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ABSTRACT 

In order to determine the potential environmental effects of offshore discharges of 

synthetic based drilling fluids (SBFs) and associated drilling cuttings, it is necessary to 

understand the physical transport mechanisms of SBFs associated with drilling discharges 

in the marine environment. The purpose of this work was to study the flocculation and 

settling properties of SBFs associated with drilling cuttings in both freshwater and 

seawater and provide more appropriate equations for existing transport models. 

A digital imaging system was employed in this research to study the flocculation and 

settling processes. The effects of particle shape and size on the settling mechanism and 

the effects of salinity, fluid shear, discharge concentration and oily components on the 

rate of flocculation and the settling speeds of floes were studied. 

The cutting sample for this study was collected from an exploration oil well in the east 

coast of Canada. The settling velocities of coarse particles from both untreated and 

thermally treated cuttings were measured in a 2.5m high and 14cm inner diameter 

Plexiglas settling column using both freshwater and seawater. The flocculation of fine 

grain particles was performed using a laboratory paddle stirrer in both freshwater and 

seawater. The applied shears ranged from 25 to 200 s·1
, and the concentrations ranged 

from 25 to 200mg!L. In order to study the effects of oily components on flocculation, a 

thermally treated sample was also used. From the experimental results it was shown that 

the untreated cuttings tend to clump together and settle fast while the treated cuttings 
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settle as individual particles with relatively low speeds. The settling velocities of treated 

and untreated coarse particles were found to be functions of both particle sphericity and 

diameter following a power law. It was demonstrated by the flocculation tests that the 

steady state median floc size decreases as the shear stress and concentration increase, and 

the particles flocculate faster in seawater than in freshwater. For the same diameter and 

salinity, the floes formed at high fluid shears have a higher settling velocity than do floes 

formed at low shears. R was also shown that the floes formed by untreated cuttings settle 

faster than floes formed by thermally treated cuttings in the same conditions (shear rate 

and concentration) under which the floes were produced. 
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Chapter 1 

Introduction 

Synthetic based drilling fluids (SBFs) are a relatively new class of drilling muds that 

were developed to have the same performance as oil based drilling fluids (OBFs), but 

with a lower environmental impact. The technical and economic benefits of using SBFs 

are clear, and a number of fate models have been developed to evaluate the 

environmental impacts of discharged drilling cuttings produced during use of SBFs. 

However, due to the fact that the transport mechanisms of discharged SBFs and their 

associated drilling cuttings in the marine environment are still only partially understood, 

most of the existing models were developed by employing the transport mechanisms of 

other types of drilling fluids and cuttings rather than SBFs and the cuttings associated 

with them. As the physical and chemical characteristics (such as density, particle shape, 

size distribution, flocculation ability, settling behavior and so on) of SBFs produced 

drilling cuttings are different from that produced by other types of drilling fluids, the 

transport processes are different. In order to better approximate the transport processes of 

SBFs and associated drilling cuttings and improve the accuracy of existing prediction 

models, it is necessary to conduct experimental studies on the transport properties of 

SBFs produced drilling cuttings. 
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In the following sections, the characteristics of drilling waste will be described followed 

by a brief review of existing drilling waste transport models. The objective of this 

research and the outline of the thesis will also be included in this Chapter. 

1.1 Background of Research 

1.1.1 Drilling Wastes 

The exploration and extraction of offshore oil and gas from beneath the ocean floor 

requires the disposal of drilling wastes such as used (spent) drilling fluids and rock 

cuttings. The drilling fluids, also called drilling muds, are an essential component of the 

rotary drilling processes used to drill for oil and gas on land and in offshore environments. 

The most important functions of drilling fluid are to transport cuttings to the surface, balance 

subsurface and formation pressure to prevent a blowout, cool and lubricate, and support part 

of the weight of the drill bit and drill pipe (Neff 1987; Darley & Gray 1988). 

Drilling fluids or muds are a suspension of solids and dissolved materials in a base of water, 

oil or other synthetic material. According to the base materials used, different varieties of 

drilling fluids can be broadly categorized into water based, oil based or synthetic based 

fluids. Normally, water based drilling fluids (WBFs) are used in less difficult wells and the 

shallow portion of difficult, deeper wells. The use of WBFs in certain formations may cause 

the hole to be instable due to the swelling of water-absorbing rock. This problem can be 

greatly alleviated by the use of OBFs and SBFs. OBFs and SBFs are used in deeper well 
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intervals and complex drilling situations because of their superior performance. The 

compositions of drilling fluids vary with both the depth and the location of the well. A 

typical composition of an SBF and OBF is listed in Table ( 1-1 ). 

Table 1-1 Major ingredients of a typical Poly-Alpha -Olefins based drilling fluid (SBF) 

compared to a typical mineral oil based fluid (OBF), (U.S. :MMS 2000) 

Concentration in Drilling Mud 
Component Poly-Alpha- Mineral Oil 

Olefin Mud Mud 
Base Liquid/Water Ratio 70/30 80/20 
Density (lb/gal & kg/L) 11.0 (1.32) 7.43 (0.89) 
Base Liquid 163.4 (470) 217.0 (620) 
Water 83.5 (238) 64.3 (183) 
CaCh 36.6 (104) 8.58 (24) 
Emulsifier 5.0 (14) 1.9 (5) 
Wetting Agent 2.0 (6) 1.0 (3) 
Lime (CaC03) 6.0 (17) ---
Hot Lime (CaO) --- 2.0 (6) 
Or_ganophilic Clay 2.0 (6) 10.0 (28) 
Rheology Modifier --- 4.0 (11) 
Barite 164.5 (469) ---

*Concentrations (except for density) are pounds per barrel and kilograms per cubic meter (in parentheses) 

Drilling cuttings are particles of crushed rock produced by the grinding action of the drill 

bit as it penetrates into the formation. Drilling cuttings range in size from clay-sized 

particles to coarse gravel and have an angular configuration. The particle size distribution 

of drilling cuttings varies with well site and well depth. 

To drill a well offshore, the drilling fluid is first pumped from the mud tanks down the 

hollow drillstring to lubricate the drill bit. After passing through the nozzles of the drill bit, 

the flowing drilling fluids sweep the crushed rock cuttings from beneath the bit and carries 
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them up the annular space between the drillstring and the hole to the surface. As the mixture 

of drilling fluid and cuttings returns to the surface, it is passes through a solids control 

system to remove the drilling cuttings. The cuttings waste stream nonnally consists of larger 

cuttings from the primary shale shakers and fines from a fine mesh shaker or centrifuge, and 

may also consist of smaller cuttings from a secondary shale shaker (US EPA 1999). A 

schematic diagram of a drilling fluid circulation system is shown in Figure ( 1-1 ). 
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Figure 1-1 Generalized drilling fluid circulation system (Ayers 1981) 

After passing through the solid control system, the drill cuttings can be discharged directly 

or sent to undergo further treatment. Finally, they will be discharged offshore, re-injected 

on-site, or transported to shore. Offshore discharge is in most cases the least expensive and 

operationally least complicated, of the three options. Under the current Canadian 
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regulations, WBFs can be discharged without treatment; whole SBFs and OBFs cannot 

be discharged; for drilling cuttings associated with SBFs and OBFs, where re-injection is 

not technically or economically feasible, the on-site discharge of these cuttings is 

permitted provided the attached drilling fluid concentration of 6.9g/100g or less on wet 

solids is achieved; the cuttings associated with diesel or other high aromatic OBFs cannot 

be discharged (NEB et al. 2002). 

Drilling cuttings produced using SBFs are typically discharged continuously as they are 

separated from the solids separation equipment. These cuttings contain rock fragments 

contaminated with a small amount of liquid, solid drilling fluid components. Although the 

cuttings themselves are considered toxicologically inert, the high quantity of TSS (Total 

Suspended Solids) that makes up the bulk discharges can cause benthic smothering (US 

MMS 2000). The alteration of sediment grain size may bring potential damage to 

invertebrate populations and potential alterations in spawning grounds and feeding habits 

(US EPA 1999). Thus the quantitative assessment of both the long-term and short-term 

fates of these discharges become important. 

1.1.2 Transport Modeling 

Once discharged, the fate of drilling wastes is controlled by various transport 

mechanisms, which include flocculation, settling, re-entrainment, and re-suspension. 

These transport processes are illustrated in Figure (1-2). 
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Figure 1-2 Transport processes of discharged drilling wastes 

In the case of cuttings discharge, fractionation of the drilling wastes may occur during 

any stages of transport, depending on whether the materials are soluble or solids heavier 

or lighter than seawater. Most of the materials (barite, flocculated clays, and formation 

solids) sink down quickly to the bottom near the well site. These materials usually 

accumulate in an area about 40 to 50m in diameter immediately down current of the well 

site; the diameter is strongly dependent on the water depth and current speeds of the site 

(NRC 1983). In many areas, because of the strong tidal currents, dispersion of the settled 

materials is rapid, and no visible accumulation of cuttings in the sea floor is shown. 

During the settling process of drilling cuttings, soluble and particulate fluid additives 

adhering to the cuttings are to some extent washed off into water column. The suspending 
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time of cuttings in the water column and deposition distance from the discharge site 

depend on the conditions of discharge (e.g. depth of water, net currents) and the cuttings 

characteristics (e.g. relative density, particle size and shape, drilling fluid type). The 

flocculation process, which changes the particle size distribution, has significant effects 

on the transport distance and transport time. The deposited wastes may later be re

suspended due to the effects of wave and currents. The re-suspended materials will be 

transported away by ocean currents and re-deposited depending on environmental factors 

(such as water depth, bottom configuration, and energy regime). 

When whole fluid is discharged, most of the materials form a plume. The plume descends 

rapidly until it encounters the sea bed or reaches neutral buoyancy due to water 

entrainment and solids loss during settling. In addition, a visible upper plume is formed 

due to turbulent mixing of the low plume with seawater (Brandsma & Saucer 1983). 

Under most conditions, this portion is of primary concern in considering the fates of 

materials in the water column. In deep water (water depth~ 80m), the lower plume will 

reach neutral buoyancy before encountering the bottom (NEB et al. 2002). 

The transfer processes of pollutants from discharged wastes in the seawater depend on a 

great number of properties of these substances. When dissolved, the substances are 

diluted in sea water, but when in particulate form and having a specific gravity higher 

than sea water, they will be precipitated to thesea floor. Equally, substances adsorbed to 

sedimenting materials will ultimately arrive at the seawater/seafloor interface. Sorption of 
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dissolved compounds directly from the supernatant water to the bottom interfacial layer is 

another process which exists. 

In order to give operators and regulatory agencies the capability of predicting the fate of 

drilling discharges under a variety of ocean conditions, mathematical modeling of the 

drilling waste transport processes become important. These models can be explored from 

two aspects: (a) The physical transport of drilling cuttings and fluids, and (b) the 

chemical transfer processes. The physical transport models are fundamental to all the 

other models. 

The most widely used model is known as the OOC (Offshore Operators Committee) model. 

It was developed by Brandsma & Saucer (1983) to model the short term transport. The OOC 

model is the only model that has been calibrated to field data of real drilling discharges 

(O'Reilly, et al. 1988) and is based on observations of the behavior of drilling mud plumes 

in the field. Other studies (deMargerie 1988; Ozretich & Baumgartner 1990) have also 

emphasized the near field settling of effluents or have been designed to evaluate the dilution 

effects over large distances (Walker et al. 1990). Coats (1991) has adopted a diagnostic 

approach, with the intent of deriving the conditions which produce a given distribution of 

drilling waste products. A systematic review of some available models was done by 

Khondaker (2000). 

Although simulation models have been developed by many investigators, no single, fully 

validated and universal drilling waste transport model exists (Khondaker 2000). The 

ultimate accuracy of transport models relies on our knowledge of complex processes 
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related to the transport, which involve: (i) advection, (ii) dispersion, (iii) flocculation, (iv) 

settling, (v) deposition, (vi) consolidation, (vii) erosion, (viii) re-suspension, (ix) re

entrainment, and (x) change in bed elevation. These processes are still only partially 

understood and not well incorporated into hydrodynamic models. For example, the 

flocculation process (which will change the density and particle size distribution of the 

drilling discharge and therefore the whole settling process) is not considered by most 

dispersion models (Brandsma & Saucer 1983, Hannah et al. 1995 & 1996, Bryden & 

Carles 1998). Most of the existing models assume that cuttings are spherical, limited 

range of size, and use very simplified equations for settling. As the transport models are 

very sensitive to the settling velocity equation (Carles & Bryden 1999), these simplified 

assumptions may cause a lack of precision in prediction. Moreover, the flocculation and 

settling are also greatly influenced by the type of base fluids used and the characteristics 

of the cutting discharged, but most previous works on flocculation and settling were 

based on the study of WBFs produced cuttings. The study on flocculation and settling of 

SBFs produced cuttings is still a gap in the knowledge base. In order to accurately predict 

the impact of discharged SBFs and their associated drilling cuttings, it was considered 

essential to conduct research on this subject. 

1.1.3 Summary 

The characteristics of drilling wastes have been introduced in section 1.1.1. The offshore 

drilling fluid circulating system was also described. The transport processes of drilling 
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wastes in the marine environment have been discussed in section 1.1.2. A review of some 

existing transport models was also provided in this section. 

1.2 Objective and Scope of the Study 

As mentioned above in section 1.1 , the transport properties of drilling wastes are very 

important for the accurate prediction of both the short term and long term transport of 

drilling wastes disposed in the ocean, and must be determined experimentally. Very 

limited work on this subject using real drilling wastes have been reported. Only Xu 

(1988) has done flocculation tests using pure barite and bentonite, the major component 

of drilling muds; Huang (1992) has studied there-suspension, flocculation and settling of 

WBFs, and Gerard (1996) has studied flocculation and settling using cuttings produced 

by OBFs. No experimental work using synthetic based cuttings can be found. 

The objective of this study was to improve the understanding of the transport properties 

of synthetic based drilling cuttings and provide important parameters for the numerical 

modeling of the transport of synthetic based drilling wastes in the marine environment. 

This study focuses on the two controlling transport processes which affect the deposition 

of drilling wastes: particle aggregation (flocculation) and gravitational settling. The scope 

of the current study includes: 

1. To develop an experimental method and set up an experimental system to 

investigate the flocculation and gravitation settling of both large and fine-grained 

drilling waste particles. 
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2. To study the effects of thermal treatment on the transport properties of synthetic 

based drilling cuttings. 

3. To evaluate the effects of different receiving environments (turbulence, salinity) 

on the transport of synthetic based drilling cuttings. 

4. To investigate the effects of discharge scenario (concentration) on flocculation 

properties. 

5. To study the effects of particle shape on the settling of coarse particulates. 

1.3 Outline of the Thesis 

This thesis is divided into five chapters. Chapter 1 described the characteristics of drilling 

wastes and reviewed the existing transport models. Chapter 2 presents an overview of the 

flocculation and settling mechanisms of particulate materials; previous works in this field 

are reviewed in this part. In Chapter 3, the experimental apparatus and experiment 

methods are described. This includes a description of the Jar flocculator, settling column, 

and the digital imaging system. The experimental methods and data processing 

technologies are also presented in this chapter. Both the flocculation and se~tbng 

experiment results of untreated and thermally treated drilling cuttings are presented in 

Chapter 4. The experimental results under freshwater and synthetic seawater conditions 

are compared. The effects of concentration, salinity, and shear rate on flocculation are 
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investigated. The shape effects on particle settling velocity are also studied. Concluding 

remarks and recommendations for future work are given in Chapter 5. 
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Chapter 2 

Flocculation and Settling Mechanisms 

2.1 Flocculation Mechanisms 

Flocculation has been observed and studied for a long time due to its significance in 

many fields, such as water treatment, ocean disposal of particulate materials, and 

sediment transport. 

