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Abstract 

Likelihood ratio test plays an important role in testing for the presence of 

cured individuals in clinical studies. The asymptotic null distribution of the 

test in three commonly used mixture models is a 50-50 mixture distribution 

of a chi-squared distribution and the probability mass at zero under some 

mild conditions. In this practicum, we first study the power of the likelihood 

ratio test under those models via a simulation study. We find that the test is 

powerful for moderate large sample size. For small sample size, the result varies 

case by case, and the censoring distribution affects the power substantially. 

The Extended Generalized Gamma (EGG) mixture model is also considered, 

for it is more flexible than the three models mentioned above. It may be used 

when the data in study cannot be fit by those models. The bootstrap approach 

is then introduced to investigate the null distribution of the likelihood ratio 

test. Finally, we employ the bootstrap approach to determine the presence of 

cured individuals in two sets of real-life data. 
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Chapter 1 

Introduction 

1.1 Cure rate estimation 

In some clinical studies, the response variable of interest is t he occurrence of 

an event, such as a disease, recurrence of a disease, or death. If we examine 

the response observations, usually there are a proportion of patients who do 

not relapse, or die, due to termination of study, or loss of follow-up. Those 

incomplete observations are recorded as censored ones. Among them, there 

might exist patients who respond favorably to the treatment in use. They are 

eventually free of any signs or symptoms of disease and may be considered 

cured. The possible observations of the patients are then time to relapse or 

death and censoring t ime. 

Kersey et al. (1987) compared two types of bone marrow transplants , 

autologous and allogeneic, for a treatment of high-risk refractory acute lym­

phoblastic leukemia. An autologous bone marrow transplant is a transplant 

that uses the patient's own bone marrow, while an allogeneic bone marrow 

transplant uses bone marrow from someone else. In their study, the obser-
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vations are relapse times of leukemia patients following transplant. The allo-

geneic group consists of observations on 46 patients, of whom 13 were censored, 

while autologous group includes 45 patients, of whom 9 were censored. The 

data are given in Appendix A. Since there are censored observations, we ap-

plied the Kaplan-Meier (K-M) method to estimate the survivor functions of 

the two groups. The Kaplan-Meier survival curves of two types of transplants 

are showed in Figure 1.1. 
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Figure 1.1: Kaplan-Meier survival curves for leukemia data 

Both curves level off at a value greater t han zero. This is caused by the long-

term censored survival times of potentially cured patients. In evaluating the 

effect of the bone marrow transplant treatment, it is important to determine 

whether or not the cured patients exist, or the cured proportion is greater 

than zero. If the proportion of cured patients is substantially greater than 

zero, mixture models can be applied to estimate the cure rate of treatment. 
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1.2 Mixture models for cure rate estimation 

If the cure rate is not zero, a certain fraction of the population, from which the 

data were collected, may never experience the part icular type offailure(relapse 

, or death). They are cured patients, and can be regarded as from a population 

with degenerate distribution at infinite time. The remaining patients , who 

relapsed or died of the disease, come from a failure population from the cause 

of interest. The analysis of the data is to fit a model of the mixtures of the 

two distributions. Henceforth, mixture methods have been proposed for cure 

rate estimation. Among them, parametric mixture models have been studied 

and applied extensively. 

A mixture model for cure rate estimation is also called a cure model. It is a 

model that involves the mixture of two populations, one is the uncured popu­

lation G1 and the other is the cured population G2 . For the cured population, 

patients never die or relapse. We can assume that the failure time for cured 

patients is infinity. Then G2 follows a distribution degenerates at infinity. For 

parametric mixture models, the distribution of the uncured population G1 has 

a known form with a few unknown parameters. The proportion of each pop­

ulation is unknown as well. A parametric cure model can be formulated as 

follows. Let t be an observation of the time of the occurrence of an event. 

Under the cure model, it can be viewed as arising from a superpopulation G 

which is a mixture of two populations G1 and G2 with proportions p1 and P2, 

respectively, where 

P1 + P2 = 1, (i= 1, 2) 

3 



If we denote the proportion of uncured patients by p = p1 , 1 - p = P2 is the 

proportion of cured patients. For all finite values oft, the density and survival 

functions of cured patients are, respectively, zero and one. The probability 

density function(p.d.f) of G can therefore be expressed in terms of the mixture 

form, 

f(t; e, p) = Pfu(t; e) (1.1) 

where !u(t; e) is the p.d.f. of the uncured population G1 , and e denotes the 

vector of all unknown parameters associated with the parametric form for the 

density function. The subscript u stands for the uncured population. The 

maximum likelihood method is commonly used to estimate the parameters p 

and e. 

Boag (1949) first employed the mixture models to estimate the cured rates 

of treatments for several cancers. He assumed the uncured population G1 

had a log-normal distribution, and applied the maximum likelihood method to 

estimate cured rates. Farewell(1982) analyzed the data from a toxicant animal 

experiment using a mixture model with uncured population G1 following a 

Weibull distribution. Goldman (1984) conducted a survivorship analysis of 

clinical trials under the assumption that an unknown proportion of all the 

patients have constant high risk and the remaining proportion have essentially 

no risk. She fit (1.1) to the data with uncured population G1 having an 

exponential distribution. Yamaguchi (1992), Maller and Zhou (1994) , Peng et 

al. (1998) provided more examples of how the mixture models are applied in 

clinical trials and other fields. 
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1.3 Test of cured patients 

Most of the published works assume that there exist cured patients in the pop­

ulation of interest before the mixture models were applied. If there are cured 

patients, the observations should come from a mixture population of uncured 

and cured patients. Otherwise, there are no cured patients and all observations 

should have been collected from a homogeneous populat ion. Then a mixture 

model is not needed for modeling the observations. To investigate the pres­

ence of cured patients, the likelihood ratio test (LRT) is commonly used in the 

literature. The null hypothesis for testing the presence of cured patients is 

H0 : p = 1, and the parameter space of cure rate pis [0, 1]. Under H0 the cure 

rate is equal to 0. 

Goldman (1984) first applied the likelihood ratio test for testing the pres­

ence of cured patients. She did not notice that the null hypothesis is on the 

boundary of the parameter space, and conducted the test under the assump­

tion that the asymptotic null distribution of the likelihood ratio test is a x2 

distribution with degrees of freedom equal to one. 

Zhou and Maller (1992) investigated the likelihood ratio test of the pres­

ence of cured patients under the same model that Goldman considered. Their 

results showed t hat the asymptotic null distribution for this specific test is not 

asymptotically a x2 distribution. Under mild conditions, it follows a 50-50 

mixture distribution of a x2 distribution with degrees of freedom equal to one 

and a degenerated distribution mass at zero. 

Peng et al. (2001) extended the use of the likelihood ratio test to several 
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different types of distributions for the uncured population G1 . They examined 

the asymptotic null distribution of likelihood ratio test and pointed out that 

the distribution derived by Zhou and Maller (1992) can be used to approxi­

mate the asymptotic null distribution when G1 has a Weibull or log-normal 

distribution. However, the approximation will be poor when the censoring is 

too light and the hazard rate is large at the upper part of the failure time 

distribution of G1 . 

All the above research was carried out by using a specific distribution of G1 . 

In practice, we usually do not know the parametric form of the distribution of 

uncured population G1 . When we use the likelihood ratio test for actual data, 

we may meet the problem that the null distribution for the likelihood ratio 

test is unknown. Thereafter, we cannot test the presence of cured patients for 

the data. If we know the null distribution, such as the one proposed by Zhou 

and Maller(1992), another problem is the power assessment of the likelihood 

ratio t est. 

1.4 Power study of the likelihood ratio test 

Power is the probability of rejecting the null hypothesis when the alternative 

hypothesis is true. In other words, power is the probability of correctly reject­

ing the null hypothesis. Given a significance level a, it is usually desirable to 

use a statistical test with power to be as large as possible if the sample size is 

controlled. 

Concerning the likelihood ratio test for the presence of cured patients, there 

are few studies in the literature on the power of the likelihood ratio test for 
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the presence of cured patients. Goldman (1984) studied the power of the like­

lihood ratio test that she used. Because of her erroneous assumption about 

the asymptotic null distribution of the test statistic, her results of power are 

questionable. Since power is an important characteristic for evaluating the 

efficiency of a test, it is of statistical and practical importance to conduct a 

power study on the likelihood ratio test. 

1. 5 Organization of the practicum 

This practicum is organized as follows. We first review the models and tests for 

testing the presence of cured patients in chapter 2. The power of a likelihood 

ratio test for the presence of cure patients is investigated via a simulation study 

in chapter 3. In chapter 4, we employ the bootstrap approach to investigate 

the null distribution of the LRT. Finally the results are applied to two sets of 

real-life data. 

