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ABSTRACT 

' .. 
The Upper Pillow Lavas of the Troodo~ Ophiolite Complex, 

Cyprus~ were formed i11 a back-arc basil'l" environm'ent by a second-stage 

· partial melting event, which produced magmas depleted, in large jon litho­

phile elements and enriched in magnesium . Renewed, second-stage melting 

tq produce these magmas was facil i tate4 by de hydration of subdue ted · 
' 

oceanic 1 ithosphere as the spreading axis along which they wer'e extrude( . 

mOved away froma subduction zone. These parental magmas migratedupward 

. to accumulate in shallow magma chambers and ultimately were extruded off­

axis aS the U~per Pillow Lava Series. 

The Upper Pillow Lavas exhibit genetic tie-s with th'e underlying -. 
lower Pillow Lavas of the Troodos Ophiolite Complex ·i;nsofar as the latter 

I 

represent· the 'noroial' first-stage partial rilelting (21-2.3%) of 'fertile' 

upper mantle~ erupted at a back-arc basi"'' s'preadi ng . :c~ntre above a 
. ' ~ 

subduction zone. The Upper Pillow Lavas, however, are considered disti nci 

in character from the Lower Pillow Lavas, based on compositional and 

metamorphic criteria. The·petrographic and field classification of 

~mewing ( 1975) has been slightly mod{fied, and the Upper Pillow lavas are 

divided into four types: ·ultrabasic rocks, basaltic komatiites, olivine 

basalts and aphyric basalts. Major element extraction calcul ations and 
• 

trace element modelling have shown that the magma parental to the Upper 

·Pillow Lavas series could have been produced by ~5% p~rtial mel t i ng of a 

depleted source peridotite~ and that the less primitive tocks of the 

Upper Pillow lavas (olivine and aphyric basalts) could have been derived 
I . . 

by the fractional crystalliza~ion of 24-32% olivine from this pare.ntal 

magma; the ultramafic lavas represent accumulation of thi s olivine . This 

I 
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concept of olivine extraction. was tested by comparing the calculated' ' 
·. 

compos1tion of ol ivines wh{ch would crystall'i~e from the parental liquid, 
~ -

and the actual compositio_n of the cu.rnulus olivines. · 
• 

Projections into the basalt tetrahedron and C-M-A-S systems 

confinn that early-:-crystall izin~ olivfn~ was followed down-temperature · 

by· orthopyroxene and clinopyroxene ·;n the komatiites,·and that quenching 

of the groundmaSs glass occurred before plagioclase became a liquidus 

phase· ' 
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. I. INTRODUCTION . -. 
I .1. Genera 1: Statement· . • · 

. } . 
.. 

-· 
' .. 

Cyprus fs an 'i-s~ a~d. of som: 9300 km2. in t~ extr:eme ·.eastern .­

p~rt of the Mediterranean Sea . ; It iS situated )5 kni south of Turkey and . . . . . . 

105. km wesf of the ·coast of Syria, and· {s .readily a~cessible b.Y major -a i r . 

or sea routes. · .. 
This project was conceived in 1977 as a study• of. the geochem-

i~try aAd pet.rogenesis · ·of'the Upper Pillo~ Lavas of the. Troodos OJ]hioli _t_e . , 
' -

Complex. The author went ·to Cyprus in . the e'arly summer of 1978 -and 
. -----!..:._ ___ . ·- . .. .: 

· travelled ·around the · isl~nd extensively, ··collecting sa~les · representa--· 
• 

tive of the dive~sity of the Upper Pillow L.avas • . 
I 

Q , • . 

1.2 Topography and Climate· 

' ' 
The topography of the is 1 and 

trending mountain hnges sepa.rated by a. central' plain, 'the· Mesaoria. The 

Kyreni~. Range ·of the ~orth comprises. folded Mesozoic ·sedi~ntary · rocks 

which form a ~arc along the northern coast and are considered the 
. . '\~ . 

southe most portion of the Tauro-Dinaric Alps. Towards the south the 

Troodos Mounta-ins reach an imposing 6400 feet' above sea level and domin­

ate . the southwest corner of the island~· · Here tbere is ·a general coinci ­

dence of geology and topography. for t'he re~istant mafic · a11d ultramafic 
. . . . . . . 

rock-s _of the·Troodos Oph i oliteComple~ . form the core of a dome, nianif~st 

a.s the Troodos Moun-tain Range. Outward from this core less' reststant 
. .. . 

rotlc types crop out, i.e. gabbros, diabase and . pillow la.vas/sedfments, 

,.. witt1\ a corre.spondin'ldecrease ;n topographic· relief. · Hence t.he . Upper 

.• .. 

1 

: 
, I 

.., . 
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Pillow Lavas at the periphery of the Complex occur on the edge of the 

mountain range · as well, . and are cut by numerous mountain-born streams 

which provide the most accessibie sections. 

The island of Cyprus h"s long been known for its heal thy and 

agreeable climate. The ·mean daily temperature in the Mesoari a Plain 

ranges from about l0°C in winter to ·.about 32°C in surm~er. In the nnun-
. - · I 

. ' : . 
tains the mean temperature .is ' ~sually about II o lower, with a further .. 
substantial drop in temperature at night. Alleviation from the sometimes 

stifling heat of the interior plain c~n be found along the coast~ where 

sea breezes .blow along shore. During summer, evening on the central 

plain is regularly heralded by a. cool breeze from the west, blowing land­

ward froJU Morphou Bay. The very low relative humidity of the atmosphere, 

howe-ver, generally makes life fai~y comf~rtable at all tim(!s . of the 

year. 
/ 

1.3 Location and Access; Method of Investigation 

The author's field work dealt primarily·_ with the collect ion of , 

geological specimens from the Upper and Lower Pillow Lavas. although work 

was concentrated upon the fanner unit. Where a distinction in the field . . J 
between the two units was difficult to make, collectio~ was made with t 'he 

. . 
aim in mind of subsequently allocating the rocks on the basis of petro-

graphical and/Or chemical analyses. Maps generously supplied by the 
. . ., . . 

Geological S11rvey, Department and the Hellenic Mining company, Nicosia, 
• 
' w·ere used in the field and are· reproduced as sample location maps in 

Plates I • 3. 

• . i 
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A small car enabied the · author to make u~e of the many second-

ary roads which wander through the peripheral foothills of Cyprus; these, 

along with abundant dried stream beds render ' most areas of exposure of· 

the lavas rea>dily accessible. 

Most of the Upper Pillow Lava outcrop area has been extensively 

mapped on a scale of 1:31680 and 1:10000. This work was carried out in 

the late 1950's and 1960's by members of the Geo1ogical Survey Depart-

ment, and ·no attempt was made in the present work to remap the units. 

Work was concentrated on the northeastern and southeastern portions of 

the Upper Pillow Lavas; the more highly weathered aspect of the rocks in 

the western part of the Troodos Complex as well as more limited exposure 

made the collection of good samples from these areas difficult • . Cert'ain 
,-

areas of the Upper Pi 11 ow Lava outcrop, such as · the · isolated patch north 

of Larnaca, and the northwestern exposure from Kokkina Poi nt to the 

vicinity of Skouriotissa, were . politically inaccessible, as the United-
, , / 

Nations-patrolled unofficial boundary between the southern and Turkish- e.;-. 

occup1 ed northern part . of Cyprus runs through these areas •. 
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I I. REGIONAL GEOLOGY OF CYPRUS 

,, .. 

I.I.l Previous· Work 

The mineral resources of .Cyprus have · tleen know since the days 

of the anci-ents, Aristotle knew of its copper, and various doctors and 

geographers of the ti~ of the Roman Empire made reference to the ge neral 

shape of the island and the fonn of its mountains. 

The French geologist M. Albert Gaudry carr:ied out the first · 

systematic geological study in 1853 and 1854, which resulted in the . . . 

publication of a report and sketch . map in 1862. He observed a series of .... . 
fine~grained basaltic rocks wtlich were intruded by serpentinites and 

~ "granitones". In 1865 F. Unger and Th. Kotschy published a paper on the 

geology of Cyprus which included some revi sf on of the work of Gaudry. r n 

1892 A. Bergeat published a more comprehensive study of the igneous 

rocks, .. concentrating on, the mafic and ultramafic rocks of the Troodos 

~untains. L. Finkh in 1898 compared the serpentinite of . the Troodos 

Massi.f to similar rock types in North Syria • . 
In 1905 C.V. Bellamy produced a map of scale 5 1/2 i nches to a 

. mile, which later in the same year included a memoir conjointly published 

by Bellamy p~nd A.J. Juk~.s-Browne. These authors supported the earlier 

view of Gaudry that the Troodos igneous rocks were 1 nt ruded i r'lt o Ida 1 1 an 

sediments during late Miocene tfmes . and that the high positive rel. ief of . . 
the Troodos Massif resulted from powerful igneous activity. 

A petrological study of the TroOdos area was pltblished in 1910 

' by A. Zdarslcy, who noted the presence of o11 vine gabbro arld gabbro-pegma-

,. 

t. 

1 
i I 
! : 
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~· t. 

tftes, and paid particular/attention to chrysotile asbestos deposits 
. . 

within bast1te-serpentfne. ·In 1915 Kober suggested tha~ the Troodos ig-

neous rocks were Cretaceous to Eocene . in age, based on a c0111par1so~ wilth 

serpent 1 ne 1ntrus1 ons of the Kurdish Mountains of Turkey, Iraq. and 

Iran. 

ln 1921 c. Gilbert Cu111s and A; Broughton were conmis.s1dned by 
( 

. the British Colonial Office to report on the cupriferous deposits of 

Cyprus. As their wort was primarily concerned with the finer grained 

rocks wh1 ch hosted the copper depos1 ts.- they were . apparently the first to 

recog'li ze the sf gni fi cance of the pill owed structures and their submarine 

affinity. They concluded that the lavas were extruded during Miocene 

time and were foll_owed by the .deposition of the Idalian sediments, ~ich 

A were subsequently trans fonne'd from bas a 1 marls ·· to umber by mangan1 ferous 

solutions emanating from the underlying lavas. · A vertical compress1ve 

movement then injected Troodos pl uton1 c rocks into the diabase · (Cul11 s 

and Edge, 1922). 

The earliest geophysical study was published in 1939 by c. Mace 

and made an important contribution to the understanding of the subsur­

face geology of TrQodos. From 1946 to 1949 ·F.R.S. Henson, R.V. Browne 

and J. McGinty produced a map and report, in which. based on .deta1led 

paleontological studies, the~ deHneated two formations within the Ida­

li an sediments of Be11all1)', the older of which Hen~ on found to be of Upper · 
• 

Cretaceous to..f,ocene age. This · dtscovery suggested that the volcani c 

rocks were older than Miocen·e. _wh\ch was the age previously assigned to 

tt~m. By analogy with s1m11ar volcanics of northwest 'Syria, these work-
• ' 

ers proposed that the pillow lavas were erupted during Middle or Upper 

Cretaceous times. 

: 
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o.w. 81shopp fn 1952 published a paper in which he referred to 
" . . 

the diab~e a~ a series of intensely folded lava ·flows of pre-Triassic 

age. thus noting their planar structure. He also suggested that there 

was a possible correlation between red shales in the Troodos pillow lavas 

and dated red beds~ithin the Mamoni a Complex of southwest Cyprus, and 
\ . 

consequently that the pillow lavas might beTrfassic in age. 

The above studies provided the basis for a number of extensive 

geological projects on the iiTITiediate Troodos area and vicinity by mellbers 

of the Geological StJrvey Department of Cyprus; t .heir work was pulis hed 

between 1959 and 1967 as a series of memoirs and maps at a scale of 2 

inches to a mile (Carr and Bear, 1960; Bear, 1960; Gass, 1960; Bagnall, 

1960; Moore. 1960; Pantazfs. 1967}. 
~l 

It is not difficult to detect in the above account the prepon­

derance of investigation of the Troodos Complex as regards the geology of 

Cyprus as a whole. This has become even more the case in the last dozen 

or so years since the theory of plate tectonics has been rrore or less 

universally accepted. The Complex 1s now fam~ lar to academic and eco­

nOOiic geologists alike; not orily has it been hailed as .the wortd•s best 

preserved ophfol i te complex. but it has also provided economic geologists 

with one of the best examples of sulphide mineralization at accret i ng 

plate boundarf es· (i.e. "Cyprus-type IMSSi ve sulphides"). Within the last 

several years the reinterpretation of the Troodos Ophio11 te Complex a~ a 

preserved portion of oceanic crust has resulted in a flurry of res_earch 
'!'\. ,· ' 

concerned primarily with various petrologic and petrogenetic aspect s of 

the unit (e.g •• Jfteau.1970: . Moores and Vine. 1971; Peterman .!!....!1· · 
1971; Srt1Hh, 1971> Greenbaum. 1972• Lap1 erre and Parrot. 1972; Gass and 

Sinewfng, 1973; Mesorian &_!! •• 1973; Miyashiro. 1973"a; Margarftz and 

' 
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Taylor, 1974; Menzies and Allen, 19)4; Spooner et at::" 1974). Further 

refere~e wi ll be ma~e to ll'UCh of this research in later portions · of the 

present work. · 

\ ' I . 
11.2 · General Geology 

Bear (1963) divided the island of Cyprus into six topograph ic 
.~ 

· and geologic ~l.ts: 

r (1) a northern goastal belt. averaging two miles in width. which 

consists ptfmari ly o.f rocks of the Athalassa and Kythrea Fonnations 

{limestones and sandstone flysch deposits, respectively); both are spora­

dically capped with fanglomerates and ~econdary limestones (unnamed). 

(2) the Kyrenia Range, underlain by the Hilarion Limestone, which 

fs flanked bilaterally by chalks and shales of the Lapithos Formation , · 
, 

and intercalated with contemporaneous lava flows and sills. Almost all 

contacts between the core rocks of the Kyreni a Range and the Lapi thos 

Formation are faulted, suggesting this zone as a majo~ thrust front. To 

the south the Kythrea Formation represents flysch shed from the tectoni­

cally uplifted rocks of the Kyrenia Range. 

(3} the Mesaoria or Central' Plain, comprising undeformed, horizon­

ta11y-d1 sposed rocks of the Mesaori a Group, ~ich over11 es the Kythrf!a 

flysch with marked uncon·formi ty. To the south the Mesapri a Gtoup ovf!r-

1 fes with 1 ess dis t 1 net unconformity the rocks of the Oha.l i and Lap1 thos 

Groups, mostly calcareous sediments, which flank the Troodos Complex. 

' (4) the northern foothills of the Troodos Mountains, represented 

geologically by the Upper and Lower P11 ~ow Lavas Serf es, wtlic~ weather to 

produce a hurrmocky topography. .. • .. 

.. . 

I 
! 
I 
! 
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(5) the Troodos Mountains, comprising intrusive· rocks of the Troo­
t' · 

· ' dos Ophiolite Complex. The. complex is exposed as 'a large .~al struc­

ture • . with the ultramafic arid -mafic rocks at . the core passing outward 
i 

(and stratigraphically upward) into the Sheeted Intrusive Complex and 

Basal Gr~up. 
. . 

(6) the southern foothills of Troodos, comprising i,sediments of the 
l 

Dhali and Lapithos Groups which.overlie the pillow lava Jnits and contain 
i 

large i nl iers of volcanic, . sedimentary and metamorphic ro~ks of .the Trypa 

Group and Mamonia Igneous Complex. 

According to Lapierre and Rocc:i. (1975) the Mamonia nappe sys,. 

tern, which represents an important volcanic event of late Triassic age, 

was emplaced tring the late Maestrichtian. The volcanism can be divided 

strati'graphically into three episodes; a) pyroclastic rocks with .associ­

ated sa-ndstones representing · explosive eruption in graben, b) basic­

intermediate submarine flows interbedded with-sandstones, limestones and 

cherts, and c) columnar trachyte flows. Geochemically the lavas belong . 

to an alkaline basaltic suite which has 'many similarities to the Afar 

volcan1cs and is likewise interpreted a.s belong1ng to an intraplate 'vol-

canism in a rift system. Swarbrick {1980) however, considered t~ 

/ Mamont a Complex . to be mainly sedimentary, and to represent a piece of 

\ late Jurassic-early Cretaceous (continental) marginal crust • 

. 
I I .3 The Troodos Oph1·ol ite Complex (Figure ri .1) 

11.3: 1 Geological Description 

The following account is based upon Coleman's (1977) descrip­

tion of the Troodos Complex. 
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FIGURE II.i ~ The Geology o~ the Troodos Complex, 

after Bear (1963b) • 
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The Troodos Ophiolite Complex can be' .divided •into fciur parts 

for descriptive purposes. These are. fr.om lower to upper units : {1) 

peri dot ites or mant 1 e tectonltes • (2) gabbros and granophyres. iric 1 udi ng 
. . 

the cumulus ultramafic roc.ks of the transition zone> .(3) Sheeted Diabase . 

Complex .and Basal Group (Wilson, 1959); {4) Upper and tower Pi.llow Lava 
\ 

Series. 

The metamorphic peridot1tes were originally described as intru­

sive igneous rocks into older gabbrM (Wilson, 1959; Bear,.l960). · Con-

tact relations between the two rock types, however. do not corroborate 

this theory; the peridotite/gabbro contacts for ~he most part are exposed 

as faults delineated by sheared ·~erpentine, with a complete lack of ch1l­

ling features, although peridotites are occasionally seen to cut gabbros. 

Gass and Masson-Smsith (1963) described a large negative gravHy anomaly 

· centred below Mount Olympus which they i nterpr~ted as a large mass of 

mobilized serpentinite derived from the peri dati te during its emplace­

ment;: indeed serpentinization approaches sa· - 100% within ntJch of the 

peridotite mass of Mount Olympus. Such _a light body . of rock would tend 

to adjust gravitationally and 100ve upward relative to the heavier gabbros 

and unserpentin1zed ultramafic rocks overlying it. To th i s is attributed 

the dome structure of the Complex. 
0 

The peridotite itself ts•composed of harzburgite and minor dun-

He in probable fault contact. Nort.h-south . oriented ultramafic bands, 

ing varying amounts of olivine and clinopyroxene cut across harz­

dunite boundaries. Menzies and Allen (1974) considered that this 

band 9 was- produced during sub-solidus recrystalliZation and partial 

melting. 'Fiarzburg1tes contain 80% modal Fo90-9i• 20% modal En90-92• 

.. 



.... 

• 

·· \ 

. - 13 -

~ 

(with exsolved diopside) and accessory alumi 

tain .mainly olivine (Fo92) and chromite • . 

xenomorphi c granular textlft'"e 

Pl ag1 oclase lherzolite (mode: 65~ ol hi ne·, 15~ 

con-

types exhi b 1 t a 

1 e · tectoni tes • . 

hnrnL,.,i\vane, 81 plagio-0: · 

clase., 2~ sp•nel) is present as small outcrops within the harzburgite 

ntar its western cant act w1 th· the dun1 te. 

The serpentinite a~sermlage consists Jnainly of 11zard1te, 

chrysotile, brucite and ma-gnetite w1th minor antigorite. Extremely high 

bl8o values (+12.6 to +14.1) indicate ·very low temperature and near · 

surface formation of serpentinite fran meteoric ra'ther than heated ocean­

ic waters (Margaritz and Taylor, 1974) which lends further support to the ·· ); 

content ion that the serpentinite was fanned dur1 ng and after. the emplace­

'!'ent of the peri dot ite as part of the mp 1 n orogenic event. . . . 
Tectonism · and serpentinization have all but obfuscated rela­

tionships 1n the field betwe·en the peridotites and overlying cumulate 
~ ' 

ultramafic rocks and gabbros (W11 son, 1959; Moores and Vtne, 1971). The 

u1tramafic cu111..1lates are best exposed on the western and southern flanks 

of Moun~ Olympus. They grade downward from the gabbros and contain sue-
. .. 

cess1ve1y more mafic components; Greenbaum (1972} envisaged the following 

cumulus sequence ~veloped fran bottom to'lltop by ma~atic differentia­

tion: chranfte, olivine+ chromfte, olivine+ clinopyroxene, olivine+ 

clinopyroxene + orthopyroxene + plagioclase, · clino'pyroxene +. orthopyro­

xene + plagioclase. 

The basal dunites. P.Y wehrl ites, troctolites and. gab-
. . 

bro-nor1 tes grade upward into . cu 1 us ~bbros and · gabbro:-nor1 tes where 

clinopyroxene progressively bee more Lira11t ized as the plagfogranf te ---

.. 

I 
i 

I . ~. 
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or granophyre zone is approached (.Wilson, 1959). This zone h defined by" 

the gradual increase in modal quartz accompalllied by a concomitant de­

crease of modal pyroxene. These#quartz-sodic plagioclase rocks are found 

1 n the very i rregu 1 ar roof or screen zone between the underlying gabbr<>s 

and overlying diabase. No sharp contacts are seen, but leucogabbros and 

granophyres interdigitate and contain inclusions of each other. The 

plagi ograni tes which are now thought to represent the end product of mag­

matic differentiation are affected by greenschist rrietamorphism· which is , 

pervasive downward into the uralite gabbros. This metamorphic imprint is 

.attributed to a statfc hydrothermal event associated with the circulation , . 
of hot sea water at a spreading ridge (Spooner et al., 1974). 

The Sheeted Diabase Complex is some 1.2 to 1.4 kilo.metr~s thick - · 

and overlies the plagiogranites. Most of the i nd i vi dua 1 dykes are· 

chilled against the underlying rocks and are probably deri ved from the 

ural i te gabbros. as they do not penetrate d~eper than the latter rocks. 

Upward the unit comprises . 100~ subvertical dylces which are 0.3 .. to 4~5 

metres wide, subparallel, strike north-south -and have fine-grained dia­

basic textures with asymmetric chilled margfns. The primary 1Mnera1 as.: 

semblage of Ca-clinopyroxene, plagioclas'e (An30-60) and iron oxides 

has been almost COIJlpletely transformed by low ~rade hydrothermal altera• 

tion to one of albite, actfn?lite, chlorite, epidote. and quartz. The 

dykes are interpreted· as representative of extension and development of 
~ ' ' 

new oceanic crust by sea-floor spreading at a midocean ridge (Moores and 

Vine, 1971; Ki dd and Cann, 1974). · 

The Basal -Group, lying between the Sheeted. Diabase Cofll)lex· and 

the Upper and Lower P11low Lava ·series, constitutes a transitional zone 

-· 

, . -~ · ·~ -- ---·~ · -~ . 
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between the two; ft. is similar to the Sheeted Diabase Complex 1n chl!rac-

ter with the exceptio~ that occasional small pi·llow lava ·screens occur 

with the sheeted cyk.es. •· 

Two discrete pillow lava units separated by an unconfonnity 
. ' 

over~the dykes and have been described as follows by Gass and Smew1 ng 

(_1973) "Uppe.r Pillow Lava~.· Generally undersaturated, often olivi ne­

bearing basalts with more ultramafic varieties (limburgites and picrites) 

" occur;ring at the top of t.he sequence. D~kes' fonn 1ess t~an .. lO% by vol-
. / '' ' 

ume, absence of silfca and celadonite, calci.te and analcime coomon. 

lower Pi•llow Lavas: Mainly oversaturated basalts, often intensely sili­

cified, celadonite common. · Dykes, s1lls and massive flows forming be-
. . . ·.: t. <. 
tween 30 - 60~ of the outcrop." 

These ugits also. show the effects of hydrothermal metamorphism; 

assemblages within the Upper Pillow Lavas indicate zeolite facies · condi­

tions, while the Lower Pillow Lavas have higher temperature metamorphic 

assemblages indicative of conditions within the zeolite · and lower green-

schis.t facies. Various petrologic and metamorphic features led Gass and 

Smewing (1973) to propose a genetic distinction between the two units. 

As the Upper Pillow Lavas are the present study topic a more 
•' .. 

· detailed .descripti·o·n of/ their petrologic character will be presented 
• •. . ' .J 

hereafter • . The l~r Pillow Lavas will also receive some further discus-
\ •. .. 

sion by virtue of tneir close association with the Upper Pillow Lavas • 
. \~ 

..... 
' ~ ,.. 

l 1.3.2 Petrogenetic and Tectonic Implications 

·The comp 1 ete sequence of , the Troodos Camp 1 ex is · thought to 

represent a polygenetic association; there is considerable evidence 

1-
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against the basal peridotftes and all overlying rocks being part of,one 

genetic un1 t • . 
. . 

The'basal harzburgites show subsolidus defonnatton · and 
'x 

appear to repres'ent material residual from an. early partial melting event . 
. ~ . 

. ·. . 
(Greenbaum. 1972; Menzies and Allen. 1974) i the abundant veins and dykes 

of pyroxenitic and duni tic material within the harzburgite may represent 

partial melts. and these channels could have fed the overlying cumulates. 

Ther_e appears. however. to be a significant difference in .age betWeen the 

depleted harzburgfte and the cumulates • this has been corroborated in 
,, 

other op~iolttes where strontium isotope .data indicate an extreme differ-

ence fn age between the two units (Faure and Powell. 1972). 1.e •• the .. • ' 
basal' harzburgi tes may be the residuum of a llliCh older mantle melting 

event and may not be genetically related per se to the overlying cumu­

lates. al~hough no evidence of this earlier melting event is .present. 

Again. field observations fail to provide any firm resolution .to the 
, 

problem. A complex situation is 'envisaged where basal cumulates may 
I .· 

locally be included in the parzburgite zone (e.g., Wilson, 1959) • 
.. 

The overlying rocks, however, including the- cumulates, dykes 

• and lowe/Pillow lavas are interpreted as a c001agmatic sufte fanned by 

differentiation within a magma chamber below the axial zone of a slow-

spreading ridge. Most workers concur with this interpretation but Miya­

shiro ( 1973a) reviewed the chemistry of the Lower "Pillow Lavas and dyke 

c~lex and concluded that their apparent calc-alkaline trend indicates 

an origin _ wUhin an . islarid arc devJ~ped on thin o~eani c crust. Wi th the 

ensufng flurry of protesta~tions. however, (Gass et al •• 1975 i Hynes, 

JJ75; Moores~ 1975). Miyashiro• s argument appears to be less than con­

vincing (Smith, 1975).. Miyashir.o's work was based on majer element s, 

J 
' 

• • 
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which were considered by most of these authors to be relatively mobile 

during alteration processes and therefore unrel fable. Perhaps the 

. _5f~ngest evidence to counter Miyashiro's. arguments 1s . the lack of 

coarse-grained clastic and volcanoclasttc sequences ·normally associated 

with 'island arc evolution, as well as the presence of the ubiqui tous 

sheeted dyke swarms indicative of spread fog centres. Ewart and 8f11in X .. 
{1973), however, _ suggel~ed. that island arc volcanic rocks may rest on · 

~ ~ - . . . 
fragments of oceanic crust ' or be tectonically imbricated one w1th the 

,/ 
ot:per. A back-arc or marginal basfn may be suitable scenario for the 
. . 
j~o~xtaposftion of such processes. 

Further evidence for a spreading ridge fs provided by the meta­

morphic asserrblages, ~ich ,vary .with depth and indicate high heat flow 

and circulation of ,sea water 1n a rtdge env1ro11111ent. The massive sul-
~ 

phide deposits are also associated with this low grade hydrothermal meta ... 

morphism, and Spooner -et al. (1974). on the basts .of isotope geochemis­

try, have conel uded tMt' there llliSt be widespread metamorphism 1n the 

upper portions of the oceanic crust near spreading centres • 

The bulk- of· the evidence seems to indicate that ttie Troodos 

Ophiolite Complex was formed at an axial spreading centr·e or withi n a 

• marginal basin at the pe,..phery of the Tethys Ocean. Its obduction onto . 
the African plate as a small fragnent of oceanic c_rust is interpreted as 

being part of a relative north-south movement between Africa and Eurasia 

during late ~retaceous t1mes. Geophysical surveys have supported this. 

concept; pos1t1ve Bouguer gravity anomaUes {100-250 mgals) situated be- · 
• 

neath the T.roodos Ophiolite COmplex .(Gass and Masson-Smith, 1963} suggest 

that 1t..,1s a rootless slab of ocean1 c crust .' resting on Afr1 can cont 1nent­

al crust (Gass·, 1968; Vine ·et al.~ 1973). 

-. 
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Lapierre and Rocci. (1975) fn their study of the M~mon1a C~mplex 

had nuch. to say regarding its tectonic significance. Volcanic suites of 

similar age and affinity to the Mamonia Complex are wi desp read 1n tbe 

east Mediterranean Alpin_e orogenic domafn, 1.e., in the Antalya Napp~s of 

Turkey. the Baer-~assit of Syria. the Othrys-Pindos regio~ .• of Greece. and 
l ' 

in southern Italy. Lapierre and Rocci thus recognized the Mamonia vol -

cane-sedimentary compl~x as jart of an extensive late Triassi c magmatic 

event which is widespread in the Mediterrane .. Alpine region and which is 

always found in tectonic association with ophiolites. They proposed the 

existence of a rift system associa~d with an alkaline bas.alt suite along 

the . n,orthern edge of theAfrican plate during the late Triassic, which by 
A . "" .. ~ . 

Jur~ssic - Cretaceous times had develpped into a mid-oce"an ridge. They 

f.urther suggested that· the southe-asternmost ophiolitic ·sequences~ namely 

Troodos, Hatay· (southeastern Turkey), Zagros and Oman "came •rrom a mar- .· 
f 

ginal sea which ' .existed along a mid- tethy1an ridge north of the Afri can 

plate, sepe~rated from the Tethys and the main ophiolite zone'to the no~.h 

by a carbonate shelf. During the orogenic event this ·small marginal sea ' 

was obducted southward onto the African plate. 

,. . 
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' 
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IIr. THE UPPER PILLOW LAVAS 

111.1 Field Aspects 
1 

Extensive descriptions of the field characteristics of the 

Upper Pillow Lavas in their various areas of outcrop have been given by 

several authors, e.g., Wilson, 1959i Gass, 1960; Bagnall, 1960; Carr and 
' 

Bear, 1950~ Bear, 1960; and Pantazis, 1967. Smewing (1975) described the 
• 

general natur~ of the unit as seen in the field. "It is proposed here to 

briefly review the fi~d aspects of the Upper Pillow Lav~s based on both 
Q 

the authoritative work. of the aforementioned authors and the field obser- <. _, 

vat ions of the present writer. 

I I 1.1.1 · Exposure 

The Upper Pillow Lavas are considered the peripheral unit of 

the Troodos~ complex and are bounded above and below by Upper Cretaceous -

' .. lower. Tertiary sediments, and the Axis Sequence, respectively. They out-. 

crop around nearly 60~ pf the · perimeter of the massif, being flDSt con­

tinuously found on its· northern and southeastern-.:!dges and absent in most 
. . 

of its western parts (Figure ir~l). 
Th·e lavas" are well exposed throughout as ·vegetation ~ s gener­

ally very sparse. Alth9ugh pillowed forms are discernible in most cases, 

fresh samples are difficult to proc~re as the roc'ks are highly de~omposed 
. . ' 

and generally dis1ntegr~te to . rubble when struck with the hamner. 'Con-

sid~rably fresher sar~~ple~. however, were often fouod in dry sfrea~ beds 

where running water has removed nuch of the rubbly material. The Upper 

' 

I 

J 

I 
I 

f 



· ) 

.. 

-- ----··-- .. - -------------- ---- --------,.---~-- -------------------~------4 
.• 

,, . ·- 20 -

" Pillow lavas have in rrost places attained a characteristic light blue-. . 
grey colour which is attributed to the production of clays within _them as 

\) 
an effect of low grade hydrothermal metamorphism (Smewing, 1975). 