Flocculation is a dynamic process in which particles with small diameters continuously 

collide together -to form floes with relatively larger diameters. It also includes the break 

up of the floes into smaller particles. The aggregation and disaggregation depend on the 

relative motion of particles. This relative motion may be caused by Brownian motion, 

fluid movement giving rise to velocity gradients (also called fluid shear), or by particle 

motion due to external forces (e.g. gravity force causing differential settling). The rate of 

flocculation is determined by the collision frequency induced by the relative motion. 

Where it is caused by Brownian movement it is called perikinetic flocculation; and where 

it is caused by a velocity gradient it is called orthokinetic flocculation. Flocculation 

caused by external forces is treated as a special case of orthokinetic flocculation, as the 

movement of a particle relative to the liquid also creates velocity gradients. 
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Among these three mechanisms, Brownian motion is only valid for particles less than 

about 11J.m, which is not generally the situation for typical fine-grained sediment (in the 

clay and silt size ranges). The importance of differential settling depends on the 

differences of settling speed of particles. Fluid shear is often large near the 

sediment/water interface, in shallow, near-shore areas, and in drilling mud plumes (jets) 

during the initial mixing process. Fluid shear is often the dominant mechanism for typical 

fine grained sediments (Huang 1992) and is the only motion that will be investigated in 

this study. 

When two particles collide, they may or may not aggregate together to form a large 

particle depending on the attraction and repulsion forces between the particles. If there is 

no surface repulsion between the particles, then every collision leads to aggregation and 

the process is called rapid flocculation. If a significant repulsion force exists, then only a 

fraction of the collisions result in aggregation. This process is called slow flocculation. 

Many flocculation models exist, and these models can be categorized as microscale and 

macroscale. Microscale models basically describe aggregation at a particle-particle level. 

To predict time dependent positions of every particle in the dispersion, microscale 

models solved the equations of motion of individual particles in a suspension by taking 

consideration of particle interaction forces (Batchelor & Green 1972, Adler 1981 , van de 

Ven & Mason 1977, Han & Lawler 1991). In addition, the interactions of these forces 

determine the trajectory of particles approaching each other and, eventually, aggregate 

geometry (Elimelech & Song 1992). 
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With the use of Eulerian methods, macroscale models describe system properties in terms 

of particle concentrations in space and time, either for a steady-state condition or to 

reveal time-dependent behavior. The rate theory, which was developed by 

Smoluchowski (1917), best represents macroscale models. By considering how often 

particles collide (collision frequency) and how often they stick together when they collide 

(collision efficiency), rate theory generally simulates changes in concentrations of 

different sized particles. Rate theory has been used by many researchers in aggregation 

related studies (lves 1978a, Lick et al. 1992, Filella & Buffle 1993, Casson & Lawler 

1990, Valioulis & List 1984a, 1984b). Gain and loss of particles in different size classes 

due to aggregation and disaggregation processes are the common mechanisms that are 

included in these models. The basic theories of these models are summarized in the 

following sections. 

2.1.1 Aggregation 

A general formula for the time rate of change of the particle size distribution due to 

aggregation was given by Lick & Lick (1988) as follows. Denote the number of particles 

per unit volume in size range k by nk. The time rate of change of nk is then given by 

dn 1 -
_k =- ~a .. R .. n .n . - n~c ~ a.k R.kn . 
dt 2 . ~ I} }JI} I ) ~ I }JI I 

1+ j=k 1=i 

Equation (2-1) 

where a;j is the probability of cohesion of particle i and j after collision and flij is the 

collision frequency function for collisions between particles i and j. The first term on the 
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right hand side of the equation is the rate of formation of floes by collisions between 

particles of size i and j. The second term represents the loss of floes of size k due to 

cohesive collisions with all other particles. Although the collisions may happen between 

two particles or among three particles or more, binary collisions are assumed here to 

simplify the analysis. 

The value of Pii depends on the mechanisms of collision, Brownian motion, fluid shear or 

differential settling. For Brownian motion 

Equation (2-2) 

where K is the Boltzman constant ( 1.38x 1 0"23Nm/°K), Tis the absolute temperature, p. is 

the dynamic viscosity of the fluid, and d; and di are the diameters of the colliding particles. 

For differential settling 

Equation (2-3) 

where g is the acceleration due to gravity and L1p; =p; -p and is the difference in the 

effective density of i'th floc and the density of water. 

For fluid shear 

Equation (2-4) 
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where G is the mean velocity gradient in the fluid. For a turbulent fluid, G can be 

( )

1/2 

approximated by ~ where e is the energy dissipation and v is the kinematic 

viscosity. The calculation of G within different flocculation systems will be discussed in 

Chapter 3 in detail. 

2.1.2 Disaggregation Due to Shear 

A general expression for the time rate of change of the particle size distribution because 

of disaggregation due to fluid shear can be written as 

Equation (2-5) 

The first term on the right-hand side represents the loss of floes of size k due to shear. 

The break-up coefficient Bk is a function of shear stress, diameter, and the floc density. A 

number of investigators (Argamann & Kaufman 1970, Parker et al. 1972, Matsuo & 

Unno 1981, Paker 1982, Clark 1982) have attempted to determine this quantity from 

basic theoretical considerations. Unfortunately, because the resulting theories involve 

complicated functions of floes and fluid properties, some of which are vaguely defined or 

immeasurable (Spielman 1978), none of these attempts succeeded in giving sufficient 

information to determine the function form of Bk. As a result, the direct effects of shear 

on disaggregation were ignored so that Br(). 
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The second term on the right-hand side represents the rate of increase of nk due to the 

dissagregation of floes of size j>k. The quantity Yjk is the probability that a particle of size 

k will be formed after disaggregation of a particle of size j. With the assumption made by 

Lick and Lick ( 1988), for all j greater than k, this quantity becomes 

Equation (2-6) 

2.1.3 Dissagregation Due to Collisions 

By assuming binary collision, the time rate of change of nk because of disaggregation can 

be written as 

Equation (2-7) 

The first term on the right represents the loss of floes of size k due to the collision with all 

other particles. The quantity Cik is the probability of disaggregation of a particle of size k 

after collision with a particle with size i. The second term represents the rate of increase 

of particles of size k after collisions between all particles i and j, where j is greater than k. 

The parameters in above equations can be determined by using data on the time variation 

of particles sizes derived from experiments. With the determined parameters, the 

flocculation processes can be modeled quantitatively. 
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2.2 Previous Work on Flocculation 

As mentioned before, flocculation is important in such areas as water treatment, sediment 

transport and contaminant transport. Most of the previous work concerning flocculation 

has been in these areas. 

In the area of water treatment, the strength and density of aluminum-clay floes where the 

flocculation is induced by the addition of an aluminum ion solution has been studied by 

Tambo & Watanabe (1979) and Tambo & Hozumi (1979). Similar works have been 

conducted by Boadway (1978), Argamann & Kaufman (1970), and Parker et al. (1972). 

Delichatsios & Probstein (1975) studied the flocculation of colloidal particles in turbulent 

pipe flows. Their works were motivated by the importance of learning the behavior, 

handling and treatment of dispersions. 

It was demonstrated both through observation of natural samples (Biddle & Miles 1972, 

Sheldon 1968, Kranck 1975, Eisma 1986) and in laboratory experiments (Gripenberg 

1934, Whitehouse et al. 1960) that most of the particulate matter in rivers, lakes, and 

oceans exists in the form of floc. Considerable work on the flocculation and de

flocculation processes of natural particles has also been conducted. Hunt (1982) studied 

three clay minerals (Kaolinite, illite, and montmorillonite) and a silica mineral in artificial 

seawater by using a vertical Couette flocculator. The particle size distribution was 

measured with Coulter Counter (a particle sizer which uses the Coulter Principle to 

measure particle volume providing both size and volume distributions of particles). Hunt 

& Pandya (1984) also studied sewage sludge with the same experimental configuration. 
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Tsai et al. (1987) studied the flocculation of fine-grained lake sediment due to fluid shear 

with a horizontal Couette flocculator. Similar tests can be found from Lick and Lick 

(1988), and Burban et al. (1989). Due to the fact that most previous work on flocculation 

of fine-grained sediments has emphasized the effects of fluid shear, Lick et al. (1993) 

studied the flocculation due to differential settling by using a disk flocculator. 

Like all fine-grained particles, discharged drilling muds do not exist as individual 

particles, but rather as floes. Field tests of water based drilling mud discharges performed 

by Ayers et al. (1981) indicate rapid flocculation. Field studies (Neff et al. 1989, 

Muschenheim et al. 1995, and Muschenheim & Milligan 1996) have shown that the 

flocculated drilling wastes can be found at considerable distances from drilling platforms 

in high energy environments. In laboratory studies, Xu (1988) investigated the 

flocculation of barite and bentonite, the major components of drilling muds, due to fluid 

shear using a Couette flocculator. Huang (1992) studied the flocculation due to both fluid 

shear and differential settling using real water based drilling muds from Santa Barbara oil 

platforms. The fluid shear effect was investigated using a horizontal Couette flocculator 

while the differential settling effect was tested using a disc flocculator. Curran et al. 

(2002) also studied the flocculation properties of water based drilling muds using a 

recirculating flume channel 6.25m in length and 0.5m in width and depth. All these 

previous studies were based on water based wastes, the only research using oily based 

wastes was that by Gerard (1996). The flocculation of oil based drilling wastes was 
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studied in a grid column, where the particle size was measured by a laser beam particle 

sizer. The effects of turbulent energy and concentration were examined. 

Although those previous works have made contributions to understanding the 

flocculation processes, there is still no published work on the flocculation of synthetic 

based drilling wastes. This gap is the reason for the present study. It should also be 

mentioned that the results of flocculation experiments were affected by the limitations of 

available apparatus, especially the particle sizer (Xu 1988). Most of the previous works 

were conducted using Couette type flocculators and the particle sizes were analyzed 

using a Coulter counter or laser particle sizer. The Coulter counter utilizes an electrical 

sensing zone to measure the volume equivalent diameter. This method is not accurate for 

floes and can only size a fairly narrow range (e.g., 2-40J.Lm) on a single pass through the 

aperture (McCave & Syvitski 1991). Most of the laser particle sizer use the laser 

diffraction principle and generate volume equivalent diameter. This method is only valid 

for very small particles (usually d<1mm). Both the Coulter counter and laser particle 

sizer require the sampling process, this may cause the breakup of floes and resulted a 

inaccurate measurement. The present research uses a different approach to investigate the 

flocculation due to fluid shear. The experiment was conducted using a blade type 

flocculator, and direct image analysis was employed to obtain particle size data. The 

results are compared with previous studies. The experiment apparatus and methods will 

be discussed in Chapter 3. 

- 21-



2.3 Settling Mechanisms 

2.3.1 Terminal Settling Velocity of Spherical Particles 

When a spherical particle falls from rest in a stationary fluid under the action of gravity, 

it is acted upon by two forces: a gravitational force F acting downwards and a resisting 

force R acting upwards. As a result, the particle will at first accelerate as it does in a 

vacuum, but unlike in a vacuum, its acceleration will be retarded due to friction with the 

surrounding fluid. As the resisting forces increase with the velocity, this force will 

eventually reach a value equal to that of the gravitational force. From this point on, the 

two forces will balance and the particle will continue to fall with constant velocity. Since 

this velocity is attained at the end of the acceleration period, it is called terminal velocity. 

Consider a solid sphere of density Ps falling in a stationary fluid of density P! under the 

action of gravity. Let D be the diameter of the particle, then 11D
3 

is its volume, and 
6 

11f)
3 Ps 

is its mass. The gravitational force is the difference between weight and 
6 

buoyancy 

Equation (2-8) 

where g is the gravitational acceleration. 
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By assuming that the resisting force R is a function of the diameter of the particle, its 

velocity u, and surrounding fluid density, P! and viscosity, JL and conducting dimensional 

analysis, the R was obtained as: 

R=kD2u 2p [ f.J ]s 
f Dupf 

Equation (2-9) 

Where exponent s is the value that need to be determined for different flow conditions. 

From Equation (2-9), it can be seen that the drag force is .determinable provided the 

exponents is clearly determinable. This condition only exists for laminar flow (Michell 

1970). For a spherical particle settling at its terminal velocity, the two opposing forces are 

in balance. By substituting s and kin equation (2-9) with 1 and 31l' (Michell 1970), the 

terminal velocity is obtained as 

Equation (2-10) 

Equation (2-10) is also called Stokes equation. 

2.3.2 Drag Coefficient and Reynolds Number 

The projected area of a particle is defined as the area of its profile when the particle is in 

its most stable position. For a spherical particle, this area A is 

Equation (2-11) 
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By substituting equation (2-11) into equation (2-9), the resistance force is obtained as 

Equation (2-12) 

where C = 2kD
2 

[ J.i ]s 
0 A Dup1 · 

Equation (2-13) 

The Cv in Equation (2-13) is called the drag coefficient 

For a particle settling at its terminal velocity u, the two opposing forces, F and R, are in a 

balance, making use of equation (2-8) and (2-13) 

u = I 

4 D(ps - PJ )g 

3Co pf 
Equation (2-14) 

From the equation (2-14 ), it can be seen that terminal velocity can be calculated provided 

the drag coefficient is known. 

By analogy to flow in pipes, it may be assumed that resistance in laminar flow motion is 

inversely proportional to the dimensionless group of terms known as the Reynolds 

number defined as 

Re= Dup 
J.i 

Equation (2-15) 

It can be seen from equation (2-13) and (2-15) that the drag factor is some function of the 

Reynolds number. For spherical particles in the laminar range (Re<0.2), the relationship 

between Cv andRe may be obtained 

c = 24 
0 Re 

Equation (2-16) 
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Figure (2-1) is a logarithmic plot of Cv versus Re for spherical particles. For the laminar 

range, by substituting equation (2-16) into equation (2-14) for Re from equation (2-15), 

the equation (2-14) becomes the Stokes Equation as equation (2-10). 

It can be seen from the above analysis that the settling velocity can be obtained provided 

the Cv vs Re relationship is known. 

