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Abstract

The density contrast across the inner core boundary is a critical parameter for evaluating
the gravitational energy released from the segregation of the core material upon its cooling
and solidification, a process which is one of the main contenders for the source of power of
the geodynamo action in the Earth’s fluid core. However, the density jump at the inner core
boundary has so far not been well determined by conventional short-period seismology. It
is known that the eigenperiods of the (not yet detected) Slichter modes critically depend
on this density difference. The Slichter modes are the triplet of degree 1 long-period free
oscillations of the Earth which involve translational vibration of the solid inner core in the
surrounding liquid outer core. In this thesis, the eigenperiods of the Slichter modes for
a realistic Earth model are computed by a variational principle based on the subseismic
approximation and by a Galerkin method based on the two potential description of core
dynamics. [n this study, I have taken into account: (1) elastic deformation of the mantle
and inner core, connected to liquid core dynamics via frequency-dependent internal load
Love numbers; (2) retention of the self coupling of the displacement field in the solid parts
of the Farth, and the Coriolis coupling up to degree 7 in the liquid core so as to ensure
convergence; (3) elliptical stratification of the inner and outer cores (but not the mantle);
(4) effects of a mushy inner core boundary. The research is a more comprehensive study of
the Slichter oscillation than any previously undertaken, and is aimed to provide theoretical
references for helping to determine the density contrast across the inner core boundary.

Key words: Free oscillation; Slichter modes; Love numbers; inner core.
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Chapter 1 Introduction

1.1 Motivation for studying the Slichter Modes

For centuries people have been fascinated by the Earth’s magnetic field and tried hard
to seek its origin. It is now believed that the electrical current and flow patterns in the
liquid core (LC) generate the geomagnetic field by dynamo action. A key issue is to find the
source of the energy which drives the core flow. Earlier proposals of precession-driven flows
or thermal convection were shown to be energetically impotent (Rochester et al., 1975) or
inefficient (Gubbins, 1977). Presently, the most favoured mechanism to power the dynamo
is the gravitational differentiation of the inhomogeneous outer core fluid (Verhoogen, 1961;
Braginskii, 1963). This compositional differentiation results in the formation and growth of
the solid inner core (IC) through geological time.

A good indication of the inner core growth is the density contrast across the inner core
boundary (ICB). It is evidence for a compositional difference between the two regions, and
a measure of the gravitational potential energy released from the cooling and solidification
process of the core material. It is now commonly accepte.! that the Earth’s magnetic field
has existed for at least 3.6 billion years (McElhinny et al., 1980). If the core has been steadily
crystallizing for the last 4 billion years, then the average ICB growth rate would be about
0.03 cm/year (Anderson & Young, 1988). The rate of energy release due to core growth
would be about 2 x 10'> W, which is adequate to maintain a modest magnetic field of about
5 x 1073 tesla (30 gauss) in the liquid core {Gubbins, 1977).

However, the density difference at the inner core boundary has so far not been very



well determined by conventional short-period seismology, indeed different data sources give
quite different range of values for this density jump. The reflected P-wave at the inner core
boundary (PKiK P) carries little energy, so they are therefore difficult to observe (Shearer &
Masters, 1990). This makes the value of the density jump inferred from the amplitude ratio
PKiKP | PcP unreliable. The inhomogeneities near the core mantle boundary (CMB)
inferred from complexities associated with the reflection of PcP wave also contribute to the
poor determination of this parameter (Buchbinder et al., 1973). A range of 1.3 - 1.6 » 103
kg m™3 is inferred from PKiK P data (Souriau & Souriau, 1989). On the other hand, a set

3

of short-period free oscillation data suggests that a range of 0.4 - 0.7 x 10°® kg m™? is more

likely (Shearer & Masters, 1990).

For a better determination of this density jump, a seismological phenomenon which is
critically dependent on this parameter has to be sought. There is an ideal candidate which
can help to evaluate this parameter: it is the set of inner core translational modes (the
Slichter modes), a special kind of long-period free oscillation of the Earth in which the solid
inner core sloshes back and forth inside the fluid outer core. The eigenperiod of the Slichter
mode (T) in a non-rotating Earth model is found to be critically dependent on the density

jump at the [CB. The dependence can be approximately expressed as

T ~ k(prc — po)™*/? (1)

where k depends on the dimensions and densities of the inner and outer cores, and p;c and
po are the densities of the inner and outer cores at the ICB respectively. To obtain the simple
relation (1), it was assurned that the only restoring forces in the system are flow pressure on

the inner core boundary and gravity on the entire inner core.



