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FRONTISPIECE 

Vi ew northwest over Corner Brook Lake from hilltop east of the lake 
Cor n er Brook Lake is flanked on the east by Hadrynian-Cambrian metaclastic 
rocks ( foreground) which have been thrust westward along the Corner Brook 
Lake Thrust over Cambro-Ordovician carbonate rocks underlying much of the 
lower terrain west of the lake - on the horizon (centre and left) is the 
Bay o f Islands and Blow-me-down Mountain - the latter represents an 
ophio l ite complex in the Humber Arm Allocht_hon. 
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ABSTRACT 

The Corner Brook Lake area, located at the ea~tern Nrgin of 

the Humber zone In central western Newfoundl~nd, was ,mllpped on a re~oA-
' . 

nalssance s~le In order to •ketch the s~Jient features of Its geology, 

which until now has been very poorly understood. 

, The ar~ Is underlain mainly by a metamorphosed and deformed 

sedimentary cover sequence deposited during Hadrynian-Ordovician time 

on a Grenvillian bas~t complex, part of whl~h outcrops In the area. 

The cover consists of basal clastic rocks, whfct) underlie the eastern 

half of the map area, Stratigraphically overlain by carbonate rocks, 

which occupy the western half of.the area and are continuous with the. 

extensive Cambro-Ordovician carbonate bank s~quenc:e of western Newfound­

land •. The ar~ also Includes allochthonous Cambro-Ordovl.clan clastic 

and. ophiolite-derived rocks, a small Slluro-Devonlan granitoid pluton, 

and c~rbonlferous -elastic rocks. 

Five distinct deformation events (D1-D5) ue recognized, 

representing the effects of three reglonal'orogenlc events- the H~ddle 
· \_ 

Ordovician Taconic (01/02), the Devonian Acadian (D3) and ·the Carbon-

Iferous to Permian Al.eghenlan (04/DS) orogenies. The Intensity of 

deformation decreased after a peak during the Taconic, and a single, 

lower amphlbol lte fac:fes metamorphl~ peak reached during the Taconic and 

r,conlc:-AQdlan lnterklnematlc Interval was ,followed during the Acadl•n . 

by lower green•chlst facies conditions. Three major east-dipping thrust 

faults are del fneated, •nd their long histories, Involving inltfatl~n 

durfng Tac:onlc: .a'nd subsequent reactivations during Acidtan and AJ leghenlan 

II 
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orogen~es, are outllned. The thrusts superpose the highly deformed and 
4 -

metamorphosed ~•8m!nt'and taw.rmoat ocver rocks on the Cembro-Ordovlcian 

carbonate sequence, and In combination with west-verging folds account 

for the general westward. tectonic transport In the area •. 

The tectono-stratigraphic: features of the aru c:lurly reflect 

the Hadrynian-Ordovician construction and Middle OrdOvician and ·later 

destruction of the ancient c:on'tlnental margin of eastern North America, . 

the Hunber zone. 

The .more signifi~nt results of this study Include: del lneatlon 

of the stratigraphic and structural features of the ea5tern part of the 

area; firm establishment of the Grand Lake Broak ·group as part of the 

·e~~nbro-Ordovlclan carbonate sequence, and Its recognition as a stratigraphic 

and structural link across the major thrust zones with the Hadrynian­

Cambrian metac:tastlc sequence in the eastern part of the are.; ldentlfl­

cat I on of the urliest deformation events (Dl/02) In both the carbonate 

and metaclastlc terranes and the correlatlon~f these events with the 

Taconic Orogeny, Implying the earliest post-Grenvltle deformation In this 
. I 

part of the Humber zone was due to Taconic Orogeny In Middle Ordovician 

time. 

. ....... -
. ..:· 
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·CHAPTER 1 

I NTRO DUCT I ON 

Over the past two decades, a great deal of Interest and attention 

has been focused on .the geology of western Newfoundland. This Interest 

was given Its Initial Impetus In 1963 when major klippen of lower 

Paleozoi~ r~ks were re~ognized (Rodgers and Neale 1963}, and was given 

an added boost In the early seventies when ophiolites were Identified 

among the transported rocks (Stevens 1970). The spectacular geology of 

the allochthonous rocks, however, has overshadowed other aspects of 

western Newfoundland gaology, and many important areas hav~ re~eived 

little or no attention. '\ 
The Corner Brook lake area, the subject of this 

thesIs, Is one such area. 

The geology of the Corner Brook lake area has remained unstudied 

since the 1~ 1950's and early 1s6o•s, and until now has been poorly 

understood at best. In th. author's opinion, however, It Is an important 

area - one which may hold the key to a number of second-order problems 

In the Paleozoic evolution of western Newfoundland. 

Underlain by strongly defonned, mainly ~tasedimentary rocks, the 

area I ies at the juncture between the stratigraphically and ·tectonically 

contrasted Humber and Dunnage zones of the Newfoundland Appalachians 

{Williams 1976), and thus Its potential Is great for contributing to a 

more detailed understanding of the tectonic history of this Important 

reg I on. 

1 . 1 LocatIon and access 

The area mapped as part of this thesls-'proje~t is loc::ated- In 

central western Newfoundland, south and east of the city of Corner Brook 
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(Figure 1). The map area Is roughly centred on Corner Brook Lake, and 

encanpasses approxhnately· 600 squJre kilometres. It Is . bounded by Grand 

Lake and South Brook valley ' on the south and east, the Humber River valley 

on the north, and the Trans Canada Highway (TCH) on the west. 

The TCH ~nd a system of logging roads provide access to various 

parts of the area from major centres (Figure _2). The logging roads are 

owned by 8owaters Newfoundland Limited, and were constructed to transport 

wood to the pulp and paper mill at Corner Brook. In the northern part of 

the area, where logging operations ceased many years ago, most of the 

1 ogg I ng roads are I mpassab'le by any veh i c I e except mo to rcyc 1 e • L099 I ng 

• operations have been carried out more recently In the southern part of 

the area, and there most roads are In a state of gOOd repair. 

Four main logging roads provJde .access to th'e central and eastern 

parts of the area. These are referred to Mre as '~amp 33 Road ' , 'Gull 

Pond Road', 'Corner Brook Lake Road', and 'Northern Harbour Road'. 

(Note: unofficial names are Indicated by single quotation marks). The 

latter three roads are protected by gates and may not be accessible to 

the public without pennlssion. 'C.mp 33 Road' and 'Northern Harbour Road' 

provide access to points where boats may be launched on Grand · Lake. 

'Corner Brook Lake Ro•d' •lso serves as an access to the City of Corner 

Brook water.reservolr (Corner Brook Lake)~ 'Gull Pond Road' has recently 

been extended eastward and northeastward In •ntlclpatlon of future logging 

operatIons. 

Acc~ss to the map area by a I r I ·s provIded by f 1 ~ t pI a'!e t hroug l't 

Newfowndtcmd Atzt.Tl'anlpo~. and he.lteopter through Viking Be'Licopter1, 
' . 

based In South Brook and Pasadena, respectively. 
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1.2 Geanorpho I ogy 

Topography. 

The top,og~aphy of the Corner Brook Lake area_ can be desc~ bed 

best In Its regional co~text. Figure 3 shows the main topographic 

elements. of central western Newfoundland. 

The dominant posltl~e features of the topography are the Long 

Range Mountains In the southeast and northeast, the Indian Head Range in 
~ 

the southwest, and a chain of . preclpltous mountains along the coast to 

the west. The barren to shrub-covered coastal mountains comprise four 

distinct massifs, while the Indian Head. Range and Long Range Hountalns 

are generally not as sharply defined topographically, and have a slightly 

more copious vegetation cover. 

Between these mountain terrains Is a north-northeast trend ing 

central plateau, approxi~tely 25 km In width, consisting of lower, 

rolling, tree-covered hills (see Frontispiece). The plata.u (elevation 

500-1200 ft; 150-365 m) rises gradually to the southwest Into the Indian 

Head Ra~ge, where elevations reach 1801 feet (550 m), and to th1 east and 

north Into the Long Range Mountains, where elevations reach 21~~ feet 

(653 m) and 2644 feet (806 m), respectively. To the west, the plateau 

rises more abruptly Into .the coastal mountains, _ where elevations reach 

2'72 feet (815 m) - the highest oh the Island of Newfoundland. 

The topography strongly reflects the bedrock geology. The 
\; 

mountain areas are underlain by resistant, crystalllna Igneous and meta-

morphlc complexes, whereas the plateau Is underlain by less resistant 

carbonate and clastl~. sediiNnts. The coastal messlfs are transported 

ophiolites. while the other .auntaln terrains represent mainly basanent 

metamorphic complexes and the met~rphosed lower part of the cover 

sequence. The southwestern and northeastern lowland areas coincide with 
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late-orogertlc, Intermontane basins In which Carbonlferou~ clastic sequenc:es 

were deposIted. 

Within the Corner Brook lake area, all three topographic elements 

are represented. The eastern part of the map area Is part of the Long 

Ra"ge Hounulns, the western portion Is part of the plateau, and the Deer 

Lake Ba,~in In the northeast Is part of a more extensive lowland area. 

ftaxlmum relief, about 1700 feet (518. rn), Is found neu the southern ·end 

of Gnnd lake, where steep c:l I ffs rhe fran the shore II ne. The maximum 

elevation (21'+4 ft; 653 m) Is reached just northeast of Corner Brook lake. 

A~ noted, the topography of the map area Is likely a function of 

the re~istance to erosion of the bedrock, However, the Influence of maj or 

structures Is also significant. For example, the elevation of the Long 

Range may be In part due to late-orogenic uplift a~ong west-directed thrust 
' 

faults. 11uch of th~. rollin~ top~raphy of the pl/ teau terrain to the west 
I 

appears to directly reflect large northeast-tr-fdlng folds, wh.lle most 
I 

of the larger valleys ' throughotit the area areotparently .the sites of 

major fa1.1lts. Most notable of the structura?y-controlled, topographic 

futures I~ Grand Lake • . The remarkably str1ght, n.ortheast-trendlng, 

western side of the lake apparently owes It existence mainly to the 
I 

reg lonal Cabot Fau 1t zone ( I 

.Rece,nt· g.la.clal studies of wettern Newfoundlaod suggest the region 

suppor·ted Its~ Wisc~nsln Ice cap, which ~ved westward and southwestward '" 

fran. i centre In the long Range Mountains (Brookes 1970, 1973). Evidence 

of this glaciation Is found throughout the map area, the most obvious 

signs being U-shl!ped valleys, rounded hills, erratlcs, glacial striae, 

and till deposits. All this evfdenc:e ·supports il westward Ice flow. 

,... . 
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. The Ha.nber River, Steady Brook, and South Brook valleys are 

excellent examples of U·shaped valleys In the north, and farther south 

examples Include 'Val ley of the lakes' and 'Grand Lake Brook' valley. 

'Valley of the Lakes' and smaller adjacent · valleys are also hanging 

valleys wl th respect to Corner Brook Lake, and suggest westerly Ice flow. 

The f i ord-1 ike valleys c:ontal n I ng Grand lake undoubted I y owe theIr present 

shape and reJI.ef In large ~rt to glacial gouging . .Rounded hi lis with 

smooth, strongly weathered suamlt outcrops are a ~armon feature In the 

Long Range. 

Glacial err411tlcs are ubiquitous. Numerous erratic:s, same as 

large as 3 m In diameter, Ire scattered over h II I tops in the mountains 

and In the plateau to the west. Wherever they are found, the erntlcs 

(, are innriably metamorphic and Igneous rocks derived from the long Range 

Mountains,, both from within and from east of the map area. One particular 

erratic, a very distinctive garnet schist, was found In the southern part 

of the area, approximately 4 km west of Its Inferred outcrop location -
~ indicating westerly Ice movement. 

Glacial striae were recorded from two localities. In the north, 
\ .. ·. 

on'the west shore of Deer Lake, the author noted a. single settof striae 
~ 

with azimutfl 041, while In the south, two sets of striae were found about 

I.S k.m southeast of Big Gull Pond. The doub'Je set Includes an early set 

with azimuth 073 a~d a crou•cuttlng (later) set with ul.ftuth 113. In 

addition, HcKIJJop (1963) found a set with azimuth 102 near Unk Pond In 

the northern part of the area. Though the striae do not Indicate the 
~· . 

absolute dlrectfon of Ice flow, their ... ientatron agrees with a westward 

I ce movement • 

The glacial till cover In the area h generally thin, probably 

not exceeding 1 m In most pla~es. Its thlnneu may be a function of the 
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proxl~nity of the area to the ce.htro of glaciatio~ in the Long Range, 

\ 
where it received only a thin gr"()Und moraine, and not .the th icker deposits 

associated with terminal moraines and outwash plains. Such thick deposits 

are found southwest of the area near St. George's Bay (Brookes 1973) • A 

thick Pleistocene deposit near tho mouth of the HUllber River has been 

interpreted as a raised delta of glacio-fluvial origin (Hc:KIIIop 1963) . 

Drainage 

'. The drainage system of the ~rea Is lrrm.~ture, as evidenced by the 

numerous bogs, Inadequately drained ponds, and small brooks, rather than 

well-defined rivers. Strpng structural control is reflected In the drainage 

directions, pond orientations, and corrmon sharp bends In stream courses. 

Lithologic Influence on drainage is moH evident In the western part of 

the area (underlain by carbonate rocks), where subsurface drainage occurs 

locally. 

Host of the map area drains either directly or Indirectly Into 

Humber Arm and the Bay of Islands·. A small central part drains via the 

Harry's River system Into St. George's Bay (Figure 3). ocept for the 

'Valley of the Lakes 1 watershed and areas Immediately adjacent to Grand 

Lake, the northern half of the area drains Into Humber Arm or the Humber 

River via major streams such as Corner Brook, ~tudy Brook, and South 

Brook. The re~N~Inder of the area drains into Grand Lake via channels suc;h 

as 'Grand Lake Brook' and 'Valley of the Lakes•, as well as the numerous 

streams which cascade Into Grand Lake. GTand Lake Itself is now danwned 
.. 

and draIns north of the area through a f I -.no and power p fant into Deer 

Lake, which In turn empties into H1111ber Arm through the Ht.mber River. 
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O!.~!tcrop 

Outcrop rn the map area Is, In genera 1 , scarce. S 1 i ght ly more 

outcrop Is found In the eastern part of the area where the more resistant 

and eleva ted bedr04:k loca 11 y forms good streambed exposure and b\ rren 

hilltops. However, even the 'barren' hilltop outcrops •re typica~ ly 

rounded, strongly weathered •nd 11 chen cove red, all of whIch reduce 

outcrop quality 1nd qUantity. 

In the densely wooded terrain west of the mountains, outcrop is 

essentially restricted to streambeds and roadcut# logging opentions 

have great I y f ac Ill ta ted geo 1 og I ca I study by exposIng . bed rock through the 

thin till cover In roadcuts and roadbeds. Major fault scarps locally 

provide good exposure, such as along the western shore of Grand lake. The 

stream-cut and glacll'lly-eroded cliffs In the Humber Gorge also provide 

• an excellent cross-section of the g~logy In that area. In general, 

however, large outcrop areas are rare. 

1'.3 Geological setting 

Newfound land Is the northern ext rem! ty of the AppalachIan Orogen, 

which extends 3500 km southwestward to the southeastern United ·states. 

The geol~y of Newfoundland has attracted Interest since the latter part 
' 

of the nineteenth century, due ••lnly -to the fact that the island provides 

' such a well~expasea, and relatively complete cross-section of the 

ApjM~Iachlans • . In addftlon, In recent years It has been rec09.nlzed that 

Newfoundland Is the geologlc*,l link between the' Appalachian and C1ledonlan 

Orogens, which forJMd a slngl~'.~rogenlc belt 10,000 lcm in length during 

the h1te Paleozoi~. Indeed, as Williams (1978b) suggests, N~foundland 

geology may have more . in conmon wit~ the 9eology of the British Isles than 

w,l th ~outhern Applllchlan geology; 

" \ 

I 
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Across the Island· of Newfoundland, there are striking regiona l 

geological differences . Recognition of these differences and attempts to 

acc'entuate them has spawned a variety of zonal subdivisions of the geology 

(e .g., WII li-s 1964; Williams, Kennedy and Nule 1972, 1974; WIJ Iiams 

1976, 1978.) : The most recent work (Will iams 1978a) Is a comp i lation · 

and interpretation of the geology of the entire Appalachian Orogen In 

terms of the plate tectonic settlng . and significance of selected I I tho-

facies belts. This compilation ,Proposes a flvefol~ division of the Orogen 

based on the contrasting characteristics of pre-Middle Ordov ician rocks, 

and it demonstrates that two of the f lve zones can be traced the ful I 

length of the Appalachians. Four of the zones are def ined In t~rms of 

Newfoundland geology, and they represent one of the most functional sub-

divisions of the Island's geology to date. From west to east, they are 

referred to as Humber, Dunnage, Gander and Avalon zones (Figure 4A) . 

According to the Interpretation (Williams 1976, 1979), the ~hree 

western zones record the late Precambrian to lower Paleozoic plate tectonic 

evolution of the Iapetus Ocun and Its continental margins. Th·e model · 

maintains th~t rocks In the Humber and Gander'zones record the construction 

and subsequent destruction of 111 Atlantic-type western, and local.ly ., 
' ·. r ·IJ 

Andean-type e-stern continental margin, respectively. The marine vol~anlcs, 

sed lments and oph_l o 11 te suItes In the Dunnage zone are I nte rp'reted to be 

the "vestIges of Iapetus". Tf'le sIgnIfIcance of rocks -1 n the Ava Jon zone 
' 

In this plate tectonic lnterpretati'On ls _uncertaln. 

The regional setting of the Corner Brook Lake area, western 

Newf~undland. encompasses both H~ber and Dunnage zone geology· (Figure ~B) . 

However, the map area lt5el f lies entl rely within, and at the .eastern 

margin of the Humber zone. Western Newfoundland geology has been descr ibed 
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In 1 number of regional syntheses, including Williams et al. (1972, 1974), 

Stevens (1976), Poole (1976), and Williams (1979), The following geologic 

summary is based on these sources, to which the reader Is referred for a 

more deta lied treatment. 

The Humber zone records the evolution of the ancient continental 

margin of eastern North America, and Its geology can be described broadly 

In terms of autochthonous, allochthonous, and neoautochthonous sequences. 

The autochthonous sequence Includes clas·tics and carbonates 

deposited unconformably on a rifted Grenville basement. The late Hadrynian 

to Cambrian basal clastics are westerly derived, eastward thickening {up 

to 10,000 m), and are locally lnterstratifled with uflc volcanic flows. 

Diabase dykes that fed the flows cut both buem.nt and lowermost clastics, 

and have yielded late Hadrynian Isotopic ages. Both the basal arkosic 

sedl,ments and the volcanics are the products of late Hadrynl•n rifting 

• 
of the continental crust, marking the Initiation of the iapetus Ocean. 

·rhe basal clastics are overlain by eastward-thlc~nlng (up to 3000 m), 

' 
Cambrian to Hldd le o.rdovl clan, ca rbonat'e bank depos I u, reflecting the 

establishment of a stable continental margin. The upper part of the 

carbooate sequence records a disturbance to the ea~t of the margin, and 

a gradual reversal In provenance f,.om west to east, marking a major 

ch•nge In the stratigraphic development ·of the continental margin 

(Kiappa .et al. 1'80). The change culminated with deposition of easterly­

derived flysch.-~lch preceded the emplacement of allochthonous rocks In 

mid-Middle Ordovician time. 

The allochthonous sequence of the Humber zone, emplaced during the 

Taconic Orogeny, Is disposed In two Njor klippen, locatC!Id near Humber Arm 

and Hare Bay (Figure 48). The base -of the sequence Is marked by m41ange 

overlying the easterly-derived flysch. Simi Jar '"'langes separate •n 

-· ~ ·-·· -... ....... - . ._ ..... ....... . _. ... ..-.. ___ ...: ... ~----~ 

• 

• 
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assortment of structural slices. The lowest slices Include clastics and 

·carbonates, while the highest consist of ophiolites and usoclated Igneous 

and met.morphlc rocks. 'he ophiolitic rocks are Interpreted to be perts 

of the oceanlc·crust obduc:ted during closing of Iapetus, while the 

sediments In the lower sllc:es are Interpreted ta be parts'of t~e contln-

ental ~rgln, slope/rise prism 'peeled pff' during the obduction of the 

'ophlolltes. The stacking order of the slices reflects their pelinspestl~; 

distribution, In that the higher slices are the ·fartt!e'st trevel led. 

Obduction of the ophiol ·ltes and emplacement of the allochthOns were 

accomplished by the at~empted subduction of t~ continental mugln ,along 

an east-dipping subduction zone, In which the slIces of the allochthons 

were assembled as an ec~;retl~ery wedge beneath the overrid ing ocean!~ 

lithosphere (Stevens 1976). 

The neoautoc:hthonous sequence Includes the remnants of ell the 

rocks deposited .after the emplacement of the allochthons. The oldest ah 

represented by Middle Ordovician carbonates on the Port au Port Peninsula, 

which unconfonnably overlie allochthonous rocks. The remainder comprises 

mainly terrestrial clastics end minor volcanics of Silurian, Devonian, 

and Carbonlferou~ age. In addition,· middle Paleozoic: granitoid rocks 

locally Intrude the east~rn part of the Humber zone. 

·The boundary between t~ H\lllber and Dunnage zones Is 1 narrow, 

StMp·, · structural junction marked by rocks of ophiolitic •fflnlty, and Is 

referred to as tM Bale Verte-Brompton ,Lfne (St. Julien et al: 1976). !t 
,, 

4h.s been suggest•~ the ltne marks the site of ophlot lte obduction, and 

thus Is the root zone for the tr~msported ophiolites In the Humber zone. 
¥ 

The western ~Yr.vln of the Dunnage zone Is also Intruded by 

granitoid plutons. The largest and most notable Is the Topsails BathO· 

lith, In part a Slluro-Devonlan peralkal lne compte~ (Ttylor et al. 1980). 

I I 
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The structural history of- the Humber'zone records the effects of 

three major orogenic events. These are the T~conlc Orogeny of Ordovician 

lge, the ~cadlan Orogeny of Devonian age, and the Carboniferous-Permfan 

Alleghenlltl Orogeny. · T~ zon~ Is danlnated by a strong northeast 
·, 

structural trend, which Is a canposlte of fhe sub-parallel structures 

associated with each of the orogenies. 

The T•conlc Orogeny produced Intense polyph~se deformation 

characterized by west•faclng recumbent foids, a stron9 schistosity, and 

~ upper greenschist to amphibolite facies metamorphism. The tectonism has 

been attributed to the attempted subduction of the continental margin, 

and the resultant obduction of oceanic crust. 

The Acadian Orogeny was less intense, and Is characterized by 

northeast-trending, tight, upright folds, an associated steeply-d ipping 

erenulatlon cleavage, and retrograde metamorphism to lower greenschist 

facies. Granitoid plutonism Is also commonly attributed to the orogeny . 

The style of defonmatlon reflects the continued east-west shortening of 

the Appalachian Orogen during Slluro-oe·vonlan time, but the plate tectonic 
' causes ue ~ncerta 41· 

The latest major defonnatlon In the region Is recorded In 

Carboniferous rocks, and has been Interpreted as the product of Alleghenlan 

(Hercynian) Orogeny (e.g •• Schuchert and Dunbar 1934; Will iams 1979). The 

defonmetlon Is characterized by northeast-trending faults and open folds, 

with little or no cleavage development, or metamorphl~. Recent lnterpre· 

tatlons (e.g •• Wllll.-s et al. 197-; Hyde 1979•) suggest this defonnatlon 

Is· not regionally significant. but ratner Is local lzed In fault zones of ... 
unknown dlsplac-.nts. However., early workers (e.g. ,- Schuchert and Dunbar 

1934; Hayes and Johnson 1938; 8etz 1948) suggested the deformation reflects 

a regional event Involving 1111lnly west·dlrected thruHing . This 

.~. 



~ontroversy, which has special significance with respect to the present 

study, Is discussed ,In 110re detail In Chapter 11 and Appendix C. 

1.4 Previous work 

The earliest geological lnvestlgatl?ns In central western New· 
i 

foundland 01re attributed to pioneer geologists su~h u J~s Richardson, 

Alexander Murray and J~s Howley; who worked In the latter part of the 

nineteenth century. With regard to the Corner Brook lake aru, this early 

work likely InclUded m.pplng only in the Humber Anm and Humber River area, 

since these .-terways were the only means of access to tho regiQO In those 

days. Howley's geological ~P of Newfoundland, published in )907, was 

a compilation of tho .. rly pl~er work, and It clearly shows the extent 

of "Cambrian and Cambro-Silurian" (sio) rocks In the Humber Gorge. 

In f934 the Geological Society of America published Memoir 

entitled Strat~hy of W•et~ N~founa~. authored by Charles Schuchert 

and Carl Dunbar. This report c:lescribed the stratigraphy based on data• 

collected during four field seasons (1910, 1918, 1920, 1933) by a number 

of geologists. On the last two of these "expeditions", the Cambrian-

Ordovician rocks In tne Humber Gorge were studied, fossils were. collected, 

and the ~jor structures were Identified. Their exploration, howeve~, did 

not Include more southerly parts of the Corner Brook Lake area. 

Durl ng the s~rs of 1945 and 19~, T. N. wa I th lor upped the 

area between Corner lrook and Stephenville as part of his Ph.D. work at 

Columbia University. In 1,lt,, his results were published In Bulletin 35 

of the Newfoundland Geologl~l Survey with a up at a scale of t :38,SOO. 

His work -concentrated .on the carbonate rocks In the western part of the 

Corner Srook lake ar .. ~ However, he did reeognhe the .structurally canplex, 

metaclutlc rocks to the .. st, which he referred to as "Precambrian 
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gnel sses and schlsts11
, and suggested they had been overthrust from the 

east. 

In the 1~50's, large scale (1 :253,4.0) ~pping projects w~re 

undertaken In western Newfo~ndland by the Geologic~! Suryey of C~nada • . 
The Corner Brook Lake area' straddles three of the areas mapped at that 

time. G. C. Riley (1957) mapped the west half of the Red Indian Lake 

sheet (NTS map 11A), and later (~lley 1962) mapped the Stephen9llle sheet 

(NTS map 128) to the west. D. H. Baird (1~59) ~pped the west half of 

the Sandy lake sheet (12H). These maps have become standard references 

for central western Newfoundland, and are most useful In reglo~l analyses. 

However, their large scale Is prohibitive to detailed anal~~ls, and large 

areas of Important geology are lost . In their regional scope. Tho present 

' study was Initiated to provide ~re detail on the geology of one .of these 

areas, the Corner Brook Lake area. 

Early .In the 1~60's, portions of the northern part of the Corner 

Brook Lake area were studied by three graduate (H.~c.) students at 

Memorial University. - ~. D. Lilly (1963) produced a 1:50,000 scale map .:; . 

of in area extending nort~rd from the Humber Gorge. His lntefpretatlon 

of the Cambro-Ordovician stratigraphy and struct~re In that are~ has been 

most helpful In the present study. J. H. McKillop (1963), at the same 

time, -.pped the city of Corner ·&rook area at a scale of 1:24,000, focusing 

•lnly on the Ordovician carbonate rocks, and much less on the metac18stJc 

rocks to the east. Stevens (1965), studied the •11ochthonou\ rocks In the 

Humber Ann u ... His description of the str•tlgraphlc and st.,ructural 
\ . 

• features In the eastern part of the ·Humber Arm assisted the p\ esent work. 

Further work In the up area was not carried out until. 1977, wnen 

the present author, working toward his B.Sc. degree at Memorial University, 

Npped 30 square kl1anetrel In the south·c:entnll part of' . th~ .;.a (Kennedy 
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1978). · "'-pplng at a scale of 1:11,S80 provided lnfoi-matlon on relations 

n .. r the eastern margin of the carbonate terrane and the Grand Lake T.hrust. 

This work became the seed for the present study, which was Initiated after 

It .as realized how little was known about the geology of the Corner Brook 

tAka ar ... 

Williams and S~. Jul len (1978) reported on reconnaissance 

~pplng during 1977 by H. Wlil lams n .. r the south end of 'Grand Lake. 

The Corner Brook Lake araa and adjacent areas received more 

·tntanslve study beginning In 1978, when several projects ware begun In 

· 'the region. In that year, H. WllliM!s (1981) beganworkalmed at updating 

Rl ley's (1962) Stephenville map •r:~a, and the work contl,nued during the 

1'79 field season, with preliminary results appearing in Williams and 

Godfrey {1980) ·,( Also In 1978, the present study of the Corner Srook lake 

are~ w.s Initiated, and t~ fellow graduate students began work In 

Immediately adjacent areas. Y. Klrtlneau studied the area south of Grand 

lAke as put of his M.Sc. program, whl le D. Knapp began work on his Ph.D. 

project on Glover ls~and. Their preliminary results, along with those of 

the present author, were reported jointly In 1979 (Knapp et al. 1979) • 

Following the 1979 field season, updated results of the work In each area 

~re reported separately (Martineau 1980; Knapp 1980; Kennedy 1980). 

Work on the Carboniferous rocks In the Deer Lake Basin, northeast 

of the Corner Brook Lake ar .. , hn been carried out rnost rec:ently by Fong 

(1976b) •nd Hyde (1978, 1979a. 197,.,., 1979c). 

This t 
.. -.1J.a. 5proPJu•.·.: ' ,

1

sc
1

openl t laatn.eddmethods 
nw ~ an4 carried out with two gener•l 

· alms In mind. These were: t I to I dent I f.y and describe the ~Jor goologfc 

fe•turea of the Corner Brook L•ke •~ea, •nd 2/ to consider their rel•tlon 
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to estab 1 I shed e 1 ements of western Newfound land geo I ogy. 

Within this general fram~rk, however, two specific points of 

lnterest .were given special attention. These loHIT'e: 1/ the delineatlor\ 

of stratigraphic, structural and metamorphlc.features In the polydeformed 

met•clastlc sequence In the previously unstudied eutern part of the area, 

and Z/ the evaluation of Its structur~~d stratignphlc rehtlonshlp . ~J 

to the well-known, Cambro•Ordovlclan, carbonate seq~ence In the western 

part of the area. The understanding of t~ relationship which Mls come 
• 

from the present study is a significant c:ontrlbutloa to western Newfound-

land geology,' In that It sheds 1 lght on a long-standing problem regarding 

the t~mlng and extent of urly Paleozoic: orogenic events. 

Tne broad scope of this task, the large size of the map area •. 

