
CFNTRL 1-'()R NLWH H INDLAND STl ll>l i·.S

TOTAL OF 10 PAGES ONLY
MAY BE XEROXED

(Without ;\ulhm' s !'l'rmJS~ion)

1+1 National Library
of Canada

Bibliotheque nationale
du Canada

Acquisitions and
Bibliographic Services

Acquisisitons et
services bibliographiques

395 Wellington Street
Ottawa ON K1A ON4
Canada

395, rue Wellington
Ottawa ON K1A ON4
Canada

The author has granted a non­
exclusive licence allowing the
National Library of Canada to
reproduce, loan, distribute or sell
copies of this thesis in microform,
paper or electronic formats.

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this dissertation.

While these forms may be included
in the document page count,
their removal does not represent
any loss of content from the
dissertation.

Canada

Your file Votre reference
ISBN: 0-612-89666-8
Our file Notre reference
ISBN: 0-612-89666-8

L'auteur a accorde une licence non
exclusive permettant a Ia
Bibliotheque nationale du Canada de
reproduire, preter, distribuer ou
vendre des copies de cette these sous
Ia forme de microfiche/film, de
reproduction sur papier ou sur format
electronique.

L'auteur conserve Ia propriete du
droit d'auteur qui protege cette these.
Ni Ia these ni des extraits substantiels
de celle-ci ne doivent etre imprimes
ou aturement reproduits sans son
autorisation.

Conformement a Ia loi canadienne
sur Ia protection de Ia vie privee,
quelques formulaires secondaires
ant ete enleves de ce manuscrit.

Bien que ces formulaires
aient inclus dans Ia pagination,
il n'y aura aucun contenu manquant.

THE DESIGN AND IMPLEMENTATION OF A LARGE

SCIENTIFIC CODE USING FORTRAN 90

by

©Darryl Reid, B.Sc.

A thesis submitted to the School of Graduate

Studies in partial fulfillment of the

requirements for the degree of

Master of Science

Department of Chemistry

Memorial University of Newfoundland

St. John's Newfoundland, Canada

February 2003

St. John's, Newfoundland Canada

Abstract

Computational science has become an integral part of scientific research over the past couple

of decades. From the beginnings of computing, scientists have written codes to help them

solve problems. The language of choice for most scientific computing for the past 20+ years

has been FORTRAN 77. However, modem advancements in programming languages, such

as the idea of object-oriented programming, and other features such as dynamic memory

allocation, have caused many scientific programmers to look for an alternative to FORTRAN

77. This work aims to show that Fortran 90/95 is a viable option for these scientific

programmers, and although it is not fully object-oriented many of the desired features of an

object-oriented language can be implemented in Fortran 90/95. This work sets out a series

of design protocols and an overall programming scheme which makes writing large scientific

codes more manageable. A series of specific programming tools and choices will be

described which aid both the programmer and the user ofthe codes. Finally, some examples

of the implementation of these ideas and practices will be included.

Acknowledgments

There are many individuals to which I would like to extend my deepest gratitude for their

guidance and support while I completed this work. The road to completion was a long one

and the following people stood by me throughout. Firstly, I have to thank my supervisor, Dr.

Raymond Poirier, for the hours, upon hours, of work. Ray is a constant source of ideas and

inspiration, without which this thesis would not have happened. I would also like to thank

the Poirier research group, Michelle Shaw, Tammy Gosse, Aisha El-Sherbiny, and Sherene

Bungay. Each of them helped in there own way, often just lending an ear when that was

needed. Much of the ground work for this thesis was laid by Michelle. In addition I have

to thank the Mun Chemistry Society, and all my friends at MUNCS for making my time at

Memorial a very enjoyable one. I also want to extend my gratitude to the Chemistry

Department, the staff and faculty made me feel like one of them and helped to guide many

of my life decisions. Lastly I must thank my family. My family have always been there for

me in more ways then they will ever know. Thanks to everyone, your kindness and love have

meant the world to me.

11

Contents

Abstract

Acknowledgments ii

Contents iii

List of Figures vii

List of Tables X

111

List of Abbreviations xi

Glossary xiv

1. Introduction 1

1.1 Project Description 1

1.2 Goals 2

1.2.1 User and Programmer Interests 5

1.3 Outline 5

2. Problem Description 7

2.1 Defining the Problem 7

2.1.1 Program Description 8

2.1.2 Classes and Objects 11

2.1.3 Overall Code Organization 14

2.3 Choice ofLanguage 18

2.3.1 Drawbacks of FORTRAN 77 20

2.3.2 Fortran 90 compared to FORTRAN 77 21

2.3.3 Obsolescent Features ofFortran 25

IV

3. Design Protocols 27

3.1 Introduction 27

3.2 Programming Style 28

3.2.1 Program headers 29

3.2.2 Declarations 30

3.2.3 Indentation 33

3.2.4 Naming and Capitalization 34

3.2.5 Comment Lines 37

3.2.6 Error Messages 38

3.2.7 Other 39

3.3 Use ofVariables, Modules, Subroutines, and Functions 41

3.3.1 Variables and Constants 41

3.3.2 Modules 46

3.3.3 Subroutines 54

3.3.4 Functions 55

3.4 Documentation Practices 57

3.5 Testing 60

4. Code Infrastructure - Overall Program Design 62

4.1 Introduction 62

4.2 Object List 63

v

4.2.1 Implementation of Object List #1. 65

4.2.2 Implementation of Object List #2 69

4.2.3 Comparison of Object List Implementations 72

4.3 Get_object Routine 76

4.3.1 Get_object implementation #1. 78

4.3.2 Get_Object_Number function, implementation #1 86

4.3.3 Get_ object Routine, hnplementation #2 86

4.4 Routine to Build I Create Objects 95

4.5 Program Management Tools 99

4.5.2 Local Debug 103

4.5.3 CPU_timing 104

4.5.4 Dependency 105

4.6 How it all works together 107

5. Implementation 112

5.1 Introduction . 112

5.2 Adding new objects to the program 113

5.3 hnplementing a BSSE Code 117

5.4 Conclusions and future work 121

VI

List of Figures

Figure 1.1.1: Illustration of route-independent programmmg compared to normal

programming ... 3

Figure 2.1.1: MUNgauss OBJECTS grouped into CLASSES 13

Figure 2.1.2: Summary table ofMUNgauss functionality and organization 16

Figure 2.3.1: High-level conceptual view ofthe makeup ofFortran 90 22

Figure 3.2.1: Sample program header 30

Figure 3.2.2: Declaration section, no comments 30

Figure 3 .2.3: Declaration style ... 31

Figure 3.2.4: Example of indentation practices 33

Figure 3.2.5: Example of an error message 39

Figure 3.3.1: Global Module .. 48

Figure 3.3.2: Illustration of global modules 50

Figure 3.3.3a: Schematic of relationship between object modules and work modules .. 50

Vll

Figure 3.3.3b: Schematic of use of contains within object building subroutine 50

Figure 3.3.4: How modules are used in MUNgauss, with work modules 52

Figure 3.3.5: How modules are used in MUNgauss, without work modules 53

Figure 4.2.1: Objects Module, Implementation #1 66

Figure 4.2.2: Build Object List Subroutine, Implementation #1 67

Figure 4.2.3: Object Module, Implementation #2 69

Figure 4.2.4: Build Object List Subroutine, Implementation #2 70

Figure 4.2.5: Schematic representation of memory allocation of object list in implementation

#1 74

Figure 4.2.6: Schematic of the encapsulation created by using a derived type to implement

the object list, implementation #2 75

Figure 4.3.1: Flow chart of get_object routine 76

Figure 4.3.2: Schematic of series ofnested select cases for get_object implementation #1.

........ 79

Figure 4.3.3: Get_Object Routine, Implementation #1 80

Figure 4.3.4: Example of select case based on object name, contained in a "class associated"

subroutine 82

Figure 4.3.5: Function which determines the object number 83

Figure 4.3.6: Organization scheme for get_object, implementation #1 85

Figure 4.3 .7: Get_ object_ number function for get_object implementation #1 87

Figure 4.3.8: Organization scheme for get_object, implementation #2 89

Vlll

Figure 4.3.9: Function to determine Modality Type. This function will disappear once

modality type is added to the object identification 90

Figure 4.3.1 0: Get_ object routine with select case based on modality type 92

Figure 4.3.11: Get object select case based on Modality. This is the second level of select

case hierarchy 93

Figure 4.3.12: Get object select case step three, based on class. This file will be an 'include'

file 94

Figure 4.4.1: Object building routine template 98

Figure 4.5.2: Sample error check 101

Figure 4.5.1: Simplified flow chart for program manager 102

Figure 4.5 .3: Timing within the program manager 104

Figure 4.5.4: Dependency matrix portion of program manager 106

Figure 4.6.1: Sample code execution 108

Figure 4.6.2: Illustration of"BLD _Xmas_dinner" routine 109

Figure 5.3 .1: Addition to get_ object substructure to add call to BSSE object building routine

... 119

Figure 5.3.1: BSSE object building routine 120

lX

List of Tables

Table 2.1.1: Possible modalities for a quantum chemistry package 10

Table 2.1.2: List of Objects in MUNgauss 12

Table 2.3.1: A sample of current theoretical chemistry packages, and their programming

language . 19

Table 2.3.2: Obsolescent features of Fortran 25

Table 3.2.1: Prefixes used in MUNgauss 36

X

List of Abbreviations

AMI

AMBER

B3LYP

B3P86

BSSE

CASSCF

cc

CFF

Charmm22

CI

CNDO

COMPASS

Austin Model 1

Assisted Model Building with Energy Refinement

Becke-Lee-Yang-Parr

Becke's 3 -Perdew 86

Basis Set Superposition Error

Complete Active Space Self-Consistent Field

Coupled Cluster

Consistent Force Field

Chemistry at Harvard Macro-molecular Mechanics 22

Configuration Interaction

Complete Neglect ofDifferential Overlap

Condensed-phase Optimized Molecular Potentials for Atomistic

Simulation Studies

Xl

CVFF

DFT

G961LYP

GVB

HF

HPF

INDO

MC-SCF

MINDO

MM

MMFF94

MNDO

MPn

NDDO

OSIPE

PIC

PM3

RHF

RIC

SVWN

UHF

Consistent Valence Force Field

Density Functional Theory

Gil196-Lee-Yang-Parr

Generalized Valence Bond

Hartree-Fock

High Performance Fortran

Intermediate Neglect of Differential Overlap

MultiConfiguration Self-Consistent Field

Modified Intermediate Neglect of Differential Overlap

Molecular Mechanics

Merck Molecular Force Field, 1994 version

Modified Neglect of Diatomic Overlap

Meller-Plesset theory, nth order

Neglect of Differential Diatomic Overlap

Open Structured Interfaceable Programming Environment

Proper Internal Coordinates

Parametric Method number 3

Restricted Hartree-Fock

Redundant Internal Coordinates

Slater-Vosko-Wilk-Nusair

Unrestricted Hartree-Fock

xu

XYZ

ZM

Cartesian (x, y, z) coordinate system

Z-matrix

Xlll

Glossary

Class

For the purposes ofthis thesis, a class is a term used to describe the organization of the code,

that is, a class is a group of objects that have something in common. The term is used

loosely and the "something in common" statement can be applied to suit the programmers

needs. It is used as part of the total object name, which includes the name and modality as

well.

Compatibility

Compatibility is the ability of subprograms to be combined easily without conflicts between

each part. This is a necessity for projects which involve more than one contributor. This is

important in enabling software parts to interact with one another1
•

XIV

Correctness and Robustness

Correct code does what it was intended to do for all possible known cases. This is the most

important feature of the code, since if the code does not do what it is designed to then the

other features are meaningless. However, one cannot possibly know all cases that need to

be run. In these cases, should the program fail, it should do so in a clean manner with the

proper error message to alert the user or programmer of the problem. This feature is known

as robustness1
•

Ease of Use

The software should be easy to use (operate, prepare input, analyze output, handle errors) and

should come with documentation to instruct the user on how to deal with problems when

encountered1
•

Efficiency

The program should be efficient, that is it should make optimal use of the hardware and

software components of the system it runs oni.

Extendibili ty

Extendible programs are easy to modify or extend, for example when a new feature is

needed. For small programs this is not an issue but for large complex programs it is

essential. In order to make code more extendible, two things can be done1
:

XV

1. Simplify the code: the program should be designed in a simple manner, with a

simple architecture.

2. Divide program into smaller parts: The program can be divided into smaller

independent subunits of the program.

Fortran, FORTRAN 77, and Fortran 90/95

In the mid 1950's and IBM development team, headed by John Backus, developed a new

language which made programming much easier. One achievement of this new language

was that it provided a much more intuitive way to code mathematical formulas, and so was

named FORTRAN, taken from the first few letters of"Formula Translation". Over the years

this language was revised and in 1977 a new standard, developed by American National

Standards Institute (ANSI), was released, known as FORTRAN 77. This version of Fortran

was very popular, and is still used extensively in scientific programming today. Over the

next decade or more the ANSI committee discontinued the traditional all capital letters in the

official name of the language and started using "Fortran" with only the first letter capitalized.

Developments continued and in 1990 the new standard Fortran 90 was introduced2
• Minor

updates and fixes, with some minor extensions led to the release of the newest Fortran

standard Fortran 95 . The differences in Fortran 90 and Fortran 95 are so small that in this

thesis the term Fortran 90/95 will be used to indicate either can be used.

XVI

Integrity

The program should have integrity, that is the program components should not be able to

corrupt one another. Utilities can be designed to handle security within the program and this

should be an essential part of the software design'.

Modality

Modality is another characteristic of an object. It is used to represent a level of theory or a

coordinate system that the calculations are performed in or at. An object can "inherit" the

modality portion of its name from a parent call.

Object

In this thesis an object is something that can be printed or used by other portions of the code.

An object usually represents something, that something in computational chemistry often

comes from theory.

Reusability

Reusability of the code is also an important feature. The more code is reused, the less code

needs to be rewritten and this reduces the cost of development. What parts can be reused is

determined by finding parts of the code that are the same or share a common piece'.

xvn

Portability

Portability, the capability of the program to run on a few different systems, is an important

feature. In ensuring this feature, any machine-specific parts should be clearly defined in the

documentation 1•

Verifiability

The programmer should be able to prepare test data and procedures to determine ifthere are

any problems with the software. This would be best accomplished if test data was included

with the software package along with instructions on running test data and listing of expected

output1
•

xvm

Chapter 1

Introduction

1.1 Project Description

The use of computers to aid scientific research has exploded over the past 30-40 years. With

the advent ofhigher level programming languages such as FORTRAN 77 and C, more and

more scientist were able to create programs designed to perform very specific tasks,

applicable to their own research. Over the years, these codes were changed and added to for

slightly different applications. This process of code evolution often involves many different

programmers over many years. Much ofthe existing scientific code is written in this manner.

The problem with this kind of evolution is that there is no clear plan guiding the process.

Much of the code was written by scientists that were not trained programmers. The codes

1

are often written with little or no comments, each programmer has their own individual style,

and the spaghetti nature made the codes almost impossible to follow. These problems make

maintaining and updating those codes a very difficult, if not impossible task, unless the

programmer is extremely familiar with the entire code. Since these codes are often written

by students completing an honours, masters, Ph.D., or some other project, they often do not

have intimate knowledge of the code. For this reason a systematic approach to writing large

scientific codes is required. For the purpose of this thesis, the term "large scientific code"

refers to programs on the order of 105 to 106 lines of code, consisting of hundreds of files,

and thousands of functions and subroutines. The ideas expressed will also be useful for

much smaller programs.

1.2 Goals

In this work an approach at creating large scientific codes is presented. The approach is as

general as possible and can be applied to virtually any scientific application. However, the

examples used are from an ab initio quantum chemistry package, namely MUNgauss.

MUNgauss is a fairly large code consisting of over 200 files, well over 1500 functions and

subroutines and has been in development for over 20 years. The code was originally written

in FORTRAN 77 and was fairly modular and readable. MUNgauss took advantage of

OSIPE3 tools, which gave it a degree of modularity. OSIPE (Open Structured Interfaceable

Programming Environment) consists of a set ofFORTRAN 77 tools which created a kind

oflow-level object-oriented programming environment. OSIPE made use of a large common

2

Figure 1.1.1: lllustration of route-independent programming compared to normal
programmmg

Normal Route-independent . .
programming programming

Object 1 Desired
Object

~ , ~ ~ Object 2
Object l Object 2

., ,
~ Object 3

Object 3
., ,

Desired
Object

block to allow access to data throughout the program. OSIPE also required that an object

(defined as an entity the program is able to address i.e., scalar, vector, matrix, tensor, ...) can

only be created by one routine which created nothing else, giving the code a structured and

modular form.

OSIPE also gave MUN gauss a very useful feature, route-independence. Route-independence

simply means that there is no predetermined "path of execution" of the code. Figure 1.1.1

shows an illustration of route-independent compared to normal programming. On the left

3

of the figure it can be seen that if an object was desired (in blue) the programmer would first

have to create object 1, then object 2, then object 3, to finally create the desired object. This

means that the programmer has to know how to construct each object necessary to build the

desired object. In route-independent programming, if the programmer needs to build an

object, the programmer only needs to know the first order dependence, i.e., the objects that

the desired object directly depends on. The building routine ofthe desired object knows that

it requires object 1 and object 2 to build the desired object. The desired object then "asks"

for object 1 and 2, if they exist then it uses them, if not the code builds them. Note here that

object 1 depends on object 3, thus object 3 is created once the desired object "asks" for

object 1. The builder of the desired object does not need to know anything about object 3,

since the desired object does not depend directly on object 3.

The emergence of Fortran 90 and its new features (which will be explained in section 2.3),

prompted the decision to overhaul the design of MUNgauss to create a better working

environment for future developments. Many of the desirable features in the OSIPE version

ofMUNgauss were kept in the newly designed version, namely the modular approach, route

independent character, and several others.

Generally speaking, the new design also tries to include other commonly considered "good

programming" features. They include, correctness, robustness, extendibility, reusability,

compatibility, efficiency, portability, verifiability, integrity, ease of use, and proper

4

documentation 1• These terms are defined in the glossary.

1.2.1 User and Programmer Interests

When developing code, it is important to remember that the user and the programmer have

different needs. From the user's point of view, the program should be correct, robust,

compatible, portable, efficient, easy to use, and be well documented. From the programmer's

point of view the program should have all of the above features and also be readable,

extendible, reusable (or have reusable parts), verifiable, and have integrity. Ideally for both

the user and the programmer, the program should be optimal in every feature, but this is not

always possible. As a result, there are trade-offs between these features. When designing

programs one should try and balance each feature in the best way possible.

