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ABSTRACT 

A tremendous shift in the conceptualization of teaching elementary mathematics 

has been re-popularized in the past ten years. This shift has recently influenced our 

Newfoundland and Labrador curriculum, largely through the efforts of the Atlantic 

Provinces Education Foundation (APEF). APEF directions are based on the changes 

advocated by the National Council of Teachers of Mathematics (NCTM), primarily in the 

Curriculum and Evaluation Standards for School Mathematics (1989). 

Teachers in Newfoundland and Labrador are currently in transition with their 

teaching roles in delivering the new mathematics curriculum. This project, designed for 

elementary teachers, addresses the teaching of multiplication of whole numbers in the 

APEF curriculum. Specifically, the project explores alternate algorithms and examines 

procedural and conceptual understanding in the teaching of multiplication in today's 

elementary classroom. In particular, changing conceptions of what matters for students 

to learn demand increased attention to alternate forms of task presentation and student 

response: oral, written, and model. Expectations of students' conceptual knowledge are 

broadened to consider language and number sense. Potential changes in assessment, 

reflecting the advocated shift, are then offered. Finally, an extensive list of sample tasks, 

pertinent to multiplication of whole numbers, is made available. It is the intention that 

this project will serve not only as positive food for thought in a changing 

conceptualization of teaching mathematics in general, but also as a resource for teachers 

of grades four to six, and perhaps at either side of this indicated range, in teaching the 

multiplication of whole numbers in the new APEF Mathematics Curriculum. 
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INTRODUCTION 

The Department of Education is in the process of implementing new programs in 

mathematics education for Newfoundland and Labrador. To date, the new Atlantic 

Provinces Education Foundation (APEF) Mathematics Curriculum for Primary and 

Elementary has been fully implemented in grades kindergarten, one and two. The new 

program is being implemented in grade three in this current school year, 2002-2003. It is 

projected that the new curriculum will reach grades four through six in subsequent years, 

respectively. For the purpose of this project, it is worthy to note that "elementary" in 

Newfoundland and Labrador is defined to begin in grade four, with students seeing their 

fmal elementary year in grade six. 

As with any new ideology of teaching, educators must take time to reflect on 

suggested changes. As one of these teachers, I feel we have to consider our own 

ideologies to identify what we believe to be the fundamentals of teaching elementary 

mathematics. It is also our responsibility to stay current with the latest teaching ideas. 

Ball (1996) suggests that "our challenge is to experiment, study, reflect on, and 

reformulate our hypotheses" (p.500). The challenge is for educators to conceptualize for 

themselves the meaning of the new directions and the implications for the classroom. 

It is this challenge that is the driving force behind this project. There are many 

questions, which accompany such a fundamental shift in teaching practices. From where 

is this new direction of teaching mathematics coming? What does it mean to teach for 

conceptual understanding versus procedural understanding? How does this affect the 

activity and the overall atmosphere in the mathematics classroom? Ifthere is such a 



change in the doing of mathematics, surely there is a corresponding change in 

assessment. What implications exist for me as a mathematics educator? 
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This project begins with a review of literature, primarily pre-service teacher 

textbooks, reflecting the practices promoted through the National Council of Teachers of 

Mathematics (NCTM). In presenting such information, my intent is to provide teachers 

with the opportunity to become familiar with the fundamental changes in teaching 

elementary mathematics. The fmdings of this literature review are an integral part of 

such a challenge. It is also the intention that the project assist teachers in their efforts to 

adjust to the new expectations of them as mathematics educators in Newfoundland and 

Labrador, at the same time raising awareness of the direction of the APEF Mathematics 

Curriculum. It is important to note that teachers of grades four, five, and six are currently 

following the old program and generally have little or no exposure to the new curriculum 

advocated in the APEF mathematics program. This project is intended to provide the 

elementary teachers of Newfoundland and Labrador with exposure to the nature of the 

new program and what it means to teach mathematics from this perspective. Teachers 

are also students in this regard. 

The practical component of the project examines teaching the multiplication of 

whole numbers with the new APEF vision in mind, and is meant to be a resource that my 

fellow elementary mathematics educators can use. Additional literature findings are 

offered where necessary. Initially, there is a look at an example of the standard 

multiplication algorithm. This is followed by several alternate algorithms for 

multiplication of whole numbers, as a reference. The majority of the practical component 
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looks at the scope of multiplication of whole numbers through three lenses: 1) procedural 

knowledge; 2) conceptual knowledge; and 3) appropriate assessment. Each perspective is 

elaborated upon, identifying critical information and sample tasks to illustrate a new face 

of teaching multiplication, which we are expected to simulate in our classrooms. 

Structurally, this document exists in two distinct sections: 1) the Literature 

Review and 2) the Project itself. Please be aware that the literature review is primarily of 

an informative nature, with an intent to provide a context for the second, more practical 

component. The information is meant to answer questions about where this new way of 

teaching is coming from and what it means in a somewhat theoretical sense. It is a 

framework for the elementary teacher to understand the upcoming changes in teaching 

elementary mathematics and is a survey of information from methods' text authors and 

teacher educators. As these are more secondary resources, the information is not 

primarily intended for the research community but rather for the elementary teaching 

community of Newfoundland and Labrador. 

The second part of this document is meant to be an illustration of what it means to 

do mathematics according to the vision of the NCTM and the APEF. It is intended that a 

teacher in grade four, five, or six, could literally have the project detached and given to 

him/her as a resource to provide some insight into the changes that are occurring in 

teaching elementary mathematics, and more specifically in this case, multiplication of 

whole numbers. However, it is important that teachers be cognizant that the literature 

review is prepared to provide a context for a deeper understanding of the project 

examples. 
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LITERATURE REVIEW 

New Directions 

From where is this new conceptualization of teaching mathematics coming? It is 

the position of the NCTM that "we live in a time of extraordinary and accelerating 

change" (NCTM, 2000, p.4). "The need to understand and be able to use mathematics in 

everyday life and in the workplace has never been greater" (NC1M, 2000, p.4). The 

NCTM see mathematics having a distinct role in everyday life, in the workplace, in the 

scientific and technical community, and as part of cultural heritage. Additionally, there is 

the document Everybody Counts: A Report to the Nation on the Future of Mathematics 

Education (1989). This document is considered to be one of the most influential works in 

restructuring mathematics education in the United States. It identifies that "several 

factors- growth of technology, increased applications, impact of computers, and 

expansion of mathematics itself- have combined in the past quarter century to extend 

greatly both the scope and the application of the mathematical sciences" (National 

Research Council, 1989, p.4). The authors suggest that "in tomorrow' s world, the best 

opportunities for jobs and advancement will go to those prepared to cope confidently 

with quantitative, scientific, and technological issues. Mathematical power provides the 

key to these opportunities" (National Research Council, 1989, p.12). Van de W aile 

(200 1) recognizes the perspective of employers within our changing society: "Today' s 

employers are searching for the ability as well as the confidence to solve problems that 

have never been encountered before. Children need to see themselves learning to reason 

and learning to solve problems, not just learning skills" (Van de Walle, 2001 , p.4). It has 
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been said that "Today' s schools labor under the legacy of a structure designed for the 

industrial age misapplied to educate children for the information age" (National Research 

Council, 1989, p.l1). 

American national concerns arise from students showing a basic lack of 

understanding in mathematics. American students' performance levels are, at best, 

mediocre in international comparison. In response to such performance and reports such 

as Everybody Counts, the drive has been to better develop students' conceptual 

understanding of mathematics, as well as improve students' overall problem-solving 

abilities. American research and recommendations characteristically find their way into 

the teaching world in Canada, and eventually into Newfoundland and Labrador. This 

holds true in the evident use of the Curriculum and Evaluation Standards for School 

Mathematics (1989) and Professional Standards for Teaching Mathematics (1991) as a 

framework and guide by the APEF in its development of the new mathematics program. 

Newfoundland and Labrador, in conjunction with the other Atlantic provinces, 

has developed a document, Foundations for the Atlantic Canada Mathematics 

Curriculum, outlining a new focus for teaching mathematics. The National Council of 

Teachers of Mathematics (NCTM) has provided the root of these new directions with 

many recommendations for change. Kennedy and Tipps (1997) and Van de Walle (2001) 

present five major goals for students, which are a part of the NCTM' s vision of the 

mathematics classroom: Students should 1) learn to value mathematics; 2) become 

confident in their ability to do mathematics; 3) become mathematical problem solvers; 4) 

learn to communicate mathematics; and 5) learn to reason mathematically. 
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The Professional Standards/or Teaching Mathematics (1991) have been grouped 

into four major categories focusing on instruction and teachers: standards for 1) teaching 

mathematics; 2) evaluation of teaching; 3) professional development of teachers of 

mathematics; and 4) support and development of mathematics teachers and teaching. 