The Slichter modes were first predicted following the 1960 Chilean earthquake when an
unusual gravity signal, showing a peak with a period of 86 min (amplitude of about 100
nanogals), was recorded on a LaCoste-Romberg earth-tide gravimeter. Slichter {1961) pro-
posed that the observed signal could have been produced by the transiational oscillation of
the inner core in the surrounding fluid, like 2 pendulum swinging in the air. The mantle
responds in a similar manner but with an opposite direction and a2 much smaller amplitude
while the Earth’s centre of mass remains fixed. Because of the Earth’s rotation, a single mode
is split into three different polarizations (a triplet): one axial and two equatorial (one retro-
grade and one prograde with respect to the sense of the Earth’s rotation). Collectively these
are called the Slichter modes. This splitting mechanism has great diagnostic significance for
mode-identification. Knowing the frequency of one member of the triplet, those of the other
two follow. Although Slichter’s identification was later dismissed due to its unreasonably
high amplitude and the lack of spatial and temporal supporting observations, it generated a
significant impact on long period free oscillation research. Since then, a series of efforts, so
far unsuccessful, have been made to detect these modes (Jackson & Slichter, 1974; Rydelek
& Knopoff, 1984). However, recent studies (Crossley, 1988; Crossley et al., 1991; Crossley,
1992) have concluded that, of the long-period (> 1 hr) normal modes (see §1.2), the Slichter
modes are the most likely long-period core modes to be excited by a large deep earthquake.
The seismic energy spreading from earthquakes flexes the core-mantle boundary and thus,
sends a disturbance through the liquid core causing the inner core to oscillate. Another
possible source of energy to joggle the inner core is from asymmetric crystallization of the

liquid core material at the inner core boundary.



The detection of the Slichter modes requires the development of a satisfactory theory
based on a realistic Earth model, without which one cannot be sure of correctly identifying
the Slichter periods in the spectra of disturbances. The purposes of this thesis are to calculate
the eigenperiods of the Slichter modes for a realistic Earth model, to estimate numerically the
effects on the eigenperiods of various factors associated with the properties and the nature
of the Earth, and to gain supporting evidence for the evaluation of the density change across

the inner core boundary.

1.2 Free Oscillations and the Slichter Modes

The Slichter modes are the gravest (i.e. longest period) degree 1 free oscillations of the
Earth. Like any other mechanical system, the planet Earth has its own natural oscillations
which can be excited. Once it is set into vibration, the Earth can oscillate in an infinite
number of normal modes for a long time (i.e. many days), ringing like a giant bell.

The study of free oscillations of an elastic body can be traced back to as early as 1829 when
Poisson first investigated the vibration of a perfectly elastic sphere. Kelvin and Darwin later
developed and applied the strain theory to an elastic sphere to study the tidal phenomena
of the Earth (Bullen & Bolt, 1985). Lamb (1882) succeeded in separating the free vibration
of a spherical body into two distinct types: the spheroidal type involving compression (or
dilatation) and transverse motion, and the toroidal type involving twisting. The theories
of elastic deformation and free oscillations have since been further developed for commonly
used Earth models (Bullen & Bolt, 1985).

The identification of the free oscillations of the Earth was made for the first time follow-



ing the Kamchatka earthquake of November 1952, Richter magnitude \I =l‘8.‘25 (Bullen &
Bolt, 1985). However, globally distributed and independently confirmed recordings of free
oscillations were not reported until the Chile earthquake of May 1960, M = 8.3 (Bullen &
Bolt, 1985). Indeed, two types of oscillations were recorded following that earthquake: the
spheroidal modes and the toroidal modes. It is known that only the radial component of
the spheroidal modes is observable with a long period vertical instrument like gravimeters.
The toroidal modes, which have no radial components, are best observed in the horizontal
directions with clinometers or strainmeters.

Theoretical study and observations of the {ree oscillations of the Earth have led to a
major advance in constructing new refined models of the Earth's interior and provide a
further constraint on the inference of physical properties of the Earth from ray seismology
(Haddon & Bullen, 1969; Dziewonski & Anderson, 1981). Recent Earth models, such as
1066A (Gilbert & Dziewonski, 1975), PREM (Dziewonski & Anderson, 1981) or COREL!
(Widmer et al., 1988), have all used a large number of normal mode periods of free oscillations
in conjunction with travel time observations.

