

a number of problems which prevented the placement and routing of the kernel on

fabric. Although there were enough functional units (DPUs, LSMs, etc) available

to accommodate the kernel, the limited global data and control routes prevented

the completion of the mapping process. As well, the FSMs in a slice only have

access to the PLAs within a tile and limited inter-slice routes are available for the

communication of state bits between tiles in a slice. The master and slave controllers

developed required more product term resources and inter-slice routes than available

in t heir slice and could not be mapped to the fabric.

Although the synthesis process was not completed and a complete kernel produced ,

the DPU, LSM, and MUL utilization can be found via the Verilog model. However it

is difficult to obtain an accurate estimate of the PLA and global route usage without

a finalized kernel. The data in Table 5.1 gives a summary of the fabric utilization for

the design. It should be noted that this design uses 96% of the available DPUs in the

fabric.

59

I Resource I Slice 0 I Slice 1 I Slice 2 .j Slice 3 I Totals I
DPU 20 21 20 20 81
LSM 2 5 5 2 14
MUL 0 0 0 0 0

Table 5.1: Iterative Kernel Resource Utilization

5.1.3 Testing and Performance

Since a working kernel could not be completed for this design, it could only be tested

at the Verilog model stage. The completed Verilog model was tested via a behavioral

Verilog testbench using test vectors generated by the C model used with the design.

The contents of t he data output LSMs could not be accessed directly by the test bench.

Therefore , the data values entering the data output module were used to verify correct

operation, assuming the LSM writing process occurred without error.

The performance of the kernel was estimated from the Verilog model by determin-

ing the number of clock cycles to process a single 64-bit plaintext in the VerilogXL

simulator. Approximately 233 clock cycles were needed to encrypt a single 64-bit

plaintext. Hence if the CS2112 is running at 100 MHz the throughput is approx

imately 27.5 Mbits/sec. It should be noted, however , that this performance figure

does not include the overhead involved with loading the kernel into the fabric as well

as the time required to load the data into and out of the fabric.

5.2 Multiple Pipelined Kernel

The encryption of singular plaintexts, as discussed in the previous section, limits the

performance capability of a kernel since it does not exploit the pipelining or paralleliz-

ing capability of the reconfigurable logic. Therefore, a second design that attempted

to process a stream of plaintexts was developed. Initial hardware estimates indicated

that a completely pipelined and loop unrolled version the entire DES algorithm would

exceed the hardware available in the CS2112 fabric. For example, a fully loop unrolled

60

and pipelined kernel would require 16 x 8 = 128 S-Boxes, each containing 64 x 4 = 256

bits of data. Due to limitations in LSM addressing and size, only a single S-Box can

be placed in an LSM so a total of 128 LSMs would be needed for a fully unrolled and

pipelined design. With only 48 LSMs available on the fabric a fully unrolled version

is an impossibility.

As stated in Section 4.1, the CS2112 fabric has two configuration planes that can

be swapped in a single clock cycle. When this swap occurs, the data located in the

LSMs remains in place and is available to the new active configuration for processing.

By using this dynamic reconfiguration ability and splitting the DES algorithm across

multiple kernels, each of the individual kernels would have access to additional fabric

resources. This extra available hardware can then be used to improve the throughput

of the individual kernels and, in turn, the complete function via the pipelining of data

path elements. As stated above, the DES algorithm is naturally partitioned into three

main blocks. These blocks - IP, rp- l and the "Inner Rounds" -were implemented as

individual kernels, each of which processes a maximum of 128 plaintexts before the

following kernel is made active or the IP-1 kernel completes. Figure 5.8 illustrates the

DES kernel swapping process, The IP and IP- 1 kernels require a block of 128 64-bit

Active Kernel

Input Data

Output Data

Kernel Loading to
Background Plane

Configuration
Swapping Time

Figure 5.8: Pipelined Multi-Kernel DES Kernel Swapping

data values at their input and they produce 128 64-bit outputs. The ''inner rounds"

are implemented as Single Round Kernels (SRKs) that complete a single round of

61

DES per invocation. For reasons discussed in · the following sections, two different

SRK fabric layouts are needed to produced the desired output, although they are

functionally identical.

As with the iterative design discussed in Section 5.1 the key scheduling algorithm

was not implemented in the CS2112 fabric. Instead, the subkeys were calculated by

the software application and the subkeys relevant to a particular invocation of the

SRK were passed into the function for use. As well, all 128 blocks had to be encrypted

using the same key.

5.2.1 Architecture Descriptions

The iterative kernel architecture described above was used as a basis for the develop

ment of a pipelined multi-kernel design. The IP and IP- 1 stages previously developed

already supported pipelined data and required little modification to produce individ

ual IP and rp- I kernels. The SRK required more modification to the previously

developed inner round hardware section since it only supported processing a single

word at a time. The following sections describe these kernels in more detail.

IP and IP- 1 Kernels

As stated above, the previously developed portions of the iterative kernel already

were able to process pipelined input data. These sections of the data path hardware

were separated from the iterative design and modified to produce a stand alone kernel

for both the IP and rp- l stages. Hence, this new design needed to process a total

of 128 plaintexts and each individual kernel must therefore process 128 input data

blocks. Data input units that produced a stream of 128 plaintexts were added to the

beginning of the previously developed data paths. As well, an output unit was added

to accommodate the storage of a stream of 128 outputs in an LSM.

The above kernels required very simple control hardware to process a stream of

62

data. After the start pulse was received, each kernel's data input unit would begin

producing the input data from an LSM. Once a counter determined that the head of

the data had reached the output unit , it was told to begin writing to the output LSM

and after all 128 blocks were stored the done signal was asserted.

Single Round Kernel

Of the three kernels developed in this design, the SRK involved the most modification

to the previously developed iterative data path and control elements. In the previous

design, the left side data was held in a DPU register before being XORed with the

data that passed through the F-function portion of the data path. Also, the right

side data was held since it was to become the new left side data in the next round.

Therefore, t he previously developed hardware could only support the processing of a

single data value during an iteration. However, since the SRK was to process multiple

data values, it would be more efficient to process more than one data value at a t ime.

After the development of the iterative kernel it was obvious that the fabric could not

accommodate the hardware required to implement all16 inner rounds of DES in the

SRK. Instead of processing a continuous stream of dat a as in the IP and rp-l kernels,

the SRK was designed to process 128 64-bit inputs in smaller blocks.

Internally, the hardware was arranged to form a circular pipeline as illustrated in

Figure 5.9. The SRK contained 13 pipeline stages and was able to accommodate the

OolaiN
rrom!P

Figure 5.9: Circular Pipeline Concept

~

N 1----'-,...- 0UT
\D IP'

processing of a block of up to 13 data values at a time. Hence, to process all 128

63

inputs the SRK would have to process 9 full subblocks (i.e. 13 data values) and one

partial subblock of data. To create such a circular pipeline, two delay structures were

added to the right and left side of the data path as shown in Figure 5.10. Each of

Circular
Route

Figure 5.10: SRK Delay Illustration

these units used an LSM buffer unit to delay the data by 11 clock cycles on the left

and 12 on the right. The one clock cycle difference was necessary since the left data

was XORed with the output of the S-boxes before the round is complete. Other than

the addition of these delay units, no further modifications to the iterative data path

were necessary to complete the SRK data path.

The control unit in the SRK case was very similar to the portion of the previously

developed iterative control unit. In this case, the control unit was again responsible

for sequencing the production of the subkeys from the key generation units. Now the

control unit was also responsible for the loading and writing of blocks of dat a into

and out of the circular pipeline. Since each kernel is completing only a single round

of the algorithm, there was no need for counting the round number in this case.

64

5.2.2 Synthesis and Mapping

The three kernels involved in this design were more easily mapped to the CS2112 hard-

ware as a result of their smaller size when compared with the unified iterative design.

As well, since less control logic was required to sequence each kernel's operation, no

problems were encountered with control logic synthesis and mapping. However , a

modification had to be made at this stage ofthe design process due to a property of

kernel swapping. As stated above, when a kernel is swapped from the background

plane into the active plane the LSM contents remain in place. This meant that the

SRK kernels could not be identical from one round to the next. Instead, two separate

mappings of the kernel hardware were developed so that the next kernel to become

active would read its data from the LSM to which the current active kernel was writ-

ing data. No functional modifications were required to accommodate these separate

mappings. Tables 5.2 through 5.4 detail the resource utilizations of the three kernels

involved in this design. Notice from these tables that the hardware utilization within

each kernel is substantially lower that the previously discussed iterative design. Also,

note that the delay structures added to the SRK did not significantly increase the

kernels hardware utilization.

Resource Slice 0 Slice 1 Slice 2 Slice 3 Total
DPU 20 4 0 0 24
LSM 2 2 0 0 4
MUL 0 0 0 0 0

State Bits 3 0 0 0 3

Table 5.2: IP Kernel Resource Utilization

Resource Slice 0 Slice 1 Slice 2 Slice 3 Total
DPU 16 14 0 0 30
LSM 6 6 0 0 12
MUL 0 0 0 0 0

State Bits 14 8 0 0 22

Table 5.3: SRK Kernel Resource Utilization

65

Resource Slice 0 Slice 1 Slice 2 Slice 3 Total
DPU 20 7 0 0 7
LSM 2 2 0 0 4
MUL 0 0 0 0 0

State Bits 3 0 0 0 3

· Table 5.4: IP-1 Kernel Resource Utilization

5.2.3 Testing and Performance

After the synthesis and mapping process was completed, the kernels were linked to

application code for testing. In this case the eBIOS library calls were written manually

into the C code as opposed to using the \#pragma calls discussed in Section 4.2.4

because the provided tools did not handle kernel swapping efficiently. The design was

tested by first generating plaintext/ciphertext pairs, using the software version of the

function, and then checking the hardware outputs against these values. Using both

the chip simulator and development board, the finished application was tested and

returned correct results in all cases.

The overall performance of the final application running on the development board

could not be accurately measured due to a software "bug" in the libraries provided by

Chameleon Systems with their development environment. Since the company stopped

production of the CS2112 in early 2002, a fix was not provided by the company.

Instead, the performance of the kernels was estimated from the Verilog model. As

before, this does not take into account the kernel configuration loading overhead nor

does it take into account the overhead involved in switching kernels. Although the

kernels could be swapped from the background plane into the active plane in a single

clock cycle and the data being processed remained in the LSMs, after the SRKs

were swapped new subkeys had to be loaded into the kernel's key production LSMs.

The IP kernel and and IP- 1 kemels required 146 and 151 clock cycles respectively

to process 128 64-bit plaintexts. The SRKs required 2380 clock cycles to process

128 64-bit plaintexts. Hence, ignoring configuration swapping overhead a total of

66

2677 clock cycles were required to encrypt 128 plaintexts using the multiple pipelined

kernels. Therefore, with the CS2112 running at 100 MHz, the overall throughput was

approximately 306 Mbits/sec.

5.3 Pipelined Kernel

The design and implementation of a pipelined multiple kernel version of DES led to

the development of a third implementation. Although the IP, rp- l and single round

kernels of the previous design each occupied a significant portion of the reconfigurable

fabric, an attempt was made to unify these kernels and improve the overall perfor

mance of the design. Again, as described previously, this kernel was to process a

complete block of 128 plaintexts using a single key. Also, as with previous designs

the round subkeys were to be calculated by the ARC processor and passed into the

kernel for processing. However, in this case no kernel swapping was required so the

overhead involved in switching kernels was eliminated.

5.3.1 Architecture Description

The data path portion of the pipelined kernel simply reused the hardware from the

multiple kernel design. The IP, rp- I and SRK kernels were combined into a single

design. As with the SRK, the kernel processed 128 inputs in blocks of 13 plaintexts.

However, the IP and rp- l portions of the kernel now processed these smaller blocks

instead of the continuous stream of data that their stand alone kernel forms processed.

Figure 5.11 shows a snapshot of the unified design's data path. The majority of the

work involved in this design came in the form of control unit development and careful

hardware mapping. The control unit had to perform 4 major tasks. Firstly, the

controller had to signal the input data generators to output a block of 13 plaintexts.

Secondly, it had to deteqnine when a block of data had completely passed through

67

68

the IP stage so that the circular pipeline performing the round calculations could

close. Thirdly, the control unit had to signal the key generation hardware to produce

the correct sequence of round subkeys. Finally, when the data that had completed

all 16 rounds of processing passed through the Jp- l stage of the algorithm, the data

writer units were signalled to write the block of 13 plaintexts to LSMs. Since the

data path occupied 80 of the 84 available DPUs in the fabric and the free DPU

locations were fixed, it was very difficult to develop a controller that used DPUs

as counters to sequence operations. The first control unit developed used entirely

state bits and PLA resources to sequence tasks, but it quickly overloaded the control

resources available since a large number of states were required. Therefore, a second

design was developed that utilized the remaining free DPUs to perform counting

operations. While this change complicated control unit placement, it simplified the

control hardware sufficiently to allow for the synthesis and mapping stage to proceed.

5.3.2 Synthesis and Mapping

As with the previous designs, after the architectural issues were resolved, the Verilog

design was synthesized and mapped onto the CS2112 after it was fully tested. The

manual mapping process required much more time to complete with this design since

approximately 98.8% of the DPUs were used and a significant amount of global data

and control routing was required. However, the design was eventually successfully

m~pped to the fabric with the final fioorplan as shown in Figure 5.12. Table 5.5

shows the overall resource usage for the pipelined kernel.

Resource Slice 0 Slice 1 Slice 2 Slice 3 Total
DPU 21 21 21 20 83
LSM 2 6 6 2 16
MUL 0 0 0 0 0

State Bits 9 20 3 5 27

Table 5.5: Pipelined Kernel Resource Utilization

69

Figure 5.12: Pipelined DES Floorplan

5.3.3 Testing and Performance

After the kernel bitstream was produced, it was linked to the previously developed

application test code. The Verilog testbench and C application test code for the

pipelined design are given, as an example, in Appendix D. In this case, however, the

kernel did not perform encryptions correctly and was corrupting data. After some

investigation, it was determined that t he kernel itself was correct but a hardware

or software "bug" prevented the correct routing of data inside a slice. This er ror

was eventually attributed to the v2b compiler and could not be resolved. Hence the

completed application could not be fully tested .

For the above reason, and for the problem discussed in Section 5.2.3, the perfor

mance of the kernel had to be estimated based on the Verilog model. The pipelined

kernel required 2540 clock cycles to encrypt 128 64-bit plaintexts. Hence, with the

CS2112 running at 100 MHz, the kernel throughput was estimated to be 322.5 Mbit

s/ sec.

70

5.4 Summary

The above sections presented three implementations of DES on the Chameleon

CS2112. A 32-bit C implementation was used as the basis for all three kernels.

This code performed the IP and rp-l operations using a series of 32-bit instructions

and modified the F-function operations so that 32-bit operands could be used. The

first kernel encrypted a single 64-bit plaintext and did not utilize the CS2112 fabric's

pipelining capability. This implementation, although not fully completed, was esti

mated to have a throughput of 27.5 Mbitsjsec. The next kernel attempted to simplify

the overall design by splitting the implementation into three kernels. This gave each

kernel access to a greater number of fabric resources and simplified the placement

and routing process. Also, each of these kernels utilized the pipelining capability of

the CS2112 fabric to improve performance. When combined, the throughput of the

multiple kernel design was estimated at 306 Mbits/sec. The final design attempted

to unify the multiple kernels developed in the previous implementation. The unified

design showed an improved throughput of 322 Mbits/sec.

71

Chapter 6

Rijndael Implementation

In this chapter, we examine the development of two different implementations of

Rijndael, the cipher selected as the Advanced Encryption Standard by the United

States National Institute of Standards and Technology. The development of the

Rijndael kernels began with a 32-bit software model that had a fixed key length of 128

bits and plaintext block length of 128 bits. From Table 2.4 it can be seen that a total

of 10 rounds were required to perform an encryption. Initially it may look somewhat

complex to implement the round operations on a 32-bit machine efficiently. However ,

the Rijndael specification document [17] details a method by which the entire round

fw1ction can be replaced by lookups into four 256~entry tables (TO-T3) with entries

that are 32-bits wide.

The Lookup Table (L UT) strategy can be described by the following equation for

the round function:

Where e1 is the column of the output STATE for that round, a i,j is the input STATE

at row i , column j , ki is the column of the expanded subkey, and Tk is a LUT. The

values of C1, C2 and C3 are fixed at 1, 2, and 3 respectively. Hence for a 128-bit

72

input plaintext, 16 table lookups are required to find the 4 columns of the output

STATE per round.