These standards see teachers as "key agents of change in the classroom" (Van de Walle, 

2001, p.9). 

Generally, there is a call for a shift from teacher-centered to child-centered 

approaches to instruction. Consequently, the standards identify five major shifts in the 

classroom environment, that are the responsibility of the teacher, to foster learning 

experiences that empower our students to develop mathematically (NCTM, 1991). 

Firstly, it is important to develop classrooms as math communities rather than individuals 

in the classroom doing math. Secondly, rather than the teacher being the sole authority 

for correct answers, logic and mathematical evidence should be used as verification. 

Thirdly, a shift is needed away from memorizing procedures and rote memorization 

toward mathematical reasoning. Next, it is necessary to move away from an emphasis on 

mechanistic findings of answers toward conjecturing, inventing, and problem solving. 

Finally, a shift toward connecting mathematics, its ideas and its applications and away 

from seeing it as isolated concepts and procedures, is essential. 

Further to this, in teaching mathematics it is a professional responsibility to 

provide authentic learning experiences for students. The standards for teaching 

mathematics are arranged into four categories. Teachers need to provide worthwhile 

mathematical tasks, encourage discourse among students and between students and 



teachers, provide for an environment in which learning will be enhanced, and analyze 

continually both teaching and learning (NCTM, 1991 ). 

Kennedy and Tipps (1997) identify three premises for learning mathematics in 

this context: 1) knowing mathematics is doing mathematics; 2) the use of mathematics 

has become broader; and 3) tools of technology have changed ways in which data are 

stored, analyzed, transmitted and used. It is our responsibility, as teachers, to reflect 

upon these standards and premises as we attempt to deliver a stimulating mathematics 

program to our students. 
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"Our contemporary world demands a kind of mathematical knowledge that is very 

different from that required in the past" (Reddens and Speer, 1995, p.2). Riedesel (1996) 

suggests that fostering mathematical growth in a contemporary world necessitates 

changes in both curricular content and instructional style. Mathematics is seen as 

"seeking solutions, not just memorizing procedures; exploring patterns, not just 

memorizing formulas; and formulating conjectures, not just doing exercises" (Riedesel, 

1996, p.15). Hyde (1989) and Ball (1997) have suggested that too often what passes for 

conceptual understanding in our classrooms is, mistakenly, the memorized manipulation 

of symbols, devoid of meaning; it is the narrowed learning experiences where it is more 

likely for students to get the correct answers. "Understanding is not an ali-or-nothing 

proposition" (Ball, 1997, p. 73 5). Rather "understanding is variable and not nearly as 

stable or eternally consistent as we pretend" (Ball, 1997, p. 736). In order to promote 

increased understanding of mathematics among our students, teachers have to illustrate, 

via active learning, the various meanings of mathematical concepts. Teaching for 



meaning has not been in the forefront of traditional mathematics instruction. It is, 

however, highly advocated in the new APEF Foundations of teaching elementary 

mathematics. 

Teaching For Meaning 

Despite early efforts to teach mathematics with an emphasis on understanding, 

classroom teaching of mathematics has continued to focus on lower level learning, i.e. 

calculations, computational drill, and rote memorization of facts; that is, the focus has 

continued to be procedural or instrumental knowledge - completing the process of the 

work. "The Principles and Standards document makes it very clear that there is a time 

and place for drill and practice, but it should never come before understanding" (Van de 

Walle, 2001, p.l 7). The current emphasis is on conceptual or relational knowledge -

understanding mathematical concepts; that is, mathematics is taught for meaning. 

Skemp ( 1978) identifies four major benefits of relational understanding: 1) It is 

more adaptable to new tasks; 2) It is easier to remember; 3) Relational knowledge can 

be effective as a goal in itself; and 4) Relational schemas are organic in quality; that is, 

they act as an agent of their own growth. According to Van de Walle (2001), relational 

understanding is intrinsically rewarding and helps with learning new concepts and 

procedures. By understanding concepts, memory is enhanced and in fact, there is less to 

remember. Relational understanding improves problem-solving abilities, is self­

generative, and improves attitudes and beliefs. For example, teaching students that 

multiplication can be used to compare, to solve combination or rate problems, or to 

8 



9 

efficiently handle repeated addition contributes to the benefits as listed above. The same 

holds true when students understand the properties of multiplication and how to use them. 

Seeing multiplication in its many different roles enhances the aforementioned benefits of 

relational understanding. Rote memorization of basic multiplication facts does not offer 

the same results. Interestingly, Riedesel (1996) suggests that "when we teach 

mathematics without meaning ... we force [our students] to memorize numerous 

unconnected bits of information. We lead them to believe that math doesn't make sense. 

We undermine their self-confidence and motivation to learn by creating feelings of 

confusion and helplessness" (Riedesel, 1996, p.67). 

"Mathematics becomes useful to a student only when it has been developed 

through a personal intellectual engagement that creates new understanding" (National 

Research Council, p.6). As stated in a Chinese proverb: "Tell me, I'll forget. Show me, 

I may remember. Involve me, and I'll understand." What, then, is understanding? 

"Understanding can be defined as a measure of the quality and quantity of connections 

that an idea has with existing ideas" (Van de Walle, 2001, p.28). Despite what we may 

think, children generally do not give haphazard answers. Their responses make sense in 

their own worlds. Teachers must be cautious to ensure that students are engaging in 

reflective activity to construct new knowledge accurately. 

As part of the cognitive theory of learning, Wittrock (1989) suggests that children 

must be mentally active in order to generate learning. "The study of mathematics should 

be a stimulating endeavor that enables students to build from sets of individual 

experience and that expands their abilities to think mathematically" (Heddens and Speer, 
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1995, p.12). This represents a shift from the traditional method of telling children what 

to do and then having them learn through drill and practice. Simply stated, it is through 

doing the mathematics themselves that students encounter and develop the concepts. 

However, in the new program, there is more to "doing" mathematics than this. 

"Doing" Mathematics 

"Children will become confident 'doers' of mathematics only if mathematics 

makes sense to them and if they believe in their ability to make sense of it" (Trafton and 

Claus, 1994, p.21, in Van de Walle, 2001, p.xv). "Exploring, using and applying 

mathematics must always be at the heart of learning the subject" (Haylock and 

McDougall, 1999, p.l). 

Such statements provoke reflection regarding the traditional approach to teaching 

elementary mathematics. Most oftoday's educators learned mathematics in a traditional 

classroom where the teacher was the source of all knowledge, and where instruction was 

generally procedural, followed by drill and practice, usually with paper and pencil. If 

manipulatives, such as base ten blocks, counters, and colour tiles, were used at all, the 

teacher outlined what was to be done and the students followed the procedure step by 

step. Students' attention was on teacher's directions and not the mathematical ideas. 

Their focus was on getting the right answers, relying on the teacher to determine the 

correctness of the response. 

This rejuvenated conceptualization of teaching elementary mathematics sees the 

child as an active participant in learning. Teachers pose problems using various means of 
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presenting tasks (i.e. oral, written, and model). The focus is on students actively trying to 

figure things out, testing ideas and making conjectures, and developing reasons and 

offering explanations, also in various oral, written, or modeled forms. Students are 

constructing their own knowledge. For example, Cognitively Guided Instruction (CGI) is 

one of the recent models of instruction and intervention that researchers are developing. 

In line with the cognitive view of learning where children make sense of new knowledge 

in light of existing knowledge and beliefs, the basic premise of CGI is that you start with 

what children know and then build on that knowledge by allowing access for 

participation in advanced higher-order activities. "The message of CGI is that when 

teachers begin listening to children they come to realize how much more the children 

know than they recognized previously. They come to realize that children have a lot of 

mathematical knowledge on which to build" (Hankes, 1996, p.S). Students of CGI have 

on average made a grade level gain in achievement and have reported being more 

confident and better able to understand mathematics. Basically, CGI has the potential to 

fall in line with the open-ended broad-based nature of mathematical activities consistent 

with this current view of teaching elementary mathematics. 

