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Abstract 

Computational science has become an integral part of scientific research over the past couple 

of decades. From the beginnings of computing, scientists have written codes to help them 

solve problems. The language of choice for most scientific computing for the past 20+ years 

has been FORTRAN 77. However, modem advancements in programming languages, such 

as the idea of object-oriented programming, and other features such as dynamic memory 

allocation, have caused many scientific programmers to look for an alternative to FORTRAN 

77. This work aims to show that Fortran 90/95 is a viable option for these scientific 

programmers, and although it is not fully object-oriented many of the desired features of an 

object-oriented language can be implemented in Fortran 90/95. This work sets out a series 

of design protocols and an overall programming scheme which makes writing large scientific 

codes more manageable. A series of specific programming tools and choices will be 

described which aid both the programmer and the user ofthe codes. Finally, some examples 

of the implementation of these ideas and practices will be included. 
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Glossary 

Class 

For the purposes ofthis thesis, a class is a term used to describe the organization of the code, 

that is, a class is a group of objects that have something in common. The term is used 

loosely and the "something in common" statement can be applied to suit the programmers 

needs. It is used as part of the total object name, which includes the name and modality as 

well. 

Compatibility 

Compatibility is the ability of subprograms to be combined easily without conflicts between 

each part. This is a necessity for projects which involve more than one contributor. This is 

important in enabling software parts to interact with one another1
• 
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Correctness and Robustness 

Correct code does what it was intended to do for all possible known cases. This is the most 

important feature of the code, since if the code does not do what it is designed to then the 

other features are meaningless. However, one cannot possibly know all cases that need to 

be run. In these cases, should the program fail, it should do so in a clean manner with the 

proper error message to alert the user or programmer of the problem. This feature is known 

as robustness1
• 

Ease of Use 

The software should be easy to use (operate, prepare input, analyze output, handle errors) and 

should come with documentation to instruct the user on how to deal with problems when 

encountered1
• 

Efficiency 

The program should be efficient, that is it should make optimal use of the hardware and 

software components of the system it runs oni. 

Extendibili ty 

Extendible programs are easy to modify or extend, for example when a new feature is 

needed. For small programs this is not an issue but for large complex programs it is 

essential. In order to make code more extendible, two things can be done1
: 
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1. Simplify the code: the program should be designed in a simple manner, with a 

simple architecture. 

2. Divide program into smaller parts: The program can be divided into smaller 

independent subunits of the program. 

Fortran, FORTRAN 77, and Fortran 90/95 

In the mid 1950's and IBM development team, headed by John Backus, developed a new 

language which made programming much easier. One achievement of this new language 

was that it provided a much more intuitive way to code mathematical formulas, and so was 

named FORTRAN, taken from the first few letters of"Formula Translation". Over the years 

this language was revised and in 1977 a new standard, developed by American National 

Standards Institute (ANSI), was released, known as FORTRAN 77. This version of Fortran 

was very popular, and is still used extensively in scientific programming today. Over the 

next decade or more the ANSI committee discontinued the traditional all capital letters in the 

official name of the language and started using "Fortran" with only the first letter capitalized. 

Developments continued and in 1990 the new standard Fortran 90 was introduced2
• Minor 

updates and fixes, with some minor extensions led to the release of the newest Fortran 

standard Fortran 95 . The differences in Fortran 90 and Fortran 95 are so small that in this 

thesis the term Fortran 90/95 will be used to indicate either can be used. 
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Integrity 

The program should have integrity, that is the program components should not be able to 

corrupt one another. Utilities can be designed to handle security within the program and this 

should be an essential part of the software design'. 

Modality 

Modality is another characteristic of an object. It is used to represent a level of theory or a 

coordinate system that the calculations are performed in or at. An object can "inherit" the 

modality portion of its name from a parent call. 

Object 

In this thesis an object is something that can be printed or used by other portions of the code. 

An object usually represents something, that something in computational chemistry often 

comes from theory. 

Reusability 

Reusability of the code is also an important feature. The more code is reused, the less code 

needs to be rewritten and this reduces the cost of development. What parts can be reused is 

determined by finding parts of the code that are the same or share a common piece'. 
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Portability 

Portability, the capability of the program to run on a few different systems, is an important 

feature. In ensuring this feature, any machine-specific parts should be clearly defined in the 

documentation 1• 

Verifiability 

The programmer should be able to prepare test data and procedures to determine ifthere are 

any problems with the software. This would be best accomplished if test data was included 

with the software package along with instructions on running test data and listing of expected 

output1
• 
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Chapter 1 

Introduction 

1.1 Project Description 

The use of computers to aid scientific research has exploded over the past 30-40 years. With 

the advent ofhigher level programming languages such as FORTRAN 77 and C, more and 

more scientist were able to create programs designed to perform very specific tasks, 

applicable to their own research. Over the years, these codes were changed and added to for 

slightly different applications. This process of code evolution often involves many different 

programmers over many years. Much ofthe existing scientific code is written in this manner. 

The problem with this kind of evolution is that there is no clear plan guiding the process. 

Much of the code was written by scientists that were not trained programmers. The codes 
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are often written with little or no comments, each programmer has their own individual style, 

and the spaghetti nature made the codes almost impossible to follow. These problems make 

maintaining and updating those codes a very difficult, if not impossible task, unless the 

programmer is extremely familiar with the entire code. Since these codes are often written 

by students completing an honours, masters, Ph.D., or some other project, they often do not 

have intimate knowledge of the code. For this reason a systematic approach to writing large 

scientific codes is required. For the purpose of this thesis, the term "large scientific code" 

refers to programs on the order of 105 to 106 lines of code, consisting of hundreds of files, 

and thousands of functions and subroutines. The ideas expressed will also be useful for 

much smaller programs. 

1.2 Goals 

In this work an approach at creating large scientific codes is presented. The approach is as 

general as possible and can be applied to virtually any scientific application. However, the 

examples used are from an ab initio quantum chemistry package, namely MUNgauss. 

MUNgauss is a fairly large code consisting of over 200 files, well over 1500 functions and 

subroutines and has been in development for over 20 years. The code was originally written 

in FORTRAN 77 and was fairly modular and readable. MUNgauss took advantage of 

OSIPE3 tools, which gave it a degree of modularity. OSIPE (Open Structured Interfaceable 

Programming Environment) consists of a set ofFORTRAN 77 tools which created a kind 

oflow-level object-oriented programming environment. OSIPE made use of a large common 
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Figure 1.1.1: lllustration of route-independent programming compared to normal 
programmmg 

Normal Route-independent . . 
programming programming 

Object 1 Desired 
Object 

~ , ~ ~ Object 2 
Object l Object 2 

., , 
~ Object 3 

Object 3 
., , 

Desired 
Object 

block to allow access to data throughout the program. OSIPE also required that an object 

(defined as an entity the program is able to address i.e., scalar, vector, matrix, tensor, ... ) can 

only be created by one routine which created nothing else, giving the code a structured and 

modular form. 

OSIPE also gave MUN gauss a very useful feature, route-independence. Route-independence 

simply means that there is no predetermined "path of execution" of the code. Figure 1.1.1 

shows an illustration of route-independent compared to normal programming. On the left 
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of the figure it can be seen that if an object was desired (in blue) the programmer would first 

have to create object 1, then object 2, then object 3, to finally create the desired object. This 

means that the programmer has to know how to construct each object necessary to build the 

desired object. In route-independent programming, if the programmer needs to build an 

object, the programmer only needs to know the first order dependence, i.e., the objects that 

the desired object directly depends on. The building routine ofthe desired object knows that 

it requires object 1 and object 2 to build the desired object. The desired object then "asks" 

for object 1 and 2, if they exist then it uses them, if not the code builds them. Note here that 

object 1 depends on object 3, thus object 3 is created once the desired object "asks" for 

object 1. The builder of the desired object does not need to know anything about object 3, 

since the desired object does not depend directly on object 3. 

The emergence of Fortran 90 and its new features (which will be explained in section 2.3), 

prompted the decision to overhaul the design of MUNgauss to create a better working 

environment for future developments. Many of the desirable features in the OSIPE version 

ofMUNgauss were kept in the newly designed version, namely the modular approach, route 

independent character, and several others. 

Generally speaking, the new design also tries to include other commonly considered "good 

programming" features. They include, correctness, robustness, extendibility, reusability, 

compatibility, efficiency, portability, verifiability, integrity, ease of use, and proper 
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documentation 1• These terms are defined in the glossary. 

1.2.1 User and Programmer Interests 

When developing code, it is important to remember that the user and the programmer have 

different needs. From the user's point of view, the program should be correct, robust, 

compatible, portable, efficient, easy to use, and be well documented. From the programmer's 

point of view the program should have all of the above features and also be readable, 

extendible, reusable (or have reusable parts), verifiable, and have integrity. Ideally for both 

the user and the programmer, the program should be optimal in every feature, but this is not 

always possible. As a result, there are trade-offs between these features. When designing 

programs one should try and balance each feature in the best way possible. 

This work will present an approach to code design which addresses these desired features. 

In addition to these very general features, more project specific features will be added to the 

code; these will be discussed in chapter 2. 

1.3 Outline 

This work presents an approach to creating large scientific programs. Chapter 2 describes 

the process of problem description and reasons for choosing Fortran 90/95 as the language 

in which to write these codes. Chapter 3, will present a list of strict design protocols for the 
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programmers to follow. Following these protocols will create a program that will allow 

others to read, understand and maintain the code more easily. A method of writing the code 

is contained in Chapter 4. This section lays out a program design which creates very useful 

features that can be used for debugging and code optimization. Chapter 5, presents the total 

picture, and how to add new functionality to the program. Often the new functionality is an 

older peice of code writen in FORTRAN 77, by following the procedure in Chapter 5, old 

FORTRAN 77 code can be converted to be used in the new Fortran 90 environment. An 

example of such a conversion will also be included. 
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Chapter 2 

Problem Description 

2.1 Defining the Problem 

The first step in the creation of a well written scientific program is to know what problem 

is to be solved. Writing a description of the problem is a very important and often 

overlooked step in creating a program. This initial step allows for the creation of an overall 

plan to tackling the problem. It also allows for the separation of the problem into groups 

(classes and objects). These classes and objects will be used to organize and modularize the 

code. 
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It is important to clarify the use of the terms classes and objects. Fortran 90/95 is not an 

object-oriented language, however, it does contain many ofthe features of an object-oriented 

language. The terms are not used in the object-oriented sense. These terms are used in the 

thesis to represent an organization method. The code was analyzed in such a way as to group 

like-things together. An object is defined, in relation to the program description, as 

something that the code can create, use, and/or print. Classes are then defined as a group of 

objects which have something in common. This differs greatly from the use of these terms 

in object-oriented programming, where an object is a specific instance of a class. These 

terms will be further clarified throughout the problem description. 

2.1.1 Program Description 

To start the organization process the main purpose ofthe code, MUNgauss, had to be written. 

"To create a quantum chemistry program which will have ab initio, density 

functional theory, molecular mechanics, and other packages. " 

In this purpose statement the high level divisions of any quantum chemistry package can be 

seen, i.e. ab inito, density functional theory (DFT), molecular mechanics (MM), etc. These 

high level divisions are used as the basis for the code organization. 

This is a top-down organization method. Researchers find it easier to visualize this 
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organization method. A theoretical chemist, for example, will think of results in terms of 

what theory is used to calculate them. Molecular mechanics, ab initio, or DFT calculations 

are thought of differently by a theoretical chemist4• For example, the results of an ab initio 

calculation may be written as MP4/6-31G(d)//HF/6-31G(d), meaning that the energy was 

calculated at the MP4level of theory, with a 6-31G(d) basis set, using a Hartree-Fock (HF) 

with 6-31 G( d) basis set, optimized geometry. The design style should to reflect this, so the 

first level of division is at the theory level. When starting to write a program these different 

theories are "naturally" distinct, and thus are a good first level of division. Remember the 

programming style designed aims to be programmer friendly, since the target programmers 

are scientists, the style should reflect their way ofthinking. For a large, complex code, such 

as MUNgauss, a top-down organization method provides clarity to the "readers" ofthe code, 

i.e greater readability. 

The next level of division would be based on the methods of calculation. The wavefunction, 

in ab initio calculations distinguishes between different methods, be it Restricted Hartree­

Fock (RHF), generalized valence bond theory (GVB), or unrestricted Hartree-Fock (UHF), 

or one of many others4
• For molecular mechanics (MM) there are different force fields which 

must be treated differently, MMFF90 is the current force field which has been implemented 

in MUN gauss5
• Similarly density functional theory (DFT) has many different methods which 

could be implemented, e.g. B3L YP or SVWN5• Note that not all these methods are currently 

available in MUNgauss but the design of the code must allow for the addition of different 
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packages, as the field of computational chemistry is a very dynamic one. These methods are 

the basis of the next division of code, the term modality is used to describe this level of 

division. Table 2.1 shows a list of many of the possible modalities which could be 

incorporated in a quantum chemistry package. 

Table 2.1.1: Possible modalities for a quantum chemistry package. 

Level of Theory Coordinates 

ab initio semi-empirical MM DFT 

RHF CNDO MMFF94 B3LYP XYZ 
UHF INDO CFF B3P86 ZM 
MPn MINDO Charmm22 G961LYP PIC 
CI NDDO AMBER SVWN RIC 
cc MNDO CVFF 
MC-SCF AMl COMPASS 
CASSCF PM3 

Another division which can be made at this level is that of the coordinate system. The 

coordinate system is not a level of theory but each coordinate system must be treated 

differently in the calculations, therfore the division was made. Some coordinate systems 

available in MUNgauss are cartesians, Z-Matrix (ZM), proper internal coordinates (PIC), or 

redundant internal coordinates (RIC). 

The modalities above are chosen as a way to split the code along the lines of thought of the 

theoretical chemists. 

The next step is to write a list of the individual components the code can produce. This will 
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be a list ofthe objects which will be later classified into classes for further code organization. 

2.1.2 Classes and Objects 

Objects 

What is an object? This is not an easy thing to precisely define. As mentioned, OSIPE3 

defined an object as an entity the program was able to address i.e. scalar, vector, matrix, 

tensor, etc., and can only be created by one routine which created nothing else. In this 

context an object is defined as something that can be either printed or used by other parts of 

the code to preform their computations. The objects are what the code actually uses, they 

contain all the calculations and subsequent results of the calculations preformed in the 

program. An object should represent something. Usually, in the case of a computational 

chemistry code, that something comes from the theory which defines the problem. For 

example, when calculating the energy of a molecule, the distances and angles between atoms 

in the molecule are needed. These are two objects of the program, named 

ATOMIC_DI STANCES and ANGLE_ATOMS respectively in MUNgauss. Below is a list of many 

ofthe objects which MUNgauss needs/uses to preform computations. 

11 



Table 2.1.2: List of Objects in MUNgauss 

lE AO 
lE DIPOLE 
lE OVLAP AO A B BLOCK - - ---
lE SMl TV AO AB - - -
lE SSMl AO AB BLOCK - - - -
lE TV AO AB - - -
lE TV AO MONOMER A - - - -
lE TV AO MONOMER B 
lE V AO AB -- -
lE V AO MONOMER A -- - -
lE V AO MONOMER B -- - -
lMATRIX 
1MATRIX%GVB 
1MATRIX%RHF 
1MATRIX%UHF 
2E%COMBINATIONS 
2E%RAW 
ANALYTICAL 
ANGLE ATOMS 
AO%MULLIKEN 
AO BY AO%MULLIKEN 
ATOM TYPES 
ATOMIC%MULLIKEN 
ATOMIC DISTANCES 
ATOMIC MASSES 
ATOMIC NUMERICAL 
BMATRIX 
BMATRIX%PIC 
BMATRIX%RIC 
BMATRIX%ZM 
BOND ATOMS 
BOND ORDER 
CARTESIANS 
CLOSE CONTACT 
CNCOMP 
COEFFICIENTS 
COEFFICIENTS%GVB 
COEFFICIENTS%RHF 
COEFFICIENTS%UHF 
COEFFICIENTS OV 
COM CON 
COMP ATOM NUM 

COMPONENTS 
CONN FAILSAFE 
CONN PRUN 
CONN PRUN HOMRED INCIDENCE - -
CONNECT 
CONVAL 
COORDINATES PIC 
DEFAULTS 
DENSITY 
DENSITY%RHF 
DIPOLE MOMENT 
EDGE RING TO RING ASSEMBLY - -
EDGE TO RING 
ENERGY 
ENERGY CONTRIBUTIONS 
ENERGY TOTAL 
ENERGY WEIGHTED 
ENERGY WEIGHTED%GVB 
ENERGY WEIGHTED%RHF 
ENERGY WEIGHTED%ROHF 
ENERGY WEIGHTED%UHF 
FACTORED 
FOCK MATRIX 
FREQUENCIES 
FUNCTION 
FUNDRING 
GAMMA FUNCTION 
GRADIENTS 
GUESS 
HESSIAN 
HUCKEL 
INTEGRALS 
INTEGRALS MO 
INTERNAL 
INTERNAL% PIC 
INTERNAL% RIC 

INTERNAL%ZM 
INVERSE 
INVERSE FACTORED 
LENGTH FULL 
LOCALIZED 
LOCALIZED LIST%GVB 
MATRIX%ANALYTICAL 
MATRIX%NUMERICAL 
MM CONTRIBUTIONS 
MO 
MO%GVB 
NET ATOMIC%MULLIKEN 
NON BONDED 
NON BONDED ATOMS - -
NUMBER OF PARAMETERS 
NUMERICAL 
OBJECTS CREATED 
OBJECTS STATUS 
OOPBEND ATOMS 
OPT 
OPT BFGS 
OPT DIIS 
OPT OC 
OPT VA 
PAIR LIST CMO - -
PARAMETER CONTRIBUTIONS 
PARAMETERS 
POINT 
PROGRAM 
PRUNE HOMRED 
RIC 
SCF 
STEP_SIZE 
THIRD SEMI DIAGONAL - -
TORSION ATOMS 
VAN DER WAAL BONDS - - -
VERTEX LIST 
VERY WEAK BONDS 

This list shows another feature which is very important to the readability of the code, the 

naming of objects are meaningful to anyone reading it. A reader with knowledge of the 

theory of the different methods being coded, would recognize most of the objects listed 

above as something from the theory. As stated earlier MUNgauss is an old code that is being 

converted to the new programming style, the list above shows this conversion is a process, 
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it contains both objects named in the new style and those created in the earlier versions of 

the code. These objects have not yet been given proper names but will be converted as the 

project continues. Also note that some object names contain a percent,'%', character 

followed by one of the modalities defined above. This shows that the code can create 

different "flavors" ofthese objects, i.e. it can create a matrix used in calculating density, the 

lMATRIX, for GVB, UHF, or RHF. 

