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ABSTRACT 

Low concentrations of sodium phosphate are added to the boiler water of electric 

power stations as a means of controlling pH. Hideout is the phenomenon by which 

sodium phosphate is observed to be retained in the boiler during conditions of high 

temperature and pressure, only to be released back into the water upon cooling. All­

volatile amine treatment is an alternative boiler water pH control method, without the 

same adverse effects, but it is not known if problems will arise from a changeover from 

congruent phosphate control to all-volatile treatment. The objective of this research was 

(i) to develop improved synthetic methods for the known hideout reaction products, 

maricite, NaFenP04, and sodium iron hydroxyl phosphate (SIHP), Na3Fe111(P04)z· 

(NawH2130), (ii) identify any ammonium-iron-phosphate reaction products that may form 

during the changeover, and (iii) measure the solubility of the hideout reaction product 

sodium-nickel-hydroxy-phosphate (SNHP), Na2Ni(OH)P04, so that a thermodynamic 

database can be derived. 

The syntheses ofthe solid reaction products were carried out in 45 mL Parr 4744 

Teflon-lined stainless steel reaction vessels which allowed in situ filtration of the 

products from solution by inversion ofthe vessel, allowing the remaining solution to 

drain through a stainless steel mesh. Maricite was synthesized using previous established 

methods, whereas new methods for synthesizing SIHP from thermal decomposition of 

iron(III) nitrilotriacetic acid, and chelates, iron oxalate and iron tartrate, have been 

developed. A new hydrothermal synthesis for (NH4)FenFem(P04)2 has been developed 
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by thermally decomposing the chelate, iron tartrate. An additional ammonium reaction 

product, (NH4)Fe11(P04)·H20, was synthesized from the iron nitrilotriacetic acid 

complex. This provided a new synthetic route for this compound and proved that it 

formed under boiler conditions. The crystal structure of (NH4)Fe11(P04)·H20 was also 

confirmed. The major sodium-nickel-phosphate reaction product Na2Ni(OH)P04, was 

synthesized by two separate methods, from nickel oxide and from the thermal 

decomposition of the nickel nitrilotriacetic acid complex. 

Solubility studies ofNa2Ni(OH)P04, SNHP, were carried out in a modified 450 

mL Parr 4562 stirred zirconium reaction vessel, according to the following reaction: 

Kinetic experiments were conducted at 250 °C to ensure equilibrium had been reached 

and solubility data were collected over the temperature range 235-280 °C at a sodium/ 

phosphate mole ratio of2.5 that had an initial phosphate concentration of 1.5 mol·kg-1
. 

The MUL TEQ chemical equilibrium program was used to calculate the composition 

concentrations of relevant species at each temperature studied, and experimental 

equilibrium constants were calculated from the activity coefficient model used in 

MULTEQ. The results were used to create a thermodynamic model for SNHP, consistent 

with the Helgeson-Kirkham-Flowers model for the standard partial molar properties of 

aqueous phosphate species. 
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In conclusion, the maricite synthesis reported by Quinlan (1996) was reproducible 

and SIHP was synthesized from similar conditions as the maricite synthesis and using the 

analogous chelate decomposition reaction. Ammonium-iron-phosphate reaction products 

can form under boiler conditions; those identified in this study were (NH4)Fe11Fe111(P04) 2 

and (NH4)Fen(P04)-H20. The major sodium-nickel-phosphate reaction product 

synthesized was Na2Ni(OH)P04 and the data from this study and that previously reported 

for this reaction product, were used to create a thermodynamic model for this system, 

consistent with the database for sodium-iron hideout reactions. 
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1.0 INTRODUCTION 

1.1 Hydrothermal Synthesis 

In the last thirty years, the chemistry of inorganic and organic systems under 

hydrothermal conditions has received increasing interest from researchers in many 

different fields of scientific studies. The first definition for the term "hydrothermal" was 

proposed by Sir Roderick Murchison (1840s) who described it as the action of water at 

elevated temperature and pressure in bringing about changes in the earth's crust leading 

to the formation of various rocks and minerals (Byrappa and Yoshimura, 2001). Byrappa 

and Yoshimura (2001) proposed the basic definition that a hydrothermal reaction is "any 

heterogeneous chemical reaction in the presence of a solvent (whether aqueous or non­

aqueous) above room temperature and at pressure greater than 1 atm in a closed system". 

The first use of experimental hydrothermal techniques came from a geological point of 

view, to understand natural mineral formation in the presence of water under high 

temperatures and pressures. Researchers have now developed a wide variety of pressure 

vessel equipment to simulate these natural processes in the laboratory under 

hydrothermal conditions (Ulmer and Barnes, 1983). 

The first successful commercial application of hydrothermal techniques was the 

use ofNaOH to leach bauxite as a process for obtaining pure aluminum hydroxide which 

could then be converted to pure A)z03 suitable for processing to metal (Goranson, 1931 ). 

Such "pressure leaching" processes were widely used today for a large variety of metals 

(Habasi, 1994). Hydrothermal techniques have also been used for the synthesis oflarge 
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single crystals of quartz (Nacken, 1946), zeolites (Barrer, 1948), and other minerals for 

use as gemstones or advanced materials. Modem methods for the hydrothermal synthesis 

of single crystals are summarized by Byrappa et al. (1994). In the last decade, new 

homogeneous precipitation methods have been developed as a means of synthesizing 

monodisperse crystallites by decomposing aqueous solutions of metal chelates under 

hydrothermal conditions (Booy and Swaddle, 1978; Bridson et al., 1998). In this project, 

this method was utilized to synthesize the desired sodium metal phosphate and 

ammonium metal phosphate reaction products that can form under boiler conditions. 

All hydrothermal systems are closed. Therefore one can study the influence of 

temperature, pressure and composition separately which help to understand phase 

behaviour, and fundamental solution chemistry in many aqueous inorganic systems. 

Interest in this area has also led to many studies in the solubility, kinetics, and 

thermodynamics of crystal growth. Advances in apparatus used in this area of research 

have contributed to the increasing popularity of the hydrothermal technique, among 

physical chemists. Studies on aqueous systems at high temperature and pressure have 

been done using conductivity, potentiometric, spectrophotometric, solubility, PVT and 

calorimetric, neutron diffraction, EXAFS, and other related methods (Byrappa and 

Yoshimura, 2001). 

In this work, we want to observe "hideout" behaviour under boiler conditions. 

Low concentrations of sodium phosphate are added to the boiler water of electric power 

stations as a means of controlling pH. Hideout is the phenomenon by which phosphate in 

the water is observed to be retained in the boiler during conditions of high temperature 
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and pressure, only to be released back into the water upon cooling. Several workers have 

used boiler tube simulators, flow systems, or batch systems under a range of conditions in 

this area of research (Straub, 1950; Pollard and Edwards, 1963; Economy et al. , 1975; 

Balakrishnan, 1977; Wetton, 1980; Ziemniak et al., 1981; Connor and Panson, 1983; 

Tremaine et al., 1992, 1993, 1996, 1998). In our studies, we incorporated simple acid 

digestion bombs for hideout product syntheses and stirred autoclave systems for kinetic 

and solubility experiments. 

1.2 Phosphate Hideout in Steam Generators 

Before the 1970s, sodium-phosphate treatments had been successfully used for 

the control of pH and scale formation in steam generating stations with little 

understanding of how the physical chemistry of the system worked. In the early 1970s 

many power stations were beginning to see thinning of boiler tubes and pressure-tube 

denting which eventually led some power stations to replace their current sodium 

phosphate treatment with all-volatile treatments (A VT). 

What was happening to these boiler tubes could be attributed to phosphate 

hideout. Studies by Panson et al. (1975), Broadbent et al. (1977), and Taylor et al. (1979) 

have shown that hideout can be caused by the precipitation of sodium phosphate phases 

under scale deposits, in crevices, and in other local hot spots. Because of the incongruent 

precipitation of acidic phosphate salts, the basicity of the boiler water greatly increased 

when hideout occurred at high sodium phosphate mole ratios (Na/P04 > 3.0), eventually 

leading to the boiler tube damage described above. The introduction of "congruent" 
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phosphate control in the 1980s was intended to keep low concentrations within an area of 

the sodium-phosphate-water phase diagram that would avoid pH excursions, even at 

temperatures greater than 300 °C (Panson et al., 1975; Aschoff et al., 1986). 

In order to investigate the chemistry involved, Economy et al. (1975) and Conner 

and Panson (1983) studied the effects that aqueous sodium phosphate had on metal 

oxides at temperatures up to 315 °C. The metals involved were those typically used in 

the construction of boiler tubes. However, modem steam generators operate at higher 

temperatures and pressures than 315 °C. Tremaine et al. (1993) extended the 

experimental temperature range up to 360 °C for magnetite and three of the major 

components of sludge, Cu, NiO, and ZnO. The same results were observed in both 

studies, the metal oxides reacted with sodium phosphate to produce phosphate-metal 

corrosion products. 

Two of the major corrosion products that were observed when magnetite, iron, 

and carbon steel were exposed to concentrated phosphate at temperatures greater than 

200 °C were "maricite", NaFe11P04, and sodium iron(III) hydroxyphosphate "SIHP", 

Na3Fem(P04)2-(N~t3H2130). Recent work in our group (Bridson et al., 1998; Tremaine et 

al., 1998) resulted in the development of a chemical equilibrium model and database for 

predicting the precipitation of these iron compounds. 

The objective of this project is to investigate phosphate hideout under conditions 

associated with the changeover from congruent phosphate treatment to A VT at the Point 

Lepreau nuclear station. Most modem nuclear stations operate at temperatures as high as 

300 °C and pressures as high as 200 bars, and use volatile amines as chemical additives to 
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control impurities and pH in boiler water. However, recent experience has shown that 

severe corrosion damage can occur during changeover as the result of incongruent release 

of sodium-phosphate hideout reaction products, and subsequent reactions with the 

protective transition metal oxide layer. Therefore the purpose of this research is to 

identify solid reaction products that could form under typical phosphate hideout 

conditions with Inconel Alloy 800 in Candu boiler tubes by both powder and single 

crystal XRD analysis, and to determine equilibrium constants for sodium nickel 

hydroxyphosphate "SNHP", Na2Ni(OH)P04, which is one of the major nickel reaction 

products known to form at steam generator temperatures (Ziemniak, 1988). 

1.3 Standard State Properties of Aqueous Species and Solids 

1.3.1 Solids 

Gibbs energies of reaction for the formation and dissolution of solid reaction 

products, ~rGr,p0, are calculated from the standard Gibbs energies of formation ofthe 

solid, aqueous, gaseous reactants and products. These are represented by the following 

equation (Atkins, 1993): 

The enthalpies of formation can be represented by a similar equation. Using the 

following solubility reaction as an example: 

5 

(1.1 ) 



(1.2) 

the standard Gibbs energies and enthalpies of formation ofthe species AzB(s) at high 

temperature and pressure are calculated from the elements at the same temperature and 

the reference pressure, Pr (1 bar): 

(1.3) 

~ H 0 = H 0 -2H0 -H 0 

f A2B,T,p A2B,T,p A,T ,p , B,T ,p, (1.4) 

The standard partial molar entropies, isobaric heat capacities, and volumes of 

minerals, gases, and aqueOUS Species are designated by S0
p,T, C0

p,T, and V0
p,T, 

respectively. Gibbs energy, enthalpy, and entropy are related through the following well-

known equation: 

(1.5) 

The heat capacity of formation ~tCp,T o and the volume of formation ~rV0 are used in the 

expressions for the high temperature thermodynamic properties in Equation (1 .5). The 

standard Gibbs free energy at a specified temperature can be calculated from the 

following equation: 
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T T ~ co P 

~1G;,p =!'J.1 G;,,p, -!'J.1S;~ ,p, (T-Tr)+ ftJ. 1C;dT-T f ~ p dT+ ftJ.1V
0

dp (1.6) 
Tr Tr Pr 

at some reference temperature and pressure. The value for the heat capacity of a solid 

can be represented by the Maier-Kelly equation (1932): 

c; =a+ bT + cT-2 (1.7) 

where a, b, and c are constants. More complex equations are also used (Anderson and 

Crerar, 1993), for example: 

(1.8) 

and 

(1.9) 

The volume of a solid can be expressed as: 

11 

vpo T = vpo T + "!'J.V,O 
' T'f ~ I 

(1.1 0) 
i=l 

where V0 designates the standard molal volume of the specified solid at the subscripted 

7 



pressure and temperature, and llV
1
° represents the change in standard molal volume 
I 

associated with the ith of then solid/solid phase transitions (t) that occur along the 

straight-line p-T path from Pr,Tr to p,T (Johnson et al, 1992; Helgeson et al., 1978). 

However, there are only slight variations in volume with changes in temperature and 

pressure. Therefore the volume may be assumed to be constant. 

The standard molal Gibbs free energies and enthalpies of minerals, gases, and 

aqueous species are more conveniently defmed as apparent standard molar Gibbs free 

energies (!laG0
p,T) and enthalpies (!laH0

p,T) of formation from the elements at the 

reference pressure, Pr = 1 bar, and temperature, Tr = 298.15 K (Benson, 1968; Helgeson 

et al., 1978; 1981). Using reaction (1.2) as an example, the apparent Gibbs free energy 

and enthalpy of formation are defined as: 

(1.11) 

(1.12) 

where !ltG0 and !lrH0 are the standard molar Gibbs free energy and enthalpy of formation 

of the species from the elements in their stable phase at the reference pressure (Pr = lbar) 

and the temperature (Tr = 298.15 K). The terms a;,T - a;J, and H;,T - H;J, refer to 

differences in the standard molar Gibbs free energy and enthalpy of the species from 
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changes in pressure (p - Pr) and temperature (T - Tr)· In comparison with equation (1.6), 

the temperature dependence of l:.aGr,p 0 is expressed by the following equation: 

T T co P 

t:.aG;,p = t:. 1G;"P' - s;"P' (T- T,) + fc;dT- T f; dT + fvodp 
T, T, Pr 

(1.13) 

The Gibbs energies of reaction l:.rGr,p 0 can be calculated from the Gibbs free 

energies of the elements incorporating the previous Equation (1.13) for each element by: 

t:.rG~ = It:.aG;(products)- L t:.aG; (reactants) 

= I t:. 1 G; (products) - L: t:. 1 G; (reactants) 

(1.14) 

The equilibrium constants of a reaction are related to l:.rGr,p 0 , and can be calculated by 

the following well known equation: 

t:.rGo = -RTinK (1.15) 

1.3.2 Aqueous Species 

Models for evaluating the heat capacity (Cp 0 ) and standard molal volumes (V0
) of 

aqueous species have only been developed in the last twenty years because data for Cp 0 

and V0 have only recently been determined at elevated pressure and temperature. 
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Because of the experimental difficulties involved in such measurements, semi-empirical 

equations are needed to predict the values of these thermodynamic properties at high 

temperatures. 

The standard partial molar thermodynamic property of an aqueous species is the 

sum of the intrinsic properties of the ions involved and that of the electrostatic 

contributions from the ion-solvent interactions present (Helgeson and Kirkham, 1976; 

Tanger and Helgeson, 1988). The intrinsic properties are normally referred to as a 

"nonelectrostatic" or a "nonsolvation" contribution to the equation of state. The Born 

model is used to represent the electrostatic or solvation contribution. SUPCRT'92 

(Johnson et al., 1992) is an interactive Fortran 77 program that contains a large 

thermodynamic database of many minerals, gases, and aqueous species. The revised 

Helgeson-Kirkham-Flowers (HKF) equation of state (Tanger and Helgeson, 1988; Shock 

et al., 1991) is used by SUPCRT'92 to calculate thermodynamic properties over a range 

of temperatures and pressures. 

The revised HKF equation of state for standard molal volumes at varying 

temperature and pressure can be expressed as: 

(1.16) 

o [ a2 a3 a4 J [ ,..>~'~ ( 1 )(am) ] V = a+--+-- + + -~+ --1 -1 
If/ + P r- e (If/ + P )(r - e) s ap r 

(1.17) 

where nand s are the non-solvation and solvation parts of the volume equation 
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respectively, ah a2, a3, and~ are species-dependent fitting parameters, 'I' (2600 bars) and 

e (228 K) are solvent-dependent parameters, and Q refers to the solvent Born functions 

defined by the following equation (E is the static dielectric constant of water): 

(1.18) 

The remaining ro term is the conventional Born coefficient defined as: 

(1.19) 

where Z is the charge of the ion, TJ = 1.6603.10-5 cal·m-1·mor1 = 6.9466.10-5 J·m-1·mor1
, 

and re is an effective electrostatic radius of the ion. The value for re is different for 

cations and anions, defined by the expressions re = rcryst + 0.94Z andre = rcryst respectively 

(Shock and Helgeson, 1988). 

The standard molal heat capacity at varying temperature and pressure can be 

obtained from: 

c; +· + (T ~'e)' - ( (T ~Te)' )[ a,(p- p,)+ a, In(;: :J ]] 
+ [ wTX + zrr( ~~), -r(! - I)(~~~) J 

11 

(1.20) 

(1.21) 



where X and Y are the Born functions associated with heat capacity which are defined as: 

(1.22) 

(1.23) 

At constant pressure, the revised HKF equations ( 1.17) and ( 1.21) become: 

(1.24) 

c; = c1 + { c2 
2 } + wTX 

(T-0) 
(1.25) 

Equations ( 1.16) to ( 1.25) are the theoretical basis for the thermodynamic 

modeling code used in SUPCRT'92. The heat capacity and volume functions for 

aqueous species become a little more complex as compared to solids, resulting in more 

complex formulas for standard partial molar thermodynamic properties of aqueous 

species. Shock et al. (1992) gives a summary of the references describing the derivation 

of these equations, and examples of the practical application of these theories and data to 

model equilibrium processes at high temperatures and pressures. 
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1.4 Activity Coefficients in High Temperature Water 

In order to describe solubility equilibria at defined molalities, a model is needed 

to calculate the activity coefficients of the aqueous species. Using Equation (1.2) as an 

example, the equilibrium quotient, Q, is found in the following way: 

Q = m(A+,aq)2 .m(B
2
-,aq) 

a(~B,s) 

and the equilibrium constant, K, can be written as: 

K = m(A+ ,aq)2 .y(A+ ,aq)2 .m(B2
- ,aq).y(B 2

- ,aq) 

a(~B,s) 

1 K 1 Q 1 [
y(A+ ,aq).y(B2

- ,aq)l 
og = og + og 

a(~B,s) 

The activity of the solid, a(A2B), is usually unity. Since the aqueous molalities are 

(1.26) 

(1.27) 

(1.28) 

known, the only remaining variables are the activity coefficients which represent the ion-

ion interactions in solution. For many high temperature systems, the semi-empirical 

model reported by Pitzer (1991) can be used to calculate activity coefficients. When 

activity coefficients are not known, Lindsay's model (Lindsay, 1989, 1990) can be used 

at temperatures in the range of 150-325 °C. This model relates activity coefficients at a 

given ionic strength to those ofNaCl. The EPRI computer code MULTEQ (Lindsay, 
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1989; Baes and Lindsay, 1996; Alexander et al., 1989) incorporates Lindsay's model. As 

a result, Lindsay's model was used in this study. 

Ionic strength is defined by the following equation: 

(1.29) 

where Zi is the ionic charge and mi is the molality of the ionic species. Activity 

coefficients are calculated as follows, according to the Lindsay model (Lindsay, 1990): 

where Zi is the charge of ion i. The expression for Y(NaCI) is taken from the Meisner 

equation (Alexander and Luu, 1989): 

where 

logy(Nact) =F(I)= -A/
2

l0.~ 10 +log[1+B(1+0.1l)q -B] 
1+CI 2 

B = 0.75 + 0.065q 

-0.028 /!.. 
C = 1 + 0.0055qe 2 

q = 2.95869- 3.21502x1 o-3 tc -1. 7233x1 o-s t~ 
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(1.30) 

(1.31) 

(1 .32) 

(1.33) 

(1.34) 



A= 0.484582 + 0.00158173tc- 2.14065x10-5 t~ + 2.56199x10-7 t~ 

-1.05332x10-9 t~ + 1.57603x10-'2 t~ 

and tc is the Celcius temperature. 

(1.35) 

The properties of water were an important component of the MUL TEQ database 

which was used in our study, to calculate equilibrium speciation at high temperatures. 

The most important properties ofwater are the osmotic coefficient (<I>) and the activity 

(aw), of water. These two properties, which must satisfy the Gibbs-Duhem equation, are 

expressed as follows: 

<I> -1 = _l_L L~m; [ d lnri J dLmi 
"m. . d"m. . L... l I L... l l 

sol i x 

(1.36) 

aw = exp(-0.018015<1> ImJ (1.37) 
sol 

where Isolmi is the total concentration of all dissolved constituents in the solution. 

1.5 The Sodium-Phosphate-Water System 

The complex phase behaviour of the sodium-phosphate-water system below 

100 °C has been determined by Van Wazer (1958) and Wendrow and Kobe (1955). At 

room temperature, several hydrated phases of the Na2HP04 and Na3P04 salts are present 
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along with two complex salts, Na3P04·12H20·1/4NaOH and Na2HP04·2NaH2P04·2H20, 

but these become less stable as temperature is raised, leaving less hydrated and anhydrous 

phases above 100 °C. The major phosphate species present in high temperature water are 

H2P04-, HPoi·, and Poi·. A complete review of the aqueous chemistry of phosphates 

has been reported by Tremaine et al. (1992). 

At high temperatures, the solubility and phase behaviour of the monosodium 

phosphate system has been studied by Morey (1953) up to 600 °C, whereas that of the di­

sodium phosphate system has been extensively studied by Ravich and Scherbakova 

(1955), Panson et al. (1975), Broadbent et al. (1977), and Wetton (1981) up to 350 °C. 

The tri-sodium phosphate system differs from the previous two systems in that 

solubility decreases with increasing temperature above 120 °C. This has been observed 

by Schroeder et al. (193 7) and references therein. It was found in the more recent studies 

that the stable phase, at temperatures above 200 °C and up to 350 °C, was the solid 

solution Naz.s(H30)o.zP04 and not Na3P04 as originally thought. Ravich and 

Scherbakova (1955) also reported that the incongruent precipitation ofNa2.8(H30)o.zP04 

caused a dramatic increase in pH in the Na3P04·H20 system at mole ratio of Na/P04 ~ 

2.8. This conclusion about the tri-sodium phosphate system became an important aspect 

in boiler water chemistry control. 

Broadbent et al. (1977) and Marshall (1982) reported that aqueous systems with 

sodium phosphate mole ratios between 1.0 and 2.1, showed a liquid-liquid phase 

separation at 275 °C. Marshall and Begun (1989) showed that these liquid phases mainly 
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consist of orthophosphates. The boundaries of the two phase regions are plotted as a 

function of temperature in Figure 1.1 along with the solubilites of di- and tri- sodium 

phosphate reported earlier. 