It is now customary to further classify free oscillations of the Earth broadly into two
groups: high-frequency normal! modes (with periods shorter than an hour), familiar to seis-
mologists as the above stated spheroidal and toroidal modes, and low-frequency normal
modes (with periods longer than an hour). This classification is also based on the nature
of the restoring forces sustaining the oscillations. The main restoring force for the high-
frequency normal modes is the elasticity of the Earth, which is known to generate acoustic

waves. Therefore, these modes are sometimes called ‘acoustic modes’ (Smylie & Rochester,



1981; Rochester, 1989). The restoring forces for the low-frequency normal modes are grav-
itational and Coriolis so these modes are called ‘gravitational/inertial modes’. These long
period normal modes can be important in a rotating fluid bedy (i.e. the liquid core) due to
absence of rigidi..ty.

Compared to the period of the Earth’s rotation, the periods of the high-frequency normal
modes are short enough that the efects of the Coriolis force can be considered as a small per-
turbation to the solutions of a non-rotating Earth model. Suppose ;w? is the eigenfrequency
of a non-rotating Earth, then the eigenfrequencies of a rotating Earth could be calculated
from the following formula

W = wh +m gl (2)
where [, m and n are respectively the radial quantum number, order and degree of a mode,
Q is the steady rotational speed of the Earth, and ,#; is the splitting parameter (Bullen
& Bolt, 1985). The perturbation caused by the Coriolis force removes the degeneracy of
the eigenfrequencies associated with the azimuthal order m. A mode of degree n of a non-
rotating Earth will now contain a {(2n + 1)-fold multiplet if the rotation of the Earth is
involved. It needs to be emphasized that the splitting formula (2) is valid only if the effect
of the Coriolis splitting on a mode can be regarded as a small perturbation.

[n the absence of rotation, the Earth can with considerable accuracy be regarded as
spherically stratified due to self gravitation. The displacement field u and the gravitational
perturbation V) in this case can be most conveniently represented by the standard spherical

harmonics
n

uzli i ¥ ST+ T} (3)
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2Q o n

Vi= 3 D Y @R(r)Y1(8,9) ()

l=—pgn=0m=-n

where
Sy =l ()E+r i (r)VIY(8, 6)
(T7 =067 (r)E x VY T(6, ¢)
Y™(8,¢) = P™(cos §)e™.

Here u™, (w7, (t7 and (P are functions of radius r only, and P™ is the associated Legendre
function. For a non-rotating Earth model, the orthogonal property of the spherical harmonics
ensures that each spheroidal or toroidal field of a given degree n represents « single normal
mode, with (2n + 1)-fold degeneracy in order m. The radial quantum number { > or < 0
according as the mode in question is an overtone or undertone of the fundamental ({ = 0). [n
a non-rotating Earth model, undertones are possible only if the fluid cuter core is somewhere
stably stratified.

However, the above treatments are no longer valid for low-frequency normal modes, such
as gravitational/inertial modes, and the Slichter modes. The periods of these normal modes
can be a significant fraction of half a day. Therefore, the Coriolis force can no longer be
treated as a small perturbation. Instead, the Coriolis effect provides a restoring force for the
toroidal modes, which in turn couples the spheroidal modes of different degrees into infinite

chains of form

1Sim) +t Tign H S +e Tinga + 00 )
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The translational oscillation of the inner core is special in that it belongs neither to the
conventional ‘acoustic’ modes, since its period is much longer than an hour and the main
restoring force which sustains the oscillation is not elastic in nature; nor to the ‘gravita-
tional/inertial’ modes, since its existence does not depend on any stable stratification of
the liquid core or on the Earth's rotation. Of course the rotation, and even neutral radial
stratification, would have a substantial influence on the Slichter modes. Crossley (1975)
proposed that a Slichter mode should be regarded as a first undertone (period > 1 hour)
of the n = 1 set of spheroidal modes, corresponding to a displacement field _; ST}, whereas
Rochester & Peng (1993) argued that it should not be so classified since its existence does
not require rotation or stable stratification of the liquid core. Note that conservation of
linear momentum forbids the existence of a free mode n = 1, { = 0. The Slichter modes
are now generally denoted as 1ST', i.e. the first overtone [ = 1 of the degree n = 1 modes
(Crossley et al., 1992; Rochester & Peng, 1993). But due to Crossley’s suggestion, the term
‘Slichter-type oscillation’ is used for the undertones of a longer period, which are possible
when the liquid core is stably stratified. Since this thesis concentraies only on the Slichter
modes themselves, I drop the index [ from now on.
Therefore, the displacement field with rotational coupling, for the Slichter modes, will

now read

u=SP+ TP + ST+ T 4. o



i.e. a chain consisting of odd-degree spheroidal (ST') and even-degree toroidal (T™) displace-
ment fields.