III.1.2 Morphological Types 

The lavas . range up to 200 metres but average about 100 metres 

in thickness (Gass and Masson-Smith, 1963). They occur as a variety of 

intrusive and extrusive types, including · pillows, dykes, flows, s i lls, 

breccias and hyaloclastites. Pillow lavas are by far the mst volumi nous 

. morphology, composing about 80% of the exposure, with the other types 

listed above in order of decre~si~g abundance {Plates 4-7)~ 

· The pillows generally ta_ke the shape of ellipsoids (Plate~· 4 

and 5}. The long axes average 1 to 1 1/2 metres in length; long/short 
' 

axis ratiO's are of the order 3:2. Th~ pillows contain numerous ves i,cles 
;,._ 

and veins, these being generally ·li,ned by ~ontmori11on1te and infilled 

with ca-lcite and zeolites. Carbonates, zeolites and unt>eriferous sedi -

ments occur betwe.en individual pillows. 

Dykes within the unit are co.nsidered feeders to the lavas and 

coiTIIIOnly group together to form discrete eruption zones (Gass, 1960) . 

They are of 1/2 to 1 metre width, and being roore · resistant to erosion, 

generally protrude outward from ant>ient lavas, often fanni ng small elong-

ate hills. At Asgata Potamos (river), just · nort,h of. the village Asgata, 
' 

dyl<e-flow relations are well exposed. Protruding dykes cut across t he 

stream transversely at .intervals of 50 - 10£' feet, ' while less resfstant 

pillow lavas fonn the stream bed. The dykes show good chilled _margi ns 

against the lavas (locality KL-36, Plate 7). 
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Plate 4: Flow structures in aphyric basalt just west of 
Asproyia. 

Plate 5: Pillowed basalt from roadside~ one mile west of 
Akapnou. 
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Plate 6: Pillow with 1 ropy 1 surface pattern. 

Plate 7: Dykes cutting Upper Pillow Lavas at Asgata Potamos. 
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Massive flows are often vesicular and conrnonly contain inter­

bedded units of d_ifferent petrologic nature (e.g., near Kal~asos, Lo­

cality Kl-17). 

(ll.l.3 Compositional Types 

Smewing (1975} di .~ided the Upper Pillow Lavas into four types 

• 
~ased on ma~roscopic phenocryst assemblages: (1} pi crite basalt and ul-

· trabasic rocks, (2) olivine basalts, (3} aphyric basalts, (4 ) fine ... 

grained basal lavas.. Here these types will be described according to 

Smewing's field distinction. However, based on his own petrographical 

and geochemical data, tt)e present author will be sltbsequently rearranging 

this breakdown, more for the 'purposes of faci\ity in · his own discussion 

' 
than as a proposal of a new nomenclature for the rocks. The classifica-

tion of Smewing and that of the present author are summar1zed in Table 
• 

III.2. 

The picrite basalt and ultrabasic rocks (here refer,red to to­

gether as ultrabasic rocks) have been previously described by Ga~s (1958, 

1960~), a~~earle and, Vokes (1969). They are generally considered .to be 

shallow intrusive or hypabyssal bodies, 'i.e., dyke.s, si!ls or bosses, but 

occasionally are found as pillow lavas ('{lass, 1958). In the field they 

tend to form low resistant ridges, or as· is the case near Margi (Locali-

• 

ties Dl-38,40) they may occur as narrow sills found concordantly between • 

the flow bOdies of aphyr1c basalt, as is the case near Kalavasos (loca1-

1ty Kl-17). The position of these . rocks near the top of the pillow lava 
I 

sequence suggests that they were extruded at a later stage in the tapping 

of a magna chamber. 

• 

I ! 
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Table II. I HoC.:a l J.nal~·'u of Si!!d...;n, Fro11 tht Uel!!r F111§!!! L•tu 

DL- 36 01.-45 ll.-33 1 DL· 23 01.·31 n-&9 Pl·19 PL•lO 

Phtnoc rys t1 

~11 vine 66.28 s~ .eo 5.67 1. 76 3. 73 

Opl 10.04 

Mt cropll-crys ts 

Cpx l. 73 3.58 , 
Opx 0. 11 6.93 

Chr {) ; 92 0.78 ) 

Grounclllllu ' ; . 

Cpx 13.49 14.12 .. 
Cpx (zoned, 28:.85 

q~~enclled) 

Cpx (pl-u) 
.... ~ I 

59.94 

Phg 29.29 19 .0~ 20. 79 26 . 40 

lllgowtlu ' 0.93 1.01 0 .98 

&leu 53.23 38.112 ·• 
Flnt gd. bault- 16.65 32.09 69.26 33. 50 
1c •t./cln1t. 

glus 
·1 

Vesicles 5 . 59 

My§dllts 

l•ol/C•rb 1.~ 18.93 

Al ttrat1on Minerals . 

Antigor1 tt 0.50 1.8 

Ctllcloftf u . 1<.20 

t•rbon•u 13.81 0.79 0.47 2.31 . 
Otlltr 33.82 0 . 89 49.48 24 . 7t 

J · ( 
Toul Counts 869 89f 1005 850 1178 1233 885 1012 

Rock Typet ._PI'Htnted • tncluoes s•et1tt , other clay 111nerals, 
zeo1 t tts , ne .. tttt 

DL·35 : ultrabaifc ""''."';"' . 
.. 

DL-45: ultreblst-c: I'OC~, holnc su111ne • II:L•33: i-tfftl, llya l opt H tt c 
DL· 23: k-ttltl, vartol!tfc 

01.· 31: ol1vt'ne blult 

II:L• fi: aphyr1c beult 

l Pl•lll: apllyr1c NUl t 

I ' . 
. ... 

.. . 



... 

• • 

' 

TABLE 111.2 

I . 

. . 

- 23 -

-~ . 

) 

Petrographical classification of Smewing 
(1975). A; and · the present work, B • 

• 

' -· ·. \ 

' 

.1 
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Groundmass r------

Pi crite 
basalt and 
ultrabasic 
rocks 

ol 
(chr) 

glass/ 
de vitrified 

glass 

llyalopilitic 
(fresh) 

cpx + glass 
:!:_ plag 

Variolitfc 
(altered) 

plag + sm 
+ tm + cpx 
-:!:. ze-:!:_ ca 

!ntersertal textura 1 Vitrophyri c 
(altered) 6',., 

0~ 
~(),; 

~q' 
A ss 
~~ ~,· 

+ sm + tm "0' 

types 

"!"._ ze :!:_ ca _y, 
ts) 

{fresh/ altered) 

gl ass/devi t. 
glass 

+ ca + ze 

Hya lopi 1 iti c 

{fresh) 

glass 
cpx micro 1 itcs 

Variolitic 

{altered) 

glass :!:_ cpx 
+ sm + tm 
+ ze + ca 

I 
lntersertal ~olocrystalline 

(altered) (fresh/altered) 

cpx + plag + sm cpx + plag 
+ tm .:!_ ze :!:_ ca :!:_ tm :_ ant :_ sm 
:!:_he:!:_ eel 

cpx + ~ 1~ ~~(, "oc "~"<l';oRJ,. 

----------+-----------+-----------r------------·- ·)-----~,------------+------------r----------+----------_, __________ _ + ca :_ ze 

Ultrabasic ol • rock (cpx, opx 
chr) • • 

----------t------4-------.----+-----------~-----------+----------~--------------------r----------- r------------1------------~-----------r--------

Olivine 
basalt 

Aphyr1 c 
basalt 

Fine gd. 
basal lava 

cpx 
plag 

(cpx) 
(plag) 
ol 

• • Komatiite ol , opx 0 • • 0 

-~----------+-----------r-----------~----------t-------+----------~!------------+---------__,-----·------4r--- ------

• 

• 

• 

• Olivine 
basalt 

01 
(cpx) • • 

-- --------- - ------ -- - ___ _, ____________ 1-------------t----------r---- - ---1------

• 
Aphyri c 
basa l t 
(inc. fine- cpx, plag 
grained 

basal lava) 
0 • 

---- 1 ------------ ~----------~------~----------~----------~----------~------------~--------~ 

• 
Abbreviations 

o 1 - olivine 
cpx - clinopyroxene 
opx - orthopyroxene 
plag - plagioclase 
chr - chromi te 
sm - smectite 

tm - titanomagnetite 
ze - zeolite 
ca - carbonate 
ant - antigorite 
he - hematite 

Symbols 

• COITillOn 

0 rare 

N 
w 
PI 
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Olivine b~salts are found generally at or near the top of .the 

Upper Pillow La~a succession and are identifiable in the field by t he i r 

browllish pseudomorphed olivine phenocrysts, ~now complet€1y replaced by ,.: 

iron oxide and carbonate. This field distinction is also borne out in 

. thin section. These rocks are most COIMIOnly found. as highly weathered 

pillows which are pervaded by carbonate- and zeolite-filled vesicles and 

veins. 

In some of the pillows a fresh black glassy margin is preserved 

which varies in width from 1 - 15 centimetres and is found un_<:ter the 

microscope to have hyalopil it ic te.xture. Sme~i ng (1975) distinguished 

between two types of olivine basalts: based primarily on t he presence or 

absence of this fresh black glassy margin which surrounds the altered 

cores of tlle pi 1! ows. The 

types further on the basis 

I . 
preseynt author proposes to separate th~s~ two 

' ~ . 

of petrographical an~ geochemica} data. Gass 

(196Da) and Bear. (1960) have referred to the olivine basalts containing 

this margin as l'imburgites. These lavas are r.eadily identif..ied in the 

field; t~eir black glassy edges stand out from the crumbly remains of the 

normal olivine basalts. As these rocks are distinguishable mainly. on 

petrographica 1 criteria their nomenclature and character wi 11 be f vlly 

_discussed in the section on petrography. 

' . The aphyrfc bas~lts are _by far the mst abunda nt type of rock 

within the Lavas ·, fanning wide areas of outcrop where- the sequence i s 

thickest; their main occurrence is as pillow lavas, ~ith flows . and sills 

occasionally being found. "\_hese lava,s are perhaps best characterized in 

the field by their consistantly altered state. Generally who·le pillows 

.. - . . ···--~-- -- .. _________ __. ___ ·---------

l 
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can be broken down by a few ha11111er bJ ows, owing to a pervas f ve netwo.I"J( of 

cracks and joints. 

The fine-~rained basal lavas are discontinuously exposed at the 

base of the section along the northern edge of the massif. They are 
. . 

characteristically black or brown in colour and are most canmonly aphyr-

ic; occasionally they contain small microphenocrystfc pseudomorphs after 

ohvine. Th~se lavas : closely reseflt>le the underlying Lo~;er Pillow lavas 
0 

but are considered to be part of ·the Upper Pillow lavas because of their 

similar metamorphic' asseflt>lage (Smewfng, 1975) • 

III.2 Petrographl -

111.2.1. General 

Smewing (1975), in ·his description of the petrography of the 
" 

Upper Pi~low Lavas, rec.ognized four distinct groundm~s mineralogies and 

textures which generally are found as a gradation ·.from core to margin in 
• 

individual pillows. These are,o from the core of a pillow to· its edge, 

intersertal, variolitic, hyalopilitic and vitrophyric (see Tableni.2) • 
. . 

Smewing considered .that the succession owed its het~rogeneity to the 

varied development of phenocryst asse~lages and pillow zones.~ further­

·more, the different textural types 'show differences in their susceptibil­

ity to alteration. Basalts which have developed only the intersertal or 
I) 

vari·olHic textures are invariably found in a highly altered condition, 

with the primary mineralogy of the groun~ass ~t completely replaced 

by smectites, zeo1t1es and calcite. Hyal..op'fli~nd v1tro_phyric types • 
. . 

however, are much more pristine and clearly show original te)(tures with a 
-

minimum of replacement by se;condary m1 neral s. 

•· 

I 
I 

i 
I 
I 

I 
j 

! 
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~ .. 
In the following discussion the rocks of th~ Lavas are classi-

fied an,d pescribed ·on the basis of the1r .petrography. 

... 
I l I • 2.2 Ul trabasi c Rocks 

These rocks are found in the field -as both extrusive and in..­

trusi ve types, this di chotom~adi ng to the ~vel opment of two 'textures: 

vitrophyric and holocrystalline_. respectively. The vitrophyric ty~e has 

a dominance-of olivine ptlenocrysts which are set · in a glassy groundmass,. 

and which compose up to 66.28% by ~olume of the rock _{see· roodal analysis, 
., . 

Table III.!). _These unzoned olivine phen_ocrysts ("'Fo92 ) range up to 2.2 

by 0.5 centimetres in' size~ they nonnal.ly show euhedral but sl ightly 

corroded boun"daries {Pl.ates 8-13}. The grains are often fresh but rrore 

conwnonly . show alteration to antigorite along fracture planes. I11 some 

grains this alteration is acc?'llpanied by rounded patches of magnetite, 

which tend to occupy· the corroded interiors. 

Fresh clinopyroxene occurs·. also as a p~enocryst ptiase but is 

much less · abundant than olivine and forms much' smaller grains (average 

0.5 mm). These -are commonly euhedi-al and occasionally show well devel-
J . 

oped twinni.ng along 100. Euhedral crystals of chromlte exist in small 

amounts and reach)l.6 rrrn in diameter.. T.hey are often present' as 'inclu­

sions withfn large olivine _grains, where they appear to serve as loci for 

fracture and serpentinization. 

Partially devitrified glass of basaltic composition makes up 

the groundmass (determined by microprobe). Microl ites of clinopyroxene 

are disposed parallel to phenocryst boundaries. Carb.onates and zeolltes 

.. - · ----. ----· ··-~ ·- . ··-~ . ·- . 

i 
I 

·I 

. ' 
I 
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Plate 8: Ultrabasic rock. Vitrophyric texture; fairly fresh 
olivine; small clinopyroxene grains; partially de­

vitrified matrix. DL-36. XN. 31X. 

Plate 9: As above, plane-polarized light (PPL). 
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Plate 10: Ultrabasic rock. Vitrophyric texture; large oliv­
ine phenocrysts; small clinopyroxene grains. Par­
tially devitrified groundmass. DL-36. XN. 31X. 

Plate 11: As above, PPL . Round 'pools' of magnetite within 
voids in olivine. 
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Plate 12: Ultrabasi6 rock~ Vitrophyric texture. Euhedral 
chromite grain partially enclosed by olivine. 
Carbonatized groundmass. OL-37. XN. 31X. 

Plate 13: As above, PPL. 
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occur both in amygdules and throughout the groundmas~ as deuteric 

patches. 

·- . 
Ul trabasic rocks with a holocrystall i ne texture sho.w much 

_.; 

• higher degrees of alteration, a grouncinass which is entirely crystalJfne •. 

and a reduction in the sizeof olivine phenocrysts (average 2 mm) as can­

pared to . the vitrophyric type (Plates 14-16). The average olivine compo­

sition is Fo90 •8 as dete.rmined by electron miCroprobe (see Appe.ndix B.2). 

Small (0.8 - 1 mm) well-preserv~ euhedral magnesian augite grafns 

(Wo41.26 En50•96Fs7• 77 ) occur as a phenocryst phase. Olivine euhedra are 

pervasively altered to .fibrous llntigorite, especially near the grain 

boundary and along fractures wi th~n the crystal. Chromi te is present as 
e 

in_tergranular euhedra and as inclusions within the olivine~ · · Small mag-

netite inclusions within olivine appear' to 11have developed as a by-product 

of anti goritization. • • 
,_ 

Sma.ll grains of orthopyroxene (En84•2 ) are sparse. Plagi.oclase 

is a fairly important constituent of the groundmass, being intergrown 

with augite in an intersertal te~ture. Much of the original holocrystal­

line aspect of the groundmass, however, has been lost during deuteric al- ' 

teration. Primary .pyroxenes and plagioclase have been extensively re-

plac-ed by -antigorite. magnetite, smectite and ieolites. 

III.2.3 Magnesium-rich lavas 

III.2.3.1 · General 

This group of rocks has been referred to collectively as oli­

vine basalts of Smewing (1975) who further subdivided them into two types 

on the basis of the presence or absence of hyalopilitic zone fn the outer 

' 

; 

. I 
I 

i 
i 
J 

• I 
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Plate 14: Ultrabasic rock. Holocrystalline texture. Skeletal 
serpentinized olivine; poikilitic clino~yroxene 
partially enclosing small grain of olivine at upper 
right. Serpentinized groundmass. DL-45. XN. 31X . 

. Plate 15: As above, PPL. 
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Plate 16: Ultrabasic rock. Holocrystalline texture. Large 
serpentinized olivine grain; clinopyroxene par­
tially encloses small olivine grain; plagioclase 
in groundmass. DL-45. XN. 31X. 

Plate 17: Ultrabasic rock. Vitrophyric texture. Fresh olivine 
with corroded core; note orthopyroxene and clino­
pyroxene microphenocrysts and carbonate in matrix. 

DL-36. XN. 31X. 
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parts of individual pillows. In the present study this hyalopilitic zone 

is considered fundamental,'and · rocks with a glassy groundmass are deemed 

to form . a genetically distinct group. They are also found to be consid-· 
Q ' 

erably richer in magnesi.um than rocks with·non-quenched, intersertal tex-

tures, and thus represent prQducts of a rapidly cooled Mg-rich ma~a. 

Quench textures often pervade to the cores · of pillows and are highl y 

reminiscent of those described from bdsaltic komatiitic lavas of Pre-
" ., 

cambrian and Paleozoic ~ge (e.g., Arndt~-· 1977). Rocks in this 

study which fit this description wi 11 subsequently be referred to as 

komatiitic lavas; or simply komatiites, which includes ail the olivine · 

basalts which display a glassy character both in the field and in thin 

section. This group so defined, then, is r:oughly equivalent to the rocks 

.defined by Smewi ng as having a hyalopiHtic rim. Where Smewing categor-

. izes them as including all four textural type·s {Table IIL1), the present 

author consi-ders that the majority of specimens assigned to this group 

have vitrophyric, hyalopilitic or variolitic texture. Specimens col-

lected from the centres of pi 1-tews~rarely showed intersertal texture; 

vari ol i tic texture characterized by the presence of interstitial glass is 

most colllllon. Vi.trophyri.c samples can occasionally be recovered from the 

outermost selvedge of pillowed structures. 

The roore conventional olivine basalts stand in marked contrast 

to the types described above. The principal difference that i11111ediately 

catches the eye is the intensity of alteration of both phenocrysts and 

groundmass within these rocks. Their principal textural type is inter:.. 

'-- sertal, and variolitic textures contain no interse)tal wedges of glass. 

·. 

·- ; •. ~- . 

~--~~~~~· -·· · · · ····-~· · ·· -~··· -~-·--·-- ···-·· · 
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A separate section will be devoted to the canparison of the 
' 

present quenched· rocks to documented komat i Hes, and to the · geochemica 1 

corroboration of the distinction made here between the t\Jio Mg-rich lava 

types • The prese.Rt purpose is to describe the petrography of the rocks. 

III.~.3.2 Komat11tic Lavas 

The komatiitic lav~s are characterized by their very fresh con­

dit'ion and the well-preserved nature . of both phenocryst and matrfx 
~ 

phases. The rocks display hyalopilitic, variolitic, and rarely, inter- • 

. sertal Jnd vitrophyric textures. · Hyalopilitic types contain ph~nocrysts 

of olivine (Fo88•9_89•6) and orthopyroxene (En87 •9) and -microlites of 
·. 

subcalcic (lugite and pigeoni .te set in a glassy groundmass (Plates 18-24). . ... 

Olivine forms euhedral phenocrysts wh~ch reach 2.4 mm and average 0.'\ mm 
I 

at their long dimension. They are occasionally completely fresh bu.t more 
J 

often occur as euhedral skeletal fonns in which alteration has attaded -

the interior of the grains al.ong fracture planes. Antigorite is the 

conmon alteraUon product although some iron oxide-· is present along 

fractures. 

The' character of the pyroxenes is significantly different from 

that of olivine in'that grains have developed forms and shapes . indicative 

of rapid quenching. Orthopyroxene is the earliest pyroxene to nucleate 

as it fonns stubby uniform grains averaging about 0.5 mm in length • . Oc­

casionally it attains an attenuate o·r acicula·r habit, more akin to that 

of the cl1nopyroxen!s. Some. grains have devel~ped a- mantle of cl.inopyro-
·j • 

· xene which presumably represents a lower temperature react ion of Mg - Fe 

pyr~ene with a l i quid enriched in calcium • 

...... 

., 

I 
I 

l 
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Plate 18: Komatiite. Hyalopilitic texture. Euhedral olivine, 
quenched clinopyroxene forms; large stubby ortho­
pyroxene grains mantled by clinopyroxene. Glass 
matrix. KL-18. XN. 31X. 

Plate 19: As above. PPL. 
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Plate 20: Komatiite. Hyalopilitic texture. Acicular clinopyrox­
ene with sub-parallel disposition; stubbier ortho­
pyroxene mantled by clinopyroxene; corroded olivine 
grains. Kl-34. XN. 31X. 

Plate 21: Komatiite. Hyalopilitic texture. Fluxioning of 
pyroxene grains around amygdale. KL-33. XN. 31X. 
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Plate 22: Komatiite. Hyalopilitic texture. Zoned subcalcic 
augites/pigeonites. Olivine and orthopyroxene also 
present. KL-33. XN. 31X. 

Plate 23: Komatiite. Hyalopilitic texture. Acicular and swallow­
forms of clinopyroxene; marked fluxioning seen both 
parallel and perpendicular to long axes of grains. 
KL-34. XN. 31X. 
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Plate 24. Komatiite. Hyalopilitic texture. Euhedral olivine 
phenoc~ysts. KL-34. XN. 31X. 

Plate 25. Komatiite. Transitional between hyalopilitic and 
variolitic zones of pillow. KL-53. XN. 31X. 
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Augite (Ca 26 • 6_42 ~ 6 ) is the most comma~ monoclintc pyroxene in 

·- , 
the rock. Subcald'c augite (Ca20 • 8 _ 2r~ 3 ) and the}li:. .. temperature fonn 

pigeonite (Ca3 •4_12•7) are present in su~sidia~~~~"s, and are dHfi;.. 

cult to separate under the microscope. The a~s@ncr 'of exsolved augit~-

' lamellae in orthopyroxene, diagnostic of invertfed pi geonitJ!, suggests a 

rapid cooling history for these rocks. 

The calcic pyroxenes are collectively characterized by . their 

relatively. fine-grained (0.2 - 10.4 mm) and quenched aspect, i.e., 'swal­

lowtail', and occasionally, hOurglass str:,ucture. · Irregular c<.J11positional 
~ . . 

~oning is discernible under crossed nicols and has been verified by mi-

croprobe analyses (see Chapter V- ). · 

The great variety of shapes of monoc~inic pyroxenes in thin 
. . . 

section is attributed to their random orientations which theoretically 

produces a infinite variety of cross sections. These pyroxenes in the 

hyalopilitic texture ·can therefore take the form of equant hexagonal or 

di-amond-shaped basal grains with corroded cores, lenticular-acicular 

-grains with irregular terminations and narrow central corrosion/resorp-
. 4 - ~ • . . 

tion zones, or any variation in between (see Plate 22). Corroded cores . .. " .. . . o: jt'_ains are al_ways connected to the groundmass by minute cracks ·dis-

posed along cleava9'! planes; these cracks may have acted as miniature 

. condu-its ·along which lower temperature liquid~ could rea.ct · with cores ... .. 
formed at higher tef11>eratures. · $ .. . 

In the well-developed hyal opil itic spec1 mens grains of l i ke 

disposition tePid to 'aggregate and form ho-Or·iented clusters (Plate 23). . . . 
Where these grains are ori -ented parallel to the section they define a 

fluxion texture which clearly bends around phenocrysts and amygdules. , 

... 

· , ~· 
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·The compositions of ortt10- and cl i nopyroxenes of the groundmass 

have been studied extensi vety under the microprobe. This min~ral chemis-

try will be discussed in a later chapter; the m1croprobe work has been · 

referenced here t o sup~ort and.facilitate the ' petro-gr~phic description of 

.. .,.~ · 

. ......, .,. 
the rocks. 

Pyroxenes of the variolitic textured-basalts differ markedly 
. . 

from those of the hyalopi 1 i tic basalts; they cha_racteri stical ly form 

highly skeletal or aci cula,r grains which may congregate in. ·radial .growlhs 
·/,;;, 

{Plates . 25-32). Average lengths are of the order of 1 - 1.2 mm but oc-
. . 

casionally lengths up to 2 nrn are attained. In roost sections studied 

dendritic, plumose or sheaflike varieties a·re .present, and in the better-

developed specimens (e.g., DL-24, Plate 31) these grains form ·'vertebrae' 

structures. The difference between ' this ,Jtld the hyalopilitic texture i s 
. ' 

best seen by cixnpar1ng Plates _18 and ~~ 

Olivine and 'ort~opyroxene are considerably less abundant ,witl:li n .. 
rocks with this texture; olivine tends to form ske-letal grains altered to 

antigorite and iron oxide. Glass also forms a smaller proportion of the 

rock. mainly due to the interlocking mesh of pyroxE7ne forms. A ·higher 

.. 
,. 
I 
' 

'· 

I 

i , I 

susceptibility to alteration is characteristic of this texture. \ 
i 

Opaques are very spar~e in all the olivine-phyric rocks. Min-
. . 

ute (0.1 -0~2 nwn) grains of chromite occur in clusters or as inclusions 

within larger pyroxene grains •. and constitute a very small proport ion of 

the groundmas s. 
\ ' 

Near the edge of pillows hyalopi 1 itic texture grades outward 

into vitroptlyric" texture r'with a decrease· in crystalline pyroxene as a 

constituent of the groundmass. · Near the centres of lal"ger pillows varia-

1 . 

0 
:~~ 

.... _ . 

;, 
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Plate 26: Komatiite. Variolitic texture. Plumose and fine­
grained 'vertebrae' forms of clinopyroxene; large 
olivine ohenocryst. KL-12. XN. 31X. 

Plate 27: As above, PPL. 
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Plate 28: Komatiite. Texture intermediate between hyalopilitic 
and variolitic textures; note radial development of 
clinopyroxene grains. KL-77. XN. 31X. 

Plate 29: Komatiite. Same section as above at 125X. Shows 
incipient crystallization of qroundmass clinopyroxene 
and possibly plagioclase. KL-77. XN. 
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Plate 30: Komatiite. Intermediate hyalopilitic-variolitic 
texture. Note incipient crystallization of glass. 

KL-70. XN. 31X. 

Plate 31: Komatiite. Variolitic texture; plumose and acicular 

pyroxene forms. DL-24. XN. 31X. 
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olivine and orthopyroxene phenocrysts. Skeletal~ 
acicular clinopyroxene forms. KL-77. XN. 31X. 

Plate 33. Olivine basalt. Large olivine phenocrysts pseudo­
morphed by iron oxide. Abundant clinopyroxene micro­
phenocrysts. Groundmass intensely altered to smectite. 

KL-104. XN. 31X. 
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litic texture tends to grade inward towards intersertal, although. this 

was not found to be anywhere well-developed • . 
.. 

The exc 1 us ive occurrence of oH vine as a phenocryst phase. and 

clinopyroxen~ as a gr~undmass phase ~as genetic implications which w111 

·be ·briefly discussed here. Olfvi~e is always_ fn an unquench~d state and 
can be allocated to the pre-eruptive or intratelluric stage of the Ngna. 

. . 
i.e •• olivine ~ad begun to crystalliz~. presumably ip a magna chamer. 

prior to ' extrus-ion and experienced little or no post-extrusive growth • . 

· There is clearly a cont.fnuum from obviously a~cumulative rocks to true 
• 

liquids, and the degree to ~ich· th~ porphyritic rocks are accumulative 

is in some cases, difficult to ascertain, and has consequences for the 
. . 

interpretation of major .element geochemistry. Growth of cl fnopyro)(ene, 

~ .. however, is restricted to the extrusion stage, where rapid cool .ing produced 
i ' 

· an unfnverted pigeonite/sub-calcic augite assemblage. Orthopyroxene 

may occupy an intermediate genetic position; nucl_eation and growth had 

been. initiated in the ~ntratelluric stage as some large grains display the 

typical chunky form of orthopyroxene. Others, however, show the quenched 

form noted for the monoclinic pyroxenes. and could only have fonned after 

lava extrusion. 

111.2.3.3 ,Olivine basalts 

Almost without exception these rocks in thin section are rore 

intensely altered than the quenched lavas. The great .majorfiy of speci­

mens reveal a groundmass completely and 'penetrat1vely altered to an as­

~ semblage of hematite, fibrous zeolites, and ,Patche~ of carbo~ate. A few 

fresh specimens enable description of the. primary texture of the rock, 

but even in the fres:hest specimens olivine phenocrysts are totally .. 
pseudomorph~d by hematite or calcfte. 

Representative photographs of olivine basalts are contained in 

Plates 33-37. The most notable digression fr()n the komatiitic types is 
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Plate 34: Olivine basalt. Intersertal texture; vesicular. 
DL-31. XN. 31X. 

Plate 35: As above, PPL. 
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Plate 36: Olivine basalt. Porphyritic texture; highly decom­
posed but good preservation of olivine forms. 
DL-58. PPL. 31X. 

Plate 37: Olivine basalt. Pseudomorphed olivine grains; copious 

fresh cpx grains. Highly altered groundmass. PL-34. 
XN. 31X. 
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the \abse~ce of · quench textures and the consequen.t appearance qf plagio-

' . ' 
clas~ ·as a crystalline phase: 1n the groundmass. Equ1 granu-lar clfnopyro~ ; 

xene and plagioclase aver:age 0.2 rrm in size.· The occurrence of' deuteri<; 

material and opaques in the interstices defines an intersertal texture. 

Clinopyroxene ranges from groundmass size up to mi crophenocrysts of 1.6 

mm diameter. Such grains are always frEsh, even 1n the more · altered 

rocks, and tend to form glQmeroporphyritic clusters. 

Pseudomorphs after olivine form 0.4-2.6 mm grains • . In some 

of the fresher specimens orthopyroxene is recognizabl~ as · small grains 

whi€h occasionally are mantled by c~fnopyroxene. 

In the 6uter parB.of olivine basalt pillows vario11tfc texture 

is suggested -by the radial arrangement of py~oxenes. A gradual decrease 

in grain size is encountered from core to margi n of pillows • . 

r 
111.2.4 Aphyric Lavas . 

This type of basalt forms both pillows and massive. flows 

throughout tile atea. The rocks are thoroughly crystalline an(,f display 

intersertal or intergranular texture. Small patches of variolitic tex­

ture can occasional)y be fou.nd near vesicles, where fas-ter cooling ·could 

occur. These rocks differ from the more mafic lavas in the absence both 

ofotivfne ·phenocrysts'and a glas.sy mesostasis. Microphenocrysts of 

cl':inopyrQ.)Cene are v~·ry tOIIIllOn a'nd range from groundmass 'size (0.1 mm) up 
.... 

to 1.5 lllll~ Plagioclase normally fonns laths in the groundmass· ( -"0.4 111!1) 

but occasionally occurs as microphenoc:rysts which reach 1.6· nm in lengt h • 

Minute euhedra of magnetite generally constitute less than 5% of the rock 
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• 
and average 0.02 mm in diameter. A complete modal analysis is included 

) in Table 111~1. Plates 38-46 contain photomicrographs of these rocks. 

A ubiquito.us feature of this group of rocks is. their intense 

and pervasive alteration. Celadonite ' is a common deutedc mineral. oc­

curring as' bright green patches· replacing pyroxene or HI amygdules. · In 

many sections hematite . has almost completely obfuscated the primary 

textures. Fine-grained pyroxene and magnetite are the phases most com-.. 
monly affected by hematization. ,'\any thin sectio~s examined · consisted 

. . 
only of secondary carbonates. zeolites and clay minerals. In ..some .of ' the 

rare fr;-esh specimens the primary intergran~;~lar/intersertal texture can be 

observed. Occasionally clinopyroxene microphenocrysts are absent and· · 

fluxioned plagioclase laths of uniform size define" a p11otaxitic tex-

ture. 

