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Abstract 

In recent years, the interior permanent magnet synchronous motor (IPMSM) 

has become increasingly popular for use in high performance drive (HPD) applica­

tions due to desirable features such as high torque to current ratio, high power to 

weight ratio, high efficiency, low noise and robust operation. As a consequence, 

the control of the IPMSM for use in high precision industrial drives has received 

heightened attention. This proposed research is directed to develop and implement 

a complete and practical vector control scheme for the IPMSM to be used in such 

applications. 

This thesis presents the control of the IPMSM at rated speed and below, in 

the constant torque mode, by use of the maximum torque per ampere (MTPA) 

mode of operation utilizing an innovative Taylor series approximated approach. 

Coupled with this method is the development of a simplified fuzzy logic controller 

(FLC) based speed controller that maintains high performance standards while re­

ducing complexity and computational burden. The performance of this proposed 

technique is evaluated by simulation as well as by experimental results. A com­

parison is made, in simulation, between a more conventional FLC based control 

technique with ict = 0 and the proposed simplified FLC with MTP A approach. 

The complete vector control scheme is implemented in real-time using a 

digital signal processor (DSP) controller board in a laboratory 1 hp interior perma­

nent magnet synchronous motor. 
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Chapter 1 

Introduction 

1.1 General Introduction to Motor Drives 

Operating motors must work within specified speed and torque limits. Sud­

den disturbances and changes in loading and motor parameters, however, can cause 

the operating speed and torque output of the motor to change. It is the duty of the 

controlling drive system to automatically take measures to accurately and promptly 

restore the desired operating speed. This is the essence of motor control. There 

are, however, other considerations when assessing the desirability of a motor drive 

scheme. Cost, maintenance requirements and space requirements are fundamental 

concerns intrinsic in evaluating the practicality of any system. 

Conventional direct current (DC), along with alternating current (AC) in­

duction and synchronous electric machines, have traditionally been the three cor­

nerstones serving daily needs from small household appliances to vast industrial 

plants. Recent years, however, have seen significant technological changes in mo­

tor drive systems, leading to increased application demands of electric motors. 
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Likewise, researchers have been continuing their efforts to develop new machines. 

The brushless DC (BLDC) machine, the switched reluctance machine (SRM), the 

permanent magnet hysteresis machine and the permanent magnet synchronous ma­

chine have all been developed or further developed [1-6]. Along with these ad­

vancements has come the need for sophisticated control schemes to maximize the 

performance and minimize the operating costs of these motors. 

1.1.1 General Review of Electric Motor Drives 

DC motors have been used extensively for variable speed and high per­

formance drive systems. This is primarily because of the decoupled nature of the 

field and armature rnagnetomotive force (MMF) in the de motor, leading to rela­

tively simple schemes for controlling the motor's torque and speed. In addition, 

DC motors are known to produce excellent performances under both transient and 

steady state conditions. 

However, the DC motor has some disadvantages. Frequent maintenance is 

required because of wearing between the commutators and brushes of the rotor as­

sembly, with high associated costs. The DC motor has a limited range of speed op­

eration and a poor capacity for overload, and brush sparking limits the power rating 

of the motor [73]. These drawbacks have prompted researchers to develop AC 

motors such as the induction and synchronous motor for use in high performance 

variable speed drives (where maintenance free operation and overload capacity are 

priorities). AC motors are suitable for constant speed operation, but due to recent 

technological advances, such as improved power electronic devices and microproc­

essors, and the continuing development of closed loop vector control techniques, 
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they can also have high performance applications for variable speed drives as well 

[7]. 

Of the AC motors, induction motors have traditionally been considered the 

workhorses of industry because of their low cost, reliability, ruggedness, reasonable 

efficiency and simplicity of construction. However, the induction motor has limita­

tions. Induction motors must always operate at lagging power factors because the 

rotor field voltage must be induced by the stator's voltage; they lose efficiency be­

cause of slip power losses; and they must always run at speeds lower than synchro­

nous, thus making the control of these motors very complex. The real-time imple­

mentation of these drives requires accurate modeling and estimation of motor pa­

rameters and complex control circuitry. All this has led researchers to investigate 

synchronous motors for use in high performance variable speed drives. 

Synchronous motors run at synchronous speed (therefore, experiencing no 

slip power losses) and field current can be controlled from the rotor side, so their 

control is less complex than that of induction motors (though still more complex 

than that of DC motors). These attributes have made the wire-wound rotor syn­

chronous motor a popular choice for high power AC drive systems. On the down­

side, however, the use of rotor windings on conventional synchronous motors re­

quires extra power supply and maintenance-requiring slip rings and brush gears on 

the rotor side to supply the de field excitation. The traditional rotor winding set-up, 

therefore, increases costs and reduces efficiency. This has prompted researchers to 

develop different types of synchronous motors with the intent of eliminating slip 

rings and brush gear-related losses. One such motor is the permanent magnet (PM) 

synchronous motor. 
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PM motors have desirable features such as a high torque to current ratio, a 

high power to weight ratio, high efficiency, low noise and good overload capacity. 

Unlike in the wire-wound synchronous motor, the excitation field is provided by 

permanent magnets, so there is no need for any extra power supply or field wind­

ings. This not only reduces the initial cost of the PM synchronous motor but also 

eliminates the power loss due to those windings and the costs necessary to maintain 

them. 

1.2 Permanent Magnet Synchronous Motors 

1.2.1 General Introduction 

A PM synchronous motor consists of a stator with three phase windings and 

a rotor fitted with permanent magnets, in place of field windings, to provide the 

field flux. This design means, as indicated above, that the PM synchronous motor 

is not subject to the limitations of wound rotor motors (de, ac induction and syn­

chronous, etc.). The absence of rotor windings also means the absence of an exter­

nal excitation supply for the rotor field and the elimination of slip rings. The 

elimination of the field windings reduces the cost of the motor as well as eliminates 

the power losses associated with such windings. In addition, permanent magnet 

rotors allow for more compact motor design for given output capacities. 

As compared to the induction motor, the PM synchronous motor experi­

ences no slip. Therefore, there are no slip dependent rotor losses, giving the PM 

synchronous motor a higher torque to inertia ratio and power density. For similar 

output ratings, the PM synchronous motor is smaller and lighter than the induction 
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motor, making it preferable in high performance applications where size and weight 

are of concern. 

1.2.2 Classification of PM synchronous motors 

Although the focus in this thesis has been, and will continue to be, on PM 

synchronous ac motors, permanent magnets have also been used to produce de mo­

tors. PM de motors are separately excited de motors with permanent magnets as 

the excitation source. In industry, they are widely used as control motors. PM ac 

motors are, operationally, synchronous motors. Therefore, from this point in this 

thesis forward, permanent magnet ac synchronous motors will be referred to simply 

as PM motors. 

PM motors are categorized broadly, based on the orientation of the perma­

nent magnet magnetic fields. There are two such fundamental classifications: (a) 

radially oriented type, in which the rotor magnets are oriented such that the direc­

tion of magnetization is radial from the rotor, and (b) circumferential type, in which 

the rotor magnets are oriented such that the direction of magnetization is circumfer­

ential around the rotor. 

In radially oriented machines the air gap flux density above the permanent 

magnets is approximately the same as the magnetic flux density. This means that 

for practical radially oriented motors to be made newly developed high-energy 

magnetic materials such as neodymium-boron-iron (Nd-B-Fe) and samarium-cobalt 

(Sm-Co) must be used. The use of low residual flux density magnetic materials 

such as ferrite magnets produces machines with very low air gap flux densities and, 

therefore, low output capacities. In this manner, radially oriented permanent mag-
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net motor development has been directly dependent on recent advances in high­

energy permanent magnet material technology. 

Circumferentially oriented permanent magnet motors have a direction of 

magnetization that is circumferential in the rotor. They also typically have large 

numbers of poles. This design allows for reasonable output ratings to be produced 

utilizing traditional low residual flux density magnetic materials. 

Based on the location of the permanent magnets in the rotor itself, there are 

three configurations of permanent magnet motors: (a) surface mounted type, where 

the magnets are mounted on the surface of the rotor; (b) inset type, where the mag­

nets are fully or partially inset into the rotor core and (c) interior type, where the 

permanent magnets are buried within the rotor core [8]. It should be noted that sur­

face mounted PM motors, by design, must be of the radially oriented type, whereas 

inset and interior type PM motors can have magnetization orientations either radial 

or circumferential in nature. 

PM classification based on control strategy produces two more classifica­

tions of PM motors [74]: (a) the brushless de (BLDC) motor, which is an elec­

tronically commutated rectangular wave fed three phase synchronous motor with 

surface mounted permanent magnets; and (b) the conventional PM synchronous 

motor (PMSM), which is a sinusoidal wave fed PM motor. Surface mounted type 

PM motors, suitable for use as BLDC motors, have large air gaps and, therefore, 

have weakened armature reaction effects. This restricts this type of motor to low 

speed and constant torque operations. These motors are commonly used as preci­

sion control motors and hard disk drive motors in computers. Inset and interior 

type PM motors have smaller, more uniform air gaps, allowing for operation at 

higher speeds in the constant power region. Interior type PM motors, in particular, 
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have significant motor torque contributed by the reluctance component due to the 

large difference between the direct and quadrature reactances, as well as the per­

manent magnet field component. This makes the interior PM motor ideal for use at 

high speeds utilizing the flux weakening method of control, as well as low speed, 

constant torque operations. In addition, this type of PM motor is the most eco­

nomical to manufacture. These motors are commonly controlled with sinusoidal 

induced EMF, making them fall into the second PM classification based on control 

method, conventional PMSM. 

Depending on the rotor cage winding, the PM motor may be further classi­

fied as: (a) cage type or (b) cageless, based on whether the rotor is fitted with a 

cage winding or not. In the case of the cage type motor, the cage winding provides 

the starting torque and hence this type of motor can be line started with rated sup­

ply voltage and frequency. Cageless motors have no cage windings and, therefore, 

control strategies using variable stator frequencies must be used to start the motor 

from standstill and accelerate it smoothly up to synchronous speed. 

One further classification of the PMSM is based on whether or not the mo­

tor is equipped with a rotor position sensor. PMSMs without a rotor position sen­

sor are classified, logically, as "sensorless". And PMSMs equipped with a rotor 

position sensor are known as "with sensor". 
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1.3 PMSM Drives 

1.3.1 Vector Control Schemes 

As with other types of synchronous motors, early controllers for the PMSM 

were based on the primitive open-loop volt/hertz (v/f) control method. Open-loop 

systems, obviously, are incapable of responding intelligently to dynamic changes in 

operating parameters. Due to this limitation, closed-loop schemes with torque and 

angle control have been used where better drive performance is required [75]. 

These scalar control techniques, however, have shortcomings due to the nonlinear­

ity of the motor model and inherent coupling between direct and quadrature axis 

quantities. This leads to slow responsiveness, which is unacceptable for high per­

formance drive applications. To solve this problem, vector, or field oriented, con­

trol techniques have been accepted almost universally for control of ac drives. The 

vector control technique, employing a current controlled voltage source inverter 

(VSI), provides a method of variable speed control for the PMSM that has fast re­

sponsiveness and follows command speeds accurately and precisely. 

In the vector control technique for PMSM drives, the phase angle and the 

magnitude of the phase currents are controlled to provide high precision control of 

the motor. This is an evolution of control techniques developed in the 1970s by 

Blasche [7] and Hasse [9] for ac drives. At that time, however, implementation of 

these schemes was difficult due to technological limitations. Today, with very 

large scale integrated (VLSI) technologies, as well as advancing power electronic 

and microprocessor technologies, the practical implementation of the vector control 

scheme is no longer a problem. 
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The operating principle of vector control is based on elimination of the cou­

pling between the direct (d) and quadrature ( q) axes. This can be achieved by co­

ordinate transformation, producing control very similar in nature to that of a sepa­

rately excited de motor. However, unlike de machine control, in an ac machine 

both the magnitude and phase angle of the stator current need to be controlled. 

This is achieved by employing a time-varying vector that corresponds to a sinusoi­

dal flux wave moving in the airgap of the machine, hence the name, vector control. 

By referring the mmf wave of the stator current to the vector corresponding 

to the flux wave it becomes apparent that only the quadrature axis component of 

the stator current mmf wave contributes significantly to developed torque. The di­

rect axis current is seen to contribute to the magnitude of the flux. This makes it 

convenient to define the stator current in a frame of reference defined by the time­

varying field, thus illustrating the close correspondence with de machines. Such a 

comparison shows that the d-axis component of stator current in a PMSM is analo­

gous to the field current in the de machine and the quadrature component of stator 

current is analogous to the armature current in the de motor. 

While vector control can be implemented in a reference frame fixed to the 

stator, rotor, or magnetizing flux space vector, with d- and q-axis stator currents 

defined in that frame, rotor flux oriented control is most commonly used in PMSM 

drives. This is because in the stator and magnetizing flux oriented control cases 

there exists a coupling between the torque producing stator current and the stator 

magnetizing current, whereas with rotor flux oriented control matters are simplified 

by a natural decoupling that occurs between the d- and q-axis components. 

Vector control can be classified as either direct or indirect. Direct vector 

control, shown in Figure 1.1, depends on the direct measurement of the stator (or 
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rotor) flux using flux sensors. The d- and q- axis flux components, 'l'dm and 'lfqm, 

along with the appropriately calculated command torque and flux and actual torque 

and flux, are then used to generate the principle control parameters, the rotor flux 

frame d- and q-axis command currents, i:r and i:r . These de currents, proportional 

to command torque and flux respectively, are then converted to a stationary refer­

ence frame and used to generate phase current commands for the VSI. 

PVi!Ivl Inverter 
l l l 
c b a 

sin (}e __. 
_,.. Unit vector ..... 

1./'dm 1/1 Te qm. 

Vector rotator ...,., ___ 
1 -....- generator -411---+---l 

& .6. COS (}e 

i * i * 
qr dr 

~lcontrollerl~~-~-~-~~~j!JI~+~~ 1:~------~ 
.... .... 

Ire* 

Figure 1.1. Direct vector control scheme ofPMSM 
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The indirect method of vector control, as shown in Figure 1.2, uses sensors 

to determine rotor position and stator currents. From this, and along with the 

command speed, the rotor flux frame d- and q-axis command currents, i~ and i:r, 

are calculated. As with the direct method, these currents, after transformation to a 

stationary reference frame, are then used to generate phase current commands for 

the VSI. The indirect method of vector control is more sensitive to parameter 

variations than the direct method, and so motor parameters must be known accu-

rately. 

PVi!M Inverter 

i * i * 
qr dr 

Speed 
Controller - cor 

+ i .,; 

i 1 1 
c b a 

Figure 1.2. Indirect vector control scheme of PMSM 
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In both of these schemes, a current controlled VSI is used to apply the cal­

culated command currents to the motor stator. This imposes the need for precise 

and accurate control of the VSI, as the current controller has direct influence on the 

drive performance. Low-loss current controllers that produce minimal harmonics 

and noise in the motor, as well as fast responsiveness for high performance under 

dynamic conditions, are required. The performance of various current control 

schemes for VSI fed ac and PMSM drives have been investigated [ 1 0-17]. Each 

scheme has been shown to have its own unique drawbacks with regards to accuracy 

and dynamic response over varying speed ranges. As the purpose of this work is to 

investigate improvements in control of the motor itself and not the VSI specifically, 

this work employs a simple fixed band hysteresis current control algorithm for the 

VSI. This scheme provides fast response and good accuracy in producing a stator 

current which tracks the command current within a hysteresis band, while avoiding 

unnecessary complexity. The drawback is that the hysteresis controller generates a 

random PWM switching pattern, thus producing a switching frequency that varies 

over the fundamental period [13]. 