Incongruent phosphate precipitation is thought to be the cause of pressure-tube 

damage observed in some power stations, because of the high increase in pH that resulted 

from the hideout process. Observing this, Marcy and Halstead (1964) first recommended 

the use of "congruent phosphate" control in the power industry. Congruent phosphate 

control maintains a position in the sodium-phosphate phase diagram at (2.2 < Na/P04 < 

2.8) by employing low concentrations of sodium phosphate, which would avoid pH 

excursions. Further solubility studies on the sodium-phosphate system at higher 

temperatures and a wider range of sodium phosphate compositions were done by Panson 

et al. (1975), Broadbent et al. (1977), and Wetton (1981). These new measurements and 

those by Taylor et al. (1979), extended the phase diagram to include the equilibrium 

solids recovered from dry-out experiments as shown in Figure 1.2. Figure 1.2 illustrates 

the complex sodium phosphates and pyrophosphates that can exist under boiler 

conditions and the region of liquid-liquid phase separation at sodium-phosphate ratios 

around 2.0. All these results showed that no excursions to highly acidic or basic 

conditions occurred when pure sodium phosphate solutions (2.2 < Na!P04 < 2.7) are 

evaporated to dryness, because the solution composition is trapped between the congruent 

composition at 2.8 and the invariant point at 2.15. Panson et al. (1975) suggested that 

this feature of the phase diagram could be used as the basis for an improved treatment for 
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Figure 1.1: Two-liquid phase and solution-solid boundaries for aqueous solution 
mixtures of sodium phosphate salts of mole ratios, Na/P04 from 1.00 
to 3.00 at 200-400 °C (Marshall, 1982) 
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isothermal phase diagram near 300 °C (Taylor et al. , 1979) 
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boiler water chemistry control, and coined the term "invariant point" phosphate 

treatment. 

1.6 The Sodium-Iron-Phosphate-Water System 

Power plant boilers would be able to operate using congruent phosphate treatment 

(Na!P04 :::: 2.8) without experiencing caustic conditions in their systems if hideout only 

involved sodium-phosphate precipitates. However phosphate has been shown to react 

readily with metal oxides (Economy et al., 1975; Balakrishnan, 1977; Broadbent et al. , 

1978; Connor and Panson, 1983) and Na/P04 mole ratios can rise to above 3.0. 

Therefore a more complex process for phosphate hideout occurs, that includes transition 

metal reactions. 

The transition metal phosphate compound ludlamite, Fe11HP04, was identified in 

boilers as early as 1939 by Partridge and Hall (1939). Kirsh (1964) observed such 

compounds as wolfite and triploideite, both with the formula Fen2P04(0H). Around this 

time, researchers were observing other hideout products that contained sodium within the 

compound as well. The product Na3Fe11(0H)(HP04h was identified by Broadbent et al. 

(1978) whereas a related compound NaFem3(P04h(OH)4-2H20 was identified by Harada 

et al. ( 1978). One major sodium-iron-phosphate precipitate identified by various 

researchers (Pollard and Edwards, 1963; Marcy and Halstead, 1964; Broadbent et al., 

1978; Jonas and Layton, 1988) was maricite, NaFeiiP04. This iron(II) hideout product 

was determined to play a major role in phosphate hideout and more recently in the 

corrosion behaviour observed in boiler systems (Dooley and Paterson, 1994; Dooley et 
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al., 1994; Dooley and McNaughton, 1996)). Another major product identified around 

this time was a brick-red reaction product (Broadbent et al., 1978; Ziemniak et al., 1981; 

Connor and Panson, 1983). This precipitate was later abbreviated as "SIHP" for sodium 

iron(III) hydroxy phosphate, and Ziemniak and Opalka (1993) proposed that its formula 

was NC4Fe(OH)(P04)2·1/3NaOH, however the correct formula was determined by 

Bridson et al. (1998), and found to be Na3Fe(P04)2·(N<413H2;30) or Na3Fe111(P04)2· 

(Na2(I-x)H2x0) where x = 0.226. Both formulas are similar but not identical. 

Using flow experiments, Tremaine et al. (1993) determined the reaction products 

of magnetite, FeuFem20 4, in equilibrium with aqueous sodium phosphate at various 

temperatures and Na/P04 mole ratios. Their results were consistent with other research at 

temperatures below 320 °C (Economy et al., 1975; Connor and Panson, 1983). When the 

solubility threshold has been reached, the magnetite reacts to form one or more reaction 

products. During phosphate hideout, the aqueous system becomes more basic, whereas 

during reverse reaction product re-dissolution, more acidic. The same observations have 

been seen in boilers. At 320 °C and Na/P04 < 2.5, the main hideout reaction products 

were maricite and SIHP. When the Na/P04 > 2.5, SIHP was observed, along with a 

stable solid solution of cubic Na2.6Feo.2P04. Equations for each process can be found in 

work published by Tremaine et al. (1993). The results at 350 °C were similar to those 

found at 320 °C however SIHP was the major reaction product. The results at this 

temperature showed that iron(II) in magnetite was oxidized to iron(III) found in SIHP 

according to the following equation: 
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2 Fe11Fern20 4(s) + 26 Na\aq) + 12 HPO/-(aq) + 2 OH-(aq) ~ 

6 Na3Fem(P04)2·(N<4;3H2130)(s) + H2(g) +4 H20(l) (1.38) 

The schematic diagram of the phosphate hideout processes involved can be seen in 

Figure 1.3. Extensive damage to the magnetite film covering the boiler tube is observed 

at low Na!P04 mole ratios producing maricite and hematite, and an acidic environment. 

In the range 2.0 :S Na!P04 :S 3.0, maricite and SIHP are both produced, whereas, at 

Na!P04 > 3.0, SIHP is the only reaction product and the presence ofH2(g) produced very 

strong reducing conditions and a more basic environment (Tremaine et al., 1998). 

Figure 1.4 is a stability diagram that represents the paths of the hideout reactions. 

In other words, the diagrams can be used to identify the hideout reactions that occur when 

magnetite is exposed to different temperatures and H2 pressures while in equilibrium with 

a given sodium phosphate solution, and to understand the effects of redox conditions 

arising from hideout processes. Figure 1.4a shows iron(II) being removed from 

magnetite to form maricite, thus oxidizing magnetite to form hematite. Figure 1.4c 

shows the formation of SIHP and H2. At Na!P04 = 2.2, a true invariant point is observed 

in which the four solid phases co-exist, as seen by Figure 1.4b. At this point, the redox 

potential is buffered at much lower reducing conditions. Tremaine et al. (1996) 

concluded that the redox chemistry of magnetite in boiler water during hideout is 

controlled by the sodium phosphate species concentrations, not those of dissolved 0 2 or 

redox buffers which were added. 

Several chemical equilibrium models have been developed to describe the 

22 



Na/P04 (aq) < 2.0 
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3.0 < Na/P04 (aq) 

Figure 1.3: A schematic diagram of the reaction process ofFeiiFem20 4 at 275 °C with 
varying mole ratios of aqueous Na/P0 4 solutions (Tremaine et al., 1998) 
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solubility and phase relations of precipitates in high temperature water (Alexander and 

Luu, 1989; Lindsay, 1989; Greenberg and Moller, 1989; Pitzer, 1986) but more 

information was needed before equilibrium models could be developed for this system. 

The main source of iron in a boiler system is magnetite, FeuFem20 4, which acts as a 

protective coating on carbon steel components and also exists as loose deposits in the 

boiler tube. Ziemniak and Opalka (1992, 1993) reported results for the solubility ofSIHP 

with magnetite as the iron source but did not measure the hydrogen concentrations 

needed for their thermodynamic calculations. Quinlan (1996) avoided this problem by 

using excess hematite, Fem20 3, instead ofmagnetite to measure the solubility of SIHP 

according to the reaction: 

3 Fem20 3(s) + 26 Na+(aq) + 12 HPO/-(aq) + 2 OH-(aq) ~ 

6 Na3Fem(P04)z·{N3.413H2130)(s) + 5 HzO(l) (1.39) 

Tremaine et al. (1998) obtained solubility data for maricite in equilibrium with 

Fe11Fem20 4 and at measured hydrogen pressures, and re-fitted the data for SIHP to derive 

a new equilibrium constant model based on the Helgeson-Kirkham-Flowers database and 

the Miessner activity coefficient model used in MUL TEQ. 

1.7 NiO-Sodium Phosphate Interactions 

Nickel has been found to exist along with iron oxide solids in solid sludge 

deposits from steam generators (Stodola, 1986; Jonas et al., 1987). Nickel can be 
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introduced from stainless steel vessels and piping, and from Inconel tubing. Ziemniak et 

al. (1989) investigated the solubility/phase behaviour of nickel oxide in alkaline sodium 

phosphate solutions at elevated temperatures. Nickel oxide becomes soluble in high 

temperature aqueous solutions according to the following reaction: 

NiO(s) + 2 W(aq) ;= Ni+2(aq) + H20(1) (1.40) 

The dissolved nickel(II) ion becomes stabilized in aqueous solutions by the formation of 

hydroxo-complexes where the nickel can become surrounded by an inner hydration 

sphere of six water molecules. As the pH ofthe solution rises, dissociation occurs as 

follows: 

Ni+2(aq) + H20(1) ;= Ni(OH)\aq) + H\aq) (1.41) 

Ni(OHt(aq) + HzO(l) ;= Ni(OH)z(aq) + H\aq) (1.42) 

(1.43) 

The overall nickel oxide dissolution reaction becomes the following: 

NiO(s) + (2-n)H+(aq) ;= Ni(OH)n2-\aq) + (1-n)HzO(l) (1.44) 
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where n equals the ionic state of hydrolysis and can be 0, 1, 2, 3, or 4. If phosphate is 

present in the aqueous solution, the nickel-phosphate complex, Ni(HP04), and multiple, 

hydrolyzed forms such as Ni(OH)n(HP04)m(Z-n-Zm)+ (n = 1, 2, 3; n + m ~ 6) are possible. 

Figure 1.5 shows the distribution ofnickel(II) ion hydrolytic and phosphate-complex 

species present in solution at 25 and 287 °C as a function of sodium phosphate 

concentration (Ziernniak et al., 1989). It can be seen that phosphate-complexes are the 

major nickel(II) ion species in solution at phosphate concentrations> 5 mmol·kg-1
• 

Ziemniak et al. (1989) also determined that Ni(II)-H2P04 complexes predominate over 

the Ni(II)-OH complexes normally present at elevated temperatures, so much so that a 

sodium salt of the phosphato-complex can precipitate, rather than nickel oxide. 

The major reaction product of aqueous sodium phosphate with nickel under boiler 

conditions has been shown to be sodium nickel hydroxyphosphate, Na2Ni(OH)P04 

(Ziernniak and Opalka, 1988). The hideout and release behaviour ofNiO is very similar 

to that observed for magnetite (Tremaine et al, 1992). Ziemniak and Opalka (1988) have 

reported solubility data and structural data for Na2Ni(OH)P04. Ziemniak and Opalka 

(1988) suggest that the transformation of nickel oxide to sodium nickel hydroxy­

phosphate proceeds by the following reactions: 

(1.45) 

(1.46) 
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Figure 1.5: Distribution of nickel(II) ion complexes present in solution at 25 °C 
(298 K; top) and 287 °C (560 K; bottom) where Na/P0 4 = 2.3 (Ziemniak 
et al., 1989) 
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Combining Equations (1.45), (1.46), and (1.4 7) gives the solubility reaction for 

Na2Ni(OH)P04(s): 

NiO(s) + 2 Na\aq) + HPO/-(aq) ~ Na2Ni(OH)P04(s) 

(1.47) 

(1.48) 

which is believed to be more soluble than SIHP and maricite under boiler conditions. In 

the flow experiments reported in the CEA Report (Tremaine et al., 1992), the dissolution 

process involves the formation of nickel phosphate, pyrophosphate, or possibly NaNiP04 

(Tremaine et al. 1992) according to the following reaction: 

2 Na2Ni(OH)P04(s) ~ NaNiP04(s) + NiO(s) + 3 Na\aq) + HPO/-(aq) + OH-(aq) (1.49) 

and is schematically represented by Figure 1.6. Whether Na2Ni(OH)P04(s) can form on 

Inconel Alloy 800 during the chemistry excursions that occur during iron hideout 

reactions is unclear. 

Sanz et al. (1999) have synthesized a mixed-anion phosphate, 

N~Nis(P04)z(Pz07)z, and reported a crystal structure for this compound along with X­

ray diffraction results. Unlike the hydrothermally synthesized Na2Ni(OH)P04, this 
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Figure 1.6: Possible process for dissolution of reaction product formed by NiO and aqueous sodium phosphate 
(Na/P04 = 2.5) (proposed by Tremaine et al. (1992)) 
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compound was synthesized in a furnace at 900 °C. Another sodium-nickel-phosphate 

compound NaNi4(P04) 3 was synthesized by Daidouh et al. (1999) using a sol-gel method 

in aqueous solutions at temperatures of 100-800 °C. A crystal structure and X-ray 

diffraction data for this compound were also reported. It remains unclear if either 

compound could be a possible corrosion product that forms in boilers under hydrothermal 

conditions. 

1.8 Decomposition of NTA Complexes 

The properties and applications of metal chelates have been widely studied and 

reported in the literature (Martell and Calvin, 1956; Bell, 1977; Chang et al., 1983, and 

references cited therein). Metal chelates can form in aqueous solutions by simple 

reactions (Bell, 1977). The most highly effective chelating ligands are 

ethylenediaminetetraacetic acid, EDT A, and nitrilotriacetic acid, NT A; and they form 

stable, water-soluble complexes with many metal ions. Chelating agents have primarily 

been used for the absorption or dissolution of metal oxides (Chang et al., 1983). The 

behavior and usefulness of metal chelate decomposition has also been studied as a means 

of synthesizing single crystals under hydrothermal conditions (Booy and Swaddle, 1978; 

Bridson et al., 1998). 

Martell et al. (1975) reported that at high temperatures, NTA is not stable in 

aqueous solutions. NTA decomposes through a stepwise decarboxylation reaction. 

Equation (1.50) shows that NTA decomposes to give (a) N-methyliminodiacetic acid, (b) 

methylsarcosine and (c) trimethylamine (Martell et al., 1975): 
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(1.50) 

The carbon-nitrogen bonds in NTA do not break, even at very high temperatures. Bell 

(1977) reported that over the pH range 4-8, the acid exists almost entirely as compound 

(b) at high temperatures. An important property of metal chelates is their resistance to 

hydrolytic breakdown, which would prevent deposition of metal hydroxides in aqueous 

solution at elevated temperatures (Martell et al., 1975). 

Booy and Swaddle (1978) reported a hydrothermal synthesis for magnetite from 

the thermal decomposition ofFerrrNTA in the presence of aqueous alkaline solution. This 

method yielded uniform single crystals of magnetite, FeuFem20 4, at relatively low 

temperature and pressure. The decomposition of the organic ligand created and 

maintained a mildly reducing environment, which resulted in the reduction of iron(III) to 

iron(II), in forming the magnetite crystallites. 

Using a similar approach to that reported by Booy and Swaddle (1978), Bridson et 

al. (1998) reported a novel method for synthesizing maricite from the thermal 

decomposition ofFemNTA(aq) at 200 °C in aqueous sodium phosphate solution. The 

reducing conditions created by the decomposing NTA, were favorable for the synthesis 

of maricite. The reaction is represented by the following equation: 
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FemNTA(aq) + HPO/"(aq) + Na+(aq) ~ NaFe11P04(s) + 

decomposition products ofHNTA2-(aq) 

(1.51) 

This method may provide a foundation for a desirable approach for the hydrothermal 

syntheses of other crystalline solids that have low oxidation states. This approach was 

also used in an attempt to synthesize SIHP, but no suitable oxidizing medium was found 

to produce the iron(III) complex (Bridson et al., 1998). 

1.9 All-Volatile Treatment 

The use of amines as additives for conditioning the secondary circuit of 

pressurized water reactors (PWR) is widespread. Ammonia or other amines can reduce 

the corrosion of materials in the steam cycle, particularly in regions subject to two-phase 

flow-accelerated corrosion (Bursik, 2002). In other words, amines are used in an effort to 

reduce corrosion product transport of iron species from tube components made of carbon 

steel, released due to flow-accelerated corrosion, into the steam generator. Consequences 

of corrosion deposits are drops in steam pressure and, in case oflarge deposits, a 

reduction in power output. Moreover, the production of corrosion products and their 

subsequent transport from the feedwater to the steam generator tubing has a detrimental 

influence on the risk of intergranular stress corrosion cracking (IGA/SCC) of Inconel 

Alloy 600 steam generator tubes. In addition to fouling and a decrease in thermal 

transfer, corrosion products may partially plug flow holes, leading to flow instability 

(Nordmann et al., 2001). Pessall et al. (1977) tested the corrosion resistance oflnconel 
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Alloy 600 and other alloys in sodium-phosphate at the Point Lepreau generating station. 

It was found to exhibit similar corrosion behaviour as Inconel Alloy 800 in high 

temperature phosphate solutions. Table 1.1 shows the results obtained by Pessall et al. 

(1977). It can be seen that the maximum corrosion weight loss observed in Inconel Alloy 

600 in saturated phosphate solutions at Na/P04 = 1.6 was also observed in Incoloy Alloy 

800, however Incoloy Alloy 800 appears less resistant than Inconel Alloy 600 in 

solutions with Na/P04 S 1.6. Observation of the areas of attack on lnconel Alloy 600 in 

boilers, have shown the presence of a greenish scale deposit. Pes sail et al. ( 1977) 

reported that in their study, samples immersed in solutions with Na/P04 S 1.6, showed 

green scale deposits where the sample corroded. In contrast, yellow and yellow-green 

scale deposits were observed in Na/P04 = 2 solutions, and brown and grey-black deposits 

in Na/P04 > 2.3 solutions. All scale deposits consisted ofNa, P, Ni, Fe, and Cr, and that 

the green and yellow scales contained higher concentrations of Fe and Ni. The 

precipitation of phosphate salts and their reaction with the metal in the boilers may 

account for the observed localized high corrosion rates. Despite these findings, Point 

Lepreau generating station has been operating with phosphate treatment for 20 years, 

apparently without corrosion, but it is unclear if any corrosion problems will be 

encountered during the changeover. 

The initial group of plants that switched from phosphate to A VT had many 

problems. Changing to A VT introduces a whole new set of operating parameters and 

brings up the question as to whether or not the system should be cleaned before a 

changeover and, if so, how thoroughly. 
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Table 1.1 : Corrosion rates of Inconel Alloy 600 in high temperature phosphate solutions compared with those 
of other Alloys (Pessall et al. , 1977) 

Test En11ironment Corrosion Wt Loss Based on Parabolic Relationship 
(mg/dm2 in 1 yr) 

Maximum 
Na!P Concentration Temp. Exposure lnconel( 1) lnconel(l) lncoloy(J) 

(rl (Molality) (C) Time (Hour) 600 690 800 304 ssC4) Crotoy(S) 

1.35 6.0 325 312 680 1600 620 2·139 40000 
1.6 6.0 325 480 2800 5600 6400 5989 
2.0 5.0 325 504 510 600 600 599 
2.2 0.18 325 504 86 43 43 257 1600 
2.3 5.0 325 451 470 471 1200 11123 6800 

1.6 6.0 275 1344 2400 3000 
2.3 5.0 275 1226 86 150 260 

2.3 0.4 275 1560 540 340 

2.6 0.15 275 1176 43 1000 100 

( 
1 )Ni-15.4Cr-7 .92Fe-0.22Si-0.17Mn-0.15Cu-0.06C-0.007S 

(l)Ni-29.82Cr-9.38Fe-0.15Si·0.17Mn-0.03C-0.007S 

( J)Fe-21.81 Cr-31.55Ni-0.32Si-0.81 Mn-0.37Ti-0.28AI-0.23Cu·0.03C-0.007S 
( 
4

) Fe-18. 22Cr-8.93N i-0.49Si-1.89Mn-0.19Cu-0.06C-0.005S-0.022P-0.29Mo-O .11 Co 
( 
5 

)Fe-2.28Cr-0.89Mo-0.25Si-0.42Mn-0.1 C-0.009P 



1.10 Project Objectives 

The objectives of this project were two-fold; (i) syntheses ofhydrothermal 

reaction products that can form under boiler conditions and (ii) kinetic and solubility 

studies on Na2Ni(OH)P04 to develop a chemical equilibrium model for the major nickel­

sodium-phosphate reaction product. 

The first compounds to be synthesized were from the sodium-iron-phosphate 

system. One objective was to prove that the maricite synthesis previously reported by 

Quinlan (1996) is reproducible and is a reliable hydrothermal means of synthesizing the 

iron(II) reaction product. Another was to develop hydrothermal synthetic methods for 

producing a reliable means of obtaining crystalline sodium iron(III) hydroxyphosphate, 

SIHP. 

The second synthetic objective was to determine whether ammonium-iron­

phosphate compounds could be produced under all-volatile amine treatment boiler 

conditions. Boudin and Lii (1998) showed that a mixed-valence iron phosphate, 

(NH4)FenFem(P04)2, can be synthesized by a hydrothermal method at 500 °C using a 

sealed gold ampoule. Our experiments were to determine whether it would form under 

boiler conditions, to synthesize it using a more simple method, and to identify any other 

ammonium-iron-phosphate compounds that can form hydrothermally. 

The final system that was studied was the sodium-nickel-phosphate system. 

Sodium nickel hydroxy-phosphate, Na2Ni(OH)P04, ("SNHP"), is known to form under 

boiler conditions by the reaction ofNiO with aqueous sodium phosphate; thus one 

objective was to synthesize a pure sample for calorimetric measurements. The initial 
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route that was taken to synthesize SNHP was to use the homogeneous thermal 

decomposition ofH+[NiNTA-] as a nickel source instead ofNiO, in a process similar to 

that used for maricite by Quinlan (1996). 

Another objective of this study was to undertake solubility measurements on 

Na2Ni(OH)P04, in order to develop a chemical equilibrium model for the sodium-nickel­

phosphate system. Kinetic and solubility experiments were conducted at elevated 

temperatures using excess NiO and aqueous sodium-phosphate. Solution samples were 

taken from the system at each temperature increment and analyzed for total sodium and 

phosphorus. The results were used to derive thermodynamic data for SNHP, which was 

added to the database for "hideout" reactions that take place between transition metals 

and aqueous sodium phosphate under steam-generator conditions. 

