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ABSTRACT 

Analysis of lipids is a very informative way of detennining the physiological state 

of a marine ecosystem. The information derived from analysis of these hydrophobic, 

carbon rich compounds is very important to researchers in fields such as aquaculture and 

biological research. 

Thin layer chromatography with flame ionization detection (TLC-FID) has been a 

common method for identification and quantitation of the lipid classes of samples derived 

from marine sources such as sediments, plants and animals. However, TLC suffers from 

some analytical problems such as low sensitivity, non-linear calibration curves, long 

analysis times and use of copious amounts of hazardous solvent. 

Gas chromatography (GC) is an ideal choice for lipid analysis as it allows for 

automation, high sensitivity, short analysis times and low cost. Marine lipid samples often 

contain high proportions of polar lipid classes such as the phospholipids (PL) and the 

acetone mobile polar lipids (AMPL). While neutral lipid classes are readily analyzed by 

short column GC, AMPL retain on the GC column rendering the column useless after 

time. Thus GC determination of polar lipids requires enzymatic treatment and 

derivatization prior to chromatographic analysis. 

This project optimized a short column GC method for marine lipid class profiling 

by incorporating Kuksis' GC profiling strategy (1984) that used the enzyme 

. phospholipase C to hydrolyze PL to diacylglycerols, with the optimized short column GC 

method for marine neutral lipids developed by Yang (1996). Combination of enzymatic 
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hydrolysis and short column GC makes a near complete lipid profile of marine lipid 

samples possible. Hydrogenation of samples allows for compounds to be separated 

according to their carbon numbers and functional groups. 

In this project, the dephosphorylation procedure was optimized for marme 

samples, which were 50 units of phospholipase C for every milligram of phospholipid 

present in the sample. Comparison of percent lipid data obtained by short-column GC 

with Iatroscan TLC-FID data showed that equally accurate and sensitive data could be 

obtained. Hydrogenation of samples prior to analysis allows for excellent peak resolution 

and sensitivity to individual compounds within each lipid class. Achieving this 

information is not possible with TLC-FID when performing total lipid profiles. The 

pretreatment of samples resulted in 63.7 ± 3.7% recovery of samples, however the overall 

analytical precision was 1. 7% error between replicate samples. 
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1 INTRODUCTION 

Lipids are classified as carbon rich substances that can be extracted from cells and 

tissues by non-polar organic solvents. Since lipids have a very high-energy value, they are 

important fuels in marine ecosystems (Lee et al, 1971 ). Marine lipid samples can be 

obtained from a variety of sources including sediments, seawater, and plant and animal 

tissue. Marine sediments often contain the basic skeletal structures and functional groups 

of the original sources, and therefore serve as a tool to determine the origin of the 

sediment (Venkatesan et al, 1987). Lipid class data from seawater and sediments are 

useful as indicators for pollution, types of organisms present in the sampling area, and 

products of anabolic or catabolic processes experienced in these organisms. Marine plants 

such as microalgae, seaweeds and seagrasses are the primary producers of energy in 

marine ecosystems. This energy is commonly stored as fatty acids in triacylglycerols 

(TAG) (Yang et al, 1996). Invertebrate animals such as oysters and mussels ingest these 

plants and therefore serve as the link in the transfer of energy from phytoplankton to the 

upper trophic levels of the marine food web, such as fish and marine mammals (Fenchel, 

1988). For these animals, lipids are a very important source of metabolic energy. In 

addition, many organisms are able to alter membrane fluidity in response to temperature 

changes. This is achieved through changes in relative amounts of various unsaturated 

fatty acids (FA) in the membrane phospholipids (PL). The composition of marine lipids 

depends greatly on changes in diet and environmental stresses. 

Analysis of lipid quantities and compositions is therefore extremely imp01iant in 

monitoring physiological conditions of a variety of marine species. For example, 



quantitative evaluation of lipid profiles has specific significance in terms of biomarkers 

and indices. Lipids and their derivatives have great potential as biomarkers because of 

their diversity of structures synthesized by plants, bacteria and zooplankton. These 

compounds can therefore be used to monitor the pathway of carbon as it moves through 

the ecosystem. In addition, lipids are potential solvents of lipophilic pollutants such as 

polycyclic aromatic hydrocarbons (P AH), polychlorinated biphenyls (PCB) and p,p '­

dichlorodiphenyltrichloroethane (DDT). Therefore they can provide a means of 

transpmting pollutants through marine ecosystems and into marine food webs (Parrish, 

1988). 

1.1 Lipid classes and structures 

Marine lipid samples provide a unique challenge to separation science. Depending 

on environmental stresses, diet and physiological condition of the organism, there can be 

as many as 16 different subclasses of lipid (Parrish, 1988). Lipids include many types of 

compounds containing a wide variety of functional groups. Lipid classes are designated 

based upon the structure and the biological and chemical nature ofthe compound. Figure 

1.1 shows examples of several of the various marine lipid classes that occur in marine 

ecosystems. Lipids can be split into two different subclasses, which are the neutral and 

the polar lipids. In a lipid sample, neutral lipids can include triacylglycerols (TAG), 

diacylglycerols (DAG), sterols (ST), steryl esters (SE), wax esters (WE), free fatty acids 

(FF A), free aliphatic alcohols (ALC) and hydrocarbons (HC). The polar lipids include 

phospholipids (PL) and the glycolipids and other acetone mobile polar lipids (AMPL). 
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Each class consists of a set of molecular species that have similar polarities, 

however there can be several important structural differences between each compound. 

These differences can include units of unsaturation and carbon chain lengths. Lipid 

classes can also be grouped in other ways, such as the acyl lipid classes. These classes 

contain the acyl group (R-C=O) that comes from the presence of a fatty acid within the 

structure. MAG, DAG, TAG and PL all contain fatty acids chains attached to a glycerol 

backbone. In routine fatty acid analysis of a lipid extract, these fatty, acids are cleaved 

from the backbone and analyzed as fatty acid methyl esters (Morrison and Smith, 1964) 

by gas or liquid chromatography. 

1.2 Methodology for analyses of marine lipids 

Improvement and simplification of the methodology for marine lipid analysis will 

greatly benefit the field of marine lipid research. Advancements in analytical techniques 

that lower detection limits and increase sensitivity produce data with higher levels of 

precision and accuracy. Subsequently, the routine identification and quantitation of key 

lipid compounds in an aquatic ecosystem can be made to be more time efficient and cost 

effective. 

Marine lipid classes are a group of compounds that are very complex in nature. 

Lipid classes may consist of many molecular species that are similar in their physico­

chemical propetiies. This makes chromatographic methods the first choice for marine 

lipid analysis. 
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1.2.1 Thin layer chromatography- flame ionization detection 

Since the early 1980s, thin layer chromatography with flame ionization detection 

(TLC-FID) has been quite a common method of lipid analysis (Shantha, 1992). Instead of 

conventional plate TLC followed by scraping, extraction and analysis (e.g. FID 

detection), Iatroscan TLC-FID has become an important tool in marine lipid research. 

The principles behind Iatroscan TLC-FID are generally the same as TLC on silica 

plates. However, during a routine Iatroscan analysis, samples are individually spotted on 

a set of silica coated quartz rods. The tips of these rods are immersed in appropriate 

solvent systems, which rise up the length of the rod. The resulting separations depend on 

the polarities of the solvent system. Passing the rod along its length through the flame of 

an ionization detector creates the chromatogram. 

Typical lipid class analyses require development in a non-polar solvent mixture, 

followed by partial FID scan to quantify the resulting eluted compounds. The rods would 

then be developed in a solvent mixture with increased polarity to elute the more polar 

lipid classes, followed by FID scan. Finally a strongly polar solvent system is used to 

elute the polar lipids and scanned again. The compounds within each lipid class are eluted 

together, resulting in a chromatographic peak for each class. A more detailed description 

of a typical lipid class analysis is found in Section 2.2.5 .1. 