1.3.2 PMSM Drive Controllers 

Modem VLSI and advancing power electronic technologies have lead to the 

utilization of microprocessors in the control of the PMSM. This allows the current 

advancements in computing power to be applied to PMSM drive control, resulting 

in the implementation of complex control strategies. Bose and Szczesny originally 

proposed a microcomputer-based control system of an interior perll1anent magnet 

synchronous motor (IPMSM) [18]. 
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Because of the versatility of the IPMSM, it has become essential to develop 

robust controllers for use in high performance drive (HPD) systems. Various un­

certainties like sudden changes of command speed, abrupt load changes and pa­

rameter variations have to be handled quickly and accurately in such applications. 

With this in mind, several types of controllers, including conventional fixed gain 

types such as proportional-integral (PI), proportional-integral-derivative (PID) and 

pseudo-derivative-feedback (PDF); adaptive types such as model reference adap­

tive controllers (MRAC), sliding mode controllers (SMC) and variable structure 

controllers (VSC); and intelligent types such as artificial neural network (ANN) 

controllers, fuzzy logic controllers (FLC), and neuro-fuzzy controllers have been 

used for moderate to high performance drive systems. As my work utilizes the in­

direct control of an IPMSM through a current controlled VSI, this is where my lit­

erature review will focus. 

To date, many researchers have reported their work on the development of 

high performance IPMSM drives, with the majority of the control schemes reported 

involving the performance of the IPMSM fed by a voltage source or current source 

inverter. The reader is referred to the indirect vector control scheme shown in Fig­

ure 1.2. 

Gummaste and Siemon [19] have proposed a vector control scheme to ana­

lyze the steady state performance of a VSI-fed PMSM drive. They also presented a 

similar work utilizing the current source inverter fed PMSM drive [20]. For both 

schemes they used position feedback control from a shaft position sensor, mounted 

on the motor shaft, relaying rotor position back to the microcomputer so that the 

inverter could be operated in a self-controlling mode in real time. The constant 

torque mode and the constant power mode operations have been investigated, with 
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strategies having been developed for torque control. They have suggested remov­

ing the damper winding for the VSI-fed PMSM drive in order to increase operating 

stability, as the damper winding provides a path for the flow of harmonic currents 

induced for non-sinusoidal voltage outputs of the inverter. However, for the cur­

rent source inverter (CSI) -fed PMSM drive system, the damper windings are help­

ful in reducing the commutating inductance and, therefore, are not recommended to 

be removed. 

An analysis of a microprocessor-based implementation of the PMSM drive 

has been presented by Liu et. al., [21]. In their work, the motor is fed by the hys­

teresis current controlled VSI. To overcome some of the limitations of the hystere­

sis controller at low speeds, they have proposed a method utilizing the freewheeling 

period. The downfall of this proposal, however, is that this method reduces the av­

erage torque delivered by the motor with only modest performance improvements 

at low speeds. 

Pillay and Krishnan [22-25] have presented a number of papers on model­

ing, simulation, analysis and controller design for high performance vector con­

trolled PMSM drives using a state space model. They have investigated the tran­

sient and steady state performance of the drive using a d-q axis model of the 

PMSM, and have also investigated the performances of the hysteresis and ramp 

comparator current controllers for the VSI-fed PMSM drive. In these works, a PID 

type speed controller, based on the linear model of the PMSM, has been used. This 

produces error because, in real time, the PMSM torque does not behave linearly 

[26]. Hence, it is very difficult to predict the performance of the drive accurately 

using this linear model approximation. In addition, the inherent nature of the PID 

speed controller makes drive performance very parameter and load sensitive. Pillay 
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and Krishnan have not reported drive performances over wide speed ranges, but 

rather only for certain command speeds. 

In other work, Pillay et. al., [27] have proposed a control scheme for a 

PMSM based on dual digital signal processors (DSP). One DSP is used to imple­

ment the current controller algorithm and the other the vector control algorithm. 

The performance of this drive is diminished due to the slower speed of the DSPs 

employed; and their use of a look-up table in generating command currents may not 

be suitable for a wide range of speed operations. Therefore, there is a lack of ro­

bustness with this drive, and comprehensive test results at different dynamic oper­

ating conditions have not been reported. However, the experimental results do 

show the effectiveness of the controller and its potential. 

B.K. Bose (28] has presented a high performance inverter-fed IPMSM drive 

system using a closed-loop torque control scheme in which command torque is de­

termined using feedback and taking into accounts the effects of saturation, tempera­

ture variation and non-linearity. The drive system has been incorporated in the 

constant torque as well as constant power regions. However, the performance of 

this drive system has been reported only for a fixed speed, and testing of the drive 

over a wide speed range and at different dynamic operating conditions is necessary 

to establish the efficacy of the drive. 

An adaptive current control scheme for the PMSM drive has been proposed 

by Huy and Dessiant [29]. Their controller uses two modes, a hysteresis current 

control scheme for transient operation and a predictive current control scheme for 

steady state operation. The performance of this drive at low operating speeds has 

not been reported. 
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Huy et. al., [30] have presented an analysis and implementation of a real 

time predictive current controller for a PMSM synchronous motor servo drive. Al­

though a high performance standard has been obtained with this controller, its im­

plementation requires hardware incorporating an EPROM-based approach, making 

this scheme less flexible than the microprocessor-based approach. 

Bose and Szczesny [31] have proposed a microcontroller-based controller 

of an IPMSM drive for electric vehicle propulsion. The control system incorpo­

rates both the constant torque region as well as the constant power region where the 

flux weakening mode of operation is used. This drive system has been imple­

mented on a multiprocessor architecture, making the overall system costly. 

Jahns et. al., [32] reported an adjustable speed drive using a torque control 

technique for an IPMSM by providing control of the magnitude and phase angle of 

the sinusoidal phase currents with respect to the rotor orientation. This method 

cannot provide a smooth transition from the constant torque mode to the constant 

power mode while the motor is in operation. In addition, the performance of this 

drive system has not been investigated over a wide speed range. 

Jahns (33] also proposed a flux-weakening mode operating scheme for the 

IPMSM. This allows for investigation of the performance of the drive over an ex­

tended speed range. In this method, the d-axis rotor current is obtained from the 

sensed stator phase currents and the d-axis command current. 

Likewise, Morimoto et. al., [34-39] have proposed a flux-weakening mode­

based controller for an IPMSM drive. In this work, the magnetic saturation and 

demagnetization effects of permanent magnets has been accounted and compen­

sated for. This results in high torque and high efficiency operation within the 

maximum voltage and current limit ratings of the inverter and the motor. Different 
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control methods, such as as id = 0, unity power factor and constant flux linkage 

schemes have been investigated, and a comparison of the various methods has been 

made over a wide speed range. Regarding the magnitude and phase errors inherent 

when using a current controlled VSI, a compensating technique based on a calcu­

lated value of q-axis inductance, Lq, from the actual q-axis current has been used. 

Then, in order to overcome saturation, the d-axis command current is generated 

from the calculated value of Lq. The shortcoming of this work is that the effects of 

parameter variations due to noise, temperature, etc. are not considered. 

Rahman et. al. [40] have proposed a flux-weakening mode based torque 

controller for the IPMSM drive for operation exceeding base speed. Maximum 

voltage and current capabilities of the motor and the inverter during operation are 

also accounted for in this work. The drive has not been tested for variable speed 

operation. 

Vaez et. al. [ 41] have proposed a vector control strategy of the IPMSM 

drive aimed at producing minimum loss operation. They have used a PI-based 

speed controller, making this scheme sensitive to parameter variations, load 

changes, etc .. 

Radwan et. al. [42] have developed a hybrid current controller for the 

IPMSM drive which incorporates a ramp comparator controller for low speed op­

eration and a hysteresis current controller for high speed operation. This controller 

produces stable operation over a wide speed range. However, as with Vaez et. al. 

the speed controller is PI-based. 

Hoque et. al. [43] have reported a vector control strategy of the IPMSM 

drive based on the maximum torque per ampere (MTPA) scheme. In this work, d­

axis command current is obtained from q-axis command current by use of a Taylor 
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series expansion to overcome mathematical difficulties arising from nonlinearities 

of the model. A PI-based speed controller has been used. This work was done in 

conjunction with the work presented in this thesis. 

Other works [44-47] investigating PMSM drive performance while in flux­

weakening mode have been reported. Most of these works are based on conven­

tional PI and PID based speed controllers. These controllers offer the advantages 

of simplicity and ease of implementation in real time. However, they are very sen­

sitive to parameter variations due to load changes, sudden changes of command 

speed, saturation, temperature variations and other system uncertainties. Therefore, 

it is difficult to tune the controller parameters precisely for an optimal implementa­

tion. Consequently, these types of controllers are not suitable for high performance 

applications, and researchers have been prompted to develop adaptive control 

schemes for PMSM drive systems in which the controller parameters can be 

adapted in real time in response to system parameter variations and load changes. 

1.3.3 PMSM Drives with Adaptive Controllers 

To date, adaptive controllers have been used in PMSM drives to achieve 

fast transient responses, parameter insensitivity, nonlinear load handling capabili­

ties and high adaptabilities to other types of uncertainties. 

The model reference adaptive controller (MRAC) is one such scheme in 

which the drive forces the motor response to follow the output of a reference model 

regardless of drive parameter changes. A MRAC may be used with a PI controller 

to adapt the controller parameters compensatively for system parameter changes. 
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Parameters are adapted by trial and error such that the error between the actual and 

the desired responses remains within specified limits. 

Choy et. al., [ 48] have proposed a vector control position servo PMSM 

drive system using a MRAC. In their work a MRAC is used to reactively tune a PI 

controller. The steady state error gain component of the PI controller is used to 

compensate the chattering problem that occurs due to discontinuous control inputs. 

However, this drive still does not completely overcome the chattering problem. 

Cerruto et. al., [ 49] have proposed a MRAC-based PMSM drive for robotic 

applications. A MRAC has been used to compensate for changes in system pa­

rameters such as inertia and torque constant. As explained previously, the error 

between the reference model speed and the actual speed is used to adjust the pa­

rameters. The shortcoming of this model is the computational burden that the algo­

rithm imposes on the microcomputer. This limits the maximum operating speed of 

the drive. 

Sozer and Torrey [50] have proposed a MRAC-based PMSM drive utilizing 

an adaptive flux weakening mode controller that adjusts the d-axis current id com­

pensatively. However, this drive has been reported in simulation only and has not 

been tested at variable speed conditions. 

MRAC is only one of several types of adaptive controllers. Other popular 

schemes that have been used in PMSM drive systems are the sliding mode control­

ler (SMC) and the variable structure controller (VSC). 

Namudri and Sen [51] have presented a SMC-based vector control system 

of a synchronous motor drive for a position servo drive. In their work a gate turn­

off (GTO) inverter and phase-controlled chopper are used to provide the torque 
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producing current component. The controller accommodates parameter variations 

and load changes. 

Consoli and Antonio [52] have proposed a DSP-based vector control 

scheme for an IPMSM drive using a SMC for torque control. In this work, both the 

actual motor currents and terminal voltages are used as feedback signals to generate 

the torque and flux for flux-weakening mode operation above base speed. The ef­

fects of constant acceleration, constant speed and constant deceleration have been 

accounted for in the design of the SMC. However, this drive system has been pre­

sented in simulation only and not in real-time where the parameter variations are 

not defined. 

An ac servo drive using a variable structure controller (VSC) for position 

and speed control of a PMSM has been presented by Ghirby and Le-Huy [53]. 

Two control loops have been used, an inner loop for predictive current controllers 

and an outer loop for a position or speed controller. The performance of the drive 

has not been reported for wide variable speed operations, and suffers somewhat 

from chattering. 

Sepe and Lang [54] have also proposed an adaptive speed controller for the 

PMSM drive system in which the mechanical parameters of the motor have been 

estimated in real-time to continually tune the gain of the controller. As with Ghirby 

and Le-Huy, the system is composed of two loops: An inner loop consisting of the 

motor, inverter, current controller, speed controller and filter; and a slower, outer 

loop consisting of a motor parameter estimator and the control algorithm for the 

controller. This system has been implemented on a microprocessor of limited 

computational capacity, therefore the performance of the drive is impaired by sig­

nificant noise in steady state operation. 
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Clearly, compared to conventional fixed-gain PI and PID controllers, adap­

tive controllers show improved performance because of their relative insensitivities 

to parameter variations, load changes and other uncertainties. However, all of this 

is achieved at the cost of increased computational burden, hence reducing practical­

ity for real-time implementation. And almost all of the adaptive controller-based 

systems suffer from chattering, overreaching and steady state errors due to finite 

switching. In addition, the unavailability of the exact system parameter model 

makes for cumbersome design approaches for these types of controllers. 

1.3.4 PMSM Drives with Intelligent Controllers 

To solve some of the problems associated with fixed gain PI, PID and vari­

ous adaptive controllers, recent researchers have investigated intelligent controllers 

such as artificial neural network (ANN), fuzzy logic (FL), neuro-fuzzy (NF), and 

genetic controller-based systems. These controllers are self-adaptive and do not 

need any advance information about system nonlinearities. They are often called 

artificial intelligence (AI) controllers, because they involve software programming 

where the computer mimics human thinking in the control of the motor. 

ANNs have been reported for use in controllers for PMSM drives. El­

Sarkawi et. al., [55] have proposed one such scheme for a high performance brush­

less de motor drive. In their work, a MRAC is used to implement a multi-layer 

ANN. The inputs of the ANN are the estimated speed from the reference model, 

three consecutive past samples of actual speed, a past sample of the converter input 

voltage, and the error between the reference model speed and the actual speed. A 

back-propagation algorithm is used to train the network. However, the speed con-
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trol of this drive is not precise because the ANN must be trained offline. This 

shortcoming may render the drive incapable of effectively handling different dy­

namic operating conditions such as load changes, parameter variations and system 

disturbances. 

Similarly, Shigou et. al., [56] have proposed an offline-trained ANN-based 

controller for a brushless de servo motor drive system. In their work, they have 

used an analog speed controller in order to obtain better servo performance. How­

ever, they still have not produced satisfactorily precise speed control. 

Rahman and Hoque [57] have presented an online ANN-based PMSM drive 

system utilizing a back-propagation training algorithm and combined offline and 

online training. There are two artificial neural networks: One to generate the 

command signal and the other to generate the estimated signal. Controller parame­

ters are then updated in accordance with the error between the two signals. In this 

work, however, the d-axis command current, ict *, is assumed to be zero, which 

makes it impossible to control the motor above base speed. 

Another work, by Y. Yi et. al. [58] has utilized an ANN-based controller for 

an IPMSM. This work shows encouraging results, but, as with other ANN-based 

systems, simulation and experimental results show room for improvement in terms 

of disturbance rejection such as insensitivity to load variations, parameter varia­

tions, etc .. 

Hoque et. al. [59] have reported a similar online ANN-based PMSM drive 

system using the maximum torque per ampere (MTP A) scheme. Once again, a 

back-propagation training algorithm making use of combined offline and online 

training is used, but in this work, d-axis command current is obtained from q-axis 

command current by use of a Taylor series expansion. This is done to overcome 
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mathematical difficulties arising from the nonlinearities of the model. The ANN 

tunes the parameters of a PI-based speed controller. This work was done in con­

junction with the work presented in this thesis. 

