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FRONTISPIECE: Looking southwestwards from Stewart's ~1ine across Little 
Harbour to Moreton's Harbour. 
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ABSTRACT 

Mineralized hydrothermal veins of the Moreton's Harbour 

area, occurring within a thick sequence of dominantly basaltic 

pillow lavas and pyroclastic rocks, are concentrated within a 

central volcaniclastic unit and intimately associated with felsic 

dykes. There are about fifty veins, up to 30 em thick, occupying 

fractures perpendicular to the bedding. They can be broadly 

classified into three types, viz. I arsenopyrite-dominated, 
~ 

II stibnite-dominated, and III base metal + arsenopyrite-dominated, 

all with quartz and calcite as the major gangue minerals. 

Type I veins are Au-rich, type III are Au + Ag-rich, 

and type II are Au-poor but slightly enriched in Pd. Fluid 

inclusion data indicate deposition of Au-rich type I veins from 

0 
co2-rich low salinity fluids above 300 C, whereas the type II 

Au-poor veins were deposited from relatively saline low-co
2 

fluids 

0 at temperatures below 220 C. Both fluid inclusion and arsenopyrite 

composition data suggest pressures of 900 to 1500 bars, in agreement 

With lithostatic pressure indicated by the overlying volcanic 

pile. 

The Au mineralization is considered to have resulted from 

temperature decrease through 300°C, below which the stability of 

Au-complexes declines abruptly. Carbon dioxide abundance suggests 

the involvement of carbonate complexes, with retrograde boiling 
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resulting in loss of co
2 

and drop in carbonate activity, brecciation 

of arsenopyrite and deposition of calcite. A range of criteria 

suggest that the fluid was derived from felsic magma which 

produced the dykes and pyroclastic rocks, and hence was penecon-

temporaneous with the felsic volcanic activity. Concentration of 

veins within the central pyroclastic unit results from the fact 

that it occurs at a depth within the volcanic pile with suitable 

P-T-X conditions for deposition. 
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CHAPTER 1 

THE GEOLOGY AND MINER~LIZATION OF THE MORETON'S HARBOUR AREA 

Introduction 

Moreton's Harbour is a small fishing community situated on New 

0 0 
World Island, Notre Dame Bay of Newfoundland at 49 30'N, 54 52'W (Fig. 1.1). 

The rocks underlying this area were mapped and sampled during July/August 

1980 and subsequently studied in detail. The study area is covered by 

the Twillingate Map Sheet Canada NTS No. 2E/10 and mea~ures approximately 

? 
16 km- in area. The area is reasonably accessible by gravel roads 

and woods' trails, supplemented by traverses and coastal boat work. 

The region has been extensively glaciated (Tucker, 1976) which 

created the deeply dissected topography between 25 m and 300 m elevation. 

The scarp-like ridges are separated by U-shaped and rejuvenated valleys 

and wide areas of bog. The valleys are traced by erratic streams by 

which the area is drained. 

The fjardic coastline is indented producing sheltered natural 

harbours, notably Moreton's Harbour itself and Whales Gulch. The rugged 

cliffs display variable profiles from gently inclined to sheer up to 100 m 

high. These exhibit various geomorphological features including narrow 

wave-cut platforms, notches and overhangs. Beach deposits are coarse 

pebble to cobble, best developed at Pomley Cove. 

There are twelve ponds, the largest of which i Moreton's 

Harbour Pond (250m
2

) bounded by marsh and steep cliffs. The ponds occur 

between 15 m and 50 m elevation. 
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The rocks are impressively exposed around the coast (100% outcrop). 

However, the dense vegetation cover of spruce woodland and shrub renders 

inland exposure poor (<1%), further frustrated by bogs, flies and spruce 

budworm. Overburden of glacial and alluvial deposits attains a maximum thickness 

of 1m on high ground and may exceed 3m in the low lying areas. 

1.2 The Regional Geological Setting 

The Moreton's Harbour area is underlain by Lower Palaeozoic 

volcanic and associated pyroclastic rocks within the Dunnage Zone at the 

Northeastern extremity of the Appalachian Orogenic b~lt of North America 

(Figs. 1.1 and 1.2; Williams, 1979). The Dunnage Zone, formerly classi­

fied \~ithin t .he Central ivfobile or Volcanic Belt of Ne\~foundland, comprises 

a sequence of volcanic, sedimentary and intrusive rocks. The Zone is 

bounded east and west by the more deformed and metamorphosed rocks of the 

Gander and Humber Zones respectively. 

Various plate tectonic models for the evolution of the Appala­

chian Orogen have been proposed (e.g. Dewey & Bird, 1971) based on the 

geology of Notre Dame Bay. The recognition of the Dunnage Melange (Horne, 

1969; Kay, 1970) and its interpretation as a trench fill, subduction 

related deposit (Kay, 1972; Hibbard & Williams, 1979), general geochemical 

studies by Smitheringale (1972) and Kean & Strong (1975) and specifically 

of the sheeted dykes (Strong, 1972; 1973) have been used as evidence that 

the Dunnage represents the vestiges of the Lower Palaeozoic Iapetus Ocean. 

The volcanic rocks of the region were first compared to island arc assem­

blages by Heyl (1936). An island arc mode of origin is substantiated by 

more recent studies (Strong, 1973; 1974; 1977; Payne & Strong, 1973; 

Williams & Payne, 1975; Swinden & Strong, 1976). 
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1.3 Previous geological work 

The earliest report pertaining to the study area (J.B. Jukes, 

1843) correlated the slates of eastern Notre Dame Bay, the Lower Slate 

Division, with those of the St. John slates of the Avalon. The "micaceous 

trap rocks" of Twillingate and Fogo were also noted. 

A systematic study of the mineral deposits was made by Alexander 

Murray in 1864 \\fho later in 1871 mapped the coastline. Murray made a two-

fold division of the rock types: 

1) a Lower Formation of basaltic dykes, lavas and 
interbedded cherts, correlated 
with the Quebec Group of the 
Mainland. 

overlain unconformably by 

2) an Upper Formation fossiliferous sediments, assigned 
to the Llandovery stage. 

He observed that the mineral deposits were confined largely to the Lower 

Formation (Murray and Howley, 1881). 

J.P. Howley (1907) used Murray's data to compile a geological 

map of the area. Howley kept detailed records of the area's mining 

activity. 

M.E. Wadsworth (1884) studied the volcanic rocks and recognized 

the subaqueous nature of the pillow basalts, which he described graphically 

as "writhing ... anacondas" and "Bologna sausages". 

Buddington, Sampson and Agar from 1915 investigated the stra-

tigraphy, assigning the submarine volcanics a Cambrian age and the over-

lying sedimentary sequence as Ordovician (Sampson, 1923). Age constraint 

was enhanced by the recognition of a persistent, black, graptolitic, Llan-

deilian shale horizon. 
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1-!eyl (1936) divided all the stratified rocks of the Bay of 

Exploits area into nine formations, most of which he considered ~1iddle 

Ordovician. The volcanic rocks underlying Moreton's Harbour were named 

the ~·1oreton 1 s Volcanics with a thick pillow lava sequence, the Breakheart 

Basalt, to the south . The granodiorite batholiths of Loon Bay and 

Twillingate were considered to be late Silurian to Devonian. Heyl 1 s strati-

graphy has been shown to be upside down (Williams, 1963a,b; Helwig, 1967). 

Despite this, his comparison of the volcanics to island arc rocks and 

their correlation with the British Ordovician were m~jor contributions. 

Extensive fossil collections were obtained from the Ordovician-

Silurian sedimentary rocks of the Bay of Exploits by W.H . Twenhofel and 

R.R. Shrock~ from which the following stratigraphy was derived: 

Top: 

Base: 

limestone blocks in flow breccia 
shales and red sandstones 
coarse conglomerate 

thin bedded red sandstones 

Pikes Arm Fm. 
Goldson Fm. 

Botwood Fm. 

These units were well defined but their stratigraphy proved erroneous 

(Williams, 1963a,b). 

Reconnaissance map-oing of the Fogo-Twillingate-New World Islands 

was undertaken by Baird (1953). All volcanic rocks were assigned to the 

Ordovician system due to the uresence of Cobbs Arm limestone blocks in 

some flows. Baird recognized the structural complexity and predicted 

astutely that the Notre Dame Bay region was the key to understanding of 

the geology of northeastern America. 

Hayes (1951) followed Heyl 1 s (erroneous) stratigraphy and failed 

to recognize the two-fold basal volcanic and overlying arenaceous and 

argillaceous sediments. 
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Between 1956 and 1962, H. Williams undertook several studies 

around Notre Dame Bay. In 1962 he compiled the Twillingate map sheet and 

discovered Heyl's errors. He correlated the oldest rocks with the Snooks 

Arm or Lushs Bight Groups to the north of the Lukes Arm Fault, where he 

mapped a continuous (erroneously) north facing sequence of Ordovician 

volcanic rocks (the Headlands Group), middle Ordovician limestones and 

graptolitic shales overlain by Upper Ordovician to Lower Silur i an grey-

wacke. The latter coarsens upwards to become the conglomeratic Goldson 

Formation. This was the first stratigraphy well established by fauna l 

'"' 
studies. The structural complications were attributed to folded or 

steepened thrust faults (Kay & Williams, 1963; Williams, 1963a; Dean & 

Strong, 1977) . 

New World Island stratigraphy was correlated with that of 

Fortune Harbour Peninsula by Horne and Helwig (1969) using earlier work 

(e.g. Helwig, 1967; Horne, 1969). A two-fold division was established, 

bisected by the Lukes Arm Fault. The volcanic and volcaniclastic rocks 

to the North were re-assigned to the Lushs Bight Terrain, whereas to the 

South were variable Ordo-Silurian sedimentary rocks, including the Dunnage 

Melange, the Dark Hole Formation (a Caradocian black shale marker horizon), 

the Sansom and Goldson arenaceous Formations and the Cobbs Arm limestone. 

Despite lack of detail , Strong and Payn e (1973) showed the 

subdivision was appropriate and applied the term "Lushs Bight Supergroup" 

to the rocks North of the Lukes' Arm Fault. The Supergroup encompasses 

various local groups, for example the Moreton's Harbour Group, pertinent 

to this study. This group conformably overlies ophiolitic rocks, as do 

the Western Arm and Snooks Arm Groups (Strong, 1973 ; Dean, 1978). According 



- 25 -

to Strong and Payne (197 3) the .Moreton's Harbour Group may be subdivided 

to five formations which are considered a useful framework for the 

present study (Table 1.1). The Chanceport Group, a north-facing sequence 

of pillowed-basalts, bedded tuffs and cherts occurs to the south of the 

Moreton's Harbour Group, juxtaposed along the Chanceport Fault (Fig. 1.2). 

Williams and Payne (1975) considered that there was a structural 

break between their Sleepy Cove Formation, immediately adjacent to the 

Twillingate Trondhjemite and the Moreton's Harbour Group to the west. 

The Sleepy Cove formation comprises deformed and amphibolitized volcanic 

rocks intruded by the Twillingate granite. Strong and Payne (1973) dis-

counted any break and proposed a continuous succession from Moreton's 

Harbour, increasing in metamorphic grade and deformation towards the 

Twillingate trondjhemite contact. 

The Twillingate trondjhemite is apparently discordant to the 

country rock and was considered to be Upper Silurian to Devonian (e.g. 

Heyl, 1936; Williams, 1963~. However, a zircon U-Pb date of 

510 + 17 Ma (Williams~~-, 1976) repudiates the Acadian affinity of 

the intrusion, and implies a Cambrian age for the Sleepy Cove volcanics. 

The trondjhemite has variously been interpreted as a crustal remnant (e.g. 

Williams and Malpas, 1972) and part of the base of an island arc complex 

(e.g. Strong and Payne, 1973; Williams and Payne, 1975; Payne and Strong, 

1978) . 

A more detailed review of the work pertaining to the geology of 

Notre Dame Bay is provided by Dean (1978). 

The local geology is described in Chapter 2, and summarized in 

Table 2.1 and ~1ap l (in pocket). 
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1.4 Economic geology history 

There are numerous and variable mineral deposits around Notre Dame 

Bay, predominantly associated with the "Lower (Volcanic) Formation" as 

recogni3ed by Murray in 1864. Howley (1907) maintained mining activity 

records of the area and a compilation of the economic geology of the 

Central Mineral Belt was provided by Snelgrove (1928). Snelgrove con­

sidered the base metal sulphides of Betts Cove and Tilt Cove to be replace­

ments controlled by structure and genetically related to small igneous 

intrusions; a view supported by several other workers (e.g. Neale, 1958). 

A volcanogenic origin £or these sulphides was propos~Cl by Williams (l963c) 

and supported by others (e.g. Strong, 1973; Upadhyay, 1973; Swinden and 

Strong, 19 76) . 

No massive sulphide deposits are encountered within the present 

study area which is concerned primarily with the precious metal-enriched 

arsenopyrite, base metal and stibnite lodes, which have previously been 

described and studied by Heyl (1936) and Gibbons (1969) . Prospecting was 

undertaken by NALCO (Fogwill, 1968). 

1.5 Aims and approach of study 

The main objective of this project was to examine the vein 

mineralization in the Moreton's Harbour area, in order to determine the 

physical and chemical parameters of deposition of the ore minerals, with 

specific interest in their relation to the precious metal enrichment. 

The approach to this study commenced with detailed field work 

(Map l) and sampling of the veins and the host volcanic rocks followed 

by detailed laboratory studies. The petrography of the volcanic and ore 

samules was studied usincr transmitted and reflected light (Chapters 3 
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and 4). Mineralogical compositions were ascertained using the electron 

microprobe (Chapters 3 and 5). Geochemical data of volcanic and ore 

samples were obtained using both X-ray fluorescence and atomic absorption 

spectrophotometry, the latter using both flameless and fl ame techniques 

(Chapters 3 and 5). The physicochemical parameters of ore deposition 

were determined using microthermometric studies of fluid inclusions in 

gangue quartz (Chapter 5). 

Samples collected in the present study were supplemente d by 

those collected by R. Gibbons (1969) and D. Strong (1972) for microprobe 
# 

and geochemical analyses. 
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CHAPTER 2 

THE LOCAL GEOLOGY 

2.1 Introduction 

The Moreton's Harbour area is underlain by a thick sequence of 

Lower Palaeozoic volcanic and volcaniclastic rocks of predominantly 

spilitized basaltic composition with felsic pyroclastics at the top of 

sequence. The succession dips steeply and is consistently upward facing 

to the southwest. The area was intruded by multitudinous dykes and sills 

which range compositionally from basalt to rhyolite. There are minor 

intercalated red and grey cherts within the volcaniclastic-sedimentary 

rocks. 

The geology of the area is shown in Map 1 (also in Fig. 2.1) 

and is summarized in Table 2.1. The following account describes the 

rock types and field relations, mainly as observed from the spectacular 

coastal exposure. 

The co1 tacts between the formations are gradational and confor­

mable and are based entirely on lithological contrasts. The stratigraphy 

of volcanic terrains is epitomized by abrupt lithological and facies 

variations both vertically and horizontally in the section (hence time 

and space) (e.g. Moore~ ~1., 1973; Dimroth e~ -~-, 1978; Ballard et 

~-, 1979; Rust, 1979). Such variation renders correlation difficult, 

further hampered by repetition of lithofacies and lack of suitable marker 

horizons. The volcaniclastic terminology is based on that of Wright et 
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TABLE 2.1 

Summary of the Geological Subdivisions 
of the Moreton's Harbour Area 

Larnprophyre 

Dick's Head Gabbro 

Gerald Dear ing's Diorite 

Felsic Intrusive Rocks 

Hayward's Cove Formation 

Chimney Cove Tuff 

Western Head Formation 

Little Harbour Formation 

- pyroxene-phyric, analcite-bearing larnpro­
phyre dyke at Taylor's Room (~Jurassic) 

- late rnicrogabbro stock 

- deformed, sheared diorite 

- rhyolitic to dacitic in composition, pink 
to buff coloured , + phenocrysts, spheru l itic 
to rnicrogranitic, may be related to the 
felsic pyroclastic rocks. Abundant through­
out the area, generally perpendicular to 
regional strike~ related to minera l ization 
(5 ern to -~1so m) ,. 

- (~200 rn) characterized by coarse felsic 
(rhyodacitic) breccia at Hayward's Cove with 
finer felsic tuffs along strike 

- crystal-lithic chloritic tuff within mafic 
pillow flows and breccias with common 
jasperoid fragments and interstices 

- (-2000 rn) predominantly mafic pillow basalts 
with minor breccia horizons (e.g. at 
Western Head Harbour) 

- (>2000 rn) predominantly volcaniclastic rocks, 
of mafic cornposi tion ranging from chert to c o :1rse 
boulder-breccia. Massive to pillowed basaltic 
flows with minor breccias and chert in the 
lower part of the sequence 

Moreton's Harbour Head Breccia - (? rn) pyritic, felsic very coarse breccia 
of uncertain affinity (possibly related or 
similar to the felsic breccias of the Hay­
ward's Cove Formation?) 

h'ild Cove '''Formation" - (>1000 rn) characterized by the preponderance 
of diabase to rnicrogabbro (+ sheeted) dykes 
with minor uillow screens -
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al. (1980) and Wentworth and Williams (1932) as appropriate. Pillow 

breccia terminology is based on that of Carlisle (1963) who describes 

the Quadra volcanic succession, Vancouver, which closely resembles the 

~~reton's Harbour succession. 

2.2 Wild Cove Formation 

The oldest rocks in the map area are those of the Wild Cove and 

eastwards towards Webber's Bight and can be traced inland towards Church 

Hill Pond. This formation is defined by the prepond~rance of mafic dykes, 

up to 100% at Wild Cove, where they are seen to be sheet0d in places. 

The dark green-grey dykes are basaltic in composition and range texturally 

from aphyric and aphanitic to rnicrogabbroic. Diabases, variably plagio­

clase-phyric are predominant. These dykes exhibit typically chilled 

margins and some show bands of calcite, chlorite and/or epidote-filled 

arnygdules near and parallel to their margins. The gabbroic dykes are 

apparently the earliest intrusives as they are cut by the fine grained, 

dark aphyric dykes. All dykes trend generally east-west. 

There are narrow screens of pillow basalts with interstitial 

dark grey chert, black-green aphanatic basaltic injection with calcite­

chlorite-epidote fillings. The pillows are generally less than 50 ern in 

diameter, ellipsoidal in shape and flattened parallel to their intrusive 

"walls". They are variably vesicular and commonly contain large 

central drainaway-cavities. 
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The Wild Cove Formation is underlain by the mafic volcanic 

rocks of the Tizzard's Harbour Formation (Strong and Payne, 1975) to 

the east of this study area. The density of intrusives decreases west­

wards from Wild Cove giving way to the Little Harbour Formation, which 

in part was fed by the Wild Cove dyke system. 

The Wild Cove Formation must represent an extensional environ­

ment but it is well argued (Strong and Payne, 1975) that a mid oceanic 

ridge-spreading centre is not appropriate. 

basin is a preferable setting. 

2.3 Little Harbour Formation 

A small back arc or intra-arc 

The Little Harbour Formation is dominated by volcanic rocks, 

ranging from massive flows in the lowermost facies to a succession of 

impressive volcaniclastic rocks. This Formation is estimated to be ~2 

km in thickness,occupying a northwesterly-trending tract from Little 

Harbour across Moreton's Harbour, Frost Cove and Taylor's Room to Pearce 

Harbour. It is this Formation that contains the mineralization of 

the area. 

The Little Harbour Formation is here described in three main 

sections (Fig. 2.2): 

A-A' Little Harbour - Wild Cove Head 

B-B' Taylors Room - Moreton's Harbour Head 

C-C', D-0' Pearce Harbour. 
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These sections constitute broadly similar sequences of volcani-

clastic rocks from coarse boulder breccias, tuff breccias and fine tuffs, 

with massive and pillowed flows. The tuff breccias are variable in texture 

from close-packed fragments to matrix-supported. In each section, good 

sedimentary structures are observed providing facing criteria. The 

absence of marker horizons with the lithological variation and repetition 

renders correlations difficult. The top of the Formation is taken where 

the predominant lithology is pillowed flows of the Western Head Formation, 

in which volcaniclastic horizons are relatively rare. 

2.3.1 The Little Harbour Section (A-A') 

2.3.la Massive flow lithofacies 

The lowermost rocks of this section are massive, spilitic flows, 

up to 3m in thickness. These flows are fed by mafic dykes traced from 

the Wild Cove Formation. The flows are black to grey-green in colour 

and are generally aphyric and aphanitic. Vesiculation at the tops and 

bases of flows is observed north of Beachy Cove. Vesicles are sparse 

(<10%) and small (<5 mm in diameter), and delineate a textural margin-

parallel banding (Plate 2.1). Flow surfaces rarely exhibit columunar 

jointing (Plate 2.2). 

The flows are interdigitated by flow breccia and pillowed 

flows. At Wild Cove Head, a pyritic-jasper bed overlies a partly 

pillowed, columnar - jointed flow (Plate 2.3). This chert is irregular and 

attains a maximum thickness of 45 em, and dips at 0 45 to west-southwest. 
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PLATE 2 .1 : Bande d , ves i cul a r margin of a basal t "c flow (r ight) over­
lying pil l ow b recci a ( 1 ft , Wi ld Cov e Head . 

PL Tc 2 . 2 : Co lumn a r j o i n t ed su rface of a variably vesicula r bas al t ic 
fl mv, wi t h calcite- a nd ep i a t e - fi lled fractur es . • Wild Cove 
He ad. 
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PLATE 2.3: A pyritic jasper bed overlying massive flow basalt and breccia 
at Wild Cove Head. A sample of this jasper (WCH.9) showed 
primary enrichment of precious metals. 
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The massive flow lithofacies is cut by abundant diabase clykcs of 

varying orientation. Two main sets are observed: 

(l) the earlier set dip gently and trend east-west and are 

cut by a 

(2) more prominent, steeper dipping north-northeast striking set. 

The rocks are deformed very locally along shear zones associated 

with minor faulting through Beachy Cove. The profuse calcite and epidote 

veins are fault-related. 

2.3.lb Pillow lava lithofacies 

Southwestwards, there is a gradational increase of pillowed 

flows with a complementary decrease of massive flows. The pillows are 

typically close packed, elliptical, vesicular and show \vay up to the 

south (Plates 2.4, 5 and 6). The pillows are identical to those 

classically described from subaqueous volcanic. sequences elsewhere (e.g. 

Jones and Nelson, 1970; Moore, 1970; Moore et ~-, 1973; Dimroth 

et al. 1978; Ballard~ al., 1979). The pillows are associated with 

coarse whole- and broken-pillow breccias (Plate 2.9). There is a general 

increase in size and density of vesiculation of the pillows southwards. 