The experimental designs used throughout this project to meet the above 

objectives are listed in the following chapter. The remaining chapters of this thesis 

describe the results obtained from our studies and the conclusions that can be made from 

this project as a whole. 
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2.0 EXPERIMENTAL 

2.1 Chemicals and Materials 

The sodium-phosphate solutions were prepared from reagent grade Na2HP04 

(Aldrich, ACS Reagent Grade, 99 %), NaH2P04 (Aldrich, 99 %), and NaOH (Fisher 

Scientific, 50% w/w solution) with Nanopure water (resistivity> 18 MQ em). The 

ammonium-phosphate solutions were prepared from reagent grade (NH4)2HP04 (Aldrich, 

99 %), (NH4)H2P04 (Aldrich, ACS Reagent Grade, 98+ %), and NaOH solution with 

Nanopure water. The concentrations ofthe sodium- and ammonium-phosphate solutions 

were determined by mass (i.e. mol·kg-1
). 

Fem20 3 (Aldrich, 99+ %), Fe2(C4H406)3 (Sigma, 19.0-21.0% Fe), 

Fem2(C20 4)3·5H20 (BDH reagent, no purity given), and ~)Fem(S04)2·l2H20 (BDH, 

99.0-102.0 %) were the iron sources used in this study. The FemNTA complex used in 

this study was prepared according to the following procedure reported by Booy and 

Swaddle (1978). Ammonium ferric sulphate (20 g), (NH4)Fem(S04)r12H20 and 

nitrilotriacetic acid (8 g), H3NT A were added to 400 mL of deionized water and brought 

to a boil for one hour. The following reaction occurred: 

(2.1) 

The resulting mixture was suction filtered and washed with deionized water. The yellow-
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green FemNTA complex isolated was transferred to a Petri dish and allowed to air dry 

overnight. 

The nickel source in this study was NiO (Fisher Scientific reagent grade). 

Ni(OH)z (Aldrich, nickel content ~61 %) was also used but only as a precursor in the 

synthesis of another nickel starting material used in this study. H+[NiNT A-] was 

prepared much in the same way as FemNTA by boiling 3-5 g of nickel hydroxide, 

Ni(OH)z with 9 g of nitrilotriacetic acid (Aldrich, 99 % ), H3NTA, in 400 mL of deionized 

water for one hour according to the following reaction: 

(2.2) 

The resulting purple-blue solid was suction filtered, washed with cold deionized water 

and dried in air overnight. 

2.2 Apparatus 

2.2.1 Teflon-Lined Filtration Cells 

Parr 4744 general purpose bombs were used to synthesise the solids at high 

temperature, with the modifications to the vessels previously made by Quinlan (1996). 

These are 45 mL 316 stainless steel pressure vessels with Teflon liners that were widened 

to allow for the insertion of an inner Teflon cup with a removable cap containing a 

stainless steel filter; dividing the vessel into separate upper and lower compartments. The 
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filters, for use at high temperatures, were purchased from Small Parts Inc. in Miami 

Lakes Florida and were made from 316 stainless steel325 mesh. 

A schematic diagram of this vessel is shown in Figure 2.1. The design of the 

vessel allows in situ isolation of the solid reaction products from the aqueous phase by 

simply inverting the cell while in a high-temperature oven. When the vessel is first 

placed in the high temperature oven, the solid starting materials are placed in the filter 

separating them from the aqueous starting materials in the bottom of the Teflon liner. 

Once the vessel is inverted in the oven, the starting materials are allowed to mix, and 

after the reaction has come to completion, re-inverting the vessel permits the liquid to 

drain through the stainless steel filter, trapping the solid reaction products in the filter. 

Figure 2.2 is a diagram of this filtration step. 

In addition to the filtration step, in order to avoid refluxing the filtrate and re­

dissolving the reaction product, the cell was cooled to room temperature by placing it on 

an aluminium plate in cold flowing water so that the lower compartment of the cell was 

colder than the top during the cooling process. 

2.2.2 Stirred Reaction Vessel 

For the kinetic and solubility experiments, a 450 mL Model4562 Parr Stirred 

Mini-Reactor was used. The reaction vessel used previously in our lab was made of 

Hastelloy C, an alloy with high nickel content. Thus it could not be used in our 

experiments because the solubility equilibria being studied involve nickel-containing 

phases. Any corrosion of the Hastelloy C vessel would give unreliable kinetic and 
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Figure 2.2: 45 mL Teflon lined cells. On the left, vessels before the reaction, and after the filtration. 
On the right, vessels during the reaction. (Quinlan, 1996) 



solubility results. A new zirconium vessel and stirrer head was purchased for this study. 

A schematic diagram of the reactor system is presented in Figure 2.3. The Parr 

4562 Mini-Reactor is rated for a maximum pressure of 1600 psi at 300 °C. The Parr 4843 

temperature controller has a microprocessor-based control module, which provided full 

PID control with adjustable tuning parameters, with an operating range of 0 to 750 °C. 

The system is accurate to ±2 °C and is equipped with two high temperature cut-offs. If 

the temperature exceeds the set limit, an alarm light will appear, the lockout relay will be 

tripped, and power to the heater around the vessel will be shut off. 

Previously, Quinlan (1996) had made modifications to the Hastelloy C vessel 

which increased its suitability for his project. Several of the same modifications were 

made to the new zirconium reactor. A wider and lower impeller was added to provide 

increased agitation, which was intended to reduce deposition of solids. The reactor head 

was equipped with a gold lined rupture disk, which is less vulnerable to corrosion and 

thus reduces the chance of premature rupture. Before kinetic and solubility experiments, 

the zirconium vessel was treated with dilute NaOH to form a protective oxide layer on 

the inside of the cylinder and the stirrer head. A condenser was attached to the autoclave 

head just before the liquid sampling valve to allow sampling at high temperature. It 

consisted of a valve attached to a length of 0.125 inch stainless steel tube inside a 0.25 

inch copper tube, and was cooled by cold flowing water. A filter was connected to the 

end of the liquid sampling tube inside the vessel which consisted of several layers of 325 

mesh 316 stainless steel filters inside a modified 0.25 inch Swagelok union. Quinlan 

(1996) showed that this modification should prevent any solid from clogging up the 
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Figure 2.3 : Schematic diagram ofParr 450 mL stirred reaction vessel. 
(Quinlan, 1996) 
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liquid sampling tube and the condenser. However, some carry-over of solid material was 

frequently encountered. 

Another addition to the system was a stainless steel mesh basket. It was 

connected between the two ends of the cooling loop and its purpose was to isolate any 

reaction product during the kinetic and solubility experiments for analysis. 

2.3 Analytical Methods 

2.3.1 Powder X-Ray Diffraction 

X-Ray diffraction studies of solid reaction products were performed using a 

Rigaku RU-200 X-ray diffractometer (XRD) which was operated at 40 kV and 180 rnA. 

It contained a 12 kW rotating anode Cu Ka X-ray source, that scanned the sample at 10° 

(29) per minute, and a diffracted beam monochromator. Samples for analysis were 

prepared by grinding them to a fine powder ( <1 0 J..lm) with a mortar and pestle, to which 

methanol was added, and the resulting mixture was transferred to a slide via a disposable 

pipette and allowed to air dry for 15 minutes. A current software version of the JCPDS 

database (i.e. ICDD; International Center for Diffraction Database), equipped with the 

MDI Jade+ search-match algorithm, was used to identify the XRD powder patterns from 

the samples. X-Ray diffraction results of synthesized reaction products are listed in 

Appendix I. 
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2.3.2 Single Crystal X-Ray Diffraction 

Dr. John Bridson and Mr. David Miller at the Department of Chemistry/MUN 

analyzed the structure of the single crystal isolated in this study with a Rigaku AFC6S 

diffractometer and a V AX31 00 workstation and the teXsan crystallographic software 

package (Molecular Structure Corporation Inc.). A more detailed report of the analysis 

can be found in Appendix II. 

2.3.3 ICP Emission Spectroscopy 

During the kinetic and solubility experiments, liquid samples were taken from the 

autoclave at regular intervals and diluted by mass in order to obtain sodium and 

phosphorus concentrations between 50-200 ppm. The diluted samples were analyzed 

using a TJA Iris HR ICP-OE spectrometer with a TJA 300 sample changer, at the 

Department of Mines and Energy by Mr. Chris Finch. The spectrometer was controlled 

by ThermoSpec software. 

To calibrate the instrument a blank solution was run that contained 0 ppm sodium 

and phosphorus followed by a standard solution of 250 ppm sodium and phosphorus. 

Two samples of deionized water were then run for baseline measurement, then another 

125 ppm standard solution. Each sample was flushed through the sample line for a 

minute to remove any possible contaminants before the concentrations of the sample was 

measured, and the 125 ppm standard was re-run after every ten samples to ensure the 

instrument was giving accurate readings. Included in each batch of unknown samples 

were four known standard solutions which provided a second check for instrument 
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accuracy. The results showed that the ICP ES measurements were within 2.4% of the 

expected phosphorus concentrations, and 7 % of the expected sodium concentrations. 

Each original sample was diluted to give two aliquots within the range 50-200 ppm in Na 

and P, and agreement was within ±3 %. 

The results that were received from ICP-ES analysis were the elemental 

concentrations (ppm) of the diluted samples. Using a Microsoft Excel spreadsheet and 

the mass dilution factors of each diluted sample, the sodium and phosphorus molality 

concentrations of each original sample taken from the stirred reactor were calculated. 

2.3.4 Electron Microscopy 

From the synthesis experiments, the solid reaction products of specific interest to 

this study were analyzed by scanning electron microscopy (SEM) at an accelerating 

voltage of 20 kV in a Hitachi S570 SEM equipped with a Tracor Northern 5500 energy­

dispersive X-ray analyzer and a Microtrace Model 70152 silicon X-ray spectrometer, 

located in the Department ofBiology!MUN. Detector/sample positioning gave an 

effective takeoff angle of 30° and SEM images were recorded on Polariod Type 655 

Positive/Negative film. Samples were placed on double sided sticky tabs on aluminium 

stubs and carbon coated in a Denton 502A High Vacuum Evaporator before SEM 

analysis. 
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2.4 Synthesis and Characterization of Hideout Reaction Products 

2.4.1 Experimental Design 

In the sodium-iron-phosphate study conducted previously in our laboratory 

(Quinlan, 1996; Bridson et al., 1998), the Parr 4744 reaction vessel was modified in order 

to isolate SIHP from the reaction mixture because other workers have reported (Taylor et 

al., 1979; Broadbent et al., 1978; Tremaine et al., 1993) that it is unstable at temperatures 

lower than 180 °C in the presence of water. The experimental design of the reaction 

vessel thus prevented the reaction product from coming in contact with liquid water 

during the isolation step and also prevented dehydration of the equilibrium phase. The 

same experimental design was applied to all the experiments conducted throughout this 

study. 

The experimental procedure is as follows. The sodium-phosphate or ammonium­

phosphate solution was initially placed in the Teflon liner. Because of the thermal 

expansion effect, the vessels were not overloaded with solution in order to prevent a 

pressure build up. The solid starting materials were added once the Teflon filter cup was 

positioned above the level of the solution and a Teflon lid was put into place. The Teflon 

assembly was then placed inside the stainless steel pressure vessel to which a corrosion 

disc and a rupture disc were added, followed by a stainless steel pressure vessel lid. The 

lid was hand tightened and tightened a further 1/8 revolution by a specially designed 

pressure vessel wrench. The vessel was then placed in a high temperature oven at either 

200 °C or 250 °C and inverted. As seen in Figure 2.2, the solution passes through the 

filter and is allowed to react with the solid starting materials once inverted. The vessels 
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remained in the oven for 5 days - 4 weeks, and were shaken periodically. Before being 

removed from the oven, the vessels were set upright to filter any reaction product from 

solution. This step was done in the oven to prevent hydration of solid reaction products 

during cooling. 

After filtering for a day, the vessels were carefully removed from the oven. They 

were placed on aluminium plates being cooled by cold running water in a sink. This 

prevented the solution in the lower part of the Teflon vessel from refluxing and in tum 

preventing any solid reaction product in the filter from coming in contact with 

condensation and possibly re-dissolve. Solid reaction products were also prevented from 

dehydration due to the presence of unsaturated moisture above the filter. After cooling to 

room temperature (approx. 2 hrs), the pressure vessels were opened and the resulting 

solids and solutions were collected. The solids recovered from the filter were analyzed 

by X-ray diffraction, and samples of further interest were analyzed by SEM. 

When the solid and aqueous starting materials were originally placed in the 

reaction vessel at room temperature, they were separated thus preventing any reaction at 

non-boiler conditions. The solid metal-NTA complexes and other starting reactants were 

placed on the screen above the solutions, and only when the vessel had reached the 

desired boiler temperature, was the vessel inverted, allowing the contents to mix. Any 

reaction product eventually isolated would have formed at the boiler water temperature 

and not at room temperature. This gives us a more accurate account of what corrosion 

products can form at the higher temperatures at which power stations operate. 
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Several solid starting materials were used as a source of iron, including hematite, 

ferric tartrate, ferric oxalate, and iron nitriloacetate (Fe111NTA). Nickel oxide and nickel 

nitriloacetate (W[NiNT A-]) were the two different solid starting materials used as a 

source of nickel. The following sections summarize the synthetic experiments carried out 

with the above mentioned solids. 

2.4.2 Synthesis ofMaricite (NaFerrP04) 

Quinlan (1996) synthesized single crystals ofmaricite using an adaptation of the 

procedure reported by Booy and Swaddle (1978) for synthesizing magnetite crystals. 

The reducing conditions created by the thermal decomposition of aqueous FemNTA in 

the presence of sodium phosphate solution provided the right conditions for 

homogeneous nucleation of maricite. The purpose of synthesizing maricite in this study 

was to determine whether Quinlan's synthesis is reproducible. 

Maricite was synthesized by the same recipe used by Quinlan (1996), in that 0.6 g 

ofFemNTA was reacted with 10 mL of0.6 mol·kg-1 sodium phosphate solution with a 

Na!P04 mole ratio of 2.15 at 200 °C, according to the following reaction: 

FemNTA(aq) + HPO/-(aq) + Na+(aq) ~ (2.3) 

NaFe11P04(s) + decomposition products of HNTA2-(aq) 

Two additional experiments were attempted with FemNTA in order to observe if 

it is possible to synthesis maricite from an initial sodium phosphate solution with an 
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identical N a!P04 mole ratio as that of the solid maricite (i.e. 1: 1) at 200 °C. These runs 

were unsuccessful in producing maricite, the reaction vessel contained unreacted starting 

materials. 

2.4.3 Syntheses of Sodium Iron Hydroxy Phosphate ("SIHP") 

2.4.3.1 Iron Nitriloacetate (Fe111NTA) Experiments 

Quinlan (1996) obtained SIHP by three different synthetic routes. Samples of 

SIHP were produced by reacting (i) iron phosphate and aqueous sodium phosphate 

(Na!P04 = 2.15), (ii) magnetite and aqueous sodium phosphate (Na!P04 = 2.15), and (iii) 

hematite and aqueous sodium phosphate (Na!P04 = 2.5), all at 250 °C for three weeks. 

Quinlan also attempted to synthesis SIHP by thermally decomposing the FemNTA 

complex in the presence of an oxidizing agent, to create a more suitable environment for 

synthesizing the iron(III) reaction product. Both CuO and NaN03 were used as possible 

oxidizing agents for the reaction but the experiments were unsuccessful in producing 

SIHP. 

In principle, SIHP could be synthesised according to the following reaction with 

FemNTA as the iron source: 

3 FemNTA(aq) + 13 Na\aq) + 6 HPO/-(aq) + 10 OH-(aq) 

--* 3 N~Fem(OH)(P04)r113NaOH(s) + 6 HzO(l) 

+ decomposition products of HNT A 2-( aq) 
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In our FemNTA experiments, instead of using oxidizing agents, the sodium-phosphate 

mole ratio was increased from 2.15 to 4.0 in order to push the reaction stoichiometry 

towards producing the high sodium-phosphate mole ratio observed in SIHP. 

Fe111NTA was used as a starting material in 11 runs with sodium-phosphate 

mole ratios of 4.0-8.0, and introduced as a solid. The initial masses ofFemNTA were 

from 0.16-0.85 g, and the initial concentrations of phosphate were 0.6-1.5 mol·kg-1• Runs 

with FemNTA were maintained at 200 or 250 °C for 5-14 days with periodic shaking. 

2.4.3.2 

It was mentioned in Section 2.4.3 .1, that reactions involving the hydrothermal 

decomposition ofF emNT A in the presence of oxidizing agents have been attempted, with 

no success in synthesizing SHIP. The next step in our study was to use an iron chelate 

source that yielded more oxidizing conditions on decomposition. It was thought that iron 

tartrate, Fem2(C4H40 6)3, might be a suitably oxidizing chelate, according to the following 

reaction: 

Fe111z(C4H406)3(aq) + 9 Na+(aq) + 4 HPO/-(aq) + 2 OH-(aq) ~ (2.5) 

2 N<4Fem(OH)(P04)2' 113NaOH(s) + H20(1) + 3 C4H606(aq) 

Felll2(C4~06)3 was used as a starting material in 8 runs with sodium-phosphate 

mole ratios of 2.15-2.8, and introduced as a solid. The initial masses of iron tartrate 

were from 0.39-0.50 g, and the initial concentrations of phosphate were 
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0.6-1.5 mol·kg-1
• Runs with Felll2(C4H40 6) 3 were maintained at 200 or 250 °C for 4-22 

days with periodic shaking. 

2.4.3.3 

Iron oxalate was also used as a starting material in order to create a more 

oxidizing environment for the synthesis ofSIHP according to the following reaction: 

Fem2(C20 4)3·5H20(aq) + 9 Na\aq) + 4 HPO/(aq) + 2 OH-(aq)----+ (2.6) 

2 N~Fem(OH)(P04)2·1/3NaOH(s) + 6 HzO(l) + CzHz04(aq) 

Fem2(C20 4)r5H20 was used as a solid starting material in 4 runs with sodium­

phosphate mole ratios of 2.15-2.8. The initial masses of iron oxalate were from 0.37-

0.41 g, and the initial concentrations of phosphate were 0.6-1.0 mol·kg-1
• Runs with 

Fem2(C20 4)3·5H20 were maintained at 250 °C, for 8 days with periodic shaking. 

2.4.4 Synthesis of Ammonium Iron(II,III) Phosphate ((NH4)Fe11Fe111(P04)2) 

2.4.4.1 Hematite Experiments 

The first example of a mixed-valence ammonium iron phosphate was synthesised 

by Boudin and Lii (1998), and was obtained at very high temperature and high pressure. 

This phosphate, ~)Fe11Feiii(P04)2 , was initially synthesized by heating a mixture of 

CNH4)H2P04 (0.132 g), (NH4}zHP04 (0.152 g), Fem20 3 (0.032 g), and water (0.3 mL) in a 

sealed gold ampule at 500 °C and an estimated pressure of 32000 psi for 24 hours, which 
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was then cooled at 3 °C/h to 250 °C and quenched to room temperature by removing the 

autoclave from the furnace. This gave a mixture of black crystals of (NH4)FeiiFem(P04)2 

and colorless thin plates. However, hydrothermal treatment of (NH4)H2P04 (0.460 g), 

Fem20 3 (0.032 g), FeiiO (0.0288 g), and water (0.65 mL) in a gold ampule under the 

same reactions conditions gave a pure product of (NH4)Fe11Fem(P04)2. Boudin and Lii 

(1998) obtained a single crystal XRD structure, however they did not report any powder 

XRD data for (NH4)FeiiFem(P04)2. Though, through email contact with Dr. Lii, the 

complete single crystal XRD data set was provided which was used to generate a powder 

XRD spectrum using the SHELXTL software program. No solubility data or 

thermodynamic constants were reported however. In this study, attempts to reproduce 

ammonium iron phosphate from the hydrothermal methods used in the lab, using roughly 

the same starting materials as that ofBoudin and Lii's paper. The purpose was to see if 

the mixed valence compound would form under boiler conditions and whether the 

synthesis could be done using a more simple method. 

(NH4)H2P04 (0.27-0.32 g), (NH4)HP04 (0.30-0.33 g), and Fem20 3 (0.06-0.08 g) 

were used as starting materials in 6 runs with varying amounts of deionized water from 2-

10 mL. Syntheses were carried out at 200 °C or 250 °C for 5-7 days with periodic 

shaking. 

2.4.4.2 Iron Tartrate Experiments 

For the same reasons as in the SIHP experiments, similar synthesizes to Boudin 

and Lii (1998) were conducted with an alternate iron source, iron tartrate. 
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Syntheses were attempted using ammonium phosphate solutions and iron tartrate, 

according to the following reaction: 

Fe1112(C4H406)3 (aq) + NH4 + (aq) + 2 HPO/ (aq) + 2 OH- (aq) ---+ (2.7) 

(NH4)Fe11Fem(P04)2 (s) + 2 H20 (1) + 3 C4H606 (aq) 

CNH4)H2P04 (0.29-0.47 g), (NH4)2HP04 (0.29-0.31 g), and Fem2(C4~06)3 (0.07-

0.08 g) were used as starting materials in 4 runs with varying amounts of deionized water 

from 2-10 mL. Runs were maintained at 200 °C for 7 days with periodic shaking. 

Fem2(C4H40 6)3 was used as a starting material in 7 runs with ammonium 

phosphate mole ratios of 1.00-2.8. The initial masses of iron tartrate were from 0.39-

0.41 g and the initial concentrations of phosphate were 0.6-0.7 mol·kg-1
• Runs with 

Fe1112(C4H406)3 were maintained at 200 or 250 °C for 4-8 days with periodic shaking. 

2.4.5 Synthesis of Ammonium Iron Phosphate Hydrate ((NH4)Fe11(P04)"H20) 

2.4.5.1 Iron Nitriloacetate Experiments 

Quinlan (1996) synthesized maricite, NaFeiiP04, by thermally decomposing 

FemNTA in the presence of sodium phosphate solution. Experiments were conducted by 

the same method using ammonium phosphate solution instead; in order to explore the 

possibility of synthesizing an ammonium analogue of maricite under boiler conditions, 

and obtain a pure compound for calorimetry. The reaction was thought to proceed as 

follows: 
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FemNTA(aq) + HPOl(aq) + NH/(aq) ~ (2.8) 

(NH4)FenP04(s) +decomposition products ofHNTA 2-(aq) 

Fe111NTA was used as a starting material in 13 runs with ammonium-phosphate 

mole ratios of 1.0-2.8. The initial masses of iron nitriloacetate were from 0.59-0.75 g, 

and the initial concentrations of phosphate were 0.6-0.9 mol·kg-1
• Runs with Fe111NTA 

were maintained at 200 or 250 °C, for 6-9 days with periodic shaking. 