Recently, researchers have developed fuzzy logic controllers (FLC), show­

ing encouraging performances, for use in PMSM drives. In almost all cases the 

FLC has been used as a speed controller. 

Inoue et. al., [60] have presented a fuzzy algorithm for the brushless de 

servo motor drive. The fuzzy algorithm is used to tune the gain of the PI controller 

in response to load changes, parameter changes and system disturbances. The ac­

tual speed, reference speed and output of the reference filter are used to generate 

the membership functions. The experimental results show optimum response after 

several auto-tuning calculations. However, as the drive system incorporates a ref­

erence generator, somewhat complex fuzzy calculations and two PI controllers, the 

system imposes high computational burden, thus diminishing performance. 

Erenay et. al., [61] have proposed a fuzzy logic approach for the brushless 

de motor drives used in washing machines. They have made a comparison among 

various controller techniques namely, conventional PI, fuzzy PI, fuzzy reset rate 

and fuzzy gain scheduled Pl. However, they have investigated the speed responses 

only for fixed speed conditions. Moreover, because of the large number of fuzzy 

rules incorporated, high computational burden may render these FLC-based sys­

tems incapable of high-speed operations. In experimental results, it is shown that 

the motor cannot follow the command speed smoothly. 

A fuzzy logic-based MRAC for the PMSM drive has been proposed by 

Koviac et. al. [62]. Simulation results verify the effectiveness of the proposed al-
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gorithm, which was designed using the linearized model of the PMSM (the refer­

ence model being parameter dependent). This may not translate to real-time im­

plementation where nonlinear load changes and parameter variations exist with dif­

ferent operating conditions. 

Uddin and Rahman [63] have presented a FLC-based vector control scheme 

for the IPMSM. Their work uses a fuzzy algorithm to determine q-axis command 

current from the error between actual and reference speeds, and the difference be­

tween the current and previous speed errors. D-axis command current is set to be 

zero as a simplifying approximation. Heavy computational burden and the inaccu-

racy of the i~ = 0 approximation limit the capacity of this scheme. 

The application of fuzzy logic for IPMSM drives is in its initial stages. The 

heavy computational burden imposed by fuzzy algorithms limit these systems to 

implementation with only the fastest, most resource intensive microprocessors. 

Therefore, there exists a need to reduce the complexity of these algorithms so they 

may be implemented more economically. Furthermore, because of mathematical 

complexity and nonlinearity, the maximum torque per ampere approach for PMSM 

drives has not been practically implemented. Without this scheme PMSM drives 

must operate at less than optimum efficiency. Simplified FLC-based controllers, 

combined with MTP A mode operation, can overcome various drive uncertainties 

such as unknown nonlinear load characteristics, parameter changes and other sys­

tem disturbances, as well as provide maximum efficiency operation of the PMSM 

at and below the rated speed. 
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1.4 Problem Identification and Thesis Objectives 

High performance drive (HPD) systems must provide fast and accurate 

speed responses, quick recoveries of reference speed from sudden disturbances of 

all natures, and show insensitivity to parameter variations. Each of the systems 

presented to date have shortcomings that require remedy if the IPMSM is to be 

practically implemented under HPD standards. Thus, it is necessary to further de­

velop control algorithms and approaches to produce this high standard of perform­

ance in a practical manner. 

While the IPMSM has many advantages over conventional motors, its op­

eration is strongly affected by motor magnetic saliency, saturation and armature 

reaction effects [64]. Particularly, the saturation of the iron portion of the rotor 

around the permanent magnets produces a distortion of the air-gap flux that affects 

the reactance parameters of the motor. These reactance changes with different op­

erating conditions and, hence, affect the performance of the drive system if they are 

not accounted for. This makes the control of the IPMSM for HPD applications an 

engineering challenge. 

The objective of this work is to develop and implement a complete IPMSM 

drive system to be used in HPD applications. The vector control scheme, incorpo­

rating a speed controller and a current controller is used because it decouples the 

torque and flux, thus providing faster transient responses and making the control 

task easier. An efficient speed controller, incorporating heretofore undeveloped 

methods is presented for the high performance IPMSM drive. 

As discussed in the literature survey, fixed-gain proportional integral (PI) 

and proportional integral derivative (PID) controllers, model reference adaptive 

controllers (MRAC), variable structure controllers (VSC), sliding mode controllers 
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(SMC) and self-tuning regulators (STR) all require the accurate and precise knowl­

edge of system model parameters. Moreover, the fixed-gain PI and PID controllers 

are especially sensitive to parameter variations, load changes and other system dis­

turbances. Intelligent controllers, such as the fuzzy logic controller (FLC), do not 

need any information about the system mathematical model, are self-adaptive to 

uncertainties and can handle any kind of system non-linearity. However, FLC­

based drive systems incorporate complex algorithms that impose such computa­

tional burdens that they can only be incorporated by making performance compro­

mises or by use of the latest, most powerful personal computer systems. Therefore, 

a large part of the purpose of this work is not only the real-time implementation of 

the IPMSM drive incorporating an intelligent, FLC-based controller, but also to 

achieve this control with minimal complexity and computational burden. In addi­

tion, many researchers have simplified the non-linear model of the IPMSM to a lin­

ear one by forcing the d-axis cmTent to zero (i.e. id = 0). This is not accurate and, 

as a result, produces a motor control that requires increased stator current to pro­

duce a given torque. This work includes the development of a practical implemen­

tation of the maximum torque per ampere (MTPA) scheme with the real case of id -:f:. 

0, which produces motor torque with the minimum possible stator currents. 

Laboratory implementation has been carried out to verify theoretical and 

experimental results. These results have been compared with those obtained using 

a traditional FLC-based system with~ = 0. 
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1.5 Thesis Organization 

This thesis consists of six chapters. The introduction and literature survey 

of vector control techniques for permanent magnet synchronous motor drives, as 

well as the objectives of this thesis have been covered in this chapter. 

Chapter two contains the theoretical development of the mathematical 

model of the interior permanent magnet synchronous motor (IPMSM) and presents 

the theoretical development of the analysis and modeling of the PWM VSI-fed 

IPMSM drive with maximum torque per ampere (MTP A) based control. 

Chapter three outlines the development of the fuzzy logic based speed con­

troller for the IPMSM drive and presents a simplified fuzzy logic based speed con­

troller incorporating the maximum torque per ampere mode of operation that re­

duces complexity and computational burden. Ideas developed include linguistic 

variables, membership functions, fuzzification, rule evaluation and defuzzification. 

Both controllers are incorporated into problem specific vector control schemes for 

theiPMSM. 

Chapter four presents the simulation results of both of these drives. 

Chapter five contains the results of the real-time experimental implementa­

tion of the simplified FLC/MTPA drive which has been implemented using a digi­

tal signal processor (DSP) based vector control of a laboratory 1 hp IPMSM. 

Chapter 6 presents the summary of the contribution of this work and the 

conclusion. 

Finally all pertinent references are listed. 
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Chapter 2 

Analysis and Modeling of the PWM 

VSI-Fed IPMSM Drive 

2.1 General Introduction 

This chapter presents the development of the mathematical model of a com­

plete current-controlled voltage source inverter (VSI) -fed interior permanent mag­

net synchronous motor (IPMSM) drive using the d-q axis model of the IPMSM. A 

fixed-band hysteresis current controller has been used to apply the correct stator 

currents to the motor through the VSI. 

In order to operate the vector control scheme, a fuzzy logic based speed 

controller is used. This will be developed in chapter 3. 
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2.1.1 Mathematical Modeling of the IPMSM 

The IPMSM is similar to the conventional synchronous motor with the ex­

ception that the field excitation is provided by permanent magnets instead of a 

wire-wound de rotor field. Because of this, the mathematical model ofthe IPMSM 

can be derived from the standard model of the synchronous motor by removing the 

equation related to the field current and other associated terms. 

The flux linkages in the three stator phase windings due to the permanent 

magnets of the rotor are given in matrix form as [65]: 

l~= J 

sin er 

sin( er-
2
31t) \jl bm = \jl m (2.1) 

\jl em 

sin( er + 
2
31t) 

The three phase air gap flux linkage equations are given in matrix form as: 

sin er 

sin( er 
2
31t) (2.2) 

sin( er + 
2
31t) 

where ia, ib, ie are the three phase currents, Laa, Lbb, Lee are the self inductances and 

Mab, Mbe, Mea are the mutual inductances, respectively, \jim is the constant flux sup:.. 
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plied by the permanent magnets and 8r is the rotor position angle. Rotor position 

angle 8r is defmed as, 

(2.3) 

The voltage equations of the three phases of the IPMSM can be defined as, 

. d\jf a 
Va = rala + - -

dt 
(2.4) 

(2.5) 

- . d\jf c 
Vc-fclc + --

dt 
(2.6) 

where Va, vb, Vc are the three phase voltages and ra, rb, rc are the three stator phase 

resistances. In matrix form, this is, 

(2.7) 

where p is the time differential operator, ~. Inspection of Eqn. (2.2) reveals that 
dt 

the flux linkages are functions of rotor position and, therefore, functions of rotor 

speed. This means that the coefficients of the voltage equations are time varying 

(except, of course, when the motor is stationary). In order to avoid the complexity 
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of calculations, all of the equations can be transformed to the synchronously rotat-

ing rotor reference frame where the machine equations are no longer dependent on 

the rotor position. This is accomplished using Park's transformation equations 

[65]. First, the machine equations are transformed from the stationary a-b-c frame 

to the stationary d-q frame, then they are transformed from the stationary d-q frame 

to the synchronously rotating dr-qr frame. Using x to represent the machine phase 

variables, the inverse Park's transform gives, 

Cos8r 

co{ er-
2
31t) (2.8) 

co{ er + 231t) 

The corresponding Park transform is, 

Cos8r co{ Sr 
2

3
n) co{ er + 231t) 

[:J~ [:J Sin Sr Sin(er 
2
3
7t) Sin( Sr + 

2
3
n) (2.9) 

1 1 1 
-
2 2 2 

where Xo is the zero sequence component. The matrix element x may represent ei-

ther voltage or current. Eqns. (2.8 -2.9) are both in a stationary reference frame, so 

Sr is only the initial rotor position Sr(O) which is also the angle difference between 
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the q-axis and a-phase. For balanced 3-phase, Xo does not exist and it is also con-

venient to set Sr(O) = 0 so that the q-axis coincides with the a-phase. Under these 

conditions, Eqns. (2.8) and (2.9) become, 

and 

0 

-../3 
2 

.J3 
2 2 

-1 

3 
-1 

.J3 

[ ::] (2.10) 

(2.11) 

To convert these variables to the rotating d-q frame we use Fig 2.1 as refer­

ence. From this, we see that the quantities in the stationary d-q frame can be con­

verted to the synchronously rotating frame as follows: 

(2.12) 

The inverse relation can be written as, 
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Sin8r ] [X~ ] 
Cos8r x~ 

(2.13) 

Now, using equations (2.7)-(2.8) and (2.13) the d r_q r model of the IPMSM 

can be written as, 

(2.14) 

(2.15) 

where vi and Vqr are the d and q axis voltages, il and iqr are the d and q axis cur­

rents, respectively, rs is the per phase stator resistance and ills is the stator fre-

quency. 

e.= ro.t 

o-axis 

d'-~~ 
d-axis 

Fig. 2.1 Relative positions of stationary d-q axes and rotating dr -qr axes. 

33 



The following assumptions have, thus far, been made: 

(a) The eddy current and hysteresis losses are negligible. 

(b) There is no squirrel cage on the rotor side. 

(c) The induced emf is sinusoidal. 

(d) The saturation is neglected. 

(e) There are no field current dynamics or magnet imperfections. 

(f) The stator resistances of the three phases are balanced. 

The q-axis flux linkage 'l' ~ and the d-axis flux linkage 'I'~ can be written as, 

where, 

Lq = Lt + Lmq 

Ld = Lt + Lmd 

(2.16) 

(2.17) 

(2.18) 

(2.19) 

Ld and Lq are the d and q axis inductances, Lmd and Lmq are the d- and q-axis mag­

netizing inductances, respectively, and Lt is the leakage inductance per phase. The 

stator frequency ros is related to the rotor frequency ror as, 

(2.20) 
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where Pis the number of pole-pairs. Therefore, Eqns. (2.14)-(2.15) can be rewritten 

as, 

(2.21) 

Consequently, the IPMSM can be represented by the d rand q r axis equivalent cir­

cuit diagrams shown in Fig. 2.2, where the permanent magnet is represented as a 

current source [66] in Fig. 2.2(a). 

From these equivalent circuits, the power developed per phase is given by, 

(2.22) 

So, the total power developed by the machine is, 

(2.23) 

And the developed electromagnetic torque is given by, 

(2.24) 

which can also be represented as, 
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(2.25) 

where T L is the load torque, P is number of pole pairs of the motor, p is the differ­

ential operator, Bm is the friction damping coefficient and Jm is the rotor inertia 

constant. 

. r 

r r 
Vd 

. r 
lq r 

1 
V r 

g 

Lmd 

(a) 

(b) 

Fig. 2.2. Equivalent circuit model of the IPMSM: (a) d-axis, (b) q-axis. 
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So, finally, the IPMSM model equations may be expressed as follows: 

piqr = (vqr- R iqr -Pror Lct ictr- Pror 'I'm)/ Lq 

pii =(vi-R ii +Pror Lq iq)/ Lct 

(2.26) 

(2.27) 

(2.28) 

The above three fundamental equations are used to model the IPMSM. The spe-

cific motor parameters used for simulation are given in Appendix A. 

2.2 Vector Control of the IPMSM Drive 

From equation (2.24) one obtains the expression of torque, 

(2.29) 

we see that the second term in the electrical torque equation (2.29) represents a 

complex interaction of inductances, Lct and Lq and also the currents, i/ and iqr· 

However, in the case of the IPMSM, Lq is larger than Lct, and both undergo signifi­

cant variations under different steady state and dynamic loading conditions [64]. 

So the complexity of the control of the IPMSM drive arises due to the nonlinear 

nature of the torque Eqn. (2.29). 

Using phasor notations, and taking the dr axis as reference, the steady state 

phase voltage Va can be derived from the steady stated r_q r axis voltages described 

in Eqn. (2.21) as, 
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(2.30) 

In the case of the IPMSM motor, the dr-axis current is negative and it demagnetizes 

the main flux provided by the permanent magnets. Thus, in order to take only the 

absolute value of ictr one can re-write the Eqn. (2.30) as follows: 

where, the phase current, Ia is given as, 

I · r · · r 
a= -ld + J lq 

(2.31) 

(2.32) 

Based on Eqn. (2.30) the vector diagram of the IPMSM is shown in Fig. 2.3. It can 

be seen that the stator current can be controlled by the dr and qr axis current com­

ponents, hence, the basis of the vector control scheme is illustrated. A complete 

indirect vector control scheme for the current controlled VSI-fed IPMSM drive is 

shown in Fig. 2.4. 