As stated in the algorithm description, in the final round the mix column step is

removed. There are two methods to perform this final round using LUTs. Firstly, a

second set of tables (T FIN ALO - T FIN AL3) can be used for the final round with

again 16 lookups into four 256-entry tables with each entry 32-bits wide. Secondly, the

same set of tables can be used for all rounds; in the final round bit masks and shifts can

be used to eliminate the mix column step from the table outputs. Decryption can be

accomplished in a similar way using a different set of LUTs. Fortunately, numerous C

code models were freely available and an implementation written by Vincent Rijmen

was chosen. In this code, L UTs were used to perform the round function and the final

round was accomplished using a . second set of tables. This code served as a basis for

the development of the two kernels discussed in the following sections.

6.1 Iterative Kernel

As with the previously discussed DES implementations the development of a Rijndael

kernel began with a purely iterative implementation. This kernel was to process a

single 128-bit plaintext using a 128-bit key. Since the number of DPUs required to

perform the round operations was too large to fit into the CS2112 fabric , a LUT

strategy was used with a second set of tables to implement the final round. Hence, 2

LSMs were required to implement each T table and 2 LSMs for each T FINAL table

for a total of 16 LSMs to represent both round functions. To perform a complete round

in parallel a total of 64 LSMs would be required because 16 lookups were needed in

parallel (4 lookups into 4 sets of tables) with 32 LSMs for the regular round and 32

LSMs for the final round functions. However, only 48 LSMs were available on the

fabric , and only a partial round could be completed in parallel.

73

The first design focused on an iterative kernel, with no pipelining ability, that

used a single set of tables for the regular round and another set for the final round.

Each pair of tables, Ti and T FIN ALi, was connected to a single address generator

DPU with the values ofT; in the lower 256 locations and T FIN ALi in the upper 256

locations. Therefore, in the final round Ox00000400 was added to the input address to

switch to the upper table outputs. Figure 6.1 illustrates these two address generator

Output32-blt
valoefrom

regular round
table

I
ColUmn of STATE

-6

ADD16
instruc!lonused

sono timirJQ
viola~OCCUf

lrornshiftCJuse

~ 0Jtpul32-bil:
value from final

round table

Figure 6.1: Table Address Generator Instructions

DPU configurations.

After the design of the table lookup units was complete, it was a fairly simple

matter to complete the design. Figure 6.2 shows the DPU connections required to

perform an encryption (NOTE: the muxing layer DPU inputs are round dependant).

Three additional LSMs were used to hold data. To simplify the init ial "add round

key" operation, the 4 plaintext columns (32 bits each) were stored in an LSM. The 11

128.:bit expanded round keys were also stored in an LSM as 4 32-bit v alues occupying

44 locations in the LSM. Each entry in the key LSM was basically a column of

the expanded key. As with DES, the subkey generation algorithm could not be

implemented in parallel with the round function so subkeys were generated in software

on the ARC processor and passed to t he fabric . Finally, the ciphertext exited the

74

Figure 6.2: Iterative Rijndael Kernel Data Path Configuration

round function as a series of columns that were written to a third LSM.

A round of Rijndael proceeded in a number of stages and can be followed in

Figure 6.2. The buffer DPUs were used to hold the columns of the STATE for the

current round. The buffer DPUs loaded their particular column of ST ATE as the

column exited "add round key" operation. Once all four columns had been loaded

into the buffers, the MUX DPUs perform a sequence of operations to load the couect

columns of STATE into its associated table lookup unit. The table outputs were

XORed and then passed through an "add round key" operation, with 4 columns

·passing through sequentially. This output was then either written as ciphertext, if 10

rounds had completed, or passed through another round as described above. Control

logic was added to the design to sequence these operations.

75

6.1.1 Synthesis and Mapping

The iterative kernel was synthesized and mapped using the C"'SideTM tools without

any major difficulty. A view of the finalized floorplan taken from the manual routing

tool is shown in Figure 6.3, along with a summary of the hardware usage in Table 6.1.

Note that roughly 50% of the fabric resources were used by the iterative kerneL

Figure 6.3: Iterative Rijndael kernel floorplan

Resource Slice 0 Slice 1 Slice 2 Slice 3 Total
DPU 12 8 0 0 20
LSM 11 8 0 0 19
MUL 0 0 0 0 0
State Bits 27 14 0 0 41

Table 6.1: Resource utilization for iterative Rijndael design

6.1.2 Testing and Performance

As with the DES kernels, a software bug prevented measurement of the AES iterative

kernel's performance in the final application. Instead, the clock cycles to complete

76

a 128-bit plaintext encryption were fonnd from the Verilog simulation. The iterative

kernel can encrypt a single 128-bit plaintext with a 128-bit key in 170 clock cycles.

Therefore, ignoring configuration overhead, the throughput was approximately 75

Mbits/sec at a clock speed of 100 MHz.

6.2 Pipelined Kernel

Since the iterative kernel resource utilization was relatively low, a pipelined version

of the kernel was investigated. To develop a fully pipelined version of 10 round

Rijndael, each round of table lookups would have to be done in parallel and all 10

ronnds would have to fit on the fabric. Since each round needed 16 lookups, 160

tables were required. Each table would occupy 2 LSMs in the CS2112 fabric so a

total of 320 LSMs would be needed to fully pipeline the algorithm. Obviously, this is

not possible with the current chip. Therefore, a circular pipeline strategy was used

similar to that used in the DES design.

The initial goal was to be able to output a single column of the output STATE

in a slice. This required the completion of all four table lookups within a single slice.

In the iterative design, two tables were used to represent the two round functions and

this required 16 LSMs to store the tables. In order to fit all 4 lookups in a single

slice, the second method of computing the final round, mentioned in Section 6, was

used. To achieve this, the operations performed by the lookup table DPUs and the

XOR DPUs had to be changed. As well, each of the tables would have to t ake in a

different input. Figure 6.4 illustrates these changes in the third table lookup DPU

and XOR DPU following it. Similar modifications were made to the rest of the DPU

configurations.

After these modifications, it was possible to compute an entire column of the

output state in a single slice. Hence, across four slices, the full 4 columns of the

77

T2

I
Columrt2of STATE

Regular Final
Round Round

Figure 6.4: Pipelined Table Address Generator Instructions

output STATE could be computed. The design was, therefore, partitioned into

four distinct modules with each module computing a single column of e. Each of

these modules included an LSM holding a number of columns of state, another LSM

holding the expanded keys for that column, and a third LSM for holding the completed

ciphertext. Figure 6.5 shows the DPU / LSM connections for the data path of slice

0. (Note: final round configuration is not shown) This structure was essentially the

same as shown previously in the iterative design, but now there was no need for a

muxing layer. The circular pipeline in this case can hold up to 10 blocks of data.

This structure was then repeated across the other three slices to complete the kernel.

Within a slice, data flowed through a number of stages to complete a round and

can be followed in Figure 6.5. The block of 128-bit input plaintexts were divided into

columns and loaded into t heir appropriate LSMs, with the slice 0 plaintext column

generator holding input data columnO, slice 1 holding column1, and so on. A block

of 10 columns was then started out of the plaintext column generator in each slice.

After exiting the column generator, the columns of STATE passed through an initial

"add round subkey" operation. This occurred in all slices simultaneously. After

exiting this ''add round key" operation, the blocks passed through a buffer DPU.

78

Figure 6.5: Slice 0 Data Path Configuration for Regular Round

The buffers held all four of the columns of STATE that were exiting the initial

"add round subkey" operation in each slice. Three of these columns were passed to

the slice via global connections with the other slices. On the next clock cycle the

columns of STATE in these buffer DPUs were passed to the LUT portion of the

pipeline. Mter passing through the "add round subkey" operation again, the new

columns of STATE were loaded into the buffers as described above. To complete

the final round, the instructions associated with the buffers, LUTs and XOR units

were changed as the head data in the pipeline began to pass through. The completed

ciphertext columns in each slice were then written to LSMsbefore being passed back

to the ARC processor.

79

6.2.1 Synthesis and Mapping

Since the pipelined design was slice based, a single slice of the design was first syn-

thesized, mapped and tested before a complete kernel was produced. The single slice

was mapped to the fabric without any problems. When the other slices were added,

however, the limited global routing lines required that the resources in slices 2 and

3 be mapped as a mirror image of slices 0 and 1. The finalized fioorplan is shown

in Figure 6.6. Table 6.2 lists the hardware usage for the pipelined kernel across all

slices. Note that the pipelined kernel DPU usage jumped to almost 95%.

Figure 6.6: Pipelined Rijndael kernel floorplan

I Resource II Slice 0 I Slice 1 I Slice 2 I Slice 3 II Total I
DPU 21 20 20 20 81
LSM 11 11 11 11 44
MUL 0 0 0 0 0
State Bits 17 12 12 12 53

Table 6.2: Resource utilization for pipelined Rijndael design

80

6.2.2 Testing and Performance

Again using the Verilog simulation results, the pipelined Rijndael kernel could encrypt

ten 128-bit plaintexts using the same 128-bit key in 114 clock cycles. Therefore

ignoring configuration overhead, this kernel had a throughput of 1.1 Gbitsfsec if the

CS2112's clock speed was 100 Mhz.

6.3 Summary

This chapter discussed the development of two kernels that implemented Rijndael.

Although a Rijndael kernel could have been developed using bit and byte-level opera

tions, as with the previously described DES designs, a 32-bit implementation method

was used to allow more efficient mapping to the CS2112 hardware. The first de

sign processed a single 128-bit plaintext using a 128-bit key using a LUT strategy

in which one set of tables completed the first 9 rounds and another the final round.

The overall throughput of this design was estimated to be 75 Mbitsfsec. The second

implementation utilized the pipelining capability of the CS2112 to improve through

put. The design was split across the four logic slices so that each slice performed

identical operations, with the data interconnections varying, to produce 32 bits of the

ciphertext. To lower LSM usage the double LUT strategy, used in the previous im

plementation, was changed to use only a single set of L UTs to implement all rounds.

The throughput of this pipelined design was estimated to be 1.1 Gbitsjsec.

81

Chapter 7

Bluetooth, KASUMI and RC4

After the implementations of DES and Rijndael were completed, three other encryp

tion algorithms were considered for implementation on the CS2112 fabric. The three

algorithms- EO, KASUMI, and RC4- were chosen because they are part of popular

wireless standards. A complete software application, utilizing the hardware kernel ,

as with DES and Rijndael was not developed for these algorithms. The goal of this

work was to evaluate the performance of these kernels in terms of hardware com

plexity and speed. Therefore, an outline of each kernel's data path logic and control

unit was developed from which performance estimates could be made. As well, these

design outlines could be used as a basis for future work in this area. The following

sections describe the results of this work.

7.1 Bluetooth Encryption Algorithm - EO

After t he successful development of two block cipher kernels, an attempt was made

to implement a stream cipher on the CS2112. The first algorithm chosen for analysis

was the recently developed EO keystreamgenerator. At first , it appeared as though

the fabric would be able to easily accommodate EO. However, after more careful

analysis its implementation proved to be much more difficult than first anticipated.

82

As discussed in Section 2.4 the data path of the keystream generator can be split

into two main parts - the LFSRs and the summation combiner. The summation

combiner is a simple FSM and can easily be implemented in a LSM lookup table.

As well, the 25 and 31 bit LFSRs can each be implemented in a single DPU using

the LFSR mode of operation available in the DPUs. The polynomials as given in the

standard would have to be modified as the DPUs assume a Galois LFSR structure

whereas the standard specifies a Fibonacci LFSR. The only modification required to

convert the Fibonacci form to a Galois form is a change to the initial fill vector and

a reversal of the tap weights [12). However, the LFSR mode of operation for DPUs

could only accommodate LFSRs which were less than 32 bits wide so a single DPU

implementation of the four LFSRs in the keystream generator was not possible.

Since EO is targeted specifically at bitwise hardware implementation, very few

software implementations exist for the algorithm. In fact, only a single software im

plementation of EO developed by Saarinen [65) could be found. The initialization por

tion of Saarinen's implementation was quite complex and did not lend itself to a high

speed implementation on the CS2112. It was decided that only the post initialization

portion of the algorithm that produces the keystream bits would be implemented in

the fabric with the initialization values calculated in the ARC. The keystream bit

generation portion of the software implementation is shown in Algorithm 7.1.1.

As a further complication, Saarinen's code uses 64-bit integers to represent the

LFSRs. Since the DPUs are 32-bits wide the LFSR clocking operations to generate

eO_rl to eO_r4 need to be decomposed into a number of 32-bit operat ions. As an

example, consider the code for generating the next value of eO_r4 in Algorithm 7.1.1.

These operations can be further subdivided into the operations for generating the new

Most Significant Bit (MSB) of the LFSR and merging it into the LFSR. The MSB is

generated by XORing the bits of the LFSR as selected by the feedback polynomial.

In this case, bits 38, 35, 27 and 3 are selected and XORed before the merge. Since

83

Algorithm 7.1.1 eO_clock() function

int eO_clock ()
{

int t;

eO_r1 = ((eO_r1 << 1) & Oxlfffffe) I
(((e0.r1 >> 7) • (eO_r1 >> 11) • (eO _r1 >> 19) • (eO_r1 >> 24)) & 1);

eO_r2 = ((eO.r2 << 1) & Ox7ffffffe) \
(((eO.r2 >> 11) • (e0-r2 >> 15)- (e0-r2 >> 23) • (e0-r2 >> 30)) & 1);

e O.r3 = ((e0_r3 << 1)&0xlfffffffe) I
(((eQ_r3 >> 32) • (e 0_r3 >> 27) • (eO_r3 >> 23) • (eO_r3 >> 3)) & 1) ;

eO.r4 = ((eO_r4 << 1)&0x7fffffffffe) I
(((eO.r4 >> 38) • (eO_r4 >> 35)- (eO_r4 >> 27) • (eO_r4 >> 3)) & 1) ;

eO_x = ((eQ _r1 > > 23) & 1) I ((eQ_r2 > > 22) & 2)
((eO_r 3 > > 29) & 4) I ((e O. r4 > > 28) & 8);

eO_state = eO_fsm[eO . state][eO.x];
t = eO_x • (eQ_x >> 2);
t ·= t >> 1;

return (t • (eO.state > > 2)) & 1 ;

the DPUs can only operate on 32-bit data, the LFSR must be split across 2 DPUs.

Further, DPUs can then be used to select the bits and then XOR them together as

shown in Figure 7.1. Once the MSB had been generated it could be merged into the 2

G:J-' ; ~·- ;
,----,,----.-,

PASSB

XOR XOR

0
----~'1-_. ____ j

0
MSBOUT

Figure 7.1: MSB Generation Data Path Structure

DPU wide LFSR as shown in Figure 7.2. The other LFSRs could be implemented in a

similar fashion or where possible a single DPU could be used to save fabric resources.

84

NEW UPPER 32 BITS
OF LFSR

8 '1_'0,
Q

NEW LOWER 32 er:rs
OF LFSR

Figure 7.2: Shifting LFSR and Combining with New MSB

The overall performance of the algorithm is now very much limited by the per

formance of the LFSR hardware. Although a single DPU LFSR could be used in

two cases, the multiple DPU LFSRs would limit the speed of operation even with

clocking done in parallel since all of the LFSRs must be finished before the algorithm

proceeded. Therefore, after considering the other operations required to complete

a round, it would take approximately 14 fabric clock cycles to generate a single

keystream bit. Hence, the overall performance of such a kernel would be approxi-

mately 7.14 Mbitsjsecond at a clock speed of 100MHz.

7.2 KASUMI

As discussed in Section 2.5, KASUMI is an iterated block cipher with a Feistel struc

ture and, as such, is very similar to DES. Many of the design principles used in the

development of the previous DES kernels were applied in the preliminary develop

ment of a KASUMI design. Since the key generation algorithm wa.'3 again relatively

complex in itself, it was not to be implemented in hardware. Therefore, as in previous

designs, it was assumed that the microprocessor would calculate and pass an entire

set of round subkeys into the fabric. As in the DES kernels, the S-boxes inside the

F I function were to be implemented inside LSMs as lookup tables rather than as

boolean logic. Also, as with previous designs, the initial focus was the development

of a purely iterative KASUMI design which would process a single 64-bit plaintext.

85

While performance would not be optimal in the purely iterative case, the data path

proved to be much simpler and easier to develop than a pipelined design. As well, the

iterative implementations usually prove to be a excellent basis for the development

of a pipelined kernel.