This work will present an approach to code design which addresses these desired features.

In addition to these very general features, more project specific features will be added to the

code; these will be discussed in chapter 2.

1.3 Outline

This work presents an approach to creating large scientific programs. Chapter 2 describes

the process of problem description and reasons for choosing Fortran 90/95 as the language

in which to write these codes. Chapter 3, will present a list of strict design protocols for the

5

programmers to follow. Following these protocols will create a program that will allow

others to read, understand and maintain the code more easily. A method of writing the code

is contained in Chapter 4. This section lays out a program design which creates very useful

features that can be used for debugging and code optimization. Chapter 5, presents the total

picture, and how to add new functionality to the program. Often the new functionality is an

older peice of code writen in FORTRAN 77, by following the procedure in Chapter 5, old

FORTRAN 77 code can be converted to be used in the new Fortran 90 environment. An

example of such a conversion will also be included.

6

Chapter 2

Problem Description

2.1 Defining the Problem

The first step in the creation of a well written scientific program is to know what problem

is to be solved. Writing a description of the problem is a very important and often

overlooked step in creating a program. This initial step allows for the creation of an overall

plan to tackling the problem. It also allows for the separation of the problem into groups

(classes and objects). These classes and objects will be used to organize and modularize the

code.

7

It is important to clarify the use of the terms classes and objects. Fortran 90/95 is not an

object-oriented language, however, it does contain many ofthe features of an object-oriented

language. The terms are not used in the object-oriented sense. These terms are used in the

thesis to represent an organization method. The code was analyzed in such a way as to group

like-things together. An object is defined, in relation to the program description, as

something that the code can create, use, and/or print. Classes are then defined as a group of

objects which have something in common. This differs greatly from the use of these terms

in object-oriented programming, where an object is a specific instance of a class. These

terms will be further clarified throughout the problem description.

2.1.1 Program Description

To start the organization process the main purpose ofthe code, MUNgauss, had to be written.

"To create a quantum chemistry program which will have ab initio, density

functional theory, molecular mechanics, and other packages. "

In this purpose statement the high level divisions of any quantum chemistry package can be

seen, i.e. ab inito, density functional theory (DFT), molecular mechanics (MM), etc. These

high level divisions are used as the basis for the code organization.

This is a top-down organization method. Researchers find it easier to visualize this

8

organization method. A theoretical chemist, for example, will think of results in terms of

what theory is used to calculate them. Molecular mechanics, ab initio, or DFT calculations

are thought of differently by a theoretical chemist4• For example, the results of an ab initio

calculation may be written as MP4/6-31G(d)//HF/6-31G(d), meaning that the energy was

calculated at the MP4level of theory, with a 6-31G(d) basis set, using a Hartree-Fock (HF)

with 6-31 G(d) basis set, optimized geometry. The design style should to reflect this, so the

first level of division is at the theory level. When starting to write a program these different

theories are "naturally" distinct, and thus are a good first level of division. Remember the

programming style designed aims to be programmer friendly, since the target programmers

are scientists, the style should reflect their way ofthinking. For a large, complex code, such

as MUNgauss, a top-down organization method provides clarity to the "readers" ofthe code,

i.e greater readability.

The next level of division would be based on the methods of calculation. The wavefunction,

in ab initio calculations distinguishes between different methods, be it Restricted Hartree­

Fock (RHF), generalized valence bond theory (GVB), or unrestricted Hartree-Fock (UHF),

or one of many others4
• For molecular mechanics (MM) there are different force fields which

must be treated differently, MMFF90 is the current force field which has been implemented

in MUN gauss5
• Similarly density functional theory (DFT) has many different methods which

could be implemented, e.g. B3L YP or SVWN5• Note that not all these methods are currently

available in MUNgauss but the design of the code must allow for the addition of different

9

packages, as the field of computational chemistry is a very dynamic one. These methods are

the basis of the next division of code, the term modality is used to describe this level of

division. Table 2.1 shows a list of many of the possible modalities which could be

incorporated in a quantum chemistry package.

Table 2.1.1: Possible modalities for a quantum chemistry package.

Level of Theory Coordinates

ab initio semi-empirical MM DFT

RHF CNDO MMFF94 B3LYP XYZ
UHF INDO CFF B3P86 ZM
MPn MINDO Charmm22 G961LYP PIC
CI NDDO AMBER SVWN RIC
cc MNDO CVFF
MC-SCF AMl COMPASS
CASSCF PM3

Another division which can be made at this level is that of the coordinate system. The

coordinate system is not a level of theory but each coordinate system must be treated

differently in the calculations, therfore the division was made. Some coordinate systems

available in MUNgauss are cartesians, Z-Matrix (ZM), proper internal coordinates (PIC), or

redundant internal coordinates (RIC).

The modalities above are chosen as a way to split the code along the lines of thought of the

theoretical chemists.

The next step is to write a list of the individual components the code can produce. This will

10

be a list ofthe objects which will be later classified into classes for further code organization.

2.1.2 Classes and Objects

Objects

What is an object? This is not an easy thing to precisely define. As mentioned, OSIPE3

defined an object as an entity the program was able to address i.e. scalar, vector, matrix,

tensor, etc., and can only be created by one routine which created nothing else. In this

context an object is defined as something that can be either printed or used by other parts of

the code to preform their computations. The objects are what the code actually uses, they

contain all the calculations and subsequent results of the calculations preformed in the

program. An object should represent something. Usually, in the case of a computational

chemistry code, that something comes from the theory which defines the problem. For

example, when calculating the energy of a molecule, the distances and angles between atoms

in the molecule are needed. These are two objects of the program, named

ATOMIC_DI STANCES and ANGLE_ATOMS respectively in MUNgauss. Below is a list of many

ofthe objects which MUNgauss needs/uses to preform computations.

11

Table 2.1.2: List of Objects in MUNgauss

lE AO
lE DIPOLE
lE OVLAP AO A B BLOCK - - ---
lE SMl TV AO AB - - -
lE SSMl AO AB BLOCK - - - -
lE TV AO AB - - -
lE TV AO MONOMER A - - - -
lE TV AO MONOMER B
lE V AO AB -- -
lE V AO MONOMER A -- - -
lE V AO MONOMER B -- - -
lMATRIX
1MATRIX%GVB
1MATRIX%RHF
1MATRIX%UHF
2E%COMBINATIONS
2E%RAW
ANALYTICAL
ANGLE ATOMS
AO%MULLIKEN
AO BY AO%MULLIKEN
ATOM TYPES
ATOMIC%MULLIKEN
ATOMIC DISTANCES
ATOMIC MASSES
ATOMIC NUMERICAL
BMATRIX
BMATRIX%PIC
BMATRIX%RIC
BMATRIX%ZM
BOND ATOMS
BOND ORDER
CARTESIANS
CLOSE CONTACT
CNCOMP
COEFFICIENTS
COEFFICIENTS%GVB
COEFFICIENTS%RHF
COEFFICIENTS%UHF
COEFFICIENTS OV
COM CON
COMP ATOM NUM

COMPONENTS
CONN FAILSAFE
CONN PRUN
CONN PRUN HOMRED INCIDENCE - -
CONNECT
CONVAL
COORDINATES PIC
DEFAULTS
DENSITY
DENSITY%RHF
DIPOLE MOMENT
EDGE RING TO RING ASSEMBLY - -
EDGE TO RING
ENERGY
ENERGY CONTRIBUTIONS
ENERGY TOTAL
ENERGY WEIGHTED
ENERGY WEIGHTED%GVB
ENERGY WEIGHTED%RHF
ENERGY WEIGHTED%ROHF
ENERGY WEIGHTED%UHF
FACTORED
FOCK MATRIX
FREQUENCIES
FUNCTION
FUNDRING
GAMMA FUNCTION
GRADIENTS
GUESS
HESSIAN
HUCKEL
INTEGRALS
INTEGRALS MO
INTERNAL
INTERNAL% PIC
INTERNAL% RIC

INTERNAL%ZM
INVERSE
INVERSE FACTORED
LENGTH FULL
LOCALIZED
LOCALIZED LIST%GVB
MATRIX%ANALYTICAL
MATRIX%NUMERICAL
MM CONTRIBUTIONS
MO
MO%GVB
NET ATOMIC%MULLIKEN
NON BONDED
NON BONDED ATOMS - -
NUMBER OF PARAMETERS
NUMERICAL
OBJECTS CREATED
OBJECTS STATUS
OOPBEND ATOMS
OPT
OPT BFGS
OPT DIIS
OPT OC
OPT VA
PAIR LIST CMO - -
PARAMETER CONTRIBUTIONS
PARAMETERS
POINT
PROGRAM
PRUNE HOMRED
RIC
SCF
STEP_SIZE
THIRD SEMI DIAGONAL - -
TORSION ATOMS
VAN DER WAAL BONDS - - -
VERTEX LIST
VERY WEAK BONDS

This list shows another feature which is very important to the readability of the code, the

naming of objects are meaningful to anyone reading it. A reader with knowledge of the

theory of the different methods being coded, would recognize most of the objects listed

above as something from the theory. As stated earlier MUNgauss is an old code that is being

converted to the new programming style, the list above shows this conversion is a process,

12

it contains both objects named in the new style and those created in the earlier versions of

the code. These objects have not yet been given proper names but will be converted as the

project continues. Also note that some object names contain a percent,'%', character

followed by one of the modalities defined above. This shows that the code can create

different "flavors" ofthese objects, i.e. it can create a matrix used in calculating density, the

lMATRIX, for GVB, UHF, or RHF.

Classes

The objects must now be grouped in some logical manner which will help modularize the

code. These groups are referred to as classes. The process of deciding which class an object

belongs to, is often a difficult one, and one for which there is no set procedure. It is a process

which will involve constant re-evaluation as coding proceeds. There are some considerations

when deciding class, they include:

• Placing an object into a class should help the code organization

• All objects in a class should have something in common

• Objects within a class are built in a similar fashion

Figure 2.1.1 shows the objects given above divided into classes. As with the list of objects

provided this list of classes is not finalized. This is still a work in progress and classes are

redefined, created, and removed, as the code continues to develop.

13

Figure 2.1.1: MUNgauss OBJECTS grouped into CLASSES

~B_A_S_I_S~S_E_T ________ ~I DERIVATIVES
ST0_3G THIRD_SEMI_DIAGONAL

COORDINATES
BMATRIX
BMATRIX%ZM
8MATRIX%PIC
BMATRIX%RIC
RI C

I CHARGE DENSITY
POINT
ATOMIC_NUMERICAL

··- I ENERGY

I FOCI<
RUCKEL

FORCE CONSTANT

NUMERICAL
MM_CONTRIBUTIONS

I DATA I :::ION ____________ ,

DEFAULTS GRADIENTS
~--=:-=,---··-·-·---

GRADIENTS COMPONENTS
GUESS CARTESIANS
HESSIAN INTERNAL
INTEGRALS INTERNAL% ZM
INTEGRALS_MO I NTERNAL%PIC
OPT INTERNAL% RIC
OPT_VA OPT
OPT_BFGS LENGTH_ FULL
OPT_OC MM_CONTRI BUTIONS
OPT_DIIS
COORDINATES - PIC GUESS
SCF
PROGRAM DENSITY

DENSITY%RHF

DENSITY
MO
MO%GVB

lMATRIX HESSIAN
1MATRIX%RHF
1MATRIX%GVB GVB
1MATRIX%UHF DEFAULTS

- ··-

ENERGY_WEIGHTED PAIR_LIST_CMO
ENERGY_WEIGHTED%RHF
ENERGY_WEIGHTED%UHF

I :~_MATRIX I
ENERGY_WEIGHTED%GVB
ENERGY_WEIGHTED%ROHF

GRAPH
ANGLE_ATOMS
BOND_ATOMS
CLOSE_CONTACT
COM CON
COMP_ATOM_NUM
CNCOMP
CONNECT
CONN_ FAILSAFE
CONN PRUN
CONN=PRUN_HOMRED_INCIDENCE
CONVAL
EDGE_RING_TO_RING_ASSEMBL
EDGE_TO_ RING
FUNDRING
OOPBEND_ATOMS
PRUNE_HOMRED
TORSION_ATOMS
VERTEX_LIST
VERY_WEAK_BONDS
VAN_DER_WAAL_BONDS
NON_BONDED
NON_BONDED_ATOMS

HESSIAN
-·-·----·----------
ANALYTICAL
FACTORED
I NVERSE
I NVERSE_ FACTORED
MATRIX%NUMERICAL
MATRIX%ANALYTICAL
STEP SIZE

INTEGRALS
lE_AO
lE_DIPOLE
lE_OVLAP_AO_A_B_BLOCK
lE_SMlTV_AO_AB
lE_SSMl_AO_AB_BLOCK
lE_TV_AO_AB
lE_TV_AO_MONOMER_A
lE_TV_AO_MONOMER_B
lE_V_AO_AB
lE_V_AO_MONOMER_A
l E V AO MONOMER B
2ElCOMBINATIONS-
2E%RAW

MO
HUCKEL
COEFFICIENTS
COEFFICIENTS%RHF
COEFFICIENTS%GVB
COEFFICIENTS%UHF
COEFFICIENTS_OV
LOCALIZED
LOCALI ZED_LI ST%GVB

MM -----------·------
ATOM_TYPES
ENERGY TOTAL
ENERGY=CONTRIBUTIONS
PARAMETER CONTRIBUTIONS

MOLECULE
ATOMIC_DISTANCES--
ATOMIC_ MASSES

OPT
1-ffiiii:Tr·oo-------------
HESSIAN
NUMBER_OF_PARAMETERS
PARAMETERS
STEP_ SI ZE

PARAMETERS
FREQUENCIES

POPULATION ANALYSIS
AO_BY_AO%MULLIKEN
AO%MULLIKEN
ATOMIC%MULLIKEN
NET_ATOMIC%MULLIKEN
BOND_ORDER

PROPERTIES
-------------·--·
DIPOLE_ MOMENT

PROGRAM
OBJECTS_CREATED
OBJECTS_STATUS

The bolded names in the first row of each box is the class name and below are the objects

which belong to that class.

2.1.3 Overall Code Organization

Figure 2.1.2 shows the overall code organization. It shows the 5 levels of modularity:

1. the program encompasses everything in the code.

14

2. A package is defined as a level of theory, be it ab initio, molecular mechanics.

3. The modality division is based on the next division in theory, i.e. wavefunction

(RHF, UHF ...), force field (MMFF90). Also at the modality level is the coordinate

system, which is not shown in the figure.

4. Classes are next, the classes in the code are listed down the left side of the figure.

5. Finally the objects are listed, organized into classes. Note that the checks mean that

the object is available at that particular modality.

A summary diagram such as Figure 2.1.2 shows the functionality of the program. A quick

look at the figure tells the user exactly what the code can do, it can also help the programmer

locate objects that they may need to use, this may become useful in very large codes where

an individual programmer may need a piece of information (an object) and may not know if

it has been already coded. A look at a summary table could save there-coding of an object.

2.2 Desired Features of Code

Each project/code will have features specific to that project or code. These features include

how users input information, what printing control is required, debugging and timing

features, as well as other programmer tools desired. Clearly defining all of these features

is vital so that the program design can reflect these requirements. Following is a list of the

features desired in MUNgauss.

15

Figure 2.1.2: Summary table ofMUNgauss functionality and organization

16

1. All the features of"well-written" code presented in Chapter 1 must be considered and

balanced. That is: correctness, robustness, extendibi/ity, reusability, compatibility,

efficiency, portability, verifiability, integrity, ease of use, and proper documentation 1•

2. Separate packages. As mentioned MUNgauss contains several different methods for

different levels of theory. The final code should be able to be separated into

packages (i.e. smaller devoted executables). For example, just an ab initio code,

which is compiled and ran separate from the molecular mechanics part of the code.

3. Self-debugging tools. The code should contain tools that help the programmer find

errors in the code. This should be a feature which can be turned on and off as

needed, and possibly removed from the code when a "number-crunching" or "user"

version of the code is released.

4. Timing feature. The ability to determine the time the code takes in a particular

routine would be very beneficial in optimization of the code.

5. Trace of execution. Since MUNgauss is route independent, that is it has no set path

of execution, the ability to determine the path of execution is very useful in

debugging the code.

6. Complete control from the menu. Control over default values and other variables the

code uses should be available in the menu (input).

7. Control of output. Similarly, what the code outputs should be exactly what the user

wants, with no extras.

17

8. Portability. The code must be portable, that is it must be able to run on different

platforms.

2.3 Choice of Language

The choice of programming language is a very important one. There are many factors which

can guide the decision from one language or another. There are practical considerations,

which include cost of appropriate compilers/hardware, cost of retraining staff if a new

language is chosen, applicability of the language to the desired code. In general one desires

a language with a notation that fits the problem, simple to write and learn, powerful

operations, etc. Fortran is very good with numerical computations, has many diverse and

reliable libraries, and an official standard exists which helps portability;.

However, the major factor which directed the decision oflanguage in this project was that

the old version ofMUNgauss was written in FORTRAN 77. While it is possible to convert

old FORTRAN 77 codes into Cor C++, the process is much more difficult than converting

to Fortran 90/95. Fortran 90/95 is based upon FORTRAN 77, and in fact any standard

FORTRAN 77 codes should compile and execute with a Fortran 90/95 compiler·7•
8
•
9

• This

allows for incremental conversion, which means there can always be a working code, even

during the conversion process.

18

Table 2.3.1: A sample of current theoretical chemistry packages, and their
programming language -
CADPAC11

GAMESS12

Gaussian 9813

Q-Chem14

Spartan15

AMBER16

18

Coupled cluster and many body
perturbation theory

ab initio quantum chemistry package

general ab initio quantum chemistry
package

quantum chemistry package

ab initio electronic structure program

molecular modeling program

molecular mechanic chemistry
package

program for macromolecular
simulations

molecular software

FORTRAN77

FORTRAN??

FORTRAN 77 (with some C for
specific unix calls)

FORTRAN??

C++

FORTRAN 77, C, (C++ GUI)

FORTRAN77

FORTRAN??

C and C++

Most legacy scientific codes are written in FORTRAN 77 so Fortran 90 is an appropriate

language to use in the project. Table 2.3.1 contains a list of current theoretical chemistry

packages and their programming language. In addition to the back-compatibility issue,

Fortran was designed for computation intensive computing, i.e. scientific computing9
• There

are also many other features in Fortran 90 which make it more programmer friendly. Some

of these are briefly discussed below.

Fortran 90 is also a migration path to Fortran 2000 and High Performance Fortran (HPF)19
•

HPF was thought to be the "next big thing" in parallel computing in the late 1990's.