The IPMSM drive consists of the current controller and the speed control­

ler. The speed controller generates the torque command from the command speed 

and the actual speed samples. Then the command phase currents ia *, ib * and ic * are 

generated from iq r* and it using Park's transformation. From these command cur­

rents and the actual motor stator currents, ia, ib and ic, the current controller pro-

vides the appropriate operating gating signals to the current-controlled voltage 

source pulse width modulated (PWM) 3-phase, 6-pulse inverter, forcing the actual 
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ictr 

'I'm 

Fig. 2.3. Vector diagram ofiPMSM parameters. 

Speed i:loo. (\,_. -
Controlle ~-------; 

+i ~· 

6 

&&rl--r--~--------------~ 

Fig. 2.4. Block diagram of complete current-controlled VSI-fed IPMSM drive. 
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motor currents to follow the command currents as closely as possible and, hence, 

forcing the motor to follow the command speed by feedback control. 

Therefore, in order to operate the motor in a vector control scheme the 

feedback quantities will be the rotor angular position and the actual motor currents. 

2.2.1 Maximum Torque Per Ampere Speed Controller 

The speed controller generates the torque command from the command 

speed and the actual speed samples. Traditionally, this has been accomplished by 

use of PI and PID controllers. However, these controllers produce unsatisfactory 

performance for high performance drive systems, so alternatives must be found (as 

covered in Chapter 1 ). In this work, Fuzzy Logic Controllers have been used to 

design the speed controllers. Their development will be detailed in Chapter 3. 

In addition, the d-q axis command currents, 4tr* and it are determined from 

command torque by manipulation of Eqn. (2.29). One of the main problems asso­

ciated with the control of the IPMSM is the non-linearity arising out of the devel­

oped torque, as can be seen from the torque equation (2.29). Many researchers 

have focused their attention on the vector control of the IPMSM drive by forcing 

id = 0, which linearizes the torque equation [25, 28, 32, 34]. However, in real-

time the electromagnetic torque truly is non-linear in nature. In order to incorpo­

rate this non-linearity in a practical IPMSM drive, a control technique known as 

maximum torque per ampere (MTPA) has been derived which provides maximum 

motor torque with minimum stator current [25, 28, 32, 40, 67]. This MTP A strat­

egy is very important from the limitation of IPMSM and inverter rating 

points of view, which optimizes the drive efficiency. Figure 2.5 shows the 
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maximum torque per ampere trajectory that provides information for the con-

trol strategy. 

The problem associated MTPA control technique is that its implemen­

tation in real time becomes complicated because of the complex relationship 

between d-axis and q-axis currents. Some researchers have solved this prob­

lem by use of look-up tables, based on this trajectory, ford- and q-axis cur-

rents [40, 43]. 

• • 5 .......... ...... ,. ................... . .. .. ·· ···· .· ................ .-.. .......... ........... . 

~ Maximum Torque/Ampere trajjory 
f .. .. . .... .. L. ........ . Qi 4 •• • ••••o•o •o• o•o•o•o o o O o o oo ' 0 0 H 0 

Q. 
E 
C'CI 

. .... i .... . i . ...... },, .. . . .. ... . . .. ) ... . . . .... .. ; ...... ............. ....... . 

. . . ... . . . . . . · l .. . .. . . . . . . . . . .. . . . . . . 

QL---J-__ _L __ _J ____ L_ __ ~ __ _L __ _J ____ L_ __ ~--~ 

-5 -4.5 -4 -3.5 -3 -2.5 -2 -1 .5 -1 -0.5 0 
d-axis current, ampere 

Fig. 2.5. Maximum torque per ampere (MTPA) trajectory on constant torque loci. 
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For application of the MTP A technique, the relation between ici and iq can be 

obtained by differentiating Eqn. (2.29) with respect to iq and setting the resulting 

expression to zero. The relation between ict, iq and Ia can be derived from Eqn. 

(2.32) as 

Giving, 

(2.33) 

d~ =3p['l! +(Ld-L )id-(Ld-L )i 
2 ~]=0, (2.34) 

dz 2 m q q q 12 -iz 
q a q 

• 2 
l 

If! +(L -L )i - (L -L )!L=o. (2.35) 
m d qd d qi 

d 

Rearranging the order ofLct and Lq and solving for ict gives, 

lf/rn 
(2.36) 

Substituting Eqn. (2.36) into Eqn. (2.29), one can get a non-linear relationship 

between iq and T e as, 
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(2.37) 

Because of the square root terms, the real-time implementation of the drive 

system becomes difficult using Eqns. (2.36) and (2.3 7). This work presents a 

simplified relationship between the d-q axis currents, which is obtained by 

expanding the square root term of Eqn. (2.36) using a Taylor series expansion 

around a point approaching zero. (Zero itself was not used because, practically, it 

is desired to have the approximation most accurate for small values of iq but not 

exactly zero.) Substituting the appropriate experimental machine parameters given 

in Appendix A into Eqn. (2.36) gives, 

id = 4.22839 - ~17 .87925 (2.38) 

and expanding Eqn. (2.38) in a Taylor series about iq = 0.001 gives, 

id =-0.11825(iq -0.001) 2 - 0.00024(iq -0.001)-0.118xl0 -6 (2.39) 

Substituting Eqn. (2.39) into Eqn. (2.29) and solving for iq gives, 

iq =- 0.000047 (Te - 0.000942 ) 2 + 1.06157 (Te - 0.000942) + 0.001 (2.40) 
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Equations (2.39) and (2.40) are used in the speed controller to determine the 

rotating frame d-q axis command currents for the MTP A control of the IPMSM. 

2.2.2 Vector Rotator 

The command current outputs of the speed controller are in the rotating ro­

tor reference frame. Therefore, they must be transferred to the stator reference 

frame. The inputs of the vector rotator block are the d-q axis command currents, 

i/ and it, from the speed controller and the rotor position 9r from the sensor on 

the motor. The outputs are the three phase command currents ia"', ib * and ic *. 

The transformation is done by first converting the synchronously rotating dr 

- qr axis quantities to the stationary d-q axis quantities and then transforming these 

stationary d-q axis quantities into the corresponding a-b-c phase currents. 

2.2.3 Current Controller and Voltage Source Inverter 

Once the appropriate a-b-c phase command currents are generated by the 

vector rotator a current controller is used to control the voltage source inverter 

(VSI) to produce these command currents on the motor stator. The outputs of the 

current controller are the firing pulses for the inverter switches. Therefore, the VSI 

forces the motor to follow the command speed by feedback control. 

The current control principle for the VSI used in this work is the based on 

the fixed-band hysteresis controller. The hysteresis current controller is most 

commonly used for high performance drive applications because of its simplicity 

and ease of implementation while providing acceptable results. 
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2.3 Current Control of the Voltage Source Inverter 

The purpose of the current controller is to force the motor stator currents to 

follow the a-b-c phase command currents as closely as possible. These command 

currents are produced from the error between the command speed and samples of 

the actual speed of the motor with the intent of producing a motor speed identical to 

that of the command speed. Therefore, under the scheme of speed control, the cur­

rent controller forces the motor to follow the command speed. 

The current-controlled VSI operation can be described, with reference to Fig. 

2.6, as follows: The errors between the actual motor currents and the command 

currents are processed by the hysteresis current controller to generate the firing 

pulses for the transistors of the inverter. Each stator phase of the motor is 

NA NB NC 

Fig. 2.6. Current controlled voltage source inverter for the IPMSM drive. 
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connected to the corresponding leg of the three-phase VSI. The center point of the 

two equal-valued capacitors is considered ground. The neutral of the stator is not 

connected to this ground. 

In the figure NA, NB and NC represent three binary logic variables of the 

three legs of the inverter, respectively. These logic variables determine the conduc­

tion state of the inverter. When NA is 1, T1 is conducting and T4, is not, and when 

NA is 0, T4 is conducting and T1 is not. NB and NC produce similar conduction 

patterns in the other two legs. 

To simplify the analysis of the three phase voltages, the concept of voltage · 

and space vectors are used to analyze the current controller. The inverter voltage 

vector is defined as [14], 

v = (2/3) ( Va + avb + a2 v c ) (2.41) 

where a=d21t13
, and Va, Vb, Vc are the phase voltages. The phase voltages Va, Vb and 

Vc are expressed as functions ofbus voltage, Vs, and the logic variables as, 

l
v ] l2 -1 -1] lNA] v:: = k - 1 2 -1 NB V8 . 

v -1 -1 2 NC en 

(2.42) 

There are eight switch combinations for the six switches of the inverter. 

Using Eqn. (2.41) the inverter voltage vector can be written as, 

VL = (2/3) Vs ei<L-J)1tt3 for L= 1,2, ... ,6 
(2.43) 

= 0 forL= 0,7. 
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The logic operation ofthe current-controlled VSI is summarized in Table 2.1. 

The voltage vectors corresponding to the six active states are shown in Fig. 

2.7. The magnitude of each voltage vector is (2/3)Va. The magnitudes of the volt-

Table 2.1. Conduction modes of the VSI under current control 

Leg 'a' Leg 'b' Leg ' c' Voltage 

State, L Tt T4 T3 T6 Ts T2 Operating modes phasor 

0 0 1 0 1 0 1 Freewheeling Yo 

1 1 0 0 1 0 1 Active VI 

2 0 1 1 0 0 1 Active v2 

3 I 0 1 0 0 1 Active v3 

4 0 1 0 1 1 0 Active V4 

5 1 0 0 1 I 0 Active Vs 

6 0 1 1 0 1 0 Active v6 

7 1 0 1 0 1 0 Freewheeling V7 

2 

Fig. 2. 7. VSI voltage vectors. 
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age vectors corresponding to the freewheeling states, V0 and V7, are zero. In these 

cases, no voltage is applied to the motor because in these states no conduction path 

exists across any leg ofthe inverter. 

2.3.1 Effect of Unconnected Neutrals 

If the neutral of the motor stator is not connected to the de bus midpoint, the 

switching of any one phase depends on the states of the other two phases. This 

means that the individual line-to-neutral voltages are dependent on each other and 

each line current will depend not only on the corresponding inverter phase but also 

on the state of the other two phases. Therefore, the current controller experiences 

interaction between the phases of the inverter, and the actual current potentially 

may not follow the command current accurately and precisely. 

2.3.2 Limitation of de Bus Voltage and Inverter Switching 

frequency 

In order for the inverter to produce and follow the command currents there 

must be sufficient de voltage across the inverter terminals to force the line currents 

in the desired direction. As the back emf from the motor stator is increased a point 

is reached where the de bus voltage is insufficient, and the line-to-neutral voltage of 

the inverter (and therefore also the stator) becomes a six-step quasi-square wave. 

At this point the current controller is saturated and actual stator current is not able 

to follow command current. 
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Inverter switching frequency, which depends on the type of current control­

ler used, also imposes a limitation on the operation of the motor. In the case of the 

hysteresis controller, the switching frequency depends on several factors that can be 

described by the following equation representing one phase of the motor: 

L 
dia . 
-=Va -Rta -ea, 
dt 

(2.44) 

where L is phase inductance, ia is phase current, R is per-phase resistance, Va is 

phase voltage and ea is phase back emf. The actual switching pattern is shown in 

Fig. 2.8. In this figure, t1t1 represents the time during which the line current will 

increase by L1ia1, and L1tz is the time during which the current will decrease by L1ia2· 

Assuming Va and ea are constant during the interval t1t1 + L1tz, and since inverter de 

bus voltage, Vs, is equal to stator phase voltage, Va, the equation describing L1t1 and 

M2 can be written as, 

(2.45) 

Inverter switching frequency can be expressed as, 

f = li(L1tl + L1t2). (2.46) 
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Fig.2.8. Hysteresis current controller switching pattern. 

Therefore, switching frequency depends on the de bus voltage, the induc­

tance, and the magnitude and ripple content of the motor current. As the line-to­

neutral fundamental voltage varies periodically, so the inverter switching frequency 

will vary over the fundamental period. 

2.4 Hysteresis Current Controller 

The block diagram of a typical three-phase hysteresis current controller 

scheme is shown in Fig. 2.9. The hysteresis controller is used to control the stator 

current in such a way that it can follow the command current within a hysteresis 

band, but the switching frequency of the inverter varies over the fundamental pe­

riod. This results in an irregular operation of the inverter with time and, therefore, 

the switching losses are increased as compared to some other types of current con-

trollers. Still, this type of controller is the most extensively used because of its 

simplicity and excellent dynamic response. 
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There are conventionally two types of hysteresis controllers: Sinusoidal­

band and flxed-band hysteresis controllers. In the sinusoidal-band type, the hys-

teresis band varies sinusoidally over the fundamental period. The advantage of 

this scheme is that the harmonic content of the current is low, but this scheme pro­

duces very high switching frequencies near zero crossings. As a result, the maxi­

mum switching frequency of the inverter increases substantially when this type of 

controller is used. 

With the flxed-band hysteresis controller the hysteresis band is maintained 

constant. This reduces the maximum switching frequency of the inverter but the 

harmonic current is increased. This is the type of current controller used in this 

work. 

Fig. 2.9 illustrates the operating principle of the flxed-band hysteresis con­

troller. In the figure, Nl, N3 and N5 are the logic signals for the high transistors of 

the inverter and N4, N6 and N2 are the logic signals for the corresponding low 

transistors of the inverter. When the logic signal N l is 1 then transistor Tt is on 

and when it is 0 then T 1 is off. The other transistors follow logic signals likewise. 

The operational logic of the fixed-band hysteresis controller is illustrated in 

Fig. 2.1 0. It can be described as follows: 

(i) For ia* >0, N4=0: ifia> iup, then Nt=O, else ifia< i1o, then N1 =I. 

(ii) For ia* <0, Nt=O: ifia> iup, then N4=l, else ifia< i1o, then N4 =0. 

where ia is actual 'a' phase current, ia * is command current, iup=ia * + H is the upper 

band, i10=ia * - H is the lower band, and H is the flxed hysteresis band. 
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Fig.2.9. Fixed-band hysteresis current controller scheme. 
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Fig 2.10 Fixed-band hysteresis current controller wavefonns. 
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Chapter 3 

Fuzzy Logic Based Speed Controller 

3.1 General Introduction 

The two most commonly implemented command current generating 

algorithms for controlling the current-controlled VSI are PI and PID schemes. In 

these schemes the speed error (command speed - actual speed) is used to generate 

the command torque necessary in order to return the rotor to the command speed. 

The stator currents that must be applied to the motor in order to produce this 

desired speed are obtained from the required torque, and then the VSI is used to 

apply these currents to the stator windings. By continuously adjusting the applied 

stator currents, under the influence of the command currents, the rotor speed is 

made to track the command speed. 

The calculations of command torque, however, rely upon mathematical 

modeling equations of the IPMSM that are dependent upon the internal motor 

parameters of d- and q-axis reactances. This leads to problems because, in the 

IPMSM, the rotor magnetic saliency, saturation and armature reaction vary during 

operation under different speed and loading conditions and thus affect the air gap 

flux and reactance parameters. Therefore, under operating conditions, the IPMSM 
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model contains unknown dynamics. This affects the performance of PI and PID 

based control systems at different operating conditions, because in these controllers 

the d-q axis parameters are assumed to be constant. In addition, conventional PI 

and PID controllers are very sensitive to step changes of command speed and load 

disturbances. Thus, the effective control of the IPMSM needs a complex structure 

for high performance applications, where rapid speed response, fast and precise 

handling ofload changes and parameter variations, overload capacity, maintenance 

free operation, size, weight and robustness are all of primary concern. 