After the external interface and software/hardware boundary had been decided,

the development of the KASUMI data path began by breaking it into the natural

boundaries imposed by KASUMI's subfunctions. The F I subfunction was considered

first with later functions building upon this data path hardware. Figure 7.3 shows the

fabric resources required to implement F I. As stated in Section 2.5.2, F I contains

Figure 7.3: Fl Subfunction

two S-boxes which are of unequal sizes. The 7-bit input/output S-box could be

implemented in a single LSM with a single DPU for accessing the table. The 9-bit

S-box could not be stored in a single LSM and was held in 4 chained LSMs with a

single DPU for accessing the table. The zero pad and truncate functions, Z E and

86

T R, required no additional hardware since the 7-bit values were already zero padded

out to 32-bits and the 9~bit value could be truncated with a simple mask operation.

The 16-bit subkeys K Ii were also stored in an LSM with two DPUs taking this subkey

and splitting it into 9-bit and 7-bit components before XORing with their respective

data. Once the key addition had been completed, the 7 and 9-bit components were

simply recombined to form the 16-bit output.

The FO subfunction contains three iterations of the previously described F I sub

function. Since this is an iterative design, only a single copy of the F I hardware was

required in the fabric. In a pipelined implementation multiple copies of this hardware

would be necessary. The hardware required for this function was relatively simple in

that the 32-bit data was simply split into two 16-bit halves before passing through

three iterations of key additions and the subfunction F I . Again, as in the previous

function, the 16-bit subkeys were stored in an LSM and retrieved at the appropriate

time. Figure 7.4 illustrates the reconfigurable fabric data path configuration. After

all iterations were complete, the resultant 16-bit halves were recombined to form the

32-bit output value.

The third and final subfunction of the KASUMI algorithm, F L, did not depend on

the previously described functions. As with FO, the F L function takes a 32-bit input

and produces a 32-bit output. Figure 7.5 details the data path elements required to

implement this function. Since the output of the first instruction as described in

Section 2.5.1 was used in the following instruction, the two instructions could not

be completed in parallel. Hence, the hardware for only a single pipelined rotate, as

described in Section 4.2.2, was necessary. As with previous functions, the subkeys

used by F L were held in an LSM and were accessed by a single DPU. The remaining

DPUs split the incoming data into its two 16-bit halves, held the new "right" and

"left" values and performed the other logical operations required by the function

definition.

87

[__ -·-· ···----··- ------·- ·· ·-··· ____ , ___________ ...)

Figure 7.4: KASUMI FO Subfunction

Once all subfunctions had been mapped to fabric resources, they were assembled

to complete the entire algorithm. Since this implementation was again iterative, only

a single copy of the hardware for each subfunction was necessary. If any subfunction

was required multiple times, the same hardware was simply reused in each execution.

Figure 7.6 shows the complete KASUMI data path. Note that the order of execution

of F L and FO depended on the current round and required an extra connection

between the two subfunctions on the data path . Also, the single 64-bit input and

output data was stored in two DPUs as in previously described designs.

The performance of this KASUMI implementation was estimated by following a

procedure very similar to the way it was designed. First, the execution time of each of

the subfunction data paths was estimated; then these estimates were combined t o find

the kernel's overall performance. The sub functions F I and F L were estimated to take

14 and 11 fabric clock cycles, respectively. FO's total execution time was dependant

88

J ' -----··1 : '
.

VJ
c:/

t -·---···· .. ··-··-_j
Figure 7.5: KASU'NH F L Subfunction

on FI and was estimated at 11 +FIx 3 = 11 + 14 x 3 = 53 clock cycles. Hence, the

overall KASU:MI kernel would require 4+ 16+8 x (F L+ FO) = 16+8 x (11 +53) = 528

clock cycles to encrypt 64-bits of data. With the CS2112 running at a clock speed

of 100 MHz, the kernel would have an approximate throughput of 12.03 Mbitsj s. Of

course, this estimate ignores the configuration and data transfer overhead that would

be present in a finalized application.

In order to improve the above performance figure, the algorithm's loops would have

to be unrolled where possible and a pipelined data path developed. For example, the

three iterations of the F I subfunction in FO could be done in three repetitions of the

F I hardware instead of a single reused one. However, as with previous designs the

CS2112 fabric does not have enough resources available to support a fully unrolled and

pipelined version of KASUMI. In the best case scenario a single round of the algorithm

could be pipelined, allowing a circular pipeline arrangement as described in the DES

89

-- -----------~

I l ____________ _

Figure 7.6: Full KASUMI Data Path

and AES kernels, but without further investigation no performance estimates can be

made.

7.3 RC4

The RC4 algorithm was a very simple algorithm requiring few computational oper

ations. The beginning of the algorithm involved a setup phase in which the 8-box

was initialized using the private key. While an important part of the algorithm, this

phase was only performed once at the start of encryption. Hence, this phase was

to be implemented in software with the initialized 8-box being passed into a kernel

that produced the output key sequence. RC4 was implemented on the CS2112 in an

iterative kernel quite easily; however, there was some difficulty in developing a high

speed implementation. As in the previous sections, this design focused primarily on

the development of the kernel data path. Only a rough outline of t he control unit

was developed.

90

The iterative kernel will produce a single 8-bit output with every iteration by

performing the operations in the keystream stage of the algorithm. Since this phase

is centered around a single substitution box, the design itself was developed in a

similar manner. A high level diagram of the RC4 data path is shown in Figure 7.7.

The data path memory requirement for the RC4 algorithm is extremely low and, as

DPU for
writingS;

and si
into S-box

S-box

Figure 7.7: Iterative RC4 Kernel High Level Diagram

DPU for
reading si. sj
and sl from

S-Box

----~~?

kout

can be seen in Figure 7. 7, the single 8 x 8 S-box used in the algorithm can be placed in

a pair of chained LSMs with a 32-bit output port or a single LSM with a 8-bit output

port. The previous configuration was chosen in this case for reasons discussed below.

These LSMs are accessed by a pair of DPUs functioning as reader/writer units. Also,

the variables i, j, Si, and Sj can be held in DPUs. However, some refinement of this

approach is possible which both saves space and time.

The variable i must be held in a DPU that either holds the current value or

increments i by 1. A mask on the input of this DPU was used above to accomplish

91

the "mod 255" operation as shown in Figure 7. 7. This would introduce a single clock

cycle period after an increment where the data at the output is not valid because

in the dock cycle when the ADD operation takes place, the output of the ALU is

not masked. This could be avoided if the reader/writer units consistently mask their

inputs to perform the modulo operation before the address is passed to the LSM.

Hence a combination of input masking on the reader /writer DPUs along with masking

on the i DPU would work correctly. However, since we were using two LSMs in 32-bit

output mode, another interesting method to eliminate the above masking presented

itself. The LSMs only use bits 2-9 of the provided 32-bit address in 32-bit output port

mode (bits 2-10 when two LSMs are chained together) to address a 32-bit position in

memory. Hence, the LSMs themselves can be used to mask their input addresses and

no input masking was required on either the j DPU or the reader/ writer DPUs. This

would not have been possible if the LSM was configured in 8-bit mode, since bits 0-9

would have been used to lookup a byte. In that case the above masking would have

been required. The output of the j DPU can be t reated similarly.

In the final step of the algorithm, a lookup into position Si + Sj produces the

8-bit output for a round. This addit ion was initially computed in a separate DPU.

However, this extra DPU was not necessary since the reader DPU could perform

the addition before passing the result to the LSM. The LSM addressing mechanism

described above handles the modulo operation.

The performance limiting factor of this RC4 implementation was its iterative

nature. A particular stag~ of the algorithm cannot proceed until the preceding stage

has completed. So, for example, the calculation of j and the subsequent lookup of Sj

cannot occur until the new value of i has been calculated. The diagram in Figure 7.8

illustrates these timing constraints with the elapsed clock cycles on the horizontal axis

and time increasing from left to right. There are also instances within a round where

some parallelization can be achieved to reduce the latency. This parallelization can

92

~!~P-~~]

r---- ----- ----------- ------------------------------ ---------------------------------------:> , n~
-··-··- ··---- ---- ---·--------·------ -··----------- ··-----··-----·"·-- ------------ ----------------------

¢:-.:-.:-:=-~
: 2 Clock :

Cycles

r--- ------"-----------'1 getS.
!-- --- ---- ---.-----_L ______ _
' ' .
' '

["" ___ __;._ - ·:-- ·---L---1
: Wnte S. ,
L-----..-------------J . ____ j

' ' ' '
' .
' ' '
r- ·-w~it9-sj ___ -~

!---------.---- - -!
' ' ' '
' '

· ~- ---Get-s~+s_-- 1
L-~ _ _ !__~_L_j

' ' ' ' ' ' - -' ' - -

Figure 7.8: RC4 Operation Timing

be seen as overlap between two operations in Figure 7.8. The first round of RC4 takes

15 clock cycles if the fabric setup time is ignored. Another level of parallelization can

be achieved between rounds since the computations for the second round can start

before the first round has completed. Hence after the first round, data was produced

at -a rate of 8-bits every 10 clock cycles. Therefore, at 100 MHz the final throughput

was approximately 80 Mbits/sec. It is very difficult to improve the performance of

the RC4 kernel beyond that of the implementation described above because of the

sequential nature of the operations involved. In fact , the greatest limitation to the

algorithms performance is the swap of table values. Without this write, the table

lookups could be interleaved or multiple copies of the table could be accessed at the

same time to achieve a much higher performance figure. However, the swap of table

values is a necessary part of the algorithm and cannot be ignored.

93

7.4 Summary

This chapter presented the high level designs for three cryptographic algorithms. The

first algorithm discussed was EO, a stream cipher used to provide security within the

Bluetooth protocol. The keystream generation portion of the algorithm could be

implemented using a number of DPUs to represent the LFSRs and a simple lookup

table, stored in an LSM, to implement the FSM. This EO design was estimated to

have a throughput of 7.14 Mbitsjsec. The second algorithm studied was KASUMI,

a block cipher used in the 3rd generation GSM standard. A high level design of an

iterative kernel was developed in a similar manner to the DES kernels, as both ciphers

have a Feistel structure and utilize S-boxes. The developed KASUMI design was

estimated to have a throughput of 12.03 Mbits/ sec. Finally, the stream cipher system

RC4, an algorithm used in many security applications, was analysed. Although RC4

is targeted toward high speed software implementation and mapped easily to the

CS2112 fabric, its structure could not fully take advantage of the CS2112's pipelining

capability. The high level design indicated that a RC4 kernel would have a throughput

of approximately 80 Mbits/sec.

94

Chapter 8

Conclusions

Through the course of this research a number of cryptographic algorithm implemen

tations were investigated on the Chameleon Systems CS2112 Reconfigurable Commu

nications Processor. Both DES and AES were investigated thoroughly with multiple

working kernels developed in each case. Preliminary design work was also completed

for the EO, KASUMI and RC4 algorithms and estimates of kernel performance were

made using these preliminary designs. The results of this work are summarized below.

In total, three DES kernels were developed with two kernels passing the synthesis

and mapping phase. These were tested with both the chip simulator and development

board after a final application was completed. Unfortunately, difficulties were encoun

tered which prevented a purely iterative version of t he kernel from being mapped to

the CS2112 fabric resources. Also, the synthesized pipelined kernel malfunctioned

due to either an error in the CS2112 synthesis tool or a bug in the CS2112 chip it

self. The iterative kernel, as expected, performed poorly with a throughput of only

27.5 Mbits/sec. The multiple pipelined kernel and pipelined kernel implementations

both performed respectably with throughputs of 306 and 322 Mbits/ sec, respectively.

The difference in throughput resulted from the data output writes that each of the

intermediate kernels must perform in the multiple kernel case. This gap should be

much wider on the actual chip since in the multiple kernel case the new key values,

95

as well as data, must be loaded into the newly activated kernels before processing

proceeds. This would add further delay to the multiple kernel solution and, as a

result, its throughput should decrease.

Two AES or Rijndael kernels were developed and tested with the chip simulator

and development board. Again the iterative version of the kernel performed quite

poorly with a throughput of only 75 Mbits/sec. However, the pipelined kernel pro

duced a throughput of 1.1 Gbitsjsec ~the highest throughput of any kernel developed

during the course of this research. With approximately 96.4% of the available DPUs

used in this kernel, it would be difficult to improve the performance beyond this point.

As stated above, preliminary analysis was also completed on the ciphers EO, KA

SUMI, and RC4. The EO kernel, with LFSRs having widths greater than 32-bits was

very costly to implement on the CS2112 in terms of both hardware and time. As

well, the initialization sequence was too complex to implement using the CS2112's

available control units. Hence, if . initialization was completed in software and the

starting values loaded into the kernel the throughput was estimated to be 7.14 Mbit

s/sec. This is well above the Bluetooth version 1.1 specification which supports a

maximum throughput of 720 Kbps. However, the EO kernel developed only imple

ments a portion of the Bluetooth security architecture. The KASUMI kernel was

also quite difficult to develop given the limited hardware resources avQ.ilable. The

12.03 Mbitsjsec throughput of the iterative kernel could be greatly improved by un

rolling theloops and developing a circular pipeline solution as in the DES case. In

fact, its performance could be very close to that of the pipelined DES kernel if more

hardware resources were available. RC4 presented a slightly different challenge since

it is an algorithm targeted toward purely software implementation. However, this

performance figure is still above the 2.4 Mbitsjsec connection speed available with

3G devices. The table value swap portion of the RC4 algorithm proved to be a lim

iting factor in the development of a high speed kernel and t he preliminary design's

96

estimated throughput of 80 Mbits/sec is almost maximal. Although the speeds ob

tained in these preliminary designs were not as high as those obtained with DES

and AES they should prove to be a good basis for future implementations on this or

similar processors.

In general, the Chameleon CS2112 performed quite well in cryptographic applica

tions, considering it was originally developed for digital signal processing. However,

there were a number of factors which limit the speed and complexity of algorithms

implemented in the CS2112's fabric. Firstly, many of the developed kernels were lim

ited in size by the amount of available fabric hardware. Resources such as DPUs and

LSMs were quickly used up. If the DES, AES and KASUMI algorithms could have

been fully unrolled the kernels could have operated on a continuous stream of data

and would have produce a full ciphertext per clock cycle after the pipeline had filled.

As well, the available control resources were not adequate to develop complex control

units. Secondly, the global and local routing matrix was not extensive enough to

allow the mapping of complex designs. A large kernel was difficult, if not impossible,

to successfully map to the fabric and required careful design and placement practices.

Thirdly, the tools provided for automated synthesis and placement of datapath and

control resources were very poor. In all cases, manual placement of resources was

required and with large designs this process was quite complex. As well, many of

the operations performed by the DPU elements are not required in cryptographic

applications and only a subset of their functionality was used. Finally, no hard

ware was provided for performing simple bit level operations such as permutations.

Hence, without further modifications to the architecture, the chip is constrained in

cryptographic applications.

The original intent of this research was to evaluate the performance of the CS2112

in encryption applications and this work as been completed. However, the following

are recommendations made for further research:

97

1. It is recommended that further algorithms are implemented on the CS2112 and

that other modes of data input, such as PIO are investigated. However, since

Chameleon Systems Inc. has ceased operations this may not be a possibility.

2. It is recommended that implementations which process data at a packet level

be developed. Again, this may not be a possibility.

3. It is recommended that the CS2112 architecture be used as the basis for a

new architecture targeted toward cryptographic applications. With modifica

tion, the CS2112 fabric's functional units and structure could produce a high

performance cryptographic processor.

98

References

[1] Internet Domain Survey. http : I /ww-w. isc. orglds: Internet Software Consor

tium, 2003.

[2] Telecommunications Industry Association Homepage. http: I l ww-w. tiaonline .

org: Telecommunications Industry Association, 2003.

[3] CERT Coordination Center. http: I lwww-. cert. org: CarnegieMellon Software

Engineering Institute, 2003.

[4] CERT/CC Statistics 1998- 2003. llttp:l/www-.cert.orglstatslcert_stats .

html: CarnegieMellon Software Engineering Institute, 2003.

[5} 10 Gigabit Ethernet Alliance Homepage. http: I l www. 10gea. org/index. htm:

10 Gigabit Ethernet Alliance, 2003.

[6} D. A. Buell, Splash 2: FPGAs in a custom computing machine. IEEE Computer

Society Press, 1996.

[7] R. Amerson, R. J . Carter, W. B. Culbertson, P. Kuekes, and G. Snider, "Teramac

- configurable custom computing," in Proceedings of the i 995 IEEE Symposium

on FPGA 's for Custom Computing Machines, pp. 32- 38, April 1995.

[8] R. D. Wittig, "OneChip: An FPGA Processor with Reconfigurable Logic,"

M.A.Sc, University of Toronto, 1995.