The duration of a single lipid class analysis is approximately four hours, 

regardless of whether one sample or twenty samples simultaneously (a typical maximum 

in a rack of rods) are analyzed. Iatroscan procedures can be performed to separate a 

specific class into their individual components, such as the phospholipids (Evans et al., 

1996). However, separation of neutral from polar lipids using a silica column is often 
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required to eliminate interference from the other classes, resulting in increased sample 

preparation time added to an already lengthy procedure. 

Despite having the ability to analyze both polar and non-polar lipid classes, the 

latroscan suffers from several analytical problems (Tvrzicka and Mares, 1990). 

Insensitivity to low concentrations is a problem since the concentrations of lipid can be 

quite small in many samples such as algae and juvenile fish. Other problems include non­

linear calibration curves, which make quantitation less accurate, as well as variability 

between each rod. The latroscan also suffers in terms of environmental and health 

concerns, since large amounts of hazardous solvent is discarded after each analysis. 

Methanol, diethyl ether, acetone and chlorofonn are common solvents used in Iatroscan 

analyses. It is these problems that make GC analysis more appealing. 

1.2.2 High performance liquid chromatography 

High perfonnance liquid chromatography (HPLC) is particularly useful as it 

eliminates losses of temperature sensitive unsaturated lipids and for the analysis of high 

molecular weight lipids such as phospholipids and conjugated lipid classes (Shulka, 

1988). HPLC utilizes solvents of varying polarities and a solid phase colmnn to separate 

the lipid samples. The separated solutes are passed through a detector such as an 

ultraviolet absorbance detector, which provides the chromatogram output (Skoog, 1998). 

1.2.3 Gas chromatography 

Kuksis and co-workers were the chief developers of lipid class determination by 

GC. Their first application of the technique involved analysis of human blood plasma, 
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first using packed columns (Kuksis et al., 1967) and then using fused silica columns 

(Myher eta!., 1984). 

Yang and co-workers optimized Kuksis' GC profiling method for use with neutral 

lipids in samples from cold ocean environments (Yang et al., 1996). However, a method 

for total lipid analysis (neutral and polar lipids) is desired. Marine san1ples often contain 

high proportions of polar lipids, which include phospholipids and glycolipids. These polar 

lipids are often quite large molecules, which are retained on the column and therefore 

cannot be analyzed. In addition, due to the retained compounds, the column is rendered 

useless over time. This problem makes polar lipids very difficult to analyze by gas 

chromatographic means. Thus GC determination of polar lipids requires enzymatic 

treatment and derivatization prior to chromatographic analysis. 

Of the lipid classes analyzed by this method, TAG has the highest molecular 

weight, and is very difficult to obtain satisfactory recoveties using longer columns as 

recove1ies ofT AG decrease dramatically with long column lengths (Yang, 1996). When 

using a column of longer lengths, compounds experience increased residence time in the 

chromatographic system. In conjunction with the required high elution temperatures to 

elute larger compounds such as TAG, possible polymerization and decomposition of high 

molecular weight lipids can result. These phenomena can result in lowered recoveries or 

disappearance of lipid classes from the resulting chromatograms altogether (Mares, 

1988). It is desired to have a column length that will retain chromatographic resolution 

and maximize TAG recoveries. Optimization experiments by Yang determined that a 5.5 

m column was most effective in achieving these desired conditions. It for these reasons 

this method is called a short column GC method. In addition, by using a wide ranging 
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temperature program, neutral lipid compounds from Cl6 FFA to C56 TAG are eluted 

within half and hour and with reasonable separation in tenns of carbon numbers, using a 

high temperature DB-5 column (Myher et al, 1984; Kuksis et al.) 

1.2.4 Comparison of chromatographic methods 

TLC-FID is a commonly used method for lipid profiling since it has a high sample 

capacity and offers analysis of both neutral and polar marine lipids (Volkman et al. , 

1989). However, in comparison to results obtained from a packed column GC the results 

of from TLC-FID show much greater variability. TLC-FID is not easily automated and 

has non-linear calibration curves. Slight variations between individual Chromarods 

contribute to variability in results (Tvrzicka et al., 1990). Data obtained by TLC-FID lipid 

profiling is limited to only ten subclasses after several developments in varying solvent 

systems, which are often long in duration. GC or HPLC can resolve lipids into their 

individual compounds (Kuksis et al., 1975). Both GC and HPLC can be readily used in 

conjunction with a mass spectrometer for even more highly detailed analysis with full 

automation. The limitations of TLC-FIDrequire that more sensitive, precise and readily 

automated methods be developed. 

In comparison to GC, HPLC offers again the elimination of loss of sensitive 

unsaturated substances and higher molecular weight homologues. However, GC gives 

higher sensitivity in detection, shorter analytical times and fewer difficulties in 

identification (Mares, 1988). 

In conclusion, lipid profiling requires improvement over current methods. GC 

offers the highest quality of analytical data for the lowest cost and highest time efficiency. 
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It is sensitive and readily automated. However, profiling again is limited to the neutral 

lipid classes (Kuksis 1994, Yang et al., 1996). This study will help to expand the classes 

that can be analyzed by GC to include both neutral and polar species. 

1.3 Objectives 

The objective of this research was to devise a complete automated GC method to 

measure lipid profiles, including hydrocarbons, free fatty acids, sterols, wax esters, steryl 

esters, triacylglycerols and phospholipids in marine samples. The method involves 

extraction, dephosphorylation, hydrogenation, TMS derivatization and analysis with 

capillary GC at temperatures up to 340 °C on a short, bonded nonpolar ZB-5 liquid phase 

column. 

Essentially, the new GC method incorporates the GC profiling strategy of Kuksis 

(1984) and the optimized short column GC method for marine neutral lipids developed by 

Yang (1996). Separations are based on the carbon number of the various molecular 

species within marine lipid classes, which do not normally possess overlapping molecular 

weights. 

The specific objectives were: 

1) To optimize the conditions ofhigh temperature non-polar gas chromatography 

for a total lipid profile; 

2) To analyze data from lipid standards to support total lipid profile data; 
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3) To optimize the amount of phospholipase C required to digest a known 

amount of phospholipid in order to digest all the phospholipid present in a 

sample; 

4) To compare the GC results to those from TLC-FID; 

5) To verify usefulness by applying the procedure to various marine samples. 
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2 EXPERIMENTAL 

2.1 Materials 

2.1.1 Glassware and chemicals 

All containers that come into contact with any solvent were made of glass with 

caps made with Teflon liners. All glassware was made from Pyrex. All glassware was 

cleaned of trace lipids by rinsing three times with methanol followed by three times with 

chlorofonn. 

All chemicals and solvents used were either of analytical or chromatographic 

grade. All lipid standards employed in this research were prepared from 

chromatographically pure materials (at least 99% purity) supplied by Sigma (St. Louis, 

MO, USA). 

0-rings created specifically for the YELP Solvent Automated Extractor were 

made using virgin Teflon. 

2.1.2 Marine samples 

Several of the samples analyzed in this study were obtained in August 2000 from 

Kelly's Point, in southern Labrador, Canada. From this location, two species of starfish, 

Crossaster papposus and Ophiura sarsi as well as a species of scallop, Chlamys islandica 

and copepods of the species Cal anus were dredged. 

Yellowtail flounder were cultured in the Ocean Sciences Centre, Memorial 

University of Newfoundland. Nearshore capelin samples were collected off William's 
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Harbour, Southern Labrador, Canada, August 2000. Samples of Pacu, a freshwater fish 

were collected in Sao Paulo State, central Brazil. 

2.1.3 Total system blanks 

Blanks, which involve all procedural steps carried out without a sample, were 

performed during the analysis of each marine species. Any chromatographic peaks due to 

background compounds were subtracted from those in the samples. 

2.2 Methods 

The entire experimental design is outlined in Figure 2.1. 

2.2.1 Extraction 

Samples analyzed in this research were already extracted prior to receiving them. 