The use of fuzzy logic controllers (FLC) eliminates much of these problems 

and makes the control system more generic. The FLC has the advantage over 

conventional controllers because it does not need the exact system mathematical 

model, and therefore it does not rely upon knowledge of dynamically changing 

parameters, such as reactances [76]. Thus, it can handle nonlinear functions of any 

arbitrary complexity, and it is easily expanded and modified. 

3.2 Fundamentals of Fuzzy Logic Control 

Fuzzy logic is an extension of Boolean logic that is designed to handle the 

concept of partial truth - truth values between "completely true" and "completely 

false"- between 0 and 1 [68]. For instance, in fuzzy logic a statement may be true 

to a degree of0.7, not just 1 or 0. 

The fuzzy set (subset) A on the universe (set) X is defined by a membership 

function, rnA from X to the real interval [0,1], which associates a number mA(x) E 

[0,1] to each element x ofuniverse X. mA(x) represents the degree of membership 
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of the element x to the fuzzy set A. For example, the equation mA(x) = 0.5 means x 

has A-ness of about 50%. 

A fuzzy singleton S(x
0

) = m(x) lx is a fuzzy set that supports only one 
0 

element :xo. Therefore, the fuzzy set (A in this discussion) is the union of the fuzzy 

singletons of all its constituent elements (here, all the elements x of universe X). 

However, in fuzzy set theory, the boundaries of the fuzzy sets can be vague and 

ambiguous, making it useful for approximate systems. 

Fuzzy sets are represented graphically by means of their membership 

functions. The four most popularly used membership functions are shown in 

Figure 3.1 (although there are numerous others). 

ZE ZE ZE ZE 

-1 0 

a c 

(a) (b) (c) (d) 

Figure 3.1. Membership functions oflinguistic value ZE: (a) triangular, (b) 

Gaussian function, (c) trapezoidal and (d) singleton. 

Mathematically, these membership functions can be defined as, 
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c) trapezoidal: f(x; a, b, c)= 1 b ::s;x::s; c (3.3) 
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c::s;x::s;d 

d - e ' 

0, x2d 

d) singleton: f(x) = {
1, X = X 0 } 

0, X -:f:. X
0 

(3.4) 

Fig. 3.1 shows some possible choices of membership functions for a fuzzy 

set associated with the linguistic value ZE in the universe X = [ - 1, l]. In these 

examples we see that the number 0 fully belongs to the fuzzy sets while the 

numbers -1 and + 1 do not. This need not necessarily be the case for all possible 

choices of membership functions. The choice of fuzzy logic membership functions 

depends on the designer's preference and/or experience, and the designer has the 

option of specifying his or her own membership functions. 

The complete process of formulating the mapping from a given input to an 

output using fuzzy logic is known as fuzzy inference. There are two types of fuzzy 
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inference methods: Mamdani and Sugeno types [69]. The difference between the 

two methods is only in the way the output is defined. In control applications, 

Mamdani type fuzzy inference is the most commonly used method and is the one 

utilized for this work. The process of fuzzy inference consists of three main 

components. These are given as follows: 

( 1) fuzzification, 

(2) rule evaluation 

(3) defuzzification. 

3.2.1 Fuzzification 

The first step of fuzzy inference is to take the inputs and apply the 

appropriate membership functions to them to determine the degree to which they 

belong to each of the appropriate fuzzy sets. This process of converting a 

numerical variable (real number) into a linguistic variable (fuzzy number) is called 

fuzzification. In the FLC, the input is a numerical value limited to the prescribed 

universe and the output is a value between 0 and 1 that represents the input's 

degree of membership to the qualifying linguistic set. 

3.2.2 Rule Evaluation 

In a fuzzy logic controller, the rule evaluation process involves the 

application of conditional statement (such as if..., then ... ,) where both the 

antecedent (if...) and the consequent (then ... ) are expressed in linguistic form. The 

rule evaluation consists of two processes: first the application of the fuzzy operator 

(AND or OR) in the antecedent, then implication from the antecedent to the 

consequent. A typical rule can be written as follows: 
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Rule Ri: If L\co is A and L\e is B then Te is C. 

where speed error L\co and change of speed error L\e are the input linguistic 

variables, current I is the output linguistic variable and Ai, Bi, and Ci are the labels 

oflinguistic variables L\co, L\e and I, respectively. lfthe antecedent is true to some 

degree of membership then the consequent is also true to that same degree. The 

fuzzy operators used for fuzzy rules are AND (n), OR (u) and NOT (- ). They 

are defined as follows: 

a) AND means classical intersection: mAna= min{mA(x), ms(x)} 

b) OR means classical union: mAuB = max{mA(x), ms(x)} 

c) NOT means classical complement: rnA = 1- mA(x). 

Therefore, according to rule, the rule Ri, mci(x)=min{mAi(x), mBi(x)} . 

3.2.3 Aggregation and Defuzzification 

Defuzzification is the process of fuzzy inference that generates the final 

output. But before the process of defuzzification can be completed, there is another 

process, called the aggregation process, which must be evaluated. 

The resultant decisions made by the FLC are based on the testing and 

combining of all the rules in the fuzzy inference system. The process of combining 

the fuzzy sets that represents the output of each rule into a single fuzzy set is called 

the aggregation process. 

The defuzzification process is the reverse of the fuzzification process. The 

input for defuzzification is the combined output of each rule (the result of 

aggregation process) and the output is a single number. Several different 

defuzzification methods exist. In this work, the method was chosen by 

compromising the accuracy of the outcome to reduce the computational burden 
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imposed in calculating it. The centre of gravity method was used, which IS 

evaluated as, 

N 

Llimci(Ii) 
output I= ...:..i=-'-~----

Imci(Ii) 
i=l 

(3 .5) 

where N is the total number of rules, illci(Ii) denotes the output membership grade 

for the ith rule with the output subset of Ii. An illustration of this process is shown 

in Fig. 3.2. 

Rule 1: 

Rule 2: 

1. Fuzzification of inputs 

if Aro is PS (positive small) 

if Aro is PM (*ositive medium) 

Aro 

Input 1 

2. Application of fuzzy 
AND (min) operator 

if Ae is NE (negative) 

Ae 

Input 2 

3. Application of fuzzy 
implication method 
(min.) 

then Te is NS (negative small) 

then T e is PS (positive small) 

Aggregation 
method (max.) 

and 
Defuzzification 
(COG method) 

Output 'Te' 

Fig. 3.2. Overview of the complete fuzzy inference. 
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3.3 Fuzzy Logic Controller for IPMSM Drive 

In the interior permanent magnet synchronous motor, the permanent 

magnets are buried within the rotor core in order to produce a smooth rotor surface 

and reduced air gap between the stator and the rotor. This allows the motor to be 

used at high speeds with improved dynamic performance compared to other types 

of permanent magnet motors. However, the operation of IPMSM is strongly 

affected by rotor magnetic saliency, core saturation and armature reaction effects 

due to the d-axis stator current id. The saturation of the rotor iron around the 

permanent magnets produces significant distortion of the air gap flux and causes 

the reactance parameters to vary with different operating conditions. These 

nonlinearities affect the performance of the drive at different dynamic operating 

conditions. 

These factors can be overcome by use of artificial intelligence based 

controllers, capable of handling any nonlinear functions of arbitrary complexity. A 

fuzzy logic controller has been proposed for the IPMSM drive. The use of a fuzzy 

logic controller (FLC) for the IPMSM drive in high performance applications bas 

the following benefits: 

(a) The system mathematical model is not required: The FLC does not need 

any information of the exact system mathematical model. This makes it one of 

the best approaches for control of an IPMSM motor drive, where the exact 

system mathematical model is difficult to obtain and includes dynamically 

changing parameters. 

(b) The FLC is self-adaptive: In the real-time IPMSM drive reactance 

parameters change with operating conditions, resistance changes with 
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temperature, inertia changes with mechanical load variation and command 

speed may be changed on demand. The FLC self-adapts to these changing 

conditions and hence can be used as a robust controller for the IPMSM drive. 

(c) Reasonable cost: The application of other types of intelligent controllers 

to the IPMSM drive for high performance applications requires sophisticated, 

and often expensive, hardware. While the use of the FLC also requires a degree 

of specialized hardware, it is less complex than other intelligent controllers and 

therefore is considered cost effective. 

3.3.1 FLC Structure for the IPMSM Drive 

The motor dynamics can be represented by the following equation: 

Te = TL + BmCOr + lmPCOr (3.6) 

where T e is the electrical torque, T L is the load torque, Bm is the friction damping 

coefficient, Jm is the rotor inertia constant, p is the differential operator and COr is 

rotor speed. 

The dynamic model of the IPMSM can be rewritten from Eqns. (2.21) and 

(3.6) as, 

(3.7) 
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(3.8) 

where Kb = P'l'm· As the FLC can handle any non-linearity, one can consider the 

load as having unknown nonlinear mechanical characteristics. The load can be 

modeled using the following equation as [70], 

(3.9) 

where A, B and C are arbitrary constants. To make the control task easier, the 

equations of an IPMSM are expressed as a single input and single output system by 

combining Eqns. (3.8 and 3.9) in continuous time domain form as, 

(3.10a) 

A small increment ATe in T e causes a small increment Aror in ror: 

Subtracting Eqn. (3.10a) from (3.10b) gives, 

d(11roJ ( X ) ( )2 J m = 11 T e - B m + B + 2A ffi r 11m r - A 11m r 
dt (3.11) 
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By replacing all the continuous quantities of Eqn. (3.11) by their finite 

differences, the discrete time small signal model of the simplified IPMSM with 

nonlinear load can be given as, 

Hence, 

Te(n) = f~T e(n) = f(~e(n), ~wr(n), wr(n)) (3.13) 
discrete 

where, 1\e(n) = ~ror(n) - 1\ror(n-1) is the change of speed error, 1\ror(n) = ro/ (n) -

ror(n) is the present sample of speed error, ~ror(n-1) is the past sample of speed 

error, ror(n) is the present sample of actual speed, ror"(n) is the present sample of 

command speed, ts is the sampling time interval and f denotes the nonlinear 

function. Thus, the purpose of using the FLC is to map the nonlinear functional 

relationship between electrical torque T e and rotor speed ror. 

From this command torque Te, Eqns. (2.36) and (2.37) are used to calculate 

the necessary q- and d-axis currents to produce the rotor speed ror. In real-time, the 

motor position information and the output of the simplified FLC in terms of the 

command q-axis and d-axis currents iq * and id * are used to get the motor command 

phase currents ia*, ib* and i/ by using Park's transformation. 
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3.3.2 Simplified FLC for the IPMSM Drive 

The model of the IPMSM expressed by Eqn. (3.13) defines the input and 

output linguistic variables for the FLC of the IPMSM drive. According to Eqn. 

(3.13), the inputs of the proposed FLC are the present samples of speed error, 

change of speed error (which is the difference between the present and past samples 

of speed error) and present rotor speed. However, it has been observed that the 

effect of the inclusions of the rotor speed and change of speed error on motor speed 

response is negligible, not producing an improvement in drive performance 

commensurate with the resulting increase in computational burden as compared to 

the case when it is omitted. The omission of the cor(n) and ~e(n) terms produces a 

proportional-type FLC-based drive with acceptably responsive and accurate 

tracking of the command speed. Thus, the input vectors of the FLC can be reduced 

to only ~cor(n), producing a much-simplified FLC as compared to input vectors of 

~cor(n), ~e(n) and cor(n) with the non-simplified system. These simplifications 

significantly reduce computational burden and lower the computer memory and 

power required to implement the FLC scheme in real time. Thus, this simplified 

FLC is a significant factor for real-time implementation of the laboratory IPMSM 

drive system, if a fuzzy-based controller is to be employed. The block diagram of 

the proposed FLC based IPMSM drive incorporating MTPA is shown in Fig. 3.3. 

Next, scaling factors, Koo and Ki, are chosen for fuzzification and obtaining 

the appropriate actual output of the command current. The factor Kco is chosen so 

that the normalized value of speed error, ~com, remains within the limits of± 1. 

The factor Ki is chosen so that rated current is produced by the controller at rated 

conditions. The constants are taken as Koo = co/ (command speed) and Ki = 10 in 

order to get the optimum drive performance. 
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Fig. 3.3. Block diagram of proposed simplified FLC 

-based IPMSM drive with MTP A control. 

After selecting the scaling factors, the next step is to choose the 

membership functions of ~rom and the normalized command torque Ten*, which 

form an important element of the FLC. 

The membership functions used for the input and output fuzzy sets are 

shown in Fig. 3.4. Trapezoidal functions are used as membership functions for all 

the fuzzy sets with the exception of the fuzzy set ZE (zero) of the input vector. 

Triangular membership functions are used for the fuzzy set ZE of the input vector 

and all the fuzzy sets of the output vector. The trapezoidal and the triangular 

functions are used because of their mathematical simplicity, and thus to simplify 
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implementation and reduce computational burden for real-time implementation. 

The non-symmetrical nature of the membership functions were arrived at by trial 

and error. 

1 FNH ___ ---,--___,..._....~ .. · · .;;,·"·~.·-~--P-L...---..,...... 

0_5 r (a) 

PH ·-i 

0.6 0.8 

0.4 0.6 0. 8 

Fig. 3.4. Membership functions for: (a) normalized speed error ~ffirn, 

(b) normalized command torque Ten*. 
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The rules used for the proposed FLC algorithm are as follows: 

i) if Llrom is PH (positive high), Ten is PH (positive high). 

ii) if Llrom is PL (positive low), Ten is PM (positive medium). 

iii) if Llrorn is NL (negative low), Ten is NL (negative low). 

iv) if Llrom is NH (negative high), Ten is NH (negative high). 

v) if Llrorn is ZE (zero), Ten is NC (no change). 

In this work, the values of the constants, membership functions, fuzzy sets 

for the input/output variable and the rules used were selected by trial and error in 

order to obtain the optimum drive performance. 

3.4 Concluding Remarks 

The principles of the fuzzy logic controller for IPMSM control applications 

have been presented in this chapter. A specific simplified fuzzy logic controller is 

proposed for the IPMSM motor drive as a robust speed controller in order to 

overcome the problems caused by real-time motor parameter variations, load 

changes and system disturbances. 
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Chapter 4 

Simulation of the FLC Based Vector 

Control of the IPMSM 

4.1 General Introduction 

This chapter presents a neoteric speed control technique for the IPMSM 

based around both fuzzy logic and the maximum torque per ampere (MTPA), with 

Taylor series approximation, mode of operation. For comparison purposes, two 

separate fuzzy logic based speed controllers have been implemented. The first is a 

FLC based controller operating under the id = 0 assumption, based on previous 

work by M. N. Uddin [63]. The second is a new, simplified FLC/MTPA based 

system designed around the mathematical model of the IPMSM, the appropriate 

motor dynamics and the nonlinear load model. This design has been developed in 

chapter 3, is illustrated in Fig. 3.4 and simulation model details are presented in 

Appendix B. 

Extensive simulations have been done in order to predict the performances 

of the drives using the two FLC based systems at different dynamic operating 

conditions. 

Finally the simulation results have been presented and discussed. 
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4.2 Current Controller and Voltage Source Inverter 

In this work, the fixed-band hysteresis controller is used is as the current 

controller due to its fast transient response, accurate steady-state response and its 

high performance characteristics over the entire speed range when used in the 

IPMSM drive. This is especially true when the fixed-band hysteresis controller is 

used in tandem with a voltage source inverter (VSI) employing fast switching 

devices like insulated gate bipolar transistors (IGBTs). 