99

[9] J . R. Hauser and J. Wawrzynek, "Garp: A MIPS processor with a reconfigurable

coprocessor," in IEEE Symposium on FPGAs for Custom Computing Machines

(K. L. Pocek and J. Arnold, eds.), (Los Alamitos, CA), pp. 12-21, IEEE Com

puter Society Press, 1997.

[10] M. Lee, H. Singh, G. Lu, N. Bagherzadeh, and F. J. Kurdahi, "Design and

implementation of the morphosys reconfigurable computing processor," Journal

of VLSI S'ignal Processing Systems, vol. 24, no. 2, pp. 147-164, 2000.

[11] A. G. Konheim, Cryptography: A Primer. New York: John Wiley & Sons, 1981.

[12] B. Schneier, Applied Cryptography: Protocols, Algorithms, and Source Code in

C. John Wiley and Sons, 1996.

[13] A. J. Menezes, P. C. van Oorschot, and S. A. Vanstone, Handbook of Applied

Cryptography. CRC Press, 1997.

[14] D. Coppersmith, "The Data Encryption Standard andits Strength Against At

tacks," IBM Journal of Research and Development, vol. 38, May 1994.

[15] EFF DES Cracker Project. http: I /uww. eff. org/ des cracker: Electronic Fron

tier Foundation, 2001.

[16] J . J. G. Savard, "The Advanced Encryption Standard (Rijndael) ," tech. rep. ,

World Wide Web, http: I /home . ecn. ab. car j savard/ crypto/ co040701. htm,

2000.

[17] Specification for the Advanced Encryption Standard (AES). http: I I csrc. nist.

gov/publi cations/fips/ fips197 / fips-197 . pdf: National Institute of Stan

dards and Technology, 2001.

[18] The Official Bluetooth Wireless Info Site. http: I lwww . bluetooth. com: Blue

tooth Special Interest Group, 2003.

100

[19] D. Meyers, ed. , Bluetooth Specification Version 1.1: Volume 1.

http://www.bluetooth . org/foundry/specification/document/Bluetooth_

Core_%1.1_vol_1/en/1/Bluetooth_Core_1.1_vol_1 .zip: Bluetooth SIG,

2003.

[20] 3rd Generation Partnership Project Homepage. http : I /www . 3gpp. org: 3rd Gen

eration Partnership Project, 2002.

[21] 3rd Generation Partnership Project; Technical Specification Group Services and

System Aspects; 3G Security; Specification of the 3GPP Confidentiality and

Integrity Algorithms; Document 1: f8 and f9 Specification. ftp: I /ft p. 3gpp.

org/specs/2002-06/Rel- 5/35_series /35201-500. zip: 3rd Generation Part

nership Project, 2002.

[22] M. Matsui and T . Tokita, "MISTY, KASUMI, and Camilla Cipher Algorithm

Development," Mitsubishi ADVANCE, vol. 100, December 2002.

[23] 3rd Generation Partnership Project; Technical Specification Group Services and

System Aspects; 3G Security; Specification of the 3GPP Confidentiality and

Integrity Algorithms; Document 2: KASUMI Specification. ftp: I /ftp . 3gpp.

org/ specs/ 2002-06/Re 1-5 I 35 _series/ 35202-500 . zip: 3rd Generation Part

nership Project, 2002.

[24} J.P. Huber and M. W. Rosneck, Successful ASIC Design the First Time Through.

Van Nostrand Reinhold, 1999.

[25] J. Becker, A. Kirschbaum, F. Renner, and M. Glesner, "Perspectives ofReconfig

urable Computing in Research, Industry and Education," in FPL '98 (R. Harten

stein and A. Keevallik, eds.) , vol. 1482 of LNCS, (Berlin Heidelberg), pp. 39- 48,

Springer-Verlag, 1998.

101

[26] A. DeHon, "Role of Reconfigurable Computing," tech. rep., World Wide Web,

http://www. cs. berkeley. edu;-amd/reconfig_com_roundtable_oct96/, Oc

tober 1996.

[27] J. S. Rinaldi, "System On Chip: Taking the 'Hard' Out of Hardware," PDF

File 87K, World Wide Web, http: I /www. rtaautomation. com/ documents/

socoverview .pdf , 1999.

[28] R. ·Tessier and W. Burleson, "Reconfigurable Computing For Digital Signal Pro

cessing: A Survey," Journal of VLSI Signal Processing, vol. 28, no. 1, 2001.

[29] F. Granville, "Composing Music on the PC: A New Gig for Reconfigurable Com

puting," EDN, vol. 41, December 1996.

[30] R. D. Wittig and P. Chow, "OneChip: An FPGA Processor with Reconfigurable

Logic," in Proceedings of the IEEE Symposium on FPGAs For Custom Comput

ing Machines, 1996.

[31] J. E. Carrillo, "Evaluation of the OneChip Reconfigurable Processor," M.A.Sc,

University of Toronto, 2000.

[32] J. E. Carrillo and P. Chow, "The Effect of Reconfigurable Units in Superscalar

Processors," in International Symposium on Field-Programmable Gate Arrays,

February 2001.

[33] R. Jeschke, "An FPGA-Based Reconfigurable Coprocessor for the IBM PC,"

m.a.sc, University of Toronto, 1994.

[34] P. Grahm and B. Nelson, "Reconfigurable Processors for High-Performance, Em

bedded Digital Signal Processing," in Proceedings of the Ninth International

Workshop on Field Programmable Logic and Applications, August 1999.

102

[35] XC3000 Series Field Programmable Product Description. http: I I direct.

xilinx. comlbvdocslpublicationsl3000. pdf: Xilinx Inc., 1998.

[36] A. Takahara, "More wires and Fewer LUTs: A design methodology for FPGAs,"

in ACM/SIGDA International Symposium on FPGAs, 1998.

[37] M. F. Sakr, "Reconfigurable Processor Employing Optical Channels," in Pro

ceedings of the 1998 International Topical Meeting on Optics in Computing (OC

'98}, 1998.

[38] W. Luk, "Pipeline Morphing and Virtual Pipelining," in Field Programmable

Logic and Applications (W. Luk, P. Cheung, and M. Gleesner, eds.), vol. 1304 of

LNCS, (Berlin), pp. 111- 120, Springer-Verlag, 1997.

[39] S. Hauck, "The Roles of FPGAs in Reprogrammable Systems," Proceedings of

the IEEE, val. 48, pp. 615-628, April 1998.

[40] E. Ciner, M. Liberatori, and L. Lopardo, "Data Encryption Standard Implemen

tation," Latin American Applied Research, val. 30, no. 2, pp. 179- 184, 2000.

[41] S. Shepherd, "A High Speed Software Implementation of the Data Encryption

Standard," Computers and Security, vol. 14, no. 4, 1995.

[42] A. Pfitzmann and R. Abmann, "More Efficient Software Implementations of

DES," Computer Security, vol. 12, no. 5, 1993.

[43] D. C. Wilcox, L. G. Pierson, P. J. Robertson, E. L. Witzke, and K. Gass, "A DES

ASIC suitable for Network Encryption at 10 Gbps and Beyond," in Cryptographic

Hardware and Embedded Systems CHES '99 (C. Koc and C. Paar, eds.) , vol. 1717

of LNCS, (Berlin), pp. 37- 48, Springer-Verlag, 1999.

103

[44) H. Leitold, W. Mayerwieser, U. Payer, K. C. Posch, R. Posch, and J. Wolker

storfer, "A 155 Mbps triple-DES network encryptor," in Cryptographic Hardware

and Embedded Systems CHES 2000, vol. 1965 of LNCS, 2000.

[45] S. Trimberger , R. Pang, and A. Singh, "A 12 Gbps DES encryptor/Decryptor

core in an FPGA,n in Cryptographic Hardware and Embedded Systems CHES

2000, vol. 1965 of LNCS, 2000.

[46) M. McLoone and J. V. McCanny, "Single-Chip FPGA Implementation of the

Advanced Encryption Standard Algorithm," in Field-Programmable Logic and

Applications, vol. 2147 of LNCS, 2001.

[47] A. Dandalis, V. K. Prasanna, and J. D. Rolim, "A Comparative Study of Per

formance of AES Final Candidates Using FPGAs," in Cryptographic Hardware

and Embedded Systems CHES 2000, vol. 1965 of LNCS, 2000.

[48] H. Kuo and I. Verbauwhede, "Architectural Optimization for a 1.82Gbitsjsec

VLSI Implementation of the AES Rijndael Algorithm," in Cryptographic Hard

ware and Embedded Systems CHES 2001, vol. 2162 of LNCS, 2000.

[49] V. Fischer and M. Drutarovsky, "Two Methods of Rijndael Implementation in

Reconfigurable Hardware," in Cryptographic Hardware and Embedded Systems

CHES 2001 , vol. 2162 of LNCS, 2000.

[50] A. Lutz, J. Triechler, F. Gurkaynak, H. Kaeslin, G. Basler, A. Erni, S. Reich

muth, P. Rommens, S. Oetiker, and W. Fichtner, "2Gbit/s hardware realizations

of RIJNDAEL and SERPENT: A comparative analysis," in Cryptographic Hard

ware and Embedded System s CHES 2002, vol. 2523 of LNCS, 2000.

[51] B. Gladman, "Cryptography Technology," tech. rep., World Wide Web, http :

//fp.gladman.plus . com/cryptography_technology/index. htm, 2003.

104

[52] A. Satoh and S. Morioka, "Small and High-Speed Hardware Architectures for the

3GPP Standard Cipher KASUMI," in Information Security, vol. 2433 of LNCS,

2000.

[53] P. Kitsos, N. Sklavos, K. Papadomanolakis, and 0. Koufopavlou, "Hardware

Implementation of Bluetooth Security," IEEE Pervasive Computing, 2003.

[54] M. Roe, "Performance of Block Ciphers and Hash FUnctions- One Year Later,"

in Fast Software Encryption, pp. 359-362, 1994.

[55] L. E. Frenzel, "Cryptochips Help Eliminate The Security Bottleneck," Electronic

Design, March 2003.

[56] Broadcom Corporation Worldwide H omepage. http: I lwww . broadcom. com:

Broadcom Corportation, 2003.

[57] Cavium Networks Homepage. http: I lwww. cavium. com: Cavium Networks,

2003.

[58] Corrent - Internet Security at Light Speed. http: I lwww. corrent. com: Corrent

Inc., 2003.

[59) I. Andoni, P. Chodowiec, and J. Radzikowski, "Hardware Implementation of

IPSec Cryptographic Transformations," tech. rep., George Mason University,

2001.

[60] E. Monsanya, C. Teuscher, H. F. Restrepo, P. Galley, and E. Sanchez, "Cryp

toBooster: A Reconfigurable Modular Cryptograhpic Coprocessor," in Crypto

graphic Hardware and Embedded Systems CHES '99, vol. 1717 of LNCS, 1999.

[61) R. R. Taylor and S.C. Goldstein, "A High-Performance Flexible Architecture for

Cryptography," in Cryptographic Hardware and Embedded Systems CHES '99,

vol. 1717 of LNCS, 1999.

105

[62] M. Stebinsky, "CYPRIS An Application Specific REconfigurable Processor,"

tech. rep., World Wide Web, http: I /klabs. org/richcontent/MAPLDCon98/

Papers/pab1_stebinsky.pdf, 1998.

[63] Chameleon Systems Inc., CS2112 Reconfigurable Communications Processor

Data Book v1.3, July 2001.

[64] Chameleon Systems Inc., CS2112 Reconfigurable Communications Processor

Users Manual v1 .3, July 2001.

[65] M. 0. Saarinen, "A Software Implementation of the Bluetooth Encryption Al

gorithm EO," tech .. rep. , World Wide Web, http://www.jyu.firmjos/eO.c,

2002.

106

Appendix A

Verilog Examples

A.1 Rotate 11 bits Left Module

II
//Title: Rotate Data by 11 Left
//Author: Andrew Cook

II
// D escription : - Rotates data on dat a_in O in put by 11 to the l eft

II
II
II

rot_ctl se lects between two instruc tions to perform rotate
in st ru ct ion 0 must be followed by instruction 1 1 clock cyc l e l ater

'include " CS2112 _lnstru c tions . include"

module rotateleftbyll (elk, rst , data_inO, r otate d _o ut, roLctl);

input elk , rst;
input [31:0] data_inO;
input roLctl;
output [31 :0] rotated _out ;

w ire [31 :0] shift edlll;

//setup the input registers and ou t put
defparam roLdpu . A_REGJNITIAL_VALUE
defparam rot_dpu. B..REG_lNJTIAL_VALUE

r eg ister s
32' h0 ;
32'h0;

d e fparam rot _dpu . O_REG_INITIAL_VALUE = 32 ' hO ;

I/ defin e the instructions

/I Instruct ion 0
d efparam roLdpu .INSTRUCTIQN_O

defpararn roLdpu . INSTRUCTIQN_l

CS2112-DPU r oLdpu (
. r st(rst) ,
. e l k (c l k) ,
/ /A B input s
. b _inO(dat lLinO) ,
. a_ inO (rotated _o ut) ,
/ /Dpu Output
.dpu_output(rotated _o ut) ,
/ / CSM address

('OPA_l\IQ..REG I ' BO_I N I 'OPB..NO..REG
'LSL 1 'SHFT ...AMT _n 1 'ALU_p ASSB 1

'WADD..REG) ;

('AO_IN I 'OPA..NO..REG I ' BO_JN I
'OPB..NO..REG I ' LSR I 'SHFT ...AMT ..21
'ALU_QR I ' WAD_O..REG) ;

107

) ;

. csnLaddr({2'b0 , roLct l }) ,
// Ism connect ions
. lsm_addr () ,
. data_from~lsm ()

end module

A.2 Pipelined Rotate 11 bits Left Module

II
//Title : Pipelined Rotate by 11
//A utho.r: Andrew Cook

II
//Descr iption: Rotates data on data_inO input by 11 b i ts to the l eft

II
II
II

- no control lines necessary and ro t ated dat a appears 2 clock cycles after
e nter ing r otator hardware

' includ e "CS21 12 _lnstructions . inc l ude "
module piperotateleftby ll (elk , rst, data_inO, rotated_out);

input e lk , rst ;
input [31:0] data_inO;
output [31:0) rotated _ou t;

wire [31:0) s hift.edlll ;
//------------------------------------
1/ sh i ft I eft by 11

II

defpararn s h ift_ieftlLdpu .A..REG..INITIAL_VALUE
defparam shift_l eftlLdpu .B..REG..INITIAL_VALUE
defparam sh i ft_left ll _dpu . O..REG..INITIAL_VALUE

// Instruction 0

32'h0;
32'h0 ;
32'h0;

d e fparam s h ifLleftll _dp u . INSTRUCI'ION_O (' OPA._NO..REG I ' BO_IN I 'OPB..NO..REG
'LSL I 'SHFT_AMLll I 'ALUYASSB I
' LOAD_O..REG) ;

CS2112_DPU s hift_leftll _dpu(
. r st (rst),

) ;

II

.c l k(clk) ,
//A B inputs
. b _inO (d ata _inO) ,
/ /Dpu Output
. dpu_output(shift ed11 1) ,
/ /CSM address
.csm_addr(3'b000) ,
// Ism connections
. lsm_addr () ,
. d a ta_from _lsm ()

// s hift ri g ht by 2 1
II ------~-------------

defparam s hi fL r ight2Ldp u .A..REGJNITIAL_VALUE
d e fparam s hift_r i ght2Ldpu .B_REG..INITIALVALUE
d e fparam sh ift _ri g ht 2 1 _dpu . Q_REG..INITIAL_VALUE

32 ' h0
32'h0
32'h0

// Ins truct io n 0
d e fparam s hifLri g ht2l _dpu . lNSTRUCTION_Q (' AO_IN I 'OPA.N'O..REG I ' OPB..REG I

'LOAD..B..REG I ' LSR I 'SHFLAML21
'ALU_OR I ' LOAD_O..REG) ;

108

CS2112J)PU shifLright2Ldpu (
.rst(r st),

) ;

.clk(clk),
I /A B inputs
. a~inO (shifted 111),
. b_inO (data_inO),
I IDpu Output
. dpu_output(rotated_out) ,
I /CSM: address
. csm_addr (3 'bOOO) ,
//Ism connections
. lsm_addr () ,
. data_from_lsm ()

end module

109

Appendix B

Chameleon Preprocessor Example

B.l Original Code

#defin e N 16
!***!
I* d e f i n e the c h amel eon hardware f unc t ion here*/

!**************************~******************!