Fine and coarser-grained types occur within the succession. At 

the ba!;e · of the Upper Pillow Lavas a fine-grained unit (fine ... grained 

.basal lavas of Sinewing,. 1975) sporadically outcrops, which·' contains 0.1-

0.2 lll1l grains of clinopyroxene and plagioclase with interstitial smec­

tite. 1.2 - 1.3 11111 clinopyroxene microphenocrysts are common. · .The suc­

cession also contai.ns some coarser grained bodies which presumably were 

intruded at shallow depths i_nto warm pillow lavas. Ttlese rocks may be 

aptly termed microgabbro and consist · of · 0.5 mm plagioclase and 0.4 mm 

pyroxene,grains . 1ntergrown in an intergranular texture. Titanomagnetite 
. ! 

·.is more .conmon than within the fine-grained -rocks. Wh11e pyroxene h . . . . . .... . . . 
· similar tn habit and abundance to 1ts occurrence in fine-grained bodies, 

the increase in abundance and grain size of plagioclase i s the most 

definitive aspect of this rock. Alteratiqn is less intense · than but 
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Plate 38: Aphyric basalt. Fresh clinopyroxene micropheno­
crysts partially replaced by green celadonite. 
KL-23. XN. 31X. 

Plate 39: As above, PPL. 
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Plate 40: Aphyric basalt. Clinopyroxene microphenocrysts, 
some of which are twinned. Zeolitized qroundmass. 
KL-51. XN. 31X. 

Plate 41: As above, PPL. 
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Plate 42: Aphyric basalt. Well developed zeolite mineral 
in amygdale. Groundmass altered to smectite. KL-122. 
XN. 31X. 

Plate 43: Aphyric basalt. Clinopyroxene microphenocryst, 
intersertal texture. PL-19. XN. 125X. 
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Plate 44: Aphyric basalt. Rare plagioclase phenocryst; 
fluxioned plagioclase laths in groundmass. 
KL-26. XN. 31X. 

Plate 45: Microgabbro~ from aphyric basalt unit. Sausserittzed 
plagioclase; clinopyroxene replaced by iron oxide. 
KL-29. XN. 31X. 
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Plate 46: Fine grained basal lava. Clinopyroxene micro­
phenocrysts; glomeroporphyritic texture. 
KL-69. XN. 31X. 
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sim1lar in nature to that described for finer~grain~ varie~ies; hemat1te, 

pseudomorphs after cl i ropyroxene and smect ite/calcHe after plag·toclase 

are typical •. · 

III.2.5 · Zeolite Mineralogy 

The zeal ite mineralogy of the whole · volcanic sequence was 

studied in detail by Smewing (1975) and will be briefly reviewed her&. 
. ' ' 

Seven different species of zeolite have been identified by Smewing ' wi t~in 

the Upper Pill~ Lava sequence. While ~linite, natrolite and phillip­

site are restricted to the Upper . ~illow Lavas, these three, as wel l .. as 
. ' ' ~ . · : 

analcime, chabazite, heulandite and stilb1te have been identified in: the · 
!'... • ' . : 

• 1 . . . ·' ~' ~ 
uppermost Axis Sequence volcanics. Z~ol ite phase · occurrence appears to 

be independant. of st~attg_raphy; they occur .general~y in groups of two or 

three species throughout the succession, bot~ as .vEisicle fillings and 

·· repiacing fine-grained groundmass mfnerals. This diversity of zeolite 
•, . ' ' t ;.~· . 

mineralogy and the presence ~f smecti~f instead of the higher tempe~ture 

albite as a replacement for plagioclase is conclusive evidence for ~ide­

spread zeolite facies metamorphism (Smewi ng, 1975; Gass and Smew1ng, 

1973). 

!' 
I 
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IV. BUCK ROCK GEOCHEMISTRY 

IV .1 Introduction 

Two hundred and fifty samples were collected from the Upper 

Pillow Lavas~ a' few were collected from the Lower Pi -llow Lavas near their 

contact with the Upper Pillow Lavas, although no attempt was made to sam­

ple the lower unit. The rock samples were ~xamined'in the laboratory for 

·alteration and the inclusion of foreign material in veins and a"b'gdales. 

- \ 

One hundred and twenty of the' freshest samples were selected for crushing 

and ~eochemical an~ltses. of major and trace elements; determinations of 
I ., 

iron oxidation_ state were carried out for all specimens. 
' 

C.I.P.W. normative calculations for all major element analyses 

were executed using the computer program of R. G. Cawthorn (unpub. docu-

ment, Dept. of Geology, M.U.N.). ,A complete description of .all analyt1-

cal techniques is contained in Appendix A. 

The major element analyses were examined for ·high contents of 

CaO and high Loss on Ignition values; thes~ were taken to indicate inad .... 

vertent inclusion of ' calcite in the sa~le .and the analysis was omitted 

from the ~inal group of analyses used in this work. Ana-lyses of the oli­

vine and aphyric basalts which showed inordinately high K20 at low_ T102 

contents were discarded as unreliable {greater than >2.55% U20} · 

An important ccmsideration in : seleCting the final group ot' 

analyses for all rock types concerned W'as to attempt to represent uni -

formly the geographical distribution of the Upper Pillow Lavas. .All .rock 

' specimens collected are plotted on the sample locality maps (Plates 1 -
•. 
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3, back pocket); those us~ for geochemical analyses are thus indicated. 

All hydrous major element and trace elemeot data, as Well as normative 

mineral proportions. are presented in Appendix 8.1.1 • . Oat~ used in geo­

chemical plots and calculations later in this study have been recalcu-

lated to 1001 ~nhydrous. 

IV~2 Variation Ohgrams . . 

The trace and major ele~nts of the different rock types of .the 

Upper .Pillow lavas have .been plotted against MgO as a fractionation index 

. (figures IV.l and IV.2). MgO ·is a more appropriate index than S102 be­

cause of the tendancy toward silica metasomatism in some of the rocks. 

and because fractionation. as .will be seen., · is controlled by o11 vine. , 

All analyses are recalculated to 1001 anhydroas. 

IV .2.1 \~or Elements vs. HgO 
I ,, 

. The trends of maJor elements versus· Mg() are depicted tn figure 
' • 

IV .1. . The"P't6ts at so include oll vine analyses from ultrabas1c rocks to 

.show the relationship__ between olivine composition ~and the d~erent lava 

types. The field and _petrographic distinction made between th different . .,. 

types of Upper Pillow· Lava are suggested by the plots, · primarily on the 

basis of MgO content alone. The ·ultrabasic· rocks fonn a. distinct group 

with M~ contents o~ 36 - 401;, ~t of th_e major elements of the ultra­

basic rocks show very small .r~ against MgO; _lime and silica show a 

wide scatter .arid probably indicate the effects 6f zeoi1te facies metamor~ .. 
ph1 sm. All111ina shows a · very broad range and may reflect · t~e varying 

amounts of · plag1oclase in the d1ffererrt ultrabasic rocks. ·The komatiites 
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.
FIGURE Iv}.l . Major elements vs • . MgO. All analyses re-

, · •· ) calculated to ,100~ anhydrous. 
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Trace elements vs. MgO. All trace element 

valu_es mea~ured in ~pm. Symbols as in. 
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alsQ form a relative~y d1st1nct group with HgO ranging fran 9.5 - 13.5~. 

and are characterlzed by very cons1stant values for the 11\iljor oxide$.: . ' . . . .. . ' 

Again s10
2 

and CaO show the widest absofute variation of 4~ and 61 re:. 

speetively. Apparently the consistent result·s are produced by the very 
' ' 

fresh· condition of these glassy rods. The field of kanat11tes 1s par-
. .. ' ' 

t ially overlapped by that of olivine basalts and aphyr1c basalts 1n s0111e 
,. . . t • 

of the . plots; these show ranges of 8S - 11' HgO and 4.5,. ~ ll~ HgO, re-· 
' , 

spect1vely. The~e rocks also gener~lly show broader ranges of the other} 

oxides as ~ell;.again Si02 and CaO show especially large variations. -q,e 

olivine basalts and aphyric lavas are chemically, as well as petr.ograph1-
. 

calJy, similar. The . ol1v1ne-phyric basalt plots define a · field instde · 
.. 

the aphyric basalt but interme~Uate between the komatiites and the bulk 

of the aphyr1c lavas. K20 values in the ultrabasic .rocks were too low 

to ~asure. 

The 'IIIOSt sigr:tif.i'cant featur:e of the major oxide vs. MgO plots 

is the colinear aspect of the fields defin~d b~~E: differ~nt rock types. 

This. is evident for all the plots with the poss1b1~ except1or1 of some of 
' . 

the fields defi n.ed by the highly weathered ol~.basa.lts. Where the 

fields are broad • . the points are . dispersed w h considerable · symmetry 

around a line joining the fields. The dispersed nature of orne plots. 

espec.ially for s;o2• Na2o and CaO indicate possible a·lteratlon and 

elemer1t mob11Hy. However, stable elements such as A1 2o3 and Ti02 
show be~~er cluster. The microprobe analysis of .the olivine . phenocrys~s 

lie on an extension of the line ·connecting~he fiel~s of bulk rock 

analyses. This colinear asdect, as a prelt'minary obseriation ~ ·is. 
. . . . , . . . 

considered to demonstrate the importance' of olivine as a control phase .... 

in the genes is of the different rock types . 

' ' 
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IV.2.2 )race Elements vs. MgO 

Fourteen · different trace elements . of the Upper Pillow Lavas 

have been plotted against MgO in Figure IV.2. Kanatiites and ultr~ttasic 

rocks again plot in well-det"ined fields, while olivine basalts and aphyr-: 
. . 

ic basalts show a wide scatter,·especially with regard to the mJre fncom-. . 
patible elements, e.g., Cu. 11-146 ppn., Sr, 22-289 .- PPf'l• ' and Rb,' 2-46 

· ppn.;. th_ese elements are cons.~der~d ·to be mJbile · during low temperature 

metamorphism (Pearce and Norry, 1979). 

Generally the different rock types show the expected var1 at ion 

with MgO. The inconipatible elements Zn, Ba, Y, V, Sr, -Rb and :Pb all in-
. t .. • 

crease with decreasing MgO. Ni and Cr increa!i( with MgO content~ 

Cu snows, an increase from ultr.abasic to k001ad i~rock ~ypes and a 'de~ 
crease fromkomatiites to aphyric basalts. .. 

The. very regular variation o~· ~i _with. MgO supports the major 

element data, i.e •• that these trends can be explained by olivine fr..ac-
' 

~ 

tionation. Cr against MgO shows similar behaviour and s'uggests , i ncorp-

oration of this element into crystalliZing clinopyroxene or chromian 
" 

spinel; this possieility is confirmed by the petrography. 

IV.3 Jensen Dfag~am (Figure IV.~; after ~ensen. 1976) 
- .. \ . ·. , 

This plot uses. 2Fe + Ti, Mg . and A\· ·and serves very well ·to 

characterize all the. lavas· concerned. The.-Upper ~illowlava compositions 

: /s a who 1)? · show a continuous linear trend away from. the Hg apex. The 

lack of a significant trend toward' the ~Fe + T1 apex indi cates the minor 
. "' . :, . . . - . . . •. 

importance of .clin()pyroxene and plagioClase, and the -predomi nance of oli-
. .. 

vine, as separating pha·ses. The s-.Wght digre~si~n qf some points 

from both the ~Fe + Ti and Al apices may 1 ndicate smal T ainounts of 
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FIGUifE IV.3 Jensen Diagr~m. (after Jensen; 1976; fields 

• 

· d~ri ved· from Francis and Hynes, 1979). 

Plot uses ca.tion propcJitions. 

Field~: 

TF: 
. MK: 

PK: 
CAF: 

· tholeiite 

mafic lcomat i i te 

peri dot it ic komat i i te 
calc - allcal i ne 

Solid curve represents oli.vine/pyroxe~e 

f ract i ona t ion path i open curve represents 
feldspar/pyroxene fractionation path. 

E nc 1 osed fie 1 ds are derived from Chulcotat 

Group (Francis and Hynes. 1979). Fields · 

as in Figure IV.l except: 

* Lower Pillow lava Analyses 
(this work) 
,. 

'* Lower Pillow lava Analyses 

' (published) 
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£ xene and plagioclase fractio~ation~ albeit this effect is . deemed mini mal 

when COI!llared to the .. normal tholeiitic trend ·as . delineated by the arrow 

in the Jensen diagram. 

t 

Most· of the komatiite sampl~s lie in the mafic komatfite field 

of the dt.a.grarn. The derivative oliyine-phyric and aphyric basalts trend 

away from the k'omatiite field toward the field · of high-Al basalt. The 

rocks as a whole are e,nriched in aluminum with r~spect to the k.omatiitfc­

tholeiitic trend of Francis and Hynes (1979) for the lavas of the Chuko-.. 
tat .Group, New Quebec. The more evolved ment>ers of the Upper Pi l low 

·• 
Lavas are comparable in composition, however, to the gabbroic cumulates 

of . Francis and Hynes (1979) which are in fact de~ved from residual 

liquids pr~uced by the extract ion of ult;amafic cumulates. Although 

none of these basal tic rocks are cumulates, they are analogous to the 

Chukotat gabbroic cumulates in their status as a derived liquid • . , 

IV.4 Ti02 vs. Si02 (Figure IV.4) 

This diagrarri_ was used by Arndt et al. (1977) to chemically dis­

tinguish between tholeiites and komati i tes from Munro Township, Que~ec. 

It i.s considered less than ideal ·here, but ser~es .to i ndicate the extent 

of., metasomatism which has occurred in the highly al tered ol i vine and 

aphyr1c basalts. 

The Upper Pillow Lavas as a whole have strikingly low Ti 02 

contents. Except for the ultrabasic rocks the T102 values show no sig­

nificant var1at1on with Sf02 content - in fact, . the highest values are 

found where SH~ is lt>west. This behaviour indicates the validity of 

using M~ rather than s;~2 as a fractionation index. As ti02 1s con-:-
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r;o
2 

vs. s102• Thol~iiti_c and kanatiit1c 

fields defined by Munr~ ~ownships rocks 

(Arndt et al •• 1977). Sytrbol s as before. 

' • 

+ 

j 

.4 

... 

. I 

l 



2.8 

2.4 

2 

1.6 

Ti~ 
(wt:t.) 1.2 

.8 

tholeiite field > 

( 
* 
* * 

• 
0~--~--~--~---~~----L---~--~--~--~--~----~--~--~--~--~ 

44 46 48 50 52 54 56 58 60 



.~ ; ' 

. / . 

" 
'i. 
' 

. \ 

' . ' . 

. ·•. I 

····.:· i ' 

" ..... ; 

, ............... -___ _.. _ _;,_._ .....,.___.; ____ ····---- · 
·--~---·-- · "• 

' 
- .-45 -

I . -· . .. sidered to be relatively i111110bile during low temperature metamorphiC pro-

cesse_s. those lavas with the highest Ti02 are liKely to . be the IOOSt 

·~vohed. and ·th~i r lower Si02 contents proba.bly represent the ·removal 
.... . ·0 . . . • . 

.of thts· :oxide by metasomatis_m; this consideration is furtber brought out 

by the large scatter of points for the olivine. a.nd aphyric basalts as 

komat 1 i tes. . ' . ~ 

; ·. . ' of the - ap~yric lavas plot i nside the 
.. .. ,. .. 

· the k tiite ' fiel" as defined for th-~ Munro Townshi'p rocks. · The remain-· 

der plot- below ··the field with Ti02 .values :or sor'n~ k~tii_tes as low ~s .. 
f . . 

{).21.. As a group the ,aphyric lavas. _'cqntain - significant::lY le~ __ s Si02 ilnd 
• ,J • • -~-

·more Ti02 than the komati 1 tes •. Ill •• . • .•. . .. ~ .• -~ 
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Alz03 vs. Fe01/{FeOT+Mg0). Fields for 
tholeiites, komat11tes and ultra~~~afic 

cumulates as defined for Munro Townships .· 

rocks (Arndt et al.,l977). Symbols as 

before. 
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the Al 203 axis, while a significant variation in FeOTJ(FeOT+MgO) 

ratios is also present. Both variations are continuous, with komatiitic 

and aphyric types defining the range; olivine basalts occupy an intermed­

iate position. The ultrabasic rocks plot very closely to the cumulate 

komatiite field from Fred's Flow, Munro Townships. 

Considered overall, the Lower Pillow Lavas have higher FeaT; 

(FeO T +MgO) than the Upper Pi 11 0\"1 Lavas, although they are simi 1 ar to 

the more iron-rich aphyric lavas. Most of the Lower Pillow Lava plots 

have alumina contents similar to the Upper Pillow Lavas. 

The regular increase in Al 203 corroborates the earlier pro­

posa 1 of the importance of fractionation of nonal umi nous phases in the 

genesis of the Upper Pillow Lavas. 

IV.6 Ti0 2 vs. MgO {Figure IV.6) 

Again aphyri c 1 a vas, komat i i tes and Lower Pi 11 ow La vas are 

separated on the basis of Ti02 content, albeit the range of Ti0 2 Val­

ues for the aphyric lavas (0.28 - 0.74%) is much greater than that for 

komatiites (0.20- 0.43%). This more regular variation of Ti0 2 with 

MgO contrasts with the rather erratic variation of Ti0 2 With Si0 2 • 

The olivine basalts plot in the area of overlap between the komatiites 

and aphyric basalts. Samples from the Lower Pillow Lavas show consider-

ably higher Ti0 2/Mg0 ratios than those from the Upper Pillow Lavas, but 

are slightly less magnesian than the field of tholeiites from Thea's 

Flow, Munro Townships. 
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Ti0 2 vs. MgO. Fields for tholeiites and 
komatiites defined for Munro Townships 
rocks (Arndt et al., 1977). Symbols as 

before. 
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IV.7 Ca0/Al 203 vs. MgO (Figure IV.7) 

The komatiites and olivine basalts plot almost exclusively 

within the field of komatiites as taken from the data of Arndt et al. 

(1977) for Munro Townships rocks. The aphyric basalts extend from the 

tholeiite field across the overlap into the komatiite field. There is no 

great variation in Ca0/Al 203 ratio from MgO-rich to MgO-poor types 

but the average value for komatiites is higher than for aphyric basalts 

(0.72). Although Ca0/Al 203 ratios of the Upper Pillow Lavas are very 

similar to those of tholeiites and komatiites from Munro Townships, the 

actual values of both CaO and Al 203 are considerably higher. 

values for these rocks are compared in Table VII.2. 

IV.8 Rare Earth Elements (Figure IV.8) 

Average 

Seven samples from the Upper Pillow Lavas were analysed for 

rare earth elements; these comprise two analyses from each of the koma­

tiites, olivine basalts and aphyric basalts, as well as one analysis of 

olivine cumulate (ultrabasic rock). These data, along with five samples 

from the Lower Pillow Lavas as documented by Smewing and Potts (1976), 

have been summarized in Appendix B.1.2. and Figure IV.8. Methods and 

accuracy of analyses are discussed in Appendix A.2.5. 

The REE patterns from the Upper Pillow Lavas form a distinct 

group with concentrations essentially lying between 2 and 5 times that of 

chondrite (Nakamura, 1974). The aphyric basalt DL-6 has concentrations 

similar to the least fractionated sample from the Lower Pillow Lavas, 

which are enriched with respect to chondritic abundances by a factor of 5 
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CaO/Al203 vs. MgO. Fields for tholeittes 
and komatiites as defined for Munro Town­

ship rocks (Arndt et al., 1977)· Symbols 
as before. 
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Chondrite-normalized rare earth patterns 
for the Upper and Lower Pillow Lavas. Sym­

bols as in Figure IV.l. Average chondrite 

is taken from Nakamura (1974). 
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or more; one or two samples from the Lower Pillow Lavas have Sm and Tm 

concentrations nearly 20 times that of chondrite. 

The two lava groups are effectively separated by a threshold 

level (Curve A in Figure IV.8), as proposed by Smewing and Potts (1976). 

Profiles below this line are typical of less fractionated olivine-phyric 

basalts from present day oceanic environments (Frey et al., 1974; Schil­

ling, 1975). Above the threshold level the profiles are similar to those 

of olivine-free ocean floor basalts (Schilling, 1975). 

The Upper Pillow Lavas, i.e., samples plotting predominantly 

below the threshold level, are further characterized by an increasingly 

positive slope from Ce to Gd, and a slight positive slope from Gd to Lu, 

with decreasing total rare earth concentrations. This effect is ulti­

mately expressed in the primitive komati itic lava KL-33; this sample 

shows LREE concentrations less than that of chondrites and attests to the 

depleted nature of the parental magma. Samples from the Upper Pillow 

Lavas with both higher relative concentrations of LREE and of total REE 

are those lavas which are elsewhere in this chapter shown to be affected 

by olivine fractionation (i.e., olivine and aphyric basalts). The par­

tial profile for olivine cumulate predictably shows depletion relative to 

chondrite for all elements except La. 

The petrogenetic implications of the foregoing rare earth data 

will be considered in detail in Chapter VI, in conjunction with evidence 

drawn from mi nera 1 chemistry, and bulk rock trace and major element geo­

chemistry. Here it is sufficient to note that the clear distinction be­

tween the Upper and LO'rter Pillow Lava rare earth element profiles sug­

gests a fundamental difference in the origin of their respective parental 
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magmas. Furthermore a fractionation sequence, as suggested earlier in 

this chapter by trace and major element variation diagrams, is also ap­

parent from the viewpoint of rare earth element concentrations; a trend 

of light and total REE enrichment away from the komatiitic sample KL-33 

is present. 
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V. MINERAL CHEMISTRY 

V.l Olivine 

Detailed microprobe investigation of fresh olivines in the ul­

trabasic lavas and komatiites was carried out; methods are described in 

Appendix A.2.4. Grains from the olivine basalts were not studied because 

of their complete alteration to deuteric minerals. Olivine analyses are 

printed in Appendix B. 2. Although five different grains were analysed 

from each particular sample, the average value only for each sample is 

presented, as compositional variation within samples was negligible. All 

olivine analyses were found to be homogeneous. 

Data for ol i vines from three different ul trabas i c rocks are 

listed. Specimens KL-12 and DL-45 have similar Fo contents (91.4 and 

90.8) while DL-36 is richer in the forsterite molecule (Fo 93 • 1). 

Olivines from the komatiitic lavas are markedly less magnesian, ranging 

No olivine analyses from the Troodos peridotites 

were available. The ultrabasic olivines are comparable to those from the 

harzburgites of the Bay of Islands Complex (Average Fo91 •0 , Malpas, 

(1976)) except for DL-36 which is more magnesian. They are considerably 

richer inFo than olivines from cumulus rocks of the Bay of Islands Com­

plex, i.e., dunites, critical zone rocks and gabbros which are in the 

order of Fo89 • These values are comparable to those from the present 

komatiitic olivines. It appears that the olivines from the present ul-

trabasic rocks crystallized from a magma with a much higher Mg/Fe 

ratio than normally erupted tholeiitic magma. 
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Arndt et al. (1977 ) provide analyses of olivine which has crys­

tallized out of a. komatiitic liquid, some grains of which are as magne­

sian as Fo93 •8 , but averaging about Fo90 •4 • It therefore seems possible 

that these olivines which are more magnesian than most olivines derived 

from a tholeiitic liquid could have crystallized from a magma with low 

FeO/FeO + MgO, which is one of the specific criteria for komatiitic 

lavas, according to Arndt et al. (1977). 

Olivines from the komatiitic lava of the present study are also 

in the range of komatiitic olivines from Munro Township (Arndt et al., 

1977) and are also comparable to cumulus olivine from the most magnesian 

rocks of the Bay of Islands layered series, i.e., the dunites. 

V.2 Orthopyroxene 

Average orthopyroxene analyses from ultrabasic rocks, komatiite 

and olivine basalt are listed in Appendix B.2. En content increases from 

84.20 in the ultrabasic rocks to 89.46 in the olivine basalt. 

According to O'Hara (1963b), in large layered complexes or ul­

tramafic nodules where equilibrium could have been attained the value of 

En/Fo is approximately 1. At the other extreme, in rocks where the de­

gree of eq ui 1 i bri urn is considered to be somewhat 1 es s due to more rapid 

cooling, such as small intrusives and lavas, the ratio is considerably 

less than unity. The obvious discrepancy here between equilibrium ratios 

and those observed for the ultrabasic rocks suggests that either: 1) oli­

vine and enstatite are in marked disequilibrium due to the rapid cooling 

of the lava, or 2) the larger and presumably earlier formed olivine 

grains precipitated out of a liquid of a different composition than the 
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orthopyroxene did. The size and habit of the olivine crystals makes the 

former premise improbable. If the olivines of the ultrabasic rock are 

envisaged as crystallizing in a magma chamber at the intratelluric stage, 

then it follows that they would sink to the bottom and form a liquid/ 

crystal nush. The texture of the rock suggests that extrusion of this 

mush occurred before orthopyroxene had begun to crystallize in any great 

amount. The small proportion of orthopyroxene which then crystallized in 

the groundmass did so from a restricted batch of 1 i quid which was de­

pleted in Mg2+ by the removal of the olivine from the system. 

The Mg2+ content of orthopyroxenes (En87• 9) in the ko­

matiitic lavas is more comparable to that of the olivines (Fo87 _6 

Fo89 _6), although it is again slightly low. The decidedly rapid 

quenching of this rock can account for the observed 1 ack of equi 1 i bri urn 

distribution of 
. 2+ 

Mg and between the two phases. The En 

content of orthopyroxene for the olivine basalt is higher still and sug-

gests conditions closer to equilibrium crystallization. 

Th 1 1 t . of ca2+ ,- n e mo ecu ar propor 1on orthopyroxene ranges 

from 0.065 in the ultrabasic lavas to 0.117 in the komatiitic lavas. The 

high value for komatiitic orthopyroxene may reflect the abundance of cal-

cium in the magma, which may have entered the orthopyroxene lattice be-

fore clinopyroxenes began to crystallize. Atlas (1952) found that the 

amount of ca2+ ato~s accepted into enstatite in the synthetic system 

MgSi03 - CaMgSi 2o6 reached a maximum of 0.115 at a crystallization 

temperature -;~ of 1100°C, but decreased to 0.30 at 700°C. This data is in 

accord with the quenched nature of the komatiites and the preservation of 
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mineral compositions achieved at high temperatures of equilibrium, such 

as the high ca 2+ content of orthopyroxenes. 

The average alumina content in art hopy roxene is 3. 74 wt.% in 

ultrabasic rocks, 1.81% in komatiites and 1.74% in olivine basalt. 

A1 2o3 content in pyroxenes is dependant both upon pressure (Boyd and 

England, 1960) and the availability of aluminum. High-alumina orthopyro­

xenes from the Lizard are found with alumino us di opsi de and spinel 

(Green, 1964), but Mal pas (1976 ) suggested that the low alumina content 

of spinels from dunites of the Bay of Islands Complex as compared to the 

lherzolites and harzburgites may reflect the low pressure crystallization 

of plagioclase within the former rocks. 

This latter view is credible here in consideration of the 

Al 203 content in three orthopyroxene-bearing rock types. The high 

values in this mineral within the ultrabasic rocks reflects the virtual 

absence of an aluminous phase, although amounts of plagioclase are pres­

ent in DL-36 and DL-45. Small amounts of spinel occur, but this is de­

finitively chromian (based on petrography, no probe analyses available). 

The komatiitic lavas on the other hand are rich in calcic pyroxene, 

either augite or pigeonite, which has up to 12.38% alumina (see KL-34, 

Appendix B.2). The glass of the groundmass of KL-34 contains up to 18% 

alumina, which clearly would control the amount of plagioclase precipita­

ting had crystallization run its normal course. Ostensibly, then, ortho­

pyroxene is but a minor host of A1 2o3 in these lavas. 

Likewise the low alumina content of orthopyroxene from the oli­

vine basalts is attributed to the high percentage of modal plagioclase in 

the rock (prior to alteration). 
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The relationship between orthopyroxene and clinopyroxene will 

be discussed in the following sections. Suffice it to say at this point 

that, in contrast to clinopyroxene, orthopyroxene grains show no chemical 

zoning. 

V.3 Clinopyroxene 

V.3.1 Unquenched Lavas 

Analyses of clinopyroxene grains from all four rock types are 

contained in Appendix B.2. Again, where more than one grain was analysed 

per section, the average of the analyses is printed. As the geochemistry 

of the monoclinic pyroxenes in komatiites is here fairly complex the 

topic will be dicussed separately from clinopyroxenes in the other three 

rock types. 

Clinopyroxenes from the ultrabasic rocks, olivine basalts and 

aphyric lavas are all augite and show uniform composition from one to the 

other, although the former are richer in both the Wo(39.6-41.2) 

En(51.0-54.0) components (Figure V.1). Generally speaking ca2+ 

ies sympathetically with Mg2+ and antipathetically with Fe2+, 

and 

var­

as 

there is an overall increase in the MgSi03 and decrease in the FeSi03 

components going from ultrabasic to aphyric rocks. Cr2o3 was ana­

lyzed from one ultrabasic rock, KL-121, and composes 1.8% by weight as 

compared with 0.10-1.47% from the aphyric lavas. Ti0 2 shows no signi-

ficant variation. Alumina in clinopyroxenes is consistently high in both 

the ultrabasic rocks and olivine basalts (2.01-3.16%), as compared with 

smaller values and a broader range for the aphyric basalts (1.62-3.02% by 

wt.) There is a sufficient amount of alumina in clinopyroxenes from each 
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Pyroxenes from unquenched lavas. 

• Ultrabasic rocks 

• Komat i i tes 

o Olivine basalts 

• Aphyri c bas a 1 ts 
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of these three rock types to make up the requisite two cations (with 

silica) in the tetrahedral sites. MnO content ranges up to 0.17% in 

PL-17 (aphyric basalt) which is also the sample with the highest ferrous 

iron content. 

Soda contents are low in all the clinopyroxenes analysed 

(0.03-0.25%) but are particularly low in the ultrabasic rocks and olivine 

basalts (0.03-0.14); K20, where included in the analysis, was not de­

tected. These values are low even for basaltic rocks and in accord with 

the results obtained from bulk rock geochemistry, i.e., they indicate the 

extremely depleted nature of the magma. 

V.3.2 Quenched Lavas 

The zoning in the monoclinic pyroxenes which was evident from 

petrographical studies was investigated in some detail with the electron 

microprobe. A total of nine grains from the most pristine hyaloclastic 

samples, KL-33 and KL-34, were studied. Analyses of grains in KL-33 in­

valved two points only, one at the core and one at the rim of the grain. 

In section KL-34 traverses across four grains were made, with up to seven 

point analyses taken per grain. These traverses in all cases confirmed 

the symmetrical and bilateral nature of the chemical variation. A list 

of the data for all points measured is supplied in Appendix 8.2. 

As can be observed from the table there is no unique pattern of 

variation within the grains. The following different cases are notable: 

1. ca2+ -rich (augite) cores ---+rims 1 ower in ca2+ (augite or 
subcalcic augite) 

e.g., KL-33, Grain A, KL-34, Grains A, B and D 
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2. ca2+-rich (augite) cores---..rims higher in ca 2+ (augite) 
e.g., KL-33, Grain C 

3. Ca 2+-rich (augite) cores---+-rims much lower in ca 2+ 
(pi geonite) 

e.g., KL-33, Grain D 

4. ca 2+-poor (pigeonite) cores _____.ca 2+-rich rims (augite) 
e.g., KL-33, Grains Band E; KL-34, Grain C 

There is a strong antipathetic but very systematic variation of 

Mg2+ with ca 2+ (Figure V.2). The Fs component is relatively con­

stant, except in some grains where high Ca/Mg values are attained. Al 2o3 

in augites and subcalcic augites shows normal basaltic concentrations in 

the grains which are not strongly zoned, and varies with ca2+ con-

tent. High concentrations are found in Grains KL-34 B and 0, however, 

where alumina weight percent ranges (core to rim) from 2.17 to 9.17%, and 

5.01 to 12.37%, respectively. Al 203 occurs at the expense of Si02 and is 

partitioned strongly into tetrahedral sites. In the pigeonitic zones of 

grains, e.g., the core of KL-33, Grain B, Al 203 is typically very low 

In some analyses it is necessary to add 

Fe3+ to fill the tetrahedral sites. 