7 



Chapter 2 

Parametric Mixture Model and 
Likelihood Ratio Test 

In this chapter, we introduce the commonly used parametric mixture models 

and discuss in details the likelihood ratio test for presence of cured individuals 

based on those mixture models. 

We adopt the following notations throughout the whole practicum. Let T 0 

be a non-negative random variable denoting the failure time of interest. The 

distribution function of T 0 is F 0 . Let C be the censoring random variable 

with distribution function J. Random censorship is assumed, under which C 

is independent ofT0 . The value observed is T = min(T0 ,C). The pairs (T,D) 

represent the values observed, where D is a censoring indicator which equals 

to one if T 0 is observed and equals to zero if C is observed. Let t represent an 

observed value ofT. 
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2.1 Mixture Models 

The mixture model that is employed in cure rate estimation can be described 

as follows. Let j(t; e, p) and S(t; e, p) be the density and survival functions of 

the distribution ofT. Let p denote the proportion of uncured patients, and 

1 - p be the proportion of cured patients. Then the distribution ofT has a 

finite mixture form: 

S(t; e, p) = pSu(t; e) + 1- p 
f(t ; e, p) = Pfu(t; e) 

where fu(t; B) and Su(t; e) are the density and survival function of the failure 

time distribution of uncured patients, () is a collection of the unknown param-

eters in this distribution and the subscript u is used to represent the uncured 

population. The hazard function of the uncured patients is defined as 

h (t) = fu(t) 
u Su(t) 

The hazard function is useful , since it describes the way in which the instan­

taneous probability of death for a patient changes with t ime. 

2.2 Some Parametric Mixture Models 

Several distributions have been considered in the mixture models for cure rate 

estimation. They include the exponential, Weibull, log-normal, gamma, or 

extended generalized gamma (EGG) distributions. 
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Exponential Mixture Model 

In this model, the uncured population G1 has an exponential distribution. The 

exponential distribution has a constant hazard function 

hu(t) =\A> 0 

The survivor and density functions for the exponential mixture model are, 

respectively, 
S(t) =pe-At+ 1- p 
f(t) = p.Ae-At 

Weibull Mixture Model 

In this model, the uncured population G 1 has a Weibull distribution. The 

Weibull distribution, an important generalization of the exponential distribu­

tion, has the hazard function 

hu(t) = Ap(;\t)p-l 

with .A,p > 0. This hazard is monotone decreasing for p < 1, increasing for 

p > 1, and reduces to the exponential hazard if p = 1. The survivor and 

density functions for the Weibull mixture model are, respectively, 

S(t) = pexp[- (;\t)P] + 1 - p 

f(t) = p;\p(.At)P-l exp[-(.At)P] 

Log-normal Mixture Model 

In this model, the uncured population G1 has a log-normal distribut ion. The 

hazard function of log-normal hu(t), which has the value 0 at t = 0, increases 

10 



to a maximum and then decreases, approaching zero as t becomes large. The 

survivor and density functions for log-normal mixture model are, respectively, 

S(t) = p(1 - <I>(p log .At)) + 1 - p 

f(t) = p(27rtl/2pclexp [ -(pl~g..\t)2 ] 

where <I> is the incomplete normal integral 

<I>(w) = /_: </J(u) du 

Gamma Mixture Model 

In this model, the uncured population G1 has a gamma distribution. As the 

other generalization of the exponential distribution, the gamma distribution 

has the density function 

f 
·( ) = .A(.At)q-l exp( - .At) 

u t f(q) 

where q, ..\ > 0. The survivor and hazard functions of the gamma distribution 

involve the incomplete gamma integral 

and are, respectively, 

Su(t) = 1 - Iq(.At) 

h ( ) = .A(.At)q- l exp( - ..\t)f(q) - 1 

u t 1- Iq(.At) 

The hazard function is monotone increasing from 0 when q > 1, monotone 

decreasing from oo when q < 1, and either case approaches ..\ as t becomes 
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large. When q = 1, it is exponential distribution. The survivor and density 

functions for the gamma mixture model are, respectively, 

S(t) = p(1- Iq(>.t)) + 1- p 

!( ) 
= p>.(>.t)q-l exp( -At) 

t r(q) 

Extended Generalized Gamma(EGG) Mixture Model 

In this model, the uncured population G1 follows an Extended Generalized 

Gamma(EGG) distribution. The survivor and density functions of the EGG 

distribution are 

{ 
~(q-2)q- 2pt-1 exp[q-2 (qp logAt - eqplogAt) ] when q =/=- 0 

fu(t; q, A,p) = r(q 
2

) 

(27rt112pr1 exp( -(p log >.t) 2 /2) when q = 0 

The survivor and density functions for the EGG mixture model can be con-

structed accordingly as follows. 

S(t) = pSu(t; q, A,p) + 1 - p 
J(t) = Pfu(t; q, A,p) 

The EGG mixture model is flexible and includes as special cases all of 

the mixture models mentioned in the preceding sections. The exponential 

(p = q = 1), Weibull (q = 1) and log-normal (q = 0) mixture models are all 

evident. In addition, the gamma mixture model appears as p = 1. This can 

be obtained by employing the transformation: log >.X = q(log AT + log q- 2
) 

and replacing the parameter q- 2 by k = q- 2 . The relationship among those 

mixture models is shown in Figure 2.1. 

12 



Figure 2.1: Relationship among the mixture models 

Actual survival data can come from any positive value distributions, and 

the failure time distribution of uncured patients may not be one of the four 

distributions: exponential, Weibull, log-normal and gamma. Peng et al. (1998) 

suggested that a generalized F distribution can be applied to the mixture 

model for cure rate estimation. The generalized F distribution is flexible and 

contains almost all the known and commonly used positive distributions as 

special cases. But there are computational difficulties in carrying out the 

generalized F mixture model. We consider the EGG instead of the generalized 

F, for it involves fewer parameters and is computationally easier. 

2.3 Likelihood Ratio Test and Its Null Distri­
bution 

When we fit the data with parametric mixture models discussed in the pre­

vious sections, we need to know whether there are cured individuals or not. 

Therefore, we need to test the presence of cured individuals. The hypothesis 
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of no cured individuals is H 0 : p = 1 in the mixture models, and the parameter 

space of cure rate pis [0, 1]. 

The likelihood ratio test (LRT) can be used to test this hypothesis. The 

likelihood function L(t; e, p) is as follows. 

n 
L(t; e, p) = II [f(ti; e, p)Jdi [S(ti; e, p)p-di 

i=l 

where t = ( h, · · · , tn). Here tis are the values of the observations, and n is 

the number of the observations. di is the censoring indicator. It is 0 if ti is 

censored. Otherwise it is 1. 

The likelihood ratio test statistic is given by 

(2.1) 

where h ( (), p) is the natural logarithm of the likelihood function maximized 

under the hypothesis of a mixture model and l0 (B) is the natural logarithm of 

the likelihood function maximized under the hypothesis of no cured individuals. 

The forms of the likelihood ratio test statistic for those mixture models , 

which are discussed above, can be presented as follows. 

For exponential mixture model, 

n 

dn = 2 max(L:) di (log p + log,\ - Ati) + (1 - di) log(pe->-ti + 1 - p))) 
>.,p i= l 

n n n 

-2(Ldi)(log(Ldi) -log(l:::ti) -1) 
i= l i= l i=l 

For Weibull mixture model, 

n 

dn = 2 max(,L(di(log p + log ,\+ logp + (p- 1) log Ati - (-\ti)P) 
>.,p,p i = l 
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+(1- di) log(pexp( -(Ati)P) + 1- p))) 

n 

-2 max(:E(di(log A+ logp + (p- 1) log Ati)- (Ati)P)) 
>..,p i=l 

For log-normal mixture model, 

n 1 (p log At-)2 

dn = 2 max(:E ( di (log p - - log 271" + log p - log ti - t ) 

>..,p,p i=l 2 2 

+(1- di)log(p(1- <D(plogAti)) + 1- p))) 

n 1 (p log At·)2 

-2 max(l::) di( --log 27r+logp-log ti- t )+(1-di) log(1-<D(p log Ati) ))) 
>..,p i=l 2 2 

For gamma mixture model, 

n 

dn = 2 max(:E(di(log p +log A+ (q- 1) log Ati - Ati- log(r(q))) 
>..,q,p i=l 

n 

-2 max(:E( di(log A+ (q - 1) log Ati - Atj -log(r(q))) + (1- di) log(1- Iq(.Xti)) )) 
>..,q i=l 

For extended generalized gamma(EGG) mixture model, if q = 0, dn is the 

same as the one in the log-normal mixture model; if q i=- 0, then 

n 

dn = max (L)di(log p + log(lq l) - log(r(q- 2
)) + q-2 log(q-2

) 
>.. ,p,q,p i=l 

+logp - logti + q-2(qplogAti - e qplog>..t;)) 

+(1- di) log(p( lql (q- 2 )q"'"2 r>-t; pxpfq- l exp( - q- 2 xpq) dx) + 1- p))) 
r((q-2 ) lo 

n 
- 2 max(:E(di(log(lql) - log(f(q-2))+q-2 log(q-2)+logp- log ti+q-2 (qp log .Xti-eqp log >..t; ) ) 

>..,p,q i = l 

+ (1 - di)(log(lql)-log(r(q- 2))+q-2 log(q-2)+log(h>.t; pxpfq-l exp( -q- 2 xPq) dx) )) ) 

Here dn does not follow a x2 distribution under H0 . This is due to the non-

standard situation that the value of the parameter pin H0 is on a boundary of 
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[0, 1], the parameter space of p. Consequently, the asymptotic null distribution 

of dn needs to be worked out. 