#pra gma CMLN.FUNC..DEF spne (int in d p. sboxl . Ism [N) , i n t in dp . sbox2 . Ism [N) ,
int in dp. sbox3 . Is m [N) , int in dp . sbox4. Ism [N),
int in dp .xor_dpu . dpu.o, int in dp.key _ls m . lsm [8],
int out *dp . xor_d p u. dpu. o)

i n t main(int a rgc, char *argv[])
{

I* give a pl ain t exh/

u n s igned int p ;
uns igne d int c r e f ;
uns igne d i n t ctest;

int i, j;
/* generat e a plaintex t */
fo r (j = O; j < 10; j++)
{

}

p = rand ();

/ * g enerate a random key matriX*/
fo r (i = 0; i < 4; i ++) keys [i] = rand();

I******* ***.*************************** *I
I* c all th e chameleon har dware fun c tion* /
! ************ ********** * ***************!
pragma Cl'vfLN.FUNC_CALL s pne () SLICES = (O: l)

spne(SPl , SP2 , SP3, SP4, p, keys, &ctest) ;

sp ne(SPl, SP2, SP3, SP4, p, keys , &cre f) :

i f (ctest == cref)
{

asm volatile ("mov_r8 , _ Ox l O");
}
e lse
{

asm vo latile (" mov-r8 ,_Ox20");

110

B.2 Chameleon Preprocessor Output

#define N 16

!************* ********************************!
/• (iefine the chameleon hardware f unction here*/
!***!
//#pragma CMLN_FUNC..DEF spne(int i n dp.sboxl.lsm{Nj, i nt in dp .sbox2. lsm[Nj ,

int in dp. sbox3 .Ism [NJ , int in dp. sbox4 .Ism [NJ,
int in dp.xor_dpu . dpu.o, int in dp.key _lsm.lsm [8],
int o ut • dp. xor_dpu : dpu . o)

int main(int argc, char •argv [])

/• give a plaintext*/

unsigned int p;
unsigned int cref;
uns igne d int ctest ;

int i , j;
/* gen e rat e a p la intext•/
for (j = O; j < 10; j++)
{

p = rand();

/* g enerate a random key matri x •/
for(i = 0 ; i < 4 ; i + +) k eys[i] = rand() ;

!**** ****** ********* *** ****** ** ********!
I* c all the chameleon hardware f u n ction • /
!**************************************!
// # pragma CMLNYUNC_CALL spne () SLICES=(O: 1}

/ • spne(SPl, SP2, S P3, SP4 , p , keys, f3 c test);• /

/• Beginning CMLN EBIOS Prim itives • /
{

}

s pne_cmln _O = CMLN_.ALLOCATKSLICE(O, 1 ,CMLN.BEQ) ;
Cl\1LN..LOAD_CONFIG(SOCFGADR, 1 , Cl\1LN..ACTIVE-PLANE, spne_CMLN_CONFIG.J3IT ..STREAM);
I* Load arr ays to hide load - config latency *I
CMLNJ'v10VE..VOCIDR(SODCSRO , Cl\1LN.READ, SP1, 4•(N) , Ox600);
CMLNMOVE..VOCIDR(SODCSRl , CMLN_READ, SP2 , 4 * (N), OxSOO);
CMLNMOVE..VOCIDR(SODCSR2, CMLN.READ, SP3, 4 * (N) , Ox400);
CMLN.l'v10VE..VOCIDR(SODCSR3 , Cl\1LN.READ, SP4, h(N), Ox200);
CMLN_MOVE..VOCIDR(SlDCSRO, CMLN.READ, keys, 32, OxO) ;
Cl\1LN.BET.DMA.AILOCATED (spne_cml n ~O, Oxlf) ; .
Cl\1LN_W AIT..FOR.CONFIG..LOADED(SOCSR , CMLN..ACTIVE-PLANE, CMLNYOLLING) ;
CMLN.l'viOVE..SCALAR(Cl\1LNJlEAD , (unsigned long} p, SOTODPU50);
CMLKWAIT..FOR.DMA(s pne _crnln _O , CMLN..ALL.Dlv1AS, CN!LNJ>OLLING) ;
CMLN_FJRE..SLICE(spn e_cmln_O, SOCSR , 1 , CMLN.BEQ);
CMLN_W AIT ...FOR.BLICE (SOCSR , Cl\!LNJ>OLLING) ;
CN1LN . .MOVE..SCALAR{ Cl\1LN_WRJTE, (uns igned long) & c test. , SOTODPU50) ;
CMLN.DEALLOCATKSLlCE(sp~e-cmln _O) ;

I* Ending CMLN Prirni t i v e .s *I

spne (SP1, SP2, SP3, SP4, p, keys , &c r ef);

if (ctes t == cre f)
{

111

asrn volatile ("rnov-r8 ,-OxlO") ;
}
else

asrn volatile ("mov- r8,-0x20") ;

112

Appendix C

IP Data Path Verilog Module

II
I I In it i a) Permutation Datapath for DES
I I Author: Andrew Cook
I I Created : feb 26 , 2002

II
I I Description:
I I IP Datapath for DES . .. Ope rates on 128 p l aintext values in two LSMs . .

'include "CS2 112 _Instructions . include"

module JP _dp(c lk , rst, data _gen _ct l, right_data_out , l e fLd a ta _out) ;

input elk ;
input rst;
input [1 : OJ data_ge n _ctl;

output [31 :0) righLdata_out, l e fLdata _o ut;

//interna l wJrmg
wire [31:0) r i g hLin , lefL in ;
wire [3 1 : 0) dpuLout, dpu2_out, dpu3 _out , dpu4 _out;
w ir e [31: 0) dpu5_out , dpu6 _out , dpuLout , dpu8_out;
w ire [31 :OJ dpu9_out, dpulO_out , dpulLout, dpul2 _out;
w ire [3 1:0) dpul3_out , dpu14 _out, dpu15_out , dpul6_out ;
wire [3 1:0) dpul7_out , dpul8_out , dpu19_out, dpu20_out;
wir e [31: 0) dpu2Lout , dpu22_out , dpu2 3_out;

11-------- ------------
1/ DATA GENERA1DRS

II

pp_rd_ a ddr_g e n r ighLdata (.elk (e lk),
. rs t (rst) ,
. data- o ut (ri g h L in).,
. add_ge n _ct l (data_gen_ct l)) ;

pp _rd_a ddr_ge n l e fLd a t a (. e l k (elk),
. rst(rst) ,
. data_o ut(lef t_ in) ,
. a dd_g en _ct l (dat a _g en _c tl)) ;

~-------------------------------

113

// Inner IP DPU' s
/1--------------------------------------

d efparain dpul. A_R.EG_INITIAL_VALUE = 32' h OfO fO f O f;
/ / mask for l eft input
d efparam dpul .B_R.EG_INITIAL_VALUE = 32 ' hOfOfOfOf;
defparam dpul.O-REG_INITIALVALUE = 32 ' h0 ;

// Instruct ion 0
d e fparam dpul.INSTR.UCTION_O

CS2112_DPU dpul (
.rst(rst) ,
.clk(c lk) ,
//A B inputs

) ;

. a _inO (righL in),

. b_inO(lefLin) ,
/ /Dpu Output
. d pu_ou tput (dpuLout),
/ / CSM addre ss
. csm_addr (3 'dO) ,
/ /Is m connections
. lsm_addr () ,
. data_from_]sm ()

(' AO_JN I 'OPAAND.MASK I ' BO_IN I 'OPB..AND..MASK
' LSR I ' SHFT .AMT A I 'ALU.XOR I ' LOAD_O_R.EG) ;

d e fparam dpu2 .A-REGJNITIAL_VALUE = 32 'hO ;
//mask for l e ft input
d efparam dpu2 . B-REG_INITIALVALUE = 32 ' hO ;
defparam dpu2 . 0-REGJNITIALVALUE = 32 ' hO ;

// Inst ru ction 0
d efpar a m dpu2 .INSTRUCTION_O

CS2112_})PU dpu2 (
.rst(rst) ,
. clk(c lk) ,
//A B inputs
.a_inO(l efLin),
. b_inO(dpuLout) ,
/ / Dpu Output
. dpu_output .(dpu2_out),
/ /CSl\1 address

(' AO_IN I ' OPA.REG I ' LOAD.A-REG I 'Bo_IN I ' OI:B..NO.REG I ' LSL I
' SHFT .AMTA I 'ALU_)(OR I ' LOADD-REG) ;

. csm_addr(3 ' d0) , // Ism co nn ections

. lsm_addr () ,

. data_from _lsm ()
) ;

defparam dpu3.A-REG_INITIAL_VALUE = 32'h0;
//mask fo r l e ft input
defparam dpu3 . B_REG_INITIAL_VALUE = 3 2 ' hO ;
d e fparam dpu3 . 0 -REG_INIT1AL_VALUE = 32 ' h0 ;

// Ins truction 0
d e fparam dpu3. INSTR.UCTION_O

CS2U2_DPU d pu;3 (
.rs t(rst) ,
.clk(c lk),
//A B input s
. a _inO(r i g h L in) ,
. b _inO (dpuLout),
/ /Dpu Ou t put
. dptLou tp ut (dpu3_o ut) ,
/ /CBM address

(' AO_IN I 'OPA-REG I ' LOAD.A-REG I ' BO_IN I ' OPB..NO-REG I
' ALU_)(OR I 'LOAD_O-REG) ;

114

. csm_addr (3 'dO) ,
// Ism connections
. lsm_addr (),

//Ism connect ions

. data _from_lsm ()
) ;

defparam dpu4 .A_REG_INITIAL_VALUE = 32' hOOOOffff;
// mask for b input
defparam dpu4. B..REG.JNITIAL_VALUE = 32 'hOOOOffff;
defparam dpu4. O..REG_INITIAL_VALUE = 32 'hO;

// Inst ruction 0
defparam dpu4. JNSTRUCTION_O = (' AO _JN I 'OPAAND..MASK I ' BO_JN I ' OPB..AND..MASK I 'LSR I

'SHFT .AMT _16 I ' ALU.XOR I ' LOAD_O..REG) ;

CS2112_DPU dpu4 (
. rst(r s t) ,
.clk(clk),
//A B inputs
. a_inO (dpu3_out),
. b_inO (dpu2_o ut) ,
/ /Dpu Output
. dpu_o utput (dpu4_out) ,
/ /CSM add ress
.csm_addr(3 ' d0), //Ism con nect io n s
//Ism con nect ions
. lsm_addr () ,
. data_from _ls m ()

) ;

d efparam dpu5.A_REG_INJTIAL_VALUE = 32 ' h0;
/ / mask for l e ft in put
defparam dpu5 . B_REG_INITIAL_V ALUE = 32 ' hO ;
defparam dpu5. O..REG_INITIAL_VALUE = 32 ' hO ;

/ / Instruction 0
defpararn dpu5. INSTRUCTION_O = ('AO_I N I 'OPA..REG I ' LOAD..A..REG I ' BO_IN I ' OPB.NO..REG I ' LSL I

' SHFT .AM'L16 I 'ALU.XOR I 'LOADD..REG) ;

CS2112..DPU dpu5 (
.rst (rst),
.c lk (clk),
//A B inputs
. a_ inO (dp u2 _o ut) ,
. b_inO (dpu4_out) ,
/ /Dpu Output
. dpu_output (dpu5-o u t),
/ /CSM address
. csm_addr (3 ' dO) , // Ism connections
// Ism con nection s
. lsm _a dd r () ,
. data_from _l sm ()

) ;

defparam dpu6. A_R.EG _TNITIAL_VALUE
//mask for l eft input
defparam dpu6 . B_REG_INITIAL-VALUE
defpararn dpu6 . O..REG_INITIAL_VALUE

// Inst ru ctio n 0

= 32' h0 ;

32'h0 ;
= 32 ' h0 ;

defparam dpu6 . INSTRUCTION_O (' AO_IN I 'OPA..REG I ' LOAD.A..REG I 'BO-IN I 'OPB.NO..REG I
' ALU.XOR I ' LOAD_OJ\EG) ;

CS2112_DPU dpu6 (
.rst(rst) ,
.clk(c l k) ,

115

) ;

//A B inputs
. a_i n 0 (dpu3_out) ,
. b_inO (dpu4-out) ,
//Dpu Output
.dpu_output(dpu6_out) ,
//CSM address
. csnLaddr (3 ' dO), // Ism connections
/ / Ism connect ions
. lsm_addr () ,
. dat a_from-lsm ()

defparam dpu7. A_REG_INITIAL_VALUE = 32 ' h333333 33;
// mask for l e ft input
defpararn dpu7 . B..REG_INITIALVALUE = 32 ' h33333333;
d efparam dpu7 . O_REG_INITIALVALUE = 32 ' hO ;

// Instru c tion 0
defpa.ram dpu7 .JNSTRUCTION_Q = (' AO_IN I ' OPA._AND..MASK

'SHFT _AMT _2 I 'ALU..XOR

CS2112-DPU dpu7 (
.rst(rst) ,
. c lk (c lk) ,
//A B inputs

);

. a _inO (dpu5_out),

. b_i nO (dpu6_out) ,
/ / Dpu Output
.dpu_output{dpu7_out),
/ /CSM a ddress
. cs m _addr{ 3' d0) , // Ism connections
// Ism connections
. lsm_addr () ,
. da.ta_from_l s m ()

d efpa ram dpu8 . A_REG_INITIAL_VALUE = 32 ' h0 ;
/ / mask fo r l e ft input
defparam dpu8 . B..REG_INITIAL_VALUE = 32 'hO ;
defpara m dpu8. O..REG_INITIALVALUE = 3 2 ' hO ;

/ / In s truc tion 0

' BO_IN I 'OPB..AND..MASK I 'LSR I
' LOAD_O..REG) ;

d efparam dpu8 . INST RUCTION_O = (' AO_IN I ' OPA..REG I ' LOAD_A..REG I ' BO_JN I ' OPB.NO..REG I
'ALU..XOR I ' LOADD..REG .) ;

CS2112_DPU dpu8 (
.rst(rst) ,
. c lk{clk) ,
//A B inputs
. a _inO (dpu5_out) ,
. b_inO (dpu 7 _out),
/ / Dpu Output
.dpu _o ut put {dpu8_out) ,
//CS.Vf. a ddress
.cs m_addr{ 3 ' d0) , / / Is m conn ecti o n s
// Is m co nn ect ion s
. lsm_a ddr () ,
. data _from _ls m ()

) ;

d efpa rarn dpu9 . A..REG_INITIAL VALUE = 3 2 ' hO ;
//mask for l e f t input
d efpa r a m dpu9 . B-REG_INITIAL_VALUE = 32 ' hO ;
d e fparam dpu9. O_REG_INITIALVALUE = 32 ' hO ;

// Ins tru c tion 0
d e fparam d pu9 . INSTRUCI'ION_O = (' AO_I N I 'OPA..REG I ' LOAD_r\ ..REG I ' BO_IN I ' OPB.NO..REG I ' LSL I

116

' SHFT .AMT .2 I 'ALUXOR I 'LOADDJlEG) ;

CS2112..DPU dpu9 (
.rst(rst),
. elk (elk) '
//A B inputs
. a_inO (dpu6_out) ,
. b_inO (dpu7 _out) ,
/ /Dpu Output
. dpu_output (dpu9_out) ,
/ /CSM address
.csm_addr(3 ' d0), // Ism connections
//Ism connectio n s
. lsm _addr () ,
. data_from_lsm ()

) ;

defparam dpulO.A_REGJNITIALVALUE = 32 ' h00ff00ff;
//mask for l eft input
defparam dpulO.B_REGJNITIAL_VALUE = 32'h00ff00ff ;
defparam dpulO.O-R.EGJNITIAL_VALUE = 32'h0;

// Instruction 0
defparam dpulO .INSTRUCTION_O = ('AO_JN I 'OPA.AND.l..fASK

'SHFT .AMT _s 1 'ALU.XOR

CS2112_DPU dpu 10 (
. rst(rst) ,
.clk(c lk) ,
//A B inputs
. a_ inO (dpu8_out),
. b_inO (dpu9_out),
/ /Dpu Output
. dpu_output (dpulO-out),
/ /CSM address
. csm_addr(3'd0) , / / Ism con n ections
// Ism connections
. lsm_addr () ,
. data_from_lsm ()

) ;

d e fparam dpu12 .A-REG_INITIAL_VALUE
/ / mask for l eft in put
defparam dpu12 . B_REGJNIT IAL_VALUE
defparam dpu12. O_REGJNITIAL_VALUE

// Instr u ctio n 0

32'h0;

32' h0;
32' h0;