and the limited freld time available, combined to determine the mapping 
~ 

~~~ethods employed.;- The aru was mapped In .a reconnaissance style using 

1:50;000 scale topographic sheets (parts of NTS sheets lZA/12 and 13, 

12B/91and 16, 12H/It) as a base, and at r photographs (1: 15,840 sea I e) for 

more detailed coverage In certain areas. Host of the work was·-aone by 

s lngle-day loop traverses from access roads; however, mu 1 t I -day traverses 

from roads, and traverses from several base camps set up by flo•t plane 

were also employed. Limited helicopter support was used to execute long 

transverse traverses, as well as to tamp le some of the more Isolated and 

I naccess I b le h 111 top exposures. 

The projec:t/lnvolved approximately six· months of field '-Ork 

' extending over three sea~ons (1977-79). During 1977, as previously noted, 

the 1uthor spent two months eolleeting data In the south•central part 

of th4t area, but the present work aetuall y began In 1978 with three 

months of mapping aimed at familiarizing the author with the general 

futures of the area. , During the following suson (1979), the •uthor was 
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employed by the Geologlc~ll Survey of Can•d• t~nd spent one month collecting 

more deul1ed lnfonMtlon In various parts of the aret~. 

A large amount of data w•s gathered and gener11ted during the 

course of this wor:k, 411nd with vlrtut~Uy no previous Information avallt~ble 

on the uu the author felt It essential to present as much .as possible of 

this new information. For this reason, the present work contains • great 

deal of descriptive m.terlal, observations and speculations. It Is hoped 

these wi 11 enable- future workers to better IdentIfy and focus on the more 

crltlc•l upects of the geology pr-esented here. 

To ft~c:lllute access to this lnfQrJMtlon the following chapters 

~wive been divided Into two units . Unit I (Chapters 2·6) deals with litho-

lo~lc •nd stratlgraphk futures, white Unit_ II (Chapters 7-12) deals with 

structur•l •nd metamorphic 11pecu. Each unit is intended to be Internally 

complete In te1"111S of description and - Interpretation. To keep the reader 

In touch with the overall picture, however, there is a certain amount of 

crossove.r between units. Chtllpter 13 s\.mnarlzes the Important findings of 

this study, synthesizes the diltil In Units I and II in terms of • tectonic 

model, and notes suggestions for future work In the ue•. 

Appendices Include whole rock (Appendix A) •nd mineral (Appendix 

B) chemlc.l analyses, a literature review 1nd discussion of regional 

Alleghenlan defonMtlon {Appendix C), and • description of the suite of 

samples from the Area stored at Memor-Ial University's Geology Department 

(Appendix D). Appendix D also Includes a sample location ~P for all 

santples quoted In the text. 

The geological NP of the are• (In pocket) synthesizes infor-

matlon .cOIIIPIIed frcn previous work and new data collected dur-Ing this study. 
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UNIT I: STRATIGRAPHY 

CHAPTER 2 

GE~ERAL STATEMENT 

The Corner Brook Lake eru Is under hI n by rocks wh kh range In 

age ·fr0111 Hellklan to C.erbonlferous, and thus It Includes representatives 

of the oldest and youngest rocks In western Newfoundland. All rocks In 

the area, except the Carboniferous sediments, are now metamorphosed and 

polydeformed. 

In simple terms, the stratigraphy of the area comprises a 

Pree<~mbrlan basement complex overlain by Prec:~brlan to lower Paleozoic 

clastic and carbonate rocks. C~bro·Ordovlelan transported clastic and .. 
mafic plutonic rocks, a Slluro-Oevonlan granitoid Intrusion, and Carbon-

lferous c:lastlc:s account for the remainder of the sequence. 

Thirteen lithologic units are recognized, eight of wh ich- are 

nawly proposed of redefr"ned ~-h i s work (Table 1; see also geological 

map In pocket). Ten of the units ere grouped naturally fnto three major 

tectono-stratigraphic: sequences, each of which underlies a geographic 

su.barea, referred to here as a 'terrene' (Figure 5). Each terrane consists 

of a d i stlnetlve sequence of stratigraphically related rocks separated 

from the other terranes by east-dipping thrust faults. 

The three terranes are: 1/ the gneissic: terrane- a varied 

sequence of mainly gneissic Precambrian and Paleozoic rocks d ivided into 
,.. 

three lithologic: units (1, 2 .and 11), 21 the raet.acl•stlc: ter·r•n•- .a 

sequence of Hadrynl•n to C.tmbrlan, -malnl.Y metaclastlc rocks divided Into 

four units (3, It, 5 •nd 10), 1nd 
. 

3/ the c:ilrbonlte terrane • a sequence 
. I 

of Cambrian to Ordovlcl•n, lnllnly carbonate rocks divided Into three 

units (6, 7 and 8). 
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TABLE I 

TABLE OF FORMATIONS 

... , east 

D[[R LAKE GROUP ~rod, coorM tonctatone 
l3 and pelllllo to lloulcto,. COfltiOIIIora!• 

u•ortll lroolr fill) . -
llnCOft tormOitiO 

ANIUILL! e.-oup- fino, tror to troon, 
12 r .. alllforoao •n•arono 

not 111 contoct 
LAST Hl.o. ADAMELLITE - ~tin-, loucoerauo, 

11 moflu• gralno,. ... ,. ... .,. 
not 111 contact 

HUMBER ARM SUP!RQitOU,.- •olnlr llllocll llltPENnNIT! ~NIT - IIIIGIIIIII llttiOIYt groon 

8 prrltlforoue alot11 end •lnor groJ .. 10 aorpontlnlto 
quartalto ClrlalltOWft f• t ... 

foaltod ~ fawltod 

TAl~ HEAD MOUlt • I"J nlcltlo IHrlalo, 
;:) 

c 
8 llrlock alate and Mlur ,..,.~lo broooto ... 

unconf.,.ollle 
ST. G!ORG! GROUP- tlno,lluff, Jlttll, wlllte 

7 
oftCI gro1 dol.,..ltl~ .and oololtlo ...,..,.,, 
ml11or politic raa ., 

... 
a: RELUCTANT H•AD , ... -troy, pllrlllto, .. TWI~ICK IROOIC ~ORMATION - trtr , CD 

I 
.. ,.,., •orltlo .,onlo, """'' cauarulto ;:) 114'PIIrralllattlt, colnr.-ua aclllot, cote-: .. ~ I 

alii ooto •nlat, ••••--• 1Hrlllo , 
% Morillo kooolo ond pfiJIIItlc atlllat 

' ... :s 
c MOUNT MUSGitAYI trOIUIATION - gr., to ~ 

! 
STAG HILL trill. - ,,., , quarta-,nlca '"'"• toraetlforoua, ~ortz•11lca acttlat, 

aclllot, CJIIOftzlto, ,.CIII, lllllnOf' 4UOMIO- 4 euortzlto, ,.tlto, quart1oftld. aehilt, 
c folfapotllte ulllet •• •inor eronltoid roall o!M a•pii!MIIta • . 

CAIUIOU LAKE ,ORIIIATION - hff, ali.ltl 

3 •Ill Of .... tftelll (Albite ICIIIat IMfftberJ, 
... erlloolt •ete .... la .. rota an4 11111rUo-

II: fot4o,.tlllo aalllot Uhtovolltlorllroto 

0 .... J, .,_ltold rock a .. ,.., ... ,,, , -· ..... ,.., c AJITLEit HILL ,OR~TION - ... ~,I IIIIGrtZO-
2 - ' r.we~tatlllo Mllilt , .. ., 1111111, •I nor . 2 

~- · ...rt1lte aMI •la-tUIHtl ltlllat J-..... . 
CQMrtzlto ... ,. ... ,.1, eronltold racll anti ...,., ... ,, . ...... ,.,. ..... , . ., 

TONALITIC INIIU COM~L.IX - trten ad 
tror tonaUtle lftalaa, cuaplllkllto and 1 
tronftoltl rocll 

• 
. ' 

I . 

~~ 
I 
I 
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C C::ARBONII"EROUS 
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FIGURE ~ • TECTON06TRATIGRAPHIC SUBDIVISIONS OF THE MAP AREA 
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The three rem.lnlng lithologic units Include transPorted 

elastics of the Humber Arm .supergroup (unit 9) and lue~orogenic:, Cubon-
--·-·---._ j. . 

lferous sediments (units 12 and 13), which are excluded from the · 

classification ebove because they are lithologically and tectonically 

distinct. These rocks were given only cursory ex..,..rriation, and their 

very brief descriptions follow the discussions of the terranes with which 

they are spatlally'assoclated. Thus, the Carboniferous rocks are 

described following the discussion of the metaelastlc terrane, which they 

bound to the northeast, while rocks of the Humber Arm Supergroup wtt\ln 

the 11111p area are described following the ~rbonate terrane, which they 

bound to the liMS t • 

The complex structural history of the area Involves at least 

five deformation events (01 through 05), and Is characterized by a 

general westward tectonic transport by means of thrust faults and west· 

verging folds. The thrust faults are responsible for telescoping the 

stratlg~aphy, with the resultant juxtaposition of laterally equlval~nt 

rocks and local repetition of units. The overall Intensity of deformation 

lncre11es toward -the eastern part of the area. It should be noted 'thait 

structural elements generated during these events, such as foliations, 

folds and fold axes (lineations), are referred to by the standard short-

hend notations Sl-SS, F1-F5 and Ll-LS, respectively. 

The successIve phases of defo rwat I on t.ve hnparted .a strong 

northeast structural trend to the area, which Is most evident In the 

trends of major folds and faults, as well as Jn .. the outcrop pattern of .· 
' the llthol~ic: ur:'lts. The relatively simple outcrop pntern and the single 

domfnant structural trend are somewhat misleading, however, In tnat they 

do riot fully reflect the complulty of the defonnetlon history. This may 

be due to the near parallel IIIII. of the regional . stress fields during the 
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1n11jor orogenies (Taconic through Alleghen Jan). 

The gr•de of metamorphism Increases from west to east through· 

out the 11111p area, but the gnduel transl_tlon to hlgher . grade Is discon­

tinuous at major thrust faults, where sherp contrasts In grade are typ ical. 

Roeks In the meuclutlc •nd gneissic terranes locally reached et leest 

*"Phlbol lte, hcles conditions, though retrograde lower to middle greenschist 

facies mineral assembllieS now predominate. Roc;ks In the western pert of 

the carbonate ter,..ne are much less met.norphosed, and exhibit only recrys­

tallization with. little or no new mineral. growth, suggesting· lower green-

i schist 
! 

facies conditions were the maximum reached. 
--..... __ / 

The nlg.h degree of deformation and metAinorphlsm and the gener­

ally poor exposure combine to make recognition and Interpretation of the 

stratigraphy difficult. Original depositional features such as bedding, 

fossils and sedimentary structures are masked or completely obliterated. 

Thl s Is espechllly true In the eastern par-t of the area, the focal point 

of this study. but applies to a lesser degree In; the western par,t. 

In the ust. deformation has variably modified original bedding 

by tectonic ~hlnnlng and thickening, as well as by local transposition 

during folding. In addition, metasomatism and met~rphlc segregation 

have appreciably altered original compositions In some places. In view of 

the~e fa~ts, and with the present control. unit thickness measurements 

or est I mates are- lmposs I b le. 

Fossils are predictably scar~•; only two fossils ~refound by 

the author In the entire area. and neither c:an be potltlveJy . fdentlfled. 

·s.n.ll•sc:ale sedlmen~~Y structures ere very. rue. end anry one rather 

Indefinite ~ample of rei l~t graded bedding -.s found by the author. It 

Is possible, however, that more detailed -=>rk will yield better ex.mples 

of both fossils end sed lmentary structures. 

0 

,/ 



t
· t.~ 

:; . 
~~··. 

:~·. 
~· .. 

' ! 
·I 
~ 
! 

I .. 
f 

26 . 

The nature and location of many of the contacts between litho-

logic units are not as clearly defined as one would wish. This Is due to 

both poor exposure and the scale of the study, ·Contacts have a tenden~y 
~ 

to follow topographic depressions, and thus are almost Invariably covered. 

The mej~r conucu bet•en the th'ree terranes represent reg lona I, east-

dipping thrust faults, and It, Is possible that many minor. contacts between . 

lithologic units are tectOI')Ic rather ttMin sedimentary · In nature. Ruely 

are contacts positively identlf!ed n sedimentary. 

The new stratigraphic units proposed In this study have been 

lithologically defined, and all available distinguishing features of the 

rocks have been employed. Ketamorphlc characteristics help distinguish 

certain units, partlcwlarly those In the ~taclastlc terrane. This does 

not lnaply that . It Is 1 ~metamorphic stratigraphy,, however, since the 

protol ltt'lologles of the units can b.e clurly recognized. The stratigraphic 

units proposed are thought to reflect the basic compositional differences 

.which existed in the original stratigraphic sequence. 

I 

In the following three chapters of Unit I, the tripartite 

division of the Corner Brook Lake area will be described and Interpreted 

wfth respect ·to lithologic and strulgraphlc features. The final chapter 

(Chapter 6) recepltulates the significant stratigraphic findings of this 

work, •nd presents a brief s~ry of the ' main stratigraphic featuris ·ani 
the proposed regional correlations. ( 
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CHAPTER 3 

GNEISSIC TERRANE 

3.1 Introduction 

The gn•lssle terrane Is located In the south-central part of the 

Corner Srook Lake area (Figure 6), and contains a distinctive, fault-

bounded, tectono-stratigraphic sequence. The sequence comprises tonalltlc 

gneisses with amphibolite and granitoid material, quartzofeldspathic schists 

with minor amounts of quartzite and c:alc-sll lcate schist, and a StNll 

granltol~ pluton. This subarea was previously referred to as the 
,_ 

"basement terrane" (Kennedy 1980), but the n<~~~~e 'gneissic: terran•• Is ·: 

preferred because It Is both non-genetic ·and more descriptive • .. . 
The diverse lithologl~s In the gneissic terrane are divided Into 

three lithologic units: 1/ the Jonalltlc .gneiss complex, 2/ the Antler 

Hill formation, and 3/ the Last Hill adamellite. The fi.rst two units 

form the bulk of the terrane, each representing areal ly about liSt. The 

last Hill adamelll te is an ueally minor component, and accoun_t_s for tne 

r ... lnlng 10%. 
. . 

The rocks in · the terrane f~ a v~r-y tllstl~ctlve lithologic: - . ~ .... . . .. . ~ 
. 

association, and are ln sharp contrast to _ Q..th~clJthofogles In tl'le map 
,. ,, . .... ··~ . . - . -., . . 

s lmll~r I I tho log I es . uQttarHe ~ ""'etn110re . .xtens fve area· .thotn."·t-he~ do 
.. . . : ...... - ··1 :~ ~- -:-.. ... . . ·. . . . . . · . .., Ill.., -·~· .- .-·-- · :..... . ,; . . ,. 

· .north. of ~he lake · (Martineau 19~~ • __ ,,. _ -. · ·- · <"·--~ · : · .. . 
-~~ -~s~ ·~,;;s: '~~: : fou~d at~· th· - ~~t~t~endlng;··_shs~~~~~ne- .of · · ·· 

Grand Lake"(nl narrow~one below the hlgh-w.wter line, ttowever, all the 

cl'larac:ter I st.JF II tho log ies ue not represented there. Roadcuts, sma II 

strt;.n v•lley~~ and 'barren• hilltops provide • I lmlted amount of Inland 
I 

exposure. Thr•• separate outcrop ar-eas can be distinguished, two of which 

·, 
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.. 
~re relatively small and essentially restricted to the shoreline of 

Grand Lake (Figure 6). The third, most westerly, outcrop area Is much 

I a rger and contaIns most of the 11 tho 1 og I es wh t c;h. c;he rae; ter t ze the gne.l s s J c 

terrane. It Is an area of ' rugged topography extending .about 6 km north­

northeast from the shoreline, and consisting of a cl~ster of rounded hills 

rising hign (500 m) above Grand Lake. 

This larger outcrop.area Is bound~d on the west by the Grand Lake 

Thrust zone (Williams 1978a) and on the east by the Stag Hill Thrust zone. 

Both zones diP. s~eeply to the southeast, and are characterized by a marked . 

Intensification of reglbnal deformation and mylonitization of various 

lithologies. The Grand lake Thrust juxtaposes the relatively high grade 

gneissic terrane rocks against lower grade marbles of the carbonate terrane, 

while the, Stag Hill Thrust superposes rocks of the metaclastlc terrane on 

those of the gneissic terrane. The northern tenmination of the Grand Lake 

Thrust, and the northern boundary of the gneissic terrane, is a northwest-

trending, high-angle fault, whic;h may represent .a 'tear fault' genetically 

related to . thruttlng. 

The smaller outcrop arus to the southea~t I lkely have s lmi'lar 

faulted contacts, although the actual contacts were not observed. There 

Is some suggestion In the outcrop pattern that these contacts may represent . 
a single. folded~ thrust fault beneath the overlyl~g metaclastic terrane 

rocks. This speculation, however, must .walt further structural study for 

veri fl cat I on. 

In the following th.-ee sec,t'fons, lithological and oute.-op 

descriptions of each of t~ units In the ter.-ane are presented. The 

final section of the. cha}ter presents a discussion of the sequence as a 
T-./ 

whole with respect to stradgra.phfc relations, ages and correlations. 
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3.2 Tonal I tic gneiss complex 

The Tonalltl~ gneiss complex Is a newly defined stratigraphic 

unit consisting of a variety of gneisses which are tonaHtlc In com• 

position. The gneisses, In turn. Include numerous layers and lenses of 

amphibolite and ·granltold material. The complex und~rlles the northern 

' . 
and southern parts- of the gneissIc terrane, and Is thought to be contInuous 

beneath the lnterv~lng Antler Hill fonmatlon (Figure 6). 

The cleanest exposures of the unit are found In a series of 

discontinuous outcrops on the shore of Grand Lake near the mouth of 

'Twi Ill ck Brook 1 , · and westw.ard a long the shore froni the mouth of 'WhIte 

Ridge Brook'. Relatively good exposure Is found In roadcuts and stream 

valleys to the north near 'Bear -Hill', but elsewhere the complex Is very 

poorly exposed, or covered. 

Gneiss-es 

The gneissic rocks are noted f~r their mineralogical and textural 

varlabl llty, which makes It difficult to assign a single, representative 

type · localIty for the unl t • 

. . IHneraloglcal varlat~on Is most evident In an overall colour 

" difference between ~nelsses In northern and southern exposures . The 

gneisses near 'lear Hill'' and 'One .Mile Pond' are 11111lnly dark green 

(sanples A and 8, Plate ;1) 1 principally due to the abundance of green 

, . biotite (t~ansntt~ed light). and lnt~nsely saussurltlzed plagioclAse. In 

contrast. gneisses to the sou'th near Grand Lake are basically grey In 

eo lour (s.apl.es C and D, Plate -1) as a result of the higher overall quartz 
' . 

content, and the presence of brown bloti·te (transmitted 1 ight), rather 

'tMn· green. The eolour difference Is' not u obvious In Plate 1 as It Is 

In Mnd ,specl...,, due to the effects of photo processing. The difference 

, L 

• 
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PLATE 1 

Representati ve hand specimens of the Tonalitic gneiss complex 
A (sample 79-226) and B (77-68), homogeneous, green gneisses (north); 
C (79-298-3) and D (79-302), thinly layered, grey gneisses (south); 
E (79-301) and F (77-B8), leucocratic gneisses (south and north, respec­
tive ly); G (790298-5), amphibolitic gneiss (southeast); samples cut and 
polis hed; scale in em; for sample location see Figure 30, Appendix D. 
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.. y be more obvious by comparing Pl1tes 2 to 5. Plate 1 also shQws the 
' 

less common · ~~~l~raloglc:al variants, the leucocratlc -(samples E and F) and 

melanocratlc (s-.ple G) rocks, represe~t _lng both extremes of mafic mineral 

content. 

In spite of the.v~s!,t~~. In lftlneralogy, however, most of the 
' t <i¥. ' ;. 

gneisses In both 'ar .. s are , cle.rly •tonal ltlc' jn composition. This Is 

based on the fac:t' that k•felds~r Is virtually absent, a~ lndluted by 

staining rock slabs and thin sections for potassiUM, tnd that they have 

iS their esse~tlal .mineralogy quartz (more than lOt), plaglocltse, and 

biotite and/or hornblende (Table 2; Figure 7). 

Although gneissic layering Is the most c0111110n st'ructural feature 
) 

of these rocks, textural variants Include •l~tltlc, schistose, mylonitic 

and massive (homoge~ous) rocks. All these appear to be a function of 

different degrees of deformation and/or ·metiiiiOrphlsm acting on ~lightly 

variable bulk mlneralogles. Host outcrops display a welt-aeveloped gnelss­

oslty (In part S2?) which rarely deviates from Its preferred steep ~SO") 
. ' 

southeast dip. West-verging, tight to I soc I ~nal folds (F27) and strong 

mineral lln .. tlons (L2?) were noted locally, but, In general, simple 

gnei~~lc layering Is the dominant outcrop feature (~!~ 2 to 5) . 
~-t . 

Northern a rea Northern expos~ res of the camp lex, near • lear H 111 1 and 

· 'One Mile Pond' 1 are characterized by medha•gralned, green, blot I te 

.gneisses, which consist of plagioclase (50-60l), bl~tlta (30·40,), quartz 
: ' 

(10-15%), and epidote (2-St), with accessory chlorl.te; garnet and opaque 
' 

oxides (Table 2; Figura ])'. ttornblende It notably absent, 1nd, If ever · ' 

present, has been totally replaced by biotite. 

The northern'gnelsses ~re noticeably less siliceous than those 

to the south (Table 2). Plagioclase Is Intensely saussuritlzed, and 
··~ ·. 

microprobe analysis lndl~~es It Is mainly elblte. However, the degre• of 
. ./· 
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PLATE 2 

Typical exposure of the Tonalltlc· gneiss eamplex - display i ng gneisses 
(grey) with layers end veins of -,hlbollte (dark green) •nd granitoid 
materlll (white to pink); north shore of Grand Lake, 2 km e~st of ' White 
Ridge Brook •; v ,.., NNE; field of vIew about 5 m; outcrop loc:at I on 298 • 
see .Figure 30, Ap~ndlx D. 

? 

\ 

PLATE 3 

Grey tonal It I c sne Iss In. the soothern part of - the comp I ex 
steeply·tncllned, thin CCIIPQSltional layering, and tight to 
wst-verglng folds (F27); north s"'ore of Grand . Lake, 2.S km 
'Vhlte Ridge Brook'; vie~ NNE; outcrop location 302; 

., 

note the 
I socllna 1, 
west of 

' I 

t 
·I 
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PLATE It 

Green tonalltlc gneiss In the northern put of the complex 
tight folding (F37) and thicker 1\yerlng relative to Pl•te 
essential Jy In situ, ust of south encl of ' One HI Je Pond' • 
south of 253 - see Figure 30. 

PLATE 5 

- note the 
l; bou lder, 
outcrop locat Ion 

Green, thickly-layered' (algmatltlc), tonalltle gneiss boulder, 
essentl•l ly . In situ, 100 m east of ,central part of 'One HI le PCXMt"-i_ 
outcrop location 253. 
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·TABLE 2 

POINT COUNT MODAL ANALYSES 

Sainp le I 

Quartz 

K-feldsp,ar 

PJ,9 lex: lase 

"useovl te * 
Biotl te 

Hornblende 

Garnet . 

Epidote * 
Chlorl te * 
Oxides 

~pat I te 

I Pol nts 

• 

67 

. 11% 

52 

35 

2 

tr 

tr 

963 

, Northern arelt 

253H 

12 

53 

tr ** 
13 

tr 

1~7 

TONALITIC GNEISS COMPLEX 

"2S3L 

26% 

53 

11 

tr 

10 

298 

4ot 

23 

8 
16 

10 

2 

1083 

,. 
Southern area 

302 

48 

3 

tr. 

1052 

amount does not lnch•de replacement or, alteration products 

•• tr - trace amount (<<1%) . 

Samp l~s: 

3~9 

.. 2% 
2 

42 

5 

3 

5 

tr 

tr 

830 

67 -green, biotite gneiss (77-67-3), north side of 'Bear ~Ill' . 
l 

253"/L - melanoscme (H) and leueos0111e (L) of green, mlgrnatltlc gneiss 
(7~0253) (Plate 5}, 100m east of 'One Hlle Pond4 ; 

298 -grey, biotite-hornblende gneiss (79-298-4), Grand Lake shoreline, 
1 km east of 'Twllllek Brook' . ~ 

302 - gr~y, tonatrttc gneiss (79-302), Grand Lake shoreline, 3 km west 
of '.Wt'll te Ridge Brook-'. 

329 - pink, leucocratlc gneiss (79~329), 1 kin NE of 'Horning Pond'. 

ft .. 

I 
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saussuritlzatlori suggests tl.at It was originally much more calcic. The 

abundant green biotite Is usually partly altered to chlorite. Discrete, 

euhedral, epidote grains (<1 11111 size) are present, but the bulk of the 

epidote Is represented by the fine masses of saussuri te In phgloclase. 

' Small (0.5 n111) euhedral garnets, present In very small amounts (~'1%), 

are preferentially concentrated along the boundaries between leucosomes 

and melanosones ,In some of the thickly layered (mlgmat It I c) gneisses. 

Opaque o~ldes are also preient In very small emounts (<< lt). and iiPPear 

to be mainly lhwnlte, as suggested by the locally extensive alteration 

to leucoxene. 

Although the gneisses are mineralogically tonalltlc (Figure 7), 
:.,..- .. 

chemical analysis of one sample revealed It to have a 1 dloritle 1 composi-tion 

(sample 77-68-t, Table 12, Appendix A). However, the sample may not be 

truly representative of the average composition of the complex, as Tt has 

a lower quartz content thah most of tne gneisses. 

In mo~t outcrops, compositional layering I~ well developed, and Is 

typicatJy thicker (5 to tO an) than In the southern gneisses (compare 

Plates 3, ~and 5). An excellent example of a ·thickly layered, mlgmatltic 

gneiss Is exposed about 100 m east of .the central part of •one Mile Pond•, 

. 
and displays white, quartz-plag£oclase leucosome up to 20 em thick, and · 

thinner (5 to tO em) bJ'otlte-rlch melanosane (PlateS). Not all the 

gneisses In this area/•~• well layered, however, and relatively hoalogeneous, 

' 
or biotite-rich, sc!lhtose varieties are not unca11110n (samples· A and 8, 

Plate 1). 

Leucocrltfc, tonalltfc gne.sses, whlch ·outc:rop on "the south and 
I J • 

east sides of 1 ~r Hill', are Interesting minor· varlants In the complex 
i 
I 

(sample F, Plate 1). These rocks are fine- to medium-grained, grey-green 

to pinkish, consist of mildly uussurftlzed and serleltlzed plagioclase 
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(lt0-60l:) .and quartz (40-60'). Minor -.ounts (<1%) of epidote, muscovite, 

biotite and chlorite are aTso present. The gneisses usually exhibit only 

mild deformation features, which Is Jlkelya result of their massive (homo-

geneous) nature. In one outcrop, about · 1 km northwest of· 'Triplet Pond', 

however, the leucoeratlc gneiss appears to be mylonltlzed .. 

An Important textural va~lant of the green biotite gneisses Is 

tound In a spectacular outcrop on 'One Mile Pond Road' overlooking 'Radio 

Pond' : In this outcrop, the gnelss.and the Included ~phlbollte layers 

are mylonites, folded about steeply north-plunging axes. The entire 

outcrop appears to represent a single large fold (F27) with an over-

turned and sheared western limb. The shea·rlng Is qrked by a narrow (1 m) ._ ... 
shear zone, which Is focalized In an amphibolite layer, and contains an 

lsocllnally-foided, gneiss layer (see Plate 61t, p. 2'+0). The core of the 

major fold consists of relatlvely . ~eneou.s, medh.n-gralned, biotite . 

gneiss, which grades rapidly, over just I to 2m tow'ard · the shear zone, 

Into a fine-grained, grey·1 strongly foliated mylonite (see Plate 67 to 69, 

p. 243). More detailed discussion of these mylonites and their s ignificance 

Is presented ,in .sect I on 9. I. 

A nUmber of other outcrops displaying Intensely mylonltlzed roc~s 

of various lithologies are . found southwestward from 1 Radlo Pond' to Grand 

Lake, along the narrow (200 to ltOO m) topographic depress ion containing 

'One HI le Pond, and rtMirklng the locatIon of the Grand lake Thrust zone . 

Southern area The southern part of the canplex ~Is dominated by 

fine- to mediUII·gralned, grey, biotite gnelssts, whtc:h exhibit a thin 
. . 

{1 to 3 em) eQ.posltlonal layering defl.ned by alternat!ng,_ grey (mafic) 

and white (felsic) layers. As noted, the layering Is generally thinner 

than In the northern gnelsses; · However, thick layering (up to 1 m) h 

/ 

?. 
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found loeaJJy, where thick amphibolite and gr~nitold layers are present. 

The tonalltlc gneisses In the southern area contain quartz, 

plagioclase, biotite, epidote, and hornblende, and accessory muscovite 

(sericite)~ chlorlte, · garnet, apatite, and opaque o~ldes (Table 2; Figure 

7). The gneisses are more siliceous than those to the no~th, as quartz 

usually amounts to about 40%. S9dlc plagioclase accounts for about ~5%, 
but •r/ld saussurltlzatlon suggests It was lniHelly slightly .OOre c:alclc: . 

It Is nOti.bl-e that the development of saussurlte Is not as grut In 

southern as In northern gneisses. Brown biotite {5-JO~) and epidote 

(1-10~) are ub!qultous, while muscovite Is vlrtuaiJy absent, being 

represented only by serlcltlc alterations of feldspar. Similarly, chlorite 

Is found only where It partly replaces biotite. 

Gneisses containing hornblende were found only In shoreline 

outcrops NSt of the- mouth of 'Twill lck Brook', where green, me.dlum· 

grained, hornblende-p1agloc:lase gneisses (amphlbolltle gneisses) fonn a 

significant propor~lon of the exposu~s. (sample G, Plate 1). The green, 

prismatic Pornblende Is 1 to 2 mm In length, and defines a very strong 

lineation (L27). The ~nt of hornblende varies from 15 to 50%,,and 

the gnel sses tend to be much Jus s II I ceous than those wl thou t horn'tll en de 

outcropping farther west, sugges.tlng an Inverse" relationship between the 

quartz and hornb 1 ende content. 

Layered, le"cocnt I c, . tona J I tl e gnel ss, s l11llar to the more homo­

gen~us gneiss found near •sear Hl11 1 to the north, outcrops about 

2 ~ west of 1Vhlte Ridge Brook• on the shore of Grand Lake, and again 

about 1 km northeast of ·~rnlng Pond 1
• On Grand Lake, the rock Is a 

fine• to mediUII-gralned, light green and pinkish, leucocratlc gne iss 

(s-.ple E, Plate t), and Is lnterlayered ~lth dark, biotite-rich, quartzo-

feldsptthlc s~hlst, not found elsewhere In the complex. Northeast of 



i. 
1. 

I 

I 
I 
I 

! 
! 
! 
j 

. t 

J 

.. 

42 

'Horning Pond 1
, the gneiss Is more massive, and thus more like the 

l~ratlc gneiss found In the northern outcrop ~rea. The gneisses, in 

which quartz and pink feldspar are the ~In minerals, are characterized 

by their low (1-3l) biotite, and relatively high (5-10') epidote content. 

In addition, the biotite Is green, In contrast to the broWn biotite 

typical of. the surrounding, grey, tonalitlc gneisses . The feldspu · fs 

daa I nant ly JDI1d1y saunuT It I zed and serl cIt I zed p lag I ex lase, at though a 

sm.~ll amount (l-2l) of K-feldspar was detected by staining. 

Based on the mlneraloglc.l, taxtural and chemical evidence 

prestn~ed .above, the gneisses of the Tonalltlc gneiss complex are 

lnterpr~ted to be a sequence of orthognelsses, generated by the deformation 

and me~amorphl~ of lntenmedlate ·to acid (diorite to tonalite) Intrusive 

rocks. In this context, the variations In the proportions of quartz 

and hornblende In the gneisses may reflect original, Igneous, mineralogical 

variations. Some of the more quartz-rich gneisses In the southeastern _ 

part o_f the ca:nptex may have had sedimentary protoliths (I.e., pua-
' 

gneisses)~ but the evidence Is Insufficient to be certain of such 1 

"lstlnctlon. 

Amphlbol It• 
·. 

OutcrOps of the Tonalltlc gneiss complex lnvar!ably contain layers 

.and .lenses of green to blaek, fine- to medium-grained amphibolite. The 

presence of these met.baslc rocks Indicates that the comple~ reached at 

least lower amphibolite facies oondltlons locally . ..... 
In the northern plrt 6f the eomplex, the amphibolite Is generally 

' medium grained and dark green, and fonns 1 to 2 m thick layers, which are 

concordant to the gneluoslty In the ~st rocks. "lneraloglcally, they 

.. . - .. . -·~---------~.,.;:;-.;;-~ 



.. 

...... \ 

43 
_; 

consist of green hornblende (SOt), saussurltlzed plagioclase (45-SOt), 

brown biotite (3t) and accessory sphene. N1 some rocks, the hornblende 

Is rimmed by a blue-green, higher birefringence amphibole, which Is most 

II ke I y ac t'i no 1 I te. 

In the outcrop overlooking 'Radio Pond'/amphlbolfte layers are 

Intensely mylonltlzed a~d retrograded, and are reduced to very fine­

grained, dark green to black, schistose rocks consisting of biotite, 

epidote, chlorite, and finely recrystallized plagioclase (see sample C, 

Phate 66, p. 2lt0). 

An unusual :texture, with an uncertain origin, Is displayed In an 

outcrop about 100 111 east of 'One Mile Pond' (Plue 6). The rock hu a 

light green, fine-grained, epldote•actlnollte-chlorJte matrix surrounding 
' 

lensoid Inclusions of darker green, medf1.111-gralned; biotite-rich uterlal, 

which paralteJ the foliation In the nearby gneisses. ,The tex~ure appears 

to be the result of Intense deformation and retrograde metamorphism of 

an original basic rock. It Is notable tkat the texture of some of the 

~oarser lenses resembles metagabbro. 

In the southern part of the complex, amphibolite layers and lenses 

v.try from I fght green to al1110st black, and are typically fine grained. 

L.tyers vary from to em to S m In thickness, and, In some Ol.cltcrops, 

amphibolite proportionately dominates the host gneiss. Lenses of amp~l~ 

boJite, with long axes averaging about 1 "'• are MOre common In the southern 

part of the complex, ~d are Interpreted to be bou~lnaged layers. 

These metabasltes generally consist of actinolite {70~). plagloelase 

(2~%). epidote (10%) and accessory opaque oxides. Near the mouth of 

'Twllllck 8rook', • black, flne-gralned, biotite-garnet .mphlbollte is 

lnterlayered with ~sslve, leucocratlc .tonalitlc gneiss. This distinctive 

rock contains 40% untwlnned p1agloclase, 2~ green amphibole (actinolite?}, 
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PLATE 8 

Representati ve hand specimens of the Last Hill adamell i te A (79-332-2), 
adamel lite, s ummit of 'Last Hill'; B (79-332-1), contact migmatite, margin 
of plu ton, 'Last Hill 1

; c (79-332-3), tonalite dyke, southwest of 'Last 
Pond'; D (77 -75), foliated adamellite from Grand Lake Thrust zone; 
samples cut and polished; scale in em; for location of samples see Figure 
30, Appen~ix D. 
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·JO* brown biotite. 5' pink, garnet porphyroblast~ (2 nm size). and 

' accessory epidote. ugnetlte and ear.bonate minerals. Biotite marks ~ 

strong foliation (52) In this rOck, while the ampnlbo~e defines a weak 

llnutlon (L2). It Is notable that all amphlbolltl~, rocks In the complex, 

as well as their gneissic hosts, record 02 and later deformation effects, 

and thus clearly pre-date that event. 

/ 
The amphlbolltes found throughout the Tonalltle gneiss complex are 

Interpreted to·be the metamorphosed •nd strongly defonmed r&lles of basic, 

lgreous dykes and sills. which Intruded the complex prior to the · D2 

deformation event. The general concordancy of the amphibolite byers 

to the gnelssoslty and the dominant regional foliation (S2) Is thought .... . 
to be the result .of their reorientation dur:,lng the intense 02 event. It 

may •lso reflect an original 1 slll·llke 1 form In some parts of the complex • 

Granitoid material 

White and pink granitoid veins and dykes are found In virtually 

all outcraps of the Tonal i'tlc gneiss c0111plex. These acidic Intrusions 

generally parallel the gnelssoslty and the amphibolite layers, but locally 

are discordant to both, and, In addition. post-date 02 structures In the 

host rocks. ~ver. the .Intrusions are defonmed, and record the effects 

.of the D3 defoma~~tlon event, which locally l.nvolves boudinage of the dykes, 

especially In the southern part of the complex. 

The caa.on quartz and pink feldspar content of the granitoid 

M8.terlal lnds one, upon cursory examination In the field, to describe 

the Injections as 1granlte 1 (sensu stricto). However. staining for pot1ss lum 

and thin section study Indicate that plagloctue Is the d011lnant, and often· 

the only, feldspar, and thus the rocks are actu•11y •damellltes or 

'. 
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tonalltes. Sampling~~ not thorough enough to detenmlne the extent and 

relationship of t~e . two compositional types. 

One pin~ adamellite dyke sampled from th~ outcrop overlook ing 

'RAdio Pond' Is narrow (10 em), discordant, and aplltlc, and consists of 

plagioclase (SOl) rimmed by K·feldspar (3St), quartz (10l), and minor 

amounts of chlorite and sphe~e (sample 43, Figure 7). This dyke Is 

also distinctive for Its 2 em wide rim of chlorite, containing euhedra.l, 

clear qu.rtz crystals (1 an long). A pink and white tonalltic: pegmat ite 

ls .found In the s ... outcrop, and both th6 p~gmatlte and the apl ite cut 

mylonltlzed reeks~ but •re only mildly deformed themselves. 
' - \ 

Another coarse-grained Igneous vein, located about . lOO m south 

of the bridge over 'Triplet !rook', and consisting of white quartz and 

{1 to 2 em), magnetite aggregates . 

I 
I i~ht green plagioclase, Is notable fo\ i.ts high content[ (20l) of coarse 

Kost of the granitoid veins and' dykes which lntr~de the Tonalltlc-

gneiss. complex .are Interpreted to be apophyses of the late acidic Int r usion 

represented by the Last Hill •d.nelllte (described In section 3.4). 

> 

3.3 Antler Hill fo~tlon 

' The Antler Hill formation (proposed n ... ) underlies the central 

part of t~e main outcrop area of t~e gneissic terrane (Figure,), The 

fo~tlon consists of quartzofeldtpafhlc schists and gneisses, a minor 

anount of pelitic rock (<St). and a distinctive, but a really ,.lnor (<St), 

qu.rtzlte and c:alc•slllc:ate schist sequence referred to as the 'Quartz i te 

-..be~'. The unit also Includes numerous granitoid veins and dykes, and 

• S..ll -.aunt" of a.phibollte. 

Exposure of the fonRetlon Is very poor, and o~rop are rest r icted 

mainly to hilltops. Relatively good exposure exists In the vlclnl t y .of 

. ·~ .... -. : . . 
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'Antler Hill'. which serves IS a suitable 'type locality' for the forrNtlon. 

(Note: In the absence of formal geogr.aphlc names In the lrrmedlate vicinity 

of a stratigraphic unit o_r structural feature. lnfor""l names have been 

assigned by the author~) 

The bulk of the fo!'~Mtlon consists of fine-grained. rusty­

weatMrln~ qu•rt:ofelds.,.thlc sc_hlsts (umples A and a. Plate 7) • con­

sisting of essentially quartz (25-65'). mildly uuuurltlzed end serl­

cltlzed plagioclase (lt0-60*), and brown to greenish-brown biotite (10-20\) 

(fable 3). Red gunet por,pbyroblnts (5•10t) are also conmon. but ue 

typically smell (2 nn) end partly to totally chlorltlzed. ·In pelitic 

layen. the porphyroblasts locally 'reach 1 c:m size. Muscovite Is rarely 

present In excess of the sericite t,Seveloped by feldspar alteration. 

Similarly. the epidote_ and chlorite present ere chiefly alteration products 

of plag loclase, and blot I te and garnet • respect lvely. Opaque oxides. 

Nlnly !nfgnetlte, are present only In minor amounts ( <lt). and K·feldspar 

.Is completely absent. 

\l . 
A relatively strong schistosity defined by biotite Is the 

' 
dollllnant structu'ral fea.ture In most outcrops~ and throughout the unIt 

It ~rallel• the st-pl y southe~st..:ci I pplng reg lanai fol_latlon (S2'}. 

Cinelsslc structure (ca.posltlonel layerlng) Is rel.atlvely rare, and where 

preaent Is defined by poorly dlfferentlued, leucocratlc and IMianocr•tlc 

layers (1 to 2cf"' th_lck) (sallple A. Pine 7). On the ~Ia. 1110st outcrop• 

are rather 1110notonous. display I~ I! tt le varh1t Jon except for ublqul taus 
. 

gran I told vel ns •· and scattered thIn ( < 30 en~) pel It I c layers con tal n I ng 

prnet po~yroblest•. White quutz vein' up to 1 m thlek ere also c0111110n, 

encl typl~lly trend •t high angles to the schlstoalt.y. 

Mo•t of the gr~~nltold •terlel In the fonnetlon Is represented 

by ..ctl&~r to ~rse-gnlnect.-Wtlte -,to pink 'Veins and dykes. which ere 
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PLATE 7 

Repres entative hand specimens of Antler Hill formation A (78-25) and 
B (79- 330), rus ty-weathering, quartzofeldspathic schists; C (77-A-6) and 
D (77-A-3), grey and white quartzite (C), and green, actinolite schist (D) 
of Qua rtzite member; samples cut and polished; scale in em; for sample 
locati on see Figure 30, Appendix D. 



I 

49 

TABLE 3 

POINT COU~T MODAL ANALYSES - ANTLER HIll FORMATION 

, , 
I 

Quartrofeldsp~hlc schists .QuartzIte member 

Sample I A-7-1 25 A-7:.2 A-3 69 

Quartz 6Sl 32l 26l 2% .97% 

K-feldspar 10 
Plag loclase Zit 41 60 32 
MuscoYI te * 4 .: tr ** 
&loti te 11 16 12. tr 

Phlogoplte 7 

Act I noll te 36 

Gernet 7 
Tounn.i II ne 2 

Epidote * tr 13 
Oxides tr 2 

I Points 81t7 1039 766 1023 9lt5 

• amount does not Inc 1 ude rep 1 acemen t or a 1 te rat I on products 

** tnce ll'IIOunt (<< 1 ') tr -

Samples: 
J_., 

- grey to buff. biotite schist (77-A-7-1). 'Antler Hill,' . 

• buff. Ill ot I te•garnet schIst (78- 25) • 1 fok)ose H 111 1 
• · 

• g,rey, biotite schist (77-~·7-2). 'Antler Hill'. 

A-7-1 

25 

A•1•2 

A-3 - green, act I noll te schln (77-A-3). from Q.uartzl te ~~~tr~~ber near 
'Antler Pond'. 

- gr_ey and white quartzite (78·69), fr0111 QuutzlteiMI!Iber near 
'Antler Pond'. 

. . 
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virtually Identical to those cutting the Tonalltlc gneiss complex, and are 

likewise Interpreted to be •pophyses of the Lut Hill •dMtelllte. The 

Injections Ire generally 3· to 75 em wide, •nd con~rdant to .the dominant 

foliation (S2). Dl"ord•nt dykes •nd dykes exhibiting boudinage are 

found locally. The general concordancy of these Intrusion!! Is· thought to 

reflect control of the path of lntru!llve ~nterlal by the strong planar 

ani sot ropy (52) of the host r~ks. 

Only two dykes In the forrMtlon were sampled, one on the west 

sIde of • Hoose HIll', the other on the SUIIIIII t of • Antler HI 11', . and both 

were found to be tonalltes. · It Is uncertain how much of the Nlterlal Is 

ton•ll tIc, but I t seems II kel y · that botJ, tonall te and a dame 11 I te composItIons 

are flresent, as for granitoid dykes In the Tonalltlc gneiss complu. 

Amphibolite Is less abundant In the Antler Hill formation t~p 

In the Ton•lltlc gneiss complex, and only one exposure of quartzofelds-

pathlc schist was noted to contain amphibolite. Located on the south side 

of 1Antler Hl11 1
, the exposure contains medlu11-gralned, biotite amph ibolite 

forming several concordant l•yers {10 'to 30 Cll thick). The Amphrbol l te 

displays the S4Une D2' structures as the host schists, •nd .the layers are 

Interpreted to M Ntamorphosed, pre.,.02 bulc dykes, pr their extrus ive 

equivalent, related to ~sic Intrusions In the Tonalltlc gneiss ~omplex. 

quartzite member 

The Quartzite Nlftber c:omprls•s an lnterlayered sequence of 

qu•rtzltes •nd c:alc:-slllcete sc:hlsts, which outcrops on the_ north _side of 

'Antler Hl11 1
, •n4 Is entirely within the quartzofeldspalhlc schist 

sequence. The member appears to be of I tmlted areal extent. as the only 

outcrops observed Ire restricted to a smell stream running Into the south 

end of 'Antler Pond 1 • The nature of the conteet with the quartzofeldspathlc 

,. 
. ... .. -'·--· ~ - . - - . ...... . . 
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schists Is unknown, but It Is noted that the compositional layering and 

the schistosity In the sequence para11e1 the l•yerlng (bedding?) and the 

daninant foliation (52) In the surrounding quartzofeldspathlc schists. 

The q1.1artzltes are glassy, fine-grained, grey to white, and contain 

more than 95% quartz. The ac:c:essory minerals' (< 5%) Include, In order 

of abundance, brown tourmal. ine, epidote, bl .. ot.lte, and muscovite, and all 

appear to be detrital In origin (Table 3). Some of the quartzites are 

rusty weathering, and some contain aJternating, grey and white layers . . 
(1 c:m thick), as welJ as thin (2 11111) layers of small (0.5 IMI) rounded 

"' 

grains of tounnallne. Both layers probably represent relict sedimentary 

bedding, and both parallel the fol iatlon (S2) In the surrounding schists.' 

lnterlayered with the quartzites are a variety of brown-weathering, 

light to dark green, calc-silicate s[~ists. Fine-grained, actinolite 

schist, which appears to dOMinate the sequence, contains actinolite (36%), 

albite (32%), epidote (13t). phlogopfte · {7'), K-feldspar (10%), and a 

small amount ~f quartz (2t) (sample A-3, Table 3). Microprobe analysis 

verified the actinolite CO'IIposltlon of the light green c.nphlboJe, and the 

phlogoplte composition of the brow~. mlca (see Tables 13 and 17, and Figure 

28, Appendix B). The phlogoplte Is partly altered to chlorite, and 

contains Inclusions (allanite?) with pleochroic haloes. Phlogoplte, 

actinolite, and epidote CO'IIbfnil to mark. the weak schistosity . (S2). 

K-feldspar Is 'closely associated with albite, and appears to rim some of 

the plagioclase grains. 

Another calc-silicate rock from the sequence is a me41um-gralt-=d, 

tremollte-dlop~lde schist, containing tremollte {50%), dlopslde (10%), 

c~ lnozohf te (10%), plag loclase (7t), end K-feldsper {3%). In thin 
" 

section, dlopside Is lnten5ely fractured and almost totally altered to 

tremoJite. which Is Itself kinked. Plagioclase fonws patches, and has 

! 
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.. 

Sl 

associated fine-grained ma1ses of cllnozolslte as alte~atlon products. 

K-foldspu hu tho s~ rl11111lng relationship to the plagloc:l•:se as noted 

above for the •ctlnollte schist. 

The mineral assemblage of the calc-silicate schists and the 

association with quartzite suggests a calcareous sedimentary protollth. 

The presence of dlopslde in this lltoolog)' indicates th•t lower amphlbol lte 

facies conditions may have been reached In the meftber. That similar grade 

conditions were attained by the format-Ion as a whole Is suggested by tl)e 

occurrence of ~lbollte layers, while the garnetlferous pellte layers 

lndfc•te at least epldote""amphlbollte facies conditions • 

. No granitoid veins or amphibolite w.re found In the Quartzite 

member, but their presence cannot be ruled out. 

The sedimentary nature of the Antler Hill formation .Is Indicated 

by the presence of quartzite •nd pe.l Ito Jayers, .ttlch clearly represent 

rei let beds of quartz arenite and shale, respectively. The quar~zofelds~ 

pathlc schists fon.lng the bulk of the form.tlon •re Interpreted to be 

metamorphosed arkosic sedl~~ents, whl1e the calc-silicate schists of the 

Quartzite member likely had. siliceous dolortlte or siliceous dolomitic 

limestone protollthology. The arkosic natur• of the quartzofeldspathlc 

schists and the relative scarcity of pelitic rocks suggests a near source, 
; . . 

relatively high energy depositional envl.rontnent. The quartz arenite/sill-

ceous cubonate sequence represented by the Quartzite member also suggests 

a relatively high energy environment, but one farther removed from the 

clast lc source. 
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PLATE 8 

Representati ve hand specimens of the Last Hi II adamellite A (79-332-2), 
adame llite, summit of 'Last Hill'; 8 (79-332-1), contact migmatite, margin 
of pluton, 'Last Hill'; c (79-332-3), tonalite dyke, southwest of 'Last 
Pond '; 0 (77-75), foliated adamellite from Grand Lake Thrust zone; 
samp les cut and polished; scale in em; for location of samples see Figure 
30, Appen~ix D. 



'f/ 

., ··· l 
•. 

\ 

/ 

I .; 
I 

~ /· 
/ 

i 
I 

55 

T~LE ~ 

POINT COUNT MODAL A.NALYSES LAST HILL ADAMELLITE 

S•ple I 

'Qu.ru 

. Mlcrocllne 

Plagloclue 

Hus-covl te ** 
Biotite 

Epidote ** 
Chlorl te ** 
Opaque ox I des 

Sphene 

Apatite 
I' ., 
~olnts 

* ' 

I 
I 

/ 

.i . 

28 

. 26t 

34 
38 

tr 

tr 

tr 

tr 

1039 

332 . 

·tr 

2 

2 

86) 

• 
11 

19' 
37 
39 
tr 

3 

tr 

598 

po$slbly unrel•ted to List Hill adarnell ite 
/ .. 

*** 

-.ount does not Include •lter•tlon products 

/ *** . · tr -l . . 

S-.plei: 

43 * 
lOt 

35 
50 

. 3 

2 

699 

107 • 

1.3t 
15 

29 
17 

tr 

2 

3 

tr 

1079 

28 - pink. tMdhn-gr•lned, leucocratlc: adamellite (78-28), s__.lt 
of 'Last Hl11'. 

• .. 
332 - pink. leucocrat le tonal! te (79-:'332-1). 100 111 southwest of 

• Last Pond •. 

~/ 

11 
~ . 0 

... brick-red, foliated, biotite •d-IHte (78-11), 1 lcm southeast 
o~ 'One M I le Pond ' • · ., 

107 

- pink·. •plltfc adamtUlte (77-~3), 
. compl~ overlooking 'ltadlo Pond'. 

. . ,I 

from outcrop of Ton•lltlc gneiss 

- fine-grained. follat~. .O...lllte (78-107),, 1 km east of 
. ' ::"- ., 'Whl te Ridge 0 

.. · ···----~-----..--.~---· --~k:_: 
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araa appears to be a transition zone between the adamellite pluton and the 

adjacent schists of the Antler Hill formation, and the layered rocks 

probably represent contact (11t-par-11t) migmatites. No other contact 

effects, such as chi lied margins or aureole ·development, were found. The 

pluton Is apparently faulted on the south, east, and west sides against 

the Tqpalltlc gneiss complex, or the Antler Hill formation. 

A pink. medlwa-gralned tonalite (sample C, Plate 8), collected 

from 100 m soutl"twest. of • Last Pond', is thought to be related to the 

intrusion, but the exposure Is poor, and the relation Is uncertain. The 

fact that It Is separated from the core of the pluton by the marginal. 
••• • > 

contact m I gNt I te zone suggests that it may be an apophysIs of the 

I nt rus I on, II ke many other tonal I te veins and dykes foun'd throughout the 

gneissic terrane and In nearby units of the metaclastlc: terrane. 

Several notable ·~~lllte dykes are found elsewhere In the 

gneissic terrane. For ex~le,_wlthln the Tonalltlc gneiss OQDPlex near 

the southern end of •o~ Hlle Pond', a foliated adamellite (sample 0, Plate 6) 

Is mineralogically stmnar to rocks on 'Last Hill' except that It has a 

'" s 1 ightly higher content of brown blot I te (1 0~) and oxides (St). Another 

adamellite from the s~ part of the Grand fake. Thrust zone has been partly 

my 1 on l~t I zed by movements In the ~one. The fe I dspa rs In. thIs rock are 

~trongly defonned (plastleally) and p.rtly recrysullized, and muscovite 

appears to have formed as a product of the K-felds~rl.breakdOioln. Both 

· these rocks are Interpreted to be related phases of the last Hill adamel-lite . 

Some granitoid material In the gneissic terrane, however, appears 

to be unrelated to the L•st Hill Intrusion. One example Is the strongly 
I 

defonned granitoid rock outcropping on the shore of Grand lake, about 1 km 

east of 'White Ridge Brook'. This fine-grained, plnk :adarnelllte con.Uins 

about 17' muscovite, and has a ~trong early foliation (S2) marked by 

I 
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muscovite, and elongate feldspars an4 qu.11rtz (sample 107, Table 4; see 

also Figure 7, p. 38) . The early foliation Is folded on a 5 mm scale, 

defining an Incipient crenulatlon cleavage (S3). Both the high muscovite 

content and the· presence of ~wo foliations are atypical of the last Hill 

adame 111 te, and It Is suspected thU thIs I I tho logy Is rel•ted to an 

earlier, acidic, Intrusive. event . (pre-02)~ 

Another granitoid . rock which Is possibly unrelated to the Last 

Hill Intrusion Is the pink aplite dyke described previously, from the 

outc:rop . of mylonltized gneisses overlooking 1 Radlo Pond 1 (sample 3, Table 

4). This dyke Is .d15Fordant and only very mildly deformed, suggesting It 

.. ight post-date the _D3 de format ion event which .affected 110st of · the 

granltoldrocks In t~ IINip area. In addition to the s·tructur•l evidence, 

chemical analyses plotted In Figure 8 (p. 61) Indicate thilt both the aplite 

(point lt3) and the ada.nelllte with two foll•tlons described above (point. 

107} are chemically distinct frC¥11 the other analyzed granitoid rocks In 

the area. 

3.5 Stratigraphic rel.lltlons. age and correlation 

The orthognelsses In the Tonal I tJc: gneiss complex are In sharp 

lithological and text~ral contrast to all other rocks In the map area, 

1nd It Is clear t~t the Intrust~ event they represent· pre-dates the 
. 

· other biO units In t1'1e· gnelss_lc: terr~, as no Intrusive effects on these 

unIts are found . UsIng the s-. negU I ve evIdence, It can be argued tt\at 
. 

the caaplu Is the oldest unit In the map area, as effects of its Intrusion 

' 
are not recorded anywhere. However, mOre subsu•n.tlat.· ca.rroboratlng 

evidence does exist . 

The gnelsses}n the c~lex have been traced across Grand Lake to 

the south (KnaPP et 11 . 1g79). where they h1ve been interpreted to be 

--·--··-.. ·- ......-.-. .. .,..:,._ 
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~rt of the Grenville basement (Long RAnge complex), based on the presen~e 

of relict granulite facies mineral assembl~ges, their textural contrast 

with nurby metasediments, and their .usoc.latlon with anorthosites 

(Martineau 1'80). A very dlstlnttlve ~eromagnetlt signature associated 

with these gneisses can also be traced •cross the like, and serves to 

~fi~ their c~tln~lty. Thus, based on this ~orrelation, the Ton~litic 
gneiss complex Is Interpreted to be the northern extension of the basement 

complex to the south, and, therefore, to represent part of the Grenville 

-basement of western N.wfoundland. 

A granite gneiss from the southern shore of Grand Lake {see -map 

In ~ket) yielded a single K·Ar (biotite) date of ~52 t 20 Ka, which fs 

interpreted to reflect the time o~ 

morphism of the gneiss (Wanless et 

latest Intense deformation and:meta· 
-1 

al. 1965). ~sed _on the results of the 

presen.t' work, the Ordovlcl1n age would appear to reflect rapid cooling 

following the 'utensive reworking of the basement rocks during the Njor 

Taconic Orogeny. This phase of baseme~t reworkfn~ will be discussed In 

more detal I In section 8.2. 
) 

Contacts between ·the Antler Hill fo~tion end the Tonalltlc gneiss 

complex- are not exposed, but are • arently faulted In thtt southeast near 
\ 

'Morning Pond'. and My be In' faulted near 'Bear Hill' ln ·the north-

west. The fonMtlon lies s ucturally above the canplex In the area east -

of 'One Hlle Pond'. and In the ~OIIIP I ex as 

bas-.nt. It Is proposed that'; originally-, the arkosic rocks of the Antler 

Hl.ll formation stretlgr~phl~lly overlaid the .,.semiant roC:ks. The 
~ ' . 

similarity ~f oomposltton between the met--arkose\ and the . basement, 

notably the total absence of K-feldsp•r .• sugg·u_~"~ _ that, the protoliths of 

·-the fo,..~fon IMY have been derived directly frail the underlying basen..nt 

ea.plex. If this Interpretation Is correct, the original ~ontact w.s an 

- j.· 
,,J 
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unconfonnl ty. 

8oth the Tonalltlc gneiss complex and the Antler Hill formation 

contain metabasl~ rocks which record the effects of the 02 defo~tlon 
{;.;. 

event. This event Is c:Glrelated (section 11.1) with the Taconic Orogeny 

of Ordovi~lan age, end thus all these rocks are pre-Ordovician In age. 

Regional correlation above suggested 1 Hel lklan age for the Tonal I tic gneiss 

complex-; the s ... approach can glv~ • generalized time fr~ -for the other 

rocks u wll. It ~· noted (section 1.3) that the stratigraphy of the 
II 

Humber ~one records late tt.drynlen rifting of Grenvillian basement, with 

contemporaneous deposition of Hadrynhan-C..Orlan arkosic sedl,.nts and 
' i ' 

Intrusion of late~-lan'· dlabase dykes .Into both bes...,t end besel 

clastics, with the dykes aho._.feedlng volcanic flows In the clastic sequenc.r=-' 

This distinctive regional essoclation of gneissic basement, arkosic s~ 

mants end basic Igneous rocks his 1 clear correlative In the map area. 

Based on the obvious regional correlation, the Antler Hill formation Is 

Interpreted to be part of the Hedrynlan-C..Urlan, basal clastic sequence 

deposited on basement, and the amphlbolltes In the' fona.tlon to be meta­

morphosed, late Hadrynian, basic dy~s or flows. The original stratigraphic 
' 

position of the Quartzlte\llelftber In the Antler Hill fo.-..tlon Is uncertain, 

,but It Is suspected, In view of the regional stratlgr•phy, to be In the 

upper part. 

Llthol09l~l c:orrelatlves of the Antler Hill formation In the 

COrner Brook Lake aru are represented by the •ta-erkoslc rocks of the 

~rlbou L•k• formation (tectlon •• 1) In the .. taclastlc·terrane. In the 

area south of Gr•nd l.eke, only alnor ~nts of · rocks equivalent to the 

~rtz I te ..._r have been rec:Q9n I zed In f au It b I Oc:ks (Mart I neau 1980) • 

The ~hence of the bulk of the fonMtlon may reflect gr,ater uplift and 

eroalon to upoae deeper crustal levels In that r~lon. 

- ~ -· ... • ~-~ I " 
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The 1cldlc Intrusive rocks of the La•t Hill •d ... lllte cut, 1nd 

thus post-dlte, the Tonelltlc gneiss complex, the Antler Hill format l o~, 

and the .et1baslc rocks they contain. Field evidence also Indicates the 

Intrusion post-dltes the 02 defona.tlon event (Taconic), but p~e-d•tes · the 

slightly less Intense D3 ~efor.etlon event, which Is correlated (section 

11.1) with the Ac.dlan Orogeny of Devonlen ege. This ..OUld suggest Intrusion 

of the List Hill •~I lite ~curred .during the late OrdoYicl1n to Devonian 

lnterklnematlc lntervel. 

The structural timing of Intrusion Is also supported by Isotop ic 

detlng (K-Ar ~biotite) of a grtnltold dyb .. fram the shore of Cirand u ke 

SOO. e1st of 'White ~ldge Brook'. which has yielded an age ~f ~20 ~ 20· 

"- (W.nleu et el.- 1965). Thfs .. SIIurlan age • . \.11 conjunction with structur• l 

and ~a.or~lc evidence to be presented (unit ·II), suggests the Intrusion 

mey tw. colnolded with the last stages of ~k •t~rphlc conditions 
~ 

which prevailed during DZ and post-D2, pre-D) tl•. The ega elso suggests 

'the Last Hill adMMlllte My be related to the s- Igneous !~vent that 

generated the Slluro-Devonlan Topsails Batholith to the east of the .. P 

area, ~ses of ~lc:h have been dated It 386 ~ 9 and 419 t S Ma (Rb-Sr 

whole rock dates, report8d by Taylor ''et al. 1980). 

To test this latter suggestion. c~lcal 1nalyses of gran itoid 

•terlal frOii the ·Corner lrook Llka area .-re ca.parecl to data fre~~a the 

Topaalh Igneous COIIIPiex. Figura 8 shows .. jor el..,ts and se lected 

trace alements plotted ageinst SlOr .hwllyses of 23 per~l.-lnous cgrenltaa 
~ . 

fra. the Topsells complex (taken fr~ T1ylor •t el. 1,SO) define the fl•ld . .' . 
outlined (dashed lin•) In uc;h dl•grllll, whll.e the five lodl v ldual . ~PQ i nts 

Identified In F~gure 8A represent •naly .. s of five s.mplcs of granitoid 

aaaterlal frG~~t---the '!'IP erM. (Detel is of t,_ flv• analyses. and locat Jon 

of the samples are given In Tabla 12, Api*Nfht A and Figure )0, Ap~lx 
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D, res pee t I vel y. ) 

Altho119h statfstlc•lly reliable evaluation 1s not POSSib-le with 

Only five •amptes from the area, a number of futures of Flg~o~re 8 are 
.. . 

highly suggest Iva. ~st notable Is the strong c:c~rrelatl_on bet ... en the 

s..ple frQII the core of the-Last Hill pluton.(polnt 28,.Figure ~)and the 

Topsails granites. An equ.lly gOod correlation exists for - the two 

brecciated granitoid roeks (points 276 and 280) teken fran neal'," the Cabot 

F'41ult zone, suggestl119 a relation to both the Last Hill ad ... ll ite and 

the Tcpnlls c0111ple.x. In contrast, the grar::tltold rocks (points 43 and 107) 

previously dlstlnvuhhed frO. the Last; Hill adMteiiHe on structural grounds 

(section .J.It), aho appear t~ be chenllcally distinct fr011 both the Last 
• 

Hll1 and Topsails -·Intrusions. 

South of Grand Lake, the Goose . HII_I and Hare Hill gran 1 tes 

("-rtlneau J,SO) undoubtedly represent the ~ Intrusive event as the 

Last Hill adamellite. It ·rs 'also notable that HartlnNu (198o) reports 

the local oc.c:urrence of hllst lngs I te In t'hes~ rocks, wnl c:h suggests dIrect 

correlation with the .,re peralkallne phases of the Tcipselh bthOIIth, 

To ''-""'-rite, the oldest unit in the gneissic terrane, the 

Tonalltlc: gneiss complex, represents pai-t of &he Gren;lll tan basement of' 

western ttewfound I and. · The comp l•x Is over Ia In by the Nl n 1 y me ta-u kos I c; 

rocki of the Hadrynlan-C..Orfan Antler Hll I fo,...tlon, and both units are 

· cut by .late HadrynIan bas I c dykes (now «nph I Do II tes). . The whole sequence 

was Intruded by acfdlc; rocks of the sr lur()Ao.Devonfan Last HI,JI adamellite 

.. . 
. .. ··~--·--···-·- -·-
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CHAPTER 4 

HETACLAST I C TERRANE 

4.1 IntroductIon 

The meta~lastlc: terrane enccmpasses the extensive tectono-strati-

graphic sf!quence underlying the eastern tl.lf of the map area (Fig~re 9). 

The sequen~e consists of a varied assemblage of intensely deformed and 

highly met.morphosed rocks, whic:h Includes feldspathic schists and gneisses, 

quartz-mica schists and quartzites, marbles and calcareous schists, and 

minor amounts of mee.conglomerate, granitoid 111aterial, amphibolite and 

meta-ultrab.aslc rocks. 

The sequence Is divided Into four lithologic units, three of which 

are newly proposed. The unl ts are: 1 I the CarIbou Lake format I on • 
' 

(proposed). 2./ the Mount Musgrave formation (redefl ned after l'lcKII lop 

1961). 3/ theTwllJick Brook fonutlon (proposed), and 4/ theSerpen-., 

tinite unit (propos~) ·~', · The Caribou Lake and Mount Musgrave form.ations 

each occupy about ·It~· of the .._tac 1 ast I c terrane, the Tw I 1 1 i cl<. Brook 

format I on about 1 0*, and the SerpentInIte unit less than· 1%. 

The terrane occupies a long (SO kill), sinuous, northeast-trending 

belt which varioes In width from about 5 knl neu 'Snowbird Lake' in the 

south. to about 17 knl nu r Eas tarn Lake In the north. The terrane Is 

bounded on 'the west by the Stag Hill and Corner. Brook Lake Thrust zones, 

and on the ust by the Cabot Fault and Grand lake. Its northeut side Is 

marked In part by t~ Soutf:\ Brook Fault, and In part by the unc:onformabty 

overlying CarbOniferous sediments In the Deer Lake basin. The presence 

' ' 
of typical metaelastlc terrane lltholo91es both south of Grand Lake ,, 
(Knapp ~t H. 1979) and nol"th of the H1111ber River valley (Baird 1959; 

Ll1-ly_..l~3)- suggests continuity In both these directions. Similar rocks 

- ·-· ·----.. - - ·----- -- - ····-·· ·--~ ----·-- - .. .. _ _ __ ... _ , _ ___ ----···· .. 
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cz::J SER~NTINITE UNIT C CAitaONIRitOVS 

1111 , 
' > D MOUNT MUSGIIIAVI ,ORVATION 

I 

FIGURE 9 •. DISTRIBUTION OF UTHOLOGIC UNITS IN THE METACLAmC TERRANE 
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m.ly also be present beneath ophiolitic rocks on Glover Island, east of 

th~ map area (Knapp et al. 1979). 

The o_utcrop pattern of formations In tile terrane Is controlled 

~lnly by major, northeast-trending upright folds (F3 · and F4), but the 

fold patterns are considerably modified by late-stage block faulting . 
. , 

The shoreline of Grand lake, from 1 Whlte Ridge Brook• to 

1 tt.ilfwey Point' and northeutwa'·rd to Northern Harbour. provides the best 

exPosure~ The outcrops are clean and relatively continuous In places, 

but all the lithologies ·are not represented. The shoreline northeast of 
•Halfway Point', for example, Is essentially parallel to strike, and thus 

displays a ll11lted v.rlety of lithologies. Most of the shoreJi.ne outcrops 

had to be examined from the ~t. as beaches are rare. Outcrops along the 

Trans Canada Hl~ttw.y In the Humber River valley provide fair qual lty 

exposure; no outcrop was found •long the • Northern H.rbour ~d •. 

Hilltop and stre..,..bed exposure Inland Is relat lvely)'~d_.._~~~ accessibility 

I ' Is 1 problem. Study of exposures along the transmission IIne'J between 
\ 

Northern Harbour and Breeches Pond provided abund,,t dete on stretlgr•phy 
~ / 

and struct~re In the northern part of the terra~~. 
I ' \ .' 

The In land terral n Is very rugged, a net__ re 11 ef 1 ocall y reaches 

350m. The height and steepness of hills around the southern, eastern and 

northern 111rglns of the terrane make access difficult and dictate that access 

will be from the west, or from the aln 1 Gull Pondlfoed' and 1 Corner Brook 

l•ke Road' allow partial ac:i:ess, _but only "to the western part of the terrane. 

•steady Srook lake Ro~d• ' penetrates farther Into the ~. terrane, but enters 

through a deep U•shaped valley with mlnlinum exposure. 

Lithological des~rlptlons of units In the metaclutlc terrane 

are presented In the following four sections, and discussion of thei.r .· 

stratigraphic relations. ages and corre1atlons In the fifth section. The 
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final section of" this chapter contains a br-Ief deBcriP.tlon and discuss I on 

of the Carbon I fert>us rocks whIch fonn the northeastern boundary of the 

4.2 Caribou Lake formation 

• 0 

The Caribou Lake formation (proposed name) Is • varied sequence 

of dominantly feldspathl_c metasedl~~ents which underl les • large portion 

of the metaclastlc terrane (Figure 9). The formation consists of albite 

schists and gneisses, quartzofeldspathlc schists •n.d gneisses, metacon­

glomera:te, and lesser .mounts of quartz-mica schist, q~lrtzlte : and tellte. 

Gr 11n I to I d vel ns and dykes and bu It rocks rep resented by Mlph I bo 1 I te end 

greenschist ere also present. 

Excellent exposure of the format ion Is .found elong the shore of 

· . Grand Lake southwestward from Northern Harbour. wh lie the best Inland 

.Xposures ue found on h 111 tops l.n the northern part of the terrane. The 

geographic separat ton of lithologies. In the fonNit lon makes assignment of 

a sfng le type local I tv lmposs t bl~. 

The fo~tlon Is divided Into two distinct members, the Albite 

schist member and the Met11conglomerate member. The former Is areally more 

extensive and Is - estimated to reprl!!sent about 75~ of the formation, while " 

the latter accounts for only about 25%. 

Albite schist member 

The AlbIte schist member underlies the entern put of ,the 
~ . . . 

formation outcrop ar~a, and consists of ~dlum• to coarse-grained 

schistose, and less ccmmonly gneissic rocks containing an abundance of 

'albite porJ;>hyroblasu (usually >30t)(Plate 9). The member also ln~ludes 

. .._-..... -

' '. 
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PLATE 9 

Representative hand specimens of coarse albite schist A (79-256), B 
(78-1 66), and E (78-158), from core of Steady Brook Lake Anticline; D (79-
286), F (78-146), and C (78-134), from eastern margin of area, east and 
south of Corner Brook Lake; samples cut and polished; scale in em; for 
sampl e location see Figure 30, Appendix D. 



'.··') . ' 
. l ~ 

i \ 

/ ,...__ 

/ 
68 

1 ~ignlflc.nt proportion (1G-20t) of quartz-rich rocks, ranging frail 
1 

qua rt.z-m I c:.a schIst to pure quartz I te, as wei 1 as pe II tes. A 1 bIte pc~rphy­

roblasts are typically less abundant In the quartz-rich layers, but ~re 

rarely totally absent. Pelitic layers, In c<?ntrast, c0111110nly . contaln 

larger and more abundant por.phyroblasu tlwln adjacent, less "icaceous 
-, 

layers, suggesting preferential growth of . alblte In the. pelites. 

The various feldspathlc racks in the ~ber. represent minor 

variations of ess•ntlally one basic Mineral us•blage, 'Which Includes, 

In o.rder of abundance, albite~ q\lart.z, IAUscovlte, and accessory opaque 

oxides·, epidote and chlorite (Table 5). Biotite, K-feldspar and chlorite 

are locally found In significant ( > 5l) quantities--, while garnet, tour- 1 

mallne_, calcite afld apatite are rare acc:es.sorles. 

The main textural and aaineralogi.c:al vadatlons In the membe r 
• I 

Involve graln size, the proportion of albite, and the ~nt and type o; 

" phyl'1osi I lcate minerals. Based on these c:rlteda, t11110 distinct feldspath'lc; 

lithologies are recognized: 'coarse albite schist•, . and "•lblte-mlca 

schist'. Each is noted for Its textural and mineralogical consistency 

over large distances (15•20 km). However, they may represent end-members 

· of a g r ada t I ana I sequence. 

Coars-e albIte schIst •·• ThIs II thotype outcrops Nl n 1 y In the iore 

of the Steady Brook Lake Anticline; ,and sout~rd at lea.st as fa r as 'Art's 

Pond'. fo_.,..lng. the core of the range of hi I Is Qverlooklf.\9 Gr~nd Lake. 

Stmllar rocks are uposed .east of ~ta.dy Brook Lake .- and In the area 2 km 

west of Caribou Laa... 

The coarse afblte schists are buff-orange, ntedhn- to c:oar'Se-gra_lned, 

and con.sJst of essMtially elbite (t0-8o*) ~ 9uartz. (2o-6at) ~ and ~Si=ovit'e 

(S-,.Ol) ,. es W~ell as ~ue oxides, epidOte ·and chlorite acie.ssory • lnerah 

- .. ·t.·.·,.· 
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TABLE 5 

PO I NT COUNT HOOAL ANALYSES - CARIBOU LAKE FORHA Tl ON 

S-.ple I 

Quartz 

K•feldspar 

Plag to<: lase 

Muscovite 

Biotite 

Epl.dote 

Chlorl te . 

Oxides 

Apatite · 

I Points 

. 

158 

35 
28 

1. 

6 -

1059 

Albite schist member 

134 

zn 
7 

41 ' 

14 

1,1 . ·, . 1 

1 

2 

1096 

I 

282 

22t 
' 8. 

ItO 

18 

2. 

t 
I 

3 \ 
\ 
\ 

.1039 \ 

288 

6l 

57 
' 7 

20 

2 

7 

tr ** 

Metac~glomerate 
member 

246 

52' 
21 

6 

18 

·-

157 

57% 

26 

9 

3 

3 
2 

957 1084 

-, 
.-

.~. . i 
e , . ~ 

' 
i 

. . . 
.alnly adu!a~la vein 

\ ' 

' \ 
I 
I 
I 

s , . . ~ .. I' 

I . , , , 

** tr •· traee ~unt { << 1') · \ 
! / 

Samples: r .- . / 

282 

• 
-~ _ orange-pink, .. dh.--gralned,- abll te-~artz-muicovfte 
. ' 158), from hIll top_· 1 loa, St' of Eestern -14ke. 

/ - orange~p f nk, coa rse-g ral ned, alb I te-qu• rtz-.usoc I te 
13~). hilltop 1 ._ NE· of 'Snowbird Lake'. 

schist 

schist 

. 
; 

(78; 
I 

(78-

'· 
t' 

' / .-. 

.. 
I i 

- pink, ...ctl,.-graJ,.-., ~ilblte-.nusc:avlte schist (79·282), freD shor.e ' 
of Gran_d ~ke , · 2 km · SE: of CarIbOu L•k.e ~ . 

288 ~ grHn, .. dlun~-gra'.lned, alblte-tAlc:a schist (79·288). shore of Grand 
Lake. It ~aa· ENE of • Cent·re Pond • • , 

- green-grey and pl,nk, -~rse•gr•ined, quutz-felds~r metacon-
. -g 1aner•te (79-2~-Z), ·from 'Gu 11 Pond Ro.d • · ltOO 111 NW 'Second ~ond • . 

. 21t6 

. 157 . - buff, fln~~grafned. thinly _layered, (lU&rtzofeidsp~~thi~ schist , 
(78-15"1). hilltop Z ldii,.S~ of 'Tower Hlll -1 , 

. -
.· 
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(samples 158 and 134. Table 5). Albite Invariably fonms porp~yroblasts 

ranging In ·size fr0111 2 mm to 1: em and averaging about 5 flin • . Microprobe 

~analysis of selected albltes proved them to be virtually pure albite 

(Ab88-JOO)(see Table 15, Appendix 8). ": Buff-orange to pink albite Is most 

c:onmon, but Wllte •nd purple porphyroblasts are found locally, The 
.I ' . 

\ 

albite Is typically untwlnned and choked with Inclusions, of which quartz 

Is most abundant·; other Inclusions noted are epidote-. chlorite, biotite, 

and oxides. Kuscovlte Is notably not an Inclusion phase, suggesting It 

was a·r .. ctant during alblt. formation • 

'· Where not an Inclusion phase, quartz Is Invariably undulose and 

generally more abundant In the coarse albite schists than the albite-mica 

schls.u. Muscovite, In combination with brown biotite In some rocks, 

defines the main schistosity (S2), and both micas are commonly kinked or 