This indicates shallowing water depths upwards (e.g. Jones and Nelson, 

1970; ~1oore, 1970; Jones~ 1969). Irregular, grey banded "splatter" 

fragments occur in several breccia horizons. Elongate banded fragments 

up to 0.5 m long, supported by a dark basaltic. matrix occur just north 

of Little Harbour, reminiscent of the "collapse lava pits" described from 

Galapagos by Ballard and coworkers (1979). 
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PLATE 2.4: Close packed, small, vesicula , basal tic p i l lows, s ou h of 
Beachy Cove . 

LATE~ .5: Concentrically-zoned, vesicular pi ll ow , Tayl or's Room. 
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PLATE 2. 6: Large 
bas altic pillows, 
Pearce Harbour. 

PLAT 2.7 (ab ve) : Pil owing 
vesicular, b nded-margin of a 
basaltic dyke north of Taylor' 
Room. 

PLATE 2.8 (left): I rregu ar, 
branching bande~ ves i cular dykes, 
Little H rbour. 
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2.3.lc Volcaniclastic sedimentary lithofacies 

This lithofacies comprises a 200 m sequence of well bedded, 

variably graded volcaniclastic (=epiclastic) sedimentary rocks (Fig. 

2. 3) . Matrix-supported gravel C> 2 mm and < 64 mm) predominates although 

grain size varies from boulder to clay. 

The coarser, close-packed volcaniclasts at the base of some beds 

cut into or scour the finer, laminated tuffs of the underlying beds and 

the coarse, variably rounded fragments may penetrate the underlying 

tuffs (Plate 2.10). The coarser beds, which may attaim several metres in 

thickness, may exhibit normal, inverse or disorganized gradation. Large 

banded (p illow) fragments are abundant, with a volcanic crystal-lithic 

arenite matrix. The clasts weather to a pale buff and show marginal 

alteration (i.e. hydration, silicification) whereas the matrix is much 

darker greenish in colour (Plate 2.12). 

The finer, volcaniclastic sandstones are distinctively planar 

laminated, normal l y graded and rarely exhibit low angle cross-strati­

fication (Plate 2.10). 

Fine silicified tuff and grey cherts (Plate 2.13) occur on the 

coast at Little Harbour and are seen to grade laterally into coarser 

aquagene tuffs and tuff breccias. 

Reworking of the volcanic debris is evident from the fragment 

roundness and sedimentary features. The sedimentary structures are 

analogous to those described by Walker (1979) in coarse alluvial fan 

deposits. 
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f j g. 2 .3: A detailed 200 m 
section, x-y, from the Little 
Harbour volcaniclastic litho­
facies. 

Cherty tuffs overlain by coarse, 
chaotic breccia (+ whole or 
broken pillows). -Along strike 
from Stewart's Mine. 

Thickly bedded, coarse, graded 
tuff breccias. 

Finely laminated, d'iscontinuous 
grey tuffaceous cherts over­
lying coarser volcanic sediments. 

Intrusive breccia at the margins 
of a strongly discordant diabase 
dyke. 
Abundant diabase intrusives. 

Mafic intrusions with irregular 
pillowing margins cutting well 
bedded, normally graded volcani­
clastics. Common scoured tops of 
the fine grained rocks. 

Coarse breccia lenses in discon­
tinuously bedded, graded tuffs 
and tuff breccias. 

Thick porphyritic diabase dyke 
with chilled margins. 

Pillm-.r lavas and "collapse-pit" 
rem:;_ants. 
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LA E 2.0: Broken-pi l l ow br cci , Lit tle Harbour . 

PLATE 2 .10: Coarse base of tuf f-brecc ia bed o erly"ng a olcaniclastic 
and t one of the top of preceding bed, L"ttle H rbour. 
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Pillowed flows are not encountered in this unit although 

irregular pillow-like intrusions are common (Plates 2.7 and 2.8). 

These banded dykes and sills with pillowing terminations are considered 

the result of intrusion into a low density, unconsolidated tuffaceous 

pile. It is argued by McBirney (1963) that in such sedimentary piles, 

dykes and sills are more likely to form than extrusive flows due to their 

density contrast. 

The thickness of beds increases upwards although no overall 

fining sequence is noticeable. 

2.3.ld Coarse tuff breccia lithofacies 

The upper part of the Little Harbour section of this Formation 

is exemplified by coarse tuff breccias. These breccias are predominantly 

fragment-supported framework with dark coarse sand-size lithic, tuffaceous 

matrix. The fragments are basaltic, angular to subrounded blocks, 

generally poorly vesicular and are dark grey, sometimes orange iron­

stained in colour. Blocks range to greater than 1 m in size (Plate 2.11). 

Isolated whole- and broken-pillows are also observed. 

Bedding of these coarse, proximal deposits is poorly defined and 

disorganized. The coarsest beds of the Little Harbour Peninsula are 

along strike from finely laminated tuff-chert beds (Plate 2.13) below 

Stewart's Mine. Near Osmond's store, Moreton's Harbour, there is an 

outcrop of matrix-supported lapilli tuff. 
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LATE 2.11: Coarse vo lcanic breccia containing isolat ed whole- and 
b ken- illows and exhibit i ng d"sorgani zed grad·ng, Tayl or' s Room. 

PLATE 2.12: Pal e - weather ing vesicular margina lly-silic · fi e d bombs ln 
tuff breccia, Litt e Harbour. 
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PLATE 2.13: Finely- laminated, silicified tuff and grey chert ~ Litt e 
Harbour. 

PLATE 2.ld: Pinely-larninate~ ferruginous chert and tuff breccia, 
south of -1oreton' s Harbour He ad. 
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The top of the Little Harbour Formation of this section is 

marked by an increase of pillow lava flows of the Western Head Formation. 

2.3.2 Taylor's Room Section 

The section of the Little Harbour Formation through the west 

side of Moreton's Harbour is shown as B-B' (Fig. 2. 2). This section is 

dominated by the volcaniclastic lithofacies with minor pillow horizons. 

No massive flows are present. The northern part of the section is 

occupied by the Moreton's Harbour Head Breccia, which,js faulted against 

the mafic volcaniclastic rocks of the Little Harbour Formation. The 

Breccia comprises coarse, angular felsic blocks with mafic fragments and 

isolated pillows. Its true affinity is not clearly understood. The 

Breccia is cut by thin buff to pink felsic dykes and numerous quartz and 

carbonate veins, many of which contain traces of suphides (pyrite, arseno­

pyrite, stibnite, sphalerite) (Plate 2.15). 

To the south of the iron-stained fault zone through the "neck" 

of Moreton's Harbour Head, there occurs a sequence of lithic to vitric 

tuffs and tuff breccias with red and green, finely laminated cherts 

(Plate 2.14). The tuffs and cherts are closely intermixed and large 

green , poorly vesicular irregular mafic clasts up to 10 em in size are 

dispersed through a chert matrix. The fragments are leached and silici­

fied. The fine tuffaceous sediments are laminated and normally graded. 

A general increase in the abundance of pillows occurs up the sequence. 

Examples of very shallow water, densely vesicular, concentrically banded, 
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PLATE 2.15: Moreton's Harbour Head Breccia has calcite, quartz, 
sulphide-filled interstices between variably silicic and chloritic 
angular fragments. 
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spheroidal pillows are observed on the coast just below the road at 

Taylor's Room (Plate 2.5). These greatly resemble those of the upper 

part of the Little Harbour section. 

This section is similarly cut by abundant mafic intrusives which 

exhibit distinctive banding and pillowing margins (Plate 2.7). There are 

also many felsic intrusions. 

2.3.3 Pearce Harbour Section 

The section of the Little Harbour Formation tHrough Pearce 

Harbour resembles the sections previously described but contains more 

large. close-packed pillow lavas (Plate 2 .6). These pillmvs characteris­

tically contain few vesicles and do not exhihit the marked concentric 

texture; these pillows are considered to be the products of extrusion into 

relatively deep water. Volcaniclastic rocks are like those to the east. 

2.4 Western Head Formation 

The Western Head Formation comprises a thick (...,.2 km) succession 

dominated by close-packed spilitic pillow basalts with minor intermittent, 

discontinuous horizons of coarse, broken- and isolated whole-pillow breccias 

(Plate 2.16). The pillows are variably vesicular and are generally of 

deeper water type. These pillows compare well with those described from 

modern oceanic, basaltic volcanic fields (e.g . Jones and Nelson, 

l970; ~1oore, 1970; 'foore ~ ~-, 1973; Ballard and ~1oore, 1977; Ballard 

~~-, 1979) and no further elaboration is necessary here. 
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PLATE 2.16: Close packed "bologna sausage" type outcrop of pillow 
basalt, Western Head. 

PLATE 2.17: A chloritic, crystal-lithic tuff overlying pillow basalts, 
Chimney Cove. 



- so -

2. 5 Ha)"vard Cove Formation 

The Hayward Cove Formation overlies the pillow lavas of the 

western Head Formation conformably and consists largely of felsic pyro-

clastic rocks. 

2.5.1 Chimney Cove tuff facies 

At Chimney Cove, the pillow lavas of the Western Head Formation 

are overlain by a finely laminated grey chert (~50 em thick) which is 

overlain by a chloritic, rubbly-weathering crystal lithic tuff traced 

along strike to the Old House Cove (Plate 2.17). The chloritic tuff is 

less than l m thick and dips relatively shallowly towards the southwest. 

Overlying this tuff there are more dark pillow lavas and breccias which 

contain interstitial red and grey chert and coarse chert-bearing pillow 

breccias (Plate 2.18). 

2.5.2 Felsic pyroclastic lithofacies 

At Haylvard 's Cove, a coarse, polymict breccia outcrops, composed 

predominantly of pink angular dacitic to rhyolitic blocks (Plate 2.19) 

with laminated chert and silicified, mafic tuff fragments. This breccia 

is iron-stained and in places white oxidation is seen, suggesting zinc 

mineralization (which was not supported by chemical data). 

Southwards, the felsic breccia contains variable fragment~ and 

fines along strike to Moreton's Cove, where the Hayward's Cove Formation 

is juxtaposed against pillow basalts akin to those of the Western Head 

Formation along a northeasterly-trending fault zone. 
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PLATE 2.18: Basal tic pillow breccia \.,i th red chert fragments, of the 
Hayward's Cove Formation . 

PLATE 2.19: Coarse felsic, volcanic breccia~ Hayward ' s Cove . 
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Northwards, the felsic breccia is finer grained and more 

siliceous. These distal pyroclastic (felsic tuffs) are pale buff and 

contain dark pink glassy "shards" and crystal fragments. There is a 

primary flattening foliation approximately parallel to the regional 

strike (i.e. northwest-southeast). 

The lateral facies variation of the Hayward's Cove Formation is 

presented diagrammatically in Fig. 2.4. 

The felsic pyroclastic rocks are cut by numerous pink rhyolitic­

rhyodacitic dykes which appear to be related to the volcanic rocks. 

2.6 Intrusive Rocks 

2.6.1 Mafic dykes 

There are multitudinous mafic intrusions cutting the volcanic 

and volcaniclastic sequence, notably in the Wild Cove Formation. Diabase 

is predominant and may be aphyric to plagioclase and/or clinopyroxene­

phyric. The syndepo.si t ional feeder dykes through the Little Harbour Forma­

tion are characteristically vesicular and banded with pillowing margins 

(Plates 2.7 and 2.8). Later dykes trend predominantly north-northeast 

and attain thicknesses up to ~ lo m, such as the diabase dyke that hosts 

the Stewart's Mine mineralization. At Little Harbour, a very coarsely 

pyroxene-phyric, rubbly weathering dyke occurs. 

2.6.2 Other ma£ic intrusions 

Dick's Head is underlain by a fine grained aabbro with subophitic 

texture, The small intrusion has clearly intrusive contacts and is not 

cut by any other felsic or mafic dykes. 
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South of Moreton's Harbour Pond a pervasively sheared, calcite ­

ve ined metagabbro or diorite is exposed along the new road cutting. This 

diorite is variably coarse to fine grained and contains phenocrysts of 

hornblende. This intrusion is referred to as Gerald Dearing's diorite 

(Map 1). 

2.6.3 Felsic intrusive rocks 

The map area is cut by abundant rhyolitic to andesitic dykes 

which post-date (i.e. cut) the mafic dykes. These fe-lsic intrusions 

predominantly trend northeast and range in width up to 100m (e.g. Pomley 

Cove; Hayward's Cove). The finer grained felsic dykes are pale buff to 

bright pink and vary from glassy to saccharoidal in texture. Phenocrysts 

of quartz and/or plagioclase are variably present. The microgranitic 

intrusion through Pomley Cove has caused silicification and amphiboliti­

zation of the mafic host rocks which occur as abundant xenoliths in the 

dyke's margins (Plate 2.20). 

The felsic dykes invariably show chilled margins and generally 

fine southwards. The rhyolite dyke at Sam's Cove shows impressive 

columnar jointing (Plate 2.21) in the glassy margin and the centre is 

less silici~ and is saccharoidal (Plate 2.22). 

TI1e rhyolite and rhyodacite intrusions may b e related to and 

feed, the Hayward 's Cove felsic pyroclastic rocks. The felsic dykes are 

spatially closely associated with the mineralization within the Little 

Harbour Formation. 



PL TE 2 . 20: 
Amphi bolit i t 
xenoliths in the 
margin of t he 
micrograni t e 
Poml ey Cove . 

PLATE 2.21 : Columnar j oint ing 
i n t he Sam ' s Cove r hyo l ite dyke. 

PLATE 2 . 22 ( l eft) : etail 
of coar ser, internal dacitic 
phase. 
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2.6.4 Lamprophyre 

There is one late (Jurassic) thin lamprophyre dyke seen north 

of Taylor's Room. It attains a thickness of up to 30 em and is porphy­

ritic and black in colour (see Chapter 3). 

2.7 Structural Geology 

The extrusive rocks underlying the map area all dip steeply and 

face upward to the southwest. No major fold closures or parasitic folds 

are discerned within this area. The rocks are uncle~ved and have no 

lineation developed. Hence, the rocks lie on part of a larger structure, 

presumably the western limb of an antiform to the North. The rocks are 

faulted alon g the Chanceport fault , against the Chanceport Group, with 

subsidiary faulting throughout the area (Bridgeport, Wild Cove Head, 

~1oreton' s Harbour Head, Pearce Harbour, Moreton's Cove, etc.). Deforma­

tion occurred locally along these faults and related shear zones. 

2.8 Metamorphism and Alteration 

The mafic volcanic rocks have a typical low greenschist facies 

mineralogy (see Chapter 3) which is partly due to spilitization. The rocks 

adjacent to the margins of the felsic dykes are baked, i.e. amphibolitized. 

Mineralizing fluids responsible for the ore deposition caused silicifica­

tion, calcitization and sericitization of the country rocks. 
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2 . 9 A summary of the geologic history of the Moreton's Harbour area 

The following is a simplified geological history of the Moreton's 

Harbour area: 

1. Emplacement of semi-sheeted, mafic dykes in a tensional, back 
arc ( ?) basinal tectonic environment - WILD COVE FORMATION 

2. Extrusion of subalkaline basaltic flows which are variably massive 
or pillowed and vesicular, with minor volcaniclastic and cherty 
horizons intercalated, under moderate water depths - LITTLE HARBOUR 

FORMATION (early) 

3. Continuation of mafic volcanism but in decreasing water depths to 
very shallow, explosive phreatomagmatic volcanism, which produced 
copious volcanic las tic rocks, variably reworked - 1 

.. LITTLE HARBOUR 
FORMATION 

4. The onset of deep water, basaltic extrusion resulting in a thick 
sequence of pillow lavas with minor breccia lenses - WESTERN HEAD 

FORMATION 

5. Intrusion of vertical felsic dykes feeding(?) felsic breccias and 
tuffs at the top of the exposed volcanic pile - HAYWARD'S COVE 

FORMATION 

6. Mineralization 

7. Intrusion of gabbro and diorite 

8. Faulting and folding, resulting in the present steeply dipping dispo­
sition of the rocks 

9. Uplift and erosion, including extensive glaciation 
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CHAPTER 3 

PETROGRAPHY AND GEOCHEMISTRY OF THE EXTRUSIVE AND 

INTRUSIVE ROCKS OF THE MORETON"S HARBOUR AREA 

3.1 Introduction 

The predominant rock types of the map area (Map 1; Fig. 2 .1) are 

pillowed, mafic lava flows and volcaniclastic rocks, which are difficult 

to classify petrographically due to pervasive spilitic alteration (cf. 

Hughes, 1973). The mineral assemblages of NlOO thin sections examined 

with the petrographic microscope are summarized in Table 3.1. The follow-

ing is a synopsis of the mineral assemblages and textures observed. 

3.2. Mafic dykes 

Most of the mafic dykes in the area are diabase, comprising 

greater than 90% of the Wild Cove Formation in places, and occuring 

throughout the map area. There are five main types of dyke encountered: 

(1) aphyric (diabase); 

(2) aphanitic-aphyric (basalt); 

(3) phaneritic (gabbro); 

(4) feldspar-phyric; 

(5) clinopyroxene-phyric. 

The mineralogy of all these dyke rocks is similar, consisting of 

variably saussuritized, albitized plagioclase (originally An~50 ) as 

phenocrysts or flow-aligned laths, interstitial chlorite with marked 
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TABI. F: 3.1 
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anomalous blue-mauve interference colours and more rarely fresh to 

intensely uralitized or chloritized salic to diopsidic clinopyroxene. 

Neither orthopyroxene nor olivine were observed. Accessory minerals 

include abundant titanomagnetite octahedra, sphene, leucoxene and apatite. 

Calcite, epidote and pyrite are commonly occurring secondary phases and 

as amygdule fillings. At Little Harbour, a coarsely pyroxene-phyric 

diabase dyke occurs which contains interesting, zoned, crenulated altera-

tion patches (Plate 3.1) composed of sphene, apatite, albite, quartz, 

calcite and opaque oxide. These alteration patches ar.e related to the 

intense calcitic alteration of pyroxene, possibly associated with the 

vein mineralization (Chapter 4). 

Microprobe analyses of some of the major phas5 are presented 

in Table 3.2 and in Figures 3.1 and 3.2. The Ca-Mg-Fe plot for clinopy-

roxene from diabase dyke samples (phenocrysts and groundmass) displays 

its salic-diopsidic character with a subalkaline trend. 

Chemical analyses of a selection of mafic dykes are given in 

Table 3.3 and show low Si0
2 

(< SO%), high Ti0
2 

(>1%) with high Na
2
o (~ 3%) 

reflecting their spilitic nature. Furthermore, the Al
2

0
3

, alkali and 

SiO~ values indicate a subalkaline, high alumina affinity (Kuno, 1960). 
~ . 

Trace element concentrations for the Moreton's Harbour mafic rocks are 

displayed graphically in Figure 3.3, and are interpreted as exhibiting a 

subalkaline, island arc affinity (Strong and Payne, 1973). The true 

affinity of the rocks is masked by their strong alteration trends notably 

in the more mobile elements. 
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TABLE 3.2 

Electron Microprobe Analyses of Some Silicate Minerals 
(giving element Height % and cationic oroportions, Fm) 

Na 

-·l t .% 0.24 
Fm. .01 7 

•,; t. % 0. 25 
Fm. 0.17 

~!g 

15.40 
0.833 

16.95 
0.92 

wt. % 0.27 1~.29 

Fm . 0.018 0.888 

wt. % 0 .27 14.51 
Fm. o . o 18 n . 7 9 2 

wt. % 0.18 16.20 
Fm. 0.013 0.887 

wt. % 0.27 16. 85 
Fm. 0.019 0.914 

wt.% 0.27 13. 5 2 
Fm . 0.019 0.759 

\-Jt. % 1.44 12.05 
Fm. 0.102 0.666 

wt. % 2.18 14.77 
Fm. 0.636 3.313 

wt. % 2.27 14.68 
Pm. 0.662 3.312 

Ht. X 0.18 
Fm. 0.049 

Ht. % 1.06 
Fm . 0 .3 20 

'•' t. % 0 . 04 
Fm . fl . 012 

Ht. % 0 .09 
Fm . 0 . 036 

wt . % 0 .00 
Fm . 

Wt. ~; 0. 00 
Fm. 

we.% 0.13 
Fm. 0.013 

8.66 
1.985 

9.93 
2.303 

15 .0l 
4. 80 2 

17.27 
5.286 

n.o4 
0.002 

0.01 

1. 12 
0 .217 

El ement 
A1 Si K Ca Ti Cr Hn 

3.84 52.6 0.01 
0.164 1.914 

3.98 51.35 0.01 
0.17 1.872 

2.41 52.20 0.00 
0.102 1. 918 

22.46 0.30 0.39 0.19 
0.874 0.007 0.010 0.005 

22.10 0.32 0.67 0.09 
0.863 0.008 0.019 0.002 

21.23 0.45 0.00 
0.832 0.012 

0.14 
0.004 

Fe Ni Total 

5.59 0.04 101.13 
0.169 3.992 

5.10 0.00 100.82 
0.155 4.026 

8.43 0.09 101.51 
0.257 0.002 4.026 

1.81 53.41 0.01 
0.077 1.957 

20.14 0.52 0.00 
0.790 0.014 ~~-

0.28 10.95 0.00 101.90 
0.008 0.335 3.992 

1.85 52.34 0.02 
0.080 1.922 

3.02 52.21 0.01 
0.129 1.899 

20.19 0.57 0.02 0 .23 
0.822 0.015 0 .006 

19.40 0.45 0.38 0.19 
0.755 0.012 0.010 0.005 

9.12 0.00 101.43 
0.279 4.023 

9.09 0.00 101.87 
0.276 4.019 

3.04 53.18 0.12 12.21 0.50 0.10 0.31 15.23 0.06 98.52 
0.134 2.004 0.005 0.492 0.013 0.002 0.010 0.480 0.001 3.919x4 

5.57 54.27 0.13 11.08 0.36 0.09 0.25 13.46 0.01 
0.242 2.011 0.005 0.439 0.010 0.002 0.007 0 . 417 

98.70 
3. 900x4 

9.09 46.60 0.21 11.16 2.14 0.04 0.25 12.46 0.00 98.89 
16.252 1.612 7.016 0.040 1.798 0.238 0.031 1.568 

9.06 46.13 0.22 11.33 2.13 0.00 
1.618 6.989 0.040 1.836 0.240 

13.28 
2.410 

6.22 
I. l 38 

18. 6 2 
4. 7 14 

18.22 
4.406 

44.11 
6.795 

48.34 
7. 526 

26 . 46 
"l .67R 

28.48 
5.R 29 

21. 26 4 7. 29 
1.830 3.456 

23.84 38.42 
2.208 3.0 20 

31.71 5l.54 
4.934 6.806 

0.01 

0.18 
0.03 2 

0.0 0 

0.01 

23.07 
3.807 

12.14 
2.0 24 

0 .01 

0. Ll 
n.o1s 

0.00 

0.05 
0.004 

0 .07 
0 .006 

0.13 
0.018 

0.01 26.39 0.05 
2.066 0.002 

0.00 23.32 0.11 
1.962 0.004 

7.02 0.00 0 .06 
1.108 0.003 

0.05 
0.004 

0.03 

0.02 

0.02 

0.00 

0.35 
0.020 

0.00 

0.25 12.25 0.05 98.38 
0.031 1.551 0.004 16.283 

0.25 
0.031 

0.38 
0.045 

0. ::>2 
O.OJ8 

0.30 
0.048 

0.03 

0.20 
0.010 

0.00 

7.05 
0.904 

20.33 
2.646 

2fi. l 3 
4.688 

24.93 
4.280 

L,. 13 
0.251 

9.36 
0.614 

l. 25 
0.135 

0.00 
0.000 

0.00 

0.00 

0.01 

0.00 

0.00 

0.0 2 

96.67 
15.985 

98.66 
l fi.0 37 

86. 5 7 
19.938 

89.48 
19.921 

99.18 
7.607 

95.61 
7.840 

92.84 
13.309 
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TABLE 3."3 

Geochemical Analyses of Mafic Dykes 

i Wild Cove Formation I ii Little Harbour Formation 

DFS·72 DFS'72 DFS·72 DFS · 72 DFS·72 DFS·72 1
; DFS.72 I DFS·72 DFS·72 DFS·72 DFS·72 DFS·72 

wt. go 93 100 MH·l MH·o 91 94 I 709 88 87 86 20R 191 
I 

I 

Si0 2 47.02 46.53 49 49.10 I 46.59 41.91 
I 

49.56 r 46.18 47.82 45.50 47.71 49.67 

Ti0 2 1.18 1. 30 2.3 1. 4 7 0.65 0.34 1. 32 I 1.64 2.13 1. 82 1.43 0.91 
I I 

AI203 16.04 15.69 16.00 18. 30 ~ 18.46 9.28 15.06 1

1 

14.69 14.23 16.18 15.06 20.04 

Fe 2o3 10.20 I 11.26 1. 30 0.67 ! 7.47 10. 5o 1 12.21 : 9.22 10.50 I 11.17 12.19 6.45 
I I 

FeO 
I 

- - 7.53 6.57 i - - I -
I 

- - - - -
I 1: 

MnO 0.18 0.18 0.13 o .1o 1 0.11 0.17 1 0.19 0.17 0.16 0.16 0.29 0.13 
- -

MgO 6.61 6.08 6.08 4.98 I 8.27 21.40 : 6.09 6.00 4 . 46 7.13 5.07 4.58 
' 

! 