Although HPF seems to have lost some of its initial steam, there are still many groups

pursuing HPF. Converting to Fortran 90 is a good first step for programming in HPF, as

many ofthe construct ofHPF are used in Fortran 90. Fortran 95 has many more of the HPF

19

features, however due to the fact that a Fortran 95 compiler was not available on all systems

used for this project, Fortran 90 was chosen as the standard.

The next major release in the long history of Fortran will be Fortran 20009
• Scheduled for

released in 200420
, Fortran 2000 will eliminate some of the features marked obsolete in

Fortran 90 (see table of obsolete features, Table 2.3.2). Most of these features are part of the

FORTRAN 77 standard and who's implementation can be more eloquently performed with

newer constructs. Fortran 2000 will also introduce true object-oriented programming to the

Fortran world. The approach to code design presented in this work, while not object­

oriented, is a good first step in that direction.

2.3.1 Drawbacks of FORTRAN 77

Since MUNgauss was written in FORTRAN 77, why change? By today's standards

FORTRAN 77 is just outdated. There are many deficiencies in FORTRAN 77 that make

using FORTRAN 77 unfavorable. Firstly FORTRAN 77's 'punch card' or 'fixed form '

source format. FORTRAN 77 was based on the use of punch cards for programming, each

punch card represented one line of code, since there were 72 columns on each card,

FORTRAN 77 would ignore any thing past the 72"d column. This restriction is no longer

necessary9
•

20

In addition, FORTRAN 77lacked dynamic storage. The ability to create a temporary array

on-the-fly is not there in FORTRAN 77. Therefore programmers would have to create arrays

that were "big enough" for any future problem size. There is also a lack of user defined data

structures. Having the ability to create compound objects is very favorable, but not present

in FORTRAN 77. FORTRAN 77 did not have explicit recursion. Recursion is a very useful

mathematical technique which is missing from FORTRAN 772
•

FORTRAN 77 also relied on the coMMON block to give global access to data. This method

was often abused and due to lax rules led to users inadvertently doing horrendous things.

Also the practice of aliasing an array using an EQUIVALENCE statement is considered unsafe

and should no longer be used9
• These drawbacks ofFORTRAN 77 have all been addressed

in Fortran 90, making it a much more favorable choice.

2.3.2 Fortran 90 compared to FORTRAN 77

Figure 2.3 illustrates a high-level conceptual view of the composition of Fortran 90.

FORTRAN 77 makes up the foundation upon which Fortran 90 is based, approximately two­

thirds of the content of the new standard are directly supported by the old standard. Thus

much ofthe data type, such as INTEGER, REAL, and CHARACTER, as well as IF and DO

statements remain the bases of most control structures. I/0 is virtually unchanged, with some

minor enhancements, and the decomposition of large programs is still through the use of

subroutines and functions.

21

However the new features of Fortran 90 are significant and make it easier to work with and

more efficient. These features help to bring Fortran 90 more in line with other modem

programming languages.

Source Format

Figure 2.3.1: High-level conceptual view of
the makeup of Fortran 902

I Interface Blocks I

I Pointers I
I Derived Types I

Modules

Array Operations

I Simple Extensions to Fortran 771

FORTRAN 77

Major Building Blocks of Fortran 90

Fortran 90 has anew source format, 'free format'. Free format allows for up to 132 columns

per line, no reliance on specific position of special characters, more than one statement per

22

line, in-line comments, both upper and lower case letters (improving readability), object

names that can be up to 31 characters, and names that can be punctuated by underscores. All

these features of free source format make if very attractive to new programs2
•
9

•

Dynamic Memory Allocation

Fortran 90 has introduced dynamic storage, which means allocatable arrays and pointers can

now be implemented. Arrays can be created on the fly and removed as needed. Also the

addition of pointers enables such dynamic data structures as linked lists and trees to be

created. Dynamic memory allocation is one of the first features that attract programmers to

Fortran 90 over FORTRAN 77, it was also the first feature incorporated in MUNgauss,

during the redesign process9
•

User defined data types

User defined data types are now part ofFortran 90. These data types can be constructed by

the user using existing types. Defining objects in this way (grouping them together in one

data type) is more intuitive and make programming easier and less error prone2
•
9

•

Recursion

Explicit recursion is now available. The programmer can declare a procedure to be recursive

and then it can be used to call itself. This is a very useful approach to many

mathematical/scientific problems9
•

23

Control Constructs

New control constructs have been added to Fortran 909

-do end do

-do while

- exit, to allow graceful exiting ofloops

-cycle, for abandoning current iteration

-named control constructs (i.e. labeled); improves code readability

- select case control block; more succinct, elegant and efficient than an if . ..

elseif ... elseif block

Internal Procedures

A procedure is allowed to contain a further procedure with local scope. This second

procedure can not be accessed from outside the procedure from which it was defined9
•

Modules

A new idea in Fortran 90 is the use of modules. A module is a program unit used to package

together declaration, subprograms, and definitions of new derived data types. Another

program unit simply must 'use' the module to have access to all features in that module9
•

- blockdata subprograms are now redundant since a module can be used for the

same purpose.

-Useful libraries can be written and placed in a module.

24

2.3.3 Obsolescent Features of Fortran

To protect the investment of all the years of programming preformed using FORTRAN 77,

Fortran 90 has included the FORTRAN 77 standard in its entirety. However, many of the

features of FORTRAN 77 can now be implemented using more modem features. As a way

to allow the language to progress and improve, Fortran 90 has indicated that some of the

features of FORTRAN 77 are marked obsolescent9
, which means:

1. They are already redundant in FORTRAN 77 (i.e. they were in FORTRAN 66 or

other Fortran standards).

2. Better methods of programming already existed in FORTRAN 77 standard.

Table 2.3.2: Obsolescent features ofFortran9

~ Obsole~cenf Featur~ pf'Fortran . Should b~ replaced with

Arithmetic IF Statement an equivalent CASE or IF construct

ASSIGN Statement

ASSIGNed GOTO Statement an IF statement or a procedure call

ASSIGNed FORMAT Statement USe a CHARACTER string to hold FORMAT
specifications

Hollerith Format Statements use single or double quotes in FORMAT
WRITE(*,100) statement: 100 FORMAT(17H TITLE OF PROGRAM) WRITE(* , 100)

100 FORMAT ('TITLE OF PROGRAM')

PAUSE statement use PRINT followed by READ

REAL and DOUBLE PRECISION DO- use INTEGER variables and construct REAL
loops Variables or DOUBLE PRECISION variables within the

loop

Shared Do-loop Termination Use END DO instead

25

3. Programmers should stop using them.

4. It is the intention of the standard's committee to remove these features in subsequent

releases ofFortran.

There are also a set of features that have not been marked obsolescent but have been

identified as being "undesirable"9
• These include:

1. Fixed source form

2. Implicit declaration of variables

3. Common blocks

4. Assumed size arrays

5. EQUIVALENCE statement

6. ENTRY statement

7. Computed GOTO

These features should be avoided in any new code and should be slowly removed from

existing code.

26

Chapter 3

Design Protocols

3.1 Introduction

The key to creating or redesigning a large scientific program that is easily maintained and

updated is a strict set of design protocols. This chapter will present such a set. It will include

a consistent programming style, consistent use of variables, subroutine, modules, and

functions, and consistent documentation practices. These protocols must be followed by

every programmer working on the code to ensure others can work on the code with relative

ease.

27

What are design protocols? The use of the term design protocols combines both the visual

look of the programs as well as how the tools of Fortran are implemented. The key is

consistency. The goal is to design code that can be easily maintained and updated, not only

by the primary programmer, but also other programmers. Consistency in the look and use

of subroutines, modules, variables, etc., are essential to making this possible.

The process of establishing a strict set of design protocols is not an easy one. The rest of this

chapter gives the set of design protocols implemented in MUNgauss. Some may be changed

by the users to reflect their personal style (though this is discouraged). Others, however, are

believed to be more important to the operation ofthe code and it is recommend that they be

followed as stated. The more important protocols relate to the implementation of the tools

of Fortran 90/95, and how functions, subroutines, modules, etc. are used and how they

interact.

3.2 Programming Style

Every programmer has their own personal programming style, however for a correctly

designed program written by many programmers, having everyone use the same set of

guidelines makes the code readable for anyone working on it. Guidelines also helps the

person responsible for the entire code (the primary programmer) read and maintain parts of

the code written by other programmers. This alleviates the need for everyone working on

the code to be intimately knowledgeable about the entire code. Style is a very individual

28

thing and there does need to be some flexibility, however, guidelines are essential for

consistency.

A programming style consists of everything from where variables are defined, how lines of

code are aligned (i.e. how indentation is used), and how variables are named, to the use of

program headers, comment lines and error messages.

3.2.1 Program headers

The use of a program header is very helpful in writing large code. Following the opening

program or subprogram specification there should be a series of comments which describes

the program or subprogram, called the program header. The program header should consist

of the programmers name, the date the program was written, the version (if applicable), and

a description of the routine. This description should include details such as any special

algorithms it uses, assumptions the programmer has made, useful references to related

information, as well as a directory of the variables passed in or out of the routine. This

allows a programmer to read a few lines and know exactly what this subroutine, function, or

module does and what it is used for.

In MUNgauss, program headers are to be contained in a box of asterisks. This allows for a

sharp visual look that is immediately recognized, and helps to delineate boundaries between

subroutines. Figure 3.1 contains an example of a program header.

29

Figure 3.2.1: Sample program header

Each subprogram unit should be documented with a program header, this includes (but is not

limited to) subroutines, functions, and modules. Information in the program header needs

to be kept up to date, or it becomes irrelevant. Also in keeping with the current Fortran 90

standard, changing from a block of asterisks to a block of exclamation points should be

considered, since any line that starts with an exclamation point is a comment line in the new

"free source form". Fortran 90 does support "fixed source form" for backward compatibility

with FORTRAN 77 2•
8

•
9

. Currently MUNgauss uses fixed source form.

3.2.2 Declarations

The look and order of variable declarations and use of modules and include files is an

important feature of a programming style. A comment line is placed before the USE,

INCLUDE or variable declaration which states what follows, i.e. before input scalars are

declared in a routine, there is a comment line that states ' * Input Scalars : '. The visual

30

impact of this style allows for quick and easy location and identification of variables when

editing the code. Figure 3.2.2 shows a declaration section of a programming unit with no

Figure 3.2.2: Declaration section, no comments. Not recommended

comments. Figure 3.2.3 shows the recommended style. Both are fine with the Fortran 90

standard, however the second is much more readable by the programmer. In addition, a

blank comment line with only an'*' helps the code look cleaner and is always used before

a comment line. Again switching to an ' !' should be considered.

In addition to those listed in Figure 3.2.3, other separations could be made in the variable

declarations. Declarations could be divided into local scalars, local parameters, local arrays,

work arrays, input or output arrays, and many more. Comments could also follow a variable

definition which states what it represents and how it is (or should be) used, if it would assist

the clarity. This is done simply by a statement preceded by an exclamation point. This is

31

Figure 3.2.3: Declaration style; the comment lines separate and organize different types of
declaration for easy identification.

also illustrated in Figure 3.2.3.

ChCJ.racter*(*), intent(IN) opj_name !Object description goes here

Note that using include files as presented in this example is being phased out. Includes are

almost entirely being replaced by modules. The includes in Figure 3.2 are remnants of the

earlier OSIPE version ofMUNgauss. There are still some situations where includes could

be used, these are discussed in Section 3.3. The keyword intent is used in this figure,

intent indicates how the variables are being used. Intent (in) means the data in those

32

variables will be passed into the subroutine or function, intent (out) means data will be

passed out of the routine via those variables2
•
9

•
7

. This will be discussed further in Section

3.3.3.

3.2.3 Indentation

Another part of a programming style is the indentation of loops or code segments.

Programmers should adhere rigorously to alignment and indentation guidelines. In

MUNgauss each line, other than comment lines, is indented seven spaces. An additional two

spaces are used within loops (such as do loops) or other code segments (i.e. if or case

statements, derived types) to emphasize a relationship between various parts ofthe program.

Figure 3.2.4: Example of indentation practices; note seven spaces before executable code,
and an extra two spaces for each statement sequence within constructs such as case
statements and do

Alignment is another visual clue to the execution of the code, and improves readability.

FORTRAN 77 required an indent of seven spaces for the execution part ofthe program. This

33

is known as fixed source form. Since most of the programmers now learning/using Fortran

90 are/were FORTRAN 77 programmers it was decided to keep this protocol; even though

it is not required as part of the Fortran 90 standard.

Figure 3 .2.4 also show another very important feature ofFortran 90, labeling. Here the select

case is labeled so the end of the select case can be easily identified. Such a label helps

readability of the code.

3.2.4 Naming and Capitalization

Although Fortran 90/95 is case insensitive, consistency in capitalization is very important.

This maintains visual consistency for all occurrences of the variable, module, subroutine, or

function name. It is also useful in editing the code. If a variable is used in the exact same

manner (same capitalization) then performing a global substitution (throughout the entire

code) becomes a much simpler task. Creating a strict set of rules governing naming and

capitalization is a difficult task. Below are some of the general rules for naming and

capitalization:

1. Assume case sensitive, once a variable is named, always use the same capitalization

at every occurrence ofthe variable.

2. Names should hold some meaning. Names should be long enough to have meaning

when read.

34

is more meaningful than

Do not use "skimpy" abbreviations just to save a few keystrokes. Also the use of

underscores U between words in a name is encouraged.

is better than

3. When using an indexing variable, give the indexing variable a name that pertains to

the application, i.e. do not just call it i or j, use !index or Jindex.

4. Upper case variable names and lower case the part that would be subscript (e.g.

Iatom, Ibasis)

5. In MUNgauss subroutines are combined into groups with certain prefixes. These

prefixes give programmers a clue of what the subroutine does simply by looking at

the name. The prefix to subroutine names should be capitalized. Table 3.1 shows

the list of prefixes used in MUNgauss and some examples of their use.

35

Table 3.2.1: Prefixes used in MUNgauss

PRT Prints something to file or screen PRT_matrix
PRT_GRAPH_NO_BONDS
PRT_ Object

BLD Builds an object BLD_GUESS_MO
BLD_Bmatrix
BLD_guess_MO_GVB

PRG Program infrastructure routines, dealing PRG_manager

with the design and functionality of the
code

GET Usually "gets" a scalar value. Normally GET_object_number

a call to a utility

MENU Routines that deal with the menu/input MENU_ints

12E, IlE Routines used in one or two electron I2E_SSSS

integrals

MAX Used in variable names that define a MAX_atoms

maximum value, normally a parameter

6. All Fortran keywords (integer, print, if . .. then, etc ...) should be lowercase.

This is contrary to much of the suggested programming practices in the literature2
•

However, scientists are reading code to see the algorithm or method being used. The

Fortran code is secondary. Capitalizing the Fortran keywords has the opposite effect

of emphasizing exactly the part of the code that should not be emphasized.

The stated naming and capitalization rules work together to create code that is much more

readable. The meaningful variable, module, subroutine, and function names give the

scientific programmer information on the purpose of (and possibly theory used in) the

36

program. In addition, these rules emphasize the algorithm and minimize the Fortran code,

creating a much more readable and understandable program.

3.2.5 Comment Lines

The use of comment lines and comments in general, may be one of the most under utilized

practices in all of programming. Comments are extremely important. The current

programmer may know that matx and maty refer to a certain pair of matrices, but the next

programmer using/reading their code may not. Adding a simple comment after the

declaration, by placing an exclamation point(!) then the comment could save someone the

time it takes to trace the code. Also, as stated in the section 3.2.4, the variable name should

have some meaning, which will also help in reading the code.

Comment lines are also used to help separate pieces of the code. For example when variable

declarations are made, the lines"* Local scalars" or"* Input scalars" are included

before these variables are declared. This is an easy way to tell future programmers where and

how the variables are being used. Also a blank line containing just an asterisk(*) in the first

column helps to separate blocks of code. Fortran 90 does allow just a blank line; however

the '*' is helpful in defining the separation. Again, to keep with Fortran 90 standard the

exclamation,' !', point should be considered in future codes.

37

Comments between blocks of code explaining what those code segments are doing, maybe

stating the algorithm used and including a reference, both helps another programmer to read

and follow the execution of the code, and gives them information on how they may change

or improve the code. That is, knowing the algorithm and reference helps future programmers

find newer more efficient algorithms. Though not likely, it is possible to have too many

comments. If comments begin to clutter the program, some restraint may be needed.

3.2.6 Error Messages

Error messages are a debuggers friend. At least meaningful error messages are. Error

messages exist to allow the program to exit gracefully, rather than crash catastrophically.

Wherever possible including an error check, to determine if the program is running as it

should, and that the data is appropriate, is very important. Just as important as allowing the

program it exit gracefully, is to print a message for the potential debugger. All error

messages must follow a consistent style and include the following:

a) Where the error occurred, i.e. the routine that detected an error.

b) What variable or object caused the error.

c) A possible solution to the error.

d) Stop command with a brief message ofwhere the error occurred

38

Error messages should be contained in if ... then ... end statements as seen in the example

in Figure 3.2.5. In the example, the subroutine is named ADD_atom, and the error message

prints:

ADD:i~t~m; too many atoxns: must i:i:wrease MAX_ATOM

where MAX_ATOM is the maximum number of atoms allowed in the calculations (a parameter

set by the module which contains ADD_atom subroutine). In this error message the user

instantly knows that an error occurred in the ADD_a tom subroutine, and that a likely solution

is to increase the maximum number of atoms allowed.

3.2.7 Other

There should be an option to echo all input. That is, any value given to the code by the user,

via the menu in MUNgauss, should be able to be printed as part of the output of the code.

This gives the user a record of what they asked for, and having it with the output helps them

understand the results. This is very useful in situations where the output seems "fishy", it

39

may be that an input variable was incorrect. It is a way to ensure that the program is reading

the input correctly. If the program can reproduce the input then it read it correctly.

Also every piece of output should be labeled. Labels should be clear and concise and include

units if applicable. For example:

produces much more informative output than

The use of the asterix (*) is not recommended for printing. This practice is not exactly

portable, a line printed with the command 'print *, rate' on one machine may not be

exactly the same as on another machine. This is particularly noticeable when printing real

numbers. The same thing applies for the write command.

Only information requested by the user should be printed in the output. It can be very

confusing if everything the program computes is dumped to the output when all the user

wants is a specific piece of information. The product of any scientific code is the output it

creates. The program can produce log files of execution, output from certian diagnostics,

scientifically relevant results, or intermediate values for debugging and verifying. It is

important the the program have controls which allows the user or programmer to select only

40

the output or product they desire.