folded (03 effects?)~ Chlorite Is an alteration product of biotite In 

most rocks, though It also Is f~nd locally as non-descript 'patches' 

apparently related to and post-dating the ~In foliation (S2). Discrete 

crystals of epldo\e (0.5 to 1 nm size) usually I le parallel to the dom­

Inant foliation plane, but some grains exhibiting a relatively strong 

pleochrosiM appear to be distributed randomly. Op•que oxides (0-5%) are 

ldentlfl~~es· ugnetlte where tty ere euhedral, but •lcroprobe .analysis 

of selected grains Indicated . some are llmenlta (see Table 16, Appendix 8). 

Hemetlte was found In one sa.ple. 

Garnet Is rare 1n the eo~rse albite schists, but much more conrnon 

In the palltlc layers In the sequence, where l.t is red, mildly to Intensely 

altered to 'hlorlte, and ~II (O.S to 1 mm). Tourmaline Is also rare. 

In one exposure on the trensaisslon line 1 kill northeast of 'Tower Htl1', 

..,_.ver, black, stubby, euhedr.al tourlul ine crystals (4 em long) w.ra found. 

Analysis proved them to be COIIIposltlonally schorl (see Table 17, Appendix· 8). 
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K-fel~s~r. wttlch gridiron twinning suggests· Is mainly mlcroclfne, 
' . 

Is typlc•lly present in' minor ai!'OOnts (0-5%), but locally c:.onstl tutes u . 

much u 20, .of\_' the mlnepilogy 10f the schists. Its twlblt is unusual, in 
. J . 

,that It forms ~ longate, anhe~ral •streaks' parallel to tne· dominant 

schistosity (52). It Is refatlvely undefonned, and In some schists is so 
\ . . " . . 

crowded with ln\ tuslons .which para I tel S2 tlult it appean to be 1 inter-

stltl.at' to the ~,inclusions. Thlshabit~ and it rel.atlon to the fol .l atlo~ 
. 

(post-52), sugge, ts the K-feldspar represents Incipient, polkfloblastlc 
., . ' 

porphyroblasts (~·~·Pia~ 77,.· p. 302). The significance of albite and 
: l 

K-feldspar· porphyroblast growth will be\dlscussed later In this section, .. 
' . ' 

u · well .as In s•ct r,on 1~.3. 

It Is fnter,stlng .to note that the abundance of pink to orange 
!: . ~ ~ 

feldspar In the ~~erse 1lblte schists g,lves the rocks a strikingly 
t 

•gran I told' appeatanee, and :thus fn many exposures they could be easily 
' 

mistaken for deformed granites. Undoubtedly~ It w~s these rocks which 

Riley (1~57) referred to'u •granite gneisses-• .. ·On c;:loser examination, 

however, It Is cl-.r thu much of the feldsP.r 'ts metamorphlc;, , and fts 
. ' • • ! 

growth post-d.ates the main schistosity (S2). In addition, the recognition 
D 

of relict sedimentary features (e.g •• bedding) throughout the sequen~e 

lttests , to Its sedimentary origin. 
; ......:: -:::"'- · . 

The coarse albite schists are typtc~lly 'trongly foliate~ and . . 

1 fneated. The daniMnC foliation ($2) l's Nrked by the allgn~~~ent of .micas, 

and the long &xes of feldsper and· quartz. ~·albite pOrphyroblasts also 
' 

locally r~ord a strong lineation (~3?), ~lch plunges mode~ltely to the 

north In the notthern p•rt of th• t•rrane on 'Tower H II Jl. The tlnutton 

can be seen In Pl•t• 9 In s.-ples C, E·.and F, which h•ve been ~ut paral lel 
,.-..-_, 

and perpendicular to ft. bther slgns .of Intense .and multiple defona~tton . · 

Include the coaaon developMene of .albite porp~yroblast augen, and the 
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" presence of refolded (by F3) Isoclinal folds (F2) In n.arrow (5 I!WII) quartz 

veins. In contrast to this type of quartz vein deformation, equally 

narrow granitoid. veins which parallel the domln.ant foliation exhibit only 

the IHer (F3) folds. 

(' GneIss lc stnu:tures are rather rare, and co.arse schlstose textures 
' 

predominate. · ··A typldal gneissic Structure rs found In .an exposu.re c)n the 
. 

transmission line 2 ~ nort~st of 'Triangle Pond', whefe the ~nelss 

oonslsts of alternating mica-rich .and mica-poor layers (6 em thlck)(see 

SAmple A, Plate 9) . . The layering defines a distinct gnelssoslty ~lch 
" 

parallels -~ilar, but larger scale features , ~re noted elsewhere In 

the northern pert of the terrane (Plate 10), and In an outcrop 1. 5 km 

nortt)west of 'Barren Pond' the layers contained ·relict graded bedding. 

This suggests the oampOsltlon.al layering marking the gnelssoslty probably 

represents original sedimentary bedding. Other e.uqlles of ref Jet grad~ 

bedding were .reported In similar litholOgies outcropping In 'Bittern Brook' 

to the south (o: Knapp, personal corrmunlcatton 1979). as W~tll as along 
, 

strtk.a south of Grand Lake (E. Stander. personoal communication 198o). · 

Very few outcrops of the coarse albIte schists •are c011pletely homo­

geneoUa. as quartz- and ml~a-rlch layers of varying thickness and showing 

either sharp or gndat I on• I conuu:ts are ~ cocnponents., · M.ny pelitic 

layers contain red garnet porphyroblasts (1 em size) . . In addltlon
1 

white 

qua~tz veins are ubiquitous ·•nd 1ocally account for as much u~,2~ of the. 
-

outcrop. The larger veins (up to 2 m thick) are undefo,....d and usually . 

transect the tM)n foliations (52 and $3) • suggesting they fon..d along late 

Joints and minor faultplenes. These thick velAs ere very conlnon In the 

•centre Pond' area, ~re their size and whiteness tMke thent clear ly 

visible fro. the ground and the air. . ..... 

< 
i 

i 
~ .. 
•• ' .~ 

·' ..•. 
~ 

.. ~ ., 
'/ · 
'.!· 

:i· 
: ~ 

1 
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PLATE 10 

Composi tional layering (gneissic structure) in coarse albite schists 
transm ission l ine outcrop near NE corner of 'Triangle Pond'; view NE; 
layering may represent relict sedimentary bedding; note recumbent, iso­
clinal fold (F2) just above hammer handle in lower right hand corner; 
outcrop locati on 314 - see Figure 30. 
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Albite-mica ~chJst Rocks Included In this second ujor feldspathlc 
. ' 

lithotype outcrop along the eastern rNrgJn of the IMP ar .. /and ue 

particularly well-exposed along the shore of Grand Ulke. 'They 'are, In 

gen~ral, fine- to medium-grained, and CQntaln relatively high pr6portlons 

_of both phy11osl11cate lnerals ( > 30l) and albite porphyroblasts ( > 4o%). 

The flne'graln sl%e ad high content of dark · platy •inerals oontrlbute 

' ' -to the Clark green t grey coi<>Ur (Plates 11 and 12), which tol'ltrasts wl th 

the buff-orange colour of the coarse illtlte schists (Plates ' a_ncf. 1Dh~ The 

mineralogy conprlses albite (30-J,Q%), qu.rtz (1D-4ot), IIUt.COYite (SD-50%), 
"' ·- . . . . 

blotlte · (0-20,), and chlorite (s-15=). with acces~ry epldot~ and opaque 

oxl.des (s.-.ples 282 and 218, T•ble S). K-feldsper ·'(0-1~) Is an eddltlonal 

CORtpOnen t 1 n sene schIsts, wh lle ~ 1 c: I te and ~ t I te are usua II y present 

In only •lnor MOunts.' 

loth the albite and phylloslllcate content of the schists Is 

generally higher than In the coarse albite schists, while quartz Is slgnlf~ 
' 

lc.antly lower (e.g., s.ple 188, Table S). The albite porphyroblasts, like 

those described above, are buff-orange . to pink and crowded with Inclusions, ; . 
. ' t 

but are generally ... ner, averaging about 1 -· ~longate porphyroblasts 

define a --lr. lineation (L3?) In sa. schists. &r~ bl_otlte, almoH. 

toUIIy altered tochiorlte,, ls absent ~ly where It Ns _been completely 

replaced. 1"he abundance of chlorite (5-15%) Js the slngle. 1110st sJgnlfl~nt 
. __ ., 

•lneraloglcal difference be~ the alblte~lca schlsts _ a~d the coarse 
: ... . 

albite schists~_ Epidote Ia also 110re abundant 0-5'), . and combines ~lth 

.the phyllosfllcates to ~~~ark the strong foliation (S2). - · 
I 

.. ; 
Where Jt-feldspar Is present, It has the sau pol;klloblastlc habit 

noted In the c:oerse albite sChists. A lata, fine-grained. fracture-filling, 

adularia vein rl..ad by epidote ~~ found In one outtrqp on the shore of 

Grand Lake, about 2 kll southNst of Caribou Lake.· The vein Imparts a 
.... ~ • •. 1 • 

• .. . . ~ 

. ' 

·--------- -·---:.-.··-· - ~~-- . 

j ·. 
1 

. i' 

.. f· .. 

I 
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PLATE• 11 

Green albite-mica schist fr-om shore of Gr-and Lake, 2 · ~<m · sE of Caribou 
l~ke; view NW~ outcrop location 282 - see FJgure 30. 

l 

.. 

PLATE 12 

Layer-ed, fine-grained,· green, albite-mica schist; view NW~ layer-!1 
possibly relict bedding; ou.tcrop iocatlon 283. 

.. 
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distinctive, brick.;.red and light green colour to exposed fracture surfac~ 

and its presence suggests late-stage, hydrothermal activity. 

Apart' fr:om the. st~ong schistosity (52), O!Jtcrops of the albite­

mica schists locally display crude layering (parallel to S2). reflecting 

variations in the quartz and _mica content, and, in some placf _variations 

in grain size (Plate 12). Layer thickness 't typically about 2 to 10 em, 

but layers as thick as 1m were found. Such layering 1 ikely represfTrltS 

relict sedimentary bedding, although no pure quartzite, or garnetiferous, 

pelite layers were noted. Porphyroblasts of albite are found '" all layers, 
I 

but the largest are in the more micaceous layers .. White quartz veins are 

notably scarcer . in these rocks than in the coarse albite schists. 

In the southeastern part of the formation, albite-mica schists, 

re~ording intense defonnation, outcrop around Little Sandy Point and for 

5 km northeastward along the shore, as well as in the hills above. The 

rocks are fine- to very fine-grained, dark green to black, slaty to massive, · 

and intensely fractured. They contain quartz (20-50%), albite (20-40%), 

muscovite (15-30%), chlorite (5-15%), and accessory epid~te, opaque oxides 

and calcite. Where fracturing is most intense, white calcite veins are 

abundant. Strongly fractured greenschists and granitoi-d rocks are found 

in some of these outcrops, and serpentinites have also been noted (H. 

Williams, personal communication 1981). 

The deformation in this area, which may be due to the near conver-

gence of the Corner Brook Lake Thrust and Cabot Fault zones, produced both 

mylonites and cataclasites where it was most intense (see Plates 74 and 76, 

p. 256, 258}. The mylonltized albite schists display extensive recrystal-

lization, and fh1ttenlng (ribbon structure) of quartz parallel to the main 

foliation (S2), as well as a later crenulation cleavage (53). Another 

11ylonitized lithology is represented by a quartz-rich layer (10 em ·thick) 

' 
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in the schists on Little Sandy Point. It fs uncertain whether the layer 

is a quar.tz vein or a quartzite. In hand specimen, the rock is very 

fine-grained and essentially massive, but in thin section it displays 

.strongly deformed quartz grains, which are recrystalfized and well-orjented 

parallel to the foliation (S2). The only cataclasite found was a~ albite 

schist, which displays (in thin section) intensely fractured grain aggregates 
-

of ~uartz and plagioclase set ln a black matrix consisting of very finely 
w 

granulated quartz. and feldspar, surrounded by anastanosing muscovite and 

chlorite. 

The protoliths of the Albite schist· member are not immediately 

obvious, due to the fact that both the coa~ albite schists and the 

albite-mica schists have had the.ir original sedimentary features ' exten\ 

sively modified by metamorphism, which tesulted in the profuse growth of 
-.. 

albite, and to a lesser extent K-feldspar, porphyroblasts. The metamor-

phism must have Involved considerable alkali metasomatism (mainly Na and K) 

to account for the degree of feldspar growth, which essentially 'granitized' 

much of the eastern par:t of the terrane, arid left the western part 
lo' 

unaffected. An eastern sour~e for the 'metasomatlzing fluids' is suggested 

by the areal distribution of their affects. In view of the areally 

selective nature of the metasomatism, and be«i_ause . of"general lithologic 

similarities, it Is suggested here that the coar:-se albite schists represent 

the metasomatized, easterly lateral equivalents of coarse meta-arkoses In 

the Metaconglomerate member of the formation outcropping to the west. In 

this interpretation, the profusion of albite porphyroblasts might be 

explained by the origina~ plagioclase grains ac~i~ as nucleii for porphy­

roblast growth (discussed further in section 12.3). 
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The high phylloslllcate content of the alblte•mlta schists makes 

them somewhat anomalous In relation to the other rocks In the fonmatlon. 

They are tentatively Included In the memb~r beca4se of t~e11r high proportion 

of albite porphyroblasts and pro~lmlty to the rest of the member. They 

~Y simply represent • more micaceous part of the formation, ·or, alter-

natively, in entirely separate part of the stratigraphy. The high porphy­

roblast content of the schists coold be ~holly a metasomatic_ feature, being 

a function of both nearness to the apparent eastern source of the alkali 

fluids and a high original mica content, which seems to predispose rocks 

to albite growth. Furthermore, the restriction-Of the schists to the shore 

of Grand Lake, In or adjacent to the Cabot Fault zone, and their association 

with a large amount of granitoid material, as well as greenschist, amphl-

boJite and serpentinite, strongly suggest they may be schists of tectonic 

origin marking a major zone of dislocation. If so, the metabasic and meta­

ultrabaslc rocks may be tectonic inclusions in the schists rather than 

intrusions. 

Metaconglomerate member 

The Metaconglomerate member appears to form the western margin 

of the Caribou Lake formation, as all known exposures conslstentl}'. lie 

to the west of the Albite schist member. Rel•tlvely gqod, but lsoiate4 

exposures are found Along strike from near 'Halfway Point' to Corner 

Brook L•ke, ~nd northeastward to Steady Brook valley~ Continuity and 

extent of the member, however, are less certain than they ere for the 

Albite schist member. 

The Metaconglomerate member •lso comprises two distinct felds-

pathle ·lithologies - on Includes metaconglomerates and coarse meta-

arkoses, while the other Includes generally finer, quartzofeldspAthlc 
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schists and gneisses. Pelitic rocks, quartz-mica schists, and pure 

quartzites are interlayered on varying scales with all the feldspath i c 

rocks, and collectively may account for as much as_20% of the member . 

. Amphlbolites and granitoid rocks ' are also found in the sequence. 

Hetacongl~rates The m~taconglomerates inclutle ma-inly coarse-

grained to conglomeratic rocks, which are arkosic in composition. However, 

fine- to medium-grained rocks of simi Jar texture and mineralogy are also 

found locally . (Plate 13)~ 

The coarsest metaconglomeratic rocks are found in a large htlltop 

exposure about 2 km southeast of 1 Hawk Hill 1 (Plate 14). At this locality, 

the rocks are dominantly grey quartz-pebble and quartz-cobble metacon-

glomerates, consisting of quartz (50%), K-fefdspar (20%), plagioclase (5%), 

muscovite (20%), and opaque oxides (5%) (Table 5). A finer grained version 

of the same mineralogy forms the matrix around the larger clasts of quartz 

and feldspar, while varying proportions of quartz and muscovite form thin 

(10 em) layers dispe.rsed throughout the outcrop. 

Pink and white feldspar clasts are not as abundant (10-30%) as 

quartz at this locality, and t~ey are generally smaller (2 am) and less 

flattened (Plate 15). K-fieldspar (pink) is more abundant than plagioclase 

(white) by a ratio of at least three to one. Variations in the ratio of 

feldspar to quartz produces alternating feldspar-rich and quartz-rich 

layering in some places lsample C, Plate 13). Huscovit~ (10-20%) is 

·typically very fine-grained (sericite) . , The opaque oxide Is ma i nly 

specular hematite, which l~ally forms layers parallel to the other com­

pOsitional layers and to the main foliation (S2) (dark folded layer in 

samp 1 e C. Plate 13). 

\_ 
In .this outcrop, the conglomerate appears to be finer structurally 
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PLATE 13 

Representative hand specimens of arkosic metaconglomerates A (79-246-3), 
B (79- 246-4), and C (78-17-2) from outcrops on 1 Gull Pond Road•, NNE of 
•second Pond 1

; D (78-162-2) from •steady Brook Lake Road 1
; E (79-264-2) 

from transmission line, NE of Eastern Lake; F (79-295-2) from shore of 
~rand Lake 400 m ENE of 1 Halfway Point•; samples cut and polished; scale 
In em; for sample locations see Figure 30, Appendix D. 
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Outcrop of metacongiOMer•te 
note elongate and flattened 
84 - see Figure 30. 

Arkosic metacongl~rate 
lodged fran outcrop. 

• 

. PLATE 14 

exposure on hilltop 2 km SE of 'Hawk Hill I ; 
quartz cobbles; view .eest; outcrop locetlon 

. ..... 

PLATE. 15 

from same outcrop as Plate 14; boulder d is-
\ 
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upward (eastward) over a ~I stance of 4 to 5 m. If this is a rei let 

sed lmentary feature, the sequence is right-way up. However, the effects 

of Intense deformation have to be kept in mind. Flattened, white quartz 

~bles and cobbles with long axes up to 20 em (axial ratio 7:1) make up 

about 60% ~f the conglomeratic layers, and attest to the Intensity of 

defor~tlon (Plate .14). In addition, some of the finer layers in the 

sequence appear to be high-strain folia, or small shear zones. 

In spite of tne intense deformation, however, the distinct com-, 

positional layering evident i~ most exposures of the metaconglomerates is 

interpreted. to be relict sedimentary bedding. In the outcrop just noted, 

the layering parallels a relatively strong foliation (S2) which dips 
. 

moderately southeast, while the long axes of the quartz clasts define a 

stong I ineatlon (L27) plunging moderately southeast. 

The metaconglomeratlc rocks exposed elsewhere along -the western 

margin of the Caribou Lake formation have the same basic mineralogy and 

textural features, though they are sl lghtly frner grained. The samples 

in Plate 13, taken from various locations, display the textural and minera-

logical consistency which characterizes these coarse meta-arkosic rocks. 

The rocks exposed along 'Gull Pond Road', north-northeast of ' Second Pond' 

(samples A to C, Plate 13), are similar in their coarse grain size to rocks 

described above, but differ In their higher feldspar content. The other 

s~ples (0 to F) are equ~11y feldspar-rich, but finer grained, and they 

attest to the remar~ble textural consisten~y over a distance of approxl-

mately 30 k.m from Study Brook valley (sample D) to 'Halfway Point ' 

(sample F). Along the transmission line northeast of Eastern Lake , fine-

grained meta-arkosic rocks (sample E) are apparently interlayered with 

quartz-mica-albite s~hlsts and garnet-quartz~ica schists, and thus appear 

to be gradational Into rocks of the Mount Musgrave formation. 
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as 
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In the area north-northeast of 'Second Pond', all the lithologies 

which characterize the member are r~presented, . but the exposure is poor 

and the area is structurally complex due to its proximity to the Corner· 

Brook lake lhrust. Other lithologies appear to be tectonically interca-

fated with the. feldspath-ic rocks, most notable of which is a sequ_ence of 

garnet-quartz-mica schist and pink marb)e, possibly repretenting part of 

the Tlofi II ick Brook or·Mount Musgrave formation. Aha notewo.rthy are ' two 

outcrops o.f distinctiv:e coarse-grained, garnet-biotite schist, similar to " 

a lithology found in the Stag Hill Thrust zone to the southwest, suggesting 

it may be tectonically generated . 

Quartzofeldspathic schists 
$ These rocks are best exposed at t he 

present end of 'Gull Pond Road', about 1 km north of 'Second Pond', and 

on 'Corner Br-ools Lake Road', about 1 km north of Corner Brook Lake. The 

outcrops at these localities are virtually identical, and display buff to 

. pink, quartzofeldspathic schist and gneiss, with layers of dark green to 

black amphibolite, and locally boudinaged, pegrnatitic granitoid ro.cks, both 

parallel to the dominant foliation (S2) ~Plates 16 and 17) . A very similar ~ · 

quart~ofeldspathic lithology was found south of Eastern Lake, but no amphib-

ol ite was noted. 

The schists are fine- to medium-grained, and contai!l quartz (20-
• 

60%), plagioclase (20-60%), muscovite (5-10%), and biotite· (3-15%), as 

well · as accessory chlorite and opaque oxld.es (Table 5). _ In the exposures 

near 'Seco~d Pond' and Corner Brook Lake, quartz aggregates have a ribbon-

liKe form whlch·parallels the foliation (S2), su~gesting intense defor­

mation; In fact, in thin s~ction, the rocks ue clearly mylonitic. Plagio-

clase (mainly albite) and quartz are locally segregated into 2 to 3 mm 

layers, resulting In a thinly-layered, gneissic texture. K-feldspar is 

·. 
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PLATE 16 

Representative hand specimens of quart~ofeldspe~hic schists ·and associated 
rocks from outcrops on 'Gull Pond Ro.d' north of 'Second Pond'; 
A (79-234-1), quartzofeldspethl~ schist ~l~h p~rt of a pelitic layer on 
top of sample, · and biotite porphyroblasts (post-02) which give the rock 
a spotted appear•nce; B (78-40-1), biotite amphiboLite layer i n · schists; 
C (78-tS-1), co.rse quartzofeldspathic augen soalst; samples A and C 
cut ahd polished; scale In em; for sample location see Figure 30. 

PLATE 17 

Outcrop of quertzofeldspathlc schist containing biotite amphibolite layers 
•IIIPhlbol lte represents metUIOrphosed mafic dykes or flows; outcrop on 
'Corner Brook Lake Road' 1 km north of Corner Broek Lake; view east; 
outcrop lout"lon 40 - set! Figure 30. 

----- -

-
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totally absent in these schists. 

Muscovite is chiefly rdponsible for the generally indistinct 

foliation, while brown to greenish-brown biotite is porphyroblastic, 

forming randomly-oriented crystals ranging in size from 2 mn to 2 em. The 

schists north of 'Second Pond' display particularly coarse de~el.opment of 

these post-tectonic (post-02), biotite porphyroblasts, whi<:h are dispersed 

throughout the rocks, and also concentrated In layers (10 to 20 on thick), 

giving the rocks a distinctive pink and,,'black, layered {gneissic) texture 

(sOimPle A, Plate 16). Chlorite partially replaces biotite only in the 

more deformed schists; elsewhere, the biotite porphyroblasts show no sign 

of deformation, corrosion, or alteration. 

A lithology In some respects transitional between the metacon-

glomerates and quartzofeldspathic schists is exposed on the east side of 

'Gull Pond Road', about 1 km north-northeast of 'Second Pond'. This coarse-
" 

grained, strongly deformed rock is distinctive for its augen texture in 

which feldspar porphyroclasts (1 em) are enveloped by a finer grained, 

strongly foliated matrix (sample C,~t.e 16). The rock consists of quartz 

(ItS%), plagioclase (40%), K-feldspar (5%), muscovite (5%), brown biotite 

(3%). and accessory epidote, chlorite and oxide•. The pink fel~spar 

porphyrocluts are albite, while a minor K-feldspar component is present 

as smaller, elongate, anhedral, poikiloblastic grains, like those in the 

Albite schist member. Thus, the coarse grain size gives It the appearance 

of a strongly deformed rnetaconglomera~e, while its mineralogy makes it more 

akin to the quartzofeldspathlc s~hists. 

lnterlayered with this 'augen schist', in the same outcrop, are 

pure quartzite layers (10 em thick), which also record the intense defor-

mation. In thin section, the quartz grains are partially annealed, but 

stitl show a strong preferred orientation parallel to the dominant, steeply 
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southeast-dipping fol ration (S2) in the sequence. These fine quartzite 

layers may represent recrystallized quartz mylonites, which absorbed·more 

of the_ deformation than the less ductile, feldspar-rich layers. 

The protoliths of the Metaconglanerate member are self-evident. 

They wer~ dominantly coarse, arkosic sediments, including both congh:xn~rates 

and co.1rse sandstones, which suggest a near-source, terrestr~ depositional 

environment. The presence of hematite-rich layers supports the _suggestion 

of sub-aerial deposition. It is concluded that all the rocks in the member 

~re part of a sl ng 1 e, inter I aye red, and g radat i ona 1 sequence, and that 

existing lithological differences reflect mainly original compositional . -

differences, as well as the effects of deformation and metamorphism. 

As noted previously, the arkosic rocks in the Metaconglomerate -

member may be the lateral equivalents of the metasomatized (feldspathized) 

rocks of the Albite schist member to the east. 

Amph i boll te 

Greenschist ~1nd -.nphibollte, both Intruded locally by adamellite, 

are spatially associated with rocks of the Albite schist member along the 

shore of Grand Lake east of 'John's Pond ' (Plate 18}, but no metabasic rocks 

were found in the inland part of the member. In tl'le Metaconglomerate member, 

amphibolite was found only in the quartzofeldspatl'lic schists north of 

I Second Pond I and north of Corner Brook Lake. 

The greenschists outcropping ea5t of 'Jonn's Pond', which cons i st 

of actinolite (25-40%), albite (20•35%}, epidote (20-35%), chlorite (5-15%), 

and accessory opaque oxides and calcite, are dark green, fine-grained, and 

vary from slaty to relatively massive, mainly as a function of deformation 

(Plate 19). All the greenschlsts are intensely fractured, and In thin 
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PLATE 18 

Rep resentative hand specimens of metabasi·tes in the Albite schist member 
A (79-293), massive greenschist; B (79-280-2), foliated amphibolite; note 
Pin k fel dspar development, and part of shear zone (light green) on left 
margin of sample B; samples cut and polished; scale in em; for sample 
location see Figure 30, Appendix D. 



PLATE 19 

Strongly deformed (slaty) greenschl5t In Caribou Lake formation outcrop 
on shore of Grand Lake, 1 km SW of Little Paddle Point; view NE; outc rop 
location 293 - see Figure 30. 

- 4 

PLATE 20 .. . 
. . ( 

Follued amphibolite eut by pink adamellite In Culbou l~ fonqtfon • 
·5Mie as sample a, Plate 18; shore of Grand lake 5 kJft NE df Little Paddle 
Point;. view NE; outcrop locetlon 280. 
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section display both cataclastic and mylonitic textures. Their fine grain 

size, slaty texture, and green colour ma-ke th~ difficult to ~lstingulsh 

from the fine, green, albite-mica schists· with w.hich they are associated 

in some outcrops. 

A single exposure of black, fine· to medium-grained, foliated 

amphibolite was also found on the shoreline about 5 ktn northeast of little 

Paddle Point. The rock contains green hornblende (~0-50%), plagioclase 

(~5-55%), and accessory quartz, calcite and opaque oxides. Coarse-grained, 

adamellite dykes cut the amphibolite mainly parallel to the main foliation 

(S2) (Plate 20), but also contain small amphibolite xenoliths. K-feldspar 

Is developed in the amphibolite adjacent to the adamellite intrusive 

material, indicating at least loca} metasomatism by 'granitlzing fluids' 

associated with the intrusion (note the pinkish material penneating $8mple 

8, Plate 18, and sample A,· Plate 21). Both the adamellite and the amphi-

boJite are intensely fractured. 

The amphibolite also contains 10 em thick layers marked by alter-

nating fine and mediumf:in size, which may be In part due to the develop­

ment of small-scale's ar zones' .. Part of ·one such shear zone is preserved 

along the left margin o sample 8, Plate 18. Thin section study reveals 

that the finepgrained, well-foliated layers are strongly defonned and 

retrograded amphibolite (greenschist). In view of this, It Is possible ., 

. that the greenschl~ts found· fartt),er southwest along the s~rellne toward 

Sandy Point are Intensely defor'TIN!d and retrograded versions of the amphi­
~ 

boJite ~ i thology. 

In the quartzofeldspathic schists of the Metaconglomerate member ...,__" 
to the west, green to black, medl~·gralned amphibolite forms thin (30 em), 

concordant layer!!l, which exhibit the same defonnation features as the host 

rocks. 8oth the ·amphibolite and the host schists characteristically contain 

.... 
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5 mm size, b~own biotite porphyrobl~sts (15%) (sample B, Plate 16; Pl•te 

17). In addItIon, the amph I bo I i te .. contaIns green hornb I ende ( ,) , a I most 

totally replaced by light green actlnol lte (35%), as wet I as untwinned 

albite (30t), epidote (10%), and accessory chlorite and sphene. In the 

amphlbol ite from north of Corner Brook Lake, the biotite porphyroblasts 

are "tocttlly kinked and partly replaced by chlorite. 

Caution Is necessary, however, In identifying metab•slc rocks in 

this sequence. For ex~ple, a layer in the quartzofeldspathlc schists 

north of 'Sec;ond Pond' consists of black, medium-grained rock c;ontalnlng 

biotite (.40%), albite (35%), epidote (15%), and quartz (10%). The biotite 

Is not porphyroblastlc, but rather lepidoblastic, and defines • relatively 

strong foliation (S2), while White albite forms 1 to 2 mm size porphyro-

' 
bluts. wlth Inclusion trails (S2) marked by epidote. Though described in 

the field as a metab41slte, the mineralogy of this rock suggests It is more 

likely an original pel ltlc layer In the arkosic sequence. 

The meub.slc:: rocks In the Caribou L~ke formiltlon ,re interpreted 

to be metAmorphosed bulc: dykes or flows which pre-date the 02 deformation , 

and thus ttre Interpreted to be pert of the same intrusive event as the 

basic dykes in the gneissic terrane. The preservation of amphibolite min-

eralogles lndl~tes at least amphlbol ite facies metamcrphlc conditions were 

reached locally In the form~~tlon, while the greenschists clearly record 

the significant retrogressive effects. The concordancy of the metabasltes 

m11y be due to routlon during deformation, or locally JMY reflect their 

original sill or flow form. The metabasltes in the albite-mica schists 

along the shore of Grand Lake may have similar stratigraphfc:: relations, or 

as noted previously, they could be bAste Inclusions In • zone of dislocation. 

~-, 
I • . 

• 
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Granitoid rocks 

Granitoid veins and dykes are c~n components of Caribou lake 

formation outcrops. Most veins are coarse-grained to pegmatitic, pink to 

buff, and most parallel the dominant foliation (52). Discordant relations 

are noted locally, however. The effects of 03 deformation in the ve ins, 

particularly minor folds (F3), were noted in a number of exposures, but 

no 02 effects were found. , 

In the Albite schist member, granitoid r?cks are most abundant 

(or simply best exposed) in · the albite-mica s~hists along the shore of 

Grand Lake, from .a point 2 krn southwest of Ll t t le Sandy Point, northeast 

for 12 km. The intensely fractured granitoid material in this area is 

orange- to brown-weathering, coarse-grained to pegmatitic, and pink coloured 

on fr~sh surfaces (Plate 21). The rocks consists of essentially quartz 

(lt0-50f\: plagioclase (25-35%) and K-feldspar (25·30%), and thus are 
.. 

mineral~ically adamellites (Table 6; Figure 10). Chemical analys i s of 

two samples from the shoreline indicate the rocks are peralumlno':fS, and 

compositionally similar to the Last Hill adamellite and the Topsails 

igneous complex (samples 276 and 280, Figure 8, p. 61 (. 

In the Metaconglomerate member of the formation, ~exturally and 

mineralogically similar granitolq rocks were found in the quartzofeldspathic 

/ schist~ outcropping north of 'Second Pond'. Pe9matltic veins up to 30 em 
~ 

thick cut the scnists par-Jllel to the main fol lation (S2), and are exten· 

slvely boudlnaged (Plate 22). Granitoid material is apparently not as 

abundant in the metaconglomerates of · the member. 

The granitoid rocks In the Caribou Lake formation are clea!lY post-

02, pre- 03. acidic intrusions, and are Interpreted to be apophyses of the 

last Hill adamellite, and ultimately of the Topsails Batholith. The con-



PLATE 21 

Representative hand specimens of granitoid rocks in Albite schist member 
frCJII shore of. Gr•nd L•ke S\1 •nd NE of Little P•ddle Point; A (79-280·3), 
adamellite cutting amphibolite, note pink granitoid material In amphibolite; 
8 (79-276-1) and C (79-28o-1) adamellite from albite-mica schist outcrops; 
samples cut and polished; scale in. cm; for sample location see Figure 30. 
Ap~ndlx D. 

/ 

I 
Boudinage in pegmatf~lc, granitoid vetns In ~taconglomerat4 member • 
from 'Gull Pond Road' north of 'Second Pond'; view north; outcrop lo~•tion 
15 - see Figure 30 • . · · 
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TABLE 6 

MODAL ANALYSES - GRANITOID ROCKS IN CARIBOU LAKE FORHA110N 

Sample II 276 .280 

Quartz . 42% 45% 
K-feldspar 28 26 
Plagioclase 30 29 
Chlorite tr * tr 

Oxides tr tr 
,Sphene .. tr tr 

II Points 1028 1069 

* tr trace amount ('« 1%) 

Samples: 

276 -pink, leucocratlc, medium-grained adamellite (79-276-1), shore 
of Grand Lake 2 km N~ Ll ttle Sandy Point. 

280 - pink, leucoeratlc, medh.111-grained adamellite (79-280-1), shore 
of Grand Lake ~.5 km HE of Little Paddle Point. 

l 

• 

' 
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K·ni..DSI'IUI P'LACIIOCLAS( 

,,_ ___ , ..... _- , ...... _,, 

FIGURE 10• fii'ROPORTJON 01" OUARTZ-K-I"ELDSPAR -PLAGIOCLASE IN 
GRANITOID ROCKS OF THE METACLASTIC Cal AND 

GNEISSIC l•l TERRANES 
ffield botlndarlaa after Bateman et. al. -1K3J 
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cordant relations of the vei.ns are thought to be due to the existence of 

a strong anisotropy (the S2 foliation) in the host rocks, which effectively 

'channelled' the intrusions. 

Noteworthy and anomalous fine-gr~ined, igneous rO«ks were found 

in the 'Bittern Brook' valley, about 3 km northeast of 'Halfway Point' 

(Plate 23). In two adjacent outcrops in the brook, strongl·y deformed 

ablite schists are concordantly lnterlayered (1 to 2m scale) with 

relatively undeformed, dark grey cHid buff-ora,nge rocks, which weather 

brown to orange, and stand out sharply in outcrops. 

Small (1 nm) white 'patches', consisting of quartz and calcite, 

amount to about 1% of the rock, and give it a porphyritic appeara~ce in 

hand specimen. The patches are set in a matrix of randomly oriented laths 

of K-feldspar (50-60%), with interstitial quartz . (20-30%), calcite (5-15%) , 

chlorite (5-10%), and opaque oxides (5%). Calcite is also found in veins 

filling the numerous micro-fractures in the rock. The K-feldsp~ths 

are turbid due to extensive alteration to sericite and kaolin. Chlorite 

and oxides are present in the darker rocks (sample A, Plate~)), but no 

mafic minerals are found in the lighter coloured rocks (sample B, Plate 23) . 

The rock' are non-foliated, but evidence of Intense fracturing is recorded 

by quartz. 

The mineralogy suggests the rocks were originally trachytes or 

rhyolites, and chemically they appear to be trachytes, differing from 
. \ 

rhyolites mainly In the lower silica content (SS-57%) (see Table 12, 

Appendix A). The fact that the rocks are relatively undefonmed compared 

to the rocks they •re lnterlayered with, and the fact that they are con-

cordant to the dominant fol latlon (S2), suggests they are late (po~t-02, 

and possibly post-03) hypabyssal dykes. Their presence in the Corner 
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PLATE 23 

Ha nd specimens of hypabyssal 'dyke' rocks in Caribou Lake formation 
fr om 3 km NE of 'Halfway Point•; A (79-322-4); 8 (79-322-1); samples cut 
and poli shed; scale in em; see text for discussion, and Figure 30, Appendix 
D for sample locations. 
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Brook Lake Thrust zone may reflect preferential Intrusion in a zone of 

weakness . 

4.3 Mount Musgrave formation 

The name 'Haunt Musgrave formation' was introduced jointly_by 

McKillop (1963) and Lilly (1963). However, they IJSed the name to refer to 

quite different sequences of rocks. According to McKillop, the formation 

consists of quutz-rl~h. locally garnetiferous, "grey gneiss" (McKil lop 

1963, p. 24), outcropping east of the carbonate rocks in the vicinity of 

Mount Musgrave In the riorthern part of the present map area. li I ly, on 

the other hand, assigned rocks north of the Humber River val ley to the 

Mount Musgrave formation, which he divided Into a lower 'arenaceous member', 

consisting of "arkosic, sandstone, arkosic breccias with some greywackes 

and sha I es" ( li I I y 1963, p. 1
1
5) , and an upper • a rg i I I aceous 'member • , con-

~ ..... 

sisflng of "arena~eous shales, silt gri?e quartz! tes and some mudstones" 

(Li I ly 1963, p. 18). 

Due to these obvIous dIfferences In definItion, t~~nd bued on data 

gathered during the present study, it Is proposed that the Hount Musgrave 

fonnat'ion be redefined. Thus, as defined here, the formation comprises a 

quartz-rich,, metasedimentary sequence lnc:ludlng, in approximate order of 

abundance, quartz-mica schist, mlcaceous to pure quartzite, mica-schist 

(pellte), quartz-mica-feldsPt~~r schist, and feldspathlc quartzite (Plate 

24; Table 7) . Amphibolite Is rare, while granitoid veins and dykes are 

relatively c011110n in the f()nnatlon. In addition to its quartzose nature, 

the formation Is elso characterized by an abundance of garnet porphyroblasts 

In both the quartz-rich .and pelitic schists. 

As defined here, the Mount 'Musgrave formation has much in common 

,... . 

.. 
/ 

( 
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PLATE 24 

Represen tative hand specimens of the Mount Musgrave formation A (78-
161-1), garnetiferous quartz-mica sch i st from summit of Mount Musgrave; 
B (78-1 22-2), grey-green quartz-mica-feldspar schist from TCH oppost i e 
Ra pid Pond; C (79-305-1), quartz-feldspar-mica schist from 1 km SW of 
'Centre Pond'; 0 (79-180-1), grey micaceous quartzite from TCH 500 m south 
of 'Wes t Rock', Deer Lake; E (79-205-2), green mica sch i st from road 2 km 
NNE Mount Musgrave (note black tourmaline and white albite porphyroblasts ) ; 
F (79-21 1-1), albite-mica schist from shore 200m NE 'Boom Island'; sca l e 
in em; _ for sample locat i on see Figure 30, Appendix D. 
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TABLE 7 

PO I NT COUNT MODAL ANALYSES - MOUNT MUSGRAVE FORMAT I ON 

Sample # 161 259 205 191 210 169 305 

Quartz lf5% 43% 7% 59% 47% 20% 42% 
Plagioclase 6 9 16 24 10 28 35 

' Hu5covi te 30 27 40 9 32 30 . 8 
Biotite 3 7. 5 3 6 11 
Garnet 9 10 11 
Epidote 10 2 ' tr * 
Chlor i te 3 3 14 tr 2 2 
Oxides 3 4 2 3 
Sulphides tr 

Calcite tr 6 
Tourmt~ll ne 9 tr tr 

Apatite tr tr 

Zl rcon tr tr 

# Points 1027 1004 1038 I 011 986 910 1095 

* tr - trace amount ( « 1%) 

Samples: 

161 • gr~y. flne·-gra ined, · ti\Jnly layered, garnetiferous quart~·mlca 
schist (78-161-1), surrmit of Mount Musgrave. 

259 

205 

'91 

210 

169 

305 

grey, fine-gral,_d, thi·nly layered, garnetlferous quartz-mica 
schist (79-259-1), 1.5 km NE of 'Tower Hill'. 

-green, fine-grained. muscovite-albite-tourmaline schist (79-205· 
2), 'Steady ~!rook lake Road 1

, 2 km NNE Mount Musgrave. 

-dark grey, medil.wn-gralned, feldspathlc quartzite (79-191·2), 
'West Rock 1 , Deer Lake. 

-grey-green, fine-grained, q"'artz·muscovlte-feldspar schist (79-
21 0-1) , shore of Deer Lake 800 m north 1 Boom Is I a~d 1 • 

-grey to buff, flne-grained~rnet' iferous, quartz-albite-mica 
schist (78-169), hilltop I _kmJ south Steady . Brook Lake. 

-buff to pink, fine-grained, quartzofeldspathlc: sc:hlst {79- 305-1), 
1 km southwest 1 Centre Pond 1 • 
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with McKillop's (1963) description, but differs markedly from Lilly's 

(1963). It Is nouble, however, thu In terms of the stratigraphic scheme 

proposed here t~e 'arkosic breccia' and •arkosic san~stone' of LiiJy's 

' 'arenacel)us member' are directly correlative , to the coarse 'arkosic rocks , 

In the Heuconglomerate member of the Caribou Lake 

'arglllaceous member' ~Y be equivalent lto pilrt of 

format ion u defIned here. 

formation \ while his 

the Mount Musgrave 

The lithologies In the fonnatlon are lntergradatlonal to some 

extent, and are interlayered on various sca~s. Throughout the sequence, 

compositional layering is marked by variation in the ml'ca, quartz or 

feldspar content, and layer thickness varies from 2 mm to 2m, but 

averages about 10 to 30 em. Layering is less cofllllOnly defined by 

vttrlations In gra-In size, but coarser grained (conglomeratic) l ayers are 

found loe~lty. Most of the layering in the sequence clearly re}>resents 

rei ict sedlmenury bedding. • 

The more thinly layered rocks record the deformation history In 

excel lent detail (Pliite 25). The dominant schistosity, whl~h parallels 

the compositional l.ayerlng, Is generally S2, but locally later deformation 

w.s intense enough to trillnspose S2 and produce a dominant S3 foli.Jtlon. 

This .was noted, for example, near·Mount Husgr01ve where the Intensity of 
' 

03 deformation lncreues J11arkedly northwestW41!rd from the sunrnlt toward 

the Corner Brook Lake Thrust zpne. 
I 

The main foliation on the swm~lt (S2) 

dips moderately to the east and Is tlghtly .folded by minor upright 
'~· 

fo)d5 (F3), which show no mesoscoplc axial' plane foliation. ·Toward the 
; 

northwest, however, F3 folds h01ve transposed the S2 follulon parallef to 

·' 
a steep, southeast-d I pp In~ axial plane c leav119e (53) • 

EJCposure of the formation is poo·r to fair, with the _best exposu-re 

being found on hi 1 I tops. A number of sep11rate outcrop areas ilre present 



PLATE 25 

Th inly layered, garnetiferous, quartz-mica schist in Mount Musgrave 
fo rmati on outcrop on summit of Mount Musgrave; view NE; note early 
(F2) isoclinal fold marked blue in centre of picture, refolded by later 
up right , tight to open folds (F3); outcrop location 161. 
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in the t4!rrane,· and the outcrOp pattern is controlled by both faulting 

and folding (Figure 9). In the southern part of the terrane, rocks In 

the formation are repeated across the Corner Brook Lake Thrust, as outcrops 

are found In the 1 Fox Hlll 1 and 'White Ridge Hill 1 areas west of the 

thrust, and to the east in the core of a major syncline {F3) extending 

from south of 1 John 1 s Pond 1 to the Valley of the Lakes Fault. North of 

this transverse fault, the outcrop pattern is controlled mainly by th~ 

Steady Brook Lake Anticline (F4), but also by smaller, more intense, F3 

folds. The formation forms an extensive belt along the northwestern and 

lhorthern margins of the terrane, and also outcrops in areas east of Eastern 

lake and south of Steady Brook Lake. 

The area around ~unt Musgrave, southward and eastward from the 

s1.11111it, may serve as a 1 type area• for the formation, s.lnce the rocks In 
. ~ 

this region display the essential characteristics (Figure 9). However, 

no · single area can adequately represent the lithological diversity of the 

formation. 

quartz-mica schist and quartzite 

The quutzose rocks forming the bulk of the formation consist of 

essentially quartz (30-90t), muscovite (S-40%), garnet (0-20%), biotite 

(0-15,), feldspar (0-lOt), and accessory opaque oxides, locally Identified 

as magnetite comprising up to 15% of some schists (samples 161 and 259, 

Table]}. These rocks are generally grey or white on fresh surfaces, and . 

various shades of grey on weathered surfaces (e.g., sample A, Plate 24). 

Rusty weathering quartzites were noted In only a few places. Where quartz-

rich rocks are thlnly.(l-S mm) lnterlayered_ with pellte, weathering causes 

the quartz l~lnee to st•nd out, giving the rocks a •ribbed• appearance. 

Thicker quarzlte layers (up to 2m) also. tend to weather In relief locally. 
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The quartz-mica schist and quartzite are Interpreted to be met~rphosed, 

quartz wacke and quartz arenite. which formed part of a sandstone/shale 

sequence. The generally fine grain size, ilbundance of pure quartzite, 

relatively low feldspar content, and abundance of pelite. comblne to suggest 

a fluctuating, high to low energy, possibly marine, depositional environ-

ment farther from the clastic source than that of the Caribou La~e formation. 
\ 

There is a higher proportion of massive quartzose rocks to pelite 

In the northern part of the format I on, and garnet po~p.byrob fasts are less 

common, and generally smaller, which likely reflects the lower mica content. 

An overall colour difference is also evident, with the buffs and light greys 

· in other ~reas contrastin~ with the dark greys and grey-greens of .rocks 

north of Breeches P~nd Fault (Plate 24). 

In the vicinity of Mount Hu~grave, quartzose lithologies are wel l -

exposed and exhibit intense and variable deformation. The summit Is under-

lain by grey, fine-grained, gunetlf~rous }chlst conta ining mai~ly quartz 

and muscovite interlayered on a ·2 to 3 mm scale (sample A, Plate 24; Plate 

25). Partly chloritlzed , red, garnet porphyroblasts (5 rrrn) constitute 

about 10% of the schl sts (sample 161, Table 7). 

In the outcrop areas east of Eastern Lake and ·south of Steady Brook 

Lake, the quartz-rich schists are grey to buff, fine- to medium-grained, 

and consist of quartz (60-90t)., muscovite (5-30%), g.unet (0-15%). non­

porphyroblastlc plagioclase (0·10%), chlorftlzed brown biotite (0-15t), 

and accessory c~lorlte and opaque oxides (sample 259, Table 7). Quartz 
~ · 

commonly fonms thin laminae, and muscovite def ines the main schistosity 

(52) . Red garnet por~hyrobla.sts are typically sma 11 (0. S, nm). 

The quartzos~ schists In these areas are · interlayered (5-50 em) 
· · · ") 

with pelltes ~and rocks rich In albite porphyroblasts, which account for 

about 20% and )Ot of . the sequence, respectively. Contacts vary from 

/ 
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gradat lona 1 to sharp (Plate 26), and most exposures contain two gener-

atlons of white quartz veins - a thin, deformed set paralleling the main 

foliation (52), and a thicker, relatively undefonned set filling trapsverse 
.. ~. 

fractures. 

In the outcrop area betwee_n 'Valley of the Lakes' and ' John's Pond', 

the formation is offset by a number of trans..-erse (~<~est..:trendlng) hults, 

and slight lithological differences In the sequence fran north to south 

may reflect exposure of different levels of the formation due to differ-

entiat movements on the faults. In the northern par-t of this are.~, ·near 

' 't~ntre Pond', the sequence Includes mainly buff and grey, med ium-grained 

quartz-feldspar-mica schist and quartz-mica·schist (sample C, Pltte 24) . 

Lesser amounts of micaceous to pure quartzite and garnetiferous pelites 

are also p·resent. The scale of the Interlayering of these, rocks varies' 

from 5 em to 5 m, and white quartz veins · are abundant, and sane up to 2m 

thick represent fillings of faults and major fractures. Although feld-

spathic rocks dominate the sequence as a whole, White to grey, pure quart-
.. 

z i te layers ue abundant (30-40%) toward its centra I part. Some of the 

layers are 2 to 3m thick, and most form small erosionill ridges. In 

general, the sequence In this area resembles _ the sequences In t he outcrop 

areas irrrnediately J'Orth of 'Valley of the Lakes', although the former is 

much more strongly deformed. 

In the southern part of this area, the sequence is very poorly 

exposed, but appears to cbnslst of relatively micaceous, grey quartz-mica 

schist end quar~zlte fo~lng a thinly (10-20 em) lnterlayered sequence. 

The purer quartzIte layers canprl se only about 20% of. the sequence. In 

one outcrop, 500 m -west "of 'Snowbl rd Lake', quartz-pebble conglomerates 

· dominate the other I lthologles, and contain about 50% pebbles (1-2 em size) . 

White, flneJ.y erysta I I lne· rurble In }ayers 1 m thick were found 

.. 
.. ,.. .... 
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PLATE 26 

Strongly deformed compositional layering in the Mount Musgrave formation 
interlayered quartzose (light grey) and pelitic (dark grey) rocks in out­
crop on transmission line, 1.5 km north of 'Tower Hill'; view NW; note 
strongly deformed quartz veins parallel to the main foliation (S2); 
outcrop location 261. 
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In an outcrop of quartz-mica schist ·In a brook about 1.5 km northeast of 

'John's Pond'. The significance of the marble is uncertain, but It may 

be that this part of the sequence Is transitional Into the overlying 

carbonate rocks of the Twlllick Brook formation. 

West ' of the Corner Brook Lake Thrust, the 'Fox Hill' area between 

'John's Pond' and 'Halfway Point' is underl~in by a poorly exposed 

sequence of quartzites, quartz-mica schists, quartz-feldspar-mica schists, 

·and pelltes. The scale of the Interlayering Is 1 to 10 em, and the dominant 

foliation, defined by both the compositional layering and the S2 schisto· 

sity, dips steeply to the southeast. The quartzose rocks account for about 

sot of the sequencetand are grey to white, .fine-grained, and contain, in 

addition to quartz, muscovite and/or biotite in varying amounts. Small 

(O.S mm) red garnet porphyroblasts are characteristic of this part of 

the format ion. 

In the 'White Ridge Hill' area to the west, the sequence consists 

of mainly grey, strongly crenulated, garnetlferous quartz-mica schist 

(Plate 27). Pellte layers are relatively common, and outcrops are char-

acterlzed by numerou~ (10-30%) white, or smoky quartz veins. The quartz­

mica schists essentially consist of quartz (30·90%), muscovite (5-40%), 

biotite (0-15%), garnet (0-20%), and magnetite (0-15%). Muscovite Is the 

dcminant m.ica, and biotite is,locally porphyroblastic (0.5-1 nm). The 

most obvious mineralogl~l difference between the rocks in this area and 

those In the 'Fox Hill' area Is that the garnet porphyroblasts in the 

former are much large (1-2 em). Plate 27 shows the typical ~lze of the 

garnets, and also shows clearly that they are post-tectonic w.lth respect 
f$ 

to the main foliation · (S2), and are rotated slightly in a later crenu1atlon 

cleavage (S3). The garnets are usually rimmed by chlorite, but in places, 

particularly In the Stag Hill Thrust zone to the northeast, they are totally 
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PLATE 27 

Ga rneti ferous quartz-mica schist from Mount Musgrave formation sample 
77 -81 f rom summit of 1 White Ridge Hill'; note chlorite-rimmed garnets are 
post-5 2 (main foliation), and rotated in later crenulation cleavage (53); . 
sample cut and polished; scale in em; for sample location see Figure 30, 
Ap pendi x D. 
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replaced by chlorite~ 

Along strike to the northeast, in 'Grand lake.Brook', garnetiferous 

quartz-mica schist and grey and white quartzite are interlayered with grey 

and white marble and calcareous schist of the overlying Twillick Brook 

formation. This relationship is 'similar to that noted In the 'Snowbird 

Lake' area, and again may reflect original grada~ional contact between the 

two contrasting formations. 

Hica schist (pelite) 

Pelitic schists account for about 20% of the formation, and consist 

of essentially muscovite, chlorite, biotite and quartz in varying combin-

ations. They are typically dark grey or green, and commonly contain one 

or more porphyroblastic mln~rals, Including garnet, biotite, albite and 

tourmaline. The presen~e of garnet In the pelites indicates at least 

epidote-amphibolite facies metamorphic condltons were reached locally. 

Hu\covlte defines the m.ln foliation (52), and the porphyroblasts are 

mainly post-52 and pre-S3. Throughout the formation, petites are inter-

layered with the other lithologies, and form layers from 2 mm to 100 em 

thick (Plate 28), which are interpreted to be, In most places, relict beds 

of fine-grained sediment (mudstones and siltstones). 

In the northern part of the area, near Mount Musgrave, pelitic 

rocks are a relatively minor component (10-15%) of the fonmation. They 
"::,.. . 

are generally green and cons.lst of mainly muscovite and chlorite (rarely 

biotite) (sample 205, T.bJ.e 7; sample E, Plate 24). Some of the schists 

contain to 2 mm, buff or white, albite porphyroblasts, and some also 

contain em long, black, prismatic, tourNiine porphyroblasts. Schists 

containing both were foUnd on the north slope of Mount Musgrave {sample E, 

Pl•te 24). The tourmaline is compositionally schorl, and albite has a 

' ' \ 
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PLATE 28 

Tigh tly fo lded and interlayered quartz-mica schist and petite in Mount 
Musg rave formation view NE of outcrop under old bridge over Steady 
Brook; pe lite is dark green material in core of fold; note subhorizontal 
orientati on of tight F3 fold, and note compositional layering (S2) and 
defo rmed quartz vein; outcrop location 119 - see Figure 30. 
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composition of Ab
99

- both compositions were determined by microprobe 

analysis (see iable 17, Appendix 8). Tounmal ine amounts to about 10% in 

some layers, and is typically bent, or shows cross-fractures. Albite is 
I' 

more common, and locally accounts for 30% of the mineralogy. 

· In the northwestern part of the area, albite Is white, or less 

commonly buff, and 1 to 2 mm in size, whereas In the northeast, near Deer 

Lake, it Is typically buff-orange and 2 to 5 mm in size. In an exposure 

200m northeast of 'Boom Island', buff-orange, albite porphyroblasts form 

about 70% of the albite-mica schists (sample F, Plate 24). In thin section, 

the albite shows evidence of having formed by reaction with muscovite, and 

appears to have grown, in part, syn-tectonicOllly with respect to 53, 

although evidence of pre-D3 (post-02) growth is also present (see Plate 

79. p. 307). 

A note~rthy mineral assemblage, including chalcopyrite (15%) and 
1 

" magnetIte (5%), was found In a pel i te outcropping on the Trans Canada 

Highway opposite Rapid Pond. The chalcopyrite contains a few, 3 mm long, 

black, tourmaline crystals as inclusions, and euhedral magnetite grains 

(2-5 mm size) are dispersed throughout the rock. Equal amounts of albite 

porphyroblasts (5·10 mm slzt) and phyllosilicates form the bulk of the 

mineralogy. 

ln. the outcrop areas east of Eastern Lake and south of Steady Br90k 

Lake, pel i tes account for abOut 20\ of the sequences, and layerIng Is 

generally on a 5 to 50 om scale. The schists usually contain both muscovite 

•nd biotite. and some are rusty weathering and contain 1 em porphyroblasts 

of garnet and biotite. 

The nature of the Haunt Kusgrave . formotlon In tho area west~. ~ 
~ "' 

due to the poor exposure. Only onet very ' . Eastern Lake is uncertain 

outcrop ~f garnetlferous mica schist was found by the author. about 2 km 
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southwest of the western end of the lake. However, McKillop (1963) reports 

finding poorly exposed quartzose schists, similar-to those on Mount 
:!) 

Musgr~ve, In the central part of Eastern Brook. 

In the area south of 'Valley of the Lake' 1 and west of the Corner 

Brook Lake Thrust, petites are typically rusty weathering, nar row (5·10 em), 

and contain 1 to 2 em size porphyroblasts of both garnet and biotite. 

are clearly post-52. In some of the darker 

Huscov I te .· is the most ·-abundant mica, and deff.Res/, 

Pyr I te ana graphite are COIImOn 

and the porphyroblasts 

coloured schists. 

In the 1FOJ( Hill' outcrop area, pelitic layers are 10 to 20 em 
~ 

thick, and there Is some suggestion that they are more abundant in the 

eastern (structurally upper) part of the steeply southeast-dipp ing 

sequence. The petites Ideally contain porphyroblasts .of garnet~ biotite, 
;. - ··· 

and/or hornblende, as well as abundant magnetite crystals. Muscov ite and 

biotite account for 70~ of the mineralogy, anp are ,Pr:esent In a rat io of 

about 2 ~o 1. Porphyro~lasts of biotite are locally as large as 2 em, 

while pink garnet porphyroblasts'\..erely rea~h 1 em size, and are charac-

terlstlcally about 0.5 to 1 "'"· An exception Is found i n 'Grand Lake Brook' 

where it leaves 'John's Pond'. At this locality, the pelltes contain larger 

(S 11111) garnets, · constituting up tt6 20% of the mineralogy and arranged In 
. 

'trains', in a type of glaneroporphyroblastl<: texture (Plate 29). Large 

(2 011) biotite porpi{yroblasts accanpany the garnets In this schist as well . 

The garhets are clearly post-02, but appear to have escaped later D) defor-

matlon, possibly due to the inhomogeneous nature of the ~3 event. There Is 

no microstructural evidence. to sugges't more than one generation of garnet 

in this -.case. In one schist fran 'Fox Hi l l ', euhedral, 1""' size , magnetite 

. crystals (5~) were found associated with similar size garnet pdrphyrob lasts, 

.while another pellte on 'Halfway Point' was noted to contain radiating 
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PLATE 29 

Garne tiferous pelite in Mount Musgrave formation 
outcrop in 1 Grand Lake Brook 1 near western end of 
glome roporphyroblastic habit of the garnets; both 
(blac k, i n upper part of top sample) are post-02, 
03 de formation effects shown in Plate 27. 

sample 79-239 from 
•John 1 s Pond 1

; note the 
garnet and biotite 
but have escaped the 
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clusters of b·lack, acicular, hornblende crystals (1 em long). 

In the 'White Ridge Hill' outcrop area, pelltJc layers are common, 

are usually less than 10 em thick, and almost invariably contain 1 em, 

red garnet porphyroblasts. Some sc:hi sts are very dark-coloured, reflecting 

a higher than average biotite content. 

Feldspathic rocks 

Feldspathic lithologies account for •bout 20% of the Mount Musgrave 

formation overall, but locally they dominate the sequence. Two b~sic types 

of feldspathic rocks are recognized: 1/ rocks In which feldspar represents 

relict sedimentary grains, and 2/ rocks in which feldspar is, at least in 

p·art. metamorphic in Qrigln (i.e., mainly al'bite porphyroblasts). The 

first clearly represents ntetamorphosed, feldspathic to arkosic arenites 

and wackes, and most of the rocks in the second may have had a simi Jar 

' 
protollth, but are interpreted to have had metamorphic plagioclase (albite) 

'1' " 
·nucleate and grow on the ori~inal feldspar grains, as is apparently the 

case with the albite schists of the Caribou Lake formation. Other feld-

spathic rocks Included in the second type were originally shales, but are 

now albite-mica schists (petites). Eacl:l rock type has a specific areat 

distribution, with the albite-rich rocks mainly In the eastern part of the 

formation and the non-metamorphic feldspar rocks in the western . 

The first I lthotype is characterized by the green-grey to dark grey, 

massive to weakly foliated, medium-grained, quartz•felds~r-mica schists 

and feldspathic quartzites which outcrop in the Humber River va I ley, and 

near Deer L~ke. Hineralogically,· these rocks consist of quartz (lt5-90%), 

muscovite (5-35%), feldspar (5-30%), biotite (0-15%), calcite (0-15%), 

garnet (0-10%), and a variety of .accessories (semples 191 and 210, Table 7). 

Quartz (0.5 to 2 mm size) typically displays undulose extinction, 
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and a considerable proportion (30' in some rocks) Is blue qua r tz. Hus-

covite, with or without partially chlorltlzed brown biotite, defines the 

main schistosity (S2), and the biotite, generally porptlyroblastic (1-5 rrrn), 
. 

• gives the rocks a black spotted appearance. The feldspar Is non-porphyro-

< 
· blastic plagioclase (albite to oligoclase), and K-feldspar is 'absent. 

Calcite is relatively common, and in some rocks has a poikiloblastic habit, 

with quartz, plagioclase, and opaque oxide inclusions. Red garnet porphyro-

blasts (1-5 nm) are less comnon and typicall~siiWIIller than In other l ith­

ologies. Even smaller (0.1 11111) garnets, likely detrital i n origin, are 

scattered throughoutsome rocks, or locally concentrated in layers, which 

likely represent relict beds. 

Some of these feldspathic rocks exhibit thin (5 nwn) composit ional 

layering, giving them a 'gneissic' appearance, as exemplif ied by rocks 

outcropping on the south side of the Trans Canada Highway neu Rapid Pond 

(sample B. Plate 24) . Thicker layering is also coomon, •s, for example. 

on 'West Rock' in Deer Lake, where 15 em thick layers of mass ive felds-

pathic quartzites are i!'terlayered with 5 to 10 ern thick . layers of pel ite . 

Plate 30· i I lustrates strongly deformed layering (bedding?) In a simi lar 

sequence in the northeastern part of the map a rea. 

1 n the area between 1 John • s Pond 1 and 'Ha 1 fway Po I nt', rocks 

c;:ontaining original feldspar grains Iecount for 10-15% of t he expose·d 

sequence. and are most abundant in the hilI top outcrop 1. 5 km north of 

'Halfway Point'. These rocks are buff. fine- to medium-grained, quartz­

f•ldspar-mica schis.u. i n ' which the feldspar is u:clusively plagioclase • 
..... ' 

Characteristic of this pa r t of_ the for1111tion, the schists also contain 5% 

small (0.5 11111) garnet porphyroblasts . 

The two sequences In the areas east of Eastern Lake and south o f 
1 

Steady Brook Lake are almost Identical In lit.hologic and outcrop features. 
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PLATE 30 

Strongly deformed quartzite/pelite sequence in Mount Musgrave formation 
view SW of outcrop on south side of Trans Canada Highway, near South Brook 
Park; note subhorizontal orientation of tight (F3) folds, and deformed 
quartz vei ns; outcrop location 180 - see Figure 30. 
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and both contain a significant proportion of the second feldspathlc: litho· 

type- rocks containing illblte porphyrobluts. ·Albite-rich lAyers form 

up to 30% of these sequences. The schists are rusty to grey-weathering, 

medl~·gralned, and consist of quartz (~0-60%), albite (20•40%), mu~covite 
(20·40%), chlorltlzed brown biotite (5-Y5%), garnet (0-15%), and accessory 

epidote, chlorite and opaque oxides (sample 169, Table 7). As noted In 

c•rtbou lake formation rocks,- the albite shows some preference for· growth 
. ' / 

/ In the more micaceous rock.& in the sequence. However, the process seems 
' I 

to ~ve been more selective in this foriTWIItlon, since not alI the pel I tic 

layers contain albite. The size of the porphyroblasts varies from 2 11111 

to 1 em, ..-nd they are generally buff coloured. · 

It (s notable that In areas where feldspatnlc rocks are abundant, 

particularly rocks containing albite porphyroblasts, the Hount Musgrave 

formation Is difficult to distinguish from the Caribou Lake formation, 

suggesting the two formations h<ld an orlgln,al gradaqonal sedimentary 

contact. The boundary bet~en the formations Is .ubltrarl ty located 

where quartz-rich, usually garRetlferous rocks dominate the sequence. 

In the outcrop areas south of 'Valley of the Lakes' and east of the 

Corner Brook Lake Thrust, feldspathlc rocks are best exposed in the area 

between 'Centre Pond" and Corner Brook Lake. · l.n this area, feldspath lc 

rocks dominate the sequence and appear to be most abundant in Its eastern 

and western parts, suggesting gradation Into similar feldspathlc rocks of 

the adjacent Caribou L•ke formation. 

The miner• logy of these schists Includes quartz (30·90%), p1agio· 

clase (0-~ot), muscovite (5-50~). brown biotite (0-20l), garnet (0-20%), 

tnd accessory minerals (sample 305, Table 7). Quar~z Is the ~jor mlnera-. 
logical c:onstltutent, and the feldspar Is buff-colo~red albite (no K-feld- . 

spar w.s found). The albite, locally represented by Intensely deformed 

.. / 
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porphyroblasts, Is In general non-porphyrob1astlc, but still mainly meta­

mOrphic In origin. The Intensity of deformation In the sequence, In fact, 
' 

suggests that most of the feldspar was porphyrob1ast1c, but has been sub-

sequent1y deformed {sample C, Plate .2'+). Hu~covlte is Invariably present, 

and typically is t""lce as abundant as blot I te where they coexist. Pink 

garent (0.05-2 em) and. brown biotite (1-2 em) are both represented locally 

by porphyroblasts. 

The ~ery Intense defonnatlon l~hls part of the formation Is 

immediately obvious upon tra~erslng ea$t-west across the ~rea. The well­

defined, steep, southeast-dipping foliation (52) in the CaribOu Lake 

formation to the east and west becomes progressively blurred and total.fy 

dominated by a strong, subf,orizontal, northeast-trending lineation (LJ), 

and -an associated vertical crenulatlon cleavage (S3), as one approaches 

the centre of the area. This structural evidence _suggests the area contains 

the core of at least one major F) fold. In addition, airphoto features, 

and the apparent repetition of distlnctiv •• rusty weathering pelltes on 

west and east 'limbs', supports the structural evidence for a major fold 

closure. 

Amph I bo II te 

The only· metabasic rock found in the fonnatlon by the present 

author Is amphlboll te, which outcrops on the transmlsslo" line 1.5 km north 

of 'Tower Hill'. l. t forms concordant dark green layers (10-20 an thick) 

which alternate with layers of unusual oligoclase-mica ' schist contain ing 

~ut 80% purpte, Inclusion-choked, oligoc:Jase porphyroblasts (1 em). 

The layers p•rallel •nd record the 52 foliation In the host rocks, and the 

amphibolite is medfun-gralned, and consists of green hornblende (ItO%), 

defining a stron9 microscopic ltn .. tlon (L27), plagioclase (30%), chlorltlzed 
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brown biotite (10%), pink garnet (5%'). epidote {5%), chlorite (5%), 
I 

opaque oxides (5%), and accessory apatite and quartz. Both biotite and 

garnet form smell (5 ~) porphyroblasts. 

It Is noteworthy that, on the eastern side of the Steady Brook 

Lt~ke Antlc:.llne 3 kill east of 'T.riangle Pond'·on the transmission line, a 

concentration of very similar green, garnet-biotite amphibolite boulders 

(possibly regolith) was found. Their presence and location suggest the 

sequence of schists containing the amphlbol lte layers to the west is 

continuous (except at faults) around the anticline. 

The only other metabulc rock known In the format I on Is amphibolite 

found by Baird (1959) near the southern end of Deer Lake. However, ·he did 

not provide des'crlption or precise loculon. 

The amphlbolltes In the formation are here Interpreted to be meta-

morphosed basic dykes or flows, part of the same pre-02 igneous event wh fch 

generated,.,slmllar rocks In the Caribou Lake form.atlon and units in the 

gneissic terrane. Amphlbol lte mineral assemblages indicate at least 

amphibolite facies conditions were reached locally In the formation. 

Gran·l toi d rocks 

Granitoid veins and dykes are found at a number of localities 

throughout the Mount ,Musgrave formation . However, they are c learly not as 

abundant u In the Carl bou Lake format I on. The In t ru~ Ions ue white t~ 

pink and coarse-grained to pegmatltic, but because they were generally not 

sampled specific mlneralogles are unknown. 
. . 

In an outcrop on the northwest shore of Deer Lake 200m northeast 

of 'Boom Island', a rusty-weatherntg zone marks the loutlon of a 

relatively undefonned, dls__cordant (post• S2) pegmatltlc dy.ke. The dyke 

Itself w.s not sampled, but It was noted that buff albite porphyroblasts 
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(5 mm size) are numerous in . rocks immediately adjacent to the dyke, while 

their abundance decreases sharply over a distance of only 2 to 3 mm from 

the dyke.~ At a distance cf 5 m, the porphyroblasts are developed only in 

the pelitic layers In the sequence, forming the albite-mica schists noted 

earlier (sample E, Plate 24). These features suggest a clear correlation 

between dyke lntrus1on and ~rphyroblast growth, and microstructural 

relations of the albit~ (see Plate 79, p. 307), as well as nearby structural 

relations of the granitoid rocks (Plate 31), combine to indicate that dyke 

intrusion and accompanying, metasomatic porphyroblast growth occurred In 

the 02:03 interkinematlc interval. In view of these relations, these and . 
other granitoid intrusions In the formation are Interpreted to be part of 

th~ same intrusive event as · the Last Hi II adame I 1 i te. 

In the outcrop areas east of Eastern Lake and south of Steady Brook · 

Lake, a fe~ granitoid veins were recorded, but they do not appear to be 

widespread. In the area south of 'Valley of the Lakes. veins and -cfykes 

were found only In the area west of 'Snowbird Lake', where they are abundant 

and locally discordant (post-52). 

No granitoid material was found either in the 'Fox Hill' or the 

'White Ridge Hill~ outcrop areas. H~ver, In the 'Triplet Pond' valley, 

quartzofeldspathic lithologies of uncertain correlation are penmeated 

parallel to the mal!hfollatlon (S2) by pink, medium-grained to pegmatitlc, 

tonalitlc veins, which exhibit the same late crenulation cleavage (S3) 

present in the schis~s on 'White Ridge Hi.ll'. However, because the rocks 

are located in the Stag Hill Thrust zone, . It Is equivQcal whether the host 

rocks are part of the Mount Musgrave fonmation, or part of the adjacent 

Tonalitic gneiss complex. 
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PLATE 31 

Hand spec imen of thinly layered schist cut by pink granitoid veins 
samp le 79-192 from outcrop 700 m NW of •soom lsland 1 ; note refolding 
(F3) of both main foliation (S2) and the parallel granitoid veins; scale 
in em; fo r sample location see Figure 30, Appendix D. 
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It .It Twi 11 i ck Brook format I on 

The name 'Twillick Brook. formation' is introduced to refer to a 

distinctive sequence of schistose, dominantly calcareous rocks. Its high 

c~rbon~te content contPasts sharply with other formations in the meta-

clastic terrane. The unit outcrops mainty in the southern part of the map 