Classes 

The objects must now be grouped in some logical manner which will help modularize the 

code. These groups are referred to as classes. The process of deciding which class an object 

belongs to, is often a difficult one, and one for which there is no set procedure. It is a process 

which will involve constant re-evaluation as coding proceeds. There are some considerations 

when deciding class, they include: 

• Placing an object into a class should help the code organization 

• All objects in a class should have something in common 

• Objects within a class are built in a similar fashion 

Figure 2.1.1 shows the objects given above divided into classes. As with the list of objects 

provided this list of classes is not finalized. This is still a work in progress and classes are 

redefined, created, and removed, as the code continues to develop. 
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Figure 2.1.1: MUNgauss OBJECTS grouped into CLASSES 

~B_A_S_I_S~S_E_T ________ ~I DERIVATIVES 
ST0_3G THIRD_SEMI_DIAGONAL 

COORDINATES 
BMATRIX 
BMATRIX%ZM 
8MATRIX%PIC 
BMATRIX%RIC 
RI C 

I CHARGE DENSITY 
POINT 
ATOMIC_NUMERICAL 

··- I ENERGY 

I FOCI< 
RUCKEL 

FORCE CONSTANT 

NUMERICAL 
MM_CONTRIBUTIONS 

I DATA I :::ION ____________ , 

DEFAULTS GRADIENTS 
~--=:-=,---··-·-·---

GRADIENTS COMPONENTS 
GUESS CARTESIANS 
HESSIAN INTERNAL 
INTEGRALS INTERNAL% ZM 
INTEGRALS_MO I NTERNAL%PIC 
OPT INTERNAL% RIC 
OPT_VA OPT 
OPT_BFGS LENGTH_ FULL 
OPT_OC MM_CONTRI BUTIONS 
OPT_DIIS 
COORDINATES - PIC GUESS 
SCF 
PROGRAM DENSITY 

DENSITY%RHF 

DENSITY 
MO 
MO%GVB 

lMATRIX HESSIAN 
1MATRIX%RHF 
1MATRIX%GVB GVB 
1MATRIX%UHF DEFAULTS 

- ··-

ENERGY_WEIGHTED PAIR_LIST_CMO 
ENERGY_WEIGHTED%RHF 
ENERGY_WEIGHTED%UHF 

I :~_MATRIX I 
ENERGY_WEIGHTED%GVB 
ENERGY_WEIGHTED%ROHF 

GRAPH 
ANGLE_ATOMS 
BOND_ATOMS 
CLOSE_CONTACT 
COM CON 
COMP_ATOM_NUM 
CNCOMP 
CONNECT 
CONN_ FAILSAFE 
CONN PRUN 
CONN=PRUN_HOMRED_INCIDENCE 
CONVAL 
EDGE_RING_TO_RING_ASSEMBL 
EDGE_TO_ RING 
FUNDRING 
OOPBEND_ATOMS 
PRUNE_HOMRED 
TORSION_ATOMS 
VERTEX_LIST 
VERY_WEAK_BONDS 
VAN_DER_WAAL_BONDS 
NON_BONDED 
NON_BONDED_ATOMS 

HESSIAN 
-·-·----·----------
ANALYTICAL 
FACTORED 
I NVERSE 
I NVERSE_ FACTORED 
MATRIX%NUMERICAL 
MATRIX%ANALYTICAL 
STEP SIZE 

INTEGRALS 
lE_AO 
lE_DIPOLE 
lE_OVLAP_AO_A_B_BLOCK 
lE_SMlTV_AO_AB 
lE_SSMl_AO_AB_BLOCK 
lE_TV_AO_AB 
lE_TV_AO_MONOMER_A 
lE_TV_AO_MONOMER_B 
lE_V_AO_AB 
lE_V_AO_MONOMER_A 
l E V AO MONOMER B 
2ElCOMBINATIONS-
2E%RAW 

MO 
HUCKEL 
COEFFICIENTS 
COEFFICIENTS%RHF 
COEFFICIENTS%GVB 
COEFFICIENTS%UHF 
COEFFICIENTS_OV 
LOCALIZED 
LOCALI ZED_LI ST%GVB 

MM -----------·------
ATOM_TYPES 
ENERGY TOTAL 
ENERGY=CONTRIBUTIONS 
PARAMETER CONTRIBUTIONS 

MOLECULE 
ATOMIC_DISTANCES--
ATOMIC_ MASSES 

OPT 
1-ffiiii:Tr·oo-------------
HESSIAN 
NUMBER_OF_PARAMETERS 
PARAMETERS 
STEP_ SI ZE 

PARAMETERS 
FREQUENCIES 

POPULATION ANALYSIS 
AO_BY_AO%MULLIKEN 
AO%MULLIKEN 
ATOMIC%MULLIKEN 
NET_ATOMIC%MULLIKEN 
BOND_ORDER 

PROPERTIES 
-------------·--· 
DIPOLE_ MOMENT 

PROGRAM 
OBJECTS_CREATED 
OBJECTS_STATUS 

The bolded names in the first row of each box is the class name and below are the objects 

which belong to that class. 

2.1.3 Overall Code Organization 

Figure 2.1.2 shows the overall code organization. It shows the 5 levels of modularity: 

1. the program encompasses everything in the code. 
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2. A package is defined as a level of theory, be it ab initio, molecular mechanics. 

3. The modality division is based on the next division in theory, i.e. wavefunction 

(RHF, UHF ... ), force field (MMFF90). Also at the modality level is the coordinate 

system, which is not shown in the figure. 

4. Classes are next, the classes in the code are listed down the left side of the figure. 

5. Finally the objects are listed, organized into classes. Note that the checks mean that 

the object is available at that particular modality. 

A summary diagram such as Figure 2.1.2 shows the functionality of the program. A quick 

look at the figure tells the user exactly what the code can do, it can also help the programmer 

locate objects that they may need to use, this may become useful in very large codes where 

an individual programmer may need a piece of information (an object) and may not know if 

it has been already coded. A look at a summary table could save there-coding of an object. 

2.2 Desired Features of Code 

Each project/code will have features specific to that project or code. These features include 

how users input information, what printing control is required, debugging and timing 

features, as well as other programmer tools desired. Clearly defining all of these features 

is vital so that the program design can reflect these requirements. Following is a list of the 

features desired in MUNgauss. 
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Figure 2.1.2: Summary table ofMUNgauss functionality and organization 
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1. All the features of"well-written" code presented in Chapter 1 must be considered and 

balanced. That is: correctness, robustness, extendibi/ity, reusability, compatibility, 

efficiency, portability, verifiability, integrity, ease of use, and proper documentation 1• 

2. Separate packages. As mentioned MUNgauss contains several different methods for 

different levels of theory. The final code should be able to be separated into 

packages (i.e. smaller devoted executables). For example, just an ab initio code, 

which is compiled and ran separate from the molecular mechanics part of the code. 

3. Self-debugging tools. The code should contain tools that help the programmer find 

errors in the code. This should be a feature which can be turned on and off as 

needed, and possibly removed from the code when a "number-crunching" or "user" 

version of the code is released. 

4. Timing feature. The ability to determine the time the code takes in a particular 

routine would be very beneficial in optimization of the code. 

5. Trace of execution. Since MUNgauss is route independent, that is it has no set path 

of execution, the ability to determine the path of execution is very useful in 

debugging the code. 

6. Complete control from the menu. Control over default values and other variables the 

code uses should be available in the menu (input). 

7. Control of output. Similarly, what the code outputs should be exactly what the user 

wants, with no extras. 
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8. Portability. The code must be portable, that is it must be able to run on different 

platforms. 

2.3 Choice of Language 

The choice of programming language is a very important one. There are many factors which 

can guide the decision from one language or another. There are practical considerations, 

which include cost of appropriate compilers/hardware, cost of retraining staff if a new 

language is chosen, applicability of the language to the desired code. In general one desires 

a language with a notation that fits the problem, simple to write and learn, powerful 

operations, etc. Fortran is very good with numerical computations, has many diverse and 

reliable libraries, and an official standard exists which helps portability;. 

However, the major factor which directed the decision oflanguage in this project was that 

the old version ofMUNgauss was written in FORTRAN 77. While it is possible to convert 

old FORTRAN 77 codes into Cor C++, the process is much more difficult than converting 

to Fortran 90/95. Fortran 90/95 is based upon FORTRAN 77, and in fact any standard 

FORTRAN 77 codes should compile and execute with a Fortran 90/95 compiler·7•
8
•
9

• This 

allows for incremental conversion, which means there can always be a working code, even 

during the conversion process. 
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Table 2.3.1: A sample of current theoretical chemistry packages, and their 
programming language -
CADPAC11 

GAMESS12 

Gaussian 9813 

Q-Chem14 

Spartan15 

AMBER16 

18 

Coupled cluster and many body 
perturbation theory 

ab initio quantum chemistry package 

general ab initio quantum chemistry 
package 

quantum chemistry package 

ab initio electronic structure program 

molecular modeling program 

molecular mechanic chemistry 
package 

program for macromolecular 
simulations 

molecular software 

FORTRAN77 

FORTRAN?? 

FORTRAN 77 (with some C for 
specific unix calls) 

FORTRAN?? 

C++ 

FORTRAN 77, C, (C++ GUI) 

FORTRAN77 

FORTRAN?? 

C and C++ 

Most legacy scientific codes are written in FORTRAN 77 so Fortran 90 is an appropriate 

language to use in the project. Table 2.3.1 contains a list of current theoretical chemistry 

packages and their programming language. In addition to the back-compatibility issue, 

Fortran was designed for computation intensive computing, i.e. scientific computing9
• There 

are also many other features in Fortran 90 which make it more programmer friendly. Some 

of these are briefly discussed below. 

Fortran 90 is also a migration path to Fortran 2000 and High Performance Fortran (HPF)19
• 

HPF was thought to be the "next big thing" in parallel computing in the late 1990's. 

Although HPF seems to have lost some of its initial steam, there are still many groups 

pursuing HPF. Converting to Fortran 90 is a good first step for programming in HPF, as 

many ofthe construct ofHPF are used in Fortran 90. Fortran 95 has many more of the HPF 
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features, however due to the fact that a Fortran 95 compiler was not available on all systems 

used for this project, Fortran 90 was chosen as the standard. 

The next major release in the long history of Fortran will be Fortran 20009
• Scheduled for 

released in 200420
, Fortran 2000 will eliminate some of the features marked obsolete in 

Fortran 90 (see table of obsolete features, Table 2.3.2). Most of these features are part of the 

FORTRAN 77 standard and who's implementation can be more eloquently performed with 

newer constructs. Fortran 2000 will also introduce true object-oriented programming to the 

Fortran world. The approach to code design presented in this work, while not object­

oriented, is a good first step in that direction. 

2.3.1 Drawbacks of FORTRAN 77 

Since MUNgauss was written in FORTRAN 77, why change? By today's standards 

FORTRAN 77 is just outdated. There are many deficiencies in FORTRAN 77 that make 

using FORTRAN 77 unfavorable. Firstly FORTRAN 77's 'punch card' or 'fixed form ' 

source format. FORTRAN 77 was based on the use of punch cards for programming, each 

punch card represented one line of code, since there were 72 columns on each card, 

FORTRAN 77 would ignore any thing past the 72"d column. This restriction is no longer 

necessary9
• 
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In addition, FORTRAN 77lacked dynamic storage. The ability to create a temporary array 

on-the-fly is not there in FORTRAN 77. Therefore programmers would have to create arrays 

that were "big enough" for any future problem size. There is also a lack of user defined data 

structures. Having the ability to create compound objects is very favorable, but not present 

in FORTRAN 77. FORTRAN 77 did not have explicit recursion. Recursion is a very useful 

mathematical technique which is missing from FORTRAN 772
• 

FORTRAN 77 also relied on the coMMON block to give global access to data. This method 

was often abused and due to lax rules led to users inadvertently doing horrendous things. 

Also the practice of aliasing an array using an EQUIVALENCE statement is considered unsafe 

and should no longer be used9
• These drawbacks ofFORTRAN 77 have all been addressed 

in Fortran 90, making it a much more favorable choice. 

2.3.2 Fortran 90 compared to FORTRAN 77 

Figure 2.3 illustrates a high-level conceptual view of the composition of Fortran 90. 

FORTRAN 77 makes up the foundation upon which Fortran 90 is based, approximately two­

thirds of the content of the new standard are directly supported by the old standard. Thus 

much ofthe data type, such as INTEGER, REAL, and CHARACTER, as well as IF and DO 

statements remain the bases of most control structures. I/0 is virtually unchanged, with some 

minor enhancements, and the decomposition of large programs is still through the use of 

subroutines and functions. 
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However the new features of Fortran 90 are significant and make it easier to work with and 

more efficient. These features help to bring Fortran 90 more in line with other modem 

programming languages. 

Source Format 

Figure 2.3.1: High-level conceptual view of 
the makeup of Fortran 902 

I Interface Blocks I 

I Pointers I 
I Derived Types I 

Modules 

Array Operations 

I Simple Extensions to Fortran 771 

FORTRAN 77 

Major Building Blocks of Fortran 90 

Fortran 90 has anew source format, 'free format'. Free format allows for up to 132 columns 

per line, no reliance on specific position of special characters, more than one statement per 
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line, in-line comments, both upper and lower case letters (improving readability), object 

names that can be up to 31 characters, and names that can be punctuated by underscores. All 

these features of free source format make if very attractive to new programs2
•
9

• 

Dynamic Memory Allocation 

Fortran 90 has introduced dynamic storage, which means allocatable arrays and pointers can 

now be implemented. Arrays can be created on the fly and removed as needed. Also the 

addition of pointers enables such dynamic data structures as linked lists and trees to be 

created. Dynamic memory allocation is one of the first features that attract programmers to 

Fortran 90 over FORTRAN 77, it was also the first feature incorporated in MUNgauss, 

during the redesign process9
• 

User defined data types 

User defined data types are now part ofFortran 90. These data types can be constructed by 

the user using existing types. Defining objects in this way (grouping them together in one 

data type) is more intuitive and make programming easier and less error prone2
•
9

• 

Recursion 

Explicit recursion is now available. The programmer can declare a procedure to be recursive 

and then it can be used to call itself. This is a very useful approach to many 

mathematical/scientific problems9
• 
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Control Constructs 

New control constructs have been added to Fortran 909 

-do end do 

-do while 

- exit, to allow graceful exiting ofloops 

-cycle, for abandoning current iteration 

-named control constructs (i.e. labeled); improves code readability 

- select case control block; more succinct, elegant and efficient than an if . .. 

elseif ... elseif block 

Internal Procedures 

A procedure is allowed to contain a further procedure with local scope. This second 

procedure can not be accessed from outside the procedure from which it was defined9
• 

Modules 

A new idea in Fortran 90 is the use of modules. A module is a program unit used to package 

together declaration, subprograms, and definitions of new derived data types. Another 

program unit simply must 'use' the module to have access to all features in that module9
• 

- blockdata subprograms are now redundant since a module can be used for the 

same purpose. 

-Useful libraries can be written and placed in a module. 
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2.3.3 Obsolescent Features of Fortran 

To protect the investment of all the years of programming preformed using FORTRAN 77, 

Fortran 90 has included the FORTRAN 77 standard in its entirety. However, many of the 

features of FORTRAN 77 can now be implemented using more modem features. As a way 

to allow the language to progress and improve, Fortran 90 has indicated that some of the 

features of FORTRAN 77 are marked obsolescent9
, which means: 

1. They are already redundant in FORTRAN 77 (i.e. they were in FORTRAN 66 or 

other Fortran standards). 