Output should also be presented in an organized manner. Tables are very useful in this

regard. Remember to label the table clearly with each column or row having a label.

Headers or titles for tables are another good practice.

3.3 Use of Variables, Modules, Subroutines, and Functions

As with programming style, consistency is the key when using variables, modules,

subroutines, functions, etc. The programming practices governing these Fortran constructs

are important to state and follow to help with the overall plan of developing well-written

code that is easily written and maintained by several programmers. This section outlines

some of the programming practices which will help in meeting the programming goals

discussed in Section 2.2.

3.3.1 Variables and Constants

In addition to the style considerations discussed in the previous section there are other, more

logistical, matters regarding the implementation of variables and constants. In Fortran 90 a

variable is any data item that can have its value changed at execution time, while a constant's

value can not change during execution.

implicit none

41

The most important programming practice dealing with variables and constants it the

inclusion of implicit none in every program or program subunit in Fortran, any variable

whose type is not explicitly declared in a type statement will be assigned a type according

to an implicit naming convention. That is, any undeclared identifier whose name begins with

I, J, K, L, M, or, Nor the lowercase equivalents will be typed as integer and all others will

be typed as real8
• This means that failing to declare a variable is not an error. Thus a typing

error may not be picked up by the compiler and could end up causing debugging problems.

Fortran 90 provided the implicit none statement to cancel this naming convention.

Placing implicit none at the beginning of the specification part of every program or

program subunit requires that the types of all named constants and variables must be

specified explicitly in type statements.

Variable Initialization

All variables are initially undefined in Fortran. The variable declaration statement has the

following format:

While it is possible to initialize a variable in their declarations, this practice is discouraged.

For readability purposes, variables should be given initial values in the body of the program,

so that when a programmer is reading the code they can clearly see the initialization in the

42

same place as the variable is used. This is in contrast to constants.

Constant Setting

A constant is specified by including a parameter attribute in the declaration of an identifier:

Here it is recommended that the programmer set the value of the constant at the declaration

stage. As stated previously, constants are to be declared in a separate grouping in the

declaration section of the program (and usually in modules, see Section 3.3). Keeping all

parameters together and setting their values, allow for quick and easy lookup by the

programmer. All the constants are together and their values are right there. This also allows

for quick and easy changes to the code if a parameter needs to be changed, the programmer

knows where to look, no matter what program or subprogram they are looking at.

Arrays

Fortran 90 has two kinds of array types, compile-time arrays and run-time arrays8
• The

difference in the two is when the memory is "put aside" or allocated for the array. As the

names suggest compile-time arrays set aside memory when the program is compiled and can

not be changed during the execution ofthe code, where as run-time arrays have their memory

allocated during the execution of the code. Run-time arrays are also known as allocatable

arrays. As mentioned in Section 2.3, it is this dynamic memory allocation that first interests

43

many FORTRAN 77 programmers in Fortran 90. Each type of array has their own

programming practices associated with them, which are presented below.

Compile-time arrays

1. Use named constants to dimension compile-time arrays. Using named constants

allows for the dimension of the array to be changed more easily (they just have to

change the parameter value). It can also indicate why the array is dimensioned to a

certain size. For example:

Here it is clear that the array Atom_list is dimensioned to the maximum number of

atoms allowed in the computation. To change the array dimension only the

parameter need be changed. In addition, ifthere were other arrays that depended on

the total number of atoms, they would share the same named constant in their

dimension value and thus would all change when the parameter was changed.

2. Specify reasonable sizes for arrays. Overestimating the space need for an array will

result in a waste of memory, and could reduce performance of the code.

Run-time arrays

To make a run-time array, that is one that can change shape and size during code execution

it must be declared with the key word 'allocatable'.

44

(:io\.lble PJ:"ep.iE>ion, ,dimension (: 1 :} , .al~ocatable, save, target .. Bmatrix ZM

1. When allocating space for a run-time array, embed it in an if statement which checks

if the array has already been allocated. It is also good practice to check the size of

the array to make sure it has been allocated to the correct size. If not then reallocate

it.

if(. not .'aHocated(Bmatrix ZM)) then
a,:J,Tocat~ {B(na trix · ZM. (NMCOOR, 3 *NATOMS))

else · · · ·· · · - · ·

if (size (~rna trix ZM I 1) . ne . NMCQOR) '
·. al;loc.ate (BmatrLx; ZM(NMC00R,3*NATOMS))

~:riO. if -..,. '

Arrays in general

1. Use broadcasting rather than a loop to construct an array where the elements are all

the same.

rather than

2. When using an array always include the dimension. This indicates, when reading the

code, that it is an array and not a simple scalar.

45

is preferred over

though both will produce the same results. Looking at A (1 :Array _Length) shows

that A is an array with elements 1 through Array_ Length.

3.3.2 Modules

A module is a program unit that is used to combine type declarations, subprograms and

defined data types. The basic form of a module is:

The module can be used to package a group of subprograms, data types or functions together

so they can be used in other program units8
• Once written the contents of a module can be

made available to another programming unit through the use statement.

The use statement should be placed at the beginning of the specification part of the program

46

unit.

More important than the syntactical implementation of a module is "how to correctly" use

modules in large programs to make them effective in meeting the programming goals. The

module is a key new feature of Fortran 90 and its implementation can be difficult to do

correctly. To help clarify the use of modules three kinds of modules were defined, global,

work and object modules.

Global Modules

Global modules are modules which contain information that can be used anywhere in the

code. Global modules are used for information that is needed virtually everywhere in the

code. Defaults, constants, user defined setting, debugging controls, or information required

to track code execution, input/output (filenames, etc.) could all be placed in global modules.

The global module can be used in much the same way as COMMON BLOCKs were used

in FORTRAN 77 (with more restraint).

47

Figure 3.3.1: Global Module. This 'objects' module is self contained and can be used
virtually everywhere in the code.

MODULE ·····()bjecfs
,, , .• .••• -•• -. ,'!'. ·~-t· ·*::**:~;~ *_;::_*~!,~/* t·--~~---~ j •• :. -~·-· ~-·--~ ~-* ** __ ,*: ~ * *:* *'*·•·• * ~·.-· *·* * * * * * * ·-*
* Da,tl;! ·l<tst modifi~~: February lS, ';lOOOV~rsion 2 ,o *
* Author: R.A. Poi:d.~r · ' *
* - D~scription: D~bugging tools. *
~ '* ·* ••.•.•.• · -·· *'******''If*~ · ·· :•. * *"!t ·** * ~ ·····--··-· ** * * * * * * ~· * * * ** * * * * * * *. * *

implicit JJ,on~ . .

int~g~r, param~te,r : ·: MAX_objects';'lOOO
integer •. :. : · NObjects
integer : : Ol:ljNum

type. ob::iect. definition
charac:tedieri=l32) . . · class
character(len=l32} . • name
character(len=J.J2) .. modality
chara.c:t~r(len=132) . . routine
logical : : Curtent

· logical : ' . exist
5md type object.:_def:icriition ·

tYI>e - . {obje6t_d~fin~fl()ri) .,' d±titension (MAX.:_ob]ectsl · '·' object

. ~elow should be p_lac~d in ob?ect.:_definition when cop.e is ready for it

lc;>g'i~Ci:)., dimension(: , • allocatable . . Object_d~bug
logical, dimension(:), allocatable :.: Object_cputiming

The global module should be a "stand-alone" module. That 1s to say, it should not

CONTAIN any subprogram units.

Object Modules

An object module will contain all the information about the object. The object module will

be "used" by other routines which require that object. The object module would contain all

the declarations of the information I data other routines using that object would require. The

object module would also contain all the subroutines needed to build the object.

48

Work Modules

The work module is a local module that should only be used by routines of the associated

object module. The work module will have all the declarations of the variables needed in

the routines that build the object, eliminating the need for long argument lists. Any

subroutines or functions contained within a work module must be utilities and thus should

not build objects. Figure 3.3.3a shows a schematic of the relationship between work and

object modules. Note that pseudo-code is used in these diagrams.

The alternative to work modules is to contain all the subroutine and function utilities within

the main object building subroutine. This will also remove the need for long argument lists

for subroutine or function calls and it tends to keep utilities for a specific object together.

A diagram of this implementation can be seen in Figure 3.3.3b.

49

Modules in MUNgauss

GLOBAL MODULES

module Defaults

end Defaults

module Global data

end Global data

Figure 3.3.2: Illustration of global modules. Global modules can be used throughout
the code, but contain no subroutines or functions.

WORK MODULE

module Work_obj1_mod
use BLD_obj3_mod
use BLD_obj14_mod
use Defaults
use Global data -

contains
I function Get_for_Obj1
end Get For Obj1

end Work obj1 mod

OBJECT MODULE

module BLD_obj1_mod
Data required by units
need Objl

contains

subroutine BLD_Obj - 1
use Work_obj1_mod

call Get_Object(3)
call Get Object(14)

... Build Object 1

end BLD_Obj - 1

end BLD obj1 mod

(a)

I
H.

~
,
that

OBJECT MODULE

module BLD_obj1_mod
Data required by units that
need Objl

contains

subroutine BLD_Obj 1
use Defaults
use Global data
use Work_objl_mod
use BLD_obj3_mod
use BLD_ obj14_mod

call Get_Object(3)
call Get Object(14)

... Build Object 1

contains

function Get_for Obj1
end Get For_Obj1

end BLD_ Obj 1

end BLD_ obj1_mod

(b)

Figure 3.3.3: a) Schematic of relationship between object modules and work modules
b) Schematic ofuse of contains withing object building subroutine, this method is preferred
over work modules in most cases. NOTE: pseudo-code used.

50

How Object and Work modules work together

The object module and work modules are very closely linked. Every subroutine or function

contained in the object module must use the associated work module. This creates a little

common block, if you will, of data needed in building that one object. As a consequence,

each subprogram unit depends on the work module. To ensure this will compile correctly

the work module must be compiled before the object module, either by placing it first in the

Makefile, or by placing it in the top of the same file as the object module.

The object module should not have any 'use module' statements other than to use the work

module. This keeps the object module clean and readable, allowing a reader of the code to

see exactly what data the object provides. This also aids in encapsulation and information

hiding. The associated work module will 'use' any module required to build the current

object.

Replacing the work module by containing all the subroutine and function utilities, that would

be in the work module, in the main object building subroutine does make the main

subroutine a little 'messier'. However, this could also be looked at as a documentation

source, as all the required modules and utilities will be right there in one file. Basically, there

is a tradeoff between modularization and encapsulation. In MUNgauss, the practice of

containing functions and subroutines within the main subroutine has become favored.

51

-
r-

'-

~

4

__..

Use of Modules in MUNgauss

~~ Program Execution GLOBAL MODULES

~~ Data Paths Module Defaul t s

~ -~
program MUNgauss

end Defaults
use Main_mod

Module Global data
call Set defaults

·~ -~ call Menu
call Action end Gl oba l data

end MUNgauss

I~ WORK MODULE

module Main_mod r module Wor k_obj l_mod __. Subroutine Get_Object use BLD_obj 3_mod

~ use Global Data use BLD_obj l 4_mod
- use Defaults

contains NUM = Get_obj _Num() use Global_data

subroutine Set_Defaults
select case

conta ins
use Defaults ~nction Get_for_Objl

_j call BLD _ Obj_ 1 1- ~
nd Get For Objl

·-- Code to set Defaults ...
call BLD_Obj_2 end Work obj l mod

end Set_Defaults ...
OBJECT MODULE

~ " call BLD_Obj_14

subroutine Menu module BLD_objl_rnod
,,

use Global data Data required by units that
end Get_Object need Objl

... Read Input
contains

end Menu Function Get_Obj_Num ()
subroutine BLD_Obj_l

subroutine Action
use Work_objl_mod

end Get Obj Num
use Defaults call Get_Object(3) -
use Global_data call Get Object(14) -

... Get Objects requested - ,-- Function Do_Somet hing ~
... Build Object 1

end Action
end Do_Something end BLD _ Obj_ 1

end Main mod
end BLD objl mod

Figure 3.3.4: How modules are used in MUNgauss. Work modules are 'used' by object
modules and contains all utilities needed in the object module. Features in the blue portion
to the left are parts of the program architecture and will be discussed later.

52

r-

1-

1-

•

4

....

Use of Modules in MUNgauss

~~ Progr am Execut ion GLOBAL MODULES

~~ Data Paths Module De faults

- ~ -~
pr ogram MUNgauss

end Defaults
use Ma~n mod

Module Global_dat a
call Set defaults ~ -I-
call Menu
call Action end Global data

end MUNgauss
I

~lr ~It OBJECT MODULE

module Main mod module BLD obj1 mod
~ Subroutine Get_Object Data req~ired-by units that

use Global Data need Objl

contains NUM = Get_obj_Num() contains

subroutine Set_Defaults
use Defaults select case subroutine BLD_Obj 1

call BLD _ Obj_ 1 1- 1- -
use Defaults

... Code to set Defaults ... use Global data
call BLD_Obj_2 use Work_obj1_mod

end Set Defaults ... use BLD_obj3_mod
call BLD_Obj_14 use BLD_obj14_mod

subroutine Menu
use Global data call Get_Object(3) 1-end Get_Object call Get Object(14)

... Read Input - ~
f---

... Build Object 1

~ end Menu Function Get_Obj_Num()
contains

subroutine Action end Get Obj
use Defau1 ts

Num lfunction Get_for_Obj1
I use Global data end Get For Obj1

... Get Objects requested r-- ,_.... Function Do_Something

end Action
end BLD_Obj_1

end Do_Something
end Main mod end BLD_obj1_mod

Figure 3.3.5 : How modules are used in MUNgauss. Object building routines 'contains'
all utilities needed to build the object. Features in the blue portion to the left are parts of
the program architecture and will be discussed later.

53

To illustrate how all the different types of modules work together, Figure 3.3.4 and Figure

3.3.5 diagrams the relationship. Figure 3.3.4 shows the use ofwork modules, while Figure

3.3.5 shows the containing approach. Both diagrams have different programming features

such as the "get_object" routine which will be discussed in Chapter 4.

3.3.3 Subroutines

The implementation of the subprogramming unit, subroutines, is relatively straight forward.

The basic form of a subroutine is as follows.

Subroutines should conform with all the design protocols defined throughout this chapter.

They should contain a header, an informative routine name, the formal argument list should

be commented, etc. The features INTENT(IN) and INTENT(OUT) are important to specify

in a subroutine2
•
7

•
8

• This prevents inappropriate or incorrect use of a variable. Subroutines

can pass information back to the calling program via the arguments in the argument list.

Therefore specifying if a particular argument is intended to be used to pass information back

or not is important. Subroutines do not have to pass any information to the calling program,

they may simply perform some task such as display a menu to the user or print a matrix to

a file.

54

The formal argument list should be well commented as can be seen in the following example.

Each variable in the list is followed by a comment describing it's use or contents.

Subroutines can be used to create an object or they can simply be used as utilities.

3.3.4 Functions

Functions are another subprogramming unit that is controlled by another programming unit,

as is the case for a subroutine. However, functi~ns pass a single value back to the calling

program via the function names, as opposed to a list of arguments like subroutines.

Functions, since they return a value, must be given a type declaration8
• This can be done

within the function as:

or as part of the functions heading

MUNgauss protocol favors the latter. The type of a function should be specified in the

55

Figure 3.3.6: Get object number Function

recursive integer function get_object_number (obj_name)

*
*

Date last modified: April 3, 2000
Author: R.A. Poirier

Version 2 . 0 *
*

*
*

Description: Given an object name, determine the object
number it corresponds to .

*
*

* Modules:

*

use program manager
use objects-

implicit none

* Input scalars:
character*(*), intent(IN):: obj_name

*
* Local scalars:

integer Nobj
logical found
character(len=l32) class, name , modality

*
* Begin:

*
call PRG_manager ('enter', 'get_object_number', 'UTILITY')

get object number=O
found=.false.
Nobj=O

* Extract the class/object name and modality:

*

class=obj name(l:index(obj name,' : ')-1)
name=obj_name(index(obj_name,': ')+l:len_trim(Obj_name))
modality=' '
if(index(obj name,'%') .ne . O)then

name=obj_name(index(obj_name,': ')+l : index(obj _name, '%')-1)
modality=obj name((index(obj name, '%')+1) : len trim(Obj name))

end if - - - -
do while (Nobj.lt.NObjects.and .. not.found)

Nobj=Nobj+l
if(Object(Nobj)%class.eq.class)then

if(Object(Nobj)%name.eq.name) then
if((Object(Nobj)%modality.eq.modality) .or. (modality .eq.' ')) then

get object number=Nobj
found=. true.

end if
end if

end if
end do ! while
if(.not.found)then

write(uniout, ' (6a) ') ' ERROR> get object number: Object,',
class(l : len trim(class)),' :'~ name(l : len trim(name)),

'%',modality(l:len trim(modality)), ' not found in list'
write(uniout,' (a)') 'Add the- Object or make sure the name is correct'
stop'ERROR> get_object_number: Object not found in list'

end if

* call PRG_manager ('exit' , 'get_object_number' , 'UTILITY ')
return
end

function's heading. This again improves readability since the information is all in one line.

56

Since the arguments of a function do not communicate back to the calling program, they

should be declared INTENT(IN).

Figure 3.3 .6 shows a function from MUNgauss, get_ object_ number. This function is key to

some of the programming features discussed in Chapter 4. Get_ object_ number is a utility

that determines and objects number by determining the array index for that object.

Functions, like get_object_number, are mostly utilities, they normally are not building

objects. However some scalar objects may be able to be created using functions, though this

1s rare.

3.4 Documentation Practices

Documentation means many different things. The term documentation could mean the

creation of a document, external to the program which explains how the program works,

what it can do, and how it does it. This kind of documentation, or "user manual" would be

very useful to users of the code and is something that will need to be created at a later stage

in the development. The beginning ofthis kind of document has already been created when

the list of objects and classes were created in Chapter 2. Looking at that list can give the user

of MUNgauss an idea of the features (methods) available in MUNgauss. However a

complete users manual, external to the program, does not exist for MUNgauss at this time.

57

However, here documentation refers to internal documentation. That is to say,

documentation contained within the line of code. This documentation is designed to help the

programmers edit and maintain code, and also use the existing code more easily. Another

goal of proper internal documentation is to eventually use it to create a user manual. That

is have the code write its own documentation. This ultimate goal has not yet been reached

but by implementing the consistent documentation practices outlined below, that task should

become easier.