area, where it occupies the vatleys east of lStag Hill • and 'White Ri dge 

Hi II' and forms~ bett ~tending about 15 km southwestward from 'Second 

Pond' (Figure 9, p. 64) . A smaller outcrop area of uncertain extent is 

also present southwest of Eastern Lake. The best exposure is found in the 

west-trending part of 'Grand Lake Brook', west of 'John's Pond', and in 

'Twlllick Brook' to the south. The latter brook, and its immediate v icin-

ity, is the designated 'type area• for the formation. 

The main lithologies in the Twillick Brook fonmatlon, in approxi-

mate order of abundance, Include calcareous schist (30%), calc-silic~te .. schist (~0%), and micaceous to pure marble (25%) (Plate 32; Tab le 8). 

Phyllltic schist, marble breccia, quartz-mica schist, and quartzite are 

relatively ~nor components. The bulk of the unit consists of micaceous 

carbonate rocks, which are part of a c:ontinu~ between marble ( < 5% mica) 

and pelite (> 80% mica) end-members. In order to facilitate and clarify 

the descriptions to follow, the continuum Is divided into 'micaceous marble' 

{5 to ltOt mica) and 'calcareous s~hist' (40 to 80% mica), In addition to 

the two end~bers. 1 Calc-;ilicate schist' Is used to refer to a schistose 

rock containing more than 20% calc•slllcate minerals. 

In the 'Twllllck Brook' area, these lithologies form an i nter layered 

sequence in whicn the domlnant.foliatlon. defined by both the composl tJ onal 

layering and the main schistosity (S2). generally dips moderately to 

steeply to the sou~heast . Layering (relict bedding7) Is well-defined 

• 
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PLATE 32 

Representative hand specimens of the Twillick Brook formation -A (79-247-
1), para- amph i bolite, 300m west of 'Second Pond'; B (79-249), coarse­
grai ned, micaceous marble, 2 km west of 'John's Pond'; C (79-247-2), cal­
careous s chist, 300m west of 'Second Pond'; scale in em; for sample 
loca tion see Figure 30, Appendix D. 
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TABLE 8 

POINT COUNT MODAL ANALYSES - TWILLICK BROOK FORMATION 

S•ple I 21i9 76 18 199 

Calcite 70t 30% 3%, 95% 
Muscovite 18 11 16 / Biotite 12 5 
Garnet 11 

Hornblende 21 

Quartz tr * 16 12 

Plagioclase tr 28 33 

Chlorite tr tr 

Zols i te 7 3 

Sulphides tr 3 1. tr 

fj Points 967 1010 1023 976 

* amount ( « 1 t) tr - trace 

Samples: 

249 . - grey and white, layered, medium-grained, micaceous marble (7~-
. . 

2119), 2 km west of 'John.' s Pond' . 

76 -rusty-weathering, grey, medium-grained , calc-silicate schist 

(78-76), 1.5 km SW of 'Triplet Pond'. 

18 - dark grey, fhie-grained, .\garnetlferous para-amphlbol'lte (78-18). 

300 m west of 'Second Pond' • 

199 - grey and white layered, ~~edlum~grained, serici t,ic marb le (79-

199), from 'Grand Lake .Brook', 3 km NW of 'John ' s Pond'. ,.. 

' 
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th•oughout the sequ~:::';;J Is ma•ked mainly by vadatlons In mica 

content. The more micaceous rocks are thinly layered (2 nm to 2om), 

whereas the· less micaceous, more massive rocks fonn layers varying fran 

10 em to 4 m thick, but average about 40 to 60 em. The thin layering and 

marked competency contrast between the lithologic end-members (marble and tJ. 

pelfte) combine to record, often 

deformation history (Plate 33). 

<· . • r 

In excellent deta II, the multi -phas( ;f'~' 
. ·:t •,. ....... .. 

Most outcr:ops contaIn fracture-fi l•li ng 

veins (1 to 50 en thick) consisting of white (locally smoky) quartz and/or 

buff calcite . 

../. 
Calcareous schist 

A large part (30l) of the formation consists of grey, or rusty-

weathering, medium- to co.rse-grai~ed, calcareous schists (sample C, Plate 

-32; Plate 33). On fresh surfaces, the rocks vary from grey to white, but 

most commonly calcareous material of both colours are lnterlayered 'on a 

1 to S 11111 scale. 

Mineralogically, the schists consist ~f calcite (20-60%), muscovite 

(15-50%), biotite (0-JOt), and accessory quartz, feldspar and sulphid~s. 

No dolomite was recognized, though brownish sider.ite Is present locally. 

Biotite is brown, and shows no sign of alteration to chlorite in most rocks. 

It locally forms S rrm size porphyroblasts, which 'spot' the folia~ion 

planes. lepidoblastic muscovite and biotite define the main foliation 

(52), and sulphide ~inerals •ppear to be mainly pyrite, and are locally 

present ~ ·In signifiCAnt ·(3-5%) amounts . Walthler (1949) noted quar;tz veins 

with high concentrations of sulphides in these and related rocks In 'Grand 
ii 

lake Brqok', about 1 ~west of 'John's Pond'. 

• ..,; ,.I' 

-- - -- - - - --- - --- -

• 
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PLATE 33 

. Strongly deformed calcareous schlst/m.rble sequence In Twllllek Brook 
fj)rnaatlon - outcrop In 'Grand Lake Brook', 2 km we5t of 'John's Pond'; 
view HE; note Intense defonutlon In boudiMged marble layer; outcrop 
lo~t I on 197 - ste Figure 30. • · 

? 

. ' 

PlATE 34 

C•lc-sl 11c.te schist containing hornblende porphyroblasts In Twllllck 
Brook forNtlon ·• large hornblende crystals form radiating clusters in 
S2 foliation pl.,e; vi.., NW; outcrop In 'Grand Lake Brook', 1.5 "" west 
of 'John's Pond'; outcrop location nMr 1'7· 

. . 
. • 

• •. 1 
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Calc-silicate schist 

The calc-,si I icate schists, also representing about 30% of the 

formation, vary considerably in mineralogy ami texture. They contain more 
I 

than 20% calc-silicate minerals, and consist ofessentially ·calcite (5-
. ~ . 

50%). plagioclase (10-40t), hornblende (0-60*h quartz (5·25%), muscovite 

(5-25t), zoi site (0-1 Ot), biotl te (0-30%), garnet (0-30%), and accessory 

minerals (sample 76, Tdle .B) . 

11ost of these schists are conspicuously porphyroblastic, aJthough 

some are relatively equigranular, and look very much like the calcareous 

schists In hand specimen. The major difference bet~en these rocks is 

the ~igher quartz content of the calc-s i I icate schists, which I~ likely 

a primary feature, and no doubt served as the source of silica during the 

metamorphic growth of the calc-silicate minerals. 

Several minerals are represented by porphyroblasts, including, in 

order of abundance, ' hornblende, plagioclase, garnet, zoisite, and biotite. 

The most conspicuous porphyroblasts are black, idloblastic horn-

blende crystals, which are locally up to 20 em long, but average about 10 

to 15 em (Plate 34). Microprobe analysis identified them as aluminous, 

tschermakitlc to ferro-tschennakltlc hornblende (see Table 13 and Figure 28, 

' Appendix 8). In thin section, the hornblende is pleochroic in shades of 

green, Is partly to ccmpletely altered to chlorite, and is polki loblastic 

In sene rocks. 

Aclc:ul•r, hornblende porphyroblasts characteristically form radi­

ating clusters In the dominant foliation plana (52) (Plate 34), but they 

•re clearly post-tectonic with respect to the fol iatlon, as they locally 

t-lave grown at right angles to it. The coarser porphyroblasts (1 em thick) 

are so abundant In pI aces that aggregates form 2 to J em thIck I ayers In 

the schists. Where. hornblende and plag loclase porphyroblasts represent 
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more than 501 of the mineralogy, a very coarse-grained '·para-~phibollte' 

Is the resulting 1 ithol~y (sampt_e 'A, Plate 32; sample 18, Table 8). 

In addition to the dominance of carbonate rocks, the presence of 

this very distinctive hornblende porphyroblast texture (garbenschlefer} 

is a characteristic _feature of the Twi I I ick Brook formation, and can be 

' used In the field as an identifier. For example, in his description of 

the area neu Eastern Lake, HcKi I lop (1963) noted that the hill northwest 

of the lake "Is at least partly underlain by coarse-textured marble", while 

in outcrops In Eastern Brook, .a few hundred feet from the pond outlet, 

''well-developed schists are Interbedded -with relatively thick beds of 

coarse textured marbles. The schists are calcareous, dark grey, wi th 

considerable pyrite developed locally ... Large black hornblencle crystals 

are locally developed parallel to the bedding. Some of these are up to 

three .inches long11 (McKillop 1963, p. 16). He also found garnets 2 to 3 

em in diameter. The llthol'ogies and textures he describes clearly iden­

tify these rocks as part 'of the Twlllick Brook formation as it Is defined 

nere. In this area, the formation rs ·apparently surrounded ·by rocks of . / 

the Mount Musgrave formation, and may be preserved In the core of a tight 

sync II ne (F37). 

VIrtually all 

clase, represented mainly by porphyroblasts. ' Microprobe analysis Indicated 

the plagioclase is in the ol.lgoelase to andesine (An22_
33

) canposltlonal . ' ' 
range (see Table 15, Appendix B). K-feldspar (3-5%) was found in only one 

sample, taken from 'White Ridge Brook' about 2 km north of Grand Lake. 

The - K-feldspar fs pol'i loblastic, and its growth may be related to gr~nitold 

dykes which lnt.rude that part of the Stag Hl·ll Thrust zone. 

The plaglocl-se por-phyroblasts vary from 5 11111 to 2 em, and are 

typically crowded with inclusions of quartz, calcite, zoislte, epidote, 
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muscovite, and graphite. 'rh~ largest (2 em) porphyroblasts were found In 

a black, garnetiferous para-amphibolite in an outcrop on 'Gull Pond Road' 

about 300m west of 'Second Pond' (sample A, Plate 32). This lithology 

consists of plagioclase {33%), hornblende (11% •• muscovite (16%), quartz 

(12%), garnet (11~). and accessory calcite, ~oisite, graphite, chlorite 

and sulphides (see also ·sample 18, Table 8). Hornblende (10 em) and 

garnet (1 OM) are porphyroblastic, and like plagioclase are clearly post-

tectonic with respect to S2. In thin section, the plagioclase Is notable -for the distinct graphite layers which pass through It and parallel the 

foliation (see Plate 84, p._ 313). Host of the minor components of the 
.. 

mineralogy are found as inc:luslons in the feldspar porphyroblasts. 

Garnet porphyroblasts are very common In the calc-silicate sch~sts, 

are .Invariably red, and S 11111 to It c:m ' in size. Compos! tionally, they are 

mainly almandine with a minor component of grossular (see Table 14, Appen-

dlx B), and they vary from unaltered to totally chlorltlzed if'l different 

areas. The association of calcic garnet, calcic plagioclase, and hornblende 

indicates that lower amphibolite facies conditions may have been reached 

locally in the fonnatlon. 

Zolsite, a relatively conwnon constitutent of the schists, appears 

to have two different modes of occurrence. ldioblastic, post-52 zoislte 

porphyroblasts up to 1 em In length are found in the schists .themselves, 

t whereas larger crystals up to 10 c:m in length, and typically fractured or 

bent, are found as aggr'egates In ·quartz vei!'S whkh cut the schist, These 

appur to represent 1 second generation of the mineral. Euhedral rutile 

" crystals (1 em size) are aho eorm10nly found In the quartz veins. 
\ 

Brown biotite loca11y forms small (5 to 10 nm) post-52 porphyro-

blasts in the schists, u It does In other micaceous rocks in the formation. 

Where It Is not porphyroblastlc, the biotite combines with muscovite in 
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defining the schistosity (S2), but rarely is it more abundant than 

11useovi te. 

"-trble 

Micaceous to pure m~rbl~s constitute about 25% 'of the formation, 

and are grey, white, or layered or mottled grey and white (sample 8, Plate 

32). Buff and pink marbles are relatively rare. The micaceous marbles 

are medium- to coarse-grained, and conta.in 5 to 40% mica, which invariably 

includes muscovite and, less commonly, biotite. Both micas parallel 52, 

and muscovite is typically represented by sericitic partings. Calcite 

accounts for the bulk of the mineralogy (60-95%}, while quartz, plagioclase, 

and pyrite are the main accessory minerals (samples 21t9 and 199, Table 8). 

Pure marbles (95-100% calcite) form only about 5% of the formation, are 

also medium- to coarse-grained, and grade Into micaceous marbles with 

which they are interlayered. 

The marb~es are relatively massive n>c:ks, and thus form thicker 

layers (30 em to 2 m thick} In the otherwise thinly Payered sequence. Some 

of the marble layers are boudinaged (Plate 33), and others form erosional 

ridges In outcrop. One notable example of the latter Is the coarse-grained, 

white, sericltic marble found on the eastern side of 'White Ridge Brook', 

1 km north of Grand Lake. The steeply southeast-dipping layer fo~s a 

ridge approximately 30 m long, 6 m high, and 2 m thick. 

Sane of the thicker marble layers (forming 3~5t of the sequence) 

conslsr of marble breccia or marble conglomerate. The clasts, up to 4 em 

long, are typic. lly flattened and ' oriented parallel to the maIn fQIIat ion 

(S2), reflecting considerable modification of the original sedimentary 

texture during recrystallization and deformation. The clasts are differ­

entiated from the matrix either by acolourdlfference (usually grey clasts 
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against a white carbonate matrix}, or by a slightly higKer mica content. In . .. . 

the matrix. · 

Buff, serlcitic marbles are found in • few outcrops In 'Grand Lake 

Brook', while pink marbles were found only on the shore of Grand Lake, 

km east of 'White Ridge Brook', and on 'Gull Pond Road'; 1 km north of 

'Second Pond' . Near Grand Lake, pink marble is interlayered (30 em scale) 

with grey and white marbles, - but near 'Second Pond' pl11k, c<Mrse-grained, 

serlci tic marble Is intertayered (2m scale) with garnet-quartz-mica sch ist 

containing bl1111e quartz grains. The schist Is similar to rocks In the 

Mount Musgrave formation, ·suggesting a gradational contact between the 

formations. However, a number of contrasting lithologies are present in 

the are~ near 'Second Pond', and their intercalcatlon may be due to tecton ic 

movements in the Corner Brook Lake Thrust zone. 

Phyllltlc and quartz-m•ica schist 

T~ most micaceous rocks in the fonnation are represented by 

phyllitic schists, which fonn about 10% of the sequence. They ar~ found 

throughout the sequence In layers that average ·about 30 -cm, and they are 

typically shiny, grey, strongly erenulated, and spotted with Dxld ized 

sulphide minerals (mainly pyrite). They consist of essentially muscovit~ 

(70-90%} and quartz (10-30%), and some contain porphyrobiasts of garnet 

and albite (S 1'1111 size) which clurly overprint the main foliation (Si), 

but are pre-tectonic with respect to a strong crenulatlon cleavage (S3} . 

The garnets are almost canpletely replaced by chlorite, but their presence 

Indicates that at least epidote-amphibolite facies conditions were reached 

In the fonnation. 

The minor amounts of quartzite and g~rnetiferous quartz-mica schist 

In the fo~tlon appe•r to be most c0111110n in the western part of the 
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'Grand Lake Brook' sec;tlon. It is noteworthy that. both phyllltic sc;hists 
' 

and garnetlferous, quartz-mica schists appear to be concentrated around a 

body of serpentinite (the Serpentinite unit), which outcrops on 'Gull Pond 

Road' 3 ·km west of 'John's Pond'. The garnetiferous schists from the 

eastern margin of the serpentinite body are greenish-grey, very strongly 

crenulated, and contain 1 em size, red garnet porphyroblasts . Their 

spacial assoclatl9n with the serpentinite body suggests that some may be 

re 1 a ted to r ts tee ton I c: emp 1 ac;emen t. 

' The lithologies in the Twillick Brook formation clearly characterize 

It as a defo~ and metamorphosed sequence of carbonates, fine clast i c;~ 

" 
(shales and silts), marls, .and carbonate brec;c;las. The dominance of 

-micaceous carbonate lithologies and pelites over pure carbonates Indicates 

the original shaly sequence was deposited within the range of the clastic 

source, but that It was still farther from the source thaa the Hount 

. Musgrave formation. The scale and sequence of the Interlayering Indicates 

cyclic deposition In a rapidly fluctuating environment. The cubonate 

breccias m.y represent Intraformational breccias, u they do not appear to 

be extensive enough to be major carbonate slope deposits. 

It . 5 Serpent In I te un 1 t 

- . 
The Serpentinite unit I~ introduced here to refer to the massive 

to weakly foliated, green s~rpentlnitn found in the Corner Brook Lake area 

(PI ate :ij). The unIt outcrops on • Gull Pond Road 1 , 3 km west of 
1 
John 

1 
s 

Pond' , and Is areaJiy the sma tlest II thlc un l t -recognIzed t n the area. 

It forms an elongate body with outcrop dimensions of about 50 X 100m. 
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PLATE 35 

Representative hand specimens of the Serpentinite unit A (79-251-1), 
green, sugary-textured serpentinite; B (79-251-2), soapy-textured serpen­
tini te wi th greenish-white, radiating crystals of talc on surface; C (79-
251) , picrolite variety of serpentinite; all samples from outcrop on 'Gull 
Pond Road' , 3 km west of 'John's Pond'; scale in em; for sample locations 
see Figure 30, Appendix D. 
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In spite of its ~II size, the rock mass is given 'unit' status because 

it is lltPologlcally and tectonically so distinctive, and, as will become 

~ ~vldent In later chapters, It has great importance in the interpretation 

of the tectonic evolution of the Corner Brook Lake area. 

The serpentinite rocks support only a very sparse vegetation, and 

thus the unl.t stands out quite clearly against the wooded h.ills, both from 

the ground and on air photographs. In addition, the unit has associated 

with It a 'bull's·eye', positlv~, aeromagnetic ananaly. Both these d is­

tinguishing features were used in an attempt to locate other serpentlnit~ 

masses in the area, and there is an indication that a mass of similar size, 

shape and structural orientation is present In the Stag Hill Thrust zone, 

about 300m north of 'Triplet Pond'. However, since this was ~ecognlzed 

o/rty 'after field work was completed, its existence has not been confirmed 

in outcrop. Other such aeromagnetic anomalies In the area, without air 

photograph features, may Indicate similar sub-surface mas'ses. 

Essentially the entire Serpentinite unit consists of homogeneous, 

fine-grained, green serpentinite (sample A, Plate 35). The rocks weather 

In ~hades of brown or grey, while fresh surfaces vary from I lght to dark 

green. ·The mlneral_ogy Is simple, canprising serpentine (80%), whicn is 

mainly antigorite, chromite {15*), and opaque oxides (5%). Other, less 

common minerals include idioblastlc crystals (2 em size) of magnesite, 

radiating clusters of talc (sample B, Plate 35), and a structurally-gener­

ated, picrolite form of antigorite {sample C, Plate 35). The serpentinite 

clearly represents a met~rphosed ultrabaslc rock. 

Although the serpentinltes are essentially massive, In places a 

weak foliation is recognized, which parallels the long aKis of the body, 

and Is concordant with the dominant regional foliation (S2). Actual 

cdntact with the surrounding rocks of the Twillick Brook format ion was not 
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observed due to poor exposure of the margins of tne body, but no evidence 

was found to suggest Intrusion of the ultrabasfc protollth. Thus,'the 

body .t s Interpreted .to be structurally emp I aced .tlong a thrust, eIther the 

Stag Hill Thrust, or a. subsldluy ta11t. · 

It Is Interesting ~hat the unit Is flanked on both eut and 

west sides by garnetlferous quartz-mica schist and phyllltlc sch!'st, which 

may represent schists of tectonic origin produced during emplacement. In 

view of the parallelism of foll.ttlons (52) In and around the body, emplace-

ment I ikely occurred before or during the 02 structural event. 

4.6 Stratigraphic relations, age and correlation 

The three major units In the metaclastlc terrane, the Caribou Lake, 

Mount Musgnve and Twllllck Brook formations, ~re here inte.rpreted to be 

composltfonalJ.y distinct parts of a strongly defof1!1ed and metM~Drphosed 

sedimentary sequence. Although poor exposure makes recognition of strati-

graphic relations difficult, some general Inferences can be made. 

The feldspathl~~oc:ks of the Caribou Lake formation occupy the 

core of the Steady Brook Lake Anticline and appear to be transitional 

along the transmission 1 lne Into more quartzose rocks of the Mount Musgrave 

. formation on the 1 lmbs.of the fold. This relutonshtp Is Interpreted to 

mean the Culbou Lake form.tlon was. orlglnad ly overlain (c:onformaltfy?) by 
. 

the )4ount Musgrave formation. In addition, tM Mount Musgrave formation 

~ppears to be gradational Into the Twill lck Brook fonmatlon near 'John's 

. Pond', where ~alcareous schists In the mainly quartzose sequen~e become 

predominant westward over about 100m In exposures In 'Grand Lake Brook'. 

This relationship would suggest the Twill lck Brook fonmatlon stratigraph­

Ically (~onformably?) overlies the Hount Musgrave formation. 
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Thus, the available evidence would suggest the stratigraphy of 

the met•~tle terrane comprises basal arkosic rocks of the Caribou Lake 

form.tlon, ~~rlain · by quartzose rocks of the Mount Musgrave formation, 

In turn overlain by calcareous rocks of the Twill lck Brook for~tlon. 

The preserved gross lithological features of this sequence suggest a 
~ 

changing depositional environment from terrestrial and near-source for 

the basal feldspathic rocks, through possible marine (near shore) and 

hrther removed· from the clastic source for the quartzose rocks, to deeper 

marine (7) and sti II far'ther removed from the clast)c source for the 

upper calcareous ro.cks. The generalized facies changes suggested by this 

sequence could reflect deposition during a gradual marine transgression. 

All three units record 02 structures and thus were deposited' prior 

to this deformation event, which Is c:or~elated (section11.1) with the 

Taconic Orogeny; therefore, the units are clearly pre-Middle Ordovician 

ln · age. Intrusion of basic: dykes also occurred prior to 02 and early. In 

the depositional history, u they apparently pre-date the Twltlick Brook 

fonn.tlon. As noted previously, evidence suggests structural emplacement 

of the Serpentinite unit In a Njor zone of dislocation; this most ltkely 

oCcurred during the Intense 02 event • . Following 02, the entire sequence, 

particularly its lower part, was Intruded by granitoid rocks. Fur-ther 

defonm.tlon tD3-D5) followed granitoid intrusion. 
'J 

, 

The stratigraphic sequence outlined here for the metaclas~ l c terrane 

correlates well with the regional str-atigraphy of .western N~oundland, 

and such correlation can provide a better time fr•me for some of the 

depositional 1nd Intrusive events described above. As noted (section 1.3), 

the Humber zone sequence comprises late Hadrynian to early Cambrian basal 

coarse arkosic: rocks containing syn·deposltlonal basic dykes and extrusive 

equivalents, overlain by Lower to Middle C~brlan finer clastics and 

I 



142 
) 

quartzose rocks, overlain in turn by~ thick Middle C~mbrlan to Middle 

Ordovl~l~n ~arbonat~ sequence. Lit~logl~ ~orrelatlons between ·these 

regional stratlgraphl~ divisions and units In the metaclastlc terrane are 

obvious. they suggest the Caribou L1ke for"'!Mtlon and Included buic rocks 

are late Hadrynian to early Cambrian In age, ~he Mount Musgrave for~tlon 

is Lower to Middle C~brian In age, and the Twllllck Brook for~tlon Is 

Middle C.mbrlan to Middle .Ordovician in age. Based on evidence to be 

presented In the nex~ chapter, It Is felt the age of the Twill l~k Brook 

formation can be refined to Middle to Upper Cambrian. It would appear 

that the Ordovician carbona'tes in the regional stratigraphy are not 

represented In the metaclastlc terrane, but instead fonm a major part of 

the carbonat~ terrane to tHe west. 

Two K-Ar dates on ~scovlte In schists from the northern part of 

the Mount Musgrave fonnatlon near Steady Brook yielded ages of 412 ~ 14 

and ~29 t 14 ~.which are Interpreted to reflect the effects of a Silurian ) 

event, either metM10rphlsm or uplift, on Cambrian-age rocks (Wanless et al. 

1973). - These dates are In rem.1rkable agreement with the 420 t 20 and 452 

t 20 Ka dates from the southern part of the area quoted earlier. The dates 

also agree, within the margin of error, with th~ Rb-Sr 386 t 9 and lt19 t 
/ 

·s Ka dates obtained from the Topsails lgnedus.complex. Based on evidence 

derived from the present ~rk, It is suggested here that the K-Ar dates 

record. up11ft and cooling of the area following post-02 (post-Taconic) 

metamorphism and granite Intrusion, and coincident with the onset of 03 
/ 

(Acadian) defonmatlon. The dates also suggest uplift ~Y have occurred 

slightly earlier In the southern than In the northern part of the area, 

as the northern (muscovite) dates are slightly younger. 

_As noted In Chapter 1, the Middle Ordovician Taconic Orogeny 

Involved ~stward obduction of ophiolitic masses, Including the Bay of 
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Islands Complex to the west of the ar ... With such te,tonic processes 

taking plac~ in the Immediate vicinity of the area, It seems likely that 

the ~tructurally emplaced rocks of the Serpentinite unit are of ophiolitic 

affinity, and thus record the passage of these segments of oceanic I I tho-

sphere acros's the Corner Brook Lake area (see ·Figure 27, p. 326). Cor~ 

relation with the Bay of Islands Complex suggests an Upper Cambrian to 

Middle Ordovician age for the Serpentinite unit. Further work may show 

that similar 1 anOmalous• ' basic and ultrabasic rocks, such as those in the 

albite-mlc:auhlstiO!' the shore of Grand Lake •nd the unusual amphibolite 

in the Grand Lake Thrust zone, are also fragments of the ophiolites caught 

up during transport In major zones of dislocation. 

Lithologic correlatives of - the Caribou Lake':formation with in the 

111ap aru are represented by the arkosic rocks · of the Antler Hill formation, 

while correlatives of the Mount Musgrave and Twllllck Brook formations are 

\ 
represented In the 'arbonate terrane to the west by the quartzose rocks 

of the Stag Hill fonmatlon (lower ·part of the Gr•nd lake Brook group) and 

the carbonate .rocks of the Reluctant Head fo~tlon (upper part of the same 

group), respectively. The latte~ two correlations provide a significant 

lithological link between the metaclastic and carbonate terrane, a 1 ink 
I 

which will take on more Importance when the structural evolution of the 

area Is considered (Unit II). All three fonmatlons In the metaclastic 

terra~e are continuous across Grand Lake to the south, where they are 

collectively referred to as the' 'Loon Pond meusedlmenu• (Martineau 1980). 

As noted previously. "the metabasic and granloold rocks In the terrane are 

correlated with those In the gneissic terrane. 

The rocks in the m.tactastlc terrane ~ve been traditionally co~­

rel•ted In a generalized .-y with rocks of the fleur de Lys Supergroup, 

outcropping on the wtstern side of the Burlingt~ Peninsula (e.g., Church 

/ 

' . 



1969; WI I I lUis et al. 1972. 197ft; Kn011pp et al. 1973; Kennedy 1978, 1980). 
.· ·.· .. 

In spite of the findings of the present . study and recent work by Hlbbud 

.(1373 • .:1980) and Hibbard et at. (1980) on the Burlington, the correlation, 

tt,ough likely valid, must rem.ln gener~llzed bec::•use the Fleur de Lys 

rocks are so highly metMOrphosed and complexly defonned _ that orlgin•l 

sed lmenury features are apparently even 1110re obscured t~n they are In 
,/ 

. •· 
~· 

the Corner Brook Lake arM. It c11n be noted. however ; that the same general 

lltho1ogl~1 seqyence Is apperently represented In the Fleur de Lys, 

with feldspathlc clutlc rocks, Including Ntac:onglomente and amphibolite, 

In the lower part and more qu.rtzoie cl.stlc:s and c:alc:areous rocks In 

the upper part (8yrsnall and de Wit 1975; Hlbbud 1979. 1980). 

Although .the Fleur de Lys likely contains lateral facies equl-

val ants of rocks In the metec lastlc: terrane, c:orrelat Ions wl th the Fleur 

de Lys are not as cfur as they are with 1110re westerly, Jess deformed an~ 

1118t..-orphosed, late Hadrynlen to Ordovician rocks of the Humber zone. 

Sharper correlation between rocb· to the west and those In the map area 

Is Interpreted to lndl~te Initially closer depositional settings. Thus, 

,4 If the Fleur de L.ys represents a IC*er Paleozoic slope/rise prism of 

sadl ... nts ···(Willl.s and Stevens 1'74). the depositional setting of rocks 

In the •taclastlc ternna wes likely more ,tCMards the craton, probably 

near, buta-st of the ~g~'of _the continental shelf (see Figure 27. p. 326). 

4. 7 Carbon lferoui roc:ks 

CarboniferOus sedhnents In the Deer Lake Besln (Hyde 1979a) outcrop 
... 

along ' the northeastern Mrgtn of the IMP .rea, where they are In contact 

with rocks of the •taclt~stic terrane~ Thll sedl..nu were not studl~d In 
-~ 

detail during the pruent .ork, and outcrops were ~lned at only two 

· , 

; 
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localltlu - one on the shore of Grand Lake 1 km southwest of Northern 

Harbour, the other on the shore of Deer Lake 1 km southwest of Little 

North- Brook. The brief discussion which follows records the •uthor's 

observations on these lite-orogenic sediments, which pl•y • significant 

role In working out the late stages ln the structural history of the 

Corner Br:ook \.ake area (see sections 10.1, 10.2 and 11.1). 

Exposures near Northern Harbour contain fine-grained, thick l y­

bedded, d•rk grey fossiliferous sandstone ass lgned (Hyde 1979•) to the 

Anguille Group. In most outcrops bedding dips steeply to the west, but 

the dip Is v•rlable In the uea and suggests the presence of tight fo lds 

(F~?). A poorly preserved and unidentifiable plant fossil {see Plate 42, 

p. 166) w.s collected by the author, and Riley (1957) reported finding 

plant fossils at the same locality. The Angullle Group sandstones are 

Interpreted to be lacustrine deltaic deposits, and fossil evidence indicates 

the Group Is Lower Hlsslulppl•n (Tournalsian) In age (Hyde 1979a) . 

The outcrop exuined on the north shore of Deer Lake contains a 

red~ sequence ass lgned (Hyde 1979~) the North Brook foriNI t I on of the 

Deer Lake Group. 

bedded ( 30 c:.m to 

grained sandsto~ 

The gently sou dipping sequence consists of Inter· 

m scale) pebbl boulder conglomerate and red cOIIrse-

Roulided clasts (up to 12 em) In the congiomeu1te Include 

mainly white quartzite, green schistose roc:k, and white to buff marble, 

as well aa s~attered granitoid fr11gmenu . - 1111 clearly derived from 

adjacent rocks In the Mtaclutic terrane. The Deer Lake Group In the 

area represents terrestrial alluvial fan deposits, and fossil evidence 

. Indicates 11 Middle Pennsylvanian (Westphal Jan) age (Hyde 1979a) . 

Though contac:ts were not observed, the proximl ty and sharp struc­

tura I and .,.tamorph t c ~ntrast betlllfeen the Carbon I ferous·' rocks and the 

meuc:last lc terr•ne strongly suggest both the Angullle and Deer Lake 
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• 
Groups unc:onfonnebly overt lethe terrane. This Is further supported by 

the presence of metaclastlc terrane lithologies as clasts In Deer Lo1ke 

' Group cong~rates. The contact between the Deer L•ke Group and th~ 

terrane In the Deer Lake area can be .confidently Interpreted to be uncon-

fonnabl·e (angular), as has been shown by Baird (1959) .. The relatively 

strong deforma~t I on In AngulI Ia Group rocks near Northern Harbour, on the 

other nand, s~ggests these sediments are now hu I ted against the meta-

clutic; terrane In that area. In fact, It seems 1 lkely the South Brook · 

v01lley c:onulns • Njor north-trending fault separating Angullle and meta-
- -\ 

I 
clastiC' terrane rocks (Riley 1957; Hyde 1979a). The / structural contrast 

.between the Deer Lake and Angullle Groups strongly suggests their contact 

Is also an angular unconformity (Hyde 1979a). 

The Carboniferous sediments as ·a whole are obviously la~te·orogenlc 

depollts, u evlden,ed by their rsLativfj~y undeformed and unmettunOrphosed 

state eompared to nearby rocks In the metaclastic terrane; thus, they 

provide an upper age I fm It for the major deformatIon t1nd motamorphl sm 

recorded In the metaclestlc: terrane. It is noteworthy, · h~ver, that the 

Anguilla Group does exhibit strong defo~tlon throughout the Deer Lake 

Basin, while the Deer Liike Group Is in general more gently deformed . 
) 

. -(Baird 1959; Hyde 1979a). HYde (1979•) and _other workers halve suggested 

the deformation In the basin Is related to movements on major ftillults. 

Evldenc;e frccn the present work suggests the deformation Is related to il 

reg lonal structural event (Alleghen I an Orogeny), whl c:h also s lgn If I c:ant I y 

affec:ted oldcrr rocks In the Corner Brook Laka area. 

.. 



1~7 

CHAPTER 5 

CARBONATE TERRANE 

5. 1 lntroduct I on 

The carbonate terrane underlies· the western h•1 f _of the llWIP area 

(Figure 11) and enc;ompasses a stratigraphic s~quence cons ist ing of var·lably 

metamorphosed and strongly deformed carbona.te rocks, wl th minor · <:lastlc 

rocks at Its base and top. The terrane forms a s lnuous outcrop belt 

bounded to the east by thrust faults which sup~rpose rocks of the meu-

clastic and gneissic terranes, and to the west by structunlly overlying 

rocks of the Humber Arm -Supergroup. The terrane is also continuous to the 

north and south on a regional scale as the well-known Cill"borNte platform 

sequence of western Newfound 1 and. 

Three lithostratigraphic units of group status are recognized in 

the terrane, illl of which have been previously described and named. They 

are: 1/ the Grand Lake Brook group (Wa1thier 1949; subd,lvldecl here), 

21 the St. George Group (Schuchert and Dunbar 1934), and 3/ the Table Head 

Group (Klappa et •1. 1980). The 'type section' for the Grand Lake Brook 

group Is within the map t~~re•. but type sections .. for the other units •re 

found elsewhere In western Newfoundh1nd. 

The carbonate terrane was studied In less deull during this work 

than the metlclutl<: and ~nelssic terranes. which were- the prime objectives. 

The eotst:ern ~rgin of the carbonate terr•ne, however, received st lghtJy . 

more emp~sls th•n the rest of the terrane. where field work w.as essenti•lly 

restricted to 'accessible' areas. Previous work is relied upon for lnfor-

mat I on on 1 large p•rt of the terrane. 

Over •11 exposure Is very poor In the terrane, as It coincides 

with • low. rolling. tree-c:overed topogr•phy. Outcrops are found RW~inly 

' . 
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along logging roads, the Trans C~nada Highway, and In the larger stream 

valleys. Fault scarps and stream-cut cliffs provide good exposure locally, / 
I 

i 

. such as near Is land Pond, ~round the Humber Gorge, and in the va I ley west / 

of Camp 33 at the southern end of Grand lake. 

The grade of metamorphism decreases notlceibly from upper green­

schist In the east to lower greenschist or sub-greenschist f~cles. in ' the 

west. The .complete recrystallization of all lithologies has apparently 

masked or obliterated any existing fossils, which are locally abundant 

In correlative rocks outside the map area. The Intensity of deformation 

also decreases from east to west, and the dominant structural trends 

generally parallel· those In the metaclasttc terr~ne. Deformation and 

metamorphism have contributed to making certain parts of the stratigraphy 

difficult to distinguish from adjacent parts. 

Brief llthologie'descriptlons of the thre~ units ~represented in 

the following three sections, while the fourth section contains a discussion ,., 
of their stratigraphic relations, ages and correlations. The fina l section 

presents _• brief discussion of the Humber Arm Supergroup which forms the 

western _boundary of the carbonate terrane. 

5.2 Grand la.ke 8rook group 

Walthler (1949) Introduced the name 11Grand Lake BrOok Series" to. 
., 

refer to a sequence of marbles, phyll ltes and schists outcropping i n the 

southern part of the present map area. Hare recently, HcKI11op (1963) 

used the name, but In the modified fQrm 11Grand L<~ke Brook Group11
, to refer 

to pert of •n equlvelent sequence ln the northern part of the •re• . Lil ly 

(1967) also used the modified fonn of the name, but he totally redefined 

the group to Include all thetroc:ks In the present map area outcropping east 
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of the carbon.te terrane. This definition, however, Is far too broad in 

view of.·the greAt lithological diversity In that part of the area. 

In the present study, the noame 'Grand J-ake Brook gro!Jp' Is used 

to refer to. basically th~ same sequence described by Walthler (1949). but 

his unit has been divided here Into two fonniltlons. In addition, It Is 

noted that the lithostratigraphic term 'group' (fnformal) Is used rather 

than the chronostratigraphic term 'series' (Hedberg 1976). 

lithologically, the Grand lake Brook group consists of phyllite, 

~rble, ~rble breccia, quartz-mica schist, quartzite and pelitic schist. 

These rocks are d lvided between the Sug Hill forNt ion (proposed here) 

and th~ Reluctant Head formetlon (after Lilly 1963), whlc.h are t~pparently 

conformable lower and upper paru of the group, respectively. The former 

Is ereally Jess extensive thAn the latter, which forms the ~jor part of 

the outcrop aru of the group. The • type area' as originally .s.slgned by 

Walthler (1949) Is In the •Grand lake Brook' area lmmedl.teJy south and 

east of 'High Pond'. 

The group forms a relatively narrow sinuous belt along the eastern 

Nrglnof the ~rbonete . tern1ne (Figure tl). In the- southwest near 'One 

Hile Pond', the width of the belt thlns · markedly as It Is almost completely 

overridden by rocks of the gneissic terrane along the Grand L•ke Thrust. 

South .of Grand lake, It apparently has been totally overridden by the 

basement gneisses, which are superposed on rocks of the St. George Group 

(Kartine•u 1980). The outcrop ~It Is also narrow adjacent to the Corner 

Brook la\e Thrust nor~h of C~rner Brook Lake. T~e widest part (about 7 km) 

Is In tha area between Corner Brook Lake and 'Triplet Brook'. The group 

forms the core of Shell bird Anticline (redefined after Lilly 1963). 

A note of explanation Is necessery concerning the n~ing of brooks 

In the map area; Walthler (191t9) described the "Grand lake Br~k Series" 

• 
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at Its type locality In an unnamed brook to which h~ assigned the name 

"Grand Lake Brook11 because It drains into Grand Lake. H~ver-, on recent 

topographic maps the name is used to refer to a different brook, located 

about 7 km to the west, but also draining into Grand Lake {see Figure 3, 

p. 6). S lnce it Is necessary to retain the name as It was orlg Ina 11 y used • 
... 

the easterrvnost brook draining into the southwe!Jt end of Grand Lake will be 

referred to here as 'Grand Lake Brook', with single quotes to s ignify an 

unofficial name. No confusion should result from this usage, as the brook 

to the west. is at no time referred to in this study. 

Stag HI H formation 

The Stag Hi 11 formation comprises a sequence of dominantly quartz-

rIch rocks, including, In approx imal"! order of abundance, quartz-ml ca 

schist (40%). mica schist (35%), quartzite (2o;r, and quartz-feldspar-mica 

schist (St} (Plate 36). The quartzose nature of the formation is Its 

characteristic feature, and contrasts it with the carbonate:-rlch Reluctant 

Head formation. 

The formation Is best exposed In the 'Stag Hill' and 1 Hawk Hill' 

areas . Parts of the fotmatlon also outcrop north of 'Bear Hill' near 

•one Mile Pond', and on the north side of the Humber River valley~ Rocks 

which outcrop in the 'One Mile Pond' area.re Interpreted to hav-: been 
' 

structvrally Intercalated wl th other parts of the stratigraphy during 

movements in the Grand Lake Thrust zone. A suitable 'type area' for the 
I 

formation Is 'Stag Hi 11' and Its vicinity. -

The dominant _lithologX is fine-grained, grey to buff quartz-mica 

schist, which commonly contains scattered milky-white to I lght blue 

quartz grains up to 2 mm. Quartz (40-70%) and muscovite (30-60%) are the 

dominant minerals, and brown. partly chlol"itlzed biotite is abundant 
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PLATE 36 

Represent~tlve hand specimens of the Stag Hill foramtion A (77-46-7), 
micaceous quartzite with relict (7) cross-lamination, and B (77-48-1), 
tight folded q~rt~-mica schist, both from Grand Lake Thrust zone, near 
northern end of . 'One Mile Pond'; C {77-69-1), quartzite containing blue 
quartz grains, frcn 100m south of bridge over 'Triplet Brciok'; sca.le In 
em; samples cut and polished; for sample location see Figure 30, Appendix D. 

PlATE 37 

Strongly deformed, thinly layered quartzite/petite sequenc~ in Stag Hill 
fonwatlon view NE of outcrop on summit · of 'Hewk Hill'; note the rugged 
texture of outcro~ due to weathering-In-relief of the quartzite lay~rs; 

'\outcrop locat ton 85. · 

. "" 
·-

·. I 
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(5-15%) In the darker grey schists. Accessory minerals Include feldspar, 

chlorite, sulphides (mainly pyrite), and opaque oxides (mainly hematite). 

. •' Muscovite, with or without biotite, defines the dominant foliation (S2), 

and in thin section the muscovite and biotite are bent (without recrystal-

lization) about the plane of a later crenulation cleavage (53). 
:S 

Fine-grained mica schists, containing'more than 50% phyllosilicate 
~ ! . 

minerals, are represented by generally thin layers (3 mm to 30om} through-

out the formation. The lithology includes very mlc.iiceous., shiny grey 

phyllitic schist, greenish-grey muscovite-chlorite-quartz! albite schist, 

and buff muscovite-quartz schist. The phyllitic schists, some of which 

are very graphitic, are most common near 10ne Mile Pond'. The greenish-

grey schists are not as common, but in one outcrop 300m southwest of 'High 

Pond' were found to contain small (1-2 mm), white albite porphyroblasts. 
·~ 

These schists and the quartzose lithologies in this particular outcrop are 

very similar to schists in the Mount Husgrave formation near Mount Musgrave. 

The .buff schists are also rare, but one sample was found to conta in acces-

sory tourmaline (2 nm size). In general, the mineralogy of the pelltes 

suggests greenschist facies metamorphIc cond i t ions "~re reached I oca 1 1 y. 

Quartzites, containing more than 80% quartz, are fine- to medium-

grained and light grey to white (samples A and C, Plate 36). Rarely are 

they pure qu~rtz-rocks, but almost Invariably contain 5 to 10% muscovite 

(sericite) . The quartzite rayers tend to ~ather in rei ief, g iving SOtte 
. .. ' 

outcrops a very rugged texture (Plate 37). One thick la_yer of quartzite 

(sample C, Plate 36), which fonna a r idge running sout~st from a point 

near the bridge over 'Triplet Brook', Is distinctive for its 2 rrm s ize, 
r I .• 

blue quartz grains, amounting to about 15% of the rock. 

Feldspar rs nre.ly a significant component of rocks In the formation, 

quartz· feld;par-mlca schists make up less than 5% of the sequence. 
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Hpwever~ In one sample collected from 300m southwest of 'High Pond', 

feldspar (plagioclase) constitutes about 20% of the grey to buff, medium-

grained schist. The schist contains very thin (1-2 rm1) quartz- and mica-

rich laminae, and rounded white-weathering feldspar clasts (up to 3 mm 

size). Another fel9spathic rock assigned to the formation outcrops at the 

northern end of 'One Mile Pond' (see Plates 61 to 63, p. 237), and is a 

tightly fo~ded (F3) quartz-feldspar my~nite. In thin section, quartz 

(60%;. 0.2 mm) has a strong preferred orrentation and surrounds porphyro-

clasts of plagioclase (20%; 2 mm). Muscovite, chlorite, and brown biotite 

also contribute to the mylonitic foliation (52). 

The lithologies described above are generally lnterlayered on a 

2 to 10 em scale, but thicker quartzite layers up to 1 to 2m are not 

uncommon . Layering 1$ typically defined by alternating quartz-rich and 

pelitic roc:ks, and Is Interpreted to be l ,most canes rei let sedimentary 

bedding. Outcrops invariably display highly contorted layering (Plate 37), 

and quartzite and quartz-vein layers are commonly bo~dinaged. 

The pelitic rocks record the detail of the structural history 

better than the other lithologies. The dominant foliation planes (S2), 

spotted with oxidized pyrite, characteristically display a distinct 

lineation (L3) produced by the intersection of 52 and the later crenu-
\ 

latlon cleavage (S3). Related, tight to open upright folds (FJ) a e also 

clearly recorded (sample B, Plate 36). 

The Stag Hill fonmatlon Is Interpreted to represent a metamorpho~ed, 

thinly bedded, quartz arenite to quartz wacke ~nd shale sequence. 
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Reluctant Head formation 

The n&me 'Reluctant Head formation' was originally introduced by 

Lilly (1963) to refer to the shaly limestone sequence outcropping between 

the Humber Gorge and.Oid Han's Pond, and stratigraphically underlying the 

St. George Group north of the present map area. The same sequence also 

underlies the St. George Group within the map area, and thus the name is 

adopted to refer to the metemorphosed, laterally equivalent phyl l ite/ 

marble sequence forming the upper part of the Grand Lake Brook group. 

The fonm.tion is poorly ~posed throughout most of the area, and 
p 

the . best outcrops are in stream beds suchas 'Grand Lake Brook', Corner 

Brook, Eastern Brook, and 'Beaver Brook'. Good exposure is also found in 

the Humber Gorget where the unit forms the core of the Shellbird Anticline, . ;? 

and .a long I One Mile Pond Road I and I Gu 11 Pond Road I. r 
The 'type area' assigned by Lilly (1963) is located nort~f the 

map area, at Reluctant Head near Old Man's Pond. However, the 'type 

section' for the equivalent sequence, the upper part of the Grand Lake 

Brook "Series" as assigned 'by Walthler (1949), is in the we~t-trendlng 

part of ·'Grand Lake Brook' southwest of 'High Pond', and is sugge 

suitable 'type section' within the map area. The eastern limit of the 

section Is marked b~ the Stag Hill Thrust zone, which ju~taposes rocks of 

the Hount Musgrave formation, whIle I ts'western I iml t Is !Mirked by gradation 

Into the llgl'lt-coloured, rMssive marbles of the St . George Group . 

A well-exposed section was also found in 'Beaver Brook' on the 

north side of the Humber River valley. The phyllite/marble sequence dips 

steeply northwest and the stream bed displays a section nearly perpen-

dlcular to the layeri ng. The exposed sequence is more than ~00 m thick 

and It~ lower part contains quartzite layers (beds?), and thus may be 

transit lorwl1 Into the underlying Stag ,HI II fonutlon. Related thickness 
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utiNtes offered by ~;lous workers include 21tlt m (Lilly 1963) for the... 

form.tlon In ;he Humber Gorge, 1nd 914 m (HcKil lop 1963) and 21tlt0 m (Wal-

thier 1949) for the entire Grand Lake Br~k group south of the Humber Gorge. 
, .,, 

The accuracy of all such estimates must be questioned, however, i'n view 

of the conslder•ble defo~tlon recorded by the sequence, and particularly 

In view of the presence of minor Isoclinal folds (F2), which sugg~st the 

existence of mecroscopic folds of the same style. 

Li thologies In the formation Include mainly phyllite, marble, and 

marble breccia, with minor amounts of quartzite and quartz-~lca schist 

(Plate 38). All these litnologles are interlayered on varying scales, 

and, in general, the unit Is ~ed for Its lithological consistency within 

the area. 

Phyllite forms about 50~ of the formation, varies from silver grey 

to dark grey or black, and Is typically strongly crenulated (S3) and 

spotted with oxidized sulphides. Muscovite (50-80%) Is the dominant 

phyllosilicate, and with biotite (5-20%) marks the early fotiatlon (S2). 

The brown biotite is partly to completely replaced by chlorite, and all 

three phyllosilicates are bent and kinked by a late crenulation cleavage 

(SJ). The presence of biotite Indicates upper greenschi~t facies conditions 

were reached early in the defo~tlon history. Quartz and calcite are 

minor componen~s. The phyllites also include a minor amount of fine­

calcareous phyllite. su~h as Is found in the railroad cut south 

ird Island In the Humbfr Gorge. In general, the phyllite layers 

are thin, and only rarely reach m in thickness. 

The phyllltic rocks are Invariably as$oc:lated with thin (S-20 em) 

layers and bouctl.nq_ed lenses of -lila"rble, and •here the phyllite· and marble 

layers are thinnest they record the detail of the defpr.atlon history (see 

Platei 49 to 52, p. 212 to 214 ) . . Excellent axa.ples of this are found 

(,· .. 
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PLATE 38 

Representati ve hand specimens of the Reluctant Head formation A (77-
19-1 ) and D (79-171), thinly interlayered phyllite and marble ; note the 
tigh t foldi ng (F3) in sampleD; A from northern end of ' One Mi l e Pond'; 
D fr om hill top 2 km east of 'Kidney Pond'; B (79-172), medium-grained 
ser icitic marble, from outcrop on 'Gull Pond Road' 1 km SW of 'High Pond ' ; 
C (77-53-4) , strongly deformed marble breccia, from 'Gull Pond Road' near 
'Kid ney Pond'; for sample location see Figure 30, Appendix D. 
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along 'One Hlle Pond Ro.ci', where outcrops exhibit complex minor structures 

dCII!llnated by tight to open folds {F3) and an associated crenulatlon cleavage 

(S)) and lineation (L3). The phyllite/marble Interlayering is Interpreted, 

In general, to represent the original sedlmentary . beddlng (Plate 39). 

However, no other relict sedimentary features were found (other than the 

preservation of breccia beds). In addition, most outcrops contain whlte 

quartz veins (5-20 em thick), which ~onmonly conuln 10 to 30% buff calcite . . 

The veins parallel"' the d011lnant foliation (S2), but are folded and boudin- · 

aged by later (D3) deformation. 

The ~rble, which forms 30 to 40% of the formation, Is typlc•lly 

grey, though white and white/grey layered varieties are not uncanmon. 

Buff marble Is relatively rare, and the only ~pie found was dolom itic, 

frorn an outcrop on the northern part of 'One Hlle Pond Ro.d'- the only 

dolomitic. rqrble found In the formation. :rhe marble Is generally fine-

to rned i um-g raIned, and canposed of ca 1 c I te and muscovIte { ser I cl te) , of · 

which the latter may be present In amounts up to 20%. 

C•lcftic r-rble breccia {or conglomerate) comprises about 10% of 

the fonutlon, and generally· Forms layers 1 to 2m thick. In one outcrop 

on 'One Mile Pond Road' about 1 km south of 'Kidney Pond', a 10 m thick 

layer p4trallellng the danlnant foliation (S2) contains only marble breccia, 

Indicating that these layers are loc:.lly quite thick: The c:lasts are 

usually grey, and les$ c:Cfii!M)nly white or buff, and .range fr:an 1 to )0 em. 

, They are typically flattened, although. large r~unded clasts were noted4 'in 

the se~t ion In 'Beaver Brook' (Plate 40). The flattened c -lasts have dimen­

sional ratios of about 10 to 1, and invariably lie parallel to the dQJ~­
ant foliation {S2, or locally S3). The matrix of the clasts is COITriiOnly 

slightly more serTcitlc: than the clasts themselves, but in many cases the 

only difference between clasls and matrix Is colour (white against grey, or 
· ~· 

· ·\ 
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.PLATE 3' 

Typical exposure of Reluctant Head formation view 'sw of outcrop on 
Trans Canada Hl9hway near Duncan's Brook, In Hunber Gorge; outcrop on 
eastern llllb of Shellblrd Anticline; visible d~formatlon (03) Is related 
to formation of the anticline (F3), outcrop .location 175- see Figure 30. 

PLATE 40 

Marb'l• conglomerate in Reluctant Head formation very coarse conglom-
erate displaying large rou.nded clasts; In site boulder on outcrop in upper 

· part of 'Beaver Brook', oorth side of Humber River valley; view NV& outcrop 
· loatlon 207 • 

• 
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vice veru). 

A ~lnor amount of medium to dark grey, fine-grained quartzite and 

quartz-ml~a s~hlst forms layers from 10 em to 1m thick In the. phyll i te/ 

~rble sequence. These lithologies were foun4 on 'One Hlle Pond Road' and 

In the lower part of '.Beaver Brook', areas in which the formation NY be 

transitional Into the underlying Stag Hill formation. 

It Is notable that In the upper part of the 'Beaver Brook' section 

• green, mica schist layer (10 em thick) was found to contain about 15% 

white albite porphyrobluts (1 nm size}, making lt·slmllar to more abundant 

layers In the Hount "usgrave formation on the south side of the valley, and 

to•the single layer found In the Stag Hill fonn.atlon ne•r 'High Pond '. The 

presence of ,these rocks suggests that the alkali metasom.t i sm character~stlc 

of the ••stern part of the metaclastlc terrane also loc;aJt.y affected rocks 

at the eastern mugln of the ~arbonate terrane • 

The protollthOlogles:of the Reluctant Head formation were mainly 

shales •nd limestones, ~lch formed a thi,nly Interbedded sequence. The 

limestone brec;c;las are lntrafor~Mtlonal, and may represent smali-sc.ale 

sl6pe deposits or ~rip-up', flat-pebble breccias. 

' The protolithologles of both the Reluctant Head and Stag Hill 

fonnatlons suggest they were deposited In a marine environment, and the 

higher clastic; content of the latter suggests deposition closer to the 

clutlc sourc;e • .(nurer sho~e) than the former. The alternating thin s hale 

beds in both formations Su!Jgests fluc:tuating high/low energy c:ondltlons. 

Levesque (1977) proppsed • deposi~lonal model for correletive rocks outside 

the are~ In which Stag Hill equivalents represent shoreline deposits and 

Reluctant Head equivalents represent an offshore, c:arbonate.-shoal c:cmplex. 
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The lithologic succession In · the Grand L~ke Brook group, and 

the Inferred deposition~! environments, could reflect deposlt!on during 
. 

a gradual Nrlne tr:<~nsgresslon. 

c . 
5.3 St. George Group 

Schuchert and Dunbar (1934) first named and described the massive 

c~rbonate rocks of the "St. George serIes" at the type 1 ocali ty on the 

Port au Port Peninsula, and recognized their reglona·l extent throughout 

western Newfoundland. Since then, the unit has .been defined both blo­

strulgraphlcally. ,oJrii:l llthostratlgraphlcally, and Its status has f ~ uc­

tu.ted between "Group" (e.g •• Riley 1962; Knight 1977) and "Formation" 

(e.g., Whittington ~md Kindle 1963; Levesque 1977). In the Corner Brook 

Lake area, the equivalent l,lthostratlgraphic unit is referred to as the 

St. George Group,_ and Is represented by a deformed and - ~t<~morphosed 

sequence of NSSive marbles. The main features of the unit in the ~p 

area 01re briefly outlined here, but the re•der Is referred to the work 

noted a'bove for more detailed lithologi-cal description ~md discussion of · ( 

the unit outside the area. 

Lilly (1§63) and McKillop {1963) divided ' the Group Into two for-

matlons In the northern part of the area. However, no such subdivision Is 

attemp_ted here In view of the scale of the work, the poor exposure, and· 

the degre• of defonMtlon and maulnorphism. · 'Lilly and McKillop estimated 

Its thickness· at about 1200 m In the Humber ~rge area, _whl 1e Schucnert 

and Dunbar (1~31t) and le'lesq_ue (1977) give thicknesses of about 630 mend 

550 m, ·respec:t.lveiy, for more westerly parts of the Group outside the 

present IMP area. 

The best exposure Is found In the Humber Gorge and In quarries 
-<- " 

·~· ..... 
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lrrwnediately south of the river. The west limb of the Shellblrd Anticline, 

exposed In the north wall of the Gorge, 'displays a spectacu'lar and contln-

uous, steeply west-dipping section through the St. George Group. Roadcuts 

along the Trans Canad~ Highway just south of the city of Corner Brook also 

provide good;·. exposure,· wht le throughout the rest of the area · small outcrops 

are found In stream beds and along logging · roads. 

The lithologies In the Group- Include mainly finely crystalline, 

dolomitic and calcitic marbles, and a minor amount ( < 5%) of pellte. ~ 

fracture-filling veins c~slsting of calcite and quartz are relatively 

conmon in outcrops of the Group. 

The m•rbles. are typically very fine-grained and I ight-coloured, 

· with shades of p-ink, buff, white, purple an~ grey dominating (Plate Itt). 

Mineralogically, the marbles are rather simple, and ~recomposed of xeno-

bl~stic: Interlocking gr,alns of either dolomite or calcite, with quartz, 

sericite, feldspar, and oxides {mainly hematite) as accessory minerals, 

amounting to less than 5% collectively. The marbles are generally non-

. foliated, but locally a weak foliation is defined by flattened carbonate 

minerals and parallel. alignment of sericite. The massive nature ·of the 

marbles may be more a met~rphic thtn a primary sedimentary feature, 

being due to the 'homogenlzation' \ effects of recrys.tallizatlon, which also 

likely obliterated any existing fossils. 

Pel I tic rocks are represented by thin (10 to 30 em) 1111uddy 1 

horizons and serleltic laminae, which are present ln only minor amounts. 

Pelitic: layen . (20 to 30. em thick), consisting of very fine-grained. we l l­

indurated sericite-quartz-hematite schist and trending parallel to the 

dominant · foltation (SZ), were found In outcrops on the logging road west 

of the north end of 'One "'tie Pond'. Sueh layers. as well as serictttc 

laminae and stylolttes marked by the concentrat.iori of accessory minerals. 



PLATE 41 · .. 
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Representative hand sp.~lme~~ ~f the St. George and Table Head Groups 
A (77-53-3), fine-grained, calcitic mar91e, and 8 ·(77-53-1), fine-grained, 
dolomitic marble of St. George Group, from outcrop on 'Gull Pond Road' 
north of 'Kidney Pond'; C (77-61-1), medium-grained, knobby-weathering, 
c.lcitlc marble ctf Table Head .Group, fran out~rop 1 lanSE of Big Gull Pond; 
scale In an; for sample ,locations see Figure 30, Appendix D. 

PLATE ~2 

Fossils collected during this study - shown to emphasize th. scarcity 
and poor preservation of foss I h in the aru due to defonnatlon and meta­
morphis~; A (79-291), unidentified pJant fossil (black band) In fine­
grained ••ndstone of the Carboniferous Angullie Group, from shore of Grand 
Lake 1 lcM south of Northern H~rbour; a- (79-113·1), unidentified brachiopod 
fragments In muddy l.mlnatlon In fine-grained dolomitic marble of St. 
GeOrge Group, from outcrop on Trans Canada Highway 2 km ust of city of 
Corner Brook; for s-..ple loc.tfon s• F'Jgure )0, Appendix~· . 

• 
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appear ·to be more abundant in easterly exposures of the Group. In 

westerly outcrops, such as on the Trans Canada Highway east of the city 

of · Corner Brook, less indurated muddy layers 1 to 5 om thick are more 

common. In one such layer, the author found fragments of the only fossils 
,, 

recovered from the carbonate terrane (sample B, Plate 42). Th~ fossil 
. . 

appears to be a brachiopod, but poor preservation p-recludes positive 

Identification of species (D. Bqvce, personal c011111unication 1980). The 

foulls are' shown in Plt~te .42 not because of their significance, but to 

emphasize the poor preservation of fossi Is in the map area • . 

The St •. George Group proto 1_1 ths c 1 ear I y formed a thick sequence 

of limestones and dolostones, with little or no clastic material. The 

thickness ' and purl ty (Jf these carbonate rocks suggests a relatively long 

period of deposition In an environment far removed from, or ~rotected from, 

a terrigenous clastic source. 

5.4 T~ble Head Group 
\ 

· The "Table Head serie.s"· was first named and described by Schuchert 

and Dunbar (1934) at Its type .locality at Table Point, on the western side · 

of il\e Northern Peninsula. They estimated a thickness of 420 m for the 

"heavy-bedded pure l lmes tone11 sequer:u:e wh l ch grades upward In to b I ack 

shale (Schuchert and Dunbar 1934. ·p • .J8). More rec:ently. the lithologies 

of the unit have been traced throughout western Newfoundland, the status 

has been raised to 'Group', and four fonnatlons have been defined (KJappa 

et al. 1980). 

Wlthl.n the Corner Brook lake area, the Table He~d Group is 

metamorphosed and .defonned, and the domln•nt lithologies are dark g rey, 
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knobby-weAthering calcitic marbles (sample C, Plate 41), black slates, 

and minor m.rble br~~cla. The best exposures are found In Oormston Quarry 

just southeast of the city of Corner Brook, where a major fault defines 

the western side of the ridge unQ#rlaln. by the ~roup. Good exposure is 

also found In Isolated autcrops along the Trans Canada Hlghway . southwes-

w.rd to George's Lake. 

The recognized,formatlona·l divisions of the Group (Klappa et al. 

1980) are not Identified In the present study for the same reuons . the 

St. George Group ·cannot. be subdivided. In fact, It is notable that the 

Table Head Group Is locally quite difficult (or impossible) to distinguish 
· ~ -

from the St. George Group, as the tatter also contatns grey calcitic 

marble, and ·from the Humber Arm Supergroup, which Is represented by mainly 

black slate. As a rule, the dark grey co1our and ·knobby-weathering o f the 

~M~rble, as well u the conmon association with black slate,· aid in dis-. 

• 
tlngulshlng the Table Head from the St. George Group. _tloWiB'ver, the two 

units are undivided In certain parts of the area (see Figure 11, p. 148). 

The marb 1 e In the Tab I e Head Group Is typ i call y fine- eo .med l urn-

gr.ained and almost'- Invariably contains 'm.uddy 1 laminae, which weather buff 

ag.alnst the d•rk grey marble. Layering (relict bedding?) Is generally 

about 30 to 100 em thick, and Is marked elth~r by thin (2·10 em) slaty 

horizons or by •Iteration of colour from dark to light grey. A· single out­

c;rop of grey marble brecc;la ~ont•lnlng 2 to 10 em clasts was also found on 

the Trans Canada Highway about 4 km north-northeast of Plnchgut L•ke. This 

was pointed out·to the author by H. Wllllams · (personal communication, 1979). 
' ' . 

c •• 

The black slate In the Group Is I nvar I ably pyr It I ferous and com-
. . 

mon)y gnphltlc. In some euterly outcrops, . the 'sh1ty'. horl%0ns In 

the marble sequence are phyll.lttc. 
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The Table Head Croup represents ~ metamorphosed and deformed 

sequence of limestones and shales. From regional studies (e.g., Klappa 

et al. 1980), It Is clear the shales are more abundant in the upper part 

of the Group and the limestones dominate the lower part. The thickness 

and relative purity of the carbonates In the lower Table Head Group 

suggest deposition In an environment removed from a terrigeneous clastic 

source. Not until upper Table Head time did these depositional conditions 

change significantly with a gradual Influx of fine clastic materia l . 

5.5 Stratigraphic relations, age and. correlation 

The contact between the Grand Lake Brook group and the overlying 

St. George Group was examined at four localities- two display the 
I 

original gradational (conformable?) sedimentary contac:t, and two d isplay 

a structural · contac:t: The original sedimentary contacts show the trans-

ltlon to be relatively sharp, occurring over a stratigraphic distance of 

10 to 20m. The ·contact is .marked by an Increase in , the proportion of 

light grey to white, pure JMrble <Vld a concomitant decrease ' In phy11ite 

In the upper Grand Lake Brook group (Reluctant Head formation), with 

white and pinkish marbles dominating at the arbltrarl·Jy chosen lithologic 

base of the St. George Group. The contact Is well-exposed high on the 

eastern limb of the Shellblrd Antlcllae In the H~ber Gorge, where Its 

gradational nature 01~ be ~!early seen through binoculars from the south 
" ~~.J. .. 

1.- side of the gorge. The s-.m. reh1tlonsnlp is less we11-eX1)0sed farther 
l 

south on 'One Hlle . Pond Road', where the contect Is preser~ed In a series 
' 

of dls~ontlnuous outcrops. 

The Reluctant Head/St. George cont•ct In the western limb of the 

west-verging Shellblrd Antle:! ine is clearly different from the contact in 
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the ea$~rn flmb. The ~st limb of this ~jor F) fold (section 8.3) 
f 

displays contorteq shaly carbonates of the Reluctant Head fonmatlon 

crumpled against the competent St. George carbonates (see P1ate 55, p. 
~ 

221). This contact Is Interpreted to be a minor, east-dipping thrust 

fault, and It Is taken as evidence that minor, west-directed thrust move-

ments occurred locally In the .rNp ar .. at or near the contact dur ing 

regiOnal F3 folding, due to the m.rked competency contrast between the 

two units. A less well-exposed minor thrust contact may also exist 

between the Reluctant Head and the St. George at the junction of 'One 

Klle Pond Road' and 'Gull Pond Road', where Identical structural ~e l ations 

are found. 

The s~ratlgraphlc relationship between the St. George Group and 

the Reluctant Head fonm.tlon clearly Indicates the latter fonns the upper 

pert of -the Grand Lake Brook group,and .thus must stratigraphically overl ie 

the Stag Hill fonmatlon. This ls.als~ supported by the fact that the 

Stag Hill fonnatlon forms the core of a major antiform (F37) centred on 

'Stag Hill', while the Reluctant Hud formation occupies the western limb. 

The eastern limb Is marked by the Stag Hill Thrust zone, which superposes 

. rocks of the metaclastlc terrane on the St•g Hill fonmatlon. The actual 

contact between the two fonmatlons was not observed, but the transition 

Is Interpreted to be gradational (conformable?) based on the presence of 

quartzose rocks In tho lower part of the Reluctant H .. d fonnatlon (e.g., 

In the •aeaver Brook' section). 

Tho contact between the St. George and the Table Heed Groups·was 

not recognized In the area, although It_ ~Y be preserved in outcrops along 

the Trans Canada Highway abou~ 3 km ~rth of Watson's ·Pond, •nd In the core 

of the High Knob Syncline (Lilly 1963). Elsewhere In southwestern New-

foundland, the Table Head Group dlsconformably -overlles tho St. George 
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Group (Riley 1962; ~evesque 1977), and thus It can only be assumed the 

contict In the map are. Is similarly dlsconfonnable. 

The fact that ~wa of the stratigraphic units In the carbonate 

terrane can be cle.rly traced outside the map area Into areas where fossils 

are well-preserved means the ages of all the units In th8 sequence can be 

assigned with some confidence. The St. George and Table Head Groups are 

profusely fossiliferous at~ localities ln.western NeWfoundland, and 
l 

are dated as Lower Ordovician and early Middle Ordovician, respectively 

(Schuchart and Dunbar 1934; Walthier 1949; Riley 1962; Levesque 1977; 

Klappa et al. 1980). 

The Grand Lake Brook group stratigraphically underlies the St. 

George Group, and thus Is undoubtedly Cambrian in age. The Reluctant Head 

fo,..tlon In the upper part of the group Is Interpreted here to be Middle 

to Upper CaMbrian In age based on lithologic correlation with the limestone/ 

shale sequence of that age underlying the St. George Group regionally (Schu· 

chert and Dunbar 193~: Walthler 1949; Levesque 1977). The Stag H.lll for-

mat ion In . the lower part of the group Is here Interpreted to be Lower to 

Middle Cambrian In age balsed on lltholo;l·c\ .correlatlon with quartzose rocks­

of that age In the regional stratigraphy (s~ section 6.1). 
' 

Within the map area, the Stag Hill fonaatlon Is interpreted to be 

the ~oMstern flthol~lc: equivalent of the .,re highly ~~etamorphosed, 

quartzose Mount ftusgrave fornwl'tlon, end the Reluctant Head formation to be 

the western lithologic equivalent of the mor~ highly met~rphosed, cal­

careous Twl111ck Brook formation. In thls regard, It Is not~ble that the 

Grand Lake Brook group, which Is clearly an Integral part of. _ t~ carbonat~ 

terrane stratigraphy, provides an Important stratigraphic ~ link across the 

major thrust hults bebeen the ~rbonate and metaclastlc terranes. Juxta-

' position of these laterally equivalent units In the two terranes Is due to 

,. 
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structural telescoping of the original sequence during the tectonic 

~volut I on of the area. 

It WiiS prev~sly noted (section 4.6) that the St. George and 

hble Head Groups have the eastern par t ·of 

t.he map area. 

To su~m~arlze, the carbonate .terrane comprises Lower to. Middle 

Cambrian quartzose rockt of the Stag Hill formation, overlain gradat ion-

ally (conformably?) by -MI.ddle to Upper Cambrian phyllitic and carbonite 

rock.s of the Reluctant Head formation. These formations constitute lower . , 
and upper units of the Grand Lake Brook grcup, which is overlain grada-

' 
tionally (conform~bly7) by ~ssive carbonates of the Lower Ordovician St. 

George Group, .which is in turn overlain by early Middle Ordovici'an mass ive 
' 

carbonates and slates of the Tab·le Head Group. The entire carbonate terrane 

sequence is structurally over Ia In by the Humber Arm Supergroup. 

5. 6 Humber' Arm Supergroup 

The Humber Arm Supergroup (Stevens 1970) forms the western boundary 

of the carbonate terrane, but only a very smal l part of this extensive 

unit outcrops within the Corner BroQk Lake area. Though t;.hese rocks were 

not studied in any detail during this work, the author's observ01tions are 

bciefly noted here because of the reco~n i zed importance of the Humber Arm 

rocks In the tectonic evolotion of the map area. 