2. Better methods of programming already existed in FORTRAN 77 standard. 

Table 2.3.2: Obsolescent features ofFortran9 

~ Obsole~cenf Featur~ pf'Fortran . Should b~ replaced with 

Arithmetic IF Statement an equivalent CASE or IF construct 

ASSIGN Statement 

ASSIGNed GOTO Statement an IF statement or a procedure call 

ASSIGNed FORMAT Statement USe a CHARACTER string to hold FORMAT 
specifications 

Hollerith Format Statements use single or double quotes in FORMAT 
WRITE(*,100) statement: 100 FORMAT(17H TITLE OF PROGRAM) WRITE(* , 100 ) 

100 FORMAT ( 'TITLE OF PROGRAM' ) 

PAUSE statement use PRINT followed by READ 

REAL and DOUBLE PRECISION DO- use INTEGER variables and construct REAL 
loops Variables or DOUBLE PRECISION variables within the 

loop 

Shared Do-loop Termination Use END DO instead 
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3. Programmers should stop using them. 

4. It is the intention of the standard's committee to remove these features in subsequent 

releases ofFortran. 

There are also a set of features that have not been marked obsolescent but have been 

identified as being "undesirable"9
• These include: 

1. Fixed source form 

2. Implicit declaration of variables 

3. Common blocks 

4. Assumed size arrays 

5. EQUIVALENCE statement 

6. ENTRY statement 

7. Computed GOTO 

These features should be avoided in any new code and should be slowly removed from 

existing code. 
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Chapter 3 

Design Protocols 

3.1 Introduction 

The key to creating or redesigning a large scientific program that is easily maintained and 

updated is a strict set of design protocols. This chapter will present such a set. It will include 

a consistent programming style, consistent use of variables, subroutine, modules, and 

functions, and consistent documentation practices. These protocols must be followed by 

every programmer working on the code to ensure others can work on the code with relative 

ease. 

27 



What are design protocols? The use of the term design protocols combines both the visual 

look of the programs as well as how the tools of Fortran are implemented. The key is 

consistency. The goal is to design code that can be easily maintained and updated, not only 

by the primary programmer, but also other programmers. Consistency in the look and use 

of subroutines, modules, variables, etc., are essential to making this possible. 

The process of establishing a strict set of design protocols is not an easy one. The rest of this 

chapter gives the set of design protocols implemented in MUNgauss. Some may be changed 

by the users to reflect their personal style (though this is discouraged). Others, however, are 

believed to be more important to the operation ofthe code and it is recommend that they be 

followed as stated. The more important protocols relate to the implementation of the tools 

of Fortran 90/95, and how functions, subroutines, modules, etc. are used and how they 

interact. 

3.2 Programming Style 

Every programmer has their own personal programming style, however for a correctly 

designed program written by many programmers, having everyone use the same set of 

guidelines makes the code readable for anyone working on it. Guidelines also helps the 

person responsible for the entire code (the primary programmer) read and maintain parts of 

the code written by other programmers. This alleviates the need for everyone working on 

the code to be intimately knowledgeable about the entire code. Style is a very individual 
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thing and there does need to be some flexibility, however, guidelines are essential for 

consistency. 

A programming style consists of everything from where variables are defined, how lines of 

code are aligned (i.e. how indentation is used), and how variables are named, to the use of 

program headers, comment lines and error messages. 

3.2.1 Program headers 

The use of a program header is very helpful in writing large code. Following the opening 

program or subprogram specification there should be a series of comments which describes 

the program or subprogram, called the program header. The program header should consist 

of the programmers name, the date the program was written, the version (if applicable), and 

a description of the routine. This description should include details such as any special 

algorithms it uses, assumptions the programmer has made, useful references to related 

information, as well as a directory of the variables passed in or out of the routine. This 

allows a programmer to read a few lines and know exactly what this subroutine, function, or 

module does and what it is used for. 

In MUNgauss, program headers are to be contained in a box of asterisks. This allows for a 

sharp visual look that is immediately recognized, and helps to delineate boundaries between 

subroutines. Figure 3.1 contains an example of a program header. 
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Figure 3.2.1: Sample program header 

Each subprogram unit should be documented with a program header, this includes (but is not 

limited to) subroutines, functions, and modules. Information in the program header needs 

to be kept up to date, or it becomes irrelevant. Also in keeping with the current Fortran 90 

standard, changing from a block of asterisks to a block of exclamation points should be 

considered, since any line that starts with an exclamation point is a comment line in the new 

"free source form". Fortran 90 does support "fixed source form" for backward compatibility 

with FORTRAN 77 2•
8

•
9

. Currently MUNgauss uses fixed source form. 

3.2.2 Declarations 

The look and order of variable declarations and use of modules and include files is an 

important feature of a programming style. A comment line is placed before the USE, 

INCLUDE or variable declaration which states what follows, i.e. before input scalars are 

declared in a routine, there is a comment line that states ' * Input Scalars : '. The visual 
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impact of this style allows for quick and easy location and identification of variables when 

editing the code. Figure 3.2.2 shows a declaration section of a programming unit with no 

Figure 3.2.2: Declaration section, no comments. Not recommended 

comments. Figure 3.2.3 shows the recommended style. Both are fine with the Fortran 90 

standard, however the second is much more readable by the programmer. In addition, a 

blank comment line with only an'*' helps the code look cleaner and is always used before 

a comment line. Again switching to an ' !' should be considered. 

In addition to those listed in Figure 3.2.3, other separations could be made in the variable 

declarations. Declarations could be divided into local scalars, local parameters, local arrays, 

work arrays, input or output arrays, and many more. Comments could also follow a variable 

definition which states what it represents and how it is (or should be) used, if it would assist 

the clarity. This is done simply by a statement preceded by an exclamation point. This is 
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Figure 3.2.3: Declaration style; the comment lines separate and organize different types of 
declaration for easy identification. 

also illustrated in Figure 3.2.3. 

ChCJ.racter*(*), intent(IN) opj_name !Object description goes here 

Note that using include files as presented in this example is being phased out. Includes are 

almost entirely being replaced by modules. The includes in Figure 3.2 are remnants of the 

earlier OSIPE version ofMUNgauss. There are still some situations where includes could 

be used, these are discussed in Section 3.3. The keyword intent is used in this figure, 

intent indicates how the variables are being used. Intent (in) means the data in those 
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variables will be passed into the subroutine or function, intent (out) means data will be 

passed out of the routine via those variables2
•
9

•
7

. This will be discussed further in Section 

3.3.3. 

3.2.3 Indentation 

Another part of a programming style is the indentation of loops or code segments. 

Programmers should adhere rigorously to alignment and indentation guidelines. In 

MUNgauss each line, other than comment lines, is indented seven spaces. An additional two 

spaces are used within loops (such as do loops) or other code segments (i.e. if or case 

statements, derived types) to emphasize a relationship between various parts ofthe program. 

Figure 3.2.4: Example of indentation practices; note seven spaces before executable code, 
and an extra two spaces for each statement sequence within constructs such as case 
statements and do 

Alignment is another visual clue to the execution of the code, and improves readability. 

FORTRAN 77 required an indent of seven spaces for the execution part ofthe program. This 
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is known as fixed source form. Since most of the programmers now learning/using Fortran 

90 are/were FORTRAN 77 programmers it was decided to keep this protocol; even though 

it is not required as part of the Fortran 90 standard. 

Figure 3 .2.4 also show another very important feature ofFortran 90, labeling. Here the select 

case is labeled so the end of the select case can be easily identified. Such a label helps 

readability of the code. 

3.2.4 Naming and Capitalization 

Although Fortran 90/95 is case insensitive, consistency in capitalization is very important. 

This maintains visual consistency for all occurrences of the variable, module, subroutine, or 

function name. It is also useful in editing the code. If a variable is used in the exact same 

manner (same capitalization) then performing a global substitution (throughout the entire 

code) becomes a much simpler task. Creating a strict set of rules governing naming and 

capitalization is a difficult task. Below are some of the general rules for naming and 

capitalization: 

1. Assume case sensitive, once a variable is named, always use the same capitalization 

at every occurrence ofthe variable. 

2. Names should hold some meaning. Names should be long enough to have meaning 

when read. 

34 



is more meaningful than 

Do not use "skimpy" abbreviations just to save a few keystrokes. Also the use of 

underscores U between words in a name is encouraged. 

is better than 

3. When using an indexing variable, give the indexing variable a name that pertains to 

the application, i.e. do not just call it i or j, use !index or Jindex. 

4. Upper case variable names and lower case the part that would be subscript (e.g. 

Iatom, Ibasis) 

5. In MUNgauss subroutines are combined into groups with certain prefixes. These 

prefixes give programmers a clue of what the subroutine does simply by looking at 

the name. The prefix to subroutine names should be capitalized. Table 3.1 shows 

the list of prefixes used in MUNgauss and some examples of their use. 
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Table 3.2.1: Prefixes used in MUNgauss 

PRT Prints something to file or screen PRT_matrix 
PRT_GRAPH_NO_BONDS 
PRT_ Object 

BLD Builds an object BLD_GUESS_MO 
BLD_Bmatrix 
BLD_guess_MO_GVB 

PRG Program infrastructure routines, dealing PRG_manager 

with the design and functionality of the 
code 

GET Usually "gets" a scalar value. Normally GET_object_number 

a call to a utility 

MENU Routines that deal with the menu/input MENU_ints 

12E, IlE Routines used in one or two electron I2E_SSSS 

integrals 

MAX Used in variable names that define a MAX_atoms 

maximum value, normally a parameter 

6. All Fortran keywords (integer, print, if . .. then, etc ... ) should be lowercase. 

This is contrary to much of the suggested programming practices in the literature2
• 

However, scientists are reading code to see the algorithm or method being used. The 

Fortran code is secondary. Capitalizing the Fortran keywords has the opposite effect 

of emphasizing exactly the part of the code that should not be emphasized. 

The stated naming and capitalization rules work together to create code that is much more 

readable. The meaningful variable, module, subroutine, and function names give the 

scientific programmer information on the purpose of (and possibly theory used in) the 
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program. In addition, these rules emphasize the algorithm and minimize the Fortran code, 

creating a much more readable and understandable program. 

3.2.5 Comment Lines 

The use of comment lines and comments in general, may be one of the most under utilized 

practices in all of programming. Comments are extremely important. The current 

programmer may know that matx and maty refer to a certain pair of matrices, but the next 

programmer using/reading their code may not. Adding a simple comment after the 

declaration, by placing an exclamation point(!) then the comment could save someone the 

time it takes to trace the code. Also, as stated in the section 3.2.4, the variable name should 

have some meaning, which will also help in reading the code. 

Comment lines are also used to help separate pieces of the code. For example when variable 

declarations are made, the lines"* Local scalars" or"* Input scalars" are included 

before these variables are declared. This is an easy way to tell future programmers where and 

how the variables are being used. Also a blank line containing just an asterisk(*) in the first 

column helps to separate blocks of code. Fortran 90 does allow just a blank line; however 

the '*' is helpful in defining the separation. Again, to keep with Fortran 90 standard the 

exclamation,' !', point should be considered in future codes. 
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Comments between blocks of code explaining what those code segments are doing, maybe 

stating the algorithm used and including a reference, both helps another programmer to read 

and follow the execution of the code, and gives them information on how they may change 

or improve the code. That is, knowing the algorithm and reference helps future programmers 

find newer more efficient algorithms. Though not likely, it is possible to have too many 

comments. If comments begin to clutter the program, some restraint may be needed. 

3.2.6 Error Messages 

Error messages are a debuggers friend. At least meaningful error messages are. Error 

messages exist to allow the program to exit gracefully, rather than crash catastrophically. 

Wherever possible including an error check, to determine if the program is running as it 

should, and that the data is appropriate, is very important. Just as important as allowing the 

program it exit gracefully, is to print a message for the potential debugger. All error 

messages must follow a consistent style and include the following: 

a) Where the error occurred, i.e. the routine that detected an error. 

b) What variable or object caused the error. 

c) A possible solution to the error. 

d) Stop command with a brief message ofwhere the error occurred 
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Error messages should be contained in if ... then ... end statements as seen in the example 

in Figure 3.2.5. In the example, the subroutine is named ADD_atom, and the error message 

prints: 

ADD .. ..:i~t~m; too many atoxns: must i:i:wrease MAX_ATOM 

where MAX_ATOM is the maximum number of atoms allowed in the calculations (a parameter 

set by the module which contains ADD_atom subroutine). In this error message the user 

instantly knows that an error occurred in the ADD_a tom subroutine, and that a likely solution 

is to increase the maximum number of atoms allowed. 

3.2.7 Other 

There should be an option to echo all input. That is, any value given to the code by the user, 

via the menu in MUNgauss, should be able to be printed as part of the output of the code. 

This gives the user a record of what they asked for, and having it with the output helps them 

understand the results. This is very useful in situations where the output seems "fishy", it 
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may be that an input variable was incorrect. It is a way to ensure that the program is reading 

the input correctly. If the program can reproduce the input then it read it correctly. 

Also every piece of output should be labeled. Labels should be clear and concise and include 

units if applicable. For example: 

produces much more informative output than 

The use of the asterix (*) is not recommended for printing. This practice is not exactly 

portable, a line printed with the command 'print *, rate' on one machine may not be 

exactly the same as on another machine. This is particularly noticeable when printing real 

numbers. The same thing applies for the write command. 

Only information requested by the user should be printed in the output. It can be very 

confusing if everything the program computes is dumped to the output when all the user 

wants is a specific piece of information. The product of any scientific code is the output it 

creates. The program can produce log files of execution, output from certian diagnostics, 

scientifically relevant results, or intermediate values for debugging and verifying. It is 

important the the program have controls which allows the user or programmer to select only 

40 



the output or product they desire. 

Output should also be presented in an organized manner. Tables are very useful in this 

regard. Remember to label the table clearly with each column or row having a label. 

Headers or titles for tables are another good practice. 

3.3 Use of Variables, Modules, Subroutines, and Functions 

As with programming style, consistency is the key when using variables, modules, 

subroutines, functions, etc. The programming practices governing these Fortran constructs 

are important to state and follow to help with the overall plan of developing well-written 

code that is easily written and maintained by several programmers. This section outlines 

some of the programming practices which will help in meeting the programming goals 

discussed in Section 2.2. 

3.3.1 Variables and Constants 

In addition to the style considerations discussed in the previous section there are other, more 

logistical, matters regarding the implementation of variables and constants. In Fortran 90 a 

variable is any data item that can have its value changed at execution time, while a constant's 

value can not change during execution. 

implicit none 
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The most important programming practice dealing with variables and constants it the 

inclusion of implicit none in every program or program subunit in Fortran, any variable 

whose type is not explicitly declared in a type statement will be assigned a type according 

to an implicit naming convention. That is, any undeclared identifier whose name begins with 

I, J, K, L, M, or, Nor the lowercase equivalents will be typed as integer and all others will 

be typed as real8
• This means that failing to declare a variable is not an error. Thus a typing 

error may not be picked up by the compiler and could end up causing debugging problems. 

Fortran 90 provided the implicit none statement to cancel this naming convention. 

Placing implicit none at the beginning of the specification part of every program or 

program subunit requires that the types of all named constants and variables must be 

specified explicitly in type statements. 

Variable Initialization 

All variables are initially undefined in Fortran. The variable declaration statement has the 

following format: 

While it is possible to initialize a variable in their declarations, this practice is discouraged. 

For readability purposes, variables should be given initial values in the body of the program, 

so that when a programmer is reading the code they can clearly see the initialization in the 
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same place as the variable is used. This is in contrast to constants. 

Constant Setting 

A constant is specified by including a parameter attribute in the declaration of an identifier: 

Here it is recommended that the programmer set the value of the constant at the declaration 

stage. As stated previously, constants are to be declared in a separate grouping in the 

declaration section of the program (and usually in modules, see Section 3.3). Keeping all 

parameters together and setting their values, allow for quick and easy lookup by the 

programmer. All the constants are together and their values are right there. This also allows 

for quick and easy changes to the code if a parameter needs to be changed, the programmer 

knows where to look, no matter what program or subprogram they are looking at. 

Arrays 

Fortran 90 has two kinds of array types, compile-time arrays and run-time arrays8
• The 

difference in the two is when the memory is "put aside" or allocated for the array. As the 

names suggest compile-time arrays set aside memory when the program is compiled and can 

not be changed during the execution ofthe code, where as run-time arrays have their memory 

allocated during the execution of the code. Run-time arrays are also known as allocatable 

arrays. As mentioned in Section 2.3, it is this dynamic memory allocation that first interests 
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many FORTRAN 77 programmers in Fortran 90. Each type of array has their own 

programming practices associated with them, which are presented below. 

Compile-time arrays 

1. Use named constants to dimension compile-time arrays. Using named constants 

allows for the dimension of the array to be changed more easily (they just have to 

change the parameter value). It can also indicate why the array is dimensioned to a 

certain size. For example: 

Here it is clear that the array Atom_list is dimensioned to the maximum number of 

atoms allowed in the computation. To change the array dimension only the 

parameter need be changed. In addition, ifthere were other arrays that depended on 

the total number of atoms, they would share the same named constant in their 

dimension value and thus would all change when the parameter was changed. 

2. Specify reasonable sizes for arrays. Overestimating the space need for an array will 

result in a waste of memory, and could reduce performance of the code. 