' BQ_IN I ' OPB.AND.MASK I ' LSR I
' LOAD_OJlEG) ;

d e fparam dpul2 .JNSTRUCTION_O ('AO_IN I 'OPAJlEG I ' LOAD.AJlEG I 'BO_IN I ' OPB..NOJlEG I 'LSL I
' SHFT .AMT ..8 I 'ALU...XOR I ' LOAD_O..REG) ;

CS2112_DPU dpul2 (
. r s t(rst) ,
. clk (c lk) ,

) ;

/ / A B in p ut s
. a _inO (dpu9_o ut),
. b _inO (dpulO_out) ,
/ /Dpu Output
.dpu_output(dpul2 _out) ,
/ / CSM addre ss
. csm _addr(3 ' d0) , / / Is m
/ / Ism connec tions
. ls m _addr () ,
. d a t.a _from _ls m ()

conne c t ions

d efpa r a m dpull . A~REG_INITIAL_VALUE 3 2' h0;

117

//mask for left input
defparam dpull .B_REGJNITIAL_VALUE = 32'h0 ;
defparam dpull. O_REGJNITIAL_VALUE = 32 'hO;

// Instruction 0
defparam dpull .INSTRUCTION_O

CS2112_DPU dpull (
.rst(rst),
.clk(clk),

) ;

//A B inputs
. a_inO (dpu8_out),
. b _i n O (dpulO_out),
/ /Dpu Output
.dpu_outpu t(dpull_out),
/ /CSM add r ess
.csm_addr(3'd0) , / / Ism
//Ism connections
. lsm_addr () ,
. data_from-lsm ()

('AO_IN I ' OPA_REG I 'LOAD.A.REG I 'BO_IN I ' OPB..NO_REG I
'ALU..XOR I 'LOAD-O..REG) ;

connections

defparam dpul3 .A_REGJNITIAL_VALUE == 32'h0;
//mask for left input
defparam dpu13 .B_REGJNITIAL_VALUE = 32 'hO;
defparam dpul3. O_REGJNITIALVALUE = 32 'hO;

// Instruction 0
defparam dpu13 . INSTRUCTION_O

CS2112_DPU dpu 13 (
. rst(rst) ,
.clk(clk),

) ;

//A B inputs
. a_ inO(),
. b _inO (dpul Lout) ,
//Dpu Output
.dpu_output(dpul3_out) ,
//CSM address
. csm _addr{3 ' d0) , / / Is m
/ /Ism connect ions
. ls m _addr () ,
. data _from_l s m ()

(' BO_J N I ' OPB_REG I ' LOAD..B..REG
'ALU_P ASSB I ' LOADD_REG) ;

connec tions

defparam dpu14 . A_REGJNITIAL_VALUE == 32'h0;
/ /mask for l e ft input
d efparam dpul4 .B..REGJNJTIAL_VALUE = 3 2 'h0;
d e fpa r a m dpul4 .O..REGJNITIAL_VALUE == 3 2 'hO;

// In s tru c tion 0
d e fpa ra m dpul4 .lNSTRUCTION_Q

CS2112_DPU dpu14 (
. r s t(r s t),
. c lk(clk) ,
/ /A B inpu ts
. a _inO {) ,
. b _inO (dpul 2_out),
/ /Dpu Output
. dpu_output(dpu l 4_out) ,
/ /CSM a ddress
.csm_addr(3' d0), // Is m

(' BO_lN I ' OPB..NO.REG I ' LSL I 'SHFT..AMT_l I
' ALU_PASSB I 'LOAD_O_REG) ;

connecti ons

118

) ;

//Ism connect ion s
. lsm_addr () ,
. data_from_lsm ()

defparam dpu15.A_REGJNITIAL_VALUE = 32'h0 ;
//mask for left input
defparam dpu15.B_REGJNITIAL_VALUE = 32'h0;
defparam dpu15. O..REGJNITIAL-VALUE = 32 ' hO;

// Instruction 0
defparam dpu15 .INSTRUCTION...O

CS2ll2_DPU dpu l 5(
.rst(rst),
. e lk (elk) ,
//A B input s
. a _inO(dpul4-out),
. b_inO (dpul2_out) ,
/ /Dpu Output
.dpu_output (dpu15-out) ,
/ fCSM address

('AO_JN I 'OPA.NO..REG I ' BO_JN
'LSR I ' SHFT ..AMT ..31 I 'ALU_OR

. cs m _addr (3 'dO), // Ism connections
// Ism connect ions
. lsm_addr (),
. data_from _ls m ()

) ;

defparam dpul6. A..REGJNITIAL_VALUE = 32 ' haaaaaaaa ;
//mask for left input
defparam dpu16 .B_REGJNITIAL_VALUE = 32 ' haaaaaaaa ;
defpa ram dpu16.0_REGJNITIAL_VALUE = 32 ' h0;

/ / Instruction 0

' OPB..REG I ' LOAD...B..REG
' LOAD_O..REG) ;

defparam dpul6 . INSTRUCTION_O ('Ao_IN 1 ' OPA..AND.MASK 1 'BO_IN 1 ' OPB..ANDJv1ASK 1
'ALU..XOR I 'LOADD..REG) ;

CS2112_DPU dpu16(
.rs t(rst),
. elk(elk),

) ;

//A B inputs
. a_inO (dpu l3_out) ,
. b _inO (dpul5_out.),
/ /Dpu Output
. dpu _o utput (dpul6_out),
/ /CSM address
. csm _addr (.3 ' dO) ,
/ / Ism co nn ec tions
. lsm_a ddr () ,
. data_from _fs m ()

defparam dpu1 7 . A_REG_JNIT IAL-VALUE = 32 ' hO;
f /mask for l e ft input
d e fparam dpu17 . B_REGJNITIAL_VALUE = 32 ' hO;
defparam dpu17 . O..REGJNITIAL_VALUE = 32 ' hO;

// Ins truction 0
defpararn dpu 17. JNSTR.UCTION_O

CS2ll2_DPU dpu17(
.rs t(rs t) ,
.clk(clk) ,
j /A B in p u t s

('AO_IN I 'OPA..REG I 'LOAD..A..REG I 'BO_IN I 'OPB.NO..REG I
' ALU..XOR I 'LOADD..REG) ;

119

) ;

. a_inO (dpul 3_out),

. b_inO (dpul6_out),
/ /Dpu Output
. dpu_output (dpu1 7 _o ut),
/ /CSM address
. csm_addr (3 ' dO) ,
J / Ism connections
.lsm_addr () ,
. data_from_l s m ()

defparam dpul 8. A_REG_INITIAL_VALUE = 32 ' h0;
J /mask for l eft i nput
defpara m dpul8 . B-REGJNITIAL_VALUE = 32' h0 ;
defpa ram dpul8.0_REGJNITIAL_VALUE = 32 ' h0 ;

// In st ru ct ion 0
defparam dpu 18 .INSTRUCTION_O

CS2112.J)pU dpu18 (
. r st(rst),
.clk(clk),

) ;

/ /A B inputs
. a_ i nO (dpuJ5 _o u t) ,
. b_inO (dpul6_out),
/ /Dpu Output
. dpu_output (dpul8_o ut),
J /CSM address
. cs m_add r(3 'dO),
J / Ism co n nections
. ls m_a ddr () ,
. data_from_lsm ()

('AO_IN I 'OPA.llEG I ' LOAD.AJillG I ' BO_IN I ' OPB..NO..REG I
'ALUXOR I ' LOAD_0..REG) ;

d e fparam dpul9.A_REG_INITIAL_VALUE =
J / mask for l e f t in put

32'h0;

d e fpa ram dpu19 . B_REGJNITIAL_VALUE
defpara m c:lpul9 . O_R.EG.JNITIAL_VALUE =

32 ' h0;
32 ' h0;

// I nst ruction 0
d e fparam dpul9 .INSTR.UCTION_O

CS2112_DPU dpu1 9(
.rst (rst),
. cl k (cl k),

) ;

//A B in p uts
. a _in O () ,
. b _inO (dpu17 _out),
//Dpu Output
. dpu_ou tput (dpul9_out) ,
/ /CSM address
. csm _addr (3 'dO) , / / Ism
// Is m co nn ect ions
. ls m _a ddr () ,
. data_from _Js m ()

(' BO_IN I ' OPB..REG I ' LOAD..B..REG
'ALU_PASSB I 'LOAD_O..REG) ;

connections

defp aram dpu20 . A..R.EGJNITIAL_VALUE = 3 2 ' hO ;
//mask for l e f t input
defparam dpu20 . B-REGJNITIAL_VALUE = 32 ' hO;
defparam dpu20 . 0 _REGJNITIAL_VALUE = 32' h0;

// Inst ruct ion 0
defparam dpu20. INSTRUCTION_O = ('BO_JN I 'OPB..REG I ' LOAD..B..REG I

120

'ALU..PASSB I ' LOADD..REG) ;
CS2112_DPU dpu20 (

. rst(rst) ,

.c l k(clk),
//A B inputs
. a~ inO(), ·
.. b_inO (dpul8_out) ,
/ /Dpu Output
. dpu_output(dpu2Q_out),
/ /CSM add r ess
.csm_addr(3'd0), / / Is m connect ions
// Ism con n ect ion s
.. lsm_addr () ,
. data_from_lsm ()

) ;

defparam dpu21.A..REGJNITIAL_VALUE = 32 ' hO;
//mask for l e ft input
defparam dpu2l.B-REGJNITIAL_VALUE = 32 ' hO;
defparam dpu21. O..REG..INITIAL_VALUE = 32 ' hO;

// Instru ct ion 0
d efparam dp u21 . INSTRUCTION_O = ('BO .. IN I 'OPB..REG I 'LOAD .. RREG

'ALU..PASSB I 'LOAD_O..REG) ;
CS2112_DPU dpu21 (

.rs t(rst),

.clk(clk) ,
/ /A B inputs
. a .. inO (),
. b .. inO (dpu20 .. out) ,
/ /Dpu Output
. dpu_output (righLdata .. o ut) ,
/ j03M. address
. csrn_addr(3'd0) , / / Ism connect ions
// Ism connections
. lsm_addr (),
.. d ata_from_lsrn ()

);

defparam dpu22 . A..REG_JNITIAL..VALUE = 32 'hO;
//mask for I eft input
defparam dpu22 .. B_REGJNITIAL..VALUE = 32 ' hO;
defparam dpu22. O..REGJNITIAL..VALUE = 32 'hO;

/ / Instruct ion 0
d e fpa ram dpu22. INSTRUCTION_Q = ('AO .. IN I ' OPA..NO..REG I ' BO_IN I ' OPB..NO..REG I

' LSL I ' SHFTAMT _l I 'ALU..P ASSB I ' LOAD_O..REG) ;

CS2112_DPU dpu22 (
. rst(rst) ,

) ;

.. elk (elk) '
/ /A B inputs
.. a _inO (),
. b _inO (d pul9 .. out) ,
/ /Dpu Output
. dpu_output(dpu2 2_o ut) ,
/ /CSM a dd r ess
. csm _addr (3 ' dO) ,
//Ism conn e c t i o ns
.. lsm _addr () ,
.. data .. from .. lsm ()

d e fpara.m dpu23 .. A .. REGJNITIAL .. VALOE
//mask for l e ft input
d e fp ar a m d pu23 .. B...REG..INITIAL..VALUE

32 ' h0;

3 2 'h0 ;

121

defparam dpu23. O_REG_INITIAL_VALUE = 32 'hO;

/ / Instruction 0
de[param dpu23 . INSTRUCTION_O

CS2112_DPU dpu23 (
. rst (rst) ,

) ;

. elk (cl k),
//A B inputs
. a_inO (dpu22_out),
. b_inO (dpul9_out) ,
/ /Dpu Output
. dpu_output (l e ft_data_out),
/ /CSM address
.csm_addr(3'd0) ,
// Ism connections
. lsm_addr (),
. data_from_lsm ()

endmodule

('AO_JN I ' OPA..NOJlliG I 'BO_I N
'LSR I ' SHFLAMT _31 I 'ALUDR

122

'OPBJlliG I ' LOAD..BJlliG
' LOADD.REG) ;

Appendix D

Testbench Examples

D.l Verilog Testbench

%
% P ipelined DES Verilog Testbench
%
% Creat ed by: Andrew Cook
%

module DEStb;

r eg elk , rst;
r eg start ;
wire done;

% pipel in ed des module
DES destotal (.elk (elk) ,

. rst{rst),

. start (start),

. done (done)) ;

initial e lk < = 1; a lways @(e lk) elk<= #5 -e lk ;

initial begin
rst = 0;

s tart = 0 ;
%inpu t plainte xts
'include " data2 . in c lud e"

%input s-boxes and subkeys
' inc lud e "s_box . include"
' i nclude " key_Jsm . include"
#10;
rst =1'bl;
10;
rst = 1 ' bO;
#80;
%star t t h e fabri c funct i on

end

s tart
10;

1 ' bl;

s t art 1 ' b0;
4000

$ finish ;

%output s igna l s to .signal scan fil e
i nitia l begi n

$s h m _ope n(" DES . shm ") ;
$s hm_probe(" AS", destotal) ;

e nd

123

endmodule

D.2 C Testbench

I* DES Testb enc h Main
* Created by: Andrew Cook

*
*Mo difi cations also made to d3 des.c to a llow chameleon hardware ca ll s

*I

#include " d3des. h "

int
main (void)

char key[8] = {O x 01 , 0 x 23, 0 x45 ,0 x67,0x89 , 0 x0ab,Ox0cd , Ox0ef};
int numPla intexts = 15;
char p l a intext [num P iaintext s*8) ;
char c iphertext [numPlaintext s *8];
char c iph er t ex t soft [numPlaintexts *8] ;
char si n g lept (8];
c h a r s i n g I e c t [8] ;
int i , j;
int okay = 1 ;

f* ini t ialize th e pl a i n t exts*/
for (i = 0 ; i < numPlaintext s *8; i ++)
{

plaintext [i1 = (char) i;
}

f* call th e CS2112 hardware function in d3des. c * I
des key (key ,ENO) ;
desblock(p l a intext, c iphertext , numP!ai ntexts) ;

f* now do i t using soft ware fun ction for a check* /

for (i = 0; i < numPlaintexts; i ++)
{

}

for (j =0; j <8; H+)
{

s ingl e pt (j 1= p lain text [8* i+j 1;
}
I* st i ll a software fun c tion
des(si n g l ept, sing l e ct) ;
for(j = O; j < 8; H+)
{

c a ll e d des *I

c iph e rt ex t so f t [i*8+j]=s in glect [j 1 ;
}

for (i = 0 ; i < numP!a int exts *8 ; i++)
{

if (c iphe rt ext [i 1 ! = ciphert e xt s oft [i 1)
{

okay = 0 ;
}

I* f o llo wing code i s for D ev e lopment M odu le T est ing *I
if (oka y == 1)
{

asm v o lat i le (" mov~r8 , ~O x10 ") ;

}

124

else
{

asm volatile ("mov-r8 ,-O xff");
}

return{O);

I* Pip e lined DES T estbench
* Original Code Modi f ied by: A n drew Cook

*I

I* DSDES (V5.09)

*
*A portable , p u bl ic domain , version of the Data Encryption Standard .

* * Written with Symantec 's THINK (Lightspe ed) C by Richard Outerbridge.
* Thanks to: Dan Hoey for his excellent I nitial and I nverse p ermutati on
* code; Jim Gil l ogly & Phil Karn fo r the DES key schedule code; D ennis
* Ferguson, Eric Young and Dana How f or comp aring notes; and Ray L au ,
* f or humouring me on .

*
*Copyright (c) 1988,1989, 1990 , 1991 , 1992 by Richard O u t er bridge .
*(GEnie OUTER; CIS: {7 1755 ,20 4}) Graven Imagery, 1992 .