The Humber, ·Arm Supergroup i5 poorly exposed in the area. with the 
) · ..... 

best exposures (and the only ~nes e)(amined) being found near the Trans 

Canada Highway at three localities: behind the Corner Brook Plaza shopp ing 

centre, northwest of Plnchgut Lake. and southweH of Island Pond. In all 

/ 

./ . 
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three loc<llitles, rocks In the unit appear to be preserved In e i ther a 

down-f~Uited block or_. syhc:llnal str~Jcture. 

The dominant 1 ithology In tne:n - outcrop areas i s black, pyriti-

fero.us il(ld grt~phitic, slate, which contains a well-defined, steeply-d i ppin~ 

cleavage (~3). Hlnor amounts of light grey, fine- to medium-grained 

quartzite ,form scatt-ered layers up to 1 m thick throughout the sequence of 

· slates. Pyrite nodules are also relatively coomon. Possible gently-

' dipping relict bedding cut by th~ characteristic steep cleavage was noted 

in slate in the outcrop southwest of Island Pond, and lenses ( 1 m s i ze) 

of grey limestone with 1 ""'size, rounded milky quartz grt~ins scattered 

throughout were found in the outcrop northwest of Plnchgut Lake. The out-

crop near the Corner BrOQk Plaza is notable for its clear record of 

multiple deformat.ion (02 + 03) effects. 

The association of black slate and grey quartzite suggests these 

rocks are part of the lrishtown formation (Stevens 1965) of the Humber Ar m 

Supergroup, found along strike to the north in the Humber Arm area. 

Fossil evidence indicates (Stevens 1965, 1970, 1976; Williams 1975) the 

' -' • $.true tun 1 assemb 1 age of rocks ' in the Humber Arm Supergroup ranges in age 

from lower Cambrian to Middle Ordovician, but lithologic correlation wi th 

tl'le lrishtown formation Indicates the part of the Supergroup in the map area 

is Lower to Middle Cambrian In age . 

The nature and location of the T.abl e Head Group/Humber Arm Super-

' 
group contac:t In the map area are problematic. Regionally, the contact i s 

structural In nature, in that the Humber Arm SupergrQup constitutes the 

lowest structural slices of the Humber Arm Allochthon, which was. emplaced 

from the east during Middle Ordovician time over the autochtonous ca r bonate 

sequence (Rodgers and N~a le 1963; Stevens - 1970). Emplacement of the 

allochthon Is interpreted (Stevens 1970) to have occurred on a 

c , 
black 
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shllly m6Jange, and thus the contact with the underlying Table Head .Group 

should bi marked. by such a melange. · The contact in the ~P 11re• . appears 

r-
to be more ~omplex, however, as no m~lange Is rec.ognlzed; even though it 

Is cl~arly present just a few kllomet~.rs to the west (Schilleriff and 

Wlllli•ms 1979; Williams and - Godfrey 1980). Its a~senc:e may be loc•lly the 
. I . • 

result of f•ultlng, such a~ lrf the areas southeast of the city of Corner 

Brook and east of George's L.ake. In view of the structur;al history out-

lined by the present work (~hapter 11), It is entirely possible the co'ntact 

In these and other parts of the area Is represented by post-emplacement 
I 

thrust hults which have truncated the basal parts of the a l lochthon as 

,..,_11 as the original contact. It can be appreciated that, eyen If the 

' . -"' original structural contac:t was preserved, locating the Table H~d/Humber 

Arm contact would still be a problem, due to the lithologic similarity 

between adjacent parts of_ the two units and to poor exposure in ;he area. 

This difficulty Is partlcul4lrly evident In the area west of Island Pond, _ 

where a monotonous sequence of black slate outcrops over a large area. 
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CHAPTER 6 

STRATIGRAPHIC SUMMARY 

6.1 Sunvnary and correlations 

The stratjgraphy of the Corner Brook Lake area i ncludes essentially 

a deformed and metamorphosed, late Hadrynian to lower Paleozoic, sedi-

mentary cover sequence, part of the Grenville basement on which it was 

deposited, minor acidic and basic intrusive rocks, and mi nor late-orogenic 

Carboniferous sediments. The overall seque~ce consists of 13 lithost rati-

graphic units, seven of which have been newly defined. Hajor thrust faults 

divide the stratigraphy into three tectono-stratigraphic sequences, and 

divide the'"inap area into three corresponding terranes. 

tho--following 5tratigraphic sunwnary notes the l i tholog i c character 

and interpretation of each unit, as well as proposed local \nd regional 

correlations. Figure 12 shows schematically the stratigraphk relations 

of units within the area, while Table 9 shows suggested reg ional cor rel-

atives, and sumnarizes previous work and established nomenclature for 1)1'"e"-----·--
/ 

regional stratigraphy. It should be noted that all correlat i ons are/ based 

solely on the. gross lithologic character of the units concerned, as / sedi­

mentological details are rarely preserved; thJs , th~ correlations a~e 
I 

·inevitably generalized. 

The regional stratigraphy was outlined in general · terms in section 

1.3 . f"or more details on particular units mentioned below, the reader is 

referred to the relevant ·work In Table 9. 

GNEISSIC TERRANE: contains ' a sequence of three quite dist i nct un its , 
bounded on the west by the Grand Lake Thrust and on the east 
by the Stag Hifl Thrust 

/\ 
\ - .\ 



-. 

.... ' 

WEST 
EAST 

. . 
/ 

CARBONATE TERRANE GNEISSIC TERRANE ME TACLASTIC TERRANE 

I 

""'- . 
ern- 02 

'...,.,""-~[_H_u_M_B_E_R_~A~It~M-..:S:.:.P,:G;_P,:_· _____ __..,:/ - - ·- -
- DEER LAK£ GP. 1truct11ral empkteentent . -

TAIL£ HEAD GP. ........ ......_. _______ ......_,_..._~_..._.. 
IT. OEOROE 8P. """"' 

' \...~ _ i _ ·_.r [nRP£NTINIT( UNIT: '-~ 
~ANeUILLE 

- \. GP. 

GRANO LAK!· 
IROOK GP. - . Reluton·f Head fill. ::-

-- -:::.....- - ~ ._!to!_ Hill '"'· - -

\ ------ ---- ---
,. I --

" ' I , · - \- """"", ~lER Hili ~lrf ,. "'"'""' -.,,. ~ 
1 TONAL.ITIC GNEISS 

, COMPLEX I 

FIGURE 12 • STRATIGRAPHIC RELATIONS IN THE MAP AREA 
' ' . 



' 
-

,_: 

TABLE 9 I REGIONAL STRATIGRA 
-

' . w. NFLO. sw. NFLO. sw. NF'LO. PORT AU GOOS~ ARM COR NER B 
PORT 

SCHUCHERT 8 WAL T H IER 19 49 RILEY 1957/19 62 LE V I! S QUf L l LL Y LEVESQUE McKILL OP l 
DUNBAR 

1963 19 77 1963 · 1977 1.934 west I eo s t west east . 
Westphalian ? Barachoi s .J , . p . " Ci p, 

CD -
l:r·· 

. L! Codrcy Gp . -. 
·~ Wl n ds o·r .:.. , \ 

M Series · 
. Ariguille . u 

Gp . ' 

I~ 
....-

DEV. I.~ c: 
~ Clam Clam Bo nk I~ ::E • 

S er i es - • Bank .. c:= 

I~ 
~ X • Gp'. .. > 
0 - -.., .. . Q_ 

~ 
·- ::s E I • ~ . . - 0 

E .J !': u 

SIL. 
I 

lt d! 
0 I -

ID 

z Humber Arm Ser i es Long ,!: 
u Cow Head Brecci a Poml .c 

~ Q_ 

Gp . ~ - Humber Arm 0 
'-... u I-- L ono P oint Series S er ln 

!Boy of Is. 
E 

~/rm 0 - cmpx. ; f--> M ; Humber Ar m Gp. · E 
T able Head Tabl e Head Tab l e Head Tobie Heed rat Table Head Series Tabt. Heo d Series 

0 Table Hea d Gp f m . G p . fm . Gp . 

c 
Q: 

L 
St .. Geor oe 'series St. George Gp , St. George St. George St. Ge or g e St. Ge orge 51 . 

0 S l . George Series 
Green Point Gp. tm . Gp . fm . Gp. Green Point Ser ies "0 

c: 
0 

Peti t Pe t I I Bl ue R e 

u March Pomt Series Pet i t Jard in C l iff Gr and ... c Jar d in z 0 
fm . 0 r m. L ak e . Jar d in 0 - .. frn . 

<: ... ... -Ill .s::r ::1 Brook 
fm. E 0 

! - .. March • Moren Wo lf . . o 
0:: e • c Group M .. ·- Point (.) 

"" B r ook 
0 

.... ·- Po i nt -CD d .J (I) lm. f m . fm . M ... 
~ More ~ • Moun t .., ... 
<( I• Ho wkeBoy rm. c - Oe gros Penguin Cove Pen guin Cove Muaqr ove 

t~! 
Po i 'n t " l<ipp ens > 

u Fortecu fm . ... ... F m . fm . f m. L <!I c: • ~~~ fm. f m . ::1 "" B r o dort fm . c; 
j 0 

a:: . 
z . . 
>- ~ 

a:: ~ 

c 
~ "" <: 
J: 0 

..J f.--

. Laurentian ? Precambr ian Indian Hcl. Long 

HELIK. Grani te g ne i u and schi at Ronoe Ran oe Fi 

\. lnttu.!.l ve Compl u Co 
IQ)f I ..... . 

ltf-. 
' 

. ' . 
.. -- ·-



• 
~RAPHIC NOMENCLATURE AND CORRELATIONS 

R 

1--
~ 
~ 

f-

f-

BROOt< 

LILLY 

I 963 

' 
• 

t 

' 

Table Head 
Gp. 

St. George 

Gp. 

Reluctant 
Head 

fm. 

Mount 

MusliJrove 

fm. 

1-- •--:.. 

Lono 
Range 

Complu 

BONNE N. PENIN. 
BAY 

LEVESQUE KNIGHT 

1977 1977 

< 

\ 0 ~ - . 
I 

-

Table Head Tobie Head 
tm . Fm. 

St . GeorQ• St. 
---~ G-eorge 

fm . Gp. 

East Arm Dolomite 
Fm . fm. . 

South Head Micrite 

fm. Fm . 

Hawke a Boy Hawkes lY 
fm. Quartzite Fm. 

! 

BELLE IS~E 

WILLIAMS S 
STEVENS 
1969 

l 

0 

---.•. 
: 

Wh1te Point Fm . 

F'orteou Fm. 

Brodore Fm . 

Lighthouse Cove 
Fm. 

Bateau Fm . 

Cry.stall i ne 
Basement 

? 

: ·.>.: . ·· ·· - . 

WHITE ... , 
WILLIAMS a 

.HIBBARD 
19 7 7 . 
.. 

' 
Anoullle 

. Gp'. 

Gales Brook 

Granite 

·sops Arm 

Group 

Coney Hd. Cmplt 
Second Pd. Mlge . 

Cl. ·-::JJ 
0 ._ 

(!) 

E .. 
<( 

"" • 
c 
0 

0 

Taylors 

Pond 

Fm 

Doucers 

Fm . 

Beaver 

Brook 

Fm. 

Long 

Range 
Complu 

BAY 
east 

'BBARO ET/ AL 
1980 

.. 
!. 

., 

'' 

Sandy Lake 

Granite 

Birchy 

0. 
CmpJt. 

:J 
0 White ... .. Rottllno ... 
• Q. Boy B r ook , .. 

Group 

Gp. .. .... -

.. 
"CI Old House 

._ Cove 
" .. -... Group 

East Pond 

Metamorphic 

Suite 

' 

177 

.. 

CORNER BROOK LAK£ 
AREA 

tHIS STUDY 1981 

we\t eas t 

. 

Deer Lak e 
Gp . 

An<;~u i ll e 
Gp . 

Las I 

Hill 

A c1 omelllte 

IHumberArrn Spgp. Ser pentini te unit 

TobleHead Gp. 

St . Geor11t Gp. 

Re luctont 
a 
0 

Head ... 
0 

~ fm. 
CD 

• ... Sta·o ., 
--' Hill 
u 
c fm . 
0 .. 
(!) 

~-

(' 

,~-

Twtll i ck 

Brook 

fm . 

Mo u nt 

ML!s grave 

f m , 

An t le r Caribou 

H il l La ke 

fm . fm . 

Tona li tle 
anelu 

cample~~t 

... ·. ·· J~,-2-.·r 
'•"· ·~·--· 

--~- - --- - -- - - --- --- --- -- -- - -- - - - - --



; 

178 

Tonal It I c gneIss c:omp l e)( (proposed here) MAP UNIT 1 

Li tho1'ogy: green and grey tonal it k gneisses, am ph I bo I i te
1 

and ~ -
granitoia rocks · ·\ ' 

Interpretation: Intensely reworked Grenvillian bas~ment; cut by 
late Hadrynian basic dykes and Silurian acidi~ intrusive rocks . 

Local correlation: Long Range complex (south of Grand Lake, 
· Martineau 1980) 

.. 
Regional correla'tlon : Long Range and Indian Head Complexes; Eilst 

Pond Metamorphic Suite (in part) 

Antler Hill format,~ on (proposed here) HAP UNIT 2 . 

Lithology: ru~ty·~atherlng, buff quartzofeldspathic schists and 
gneisses; minor quartzite and c:alc·sil icate schist assigned 
to Quartzite _member; granitoid rocks and minor amphibol i te 

Interpretation:· late Hadrynian to Lower Cambrian arkosic sequence 
deposited unoonfonnably on basement; contains late Hadrynian 
basic: dykes and fl~s; cut. by Silurian ac-Idic intrusive rocks 

Local correlation: Caribou Lake formation (In part); "calc:-
si llc:ate and quartzite unit" and part of Loon Pond meta-
sediments south of Grand Lake (Martineau 1980) · 

Regional correlation: Bateau/Bradore formations (in part) 

Last Hill adamellite (proposed here) HAP UNIT 11 

Lithology: pink, leucocratic, medium-grained adamellite 

Interpretation: P.Ost·tectonic, Sil~rian acidic intrusion 

Local correlation: apophyses of the intrusion in units of meta­
clastic and gnels$-ic terranes; Goose Hill and Hare Hill 
granites south of Grand Lake (Martineau 1980) 

Regional correlation: Topsails Batholith; Sandy Lake and Gales 
Brook"; r•n I tes 

NETACLASTIC TERRANE: contains a sequence·of four lithic units; bounded 
on the west by the Stag Hil 1 and Corner Brook Lake Thrusts 
and on the east by the Cabot Fault and unconformably over· 
lying Carboniferous rocks of the D~er Lake Basin · 

Caribou Lake formation (proposed here) HAP UNIT 3 

Lithology: buff albite schist and gneiss, quartzofeldspat~lc 
schist and gnel.ss, arkosic metaconglomerate, and mino·r 
quartz-mica schist and quartzite; granitoid rocks and minor 
01mph i boll te 

lnterpretat ion: ·coarse; baud arkosIc sediments deposIted on 
Grenvillian basement during late Hadrynian to Lower Cambrian 
time; contalhs late Hadrynian buic dykes and flows; cut 
by Silurian acidic Intrusive rocks 

• 

\ 

... 
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Local correlation: Antler Hill formation; part . of Loon Pond 
metasediments south of Grand Lake <Martineau 1980) 

Regional corr.elation: Bateau/Bradore form.illtlons; part. of East 
Pond Metamorphic Suite and Old House Cove Group 

Haunt Musgrave form.illtion (redefined here) • HAP UNIT 4 

Lithology: 'grey/ and gre~n, garneuif,rous quar·tz-ruica schist, 
quiilrtz-ite, pellte an4 quartzofe}dspathic schist; granitoid 
rocks and minor amph i bo I i te 

Interpretation: Lower to Hiddle Cambrian quartzose sediments 
deposited on basal arkosic rocks during early stages of 
marine transgression; contains late Hadrynian basic dykes 
_and flows; cut by Silurian granitoid rocks 

Local correlation: Stag Hill f~rrnation; quartzose part of Loon 
Pond mer-sediments south of Grand Liike (Martineau 1980) 

Regional correlation: Forteau/Hawkes Bay/White Point formations; 
Kippens/De~ras formations; Penguin Cove formation; Beaver 
Brook formation; part of Old House Cove Group 

Twillick Brook formation (proposed here) HAP UNIT 5 
Lithology: grey calcareous schist, porphyroblastlc calc-sil i cate 

schist, micaceous marble, phyllitic schist, marble breccia, 
quartz-mica schist and quartzite; minor granitoid rock 

Interpretation: Hiddle to Upper Cambrian carbonate and clastic 
rocks deposited on quartzose rocks and represent"ing initial 
stage In development of carbonate bank; cut locally by 
Silurian granitoid veins 

Local correlation : Reluctant Head formation; carbonate part of 
Loon Pond metasediments (Martineau 1980) 

Regional correlation : March Point/Petit Jardin form.tions; Wolf 
Brook/Blue Cliff formations; South Head/East Arm format ions; 
Ooucers formation; Hicrite/Dolomite formations; White Bay/ 
RattI I ng Brook. Groups (in part) 

Serpentinite unit (proposed here) MAP UNIT 10 

Lithology: massive to weakly foliated green serpentinite 

Interpretation: represents a block of meta-ultrabasic; rock der.ived 
from the transported ophiol'ltes during westward emplacement 
In the Humber zone 

Local correlation: structurally related to Humber Arm Supergroup 

Regional correlation= Bay of Islands Complex; White Hills , 
· Peridotite (Smyth 1971) 

CARBONIFEROUS ROCKS: unconforJMbly overlie ror;ks of the metaclastic 
terrane along its northeast boundary with the Deer Lake Basin 

Anguille . Group (Riley 1962) MAP UNIT 12 

Lithology: fine-grained, da.rk grey to green fossiliferous 
If 

\ 

.... 
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sand5tone with in the map area 

Interpretation: Mississippian lacustrine/deltaic sediment» 
( deposited in intermontane basin 

Deer Lake Group (Hyde 1979a) MAP UNIT 13 
'LitholQ9y; red cottrse-grained sandstone and pebble to boulder 

cong·l ome nllte' • 

Interpretation: Pennsylvanian allu~ial fan sediments deposited • 
unconf'?r~b·Jy on Anguille Group and metaclastic terrane 

CARBON~~: contalns ' a sequence of three I ithostratigraphic units; 
bounded on the east by the Grand Lake, Stag Hill and Corner 
Broo.k L.iiike Thrusts and on the west by th~ structurally over­
lying Humber Arm Supergroup; continuous north and south of area 

Grand Lake Brook group (subdivided .1fter W.iiilthier 1949) MAP UN IT 6 

Stag Hill formation (proposed here) map unit 6a 

Lithology: grey quart~-mica schist, mica schist, quartzite and 
quartzofeldsp~thic schist 

Interpretation : Lower to Middle Cambrian quartzose rocks depo­
sited during early stage of marine . transgression 

Local correlation: Mount Musgrave format1on; part of Loon Pond 
,metasediments (Martineau 1980) 

Regional correlation: Forteau/Hawkes Bay/White Point formations; 
Kippens/Oegras formations; Penguin Cove fbrmation; Beaver 
Brook formation; part of Old House Cove Group 

Reluctant Head formation (after Lilly 1963) map unit 6b 

Lithology : grey phyllite, marble, marble breccia, and minor 
quartzite and quartz-mica schist 

""' Interpretation: Middle to Upper Cambrian carbonate/clastic rocks 
deposited on quartzose rocks of Stag Hill form.tlon and 
representing lnitial ' stage of carbonate bank development 

Lo~al ~orrelatlon: Twill ick Brook formation; part of Loon Pond 
metasediments (Martineau 1980) 

Regional correlation: Karch Point/P~tlt Jardin fonmations; Wolf 
Brook/Blue ClIff formations; South H~ad/East Arm formations; 
Doueers formation; .l1icrite/Oolomite formations; White Boay/ 
!Wttllng Broo4<. Groups (in part) 

St. George Group (Schuchert and Dunbar 1934) MAP UNIT 7 
Lithology : finely,. crystalline, buff, pink and grey dolomit ic and 

calcitic marble; minor pelitic ~ock 

Interpretation: Lower Ordovician carbonate platform 

Regional correlation: Taylors Pond/Doucers formoations (in part); 
part of White Bay/Rattling Brook Groups 

. ·, 
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T~ble Head Gr~ (Sehuchert ~nd Dunbar 1934) HAP UNIT 8 
Lithology: dark grey, knobby-weathe,ing calcitic m.rble, black 

slate, and minor ~rble brec:~fa 

lnterpretuio,: early Middle Ordovician c•rbonate platform; upper. 
part records changes preceding emplacement of a'lloehthon 

Regional eorrelatt·on: _upper p_arts (7) of Taylors Pond formati()n, 
White Bay Group, •md R..ttllng Brook · Group·.-

/ ' 

HUMBER AR,H SUPERGROUP (Steven-s 1970h str'ucturally ov'erlles tho carbonate 
terrane .-long Its ~stern margin · 

Lithology: black_ slate with mi~or grey quartzite within map area 

Interpretation: represent allochthonous . lower P.aleozoic" rocks 
transported from the east in the base of the Humber Arm Alloch­
thon; rocks in map area may be mainly Lower to Middle Cambrian 
lrishtoWr! formation equivalents 

Local correlation: tectonically related to Serpentinite unit 

Reg i'onal torre I ~t I on: tee ton I ca II y re 1 a ted to Second Pond me I ange 
and Coney_ 'Head complex, Birchy complex, and basal rocks of 

o Hare 841y Allochthon (Stevens 1970) 

r 
6.2 Depositional history 

. The depositional history of the Corner Brook Lake area would- be 

difficult to reconstruct based only on the avalhble evldenc:~ from the area, 

because of the poor preservation of original sedimentary features. Kowever, 

working with the brOilld facies interpretations and regional lithologic 

cor re 1 at ions proposed above, the we 11-es tab 1 i shed reg i on• I, deposIt I on a 1 

model for the Humber zone ~an act as a guide for a general lz~d model for 

the IMP area. The following discussion relies heavily on the ·studies 

noted In Table 9 and on severe! regional syntheses (e . g., Stevens 1970; 

Will i~s et al. 1972, 1974; Williams and Stevens 1974; Poole 1976; St~vens , 
1976), to wnlch the r &.der is referred for more detailed discussion. See 

also Figure Z7, p. 326. 

DurIng I ate tt.dryn I an to Lower CambrIan tIme, . - sequence of co.a r se 

ukoslc rocks (AntlerHillant;t Caribou Lake formations) representing 
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su~erlal alluvial fan sediments ,~re ~epos I ted unconform.bly on 'Gren-

villian b.isement (TonalitJc; ·gneiss complex). 8oth basement and clastic .. 
· ~rocks were Intruded du~lng deposition by' buic dykes which fed volcanic 

. flows. The ca.rse grain size of• the arkoses suggests deposftion near a 

) ' source of relatively high r;llef, and lntrusi_on of basic cfy·k~s lndicHes 

a tec:.tonic~lly unstable area. · Regtorlai evidence suggests a westerly source 

· for thec;.lutfcsand a continental rift d~pocentre • . ' 
!> 

During Lower to Middle Cambrlan time_.· . . the b~s•l arkoses were over-r- ' 
lain by d~lnantly quutzose rocks with ln~erbedded shale {Mount Hu1gr a:e\ 

and Stag Hill formations) deposited in a marine (nearshore) env i ronment . 

These rocks · ] ikely record ~ nitiat" marine inundation of the _ ~errest ri al rift. 
. / 

! . 
---·' Ou-ring 1'1-iddl' to ttpper Cambrfan time t'he quartzose rocks were 

overlain by a thin-bedded carbonate/shale sequence (Twillick Brook ~nd 

Reluctant Head formations} deposited in an intertidal to subtid~l marine 

env .ironment relatively farther removed from. the clastic source than under-

lying rocks. Continued ~rlne transgressfon is i'ndicated. Levesque (1977) 

interprets equivalent rocks outside the area as open, carbonate-sand 

rinmed shelf . (or ramp) se~lments. 

Lower Ordq;.-lcl•n, . thickly-bedded, relatlv'ely pure carbon•te rocks 

(St. George Group) were deposited confor~bly on : the Cambrian aequen~e . 

Scarcity of clastic ro~ks in ' the Group points to marine depos i tion far 
. 

removed from .the clntic: sotJrce- likely rttfleeting continued mari ne trans-

gression with weltiw.rd migr~t ion of the shoreline·. Regional evidence 

indicates these LQWer Ordovfciiln roc:k~ represent ,the construction of an 

extensive carbon-ate pliltform ri~~~~~ed by biq.herm•l IT!Qundli (Levesque 1977). 

" - ' T~ ca'rbon,ite platfon~ r::,c:ks)n · the a r ea ~Y havj, been briefl y 

. -~gent prfdr to deposft:lon o~ thiek-'bedded cubonates (lower '"(able Head 

Gr oup) during early Middle Ordovic:ioilln ~lme . 'conditions apparent l y changed 

/ 

•. I 
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rapld}y thereafter, as tectonic events to the east (Taconic Orogeny) 
- I 

caused foundering- of the carbonate _ platform and an accompanyIng west 

to eist 'switch In c:'lutlc source area. 'The upper Table Hud Group records 

these changes (K_Iappa et ·~), ·wh_lch 

the .Humber Arm Allochthon, Which Includes 
. ' 

herald wtstward empl.cement of 

the H~mber Anm Supergroup ~nd 

.an ophiolite suite. The Serpentlnlttl un_it ls __ a samptt·n·g of ophiolitic· 

rock$ str~ndea in tbe rM~ area during .this orogenic e~t. 

~ 'Following emplacement of the allQChthon, . the ustern part of the 

area ._s Intruded by S i 1 urlan granItoId rocks (Last H 111 a dame Ill te and 

l~s apophyses), an event which preceded or accompanied regional uplift. 

Deposition ~Y not have resumed until Carboniferous time, when Intermon­

tane bas 1 ns were sItes of ~-res t-i-l a I depe! it ion {Angu i 1 i e and Deer Lake 

Groups). Erosion apparently has continued since Permian time. 

6.3 Conclusions 

Among the significant findings of this Work is the del lneatlon of 

the stratigraphy In the previously poorly known eastern part of the area 

·, 

(gpelssfc a~d m~taclastlc terranes). 1n the gneissic terrane, Grenvirlian 
0 ~ ' • ..,__ • 

· basement rocks ~nd overlying late Hadrynian to Cambrian arkosic rocks have. 

b*n recognized for the first t:lme • . Late Hadrynian basic Intrusive roc)c.s 

In the bo_th the b.sement and arkoslc · rocks.have also been identified for 

the first time. In addltlo~, a Sllurl..i'\ granitQid lntrislon and its 
" . - --

~ ,. •P91?t'1Ys~ throughout'' the eastern part of' the area have been delineated. 

"' 

\. 

In the _metaclastlc terrane, a previously unrecogn ized stratigraphic 
. . 

sequence has been defined, eomp.ri-slng, from b~se "to top, late Hadrynian to 
~- . 

L~r Cambrian coarse arkosi~ rocks. Lower to Middle Cambrian quartzose 
,_.. 

rocks and Interbedded shale, and H.iddle to Upper Cambrian calcareoc~s rocks 

and lnterbed.ded shale. In addition, structurally emplaced rocks of 

- ,... 

r 
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ophlol.ltlc affinity were discovered dwrlng th is . work. 

Of equal significance Is the recognition that the Grand Lake Brook 

group In the western part of t~e area Is confom1able beneath t he St . George 

Group o~nd thus fonn_s an Integral part of the carbonate terro~ne strat igraphy. 

As a resu It of thIs, the Grand L•ke Brook group Is now recogn Ized ==as an 

Important strat lgraph!c: ll nk between the carbonate and meta.c lnt lc terranes, 

In that the Stag iUll/Reluctant Head formations are clearly latera l l i tho­

logic: equivalents of the 'Mount Musgrave/Twi II ick Brook formations in the 

metac:lastlc terrane. St'ructural data tb be presented In the following 

chapters will demonstrate the addit ionaL Important role of the Grand Lake 

Brook group as a structural link between the two terranes a li nk wh ich 

has major lmpllca7\for the timing of orogenic events in Western New-

foundland. /, 

·" 

.. 
/ 
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UNIT I I : STRUCTURE AND 11ET.AJ10RPH I SM 

CHAPTER 7 

GENERAL STATEMENT - STRUCTURE 

At least five distinct deforrrw~tlon events are recognized i n rocks 

in the Corner Brook Lake area. The events are referred t6 In the trad-

ition01l m•nner as Dl through 05 (earliest to most recent), and structures 

generated during each event are referred to as Fl to F5 for folds, Sl 

toSS for foliations, and Ll to LS for fold axes and lineat ions. The 

five events a re not necessarily strictly isol<~ted in time, but two or 

more events may represent peaks in a progressive defor~t ion phase. 

The dominant north-northeast structural trend in the area is 

defined essentially by the parallel alignment of 52 and L3 structural 

elements, which represent the most conspicuous products of the earl y and 

most Intense deformation events, . 02 and 03. The later deforrrw~tion e*en t s, 

04 and 05, were less Intense and produced only reg ional-scale open folds 

(F4 and FS). The eullest event, 01, is rarely distinguishable because 

of later overprint lng effects . A 11 structures generated prior to 05 are 

northeast-trending, while 05 produced regional cross-folds (northwest-

trending) interpreted to be responsible for the marked sinuosity in t he 

structural grain of the area (see Figure 15, p. 194). 

Thrust ft~ultlng Is an important p•rt of tl'ie deform.-tlon history, 

and thrusts Initiated early (02) were reactl11ated during later stages 

(03 and 04) of the structural history. As noted previously, three ma jor 

east-dipping thrusts are recognized, and these represent boundaries in 

the tripartite division of the stratigraphy discussed in Unit I . Thrus t 

movements areal so responsible for the cont.rast in tectono-metamorph i ~ 

features of the three terranes. Numerous; late-stage hIgh- angle f•ul ts 

, 

... 
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also dissect the -m.1p area and add cpnsiderable complexity to the 

interpretation of its structural a.nd stratigraphic features.. 

The overall intensity of deformation increases from west to east 

in the area, but the increase is rn6re marked for early (02) than for la~e 

(03-05) events. It should be noted, however, that multiple deformation 

effects (02 and OJ) are recorded even a long the western margin of the area. 

Evidence to be presented Indicate~ there is also some degree of contrast 

In structural orientation betwee11 the eastern and western parts of the 

area. Structural tefescoplr:'g of the stratigraphy along the major thrust 

hults has undoubtedly contributed to the contrasts i'n both structural 

orlentat ion and de format ion Intensity- between the east and west. 

Most of the Information employed in the structural analysis of 

the area was gathered during field work by the author, ·but this has been 

supplemented by airphoto analysis, microstructural studies, as well as 

structural dau compiled from previous work (notably, Walthier 1949: Riley 

1~52, 1962; Lilly 1.963; McKillop 1963; Stevens 1965; Hyde. 1979a-d; W~lliams 

and Godfrey 1980'; P1artineau 1980). 

To faci I itate illnalysls, the map are_a Is divided Into five struc-

tural domains (1-V, Figure 13). The domain boundaries reflect the natural 

subdivision of the area by thrust faults and major high-angle faults. 

Thus, dOrniiin coincides exactly with the outcrop area of the gneissic 

terrane, the carbonate terrane is dlvlde4 in'to domains II and Ill, sepa-

rated by the Plnchgut Fault, and the metaclastic terrane Is dlvl~ed Into 

dom.-lns IV and V, separated by Valley of the Lakes Fault. The domains are 

defined in this manner t9 accentuate any exIsting dl fferences In struc"ura I 

or.lentat I on throug~ut the map area, and part I cu 1 arly between the meta-

clastic and carbonate terranes. The domains are not strictly homogeneous 
; 

with respect to any partlculac fabric element, and they ue purposely large 

.. 

• 



187 ) 

bOWAIN IV 

DOMAIN Ill 
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DOMAIN II 
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FIGURE 13 ~ STRUCTURAL DOMAINS 
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In keeping with the detail of the data belse and the size of the ue.. 

In the following three chapters the structural geology of the 

Corner Brook Lake area Is described in terms of the Njor deform.ttlon 

events. For the purpose of this discussion, the structural history Is 

divided Into three parts: 1/ early interisede-formatlon (01-03), described 

In Chapter 8, 2/ thrust faulting, ~ discussed In Chapter 9, and 3/ late, 

less Intense deformation (04, 05 anct later}, described In ~hapter 10. 

The order .of discussion fol"lows the general trend of the structural 

history, which sunmarlzed 11nd interpreted In Chapter 11. Chapter 12 is 

devoted to a discussion of the metamorphic evolution of the map area. 

,•· 

...... 
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CHAPTE-R 8 

EARLY nEFORMATION EVENTS 

The oldest structures In the Corner Brook Lake area should be 

(•tnd likely are) recorded In the basement rocks of the Tonalltlc gnet.ss 

complex. The well-developed ~nelssoslty, for example, ~Y be a rei ict 

Grenville structure. However, due to the intensive reworking of the base-

ment ' rocks, meinly during the 02 event, It was impossible during thl& 

study to distinguish between possible Grenville and late·r 02 structures. 

For this reason, no early, Grenvil Ia structur~l event can be clearly de-

Jlneated on available evidence. This problem is considered again in 

section 8.2 with description of · tne 02 deformiltlon event. 

8.1 01 defonnat ion 

The earliest recognizable structural event, 01, Is rather dlffi-

cult to characterize due to strong overprinting of Its features during 

'• 
subsequent deformation. The only positively Identified fabric elemen·t 

generated during 01 is • fol ration (Sl). Neither F1 folds nor associated 

lineations (Ll) were positively identified. 

In outcrop. Sl is most clearly distinguished where it defines 

sma 11 F2 I soc 11 nal fo7.s (see P 1 ates 43 to 48, p . . 196, 201 and' 204) , which 

are lntrafol Jal with aspect to the dominant, overprinting 52. The . 
I 

geometry of thIs re rat lonsh I p between S 1 and 52 Is consIstent wherever 

observed, and indIcates that, because of the I soc 11 na I na'ture of F2, the 

dominant foliation In the area is in fact a composite fabric elemen·t 

composed of 51 and the generally parallel 52. Thus, Sl represents •n 

Important and pervasive plan~r structure, but one which Is so intlmtttely 

. related to S2 that the two cannot be distinguished In most plttces. In 

.. 
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genen1l · reference, therefore, this composite plan7struc.ture is refer red 

to u el·ther the 'domln011nt foliation', 'S1/S2', or simply as 'S2'• -since it 

essentially owes its fin~d geometry to 02. 

There Is also a consistent parallel Ism throughout the area between 

the domlna~t foliation and relict bedding (SO), suggesting that Sl may have 

developed parallel to the original bedding. This would impty that the 

danlnant foliation is, in effect, a canposlte SO/SI/SZ fabric element . . 
The Sl foliation c;an also be distinguished from SZ where i t forms 

" inclusion trails of quartz and/or epidote i n post-01 porphyroblasts. Where 

observed, the Sl inclusion trails are at a high •ngle to the overprinling 

S2 foliation, and are recorded in porphyrof)lasts of garnet, alb i te~6nd 

biotite in rocks in the meuclastic ·terrane. Syn-01 lepidoblast i c musco-

vlte (:t c;hlorite) also preserves a relict Sl schistosity which is crenu-

lated and dominated by S2 In a few samples in the terrane. Such high-angle 

relations between Sl and S2 are interpreted to reflect proxim i ty to F2 

fold hinges, where Sl is crenulated and essentially transposed paral lel to 

the 52 axial plane fol i_atlon. 

The eKistence of Sl and its relationship to 52 are best demon-

strated In roc.ks on the summit of Mount 11usgrave. In these garnet I ferous 

quartz-mica schists, partly ch,Jorltized porphyroblasts of garnet, and less 

c0111110nly biotite, contain an Internal folIation (Sl) defined by quartz 

inclusions and set at a high angle to the external foliation (S2} (Figure 

14). The internal foliation is straight in the core of the porphyroblast, 

' but curves sharply i'nto parallelism with the external foliation near ;he 
rim, sugge~t i ng some degree of porphyroblast growth and rotation, or si mply 

deformation during _02 . Muscovite defines an external relict 51 foliation 

bet~en a .~ losely spaced (1 ~) crenulatlon cleavage (S2). The outcrop 

fabric, sketched In the upper~ft of Figure 14, Is dominated by the S1 / S2 

~ 

... - ------ -·------------------------------ - . · ---- ·---------------------------=~-------------------



11J1 

SI/S2 
3 c;m 

w E 

Sl 

lm"' 

4 

__ .. 
I 

...... 
FIGURE 141 SI<ETCH _OF WESOSCOF'IC/MICROSCOPIC STRUCTURAL 
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composite foliation containing an Isoclinal fold closure (F2) and later 

stage, tight to open upright folds (F3). 

An outcrop of the Caribou Lake foJmation on 'Tower Hill' displays 
\ 

almost lden't,ical stru~tures, except that alb'ite porphyroblasts rather than 

garnet host the Sl Inclusion trails. The same post-01 structures are also 

present. Similar 51-52 structural rel.atlons are thought to exist through-

out most of the map area. 

The sm.all·scate (2 to 100 em), intrafollal isoclinal folds noted 

above were recognized at a number of localities in thinly layered rocks 

In the metacla-stlc 'terrane and the eastern part of the carbonate terrane. 

It is possible that some of these may represent Fl fo1ds, but without 

evidence to the contrary all such closures are interpref~d to be f'2 folds . 

Their axes are plotted as L2_ lineations on the equal area projections 

shown in Figure 15 {p. 1~4). 

TheJull extent of the Dl 'deformt~tion Is unknown at present. It 

has clearly affected rocks in the metaclastlc terrane, and in the eastern 

part of the carbonate terfane Sl structures defined by muscovite (sericite) 

were noted In phyllites and marbles of the Grand Lake Brook group (Reluc-

tant Head· formation). That these fine sericltic part1ngs represen.t Sl 

is indicated by t~ S1-F2 relations shown in Plates 47 and 48 (p. 204). 

There Is no clear evidence of Dl defor~tlon in the gneissic terrane, even 

• though the rocks there were no doubt affe~ted by the event. 

The distribution of Dl stru~tural effects Indicates t~t· virtually 

the entire area (carbOnate and meta~lastlc terranes) experienced the same 
r 

deformation history. When the age of this event Is considered (section' 
.. 

11.1), the full slgnlfl~ance of the foregoing statement with respect to· the 

tee: tonic evolutIon of the Humber zone will be ..recognIzed..._ 
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8.2 02 deformation 

The second major deformation event, 02, is the most intense 

penetradve event recorded in the map area. Its salient feature is a 

well-developed foliation (S2), which appears to have originated as an 

axial plane fabric to isoclinal folds. Such folds (F2), and associated 

1 ineations (L2}, are relativel_y poorly preserved. 02 structures c !early 

overprint those of 01, and are overprinted by 03 structures. 02 also 

post-dates a relatively minor period of static porphyroblast growth 

(post-01}, and is in turn post-dated by a major perio_d of porphyroblast 

growth (post-02). 

The composite dominant foliation (Sl/52) in the area took its 

final form during 02. The S2 pa.rt of the fabric Is typically represented 

by a distinct schistosity in most r~ks in the eastern part of the area. 

In massive rocks, however, the foliation is locally a gneissosity defined 

by compositional layering (bedding in most cases) . S2 contributes sub-

stantlally to the northeast structural trend in the area, and though the 

orientation is highly variable it generally dips moderately (~0-70•) · 

southeast in the east and moderately northwest in the west part of the area 

(F'I gure 1 5) . 

F2 folds are represented by lntrafol ial isocl ina! folds, which 

are best exhJblted by lami~ae of quartz or marble in thinly layered rocks 

(Figure 14; -Plates lt3 and 'It). The folds vary from st'milar to concentric 

in style, depending on lithology. In competent lithologies, for example, 

the folds are approximately concentric and generally do not display • 

vlslbl• axial plane foll~tlon. It Is Interesting to note th•t many of 

the isoclines found are west-verging and r'ecumbent. 

No macroscopic F2 folds have been positively identified, though 
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PLATE lt3 

F2 fold in Hount Musgrave fonmatlon lntrafollal, Isoclinal fold In 
micaceous· qu,rtzlte/pellte sequence on 9hore of Deer Lake, 200m northeast 
of 'Boom Island'; view NE; outcrop location 211. 

, 

F2 fold in Reluctant Head fo~tlon Isoclinal closures in phyl l ite/ 
mar~le sequence on •one Hlle Pond Road', 50 m from junction wi th 'Gull Pond 
Road'; view SW; outcrop location 12. 

\ 
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airphoto stu~y suggests the presence of major isoclin~s in the northern 

part of the metaclastic terrane (Figure 15f) . These have not been traced 

out on the ground, ~ver, and cannot be confidently interpreted as F2. 

Minor fold axes (L2) are plotted in Figure 15a-e. They display a 

rather random distribution, possibly reflecting extensive reorientat ion 

by subsequent deformation (03-05). However, there are tOo few lineations 

for a statistically meaningful interpretation. 

All aspects of thrust faulting In t~e area will be discussed in 

Chapter 9; However, it is worthy of note here t~at the 02 deformation 

event was also the time of initiation of major thrust faults . The zones 

of disl~ation were generated during 02, but the evidence suggests con-

slderabTe reactivation during subsequent defonmatlon events (0} and 04). 

Specific features of 02 that are uniQue to each of the three 

terranes will bediscussed In the following. subse.ctions. It is notable 

at the o~~et, however, that 02 deformation is recorded In all three 

terranes ~ the area, again indicating the entire area experienced the 
r . . . 

9ame deformation history. .. . 

Metaclastlc terrane (domains IV and V) 

The basic characteristics of the 02 defonmatlon event are best 

preserved and most clearly represented In the metaclastic terrane. 

The S2 schistosity In this area is typically defined by mustovlte, 

In places accompanied by biotite end epidote. Sericite, quartz and graph-

ite also mark the foliation locally . In addition, a·v.riety of post -02 

porphyroblasts, Including garnet, albite, tourmaline and biotite, commonly 

contain S2 Inclusion trails defined by ~u4rtz. Distinctive g raphiti c 

lnclu~ion trails ~re also noted at ~localities- In mica schist from 
. ~ T M<agrove and pa<a--hl bo 11 u frOM the Twl llick . Brook fonma\ lon near 
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'Second Pond' . 
. I ' . 

Albite porphyrd!dast's In the mica schists have straight, 

S~ graphitic Inclusion trails In their cpres, but Inclusion-free r ims, 

while porphyrobluts of hornblende. andesine anq garnet In the para-

amphibolite contain straight f.ollae of graphite which pervade the, ent i re 
I 

rock a~d pass from one porphyroblast to another with little or no def l ec:-

tlon (see Plate 84. p. 313) . 

Compositional layering In rna·ssive feidspathlc rocks of the Caribou 

Lake for~Mtlon lociiily defines a gneissosity parailet to S2. In most cues, 

5his layering is cleuly relict bedding. 

The form surface map (Figure 15f) shows the trends of the dom i nant 

S1/S2 folia,ti_on for the area. Bedding plane trends are Included with t he 
-.. 

S2 trends beG.use of their consistent parallelism. It should be noted. 

howeveT, that S2 Is subordinate In some parts of the area where F3 folding 

h.ls been intense enough to produce• a dominant Sl·cleavage • .. . 
The form surface map illustrates the northeasterly trends through-

O.)Jt the metac1astlc terr;11ne (domains IV and V), as well illS their marked 

sinuosity. The ~Min trends delineate the Steady Brook Lake Anticline (F47 ) , 

which occupies most of d~in 'IV, and also delineate at lea~t two smal ler 

sqle folds (F3). 

On the.contoured equal ~rea projections of poles to S2 for the 

metac:lastlc terrane (Figure 15d and l5e), the.north-south contrast in 

orlent•tlon Is c;le•rly demonstrated. The strong point mulmum to weak 

girdle pattern fOr- domain V (Figure 1Se) reflects 11 strong. moder•tely to 

steeply scu thea~st-dlpping preferred orlentiltlon. while the girdle p•ttern 

with evenly spaced po~nt maxlrM for dom.ln IV (Figure 15d) reflects the 

more variable orientation of S2 In that aru. The pattern for the nort~ern 

part of the metaclutrc terr•ne (d01n11in IV) suggests control of 52 by 

upright, concentric, moderately northea~st-pl~nglng fol~s. I ikely the 

- -
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combined effect .of P3 and F4. The fact th01t the girdle axIs In F I gul\e I 5e 

' 15d probably n 
\ ) 

plunges more shallowly northeast than the axis In Figure 

Indicates more shallowly plunging FJ (+ ' F47) folds in the 

part of the ternme (ddnain V). 

.-·-·'·......._ 
southeas~n ., 

,J 
F2 fold c:losures were noted In a number of places In the terrane 

(e.g., Plates 43, 45, 1+6 and Figure 14). Minor fold axes ( LZ ) show a 

slightly diffuse dlstrlbut Jon (Figure 15d and 15e), but .1 rather distinct 

preference for a moderate northwest to northeast plunge. F2-FJ structura l 

relat ions In the terrane are preserved in an outcrop of the Mount Musgrave 

formation' ne.r Pasadena (Pliites 45 and 46). The outcrop dlspl•ys steep l y 

east-dipping layering (bedding?) containing a very tight to isoclinal 

lntrafoll•l fold (F2), as well as later, recumbent open folds (FJ). The 

geometric relationship of the two fold generations Indicates a Type 3 

lntedereoce pattern (Ramsay 1967) - a relationship which Is consistent 

throughout the m.p area. 

!I 
Cilrbon;~te terrane (domains II and Ill) 

In the c01rbonate terrane, structures · generated dur lng 02 are best 
\ . 

preserved ;md displayed along the eastern margin, where both S2 and F2 ... 
structures are clearly rec~ded In the Grand Liike Brook g'roup . 

SZ manifests Itself u a well-defined schistosity In both phy l lite 

01nd mlc•ceous carbonate rocks . In phyllites It Is defined b.,..musc:ovite 
( 

ilnd br~n biotite, and In Nrbles by serlcitlc p~rtings. However, I t Is 

evident simll;~r partings locally represent Sl (e.g •• ' Ptates 47 ~md 48). 

Composltlon•l h1yerlng (b~ddlf19l marked by tho thin .lnterlilyerlng 

,.of phy_lllte •nd marble parallels S2. as does the common grey/wh i te colour 

layering In some marbles. In the more muslve p•rt of the cubonate 
~.s 

sequence, the St. George •lid Table H .. d Groups, bedding Is assumed to 



I 
\• 
\ 
t r 
l 

I 
l 

\ 
_/ 

PLATE 45 

Multiple folding In the Mount Husgrave formation northeast view of 
quartzofeldspathlc: schist/pellte sequence conta' inlng tight to open, r e­
cumbent, F3 folds (lower part of picture) and very tight to isocl inal, 
lntrafolla1, F2 folds (uppermost part of picture, and Plate 46); the 
orientation of F3 folds reflects the effects of F4 folding associated with 
the Steady Brook Lak!!l Ant I c II ne; outcrop Is on eastern I imb of the latte r ; 
hi 11 top outcrop In South Brook vJ II age, north of Trans Canada Highway; 
outcrop loculon 188. 

PLATE 46 

Detail of Plate 45 - very tight to isoc linal, intrafolial, F2 fo ld. 

\ 

. . 

. . .. --
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Pilrallel 52. In the black slates of the upper Table Hud Group and the 

Hll!lber Arm Supergroup along the western margin of the terrane , however, 

the S2 fol lation hu been obi Iterated in"most exposures by 1 steep s loHy 

.:luvage (53). 
I . 

The form 5/Urhce map in Figure 15f, which includes bedding pl.me 
. i 

trends, lndicates f S2 trends in the carbon<~te terrane are essenti<ll ly para­
/ 

llel to those In i he metaclutlc terrane and exhibit the same sinuosity. 

The contoured poles to S2 In Figure 15b and 15c display fairly wei 1-def l ned 

_(9irllle patterns, reflecting the Influence of folding (F) and F47) t~bout 

a moderately to shallowly northeast-plunging axis. The location of the 

S2 max ima for the northern part of the terrane (domiiln Il l ) and the s l ight 

girdle asy~~metry for the southern (domain II) suggest a preferred north-

westerly dip for the ~Min foliation, which Is In dire.:t contrast to t he 

preferred southeast dip In~ metaclastlc terrane, especially Its southern t 
part (dONi n V). · 

F2 folds were found ih only seven local itles in the carbonate 

terr01ne, but In ~eneral.they are the same small, tight to lsoclin~l folds 

found in the metaclastlc terrane (e.g., ,Plate 44). A very Important 

example o-f F2 was found In an outcrop of Reluctant Head formation marbl e 

on 'Gull Pond Road' south of"'High Pond 1 (Plates 47 ancj 48). Sericlt.l~ 
·.-

partlngi (S1) are clearly folded Into very tight to Isoclinal folds (F2), 

which are In turn refolded by open, westerly lncl lned concentric folds (F3). 

The geometry of the -F2-F3 relltlon,shlp (a Type 3 lnterfer~nce pattern} Is 
' · . 

Identical to thAt found In metaclastlc terr•ne rocks (see Plates 45 and '+6). 

C~rfson of Plates 45 to 48 clearly Indicates that, as noted -In 

section 8 . 1, the entire map 1rea experienced the st~me defonMtion history, 

since Identic•! 02 structures 1nd 02-03 structural relations ue found In 

both the metacl utI c and carbonate terrilnes. 

. - ' 



PLATE 47 

Multiple folding In the Reluctant Head formation view SSW (up plunge) 
of open, Inclined, F3 fold in rn~~rble/phylllte sequence; in the core of 
the fold, · to the left of the h~r. F2 Isoclinal folds are preserved 
(see Ph1te 48); outcrop on 'Gull Pond Road', 1 km SW of 'High Pond ' ; 
outcrop location 172. 

PLATE 48 

Detail of Plate lf7 refolded F2 Isoclines (Nrked In red) def ined by 
Sl serlcltlc partings In t~ marble . 

, 

• 

• 
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Gneissic terrane (domain I) .. . . 
Two of the three units in the gneissic terrane are characterized 

by a strong, north- to northeast-trending, steeply southeast-dipping r 

foliation interpreted to be totally, or in part, a 02 fabric element (52). 

In the Tonalitic gneiss complex, the main foliation Is represented 

by .a wefl-defined gneissic layering comprised .of alternate mafic and fels ic 

laminae (1 to 20 em thick).' Amphlbolfte layers, representing basic dykes 

which post-date the complex, contain a schistosity which parallels the 

gneissosity In the host rocks, and Is defined by biotite, chlorite, horn-

blende and/or actinolite. The fol iatlon In the Antler HII I formation 

is represented by a schistosity defined by biotl .te and, less conmonly, ~ 

muscovite. All these dominant planar structures in the gneissic terrane 

are para I lei to each other, and para-llel to the dominant 52 foliation in 

the metaclastlc terrane. This Is clurly demonstrated in Figure 15a, In 

which contoured poles to the foliations in the gneissic terrane form 

closely spaced, double point maxima, · n!flecting a very strong, steeply 
, . ' 

southeast- to east-dipping, preferred orientation. There Is some sugges-
.·,. .. 

tion of a very weak girdle (clashed line), possibly Indicating effects of 

minor reorientation (folding) about a northeast plunging axis. 

The orlentatlolf of the dominant foliations In the Antler Hill 

format ion and the amphiboll te rocks throughout the terrane, and the ·fact 

that the structures are overprinted by a high-angle, crenulation cleavage 

characteristic of 03 defonutlon. Jsupport their Interpretation as S2 

str•ctures. The gneissoslty Jn the Tonalltic gneiss complex Is more 

problematic, however. The hct that the complex Is Interpreted ~o repre- · 

sent Grenvflle.basement SU9gests the gneissosity may be a Gr~~lle 

str-ucture, totally unrelated to recognized deformation events; ~ver, 
) 

the or,lentatlon ·of ·.the gnelssoslty relative to S2 In the map .area, and Its 
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relationship to overprinting 03 structures, indic~te the gneissoslty may 

be in part a 52 structure. Thus, It is suggested here t~t the foli~tion 

In the complex Is a composite structure composed of a reli~t Gfenvil le 

gneissosity which has been reoriented and 'reconstituted' by the Intense 
\ 
02 deformation event. The reconstitution was mainly in the form of the 

retrogressive growth of biotite. 

F2 folds were found only In rocks of the Tonal itlc gneiss comple~ 

and Antler Hill formation. In the former, small Isoclines In the gneiss-

osl ty are Interpreted to be F2 folds (e.g., see Plate 2, p. ·34). A major 

F2 fold may also be preserved in an outcrop of mylonit lzed.gneiss on 'One 

Hi Je Pond Roed' over;looking 1 Radl.!()-pond 1 • The outcrop ·appears to contain 

the poorly exposed hinge of a large {30m); very tight to Isoclinal anti­

form, which is steeply Inc! ined and steeply plunging to the southeast. 

A shear zone In the overturned west I imb of the fold also contains a sm~ll 

Isoclinal F2 fold (see PJ~·te 6lt, p. 240). The structural relations In 

this outcrop suggest an Intimate relationship betWeen F2 folding and 

duct lle thrusting.· 

Another possIble 02 structure In the Ton~ II tIc gne l ss complex may 

be represented by a strong hornblende lineation (L2?) found in one gneiss • 

on the ~hore of Grand lake, 1 km east of 1Twll11ck Brook' ; However, Its 

orientation was not noted In the field. 

In the Antler Hill formation, F2 folds are again the c:haracteris: 

tlcally small (10 em to I m) tight to Isoclinal structures: Only four 

folds were noted, but their Axes, plotted in Figure 1Sa, show a concen-

tratlon About a moderate to shallow, north-northeast plunge. The consls-

tent orientation may mean ~st-D2 deformation was not effective in re­

. orienting the axes; However, there are too few axes to allow reliable 

InterpretatIon. · 
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8.3 03 deformation 

Structures generated durl.ng 03 are found throughout the map area, 

I 
. and clearly overprint 02 structures In all three terr~nes. The character-

lstlc structures of the 03 event are tight to open, upright northeast-
' . 

plunging folds (F3) and an associated ·northeast-plunging Intersection 

I lneatlon (L3). Planar structures (S3) are only locally more prominent 

than the earlier 52 foliation. 

F3 folds are the most conspicuous folds In the map area, and are 

represented on all scales from microscopic to macroscopic. The high 
• 

visibility of the folds Is likely a function of several hctors: 1/ F3 

Is developed In St/52, t~e~st pervasive planu structure In the area, 

2/ the genera II y tIght to open form of F3 makes the fo Ids more v Is I b I e 

than the earlier Isoclines, 3/ relatively mild subsequent deformation, 

and ~/ the general absence of a strong S3 axial plane foliation which 

would tend to mask the fold hinge. 

The folds are iilso quite variable In form and inter! imb angles 

I • 

reflect both the lntensl~y of deformation• and the competency of the I l th­

~gy. .In genenl, the folds ·are tight to open, though the complete gamut 

from gentle .to ~ery tight was found. Similar folds ue most conwnon, but 

In the competent rocks folds are nearly concentr)c (e.g., see Plates 49 

to 52, p. 212 and 214). 

Fold orientation Is ~lso variable, and Is Interpreted .to reflect . 

post-03 deformation. In general, however, the folds are steeply l n~Jined 

·and moderately northeest-plunglng. The v1riable orientation Is c learly 

shown fn Figure 16 fn terms of L3 orlentat.lons, which represj,t both 

fotd axes end mineral lineations. and In tenms of S3 orientations, 
• 

which represent both axial plane fo.liatlons and rne.sured axial planes. 



f 

"" Ci c a 
"' i 

,. 
z 
0 , . 
=-0 
c. 

"' n ... 
0 z 
•• 
i 
0 
til 

0 

~r 
J 
r 
f 
J 

J 

I 
I 

I 

/ 
/ 

/ 

!~ • . / 
I 

f 

zoe 

\ 
f 
I 
f 

• 

• 

\. 

I® \. 

Jl ! 
' 1 ! J 
1 \' .. . 

• • 

• •• • • 
~ 

• 

\. 

f 
1 
J 
' . . 

• 
• 

• ®· 
• 

• 

., 

-~ "'!< ' 



1 

~ --~ -· -----

'· 

209 

The equal area projections (Figure 't6a-d} illustrate the preferred, mod-

erate to shallow, northeast plunge of L3, and the form map (Figure 16e) 

illustrttes the north to northeast trend of S3. The projections indicate 

that axial planes usually hav~ steep dips, but vary from westerly, through 

vertical to east"erlydlpping. In general, westerly dips are more conmon 

In the western part of the are., and easterly dips ar~ more common in the 

• east. It Is noted that there is · Insufficient data to warrant plott ing of 

an ,equal projection . for the gneissic terrane (dOOW!IIn· IL However, 03 

deformation is clearly recorded In the terrane . 

L3, the most perl/aslve ·tfnear structure developed in the area, is 

the product of the inter~ectlon of S2 and S3, and thus parallels F3 fold 

axes. The lineation, which stands out most cle~rly in micaceous rQCks, 

Is typically ~epresented by microfolds or crenulatlons in the 52 fQiiat ion 
... 

planes. The only L3 mineral 1 ineations noted involve structural reor l en• · 

1 tation of pre-existing minerals, rather than syntectonic growth .. 

S3 is heterogeneously developed, and usually found only in the 

least competent pelitic rocks. The foliation is typ ically represented 

by • crenulatlon cleava9e, but both slaty cleavage and fracture cleavage 

are also found. Slightly convergent slaty and fracture cle•vage fans were 

noted loc_ally . 

Faatures of specific 03 structures in each of the three terranes 

are descrIbed I r:t the fol ~owl ng subsectIons. 

/ 
•. / 

te·rrane domaIns II and I I I 

The fundament•l c~racterlstl~s of 03 are best displayed by rocks 

J ln. the carbonate terrane. Hesos~opic· features are most clearly recorded . 

If! the thinly-layered roc:ks of the Grand lake Brook group along the eastern 

~margin of the terrane, as werl as In the slates.of the T•ble Head Group 

" 
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and Humber Arm Supergroup along the western margin. Macroscopic features, · 

on the other hand, are best displayed in the massive and thickly-layered, 

carbonate rocks of the St. George and Table Head Groups. These massive 

rocks generally show little or no mesoscopic features of any kind, with 

the rare exception of structures ·preserved In 1 si lty 1 laminations, and in 

layering (bedding?) accentuated by sericitic partings. 

The orientation of D) structures In the carbonate terrane (domains 

II and Ill) Is shown In Fl~e 16a and b. S) data are scarce, and thus 

the poles are not contoured: ~en lithe I imlted number of poles, ' however, 

Indicate the preferred, north:zerly dip for S3, .as weJJ as the effects 

of post-D) deformation. The map (Figure 16e) Illustrates the sinuous, 

north to northeasterly trend of S) . Fold axes and lineations (L3) trend 

mainly from northeast to north, but northwest trends are also found (e.g., 
' 

i n doma in I I I ) . 

The gen~ral form and orientation of F3 minor folds In the terran~ 

are clearly reflected by the orientation of 52 In domains II and Ill ·(see 

Figure 15b and c, p. 194). Both projections contain relatively distinct 

great circle glrdles · with only moderate scatter of poles, and both contain 

' two, synmetrlcally-spaced, uneven point maxima, which suggest rr is. dom-

Inantly similar In style and asymmetrical, having~ steeply west-dipping 

axial plane. The poles to the great circle girdles lndl~te that F3 folds 

preferentially plun~orth-northeasterly . •t shallow (5 to 30•) angles • . 

while the different orl~tatlon for the poles in domains II and Ill lndic-

ates a 'swing' In the genera·! fold a.xis from a moderate northeast to shal-

low northerly plunge from south to north . In the terrane. This regional 

'swing' Is Interpreted to be a post- 03 deformation effect. 

Outcrops of the G~and Lake Brook group attest to the variation in­

both form and orientation of minor F3 folds In the terrane (Plates 49 to 52) . 

.. 

I 
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PlATE 49 

Tight to isoci in• I folds in Reluctant Head formation folded· marble/ 
phyllite sequence In outcrop near 'One Mi,le Pond Roacy ~00 m SSE of 
junction with 'Gull Pond Road'; view NE; outcrop loc~tiqn 12. 

\ · 

• 

· PLATE 50 

Tight to open F3 folds In 'Reluctent H~ad formation - folded marble/ 
phyllite sequence In boulder near junction of •one Hlle Pond Ro.d' and 
'Gull Pond~·: note fold is n .. rly concentrl~; outcrop location 12. 

/ 

·~ 

-~- - ---
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PLATE 51 

F3 folds In Reluctant Head formation tight folds in phyllite/marble 
sequence in outcrop 1 km SE of 'Kidney Pond'; note chevron folding; view 

. NNE. · - · · 

PLATE 52 

F3 chevron folds In Grand lake Brook group very tight folds in phyllite 
In outcrop on 'One Hlle Pond Road' 500· m HE of 'Triplet Brook'; note inten­
sity of folding and resulting dominance of S3 clea-vage; vl.ew NE. 
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Tight to open, similar folds predominate in phyllitlc sequences, while 

concentric folds' are most COfmlOn in marble sections. Chevron folds were 

also noted in phyllites in anoutcrop 600 m north of 1 Triplet Brook 1 on 

·~ne Hile Pond Road 1
• Folds var·y from upright to re~umbent in the group, 

• 
as in the terrane as a whole, but they are in general steeply incl'ined and 

northeast-plunging. 

As noted previously, F2-F3 fold relations (Plates 47 and 48) in· 

dicat.e a Type 3 Interference pattern, in which~ fold axes (LZ and L3) 
1\ 

are subparallel and the axial planes {SZ and S3) are approximately perpen-

dicular. The fact that the F3 folds are regionally st':eply· inclined to · 

upright and northeast-plunging suggests that F2 isoclines were essentially 

recumbent, and 52 subhoritontal, prior to 03. As post-03 deformation is 

not considered to have significantly altered the regional orientation of 

03 structures, the F2·F3 geometry., ikely reflects, approximately, the 

original orientations·' of the structures. 
... 

North to northelst-trendlng, · F3, macroscopic folds are a very prom-

inent structural feature of the carbonate terrane, and the form map for 

S2 (Figure 15f, p. 194) reveals some of the larger fold closures visible 

on alrpf'totos. Many slightly small~r folds are recognized, and some are 

shown by their axial traces on the geologlcal11ap of the area {in pocket). 

The axial traces also clearly s.how the north to northeast, sinuous vari- . 

1tion in the fold trends in the area. Stratigraphic closures asspdated 

with the major folds suggest they plunge northeast (shallowl 'y?) In the 

southern part 9f the terrane , (domain II), but plunge mainly soutn ~nd/ou th­

weh (shallowly7) in the northern part (domain Ill). 

F3 macroseop I c fo 1 d s are 'best exposed In the Humbe.r Gorge/Hunber 

Arm area. where the relief provides a natural cross-section through a 

series of four northerly-trending folds, which affect all unl ts in the 
• II 

. ( 

' \ 
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carbonate terrane. These folds can be .tr:aced for some dIstance north and 

south of the Humber va 11 ey. 

One of the best exposed folds is the High Knob . Syncline (Lilly 
J 

1963) In the north wall of the HIA!lber Gorge (Plate 53). The syncline Is 

as~trical, having a steeply east-dipping axial plane, and it5 exposed 

• part involves mainly St. George Group carbonates. However, Lilly {1963) 

suggests Tabte Head Group carbonates may outcrop in the core at the top of 

the cliff. 

Anothe~ major F3 syncline Is exposed about 5 km to the west, nea r. 

Seal Head . This structure, referred to as the Seal Head Syncline by 

St~vens .(1965), Involves rocks of the Humber Ann Supergroup, and Is simi Jar 

in scale and trend to the High Knob Syncline . However, in contrast to 

the latterr, the Seal Head Sync I ine is asynmetrical in the opposite sense, 

havLng a steeply west-dipping axial plane (Plate 5~) . The significance 

I 
of this opposition is not clear. It is uncertain whether it reflects 

original heterogeneity in the 03 event, or whether It is 'entlrely due to 

post-03 reorientation; HoWever, the latter is suspected. The opposition 

In axial plane dip demonstrates, ' however, that the regional 'cleavage fan' 

defined by simi Jar 53 structures along Humber Ann to the west (first 

r~cognized by Valthier 1949) is continuous eastward into the present map 

area. The possible significance of this cleavage fan is discussed in more 

detail In section 10.1. 

A major F3. anticlinal structure, the She I lbird Ant lei ine (rede-

fined after Lilly l963), ls also fairly well exposed in the Humber Gorge 

east of the H i.gh knob Sync II ne. ThIs ant I cline Is s i ~n if I cant because it 

exposes the Grand Lake Brook group in its c.ore. The relatively incompe-

tent, thinly-layered phyllites and marbles of the Reluctant Head formation 

form the core, wnl le massive and canpetent St. G'~orge Group marbles form 
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PLATE 53 

High Knob Syncline NNE view of major FJ fold in rocks of the St. George 
Group, in north wall of Humber Gorge; note asynrnetry {steeply east-dipping 
axial plane); relief about JOD m. 

PLATE 54 

Seal Head SyncJtne - SSW view of major F3 fold In rocks of the HI.I'Aber · 
Arm Supergroup a~ Seal Head In the city of Corner Brook; note U)'ftW'IIetry 
(steeply west-dipping axial plane) which Is opposed to that of the High 
Knob Syncline (Plate 53) focated just 4 km to the east. 

-- ---- ----- - - - - - - - ------
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the limbs. Fran the south side of the Gorge, It Is evident that the less 
I 

competent rocks In the core were considerably more mobile, and were crumpled 

against the more rigid overlying rocks during folding. It is also appar· 

ent that the defonmation invqlved minor thrust movement at the contact · 

between the two groups on the wes~ limb of t~e fold (Plates 55 and 56). 

In a railway outcrop on the west limb of the Shellbird Antic::line, 

tight, upright, F3 folds in the Reluctant Head formation are character ized 

by a slightly convergent, s-teeply eut-dipplng, a~ial plane fracture 

cleavage (53) (Plate 56). This is one example where S3 represents the 

domin~nt foliation in the c:arbonate terrane. In general, however, 53 Is 

only locally developed, and only in the more pelitic lithologies. In 

most ~ases,· SJ Is found to be the typical crenulation cleavage in 52, 

but 52 remains the most .visible (i.e., dominant) foliat ion. 

SJ Is espec1ally well developed along the western margin of the 

terrane, where fine pel itlc ·racks are abun<,fant. The foliation in this 
J ' 

part of the area generally dips. steeply west and, mesoscopically, appears 

to be a 'slaty' .cleavage. However, thin .section study of black slate of 

the Hwnber Arm Supergroup, fi"'m the outcrop-- behind the Corner Brook Plaza 
I 

on the Trans Canada Highway, Indicates that, on a microscopic scale, the 

foliation is actually a closely spaced (1 mm) crenulation cleavage of 

an earlier (S2) fol latlon defined by muscovite and . biotite. 

Direct evidence ·that the cleavage alonb the western margin of the 

terrane developed as an axla~ plane fabric to Njor F3 folds comes from ·· 

the Seal Head Syncline, In ~lch massive quartzite layers In tht! fold ex-
. . ~ 

hlblt no cleavage, but interlayered and flanking pel ltes· exhlbi t a strong 

'slaty' clea~age, which clearly ~rallels the axial plane of the syncl i oe. 

' 
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PLATE 55 

Grand Lake Brook. group/St. George Group contact in Shellbird Anticline 
view NNE of west limb of Shellblrd Anticline In cliff in Humber Gorge; 
rellef about 300m; Reluctant Head formation (dark grey on the right) Is 
intensely deformed and crumpled against the overlying St. George Group 
(buff colour on the left); the sharp contact (just left of centre) is 
interpre.ted to be a minor thrust fault generated during F3 folding. 

PLATE 56 
e.> 

S3 developqent In ~lnor F3 fold - Southward view. of fold in pelitic 
carbonate rocks of Reluctant Hud.fol"'matlon on west limb. of Shellbird 
Antle: I lne; note relict bedding (buff and grey layers) cut by nur vert'ical 
cleavag .. (53}; cleavage fonas slightly convergent fan; railway outcrop In 
Hwnber GOrge; outcrop location· 175. 

- - - - - - --- -
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HetacJastic -terrane (domains IV and V) 

The overa II style; of 03 defonnat ion in the metaclast i c terrane is 

similar to that described for the carbonate terran~. F3 folds are the 

dani nant feature, L3 is quite prominent, and 53 is on I y locally well 

developed. _The structures, l.n general, have similar orientation to those 

in the carbonate terrane• However, orientations in the metaclastic terrane 

are more varied, and the deformation, In general, seems to have been more 
(I 

intense. Hesoscoplcally, structures are best preserved and displayed in 

the thinly-layered rocks of the Twi Jilek Brook and Haunt Musgrave formations·. 

Macroscopic structures are not displayed in continuous outcrop ~s they are . 

In the carbonate terrane, but they can be roughly delineated using strati-

graphic and minor structure relations. 

F3 folds in the terrane preferentially trend northeasterly, but 

therr orl'entatlon Is more variable than In the carbonate terrane, as In-

dicated by the orientations of Ll •nd 53 fabric elements. For examp•e, . 
there Is more scatter of minor fold axes and lineations (ll}. In domain 

IV (Figure 16c), L3 plunges moderately to shallowly from northeast to 

northwest, ~it~ only a few east- and south-plunging axes. In domain ~ 

(Figure 16d), on the other hand, L3 plunges shal _lowly fran north to east, 

with a significant number of moderate southeast- to southwest-plunging 

axes. The point maximum in the contoured poles to 5~ for the northern 

part of the terrane (domain IV) shows th~t minor F3 axial planes pre-

ferentially dip moderate~y northwest, contrary to the preferred north to 

northe~st 'moderate dip for the southern part of the terrane (domain~). 

From the 53 form map (Figure 16e), It is evid~t that the regional 

sinuosity In 53 is also present in the metaclastic terrane~ However, it 

appears to be less distinctly developed, either due io greater initial 

randomness of S3, or simply due to the scarcity of ' data. 

\ 
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The contrasted character of F3 folds throughout the terrane Is 

most clearly shown by the contoured poles to 52 In Figure 15d and e .. For 

the northern part of the terrane (d~in IV), there Js a well-defined 

great circle pattern, the pole to which lies within the concentration of 

L3 lineations. The orientations of the three evenly-spaced point· maxima 

in the girdle suggest that folding of S2 was effectively open to tight, 

approximate 1 y concentrIc, and slightly asynnetr i caJ, wl th steep, southeast· 

dipping axial planes and moderately northeast-plunging fold axe~. In the 

southern part of the terrane (domain V), on theelther hand, poles to S2 

· form a distinct point maximum, with some hint of a very weak girdle, the 

pole to which agrees fairly well with the concentration of L3 lineations. 

The pattern suggests 03 de format ton may have been much more in tense in the t . 
southeastern part of the area, prod~cing essentially very tight to iso-

clinal F3 folds that plunge shallowly northeast : 

F3 macroscopic folds in the metaclastic terrane are of the same 

scale and general orientation as those in the carbonate terrane. Closures 

In 51/SZ trends, shown on the form map In Figure 15f,. reveal the locat ion1 . , 

trend and size of ·some of the more obvious folds. Others are shown ·by their 

axt•t traces ·on the geological map (in pocket). Host of the folds are 

easily recognized on alrphotos, and for many there Is ground evidence for 

their existence. · Ta.e regional-scale closure in the northern part of the 

terrane is the Steady Brook Lake Anticline, a major 04 structure around 

which smaller F3 folds trend. 

In the area east of Corner Broak Lake a~d west of 'Centre Pond', 
------· 

major F3 folds, of the same scale ~s those In Humber Gor~e, have a well­

developed axial plane foliation (53), which represents the dominant planar 

structure In that part of the terrane~. In the area, rocks of the Mount 

Husgrave fo~tlon record the strong, steeply east-dipping to vertical ,. 

- - - -- ---- - - - -
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~leavage (S3), as well as a very strong, sh~llowly north-plunging lineation 

-(t3). A tnwerse of the area reveals th.at the IIWiin foll~flon (S2) and 

composition-al layering along the ust and west I!Wirglns ·Is gradually obi 1-_ 

terated tOWIIrd the centre of the ue. by ~ steep cleav~ge (S3) and an 

intense llnutlon (L31. This regional development of~ SJ cleavage In 

rela~Jvely competent rocks, combined with the Indication of very ;lght to 

Isoclinal F3 folding In domain V, suggests the 03 deformation was mu~h 

more Intense In the southeastern part of the metaclastl~ terrane than 

·elsewhere In the area. The relatively narrow width of exposure of litho-

logic units In domain V also supports this contention. 

S3 does- not· appear to be as extensively developed In the northern 

p1tlrt of the -terr.?he. However, it Is locally dominant on a mesoscoplc 

I 

sule. One example Is found on the northwest side of•Hount Musgrave, 

where a S3 crenulatlon cleavage parallel to the axial plimes of tight to 

lsocl Ina I F3 folds Is the dominant foliation. Another example, on the 

north sho~e of Deer lake, Illustrates the virtually complete transpo­

sition of S2 Into S3 In competent quartzose rocks of the Hount Musgrave 

fonn.tlon (Plate 57) . 

In the metaclutlc terrane, as In the rest of the llloilp area, there 

Is little or no. evlden~e of syn-03 mlnenl growth to form axial plane 

follaUons (S3) or lineations (l3). Incipient lepldoblastlc crystal-

llzatlon ~f muscovite or -biotite was ~ted In only a few of the many thin 

sections studied. In general; S3 Is wholly a stru~tural fe.cure defined 

by the erenulatlon of S2 wlttt no syn-tecton1e mineral growth (Plate 58), -