Run-time arrays 

To make a run-time array, that is one that can change shape and size during code execution 

it must be declared with the key word 'allocatable'. 
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(:io\.lble PJ:"ep.iE>ion, ,dimension (: 1 :} , .al~ocatable, save, target .. Bmatrix ZM 

1. When allocating space for a run-time array, embed it in an if statement which checks 

if the array has already been allocated. It is also good practice to check the size of 

the array to make sure it has been allocated to the correct size. If not then reallocate 

it. 

if(. not .'aHocated(Bmatrix ZM) ) then 
a,:J,Tocat~ {B(na trix · ZM. (NMCOOR, 3 *NATOMS) ) 

else · · · ·· · · - · · 

if (size (~rna trix ZM I 1) . ne . NMCQOR) ' 
·. al;loc.ate (BmatrLx; ZM(NMC00R,3*NATOMS)) 

~:riO. if -..,. ' 

Arrays in general 

1. Use broadcasting rather than a loop to construct an array where the elements are all 

the same. 

rather than 

2. When using an array always include the dimension. This indicates, when reading the 

code, that it is an array and not a simple scalar. 
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is preferred over 

though both will produce the same results. Looking at A ( 1 :Array _Length) shows 

that A is an array with elements 1 through Array_ Length. 

3.3.2 Modules 

A module is a program unit that is used to combine type declarations, subprograms and 

defined data types. The basic form of a module is: 

The module can be used to package a group of subprograms, data types or functions together 

so they can be used in other program units8
• Once written the contents of a module can be 

made available to another programming unit through the use statement. 

The use statement should be placed at the beginning of the specification part of the program 
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unit. 

More important than the syntactical implementation of a module is "how to correctly" use 

modules in large programs to make them effective in meeting the programming goals. The 

module is a key new feature of Fortran 90 and its implementation can be difficult to do 

correctly. To help clarify the use of modules three kinds of modules were defined, global, 

work and object modules. 

Global Modules 

Global modules are modules which contain information that can be used anywhere in the 

code. Global modules are used for information that is needed virtually everywhere in the 

code. Defaults, constants, user defined setting, debugging controls, or information required 

to track code execution, input/output (filenames, etc.) could all be placed in global modules. 

The global module can be used in much the same way as COMMON BLOCKs were used 

in FORTRAN 77 (with more restraint). 
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Figure 3.3.1: Global Module. This 'objects' module is self contained and can be used 
virtually everywhere in the code. 

MODULE ·····()bjecfs 
,, , .• .••• -•• -. ,'!'. ·~-t· ·*::**:~;~ *_;::_*~!,~/* t·--~~---~ j •• :. -~·-· ~-·--~ ~-* ** __ ,*: ~ * *:* *'*·•·• * ~·.-· *·* * * * * * * ·-* 
* Da,tl;! ·l<tst modifi~~: February lS, ';lOOOV~rsion 2 ,o * 
* Author: R.A. Poi:d.~r · ' * 
* - D~scription: D~bugging tools. * 
~ '* ·* ••.•.•.• · -·· *'******''If*~ · ·· :•. * *"!t ·** * ~ ·····--··-· ** * * * * * * ~· * * * ** * * * * * * *. * * 

implicit JJ,on~ . . 

int~g~r, param~te,r : ·: MAX_objects';'lOOO 
integer •. :. : · NObjects 
integer : : Ol:ljNum 

type. ob::iect. definition 
charac:tedieri=l32) . . · class 
character(len=l32} . • name 
character(len=J.J2) .. modality 
chara.c:t~r(len=132) . . routine 
logical : : Curtent 

· logical : ' . exist 
5md type object.:_def:icriition · 

tYI>e - . {obje6t_d~fin~fl()ri) .,' d±titension (MAX.:_ob]ectsl · '·' object 

. ~elow should be p_lac~d in ob?ect.:_definition when cop.e is ready for it 

lc;>g'i~Ci:)., dimension(: , • allocatable . . Object_d~bug 
logical, dimension(:), allocatable :.: Object_cputiming 

The global module should be a "stand-alone" module. That 1s to say, it should not 

CONTAIN any subprogram units. 

Object Modules 

An object module will contain all the information about the object. The object module will 

be "used" by other routines which require that object. The object module would contain all 

the declarations of the information I data other routines using that object would require. The 

object module would also contain all the subroutines needed to build the object. 
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Work Modules 

The work module is a local module that should only be used by routines of the associated 

object module. The work module will have all the declarations of the variables needed in 

the routines that build the object, eliminating the need for long argument lists. Any 

subroutines or functions contained within a work module must be utilities and thus should 

not build objects. Figure 3.3.3a shows a schematic of the relationship between work and 

object modules. Note that pseudo-code is used in these diagrams. 

The alternative to work modules is to contain all the subroutine and function utilities within 

the main object building subroutine. This will also remove the need for long argument lists 

for subroutine or function calls and it tends to keep utilities for a specific object together. 

A diagram of this implementation can be seen in Figure 3.3.3b. 
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Modules in MUNgauss 

GLOBAL MODULES 

module Defaults 

end Defaults 

module Global data 

end Global data 

Figure 3.3.2: Illustration of global modules. Global modules can be used throughout 
the code, but contain no subroutines or functions. 

WORK MODULE 

module Work_obj1_mod 
use BLD_obj3_mod 
use BLD_obj14_mod 
use Defaults 
use Global data -

contains 
I function Get_for_Obj1 
end Get For Obj1 

end Work obj1 mod 

OBJECT MODULE 

module BLD_obj1_mod 
Data required by units 
need Objl 

contains 

subroutine BLD_Obj - 1 
use Work_obj1_mod 

call Get_Object(3) 
call Get Object(14) 

... Build Object 1 

end BLD_Obj - 1 

end BLD obj1 mod 

(a) 

I 
H. 

~ 
, 
that 

OBJECT MODULE 

module BLD_obj1_mod 
Data required by units that 
need Objl 

contains 

subroutine BLD_Obj 1 
use Defaults 
use Global data 
use Work_objl_mod 
use BLD_obj3_mod 
use BLD_ obj14_mod 

call Get_Object(3) 
call Get Object(14) 

... Build Object 1 

contains 

function Get_for Obj1 
end Get For_Obj1 

end BLD_ Obj 1 

end BLD_ obj1_mod 

(b) 

Figure 3.3.3: a) Schematic of relationship between object modules and work modules 
b) Schematic ofuse of contains withing object building subroutine, this method is preferred 
over work modules in most cases. NOTE: pseudo-code used. 
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How Object and Work modules work together 

The object module and work modules are very closely linked. Every subroutine or function 

contained in the object module must use the associated work module. This creates a little 

common block, if you will, of data needed in building that one object. As a consequence, 

each subprogram unit depends on the work module. To ensure this will compile correctly 

the work module must be compiled before the object module, either by placing it first in the 

Makefile, or by placing it in the top of the same file as the object module. 

The object module should not have any 'use module' statements other than to use the work 

module. This keeps the object module clean and readable, allowing a reader of the code to 

see exactly what data the object provides. This also aids in encapsulation and information 

hiding. The associated work module will 'use' any module required to build the current 

object. 

Replacing the work module by containing all the subroutine and function utilities, that would 

be in the work module, in the main object building subroutine does make the main 

subroutine a little 'messier'. However, this could also be looked at as a documentation 

source, as all the required modules and utilities will be right there in one file. Basically, there 

is a tradeoff between modularization and encapsulation. In MUNgauss, the practice of 

containing functions and subroutines within the main subroutine has become favored. 
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__.. 

Use of Modules in MUNgauss 

~~ Program Execution GLOBAL MODULES 

~~ Data Paths Module Defaul t s 

~ -~ 
program MUNgauss 

end Defaults 
use Main_mod 

Module Global data 
call Set defaults 

·~ -~ call Menu 
call Action end Gl oba l data 

end MUNgauss 

I~ WORK MODULE 

module Main_mod r module Wor k_obj l_mod __. Subroutine Get_Object use BLD_obj 3_mod 

~ use Global Data use BLD_obj l 4_mod 
- use Defaults 

contains NUM = Get_obj _Num() use Global_data 

subroutine Set_Defaults 
select case 

conta ins 
use Defaults ~nction Get_for_Objl 

_j call BLD _ Obj_ 1 1- ~ 
nd Get For Objl 

·-- Code to set Defaults ... 
call BLD_Obj_2 end Work obj l mod 

end Set_Defaults ... 
OBJECT MODULE 

~ " call BLD_Obj_14 

subroutine Menu module BLD_objl_rnod 
,, 

use Global data Data required by units that 
end Get_Object need Objl 

... Read Input 
contains 

end Menu Function Get_Obj_Num () 
subroutine BLD_Obj_l 

subroutine Action 
use Work_objl_mod 

end Get Obj Num 
use Defaults call Get_Object(3) -
use Global_data call Get Object(14) -

... Get Objects requested - ,-- Function Do_Somet hing ~ 
... Build Object 1 

end Action 
end Do_Something end BLD _ Obj_ 1 

end Main mod 
end BLD objl mod 

Figure 3.3.4: How modules are used in MUNgauss. Work modules are 'used' by object 
modules and contains all utilities needed in the object module. Features in the blue portion 
to the left are parts of the program architecture and will be discussed later. 
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Use of Modules in MUNgauss 

~~ Progr am Execut ion GLOBAL MODULES 

~~ Data Paths Module De faults 

- ~ -~ 
pr ogram MUNgauss 

end Defaults 
use Ma~n mod 

Module Global_dat a 
call Set defaults ~ -I-
call Menu 
call Action end Global data 

end MUNgauss 
I 

~lr ~It OBJECT MODULE 

module Main mod module BLD obj1 mod 
~ Subroutine Get_Object Data req~ired-by units that 

use Global Data need Objl 

contains NUM = Get_obj_Num() contains 

subroutine Set_Defaults 
use Defaults select case subroutine BLD_Obj 1 

call BLD _ Obj_ 1 1- 1- -
use Defaults 

... Code to set Defaults ... use Global data 
call BLD_Obj_2 use Work_obj1_mod 

end Set Defaults ... use BLD_obj3_mod 
call BLD_Obj_14 use BLD_obj14_mod 

subroutine Menu 
use Global data call Get_Object(3) 1-end Get_Object call Get Object(14) 

... Read Input - ~ 
f---

... Build Object 1 

~ end Menu Function Get_Obj_Num() 
contains 

subroutine Action end Get Obj 
use Defau1 ts 

Num lfunction Get_for_Obj1 
I use Global data end Get For Obj1 

... Get Objects requested r-- ,_.... Function Do_Something 

end Action 
end BLD_Obj_1 

end Do_Something 
end Main mod end BLD_obj1_mod 

Figure 3.3.5 : How modules are used in MUNgauss. Object building routines 'contains' 
all utilities needed to build the object. Features in the blue portion to the left are parts of 
the program architecture and will be discussed later. 
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To illustrate how all the different types of modules work together, Figure 3.3.4 and Figure 

3.3.5 diagrams the relationship. Figure 3.3.4 shows the use ofwork modules, while Figure 

3.3.5 shows the containing approach. Both diagrams have different programming features 

such as the "get_object" routine which will be discussed in Chapter 4. 

3.3.3 Subroutines 

The implementation of the subprogramming unit, subroutines, is relatively straight forward. 

The basic form of a subroutine is as follows. 

Subroutines should conform with all the design protocols defined throughout this chapter. 

They should contain a header, an informative routine name, the formal argument list should 

be commented, etc. The features INTENT(IN) and INTENT( OUT) are important to specify 

in a subroutine2
•
7

•
8

• This prevents inappropriate or incorrect use of a variable. Subroutines 

can pass information back to the calling program via the arguments in the argument list. 

Therefore specifying if a particular argument is intended to be used to pass information back 

or not is important. Subroutines do not have to pass any information to the calling program, 

they may simply perform some task such as display a menu to the user or print a matrix to 

a file. 

54 



The formal argument list should be well commented as can be seen in the following example. 

Each variable in the list is followed by a comment describing it's use or contents. 

Subroutines can be used to create an object or they can simply be used as utilities. 

3.3.4 Functions 

Functions are another subprogramming unit that is controlled by another programming unit, 

as is the case for a subroutine. However, functi~ns pass a single value back to the calling 

program via the function names, as opposed to a list of arguments like subroutines. 

Functions, since they return a value, must be given a type declaration8
• This can be done 

within the function as: 

or as part of the functions heading 

MUNgauss protocol favors the latter. The type of a function should be specified in the 
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Figure 3.3.6: Get object number Function 

recursive integer function get_object_number (obj_name) 
***************************************************************************** 
* 
* 

Date last modified: April 3, 2000 
Author: R.A. Poirier 

Version 2 . 0 * 
* 

* 
* 

Description: Given an object name, determine the object 
number it corresponds to . 

* 
* 

***************************************************************************** 
* Modules: 

* 

use program manager 
use objects-

implicit none 

* Input scalars: 
character*(*), intent(IN):: obj_name 

* 
* Local scalars: 

integer Nobj 
logical found 
character(len=l32) class, name , modality 

* 
* Begin: 

* 
call PRG_manager ('enter', 'get_object_number', 'UTILITY') 

get object number=O 
found=.false. 
Nobj=O 

* Extract the class/object name and modality: 

* 

class=obj name(l:index(obj name,' : ')-1) 
name=obj_name(index(obj_name,': ')+l:len_trim(Obj_name)) 
modality=' ' 
if(index(obj name,'%') .ne . O)then 

name=obj_name(index(obj_name,': ')+l : index(obj _name, '%' )-1) 
modality=obj name((index(obj name, '%')+1) : len trim(Obj name ) ) 

end if - - - -
do while (Nobj.lt.NObjects.and .. not.found) 

Nobj=Nobj+l 
if(Object(Nobj)%class.eq.class)then 

if(Object(Nobj)%name.eq.name) then 
if((Object(Nobj)%modality.eq.modality) .or. (modality .eq.' ')) then 

get object number=Nobj 
found=. true. 

end if 
end if 

end if 
end do ! while 
if( .not.found)then 

write(uniout, ' (6a) ') ' ERROR> get object number: Object,', 
class(l : len trim(class)),' :'~ name(l : len trim(name)), 

'%',modality(l:len trim(modality)), ' not found in list' 
write(uniout,' (a)') 'Add the- Object or make sure the name is correct' 
stop'ERROR> get_object_number: Object not found in list' 

end if 

* call PRG_manager ('exit' , 'get_object_number' , 'UTILITY ') 
return 
end 

function's heading. This again improves readability since the information is all in one line. 
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Since the arguments of a function do not communicate back to the calling program, they 

should be declared INTENT(IN). 

Figure 3.3 .6 shows a function from MUNgauss, get_ object_ number. This function is key to 

some of the programming features discussed in Chapter 4. Get_ object_ number is a utility 

that determines and objects number by determining the array index for that object. 

Functions, like get_object_number, are mostly utilities, they normally are not building 

objects. However some scalar objects may be able to be created using functions, though this 

1s rare. 

3.4 Documentation Practices 

Documentation means many different things. The term documentation could mean the 

creation of a document, external to the program which explains how the program works, 

what it can do, and how it does it. This kind of documentation, or "user manual" would be 

very useful to users of the code and is something that will need to be created at a later stage 

in the development. The beginning ofthis kind of document has already been created when 

the list of objects and classes were created in Chapter 2. Looking at that list can give the user 

of MUNgauss an idea of the features (methods) available in MUNgauss. However a 

complete users manual, external to the program, does not exist for MUNgauss at this time. 
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However, here documentation refers to internal documentation. That is to say, 

documentation contained within the line of code. This documentation is designed to help the 

programmers edit and maintain code, and also use the existing code more easily. Another 

goal of proper internal documentation is to eventually use it to create a user manual. That 

is have the code write its own documentation. This ultimate goal has not yet been reached 

but by implementing the consistent documentation practices outlined below, that task should 

become easier. 

Most of the material covered in this section has been mentioned throughout various sections 

ofthis (and other) chapters in one way or another. However it is important to emphasize this 

very important feature of good programming by combining them in one section. 

Documenting code is done using comments. The appropriate use of comments throughout 

a program serves to tell the reader what the code does, how it does it, and how to use it. 

Comments can also be used to give credit to contributors to the program as well as other 

references applicable to the code. There are four main areas where comments can be useful 

in providing documentation. 

Headers 

The header of a programing unit contains most of the information required about that 

routine/function. Within the header one should include the author ofthe code (as well as any 

58 



other contributors). The date the code was created and or modified. Which version (if 

applicable) of the program the code is for. As well as a description ofthe code to follow, 

what is does, and possibly how to use it. This header could be extracted at a future date and 

be the basis of a manual for that routine. With this future goal in mind, these headers gain 

a level of importance and thus should be written in a very useful manner. 

Variables 

Another form of documentation are comments that following variable declarations, for 

example, 

character~(*) 1 intent (I'N):: obj_name , !Object description goes here 

can tell the reader what the variable represents. This practice provides readers with 

information that otherwise could take a significant amount of time to decipher. These kind 

of variable comments are especially important when calling a subroutine of function with a 

group of arguments as was discussed in Section 3.3.3. 

Algorithms 

Placing a comment before a section of code which tells the reader the algorithm used in the 

following section of code, when applicable, is a very useful form of documentation. This 

allows the reader to follow the logic of the program easily by giving them an idea of what 

is happening. A reference to a paper where the algorithm was taken is also very useful, plus 
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it gives credit to the creators of the algorithm. 