CaO 10.41 8.76 11.25 
I, 

9. 97 11 11.46 I 8.55 ' 5.9 1 8.81 10.61 8.29 9.14 8.74 

Na70 2.87 3.50 3.08 3.68 I 2.11 0,80 I 5.54 4.12 3.95 3.38 3.81 4.28 I 

I 

K20 0.47 0.89 0.75 0.99 0.94 0.08 
I, 

o. 26 1 
0.45 0.04 

I 
0.43 0.15 0.81 

P2os 0.13 0.16 0.82 0.48 I 0.33 0.06 0.25 0.27 0.15 0.03 I - 0. 21 l 
I 

H20 2.89 - 2.57 3.41 - 3.18 
I 

- 4.01 - 4.01 2.48 -

Total 98.0 94.35 101.44 99.72 96.06 96.42 96.47 95.35 94.15 98.34 97.48 95.64 

ppm 

Rb 21 26 
Ba 223 271 
Sr 350 438 
Cu 69 61 
Zn 60 52 
Cr 43 52 
Ni 39 22 
Zr 162 125 
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TABLE 3.4 

Chemical Analyses of Selected Mafic Rocks from the Moreton's 
Harbour Area (unpublished data of D. Strong, 1972) 

Sample Si0
2 

Ti0
2 

Al
2
o3 

Fe 203* 

DS-72-729 63.50 0.70 12.63 5.18 

DS-72-207 52.86 1.45 14.02 7.18 

DS-72-195 48.90 1.42 14.40 8.11 

DS-72-215 49.76 1. 53 15.70 9.01 

DS-72-192 48.40 0.96 17.24 9.85 

*Fe total as Fe 2o3 

DS-72-729 - sediment 
DS-72-207,195,215,192 ~pillowed, flows 

oxide % 

MnO MgO CaO Na
2
o K20 P205 

0.16 1. 50 2.69 7.15 0.66 0.32 

0.16 5.30 8.01 4.89 0.24 0.24 

0.13 5.69 8.32 3.37 0.76 0.05 

0.15 6.55 7.05 4.83 0.76 0.46 

0.18 5.39 8.44 3.60 1. 07 0.09 

H
2
0 Total Au ppb 

2.66 97.78 15 

94.35 

6.93 98.08 4 

3.20 99.00 Q\ 
Q\ 

95.22 5 
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3.3 Mafic Extrusive Rocks 

The mafic extrusive rocks of the Little Harbour and Western 

Head Formations all possess a tyical spilite-greenschist facies mineral 

assemblage of albite, chlorite, epidote, calcite, quartz with accessory 

titanomagnetite, sphene and apatite. Only very rarely are primary salic 

clinopyroxene microphenocrysts observed. Both pillowed and massive flows 

have basaltic textures, commonly aphyric, with flow-aligned plagioclase 

laths and are variably vesicular (Plate ~ '.2). Amygdule fillings are 

quartz, actinolite, epidote, chlorite and/or calcite. , Calcite staining 

(Dickson, 1966) shows that the carbonate in vesicles varies from pure 

iron-free calcite to extremely iron-rich calcite. TI1ere is a general 

trend of increased Fe towards the vesicle margins. Calcite occurring 

interstitially in the rocks is shown to be ferroan (>2% Fe), whereas 

calcite in veins varies in composition, with later cross-veins composed 

generally of pure calcite, and the earlier veins iron-rich. 

Pillows commonly have a concentric zonation delineated by bands 

of vesicles. Pillow selvages are of sideromelane. 

Chemical analyses of pillows and flows from the Western Head 

and Little Harbour Formations are shown 1n Table 3.4. Silica concentra­

tions tend to be higher than for basalt classification (>45% Si0
2

) (Car­

michael et ~-, 1974) due to alteration and late vesicle filling. Despite 

this, the extrusive mafic rocks are considered to have been subalkaline 

basalts because of their structures, textures and trace element abundances 

(Figs . 3. 3 and 3. 6) . 
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PLATE 3.1: Photomi crogr aph showing i ntense calc i c alteration of 
(?)pyroxene in a diabase dyke, Li tt le Harbour (p l ane polari zed l i ght 

PLATE 3.2: Photomicrograph of ca l c i te-fil l ed amygdule s i n spi l it i c 
basalt (BC·9 ) . 
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3 .4 Mafic Volcaniclastic and Associated Sedimentary Rocks 

The volcaniclastic rocks of the Little Harbour Formation are 

composed largely of altered, silicified, mafic fragments consisting of 

sadie-plagioclase, quartz and chlorite with abundant calcite, epidote, 

opaque Fe-Ti oxide, actinolite and apatite. Secondary sulphides are 

locally abundant, with pyrite most widespread. Matrix mineralogy is 

dominated by calcite, quartz after chert, epidote and chlorite. Textures 

like accretionary lapilli are observed in one tuff breccia sample (Plate 

3.3). These are considered to be the product of material accreted from the 

air around volcanic ash nuclei, and as such are good evidence of very 

shallow water, explosive volcanism (Moore and Peck, 1962 ) . 

Chemical analyses of selected volcaniclastic rocks are included in 

Tables 3.5 and 5.la. Values of Si0
2

, Fe
2
o

3 
(total) and Na

2
o are higher than 

those of the mafic flows, whereas Al
2

0 
3

, ~1g0 and CaO are re la ti ve ly depleted, 

as would be expected with silicified and reworked, sedimented mafic compo­

nents. All the sediments have lower values of Ni, Y, U and Rb, but are 

variably enriched in Zr, Zn, As, Au and Ag. These patterns may reflect 

hydrothermal remobilization through the relatively porous volcaniclastic 

beds, as discussed in Chapter 5. 

Grey and red cherts are composed of crypto- to micro-crystalline 

quartz which may contain various euhedral, opaque minerals notabl~ hematite 

and pyrite. The jasper bed from Western Head has slightly enriched precious 

and base metal concentrations due to primary exhalative processes (Chapter 5) . 
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3.6 Moreton's Harbour Head Breccia 

The Moreton's Harbour Head Breccia is a coarse breccia which 

contains large, angular, felsic blocks with a minor mafic (amphibolitic, 

pillowed) component. The felsic blocks are composed of fine grained 

quartz, albite, sericite, biotite and ilmenite with abundant secondary 

calcite, pyrite and leucoxene, and resemble the felsic dykes intruding 

the area. r1afic rocks from the Breccia are altered and commonly contain 

brown-green amphibole and exhibit primary spilitic textures. The rocks 

are cut by abundant quartz and calcite veins, variably containing sul­

phides. The calcite is ferroan and the rocks, especially adjacent to 

the fault contac~ are rich in siderite and goethite. 

3.7 Felsic Dykes 

The volcanic-sedimentary sequence is cut by abundant felsite 

dykes which vary in composition from rhyolite to dacite and are quartz, 

albite and/or perthite phenocryst - bearing intrusions. Phenocrysts of 

quartz are rounded, embayed and commonly show (1-quartz forms. These 

phenocrysts contain abundant solid mineral includions (apatite, zircon, 

rutile) and trapped fluids (see Chapter 6) . Plagioclase phenocrysts are 

ubiquitously euhedral sodic and may exhibit weak normal zonation with 

twinning on both albite and pericline laws. Cobaltinitrite staining 

reveals the presence of abundant groundmass K-feldspar. Only rarely are 

fingerprint and patch microperthitic phenocrysts observed, which are 

generally albitized and sericitized. 



- 71 -

The Pomley Cove microgranite is composed of holocrystalline 

quartz and Na-plagioclase with brown-red buff pleochroic biotite and 

secondary muscovite (sericite)~ cuniform ilmenite, rare sphene~ apatite 

and zircon. Fine grained~ remobilized K-feldspar is d 8tected in the 

aroundmass at the slightly sheared intrusive margins. 
b 

Southwards from 

Pomley Cov~ the grainsize of the felsic intrusive rocks decreases. At 

Ha~vard's Cove, the rhyolitic dykes have spherulitic devitrification 

textures and are strongly sericitized. A felsitic texture is developed 

in the coarser, holocrystalline centres of some dykes. PTagioclase-

phyric felsites are abundant throughout the area, of which the mafic 

phases are chloritized. These are less silicic than the quartz-phyric dykes 

and are classified as rhyodacites and dacites. The dacitic dykes 

commonly post-date the rhyolite~ but are intimately related~ as shown at 

Sam's Cove where the plagioclase-phyric dacite is a more slowly cooled 

central portion of the spherulitic~ columnar jointed quartz-phyric 

rhyolite dyke. 

3.8 Felsic Pyroclastic Rocks of the Ha~vard's Cove Formation 

The coarse felsic breccia at Hayward's Cove is polymictic 

including rhyodacite bombs and fragments composed largely of spherulitic 

albite and quartz (Plate 3.4) silicified mafic blocks and bedded chert 

clasts. The mafic phase in all fragment types is chlorite. Calcite , 

apatite, pyrite and opaque oxides are abundant. K-feldspar is notably 

absent. The matrix of the coarse breccia is dark in colour and composed 
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PLATE 3.4: Spherulitic texture in groundm 
f r om the fel s i c breccia, Hayward 's Cove. 

PLATE 3.3: An accretionary 
l apil l u s in tuf f breccia, 
Little Harbour (cross 
polari zed l "ght ). 

of r hyodacite fragment 
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mainly of quartz, calcite, chlorite and rare feldspar. Pyrite is locally 

abundant. The breccia is more chloritic at Moreton's Cove. 

The distal, fine grained, silicic facies is composed of quartz 

and feldspar, the latter is partly K-feldspar. Crystal fragments of 

quartz and plagioclase occur sparsely and are rotated, flattened, frag-

mented and variably recrystallized. Lenses of fine grained calcite and 

quartz may represent relict flattened, elongate vesicles. In several 

sections, perlitic devitrification is observed, implying an originally 

glassy nature of these deposits. ,. 

3.8 Geochemistry of the Felsic Rocks: Hayward's Cove Breccia, Tuffs 
and Felsic dykes 

Major and trace element analyses of the felsic rocks from the 

Moreton's Harbour area are presented in Table 3.6 using data from this 

study supplemented with unpublished data by D.P. Strong. The dykes range 

between 60 and 80 wt. % Si0
2 

and have high concentrations of Na
2
o and K

2
0. 

In the Si0
2 

vs total alkalies (Na
2
o + K

2
0) Harker diagram (Fig. 3.4), the 

dykes plot in a linear trend, whereas the breccia and tuff samples deviate 

above and below this line. An alkali-enrichment, iron-depletion trend is 

apparent from the AFM diagram (Fig. ~.5). Concentrations of Fe
2
o

3 
(total), 

MgO and CaO are highly variable. Alumina values are consistently between 

12 and 14 wt. %. Concentrations of Ti0
2

, MnO and P2o5 are ubiquitously 

low. 

The major element chemistry of the dykes substantiate their 

classification as rhyolitic to rhyodacitic in composition, as does the 

Winchester and Floyd (1977) discrimination diagram of Si0
2 

vs Zr/Ti0
2 



TABLE 3.5a 

Major Element Abundances of Selected Felsic Dykes and Pyroclastic Rocks 

Sample # 
Weight go of Element Oxide 

Dykes Si0
2 

Ti0 2 Al 203 Fe 0 * 2 3 MnO MgO CaO Na2o K20 LOI Total 

BL·3 69.3 .022 14.5 2.26 .02 .95 3.09 3.88 2.6 3.82 100.82 

HC·34 73.7 .13 12.7 1.13 .03 .4 1.0 3.88 2.9 2.4 98.27 

HC·Sl 60.7 .65 14.2 3.61 .08 2.27 4.23 3.04 2.67 7.89 99.20 

OHC·2 76.8 tr. 13.1 .44 .02 .05 .63 3.36 4.19 1. 51 100.10 

SM·l6 68.3 .28 14.5 1. 78 .03 .63 3.16 3.73 2.59 4.40 99.40 

WG·4 76.0 tr. 12.2 1.10 .04 .30 .71 4.30 2.45 1. 76 98.86 

Pyroclastic rocks 

HC·Brla 69.8 .30 13.8 3.49 .04 1. 34 .81 3.86 1. 78 3.56 98.76 ---J 

+-' 
HC·Brlb 64.5 .32 14.2 8.54 .07 3.12 .68 4.11 .64 2.98 99.06 

HC·33 58.6 .91 14.2 7.03 .20 2.12 3.88 5.71 1.44 4.65 98.04 

HC·38 68.6 .29 14.8 4.58 .06 1.45 .78 5.45 .84 2.04 98.89 

HC·41 72.6 .33 10.5 7.14 .06 1.18 .28 3.13 .42 2.27 98.54 

HC·46 70.1 .33 13.8 3.88 .07 1. 69 .63 4.30 1. 23 2.33 98.36 

MC·l 69.9 .26 12.2 3.73 .11 1.11 2.26 3.86 2.89 2.88 99.20 

WG ·10 74.8 .43 10.7 1.97 .08 .85 1. 73 2.54 3.29 2.70 99.09 

WG ·16 73.6 .40 12.7 2.24 .05 .83 .68 3.89 3.34 1.84 99.57 

WG ·17 70.2 .31 12.6 2.50 .09 1. 20 1. 63 2.77 4.75 3.62 99.67 

*Total Fe-oxide as Fe 2o3 
L .0. I. = Loss on ignition 



TABLE 3. Sb 

Trace Element Abundances in Selected Felsic rocks 
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(Fig. 3.6). The trends observed are largely accounted for by alteration 

with predominant alkali remobilization. This is recognized in petro­

graphic examination as sericitization and albitization of the feldspars. 

The margins of most dykes~ notably the Pomley Cove intrusive~ have 

clearly been affected by K-metasomatism. 

The felsic volcanic rocks are generally less silicic, ranging 

from 64 to 75 wt % Si0 2 , with lower values for the coarser, proximal 

breccia than the distal tuff facies. The major and trace element 

chemistry of the coarse breccia is of little use in det e rmining their 

magmatic affinity due to their extreme heterogeneity, contamination and 

alteration. The distal silicic tuffs more closely resemble the felsic 

dykes with respect to Si0 2 and their high alkali concentrations. The 

volcanic rocks plot either side of the Si0
2 

vs alkalies trend (Fig. 3.4) 

delineated by the dyke rocks but continue their trend in the AFH diagram 

(Fig 3.5) which implies that similar processes have controlled the 

chemistry of all these felsic samples. Concentrations of Fe 2o3 (Fe­

total), MgO and CaO of the volcanic rocks are variable, but Fe 2o3 and 

MgO are consistently higher than values from the dykes. The bin .:;try p ot · 

for Na 2o vs K
2

0 (F i g. 3.7) shows that K
2

0/Na
2
o ratios for the felsic 

tuffs and dykes are highest, and increasing Na
2
o enrichment and contami­

nation for the inhomogenous, coarse breccia samples. 

The elements Ti, Zr, Y and Ga, which are considered immobile 

and incompatible in mafic rocks and can be used to discern differentiation 

trends and discriminate between magma types (e.g. Pearce and Cann, 1972), 
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become compatible in the silicic rocks, so that the same discriminant 

diagrams c a nnot be used. Rubidium and K
2
o give a positive 

linear relationship (Fig. 3.8), largely due to their implicit chemical 

similarities. The Si0 2 vs Zr plot shows a linear, negative relationship 

for the dyke rocks and two of the volcanic samples, but the other volcanic 

rocks plot in a cluster of high Si0
2 

and high Zr concentrations (Fig. 3.9). 

The difference implies a process of Zr fractionation towards the extrusive 

rocks. The relationship between Ti0 2/l00 vs Zr is a relatively constant 

positive trend for all the felsic samples (Fig. 3.10). 

The felsic rocks fall into the dacite-rhyolite fields of the 

Winchester and Floyd (1977) diagram (Fig. 3.6) and show a subalkaline 

differentiation trend such as that of Mount Misery rocks. Mafic dyke and 

flow rocks p lot similarly in the subalkaline field, continuing the trend 

downwards and suggesting a subalkaline evolution for all t .he volcanic and 

hypabyssal rocks of the area. 

The felsic dykes and volcanic rocks are considered to be coeval, 

from the limited data. Further geochemical work, including rare earth 

element distribution may substantiate their consanguineity. An isotopic 

age of the felsic dykes would add a further age constraint on the entire 

volcanic sequence in this area and possibly on the age of mineralization 

(see later Chapters). 

3 . 9 Other mafic intrusive rocks 

3 -9.1 Gerald Dearing's diorite stock 

The diorite is composed of coarse, euhedral, twinned, saussuri-

tized plagioclase (An<SO) and dark brown pleochroic hornblende. The latter 

is commonly sheared and fragmented along its cleavages. 



-
I 

I 
I 

4 l 

K 2 0 
2 

( wt. %) 

0 
2 

80 -

0 

• 

D. 

• 

0 

~ 

• • 

4 

• 

6 

Fig. 3.7: K20-Na20 diagram for selected felsic rocks (circles, dykes; 
squares; distal pyroclastic rocks; triangles, proximal breccia) . 

80 

Rb 

(ppm) 

0 

• 

• 

• 

• • • 

• .. 

• • 

• • 

• • 

• 

0 2 4 

Fig. 3.8: 
K

2
0 ( wt. %) 

T\b-K20 d iagrarn for selected felsic rocks, dykes a I lei pyroclastic 
samples. 



1 -

L 
0 

0 o: 
oo --

2 00-

zr 
(ppm ) 

100 ... 

050~· --------------6~0--------------?~0--------------BO 

Si02 (wt. ~..c;) 

Fig. 3.9: Zr-Si02 diagram for selected felsic rocks shov.rlnP a 1.1111 

linear trend for the dyke rocks and t\..ro of t he brcc L1 =--~tmples, 

b ut a separate group of hig h Zr and hi g h S l 0 '? for ;11 J l' t h e r 
f elsic pyro clastic rocl· samples (circles, d ykes; squ:-Irl'~;. 

distal pyroclastic rock s; triangle s , proxim~l brL ~i~ ) . 

40 ~ 

J O -
0 

Tio2 0 

0 

0 

0 

0 

co 
0 

~ I OOfpom) 

Fig. 

0 
/0 0 0 

0 
0 100 200 300 40 

Z r (ppm) 
3.10: Ti02-Zr dia g ram for selected felsic rocks s:nnpJ L'S (d...-kc .· 

and pyroclastic samp les) showing a fairlv god, P('. itivl' , 
linear trend. See Fig. 3 .6. 



- 82 -

Other minerals include calcite , sericite and some biotite (after 

hornblende) with quartz veins. Actinolite, calcite and prehnite occur in 

veins and are secondary after the primary mafic minerals. 

phases are apatite, sphene and ilmenomagnetite. 

3.9.2 Dick's Head microgabbro 

The accessory 

The microgabbroic stock is composed of salic clinopyroxene and 

saussuritized plagioclase mostly, with accessory apatite, sphene and opaque 

Fe-Ti oxide. The gabbro has a maximum grain size of 0.5 em and exhibits a 

subophitic texture. 

3.9.3 Lamprophyre 

The small, black aphanitic lamprophyre dyke is composed of euhedral 

augite with apatite, pyrite, magnetite, ilmenite and alteration products 

leucoxene, calcite and chlorite. All phases are contained within a dark 

glassy material and analcite and so may be classified as monchiquite. Late 

Jurassic to early Cretaceous lamprophyres are described from elsewhere in 

the Bay of Exploits (Heyl, 1936; 

resemble this occurrence. 

3.10 Alteration and Metamorphism 

Strong and Harris, 1977) and 

The mafic rocks of the area have a typical lower greenschist 

facies mineral assembla.ge, which is partly a result of interact. ion with 

seawater. The mineralogy and chemistry of some of the felsic rocks have 

been modified similarly. 

Mafic xenoliths and rocks adjacent to felsic intrusions have 

been amphibolitized by contact thermal metamorphism. Such aureoles do 
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not exceed 1 m in width and are typified by the development of brown-green 

hornblende and tremolite-actinolite and the absence of epidote. 

The felsic dykes are sericitized. K-metasomatism is evident in 

these dykes from the removal of K from relict perthite phenocrysts to the 

aroundmass ~ and towards the dyke margins. The original feldspars are them-
o 

selves albitized. 

Hydrothermal alteration and elemental redistribution is evident 

throughout the area with greatest development adjacent to the sulphide-

quartz ore veins (Chapters 4 and 5) . The slight enrichme»t of precious 

and base metals and As in the volcaniclastic-sedimentary strata of the 

Little Ha rbour Formation is related to large scale hydrothermal circula-

tion associated with the ore forming processes (see later chapters). 

Calcitization of the mafic wall rocks is the predominant altera-

tion adjacent to the ore veins with pure calcite~ ferroan calcite and 

siderite pervading the rocks in irregular veinlets (Plates 3.5~ 3.6 and 

3.7). Silicification and chloritization is also common~ whereas argillic 

and sericitic alteration is relatively rare~ except in unmineralized 

felsic dykes. 