No regular relationship exists between Cv andRe for the transitional range and turbulent 

ranges (Re>0.2). The curve within this range is described by a number of investigators for 

spherical particles and these equations are shown in Table (2-1). 
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Figure 2-1 The drag coefficient (Cv) vs Reynolds number (Re) for spherical particles 
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Table 2-1 Relationship between Reynolds number and drag coefficient for spherical 
particles 

Author(s) Range Relationship for Cn 

Schiller and 
Re<BOO 

24 
(1 + 0.15 Re0

·
68
') 

Naiman Re 

Lapple Re<lOOO 
24 (1 + 0.125 Reo .. n) 
Re 

Langmuir and l<Re<IOO 
24 

(1 + 0.197 Re0
""
63 + 2.6 X 10-4 Rel.38

) 
Blodgett Re 

Allen 
(a) 2<Re<500 IORe-1'~ 

(b) l<Re<IOOO 30Re·0.625 

Gilbert et al. 0.2<Re<2000 0.48+28Re·u.eJ 

6 21 
Kurten et al. 0.1 <Re<4000 0.28+--m+-

Re Re 
Abraham Re<6000 0.2924(1+9.06Re - 11~)~ 

Re<l04 0.36+ 
5.48 24 

Ihme et al. +-
Reo.s73 Re 

Re<lO 2+24/Re 
Rumpf Re<IOO 1+24/Re 

Re<l05 0.5+24/Re 

Clift and 
Re<3x105 24 (1+0.15Reo.6s7)+ 0.42 

Gauvin Re 1 + 4.25x104 Re-u6 

Re<3xl05 4 24 
Brauer 0.40+--m+-

Re Re 
Tanaka and 

Re<7xl04 log10 C0 = a1 w
2 + a2w+ a3 , where w = log 10 Re, and al, a2 a3 

Iinoya are _given for 7 intervals or Re 

*Reproduced from Clift (1978) 

2.3.3 Time and Distance to Reach Terminal Settling Velocity 

Assuming a spherical particle is falling from rest in a still fluid under the gravity force, 

the equation of motion for the particle settling may be expressed as 
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F - R = ;r p D3 du 
6 s dt 

Equation (2-17) 

Substituting equation (2-8) and (2-12) into (2-17) and solving the equation, the time t 

required to reach terminal velocity is obtained as 

t = 4D
2 
Ps J d(Re) 

2 3J1 S- CvRe 
Equation (2-18) 

4D3 
( ) 

h S . h . }"f" . f p f Ps- p f g where t e IS t e simp 1 IcatiOn o 2 
3J1 

By substituting equation (2-16) into (2-18), the time for laminar range becomes 

t = D2 Ps ln-u-
18J1 u, -u 

Equation (2-19) 

At 99% of the terminal velocity, the equation (2-19) becomes 

4.6D2 P, 
t=--~ 

18/1 
Equation (2-20) 

For turbulent range, by substituting C0 in equation (2-18) with 0.44, which is a 

approximate value for turbulent range shown in Figure (2-1 ), the time t required to reach 

terminal velocity is obtained as 

t = 1.52Dp. ln[(u, +u)(u, -u0 )] 

u,p 1 (u, - u)(u, + u0 ) 
Equation (2-21) 

where ua is the minimum velocity that makes particle Reynolds number reached turbulent 

range. By assuming uO equals to 0, at 99% of the terminal velocity, the equation (2-21) 

becomes 
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8.04Dps 
t=--~ Equation (2-22) 

u,pf 

From equation (2-20) and (2-22), it can be seen that the time needed for a particle to 

reach terminal velocity is very short. For laminar range, it is usually several milliseconds. 

For turbulent range, for example in this research, all the Dlut values obtained are less than 

0.035 which means the maximum t in this research is 0.56s while the density is around 

2.3.4 Size and Shape Characterization of Non-Spherical Particles 

For spherical particles, the problem seems to have been solved through the analysis 

above. However, for any particle other than a sphere, the problem becomes hard to treat 

because of the influence of particle orientation and the lack of a single unambiguous 

dimension upon which to base dimensionless groups. Therefore, the size and shape of 

these non-spherical particles have to be discussed before going further. 

A number of sizes and shapes can be presented when a non-spherical particle is viewed 

from different orientations and with different definitions even from the same orientation. 

The assigned size of irregular particles usually depends upon the method of measurement 

which includes sedimentation, sieve, microscopy and so on. It is impossible to 

characterize irregular particles only by one parameter due to the complex structure. 

However, in order to simplify the problem, equivalent diameters can be used. The particle 

thus can have a free falling diameter, Stokes' diameter, volume diameter, surface 
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diameter, projected diameter and so on. A complete explanation of these diameters has 

been given by Allen (1990). 

For our purpose here, the settling mechanism of particles with different sizes and shapes 

in sea water is of interest and needs to be characterized. When dealing with this kind of 

motion, the parameters, such as the volume, surface area, and cross-sectional area normal 

to motion become important. Thus, selecting the volume equivalent diameter, which is 

defined as the diameter of a sphere which has the same volume as the particle, is suitable. 

If the volume and behavior of each single particle is known, along with the total volume 

of discharged drilling cuttings, the thickness and wideness of cuttings accumulation on 

seafloor can be predicted. However, to characterize the irregular particles, a diameter 

parameter only is not enough; a shape factor is needed as a second parameter. This is due 

to the fact that even with the same volume, particles with different shapes can have 

different settling velocities. The shape of solids (in physico-chemical meaning) has been 

discussed in many different fields of science. According to the purpose of the research 

and nature of particles, the shape factor is given by many different definitions, for 

example, sphericity, roundness, and elongation (Hawkins 1993). Through the 

comparison of these available shape factors, the degree of sphericity, l/1, defined as the 

ratio of the surface area of the sphere of same volume as the particle and the surface area 

of the particle, is selected here. 

As described above, the sphericity can be calculated by 
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Surface of Sphere of Same Volume as Particle 
If/=-------"-------------

Surface Area of Particle 
Equation (2-23) 

However, in practice, the volume and surface area of a discharged particle is hard to 

measure unless it has a unique shape (e.g. sphere, cube, and parallelopiped). The present 

research attempts to obtain data from the analysis of a number of two dimensional 

images. The surface area and volume of the particle cannot be measured by the 

technology used in this research and it is very time consuming to measure even with 

other technologies. Thus, some practical methods must be employed to estimate the 

volume, surface area and sphericity, and the method must be such that the obtained value 

approaches as closely as possible the degree of true sphericity. 

Wadell (1932, 1933, and 1935)'s formula for approximating the shape of quartz grain 

was selected 

Equation (2-24) 

where f/J is the approximateddegree of sphericity, den is the diameter of a circle equal in 

size to the cross-section area of the particle. De is the diameter of the smallest circle 

which can circumscribe the grain, generally the longest diameter of the object (Luo 

1998). 

The difference between computed and actual sphericity for five geometric prototypes is 

listed in Table (2-2). It is shown from Table (2-2) that for spheres f/J = If/. For other 

forms, the value of f/J approaches that of If/, except for No.5, which is a very flat and 
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rather square shaped solid. It should be noted that a circular disk obtains a maximum </>-

value, while its actual 'If -value may be very low. Therefore, this method is not valid for 

very flat particles. Most of the drilling cutting particles do not in general attain very flat 

shapes, so this approximation is valid. It should also be noted that according to the drill 

bits and type of fluid used, a certain amount of cuttings with flat shapes will be produced. 

The settling velocity of flat shaped particles is quite different from particles with 

relatively spherical shapes. The settling velocity of flat shaped particle is very sensitive to 

the settling orientation as a different orientation will give a different settling velocity. The 

settling orientation of flat shaped particles may change during settling. As a result, the 

settling velocity will change during settling. This increases the difficulty in studying the 

settling velocity of flat shaped particles. In this study, the particles with flat shape were 

discarded. 

Table 2-2 Difference between the </> and If/ for five geometric forms (Wadell 1935) 

No. Geometric Form 
Dimensions 

Volume </> 
Difference 

(em) If/ ljf-</J 
1 Sphere Diam. 2.48 8 1.00 1.00 0.00 
2 Cube 2x2x2 8 0 .80 0.79 0.01 
3 Parallelopiped 4x2xl 8 0.69 0.71 0.02 

4 
Parallelopiped 

4x2xl 7 0.63 0.66 0.03 
With re-entrance 

5 Parallelopiped 5x3.2x0.5 8 0.48 0.75 0.27 
6 Parallelopiped 8x2x0.5 8 0.46 0.54 0.08 

- 31 -



2.3.5 Settling Velocity of Non-Spherical Particles 

A sphere is unique in that it presents the same surface to the oncoming fluid whatever its 

orientation is. Non-spherical particles are more difficult to treat because of the influence 

of shape and orientation. From equation (2-13) and (2-15), it can be seen that the drag 

coefficient as a function of Reynolds number varies with the position of the particle 

relative to the fluid motion. If the particle is a sphere, the cross-section areas A are the 

same for all orientations. If a particle is irregularly shaped, the cross-section area A varies 

with the particle position, thus the drag coefficient varies (Allen 1990). The drag 

coefficient as a function of Reynolds number for non-spherical particles can be correlated 

in the same way as for the spherical particles. 

It has been shown by Wadell (1934) that the surface area and the size and degree of 

circularity of the cross-sectional area influence the numerical value of the drag coefficient 

as a function of Reynolds number. These factors are the most important factors 

influencing the fluid motion about the solid. Because the sphere has the greatest relative 

volume with the smallest surface area, the smallest cross-sectional area taken as an 

average of a great number of such sections, and a maximum degree of circularity in all 

cross-sectional planes, the sphere has the greatest settling velocity of any other solid of 

the same volume and density. 

Other features that influence the settling velocity are the roughness of the surface and the 

roundness of the comers and edges (Wadell 1934). The influence of surface roughness is 

comparatively small and can be neglected. The roundness of the comers and edges of a 
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solid is recognized as an important factor that affects the settling. Vortices are more 

readily formed in the presence of sharp comers and edges than in the case of well 

rounded ones. 

2.4 Previous Work on Settling 

Traditionally, experimental results of settling velocity studies have been used to develop 

a graph of the dependency of CD on Re. From such a graph, it is possible by iteration to 

estimate the settling velocity knowing the particle size. Similarly, particle size can be 

calculated if settling velocity is known. 

The CD versus Re relationship for spherical particles has been studied by a number of 

investigators and a series of equations developed are summarized in Table (2-1 ). For non-

spherical particles, the drag coefficient as a function of Reynolds number for solids of 

various shapes has been reported by Wadell (1934). Many other studies on the settling of 

non-spherical particle were reviewed by Hoerner (1958) and Torbin & Gauvin (1960). 

Among those previous works, Gibbs et al.'s (1971) and Sleath's (1984) work will be 

mentioned here because of their application in some transport models. Gibbs et al. (1971) 

studied the settling of glass spheres and derived an experimental relationship for spherical 

particles of density Ps falling in a fluid of density P! 

- 3jl + ~9jJ2 + gr2
( Ps - P 1 )( 0.015476 + 0.019841ra ) 

u =----~------------------~------------
( (0.011607+0.14881rJp1 

Equation (2-25) 

-33-



where uris the settling velocity in em/sec, p, is water dynamic viscosity in poises, ra is the 

sphere radius in em, g is the acceleration of gravity in crnls2
, Ps and Pr are in g/cm3

• 

This equation has been employed by Arcilla et al. (1998) in a three dimensional model to 

simulate the pollutant dispersion for near and far fields in coastal waters. Another 

application of this equation is deMargrie (1988) in the modeling of drill cuttings 

discharges. Sleath (1984) reported the settling velocity for quartz particles at the range 

90>D>3mm with three different shape factors (S.F.) 

S.F. = 1.0 

S.F.=0.7 

S.F. = 0.3 

The S.F. is calculated by 

u, = 6.5D 112 

u, = 4.2D112 

u, = 2.8D112 

Equation (2-26) 

Equation (2-27) 

where the Dl, D2, D3 are respectively the lengths of the shortest, intermediate, and 

longest mutually perpendicular axes. 

And for D<.O.lmm. 

Equation (2-28) 

The equation (2-26) with the S.F.=0.7 has been used by Hodgins & Hodgins (2000) in the 

modeling of drilling cutting deposition. 
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The studies discussed above mainly focused on coarse particles. In a given fluid, the 

settling velocity of fine grain particles also increases as the particle diameter is increased, 

although the rate of increase is different for coarse particles. For the settling of cohesive 

sediments, due to the effects of flocculation, the particles will settle in clusters with fall 

velocities many times larger than the isolated particles. In these cases, the Stokes' law is 

not directly applicable, because it is only valid for slow falling (Re<0.5) impermeable 

spheres. However, many investigators have attempted to extend its application to other 

shapes and higher Reynolds numbers by using empirically determined correlation factors 

(Graf 1971, Raudkivi 1976). Migniot (1989) proposed an equation for the settling of 

aggregates using the flocculation factor 

Ws,agg = FaxWs.pan Equation (2-29) 

where the Ws,parris the Stokes' settling velocity, in the form of equation (2-10), and Fa is 

the flocculation factor given as 

Fa = 250D-t.8 Equation (2-30) 

For natural aggregates, their densities cannot be measured directly. The usual procedure 

has been to assume Stokes' equation is correct and calculate density from measurements 

of the particle size and velocity. McCave (1975) reviewed previous determinations of this 

type, developed a formula which predicts the aggregate' s density as a function of size, 

and used his results to calculate aggregate settling velocities using Stokes' equation. 

After measuring of over 200 oceanic aggregates with diameters between 50 and 100 

-35 -



microns, Kawana and Tanimoto (1976, 1979) fitted their result with an equation of the 

form 

Equation (2-31) 

where a, and bare constants determined empirically. The same form was also given by 

Kajihara (1971), and Gibbs (1985a, 1985b). The studies by Kawana & Tanimoto (1976, 

1979) show that the aggregates settle far more quickly than McCave (1975) predicted, 

this reason for this is that the fluid flow around a settling floes is relatively turbulent 

rather than laminar due to the porous structure and irregular shape of floc, which is not 

the case for Stokes' law. 

For the turbulent effect on the settling of aggregates, Van Leussen ( 1994) utilized a 

formula which modifies the settling velocity in still water, by a growth factor due to 

turbulence divided by a turbulent disruption factor 

W =W 1+aG 
s sol +bG2 Equation (2-32) 

where Ws is the settling velocity, G is the root mean square of the gradient in turbulent 

velocity fluctuations, and a and b are the empirically determined constants. Ws0 is the 

reference settling velocity, which is given as 

Equation (2-33) 

where k is an empirical constant and m is the exponent. 
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Based on the assumption that flocculated mud could be represented by a self-similar 

fractal structure, a more complex equation was proposed by Winterwerp (1998) 

( ) Drif-1 
W = ~ Ps - P D3-nf -----

s 18ft f.i P 1 + 0.15Re0
.
687 

Equation (2-34) 

where a and f3 are empirical constants, and Dp is the diameter of the primary particle and 

nfis the fraction dimension which appears to vary between 1.4 and 2.5. 

Although settling speeds of floes in both freshwater and seawater have been observed and 

studied by many investigators (Kajihara 1971, Silver & Alldredge 1981, Hawley 1982, 

Gibbs 1985a 1985b, Van Leussen 1994, Winterwerp 1998 etc.), the settling velocities of 

floes are not well known, and in particular, the parameters on which these settling 

velocities depend are not well understood (Burban et al. 1990). In the references cited 

above, many types of particles have been studied and in most cases the settling velocity 

was given as a function of diameter, see equation (2-30). The empirical constants a and b 

probably depend on the type of particles being investigated and the condition under 

which the floes were produced. For the synthetic based drilling wastes, no previous 

research can be found to provide such information, therefore, one of the key purposes of 

the present work was to measure the settling velocity of floes produced from the 

flocculation of synthetic based drilling waste under turbulent shear in both fresh and sea 

water and in this way, to determine quantitatively the dependence of settling velocity on 

these parameters as well as on the diameter. 
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2.5 Summary 

The flocculation mechanism was discussed in section 2.1. A flocculation model by Lick 

& Lick (1988) was described. Previous work on flocculation of both natural sediments 

and WBFs were reviewed in section 2.2. The settling mechanisms of both spherical and 

irregular particles in stationary fluids were discussed in section 2.3. It was shown that the 

drag coefficient correlation is important in obtaining the settling velocity equation. The 

previous works on the settling of both individual particles and floes were described in 

section 2.4. Several settling velocity equations were reviewed. 
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Chapter 3 

Experimental Methods and Apparatus 

3.1 Sample Preparation 

In this study, rock cuttings from the drilling of a production offshore well on east coast 

Canada using synthetic based drilling fluids were used. The cuttings produced from 

section 3050-3069 and section 3070-3090 was collected directly from the shale shaker. 

As described in Chapter 1, SBF cuttings containing several percent adhering SBF do not 

disperse effectively in the water column following discharge, rather they settle rapidly as 

clumps of solids through the water column and accumulate on the bottom near the 

platform discharge site. Depending on the rate of deposition, potentially harmful 

concentration may accumulate in the sediments near the discharge site (U.S. MMS 2000). 