Error messages 

Error messages are a very important part of a well documented code. When the program 

reaches and error and stops, the resulting message must tell the user/programmer what caused 

the error, where the error occurred and give an idea how to fix the problem. Section 3.2.6 

discussed the style of error messages in MUNgauss. That style provides the reader with the 

required information in a clear and concise manner. The example in Section 3.2.6 shows a 

sample error message output: 

ERRo:Eb ADQ-'atom: Tqo ma,ny atoms: must increase MAX ATOM 

3.5 Testing 

Although testing is not a design protocol it is an essential practice in the design and 

production of any piece of code. With every change made during the conversion process of 

any code, it must be tested. MUNgauss has a test suite of problems which are used to verify 

the correctness of any changes made. Once a routine or function is changed or added the test 

suite is executed to ensure the results are the same. The test suite has been developed over 

years to encompass virtually all possible cases. Whenever new functionality is added to 

MUNgauss, new test cases are created to test those new features and are added to the test 

suite. Whenever a bug is found during production runs, that run becomes part of the test 
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suite. Testing is an on-going part of code development. Before a version ofMUNgauss is 

deemed "production ready" it must be verified by all the cases in the test suite. 
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Chapter 4 

Code Infrastructure - Overall 

Program Design 

4.1 Introduction 

With the plan in place and the protocols defined it is now time to begin coding. This is the 

most time consuming part of code design, however it is made much more manageable with 

the proper planning completed. This chapter outlines the implementation of the desired 

program features described thus far. It is a recipe one can follow when developing large 

scientific code. The procedure presented in this chapter is the backbone, or infrastructure, 
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upon which virtually any large scientific program can be written. 

This infrastructure was designed to make it both easy to implement for the scientific 

programmer and sufficiently efficient for codes which are computationally demanding. 

There are some aspects of this design which can still be improved and those shortcomings 

will be discussed throughout the chapter. 

The infrastructure is divided into four main sections, the object list, the get_object, the 

building routine, and the program manager sections. Each of these parts play a key role in 

satisfying the desired features of well written codes. None of them work independently so 

the order of description is not necessarily the order they should be written. The development 

of these routines will be intimately connected and should be preformed simultaneously. 

To help prevent some of the problems encountered in designing this infrastructure, some of 

the approaches attempted and later removed will also be presented, along with reasons why 

they were deemed unacceptable. 

4.2 Object List 

In section 2.1.2, table 2.1.2, a list of all the objects used in the code was created. That list 

can now be used to build an object list. One of the key features of this code design is the 

creation of a hard coded list of all the objects in the code. By creating such a list each object 
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can be assigned a unique number, "the object number" (objNum}. This object number is 

essential to many of the features described later, such as debugging, timing functions, and 

tracing. A hard coded object list also gives the code access to information about the object 

whenever and wherever it is needed. 

The object list should contain useful information about each object. It should contain the 

name of the object, the class and, if appropriate, the modality. As stated in chapter 2, each 

object will have a unique combination of class, name and modality that will serve to identify 

the object. In addition to the object name, the object list will also contain other information 

deemed important throughout the code. 

Firstly, the name of the routine which builds the object is included in the object list. This 

serves two main purposes, self-documentation and error checking. Another programmer can 

simply look at the object list and find the name of the routine which builds a particular 

object. This greatly improves the readability of the overall code, and with large codes this 

is very important. Secondly, the inclusion of the building routine name is used in the 

debugging and error checking of the code. An explanation of how this works can be found 

in section 4.5 .1. 

In addition to the routine name, there are several other characteristics of an object which 

makes sense to include in the object list. These include information regarding the status of 
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the object, that is, if the object is current (i.e. has already been created and is up to date) or 

if it exists at all. The information included in the object list can be extended to include 

options regarding things such as timing routines, debugging routines, etc. 

Implementation of the object list went through some evolution throughout the process. 

Below are descriptions of two approaches to implementing an object list. Following these 

descriptions, pros and cons of each implementation is presented as well as reasons one was 

chosen over the other. 

4.2.1 Implementation of Object List #1. 

In the first approach, a series of arrays were declared to hold the required information. The 

object name and routine name were stored in character arrays, while the other components 

were stored in logical arrays. To make the information accessible to the rest of the code the 

declarations were placed in a module. An example of the module containing the declarations 

is shown below in Figure 4.2.1. 
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Figure 4.2.1: Objects Module, Implementation #1 

MODULE objects 
************************************************************************************* 
* 
* 
* 

Date last modified: February 18, 2000 
Author: Darryl Reid 
Description: Object list module. 

Version 2 .0 * 
* 
* 

************************************************************************************* 

* 

* 

implicit none 

integer, parameter:: MAX objects=lOOO 
integer:: NObjects -
character(len=132) Object name(MAX objects) 
character(len=132) Object=routine(MAx_objects) 

integer ObjNum 
logical, dimension(:), allocatable . . Object exist 
logical, dimension(:), allocatable . . Object-current 
logical , dimension(:), allocatable .. Object-debug 
logical, dimension(:), allocatable .. Object=cputiming 

END MODULE objects 

In this approach the three parts of the object name (the class, name and modality) were all 

stored in one array, Obj ect_name. The format of this name was 

CLASS: Obj ect_Name%MODALITY. It should also be noted that the parameter MAX_obj ects 

defined in the module represents the maximum number of objects the entire program can 

have. It is important to put a check in the routine that creates the object list to ensure that 

this MAX_ objects value is not exceeded. 

Also included in the object module is the declarations for the object number, obj Num, and 

the variable that will store the total number of objects in the code, NObj ects. Both these 

integers are used throughout the code. The NObj ects, in this implementation approach, is 

used to declare the dimension of the logical arrays declared in the module. 

The module in Figure 4.2.1 also illustrates some of the design protocols, and some of the 
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features of well written code. Here it can be seen that the program header is used which 

clearly identifies the date the routine/module was last edited, the author and a description of 

what it subprogram/unit is. Also, remember that one of the features of well written code is 

that it was readable. It can be seen here that the variables clearly state what is being stored 

in them, e.g. Object_ current, without any further comments or documentation anyone can 

see that this logical array will tell if the object is current or not. Variable naming in this 

fashion greatly improves a codes readability. 

Once the object module is created, object names need to be put in the Object_name array. 

This is done by creating a Build_Obj ect_List routine which increments a counter, 

Nobj ects, then stores the object name in obj ect_name (Nobj ects). Similarly, it will store 

the routine name inobject_routine (Nobjects). A short example ofthis building routine 

is seen in Figure 4.2.2 (note this is only a piece of the building routine). 

A "Dummy Class" has been included and serves as a template for programmers looking to 

add new objects to the code. It also places a unique character in the last position of the arrays 

(a'?') which may be used in some error checking applications. Also the list is organized by 

classes, in alphabetical order which makes it simple to code and easy to add new objects. 

Just locate or create a class and place the new object in the middle of the list. 
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It can also be seen that in this implementation, the logical arrays, declared in the object 

module, are allocated at the end of the building routine. At this point the total number of 

Figure 4.2.2: Build Object List Subroutine, Implementation #1 

subroutine BLD_object_list 
********************************************************************** ****** ******** 
* 
* 
* 
* 
* 

Date last modified June 23, 2000 
Author: Darryl Reid 
Description : Builds a complete list of all the objects which can be 

created in MUNGAUSS. When adding a class or object within a class 
ensure it is done in alphabetical order 

* 
* 
* 
* 

************************************************************************************ 
* Modules: 

* 

use program manager 
use objects-

implicit none 

* Begin : 
call PRG_manager ('enter', 'BLD_OBJECT_LIST', 'UTILITY') 

* Class PROGRAM 

* 

* 

Nobjects = Nobjects + 1 
Object name(Nobjects) = 'PROGRAM:OBJECTS CREATED' 
Object=routine(Nobjects) = 'PRT_objects_created' 

Nobjects = Nobjects + l 
Object name(Nobjects) = ' PROGRAM:OBJECTS STATUS' 
Object=routine(Nobjects) = 'PRT_objects_;tatus' 

* Dummy Class 
Nobjects = Nobjects + 1 
Object name(Nobjects) = ' ?:?' 
Object=routine(Nobjects) '?' 

allocate (Object exist(Nobjects) , Object current (Nobjects), 
Object debug(Nobjects)~ -

- Object_cputiming(Nobjects)) 

* 

call PRG_manager ('exit', 'BLD OBJECT_LIST', 'UTI LITY') 
retu rn 

end subroutine BLD_object_list 
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objects in the code is known, NObj ects. Therefore the logical arrays can be allocated to 

exactly the correct size, thus saving memory use. This is just one of the advantage of this 

implementation approach. Following the description of the second approach, both 

approaches will be compared and a conclusion will be drawn. 

4.2.2 Implementation of Object List #2. 

In this implementation the new feature in Fortran 90 of derived types is used. In this case 

the object list is a large array of derived types. In this implementation the objects module 

contains the definition ofthe type object_definition. Here the different components 

described above, the class, object name, modality, routine name, current, exist, etc. have been 

placed within the type definition. Figure 4.2.3 shows this module implementation. 

Figure 4.2.3: Object Module, Implementation #2 

MODULE objects 
************************************************************************* 
* 
* 
* 

Date last modified: June 18, 2001 
Author: Darryl Reid 
Description: Object List Module. 

Version 2. 0 * 
* 
* 

************************************************************************* 

* 
implicit none 

integer, parameter : : MAX_objects=lOOO 
integer : : NObjects 
integer : : ObjNum 

type object_definition 
character (len=l32) . . Class 
character(len=l32) .. name 
character(len=l32) . . modality 
character(len=l32) . . routine. 
l ogical : : Current 
logical : : exist 

end type object_definition 

type (object_definition), dimension (MAX_objects) ::Object 

* the following should be placed in object_def inition when code is ready for it 

* 

logical, dimension(:), allocatable . . Object debug 
logical, dimension(:), allocatable:: Object=cputiming 

END MODULE objects 
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In accordance with the design protocols of chapter 3 it can be seen that the type definition 

is contained in a module, this will be a global module and will be available to every routine 

in the program. MAX_obj ects=lOOO is again the maximum number of objects the code can 

have. This is the size that array object will be dimensioned, which could cause some 

memory to be wasted. The current version of MUNgauss contains around 150 objects 

however space is being allocated for 1000. This is for developmental purposes only, the 

value should and could be reduced by just changing that one parameter to a more appropriate 

size. In the future a better way of determining the amount of space required for the object 

list would be to copy the information contained in the Object array to a new array which 

has been dimensioned to the Nobjects value, upon completion of the BLD_ObjectList. 

The actual construction ofthe object list is again performed in a BLD_ObjectList routine 

which simply assigns values to the derived type for each object. As can be seen in Figure 

4.2.4 the index of this array is unique for each object and thus becomes the unique object 

number. As in approach #1 the dummy class is included as a template and contains the 

unique character, "?", which could be used in error checking applications. 

It is important to point out that in this implementation the object name is divided into its 

components, class, name and modality. This gives access to any portion ofthe name without 

having to preform any string manipulations (as is required in approach #1). Access to the 
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Figure 4.2.4: Build Object List Subroutine, Implementation #2 

SUBROUTINE BLD_object_list 
************************************************************************** 

* 
* 
* 
* 
* 
* 

Date last modified June 23, 2000 
Author: Darryl Reid 
Description : Builds a complete list of all the objects which 
can be created in MUNGAUSS 
When adding a class or object within a class ensure it is done 
in alphabetical order 

* 
* 
* 
* 
* 
* 

********************************************* ******** ********************* 
* Modules: 

* 

USE program manager 
USE objects-

implicit none 

* Begin: 

* 

call PRG manager ('enter', 'BLD_OBJECT_LIST', ' UTILITY') 
Ldebug=Local_Debug 

Do Iobject = l,Max objects 
Object(IObject)%modality 'other' 

end do 
Nobjects = 0 

* Class DENSITY 
Nobjects = Nobjects + 1 
Object(Nobjects)%class = 'DENSITY' 
Object(Nobjects)%name = 'lMATRIX' 
Object(Nobjects)%modality = 'WAVEFUNCTION' 
Object(Nobjects)%routine = 'BLD_density_lMATRIX' 

* ... The Rest of the List goes here ... 

* Class PROGRAM 

* 

* 

Nobjects = Nobjects + 1 
Obj e ct(Nobjects)%class = ' PROGRAM' 
Object(Nobjects)%name = 'OBJECTS CREATED' 
Object(Nobjects)%routine = 'PRT_objects_created' 

Nobjects = Nobjects + 1 
Object(Nobjects)%class = 'PROGRAM' 
Object(Nobjects)%name = 'OBJECTS STATUS' 
Object(Nobjects)%routine = 'PRT_objects_status ' 

* Dummy Class 
Nobjects = Nobjects + 1 
Object(Nobjects)%class = '?' 
Object(Nobjects)%name = '?' 
Object(Nobjects)%modality = '?' 
Object(Nobjects)%routine = ' ? ' 

information about the objects are made by appending the variable of interest to the derived 

type with a"%" between, e.g. Object (Nobj ects) %class = 1 DENSITY 1 , where Nobj ects 

is the object number ofthe desired object. Again this illustrates the attempt to make the code 

self-documenting and readable. Without any other information it is clear that the class ofthis 
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object is DENSITY. 

It should be noted that at the beginning ofthe BLD_object_list routine all the modalities 

are set to the default value 'other'. This is just to ensure that every object has a modality 

associated with it, the importance of this will be seen in the discussion of get object (Section 

4.3). The default value for the modality can be over written by assigning a new value as in 

done in the example given, object (Nobjects) %modality = 'WAVEFUNCTION'. 

4.2.3 Comparison of Object List Implementations 

The initial attempt of implementing object list was a normal Fortran 77 approach of creating 

separate arrays for each piece of data required. This implementation worked and allowed us 

to develop other sections of the code (to be described throughout this chapter). Most of the 

work done on converting and updating MUNgauss was done using this first implementation. 

It did have many good features, it allowed us to have objects with unique object numbers, 

gave us access to information about an object from anywhere in the code and gave us an easy 

and manageable way of adding new objects to the code. 

However, once some of the new features of Fortran 90 were better understood, this 

implementation was re-examined. It was decided that a large array of derived types could 

be used in a similar manner as the groups of arrays created in the first implementation. The 

derived type implementation has several favorable characteristics: 
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1.1 It provided greater encapsulation. Encapsulation is a very good characteristic of a 

program. Encapsulation means that things are kept together that belong together. 

Implementing objects as derived type allowed all the properties of the object to be 

together (from the programmers point of view). Figure 4.2.6 illustrates this 

encapsulation. 

1.2 Access to all parts of the object equally. Since in the second implementation the 

class, object name, and modality were all separate variables within the derived type, 

the program has equal access to any part, without any string manipulations. Rather 

than having to break down the long object name, class: object_name%modality, 

the program can now simply access the piece it requires, object (objNum) %class, 

object(objNum)%name,orobject(objNum)%modality. 
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module objects 

Date last modified: February 18 , 2000 
~uthor : Darryl Reid 
Description: Object list rr.odule. 

implicit none 

integer , parameter : :MAX objects;lOOO 
integer : : NObjects -

I 
2 
3 
4 
5 

character(len;l32) Object name(MAX objects) 
character(len;l32) Object=routine(MAX_objects) 

integer ObjNum 

• 
• 
• 

logical , dimension( : ) , allocatable . . Object exist 
logical , dimension( : ) , allocatable .. Object-current 
logical , dimension( : ) , allocatable .. Object-debug 
logical , dimension( : ) , allocatable .. Object=cputiming 

END MODULE objects 

Cpu Timing 

1 
2 
3 
4 
5 

• 
• 
• 

Version 2 . 0 

Figure 4.2.5: Schematic representation of memory allocation of object list in 
implementation #1. 
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character (len=l 32) .. name 
char acter(len=132) .. modality 
character ( l en=l 32) . . rou t ine 
logical . . Current 
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l ogical . . Object debug 
l ogical . . Object=cputiming 

end type ob j ect_definition 
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Version 2 . 0 

type (o bject_defi nition), dimens i on (~~X_objects) . . Object 

END MODULE objec t s 

Figure 4.2.6: Schematic of the encapsulation created by using a derived type to 
implement the object list, implementation #2. 
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4.3 Get_ object Routine 

The next major section of the code's infrastructure is the get_ object routine. When a section 

of the code requires an object, the code must know how to call the appropriate routine to 

build that object. This is the purpose of the get_object routine. The get_object routine is 

Object Name 
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invoked whenever any routine requires an object. The calling routine will give get_ object 

the name of the required object and get_ object will, if necessary, call the routine that builds 

that object. 

Figure 4.3 .1 shows a general flowchart of get_ object, there were two implementations of this 

routine considered during the development process, however, the main function remains the 

same. When presented with an object name, get_object first has to determine the object 

number of that object and set it for the rest of the code. With this information, get_object, 

can check the status of the object, that is, if the object exists (has already been created) and 

if it is current (still valid and useable) from the values stored in the object. If an object exists 

and is current then get_ object simply returns. If either value is false, then the object must be 

built or updated. In either case the object's building routine needs to be called. Creating an 

object's building routine will be presented in section 4.4. 

The manner in which get_ object determines which building routine to call differs in each 

method described in this section. The get_ object routine is the implementation of the 

organization of the code presented in section 2.1.3. Remember that the code has been 

organized into objects that have associated names, classes and modalities. Get_object uses 

these characteristics to call the appropriate building routine. The way get_ object performs 

this task impacts greatly on the overall organization of the code. Two organization schemes 

were considered and each will be discussed. The implementations do correlate with the two 
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implementations ofthe build object list of section 4.2 to a degree. However, there are also 

differences in the organization scheme that are beyond the differences in the build object list 

implementations. 