Goldman (1984) first used the likelihood ratio test to determine the pres-

ence of cured patients using an exponential mixture model. She assumed that, 

under H 0 , dn has an asymptotic x2 distribution. Maller and Zhou (1995) 

proved that, under mild conditions, the asymptotic null distribution of dn in 

the exponential mixture model follows a mixture distribution. Their results 

showed that if the moment generating function of C, given by E{e(8H )C}, is 

finite for some ~ > 0, the asymptotic null distribution of the LRT statistic dn 

will follow a 50-50 mixture of a x2 distribution and probability mass at zero 

1 1 
P(dn < t) ---+ 2 + 2P(xi < t) (2.2) 

Vu et al. (1996) pointed out that this holds for the gamma mixture model 

under mild conditions. Peng et al. (2001) studied the properties of the dis-

tribution of dn with the failure time distribution of uncured patients as the 

log-normal or the Weibull distribution via a simulation study. Their results 

showed that under some certain condit ions the empirical null distribution of 

the likelihood ratio test for the Weibull or log-normal mixture model agrees 

with that for the gamma mixture model. But caution is needed in this case 

to determine the presence of cured individuals. There is no reported study 

on the null distribution of LRT under the EGG mixture model. The power 

assessment of the likelihood ratio test for each case is also unknown. 
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Chapter 3 

The Power of Likelihood Ratio 
Test 

In this chapter, we will conduct a simulation study to investigate the power of 

the likelihood ratio test. Simulated data are generated from a known popula­

tion that includes cured individuals. We will apply the likelihood ratio test for 

testing the presence of cured individuals. The distribution in (2.2) is used as 

the asymptotic null distribution to specify the rejection region, and henceforth 

the power can be computed. 

3.1 Simulation Studies 

In our study we do not restrict the distribution of failure t imes of uncured 

individuals to an exponential or gamma distribution, since the log-normal and 

Weibull distributions are common and useful in survival analysis. We con­

sider three distributions as the failure time distribution of uncured individu­

als in the mixture models: (1) gamma distribution with the density function 

fu(t; 0) = t0- 1e- t /f(O); (2) Weibull distribution with the density function 
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!u(t; B) = BtB-l exp( -t(J); (3) log-normal distribution with the density func­

tion fu(t; B) = B( V27ft)-1 exp( -0.5B2 log2 t). The value of B in the gamma 

distribution is fixed at 0.5, 1.0, 1.5, 2.5, in which B = 1 corresponds to the 

exponential distribution. For Weibull and log-normal distributions, B is fixed 

at 0.5, 1.5, 2.5. 

We restrict the censoring distributions to uniform and exponential distribu­

tions because these two distributions are usually considered in the literature. 

Here we assume that we know the distribution of the failure time variable T 1 of 

the uncured individuals and the type of the distribution of censoring variable 

C1 of the uncured individuals. By definition, the censoring rate of the uncured 

individuals is P(T1 > C1 ). The values of parameters in the censoring distri-

butions can be determined so that the resulting censoring rate for uncured 

individuals equals to 30 per cent. For example, if T 1 follows a gamma dis­

tribution with parameter B = 1.5, and C1 follows an exponential distribution 

with parameter A, to achieve the 30 per cent censoring for uncured individuals, 

P(T1 > C1
) will equal to 0.30. That is, 

or 

1 - (A+ 1)1.5 = 0.30 

From the equation, A~ 0.2684. This means, we need to choose A, the param-

eter of the censoring distribution, to be 0.2684 if we want to have 30 per cent 

censoring in the uncured individuals. 

Three sample sizes are considered: 50, 100, and 200. The power of testing 
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the presence of cured individuals is usually important when the actual cure 

rate ranges between 5% and 10%. The larger the actual cure rate, the easier it 

will be to detect the presence of cured individuals. Henceforth, we fix the cure 

rate at 3%, 5%, 7%, 10%, 15%. Given one of the combinations of three failure 

time distributions of uncured individuals, five cure rates and two censoring 

distributions, a sample can be generated with a given sample size. Different 

sample sizes are used so as to find the effect of sample size on the power, and 

different cure rates are set to examine the effect of cure rate on the likelihood 

ratio test. 

For the sample from one of the three failure time distributions of uncured 

individuals, we use the corresponding mixture model and the EGG mixture 

model to fit. That is, if a sample is generated from the gamma distribution, 

we will fit the sample with the gamma mixture model or the EGG mixture 

model. The reason why the EGG mixture model is used to fit the data is that 

we want to compare the effect of power under different models. The result 

may be useful for model selection. For each model, the test statistic dn can be 

computed by using (2.1) 

Let the significant level be equal to 0.05. From the 50-50 mixture distribu­

tion in (2.2), we can obtain a critical value under this level. The power of the 

likelihood ratio test is estimated as a proportion of dn greater than the critical 

value based on 500 simulation samples. The results for different simulated 

data are listed below. 
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3.2 Simulation with uncured individuals fol­
lowing gamma distribution 

Table 3.1 presents the results when the censoring time follows an exponential 

distribution and the simulated data are fit by the gamma mixture model and 

the EGG mixture model in turn. The graphical description of power for this 

case is in Figure 3 .1. 

We can see that the powers are large for f) = 1.5, 2.5 by fitting with the 

gamma mixture model. The power is at least 0.76 when the sample size is 200 

and the true cure rate of the superpopulation ranges from 5% to 10%. But 

for fJ = 0.5, the power is quite small for all the discussed situations. All the 

estimated values are no more than 0.50, regardless of the sample size in use. 

A heuristic explanation is that, when fJ is larger than 1.0, the hazard function 

increases, which means that uncured patients are likely to relapse or die early. 

Therefore, long-term survivors may be regarded as cured individuals. When B 

is less than 1.0, the hazard function decreases. Long-term survivors are more 

likely to be censored uncured individuals. 

As the sample size decreases from 200 to 50, the power decreases dramat­

ically for large fJ . However, for f) = 0.5, the change is not substantial. When 

the sample size is 50, the values of power for large f) range from 0.37 to 0. 71 

with cure rate varying from 5% to 10%. If the actual distribution of failure 

times of uncured individuals is a gamma distribution with () larger than 1.0, 

the likelihood ratio test will be effective for detecting the presence of cured 

individuals under the condition that the sample size is not quite small. 
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Table 3.1: Estimated power of the LRT based on 500 samples under exponen-
tial censoring distributions with 30% censoring in uncured individuals 

sample cure rate 
Model SIZe e 3% 5% 7% 10% 15% 
gamma 50 0.5 0.13 0.20 0.20 0.31 0.31 

1.0 0.21 0.28 0.33 0.46 0.53 
1.5 0.24 0.37 0.46 0.56 0.61 
2.5 0.33 0.48 0.56 0.71 0.84 

100 0.5 0.16 0.25 0.35 0.44 0.45 
1.0 0.29 0.43 0.56 0.65 0.76 
1.5 0.36 0.56 0.64 0.76 0.87 
2.5 0.51 0.70 0.80 0.88 0.96 

200 0.5 0.17 0.29 0.37 0.45 0.50 
1.0 0.45 0.62 0.78 0.88 0.92 
1.5 0.57 0.76 0.89 0.94 0.96 
2.5 0.73 0.90 0.95 0.99 1.00 

EGG 50 0.5 0.13 0.14 0.14 0.19 0.19 
1.0 0.15 0.20 0.24 0.29 0.32 
1.5 0.17 0.25 0.29 0.33 0.37 
2.5 0.26 0.33 0.37 0.48 0.51 

100 0.5 0.16 0.16 0.17 0.25 0.27 
1.0 0.30 0.49 0.57 0.68 0.81 
1.5 0.36 0.56 0.64 0.76 0.87 
2.5 0.40 0.61 0.67 0.81 0.92 

200 0.5 0.17 0.21 0.22 0.30 0.30 
1.0 0.47 0.61 0.65 0.78 0.83 
1.5 0.50 0.67 0.72 0.85 0.92 
2.5 0.68 0.83 0.89 0.93 0.97 
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Figure 3.1: Power plot with uncured individuals following gamma distribution 
and exponential censoring (the first row fit by the gamma mixture, and the 
second row fit by the EGG mixture; from t he left to the right : () = 0.5, 1.0, 
1.5, 2.5, respectively) 

If we fit the EGG mixture model to the data, all the values of power are 

slightly less than t hose fit by the gamma mixture model. We may consider 

the EGG mixture model as an instead of the gamma mixture model when the 

gamma assumption is validated adequately. 