Most of the material covered in this section has been mentioned throughout various sections

ofthis (and other) chapters in one way or another. However it is important to emphasize this

very important feature of good programming by combining them in one section.

Documenting code is done using comments. The appropriate use of comments throughout

a program serves to tell the reader what the code does, how it does it, and how to use it.

Comments can also be used to give credit to contributors to the program as well as other

references applicable to the code. There are four main areas where comments can be useful

in providing documentation.

Headers

The header of a programing unit contains most of the information required about that

routine/function. Within the header one should include the author ofthe code (as well as any

58

other contributors). The date the code was created and or modified. Which version (if

applicable) of the program the code is for. As well as a description ofthe code to follow,

what is does, and possibly how to use it. This header could be extracted at a future date and

be the basis of a manual for that routine. With this future goal in mind, these headers gain

a level of importance and thus should be written in a very useful manner.

Variables

Another form of documentation are comments that following variable declarations, for

example,

character~(*) 1 intent (I'N):: obj_name , !Object description goes here

can tell the reader what the variable represents. This practice provides readers with

information that otherwise could take a significant amount of time to decipher. These kind

of variable comments are especially important when calling a subroutine of function with a

group of arguments as was discussed in Section 3.3.3.

Algorithms

Placing a comment before a section of code which tells the reader the algorithm used in the

following section of code, when applicable, is a very useful form of documentation. This

allows the reader to follow the logic of the program easily by giving them an idea of what

is happening. A reference to a paper where the algorithm was taken is also very useful, plus

59

it gives credit to the creators of the algorithm.

Error messages

Error messages are a very important part of a well documented code. When the program

reaches and error and stops, the resulting message must tell the user/programmer what caused

the error, where the error occurred and give an idea how to fix the problem. Section 3.2.6

discussed the style of error messages in MUNgauss. That style provides the reader with the

required information in a clear and concise manner. The example in Section 3.2.6 shows a

sample error message output:

ERRo:Eb ADQ-'atom: Tqo ma,ny atoms: must increase MAX ATOM

3.5 Testing

Although testing is not a design protocol it is an essential practice in the design and

production of any piece of code. With every change made during the conversion process of

any code, it must be tested. MUNgauss has a test suite of problems which are used to verify

the correctness of any changes made. Once a routine or function is changed or added the test

suite is executed to ensure the results are the same. The test suite has been developed over

years to encompass virtually all possible cases. Whenever new functionality is added to

MUNgauss, new test cases are created to test those new features and are added to the test

suite. Whenever a bug is found during production runs, that run becomes part of the test

60

suite. Testing is an on-going part of code development. Before a version ofMUNgauss is

deemed "production ready" it must be verified by all the cases in the test suite.

61

Chapter 4

Code Infrastructure - Overall

Program Design

4.1 Introduction

With the plan in place and the protocols defined it is now time to begin coding. This is the

most time consuming part of code design, however it is made much more manageable with

the proper planning completed. This chapter outlines the implementation of the desired

program features described thus far. It is a recipe one can follow when developing large

scientific code. The procedure presented in this chapter is the backbone, or infrastructure,

62

upon which virtually any large scientific program can be written.

This infrastructure was designed to make it both easy to implement for the scientific

programmer and sufficiently efficient for codes which are computationally demanding.

There are some aspects of this design which can still be improved and those shortcomings

will be discussed throughout the chapter.

The infrastructure is divided into four main sections, the object list, the get_object, the

building routine, and the program manager sections. Each of these parts play a key role in

satisfying the desired features of well written codes. None of them work independently so

the order of description is not necessarily the order they should be written. The development

of these routines will be intimately connected and should be preformed simultaneously.

To help prevent some of the problems encountered in designing this infrastructure, some of

the approaches attempted and later removed will also be presented, along with reasons why

they were deemed unacceptable.

4.2 Object List

In section 2.1.2, table 2.1.2, a list of all the objects used in the code was created. That list

can now be used to build an object list. One of the key features of this code design is the

creation of a hard coded list of all the objects in the code. By creating such a list each object

63

can be assigned a unique number, "the object number" (objNum}. This object number is

essential to many of the features described later, such as debugging, timing functions, and

tracing. A hard coded object list also gives the code access to information about the object

whenever and wherever it is needed.

The object list should contain useful information about each object. It should contain the

name of the object, the class and, if appropriate, the modality. As stated in chapter 2, each

object will have a unique combination of class, name and modality that will serve to identify

the object. In addition to the object name, the object list will also contain other information

deemed important throughout the code.

Firstly, the name of the routine which builds the object is included in the object list. This

serves two main purposes, self-documentation and error checking. Another programmer can

simply look at the object list and find the name of the routine which builds a particular

object. This greatly improves the readability of the overall code, and with large codes this

is very important. Secondly, the inclusion of the building routine name is used in the

debugging and error checking of the code. An explanation of how this works can be found

in section 4.5 .1.

In addition to the routine name, there are several other characteristics of an object which

makes sense to include in the object list. These include information regarding the status of

64

the object, that is, if the object is current (i.e. has already been created and is up to date) or

if it exists at all. The information included in the object list can be extended to include

options regarding things such as timing routines, debugging routines, etc.

Implementation of the object list went through some evolution throughout the process.

Below are descriptions of two approaches to implementing an object list. Following these

descriptions, pros and cons of each implementation is presented as well as reasons one was

chosen over the other.

4.2.1 Implementation of Object List #1.

In the first approach, a series of arrays were declared to hold the required information. The

object name and routine name were stored in character arrays, while the other components

were stored in logical arrays. To make the information accessible to the rest of the code the

declarations were placed in a module. An example of the module containing the declarations

is shown below in Figure 4.2.1.

65

Figure 4.2.1: Objects Module, Implementation #1

MODULE objects

*
*
*

Date last modified: February 18, 2000
Author: Darryl Reid
Description: Object list module.

Version 2 .0 *
*
*

*

*

implicit none

integer, parameter:: MAX objects=lOOO
integer:: NObjects -
character(len=132) Object name(MAX objects)
character(len=132) Object=routine(MAx_objects)

integer ObjNum
logical, dimension(:), allocatable . . Object exist
logical, dimension(:), allocatable . . Object-current
logical , dimension(:), allocatable .. Object-debug
logical, dimension(:), allocatable .. Object=cputiming

END MODULE objects

In this approach the three parts of the object name (the class, name and modality) were all

stored in one array, Obj ect_name. The format of this name was

CLASS: Obj ect_Name%MODALITY. It should also be noted that the parameter MAX_obj ects

defined in the module represents the maximum number of objects the entire program can

have. It is important to put a check in the routine that creates the object list to ensure that

this MAX_ objects value is not exceeded.

Also included in the object module is the declarations for the object number, obj Num, and

the variable that will store the total number of objects in the code, NObj ects. Both these

integers are used throughout the code. The NObj ects, in this implementation approach, is

used to declare the dimension of the logical arrays declared in the module.

The module in Figure 4.2.1 also illustrates some of the design protocols, and some of the

66

features of well written code. Here it can be seen that the program header is used which

clearly identifies the date the routine/module was last edited, the author and a description of

what it subprogram/unit is. Also, remember that one of the features of well written code is

that it was readable. It can be seen here that the variables clearly state what is being stored

in them, e.g. Object_ current, without any further comments or documentation anyone can

see that this logical array will tell if the object is current or not. Variable naming in this

fashion greatly improves a codes readability.

Once the object module is created, object names need to be put in the Object_name array.

This is done by creating a Build_Obj ect_List routine which increments a counter,

Nobj ects, then stores the object name in obj ect_name (Nobj ects). Similarly, it will store

the routine name inobject_routine (Nobjects). A short example ofthis building routine

is seen in Figure 4.2.2 (note this is only a piece of the building routine).

A "Dummy Class" has been included and serves as a template for programmers looking to

add new objects to the code. It also places a unique character in the last position of the arrays

(a'?') which may be used in some error checking applications. Also the list is organized by

classes, in alphabetical order which makes it simple to code and easy to add new objects.

Just locate or create a class and place the new object in the middle of the list.

67

It can also be seen that in this implementation, the logical arrays, declared in the object

module, are allocated at the end of the building routine. At this point the total number of

Figure 4.2.2: Build Object List Subroutine, Implementation #1

subroutine BLD_object_list
** ****** ********
*
*
*
*
*

Date last modified June 23, 2000
Author: Darryl Reid
Description : Builds a complete list of all the objects which can be

created in MUNGAUSS. When adding a class or object within a class
ensure it is done in alphabetical order

*
*
*
*

**
* Modules:

*

use program manager
use objects-

implicit none

* Begin :
call PRG_manager ('enter', 'BLD_OBJECT_LIST', 'UTILITY')

* Class PROGRAM

*

*

Nobjects = Nobjects + 1
Object name(Nobjects) = 'PROGRAM:OBJECTS CREATED'
Object=routine(Nobjects) = 'PRT_objects_created'

Nobjects = Nobjects + l
Object name(Nobjects) = ' PROGRAM:OBJECTS STATUS'
Object=routine(Nobjects) = 'PRT_objects_;tatus'

* Dummy Class
Nobjects = Nobjects + 1
Object name(Nobjects) = ' ?:?'
Object=routine(Nobjects) '?'

allocate (Object exist(Nobjects) , Object current (Nobjects),
Object debug(Nobjects)~ -

- Object_cputiming(Nobjects))

*

call PRG_manager ('exit', 'BLD OBJECT_LIST', 'UTI LITY')
retu rn

end subroutine BLD_object_list

68

objects in the code is known, NObj ects. Therefore the logical arrays can be allocated to

exactly the correct size, thus saving memory use. This is just one of the advantage of this

implementation approach. Following the description of the second approach, both

approaches will be compared and a conclusion will be drawn.

4.2.2 Implementation of Object List #2.

In this implementation the new feature in Fortran 90 of derived types is used. In this case

the object list is a large array of derived types. In this implementation the objects module

contains the definition ofthe type object_definition. Here the different components

described above, the class, object name, modality, routine name, current, exist, etc. have been

placed within the type definition. Figure 4.2.3 shows this module implementation.

Figure 4.2.3: Object Module, Implementation #2

MODULE objects

*
*
*

Date last modified: June 18, 2001
Author: Darryl Reid
Description: Object List Module.

Version 2. 0 *
*
*

*
implicit none

integer, parameter : : MAX_objects=lOOO
integer : : NObjects
integer : : ObjNum

type object_definition
character (len=l32) . . Class
character(len=l32) .. name
character(len=l32) . . modality
character(len=l32) . . routine.
l ogical : : Current
logical : : exist

end type object_definition

type (object_definition), dimension (MAX_objects) ::Object

* the following should be placed in object_def inition when code is ready for it

*

logical, dimension(:), allocatable . . Object debug
logical, dimension(:), allocatable:: Object=cputiming

END MODULE objects

69

In accordance with the design protocols of chapter 3 it can be seen that the type definition

is contained in a module, this will be a global module and will be available to every routine

in the program. MAX_obj ects=lOOO is again the maximum number of objects the code can

have. This is the size that array object will be dimensioned, which could cause some

memory to be wasted. The current version of MUNgauss contains around 150 objects

however space is being allocated for 1000. This is for developmental purposes only, the

value should and could be reduced by just changing that one parameter to a more appropriate

size. In the future a better way of determining the amount of space required for the object

list would be to copy the information contained in the Object array to a new array which

has been dimensioned to the Nobjects value, upon completion of the BLD_ObjectList.

The actual construction ofthe object list is again performed in a BLD_ObjectList routine

which simply assigns values to the derived type for each object. As can be seen in Figure

4.2.4 the index of this array is unique for each object and thus becomes the unique object

number. As in approach #1 the dummy class is included as a template and contains the

unique character, "?", which could be used in error checking applications.

It is important to point out that in this implementation the object name is divided into its

components, class, name and modality. This gives access to any portion ofthe name without

having to preform any string manipulations (as is required in approach #1). Access to the

70

Figure 4.2.4: Build Object List Subroutine, Implementation #2

SUBROUTINE BLD_object_list
**

*
*
*
*
*
*

Date last modified June 23, 2000
Author: Darryl Reid
Description : Builds a complete list of all the objects which
can be created in MUNGAUSS
When adding a class or object within a class ensure it is done
in alphabetical order

*
*
*
*
*
*

*** ******** *********************
* Modules:

*

USE program manager
USE objects-

implicit none

* Begin:

*

call PRG manager ('enter', 'BLD_OBJECT_LIST', ' UTILITY')
Ldebug=Local_Debug

Do Iobject = l,Max objects
Object(IObject)%modality 'other'

end do
Nobjects = 0

* Class DENSITY
Nobjects = Nobjects + 1
Object(Nobjects)%class = 'DENSITY'
Object(Nobjects)%name = 'lMATRIX'
Object(Nobjects)%modality = 'WAVEFUNCTION'
Object(Nobjects)%routine = 'BLD_density_lMATRIX'

* ... The Rest of the List goes here ...

* Class PROGRAM

*

*

Nobjects = Nobjects + 1
Obj e ct(Nobjects)%class = ' PROGRAM'
Object(Nobjects)%name = 'OBJECTS CREATED'
Object(Nobjects)%routine = 'PRT_objects_created'

Nobjects = Nobjects + 1
Object(Nobjects)%class = 'PROGRAM'
Object(Nobjects)%name = 'OBJECTS STATUS'
Object(Nobjects)%routine = 'PRT_objects_status '

* Dummy Class
Nobjects = Nobjects + 1
Object(Nobjects)%class = '?'
Object(Nobjects)%name = '?'
Object(Nobjects)%modality = '?'
Object(Nobjects)%routine = ' ? '

information about the objects are made by appending the variable of interest to the derived

type with a"%" between, e.g. Object (Nobj ects) %class = 1 DENSITY 1 , where Nobj ects

is the object number ofthe desired object. Again this illustrates the attempt to make the code

self-documenting and readable. Without any other information it is clear that the class ofthis

71

object is DENSITY.

It should be noted that at the beginning ofthe BLD_object_list routine all the modalities

are set to the default value 'other'. This is just to ensure that every object has a modality

associated with it, the importance of this will be seen in the discussion of get object (Section

4.3). The default value for the modality can be over written by assigning a new value as in

done in the example given, object (Nobjects) %modality = 'WAVEFUNCTION'.

4.2.3 Comparison of Object List Implementations

The initial attempt of implementing object list was a normal Fortran 77 approach of creating

separate arrays for each piece of data required. This implementation worked and allowed us

to develop other sections of the code (to be described throughout this chapter). Most of the

work done on converting and updating MUNgauss was done using this first implementation.

It did have many good features, it allowed us to have objects with unique object numbers,

gave us access to information about an object from anywhere in the code and gave us an easy

and manageable way of adding new objects to the code.

However, once some of the new features of Fortran 90 were better understood, this

implementation was re-examined. It was decided that a large array of derived types could

be used in a similar manner as the groups of arrays created in the first implementation. The

derived type implementation has several favorable characteristics:

72

1.1 It provided greater encapsulation. Encapsulation is a very good characteristic of a

program. Encapsulation means that things are kept together that belong together.

Implementing objects as derived type allowed all the properties of the object to be

together (from the programmers point of view). Figure 4.2.6 illustrates this

encapsulation.

1.2 Access to all parts of the object equally. Since in the second implementation the

class, object name, and modality were all separate variables within the derived type,

the program has equal access to any part, without any string manipulations. Rather

than having to break down the long object name, class: object_name%modality,

the program can now simply access the piece it requires, object (objNum) %class,

object(objNum)%name,orobject(objNum)%modality.

73

Integer

rjectNjber
Cbaracter Arrays

Object Name

I

2t-------l
31-------t
4
5

• • •

Logical Arrays

Nobjects

Routine Name

It------1
21-------t
3t-------l
4
5

• • •

Exist Current Debug

1 I
2 2
3 3
4 4
5 5

• •
• •
• •

module objects

Date last modified: February 18 , 2000
~uthor : Darryl Reid
Description: Object list rr.odule.

implicit none

integer , parameter : :MAX objects;lOOO
integer : : NObjects -

I
2
3
4
5

character(len;l32) Object name(MAX objects)
character(len;l32) Object=routine(MAX_objects)

integer ObjNum

•
•
•

logical , dimension(:) , allocatable . . Object exist
logical , dimension(:) , allocatable .. Object-current
logical , dimension(:) , allocatable .. Object-debug
logical , dimension(:) , allocatable .. Object=cputiming

END MODULE objects

Cpu Timing

1
2
3
4
5

•
•
•

Version 2 . 0

Figure 4.2.5: Schematic representation of memory allocation of object list in
implementation #1.

74

Integer

Derived type array
Object
Character strings
Class Name Modality Routine rjectNiber I II I I I I

1
Logicals

Nobjects
Exist Current

D D
Character strings
Class Name

I II
2

Logicals
Exist

D

MODULE objects

Date last modified: June 18, 2001
Author : Darryl Reid
Description: Object Li s t Module.

i mplic it none

Current

D

integer, parameter . . MAX_obj ects =lOOO
i nteger :: NObjec t s
integer:: ObjNurn

t ype object definition
character(len=132) .. Class
character (len=l 32) .. name
char acter(len=132) .. modality
character (l en=l 32) . . rou t ine
logical . . Current
logical . . exist
l ogical . . Object debug
l ogical . . Object=cputiming

end type ob j ect_definition

Debug Cpu Timing

D D
Modality Routine

I I I I

Debug Cpu Timing

D D
•
•
•

Version 2 . 0

type (o bject_defi nition), dimens i on (~~X_objects) . . Object

END MODULE objec t s

Figure 4.2.6: Schematic of the encapsulation created by using a derived type to
implement the object list, implementation #2.

75

4.3 Get_ object Routine

The next major section of the code's infrastructure is the get_ object routine. When a section

of the code requires an object, the code must know how to call the appropriate routine to

build that object. This is the purpose of the get_object routine. The get_object routine is

Object Name

76

invoked whenever any routine requires an object. The calling routine will give get_ object

the name of the required object and get_ object will, if necessary, call the routine that builds

that object.

Figure 4.3 .1 shows a general flowchart of get_ object, there were two implementations of this

routine considered during the development process, however, the main function remains the

same. When presented with an object name, get_object first has to determine the object

number of that object and set it for the rest of the code. With this information, get_object,

can check the status of the object, that is, if the object exists (has already been created) and

if it is current (still valid and useable) from the values stored in the object. If an object exists

and is current then get_ object simply returns. If either value is false, then the object must be

built or updated. In either case the object's building routine needs to be called. Creating an

object's building routine will be presented in section 4.4.