The rate of settling of SBF cuttings through the water column and the areal extent and 

concentrations of cuttings accumulating on the bottom depend on the density and size 

distribution of settling particles, water depths, and the three dimensional water current 

regimes in the water column. Offshore waste treatments remove parts of the oily 

components from cuttings and change the physical properties of cuttings, such as density 

and particle size distribution. After the treatment, SBF associated cuttings can have 

relatively low density and small median diameter, which makes the treated cuttings more 
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dispersible and lower environmental risk. The treatment methods can be centrifuge, 

thermal, combustion, solvent extraction and others. Drying is an important method for 

treating drilling cuttings; it can be used independently or usually together with other 

methods. In the present work, the drying method was selected to remove the oily and 

evaporation components from SBF cuttings. An evaluation of treatment methods is being 

done by Worakanok Thanyamanta, an M.Eng student in the Faculty of Engineering & 

Applied Science, MUN, under the NSERC supported project. 

3.1.1 Sample Preparation of Drying Treated Cuttings 

A 2 kg sample was taken from each of the two bulk drilling cutting samples. The sample 

was placed on an aluminum pan and put in an oven at l10°C for 24 hours. The sample 

was weighed and then loaded into the top sieve of a sieve stack (75JLm, l06JLm, 150JLm, 

250JLm, 300JLm, 425JLm, 595JLm, 850JLm, 1.18mm, 2mm, 2.36mm, 2.5mm, and 5.0mm). 

The sieve stack was loaded in a sieve shaker, which is located in the soil laboratory at 

Memorial University of Newfoundland, and shaken for 10 minutes. The cuttings in each 

sieve were carefully removed to labeled aluminum pans and weighed. The percent 

retained on each sieve was calculated and the results are shown in Figure (3-2). 

The sieve test results show that around 4 percent of particles from formation 3070-3090 

and 2 percent of particles from formation 3050-3069 are finer than lOOJLm. This percent 

would likely increase with the shaker running time due to the fragile property of the dried 
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cuttings. From Figure (3-2), it is shown that the particles are finer from the 3070-3090 

section than from the 3050-3069 section. Figure (3-3) shows the untreated and dried 

cuttings. 

"' ~ 
s 
{; 
l 
~ 

J 
i 
£ 
l 

8t) 

10 

eo 

50 

4) 

30 

:20 

10 

Q 

Figure 3-1 The stack of sieves on the analytical shaker 
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Figure 3-2 Particle size distribution of dried drill cuttings (the horizontal axis is the particle 
dianneters, in nnna) 
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Figure 3-3 Untreated Cuttings and Dried Cuttings 

The dried particles were then dumped into containers with freshwater, or synthetic 

seawater (a solution of synthetic sea salts) depending on the experiment, until fully mixed. 

The advantages of synthetic seawater are that it has good water quality, high solubility 

and pureness and can be prepared quickly. The salinity of the synthetic seawater was 

34.86, which is the monthly average value at the sampling site. The suspensions with 

particles larger than 75 /.Lm were then ready for the settling test. For the flocculation tests, 

the present work investigated fine grained particles in the range of 1 to 40 microns. The 

suspensions with particle sizes less than 75~-Lm were filtered using a 40/.Lm sieve to 

remove the coarse particles. The sample was then stored in sealed containers. Before the 

flocculation test started, the concentration of the suspension with particle size less than 

40JLm was measured by a filtration method. The suspension was then diluted to the 

-42-



desired concentration (50mg/L, IOOmg/L, 200mg/L, and 400mg/L) in a 2-liter test beaker 

and was then ready for the flocculation test. 

3.1.2 Sample Preparation of Untreated Cuttings 

As the untreated wet cuttings exist as wet large clumps, they are not suitable for 

immediate tests and must be pre-separated. The reason for pre-separating for the 

flocculation tests is that only the particles smaller than 40 #J.m were of interest, so the 

coarser particles had to be removed. For the settling column test, since there was no 

external force (e.g. turbulence) present, the large clumps were not easy to separate within 

the relatively short testing time. In order to get enough data points with different 

diameters, the coarse particles were separated before conducting the column settling test. 

A simplified wet sieve method was used in the present work to do the pre-separating 

work. 

A sieving tower (5mm, 2.5mm, 2mm, 1.18mm, 595#J.m, 250#).m, and 40#).m) was 

assembled with the coarsest sieve on top and the finest sieve at the bottom, underlain by 

the fine material pan. The untreated wet cuttings were poured carefully onto the top sieve. 

The sample was spread evenly with a soft brush and then flushed gently using a squirting 

plastic bottle with freshwater (or seawater depending on the experiment) until it 

disintegrated. The process was repeated from the top sieve to bottom sieve until enough 

samples were obtained on each sieve. The retained materials were collected from each 
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sieve and dispersed in freshwater (or seawater depending on the experiment) at which 

time the sample was ready for the settling column test. The particles in the bottom fine 

material pan were allowed to settle and the top suspension was then removed. The 

residual suspension was transferred into a sealed container and the concentration was 

measured. Before the flocculation test started, the concentration of the suspension with 

particle sizes less than 40JLm was checked by a filtration method. The suspension was 

then diluted using freshwater (or seawater depending on the experiment) to the desired 

concentration (50mg/L, lOOmg/L, 200mg/L, and 400mg/L) in a 2-liter test beaker after 

which it was ready for the flocculation test. 

3.2 Flocculator 

The flocculation experiment can be conducted by using a Couette viscometer, jar test 

stirrer, baffled mixer, small-bore tube, granular filter or fluidized bed (lves 1978b). 

Among these devices, the Couette viscometer and jar test stirrer are the most commonly 

used. 

The Couette type viscometer basically consists of two concentric cylinders with one 

rotating relative to the other. In this way, a velocity gradient is generated in the fluid in 

the annular gap between the cylinders. By rotating only the outer cylinder, the generated 

velocity gradient across the annular gap is calculated as 
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Equation (3-1) 

where R1 is the outer radius of the inner cylinder and Rz is the inner radius of the outer 

cylinder, and ro is the velocity of outer cylinder. The advantage of this type of flocculator 

is that the shear stress generated is well defined, fairly uniform, and easy to adjust to a 

desired value. A detailed analysis of this type of flocculator can be found in the 

references by Van Duuren (1968) and lacobellis (1984). The Coutte type of flocculator 

has been used recently by Tsai et al. (1987) for a flocculation study of fine-grained lake 

sediments, by Xu (1988) on bentonite and barite, and by Huang (1992) on water based 

drilling mud. 

The waterworks laboratory test of paddle stirring in beakers, known as the jar test, has 

been used for more than eighty years and is still widely used in the evaluation of 

flocculation processes. A stirrer with flat paddles has traditionally been used as the 

impeller in the jar test. A 2 liter square-beaker is often used. Although most jar test 

apparatus are similar, they are not identical, and there is no standard design. The 

comparison of variations in the design and operation of jar test is based on the mean 

velocity gradient, which is defined by Camp and Stein (1943) as: 

Equation (3-2) 

Where G is the velocity gradient (s-1), W is the dissipation function or power input per 

unit volume of fluid, and p, is the absolute viscosity of the fluid. By substituting W in 

equation (3-2) with power per unit volume, we get: 
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Equation (3-3) 

where Pis the power dissipated in the water (Watt), pis the viscosity (N-s/m2
), and Vis 

the volume of the suspension (m3
). 

Normally there are two approaches that can be used to determine the power transmitted 

from the stirrer blade to the water. The first approach requires a sensitive torquemeter 

(0.01-0.2 Nmm) on the stirrer drive shaft. The power is then calculated by (Bhole 1970, 

Camp 1968, Lai et al. 1975, Wagner 1993): 

P=T·W q Equation (3-4) 

The second approach is to calculate P from the drag force on the paddle blade multiplied 

by the velocity of the blade relative to the suspension. The drag force is the Bernoulli 

dynamic pressure p(vp-v)312 multiplied by the area Ap and the drag coefficient C0 . 

Therefore the power Pis given by Ives (1978b) as: 

(v v)3 

P=C A P D pP _..:,._2 __ Equation (3-5) 

However, the drag coefficient C0 and the velocity of the suspension v in equation (4) are 

difficult to determine. The value of Co has been assumed in various publications to be 

between 0.8 and 2.0 when the value of the relative velocity ratio v/vp has been reported to 

be between 0.25 and 0.53. 
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Although the power dissipated cannot be estimated theoretically, it can be studied by the 

same type of quantitative experiments, guided by dimensional analysis. Through the 

dimensional analysis of McCabe & Smith. (1967) and experimental results of Rushton et 

al. (1950), it was shown that the geometry of the tank has almost no effect on power 

input; the blade with the same projected area produces the same velocity gradient, and the 

variation of distance of the blade from the beaker bottom did not change the power input. 

These conclusions are in agreement with Camp (1969) and Lai et al.'s (1975) experiment 

results. By assuming the liquid is Newtonian, the power Pis given as (McCabe & Smith 

1967) 

Equation (3-6) 

K n3D 5 

p = T a p (Turbulent Flow) Equation (3-7) 
gc 

where Pis the power, n is the rotation speed, Dais the paddle diameter, pis the dynamic 

viscosity, Pi is the liquid density, gc is the Newton's-law conversion factor (32.17 lb-

ft/lbf-s2
), and KT, and KL are empirical constants. 

For the present research, a Phipps & Bird Six Paddle Stirrer (Model 7790-400), see 

Figure (3-4), and a 2 liter square beaker were employed. This instrument located in the 

environment laboratory at Memorial University of Newfoundland. The paddle of this 

stirrer is a 2-flat blade paddle with a length of 76mrn and width of 25mrn. The velocity 

gradient of this kind of paddle in 2 -liter rounded or square beaker has been measured by 

a number of investigators (Camp 1968; Cornwell et al. 1983; Lai et al. 1975; Wagner 
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1993). The data by Wagner (1993), which shows the relationship between velocity 

gradient and rotation speeds (Figure 3-5), was directly used for this study. For other 

beakers using the same stirrer, the G versus rotational speed relationship can be 

calculated by equation (3-6) and (3-7) from the constants KT and KL. which can be 

obtained from the analysis of experimental data presented in Figure (3-5). 

Figure 3-4 Phipps & Bird Six Paddle Stirrer 
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Figure 3-5 Velocity Gradient vs RPM for a 2-liter Square Beaker Using a Phipps & Bird 
Stirrer, Source: Wagner (1993) 

3.3 Settling Column 

The column shown in Figure (3-6) was used in this work for drilling wastes settling tests. 

The column is constructed of 14-cm-inner diameter Plexiglas tubing and could be easily 

cleaned. The total height of the column is 250cm and 5 ports are provided for extraction 

of samples at various depths during testing. The distance between the sample ports is 

40cm each. 
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Figure 3-6 Settling Column 

3.4 Digital Imaging System 

Imaging technology has been used in many fields for several decades. Advantages of 

digital imaging systems are that they can be non-intrusive (Chen & Fan 1992) and 

realistic aggregate images can be obtained (Eisma et al. 1990). An imaging system 

consists of digital data (imaging acquisition), storage, processing, and display. These 

functions are easily integrated into computer systems using a digital video camera, 

optical system (lens, extension tubes) and lighting system. 

The lighting system is the most important component for the digital imaging system. 

With different lighting techniques, the resulting image types will be different. A well 

selected lighting method can provide the best quality images for analysis while a badly 
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lighted image will be hard to interpret. The light scattering and back lighting methods are 

two commonly used illuminating methods and both were considered in the present study. 

The light scattering image is produced when an illuminated image is viewed from an 

angle different from the angle of light. The light scattering method is useful, but there are 

problems with calibration and with obtaining detailed information for irregular shaped 

particles (Berkelmann & Renz 1988). In a back lighting setup, light is transmitted from 

the back of the test cell so that particles appear as dark images against a light background. 

Either a coherent light source, such as a laser, or a diffusive light source, such as a regular 

light bulb, can be used as the backlight source. If a coherent source is used, a diffraction 

fringe pattern is formed on the image. Oberdier (1984) used this pattern as a means of 

focus discrimination in size analysis. However, as pointed out by Zhang & Talley (1990), 

this diffraction fringe pattern is only good for spherical particles because a non-spherical 

particle can introduce complications as a result of fringe interference from different parts 

of the same particle. Since both the floes and coarse cuttings in the present study are non

spherical particles, problems were anticipated with the use of a coherent light source. 

Diffraction patterns can be eliminated with the use of a diffusive light source. The 

advantage of this method is that the shape of an object can be seen. In addition, this type 

of image is independent of the particle's refractory properties. With sufficient 

magnification, this technique is similar to inspecting an object with a microscope with 

light transmitted from the back of the object. However, a balance must be obtained 

among lighting, camera and optics, and the size of particle studied. 
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Because the lighting is critical for"image quality, several approaches were examined in an 

effort to obtain the best quality images using diffusive light sources. For the settling 

column test, a back lighting technique that consisted of two 500W halogen photography 

lamps reflected off a white wall was used. However, for the jar test, it was hard to get 

good quality images using the backlighting method due to the depth of the test cell. 

Therefore, a photography lamp with a convex focus lens was installed at a 90° angle to 

the camera and to light the front area the test cell. With this technique, images with a 

number of white particles appearing on the black background were obtained. 

The system configurations for both the settling column test and jar test are shown in 

Figure (3-7). 

2-L~erSquareJar 

Lamp 

CCDCamera Devices CCOCamera 

Computer and software Computer and software 

Figure 3-7 System configuration for settling column test and jar test 
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3.4.1 Camera and Lens 

The camera system includes a CCD camera, 3 lenses, and 3 extension tubes. The CCD 

camera used in the present study is a MotionS cope PCI 1 OOOs model. The camera can 

record a sequence of digital images at a pre-selected frame rate between 60 to 1000 fps 

(frames per second), and store the frames in an image memory on the controller unit. The 

CCD sensor of the camera has a resolution of 656x495 pixels with each pixel occupying 

7.4 square microns (Hiscock 2000). Although the system is capable of recording images 

at 1000 fps, a frame rate of 60 fps was selected throughout the present tests. The time 

between two continuous images was 1/60 seconds. 

r -

1 Omm 20mm 40mm 12. 5mm 26mm 75mm 
Extension Tubes Macro Lens 

Figure 3-8 Lens and extension tubes 

Three macro-lenses, f=12.5mm, 26mm, 75mm, and three extension tubes, 10mm, 20mm, 

40mm were selected in the present work, as shown in Figure (3-8), which provide a high 

magnification and enable the system to capture the particles as small as 1 micron. 

Guidance on the selection of lenses and calculation of magnification can be found in 

Howard (2000); -
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3.4.2 Image Processing 

Computer images generally are in raster format. This means that they consist of a number 

of points containing information of light intensity and color. The simplest image is in 

binary format. Each pixel of a binary image can be either black or white. Thus, only one 

bit (taking values of 0 or 1) for each pixel is sufficient to store an image. By contrast, a 

full color image requires storing many more bits of information than a binary image. A 

popular image format is an eight-bit gray scale format that contains 256 possible gray 

levels for each pixel and is used by most of the PIV systems. 