The coupling coefficients between successive terms in (3), (6) or (7) are proportional to
2Q/w, where w is the eigenfrequency of a vibration. At low frequencies, the amplitude of
the coupling coefficient is close to 1, thus a longer coupling chain is needed for ensuring
a convergence of numerical estimates of eigenfrequencies and eigenfunctions. This issue
has been widely addressed by a number of authors (Smith, 1974; Haarden-Pedersen, 1975;
Johnson & Smylie, 1977; Crossley & Rochester, 1980; Haarden-Pedersen & Bodri, 1980;

Rochester, 1989; Rieutord, 1991), and appropriate methods have been sought to cope with

this situation.

1.3 Previous Observational and Theoretical Studies

Crossley (1992) estimated that, for the PREM Earth model, the translational vibration
of the inner core excited by a Chilean-type (1960) earthquake (with a focal depth of 25 krﬁ
and a seismic moment of 102 N m) could produce a gravity signal of about 0.5 nanogal at
the Earth’s surface. This is at the lower limit of detection by a superconducting gravimeter.
Because of the extremely low magnitude of the signal, as much emphasis is placed on noise
reduction of observation sites as on the sensitivity of the instruments. An ideal observing
point for the Slichter modes iz the south pole where the effects of diurnal tides and their
higher harmonics (zéro there on a spherical Earth) are minimized by distance from oceans,

and which is seismically and culturally quiet. With a spring gravimeter at the south pole,



Jackson & Slichter (1974) achieved a noise level of 1 nanogal. If there were any translational
modes with amplitude up to | nanogal excited during the period of observation {October
1970 - Septemmber 1971), it should have been recorded. The gradual establishment of a
worldwide superconducting gravimeter network will play a major role in the observation and
identification of the Slichter modes and the other core modes.

Busse (1974) was the first one to study the influence of the rotation and dimension of the
liquid core on the Slichter mode. He concluded that the action of the Coriolis force on the
motion of the fluid in the outer core, and the finite radius of the outer core may change the
period of the mode by as much as 50 % from that predicted without taking these effects into
account. He also found that the rotational splitting of the frequency was not symmetric.
However, Busse’s (1974) quantitative analysis was limited to the polar mode, the equatorial
modes were studied qualitatively only. The Earth model used by Busse (1974) consists of
a rigid sphere oscillating in a rotating incompressible homogeneous inviscid fluid. The fluid
itself is contained within a concentric rigid spherical boundary.

In addition to considering the Earth's rotation, Crossley (1975) and Smith (1976) took
into account the compressibility and radial stratification of the liquid core, as well as the
elasticity of the inner core and mantle.

Smith (1976) also took into account the effects of the ellipticity of the Earth on the
Slichter mode. He found that the rotational and elliptical splitting may vary the central
period of the Slichter mode by about 10%, in which the main contribution to this splitting
was from rotation. For an Earth model similar to that used by Busse (1974), the only

difference being that the liquid core is radially stratified and the inner core is elastic, Smith
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(1976} obtained a period of 7.633 hr for the polar mode, which is 20 % longer than Busse's
result (6.397 hr). Both calculations used the same fractional density change ratio across the
inner core interface (prc/pe — 1 = 0.0328).

Because the Coriolis coupling reduces the suitability of the spherical harmonic repre-
sentation, numerical computations of eigenfrequencies and eigenfunctions of long period free
oscillations had been severely limited before high-capacity computers became available. This
led Crossley (1975) and Smith (1976) to retain only the first two terms in the expression (7)
as their expansion of the displacement field of the liquid core. In solid parts of the Earth,
Crossley (1975) restricted the coupling chain to the spheroidal field ST, whereas Smith (1976)
extended it to the toroidal field TT. After much of the work reported in chapters 2 - 6 of
this thesis had been done, Crossley (1992) extended the coupling chain much further, using
different Earth models.