Another point of interest is the "no answer book" notion; that is, rather than 

waiting for the teacher to tell them what to do and how to do it, students do not rely on 

the teacher. This promotes attention on mathematical ideas rather than on the teacher's 

directions. Children's thinking becomes the primary source of knowledge. Multiple 

solutions and various algorithms are advocated. Van de Walle (2001) identifies verbs 

such as explore, investigate, so/ve,justify, conjecture, as the verbs of"doing" math as 
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opposed to the actions of traditional math such as memorize, copy, add, subtract, 

multiply, divide, etc .. The latter mathematical verbs generally focus children's thoughts 

on following the given directions - a somewhat passive role - whereas the former 

mathematical verbs more likely attract children's thoughts to the mathematical ideas and 

to engaging in active participation of their mathematical learning. For example, asking 

children to explore what happens to any nwnber every time they multiply by ten or by 

one hundred or by one thousand and then asking them to communicate and justify what 

they fmd, has more potential to lead children to identifying and understanding products of 

the powers of ten instead of simply telling them to "just know" that they are to add the 

same number of zeros that are in ten, one hundred, or one thousand to the other factor to 

get the answer. The authors of Everybody Counts state that "Mathematics today 

involves far more than calculation; clarification of the problem, deduction of 

consequences, formulation of alternatives, and development of appropriate tools are as 

much a part of the modem mathematician's craft as are solving equations or providing 

answers" (National Research Council, 1989, p.S). 

Though less emphasis has been placed on efficiency in procedural knowledge as 

the ultimate goal, there is a value in recognizing the traditional and even more so, 

alternate algorithms. "Children should be actively involved in devising their own 

algorithms for solving multiplication and division problems. Research indicates that no 

single algorithm is the right algorithm to teach" (Kouba and Franklin, 1995, p.576). 

An algorithm is a "finite, step -by-step procedure for accomplishing a task that we 

wish to complete" (Usiskin in Randolph and Sherman, 2001 , p.480). Holmes (1995) 
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says, "The study of standard algorithms is made more meaningful if children have 

opportunities to explore extended algorithms. Extended or developmental algorithms 

show each step in the procedure and help children grasp the reasoning behind the 

algorithms" (p.216). It is maintained that these algorithms need to be considered tools for 

solving real-life problems. Heddens and Speer (1995) suggest that the extended form of 

our algorithm be used to help children develop an understanding of the multiplication of 

larger numbers. They feel students should have the opportunity to apply their knowledge 

of the basic structure and of the algorithm to two-digit by one-digit and two-digit 

multiplication. When they are ready to develop procedural skill efficiency, the authors 

suggest the standard algorithm. This is consistent with the position of Kennedy and 

Tipps. "Care must be taken when children are taught to use algorithms for 

multiplication ... so the algorithms' meanings and applications are clear" (Kennedy and 

Tipps, 1994, p.378). 

Further to this, many feel that considering the standard algorithm to be the "rule" 

of multiplication is a great disservice to our students. Koller Caliandro (2000) alludes to 

Kamii and Livingston's (1994) elaboration to say that though algorithms provide a 

certain security of producing correct answers, students tend to function like machines. 

"Their thinking remains blocked and paralyzed by the program" (Kamii and Livingston 

in Koller Caliandro, 2000, p.423-424). "Activities using these (alternative) algorithms 

- help students with a range of mathematical abilities expand their perceptions of 

mathematics from that of a rule-based and single-answer discipline to one that involves 

multiple approaches and personal constructs" (Simonsen and Teppo, 1999, p.519). 



Not only are the students affected, but so too are other pivotal people in the 

elementary classroom, namely teachers. "In addition to making mathematics more 

meaningful for children, many teachers reported that they found teaching to be more 

exciting when more emphasis is placed on discovering and sharing procedures than on 

memorizing and practicing traditional algorithms" (Carroll and Porter, 1997, p.370). 

14 

Riedesel (1996) advocates that we experiment with children's methods and then 

discuss the various approaches to identify a most effective method. Though the children 

may fixate on the so-called "best way", it is important to encourage experimentation with 

the various approaches. Koller Caliandro (2000) cites a profound statement by Kamii 

and Livingston which supports the appropriate use of alternate algorithms as a vehicle for 

deeper understanding of multiplication and mathematics in general. "Children's first 

methods are admittedly inefficient. However, if they are free to do their own thinking, 

they invent increasingly efficient procedures just as our ancestors did. By trying to 

bypass the constructive process, we prevent them from making sense of arithmetic" 

(Koller Caliandro, 2000, p.424). Students can apply their own aptitudes. Randolph and 

Sherman (200 1) reiterate that "students develop their own understanding of and skills in, 

arithmetic operations, enhancing their decision-making and critical-thinking skills" 

(p.484) by engaging with alternate algorithms. However, despite such an emphasis, 

teachers should be cautious not to let the notion that students invent these alternate 

algorithms on their own become the ultimate goal. More often than not, it is necessary 

that these be taught. 
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Another important factor to consider is that students get to see mathematics as a 

"process" rather than just "questions and answers" when algorithms- standard or 

alternate - are being used. "Although accuracy in arithmetic is essential, the process by 

which the solution is obtained, as well as the child's experience throughout the process, is 

of no less importance" (Bonsangne, Gannon, and Watson, 2000, p.311). In the students' 

presentation of such work, teachers can see a more comprehensive view of what a student 

is thinking, enabling diagnostic and appropriate planning procedures. There is the 

concern that using such methods takes a lot of time. However, it is said that the benefits 

of saving time on practicing the rules, and increased understanding, and motivation make 

it worth the effort. 

For students and teachers to engage in this new way of"doing" mathematics, it 

means they have to take risks. In particular, students have to present their ideas and 

thoughts for other people to see, something that is somewhat unfamiliar in most math 

classrooms today. It is critical that we, as teachers, provide a safe, non-judgmental 

environment where everybody listens to one another and respects what is said, whether 

the answer is correct or incorrect. Students have to know that they will not be ridiculed. 

Van de Walle (200 1) refers to creating a "spirit of inquiry, trust, and expectation" (p.l7). 

Instead of math class being a collection of individuals, it should be a community of 

learners committed to exploring and understanding various aspects of mathematics. To 

complete such a task successfully takes time and requires effort from everyone in the 

class. Such is the nature of "doing" mathematics under the new directions of elementary 



mathematics. This notion gives birth to a changing role of problem solving and 

questioning in teaching and learning mathematics. 

The Role Of Problem Solving 
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"At one time teachers treated 'problem solving' as a topic, like addition, 

geometry, or measurement" (Kennedy and Tipps, 1997, p.8). Though this seems to be 

changing, albeit slowly, problem solving is beginning to be viewed in much broader 

context. It is seen as the essence of mathematics. From this perspective, children should 

learn mathematics through problem solving. "In teaching via problem solving, problems 

are valued not only as a purpose for learning mathematics but also as a primary means of 

doing so" (Schroeder and Lester in Kennedy and Tipps, 1997, p.IO). 

Rather than problem solving being seen as a distinct topic of instruction where the 

problem is separate from the learning, the problem is meant to engage the students in 

making sense of the key concepts to be learned. Researchers and teacher educators 

(Holmes, 1995; Kennedy and Tipps, 1997; Lepper and Hodell, 1989; Meece, 1991; 

Riedesel, 1996;Van de Walle, 2001) identify several reasons to support this notion. "As 

a means for teaching mathematics, problems enable students to construct mathematical 

ideas" (Holmes, 1995, p.2). Children develop their understanding, confidence, and self­

worth. ''Natural curiosity is a powerful teacher, especially for mathematics" (National 

Research Council, 1989, p.43). Often children, through their own sense of wonder and 

curiosity, will pose their own problems, which are much better contexts for learning 
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because, as Lepper and Rodell (1989) and Meece (1991) suggest, such a vested interest in 

curriculum increases motivation and self-confidence in students. 

Problems used to introduce strategies should involve students in more than just 

applying known procedures. "Open-ended problems, sometimes called process problems, 

give students opportunities to apply diverse procedures to solve them" (Kennedy and 

Tipps, 1997, p.ll). The idea of using various techniques to fmd multiple solutions 

involves many children in a single activity and provides a sense of intrigue. For the 

child, there is a sense of discovery that there is more than one possible method of finding 

one or more solutions. Problem solving develops mathematical power; it promotes 

"doing" mathematics. Students' attention shifts to ideas and sense-making rather than 

correct answers. Problem solving has also been known to provide enjoyment for the 

students engaged in it. 