The images recorded from the present work were stored as gray scale JPEG (Joint 

Photographic Experts Group) format. Using the edge detection algorithm, sharp edged 

particles (in focus) are first separated from those which were out of focus by introducing 

a user defined threshold level. The pixels that have very low gray level are eliminated by 

this process. Once threshold is complete, the image is transformed into a binary (black

white) format to count particles. Because the particles appear black in the binary image, 

the algorithm uses a scanning routine to find a pixel with a black value (normally the 

value 1 ). When such a black pixel is found, an image boundary search is then performed 

to trace the boundary of the particle until the initial pixel is encountered again. The 

particle is then labeled and the centroid and other values are computed. The scanning and 

boundary searching routines are then resumed until the whole image is processed. This 

"trace" procedure is usually done automatically in image processing packages. 
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Many image analysis software packages are available both commercially and in the 

public domain. On one hand, the commercial packages, like Image Pro Plus, are usually 

expensive and are often designed for special applications. On the other hand, Image Java 

(U) and Image Tool (IT) that are available in the public domain provide nearly the same 

capabilities as most commercial packages and are widely used in the medical imaging 

community. 

U is an image processing program developed by the U.S. National Institute of Health and 

can be run under any Microsoft Windows operating system. U was designed with an open 

architecture that provides extensibility via Java plugins. Custom acquisition, analysis and 

processing plugins can be developed using U's built in editor and Java compiler. User

written plugins make it possible to solve almost any image processing or analysis 

problem. 

Because of the very limited functions of basic U, which identify particles from either a 

single image or stacks and only give information of area, gray level, centroid, and 

perimeter, a user-written plugin is needed in this research to obtain the sphericity value. 

Chinga (2002) has written a plugin which can calculate the roundness, compactness, form 

factor and aspect ratio (the definition of these shape values can be found in Russ 1999 

and Hawkins 1993). By modification of Chinga's (2002) plugin, a shape description 

plugin (see Appendix) was developed which calculates the particle sphericity and 

diameter using Wadell (1932, 1933, and 1935). The particles from Rawle (1994) was 
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alculated using the U and the shape description plugin and the results are listed in Table 

(3-1). 

Table 3-1 Shapes description of irregular particles ofRawle (1994) 

#1 #2 #4 #3 #6 #5 
Elongation 1 .4943 1.6919 1.5992 1 .5257 1 .3969 1.6257 Low 
Roundness 0.5355 0.6406 0.5372 0.685 0.7625 0.7464 Sphericity 

~s=p~he=r~ic~ity=4~o~.8~18~1~~o~.7~6~8~8-+-o~.=79~0~8-+~0.~7~99~2~~o~.~~62~~o~.7=8~4~3-i 

Elongation 1.5868 1.3837 1.4119 1.2439 1.3285 1 .4396 Medium 
Roundness 0.6033 0.6574 0.6849 0.7393 0.811 0.7825 Sphericity 

t--::s=-p-=-he-r-=-ic-=-ity--+--o--.n=3--744-:-:-t-:-o-=.7-:-99-=-2-=5-+--=o-=.8-=o5 __ 1 __ 9 ...... 7+-o--.8--4-=43-=-2-=7-+-o=-.8---3-=5-:-9-:-91-:-+-:-o.-=8-=42::-:1-=2-::-;9 

#14 #13 #16 #17 #18 
Elongation 1.1242 1.1335 1.1043 1.1582 1.1652 1.0543 High 
Roundness 0.6678 0.7457 0.7347 0.8621 0.861 0.8572 Sphericity 

Sphericity 0.866352 0.893946 0.913172 0.924166 0.931384 0.958333 
Very 

Angular Sub Sub Rounded 
Well 

An ular An ular Rounded Rounded 

The obtained centroids of particles in images can give the coordinate information of 

particles. With the known coordinates of one particle in an image stack (six images) and 
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the time between two images (1/60 seconds), the average settling velocity (five settling 

velocities) of the particle is calculated. ' 

Several other functions are available in U to process some of the marginal quality images. 

These functions include contrast enhancement, which is done by balancing brightness and 

contrast, and edge enhancement, in which a high-pass filter is used to sharpen the images 

of individual particles. The results produced by U and It can be stored in text format for 

further analysis. 

3.5 Experimental Methods 

3.5.1 Procedure for Flocculation Test 

After the initial sample with desired concentration was prepared in a 2 liter square beaker 

as mentioned in the previous section, the samples were loaded with the flocculator at high 

speed for 90 seconds. There are two reasons for this procedure. First, the high speed 

rotation can overcome the gravitational force of particles and make the particles within 

the suspension evenly distributed. Second, high speed rotation can de-flocculate the 

aggregated particles. The initial particle size distribution was measured using the digital 

imaging system at this time. The flocculator was then run at a constant rotational speed to 

produce a desired G value (25, 50, 100, and 200s-1
). After a certain time {5, 10, or 20, 40, 

60, 80, 100, and 120 minutes), the flocculator was stopped, and the images were taken 

using the digital imaging system and the particle distribution was obtained. 
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Both the treated and untreated SBF cuttings were used in freshwater and seawater tests. 

The solids concentrations were 50, 100, 200, and 400mg/L and the fluid shears used were 

25, 50,100, and 200s-1
• Tests on a total of 64 combinations were performed. 

3.5.2 Procedure for Floc Settling Test 

Three different tests were conducted: (1) seawater produced floes using untreated 

cuttings settling in seawater (2) seawater produced floes using treated cuttings settling in 

seawater, and (3) seawater produced floes using both untreated and treated cuttings 

settling in freshwater. 

Unlike the traditional settling velocity tests which are intrusive, the present approach did 

not require taking samples from suspension except for the third test condition. For the 

first two test conditions, the settling velocities of the floes were measured directly at the 

end of a 2 hour flocculation period. At this time, the steady state of flocculation is 

believed to be reached (the particle size distribution does not change any more). In order 

to better approximate the process, a lag time of 30 seconds from the time of stopping the 

flocculation to the beginning of settling was allowed. This is about the time required for 

the fast rotary motion to subside. For the third test condition, because the water that was 

used to produce floes was different from that used to settle, samples must be transferred 

from the test Jar to a settling cylinder at the end of flocculation. A pipette (Burban et al. 

1990, and Huang 1992) with inner diameter of 3mm was used to transfer the samples in 

this test condition. Because the floes are very fragile, the transferring must be very 
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careful. The taking of samples was done very slowly so as not to introduce appreciable 

currents and shears; In order to prevent possible breakup of floes and to minimize the 

initial downward speed of floes as the fluid from the pipette was introduced into the 

settling cylinder, the method of Burban et al. (1990) was used. The pipette was first 

partially immersed into the water in the settling cylinder and then slowly drawn across 

the water surface. The floes were found to slowly spread over a wide area in this way. 

The camera was mounted around 30cm below the water surface in the cylinder to 

simultaneously measure the floc sizes and settling velocities. 

As one (usually several) floc arrived in the scope of the camera, the camera recorded its 

motion at the rate of 60 frames per second, the resulting positions of the floc from a series 

of continuous images and the time interval between these images could be used to 

determine the settling velocity. In the present study, five settling velocities for each floc 

were used to calculate the average settling velocity and ensure the repeatability and 

accuracy. 

3.5.3 Test Procedure for Column Settling Test 

All the valves of the settling column were closed. The column was filled with freshwater 

(or synthetic seawater depending on experiment) to the height of 240cm about 16 hours 

before the test to let the rheological properties of the fluid stabilize and to release 

entrapped air bubbles. The prepared dispersed particles (the dispersion of particles in 

fluids can prevent the entrapment of air bubbles, which will affect the accuracy of 
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measurement) were dropped in clusters into the column from the top. The motion of 

settling particles were recorded by a digital camera that was mounted near the bottom of 

the settling column to ensure all the particles reached their terminal settling velocity 

before their coming into the scope of the camera. The recording rate and the method to 

obtain settling velocity were the same as the previously discussed floc settling test. 

3.6Summary 

Chapter 3 described the experimental methods and apparatus. In section 3.1, the 

procedure for the preparation of both treated and untreated cutting samples was 

introduced. The particle size distributions from sieve analysis were then presented. In 

section 3.2 to 3.4, the apparatus used for the experiments were described. The method for 

calculating the fluid shear generated by the flocculator was described. The image 

processing method was also discussed. Section 3.5 described the procedures for the 

flocculation and settling velocity experiments. The results will be presented and analyzed 

in Chapter 4. 
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Chapter 4 

Experimental Results and Discussion 

The experimental results are presented and analyzed in this Chapter. In section 4.1, three 

types of flocculation experiments are described. (1) untreated synthetic based drilling 

cuttings in seawater; (2) untreated synthetic based drilling cuttings in freshwater; and (3) 

treated synthetic based drilling cuttings in seawater. In section 4.2, the settling velocity 

experimental results for coarse particles are presented. These experiments are: (1) 

Seawater settling velocity of untreated cuttings from F3070-3090; (2) Seawater settling 

velocity of untreated cuttings from F3050-3069; (3) Freshwater settling velocity of 

untreated cuttings from F3070-3090; (4) Seawater settling velocity of treated cuttings 

from F3070-3090; (5) Seawater settling velocity of treated cuttings from F3050-3069; (6) 

Freshwater settling velocity of treated cuttings from F3070-3090. In section 4.3, the floc 

settling velocity results are described, these results include: (1) Seawater settling velocity 

data of floes formed from untreated cuttings with concentrations of 25, 50, 100, and 

200mg/L at 25, 50, 100, and 2000; (2) Seawater settling velocity data of floes formed 

from treated cuttings with concentrations of 25, 50, 100, and 200mg!L at 25, 50, 100, and 

2000; (3) Freshwater settling velocity of floes formed in seawater at the concentration of 
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concentration of 100mg!L and shear rate of 100G; (4) Freshwater settling velocity of 

floes formed in freshwater at the concentration of 1 OOmg!L and shear rate of 1 OOG. 

4.1 Flocculation Experiments 

In this research, three types of flocculation experiments were conducted: (1) untreated 

synthetic based drilling cuttings in seawater; (2) untreated synthetic based drilling 

cuttings in freshwater; and (3) treated synthetic based drilling cuttings in seawater. The 

seawater tests simulate offshore discharge processes and the freshwater test was 

performed to see the salinity effects. All three series of tests were conducted at 

concentrations of 25, 50, 100, and 200 mg/L and at the shear rates of 25, 50, 100 and 200 

G (s-1
) . 

4.1.1 Untreated Cuttings in Seawater 

Figure ( 4-1) is a processed picture of the untreated cutting/mud suspension before 

flocculation. The particle diameters were calculated by IJ software and the size 

distribution of the suspension is shown in Figure ( 4-2); this distribution follows a log 

normal distribution with a median diameter of 17 .OJ.Lm. During a flocculation test, small 

particles collide with each other and adhere together. As a result, the main components of 

the suspension become floes instead of individual particles. The floc particle size 

distribution changes with flocculation time and flocculation condition. In order to 

characterize the floc size distribution, the median particle size was used. 
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The results of floc median diameter measurements as a function of flocculation time at 

the concentrations of 25, 50, 100, and 200 mg/L are plotted in Figure (4-3) to Figure (4-

6). The times to reach steady state are estimated from Figure (4-3) to Figure (4-6) and 

listed in Table ( 4-1 ). Because the experiments were conducted in 20 minute time intervals 

after the first 20minutes, only an approximate time to reach steady state can be estimated 

from Figures (4-3) to (4-6). The accurate time can be obtained by employing the 

flocculation model described in Chapter 2. Table (4-2) presents the average steady state 

median floc diameters for untreated drilling cuttings in seawater. These values are 

calculated from the measured data points, which are considered in steady state. 

~ 

I a 
8 
u:: 
Iii 

i 

300 

250 

200 

150 

100 

50 

-a------•-----~-----~ J;l---... ···•···········• ·······················• , •.... 
.. . - ... ---,·~:'.::..0 ·- ·-.- -o-.-.- ·- .... -.-.-. -·- · -.-.- ·• 

.;· .. ~ - - ~~ , . , 
0 ; ; 

~ . , 
I ; ~ 

; I 
I • I 
j :' I 
• • I 
I .' I 
• • I 
I ; I 
j : I 
• • I 
I ; I 

-~·: ,; ,., 
l::!i 
·I 

---25G 

- -o--50G 
... ,.. ... 1QOG 

-·•·-200G 

0 +------+------~----~----~------~-----+----~ 

0 20 40 60 80 100 120 140 

Time (minutes) 

Figure 4-3 Time variation of median floc diameter for untreated cuttings at 25mg/L in 
seawater 

-64 -



300 T------------------------------------------------------, 

250 

150 

100 

a- --•-----~-----~----~ 
·---- --~-:~ -- -:.:·_·_· _- ~--·_-_----~-_-.::..:: :_:: ~---~-~---~ ~:..:::: 

0--• .:..--.,.--:-- ~ 
I • / .. · / 

I • ~ 
i£' 1 
j : I 
• • I 

I ; I 
• • I 

• : I 

1/,J 
I ,' I 

ij,.( 
--25G 
---soG 
---•--- 100G 

j ,' I 
50 •,' I 

• : Ul .,. 
~ 

0 +-------~------~------,_------~-------r-------+------~ 
0 20 40 60 80 100 120 140 

Time (minutes) 

Figure 4-4 Time variation of median floc diameter for untreated cuttings at 50mg/L in 
seawater 

E' 
3 .... 
.S! 
~ 
Ill 

0 
g 

u::: 
c:: 

~ 

300 

250 

200 

150 

100 

50 

p- --- -

?· ,. .- i:·.--~~ - ~::~~--~~~7~-:~~-~~~:~~:~~~-::.-~:-:~:~:~~ 
. .... ~i 
I • I 
j ! I 
• • I 
I ; I 

i : r 
j ;' I 
• • I 
1 ,1 -25G 
j; 1 --o--50G I: I 

!; ~ --·•--· .100G 

·!/ --•·-200G 
I 

0 +-----_,------~------r------+------+-----_,------~ 
0 20 40 60 80 100 120 140 

Time (minutes) 

Figure 4-5 Time variation of median floc diameter for untreated cuttings at 1 OOmg!L in 
seawater 

- 65-



300~----------------------------------------------~ 

250 

---25G 
---soo 
...•. . . 1000 

0+------+------+-----~------+-----~------~----~ 

0 20 40 60 80 100 120 140 

Time (minutes) 

Figure 4-6 Time variation of median floc diameter for untreated cuttings at 200mg/L in 
seawater 

Table 4-1 Time (minutes) to reach steady state of flocculation for untreated drilling 
cuttings in seawater 

Concentration Fluid Shear (s'1) 

(mg/L) 25 50 100 200 
25 60 40 30 20 
50 50 30 20 10 
100 40 20 15 5 
200 30 15 10 .5 

Table 4-2 Steady state floc median diameter (Jlm) for untreated drilling cuttings in 

seawater 

Concentration Fluid Shear (s· ) 

(mg/L) 25 50 100 200 
25 273.1 253.4 242.2 219.8 
50 254.3 238.7 224.4 209.2 
100 238.6 223.5 213.8 197.4 
200 223.1 208.3 199.6 178.8 
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It can be seen from Figures (4-3) to (4-6) and Tables (4-1) and (4-2) that the floc size 

increases with flocculation time until it reaches steady state (a state that the floc median 

size remains constant). Under the same concentration, the higher shear stresses resulted 

in lower steady state median diameters. Taking the concentration of 200mg/L for 

example, the floc diameter under 25G is 223.1J.1m while the diameter under 200G is 

178.8J.1m. It was also demonstrated that under the same concentration, particles flocculate 

faster with higher shear rate Taking the concentration of 200mg/L again, the time needed 

to reach steady state under 25G is 30 minutes while under 200G is 5 minutes. 

Figures ( 4-7) and ( 4-8) and Tables ( 4-1) and ( 4-2) show that under the same shear stress, 

the particles flocculate faster in higher concentration than in lower concentration. For 

example, for the shear stress of 25G, the time needed to reach steady state under 25mg/L 

is 60 minutes while under 200mg/L it is 30 minutes. Another trend observed is that under 

the same shear stress, the steady state median floc diameters are smaller in higher 

concentration than in lower concentration. For example, for the shear stress of 25G, the 

diameter under 25mg/L is 273.1J.1m, while the diameter under 200mg/L is 223.1J.1m. 