Consequently, an IGBT based VSI and base drive unit have been utilized in 

this work. The details of the IGBT inverter with its snubber circuits and base drive 

circuit for the inverter switches are given in Appendix C. The details of the current 

control technique for the VSI and the principle of the hysteresis current controller 

have been presented in chapter 2. 

4.3 Simulation Results and Discussion 

Simulations have been carried out using the Matlab Fuzzy Logic Toolbox. 

Some simulation results are presented here. The laboratory experimental IPMSM 

is a 1 hp, 4-pole machine with 2 N-m as full load, fed by a current-controlled VSI. 

The capability of the motor to run at different loading conditions is one of the main 

criteria of the control system. Others include the ability to run at different 

command speeds and with sudden changes in motor parameters. 

The speed response, corresponding command phase current, command q:. 

axis current and actual steady-state 'a' phase current for the FLC basedlid=O 

IPMSM drive are shown in Figs. 4.1 (a)-(d), respectively, for no load and rated 

speed conditions. The results show that the drive follows the command speed very 
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quickly without any overshoot and nearly zero steady-state error. The command q­

axis current, which also represents the command torque (since id has been forced to 

zero in this scheme), however, oscillates significantly at steady-state conditions. 

This does not appear to significantly impact operational performance. 

Figs. 4.2 (a)-(d) show the speed response, command phase current ia*, q-axis 

command current and steady-state phase current ia, respectively, for the FLC 

basedlid=O IPMSM at half load and rated speed conditions. Again the drive follows 

the command speed without any overshoot or steady-state error, but the command 

q-axis current, and hence the command torque, oscillates greatly at steady-state, 

although the actual phase current is almost sinusoidal. 

The similar responses of the FLC basedlid = 0 IPMSM drive at full load and 

rated speed conditions are shown in Figs. 4.3 (a)-(d). Under these conditions, 

phase current magnitude peaks at 3.3 amperes, which is 10% in excess of the rated 

current of 3 amperes. This is due to the fact that the id = 0 approximation induces a 

higher stator command current than ideally with id not forced to zero. Once again, 

it is shown that the drive can follow the command speed smoothly without any 

overshoot and steady state error. These results verify that the FLC/ id=O based 

IPMSM drive can follow the command rated speed at various loading conditions. 

A step change of command speed is applied to the FLC basedlict=O drive in 

order to evaluate drive performance in terms of response time, speed overshoot, 

transient and steady state errors and stability. This is necessary because in high 

performance drive applications it is essential to change command speeds with 

situational demands. The responses of the drive including speed, ' a' phase 

command current, q-axis command current and steady-state actual phase current 

are shown in Figs. 4.4 (a)-(d), respectively, for a step change of command speed at 
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half load conditions. The results show that the drive can follow the command 

speed without overshoot and steady-state error during a step increase of speed (1 00 

rad./sec.~ 188.5 rad./sec.) but there is a small, but acceptable, undershoot during a 

step decrease of speed (188.5rad./sec.~100rad./sec.). Again, q-axis command 

current, and hence command torque, oscillates significantly, though this does not 

appear to significantly impact drive performance. The results show that the FLC 

basedlid=O drive can follow the command speed even after a step change of 

command speed. 

The ability of the drive to withstand disturbances is another important 

feature of the control system. Change of load is a typical external disturbance and 

is a very common occurrence for a high performance drive. The speed and 

corresponding command a-phase current ofthe motor, q-axis command current and 

steady-state actual a-phase current responses for the FLC based/id=O drive are 

shown in Figs. 4.5 (a)-( d), respectively, for a sudden increase of load at the rated 

speed. The motor is started with half load and at t = 0.25 sec. the load is suddenly 

increased to full load. It is shown that drive speed is reduced transiently, and only 

modestly, and that command speed is quickly recovered even under this relatively 

dramatic increase of load. The current response is almost sinusoidal and follows 

command current. Command torque, as indicated by iq"' oscillates greatly, but this 

does not appear to negatively effect drive performance. 

The speed response, corresponding command phase current, command q­

axis current and actual steady-state 'a' phase current for the simplified FLC 

based!MTPA IPMSM drive are shown in Figs. 4.6 (a)-( d), respectively, for no load 

and rated speed conditions. The results show that the drive follows the command 

71 



speed very quickly with only a minute overshoot which is recovered promptly and 

steady-state reached. Steady-state error is almost zero. iq has a much lower 

magnitude of oscillation than for the FLC/id=O based drive, and id has a yet further 

smaller magnitude of oscillation. This is explained by the fact that, with id not 

forced to zero, both the q and d-axis components of current contribute to the 

command torque rather than just iq alone. It can also be observed that id is a 

smaller magnitude, scaled opposite of iq. 

Figs. 4.7 (a)-( d) show the speed response, actual phase current ia, q- and d­

axis command currents and steady-state phase currents ia and ib, respectively, for 

the simplified FLC based/MTP A IPMSM drive at half load and rated speed 

conditions. Again the drive follows the command speed without detectable steady­

state error, but this time the short transient overshoot is even less. Again, iq has a 

much lower magnitude of oscillation than for the FLC/id=O based drive, and id is 

observed to be a smaller magnitude, scaled opposite of iq. The actual phase 

currents are almost, but not purely, sinusoidal. 

The similar responses of the simplified FLC based/MTP A IPMSM drive at 

full load and rated speed conditions are shown in Figs. 4.8 (a)-( d). The maximum 

phase current magnitude achieved under these conditions is 2.85 amperes. This is 

5% below the rated current of 3 amperes. In comparison, the FLC basedlid=O 

scheme required a maximum stator current magnitude of 3.3 amperes to follow the 

command speed at this load. Once again, it is shown that the FLC based/MTP A 

drive can follow the command speed smoothly, and this time transient overshoot is 

nearly completely eliminated and steady-state achieved even more quickly. The 

actual phase currents are almost, but not purely, sinusoidal. Heretofore, the 

simplified FLC based/MTP A drive achieves steady-state command speed faster 

than the FLC based/id=O drive, and with lower peak phase currents, in all cases. 
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These results verify that the FLC based/MTP A IPMSM drive can quickly achieve 

and follow the command rated speed under various loading conditions. 

Figs. 4.9 (a)-(d) show the speed response, actual phase current ia, q- and d­

axis command currents and steady-state phase currents ia, ib and ic, respectively, for 

the simplified FLC based/MTP A IPMSM drive at full load + 25% and rated speed 

conditions. Command speed is achieved very quickly, with practically no 

overshoot or oscillation. Maximum phase current magnitude under these 

conditions is 3.3 amperes, the same magnitude required by the FLC based/id=O 

drive to achieve rated speed at full load conditions. 

Figs. 4.10 (a)-( d) show the speed response, actual phase current ia, q- and d­

axis command currents and steady-state phase currents ia, ib and ic, respectively, for 

the simplified FLC based/MTP A IPMSM drive at full load and low speed 

conditions (75 rad./sec.). There is some oscillation in reaching command speed but 

this is quickly damped and steady-state reached in under 0.05 sec. The actual phase 

currents exhibit almost, but not purely, sinusoidal behavior with peak values well 

below rated current. 

The responses of the FLC based!MTP A drive including speed, 'a' phase 

actual current, q- and d-axis command currents and steady-state actual phase 

currents to a step change of command speed at half load are shown in Figs. 4.11 

(a)-(d), respectively. The results show that the drive can follow the command 

speed quickly and accurately during a step increase (100 rad./sec.~1 88.5 rad./sec.) 

and decrease (188.5rad./sec.~100rad./sec.) of speed, but there are small, but 

acceptable, overshoots and undershoots which are recovered promptly. 

Figs. 4.12 (a)-( d) show the speed response, actual phase current ia, q- and d­

axis command currents and command phase current imposed over actual phase 

current, respectively, for the simplified FLC based/MTPA IPMSM drive to a step 
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change of command speed at full load conditions. Once again, it is shown that the 

drive quickly and accurately follows command speed. It can also be observed that 

actual phase current follows command current. The results show that the FLC 

based!MTP A drive can follow the command speed even after a step change of 

command speed at different loading conditions. 

The ability of the drive to withstand disturbances is another important 

feature of the control system. Change of load is a typical external disturbance and 

is a very common occurrence for a high performance drive. The speed and 

corresponding actual a-phase current of the motor, q- and d-axis command currents 

and steady-state actual a-phase current responses for the FLC based/MTPA drive 

are shown in Figs. 4.13 (a)-( d), respectively, for a sudden increase of load at rated 

speed. The motor is started with half load and at t = 0.25 sec. the load is suddenly 

increased to full load. It is observed that drive speed is reduced transiently, and 

only very slightly, and that command speed is recovered extremely quickly, even 

under this relatively dramatic increase of load. The current response is almost 

sinusoidal and follows command current. 

Because IPMSM parameters are affected significantly by saturation and 

temperature, one of the most important criteria of the control system for the 

IPMSM drive is the ability to withstand motor parameter variations. The change of 

stator resistance with temperature is a common phenomenon in such machines. 

The speed and corresponding actual phase current responses of the FLC 

based/MTPA drive are shown in Figs. 4.14 (a) and (b), respectively, for doubled 

stator resistance at no load and rated speed conditions. The similar responses for 

full load conditions are shown in Figs. 4.15 (a) and (b). In both cases it is shown 
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that the drive follows the command speed even after a sudden and dramatic change 

of armature resistance. 

Additionally, the inertia of the motor may change at different loading 

conditions, so it is important to investigate the response of the drive to inertia 

variations. Figs. 4.16 (a) and (b) show the speed and corresponding actual 'a' 

phase current responses, respectively, to a sudden doubling of rotor inertia under no 

load conditions at rated speed. Figs. 4.17 (a) and (b) show the similar responses 

under full load conditions. These results indicate that the FLC based/MTP A drive 

follows the rated command speed accurately and smoothly even when subjected to 

a sudden doubling of rotor inertia under different loading conditions. 

In the IPMSM changes in d- and q-axis reactance parameters during 

operation can significantly affect drive performance. This can be easily understood 

as the torque equation (2.29) contains both the d- and q-axis inductance parameters. 

Therefore, high performance drives must be able to respond quickly and accurately 

to variations in Lq and Ld. Figs. 4.18 (a) and (b) show the speed and corresponding 

actual ' a' phase current responses, respectively, to a sudden 50% decrease in Lq 

under no load at rated speed. Figs. 4.19 (a) and (b) show the similar responses 

under full load conditions. These results indicate that the FLC based/MTP A drive 

follows the rated command speed accurately and smoothly even when subjected to 

a sudden 50% decrease of Lq under different loading conditions. 
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Fig. 4.1. Simulated responses of the FLC basedlid=O IPMSM drive: a) speed, (b) 

command phase current, (c) q-axis command current and (d) steady-state actual 

phase current at no load and rated speed conditions. 
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Fig. 4.2. Simulated responses of the FLC based/id=O IPMSM drive: a) speed, (b) 

command phase current, (c) q-axis command current and (d) steady-state actual 

phase current at half load and rated speed conditions. 
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Fig. 4.3. Simulated responses of the FLC based/id=O IPMSM drive: a) speed, (b) 

command phase current, (c) q-axis command current and (d) steady-state actual 

phase current at full load and rated speed conditions. 
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currents and (d) steady-state actual phase currents ia, ib and ic at full load + 25% and 

rated speed conditions. 

84 



80 8 

(a) (b) 

. 60 4 
\ ... ..... · ·· ·~· . ,_ ......... 

u 
Q) 
Vl .._ 
-o <( 
~40 .!§ 0 -o 
Q) 
Q) 
c. 

(/)20 -4 

0o---o:2 0.4 0.6 0.8 -80 0.2 0.4 0.6 0.8 

Tim~'> .. ,.,. Time, sec. 

"12oe...._ __ 0~.2--0~.4--0-'-.6---~0.8 __ _ 

Time, sec. 

Fig. 4.10. Simulated responses of the simplified FLC based!MTPA IPMSM drive: 
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a) speed, (b) command phase current, (c) q-axis and d-axis command currents and 

(d) steady-state actual phase current ia for a sudden change of load (from half load 

to full load) at rated speed. 
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a) speed, (b) steady-state actual phase current ia for a sudden change of stator 
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Fig. 4.16. Simulated responses of the simplified FLC based/MTP A IPMSM drive: 

a) speed, (b) steady-state actual phase current ia for a sudden change of rotor inertia 

(J to 2J) at no load and rated speed. 
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Fig. 4.17. Simulated responses of the simplified FLC based!MTP A IPMSM drive: 

a) speed, (b) steady-state actual phase current ia for a sudden change of rotor inertia 

(J to 2J) at full load and rated speed. 
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a) speed, (b) steady-state actual phase current ia for a sudden 50% decrease ofLq at 
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4.4 Concluding Remarks 

The simulation results show encouraging performances of the proposed 

drive. The simplified FLC can accommodate different operating conditions such as 

load change, parameter variations and step change of command speed. Therefore, 

the simplified FLC with MTPA can be a good substitute for the conventional fixed 

gain PI or PID controllers or for more complex FLC schemes. 

Generally, as the number of fuzzy rules increase better performance can be 

attained, but by use of the maximum torque per ampere with Taylor series 

approximation scheme, and the prudent simplification of the fuzzy algorithm, high 

performance can be obtained along with a reduction of computational burden. The 

simulation results confirm the robustness of the simplified FLC/MTP A controller 

in an IPMSM drive. 

In order to validate the efficacy of the proposed drive, the laboratory 

implementation of the complete vector control scheme of the drive has been carried 

out in real-time as an integrated part of the proposed work. In addition, the non­

simplified FLC with id = 0 drive has been implemented in the lab also. 
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Chapter 'S 

Experimental Implementation of the 

Simplified FLC Based MTP A Vector 

Control of the IPMSM 

5.1 General Introduction 

The implementation of a fuzzy controlled drive often presents difficulties in 

that the high computational burden imposed necessitates both high-level hardware 

and software. Because of this, the real-time implementation of the FLC for motor 

drives has presented a challenge to control engineers. This work overcomes such 

problems by utilizing a simplified FLC along with an approximated MTP A 

scheme. 

The experimental implementation of the complete simplified FLC/MTP A 

IPMSM drive is presented in this chapter. This is the first time that the maximum 

torque per ampere mode of operation has been implemented with a fuzzy logic 

controller for the IPMSM in real-time. 
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The drive has been realized by use of a PC interfaced with a current 

controlled voltage source inverter through a dSP ACE DS 1102 digital-signal-

processor (DSP) controller board. This chapter presents the detailed 

implementation of both hardware and software programming. In order to validate 

the efficacy of the drive, various experimental results under different dynamic 

operating conditions are presented and discussed. 

5.2 Experimental Setup 

5.2.1 Hardware Implementation 

The hardware schematic for real-time implementation of the proposed 

IPMSM drive is shown in Fig. 5.1. The DSP board was installed in a personal 

computer (PC) with uninterrupted communication capabilities through dual-port 

memory. The DS 1102 board is based on a Texas Instrument (TI) TMS320C31 32-

bit floating point digital signal processor. The DSP has been supplemented by a set 

of on-board peripherals used in digital control systems, such as analog to digital 

(A/D), digital to analog (D/A) converters and incremental encoder interfaces. The 

DS1102 board has one 4 channel (2 12-bit and 2 16-bit) AID and one 4 channel 

(12-bit each) D/A converter and two 16-bit incremental encoders. The DS1102 is 

also equipped with a TI-TMS320Pl4 16 bit micro controller DSP that acts as a 

slave processor and provides the necessary digital input/output (I/0) ports and 

powerful timer functions such as input capture, output capture and PWM waveform 

generation. 