Ti02 is generally extremely low but aga -in shows normal basal-

tic concentrations and varies with magnes i urn. MnO varies closely with 

FeO. 

The analyses derived from the grain traverses in KL-34 (Appen­

dix B. 2, Figure V. 2) show an initial ca2+ enrichment trend which is 

followed by an enrichment in Fe2+ after an original Mg~Ca substitu­

tion. Roeder and Emslie (1970) have demonstrated that the partitioning 

of Mg and Fe between mafic phases and liquids is independant of tempera-
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Pyroxenes from quenched lavas. 
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ture. Thus the increase of Ca/Mg in the magma during this early stage of 

pyroxene crystallization probably reflects a depletion of Mg in the magma 

due to the simultaneous and continuing crystallization of olivine and/or 

orthopyroxene. Petrographic observations indicate that with falling tem­

perature these two phases are superseded by clinopyroxene as the impor­

tant crystalling phase. The later concentrations of iron may indicate 

the substitution of Fe2+ for Ca 2+ in M2 sites as both elements 

become more concentrated in the liquid. As is seen from the diagram this 

iron enrichment seems to be in effect for compositions with greater than 

30% of the Wo component. 

The development of regular normal (and reverse) zoning in pyro­

xenes is predicated upon their ability under certain conditions to accept 

cations which are strongly partitioned into M1 (Mg2+) and M2 

These conditions are best attained in slow-cooling 

equilibrium situations, inferred for large intrusions such as the Skaer­

gaard. The effect of very slow cooling upon equilibrium is to allow time 

for the cations under consideration to migrate through the melt along a 

diffusion gradient to sites at crystal boundaries in which they are pre­

ferentially accepted, that is to say, the crystal continuously equili­

brates with the liquid. It is obvious that rapid cooling can have a 

limiting effect on this mechanism, and quenched but zoned pyroxene grains 

may not show enrichment trends typical of equilibrium crystallization. 

Lofgren et al. (1974) and Donal dsen et al. (1975), based on experimental 

work dealing with the cooling of melts of lunar basalt composition, have 

shown that fast rates of cooling favour the entry of Ca, Fe, Al and Ti 
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into t he pyroxene lattice, which in the present case supports the tenet 

of di sequi l i bri um. 

The core-rim pairs of KL - 33 (Appendix 8 . 2 , Figure V. 2) show op-

posing t r ends. Grains B, C and E exhibit Ca-poor cores with augitic rims 

which indicate variations simi l ar to those described above , although CaO 

is very l ow in Band E. Gr ains A and D, however , show augite cores with 

rims lower in cal ci urn . This may r epresent a concentration of Mg2+ 

ions in the vicinity of the crysta l su r face, which will be preferential l y 

accepted into the pyroxene structure. 

r 
V.3. 3 Discussion of the Re l ati onship Between Coe x i sti ng Py r oxenes 

Various worke r s have studied the compositio ns of py rozenes in 

the CaSi 03- FeSi03-MgSi03 system f ormed as a result of rapid cool­

ing. Kuno (1955) related the stabi l ity of subcalcic pyroxenes to the oc­

cupation of tetrahedral sites by F e 3+ , which l ewers the temperature 

of the sol vus for such pyroxenes . Thus under conditions of rapid cool i ng 

the temperature of the magma may lie above the sol vus temperature with 

the subsequent formation of subcalcic augite as a stable phase. Kuno 

further considered that under su ch conditions subcalcic augites may crys­

t allize wit h an Mg/Fe ratio as high as 65/35 (as compared with 35/65 fo r 

slowly cool ed basic magmas) . For the present rocks this ratio is even 

hi gh e r ( about 8 51 15 ) • 

Muir and Tilley (1965) observed that two pyroxene trends may be 
d" . . 
lStlngulshed in the crystalli zation of tholeiitic basalts. One is the 

Phenocrysta l t r end of intratell uric equ il ibr ium crys ta ll ization leading 

to the formation of hedenbergitic compositions; the other is the 
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•quench• trend typical of the subcalcic augites of the groundmass. In a 

study of the Kilauean series these authors have shown that rocks contain-

ing Ca-rich pyroxene phenocrysts display a characteristic distribution on 

the diopside-hedenbergite side of the cotectic curve (in pyroxene quadri-

lateral) in contrast to those with orthopyroxene phenocrysts, which plot 

below the curve. The •quench• trend of the groundmass pyroxene, however, 

consisting of subcalcic augites or ferroaugites, in which the principal 

substitution is trangresses the cotectic curve and 

in the more acid differentiates cant i nues to ferropi geoni tic compos i-

tions. This 1 ate iron enrichment trend is the case for some of the 

grains analysed in KL-33 and KL-34 (see Figure V.2). 

Smith and Lindslay (1971) studied augites from a flow of the 

Picture Gorge basalt. Their compositions from the center of the flow 

show a normal plutonic Fe-enrichment trend with only a small concomitant 

decrease in Ca. Those of the quickly chilled base of the flow show the 

characteristic Ca ~Fe substitution, Ca45 to ca36 , with constant 

Mg, of the • quench trend •, and probably represent a metastable crystal-

liquid partition consequent on the rapid crystallization. 

Yamakawa (1971) found similar contrasting trends in augites of 

the tholeiitic dolerite, Semi, Japan. He considered augite- and sub-

calcic augite-pigeonite pairs a disequilibrium association resulting from 

the undercooling of the liquid with respect to pigeonite, in accord with 

the •quench trend• of Muir and Tilley (1964). Yamakawa proposed a hypo-

thetical pseudobinary system to explain augite/pigeonite relationships in 

quickly cooled systems (explanation in caption, Figure V.3). 
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The hypothetical pseudobinary system 

(Mg~Fe)Si0 3 - Ca(Mg~Fe)Si 206 of Yama­
kawa (1971)~ showing crystallization 

of the pyroxenes in the tholeiitic 
dolerite of the Semi sheet~ Japan. 

L1_3 and A1_3 represent~ respectively, 
the equilibrium compositions of augite 

and liquid at temperatures T1_3• 

P1 represents the composition of the 
first pigeonite to crystallize. 
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It has 1 ong been known that under plutonic conditions a field 

of immiscibility exists between augite and pigeonite, but Kuno {1950, 

1955) suggested that a complete range of composition between the two may 

occur, under certain conditions, in the rapidly crystallized clinopyro­

xenes of volcanic rocks. Up to the present most evidence has been opti­

cal with few actual demonstrations of pyroxenes showing gradation between 

augite and pigeonite. Poldevaart and Hess {1951) suggested that the 

amount of solid solution between diopside-hedenbergite and clinoenstatite­

ferrosilite is a function more of the temperature than the speed of crys­

tallization, the latter factor merely preserving the amount of solid 

solution at the crystallization temperature, but having no control over 

it. · Deer~ Howie and Zussman (1978) have upheld this vi~w. 

Ishii {1975) found a method to deduce the formation temperature 

of pigeonite. He discovered that during the fractionation of basic mag­

mas the lower stability limit decreases as the Fe/Mg ratios of the pyro­

xenes increase. He defined a 'pigeonite eutectoid reaction line', a ser­

ies of liquid compositions along which pigeonite can coexist with augite 

and orthopyroxene. The formation temperature of a pi geoni te can be de­

termined provided its composition lies on or close to the line and crys­

tallization occurred at or near 1 atm. pressure (Figure V.4). The 

pi geoni tes which form the cores of KL~33 B, E and KL-34 C have an 

Fe/Fe+Mg value between 13.16-15.28 and would have crystallized at about 

1200°C (assuming approximately 1 atm. pressure). 

Nakamura and Kushiro {1970b) have studied in detail the compo­

sitional relations of augite, hypersthene and pigeonite phenocrysts in 

the groundmass of the andesite from Weiselberg, Germany. The phenocryst 
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Pyroxene thermometry diagram, after 

Ishii (1975). * indicates quenched pyroxene in 

komati it e. 



68a 

1600 

1 
1200 --- -

5 

A 

800 

0 . 2 .4 .6 .8 

Fe I (Fe Mg) 



- 69 -

assemblage during fractional crystallization is found to change with in-

creasing Fe/Mg ratio from augite-hypersthene through augite-hypersthene­

pigeonite to augite-pigeonite. Other authors (e.g. Isshiki, 1973) have 

documented an initial co-crystallization of augite and orthopyroxene un-

til a certain Fs content was reached, when pigeonite replaced orthopyro­

xene as the Ca-poor phase. 

The above research provides some insight into the nature of py-

roxenes in fine-grained rocks, albeit there exist important differences 

with the present rocks. At any rate the present pyroxenes have two fea-

tures in common with those discussed above. Firstly, zoning is not only 

a common but a ubiquitous feature indicative of continuous change in 

crystallization conditions, and secondly, the cores of zoned crystals are 

of varied compositions, ranging from calcic to calcium-poor types. Ini-

tial Ca-poor phases experience an increase in the Wo component while ini-

tial augitic compositions, which may be expected to have nucleated later 

and at lower temperatures, experience an increase in the Fs component. 

The 1 ack of an early iron enrichment trend in Ca-poor pyroxenes appears 

to rule out the trend of two monoclinic pyroxenes as discus sed above, 

with pigeonite ultimately succeeding orthopyroxene as the Ca-poor phase. 

Subcalcic augite (or pigeonite) is here believed to be the one important 

early calcic pyroxene which began to crystallize at about 1200°C and 

which represented at high temperatures solid solution of the CaSi03 and 

MgSi0 3 components, evidenced by the lack of a miscibility gap. Outward 

enrichment of ca 2+ in the grains occurred with Mg2+ depletion in 

the melt, perhaps partially due to the crystallization of unzoned ortho-

pyroxene. The very high Mg/Fe ratio of the pyroxenes as compared with 
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those studies from basaltic analogues (e.g., Kuno, 1955) simply reflects 

the original high Mg content of the rna gma, which in fact is the factor 

which facilitated its rapid quenching and produced a basaltic glass under 

presumably normal extrusion conditions. 

V.4 Plagioclase 

Analyses of plagioclase were obtained only from the ultrabasic 

rocks and the aphyric lavas, as no free plagioclase was round in the ko­

matiitic lavas, and the mineral within olivine basalts was invariably 

highly altered. The analyses are contained in Appendix B.2. 

Plagioclase grains are unzoned and classified as labradorite 

and bytownite (An60-An 77 ) • There is not s i gni fica nt composition a 1 

variation between plagioclase from ~ltrabasic and less basic rocks, how­

ever, as both the highest and lowest values of An are found in the aphyr­

ic basalts. Alumina is particularly high in plagioclase from PL-24 and 

occupies tetrahedral positions in place of silica. The Or component is 

negligible in all analyses. 

V.5 Classification of Basalt Based Upon Pyroxene Composition 

Nisbet and Pearce {1977) have attempted, using pyroxene compo­

sitions and discriminant functions, to classify basalts as ocean floor, 

volcanic arc, within-plate tholeiite or within-plate alkali basalt. 

Statistical discrimination of clinopyroxene from known magma types indi­

cates that any attempt to classify basalts using this method should have 

a 70% chance of success. It is proposed here to utilize two pertinant 
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diagrams, not to necessarily •pigeonhole• the Upper Pillow Lava types but 

to delineate in a general way the basalts with which they have affinity. 

The Si02 (px) Ti0 2 (px) and MgO/FeO(px) - Ti0 2 (px) plots 

of Nisbet and Pearce best serve the present purpose. On both plots the 

fields of ocean floor basalts and volcanic arc basalts are superimposed 

(Figures V.5 and V.6). The clinopyroxenes, like the lavas of which they 

are a part, are characteristically low in Ti0 2• Affinities here be-

tween volcanic arc basalts and the Upper Pillow Lavas are suggested, as 

most samples plot in the VAB field, with lower Ti0 2 content in cline­

pyroxenes than is characteristic for ocean floor basalts. 



FIGURE V.5 

- 72 -

Classification of basalt based upon 

pyroxene composition; Si02 vs. Ti0 2• 
(after Nisbet and Pearce, 1977). 
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Classification of basalt based upon pyro­
xene composition; MgO/FeO vs. Ti0

2
• 

(after Nisbet and Pearce, 1977). 
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VI. PETROGENESIS 

VI. Introduction 

It is evident, from an examination of the bulk rock geochemis­

try of the Upper Pillow Lavas, as presented in Chapter IV, and the miner­

al chemistry as presented in Chapter V, that this group of rocks differs 

fundamentally from the majority of basaltic rock types found in the ocean 

basins today. The literature has dealt voluminously with rocks of common 

occurrence in the ocean basins, i.e., rocks broadly ascribed to mid-

oceanic ridge and island arc environments of formation. Compa rat i vel y 

little research has been concerned with the rarer rock types often found 

intimately associated with those of more common occurence. 

This chapter wi 11 attempt to deduce the origin of the Upper 

Pi 11 ow Lavas of Troodos by considering a unique parental magma which 

could have given rise to such a rock series. Recent research has dealt 

\'lith petrogenetic problems which have a direct bearing on the present 

study. The following discussion reviews and draws from this work. 

Duncan and Green (1980) have proposed, mainly on the basis of 

major element geochemistry, that extremely light rare earth-depleted mag­

nesian quartz tholeiitic or olivine-poor tholeiitic liquids are related 

genetically to residual diapirs from which picritic liquids have earlier 

been extracted. These magmas differ fundamentally from tholeiitic pi­

crite, which has been proposed as the primary magma for high Al 203 

oceanic olivine tholeiite (O'Hara, 1968) and which may be derived by 

about 30% partial melting of upper mantle lherzolite (Green et al., 

1979). Accardi ng to some workers the wide variation in ocean floor 
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basalts as regards chemistry and mineralogy is related to various pro­

cesses of fractionation involving the phases olivine, pyroxene, plagio­

clase and spinel (e.g., Frey et al., 1974; Bryan et al., 1976; Bryan and 

Moore, 1977; Malpas, 1978), whilst other workers (e.g., Blanchard et al., 

1976; Floweret al., 1977; Bender et al., 1978) maintain that this diver­

sity necessitates a range in composition of primary magmas. This concept 

of different primary liquids invokes complex processes of fractional 

melting and crystallization, and magma mixing at the depths where primary 

magmas are produced, as well as upper mantle heterogeneity. 

The heterogeneous nature of the upper mant 1 e, however, is in­

timately tied to this premise of complex melting/crystallization. Small 

degrees of partial melting have the effect of concentrating highly incom­

patible elements in the liquid phase with a concomitant depletion of 

these elements in the unmelted material. The immediate effect is to pro­

duce very local zones of depletion/enrichment in regions of high geother­

mal gradient. 

Magnesian quartz tholeiites, then, which have been derived by a 

second stage or advanced melting process (i.e., heterogeneous mantle) can 

be treated as primary liquids from which distinctive magma series may be 

produced by low pressure fractionation. Duncan and Green plotted the ma­

jor element compositions of olivines from the ultrabasic rocks, and the 

bulk rock compositions of ultrabasic rock, olivine basalt and aphyric 

lavas of the Upper Pillow Lavas. (Figure 1 of Duncan and Green, 1980.) 

They suggested that the exhibited linearity could be explained by the 

addition or removal of olivine, and using reported chemical data (Searle 

and Vokes, 1969; Gass, 1958; Kay and Senechal, 1976; Simonian and Gass, 
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1978) determined a parental liquid composition, based on the principal 

that such a liquid must be in equilibrium with the most magnesian olivine 

observed. An olivine composition of Fo91 • 7 implies a Mg/Mg+FeT 

ratio of 0.77 (Roeder and Emslie, 1970); this determined parental liquid 

is found to be more refractory than the 1 east fractionated bas a 1 ts from 

ocean ridge and island arc environments. 

Here the concept of o 1 i vine extraction wi 11 be tested. From 

the linearity expressed in the major and trace element variation dia­

grams, Figures IV.1 and IV.2, Chapter IV, it can be empirically stated 

that addition and removal of olivine accounts for the composition of )l--1/~ 

the members of the Upper Pillow Lavas. Olivine fractionation is con-

sidered in detail after it is shown that the fractionated olivines could 

have crystallized from a magma of the composition of the Upper Pillow 

Lava komatiites. 

This concept will be tested in the following sections. First-

ly, the feasibility of olivine-liquid equilibrium will be examined for 

the system, and secondly, phase equilibria studies for Upper Pillow Lava 

bulk rock compositions will be carried out, by projection into the norma­

tive basalt tetrahedron of Yoder and Tilley (1962) and into an analogue 

of the CMAS system of O'Hara {1968). 

VI.2 Olivine-Liquid Equilibrium 

Roeder and Emslie (1970) studied the equilibrium between oli­

vine and basaltic liquids and determined the distribution coefficient 
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••• (VI.1) 

relating the partitioning of iron and magnesium between olivine and 

liquid, to be equal to 0.30 and independant of temperature. Thus the 

composition of olivine depends only on the ratio of magnesium to ferrous 

iron in the liquid from which the olivine is crystallizing; if the two 

are in equilibrium the FeO/MgO ratio of the crystals and liquid can be 

related by the constant K0 • Therefore it can be determined whether an 

olivine of a particular composition could have crystallized from a liquid 

of a particular magnesium/ferrous iron ratio. 

The following calculations will compare the FeO/MgO ratio of 

olivines from the ultrabasic rocks to that of the komatiitic lava. The 

expression of the distribution coefficient above can be rearranged to 

read 

01 
FeO Ko 

-~..;.... = --..-.----;-:--
01 liq liq 
MgO MgO FeO 

= Ko * 
1 i q 
FeO 
1 i q 
MgO 

••• (VI .2) 

Using this form of the equation the value of FeO/MgO for olivine can be 

calculated from the komatiitic FeO/MgO ratio. 

If for the average komatiite, 

FeO = 4.76 mole %and 

MgO = 17.15 mole %, (calculated from Table VII.2) 

and Ko = 0.3, as determined by Roeder and Emslie (1970), then 
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= 0.0833 

To calculate the Fo content of olivine which would cyrstallize we say 

that 

Fo + Fa = 100 

and therefore 

01 + 01 100 = MgO FeO ••• {VI.3) 

01 100 01 = MgO FeO ••• (VI.4) 

But 01 0.0833 * 
01 = FeO MgO ••• {VI.5) 

and substituting VI.5 into VI.4 we have 

01 100 {0.0833 * 01 = MgO) MgO ••• (VI.6) 

01 + {0.0833 * 01) = 100 
MgO MgO ••• {VI.7) 

1.0833 ( 01 
MgO) = 100 

and 01 100/1.0833 = 92.31 = MgO . . . {VI.8) 

The ca 1 cul a ted olivine composition is Fo92.31 or expressed 

in significant figures, Fogz.3· This can be directly compared with 

the average olivine composition from the ultrabasic lavas, Fo91 •6 

(see Appendix B.2). This mathematical derivation is depicted graphically 
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in Figure VI.1, after Roeder and Emslie (1970, Figure 7). The komatiitic 

ratio FeO/MgO defines a line which lies close to Fo90 Fa10 on 

the graph. 

The excellent carrel at ion between measured and calculated val­

ues indicates that the olivine crystals within the ultrabasic lavas could 

have separated by equilibrium crystallization from the liquid now repre­

sented by the komatiites. 

VI.3 Basalt Tetrahedron (Figure VI.2) 

All the compositions of the Upper Pillow Lavas have been pro­

jected into the normative basalt tetrahedron of Yoder and Tilley (1962). 

Projections are made from the four apices onto the opposite side of the 

tetrahedron; the dry cotectics of the synthetic system Fo-Di-An-Qz and 

natural system 01-Cpx-Plag-Qtz at 1 atm. pressure are shown. The posi­

tioning of the natural cotect i cs are affected by the presence of Na and 

Fe in the natural systems which tend to expand the primary phase volumes 

of the mafic minerals against that of plagioclase. The natural cotectics 

are derived from Tilley et al. (1963; 1964; 1965; 1967) and Clarke 

( 1970) • 

For comparison several analyses from the Lower Pillow Lavas as 

determined by the author, as well as four published analyses have been 

included in these plots (Appendices 8.1.1, 8.1.3). 

In the projection from olivine the spread of the ultrabasic 

rocks is a result of their proximity to the olivine apex. The natura 1 

system cotectic appears to be more favourable as it corroborates the 

petrographic data - after olivine, clinopyroxene would be the next phase 



FIGURE VI.l 

- 80 -

Graphical representation of olivine/ 
liquid equilibrium calculatio~. 
represents MgO/FeO ratio (mole%) of 
komatiites. Heavy dashed line indi­
cates calculated equilibrium olivine 
composition. (Diagram from Roeder and 
Emslie, 1970, Fig. 7.) 
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Basalt tetrahedron projections (after 

Yoder and Tilley, 1962). 

A. Projection from olivine 

B. Projection from plagioclase 
c. Projection from diopside 

D. Projection from quartz 

Symbols: 

• Ultrabasic rock 
• Komat i i tes 
o Olivine basalt 
o Aphyri c basa 1 t 

* Lower Pillow Lava (this study) 
~ Lower Pillow Lava (published) 
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to crystallize in the komatiites and olivine basalts. In the olivine-

free rocks, i.e., the aphyric basalts, initial crystallization of plagio­

clase or augite will be followed by cotectic crystallization of the two 

phases. The published Lower Pillow Lava analyses contain a higher norma­

tive proportion of An; here plagioclase would be the initial crystalliz­

ing phase. 

The disposition of normative analyses toward the Fo apex of the 

ultrabasic rocks is evident in the projection from anorthite. The posi­

tion of most komatiites on the silica side of the Di-En join reflects the 

oversaturated character of the magma, and suggests that the early-crys­

tallizing olivine was removed quickly from the system and did not react 

with the silica-rich liquid to form orthopyroxene. The wide scatter of 

olivine and aphyric basalts and Lower Pillow Lavas indicates the irregu-

1 ari ty of silica content and/or the proximity of these points to the An 

apex. 

Projected from the di opsi de apex the komat i i te 1 a vas fall de­

cisively into the field of normative Fa but close to the natural system 

01-Qz reaction curve, attesting to their Mg-rich but silica-oversaturated 

nature. Olivine basalts plot in the Fa field but closer to the ternary 

eutectic, while aphyric basalts are spread around it. There is a general 

trend in the lavas away from a composition located close to olivine on 

the Fo-Si02 join, suggesting olivine ~ orthopyroxene control. Lower 

Pillow Lava projections resemble those for oceanic tholeiite basalts as 

plotted elsewhere (e.g., Malpas, 1976). 

The initial control of olivine is evident in the projection 

from silica. Most of the komatiite and olivine basalt plots lie on the 
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diopside side of the control line, and using the natural system cotectic 

clinopyroxene would be the next phase to crystallize, while for composi­

tions below the control line plagioclase would have crystallized in 

equilibrium with olivine, if quenching had not occurred. 

VI.4 CMAS System (Figure VI.3) 

0 'Hara (1968) de vel oped a scheme based on experimental studies 

of natural basalts that allows ten of the major and minor oxides of 

basic rocks to be ex pres sed in terms of the four components 

This differs from the analogous synthetic system 

A 1203-caO-MgO-Si 02 (A-C-M-S, 0' Hara, 1968, Fig. 4) pri nci pa lly by 

its calculation of all FeO, MnO and MgO as one component, YO. Jamieson 

(1970) demonstrated the ability of the pseudo-quaternary 

R203-XO-YO-Z02 data projections scheme to reproduce the phase rela­

tions during the early crystallization of Hawaiian tholeiitic lavas at 

low pressure. By restricting the use of this projection scheme to the 

illustration of the early crystallization features of tholeiitic magma, 

Jamieson considered that the resultant small departures from the quater­

nary analogy were acceptable. 

Two projections are best suited to represent phase relations in 

tholeiitic rocks - a projection to, or from, the Fo composition point 

(O'Hara, 1968, Fig. 4), and 

a projection to, or from, the Cpx composition point into 

Z02-YO-XO·R 203 (O'Hara, 1968, Fig. 6). Also projected 

the plane 

are the 

solid lines which represent the loci of liquid compositions in isobaric 

pseudo-univariant equilibria in the pseudo-quaternary system 
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Projections within the natural system 

R2o3-XO-YO-Z02 (O'Hara, 1968; Jamie­
son, 1970), with reference to analogous 
synthetic system A-C-M-S (O'Hara, 1968, 
Figure 4). 

A. Projection from olivine 
B. Projection from diopside 
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R2o3-xo- YO· zo2 , and broken lines, which represent the 1 oci of 

liquid compositions in some of the isobaric univariant equilibria 

bounding the olivine primary phase volume in the synthetic system 

Al 203-Ca0-Mg0-Si02 • 

The olivine projection traces the liquid line of descent for 

o l i vine-bearing rocks. The ultrabasic rocks show some scatter due to 

this particular projection but they mostly plot in the high-temperature 

part of the orthopyroxene field. As regards the komatiites, co-precipi­

tation of olivine and orthopyroxene is joined down temperature clinopyro­

xene precipitation, at which stage the magma was quenched, before the 

liquid composition reached the plagioclase-clinopyroxene pseudo-univari-

ant line. Olivine basalts exhibit initial olivine and clinopyroxene 

crystallization which is followed down temperature by olivine-clinopyro­

xene-plagioclase co-precipitation. 

The di opsi de projection is necessary to shov.J the position of 

the analyses points with respect to the olivine composition point. The 

position of komatiite lavas shows that either orthopyroxene or olivine 

may have been the liquidus phase in the magma which gave rise to this 

rock type; at any rate a small drop in temperature would have initiated 

co-precipitation of both phases. Care must be taken in interpreting this 

projection, however, as clinopyroxene is not an early crystallizing phase 

and the points may be distorted toward the orthopyroxene field. Olivine 

basalts plot with olivine on the liquidus, with subsequent co-precipita­

tion of clinopyroxene and plagioclase, as is the case for the olivine 

projection. The plots for the aphyric basalts indicate that the magmas 

represented by these rocks could have had olivine or orthopyroxene on the 

liquidus, although many of these points may be artificially displaced to­

ward the YO-R0 2 join by greater contents of FeO and tv1n0 in the natural 
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system. Further uncertainty is introduced by the poor definition of the 

pseudo-univariant line denoting plagioclase-orthopyroxene cotectic crys­

tallization for this part of the system. 

In general equilibrium phase relations deduced from this pro­

jection scheme are supportive of the petrographical data. The position 

of the ultrabasic rocks near the olivine composition point indicates en­

richment in this mineral. The komatiitic lavas could have been derived 

by the removal of material equivalent in composition to the Upper Pillow 

Lava ultrabasic rocks (i.e., olivine crystals + trapped liquid) from a 

parental magma which plots somewhere between them. Further removal of 

olivine~ orthopyroxene could produce the olivine and aphyric basalts. 

VI.5 Estimates of Melting and Fractionation 

To further employ this petrogenetic model calculations will be 

carried out in an effort to estimate (1) the amount of partial melting 

required to produce a magma which can be regarded as parental to the 

Upper Pillow Lava series, and (2) the phases and amount of fractionation 

involved in deriving the different lava types. To make these estimates 

two methods were used; one utilizes trace elements and known mineral/ 

liquid distribution coefficients, while the other is a major element mass 

balance calculation. 

VI.5.1 Trace Element Modelling 

VI.5.1.1. General 

The concept of trace element modelling is based on the assump­

tion that when a mineral is in chemical equilibrium with a liquid, ele-
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ments are partitioned between the two phases according to their chemical 

activity in each.- For trace elements whose concentrations are low in 

both phases (i.e.~ <.10~000 ppm or 1%) the following relationship can be 

defined: 

cone. element in mineral 
cone. element in liquid 

= 

where K0 is the distribution or partition coefficient for the given 

crystal/liquid equilibrium. Since K0 is a constant its value is gener­

ally derived from synthetic crystallization experiments or from pheno-

cryst - matrix relations in glassy rocks. Estimates of its va 1 ue vary 

widely~ however~ as many probably are based on glassy rocks where equili­

brium was not attained. 

The concentration of any element in a liquid produced by melt-

ing a source rock must take into consideration the proportions of miner-

als comprising that source. Thus a bulk distribution coefficient (D) is 

calculated from the weight proportions (w) of each mineral in the source: 

0 = ~ n ·w.Ko. 
n=1 1 1 • •• (VI.9) 

Whereas elements with D < 1 are termed incompatible~ i.e.~ they 

will be concentrated in the liquid during melting and crystallization~ 

and elements with D > 1 are compatible~ that is~ they are retained in a 

solid residuum or are extracted in a crystallizing phase~ it can be seen 

that this is entirely dependent upon the phase assemblage present. Thus 

in any discussion of mantle compositions (olivine + pyroxene+ aluminous 

phase) imcompatible elements are roughly synonomous with the large ion 

lithophile (LIL) trace elements (e.g.~ K~ Rb~ Sr~ Ba~ Zr~ Th and light 

rare earths). These are the elements whose ionic radii are too large or 
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whose valencies are too high to allow them to substitute readily for 

major elements in crystal lattices. 

Various workers have developed models which predict the changes 

in trace element concentrations during processes of partial melting and 

fractionation (e.g., Arth, 1976; Wood and Fraser, 1976). The different 

models and their theoretical bases are discussed in detail by these 

authors, and the reader is referred to them for further information; to 

suit the exigencies of this paper only simplified versions of these 

mode 1 s wi 11 be considered. A good review of the best known models is 

contained in Chapter 14 of Cox et al., (1979), from which much of the 

present discussion is drawn. 

VI.5.1.2 Partial (Batch) Melting 

Trace elements will here be used to model the amount of partial 

melting required to produce a derived liquid from a given source composi-

tion. The simplest model for the partial melting of a complex mineral 

assemblage is one in which the liquid remains at the site of melting and 

is in chemical equilibrium with the solid residuum until mechanical con-

ditions allow it to escape as a single •batch• of primary magma. Under 

these circumstances the concentration of an element in the liquid, c1 , 

is related to the original source material by the equation: 

= 1 
F + 0 - FO ••• (VI.10) 

where F is the weight proportion of melt formed and 0 is the bulk distri-

bution coefficient for the residual solids at the moment when the melt is 

removed from the system. 
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It has already been discussed above in Section VI.1 how Duncan 

and Green (1980) have proposed the derivation of upper lava series in 

some ophiolites by second-stage partial melting of a mantle diapir. This 

concept of two-stage development of ophiolite lavas will here be examined 

using published trace element data and new data collected in this study 

from the Upper Pillow Lavas. For this purpose two different sets of cal­

culations will be carried out; one will estimate the amount of 'batch' 

melting required to produce the Lower Pillow Lavas from a 'fertile' 

source in the upper mantle (i.e., spinel lherzolite), while a second set 

of calculations will estimate the amount of 'batch' melting required to 

produce the liquid parental to the Upper Pillow Lavas from a harzburgitic 

composition which has been depleted in incompatible elements by the 

first-stage melting process. 

VI.5.1.2.1 First-Stage Melting 

Ideally the ultramafic rocks involved in the first-stage melt­

; ng cal cul at ion waul d be from the Troodos Massif, but no trace element 

data are available from these rocks. Consequently average trace element 

contents as documented by Gales (1967) are used. These concentrations 

are here considered to represent that of 'fertile' upper mantle, i.e., a 

source region which could give rise by fairly extensive amounts of par­

tial melting to picritic liquids parental to oceanic tholeiites. 

For this particular calculation the elements rubidium and 

stront i urn will be used. The average value determined by the author for 

Rb is much higher than normal for tholeiitic rocks, perhaps due to meta­

somatism and the small number of samples collected from the Lower Pillow 
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Lavas in this study. A more representative value for Rb to be used in 

these calculations is taken from Peterman et al. (1970). Both values are 

included in Table VI.1. 