Dahlen & Sailor (1979) used a perturbation method to study the rotational and elliptical
splitting of the free oscillations of the Earth. A convenient formula was developed there for
calzulating the amount of splitting. Their tabulated parameters include perturbations of
second order in rotation and first order in ellipticity. The influence of the ellipticity on the
Slichter modes is found not to exceed 0.1% for any member of the triplet.

Based on his theoretical prediction and analysis of the stacked super-conducting gravime-
ter data, Smylie (1992) claimed to have detected the Slichter triplet. However, the apparent
discovery was nullified by his failure to recognize the frequency-dependent nature of the in-
ternal load Love numbers of degree 1, which are the key parameters relating the effects of the

elastic inner core and mantle to the liquid core dynamics (Rochester & Peng, 1990; Crossley
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et al., 1992; Rochester & Peng, 1993). Crossley et al. (1992) demonstrated that the Slichter
cigenperiod lies very close to the resonance period of the ICB load Love numbers, therefore,
it is essential Lo use the dynamic Love numbers for the Slichter modes. The use of the static
load Love numbers also made Smylie’s calculation of the amount of rotational splitting un-’
realistic. Even for a non-rotating Earth model, Smylie’s prediction of the eigenperiods are
roughly 40% shorter, and the Coriolis splitting of the triplet is about 60% narrower, than
the correct values. The dependence of the load Love numbers on frequency will be further
discussed in Chapter 3 of this thesis. On the other hand, Jensen et al. (1993) and Hinderer
et al. (1993) argued on observational grounds that the peaks identified by Smylie (1992)
were not significant, and indeed are barely above the noise level, and disappeared when more
stringent processing tools were employed.

Taking a different approach than the direct integration method and the perturbation
method, Rochester & Peng (1993) applied the subseismic approximation (SSA, details in
Chapter 2) and a variational principle in the liquid core to compute the Slichter eigenperiods
for a rotating, spherically stratified Earth model. The effects of the elastic inner core and
mantle on the liquid core dynamics were transferred by the above discussed internal load
Love numbers. Through a careful theoretical analysis, they identified and corrected a number
of significant shortcomings in the recent treatments of the problem. Their result supports
the conclusion of Rochester & Peng (1990) that the internal load Love numbers at the ICB
and CMB are strongly frequency dependent. Serious errors would occur if the dynamical
load Love numbers are replaced by the static ones,

Wu & Rochester (1994) examined the effects of melting/freezing at the ICB on the
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eigenperiods of the Slichter modes. With a simple non-rotating Earth model, they regarded
the ICB as a phase transition and ignored the possible existence of a mushy zoue at the
top of the ICB in the undeformed configuration. Using thermodynamic arguments, they
demonstrated that the effects of melting and freezing at the ICB have a negligible etfect on
the Slichter eigenperiods.

The damping of the Slichter oscillation by various mechanisms has been further/newly
studied recently by several authors. Crossley et al. (1991) investigated the damping of the
Slichter mode (for a non-rotating Earth model) due to anelasticity, and found that the decay
time is about a year. Smylie (1992) quantitatively estimated the kinematic viscosity of the
liquid core fluid using the quality factor of the axial mode. Smylie & Qin (1992) used a
boundary layer solution to calculate the drag that the inner core exerts on the outer core
fluid, and the viscous dissipation in the boundary layer. However, quantitative estimate of
damping time due to liquid core viscosity has not appeared in literature. Rochester (1994,
- unpublished) studied the thermal damping effects on the Slichter modes. He concluded that
the damping time of a Slichter vibration of amplitude of about | em, due to melting/freezing
at the ICB, is several thousand years. Buffett & Goertz (1995) investigated the effects on
the Slichter modes of Lorentz forces and ohmic dissipation associated with the magnetic field
perturbation near the ICB. They found that the main effect is the damping of the oscillations,
although the eigenperiods of the modes would also be affected. The time scale of magnetic
damping can range from 150 days to 108 years, depending on the value of average radial

magnetic field near the ICB used (0.5 - 1.0 x 1072 tesla).
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1.4 Scope of Research Reported in This Thesis

This thesis is divided into 11 chapters as described below:

Chapter 2 is a brief review of the subseismic approximation, and the associated advan-
tages and disadvantages in applying it to core dynamics.