Aliquots of homogenized marine samples were extracted with a mixture of chloroform 

and methanol, following the procedure of Folch et al. (1957). The chloroform layer 

containing the extracted total lipids was transferred to a 15 mL glass vial and was stored 

under nitrogen at - 20 °C prior to sample preparation procedures and analysis. 

2.2.2 Phospholipid digestion 

Four mL of basic Tris buffer solution (consisting of 1.060g of 

Tris[hydroxymethyl]aminomethane Tris (basic) and 0.0555g of CaCh dissolved m 

500mL of distilled H20, pH adjusted to 7.3 with HCl), 1.3 mL of 1% CaClz and 50 units 
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TLC-FID 

Marine Samples 

Extraction 

Dephosphorylation 
(Phospholipid Digestion) 

Hydrogenation 
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Short Column 
Gas Chromatography 

Figure 2.1: Experimental design. 
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of phospholipase C (Sigma, St. Louis, MO, USA) were mixed in a 25 mL test tube. One 

unit of phospholipase Cis defmed by the distributor as the amount of the enzyme that will 

liberate 1.0 p..mol of water-soluble phosphorous from egg yolk L-a-phosphatidylcholine 

per min at pH 7.3 at 37 °C. One unit of this enzyme (as sold by the distributor in 3.2 M 

(NH4)2S04, pH 6) is equal to 0.996 p..L of solution. To the buffer/enzyme mixture, 2 mL of 

diethyl ether was added to create an organic layer, followed by a 0.5 mL aliquot of total 

lipid chloroform extract (see Section 2.2.1). For the optimization of the phospholipid 

digestion by phospholipase C, a 0.5 mL aliquot of ~2 mg/mL dipalmitoyl a­

phosphatidylcholine (Sigma, St. Louis, MO, USA) was added in place of the lipid extract. 

The entire mixture was then sonicated at ~37 °C for two hours, while tilted at 45° 

to increase the interface between the aqueous and organic layers. Prior work by the 

Pan·ish lab showed that increased surface ru·ea facilitated the hydrolysis reaction. After 

two hours, five drops ofO.lN HCl were added to the test tube and the tube vortexed. The 

tube was centrifuged at 1000 rpm for two minutes and the lower organic layer was 

removed ru1d placed in a 10 mL vial. 

2.2.3 Hydrogenation 

An aliquot of phospholipase C digested sample in ~ 5 mL chloroform and 5 mg 

fresh platimun oxide (Sigma, St. Louis, MO, USA) was added to a 10 mL vial. The 

solution was bubbled with a gentle flow of hydrogen gas for 20 minutes without stirring. 

The hydrogen-filled vial was capped and sealed, then sonicated for 1.5 - 2 hours. The 
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hydrogenated sample was then filtered with a lipid cleaned GFC glass fiber filter paper to 

remove the catalyst. 

2.2.4 Trimethylsilylation 

An aliquot of lipid sample was placed in a 2 mL vial and evaporated to dryness by 

nitrogen. This dried lipid sample was mixed with two drops of N,O-bis(trimethylsilyl)­

aceta:mide and two drops of N,O-bis(trimethylsilyl)-trifluroacetamide (Sigma, St. Louis, 

MO, USA), then sealed under nitrogen and heated at 70 °C in an oven for 15 minutes. The 

excess trimethylsilylation (TMS) reagents were evaporated off under nitrogen and the 

TMS derivatives were dissolved in 0.5 mL of hexane prior to GC profiling. 

2.2.5 Chromatographic methods 

2.2.5.1 Thin layer chromatography- flame ionization detection 

Aliquots of the samples were directly separated into lipid classes on silica-gel 

coated Chromarods-SIII using four different solvent systems and measured in an 

Iatroscan MK V (Iatron Laboratories, Tokyo, Japan) after development with each solvent 

system (Panish, 1987) as follows. 

Each sample was spotted with an appropriate volume of extract on an individual 

rod, with a 20 JLL Hamilton syringe. The sample spots were then focused to a narrow 

band using 100% acetone. After 5 minutes in a constant humidity chamber, the rods were 

developed using a 99:1:0.05 hexa:ne/diethyl ether/formic acid mixture (60 mL) for 25 

minutes. The rods were dried in the constant humidity chamber for five minutes before 
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developing the rods again in the same solution for a further 20 minutes. Repeating the 

development helps to sharpen the eluted peaks. The first partial FID scan (78% of the rod 

from the top) was then performed, which detects the HC, SE/WE and KET lipid classes 

that have eluted up the rod from the origin. 

Upon completion of the first development and detection, the rods were developed 

in a tank containing an 80:20:1 hexane/diethyl ether/formic acid mixture (60 mL) for 40 

minutes and then scanned by the FID (89% of the rod from the top) for the TAG, FFA, 

ALC and ST lipid classes. 

The final development stage involved developing the rods twice in 100% acetone 

(60 mL) for 15 minutes to elute the AMPL (dried in between developments). After drying 

in the constant humidity chamber for 5 minutes and then developing in a final solvent of a 

5:4:1 methanol/chloroform/water mixture (60 mL) for 10 minutes twice (dried in between 

developments) the rods were then scanned for a final time for their entire lengths for the 

AMPL and PL lipid classes. 

The three resulting chromatograms from the three FID scans were then combined 

to form one complete chromatogram of the lipid classes and the resulting data were 

analyzed using the T Data Scan Chromatography Analysis program (RSS, Bemis, TN, 

USA). 

2.2.5.2 Gas chromatography 

Total lipid profiles were investigated using a Hewlett Packard 6890 Plus GC 

system equipped with a Hewlett Packard 7863 automated injector and a FID. The 

analytical short column was a 5.5 m ZB-5 fused silica column (0.32 mm ID and 0.25 11m 

16 



film thickness) coated with a cross-linked 5% phenylmethyl silicone (Supelco, Bellefonte, 

USA). The carrier gas (helium) was set at 10 psi of column head pressure, and the total 

flow of carrier gas and make up gas (helium) to the FID was kept at 30 mL!min. The flow 

of the fuel gas (hydrogen) was adjusted to 30 mL/min and the air flow was set at 300 

mL!min. The heater temperature of the FID was set at 345°C. The column oven 

temperature was programmed to rise from the initial temperature of 60°C to ll5°C at 

40°C/min, to 225°C at 25°C/min, to 280°C at l5°C/min, and to the final temperature, 

340°C, at 5°C/min, where it was held for 13.58 minutes. Data acquisition, baseline 

subtraction, and chromatogram re-plotting were performed with the Hewlett Packard 

Chemstation software. 

The parameters for autoinjection, the cool on-column injection temperature 

program, initial column temperature, type of carrier gas, injection technique, length of 

column and septum types in the GC were based on previous work by Yang (1996). 

In order to obtain good quantitative data from several different lipid classes, a 

wide carbon number range of standard lipids including hydrocarbons, free fatty acids, 

ketones, wax esters, sterols, steryl esters, DAG and TAG were used. Retention times of 

peaks that appear between these standards were calculated by mathematical interpolation. 
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3 Results and Discussion 

3.1 Optimization of dephosphorylation procedure 

Ensuring the complete dephosphorylation of phospholipid compounds is essential 

for this type of GC analysis. Phospholipids are typically quite large and complex polar 

molecules that are retained on a GC column, rendering the column useless after time. This 

procedure follows that of Kuksis' blood plasma profiling procedure (Kuksis, 1975), 

which makes use of the enzyme phospholipase C to cleave phospholipids of their 

phosphate group to yield their diacylglycerol (DAG) moieties. Figure 3.1 shows the PL 

compound dipalmitoyl phosphatidylcholine and the bond that is cleaved to produce the 

DAG compound dipalmitin. DAG compounds can be easily analyzed by gas 

chromatography after TMS derivatization. The information gathered from the 

identification and quantitation of the DAG will give direct infonnation about the PL 

originally present in the sample. It is possible that free DAG can be present in a sample, 

however they are generally in low quantities if present. In this project, samples identified 

by Iatroscan as having no DAG present were selected for analysis. 