Table 3.2 presents the results when t he censoring time follows a uniform 

distribution and the simulated data are fit by the gamma mixture model and 

the EGG mixture model in turn. The graphical description of power for this 
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case is in Figure 3.2. 

If the data are fit by the gamma mixture model, all the estimated values of 

power are quite small except for the case that (} = 2.5 and sample size equals 

to 200. When (} is greater than 1.0, the power increases rapidly as the value 

of(} increases. For (} equal to 0.5, the power is extremely low. All values are 

no more than 0.19. 

For sample size less than 50, the values are no more than 0.39. As the sam­

ple size increases, the power increases significantly. But sample size only has 

a strong effect on the power if(} is greater than 1.0. If the actual distribution 

of failure times of uncured individuals is a gamma distribution with (} larger 

than 1.0, a relative large sample size will be needed to employ the test. 

The values calculated by fitting the data with the EGG mixture model are 

much less than those fitting with the gamma mixture model. Those values 

are even less than 0.50. Therefore, the result with the replacement of EGG 

mixture model for gamma mixture model is poor. 

3.3 Simulation with uncured individuals fol­
lowing Weibull distribution 

Table 3.3 presents the results when the censoring time follows an exponential 

distribution and the simulated data are fit by the Weibull mixture model and 

the EGG mixture model in turn. The graphical description of power for this 

case is in Figure 3.3. 

The power of the test is large when (} is larger than 1.0. The values of power 
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Table 3.2: Estimated power of the LRT based on 500 samples under uniform 
censoring distributions with 30% censoring in uncured individuals 

sample cure rate 
Model size e 3% 5% 7% 10% 15% 

gamma 50 0.5 0.07 0.07 0.11 0.12 0.11 
1.0 0.07 0.11 0.14 0.17 0.20 
1.5 0.07 0.13 0.18 0.19 0.24 
2.5 0.16 0.24 0.26 0.32 0.39 

100 0.5 0.07 0.10 0.11 0.12 0.16 
1.0 0.10 0.16 0.17 0.23 0.34 

1.5 0.15 0.17 0.20 0.32 0.35 
2.5 0.23 0.33 0.43 0.49 0.57 

200 0.5 0.09 0.10 0.12 0.18 0.19 

1.0 0.12 0.16 0.24 0.28 0.40 
1.5 0.17 0.29 0.37 0.46 0.58 
2.5 0.32 0.51 0.62 0.71 0.82 

EGG 50 0.5 0.13 0.14 0.14 0.14 0.13 
1.0 0.09 0.12 0.12 0.14 0.14 
1.5 0.09 0.12 0.13 0.15 0.16 
2.5 0.09 0.12 0.16 0.16 0.18 

100 0.5 0.13 0.11 0.10 0.14 0.15 
1.0 0.12 0.13 0.13 0.14 0.15 
1.5 0.12 0.13 0.13 0.18 0.15 
2.5 0.13 0.21 0.22 0.25 0.28 

200 0.5 0.11 0.13 0.11 0.12 0.13 
1.0 0.12 0.14 0.15 0.17 0.21 
1.5 0.12 0.16 0.20 0.23 0.30 
2.5 0.20 0.30 0.35 0.39 0.45 
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Figure 3.2: Power plot with uncured individuals following gamma distribution 
and uniform censoring (the first row fit by the gamma mixture, and the second 
row fit by the EGG mixture; form the left to the right, (} = 0.5, 1.0, 1.5, 2.5, 
respectively) 

for cure rate no less than 5% are at least 0.63 when the sample size is greater 

than or equal to 100. But for (} equals to 0.5, the power is extremely low. All 

values are at most 0.29 even for sample size as large as 200. Furthermore, the 

power will be small if (} is less than 1.0. This is due to the characteristic of 

Weibull distribution hazard function. That is, the hazard function is monotone 

increasing if (} > 1, decreasing if(} < 1, and constant for (} = 1. Long-term 

survivors are more likely identified as cured individuals for (} > 1 than for 

25 



() < 1. The power should be large for () > 1. 

The power is small for()= 0.5, regardless of the sample size. If theta> 1, 

the power increases rapidly as the sample size increases from 50 to 200. For 

this case, the sample size does not substantially affect the power for small (). 

But the effect of the sample size is apparent for relatively large(). 

The power computed by fitting the data with the EGG mixture model 

are quite similar to that fitting with the Weibull mixture model. The EGG 

mixture model can be considered to fit the data so as to test the presence of 

cured individuals when the Weibull assumption can be verified. 

Table 3.4 presents the results when the censoring time follows a uniform 

distribution and the simulated data are fit by the Weibull mixture model and 

the EGG mixture model in turn. The graphical description of power for this 

case is in Figure 3.4. 

When the data are fit by the Weibull mixture model, the power is large only 

for moderate large sample size(n > 100) and large ()( () > 2.5). For suggested 

cure rate ranging from 5% to 10%, the power is at least 0.92. If() is small, the 

power is small as well. The power increases rapidly as the value of() increases. 

The sample size only affects the power substantially for large value of 0. 

If() is at least larger than 2.5, even a small sample size will result in a large 

power. For () = 0.5, the sample size almost has no effect on the power. 

The power under the EGG mixture fitting is relatively poor compared to 

that under the Weibull mixture fitting. Flexible model can provide a bet ter 

fitting to the data, but it is less effective for testing the cured individuals in 

this case. 
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Table 3.3: Estimated power of the LRT based on 500 samples under exponen-
tial censoring with 30% censoring in uncured individuals 

sample cure rate 
Model size () 3% 5% 7% 10% 15% 

Wei bull 50 0.5 0.10 0.11 0.13 0.13 0.16 
1.5 0.31 0.46 0.52 0.65 0.74 
2.5 0.48 0.64 0.75 0.84 0.92 

100 0.5 0.07 0.11 0.13 0.16 0.22 
1.5 0.47 0.63 0.75 0.86 0.93 
2.5 0.70 0.86 0.92 0.99 1.00 

200 0.5 0.11 0.15 0.20 0.25 0.29 
1.5 0.72 0.89 0.93 0.98 1.00 
2.5 0.92 0.98 1.00 1.00 1.00 

EGG 50 0.5 0.09 0.12 0.15 0.19 0.19 
1.5 0.27 0.35 0.40 0.61 0.73 
2.5 0.43 0.59 0.72 0.78 0.87 

100 0.5 0.09 0.12 0.15 0.16 0.16 
1.5 0.44 0.60 0.66 0.78 0.80 
2.5 0.67 0.82 0.92 0.98 1.00 

200 0.5 0.10 0.14 0.11 0.12 0.30 
1.5 0.67 0.81 0.92 0.97 1.00 
2.5 0.90 0.98 0.99 1.00 1.00 
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Figure 3.3: Power plot with uncured individuals following Weibull distribution 
and exponential censoring (the first row fit by the Wei bull mixture, and the 
second row fit by the EGG mixture; from the left to the right: (} = 0.5, 1.5, 
2.5, respectively) 

3.4 Simulation with uncured individuals fol­
lowing log-normal distribution 

Table 3.5 presents the results of the power when the censoring t ime follows 

exponential distribution and the simulated data are fit by the log-normal mix-

ture model and the EGG mixture model in turn. The graphical description of 
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Table 3.4: Estimated power of the LRT based on 500 samples under uniform 
censoring distributions with 30% censoring in uncured individuals 

sample cure rate 
Model SIZe (} 3% 5% 7% 10% 15% 

Wei bull 50 0.5 0.08 0.09 0.08 0.10 0.11 
1.5 0.11 0.18 0.20 0.23 0.30 
2.5 0.35 0.49 0.60 0.66 0.76 

100 0.5 0.07 0.09 0.10 0.11 0.13 
1.5 0.17 0.23 0.33 0.35 0.43 
2.5 0.55 0.75 0.82 0.88 0.92 

200 0.5 0.10 0.09 0.10 0.14 0.17 
1.5 0.21 0.38 0.48 0.59 0.68 
2.5 0.78 0.92 0.98 0.99 1.00 

EGG 50 0.5 0.11 0.13 0.11 0.13 0.15 
1.5 0.09 0.13 0.15 0.17 0.20 
2.5 0.23 0.31 0.42 0.44 0.47 

100 0.5 0.12 0.15 0.11 0.14 0.14 
1.5 0.12 0.20 0.20 0.21 0.25 
2.5 0.46 0.60 0.69 0.74 0.74 

200 0.5 0.11 0.12 0.11 0.13 0.13 

1.5 0.18 0.24 0.32 0.34 0.34 
2.5 0.74 0.86 0.92 0.96 0.96 
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Figure 3.4: Power plot wit h uncured individuals following Weibull distribution 
and uniform censoring (the first row fit by the Wei bull mixture, and the second 
row fit by the EGG mixture; from the left to t he right: () = 0.5, 1.5, 2.5, 
respectively) 

power for this case is in Figure 3.5. 