The manner in which get_ object determines which building routine to call differs in each

method described in this section. The get_ object routine is the implementation of the

organization of the code presented in section 2.1.3. Remember that the code has been

organized into objects that have associated names, classes and modalities. Get_object uses

these characteristics to call the appropriate building routine. The way get_ object performs

this task impacts greatly on the overall organization of the code. Two organization schemes

were considered and each will be discussed. The implementations do correlate with the two

77

implementations ofthe build object list of section 4.2 to a degree. However, there are also

differences in the organization scheme that are beyond the differences in the build object list

implementations.

4.3.1 Get_ object implementation #1.

The basic way to determine which routine to call is through a series of nested select cases,

each with many options. The select cases are based on the total object name (which is passed

to get_ object by the calling routine). However, the object name consists ofthree parts, class,

object name, and modality. In the first approach the select case was divided along class lines,

then object name, then modality. Figure 4.3.2 shows a pseudo-code schematic of

implementation number one's approach to the series of nested select cases. As can be seen

from Figure 4.3 .2, the list of options can become quite long and the file containing all

options would quickly grow out of control. Therefore each portion of the nest was divided

into smaller parts to make them manageable.

Figure 4.3.3 shows a portion of the top select case of the get_object routine. This select case

is based on the class of the object and, as can be seen in the figure, the is a call to different

routine for each class. This allowed all the objects which belonged to one class to have there

calls in one place.

78

As mentioned in Section 4.3, get_ object must first determine the object number ofthe object

requested by the calling routine. This is accomplished by a call to the function

get_obj ect_number ()which returns the object number of the object to be built. The

Figure 4.3.2: Schematic of series of nested select cases
for get_object implementation #1.

end

implementation of this function will be described in detail in Section 4.3.2. Next the status

of the object is checked, that is to say if the object exists and is current. If the object is

current then it does not need to be rebuilt and therefore the routine simply returns.

79

Figure 4.3.3: Get Object Routine, Implementation #1

recursive subroutine get_object (obj_name)
**
* Date last modified: April 3, 2000 Version 2.0 *
* Author: R.A. Poirier *
* Desciption: Given an object name call the appropriate rout i ne *
**
* Modules:

*

USE program manager
USE objects-

implicit none

* Input scalars:
character*(*), intent(IN):: obj_name

*
* Local scalars:

character(len=132) class
character(len=132) Object
character(len=132) modality

*
* Local functions:

integer get_object_number
*
* Begin:

call PRG_manager ('enter', 'GET_OBJECT', 'UTILITY')
*

ObjNum=get_object_number(obj_name//' ')
*
* Object will exist and will be current:

if(Object current(ObjNum))then
call PRG_manager ('exit', 'GET_OBJECT', 'UTILITY')
RETURN

*

end if

Object exist(ObjNum)=.true.
Object=current(ObjNum)=.true.

* Extract the class/object name and modality:

*

class=obj name(l:index(obj name,' :')-1)
Object=ob)_name(index(obj_name, ': ')+l : len_trim(Obj_name))
modality=' '
if(index(obj name,'%') . ne . O)then

modality=obj_name(index(obj_name, '%') :len_trim(Obj_name))
end if

* Check for class
CLASS_name : select case (class)

case ('COORDINATES')
call COORDINATES_objects (class , Object)

case ('DEFAULTS ')
call DEFAULTS_objects (class, Object)

ca se ('DENSITY')
call DENSITY_objects (class, Object)

. . . Res t of Select Case here . . .

case default
write(uniout, *)'No such class "' , class(l : len_trim(class)) , "' for object

"',Object (1: len trim(Object)) , '"'
stop'No- such class'

*
end select CLASS name

call PRG_manager ('exit', 'GET_OBJECT', 'UTILITY')
retur n
end

80

Otherwise, the object will need to be built. Therefore the appropriate building routine must

be invoked, which is accomplished by the series of nested select cases.

The series of nested select cases can be looked at as a tree, with each option being another

branch. The tree created by the series of select cases is the code implementation of the

organization scheme mentioned above. In implementation #1, the first select case (the one

found directly in get_object and can be seen in Figure 4.3.3) is based on the class of the

object. However before this select case can occur the class must be extracted from the object

name. The lines following the comment line

* Ext.ract the · class/object name and -modality:

in Figure 4.3.2, performs this extraction (along with the extraction of the object name and

modality). With the different parts of the object name extracted the code can now execute

the select case to determine which routine to call. At this level the select case calls a "class

associated" routine (i.e. DENSITY_ objects) which determines which object building routine

to call. A "class associated" routine is a second level of select cases that are based on the

object name. In theory there would be a third level of the select case which would contain

the modalities (as is seen in the schematic in Figure 4.3.2), however in practice, this was not

implemented, since the number of objects with modalities were so small, they were

incorporated with the object name select cases. Figure 4.3.4, shows an example of one of

these "class-associated" routines. Again, this simply consists of a select case based on the

81

object name. Note that when modality applies they are also included in this select case. The

plan was to separate the modality part into another level of calls, but was never implemented,

due to the overhead (mainly in programmer time) associated with it, for such a small number

of cases.

Figure 4.3.4: Example of select case based on object name, contained in a "class
associated" subroutine

subroutine DENSITY_objects (class , Object)

*
*
*

Date last modified : October 5, 2000
Author: R.A. Poirier
Description: GVB objects.

Version 2.0 *
*
*

* Modules:

use program_manager

implicit none

* Input scalar:
character*(*) class,Object

*
* Begin:

*

*

call PRG_manager ('enter' 1 'DENSITY_objects' I 'DENSITY:')

select case (Object)
case ('lMATRIX')

call BLD density lMATRIX
case ('1MATRIX%RHF7)

call DENSITY lMATRIX RHF
case (' lMATRIXiGVB') -

call DENSITY lMATRIX GVB
case ('1MATRIX%UHF') -

call DENSITY lMATRIX UHF
case ('ENERGY WEIGHTED'>

call BLD_Energy_weighted_density
case ('ENERGY WEIGHTED%RHF')

call DENSITY Eweighted RHF
case ('ENERGY WEIGHTED%uHF')

call DENSITY Eweighted UHF
case ('ENERGY WEIGHTED%GVB')

call DENSITY Eweighted GSCF
case ('ENERGY WEIGHTED%ROHF')

call DENSITY Eweighted GSCF
case default - -

write(uniout 1 *) 'No such object "' 1 0bject(l:len trim(Obj ect)),
'" for class "' 1 class (l: l e n trim (class)) I '"'

stop'No such object' -
end select

call PRG_manager ('exit', 'DENSITY_objects ' 1 'UTILITY')
RETURN
END subroutine DENSITY objects

82

Figure 4.3.5: Function which determines the object number

implicit none
*
* Includes:

*

include 'osipe maxdim'
include 'osipe-message'
include •osipe=ios'

* Input scalars :
character*(*), intent(IN):: obj_name

*
* Local scalars :

integer Nobj
logical found

*
* Begin :

*

*

*

call PRG_manager ('enter', 'get_object_number', 'UTILITY')

get_object_number=O
found=.false.
Nobj=O

do while (Nobj.lt.NObj ects.and .. not . found)
Nobj =Nobj+1
if(obj_name(1:len_trim(obj_name)) .eq.Object_name(Nobj)

(1:len trim(Object name(Nobj))))then
get object number=Nobj -
found=. true.

end if
end do ! while

if(. not.found)then
write(uniout , *) 'ERROR> get_object_number : Object ,

', obj name(1 : len trim(obj name)) ,' not found in list'
write(uniout , *) 'Add the Object-or make sure the name is correct'
stop'ERROR> get object number : Object not found in list'

end if - -

call PRG_manager ('exit' , 'get_object_number ', 'UTILITY')
return
end

It can be seen in Figure 4.3.4, that the modality is included in the Object part of the object

name. Thus the appropriate building routine is called based on all three parts of the object

name. Section 4.4 will discuss the object building routines.

Also note that the class is passed into the "class associated" routine, this variable is never

83

used in the select case (since all objects in that routine are of the same class) but it is used

in the error message printed if the requested object%modality is not found in the select

case. This illustrates two of the design protocols described in Chapter 3, that every select

case must have a default value that prints an error message that is useful and helps identify

exactly where the problem is.

As mentioned, the senes of nested select cases are the implementation of the code

organization. Figure 4.3.6 shows the resulting tree structure created by the order of select

cases in implementation #1. This figure shows how the program is broken up. Each

horizontal line represents another select case. Each block will be in its own routine, ie, 01,

02, 03, and 04 will all be cases in the "class associated" routine of class 1 (C 1). Once the

program works its way through the select cases it will end up at the bottom of the tree (the

modalities) and will then call the object building routine.

Looking at the code organization in a structure like that in Figure 4.3.6 gave incite into ways

it could be improved. This will be discussed when both implementation #1 and #2 are

compared in Section 4.3.3.

84

Object Name

Figure 4.3.6: Organization scheme for get_object, implementation #1.

85

4.3.2 Get_Object_Nwnber function, implementation #1

The function which determines the object number is also different in each implementation.

In this implementation it simply searches the array object _name, and does a string

comparison to match the name passed into get_ object and that stored. When a match is

found the object number is set to the index of the array. This function is shown below,

Figure 4.3.7.

Note that when PRG _manager is called in this routine the routine name supplied is UTILITY.

The reason will be explained in section 4.5 when the program manager is discussed in detail.

4.3.3 Get_ object Routine, Implementation #2

In the second implementation of get_object the organization scheme of the code was re­

examined. Taking into consideration some ofthe desired features of the code, it was decided

that the series of select cases in get_ object, which determines which object building routine

is invoked, would be changed. Once the build object list was changed to use a derived type

for the object list, it was realized that class, name, and modality were three independent

characteristics, that collectively identify a particular object. However, since they were

independent, the order that the select case is executed does not matter. Originally the fact

that the object name was stored in the form class :Object_ name%modality steered the

decision to organized the code according to the scheme presented in section 4.3 .1 . Once this

86

Figure 4.3.7: Get object number function for get object implementation #1

recursive integer function get_object_number (obj_name)
**
* Date last modified : April 3. 2002 Version 2.0 *
* Author: R.A. Poirier *
* Description: Given an object name , determine the object number i t *
* corresponds to. *
**
* Modules:

*

USE program manager
USE objects-

implicit none

* Input scalars:
character*(*), intent(IN) : : obj_name

*
* Local scalars :

*

integer Nobj
logical found
character(len=l32) class
character(len=l32) name
character(len=l32) modality

* Begin:
* call PRG_manager ('enter ', 'get_object_number', 'UTILITY')
*

*

get object number=O
found=.false.
Nobj=O

* Extract the class/object name and modality:

*

class=obj name(l:index(obj name,' : ')-1)
name=obj_name(index(obj_name,' : ')+l:len_trim(Obj_name))
modality=' '
if(index(obj name,'% ') .ne.O)then

name=Obj name(indeX(Obj name , I :
1)+1:indeX(Obj name, 1 %0) - 1)

modality:obj_name((index(obj_name, ' %')+1) : len=trim(Obj_name))
end if

do while (Nobj.lt.NObjects.and . . not.found)
Nobj=Nobj+1
if(Object(Nobj) %class.eq. c lass) then

if(Object(Nobj)%name.eq.name) then
if((Object(Nobj)%modality.eq.modality) .or . (modality . eq. ' ')) then

get object number=Nobj
found=.true .

end if
end if

end if
end do ! while

if(.not. found)then
write(uniout,' (6a) ')' ERROR> get_ob ject_number: Object,

',class(1 : len trim(class)) , ' : ',

*

- name (1 : len trim (name)) , ' %' ,
modality(1~len trim(modality)),' not found in list'

write(uniout,' (a)') 'Add the Ob]ect or make sure t he name is correct'
stop'ERROR> get object number: Object not found in list '

end if - -

* cal l PRG_manager ('exit', 'get_ object_ number', 'UTILITY ')
return
end

87

mind set was changed, the chance to meet one of the primary goals of the program was

noticed.

A primary goal of the program was that it have to ability to be divided into packages.

Looking back at Figure 2.1.2 it can be see that these packages include, ab initio, Molecular

Mechanics, DFT, etc. It was seen that if the order the select cases were performed was

changed, division into packages would be much easier to accomplish.

The new scheme that was implemented first performs the select case on a new characteristic,

modality type. The modality type represents the packages listed above. By performing the

first select case based on modality type, it becomes easy to cut out that section of the select

case, thus removing that package from the code. Every object that is required in one package

will be below that "branch" of the select case. Figure 4.3.8 shows the organization scheme

for the second implementation of get_ object. Notice that ifthe code was broken at the dotted

line, then everything below the modality type, will belong to that one package.

Figure 4.3.9 shows the code for the second implementation of get_object. The main

algorithm is the same as implementation #1. First the object number is determine, by calling

get_ object_ number function. Then the status ofthe object is determined. Then the select

case is executed.

88

- -

Figure 4.3.8: Organization scheme for get_object, implementation #2.

89

Figure 4.3.9: Function to determine Modality Type. This function will disappear once
modality type is added to the object identification.

recursive character (len=l32) function modality_type (modality, ObjName)
**
*
*
*
*

Date last modified : June 14 ,
Author: Darry l Reid
Description : Given an object
corresponds to.

2001 Version 2 . 0

Classe , determine the modality type that

*
*
*
*

**
* Modules:

*

USE program manager
USE objects-

implicit none

* Input scalars :

*

character*(*), intent(IN) ::modality
character*(*), intent(IN):: ObjName

* Local scalars:
*
* Begin:

call PRG_manager ('enter' , 'modality_type', 'UTILITY')

*

CLASS: select case (modality)

case ('ZM')
modality_type 'COORD'

case ('PIC')
modality_type='COORD'

case ('RIC')
modality_type='COORD'

case ('RHF')
modality_type='WFN'

case ('MM')
modality_ type='FF'

case ('WAVEFUNCTION')
modality_type='WFN'

case ('COORDINATES')
modality_type= 'COORD'

case (' other')
modality_type='other'

case default
modality_type='other'
write(uniout, ' (Sa)') 'No such modality "',modality(l:len trim(modality)),

for object "',ObjName(l:len_trii;;(objName)), ' " '
stop'No such modality'

end select CLASS

call PRG_manager ('exit ', 'modality_type', 'UTILITY')
return
end

90

One difference is that now the modality type must be determined. The function

Modality_Type is invoked to obtain this value. Figure 4.3.9 shows the code for the

modality_type function. This function and the call to it is an intermediate step in the code

evolution. Eventually this should be removed and the modality type should be added to the

object definition, and then the value of0bject(Obj_Num)%modality_type will have to be

checked to determine the modality type. For now each modality that exists in the code is an

option of the select case in the function Modality_type, and when called with a modality

value, the function returns the corresponding modality type.

With the value of modality type in hand, get_ object then performs the select case based on

it. The select case then goes through a series of steps, beginning with the modality, then the

class, then the object, as can be seen in Figure 4.3.8. Although this does require at least on

additional level of routine calls before the object building routine is called, it is accepted to

enable the feature of separate packages to be implemented.

91

Figure 4.3.1 0: Get object routine with select case based on modality type.
recursive subroutine get_object (obj_name)

*** *** ******
*
*
*

Date last modified: April 3, 2000 Version 2.0
Author: R.A. Poirier
Desciption: Given an object name call the appropriate routine

* Modules:

USE program manager
USE objects-

implicit none

Variable declarations go here, remove for space reasons ...

* Begin:
call PRG_manager ('enter', 'GET_OBJECT', 'UTILITY')

*
ObjNum=get_object_number(obj_name//' ')

*
* Object will exist and will be current:

if(Object(ObjNum)%current)then

*

call PRG_manager ('exit', 'GET_OBJECT', 'UTILITY')
RETURN

end if
Object(ObjNum)%exist= . true.
Object(ObjNum)%current=.true .

* Obtain the class/object name and modality :
class=Object(ObjNum)%Class
Objname=Object(ObjNum)%name
name=Object(ObjNum)%name
modality=Object(ObjNum)%modality

*

Mod type =modality type(modality , name)
if(index(modality, 'other') .eq .O)then
name=Objname(l:len trim(Objname))//

'%'//modality(l:len_trim(modality))
end if

* Check for class
ModalityType: select case (Mod_type)

case ('other')
call Other_objects (modality, class, name)

case (' COORD ')
call COORD_objects (modality, class, Objname)

case ('FF')
call FF_objects (modality , class , name)

case ('WFN')
call WFN_objects (modality, clas s, Objname)

case default

*
*
*

write(uniout,' (Sa)') 'No such Modality Type "',Mod_ type(l :len_trim
(Mod_ type)), '" for object "' , obj _name(l:len_ trim(obj_name)), '"'
stop'No such Modality Type'

*
end select ModalityType

call PRG_manager ('exit', 'GET_OBJECT', 'UTILITY')
r e t urn

end

92

Figure 4.3.11: Get object select case based on Modality. This is the second level of select
case hierarchy.

subroutine WFN_objects (modality , class, Object)
*** ***** ***** ***** ******** ***********
*
*
*

Date last modified: June 21, 2001 Version 2 . 0 *
Author: Darryl Reid *
Description: Wavefunction (WFN) Modality Type objects. *

************************** ************************************** ***** ***** *
* Modules:

USE program_manager

implicit none
*
* Input scalar:

character*(*) modality , class,Object
*
* Begin:

*

*

call PRG_manager ('enter', 'WFN_objects', 'UTILITY')

select case (modality)
case ('RHF')
include 'case_RHF_objects'

case ('UHF')
include 'case_UHF_objects'

case ('GVB')
include •case_GVB_objects'

case ('WAVEFUNCTION')
include 'case_WFN_objects'

case ('ROHF')
write(uniout, *) 'case modality ',modality(1:len_trim(modal ity))
include •case_ROHF_obj ects'

case default
write(uniout,*) 'No such obj ect "' , modal ity (1 : l en t rim(modality)) ,

'" for class "' , class (1 : len trim (c lass)) , ' "'
stop'No such modality ' -

end select

call PRG_manager ('exit', 'WFN_objects', 'UTILITY')
RETURN
END subroutine WFN_obj e c t s

To code this implementation, three levels of the select case need to be created. Putting the

entire select case in one subroutine and file would have created a very large file that would

be very difficult to maintain. A file, main_modality.f, was created that holds the required

routines of select cases. As can be seen in Figure 4.3.1 0 the modality type, 'WFN' or wave

function, calls a routine WFN_objects. This routine, found in main_modality.f, was then

invoked and the modality is used to select the next choice. Figure 4.3.11 shows a portion of

93

the routine WFN_ objects, other modality routines are similar.