Calculations using potassium gave high estimates of partial 

melting when compared with those of rubidium and strontium, and were 

omitted upon the consideration that K may have been highly affected by 

metasomatic processes. 

Mineral/liquid partition coefficients are taken from Arth 

(1976) except for the coefficient for spinel which is taken from Cox et 

al. (1979, pp. 334). These values are listed in Table VI.2. An average 

upper mantle lherzolite composition of 60% olivine/25% orthoproxene/10% 

clinopyroxene/5% spinel will be taken, as suggested by Cox et al. (1979, 

pp. 336). 

If 

Rubidium 

Bulk Distribution Coefficient (ORb) = 

(wt. fraction olivine * K0 ?~q(Rb)) + 

(wt. fraction orthopyroxene * K0?~~(Rb)) + 

(wt. fraction clinopyroxene * K0 f~~(Rb)) + 

(wt. fraction spinel * K0-f~q(Rb)) ••• (VI.11) 

= (0.6 * 0.0098) + (0.25 * 0.022) + (0.10 * 0.015) 

+ (0.05 * 0.01) 

= 0.0134 

Equation VI.2 is solved for F we have 

co 0Rb 
F = 

r, , 
1 0Rb 
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Table VI.l Average Trace Element Concentrations Used in Calculations 

porn 

K 

Rb 
Sr 
Ba 
Zr 
Cu 
Ni 
Ti 
v 
Pb 
Cr 
Zn 
Nb 
La 
y 

Ce 
Ga 

•Fertile• 
Upper 
~1antl e 

200 

1 

20 

0.4 
35 

30 
1500 

300 

40 

0.05 
2400 

-
-
-
-

Sources: 

~ 

I! 

II 
I' 
I 

LPL 1 s 
A B 

! 
8827 I 3651 

19 4.1 

104 124 

35 -
28 57 

51 -
45 -

6480 6720 

304 -
3.69 -

72 90 

61 1 -
2.57 1 3 

7. 4 I -
2! .s I 26 

2.5 11.7 

12.3 

Dep. Harz. 
A 

I 
B ' 

I I 
I I 

I 
- 110 

0.1 0 
0.4 32 

- 64 

I 
1.5 4 

II 14 10 

I 2290 2262 

I 
270 240 

i 39 38 

I 3.5 - I 
2150 2840 I 

50 36 I 
1 0 ! 

- -
I 

1.5 2 I 
' 

I 

1.25 1 

1 Fertile 1 Upper Mantle: Goles (1967), Table 11.1. 

Upper 
Komat. 

1909 

4 
104 

14.6 

15.8 
76.7 

217 

1977 
209 
0.5 
617 

61 

1.7 
20.1 

11.7 
3.5 

10.8 

Pillow Lavas 

I 01 • bas. i A ph. 

I 
I 
I 

7740 

9.5 
100 

27 

19.2 
36.7 

159 

2336 
215 
0.5 
479 

60 

1 

19.7 

11.7 
3 

11.2 

I 

I 

I 

I 

' 

' 

I 
I 

7305 

27.4 
91.2 

24.6 
21.1 

31.7 
62.3 

2576 
266 
2.5 
155 

64.9 
2 

15.6 

17.1 
4.6 

11.5 

ba s. 

Lower Pillow Lavas, A: this work; B: Pearce (1979), Table 1, Locality 18. 

Depleted Harzburgite, A: Suen (1979), average of 2 harzburgites, Table 1!.3; 

B: Talkington, Ray (pers. comm., 1980). 

Upper Pillow Lavas: This work; Komatiites, avg. of 18; Olivine basalts, 
avg. of 4; Aphyric basalts, avg. of 26. 
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Table VI.2 Partition Coefficients 

Olivine Orthopyroxene Diopside Spinel 

Potassium 0.0068 0.014 0.011 0.01 

Rubidium 0.0098 0.022 0.015 0.01 

Strontium 0.014 0.017 0.12 0.01 

Titanium 0.02 

Zirconium 0.01 

Yttrium 0.01 

Values forK, Rb, Sr from Arth (1976), except for spinel, which is from 
Cox et al. (1979). 

Values forTi, Zr, Y from Pearce and Norry (1979). 
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where C
0 

is the concentration in the original sou ce material (peri._ 

dotite), and c 1 is the concentration produced in the liquid by melting, 

i.e., the liquid parental to the Lo~ter Pillow Lavas. Given, from Table 

VI .1, that C
0 

= 

F = 

Strontium 

= 

1 ppm and cl = 4.1 ppm, then 

1 !212m = 0.0134 
4.1 ppm = 0.2336, which means a melt frac-

1 ppm 0.0134 tion Qf approximately 23%. 

(0.6 * 0.014) + (0.25 * 0.017) + (0.1 * 0.12) 

+ (0.05 * 0.01) 

= 0.0251 

If C
0 

= 29 and c 1 = 87.2 (Table VI.1), then 

F = 20/87.2 - 0.0251 = 0.2096, or approximately 21% melt. 
1 - 0.0251 

The calculated values for rubidium and strontium are in general 

agreement and provide a rough estimate of the amount of melting required 

to produce the Lower Pi 11 ow Lavas from an average upper mant 1 e composi _ 

tion. The values given by the Rb and Sr calculations are not far removed 

from other estimates of partial melting in the upp~r mantle to produce 

tholeiitic liquids (e.g., Gas, 1968; Kay et al., 1970). 

VI.5.1.2.2 Second-Stage Melting 

The source material, C
0

, for this part of' the calculation is 

depleted harzburgite; trace element concentrations are taken from two 

sources, from harzburgites of the Bay of Islands Complex (Talkington, 

pers. comm., 1980), and from harzburgi tes of the Ronda Ultramafic Cotll­

plex, Spain, as studied by Suen (1978). The purpos~ here was to obtain 
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data considered representative of upper mantle depleted harzburgite since 

no trace element data are available from the Troodos Complex. The good 

general agreement from these two separate localities suggests that melt­

ing and depletion processes are consistent on a broad scale in the upper 

mantle, and that mantle rocks from widely separated localities which are 

alike in petrologic character can be attributed to a similar genetic pro­

cess, i.e., similar histories of melting and depletion. 

It is the hypothesis of the present model that the komatiitic 

lavas represent or lie very close to the primitive liquid which gave rise 

to the Upper Pillow Lavas, and the average trace element contents of the 

komatiites will be substituted for c1 in the calculations. 

As a test of the validity of the two-stage melting concept to 

explain trace element concentrations in Troodos pillow lavas, concentra­

tions in the residue of the first melting event can be calculated and 

compared to that of the depleted harzburgites. Thus the idea of depleted 

harzburgi tes as the source material for the upper lavas of ophiolites 

forms an integral part of the present model. 

The concentration in the residue after an episode of 'batch' 

melting is given by 

CR = c1 * D, ••• (VI .12) 

where CR is the concentration of the element in the residue, and c1 

is the concentration of the element in the liquid. Thus, for rubidium, 

where Cl = 4.1 ppm and D = 0.0134, 

CR = 4.1 ppm * 0.0134 

= 0.05 ppm 

And for strontium, where c1 = 87.2 ppm and D = 0.0251 
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CR = 87.2 ppm* 0.0251 

= 2.18 ppm 

These values are compared with those of the actual depleted 

harzburgite in Table VI.3, and are found to be in general agreement. 

For the following calculations modal proportions of minerals 

composing harzburgite were obtained from Talkington (pers. comm., 1980): 

olivine, 0.694/orthopyroxene, 0.302/clinopyroxene, 0.003. 

Potassium 

OK = (0.694 * 0.0068) + (0.302 * 0.014) + (0.003 * 0.011) 

= 0.0089 

If C
0 

= 110 ppm and c1 = 1909 ppm (Table VI.1), then 

F = 110 ppm/ 1909 ppm 0.0089 = 0.492 
1 - 0.0089 

or 4.9% melt. 

Rubidium 

ORb = (0.694 * 0.0098) + (0.302 * 0.022) + (0.003 * 0.015) 

= 0.0134 

If C0 = -.1 ppm and c1 = 5.4 ppm (Table VI.1), then 

F = 0.1 ppm/ 4.0 ppm- 0.0134 = 0.0117, 
1 - 0.0134 

or 1. 2% melt. 

Strontium 

o5r = (0.694 * 0.014) + (0.302 * 0.017) + (0.003 * 0.12) 

= 0.0152 

Two values are listed in Table VI.1 for the concentration of Sr 

in the harzburgite. If a value of C0 = 32 ppm is used, the fraction of 

melt is calculated to be N 26%, which disagrees markedly with the value 
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Table VI.3 Comparison of Calculated and Observed 

Residual Trace Element Concentrations 

Rb 

Sr 

0.05 ppm 

2.18 ppm 

Depleted Harzburgite 

0.1 ppm 

0.4 - 32 ppm 
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given by rubidium. If a value of C
0 

= 0.4 ppm is used, the solution is 

negative and meantngless. However, if the calculated residual value from 

the first stage melting event is used (Table VI.3), and c1 = 117 ppm, 

then 

F = 2.18 ppm/ 104 ppm - 0.0152 = 0.0059, or 
1 - 0.0152 

0.6% melt. 

While this approach is somewhat artificial it is useful, in 

conjunction with the other estimates of partial melting, in predicting an 

appropriate concentration in the source, of which the composition can on-

ly roughly be approximated by comparison to known abundances; i.e., in 

this case the Sr value of 32 ppm may be too high. 

It can be seen from the foregoing calculations that the Upper 

Pillow Lavas could have been produced by very small degrees of partial 

melting of mantle material which had been already depleted in incompat-

ible elements by earlier melting. Whether there was a distinct early or 

first-stage event succeeded by a late-stage event, as envisaged by Duncan 

and Green (1980), or whether there was one continuous evolutionary event 

of which the komatiites represent the final liquid derivative, similar to 

the model proposed for the Burin Group, southeastern Newfoundland, by 

Strong and Dostal (1980), cannot be determined. 

VI.5.1.3 Fractional Crystallization 

Preliminary examination of the major element data suggests that 

the komatiites, olivine basalts and aphyric lavas of the Upper Pillow 

Lavas form a series vthich can be petrogenet ically related by the frac-
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tionation of olivine from a parental magma equivalent in composition to 

the komatiites. Here trace elements will be used to provide an estimate 

of the amounts of olivine that may have been involved in this process. 

In a crystallization model C
0 

is redefined as the initial 

concentration of an element in the primary magma. The simplest case to 

consider is a closed system in which a body of magma is isolated in a 

magma chamber and undergoes continuous crystal fractionation. The liquid 

is a uniform reservoir and the olivine crystals are removed very soon 

after they are formed, giving them no time to equilibrate with the chang-

ing magma composition. The relationship between the original and frac-

tionated liquid is expressed as 

C1 = F(0-1), 

~ ••• (VI.13) 

where F is now the proportion of the original liquid remaining. Since we 

are concerned with the fraction of melt remaining we solve for F: 

= ( 0 - 1) r---:---. 
VF(O - 1) = F 

••• (VI.14) 

and since 0 will always be less than 1 for incompatible elements we can 

res tate this as 

F = 
1!__:__QJ_rc:­

V-c{ • (VI .15) 

From the above expression it can be seen that for elements with 

a very small bulk distribution coefficient, 0 (i.e., the incompatible 

elements), 
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Thus with the sole extraction of olivine the lithophile elements can be 

treated as incompatible elements, and can be included in the calcula-

tions. 

Elements with a high field strength (charge/radius ratio), Ti, 

Zr, Y and Nb are not likely to be transported in aqueous fluids (Pearce 

and Norry, 1979). Since their values show a regular variation from koma­

tiite to aphyric lava (except Nb) they will provide a more reliable esti-

mate of fractionation. Because of its very low concentrations which are 

below the accepted detection limit for the method used, Nb will be ex­

cluded from the calculations. The inclusion of olivine only in the model 

is designed to facilitate comparison with a major element extraction pro-

gram utilized later in this chapter. In reality, the extraction of 

clinopyroxene or titanomagnetite in minor amounts will affect concentra­

tions in residual liquids but because olivine is by far the most impor­

tant fractionating phase, other minor constituents will be omitted from 

the calculations. 

Partition coefficients forTi, Zr and Y are taken from Pearce 

and Norry (1979) and are included in Table VI.2. 

Titanium 

Dr; (Ol) = o.o2 

F=~, 
Where c0 = 1977 ppm and c1 • 2576 ppm (Table VI.l), 

F = (1 - 0.02) /1977 ppm 
V 2576 ppm 

= .7633 

or N76% melt remaining, or "'24% olivine fractionation. 
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Zirconium 

Dzr(01) = 0.01 

Where C
0 

= 15.8 ppm and c1 = 21.1 ppm (Table VI.1), 

F = ( 1 - 0 • 0 1 ) I 15 • 8 ppm 
V 21.1 ppm = 0.7466 

or 'V75% melt remaining, or N25% fractionation of olivine. 

Yttrium 

Dy (01) = 0.01 

Where C
0 

= 11.6 ppm and c1 = 17.1 ppm (Table VI.1), 

F = (1 - 0.01)~11.6 ppm 
17.1 ppm 0.6757 

or ~68% melt remaining, or ~V32% fractionation of olivine. 

These values are generally in agreement and to get her with the 

olivine extraction data presented later in this chapter define a range in 

the amount of olivine crystallization required to derive the Upper Pillow 

Lava series from a parental magma. 

VI.5.2 Major Element Extraction Program 

Cawthorn (unpub.) developed a major element extraction program 

based on mass balance calculations which was designed to solve the equa-

tion: 

evolved magma = parental magma - crystalline phases 

This program will indicate what proportions of crys ta 11 i ne 

phases must be removed to produce a particular liquid composition from 

another more primitive composition. The entire program and printout are 

reproduced in Appendix C. 
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If the average olivine composition of the ultrabasic lavas and 

the average compos-ition of the aphyric lavas are input as the complement­

ary crystal and liquid compositions (respectively), it is computed that 

8.8% removal of olivine from a body of magma corresponding to the koma­

tiitic lavas in composition would produce 91.2% of a derivative liquid 

equivalent in composition to the aphyric lavas. 

The pr:-ogram also repeats the ca 1 cul at ion using proportional 

weightings rather than absolute values of major element concentrations. 

This is designed to minimize the effect of unknown element concentrations 

for any of the inputted analyses, which if unknown have to be entered as 

zero. The zero values for three elements in the olivine analyses which 

are of significant value in the derived liquid composition (Ti0 2 , Fe2o3 , 

K20) may considerably affect the initial absolute values calculation; 

this effect is minimized by the second, weighted calculation which dele­

gates more significance to elements included in both analyses. The re­

sult of 19.4% olivine removal is therefore more reliable, and further­

more, is not far removed from the range of estimates of fractionation 

based on trace element modelling. 

VI.6 Interpretation of Rare Earth Data 

A number of qualitative statements can be made based on obser­

vations of the rare earth element data, as presented in Chapter IV, which 

lend support to the present petrogenetic interpretation of both the Upper 

and Lower Pillow Lava units. The clear distinction between rare earth 

element profiles of these two groups is regarded as further evidence of a 

two-stage partial melting event as is propounded with reference to major 
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and trace element data. The Lower Pillow Lavas, representing the initial 

melt fraction, show higher relative and absolute concentrations of the 

incompatible LREE's, while the Upper Pillow Lavas represent a second melt 

fraction depleted in total REE's, as well as in light relative to inter­

mediate and heavy REE's. 

Several authors (e.g., Frey et al., 1974; Schilling, 1974; 

1975) have empirically stated that profiles below and above a particular 

threshold level represent olivine-bearing and olivine-free basalts, re­

spectively, from the oceanic environment. This distinction is generally 

held to be true for the Upper and LO\'Ier Pillow Lavas, although certain 

aspects of their REE disposition point to a more fundamental difference 

in their character. For instance olivine-bearing and olivine-free sam­

ples plot below the threshold level, although one olivine-free sample 

from the Upper Pillow Lavas plots above this line. A distinction based 

on the presence or absence of olivine in actuality invokes the fractiona­

tion of olivine as the unique process which separates lavas below and 

above the threshold level. It is suggested here that more fundamental 

difference exists in this case betv~een the two lava groups, that two 

parental magmas are represented, and that the Upper Pillow Lava parental 

magma differentiated to produce unique series of rocks of which the 

recognizable members plot below the threshold level. 

This interpretation would be meaningless in the absence of 

other studies; however, in conjunction with -the foregoing presentation, 

further evidence is provided for the binary aspect of Upper and Lower 

Pillow Lava petrogenesis. 
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VII. ON THE NATURE AND SIGNIFICANCE OF KOMATIITES 

VII.l Introduction 

One type of mafic lava from the Upper Pillow Lavas has been 

heretofore referred to as komatiite, based primarily on petrographic evi­

dence. There has been some minor disagreement in the literature, how­

ever, on how to chemically define this class of rocks, and the komatiites 

documented in this work may adhere totally to some definitions while 

standing in disagreement with others. To discuss the validity of inter­

preting quenched mafic lavas from the Upper Pillow Lavas as komatiites, 

this chapter will review the present literature on komatiites, and sub­

sequently compare and contrast pertinent aspects of documented and Upper 

Pillow Lava komatiites. 

VII.2 Classification and Character of Komatiites 

Viljoen and Viljoen (1969a) introduced the term 'komatiite' to 

describe mafic and ultramafic lavas of the Barberton Mountain Land in 

South Africa, which they distinguished from more familiar ultramfic rocks 

by certain textural features. The rocks showed quench textures indica-

tive of extrusive origin as mobile lavas, as well as high Si0 2 , high 

Fe/Mg, low total a 1 ka 1 i es, and in particular, high CaO/Al 2o3• A more 

quantitative approach was taken by Brooks and Hart (1974) who suggested 

that komatiites were non-cumulate rocks with MgO > 9%, KzO < 0.5%, 

Ti0 2 < 0.9% and Ca0/Al 2o3 > 1. 

Many ultramafic lavas documented by a variety of workers 

throughout the world, e.g., Australia (Williams, 1973), India (Viswana-
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than, 1974) and Rhodesia (Bickle et al., 1975) resemble the Barberton 

lavas closely, but consistently lack a high CaO/Al203 ratio. 

In a comprehensive study of komatiites of Munro Township, 

northeastern Ontario, Arndt et al., (1977) found their average Ca0/Al 2o3 

ratio to be 0.84, with over half the analysed ultramafic lavas having 

ratios < 1. Hence the Brooks and Hart (1974) definition applied to only 

a limited number of ultramafic lavas from Munro and elsewhere, and Arndt 

et al. (1977) proposed a ne\'1 definition of komatiite that included a 

wider range of ultramafic volcanic and hypabyssal rocks. On the basis of 

field, petrologic and chemical studies these authors recognized three 

types of komatiite: peridotitic (Mg > 20%), pyroxenitic (MgO, 12 - 20%), 

and basaltic (MgO < 12%). For a description of these the reader is re­

ferred to Table VII.1 (after Arndt et al., 1977). The average chemical 

analyses of the rocks is contained in Table VII.2. 

The basaltic komatiites will here be scrutinized more closely 

in the context of their close similarity to a group of rocks from the 

Upper Pillow Lavas. The Munro basaltic komatiites are defined as having 

MgO < 12%, but further subdivision into MgO-rich and -poor types is pos­

sible. At Munro textures in the more mafic basaltic komatiite varieties 

(MgO > 10%) are similar to those in olivine-poor pyroxenitic komatiites. 

At the tops of the flows spinifex texture, defined by parallel clinopyro­

xene grains, grades downward to mi crospi ni fex texture, where needles of 

clinopyroxene are randomly orientated. Olivine is not present as bladed 

grains in the groundmass of the basaltic komatiites as is the case with 

pyroxenitic komatiites, but only as rare skeletal equant phenocrysts, and 

the clinopyroxene needles are smaller than those in the pyroxenitic koma-



- 105 -

TABLE VII.1 Classification of Komatiites in Munro Township 

(After Arndt et al., 1977) 

Peridotitic 
komatiite 

Pyroxenitic 
komatiite 

Basaltic 
komatiite 

Petrologic Character 

All types are composed of olivine 
grains and minor chrome spinel in a ma­
trix of fine-grained clinopyroxene and 
devitrified glass. In cumulates olivine 
grains are closely packed, solid, rough­
ly equant and compose 60 to 80% of the 
rock; in spinifex texture olivine forms 
large skeletal platy grains (35 to 60%); 
and in spinifex-free non-cumulate rock, 
olivine may be equant or skeletal (45 to 
70%). 

Equant solid or platy skeletal grains 
of olivine (0 to 35%) in fine-grained 
matrix of clinopyroxene and devitrified 
glass; or skeletal subcalcic clinopy­
roxene needles in devitrified glass 
groundmass; or closely-packed equant 
grains of pyroxene and olivine. No 
plagioclase. 

No olivine in the groundmass; plagio­
clase instead. Clinopyroxene and 
plagioclase form spinifex texture, 
'graphic' intergrowths, or normal sub­
ophitic texture. 

*Anhydrous values 

MgO * 

MgO > 20% 

MgO between 
12 and 20% 

MgO < 12% 



- 106 -

Table VI !.2 Comparison of Representative Komatiite Analyses 

1 2 3 4 5 6 7 8 

Si02 44.90 46.00 50.20 51.60 50.85 53.37 52.83 53.72 

Ti0 2 0.19 o.-32 0.61 0.65 0.68 0.86 0.16 0.33 

.A.l203 5.30 7.40 11.50 13.30 10.27 9.95 9.49 13.36 
Cr,O~ 

L " 
C.26 0.39 

Fe2o3 10.40 11.50 11.11 11.70 10.90 12.04 10.71 2.98 
FeO 5.57 
MnO 0.18 0.22 0.19 0.19 0.18 0.22 0.17 0.15 
MgO 33.60 26.50 14.30 10.00 15.07 10.22 14.21 11.25 
NiO 0.02 0.01 
CaO 5.00 7.40 9.60 10.40 11.10 10.11 10.22 11.14 
Na2o 0.35 0.45 2.34 2.16 0.83 2.68 2.00 1.16 
K20 0.08 0.10 0.05 0.11 0.08 0.46 0 .12 0.23 

P205 0.06 0.07 0.10 

Recalcula ted to 100% anhydrous 

Ca0/Al 2o3 : 

0.94 1.00 0.83 0.78 1.08 1.02 1.08 0.83 

Sources: 

1 - Average ccmp. of peri d. komat. with MgO 30%. Arndt et a 1. Ba 33 14.6 -
(1977) . Nb 3 1.7 

2 - Average camp. of peri d. komat. with MgO 30%. II 

Zr 14 15.8 
3 Average camp. of pyroxenitic komatiite. Sr 136 104 
4 - Average camp. of basaltic ko~atiite. II 

Rb 3 4 
5 - Sample 60641, from o 1-phyri c flow, Chukotat Gp. Zn 70 61 

Francis and Hynes ( 1979). Cu 14 76.7 
6 - Average of 3 basaltic komat. of Barberton type. Ni 330 217 

Viljoen and Vil joen (1969). y 3 11.7 
7 - Average of 9 basaltic komat., Rambler, Nfld . Gale (1973). La 2 20.1 
8 - Average of 18 basaltic komat., Upper Pillow Lavas, Cyprus. Cr 1300 617 

This work. 
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tiites (avg. length 0.5 - 1 mm). The matrix to these needles is entirely 

devitrified glass · or an intergrowth of prismatic grains of clinopyroxene 

and plagioclase. 

The less mafic varieties (MgO < 10%) are characterized by tex­

tures and modal compositions resembling those of non-komatiitic basaltic 

rocks; they comprise prismatic, subhedral grains of clinopyroxene and 

plagioclase, and minor amounts of amphibole, quartz and iron oxides. 

Rare olivine or clinopyroxene phenocrysts are replaced by serpentine or 

chlorite. Clinopyroxene and plagioclase may display a 'graphic' texture 

similar to that found between quartz and orthoclase in granitic rocks. 

Francis and Hynes (1974) studied komatiites and tholeiites from 

the Proterozoic Chukotat Group of New Quebec, where a series of layered 

sills and flows consists of a lower ultramafic member with an overlying 

gabbroi c comp 1 ex, and are bounded by margins of quench-textured, pyro­

xene-rich melanogabbro. Features such as cyclic layering of pyroxenite 

and peridotite, successive appearance in the sequence of olivine, clino­

pyroxene and plagioclase, and polarized compositional variation indicate 

that the ultramafic member and 1 ower gabbro are crystal cumulates. The 

uppermost gabbros, then, appear to represent liquids derived by removal 

of these cumulates. 

Most of these mafic volcanics are olivine-phyric, consisting of 

equant to elongate skeletal olivine mincrophenocrysts (0.5 mm), with 

skeletal needles of augite in a groundmass of dendritic to spherulitic 

actinolite and epidote. The chemistry of the group is represented in 

Table VII.2. The ultrabasic rocks subscribe to Brooks and Hart's (1974) 

definition of komatiite: MgO ranges from 11 - 17%, Ca0/Al 2o3 > 1, 
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and Ti02 and K20 make up less than 0.9% and 0.5% of the rock, respective­

ly. Peridotitic komatiite is not found in the Chukotat Group. 

The significance of these bodies draws from the fact that their 

primary liquids were at least as basic as pyroxenitic komatiites (14% 

MgO), while the residual liquids, represented by the uppermost gabbro, 

are Fe-Ti-rich tholeiites. The liquid line of descent inferred from the 

chemistry and the spectrum of the volcanic composition of the whole 

Chukotat Group led Francis and Hynes to suggest that the komatiites and 

tholeiites may constitute a single magmatic suite whose chemical diver­

sity is a function of low pressure crystal fractionation. 

Gale (1973) described pillow lavas from the Rambler area, Bur­

lington Peninsula, Newfoundland and defined an association of basaltic 

komatiite and ocean floor tholeiite of pre-lower Ordovician age within 

the Appalachian orogenic belt. These basic lavas have been metamorphosed 

in the quartz-albite epidote-almandine subfacies of the greenschist 

facies, but Gale considered the metamorphism to be isochemical and the 

low Al 203-high MgO content of some of the lavas to be representative 

of their primary chemistry. 

By analogy with major and trace element values quoted in the 

literature for ocean-floor basalts, Gale considered Rambler high-Al 2o3 

basaltic pillow lavas to be tholeiitic ocean floor basalts which probably 

represented a part of a pre-lower Ordovician ophiolite sequence (Gale, 

Ph.D. thesis, Durham University). The majority of the Rambler lavas, 

however, can be distinguished from ocean floor tholeiites by their low 

Al 203 and high MgO contents; on the basis of their correspondence 

with basaltic komatiites as described by Viljoen and Viljoen (1969) Gale 
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documented the Rambler lavas as belonging to the komatiite class of 

rocks. 

Representative major and trace element contents of the Rambler 

lavas are listed in Table VII.2. The basaltic komatiites have extremely 

10\-1 contents of the incompatible elements Nb, Rb, La, Zr and Y and are 

enriched in Cr and Ni. 

In his proposition of a genetic model Gale essentially adhered 

to those of earlier writers (Green, 1972; Brooks and Hart, 1957) but be­

lieved that komatiite genesis can be explained in terms of modern con­

cepts of magma generation and without recourse to special Precambrian 

conditions such as meteorite impact (Green, 1972) and high geothermal 

gradients (Brooks and Hart, 1957). The association of amygdaloidal 

basaltic komatiite pillow lavas with chert and rocks that are chemically 

analogous to ocean floor basalt suggest that they were probably erupted 

onto the floor of an ancient ocean, but that they represent more pri mi­

tive magmas than the ocean floor basalts which overlie them. 

According to Gale, then, basaltic komatiites may be interpreted 

as fragments of oceanic crust which could have formed by a melting event 

in the mantle more extensive than that popularly invoked to produce ocean 

floor basalts. Differentiation betw{n peridotitic and basaltic koma-

tiites may have transpired by diapiric upwelling and consequent low pres­

sure (~5 kb) olivine fractionation. 

Cawthorn and Strong (1974) suggested a continuum of Ca0/Al 203 

ratios between tholeiites and komatiites, and considered komatiites and 

primitive oceanic tholeiites (Clarke, 1970) to be extensive partial melts 

of the mantle, leaving a harzburgite residue essentially devoid of CaO 
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These rock types however, are found to have Ca0/Al 203 

ratios higher than the ranges for suggested mantle compositions, and 

these authors suggested that they were derived from a parental composi­

tion with a higher proportion of clinopyroxene to garnet than the in­

ferred parental material for normal oceanic tholeiites, this proportion 

increasing with decreasing depth. Thus the higher komatiitic Ca0/Al 203 

values are effectively due to a bulk composition enriched in CaD relative 

to Al 203 • This implies that the variety of Ca0/Al 203 ratios found 

in komatiites may be due to extensive melting at varying, but generally 

shallow depths. 

Cawthorn and Strong further suggested that because the chemical 

characteristics of komatiites are not unique the group is not a distinc­

tive isolated new class of basic and ultrabasic magma, but a more extreme 

composition in a spectrum of rocks with chemical characteristics imposed 

by shallow depth and a high degree of partial melting. 

The tectonic environment wherein koma t i i tes may be expected to 

form has been treated by some of the above researchers, particularly 

Brooks and Hart (1974). Most early work on komatiites, e.g., Viljoen and 

Viljoen (1969) dealt with Archean and Proterozoic terrains, and it was 

implied that komatiites were more or less restricted to environments of 

this period of earth history, and thus may represent primitive crust. 

With the identification of basaltic komatiites of post-Precambrian age, 

however, more modern tectonic environments were proposed, e.g., sea floor 

(Glikson, 1971; Gale, 1973) or island arc (Brooks and Hart, 1972) en-

vironments. 
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Peridotitic komatiites are restricted totally to Precambrian 

and Paleozoic terrains and therefore cannot be readily discussed in terms 

of modern tectonic environments. Most of the basaltic komatiites identi­

fied by Brooks and Hart (1974) come from island arcs but their scarcity 

in any environment makes such a correlation tenuous. The fact that koma­

tiites are usually accompanied by low-K tholeiites has led some authors 

to suggest an ocean floor analogue (McCall, 1973; Gale, 1973); low-K 

tholeiites of very similar chemistry, however, are found from nearly 

every tectonic environment (Jamieson and Clark, 1970). Although low-K 

tholeiites from these different tectonic enviroments are separable in the 

Phanerozoic by other chemical criteria possibly related to previous 'de­

pletion' events in the mantle (Tatsumoto et al., 1965; Gast, 1968; Kay et 

al., 1970), such events may not have trans pi red in the Archean and there 

may have been no chemical differences between low-K tholeiites from dif-

ferent Archean tectonic environments. Thus a stringent komatiite - low-K 

tholeiite association appears untenable. 

Brooks and Hart (1974) concluded that field relations more so 

than chemistry will be diagnostic of tectonic environment, and that 

"careful reconstruction of structure, stratigraphic sequence and petro­

logy will undoubtedly be essential to understanding the tectonic environ­

ment represented by Archean komat i i tes and 1 ow-K tholeiites". Upon 

examination of field relations they noted that komatiites of the Archean 

seem to occur consistently in series containing intermediate to felsic 

members, which ostensibly precludes formation at a mid-ocean spreading 

ridge. This scarcity of ocean floor felsic rocks, in contrast to the 

relative abundance of intermediate-felsic types from ophiolite suites led 
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Miyashiro (1973) to question whether ophiolite sequences are oceanic 

crust alone, and to propose instead that they may be part of arc se­

quences. Brooks and Hart (1974) also considered this line of reasoning 

as good evidence for an island arc origin. 