If the data are fit by t he log-normal mixture model, the power is large for 

() > 1 with the cure rate varying from 5% to 10%. When () = 0.5, the power is 

small. All estimated values are no more than 0.37. 

The sample size affects greatly the power when the () > 1. The power 

increases quickly as the sample size increases. For small(), such as () < 1, the 

sample size does not affect the power substantially. 
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Table 3.5: Estimated power of the LRT based on 500 samples under exponen-
tial censoring distribut ions wit h 30% censoring in uncured individuals 

sample cure rate 
Model size e 3% 5% 7% 10% 15% 

log-normal 50 0.5 0.08 0.10 0.11 0.12 0.17 
1.5 0.24 0.35 0.44 0.57 0.71 
2.5 0.42 0.56 0.70 0.81 0.87 

100 0.5 0.10 0.14 0.16 0.19 0.25 
1.5 0.42 0.55 0.67 0.81 0.89 
2.5 0.63 0.80 0.90 0.96 0.99 

200 0.5 0.13 0.17 0.24 0.28 0.37 
1.5 0.63 0.81 0.88 0.97 0.99 
2.5 0.85 0.96 0.99 1.00 1.00 

EGG 50 0.5 0.06 0.06 0.07 0.08 0.09 
1.5 0.16 0.23 0.27 0.30 0.38 
2.5 0.36 0.50 0.60 0.68 0.80 

100 0.5 0.06 0.07 0.08 0.08 0.10 
1.5 0.25 0.37 0.45 0.55 0.63 
2.5 0.55 0.76 0.87 0.89 0.97 

200 0.5 0.08 0.10 0.10 0.11 0.18 
1.5 0.44 0.62 0.74 0.80 0.89 
2.5 0.81 0.92 0.97 0.99 1.00 

The power under the EGG mixt ure model is similar to that under the log­

normal mixture model. Both models can be selected to fit the data in this 

case. 

Table 3.6 presents the results when the censoring time follows a uniform 

distribution and the simulated data are fit by the log-normal mixture model 

and the EGG mixture model in turn. The graphical description of power for 

this case is in Figure 3.6. 

The power is large only fore = 2.5 and sample size equal to 200 while cure 

rate ranging from 5% to 10%. When e = 0.5, the power is small. All estimated 
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Figure 3.5: Power plot with uncured individuals following log-normal distri­
bution and exponential censoring (the first row fit by the log-normal mixture, 
and the second row fit by the EGG mixture; from the left to the right : 0 = 
0.5, 1.5, 2.5, respectively) 

values are less than 0.37. 

The power increases quickly as the sample size increases when the 0 > 1. 

For small 0, such as 0 < 1, the sample size does not affect the power substan-

tially. 

The power under the EGG mixture model is better than that under the 

log-normal mixture model. We may consider a more flexible model in t his 

case. 
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Table 3.6: Estimated power of the LRT under uniform censoring with 30% 
censored in uncured patients 

sample cure rate 
Model size e 3% 5% 7% 10% 15% 

log-normal 50 0.5 0.06 0.06 0.07 0.08 0.09 
1.5 0.08 0.09 0.11 0.12 0.17 
2.5 0.18 0.27 0.28 0.35 0.40 

100 0.5 0.06 0.07 0.08 0.08 0.10 
1.5 0.09 0.12 0.16 0.16 0.20 
2.5 0.24 0.39 0.46 0.54 0.66 

200 0.5 0.08 0.08 0.09 0.11 0.11 
1.5 0.14 0.17 0.22 0.31 0.31 
2.5 0.44 0.64 0.73 0.83 0.90 

EGG 50 0.5 0.09 0.12 0.12 0.12 0.16 
1.5 0.07 0.11 0.12 0.18 0.26 
2.5 0.23 0.37 0.42 0.51 0.63 

100 0.5 0.10 0.13 0.19 0.21 0.26 
1.5 0.08 0.17 0.23 0.31 0.44 
2.5 0.40 0.56 0.70 0.83 0.90 

200 0.5 0.11 0.18 0.24 .029 0.37 
1.5 0.16 0.26 .040 0.61 0.74 
2.5 0.61 0.81 0.92 0.97 0.99 

3.5 Simulation with nonparametric model 

In this section, we introduce a nonparametric statistical test for testing the 

presence of cured individuals. The nonparametric test allows us to test for 

cured individuals without taking a parametric assumption. We compare it t o 

the likelihood ratio test discussed in the previous sections. 

The nonparametric test is developed on the estimation of the cure rate 

proposed by Maller and Zhou (1992) . They proved that, under some mild 
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Figure 3.6: Power plot with uncured individuals following log-normal distri­
bution and uniform censoring (the first row fit by the log-normal mixture, and 
the second row fit by the EGG mixt ure; from the left to the right : () = 0.5, 
1.5, 2.5, respect ively) 

conditions, 

Here F(t) is t he K-M cumulative distribution function estimator from a sam-

ple of size n, and tn is t he maximum observed failure or censored tim e . The 

largest observation is censored , which suggests a level-off of the K-M curve, if 

and only if F(tn ) < 1, or S(tn ) = 1 - F(tn) > 0. 
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If 0 < p < 1, the estimator of p is consistent and asymptotically normal 

under certain conditions on the censoring mechanism. By using the asymp­

totic normality property of S(tn), we can construct a 95% confidence interval 

for it. That is, S(tn) ± 1.968-n, where 8-n, the standard error of S(tn), is given 

by Greenwood's formula. If the lower bound of the 95% confidence interval of 

S(tn) is greater than 0, we may consider that cured individuals exist. 

We only consider gamma distribution as the failure time distribution of 

uncured individuals in the mixture models. The density distribution of the 

gamma distribut ion is: fu(t; 0) = t0- 1e- t jr(O). The parameter 0 is fixed at 

0.5, 1.0, 1.5 and 2.5. The censoring distribution may be the uniform or expo­

nential distribution. The values of parameters in the censoring distribution is 

determined so that the resulting censoring rate for uncured individuals equals 

to 30 per cent. The cure rate takes a value from 3%, 5%, 7%, 10% and 15%. 

And the sample size is fixed to 200. Given one of the combinations of the fail­

ure t ime distribution of uncured individuals, five cure rates and two censoring 

distributions, a sample can be generated with fixed sample size 200. 

For each sample, it may be believed to contain cured individuals if the 

largest observation of the sample is censored and the lower bound of the 95% 

confidence interval of the K-M estimation of the survival function at the largest 

observation is greater than 0. The power is estimated by the proportion of this 

kind of samples based on 500 simulation samples. The estimated nonparamet­

ric results are shown in Table 3.7. From the table we can see that no matter 

how large the cure rate is, the power changes slightly within 0.29 and 0.50 . 

The censoring distribution seems to have no effect on t he calculations. The 
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Table 3. 7: Estimated power of the LRT based on 500 samples under non para-
metric model with 30% censoring in uncured individuals 

cure rate 
censoring () 3% 5% 7% 10% 15% 

exponential 0.5 0.36 0.37 0.38 0.38 0.46 
1.0 0.33 0.35 0.37 0.38 0.47 
1.5 0.35 0.33 0.36 0.44 0.44 
2.5 0.33 0.36 0.37 0.41 0.44 

uniform 0.5 0.32 0.38 0.37 0.37 0.50 
1.0 0.33 0.34 0.37 0.38 0.48 
1.5 0.29 0.36 0.36 0.35 0.45 
2.5 0.29 0.38 0.42 0.49 0.47 

nonparametric method seems not effective for testing the presence of cured 

individuals. 

3.6 Summary 

From the above discussion, we can see that the likelihood ratio test is usually 

not powerful for small sample sizes such as 50 or less. It is often powerful for 

large sample sizes such as 200 or more. The EGG mixture model performs 

well for testing the presence of cured individuals in three types of data. If the 

failure time distribution of uncured individuals is unknown, the EGG mixture 

model may be used to fit the data of interest. 