Iatroscan TLC-FID was used to detennine the amount of phospholipase C 

required to effectively cleave a PL to DAG in a sample by monitoring the decreasing 

peak areas of PL. As the amount of enzyme added increases, the remaining amount of 

undigested PL decreases to -0.03 mg (from 1 mg) after 45 units of enzyme. A graph 

illustrating the decrease in PL with increased enzyme is shown in Figure 3.2. However, 

by reacting with a slight excess of enzyme, the maximum amount of PL that is converted 

to DAG can be ensured. Therefore, 50 units of enzyme would be the optimal amount. 
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In order to hydrolyze all the PL present in a sample, some prior knowledge of how 

much PL was present in the sample is necessary. An estimate of the PL per sample can be 

obtained from previous literature and TLC-FID results or experience in order for a 

suitable amount of enzyme to be added. If a percentage ofPL in the wet or dry weight of 

a sample is known or estimated, then successful dephosphorylation can be perfom1ed. GC 

analysis of the TMS-DAG can then be used to identify and obtain quantitative 

infonnation about each individual PL compound (by carbon number) along with the other 

lipids present in the sample. 

3.2 Hydrogenation 

The accumulative effects of various functional groups, unsaturation and carbon 

number contribute to the chromatographic behavior of the compounds in a lipid sample. 

Unsaturation, or the presence of double bonds, plays a major factor in terms of 

identification and separation of compounds by GC. Compounds such as fatty acids, which 

are similar in stmcture are separated according to their carbon chain lengths and their 

unsaturation. Short hand nomenclature for fatty acids is generally of the form a:broc 

where a is the number of carbons in the chain, b is the number of double bonds and ro-c is 

the position of the double bond closest to the tenninal methyl group. In terms of short 

column GC elution order, on a 30m non-polar column, an 18:1ro7 fatty acid would elute 

before an 18:2ro4 fatty acid. Both of these fatty acids elute before a 20:5ro3 fatty acid. 

In this GC project, a wide variety of compounds are being analyzed which differ 

greatly in structure and complexity. Problems arise where compounds of differing carbon 
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numbers and differing degrees of unsaturation co-elute. By hydrogenating the sample, 

unsaturation as a variable for chromatographic separation is eliminated and separation is 

now dependent only upon carbon number and functional groups. Figure 3.3 shows two 

GC chromatograms of a copepod sample (A) before and (B) after hydrogenation as per 

the procedure outlined in section 2.2.3. Peak resolution in Figure 3.3 B increases 

dramatically, especially in the region of the WE (approximately between 8 and 16 

minutes), which is shown, and quantitation of compounds based on carbon number 

becomes easier and more accurate. These chromatograms and results will be discussed 

further in Section 3. 7. 

3.3 Investigation of procedures by Iatroscan TLC-FID 

Lipid extracts of capelin obtained from Williams Harbour, Labrador were 

subjected to the phospholipid digestion and hydrogenation procedures, separately and 

then consecutively. The samples were then analyzed by Iatroscan to monitor the effects of 

each procedure. The original Iatroscan chromatogram of the capelin sample is shown in 

Figure 3.4 A. The capelin extract contains HC, TAG, ST, two types of AMPL (indicated 

by two peaks) and PL. Ideally, only the PL should be affected by the dephosphorylation 

procedure. 

The dephosphorylation had no effect on the relative amounts of the overall lipid 

classes with the exception of DAG and PL. By comparison of peak areas, 95% of the PL 

was converted to DAG. Figure 3.4 shows the capelin sample (A) unmodified and (B) after 

dephosphorylation and hydrogenation. In Figure 3.5 (B), the PL peak is visibly decreased 
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and the expected DAG peak is now present. However a loss of ~20% overall lipid 

occurred during the dephosphorylation and hydrogenation procedures. This was 

monitored by comparison of TAG concentrations before and after. hnprovement in this 

area would be beneficial to the overall recovery of samples. A possible solution to this 

problem would be use of an internal standard to monitor how much sample loss occurs 

between the beginning and the end of a sample preparation for GC. A TAG with a low 

carbon number such as tricaprin (C30:0) would be an appropriate choice (Kuksis, 1975), 

since it elutes by short column GC analysis much earlier (approximately 9 minutes) than 

other typical TAG peaks (longer than 18 minutes) found in marine samples. A problem 

using tricaprin would be risk of overlapping peaks with another compound with 30 

carbons, or similar polarity. Recovery studies using standards could be perfonned in order 

to optimize the procedures to achieve the conditions for maximum recovery. General 

losses are to be expected; however they can be minimized. 

Hydrogenation did not affect the TLC retention distances of any of the lipid 

classes in the capelin extract and relative peak areas were also not affected, except for the 

PL and DAG as mentioned above. In other words, the amount of TAG relative to HC and 

ST were not affected by the hydrogenation step. Short column GC was then used to 

analyze a capelin sample that was dephosphorylated, hydrogenated and TMS derivatized 

in order to compare the amounts of lipid from both GC and Iatroscan data. The results 

obtained are found in Section 3.5.1. 
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3.4 Lipid class identification and calibration by short column GC 

Separations of lipids on a short GC column are the result of stmctural complexity, 

carbon number as well as the ftmctional groups of each compound. As a result, 

compounds are eluted in order of: hydrocarbons, ketones, alcohols, fatty acids 

(hydrogenated species of the same carbon number will always elute in this order), wax 

esters, diacylglycerols, steryl esters, and triacylglycerols. Table 3.1 shows the retention 

times of the common carbon numbers of each lipid class. Retention times of compounds 

marked with an asterisk denote those compotmds detennined using single standards, 

while other retention times were determined using mathematical interpolation between 

standards as well as through comparison with peaks from marine samples. In the case of 

using marine samples to determine retention times, latroscan data of the extracts made it 

possible to select samples whose lipid classes would be sure to separate very well by the 

short column GC method. For example, a winter flotmder sample contained FF A, ST, PL 

and TAG, all of which elute at very different retention times. In the case of determining 

TAG retention times, using previous knowledge that the major compounds in the TAG 

lipid class are odd in carbon number (three even carbon-numbered fatty acid chains and 

the three-carbon glycerol backbone) as well as knowledge that C51 , C55 and C57 elute at 

18.18, 20.94 and 22.36 minutes respectively, the retention times of the rest of the TAG 

compounds could be predicted. Groupings of lipid classes in terms of carbon number 

become simple to predict with experience, with the TAG profile resembling a Gaussian 

distribution at times when TAG is of high proportion in the extract as in the capelin 

extract and flounder extract in Figures 3.5 and 3.6, respectively. 
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Table 3.1: Retention times (in minutes (! 0.01) of lipid classes by carbon number, as 

determined by standard calibration and mathematical interpolation. 

Carbon number HC KET ALC** FFA** ME EE ST** 
14 1.69 1.86 2.07 
16 2.14 2.64* 2.84* 2.91* 3.00* 

18 2.67* 3.44 3.49 3.63 3.74* 

20 3.54 4.27 4.21 4.32* 4.43* 5.11 * 

22 4.87 4.97* 5.07* 
24 5.58 5.67* 5.74 

26 6.63 

27 6.37 7.12* 

28 7.49 

29 7.79* 

30 8.06* 

Carbon Number WE DAG** SE TAG 

32 7.99 
34 8.71 
35 9.08 
36 9.41 * 
37 9.95* 

38 10.18 

39 10.82 

40 11.11 
41 11.85* 
42 12.22 
43 13.02 14.81 * 

44 13.44* 
45 14.28 16.28* 

46 14.66 
47 15.60 17.76* 

48 15.88 
49 16.81 19.25* 16.91 

51 18.18* 

53 19.56 

55 20.94* 

57 22.36* 

59 24.18 

61 26.21 

63 30.09 

65 33.97 

* - retention times determined by single standards (Sigma). 
** -classes that were TMS derivatized prior to calibration. 
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Using similar information about the other lipid classes can also aid in 

identification of peaks. For example, SE, DAG and the previously mentioned TAG are 

typically odd carbon-numbered compounds. Even carbon-numbered compounds of these 

classes are possible and do exist, but generally are of much smaller abundance. Odd­

carbon numbered fatty acid chains are generally less common in marine samples than 

those containing even carbon numbered chains, especially the 16, 18, 20, 22 and 24 

carbon FF A chains. This is also true of KET and WE. In the cases of DAG and TAG, the 

three-carbon glycerol backbone in addition to the even-carbon numbered fatty acid chains 

make these classes typically odd in carbon number. Sterols in marine samples are 

typically highest in C27 with some samples having minor amounts of C26 and C28. 