In Chapter 3, the internal load Love numbers at the ICB and CMB are derived. The
frequency dependence of these Love numbers are correctly taken into account. Then a set of
effective load Love numbers are developed to utilize the application of the SSA in a neutrally
stratified liquid core.

In Chapter 4, a variational principle is constructed using the effective load Love numbers
to solve the subseismic wave equation (SSWE). The variational principle is an alternative
to the direct integration of the ordinary differential equations {ODE) with a Runge-Kutta
method. The latter process has been widely used in free oscillation literature (Smith, 1974;
Smith, 1976; Crossley, 1973; Wahr, 1981). However, it is shown that a variational principle
for the SSWE alone exists only if the liquid core is neutrally stratified. Therefore, I computed
the Slichter eigenperiods in Chapter 4 only for a modified PREM model (so as to have an
exactly neutral liquid core). The resonance character of the internal load Love numbers and
effective load Love numbers are discussed in this chapter, along with the spurious roots found
near the eigenperiods of the Slichter modes. [ also calculated and plotted the eigenfunctions
of the Slichter modes using the SSA. Due to the application of the SSA in the liquid core, and
the use of the natural boundary conditions in the variational principle, the eigenfunctions
so calculated exhibit some kind of distortion at the outer core boundaries, as well as in the

mantle. The discussion regarding this feature is presented at the end of Chapter 4. Some
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results of this chapter were published in Rochester & Peng (1993).

Chapter 5 describes the application of the exact two-potential description (TPD) of
core dynamics (Wu & Rochester, 1990) in Slichter modes modelling. A brief review of the
formulation of the TPD and some shortcomings of the method are given in this chapter.

Chapter 6 outlines the Galerkin method, based on the TPD, which is constructed to
calculate the eigenperiods of the Slichter modes for a rotating Earth model. The Galerkin
method is an alternative approach to a variational principle, by which the stringent restric-
tions for the latter are relaxed. The results using the TPD for a neutrally stratified liquid core
provided a test of the accuracy of the SSA applied earlier in this thesis. The computations
show that the TPD method can easily handle both the neutral/non-neutral stratification of
the liquid core. At the end of Chapter 6, I discuss the calculations and plot the eigenfunctions
of the Slichter modes using the TPD. A comparison of these figures with- those in Chapter 5
clearly shows that while the eigenperiods of the Slichter modes are obtained correctly using
the SSA, its use brings certain errors to the eigenfunctions so calculated, especially to those
of the mantle.

Chapters 7, 8 and 9 describe the evaluation of the effects of the centrifugal force and the
ellipticity of the inner and outer cores on the Slichter modes. This was the first time that
the spheroidal load Love numbers were developed and used to evaluate these effects. The
methed introduced here provides an alternative to the perturbation theory used by Dahlen
& Sailor (1979).

At the beginning of Chapter 7, [ briefly review the different approaches used by Smith

(1976) and Dahlen & Sailor (1979) to tackle this problem. As [ discussed earlier, Smith
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(1976) only kept a two-term expansion in the liquid core displacement field and used a
direct integration method, while Dahlen & Sailor (1979) applied a perturbation theory in
their investigation. It is not known in advance if these treatments would yield satisfactory
results. The calculations in this and subsequent chapters (8 and 9) may provide a test of the
accuracy of these treatments. However, because the presence of the ellipticity of the Earth
and centrifugal force makes the coupling of the spheroidal field of degree 1 to that of degree
3, it is expected that the perturbation theory will give a more complete treatment of the
problem than using only a two-term expansion. The assumption for using the perturbation
theory or a heavily truncated coupling chain of the displacement field in the direct-integration
method is that the eigenfrequency of the rode in question is much higher than 2Q.

In the rest of Chapter 7, I shall first discuss how to handle the eigenvalue problem for an
ellipsoidal Earth model in a consistent way both in the interior and near boundaries. Two
different approaches are discussed: Smith’s (1974) approach, and an improvemnent on Smith’s
approach. However, without losing much accuracy, as well as for computational efficiency,
[ will use Smith’s (1974) approach in the final computation to formulate the governing
differential equations for the ellipsoidal inner core and appropriate continuity conditions at
the outer boundaries. These governing equations and boundary conditions are then used in
Chapter 8 to calculate the effect of the inner core on the outer core dynamics in terms of
the spheroidal load Love numbers. The coefficient matrix of this equation set is given in
Appendix A.