Considering the new role of problem solving in the classroom, it is inevitable that 

the teacher adopt a new role as well. Marilyn Burns (2000) provides an adequate 

description: 

A problem solving curriculum, however, requires a different role from the 
teacher. Rather than directing a lesson, the teacher needs to provide time for 
students to grapple with problems, search for strategies and solutions on their 
own, and learn to evaluate their own results. Although the teacher needs to be 
very much present, the primary focus in the class needs to be on the students' 
thinking processes. (p.29) 

A role such as this demands a change in the teacher's use of appropriate questioning 

techniques. Sullivan and Clarke (1991) maintain that "good questions have three 

features: the students are required to do more than simply remember a strategy to answer 

them; the students can learn in the process of answering the question; and the questions 
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have several acceptable answers" (p.14). They also reiterate that questions should be 

suitable for all abilities. For example, asking children how many different ways they can 

show a product of twenty-four is preferable to asking children what is eight times three, 

four times six, or two times twelve. 

If these are the advocated changes for a more meaningful mathematical learning 

experience for children, then assessment has to reflect such changes. It is unfair to teach 

one way and assess in a way totally different from how the children have been taught and 

how they have learned. 

Changes In Assessment 

Given the changes in goals and instruction in a new dynamic view of teaching 

elementary mathematics, it should follow that assessment will reflect such changes. The 

NCTM has also established Assessment Standards for school mathematics. The 

Standards define assessment as "the process of gathering evidence about a student's 

knowledge of, ability to use, and disposition toward mathematics and of making 

inferences from that evidence for a variety of purposes" (Assessment Standards, 1995, in 

Van de Walle, 2001, p.62). Not synonymous with testing, measurement, or evaluation, 

assessment is more than a collection of data. 

Baroody and Coslick (1998) and Van de Walle (2001) reiterate the various 

pwposes of assessment. Assessment may be used to monitor student progress, make 

instructional decisions, evaluate or monitor student growth in mathematical achievement, 

and/or evaluate programs. All this should be in the interest of promoting student growth, 
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improving instruction, recognizing accomplishment, and modifying programs. "At its 

heart, it should be a means for helping teachers better understand their students so that 

they can effectively guide learning" (Baroody and Coslick, 1998, p.3-18). In recognizing 

these purposes, Baroody and Coslick (1998) highlight appropriate assessment in terms of 

making connections and applying existing knowledge to a new task. "If understanding is 

defined in terms of connections, then it follows that the degree of understanding can be 

gauged by the number, accuracy, and the strength of a student's connections, and 

[secondly] transfer (application of existing knowledge to a new task) provides strong 

evidence of understanding" (Baroody and Coslick, 1998, p.3-22). In determining what it 

is we should assess, it is important to keep in mind the student goals from the NCTM's 

vision of the mathematics classroom, as previously discussed. Hence, concepts and 

procedures, mathematical processes, problem solving, and mathematical disposition all 

have a place in mathematics assessment. Instruction and assessment should be combined 

in alignment with the Standards. 

The APEF Mathematics Curriculum explicitly advocates the following examples 

of alternate forms of assessment: 1) Performance; 2) Paper and Pencil; 3) Interview; 4) 

Portfolio; and 5) Presentation. Such techniques are among those promoted in methods' 

books ofSouviney (1994), Riedesel (1996), and Van de Walle (2001). 

A performance task "involves gauging children's dispositions, strategies, or 

understandings by actually observing them performing a task and by analyzing their 

performance" (Baroody and Coslick, 1998, p.3-27). Paper and pencil tasks are tasks 

which provide opportunity for students to communicate their thinking and clarify their 
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thoughts about mathematics while helping to reinforce what they already know and 

understand. These may be in the form of computation with standard and alternative 

algorithms, paper and pencil tests, or student writing journals. According to Van de 

Walle (2001), an interview is a "one on one discussion with a child to help you see how 

she is thinking about a particular subject, what processes she uses in solving problems, or 

what attitudes and beliefs she may have" (p.80). In this process, teachers must be 

nonjudgmental, be good listeners, and try to put the child at ease by using strategies such 

as talking at the child's level and not interrupting. "A portfolio is an assemblage of many 

types of student work selected with both student and teacher input, designed to provide a 

holistic view of some aspect of mathematics that may not be evident from examination of 

any single entry" (Van de Walle, 2001, p.79). A presentation is a significant task 

requiring extended effort, which explores a mathematical concept from one in-depth 

perspective or from many perspectives. This in-depth or varied perspective is presented 

to the class or to a group other than classmates. The presentation of what the students 

have discovered helps prepare children to feel more confident about their selected topic 

and about their ability to communicate their understandings to others. This type of 

communication in mathematics is receiving increased awareness and importance. The 

relative unfamiliarity of teachers with these techniques poses an obstacle to more 

authentic and more accurate assessment of our students. Familiarity with an increased 

bank of assessment techniques will assist teachers in overcoming this obstacle to 

appropriate assessment. This project will provide some specific examples of these 



alternate forms of assessment as required by the new provincial curriculum, via the 

medium of the operation of multiplication of whole numbers. 

Pause For Thought 

Reflecting on the information drawn from perspectives of current teacher 

educators and writers of pre-service teachers' textbooks, several points come to mind 

regarding the practicality of implementation of such a conceptualization of teaching 

elementary mathematics. Just how will this ideology of teaching fit in the everyday 

operation of a classroom in Newfoundland and Labrador? There are many facets of the 

realities of teaching which must be considered. Ball ( 1996) identifies the challenges of 

incomplete knowledge, competing commitments, and of anticipating, interpreting and 

responding to students as sources of uncertainty to solid implementation of this kind of 

teaching. "We also need to recognize that any change in teaching behavior takes time 

and effort" (Hyde, 1989, p.226). 
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Inappropriate professional development, where teachers are expected to 

effectively implement new teaching approaches following a one day intensive workshop, 

is a major concern. The decline in professional development opportunities combined 

with the reduction of mathematics consultants at the district level has reduced ongoing 

support in efforts to assist teachers in truly understanding and effectively implementing 

the recently re-popularized methods of teaching elementary mathematics. Without such 

support, teachers' conceptualization of what it means to teach this way may be skewed or 

lack proper clarification. Hyde (1989) says that "schools need to establish ways for 



teachers to participate in continual dialogues about teaching practice" (Hyde, 1989, 

p.229). 
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Heddens and Speer (1995) share an interesting perspective that the success of the 

whole program hinges on inter-grade level communication. "A student's image of what 

mathematics is, how it is best learned, and how it relates to their world is not something 

formed within a given school year- it develops over time" (Heddens and Speer, 1995, 

p.l3). If it is the case that teachers are without a similar vision, inter-grade 

communication poses another challenge. 

Conclusion 

"Teaching in today's world is tremendously complex. Any successful program 

must go beyond the limits of mathematics pedagogy and content to reflect the real world 

in which teaching takes place" (Troutman and Lichtenberg, 1995, p.xvi). "A 

fundamental shift in conceptualization and emphasis is occurring, one that has dramatic 

implications for teaching. Administrators and policy makers must understand the delicate 

balances that are required between mathematical concepts and reasoning, conceptual and 

procedural knowledge, developmental instruction and practice, and related issues" (Hyde, 

1989, p.224). Though Schifter (1996) referred specifically to the practice and principles 

of constructivism in the mathematics classroom, I feel the article commentary holds true 

for teaching in general; "Teachers ... expecting to develop a finished repertoire of 

behaviors that, once achieved, will become routine will be disappointed." "There is no 
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point of arrival, but rather a path that leads on to further growth and change" (Schifter, 

1996, p.499). 

Souviney ( 1994 ), provides an interesting thought which reiterates the need for 

ongoing professional development and reflection of our role as teachers: 

The teacher must understand the learning process, select curriculum materials, 
organize a safe classroom environment, and provide individuals with instructional 
support at the appropriate teaching moment. The task is complex. However, a 
teacher who is familiar with the variety of effective instructional practices will be 
more successful in satisfYing the wide range of student needs found in the typical 
elementary classroom." (p.47) 

To provide pertinent information to develop this variety of instructional practices is one 

of the goals of this project. 

Being that we work with such a diverse population of children in our teaching, 

methods will grow and evolve accordingly with this diversity in mind. The variety of 

children's ideas will serve as wonderful resources for discussion and learning for 

everyone involved, thus fostering a positive growth and extended level of understanding 

of mathematical concepts. It is the role of the mathematics educator to provide authentic 

learning opportunities in meaningful ways for the children that we teach, fostering a 

positive learning environment reflective of the NCTM standards. Such should be our 

commitment to our students. 

The focus of the practical component of this project is to help teachers become 

familiar with these changes. It can also be used as a resource geared toward teaching 

multiplication of whole numbers in the elementary grades. 
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CONTEXT FOR THE PROJECT 

Pertinent to the mathematics curriculum, this project focuses on the notion that 

elementary teachers in Newfoundland and Labrador (those of grades four to six), will be 

faced with a transition period in the very near future in teaching elementary mathematics. 