Here, an acceptable use of include files can be seen. As mentioned in chapter three, include

files should be avoided. They can be over used and can make code hard to read, and cause

Figure 4.3.12: Get object select case step three, based on class. This file will be an
'include' file.

select case (Class)
case ('DENSITY')

select case (Object)
case ('lMATRIX')

call DENSITY_lMATRIX_RHF

case ('ENERGY WEIGHTED')
call DENSITY_Eweighted_RHF

case default
write(uniout,*) 'No such object "' ,Object(l:len trim(Object)),

'" for class "',class (1: len_trirn(class)), '"'
stop'No such object'

end select

case ('GUESS ')
select case (Object)
case ('DENSITY')

call DENSITY_guess_RHF

case ('MO')
call BLD_GUESS_MO

case default
write(uniout,*) 'No such object "' ,Object(l:len trim(Object)),

'"for class "',class(l:len trirn(class)), '"'
stop'No such object' -

end select

case ('MO')
select case (Object)
case ('COEFFICIENTS')

call RHCCLC

case default
write(uniout,*) 'No such object "' ,Object(l : len trim(Object)),

'" for class "' , class (1: len trim (class)) , '"'
stop'No such object' -

end select
case default

write(uniout,*) 'No such object "',Object(l:len trim(Object)) ,
' " for class"' ,class(l:len_trirn(class)), '"'

stop'No such object'
end select

94

trouble with dependencies in Makefiles. However in this case, include files are used very

carefully to improve the readability of the code. By having the include files in the select case

it can be seen exactly which objects are being included. The naming is very important here.

The names used mean something to the reader ofthe code. For example, it is clear that the

file 'case_ RHF _objects' will have all the RHF objects in it and will be a select case. Figure

4.3 .12 shows the 'case_ RHF _objects' include file. Here it can be seen that both the class

select case and the object select case are in the same file, this helps for maintaining the code.

When adding a new object, the programmer would just have to find the appropriate include

file, and place the call to the building routine in the correct spot in the select case (based on

the class and object name, alphabetical order).

The next two sections described, Build object routine, and program_ manager will not be

presented as two separate implementations, since the implementations did not change that

much. Some instances of each implementation will be mentioned, but not to a large degree.

4.4 Routine to Build I Create Objects

Another major piece ofthe infrastructure are the routines that build the objects. As discussed

in Section 4.3, get_object is responsible for calling the object building routine for the

requested object. It is the object building routine that the scientific programmer will create.

The object building routine is the code implementation of the scientific theories. The

95

algorithm developed from scientific theory is implemented in the object building routine.

Once created, the other three main parts of the infrastructure, the build object list, get_ object,

and program manager, require very little input or maintenance, it is the object building

routine that the scientific programmer will spend most of their time on.

In accordance with the design protocols presented in Chapter 3, the object building routine

must follow a very strict template. Figure 4.4.1 shows the template of a routine that builds

an object. As with all routines in the program, the object building routine starts with a

meaningful routine name and a routine header, encased in a square of arteries, which contains

all the information discussed in section 3.2.1. The required modules are then listed after a

comment line which labels them as modules (* Modules :). Then the most important line

in any routine is included, "implicit none". As stated, every routine must have implicit

none in it. See section 3.3.1 for a more detailed discussion of implicit none. Following

implicit none, all required variables are declared.

Once variables are declared, the routine must call the program manager, PRG_manager.

The program manager oversees the operations of the program and is very important to the

development and maintenance oflarge scientific codes, section 4.5 will discuss the program

manager in detail.

The building routine then builds the object. The object building routine must, first, "get" all

96

the objects it requires to build the object, that is all the objects it depends on. This is done

by a series of calls to get_object with the appropriate object names. Once these calls are

complete, the object building routine has all the information it needs to start building the

object. Before the code to build the object is executed, the object building routine checks

if debugging has been requested, and acts accordingly.

The comment line "* code to build object" in the template looks almost

insignificant. However this is the line that is replaced to implement the algorithms which

the scientific programmer develops from scientific theory. Often this section is hundreds to

thousands of lines of code, and can take a programmer months of work to write. However

once the general template has been created the scientific programmer is able to concentrate

their efforts on this most important section of the code. Incorporating this into the overall

program then becomes a trivial task. Chapter 5 will present the simple steps a programmer

must follow to add new objects to the program.

97

Figure 4.4.1: Object building routine template

Sample subroutine:
MODULE class name

********************************* ***** *** ***** ********** *****************************

*
Date last modified : February 16, 2000
Author: R.A. Poirier

Version 2.0 *
*

* Description: Contains this and that *
*** ******

implicit none
*
* Scalars

integer scalarl
*
* Arrays

double precision, dimension{:), allocatable . . arrayl
double precision, dimension{:), allocatable . . array2
double precision, dimension{:) , allocatable . . array2

*
CONTAINS
SUBROUTINE Routine NAME

* Date last modified : September 28 , 2000 Version 2 . 0 *
* Author: Darryl Reid *
* Description: Computes OBJECT_NAME for the following MODALITY . *

* Modules:

*

USE object_based_main
USE class namel
USE class:::name2

implicit none

* Begin:
call PRG_manager {'enter' , 'Routine_NAME', 'CLASS :OBJECT_NAME%MODALITY')

*
* Get all required objects:

call get object {'CLASS :DEFAULTS')
call get=object {'CLASSl :OBJECT_NAME1%MODALITY')
call get_object {'CLASS2 :0BJECT_NAME2%MODALITY')

*
* Build the object :

if(local debug)then
* print required objects

end if
*

Code t o buil d objec t
*

end if ! if{ . not.Object_current{ObjNum))

* Check i f p r int of object is requested {always p rint f or a debug) :
if(Object_print{ObjNum) .or . local_debug)then

* code to print object
end if

*
* Check if saving of object is requested :

if {Obj ect s ave{ObjNum))then
* code to-save objec t

end if
*
* End of routine Routine NAME

call msg_print {'exit' , 'Routine_NAME', 1 CLASS :OBJECT_NAME%MODALITY')
RETURN
END sub rou tine Rou tin e NAME
end MODULE clas s_name -

98

4.5 Program Management Tools

The next major element of the backbone or infrastructure of the code is the program

management tools. Program management tools are a collection of tools designed to help the

programmers write the code. Their purpose is to help in the development ofthe code. The

program management tools consist of error checking tools, as well as debugging tools, both

useful to the programmer during the development stages. In addition the tools have a timing

function built in which can be used for code optimization and can build a dependancy matrix

which could have important applications for future code developments.

The program manager is a subroutine that is central in the overall program scheme. In

general, every routine calls the program manager when it first enters and just before it exits.

There are some exceptions to this, for example routines that could be called millions oftimes

during the execution of the code will leave out the call to the program manager, since the

overhead would be to much. The main purpose of the program manager is to keep track of

information about the code's execution which are deemed useful to the programmer. As has

been noted, every object in the code has a unique object number. The program manager

uses this object number in many of its features. For instance, when a trace of the codes

execution is required the program manager uses the object number to print the desired

information.

99

The program manager is not essential to the execution of the code. It is for developmental

purposes only and can be removed in a finished "number crunching" version of the code.

This removal would involve some global substitutions since the program manager is used

in every routine in the code. This removal should increase the efficiency of the code.

The program manager is intimately connected with the rest of the code infrastructure,

especially the object _list. The program manager uses the information stored the object _list

for most of its functionality.

The program MUNgauss has two main types of sub-program units, utilities, and object

building routines. Object building routines were described in section 4.3, they perform the

required computations to build an object. Utilities are a portion of the code utilized by the

program to perform some task, they do not build an object. These routines are essential to

the operation of the program however since they are not objects they do not have an object

number associated with them. With this in mind the program manager has to be able to deal

with both kinds of sub-program units.

To deal with utilities and objects, the program manager subroutine is divided into two main

parts, one for each sub-program unit. Figure 4.5.1 shows a simplified flow chart of the

program manager subroutine. It can been seen that the first step is to decide whether it is

dealing with an object or a utility. When working with a utility the program manager is only

100

concerned with performing a trace. The main part of the program manager is the object half

of the subroutine. There are five main parts of the program manager each of these are

shown in Figure 4.5.1. There is error checking, debug, timing, dependency and trace parts

of the routine. A description of the implementation and function of each of these parts

follows.

4.5.1 Error checking

The first feature in the program manager is the error checking portion. This checks to ensure

that the program manager is working with the correct information. The check is between

the object passed into the program manager from the building routine (which calls the

program manager) and the object that is stored in the object_list that corresponds to the

current ObjNum (object number). This check is simply implemented using a string

comparison of each object name. Figure 4.5.2 shows the error check in program manager.

Figure 4.5.2: Sample error check.

* Error Checking to ensure the correct ObjNum is being used
class=Local_Object_Name(l : index (Local_Object_Name,': ') -1)
name=Local _Object_Name (index(Local_Object_Name,' : ') +1 :len_trim(Local_Obj ect_Name))
modality=' '
if(index(Local Object Name,'%') . ne.O)then
name=Local Ob]ect Name(index(Local Object Name,' : ')+1 :

- - index(Local- Object- Name , '%')-1)
modality=Local_Obj ect_Name((index (Local_Object_Name, '%')+1):

1en_trim (Local_Object_Name))
end if

if (Routine Name .NE. Object(ObjNum)%routine(1:len_trim(Object(ObjNum)%routine)))
then -
write(uniout , *)

stop

'Routine Names do not ma t ch' , Routine Name, ' and',
Object (Obj Num) %routine (1 : l en t r im(Object(Obj Num) %routine)) ,
' upon ', EnterOrExit, ' Object Number ' , ObjNum, ' Index ',
Obj ectArrayindex

101

Get Object
Number from Array ·

Trace

Dependency

Error
Checking

Increment
ObjectArraylndex

Store Object
Number in Array

Debug

Decrement Dependency
ObjectArraylndex

Trace

Return

Increment
Utility Counter

Trace

Decrement
Utility Counter

...
Trace

Figure 4 .5 .1 : Simplified flow chart for program manager. Each of the five main functions
are shown in different colors, error checking, debugging, timing, dependency, and tracing.

102

4.5.2 Local Debug

Debugging is one ofthe most difficult and most important part of code development. There

are many tools available to help debug programs. However, they are often difficult to learn

and use, give ambiguous information regarding the error, and are often not suited to very

large codes. For the development ofMUNgauss, a set of debugging tools were built into the

code. Each routine has (or at least can have) sections that contain useful debugging

information to help the programmer locate errors. These sections are contained within an

"if' statement that is controlled by a local debug variable. It is the responsibility of the

program manager to determine iflocal debugging was requested by the programmer and to

set the value of the local debug variable (Local_Debug) to true or false as required.

As stated in Section 4.2, the object _list includes an array (in implementation #1) or a variable

in the derived type (implementation #2) that stores if the local debugging of an object is

requested. The request is an input from the programmer, via the menu of the program.

When the program manager is called it checks if debugging was requested by simply using

the ObjNum to check the appropriate value in the object_list. It then sets the value of

Local_Debug to the correct value (true or false). This value is then passed on to the routine

(through the module) and the debugging portion of the program is executed.

103

4.5.3 CPU_ timing

Knowing the time it takes a subroutine to execute can be very useful for a programmer

during code development. It can help pinpoint areas of the code which take the most time

and allow the programmer to work on those areas to help the overall performance of the

program. The program manager contains tools to gather the execution time of subroutines

in MUNgauss. The manner in which program manager does this is by using a call to a

function CPU_ TIME. Unfortunately this function is not standard Fortran 90, however it is

part ofthe Fortran 95 standard7
• The basic procedure of collection timing information should

not change, the only part that may change is the call to the function and possibly the

manipulation of the results for printing.

Figure 4.5.3: Timing within the program manager

Entering portion of Program Manager:
* CPU Time Computation

- i f (Object cputiming(ObjNum)) then
call CPU-TIME(Begin time)
BeginTimeArray(Objec tArray index) = Begin_time

end if !LCPU_Time

Exiting portion of Program Manger:
* Computation time printing

if (Object_cputiming(Object_Number_list(ObjectArrayindex))) then
call CPU TIME(end time)
EndTimeArray(ObjectArrayindex) = end_time

write (uniout, *) Obj ect routine(ObjNum) (l : len t rim(Object routine(ObjNum))),
' took ' , EndTimeArray(ObjectArrayindex) -- -
BeginTimeArray(ObjectArrayindex), ' seconds',
'Object Number' , Object Number list(ObjectArrayindex),
BeginTimeArray(ObjectArrayindex),-EndTimeArray(ObjectArrayindex)

end if !LCPU Time

104

When the program manager is called, it checks to see if cpu time was requested for that

object, by checking the corresponding element in the object_cputiming array. Iftiming

is required, the program manager places a call to CPU_ TIME function and stores the result in

a BeginTimeArray at the next element in that array. When the calling routine calls the

program manager upon exiting, the program manager again calls CPU_TIME and obtains a

value for the end time of the subroutine. It is then just a matter of subtracting the beginning

time from the ending time to obtain the elapsed execution time for the subroutine. Figure

4.5.3 shows the two pieces of timing code.

4.5.4 Dependency

An interesting addition to the program manager is the creation of a dependency matrix. A

dependancy matrix is a matrix that contains information on which objects depend on other

objects. In the program manager functionality has been created for the program to construct

the first order dependancy matrix for the program MUNgauss on the fly, or as the code

executes. This information can be printed at the end of the execution if requested by the

programmer/user.

Why is the dependency matrix of interest? Firstly if can give the programmer an idea of how

the code is being executed and how objects relate to one another. This kind of information

can help the programmer gain a higher level of understanding ofhow the program operates.

This can be very useful in large scientific codes, as they can be quite complex, any

105

assistance in understanding the codes operations is helpful.

Figure 4.5.4: Dependency matrix portion of program manager.

Entering portion of Program Manger :

* Build the First Order Dependency Matrix .
if (Ldependency) then

if (.not . allocated(First Order Depend)) then
allocate (First Order Depend(Nobjects , Nobjects))

end if - -
DependCounter = DependCounter + 1
if (DependCounter .gt. 1) then

First Order Depend((Object Number list(ObjectArray index -1)), ObjNum) = . true.
First-Order-Depend(ObjNum,-ObjNum) = . true.

else if-(DependCounter . eq . 1) then
First Order Depend(l:NObjects,l :Nobjects) = .false.
First=Order=Depend(Obj Num, ObjNum) = . true.

end if !DependCounter
end if !Ldependency

Exiting portion of Program Manager

if (Ldependency) then
DependCounter = DependCounter - 1

end if !Ldependency

ObjectArray index = ObjectArrayindex - 1

The second use of the dependency matrix ts work for future code development.

Parallelization of programs is becoming a very widely used technique to improve a code's

performance. Knowledge of how objects depend on each other is a good first step in

designing a parallel algorithm of a program. The goal is to design the program in such a way

that it will first build the dependency matrix, on the fly, and then use that matrix to determine

a level of parallelization. This kind of"automatic" parallelization will be difficult to obtain,

however the dependency matrix could be an important start.

106

4.6 How it all works together

The four main portions of the programs infrastructure do not work independently. They

interact in a very special way that reaches many of the goals of well-written codes discussed

in Chapter 2. The overall picture of how each of the pieces of infrastructure interact to

produce a program can be seen in Figure 4.6.1. Here it can been seen that the user asks for

a particular object (or piece of information, such as the energy of a system at a particular level

of theory). The code then calls get_object to get that object, get_object will then select the

correct building routine which will proceed to build the desired object. The route

independence discussed in section 1.2 is illustrated here, it can be seen that the building

routine will "get" an object that the desired object depends on. By calling get_ object the

code determines its own path of execution. The build_ object _list and the program manager

are not included in Figure 4.6.1 since most of there work is done "behind the scenes". The

object list created by build_ object _list is stored in memory and an available repository of

information about each object in the program. It is key to the functioning ofthe program, but

is only executed once at the start ofthe program, then just sits there providing information

to the rest of the program.

107

Object listl
Derived type array
Object
Character strings
Class Name Modality Routine

c:::J c:::J c:::J c:::J
Loglcals
E•ist Current Debug CpuTiming

D D D D
Character strings
Class Name Modality Routine

2 c:::J c:::J c:::J c:::J
Logicals
Exist Current Debug CpuTiming

D D D D
• • •

BLD ob '2

2
Get Obj27

1
Get Obj2

Get Obj4 Get Obj14 ..
Build Objl Build Obj2

4 BLD_obj4

Build Obj4

Figure 4.6.1: Sample code execution. Note the route independence, route is determined dynamically. The numbers
indicate the value of the Object Number at that point in the execution. Red values are set by get_ object going down
the tree of execution (right) while the blue numbers are set by the program manager coming back up the tree (left).

108

The program manager, as previously noted, is called at the beginning and end of each and

every routine or function in the program. Every routine shown in Figure 4.6.1 does call

program manager, however it is not included for clarity. The program manager acts mainly

as a record keeper of the program. The program manager, keeps track of which routine

called which routine, and when. It can track the time the program takes in each routine. It

also acts as a prompter to cause the routines to perform debugging features requested by the

user. The program manager also keeps track of the object number and makes sure that it is

always correct when used by any other routine. As the code goes further down the tree of

execution (further to the right in Figure 4.6.1) the object number changes whenever

get_ object is called. However when the code starts to return up the levels, the object number

would be that of the last object which is built. The program manager resets the object

number to the correct value when it is called at the end of a building routine. This allows

other routines access to the correct object, via the object number.

Following the logic of this kind of programming approach may be a little confusing. An

analogy may help. Lets say you want to make (build) a christmas dinner. Well if this

programming approach was used you would simply ask for the object "Christmas_dinner".

Get_object would call the building routine "BLD_Xmas_dinner". This routine would

"know" that object "Christmas_dinner" needed objects "Bottle_wine", "Cooked_Turkey",

"candles" and "Salad" to be built. Once "BLD _Xmas_ dinner" has each of these objects it

could build a Christmas dinner. So it calls get_ object for "Bottle_ wine", get_ object calls the

109

Figure 4.6.2: illustration of "BLD _Xmas_ dinner" routine.

BLD _Bottle_ wine and returns the object "Bottle_ wine". "BLD Xmas dinner" would then

ask get_ object for the object "Cooked_ Turkey''. Get_ object would then call

"BLD _Cooked_ Turkey".

Now BLD_Cooked_Turkey needs "Turkey", "Oven" and "Stuffmg" to build the object

"Cooked_ Turkey''. It then goes through the same process of calling get_ object to obtain all

the objects in needs to build "Cooked_Turkey''. Once BLD_Cooked_Turkey finishes it

returns the object "Cooked_Turkey" to BLD_Xmas_dinner. BLD_Xmas_dinner continues

this process to obtain "Candles" and "Salad" objects. This example may seem a little silly

110

but is does illustrate how the program uses objects and that each build object routine just

needs to "ask" the program for the objects it requires to build the desired object.