VII.3 Evaluation of the Komatiite Analogue 

Graphical comparison of Upper Pillow Lava and documented koma­

tiites is contained in Figures IV.3 - IV.7 of Chapter IV. Table VII.2 

allows comparison of komatiites from the Upper Pillow Lavas and those 

from the literature discussed above. While there are differences between 

the analyses for basaltic komatiites i~ the literature, they for the most 

part conform to the parameters of Brooks and Hart (1974), i.e., Si0 2 , 

46-53%, Ca0/Al 203 > 1, Ti0 2 < 0.9%, MgO > 9%, and K20 < 0.5%. The 

komat i ites from the Upper Pillow Lav~s show a good general conformity 

with analyses from the literature but with several reservations. The 

average Si0 2 content of the Upper Pillow Lava komatiites (54.24%) is 

higher than any of the others and li~s significantly above the defined 

maximum value of 53%. This feature is here considered to be in accord 

with the genesis of these rocks as put forth in this work. The concept 

of high-MgO liquids which are oversaturated with respect to Si02 can 

account for the high silica contents of the present komat i i tes. It is 

also notable that the average content of three basaltic komatiites from 

the Barberton Mountain Land (6, Table VII.2) is slightly higher than 53% 

and within one percent of the Upper Pillow Lava value. 

Al 2o3 content of the Upper Pillow Lava komatiites is signi­

ficantly higher than that from most localities, but is slightly lower 
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than the value for Munro basaltic komatiites (4, Table VII.2, Arndt et 

al., 1977). CaO contents of all the komatiites in Table VII.2 are con­

sistent; it is notably the change in Al203 content which effects a 

change in Ca0/Al 2o3 ratio between the komatiites. The komatiites 

from the Chukotat Group (5), the Barberton Mountain Land (6) and Rambler 

(7) have very similar ratios, ranging from 1.02 - 1.08. The more alumin­

ous averages from Munro Township and the Upper Pillow Lavas show ratios 

of 0.78 and 0.84, respectively. Cawthorn and Strong (1974) compared the 

Ca0/Al 2o3 ratios of tholeiites and komatiites from a wide variety of 

localities and found that while oceanic tholeiites characteristically 

have Ca0/Al 203 ratios less than 1, many komati ites as well have ra­

tios considerably less than 1 (e.g., average of eight Archean komatiites 

from Labrador, 0. 71; average of 34 komati ites from Canadian Shield, 

0.82). As has already been mentioned, these authors suggested a con­

tinuum of Ca0/Al 2o3 ratios between oceanic tholeiites and komatiites. 

This range may represent the derivation of komatiitic liquids at differ­

ent depths in the upper mantle, those with higher values of this ratio 

having formed at shallower levels in the region where tholeiitic liquids 

may be expected to form, i.e., where the clinopyroxene/garnet ratio is 

greater. 

Cawthorn and Strong (1974) also pointed out that other basaltic 

rock types such as ankaramite characteristically have Ca0/Al
2
o

2 
ratios 

greater than 1. Komatiites, however, are depleted in Ti0
2

, K
2

0 and 

incompatible elements relative to ankaramites and it is evident that 

other parameters such as these must be used in conjunction with Ca0/Al
2
o

3 
ratios in any geochemical classification of komatiites. 
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The Ti0 2 content of Upper Pillow Lava komatiites (0.35%) is 

lower than all others with the exception of those from Rambler (0.16%). 

Trace elements along with major elements from these two localities are 

compared in Table VII.2. Contents of the incompatible trace elements are 

very similar between the two rock types, with the Rambler komatiites be­

ing slightly more depleted in Zr, Rb and La and enriched in Cr and Ni. 

There are many occurrences of extrusive or hypabyssal high-MgO 

basalts, of which the ultrabasic rocks of this study are a prime example, 

which owe their high-MgO contents to a cumulus enrichment in olivine. 

Any discussion of komatiite must therefore stress its existence as a 

liquid composition; in this matter a close examination of textures must 

accompany a discussion of geochemical affinity. The various textures 

attributed to komatiites in the literature, and by which they were ori­

ginally identified, i.e., spinifex-textured grains in a glassy matrix, 

are prima facie evidence for the existence of the rock as a liquid, and 

especially as a high-MgO liquid. It is in fact the chemical nature of 

the liquid which facilitates its rapid quenching, as very basic magmas 

have a higher solidus temperature than those less enriched in MgO. Ex­

trusion of magma, which in normal basaltic compositions would produce a 

fine-grained but essentially holocrystalline rock, may, where a high-MgO 

magma is concerned, lead to supercooling of the liquid with minimal crys­

tal nucleation and growth. Thus it follows that rocks of basaltic koma­

tiite composition, as defined by Arndt et al. (1977), i.e., rocks inter­

mediate in composition between basalts and pyroxenitic komatiites, may 

show a small degree of crystal growth before the quenching of the ground­

mass to glass. This is considered the mode of origin for the komatiites 
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of the Upper Pillow Lavas. The hyalopilitic rocks in particular show 

evidence of intratelluric growth of olivine and post-extrusive growth of 

pyroxene, whose forms are attributed to quenching. 

The common occurrence of the komatiites in the field as pillow 

lavas provides final conclusive evidence for their existence as liquids; 

on these principles the high-MgO basalts in the Upper Pillow Lavas are 

interpreted as komatiites. 

VII.4 Consideration of a Komatiitic Series 

Some writers have regarded the komatiite class of rocks as be-

ing representative of a distinct magma series, akin to the tholeiitic and 

alkali basalt series. Arndt et al. (1977) in particular were advocates 

of this line of thought, and considered the komatiitic rocks of Munro 

Township to be part of a unique and definitive magma series, comprising 

peridotitic, pyroxenitic and basaltic members which are related to one 

another by differing degrees of olivine, and to a lesser extent clino­

pyroxene and plagioclase, fractionation. Others, however, have taken a 

different view; Cawthorn and Strong (1974), because of the continuum of 

Ca0/Al 203 ratios, suggested that "komatiite is not a distinctive iso­

lated new class of basic and ultrabasic magma, but a more extreme compo­

sition in a spectrum of rocks with chemical characteristics imposed by 

shallow depth and a high degree of partial melting". Francis and Hynes 

suggested that the tholeiitic and komati itic lavas of the Chukotat vol­

canic sequence were co-magmatic, the former derived from the latter via 

low-pressure fractionation of olivine, clinopyroxene and plagioclase. 

This mechanism is represented in the Jensen plot, Figure IV.3, Chapter 
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IV~ where an Fe + Ti-enrichment trend is indicated. All the Upper Pillow 

Lava plots~ however~ form a linear trend away from the ultrabasic rock 

composition points, with no deflection toward either the ~Fe + Ti or Al 

apex~ and thus showing no conformity with a tholeiitic trend. The 

tendency of all rock types within the Upper Pillow Lavas to show low 

Ti02 contents suggests that these rocks were derived from a starting 

composition which also had low concentrations of Ti0 2 • The lack of 

transition from low- to high- Ti02 types further suggests that the 

Upper Pillow Lavas are an autonomous group of rocks which conform to the 

definition of a komatiite magma series. 
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VIII. SUMMARY AND CONCLUSIONS 

VIII.1 Synthesis 

This work has involved the study of field relationships, petro­

graphy and geochemistry of the different magma types of the Upper Pi 11 ow 

Lavas, Troodos Complex. Here the salient aspects will be summarized and 

discussed, with the purpose in mind of providing a succinct but fairly 

comprehensive petrogenetic model. 

The Upper Pillow Lavas have been accepted in all previous work 

as a unit distinct in character from the Lower Pillow Lavas, the differ­

ence being brought out by complementary compositional and metamorphic 

criteria. The present work has reinforced such a distinction. The 

classification of rock types put forth by Smewing (1975) has been only 

slightly modified. 

The Upper Pillow Lavas are here divided into four types: ul-

trabasic rocks, basaltic komatiites, olivine basalts and aphyric basalts. 

Major element computer extraction calculations and trace element model-

1 i ng have shown that: 1) the magma parental to the Upper Pillow Lava 

series could have been produced by very small amounts of partial melting 

(N5%) of a source peridotite already highly depleted in lithophile ele­

ments, i.e., those elements which would be strongly partitioned into the 

liquid during an initial melting event; and 2) the less primitive rocks 

of the Upper Pillow Lavas, olivine and aphyric basalts, could have been 

derived by the fractionation of 24-32% olivine from this parental magma. 

Statement (2) assumes that the basaltic komatiites effectively represent 

the parental magma as derived from a depleted source, although real is-
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ticall the komatiites may be slighly removed from this composition by 

olivin fractionation. 

This concept of olivine extraction was tested in a number of 

ways. The composition of olivine which would crystallize from a liquid 

simila in composition to 

culate~ and is comparable 

the basaltic komatiites (Fo92 • 3 ) 

to the actual measured olivines 

was cal-

indica ing that the two could have been in equilibrium. 

The proposed petrogenetic sequence was corroborated by projec-

tions ' nto both the basalt tetrahedron and CMAS system. Phase re 1 at i on s 

so predicted by the normative mi nera 1 ogy and bulk rock chemistry agree 

with ~etrographic data that early-crystallizing olivine was followed 

down-t mperature by orthopyroxene and clinopyroxene in the komati ites; 

quench ' ng of the groundmass glass occurred before pl a gi ocl ase became a 

liquid\.Js phase. Furthermore, the position of aphyric basalts away from 

the ol 1 vine/orthopyroxene primary phase fields attests to their status as 

a derived 1 i qui d. 

VIII.2 Magma Chamber Considerations 

The actual physical development of the lava types and their ex-

trusio t"-t must be discussed. It is suggested that the parental magma 

( ~ basaltic komatiite) accumulated in small magma chambers at a shallow 

crusta ) level. The early high temperature precipitation of olivine led 

to the accumulation of this mineral at the bottom of the chambers, with a 

portio t') of liquid being trapped between the crystals. The crystal/liquid 

mush "formed in this manner is represented by the val umetrically small 

ultrab sic rocks. The aphyric basalts thus represent magma in the upper 
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parts of the chamber from which the olivine fraction has been removed. 

The gamut of compositions may thus represent the particular level in a 

magma chamber at which the magma batch attained its character. Olivine 

basalts, then, may represent a level intermediate between the olivine-

rich and olivine-poor parts of the chamber. Extrusion of primitive magma 

soon after its accumulation in a chamber with minimal fractionation gave 

rise to the basaltic komatiites. 

The close association of the different rock types in the field, 

i.e., the common random interl ayi ng of the different types also lends 

support to their association in and extrusion from the same magma chamber 

or a number of small, consanguineous, closely-spaced chambers. The rela­

tive abundance of the aphyric basalts again is in agreement with this 

model, as the derived aphyric liquid will be most preponderant in the 

magma chamber. Ultrabasic rqks occur at the top of the pillow lava se­

quence, suggesting their extrusion as a crystal/liquid mush upon advanced 

tapping of the magma chamber, subsequent to the extrusion of the aphyri c 

1 a vas. 

The textures developed in the primitive liquid, i.e., the 

bas a 1 tic k omat i i te, are supportive of the above scheme. As pointed out 

in the petrography section, olivine crystals were nucleated and experi­

enced much of their growth in the intratelluric stage, v1hile orthopyro­

xene may have undergone some post-extrusive growth. Clinopyroxene is 

restricted to the eruptive stage. 

As a complement to the above genetic interpretation of the Up­

per Pillow Lavas, the Lower Pillow Lavas are postulated to be (indirect-

1 y) related in their genesis to the former rocks. The extraction of the 
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Lower Pillow Lava parental magma from a 'fertile' upper mantle source 

peridotite (i.e., spinel lherzolite) could have left as a residue a harz­

burgite composition, which upon further or renewed melting gave up a 

small depleted melt fraction; this migrated upward to a magma chamber and 

became the magma parental to the Upper Pi 11 ow La vas. The trace element 

data used for both depleted and undepleted mantle compositions are taken 

from sources thought to approximate the compositions of the source 

rocks. 

The Lower Pillow Lavas parental magma is roughly calculated as 

representing 21-23% partial melting of an upper mantle lherzolite; this 

figure is in the range of other estimates for production of tholeiite 

magmas from an undepleted upper mantle source (e.g., Malpas, 1978). 

VIII.3 The Possible Tectonic Environment of the Upper Pillow Lavas 

The past few years has seen much debate on the matter of tec­

tonic setting of the Troodos Ophiolite Complex. Prior to 1970 workers, 

preoccupied with a concept of ophiolites as relict portions of oceanic 

crust formed at mid-ocean ridges, had almost unquestioningly accepted a 

similar origin for Troodos. Miyashiro (1973) opened a series of heated 

exchanges with his proposition that the Troodos ophiolites were more 

likely to have formed in an island arc situated between the African and 

Eurasian plates in the early Mesozoic. This debate has already been 

reviewed in Chapter II and will not be repeated here. Various aspects, 

however, will be involved in the present consideration of the tectonic 

environment in which the Upper Pillow Lavas may have originated, as there 

must be intimate genetic ties between the upper and lower lava units. 
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Recently authors have moved away from the tenet that ophiolites 

are formed exclusively at mid-ocean spreading centres, and many have 

agreed that a back-arc or marginal basin environment is more realistic 

when the combined aspects of petrology, geochemistry and stratigraphy are 

considered (e.g., Upadhyay et al., 1971; Dewey and Bird, 1971; Kidd, 

1977). This seems a logical progression of thought, as basalts from 

back-arc basins may be expected to show characteristics of both spreading 

centres and subduction zones. 

The idea that the Troodos Complex formed at a spreading centre 

is more or less universally accepted. Of the writers who have advocated 

a back-arc basin origin, Sun and Nesbitt (1978) have probably provided 

the most comprehensive discussion. They took into account the following 

factors in their suggestion of a genetic model: 1) the Troodos Ophiolite 

Complex was formed at a spreading centre, as seen from the strong devel­

opment of dyke swarms; 2) it is associated with the remelting of a de­

pleted residual mantle that had high Al 202/Ti0 2 and Ca0/Ti0 2 ra­

tios; and 3) subducted oceanic crust was responsible for the water which 

effectively promoted melting by lowering the solidus. Whereas Smewing et 

al. (1975) had proposed a continuous generation process involving pro­

gressive depletion of incompatible elements and remelting of refractory 

peridotite in the same thermal regime to produce the highly depleted Up­

per Pillow Lavas, Sun and Nesbitt (1978) considered this unlikely because 

substantially more heat waul d be necessary to produce further remelting 

of a refractory source. These authors suggested that the most probable 

environment was a spreading centre near a subduction zone. This situa-
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tion could be achieved either within an interarc basin or within a young 

or incipient island arc. 

Whereas the above authors have dealt mainly with the genesis of 

the low-Ti Troodos Ophiolite Complex as a whole, and have not differenti­

ated genetically between the slightly depleted Lower Pillow Lavas and the 

highly depleted Upper Pillow Lavas, Pearce (1975) used basalt geochemis­

try to investigate past tectonic environments on Cyprus and suggested a 

two-stage petrogenetic model. In the first stage melting of mantle above 

a subduction zone occurs under water-saturated conditions, a possible 

result of upward diapiric movement of mantle caused by stresses related 

to the subduction process. This leads to back-arc spreading and produc­

tion of the Lower Pillow Lavas as new oceanic crust. In the second 

stage, the spreading axis moves away from the site of subduction. Accu­

mulation of water generated from the dehydration of subducted oceanic 

lithosphere causes melting of mantle material under water-saturated 

conditions and the eruption of the Upper Pillow Lavas as an island arc 

seamount. 

Laboratory work has supported the concept of hydrous melting. 

Green (1976) has shown that at 10 kb. pressure ( 'V 30 km depth), at 1100°C 

and 1200°C under water-saturated conditions, pyrolite will yield liquid 

fractions of 28 + 1% and 35 + 15%, respectively. The liquid composition 

will be magnesian quartz tholeiite; higher degrees of melting will result 

in greater dissolution of olivine and/or orthopyroxene and more primitive 

liquids. 

Green ( 1976) went on to suggest that if the source peri dot i te 

in island arc regions is depleted from pyrolite by the earlier loss of a 
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basaltic melt fraction (i.e., magma which could be parental to the Lower 

Pillow Lavas), then the K20, Ti0 2 and Na 2o contents (and related 

traces) will be strongly depleted, whereas Si0 2 , MgO, FeO, Al 203 

and CaO would have undergone less relative change. 

Further water-saturated melting of this source material will 

produce a lower proportion of liquid than is present in pyrolite at a 

particular near-solidus temperature because of the earlier removal of the 

low-melting fraction. This liquid will have 'pyrolite' concentrations of 

most major elements but will be depleted in Na20, K20, Ti0 2 and 

light rare earth elements. 

Consideration of trace element concentrations in the Upper Pil­

low Lavas and possible source material argue for the concept of two-stage 

melting. The postulate of hydrous melting of a subducted slab fits well 

into the present interpretation, as it not only provides a means of melt­

ing highly refractory source material but also serves to incorporate the 

Upper Pillow Lavas into the above-discussed genetic scheme envisaged for 

the Lower Pillow Lavas. 

VIII.4 Conclusions 

1. The Lower Pillow Lavas represent 21- 23% partial melting 

of a lherzolitic source rock in the upper mantle. 

2. The Upper Pillow Lava parental magma was produced by very 

small amounts ( ,-v 5%) of partial melting of a depleted source peridotite 
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(harzburgite), from which a portion of melt parental to the Lower Pillow 

Lavas had already been removed. 

3. The olivine and aphyric basalts, i.e., the less primitive 

members of the Upper Pillow Lavas, were derived by the fractional crys­

tallization of 24 -32% olivine from the parental magma, represented by 

the komatiites. The ultrabasic rocks represent the accumulation of this 

fractionated olivine. 

4. The magma parental to the Upper Pillow Lavas accumulated in 

small magma chambers at a shallow level in the oceanic crust, where dif­

ferentiation and subsequent extrusion unto the ocean floor produced the 

different compositional and textural types. 

5. The Upper and Lower Pillow Lavas were formed in a back-arc 

basin environment. A two-stage event, linked to a two-stage genetic 

model, is envisaged. In the first stage the Lower Pillow Lavas, derived 

from a primary melting event, were erupted at a back-arc basin spreading 

centre above a subduction zone. The spreading axis subsequently moved 

away from the subduction zone, and, in the second stage, accumulation of 

water from the dehydrating subducted oceanic lithosphere resulted in re­

newed melting; this melt migrated to high level magma chambers and was 

eventually extruded as the Upper Pillow Lavas. This model in no way 

implies a significant break in time between eruption of the two lava 

suites, and, in fact, a continuum seems more likely. 
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A.1 Sampling Procedure 

Samples were collected from the Upper Pillow Lavas with the in­

tention of representing uniformly the different rock types. The Upper 

Pillow Lavas, being generally very fine grained and invaded by calcite 

a 1 ong joints and minute cracks, often presented a problem as regards 

fresh samples. These were sought assiduously, and in areas of consider­

able outcrop, as in the northern foothills of the Troodos Mountains, it 

was almost always possible to find fresh samples with a little persis­

tance. In areas of more discontinuous outcrop, however, as in the south­

ern foothills, good samples were more restricted to dried-up stream beds. 

Where fracturing made it impossible to collect a single bulk sample a 

collection of clean chip samples was made, with care taken to avoid cal­

citic or zeolitic vein material. Samples were bagged, labelled and boxed 

for shipment from the field area. 

A.2 Analytical Methods 

A.2.1 Preparation of Powders for Bulk-Rock Geochemical Study 

In the laboratory all bulk samples were divided into two por­

tions. Thin sections as well as powders were made from each sample, not 

solely for petrographic study, but to assist in the selection of samples 

for geochemical analysis. Samples which were seen under the microscope 

to be highly altered were not pulverized. Those chosen for analysis were 

broken into 2 to 3 inch chips with a ten pound sledge hammer. The chips 

were subsequently placed in a tungsten carbide swing mill for one minute 

and pulverized to about -100 mesh. The tungsten carbide bowl and rings 

were thoroughly cleansed with hot water and an abrasive silica cleanser 



after each sample. 

labelled. 
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The powders were stored in glass bottles and 

A.2.2 Major and Minor Element Analyses 

Major and minor element concentrations were determined by G. 

Andrews on a Perken Elmer Model 404 atomic absorption spectrophotometer. 

Samples were prepared by the author according to the method of Langmhyr 

and Paus {1968): 

(1) 0.1000 g of rock powder was placed in a Nalgene polycarbonate 

digestion bottle. 

(2) 5 ml of concentrated HF was added to the digestion bottle to 

facilitate dissolution of the powder. The bottle was then placed on a 

steam bath for one half hour. 

{3) After cooling undissolved flourides were complexed by adding 

50 ml of saturated H3Bo4 sol uti on followed by 145 mil of distilled 

H20. The solution was then homogenized and stored in a clean poly­

ethylene bottle. 

G. Andrews prepared standards following the method of Abbey 

{1968) and determined percentage phosphorus using a colourimetric method 

modified after Shapiro and Brannock {1962). 

The author made ferrous iron determinations by a variation of 

the titrimetric method of Wilson {1965). Loss on ignition was deter­

mined by heating a portion of sample in a crucible for two hours at 

1050°C, cooling in a dessicator, and weighing to determine the percent 

loss of volatiles. 
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To determine analytical precision a sample was 

batch of analyses _; results are included in Table A.2.2a. 

run in each 

Accuracy of 

major element analyses was determined by comparison with the standard 

basalt (U.S.G.S.) BCR-1 (Table A.2.2b). 

A.2.3 Trace Element Analyses 

Trace element concentrations were determined under the super­

vision of D. Press using a Phillips 1450 fully automated X-ray fluores­

cence spectrometer. U.s .G .s. rock powders were used as standards for 

calibrations. Hardened discs for analyses were prepared in the following 

manner: 

(1) About 10 g of rock powder was combined in a clean glass jar 

with 1.1 g of Union Carbide Phenolic Resin binder and shaken for 10 min­

utes. 

(2) The mixture was then pressed into a disc in a Herzog hydraulic 

press for 1 minute at a pressure of 30 tons per square inch. 

(3) The disc was baked at 200°C for 10 minutes and cooled. 

(4) The disc was labelled and stored in a dessicator until ana-

lysis. 

Precision and accuracy data for trace element analyses are 

given in Tables A.2.3a and A.2.3b. 

A.2.4 Electron Microprobe Analyses 

Thin sections for microprobe analysis were prepared by the 

author. Sections were polished using an aluminum oxide abrasive powder 

and coated with carbon in a Varian VE-10 vacuum evaporator. 
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Analyses of all minerals employed a fully automated JEOL JXA -

50A electron probe microanalyser with KRISEL Control through a PDP-11 

computer. A beam current of about 0.3 microamps and an acceleration 

potential of 15 kV were used. A spot size of about 1 to 2 microns~ a 

count rate of 30~000 and a default time of 30 were the parameters for all 

mi nera 1 phases. 

A.2.5 Rare Earth Element Analyses 

Analyses for rare earth elements were carried out by neutron 

activation {INAA) under the supervision of Dr. J. Pearce of the Open Uni­

versity~ England. The elements La and Sm were determined by a short 

count (800 sec.) method with data measured relative to the Open Univer­

sity standard AC (OURS) using ca 1 i brat ion VI I I. A 11 other elements were 

determined by long count and were measured relative to the standard 

U.S.G.S. BHV0-1. Statistical errors of 10% and 20% were measured for 

various elements and are recorded in the table of rare earth analyses~ 

Appendix 8.1.2. 
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TABLE A.2.2a 

Precision of Major Element Analyses 

Element No. of X so c 
Determinations (wt. %) (standard dev.) (coef. variation) 

Si02 10 45.97 0.73 1.59 

Ti02 10 0.48 0.01 2.08 

Al 2o3 10 22.01 0.18 0.82 

Fe 2o3 10 4. 12 0.10 2.43 

MnO 10 0.07 0.01 14.29 

MgO 10 9.70 0.01 0.10 

CaO 10 13.21 0.05 0.38 

Na 2o 10 1.55 0.02 1.29 

K20 10 0.11 0.04 36.36 

P205 10 0.02 0.01 50.00 

L.O. I. 10 3.48 0.15 4.31 



Element 

Si02 
Ti02 
Al 2o3 
Fe 2o3 
CaO 

MnO 

MgO 

Na 2o 
K20 
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TABLE A.2.2b 

Accuracy of Major Element Analyses 

Prooosed Value 
(Abbey, 1968) 

54.36 

2.24 

13.56 

13.40 

6.94 

0. 19 

3.46 

3.26 

1.67 

X 
(wt. %) 

55.38 

2.31 

13.52 

13.01 

6.82 

0.17 

3.52 

3.26 

1.70 

SD 

0.26 

0.19 

0.25 

0.27 

0.06 

0.01 

0.06 

0.04 

0.04 

No. of 
Determinations 

6 

6 

6 

6 

6 

6 

6 

6 

6 
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TABLE A.2.3a 
Precision of Trace Element Analyses 

Element x SD c (ppm) 

Zr 201 8 4.0 

Sr 193 5 2.6 

Rb 8 2 25 

Zn 90 8 8.9 

Cu 110 7 6.4 

Ba 73 8 11.0 

Nb 46 2 4.3 

Pb . 6 1 17 

Ni 38 7 18.4 

La 73 5 6.8 

Cr 109 9 8.3 

v 69 3 4.3 

y 20 0.3 1.5 

Ce 112 4 3.6 

Ga 19 1 5.3 
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TABLE A.2.3b 
Accuracy of Trace Element Analyses 

Element Proposed Value x SD No. of 
(Flanagan, 1973) (ppm) Determinations 

Zr 190 193 9 10 

Sr 330 345 12 10 

Rb 46 . 6 49 4 10 

Zn 120 110 10 10 

Cu 18.4 20 4 10 

Ba 675 682 12 10 

Nb 13.5 14 2 10 

Pb 17.6 13 1 10 

Ni 15.8 17 4 10 

La 26 37 4 10 

Cr 17.6 22 7 10 

v 399 379 23 10 

y 37.1 42 4 10 

Ce 53 . 9 72 6 10 

Ga 20 21 2 10 
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APPENDIX B: Analytical Tables 
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APPENDIX B.l Bulk Rock Analyses 



- 146 -

APPENDIX B.l.l Major and Trace Element Analyses 
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ULTRASASIC ROCKS 

KL-17 KL -95 KL -121 DL-36 DL-37 DL-38 DL-45 

Si02 43.90 38 .80 45.07 39.30 36.40 42.80 41.50 

Ti02 0.10 0.09 0.21 0.00 0.14 0.26 0.30 

Al 2o3 6.37 1.5g 5.26 3.67 3.48 6.67 5.22 

Fe 2o3 1.56 5.60 1.07 2.71 3.22 3.19 3.09 

FeO 6.53 3.60 7.74 4.57 4.44 5.53 5.40 

MnO 0.14 0.14 0.13 0.11 0.12 0.15 0.15 

MgO 27.80 36.00 28.61 35.90 34.35 28.45 31.33 

CaO 6.16 1.53 4.82 4.00 8. 77 5.00 2.41 

Na 2o 0.32 0.05 0.00 0.08 0.28 0.37 0 .10 

K20 0.06 0.00 0.05 0.04 0.08 0.04 0.08 

P205 0.00 0.00 0.09 0.00 0.00 0.00 0.00 

L.O.I. 5.84 10.84 7. 51 9.05 8.61 7.25 10.74 

TOTAL 98.78 98.19 100.57 99.43 99.89 99.71 100.32 

££!!!. 

Zr 7 7 7 6 5 13 12 
Sr 26 3 5 23 51 26 18 
Rb 1 0 0 2 3 3 2 
Zn 54 54 54 39 36 47 48 
Cu 46 35 35 23 3 25 19 
Ba 7 0 3 0 0 12 
Nb 2 2 2 0 0 
Pb 0 0 0 3 2 2 2 
Ni 1064 1226 1136 1407 1378 848 1072 
La 23 16 20 
Cr 2054 2438 2497 3025 2951 1829 2584 
v 141 59 136 87 71 124 110 
y 6 6 6 5 4 10 8 
Ce 2 4 2 
Ga 4 2 5 0 0 0 

v1t. ·% 
Qz 0.00 0.00 0.00 0.00 0.00 OoOO 0.00 
Or 0.38 0.00 0.32 0.26 0.00 0.26 0.53 
Ab 2.90 0.49 0.00 0 .. 75 0.00 3.38 0.94 
An 16.90 4.73 15.19 10.51 9.23 17.73 13.31 
Ne 0.00 0.00 0.01 0.00 1.48 0.00 o.oo 
Le 0.00 0.00 0.00 0.00 0.43 0.00 0.00 
Wo 6.63 1.67 4.08 4.74 2.14 3.78 0.00 

Di Ens 5.19 1.32 3.16 3.85 1. 73 2.95 0.00 
Fs 0.71 0 .16 0.47 0.33 0.16 0.42 0.00 

En Ens 23.82 20.59 35.70 9.36 0.00 23.40 33 .80 
Fs 3.25 2.46 5.75 0.81 0.00 3.33 4.12 

01 Fo 31.68 56.94 24.06 59.78 67.96 35.15 37.17 
Fa 4.76 7 .50 3.94 5.70 6.93 5.51 5.00 
Mg 3.11 3.34 3.10 3.20 3.35 3.13 3.23 
I 1m 0.20 0.20 0.43 0 .00 0.31 0.53 0.63 
Chr 0.47 0.60 0.57 0.72 0.73 0 .43 0.62 
Ap 0.00 0.00 0.22 0.00 0.00 0.00 0.00 
Cur' 0.00 0 . 00 0.00 0 .00 0.00 0.00 0.6S 

Fe 2o3 recalculated as 2.00% for norrr.ative analyses 

-: not determined 
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KOMATIITES 

% KL-12 KL-13 KL-15 KL-18 KL-24 KL-33 KL-34 KL-36 KL-38 KL-55 KL-71 KL-77 

Si02 51.60 50.04 50.50 51.21 50.20 50.20 50.30 49.20 49.20 46.40 40.40 50.00 

Ti02 0 .43 OJ3 0.38 0.32 0.33 0.20 0.23 0.24 0.23 0.25 0.24 o. 32 

Al 2o3 14.05 13.90 13.70 12.71 13.70 11.00 11.00 11.00 11.10 12 .50 12.00 11.87 

Fe 2o3 7.80 2.41 2.42 1.58 3.48 2.29 2.09 2.00 2.76 2.39 1.87 1.98 

FeO 0. 72 5.39 5.40 6.17 4.10 5.76 5.94 .6 .15 5.35 5.75 5.83 5.86 

~1n0 0.13 0.13 0.15 0.13 0.16 0.14 0.14 0.18 0.16 0 .1.1 0.15 0 .13 

MgO 8.68 8.11 8.55 9.93 9.04 11.65 11.39 11.30 9.91 11.26 11.78 10.94 

CaD 10.49 10.37 10.37 11.31 10.42 9.95 9.95 11.41 11.56 11.25 10 . 88 11.25 

Na2o 1.53 1.27 1.33 0.00 1.05 0.84 0.79 .0.63 0.57 O.l-4 0 .69 0 .38 

K20 0.18 0.28 0.23 0.21 0.28 0.17 0.16 0.17 0.19 0.29 0 .12 0.14 

P205 0.14 ·0 .10 0.12 0.11 

H o+ 
2 4.85 8.03 8.26 6.22 7.34 7.90 7.65 8.41 10.09 8.08 6.31 6.76 

TOTAL 100.60 100.46 101.62 99.91 100.10 100.10 99.64 100.69 101.12 98.75 98.27 99.74 

~ 

Zr 23 23 25 10 20 10 11 12 11 17 12 12 

Sr 83 83 117 56 109 87 79 109 118 506 37 41 

Rb 4 4 3 3 4 3 2 2 3 2 2 1 

Zn 57 58 57 5S 56 60 52 64 62 61 59 60 

Cu 57 68 65 89 72 87 92 92 99 82 81 79 

Ba 14 13 19 3 8 18 14 12 11 g 6 16 

Nb 2 1 3 2 2 2 1 2 1 1 3 3 

Pb 1 _2 

Ni 128 121 87 126 95 228 262 265 199 271 281 314 

La 19 19 20 22 24 24 22 20 17 22 19 19 

Cr 376 374 322 529 313 720 724 740 665 768 757 812 

v 210 216 214 239 216 219 208 204 203 219 215 210 
y 14 12 13 12 13 ':J 10 10 1:i. 9 1s 14 

Ce 
Ga 11 14 12 9 12 9 10 11 11 10 11 11 

wt. % 

Qz 7.73 8.60 . 8.05 13.18 8.46 7.44 8.31 6.20 8 .69 3.16 4.84 9.19 

Or 1.12 1. 79 1.46 1.32 1. 79 1.09 1.03 1.09 1.23 1.83 0 .77 0.89 
Ab 13.59 11.63 12.10 o.oo 9.59 7.70 7.26 5. 77 5.30 4.10 6.34 3.45 
An 32.49 33.98 33.03 36.31 34.36 27.90 28.23 28.88 29.84 34.45 31.81 32.51 
Ne 0.00 0.00 0.00 0.00 0.00 0.00 0.00 ··o.oo 0.00 o.oc 0.00 0.00 
Cor 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0 .00 0 .00 0.00 
wo 8.87 8.79 9.31 9.48 8 .96 10.70 10.01 13.59 13.86 11.36 11.20 11.14 

Di Ens 5.86 5.78 6.17 6.47 6.09 7.45 7.35 9.31 9.32 7.84 7.91 7.75 
Fs 2.37 2.38 2.48 2.26 2.17 2.37 2.38 3.14 3.49 2.60 2.32 2.47 

En E:-ts 16.8£'1. 16.07 16.72 19.89 18.20 23.99 23.45 21.14 17.78 23.05 23.95 21.51 
Fs 6.80 6.62 6. 71 6.94 6.49 7.64 7.59 7.12 6.67 7.64 7.03 6.85 

01 Fo o.OO 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
Fa 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

l"r 3.04 3.14 3.12 3.09 3.1 3 3.14 3.15 3.14 3.18 3.19 3. 15 3.11 
I m 0.86 0.88 0.78 0.65 0.68 0.41 0 .47 0.49 0.48 0.52 0.49 0.65 
Chr 0.86 0.09 0.07 0 .12 0.07 0.17 0.17 0 .17 0.16 0.18 0.18 0.19 
Ap 0.34 0.25 c.oo 0.30 0.00 0 .00 0.00 0.00 0.00 0.00 0.00 0.27 

Fe2o3 reca 1 cul a ted as 2.0% for normative analyses 

-: not ciete rmi ne d 
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KOMATI ITES, cont'd . 