2.4.6 Syntheses ofNa2Ni(OH)P04 ("SNHP") 

2.4.6.1 Nickel Oxide (NiO) Experiments 

Ziemniak and Opalka (1988) have shown that NiO transforms to a sodium nickel 

hydroxy phosphate compound in concentrated sodium phosphate solutions at elevated 

temperatures. The following reaction was used for the synthesis of SNHP from nickel 

oxide using our experimental design: 

(2.9) 

Nickel oxide was used as a starting material in 2 runs, with a sodium-phosphate 

mole ratios of2.5. The initial masses of nickel oxide were 0.56 and 0.69 g and the 

concentration of the phosphate solution were 1.5 mol·kg-1
. Both runs were maintained at 

250 °C for 1 week with periodic shaking. 
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2.4.6.2 Nickel Nitriloacetate (H+[NiNTA"]) Experiments 

An alternate nickel source used in this study was nickel nitriloacetate. The 

rationale for using W[NiNTA-] in our experiments was to have a route where Ni(II) was 

slowly released into the system and possibly form single SNHP crystals, much like the 

studies with Fe111NT A. 

Twenty-eight experiments were done with H+[NiNTA-] as a starting material 

according to the following reaction: 

(2.10) 

Na2Ni(OH)P04(s) + H20(l) +decomposition products ofHNTA2-(aq) 

The sodium-phosphate mole ratios ranged from 2.0-4.0. The initial masses of 

nickel nitriloacetate were from 0.50-1.07 g, and the initial concentrations of phosphate 

were 0.6-1.5 mol·kg-1
• Runs with H+[NiNTA-] were maintained at 200 or 250 °C for 4-14 

days with periodic shaking. 

2.5 Solubility Measurements on Sodium Nickel Hydroxy Phosphate in the 

Stirred Reaction Vessel 

2.5.1 Kinetics 

Eight kinetic experiments were attempted in order to determine the time required 

for mixtures ofSNHP and NiO to reach equilibrium with aqueous sodium phosphate. 

Four of these were stopped due to leaks or clogging of the filter below the sample line. 
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All runs lasted up to 10 days at a time. In two separate runs, the autoclave temperature 

was raised to 250 °C, and the kinetics was determined approaching equilibrium from 

supersaturated conditions by initiating the precipitation reaction. In the other two runs, 

the autoclave temperature was brought up to 275 °C, allowed to reach equilibrium for 4 

days and then quickly lowered to 250 °C, in order to determine the kinetics approaching 

equilibrium from unsaturated conditions by initiating there-dissolution reaction. The 

purpose behind the two different sets of runs was to establish that the reaction was 

reversible. 

The experiments to determine the kinetics of SNHP formation andre-dissolution 

at 250 °C respectively proceeded as follows. An excess of25 g of nickel oxide was 

placed in the zirconium cylinder with 240-250 mL of 1.5 mol·kg-1 phosphate solution 

with a sodium-phosphate mole ratio of2.5. To ensure that all aqueous nickel species are 

in equilibrium with the nickel(II) oxide, an excess of nickel oxide was used in each 

experiment. The steam tables ofHaar et al. (1984) were used to calculate the volume of 

the solution after thermal expansion, which prevented over-filling of the vessel, and 

subsequent pressure release, by the rupture disk. The vessel was then properly 

assembled, without over-filling, brought up to the desired temperature, and allowed to 

proceed to equilibrium under isothermal conditions. Three samples of 3-4 mL were 

withdrawn at regular time intervals, the first of which were discarded to ensure the 

sample line was adequately flushed of any previous solution. The remaining samples 

were analyzed by ICP ES to determine the molality of aqueous sodium and total 

phosphate. In determining the kinetics of SNHP formation at 250 °C, samples were taken 
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regularly over a period of up to 250 hours. For there-dissolution reaction, the pressure 

vessel was allowed to remain at 275 °C for 4 days and then the temperature was lowered 

to 250 °C, and samples were withdrawn for an additional 240 hours until equilibrium was 

reached. The experiments were stopped when sample flow became erratic; indicating the 

level of the solution had dropped below the sample tube, or when approximately 140 mL 

of solution were calculated to remain in the vessel. 

2.5.2 Solubility vs Temperature 

Only two temperature-dependant solubility runs were performed. The 

temperature was raised in small increments, so that the solutions were supersaturated 

with respect to the nickel-phosphate reaction product, but unsaturated with respect to the 

zirconium-phosphate reaction product. A schematic plot of equilibrium phosphate 

concentration versus temperature for the zirconium oxide-aqueous phosphate and nickel 

oxide-aqueous reactions from this study can be seen in Figure 2.4. As shown in the 

schematic, large temperature increments could cause the solution to become 

supersaturated with respect to the zirconium-phosphate reaction product, and lead to 

possible corrosion of the zirconium vessel. 

The temperature-dependant solubility experiments were performed in the 

following way. As in the kinetic runs, an excess of 25 g of nickel oxide was added to the 

zirconium vessel with approximately 250 mL of 1.5 mol·kg-1 sodium phosphate solution 

with a sodium- phosphate mole ratio of 2.5. In the first solubility run, the vessel was 

raised from room temperature to 235 °C whereas; in the second solubility run the first 
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Figure 2.4: Experimental design for zirconium stirred reaction vessel 
experiments: Solubility of zirconium oxide reaction products, and 
nickel oxide reaction products under uncontrolled redox conditions. 
(taken form Quinlan (1996); modified to fit our reaction conditions) 
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temperature approached was 240 °C. The initial analysis of the kinetic data suggested 

that 2-2.5 days was sufficient for equilibrium to be achieved. The reaction was allowed 

to react for that time with constant stirring at each temperature. Approximately 3-4 mL 

of solution was collected to flush the sample line before two 3 mL samples were 

withdrawn, and the temperature was raised by 8-10 °C. Again the reaction was allowed 

to proceed for 2-2.5 days before the procedure was repeated. As the temperature was 

raised, the precipitation of SNHP removed sodium and phosphate from the solution 

incongruently, causing the Na/P04 mole ratio to rise. The highest temperature measured 

was 280 °C. Higher temperatures were thought to possibly cause corrosion of the 

autoclave vessel. Only 5-7 measurements were taken per solubility run because of time 

constraints. These temperature-dependant solubility runs typically required two weeks to 

complete. 

2.5.3 Recovery of the Equilibrium Solid Reaction Product 

In each of the four kinetic runs and two solubility runs, it was necessary to 

recover some of the solid reaction product for powder XRD analysis in order to confirm 

that the correct nickel-sodium-phosphate phase was synthesized and consequently being 

measured. A small stainless steel filter basket was placed in between the cooling tubes, 

located in the autoclave head. The basket contained NiO which reacted with aqueous 

phosphate to form the reaction product. The reaction product was then removed from 

contact with the liquid at high temperatures as the removal of samples lowered the level 

of the aqueous phase in the vessel below that of the basket. This procedure prevented re-
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dissolution of SNHP and allowed the equilibrium reaction product to be recovered. 

Powder XRD determined the solid was a mixture of SNHP and nickel oxide. Powder 

patterns of the solids recovered from the impeller and the bottom of the vessel also 

showed SNHP present in high quantities. This confirmed that the correct phase was 

produced in all of the kinetic and solubility studies. 
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3.0 HYDROTHERMAL SYNTHESIS OF HIDEOUT REACTION PRODUCTS 

3.1 Maricite 

The purpose of this set of experiments was to prove that the maricite synthesis 

previously done by Quinlan ( 1996) using the hydrothermal decomposition of aqueous 

FemNTA, was reproducible. 

Product RGH05: The off-white product obtained in this study was analyzed by 

powder XRD and identified as maricite. The powder XRD results can be found in Table 

A.l.l in Appendix I. The results were compared with powder XRD results for maricite 

from Quinlan (1996) and those obtained from the JCPDS database. They were an 

excellent match. None of the expected impurities (i.e. NazHP04, Na3P04, Fem20 3, 

FeiiFem20 4) were observed (detection limit< 2 %). Figures 3.1a and b show secondary 

electron images of Quinlan's maricite product synthesized at 250 °C and the maricite 

product obtained in this study at 200 °C, respectively. An identical blossom-like growth 

is observed in both figures, indicating the crystals grew out of solution by rapid 

homogeneous nucleation. The maricite sample in Figure 3.la was synthesized at 250 °C, 

but Quinlan (1996) reported that, single crystals ofmaricite could be isolated when the 

reaction was repeated at a lower temperature. In the upper right comer of the SEM image 

in Figure 3.1b, a single crystal is observed. It was concluded that single crystals of 

maricite can be synthesized at 200 °C. 
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(a) 

(b) 

Figure 3.1a and b: Scanning electron micrographs of (a) rnaricite 
(Quinlan, 1996) and (b) a solid reaction product 
obtained from Fen1NTA and aqueous sodium 
phosphate (Na/P04 = 2.15) at 200 °C for 28 days. 
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No single crystal XRD was performed on the maricite product since the structure 

is known (LePage and Donnay, 1977; Bridson et al., 1998), but the powder XRD analysis 

proves that the maricite hydrothermal synthesis is reproducible and that it is a reliable 

means of synthesizing maricite. 

3.2 SIHP 

3.2.1 The FemNTA Reaction 

An objective of this study was to develop hydrothermal synthetic methods for 

producing a reliable means of synthesizing crystalline sodium iron hydroxy phosphate 

(SniP) by decomposing an aqueous complex. FemNTA is known to produce single 

crystals of the iron(II) product maricite at 200 °C (Section 3.1). Our first attempt to 

synthesize SniP involved decomposing FemNTA(aq) in solutions with a higher sodium­

phosphate mole ratio, in order to drive the reaction toward the iron(III) hideout product. 

The benefit of using FemNTA is that iron is slowly released into the system over time, 

thus providing a better chance of growing single crystals of SIHP large enough for XRD 

analysis and to avoid unreacted iron oxide starting materials. 

Figures 3.2a, b, and care SEM images of a few of the products obtained from the 

attempted syntheses listed in Section 2.4.3. All three experiments produced solids that 

were mostly or all red-orange in color, and all were conducted at 200 °C. 

Product RGH32B: Figure 3.2a is a SEM image of a sample of SIHP obtained 

from reacting FemNTA with aqueous sodium-phosphate (Na!P04 = 4.0, [P04] = 0.6 

molal) for 2 weeks. The sample was mostly red-orange solid with traces of black solid 
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(a) (b) 

(c) 

Figure 3.2a, b, and c: Scanning electron micrographs of solid reaction products 
obtained from FemNTA and aqueous sodium phosphate (Na/P04 = 

4.0) at 200 °C for 5-14 days. [(a) (P04) = 0.6 molal, (b) repeat of 
(a) at a higher Fe/P04 mole ratio, (c) (P04) = 1.0 molal] 
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throughout the whole sample. No yellow-green starting material could be found visually 

or by powder XRD analysis. Table A.I.2 in Appendix I summarizes the powder XRD 

results. The powder XRD patterns confirmed that SIHP was the main component, but 

showed that magnetite was also present in the sample, which would account for the traces 

of black solid observed. The JCPDS database search also identified a few peaks that 

matched those found in maricite and Na3P04. But these few matching peaks can also be 

found in powder XRD results for SIHP or magnetite. The SEM image showed that the 

sample contained thin, needle-like crystals, identified as SIHP. On average the crystals 

were 2 jlm thick and 25 jlm long. The SEM elemental analysis confirmed the presence of 

iron, sodium, and phosphorus. 

The equilibrium reaction between maricite and SIHP that governs which hideout 

reaction product will form is as follows: 

6 Na3Fem(P04)2·(N34;3H2130)(s) + 2 H20(l) + 3 H2(aq) ;:= (3.1) 

6 NaFe11P04(s) + 20 Na\aq) + 6 HPO/-(aq) + 8 OH-(aq) 

The equilibrium constant of SIHP reduction to maricite according to the above reaction 

IS: 

(3.2) 
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and the equilibrium constant for maricite oxidation to SIHP is given by 

(3.3) 

It was concluded that raising the Na+ concentration was successful in causing SIHP to 

precipitate instead of maricite, but it apparently was so high that Na3P04 also 

precipitated. 

(3.4) 

Product RGH59B: In the next set of experiments, the iron to phosphate mole 

ratio was increased to Fe/P04 = 4.0 in an attempt to avoid precipitation ofNa3P04 by 

reacting more of the phosphate. The reaction conditions listed in the previous paragraph 

were kept the same except the reaction time was reduced to 5 days. The recovered 

product was a mixture of red-orange, white, and black solids. The powder XRD results 

can be found in Table A.l.3 in Appendix I. The powder XRD analysis confirmed that 

SIHP was the main component of the sample but maricite and magnetite were also 

present, accounting for the white and black solids, respectively. The analysis also 

showed that hematite and Na3P04 were again present as minor impurities. Figure 3.2b 

shows the SEM image, and the elemental analysis confirmed the presence of iron, 
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sodium, and phosphorus in the reaction product. The SIHP crystals were similar to those 

obtained in the previous run, but appear to be about half the size. 

Product RGH60A: Another set of experiments was attempted under the same 

conditions as the previous synthesis at Na!P04 = 4.0 (Product RGH59B), but this time 

with a greater phosphate concentration ([P04] = 1.0 molal). The sample obtained was 

red-orange solid with no visible traces of white or black solid and all powder XRD results 

are in Table A.I.4 in Appendix I. The powder XRD analysis did not identify maricite, 

magnetite, or hematite in the sample, but traces ofNa3P04 and Fe2P05 were identified 

from the JCPDS search and match software. The analysis did confirm that SIHP gave an 

excellent match. The SEM image (Figure 3.2c), reveals the thin, needle-like SIHP 

crystals observed in the other products are not present. However, in the upper right hand 

comer of the image, round clumps are found with crystals growing from them in a radial 

pattern suggesting that the crystals grew from a fast homogeneous reaction. 

Even though the crystals obtained were not large enough to do a single crystal 

XRD, it can be concluded from the SEM images and powder XRD analysis, that SIHP 

can be synthesized from the thermal decomposition ofFemNTA at a much higher sodium 

phosphate mole ratio than in the studies done by Quinlan (1996), but the synthesis yields 

a product with a small amount ofNa3P04 precipitate still present as an impurity. 

3.2.2 The Fe111z(C4H40 6) 3 Reaction 

The second approach used in synthesizing SIHP was an attempt to prevent the 

reduction ofFe3
+ during decomposition by using a chelate that does not contain amine 
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groups. Oxidizing agents were previously used with various iron starting materials and 

aqueous sodium phosphate solutions to try and synthesize SIHP (Quinlan 1996), but 

these were unsuccessful. 

Product RGH29A: In this study, iron(III) tartrate was used as the iron chelate 

reagent. Aqueous Fem2(C4H406)3 was reacted with aqueous sodium phosphate (Na!P04 = 

2.8, [P04] = 0.6 molal) for 3 weeks. The sample obtained from the experiment at 200 °C 

was an orange-red powder with small amounts of white solid throughout. The powder 

XRD results are in Table A.I.5 in Appendix I. The powder XRD analysis confirmed that 

SIHP was the main component in the sample, but maricite and Na3P04 are also present in 

small amounts, accounting for the white solid observed. Some of the peaks in the XRD 

pattern that do not match SIHP, maricite, or N a3P04 are due to the presence of sodium 

tartrate hydrate and sodium hydrogen phosphate hydrate in the sample. Figure 3.3 is the 

SEM image. The SEM EDX elemental analysis confirmed the presence of iron, sodium, 

and phosphorus. The sample contains crystals of various types and sizes and scattered, 

thin needle-like SIHP crystals can be seen throughout. However no one crystal was large 

enough for single crystal XRD analysis. These sets of experiments gave better crystals 

than in the first approach described in Section 3.2.1 , but the samples still contained 

impurities. 

3.2.3 The Femz(Cz04)3-5H20 Reaction 

Product RGH78A: Another iron chelating agent used to try to obtain SIHP in this 

study was iron(III) oxalate. Aqueous Fe1112(C204)3·SH20 was used as a starting material 
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Figure 3.3: Scanning electron micrograph of a solid reaction product 
obtained from iron(III) tartrate and aqueous sodium phosphate 
(Na/P04 = 2.8) at 200 °C for 3 weeks. 
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and reacted with aqueous sodium phosphate (Na/P04 = 2.5, [P04] = 1.0 molal) at 250 °C 

for a period of 8 days to produce a red-orange, crystalline solid. The powder XRD 

results are listed in Table A.I.6 in Appendix I. No evidence for unreacted starting 

material could be found visually or in the powder XRD spectrum. This synthesis seemed 

to produce a solid product with little or no impurities however some extra peaks were 

observed that are not present in the SIHP XRD powder pattern from Quinlan (1996). The 

presence ofNa3P04 and Fe3P05 in the sample accounts for some of the peaks, however 

the peaks observed at d-spacings of7.9707 A and 7.8460 A could not be accounted for. 

Figure 3.4 is the SEM image ofthe product. The SEM elemental analysis confirmed the 

presence of iron, sodium, and phosphorus. Distinct thin, needle-like crystals can be seen, 

much like the SIHP products obtained from the FemNTA reactions. While the crystals 

were bigger than in previous SIHP syntheses, they were still too small to perform single 

crystal XRD. The crystals were not uniform and there appear to be many crystal 

fragments scattered throughout the sample. However various areas of the SEM image 

show that the crystals grew in layers of smaller parallel crystals. 

Again this method gave better crystals than in the first approach, described in 

Section 3.2.1 but a few impurities were observed. Future work on this reaction could 

include trying the synthesis at a higher Na/P04 mole ratio. 

3.3 (NH4)Fe11Fe111(P04)z 

The mixed valence compound (NH4)FenFem(P04) 2 was synthesized by Boudin and 

Lii (1998) at 500 °C as a black crystalline product. The objective was to see if the mixed 
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Figure 3.4: Scanning electron micrograph of a solid reaction product 
obtained from iron(III) oxalate and aqueous sodium phosphate 
(Na/P04 = 2.5) at 250 °C for 8 days. 
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valence compound would form under boiler conditions and to synthesize it using a more 

simple method. The first batch of experiments was done at 250 °C using the starting 

materials reported in the paper by Boudin and Lii (1998). The XRD diffraction spectra 

showed evidence that unreacted hematite, (NH4)H2P04, and (NH4)2HP04 were still 

present in the recovered product. There was no success in obtaining (NH4)Fe11Fe111(P04)2 

from this method. 

Product RGH51A: Another set of experiments was run, where iron tartrate was used 

as the iron source with varying mole ratios of aqueous ammonium phosphate (NHiP04). 

One such run at 250 °C for a week (NH4/P04 = 1.0, [P04] = 0.6 molal) produced a small 

amount of small black crystals. The powder XRD results are listed in Table A.I.7 in 

Appendix I. The powder XRD performed on the synthesized product from this study 

matched extremely well with that generated from the supplied by Boudin and Lii (1998) 

suggesting that (NH4)FenFem(P04)2 was synthesized. However, hematite was found to 

be a major impurity, and there were also traces ofFem(P04)'2H20 and ammonium 

hydrogen phosphate hydrate. The peak at ad-spacing of 3.5033 A was due to the 

presence ofFeii3(P04)z. Figures 3.5a and bare SEM images of the crystals obtained. 

Figure 3.5b is an enlargement ofFigure 3.5a showing that the sample is a mixture of 

crystal clusters. Unfortunately, the crystals were not large enough to perform a single 

crystal XRD analysis. 

Product RGH62A: In an effort to make crystals of(NH4)FeiiFe111(P04)z large 

enough to perform a single crystal XRD, the same reaction was repeated at a lower 

temperature (i.e. 200 °C). Figure 3.6 is the secondary electron microscopy image of this 
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(a) 

(b) 

Figure 3.5a and b: Scanning electron micrographs of solid reaction 
products obtained from iron(III) tartrate and aqueous 
ammonium phosphate (NH4/P04 = 1.0) at 250 °C for 1 
week. [(b) is an enlarged view of (a)] 
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Figure 3.6: Scanning electron micrograph of a solid reaction product 
obtained from iron(III) tartrate and aqueous ammonium 
phosphate (NH4/P04 = 1.0) at 200 °C for 1 week. 
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sample. Table A.l.8 in Appendix I summarizes the powder XRD results. Unfortunately, 

the black crystals synthesized were still not large enough to perform the analysis but the 

powder XRD spectrum pattern confirmed that they gave a good match for 

(NH4)Fe11Fem(P04)2. Again, hematite was an impurity along with (NH4)H2P04. The 

peaks at 3.123 7 A and 2.1166 A d-spacings are due to F em(P04)-2H20 present in the 

sample, while FemO(OH) accounts for the peaks at 6.2460 A and 1.7400 Ad-spacings. 

In conclusion, crystals of CNH4)Fe11Fem(P04)z were synthesized however they were 

too small for single crystal XRD. The method run at 200 °C gave the "best" sample for 

calorimetry however hematite and (NH4)H2(P04) were still present as impurities. This is 

a new, simpler synthesis for (NH4)Fe11Fem(P04)2, and its success demonstrate that the 

precipitation of (NH4)FenFem(P04)2 can occur under boiler water conditions. 

3.4 (NH4)Fe11(P04)·HzO 

Product RGHJBB: Attempts to synthesize ammonium iron phosphate hideout 

products at 200 °C yielded another product, ammonium iron(II) phosphate monohydrate, 

(NH4)Feu(P04)·H20. The sample of (NH4)Feu(P04)·H20 obtained in this study was 

synthesized by reacting FemNT A with aqueous ammonium phosphate (NH4/P04 = 2.8, 

[P04] = 0. 7 molal) for 9 days at 200 °C. The resulting crystals were clear and colorless. 

Figure 3.7 is the secondary electron microscope image and the elemental analysis 

confirmed that iron and phosphorus were present in nearly equal amounts. The SEM 

image shows that the crystals were stacked in an organized layered fashion. Each layer 
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Figure 3.7: Scanning electron micrograph of a solid reaction product 
obtained from FenrNT A and aqueous ammonium phosphate 
(NH4/P04 = 2.8) at 200 °C for 9 days. 
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had crystals lying parallel to the crystals in the layer above and below. It appeared that 

the crystals had grown on a surface that subsequently dissolved. The coordinates of the 

atoms for the crystal (NH4)Fe11(P04)·H20 obtained from single crystal analysis are given 

in Table 3.1 and the structure is shown in Figure 3.8. The details ofthe analysis are in 

Appendix II. From the single crystal XRD data for (NH4)Fe11(P04}H20, a powder 

pattern was generated using the SHELXTL program and the results are in Table A.l.9 in 

Appendix I. 