3.11 Silicate mineral chemistry 

The chemical compositions of phenocryst and groundmass clino-

pyroxene are presented in Table 3.2 and diagrammatically in Figure 3.1. 

The cores of the large clinopyroxene crystals in the coarse~ pyroxene­

rich diabase dykes from Little Harbour are diopsidic and trend towards 

Salite and calcic augite towards their margins in a subalkaline trend. 

Small phenocrysts from the diabase hosting the mineralization of Stewart's 
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PLATE 3.5: Pervasively calcitized diabase adjacent to ore veins, 
Stewart's Mine. The feldspars are pseudomorphed by clay minerals 
and sericite and the groundmass predominantly is ferroan calcite 
(alizarin red stain, plane polarized light). The opaque rhombic 
mineral is arsenopyrite with minor pyrite . 



PLATE 3.6: Pervasive 
calcitic alteration and 
veining, adjacent to 
St uckless' Min e s tibnite 
veins. Alizarin red 
s t ain shows upper vein 
of pure calcite and 
l owe r vein zoned from 
i ron-poor to iron-rich. 

Detail of zone ve i n (from bove). The 
''cracked" blue staining is due to rapid reaction of stain and highly 
ferroan calcite. 
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~1ine are sal ic, as are groundmas s pyroxenes . Concentrations of Na, Ti 

and Ni are very low. Cores tend to be slightly enriched in Ni and Cr 

and depleted in Mn and Ti with respect to the margins. Pyroxene pheno-

crysts from a diabase at Chimney Cove are calcic augite and show a 

simi1ar trace element zonation. 

Microprobe analyses of secondary mafic minerals (amphiboles, 

epidote and chlorite) are presented in Table 3.2. Hornblendes from the 

amphibolitic dykes of Wild Cove Head and from the Pomley Cove micro­

granite aureole are calcic with variable Na, Mg, Ca, F& and trace amounts 

of Mn, Ti, Cr and K. Hornblendes from the Pomley Cove aureole are richer 

in Na and Ti than those analysed from Wild Cove Head (Fig. 3.2). Plagio-

clase analyses indicate the predominance of albite which contains traces 

of K, Ti and Ba. Epidote and chlorite analyses show that both minerals 

conform to their respective formulae (Fig. 3.2b). 

range of Mg/Fe ratios. 

Chlorites have a wide 
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CHAPTER 4 

ORE PETROGRAPHY 

4.1 Mining History 

4.1.1 Stewart's Mine, Little Harbour 

During 1897, about 125 tons of arsenopyrite were extracted for 

its gold content from the Stewart's Mine at Little Harbour. By 1900, 

the main shaft of the mine had reached a depth of ~40 m, with several 

shallow subsid iary pits. Mining activity was apparently discontinued 

shortly after this (Heyl, 1936). No mining has taken ~ lace within the 

memory of local people and the mine site presently comprises a water-

2 
filled shaft measuring 2 x 4m, associated with a 30m trench to the 

north (Fig. 4.1). To the south of the mine is the ore dump from which 

grab samp les were collected for study, as the in situ ore vein is 011ly partly 

,,,~-ell exposed and severely weathered. The prospect pit at Little Harbour 

has been covered with Jcbr i s (Fig. 4. 2; f rontispiece view southwest-

ward across Little Harbour) . 

4.1.2 Stuckless Mine 

The Frost Cove antimony mine, currently referred to as Stuckless' 

Mine was first worked during the 1890's when $1,200 worth (value at that 

date) was exported from Newfoundland. Mining activity was sporadic, with 

peaks during the two World wars. At its zenith the mine consisted of 

two adits: one 3.5 m below and the other 18.5 m above sea level. The 

former extended southwards for a pproximately BO rn. The middle level has 
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now collapsed. Local residents recall mining of the stibnit e . and ~~r. 

c. Stuckless (son of former mine manager, Richard Stuckless) worked 

there as a boy. He remembers that much of the mine excavation was 

hand-drilled. 

4.1.3 Other prospects 

There are no other mine sites within the map area but between 

1965 and 1967 the Newfoundland and Labrador Corporation (NALCO) under-

took a drilling programme on the Newmont concessions. •Four boreholes 

totalling ~ 290 m were drilled, notably around the Taylor's Room (gold) 

prospect, and the Western Head (copper) Prospect (Fogwill, 1968; 

unpublished and confidential reports) . The two mining properties and 

the Taylor's Room and Western Head Prospects are owned by Nalco and held 

under the fe e sim1)le grants (E.l'vl. Tobin, vol. l, Folio 156; \·IJ.C. Lethbridge 

et al. (The J''loreton' s Harbour Hining Company) ·' vol. l, Folio 65) . 

4.2 Vein Descriptions 

Approximately fifty mineralized veins were seen in the map area 

(Hap 1), the most pertinent of which are shown in the simplified map 

(Fig. 4.3) . The veins are of three main types: 

I. Arsenopyrite+ quartz 
(~ pyrite ~ calcite + sphalerite) 

II. Stibnite +quartz 
(~calcite~ arsenopyrite) 

III. Sphalerite+ arsenopyrite+ chalcopyrite+ quartz 
(~pyrite + calcite + stibnite). 
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These veins range in thickness from less than l em up to 50 

and can be traced locally for several metres along strike. The veins em, 

are perpendicular to the strike and occur almost exclusively through the 

central part of the map area, essentially within the Little Harbour For-

mation. The veins are hosted by a variety of rock types including volcan-

iclast ~ ro c ks , pillow lavas and both felsic and mafic dykes. Ore veins 

are ubiquitously associated spatially to the felsic intrusives. The two 

mines are based on vein lodes. The Western Head copper mineralization is 

2 . 
of sulphide minerals disseminated pervasively through a small ~0.25 km ) 

area with minor irregular quartz veinlets. 

4.2.1 Stewart's Mine: Vein Type I 

The arsenopyrite-rich veins mined at Little Harbour occur 

within a thick diabase dyke which is a pyroxene-(salite-diopside) phyric 

diabase 4 . 5 m away from the vein (Plate 3.5). The dyke is about 10m 

thick, dipping steeply ~80°) and striking 035°N. Adjacent to the vein, 

the diabase is pervasively calcitized, silicified and chloritized and 

exhibits some brecciation and shearing. Abundant pyritohedra are dissemi-

nated through the diabase , with small (~ 2 mm) arsenopyrite rhombs adjacent 

to the mineralized veins. The host dyke is cut by abundant Pe-rich 

calcite (from carbonate staining technique; Dickson, 1966) and barren 

quartz veinlets. 

The dyke itself intrudes steeply dipping tuffs and tuff breccias, 

upward facing to the southwest. To the north of the mine shaft, a pink, 

felsic (quartz-feldspar phyric rhyolite) dyke outcrops striking 025°, 

dipping 75° to the southeast. This dyke presumably intercepts the 

diabase dyke near the mineralization, but the a ctual cont ~ ct ~as n o 

observed . . 
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The mineralized vein measures 20 to 30 ern thick and is 

related to several subsidiary sub-parallel veins. The dominant metallic 

mineral is arsenopyrite with far lesser amounts of pyrite, pyrrhotite, 

sphalerite, chalcopyrite and trace stj bni te and tetrnhed ::·i te. Quartz 

is the major gangue phase and was deposited in at least four genera­

tions: 

(1) euhedral (dog-tooth, comb texture intergrown with arseno­

pyrite) - cloudy, white to colourless with c-axes 

approximately perpendicular to vein direction; 

(2) cloudy grey, quartz with clear margins and anhedral, 

mosaic form filling-in centre of veins; 

(3) iron-stained, cloudy quartz along the margins of veins; 

(4) late, cross-cutting veinlets of cloudy to clear quartz, of 

commonly euhedral mosaics. 

The vein samples commonly exhibit a banded texture of quartz 

and arsenopyrite (Plates 4.1 ~ 4.2 and 4.3). In some samples, the 

margins of each band of arsenopyrite is traced by a thin band of iron 

rich calcite and siderite (Plate 4 . 3). 

The arsenopyrite occurs generally as euhedral rhornbs,or is angular, 

fragmented and brecciated (Plate 4.5) with late quartz veining and 

carbonate cementing the fragments. There is no evidence of extensive 

tectonic deformation and so the brecciation is considered to be related 

to fluid pressure (Chapter 6) . ~1assive arsenopyrite containing angular 

fragments of altered wall rock, banded vein and gangue minerals occurs 

in the centre of the thicker veins (Plate 4.4). Pyrite occurs as late 



PLATE 4.2 : Banded quartz-arsen o­
pyrite vein, with carbonate seams 
as indicated (Little Harbour) . 
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PLATE 4.1: Small banded 
quartz - arsenopyrite ve·n 
of Type I , cutting a 
diabase dyke (Little 
Harb our ) . 

PLATE 4.3: Banded quartz­
arsenopyrite-pyrite (+ 
trace pyrrhotite, sphalerite 
and chalcopyrite) vein 
showing several pulses of 
deposition. Band margins 
are cross-cut by ferroan 
calcite and sideri t e 
(Stewart's Aine). 
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PLATE 4. 4: Mass ive arsenopyri te, bearing angular vein and wall - rock 
fragments, Stewart ' s Mine. 

PLATE 4.5 : Photo ­
micrograph of brecciate 
arsenopyrite cemented 
by qua rt z and cal ite ~ 
s ·tewart's Mine (SM.5 2). 
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euhedral (cubic) crystals, generally near the vein centres. Sphalerite, 

ubiquitously bearing chalcopyrite exsolution blebs along the dodeca­

hedral crystallographic planes (Plate 4.7) occupies anhedral, late 

fillings. Rarely small inclusions of pyrrhotite and chalcopyrite occur 

in the arsenopyrite masses. Elsewhere arsenopyrite appears to be the 

earliest sulphide precipitated, intergrown with calcite and quartz 

succeeded by the base metal sulphides and later gangue deposition 

(Fig. 4.4). Oxidation products observed include siderite ~ boethite, and 

s corodi te (Gibbons, 1969 ) . •• 

4.2.la Moreton's Harbour Head: Vein Type I 

Mineralized veins occur at Moreton's Harbour Head, notably 

adjacent to the fault contact with the Moreton's Harbour Head Breccia 

and the Little Harbour Formation. Most of these veins are arsenopyrite­

dominated (Type I) although more stibnite-rich veins also occur (Type II). 

The area is pervasively Fe-oxide stained. One example of a vein 

is about 20 ern thick, dipping steeply to the northwest. The central 

nortion of the vein is silicified, chloritic mafic dyke rock, the margins 

of which have been overgrown by a comb-intergrowth of quartz and arseno­

pyrite. Calcite and siderite with pyrite and sphalerite are later 

phases and are quite abundant sporadically. 

4.2.lb Other small veins of Type I occur within the area. These 

smaller veins do not have the banded texture well developed. One small 

tetrahedrite grain was identified in one sample. 
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4. ~. 2 Stuckless' ~1ine: Type II 

The antimony mine of south Frost Cove is sited on the largest 

vein within the area. The dominant sulphide is stibnite. The minerali­

zation is hosted by and adjacent to the margins of a pervasively, hydro­

thermally-altered (silicified-calcitized-chloritised) felsic dyke, which 

stl~CS ffi0~ is steeply dipping and attains a thickness of up to 2.5 m. 

The dyke intrudes silicified and chloritized pillow basalts which are 

veined extensively with calcite (~ Fe-rich) (nates 3.6 and 3. 7) and 

siderite and abundant pyrite euhedra. The wall rocks are slightly sheared 

and brecciated,notably along the margins of the felsic dyke. Southwards 

along strike of the felsic dyke it is shown to be a pink rhyolit~bearing 

quartz and feldspar phenocrysts. According to Heyl (19~6), the mineralized 

vein continues southwards along strike for 11 2600 feet", ibut this was not 

confirmed by the present study. 

Stibnite is the most abundant mineral, occurring in radiating 

w.asses up to 20 em across (Plate 4.6) and in narrower ("'1 em) veinlets 

subparallel to the main vein. The stibnite is intergrown with subhedral, 

dogtooth, clear to buff-coloured-cloudy quartz. Other sulphides occurring 

in the vein Type II are arsenopyrite, pyrite, galena, sphalerite and 

chalcopyrite. The paragenetic sequence is presented in Figure 4.5. As 

alteration products of stibnite, kermesite and cervantite were identified. 

Quartz is the predominant gangue mineral with locally abun­

dant carbonate. Fluorite was identified in one galena-rich sample. 
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PLATE 4.6: Massive stibnite vein ~ Type II , Stuckless ' Mine, with 
altered, felsic dyke wa l - rock and intergrown, banded quartz (SB.25). 

PLATE 4.7 : Photo­
micrograph of 
irregular sphalerite, 
bearing large , abundant 
blebs of chalcopyrite 
(SM.S8). 
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Euhedral quartz, intergrowing in a comb-like texture with the 

stibnite with c-axes perpendicular to the vein~shows successive growth 

bands. This quartz is buff, grey to white and cloudy t .o cl ear and is con­

sidered contemporaneous with the stibnite. Earlier quartz is white and 

cloudy as similarly are later cross-cutting veinlets. 

There is a crude zonation of mineralogy in the Type II veins 

with the arsenopyrite (earlier) outermost and other (later) minerals 

towards the centre. 

4.2.3 Taylor's Room: Type III Veins 

The mineralized veins of the Taylor's Room prospect are not 

exposed and so field description draws from previous work (Heyl, 1936). 

There are several veins traced for '-"180 m perpendicular to the strike of 

the host tuffs and tuff breccias, which contain disseminated pyrite and 

traces of other sulphides. The vein width varied up to 30 em. The 

Taylor's Room vein samples are dominated by sphalerite with chalcopyrite 

and pyrrhotite and lesser galena. Arsenopyrite is also locally abun­

dant. Stibnite is relatively rare. The gangue minerals are quartz and 

calcite . The paragenesis of the veins of Type III are given in Fig. 

4.6. The sphalerite occurs as 1 em thick, anhedral masses and vein­

lets with abundant chalcopyrite inclusions. 

Arsenopyrite is generally euhedral or fragmented and is found 

intergrown with pyrrhotite and chalcopyrite with interstitial quartz and 

calcite. The veins contain altered fragments of wall rock. 
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4.2.4 Other Mineralization 

Various minor veins of the three vein types occur around Moreton's 

Harbour, largely within the Little Harbour Formation and uppermost part 

of the Western Head pillow lava Formation. The Western Head Copper 

Prospect (Fogwill, 1968) comprises disseminated pyrite with minor chalco­

pyrite and arsenopyrite and locally in quartz-sulphide filled tension 

gashes and veinlets, hosted by mafic pillow and tuff breccias, localized 

adjacent to felsic intrusions (cf. Pomley Cove). Mineralization is 

presumed to be related to the veins further east, bu,t due to poor exposure 

and lack of suitably mineralized samples, more detailed discussion of this 

mineralization is not presented here. 

The arsenopyrit~or stibnite-bearing veins are not observed far 

west of Moreton's Harbour Head. Abundant pyritization is observed associ­

ated with felsic dykes along the north coast and within the Moreton's 

Harbour Head Breccia. The felsic volcanic rocks around Hayward's Cove 

and Moreton's Cove are similarly pyritic in places, but not of economic 

significance . There are rusty-weathering zones associated with fault and 

shear zones throughout the area. 

4 . 3 Summary 

The properties of the types of mineralized veins encountered in 

the study area are summarized in Tables 4.1 and 4.2. The chemistry of 

these veins and the controls of their deposition are discussed in the 

following chapters. 
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TABLE 4.1 

Summ ry o f Minera l Assembla g s o f the Mi neraliz ed Veins 

Ve i n Type 

tvlineral 
I II 

Quart z • • Calcite '" • • s enopyr i t e • • 
Stibni t e • • Sphalerite 

0 • 
Chalcopyrite • • 
Pyrite 

0 • 
Pyrrhotite • 
Galena • 0 

Tetrahedrite 0 

Scheel ite 

Scorodite • 
Cervant ite • 
Kermesi t e • 

(Fluorite?) 0 

Chlorite • • 
Sericite • • 

• ,0 - Ma jor, 10 lly abu ndan t 
e -Minor 
0 - Trace (and occurren ce 
• -Altera t i on 
* - Fe -free , Fe- ri h and siderite 

I II 

~ · 0 

• 

• 
0 

• 
0 

0 

• 

• 
• 
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TABLE 4.2 

Summary of Properties of the Miner ali zed Veins, 
Moreton's Harbour Area 

Vein Thickness 

Vein Strike 

Associated 

Host Rock Types 

Gangue Minerals 

Major Sulphide 
Minerals 

Minor Sulphide 
Minerals 

Vein Type 

I I II I III 

Vein thickness varies from 0.5 to 0.05 m 

Veins strike perpendicular to bedding 

Spatially associated with felsic dykes 

Wall rock variable; includes diabase 
(Stewart's Mine), rhyolitic dy~~ (Stuckless ) 7 

tuffs and pillows, but generally restricted 
to the Little Harbour Formation 

Alteration diminishes within 5 m of the 
larger veins and 0.25 mothers; calcitic. 

Quartz and 
calcite 

Arsenopyrite 

pyrite, chalco­
pyrite, 
sphalerite 

Quartz and 
calcite 

Stibnite 

galena, arsen­
opyrite, 
pyrite 

Quartz and 
calcite 

Sphalerite, 
chalcopyrite 

pyrrhotite, 
arsenopyrite, 
pyrite, galena, 
stibnite 
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CHAPTER 5 

VEIN CHEMISTRY 

5.1 Introduction 

The geochemistry of the ore and its minerals is presented in this 

Chapter. The elements As, Zn, Pb, Ni, Y, Sr, Ga, Th, U and Rb were 

analysed by X-ray fluorescence (Appendix I). Determination of Sb using 

the same technique was unsuccessful. The precious and rare metals Au, 

Ag and Pd were analysed using the wet chemical-carbon furnace atomic 

absorption spectrophotometry technique of Fryer and Kerrich (1978) 

(Appendix I) . 

Values in excess of 0.1 ppm Au and Ag were checked using the same 

analyte solutions, with the flame spectrophotometry technique (Appendix 

I) which showed the results to be consistent. Although no samples were 

available for determining accuracy, several standard solutions were used 

for calibration and replicate analyses indicated a precision within the 

order of magnitude in t h e ppb range (see Appendix I). 

Major elements, S , As , Fe, Cu, Zn, Pb and Sb were determined using 

the electron microprobe (Appendix I) and similarly spot analyses and scans 

for Au , Ag, W, Sn, Se, Te, Tl, Bi, Co, Ni and Cd for the sulphide ore 

minerals. The latter were less reliable ana l yses owing to thei r very low 

concentrations. 

5.2 Data 

Fifty-eight samples , from the three vein types and other litholo-

gies from the Moreton's Harbour area were digested and analysed for Au 
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and Ag and fourteen of these were also analysed for Pd. The concentra­

tion of elements As, Zn, Pb, Ni, Zr, Y, Sr, U, Rb, Ga and Th were 

determined for all but five of these samples, which lvere too sulphide 

rich for pellets suitable for analysing. Analyses of the ore vein 

samp l es are presented in Table S.la and unmineralized samples in Table 

S.lb. The mineralogical as5emblages are summarized in Tables 3.1 and ~1 .1. The 

locations of samples and their relative concentrations are illustrated 

schematically in Figure 5. 1 . 

The highest concentrations of Au and Ag are from samples of veins 

of types I and III which also have the l owest values of lithophile trace 

elements, Y, Sr, U, Rb, Zr and Ni. The wide variation in concentration 

of any of the elements within one lithological group is due to the 

heterogeneity of the samples, especially of the ores. 

Correlation coefficients are presented in Table 5.2, in the form 

of a correlation matrix. This shows that Au concentrations strongly 

correlate with those of Zn and As, and to a lesser extent with Ag and Pb. 