% KL-78 KL-86 KL-108 KL-110 DL - 41 PL- 31 

Si02 51.32 . 48 . 80 48.49 49 . 81 51.10 46.70 

Ti02 0.32 0.30 0·37 0 . 33 0 . 42 0 . 20 

A1 2o3 12 . 24 11.70 12 . 80 11.33 12.80 12 . 90 

Fe 2o3 1.66 1.62 2 . 79 4.57 2.79 2.93 

FeO 6 . 52 5.85 5 . 04 2. 62 4.91 5 . 38 

MnO 0.14 0 . 15 0 . 13 0 . 12 0 . 14 0 . 10 

MgO 12 . 48 12 . 44 9 . 66 8 . 18 10 . 53 11.33 

CaO 10 . 70 9.88 9 . 22 9 . 96 9. 75 . 5 . 78 

Na 2o 0.00 1.12 2 . 60 3.87 1.35 0 . 79 

K20 0.12 0.18 0 . 31 0.05 0 . 47 2 . 28* 

P2os 0 . 12 0 . 12 0 . 15 

L.O . I. 4.84 6.32 8.30 7.59 5.42 11.68 

TOTAL 100.46 98.36 100.53 98 . 58 99 . 68 100.07 

~ 

Zr 11 18 16 14 26 14 
Sr 33 77 97 41 93 108 
Rb 2 2 2 0 9 25 
Zn 60 58 59 55 54 98 
Cu 81 75 80 65 72 25 
Ba 13 7 23 10 9 58 
Nb 2 2 2 2 0 0 
Pb 1 2 4 
Ni 363 347 197 260 143 221 
La 19 16 20 20 
Cr 891 702 516 466 695 731 
v 215 198 211 168 209 196 
y 10 12 13 12 19 4 
Ce 6 1 
Ga 9 18 10 12 9 5 

wt. % 

Qz 9 . 98 3. 31 0 . 00 0 . 00 6.00 0.64 
· Or 0 . 74 1. 15 1.99 0.33 2. 951 15 . 24 

Ab 0.00 10 . 28 23 . 85 36 . 06 12.12 7 . 56 
~n 34.50 28 . 60 24.22 14.75 29.14 28 . 18 
Ne 0.00 o.oo 0 . 00 0 . 00 0 . 00 0 . 00 
Cor 0 . 00 0 . 00 0 . 00 0 . 00 0.00 0.00 
\oJo 8.40 10 . 27 11 . 83 16 . 12 9 . 26 1. 79 

Di Ens 5.91 7. 39 8 . 06 11.04 6 . 48 1.23 
Fs 1. 78 1.95 2.84 3 . 80 2. 01 O. Ll2 

En Ens 26 . 54 26 . 21 14.11 6 . 61 21.33 30.68 
Fs 8 . 00 6 . 90 4.97 2 . 28 6 . 63 10 . 36 

01 Fo 0.00 0 . 00 0.00 0.00 0.00 0.00 
Fa 0.00 0100 0 . 00 o.oo 0 . 00 0.00 
jt\g 3 . 03 3 . 15 3. 14 3 . 19 3 . 08 3.28 
I 1m 0.63 0 . 62 0 . 76 0 . 69 0.85 0.43 
Sp 0 . 20 0.16 0 . 12 0 . 11 0.15 0.18 
Ap 0 . 29 0 . 00 0 . 30 0.38 0 . 00 0.00 

Fe 2o3 recalculated as 2 . 00% for normative analys es 

- : i10t anal ysed * not included in average 
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APHYRIC BASALTS 

0 KL-22 KL-23 KL-32 K:... -44 KL-46 KL -62 KL -66 KL-67 KL-6? KL -69 t:L-73 KL-119 
"' 

Si02 55.2 55.15 47.90 47.70 46.00 49.90 49.71 46.60 51.32 50.73 45.90 52.38 

Ti02 0.38 0.48 0.31 0.30 0.35 0. 36 0.35 0.43 0.36 0.43 0 .34 0.34 

A1 2o3 14.00 15.27 14.70 14.40 13.70 16.10 13.48 14.13 13.04 15.86 13.20 11.79 

Fe2o3 2.51 3.55 5.23 5.73 4.11 4.83 5.43 3.63 3.75 4.57 4.82 2.70 

FeO 3.60 3. 72 3.23 2.49 3.23 3.89 2.70 4.03 3.34 3.13 3.14 5.06 

MnO 0.09 0.12 0.09 0.10 0.14 0.10 0.12 0.13 0.12 0.13 0.10 0.13 

MgO 7.74 5.46 9.49 6.31 7.12 6.48 6.47 8.22 8.63 5.57 9 .41 10.11 

CaO 11.89 9.72 10.72 11.64 13.69 10.75 13.05 11.36 8.58 10. 3t 11.13 8.51 

Na 2o 1.09 1.85 1.20 1.01 0.55 1. 73 0.40 1.01 2.67 1.17 1.55 2.57 

Y.20 0.48 0.44 0.64 1.23 1.35 0.73 1.06 0.30 0.89 0. 72 0.47 0.23 

P205 0.14 0.14 0.10 0.11 0.10 

L .0. I. 2.98 4.84 7.74 8.82 8.06 3.91 7.01 10.26 7.13 5.33 9.47 4.86 

TOTAL 99.96 100.75 101.25 99.73 98.30 98.78 99.92 100.24 99.93 98.09 99.53 98.78 

.E.E.!!!. 

Zr 17 31 15 11 17 12 19 13 21 18 13 
Sr · 41 97 60 47 44 38 218 22 289 199 85 
Rb 13 19 9 30 19 12 4 18 8 10 2 
Zn 48 49 62 51 fi6 45 61 52 47 12 51 
Cu 20 35 20 41 18 26 28 16 16 20 21 
Ba 12 39 25 22 8 15 7 18 16 10 5 
Nb 3 3 2 2 2 3 1 2 1 1 4 
Pb 0 1 1 1 
Ni 66 47 95 73 65 102 99 89 78 87 202 
La 17 18 20 21 16 26 18 25 22 15 20 
Cr 285 107 188 176 72 325 317 322 113 250 533 
v 233 219 276 191 236 224 233 219 223 228 245 
y 14 14 9 11 13 12 13 15 13 12 14 
Ce 
Ga 15 15 11 16 12 15 8 13 12 11 

wt. 1 

Qz 13.46 14.97 1.65 4.97 2.54 4. 32 2.99 5.46 t,.32 11.45 0.00 4.64 
Or 2.93 2. 72 4.06 8.02 8.86 4.56 5.58 1.98 4.56 4.60 3.08 1.45 
Ab 9.51 16.37 10.89 9.43 5.17 15.48 24.38 9.55 15.48 10.70 . 14.56 23.15 
An 32.89 33.54 35.23 34.35 34.34 35.95 22.63 37.03 35.95 38.79 30.71 21.24 
Ne 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
Cor 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
Wo 0.00 6.65 9.13 12.36 17.16 8.54 9.44 10.45 8.54 6.67 12.79 9.62 

Di Ens 8.34 4.16 6.08 7.51 11.25 5.06 6.55 7.13 5.06 4.03 8.58 6.63 
Fs 2. 30 2.09 2.38 4.17 4.71 3.05 2.12 2.50 3.05 2.28 3.25 2.21 

En Ens 11.53 10.06 19.27 9.83 8.44 12.00 16.64 15.75 12.00 10.96 14.83 20.17 
Fs 3.17 5.06 7.53 5.45 3.53 7.24 5:38 5.53 7.94 6.20 5.62 6.73 

01 Fo 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.82 0.00 
Fa 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.76 0.00 
Mg 2.99 3.03 3.11 3.20 3.22 3.07 3.13 3.24 3.07 3.13 3 .22 3 .09 
111!' 0.74 0.95 0.63 0.63 0.74 0.72 0.74 0.91 0. 72 0.88 o. 72 0.69 
Chr o.o: 0.02 0 .04 0.08 0.04 0.02 0.07 0.08 0.02 0.03 0.06 0.12 
Ap 0 .00 0.36 0 .00 0.00 0.00 0.00 0.25 0.36 0.00 0.28 0.00 0.25 

Fe2o3 recalculated as 2.0% for nonnative analyses 

-: not determined 
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APHYRIC BASALTS, com:' d. 

% DL-13 DL-20 DL-28 DL-54 DL-55 DL-62A DL-84 DL-87 PL-6 PL-7 

Si02 45.90 49.50 48.50 t.7.80 45.50 47.20 49.70 48.50 48.70 49.30 

Ti02 0.44 0.51 0.49 0.51 0.51 0.74 0.31 0.50 0 .52 0.58 

A1 203 15.30 15.80 15.20 16.80 15.60 15.10 13.80 17.30 17.00 17.00 

Fe 2o3 4.06 5.18 5.26 5.53 7.63 6.S6 5.85 5.65 5.75 6.48 

FeD 4.57 3.73 2.59 1. 79 0.29 1.43 1.40 2.75 3.14 2.37 

MnO 0.17 0.13 0.08 0.06 0.12 0.09 0.09 0.10 0.12 0.08 

MgO 9.18 6.09 6.27 7.91 7.74 7.48 8.36 6.00 4.67 6.00 

CaD 10.65 12.53 12.06 10.00 9.03 9.27 10.53 12.00 12.36 9.70 

Na2o 1.56 1.23 1.85 1. 81 1.43 1.93 1.20 1. 70 1.57 1.97 

K20 0.40 0.87 1.50 0.19 2.05 1.40 0.16 0.82 1.89 0 .55 

P205 

L.O.I. 6.98 4.38 6.79 8.09 9.38 9.13 8.75 5.14 4.38 5.60 

TOTAL 99.21 99.95 100.59 100.49 99. 28 100.13 100.15 100.46 100.10 99.63 

£Em 

Zr 48 76 22 23 23 40 15 19 18 28 
Sr 117 138 80 93 105 92 80 75 75 92 
Rb 22 42 17 2 13 22 2 46 44 12 
Zn 97 102 52 63 65 64 47 52 62 71 
Cu 22 34 22 146 30 11 55 21 11 37 
Ba 64 75 10 16 23 15 15 13 41 26 
Nb 
Pb 3 6 2 3 4 1 4 2 3 5 
Ni 39 25 46 32 38 4.1 43 38 28 36 
La 3 1 3 0 
Cr 1 225 71 63 158 114 86 36 9 
v 318 643 230 277 266 226 224 243 25:!. 318 
y 34 38 19 14 17 26 13 17 21 24 
Ce 7 3 2 3 10 7 2 5 5 1 
Ga 15 15 10 11 13 7 6 8 9 12 

wt. % 

Qz 0.00 4.67 0.00 3.21 0.00 0.18 9.21 1.41 0.45 4 .7 1 
Or 2.57 5.40 9.48 1. 22 13 .56 9.13 1.04 5.08 11.71 3.47 
Ab 14.34 10.93 16.74 16.64 13.54 18.03 11.16 15.09 13.93 17.81 
An 36.47 36.76 30.7Y 40.36 33.68 31.36 34.94. 38.97 35.40 38."38 
Ne 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
Cor 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
Wo 8.76 11.92 13.89 5.66 6.89 8.12 9.39 9.81 12.08 5.46 

Di Ens 5. 72 6.90 8.70 3.89 4.59 5.44 6.50 5.73 6.40 3.20 
Fs 2.43 4.48 4 .34 1. 32 1. 79 2.07 2.13 3.62 5.31 1. 99 

En Ens 15.04 9.02 7.91 17.51 11.75 15.12 16.38 9.95 5.80 12.76 
Fs 6.04 5.86 3.95 5.97 4.60 5.76 5.38 6.29 4.82 7. 93 

01 Fo 2.86 0.00 0.05 0.00 3.67 0.00 0.00 0.00 0.00 0.00 
Fe 1. 34 0.00 0.03 0.00 1.58 0.00 0.00 0 .00 0.00 0.00 
Ng 3.15 3.(lll 3.16 3.15 3.25 3.20 3.19 3.04 3.04 3.10 
Ilrr 0.91 1.02 1.00 1.05 1.08 1.55 0.65 1.00 1.04 1.18 
Chr 0.00 0.00 0.05 0.02 0.02 0.04 0.03 0.02 0 .01 0.00 
Ap 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Fe 2o3 reca 1 cul a ted as 2.0,., for nonnative analyses 

-: not determined 
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OLIVINE BASALTS 

APHYRIC BASALTS , cont'd . 

% PL- 17 PL- 18 PL - 19 PL-20 PL-22 % KL- 9 KL - 39 DL - 80 KL- 16 

Si02 47.70 47 . 30 49.70 54.60 50.80 Si02 46 . 80 48.20 47 . 50 48 .60 

Ti02 0 . 28 0 . 28 0 . 23 0.38 J .38 Ti02 0.32 0.37 0. 38 0.38 

A1 203 15.60 15.80 14 .60 14 .60 16 . 90 A1 203 11.90 14.00 13 . 70 13.80 

Fe2o3 6 . 16 4.44 4.88 5 .48 8 . 19 Fe2o3 4.97 5.16 5.29 2.71 

FeD 2.33 3.59 3.29 3. 12 1. 58 FeO 3.25 2.48 1.76 5. 18 

MnO 0.08 0 . 12 0.12 0 . 10 0. 06 MnO 0 . 12 0 . 10 0.11 0.16 

MgO 7.73 7.73 5 . 73 5.33 4.93 f~gO 10.00 10.09 7.91 8 .89 

CaO 10 .63 11.75 13.13 9.94 8.21 CaO 12.26 9. 72 11.24 9.89 

Na 2o 0.86 1.40 1.09 1.05 1.85 Na2o 0.99 1.10 1. 17 1.58 

K20 0.95 0.57 0.98 0.43 0 . 91 K20 0.59 1.69 1.15 0.30 

P205 P205 0. 00 

L.O. I. 6.19 5 . 29 4. 79 4. 71 6 . 29 L.O. I. 9.02 8.94 8 .28 9.00 

TOTAL 98 . 51 98 . 27 98 . 54 99.74 100 . 10 TO-IAL 100 . 22 101.85 98 .49 100.49 

££!!! .E£!!l 

Zr 5 12 10 8 17 Zr 15 17 21 24 
Sr 33 Ei 5 52 43 91 Sr 66 102 98 136 
Rb 16 17 40 10 12 Rb 6 13 15 4 
Zn 47 46 42 63 61 Zn 53 60 68 58 
Cu 40 39 15 30 20 Cu 28 21 32 66 
Ba 14 12 8 8 122 Ba 11 76 5 16 
Nb 0 Nb 2 1 1 
Pb 1 3 9 2 3 Pb 2 
Ni 82 62 51 29 24 Ni 269 107 158 103 
La La 22 22 15 
Cr 279 166 114 2 3 Cr 691 336 564 326 
v 281 220 199 287 402 v 205 267 173 214 y 13 15 15 23 17 y 11 13 9 14 
Ce 7 3 3 4 Ce 6 
Ga 8 8 6 9 13 Ga 11 12 9 13 

wt.% 
wt . % 

Qz 4. 60 1. 41 6.41 17.60 8.40 Qz 1.15 0.30 3.65 4.44 
Or 6.11 3. 63 6.20 2. 68 5.77 Or 3 .83 10.78 7. 55 1.94 
Ab 7.91 12 . 77 9.87 9 . 38 16.80 Ab 9.20 10.05 11 .00 14 . 62 
An 39 . 05 37 . 89 34 . 29 35.76 37.69 An 28 . 88 30 . 52 31.94 32 . 45 
Ne 0. 00 0. 00 0.00 0.00 0.00 Ne 0.00 0 .00 0. 00 0.00 
Cor 0 . 00 0.00 0.00 0.00 0 . 00 Cor 0 . 00 0 . 00 0 .00 0 .00 
Wo 7.65 10 . 43 14 . 79 6. 82 2.54 Wo 15 .86 9 . 01 12.56 8. 87 

Di Ens 4.86 6 . 71 8.64 3. 83 1.31 Di Ens 10 . 80 6.32 8 .67 5 . 91 
Fs 2. 31 3. 03 5. 44 2 . 71 1.16 Fs 3.82 1.92 2.87 2. 31 

En Ens 16 .08 14 . 05 6 .62 10.18 11 . 87 E Ens 16.57 20.10 13 . 22 18 . 29 
Fs 7. 64 6. 35 4. 16 7. 20 10.57 n Fs 5. 87 6.33 4.38 7.14 

01 Fo 0. 00 0 .00 0. 00 0.00 0. 00 01 Fo 0.00 0.00 0.00 0.00 Fa o.oo 0. 00 O.GO 0.00 0.00 Fa 0.00 0.00 0.00 0.00 Mg 3.15 3. 13 3. 10 3.06 3.11 Mg 3.19 3.13 3. 22 3.17 
Il m 0.58 0. 57 0. 97 0.76 o. 77 Ilm 0.67 0 . 76 0.80 0.79 Ch r 0 . 07 0. 04 1.03 0.00 0. 00 Chr 0.16 0 .08 0.13 0 .08 Ap 0.00 0 . 00 0 .00 0.00 0. 00 Ap 0 . 00 0.00 0.00 0.00 

Fe2o3 recalulated as 2. 0% for normati ve anal yses 

- : not determined 
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LOWER PILLOW LAVAS 

<JI KL-20 KL-21 KL-76 KL-98 DL-18 DL-19 / O 

Si02 52.83 50.20 49.05 53.32 58.80 55.30 

Ti0 2 0.47 0.45 0.42 0.46 0.91 1.03 

A1 2o3 15.11 15.80 14.46 15.27 15.60 15.30 

Fe 2o3 3.90 5.27 4.35 3.89 5.77 7.18 

FeO 3.35 2.38 3.36 3.80 3.20 2.40 

MnO 0.13 0.13 0.12 0.12 0.11 0.11 

MgO 4.96 5.25 8.40 6. 39 2.45 3.91 

CaO 9.01 10.60 12.25 10.20 8.04 7.58 

Na 2o 1.68 1.48 0.88 2.47 2.13 2.14 

K20 2.23 2.09 0.36 0.54 0.58 0.58 

P205 0.10 0.00 0.14 0.12 0.00 0.00 

L.O. I. 6.81 6.04 6.02 3.22 3.23 5.15 

TOTAL 100.63 99.69 99.81 100.31 100.82 100.68 

ppm 

Zr 25 23 17 26 38 41 
Sr 97 96 47 80 102 101 
Rb 51 20 4 14 12 12 
Zn 38 43 67 66 79 80 
Cu 20 20 18 54 22 20 
Ba 41 42 14 23 30 39 
Nb 2 1 3 3 0 0 
Pb 0 0 3 1 2 4 
Ni 35 39 89 75 21 13 
La 22 21 17 17 2 1 
Cr 95 109 205 213 
v 226 214 232 226 371 436 
y 11 13 14 30 34 31 
Ce 3 1 
Ga 14 14 14 15 17 10 

wt. % 

Qz 8.61 4.71 6.48 7.47 21.59 16.46 
Or 13.99 13.23 2.27 3.29 3.53 3.61 
Ab :i.5 .09 13.42 7.56 21.56 18.54 19.06 
An 28.77 32.46 36.80 29.90 32.19 32.03 
Ne 0.00 0.00 0.00 0.00 0.00 0.00 
Cor 0.00 0.00 0.00 0.00 0.00 u.oo 
I;Jo 7.53 9.99 11.35 8.99 3. 71 3.17 

Di Ens 4.34 5.49 7.62 5.64 1.50 1.55 

En Fs 2.85 3.48 2.88 2.79 2.29 1.56 
Ens 8.77 8.02 14.73 10.77 4.78 8.70 
Fs 5.75 .1.66 5.56 5.33 7.16 8.75 

01 Fa 0.00 0.00 0.00 0.00 0.00 0.00 
Fa 0.00 o.oo 0.00 0.00 0.00 0.00 
Mg 3.08 3.11 3.10 2.99 2.98 3.05 
Ilm 0.95 0.92 0.85 0.90 1. 78 2.06 
Chr 0.02 0.03 0.05 0.05 0.00 0.00 
.A.p 0.25 0.00 0.35 0.2.4 0.00 0.00 

Fe2o3 recalculated as 2. 00% for normative analyses 

-: no-t determined 



- 154 -

APPENDIX 8.1.2 Normalised Rare Earth Data for 
Upper and Lower Pillow Lavas 



Chond KL-12 KL-33 KL-9 OL-80 OL-6 KL-22 01 Cum LPL-3 LPL-4 LPL-5 LPL-6 LPL-7 

La 0.330 3.80 1.73 2.50 4.20 6.80 3.21 1.84 n.d. n.d. n.d. n.d. n.d. 
Ce 0.865 3.03 ((0.69)) 1.96 2.08 5.89 2.31 n.d. 5.89 9.11 10.07 9.63 11.49 

Nd 0.630 (3.80) n.d. ((2.70)) 3.17 8.25 (2 .86) n.d. 9.48 11.27 13.17 14.23 15.70 

Sm 0.203 3.35 0.88 2.26 3.05 9.11 2.95 <0.49 9.80 12.95 16.65 19.26 19.46 

Eu 0.077 4.29 1.69 2.85 4.02 10.00 3.77 0.39 10.65 11.17 15.58 17.14 18.31 

Gd 0.276 4.71 (3. 26) 3.98 3.62 9.78 (5.43) n.d. 8.33 14.20 13.70 16.16 14.28 

Tb 0.052 4.80 2.50 3.46 3.85 10.38 4.61 ((0.58)) 9.42 n.d. 15.96 11.54 17.88 

Tm 0.034 5.00 ( 4. 70) (4.70) 4.12 9.70 5.59 n.d. 9.70 n.d. 14.70 18.53 20.00 

Yb 0.220 5.32 4.27 5.00 3.72 9.41 5.36 0.41 8.59 12.82 13.86 17.27 18.64 

Lu 0.034 5.29 (4.12) (5.00) 4.12 9.41 5.88 0.59 9.41 12.35 14.12 15.88 20.00 
Ce/Sm 0.89 0.78 0.87 0.68 0.65 0.83 n.d. 0.60 0.70 0.60 0.50 0.59 

Raw data are normalized to average chondritic abundances of Nakamura (1974). 

Data in single brackets have statistical errors >10%; those in double brackets have statistical errors >20%. 

n.d.: not determined. 

I 

~ 
(J1 
(J1 

I 



- 156 -

APPENDIX 8.1.3 Published Analyses from 
Lower Pillow Lavas 
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Of 1 2 3 4 5 6 7 10 

Si0 2 53.20 53.89 49.84 69.50 53.40 51.26 62.39 

Ti02 1.12 1.08 0. 76 1.30 1.33 1.60 1.35 

Al 2o3 15.83 16. 17 12.70 15.75 16.83 14.80 

Fe2o3 7.48 8.33 8.39 

FeO 11. 22* 2.86 5.50* 3.63 4.36 8.28* 

MnO 0.17 0.12 0.10 0.16 0.16 0.17 

MgO 5.00 5.71 9.23 1.80 5.49 5.33 2.88 

CaO 8.81 9.67 4.80 7.77 7.39 5.47 

Na 2o 2.70 2.53 4.00 2.76 2.55 3.43 

K20 0.59 0.29 0.20 0.33 0 .06 0.18 

P205 0.90 0.11 0.13 0.16 0 .15 

H2o 1.29 1. 36 2.06 1.05 

TOTAL 100.00** 100.25 100.00** 100.00 100.44 100.15 

ppm 

Zr 57 43 76 70 90 99 

Sr 124 

Nb 3 

Cr 90 379 

y 26 20 29 41 38 

Ce 11.7 5.1 7.88 8.71 8.33 9.94 

Sources: 

1 - Pearce ( prepri nt, 1979). Table 1, Loca 1 i ty 18. 

2 - t--1o0res and Vine (1971), Table 1, Average of 17. 

3 to 7 - Smewing and Potts (1976) . Table 2. 

* Tota 1 iron as FeO 

** Reca 1. to 100% anhydrous 



- 158 -

APPENDIX 8.2 Average Mineral Analyses of Upper Pillow Lavas 

( ) indicates number of samples included in 
average 
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OLIVINE 

Ultrabasic Rocks Komatiites 

KL - 12J (4) DL-36(4) DL-45(J) KL-18(5) KL-33(3) r<L-34(3 ) KL-77(2) Dl-23(1) 

Si02 40.67 .11.66 .10.84 .10.15 40.77 .10 . 62 39.13 40 .6.1 

A1 2o3 0 .07 0.04 0.02 0.22 0.02 0 . 05 0.08 0.19 

Ti0 2 0.01 0.00 0.01 0.00 0.01 0.00 0.00 0.02 

Cr2o3 0.03 0.05 0.05 0.04 0.02 

FeO 8.48 6.90 9.20 10.46 10 . 03 10.80 9.88 12.12 

t·1n0 0.12 0.11 0.12 0.12 0.11 0.13 0.14 0.16 

MgO 50.40 52.63 50.57 47 . .13 48.51 48.41 50.29 47.88 

CaO 0.21 0.17 0.19 0.22 0.18 0.21 0.22 0.23 

~a 2 o 0.00 0 . 01 0.04 

K20 0.01 0.00 0.00 

NiO 0 . 25 0.21 0.32 0.23 0 . 32 

Si02 41.090 41.408 40.977 40.671 40 . 780 40.650 40 . 857 40.420 

FeO 8 .588 6.888 9.186 10.822 10.240 10.933 9.828 12.163 

t1g0 50.322 51. 704 49.836 48.507 84.980 48.417 49.315 47.417 

Fo 91.3 93.0 90.6 88.9 89.5 88.8 89 .9 87.4 

Si 0.992 0.993 0 .989 1.000 1.003 0.997 0.966 0.994 

Ti 0.000 0 . 000 0 .000 0.000 0.000 0.000 0.000 0.000 

Al 0.002 0.001 0 .001 0 . 006 0 . 001 0.001 0.002 0.005 

Cr 0.000 0 . 000 0.001 0.001 0.001 0.001 0.000 0.000 

Fe 2 0.173 0.138 0.186 0.218 0 .206 0.222 0.204 0 .248 

·1n 0 . 002 0.002 0.002 0.003 0.002 0.003 0 .003 0 . 003 

Mg 1.832 1.869 1.825 1. 762 1. 778 1.772 1. 851 1.746 

"a J.J05 0 . 004 0 . 005 0.006 0 . 005 0.006 0.006 0.006 

Na 0.000 0.000 0.002 0 . 000 0.000 0.000 0.000 0.000 

K 0.000 0.000 0.000 0.000 0 . 000 0.000 0 . 000 0 . 000 

~~; 0.000 0 .000 0.004 0.00.1 0.005 0.004 0 . 005 0 . 000 
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ORTHOPYROXENE 

U1trabasic Rock J<omatiite Olivine Basalt 

_KL-12(3) k.L-34(1) KL-104 (1) 

Si02 54.47 56.70 55.11 

A1 2o3 3.7<1 1.81 1. 76 

Ti02 0 . 09 0.04 0 .02 

cr2o3 o.oo 0 . 00 

FeO 11.26 7.64 6.74 

' t'lnO 0.20 0.18 0.14 

r.1g0 28.60 31.04 31.99 

CaO 1. 75 3.17 2.29 

Na 2o 0.02 0.01 

K20 0.01 

NiO 0.00 0.00 

Ca 3.47 6.04 4.39 

Mg 78.81 82.32 85.31 

Fe 17.72 11.64 10.30 

En 81.5 87.6 89 .2 

Si 1.931 1.968 1.949 

A1 4 0.069 0.032 0.051 

Al 0.086 0.042 0.022 

Ti 0.002 0.001 0.001 

Fe 3 0.000 0.000 0.029 

Fe 2 0.331 0.222 0.171 

t•lg 1.497 1.606 1.686 

Mn 0 . 006 0.005 0.004 

Ni 0. 000 0.000 0.000 

Ca 0.066 0. :!18 0.087 

Na 0.001 0.000 0.001 

K 0.000 0.000 0.000 
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CLINOPYROXENE 

Ultrabasic Rocks Olivine Basalts 

KL.;.l21(5) DL -36(5 ) DL-L15(3) PL-34(4) KL -104(2 ) 

Si02 54.95 53.00 52.91 53.52 54.06 

Al 2o3 2.01 2.26 3.16 2.56 2.13 

Ti0 2 0.07 0 .19 0.31 0.12 D.08 

cr2D3 l.D5 

FeD 3.97 4.3D 4 .83 5.65 4.58 
' 

MnD D.ll D.13 D .12 D .16 D.12 

MgO 19 .30 19.DD 18.04 19.05 19.43 

CaD 19.7D 19.84 20.31 18.52 19.57 

Na2o D.D7 D.13 D.14 D.10 0.03 

K2D D.DD D.DD D.DD 

NiO D.D2 D.DO O.DO 

Ca 93.61 39.4D 41.23 37.37 38 .93 

1-1g 53.98 53.14 50.93 53.47 53.77 

Fe 6.41 6.96 7.8Ll 9.15 7.3D 

Si 1.961 1.939 1.925 1.947 1.955 

Al 4 D.039 O.D61 D.D75 D.053 D.D45 

Al 6 D.D45 D.D36 0.061 D.057 D.D46 

Ti D.OD2 O.D05 D.DD8 D.D03 D.DD2 

Cr O.D3D O.DDD D. OOD O.DDO D.ODD 
~ 

Fe- D.DDO D.D24 O.OD7 D.DOO 0.000 

Fe 2 0.118 0 .1D8 0.140 0.172 0.139 

f'-lg 1.026 1.036 0.978 l.D33 l.D47 

Mn 0.003 O. OOLl O.DD4 0.005 0.004 

N1 O. DDD O.OOD D.ODD D.ODD O.DDD 

Ca D.753 D. 778 D.792 D.722 D.758 

Na O.DD5 D.OD9 C.J . 010 D.OD7 D.DD2 

1<. D.DOD D.OOD O.OOD D.DDD D.C.JOO 



CLINOPYROXENE, cont'd. 