The divalent metal ammonium monophosphate monohydrate, 

(NH4)Fen(P04)·H20, can exist in two polymorphs and have been synthesized by Greeden 

et al. (1988) and Ivanov et al. (1974, 1976). From these papers, the structure of each 

compound indicates a layered arrangement of M06 octahedra separated by ammonium 

ions, where the oxygen atoms forming the octahedra about the metal atoms are from the 

phosphate groups and the water ofhydration. Polymorph A has octahedra in adjacent 

layers with identical orientation whereas polymorph B has layers with inverted 

orientation. The space groups for A an Bare Pmn21 and Pnma, respectively, and the unit 

cell orientations are such that aA;::: 2(bs), bA;::: as, and cA;::: cs. Greeden et al. (1988) 

synthesized only polymorph A and found the unit cell dimensions to be a= 5.684(1), b = 

8.803(1), and c = 4.818(5)A. Using these numbers, polymorph B would have calculated 

unit cell dimensions of a = 17.606(2), b = 5.684(1), and c = 4.818(5) A. The synthesized 

crystal structure in this study was found to have a Pnma space group and a= 17.597, b = 

5.667, and c = 4.833 A unit cell dimensions. Thus, it can be concluded that polymorph B 

was synthesized in this study. 
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Table 3.1: Positional parameters for (NH4)Fe11(P04)·H20 from single crystal analysis 

atom X y z 

Fe(1) 0.23902(2) 0.2500 0.6192(1) 

P(2) 0.15198(5) -0.2500 0.6851(2) 

0(1) 0.1439(1) 0.2500 0.3133(5) 

0(3) 0.1651(1) -0.2500 0.3714(5) 

0(4) 0.19024(9) -0.0356(3) 0.8242(3) 

0(5) 0.0664(1) -0.2500 0.7445(5) 

N(1) 0.139(2) 0.2500 0.7593(7) 

H(1) -0.0157 0.2500 0.9346 

H(2) -0.0153 0.2500 0.5622 

H(3) 0.0432 0.1109 0.7685 

H(4) 0.1151 0.3868 0.3684 

H(5) 0.1493 0.2500 0.1199 
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In a set of experiments that were an attempt to synthesize (NH4)FenFelll(P04) 2 

(iron tartrate; NH4/P04 = 2.8, [P04] = 0.7 molal; at 200 °C for 8 days), a greenish grey 

solid was obtained. Table A.l.9 in Appendix I is a summary of the powder XRD results. 

While the results do not match the powder XRD pattern for (NH4)Fe11Fem(P04)2, they do 

yield a good match for the calculated pattern of (NH4)Feu(P04)-H20. Hematite was also 

present in the sample. There were five peaks in the spectrum that could not be assigned. 

While the experiment did not yield (NH4)Fe11Fem(P04)2, it did show that 

(~)Fen(P04)-H20 can be synthesized via a different route. The SEM image is shown 

in Figure 3.9, and the elemental analysis showed that iron and phosphorus were present in 

nearly equal amounts. The crystals were not large enough to perform a single crystal 

XRD analysis. 

In conclusion, this is a new single crystal synthesis for (NH4)Fe11(P04)-H20, and 

the results show that it can form in low-temperature boiler water. 

3.5 SNHP 

3.5.1 The NiO Reaction 

Ziemniak and Opalka (1988) have shown that one reaction product of aqueous 

sodium phosphate with nickel under boiler conditions is sodium nickel hydroxyphosphate 

(SNHP), Na2Ni(OH)P04. Attempts were made to prepare pure samples of SNHP but 

only a few of these syntheses produced SNHP. 

Product RGH92A: Utilizing the experimental methods developed in our 

laboratory, SNHP was synthesized by reacting NiO with aqueous sodium phosphate 
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Figure 3.9: Scanning electron micrograph of a solid reaction product obtained 
from iron(III) tartrate and aqueous ammonium phosphate 
(NHJP04 = 2.8) at 200 °C for 8 days. 
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(Na/P04 = 2.5, [P04] = 1.5 molal) at 250 °C for one week. The powder XRD results of 

the resulting green solid are listed in Table A.l.1 0 in Appendix I. The powder XRD 

analysis showed that the main component of the sample was SNHP, based on the powder 

XRD pattern in the paper by Ziemniak and Opalka (1988), but that unreacted NiO 

remained. Other impurities identified in the powder XRD pattern were Na3P04 and 

possibly, another sodium-nickel-phosphate, N~Ni(P04)2. However, the peaks in the 

sample XRD pattern that match N~Ni(P04)2 were also present in the powder XRD 

pattern for Na2Ni(OH)P04. Two of the low intensity peaks could not be accounted for. 

In Section 1. 7, it was noted that two additional anhydrous sodium-nickel-phosphate are 

known to exist, N~Nis(P04)2(P207 )2 and NaNi4(P04)3 (Sanz et al., 1999; Daidouh et al., 

1999), but they were not identified in the powder XRD results. It can be concluded that 

Na2Ni(OH)P04 was the major product, because the powder XRD pattern contained a 

greater percentage of matching peaks to that of the sample than the other compounds 

present. 

The SEM image ofthis product is shown in Figure 3.10. Ziemniak and Opalka 

(1988) obtained an image that revealed the crystals have a lath-like shape and the laths 

are bundled together in most cases. Figure 3.10 shows many bundles of small (25 by 25 

J..tm) crystals that are bundled together. The elemental analysis confirmed the presence of 

sodium, nickel, and phosphorus. 

Other syntheses were attempted to produce a pure sample of SNHP, but there was 

always a NiO impurity and time constraints prevented further reactions from being run. 
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Figure 3.10: Scanning electron micrograph of a solid reaction product obtained 
from nickel oxide and aqueous sodium phosphate (Na/P04 = 2.5) 
at 250 °C for 1 week. 
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3.5.2 The H+[NiNT A"] Reaction 

Product RGH89A: In one set of experiments, H+[NiNT A-] was reacted with 

aqueous sodium phosphate (Na/P04 = 2.5, [P04] = 1.5 molal) at 250 °C for 4 days. The 

SEM image is given in Figure 3.11 and the EDX elemental analysis confirmed the 

presence of sodium, nickel, and phosphorus in the reaction product. The powder XRD 

results for the green crystalline solid are listed in Table A.I.11 in Appendix I. The 

powder XRD pattern suggests that the sample was a mixture ofSNHP, H+[NiNTA"] and 

sodium hydrogen phosphate. N~Ni5(P04)2(P207)2 and NaNi4(P04)3 were not identified 

from the XRD results. Again the JCPDS database identified N~Ni(P04)2 but the same 

matching peaks are also seen in SNHP. There were also peaks that could not be 

accounted for. Thus there are also other impurities present in the sample that are not 

listed in the powder XRD results. 

Products RGH66A and RGH73A: In order to try to remove the impurities from 

the product, an excess ofNaOH was employed to neutralize the H+ in H+[NiNTAl A 

new batch of experiments was performed where less H+[NiNT A"] was reacted with a 

solution of a higher sodium to phosphate mole ratio (but lower phosphate concentration; 

Na/P04 = 4.0, [P04] = 1.0 molal). The temperature was also lowered to 200 °C. A pale 

green powder solid was synthesized whose XRD pattern is presented in Table A.l.12. 

The powder XRD suggests that, even though the majority of the sample was SNHP, 

Ni(OH)z was also present. N~Ni(P04)2 showed up on the JCPDS database, but the same 

peaks are seen in SNHP. When the same run was performed at a higher temperature (i.e. 

250 °C), the impurity Ni(OH)z was not present in the solid reaction product. The XRD 
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Figure 3.11: Scanning electron micrograph of a solid reaction product obtained 
from H+[NiNT A-] and aqueous sodium phosphate (Na/P04 = 2.5) 
at 250 °C for 4 days. 
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pattern is listed in Table A.l.13. Even though SNHP was still present in the sample, the 

JCPDS database identified different impurities than those in the product from the lower 

temperature run. Sodium phosphate and sodium phosphate hydrates accounted for most 

of the impurities present in the sample, but there were still peaks that could not be 

assigned. The SEM images ofboth runs are given in Figures 3.12a and b, respectively. 

From SEM, it can be seen the crystals are large enough to perform single crystal XRD 

analysis if they can be separated from the impurities. Again, as was the case with the 

NiO reactions, the crystals were bundled together. The well-defined crystals are smaller 

(5-15 J..tm) in size, too small for single crystal XRD. The elemental analysis confirmed 

the presence of sodium, nickel, and phosphorus in the reaction product. 

In conclusion, using H+[NiNT A-] as a nickel source did not give a pure sample of 

SNHP or large enough crystals to do a single crystal XRD analysis, as originally hoped. 

Time constraints prevented further investigation into this area. However, a new synthesis 

for SNHP has been developed. The use ofNaNiNTA as a starting material could be 

another possible route to synthesizing SNHP for any future work in this area. 
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(a) 

(b) 

Figure 3.12a and b: Scanning electron micrographs of solid reaction products 
obtained from H+[NiNT A-] and aqueous sodium 
phosphate (Na!P04 = 4.0) for 5 days at (a) 200 °C and 
(b) 250 °C respectively. 
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4.0 SOLUBILITY AND REACTION KINETICS OF SODIUM NICKEL 

HYDROXY-PHOSPHATE 

4.1 Solubility of the Nickel Oxide-Sodium-Phosphate Reaction 

Nickel oxide undergoes reversible reactions with aqueous sodium phosphate 

solutions at elevated temperatures and pressures to form sodium nickel hydroxy 

phosphate, SNHP, according to the reaction (Ziemniak and Opalka, 1988): 

(4.1) 

In our solubility runs, samples were taken from different parts of the reaction vessel to 

confirm that the reaction product that had formed was indeed SNHP. Firstly, powder 

XRD analysis confirmed that both NiO and SNHP were present in the reaction matrix, 

and secondly, SEM elemental analysis showed that sodium, nickel, and phosphorus were 

indeed present in the crystals of reaction product. Figures 4.1a and b show the SEM 

images of a solid sample taken from the basket and the bottom of the vessel, respectively. 

Again, as previously observed, bundles or clumps of crystalline solid can be observed in 

both images indicating that SNHP is indeed present. 

A complete description of the procedures used to determine temperature­

dependant solubilities can be found in Section 2.5.2. Two separate runs were performed 

to determine the solubility ofSNHP. The sodium-phosphate solution mole ratio was 2.5 
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(a) 

(b) 

Figure 4.la and b: Scanning electron micrographs of solid reaction products 
obtained from nickel oxide and aqueous sodium phosphate 
(Na/P04 = 2.5), solubility run from (a) the basket and (b) 
the bottom of the vessel. 
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with a phosphate concentration of 1.5 mol·kg-1
• The temperature range measured was 

between 235-280 °C. The equilibration time used for each step was the same as that 

developed by Quinlan (1996) for SIHP, about 48 hours. Table A.III.3 in Appendix III 

contains the experimental data for the two solubility runs. The sodium and phosphate 

concentrations were measured by ICP-ES in ppm's but all the listed concentrations are 

expressed as molalities. 

4.2 Kinetics of Na2Ni(OH)P04 Equilibration 

The objective of the kinetic runs was to determine the time required for Equation 

( 4.1) to reach equilibrium, and to obtain a definitive solubility of SNHP at 250 °C. 

Careful studies were performed from conditions of under and over saturation. The rate of 

SNHP precipitation was determined by raising the temperature of a vessel containing 

NiO and aqueous sodium phosphate (Na!P04 = 2.5) up to 250 °C. To determine the rate 

of SNHP re-dissolution, the system was equilibrated at 275 °C to form the reaction 

product, and then the temperature was lowered to 250 °C to re-dissolve it. A complete 

report of the experimental methods is found in Section 2.5.1. The results of two 

precipitation runs and two re-dissolution runs are plotted in Figure 4.2. However due to 

clogs in the filter, the first precipitation and the second re-dissolution attempts yielded 

erratic results and were discarded, leaving one good run of each. These are shown in 

Figure 4.3. 

A simple rate equation commonly used in mineral dissolution studies (Stumm and 

Morgan, 1970; Blesa et al., 1994) can be used to describe the kinetic data: 
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(4.2) 

Integration ofEquation (4.2) gives the following expression 

m(P04,t) = m(P04,sat) + [(n-l)kat + {m(P04,t=O)- m(P04,sat)}(l-n)]11
(
1-n) (4.3) 

The total phosphate concentration at time t is represented by m(P04, t) whereas m(P04, 

sat) is the total phosphate concentration at equilibrium (t = oo). In fitting Equation (4.3) 

to the data, the value of n was set at an arbitrary number whereas the value of the oxide 

surface area, a, was estimated to be equal to 1. Equation (4.3) was fitted to the kinetic 

data in Figure 4.3 with n = 3 for precipitation and n = 2 for re-dissolution, and the result 

are represented by solid curves in Figure 4.3. The rate constant for the precipitation 

obtained for the re-dissolution reaction. The limiting values for the total solution 

concentrations at equilibrium (t-+oo) for the precipitation reaction were m(Na+) = 1.3849 

mol·kg-1 and m(P04hotal = 0.4546 mol·kg-1• The corresponding values were m(Na+) = 

1.1901 mol·kg-1 and m(P04hotai = 0.3892 mol·kg-1 for there-dissolution reaction. The 

averages of the two runs were taken as the "best" value at 250 °C in the thermodynamic 

modeling (m(Na+) = 1.2875 ± 0.010 mol·kg-1
, m(P04hotal = 0.4219 ± 0.033 mol·kg-1

) . 

From Figure 4.3, it is shown that a time of75 hours is needed for the precipitation 

reaction to equilibrate from over saturation at 250 °C. Therefore, the data used to 
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develop the thermodynamic model for this system were the equilibrium value at 250 °C, 

noted above, and values from Table A.III.3 for temperatures above 250 °C. 

4.3 A Thermodynamic Model 

4.3.1 Phosphate Ionization Equilibria 

The major phosphate species in high-temperature water are the anions of 

orthophosphoric acid (Tremaine et al., 1992). These include dihydrogen phosphate, 

H2P04-; hydrogen phosphate, HP04
2
-; and phosphate, P04

3
-. These species form 

according to the equilibria listed below. Because we are dealing with alkaline boiler 

water conditions, these are written as reactions with hydroxide, followed by their 

corresponding equilibrium constants: 

(4.4) 

K = m(H2PO; ) 
1 m(H3P04 )m(OH- ) 

(4.5) 

(4.6) 

K = m(HPo;- ) 
2 m(H2PO;)m(OH- ) 

(4.7) 
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(4.8) 

K = m(PO~-) 
3 m(HPo:-)m(OH-) 

(4.9) 

(4.10) 

SUPCRT'92 is a software package that utilizes the HKF model presented in 

Section 1.3. It calculates the standard partial molal thermodynamic properties of 

minerals, gases and aqueous species at elevated temperatures and pressures. In this 

study, the same data as those used by the EPRI report and Quinlan ( 1996), were used for 

consistency between results. The program was used to calculate the thermodynamic 

properties for Equation (4.4), (4.6), and (4.8) from 25-300 °C, and the values are listed in 

Table 4.1, 4.2, and 4.3, respectively. 

Figure 4.4 is a plot oflog K versus temperature for the three phosphoric acid 

ionization reactions compared with literature data from Mesmer and Baes (1974). The 

agreement between the calculated data and literature data is excellent for K 1 and K 2, but 

no comparison is possible in this study for K 3 because it is an extrapolation oflow 

temperature data (Shock and Helgeson, 1988). 

Thermodynamic properties for the dissociation of H20 were also calculated from 

SUPCRT'92 and the data are listed in Table 4.4. Figure 4.5 is a plot oflog K versus 

temperature for the calculated data compared with the literature data reported by Sweeton 
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Table 4.1 Experimental equilibrium constants for the SNHP formation reaction 

NiO(s) + 2 Na\aq) + HPOl-(aq) ~ Na2Ni(OH)P04(s) 

t Average Average Average 
oc log Q logK K 

243 -0.2571 2.5773 3.779·102 

245 -0.6839 2.2548 1.798·102 

250 0.4031 3.0841 1.214·103 

252 0.3619 2.6607 4.578·102 

255 -0.0124 2.9658 9.242·102 

257 0.1356 3.1103 1.291·103 

260 0.1436 3.1637 1.457·103 

265. 0.5598 3.4764 2 .995·103 

268 0.9847 3.7902 6.169·103 

272 0.9448 3.7904 6.172·103 

280 1.2172 4.0475 1.116·104 

98 



Table 4.2 Standard state properties of the first and second ionizations of phosphoric 
acid 

H3P04(aq) + OH-(aq) ~ H2P04-(aq) +H20(l) 
H2P04-(aq) + OH-(aq) ~ HPOl-(aq) +H20(l) 

t p dH20 logK ~rG ~rH ~rS0 ~rV0 8rCp0 

oc bars g·cm-3 cal·mor1 cal·mor1 cal·mor1·K-1 cm3·mor1 cal·mor1·K-1 

1st ionization 

25.00 1.000 0.997 11.825 -16133 -15240 2.9 5.5 20.2 
50.00 1.000 0.988 10.972 -16224 -14789 4.3 4.0 16.5 
75.00 1.000 0.975 10.261 -16347 -14395 5.5 3.3 15.2 
100.00 1.013 0.958 9.662 -16498 -14019 6.5 3.2 14.9 
125.00 2.320 0.939 9.152 -16673 -13645 7.5 3.3 15.1 
150.00 4.757 0.917 8.714 -16873 -13265 8.4 3.8 15.3 
175.00 8.918 0.892 8.336 -17094 -12882 9.3 4.5 15.3 
200.00 15.536 0.865 8.008 -17337 -12499 10.1 5.3 15.5 
225.00 25.479 0.834 7.721 -17599 -12108 10.9 6.2 15.9 
250.00 39.736 0.799 7.469 -17880 -11726 11.7 7.2 14.2 
275.00 59.431 0.759 7.247 -18176 -11484 12.1 7.5 1.6 
300.00 85.838 0.712 7.043 -18471 -11870 11.5 2.6 -52.6 

2nd ionization 

25.00 1.000 0.997 6.790 -9263 -12335 -10.3 -3.7 -0.5 
50.00 1.000 0.988 6.089 -9004 -12349 -10.4 -5 .7 -0.7 
75.00 1.000 0.975 5.489 -8744 -12372 -10.4 -6.8 -1.2 
100.00 1.013 0.958 4.967 -8482 -12408 -10.5 -7.5 -1.8 
125.00 2.320 0.939 4.510 -8217 -12461 -10.7 -8.1 -2.5 
150.00 4.757 0.917 4.105 -7948 -12534 -10.9 -8.6 -3.3 
175.00 8.918 0.892 3.743 -7675 -12627 -11.1 -9.1 -4.2 
200.00 15.536 0.865 3.417 -7397 -12747 -11.3 -9.6 -5.6 
225.00 25.479 0.834 3.120 -7112 -12915 -11.7 -10.4 -8.2 
250.00 39.736 0.799 2.849 -6819 -13154 -12.1 -11.6 -11 .5 
275.00 59.431 0.759 2.597 -6515 -13456 -12.7 -13.5 -13 .0 
300.00 85.838 0.712 2.365 -6201 -13695 -13 .1 -15.1 -3.9 
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Table 4.3 Standard state properties of the third ionization of phosphoric acid 

HPOl-(aq) + OH-(aq) ~ Pol-(aq) +H20(l) 

~rS6 t p dH2o log K3 ~rG0 ~rH0 ~rV6 ~rCp6 
oc bars g·cm-3 cal·mor1 cal·mor1 cal·mor1K-1 cm3·mor1 cal·mor1·K-1 

25.00 1.000 0.997 1.673 -2283 -9825 -25.7 -13.9 -5.8 
50.00 1.000 0.988 1.105 -1634 -9959 -26.2 -16.2 -5.2 
75.00 1.000 0.975 0.612 -975 1009 -26.6 -17.7 -5.6 
100.00 1.013 0.958 0.179 -306 -1024 -27.0 -18.7 -6.5 
125.00 2.320 0.939 -0.205 374 -1042 -27.4 -19.7 -7.8 
150.00 4.757 0.917 -0.550 1065 -1063 -28.0 -20.6 -9.1 
175.00 8.918 0.892 -0.862 1768 -10875 -28.5 -21.6 -10.1 
200.00 15.536 0.865 -1.148 2485 -11146 -29.1 -22.7 -11.9 
225.00 25.479 0.834 -1.410 3214 -11479 -29.8 -24.1 -15.1 
250.00 39.736 0.799 -1.654 3959 -11887 -30.5 -26.0 -17.4 
275.00 59.431 0.759 -1.881 4719 -12247 -31.2 -27.9 -8.3 
300.00 85.838 0.712 -2.089 5480 -12002 -30.7 -25.1 48.4 
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Table 4.4 Standard state properties of the dissociation of water 

H20(l) ~ H+(aq) + OK(aq) 

t p dH2o logKw ~rG0 ~rH0 ~rS0 ~rV0 ~rCp oc bars g·cm-3 cal·mor1 cal·mor1 I r 1 K-1 cm3·mor1 cal·mor1·K-1 
ca·mo · 

25.00 1.000 0.997 -27.990 38185 26680 -38.5 -45.6 -101.2 
50.00 1.000 0.988 -26.541 39245 24391 -45.9 -44.5 -85.4 
75.00 1.000 0.975 -25.406 40472 22305 -52.1 -45.6 -82.9 
100.00 1.013 0.958 -24.510 41849 20196 -58.0 -48.4 -86.7 
125.00 2.320 0.939 -23.806 43370 17933 -63.9 -52.9 -95.1 
150.00 4.757 0.917 -23.262 45039 15409 -70.0 -59.6 -107.8 
175.00 8.918 0.892 -22.854 46864 12520 -76.6 -69.1 -125.4 
200.00 15.536 0.865 -22.567 48858 9081 -84.0 -82.5 -154.6 
225.00 25.479 0.834 -22.394 51045 4719 -93.0 -102.4 -204.6 
250.00 39.736 0.799 -22.335 53465 -1149 -104.4 -134.1 -287.0 
275.00 59.431 0.759 -22.398 56179 -9368 -119.6 -186.9 -422.7 
300.00 85.838 0.712 -22.600 59271 -21427 -140.8 -278.5 -680.6 
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et al. (1974) and the agreement is again excellent. A difference plot ofthe agreement 

between calculated and literature data is shown in Figure 4.6. The relative difference plot 

shows that the highest percent difference is only ~2.1 %. 

Data from SUPCRT'92 for other species used in our study are tabulated in Tables 

4.5, 4.6, and 4.7. The standard state properties are listed in Table 4.5. Table 4.6lists the 

HKF equation of state coefficients for these species and Table 4. 7 contains the Maier-

Kelley coefficients for nickel oxide and SNHP. 