Moderate negative values between Au and Ni, Zr, Y and Sr are shown 

suggesting that Au is not hosted by the silicate minerals. Silver is most 

highly correlated with Pb and Zn. The high coefficient between Ag and Ga 

is due to the interference peaks emitted by Pb in Pb-rich samples which 

erroneously enhances the Ga values (from X-ray fluorescence analysis; 

D. Press, pers. comm., 1981). This explains the perfect correlation of Ga 

and Pb. The reason for the high correlation between Ag and Th is uncer­

tain. Arsenic and Zn are well correlated, probably due to the common 

mutual presence of sphalerite and arsenopyrite in ore samples. 
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n r n 
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FC·7 

TR ·1 7 

TR · 14 

TR -4 5 

TR·S 2 

TR· 53 
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TABLE 5. 1a 

Geochemical Analyses of Ore Samples, Moreton's Harbour 

Au 

.00 

.70 

1.00 

.40 

.70 

,04 

.-8 

.00 

0 8 

.07 

0 2 

1)14 

009 

006 

2 

77 

.007 

2 .b0 

. 0 34 

1. () 

0 . 0 

i\g 

1. 00 

0.80 

5 . 70 

0 . 40 

1. 30 

10.10 

11. 14 

0. 84 

1. 96 

0.74 

0.014 

0 . 140 

0.68 

2.28 

50.00 

16.00 

1. 50 

2.50 

l.SO 

48.90 

60.20 

Pd 

0 . 01 

0.01 

0.004 

0.007 

0.20 

0.007 

0.004 

0.004 

0. 0 12 

o. o.:: n 

0.020 

s% 

23 . 0 

(10) 

21.0 

0 . 14 

19.0 

12.0 

23 . 5 

(20) 

1. 84 

)_ . 40 

0.40 

2 . 80 

0.02 

2.05 

2.30 

8.50 

1.06 

0 

0 . 0014 0 . 0065 

0 .75 

0 . 35 

1.40 

9.20 

0.01 

( 15 ) 

0.01 

6 . ~0 

0.06 

0 . 037 

0.010 

1. 70 

0.70 

0 . 31 

() . (1 2 

2 . ()( 

1. 20 

Pb 

85 

273 

25 

143 

6000 

2900 

S3 

218 

216 

228 

22000 

72 00 

20 

4 S 7 

-~ 4 

84 

:"<i 

11 

0 

21 

36 

0 

0 

20 

166 

1 2 

95 

0 

27 

0 

0 

() 

0 

Zr 

14 

17 

8 

18 

32 

29 

122 

12 

98 

23 

17 

120 

72 

72 

9 8 

24 

6 

y 

5 

4 

2 

5 

10 

10 

134 

16 

32 

21 

18 

44 

16 

27 

0 

0 

arentheses are estimat ed from mineralogy 
y ses not obtained 

lues not valid because of Pb-peak jnterference in Pb-rich samples 

Sr 

14 

.. 
15 

14 

12 

95 

7 1 

93 

135 

462 

41 

29 

260 

21 

1 75 

135 

2 

u 

5 

12 

2 

0 

4 

6 

0 

8 

0 

4 

0 

0 

6 

2 

0 

0 

Rb 

13 

8 

7 

11 

26 

28 

29 

9 

6 

28 

11 

70 

29 

4 

29 

16 

4 

Th Ga 

1 7 0 

38 

5 2 

12 4 

77 170 

61 141 

12 

173 

23 

25 

5 

0 

29 

0 

242 569 

81 220 

11 

1 2 

327 

29 

16 

'i l 

0 

14 



Sample 
Number Au 

WCH·9 200 

LH·lO 4 

LH·23 -

LH-31 2 

LH·52 20 

TR·31 14 

TR·37 16 

FC·31 45 

~.JG ·16 8 

HC·42 4 

MC·l 6 

HC·34 9 

TABLE S.lb 

Trace and Precious }fetal Analyses of Various Unmineralized 
("background") Samples (also see Table 3. 6) 

ppb ! ppm 
Ag Pd As I Zn Pb Ni Zr y Sr u Rb 

I 
420 

1: 113 
I so 22 18 5 4 26 1 0 -
I 

60 120 
I 

71 6 - 1 75 30 179 0 6 

- - 10 100 5 49 140 30 192 0 17 

40 - 31 103 7 - 106 46 151 2 1 

160 - 32 
I 

63 6 6 160 23 96 0 26 

260 - 97 I, 136 I 5 17 115 28 194 0 15 
j 

160 - 18 1173 5 11 126 28 205 1 30 

240 - 47 II 122 7 44 108 22 144 0 21 
I 

60 
I 

16 34 7 I - 0 347 48 56 8 67 

80 I 18 19 4 0 470 61 63~ 2 6 -
1: 

80 - I, 8 77 1 0 321 54 52 5 31 

80 - 22 19 16 1 74 16 86 5 72 

Th Ga Rock Type 

1 0 pyritic jasper 

1 18 cherty tuff 

1 16 mafic tuff 

1 18 diabase dyke 

1 13 chert 

3 16 cherty tuff 

3 16 cherty tuff 

1 13 mafic tuff 

22 15 felsic tuff 

23 16 felsic breccia 

10 20 felsic breccia 

13 19 rhyolitic dyke 



Sample ppb 
Number Au Ag 

SM·l5 17 80 

SM·l6 25 120 

SM·60 23 80 

SM-61 22 100 

SM·62 16 360 

SM·63 50 540 

SM·64 14 100 

TABLE S.lc 

Analyses of Wall Rock Samples, Stewart's Mine 
(see Figs. 5.5 and 4.1) 

ppm 
Pd As Zn Pb Ni Zr y Sr 

7 280 100 0 97 34 24 307 

13 7 57 7 0 91 5 355 

1 14 79 6 76 161 32 178 

- 156 71 0 204 34 19 201 

- 1361 484 21 78 33 23 96 

- 440 259 50 105 37 22 163 

- 22 64 0 12 107 28 129 

SM·l6 - quartz-feldspar-phyric rhyolite dyke 
SM-60,61,62,63 - variably calcitized diabase + sulphides 
SM·64 - relatively fresh salite-phyric diabase (4.5 m from adit) 

u Rb Th Ga 

0 5 1 13 

0 34 1 21 

3 2 1 14 

0 1 0 12 

0 26 1 13 

0 21 6 15 

0 3 3 0 



Au Ag 

Au 100 20 

Ag 20 100 

As 62 14 

Zn 80 38 

Pb 26 54 

Ni -15 -lLf 

Zr -21 -20 

y -28 -24 

Sr -18 -20 

u 22 -12 

Rb -1 3 

Th 22 71 

Ga 31 52 

- llO -

TABLE 5.2 

Correlation Coefficients for Element Pairs 
in Mineralized and Unmine-ralized Rock Samples 

Total Number of Samples = SO 

As Zn Pb Ni Zr y Sr u Rb 

62 80 26 -15 -21 -28 -18 22 -1 

14 38 54 -14 -20 -24 -20 ·-12 3 

100 73 15 -13 -30 -43 -36 39 -12 

73 100 28 -16 -24 -31 -25 I"' 23 -2 

15 28 100 -6 -5 8 6 -1 28 

-13 -16 -6 100 -29 -13 10 -7 -22 

-30 -24 -5 -29 100 77 5 17 18 

-43 -31 8 -13 77 100 8 11 10 

-36 -25 6 10 5 8 100 -40 25 

39 23 -1 -7 17 11 -40 100 18 

-12 -2 28 -22 10 10 25 18 100 

22 38 55 4 -14 -15 -18 9 7 

16 33 99 -9 -2 11 10 0 30 

Th Ga 

22 31 

71 52 

22 16 

38 33 

55 99 

4 -9 

-14 -2 

-15 11 

-18 10 

9 0 

7 30 

100 52 

52 100 
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Average concentrations of 2 ppb, 100 ppb and 8 ppb, for Au, Ag 

and Pd respectively have been determined for a range of rock types not 

associated with ore bodies (Part he and Crocket, 1972; Tilling et ~-, 

1973; Frueh and Vincent, 1974). The maximum values obtained for the 

Moreton's Harbour samples of 9 ppm (Au), 60 ppm (Ag) and 0.2 ppm (Pd) 

require enrichment factors of ~4500, ~600 and ~25 respectively. Compared 

with values from Archean Au-lodes in Ontario (Kerrich and Fryer, 1979), 

the Au enrichment is lower. The Pd values are erratic and apparently 

enriched in the stibnite veins (Type II). 

The average concentration of the base metals such as Zn, Pb and 

Cu in the Moreton's Harbour ore samples are tp to"'lOOO times their average 

crustal abundances (Tilling et a1., 1973). The Archean deposits are 

reported to have lower average base metal enrichment factors c~x5) . 

Silver behaved more as a cha1cophi1e base metal, such as Cu and Pb. 

Arsenic has an estimated average concentration in basalt of only 

~2 ppm (Turekian and Wedephol, 1961). Arsenopyrite occurs ubiquitously 

in the Au-rich samples in which the As concentrations commonly exceed 

10% an enrichment factor of ~10,000 times, in vein Type I. Similarly, 

Sb is enriched by ~10 , 000 times background in vein Type II. 

Thorium and Ga are considerably enriched in several ore samples, 

although values are erratic. Lithophile elements, Zr, Y and Sr as well as 

Ni, are depleted with respect to background values and average concentra­

tions. This is due to the lack of silicate minerals in the ore samples 

other than quartz and minor chlorite and sericite . Higher values are 

seen in samples which have incorporated wall rock, however altered. Such 

samples show correspondingly low precious metal concentrations. 
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The enrichment-depletion factors for the different elements are 

summarized in Figure 5.2, which illustrates the difference between the 

vein types. The diagrams were derived by dividing ore sample abundances 

by the average crustal abundances. Values of Cu and Sb were estimated 

from the proportion of chalcopyrite and stibnite observed 1n the various 

samples. The diagrams are schematic. The concentrations of Au, Ag and 

As are slightly enriched in the sedimentary rocks of the Little Harbour 

Formation (Table 5 .1) with respect to abundances from elsewhere (\·IJestern 

Head, Hayward's Cove) . . A pyritic jasper sample of Wild ,,.Cove Head (WCH · 9) has 

0.2 ppm Au and 0.42 ppm Ag. Similarly, cherty tuffs of Taylor's Room­

Moreton's Harbour Head (samples #.MHH·lO, TR·37, TR·31, FC·3l) are enriched 

in precious metals. It is apparent, from the Au-Ag binary plot (Fig. 5.3), 

that most determined abundances plot above the average crustal abundance 

''star" - even the unmineralized samples. 

Histograms of relative ahundances of Au, Ag, Ni and Pd are given in 

Figures 5.3, 5.4 and 5.5 which illustrate the geochemical discrimination 

of the vein types I, II and III. Gold, Ag and As show moderate positive 

correlations whereas all three correlate randomly or negatively with Pd 

and Ni (see Table 5.2). 

The variation of the elements across the Stewart's Mine mineralized 

zone is shown in the Table 5.lc and Figure 5.5. Sample locations are shown 

in Figure 4 . 1. It is evident that there is a very sharp increase of Ag, 

Au, Zn and As at the narrow mineralized zoned and less than 4.5 m away from 

the mine, the host diabase bears fresh salic-pyroxene phenocrysts and the 
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concentrations of Ag, Pd, Ni, Au, As and Zn approach average background 

values. The concentration of Ni is depleted and erratic across the zone. 

The four analyses for Pd inuicate little variation around background con-

centration. 

5.3 Mineral Chemistry 

5.3.1 Major elements 

The major element compositions of arsenopyrite f rom ·s om e >!ore t on ' 

Harbour samples are presented in Table 5.3. The analyses show a general 

homogeneity of arsenopyrite throughout the area with a small range of 

As/S ratios, 1.00 ~ 0.2. However, a consistent but slight zonation of com-

position is detected, having relatively As-rich cores and S-rich rims. 

The variation in composition of arsenopyrite is il l ustrated in As-Fe-S 

plots (Fig. 5.6). 

Major element analyses of other minerals are presented in Table 

5.4. Sphalerite is ubiquitously associated with chalcopyrite. Analyses 

of both show good stoichiometry. Sphalerite contains between 5 and 13 

mol. %Fe, as well as traces of Cu, As, Sb and Pb. Chalcopyrite tends to 

be less contaminated. 

Pyrite analyses tend to have low total values, as the microprobe 

calibration was made using single bondS (from an arsenopyrite standard), 

not as the s
2

, combined as in the pyrite lattice; the pyrite S values are 

consequently too low. However, stoichiometry is shown to be fair and the 

pyrite is generally pure with rare traces of other metals up to a total 

l wt. %. 
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TABLE 5.3 

Examples of ~1aj or Element Compositions of Arsenopyrite from 
Electron ·Microprobe Point Analyses (giving weight % 

formula proportions and standard deviations) 

Samp le No. 

t-!HJ-1 ·5 

03 ·13R* 

MHH · 23 
(ma rgin) 

(centre) 

MHH ·3 

SM · 6 
(cen tre) 

(mar gin) 

SM · 5l 
(cen tre) 
(margin) 

LH·l 

SM· l2 

MHH · ll 

JP ·l * 

D3 ·1 2R* 

MH- 750 * 

D3·1 R* 
(cent re ) 
(marg i n ) 

·74 1 ~' 

MH-8 75* 

TR·ll 

UIP ·3A* 

LHP·1 * 

s Fe Cu 

wt. % 20.73 35.91 
form. 1.039 1.031 

wt. go 

form. 
s .cL 

wt. % 
form. 
s.n. 
\\Tt • % 
form. 
s.n. 

wt. % 
form. 
S.d. 

wt. % 
form. 
S.d. 
wt. % 
form. 
s.d. 

"'t. ~5 
form. 
wt. go 

form. 

18.74 
0.93 
0.67 

20.49 
1.027 
0.86 

19.73 
0.996 
0.41 

20.55 
1.000 
0.48 

19.11 
0.969 
1. 29 

19.19 
0.965 
2.24 

18.71 
0.969 

20.14 
1.012 

25.52 
1.035 
0.70 0.07 

35.39 
1.016 
0. 38 . 06 

34.71 .02 
1.008 
1.16 0.06 

34.56 
1. 02 
0.41 0.18 

35.69 0.01 
1.039 
0.85 0.05 

35.79 
1.031 
0.49 .06 

34.27 0.07 
1.02 0.004 

35.26 0.10 
1.02 0.004 

wt. % 19.05 34.68 
form. 0.977 1.02 

wt. % 19.62 34.34 
form. 1.012 1.02 

0.04 

wt. % 20.54 35.96 0.09 
form. 1.043 1.031 0.004 

wt. % 20.88 36.88 0.11 
form. 1.047 1.047 0.004 

wt. % 18.17 35.14 
form. 0. 934 1. 035 

wt. go 

form. 
S.d. 

wt . . go 

form. 
wt. go 
form. 

20. 17 
l.O L 
0.69 

20.01 
J . 016 

21.79 
1.09 

36.13 0.06 
1.039 
0.53 0.18 

34.10 0.02 
0.996 

34.23 0.08 
0.984 

wt. % 21.84 34.23 
form. 1.082 0 .973 

wt. go 

form. 
21.98 
1.082 

wt . 0
<, 19 . 64 

form. 1. 02 

35.85 0.06 
1.016 

32.86 
0.98 

wt. % 20.8 2 34.75 
form. 1 . 039 0. 996 

wt . 9.; 20. 09 
o m. 1.02 

33.95 
0.988 

*R. Gibbons' s amples, 1969 

Element 

Zn As Sb 

0.07 4 2 .76 0.12 
0.008 0.914 

0.20 

0.11 
0.08 
0.04 
0.11 

0. 11 

0.05 

0.02 
0.07 

0.19 

.09 
0.004 

47.73 
1. 035 
1.10 0.01 

44.54 0.07 
0.953 
1.79 0.06 

45.57 0.02 
0.984 
0.984 0.03 

44.27 0.05 
0.957 
0.67 0.05 

4 5 . 6 8 0 . 0 3'" 
0.992 
2.16 0.05 

46.68 0.05 
1.000 
3.79 0.03 

45.51 0.02 
1.008 

44.4 7 0. 04 
0.957 

.08 45.70 

.004 1.000 

0.12 43.41 0.09 
0.004 0.961 

42.96 0.04 
0.918 

42.22 0.04 
0.906 

46.64 0.10 
1.027 

0.08 43.98 0.07 
0.004 0.945 
0.13 1.14 0.0 2 

45.25 0.06 
0.984 

0.01 42.88 0 .02 
0.918 

0.07 

0 .0 5 

0 .02 

44.37 0.04 
0. 941 

42 .63 0.07 
0.898 

44.71 0. 08 
0.996 

44.89 0 .09 
0.96 1 

45. 52 
0.98 8 

Pb Total 

0.87 100.67 
.008 8.000 

0.01 

0.05 

0.56 
0.004 
0.22 
l. l 7 

.008 
0.44 

0.19 

0.26 

0.25 

0.09 
0.37 

.004 
0.12 

0.40 
.004 

0.72 
0.004 

0.31 
.004 

0.50 
0.004 

0.23 

0.19 

101.68 
3.000 

100.94 
3.000 

101.3 
3.000 

99.67 
3.000 

100.82 
3.000 

101.96 
3.000 

9R.98 
3.004 

100.81 
3.000 

99.83 
3.004 

98.13 
3.000 

100.13 
2.99 6 

99 . 81 
3 . 004 

0.35 100 .5 
0.004 3.000 

0 . 09 

0.20 

0.18 

0 . 01 

0.46 

0.04 

100.5 
3.000 

9 9 .64 
2 .996 

99.18 
2.992 

100.55 
2.996 

100.6 
2 .996 

97.75 
3.000 

100.63 
2.996 

99. 7l 
2.996 
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a . ) 

As to 

Fig. 5.6 : Electron mi croprobe analyses of arsenopyrite. 
a.)All ana l yses on full As-Fe-S triangular plot, showing the portion 

represented in the other di agrams. 
b.)Vein type I arsenopyrite; c.) Vein type III arsenopyrite; 
d.)Assemblages with arsenopyrite from observed and experimental data, ( from 

Kretschmar & Scott, 1971 ). (Arsenopyrite, asp; pyrite, py; pyrrhotite, po; 
loellingite, lo; arsenic, As; liquid, L ). 

d.) 
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Pyrrhotite analyses are of similarly low totals. Determined 

values of x in its formula, Fe 1_xs are 0.05 ~ . 01. No systematic composi­

tional zoning of either pyrite or pyrrhotite was detected. 

Stibnite analyses approximate closely to the formula Sb
2

s
3

, with 

traces of Fe, Zn, As, Pb and Cu, commonly ~0.5 wt.% total, and rarely 

exceeding 1.0 wt.% total. Oxidation products of the stibnite margins are 

identified as kermesite and cervantite. The alteration products contain 

larger concentrations of the other major metallic elements. 

,. 

5.3.2 Trace elements 

Having verified that some of the ore has anomously high concen­

trations of Au and Ag, it was decided to attempt to locate the site of 

these metals. Electron microprobe scans and point analyses of ore samples 

were executed but no significant Au was detected. Results for point 

analyses for Au, Ag, Se, Te, Tl, Bi, Co, Ni, Cd, Sn and W were rela-

tively poor, due to the inability of the electron microprobe to detect and 

determine such low concentrations (Table 5.5). This is especially true 

for heavy elements such as Au and W, which have high background values 

and numerous interference peaks (ie. "noise") in their emission spectra. 

For example~ the lowest reliable detection limit for Au would be ~2% 

(H. Longerich, pers. comm., 1980). Silver values exceeding 0.1% may be 

considered probable, as located in galena (MH·733), tetrahedrite (TR·52) 

and arsenopyrite (SM·53). Traces of Te, Tl, Bi, Cd, Sn were recorded in 

various minerals. Cobalt and Ni are notably absent from all mineral phases. 

The Co and Ni concentrations in pyrite and pyrrhotite may be use.ful indi-
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TABLE 5.4 

Examp les of i'- lajor Elemen t Compositions of Other Sulphide i'-hnerals, from Electron 
i'-'licroprobe Point Analyses (giving wt. % and formulae) 

Sa mp 1 e '1inera 1 Element 
s re Cu Zn As Sb Pb Total 

i'-·UiH ·1 1 * PYRITE wt. % 49.28 47.89 0.15 0.13 0.04 0.84 98.35 
FeS 2 form. 1.918 l. 07 0.004 0.004 0.004 3.000 

04- 2R* py I TE wt. % 50.09 47.0 0.11 0.07 0.02 0.38 <17.66 
FeS

2 
form. l. 945 1.047 0.004 0. 004 3.000 

~IH · 875* PYR ITE wt. % 51.64 45.93 0.05 0.02 0.61 98.5 
F s2 form. l. 984 1.008 0.012 3.000 

wt. S?o 52.06 47.14 0.04 0.02 0 . 07 99.33 
form. l. 973 1.027 3.000 

~u-1 · 874* PYRI TE wt. % 51.16 46.07 '"' 0.12 0.83 0.04 0.17 98.85 
FeS

2 
form. l. 973 1.012 0.004 0.012 3.000 

03 · lOR* PYRRHOTITE wt. % 35.85 59.78 0.14 95.77 
form. 1.000 0.956 l. 956 

03· 6R* PYRRHOTITE wt. % 35.47 60.3 0. 27 0.12 0.09 96.5 

Fe (l -x)s form. 1.000 0.976 1.976 

1'-11-1. 580* CH LCOPYRITE wt. % 32.01 28.88 34.47 0.01 0.02 0.15 95.53 
CuFeS 2 form. 1.453 0. 754 0.789 2.996 

D3· SR* CH LCOPYRITE wt. % 31.97 28 .88 35.75 l. 27 0.07 0.02 0.12 98.08 
CuF es 2 form. 1.902 0.984 1.074 0.035 4.000 

D3· 5R* SPHALERITE \-Jt. % 29.87 3.10 0.25 63.70 0.09 0.04 0.21 97.2 
Zn (Fe) s form. 0.945 0.55 0.004 0.992 1.996 

TR·l SPHALERITE wt. % 31.29 6.97 0.06 54.82 0.01 0.07 l. 21 94.42 
Zn (Fe) s form. l. 004 0.129 0.863 0.008 2.004 

~1HH · 733* GALt NA wt. % 12.28 0.06 0.13 0.05 0 . 19 85.60 98.3 
Pb S form. 0.957 0.004 0.004 1.031 2.000 

i'-1HH. 73 2* GALE A wt. % 12.52 0.04 0.09 0.03 0.16 85.8 98.64 
PbS form. 0.965 0.004 0.004 1.023 1.996 

FCE · 3* STIB ITE \-,It. % 25.53 0.04 0.49 73. 1 7 0. 19 99.41 
Sb z s3 form. 2 . 83 0.02 2 .1 5 5.000 

FCE· 3* STIB TITE wt. 9o 26.55 0.05 0. 12 0.43 72.7 0.11 99.25 
Sb2 s3 form. 28.55 0 . 004 0.008 0.02 2.113 5.000 

FCE · 3A* STIBN ITE wt. % 26.04 0.02 0 . 11 0 . 20 0.30 73.08 0.11 99.86 
Sb2 s3 form. 2.855 0.008 0.012 0.016 2.109 5.000 

~IIi . 563 * TETRAHEDRITE \vt: . % 22 .5 5.61 40.03 l. 82 0.32 29.48 0.05 99.87 
(CuF e Zn)13 
(SbA s ] 4 S12 

*R. Gibbons' samples 



Sample Mineral Element ( wt . %) 

Se Ag Te Tl Au Bi Co Ni Cd Sn w 
MH·733* ARSENOPYRITE .02 .05 .03 . 02 

.04 .OS . 3 .09 
.02 .26 .09 

.OS .11 .08 .07 
LH·P3* .06 .06 .04 
MH·732* .01 .02 .OS .12 
j'vfl-1. S63* .04 .07 .07 
~'fl-i-741* .02 .05 .11 0 .04 .OS .OS 0 

MI-1·372* PYRITE .2S .03 .09 
HC·39 .01 .01 .1 
FCE·3* .04 .OS .01 .04 .39 

TR·41 SPHALERITE .03 .04 .3 .07 
MH·498A* .02 .03 .09 .OS 

.01 .02 .07 .07 .04 t-' 
N 
N 

MI-I·S80* CHALCOPYRITE .03 .06 .06 .07 .2S 
MH·S63* .04 .OS .14 .OS 

MH·732* GALENA .08 .09 .1 .17 .1 
.07 .13 .06 . 2 .22 

.12 .06 .19 .18 
MI-1·498A* .02 .03 .09 .07 .1 .06 
~~fl-1· 609A .02 .06 .08 .02 
~'fl-1. 733* .14 
(MH·733)* .17 .25 .04 

.1 .OS .07 .01 .04 

FCE·3* STIBNITE .ns .07 .14 .07 .06 
.02 .03 .03 .04 

~~ -

*R. Gibbon s ' samples, 1969 
** Au-analyses not significant 
- not detected/not analysed 

~--~-

Table S. S: Examples of Electron Hicroprobe Point Analyses of Trace Elements in 
Sulphide Minerals. 
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cators of the ore depositional environment and possible metal source 

(Cambel and Jarovsk~, 1967; 1977) . The greater preponderance of the so­

called "misfit" elements, commonly related to granite hosted deposits 

(e.g. Sn, W, Bi, Sb) as opposed to Ni and Co, suggest an affinity of 

the Moreton's Harbour veins with some felsic, differentiated source. 

The failure to detect ft·ee Au suggests that it is dispersed 

through the ore minerals. The ubiquitous occurrence of arsenopyrite in 

Au-rich samples implies that the arsenopyrite is a likely candidate. 

This is supported by the high correlation coefficient ~etween Au and As 

(::=62). There is a higher positive correlation between Au and Zn, which 

suggests that sphalerite may be an important host mineral. The sphalerite­

rich veins of Type III have the highest concentrations of Au and Ag. Both 

Au and Ag correlate moderately with Pb and may be hosted in Ph-bearing 

minerals, such as galena. In some samples (e.g. #SB·3, TR·53, TR·52), the 

Ag concentrations are sufficiently high that Ag minerals may be present,­

althou~l none were observed. 