4.3.1 Get_ object implementation #1. 

The basic way to determine which routine to call is through a series of nested select cases, 

each with many options. The select cases are based on the total object name (which is passed 

to get_ object by the calling routine). However, the object name consists ofthree parts, class, 

object name, and modality. In the first approach the select case was divided along class lines, 

then object name, then modality. Figure 4.3.2 shows a pseudo-code schematic of 

implementation number one's approach to the series of nested select cases. As can be seen 

from Figure 4.3 .2, the list of options can become quite long and the file containing all 

options would quickly grow out of control. Therefore each portion of the nest was divided 

into smaller parts to make them manageable. 

Figure 4.3.3 shows a portion of the top select case of the get_object routine. This select case 

is based on the class of the object and, as can be seen in the figure, the is a call to different 

routine for each class. This allowed all the objects which belonged to one class to have there 

calls in one place. 
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As mentioned in Section 4.3, get_ object must first determine the object number ofthe object 

requested by the calling routine. This is accomplished by a call to the function 

get_obj ect_number ()which returns the object number of the object to be built. The 

Figure 4.3.2: Schematic of series of nested select cases 
for get_object implementation #1. 

end 

implementation of this function will be described in detail in Section 4.3.2. Next the status 

of the object is checked, that is to say if the object exists and is current. If the object is 

current then it does not need to be rebuilt and therefore the routine simply returns. 
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Figure 4.3.3: Get Object Routine, Implementation #1 

recursive subroutine get_object (obj_name) 
********************************************************************************** 
* Date last modified: April 3, 2000 Version 2.0 * 
* Author: R.A. Poirier * 
* Desciption: Given an object name call the appropriate rout i ne * 
********************************************************************************** 
* Modules: 

* 

USE program manager 
USE objects-

implicit none 

* Input scalars: 
character*(*), intent(IN):: obj_name 

* 
* Local scalars: 

character(len=132) class 
character(len=132) Object 
character(len=132) modality 

* 
* Local functions: 

integer get_object_number 
* 
* Begin: 

call PRG_manager ( 'enter', 'GET_OBJECT', 'UTILITY') 
* 

ObjNum=get_object_number(obj_name//' ') 
* 
* Object will exist and will be current: 

if(Object current(ObjNum))then 
call PRG_manager ('exit', 'GET_OBJECT', 'UTILITY') 
RETURN 

* 

end if 

Object exist(ObjNum)=.true. 
Object=current(ObjNum)=.true. 

* Extract the class/object name and modality: 

* 

class=obj name(l:index(obj name,' :')-1) 
Object=ob)_name(index(obj_name, ': ')+l : len_trim(Obj_name)) 
modality=' ' 
if(index(obj name,'%') . ne . O)then 

modality=obj_name(index(obj_name, '%') :len_trim(Obj_name) ) 
end if 

* Check for class 
CLASS_name : select case (class) 

case ('COORDINATES') 
call COORDINATES_objects (class , Object) 

case ( 'DEFAULTS ' ) 
call DEFAULTS_objects (class, Object) 

ca se ( 'DENSITY' ) 
call DENSITY_objects (class, Object) 

. . . Res t of Select Case here . . . 

case default 
write(uniout, *)'No such class "' , class(l : len_trim(class)) , "' for object 

"',Object (1: len trim(Object) ) , '"' 
stop'No- such class' 

* 
end select CLASS name 

call PRG_manager ('exit', 'GET_OBJECT', 'UTILITY') 
retur n 
end 
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Otherwise, the object will need to be built. Therefore the appropriate building routine must 

be invoked, which is accomplished by the series of nested select cases. 

The series of nested select cases can be looked at as a tree, with each option being another 

branch. The tree created by the series of select cases is the code implementation of the 

organization scheme mentioned above. In implementation #1, the first select case (the one 

found directly in get_object and can be seen in Figure 4.3.3) is based on the class of the 

object. However before this select case can occur the class must be extracted from the object 

name. The lines following the comment line 

* Ext.ract the · class/object name and -modality: 

in Figure 4.3.2, performs this extraction (along with the extraction of the object name and 

modality). With the different parts of the object name extracted the code can now execute 

the select case to determine which routine to call. At this level the select case calls a "class 

associated" routine (i.e. DENSITY_ objects) which determines which object building routine 

to call. A "class associated" routine is a second level of select cases that are based on the 

object name. In theory there would be a third level of the select case which would contain 

the modalities (as is seen in the schematic in Figure 4.3.2), however in practice, this was not 

implemented, since the number of objects with modalities were so small, they were 

incorporated with the object name select cases. Figure 4.3.4, shows an example of one of 

these "class-associated" routines. Again, this simply consists of a select case based on the 
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object name. Note that when modality applies they are also included in this select case. The 

plan was to separate the modality part into another level of calls, but was never implemented, 

due to the overhead (mainly in programmer time) associated with it, for such a small number 

of cases. 

Figure 4.3.4: Example of select case based on object name, contained in a "class 
associated" subroutine 

subroutine DENSITY_objects (class , Object) 
*************************************************************************** 
* 
* 
* 

Date last modified : October 5, 2000 
Author: R.A. Poirier 
Description: GVB objects. 

Version 2.0 * 
* 
* 

*************************************************************************** 
* Modules: 

use program_manager 

implicit none 

* Input scalar: 
character*(* ) class,Object 

* 
* Begin: 

* 

* 

call PRG_manager ('enter' 1 'DENSITY_objects' I 'DENSITY:') 

select case (Object) 
case ( 'lMATRIX' ) 

call BLD density lMATRIX 
case ('1MATRIX%RHF7 ) 

call DENSITY lMATRIX RHF 
case ( ' lMATRIXiGVB' ) -

call DENSITY lMATRIX GVB 
case ( '1MATRIX%UHF' ) -

call DENSITY lMATRIX UHF 
case ('ENERGY WEIGHTED'> 

call BLD_Energy_weighted_density 
case ('ENERGY WEIGHTED%RHF') 

call DENSITY Eweighted RHF 
case ('ENERGY WEIGHTED%uHF') 

call DENSITY Eweighted UHF 
case ('ENERGY WEIGHTED%GVB') 

call DENSITY Eweighted GSCF 
case ('ENERGY WEIGHTED%ROHF') 

call DENSITY Eweighted GSCF 
case default - -

write(uniout 1 *) 'No such object "' 1 0bject(l:len trim(Obj ect) ), 
'" for class "' 1 class (l: l e n trim (class ) ) I '"' 

stop'No such object' -
end select 

call PRG_manager ('exit', 'DENSITY_objects ' 1 'UTILITY') 
RETURN 
END subroutine DENSITY objects 
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Figure 4.3.5: Function which determines the object number 

implicit none 
* 
* Includes: 

* 

include 'osipe maxdim' 
include 'osipe-message' 
include •osipe=ios' 

* Input scalars : 
character*(*), intent(IN):: obj_name 

* 
* Local scalars : 

integer Nobj 
logical found 

* 
* Begin : 

* 

* 

* 

call PRG_manager ('enter', 'get_object_number', 'UTILITY') 

get_object_number=O 
found=.false. 
Nobj=O 

do while (Nobj.lt.NObj ects.and .. not . found) 
Nobj =Nobj+1 
if(obj_name(1:len_trim(obj_name)) .eq.Object_name(Nobj) 

(1:len trim(Object name(Nobj))))then 
get object number=Nobj -
found=. true. 

end if 
end do ! while 

if( . not.found)then 
write(uniout , *) 'ERROR> get_object_number : Object , 

', obj name(1 : len trim(obj name)) ,' not found in list' 
write(uniout , *) 'Add the Object-or make sure the name is correct' 
stop'ERROR> get object number : Object not found in list' 

end if - -

call PRG_manager ('exit' , 'get_object_number ', 'UTILITY') 
return 
end 

It can be seen in Figure 4.3.4, that the modality is included in the Object part of the object 

name. Thus the appropriate building routine is called based on all three parts of the object 

name. Section 4.4 will discuss the object building routines. 

Also note that the class is passed into the "class associated" routine, this variable is never 
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used in the select case (since all objects in that routine are of the same class) but it is used 

in the error message printed if the requested object%modality is not found in the select 

case. This illustrates two of the design protocols described in Chapter 3, that every select 

case must have a default value that prints an error message that is useful and helps identify 

exactly where the problem is. 

As mentioned, the senes of nested select cases are the implementation of the code 

organization. Figure 4.3.6 shows the resulting tree structure created by the order of select 

cases in implementation #1. This figure shows how the program is broken up. Each 

horizontal line represents another select case. Each block will be in its own routine, ie, 01, 

02, 03, and 04 will all be cases in the "class associated" routine of class 1 (C 1 ). Once the 

program works its way through the select cases it will end up at the bottom of the tree (the 

modalities) and will then call the object building routine. 

Looking at the code organization in a structure like that in Figure 4.3.6 gave incite into ways 

it could be improved. This will be discussed when both implementation #1 and #2 are 

compared in Section 4.3.3. 
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Object Name 

Figure 4.3.6: Organization scheme for get_object, implementation #1. 
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4.3.2 Get_Object_Nwnber function, implementation #1 

The function which determines the object number is also different in each implementation. 

In this implementation it simply searches the array object _name, and does a string 

comparison to match the name passed into get_ object and that stored. When a match is 

found the object number is set to the index of the array. This function is shown below, 

Figure 4.3.7. 

Note that when PRG _manager is called in this routine the routine name supplied is UTILITY. 

The reason will be explained in section 4.5 when the program manager is discussed in detail. 

4.3.3 Get_ object Routine, Implementation #2 

In the second implementation of get_object the organization scheme of the code was re­

examined. Taking into consideration some ofthe desired features of the code, it was decided 

that the series of select cases in get_ object, which determines which object building routine 

is invoked, would be changed. Once the build object list was changed to use a derived type 

for the object list, it was realized that class, name, and modality were three independent 

characteristics, that collectively identify a particular object. However, since they were 

independent, the order that the select case is executed does not matter. Originally the fact 

that the object name was stored in the form class :Object_ name%modality steered the 

decision to organized the code according to the scheme presented in section 4.3 .1 . Once this 

86 



Figure 4.3.7: Get object number function for get object implementation #1 

recursive integer function get_object_number (obj_name) 
******************************************************************************** 
* Date last modified : April 3. 2002 Version 2.0 * 
* Author: R.A. Poirier * 
* Description: Given an object name , determine the object number i t * 
* corresponds to. * 
******************************************************************************** 
* Modules: 

* 

USE program manager 
USE objects-

implicit none 

* Input scalars: 
character*(*), intent(IN) : : obj_name 

* 
* Local scalars : 

* 

integer Nobj 
logical found 
character(len=l32) class 
character(len=l32) name 
character(len=l32) modality 

* Begin: 
* call PRG_manager ( 'enter ', 'get_object_number', 'UTILITY') 
* 

* 

get object number=O 
found=.false. 
Nobj=O 

* Extract the class/object name and modality: 

* 

class=obj name(l:index(obj name,' : ')-1) 
name=obj_name(index(obj_name,' : ')+l:len_trim(Obj_name)) 
modality=' ' 
if(index(obj name,'% ') .ne.O)then 

name=Obj name(indeX(Obj name , I :
1 )+1:indeX(Obj name, 1 %0 ) - 1) 

modality:obj_name((index(obj_name, ' %')+1) : len=trim(Obj_name)) 
end if 

do while (Nobj.lt.NObjects.and . . not.found) 
Nobj=Nobj+1 
if(Object(Nobj) %class.eq. c lass) then 

if(Object(Nobj)%name.eq.name) then 
if((Object(Nobj)%modality.eq.modality) .or . (modality . eq. ' ')) then 

get object number=Nobj 
found=.true . 

end if 
end if 

end if 
end do ! while 

if(.not. found)then 
write(uniout,' (6a) ')' ERROR> get_ob ject_number: Object, 

',class(1 : len trim(class) ) , ' : ', 

* 

- name (1 : len trim (name)) , ' %' , 
modality(1~len trim(modality)),' not found in list' 

write(uniout,' (a)') 'Add the Ob]ect or make sure t he name is correct' 
stop'ERROR> get object number: Object not found in list ' 

end if - -

* cal l PRG_manager ('exit', 'get_ object_ number', 'UTILITY ' ) 
return 
end 
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mind set was changed, the chance to meet one of the primary goals of the program was 

noticed. 

A primary goal of the program was that it have to ability to be divided into packages. 

Looking back at Figure 2.1.2 it can be see that these packages include, ab initio, Molecular 

Mechanics, DFT, etc. It was seen that if the order the select cases were performed was 

changed, division into packages would be much easier to accomplish. 

The new scheme that was implemented first performs the select case on a new characteristic, 

modality type. The modality type represents the packages listed above. By performing the 

first select case based on modality type, it becomes easy to cut out that section of the select 

case, thus removing that package from the code. Every object that is required in one package 

will be below that "branch" of the select case. Figure 4.3.8 shows the organization scheme 

for the second implementation of get_ object. Notice that ifthe code was broken at the dotted 

line, then everything below the modality type, will belong to that one package. 

Figure 4.3.9 shows the code for the second implementation of get_object. The main 

algorithm is the same as implementation #1. First the object number is determine, by calling 

get_ object_ number function. Then the status ofthe object is determined. Then the select 

case is executed. 
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- - - - - - - - - - - - - - - - - - - - -

Figure 4.3.8: Organization scheme for get_object, implementation #2. 
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Figure 4.3.9: Function to determine Modality Type. This function will disappear once 
modality type is added to the object identification. 

recursive character (len=l32) function modality_type (modality, ObjName) 
************************************************************************************ 
* 
* 
* 
* 

Date last modified : June 14 , 
Author: Darry l Reid 
Description : Given an object 
corresponds to. 

2001 Version 2 . 0 

Classe , determine the modality type that 

* 
* 
* 
* 

************************************************************************************ 
* Modules: 

* 

USE program manager 
USE objects-

implicit none 

* Input scalars : 

* 

character*(*), intent(IN) ::modality 
character*(* ), intent(IN):: ObjName 

* Local scalars: 
* 
* Begin: 

call PRG_manager ( 'enter' , 'modality_type', 'UTILITY') 

* 

CLASS: select case (modality ) 

case ( 'ZM') 
modality_type 'COORD' 

case ('PIC') 
modality_type='COORD' 

case ( 'RIC' ) 
modality_type='COORD' 

case ( 'RHF') 
modality_type='WFN' 

case ( 'MM') 
modality_ type='FF' 

case ( 'WAVEFUNCTION') 
modality_type='WFN' 

case ('COORDINATES') 
modality_type= 'COORD' 

case ( ' other' ) 
modality_type='other' 

case default 
modality_type='other' 
write(uniout, ' (Sa)') 'No such modality "',modality(l:len trim(modality)), 

for object "',ObjName(l:len_trii;;(objName)), ' " ' 
stop'No such modality' 

end select CLASS 

call PRG_manager ('exit ', 'modality_type', 'UTILITY') 
return 
end 
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One difference is that now the modality type must be determined. The function 

Modality_Type is invoked to obtain this value. Figure 4.3.9 shows the code for the 

modality_type function. This function and the call to it is an intermediate step in the code 

evolution. Eventually this should be removed and the modality type should be added to the 

object definition, and then the value of0bject(Obj_Num)%modality_type will have to be 

checked to determine the modality type. For now each modality that exists in the code is an 

option of the select case in the function Modality_type, and when called with a modality 

value, the function returns the corresponding modality type. 

With the value of modality type in hand, get_ object then performs the select case based on 

it. The select case then goes through a series of steps, beginning with the modality, then the 

class, then the object, as can be seen in Figure 4.3.8. Although this does require at least on 

additional level of routine calls before the object building routine is called, it is accepted to 

enable the feature of separate packages to be implemented. 
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Figure 4.3.1 0: Get object routine with select case based on modality type. 
recursive subroutine get_object (obj_name) 

***************************************************************** *** ****** 
* 
* 
* 

Date last modified: April 3, 2000 Version 2.0 
Author: R.A. Poirier 
Desciption: Given an object name call the appropriate routine 

************************************************************************* 
* Modules: 

USE program manager 
USE objects-

implicit none 

Variable declarations go here, remove for space reasons ... 

* Begin: 
call PRG_manager ('enter', 'GET_OBJECT', 'UTILITY') 

* 
ObjNum=get_object_number(obj_name//' ') 

* 
* Object will exist and will be current: 

if(Object(ObjNum)%current)then 

* 

call PRG_manager ('exit', 'GET_OBJECT', 'UTILITY') 
RETURN 

end if 
Object(ObjNum)%exist= . true. 
Object(ObjNum)%current=.true . 