Chapter 8 presents the calculations of the internal spheroidal load Love numbers at the

ICB including the effects of the centrifugal force and ellipticity of the inner core. The first
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part of this chapter illustrates the derivation of the starting solutions of the l4th order
ordinary differential equations at the geocentre. The second part illustrates the formulation
of the appropriate continuity conditions at the ellipsoidal liquid core boundaries. The details
of the formulation of the boundary conditions are presented in Appendix B. Here [ retain
the effects of the ellipticity only to first order, the effects of rotation to second order at least,
and the elliptical/Coriolis coupling to a toroidal field T7* and a spheroidal field S7'.

Chapter 9 is used to find Galerkin solutions of the two-potential description in an ellip-
soidally stratified liquid core. In this ellipsoidal fluid shell, the full effects of the Coriolis
[elliptical /centrifugal coupling are taken into account by employing the Galerkin method
based on the TPD which has then been modified accordingly. That only the elliptical strat-
ification of the outer and inner cores are taken into consideration, relies on the fact that the
Slichter modes are apparently dominated by the degree 1 spheroidal displacement field of
the inner core.

In Chapter 10, [ will investigate the effects of a mushy inner core boundary on the Slichter
modes for a simple Earth model (rotating, spherical configuration). The mushy inner core
boundary has been discussed by several researchers (Cummins & Johnson, 1988; Shearer &
Masters, 1990), but this is the first time that a mushy zone on the top of the inner core is
incorporated into the Slichter modes computation.

Chapter 11 is the summary of the thesis.
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Chapter 2 The Subseismic Approximation

2.1 Introduction

As [ discussed in §1.2, the perturbation method may not yield satisfactory results for
long period free oscillations. On the other hand, a heavy truncation of the coupling chain
of the displacement field in the direct-integration method may raise serious questions about
convergence. [n an attempt to overcome these difficulties in long period normal modes
calculation, Smylie & Rochester (1981) proposed an approximation. They called it the
‘subseismic’ approximation since it is applicable only to low-frequency (less than 300 pHz)
vibrations. By neglecting the contribution of the Eulerian flow pressure to compression, in
comparison with the contribution of transport through the hydrostatic pressure gradient,
the SSA effectively removes the acoustic modes from the free oscillation eigenspectrum.
Mathematically, the SSA is used to convert the entire free oscillation problem from the
simultaneous solution of a fourth-order coupled system of partial differential equations in four
variables, to the solution of a single second order partial differential equation in one scalar
variable. However the utility of the SSA is greatly reduced by the fact that the boundary

conditions to be satisfied still involve solutions of the Poisson equation (Rochester, 1989).
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2.2 The Subseismic Approximation

Assuming an equilibrium configuration in which the Earth is at rest in a steadily-rotating
reference frame, free oscillations of the liquid core without dissipative mechanism are gov-
erned by a set of six equations (three scalar equations and three components of a vector

equation) which express the conservation of entropy (equation of state), mass, momentuin

and gravitational flux respectively:

a3 = —-a’V.u - Q- Zo (8)
Po
pr = — V- (pou) (9)
. 1
—wPu + 2wk xu = ~ —Vp, + VW + Lg (10)
Po Po
Vi, = —4nCp, (11)

where (10) is a vector equation which is equivalent to three scalar equations. Here a is the
compressional wave speed, p; is the Eulerian flow pressure, py and go are the density of the
liquid core and the gravitational acceleration respectively at equilibrium, p; is the Eulerian
density increment, w is the vibration frequency, and k is the unit vector aligned with the

Earth’s rotation axis. The SSA suggests that the following inequality holds

12« Ju - gol, (12)
Po

and it simplifies the equation of state (8) as

- go
ol

Vou = - (13)
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Smylie & Rochester (1981) show how to reduce these six governing equations (8) - (11) to a
pair of partial differential equations; the Poisson equation and the ‘subseismic wave equation’

(SSWE), based on only two scalar potential quantities V; and x:

R 1
= —C-.V
V.(fT-Vx) =0 (15)
where
r
= 28y (16)
Po
o?w? 2 2 27 2
B = 3 (1=p°) + g0 — n'(k-go) (17)
C = uzkﬁ'go - Bo T i#f(Xgo (18)
~a C-C -
[ =1-p'kk - <= +ipkx1 (19)
20
k= | (20)

where 1 is a unit tensor, and f (which Smylie et al. (1992) termed the ‘decompression

factor’) was first introduced by Friedlander (1988):

Wo
f=exelf L aw,) (21)

with Wy representing the equilibrium geopotential. The stability parameter 8 was first used

by Pekeris and Accad (1972), and it satisfies the following relation

Voo = (1-8) B2, (22)
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Note that in this thesis, z and § are also used to denote rigidity and shear wave speed
respectively in the solid parts of the Earth. Fortunately, they do not appear at the same
time and should not be confused.