BLD _Xmas_ dinner does not care how the object "Salad" was built, it just needs the object

"Salad" to be created and be current. The programs infrastructure ensures that when a

building routine asks for an object it is given a current object.

111

Chapter 5

Implementation

5.1 Introduction

The preceding four chapters described an approach to writing a large scientific program.

From beginning concepts of a "purpose statement of the code" through a process of

identifying objects, classes, etc. and on to building an infrastructure upon which the code can

be placed, the approach has been presented. However up to this point, no actual scientific

code has been written. The bulk of this work was to create the infrastructure, clearly define

the protocols, and help organize things in such a manner as they can be easily maintained, but

at the end ofthe day a piece of scientific code is needed. This chapter aims to describe the

112

steps involved in adding a piece of scientific code to the program created. As mentioned,

MUNgauss is an evolving program, it has been in development for 20+ years and continues

to change. The process described below has been done (in one way or another) to every part

ofMUNgauss. Many portions of the program are somewhere in the middle ofthe conversion

process, however it is important to point out that the code is still functional. The process

described in Section 5.2 allows for incremental change. Once the infrastructure has been

created, the old code need only be modified very little to get it to "run", however some fine

tuning would have to be done to get it to conform to the design protocol described in Chapter

3. That part of the conversion is the most time consuming part.

5.2 Adding new objects to the program

The procedure for adding new functionality to the program is a straight forward one. There

are a few points where some thought will be required and some juggling may occur, but for

the most part adding new features is a simple manner of following the steps described below.

1. Decide what functionality to add, and what objects will be added.

Often the programmer will end up only adding one object to get the desired result, however

sometimes multiple objects will have to be combine to achieve the desired functionality.

Give the object(s) a name and determine the class in which it belongs. Looking back at the

table of classes in Chapter 2 can help make this decision. This initial placement of the object

113

is sometimes very easy, as it will obviously fit into a class, but sometimes placement can be

tricky and adding a new class may have to be considered. Here are some things to keep in

mind:

1.1 Keep things that have something in common together (i.e. comes from the

same theory, calculates things similarly)

1.2 The idea of creating separate "packages" was a major goal ofthe project, thus

make sure the separation is maintained between packages.

1.3 Object names have to be unique, and meaningful.

1.4 Does a modality apply to this object, if so this plays a key role in determining

how it is integrated into the code.

Once these decisions have been made all the characteristics of the object should be able to

be defined, as shown in Figure 5.2.1. Figure 5.2.1 shows the "Dummy Class" of the

BLD _ object_list routine discussed in Chapter 4. These characteristics identify the object.

Figure 5.2.1: Template of object characteristics to be placed in the BLD _object_ list
routine.

·.· ' •' ··' .•:.
* Dummy ' class .· ··

· N6bjects = N"objec'ts -+ ·l
Object (N.objects) %Cla!!8 = 1 ? 1

Object(ijo~]ects)%name = '?'
Object ("Nobj.ects) %modality = '? •
·object.(Nobjects) %routine = •? 1

·... . . '

2. Placing the object into the infrastructure.

With the object identified it must now be inserted into the infrastructure of the program

114

2.1 First, add the object to the object list. As identified in Chapter 4, the object list is a

master list of all the objects available in the code. Within the routine

"BLD _object_list", find the class that the object belongs and insert the new object,

following the template seen in Figure 5 .2.1. Doing so will give the new object a

unique object number and allow the other features of the infrastructure to work with

it.

2.2 The next step is to place the call to the object building routine within the "get_ object"

routine sub-structure. Recall, the get_ object routine is a group of select cases based

first on modality, then class, then object name. In MUNgauss, to help organize this

hierarchy of select cases, the implementation makes use of"include" files. Therefore

to add the call, to the building routine of the new object, the appropriate include file

(called case_MOD_objects, where 'MOD' is the modalityofthe new object) must

be edited. In that file, find the class ofthe object (or add a new class), and insert the

case and call to the building routine, remembering to stay in alphabetical order.

At this point the building routine and thus the object, is part of the infrastructure of the

program and can be called by any routine in the program, or can be requested by the user via

the input menu. The only problem is that the building routine has not been created.

115

3. Write the object building routine.

Generally one is adding either a new, never before created object or adding a piece of older

code that now needs to be integrated with the new program. If creating a new object, then

simply follow the protocols described throughout this thesis, making sure to follow the

template given in Chapter 4 (Figure 4.4.1). Make sure to 'use' the appropriate modules and

to include the program manager features. If other objects are needed simply call get_ object

and 'use' module for that object and the information will be available. Ensuring the proper

practices of variable naming, documentation, error messages, etc. and the object can be

created in no time (well the actual algorithm to build the object must be written).

Converting an older piece of code so it can be used in the newly designed program is a step­

wise process. Starting by adding a few of the new features, such as the program manager,

the routine can be made to work with very little effort. The major challenge comes from

truly converting old F77 code to F90. As with any integration of old code, when adding old

code to the program, the programmer must ensure it has the required information available

to it, to build the object. This means a call to get_ object may be necessary to make any

required information available. Often variable names have changed, and this merging could

become time consuming, however once complete the code will run without major changes.

116

Once the code is working, the program can call for that object from anywhere in the code.

However, likely the old code will not be well optimized or well documented or follow many

of the design protocols of this thesis. Therefore time should be invested in rewriting the

routine to reflect the new protocols. This is another often time consuming part, but it will

pay off in a few months when a programmer has to go back and edit that piece of code and

they have no idea how it works, or what it does.

5.3 Implementing a BSSE Code

As an example of a new object that could be added to MUNgauss, it was decided that the

Boys-Bemardi counterpoise correction for Basis Set Superposition Error (BSSE)

functionality would be added.

In theory the binding energy, ~EINT• due to the interaction of species A and B will be given

by

~EINT = E"AB- (EA + Es)

where E" AB is the energy of the complex between A and B, and E A> E8 is the energy of the A

and B respectively, in their relaxed geometry and its own basis functions. This is true for an

infinite basis set, however with finite basis sets, the functions on A will improve those on B

and vise versa, during the optimization for the complex. Therefore the energy, ~E. will be

incorrect by a factor of OBSSE• known as the basis set superposition error·21
•

117

The Boy-Bernardi correction for this error is estimates by

OsssE = E(A-*) + E(*-B)- (EAt + Est)

Where E(A-*) and E(*-B) are the energy of the monomers A and B with the basis set of

AB and in the geometry of the complex. EAt and Est are the energy of monomers A and B

in the geometry of the complex but using its own basis set.

This correction is then subtracted from the ~EINr to get the total, corrected ~EINr(no BSSE).

~EINr(no BSSE) = ~EINr - OsssE

= E*AB- [E(A-*) + E(*-B)]- (EA- EAt)- (E8 - E8t)

In practice E A ::::: EAt and E8 ::::: E8 t therefore

~EINr(no BSSE) = E*AB- [E(A- *) + E(*- B)]

So to go through the above procedure, first a new object had to be identified. That is to say

the characteristics of the object (class, name, modality and routine) had to be defined.

Object(Nobjects)%class = 'ENERGY'

Object(Nobjects)%name = 'BSSE'

Object(Nobjects)%modality = 'RHF'

Object(Nobjects)%routine = 'BLD_ENERGY_BSSE'

Next the call to the routine 'BLD_ENERGY_BSSE' must be added to the get_object

substructure. Therefore the include file 'case_RHF _objects' was edited to contain the class

'ENERGY' and the call to the building routine. Figure 5.3.1 shows this addition.

118

Figure 5.3.1: Addition to get_object substructure to add call to BSSE object building
routine.

case (' ENERGY')

select case (Object)
case 1 'BSSE') ''

call BLD ENERGY BSSE
case ('COMPONENTS1)

callE JandK
I 'case default ·

write(uniout,*)'No such object "',Object(l:len trim(Object)},
'"for class " ' ,class(l:len tri~(class)),'"'

st0p'No such objeCt• -
end s.elect

Then the template (Figure 4.4.1) was edited to reflect the BSSE object. The actual building

routine does not build the BSSE object since time did not permit it. However, the purpose

of this exercise was to show the ease with which an object could be added to MUNgauss.

In its current state the routine simply returns the negative of the RHF energy. With some

algorithmic changes this would produce the correct value.

With the building routine in place, the Makefile had to be edited to ensure the new

functionality was compiled. Then the object could be called like any other object in

MUNgauss, from any routine or from the menu with the command,

OUTPUT object= ENERGY:BSSE%RHF

When executed with this command the output is

E inte~action B$SE-free ~ 197 . 154475
BLD ENERGY BSSE: NOT CORRECT ENERGY!!
BSSE not avail·able at this time

119

for a sample molecular complex ofHF with HF.

Figure 5.3.1: BSSE object building routine.

SUBROUTINE BLD ENERGY BSSE - -

*
*
*

Date l ast modified: December 12, 2002
Author: Darryl Reid and R. A. Poirier
Description : Compute the BSSE free energy

Version 1 . 2 *
*
*

* Modules:

*

USE program manager
USE program-defaults
USE global scalars
USE constants
USE type_energies

implicit none

* Work arrays:
*
* Local scalars:

*

double precision .. E_BSSE_int,E_BSSE_AB,E_BSSE_Astar, E_BSSE_starB
logical Ldebug

* Begin :

*

call PRG manager {'enter', 'BLD_ENERGY_BSSE', 'ENERGY :BSSE%RHF')
Ldebug=Local_Debug

* Get Energy for A- - - B complex
call get object {'MO:COEFFICIENTS%RHF')
E BSSE AB=ENERGY RHF%total

* Modify molecule -
* Get Energy for A---* complex

E BSSE Astar=ENERGY RHF%total
* Modify molecule -
* Get Energy for *---B complex

E BSSE starB=ENERGY RHF%total
* Compute BSSE free interaction energy

*

E BSSE int=E BSSE AB-E BSSE Astar - E BSSE stare
write{uniout~· {a,fl2.6l') ' E-interaction BSSE-free = ' , E BSSE int
write{uniout , ' {a)') 'WARNING; BLD ENERGY BSSE: NOT CORRECT ENERGY!!'
write{uniout, I {a)') 'BSSE not available at this time'
stop'BSSE not available at this time'

* End of routine BLD ENERGY BSSE
call PRG_manager {'exit•, 'BLD_ENERGY_BSSE' , 'ENERGY:BSSE%RHF ')
RETURN

END

120

5.4 Conclusions and future work

Redesigning the major infrastructure ofMUNgauss to work in a more modular way and to

take advantage of many of the new features of Fortran 90 has greatly improved the

manageability of the program. The design protocols that have been implemented have

improved the codes readability and has given the code a consistent look and feel, which have

made code development much more programmer friendly. The new infrastructure has

provided a good backbone for adding additional functionality and the process to add the

functionality is a straightforward one.

The decision to use Fortran 90 as the language for this project proved to be a wise one.

Fortran 90 allowed the conversion of old MUNgauss code to be a gradual process without

long periods of downtime. Many of the new features of Fortran 90 allowed for better

memory management (allocatable arrays) and cleaner code (modules, select cases, etc.).

The addition of a program manager routine, along with the creation of a unique object

number, has afforded many useful features. Timing routines, debugging the program, tracing

execution and error detection are all now available through the program manager. In

addition the program manager, provides many of the needed tools for future work. The

creation of a dependency matrix could eventually lead to parallelization ofMUNgauss. The

timing tools can help programmers identify inefficient portions of the program and guide

them towards optimization of the entire program.

121

MUNgauss will continue to evolve. It is a dynamic program that is continually improving

its functionality. The new protocols and design has made this process much more

programmer friendly and hopefully will act to accelerate this evolution.

122

References

1. B. Meyer. Object-Oriented Software Construction. Prentice Hall, Inc., Englewood

Cliffs, 1988.

2. Cooper Redwine. Upgrading to Fortran 90. Springer-Verlag New York, Inc.,

1995.

3. F. Colonna, L. Jolly, R.A. Poirier, J.G. Angyan, G. Jansen. OSIPE - a tool for

scientific programming in FORTRAN. Comp. Phys. Comm. 81 (1994) 293-317.

4. A. Szabo and N. S. Ostlund. Modern Quantum Chemistry; Introduction to

Advanced Electronic Structure Theory. McGraw-Hill, Inc., 1996.

5. I. N. Levine. Quantum Chemistry: Fifth Edition. Prentice-Hall, Inc., Upper

Saddle River, 2000.

6. R. Davies, A. Rea and D. Tsaptsinos. Introduction to Fortran 90, QUB.

Retreived January 9, 2002 from,

http://www.pcc.qub.ac.uk/tec/courses/f90/stu-notes/F90_notesMIF_1 .html

7. Jeanne C. Adams, WalterS. Brainerd, Jeanne T. Martin, BrianT. Smith and

123

Jerrold L. Wagener. Fortran 95 Handbook, Complete ISO/ANSI Reference. The

MIT Press, 1997.

8. Larry R. Nyhoff and Sanford C. Leestma. Introduction to Fortran for Engineers

and Scientists. Prentice Hall, Inc., 1997.

9. A. C. Marshall, J. S. Morgan, J. L. Schonfelder. Fortran 90 Course Notes.

University of Liverpool, 1997.

10. ACES II is a program product of the Quantum Theory Project, University of

Florida. Authors: J.F. Stanton, J. Gauss, J.D. Watts, M. Nooijen, N. Oliphant,

S.A. Perera, P.G. Szalay, W.J. Lauderdale, S.A. Kucharski, S.R. Gwaltney, S.

Beck, A. Balkova D.E. Bernholdt, K.K. Baeck, P. Rozyczko, H. Sekino, C.

Rober, and R.J. Bartlett. Integral packages included are VMOL (J. Almlofand

P.R. Taylor); VPROPS (P. Taylor) ABACUS; (T. Helgaker, H.J. Aa. Jensen, P.

J0rgensen, J. Olsen, and P.R. Taylor).

11. CADP AC: The Cambridge Analytic Derivatives Package Issue 6, Cambridge,

1995. A suite of quantum chemistry programs developed by R. D. Amos with

contributions from I. L. Alberts, J. S. Andrews, S. M. Colwell, N. C. Handy, D.

Jayatilaka, P. J. Knowles, R. Kobayashi, K. E. Laidig, G. Laming, A.M. Lee, P.

E. Maslen, C. W. Murray, J. E. Rice, E. D. Simandiras, A. J. Stone ,M.-D. Su and

D. J. Tozer.

12. "General Atomic and Molecular Electronic Structure System" M.W.Schmidt,

K.K.Baldridge, J.A.Boatz, S.T.Elbert, M.S.Gordon, J.H.Jensen, S.Koseki,

N.Matsunaga, K.A.Nguyen, S.Su, T.L.Windus, M.Dupuis, J.A.Montgomery J.

124

Comput. Chern., 14, 1347-63(1993).

13. Gaussian 98 (Revision A.11.3), M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E.

Scuseria, M.A. Robb, J. R. Cheeseman, V. G. Zakrzewski, J. A. Montgomery,

Jr., R. E. Stratmann, J. C. Burant, S. Dapprich, J. M. Millam, A. D. Daniels, K.

N. Kudin, M. C. Strain, 0. Farkas, J. Tomasi, V. Barone, M. Cossi, R. Cammi, B.

Mennucci, C. Pomelli, C. Adamo, S. Clifford, J. Ochterski, G. A. Petersson, P. Y.

Ayala, Q. Cui, K. Morokuma, P. Salvador, J. J. Dannenberg, D. K. Malick, A. D.

Rabuck, K. Raghavachari, J. B. Foresman, J. Cioslowski, J. V. Ortiz, A. G.

Baboul, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R.

Gomperts, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A.

Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W.

Wong, J. L. Andres, C. Gonzalez, M. Head-Gordon, E. S. Replogle, and J. A.

Pople, Gaussian, Inc., Pittsburgh PA, 2001.

14. Q-Chem 2.0: A high-perfonnance ab initio electronic structure program,J. Kong,

C. A. White, A. I. Krylov, C. D. Sherrill, R. D. Adamson, T. R. Furlani, M.S.

Lee, A.M. Lee, S. R. Gwaltney, T. R. Adams, C. Ochsenfeld, A. T. B. Gilbert,G.

S. Kedziora, V. A. Rassolov, D. R. Maurice, N. Nair, Y. Shao, N. A. Besley, P. E.

Maslen, J.P. Dombroski, H. Daschel, W. Zhang, P. P. Korambath, J. Baker, E. F.

C. Byrd, T. Van Voorhis, M. Oumi, S. Hirata, C.-P. Hsu, N. Ishikawa, J. Florian,

A. Warshel, B. G. Johnson, P.M. W. Gill, M. Head-Gordon, and J. A. Pople, J.

Comput. Chern. (2000) 21 , 1532-1548.

15. Spartan version 5.0. Wavefunction, Inc. 18401 Von Karman Avenue, Suite 370.

125

Irvine, CA 92612 U.S.A.

16. David A. Case, David A. Pearlman, James W. Caldwell, Thomas E. Cheatham Ill,

Junmei Wang, WilsonS. Ross, Carlos Simmerling, Tom Darden, Kenneth M.

Merz, Robert V. Stanton, Ailan Cheng, James J. Vincent, Mike Crowley, Vickie

Tsui, Bolger Gohlke, Randall Radmer, Yong Duan, Jed Pitera, Irina Massova,

George L. Seibel, U. Chandra Singh, Paul Weiner, and Peter A. Kollman (1997),

AMBER 5, University of California, San Francisco.

17. CHARMM: A Program for Macromolecular Energy, Minimization, and Dynamics

Calculations, J. Comp. Chern. 4, 187-217 (1983), by B. R. Brooks, R. E.

Bruccoleri, B. D. Olafson, D. J. States, S. Swaminathan, and M. Karplus.

18. HyperChem(TM), Hypercube, Inc., 1115 NW 4th Street, Gainesville, Florida

32601, USA

19. W. N. Celmaster. Modem Fortran Revived as the Language of Scientific Parallel

Computing. Digital Technical Journal. Vol. 8, No.3, 1996.

20. An Overview ofWG5 and its work. Sept. 1999. Retrieved on Dec. 2002, from

http://www.nag.co.uk/sc22wg5/overview.html

21. M. Watkins. York Centre for Laser Spectroscopy; Electronic Structure Methods.

Department of Chemistry, The University of York. Retrieved Dec. 2002 from,

http://www. york.ac. uk/res/ycls/theory/notes. shtml

126