* Obtain the class/object name and modality : 
class=Object(ObjNum)%Class 
Objname=Object(ObjNum)%name 
name=Object(ObjNum)%name 
modality=Object(ObjNum)%modality 

* 

Mod type =modality type(modality , name) 
if(index(modality, 'other') .eq .O)then 
name=Objname(l:len trim(Objname))// 

'%'//modality(l:len_trim(modality)) 
end if 

* Check for class 
ModalityType: select case (Mod_type) 

case ( 'other' ) 
call Other_objects (modality, class, name) 

case ( ' COORD ' ) 
call COORD_objects (modality, class, Objname) 

case ( 'FF') 
call FF_objects (modality , class , name) 

case ( 'WFN') 
call WFN_objects (modality, clas s, Objname) 

case default 

* 
* 
* 

write(uniout,' (Sa)') 'No such Modality Type "',Mod_ type( l :len_trim 
(Mod_ type)), '" for object "' , obj _name(l:len_ trim(obj_name ) ), '"' 
stop'No such Modality Type' 

* 
end select ModalityType 

call PRG_manager ('exit', 'GET_OBJECT', 'UTILITY') 
r e t urn 

end 
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Figure 4.3.11: Get object select case based on Modality. This is the second level of select 
case hierarchy. 

subroutine WFN_objects (modality , class, Object) 
***************************************** ***** ***** ***** ******** *********** 
* 
* 
* 

Date last modified: June 21, 2001 Version 2 . 0 * 
Author: Darryl Reid * 
Description: Wavefunction (WFN) Modality Type objects. * 

************************** ************************************** ***** ***** * 
* Modules: 

USE program_manager 

implicit none 
* 
* Input scalar: 

character*(*) modality , class,Object 
* 
* Begin: 

* 

* 

call PRG_manager ('enter', 'WFN_objects', 'UTILITY') 

select case (modality ) 
case ( 'RHF' ) 
include 'case_RHF_objects' 

case ('UHF') 
include 'case_UHF_objects' 

case ( 'GVB') 
include •case_GVB_objects' 

case ( 'WAVEFUNCTION') 
include 'case_WFN_objects' 

case ( 'ROHF') 
write(uniout, *) 'case modality ',modality(1:len_trim(modal ity ) ) 
include •case_ROHF_obj ects' 

case default 
write(uniout,*) 'No such obj ect "' , modal ity (1 : l en t rim(modality) ) , 

'" for class "' , class (1 : len trim (c lass) ) , ' "' 
stop'No such modality ' -

end select 

call PRG_manager ('exit', 'WFN_objects', 'UTILITY') 
RETURN 
END subroutine WFN_obj e c t s 

To code this implementation, three levels of the select case need to be created. Putting the 

entire select case in one subroutine and file would have created a very large file that would 

be very difficult to maintain. A file, main_modality.f, was created that holds the required 

routines of select cases. As can be seen in Figure 4.3.1 0 the modality type, 'WFN' or wave 

function, calls a routine WFN_objects. This routine, found in main_modality.f, was then 

invoked and the modality is used to select the next choice. Figure 4.3.11 shows a portion of 

93 



the routine WFN_ objects, other modality routines are similar. 

Here, an acceptable use of include files can be seen. As mentioned in chapter three, include 

files should be avoided. They can be over used and can make code hard to read, and cause 

Figure 4.3.12: Get object select case step three, based on class. This file will be an 
'include' file. 

select case (Class) 
case ( 'DENSITY' ) 

select case (Object) 
case ( 'lMATRIX' ) 

call DENSITY_lMATRIX_RHF 

case ('ENERGY WEIGHTED') 
call DENSITY_Eweighted_RHF 

case default 
write(uniout,*) 'No such object "' ,Object(l:len trim(Object ) ), 

'" for class "',class (1: len_trirn(class)), '"' 
stop'No such object' 

end select 

case ( 'GUESS ' ) 
select case (Object) 
case ( 'DENSITY' ) 

call DENSITY_guess_RHF 

case ( 'MO') 
call BLD_GUESS_MO 

case default 
write(uniout,*) 'No such object "' ,Object(l:len trim(Object)), 

'"for class "',class(l:len trirn(class)), '"' 
stop'No such object' -

end select 

case ( 'MO') 
select case (Object) 
case ('COEFFICIENTS') 

call RHCCLC 

case default 
write(uniout,*) 'No such object "' ,Object(l : len trim(Object)), 

'" for class "' , class (1: len trim (class)) , '"' 
stop'No such object' -

end select 
case default 

write(uniout,*) 'No such object "',Object(l:len trim(Object)) , 
' " for class"' ,class(l:len_trirn(class)), '"' 

stop'No such object' 
end select 
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trouble with dependencies in Makefiles. However in this case, include files are used very 

carefully to improve the readability of the code. By having the include files in the select case 

it can be seen exactly which objects are being included. The naming is very important here. 

The names used mean something to the reader ofthe code. For example, it is clear that the 

file 'case_ RHF _objects' will have all the RHF objects in it and will be a select case. Figure 

4.3 .12 shows the 'case_ RHF _objects' include file. Here it can be seen that both the class 

select case and the object select case are in the same file, this helps for maintaining the code. 

When adding a new object, the programmer would just have to find the appropriate include 

file, and place the call to the building routine in the correct spot in the select case (based on 

the class and object name, alphabetical order). 

The next two sections described, Build object routine, and program_ manager will not be 

presented as two separate implementations, since the implementations did not change that 

much. Some instances of each implementation will be mentioned, but not to a large degree. 

4.4 Routine to Build I Create Objects 

Another major piece ofthe infrastructure are the routines that build the objects. As discussed 

in Section 4.3, get_object is responsible for calling the object building routine for the 

requested object. It is the object building routine that the scientific programmer will create. 

The object building routine is the code implementation of the scientific theories. The 
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algorithm developed from scientific theory is implemented in the object building routine. 

Once created, the other three main parts of the infrastructure, the build object list, get_ object, 

and program manager, require very little input or maintenance, it is the object building 

routine that the scientific programmer will spend most of their time on. 

In accordance with the design protocols presented in Chapter 3, the object building routine 

must follow a very strict template. Figure 4.4.1 shows the template of a routine that builds 

an object. As with all routines in the program, the object building routine starts with a 

meaningful routine name and a routine header, encased in a square of arteries, which contains 

all the information discussed in section 3.2.1. The required modules are then listed after a 

comment line which labels them as modules ( * Modules : ). Then the most important line 

in any routine is included, "implicit none". As stated, every routine must have implicit 

none in it. See section 3.3.1 for a more detailed discussion of implicit none. Following 

implicit none, all required variables are declared. 

Once variables are declared, the routine must call the program manager, PRG_manager. 

The program manager oversees the operations of the program and is very important to the 

development and maintenance oflarge scientific codes, section 4.5 will discuss the program 

manager in detail. 

The building routine then builds the object. The object building routine must, first, "get" all 
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the objects it requires to build the object, that is all the objects it depends on. This is done 

by a series of calls to get_object with the appropriate object names. Once these calls are 

complete, the object building routine has all the information it needs to start building the 

object. Before the code to build the object is executed, the object building routine checks 

if debugging has been requested, and acts accordingly. 

The comment line "* code to build object" in the template looks almost 

insignificant. However this is the line that is replaced to implement the algorithms which 

the scientific programmer develops from scientific theory. Often this section is hundreds to 

thousands of lines of code, and can take a programmer months of work to write. However 

once the general template has been created the scientific programmer is able to concentrate 

their efforts on this most important section of the code. Incorporating this into the overall 

program then becomes a trivial task. Chapter 5 will present the simple steps a programmer 

must follow to add new objects to the program. 
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Figure 4.4.1: Object building routine template 

Sample subroutine: 
MODULE class name 

********************************* ***** *** ***** ********** ***************************** 

* 
Date last modified : February 16, 2000 
Author: R.A. Poirier 

Version 2.0 * 
* 

* Description: Contains this and that * 
******************************************************************************* ****** 

implicit none 
* 
* Scalars 

integer scalarl 
* 
* Arrays 

double precision, dimension{:), allocatable . . arrayl 
double precision, dimension{:), allocatable . . array2 
double precision, dimension{:) , allocatable . . array2 

* 
CONTAINS 
SUBROUTINE Routine NAME 

************************************************************************************* 
* Date last modified : September 28 , 2000 Version 2 . 0 * 
* Author: Darryl Reid * 
* Description: Computes OBJECT_NAME for the following MODALITY . * 
************************************************************************************* 
* Modules: 

* 

USE object_based_main 
USE class namel 
USE class:::name2 

implicit none 

* Begin: 
call PRG_manager {'enter' , 'Routine_NAME', 'CLASS :OBJECT_NAME%MODALITY') 

* 
* Get all required objects: 

call get object {'CLASS :DEFAULTS') 
call get=object {'CLASSl :OBJECT_NAME1%MODALITY') 
call get_object {'CLASS2 :0BJECT_NAME2%MODALITY') 

* 
* Build the object : 

if(local debug)then 
* print required objects 

end if 
* 

Code t o buil d objec t 
* 

end if ! if{ . not.Object_current{ObjNum)) 

* Check i f p r int of object is requested {always p rint f or a debug) : 
if(Object_print{ObjNum) .or . local_debug)then 

* code to print object 
end if 

* 
* Check if saving of object is requested : 

if {Obj ect s ave{ObjNum))then 
* code to-save objec t 

end if 
* 
* End of routine Routine NAME 

call msg_print {'exit' , 'Routine_NAME', 1 CLASS :OBJECT_NAME%MODALITY' ) 
RETURN 
END sub rou tine Rou tin e NAME 
end MODULE clas s_name -
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4.5 Program Management Tools 

The next major element of the backbone or infrastructure of the code is the program 

management tools. Program management tools are a collection of tools designed to help the 

programmers write the code. Their purpose is to help in the development ofthe code. The 

program management tools consist of error checking tools, as well as debugging tools, both 

useful to the programmer during the development stages. In addition the tools have a timing 

function built in which can be used for code optimization and can build a dependancy matrix 

which could have important applications for future code developments. 

The program manager is a subroutine that is central in the overall program scheme. In 

general, every routine calls the program manager when it first enters and just before it exits. 

There are some exceptions to this, for example routines that could be called millions oftimes 

during the execution of the code will leave out the call to the program manager, since the 

overhead would be to much. The main purpose of the program manager is to keep track of 

information about the code's execution which are deemed useful to the programmer. As has 

been noted, every object in the code has a unique object number. The program manager 

uses this object number in many of its features. For instance, when a trace of the codes 

execution is required the program manager uses the object number to print the desired 

information. 
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The program manager is not essential to the execution of the code. It is for developmental 

purposes only and can be removed in a finished "number crunching" version of the code. 

This removal would involve some global substitutions since the program manager is used 

in every routine in the code. This removal should increase the efficiency of the code. 

The program manager is intimately connected with the rest of the code infrastructure, 

especially the object _list. The program manager uses the information stored the object _list 

for most of its functionality. 

The program MUNgauss has two main types of sub-program units, utilities, and object 

building routines. Object building routines were described in section 4.3, they perform the 

required computations to build an object. Utilities are a portion of the code utilized by the 

program to perform some task, they do not build an object. These routines are essential to 

the operation of the program however since they are not objects they do not have an object 

number associated with them. With this in mind the program manager has to be able to deal 

with both kinds of sub-program units. 

To deal with utilities and objects, the program manager subroutine is divided into two main 

parts, one for each sub-program unit. Figure 4.5.1 shows a simplified flow chart of the 

program manager subroutine. It can been seen that the first step is to decide whether it is 

dealing with an object or a utility. When working with a utility the program manager is only 
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concerned with performing a trace. The main part of the program manager is the object half 

of the subroutine. There are five main parts of the program manager each of these are 

shown in Figure 4.5.1. There is error checking, debug, timing, dependency and trace parts 

of the routine. A description of the implementation and function of each of these parts 

follows. 

4.5.1 Error checking 

The first feature in the program manager is the error checking portion. This checks to ensure 

that the program manager is working with the correct information. The check is between 

the object passed into the program manager from the building routine (which calls the 

program manager) and the object that is stored in the object_list that corresponds to the 

current ObjNum (object number). This check is simply implemented using a string 

comparison of each object name. Figure 4.5.2 shows the error check in program manager. 

Figure 4.5.2: Sample error check. 

* Error Checking to ensure the correct ObjNum is being used 
class=Local_Object_Name(l : index (Local_Object_Name,': ') -1 ) 
name=Local _Object_Name (index(Local_Object_Name,' : ' ) +1 :len_trim(Local_Obj ect_Name)) 
modality=' ' 
if(index(Local Object Name,'%') . ne.O)then 
name=Local Ob]ect Name(index(Local Object Name,' : ')+1 : 

- - index(Local- Object- Name , '%')-1) 
modality=Local_Obj ect_Name( (index (Local_Object_Name, '%')+1): 

1en_trim (Local_Object_Name)) 
end if 

if (Routine Name .NE. Object(ObjNum)%routine(1:len_trim(Object(ObjNum)%routine))) 
then -
write(uniout , *) 

stop 

'Routine Names do not ma t ch' , Routine Name, ' and', 
Object (Obj Num) %routine (1 : l en t r im(Object(Obj Num) %routine ) ) , 
' upon ', EnterOrExit, ' Object Number ' , ObjNum, ' Index ', 
Obj ectArrayindex 
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Get Object 
Number from Array · 

Trace 

Dependency 

Error 
Checking 

Increment 
ObjectArraylndex 

Store Object 
Number in Array 

Debug 

Decrement Dependency 
ObjectArraylndex 

Trace 

Return 

Increment 
Utility Counter 

Trace 

Decrement 
Utility Counter 

... 
Trace 

Figure 4 .5 .1 : Simplified flow chart for program manager. Each of the five main functions 
are shown in different colors, error checking, debugging, timing, dependency, and tracing. 
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4.5.2 Local Debug 

Debugging is one ofthe most difficult and most important part of code development. There 

are many tools available to help debug programs. However, they are often difficult to learn 

and use, give ambiguous information regarding the error, and are often not suited to very 

large codes. For the development ofMUNgauss, a set of debugging tools were built into the 

code. Each routine has (or at least can have) sections that contain useful debugging 

information to help the programmer locate errors. These sections are contained within an 

"if' statement that is controlled by a local debug variable. It is the responsibility of the 

program manager to determine iflocal debugging was requested by the programmer and to 

set the value of the local debug variable (Local_Debug) to true or false as required. 

As stated in Section 4.2, the object _list includes an array (in implementation #1) or a variable 

in the derived type (implementation #2) that stores if the local debugging of an object is 

requested. The request is an input from the programmer, via the menu of the program. 

When the program manager is called it checks if debugging was requested by simply using 

the ObjNum to check the appropriate value in the object_list. It then sets the value of 

Local_Debug to the correct value (true or false). This value is then passed on to the routine 

(through the module) and the debugging portion of the program is executed. 
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4.5.3 CPU_ timing 

Knowing the time it takes a subroutine to execute can be very useful for a programmer 

during code development. It can help pinpoint areas of the code which take the most time 

and allow the programmer to work on those areas to help the overall performance of the 

program. The program manager contains tools to gather the execution time of subroutines 

in MUNgauss. The manner in which program manager does this is by using a call to a 

function CPU_ TIME. Unfortunately this function is not standard Fortran 90, however it is 

part ofthe Fortran 95 standard7
• The basic procedure of collection timing information should 

not change, the only part that may change is the call to the function and possibly the 

manipulation of the results for printing. 

Figure 4.5.3: Timing within the program manager 

Entering portion of Program Manager: 
* CPU Time Computation 

- i f (Object cputiming(ObjNum)) then 
call CPU-TIME(Begin time) 
BeginTimeArray(Objec tArray index) = Begin_time 

end if !LCPU_Time 

Exiting portion of Program Manger: 
* Computation time printing 

if (Object_cputiming(Object_Number_list(ObjectArrayindex)) ) then 
call CPU TIME(end time) 
EndTimeArray(ObjectArrayindex) = end_time 

write (uniout, *) Obj ect routine(ObjNum) (l : len t rim(Object routine(ObjNum) ) ), 
' took ' , EndTimeArray(ObjectArrayindex) -- -
BeginTimeArray(ObjectArrayindex), ' seconds', 
'Object Number' , Object Number list(ObjectArrayindex), 
BeginTimeArray(ObjectArrayindex),-EndTimeArray(ObjectArrayindex) 

end if !LCPU Time 
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When the program manager is called, it checks to see if cpu time was requested for that 

object, by checking the corresponding element in the object_cputiming array. Iftiming 

is required, the program manager places a call to CPU_ TIME function and stores the result in 

a BeginTimeArray at the next element in that array. When the calling routine calls the 

program manager upon exiting, the program manager again calls CPU_TIME and obtains a 

value for the end time of the subroutine. It is then just a matter of subtracting the beginning 

time from the ending time to obtain the elapsed execution time for the subroutine. Figure 

4.5.3 shows the two pieces of timing code. 

4.5.4 Dependency 

An interesting addition to the program manager is the creation of a dependency matrix. A 

dependancy matrix is a matrix that contains information on which objects depend on other 

objects. In the program manager functionality has been created for the program to construct 

the first order dependancy matrix for the program MUNgauss on the fly, or as the code 

executes. This information can be printed at the end of the execution if requested by the 

programmer/user. 

Why is the dependency matrix of interest? Firstly if can give the programmer an idea of how 

the code is being executed and how objects relate to one another. This kind of information 

can help the programmer gain a higher level of understanding ofhow the program operates. 

This can be very useful in large scientific codes, as they can be quite complex, any 
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assistance in understanding the codes operations is helpful. 

Figure 4.5.4: Dependency matrix portion of program manager. 