Censoring distribution strongly affects the power of the test. The power is 

usually lower for uniform censoring than for exponential censoring. We should 

examine the censoring distribution carefully before we conduct the test. Also 

the censoring rate of the data of interest cannot be too light(10% or below). 

We find that the test is powerful even if the hazard rate at the upper tail 
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of the uncured failure time distribution is large. But from Peng et at. (2001), 

the approximation to the null distribution in this case is not acceptable. The 

critical value is smaller than the one from the suggested distribution (2.2). 

Therefore, the LRT is powerful regardless of magnitude of the hazard rate at 

the upper tail of the uncured failure time distribution. 

The parametric mixture model will be more efficient than the nonpara­

metric mixture model, since we assume that the failure time distribution and 

censoring distribution have the parametric forms. If we have little knowledge 

about the the failure time and censoring distributions, a more flexible model, 

such as EGG mixture model, may be employed to conduct the test. The non­

parametric approach does not seem to be a good choice for testing the presence 

of cured individuals. 

In this practicum, sample size determination has not been considered. We 

know that the power increases as the cure rate, or the parameter involved, or 

the sample size increases. With the modern computer facilities, we can find 

the sample size even though we do not have an explicit form of the power 

function . 
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Chapter 4 

Bootstrapping on the Likelihood 
Ratio Test for the presence of 
cured individuals 

Maller and Zhou (1995) proved t hat, under mild conditions and the exponen­

tial assumption, the asymptotic null distribution of t he likelihood ratio t est 

statistic dn follows a 50-50 mixture distribut ion which is showed in (2.2) . Vu 

et al. (1996) extended the result to the gamma mixture model. Peng el al. 

(2001) pointed out that the 50-50 mixture distribution can also be used to 

approximate the asymptotic null distribution of the likelihood ratio test in the 

Weibull and log-normal mixture models when the censoring rate is not too 

light. However, there are two problems here. One is, as showed by Peng et al. 

(2001) , that the null distribut ion of the likelihood ratio test deviates signifi­

cantly from the 50-50 mixture distribut ion under moderate sample sizes when 

the censoring rate is small or t he hazard rate is large. Another problem is that 

there are no existing results about the asymptotic null distribution of LRT if 

the failure t ime distribution is other than gamma, log-normal or Weibull. 
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In this chapter, we investigate the use of bootstrap method to estimate the 

null distribution of the likelihood ratio test. 

4.1 Bootstrapping the Likelihood Ratio Test 

Assessing the null distribution of the likelihood ratio test when Ho is in the 

boundary was first introduced by McLachlan (1987) for the problem of assess­

ing the number of components in a normal mixture. He highlighted the role 

of the bootstrap for the assessment of the null distribution for the likelihood 

ratio test of a single normal density versus a mixture of two normal densities 

in the univariate case. 

Let h, ... , tn denote a random sample of size n. We regard this sample as 

the original sample. It is believed that the sample comes from a population 

with a finite mixture distribution of 9 components. The likelihood ratio test 

is applied to test the number of components 9 in the situation of 9 = 91 under 

H 0 versus 9 = 92 under H 1 . The likelihood ratio test statistic dn can be boot­

strapped as follows. A bootstrap sample is generated from the mixture density 

f(t, 0) of components 92, where e is taken to be the maximum likelihood es­

timate of B based on the original sample. The value of dn is computed for 

the bootstrap sample after fitting mixture models to it for 9 = 91 and 9 = 92 

in turn. This process is repeated independently K times, and the replicated 

values of dn evaluated from the successive bootstrap samples can be used to 

assess the bootstrap, and hence the true, null distribution of dn. The original 

and subsequent bootstrap values of dn can be treated as the realizations of 

a random sample of size K + 1, and the probability that a specified member 
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is greater than j of the others is 1 - j I ( K + 1). The j th order statistic of 

the K replications can then be taken as an estimate of the quantile of order 

j I ( K + 1), and the achieved level of significance can be assessed by reference 

with respect to the ordered bootstrap replications of dn· 

The likelihood ratio test which rejects null hypothesis will approximately 

have size 

a=1-ji(K+1) (4.1) 

if dn for the original data is greater than the jth smallest of its K bootstrap 

replications. 

This result can be applied to the likelihood ratio test for testing the pres­

ence of cured individuals. Under null hypothesis, the number of mixture is 

1, and the number of mixture under alternative is 2. Following McLachlan's 

approach, a number of replications of dn can be generated and then be used 

as the approximation of null distribution. To determine the size of the test, 

we can adjust the number of replications according to the formula in ( 4.1). 

For the cure rate estimation, it is common that there are censored obser­

vations in the original data. However , McLachlan's approach does not address 

censoring in data. To apply his approach, we need to find a method of resam­

pling from censored data. 

4.2 Bootstrapping for censored data 

In this section, we discuss how to obtain bootstrap samples from censored 

data. We employ the method proposed by Hinkley et al. (1997) and Efron et 
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al. (1993). The idea of their method is given as follows. 

Suppose that the data available are a random sample (t1, d1), ... , (tn, dm), 

and that censoring occurs at random. Since the censoring variable C which 

has a distribution function J, is independent of T 0 , the knowledge of quan­

tities c1 , ... , Cm alone will tell us nothing about F 0 . They would in effect be 

ancillary statistics. This suggests that simulations should be conditional on 

the pattern of censorship, so far as practicable. To allow for the censoring 

pattern, we argue that the only values of ci known exactly are those ti with 

di = 0. The observed values of the remaining observations are lower bounds 

for the censoring variables, and they can be treated as censored observations 

of the censoring variable. Since di is an indicator of failure time and therefore 

1 - di is an indicator of censoring, the K-M estimate of the censoring survival 

function 1 - J may be written as 

J can then be estimated. For the failure time distribution F 0
, Hinkley et al. 

also suggested that the K-M estimate can be applied to approximate the sur­

vival function 1 - F 0 (t) when there is little information about the distribution 

of failure time. We use parametric model to fit the data, and F 0 should then 

be estimated in a parametric form. For example, we use the EGG mixture 

model to fit the data. F 0 can be estimated by H(B), where His a distribution 

function of the EGG family and 0 is the maximum likelihood estimat e of the 

parameters when the original sample is fit by the EGG mixture model. 

The algorithm for sampling scheme is as follows. 
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1. generate t~*, ... , t~ independently from H(O); 

3. set tj = min(tJ*, cj), for j = 1, ... , m. 

Each time we carry out the scheme, we can obtain a resample from the original 

sample. If we repeat the process K times, we will generate K resamples from 

the original sample. 

With the generated resamples, we can estimate the null distribution of the 

likelihood ratio test and then conduct the test for presence of cured individuals 

in the data. 

4.3 Examples 

In this section, we will apply the method discussed in the previous sections to 

the data either from clinical trials or from other fields. 

4.3.1 Leukemia Data 

The leukemia data have been introduced in Chapter 1. Mallor and Zhou 

(1994) fit the exponential mixture models to these two groups, allogeneic and 

autologous, separately. They concluded that there were cured patients in the 

allogeneic group, but were not sure about the presence of cured patients in 

the autologous group since the exponential fit to this group is poor. They 

pointed out that the Weibull mixture model also provided poor fit to the dat a 

of autologous group, with its almost uniform initial failure rate. Peng et al. 

(2001) fit the autologous group using the log-normal mixture model. Their 
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result showed that the log-normal mixture model provided a good fit to the 

failure times in this group. Based on the log-normal mixture model, the test 

statistic dn is 30.169. This value is greater than 2.31 and 2.71 , which are, 

respectively, the simulated 95th percentile from the empirical null distribution 

of 1000 samples and the 95th percentile from 50-50 mixture distribution in 

(2.2). They concluded that the cure rate in this group was nonzero, that is, 

there were cured patients. 

To use the bootstrap method, the exponential mixture model is used to 
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Figure 4.1: Leukemia data: the left, allogeneic group fit by exponential mixture 
model; the right, autologous group fit by log-normal mixture model 

fit the allogeneic group and the log-normal mixture model to the autologous 

group. The bootstrap crit ical value is 2.55 for the allogeneic group and 0.51 for 

the autologous group. Comparing those values to the values of dn computed 

by Maller and Zhou (1995) and Peng et al.(2001), we consider that there is 
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Figure 4.2: Leukemia data: the left, allogeneic group; the right, autologous 
group. Both are fit by EGG mixture model 

strong evidence for the presence of cured patients in each group. 

To consider a more flexible model, the EGG mixture model is used to model 

the two groups separately. Though the null distribution of dn under t he EGG 

assumption is unknown, we can calculate the approximate critical value for 

the likelihood ratio test by using bootstrap method. The null hypothesis is 

considered using K = 1000 replications of dn to construct a test with signifi­

cant level of 0.05. The critical value is then determined by using the approach 

in section 4.1. 