Terrestrial markers such as C28 and C29 ST as well as C30, a dinoflagellate marker can 

also be observed in some marine samples (Hudson et al, 2001). Since the C27 ST peak is 

generally the largest ST peak, it becomes simple to locate it (7 .1 minutes) and then locate 

the C26, C28, C29 and C30 peaks (if present) eluting 0.3 minutes from each other using 

the short column. In cases where WE, SE and DAG are all present in the sample, good 

separation can be difficult at times, resulting in some shouldering of GC peaks. However, 

WE are usually even carbon-numbered, and DAD and SE are odd carbon-numbered, so 

overlap is generally not a problem. 

FID responses of several lipid standards were calibrated using the short column 

GC method. These standards consisted of the following selection of neutral lipids: 

hydrocarbons, ketones, free fatty acids, wax esters, steryl esters, an alcohol, 

diacylglycerols and triacylglycerols. Classes marked with a double asterisk in Table 3.1 

denote lipid classes that were TMS derivatized prior to calibration. These lipids were 
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calibrated in order to be able to determine the amounts of each lipid class quantitatively. 

In a situation where many lipids of the same class appear in a sample, it is not a viable 

option to have a standard for each individual lipid. Therefore, experiments were 

performed to determine whether two standards differing in carbon length from each class 

would have the same response factor. Ifthe resulting calibration equation between each of 

the standards was similar, then it could be used to determine the amotmts of all types of · 

lipids. In other words, one standard could be used to calibrate a whole class of lipids. 

Calibration curves for each standard were calculated and compiled using increments of 

10, 20, 40, 60, 80 and 100 ng of standard injected. These calibration curves were then 

used in the quantitation of each sample analyzed. A representative selection of the 

calibration curves can be found in Appendix 1. 

3.5 General comparison of short column GC and TLC-FID results 

Each sample extract analyzed using the short column GC method was 

dephosphorylated, hydrogenated and TMS derivatized prior to chromatography. Without 

TMS derivatization (see Section 2.2.4), chromatograms of compounds containing a free 

OH functional group, such as FF A, ALC, ST, MAG and DAG suffer from peak tailing 

due to strong interaction with the liquid phase of the column. By performing a TMS 

derivatization, these compounds become more volatile (and less polar, which results in 

weaker retention time compared to an underivatized compound) and improved peak 

resolution is observed. Iatroscan lipid class analysis does not require TMS derivatization, 

however derivatized standards were used in the GC calibration. 
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The quantitation of PL by the short column GC method involves quantifying the 

DAG in the sample after dephosphorylation. It must be noted that the structure and/or 

identity of the phosphate headgroup that is removed by the procedure cannot be obtained. 

However, useful infom1ation can be obtained about the carbon-rich (non-polar) DAG 

backbone of the PL. There is generally one DAG produced by the dephosphorylation for 

each PL molecule present in the extract. By subtracting the mass of the TMS group from 

the DAG and then adding a phosphate headgroup to the compound, one can calculate the 

amount of PL. The phosphate head group phosphatidyl choline was selected since it is the 

most abundant animal diacylglycerophospholipid (Gurr et al., 1971). Therefore, the 

percentage of PL in the sample calculated by short colunm GC should be the equivalent 

to the percentage of PL determined by the Iatroscan. Hence, percent lipid data is a useful 

way to determine whether the information obtained by the short colunm GC method is 

comparable to that obtained by the Iatroscan. 

Prior to GC analysis, an Iatroscan was used to analyze the samples for lipid 

classes. Some of these Iatroscan analyses were performed close to a year prior to the GC 

analysis, and this storage time may contribute to elevated levels of FF A present in the 

samples, due to breakdown of the acyl lipid classes. 

3.5.1 Short column analysis of capelin extract 

This capelin extract was the same extract used to investigate the 

dephosphorylation and hydrogenation procedures in Section 3.3. Cape lin are of interest to 

researchers since they are the prey of many mmine animals, including larger fish, 

mammals and birds. Table 3.2 shows the percent lipid class data obtained by the short 
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Table 3.2: Percent lipid data for capelin extract determined by short column GC and 

Iatroscan. 

Lipid Class Carbon Number %Lipid GC % Lipid latroscan 
HC 14 0.13 

16 0.12 
18 0.13 

!:HC 0.39 0.65 

FA 18 0.23 
20 0.19 
22 0.31 
24 0.24 

!:FFA 0.97 0.76 

ST 27 1.16 
28 0.07 

!:ST 1.23 0.93 

DAG 39 1.65 
(PL) 41 2.12 

43 2.55 
45 1.86 
47 2 .20 

!:DAG (PL) 10.37 7.58 

TAG 49 0.82 
51 3.61 
52 0.44 
53 7.20 
54 1.45 
55 15.85 
56 2.31 
57 18.50 
58 1.21 
59 20.95 
60 0.97 
61 7.25 
62 0.61 
63 6.46 
64 0.51 
65 3.41 

LfAG 91.55 90.08 
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column method, which was very close to that of the Iatroscan. Figure 3.5 shows the 

chromatogram of the capelin lipid extract after the procedures. The lipid classes are very 

distinguishable, and resolution is quite good. This capelin extract shows that the GC 

method is applicable to the analysis of lipid classes. Further analysis of other types of 

marine samples will help confirm the applicability of the short column GC method. 

3.5.2 Yellowtail flounder 

Marine aquaculture is a rapidly expanding field in which research is being done to 

help improve the culture of many marine finfish and shellfish. Recently, the development 

of yellowtail flounder aquaculture methods has been under investigation at the Ocean 

Sciences Centre, Logy Bay, Newfoundland (e.g. Copeman, 2001). Several factors that 

make yellowtail flounder a good candidate for cold-water aquaculture include its 

profitable foreign market, high filet-to-body ratio, low commercial supply and relatively 

high growth rates at low temperatures (Brown et al., 1995; Brown, 2000). One of the 

main aspects of research into the aquaculture of these fish involves devising conditions 

that will satisfy the goals of minimizing the mortality rate and maximizing the number of 

marketable individuals. Possibly the most impmiant of these conditions is selecting an 

appropriate feedstock to achieve the desired goals of successful aquaculture. Monitoring 

of the lipid classes and fatty acid levels of the flounder with time is an excellent way to 

determine the level of nutrition required so that the flounder receive optimal nutritional 

value. Using the short column GC method, a detailed analysis of the lipid classes of the 

fish is possible. 
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Data obtained from the short column GC method were compared to data from the 

Iatroscan to show the efficiency of the method, and to determine whether the same 

information could be obtained. Figure 3.6 is the chromatogram obtained from a 500 IlL 

aliquot of the original flounder extract after dephosphorylation, hydrogenation and TMS 

derivatization. The chromatogram shows the expected peaks, including FFA, ST, DAG 

(from PL) and TAG. Table 3.3 compares the total amounts of lipid classes obtained from 

the GC to those from the Iatroscan. In comparison to the Iatroscan method, the levels of 

FF A in the extract are much higher in the GC sample, mostly due to a large amount of 

C24 FF A. This increase in the expected amount was due to a C24 FF A intemal standard 

having been added to the extract prior to analysis. Therefore this amount was subtracted 

before calculating the final amount of C24 FF A. As for the rest of the lipid classes, an 

overall average of 63.7 ± 3.7% recovery was determined after the procedures, which is 

consistent with the other samples analyzed with this method. 