Several samples from the Taylor's Room veins had traces of pale 

blue luminscence under a short wave ultraviolet light, suggesting the 

presence of scheelite. The luminescence apparently emanated from small, 

interstitial patches of ferroan calcite and no scheelite was identified. 

Only trace amounts of W were detected in analyses (e.g. TR·52 in sphalerite 

and pyrite; SM·53 in arsenopyrite). 
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5.4 Constraints on depositional conditions from mineralogical data 

5.4.1 Sulphur fugacity 

The presence of arsenopyrite and pyrite in most of the vein type 

r assemblages restricts the fS
2 

to a relatively narrow range. The lower 

limit is established by pyrite and pyrrhotite (Fig. 5.7). Pyrrhotite is 

a minor and early phase such that the fS
2 

was lower at the onset of sul­

phide deposition and subsequently increased, providing that other factors 

(pressure, temperature) remained constant. An increase of fS
2 

is further 

reflected by the zonation of outward increasing of S i~ arsenopyrite. For 

the most part fs was maintained above or at the equilibrium: 
· 2 

pyrrhotite + sulphur (g) pyrite 

The upper limit must be set by the reaction: 

(l) 

arsenopyrite + sulphur (g) ~pyrite + arsenic (2) 

as the assemblage pyrite + arsenic is not observed (Clark, 1960; Kretschmar 

and Scott, 1976; Barton and Skinner, 1979). Further constraints may b~ 

the common occurrence of chalcopyrite and absence of tennantite, such that 

the equilibrium: 

chalcopyrite + arsenopyrite + sulphur (g) 
tennantite + pyrite 

may set the upper fs
2 

limit. 

(3) 

In veins of type III, pyrrhotite is quite abundant coexisting 

With arsenopyrite, chalcopyrite, sphalerite ~pyrite. Thus, the maximum 

fs
2 

may be defined by equations 2 and 3 but the lower values may be below 

reaction l. The small deficit of Fe in the pyrrhotite lattice (ie. x ~ 

O.l) implies a relatively high fs
2 

within tre pyrrhotite field. 
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observed in the vein system. Numbers 1 to 3 ref e r to the 
r e actions (see text). (From Clark, 1960; Barton and Skinner, 
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Lastly, the veins of type II are almost wholly monominer allic, 

of stibnite. Minor early phases of coexisting arsenopyrite and pyrite 

indicate an initial upper f
52 

limit at equation 2, or at 3 by the 

common occurrence of chalcopyrite. The absence of pyrrhotite and all Sb-

species other than stibnite (and late oxidation products) sets the lower 

f limit at the reaction: 
S2 

stibnite +pyrite~ berthierite + 
Sb

2
S

3 
FeS 2 FeSb 2s

4 

(Barton, 1971) and reaction 1 (Fig. 5.8). 

sulphur 
s 

(g) (4) 

To attempt to ascertain the actual values for the f
5 

of the 
2 

depositional environment., values for other variab 1 es, notably temperature, 

pressure and composition, are required. The above is merely an outline 

of the constraints on f
5 

made by the mineral assemblages. 
2 

5.4.2 Temperature and pressure 

Arsenonyrite and sphalerite may be useful P-T indicators according 

to experimental data (Scott, 1973; Kretschm8 r and Scott, 1976) . If arsen-

pyrite is buffered with respect to S, then the As/Fe ratio is largely a 

function of temperature. The mol. <?5 FeS in ZnS may be largely dependent on 

the confining pressure (but is also sensitive to f
5 

and presence of other 
2 

metals, notably Cu). 

Univariant curves for the Fe-As-S system were calculated from 

thermochemical data by Barton (1969) and confirmed by Kretschmar and Scott 

(1976). The As/S ratios for arsenopyrite from Moreton's Harbour were 
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Fig. 5 .8: Sul phidation equilibria for part of th e Sb-Fe-S system ( f rom 
Barton, 1971). (Abbr ev ia t ions used: stibnite , st; pyrite, 
py; pyrrhotite, po; ber thierite, ber ; a ntimony, a nt; iron, ir). 
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determined by Gibbons (1969), who measured the d
131 

spacings by X-ray 

diffraction to determine the As/S values. He applied his Jata to similar 

curves provided by Clark (1960) and deduced temperatures for the Moreton's 

Harbour arsenopyrite deposition around 369° ± 30°C, with confining 

pressures of 1 to 2 kb (Fig. 5.9). 

Confining pressure is considered to have negligible affect on 

the As-Fe-S system and so it may be a sensitive geothermometer and fS 
2 

indicator during ore deposition according to Kretschmar and Scott (1976), 

contrary to CJark (1960). The refractory nature of ~rensopyrite further 

commends its usefullness, in that post-depositional changes of composition 

are unlikely. Arsenopyrite should be chosen carefully from equilibrium f -
s2 

buffered assemblages. Because arsenopyrite is so abundant and commonly 

forms monomineralic masses within the veins, it may itself buffer the ore-

forming environment, in which case the geothermometric determinations may 

be affected. The combined minor element concentration in the arsenopyrite 

must be less than 1 wt. % (Kretschmar and Scott, 1976) as is the case with 

the Moreton's Harbour samples. 

In this study, all arsenopyrite analyses (Table 5.3) were deter-

mined by electron microprobe which was calibrated using an arsenopyrite 

standard. The compositions and As-S ratios compared well with those by 

Gibbons (1969) and temperature estimates, therefore, are taken as around 

390°-400°C. The slight zonation of As-rich cores to S-rich rims may 

reflect a temperature decrease and/or fS increase with ongoing deposition. 
2 
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Sphalerite geobarometry could not be applied to the Moreton's 

Harbour samples due t.o the high content of contaminants, notably Cu in 

the ZnS lattice and the lack of suitable coexisting assemblages (Barton 

and Toulmin, 1966; Scott and Barnes, 1971; Scott, 1973: Czamanske, 1974; 

Boctor, 1980). The range of 5 to 13 mol.% FeS in sphalerite analys e s \\Duld cive 

pressure determinations of greater than 3.5 kb, at 400°C (Fig . 5.10) 

which would seem very unlikely. 

The assemblage stibnite + pyrite is a common ore assemblage, 

shown experimentally to 
0 

be stable below 545+5 C (Barton, 1971). 
J > 

The Sb-Fe-S 

system is not very sensitive to physicochemical variation during deposi-

tion. However, deposits of As and Sb are commonly associated, and con-

sidered to be higher temperature, granite-related deposits, with a zona-

tion from As to Sb (e.g. Cambel and Jarovsky, 1978). 

The metamorphic grade of the host volcanic and volcaniclastic 

rocks at low greenschist facies implies that overall the area has not been 

subjected to temperatures in excess of 300 to 425°C or pressures )2 kb 

(Miyashiro, 1973; Winkler, 1976). Hetamorphic grade increases adjacent 

to the felsic intrusives to low amphibolite facies (ie. ~ 400°C). 

5.5 Summary 

that: 

The chemistry of the ore deposits and sulphide minerals show 

(a) the samples of veins of types I and III are enriched 
in Au and Ag; 

(b) the ore samples have a granitic affinity (ie. rich in 
eleoents); 
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(c) gold does not appear to occur in isolated, concentrated 
areas but is dispersed through other minerals, notably 
arsenopyrite and sphalerite; 

(d) the different vein types may be discriminated geochemically; 

(e) the different metals behaved differently during transport 
and deposition of the veins; 

(f) precious metals correlate most strongly with the chalco­
phile base metals and each other, and negatively with the 
lithophile elements; 

(g) temperature, pressure and fs 2 conditions varied during 
deposition (see also Chapters 6 and 7); 

(h) the enrichment of the precious metals is cGonfined to very 
narrow zones across the mineralized veins; 

(i) there is slight enrichment of Au, Ag, As and Zn in many 
"background" samples, notably the fine grained sediments 
and tuffs which may be due to primary, volcanogenic enrich­
ment 0r related to the ore vein- forming fluids. 
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CHAPTER 6 

FLUID INCLUSIONS 

6.1 Introduction 

During cTystal growth from a fluid medium, small pockets of 

the fluid may be trapped in the crystal, r e sulting from growth 

irregularities or lattice defects (Roedder, 1976). The fluid inclusions 

may provide valuable information on the temperature, pressure, composition 

.~ 

and density of fluids associated with geological processes such as 

ore deposition,assuming that the trapped fluids are representative of t h e 

depositional fluid and no significant changes take place subsequently 

(Roedder , 1976). Crystal-fluid interface inhomogeneities are considered 

negligible so that the first assumption may hold. Post-trapping 

modifications are commonly observed in well-cleaved minerals such as 

baryte and fluorite (Roedder, 1972) whereas most inclusions in quartz 

do not leak under natural conditions (Roedder, 1965). Inclusions which 

exhibit p ost-trapping changes (eg. necking-down, when large inclusions 

pinch-off and segregate into trails of smaller inclusions of inhomogeneous 

composition) should be excluded from study. 

Primary (P), pseudosecondaTy (PS) and secondary (S) inclusions 

have been recognized by the criteria given by Roedder (1976). Most 

inclusions from Moreton's Harbour vein samples are between 5 and 40 tm 

in size and exhibit wide variation in morphology from Tegular (ovoid , 

multifaceted-negative crystal shapes, spherical, tubular) to highly 

irregular (stellate , amoeboid). Composition may be variable proportions 
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TABLE 6.1 

Terms and Abbreviations Relevant to Fluid 
Inclusions Microthermometric Data 

-
Term Abbreviation 

Homogenization Th 
temperature 

co 2 homogenization Th co
2 

Trapping temperature Tt 

Decrepitation Td 
temperature 

Nucleation Tn 
temperature 

Melting temperature Tm 

Immiscibility 

Degree of Filling F 

Density d 

Definition 

Temperature at which two phases become 
one (disregarding the behaviour of the 
daughter minerals) either to the 
vapour phase (Th V) or to the liquid 
phase (Th L) or showing critical 
phenomena (Th CP). 

Temperature at which liquid and vapour 
C02 homogenise (ie. ThC02 - L, ThC0 2 -
V, ThC02- CP). 

Th corrected for p;r:essure and salinity. 

Temperature at which the inclusion 
ruptures and the fluid is lost (ie. 
decrepitates) before homogenization 
could take place. 

Temperature at which a phase first 
freezes on cooling; considerable super­
cooling is usually first required 
(depending on factors such as availi­
bility of nuclei, cooling rate, 
inclusion size, etc.). 

Temperature at which specific solid 
phases melt and is equivalent to the 
dissolution temperature. The Tm 
values are recorded at the disappear­
ance of the last crystal (e.g. Tmice• 
Tm 1 th t , etc.). c a ra e 

(Roedder and Coombs, 1967) 
Immiscibility refers to the existence 
of two or more non-crystalline polycom­
ponent solutions (in this case two 
fluids) differing in physical proper­
ties and generally composition. 

Volume of liquid in the inclusion 
Total volume of the inclusion 

Refers to the density of any phase, 
according to the subscript (e.g. dCO , 
dH20' dNaCl' etc.) 2 
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of gas, liquid or solid, with predominant components being H
2
0, C0

2
, 

+ Na and Cl 
. + 2+ 2+ 

(Roedder, 1972) with m1nor K , Mg , Ca , and CH
4 

in some 

environments (e.g. Touret, 1977; Konnerup-Madsen, 1981). 

The microthermometric terms used in the following account 

with their abbreviations and definitions are summarized in Table 6.1. 

The information that may be obtained from observation of the microthermo-

metric phenomena 1n a C0
2

-H
2

0 mix (i.e. fluid salinity, density, pressure 

and temperature) is summarized in Figure 6.1. 

Salinity of the inclusion fluids is conventionally expressed 

in equivalent wt. % NaCl, which is determined using the colligative 

property of freezing point depression (Tmice), although presence of 

dissolved species other than NaCl, such as C0
2 

may lower the freezing 

point. The fluid density (d) is partly dependent on its salinity and 

is determined from the degree of filling of the inclusion cavity (F 

volume of liquid/total inclusion volume), and homogenization data. The 

temperature and pressure prevailing at the time of trapping of the fluid 

may be estimated from homogenization temperatures and compositional deter-

ruinations, as discussed below. 

In this study 50 doubly polished plates (Appendix 2.2) of vein 

and rhyolite samples were examined and where suitable inclusions were 

identified, data were obtained using the Chaixmeca heating/freezing stage 

and procedures as outlined in Appendix 2.1. In the following account 

these data were interpreted using experimentally determined equilibria 

of the CO -H 0 and NaCl-H 0 systems (from Cunningham, 1976; Haas, 1971; 
2 2 2 

Hollister & Burruss, 1976; Kennedy & Holser, 1966; Rankin, 1978; Takenouchi 

& Kennedy, 1965; Todheide & Franck, 1963; Weisbrod & Poty, 1975; Ympa, 1963). 
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More detailed discussion of the execution and application of fluid inclu-

sion microthermome try is given by Roedder (1976) and Higgins (1979; 1980). 

6 . 2 Compositional types of inclusions in Horeton's Harbour veins 

Inclusions observed in vein samples from Moreton's Harbour are 

of a f airly narrow compositional range compared with the contrasting 

environment of hydrothermal Sn-W veins (e.g . Higgins, 1980) or veins 

associated with porphyry copper (eg. Bodnar and Beane, 1980). 

Complex three-phase inclusions consisting of liquid C0 2 , C0 2 

gas and an aqueous solution are predominant in the P and PS inclusions 
i " 

of veins of type I, and are observed in types II and III (Plates 6.la,b,c). 

Simple two-phase liquid + vapour aqueous but variably co 2-rich inclusions 

are also abundant as P, PS and S inclusions. Daughter minerals in the 

inclusions are rare although there are some solid phases observed. 

Microthe rmometr i c measurements were made wherever possible, although many 

inclusions were too small, especially for Tm. or Tm 1 h determinations. lCe c at rate 

6.3 Inclusions in gangue quartz 

6.3.1 Vein Type I 

The P and P-S inclusions observed in gangue quartz of arseno-

pyrite-gold rich veins are mostly between 5 and 25 ~m in size, with abundant 

S- inclusions (~lOpm) dispersed through, imparting the white cloudiness 

of the quartz. Morphology is quite variable as represented in Table 6.2, 

together with the compostional data for the vein type I inclusions. 

The predominant P- inclusions are complex 3-phase C0 2 liquid 

+ C0 2 gas+ aqueous liquid (Plates 6.la,b,c). Daughter 
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(a) 

(b) 
(c ) 

PLATE 6 . 1: P a nd PS inclus ions cont a i n ing liquid C0 2, C02 g as a n d an 
aqueous so l ut ion (L} f r o m gan gue quart.z o f ve in typ e I. Seale b ar = 10 11 m . 

t e t he ·ol i d ( carbon at e } and secondary (flui } i nclusions c r owde d 
around a. and the leakag e " b eak" of the larg e inclus ion b. (a. SM· 5 2a; 
b. MHH·l; c . S 1· 5) . 
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minerals are not observed, indicating salinity of the aqueous solution 

below 23.6 equivalent wt. % NaCl. Simpler 2-phase aqueous inclusions 

occur occasionally in the type I veins as P-PS inclusions (Plate 6.2), 

presumably coexisting with the 3-phase inclusions. The proportions of 

various phases are variable with F- values of 0.7 for C0
2 

gas + liquid + 

H
2

0 inclusions and 0.85 for H
2

0 gas+ liquid inclusions. The 

co
2 

gas + liquid bubble occupies approximately 30% by volume of the total 

cavity, and between 30 to SO% volume of the bubble is occupied by co
2 

gas. 

All S- inclusions are 2-phase and aqueous with variable F- ratios (Table 

6.3). Solid inclusions of sulphide and carbonate areJ.·observed, some of 

which may have precipitated directly from the fluid while others may have 

been incorporated from pre-existing solid phases caught up in the 

fluid flow. The solid inclusions are predominantly calcite, side rite , 

sphalerite and arsenopyrite. These are especially abundant near the 

quartz-arsenopyrite grain boundaries, where typical fluid (gas + liquid ) 

inclusions tend to be far smaller, so difficult to study. 

6.3.2 Vein Type II 

Inclusions in the buff to clear quartz surrounding the stibnite 

masses and fibres of veins type II (eg. Plate 4.6) are larger than those 

of vein type I, ranging up to -"SO).lm, and are highly variable in morphology. 

The larger inclusions are randomly distributed and central in the quartz 

grains with common stellate,amoeboid,irregular outline (eg. Plate 6.3). 

Smaller inclusions of P- , PS- and S- affinities tend toward greater 

regularity in shape (Plate 6. 4). Trains of inclusions impart a "growth banding" 

in some of the quart z in t rgr owths. Inclusjons within minor quart z v eins 
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PLATE 6.2: Aqueous vapour + liquid P-inclusion from gangue quartz 
vein type l (SM·2). Scale bar JOfiTIL 

i 

PLATE 6 .3: Large amoeboid aqueous vapour + liquid P-inclusion r om 
gangue quartz, vein type II (SB·25) . Sca le bar 1 p. m. 
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adjacent to the major veins at Stuckless' Mine have been leaked~ and no 

P-/PS- inclusions suitable for study were observed. 

P- and PS- inclusions are mostly simple two phase aqueous 

inclusions but occasionally a ring of liquid C0 2 around the gas bubble 

is evident. F- values for the co
2

- inclusions of veins type II average 

0.78 with 40 to 60gii volume of the bubble occupied by co
2 

gas. The aqueous 

inclusions have F- values between 0.80 to 0.85 (Table 6.4). 

Daughter minerals are observed in a few of the inclusions: 

(a) a single opaque~ acicular crystal~ possibly a Sb-S snecies 

and/or 

(b) fibrous clusters of dawsonite (NaAl C0
3 

(OH)
2
). 

TI1e latter is associated with co
2
-rich inclusions. 

6.3.3 Vein Type III 

Very few~ large unaltered P-/PS- inclusions were identified 

from any sections made from type III vein samples due to leakage along 

microfractures within the quartz. co
2
-rich (P) inclusions were seen~ but 

small, 2-phase aqueous inclusions were more common. Very little micro­

thermometry was possible. 

6.4 TI1e significance of solid mineral inclusions 

The occurrence of daughter minerals in fluid inclusions indicates 

saturation of the fluid with respect to that phase at room temperature. 

The identification of the daughter minerals provides valuable information 

on the composition of the fluid~ although it is difficult to discern 
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whether the crystals nucleated from cooling of the solution in the 

inclusion or if they were particles caught up accid e ntally. The latter 

is considered the case for the opaque Sb-S needles due to their rarity 

and the generally low salinities determined (Section 6.5). The 

occurrence of dawsonite together with the abundance of co
2
-rich 

inclusions and gangue carbonate minerals (siderite-calcite) substantiate 

the inference that the fluid was co 2-rich. Neither daughter mineral 

was observed to dissolve on heating to homogenization temperature 

0 
(~400 C) due to retrograde solubilities of carbonates and sulphides 

with increasing temperature (Holland, 1967) . 

Carbonate mineral precipitation depends largely on pH and 

PC
02

. Calcite cannot be precipitated from a cooling hydrothermal brine 

in most situations but may form on the release of co
2 

from the system 

(Holland, 1967), possibly as a result of retrograde boiling off of the 

co 2-rich phase. This is further inferred by the carbonate solid inclusions 

adjacent to the arsenopyrite masses ) the occurrence of calcite and siderite 

in veinlets and along the vein margins, the absence of most other fluid 

inclusions in these areas and the ubiquitous brecciation of the 

arsenopyrite (Plate 4.5). Furthermore, the unmixing of an initially 

homogeneous fluid to H
2
0- and co

2
-rich phases due to boiling immiscibility 

is apparent from the coexistence of P-/PS- H
2

0 rich and P-/PS-, 3 phase 

inclusions . 

6.5 Microthermometric measurements 

6.5.1 Salinity 

Salinity was determined from Tm. d ,tcrminations fo 
1ce 
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inclusions with values shown in Table 6. 2 . Ideally, measurements are 

accurate to within ~ 0.2°C, resulting in a salinity error of ~ 0.4 

equivalent wt. % NaCl. However , due to the small size of inclusions 

+ 
arrl abundance of co 2 , the Tm. are approximately accurate to - 2. 0 

1ce 

equivalent wt . % NaCl. 

The predominance of co
2 

in the inclusionsand absence of halite 

indicate that NaCl is not a major constituent of the fluid due to the 

"salting out effect" (Ellis, 1959). The absence of solid components in 

most inclusions indicates that the salinity of the fluid is lower than 

saturation, ie. 23.6 equivalent wt. % NaCl (Fig. 6.2). Salinity 
,. 

determinations from Tm. are presented in Fig. 6.3. Salinity of the fluid 
1ce 

is between 2 and 6 equivalent wt. % NaCl with a mean value of 3 wt. %. 

In freezing runs all inclusions exhibited metastable phenomena (Roedder, 

1976) as Tn. values were between -40 and -50°C, indicating considerable 
1ce 

super-cooling. This metastability, according to Kerrich et al. (1978) 

indicates relatively slow rate of flow of the fluid in the vein system, 

although it is affected also by the cooling rate, density, salinity and 

availability of nuclei. 

+ 
In co

2
-rich inclusions (- co

2
-liquid) the clathrate hydrate 

(C0 2 .S.75 H
2
0) forms at low temperatures (Tn 

1 
h - -30°C). The 

c at rate 

formation of clathrate is a sensitive test for the presence of co
2 

in 

the inclusion. The clathrate has a great affect on the residual fluid 

in the inclusion (Collins, 1979) as all components other than co
2 

+ H
2

0 

are excluded from the clathrate structure. Salinities may be increased by 

up to SO%. The presence of the radial 'feathers' of clathrate nucleate 

around the vapour bubble and persist metastably up to +10°C. The presence 

of clathrate obscures Tm. observations. These factors explain the 
1ce 
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errors on measurement of salinities of inclusions imposed by their high 

co
2 

content. 

The average Trnclathrate is 
0 

+8.0 C which is a depression of 

z0 c from the pure C0
2

-H
2
o system (Fig. 6.8). From this phase diagram 

(after Hollister & Burruss, 1976) it is evident that with the average 

0 0 
Tm of -4 C and Trn 

1 
h of +8 C, the salinity of the fluid of 

ice c at rate 

inclusions from veins of Types I and II is between 2.0 and 8.8 equivalent 

wt. % NaCl. Trn. salinity values may be increased by an estimated 25 
1ce 

to SO% by the presence of clathrate (Collins, 1979). 

The different species that may be dissolved in' ' the aqueous fluid 

affect the freezing point depression (ie. Tm. ) differently as shown in 
1ce 

Fig. 6.4, after Roedder , (1967). The effect of dissolved co
2 

is quite 

0 
considerable: 3 mol% co

2 
(= 7.6wt. %) may depress Trn. by -3.2 C. 

1ce 

About 2 to 3 mol % co2 is soluble in H
2

0 at room temperature (eg. 