*I

#include "d3des. h "
#include <stdio .h>

#pragma CMLN..FUNC..DEF DES(in long IP _datapath. right_data . lsm _O. Ism [1 6 J , in long IP _datapath. lefLda1

static void scru n c h (unsig ned char *, uns igned long *);
static void unscr un (unsigned long *, unsigned char *);
stat ic void d esfun c {unsigned long *• unsigned long *) ;
stat ic void coo key (unsigned long *);

unsigned lon g __ attr ibu te- - ((al igned (16))) leftp l a int exts [13] ;
unsigned long __ attr ibu te __ ((a l igned (16))) r igh tplaintexts [1 3];
unsigned long __ attribute __ ((a li gned (16))) eve nkeys[16];
unsigned long __ attribut e __ ((ali g n e d (16))) oddkeys[l6];
unsign e d long __ attr i b ut e __ ((a l i g n e d (16))) l eftciphe rt exts [1 3];
unsigned long __ attr i b u te __ ((a li gned {16))) r i ghtciphertexts [1 3] ;
static unsigned long __ at tribu te __ ((al i gned (16))) SP1[64] = {

Ox01010400L , OxOOOOOOOOL, OxOOOIOOOOL, Ox01010404L,
Ox01010004L , 0 x00010404L , 0 x00000004L , 0 xOOOlOOOOL ,
Ox00000400L, Ox01010400L , Ox 01010404L, Ox00000400L,
Ox01000 404L, Ox 01010004L , OxOlOOOOOOL , Ox00000004L,
Ox00000404L, Ox01000400L, Ox01000400L, Ox00010400L,
Ox00010400L , Ox01010000L , Ox01010000L, Ox01000404L,
Ox00010004L , Ox01000004L , Ox01000004L, Ox00010004L,
OxOOOOOOOOL , 0 x00000404L , 0 x0001 0404L, 0 x01000000L,
Ox00010000L , Ox0 1010404L, Ox00000004L , Ox01010000L ,
Ox01010400L, 0 xOlOOOOOOL , 0 x01000000L , 0 x00000400L ,
Ox 01010004L , 0 x 00010000L, 0 x00010400L , 0 xOl 0000041 ,
Ox00000400L , Ox 00000004L , Ox01000404L , Ox 00010404L,
Ox01010404L , Ox0001000<1L , Ox01010000L, Ox 01000404L,
Ox 01000004L , 0 x 00000404L , 0 x00010404L , 0 x 01010400L ,
Ox 00000404 L , 0 x01000400L , 0 x 01000400L , 0 xOOOOOOOOL ,
Ox 00010004L , 0 x00010400L , 0 xOOOOOOOOL , 0 x 01010004L } ;

static unsigned long __ attribu te -- ((ali g n ed (1 6))) SP2[64] = {
Ox80108020L , 0 x80008000L , 0 x00008000L , 0 x00108020L ,
OxOOlOOOOOL , 0 x 00000020L, 0 x80100020L, 0 x80008020L,

125

Ox80000020L , Ox80108020L, 0 x80108000L , 0 x80000000L ,
Ox80008000L , 0 xOOlOOOOOL, 0 x00000020L , 0 x80100020L,
OxOOl 080001 , 0 x00100020L , 0 x80008020L , 0 xOOOOOOOOL ,
Ox80000000L , 0 x00008000L , 0 x00108020L , 0 x80100000L,
Ox00100020L , 0 x80000020L , 0 xOOOOOOOOL , Ox00108000L ,
Ox00008020L , 0 x80108000L , 0 x80100000L , 0 x00008020L ,
OxOOOOOOOOL , 0 xOOl 080201 , 0 x80100020L , 0 x001000001,
Ox800080201 , Ox80100000L, 0 x80108000L , 0 x000080001 ,
Ox801000001 , 0 x80008000L , 0 x00000020L , 0 x801 080201 ,
Ox00108020L , 0 x00000020L , 0 x00008000L , 0 x80000000L ,
Ox00008020L , 0 x80108000L , 0 xOOIOOOOOL , 0 x80000020L ,
Ox00100020L , 0 x80008020L , 0 x80000020L , 0 x001000201 ,
Ox00108000L, 0 x000000001 , 0 x80008000L , 0 x00008020L ,
Ox80000000L , 0 x80100020L , 0 x80108020L , 0 x00108000L } ;

static unsigned long __ attribute __ ((a li g n e d (16))) SP3[64] =
Ox00000208L , 0 x08020200L , 0 xOOOOOOOOL , 0 x08020008L ,
Ox08000200L , 0 xOOOOOOOOL , 0 x00020208L , 0 x08000200L ,
Ox00020008L , 0 x08000008L , 0 x08000008L , 0 x00020000L ,
Ox08020208L , 0 x00020008L , 0 x08020000L , 0 x00000208L ,
Ox08000000L , 0 x00000008L , 0 x08020200L , 0 x00000200L ,
Ox00020200L , 0 x 08020000L , 0 x08020008L , 0 x00020208L ,
Ox080002081 , 0 x00020200L , 0 x00020000L , 0 x08000208L ,
Ox00000008L , 0 x08020208L , 0 x00000200L , 0 x08000000L,
Ox08020200L , 0 x08000000L , 0 x 00020008L , 0 x00000208L ,
Ox 00020000L , 0 x08020200L , 0 x08000200L , 0 xOOOOOOOOL ,
Ox00000200L , 0 x00020008L , 0 x08020208L , 0 x08000 200L ,
Ox08000008L , 0 x00000200L , 0 xOOOOOOOOL , 0 x08020008L ,
Ox08 000208L , 0 x 00020000L , 0 x08000000L , 0 x08020208L ,
Ox00000008L , 0 x00020208L , 0 x 00020200L , 0 x08000008L ,
Ox08020000L , 0 x08000208L , 0 x00000208L , 0 x08020000L ,
Ox00020208L , 0 x00000008L , 0 x08020008L , o xooo202ooL } ;

static unsigned long __ attribute __ ((ali g n ed (16))) SP4[6 4] = {
Ox0080200 1 L , 0 x00002081L , 0 x00002081L , 0 x00000080L ,
Ox00802080L , Ox00800081L, 0 x00800001L , Ox00002001L,
OxOOOOOOOOL , 0 x00802000L , 0 x00802000L , 0 x00802081 L ,
Ox00000081L , 0 xOOOOOOOOL , 0 x 00800080L , 0 x00800001 L ,
OxOOOOOOOl L , 0 x00002000L, 0 x00800000L , Ox 00802001L,
Ox00000080L , 0 x 00800000L , 0 x0000200 1 L , 0 x00002080L ,
Ox00800081L , OxOOOOOOOlL , 0 x00002080L , 0 x00800080L ,
Ox00002000L , 0 x00802080L , Ox 00802081L, 0 x00000081L ,
Ox00800080L , 0 x00800001L , 0 x 00802000L , Ox00802081L ,
Ox00000081 L , 0 xOOOOOOOOL , 0 xOOOOOOOOL , 0 x00802000L ,
Ox00002080L , 0 x00800080L , 0 x 00800081L , 0 xOOOOOOOl L ,
Ox00802001 L , 0 x00002081L , 0 x00002081 L , 0 x00000080L ,
Ox0080208 1L , 0 x00000081 L , 0 x OOOOOOOl L , 0 x00002000L ,
Ox00800001L , 0 x00002001L , 0 x00802080L , 0 x00800081 L ,
Ox00002001L , 0 x00002080L , 0 x00800000L , 0 x00802001L ,
Ox00000080L , 0 x 00800000L , 0 x00002000L , 0 x 00802080L } ;

static unsigned long __ a ttribut e __ ((alig n e d (16))) SP5 [64] = {
Ox OOOOOJ OOL , 0 x02080100L, 0 x 0 2080000L , 0 x42000100L,
Ox00080000L , 0 xOOOOOlOOL , 0 x40000000L , 0 x02080000L ,
Ox 40080100L , 0 x00080000L , 0 x02000100L , 0 x40080100L ,
Ox42000100L, 0 x 42080000L , 0 x0008 0100L , 0 x40000000L ,
Ox 02000000L , Ox40080000L, Ox4008 0000L, OxOOOOOOOOL,
Ox 40000100L , 0 x4 2080100L , 0 x42080100L , 0 x 02000100L ,
Ox 42080000L , 0 x 40000100L , 0 xOOOOOOOOL, 0 x42000000L ,
Ox 02080100L , 0 x 02000000L , 0 x 42000000L , 0 x00080100L ,
Ox 00080000L , Ox 42000100L , Ox OOOOOlOOL , Ox02000000L,
Ox 40000000L , 0 x 0 208 0000L , 0 x42000100L , 0 x40080100L ,
Ox020001 OOL , 0 x40000000L , 0 x42080000L , 0 x 02080 100L,
Ox 40080100L , 0 xOOOOOlOOL , 0 x 0 2000000L , 0 x 4 2080000L ,
Ox 42080100L , Ox00080100L, Ox 42000000L, Ox42080 100L ,
Ox 0208 0000L , 0 x OOOOOOOOL , 0 x40080000L , 0 x42000000L ,
Ox 0008 0100L , Ox02000100L , Ox40000100L , Ox00080000L ,
OxOOOOOOOOL , Ox4008 0000L , Ox0208 0100L, Ox40000100L } ;

126

static unsigned long __ attribute __ ((ali gned (16))) SP6[64) =
Ox20000010L, 0 x20400000L , 0 x00004000L , 0 x20404010L,
Ox20400000L, OxOOOOOOlOL , Ox20404010L, Ox00400000L,
Ox20004000L, Ox00404010L , Ox00400000L , Ox20000010L,
Ox00400010L , Ox20004000L , Ox20000000L, Ox00004010L,
OxOOOOOOOOL, Ox00400010L , Ox20004010L , Ox00004000L,
Ox00404000L, Ox20004010L, OxOOOOOOIOL, Ox20400010L,
Ox20400010L, OxOOOOOOOOL, Ox00404010L , Ox20404000L,
Ox0000401 OL , 0 x00404000L , 0 x20404000L , 0 x20000000L ,
Ox20004000L , 0 xOOOOOOlOL , 0 x20400010L , 0 x00404000L ,
Ox20404010L , 0 x00400000L , 0 x00004010L , 0 x20000010L ,
Ox00400000L, Ox20004000L , Ox20000000L , Ox00004010L,
Ox20000010L, Ox20404010L , Ox00404000L , Ox20400000L,
Ox00404010L, Ox20404000L , OxOOOOOOOOL , Ox20400010L ,
OxOOOOOOlOL, 0 x00004000L, 0 x20400000L, 0 x00404010L,
Ox00004000L , 0 x00400010L, 0 x20004010L , 0 xOOOOOOOOL,
Ox20404000L, Ox20000000L , Ox00400010L, Ox20004010L } ;

stat i c unsigned long __ attribut e __ ((a li gned (16))) SP7[64] = {
Ox00200000L , Ox04200602L , Ox04000802L , OxOOOOOOOOL,
Ox00000800L , Ox04000802L , Ox00200802L, Ox04200800L,
Ox04200802L , Ox00200000L, OxOOOOOOOOL, Ox04000002L,
Ox00000002L, 0 x04000000L , 0 x04200002L , 0 x00000802L ,
Ox04000800L , Ox00200802L , Ox00200002L , Ox04000800L ,
Ox04000002L , Ox04200000L , Ox04200800L , Ox00200002L,
Ox04200000L, Ox00000800L , Ox00000802L, Ox04200802L,
Ox00200800L , Ox00000002L, Ox04000000L , Ox00200800L,
Ox04000000L , Ox00200800L , Ox00200000L, Ox04000802L ,
Ox04000802L, Ox04200002L, Ox04200002L, Ox00000002L,
Ox00200002L , 0 x04000000L , 0 x04000800L , 0 x00200000L ,
Ox04200800L , Ox00000802L , Ox00200802L, Ox04200800L,
Ox00000802L, Ox04000002L , Ox04200802L, Ox04200000L,
Ox00200800L, OxOOOOOOOOL, Ox00000002L , Ox04200802L,
OxOOOOOOOOL , 0 x00200802L , 0 x04200000L , 0 x00000800L ,
Ox04000002L , Ox04000800L , OxOOOOOBOOL, Ox00200002L };

stat ic unsigned long __ attribute __ ((al igned {16))) SP8[64] = {
Ox10001040L , OxOOOOlOOOL , Ox00040000L, Oxl0041040L,
OxlOOOOOOOL , 0 x l0001040L , 0 x00000040L , 0 xlOOOOOOOL ,
Ox00040040L, Ox10040000L , Oxl0041040L , Ox00041000L,
Oxl0041000L, Ox00041040L, OxOOOOlOOOL, Ox00000040L,
Ox l0040000L, Oxl0000040L , Ox lOOO IOOOL , Ox00001040L,
Ox00041000L, Ox00040040L , Oxl0040040L , Oxl0041000L,
Ox00001040L, OxOOOOOOOOL , OxOOOOOOOOL, Oxl0040040L,
Oxl0000040L , OxlOOOlOOOL , Ox00041040L, Ox00040000L,
Ox00041040L , 0 x00040000L , 0 xl0041000L , 0 xOOOOlOOOL ,
Ox00000040L , Ox10040040L, OxOOOOIOOOL, Ox00041040L,
OxlOOOlOOOL, Ox00000040L , Ox10000040L, Ox10040000L,
Ox l0040040L , OxlOOOOOOOL , Ox00040000L, Ox l 0001040L,
OxOOOOOOOOL , Ox10041040L , Ox00040040L , Oxl0000040L ,
Ox l0040000L , OxlOOOlOOOL , Oxl0001040L , OxOOOOOOOOL ,
Ox10041040L , Ox00041000L , Ox00041000L , Ox00001040L ,
Ox00001040L , 0 x00040040L , 0 xlOOOOOOOL , 0 x10041000L } ;

s t at ic unsigned long Kn1[32] = { 01 } ;
static unsigned long KnR[32] = { OL } ;
static unsigned long Kn3 [32] = { OL } ;
static unsigned char DLKey [24] = {

OxOl ,Ox23 ,Ox45 ,Ox67 ,Ox89 , Oxab ,Oxcd ,O xef ,
Ox fe ,O xdc ,O xba ,O x 98 , Ox76 ,O x54 ,Ox32 ,Ox lO ,
Ox89 ,Oxab ,Oxcd , Oxef , Ox Ol , Ox23 ,Ox45 , Ox67 } ;

stat ic unsigned short bytebit [8] = {
0 200 , 0100 , 040 , 020 ,01 0 , 04,0 2, 01};

static uns igned long big byte [24] =
Ox800000L , Ox400000L , Ox200000L ,

127

OxlOOOOOL ,

Ox80000L, Ox40000L, Ox20000L, Ox10000L ,
Ox8000L, Ox4000L , Ox2000L, OxlOOOL,
Ox800L , Ox400L, Ox200L, OxlOOL ,
Ox80L , Ox40L, Ox20L , Ox lOL ,
Ox8L , Ox4L , Ox2L, Ox1L } ;

I* Use the k e y schedule specified in the Standard (ANSI X3.92-1981).

static unsigned char pc1 [56] = {
56, 48, 40, 32, 24 , 16, 8, 0, 57' 49, 41, 33' 25 , 17,
9, 1 ' 58, 50' 42 , 34, 26, 18' 10 , 2, 59, 51 ' 43 , 35,

62, 54, 46, 38, 30 , 22 , 14' 6, 61 , 53, 45, 37, 29 , 21 '
13, 5' 60, 52, 44, 36, 28, 20, 12' 4, 27, 19, 11 , 3

static unsigned char totrot [16] = {
1 ,2,4 , 6 ,8, 10 ,12,14 , 15,17,19,21 ,23 , 25 ,27,28 } ;

static unsigned char pc2[48] -- {
13 , 16 ' 10, 23, 0, 4' 2) 27, 14 , 5' 20, 9)
22, 18, 11) 3, 25, 7, 15, 6 , 26, 19 , 12' 1 '
40, 51 ' 30, 36, 46 ' 54, 29 , 39 , 50, 44, 32, 47 ,
43, 48, 38 , 55, 33, 52, 4 5, 41 ' 49, 35' 28, 31 } ;

void des key (key , ed f)
unsigned char *key;
short edf;

I• Thanks to James Gillogly fj Phil Karnf •I

{
register int i , j , I , m , n;
unsigned char pc1m [56] , per [56] ;
unsigned long kn [3 2];

for (j = 0; j < 56; j ++){
l =pcl[j];

m = I & 07;
pclm[j] = (key [! >> 3] & byt e bit[rn])? 1 0 ;
}

for(= 0 ; i < 16; i++) {
if (ed f == DEl) rn = (15 - i) < < 1;
else rn = i << 1;
n = m + 1;
kn [m] = kn [n] = OL;
for(j = 0; j < 28; .i++) {

l = j + t ot r ot [i] ;
if(I < 28) pcr[.i] = pclm[l] ;
else pcr[j] = pc1m[l - 28];
}

for(j = 28; j < 56;j++){
I = j + totrot[i];
if (I < 5 6) per [j] = pclm [I] ;
else pcr[j] = pclm!I - 28];
}

for (j = 0 ; j < 24; j ++) {

}

if(pcr[pc2[.i]]) kn[m] I= bigbyte [j] ;
if(pcr[pc2 [j+24]]) kn[n] I= bigbyte [j];
}

cookey (kn) ;
return ;
}

static void cookey(raw1)
register uns igned long * rawl;
{

registe r unsigned long • cook , •rawO;
unsigned long dough [3 2] ;
register int i ;

cook = doug h ;