In comparison to the Iatroscan, the data acquired through the GC method is 

equally effective in determining the lipid class data of the sample; however, more 

information is generated about how the compounds within those lipid classes are divided 

by carbon number. The yellowtail flounder extract was used to determine the overall 

analytical precision. Three 0.5 mL aliquots of the extract were dephosphorylated, 

hydrogenated and TMS derivatized. The an1ount of PL was calculated, and the three 

samples were found to be 567 ± 10 11g, i.e. 1. 7% error between replicate samples. 
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Table 3.3: Percent lipid data for yellowtail flounder extract determined by short column 

GC and Iatroscan. 

Lipid Class Carbon Number %Lipid GC %Lipid latroscan 

FFA 16 0.05 
18 0.16 
20 0.32 
22 0.22 
24 0.39 

I;FFA 1.08* 1.92 

ST 27 3.56 
28 0.10 
29 0.14 

I;ST 3.79 4.78 

DAG (PL) 35 0.38 
36 0.38 
37 0.73 
38 0.43 
39 2.64 
40 0.57 
41 3.47 
42 0.64 
43 5.50 
44 0.67 
45 4.51 
46 0.73 
47 1.99 

I;DAG (PL) 22.63 16.46 

TAG 51 2.77 
52 0.68 
53 7.75 
54 1.66 
55 14.01 
56 2.27 
57 16.60 
58 1.61 
59 13.06 
60 1.34 
61 9.47 
62 0.58 
63 4.88 
64 0.27 
65 2.52 

~TAG 71.78 76.79 

* - calculated after subtraction of C24 FF A internal standard. 
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3.5.3 Sea scallop female gonad 

Aquaculture of seas scallops is another scenario in which the monitoring of lipid 

classes is a useful tool in determining the optimal breeding rates of these animals. The 

lipid levels of female scallop gonads are of importance in particular since scallop eggs 

derive their nutritional reserves from lipids provided by the gonads (Pazos et al., 1997). In 

other words, hatchery success is directly related to the lipid status of the eggs when 

spawned, therefore high lipid levels in the gonads are desirable. Lipids of interest include 

TAG for their energy storage properties and PL for their importance in cell growth (as 

part of cell membranes). Therefore, analysis of scallop gonad lipids by short column GC 

would be an excellent use of this method. 

The results obtained by the short column GC compared to those obtained by the 

Iatroscan (Table 3.4) were very close, with higher levels ofFFA due to degradation of the 

DAG and TAG. Figure 3.7 shows a chromatogram of the scallop gonad extract, which 

shows that the amount of even carbon-numbered DAG in the sample was high, as they 

were in the scallop muscle (Section 3.5.4) and spiny sunstar (Section 3.5.6). However, the 

literature did not suggest that high levels of odd-carbon numbered fatty acid chains are 

present in these scallops, however it could be accounted for in the spiny sunstar (see 

Section 3.5.6). 

3.5.4 Sea scallop muscle 

Lipid class analysis of the muscle tissue of sea scallops is also important in aquaculture of 

these animals. Nutritional information is of importance to scallops farmers, as well as to 

monitor the physiological well being of the animals. High levels of polyunsaturated fatty 
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Table 3.4: Percent lipid data for sea scallop female gonad extract detennined by short 

column GC and Iatroscan. 

Lipid Class Carbon Number %Lipid GC % Lipid latroscan 

HC 14 0.08 
16 0.10 
18 0 .07 
20 0.11 

I;HC 0.36 0.44 

MKET 16 0.35 
18 0 .12 
20 0 .05 
22 0 .10 

lJVIKET 0.62 0.90 

FFA 16 0.13 
18 0.55 
20 0.35 
22 0.60 
24 0.27 

I;FFA 1.90 1.25 

ST 26 0.78 
27 0.78 
28 1.04 
29 0.41 
30 0.10 

I;ST 3.11 5.50 

DAG (PL) 35 0.59 
36 0.21 
37 1.09 
38 0 .21 
39 2.86 
40 1.34 
41 5.83 
42 3.27 
43 6.06 
44 0.21 
45 2.70 
46 0.21 
47 2.09 
48 0.21 
49 1.99 

I;DAG (PL) 28.87 22.31 
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SE 41 0.25 
43 0.27 
45 0.22 
47 0.64 

l:SE 1.37 1.30 

TAG 51 2.77 
52 0.68 
53 7.75 
54 1.66 
55 14.01 
56 2.27 
57 16.60 
58 1.61 
59 13.06 
60 1.34 
61 9.47 
62 0.58 
63 4.88 
64 0.27 
65 2.52 

I; TAG 71.78 76.79 
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acids (PUFA) including docosahanoic acid (DHA, 22:6w3) and eicosapentaenoic acid 

(EPA 20:5w3) are commonly found in scallops, bound in the PL and TAG. Sterols are 

also an abundant lipid in sea scallops, as well as other mollusks such as mussels. Using 

the short column GC method, these lipid levels can be obtained very quickly. The percent 

lipid data was compared between both the Iatroscan and GC results to determine the 

effectiveness of the GC method. 

Iatroscan results in Table 3.5 show very high levels of PL, upwards of 73.8%, 

followed by STat 20.9%, TAG at 2.1%, SEat 1.3% and also HC at less than 0.1%. 

Figure 3.8 shows the GC chromatogram obtained from the scallop muscle extract. The 

short column GC gave similar percent lipid data: 78.62% PL, 15.64% ST, 0.36% SE and 

1.02 %TAG, however the levels of FFA and HC were slightly elevated at 0.74% and 

0.6% respectfully. The elevated levels of HC may be possibly due to use of filter paper 

that was not completely lipid clean. The FF A increase may have been due to the drop in 

overall SE, TAG and PL levels in the extract over the storage time of approximately one 

year. 

An interesting feature of the GC chromatogram is the appearance of high amounts 

of DAG with even carbon numbers. It is unlikely that there would be such high levels of 

C15, Cl7, Cl9 and C21 FFA bound in the DAG compounds. However, the percent lipid 

GC results are supported by the amount of PL that was determined in the extract, 

according to the Iatroscan results. Further detailed fatty acid analysis of this sample 

would be appropriate to check the levels of odd carbon numbered fatty acids. 
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Table 3.5: Percent lipid data for scallop muscle extract dete1mined by short column GC 
and Iatroscan. 

Lipid Class 
HC 

FFA 

ST 

DAG (PL) 

SE 

TAG 

Carbon Number 
14 
16 
18 
20 

}ftC 

18 
20 
22 
24 

I;FFA 

26 
27 
28 
29 
30 

I;ST 

35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 

I;DAG (PL) 

45 
47 

I;SE 

51 
52 
53 

43 

%Lipid GC 
0.17 
0.15 
0.11 
0.15 
0.58 

0.14 
0.24 
0.22 
0 .15 
0.74 

1.52 
5.91 
5.75 
2.08 
0.38 

15.64 

3.25 
1.46 
2.52 
3.06 
5.40 
2.31 
15.92 
7.54 
14.70 
6.02 
5.63 
5.41 
2.68 
2.72 

78.62 

0.26 
0.10 
0.36 

0.18 
0.1 2 
0.05 

% Lipid latroscan 

0.07 

0.09 

20.94 

73.88 

1.30 



54 0.10 
55 0.05 
56 0.12 
57 0.06 
58 0.09 
59 0.05 
60 0.08 
61 0.05 
62 0.07 
63 0.00 

};TAG 1.02 2.10 

3.5.6 Spiny sun star Crossaster papposus 
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The common sun star, Crossaster papposus, relies on lipids as an important 

reserve of energy in the form of TAG and alkyldiacylglycerols. In addition, cyclic 

changes in the lipid content of these animals have been correlated with their reproductive 

cycles (Sargent et al., 1983). Therefore, lipid determination and analyses is of importance 

to researchers who are interested in the biochemistry of this animal. 