Roscasco, et al., 1975). 

In summary, the presence of co
2 

has a pro found effect on the 

Tm. and hence salinity determinations of the inclusions from hydrothermal 
1ce 

vein samples of Moreton's Harbour. There is a co 2 depletion matched by 

decrease in salinity recorded for different inclusions as shown in 

Fig. 6.5 (cf. Takenouchi & Kennedy, 1965; Higgins, 1980) 

6.6 Homogenization temperatures 

Measurements of homogenization temperatures were made on the 

heating stage as described in Appendix 2.1.. Data were obtained fTom inclusions 

in quartz gangue only. 
0 

All data abov e: 200 C have an error of "'0.5% of 
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the measurement. Leakage was checked by re-examination of the inclusions 

after heating ~ at room temperature. All Th values are presented in 

Fig. 6. 6. Many of the co
2
-rich inclusions decrepitated before 

homogenizing ~ due to high internal pressures. All P-/PS- aqueous inclusions 

homogenized to the liquid phase and co 2-rich inclusions to a liquid 

aqueous phase (ie. in both cases the bubble decreased in size with increasing 

temperature until they disappeared). 

The distribution of Th and Td values for P-/PS- inclusions 

for veins of Type I, II and III are presented in the histograms of 

Fig. 6. 6 (a _, b and c ) . 36% of Th values for vein type I ~~ inclusions 

are between 276 and 300°C, with 80% greater than 225°C. The six 

values obtained from Taylor's Room samples are between 275 and 300°C. 

Secondary inclusions (Fig. 6 . 7) gave a wide range of Th values for all 

0 0 
vein types from 75 to 300 C. 

0 
In summary, the mean Th value ( 275 C) for inclusions of veins 

type I (ie. arsenopyrite-gold bearing veins) is significantly greater 

than that (Th=~l80°C) for veins of type II (ie. stibnite rich-gold poor 

veins). 

6.7 Density and composition of co 2 bearing inclusions 

Liquid co
2
-bearing inclusions occur as P-/PS- inclusions in 

all vein samples of Type I and less commonly in veins of Type II. 

Regularity of phase ratio (Table 6.2) of inclusions indicates that they 

developed from an homogeneous C0 2-H 20 fluid, although irregularities 

and coexistence with 2-phase inclusions with similarly constant phase 
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ratios and high Th values indicate that some unmixing to a co
2
-rich and 

H 0-rich fluid may have occurred (see Section 6.4). 
2 

6.7.1 Purity of C0 2 

The nurity of co
2 

can be ascertained from the values TmCO . 
2 

0 0 
Pure C0 2 freezes at -56.6 C and homogenizes to a single phase at 31.1 C 

(Fig. 6.8). TmCO is relatively easy to determine, as the transition 
2 

co 2 solid co
2 

liquid/gas occurs suddenly, provided that there is no 

condensation problem. Ice forms on the lens and sample at these low 

temperatures which obscures observation of TnCO , Tm. , and Tn h . 1ce clat rate 
2 

Errors in measurements are 
0 

1.5 c. 

Values of TmCO and ThCO (Figs. 6.9 and 6.10) both approximate 
2 2 

closely to the values for pure co
2 

indicating an absence of other compo-

nents such as CH
4

. 

6.7.2 Density 

All inclusions partially homogenized to the co 2-liquid phase 

-3 
and hence have a density of greater than 0. 5 g em (Lowry and Erickson, 

1927; Fig. 6.11). Thco 
0 

determinations aoproximate to 31 C and are close 
2 

to the critical point of pure C0
2

, giving a density value of -3 
0.65 gem 

Densities of the whole inclusions are derived from their F-ratios which 

range from 0.6 to 0.85 (Table 6.3; Fig. 6.12). 

6.7.3 Composition 

The phase ratios of the co 2-bearing inclusions were determined 

by accurately sketching each inclusion on cards which are then cut out and 
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each ''pha se" weighed. The composition of the fluid may be determined if 

the following parameters are known:-

V1 = volume C0
2 

(liquid + gas) 

V
2 

= volume H20 

salinity from microthermometry (Tm. ). 
1ce 

density, from microthermometry (dCO ). 
2 

If the TmCO ~ -56.6°C, then the fluid inclusion approximates to 
2 

the system co
2

-H
2
0-NaCl. Assuming that the mutual solubilities of co

2 

and H
2

0 are low and the PH 0 at room temperature is negligible, then:-
2 

= Nl 

\'lhere N
1 

is the number of moles C0
2

, N
2

, of H
2

0 and N
3

, of NaCl, 

and N
1 

= v dco + 2.3 v2.dH20 1 
2 

MWC0
2 

100.MWH
2

0 

= V 2. dH20 

MWH
2

0 

N3 = N2. X 

where MW refers to the molecular weights, xis the equivalent mol. % 

NaCl derived from Tm. (molarity = concentration/molecular weight) and 
1ce 

dis the density of the subscripted phase (i.e. dco , dH 0 ). 
2 2 

The molecular composi t:ion .s of examples of individual inclusions a re 

<r i ven in Tab le s 6 , 2 and 4. The P-/PS- inclusions of veins of Type I contain 

greater than 10 mol.% co
2

, whereas values determined for Type II veins 

are generally lower than 10 mol. % co
2

. The mol. % co
2 

of examples of 

individual compositions are plotted against temperature in Fig. 6. 5, 
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which shows their distribution above the 1 kb solvus (Todheide & Franck, 1963) and 

JllJS tly below the 1 kb 6 wt % NaCl sol vus (Takenouchi & Kennedy, 1965) . 

6.8 Geobarometry 

In order to correct the values of Th to Tt (trapping temperature), 

an independent estimate of pressure is required, either by:-

or 

or 

a. reconstruction of lithostatic load from geologic evidence 

b. mineralogical geobarometry (Chapter 5). 

c. application of appropriate phase equilibria to density­
composition determinations of fluid inclusions. 

If the vein mineralization was produced by hydrothermal activity 

associated with the felsic intrusives, and they in turn are related to 

the felsic volcanic rocks of the Haywards Cove Formation (see Chapters ~~ 

4 and 7), then the veins at Stewarts Mine formed at a minimum depth of 

2-2 . 5 km (i.e. an approximation of the thickness of rock from Hayward's 

Cove to Stewarts Mine). This thickness would impart a lithostatic 

pressure of approximately 1 to 1.5 kb, a pressure which compares well 

with estimates from arsenopyrite composition (Chapter 5). 

Approximations of pressure are possible by construction of 

isochores from co
2
-rich inclusions (Touret, 1977) which may be extrapolated 

assuming straight lines to appropriate conditions for geological environment, 

despite the known devia t.iori from the ideal of unmixing of two phases 

at higher temperatures and pressures (eg. Greenwood, 1973). 

The partial pressures of C0
2 

and H
2

0 in the inclusions may be 

added together to provide a good estimate of trapping temperatures. The 

PCO and PH 0 are determined by assuming that each occupies the entire 
2 2 

cavity at room temperature. The average density of the co
2
-bearing 
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inclusions from Moreton's Harbour samples is 0.7 g cm- 3 and a visual 

estimate of the VCO (liquid +gas): VH 0 is 0.25:0.75. The apparent 
2 2 

densities (d*) for the components then are: 

d* H
2

0 1 X 0.75 0.75 

and d* C0
2 0.7 X 0.25 = 0.1875. 

If a typica l homogenization temperature for such an inclusion was 300°C, 

then the PH 0 and PCO are 350 bars and 250 bars respectively (from 
2 2 

Kennedy and Holser, 1966; Burnham ~ ~-, 1969 ) . Therefore the minimum 

pressure prevalent during deposition would have been 600 bars. 
~~ 

A second estimate of 1000 bars is obtained by assuming that 

the H20-C0 2 isochores are straight lines and extrapolating upwards from 

Thc
02 

values to Thtotal (Fig. 6.13). 

If the co 2-rich inclusions were trapped simultaneously with 

the 2-phase aqueous inclusions, then the intersection of isochores for 

such coexisting pairs may provide a further pressure determination. In this 

case values in excess of 1 kb are deduced (following arguments from Higgins, 

1980 and data from Kennedy and Holser, 1966; Burnham et ~-· 1969; Fig. 6.14). 

In summary, the pressure prevailing during vein deposition was 

apparently greater than 1000 bars. The pressure determinations from fluid 

inclusion data are hydrostatic rather than lithostatic pressure (Roedder and 

Bodnar , 1980). Local, marked pressure variation may result from fracturing, 

boiling and vein choking. 

6.8.1, Pre s sure correction 

Homogenization temperatures (Th) do not represent trapping 

temperatures (Tt) in non-boiling hydrothermal fluids because the vapour 
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bubble only nucleates when the internal pressure of the inclusion falls 

below the total vapour pressure. Although pressure probably fluctuated 

during lode deposition, for a fluid of salinity ~ s equivalent wt. % NaCl, 

a pressure correction of +90 to +140°C would be required. Therefore the 

Tt of vein type I is 390 to 440°C and for vein type II, 290 to 340°C. 

(Potter, 1977). 

6.9 Fluid inclusions in other minerals 

Small (S-) fluid inclusions were observed in sphalerite and 

calcite. The inclusions in calcite showed signs of severe leakage and 

0 
decrepitated readily ( ""' 50 C) due to the well-cleaved nature of the 

calcite. Very small inclusions were observed in sphalerite, but could 

not be studied due to low transmission of light by sphalerite. Opaque 

sulphide and other minerals may contain fluid inclusions but to determine 

composition and Th, Tt, Td etc., the decrepitating stage would be 

required. 

6.10 Fluid inclusions in rhyolite phenocrysts 

Quartz phenocrysts from a spherulitic, rhyolitic dyke (OHC-2) 

and a buff, saccharoidal - rh;-·odaci te dyke UIC · 39) were examined and found to 

contain a few, small P-/PS- 3-phase (C0
2 

gas + co
2 

liquid + H
2

0 liquid) 

inclusions (Plate 6.5). The properties of these inclusions are presented 

in Figure n. J 5. 

These inclusions were shown to be similar in density and 

composition to the 3-phase co
2
-bearing inclusions of vein samples of veins 

tyPe I . The Thco and Tmco indicated the co 2 to be pure. The Th of 
2 2 
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PLA E 6.4: Aqueou s vapour + l iquid ( 2 pha se ) inclus ion fr om buff 
coloured, growth-banded o-angu e quart z o f vein type II ( SB·la). 
Scale bar 10 )Affi. 

PLATE 6. 5: Solid and fluid i nclusions in a quartz phenocryst o f a 
rhyolitic dyke (HC·49); the P - fl u id i nclus i ons are foun t o be co2 -
bearing (cro s s -polarized light). Scale b r 1 mm . 
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the inclusions is greater than ~350°C, although generally the inclusions 

decrepitated at lower temperatures before homogenizing. After correction, 

0 
Tt values are in the order of >500 C approaching the range of magmatic 

temperatures*for felsic rocks. 

This provides evidence that fluids emanating from the felsic 

magma were: 

1. high temperature; 

2. low salinity; 

3. high density; 

and 4. rich in (pure) C0
2 

Such co2-rich inclusions have been reported from granitic intrusives 

elsewhere (eg. Holloway, 1976; Konnerup-Madsen, 1981) and observed by 

the author in peralkaline granite samples from navis Inlet, Labrador. 

Two-phase aqueous (gas + liquid) secondary inclusions of 

variable size, morphology and composition are present along microfractures 

and grain boundaries of quartz phenocrysts. These exhibit a range of 

lower Th values. 

6 .11 Summary 

The fluid inclusion data for the vein types and the rhyolite 

phenocrysts are summarized in Fig. 6.16. These data indicate a fairly 

simple sequence of decreasing Tt and XCO from the rhyolite dykes to 
2 

Vein type I and then vein type II. The banded nature of the ore veins 

(eg. Plate 4.2) implies a pulsatory process of deposition, but it is 

considered that ore deposition was short-lived and the fluid did not 

*The Tt determined for the phenocrysts is too low for probable magmatic - . 
temperature of the felsic dykes, which may be explained by applying greater 
Pressure corrections, if the phenocrysts formed at a deeper level. Some 
Post-trapping (post-crystallization) modification is also likely. 
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vary radically during vein evolution . The ore forming fluid was initially 

of high density and rich in co
2

, with low salinit~ from which the higher 

temperature assemblage was deposited (vein type I: quartz-arsenopyrite-

gold). Some retrograde boiling of the fluid produced two immiscible 

fluids and the escape of co
2 

gas and the precipitation of carbonate 

minerals and arsenopyrite brecciation. This also resulted in the depletion of co
2 

jn the fluids passing through the early vein stage. The later assemblage 

of stibnite + quartz were deposited at a higher level in the system from 

a lower temperature, relatively co
2
-poor and higher salinity fluid. Besides 

co
2

, the fluids precipitating the vein type II assemblage·were relatively 

depleted in As, Au and Ag. 

The following factors suggest that the ore forming fluid 

emanated from the silicic magmatism of the area (i~ . . felsic dykes-volcanism) 

which also provided the heat energy to drive the convective hydrothermal 

system:-

1. Similar C0
7
-rich, high density, low salinity inclusions 

in the rhyolite dykes' phenocrysts and the vein samples. 

2. High temperature vein deposition. 

3. The ore mineral chemistry having a felsic affinity (ie. Bi­
Sb-As rich; Co-Ni poor). 

4. Proximity of ore veins to the felsic dykes. 

5. The comparison of hydrothermal As-Sb veins wid1 zonation 
around granitic intrusives in other areas (see Chapter 7). 

More detailed analysis of the fluids contained within the fluid 

inclusions of these samples, notably the use of stable isotope data, would 

verify the affinity of the mineralizing fluids. 
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CHAPTER 7 

DISCUSSION, SUMMARY AND CONCLUSIONS 

7.1 The Genesis of the Moreton's Harbour Mineralization 

7.1.1 Introduction 

The mineralization in the ~1oreton's Harbour area is contained 

largely within a hydrothermal vein system. Requirements for the formation 

of such an ore deposit are discussed by Fyfe and Henley (1973) and sum-

marized in Figure 7.1. A hydrothermal system depends on a suitable fluid 

capable of transporting the economic element(s) from a dispersed, large 

source region to a focussed site, where deposition and concentration of 

the element(s) may take place from the fluid. 

By studying the ore deposit itself, the physico-chemical condi-

tions prevalent during the ultimate depositional stage may be ascertained 

(cf. Tugarinov and Naumov, 1972). Postulating the source of the ore compo-

nents and the fluid and the parameters responsible for focussing and con-

centrating the ore is far more difficult, and eminently more tenuous. The 

following is a review of the evolution and genesis of the Moreton's Harbour 

mineralization, based on the field, petrographic, geochemical and fluid 

inclusion data (presented above) and by comparison with other ore deposits. 

7.1.2 Ore deposition 

The main characteristics of the ore veins are as follows: 

(a) thin (<50 em), discontinuous, sulphide-quartz-carbonate 
veins, perpendicular to the regional strike; 



Fig . 7. 1 
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(b) hosted largely by the mafic volcanic and volcaniclastic 
rocks of the Little Harbour Formation, which has precious 
metal concentrations elevated above average background; 

(c) spatially associated with felsic dykes; 

(d) associated with pervasive calcitization. 

The vein samples are classified loosely according to their sulphide 

mineralogy: 

Type I - arsenopyrite-dominated 

Type II - stibnite-dominated 

Type III - polymetallic, including sphalerite-chalcopyrite­
pyrrhotite-arsenopyrite and galena. 

From mineralogical and fluid inclusion observations the veins of 

0 
Type I are shown to be high temperature (?300 C) whereas those of Type II 

are low temperature ( < 220°C). General confining pressure is considered to 

be 1.0 to 1.5 kb. The fluids trapped in inclusions of quartz from Type I 

were typically low salinity and high co
2 

whereas the converse was true for 

Type II. Furthermore, the Au concentrations were only appreciably elevated 

in arsenopyrite- and sphalerite-bearing veins, and Ag in galena-rich samples. 

Therefore the high temperature, low salinity, co 2 , As, Zn, Pb-rich environ­

ment was most favourable for concentration and deposition of Au and Ag, and 

least favourable for stibnite crystallization. 

The log fS value may be estimated from the mineral assemblages 
2 

(Fig . 5.7) using P-T conditions derived from fluid inclusion data, as near 

-10. The fs increased slightly during the precipitation of the ore veins, 
2 

evident from the As-S zonation of arsenopyrite samples. 
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The conditions (C0 2 , Au, Ag, fs , etc.) of the fluids depositing 
2 

the ore lodes varied both temporally and spatially. Variations in the 

composition, pressure and temperature were interdeuendent. 

Precipitation of the ore minerals occurred as a response to a 

change in one or more of these physicochemical parameters. It is not 

possible to ascertain which factor was most critical to the ore deposition. 

Retrograde boiling of the fluids causing evolution of co
2 

and precipitation 

of calcite may have been a major factor, as this process would have caused 

a change in the hydrostatic pressure, pH, temperature and solubility of 

other elements carried in the fluid (cf. Weissberg, 1969; Phillips, 1974; 

Krupka et ~-, 1977; Higgins, 1980). 

7.1.3 The source of the fluid 

Hydrothermal aqueous fluids may be derived from such diverse 

sources as mantle degassing, metamorphic dehydration and pore water elimi-

nation (Vfuite, 1974; Fyfe et ~-, 1978) and segregation from silicate melts 

(Burnham, 1967~ 1979). The fluids which were responsible for the Moreton's 

Harbour vein mineralization are considered to be derived from the magmatic 

source of the felsic dykes for the following reasons: 

(a) the similarity of trapped fluids observed in quartz 
phenocrysts of felsic dykes and high temperature vein 
quartz; 

(b) high temperature of deposition; 

(c) the granitic affinity of the geochemistry of the sulphide 
mineral; 

(c) the ubiquitous proximity of the veins to the felsic dykes 
and their adjacent fracture systems; 
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(e) similarity to vein systemsalso genetically related 
to acid magmatism (cf. Tischendorf, 1977; Burnol, 
1978; Cambel and Jarovsky, 1978; Moore, 1979). 

Other Au-rich sulphide vein deposits such as various mostly meta-

sediment-hosted veins (e.g. Radtke and Scheiner, 1970; Henley et al., 1976; 

Glasson and Keays, 1978; Piranjo, 1979; Sawkins et al., 1979) have been 

shown to be related to metamorphically generated fluids. However, the veins 

at Moreton's Harbour differ by their: 

(a) much higher concentrations of As and Sb; 

(b) calcitic wall rock alteration; 

(c) very low greenschist facies, volcanic host rock; 

(d) close proximity to felsic intrusions; and 

(e) slightly higher :-emperatures. 

A magmatic fluid source would also provide the heat energy source 

required to drive the hydrothermal system. 

7.1.4 •1etal source and transport,with specific reference to gold. 

It may be assumed that the source region for the metals occurred 

between the fluid source and sites of deposition. Although the fluids were 

probably sourced by the felsic intrusives, there is no reason that at least 

some of the ore metals may not have been derived from other rock types. 

According to various workers (Barnes and Czamanske, 1967; Kraus-

kopf, 1971; Tilling et ~-, 1973), the source of ore metals does not 

necessarily require any primary enrichment in the source or host rock, 

provided that the fluid:rock interaction is such that sufficient metal is 
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leached from a large enough volume of source rock and concentrated to a 

small enough site to produce the required environment. This is particularly 

the case for a rare element like Au which has a background concentration 

of 3 ppb and requires enrichment to "'10 ppm to attain economic grade 

(Kerrich et al., 1979; Fryer and Kerrich, 1979). 

Under normal surface cond i tions of pressure and temperature, the 

solubility of Au is low being < 1 ppb in fresh or pure water, and 

may be slightly greater (~46 ppb) in seawater. At low temperatures (~25°C), 

Au may combine with various anions or anionic complexeJs such as cl-, 2-s , 

HS-, HC03 -, eN-~ and this may greatly enhance the solubility of Au and 

other metals. The solution chemistry of Au and its complexes is dominantly 

ionic below 300°C but at higher temperatures, the molecular "gaseous" com-

plexes, with Cl for example, predominate (Henley, 1973). Krauskopf (195 1) 

showed that the type of complex formed was dependent on the pH of the solu-

tion, such that in acidic, oxidizing conditions, Au dissolves more readily 

2-as Cl- complexes (e.g. AuC1 4 -) whereas S complexes (e.g. Au(HS)- 2 , 

2-
Au2(HS)2S ) are more stable in near neutral to alkaline conditions. In non-

sulphide, neutral aqueous solutions, the solubility of Au is negligible. 

Weissberg (1970) demonstrated that higher sulphide concentration enhanced 

0 
the Au solubility below 300 C, but the affect of NaCl concentration was 

negligible. 

The solubility of Au as complexes is greatly increased by incr e asir1g 

temperature as shown by the thermodynamic and experimental data of Helgeson 

and Garrels (1968) and later by Seward (1973) and Fyfe and Henley (1973) 

and Henley (1973). Seward (1973) showed an almost exponential increase in 
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the solubility of Au- thio complexes~ towards 300°C at 1 kb~ and also 

that increasing pressure enhances solubility at low pH and depresses it 

under conditions of higher pH and of high HS-/H
2

S ratio. He showed that 

the presence of NaCl (and hence~ Cl- ) had little affect on the Au-content 

of the solutions whereas increasing s2
- content had a positive affect on 

the Au-solubility. 0 
Above 300 C~ Henley (1973) and Fyfe and Henley (1973) 

show a sharp increase of Au-solubility in chloride solutions between 450° 

0 
and 500 C~ which was further enhanced by greater Cl concentration at hi gher 

pressures. 

2-Although most work pertains to the chemistry of S and Cl- species~ 

it is considered that other complexing agents, including organic compounds 

and C03
2 -~ HC0

3
2

- are important (Boyle, 1979; Higgins~ 1980). 

In the fluids responsible for transporting the metals to the 

Moreton's Harbour ore-vines it is evident that s 2
- would have been available 

for complexing, from the sulphide mineral assemblages. From observation of 

fluid inclusions it is evident that the most prominant component of the 

fluid ~ other than water, was C0
2

. 
2-

Even if C0 2 (as co 3 , HC0 3-) was not 

directly responsible for carrying Au or other metals, the character of the 

fluid is greatly influenced by the presence of co
2

. Carbon dioxide affects 

the solubility of other components (including NaCl; see Chapter 6) and 

the viscosity of the fluid, hence the flow rate. It acts as a pH buffer 

and if retrograde boiling occurr2d and co
2 

lost from the system, then the 

Hco 3- activity may be decreased. Therefore, the pH/Eh balance may be dis-

turbed~ which may be a sufficient stimulus for precipitation of the ore 

metals. 
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The temperatures determined for deposition of the Au-rich ore 

assemblages at Moreton's Harbour approximate to 300°C. The almost expo-

nential decrease of Au-solubility at this temperature (Seward, 1973) 

0 suggests that a temperature decrease alone (through 300 C) may be sufficient 

for the precipitation and chemical changes may have been induced by the 

temperature decrease. Pressure has much less influence on the affect of 

the Au-transport and deposition. 