In this work, the slave processor was used only for digital I/0 configuration. 

The actual motor currents were measured by Hall effect sensors, which have good 

frequency response, and were fed to the DSP board through the AID converter. As 

the motor neutral was not grounded, only two phase currents were fed back and the 
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other phase current calculated from them. The rotor position angle was measured 

by an absolute incremental encoder mounted on the rotor shaft via a flexible 

coupler, and fed to the DSP board through an encoder interface. The encoder 

generates 4096 pulses per revolution, which are fed to the incremental encoder 

interface of the board. By using a 4-fold pulse multiplication the output of the 

encoder is increased to 4x4096 pulses per revolution in order to get a better 

resolution. A 24-bit position counter is used to count the encoder pulses. The 

counter is reset once per revolution by the index pulse generated from the encoder. 

The motor speed was computed from the measured rotor position angles using 

numerical differentiation. 

In order to implement the vector control algorithm, the fixed-band 

hysteresis controller was used as the current controller. The command currents are 

generated from the speed controller. The hysteresis current controller compares the 

command currents with the corresponding actual motor currents and generates the 

logic signals, which act as firing pulses for the inverter switches. Thus, these six 

PWM logic signals are the output of the DSP board and were fed to a base drive 

circuit for the insulated gate bipolar transistor (IGBT) or bipolar junction transistor 

(JCT) inverter power module. The base drive circuit was used to provide isolation 

between the high power supply and the low power logic circuits and also to 

improve the voltage level so that it is sufficient to drive the inverter. The de power 

supply for the inverter was obtained by rectifying the ac power through a variac. 

In order to provide loading, the laboratory IPMSM was coupled to a 

dynamometer using a belt. The dynamometer serves as a simple mechanical load 

on the motor. A digital storage oscilloscope was used to capture the desired signals 

coming out through the D/ A port of the DSP board. 
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Fig. 5.1. Hardware schematic for experimental implementation of 

the IPMSM drive. 

5.2.2 Software Implementation 

Software was developed for the simplified FLC, approximated MTP A 

method and the fixed-band hysteresis current controller for the IPMSM drive in the 

ANSI 'C' programming language. Because of the reduced computational burden 

of the simplified FLC scheme the sampling frequency used was 10 kHz, which is 
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adequate for successful real-time implementation of the drive. The detailed 

software implementation is described below. 

Step 1: All the peripherals of the DSP board are initialized in order to access the 

on-board peripherals. Macro functions supplied with the DS 1102 controller board 

achieve this task. The macro function in itO initializes the D/ A converter subsystem 

of the DS 1102 for output. This command also resets the interrupt request bits and 

calibrates the 16-bit AID converters. The functions timerOO and timer 1 () are used 

to initialize the DS 1102-TMS320C31 's on-chip timers to generate timer interrupts 

at a predefined sampling rate as given in Table I. This is essential for real-time 

implementation. The detailed initialization and the I/0 functions for the AID 

converters and 16 bit I/0 ports can be obtained from the reference manual of the 

DS1102 [71]. 

Table 1: Peripheral initialization 

void main() 
{ 

init (); / * i n i t DAC mode, calibrate ADCs */ 
i nit_slave_DSP_digital_i_o(); 

/* initialize i / o ports for output* / 
*error=NO ERROR; 

/* initiali ze overload error flag */ 
dp_ mem[O] .f=O. O; 

/ * init 1st dp-mem loc for float */ 
dp mem[l] .f=O.O; 

-/* ini t 2nd dp_mem loc f or f l oat */ 
d sll02_in c_cl ear_ counter(l); 

/* c l ear i ncr. encod e r counter */ 
start i s r tO(TS); 

/*-initialize sampling clock timer */ 
while (*e rror==NO_ ERROR); 

/* background process * / 
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Step 2: After initializing all the required variables, an interrupt service routine (isr) 

is used to read the actual motor currents and rotor position angles at 100 J..LSec 

intervals (corresponding to the 1 0 kHz sampling frequency) following the steps 

shown in Table II. In this table, the constants Ka and Kb are used to get the actual 

motor currents through AID channels 3 and 4. These constants depend on the type 

of Hall-effect sensors used. The incremental gain (INCG) is used to get the actual 

rotor position depending on the incremental encoder. In this work, the constants 

Ka, Kb and INCG have been determined to be 11.49, 10.93 and 3216.99049, 

respectively. The rotor speed is calculated by differentiating the present and past 

samples of rotor position. The command torque is generated by the simplified 

fuzzy logic based speed controller from the error between the command and present 

sample of actual speed. The components of the simplified FLC are fuzzification, 

fuzzy inference engine (rule base) and defuzzification. The implementations of 

these components in real-time using ANSI 'C' language are presented below. 

Table II: Interrupt service routine to read the 
motor currents anc1 rotor nosition . 

void i s r _tO () 
{ 

} 

dsl102_ad_star t (); 
i _a = Ka*ds 1102_ad( 3 ); 
i_b = Kb*dsl102_ a d( 4 ); 
i _ c = - ( i _ a +i _b ); 
9r = INCG* d s11 02_i n c (l or 2 ) ; 
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Step 3 (Fuzzification): The normalized values of the inputs door and de are passed 

to the fuzzification stage which uses pre-selected membership functions to convert 

the crisp values of doom ( cvalue) to its corresponding fuzzy value fvalue. In this 

work, the trapezoidal and triangular membership functions as developed in chapter 

2 are used to reduce the computational burden in real-time. 

In order for fuzzification, a routine (Fuzzy) for a singleton fuzzifier is 

written in 'C' language as shown in Table III. In this table, the term NS is the 

number of fuzzy sets, cvalue is the crisp value, fvalue is the fuzzy value for a 

particular input, i denotes the i-th fuzzy set of a particular input, b _1 is the bottom 

low value, t_l is the top low value, t_h is the top high value, b _h is the bottom high 

value and cent is the centroid of a trapezoidal membership function. 

Table III: 'C' code for fuzzification. 

for(i=O; i<NS; i++) 
{ 
fvalue[i] = 0; 

} 

if((cvalue >= b_l[i]) && (cvalue < t_ l[i])) 
fvalue[i] = (cvalue- b_ l[i])/(t_ 1[i] - b_1[i]); 
else 

{ 
if((cvalue >= t_ 1[i]) && (cvalue <= t_h[i])) 

fvalue[i] = 1; 
else 

{ 
if (( cvalue > t_ h[i]) && ( cvalue <= b _ h[i])) 

fvalue[i] = (cvalue- b_h[i])/(t_h[i]- b_h[i]); 

if ( cvalue < cent[ OJ) 
fvalue[O] = 1; 

else 
{ 
if ( cvalue > cent[NS-1]) 

fvalue[NS-1] = 1; 
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Step 4 (Fuzzy inference engine - rule base): The fuzzy inference engine is 

composed of a set of conditional ("if-then") statement control rules that obtain the 

results of all applicable rules. In the case of the simplified FLC, it computes the 

fuzzy value of the output based on a single fuzzy input. This is a highly simplified 

form of fuzzy rule inference as there are no AND or OR statements. The routine 

for the fuzzy inference engine (FuzzyEngine) is written in 'C' language as given in 

Table IV. In this table, NSl (=5) and NS2 (=5) are the number of fuzzy sets for 

dCOm, and iqn*, respectively. 

Table IV: 'C' code for rule evaluation. 

for (i=O; i<NS2; i++) 
fvalue2[i] = 0.0; 

for (j=O; j<NS 1; j++) 
{ 
minval = fvalue[j]; 
fvalue2[j] = minval; 
} 

Step 5 (Defuzzification): The input for the defuzzification process is a fuzzy set 

and the output is a single number, which is non-fuzzy (i.e., a crisp value). In order 

to reduce the computational burden for on-line implementation the following 

mathematical form is obtained using the center of gravity method [72], 
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NS 

IAj *~cj (i)*Centj 
. j=l 
1 = ~--N-S ___ _ (5.1) 

IAj 
j=l 

where Aj is the area , Centj is the centroid of the jth output set Cj, NS is the number 

of output fuzzy sets, ~c (i) is the fuzzy value which scales the output set Cj. 
J 

According to the above mathematical formula, a new routine for 

defuzzification has also been written in 'C' language as given in Table V. 

Table V: 'C' code for center of area 
defuzzification. 

tempi= 0; 
cvalue2 = 0.0; 
for (i=O; i<NS3; i++) 

{ 

} 

temp2 = fvalue2[i]*areas_2[i]; 
cvalue2 += temp2*cent_2[i]; 
temp 1 += temp2; 

cvalue2 /= temp 1; 

TEC = KI * cvalue2; 

where areas_2[i] is the area, cent_2[i] is the centroid of the ith fuzzy set of the 

output. 

After finishing the FLC calculations the command currents ia*, ib* and i/ are 

generated from the command torque T e * and the rotor position angle 8r using the 

inverse Park's transformation. These command phase currents are compared with 

the actual motor currents in the hysteresis current controller, which provides the 
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necessary driving pulses for the inverter switches. The hysteresis current controller 

algorithm is also written in 'C' language. The digital I/0 ports are configured as 

output ports for the six PWM logic pulses, which are fed to the base-drive circuit of 

Inverpower 3-phase voltage source inverter module No. Plll . For the sake of 

simplicity, the steps 1-5 are summarized in the flow chart of Fig. 5.2 . 

...__-t Calculate command 
& reference currents 

Fig. 5.2. Flow chart of the software for real-time implementation of the FLC based 

IPMSM drive. 
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Finally, the program is compiled by the TIC compiler and downloaded to 

the DSP board using dSPACE loader program down1102. 

5.3 Experimental Results and Discussion 

Please note that in the following experimental results, unless otherwise 

noted, the time scale for speed responses is 0.5 seconds per horizontal division, for 

a full-graph time span of 5 seconds. The time scale for simulated tests was either 

1.0 or 0.5 seconds for full-graph time span. This difference is due to the 

operational nature of the manually operated experimental setup. The results reveal 

that the experimental startup responses are not as rapid as the simulation results 

would indicate. This is because the experimental setup dictates that voltage be 

applied to the inverter manually in a ramp-like fashion and not instantaneously as is 

the case with simulation. 

The speed response and corresponding actual 'a' phase current for the 

simplified FLC based/MTPA IPMSM drive are shown in Figs. 5.3 (a) and (b), 

respectively, for no load and rated speed (188.5 rad./sec.) conditions. The results 

show that the drive achieves the command speed very promptly, with no observable 

overshoot or oscillation, and follows command speed accurately. Steady-state error 

appears to be zero. Phase current is within the rated values of the machine. 

Figures 5.4 (a) and (b) show the speed response and actual phase current, 

respectively, for the simplified FLC based/MTP A IPMSM drive at rated load and 

rated speed conditions. Again the drive follows the command speed without 

detectable steady-state error, and achieves this quickly with no observable 

overshoot or oscillation. Again, phase current is within the rated values of the 

machine, but has increased slightly from the lightly loaded case. 
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Figures 5.5 (a)-(c) show the speed response, q- and d-axis command 

currents and actual phase current, respectively, for the simplified FLC 

based/MTPA IPMSM drive at light load and low speed (90 rad./sec.) conditions. 

Here, it can be seen that the drive follows the command speed promptly, without 

overshoot and no visible steady-state error. As in the simulated case, ~ * appears to 

be a scaled opposite of iq *. The phase current remains within rated values of the 

machine. These results verify that the FLC based/MTP A IPMSM drive can quickly 

achieve, and precisely follow, command speed under various loading conditions. 

The responses of the simplified FLC based/MTP A IPMSM drive to sudden 

changes in command speed at light load conditions are shown in Figs. 5.6 (a) to (c). 

It is demonstrated that the drive can follow the command speed quickly and 

accurately during a step increase (90 rad./sec.~188.5 rad./sec.) and decrease (188.5 

rad./sec.~125 rad./sec.) of speed under light load conditions and also under rated 

load conditions (80 rad./sec.~165 rad./sec. and 165 rad./sec.~80 rad./sec.). There 

are no detectable over- or undershoots or steady-state errors. Figure 5.6 (c) 

illustrates the increase in phase current frequency with increased motor speed. A 

software program (Dspeed.c ), included in Appendix D, was used to achieve the 

real-time step change of command speed. 

The ability of the drive to accommodate sudden changes in load was also 

examined experimentally. Figures 5.7 (a)-( c) show the speed response, q- and d­

axis command currents and actual phase current at steady-state after loading, 

respectively, for the simplified FLC based!MTP A IPMSM drive for a sudden 

increase of load (from no load to rated load) at rated speed. It can be seen that the 

drive is virtually insensitive to such a load disturbance. Also, ict * appears to be a 
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. * scaled opposite of lq and the phase current remams within rated machine 

parameters. 

Figures 5.8 (a) and (b) show the speed response and actual phase current, at 

steady-state after loading, for the simplified FLC based/MTP A IPMSM drive for a 

sudden increase of load (from no load to rated load) at low speed (90 rad./sec.). 

Once again, the drive remains detectably insensitive to the load disturbance. These 

results indicate that the drive can accommodate sudden increases in load, at varying 

speeds, without disturbance of rotor speed and while remaining within the rated 

phase currents of the machine. 

Therefore, the efficacy and robustness of the simplified FLC based/MTP A 

IPMSM are verified. 
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Fig. 5.3. Experimental responses of the simplified FLC based!MTPA IPMSM 

drive: a) speed and (b) actual phase current at light load and rated speed 

conditions. 
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Fig. 5.4. Experimental responses of the simplified FLC based!MTPA IPMSM 

drive: a) speed and (b) actual phase current at rated load and rated speed 

conditions. 
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Fig. 5.5. Experimental responses of the simplified FLC based/MTPA IPMSM 

drive: a) speed, (b) q- and d-axis command currents at steady-state and c) actual 

phase current at light load and low speed (90 rad./sec.) conditions. 
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Fig. 5.6. Experimental responses of the simplified FLC based!MTPA IPMSM 

drive for sudden changes in command speed: a) speed at light load, (b) speed at 

rated load (note scale difference) and c) actual phase current at light load 

conditions. 
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Fig. 5.7. Experimental responses of the simplified FLC based!MTPA IPMSM 

drive for a sudden increase of load at rated speed: a) speed, (b) q- and d-axis 

command currents and c) actual phase current at steady-state after loading. 
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Fig. 5.8. Experimental responses of the simplified FLC based!MTPA IPMSM 

drive for a sudden increase of load at low speed (90 rad./sec.): a) speed, (b) actual 

phase current at steady-state after loading. 
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5.4 Concluding Remarks 

The detailed DSP based real-time implementation procedure for the 

simplified FLC with approximated maximum torque per ampere mode operation 

for the IPMSM drive has been presented in this paper. The complete drive has 

been implemented, through both hardware and software, using a digital signal 

processor board on a laboratory 1 hp interior permanent magnet motor. 