The percent lipid data determined by Iatroscan and short column GC is shown in 

Table 3.6 as well as the GC chromatogram obtained by the shmi column GC method 

(Figure 3.9). The short column GC data agrees well with the Iatroscan percent lipid 

results. Of particular interest in the short column GC data is the presence of a large 

percentage of even carbon-numbered DAG compounds in the sample, which is indicative 

of large amounts of odd chained fatty acid groups in the PL of these animals. This 

phenomenon of odd chain fatty acids in asteroids such as these is discussed by Sargent et 

al. (1983) and the references therein. 

3.6 Other Applications 

Once the short column GC method had been validated for use in routine analyses, 

the method was used to solve real analytical problems. In some situations where Iatroscan 

could not provide adequate information about a sample, the short column GC method was 

used to authenticate questionable Iatroscan data. In addition, in situations where the limits 

of Iatroscan begin to appear, the short column GC method was used to expand the 

chemical information about the extracts. 
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Table 3.6: Percent lipid data for Crossaster papposus extract determined by short column 

GC and Iatroscan. 

Lipid Class Carbon Number %Lipid GC % Lipid latroscan 

HC 14 0.59 
16 0.51 

18 0.39 
20 0.52 

I;HC 2.01 1.60 

FFA 18 0.31 

20 0.98 
22 8.14 
24 1.02 

I;FFA 10.45 9.90 

ST 26 4.18 
27 8.13 

28 4.19 
29 1.14 
30 0.53 

I;ST 12.32 16.37 

DAG (PL) 39 1.46 
40 3.94 
41 3.53 
42 11.42 
43 8.85 
44 10.53 
45 12.04 
46 2.06 
47 2.19 
48 2.05 

I;DAG (PL) 58.08 45.75 

TAG 49 1.10 
50 0.42 
51 0.78 
52 0.28 
53 0.73 
54 0.18 
55 1.96 
56 0.40 
57 1.31 
58 0.58 
59 1.72 
60 0.79 
61 1.48 
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62 0.69 
63 1.33 
64 0.51 
65 0.90 

I: TAG 14.04 16.89 

3.6.1 Determination of ethyl esters in rotifers 
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Long chain PUF A such as DHA and EPA are essential fatty acids in the early 

growth, survival and lipid composition of many larval fish (Copeman et al, 2002). In the 

aquaculture of fish, live-foods that are commonly used as feed for larval fish include 

rotifers and Artemia sp. However, both of these live-feeds are naturally low in long chain 

PUF A, which again are important in larval fish nutrition. Therefore, rotifers and Artemia 

grown as larval fish food ingest feed that is enriched with PUFA-rich commercial 

products such as Algamac in order to increase their nutritional value for consumption by 

the cultured animal. Other feed enrichments include Isochrysis galbana (T -Iso ), though 

not rich in PUF A, does improve the nutritional benefits of the live feed for the larval fish. 

The lipid levels of live feed can be analyzed by Iatroscan to help dete1mine their 

nutritional value. However, Iatroscan analysis of rotifers by the Parrish lab has shown 

difficulty in confirming the identity of a peak that elutes at the position of an ethyl ester 

of PUFA. All three samples contain the same lipid classes (HC, TAG, FFA, ST, some 

AMPL and PL ), as well the unidentified peale which appears at 7 em. Further attempts at 

identification of the peak in Parrish lab included co-spotting with standards of fatty acid 

methyl ester (ME), ketone (KET) and fatty acid ethyl ester (EE) to determine if the peak 

will co-elute with either of these standards. The unidentified peak elutes before both KET 

and ME however the peak only co-elutes with the EE in some samples but not in others. 

The short column GC method was used to confirm the identity of the peak. 

The three samples all contained C20 FF A, C22 FF A in high amounts and also C24 

FFA in smaller amounts. These chromatograms are shown in Figure 3.10 A to C shows 

the short column GC chromatograms of rotifers that are (A) unenriched, (B) enriched 

with Algamac and (C) enriched with I. galbana. Ethyl esters were the peaks that were 
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tentatively identified as C22 EE, and C24 EE. Only qualitative data was obtained, since 

the EE peaks were identified by mathematical interpolation. Standards of C18 and C20 

EE were used to predict the retention times of the C22 and C24 EE. The presence of these 

ethyl esters may be due to the rotifer feed, which may have some of its rich PUF A in 

ethyl ester fonn. Further lipid analysis of the rotifer feed may confirm this. 

The ST region of the chromatograms (C26 to C29 ST) is interesting as well since 

there seems to be an extra peak between C28 and C29 sterol in the enriched rotifers. It is 

possible that this compound may be AMPL, specifically a C28 or C29 monoacylglycerol. 

In addition the peak found just before the C27 ST peak may be underivatized C27 ST. 

However, if this were the case then it would be expected that the other ST peaks would 

also show signs ofunderivatized sterol. Coupling the short column GC method with mass 

spectrometric detection would be useful to determine the true identity of these 

compounds. 
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Figure 3.10 A: Partial chromatogram of unemiched rotifer extract after 

dephosphorylation, hydrogenation and TMS derivatization. 
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Figure 3.10 B: Partial chromatogram of Algamac-enriched rotifer extract after 

dephosphorylation, hydrogenation and TMS derivatization. 
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dephosphorylation, hydrogenation and TMS derivatization. 
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3.6.2 Determination of wax esters in the copepod Calmtus hyperboreus 

Wax esters can be found in many types of marine organisms such as copepods, 

decapods, euphausiids, mysids, chaetonaths, squid and several fish (Lee, Hirota, 1973). 

Wax esters are an important energy reserve for copepods, which are the dominant prey 

for many species of marine larvae in the wild. In higher latitudes, copepods have been 

found to contain greater than 80% of their lipids as WE (Kattner & Krause, 1987). Using 

Chromarods (in Iatroscan TLC-FID) for analysis of total lipid profiles, it is difficult to 

resolve SE peaks and WE peaks, yet there are sometimes two peaks in the WEISE region. 

An example comes from the work of Stevens (personal communication) where two peaks 

where determined by Iatroscan, tentatively identified as wax ester 1 and wax ester 2. 

Further confirmation of the identities of these peaks was necessary to detem1ine the true 

amount of wax ester in the extract. The Iatroscan chromatogram in Figure 3.11 shows the 

two peaks, labeled WEI and WE2, the identities of which had several possibilities. The 

two peaks could have been SE, WE or a combination of the two lipid classes. This short 

column GC method was used to identify the lipid class composition and carbon nun1ber 

distribution of the copepod lipid extract, as well as illustrate the importance and influence 

of hydrogenation. The sample provided by Stevens consisted of extract from 48 

copepods; the WE component isolated using the method of Ohman (1997). Assuming the 

two peaks were WE, an Iatroscan used to determine that the concentration of the WE lipid 

class found 1.16 g/L in the extract. 

Figure 3.12 shows a GC chromatogram of the hydrogenated copepod extract. The 

retention times of interest fall between 7 and 13.5 minutes, which is the range for wax 

ester compounds. Peaks at 7.28, 7.99, 8.71 , 9.41, 10.18, 11.11, 12.22 and 13.44 min are 
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the even carbon numbered WE from C30 through C44 (see Table 3.1). These even 

carbon-numbered wax esters are the major peaks, and there are trace amounts of odd 

carbon-numbered wax esters in between each major peak. One small SE peak eluted at 

14.77 minutes, which was C43 SE or quite possibly the same compound used in the 

standard, cholesteryl palmitate. These chromatographic results show that the peaks WE1 

and WE2 observed in the latroscan chromatogram were 97.9% WE by peak area. Using 

WE standards, quantitation of the peaks of interest gave a concentration of 999 mg/L of 

WE and 21.9 mg/L of SE. Based on Iatroscan results, 88.3% recovery of SE and WE 

compounds after the hydrogenation procedure was indicated. As mentioned in Section 3.2 

and demonstrated here, hydrogenation permits a straightforward detem1ination of the 

lipid compounds in the sample with this method. There is no confusion of compound 

identity due to tmsaturation, as compounds elute by carbon number within their class. 
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Figure 3.11 : Iatroscan chromatogram of Calanus hyperboreus, indicating the two 

unknown WE peaks, WEI and WE2. 
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4 CONCLUSIONS 

4.1 Conclusions 

Analysis of lipids is a very informative way of detennining the physiological state 

of a marine ecosystem. Lipids can give insight into the nutritional value of various feeds 

in aquaculture, as well as the prey that an animal may ingest in the wild. The lipids of an 

animal give important details about its own health and nutritional state. The information 

derived fi:om lipid analysis is very impmiant to researchers in fields such as aquaculture 

and biological research. Monitoring of lipid data can ensure that the animals they are 

studying are as healthy as possible. 