128

};

•I

for (= 0; i < 16; i++ , rawl++) {
rawO = rawl++;
*COOk (*rawO & 0 xOOfcOOOOL) << 6·

'
*COOk I= (*rawO & OxOOOOOfcOL) < < 10;
*COOk I= (*raw1 & 0 xOOfcOOOOL) > > 10;
*COok++ I= (*TaW} & 0 xOOOOOfcOL) > > 6;
*COOk = (nawO & Ox0003fOOOL) << 12;
*COOk I= (*rawO & Ox0000003fL) << 16;
*COOk I= (*rawl & Ox0003fOOOL) > >
*COOk++ I= (*rawl & Ox0000003fL);
}

usekey (dough);
return;
}

void cpkey(into)
register unsigned long *into;
{

register unsigned long * from, *endp;

from= KnL, endp = &J<nL[32];
while (from < endp) *into++= *from++;
return;
}

void use key (from)
register unsigned long * from;
{

register unsigned long *tO, *endp;

t o = KnL, endp = &J<nL[3 2 1;
while (to < endp) * to + + = *from++ ;
return;
}

/ *ADDED BY Andrew Cooh/

4·
'

void desblock(unsigned char *inb lo c k ; unsigned char *Outblock , int numPlaintexts)
{

unsigned long work [21 ;

int i , j ;

for (j = numPlaint ex t s ; j >= 13 j = j - 13)
{

/ * prepare t h e pla i ntexts*/
for (i = O; i < 13; i++)
{

.s crunch (in block , work);
l e ftpl a int ex ts I i1 = work [OJ ;
r i g htpl a i n t e xts I i]=work [1 1;
inblock+= 8;

i *pre pare th e k e ys*/
for (i = O; i < 16; i ++)
{

oddkeys [i] = KnL [2* i] ;
ev e nke y s [i]= l<nL[h i +1] ;

/ *n ow c all fab ric f -u.n c t ion*/
pragma CMLN..FUNC_CALL DES () SLICES = (0 :4)

DES (rig ht p l a intexts , l ef t p l a int exts , e vc nke ys , odd keys, SP 7 , SP5, SP 3 , SP l ,

129

/*now put ciphertexts back into a char array*/
for(i=O ; i <13; i ++)
{

if(j>O)
{

work[O]= leftciphertexts [i];
work [1]= rightciphertexts [i J;
unscrun(work , out block);
outblock +=8;

/*there are still < 1 3 l e ft so prepare t h e plaintexts*f
for (i = O;i < j ; i++)
{

}

scrunch (in block, work);
l eftp laintext s [i]=work (OJ ;
rightplaintexts [i] = work [1];
inblock+= 8;

/* pre pare the k e ys*/
for (i =0; i < 16; i++)
{

oddkeys [i]=KnL[h i J;
evenkeys [i] = KnL[2* i +1];

f*now call fabric function* /
pragma CMLN_.FUNC_CALL DES() SLICES = (0: 4)

DES(rightplaintex t s, leftplaintcxt s , evcnkeys , oddkey s , SP7 , SP5 , SP3 , SPl ,

/* now put ciphertexts back into a char array*/
for(i = O; i < j; i ++)
{

}

work [OJ = left ciph ert ex ts [i] ;
work[l] = rightciphe rt e xt s [i J;
unscrun (work, out block);
outblock+=8;

void des(inblock, o u tb lock)
unsigned char * in block, *out block;
{

unsigned long work [2 J ;

scrunch (inblock , work);
d esfunc(work, KnL);
unscrun (work, out. b lo c k);
return;
}

static void scrun ch(outo f , into)
register unsigned char * o u t of;
register unsigned long *into;
{

* into = (*outof++ & OxffL) << 24;
* int o I= (*outof++ & Ox ffL) << 16;
*into I= (* Outof++ & OxffL) << 8;
* into++ I= ('•outof++ & Ox ffL) ;
* into = (*outof++ & OxffL) << 24;
* into I= (* outof++ & OxffL) << 16;
* into I= (*outof++ & Ox ffL) << 8 ;
* int o l = (*outof & OxffL) ;

130

return;
}

static void unscrun (outof, into)
register unsigned long *out of;
register unsigned char *into;
{

*into++= (*outof >>
*into++= (*outof >>
*into++ = (*outof >>
*into++= *O utof++
* into++= (*outof >>
*into++= (*outof >>
*into++= (*outof >>
*into = *Outof
return;
}

24} & OxffL;
16} & OxffL;
8) & OxffL;

& OxffL;
24} & OxffL;
16} & OxffL;
8) & OxffL;

& OxffL;

static void desfunc (block , keys)
register unsigned long *block , *keys;
{

register unsigne d long fval, work, right, leftt;
register int round ;

leftt = b lock [OJ ;
right = block[1] ;
work = ((l e ftt >> 4} A rig ht} & OxOfOfOfOfL;
right A= work;
l eftt A= (work << 4);
work = ((l e ftt > > 16) right) & OxOOOOffffL;
ri g ht A= work ;
l eftt A= (work << 16) ;
work= ((right>> 2} A leftt) & Ox33333333L ;
l e ftt A= work;
right A= (work << 2);
work = ((right > > 8) A leftt) & OxOOffOOffL ;
l eftt A= work;
right A= (work << 8);
ri ght = ((right << 1) I ((right>> 31) & 11)) & OxffffffffL ;
work = (Ieftt A ri g ht) & OxaaaaaaaaL;
l eftt A= work;
right A= work;
l e ftt = ((leftt < < 1) I ((l eft t >> 31) & 1L)) & 0 xffffffffL ;

for (round = 0 ; round < 8; round++) {
work = (right < < 28} I (right > > 4);
work · = *keys++;
fval = SP7[work & Ox3fL J;
fval I= SP5[(work >> 8) & Ox3fL];
fval I= SP3[(work >> 16) & Ox3fL];
fval I= SPl[(work > > 24) & Ox3fLI;
work = ri g h t A *keys++;
fval I= SPS[work & Ox3fL];
fval I= SP6[(work >> 8} & Ox3fLI;
fval I= SP4 [(work > > 16) & Ox3fL I ;
f va l· I= SP2 [(work >> 24) & Ox3fL];
leftt A= fv a l ;
work = (l eftt << 28} (Ieftt >> 4) ;
work • = * keys++;
f va l = SP7[work & Ox3 fL I;
fv a l I= SP5[(work >> 8) & Ox3fL];
fval I= SP3[(work >> 16) & Ox3fL] ;
fv a l I= SPl[(work >> 24) & Ox3fL] ;
work = I eft t * keys ++;
fval I= SPS[work & Ox3fL);
fval I= SP6[(work >> 8) & Ox3fL] ;

131

fval I= SP4 [(work >> 16) & Ox3fL];
fval I= SP2 [(work > > 24) & Ox3fL];
right · = fval ;

right = (right < < 31) I (right > > 1);
work= (leftt • right) & OxaaaaaaaaL;
l eftt · =work;
right ·=work;
l e ftt = (leftt < < 31) I (leftt > > 1);
work = ((l eftt > > 8) • r ight) & OxOOffOOffL;
right ·= work ;
l eftt ·= (work < < 8);
work = ((l eftt > > 2) · right) & Ox33333333L;
rig ht · =work;
leftt ·=(work << 2);
work = ((ri ght >> 16) l eftt) & Ox OOOOffffL;
l eftt · =work;
right ' = (work << 16) ;
work= ((right >> 4) - leftt) & OxOfOfOfOfL;
l eftt ·=work;
ri g h t · =(work < < 4);
*block++ = ri ght ;
* block = leftt ;
return ;

#ifdef D2_DES

void des2key (hexkey , mode)
unsigned char * he x key ;
short mode ;

I* s t omps on Kn3 t oo * I
I* u nsign e d c har [1 6] *I

{
short revmod;

revmod = (mode == ENO) ? DEl
deskey(&hexkey [8], revmod);
cpke y (KnR);

ENO ;

deskey (hex ke y , mode);
cpkey (Kn3) ;
return ;
}

void Ddes(from , into)
unsigned char *from , * into ;
{

unsigned long wor k [2] ;

s crunc h(from , work) ;
d esfun c (work , KnL);
d e sfunc (work, KnR) ;
d es fun c (work, Kn3) ;
unscrun(work , in to) ;
return ;
}

void D 2 des (from , into)
unsigne d char * from ;
unsigned char * into ;
{

u n s ig ned lon g * ri g h t , * 11 , swap ;
unsigned long] e ftt [2] , bufR[2];

r i g ht = bufR ;
11 = & l e ftt [1];
scrunc h(from, l e ftt);
scru.nc h(& from [8] , right) ;
d esfun c (l e f tt , KnL);

I* K n3 = KnL *I

I* u nsign e d ch ar [B j *I

I * u n s ign e d char(16} *I
I * unsigned ch ar [1 6} *I

132

desfunc(right , I<nL);
swap = * 11 ;
*1 1 =*right;
*r ig ht = swap;
d es func(l e ftt , I<nR);
d esfunc (right , I<nR) ;
swap = * 11;
*ll=*right;
* right = swa p ;
desfu n c(leftt , Kn3);
des func (rig ht , Kn3);
unscrun(l e ftt , into);
unscru n(ri ght , & in to [8]);
return ;
}

void makekey(aptr , kptr)
register char * aptr ; I* NUL~terrni nated *I

I* unsigned char {8} *I register unsigned char * kptr ;
{

register unsigned char *store;
register int first , i;
unsigned long sav ek [9 6] ;

cpDkey (savek) ;
des2key (DLI<ey, ENO);
for(i = 0; i < 8; i ++) kptr[i] = DLI<ey[i];
fir s t = 1;
while((*aptr != '\0 ') II first) {

s tor e = kptr;
for(i = 0 ; i <8&&(*aptr != ' \ 0'); i + +) {

*Store++·= *apt r & Ox7f;
*aptr++ = ' \0 ';
}

Ddes (kptr , kptr);
first = 0;
}

u seD key (savek);
return ;

}

void m ake2key (aptr , kptr)
r egister char * aptr; I* NUL~terrninated

I * unsign ed ch aT {16} *I register unsigned char * kptr;
{

r egister u nsigned char *sto r e;
r e gister int fir st , i ;
unsigned long savek [96] ;

cpDkey (savek) ;
d es2key (DLKey , ENO);
for(i = 0; i < 16; i++ k ptr[i] DLKey[i];
f ir st = 1 ;
while ((* apt r ! = '\ 0 ') II fi rst) {

store = kpt r ;
for(i = 0 ; i < 16&&(* aptr != ' \0 '); i + +) {

*Store++ ·= * aptr & Ox 7 f;
*aptr++ = ' \0 ' ;
}

D2des (kpt r , kptr);
first = 0 ;
}

useD key (savek) ;
return ;
}

#i fndef D3J)ES
i fd e f D2_DES

I * DfLDES only *I
I * iff D2_DES! *I

133

void cp2key (into)
register unsigned long *into; I• unsigned long [64] •I
{

register unsigned long •from, •endp;

cpkey (into);
into = &into [32];
from = KnR, endp = &KnR[32];
while(from < endp) *into++= •from++;
return ;
}

void use2key (from)
register unsigned long *from;

I• stomps on Kn3 too •I
I* unsigned long [64] •I

{

#end if
#else

register unsigned long *to, * endp ;

usekey (from);
from= &from [32];
to= KnR, endp = &KnR[32J;
while (to < endp) *to++ = • from++;
c pkey (Kn3);
return;
}

I• iff D2_DES •I
I• D3_DES too •I

static void D3des(unsigned char *, unsigned char •) ;

I• Kn3 = KnL •I

void des3key (hexkey , mode)
unsigned char * hexkey; ·
short mode;

I• unsigned char {24} •I

{
unsigned char *first , • third;
short rev mod;

if (mode = = ENO) {

else {

revmod = DEl ;
first = hexkey;
third = &hexkey [16];
}

revmod = ENO;
fir st = &hexkey [16];
third = h exkey;
}

deskey(&hexkey [8] , revmod);
cpkey(KnR);
d esk ey (third , mode);
cpkey (Kn3);
d eskey(fir s t mode);
return;
}

void cp3key (in to)
r e gister unsigned long • into ; I• unsigne d lon g {9 6 J • I
{

register unsigned long •from, •endp ;

cpkey (int o) ;
into = & int o [32] ;
from = KnR, endp = &KnR[32] ;
while (from < endp) • into ++ = • from+ +;
from = Kn3, endp = &Kn3[32];
while (from < endp) *into++ = *from+ + ;
ret~rn ;

134

void use3key (from)
register unsigned long *from; I* unsigned long [96} *I
{

register unsigned long *to, * endp;

usekey (from);
from = &from[32);
to = KnR, endp = &KnR[32];
while (to < endp) *to++ = *from++;
to = Kn3 , endp = &Kn3[32];
while (to < endp) *to++ = *from++;
return;
}

static void D3des(from, into)
unsigned char *from;

I * amateur theatrics *I
I* unsigned char [24] *I
I * unsigned char {2 4] *I unsigned char * into ;

{
unsigned long swap, leftt (2] , middl [2], right [2];

scrunch (from , I eft t) ;
scrunch(&from [8], middl);
scrunch(&from[16], right);
des func (leftt , KnL) ;
desfunc (middl , KnL) ;
des func(right , KnL);
swap = I eft t [1] ;
leftt [1] = middl [0];
middl[O] =swap;
swap = middl [1];
middl [1] = right [OJ;
right [OJ = swap;
d es fun c (l eftt , KnR);
d esfunc (middl, KnR);
desfunc (right , KnR);
swap = l e ftt [1] ;
l eftt [1] = middl [OJ ;
middl [OJ = swap;
swap = middl [1];
middl [1] = ri g h t [OJ ;
right [OJ = s wap;
desfunc (l e ftt , Kn3) ;
desfunc(middl, Kn3);
desfunc (ri g ht , Kn3) ;
unscrun(l e ftt , into) ;
unscrun(middl , &into [8]) ;
unscrun(ri g ht , & into [16]);
return ;
}

void make3key (aptr , kptr)
register char *aptr ; I* NULL-t erminat e d

I* unsigne d char {24] *I register unsigned char * kptr;
{

regi ster unsigned char *s t o r e;
regi.ster int first , i ;
unsigned long savek [96];

cp3key (savek) ;
d es3key(DLKey , ENO);
for(i = 0 ; i < 24; i++ kptr[i] DLKey[i J ;
first = 1;
while((* aptr != ' \0 ') II fir st) {

store = kptr;
for(i = 0 ; i < 24 && (*aptr != '\0 ') ; i ++) {

*S tore++ '= *aptr & Ox7f ;

135

#end if
#end if

*B.ptr++= '\0' ;
}

D3des (kptr , kptr);
first = 0;
}

use3key (sa.vek);
return ;
}

I* D3_DES *I
I* D2-DES *I

I* Val i dation sets :

*
* Single- l ength key, sing l e -l ength plaintext -
* Key 0123 4567 sgab c d e f
* Plain 01 23 4567 89ab cde7
* Cipher c957 4425 6a5e d3 1d

* * Double-length key, single - l engt h pla i nt ext -
* K ey 01 23 4567 89ab c d ef fedc ba98 7654 3210
* Plain 0123 4567 89ab cde7
* Cipher 7f1d Oa77 826b Baff

* * Double- l engt h .key, double-length plaintext -
* Key 01 23 4567 89ab cdef f edc ba98 7654 3210
* P lain 0123 4567 89ab cd ef 0123 4567 89ab c dff
* Ciph er 27a0 8440 406a df60 278 f 47cf 42<16 15d7

* * Triple-length key, single-length p laintex t -
* Key 01 23 4567 89 ab c d ef f e dc ba98 7654 32 10 89ab cd ef 0 123 4567
* Plain 01 23 4567 89 ab cd e 7
* Cipher deOb 7 c06 ae5e 0 ed5

* * T r iple- l engt h k ey, double-length p l a i n text-
* K ey 01 2 3 4567 89ab c d e f fedc ba98 7654 321 0 89ab c d ef 01 23 4567
* Plain 0123 4567 8 9ab c def 0123 4567 8 9ab cdff
* Cipher adOd 1 b30 ac17 cfO 7 0 ed1 1 c63 81 e4 4 d e S

* * d 3 d es VS.Oa rwo 9208.07 18:44 Gr aven Imagery
*************** **************** *** *************** ** ***** **************!

136