As previously mentioned, the new APEF Mathematics Curriculum has been and is being 

implemented in Newfoundland and Labrador as far as grade three, and is expected to 

continue into the following grades in subsequent years. In developing this project, it is 

assumed that the students will be entering grade four having completed the APEF 

curriculum in grades kindergarten to three. Thus this work is more intended to benefit 

teachers of grades four, five, and six, experiencing the new program for the first time, 

rather than the students specifically, as the students will have already spent their previous 

years following the new program. 

Furthermore, the following information is developed with cognizance of 

elementary teachers who work in classrooms with students of varying degrees of 

mathematical abilities. The information and examples, reflective of the APEF 

conceptualization of teaching elementary mathematics, are meant for elementary teachers 

throughout Newfoundland and Labrador to peruse and implement in their classrooms. 

One particular content strand is that of developing operational sense and applying 

operational principles. Pertinent to this, the operation of multiplication of whole 

numbers, in terms of the changes necessary to reflect this new conceptualization of 

teaching elementary mathematics, is the focus of the project. To start, there is a brief 

look at an example of a standard multiplication algorithm. Then some alternate 
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algorithms are presented as a reference and as tools to support the value of alternate 

algorithms as discussed in the literature review. The remainder of the practical portion of 

this project looks at the scope of multiplication of whole numbers through three lenses: 1) 

procedural knowledge; 2) conceptual knowledge; and 3) appropriate assessment. Each of 

these is briefly revisited in order to facilitate understanding of these concepts. 

A major point concerning procedural knowledge lies with the need for increased 

attention to alternate forms of presentation of tasks and student response to the tasks: 

oral, written, and model. In an attempt to make clear the subtle differences which exist 

here, these alternate forms of procedural knowledge are illustrated in table format using a 

common multiplication example. Additional examples are also listed. 

In educating children about multiplication of whole numbers, there are certain 

concepts of which children need to demonstrate understanding. Getting at that 

understanding is often the challenge. Sample questions and tasks are presented which 

indicate an appropriate level of conceptual knowledge a child should have about the 

multiplication of whole numbers. This would suggest development, not only of the 

properties and meanings of multiplication, but also of the language and number sense 

associated with multiplication of whole numbers. 

Finally, appropriate assessment is a key factor in rounding out authentic, 

meaningful learning experiences for our students. Alternate forms of assessment, as 

advocated by the APEF Mathematics Curriculum are described with tables of applicable 

tasks included. Throughout the project, the sample tasks have been generated from my 

experiences as a teacher and as a student. They come from university classes in the 
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graduate program (i.e. research, class notes, course texts, and sharing with the professor 

and with classmates), from school resources (i.e. student texts, teacher guides and 

handbooks, curriculum guides, and sharing with colleagues and students), while others 

are completely original. It is not intended that these represent the sole tasks to be used by 

teachers. Nor is it intended that use of these examples by teachers is mandatory. 

However, it is intended that they be available to teachers to explore as evolving 

pedagogical tools for teaching multiplication of whole numbers in elementary 

mathematics. It is the intention of this project to help support the required shift in 

teaching and the teachers' corresponding transitions. 

Being that Newfoundland and Labrador has only implemented the new APEF 

mathematics program in grades Kindergarten, 1, 2, and 3 over the past four years, the 

focus has continued to be on lower level learning in grades 4-6. Therefore the majority 

of learning tends to be procedural in nature versus dealing with a child's prior conceptual 

experience. From this, in Newfoundland and Labrador, a child's formal experience with 

multiplication of whole numbers, generally commences with brief exposure to basic facts 

in primary grades followed by further development of the operation in the subsequent 

elementary grades. Consequently, it is important to note that the value of this resource 

increases when used in the earlier stages of students' formal experiences with 

multiplication of whole numbers. Though some information is applicable in grade three, 

it may be most ideal if used in the grade four setting. Establishing a sound base in 

multiplication as a mathematical foundation is important. Thus this information has 

potential for use in grades five and six and perhaps even beyond, for those children 
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experiencing difficulties with conceptual understanding of multiplication. Children's 

conceptual knowledge, really knowing what it is they are doing in mathematics and why 

they are doing it, has become the emphasis. 

The material presented here can be used by teachers as an independent resource. 

However, it can also serve to supplement other resources, such as curriculum guides, 

student texts, and corresponding teacher guides. 



28 
ALGORITHMS FOR MULTIPLICATION 

The standard algorithm is presented to facilitate the illustration of the differences 

in the alternate algorithms. Though there are numerous alternate algorithms, some are 

considered, by some educators and students alike, to be less helpful in the classroom than 

others. Of the four alternate algorithms presented, the first and second tend to be most 

applicable for use in the elementary classroom. The others are purely informational for 

teachers, and may serve as an extension for some students. Though algorithms are seen 

as procedural in nature, they have been included in the hopes that teachers would no 

longer feel chained to the standard algorithm only and that they would see some potential 

to foster a child's understanding of why the standard algorithm is what it is, versus simply 

calculating a product in the traditional fashion. A common multiplication example is 

used throughout to help clarify the difference in algorithms. 

fF Multiply: 45 x 12 

STANDARD: I 

45 
X 12 

90 
+ 450 

540 

> Multiply 5 by 2 to get 10. Record the 0 and carry the 1 (which represents 1 group of 
10). Multiply 4 by 2 to get 8 (representing 8 tens) and add the group of 10 that was 
carried over for a total of 9 groups of 10. Thus the 90. 

> Move to the second addition line, under the 90. Write the 0 in the ones place, under 
the 0 of the 90 above it. Multiply 1 by 5 to get 5. Record the 5 (representing 5 tens). 
Multiply 1 by 4 to get 4. Record the 4 (representing 400). Thus the 450. 

> Add the 90 and the 450 for the result: 540. 
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ALTERNATE: 

1) Partial Product: 

> Multiply in parts. 
Break up the ftrst number to multiply by parts of the second number as illustrated in A) 
and B) 

A) 45 B) 45 45 
--L.!2 X 2 X 10 

(40 X 10) 400 90 450 
(40 X 2) 80 OR 
(5 X 10) 50 
(5 X 2) _lQ 

> Add the partial products to ftnd the ftnal product. 

A) 45 B) 45 45 45 
--L.!2 X 2 X 10 X 12 

400 90 + 450 = 540 
80 OR 
50 

+10 
540 

(Area Model): The same process is applied using an area model. 
(not required to be drawn to scale) 

The parts of the factors are written in this model as opposed to 
remaining abstract as in the partial products method. 
Base ten blocks can also be used to illustrate this model. 

40 5 

400 50 10 
400 + 50 + 80 + 10 = 540 

45 X 12 = 540 
80 10 2 
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2) Lattice Method: 5 X 

0 
, -t-\,. 

/ 

~/5 , 
'4 1// / 

0 

5 0 
/ 

I 
/ , / 

/ / 

, .... ' ~ / 0 
I, J, 

4- 0 
45 X 12 = 540 

> Draw a grid as shown. 

> Write one factor across the top of the grid, being careful to place a single digit atop 

one block on the grid. 

> Write the second factor down the right side of the grid in the same fashion. 

> Calculate the separate products, writing each product as a two-digit number 

(i.e. 5 x 1 = 05). Write the tens digit at the top ofthe diagonal line and the ones digit 

at the bottom of the diagonal. Single digit products are written with 0 in the tens 

place. 

> Proceed to add the numbers in each diagonal, beginning in the lower-right diagonal 

"column". 

> Proceed with the addition along diagonals from right to left, regrouping the tens digit 

to the next diagonal row, if necessary. 

> The final product is determined by reading from the upper-left comer, down around 

through to the lower-right comer. 

Note: This method can be extended to multiplying numbers beyond 2-digit by 2-digit by 

extending the grid to accommodate the digits of the factors. The same process is 

used. Placement of the numbers along the side or along the top 

inconsequential. 



3) Russian Peasant Method: 

12 X 45 

6 X 90 

(odd) 3 X 180* 

(odd) 1 X 360* 180 + 360 = 540 

540 12x45=540 

> Use two columns of numbers, one for each factor. 

> To get each number in the left hand column, divide the preceding number by 2. 

Ignore the remainder. 

> To get each number in the right hand column, multiply the preceding number by 2. 

> Stop when you get to a one in the left hand column. 