4.3.2 Equilibrium Constants and Thermodynamic Properties of SNHP 

Once the equilibrium concentrations of total sodium and total phosphorus from 

solubility and kinetic measurements were converted to units of molality, MULTEQ was 

used to calculate the composition concentrations of relevant species at each temperature 

studied. The activity coefficient model described in Section 1.4, that incorporates the 

Meissner equation used in MUL TEQ, was used to calculate the equilibrium constants for 

Equation ( 4.1) according to the following equation: 

ln K eq = lnQ + ln[--2-
1
--] 

(rNa+ ) (r HPol - ) 
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Table 4.5 Standard state properties of aqueous species at 25 °C and 1 bar 

~rG0 ~rH0 so yo Cp 
cal·mor1 cal·mor1 cal·mor1·K-1 cm3·mor1 1 r 1 K-1 ca··mo · 

H3P04 (aq) -273100 -307920 38.000 48.2 23.6 
HzP04- (aq) -270140 -309820 21.600 30.9 -6.9 
HPol- (aq) -260310 -308815 -8.000 4.4 -58.0 
Pol-(aq) -243500 -305300 -53.000 -32.3 -114.3 
Na+ (aq) -62591 -57433 13.960 -1.2 9.1 
H+ (aq) 0 0 0 0 0 
OH- (aq) -37595 -54977 -2.560 -4.7 -32.6 
HzO (1) -56688 -68317 16.712 18.1 18.0 
NiO (s) -50573 -57300 9.080 10.970 10.6 
SNHP(s) 431661 468325 56.778 48.766 
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Table 4.6 HKF equation of state coefficients for aqueous speciesa 

a1 x 10 a2 x 10- a3 '4 X 10- CJ c2 x 10-

H3P04(aq) 8.2727 12.4182 0.8691 -3.2924 17.9708 1.7727 -0.2200 
H2P04-(aq) 6.4875 8.0594 2.5823 -3.1122 14.0435 -4.4605 1.3003 
HPO/-(aq) 3.6315 1.0857 5.3233 -2.8239 2.7357 -14.9103 3.3363 
Pol-(aq) -0.5259 -9.0654 9.3131 -2.4042 -9.4750 -26.4397 5.6114 
Na+(aq) 1.8390 -2.285 3.2560 -2.7260 18.1800 2.9810 0.3306 
H+(aq) 0 0 0 0 0 0 0 
OH-(aq) 1.2527 0.0738 1.8423 -2.7821 4.1500 -10.3460 1.7246 

a Units: a~, cal·mor1·bar-1
; a2, cal·mor1

; a3, cal·K·mor1·bar-1
; <4, cal·K·mor1

; c1, cal·mor1 

·K-1
; c2, cal·K·mor1

; ro, cal·mor1
• 
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Table 4.7 Maier-Kelley coefficients for heat capacities of solids 

a b X 10 C X 10- Temperature 
cal·mor1·K1 1 r 1 K-2 1 r 1 K-1 of transition ca·mo · ca·mo · 

COK) 
NiO (s) -4.99 37.58 3.89 
Bunsenite (s) -4.99 37.58 3.89 525 

13.88 0.0 0.0 565 
11.18 2.02 0.0 

SNHP (s) 48.766 0.0 0.0 
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Equilibrium constants are listed in Table 4.8. Equation ( 4.1) is not an 

isocoulombic reaction, meaning that ~rCp 0 is not independent of temperature. Because 

the temperature-dependance of Cp 0 for aqueous ions is highly asymmetric, the data are 

very difficult to fit. Thus an isocoulombic reaction equation is desirable so that, even 

though ~rCp 0 is not equal to zero, it is approximately independent of temperature 

(Mesmer et at., 1988). This can be accomplished by adding the first and second 

ionizations of phosphoric acid, Equations (4.4) and (4.6) respectively, and two 

equivalents of the water dissociation reaction in Equation ( 4.1 0), to the experimental 

Equation ( 4.1) results calculated in this study. This results in new equilibrium constants 

for the following isocoulombic reaction: 

(4.12) 

The equilibrium constants for Equation (4.12) are listed in Table 4.9. 

SNHP was not synthesized as a pure solid in this study; therefore no calorimetric 

measurements could be performed in order to obtain an experimental heat capacity of 

SNHP. Thus we used another method to find Cp 0 (SNHP) in order to calculate a value for 

the heat capacity of the reaction. The value for the heat capacity of SNHP was 

calculated using a method by Qui and White (2001), called the "constituent additivity" 

model. In this method, the heat capacities of inorganic salts are calculated from 

additivity of the experimental heat capacities of the appropriate proportions oftheir 
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Table 4.8 Experimental data calculations for the SNHP formation reaction 

NiO(s) + 2 Na\aq) + HPOl-(aq) ~ Na2Ni(OH)P04(s) 

t ln Q I Y± (Na +j Y±(HPO/) lnK 
oc rnol·kg-1 

235 -2.5841 3.7398 0.3521 0.01537 3.6788 
240 -1.8436 2.9115 0.3360 0.01275 4.6995 
243 -0.5919 1.9406 0.3370 0.01289 5.9345 
245 -1.5748 2.7250 0.3238 0.01099 5.1918 
250 0.9265 1.1247 0.3499 0.01500 7.2276 
252 -0.8334 2.0967 0.3135 0.00966 6.1264 
255 -0.0286 1.5913 0.3189 0.01034 6.8289 
257 0.3123 1.4587 0.3192 0.01039 7.1632 
260 0.3307 1.4305 0.3138 0.00970 7.2840 
265 1.2889 1.0090 0.3265 0.01136 8.0048 
268 2.2674 0.7802 0.3407 0.01348 8.7273 
272 2.1755 0.7518 0.3355 0.01267 8.7277 
280 2.8026 0.6085 0.3375 0.01298 9.3196 
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Table 4.9 Equilbrium constants for the isocoulombic reaction 

1s 2n Water I so- I so-
t ionization ionization Dissociation coulombic coulombic 

oc logK1 logK2 logKw logK K 

235 7.6170 3.0090 -11.1780 -10.1336 7.352·10-11 

240 7.5660 2.9550 -11.1720 -9.7830 1.648·1 o-10 

243 7.5370 2.9220 -11.1700 -9.3029 4.979·10-10 

245 7.5170 2.9010 -11.1690 -9.6644 2.166·1 o-10 

250 7.4690 2.8490 -11.1670 -8.8778 1.325·1 o-09 

252 7.4510 2.8280 -11.1680 -9.3963 4.015·10-10 

255 7.4230 2.7970 -11.1690 -9.1523 7.042·10-10 

257 7.4040 2.7760 -11.1700 -9.0480 8.954·10-10 

260 7.3770 2.7460 -11.1720 -9.0587 8.736·10-10 

265 7.3330 2.6960 -11.1790 -8.8530 1.403·1 o-09 

268 7.3070 2.6660 -11.1840 -8.6054 2.481 ·1 o-09 

272 7.2720 2.6270 -11.1920 -8.6951 2.018·10-09 

280 7.2050 2.5490 -11.2140 -8.6253 2.370·1 o-09 
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simple "constituent" compounds. For SNHP, the calculation is represented by the 

following equations: 

c; = Inc; c oxides) (4.13) 

(4.14) 

It was found that this model gives reasonably accurate heat capacity at or above about 

150 K, provided that the coordination within the constituent solids is similar to the 

complex solids and there are no solid-solid phase transitions. The heat capacity value 

calculated for SNHP using this method is Cp0 = 48.766 cal·K-1·mor1
• 

Once the equilibrium constants for the isocoulombic reaction were calculated, the 

following equation was fitted to the data: 

11,H
0 

( 1 1) 11,c; [l (T2 ) T. ] lnK =lnK --- --- +-- n- +--1 
T2 T, R T T. R T. T 

2 I I 2 

(4.15a) 

Here, ln Kr. and /1H~ were used as fitting parameters whereas 11rCp 0 was fixed at the 
I I 

room temperature value of 11rCp0 = -0.134 cal·mor1·K-1 (from Table 4.5). The extended 

van't Hoff plot is shown in Figure 4.7. The activity coefficient model works best at 250 

°C, giving us a more accurate value for the equilibrium constant (Tremaine et al, 2002), 

thus the reference temperature was set at that temperature (T1 = 523.15 K). In our 
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solubility runs, we used the same equilibration time, 48 hrs, as that used by Quinlan 

(1996) for SIHP but, from our kinetic studies, it was determined that 75 hours was 

needed for the reaction to equilibrate at 250 °C. Therefore the best definitive solubility 

point was obtained from the careful kinetic experiments at 250 °C, in which equilibrium 

was approached from conditions of super-saturation and under-saturation. Thus the curve 

fit was forced to go through this data point. Furthermore, the data points at 23 5 and 240 

°C were deleted from the curve fitting because the activity coefficients have larger errors 

associated with them and the reaction may not have been at equilibrium. From the plot in 

Figure 4. 7, it can be seen that the fit also gave good agreement at the higher temperatures 

(t = 252 °C- 280 °C). 

Equation ( 4.15a) with the fitted and fixed parameters included takes the form: 

lnK = _20.4691 _ 11730.4845 (__!_ _ 1 J 
T

2 R T2 523.15 

+ -0.134[ln( I; )+ 523.15 _ 1] 
R 523.15 T;_ 

(4.15b) 

From these data-fitting results, the values InK = -20.4691 and 6rH0 = 11730.5 cal·mor1 

at 250 °C were obtained. The value ofln K = -29.0191 at 25 °C was found by 

extrapolation. Since 6rCp 0 was assumed independent of temperature, the value of 6rH0 = 

11760.6 cal·mor1 at 25 °C could be calculated from the equation: 

(4.16) 
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where T1 = 523.15 K and T2 = 298.15 K. The remaining thermodynamic properties of 

SNHP were calculated using well known thermodynamic equations found in Section 

1.3.1. 

Once the standard state properties of SNHP were calculated, they were entered 

into the SUPCRT'92 database and the thermodynamic program was used to calculate the 

equilibrium constants and Gibb' s free energies of the reaction in Equation ( 4.1 ). Figure 

4.8 shows a comparison of the experimental and calculated results for this study. Table 

4.10 contains the calculated results for SNHP formation from SUPCRT'92. 

4.4 Comparison With Data From Other Workers 

Ziemniak and Opalka (1988) reported solubility data for SNHP at two separate 

Na!P04 mole ratios, 2.2 and 2.5, over temperatures within the range of 256-296 °C. 

Unlike the present study, the reaction was only allowed to equilibrate for 4 to 16 hours at 

each measurement temperature before a sample was taken. From our kinetic studies, it 

was determined that this is not enough time for the reaction to reach completion. Also, 

calculations were performed using differing methods. Ziemniak and Opalka (1988) 

calculated equilibrium constants using the extended Debye-Huckel equation. In 

comparing the Ziemniak and Opalka (1998) data with those obtained in this study, the 

reported raw data had to be re-calculated using the same activity coefficient model used 

in this work. Figure 4.9 shows a comparison of the experimental and calculated 
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Table 4.10 Standard state properties of the SNHP formation reaction 

NiO(s) + 2 Na\aq) + HPO/-(aq):;:!: Na2Ni(OH)P04(s) 

t p dH2o logK 6rG6 6rH0 6rS0 6rV0 6rCp0 

oc bars g·cm-3 cal·mor1 cal·mor1 cal·mor1·K-1 cm3·mor1 1 r 1 K-1 ca·mo · 

25.00 1.000 0.997 -3.228 4404 12656 27.8 -12.9 77.9 
50.00 1.000 0.988 -2.460 3637 14362 33.3 -14.4 62.2 
75.00 1.000 0.975 -1.725 2747 15873 37.8 -13.7 60.1 
100.00 1.013 0.958 -1.024 1749 17417 42.1 -11.2 64.4 
125.00 2.320 0.939 -0.353 642 19129 46.5 -6.8 73.5 
150.00 4.757 0.917 0.300 -580 21121 51.4 -0.1 87.1 
175.00 8.918 0.892 0.941 -1930 23502 56.8 9.6 106.1 
200.00 15.536 0.865 1.582 -3426 26475 63.3 23.6 137.9 
225.00 25.479 0.834 2.236 -5097 30458 71.4 44.7 193.0 
250.00 39.736 0.799 2.921 -6992 36098 82.4 78.8 284.1 
275.00 59.431 0.759 3.661 -9182 44319 97.7 136.5 432.8 
300.00 85.838 0.712 4.485 -11762 56694 119.5 236.5 710.8 
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equilibrium constants obtained in this work with those of Ziemniak and Opalka ( 1988), 

and Figure 4.10 compares the Gibbs free energy of each. While the values at the highest 

temperatures compare well, those at lower temperature do not. 

The Gibbs free energy and enthalpy of formation ofNazNi(OH)P04 reported by 

Ziemniak and Opalka (1988) were 11 1G;98 = -415.7266 and 11 1H;98 = -430.2103 

kcal·mor1 respectively. Those obtained from this study were 11 1G;98 = -431.6615 and 

11 1H;98 = -468.3254 kcal·mor1
. The discrepancy is undoubtedly due to lack of 

equilibration in this study and those of Ziemniak and Opalka (1988), at temperatures 

below 250 °C. 

4.5 Future Work 

The work presented in this study has provided reliable solubility data for the 

formation of SNHP under boiler conditions and from which thermodynamic data were 

calculated at 250 °C. 

While the value of /1~0(SNHP) and the equilibrium constant for Equation ( 4.1) 

have been accurately determined, our value of the enthalpy 11rH\SNHP) contains more 

uncertainty. Further work should be done to obtain more accurate parameters for SNHP, 

by measuring solubility data over a wider range of temperatures or at more temperatures 

within the 235-280 °C range investigated in this study. Allowing at least ~75 hours for 

equilibrium to be reached at each sample temperature would give more reliable results, 
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and a kinetic study should be carried out at temperatures below 250 °C since the reaction 

is slower at these temperatures. 

In fitting a model to the experimental data, a fixed value was used for the heat 

capacity of the reaction based on the estimated value for that of SNHP. If a sufficiently 

pure sample of SNHP could be synthesized, an experimental value for Cp(SNHP) should 

be determined from calorimetric studies. This would improve the reliability of the fitted 

curve, and thus the thermodynamic parameters obtained from it. 
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5.0 CONCLUSIONS 

The synthesis of maricite developed by Quinlan (1996) was shown to be 

reproducible and is a reliable hydrothermal means of synthesizing single crystals of 

maricite. SIHP crystals were also synthesized under conditions similar to the maricite 

synthesis but at a much higher sodium phosphate mole ratio than in the studies done by 

Quinlan (1996). Larger SIHP crystals were obtained from two different chelate 

decomposition reactions but future work on these reactions could include trying the 

synthesis at a higher Na/P04 mole ratio. 

It can be concluded from this study that ammonium-iron-phosphate reaction 

products can form under boiler conditions. The synthesis of (~)Fe11Fem(P04)2 by 

Boudin and Lii (1998) was repeated under conditions similar to those seen in boilers, and 

single crystals were synthesized, providing a new simpler synthesis for 

CNH4)Fe11Fem(P04)2• Another ammonium iron phosphate hideout product that can 

indeed be formed at temperatures below 300 °C is (NH4)Fe11(P04)-H20. This is a new 

synthesis for this compound. 

The sodium-nickel-phosphate hideout product originally reported by Ziemniak 

and Opalka (1988) was synthesized both from NiO and the decomposition of 

H+[NiNTA-] under boiler conditions. Although no pure samples of SNHP were obtained 

from either set of experiments, an alternative starting material to use in the future could 

be NaNiNT A. Since there is no H+ to neutralize, it may be used to synthesize SNHP at a 
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lower Na/P04 mole ratio than the reactions with H+[NiNTA-] in this study. Also, it 

provides another source of sodium for the reaction. 

Equilibrium solubility data and kinetic data for the formation ofNa2Ni(OH)P04 

have been obtained at boiler conditions from 235 to 280 °C. Ziemniak and Opalka (1988) 

also provided solubility and thermodynamic data for SNHP and the solubility work 

performed in this study has provided additional solubility data for the formation of SNHP 

under boiler conditions and a preliminary entry for the reaction product in the 

thermodynamic database. The thermodynamic model gives good agreement with the 

experimental data collected considering the limited amount of solubility data obtained in 

our study. 
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TABLE A.I.l: X-Ray Diffraction Results for Maricite 

Quinlan (1996), Quinlan (1996), 
Product synthesized from synthesized from JCPDS database 
RGH05 FeNTA Fe powder Maricite 

dobs l/l10o dobs l/l10o dobs l/l10o dobs I/lwo 

4.4944 33.9 4.514 45 4.512 49 4.500 5 
4.3969 13.4 4.417 31 4.409 53 4.400 20 

3.768 13 3.775 54 3.757 10 
3.6995 13.0 3.714 18 3.721 63 3.705 40 
3.3550 6.6 
2.7220 70.0 2.730 28 2.728 84 2.729 90 

2.710 36 2.713 85 2.707 80 
2.5751 100 2.582 100 2.579 100 2.574 100 
2.5216 11.8 2.527 17 2.522 43 2.525 30 
2.4282 7.5 2.432 23 2.431 30 2.431 15 
2.3991 6.5 2.401 28 2.401 10 
2.2466 10.6 2.254 22 2.244 1 

2.203 8 
2.0934 8.9 2.098 10 2.096 30 2.096 10 

2.062 6 2.062 2 
2.027 49 

1.8798 22.7 1.883 15 1.880 41 1.881 30 
1.8518 16.0 1.854 21 1.852 35 1.853 60 
1.7158 6.9 1.717 13 1.717 23 1.714 15 
1.6934 7.9 1.697 10 1.690 22 1.696 1 

1.681 21 
1.654 7 1.653 21 

1.5183 18.0 1.520 28 1.519 10 
1.5073 11.6 1.509 27 1.508 15 
1.4982 21.3 1.490 15 
1.4282 11.0 1.429 5 
1.2880 13.8 1.288 5 
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TABLE A.I.2: X-Ray Diffraction Results for SIHP from PeNTA Decomposition 

Quinlan( 1996) JCPDS JCPDS JCPDS 
Product SIHP Database Database Database 

RGH32B From FeP04 Magnetite Maricite Na3P04 

dabs 1/IIOo dobs l/l10o dobs III10o dobs I/I10o dobs III10o 

7.7812 18.3 7.769 78 
7.3562 15.2 7.367 73 

7.160 30 
5.3421 27.9 5.343 32 
4.8540 31.8 4.8520 8 

4.500 5 
4.400 20 

4.180 90 
3.757 10 
3.705 40 3.700 50 

3.6345 29.2 3.637 7 
3.580 60 

3.4285 17.9 3.432 15 
3.3190 10.9 3.323 19 
2.9658 10.5 2.9670 30 

2.729 90 
2.707 80 

2.6661 100 2.668 100 
2.6205 41.2 2.624 6 

2.582 100 
2.5571 29.4 2.557 8 2.574 100 
2.5494 18.1 2.5320 100 2.531 70 

2.525 30 
2.478 40 

2.450 13 2.4243 8 2.431 15 2.433 70 
2.401 10 2.389 50 

2.279 40 
2.244 1 

2.1335 8.4 2.116 5 
2.0993 20 2.096 10 

2.0723 7.1 2.081 8 2.062 2 
1.995 30 

1.9390 37.9 1.940 60 1.955 30 
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TABLE A.I.2 (continued) 

Quinlan( 1996) JCPDS JCPDS JCPDS 
Product SIHP Database Database Database 

RGH32B From FeP04 Magnetite Maricite Na3P04 

dobs I/l10o dobs I/I10o dobs III10o dobs III10o dobs I/I10o 

1.935 34 1.916 30 
1.876 4 1.881 30 

1.853 60 1.854 40 
1.8353 13.7 1.837 38 

1.832 23 
1.7771 11.3 1.779 4 1.792 50 

1.7146 10 1.714 15 
1.696 1 

1.6158 30 
1.5438 22.7 1.546 5 1.550 20 

1.519 10 
1.5035 21.8 1.505 4 1.4845 40 1.508 15 1.498 40 

1.490 15 1.472 70 
1.4192 2 1.429 5 

1.383 20 
1.334 5 1.3277 4 

1.2807 10 1.288 5 1.291 30 
1.2659 4 
1.2119 2 
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TABLE A.I.3: X-Ray Diffraction Results for SIHP from PeNTA Decomposition 

Quinlan JCPDS JCPDS JCPDS JCPDS 
Product (1996) Database Database Database Database 

RGH59B SIHP Magnetite Hematite Maricite Na3P04 

dobs IIIIoo dobs I/I10o dobs III10o dobs I/I10o dobs III10o dobs III10o 

7.7610 21.8 7.769 78 
7.3373 19.7 7.367 73 

7.160 30 
5.3326 25.7 5.343 32 
4.8524 14.8 4.8520 8 

4.500 5 
4.400 20 

4.180 90 
3.757 10 

3.6840 30 3.705 40 3.700 50 
3.6309 19.8 3.637 7 

3.580 60 
3.4245 19.4 3.432 15 
3.3154 14.6 3.323 19 

2.9670 30 
2.7211 26.0 2.729 90 

2.7000 100 2.707 80 
2.6638 100 2.668 100 
2.6202 24.6 2.624 6 
2.5806 15.0 2.582 100 
2.5706 11.0 2.557 8 2.574 100 

2.5320 100 2.531 70 
2.5190 70 2.525 30 

2.478 40 
2.4425 6.4 2.450 13 2.4243 8 2.431 15 2.433 70 

2.401 10 2.389 50 
2.2920 3 2.279 40 

2.244 1 
2.2070 20 

2.116 5 
2.0993 20 2.096 10 

2.0683 8.7 2.081 8 2.0779 3 2.062 2 
1.995 30 

1.9377 38.4 1.940 60 1.955 30 
1.935 34 1.916 30 
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TABLE A.I.3 (continued) 

Quinlan JCPDS JCPDS JCPDS JCPDS 
Product (1996) Database Database Database Database 

RGH59B SIHP Magnetite Hematite Maricite Na3P04 

dobs I/I10o dabs III10o dobs III10o dobs III10o dobs I/I10o dobs l/l10o 

1.8755 12.2 1.876 4 1.881 30 
1.8518 10.6 1.8406 40 1.853 60 1.854 40 
1.8343 16.7 1.837 38 