In summary the temperature and behaviour of C0 2 are considered 

to have been the major parameters determining the trans-port and deposition 

of Au and other metals in the Moreton's Harbour hydrothermal vein system. 

Although primary enrichment of Au in host-source rocks may not 

be necessary, there are many examples described where the lode-Au deposits 

result from remobilization and reconcentration from primarily enriched 

horizons, commonly by some volcanogenic exhalative process (e.g. Radtke and 

Scheiner, 1970; Worthington, 1970; Glasson and Keays, 1978; Fryer~~-, 

1979; Karvinen, 1980). There does appear to be a stratigraphic control on 

the localization of the Moreton's Harbour mineralization, too; that is, 

\vithin the volcaniclastic Little Harbour Formation (see Chapter 5). 

The precious metal analyses of some of the unmineralized volcanic 

and sedimentary rock show that most have Au and Ag concentrations slightly 

above average crustal background values. In some examples the elevated 

Au and Ag concentrations may be due to primary volcanogenic enrichment (e.g. 

the Wild Cove Head pyritic chert). However, for the most part, the 

slightly elevated Au concentrations in the volcaniclastic rocks may be due 

to secondary enrichment, related to widespread circulation and percolation 
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of the mineralizing fluids. The rocks of the Little Harbour Formation are 

not considered to have been the major source of metals. The lack of highly 

enriched host-source rocks in the Moreton's Harbour area may be a factor 

contributing to the subeconomic nature of the deposits. 

7.1.5 Other controls on mineralization 

There is a broad stratigraphic localization of the mineralization 

within the Little Harbour Formation. This could be simply because it 

occupied a depth in the volcanic pile corresponding to·~-T-X conditions 

suitable for deposition rather than any primary enrichment. This is based 

on the assumption that: 

(a) the mineralization was dependent on the felsic intrusions, 
both for fluid and energy source; 

(b) the felsic volcaniclastic rocks of the Hayward's Cove 
Formation are coeval (hence fed by) the felsic intrusive 
rocks (Chapter 3); 

(c) if (a) and (b) are true, the mineralization was penecon­
temporaneous with the felsic volcanism and occurred at a 
depth approximately equivalent to the distance between 
Stewart's Mine and Hayward's Cove, which compares well 
with estimated pressures. 

There is some structural control on the mineralization. Veins 

are more or less perpendicular to bedding and occupy small tensional 

gashes and larger fractures and shear zones. The mineralizing fluids take 

advantage of any structural weaknesses for circulation and for deposition. 

7.1.6 A summary of the ore genesis 

The genesis and evolution of the Moreton's Harbour ore veins are 

summarized in Figure 7.2. 
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7.2 Summary and Conclusions 

The following is a summary of the geological and geochemical 

features of the Moreton's Harbour mineralization: 

1. The t1oreton's Harbour mineralization comprises a subvolcanic, 
hydrothermal vein system genetically related to the felsic 
intrusions. 

2. The veins are hosted by the Little Harbour Formation in 
structures perpendicular to the regional strike. 

3. The veins are broadly classified into three main types on 
the basis of mineralogy. This classification is substan­
tiated by geochemical and thermometric dat~ 

4. 

5 . 

6. 

7. 

8. 

Vein Type I - Arsenopyrite dominated, Au-rich, high 
temperature with co 2-bearing fluid inclusions. 

Vein Type II - Stibnite dominated, Au-Ag poor, Pd­
relatively rich, low temperature, with co

2
-poor fluid 

inclusions. 

Vein Type III - Base metal sulphide dominated, Au- and Ag­
rich, high temperature with co

2
-bearing fluid inclusions. 

The higher temperature vein assemblages (I) are preferen­
tially enriched in As and Au and relatively poor in Sb. 

The Au and Ag are dispersed through arsenopyrite and 
sphalerite. 

Fluids responsible for deposition of the ore veins were 
C0 2-rich and low salinity in the Au-bearing, higher tempera­
ture veins, but with boiling off of C0 2 and increased con­
tamination from the countryrock, the C0 2 concentration 
decreased and the salinity increased. 

2- . 
C02 (as C0 3 , HCO -, etc.) is considered to have been a 
major control on t~e ore deposition, and probably an 
important complexing agent for the ore metals to enable 
transporation. 

The energy and fluid required for the hydrothermal system 
is thought to have been provided by the felsic intrusions 
of the area. 
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9. The mineralization is penecontemporaneous with the Hayward's 
Cove Formation and the coeval(?) felsic intrusions. As no 
great time hiatus is envisaged between the Western Head 
Formation and the Hayward Cove Formation, the age of 
mineralization is probably Lower to Middle Ordovician. 

10. The Little Harbour Formation is preferentially mineralized 
largely due to its location (ie. depth) within the volcanic 
pile. There is only weak primary volcanogenic enrichment 
of ore metals and minor secondary enrichment through the 
volcaniclastic sediments, due to greater permeability than 
other rock types. 

,. 
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APPENDIX 1 

ANALYTICAL TECHNIQUES 

A.l.l. X-Ray Fluroescence Spectrometry 

The elements As, Zn, Pb, Ni, Y, Zr, Ga, Th, U and Rb were 

determined using a Philips 1450, fully automated X-ray fluorescence 

spectrometer, equipped with spectrometer/detector, X-ray generator, HP 

mini-computer, teletype input/output, and a self-feeding sample tray. 

Pressed-pellet discs were made by mixing approximately 10 g powdered 

rock sample thoroughly with 1-1.5 g of binding agent •(Union Carbide 

Phenolic Resin, material TR-16933) in a Spex-Mill shaker. The mixture 

was then pressed into a disc in a Herzog hydraulic press at a pressure 

of 300 tons psi, for 60 sec. The disc was then baked at 200°C for 10 

minutes. The sample discs must be clearly labelled and stored in a 

moisture - controlled cabinet. Several suphide-rich samples blistered on 

baking and so, could not be analysed. Calibration for As was made by D. 

Press , using U.S.G.S. standard samples: 

Sample SY-2 SY-3 MG-R,l SU-1 MP-1 W-1 

As (ppm) 17 20 1.0 418 7900 1.9 

Sample PCC-1 AgV-1 BCR-1 G-2 GSP-1 

As(ppm ) 0.05 0.8 0.7 0.25 0.09 

and analysed using K~ 1, 2, LiF 200 crystal, and the fine collimater 

scintillometer counter. 

A similar calibration was attempted for Sb, using weighe 

amounts of powdered stibnite , mixed with various proportions of standard 

powdered quartzite, but the results were highly erratic and the Sb-cali-

b ration was unsuccessful. 
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The precision and accuracy of other elements were determined 

by analysing standard rock samples. 

TABLE A.l.i 

Precision and Accuracy of Trace Element Analyses: XRF 

Ni Zn Ga Rb Sr y Zr Nb Pb As 

W-1 70 85 20 22 189 24 98 8 7 1.9 

s 3 2 2 2 6 2 2 1 3 

N 13 13 13 13 13 13 13 13 13 

p 78 86 16 21 190 25 105 9.5 I • 8 

G-2 2 85 24 166 477 11 292 10 27 0.25 

s 2 2 1 2 7 2 3 1 2 

N 10 10 10 10 10 11 10 10 10 

p 6 85 23 170 480 12 300 14 29 

S=standard deviation 
N=number of deviations 
P=published values (Flanagan, 1973) 

Very high values of Zn, Pb, As in ore samples are less precise_, as the 

calibration is strictly for trace abundances. At percentage levels of Pb, 

subsidiary Pb peaks interfere with Ga and give erroneously high values 

for that element. 

A.l.2. Atomic Absorption Spectrophometry: Flame Technique for Major and 
Minor Elements 

The major and minor elements were determined using the Perkin-

Elmer model 370 atomic absorption spectrophotometer with digital readout 

using the flame technique (Analyst: Hrs. G. Andrews). The samples ,.,ere 
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prepared using the established procedures (Langmhyr and Paus, 1968). 

The precision of this method was determined by using a granitic rock 

standard (G-1) analysed four times, as shown in Table A.l.ii. 

TABLE A.l.ii 

Precision of AAS analysis (n=4) 
Range 

-Element Published Value* X s low high 

Si0 2 69.11 69.70 0.57 68.2 69.96 

A1
2

0
3 

15.40 15.10 0.24 14.75 15.60 

Fe 2o3 2.65 2.60 0.02 ,~ 2.64 2.74 

MgO 0.76 0.80 0.05 0.75 0.82 

CaO 1.94 2.00 0.10 1.92 2.14 

Na 2o 4.07 4.30 0.02 4.07 4.21 

K20 4.51 4.56 0.02 4.50 4.57 

Ti0
2 0.50 0.50 0.01 0.47 0.51 

MnO 0.03 0.03 0.0 

S=standard deviation 
X= mean 
~··Flanagan, 1970 

A.l.3. \vet-Chemical and Flameless Atomic Absorption Method: Precious 
Metals 

Precious metal (Au, Ag, Pd) concentrations were determined using 

the wet chemical-flameless atomic absorption spectrophotometry technique 

of Fryer and Kerrich (1978). The samples were prepared for analysis as 

follows: 
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Sample Preparation 

1. Rock samples are powdered to 20)Am grain size using a tungsten­
carbide mill (or, if sulphide-rich, a porcelaine mill). Care must be 
taken to prevent contamination. 

2. 5 g of rock powder are weighed accurately into 250 ml Pyrex beakers 
("Blanksn are prepared for control). 

3. Add 70 ml of aqua regia
1 

4. Cover and digest for 1 hour on a hotplate; agitate and swirl powder 
+ solution periodically. Care must be taken not to have the plate too 
hot, otherwise over-boiling and spitting occur, causing loss of sample 
and contamination. 

5. Evaporate the solution to dryness (this may take,·S· to 12 hours). 

6. Add 40 ml aqua regia and digest on the hot plate for 30 mins. 

7. Decant the solution into 50 ml centrifuge tubes; centrifuge. 

8. Transfer the clear supernatant solution to a Teflon beaker. 

9. Repeat the aqua regia attack on the powder residue, centrifuge and 
transfer solution to the Teflon beaker. 

10. Transfer the rest of the residue to the centrifuging tube with aqua 
regia washings and re-centrifuge. 

11. Reject all residue, after adding solution to Teflon beaker. 

12. To the solution (in the Teflon beaker) add 10 ml HF. 

13. Evaporate to dryness. 

14. Add 1 g NH4Cl and 10 ml HCl. 

15. Cover and evaporate to dryness. 

16. Repeat addition of HCl and evaporation. 

17. Add 10 ml HCl to take precipitate to solution. 

18. Add 30 ml H
2

0 and digest on a hot plate. 

1 Aqua regia - 5 parts cone. HCl + 2 parts cone. HN0
3 
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19. Transfer solution to a 250 ml Pyrex beaker. 

20. Dilute to 75 ml with 8% HCl (v/v). The solution should be clear. 

21. Pipette 5 ml tellurium solution
2 

(to complex with any precious metals 
present) and heat the solution to near boiling temperature. 

22. Add SnCl2 solution
3 

(using a burette) until the colour of ferric iron 
(yellow) is bleached (reduced) and Te (with any precious metals) 
commences to precipitate (black). 

23. Add an additional 5 ml SnCl2 solution (so there is excess present). 

24. Heat for 30 min. to coagulate the precipitate; vigorous boiling is 
required in some cases. 

25. 

26. 

27. 

28. 

29. 

30. 

31. 

Filter the solution using double, fast filter paper and wash thoroughly 
with 8% HCl v/v at 60°C. 

Discard filtrate. 

Dissolve the precipitate off the paper by slowly washing with 50 ml 
cold aqua regia, collecting filtrate in a 100 ml Pyrex beaker. 

0 Wash finally with 10% HCl (v/v) at 60 C. 

Evaporate the solution to near dryness. 

Transfer the solution to a 10 ml volumetric flask and take to volume 
with aqua regia (see below). 

Transfer analyte to a polyethylene vial and store for analysis. 

The samples so prepared were analysed using the HGA graphite furnace 

assembly (Burner-Nebulizer, number 040-0146) connected to the Perkin-Elmer 

model 370 atomic absorption spectrophotometer under the conditions out-

lined in Table A.l.iii. 

2 -3 
Tellurium solution - 1000 g CD in 10% HCl; prepared by dissolving 
Te-metal (99.999% purity) in aqua regia and removing nitrate by two 
successive evaporations with HCl. 

3
stannous chloride solution- 20 g fresh SnCl2e 2H20 in 17 ml reagent 
grade cone. HCl. Dilute to 100 ml with deionizea H

2
0. 
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TABLE A.l.iii 

Instrumental Conditions for the Graphite Furnace Assembly 

Optimum 
Absorption 

Element nm SBW nm Char. Temp. temp. oc Sensitivity 

Ag 328.1 0.7 400 2700 Ar 8 

Au 242.8 0.7 800 2700 Ar 25 

Pd 247.6 0.2 1100 2800 Ar 160 

According to Kerrich and Fryer, the analyte should be brought to 

volume using aqua regia (step 30), but in this study it was found that 

the concentrated, oxidizing acid severely corroded the graphite furnace 

such that the results were irreproduceable and erratic. With more 

diluted (i.e. with water) analytes results were better. The analyte was 

introduced to the graphite boat in abiquots of 20 and 50 pl. Between 

each sample run, standard solutions were analysed for calibration. 

These solutions were made by dissolving exact weights of pure metal 

(99.999% purity) in aqua regia and diluting with 10% v/v HCl to various 

amounts. Successive calibration curves were plotted for each set of 

sample analyses (e.g. Fig. A.l.i). Higher concentrations of Au and Ag 

were out of the calibration range, so had to be further diluted. This 

increased error in analysis. Such samples were checked using the same 

analytes with flame AAS, which compared well with the values from flame-

less technique (Table A.l.iv). 
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TABLE A.l.iv 

Comparison of Gold and Silver Analyses by 
Flame and Flameless Atomic Absorption 

Sample Au (flame) ppm Au (flameless) ppm 

SM. 2 0.84 1.00 

SH. 4 2.00 1.70 

MHH.4 9.28 3.00* 

HHH.6 9.04 2.60* 

SM.53 0.72 0.70 

TR.44 2.60 2.60 

FC.7 1.12 0.80 

Sample Ag (flame) ppm Au (flameless) ppm 

SH. 5 5.68 7.65 

TR.44 2.46 5.14 

SM. 53 2.30 2.30 

TR.17 0.34 0.38 

SM.l6 0.12 0.14 

TR. 53 60.6 12. 0'~' 

SB.l5 0.10 0.14 

*error induced by excessive dilution) 

No internal standard was available but replicate analyses show at 

least internal consistency. Sensitivity determinations for the precious 

metals may be calculated using: 

A= 4.Lt X v X c 
s 

where A is the absorbance, V is the volume, C the concentration and S 

the sensitivity. Values for the standard solutions showed close agreement 

with the specified values (users' handbook); Table A.l.iv). 



1·5 

Cl 

~1·0 

-
<l.l 
\.j 

c 
Cl 

..Q 
...... 
0 
V) 

.Q 

-<:{ 0·5 

--... 
::J 

O·J 0 
\J 
Cl 
<l.l 
...... 

Cl ---0) ·-
\J - 0·2 

<l.l 
\.j 

c 
Cl 

..Q 
...... 
0 
V) 

..Q 

<:( 0 ·1 

Linear portion 

(see below) 

- 200 -

-- ---

.. 

_ __L ____ ~~----~----_i ______ L_ ____ ~ ____ _i ______ L_ ____ ~----~------L------L 

10 20 30 40 50 
Amount Au J ( 10 000 pg ) 

D ~----------~------------_J------------~------------~ 

Fig. A.l.i: 

100 200 300 1.00 

Amount Au in a I iquot. ( pg) 
An ,xa mple of cal i bration curves from standard solutio115 f or 
flnmcless AAS gold analyses. 

Initial calibraion curve, so l id line; calibration after 
sev eral ana lytical runs showing deteriora tion of the graphite 
t ube, broken line. 



- 201 -

Extreme caution is necessary when analysing for low concentra-

tions of precious metals, because of contamination, especially in the 

wet-chemical digestion (Fryer and Kerrich, 1978). Blank analyses (one in 

each run of 20) showed values of 1 ppb. 

A.l.3. Mineral Compositions by Electron Microprobe 

Both sulphide and silicate minerals were analysed using an 

automated electron microprobe; the JEOL JXA-SOA electron probe micro-

analyzer with Krisel control through PDP-11 computer. Operating conditions .. 
include an accelerating voltage of 15 kV, three wavelength-dispersive 

spectrometers, a beam current of approximately 0.3 microamps, a beam size 

of approximately 1-2 microns and a counting rate of 30,000 with a default 

time of 30 seconds. The sulphide major and trace analyses were corrected 

and calculated by the Krisel Magic program, and the silicate analyses 

using the Alpha Bence-Albee matrix. 

Calibrations were made using various sulphide minerals, pure 

metals and silicates as appropriate. For each element a background point 

and counts from five other points were determined. Counting erro r s in the 

major elements of the sulphide minerals were mostly <2%. 
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APPENDIX 2 

FLUID INCLUSION TECHNIQUES 

A.2.l. The Chaixmeca Heating/Freezing Stage 

The fluid inclusions were examined using an ordinary petro-

graphic microscope stage with high power objectives and high illumination. 

The thermometric data were derived using the Chaixmeca Heating/Freezing 

stage comprising an ordinary microscope stage with attached heating and 

freezing stage, a control unit which monitors the temperature of the 

stage and commands the heating and cooling of the stage either manually 

or automatically, and a pressurized liquid N
2
-container which both feeds, 

and acts as a reservoir for, liquid N2 through the control unit and then 

the stage, as illustrated in Figure A.2.i and A.2.ii. The system operates 

0 0 
between +600 C and -190 C. Samples are placed at the centre of the top, 

flat surface of the condenser lens near to the Pt resistance sensor 

(measuring 100 at 0°C), and beneath a metallic cover with a polished 

silica window. The temperature measurements are determined by the Pt 

sensor which is resolved to ±0.1°C on the digital readout. 

Below 0°C, rapid cooling is induced by the flow of liquid N2 . 

A flow of dry N
2 

through a plastic sleeve around the objective lens and 

below the stage prevents excessive ice build-up at low temperatures 

(modifications by Higgins .• 1979). The dry gas is shut off \vhen the 

. -24°C. temperature 1s 

0 Above 0 C, the plastic tubing and sleeve (for the dry N
2 

circu-

lation) must be removed, and a water-cooled jacket is placed around the 
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Fig. A.2.i: The Chaixmeca heating/freezing stage, set up for thermometric 
determinations (from the Chaixmeca users' handbook). 
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b . . 1 f h . A h . f 0.5°C o Jectlve ens to protect rom over eat1ng. eat1ng rate o 

-1 
min is advisable near homogenization temperatures. 

The Chaixmeca stage was calibrated (Fig. A.2.iii) by heating a 

few crystals of chemical standards between several lcm
2 

coverslip glasses 

to approximate the thickness of a fluid inclusion section ( 600)Um), and 

melting points recorded. Similarly freezing point calibrations are made 

using chemical standards for freezing of organic liquids. A detailed 

calibration was made by N. Higgins in 1980, which was found to approximate 

closely to melting and freezing point values for chemi~al standards from 

this study. 

Accuracy and precision measurements were made on using chemical 

standards and representative fluid inclusions. These data indicate that 

below 0°C measurements are accurate within +0.2°C ideally. 
0 

Below -40 C 

error is greater, as the Chaixmeca stage does not allow for control at 

these low temperatures. Observations are variably obscured by condensation 

in all freezing runs and the formation or disappearance of ice or clathrate 

are very difficult to see in such small inclusions as in the present study 

(<10 ..u,m), which produced further errors in thermometric data below 0°C. All 

thermometric data are represented in the histogram plots in the text 

(Chapter 6) using bar widths exceeding the errors of accuracy and measure-

ment. 

A.2.2. Preparation of Fluid Inclusion Sections 

The sections were prepared following the technique of Higgins 

(1980) as follows: 
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1. The sample is cut to a block 1 em x 2 em x 2.5 cm2 . Care must be 
taken not to overheat the sample by friction which may decrepitate 
inclusions. A thin diamond-edged blade (Felker 5" OL) 5/8) may be 
used but is so fragile, it is more efficient to use a standard blade 
at a slow rate. 

2. The sample block is slowly ground down 1 mm on a Hillquist coarse 
vertical grinder to remove any of the sample which may be damaged by 
frictional heating. 

3. The coarsely ground side is ground briefly on the horizontal lap 
using 220 and 320 grits (carborundum powders) followed by 600 and 
800 p.m abrasive powders on glass. 

4. The samples are cleaned and dried thoroughly and the roughly polished 
side is attached to an ordinary glass thin section plate using a 
soluble glue (a spray-liquid coverslip*). ,. 

Note: There is a problem with nucleation of air bubbles between the 
slide and sample which may be decreased by spraying a thick layer of 
the glass on both the semipolished sample and the slide~ and leaving 
for up to 10 min.~ _ periodically stirring~ using a botany needle to 
eliminate the bubbles. The sample may be mounted on the slide when 
the liquid glass is quite "tacky". Press the sample firmly and allow 
to dry for 12 to 24 hours. Do not dry by heating. 

5. Mounted samples are slowly ground to an approximate thickness of 0.6 
to 0.8 mrn using the Hillquist coarse vertical grinder. The thickness 
depends on the translucence of the mineral. The thinner the section~ 
the greater is the risk of loss of fluid inclusions. 

6. Grind briefly on the horizontal lap (220 and 320 grits) followed by 
grinding on glass (600~m and 800JA~ powders). 

7. The sample is then polished by hand on the Unipole polisher using a 
lkLm alumina powder. Polishing takes~20 minutes per specimen for 
quartz. 

8. The samples for thermometry are removed by dissolving the glass by 
soaking in Xylene (in a shallow covered tray), for 5 to 12 hours. 
Clean the sample chip with acetone and dry. 

9. Remount the sample (the polished side down) to the glass slide (as 
step 4). 

10. Briefly grind the ne"tvly exposed surface on horizontal lap (220 and 
320 grits) and on glass (600 and 800~m powders). 

*Higgins, 1980, suggests using Trycolac ~fr LV distributed by Petrologic 
Ltd., but this is no longer manufactured and other liquid glass had to 
be substituted in this study. 
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11. Polish side (as step 6). Examine inclusions using a petrographic 
microscope before removing the fragile section from the slide. 

12. For thermometry, remove the glass slide by immersion in Xylene. 
Clean thoroughly with acetone and dry. 

The ideal fluid inclusion section will have parallel, optically 

polished sides and an approximate thickness of 0.5-0.3 mm. Detailed 

descriptions may be made from carefully cut and ground, unpolished 

sections using immersion oils and coverslips. These are most suitable 

for photography and enables morphological and preliminarycompositional 

I 

evaluation of the fluid inclusions, without the time consuming process 

(steps 6 to 12). 
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