Although this point has been demonstrated by a number of researchers (Huang 1992, 

Iacobellis 1984 and Tsai et al 1987, Xu 1988), but the reasons are still not well 

understood. 
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The data obtained for untreated SBF cuttings have similar characteristics as previous 

research (Huang 1992, Xu 1988) except the steady state median size are much larger. 

Taking the concentration of 100mg/L under 100G for example, the steady state median 

diameter reported by Xu (1988) is 47.3f.1m for Bentonite and 75.3f.1m for Barite, and by 

Huang (1992) is 105.5f.1m for WBFs, while in this research, it is 219.8flm for untreated · 

SBF cuttings. 

From the comparison above with previous studies, it was found that the steady state 

median floc diameters of untreated SBF cuttings in seawater are rriuch larger than WBFs 

and mineral particles under the same conditions. A possible reason for this is that the 

organic/oil component in the untreated SBF cuttings functions as an adhering agent that 

helps to bond the particles together. Heat treated SBF cuttings in seawater tests were 

therefore performed to test this hypothesis. 

4.1.2 Treated Cuttings in Seawater 

The particle size distribution of treated cuttings before flocculation is shown in Figure (4-

9). Same as untreated cuttings, the distribution of treated cuttings also follows a 

lognormal distribution, but with a median diameter of l4.7J.1m. Figures (4-10) to (4-13) 

show the results of floc median diameter as a function of flocculation time at 

concentrations of 25, 50, 100, and 200 mg/L under 25, 50, 100 and 200G for treated 

samples. Tables (4-3) and (4-4) present the time to reach steady state and the steady state 

median floc diameters. 
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Table 4-3 Time (minutes) to reach steady state of flocculation for treated drilling cuttings 
in seawater 

Concentration Fluid Shear (s.1
) 

(mg/L) 25 50 100 200 
25 80 65 55 45 
50 65 50 45 40 
100 50 40 30 20 
200 40 30 20 10 

Table 4-4 Steady State Floc median diameter (J.l.m) for treated drilling cuttings in 
seawater 

Concentration Fluid Shear (s"') 
(mg/L) 25 50 100 200 

25 129.3 110.5 93.1 83.2 
50 96.3 80.4 76.8 65.6 
100 61.8 54.9 50.7 44.2 
200 52.5 47.1 42.3 38.4 
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It can be seen from Figures (4-10) to (4-13) and Table (4-3) and (4-4), that the floc size 

increases with flocculation time until it reaches steady state. Similar to the untreated 

cuttings, under the same concentration, the higher shear stresses resulted in lower steady 

state median diameters for treated cuttings. Taking the concentration of 200mg/L as an 

example, the floc diameter under 250 is 52.5f.1m while the diameter under 2000 is 

38.4f.1m. It was also demonstrated that under the same concentration, particles flocculate 

faster with higher shear rate. For example, at a concentration of 200mg/L, the time 

needed to reach steady state under 25G is 40 minutes while under 2000 is 10 minutes. 

Figures (4-14) and (4-15) and Tables (4-3) and (4-4) show that under the same shear 

stress, the particles flocculate faster in higher concentration than in lower concentration. 

Take the shear stress of 250; the time needed to reach steady state under 25mg/L is 80 

minutes while under 200mg/L it is 40 minutes. Under the same shear stress, the steady 

state median floc diameters are smaller in higher concentration than in lower 

concentration. At the shear stress of 250 for example, the diameter under 25mg/L is 

129.3f.1m while the diameter under 200mg/L is 83.2f.lm. 
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Compared with untreated cuttings, it can be seen that treated cuttings show similar 

characteristics but have considerably smaller steady state median size. For example, at 

the concentration of 25mg/L and shear rate of 25G, the median size was reduced from 

273.l~m to 129.3~m. At the same flocculation condition, Huang (1992) reported WBF 

floes had a median diameter of 140.8~m. It is also indicated by the experimental results 

that treated cuttings flocculate slower than untreated cuttings. For example, for the case 

of 200G and 1 OOmg/L, the time needed to reach steady state for untreated cuttings is 5 

minutes while for treated cuttings it is 20 minutes. The time needed for Huang's (1992) 

WBFs is 10 minutes under this condition. One can see from the data above, that the 

treated cuttings behave more like WBFs. 

4.1.3 Untreated Cuttings in Freshwater 

Particles are usually charged due to an unequal distribution of ions over the particle and 

the surrounding solution. This charge is frequently responsible for the stability of colloids 

(Lyklema 1978). The dissolved salts in water can dissociate into constituent ions and 

therefore affect the floc stability through their effect on the extent of the diffuse layer 

around the particles and by their specific effect on the electric potential controlling 

colloid stability (Gregory 1978). To test SBF flocculation in water of different salinity is 

therefore important. 

For the tests of untreated cuttings in freshwater, the same cuttings sample was used as in 

the seawater tests. The particle size distribution is given in Figure ( 4-2). Figures ( 4-16) to 
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( 4-19) show the results of floc median diameter as a function of flocculation time at the 

same concentrations as before (25, 50, 100, and 200 mg/L) and Figures (4-20) to (4-21) 

present the results at same shear stress as before. Tables ( 4-5) and ( 4-6) present the time 

to reach steady state and the steady state median floc diameters. 
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Table 4-5 Time (minutes) to reach steady state of flocculation for untreated drilling 
cuttings in freshwater 

Concentration Fluid Shear (s"1) 

(mg/L) 25 50 100 200 
25 100 80 75 70 
50 90 70 60 55 
100 80 60 50 40 
200 60 50 40 20 

Table 4-6 Steady state floc median diameters (J.l.m) for untreated drilling cuttings in 
freshwater 

Concentration Fluid Shear (s.1
) 

(mg/L) 25 50 100 200 
25 101.5 94.6 91 .2 78.5 
50 94.7 88.1 85.0 73.8 
100 89.4 83.5 75.8 66.4 
200 79.9 75.2 64.9 57.6 
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It can be seen from Figures ( 4-16) to ( 4-19) and Tables ( 4-5) and ( 4-6) that the floc size 

increases with flocculation time until it reaches steady state. Under the same 

concentration, the higher shear stresses resulted in lower steady state median diameters. 

Taking the concentration of 200mg/L as an example, the floc diameter under 25G is 

79.9J..Lm while the diameter under 200G is 57.6J..Lm. It was also demonstrated that under 

the same concentration, particles flocculate faster with higher shear rate. For example, at 

the concentration of 200mg/L, the time needed to reach steady state under 25G is 60 

minutes while under 200G it is 20 minutes. 

Figures (4-20) and (4-21) and Tables (4-5) and (4-6) show that under the same shear 

stress, the particles flocculate faster in higher concentration than in lower concentration. 

For example, for the shear stress of 25G, the time needed to reach steady state under 

25mg/L is 100 minutes while under 200mg/L it is 60 minutes. Under the same shear 

stress, the steady state median floc diameters are smaller in higher concentration than in 

lower concentration. For example, for the shear stress of25G, the diameter under 25mg!L 

is 101.5J..Lm while the diameter under 200mg/L it is 79.9J..Lm. 
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It can be seen from Figure (4-16) to (4-21) that the untreated SBF cuttings have similar 

flocculation characteristics in seawater as in freshwater, but different flocculation rates. 

The time needed to reach steady state is much longer in freshwater than in seawater. The 

steady state median diameters are also smaller in freshwater than in seawater. For 

example, the time for particles at a concentration of 200mg/L under 200G to reach steady 

state is around 5 minutes in seawater but 20 minutes in freshwater. The steady state 

median size for this test condition is 178.8f.lm in seawater and 57.6f.lm in freshwater. A 

noticeable difference in the freshwater test compared to the seawater test is that the effect 

of concentration on median floc size is smaller for freshwater than for seawater. The 

reason is that in freshwater test conditions, because no salt is presents, the drilling 

cuttings/muds suspension remains in a dispersed state and under such a condition, the 

influence of the repulsive forces extends beyond that at which the attractive forces are 

significant. In this case, the double layer (the layer between the particle and surrounding 

water that has a particular distribution of ions) of counter-ions surrounding each particle 

is in a given state of equilibrium due to the particle surface attractive forces and the 

opposing tendency of the counter-ions to diffuse away from their high concentration near 

the particle surface (Gregory 1978). Therefore, although the relative motion by shear 

forces cause the collisions of small particles, the adhesion of particles is not significant 

and it needs a relatively long time to reach another equilibrium and hence it is hard to 

form very large floes. However, when in the seawater environment, the increase in 

ambient medium of the concentration of ions with a charge of the same sign as that on the 

counter-ions results in a reduction in the diffusive tendency of the counter-ions (this 
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tendency decreases with decreasing magnitude of the counter-ionic concentration 

gradient). As a consequence, in seawater conditions, a new state of equilibrium is easily 

established with the double layer closer to the particle surface, which in the experiments, 

resulted in faster flocculation rate and larger steady state floc size. 

4.2 Coarse Particle Settling Velocity Results 

4.2.1 Settling Velocity Results for Untreated Cuttings 

In this part, both the seawater and freshwater tests were performed using both treated and 

untreated cuttings to obtain a generalized correlation between settling velocity and 

particle size. 

For the untreated drilling cuttings, the seawater settling velocity test results are reported 

in Figures (4-22) to (4-25). The Figures (4-22) and (4-24) show the settling velocity 

experimental data of various shaped particles from two different formations (F3050-3069 

with a bulk density of 1900kg/m3 and F3070-3090 with a bulk density of 1833kg/m3
. 

Figures (4-23) and (4-25) show the power law fitted curves. In order to find the effects of 

water density, samples from one of the formations were tested in freshwater and the 

results are presented in Figures (4-26) and (4-27). 
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From the power law fits presented in Figures (4-23), (4-25) and (4-27), it can be seen that 

the settling velocity ofF3050-3069 is a little bit higher than F3070-3090 and the particles 

settle faster in freshwater than in seawater. It can also be seen that the shape effects on 

untreated drilling cuttings is not significant, the reason for this is that the density of 

untreated cuttings is not uniform because of the clump effects. Therefore the shape effect 

for untreated cuttings will not be considered in the present analysis. 

As described in the previous chapters, the relationship between drag coefficient and 

Reynolds number is important in establishing of a settling velocity relationship. More 

than 550 data points from Figures (4-22), (4-24), and (4-26) were compiled using the 

definition of drag coefficient and Reynolds number, which are presented in Equations ( 4-

1) and (4-2). The results are plotted in Figure (4-28). 

= i_(Ps- PJ)gD 
3 p fu z 

Equation ( 4-1) 

Re - p !Du 
J1 

Equation ( 4-2) 

where CD is the drag coefficient, 

Ps and P! are the density of particle and fluid respectively. 

Dis the particle diameter, 

fl is the dynamic viscosity (kg/m·s) 

g is the gravitational acceleration (m/s2
) 

u is the particle settling speed (m/s) 
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(experimental data) 

Through the regression analysis, a relation between drag coefficient and Reynolds 

number for Reynolds number between 1 and 1000 is found as 

c D = 1.69959 + 
56 .26128 

Re 
Equation ( 4-3) 

The correlation coefficient r is 0.955 and this relation is plotted in Figure (4-29). The 

relationships of Chien (1992) and Allen (1900) are plotted for reference. It can be seen 

from Figure (4-29), at the low Reynolds number range (Re<100), the drag force on 

untreated SBFs cuttings is larger than on other types of cuttings reported by Chien (1992) 

and by Allen (1990). At the high Reynolds number range, the drag forces are very close 

to the drag force for other types of cuttings reported by Chien (1992) with sphericity of 

0.7. 
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Figure 4-29 Drag coefficient versus Reynolds number for untreated drill cuttings 
(regression results) 

A settling velocity correlation is then obtained by introducing the definition of drag 

coefficient, Equation (4-1) and particle Reynolds number, Equation (4-2) to Equation (4-

3). By solving the correlation and taking the positive root of settling velocity, the settling 

velocity for untreated SBF cuttings is obtained as 

where u is the settling velocity (rnls), 

Psis the drilling cutting density (kg!m3) 

P!is the fluid density (kg!m3
) 

f.l is the dynamic viscosity (kg/m·s) 
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Equation ( 4-4) 



Dis the particle diameter (m) 

g is the gravitational acceleration (m/s2
) 

The settling velocities of OBF cuttings with density of 1850kg/m3 and quartz sands with 

density of 2650kg/m3 have been reported by Gerard (1996) and Sleath (1984) 

respectively. Chien (1992) also reported the settling velocity of an other type of drilling 

cuttings. In order to compare the difference in settling velocity between SBFs cuttings 

and these materials, the densities of 1850kg/m3 and 2650kg/m3 were selected to use the 

equation (4-4) and results are plotted in Figure (4-30). 
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Figure 4-30 Settling velocity of untreated drill cuttings 

It can be seen from Figure (4-30) that the drill cuttings settle much slower than quartz 

sands. The value calculated from Equation (4-4) is much smaller than the experimental 
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data of Gerard (1996). This may result from the experiment method employed. Gerard 

used a sediment balance to obtain the settling velocity and used sieves to obtain particle 

size, while this research used a digital imaging system to calculate projected particle 

diameter. The value of Chien (1992) is also larger than the value from Equation (4-4). 

This may be due to the type of cutting studied. There are a number of other factors that 

affect settling velocity beside particle density, such as particle sphericity. 

4.2.2 Settling Velocity Results for Treated Cuttings 

For the treated drilling cuttings, the sea water settling velocity test results are reported 

from Figures (4-31) to (4-34). The Figures (4-31) and (4-33) show the settling velocity 

experimental data of various shaped particles from two different formations while 

Figures (4-32) and (4-34) show the fitted curves. In order to find the effects of water 

density, samples from one of the formations were used to conduct freshwater tests and 

the results are presented in Figures (4-35) and (4-36). 
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Figure 4-35 Freshwater settling velocity data of treated cuttings (F3070-3090) of various 
· shapes 
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Figure 4-36 Power law fit of the freshwater settling velocity data of treated cuttings 
(F3070-3090) of various shapes 

-93-



From the power law fit presented in Figures (4-32), (4-34) and (4-36), it can be seen that 

the settling velocity of F3050-3069 is a little bit higher than F3070-3090 and the particles 

settle faster in freshwater than in seawater. This is the same as the untreated cuttings. 

Unlike the untreated cuttings, it was shown that the sphericity of the particles has 

significant effects on the settling of treated drilling cuttings. The reason for this is that 

treated cuttings settle as individual particles instead of clumps. The density of treated 

cuttings is relatively uniform (unlike quartz sands, cuttings particles exist as an aggregate 

of rock particles and mud particles, therefore their densities are not as uniform as quartz 

sands). 

Data points from Figures (4-31), (4-33), and (4-35) were compiled using Equations (4-1) 

and (4-2) and plotted in Figure (4-37). 
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Figure 4-37 Drag coefficient versus Reynolds number for treated drill cuttings 
(experimental data) 
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Through the regression analysis, a similar relationship as Equation (4-3) between drag 

coefficient and Reynolds number for Reynolds numbers between 1 and 1000 is found as 

b 
Cv =a+-

Re 
Equation (4-5) 

This drag coefficient versus Reynolds number relation is plotted in Figure (4-38) and the 

relationships of Chien (1992) and Allen (1900) are plotted for reference. The values of a 

and b for particles with various sphericities are listed in Table (4-7) and plotted in Figure 

(4-39) and (4-40). 