1.832 23 
1.779 4 1.792 50 

1.7146 10 1.714 15 
1.6941 45 1.696 1 
1.6367 1 

1.6158 30 1.6033 5 
1.5992 10 

1.5436 14.3 1.546 5 1.550 20 
1.519 10 

1.5029 22.6 1.505 4 1.4845 40 1.4859 30 1.508 15 1.498 40 
1.490 15 1.472 70 

1.4538 30 
1.4192 2 1.4138 1 1.429 5 

1.383 20 
1.334 5 1.3277 4 1.3497 3 

1.3115 10 
1.2807 10 1.3064 6 1.288 5 1.291 30 
1.2659 4 1.2592 8 

1.2272 4 
1.2119 2 1.2141 2 
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TABLE A.I.4: X-Ray Diffraction Results for SlliP from PeNTA Decomposition 

Quinlan (1996) 
Product SIHP from JCPDS database JCPDS database 

RGH60A FeP04 Na3P04 FezPOs 

dobs III10o dobs III10o dobs III10o dobs I/I10o 

13.9757 21.0 
7.7593 19.2 7.769 78 
7.3563 19.9 7.367 73 
5.3410 28.3 5.343 32 

5.2500 20 
4.8533 29.9 4.8800 20 

4.3350 40 
4.2830 11.9 4.2750 50 

3.6900 20 
3.6346 29.7 3.637 7 
3.4260 14.4 3.432 15 
3.3223 13.1 3.323 19 3.3200 100 

3.2200 20 
2.9520 19 
2.7440 70 

2.6685 100.0 2.668 100 2.6550 30 
2.6183 72.6 2.624 6 2.6250 100 2.6220 25 
2.5528 52.2 2.557 8 

2.450 13 2.4300 28 
2.3570 19 
2.3170 50 

2.2510 20 
2.2376 11.2 2.2290 15 
2.1336 9.1 2.116 5 2.1390 10 

2.081 8 2.0620 25 
1.9940 3 

1.9415 18.9 1.940 60 
1.935 34 
1.876 4 1.8530 30 1.8640 19 

1.8373 13.3 1.837 38 
1.832 23 

1.7731 11.7 1.779 4 
1.7180 1 
1.7080 1 
1.6580 5 1.6530 25 
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TABLE A.I.4 (continued) 

Quinlan ( 1996) 
Product SIHP from JCPDS database JCPDS database 

RGH60A FeP04 Na3P04 Fe2POs 

dobs I/11 00 dobs IIIJOo dobs IIIJOo dobs 1/IJOo 

1.6090 55 
1.5760 14 

1.5456 20.3 1.546 5 1.5380 30 
1.5042 20.8 1.505 4 1.5150 20 
1.4770 8.8 1.4770 12 

1.4260 10 1.4470 18 
1.334 5 1.3310 20 

1.3150 18 
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TABLE A.I.S: X-Ray Diffraction Results for SIHP from Fe2(C4H40 6) 3 Decomposition 

JCPDS 
Quinlan JCPDS JCPDS Database JCPDS 

Product (1996) Database Database Sodium Database 
RGH29A SIHP Maricite Na3P04 Tartrate H3P04·0.5 

From FeP04 Hydrate H20 

dobs IIIIoo dobs I/I10o dobs IIIIOo dabs IIIIOo dobs III10o dobs III10o 

9.0172 27.4 9.031 100 
7.7786 14.8 7.769 78 
7.3730 9.8 7.367 73 

7.160 30 
7.020 40 

5.730 29 
5.3419 24.0 5.343 32 
4.8488 9.8 4.890 46 

4.698 25 
4.4826 22.2 4.500 5 4.498 41 

4.400 20 
4.180 90 

3.880 46 
3.757 10 

3.7062 6.6 3.705 40 3.700 50 3. 720 52 
3.680 15 

3.6348 14.0 3.637 7 3.633 42 3.650 100 
3.580 60 

3.5566 13.3 3.560 44 
3.510 12 

3.482 25 
3.4213 13.8 3.432 15 

3.390 11 
3.3125 36.0 3.323 19 3.339 17 

3.332 18 
3.250 68 
3.210 44 

2.9943 15.9 2.980 3 
2.964 22 

2.910 26 
2.865 21 

2.8518 9.8 2.856 21 2.840 14 
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TABLE A.I.S (continued) 

JCPDS 
Quinlan JCPDS JCPDS Database JCPDS 

Product (1996) Database Database Sodium Database 
RGH29A SlliP Maricite Na3P04 Tartrate H3P04·0.S 

From FeP04 Hydrate HzO 

dobs III10o dobs Ill10o dobs III10o dobs III10o dobs III10o dobs III10o 

2.830 15 
2.8021 8.1 1.797 59 1.810 4 
2.7148 16.4 1.719 90 

1.707 80 
2.6614 100 1.668 100 1.669 10 

2.624 6 2 .622 22 
2.5828 21.8 1.581 100 1.591 6 
2.5684 12.8 1.557 8 1.574 100 

2.531 70 
2.525 30 

2.478 40 2.481 34 
2.450 13 2.431 15 2.433 70 2.466 18 2.446 14 

2.438 12 
2.3986 9.2 1.401 10 1.389 50 

2.311 28 
2.279 40 

2.2396 8.1 1.144 1 1.149 10 1.154 8 
2.1109 6.8 1.116 5 

2.096 10 
2.081 8 2.062 2 2.063 27 

1.995 30 
1.9378 16.9 1.940 60 1.955 30 

1.935 34 1.916 30 
1.876 4 1.881 30 

1.8551 19.3 1.853 60 1.854 40 1.860 10 
1.8310 9.4 1.837 38 

1.832 23 
1.779 4 1.792 50 

1.714 15 
1.696 1 

1.5436 5.0 1.546 5 1.550 10 
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TABLE A.I.S (continued) 

JCPDS 
Quinlan JCPDS JCPDS Database JCPDS 

Product (1996) Database Database Sodium Database 
RGH29A SIHP Maricite Na3P04 Tartrate H3P04·0.5 

From FeP04 Hydrate HzO 

dobs Ill too dobs Ill too dobs Ill too dobs I/IJOo dobs 111100 dobs Ill 10o 

1.519 10 
1.5008 5.0 1.505 4 1.508 15 1.498 40 

1.490 15 1.472 70 
1.429 5 

1.383 20 
1.334 5 

1.288 5 1.291 30 
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TABLE A.l.6: X-Ray Diffraction Results for SIHP from Fe2(C20 4)3'5H20 
Decomposition 

Quinlan ( 1996) JCPDS JCPDS 
Product SIHP Database Database 

RGH78B From FeP04 FezPOs Na3P04 

dabs I/I10o dabs III10o dabs I/I10o dabs VI10o 

7.9709 14.4 
7.8460 47.6 

7.769 78 
7.3952 11.3 7.367 73 

7.160 30 
5.3712 27.2 5.343 32 

5.2500 20 
4.8939 16.0 4.8800 20 

4.180 90 
3.700 50 

3.6525 24.8 3.637 7 
3.580 60 

3.4474 13.4 3.432 15 
3.4400 14.7 
3.3333 8.0 3.323 19 3.3200 100 
3.3261 12.8 

3.2200 20 
2.9520 19 
2.7440 70 

2.6727 100 2.668 100 
2.6359 28.1 2.624 6 2.6220 25 
2.5637 22.0 2.557 8 2.582 100 

2.531 70 
2.478 40 

2.450 13 2.4300 28 2.433 70 
2.389 50 

2.3570 19 
2.3170 50 

2.279 40 
2.1369 6.7 2.116 5 
2.1168 7.9 
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TABLE A.l.6 (continued) 

Quinlan ( 1996) JCPDS JCPDS 
Product SIHP Database Database 

RGH78B From FeP04 FezPOs Na3P04 

<fobs I/I10o dobs I/I10o dobs VI10o dobs III10o 

2.081 8 2.0620 25 
1.995 30 

1.9412 48.2 1.940 60 1.955 30 
1.935 34 1.916 30 
1.876 4 

1.8640 19 1.854 40 
1.8341 10.8 1.837 38 

1.832 23 
1.7876 6.5 1.779 4 1. 792 50 

1.6530 25 
1.6090 55 
1.5760 14 

1.5458 16.7 1.546 5 1.5380 30 1.550 20 
1.5029 13.4 1.505 4 1.498 40 

1.4770 12 1.472 70 
1.4470 18 

1.383 20 
1.334 5 1.3310 20 

1.3150 18 
1.291 30 
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TABLE A.l.7: X-Ray Diffraction Results for (NH4)Fez(P04)z from Fez(C4H406)J 
Decomposition 

Boudin JCPDS JCPDS 
and Lii (1998) JCPDS database database 

Product (NH4)Fez database Fe(P04) (NH4)Ils(P04)2 
RGII51A (P04)z Hematite ·2Hz0 ·HzO 

dobs III1oo dobs I/110o dabs III10o dobs I/I10o dobs III10o 

8.2854 43.73 
6.5200 50 

6.2014 63.2 
6.0300 10 

5.9792 15.57 
5.6685 15.1 5.6508 56.41 

5.5600 10 
5.5090 60 

5.4645 9.3 5.4500 50 
4.9540 30 
4.3830 85 

4.1315 9.9 4.1446 11.79 
3.9960 45 

3.9200 15 
3.8700 10 
3.8300 70 

3.7190 25 
3.6840 30 

3.6000 10 
3.5700 100 

3.5033 15.8 
3.3975 8.68 

3.1172 16.3 3.1140 100 
3.1039 12.0 

3.0562 6.96 
3.0188 14.45 3.0020 45 

2.9836 100.0 1.9894 100.0 
2.9600 35 

2.9490 45 
2.7299 64.6 1.7360 7.51 
2.6890 51.3 1.7000 100 1.6900 5 
2.6156 8.7 1.6310 11 
2.5341 12.9 1.5164 15.19 1.5460 50 
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TABLE A.I.7 (continued) 

Boudin JCPDS JCPDS 
and Lii (1998) JCPDS database database 

Product (NR+)Fe2 database Fe(P04) (~4)Ifs(P04)2 
RGII51A (P04)2 Ifematite ·2If20 ·If20 

dobs l/l10o dabs III10o dobs l/l10o dobs l/l10o dobs III10o 

2.5310 35 
2.4994 21.8 2.5007 13.8 2.5190 70 
2.4938 15.4 2.4700 5 

2.4600 10 
2.4424 6.22 2.4440 25 

2.2920 3 
2.2070 20 2.2130 15 

2.1545 9.5 2.1785 3.05 2.1530 10 
2.1320 35 

2.0779 3 
2.0030 20 

1.9773 10.4 1.9712 2.88 1.9580 20 1.9750 5 
1.9225 9.2 1.9280 5 

1.8836 8.22 
1.8540 9.37 1.8406 40 

1.8076 7.3 1.8248 9.56 1.8058 16 1.8210 5 
1. 7940 5 

1.6858 10.5 1.6905 11.71 1.6941 45 1.6950 5 
1.6367 1 1.6390 15 
1.6033 5 
1.5992 10 

1.5335 9.58 1.5557 20 
1.4868 8.8 1.4886 4.12 1.4859 30 1.4789 19 1.4950 5 

1.4746 11 
1.4538 30 
1.4138 1 
1.3497 3 
1.3115 10 
1.3064 6 
1.2592 8 
1.2276 4 
1.2141 2 
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TABLE A.I.8: X-Ray Diffraction Results for (NH4)Fez(P04)2 from Fez(C,JI406)3 
Decomposition 

Boudin JCPDS JCPDS 
Product and Lii (1998) Database Database 

RGH62A (NH4)Fez(P04)2 Hematite (NH4)HzP04 

dobs l/l10o dobs III10o dabs III10o dobs I/I10o 

8.2854 43.73 
6.3203 41.0 
6.2460 57.0 

5.9792 15.57 
5.6508 56.41 

5.3243 64 
4.1446 11.79 

3.7511 15.6 3. 7507 50 
3.6840 30 

3.3975 8.68 
3.1237 14.3 
3.0884 14.5 3.0779 94 
3.0678 8.0 3.0562 6.96 3.0673 100 

3.0188 14.45 
2.9838 100 2.9894 100 
2.7257 51.6 2. 7360 7.51 
2.6914 47.6 2.7000 100 
2.6804 13.2 2.6604 25 

2.6525 25 
2.5430 16.0 2.5264 15.19 
2.4970 28.1 2.5007 13.8 2.5190 70 
2.4940 34.2 

2.4424 6.22 
2.3877 14 
2.3725 13 

2.2920 3 
2.2070 20 

2.1542 18.3 2.1785 3.05 
2.1166 9.5 
2.0901 15.5 2.0779 3 

2.0146 59 
2.0091 67 

1.9792 18.3 1.9712 2.88 
1.8836 8.22 
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TABLE A.I.8 (continued) 

Boudin JCPDS JCPDS 
Product and Lii (1998) Database Database 

RGH62A (NH4)Fez(P04)z Hematite (NH4)HzP04 

dobs III10o dobs III10o dobs l/110o dobs 1/IJOo 

1.8540 9.37 1.8406 40 
1.8225 26.3 1.8248 9.56 1.7748 11 
1.7400 8.9 

1.6905 11.71 1.6941 45 1.6871 8 
1.6776 10 

1.6367 1 
1.6033 5 1.6036 21 
1.5992 10 1.6010 21 

1.5147 17.8 1.5335 9.58 
1.4886 4.12 1.4859 30 1.4771 9 

1.4716 11 
1.4538 30 
1.4138 1 

1.3711 15 
1.3497 3 1.3312 12 
1.3115 10 
1.3064 6 
1.2592 8 1.2541 13 
1.2276 4 
1.2141 2 
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TABLE A.I.9: X-Ray Diffraction Results for (NH4)Fe(P04)·HzO from PeNTA 
Decomposition 

Generated 
Product Pattern for JCPDS database 

RGH18B (NH4)F e(P04)· HzO Hematite 

dobs I/I10o dabs III10o dobs l/l10o 

8.7734 100.0 8.7985 100 
4.7532 2.1 4.7643 10.51 
4.3843 3 .6 
4.2223 1.9 4.2360 11.48 

3.7300 3.16 
3.6840 30 

3.5996 7.09 
3.3929 2.83 

3.1082 1.8 3.1157 11.73 
2.9263 2.6 
2.8173 10.5 2.8335 17.93 

2.8214 33.61 
2.7000 100 

2.5379 3.1 2.5426 9.71 
2.5021 3.0 2.5073 5.10 2.5190 70 

2.4165 4.86 
2.2894 1.2 2.2929 3.67 2.2920 3 

2.2563 5.35 
2.2070 20 

2.0715 2.0 2.0753 4.07 2.0779 3 
2.0472 2.5 
1.8846 1.8 

1.8287 6.12 1.8406 40 
1.7571 4.0 1. 7542 3.61 
1.7362 2.2 
1.6782 4.2 1.6941 45 

1.6336 4.27 1.6367 1 
1.6033 5 
1.5992 10 

1.5174 1.1 
1.4930 2.3 1.4949 3.26 1.4859 30 
1.4647 1.4 1.4538 30 

1.4174 3.77 1.4138 1 
1.3497 3 
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TABLE A.I.9 (continued) 

Product 
RGH18B 

dobs III10o 

1.3014 1.7 

Generated 
Pattern for JCPDS database 

(NH4)Fe(P04)·HzO Hematite 

dobs III1oo 

151 

dobs 

1.3115 
1.3064 
1.2592 
1.2276 
1.2141 

Ill10o 

10 
6 
8 
4 
2 



TABLE A.l.10: X-Ray Diffraction Results for Na2Ni(OH)P04 from NiO Reaction 

Ziemniak and JCPDS JCPDS JCPDS 
Product Opalka (1988) Database Database Database 

RGH92A Na2Ni(OH)P04 N~Ni(P04)2 NiO Na3P04 

dobs I/I10o dobs III10o dobs III10o dobs III10o dobs I/I10o 

10.780 29 
8.120 17 

7.4855 7.2 7.510 53 
7.4134 12.9 

6.500 8 
6.160 27 

6.0997 6.7 
5.900 5 
5.780 8 
5.090 3 
4.770 16 
4.458 5 

4.2650 6.1 4.2800 70 
4.2167 5.1 4.200 52 4.235 70 
4.1817 20.0 

3.924 25 
3.873 8 

3.7100 20 
3.550 12 
3.400 13 3.381 6 

3.2235 7.8 3.210 20 3.250 6 
3.151 5 
3.108 6 

2.940 9 2.932 5 
2.829 18 
2.771 4 
2.701 25 

2.6226 6.8 2.6210 100 
2.6071 18.3 
2.5851 48.5 2.590 100 2.592 100 
2.5322 16.1 2.520 32 2.540 8 

2.511 4 
2.453 5 

2.4062 57.3 2.401 14 2.4120 60 
2.370 4 
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TABLE A.l.l 0 (continued) 

Ziemniak and JCPDS JCPDS JCPDS 
Product Opalka (1988) Database Database Database 

RGH92A Na2Ni(OH)P04 N~Ni(P04)2 NiO Na3P04 

dobs 1/IIOo dobs 1/IIOo dobs 1/IIOo dobs III10o dobs I/l10o 

2.293 6 
2.270 5 

2.226 6 
2.180 6 2.201 12 
2.150 8 2.1400 20 

2.0970 8.1 2.100 7 2.117 8 
2.0834 100 2.0880 100 

2.050 9 2.042 4 
1.974 5 1.962 5 

1.925 4 
1.909 6 

1.8668 6.1 1.875 7 1.8530 20 
1.865 5 
1.830 19 1.831 15 

1.7925 7.0 1.790 12 1.7742 3 
1.782 8 
1.654 5 1.6658 4 

1.6353 5 
1.601 3 
1.557 3 

1.5048 4.9 1.508 11 1.5130 30 
1.4745 55.4 1.472 12 1.4955 12 1.4770 35 

1.4760 35 
1.4260 40 

1.2582 18.3 1.2600 18 
1.2586 12 

1.2051 10.1 1.2064 16 
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TABLE A.I.ll: X-Ray Diffraction Results for Na2Ni(OH)P04 from H+[NiNTA-] 
Decomposition 

Ziemniak and JCPDS JCPDS JCPDS 
Product Opalka (1988) Database Database Database 

RGH89A NazNi(OH)P04 Ni(OH)z N~Ni(P04)2 Na2HP04 

dobs l/l10o dobs Ill10o dobs Ill10o dobs IIIJOo dobs 1/IJOo 

10.780 29 
8.120 17 

7.510 53 
7.0426 16.6 
6.8782 24.8 
6.8155 19.8 
6.5451 16.5 

6.500 8 
6.160 27 

5.900 5 
5.780 8 
5.090 3 

4.900 10 
4.7767 25.6 4.770 16 

4.605 100 
4.4967 12.4 

4.458 5 
4.235 70 

4.200 52 
3.9611 14.6 3.980 45 
3.9036 11.8 3.924 25 
3.8887 34.4 3.873 8 

3.840 55 
3.7523 16.0 
3.7433 27.1 
3.7111 50.5 
3.5661 14.1 3.550 12 

3.400 13 3.420 20 
3.381 6 

3.210 20 
3.2936 11.0 

3.250 6 
3.1997 14.3 

3.151 5 
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TABLE A.I.ll (continued) 

Ziemniak and JCPDS JCPDS JCPDS 
Product Opalka (1988) Database Database Database 

RGH89A Na2Ni(OH)P04 Ni(OH)2 N~Ni(P04)2 Na2HP04 

dobs l/l10o dobs Ill10o dobs l/l10o dobs Ill10o dobs Ill10o 

3.108 6 
2.940 9 2.932 5 

2.880 40 
2.829 18 

2.7846 79.0 2.805 100 
2.771 4 

2.7154 73.0 2.730 50 
2.720 25 

2.7034 100.0 2.707 45 2.701 25 
2.6988 63.0 

2.655 20 
2.5960 76.8 2.590 100 2.592 100 
2.5640 66.3 
2.5216 16.6 2.520 32 2.540 8 2.537 8 

2.511 4 
2.453 5 2.453 18 
2.401 14 

2.370 4 
2.334 100 
2.302 2 2.309 8 

2.293 6 
2.270 5 

2.226 6 
2.180 6 2.201 12 2.197 10 
2.150 8 

2.0943 10.4 2.100 7 2.117 8 
2.050 9 2.042 4 2.047 8 

2.0222 10.6 
1.994 16 

1.974 5 1.962 5 
1.9423 13.9 1.925 4 1.921 18 

1.909 6 
1.875 7 

1.8582 18.6 1.865 5 
1.830 19 1.831 15 
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TABLE A.I.ll (continued) 

Ziemniak and JCPDS JCPDS JCPDS 
Product Opalka (1988) Database Database Database 

RGH89A Na2Ni(OH)P04 Ni(OH)z N~Ni(P04)2 Na2HP04 

dobs VIIOO dobs Vl10o dobs I/l10o dobs III10o dobs III10o 

1.790 12 1.812 8 
1.782 8 1.774 3 

1.754 35 1.751 18 
1.7128 10.3 1.712 16 

1.654 5 1.6658 4 
1.6353 5 

1.601 3 1.595 14 
1.5472 10.9 1.557 3 1.563 25 

1.535 1 
1.508 11 
1.472 12 1.480 16 1.4955 12 

1.354 4 
1.335 8 
1.299 10 
1.293 2 
1.167 8 
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TABLE A.I.12: X-Ray Diffraction Results for Na2Ni(OH)P04 from H+[NiNTA"] 
Decomposition 

Ziemniak and JCPDS JCPDS 
Product Opalka (1988) Database Database 

RGH66A Na2Ni(OH)P04 Ni(OH)2 N~Ni(P04)2 

dabs Vl10o dabs IIIJOo dabs IIIJOo dabs 1/IJOo 

10.9222 4.4 
10.780 29 

8.120 17 
7.4861 18.8 7.510 53 

6.500 8 
6.1475 13.6 6.160 27 

5.900 5 
5.780 8 
5.090 3 
4.770 16 

4.6071 8.0 4.605 100 
4.458 5 
4.235 70 

4.2041 40.6 4.200 52 
3.924 25 
3.873 8 

3.550 12 
3.5286 6.1 
3.4089 11.3 3.400 13 3.381 6 
3.2374 16.4 3.250 6 

3.210 20 
3.151 5 
3.108 6 

2.940 9 2.932 5 
2.829 18 
2.771 4 

2.707 45 2.701 25 
2.5895 100.0 2.590 100 2.592 100 
2.5406 38.4 2.520 32 2.540 8 

2.511 4 
2.453 5 
2.401 14 

2.370 4 
2.3324 10.8 2.334 100 
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TABLE A.I.l2 (continued) 

Ziemniak and JCPDS JCPDS 
Product Opalka (1988) Database Database 

RGH66A Na2Ni(OH)P04 Ni(OH)2 N~Ni(P04)2 

dobs I/I10o dobs III10o dobs l/l10o dobs IIIIOo 

2.302 2 2.293 6 
2.2693 7.9 2.270 5 2.226 6 
2.1843 5.1 2.180 6 2.201 12 
2.1545 6.8 2.150 8 
2.1001 9.8 2.100 7 2.117 8 
2.0468 5.4 2.050 9 2.042 4 