> Identify all the numbers in the left hand column that are odd numbers. 
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> Note the numbers in the right hand column which correspond to these odd numbers in 

the left hand column. 

> The sum of these numbers in the right hand column is the final product. 

> It is interesting to compare the result when the method is repeated for 45 x 12. 

(odd) 45 X 12* 

22 X 24 

(odd) 11 X 48* 

(odd) 5 X 96* 12 + 48 + 96 + 384 = 

540 

2 X 192 

(odd) 1 X 384* 

540 12 X 45 = 540 



4) Egyptian/ Doubling: 1 X 45 = 45 

2 X 45 = 90 

*4 X 45 = 180* 

*8 X 45 = 360* 

16 X 45 = 720 

• 12 X 45 = 540 

> Begin with one group of either 12 or 45. In general, picking the larger number is 

preferable. 

> Start with one group of 45. 

> Continue to double the number of groups until there are at least 12 groups of 45. 

That is, stop when you reach/pass 12. 

> Identify the digits in the first column with a sum equal to 12. 

> Add the corresponding products to fmd your fmal product. 

NOTE: In this example, you are looking to find 12 groups of 45. 

> This can also be completed by starting with one group of 12 and doubling until you 

can find 45 groups of 12. However, when you compare the result, the findings are 

interesting and support the notion that starting with the larger number is less 

cumbersome. 
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Teachers are recommended to try additional examples to ensure their own level of 

comfort with these alternate algorithms prior to engaging them in the classroom. For 

example, the product 28 x 67 = 1876 can be verified using the various algorithms shown. 

Alternatives to the traditional algorithms enhance students' conceptual and skill 

development at their own levels of understanding and decision-making. Additional 

benefits are those that are not easily measured, such as enjoyment, feelings of success, 
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and building students' overall outlook of multiplication and mathematics, in general, into 

a positive one. 



THREE LENSES ON THE MULTIPLICATION 
OF WHOLE NUMBERS 

The scope of this section looks at multiplication of whole numbers from 

three perspectives: 1) procedural knowledge; 2) conceptual knowledge; and 3) 
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appropriate assessment. Each perspective will be briefly revisited theoretically, followed 

by applicable task examples pertinent to teaching the APEF curriculum. 

Procedural Knowledge 

Procedural knowledge, also known as instrumental understanding, "is an 

important component of mathematical learning. It includes such things as conventions, 

symbolisms, routines, and manipulative procedures" (Liedtke, 1998, p.4). The process of 

completing the work has traditionally featured calculations according to a standard 

algorithm, which we are all expected to master. Traditional development of procedural 

knowledge fosters an atmosphere of information giving, (i.e. Here's how you do it.) 

followed by drill and practice for mastery. This is most often a pencil and paper task. 

Today, teachers must develop an openness to the non-traditional algorithms with the 

acknowledgement that basic ability with the traditional algorithm is to be developed at 

some point, usually later rather than sooner. 

Not only must teachers consider the use of alternate algorithms, but they must 

also consider the alternate forms of presentation and response. Teaching practices can 

reflect any combination thereof. 
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Alternate Forms 

Presentation Response 

OnU~OnU 
Written Wntten 

Model · · Model 

It is important to note that mathematics educators are traditionally most familiar 

with a written presentation requesting a written student response. We must be open to 

exploring new and various forms of procedural knowledge in mathematics. The 

following pages illustrate these alternate forms by looking at the same multiplication task 

via the various combinations of presentation and response. Though some differences are 

quite subtle, it remains that the tasks are, in fact, different. 



ORAL PRESENTATION with VARIOUS RESPONSES 
(Teacher's instructions are given orally.) 

Sample: Calculate: 45 x 12 

Teacher 

Can you tell me the product of 45 
and 12? 

Follow-up: 
Can you tell me how you got that 
answer? 

Showing all your workings, 
would you please write down on 
your paper what 45 times 12 is? 

Using a model of your choice, 
represent 45 x 12. 

Response Type Student 

Student responds orally, 
ORAL preferably using mental math to 

find the answer. 
Ans.:+ 540 

Follow-up: 
45 times 2, well that's 90. 
45 times 10 - that's 450. 
450 plus 90 equals 540. 
So 45 times 12 is 540. 

Student writes: t 

45 

WRITTEN Lll 

MODEL 

90 
+450 

540 

*Note: Alternative algorithms are 
acceptable here 

Student models using choice of 
manipulative. 
t.e. 
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*Note: 

a) grouping with unit blocks/ or 
objects of choice 

With larger numbers, 
this may become quite 
cumbersome and/or 
require a lot of 
manipulatives 

b) base ten blocks/grid 



WRITTEN PRESENTATION with VARIOUS RESPONSES 
(Teacher's instructions are written. Teacher writes on chalkboard, 

worksheet, or on medium of choice.) 

Sample: Calculate: 45 x 12 

Teacher 

Tell me the product of 45 and 12, 
and how you got it for your 
answer? 

Showing all your workings, solve 
45 times 12 on your paper. 

Often, there are no instructions. 
A student sees: 45 

X 12 

Using a model of your choice, 
represent 45 x 12. 

Response Type Student 

Student responds orally, 
ORAL preferably using mental math to 

find the answer. 
Ans.:+ 540 

Follow-up: 
45 times 2, well that's 90. 
45 times 10 - that's 450. 
450 plus 90 equals 540. 
So 45 times 12 is 540. 
Student writes: 1 

45 

WRITTEN L-12 

MODEL 

90 
+450 

540 

• Note: Alternative algorithms are 
acceptable here 

Student models using choice of 
manipulative. 
i.e. 
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a) grouping with unit blocks 
b) base ten blocks/grid 



MODEL PRESENTATION with VARIOUS RESPONSES 
(Teacher presents task in model form, using manipulative of choice.) 

Sample: Calculate: 45 x 12 

Teacher Response Type Student 

Will you please tell me what Student responds orally, 
mathematical statement this ORAL preferably using mental math to 
model represents? find the answer. 

Ans.:+ 540 
Follow-up: 
How do you know that? Student explains according to 

model presented. 

Write down what mathematical Student writes: I 

statement this model represents. 45 

WRITTEN ~ 
90 

+450 
540 

* Note: Alternative algorithms are 
acceptable here 

I've used unit cubes to show Student models using choice of 
23 X 16. manipulative. 

MODEL t.e. 
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Now, would you please model a) grouping with unit blocks 
45 X 12? b) base ten blocks/grid 



Procedural knowledge is basically computation. The following are additional 

examples of tasks for procedural knowledge and can be adapted to the presentation and 

response forms of the teacher's choice, as previously suggested . 

.I How many blocks would be in a train built from 4 sets of 6 blocks? 

.I Calculate the area of a rectangle which measures 6 metres by 7 metres . 

.I On your paper, can you please write how you would multiply 26 by 53? 

.I How would you multiply 50 x 37? 

.I Use the pattern blocks to solve 12 x 13. 

Solve: 35 
X 64 I 

Find the product. 267 x 5 = 0 

Conceptual Knowledge 

Conceptual knowledge, also known as relational understanding, "consists of 

relationships constructed internally and connected to existing ideas or relationships" 

(Liedtke, 1998, p.5). Understanding mathematical concepts is becoming the focus of 
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mathematics teaching and learning. It is no longer acceptable for a student to simply be 

able to compute. It is necessary that a child understand what it is he or she is doing and 

why. This section on conceptual knowledge reflects what it is children should be 

encouraged to understand about the operation of multiplication. As a teacher, I am 
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basically asking the student to tell me what he/she knows. Based on what he/she knows, 

a student should be able to express what else it is that he/she knows. Pertinent to these 

types of tasks, one should continue to be cognizant of the oral, written, and model 

combinations in form with respect to presentations and responses. 

Consider the following student responses to the same question: 

What is the product of 45 x 12 and how did you find it? 

Response #1 

If: 45 X 10 = 450 

and: 45 X 2 = 90 

Then: 45 x 12 = 540 

By adding the two products 

together. 

Response # 1 demonstrates that the student 

understands and can apply the distributive 

the distributive property of multiplication 

over addition. 

Response#2 

If: 50 X 12 = 600 

and: 5 X 12 = 60 

Then: 45x12=540 ' 
By subtracting the 2"d 

product from the first. 

Response # 2 demonstrates that the 

student understands and can apply 

property of multiplication over 

subtraction. 

Based on the child's response to such questions, the teacher can remark what the 

child knows about the properties of multiplication (See Appendix A), as well as what 

he/she knows about the relationship of multiplication to division. The following table 

indicates typical questions associated with conceptual knowledge a child should have of 

multiplication of whole numbers. 