Table 4-7 Values of a, b for various shaped particles 

Particle 
b 

Correlation 
Sphericity 

a Coefficient, r 

0.9 0.675 40.7016 .98 

0.8 1.0424 43.3895 .98 

0.7 1.20368 50.5447 .97 

100 r---------------------------------------------------~ 

-Regression Result (l!l=0.9) 

--Regression Result (l!l=0.8) 

-Regression Result (ljl=0.7) 

- -+ - Chien 1992 (ljl=0.9) 

- -a- - Chien 1992 (ljl=0.8) 
10 +------"-'..,_,.,..,.~......,_--------- ···•·· ·Chien 1992 (l!l=0.7) 

- ·-·- Alien 1900 (Newtonian Fluids) 

0.1 +--------------~---------------+-------------~ 
10 100 1000 

Reynolds Number 

Figure 4-38 Drag coefficient vs Reynolds number for treated drill cuttings (regression 
results) 
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Through regression analysis, the a and b are found as a function of sphericity 

a = -3.4387 + 13 .8462 'If -10 .306 'If 2 Equation (4-6) 

b = 225 .7155 - 406 .5995 'I' + 223 .365 'I' 2 Equation (4-7) 

The correlation coefficients for a and bare 1.0. The sphericity 'If in Equations (4-6) and 

(4-7) ranges from 6.5 to 9.5. 

A _settling velocity correlation is then obtained using the same method described before; 

the settling velocity for treated SBF cuttings is obtained as 

Where u is the settling velocity (m/s), 

Ps is the drilling cutting density (kg/m3
) 

P! is the fluid density (kg/m3
) 

11 is the dynamic viscosity (kg/m·s) 

Dis the particle diameter (m) 

g is the gravitational acceleration (m/s2
) 

Equation ( 4-8) 

a and b are the parameters given by Equation ( 4-6) and ( 4-7) 

The calculated settling velocity curves of both treated and untreated SBFs produced 

cuttings with densities of 1850kg/m3 and 2650kg/m3 and with sphericity of0.8 are plotted 

in Figure (4-41). The OBF cuttings of Gerard (1996) with density of 1850kg/m3
, quartz 
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sands of Sleath (1984) with density of 2650kglm3
, and drill cuttings (unknown base fluid 

type) of Chien (1992) are plotted as reference. 
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Figure 4-41 Settling velocity of various shaped treated SBF drilling cutting particles 

From the Figure ( 4-41 ), it is shown that the treated cuttings of sphericity of 0.8 settle with 

a speed similar to quartz sand of S.F. of 0.7. It is also demonstrated that the treated 

cuttings settle faster than untreated cuttings. The treated cuttings also settle faster than 

OBF cuttings of Gerard (1996) and close to the cuttings of Chien (1992). 
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4.3 Floc Settling Velocity Results 

Both the floes formed using treated and untreated cuttings were used for floc settling 

tests. For seawater tests, floes formed in all the combinations of concentration and shear 

rates were studied. For freshwater tests, only the floes formed at the concentration of 

1 OOmg/L under 1 OOG were tested. 

4.3.1 Seawater Settling Velocity for Floes formed from Untreated 

Cuttings 

Figures (4-42) to (4-49) show the settling velocity data of floes from untreated seawater 

tests. Figures (4-42), (4-44), (4-46), and (4-48) provide data points for all combinations 

of concentrations and shear rates. Figures (4-43), (4-45), (4-47) and (4-49) are the fitted 

curves of these data. 
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Figure 4-42 Seawater settling velocity data of floes formed from untreated cuttings at 
25G 
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Figure 4-44 Seawater settling velocity data of floes formed from untreated cuttings at 
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Figure 4-49 Power law fit of seawater settling velocity of floes formed from untreated 
cuttings at 200G 

It can be seen that all these data can be fitted by a power law. 

Equation ( 4-9) 

where A and mare the constants determined experimentally. 

It is shown by the power law fit in Figures (4-43), (4-45), (4-47) and (4-49) that, for the 

same diameter, floes formed at higher shear rates have higher settling velocity. The data 

also show that the settling speed is almost the same for floes formed at the same shear 

rate but different concentration. This may suggest that the floes formed at different 

concentrations but same shear rates may have the same effective density. This finding is 

the same as Huang (1992)'s results for WBF floes, but different from Burban et al. 
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(1990), which showed significant effects of concentration on floc settling velocity for 

natural particles. 

Because of no effects of concentration on settling velocity were found, regression 

analysis was performed for the data at four different shear conditions. The A and m values 

for untreated seawater tests are listed in Table ( 4-8). 

Table 4-8 A and m value for seawater tests of untreated cuttings 

Shear 
A 

Correlation 
Rate 

m 
coefficient, r 

25G 0.00202 0.7124 0.94 
50G 0.00579 0.5759 0.96 
100G 0.01507 0.4614 0.96 
200G 0.04034 0.3282 0.90 

In order to get a generalized expression, the A and m values at different G are plotted in 

Figure ( 4-50). Through regression analysis, the A and m are found also follow a power 

law relationship. The values for the parameters are listed in Table ( 4-9). 

Table 4-9 Values for the regression of A, m for seawater tests of untreated cuttings 

Parameter Parameter e, k Parameter f,j Correlation 
coefficient, r 

A=eG1 A e=2.1568x 1 o-5 .f-=1.4218 0.99 

m =kG1 m k=2.2240 j=-0.3498 0.99 

By introducing the values from Table (4-9) into Equation (4-9), a generalized empirical 

equation is obtained for the settling of untreated drilling cutting floes in sea water: 

2.22 
u = 2.16x10-sGI.42D oo3' 

Where the u is floc settling velocity (mm/s) 
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Figure 4-50 Parameters A and m for untreated cuttings as a function of shear rate G 

The calculated settling velocity curves are plotted in Figures (4-51) and (4-52). The WBF 

floes settling data by Huang (1992) and four groups of natural particle floes settling data 

by Gibbs (1985) are plotted for reference. 
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It can be seen from Figures (4-51) and (4-52), that the settling velocities of untreated SBF 

floes are smaller than the settling velocities of WBF floes. Both the seawater settling 

velocity of SBF and WBF floes are smaller than freshwater natural particles. Together 

with the flocculation data, this may imply that the seawater floes have larger particle size 

but smaller effective density. In other words, the floes formed in freshwater may be more 

compact than the floes formed sea water. The effect of salinity on the floc effective 

density will be discussed later. 

4.3.2 Seawater Settling Velocity for Floes formed from Treated Cuttings 

Figures (4-53) to (4-60) show the settling velocity data of floes from treated seawater 

tests. Figures (4-53), (4-55), (4-57}, and (4-59) are data points for all combinations of 

concentration and shear rate. Figures (4-54), (4-56), (4-58) and (4-60) are the fitted 

curves of these data. 
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Figure 4-53 Seawater settling velocity data of floes formed from treated cuttings at 25G 
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Figure 4-55 Seawater settling velocity data of floes formed from treated cuttings at 50G 
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Figure 4-56 Power law fit of seawater settling velocity of floes formed from treated 
cuttings at 50G 
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Figure 4-57 Seawater settling velocity data of floes formed from treated cuttings at 1 OOG 
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Figure 4-58 Power law fit of seawater settling velocity of floes formed from treated 
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Like the data for untreated drilling cuttings, the data for treated cuttings can also be fitted 

by a power law model and the concentration effects on settling of treated cuttings are 

found to be insignificant. 

The A and m values for untreated seawater tests are listed in Table ( 4-1 0) and the 

regression results of A and m for treated cuttings are listed in Table ( 4-11 ). 

Table 4-10 A and m value for seawater tests of treated cuttings 

Shear 
A 

Correlation 
Rate 

m 
coefficient, r 

25G 0.005 0.641 0.93 
50G 0.013 0.531 0.90 
1000 0.035 0.409 0.90 
2000 0.065 0.326 0.91 

Table 4-11 Values for the Regression of A, m for seawater tests of treated cuttings 

Parameter Parameter e, k Parameter fj Correlation 
coefficient, r 

A=eG1 A e=0.00022 .f=1.072 0.997 

m=kG1 m k=1.84 j=-0.324 0.98 

Figure ( 4-61) is a plot of parameter A and m as a function of shear rate for treated cuttings 

in sea water. By introducing the value from Table (4-9) into Equation (4-9), a generalized 

empirical equation was obtained for the settling of treated drilling cutting floes in sea 

water 

1.84 

u = 2.22 X 10-4 Gl.O? DGO.)l 

where the u is floc settling velocity (mm/s) 
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Figure 4-61 Parameters A and m for treated cuttings as a function of Shear rate G 

The calculated settling velocity curves are plotted in Figures (4-62) and (4-63). The WBF 

floes settling data by Huang (1992) and four groups of natural particle floes settling data 

by Gibbs (1985) are plotted as reference. 
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Figure 4-63 Relationship between seawater settling velocity and floc diameter of treated 
SBF cuttings. The data for clay minerals by Gibbs (1985) are presented for reference 

- 114 -



It can be seen from Figures (4-62) and (4-63) that the settling velocity curves of treated 

SBF floes are close to the settling velocity curves of WBF floes and larger than the 

untreated cuttings. From Figures (4-52) and (4-63) it can be seen that the floes formed 

from both the untreated and treated SBF cuttings seawater tests are smaller than natural 

particles in freshwater tests. This means that the salinity also has significant effects on the 

floes settling, so freshwater settling tests need to be conducted to study the salinity effects 

4.4.3 Freshwater Settling Velocity of Floes 

The floes produced in seawater tests at the concentration of 1 OOmg/L and shear rate of 

1 OOG were transferred into a settling column filled with freshwater for settling tests and 

the obtained data are plotted in Figure (4-64). The settling velocity data of freshwater 

produced floes under the same concentration and shear rate are plotted in Figure (4-65). 

Similar to the seawater tests, all data obtained in the freshwater tests follow the power 

law relationship. Figure ( 4-66) is the regression results of freshwater settling velocity 

data. The data from Gibbs (1985) and Burban et al (1990) are also plotted for reference. 

The parameters are listed in Table (4-12) 

Table 4-12 A and m value for the freshwater settling velocity of floes formed at 
concentration of 1 OOmgiL and shear rate of 1 OOG 

Floc Type A 
Correlation 

m 
coefficient 

Untreated formed in Seawater 0.0137 0.4887 0.95 
Treated Formed in Seawater 0.0168 0.5528 0.96 

Untreated formed in Freshwater 0.0263 0.4902 0.94 
Treated formed in Freshwater 0.0464 0.4833 0.94 
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Figure 4-65 Freshwater settling velocity data of floes formed in freshwater at the 
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It can be seen from Figure ( 4-66), the TSS (Treated cuttings produced in Seawater and 

settle in Seawater) curve and TSF (Treated cuttings produced in Seawater and settle in 

Freshwater) curve are very close. The USS (Untreated cuttings produced in Seawater and 

settle in Seawater) curve and USF (Untreated cuttings .produced in Seawater and settle in 

Freshwater) curve are also very close. This implies that for the floes formed during 

seawater tests, the salinity of the water does not have significant effects on the settling 

velocities of the floes, while it has great effect on the coarse cutting particles. It can also 

be seen from Figure ( 4-66) that the TSF curve lies far from TFF (Treated cuttings 

produced in Freshwater and settle in Freshwater) curve. Similarly, the USF curve also 

lies far from UFF (Untreated cuttings produced in Freshwater and settle in Freshwater) 

curve. This means, for the floes produced at water with different salinities, the salinity 

does have effect on the settling velocity. It is illustrated by Figure (4-66) that in this case 

the freshwater formed floes settle faster than seawater formed floes. This implies that the 

freshwater produced floes in this test conditions (lOOmg/L, lOOG) have relatively larger 

effective density than seawater produced floes. However, this conclusion can not be 

extended to all test conditions due to the limited test series in the present research. Figure 

(4-67) compares the settling velocity of seawater and freshwater produced natural 

sediments floes, which shows that the seawater settling velocity is somewhat higher than 

freshwater settling velocity except for the case of 400G. It is shown by Figures (4-43), 

(4-45), (4-47), (4-49), (4-54), (4-56), (4-58), (4-60) and (4-66) that the treated cuttings 

have higher seawater settling velocity than untreated cuttings for all test cases. 
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Figure 4-66 Settling velocity of floes formed from SBF cuttings. The data of Gibbs 
(1985) and Burban et al. ( 1990) are plotted for reference. 
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Figure 4-67 Settling velocity of natural sediment floes produced at 1 OOmg/L (data of 
Burban et al 1990) 
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4.4 Summary 

The experimental results were presented and analyzed in Chapter 4. Time variations of 

floc median diameters were obtained for several different test conditions. It was found 

that the steady state particle size distribution depends on the conditions under which the 

steady state is approached. The median floc size decreases as the shear stress increases, 

particles flocculate faster in seawater than in freshwater, and floes are smaller in 

freshwater than in seawater. Floes produced from untreated cuttings flocculate faster than 

treated cuttings. Floes produced from treated cuttings are smaller than untreated cuttings. 

The drag coefficient correlations were derived for both treated and untreated coarse 

drilling cutting particles. The settling velocity equations were then developed based on 

the drag coefficient correlations. It was shown that the settling velocity of untreated 

drilling cutting particles is a function of particle size, bulk density and fluid properties. 

The settling velocity of treated cuttings is a function of particle sphericity as well as size, 

bulk density and fluid properties. It was also demonstrated that the treated cuttings settle 

faster than untreated cuttings with the same bulk density. 

Empirical settling velocity equations were developed for floes formed from both treated 

and untreated cuttings. It was shown by the floc settling experiments that the settling 

velocity of floes is a function of both its size and fluid shear. The settling velocity 

increases as fluid shear increases. 

As a summary, the equations developed from the present experiments are listed in Table 

(4-13). 
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Table 4-13 Summary of developed equations 

No. Equation 

Drag coefficient correlation for untreated coarse cutting particles 

1 56 . 26128 
CD = 1 .69959 + Equation (4-3) 

Re 

Settling velocity for untreated coarse cutting particles 

2 -15.36p+~236.08p 2 +0.78(p, -p1 )p1 D 3 g 
Equation (4-4) u= 

p!D 

Drag coefficient correlation for treated coarse cutting particles 

c D = b 
Equation (4-5) a+--

Re 

3 where 

a = -3.4387 + 13 .8462 If/ -10 .3061f/ 2 Equation ( 4-6) 

b = 225 . 7155 - 406 .5995 If/ + 223 .365 If/ 2 Equation ( 4-7) 

Settling velocity for treated coarse cutting particles 

4 -3b,u+~9b2,u2 +48a(p, -p1 )p1gD3 

U= Equation ( 4-8) 
6ap1D 

Seawater settling velocity for floes formed from untreated cuttings 
5 2.22 

u = 2.16 X 10-5 Gl.42 DGO JS Equation ( 4-1 0) 

Seawater settling velocity for floes formed from treated cuttings 
6 1.84 

u = 2.22 X 10-4 Gl.07 D 0 032 Equation ( 4-11) 

- 120-



Chapter 5 

Conclusions and Recommendations 

5.1 Conclusions 

A digital imaging system was developed to quantify the flocculation processes and 

settling behaviors of both treated and untreated SBF drilling cuttings. The system used a 

high speed CCD camera to record the particle motion and the images obtained were 

analyzed by Image Java (U) software using an edge-detection algorithm. An Image Java 

(U) plug-in was also programmed to obtain the shape information of the particles. 

The flocculation tests for SBF attached drilling cuttings used a laboratory stirrer to 

generate fluid shear. The change of particle size with time was obtained as a function of 

both suspension concentration and fluid shear for three test conditions. It was 

demonstrated that: 

1. The untreated cuttings can be easily flocculated by fluid shear especially in sea 

water conditions. 