Entering portion of Program Manger : 

* Build the First Order Dependency Matrix . 
if (Ldependency) then 

if ( .not . allocated(First Order Depend)) then 
allocate (First Order Depend(Nobjects , Nobjects)) 

end if - -
DependCounter = DependCounter + 1 
if (DependCounter .gt. 1) then 

First Order Depend((Object Number list(ObjectArray index -1)), ObjNum) = . true. 
First-Order-Depend(ObjNum,-ObjNum) = . true. 

else if-(DependCounter . eq . 1) then 
First Order Depend(l:NObjects,l :Nobjects) = .false. 
First=Order=Depend(Obj Num, ObjNum) = . true. 

end if !DependCounter 
end if !Ldependency 

Exiting portion of Program Manager 

if (Ldependency ) then 
DependCounter = DependCounter - 1 

end if !Ldependency 

ObjectArray index = ObjectArrayindex - 1 

The second use of the dependency matrix ts work for future code development. 

Parallelization of programs is becoming a very widely used technique to improve a code's 

performance. Knowledge of how objects depend on each other is a good first step in 

designing a parallel algorithm of a program. The goal is to design the program in such a way 

that it will first build the dependency matrix, on the fly, and then use that matrix to determine 

a level of parallelization. This kind of"automatic" parallelization will be difficult to obtain, 

however the dependency matrix could be an important start. 
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4.6 How it all works together 

The four main portions of the programs infrastructure do not work independently. They 

interact in a very special way that reaches many of the goals of well-written codes discussed 

in Chapter 2. The overall picture of how each of the pieces of infrastructure interact to 

produce a program can be seen in Figure 4.6.1. Here it can been seen that the user asks for 

a particular object (or piece of information, such as the energy of a system at a particular level 

of theory). The code then calls get_object to get that object, get_object will then select the 

correct building routine which will proceed to build the desired object. The route 

independence discussed in section 1.2 is illustrated here, it can be seen that the building 

routine will "get" an object that the desired object depends on. By calling get_ object the 

code determines its own path of execution. The build_ object _list and the program manager 

are not included in Figure 4.6.1 since most of there work is done "behind the scenes". The 

object list created by build_ object _list is stored in memory and an available repository of 

information about each object in the program. It is key to the functioning ofthe program, but 

is only executed once at the start ofthe program, then just sits there providing information 

to the rest of the program. 
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Object listl 
Derived type array 
Object 
Character strings 
Class Name Modality Routine 

c:::J c:::J c:::J c:::J 
Loglcals 
E•ist Current Debug CpuTiming 

D D D D 
Character strings 
Class Name Modality Routine 

2 c:::J c:::J c:::J c:::J 
Logicals 
Exist Current Debug CpuTiming 

D D D D 
• • • 

BLD ob '2 

2 
Get Obj27 

1 
Get Obj2 

Get Obj4 Get Obj14 .. 
Build Objl Build Obj2 

4 BLD_obj4 

Build Obj4 

Figure 4.6.1: Sample code execution. Note the route independence, route is determined dynamically. The numbers 
indicate the value of the Object Number at that point in the execution. Red values are set by get_ object going down 
the tree of execution (right) while the blue numbers are set by the program manager coming back up the tree (left). 
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The program manager, as previously noted, is called at the beginning and end of each and 

every routine or function in the program. Every routine shown in Figure 4.6.1 does call 

program manager, however it is not included for clarity. The program manager acts mainly 

as a record keeper of the program. The program manager, keeps track of which routine 

called which routine, and when. It can track the time the program takes in each routine. It 

also acts as a prompter to cause the routines to perform debugging features requested by the 

user. The program manager also keeps track of the object number and makes sure that it is 

always correct when used by any other routine. As the code goes further down the tree of 

execution (further to the right in Figure 4.6.1) the object number changes whenever 

get_ object is called. However when the code starts to return up the levels, the object number 

would be that of the last object which is built. The program manager resets the object 

number to the correct value when it is called at the end of a building routine. This allows 

other routines access to the correct object, via the object number. 

Following the logic of this kind of programming approach may be a little confusing. An 

analogy may help. Lets say you want to make (build) a christmas dinner. Well if this 

programming approach was used you would simply ask for the object "Christmas_dinner". 

Get_object would call the building routine "BLD_Xmas_dinner". This routine would 

"know" that object "Christmas_dinner" needed objects "Bottle_wine", "Cooked_Turkey", 

"candles" and "Salad" to be built. Once "BLD _Xmas_ dinner" has each of these objects it 

could build a Christmas dinner. So it calls get_ object for "Bottle_ wine", get_ object calls the 
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Figure 4.6.2: illustration of "BLD _Xmas_ dinner" routine. 

BLD _Bottle_ wine and returns the object "Bottle_ wine". "BLD Xmas dinner" would then 

ask get_ object for the object "Cooked_ Turkey''. Get_ object would then call 

"BLD _Cooked_ Turkey". 

Now BLD_Cooked_Turkey needs "Turkey", "Oven" and "Stuffmg" to build the object 

"Cooked_ Turkey''. It then goes through the same process of calling get_ object to obtain all 

the objects in needs to build "Cooked_Turkey''. Once BLD_Cooked_Turkey finishes it 

returns the object "Cooked_Turkey" to BLD_Xmas_dinner. BLD_Xmas_dinner continues 

this process to obtain "Candles" and "Salad" objects. This example may seem a little silly 
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but is does illustrate how the program uses objects and that each build object routine just 

needs to "ask" the program for the objects it requires to build the desired object. 

BLD _Xmas_ dinner does not care how the object "Salad" was built, it just needs the object 

"Salad" to be created and be current. The programs infrastructure ensures that when a 

building routine asks for an object it is given a current object. 
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Chapter 5 

Implementation 

5.1 Introduction 

The preceding four chapters described an approach to writing a large scientific program. 

From beginning concepts of a "purpose statement of the code" through a process of 

identifying objects, classes, etc. and on to building an infrastructure upon which the code can 

be placed, the approach has been presented. However up to this point, no actual scientific 

code has been written. The bulk of this work was to create the infrastructure, clearly define 

the protocols, and help organize things in such a manner as they can be easily maintained, but 

at the end ofthe day a piece of scientific code is needed. This chapter aims to describe the 
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steps involved in adding a piece of scientific code to the program created. As mentioned, 

MUNgauss is an evolving program, it has been in development for 20+ years and continues 

to change. The process described below has been done (in one way or another) to every part 

ofMUNgauss. Many portions of the program are somewhere in the middle ofthe conversion 

process, however it is important to point out that the code is still functional. The process 

described in Section 5.2 allows for incremental change. Once the infrastructure has been 

created, the old code need only be modified very little to get it to "run", however some fine 

tuning would have to be done to get it to conform to the design protocol described in Chapter 

3. That part of the conversion is the most time consuming part. 

5.2 Adding new objects to the program 

The procedure for adding new functionality to the program is a straight forward one. There 

are a few points where some thought will be required and some juggling may occur, but for 

the most part adding new features is a simple manner of following the steps described below. 

1. Decide what functionality to add, and what objects will be added. 

Often the programmer will end up only adding one object to get the desired result, however 

sometimes multiple objects will have to be combine to achieve the desired functionality. 

Give the object(s) a name and determine the class in which it belongs. Looking back at the 

table of classes in Chapter 2 can help make this decision. This initial placement of the object 
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is sometimes very easy, as it will obviously fit into a class, but sometimes placement can be 

tricky and adding a new class may have to be considered. Here are some things to keep in 

mind: 

1.1 Keep things that have something in common together (i.e. comes from the 

same theory, calculates things similarly) 

1.2 The idea of creating separate "packages" was a major goal ofthe project, thus 

make sure the separation is maintained between packages. 

1.3 Object names have to be unique, and meaningful. 

1.4 Does a modality apply to this object, if so this plays a key role in determining 

how it is integrated into the code. 

Once these decisions have been made all the characteristics of the object should be able to 

be defined, as shown in Figure 5.2.1. Figure 5.2.1 shows the "Dummy Class" of the 

BLD _ object_list routine discussed in Chapter 4. These characteristics identify the object. 

Figure 5.2.1: Template of object characteristics to be placed in the BLD _object_ list 
routine. 

·.· ' •' ··' .•:. 
* Dummy ' class .· ·· 

· N6bjects = N"objec'ts -+ ·l 
Object (N.objects) %Cla!!8 = 1 ? 1 

Object(ijo~]ects)%name = '?' 
Object ("Nobj.ects) %modality = '? • 
·object.(Nobjects) %routine = •? 1 

·... . . ' 

2. Placing the object into the infrastructure. 

With the object identified it must now be inserted into the infrastructure of the program 
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2.1 First, add the object to the object list. As identified in Chapter 4, the object list is a 

master list of all the objects available in the code. Within the routine 

"BLD _object_list", find the class that the object belongs and insert the new object, 

following the template seen in Figure 5 .2.1. Doing so will give the new object a 

unique object number and allow the other features of the infrastructure to work with 

it. 

2.2 The next step is to place the call to the object building routine within the "get_ object" 

routine sub-structure. Recall, the get_ object routine is a group of select cases based 

first on modality, then class, then object name. In MUNgauss, to help organize this 

hierarchy of select cases, the implementation makes use of"include" files. Therefore 

to add the call, to the building routine of the new object, the appropriate include file 

(called case_MOD_objects, where 'MOD' is the modalityofthe new object) must 

be edited. In that file, find the class ofthe object (or add a new class), and insert the 

case and call to the building routine, remembering to stay in alphabetical order. 

At this point the building routine and thus the object, is part of the infrastructure of the 

program and can be called by any routine in the program, or can be requested by the user via 

the input menu. The only problem is that the building routine has not been created. 
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3. Write the object building routine. 

Generally one is adding either a new, never before created object or adding a piece of older 

code that now needs to be integrated with the new program. If creating a new object, then 

simply follow the protocols described throughout this thesis, making sure to follow the 

template given in Chapter 4 (Figure 4.4.1 ). Make sure to 'use' the appropriate modules and 

to include the program manager features. If other objects are needed simply call get_ object 

and 'use' module for that object and the information will be available. Ensuring the proper 

practices of variable naming, documentation, error messages, etc. and the object can be 

created in no time (well the actual algorithm to build the object must be written). 

Converting an older piece of code so it can be used in the newly designed program is a step­

wise process. Starting by adding a few of the new features, such as the program manager, 

the routine can be made to work with very little effort. The major challenge comes from 

truly converting old F77 code to F90. As with any integration of old code, when adding old 

code to the program, the programmer must ensure it has the required information available 

to it, to build the object. This means a call to get_ object may be necessary to make any 

required information available. Often variable names have changed, and this merging could 

become time consuming, however once complete the code will run without major changes. 
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Once the code is working, the program can call for that object from anywhere in the code. 

However, likely the old code will not be well optimized or well documented or follow many 

of the design protocols of this thesis. Therefore time should be invested in rewriting the 

routine to reflect the new protocols. This is another often time consuming part, but it will 

pay off in a few months when a programmer has to go back and edit that piece of code and 

they have no idea how it works, or what it does. 

5.3 Implementing a BSSE Code 

As an example of a new object that could be added to MUNgauss, it was decided that the 

Boys-Bemardi counterpoise correction for Basis Set Superposition Error (BSSE) 

functionality would be added. 

In theory the binding energy, ~EINT• due to the interaction of species A and B will be given 

by 

~EINT = E"AB- (EA + Es) 

where E" AB is the energy of the complex between A and B, and E A> E8 is the energy of the A 

and B respectively, in their relaxed geometry and its own basis functions. This is true for an 

infinite basis set, however with finite basis sets, the functions on A will improve those on B 

and vise versa, during the optimization for the complex. Therefore the energy, ~E. will be 

incorrect by a factor of OBSSE• known as the basis set superposition error·21
• 
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The Boy-Bernardi correction for this error is estimates by 

OsssE = E(A-*) + E(*-B)- (EAt + Est) 

Where E(A-*) and E(*-B) are the energy of the monomers A and B with the basis set of 

AB and in the geometry of the complex. EAt and Est are the energy of monomers A and B 

in the geometry of the complex but using its own basis set. 

This correction is then subtracted from the ~EINr to get the total, corrected ~EINr(no BSSE). 

~EINr(no BSSE) = ~EINr - OsssE 

= E*AB- [E(A-*) + E(*-B)]- (EA- EAt)- (E8 - E8t) 

In practice E A ::::: EAt and E8 ::::: E8 t therefore 

~EINr(no BSSE) = E*AB- [E(A- *) + E(*- B)] 

So to go through the above procedure, first a new object had to be identified. That is to say 

the characteristics of the object (class, name, modality and routine) had to be defined. 

Object(Nobjects)%class = 'ENERGY' 

Object(Nobjects)%name = 'BSSE' 

Object(Nobjects)%modality = 'RHF' 

Object(Nobjects)%routine = 'BLD_ENERGY_BSSE' 

Next the call to the routine 'BLD_ENERGY_BSSE' must be added to the get_object 

substructure. Therefore the include file 'case_RHF _objects' was edited to contain the class 

'ENERGY' and the call to the building routine. Figure 5.3.1 shows this addition. 
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Figure 5.3.1: Addition to get_object substructure to add call to BSSE object building 
routine. 

case ( ' ENERGY' ) 

select case (Object) 
case 1 'BSSE' ) '' 

call BLD ENERGY BSSE 
case ( 'COMPONENTS1 ) 

callE JandK 
I 'case default · 

write(uniout,*)'No such object "',Object(l:len trim(Object)}, 
'"for class " ' ,class(l:len tri~(class)),'"' 

st0p'No such objeCt• -
end s.elect 

Then the template (Figure 4.4.1) was edited to reflect the BSSE object. The actual building 

routine does not build the BSSE object since time did not permit it. However, the purpose 

of this exercise was to show the ease with which an object could be added to MUNgauss. 

In its current state the routine simply returns the negative of the RHF energy. With some 

algorithmic changes this would produce the correct value. 

With the building routine in place, the Makefile had to be edited to ensure the new 

functionality was compiled. Then the object could be called like any other object in 

MUNgauss, from any routine or from the menu with the command, 

OUTPUT object= ENERGY:BSSE%RHF 

When executed with this command the output is 

E inte~action B$SE-free ~ 197 . 154475 
BLD ENERGY BSSE: NOT CORRECT ENERGY!! 
BSSE not avail·able at this time 
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for a sample molecular complex ofHF with HF. 

Figure 5.3.1: BSSE object building routine. 

SUBROUTINE BLD ENERGY BSSE - -
************************************************************************* 
* 
* 
* 

Date l ast modified: December 12, 2002 
Author: Darryl Reid and R. A. Poirier 
Description : Compute the BSSE free energy 

Version 1 . 2 * 
* 
* 

************************************************************************* 
* Modules: 

* 

USE program manager 
USE program-defaults 
USE global scalars 
USE constants 
USE type_energies 

implicit none 

* Work arrays: 
* 
* Local scalars: 

* 

double precision .. E_BSSE_int,E_BSSE_AB,E_BSSE_Astar, E_BSSE_starB 
logical Ldebug 

* Begin : 

* 

call PRG manager {'enter', 'BLD_ENERGY_BSSE', 'ENERGY :BSSE%RHF' ) 
Ldebug=Local_Debug 

* Get Energy for A- - - B complex 
call get object {'MO:COEFFICIENTS%RHF') 
E BSSE AB=ENERGY RHF%total 

* Modify molecule -
* Get Energy for A---* complex 

E BSSE Astar=ENERGY RHF%total 
* Modify molecule -
* Get Energy for *---B complex 

E BSSE starB=ENERGY RHF%total 
* Compute BSSE free interaction energy 

* 

E BSSE int=E BSSE AB-E BSSE Astar - E BSSE stare 
write{uniout~· {a,fl2.6l') ' E-interaction BSSE-free = ' , E BSSE int 
write{uniout , ' {a)') 'WARNING; BLD ENERGY BSSE: NOT CORRECT ENERGY!!' 
write{uniout, I {a)') 'BSSE not available at this time' 
stop'BSSE not available at this time' 

* End of routine BLD ENERGY BSSE 
call PRG_manager {'exit•, 'BLD_ENERGY_BSSE' , 'ENERGY:BSSE%RHF ' ) 
RETURN 

END 
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5.4 Conclusions and future work 

Redesigning the major infrastructure ofMUNgauss to work in a more modular way and to 

take advantage of many of the new features of Fortran 90 has greatly improved the 

manageability of the program. The design protocols that have been implemented have 

improved the codes readability and has given the code a consistent look and feel, which have 

made code development much more programmer friendly. The new infrastructure has 

provided a good backbone for adding additional functionality and the process to add the 

functionality is a straightforward one. 

The decision to use Fortran 90 as the language for this project proved to be a wise one. 

Fortran 90 allowed the conversion of old MUNgauss code to be a gradual process without 

long periods of downtime. Many of the new features of Fortran 90 allowed for better 

memory management (allocatable arrays) and cleaner code (modules, select cases, etc.). 

The addition of a program manager routine, along with the creation of a unique object 

number, has afforded many useful features. Timing routines, debugging the program, tracing 

execution and error detection are all now available through the program manager. In 

addition the program manager, provides many of the needed tools for future work. The 

creation of a dependency matrix could eventually lead to parallelization ofMUNgauss. The 

timing tools can help programmers identify inefficient portions of the program and guide 

them towards optimization of the entire program. 
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MUNgauss will continue to evolve. It is a dynamic program that is continually improving 

its functionality. The new protocols and design has made this process much more 

programmer friendly and hopefully will act to accelerate this evolution. 
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