Si02 

A1 203 
Ti02 

Cr2o3 

FeD 

t-1n0 

MgO 

CaO 

Ca 

Mg 

Fe 

Si 

A1
4 

A1 15 

Ti 

Cr 

Mg 

Mn 

Ni 

Ca 

a 

K 

Komatiites - KL-33 

Grain A 

Core 

53.22 

3.22 

0.13 

0.55 

7.20 

0.13 

18.51 

17.22 

0.10 

0.01 

35.37 

52.88 

11.75 

1.932 

0.068 

0.070 

0.004 

0.017 

0.000 

0.219 

1.001 

0.004 

0.000 

0.670 

0.007 

0.000 

Rim 

54.73 

1.47 

0.04 

0.57 

6.83 

0.14 

21.13 

18.84 

0.07 

0.00 

35.10 

54.76 

10.14 

1.910 

0.061 

0.000 

0.001 

0.016 

0.105 

0.094 

1.089 

0.004 

0.000 

0.705 

0.005 

0.000 

Grain B 

Core 

56.66 

.0.50 

0.03 

0.28 

9.78 

0.18 

30.92 

2.97 

0.09 

0.00 

5.53 

80.01 

14.47 

1.966 

0.021 

0.000 

0.001 

0.008 

0.044 

0.240 

1.599 

0.005 

0.000 

0.110 

0.006 

0.000 
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Rim 

52.78 

3.41 

0.19 

0.27 

8.15 

0.19 

18.94 

16.50 

0.10 

0.00 

24.22 

60.76 

15.02 

2.001 

0.000 

0.014 

0.007 

0.008 

0.000 

0.259 

1.073 

0.006 

0.000 

0.428 

0.007 

0.000 

Grain C 

Core 

53.24 

3.00 

0.13 

0.41 

7.84 

0.17 

19.56 

15.68 

0.10 

0.05 

31.89 

55.34 

12.77 

1.933 

0.067 

0.062 

0.004 

0.012 

0.000 

0.239 

1.059 

0.005 

0.001 

0.610 

0.007 

0.000 

Grain 0 

Rim Core 

53.19 52.77 

2.49 3.21 

0.13 0.15 

0.13 0.23 

7.93 7.28 

0.16 0.14 

19.19 19.43 

17.62 18.43 

0.08 0.10 

0.00 0.00 

34.80 35.96 

52.72 52.73 

12.48 11.30 

1. 921 1.885 

0.079 0.115 

0.027 0.021 

0.004 0.004 

0.004 0.006 

0.046 0 . 086 

0.194 0.131 

1.033 1.035 

0.005 0.004 

0.000 0.000 

0.682 0.706 

0.006 0.007 

0.000 0.000 

Rim 

55.61 

2.78 

0.10 

0.66 

9.63 

00.20 

26.08 

6.37 

0.03 

0.08 

12.66 

72.09 

15.25 

1.951 

0.049 

0.066 

0.003 

0.018 

0.000 

0.283 

1.364 

0.006 

0.002 

0.239 

0.002 

0.000 

Grain E 

Core 

55.52 

1.11 

0.04 

0.59 

9.18 

0.18 

32.55 

1.86 

0.02 

0.03 

3.42 

83.16 

13.42 

1.919 

0.045 

0.000 

0.001 

0.016 

0.099 

0.167 

1.677 

0.005 

0.000 

0.069 

0.001 

o.ooo 

Rim 

53.82 

3.24 

0.15 

0.34 

7. 75 

0.16 

19.51 

16.73 

0.10 

0.05 

33.43 

54.23 

12.34 

1.925 

0.075 

0.062 

0.004 

0.010 

0.000 

0.232 

1.040 

0.005 

0.001 

0.641 

0.007 

0.000 
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CLINOPYROXENE, cont'd. 

Komatiites - KL - 34 Zoned Grain Traverses 

Grain A 

Point 1 2 3 4 5 6 7 

Si02 48.29 50.98 53.60 53.93 52.61 49.34 47.52 

A1 2o3 9.17 5.25 3.33 2.74 3. 77 6.56 7.65 

Ti0 2 0.48 0.27 0 .08 0.11 0.16 0.33 0.43 

Cr2o3 0.05 0.13 0.23 0.32 0 .28 0.12 C.OA 

FeO 10 . 08 8 .24 6.55 7.68 7.93 8.45 10.52 

MnO 0.17 0 .16 0.17 0.20 0.14 0.20 0.19 

MgO 13.11 17.96 21.41 24.39 21 .46 16.72 14.36 

CaO 18.38 16.76 14.33 10.53 13.11 17.49 17.76 

Na 2o 

K20 

NiO 0.03 0.02 0.04 0 .05 0.08 0.03 0 .00 

Ca 41.20 34.70 29.03 20.81 26.61 36.82 38.53 

Mg 40.87 51.72 60.34 67.03 60.60 48.96 43.33 

Fe 17.94 13.58 10.63 12.16 12.79 14.22 18.14 

Si 1. 795 1.867 1.934 1.930 1.910 1.822 l. 788 

Al 4 0.205 0.133 0.066 0.070 0.090 0.178 0.212 

A1 6 0 .197 0.093 0.076 0.047 0.072 0.108 0.128 

Ti 0.013 0 .007 0.002 0.003 0.004 0.009 0.012 

Cr 0 . 001 0 . 004 0.007 0 . 009 0.008 0.004 0.001 

Fe 3 0.000 0 .021 0.000 0.008 0.000 0.048 0.058 

Fe 2 0.313 0.231 0.197 0 .222 0 .241 0.213 0.273 

Mg 0. 726 0.980 1.150 1.302 1.161 0.924 0.805 

~1n 0.005 0.005 0.005 0.006 0.004 0.006 0.006 

Ni 0.000 0.000 0 .000 0.001 0.002 0.000 0.000 

Ca 0.732 0.659 0.553 0.404 0.510 0.692 o. 716 

Na 0 .000 0.000 0.000 0 . 000 0.000 0 . 000 0.000 

K 0 . 000 0.000 0.000 0.000 0.000 0 .000 0 .000 
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CLINOPYROXENE, cont•d . 

Komatiites - KL -34 Zoned Grain Traverses 

G·r·ain B 

Point 1 2 3 4 5 

s;o2 45.16 50.86 51.32 50.72 47.26 

A1 2o3 12.37 6.33 5.01 4.5. 8.12 

Ti0 2 0 .51 0.25 0.12 0.17 0.52 

Cr2o3 0 .00 0.03 0.09 0.04 0.06 

FeO '13. 40 7.22 6.90 8 .54 11.08 

MnO 0.16 0.19 0.19 0.13 0.21 

MgO 10.46 15.60 17.28 18.24 13.70 

CaO 17.68 18.90 19.27 16.81 18.36 

Na 2o 0.00 0.00 0.00 0.00 0.00 

K20 0.00 0.00 00.00 0.00 0.00 

NiO 0.05 0.01 0.05 0 .00 0.03 

Ca 41.29 40.75 39.46 34.34 39.72 

Mg 33.98 46.78 49.21 51.83 41.22 

Fe 24.72 12.47 11.33 13.83 19.07 

Si 1.704 1.872 1.870 1.861 1. 770 

Al 4 0.296 0.128 0.130 0.139 0.230 

Ai 6 0.254 0.146 0.087 0 . 069 0.128 

Ti 0.014 0.007 0.003 0.005 0 .015 

Cr 0.000 0.001 0.003 0 001 0.002 

Fe 3 0.013 0.000 0.03.:1 0.059 'J. 071 

Fe 2 0.410 0.222 0.176 0.203 0.176 

t-tg 0.588 0.856 o.g38 0.998 0.765 

Mn 0.005 0.006 0.006 0.004 0.007 

Ni 0.001 0.000 0.001 0.000 0.000 

Ca 0.716 0.745 0.752 0.661 0.737 

Na 0.000 0.000 0.000 0.000 0.000 

K 0.000 0.000 0.000 0.000 0.000 
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CLINOPYROXENE, cont'd. 

Komatiites KL -34 Zoned Grain Traverses 

Grain C Grain 0 

Point 1 2 3 4 1 2 3 

Si02 49.73 51.48 53.64 49.27 48.52 55.30 54.54 

A1 2o3 8.53 3.04 3.94 6.24 6.35 1. d6 1.38 

Ti02 0.45 0.16 0.20 0.28 0.35 0.05 0.04 

Cr2o3 0.02 0.41 0.25 0.09 0.07 0.61 0.58 

FeO 11.59 6.92 6.63 9.18 7.50 7.75 7.20 

MnO 0.21 0.19 0.20 0.20 0 .16 0.18 0.20 

MgO 13.71 21.39 19.78 15.82 14.57 29.14 24.21 

CaO 17.87 14.28 16.61 17.13 19.45 5.11 10.67 

Na 2o o.oo 0.00 0.00 0 .00 0.00 0.00 0.00 

K20 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

NiO 0 .04 0.04 0.03 0 .02 0 .03 0.08 0.06 

Ca 38.72 28.80 33.59 35.80 42.56 9.86 21.29 

~1g 41.32 60.00 55.63 48.89 44.35 78.20 67.18 

Fe 19.96 11.20 10.78 15.31 13.04 11.95 11.53 

Si 1.812 1.895 1.918 1.822 1.843 1. 957 1.972 

A1 4 0 .188 0.105 0.082 0.178 0 .157 0.043 0.028 

A1 6 0.178 0.027 Oo084 0.094 0.128 0.018 0.030 

Ti 0.012 0 . 004 0.005 0.008 0 .010 0.001 0.001 

Cr 0.001 0 .002 0.007 0.003 0.002 0.017 0.017 

Fe 3 0.000 0 .056 0 . 000 0.066 0.007 0.005 0.000 

Fe 2 0.353 0 .157 0.1981 0.218 0.238 0.224 0 .218 

t~g 0.744 1.174 1.054 0.932 0.825 1.536 1.304 

~1n 0.006 0.006 0.006 0 .006 0.005 0.005 0.006 

Ni 0.000 0.001 0.000 0 . 000 0 .000 0.002 0.001 

Ca 0 .698 0.563 0.636 0.683 0.792 0.194 0.413 

Na 0.000 0.000 0.000 0 . 000 0.000 0.000 0.000 

K 0 . 000 0 . 000 0,000 0.000 0 .000 0.000 0.000 
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CLINOPYROXENE. cont'd. 

Aphyri c Bas a 1 ts 

Kl-23(4) KL-69(2) PL-17(1) PL-19(2) PL-24(2) OL-21(3) 

Si02 52.95 54.97 55.63 53.70 53.47 52.07 

Al 2o3 2.10 1.62 1.63 3.02 1.89 2.78 

Ti02 0.14 0.05 0.09 0.16 0.12 0.50 

Cr2o3 0.27 0.47 0.39 0.28 0.26 0.10 

FeO 6.89 5.61 6.27 7.11 7.24 8.49 

MnO 0.14 0.06 0.16 0 .17 0.14 0.16 

1'1g0 18.68 19.61 20.22 17.78 17.21 16.52 

CaO 17.88 18.01 17.15 18.23 19.38 19.49 

Na2o 0.13 0.09 0.08 0.12 0.15 0.25 

K20 

NiO 0.06 0.10 0.05 0.00 0.02 0 .03 

Ca 36.23 36.23 34.10 37.48 39 . 49 39.60 

Mg 52.65 54.87 55.92 50.84 48.77 48.68 

Fe 11.12 8.90 9.98 11.68 11.74 13.72 

Si 1.945 1.976 1.978 1.946 1.962 1.911 

Al 4 0.055 0.024 0.022 0.054 0.038 0.089 

Al 6 0.036 0.044 0.047 0.075 0.044 0.030 

Ti 0.004 0.004 0.002 0.004 0.003 0.014 

Cr 0.008 0.013 0.011 0.008 0.008 0.003 

Fe 3 0.012 0.000 0.000 0.000 0.000 0.047 

Fe 2 0.199 0. 69 0.187 0.216 0.222 0.214 

Mg 1.023 1.050 1.072 0.960 0.941 0.904 

Mn 0.004 0.002 0 .005 0.005 0.004 0 .005 

Ni 0.000 ).002 0.001 0.000 0.000 0.000 

Ca 0.704 0.694 0 .654 0 .708 0.762 0.766 

Na 0.009 0 .006 0.006 0.008 0.011 0.018 

K 0.000 0.000 0.000 0.000 0 . 000 0 .000 
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PLAGIOCLASE 

Ultrabasic Rocks Aphyri c Bas a 1 ts 

:JL-36(2) DL-45(2; KL-23 (l) PL-24(1) GL-21(4) 

Si02 53.53 50.97 50.45 44.03 53.66 

A1 2o3 29.11 30.98 29.71) 39.21 27.20 

Ti02 0.03 0.03 0.04 0.03 0.05 

FeO 0.72 0.54 0.80 0.90 0.80 

~1n0 0.01 0.00 0.02 0.00 0.00 

MgO 0.33 0.26 0.46 0 .16 0.13 

CaO 13.81 14.29 15.00 12.05 12.24 

Na
2
o 3o54 3.15 2.65 2.48 4.65 

K20 0.04 0.03 0.05 0.07 0.02 

An 68.15 71.36 75.55 72.50 59.19 

/\b 31.61 28.46 24.15 27.00 40.69 

Or 0.24 0.18 0.30 0.50 0 .12 

Si 9.626 9.267 ·g. 303 8.106 9.818 

Al 6.172 6.641 6.458 8.512 5.976 

Ti 0.004 0.004 0.006 0.004 0.007 

Fe 2 0.108 0.082 0.123 0.139 0.122 

Mn 0.002 0.000 0.003 0.000 0.000 

t~g 0.088 0.070 0.126 0.044 0.035 

Ca 2.561 2.784 2.964 2.378 2.400 

Na 1.234 1.111 0.948 0.885 1.650 

K 0.009 0.007 0.012 0.016 0.005 
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APPENDIX C Reproduction of Major Element 

Extraction Program 



MAIN 

C PROGRAM F 
C LEAST SQUARES SOLUTION TO PETROLOGICAL MIXING PROBLEMS 

INTEGER TITLE (13,80) 
DIMENSION WT(12,20),W(12,20), Y(12,13), A(11,12) 
DIMENSION ANS(12),BULK (20),SOL(20),DIFF(20) 
DIMENSION AVE (20) 
DIMENSION ANZ (12) 

5 READ 1 ,J 
1 FORMAT (T2) 

IF(J,EQ,O) GO TO 11 
ZZ=O. 
JJ=J-1 
PRINT 50 

50 FORMAT ('1',' EXTRACT CALCULATION. A LEAST SQUARE ERROR SOLUTION T 
10 PETROLOGIC MIXING PROBLEMS') 

READ 70, (TITLE(13,I),I=1,80) 
70 FORMAT (80A1) 

PRINT 71,(TITLE(13,I),I=1,80) 
71 FORMAT ('0'' 'THIS PROBLEM IS- I ,80A1) 

DO 4 I=1.20 
DO 4 K=1.12 
W(K,I)=0.001 

4 WT(K,I)=0.001 
DO 10 K=1.JJ 
READ 2,(TITLE(K,I),I=1,80) 

2 FORMAT ( 80A1) 
READ 3,(WT(K,I),I=1,13) 

3 FORMAT(13F6,2) 
READ 73,(WT(K,I),T=14,20) 

73 FORMAT (7F6,2) 
10 CONTINUE 

READ 2,(TITLE(12,I),I=1,80) 
READ 3,(WT(12,I),I=1,13) 
READ 73,(WT(12,I),I=14,20) 

1 0 7 D 0 3 0 K= 1 , J J 
PRINT 21,K,(TITLE(K,I),I=1,80) 

21 FORMAT( I I ' I COMPOSITION I 'I4' I IS I '80A1) 
30 CONTINUE 

PRINT 16,(TITLE(12,T),I=1,80) 
16 FORMAT(' ','BULK COMPOSITION IS ',80A1) 

PRINT 22,JJ 
22 FORMAT(' ','THIS CALCULATION GIVES PROPORTIONS OF ANALYSES 1 TO'. 

1I2,' WHICH COMBINE TO FORM BULK COMPOSITION') 
PRINT 27 

27 FORMAT ('0', 'ANALYSIS INPUT') 
PRINT 23 

23 FORMAT(' ',/,T8, 'SI02 TI02 AL203 CR203 FE203 FEO MNO MGO 
1CAO NA20 K20 P205 C02 NI RB SR ZR X Y 



MAIN 

12') 
PRINT 25,(K,(WT(K,I),T=1,20),K=1,JJ) 

25 FORMAT (I I' I4,20E6.2) 
PRINT 24,(WT(12,I),I=1,20) 

2 4 F 0 RMA T ( I I ' I BULK I ' 2 OE 6 ' 2 ) 
DO 12 K=1,12 
DO 12 I=1,20 

12 W(K,I)=WT(K,T) 
Z=O. 

102 DO 6 I=1,20 
DO 6 K=1,12 
IF(W(K,T),LT,0,001) GO TO 7 
GO TO 6 

7 DO 8 K=1, 12 
8 W(K,I)=O. 
6 CONTINUE 

DO 9 K=1, 13 
DO 9 I=1,12 

9 Y(I,K)=O. 
DO 13 K=1, 11 
DO 13 M= 1, 11 
DO 13 I=1,20 

13 Y(K,M)=Y(K,M)+W(M,I)*W(K,I) 
DO 14 L=1,11 
DO 14 I=1,20 

14 Y(L,12)=Y(L,12) +W(12,I)*W(L,I) 
II=12 
NR= 11 
N=J-1 
DO 15 K=1, 12 
DO 15 L=1,11 

15 A(L,K)=Y(L,K) 
CALL GUASS (A,N,II,NR,ISOLN) 
IF(ISOLN,FQ,Q) PRINT 61 
IF(ISOLN,FQ,L) PRINT 62 
IF(ISOLN,FQ,2) PRINT 63 

61 FORMAT(' ','SOLUTION- NO SOLUTION EXISTS') 
62 FORMAT(' ','SOLUTION- THERE IS A UNIQUE SOLUTION') 
63 FORMAT(' ','SOLUTION- AN INFINITE NUMBER OF SOLUTIONS EXISTS') 

DO 31 I=l, N 
31 X=X+A(T,TT) 

X::::X/100. 
IF(X.EQ.O.) PRINT 17 

17 FORMAT ('0',' NO NEW ANSWER, CALCULATION TERMINATING') 
IF(X.EQ.O.) GO TO 5 
DO 40 T=1 ,N 

40 ANS (I)=A(T,TT)/X 



MAIN 

X=O. 
DO 33 I=l, 13 

33 X=X+WT(12,I) 
X=X/100. 
DO 34 I=1.20 
SOL(I)=O. 

34 BULK(I)=WT(12,I)/X 
DO 35 I=1. 20 
DO 35 K=l ,N 

3 5 SOL(I)=ANS(K)·kWT(K, I )+SOL(I) 
X=O. 
DO 36 I=l,l3 

36 X=X+SOL(I) 
X=X/100. 
IF(X.EQ.O.) PRINT 17 
IF(X.EQ.O) GO TO 5 
DO 37 T=1, 20 

37 SOL(I)=SOL(I)/X 
DO 38 I=l, 20 

38 DIFF(I)=O. 
DO 39 I=l,20. 

39 DIFF(I)=BULK(I)-SOL(I) 
SSM=O. 
SST=O. 
DO 42 T=l,l3 

42 SSM=SSM+DIFF(I)*DIFF(I) 
DO 43 T=l4,20 

43 SST=SST+DIFF(I)*DIFF(I) 
PRINT 44.N 

44 FORMAT ('O'),'PROPORTION OF FIRST' ,I2,' ANALYSES, COMBINING TO FORM 
1 THE BULK COMPOSITION ARE',/,' ***************************** 
1 ;"I ) 

IF(Z,EQ,1,) GO TO 99 
DO 98 I=1,N 

98 ANZ(I)=ANS(I) 
99 PRINT 45,(T,ANS(I),I=l,N) 
45 FORMAT (I I' I ·k;b'c-k-k I' T10' I ANALYSIS I' T3 'F8' 2' I % ;';:·k·k·k·k I) 

PRINT 46.J,(BULK(I),I=1,20) 
46 FORMAT ( ' ' , ',•,-,~-,',-,"-,''*;"-,',,',-,'(**-,"-),-,',-;',-,',-,",.,,,,,"...,~'''7'-,''-,'''"'"'''-,''*-,''-1'*'''-,''' , ' , ' ROW 1 TS AN 

lANALYSIS' ,T2,' NORMALISED TO 100%,/,' ROW 2 IS CALCULATED SOLUTION 
1FROM ABOVE PROPORTIONS',/,' SI02 TI02 AL203 CR203 FE203 FEO 
lMNO MGO CAO NA20 K20 P205 C02 NI RB SR ZR 
lX YU Z' ,/,T2,20F6,2) 

PRINT 47,(SOL(I),T=l.20) 
4 7 FORMAT ( I I '20F6 '2) 

PRINT 48,SSM,SST 
48 FORMAT ('0', 'SUM SQUARES OF ERRORS ON MAJOR ELEMENTS ',F8.3./.'SU 

1M SQUARES OF ERRORS ON TRACE ELEMENTS',F8.3) 



MAIN 

PRINT 60,(DIFF(I),I=1,20) 
60 FORMAT (I I ' I DIFFERENCES ARE I • I. 20F6 '3) 

DO 26 I=1,20 
BULK(I)=O. 
DO 26 K=2,N 

26 BULK(I)=BULK(I)+WT(K,I)*ANS(K) 
SUM=O. 
D032 I=l,l3 

32 SUM=SUM+BULK(I) 
SUM=SUM/100. 
IF(SUM,EQ.O.) PRINT 17 
IF(SUM,EQ.O.) GO TO 5 
DO 28 I=l,20 

28 BULK(I)=BULK(I)/SUM 
PRINT 29,N.(BULK(I),T=l,20) 

29 FORMAT ('O'),'BULK COMPOSITION OF EXTRACTED MATERIAL. 
lCOMPOSITION OF ANALYSES 2 to ',T2,/,20F6,2) 
IF(ZZ.EQ.1.) GO TO 104 
IF(Z.EQ.1.) GO TO 104 
Z=1. 
DO 100 T=l,20 
DO 100 K=l,12 

100 W(K,T)=WT(K,I) 
DO 111 T= 1 , 2 0 
IF(W(l2,I).NE.O.) GO TO 101 
W(l2,I)=1El0 
DO 109 K=l,ll 

109 W(K,T)=Q. 
101 DO 111 K=1,12 
111 W(K,T)=W(K,I)/W(12,I) 

PRINT 103 

I.F. COMBINED 

103 FORMAT ('1',' CALCULATION REPEATED USING PROPORTIONAL WEIGHTINGS R 
lATHER THAN ABSOLUTE VALUES') 

GO TO 102. 
104 IF(ZZ.FQ.L.) GO TO 110 

ZZ=ZZ+ 1. 
ALTER=O. 
DO 105 T=l,N 
IF(ANZ(I).GE.O.) GO TO 105 
AL TER=ALTER+ 1. 
DO 106 K=1, 20 

106 WI(T,K)=O. 
105 CONTINUE 

IF(ALTER,EQ.O.) GO TO 5 
GO TO 117 

110 ZZ=ZZ+ 1. 
DO 115 T=1,N 
ALTER=O. 



MAIN 

IF(ANS(I).GE.O.) GO TO 115 
ALTER=ALTER+1. 
D 0 1 16 K= 1 , 2 0 

116 WT(I,K)=O. 
115 CONTINUE 

IF(ALTER.EQ.O.) GO TO 5 
117 PRINT 108 
108 FORMAT ('1',' RECALCULATION REPEATED IGNORING MINERALS WITH 

1NEGATIVE PROPORTIONS') 
GO TO 107 

11 STOP 
END 



MAIN 

SURROUNDING GAUSS (A.N.II,NR,ISOLN) 
C -,'d GAUSS-JORDAN ELIMINATION METHOD ..,•,..;, 
C -,'d, AX=H 
C ** A=(N*N) 
C ** X=(N*N) 
C ..,•,..;, AUGMENTED MATRIX (A:B) = (N)"•(N+M) = A 
C ** TI = N + M 
C ''"'- NR IS THE ROW DIMENSION OF A IN THE MAIN PROGRAM *''' 
C ** ISOLM 0. MEANS THAT NO SOLUTION EXISTS ** 
C = 1. MEANS THAT A UNIQUE SOLUTION EXISTS ** 
C = 2. MEANS THAT AN INFINITE NUMBER OF SOLUTIONS EXIST ,._..,., 

DIMENSION A(NR.II) 
DIMENSION TND(100) 
NV=O 
DO 1 I=1,N 

1 IND(T)=1 
MN=N+1 
ISOLN=1 
DO 50 K=1 ,N 
B=A(K,K) 
IF (ARS(B). GE.0.0001) GO TO 17 
DO 15 L=K,N 
IE (ABS(A(L,K)).LT.0.0001) GO TO 15 
DO 13 LN=K,II 
T=A(1,LI) 
A(L,LL)=A(K,LL) 
A(K,LL)=T 

13 CONTINUE 
B=A(K,K) 
GOTO 17 

15 CONTINUE 
C ..,•,..;, CHECK ROW FOR NON-ZERO ELEMENT ..,•,..;, 

DO 120 I=K,N 
IF (ABS(A(K,I)). LT. 0.0001) GO TO 120 
DO 110 J=1,II 
T=A(J,1) 
A(J,T)A(J,K) 
A(J,K)=T 

110 CONTINUE 
C 7d MODIFY INDICES OF VARIABLES ARRAY ''"'­

IT=IND(T) 
IND(I)=TND(K) 
IND(K)=IT 
B=A(K,K) 
NV=1 
GO TO 17 

120 CONTINUE 
C '''* INCONSISTENCY OR INFINITE NUMBER OF SOLUTIONS? ..,•,..;, 



GAUSS 

ISOLN=2 
DO 130 T=K.N 
IF (ABS(A(I.II)).GE.0.0001) ISOLN=O 

130 CONTINUE 
GO TO 990 

17 CONTINUE 
K1=K 
DO 20 J=K1,II 
A(K,J)=A(K,J)/B 
A(K,J)=ROUND(A(K,J),5) 

20 CONTINUE 
DO 40 T=l.N 
IF (I.EQ.K) GO TO 40 
B=A(I,K) 
DO 30 J=K1,II 
A(T,J)=A(1,J)-R*A(*K.J) 
A(I,J)=ROUND(A(I,J),5) 

30 CONTINUE 
40 CONTINUE 
50 CONTINUE 

990 CONTINUE 
IF (NV.FQ.O) GO TO 1000 
DO 70 I=1 ,N 
IF (IND(T).EQ.I) GO TO 70 
DO 60 J=NN,II 
T=A(I,J) 
A(IND(I),J)=T 

60 CONTINUE 
IT=IND(I) 
IND(I)=IND(IT) 
IND(IT)=IT 

70 CONTINUE 
1000 CONTINUE 

RETURN 
END 



EXTRACT CALCULATION. A LEAST SQUARE ERROR SOLUTION TO PETROLOGIC MIXING PROBLEMS 

THIS PROBLEM IS - FRACTIONAL CRYSTAL'LIZATION MODEL. CAWTHORN 
COMPOSITION 1 IS OLIVINES 
COMPOSITION 2 IS DERIVED LIQUID (~?HYRIC) .· 
BULK COMPOSITION IS PARENTAL LIQUID (KOMATIITES) 
THIS CALCULATION GIVES PROPORTIONS OF ANALYSES 1 TO 2 WHICH COMBINE TO FORM BULK COMPOSITION 

ANALYSIS INPUT 

SI02 TI02 AL203 CR203 FE203 
1 41.06 0.0 0.04 0.0 0.0 
2 52.82 0.43 16.13 0.0 5.47 

BULK 53.72 0.33 13 .36 0.0 2.98 
SOLUTION - THERE IS A UNIQUE SOLUTION 

FEO MNO I 
8.19 0.12 
3.16 0.12 
5.57 0.15 

MGO CAO NA20 K20 P205 C02 NI RB SR ZR X Y Z 
51.20 0.19 0.01 0.0 0.0 0.0 0.0 0.0 0. 0 0.0 0.0 0.0 0.0 
7.64 11.65 1.56 0.88 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

11.25 11.14 1.16 0.23 0.0 0.0 0.0 0.0 0. 0 0.0 0.0 0.0 0.0 

PROPORTION OF FIRST 2 ANALYSES. COME~INING TO FORM THE BULK COMPOSITION ARE 
************************************ 
***** ANALYSIS 1 9.50% ***** 
~H~~~d~ ANALYSIS 2 90.50% ***~'c* 

************************************ 
ROW 1 IS ANALYSIS 3 NORMALISED TO 100% 
ROW 2 IS CALCULATED SOLUTION FROM ABOVE PROPORTIONS 

SI02 TI02 AL203 CR203 FE203 FEO MNO MGO CAO NA20 K20 P205 C02 NI RB SR ZR X Y Z 
53.78 0.33 13.37 0.0 2.98 5.58 0.15 11.26 11.15 1.16 0.23 0.0 0.0 0.0 0. 0 0. 0 0.0 0.0 0.0 0.0 
51.73 0.39 14.61 0.0 4.95 3.64 0.12 11.78 10.57 1.41 o.8o o.o o.o o.o o.o o. o o.o o.o ·o.o o.o 

SUM SQUARES OF ERRORS ON MAJOR ELEMENTS 14.361 
SUM SQUARES OF ERRORS ON TRACE ELEMENTS 0.0 
DIFFERENCES ARE 
2.051-0.059-1.234 0.0 -1.969 1.936 0.030-0.522 0.586-0.252-0.567 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

BULK COMPOSITION OF EXTRACTED MATERIAL. I.E. COMBINED COMPOSITION OF ANALYSES 2 TO 2 
52.89 0.43 16.15 0.0 5.48 3.16 0.12 7.65 11.67 1.56 0.88 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 



CALCULATION REPEATED USING PROPORTIONAL WEIGHTINGS RATHER THAN ABSOLUTE VALUES 
SOLUTION - THERE IS A UNIQUE SOLUTION 

PROPORTION OF FIRST 2 ANALYSES. COMBINING TO FORM THE BULK COMPOSITION ARE 
************************************ 
***** ANALYSIS 1 30.98% ***** 
***** ANALYSIS 2 69.02% ***** 
************************************ 
ROW 1 IS ANALYSIS 3 NORMALISED TO 100% 
ROW 2 IS CALCULATED SOLUTION FROM ABOVE PROPORTIONS 

SI02 TI02 AL203 CR203 FE203 FEO MNO 
53.78 0.33 13.37 0.0 2.98 5.58 0.15 
49.10 0.30 11.13 0.0 3.77 4.71 0.12 

SUM SQUARES OF ERRORS ON MAJOR ELEMENTS 134.641 
SUM SQUARES OF ERRORS ON TRACE ELEMENTS 0.0 
DIFFERENCES ARE 

MGO CAO NA20 K20 P205 C02 NI RB SR ZR X Y Z 
11.26 11.15 1.16 0.23 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
21.10 8.09 1.08 0.61 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

4.678 0.034 2.246 0.0 -0.786 0.865 0.030-9.839 3.065 0.083-0.376 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

BULK COMPOSITION OF EXTRACTED MATERIAL. I.E. COMBINED COMPOSITION OF ANALYSES 2 TO 2 
52.89 o.43 16.15 o.o 5.48 3.16 0.12 7.65 11.67 1.56 o.88 o.o o.o o.o o.o o.o ·o.o o.o o.o o.o 