and L3, where developed, reeo-.ds structural reorientation of pre..;exlstlng 

minerals .(e.g., al~lte porphy~oblasts in the Caribou l•k• fonnatlon). 

·, 
; 
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PLATE 57 

i. · . • (.. l 

: ' ?'~ ~· 
. i~;f' ' '._ 

Transpos I tlon of 52 by F3 folding - tight to isoclinal FJ.. folds (out­
lined red) and associated n .. r vertic~) foliation (S3) ~eflned by trans­
posed 52; outcrop of Mount "usgrave fo~tlon on shore of Deer Lake NE 
of 'Boom lshand'• outcrop locuion 210. 

' 
> _ ) 

;/ 

'" 
PLATE 58 

I 
> 

Hlc:rophotogr:aph of typical S3 crenulatlon cleavage ·- this ~-.pie in 
phy Ill t lc sc:h I st (79-251 - lt) fr0111 Twill J c:k I roOk fonnat I on, outcropp Ing on 
'Gull Pond Road' 3 km NW of ' John's Pond'; poluized light; field of view 
• 3 mn. 

\ 
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Gneissic terrane {domain I) 

03 structures ·are recorded in all the rocks of the gneissic terrane, 

but generally are Indistinct in outcrop. Hany of the structures have been 

recognized only In samples and thln .sections, and t11us orientation data 

"re scarce. No axial plane, or axial plane foliation measurements are 

avlli I able to plot an equal area projection for the terrane (domain I) in 

Figure 16, and the only two lineations (l3) available are plotted in Figure 

15a. 

F) folds are most evldenton a microscopic scale In thin sections, 

;o~l1ere they are represented by tight to open crenulations of the dominant 

Js2) sc,istosity or gneissoslty. In outcrop, possible F) tight folds were 

noted in the Tonalltlc; gneiss complex in a boulder near the south end of 

'One Mile Pond' (see Plate 3, p.J4 ). Similar structures (F37) were found 

in gneisses locally along the shore of Grand Lake west of 'Twillick .Brook'. 

An Indistinct, tight to lsoel inal fold was also found in schists of the 

' Antler Hill f!lrmatlon, about SOOmwest of the surrrnlt of 'Last Hill'. 

A steeply norWleast-plunging lineation (L37), found in the large 

roadcut of gneiss near ·~adlo Pond', is the product of the Intersection 
.. 
of thedCIIIInantfoliation (S2) with a later crenulatlon cleavage typical 

• of SJ. 

The poorly defined foliation In parts of the Last Hill adamellite, 

as well as the distinct crenulatlon cleavage In granitoid rocks on the 

shore of lirand Lake, are both attributed to the 03 event. l·n addition, 

Incipient develepment of· S) wa~s found In one sample of tonalltlc gneiss 

fran a roadcut 100m south of 'One Mile Pond'. The dominant gnelssoslty 

In the rock Is partially transposed by a ,erles of closely-spaced (3 mn) 

c:renulatlons. The transposition involved the reorientation of biotite and 

was accompanied by Incipient crystallization of very fine-grained biotite 

I 
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parallel to the 53 foliation. 

The fact that the poles to S2 for the gnei.5s I c terrane (Figure 15a) 

form a discrete point max I mum could be Interpreted to mean F3 folds are 

generally· very tight to !soclfnal:>with very steep southeast:-dlpplng axial 

planes. There Is also some suggestion of a spread of S2 poles to define 

a very weak girdle patUrn, the pole to which plunges steeply northeast, 

roughly in agreement wl th the orlentat1on of the L_3 lineatIon noted above. 

However, D3 data ·for tl'le terrane are.pbvlously too scarce to drtwany fl .nn 

conclusions regarding the orientation or style of 03 structures, and the 

genera11y poor representa-t._lon of 03 In the terrane suggests the event may 

not have been Intense enough to generate significant structures In tt~se 

competent rocks. 

~ 
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CHAPTER 9 

THRUST FAULTS 

West-directed thrust f~ulting Is an Important pa'rt of the struc· 

tural h i story of the co·rner Brook Lake area. Three major east-dlpp i.ng 

faults have · been recognized, Including the Grand Lake Thrust, the Stag 

Hill Thrust, and the Corner Brook lake Thrust, end many other minor thrusts 

are likely present t .hroughout the area (Figure 17). The e~i(ence suggests 

that the .major thrusts have had a complex and lengthy history, from lni t i -

ation early (DZ) In the deformation history, through react i vation of move­

oento du•lng subsequent "'"ctunl even;s (DJ aod D4). The. amount ~ 
placement on the faults Is unknown, but very rjbugh estimates sugg_e~t \to 

10 km to be the order of magnitude . 

Specific features of each of the major th.rusts are described In 

the following three .sections (!L 1 to 9.3). ' Section 9.4 cons lders _the 

existence of other thrusts in ' tne' area, and section 9.5 presents a brief 

surrma ry , as wei I as the cone Jus ions regardIng thrust fau Its in the map area. 

9.1 Grand Lake Thrust 

The Grand Lake Thrust ~basement rock\ of the Tonal i ti c 

ghei5S complex and rocks of. the Gdmd Lake Brook gfoup and St. George 

Group. It extends about 8 km $OUthwestward .fran 'Triplet Brook ' to the 

west end of Grand Lake, and <Its . northern end term I nates In a northwes.t-

· trending, hlgh-a.ngl@ fault, which paral,,lels 'Triplet Brook' and may be a 

genetic41111y-related tear hult. Th' thrust Is cont i nuous across Grand 

Lake, where Martineau (198<1 has traced It southwestward for at leas t 

another S km. 
• r 

This major faultwes first .recognized byW4lllthier (191t9). who 

. . 
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referred to It as the "Corner Brook Lake Thrust", on the mistaken assump-

tlon t~t it was the southwest extension of another thrust he had ldenti-

fled near Corner Brook .Lake to the northeast. The present author also 

studied the geology around 'Grand Lake Brook' . (Kennedy 1978), and followed 

Wa J thler in referring to the thrust ·as the "Corner Brook L•ke Th-rust" . 

Hore recent. work by the autnor has revealed, however, that the thrust 

actually represents a separate hult, which is now re(erred to as the 

'Grand Lake Thrust•, a name suggested by Wi lllams (1978a). It should be 

noted that only the southern ~tl~ of the fault defined by Williams is 

recognized In this study. · \ 

The thrust Is represented by a complex zone of intense deformation 

rather than by • single thrust plane, and the zone is best exposed and 

studied around 'One Mile Pond'. The zone Is narrow (about 200m) and 
I 

topographically!nillrked by a straight valley, which contains 'One Hl-le Pond'. 

Across the valley, the thrust brings Into near contact the ·steeply south-

east-dipping basement gneisses of the Tonalltlc gneis 

flne-gra~ned, vertical to steeply west-dipping 

Group . Intervening in the thrU&t zone Itself, ne Pond ' , Is 

an Intensely defonmed and varied sequence of rocks. Farther southwest the 

zone ap~rs to narrow even more, and the gneisses may directly overlie 

the St. George marbles, as has .been suggested for the area south of Grand 

Lake (Mutineau 1980). 

Phyllltlc rocks dominate the zone near 'One Mile Pond', but a 

mixture of Jltnologfes Is present, including quartzite, quartz-mica sch ist, 

quartzofefdspathie schist and marble. Distinctive, and sanewhat •nomalous, 

rocks In the zone include quartzites and quartz~miea schists containing 

conspicuous milky-blue 'quartz grains, as well as coarse-grained, ser lcltic, 

white or grey marbles. These and other cOmpetent lithologies are typically 

l 
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discontinuous and lenticular, nave long aJ~es parallel to the structural 

orientation of t~e zone, 

or 1 phyllonitic' rocks. 

and are~ surround~ by strongly-defonned phyllitic 

As such. they appear to form.competeAt ' bl~cks' 
of various dimensions in a less canpetent matrlx (~Jates 59 and 60) . 

.I \ .· · 
One b I ock \Of coa tse~g raIned. r I dge·fonn 1 ng ,'white marb 1 e, on the 

hillside 1.2 kin east of 1 Radlo Pet;td•. is particularly notable in that it 

lies along the sfrlke !)f the Tonal itic gneiss compleJ~ boundary,.out,cropplng. 

near 'Triplet Br~k' .' T~e gneisses outcrop about 50 m east of the marble __, ' . 

ridge. and thus the marble appears to be Joca'ted near the leading edge of 

the sole thrust of the ' gnelss c'0111plex.' . ' 
'• 

The structural relations and the overall diversity of these com·. 

petent blocks suggest they represent samplings of var ious stratigraphic 

units caug~t up during movements ' In the thrust zone. The majority of the 

b. I ocks • however. appear to be derived fran the Grand Lake Brook group. and 

much of tHe phy'Jii tic rock Is 1 i,.~e fy fr-om the ~arne unIt. 

Dominant planar structures (mainly S2) within the zone, and in 

unl ts on bott; sides. are generally. para I lei to the overa II ':'ortheast-trend 
' I 

of the zone. and 11ary only a few degrees from the vertical. Lineat ions 

(mainly ll) plunge moderately northeast. It Is noteworthy, however, that 

foliations In phyllitlc (phyllonitic) rocks locally dip very sha'llowly 

(10 to 30•) southeast. Such sha1 iow dips 1re consistent with C9111puter 

modelling of aeromagnetic data reported by Kennedy (197.8). which indicates 

the thrust · zone regional lydlps gently (20 to 30•) southeast; possibly 

reflecting decreasing dip with depth. j The way In whl~h the lead1~.9 edge 

of the gneiss c:anplex apparently follows the- topography (bases of hills) . 

near •Radio Pond ' WOI.!Id also suggest a relatfvely .shallow dip for rthe :rone. 

An outcrop at the northern end of 'One Mile l'ond 1 (l' late 61) is 

worthy of discussion. as It clearly displays many of the characteristic 

· . ., 
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PLATE 59 

' Folded marble 'bloek' In Gr~nd l~ke Thrust zone • white serlcltlc marble, 
very tightly folded (FJ) and surrounded by lntensel_y sheared phyllite 
(phyllonfte) ~view SE of OYtcrop 300·,. east of 'Radio Pond'; outcrop Joc~tion 
ne~r 226. 

' 

PLATE 60 

Mullion structure In Gr•nd Lake Thrust zone large block of quartzose 
rock containing steeply H£ dipping mullions; block' surrounded by phyllon­
ltlc rocks (lower right margin); view SE of roadcut at NE end of 'One 
Mile Pond'; outcrop .Jbout 3m high; outcrop location 46. 

0 
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structural features of the Grand lake Thrust zone. In this exposu.re, a 

~t~ong mylonitic foliation (S2) in quartzofeldsp'athlc schist c:ontains 

very tight, upright, similar folds (F3), which plunge shallowly northeast 

and exhibit a crenulation c .leavage (S3) subpara11el to the axial planes 

(Plates 62 and 63). The top of the outcrop displays distinct mullion 

structures, which parallel the minor fold •xes (L3) in the outcrop, and 

are undoubtedly genetl.cally related to the foJding. An ·identical and 

parallel set of mullion structures Is present in another outcrop 100m to 

-the east (Plate 60). 

The style and orientation of the folds in the outcrop charac~erize .. 
them as 03 structures, and thus the mylonitic foliation Is likely a S2 

strubtur,e, suggesting that ductile thrusting {mylonite generat ion) occurred 

during the 02 event. The outcrop also clearly displays the 'block-like' 

nature of competent lithologies in the zone. The entire exposure repre-

sents the southern end of a small ridge, which extends about 50 m north-

eastward and Is flanked on both sides by phyllttic (phyllonitic) rocks 
I - • • ~ 

that appear to be molded around the large block (Plate 61). These features 

strongly suggest · that movements have occurred in the thrust zone which 

post-date both mylonite development and F3 folding, and that the .movements 

were localized mainly in the phyllitic 'matrix' sur\nding the blocks. 

Thus. struct~ral relations indicate a thrus y zone history involving 

early (02), ductile defonmation, represented by the mylonites, followed 

by foldlng . and likely furt~r movements during 03, followed In turn by 

movements which occurred mainly in ' the phyllltic rack~. presumably at a 
. . 

higher crustal levef (lower temperature and .pressure) t'han the early ducti I.e 

phase which produced the mylonites . 

• 

J, 



... 

PLATE 61 

Mylonl tl zed and. folded quutzoftld~pathic rocks In Grand lake Thrust zone 
outcrop at northern end of 'One Mile Pond', view NE; repr•sents southern 
end of large, elongate block of q~artzose rock surrounde~ by phyl l itlc (or · ~ 
phyllonitlc) rocks (dark material on left and right flanks); outcrop 

. loc~tlon It]. 

' 

PLATE 62 

Detail of .Plate 61 - note tight', upright folding (FJ) in mylon i te fol i­
ation (S2), and parallel compositional layering (relict bedding1); mull ion 
structure (not shown) Is developed parallel 'to the fold axes (L3) on top 

· of the' exposure. 

PLATE 63 

Hand specimen slab of foJd shown In Plate 62 - sample taken f rom upper 
left quadrant of Plate 62; spac" restrf.cti.on prohibited plac ing photo with 
long dimension vertical to agree with orientation In outcrop; mylonitic. 't: 
foliation (52) with white plagioclase porphyraclasts is cJearly shown ; 
"9te crenulatlon cleavage associated with foldi ng (F3) • 

.. 
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Hylonltes 

More informat16n on e.rly ductile thru1ting in the Grand L•ke 
' 

·Thrust zone'·wu gathered during petrohbrfc: study of mylonites generated. 

Work focused on botl1 mlc:rost.ructure and quartz c-axls orientat ion. Only 

the rel.evant findings of this study are briefly outlined here. 

The definition of the term 'mylonite• should be clarified at the 

outset, since considerable confusion has traditionally surrounded Its use. 

As used herer 'mylonite' refers to an intensely deformed rock exhibiting 

a strong planar fabric developed by dominantly ductit.~ deforrMtlon lnvol-
.. ' 

vlng dynamic recovery and recrystalll~ation processes (Bell end Etheridge 

1913). In sharp contrast, 'cataclasites' have a Jess well-developed planar 

fabric, and are produced by d~lnantly brittZs defonmatlon processes (see 

Plates 74 to 76, p. 256,, 258). Mylonites also reflect deformation under 

higher temperature and pressure (deeper ccustal) conditions than catacla-

sites (Sibsory 1977). 

Rock~ exhibiting mylonitic te.xtures are exposed In a number of 

places In the thrust zone (e.g., near 'One Mile Pond', Pl.ues 61 to 6.3), · 

but are b.st represented In the roadcut overlooking 'Radio Pond' . The 

outcrop· confalns tonalltlc gneisses, concordant thick (1-2m) amphibolite 

.layers, and thinner (10·100 em) vefns of granitoid material . As previously 

noted, the outcrop appears to represent a section through a F2 •ntl fonm. 

The most Interesting feature of this exposure Is the shear zone. 

In the wester~ limb of the fold, which w.s localized In an amphibolite 

layer during thrusting, probably In response to competency contrast with 

the host gneiss '(Plate 64). The shear zone also contains an isoclinal 

lntn•follal fold (F2) In a thin (2·3 em) layer of tonalltlc gneiu. A 

rel•tlvely steep str•ln gr•dlent Is evident In rocks adjacent to the shear 

zone - rocks toward the centre of the outcrop (fold core) display the least 

' ,. 
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PLATE 64 

Shear zone In ~senent complex In Grand Lake Thrust zone shear zone 
localized in amphibolite layer In T~litic goerss complex; degree of 
-vlonitlzatlon Increases sharply toward the zone; note Isoclinal, intra­
follal ~F2) fold in gneiss layer In the shear zone; SSW view of outcrop 
on 'One Mile Pond Road' overlooking 'Radio Pond'; outcrop location 226 • . 

/ 

\ 

PLATE 65 
. . 

Hand specimens of tonalltlc gneiss frOft\.Grand Lake Tbrust zone - samples 
show varying degrees of deformation (my\onltlzation)·; A (77-lt4-3), least 
defonmed; 8 (77-44-2) slightly more deformed than A, with notable grain 
sJ ze reduct ion In lower part of s-.p 1 e; C (77-44-1) most defonned, wJ th 
well-developed mylonite texture in which both plagioclase and quartz show 
extensive Intracrystalline defonn.tlon; all samples fron outcrop on 
'One Mile Pond Road' ., 300 m SW 'of 'R.dlo Pond'. 

PLATE .66 

J 

Haind specimens of •phibo .. J~ fr0111 Gr41nd Lake Thrust zone samples show 
same variable degree .of 'deformation (mylonitization) as host gneisses shown 
above In Plate 65; A (77-71~-1), ,least deformed, wukly foliated -.nphlbolfte; 
8 (77-43-5), more defon.ed than A, distinct foliation, reduced grain size; 
C (77-43-2), extr~ly deformed, with well-developed mylonite texture- · 
strong foliation and greatly reduced grain size; sa.ple A from outcrop on 
road near c:entral part of 'One I'U le Pond'; s•p les 8 and C frOM outcrop 
on ro.d overlooking 'Radio Pond' - outcrop shown In Plate 6.1t • 
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..-nount of strain, while those irrmedlately adjacent to and within the sheAr 

zone (fold limb) display nw~xlmum strain. Feldsp.ir and quartz In the gneisses 

serve to gauge the relative strain In and ne•r the zone. The metabas i c 

nwterlal forming the bulk of the zone Is too friable and fi ne-grained for 

no~l thin section study. Samples of the gneiss (Plate 65) f ran within 

the shear zone and from v01rlous points In the outcrop o.utslde the zone 

formed the t>.sis of . the petrofabrlc study . Samples of amphibolite (Ploate 

66) collected from various parts of the Grand lake Thrust .zone exh ibit the 

same degru of stnln variation as the host gneisses. 

The mineralogy of the gnelues includes ~lnly plag ioclase, quertz, 

biotite, epidote and muscovite. In rocks outside the shear zone, plaglo-

clase dominates the mineralogy and Is undeformed or shows only mild defor-

nw~tlcm features (I.e •• undulQse extinction). Similarly, Interstitial 

qu.rtz Is only mildly deformed and may !wive locally recrystallized under 

static conditions (Ph1te 67). In contrast, intensely mylonltlzed gneiss 

from within the shear zone contains a higher proportion of quartz, as 

plagioclase is strongly deformed and part ly replaced by epidote o~nd mus­

covite, which c:Ofllbine with quartz ·to define the prominent mylonite foli­

ation (SZ)(Piates 68 and 69). Where d~t ion\ Is most Intense, recrys­

ta.lllzed quartz is very flne-gr•ined (Wl~lose and elongate, 

suggestln~ dynamic: recrystallization (syn-tectonic), lolhlle plagioclas~ is 

preserved 11 small (1 ~m~) porphyroc:lasts In which extlnctl.on Is strongly 

undulose and wt'll'h are elongate· and partly recrysull tzed. 

The recrystall lzatlon of plagioclase Is particularly evident In 

501118 of the larger porphyroclasts that ~ve been pl.asricatty pulled apart 

by the Intense deformation. It was also ,noted tlwit both the Intensity of 

fel dsp~ r defol'l!lilt I on and the degree of recrys tall I za t I on are much more 

pronounced In and near 'mlc:ro' shear zones in thin section, im.plylng that 
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PLATE 67 
,' .... ~ 

Relatively undeformed tonalitic gneiss consisting of highly saussur­
ltized plagioclase, quartz and biotite; Polarized light; field of vi~ • 
It mm. 

PLATE 68 

Strongly defonned tonalltlc gneiss weakly developed foliation {incip• 
lent mylonite foliation); all minerals exhibit strong deformation ; dynam­
Ically recrystallized q'uartz surrounds "plaglodase porphyroc la$ts" wh ich 
d I sp 1 ay I ntracrystalll ne de format I on and minor recrys ta 1 1 i zat I on (e.g . , 
feldspar In upper left quadrant); Polarized light; field of view • 4 rrm. 

\ 

) 
PLATE 69 

Tonalltlc: mylonite - ·well-developed mylonite foliation defined by f lat­
tened and elongate quartz, with serlcl te and epidote derived from destruc­
t I on of p 1 agi oc 1 ase; quartz and a few fe 1 dsptr porphy roc lasts remaIn; • 
1syn-mylonl tl·zatlon' fold (F2) bottom centre (?); Polarized light; field 
of v 1 ew • 4 m • 
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the recrystallization was strongly strain-dependent. This is somewhat 

unusu~ll, since evidence suggests that the main factor determining the 

degree of feldspar deformation and recrystal l izatlon is usually temperature. 

A partial explanation may be that deformation w.s assisted by "reaction­

entt.nced ductility" In -which the feldsp.~r la.ttlc:e is . weakened by syn-

tectonic !i.uuurltization (IJhite and Knipe 1978). 

· .. Study of the preferred orientations of quartz c-ues In samples 

In end adjacent to the sheilr zone shows maxima which I ie in or near the 

XY plane of the strotln ellipsoid, as defined by the mylonite foliation. 

Experimental work (e.g., Tullis et al. 1973; W.tlite 1973, 1976, 1977) 

suggests that such patterns result when prism slip (favored by relatively 

high temperature) rather than basal slip In the quartz crystal lattice Is 

the ·d9111lnant deformatIon mechanism;"'- • 

The results of the petrofabric: study Indicate that mylonitization 

resulted exclusively from hot-working, duoti.Zs. processes. ,.here Is no 

evidence of brittle deformation In the gneisses studied. The mylonltlz-

~atlon Involved dyn•mlc recovery and recrystallization processes, although 

the fine grain size (10 }J) of the ,quartz, combined with the relatively 

high temperature, suggest grain-boundary sl lding may also have been •n 

Important factor. Possible high fluid activity in the thrust zone may have 

further promoted dynamic recovery by 'hydrolytic weakening• of quartz 

(White 1977). That relatively high temperatures prevailed during defor-

matlon Is indluted by the recrystalllutlon of bott'l quartz and feldsp•r, 

by operation of prismatic slip In quartz, and by syn-tectonic greensc;l'\lst 
j 

to _epidote-amphibolite facies mineral assemblages. 

In terms of the evo I utI on of the Grand L•ke Thrust zone, these 

results lndic•t• that early In Its history, probably during the Initial 

stages of its development, mylonitization of basement rocks In the thrust 
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zone Involved exclusively ductile deformation under reLatively high tern-

perature and pressure co1ditions. 

9. 2 Stag Hi II Thrust 

\ 
The name 'Stag Hill Thrust' is proposed here for the fault extend-

ing from Grand lake, at 'White Ridge Brook', for approximate ly 17 km/ 
. I 

northeast to a point 3 km north of 'Second Pond'. Where the fault cro,sses 

'Grand lake Brook' valley It Is appuentll offset, in a zone 9f complel't 

structural relations, by northwest- and north-northeast-trending high- . 

angle faults. The thni5t zone Is very poorly exposed, and Its exact width 

and specific structural · characteristics are uncertain. Typical of the 

other major thru5ts, the fault Is located in topographic lows · and appar-

ently closely follows the bases of hills. 

South of 'Grand L,.ke Brook' , ·In the va I ley west of 'WhIte Ridge 

HI II', rocks of the Mount Musgrave and Twlllick Brook formations east of 

the fault are juxtaposed with and structurally overlie rocks of the 

gneissic terrane west of the fault. "Yionitized rocks of both the Mount 

Musgrave formation and Tonal itlc gneiss complex were found 500 m west of 

'Triplet Pond'. North of 'Triplet Pond' the Mount ~usgrave formation is 
: 

In structural contact wl t.h rocks of the Grand Lake a·rook group, while 

north of 'Grand lake Brook' rocks of the Twllllck Brci.ok and Stag Hill form-

· at ions are juxtapo,ed across the valley east of 'Stag Hill' . 

As well as the obvious lithological differences across the thrust 

zone, there is also a marked metamorphic contrast. The contrast Is most . 

pronounced between the lower greenschist facies Grand Lake Brook group 

rocks and the epidote-amphibolite facies schists of the Kount Musgrave 

formation In the area between 'Grand lake Brook' and 'Triplet Pond'. A 
.. 
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similar facies contrut Is found north of 'Grand lake Brook' between .the 

TwllHck Brook and Stag Hill forrNtlons. Along strike to the south the 

h1cles relations are reversed, as epidote-amphibolite hcles rocks of the 

Mount 14usgnve and Twllllck Brook for~Mtlons structurally overlie amphi­

bolite facies b.sement rocks. 

Typical of the other major thrust zones, the Stag Hill Thrust zone 

t:Qf'IU·ins 'ai"Klmlllous' lithologies, the most dlstln<:tlve of which Is the . 

body of rMssive serpentinite (S~rpentlnJte unit) outcropping on 'Gull Pond 

· Road'. The. unit hu been Interpreted (section lt.6) to represent meta-

1110rphosed ultrabask rocks of ophiolitic affinity which were Hructura·lly 

emplaced In the thrust zone. As noted, another serpentinite body may be 

. present In the zone near 'Triplet Pond'. 

T~e zone also c:ontillns a lenticular, concordant body of ridge-

forming, coarse white m~rble, which Is virtually Identical In appeuance 

to the marble ridge noted In the Grand Lake Thrust ~one. The former ~Is 

larger, however, and Is' located o~ U1e east side of 'White Ridge Brook' 

1.2 km north of Grand l•ke. It also Is Interpreted to have been struc­

turally eniplaced during movements In the zone. 

Structurally, the Stag Hill Thrust zone Is steepl.Y southeast-d ipping 

and foliations (S2) In rocks on both sides of. the zone appear to be con-

cordant on a regional scale. In the complex 'offset zone' In 'Grand Lake 

Brook', foliations In and near the thrust zone have R;~Qre varied orienta· 

. tlons. Steep e•st· and west-dipping foliations ., and In places subhor lzont;al 

structures. were noted. The varied orientations suggest th~re may ~ve been 

post-thrust folding In the.area. In one exposure In tt1e zone (Plate 70), 
\ 

In 'Grand Lake Brook' valley, pl'lyllltlc schists o~re tightly folded by 

' rec~M~~bent folds (F3), which ue contrasted with the steep eut- dlpp lng 

foliation (S2) In . the underlying quartzose schists. The rec:uml)ent F3 folds 

\ 

, 
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PLATE 70 

Recumbent fol ds in Stag Hill Thrust zone tight, recumbent folds (F3) 
in thi nly layered phyllitic schist and marble, structurally overlying 
steepl y southeast-dipping, garnetiferous quartz-mica schist; SW view of 
outcrop in 'Grand Lake Brook'; outcrop location 199. 



/ 

248 

strongly suggest there w.s some degree of subhorlzontal translation In 

t .he zone with 03 defonMtlon. 

~.3 Corner Brook Lake Thrust 

the IMp aru. It extends from -'H•lf...,.y Point', near the southern end of 

Grand Lake, to the Humber River valley and beyond. a distance of •bout 35 

km. Its tren4 varies from north to northeast and In general follows the 

sinuous structural trend of the area. Along Its entire length It appears 

to have no significant offset. · although minor offsets _along late high­

a~gle faults may be present 1oca1ly (e.g., southwest of Eastern Lake). 

Both the northern and ·southern extensions of the f•ult .are Inferred. 

The thrust ~o~~~s flnt recognl.zed and named by Walthler (1949) 

during· his work In the vicinity of Corner Brook Lake. However, his 

suggestion that the thrust Is continuous to the southwest end. of -Grand 

Lake h•s been shown to be incorrect by the present work. Instead, the 

Corner Brook Lake Thrust (as redefined here) extends from Corner Brook ~ake 

southwerd to 'Halfwey Point'. Its location north of Corner Brook Lake Is . 

b.lslcally the ume as sugges"ted by Walthler. 
V r 

Is poorly exposed despite strong topographic ~xpresslon. 

I 

,/-- , The thrust 
. ......._ _ _ /.-- I 

1 

a 

Sout~from Corner Brook Lake the fault Is marked by a relatively de~p 

narrow valley extendlng . all tne way to Grand Lake. North of Corner .. ,~~ook 

Lake the fault ·appears to follow the . buu of the high hills. · 

The thru~t II apparently represented by • complex 'zone of defor-

m.tlon', as Is typical of the other maj()r thrusts In the area,, rather than ' 

by a single 'plane of dislocation'. The zone appears to be relatively narrow 

( < 100 m) over nos~ of Its length, and Is widest (about ~ km) In the 

. .-
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•second Pond• area. The extra width In this area Is I ikely due to the 

presence of an asymptotic minor thrust that forms an imbricate structure 

or 1 duplex 1 (Elliott and Johnson 1'980) with th~ lllillin thrust zone. 

I!\ addition to its topographic expression the thrust zone has 

. assoclilted with It • strong aerom~gnetlc al'l0m4lly, which Is most pronounced 
, 

along its south~rn portion and weakest to the north in the Humber River\ 
) 

valley ~rea. The anom.ly disappears (almost abruptly) where It !ntersects 

the Breeches Pond F01u It,; suggestIng poss I b I e. truncatIon of the thrust. 

However, the continuity of lithological and metamorphic contrilsts across 

the trend of the thrust zone near Mount Musgrave indicates that it is 

continuous north of Breeches Pond Fault. The reason for the change in 
. 

aerom01gnetlc expression Is uncertain, but it may reflect a sharp change 

(reversal?) In dip of the zone. 

North of Plnchgut. F&ul t the thrust .n.s carried rocks of the Caribou 

Lake, Mount Musgrave, end Twll I ick· ~rook formations over Gr•nd lake 

Brook group llt!"ologles. lt . l.s along this part o~e fault . tha~t met.a-· 

morphlc contrasts are most evident. In general, epidote-amphibolite to 

~phlbollte facies rocks In the metaclastlc terrane to ~he east are super-

posed on lower gr~enschlst facies rocks Ia the carbonate terrane to the 

west. This contrut Is noted In several places. On the northwest slope 

of l'tount Musgrave, for. example. outcrops record a rapid westward tr,ns­

ltlon from garnetlferous~lsts to phyllites, through a thl~ (50-100m) 

poorly exposed sequence intensely-deformed quartz-~lc• schists. A 

similar contrast ln _.grade s noted between the phyll lte/marble sequence . 
of the Reluctant Head formetlon In the lower part of Eastern Brook end 

porphyroblestiG ~alc;areous schists of the Twi I I lck Brook formetlon In the 

upper part of the brook. 

South of Plnchgut Fault the thrust superposes rocks of the Carl-

I .. 

{ 



J 

. 250 

bou Lake and Mount Musgrave formations to the east on Twillick Brook and 

Mount Musgrave fonmat ion rocks · to the west. The metamorph ic contrast is 

not found In 'this area because of the juxtaposition of s imi Jar grade rocks. 

The presence of Hount Musgrave and Twit lick. Brook litholog ies on both 

sides of the Corner Brook Lake· Thrust indicates stratigraph ic repe t l t ion. 

It I~ notable that the thrust zone also contains rocks wh ich can 

be considered ' anomalous' wl~h respect to their structural or I ithOiog ic 
) . 

characteristics, or their stratigraphic setting. For exampl,,· two outcrop$ 

of strongly-defon~~ed albite-mica schist of · the Car-lbou . Lake formation in 

'Bittern Brook' were found to co"taln layers cf mildly-deformed, fine-

grained, igneous rock~ which are interpreted (sect ion lt.2) to be late-stage 
r 

acidic: dykes Intruded into the ~one of weakness marked by the t hrust. In 

the same general""\_ea• .o. Knapp found thick layers of distinctive whi te 

marble (personal commun~eatlon, 1980), which is clearly out of place wi th 

respect to adjacent stratigraphic units, but may be equivalent to struc-

turally-eaplaced whi~e ~rble found in the other two thrust zones. 

Another · lithology, which was undoUbtedly generated -during movement s 

In the thrust zo~. 15~represented by a large boulder found on 'Gull Pond . \ 

~ . 
Road', near tllle northern end of 'Second Pond' (Plate 71). Th is 'tecton ic: 

schist' ~hlblts a strong mylonitic foliation defined by fine-gra ined 

quartz, muscovlte · and feldspar, and surrounding augen of quartzofeldspathic 

Nterl•l, which strongly resembles quartzofeldspathlc schist In the Meta-
. . 

conglcnerate IIMIIIber of the Caribou Lake formation outcropping nea rby. It 

is probably not coincidental t~t another boulder, exhibiting a v i rtua l ly 

Identical texture. ~s fo·und on 'One 'Mile Pond Ra.d' ' i(l the !&rand lake 

Thrust zone.· 

The •!nor. structures within and adjacent to the C~rner Brook lake 

Thrust zone a r e pantllel on a .. regional scale. However, t here i s some 

-, 
i 

· . .. 
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. · ~PLATE 71 

"y"loniti~ed _quartzo(elds.pathlc rock in Corner Brook lake Thrust zone 
mylonitic foliation defined by quartz, m~scovlte and feldspar, conta ins 
large •49en of .quartzofeldspathlc ~tertal; boulder found on 'Gull Pond 
Road'. near· sim,la,..., but less defoniied, feldspathic rocks of Caribou lake 
formation; an fden!ical boulde-r was found in the Grand lake Thr..,st ZOfl.e; 
near ·ou~rop loc•tlon 246. 

PLAT.E 72 

Strongly defonmed 'augen schist' In Corner Brook Lake T rust zone -
sample of quartzofelds.,.thlc: roc:k taken from outcrop of taeonglornerate 
member of Caribou Lake fonn.~~tl.on on 'Gull Pond Road': 1 north of 'Second 
Pond'; proMbly lll'(lonltlzed equivalent of coarse meta- .rkoslc rocks t.n 
member; augen are plagloc:~ase feldsparl outc~p locatlon'146. 

·-
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sugges!la. of obliquity of 52 trends .In the area southwes~ of Corner 8rook 

Lake (see Flgure·1S1'. p. 194). In addition, the .Inferred trend of the 

St~ Hill Thrust appears to be tr~ncateq by the ~lnor thrust fault associ~ 
' 

· ated ·with the Corner Brook Lake Thrust north of 'Second Pond'. 

Structural 'trends In the th~ust zone vary fr0111 north to no"h4Nist 
... 

parallel tq the regional sinuosity, and S2 foliations are .the dominant 

featurea. A single, moderately south .. st-dlpplng llne•tlon (L21) defined 

by elongate qu.rtz cobbles l.n metaconglomerate 1111i1S found on the hilltop 

north-northeast of 'Second Pond'. Me.r Corner Brook Lake fol lations In 

the z~e dip steeply .. st, end north of !reeches Pond F.ault they appear 

to~ vertlc.l. Sout...,.rd fro. Plnchclut F.ult, on the other hand, foil-

4tlons dlpeastwrd at progressively stt.ll_ower •ngles, such that et 
\ 

'tt.l fWily Poln~ I . t~ zone dIps about zs• east_. Extr:apolat ion on this 

systematic variation from shall~ east dip , In the south"to steeper east 

Md vertical dips In the north sugges .ts that the thrust zone farther 

north across t~ Humber River valley may actually be overturQed. The 

variation In orientation In the zone Is undoubtedly due to deformatl.on 

effects wnl~h post-date Initial movement on the thrust~ 

A$ noted previously. a minor thrust trends obliquely to the Corner 

- . 
Brook Lake Thrust ZO,!'e and merges dymptottcally with It at 'Second Pond'. 

The thrusts bound a slice or 'horse' (Elliott and John$0n 1980) of 

feldspathlc meta$edlments of the Caribou. Lake formation. To establish 

the n•ture of the structur•l relation~ anong the minor thrust and the 

l•rger 'corner Brook Lake •net Steg Hill Thrust zones will require anore 

dec. lied · work. · 

The fel_dspathic metasedl..antar.y rocks in this horse, ex ... ,ned 

on 'Gull "Pond Road', display • veriety of lnterestlnv ·structunl , .. turas. 

l'tylonltlzed quertzo~l.dspethlc rocks·-at ,the present end of the _roed c.ont .. ln 
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a well-developed foliation dipping 45• east, and urked by strongly-
• r 

defor'Wied ribbon quartz. The sMe texture w.~~s found in exactly the s ... 

l'lthology I A another outcrop In the zon~, about 1 km north of Corner Brook 

l.tw on 'Corner Brook Lake !toad'. In that outcrop, however, the lftYlon-

ltlcf~llatlon .dips rwore steeply (65•) eut. 

Another· outcrop on 'Gull Pond Road', near 'Second Pond'. displays 

lntensely-dafonlled qu.ruofeldspuhlc rocks containing plagioclase augen . 

In a fine quartz-musCovite •trlx (Plate 72). This texture suggests the 
• 

mttrfx received the bulk of the strain during defo,..tlon. In the same 

outcrop are found rocks interpreted to be q·uartz myionl tes (Plate 73) . 

·rh.se serlc:ltic 'quartzite' layers are strongly foliated and llneated 

(elongate qll8rtz aggregates), and contarn very fine-grained quartz ""lc;h 

recrystallized during or after the Intense deformation (02) associated 

wl th thrust l ng. 

A single sample of cauclutic rock fra. ·the thrust zone ~s found 

' 
. I 

just south of 'John'J Pond'. No outcrop w.~~s found• but s~llng of talus 

along the ••.st sllfi of the zone revealed lithologies consistent with the 

loferred underlying unl t, the Caribou Lake fonnatlon. The rock Is an 

excellent exaMple of a eataclaslte, exhlbl~lng the doalnance of brittle 
I 

deformation ~s (Pians 71f -.nd 75-). It Is instructive to contrast 

this rock with a llrflonl te (produced by duc:tlla defonnatl~ of the same 

. • lithology • . t•ken fr0111 a little hrther south In the zone (Plates 71t and 

76). The presence ~f cataclasites suggests a phase of brittle (lower te~~~-
1 

perature and pressure) deformation In "the zone. l'y~y with the 

Grand Lake Thrust zone, this ~rl.ttle phase likely post-dates the ductile 

deforNtlon phase represented by the mylonites. 

It Is notable that these, and the other related structures des-

c:rlbed above, .ware found on.fY In thrust ZCIQIJ in the area, and not In 



PLATE 73 

Quartz ftlYionlte layer in Corner Brook Lake(rhrust zone - highly strained, 
quartzite layer (grey) frO. 5._ outcrop d '•ugen schist' In Plate 72; 
quartzIte layer, II ke rn.tr I x In 1ugen sch I~ t, probab I y received most of 
the str:-afn during defonr~~tlon •ssociated with thrusting; outcrop location 15. 

PLATE 71t 

Cataclasite and llrflonlte fran Corner Br®k Lake Thrust zone - albite 
schist c:ataelulte (upper 'sample), fr0111 1 lall SW of 'John's Pond'; albite 
schist mylonite (1p!lll8r sa.ple). from 3 lcm N~ of 'Ha1fw.y Point'; Slfftples 
Q&t and polished, scale In em. 

:, 
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P~TE 75 

Microphotograph of ·c:ataclastlc:' texture thin section from upper sample 
In Pl.ate 7lt; note brittle fracture of feldspar, and fine black matr ix 
which consists of finely-granulated feldspar. quartz and mica; Polarized 
light; field of view • 3 111m • 

. . 

( 
-} \ 

. ~ .; 

PLATE 76 

Microphotograph of mylonite tu'ture thin section from lower sample In 
. - Pllte 71t; nbte excluslvely.ducttle d'forwatlon • . •nd ribbon qyartz; no 

brittle fracture; Polarized light; field of vi~ • 3 mt . 
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1 ithologic units ou.tside these zones, c:learly demonstrating that the 

recognized thrust zones represent loci of greatly intensified deformat i on. 

9.4 Other thrust faults 

Althoug~ only three major thrust faults are discussed in detai I 

In this study, other thrusts of similar, or smaller scale may exist in 

the map area . Brief speculation · on some of the more likely candidates 

is present.d here. 

Walthler' (1949) proposed that a maj,or~ thrust fault, the "Island 

Pond Thrust", was ·respOnsible for the westward transport of St. George 

and Table Head Group carbon•te rocks over rocks -of t~- Humber Arm Super­

group, along the - southwester~ margin of the area (Figure 17) . He suggested 

that the thrust, and associated recumbent folding, is clearly exposed In 

the cliff above Island Pond. but a brief and distant examinat ion of the 

cliff by the present author (In the canpa_ny of H. Williams) did not dem­

onstrate conclus.lvely the existence of either the thrust fault, or the 

folding. This by no raeans disproves Its existence; but rather reflects 

the need for fur~her study. 
, 

I 
It ts / n·terestlng to note, · however, that certain anCIIIIlous strat i -

/ 
graphic end/ Structural features along the western mar:gin of the a·rea :may 

( . . .. 
best be ,x'pl~lned bY the exl.stenee of the 'Island PQ!1d ~Thrust•. For ex-

/ . '· ·. . . 

71::/the ' apparent absene~ ~f ~~··• mefang'- lnthe Hwn~er Arm Supe~group • . 

rn~i the COIIIIIOI1 ~·1:1.1ted COnUCt between It and the massive cubonates of 

~St. George and Table H .. d Gr}JUps,brlngs to light the JX)ssiblllty'' t~at 
/ 

-/ the -.stern edge of the !Nsslve carbonue· sequence represent_s ttte .1eadlng 
i < edge ·of • ~~~ajor thrust. tn· such . a :u;e,.rlo; the e~~tward extension of 

Humber Arm lithologies Jn ,.the -PTnchgut Lake are.a. _could represent • re- . 

• 
I 

/ ' 
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entrant In a low-angle thrust plate. • 

As supportive evidence for the 'Island Pond Thrust'. Walthier .. 
(191t9) described "structures of anoRW~~Ious character" in the area north of 

Big Gull Pond. and interpreted them to be 'windows' exposing Humber An. 

rocks through the. carbonate thrust plate. A brief examination of one of 

tbese zones (intersecting 'Gull Pond Road') by the present author, however. 

showed that they consist of e'sentlally bl~~~ slate. which Is indistin­

guishable from nearby black sl".te of the Table Head Group. Rocks In the 

zones are steeply-dipping and concordant .with adjacent structures in the 

carbonates. If the slates are actually part of the Table Head Group; then 

the zones ~y repres~t very tight 'infolding' of the Table Head into the , 
surrounding St. George (synclinal ·structures). The zones aho lie along 

the northern part of a major topographJ·e lineament (Big Gull Pond fault). · 
.. ~~· 

and in the absence of better evidence they are tentatively Interpreted to be 

sites· of tight folding and/or high-angle faulting. Of course. In view of 

the size and northeast-trend of the Big Gull Pond Fault, it Is· entirely 

possible that it (s the site of another major thrust- fault. 

11cKI11op (1963) suggests that minor thrusts are typi.ully associ­

ated. wlth _luge folds In the area south of H~Mnber Gorge. and likewise Lilly 

(1963), in his work on similar rocks north of the Gorge. notes the comon 

usociatlon· of folding and tl'lrust faulting. An example of a fold-related 

thrust may ~ present l n the HUMber Gorgli. at the contact between the Re- • 

luetant Head formation and the St. Geor9e Group on the west lhnb of the 

Shellblrd Anticline (see Plate 55, p. 221). The presence of a thrust near. 

the eont•ct farther south was also pointed out by McKillop (1,63). The 

prC.lnenee of such major F3 folds throUghout the u.r.bonate terrane hvon ' 
' 

thw ' ulstenc:e of .similar thrust faults elsewhere In the area. 
; 

BesIdes the three recognized ,thrust fa~lts, there . are no other 

. ..• • ~·- ..,4 ·;- ,._ .• ·'- ..,.._~, "-~···•....t-- .. . ~ .. . I' ""'..,.. •• • ..., . • • . ~ - . • -~· -- ~- -· ..• ·.: •. : Jt ·-·-~;. -'··-· J -. 

\ 



261 

• obvious candidates for :thrusts In the eastern part of the map area • . . 
·~· 

9.5 ConclusIons 

At least three major, northeast-trending, east-dipping thrust 

faults have been recognized In the Corner Brook Lake map area. The thrusts 

have many features in comnon, SOIIM! of which are noted here: 1/ they are 

'zones' of dlsl.ocatlon rathJr than discrete thrust faults, 2/ they at:e 

the loci of strong deformation, representing the local Intensification of 

regional deformation, 3/ they are· characterized by strong planar fabrics 

. with easterly dips mylonites are cmmon and cataclastites are rare or 

absent, 4/ they have a marked topogr"aphic .. expresslon .despite poor exposure, 

5/ they commonly have a marked aer~gnetlc expression. 6/ they are zones ' 
I . .,. ·• 

across which metamorphic and lithologic contrasts ar.e common, and '71 they 

•re the sites of 1 anonwtlous• lithologies .. / rocks which are compositionally 

or texturally unique, to tiNit partlculu par~ of the uea. 
' ' 

The Grand L~ke Thrust Is clearly th most dee~- rooted of . the 

recognlz~d faults, as It· Involves basement ·rocks which exhibit intense 

ductile deformation. The fact that it _lnvi'ves basement rocks suggests 

it may be correlative with the Long Range Thrust (Johnson 1939), wh ich 

may bound Grenville basement rocks on the /west side of the Northern Pe~ln­
sula (see Figure 4b, p. ~2). The other tLrusts in the raap area ruy have 

. I . 
been rehatlvely shallower features, as tl!ley Involve only eover rocks; 

. I • I 
However, they were apparently deep enouJ, to nave produced early. ductile 

defo~tlon (lll'flonites). Th. sty·~-;,- Int ensity, and general concordancy 
I 

of structures In and adjacent to all t~e thrust . zones indicate t,hat def-

ormation urly In the history of , the zones (during D2) .~as ductile and 

syn-tectonic. 

·- • ......... ... .. .-.• .. . w-.!' o' • •"·""'o.~ •~,~ •o · · • ,.. _. \ 

l 

• 

' ' 
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The Stag HIll Thrust zone Is the I east we 11-def i ned, but is s ig-

nlflcant bec~use It Involves rocks of posslbl.e ophiolitic affinity. The 

Corner Brook Lake Thrust, the l~rgest f~ult, is responsible for repetition 

of two strltigraphic units (the Hount Musgrave and Twlllick Brook form- , 

atlons)~ Both the Corner Brook Lake and the Stag Hill Thrusts appear to 

.have associated minor thrust faults. On a regional scale, it is noted that 

the three major thrustS In the area seem to fonn an imbricate set. 

It might be mentioned that the general features of the major 

thrusts descrl~d above suggest the zones could be the sites of ' tectonic 

slides', as nest recently defined and described by Hutton (1979) . However, 

unti.J more detall_ed i!'formatlon on the. precise structural nature of these 

zones becomes available, the term 'thrust fault' is used i n its. most 
. 

generalized sense . 

D I sp 1 a cement 

The sense of displacement, that Is, the direction of transport of 

the hanging-wall rocks, Is In general t~ards ·the west to northwest. This .. 
conclusion Is based on the orientation of structures In and around the zones, 

as wetl as on the esubllshed regional tectonic history. 

Follat Ions, part lcularly ll'(loni tic foliations (52), indlc~te that 

the zones dip predominantly to the east or southeast. Local vertical and 

Steep . west (Ips reflect main~y late-stage reorlentatlo~ the zones. 

The early ,tructural history of the are~, during which thrusting was 

evidently Initiated, Is characterized by east-west compression, as demon-

strated by the orlentatron of 02 and 03 structures. _The preferred west­

,..rd vergence of F2 and F3 In the eastern part of ~the erea_, and the noted 

association of thrusu with nwtjor folds {F3), i•ply that thrusti ng was 

west-directed. In addition, general tectonic transport In western New-

~ -< 
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• . foundland, as along the entire length of the Humber zone in the Appalach-

j ... (WIIIIama 1976, 1978a), -Is demonstrably to the west. 

The amount. of displacement recorded ln the thrust zones is much 

more difficult to assess with available evidence. Major displacements 

(100 to 200 km), suc:h as a~ested for the Humber Arm Alloeh.thon 

(Will ia11s.et al. 1972, 197ft), are cons-Idered highly uni lkely, since the 

contrasts In lithology, metamorphi~ and structure across the thrusts in 

the area are not aonnensurate to such large displacement. An order of 

magnitude estimate is furnls~ed, however, by the fact that the Grand Lake 

Thrust sup~rposes basement on Upper Cambrian cover rocks. Thus, given a 

simple 'layer-cake' cover sequence prior to thrusting, and a depth to 

basement from the Upper C.Jmbrlan rocks ·of about 1 .S km, simple trlgono-
• 

metric: calculation lndl~tes thati; If a relatively high dip of ItS• _Is 

ass~d, a displacement along the thrust of about 2 km Is n~essary to 

account for present structural/st~at.lg-raphlc .r,elatlons. This is clearly 

a 1111 n IIIIUIII est 1111 te, and It Is ass ~.~ned here that d I sp 1 a cement on the order 

of 5 to 10 km for the Grand Lake Thrust would not be inconsistent with -

aval table data. SJ ightly ~?er dl!plac:ements may be recorded by the 

other major thrust faults, since they involve only cover rocks. However. 

the same g,neral order of magnitude I~ assumed. 

. ..J 
Tlmlng of thrust movements 

Movements in the thrust zones can be dated relative to the esta­

blIshed sequence of 'structural and me·t.,.,rphlc events in the are~. and 

·relative to the ages of ro~;ks affe~;t~d. 

In .all .thr~e thrust zoMs,_ the most Intense planar structures 

(snylonltlc foliations) •re lnv•rlably parallel to the daainant foliation 
; ? . 

...... 
(S2) In adj•c:ent rocks, ·•nd In places are found to be overprinted by tight 

r c 

. ,-

•. 
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upright folds which are characteristically F3. This relation, as noted 

. .. rller, is particularly evident in the folded mylonite In the Grand Lake 

Thrust zone (see Plate 62, p. 237). Crenulation cleavages typical of 53 
• 

were also found to be developed to sOIM degree in virtually all the myl­

onites ex1111ined. This evidence imp! ies that early ductile deformation 

associated with thrusting W41S part of the Intense 02 structural event. 

It has .been shown that po~t-02, pre-03 granitoid veins and dykes, 

interpreted to be apqphyses of the Last Hill adamellite, are abunda~· 

.the gneissic and metaclastic terranes~ but that no granitoid rocks ave - , . -\ ., 
ever been found in the immediately adja~ent rocks of the carbonate t rrane. 

This is clearly lndi~;atlve of. post-Intrusion movements on all three thrusts, 

since all three carrv, gneisMc or metac'lastic terrane rocks over those of. 

the carbonate terrane. The lithologic contrast is most evident in the 

Grand. Lake Thrust~ near 'One l'lile Pond', where gneissic r~ks to the 

east contain abun~nt late granltoid'materlal and St. GeQrge Group 

marbles ,xi>osed/ just 200 m to the west are completely devoid of granitoid 

materl_-1. 

The evidence for thru~tlng related to F3 folds in . the northern 

part of the carbonate terrane ' suggests that the earliest post-Intrusion 

'th'rust movements ln that part of the. area may ·have been syn-.03.' The. noted 

metamorphic contrast acr~ss the thrust zones, whl~h lnvo.lves prolif i c post­

D2 porphyroblast growth .l,n rocks to the eas_t and their to.ta I absenc:e in 

rocks to. the west, also would Imply syn-03 and/or late.r thrust mov~ts. 

• The .. bsence of mylonltlG foliations which can clearly be defined as 53 may 

mean that syn-03 IIID'IIfllents were not accomp II shed under · the same duct lle 

(deep crustal) conditions which characterize syn-02 thrusting. 

As noted previously• post-03 mov~nt is Indicated In the Grand 

Lake Thrust zone by the manner in which mylonites c~tainlng F} . (~ lds are 

''• 
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represented by 'blocks' surrounded by strongly-defonmed and sheared 

phyllltlc (phyllonltic) rocks (see Plate 61, p. 237). It seems that the 

most recent movements In the thrust zone have .been accomplished by shearing 

ln these less conpetent phyllitic rocks. Post~D3 movements likelv. 

occurred il\ the ~'ther thrust .. zones as 'Wel 1. 

Further evidence of post-03 thrust movement can bO gleaned from 

the contrasted orientations of D3.1tructur~ eas~d west of the thrusts. 

Figure \8 presents synoptic plots of 02 and 03 structural data for the 

carbonate and .metaclastic terranes, representing the west and east parts 

of the area, respectively. Figure 18a and 18b Indicate that F) folds 

(defined by contoured 'poles to S2) are asynwnetrlcal throughout the area, 

but n.v.e axial planes that dip preferentially westw.rd In the carbonate 

terrane and eastward In the meta~lastic terrane. The trend.~f the pre~ 

ferred nor~h-northeast · plunges also differ by about 15•. This contrast 

in orlentatl:on Is taken to be a reflection of post-03 movement on the 

thrust zones separa~lng the two areas. 

By coinparlson, the general -similarity In _both plunge and axial 

plane orientation of Fit folds_ (defined by the contoured poles to S3) shown 

in Figure 18c and 18d suggests either no post-D~ mov~nt, or movement not 

significant enough to affect the relative oriel)tatlons of the Fit f-olds 

east and. west of the thrusts. lnfo~ation regar~lng the nature of- 04 

deformation In the. area, to~ presented In the .neAt chapter, t~dle~tes 

that t~ suggested post-D) thrus.t moveMents are 1 ikely syn-tectonic _:.tlth 

res pee: t to 0'. 
In summary, the evidence reveals not a simple, slngle, epi&Dde of 

thrusting · In the area~ but rather a multi-stage and complex history of 
. . . . 

reactivated thrusting throughout mueh·of the recognized deformation h istory 

of the Corner Brook L•k• atea. 

, ! 
\ 
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Initiation and early st~•t of IIIQYeiNnt during t&e tnthse 02 

e'Vent lnvohted duc-tile thrusting •nd generltlon of lftYionltes, while r'ti-
- < • 

.ctlvatlon '?J the zones durlng 03, In response to fof"INt ion of Mjor r] 

folds. did not ·p~oduca -vton'ltes. Further -r.KtJvatlon du.rlng D4 wu al~o _ 
' 

. IIQ-\y In response to reglOMI f_oldlng ~ ' 
h '' 11'PP41rent ttNtt .-ost of the 

thrust f•ul t dlsplac-.nt during Dl and ·DIJ ws b,- shMrfng In _ the least . 
., . I • ,. 

~etent .roeks In the zones • . Thfs ~· In dlspJ.cairnnt -.c:~~Misi. 'th rOUgh 

tl• •Y siiiPIY be du. to rMCtfvatlon lof the ~ at progr .. s lvely -~~-­
lowr c;rust•l lev. Is. The rare ~tictuttes would tNtve been g-..;.~at~ ~ 

- lilost recently. under. 'near surface' pressure/t~rature con<lltlons. 

All thr ... thrusts aff~t. rocks of the "•nd Lake BrOOk group, 

lnterpreted to be C..OrlM lri ~·· ..ct the Grand L•k• Thrust, In pArtlc:uler, 

•ffRts the Lo..r Or.Jclan St. George ;roup. These facts suggest thllt · 
' 

thrusting was lnltrated In post-l.cJI.jar Ordovician 'tl•. Further discuss ion 

of the ab.Oiute -~· of thrusting II presented In Chapter 11. 
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CHAPTER 10 

LATE DEFORMT I ON EVENTS 

10.1 04 deform~tion 

Oil was a macroscopic; deformation event characterized by regiona l ­

scale, north-northeast moderately plunging, g~ntle to open upright folds 

(F~). • The effects of F'4 o11re recorded throughout the map area. No 

definite minor F'+ folds have been recognized, tho.ugh late-stage features 

such as kink bands and gentle warps noted in a few outcrops may be of 

this generation. ,_., other 04 structures such as fol lations (S4) or 

lineations (L4) were positively identi-fied. 

The geometry of the F4 folds StJ9gests the stress fields associ­

ated with 04 and 03 were roughly parallel bn a regional scale. However, 

04 was obviously much less intense than the earlier event. 

The existence of~ post-03 event was first indicated by structural 

features observed during the field work, but it was not .clearly establIshed 

until 03 minor structures were plotted on equal area pro)ections (Figure 

16, p. 208) . Field work revealed that the orientation of 52 varies sys­

tenwtically across the area between Steady Brook and Northern H01rbour 

(Figure I Sf, p. 194), suggesting a major, northeast-plunging (25-30•) 

antic:llne, which was initially throught to be • F3 fold. Further work 

near the southern end of Deer L•ke, however, revealed that the orientations 

of F3 axlar planes (53) vary across the axial trend of the s~e m•jor 

structure, ind ic:atlng the fold ITliiY be post-03. It is proposed here that 

the fold is a reglonal-sc;ale, Fit antlcl inal structure, which wil l be 

referred to •s the 1 Ste01dy Brook Lake Ant I c I I ne 1 • 

The nature ilnd orientation of F4 , is best characteri~ed by the 

orientations of 03 minor structures, as shown in Figure 16·. The data are 
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scarce for the carbonate terrane (domains II and Ill), but the spread of 

SJ poles along a grea.t-..clrcle in each domain suggests F4 folds have roughly 

the same preferred orientation throughout the terrane. When the data are 

combined in a synoptic plot (Figure J8c, p. 266), ·the weak great circle 

girdle defined indicates F4 folds plunge preferentially about 4oo to 016 

in the terrane. The slight tendency for L3 points to form a small circ::le 

in domain II (Figure 16a) may reflect the reor i entation effects o f 04, ·or 

the combined effects of 04 and DS. 

In the northern part of the metaclastic terrane (domain IV, Figure 

.16c). contoured S3 poles appear to define a multiple cro~s-g i rdle pattern, 
> 

suggesting coinplex post-03 deforma t ion effects. The axis to the most 

well-def i ned girdle plunges about 40" to 018, essentially parallel to the 

general axis in the carbonate terrane (Figure 18c). In the southern part 

of the metaclastic terrane (domain V, Figure 16d), a fair l y well-def i ned 

girdle of 53 poles suggests F4 folds preferentially plunge 30° to 016, 

In general agreement with the orientation in the rest of the area. A weak 

cross-,irdle pattern i s also evident in domain V. It is noteworthy t hat 

53 poles are most dispersed in dana in V, possibly indicating that post-03 

deformation effects were more intense and varied in the southern part o f 

the metaclastic terrane. 

The form map for 53 (Figure 16e, p. 208) indicates t hat the da t a 

are generally not -abundant enough to mark Fit. However, S) trends roughly define 
~ 

the trend . of the Steady Brook Lake Anticline In the northern part of domain 

Ill near the south end of Deer Lake . 

The synoptic plot of 53 data from the metaclast i c ter rane (F igure 

18d, p. 266) shows a relatively distinct great circle girdle, whi ch defi nes 

Fit folds plunging about 35• to 016. This agrees with the overall 4o• to 

016 plunge for F4 in the carbonate terrane (Figure 18c), and suggests 
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litt•e or no movement after 04 on thrusts separating the terranes. In . . 
contrast, the markedly different orientations of F3 folds in the two ter-

ranes, as indicated by S2 poles (Figure !Sa and 18b), would sugg.est the 

terranes experienced differential movement on the major thrusts following 

03 0 

That *the thrust movements occt~rred during 04 is suggested by the 

orientation of F4 folds, which indicate that regional compressive stresses 

were oriented roughly east-west, thus making it likely that the north-

northeast-trending thrust zones would have been reactivated during D.4. 

' Furthermore, the relatively low intensity of 04, as indicated by the absence 

of penetrative foliations, minor structures, and associated metamorphism, 

suggests that thrust zone reactivation must have occurred under relatively 

low temperature and pressure (near surface) conditions. This is consistent 

with the late-stage, more brittfe sh·~ring suggested for the thrust zones . 

The Steady Brook Lake Antic! ine is the only defini.te Fit fold 

recognized in the map area• However, a compilation of regional, structural 

and stratigraphic ' information (Figure 19) reveals several structures of 

simi Jar scale and orientation, which are possibly of F4 generation. The 

most prominent of these Is the Humber Arm Syncline, first rec09nized by 

'Walthier (1949). Walthier was also the first to describe the problematic, 

regional, divergent cleavage fan centred on the axis of the syncline, and 

recorded by slaty cleavages and axial planes of minor folds, both of which 

dip steeply east on the western 1 imb and steeply west on the eaHern l imb 
- \ . 

(Figure 19, upper pant). He attempted to explain the synchronous development 

of the syncline and tt1e cleavage fan in terms of different ial shearing, 

drag folding, and thrusting in the limbs during region•l-scale. flexural 

folding. However, both Walthler (19'+9) and Stevens (1965) acknowledged the 

complex structural relations, and pointed tot~ possibility of more than 

(, 
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one phase of folding. The-f(nterpretation of this <;)e~vage fan Is signifi-
'·• 

cant in terms of the structural hist,ory of the Corner Brook Lake area. 

It is evident f~om the findings of the present study that the 

cleavages and minor folds fanning the 'fan' across the Humber Arm Sync I ine 

are 03 structures (e . g., the axial plane of the Seal Head Sync l ine and it s 

associated , ·c,leav'89e~ . . It is also clear that the fan extends eastward into 

the map area (Figure 19, upper part), as demonstra\ed by a crudely-developed 

SJ cleavage fan across the Steady Brook Lake Anticline (Flt). In view of 

the scale, style and orientation of the Humber Arm Syncline, and the 

structural relations noted above, it is proposed that this· major sync I ine 

represents a Flt fold. It is also suggested that the reor i entation of S3 

to produce a divergent cleavage fan occurred during regional, F4, f lexual 

_folding, similar to that envisioned by Walthier (1949), but with the 

important difference that the vertical · 'cleavage' generated during 03 

beca~ne a .-divergent "cleavage fan' during' 'F4 folding . 

Other possible Fit folds are Indicated in Figure 19, based on sca l e , 

style and orientation characteristics which are similar to those of the 

Steady Brook Lake /~ntilcl ine. These include the Stag Lake Anticline (eas t -

ern counterpart of the Humber Ann Sync! i ne), .a serl es of major folds south-

west of the Humber Ann Syncline, a major anticline on Glover Island (Knapp 

1980), folds in .:the Old Han's Pond area, and major folds In Carboniferous 

rocks of the Deer Lake Basin (Baird 1959; Fong 1976b; Hyde 1979a}. Of 

course, asslgnnent of these folds to F4 Is purely speculation at this point, 

and further work is needed to confirm or refute these suggestions. 

The significance of F4 folds in CarboniferO\Is rocks, with respect 

to the structural history of the map area •nd the region, wi I I be d i scussed 

ln more detai 1 in the next chapter. 
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10.2 05 deform.t ion 

The OS deformation event .was a macroscopic, regional-scale event, 

~roughly the same scale as the Dlt event which p·receded it. It was much 

·Jess intense than the uri ier 02 or 03 events, and may even have been less 

intense than Dlt. However, D5 differs significantly from all preceding 

events in that it represents a period of .cross-folding, characterized by 

northwest-trending, gentle folds and warps (FS). 

The most obvious manifestation of 05 is the regional s inuosity (ItS) 
\ 

it produced In the trends of pre-05, large-scale- structures (Figure 20). 

It is clearly recorde.d in the axial traces of F4 folds such as the Humber 

Ann Sync I ine and, to a lesser extent, the Steady Brook Lake Anticline. F5 

is also reflected in the sinuous trends of F3 a~ial traces, especially 

those in the carbonate terrane (Figure 20; geologic map, in pocket), and 

is clearly defined by the general variation in 52 trends (Figure 15f, p. 

194). FS may also contribute to the variable trend of the Corner Brook 

Lake Thrust zone. 

On a smaller scale, 05 effects no doubt contribute to the complex 

cross-girdle putern of S3 poles for the metaclastic terrane (Figure 16c 

and 16d, p. 208), to the tendency of S2 poles to form small circle patterns 

(e.g., domain~ 1·11 and V, Figure 15c and 15e, p. 194), and also to the 

general north-south dispersion of ~11 foliation data around east-west, 

great circle glrdl,es (e.g., Figure 18, p . 266) . 

No Irrefutable evidence of minor 05 structures was found In the 

area. However, a northwest-plunging gentle fold, found on the shore of 

Grand Lake southeast of Corner 8rook Lake, may represent FS, and H. WI 11 i ams 

found a vertical, nortnwest-strlking fracture cleavage In massive carb-

onate rocks near Big Gull l'ond (personal c011111unicatlon, 1980), which may 
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represent SS. In addition, airphoto analysis has revealed a strong, west-

northwest, preferred orientation for trends of major fractures and faults 

(Figure 21, p. 277), some of which coul~ be axial plane structures (55) 

of large-scala, F5 folds. 

·The general west-northwest trend of FS Is evident, but the plunge 

of its axis is uncertain, since, without a known and consistently-or iented 

S4 reference surface, LS cannot be uniquely determined. It is noted, 

however, that FS appears to be responsible for the regional, sinuous trend 

of the 'f!astern boundary of the Humber Ann Allochthon (Figure 20). This \ 
'"'-' ; 

conclusion is supported by the parallel ism of the sinuosity in the a I loch-

thon boundary and In str~ctural trends In the map area. In V\ew of the 

fact that the allochthon structurally over I ies the autochthon and is gen-
J 

erally west-dipping near the contact, the salients of allochthonous rocks 

could be Interpreted as synclinal, and adjacent recesses as anticlinal, in 

nature. Thus, using this ~riterion, F5 could be considered to be effec-

tively west-northwest plunging on a regional scale (Figure 20), 

It can be concluded that OS deformation was the result of 
/ 

north-northeast/south-southwest, regional compression, that the deformation 

~~of low lnten~lty relative to earlier events, and that low temperature 

and pressure conditions, similar to those during 04, prevailed during 05. 
/ '• 

10.3 Latest defonnat ion 

High-angle faults and major fractures 

Host of the high-angle faults and major fractures in the area are 

clearly post-03 In origin. Some may be post-DS, but most are likely re-

lated to the Dlt and 05 defo~""~Mtlon events, wnlctr occurred under the rela-

tlvely low termperatures and pressures (near surface conditions) conducive 
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to the formation of these brittle deformation features. The major high­

angle faults have dissected the area into 'blocks', which have experienced 

differential movements, thus complicating stratigraphic and structural 

relations and their interpretation. 

The larger faults and fractures are identified as linea.ments on 

alrphotos and aeromagnetic maps of the area, and their traces are shown 

in Figure 21. Only the largest faults are indicated on the accompanying 

geologic map of the area (in pocket). Some of the 1 ineaments are simply 

large fracture zones, hawing no displacement associated with them. The 

straight traces, unaffected by topography, indicate the dominant vertical 

orientation of these features'. 

The entire spectrum of possible trends is recorded by these faults 

and fractures, as Illustrated by the rose diagram. in Figure 22. The dia­

gram graphically. displays their preferred orientati-ons in terms of thei r 
.':1 

relative abundance in each ten degree interval of azimuth. A total of 127 

lineaments are represented. 

The rose diagr-.n clear-ly shows the predominance of west-northwest 

(285) and north-northeast (025) trends, as well as the common occurrence 

of west-southWest (245), northwest (325), and northerly (005) trends. 

These preferred orientations, and their distinct symmetrical arrangement, 

strcing~y suggest most· of . the fractures and faults are genetically-related 

to the 04 and 05 defonmation events. Thus, the main concentrations may 

represent cross-fractures (and faults), shear fractures (and faults). and 

a~lal plane structures associated with north-northeast-trending (025) F4, 

and west-northwest-trending {285) F5 folds. 

Cabot Fauft 

The Cabot Fault . Is a regional structural feature extending north-
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northeastward from Port aux Basques to Wpite Bay, a distance of 300 km. 

The fault zone runs through the western side of Grand Lake,· and fonns the 

eastern boundary of the map area, but is not exposed within it. Although 

~o attempt~ made to study the structural characteristics of the fault, 

it Is a major structural feature in the region, and has clearly experi-

e'ced significant late-stage movements. Thus, it deserves some ~omment . 

The nature of the fault is controversial, and the whole gamut of 

·' 
possible interpretations has been proposed, Including thrust, strike slip, 

oblique s\,lp, and normal. Current ideas favour erther dextral or sin i s-

tral, urike slip movement (Wilson 1962; Belt 1969; Webb 1969; Lock 1969,, 

1970; Williams et al. 1970; Hyde 1979a), while early wor.kers proposed west-

directed thrust, or high-angle reverse, displacement (Schuchert and Dunbar 

1934; Heyl 1937; Hayes and Johnson 1938; Betz 194~; Bell 1948). 

In general, pre-Carboniferous rocks cannot be directly. correlat~ 

across the 'fault, suggesting significant movement; However, except ions may 

be found wit~ more detailed study. Rocks in the present map area, for 

example, may have lithologic correlat-ives on- Glove r Island ( Knapp et al. 

1979). 

The fault clearly affects rocks of Carboniferous age (e.g., Knight 

1975, 1976; Hyde 1979a), and thus 1ts latest displacement has been syn- or 

post-Carboniferous. Some Idea of Its antiquity is furn ished by brecciate~ 

granitoid rocks which have Intruded the zone (Knapp et al. 1979), ~nd have 

been correlated here with the Sllurlan-Devonian Topsai l s Batholith, on 

the basis of chemical (see Fi·gure 8, p. 61) and structural s imilarities. 

Th is suggests the Cabot Fault was in existence during S i lur ian t ime, and 

thus It Is evident that the fa·ult has had a long and complex history, 

possibly Involving different styles of movenent at different times . 

The style and orientation of struc.tures in the present map area 
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suggests that di_splac:ement In the Cabot Fault zone may have Involved a 

significant component of west-directed thru~tihg, or h igh-angle reverse 

faulting .(see Hgu_re 23. p. 287}. This is not to imply that strike slip _ 

. · I 
motion has not occurred. or that such displacement. is ineornpatibfe with 

the present Interpretation, for both ~Y have occurred at different times~ 

However. it Is felt- tnat the possible sigolficance of thrust movements i n 

the zone has been greatly underestlmued, and tiMt such dl'5pl•cement may 
. . . ""'. 

go further In explaining structural and stratigraphic features in and 

adjacent to the zone than does the popular .vlew of dominant strike slip 

motion. 

In Chapter 13, a tectonic model is propo~ed (see Figure 27; p. 326) 

which suggests the Cabot _F!u_!_!_ ?~l_g_!_nate_~ re_lative_ly early {..Silurian) In 

the structural history of the area as a regiona-l normal faul't, in response 

to isostatic rebound forces following the Middle Ordovtcian Taconic 

Orogeny. Its subsequent history Involved pre-Acadian intrusion of granite 

material and a complex sequence of movements (including thrusting) during 
~ 

the Acadian and Alleghenlan Orogent·es. 

-" - ··: ~ 

! .• 

\ 
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CHAPTER 11 

STRUCTURAL HI STORY 

The evidence presented in the foregoing chapters indicates the 
"'-~ 

structu ra 1 his tory of the Corner Brook Lake area was camp I ex, i nvo I vi ng 

at leest five deformation events . In addition, the following discussion 

will show that the history -s also quite long, spanning almost the en tire 

Paleozoic. 

Before briefly siJmlarizing the structural history and the char-

actei-istics of the five deformation events, a geologic time frame for t he 