Associative Property 

Distributive Property 

over Addition 

Distributive Property 

over Subtraction 

Multiplicative Property of Zero 

Identity Property of 

Multiplication 

Multiplication 

by 

Powers of 10 

Relationship of Multiplication 

and Division 
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If 45 x 12 = 540, can you tell me what 12 x 45 

is? 

Can you make any adjustments to help yourself 

complete this multiplication sentence, 45 x 12 x 

2? 

Investigate how knowing that 12 x 5 = 60 and 

12 x 20 = 240 helps you find the product of 12 

X 25? 

Explore how knowing the fact that 30 x 24 = 

720 helps you solve 28 x 24. 

What can you tell me about any factor 

multiplied by 0? 

What number multiplied by 58 results in 58? 

Explore what happens when you multiply a 

number by 1 0? by 1 00? by 1 000? Is there a 

pattern? If yes, describe it. Is this true for any 

number? What does this tell you? 

If 45 x 12 = 540, what is 540 + 12? 

What is 540 + 45? Does a relationship exist 

here? Explain. 

It is important to note that conceptual knowledge should not be confined only to 

these properties of multiplication. Firstly, students should have a certain degree of 

familiarity with the language associated with multiplication of whole numbers. What is a 

factor? What is a product? How are these related? Is there more than one way to 

indicate what the symbol "x" represents in a multiplication statement? Secondly, the 
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various meanings of multiplication and how the operation can be used vastly contributes 

to understanding of whole number multiplication. Students should be familiar and 

comfortable with these (See Appendix B). Finally, and perhaps more importantly, 

development of a student's number sense, or his/her intuition about numbers, is essential. 

According to Liedtke (1998, p.l4), number sense includes ideas such as: 

> understanding the different meanings of numbers; 
> being able to illustrate relationships between numbers in a concrete or a semi-

concrete way; 
> understanding the relative magnitude of numbers; 
> being able to estimate or check the reasonableness of calculated answers; and 
> being flexible in numerical situations. 

Teachers must be able to ask appropriate questions to solicit student responses 

that can indicate the development of number sense or lack thereof. Interpreting the 

student response is also critical to establishing a student's conceptual knowledge. The 

following are some sample questions related to the development of number sense in 

multiplication of whole numbers. 

What do you think of when I say "product" ? 

.,/ Use these cubes to show 6 x 3. If that is 6 x 3, show me 3 x 6 . 

.,/ Make up a word problem for 5 x 8 . 

.,/ If8 X 15 = 120, what is 9 X 15? 80 X 15? 

.,/ Without calculating, which product is greater, 24 x 18 or 37 x 21 ? How do you 

know? 

.,/ Tell how you know 3 x 2012 is greater than 6000. 

Tell how the first product helps you find the second product. 70 68 
X 4 X 4 
280 
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Appropriate Assessment 

As discussed in the literature review, it should follow that assessment reflects the 

changes in goals and instruction in this new dynamic view of teaching elementary 

mathematics. The APEF Mathematics Curriculum advocates the following examples of 

alternate forms of assessment: I) Performance; 2) Paper and Pencil; 3) Interview; 4) 

Portfolio; and 5) Presentation. 

These alternate assessment forms are illustrated in a two-pronged approach, using tasks 

pertinent to the multiplication of whole numbers. Firstly, to emphasize the differences 

between the types of assessment, a common multiplication example is explored via the 

various forms of assessment. Secondly, to further clarify a particular type of assessment, 

different examples of each type of assessment are offered. It is also important to note 

that these tasks may also serve as instructional tasks and are not limited to assessment 

only. Regardless of form or function, these tasks should be familiar to the student prior 

to being used for assessment purposes. 

At this point, I feel it necessary to reiterate that elementary teachers in 

Newfoundland and Labrador, generally have not yet been exposed to tasks of this nature, 

as they are still following the old program. The tasks presented here would be totally 

different than those found in the current (old) curriculum guide, as they fall more in line 

with the new program reflective of the APEF, which has yet to be implemented in grades 

four, five, and six. 



Performance 

Paper and Pencil 

Interview 

Portfolio 
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45 X 12 

Ask students to use counters or base ten blocks to 
show 45 x 12. 

Have students construct 45 using base ten blocks. 
Ask if the number were to be repeated 11 more 
times, what would the total be. Have them record 
the appropriate multiplication sentence. 

Ask students to write, in their journals, two 
different ways to think about and illustrate 
45 X 12. 

Determine the missing digits. 40 
X 02 
500 

J Present the following picture to the student. 

1~1~1~1~(""(~~(-~1~(-~1~1~1 
45 45 45 45 45 45 45 45 45 45 45 45 

Ask the following questions: 
1) What multiplication picture does this show? 
2) How does knowing 45 x 6 help you find 

45 X 12? 

Tell the student that to compute 45 x 12, Sherri 
first said "12 x 4 = 48". 
Ask: "What do think Sherri would say next?". 

Pose and answer three problems that can be 
solved using the multiplication sentence 
45 x 12. Show more than one way each problem 
may be solved, one of which doesn't involve 
multiplying. 

Show as many different ways that you can to 
compute 
45 X 12. 



Presentation 

Have students create a problem representing 
45 x 12 and present to the class to solve. 

45 

Choose one way to solve 45 x 12 and present it to 
the class. Be sure to explain what you did and 
why you chose to do it. Ask the class if there is 
another way to solve the problem. 

To conclude the practical portion of the project, various examples of each type of 

alternate assessment tasks are listed in the following tables. Again, these are not meant to 

be required tasks for teaching multiplication of whole numbers. They are merely 

suggested tasks available to teachers to help them become familiar with what it means to 

teach multiplication in the new APEF curriculum. 
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Ask the students to use unit cubes to illustrate a specific multiplication fact such 
as 7 x 8. (*can substitute multiplication fact of your choice). 

Ask students to use base ten materials to determine how far a cross-country skier 
can ski in 6 hours, if the skier skis 12 kmlhr. 

For multiplication facts for x4 , practice the double and double again strategy by 
putting students in pairs and having them take turns asking each other x4 facts. 
Students should attempt to provide answers by doubling and doubling again. 

i.e. 4 X 6 2 X 6 = 12 
2 x 12 = 24 Therefore: 4 x 6 = 24 

Target Game: Students are to fill in the 0 . 

3 X 0 
6 X 0 
9 X 0 

-+ 26 
-+ 34 
-+ 87 

0 are left over 
0 are left over 
0 are left over 

Ask the students to use grid paper to draw a picture of 8 x 14. Ask them to 
partition the array in a particular way that might be helpful, in the multiplication 
procedure, for them or other students, in calculating 8 x 14 . 

./ Ask a student to draw a graph to show the 5 times table . 

./ Ask the students to use the digits 4, 5, 6, and 7 to make the largest (or smallest) 
possible product for DO x DO. 
Ask if there is a better arrangement of these four digits to create a multiplication 
sentence which yields an even larger (or smaller) possible product. 

Ask a student to use a manipulative of his/her choice to explain the order property 
(or any other designated property) of multiplication . 

./ Use a 10 by 10 grid paper to show me 8 x 9 . 

./ Mr. Doolittle and his class of 24 students were preparing Christmas parcels to 
donate to underprivileged families. Every person prepared 2 boxes each. They 
all decided it would be nice to put ribbons on the parcels. One parcel required 30 
em of ribbon. Determine how much ribbon the class would need to complete the 
Christmas Giving Project. 
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Answer the following by: 
1) doing the easiest ones first; circle them 0 and tell why they were the easiest 
2) doing the next easiest ones and put a rectangle 0 around them; explain why 

you thought these were the next easiest ones 
3) doing the ones you think are the next easiest and put a triangle 6. around 

these; explain your choice 
4) doing any remaining problems; leave as they are and tell why these were your 

last choice 

4 7 5 4 9 8 6 8 2 
x8 x8 x3 x4 x5 x9 x4 x5 x9 

Ask the students to use the digits 7, 8, and 9 in 3 different ways to write 3 
different multiplication sentences. Then solve each. DO x 0 = 

./ Determine the maximum number of people a bus can legally hold if there are 44 
seats on the bus and transportation regulations state that only 3 people are 
permitted to sit in one seat. 

Tell the students that the "Sandwich Shop" sells white and whole wheat bread 
only and has ham, turkey, chicken, and roast beef to go on the customer's choice 
of bread. Given this information, ask the students to illustrate the number of 
different choices of sandwiches they can have at the "Sandwich Shop". 