For a = 0.05, the bootstrap critical value is 2.58 for the autologous group 

and 2. 72 for the allogeneic group. If we fit the data with the EGG mixture 

model, dn is 11.93 and 0.77, respectively, for the autologous and allogeneic 

group. Henceforth, we may believe that there were cured patients in the au-
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tologous group, but there is not enough evidence of cured patients in the 

allogeneic group . This is not the same as what Maller and Zhou (1995) con­

cluded. T he EGG mixture model, with two extra parameters, is more flexible 

than the exponential mixture model. The flexibility of the model causes the 

identification problem for cured individuals. The long-term survivors tend to 

be treated as censored uncured individuals in the flexible mixture model. 

4.3.2 Prison and Arrest Data 
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Figure 4.3: Recidivism data 

The dat a in this example were discussed first by Broadhurst and Maller 

(1990) . They are two groups of prisoners who either had convictions or did 

not have convictions prior to the serious sexual offence. T he event of interest is 

a return to prison for any offence following a prisoner's release from prison for 

a serious sexual offence. The failure time is the time taken for that return to 
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prison, if it occurs. Releases not returning to prison within the limit of follow-

up time represent censored observations. All data are graphically described in 

Figure 4.1. 

There are obvious level-offs for both groups. There are potentially cured 
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Figure 4.4: Recidivism data: the left, prior group; the right, no-prior group. 
Both are fit by Weibull mixture model 

individuals, who will not return to prison for any offence, in each group. The 

likelihood ratio test is applied to test the presence of cured individuals. How-

ever, we do not know the distributions of the failure times of uncured indi­

viduals for each group. Broadhurst and Maller (1990) fit two groups with the 

Weibull mixture models. 

If we fit two groups with the Weibull mixture models, the value of dn is 

13.63 for the prior group and 6.09 for t he no-prior group. The bootstrap critical 

values are, respectively, 2.28 and 1.89. Therefore, there is evidence that cured 
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individuals exist in each group. This confirms the result drawn by Broadhurst 

and Maller (1990) . 

If we fit the EGG mixture models to these two groups, dn will be 6.63 for 

the prior group and 1.23 for the no-prior group. The bootstrap critical value is, 

respectively 1.59 and 2. 72. There is evidence that there are cured individuals 

in the prior group, while there is no cured individual in the no-prior group. 

The explanation for the no-prior group is that we use more flexible model to 

fit the data. There is one more extra parameter in the EGG mixture model , 

which help to identify long-term survivors as censored uncured individuals. 
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Leukemia Data 

Data are listed by failure time (in days) and censored status ( 0 = censored 

observation). There are 46 patients in the allogeneic group and 45 patients in 

the autolgous group. 

Allogeneic Group 

11 1 14 1 23 1 31 1 32 1 35 1 51 1 59 1 
62 1 78 1 78 1 79 1 87 1 99 1 100 1 141 1 

160 1 166 1 216 1 219 1 235 1 250 1 270 1 313 1 
332 1 352 1 368 1 468 1 491 1 511 1 557 1 628 0 
726 0 819 1 915 0 966 0 1109 0 1158 0 1256 1 1614 0 

1619 0 1674 0 1712 0 1745 0 1820 0 1825 0 

Autolgous Group 

21 1 40 1 42 1 50 1 53 1 54 1 56 1 61 1 
64 1 67 1 73 1 76 1 79 1 81 1 88 1 95 1 
98 1 98 1 99 1 104 1 105 1 106 1 112 1 131 1 

147 1 171 1 172 1 179 1 189 1 195 1 199 1 213 1 
223 1 224 1 277 1 724 0 729 0 734 1 1053 0 1094 0 

1192 0 1475 0 1535 0 1535 0 1845 0 
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Prison and Arrest Data 

Data are listed by failure time (in years) and censored status ( 0 = censored 

observation). There are 296 prisoners with no prior convictions and 121 with 

prior convictions. 

No-Prior Group 

0.0027 0 0.0082 1 0.0192 1 0.0219 1 0.0247 1 0.0466 1 0.0767 1 
0.0959 1 0.0986 0 0.1151 1 0.1260 1 0.1342 1 0.1425 1 0.1562 0 
0.1589 0 0.1699 0 0.2274 1 0.2329 1 0.2438 1 0.2521 1 0.2740 1 
0.2849 0 0.3151 0 0.3205 1 0.3315 1 0.3562 1 0.3644 1 0.3836 0 
0.3890 1 0.3973 1 0.4082 1 0.4192 1 0.4822 0 0.4877 1 0.5041 0 
0.5068 1 0.5260 1 0.5507 0 0.5562 1 0.5616 1 0.5973 1 0.6329 0 
0.6356 0 0.6767 1 0.6822 1 0.6986 1 0.7068 0 0.7123 1 0.7205 0 
0.7288 1 0.7315 0 0.7507 0 0.7644 1 0.7699 0 0.7863 0 0.8301 1 
0.8493 0 0.8521 0 0.8740 0 0.9123 1 0.9260 0 0.9370 0 0.9562 0 
0.9973 0 1.0055 1 1.0082 1 1.0110 0 1.0219 1 1.0548 0 1.0658 0 
1.0822 1 1.0877 0 1.1068 1 1.1151 1 1.1233 1 1.1945 1 1.2192 1 
1.2219 0 1.2247 0 1.2384 0 1.2411 0 1.2438 0 1.2521 0 1.2630 0 
1.2849 1 1.3123 1 1.3753 0 1.3918 0 1.3973 1 1.4192 1 1.4274 1 
1.4411 1 1.4466 1 1.4466 1 1.4606 0 1.4712 0 1.4822 0 1.4959 0 
1.5068 1 1.5151 0 1.5288 0 1.5315 0 1.5534 1 1.5945 0 1.6110 0 
1.6247 1 1.6329 0 1.6575 0 1.6740 1 1.6767 1 1.6959 1 1.7041 0 
1.7342 0 1.7370 0 1.7425 0 1.7479 0 1.7890 1 1.8037 0 1.8164 1 
1.8219 0 1.8411 1 1.8438 0 1.8685 0 1.8740 0 1.8849 0 1.8904 0 
1.9206 1 1.9370 0 1.9425 0 1.9452 0 1.9507 0 1.9644 1 2.0027 1 
2.0356 0 2.0877 0 2.1014 1 2.1096 0 2.1288 0 2.1726 1 2.1973 1 
2.2548 0 2.3123 0 2.3397 0 2.3616 0 2.3644 1 2.4356 1 2.4685 0 
2.4904 0 2.5151 0 2.5781 1 2.6247 1 2.6301 0 2.7068 0 2.7315 1 
2.7370 0 2.7452 1 2.7589 0 2.7945 0 2.8082 0 2.8137 1 2.8192 0 
2.8384 0 2.8630 1 2.9041 1 2.9068 0 2.9370 0 2.9671 0 3.0712 0 
3.1507 0 3.1644 0 3.1808 1 3.2164 0 3.2438 0 3.3370 0 3.3452 0 
3.3753 0 3.4658 0 3.4685 0 3.5918 0 3.6548 1 3.6630 0 3.7014 0 
3.7233 0 3.7260 0 3.7425 0 3.7507 0 3.8192 0 3.8548 1 3.8767 0 
3.9151 0 3.9452 0 4.0110 1 4.0137 0 4.0959 0 4.2082 0 4.2219 0 
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No-Prior Group( continued) 

4.2904 0 4.3753 0 4.3836 0 4.3973 1 4.5863 0 4.7288 0 4.7781 0 
4.7890 0 4.8329 0 4.8575 1 4.9397 0 4.9589 0 5.0192 0 5.0219 0 
5.0384 0 5.0548 0 5.0658 0 5.0849 0 5.2137 0 5.3507 0 5.4247 1 
5.5315 0 5.6137 0 5.6658 1 5.7178 0 5.8658 0 5.9397 0 5.9918 0 
6.0000 0 6.0767 0 6.1123 0 6.1151 0 6.1589 0 6.2630 0 6.3260 0 
6.3397 0 6.3425 1 6.4247 0 6.5397 0 6.5781 1 6.5805 0 6.5945 0 
6.6137 0 6.6192 0 6.6630 1 6.7151 0 6.7178 0 6.7315 0 6.7671 0 
6.8630 0 6.9781 0 7.0027 0 7.1616 0 7.1918 0 7.2301 0 7.2438 0 
7.2575 0 7.2849 0 7.2959 1 7.4438 0 7.4904 1 7.5205 0 7.5726 0 
7.6219 0 7.8849 0 7.9178 0 7.9562 0 7.9589 0 8.0630 0 8.0822 0 
8.1918 0 8.2082 0 8.4110 0 8.4658 0 8.6329 0 8.8055 0 9.1205 0 
9.1644 0 9.3178 0 9.3699 0 9.4055 0 9.4630 0 9.6274 0 9.6877 0 
9.7425 0 9.8329 0 10.0575 1 10.0904 0 10.3671 0 10.4932 0 10.5616 0 