event5 wi 11 be established . 

11.1 Ages of deformation events 

The relative ages of the structural events are recognized by ttu!ir ., ' 

overprinting relationships, and are indicated by the ass•gned numerica l 

sequence - 01 (earliest) through 05 (latest). Absolute ages, on the other 

hand, are more difficult to determine, !Jut three approaches may y i eld re­
t 

liabl.e results: 1/ date events in relation to the ages of rocks affected, 

21 date ev!!nts in relation to minerals of known · isotopic .and relative 

structural age, and 3/ date events by correlation with regional deformation 

episodes (orogenies) of established.age. 

As for the first approach. all five deformation events ilre recorded 

in. and thus post-date, rocks of the carbonate terrane, the youngest of 

which are Ordovician in age (St. George and Table Head Groups). An uppH 

time limit for the structural history cannot be as sharply defined using 

this approach. however, since the youngest rocks in the area, the Pennsyl-

vanlan Deer Lake Group, also show signs of deformation, although it is 

much milder tl\an that associated with the early events (01-03) . In the 
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absence of post-Carboniferous rocks, and rocks of established age in 

the Ordovician-Carboniferous time interval, this approach can only tel l 

us that the early, intense deformation events (01-03) occurred in sequence 

sometime between Ordovician and Carboniferous time. 

The second approach for providing an absolute time frame is even 

less fruitful, since only four isotopic dates are available, and all four 

areK-Ar dates on biotite or muscovite . The dates range from 452± 20 to 

412± 14 Ma (Wanless et al. 1965), and within the lim i ts of error indicate 

a Silurian cooling age. The fact that the dated micas are interpreted to 

be syn-02, based on thin section study of rocks from the same outcrops, 

suggests only that 02 is pre-Silurian in age. 

As it happens, the best time frame for the deformat ion events is 

provided by the third approach - by correlation on the basis of style, 

sequence, relative Intensity, orientation, and associated metamorphism with 

regional structural events of estab i ished age. 

Three, major, orogen ic events have affected rocks in the northe r n 

Appalachians . Two of these, the Hiddle Ordovician Tacon ic Or09eny and 

the Devonian Acadian Orogeny, are well-defined and widely agreed on, and 

botfi ·~ve distinctive styles that are regionally consistent. The third, 

the All@9henian Orogeny of Carboniferous-Permian age, is less clearly 

defined, particularly wi tn respect to western Newfoundland, and ~ppears 

to be more controversial in terms of extent and significance. 

In the following subsections, brief descriptions of these orogenies 

are presented In order to provide a basis for the regional correlation of 

defamation events In the map area (suiTI'Tlarized in Table 10, p . 290). The 

de$criptions are condensed from regional syntheses (Rodgers 1967; Poole 

et al. 1970; Williems et a l . 1972, 197~; Poole 1976; Schenck 1978; Will i ams 

1978b, 1979), to which the reader is referred for more Information . 
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Early deformation events 

The Taconic Orogeny is characterized by intense polyphase defor­

mation, which generated west-verging, isoclinal recumbent folds and a 

strong penetrative schistosity, generally regarded to be composite. Mod­

erate to high-grade {amphibolite facies) metamorphism accompanied and 

directly followed the deformation in most places. The general nature of 

the event is one of horizontal west-dlrected :- transport, which i s reflected 

most clearly in the emplacement of the allochthonous sequence, i nc~uding 

ophiolite suites, in western Newfoundland during Middle Ordovic ian time. 

The tectonic disturbances recorded by rocks of the Table Head Group attest 

to the fact that the orogeny was well underway to the east during earl y 

l'liddle Ordovician time. In Newfoundland, Taconic effects a re found to be 

somewhat localized along the marg ins of the Humber and Gander zones . 

The Acadian Orogl!ny of Devonian age. in contrast, affects a much 

broader area in Newfound I and, and is found to be most intense in the centra I 

part of the island. The deformation prod1.1ced tight upright folds and a 

steep cleavage where most Intense. Thus, the net effect of the orogeny 

was lateral (east-west) shortening of the Appalachian Orogen. Syn-orogenic 

metamorphic conditions, especially along the margins of the Orogen, were 

generally of a lower grAde (greenschi5t facies) thAn during the earlier 

Taconic Orogeny. 

It Is significant.tt,•t fossi.'lferous Silurian rocks in the western 

White Bay aru record only il single, characterist ically Aca,d.ian foliation, 

while unconformably underlying Ordovician rock~ contain both Taconic and 

Acadian hbrics (Lock 1969, 1972; Williams 1977b). These relations serve 

to separlte the two orogenies, both temporally and with rupect to style 

and intensity, and also demonstrate clearly that the eastern part of t~e 

Humber zone (e.g., the present map area) experienced the c"'racter i st i c 

. . 
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strains of these two major orogenies. 

It is evident, even from this brief regional deformation picture, 

that the two most intense structural events reco-gnized in the Corner Brook 

Lake area, 02 and 03, are obvious correlatives of the Taconic and Acadian 

Orogenies. Thus, 02, like the Taconic, affected Ordovician rocks, and is 

characterized by a prominent penetrative schistosity (52) developed in 

association with isoclinal folds (F2), which are typically west-verging 

and recumbent with respect to the vertical, overprinting 03 structures. 

03 is clearly pre-Carboniferous and notably less intense than the preceding 

02 (Taconic) event. Typical of Acadian deformation it is characterized 

by tight, upright, northeast-plunging fold5 (F3 ) and a strong, a1<ial planar 

crenulation cleavage (53). 03 was accompanied by greenschist facie5 

(chlorite grade) metamorphism in the map area, which produced extens ive 

retrogression of the higher grade, ep i dote - amphibolite facies {garne~ 

grade) mineral assemblages generated during and following 02 . 

The 01 deformation event, recognized only by a rare fol i ati~n (Sl ) , 

is overprinted by 02, but like 02 apparentlyaffected (post-dates) Ordovician 

rocks In the carbonate terrane . Thus, with the available evidence 01 can 

only be interpreted to be .an early phase of the Taconic Orogeny, which, 
J . 

indeed. is known to be po 1 yphase In nature. 

The conclusion regarding the timing of 01 and 02 events in the 

Corner Brook Lake area represe~ts one of the most significant re5ulu of 

thi! work, and its bearing on the timing of oro-genies In the Humber zone 

is an important contribution 'to the regional g~-,ogy . Specifically, there 

has been considerable controversy over the age of earliest deformation in 

the Fleur de Lys Supergroup on the western Burlington Peninsula, with 

Kennedy (1975) suggeltlng a late Cambrian to early Ordovic ian age (his 

Burl ingtonian Orogeny) and others (e.g •• WllliM'IS 1977a) suggesting a 
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Middle Ordovician (Taconic) age for earl iest defonmation. As noted pre-

viously, rocks in. the metaclastic terrane have traditionally been co r re i -

ated with the Fleur de Lys Supergroup, and this study supports the cor ­

' relation on I ithologic (section 4.6) and structural grounds. Struc t unllly, 

the 01 through 03 events in the Fleur de Lys Supergroup (Kennedy 1975) are 

clearly equivalent to the 01 through 03 events in the Corner Brook Lake 

area in terms of style, orientation, sequence, intensity and associated 

metamorphism. Thus. tne fact that 01 and 02. recorded In both the meta-

clastic and carbonate terranes, are correlated with the Tacon i c Orogeny 

of Middle Ordovician 1ge, and in view of the lithologic and structura l 

correlation between the Fleur de Lys and metaclastlc terrane rocks, i t 

follows that the controversial, earl lest deformation in the Fleur de Lys 

occurred during the Taconic Orogeny in Middle Ordovician time. 

This conclusion casts serious doubt on Burlingtonian orogen i c 

deformation in the Fleur de Lys Supergroup, and supports t he argument 

(e.g., Wi 11 i ams 1977a) that the Fleur de Lys was undeformed pr io r to the 

Taconic. and that Middle Ordovician ophiolite obduction was the force 

behind simultaneous deformation of both the th ick clastic wedge ( F l eu r 

de Lys and metaclastic terrane) and carbonate bank (carbonate terran~ ) 

forming th~ lower Paleozoic continental margin . 

Late defol"'lllatlon events 

As noted, the extent and significance of the All egt'len i an Orogeny 

i s more controversial than that of the earlier orogenic events, a nd thus , 

in an attempt to shed SOllie light on the problem, the autho r c ar r ied ou t a 

survey of literature on Carboniferous rocks In Newfoundland i'nd t he Ma r l-

t imes. The results •re briefly Sllmla rl zed here to set the regional f rame• 

work for correlatlon · of late deformation events In the. map area. Mo r e 
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detailed discussion is presented in Appendix C, and Figure 23 is a 

compilation of the large-scale fault and fold structures in western 

Newfoundland which have been, or could be, attributed to Alleghenain 

deformation. 

Carboniferous-Permian age defonnatlon in the northern Appalachians 

is most intense in and adjacent to northeast-trending, major fault zones. 

and is characterized by development of large- and small-scale, tight to 

gentle folds and faults, both of which trend northeasterly. The folds 

plunge northeast or southwest, and are commonly overturned to the north-

west. Axial traces of major folds locally display a sinuous variation in 

trend, and late, minor, northwest··trendlng cross-folds are also found in 

some places. The major faults are dominantly high-angle and include both 

dip slip and strike slip varieties. However, a significant number are 

east-dipping reverse faults, and lower angle thrust faults are not un-

conmon . 

Work In the Maritimes (see Appendix C) has shown that folding, 

faulting, intrusion, metamorphism, and thrusting are all products of Aile-

ghenian Orogeny. There is evidence of recumbent folds and major west-

directed thrusts in C.1rboniferous rocks, and locally the' thrusts have 

superposed Precambrian rocks on rocks 

clearl~emonstrates the slgnlflcan~e 
Carbonl~rous rocks . 

of Mississippian age. The latter 

of late deformation effects In pre-

.~ Work fn tbe Carboniferous ba~lns of western Newfoundl;tnd (Appel'dix 

C; Figure 23) Indicates the multiphase nature of Alleghenian deformat ion. 

However, It is also clear that low temperature/pressure conditions pre-

vailed, as suggested by the fact that very low grade metamorphism and 

development of .slaty cleavage are only very localized phenomena. The 

sinuous traces of major folds is well defined, and there Is evidence of 
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-•t•directed thrusting affecting both Carboniferous end pre-Carboniferous 

rocks. Host notable are late thrust (or high-angle reverse) movements 

on the Cabot Fault, the southern extension of the Grt~nd lake Thrust, 

the Long ~nge Thrust, and tt'le Hare Bay Thrust (Appendix C; Figure 23). 

The style, orientation and relative Intensity of Alleghanian 

deforrnat Jon In western Newfoundland strongly suggests that post•Acadlan 

• 
(post-03) structures In the Corner Brook Lau area are Allegt'tenlen In age. 

The open, nortt'least-plunglng regionel F4 folds In the area are correlated 

· t'lere with folds of similar size and orientation In the Carboniferous rocks 

of the Deer Lake and Bay St. George Basins, while F5 cross-folds are 
. 

correlated with tt'le sinuous nortl'aeast-trends of fold a)(ial traces In the 

Carboniferous rocks (Figure 23). Thus, It Is proposed that 04 and 05 

represent two phases of deformation associated with a eomple)( series of 

' . 
movements during the Alleghenlan Orogeny. 

The effective west~rd tectonic transport associated wl th 

Alleghenian deformation In western Newfoundland Is reflected In the map 
( 

area 1M In ly In the form of renewed movements In the maJor thrust fault 

zones. It i's concluded here ' that Alleghenlan deformation i n pre-Carboniferous 

rocks was much more significant and e)(tenslve than current Ideas would 

su9gest. 

11.2 Structural evolution sunwn~~ry 
I 

The for~olng discussion indicates the Corner Brook Lake ~rea ._.s 

affected by three regional orogen lc events, which are represented by .c 

least five local defor~tlon.events. It Is also evident that the struc-

tural history sp•ns most of the Paleozoic, from Ordovician to Permiln, 

The brief structural history outline which follows Is summarlud In Table 



10. Information on regional tectonic events th~t form the fra.ework for 

this discussion Is taken from Will lams and Stevens (1974} and WII Iiams 

(1979}. 

Following late Hadrynl~n rifting of Grenville basement and con-

struction of a Hadrynf~n~Ordovlcian continental margin, represented by 

the stratigraphy of the map area (section 6.2), the Middle Ordovic ian 

Taconic Orogeny, recorded .as 01 and 02, affected the region. The Gren-

ville basement (Ton~! I tic gneiss complex) was extensively reworked by the 

intense (01/02- Taconic) deformation. Positive Grenville structures have 

so far not been recognized, with the exception of the dominant gneissosity 

In the Tonalltlc gneiss complex- interpreted to be a reoriented andre-

constituted Precambrian planar structure. 

01 Is the earliest, recognizable, post-Grenville structural event, 

and is identified by a rare foliation (51) in rocks of the metaclastic 

and carbonate terranes. Its consistent parallelism with relict bedding, 

and the apparent absence of Fl folding, suggest 51 may be ~ beddi~g plane 

schistosity developed during 'burial' in the early stages of the Taconic. 

Minerals defining the schistosity Indicate greenschist facies conditions. 

02 was a ~re Intense phase of the Taconic, and represents the most 

intense deformation event In the map area. It Is characterized by a pene-

tratlve schistosity (S2} and associated isoclinal folds (F2), which pro-

duced a composite Sl/52 foll•tlon - the dominant planar structure recorded 

In all three terranes In the area. The F2 Isoclines are commonly west-

vergift9, and F2-F3 geometry Indicates F2 (and thus S1/S2) was subhorizontal 

prior to F3. Major west-directed thrust faults were Initiated during 02, 

and all were ductile In n•ture, Involving mylonitization. The most deep-. 
seated, the Grand Lake Thrust, Involved transport of basement rocks up 

through the cover sequence. The pressure/temperature condition! favoured 
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du~tlle defol"'lllltlon, as metamorphic mineral assemblages Indicate epidote­

amphibolite facies conditions preval led during the Ot-02 interkinematic 

Interval, and amphibolite facies was attained during 02 and the 02-03 

Interval. • The style, orientation, and intensity of 02 structures areal I 

consistent with the re.glonal character of the Taconic Orogeny, which in­

volved westward transport of the Humber Anm Allochthon. 

Following emplacement of the allochthons, isostatic forces may 

have generated regional normal fault zones (e . g., Cabot Fault}, and 

post-kinematic (Siluro-Oevonian} granitoid rocks were intruded into the 

area, apparently synchronous with the amphibolite facies metamorphic peak 

(see Figure 27, p. 326}. Following these events, during the Devonian, the 

Acadian Orogeny (03) produced tight-'to O!ren, steeply-incl i ned to upright, 

moderately northeast-plunging folds (F3) in the strong, subhorizontal 

S1/S2 foliation. A prominent intersection lineat ion (L3) in S2 was t he 

result where F3 folds generated an axial planar crenulation cleavage (S3). 

F3 Is well-developed on all scales, and macroscopic folds a r e particularly 

well-developed in the carbonate terrane. Existing thrust faults we re 

reactivated during 03, and new thrusts may have been ini t iated in assoc i ­

ation with major F3 folds. The asyn'l'lletry of F3 (consi.derin<J later defor­

mation effects) suggests there may have been a preferred overturning to 

the west. which would nave been conducive to wes~ard thrusting assoc iated 

with folding. Overall, the style of OJ deformation is cons i stent with 

re9lonal east-west crustal shortening during the Acadian Orogeny. Meta­

morphic minerals indicate low grade (lower greenschist facies) cond i tions 

prevailed during and after 03, possibly reflecting uplift accompany ing this 

.style of defonmatlon. 

Following Acadian (03} deformation and during and following depo­

sition of Carboniferous rocks In intermontane basins, the regi on was sub-
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Jected to the Alleghenian Orogeny, which had (ts most intense effects on 

the Carboniferous basins, but also significantly affected pre-Carboniferous 

rocks. The mulitphase nature of the Alleghenlan Is represented (in part) 

by the 04 and 05 deformation events In the Corner Brook lake area. 

04 produced regional-scale, open to gentle, northeast-plunging 

folds (Fit), but no minor structures were recognized. F4 fo lds reoriented 

pre-eJtistlng S3 vertical structures and produced a regional, divergent 

cleavage fan centred on Fit fold axes. The effective east-west compress ion 

was also responsible for reactivating major thrust faults, with displace­

ment occurring In the least competent rocks in the zones, wi thout produc­

tion of mylonites. The absence of metamorphic mineral growth Indicates 

sub-greenschist facies conditions. The 05 event produced regional-scale, 

west-northwest-trending cross-folds which are responsible for the sinuous 

trends of earlier structural features. No minor 05 structu res were posi­

tively identified, and no metamorphic mineral growth accompanied the event . 

The latest deformation in the map area is represented by high­

angle faults and major fractures. Some of these may post-date 05, but 

many are likely related to regional folding under low temperature/pressure 

conditions during 04 and DS'~ and thus are interpreted to be Carbon i ferous 

to P~nmian in age. Those that post-date DS may be Tri~sslc in age, as 

faulting of that age has been regionally recognized (e.g., Rodgers 1967) . 
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CHAPTER 12 

METAHORPH ISM 

12.1 Introduction 

Most of the rocks in the map area have been affected by meta-

morphism, the grade of which increases, in general, fr0111 west to east 

with local discontinuity at thru5t faults (Figure 24) . In the weH, some 

rocks record only sub-greenschist facies conditions, as recrystali ization 

is the only metamorphic effect . In the east, on the other hand, there is 

evidence that amphibolite facies conditions were reached in parts of t he 

metaclastic and gneissic terranes. 

As well as the obvious west-east metamorphic gradient, there is 

also a more subtle north-south gradient from epidote-amphibol i te to 

amphibolite facies in the eastern half of the area (Figure 24) . Highest 

grade is recorded in the southern part of the metaclastic terrane, and in 

the gneissic terrane. The gradient is apparently continuous south of 

Grand Lake as well, where kyanite occurs in metaclastic rocks and relict 

granulite~~.~ as~blages were found in correlati;es of the Tonalitic 

gneiss complex (Mart~neau 1980). 

There Is not enough information to clearly define the location of .. 
is~rads in the map area. However, Figure 24 shows the general distribution 

of metamorphic facies, but omits effects of retrograde metamorphism and 

shows only maximum grade recorded. The metamorphic facies classification 

' 
used throughout this study is the one proposed by Miyashiro (1973), in 

~ 

which zeolite, greenschist, epidote-amphibolite, amphibolite, ~nd granu-

lite facies eonstitute the medium pressure f•cies series, which is app l ic-

able to met~rphism In the map area. In workin~ out the metamorphic 

history, the criteria used for relating metamorphic mineral growth to 

( 
~ 

! 
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structural elements are those outlined by Spry (1969). 

On the basis of the available evldenc;e, the overall metamorphic 

history of the area appears to have been relatively simple, Involving a 

single amphibolfte facies metamorphic peak reached during D2 and the 02-

03 lnterkinematlc Interval . 

In the following sections of this chapter, metamorphic features 

of roc;ks In each of the three terranes wi II be briefly discussed and the 

metamorphic history will be outlined. 

12.2 Gneissic terrane 

Two of the three units in the gneissic terrane are characterized 

by relict amphibolite facies mineral assemblages. However, retrogression 

has been Intense in tflese roc;ks_· and greenschist facies assemblages now 

Tonalltlc gneiss ccmplex 

Rocks In the ton.alitlc gneiss complex reached at least amphibolite 

facies conditions, as indicated, for example, by mineral assemblages in 

the amphlbolltes that cut tl\e complex. Higher grade assemblages, if ever 

present, are obi Iterated. 

The t>.slc mineral assemblage in the gneisses includes plagioclase-

quart.z-biot I te-epl do te-ch lor i te + hornb 1 ende. The dominant metamorphIc 
. ~ 

mineral is biotite, which. parallels the main foliation (In part S2), and 

also 1ocally defines an Incipient S3 foliation. In the northern part of 

the complex, the biotite Is green and Invariably chlorltlzed, while in the 

sou~h It Is brown and typically not chloritlzed . Green hornblende is 

~bsent In the north. but locally accanpan I es biotIte In the south and marks 

,_ 

- - -- --~- ~-~ ---~- - -
- ----- -
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a distinct L2 lineation in some gneisses. Epidote is ubiquitous, being 

most abundant (10-15%} in highly-strained gneisses (mylonites} i n the 

Grand Lake Thrust zone. Chlorite is rare in the southern P•Ht of the 

complex, but abundant as an alteration product of biot i te in the north. 

Plagioclase is more intensely saussuritlzed and usually albitized (as 

shown by microprobe analysis) In the gneisses in the north. 

These mineralogical variations in the complex suggest the effects 

of retrograde metamorphi!lm were more Intense in the northern than in the 

southern part of the..comple;o;. Similar southeast to northwest Increasing 

retrogression was noted by Martineau (1980) in correlative gneisses south 

of Grand Lake. In both areas the increued retrogression may be related 

to defonn.tion in and adjacent to the Grand Lake Thrust zone. 

The nature and origin of the gneissic layering in the complex was 

aho briefly Investigated during this study using microprobe analyses of 

plagioclases from the melanosomes and leucos001es of two,· texturally cl i ff-

erent migmatitlc gneisses. Analysis of the first, the thickly-layered 

gneiss shown in Plate 4 (p . )6), shows tnat tne plagioclase composition 

(An
1

) is essentially tne s_,.. in both melansane and leucosome (sample 253. 

Table lS, Appendix 8}, supporting the textural evidence that metamorphic 

segregation rather thaJ"I9f'1 njectlon was responsible for tl\e layering. That 

similarity In plagioclase composition is not likely due to hanogenlzatlon 

following injection of the leucosome Is shown by the results of the second 

analysis. Analysis of the second migNtite, which is texturally a lit-

par-lit migmatite, indicates that the plagloclases are in fact eanposi-

tlonally different (S1mple , 298, Table 15, Appendix 8), as would be expected 

• w i th i nj ec: t I on of the 1 eucosome. HomogenIzatIon of compos i t I on had not . 

taken place . Tnese seml-quantlt•tive analyses suggest that gneissic layer-

"!f ing In different parts of the complex MS had different orig i ns . Defor-

·~-~- -..,..,.~- --- - - -- .......------ - ~-- --- - -
- - -- -



297 

mation ~My also have played a significant role in generating the gneiss-

oslty •n the complex. 

Amphlbol i te layers In the complex record rei ict amphlbol i te fac ies 

conditions. The basic mineral assemblage includes hornblende-plagioclase-

biotite:_ actinolite:, chlorite:_ epidote. Post·S2 garnet porphyroblasts 

were found in one amphibolite near the mouth of 'Twillick Srook', and 

traces of calcite were found in the same rock. · 

In an ~phlbolite near 'On~ Mile Pond' brownish-green hornblende 

is rlnmed by light-green to blue-green actinolite. Some of the hornblende 

is also partly altered to brown biotite and chlorite. In contrast, an 

amphibolite on the hili overlooking Grand Lake west of 'White Ridge Brook' 

contains light-green actinolite, epidote and minor chlorite. The presence 

of hornblende In the north and Its absence In the south suggests retro-

grade effects were more pervasive In the south than the north, opposIte 

to the northwest-increasing retrogression suggested by the mineralogy of 

the gneisses. However, the amphibolites were not extensively sampled, and 

it Is possible that these represent local anomalies. 

Wheredefornw~tionofamphibolite ismost Intense (e.g., In the 

Grand Lake Thrust zone1. chlorite and epidote dominate the mineralogy at 

the expense of hornblende, and, to a lesser extent, biotite. The resultant 

m.lneralogy In these very fine-grained, strongly-foliated rocks indicates 

lowermost greenschist facies conditions prevailed during deformation . 

High fluid activity In the thrust zone Ny also have c:ontr,buted to the 
'· 

final product. 

Antler Hill formation 

Rocks In the Antler Hill formation were also subjected to amphi-

boll te h1cies met...,rphlsm. 

-~-- - ~ -- ~· ~- - --~ --~ - -- - -----~~--,-~ ~ --. ·- - - - -- . 
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Red garnet and brown biotite are the damiMant metamorphic minera l s, 

and their presen~e indicates that at lea5t garnet grade (epido~e-amphibo-

lite facies) condltion5 were reached. Garnets are most conrnoA in petites, 

as porphyrobla5ts up to em in diameter, while in the quartzofeldspath i~ 

schi5ts 2 11111 size garnets are typical and Invariably partly chlor i t i zed . 

Brown biotite, also partly chlorltized, is the daninant lepidoblast ic 

mineral and defines the main schistosity (52). Serlcitic muscovite is 

generally a minor c0111ponent and plagioclase Is variably saussuritized . 

The bi_otite amphibolite Jay~s found in the quartzofeldspathic 

schists indicates amphibolite facies conditions were reached locally, and 

mineral assemblages In the calc-silicate schists in the Quartzite member 

lend further support. The assemblages in the schists include act inolite-

a I bl te-e.g i dote-ph logop I te-K-fe ldspar, and d I ops i de-tremo I i te-e I i nozoi s i te­

plagloclase-K-feldspar. The presence of relict diopside.i n these meta­

morphosed calcareous rocks Indicates lower amphibolite facies conditions. 

The diopslde is partly replaced by tremollte and both mineral5 are kinked 

(03 effect?). Partial chloritization of phlogopite ~ n another C4111c-

silicate schist, in addition to the replacement of d l opsid~ by t remollte. 

suggests retrogression to greenschist facies conditions. The presence of 

K-feldspar Is attributed to regional alkali metasomat ism associated with 

Intrusion of granitoid rocks, which will be discussed more fully in the 

Caribou Lake fonNtlon subsectl,n. 

LastHIII adiliTielllte 

The minor amounts of biotite found In the generally leucocratic 

rocks of the Last Hi II ad.ame Ill te show on I y part I a 1 rep I acerrten t by chI orl te , 

suggesting greenschist facies conditions prevarled sometime ;,fter iu 

intrusion. Structural, Isotopic and chemlc;,l evidence f nd~cates Intrus ion 

~ ~- , _ --.---- ~ --.,--~~~-- -~- -- - --~ . --

- - - -
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occurred In the 02-03 interkinematic interval, and thus the retrogression 

m.~~y have accompanied 03 (see p. 59·62). 

12.3 Hetaclast i c terrane 

Amph I bo I i te facies conditions may have been reached loca II y In 

the southern part of tne metaclastlc terrane, but epidote-amphibolite / 
.' 

facies conditions likely prevailed for most of the terrane (Figure 24). 

All four formations in. the terrane have distinct metamorphic features. 

CarIbou Lake format I on 

The Caribou Lake formation Is In large part a metamorphically-

defined unit, in that tne bulk of the formation, the Albite schist member, 

Is characterized by an abundance of albite porphyroblasts. In the rema i nder 

of the formation, the Metaconglomerate member, olblte por'phyroblasts are 

absent. 

Albite schlst member Mineral assemblages in the member typ ically 

lnclu~e quartz-Alblte-musc6vlte-epl·dote!. biotite:!:. K-feldspar +chlorite 

.:!:. garnet. Huscovite, with or without brown or green blo.tite, defines a ... 
S2 foliation, which Is crenulated to def-tne SJ. Biotite Is partly to 

comple.tely chlorltlzed In the northern part of the member, as well as along 

the snore of Grand lake where defonnat ion was an Important factor In the 

process of retrogression, but it linotlcably l~ss chlorltlzed Inland In 

the southern ~rt of the meraber. Epidote and chlorite are minor constltu-

ents in the coarse albite schists, but are major components In the finer 

alblte-mlcl schists. Tourmaline found In one schist in the northern part 

of the member contains epidote Inclusion trai Is (S2) which are oblique 

to the S3 external foliation. 
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Albite porphyroblasts, which fonn 30-60% of the mineralogy, are 

generally xenoblastlc, untwinned, buff-orange to pinkish, and average 

about 5 rrm (see Plue 9, p. 67). Porphyroblasts up to I_ em are not un-

common, and there Is a distinct preference for more abundant and larger 

po,.phyroblast growth In pelitic: layers. A pure albite composition (An
1

_
10

) 

Is essentially constant th,.oughout the fonnatlon, with only one noted 

occurrence of oligoclase porphyroblasts. The albites are typically crowded 

with Inclusions, of which quartz is most abundant. Randomly-oriented 

Inclusions are conmon, but where a preferred orientation Is present 

inclusions usually mark 52 and rarely Sl, indicating both post-01 and 

post-02 albite growth. 

Coarse albite schists also c0111110nly contain small amounts (10%) 

of K-feldspar, which forms large xenoblastic grains or patches that ;;!., 
•ppear to have grown 'intc.t.J'(ltially' (Plates 77 and 78). Some of the 

larger patches contain 52 quartz in~lusion trails, implying post-02 

growth, and some display mlcrocline twinning. • This d i 5t inct I ve habit 

is interpreted to Indicate lnciplen~ porphyroblast growth. 

The combination and •xtensive growth of albite and K-feldspar 

porphyroblasts strongly suggest the member experienced alkali metasomatism, 

involving either local or regional transfer of alkali elements, particu-

larly Na and K. It Is maintained here that this alkali metasomatism was 

responsible for the 'feldspethlzation', or, effectively, the 'granltlzation' 

of much of the eastern part of the metaclastlc terrane; Indeed. the grani­

toid appear,nee of some metaclastlc rocks Is rem•rkable. Res~lction of 

these effects to the eastern part of the area suggests a definable 'meta-

somatic front' may have existed prior to modification by 03 and later de- . 

format I on events. 

It Is proposed h•r• that the alkall•rlch fluids Invaded sediments 



PLATE 77 

Microphotogr~ph of incipient K-feldspar porphyroblast yellow-stained 
porphyroblast with 'Interstitial' habit; containing Inclusions of quartz 
and muscovite definl,ng S2; In coarse •llblte schist from east-central part 
of IMP neil (79-30lt); Polarized 1 ight; field of view • 3 11111. 

PLATE 78 

Microphotograph of mlcrocllne porphyroblast - yellow-stained, post-02 ' 
porphyroblast with mlcrocllne twinning •md qu.rtz and muscov i te Inclusions; 
110re well developed porphyroblut ' than than shown In Plate 77 above; 
Polarized light: field of view • 3 11111. 

' · 

--- ~- ~--- ~---- ~ ~-- -
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that cont•ined a significant amount of feldspar, which was m•inly plagio-

clase. This proposal Is based. on the overall similarity of the coarse 
' 

albite schists to the laterally-equivalent, coarse meta-arkosic rocks In 

the Metaconglomerate member, which contain non-porphyroblastic plagioclase 

and virtually no K-feldsper. It Is suggested that the original feldsp•r 

grains l.n the sediment acted as nucleation sites for porphyroblast growth. 

The greater abundance of albite porphyroblasts probably reflects the 

greater abundance of plagioclase over K-feldspar nucleation sites. 

Brown (1965) and Jones (1961) report similar extensive metasomatic 

growth of albite porphyroblasts In the Dalradian rocks of Scotland. They 

note that In the lower part of the biotite zone detrital plagioclase Is 

albitized, while in the upper part plagioclase growth occurred on the 

clastic feldspar grains. (In the Corner Brook lake area, the presence of 

garnet in pelites In the member suggests garnet grade conditions were 

reached.) Brown also points out that the lower the An content of plaglo-

clase the more difficult It is to form deformation twins. Thus, the 

pure albite composition In tne map area may explain t.he predanlnance of 

untwlnned porphyroblasts. 

The source of the alkali fluids can only be speculated on with 

the available evidence. A most likely candidate, however, Is the Topsails 

Batholith, the large peralkaline complex outcropping east of the map area 

which has been suggested here as the source of the last HII I adamellite 

and Its apophyses in the map area. Taylor et al. (1980) note the common 

occurrence In the Topsails of secondary. albite and other sodlc minerals, 

whi ~h they Interpret as "reflecting aut0111etuaut ism by sod iurn-rl ch 

magmatically-derived fluids" (p. 1t35). The imp I ications for the Corner 

Brook Lake area are obvious. The extremely large size and composition 

of the Topsails 8atholl~h. and the preseryce of Its apophyses in the map 
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area, strongly suggest It was the source of the alkali (sodium-rich) 

fluids Involved In the regional-scale metasomatism (feldspathlzation) of 

the eastern part of the Corner Brook lake area. 

The presence of garnet In pelitic rocks, noted above, indic~tes 

epldote-~phlbollte facies conditions were generally reached, while a 

plagioclase and olive-green hornblende assemblage in ~phibolite on the 

shore of Grand lake Indicates amphibolite facies conditions were attained 

locally. On the shoreline east of 'John's Pond', strongly deformed meta­

basic rocks contain greenschist facies assemblages, suggesting retrogression 

was assisted by defonnatlon. 

Metaconglomerate member The Metaconglomerate member of the Caribou 

lake formation contains the same basic mineral assemblage as the Albite 

schist member, with the major difference that neither the plagioclase nor 

the K-feldspar Is porphyroblastic. 

The Inclusion-free feldspar grains are the original clasts in the 

coarse arkosic sediment, and appear to have e~perienced only limited 

overgrowth and modification during metamorphism. Biotite, the only porphy­

roblastlc mineral lo the member, is repre~nted by crystals up to 1 em 

that have grown statlciilly (randomly) over the 52 foliation (see Plate 16, 

'p.· 87 ) . 

In metabasic rocks In the ftember, 1 em brown biotite porphyro­

blasts are common and overprint S2. The mineralogy includes actinolite, 

albite and epidote, Indicating greenschist facies conditions. Albite in 

one layer forms small (1-2 mm) white pOrphyroblasts. 

Mount Musgn•ve format ion 

"lneral ass•blages In the Haunt Musgrave formation Include 

, , 

- -- -- -~ ~~-·- - --- -~~~ ----- - -- -



I' 

305 

epidote. The ~in metamorphic feature Is the common presence of red 

garnet porphyroblasts. Their presence in pelltes Indicates epidote-

~phlbollte facies conditions were reached throughout the formation. 

Garnets vary In size from 0.5 mm to 3·cm and commonly contain 

Inclusion trails marked by quartz. Kost trails observed were straight 

and define S2, Indicating t~t a high proportion of the garnets are -, 

post-02. However, rarer post-01 and syn-02 garnets were also recogn i zed. 

"lcroprobe analysis of o~e garnet in a ~chlst from the southern part o f 

the for~tlon lndlc.ted It Is essential Jy almandine with a significant 

component of grossular (sample 52-1, Table 14, Appendix 8). 

Biotite Is brown and usually partly chlorltized. In southern 

exposures, I em size porphyroblasts of biotite .accompanied by smaller 

garnets are commonly found In pelitic layers •. Muscovite, with or without 

biotite and chlorite, defines S2 throughout most of the for~tlon. A 

single occurrence of syn-02 (?) chloritold was also found In a quartz-

mica schist on 'White Ridge Hill •. 

Host of the plagioclase represents only slightly modified 

sedimentary clasts. However, albite porphyroblasts are found in the eastern 

part of the area, especially where the Mount Musgrave grades Into the 

Caribou lake form•tlon. The porphyroblasts show preference for growth 

In mica-rich layers, and are typically buff-orange, 2-3om In size, xeno-

blastic and crowded with Inclusions (mostly quartz). In one schist from 

the shore of Deer Lake 200m northe•st of 'Soom Island', albite shows 

evidence of ~vlng fo~d at the expense of myscovlie, and also exhibits 

signs of syn-03 growth (Plates 79 and 8~). Growth Involving muscovite is 

indicated by the fact that only the quartz portion of the 'quartz-muscovite 

matrix forms Inclusions, and the syn-03 growth Is suggested by the slight 

~---~- ~ ---- ~-·--- -- --- -~-~- - ~--- · -, - - . 



PLATE 79 

Microphotograph of albite porphyroblasts upper two porphyroblas~s 
(left and right corners) are inclusion~free, lower one has slightly 
curved , 52, quartz inclusion trails; note abundance of muscovite in matrix 
and its absence as inclusion phase, suggesting albite growth by reaction 
with muscovite; upper two porphyroblasts have grown in a quartz-poor, 
pelitic layer, In which the muscovite has been crenulated against the 
porphyroblasts by 03 deformation, suggesting some component of post-02 
growth; curved inclusion trails In l~r indicate some syn-03 growth ; 
same rock a~ In Plate 80 below; Polarized light; field of view • 3 mm; 
outcrop location 211. 

PLATE 80 

Microphotograph of albite porphyroblast porphyrobl•st records some 
degree of syn~03 growth, as shown by curved Inclusion trails marking S2; 
in quartz-muscovite-albite schist of Mount Musgrave for"Ntion outcropping 
on shore of Deer Lake 200m ME of 1 Boom lst'and 1

; Polarized I ight and quartz 
plate Inserted to aid in defining porphyroblast; field of view • 3 mm. 

, 
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curvature of S2 inclusion trails. This albite/muscovite relationship may 

explain the preferred growth of albite in pel ites. 

In the northwestern part of the formation, in a pellte containing 

a ~I I tight to Isoclinal fold (F3) and an associated axial plane cren-

ulation cleavage (S3), S2 Inclusion trails in syn-03 albite porphyro-

blasts display the classic vergence relationship to the fold (Plates 81 

··~83). Porphyroblasts on the I imbs of the fold (Plates 81 and 83) con-

tain s-shaped and z-shaped tral Is, while those close to the hinge ZOQe 

(Plate 82) contain tral Is transitional between S-shaped and H-shaped . 

Post-02, black tou~l ine (schorl) crystals averaging about 3 

to S mm in length are common in the northwestern part of the formation, 

and are typically assoc iated with albite porphyroblasts. 

Foliated (S2) metabasic rocks found on the transmission line 

nort"h of 'Tower Hill' cootain the assemblage actinollte-itlbite-chlorite-

epidote-biotite-garnet, indicating at least epidote-amphibolite -fac ies 

conditions were reached during 02. 

Twlllick Brook formation 

Mineral assemblages in the calcareous rocks of the Twi I lick Brook 

formation suggest epidote-amphibolite facies conditions preval Jed and 

that locally amphibolite facies conditions were reached . 

Medium- to coarse-grained marbles, ~lcaceous marbles and calcareous 

schists contain essentially calcite-muscovite~ biotite. "uscovlte (serl-

cite). with or without brown biotite. defines S2 . Biotite reaches I em 

size In the coarser rocks and gives them a spotted appearance. 

Calc-silicate schists vary mineralogically within t he limits of 

the basic assemblage quartz-calcite-mu~;. ; ·1.·:\. e-plagloclase-biotit~-zo i site 
;?' ~;" 

! hornblende~ garnet ! 'Chlorite~ Thes · : ~ ks are most notable for the 

·--~- -~--- -- ~---~- --·- - -·~ · ---



PLATE 81 

MicrophotogrAph of syn-03 albite porphyroblast containing S-shaped, 52, 
quartz Inclusion trai 1s porphyroblast from eut 1 im of minor, northeast-
plunging antiform (F3); S3 crenuJatlon cleavage is well-delleloped and 
d<lfftlnates S2 defined by quartz and muscovite; curyed inclusion trai Is 
Indicate syn-03 growth; F3 fold In schist en NW flank of Haunt Musgrave; 

.. Polarized light; field of view • 3 llJTI. 

'. 

PLATE 82 
~ 

Microphotograph of syn-03 •1blte porphyroblasts containing transitional, 
S-shape"d to H-shaped, S2, qu.ru Inclusion trails porphyroblasts from 
AMr hlnge .zone of minor, northeast-plunging -F3 antiform; located on fold 
between those shown In PlAtes 81 and 83; Polarized 1 ight; field of view • 
3 IIIII. 

/ 
PLATE 83 

Microphotograph of syn-03 albite porphyroblast containing Z·sh11ped, S2, 
qu.rtz incl1.1slon trails _ porphyroblast fran we!t lltnb of minor, north-
east-plunging F3 antiform; note 53 extern•! crenulation cleavage; note 
also the rare twinned porphyroblast of albite; Polarized light; field of 

, view "" 3 nw. 
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variety a"d extensive development of porphyroblasts, which Include horn· 

blende, garnet, pl•gioclase, zoisite and biotite. Husco'(ite and brown 

biotite again mark the S2 schistosity. Biotite is locally porphyroblastic, 

but generally shows no sign of retrogression. Some of the brown mica may 

be phlogopl ti-c. 

Porphyrobloutic plagioclase fonns xenoblast i c crystals up to 2 

em In size, but in most schists it forms part of the matrix to other 

porphyroblastic: minerals. The plagioclase is relatively calcic (An
20

_
30

) 

(Table 15, Appendix B). Zoisite ccmnonly forms idioblastic crystals up 

to 1 em In size (Plate 84), and in one place crystals up to 10 em long 

were found. 

The · most prominent metamorphic feature of the formation is the ... 
porphyroblastlc growth of llornblende, and to a lesser extent garnet. 

Black tsc:hermakltlc hornblende crystals up to 20 em in length are 

present in some schists, but most average about 10-15 em (Plate 84; 

see also Plate 3li~;P· 131). They c0111110nly form radiating clusters in the 

52 fol iatlon plane, but are clearly post-52. Hornblende is so prolific 

In places that clusters form bl<1ck layers (2-3 em) in the schists. Chlor-

itization of hornblende generally varies from partial to complete, but 

a few porphyroblasts show no sign of retrogression. 

Red garnet porplwroblasts typically co-exist with hornblende. 

Garnets range from 1 to 4 em In diameter, are partly to completely chlor-

itized, and are clearly post-02 (Plate 85). Like hornblende porphyrobla!ts, 

garnets are so n~erous ( > 80t) In places they form garnet-blot I te 1 ayers. 

Ccrnpositlonally, they are a~mandlne with a grossular component (samples 

18, 251 and 110, Table 14, Appendix B). 

The para-amphibolite variety of the calc-silicate schists c;ontains 

the assemb !age hornblende-p lagi oc I ase-muscovl te-b iot 1 te-garnet-zo is I te-
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PLATE 84 

Microphotograph of ldioblastlc, po~t-02 porphyroblasts of hornblende and 
zolslte large tschermakltlc hot.r~blende crystal and small zolsfte 
crystals (showing anomalous blue colour), against background of very large 
(2 cm) andesine porphyroblast; note diffuse graphitic layers passing 
through all minerals; graphite layers define S2; in para-amphibol i te of 
Tw i I II tk Brook format ion, from 1 Gu 11 Pond RoAd 1 west of 1 Second Pond 1 ; 

Polarized light; field of view • 3 ""'· 

PLATE 85 

Microphotograph of post-02, garnet porphyroblast - garnet with 52 
graphite Inclusion trail~; external graphite la\ters are micro-folded with 
the muscovite schistosity b¥ D3 deformation; In calc·sillcate schist f rom 
the same area as sample In Plate 83; Plain light; field of view • 3 11111 • 
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calcIte-quartz. L•rge (2 em) , inter I ocklng o I i goc 1 ase-andes I ne crysta Is 

form the basic framework In some rocks, and all porphyrobluts contain 

black graphlt.lt layers (Plates 84 and 85) ·Nrklng a relict S2 foliation. 

Slight deflections In the gr•phitlc · layers as they pass into some porphyro-

blasts, and wider spacing of layers Inside some porphyroblasts, are inter-

preted to be the minor rotational and flattening effects associated with 

03. The co-existence of hornblende, andesine and calcic garnet In this 

lithology indicates lower ~phibollte facies conditions may have been 

attained locally in the formation. 

Phyll itlc and quartz-:111ica schists locally contain garnet and/or 

albite porphyroblasts with straight 52 inclusion trai Is. The porphy ro-

" blasts are rotated within the overprinting 53 crenulation cleavage. The 

• garnet is almost totally replaced by chlorite. 

Serpentinite unit . 
The serpentlnltes are mineralogically simple, with antigorite as 

the main component accompanied by minor amounts of ldiob lastic buff 

m~neslte, as well as talc a9d chromlte. The unit represents meta-ultra-

basic rocks of ophiolitic affinity, and thus the timing of serpenti nization 

Is not c 1 ear. It may have occurred In the oceanIc domain, or alternat i ve I y 

during Its structural emplac.,..nt In the Corner Brook Lake area. 

12.4 Carbonate terrane 

Rocks In the carbonate terrane are notlcably lower grade than 

those in t he two terranes to the east. The grade varies from sub-green-

schist or lowenoost greem;chlst lrf the west to upper greenschl5t fac ies . 

along the eastern margin . 
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The chief effect of IINttamorph ism In the terrane was the recrys- ./-

talllzatlon of both carbonate and clastic rocks. Calcitic 11nd dolom i tic 

marbles are very fine-grained along the western urgin and Increase in 

grain size toward · tl'le eastern part of the terrane, where they are medil..m-
, 

grained (1·2 11'111) In the Grand Lake Brook group. Original shales In the 

upper p•rt of the Table Head Group and In ttM H1111ber Arm Supergroup are 

~slates, in which muscovite (sericite), without chlorite or biotite, 

generally defines 52, suggesting at most sub-greenschist or lower green-

schist facies conditions were reached during 02 .. Original shales In the 

Grand Lake Brook g'roup to the east; on the other hand, are now phyllites 

In which muscovite and biotite (variably chloritized) define St. indi-
~, 

cat lng syn-02 upper greenschIst facIes (bIotIte grade) conditIons. 52 

is strongly crenulated by D3, and chloritization of biotite likely accon-

panled the 03 event. A single example of post-02 biotite porphyroblasts 

wu found in a pellte In the Grand Lake Thrust zone south of 'Triplet 

Brook'. 

12.5 Metamorphic history - summary 

Some of the general trends and salient features of the metamorptllc 

l)lstory of the Corner Brook Lake area are rec:onstruc.ted below based on 
'· 

the relations between llletiiiiOrphlc mineral growttl and . established structural 

events discussed in the foregoing sect ions. Figure 25 sumnarl zes these · 

relations. 

The oldest metamorphic: effects are probably recorded In the base-

ment ro$:k5 of the Tonalitlc gneiss complex and may halve been In ~rt 

responsible for the formation of Its well-developed gneissoslty~ However, 

neither 111etamorphlc nor structural Grenville features h•ve been positively 
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identified · and distinguished from intense Lower Paleozoic features. 

Clear evidence of early metamorphism In the area is recorded~in 

rocks In the northern part of the metaclastlc terrane, where helic i tic 

post-Sl garnet and albite porphyroblasts preserve Sl inclusion tral 15 

defined by quartz and epidote. ~scovlte also defines a relict Sl 

foliation In parts of the metaclastlc and carbonate terranes. Syn-S1 

muscovite and epidote Implies greenschist facies conditions prevailed 

during 01, while the growth of garnet and albite post-01 porphyroblasts 

Implies an incruse in grade to epidote-amphibolite ·facies during the 

Dl-02 lnterklnematlc Interval. 

02 produced the dominant foliation (S1/S2) which Is def ined 

by one 4r more of the following: quartz, muscovite, biotite, epidote, 

and ~nblende. The syn-02 growth of hornblende In amphibolites of the 

metaclastlc and gneissic terranes indicates amphibolite facies conditions 

prevailed during 02, •t l.ast locally in the southern part of the area. 

The absence of syn-02 retrogressive effects on.post-01 porphyroblasts also 

Indicates that the grade during 02 was equal to or higher than that during 

post-01 time. 

The D2-D3 lnterklnematic Interval witnessed prolific growth_ of a 

variety of porphyroblasts In rocks of the metaclastlc and gneissic terranes. 

The most common porphyroblasts Include garnet, aJbite, hornblende, and 

biotite. Other post-02 minerals are Indicated In Figure 25. 

The extensive growth of post-02 albite and K-feldspar porphyro­

blasts In the eastern part of the area is attributed to regional alkali 

metas~tl~ ass6clated ~lth intrusion of granitoid rocks. The presence 

of garnet In pelitic rocks indicates at least epidote-amphibolite facies 

conditions. while the hornblende-andesine-garnet assemblage In calc­

silicate schists Indicates lower a.phlbollte facies conditions were reached, 
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at least locally in post-02 time. The absence of static, post-02 retro­

gressive effects on 02 minerals also suggests the grade remained at least 

as high as the epidote-anphloblite to lower amphibol l te facies of DZ time. 

03 deformation produced a crenulation cleavage {S3) without 

significant mineral growth. In only a few samples from the southeastern 

part of the area, incipient growth of muscovite (sericl·te) and biot i te 

was noted. Some degree of syn-03 albite porphyroblast growth is recog­

nized in the northern part of the metaclastic terrane, but in many , cases 

this may represent the continued or renewed growth of post-02 porphyro-

blasts. No evidence of syn-03 garnet growth is recognized. These minerals 

suggest syn-03 greenschist facies conditions, while the extens ive chlor­

Itization of pre-03 garnet, biotite and hornblende, which appears to be 

directly related to the 03 deformat ion, suggests chlorite grade (lower 

greenschist facies) conditions prevailed during OJ. 

It is notable, hOwever, that OJ retrogression was apparently not 

felt everywhere, as several examples of unaltered, post-02 garnet, biotite 

and hornblende were found -in the southern part of the metaclast lc terrane. 

In all of these cases, the characteristic 03 minor structures were a lso 

absent {due to the regionally inhomogeneous nature of 037), suggesting an 

intl~ate relationship between defonnatlon and retrograde metamorphism. 

There Is no ~¥id•nce of post-03 or later (04 or DS) metamorphism 

In the Corner Brook lake ar .. , Implying that after D3 the metamorphic 

conditions remained below chlorite grade. 

The general trend of the changing metamorphic conditions with t ime 

is shown In Figure 26 as • plot of maximum grade reached during each 

deformation event and their interkinematlc Intervals. 

The available evidence suggests a relatively simple metamorph ic 

history Involving progressive Increase In grade through 01 to a lower 
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•phlbollte hcles peak during 02 and post-02 time. The peak coincides 

In part with the main period of porphyroblast growth and the extensiv, 

metasomatism a~companylng granitoid intrusion during post-02, pre- 03 t ime. 

Conditions eppear to have changed 'rapidly' with the onset of 0), as a 

significant d~p In grade to lower greenschist facies produced extensive 

syn-03 retrograde metamorphism. Sub-greenschist facies conditions pre­

vailed during post-D) and throughout the r~lnder of the structural 

history •. 

It Is Interesting t~ note that available Isotopic dates from the 

area corroborate the late stages of the metamorphic history as outlined 

above. Four K-Ar dates (ranging from 41.2 to 452 Ma) on muscovl te and 

biotite from the eastern part of the area indicate Sllurlan-Oevonian 

(post-02 and syn-03) cooling without subsequent 'reheating'. These dates 

are consistent 41ith recent Ar-Ar dates from the Fleur de Lys Supergroup 

and the Indian Head Range complex, which have been interpreted to indicate 

no Acadian (03) re-setting of the 'Ar clock', and thus no significant 

Acadian p~ metamorphism (Dallmeyer 1977, 1978). 

The regional-scale causes and energy sources for both metamorphism 

and deformation In the Corner Brook Lake •ru are discussed lri the fln•l 

chapter (section 1).2), where a tectonic model for the area is proposed. 

, 

. .,..., .... 
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CHAPTER 13 

GENERAL SYNTHESIS 

13.1 Conclusions 

The preceding chapters of this thesis have presented and discussed 

the results of a reconnaissance-scale study of the Corner Brook Lake area, 

located In central western Newfoundland. The general stratigraphic, struc-

tural and metamorphic features of the area were outlined, and correlative 

features in the regional geology were suggested. More specifically, the 

main geologic features of the previously poorly understood eastern part 

of the area were described in detail, and the degree of stratigraphic, 

structural and metamorphic contrast and continuity with the well-known 

carbonate terrane to the west was examined. 

The more s·ignificant results of the study are noted below, and the 

general geology, and the geologic history (Table 11), are summarized in 

the discussion of the tectonic model for the area presented in the follow-

i ng sect ion. 

The m.jor stratigraphic results are: 

1/ the finn establishment of the Grand Lake Brook group as 

a significant stratigraphic unit along the eastern margin of the carbonate 

terrane; subdivision of the group into the Stag Hi 11 and Reluctant Head 

fonnations; recognition of its conformable stratigraphic relationsh ip with 

the overlying St. George ~roup, proving it to be an integral part of ~he 

reg iona I, Cambro-Ordovician c:•rbonate sequence; recognitIon of the Grand 

Lake Brook group as the stratigraphic link across the major thrust zones 

between the carbonate and metaclastic terranes (i.e., lithologic correl•tion 

between tne Stag Hill and Reluet•nt Head fonmations and the Hount Musgrave 

and Twlllick Brook formations). The significance of this link is noted 
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among the structura I resu Its be low . 

21 i dent If I cation of a reworked segment of the Grenv i I I e 

basement of tl'te Humber zone, represented by the Tonalitic gneiss complex 

in the gneissic terrane; correlation of amphibolite layers in the complex 

with rift-related . late Hadrynian basic dykes. 

31 rnap"plng and definition of seven new lithostratigraphic 

units In the eastern part of the uea: i) in the metaclastic terrane, the 

Caribou Lake, Mount Musgrave and Twiilic;k Brook formations and the Serpen-

tinite unit (see 5/ below), the first three of which form a metasedi-

n.ntary sequence clearly correlative with rocks in the regional strati-

graphy inter~ed to be Hadrynian-Cambrian. terrestrial to marine deposits 

associated wi~constructlon of the continental margin (Humber zone), and 

b) in the gneIssIc terrane. the Tona II tic gneiss comp I ex (see 21 above), 

the arkosic sediments of the Antler Hill formatloo (lateral equivalent of 

the Caribou Lake formation), and the Last Hill adamellite (see It/ below). 

4/ Identification of the Last Hill adamellite pluton in the 

gneis.sic terrane and its apopbyses throughout the gneiss ic and metaclastic 

terranes (as ~~Mil as the notable absence of granitoid rocks In ~djacent 

parts of thecerbonateterrane); timing of the Intrusion as post-02 and 

pre-D3 (Tacooi c-Ac:ad I an I nterk I nematIc I nterva I); c:orre I at I on of the 

intrusIon wl th the S iluro-Oevonlan Topul Is Batholith. 

51 Identification of the Serpentinite unit and Its inter-

pretatlon as a 'block' of ophiolitic affinity structurally emplaced In 

a ujor tllrust zone during the 02 event (i.e., during T~eonic emplac:..,.nt 

of the Humbe~ Arm A I I ocnthon) • 

Alnong the 1110re slgnrficant structural/~~tet81110rphic results of the 

study are: 

_/ 
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1/ demonstration of the fact that the earliest (post-

Grenville) deformation In the u~a (01/02) is recorded in both'the meta-

clastic and carbonate terranes, as the Grand Lake Brook group provides the 

structural link by clurly recording the same 01/02 and later structures 

found In the metaclastlc terrane. The fact that the group Is stratigraph­

ically tied to the carbonate terrane (see !/ .above} as part of the Cambrian 

to Middle Ordovician carbonate sequence Implies that the earliest defor-

mation to affect this part of the HI.M!Iber zone is no older than Middle 

Ordovicran, and thus Is undoubtedly related to the Taconic Orogeny (note 

tnat Dl/02 are also correlated with the Taconic on the basis of style, 

Intensity and anoclated metamorphism). The timing of earliest deformation 

In the area as Taconic has important Implications for the regional tectonic __... 

picture as well (e.g.,' timing of earliest defo~"ation in the metac:lastic 

terrane equivalent Fleur de Lys Supergroup). 

2./ delineation of five (post-Grenvi lie) deformation events 

in the map area and their correlation with the Taconic {01/02) , Acadian 

(03) and Alleghenian {Dit/05) regional orogenic events; confirmat ion of 

Taconic and Ac•dlan deformation in the uea, •nd Identification and 

description of previously unre~ognlzed Alleghenlan deformation In pre­

'tarbonlferous rocks. and its significance In the late Paleozoic evolution 

of the ~~ap aru and the region. 

3/ confirmation of the existence of major, east-dipp ing-

thrust faults in the aru, and delineation of the three largest (Grand Lake, 

Stag Hill and Corner Brook Lake Thrusts), whIch d I v l de the a rea and the 

stratigraphy into three distinct 'terranes•; conclusion that the faults 

were lnltiaud l!arly In the tectonic history (02 - Taconic} as ductile 

thrusts, but experienced more 1 brlttle 1 reactivation during subsequent 

east-west COflll)resslve events (I.e., 03 -Acadian, and Dlt - Alleghenlan) ; 
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conclusion that thrusting In general, and particularly late Paleozoic 

thrusting, may be a 1110re significant future of the regional tectonic 

history than Is currently assllfted. 

'*I defl~ltion of a single epidote-amphibolite to amphibol ite 

facies metamorphic peak during and following the 02 (Taconic) event- a 

peak coincident with pro I !fie, post-02 porphyroblast growth and wl th the 

Intrusion of granitoid rocks; recognition that the peak was followed 

during 03 (Acadian) time by retrogressive, lower greenschl~t facies con-

ditions, and during Dlt/05 (Alleghenian) time by sub-chlorite grade conditions, 

Implying that after the 'Taconic peak' no significant Acadian or later 

thermal event occurred to cause prograde metamorphism or resetting of 

isotopic cloeks (In agreemtnt with recent ~ r~t~al suggestions). 

5/ recognition of ..-eglonal-scale, post-02, pre-03 alkal i 

metasomatistll, which produced the prolific albite and K-feldspar porphyro-

blast growth In the eastern part of the area, its relation to granitoid 

intrusion in the area, and thus its ultimate association with the intrus ion 

of the Topsails Batholith. 

13.2 Tectonic model 

The results of this study can best be synthesized by Integrating 

them Into a workable tectonic model. Figure 27 presents an Ideal izad model, 

consistent with the· findings of this work, for the tectonic evolution of 

the Corner Brook Lake 1re. and vIcinIty. 

Entph11s~s Is pl1ced on the construction of the lower Paleozoic con­

tlnentlll margin (Figure 278) and on the effects of the tbree Paleozo ic 

orogenic events (C, 0 and E, Figure 27). Smaller insets {B', C' and D' ) 

provide continuity between the main evolutionary !tages, and, in addit ion, 
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show significant interkine~~~atic events. Figure 27A shows the general plate 

tectonic setting of the Humber zone, u well as the more easterly zones of 

the Appalachian Orogen, during the Lower Ordovician. The llthoshpere 

plate. configur:.ation Is based on the proposals of Schenck (1971), McKerrow 

and Ziegler (1972), and Riding (1974), and is intended solely to suggest 

possible plate relations which may have affected the overall tectonic 

evolution of the Hunber zone (and the Corner Brook Lake area) during the 

Paleozoic. 

The model is essentially the same as . models proposed by other 

workers for the lower and middle Paleozoic evolution of western Newfound-

land (e.g., Dewey 1969; Bird and Dewey 1970.; Williams et al. 1972, 1974; 

Wi !Iiams and Stevens 197lt; Stevens 1976; Poole 1976; Williams 19-76, 1979). 

The proposed tectonics assoct ·ated with the Alleghenian Orogeny , however, 

are based chiefly on the findings of this study. 

Construction of the margin 

Since the recognition of global plate tectonic processes, most, . . ' 

if not all, wor~ers· in the region have interpreted the Cambro-Ordovician 

sequence of western Newfoundland as ·a record of the construction of the 

stable, Atlantlt-type continental margin of eastern North America (Humber 

zone), which bordered an ocearric d01111in to the east (Dunnage zone) (Figure 

27A). 

Figure 278 Is a palinspastic recon-struction showing In more detail 

the main features of the Humber' zone in Lower Ordovician time. The basic 

· st-ratigraphic elements lnc:lu~e Grenville baseme.jt, Hadrynian to Lower Cam­

brian basal clastics and minor volcanics, and Hlddle Cambrian to Ordovician 

carbonates. This represents the autochthonous part of the regional sequence, 

wh i ch thickens and Is diachronous (olde r base) eastward. 
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The basal clastic sequence, the most important segment of the 

reglon•l stratigraphy with respect !o the Corner Brook Lake area, consists 

of two distinct parts: 1/ c011rse, arkosic basal clastics, with basic dykes 

and related terrestrial volcanics, and 2/ overlying, finer, more quartz-

rich clastics. The arkoses and basic Igneous rocks are related to rifting 

of the continental crust (Grenville basement) In late Hadrynian time. In 

the map area, the arkoses are represented by the Ant Jer HI I I and latera II y-

equivalent Caribou Lake fonnatlon, the rifted Grenville basement by the 

Tonal itic gneiss complex, and the basic dykes by amphibolite layers in all 

three units. The ·absence of volcanic flows In the map area may Indicate 

the basal units were deposited 'westward' of correlative arkoses in the 

Belle Isle area, where dykes feeding flows account for 50% of the exposed 

basement (WIIli•s and Stevens 1969). This is bued on the assumption that 

dyke Intrusion and resultant flows would have been more prolific nearer 

the rift centre (to the 'east'). 

The overlying, finer, more quartz-rich clastic rocks of the regional 

basal clastic sequence were 1 ik.ely deposited .. during subsidence and lower 

to Middle Cambrian marine inundation of the rifted margin of the crust. In 
.. 

the map area, equivalent rocks are found In the Mount Musgrave and laterally-

equivalent Stag Hill formations (lower Grand Lake Brook group). 

DepOsition of the Middle Cambrian to Middle Ordovlcl~n carbonate 

bank sequence was the result of continued subsidence, with the firm estab-

I ishment of marine conditions over the skelf and tke westward migration of 

the shore! lne; and tkus the effective removal of the clastic source. The 

basal part of the sequence is represented In the map area by the upper part 

of the Grand lake Brook group (Reluctant Head form~tlon) and Its easterly, 

late.ral equlval.,t the :Twllllck ~Btook formation. The upper, more massive part 

of the sequence is represented by the St. George and Table Head Groups, 
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both of which are continuous throughout tne Humber zone. 

Thu the Hadrynian to Middle Ordovician sequence In the map area 

wu originally deposited 1t or near the edge of the continental shelf 

(Figure 278) Is suggested both by Its present tectonic setting at the 

Interface between the remnants of continental and oceanic domains (Humber 

and Dunnage zon~s), and by facies comparisons with westerly (on the Port 

au Port Peninsula) and easterly (on the Burl lngton Peninsula) equlvalen~s. 

A more precise _depositional setting for rocks In the area may not be 

possible due to eradication of key sedimentological features by metamor­

phism and defonmatlon. However. metasediments In the gneissic and meta­

clastic terranes were cl .. rly deposited In a more easterly position relative 

to the autochthonous sediments In the carbonate terrane, as the former 

have experienced some degree of wes twcrrd transport during s true tura I tel e­

scaping associated with Middle Ordovician and later orogenesis. 

TaconIc: Orogeny 

Figure 278' Indicates the early Middle Ordovician- initiation of 

the Taconic Orogeny to the east of the continental margin and the map area. 

The orogeny has been Interpreted (e.g., Stevens- 1976) to be related to 

attempted subduction of the continental margin, which resulted in the ob­

duction of oceanic lithosphere and the concomittant westward transport of 

parts of the slope/rise prism 5edlments (Humber Ann Supergroup), which now 

structurally overlie Middle Ordovician carbonates (Table Head Group). The 

initiation of the orogeny Is marked by a . regional dlsc:onformity (not recog­

nized In the map area) at the top of the Lower Ordovician St. George Group, 

and its westward progre!lslon 1!1 recorded In the rapidly changing deposit­

Ional environments of rocks in the Table Head Group, from carbonates Into 

the proximal flysch Immediately preceding emplacene~t of the allOchthons. 
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Ft.gure 27C shows, in more detail~ the stratigraphic and structural 

eff~ets of the Taconic. As more westerly parts of the continental margin 

~ed Into the subduction zone, an assemblage of slope/rise sediment thrust 

al ices (H..,.ber Arm Supergroup) was progressively accreted beneath the 

overriding oceanic II thosphere (Bay of Islands Canplex) (Stevens . 1976). 

Flysch from the elevated allochthonous rocks was shed westward over t~e 

m~~rgln, and subsequent overriding of the flysch by the allochthon produced 

a series of melanges containi"9 detritus frOftl all units, including the 

higher oceanic crust. The serpentinite rocks in .the map area (Serpentln-

lte unit) undoubtedly originated as a 'detrital' block of ultramafic rock 

which became localized In l 1 m&jor thrust zone .durlng Taconic and later 

· deformation. 

The subduction zone regime detennlned the style, Intensity and 

complexity of the deformation in the continental margin rocks. In the map 

ar .. , the Taconic Is represented by two structural events, 01 and 02, which 
. 

record the westward tectonic transport In the fonn of recumbent, west-

verging folds (F2) and major thrust faults, both shown schemat!Ca11y in 

Figure 27C .. The most significant product of the orogeny in the area was 

a strong subhorizontal foliation, which is actually a composite S1/S2 

structure, with St likely representing a simple bedding-plane schistosity . 

and S2 an axial plane foliation to F2 Isoclines. Major, ductile thrust 

faults, which generated 52 mylonites, were initiated as relatively deep-

seated featur~~ involving both basement and cover rocks. Basement rocks 
r 

were considerably reworked during the Taconic and the proninent gneissosity, 

which may have originated as a Grenville structure, was reQrlented and re-

constituted. The reorientation of amphibolite layers (dykes) into para-
0 

11etlsm with the gnels·soslty may also be a Taconic effect. 

l'leta.orphlc grade In the area gene_rally Increased through gr~enschlst 
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and epidote-amphibolite facies during 01 and post-01 time to an amphibolite 

facies peak during and after 02. Such a history Is consistent with the 

tectonic model, since temperature and pressure would be expected to rise 

gradually as the margin entered the subduction zone regime. 

Depression of Isotherms during subduction, however, may have resulted 

In maximum temperature not being reached until the Isotherms rose after 

subduction ceased. Regional evidence (Dean 1978) Indicates emplacement 

of the allochthons and subduction had ceased by late Caradocian time. Thus, 

throughout Upper Ordovician and Into Silurian time (post-02) temperatures 

may have risen In the subduction zone. The region m.y have been given an 

addltlonel thermel boost by Silurian westward subduction at plate m.rglns 

to the eest (Figure 27A). It Is notable, however, that rising temperatures 

may have been counterbalanced by a coincident tectonic event. Following 

subduction, the regloo likely experienced Isostatic rebound (Figure 27C 1
) 

due to buoyancy of the depressed continental crust and gravitational insta-

bil lty of the overlying oceanic lithosphere. Thus, cooling during 'crustal 

rebound' may have effectively balanced Increasing temperature due to 

1 isothenn rebound'. This balancing may explain why metamorphic conditions 