The performance of the proposed IPMSM drive has been investigated 

experimentally at different dynamic operating conditions such as sudden changes 

of command speed and under varying loads. The drive is found to be robust for use 

in high performance industrial drive applications. The experimental results have 

validated the simulation results presented in chapter 4. 
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Chapter 6 

Conclusions 

6.1 General 

The literature review of chapter 1 has established that, when coupled with 

an appropriate controller, the interior permanent magnet synchronous motor 

(IPMSM) can be a favourable choice for use in variable speed high performance 

electric motor drives. Speed controllers for the IPMSM, however, typically require 

knowledge of machine parameters, which, in the case of the IPMSM, are not 

constant under dynamic operating conditions. This makes the design of such 

controllers cumbersome and imprecise. Fixed gain controllers suffer from 

overshoot, undershoot, steady-state error and even instability in their applications 

for high performance IPMSM drives. Conventional adaptive controllers require 

complex, and usually expensive, hardware and software for their implementation. 

The simplified FLC controller coupled with maximum torque per ampere 

operation can overcome these problems by providing an adaptive speed controller 

which can accommodate parameter variations, system uncertainties and non­

linearities as well as load disturbances while requiring a minimum of computing 
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power and complexity of hardware. This is done through the proposed vector 

control scheme of the IPMSM. 

Chapter 2 has detailed the analysis and modeling of the pulse-width 

modulated (PWM) voltage source inverter (VSI) fed IPMSM drive. Included in 

this chapter is a new method for incorporating the maximum torque per ampere 

(MTPA) mode of operation in real-time for the IPMSM. 

The development of the fuzzy logic controller for the IPMSM drive, 

including the concepts of fuzzy logic, linguistic variables, fuzzy sets, membership 

functions, fuzzification, fuzzy rule evaluation, and defuzzification, have been 

included in the chapter 3. Also, a simplified FLC based speed controller has been 

presented. 

Chapter 4 presents the comparative simulation results of both a 

conventional FLC based IPMSM drive with id * = 0 and the proposed simplified 

FLC based drive with id :;:. 0 incorporating the MTP A mode of operation. It is to be 

noted that the latter mode of operation is most suitable for practical IPM motor 

drive systems. Extensive simulations have verified that the proposed drive can 

outperform the conventional FLC based controller with regards to speed response, 

current minimization and robustness, with reduced computational burden and need 

for high-end hardware. 

In chapter 5 the real-time implementation of the new simplified FLC with 

MTP A in the IPMSM drive has been presented. Experimental investigation of the 

proposed drive under varying dynamic operating conditions has verified that the 

drive can achieve and follow command speed promptly without over- or 

undershoot and virtually zero steady-state error for a variety of operating 

conditions. The robustness of the controller has been verified. 

117 



6.2 Major Contributions of this Work 

• The practical, real-time implementation of the maximum torque per ampere 

mode of operation of the IPMSM has been developed. 

• A new FLC based controller has been developed for the IPMSM for 

operation in the MTP A mode. This controller has been purposefully 

simplified so as to reduce computational burden while maintaining high 

performance standards. 

• The proposed FLC drive with id * 0 has been simulated along with a 

conventional FLC drive with id * = 0 for comparison purposes. These 

comparative simulations have illustrated the ability of the proposed 

controller to handle ever-changing motor dynamics as well as non-linear 

load disturbances. 

• The proposed simplified FLC/MTP A has been implemented in real-time 

through a laboratory 1 hp IPMSM using a digital signal processor controller 

board. The efficacy and robustness of the drive has been verified by 

experimental investigation of the performance of the drive under various 

dynamic operating conditions such as sudden changes in command speed 

and loading. 
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6.3 Future Direction of Research 

It has been established that the FLC is insensitive to changes in motor 

parameters. However, in the development of the maximum torque per ampere 

mode of operation the q- and d-axis reactances, Lq and Ld have been assumed to be 

constant. Of course, this assumption does not hold true under changing operating 

conditions. Although any negative impact appears to be not very significant for 

typical uses, it should be further investigated in the context of high performance 

adjustable speed drive requirements. In the future, some form of adaptive 

technique, such as artificial neural networks or further FLC and neuro-fuzzy 

implementations, should be used to accommodate these changes in reactance 

parameters. 

6.4 Conclusions 

• The maximum torque per ampere technique using Taylor senes 

approximation can be used in the high performance IPMSM drive for 

operating speeds under rated conditions. This allows the motor to develop 

maximum mechanical torque with minimum values of stator currents. 

• The proposed drive can be used effectively for accurate, precise and robust 

speed control of the IPMSM under different dynamic operating conditions 

such as, command speed change, load change, system uncertainties and 

parameter variations. 

119 



• The proposed drive provides an adaptive, intelligent control technique for 

the IPMSM with minimal complexity, computational burden and hardware 

requirement. 

• The efficacy of the new control system has been established both 

theoretically and experimentally. 
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APPENDIX A 

IPMSM Parameters 

Number of phase = 3 

Number of poles = 4 

Rated current = 3 A 

Rated frequency = 60 Hz 

Rated power = 1 hp 

Rated input line to line voltage = 208 V 

q-axis inductance Lq = 0.07957 H 

d-axis inductance Ld = 0.04244 H 

Stator resistance per phase rs = 1.93 Q 

Inertia constant Jm = 0.003 Kg.m2 

Rotor damping constant Bm = 0.0008 (N-m)/rad./sec. 

Permanent magnet flux linkage \1/m = 0.314 volts/rad./sec. 

Magnet type = Samarium Cobalt 
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APPENDIX B 

Simulink Model of IPMSM Drive 

In modelling the system in SIMULINK it is necessary to work from the 

principle equations governing the IPMSM drive system rather than base the indi­

vidual components of the model strictly on the schematic of the vector control 

scheme. This is because working in the d-q reference frame necessitates the use of 

transformation operations that are not implemented physically in real-world sys­

tems. Fig. B. l presents the SIMULINK schematic of the complete current­

controlled VSI-fed IPMSM drive system that was developed in this work. 
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The following subsections will present the purpose and design of each of 

the component blocks of the model in detail. Only the simplified FLC/MTP A 

scheme will be addressed. 

B.l Command Current Generator 

The Command Current Generator block generates the command currents 

necessary to maintain the desired rotor speed of the motor. To do this, rotor speed 

and rotor angular position are necessary inputs. The schematic of the Command 

Current Generator block is shown in Figs. B.2a and B.2b. 

The command torque necessary to achieve the desired rotor speed is calcu­

lated from the difference between the command speed and the actual speed of the 

rotor by the FLC. This command torque is then used to obtain it by means of 

Eqn. 2.40. it is then used to attain i/ by Eqn. 2.39. Then, using the appropriate 

transformations, ia, ib, and ic are found. This block is shown in Figs. B.2a and B.2b. 

B.2 Current Controller 

The next block in the model represents the controller for the voltage source 

inverter. The current controller takes as input the three phase command currents 

from the Command Current Generator and outputs the logic variables NA, NB and 

NC used to control the VSI. A fixed band hysteresis controller, as shown in Fig. 

B.3, is employed. 
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Command Current Generator 

Figure B.2a. Command current generator block. 
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B.3 Voltage Source Inverter 

The next block in the model represents the voltage source inverter and is 

designed according to the following equations, 

[

v ] [2 - 1 -1] [NA] v: =i -1 2-1 NB V8 

v -1 -1 2 NC c 

(B. l ) 

and Eqn. 2.11. Outputs are the vq* and v/ command voltages. This block is shown 

in Fig. B.4. 

B.4 Transformation to Rotating Frame 

The IPMSM model equations require iq r* and id r* to give the outputs COr and 

9r. Therefore, v q * and v d *, as obtained from the VSI, must be transformed to the 

rotating d-q frame in order to give Vq r* and vd r*. This is done, as shown in Fig. B.5, 

using Eqn. 2.12. 

NB 

3 
NC 

Voltage Source Inverter 

Fig. B.4. Voltage source inverter block. 
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Transformation to Rotating Frame 

Fig. B.S. Transformation to rotating reference frame block. 

B.5 IPMSM 

1 r* r* d This block (Fig. B.6) represents the actua motor. Inputs are Vq , Vct an 

ror. In addition, v / and vi* must be converted to i/ and i/ for use in the equa­

tions governing the motor dynamics, and this conversion requires the input of cos9r 

and sin9r. 

Because several functions are performed in this block, it is further com­

posed of three sub-blocks which each perform specific tasks. 
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The first sub-block (Fig. B.7) calculates the actual motor iq1 and ii from 

vt, vt and ffir. This is done via theiPMSM equations, Eqns. 2.26 and 2.27. 

The second sub-block (Fig. B.8) converts iq1 and ii to ia, ib, and ic via Eqns. 

2.13 and 2.10. 

The third sub-block calculates the motor' s rotor speed and position vta 

Eqns. 2.24 and 2.28. This sub-block is shown in Fig. B.9. 
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Fig. B.7. Calculation of q- and d-axis currents from q- and d-axis command voltages. 
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Transformation to 3-phase Frame 

Fig. B.8. Calculation stator currents from q- and d-axis currents. 
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Fig. B.9. Motor speed and position sub-block. 
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APPENDIX C 

IGBT Inverter 

The insulated gate bipolar transistor (IGBT) has the advantages of both the 

bipolar junction transistor (BJT) and metal-oxide-semiconductor field-effect tran­

sistor (MOSFET). Because the IGBT has a high input impedance, like a MOSFET, 

the gate draws a very small leakage current. So, even though it has low conduction 

losses like a BJT, it doesn't suffer from second breakdown problems as do BJTs. 

The IGBT is a voltage-controlled device, like a power MOSFET, however, 

its performance is closer to that of a BJT than a MOSFET. The IGBT has lower 

switching and conduction losses than the MOSFET while sharing many of its ap­

pealing features such as ease of gate drive, high peak current capability and rug­

gedness. IGBT maximum switching frequencies are higher than BJTs but slower 

than power MOSFETs. An IGBT is a three terminal device consisting of a gate, 

collector and emitter terminal. Current and voltage ratings of an IGBT can be up to 

400 A, 1200 V with a switching frequency of up to 20 kHz. 

The schematic of the IGBT inverter module with its snubber circuit is 

shown in Fig. C.l. Although the IGBT is capable of handling both soft and hard 

switching a snubber circuit has been used to limit the rate of change of voltage 

across the inverter legs because of unpredictable transient behavior of the IPMSM. 
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Fig. C.l. Basic circuit of an IGBT inverter module. 
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C.l Base Drive Circuits 

The main function of the base drive circuit is to generate six pulses having 

proper voltage levels for the six IGBTs of the VSI. In order to operate the IGBTs 

as switches, the gate voltages must be such that the IGBTs are into the saturation 

mode for low on-state voltages. The outputs of the digital 110 subsystem of the 

DSP board are six pulses having magnitudes of 5 V. This is not sufficient voltage 

to be used as gate signals to drive the IGBTs and amplification is required. In addi­

tion, isolation is needed between the logic circuits and the IGBTs because logic 

signals should be applied between the gates and the emitters of the IGBTs. This 

means that for the transistors of the upper legs (Tl, T3 and T5), the ground of the 

logic pulses will not be common. Therefore, a base drive circuit is needed to pro­

vide isolation and appropriate voltages to the gates of the IGBTs in the inverter. 

The base drive circuit, which was in the Power Research Laboratory of 

M.U.N., is shown in Fig. C.2a and C.2b. The SN7407N chip has been used as a 

level shifter that shifts the voltage level from +5V to + 15V. The HP2531 chip is an 

optocoupler, which has been used to provide isolation between the logic circuit and 

the power circuit of the inverter. The IR2130 chip is the main driver, which pro­

vides six driving pulses for the six switches of the inverter. In order to provide 

+20V isolated power to the optocoupler and the driver an isolated power supply has 

been built, which is shown in Fig. C.2b. 
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Resistance and capacitor values: 

R1s-23 = 22 0 , R12-11 = 680 0 , Rs-Jo = 3.3 0, R11 = 3.3 k Q 

C3-s = 10 J.tF, C6-11 = 180 pF, C12 =100 J.tF, C13 = 47 J.tF 

From SN 7407N 

6 

+20V 

Rll 

28 

2 27 

3 26 

4 25 

5 24 

6 23 

7 22 
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9 20 
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11 18 
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13 16 

14 15 

Fig. C.2a. Base drive circuits for the VSI. 
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Fig. C.2b. Base drive circuits for the VSI (continued). 
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APPENDIX D 

Dspeed.c 

/* dspeed.c ************************************************************* 

* * 
* Instruction to compile with Borland C: 
* bus version: 
* bee /ml dspeed.c bcdclib.lib 

* 
* 

* 
************************************************************************/ 

#include <stdlib.h> 
#include <stdio.h> 

#include <clib.h> /* Host-DSP interface library include file */ 

#defme DP MEM OFFS 0 /*use first dual-port memory address*/ 
- -

unsigned int board _ index; 
float speed,delta _speed; 
void close_and_exit (int error_code) 
{ 

} 

DSP _ unregister_ host_app(); 
exit( error_ code); 

void write_ dual _port_ memory (Uint32 address, Ulnt32 value) 
{ 

int error; 
error = DSP _lock_ board(board _index); 
if( error!= DSP_NO_ERROR) 
{ 

printf("Error: can't lock board error = %d.\n\n" ,error); 
close_ and_ exit( 5); 

} 
error = DSP _write_ dual _port_ memory(board _index, address, value); 
DSP _unlock_ board(board _index); 

151 



if(error != DSP_NO_ERROR) 
{ 

printf("Error %d writing the DSP board's dual-port memory !\n\n", 
error); 

close_and_exit(5); 

void main (int argc, char *argv[]) 
{ 

int error; 

printf("\n dspeed "change speed reference from key board .. .''\n\n"); 

if(argc != 2) 
{ 

} 

printf("Usage: dspeed board\n\n"); 
exit(l); 

error= DSP _register_ host_ app(" dspeed"); 
if(error != DSP_NO_ERROR){ 

switch( error){ 
case DSP DEVICE DRIVER NOT FOUND: - - - -
printf("\nDevice Driver not installed.\n"); 
break; 

case DSP _ VXD _NOT_ LOADED: 
printf("\n Virtual device driver not installed. \n "); 
break; 

case DSP NO FREE HOST APP IDX: - - - - -
printf("\nNo free host application index.''); 
break; 

#ifdefNET 

#endif 

} 

} 

case DSP _NET_ERROR: 
printf("\nNetwork error."); 
break; 

default: 
printf("\nDSP _register_ host_ app: error code %d\n" ,error); 
break; 

exit( I); 

error= DSP _board_index(argv[l],&board_index); 
if( error!= DSP_NO_ERROR) 
{ 

} 

printf("\nBoard %s not registered, error = %d.\n", 
argv[ 1 ],error); 

close_ and_ exit(2); 
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I* initialize output signal with 0.0 *I 
write_ dual _port_ memory(DP _ MEM _ OFFS, 

DSP _cvt_ieee_to_ti((Float32) 0.0)); 

I* set output signal to speed *I 
do{ 
printf("\n please enter the delta_speed in rpm ... \n"); 
scanf("%f", &delta_ speed); 
speed=delta _speed*O.l 04719755; 
write_dual_port_memory(DP_MEM_OFFS, 

DSP _cvt_ieee_to_ti((Float32) speed)); 
} while (delta_speed!=O.O); 
printf("Press RETURN to abort .. . \n"); 
rewind(stdin); 
getcharO; 

I* reset output signal to 0.0 *I 
write_ dual _port_ memory(DP _ MEM _ OFFS, 

DSP_cvt_ieee_to_ti((Float32) 0.0)); 

close _and_ exit(O); 
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