10.6000 0 10.7753 0 10.8493 0 10.9315 0 10.9616 0 11.4301 0 11.5562 0 
11.6137 0 11.8274 0 

Prior Group 

0.0219 1 0.0329 1 0.0466 1 0.0575 1 0.0630 1 0.0822 1 0.0822 1 
0.0959 1 0.0959 1 0.1205 1 0.1699 0 0.1781 1 0.2000 1 0.2027 1 
0.2164 1 0.2301 1 0.2630 1 0.2849 0 0.2877 1 0.2959 1 0.3397 1 
0.3753 0 0.3836 1 0.3973 1 0.4082 1 0.4192 0 0.4466 1 0.5123 1 
0.5151 1 0.5260 1 0.5425 1 0.5616 1 0.5863 1 0.6055 1 0.6329 0 
0.6603 0 0.6685 0 0.6904 0 0.7123 1 0.7178 1 0.7205 1 0.7260 1 
0.7507 1 0.7507 1 0.7644 1 0.7753 0 0.7863 1 0.7863 1 0.8000 1 
0.8411 1 0.8575 1 0.8986 0 0.9534 0 0.9562 0 0.9616 0 0.9918 0 
0.9973 0 1.0082 1 1.0438 0 1.0548 1 1.1479 1 1.1507 1 1.2082 0 
1.2740 0 1.3041 1 1.3096 1 1.3205 1 1.3370 1 1.3397 0 1.3918 1 
1.4411 0 1.4630 1 1.4904 1 1.4959 0 1.5178 1 1.5205 1 1.5726 0 
1.6685 1 1.6932 1 1.7973 1 1.7973 1 1.8767 1 1.8959 1 1.9452 1 
2.2164 0 2.2438 1 2.2658 0 2.3671 1 2.3753 1 2.4493 0 2.4712 1 
2.7233 0 2.7534 0 2.7918 1 2.8219 0 2.9836 1 3.1151 0 3.1562 1 
3.2055 0 3.2110 0 3.2329 1 3.2630 0 3.5836 1 3.7425 0 3.7562 0 
3.7808 0 4.2548 0 4.2877 0 4.3123 0 4.3452 0 4.5589 0 5.0822 0 
5.1233 0 5.3014 0 5.4877 0 5.5260 0 6.1178 0 6.5479 0 6.5671 0 
9.0685 0 10.8822 0 
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The program for computing the power of the likelihood ratio test via a simu­
lation study: 

# failure time distribution for uncured individuals -- Gamma 
# censoring distribution -- exponential 
# n1 the number of samples 
# n2 sample size 
# n3 censoring rate in a sample 
# n4 suggested cure rate of the population 
# n5 the parameter of the failure time distribution 
powersimu <- function(nl, n2, n3, n4, n5) 
{ 
# define some useful functions 
my.gamO <- function(theta, delta, x) { 

-sum(delta * (theta[!] * log(theta[2]) + (theta[!] - 1) * log(x) 
- theta[2] * x - log(gamma(theta[1]))) 

+ (1 -delta) * log(! - pgamma(x, theta[!], theta[2]))) 
} 
my .gam1 <- function(theta, delta, x) { 

} 

-sum(delta * (log(theta[1]) + theta[2] * log(theta[3]) 
+ (theta[2] - 1) * log(x) - theta[3] * x - log(gamma(theta[2]))) 
+ (1 -delta) * log(theta[1] * (1 - pgamma(x, theta [2], theta[3])) 
+ 1 - theta[!])) 

f.gam.exp2 <- function(x, y, z) { 
f.gam.exp1 <- function(x1, x2) { 

fu1 <- function(x, lumda) { 

} 

} 

x~(y - 1) * exp(-x) * (1 - exp(-lumda * x))/gamma(y) 
} 
return(integrate(f = ful, lower= 0, upper= Inf, 

lumda = x)$integral) 

return(f .gam.expl(x, y) - z) 

# simulate samples and calculate the power 
n3 <- n3/(1 - n4) 
n4 <- 1 - n4 
a2 <- uniroot (f.gam . exp2, interval= c(0.1, 100), y = n5 , z = n3) 
power! <- 0 
j <- 1 
for (j in 1:n1) 

{ 
x <- rgamma(n2, n5) 
count 001 <- rbinom(n2, 1, n4) 
y <- rexp(n2 , a2$root) 
f or ( i i n 1:n2) 
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{ 
if (count001[i] < 1) x[i] <- Inf 
} 

delta <- rep(O, n2) 
for (i in 1:n2) 

{ 
if (x[i] < y[i]) delta[i] <- 1 
x[i] <- min(x[i], y[i]) 
} 

value001 <- nlminb(start= c(0.01, 0.01), obj = my.gamO, 
lower= c(0.001, 0.001), upper= c(10.0, 10.0), 
delta = delta, x = x) 

10 <- (-1)*value001$objective 
value002 <- nlminb(start= c(0.01, 0.01, 0.01), obj = my.gam1, 

lower= c(O, 0.001, 0.001), upper= c(1, 10 .0, 10 .0), 
delta = delta, x = x) 

11 <- (-1)*value002$objective 
d.n <- (-2*(10 - 11)) 
reject.value <- qchisq(0.9, 1) 
if (d .n > reject.value) power1 <- power1 + 1 
j <- j + 1 
} 

power1 <- power1/n1 
power1 
} 
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The program for investigating the estimate of the null distribution of the like­

lihood ratio test with bootstrap method via a real-life data set: 

# the original data set -- prior (Prior Group Data) 
# n1 -- the number of samples 
bootvalue <- function(n1) { 

# the function to generate bootstrap samples 
prior01 <- function(n2) { 

surv .b1 <- survfit(Surv(time, 1- cens), data= prior) 
time1 <- summary(surv .b1)$time 
value! <- summary(surv.b1)$surv 
cumdist1 <- 1 - value! 
dati<- array(rep(O, n2*length(prior$time)*2), dim=c(n2, 
length(prior$time), 2)) 
for (k in 1:n2) { 
# sampling form censoring distribution G(x) 

samp1 .unif <- runif(length(prior$time)) 
samp1.cens <- rep(O, length(prior$time)) 
for (i in 1:length(prior$time)) { 

if (samp1.unif[i] < cumdist1[1]) samp1.cens[i] <- time1[1] 
for (j in 2:length(value1)) { 

if (samp1.unif[i] < cumdist1[j] && samp1.unif[i] 
> cumdist1[j - 1]) samp1.cens[i] <- time1[j] 

} 
} 

# sampling from failure time distribution F(x) 
dist1.real <- nlminb(start = c(0.71, 1.1, 1.3), obj = my .web1, 

lower= c(O, 0, 0), upper= c(1, Inf, Inf), 
delta = prior$cens, x = prior$time) 

samp1.fail <- rweibull(length(prior$time), dist1.real$para[2], 
dist1.real$para[3]) 

# generate a sample 

} 
dati 
} 

xx1 <- rep(O, length(prior$time)) 
delta! <- rep(O, length(prior$time)) 
for (i in 1:length(prior$time)) { 

xx1[i] <- min(samp1 .cens[i], samp1.fail[i]) 
if (samp1 .fail[i] < samp1 .cens[i]) 

delta1[i] <- 1 
} 
dat1[k, ,1] <- xx1 
dat1[k, ,2] <- delta! 
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# determine the size of the likelihood ratio test 
size <- 0.05 

# generate n1 bootstrap samples 
pi <- prior01(n1) 
p2 <- rep(O, n1) 

# calculate the value of -2log_lumbda 
for (i in 1:n1) { 

} 

value001 <- nlminb(start= c(0.745, 3.28), obj = my.webO, 
lower= c(0.001, 0.001), upper= c(100.0, 100.0), 
delta= p1[i, ,2], x = p1[i, ,1]) 

10 <- (-1)*value001$objective 
value002 <- nlminb(start= c(0.71, 1.1, 0.3), obj = my.web1, 

lower= c(O, 0.001, 0 .001), upper= c(1, 100.0, 100.0), 
delta = p1[i, , 2] , x = p1[i, , 1]) 

11 <- (-1)*value002$objective 
p2[i] <- (-2*(10 - 11)) 

# return a value as the (1 - size)th percentile 
p2 <- sort(p2) 
reject <- p2[(1 - size)*(n1 + 1)] 
reject 

} 
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