2. The removal of organic components from drilling cuttings using thermal 

treatment can reduce the flocculation tendency of drilling cuttings, which makes 

the treated cuttings more dispersible than untreated cuttings. 
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3. It was also shown by the freshwater tests that more time is needed in freshwater to 

reach flocculation steady state than in sea water. 

4. The experiments showed that steady state median floc diameter in sea water tests 

is much larger than in fresh water tests. 

For the settling of coarse (D>100JLm) cutting particles, settling velocity correlations have 

been derived for both treated and untreated particles at Reynolds numbers between 1 and 

1000 from the settling column tests. As the shapes of irregular particles have significant 

effects on settling, a simplified equation was introduced in this research to calculate the 

sphericities of drilling cuttings particles. From the experiments, following conclusions 

can be drawn: 

1. The untreated drilling cuttings particles were observed to settle as clumps instead 

of individual particles. The shape effects on settling can not be distinguished for 

this type of particle as the effective density of these clumps is not uniform. 

2. The settling velocity equation for untreated SBF cuttings was found as a function 

of clump density, diameter, fluid density and rheology. 

3. The settling velocity for treated cuttings is a function of sphericity as well as the 

particle density, diameter, fluid density and rheology. 

4. The removal of oily components from SBF attached cuttings significantly 

changed the particle size distribution and made the cuttings more dispersible. 
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5. For cuttings of the same density, the experimental results showed that the treated 

cuttings settle faster than untreated cuttings. This is because the fluid will impose 

more friction force on porous clumps than on solidified particles. 

As floes have a porous structure and their density can not be measured directly, the 

methods used before for coarse cutting particles cannot be employed to obtain the settling 

velocity of this kind of material. Through the experiments and regression analysis, it was 

found that: 

1. For the floes formed at the same concentration, increasing fluid shear caused 

decreasing settling velocity. 

2. For the same test condition, the treated cuttings were found to have a higher 

settling velocity than untreated cuttings. 

3. The seawater settling velocity for floes was found to be a function of both floc 

diameter and shear rate and follow a power law relationship. 

4. For the seawater produced floes settling in freshwater, experimental results 

showed that the salinity has almost no significant effect on settling velocity. 

5. Concentration of drilling cutting suspension had no distinguishable effects on 

settling of floes in the present research. 
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5.2 Research Contributions 

Each drilling procedure (rate of penetration, number of turns per minutes, drilling muds, 

bits and teeth used, etc.) produces different types of cuttings. A change in any of these 

variables will result in the changes of size, shape and density of cuttings. These, in tum, 

influence the flocculation and settling velocities of particles, which are significant 

parameters affecting their dispersion in the marine environment. Because the transport 

models are very sensitive to the cuttings characteristics, such as cutting type, size 

distribution, shape, and settling velocity (Carles 1998, 1999, Gordon et al. 1995) and 

there is a gap in the research in modeling of flocculation and settling for SBF attached 

cuttings, this research gives a first attempt to obtain quantitative information for the 

flocculation and settling of SBF attached drilling cuttings. The flocculation results from 

this work provide important information for modeling the initial dilution of SBF drilling 

cuttings, while the settling velocity results are useful for the modeling of deposition and 

resuspension processes. 

One of the potential applications of the digital imaging system developed in this work is 

that it can be used to perform in-situ direct measurements of particulate materials. 

However, the image quality is very sensitive to the lighting strategies, so more work 

needs to be done for the further application of this system. 
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5.3 Recommendations 

For the present work, the floc particle size distribution was obtained using a digital 

imaging system; the results are different from those volume size distributions obtained by 

laser diffraction methods. In order to accurately characterize the floc size distribution, 

future experiments using different measurement methods, but the same cutting type, are 

suggested in order to obtain data for comparison. 

As for the flocculation experiment, the ultimate accuracy of the current experimental 

method has not been verified due to the critical lighting technology. A suggestion is that 

different lighting methods be used in future work to find the effect of lighting methods on 

experimental results. 

For the shape of irregular particles, a simplified equation using the equivalent diameters 

was introduced to approximate the sphericity value. Because of the limitation of the 

present experimental methods, the equivalent diameters were obtained in a vertical plane 

from two dimensional images. These vertical equivalent diameters may have great bias 

from the horizontal equivalent diameters which are more important in settling and can be 

derived from images obtained from horizontal plane. This bias will affect the diameter 

and sphericity values, especially for the flat type particles. The diameter and sphericity of 

this type of particles are greatly affected by their settling directions. The sphericity 

equation used in this study is not accurate for flat particles and some drilling cutting 

particles, especially treated cuttings particles, are of this type. Thus the method for 

calculating sphericity needs to be improved. A possible method is by using the stereology 
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technology which can make quantitative estimation of the three dimensional 

characteristics, e.g. surface area and volume, and give an accurate estimate of sphericity 

value. A detailed description of the sterology methods is given by Howard and Reed 

(1998). 

Although the present work studied the flocculation process of untreated SBF drilling 

cuttings, there is still an important process that has not been fully understood. This is the 

process of how the fine small particles separate from the clumps. Current work focused 

on the flocculation of already diluted cutting suspensions but not the dilution process. For 

treated cuttings and WBF type cuttings, the cuttings particles can flocculate immediately 

once discharged because no more separation will occur for individual particles, but for 

oily type cuttings, the particles behave as clumps after discharge and the fine particles 

will separate from the clumps under the effects of turbulence and this process has not 

been studied. More work on the dilution of oily type drilling cuttings under different fluid 

shear needs to be done. Moreover, although the shape effects on settling of drilling 

cuttings has been established in the present work, the characteristics of cuttings produced 

under different drilling procedures (rate of penetration, number of turns per minutes, 

drilling mud type, bits and teeth used, etc.) are still needed to be studied for the 

application of present finding. A database of the drilling cutting characteristics under 

different drilling procedures is needed to be developed. Some preliminary work in this 

field has been done by Carles (2000). 
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It was shown by a number of researchers (Ho 1964, Murray 1970, Nelsen 1984, Nelsen 

1993) that turbulence has effects on the settling of suspended particles and this is 

especially significant for very fine particles. This work only studied the still water settling 

mechanism, more work needs to be done to obtain the effective settling velocity under a 

turbulent environment. 
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Appendix 1 

Java Code for Particle Shape Calculation 

import ij.*; 
import ij.plugin.filter. *; 
import ij.process.*; . .. . * Import IJ.gUI. ; 
import ij.measure.*; 
import ij.text.*; 
import java.util. *; 

/** 
Besides area, perimeter and angle, this plugin calculates shape descriptors. The 
measurement can be conducted either in MEAN or in SINGLE mode. The mean and 
standard deviation of shape values are given for every image in a stack in MEAN mode 
while shape values of every particle in an image are calculated in SINGLE mode. The 
definitions are given according to Russ, 1999 (The image processing Handbook) and 
Hawkins 1993 (The Shape of Power-Particle Outlines). The following descriptors are 
used: 

Form factor: 4pi*arealsqr(perimeter) 
Roundness: 4*arealpi*sqr(major axis) 
Sphericity: sqrt((4/pi)*area)/major axis 
Elongation: major axis/minor axis 

The Analyze/Set Measurements ... "Limit to Threshold" option must be checked (only 
thresholded pixels are included in measurement calculations). Use Image/Adjust/ 
Threshold to set the threshold limits. Edge particles must also be excluded during 
measurement. 

Notes: 
The ImageJava Shape_Description plugin was originally written by Gary Chinga, the first 
version only calculates the mean particle shape factors. By adoption of Haibo Niu's 
Suggestion, Gary Chinga released his second version with the added option to calculate 
single particle shape descriptors. The code presented here is a modified version of Gary 
Chinga's second release. 
Haibo Niu 2002 
*I 

public class Shape_Descriptors implements PluglnFilter, Measurements { 
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ImagePlus imp; 
ResultsTable rt; 
int counter,slice,i,c; 
TextWindow mtw; 
String title,headings,aLine ; 
float[] areas,Dia,per,mAxis,miAxis,angle,FF,Sphe,Round,Elong; 
float mArea, mDia, mPer, mMajor, mMinor, mAngle, mSphe, mRound, rnFF, 

mElong, ps; 
float sArea,sDia, sPer,sAngle,sSphe,sRound, sFF,sElong; 

boolean canceled=false; 
private static String[] items= {"Single particle details" ,"Mean particle details"}; 
protected static final int SINGLE=O,MEAN=l; 
protected static int Choice; 

public int setup(String arg, ImagePlus imp) { 
if (IJ.versionLessThan("l.28")) 

return DONE; 
this.imp = imp; 
return DOES_8G; 

} 

public void run(lmageProcessor ip) { 
Calibration cal = imp.getCalibration(); 
ps = (float) cal.pixelWidth; 

getDetails(); 
if (canceled) return; 

int measurements= Analyzer.getMeasurements(); 
II defined in Set Measurements dialog 
Analyzer.setMeasurements(O); 
measurements I= AREA+PERIMETER+Eil.JPSE; 
//make sure area and perimeter are measured 
Analyzer.setMeasurements(measurements); 
Analyzer a= new Analyzer(); 
ParticleAnalyzer pa =new ParticleAnalyzer(); 
pa.show Dialog(); 

int nSlices = imp.getStackSize(); 
for (i=l; i<=nSlices; i++) { 

U.run("Clear Results"); 
imp.setSlice(i ); 
mArea = 0; mDia=O; mPer=O; mAngle=O; mSphe=O; mRound=O; 
mFF=O;mElong=O; 
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sArea = 0; sDia=O; sPer=O; sAngle=O; sSphe=O; sRound=O; 
sFF=O;sElong=O; 

if (!pa.analyze(imp)) 
return; 

rt =Analyzer.getResultsTable(); //get the system results table 
counter = rt.getCounter(); 
II IJ.setColumnHeadings(rt.getColumnHeadings() ); 
if (counter>O) { 

areas = rt.getColumn(ResultsTable.AREA); 
II get area measurements 

per = rt.getColumn(ResultsTable.PERIMETER); 
II get perimeter measurements 

angle= rt.getColumn(ResultsTable.ANGLE); 
II get angle measurements 

mAxis= rt.getColumn(ResultsTable.MAJOR); 
II get area measurments 

miAxis= rt.getColumn(ResultsTable.MINOR); 
II get area measurments 

calculateShape(); 

if (Choice==SINGLE) { 

} 

for (int ii=O; ii<counter; ii++ ){ 
c=ii+l ; 
mArea=areas[ii]; 
mDia=Dia[ii]; 
mPer=per[ii]; 
mAngle=angle[ii]; 
mElong=Elong[ii]; 
mSphe=Sphe[ii]; 
mRound=Round[ii]; 
mFF=FF[ii]; 
writeResults(); 

} 

if (Choice=MEAN) { 
c=counter; 
mArea=calculateMean( areas); 
mDia=calculateMean(Dia); 
mPer=calculateMean(per ); 
mAngle=calculateMean( angle); 
mFF=calculateMean(FF); 
mSphe = calculateMean(Sphe); 

- 139 -



} 
} 

} 
} 

mRound=calculateMean(Round); 
rnElong=calculateMean(Elong); 

sArea=calculateStd(mArea,areas); 
sDia=calculateStd(mDia,Dia); 
sPer=calculateStd(mPer,per ); 
sAngle=calculateStd(mAngle,angle ); 
sFF=calculateStd(mFF,FF); 
sSphe = calculateStd(mSphe,Sphe ); 
sRound=calculateStd(mRound,Round); 
sElong=calculateStd(rnElong,Elong); 
writeResults(); 

else { c=O; writeResults();} 

void calculateShape(){ 
Dia =new float[areas.length]; 
FF =new float[areas.length]; 
Round= new float[areas.length]; 
Sphe =new float[areas.length]; 
Elong =new float[areas.length]; 

for (int ii=O; ii<counter; ii++ ){ 

} 

Dia[ii] = (float) (Math.sqrt((4/Math.PI)*areas[ii])/(mAxis[ii]/mAxis[ii])); 
FF[ii] =(float) ((4*Math.PI*areas[ii])/(sqr(per[ii]))); 
Round[ii] =(float) ((4*areas[ii])/(Math.PI*sqr(mAxis[ii]))); 
Sphe[ii] =(float) (Math.sqrt((4/Math.PI)*areas[ii])/mAxis[ii]); 
Elong[ii] = (float) (mAxis[ii]/miAxis[ii]); 

} 

float calculateMean(float[] dataset){ 
double mValue=O; 

} 

for (int j=O; j<counter; j++) { m Value += dataset[j];} 
return (float) (m Value/counter); 

float calculateStd(float m Value,float[] dataset){ 
float sValue=O; 
if (counter==!) {return (float) (sValue);} 
else{ 
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} 
} 

for (int j=O; j<counter; j++ ){ sV alue += sqr(m Value-dataset[j]);} 
return (float) (Math.sqrt(sValue/(counter-1))); 

void writeResults(){ 

else 

if (Choice==MEAN) 
aLine= I+ "\t" + c + "\t" + IJ.d2s(mArea,2) + "\t" + IJ.d2s(sArea,2) 

+ "\t" + IJ.d2s(rnDia,2) + "\t" + IJ.d2s(sDia,2) + "\t" 
+ IJ.d2s(mPer,2) + "\t" + IJ.d2s(sPer,2) + "\t" + U.d2s(mAngle,2) 

+ "\t" + IJ.d2s(sAngle,2) + "\t" + U.d2s(mElong,2) + "\t" 
+ IJ.d2s(sElong,2)+"\t"+IJ.d2s(mSphe,2)+"\t"+ IJ.d2s(sSphe,2) 
+ "\t" + IJ.d2s(mRound,2) + "\t" + IJ.d2s(sRound,2) + "\t" 
+ IJ.d2s(mFF,2) + "\t" + IJ.d2s(sFF,2); 

aLine= i+"\t"+c+"\t"+IJ.d2s(mArea,2)+"\t"+IJ.d2s(mDia,2)+"\t" 
+IJ.d2s(mPer,2)+"\t"+IJ.d2s(mAngle,2)+"\t" 
+IJ.d2s(mElong,2)+"\t"+IJ.d2s(mSphe,2)+"\t" 
+U .d2s(mRound,2)+"\t" +11 .d2s(mFF ,2); 

if (mtw--null) { 

} else 

} 

else { 

if (Choice=MEAN){ 
title= "Mean values of "+imp.getShortTitle(); 
headings= "Slice\tCount\tArea\tstd\tDiameter\tstd \tPerimeter\tstd 
\tAngle\tstd\tElong\tstd\tSphe\tstd\tRound\tstd\tFormFactor\tstd"; 

mtw =new TextWindow(title, headings, aLine, 850, 180); 
} 

title= "Single particle values of "+imp.getShortTitle(); 
headings = "Slice\tCount\tArea\tDiameter\tPerimeter\tAngle 

\tElong\tSphe\tRound\tForm Factor"; 
mtw =new TextWindow(title, headings, aLine, 550, 180); 

} 

mtw.append(aLine); 

double sqr(double x) {return x*x;} 
void getDetails() { 

GenericDialog gd = new GenericDialog("Particle details ... "); 
String units = imp.getCalibration().getUnits(); 
gd.addChoice("Display", items, items[Choice ]); 
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if (!units.startsWith("pixel")) 
gd.add.Message(" (Pixel size= "+IJ.d2s(ps,2)+" "+units+")"); 
gd.showDialog(); 
if (gd. wasCanceled() ){ 

canceled = true; 
return; 

} 
Choice = gd.getNextChoicelndex(); 
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