~~~~ere simi hr during syn-02 and post-02 time. 

This type of post-subduction tectonic regime also would have 

produced regional normel faults. As suggested In Figure 27C', the Cabot 

Fault (CF) may ~v• originated In this manner. Adjacent to the map area 

It may have .been localized In a pre-existing zone of crustal weakness, such 

as the original continental/oceanic crust Interface. 

·Granitoid. rocks were also generated regionally during tne post-

Taconic, pre-Acadian Interval, possibly In pa.rt by anatexLs of subducted 

continental material which remained relatively deeply burled In the zone. 

The Isostatically-generated norm11l faults produced during this Interval 
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no doubt served as conduits for intrusive. rocks; thl~ may explain the noted 

occurrence of granitoid rocks In the Cabot Fault tone at the southern end 

of Grand Lake. 

A small pluton (Last Hill adamell .ite) and its apophyses intruded 

the eastern part of the Corner Brook Lake area at this time, and the 

ev~dence suggesu It is a marginal phase of the voh.wninous, Sl.luro-Devonian 

Topsails Batholith. In addition, the regional alkali metasomatism In the 

eastern part of the area is apparently directly - related to alkal.l-rlch 

fluids emanating fr0111 the Topsails Batholl_th. 

Acadian Orogeny 

The tectonic effects of Acadian Orogeny are sh~ In Figure 270. 

The plate tectonic cause of the Acadian is not clear, but it is usually 

assumed to be the result of major continental collision to the east of the 

Avalon zone (Figure 27A). 

Acadian deformat-Ion (03 In the map area) reflects east-west, 

regional compression, and produced generally tight, steeply- Inc! lned, 

northeast-trending .folds, and locally an axial plane crenulatlon cleavage 

(shown by steep slashes, Figure 270). (The folds are generally tighter 

and had even more effect on the stratigraphy than could be clearly shown 

In Figure 270.) Due to the orientation and style of Acadian defonmatlon 

It caused reactivation of earlier thrust faults, •nd initiation of new 
" thrusts associated with major folds. 

It seems likely that post-Taconic, Isostatically-generated normal 

faults (with appropriate orientation) were also sites for Acadian thrust ing, 

or reverse faulting. Thus, the northeut-trending Cabot Fault may have 

been the locus of Acadian thrusting, which, adjacent to the map area, 

Involved ophiolitic rocks. The present Bale Verte-Brompton Line, therefore, 
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may owe Its present form and location to the fact that Acadian and later 

deformation (Alleghenlan) Involving westward thrusting was concentrated 

In the ancestral Cabot Fau~t zone (CF/BV8 - Figure 270). 

In the Corner Brook Lake area, lower greenschist facies metamorphic · 
... I 

conditions accompanied Acadian (03) defonmation and produced extensive 

retrogre5sion in earlier higher grade assemblages. This ~ower temperature/ 

pressure regime may have been the direct result of relatively rapid uplift 

due to the combination of upright folding and thrusting. Thus, post-

Taconic metamorphic peak conditions ~y have been cut short by deformation 

muklng the onset of the Acadian, In addition to the isostatic rebound. · 

Alleghenifn Orogeny 

Carbonilerous rocks In the Humber zone were deposited in inter-

montane basins which may have been fonned (In part) by tensional forces 

due to post-Acadian relaxation of regional stresses. It could be expected . 

that such forces would be relieved primarily by movements in the larger, 

pre-existing zones of weakness; this ~y be the reason late Devonian to 

early Carboniferous basins formed along the trend of the Cabot F<tult zone 

(Figure 270'). 

~ate Paleozoic Alleghenfan deformation Is clearly recorded in the 

Carboniferous basins which flank the map area on the northea5t and south-

west. The orogeny apparently Involved a complex series o( regional crustal 

mov..,ents, but resulting deformation was localized mainly around pre-

existing zones of weakness. The absence of met~rphlsm an' strong foli­

ations Indicate the high crustal level at which deformation occurred. 

Figure 27A suggests that the collision between Africa and the Spain/Europe 

continent may have set up the crustal s:ttQS:es:. which were effectively trans-

mltted through the 1rigld' pre-Carboniferou5 blocks to cau5e intense de-
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. formation only In crustal suture zones and major fault zones, leaving 

-~ pre·Cubonlferaus b looks wl th only' rei aHve ly mild, regional-scale . 

def~tlon features. 

Ear I y A lleghen I an deformation (mid-Carboniferous) i nvo I ved s i gni f-

lcant east-west compre.sslon, which probably reflects the collision far to 

the east. Relatively intense deformation is reco~ded.,.in Mississippian-age 

rocks in the Carboniferous basins (e.g., Hyde 1979a), while milder effects 

are found. In the pre-Carboniferous blocks, as is evidenced by the 04 

event i~ rocks of the map area. · D4 produce~ northeast-trending, regfonal 

open folds, and caused reactivation of early thrust faults. The style of 

this de!onnatlon Is Illustrated In Figure 27E. {Note, however, that most 

of the Acadian and earlier deformation is not s~n in the diagram for the 

sake of clarity.) One significant effect of this phase of Alleghenian 

folding ~as the generation of regional cleavage fans in pre-existing, 

vertical 53 cleavages (shown by steep slashes in central part of Figure 27E). 

Following east-west compression~ the regional stress pattern 

apparently changed (due to other far-removed plate motions?) and a series 

of regional, west-nort~st-trendlng gentle folds developed in the region. 

In the map area, these are Identified as 05 (late Alleghenlan) structures. 

Their orientation prohibits showing them in Figure 27, and, for the same 

reason, the possibly significant strike-slip faulting In the Cabot Fault 

zone is not shown . Such lateral motion In the fault zone could have been 

rel•ted to either (or both) of the early (D~) or late (05) . phases of the 

All~henlan Orogeny. 

Omitting effects of Carboniferous and later high-angle faul tlng, 

parts 0 and E of Figure 27 schematically represent the present structural 

and stratigraphic cross-section of central western Newfoundland. 
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13.3 Appalachian-Caledonian correlations 

The Corner Brook Lake area contains Precambrian basement rocks and 

intensely deformed, Hadrynian to Cambrian, rift-facies clajtic rocks, which 

have been thrust westward over a Cambro-Ordovician carbonate bank sequence. 

It Is notable that similar stratigraphic/structural relations are found 

all ajong the western margin of the Appalachian Orogen, and in the Cale­

donides of the British Isles, as Is clearly shown by the recent ccmpilations 

of Williams (1978a, 1970b) '. 

Simi Jar geologic relations are found, for example, over a large 

area along the western belt of the Blue Ridge Ho~ntains in the southern 

Appalachians, where Imbricate westward thrusting of Precambrian basement 

and·.Hadrynlan-Cambrian clastic rocks over a Cambro-Ordovician carbonate 

sequence Is well-defined. In this area, westward thrusting is also exten-

sive in the carbonate sequence. 

Relations directly analogous to those in the Corner Brook lake area 

are preserved in the New England Appalachians, where correlative clastic 

and basement rocks are thrust over Cambrian and Ordovician carbonates. In 

southwestern Vennont, the carbonates form a narrow belt (about the same 

width a5 the carbonate terrane in the present map area) separat ing the 

crystalline thrust rocks to the east from the Taconic Allochthon to the 

west. In the Q.uebec Appalachians·, on the other hand, the narrow carbonate 

~equence found in Vennont has apparently been completely overridden along 

a major thrust by Hadrynian-Cambrian clastic rocks, such that the cla~tics 

now structurally overlie allochthonous Cambro-Ordovician rocks correlative 

with the Humber Anm Allochton . 

Similar stratlgr~phic/structural relations to those outlined by 

the present study are also found In the Hebrides zone (WI !Iiams 1978b) of 
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the British Caledonides, where the famous Moine Thrust zone superposes 

Pree.nbrlan cryst~lline rocks on Cambro-Ordovician carbonates. I . 

13.4 Suggestions for future work in the area 

The' ultlmate success of this study of the Corner Brook Lake area 

will be deten.ined by the degr .. to which It stlmul~tes discussion of the 
' . 

ideas presented and Initiate' further work in the area. 

During the course of this· project, many Interesting features •nd 

problemt concerning the geology of the .rea qme to 1 i_ghr, but could not 

be explored by the author. Some of these could be the focus of future 

work: 

1/ detailed study of the. Tonalitic gneiss complex to dis-

tlnguish definite Grenvillian structural ~nd metamorphic features In 

this connect .lon, the use of an appropriate Isotopic dating technique (U-

Pb1) to 'see through' the Taconic overprint. 

2/ more detailed structural work on the major thrust zones, 

possibly employing petrofabrlc analysis to clearly define their early 

developnent. 

3/ map the northern and southern extensions of the Corner 

Brook Lake Thrust. 

~/ map the southern extension of the Grand Lake Thrust to 

test the proposal that It fonns the western .. rgln of the basement block 

outcropping west of the Cabot Fault and t~t movements In the south,rn part 

of the ~ne involve Carboniferous rocks. 

51 carry out detailed structural and stratigraphic study In 

and around the 'Island Pond Thrust' proposed by Walthler {1949) to esta-

blish Its existence and regional slgnifltnce (In v"lew of the pouiblllty 
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tn.t su~h str"'cture5 m.y m.11rk the contact wl th the Humber Ann Supergr6up. 

all along the western ._.rgln of the preunt INIP u-). 

6/ Investigate the sugge$tlon that a body of serpentlni te 

exists In the Sug Hill Thrust zono near 'Triplet Pond', and relate 

struc:tunl and met..arphlc f .. tures of the serpent in! tes to the h istory' 

of the Stag Hill Thrust 1one. 

71 deta II ed study of the cleavage hn across the Humber Ani! 

Sync II n• to test the proposal that it l s defIned by 53 vert I c. I c: luv.-ges 

which ~'wive been slightly reoriented by Fit folding; trace the fan east-.· 

ward across the Steady Br~k Lake Anticline. 

8/ carry out a detailed structural study of the Carbon I ferous 

rocks In ttl. Deer Lake Suln and relate to late defo~tiOtJ features In 

nearby rocks of the flletaclast I c terrane to test the correletion of 041 and 

D5 phase structures In the Corner Brook Lake area with structures of 

similar size and orientation In the Carboniferous rocks. 

9/ O.tei"WIIne the extent and features of the metaclastic 

terrane unlu north of the map uea, and examine their stratigraphic and 

structurJI relulons to rocks In the car~te terrane to the west. 

10/ carry out an Isotopic: dating program In the eastern part 

of the arM to test the proposed metamorphic and Intrusive history of the 

region al'(f to prO¥ I de a f i l"'lfter bas Is for rei at I ng it to the hIs tory o-f 

q,..tern Mewfoundland. 

·-· ...... ~ ....... . 
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APPENDIX A 

WHOLE ROCK ANALYSES 

Chemical analyses were carried out at Memorial Univers i ty's geo­

enemlcal labs. Major element ~nalysls was performed by G. Andrews using 

Ataalc Absorption SpeetrophotOIIIetry, and trace element analysis by D. Press 
using XRF. 

A s•ple location map for all samples quoted is presented in Figure 
)0, Ap~end lx D. 

\ 
I 

TABLE 12 

CHEMICAL ANALYSIS OF SELECTED LITHOLOGIES 

Sample I 7?-68-1 79-253-3 77-43-2 78-71-1 79-322-1 79- 322-lt 

SI02 55.70 75.60 50.40 . 49.90 55.60 56.~0 
TI02 0.8) 0.27 3.38 1. 24 0.61 0.62 
AJ 2o3 17.40 12.50 13.30 14.20 14.50 15.20 
Fe2o

3 8.5!) 2.40 14.00 12.34 5.15 5.7S 
11n0 0.13 0.03 0.19 0.19 0.06 0.07 
HgO 4.02 0.35 4.35 7.36 2.87 3.57 
CaO 5. 27 1.47 s.3J 11 . 65 4. '5 2.77 
Na2o 3.83 5.77 1.98 1. 78 2.65 ).84 
~0 2.10 0.61 4.36 0.27 3.39 ).49 
P205 0.13 0.04 0.87 0.10 0.39 0.42 
LOI 1.~5 0.66 1.32 Q.81 9.49 0.78 

Total 99.95 99-70 99.4~ 99.84 98.86 93.41 
(wt t) 

77-68-1 • 'tonalitlc' (dlorltic) gneiss 

79-253-) • leucos~ In ml~tltle gneiss 

77·•3-2 • amphibolite 
' . 

78-71-1 • amphlbol i'te 

79-312-1 • trachytlc hypabyssal rock 
79·322-~ • trachyte 
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TABLE 12 (continued) 

S..nple I 78-28 79-276-1 79-280-1. 78-t07 

5102 7lt.90 74.00 73.50 64.20 

1102 0.20 0 . 18 0.10 0 .66 

AJ
2
o

3 
12.1t0 12 . 10 14.00 15.80 

Fe
2
o

3 
1. so 1. }It 0.94 5.58 

KnO 0.02 0.02 0.02 0.04 

HgO 0.19 0. 35 0.35 1.26 

CaO 0.60 1.60 0.98 0.29 

H-.
2
o 3. 29 3.34 4.42 3 . 22 

~0 4.98 4.65 4.31 6.56 

P205 0. 00 0.04 0.00 0 . 13 

LOI 0.59 1.62 0.66 1. 54 

Total 
~ 

98.67 99.24 99. 28 99.28 
(wt %) 

(ppn) 

Zr lit 1 294 77 1316 
Sr 86 78 280 30 
Rb 131 96 9} 145 
Zn 13 0 2 55 
Cu 0 0 1 0 
Ba 898 258 llt70 930 
Nb 4 22 0 titS 
Ga 16 19 15 21 
Pb 11 10 19 12 
Nl 22 26 " 97 
Cr 0 0 0 16 
v . 0 9 9 41 
y 33 62 1 195 
u 0 1 0 3 
Th 3 20 0 Zit 
Ce ' 78 107 Sit 93 
L., 9 52 0 28 

78-28 • adamellite fr~ 'Last Hill' 
79-276-1 ) 
79. z80-J ) • granitoid rocks fra. shore of Grand 
78·107 • foliated 'granitoid rock (part of gneiss 
77-43-7 • granitoid dyke rock 

77-43-7 

65 . 50 

0.70 

18.60 

0.61 

0 . 01 

0.29 

0.78 

7.38 
4.)J 

0. 21 

0.65 

"·06 

_,/ 
96 

155 
115 

0 
0 

879 
It 

16 
0 

11 
0 

20 
6 
2 
3 

~ts 
0 

... 



- ~·-

S.-ple I 

Sto
2 

110
2 

At 2o3 
FeZ OJ 
KnO 

MgO 

C•O 

Na20 

~0 

P2os 
LOI 

Tote I 
(wt t) 

(ppm} 

Zr 
Sr 
Rb 
Zn 
Cu 
B• 
Nb 
Ga 
Pb 
Nl 
Cr 
v 
y 

u 
Th 
Ce 
La 

Ito 
147 
15 

4 
I 

550 
a 

13 
It 
a 
0 
5 
6 
0 
2 

58 
t 

TABLE 12 (continued) 

79-332-3 

(~jor eleMents not Measured} 

350 370 175 
81 118 tU 

166 278 12, 
10 89 13 

1 0 0 
237 278 1007 

7 60 1lt 
Zit Zit 13 
9 23 13 

26 107 15 
2ft 0 0 

0 82 11 

ItS 233 36 
2 It 2 
~ 38 12 

201 118 1%7 
lt2 . 22 0 c 

All samples fra. Last Hill act-Ill te unl t on 'Last Hill' 

~ - --- --~-.. -~ .. -· · · ·· · · - -. -...... < • •• -. ... _ _ . , . ;. ... ..:.:.....__~·- . 
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'~ 
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• TABLE 11 (continued) 

/ 

S-.p 1e I 78-137 78-158 78-167 7,..284"1 77-A1 77-A'j 

SI02 75-30 71t.~ 70.10 82.00 67.50 69.70, 
:.• 

TI02 0.53 0.61 
•' 

0.11 0.~1 o.1t1 0.63 
-«120) 11.70 12. 7~. 1~ . 50 ].)8 14.00 14.00 

Fe2o.3 
).1) . ) .13 4.16 2.16 5.27 4.26 

KnO 0.07 0.03 0.06 o.olt 0.03 0.03 
ltgO 0.86 0.42 O.]'j 0.)) 2.17 2.o4 

CaO 0.91 0.74 · ·o . .sr. 2.)'J O.ltS 0.61 
~~a2o 1.,.. 2.43 2.83 ~ 2.42 2.61 4.12 

~0 ).-2 z.as J.98 1.)4 3.81t 2.25 

'2°s 
LOI 

0.11 
! 

1.26 

0.()9 O.o4 0 . 70 0.06 . 0.06 
1.54 1.88 0.71 1. 72 0.93 

.Total ,99.23 ,S.94 "·'' , •. 88 ,S.06 ,a.63 
(wt ') 

(ppm) 

Zr 370 
1~2 11 

118 

$-11 
158 
158 

573 ,, (trace elements not measured) 
Sr 
Rb 
Zn 
Cu 
Ia 
Nb 
(ia 
Pb 
Nl 
Cr 
v 
v· 
U. 
Th 
Ce 
La 

78-1)7 

~ 
0 

71t3 
19 
12 
19 
16 

-32 
21 
3 

22 
113 
23 

16 
0 

'681 
19 
10 
14 
7 
0 

33 
15 

0 
8 

'7 
11 

131 
lt7 
0 

l010 
26 
15 
12 
21 
11 
~7 
29 
2 
8 

111 
21 

78-158 ) . . . 
]8-16] ) • INti-IP"kOSeS of C1rlbou L•ke fonNtlon 

79:..za1t-t ) 

n-A1 > · . . 
n-:.A'J ) • •t•-.rkoses of Antler Hill fonution -

.. 

. .... ______ , ...... __ _ 

' • 

~t..-

"' / .. 

' 

.j 
' i 
·~ 
I· 

l 
..'!· 
........ 
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APPENDIX 8 

MINERAL ANALYSES 

~jor el-nt analyses of selected 111lnerals were per­
fol"'lled by the author using an electr91"1 probe •lcroanalyzer, with the 
esslstact"=e of Dr. H. Longrlch. The purpose of the •nalyses wu simply 
to positively fdentlfy the 11lnerals selected (pi!rtlcul.rly solid solution 
series 111lnerals). and thus '100'' results were not sought; Therefore, the 
results are only serni·quantltatlve. ' · 

TABLE 13 

AMPHIBOLE ANALYSES 

Sample I 77-A-3 77-A-5 78-110 78-C-6 78-18-la 78-t8-1b 78-18·1c 

5102 58.90 S7 .56 i42.77 lt4.}2 44.1) le).29 ~5.11 

TI02 0.06 0.04 0.31 ' 0. 34 d.30 0.33 0.29 
At 2o

3 
1.28 0.89 16.1t9 16.07 15.58 16.39 15.03 . 

cr2o
3 

0.06 0.00 0.02 0.02 0.02 O.Oit o.os 
F.O 7.71 3.90 21.65 18.60 18.80 18.80 17.85 

• 
MgO 20.33 22.36 7.18 8.81 8.70 8.82 9.75 
CaO 11.13 11 • ,.5 8.29 8.99 10.15 8 .98 8.55 
MnO 0. I It 0.07 0.04 0.08. 0.06 O. Oit 0.0] 

NIO 0.03 o.oo 0.07 0.01 0.03 o.olt o.os 
Na2o 0.28 0.26 2.56 2 .• 16 2.18 1.96 1.87 

~0 0.1" . o.o, 0.39 0.39 0.39 

Total 00.16 96.57 gg.}S 99.1t0 100.34 ,9.08 99.02 
(wt t) 

I gratns 3 It " 2 
analyzed 

NOTE: Standard amphibole formula calculated by t .he IHthod outlined, by 
Leake (1 978}. Leake's clan I flc:atlon of c:a lei c IIIIIPhlboles Is 
used In Figure 28. (Ferrous/ferric: Iron rec:alc:ulatlon after 
the methOd out 11 ned by K.napp (In prep.)) 

18, 110 and C-6 • -Ph·i-boles fr0111 Twllllc:k ISrook formation ~lc:-slllcate 
schists 

A-3 •nd A-5 • ....,hlboles fr0111 Antler Hill fo.-...tlon c:•lc-slll~t• schists 
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- • 

Ftrrt-AtlfiiOIIItc f•rr•~ 
Ferre- ... tlllilltMI Tttlttrllllllllt ..., ....... "., ...... 

CALQC AWHt.OUI• (Cet ..... ) 1.54 t Nt.j. O.t7 1 CNt t k~< 0 .801 Tl < 0 .10 
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. ' 

e .oo 

' 

Teclltrllltlrltt 

IA...,M- Ttclrer•tllttl 

•· 

fwrt- TaciiHIIItlrlrt 

FIGURE· 28• COMPOSITION OF CALC-SILICATE ROCK AMPHIBOLES 
• Twllllc• Br.ooll formation e Antler Hill for~~tatiOft 

Cmlntrol onolrttt ''"'" tn Tobie II - Append&a I I 

·' 

. 



354 

TABLE 14 

GARNET ANALYSES 

S-.ple I 79-253-2 78-52-1 7,·251-lt 78-110 78-18-1a 78-18·1b 78-18-lc: 

sio2 37.91 38.40 ItO. 39 39.60 38.01 38 .Ito 39.15 
Ti02 0. 19 0.01 0.09 0.07 0.09 0.08 0.05 
AJ

2
o
3 19.1t6 20.07 21.26 20 . 68 20.21 20 .~4 21 .61 

cr2o3 0.00 0. 00 0.02 0.02 0.02 0.01 0.05 
F~O :Z3.72 38.16 35.08 36.66 35.25 35.40 33.41 
HgO 0.36 o. 73 1.52 1.90 1.71 1.88 2.30 

. .. ~· ' 

CaO 8.28 6.0~ 6.65 6.57 7.70 8 .38 6.,S 
MnO 11.63 1.30 1.88 0.91 1.19 1.08 0.84 

"' Total 101.55 104.71 106.89 106.41 1 Olt. 18 105.67 tO.It.39 
(wt t) 

I grains 2 2 2 -4 4 2 
analyzed 

253-2 • from tona11tf~ gneiss 
52·1 • frCIII garnetlferous schist, Hount Musgrave formation 
251-lt • from schist In Twllllck Brook fonn.tlon 
110 and 18 • fra. calc-silicate schists In Twi 11 ick Brook formation 

) 
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TABLE 15 

PLAGIOCLASE ANALYSES 
, 

SIIIIP1e I 79-253-2 79-253-2 79-298-1 7~·298-1 
LCS 11LS LCS MLS 

Si02 68.55 71.57 68.03 66.69 
TJ02 o.oo 0.01 o.oo 0.01 

-~ Al 2o3 · 19.1} ·,, 19.02 18.89 '20.23 
Cr2o3 

0.00 o.oo 0.02 0.00 
FeO 0.05 0.04 0.05 0.08 
l'lgO 0.01 0.01 o:ot 0.0~ 
CaO 0.)0 0.20 0.33 2.07 
N•20 T2.07 12.54 12.63 11.39 

~0 0.05 0.04 0.04 o.olt 

Total 100.16 
(wt ') 

10).43 100.00 100.53 

I grel ns 6 3 2 2 
analyzed 

Mol. ., 

An 1.21 0.72 2 ... 9 9.13 
Ab 98.31 99.28 '7 .51 9().87 
Or o.lt8 0.00 0.00 0~00 

Albite ' Albite A 1 bl te Alb! te 

253 • leucosOMe (LCS) and ~lanoso.e (HlS) plagioclase In mlgmatftlc 

gneiss, ne.r 'One Mile Pond 1 

298 • leu~osai.e ti.CS) and •lanoscae (HLS) plagioclase In mlgmatltlc, 

1 Jt-par-1 It ljlnefss _frOift shore of Grand Lake 

.. 



356 

TABLE 15 (continued) 

s·emp1e I 77-A-3 78·134 78-146 78-158 79-205-2 

sro2 68.51 66.01 68.80 67.76 67.55 J 

rro2 0.00 0.01 0.01 0.00 0.02 
AF2o

3 19.03 20.82 18.75 20.3'2 18.46 
FeO 0.11 0.05 0.01 0.04 0. 10 I MgO 0.00 0.00 0.02 0~00 0.00 
CaD 0.50 2.57 0.0, 1. 79 0.04 \ \ 

I 

I'\ nO O.Olt 0.00 o. 01 . 0.00 0.00 
NIO 0.07 0.04 0.00 0.04 0.00 
Na2o 12.32 10.91 13.07 11.13 12.70 
K20 0.04 0.15 0.14 0.04 0.14 

Total t0G.62 A 100.56 
(wt %) 

100.90 101.12 99.01 

I" grains 5 5 
analyzed 

Kol. % 

An · 2.12 . 12.56 0.45 0.31 0.23 
Ab 97.88 87.50 99.10 91.69 99.32 

0.94 0. 45 0.45 ' Or o.oo 0.00 ) 

l Albite 0 I 1 goc: Ia se At b I te Alblte A I bl te 
~ 
.; 

;: 
'i 

r 

I A-3 . • from ca1c-slllcate schist In Antl•r Hill formation 
I J( 

134. 1 lt6 and 158 • f rCIII alb It• schIsts In Car I bou lake format I on I 
t. .. 205 . - . from alb Ite-m 1 ea schist ln ~unt Musgrave format ron 
! i: 

·I 
! 

I 

) 
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TABLE 15 (continued) 

Saapla I 78-18-la 78-18-1 b 78-18-lc 78·11 0 79-251-4 79-197·2 

$102 60.04 58.96 61.61 59.97 60.77 56 .07 

TI02 0. 00 o.oo 0.00 0. 00 0 .00 0 .03 

At 2o
3 22 . 75 25.23 23.~5 23.91 22 . 23 22.67 

cr2o3 
0. 00 0.00 0.02 0.00 o.oo 0.00 

FeO 0.00 O.Oit 0.02. O. OJt 0.02 0 .00 

HgO 0.02 0.00 0.00 0.00 0 .00 o.os 
CaO ... 92 6.1'9 s.n s.eo lt.70 s.n 
HnO 0. 00 0.00 0.00 0.00 0 . 01 o.oo 
HIO 0. 00 0.00 0.08 0.00 0.09 0.00 

Na2o 9. lit 6.53 7.62 7.88 9.05 7.59 

~0 0.00 0.32. o.op 0.00 0 .00 o.olt 

Tota.l 96.87 :g] .27 99.03 97.60 96.87 92.18 
(wt l) 

I grains 1 · 2 
analyzed 

Ho1. * 
An 22.97 ]3.43 29.57 28.97 22.22 29.53 

Ab ]7.03 61t.07 70.43 71.03 77.78 70.47 

Or o.oo 2.50 o.oo 0.00 0.00 0.00 

0 l .lgoc: lase Andeslae Oligoclase Oligoclase 

All plagloclasas fro. schists In Twllll:ck Brook .formatlon 

' t 
~ 
·~ 
'·•' 
' .. 

i 

1 

' ,, 
.;: 
' 
~-

,j 
' ,. 
' 
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TABLE 16 

OXIDE ANALYSES 
I 
I 
1 .. 

' .f 
78-158 Sample I 78-131t 7!-1li6 79-257-2 79-251-lt 78-55 

:t'i 
i ·:. 

SI02 
0.07 0.13 0.00 0.00 0.35 0.06 . 

1 TIO 39.01 "" . 59 25.1t9 70.33 86.37 o.oJt 
2 .. 

Al 2o
3 

0.02 o.oo 0.04 o.o6 0.56 0.00 

Cr2o3 
0.00 0.00 0.02 0.06 0.00 18.23 

FeO lt7.iO Sit. o8 71t .7lf 13.13 0.33 8,.32 ·, . 

MgO 0.08 0.00 o.or. 0.03 o.oo 0.25 

CaO 0.02 0.00 0.00 0.03 0.10 0.01 

MnO lt.ltlt 2.72 0.01 0.02 0.05 0 .62 

NIO 0.02 . 0.05 0.00 o.olt o.(o -0.59 

tMI20 0.01 0.00 0.00 0.00 r·' 0.01 0.00 

K2o 0.00 0.00 0.00 0.00 0.00 0.00 ' i 
Total 91.37 101 . 57 100~34 S3.69 87.87 109.12 

* ;t, 

(wt t) 

I grains 2 2 2 

analyzed 
} 

llmenl te Ilmenite ·· Rutile ChrMite 

_,. 
'· ' 

. t ]It. 158. 146 and ' 257 • frc:n schists In Carl bou Lake fonMtlon l 
251 • frc:n sehlst In Twllllck Brook formation . . ' ... 
55 • fr011 serpentinite In Serpentinite unit 

• 
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Sample I 

SJ02 
TI02 
At 2o3 . 
cr2o3, 
FeO 

HgO 

CaO 
HnO 

1110 
tt.2o 

• KzO 

Total 
(w~ :t) 

I grains 
analyzed 

A-5 and .A-3 

205 and 275 

\_:, 

n-A-5 
Dlopslde 

56.37 
0.02 
0.41 

0.00 
3.37 

17 .• 25 
21.59 
0.23 
0.00 
0.16 

0.00 

99. ItO 

• f rCII' 
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TABLE 17 

MISCELLANEOUS ANALYSES 

77-A-5 77-A-3 17-A-3 

K-feldspar . · Phlogopite 

61.lt9 58.13 lt3.10 

0.02 0.04 0.80 

17.99 17.00 15.55 

0.01 o.oo 0.00 

0.05 0.10 10.90 

0.00 0.00 18.87 

0.00 0.00 0.02 . 

0.01 0.00 0.05 

o.oo 0.03 0.07 

O;]O LOO 0.24 

13.27 12.06 8.63 

93.54 . 88.)6 98.23 

79-205-2 79-257-~ ' 

Tourmaline 

36.60 36.,06 

0.30 o·~sa 

28.95 .~8.21 
I 

ct.oz I 
I 

0.00 

12.39 ! 
, 1. 97 

6 .09/ 6.64 

0.2, 0 ... 8 

0.«!2 ' 0.01 
/ 0.00 ~.01 

.IJ..n 2~72. 

·/ o.oo 0.00 
! 

I 87.3"3 86.67 
I 

2 
: . . /. 2 

calc-silicate schl;ts In An formation 

• from schists In Haunt 'Musgrave fci1-atlon 

' 4 . . • 
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APPENDIX C 

SIGNIFICANCE AND EXTENT OF ALLEGHENIAN DEFORMATION 
AND DISCUSSION. 

LITERATURE REVIEW 

IJ an attempt to determine if late deformation events in the 
Corner Br~ake area could- be related to the regional Alleghenian Or.,o­
geny. a br1ef lltera~ure review was carried out to assess the significance 
and extent of deforJMtion· in Carboniferous rocks in the Karitime and New­
foundland Appalachians. In the author's opinion, the evidence presented 
below Indicates that Alleghenian deformation in western Newfoundland has 
been largely underestimated by recent workers In the area. 

Work In the ~-rl times has shown that Alleghenlan deformation 
wa~ locally quite intense (Rodgers 1967; Poole et al. 1970; Schenck 1971, 
1978; Rast and Grant 1973; W1111ams et al. 1974; Poole.1976; Currie 1977). 
Poole et al. (1970) note that northeast-trending open folds and high-
angle reverse and strike-slip faults are characteristic of the deformation 
in Carboniferous rocks in the region, and they suggest that the ''structures 
were mainly a response to deformat-ion in the pre-Carboniferous basement" 
(p. 295) . They also note that the para! lellsm of structures in Carbon­
iferous and pre-Carboniferous rocks suggests that •regional compression• 
was the principal cause of deformation. In addition, they point ou't the 
existence of north-trending cross-folds, and note that the style of defor­
mation away ,from the Carboniferous basins is typically open folding and 
minor faulting. Schenck (1971, 1978) notes that folding, faulting, intru­
sion, metamorphism and thrusting are all locally products of Alleghenian 
age in the Maritimes. Rast and Grant (1973) suggest the e)(istence of re­
cumbent folds and major west-dire~ted thrusts in New Brunswick Carboniferous 
rocks, deformation which they associate with an 'orogenic front' tectonic 
setting. Currie {1977) points out that recent regional syntheses (i .e., 
Poole et ar. 1970; Williams et al. 197,.) have underestimated the intensity 
of Carboniferous and later defonnation. He notes significant post-Mississ­
ippian deformation on Cape Breton 1sland involving southwest-directed 
thrusting, which superposes possible Precambrian rocks on ·rocks of Miss­
issippian age: 

This sampling of ~rk in the Karlt lmes clearly demonstrates 
the . significance of Alleghenlan defonmation in Carboniferous rocks .and, 
more Importantly, in pre-Carboniferous rocks. This point takes on more 
importance in the context of Alleghenl~ defo~tion in Newfoundland. 

The literature on western Newfoundland geology indicates quite 
clearly that defor~Mtlon of similar s~ale and style as that in the Marl­
times has affected rocks along the entire length of western Newfoundland. 

Deformation of Allegnent., agehas long been recognized and 
was given considerable emphasis by early workers in the area (e.g., Schu­
chert and Dunbar 1934;•Hayes and Johnson 1938; Betz 1943, 1948; Walthier 
19ft9). In spi-te of thls, recent regional syntheses (Poole et al. 1970; 
Williams et al. · 1972, 197~; Poole 1976; s~~nck 1978), in the author's 
opinion, underestimate the extent and significance of the defonmatlon in 
the region. Local stu.dies (e.g., Kn i-ght 1975, 1976;Fong 1976a; Hyde 
1979a) recognized the degree and extent of·the defonmation, but failed to 
note the obvious regional correlation with the Alleghenian. 

Figure 29 Is a conpilation of the effects of Alleghenian defor­
mation In the Carboniferous basins and adjacent areas of western Newfound­
land. O"ly the major folds and faults are shown. The reader is referred 
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to the sour~es 1 isted on the figure for more detailed information on the 
stru~tural features outlined below. 

Regarding the general natur·e of deformation in the Bay St. 
George Basin, Hayes and Johnson (1938) noted that "At the close of the 
Paleozoic, Intense compression between great masses of igneous rocks •... 
caused paralle 1 overthrusts and underthrusts with a northeast trend~' (p. 9). 
In the same vein, Knight ( 1975) cone 1 udes: "Req I ona I de format ion fo 11 owing 
deposition of the Carboniferous produced a complex of northeast-trending 
folds and faults" (p. 38-39). From the work of Hayes and Johnson (1938), 
Bell {1948), Riley (1962), Knight (1975, 1976), Fang and Douglas (1975) 
and Fong (1976a), the f)llowing picture of deformation in the basin emerges: 
The deformation is complex and may have been mul itphase. Folds and faults 
trend northeasterly, · and folds are l!'ainJy upright to northwest overturned. 
Southeast-dipping reverse, or lower angle thrust faults, are par.ticularly 
common. Slaty cleavage and associated chlorite growth are only local 
phenomena. A significant feature of the deformation is the sinuous vari­
ation in trend of the ~jor folds and the occurrence of minor folds (likely 
related) that trend and plunge to the northwest. 

It is notable that relatively intense deformation in the basin 
is not restricted to the vicinity of major faults, such as the Cabot Fault 
which defines the eastern margin of the basin. Deformation along the , 
~oa!t to the west Is apparently lpcally of equal intensity. In this regard, 
Hayes and Johnson {1938) noted that "overturned folds along· the coast are 
compressed as much as along the Long Range" (p. 9), while Fong and Douglas 
(1975) commented that Mississippian rocks on the coast in the northern 
part of the basin are "repeatedly folded and faulted to form tight anti­
clines, synclines, thrusts and overturned beds" (p. 29). 

Intense Alleghenian age deformation is also recorded just east 
of the basin, where Brown (1977) has noted three phases of deformation in 
Carboniferous rocks in the Cape Ray Fault zone, which are clearly related 
to movements in the fault zone. By contrast, Pennsylvanian rocks near the 
Port .au Port Peninsula are relatively flat lying and undeformed (Riley 
1962)., and thus serve to define the western limit of significant poBt­
Carbonife.rous deformation. 

The Cabot Fault has apparently had a complex history, which 
has so far proven to be Impossible to characterize in detail. Knight 
(1976) observed the fault at two localities in the southern part of the 
Bay St. George Basin and found It to dip steeply southeast, and to have oiln 
associated shear zone (2-3m wide} in Carboniferous rocks beneath it. This 
suggeststoKnight that the latest movement was reverse in nature, but he 
also notes evidence of earlier strike slip movement. Westward thrusting 
of the Long Range rocks over Carboniferous sediments was long ago suggested 
by, among others, Schuchert and Oun~r (1934) and Hayes and Johnson (1938). 
Regarding the regional significance of such movements·, Schuchert and Dunbar 
{193\) remarked .that the senior author (Schuchert) 

llias of the -Impression that the post-Carboniferous 
faulting was of normal type and that the fblding 
of the strata was local in character and due to 
this faulting; but it is now clear that the major 
faulting was of the thtust type. This fact wholly 
alters the conception that there was no compression 
In Mewfoundland during the post-Carboniferous 
(Appalachian) revolution. However, compression and 
folding are greatest to the west of the major over­
thrust at the bese of the Long Range Mountains, and 
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appear to die out farther west (Port au Port) 
and on the east side of the range as well .••. 
This overthrusting ••.. reached its final expres­
sion during the Appalachian revolution" (p. 14-15). 

Such regional thrusting indicates the influence of Alleghenian 
deformation not only on Carboniferous rocks, but also on pre-Carboniferous 
rocks. Before going on, it is interesting to note one possible manifes­
tation of this type of regional deformation which has spec ial importance 
with regard to the structural history of the Corner Brook Lake area. 

At the northern end of the Bay St . George Basin, a 'b lock' of 
Precambrian rocks, including anorthosite (Williams 1967a) is isolated west 
of the Cabot .Fault and extends northeast into the Corner Brook lake area 
where it Is bounded on the west side by the Grand Lake Thrust. Hayes and 
Johnson (1938) suggested structures in the Carboniferous rocks just west 
of this 'block' are the product of "severe thrusting opposite (this) pro­
tuberant shoulder of anorthosl te In the long Range" (p. 8). The Grand Lake 
Thrust extends southwest for at least 5 km .from the map area (Martineau 
1980}, and In view of the proposal of Hayes and Johnson (1938) and the 
following lines of evidence, it is proposed here that the Grand Lake Thrust 
extends even farther south and marks the western side of this Precambrian 
'block' : 1/ evidence that the Grand lake Thrust and other ~hrusts in the 
Corner Brook lake area appear to have experienced post-Acadian movement, 
and 2/ existenc, of a possible re-entrant In the thrust block near Lost 
Pond, as indicated by the aeromagnetic pattern (Hap 269G - GSC, 1968) 
which shows the distinct Precambrian signature truncated by the Lost Pond 
valley in which is found the lower intensity pattern typical of the Car­
boniferous rocks to the west. 

Carboniferous rocks in the Deer lake Basin have most recently 
been studied by, among othf:rS, Hyde (1978, 1979a), Hyde and Ware (1980) and 
Fang (1976b). The1r results indicate relatively Intense deformation invol­
ving extensive folding and faulting In "isslssippian rocks (Anguille Group) 
and leS!. Intense deformation· In unconfonnably overlying Pennsylvanian rocks 
(Oeer Lake Group). The Mississippian rocks display open to tight, upright 
to overt:urned folds, with axial planes dipping mainly eastwerd and fold 
axes plunging shallowly northeast or southwest ... Cleavage is locally devel­
oped, but metamorphism Is not recorded. The Pennsylvanian rocks, by con­
trast, are much more gently folded on a r8gional scale, and most strongly 
defonmed near faults. The regional folds parallel the northeast trends 
of those In the underlying more defonmed rocks. It Is notable that major 
fold traces have the same sinuous variations as noted In the Bay St. George 
Basin, though they are not quite as pronounced. High-angle, northeast­
trending faults are dominant, and most of the larger ones are either east­
d lppl ng reverse or strIke-s I ·I p fau Its. 

East of the Deer Lake Basin, Kean (1978) reports that Pennsyl­
vanian rocks near Red Indian Lake exhibit only very mild deformation, but 
are gentiy folded 1bout a northeast-trending axis. 

Alle43henian age deformation of the same style and intensity 
as found in the.Deer lake Basin has also been recognized in Mississ ippian 
rocks in the ~ i te Bay ilrea (Heyl 1 937; Betz 1948; Lock 1969, t 972; Wi I I i ams 
1977b; Hyde 1978, 1979a). The earlier workers (Heyl and Betz) suggested 
that the post-Mississippian structures in the area were dominated by west­
directed reverse faults. The other workers note the significance of the 

r defonmatlon, but either refrain from comment on the existence of such 
faults, or suggest another sense 'of movement. 

Much farther north, on the coast between Canada Bay and Hare 
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Bay, evidence of Alleghenian defo~tlon Is recorded on two ~II penin­
su'1as underlain by Carboniferous rocks (hi rd 1957). The rocks contain 
two, oppositely plunging, northeast- and north-trending, open folds, and 
they are faulted against Lower Paleozoic transported clastic rocks to the 
wes:t (Smyth 1971). Bet% (1948), after unpublished work by H. Johnson of 
the:: Newfoundland Geological Survey, suggests that the fault Is aneast­
dlp~ing reverse of thrust fault. The differing uiaJ traces of the folds 
may ' reflect the same sinuosity noted In Carboniferous rocks farther south. 

, Other evidence of Alleghenlan age deformation In this region 
comes from the work of Betz (1939) and. more recently, Knight and Saltman 
(1980). This work demonstrates the existence of northeast-trending thrust 
faults, most of which are attributed to Taconic movements associated with . 
emplacement of t~e Hare Bay Allochthon. Kowever, Knight and Saltman (1980) 
note that a late, subhorlzontal to gently southeast-dipping cleavage, 
spacially associated with some of the thrusts, locally overprints northeast­
plunging, northwest-facing ~n folds and their axial plan..e cluvage. The 
style of the folds and their cleavage suggest they are Acadian products, 
and thus the latest cleavage, "related to late localized movements . along 
the (earlier) thrusts" (p. 26), is likely of ~lleghenlan age. This Inter­
pretation receives strong support fro. the flndlngs ·of Smyth {1973) in the 
Hare Bay area, where the subhorlzontal Hare Bay Thrust Is found to truncate 
upright structures Interpreted to be A~dian In age, again . Implying post­
Ac~lan (likely Alleghenlan) defo~tion Involving west-dlre,ted tectonic 
movements. 

Away fra. the ~in axis of deformed Carboniferous rocks. on 
the western side of the Northern Peninsula, It Is notable that Oxley (1953) 
noted the extensive and Intensive folding and thrusting of rocks now inter­
preted to be part of the Humber Arm Allochthon. He found that this defor­
mation becOMes more Intense sout~rd t01o1ard Bonne Bay, and he also found 
deep re-entrants In the long Range, suggesting a gently southeast-dipping 
thrust plane beneath the ~ntalns. Although such thrusting· can only be 
dated as post-Ordovician, Oxley (1953) postulated that the Precambrian rocks 
may have been thrust wt~stwalrd alon<J the Long Range Thrust (Johnson 1939) 
daring Carboniferous tl-.. Thus, like similar major faults bounding Pre­
calllbrlan rocks to the south (l.e.,ll,rand Lake Thrust a~ Cabot Fault), 
the Long Range Thrust may be In pert an Alleghenlan fe.ture. 

Cause of Alleghanian defonwatlon 

Current Interpretations of the te~tonlcs of Al leghenian age 
revolv• around faulting as the 'cause of folding' (e.g., Poole · 1976; Hyde 
1979a). 

From the literature revl._ It Is evident that much of the minor 
folding In the. youngest Carboniferous rocks Is directly related to hulting, 
but It would appear .ast unlikely that the regional-scale folds are due 
directly to faulting. Regardless of the Influence of faulting on folding, 
attributing the deform.tlon to fault movements simply begs the quest ion 
what caused the faultlng1 Regional orogenesis Is ruled. out by most Workers 
- but what could have caused regional-seale defonnation if no~ regional­
scale tectonics? 

The solution to the problem appears to be a matter of seale. 
It is evident "that Alleghenlan defonmation ln'western Newfound)and is rel­
atively intense t~long the zone of Carboniferous basins, and that i t decreases 
both east and west away from the basins . In this regard It Is notable that 
the width of the zone of Carboniferous deformation is approximately the 
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san~e 'as. that of the Taconic deformed zone (IIi II i ams 1979) , and that the 
two zones are nearlov•oincident. This is not to suggest that Alleghenian 
plate margin tectonics are recorded in west Newfoundland, but it seems 
most probab_le that the deformation is somehow related to plate tecton ic 
prcx:esses. 

It Is suggested here that the Alleghenian deformation in 
western Newfoundland (botn faulting and folding) was produced mainly by 
recJional 'east-west' compression concentrated at a higl'l cr1,1stal level 
(low temperature/pressure) In a pre-eJ(istlng zone of crustal weakness, the 
initial structural .orlentat·ion of which pre-determined the dominant west­
directed tectonic style of the Alleghenian. The original zone' of crustal 
weakness near the .map area may have been at or near the rifted edge of the 
continental crust (the later edge of the Lower Paleozoic continental margin). 
The regional stresses may have been generated by plate coil is ions far to 
the 'east', such as the Carboniferous-age plate jnteractlons suggested by 
Riding (1974). 

TJ'lis brief overview of Alleghenian and possible Alleghen ian 
de format I on) /o\ the northern Appa 1 ach i ans is not intended to be compre­
hensive, but only to highlight the main aspects and regional extent of 
the deformation. This re(fiew illustrates the significance of the currently 
underestimated effects of Alleghenian Orogeny in western Newfoundland, 
puticularly the effects on pre-Carboniferous rocks, and makes it clear 
that the style, orientation and intensity of structures in Carboniferous 
rocks .-re correlative to late (04/DS) ' deformation events in the Corner 
Brook Lake area. -

·- --­-~ 
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APPEND I X D 

HAND SPECIMEN SUITE FOR THE CORNER BROOK LAKE AREA 

The following descriptions apply to the collection of hand 
specimens retained by the Geology Department of Memorial University. The 
suite adequately represents the variations in 1 itl)ology found in the Corner 
Brook Lake a rea . 

Sample locations are shown on the accompanying map of t he area 
(F igure 30), which also shows the locations of al l samples referred t o in 
the thesis. Note, however, that the sample numbers on the map do not have 
the double prefix found in the sample collection (e .g ., DK-78-, the author's 
initials and the year the sample was collected), and l ikewise do not have 
a suffix (e.g., -1) used to distinguish different samples from the same 
locality. , In a few cases, dupl ication of sample number required using a 
single digit prefix (e.g., 7- or 8-) on the map to distinguish samples with 
the same number collected during the 1977 or 1978 field season. 

GNEISSIC TERRANE 

DK-77-68-1 
OK-79-226 
DK-77-A-12 

Tonalitic gneiss complex (map unit 1): 

medium-grained, green, massive biotite gneiss 
-medium-grained, green, foliated, biotite-gneiss 
-green, tonalitic gneiss (migmatitic)- tonalite leuco some 

and biotite- r ich melanosome 
OK-77-43-4 -light grey, mylonitized, tonalitic gne iss 
OK-77-B-8 fine-grained, ma~sive, grey-green tona l it ic gneiss 
DK-78-29-1 -grey, biotite, tonalitic gneiss 
OK-79-302-2- grey, f i nely layered, biotite, tonalit ic gniess 
DK-79-298-4- grey, fine-grained, strongly lineated, hornblende-biotite 

DK-77-71-1 
DK-77-43-2 
DK-77-55-1 
OK-79-299-1 

DK-78-25-1 

DK-77-A-9 
DK-77-A-8 
DK-77-A-6 
DK-77-A-3 
DK-77-A-5 

gneiss 
-green, medium-grained, foliated amphibolite 
-black, fine-gra i ned, biotite amphibolite (mylonite) 
-green, strongly defonmed and retrograded amphibolite 
- black, garnet-biotite amphibolite 

Antler Hi 1 I formation (map unit 2) 

- buff, quartzofeldspathic schist (chloritized garnet porph-y:ro-
b1asts) 

- fine-grained, quartzofeldspathic schist · 
- garnetiferous, pelitic layer in quartzofeldspathic schis ts 
- grey and white quartzite (Quartzite member) 
- dark green actinolite schist (Quartzite member) 
-light green, diopside-tremolite schist (Quartzite member) 

Last Hill adamellite (map unit 11) 

DK-78-28 - pink, massive, leucocratic adam.ell ite 
DK-79-332-1 - pink, tonalite from margin of adamellite pluton 
OK-79-332- 3 - contact migmatite from margin of plu ton 
OK-77-75- 1 - pink, medium-grained foliated adam.ellite 
OK-77-43-7 pink, apl itic dyke rock cutting Tonaliti~ gneiss complex 
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METACLASTI C TERRANE 

Caribou Lake formation (mapunit 3) 

Albite schist member 

D~-78-167 
OK-78-134 
DK-78-146 
DK-79-286 
DK-78-143 
DK-78-176 

-coarse-grained albite schist 
-coarse-grained albite schist (strong albite 1 ineat ion) 
- medil.ITl-gra.ined albite schist 
- medil.l11-·gra i ned, green albite-mica schist 
- medium-grained a 1 bite schist 
-fine-grained, black, mylonitic albite schi s t 

Metaconglomerat@ member 

OK-78-84-1 -metaconglomerate with quartz and feldspar pebbles 
OK-78-17-Z coarse-grained meta-arkose (displays relict bedding, fo l ded 

hematite-rich layer, and blue quartz) 
DK-78-15-1 -plagioclase 'augen gneiss' (weak lineation, originally meta.:. 

conglomerate?) 
DK-78-14-3 - pink,•quartz-plagioclase-mica schist layer (meta-arkose) with 

darker, mica-rich layer both layers contain post-0~ 
biotite porphyroblasts (larger in pel i te layer) 

OK-78-40-2 -pink, plagioclase-quartz-mica schist (meta-arkose ) 
DK-78-40-1 -green, biotite amphibolite (cuts meta-arkose sample 40-2) 
OK-78-157-1 -fine-gra i ned, plagioclase-quartz-mica schisl (meta-arkose ) 
DK-78-112-1 -medium-grained meta-arkose \ 
OK-78-162-2 - fine-gra i ned meta-arkose \ 
DK-79-322-1- 'porphyr i tic', intensely altered trachyte (hypabyssal dyke) 
DK-79-322-4 - same as sample 322-1 
DK-79-280-2 -amphibolite 
DK-79-280-3- adamellite, cuts amphibolite of sample 280-2 
DK-79-283 albite schist with adularia vein 

DK-77-B-1 

DK-78-161-1 
OK-78-122-2 
OK-79-173 
01<.- 78-33-1 
DK-79-205- 2 
DK-78-119-1 

DK-78-124-1 
OK-78-100-1 
DK-78-140 

~OK-78-169 
OK-78-148 

Mount Musgrave formation (map unit 4) 

-garnet-quartz-mica schist (porphyroblasts s l ightly rotated 
by late crenulation) 

-grey garnet-quartz-mica schist (dominant schistosity is S2) 
grey-green, layered, quartz-feldspar-muscov i te-chlorite schist 

-garnet-mica schist ("part ly chloritized garnet porphyrob lasts ) 
-grey-green mica schist (tourmaline crystals) 
-green mica schist (tourmaline and albite porphyroblasts ) 
-green mica schist (layer in quartzose sequence -garnet and 

biotite porphyroblasts) 
-rusty-weathering, fine-grained quartzite 
-quartz-feldspar-mica schist (red garnet porphyroblasts) 
-garnet-quartz-mica schist (stron·g 1 ineation) 
-quartz-albite-mica schist 
- quartz-albite-mica schist (albite and biotite porphyrob lasts-

dominant foliation is 53 crenulation of S2 -post-52 porphyro-
blasts) " 

DK-79- 211-Z - albite-quartz-muscovile schist (blue quartz) 
DK-7~-260-2 -garnet amphibolite layer (dyke) in Q•Jartzose sequence 

/ 



DK-79-249 
DK-78-D-6 
DK-78-103 
DK-78-59-1 

DK-78-59-2 
OK-78-18-1 

OK-78-76-1 
OK-78-197 
DK-78-108 
OK-78-58-1 
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Tw l llick Brook formation (map unit 5) 

calcareous schist with hornblende porphyroblasts 
-calc-silicate schist (hornblende) , 
-calcareous schist (biotite and zoisi t e porphyroblasts) 
-medium-grained grey micaceous marble (spotted with biotite 

porphyroblasts - tightly folded) 
- hornblende porphyroblasts in calcareous schist 
-dark grey, para-amphibolite (horn blende, garnet and plag io-

clase porphyroblasts) 
- ca 1 c - s i 1 ica t e s c h i s t 

large zoisite crystals, bent and fractured- minor rutile 
- blaclt, biotite-rich calcareous schist 
-micaceous (biotite+ muscovite), calcitic, "medium-gra i ned 

marble 

Serpentinite unit (map unit 10) 

DK-78-55-1 -massive, fine-grained, green serpentinite (chromite) 

CARBONATE TERRANE 

Grand Lake Brook Group (map unit 6) 

Sta,g Hi 11 

DK-78-82-2 
DK-78-82-1 

format1on 

DK-78-172-2 
DK- 77-69-1 
DK-77-IfS-1 
OK-77-If7-1 

- fine-grained, grey quartz i te 
-mica schist layer in quartzite sequence (small albite por-

phyrobla5ts) 
-grey, rusty-weathering, mi caceous quartzite ( blue quartz ) 
-medium-grained, grey quartzite (blue quartz) 
-grey, pyritiferous, phyll i te (phylliticschist) (t ight F3 fold) 
-grey, fine-g rained, mylonitic psarrmite (post-mylorrite F3 fo ld 

- feldspar porphyrocl~sts) 

Reluctant Head Formation 

DK-79-207-2 
OK-78-1-1 
DK-78-38-1 
DK-77-53-4 

OK-77-23-1 
OK- 77-31-1 

OK-77-64-1 
OK-77-If9-1 
OK- 77-If9-2 

OK-78-170 
OK-77-61-1 
OK-77-59-1 

- grey phyllitic marble 
- grey, fine-grained, calcitic marble 
-grey, fine-grained, seric i tic marble 
-grey and white marble conglomerate (flattened white clasts 

in grey matrix- stylolites) 
-dark grey phyl litic marble 
-grey fine-grained, sericitic, calcitic marble 

St. George Group (map unit 7) 
- fine-grained, buff to pink, calcitic marble 
- fine-grained, purple, dolomitic marble 
-fine-grained, slaty to phyllitic layer in dolomitic ma r b les 

Table Head Group (map unit 8) 

-dark grey, muddy, calcitic marble (knobby - weathering) 
-grey, fine-grained, calcitic marble 
-light grey, fine-grained, calciti·c marble 
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Humber Arm S upe rg roup (map un i t 9) 

DK-77-11-1 - pyrltiferous. black slate (dominant foliation i s S3 crenu-
lation of S2 pressure shadows around pyrite) 

OK-78-2-1 - black slate {pyrite) 
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