The short column GC method is an effective method for analyzing lipid classes. 

Like the Iatroscan, the GC method collects data about what lipid classes are present and 

their quantities, however additional infom1ation about the compounds within those 

classes can be obtained. Combined with hydrogenation of lipids, the resulting 

chromatographic separation is based primarily on functional groups, carbon number. The 

short column and a wide-ranging GC temperature program allows for such a mixture of 

different compounds including high boiling point compounds to be separated effectively. 

However, polar lipid classes such as the AMPL and PL are retained on the GC column 

and therefore require chemical modification before GC analysis. This project has 

investigated an enzymatic hydrolysis (dephosphorylation) of the PL compounds, cleaving 

them to their non-polar DAG moieties that can be readily analyzed by the short column 

GC method after TMS derivatization. Improvement in overall recovery of lipid after the 

dephosphorylation and hydrogenation procedures is desired in order to optimize the 
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overall recovery of the method. Total lipid class data obtained by the short column GC 

method was on the same level as that of the Iatroscan, as shown by the comparison of 

percent marine lipid class data obtained by both methods in Section 3.5. However, the 

short column GC method is also able to provide information outside the limits of the 

Iatroscan. In Section 3.6, peaks that were difficult to identify and char'acterize by 

Iatroscan were easily identified by short column GC. 

Previously, this short column GC method for marine lipid samples was restricted 

to the neutral lipids. Now one of the polar lipid classes, PL, can be readily analyzed. 

Phospholipids can now be added as a new lipid class to Yang's neutral lipid profiling 

method (1996). More information can now be obtained about both the carbon number 

patterns in marine derived samples, and the physiological and environmental condition of 

. . . 
vanous manne species. 

4.2 Future work 

This short column GC method allows for profiling of all lipid classes with the 

exception of AMPL. These compounds would be retained on the GC column, rendering 

the column useless over time with a sufficient amount of these polar compounds injected. 

AMPL includes a number of different compounds, some of which include MAG and 

glycolipids. Quantitative MAG data can be determined by this method, upon TMS 

derivatization of the two free OH groups of the compound. However, glycolipids are 

more similar to PL in terms of their polar structure. They contain a head group, which 

may be removed with an appropriate enzyme such as ,6-galactosidase (Sigma), in similar 

fashion to the dephosphorylation procedure. Development of a such method for achieving 
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this result would allow for an almost full lipid profile of samples, regardless of AMPL 

concentration. Another class of compounds that need to be addressed is the pigments, 

such as plant chlorophyll. Pigments also pose a similar problem as the AMPL, in that they 

tend to retain on the short column. They elute along with AMPL on the Iatroscan, and are 

usually quantitated as such. A method of dealing with the pigments will be required to 

develop a ''universal" short colmnn GC method for marine lipid profiling. A guard 

colmnn may be a temporary solution to these problems, as the harmful AMPL and 

pigment fraction would remain on the guard column. Once the guard column was 

rendered useless, it could be replaced and the analytical column could continue to be used 

for an extended period of time. Interference and the risk of significantly shortening the 

lifetime of the short column could be eliminated. 

Glyceryl ethers are also a lipid class that should be addressed in future work. 

While not a lipid class that is common in all samples, the Iatroscan can sometimes detect 

these eluting close to TAG. Similar in structure to TAG, with an ether group instead of an 

acyl group, these glyceryl ethers would be expected to elute close to TAG on the GC as 

well. To accommodate the separation of these compounds, varying the temperature 

program in the TAG region may aid in separating these compounds more efficiently. 

Combining this method with mass spectrometric detection would be an interesting 

step in furthering the applicability of this method. Confinnation of peaks would thus be 

performed, especially for peaks that elute closely. This would make the short column GC 

method a very powerful tool in marine lipid research. 
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APPENDIXB 

A commissioning of a YELP Scientifica SER148/6 Extractor Unit for marine lipid 

extraction was attempted. The YELP autoextractor performs extractions of organic 

material in a similar fashion to a Soxhlet extractor. An appropriate solvent is chosen and 

placed in a glass cup and heated on a heating block. A glass condenser apparatus is 

lowered onto the cup to form a tight seal. A sample within a cellulose-paper cone is 

lowered into the boiling solvent. Solvent vapour rises up the glass tube and is sent back 

down over the sample by the water-cooled condenser, thus maintaining the level of 

solvent in the solvent cup. After a sufficient amount of time, the sample is raised out of 

the boiling solvent and the condensed solvent pours over the sample to wash any lipid 

residue into the glass cup. The condensed solvent is then collected, thus concentrating the 

final extracted material to a volume suitable for transfer to a sample vial. 

Several problems were observed with the YELP autoextractor. Ideally, s1x 

samples should be able to be extracted simultaneously, all of which are heated by a single 

heating block. However, uniform heating could not be maintained across the entire block. 

Uneven heating of six replicate samples would result in variations in the amounts of 

extract obtained from each of the six samples. The problem could not be repaired 

therefore the manufacturer was contacted to replace the block. However, the most 

significant problem in using the YELP autoextractor involved the 0-rings used to make a 

tight seal between the condensing apparatus and the glass cup containing the solvent. In 

lipid extraction, a common solvent used is chloroform or chloroform mixtures with other 
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solvents (Folch et al, 1957). The 0-rings provided with the autoextractor were composed 

of either butyl rubber or Viton. The instrument manual recommended that Viton rings be 

selected for seals when using chlorinated solvents. However, the Viton 0-rings showed 

significant breakdown upon contact with chloroform liquid and vapour. Reaction with the 

chloroform produces unidentified contaminants that could interfere with lipid data. These 

contaminants would be seen visually as the solvent would become yellow after these 0-

rings came in contact with chloroform. 

Several approaches to resolving this problem were attempted. A Teflon 0-ring 

identical in size and shape to the Viton 0-ring was constructed, however the matmial was 

too rigid to properly fit into the 0-ring holders in the same fashion as the more flexible 

Viton 0-ring. A very thin Teflon ring was flexible enough to be fitted into the 0-ring 

holder however the seal was completely lost. Teflon rings of the correct thickness that 

were smaller in diameter would move around inside the 0-ring holder or fall out onto the 

heater. The next approach to the problem was to wrap a Viton 0-ring tightly in Teflon 

tape, however chloroform vapour could still attack the Viton material. 

A new Teflon 0-ring was constructed (by the Ocean Sciences Centre engineering 

team) that fits into the 0-ring holder, remains stationary during extraction and does not 

fall if the cup was removed. The 0-ring was made to sit on top of the glass, with a thin 

sleeve that would fit snugly inside the cup. The 0-ring was the correct thickness for a 

good seal and the sleeve would ensure stability. Preparation for an extraction would 

simply require putting the 0-ring on top of the rim of the glass cup, and then the 

apparatus could be lowered onto cup to create the seal. Since the 0-ring does not move, 
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simply placing the cup in the correct position on the heating block ensures proper 

placement. A diagram ofthe new 0-ring is shown in Figure Bl. 

Once the heating and seal problems were solved, choosing of an appropriate 

solvent or solvent mixture as well as optimization of the extraction procedure can now 

commence. Time limitations did not allow for full optimization, which could be 

performed by my successor on this project. 
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Teflon 0-Ring 
(with sleeve) 

Glass Sample Cup 

Figure Bl: New Teflon 0 -ring design 
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