Extension: If the customer can choose only one of pickles, carrots, or potato 
chips to go with the sandwich, determine how many different choices the 
customer would have now . 

./ Ask the students to determine the missing digits in the following and similar 
multiplication sentences. NOTE: One of these is not possible. Can you find 
which one? Explain why this one is your choice. 

05 
u 
270 

043 

L2 
4700 

060 
X 4 

1468 

06 
xD 

185 
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Ask: How would you go about multiplying 7 x 8? Why would you choose this 
way? Is there another way you could do it? 

Ask: Can you tell me what this model shows? 
Can you rearrange the total number of stars to make a different 
multiplication sentence? 

® * 
* ®®* ®* ®* ®* * * * * * * * * * * * * 

./ Ask: Can you explain to me how knowing 6 x 6 can help you figure out 12 x 6 . 

./ Show a student a partial answer and explain that this student's response was 
accidentally tom off. Ask the student how he/she would finish out the given 
problem. 

5~ 

./ Tell the student that when asked to calculate 16 x 5, two students answered 
correctly but in different ways. Thomas said: "That's 50 plus 30." 

Michael said: "That's 8 x 10." 
Can you explain how Thomas and Michael got their answers? How would you 
do this problem? 

Louisa accidentally multiplied 7 x 34, instead of 8 x 34. If she correctly found 
the product of 7 x 34 to be 238. Explain how Louisa can find a correct result 
without having to start over. 

Is the product of 5 x 257 greater or less than 1500? Explain how you can tell 
without having to do the actual multiplication. 

Pondering Pencils: Tell students that you have 7 boxes of pencils with 12 
pencils in each, and 3 other boxes with 5 pencils in each. Ask them to describe at 
least 2 ways to find the total number of pencils and explain which way they 
would prefer to use and why. 



Explain how you would use multiplication to help you find the perimeter of a 
square? of a rectangle? 
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Have students create a bank of word problems for multiplication and solve them. 
i.e. 1 per day. At the end of each week, the student chooses their favourite word 
problem to pose to the class. 

Homerun Trot: In softball, the distance between each base is 60 metres. On 
Sarah's team, 8 people hit 2 homeruns each. Altogether, how many feet did these 
8 people run in their homerun trot? Find the solution in 2 different ways. Explain 
which you prefer and why? 

Write a polite note to Aaron telling him why you knew his answer was wrong 
before you multiplied it out. Aaron's answer: 226 

x5 
930 

Great Big Sea has hired you to design the stage for their next concert. The stage 
needs to be rectangular and have an area of 320 square metres. 

How many different stages can you design? 
Which do you think would be the best and why? 

You are performing your own comedy act. Decide how many seats you are going 
to have available. Assuming the seats can only be arranged in a rectangle, show 
how many different ways you can arrange your seating plan. 
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Ask students to prepare a report on an upcoming community event where they are 
responsible for the seating arrangement. They are in charge ofseating no less 
than 100 but no more than 200 people. Present your project to the class as if it 
were a proposal to the community council. Explain how multiplication can be 
used to help you create the seating possibilities and why you decided on the 
arrangement that you did. 

Ask students to prepare a report on how much floor covering materials and what 
it would cost tore-floor 3 rooms of their choice in their house. Get 3 different 
price quotes from the local businesses to find the best price. Present to the class. 
Show how multiplication can help find possibilities. 

Ask the students to poll their family members to find out how many hours of 
sleep each person usually gets in one night. Using multiplication, prepare a 
presentation on how many hours sleep each person would get 

a) per week? 
b) per month? 
c) per year? 

What would be the total number of hours slept by all in your household for the 
same 4 time periods (day, week, month, year)? -

Ask a student to determine the total number of hours spent in organized physical 
activity by students in the class by using multiplication. 

i.e. playing hockey in the local Minor Hockey program 
bowling in the Youth Bowling program 
training in the local gymnastics program 
swimming in lessons and/or swim team programs 

Mrs. Gardenfare hired two students to plant her 150 flower bulbs in her 
rectangular flower bed in her back yard. Devise several different proposals to 
show Mrs. Gardenfare. 

You are an expert dietitian. You have taken on the job of planning one week's 
menu of three balanced meals per day for a family of four: two adults, a six year 
old boy and a thirteen year old girl. Consult the latest Canada Food Guide 
recommendations for nutritional requirements for such a family. Write your 
menu for the week. Using grocery ads from newspapers, determine the cost per 
week for your recommended menu. 

(Adapted from Kulm, 1994, p.46) 
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APPENDIX A 

Properties Of Multiplication 
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Commutative/Order Property Two factors can be multiplied in any order and it does 

not affect the product. Example: 6 x 4 = 24 

OR 4 X 6 = 24 

Associative Property When multiplying more than two factors, you can 

group any two factors together first, and then multiply 

by the remaining factors. The product will be the 

same. 

Example: 

(2 X 3) X 5 

6x5 

30 

2x3x5 

OR 2 X (3 X 5) 

2 X 15 

30 

Distributive Property of The product of a number and a sum can be expressed 

Multiplication over Addition as a sum of two products. 

Distributive Property of 

Example: 4 x (10+ 5) = (4 x 10) + (4 x 5) 

Thus helping students solve 4 x 15. 

The product of a number and a difference can be 

Multiplication over Subtraction expressed as a difference of two products. 

Example: 7 x (20 - 2) = (7 x 20) - (7 x 2) 

Thus helping students solve 7 x 18. 

Multiplicative Property of Zero When two factors are multiplied and one of the factors 

is zero, then the product is zero. 

Identity Property of 

Multiplication 

Example: 5 x 0 = 0, 67 x 0 = 0, 139 x 0 = 0 

Whenever you multiply a whole number by one, the 

product will be that whole number. 

Example: 4 x 1 = 4, 23 x 1 = 23, 567 x 1 = 567 
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APPENDIXB 

Meanings Of Multiplication 



54 

MEANINGS OF MULTIPLICATION 

1) As a process of repeated addition: A special case of addition where all the addends 

are of equal size and are added together over and over or repeatedly. 

Ex. 4 + 4 + 4 + 4 + 4 = 20 4 x 5 = 20 

2) As an array: An array is an arrangement of objects or symbols into orderly columns 

and rows. You can read this vertically then horizontally, or vice versa, to get the factors. 

The product of these factors then represents the total. Often this is in a rectangle or grid 

form. 
* * * * * 
* * * * * 
* * * * * 
* * * * * 

4 X 5 = 20 

array of objects 

I I I I I 
4 X 5 = 20 

rectangular array 

3) As a collection of equal groups: This multiplication meaning is often the most 

commonly understood. It can be seen as joining a number of equal collections - so many 

groups with an equal number of objects in each group. 

#of groups 

factor 

4 

X 

X 

#of objects 

in each group 

factor 

5 

total # 

= product 

= 20 
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4) As a Cartesian product or "Combinations": Also known as "cross product" or 

"combinations"~ this meaning is understood by matching two different elements or 

variables. This is sometimes a little bit difficult. The best way for us to think of it is 

combinations of factors. 

Ex. You have four kinds of ice-cream and five possible toppings. How many possible 

combinations can you get? 

Chocolate ~~S§~~;~~~~ Hot Fudge 
Strawberry Caramel 

Vanilla '=~~~~~~§~!: Strawberries 
Orange Pineapple Blueberries 

Bananas 

Tree Diagram: When all the lines are counted~ there are 20. 

4 flavours x 5 toppings = 20 

5) As a ratio: Each triangle is really a representation of 5. 

For every one triangle there are really 5. ~ ____. ~ ~ ~ ~ ~ 

~ ~~~~~ 
~ ~~~~~ 
~ ~~~~~ 
~ ~~~~~ 

4 X 5 = 20 

6) As a mapping: A similar concept to addition, multiplication maps or assigns a pair 

of whole numbers to a specific whole number. The difference being the multiplication 

operation finds "the producf~ to be the unique whole number as a result of the mapping. 

Ex. ( 4,5) __:. (20) 
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7) As a number line: 

0 5 10 15 20 

4 X 5 =20 

This represents moving 5 spaces 4 times on a number line for a total of 20 spaces -

another way of understanding multiplication. 

8) As a rate: This meaning involves fmding a total, given a number of items and a rate 

affecting them. Ex. It takes a painter 5 hours to paint 1 door. How many hours does it 

take to paint 4 doors? 

4 X 5 =20 

9) As a comparison: This simply is used to help compare. Ex. Julie has saved $5. 

Deanne has saved 4 times as much. How much has Deanne saved? 

4 X $5 = $20 
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