1.974 5 1.962 5 
1.925 4 
1.909 6 

1.875 7 
1.8678 14.8 1.865 5 

1.830 19 1.831 15 
1.7966 17.4 1.790 12 

1.782 8 1.774 3 
1.754 35 

1.654 5 1.6658 4 
1.6353 5 

1.601 3 
1.557 3 1.563 25 

1.535 1 
1.5048 14.2 1.508 11 
1.4764 16.5 1.472 12 1.480 16 1.4955 12 

1.354 4 
1.335 8 
1.299 10 
1.293 2 
1.167 8 
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TABLE A.I.13: X-Ray Diffraction Results for Na2Ni(OH)P04 from H+[NiNTA-) 
Decomposition 

Ziemniak and JCPDS JCPDS JCPDS 
Product Opalka(1988) Database Database Database 

RGH73A NazNi(OH)P04 N~Ni(P04)2 Na3P04 NazHP04 

dabs 1/IJOo dobs 1/IJOo dobs 1/IJOo dobs 1/IJOo dobs 1/IJOo 

10.9590 8.1 
10.780 29 

8.120 17 
7.7002 8.1 
7.5840 18.3 

7.510 53 
6.500 8 

6.2272 16.2 
6.2028 9.2 

6.160 27 
5.900 5 
5.780 8 
5.090 3 

4.900 10 
4.770 16 
4.458 5 

4.3078 13.9 4.280 70 
4.2290 48.9 4.200 52 4.235 70 
4.0243 8.8 

3.980 45 
3.924 25 
3.873 8 

3.840 55 
3.710 20 

3.550 12 
3.4243 10.5 3.400 13 3.420 20 

3.381 6 
3.2546 20.8 3.250 6 

3.210 20 
3.151 5 
3.108 6 

2.940 9 2.932 5 
2.880 40 

2.829 18 2.805 100 
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TABLE A.I.l3 (continued) 

Ziernniak and JCPDS JCPDS JCPDS 
Product Opalka (1988) Database Database Database 

RGH73A Na2Ni(OH)P04 N~Ni(P04)2 Na3P04 Na2HP04 

dobs III10o dabs Ill10o dabs 1/IJOo dabs I/110o dobs 1/IJOo 

2.771 4 
2.730 50 

2.701 25 2.720 25 
2.6635 17.2 2.655 20 
2.6360 9.9 
2.6227 20.0 2.621 100 
2.6006 100.0 2.590 100 2.592 100 
2.5467 32.2 2.520 32 2.540 8 2.537 8 

2.511 4 
2.453 5 2.453 18 
2.401 14 

2.370 4 
2.293 6 2.309 8 

2.270 5 
2.226 6 

2.180 6 2.201 12 2.197 10 
2.150 8 2.140 20 
2.100 7 2.117 8 

2.0417 23.3 2.050 9 2.042 4 2.047 8 
1.994 16 

1.974 5 1.962 5 
1.925 4 1.921 18 
1.909 6 

1.8777 8.4 1.875 7 
1.865 5 1.853 20 
1.830 19 1.831 15 1.812 8 

1.7985 9.3 1.790 12 
1.782 8 1.774 3 

1.751 18 
1.712 16 

1.654 5 1.6658 4 
1.6353 5 

1.601 3 1.595 14 
1.557 3 

1.5101 8.4 1.513 30 
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TABLE A.I.13 (continued) 

Ziemniak and JCPDS JCPDS JCPDS 
Product Opalka (1988) Database Database Database 

RGH73A NazNi(OH)P04 N~Ni(P04)2 Na3P04 NazHP04 

dobs 1/lJOo dobs I/I10o dobs I/I10o dabs l/l10o dobs III1oo 

1.5088 9.0 1.508 11 1.4955 12 
1.4763 10.9 1.472 12 

1.426 40 
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APPENDIX II: X-ray Crystal Structure of (NH4)Feli(P04)-H20 
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X-ray Structure Report 

For 
Dr. P. Tremaine 

Prepared by 
David 0. Miller 

May 31,2001 

Introduction 

Collection, solution and refinement all proceeded normally. Hydrogen atoms were 
introduced in calculated or difference map positions with isotropic thermal parameters set 
twenty percent greater than those of their bonding partners at the time of their inclusion. 
Some were optimized by positional refinement but all were fixed for the final round of 
refinement. 
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Experimental 

Data Collection 

A colorless irreg.plate crystal of H705FePN having approximate dimensions of 
0.40 x 0.35 x 0.15 mm was mounted on a glass fiber. All measurements were made on a 
Rigaku AFC6S diffractometer with graphite monochromated Mo-Ka radiation. 

Cell constants and an orientation matrix for data collection, obtained from a least­
squares refinement using the setting angles of 23 carefully centered reflections in the 

range 47.53 < 20 < 49.340 corresponded to a primitive orthorhombic cell with 
dimensions: 

a= 17.597(2) A 
b = 5.667(2) A 
c = 4.833(2) A 
v = 481.9(2) A3 

For Z = 4 and F.W. = 187.88, the calculated density is 2.59 g/cm3. Based on the 
systematic absences of: 

Okl: k+l ± 2n 
hkO: h± 2n 

packing considerations, a statistical analysis of intensity distribution, and the successful 
solution and refinement of the structure, the space group was determined to be: 

Pnrna (#62) 

The data were collected at a temperature of 26 :±: 1 oc using the ro-20 scan 

technique to a maximum 28 value of 55.1°. Omega scans of several intense reflections, 
made prior to data collection, had an average width at half-height of 0.430 with a take-off 

angle of 6.oo. Scans of(1.84 + 0.35 tan 8)0 were made at a speed of 4.0°/min (in ro). The 
weak reflections (I < lO.Ocr(I)) were rescanned (maximum of 8 scans) and the counts 
were accumulated to ensure good counting statistics. Stationary background counts were 
recorded on each side of the reflection. The ratio of peak counting time to background 
counting time was 2:1. The diameter of the incident beam collimator was 1.0 mm, the 
crystal to detector distance was 400 mm, and the detector aperture was 6.0 x 6.0 mm 
(horizontal x vertical). 
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Data Reduction 

A total of 707 reflections was collected. The intensities of three representative 
reflections were measured after every 150 reflections. No decay correction was applied. 

The linear absorption coefficient, ).!, for Mo-Ka radiation is 33.9 cm-1. An 
empirical absorption correction based on azimuthal scans of several reflections was 
applied which resulted in transmission factors ranging from 0.68 to 1.00. The data were 
corrected for Lorentz and polarization effects. A correction for secondary extinction was 
applied (coefficient= 2.54394e-006). 

Structure Solution and Refinement 

The structure was solved by direct methodsl and expanded using Fourier 

techniques2. The non-hydrogen atoms were refmed anisotropically. Hydrogen atoms 

were included but not refined. The final cycle of full-matrix least-squares refinement3 on 
F was based on 587 observed reflections (I > 2.00cr(I)) and 47 variable parameters and 
converged (largest parameter shift was 0.00 times its esd) with unweighted and weighted 
agreement factors of: 

R = L: IIFoi- IFcll I L: IFol = 0.061 

Rw = [ L: w (IFoi-IFcl)2 I 2: w Fo2]112 = 0.078 

The standard deviation of an observation ofunit weight4 was 7.57. The weighting 
scheme was based on counting statistics and included a factor (p = 0.010) to downweight 

the intense reflections. Plots of I: w (IFoi-IFcl)2 versus IFol, reflection order in data 
collection, sin 81').., and various classes of indices showed no unusual trends. The 
maximum and minimum peaks on the final difference Fourier map corresponded to 2.27 

and -1.01 e-IA3, respectively. 

Neutral atom scattering factors were taken from Cromer and Waber5.The values 

for the mass attenuation coefficients are those of Creagh and Hubbell6. All calculations 
were performed using the teXsan 7 crystallographic software package of Molecular 
Structure Corporation. 
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EXPERIMENTAL DETAILS 

Empirical Formula 

Formula Weight 

Crystal Color, Habit 

Crystal Dimensions 

Crystal System 

Lattice Type 

No. of Reflections Used for Unit 

Cell Determination (28 range) 

Omega Scan Peak Width 

at Half-height 

Lattice Parameters 

Space Group 

Z value 

Deale 

Fooo 

~(MoKa) 

A. Crystal Data 

167 

187.88 

colorless, irreg.plate 

0.40 X 0.35 X 0.15 mm 

orthorhombic 

Primitive 

23 ( 47.5 - 49.30) 

0.430 

a= 17.597(2) A 
b = 5.667(2) A 
c = 4.833(2) A 
v = 481.9(2) A3 

Pnma (#62) 

4 

2.589 g/cm3 

380.00 

33.88 cm-1 



Diffractometer 

Radiation 

Take-off Angle 

Detector Aperture 

Crystal to Detector Distance 

Voltage, Current 

Temperature 

Scan Type 

Scan Rate 

Scan Width 

28m ax 

No. ofReflections Measured 

Corrections 

B. Intensity Measurements 

168 

Rigaku AFC6S 

MoKa (A.= 0.71069 A) 
graphite monochromated 

6.0° 

6.0 mm horizontal 
6.0 mm vertical 

400mm 

50kV, 27.5mA 

26.0°C 

ro-28 

4.00/min (in ro) (up to 8 scans) 

(1.84 + 0.35 tan 8)0 

55.10 

Total: 707 

Lorentz-polarization 
Absorption 
(trans. factors: 0.6751 - 1.0000) 
Secondary Extinction 
(coefficient: 2.54394e-006) 



C. Structure Solution and Refinement 

Structure Solution 

Refinement 

Function Minimized 

Least Squares Weights 

p-factor 

No. Observations (1>2.00cr(l)) 

No. Variables 

Reflection/Parameter Ratio 

Residuals: R; Rw 

Goodness of Fit Indicator 

Max Shift/Error in Final Cycle 

Maximum peak in Final Diff. Map 

Minimum peak in Final Diff. Map 
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Direct Methods (SIR92) 

Full-matrix least-squares on F 

2: w (IFol - 1Fcl)2 

1/cr2(Fo) = 4Fo2Jcr2(Fo2) 

0.0100 

587 

47 

12.49 

0.061 ; 0.078 

7.57 

0.00 

2.27 e-;A3 

-1.01 e-;A3 
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APPENDIX III: Kinetic and Solubility Data for Na2Ni(OH)P04 Formation 
Equilibria with Nickel Oxide 

172 



TABLE A.III.1: Summary of ICP ES Results for Standard Solutions 

run name stock sol'n m(P)total % dev m(Na+) % dev 
mol·kg-1 mol·kg-1 

Prec. 1 Standard 1 1.5028 0.19 3.8848 3.59 
1.4941 0.39 3.8839 3.57 

Standard 2 0.9448 5.52 2.8596 14.4 
0.9370 6.30 2.7865 11.5 

Standard 3 0.7070 1.00 2.3034 17.5 
0.6910 1.29 2.2103 12.8 

Prec. 2 Standard 1 1.4642 2.39 3.8585 2.89 
1.4639 2.40 3.8451 2.54 

Standard 2 1.0094 0.94 2.7187 8.75 
1.0137 1.37 2.6184 4.73 

Standard 3 0.7017 0.24 2.0057 2.33 
0.7076 1.09 2.0946 6.87 

Standard 4 0.5042 0.83 1.3497 7.98 
0.4976 0.48 1.3031 4.25 

Rediss. 1 Standard 1 1.5035 0.24 3.9589 5.57 
1.5145 0.96 3.9929 6.48 

Standard 2 1.0222 2.22 2.6856 7.42 
1.0171 1.71 2.6663 6.65 

Standard 3 0.6994 0.09 2.0222 3.18 
0.6930 1.01 2.0135 2.73 

Standard 4 0.5043 0.85 1.3340 7.17 
0.5072 1.44 1.3889 11.1 

Rediss. 2 Standard 1 1.5171 1.14 3.9880 6.35 
1.5026 0.18 3.8987 3.97 

Standard 2 1.0116 1.16 2.6468 5.87 
1.0238 2.38 2.6825 7.30 

Standard 3 0.6945 0.79 1.9651 0.26 
0.7067 0.95 2.0203 3.08 

Solubility 1 Standard 1 1.5592 3.95 3.9237 4.63 
1.5606 4.04 3.8955 3.88 

Standard 3 0.7251 3.58 2.0303 3.59 
0.7260 3.70 2.0023 2.16 

Standard 4 0.5256 5.12 1.3340 6.72 
0.5210 4.21 1.3109 4.87 
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TABLE A.III.l (continued) 

run name stock sol'n m(P)total %dev m(Na) %dev 
mol·kg-1 mol·kg-1 

Solubility 2 Standard 2 1.0256 2.56 2.5678 2.71 
1.0346 3.46 2.6724 6.90 

Standard 3 0.7268 3.83 2.1043 7.36 
0.7146 2.09 1.9930 1.68 

Standard4 0.5176 3.52 1.3402 7.21 
0.5173 3.46 1.3203 5.63 
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TABLE A.III.2: Kinetic Data 

Time m(Na) m(P)total m(HP04 ") 
hr mol·kg-1 mol·kg-1 mol·kg-1 

Precipitation at 250 °C 

0.8 2.520 0.9389 0.5054 

0.8 2.414 0.9163 0.5216 

0.82 2.154 0.8282 0.4998 

0.82 2.160 0.8363 0.5117 

5.78 2.060 0.7700 0.4440 

5.78 2.060 0.7653 0.4361 

5.85 1.987 0.7383 0.4256 

5.85 2.049 0.7443 0.4055 

18.68 1.821 0.6405 0.3443 

18.68 1.829 0.6421 0.3433 

18.73 1.713 0.5889 0.3125 

18.73 1.742 0.5956 0.3111 

22.28 1.633 0.5528 0.2930 

22.28 1.680 0.5610 0.2873 

22.33 1.630 0.5467 0.2863 

22.33 1.652 0.5540 0.2881 

2.61 1.606 0.5368 0.2814 
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TABLE A.III.2 (continued) 

Time m(Na+) m(P)total m(HP04 -) 

hr mol·kg-1 mol·kg-1 mol·kg-1 

Precipitation at 250 °C 

26.1 1.552 0.5360 0.3002 

26.12 1.669 0.5481 0.2743 

26.12 1.645 0.5360 0.2671 

42.8 1.502 0.4818 0.2469 

42.8 1.513 0.4817 0.2436 

42.83 1.449 0.4744 0.2551 

42.83 1.440 0.4719 0.2545 

46.75 1.435 0.4681 0.2515 

46.75 1.448 0.4729 0.2533 

46.78 1.450 0.4741 0.2543 

46.78 1.412 0.4697 0.2613 

50.17 1.419 0.4674 0.2559 

50.17 1.376 0.4555 0.2550 

50.22 1.438 0.4647 0.2465 

50.22 1.441 0.4682 0.2499 

67.15 1.407 0.4655 0.2573 

67.15 1.416 0.4687 0.2584 
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TABLE A.III.2 (continued) 

Time m(Na) m(P)total m(HP04 -) 
hr mol·kg-1 mol·kg-1 mol·kg-1 

Precipitation at 250 °C 

67.17 1.436 0.4690 0.2525 

67.17 1.413 0.4675 0.2580 

73.58 1.396 0.4573 0.2506 

73.58 1.394 0.4604 0.2552 

73.62 1.436 0.4684 0.2517 

73.62 1.419 0.4716 0.2611 

90.83 1.420 0.4606 0.2472 

90.83 1.366 0.4560 0.2592 

90.85 1.390 0.4577 0.2531 

90.85 1.377 0.4553 0.2546 

114.73 1.421 0.4629 0.2496 

114.73 1.382 0.4517 0.2484 

114.78 1.442 0.4769 0.2603 

114.78 1.472 0.4798 0.2541 

138.9 1.391 0.4517 0.2454 

138.9 1.410 0.4576 0.2466 

138.95 1.377 0.4494 0.2470 

138.95 1.381 0.4524 0.2493 
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TABLE A.III.2 (continued) 

Time m(Na) m(P)tota1 m(HP04 -) 

hr mol·kg-1 mol·kg-1 mol·kg-1 

Precipitation at 250 °C 

162.82 1.332 0.4397 0.2493 

162.82 1.322 0.4434 0.2575 

162.87 1.319 0.4418 0.2561 

162.87 1.311 0.4398 0.2565 

186.95 1.278 0.4157 0.2367 

186.95 1.288 0.4152 0.2331 

186.98 1.205 0.3993 0.291 

186.98 1.235 0.3907 0.2198 

Redissolution at 275-250 °C 

3.37 0.8653 0.2717 0.1823 

3.37 0.8562 0.2707 0.1834 

3.37 0.9444 0.3130 0.2100 

3.37 0.9401 0.3153 0.2140 

5.08 1.085 0.3667 0.2354 

5.08 1.039 0.3628 0.2450 

5.08 1.062 0.3731 0.251 3 

5.08 1.092 0.3689 0.2358 

8.92 1.189 0.3759 0.2157 
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TABLE A.III.2 (continued) 

Time m(Na) m(P)total m(HP04 -) 
hr mol·kg-1 mol·kg-1 mol·kg-1 

Redissolution at 275-250 °C 

8.92 1.099 0.3713 0.2369 

8.92 1.091 0.3781 0.2483 

8.92 1.107 0.3796 0.2451 

12.77 1.173 0.3903 0.2376 

12.77 1.147 0.3826 0.2361 

12.77 1.145 0.3818 0.2358 

12.77 1.151 0.3853 0.2384 

23.19 1.212 0.3991 0.2369 

23.19 1.206 0.3999 0.2396 

23.19 1.219 0.3921 0.2261 

23.19 1.207 0.3987 0.2377 

28.75 1.224 0.4000 0.2341 

28.75 1.204 0.3948 0.2337 

28.75 1.180 0.3891 0.2341 

28.75 1.152 0.3863 0.2395 

47.78 1.209 0.3924 0.2293 

47.78 1.178 0.3885 0.2339 

47.78 1.169 0.3896 0.2383 
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TABLE A.III.2 (continued) 

Time m(Na+) m(P)total m(HP042
) 

hr mol·kg-1 mol·kg-1 mol·kg-1 

Redissolution at 275-250 °C 

47.78 1.126 0.3776 0.1976 

58.27 1.241 0.4000 0.2289 

58.27 1.189 0.3932 0.2366 

58.27 1.234 0.3967 0.2271 

58.27 1.196 0.3886 0.2287 

76.82 1.196 0.3921 0.2331 

76.82 1.178 0.3925 0.2391 

76.82 1.176 0.3871 0.2330 

76.82 1.150 0.3827 0.2353 

120.57 1.220 0.3978 0.2327 

120.57 1.215 0.3944 0.2299 

120.57 1.188 0.3803 0.2212 

120.57 1.173 0.3755 0.2198 

143.92 1.199 0.3837 0.2220 

143.92 1.188 0.3847 0.2264 

143.92 1.151 0.3708 0.2206 

143.92 1.146 0.3703 0.2214 

168.57 1.157 0.3697 0.2176 
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TABLE A.III.2 (continued) 

Time m(Na) m(P)total m(HP04 -) 
hr mol·kg-1 mol·kg-1 mol·kg-1 

Redissolution at 275-250 °C 

168.57 1.136 0.3701 0.2242 

168.57 1.090 0.3507 0.2143 

168.57 1.073 0.3500 0.2183 

240.73 1.108 0.3449 0.2025 

240.73 1.169 0.3565 0.1992 

240.73 1.041 0.3271 0.2003 

240.73 1.019 0.3262 0.2051 
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TABLE A.III.3: Experimental Data for the Reaction 

NiO(s) + 2 Na\aq) + HPO/"(aq) ~ Na2Ni(OH)P04(s) 

t m(P04hotal m(HP04 -) m(Na) Equil. Average Average Average 
oc mol·kg-1 mol·kg-1 mol·kg-1 time lnQ InK K 

(hrs) 

Na/P = 2.5, run 1 

240 1.183 0.6609 3.111 

240 1.163 0.7148 2.949 50 -1.8436 4.6995 1.099·102 

240 1.165 0.7537 2.892 

255 0.6199 0.3801 1.648 

255 0.6226 0.3907 1.643 53 -0.0286 6.8289 9.242·102 

255 0.6104 0.3964 1.589 

265 0.4033 0.2310 1.207 

265 0.3977 0.2435 1.151 
75 1.2889 8.0048 2.995·103 

265 0.3449 0.2241 1.004 

265 0.3470 0.2300 0.9951 

272 0.2684 0.1783 0.8288 

272 0.2696 0.1771 0.8381 
62 2.1755 8.7277 6.172·103 

272 0.2501 0.1699 0.7815 

272 0.2509 0.1702 0.7841 

280 0.2010 0.1383 0.6729 
95 2.8026 9.3196 1.116·104 

280 0.1974 0.1403 0.6468 
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TABLE A.III.3 (continued) 

m(HPO/") m(Na+) t m(P04hotal Equil. Average Average Average 
oc moi·kg-1 moi·kg-1 moi·kg-1 time In Q InK K 

(hrs) 

Na/P = 2.5, run 2 

235 1.5019 0.9095 3.807 

235 1.4836 0.9552 3.669 60 -2.5841 3.6788 3.960·101 

235 1.5238 0.9020 3.896 

245 1.0667 0.7034 2.629 
69 -1.5748 5.1918 1.798·102 

245 1.0602 0.7183 2.584 

252 0.8175 0.5154 2.086 

252 0.8289 0.5326 2.094 52 0.83341 6.1264 4.578·102 

252 0.8282 0.5268 2.102 

260 0.5337 0.3537 1.395 

260 0.5357 0.3589 1.391 
68 0.3307 7.2840 1.457·103 

260 0.5478 0.3658 1.420 

260 0.5523 0.3779 1.412 

268 0.2659 0.200 0.6815 
53 2.2674 8.7273 6.169·103 

268 0.2661 0.2153 0.6982 
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TABLE A.III.3 (continued) 

m(HP04
2

) m(Na+) t m(P04hotal Equil. Average Average Average 
oc mol·kg-1 mol·kg-1 mol·kg-1 time lnQ InK K 

(hrs) 

Na/P = 2.5, run 2 

257 0.5173 0.3024 1.459 

257 0.5568 0.4250 1.341 50 0.3123 7.1632 1.291·103 

257 0.5565 0.4259 1.338 

243 0.7505 0.4937 1.913 

243 0.7538 0.4857 1.940 65 -0.5919 5.9345 3.779·102 

243 0.7475 0.4915 1.907 
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