The stability parameter measures the departure of the Earth’s equilibrium density pro-
file from that due to purely adiabatic compression of a chemically homogeneous material.
Therefore, it is a key to understanding the thermal state of the liquid core - which is also
critical to the geodynamo theory - and its interaction with the lower mantle. Specifically,
the sign of B is associated with the state of stratification: negative, zero or positive values
everywhere correspond to a gravitationally stable, neutral or unstable stratification of the
liquid core respectively. Unfortunately, like the density contrast at the ICB, the stability
parameter has so far also not been well determined by conventional short period seismology.
[t is hoped that the observation of long period ‘gravity’ modes will shed light on the evalua-
tion of 8. The gravity wave may be possible only if at least part of the liquid core is stably
stratified (Smylie, 1974).

The estimate of the stability parameter so far has been mostly based on thermodynamics.
Earlier work of Higgins & Kennedy (1971) had ruled out the possibility of whole-liquid-core
radial convection. Kennedy & Higgins (1973) suggested that it is unstable and convective
near the inner core boundary, and neutral or stable in the rest of the liquid core. Fearn
& Loper (1981) argued that the liquid core is unstably stratified throughout except for a
thin layer which may be stably stratified, some 70 km deep below the core mantle boundary,
and made up of light material segregated as the inner core grows. Gubbins et al. (1982)

agreed with a stable layer at the top of the liquid core, but argued that the layer is growing
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downwards from the core mantle boundary, due to the Earth’s slow cooling, reaching a
thickness of 100 - 1000 km. Loper (1984) offered an alternative mechanism which suggests
that the siable layer grows downwards from the CMB due to a chemical interaction there.
The uncertainty of the parameter has led some researchers to assume, for simplicity in their
modelling, that it is a constant (Pekeris & Accad, 1972; Smylie, 1974; Crossley, 1975). Since
the Slichter modes are not sensitive to the stability parameter (Smith, 1976; Wu & Rochester,
1994), I will not pursue it any further in this thesis. It is sufficient to note that the density
profile of the PREM Earth model, which is used throughout this thesis, delineates a slightly
unstable region near the ICB, and a slightly stable region near the CMB. The rest of the
liquid core is nearly neutrally stratified in this model (Peng, 1990).

[n principle, once the SSWE is solved, the solution y can be substituted in the Poisson
equation to obtain V;. Then the displacement u and the perturbation in density p; and
pressure p, and are nbtained from the other relevant equations.

For a neutrally stratified liquid core, 8 = 0 and B — oo, T of (19) reduces to the

Poincaré tensor

[, = 1 —pkk +ipk x 1 (23)
and the SSWE reduces to

V- (pol'p-Vx) =0 (24)
with f replaced by po(r). The Poisson equation (14) reduces to the Laplace equation

1 2 -
—V¥ =0. 2
47erov ' (25)



2.3 Restrictions to the Application of the Subseismic

“Approximation

The SSA has been extensively used in long period free oscillation calculations (Smylie &
Rochester, 1981; Shen, 1983; Smylie et al., 1984; Smylie & Rochester, 1986a, 1986b; Fried-
lander, 1987; Dehant, 1988; Smylie, 1988; Wu & Rochester, 1988; Rochester, 1989; Peng,
1990; Smylie et al., 1990; Wu & Rochester, 1990; Crossley, 1992; Crossley & Rochester, 1992;
Crossley et al., 1992; de Boeck et al., 1992; Smylie et al., 1992; Webb, 1992; Crossley, 1993;
Rochester & Peng, 1993; Wu, 1993; Wu & Rochester, 1993, 1994); While the full potential
and advantages of the SSA were explored, some disadvantages also became apparent.

A variational principle for the the SSWE alone could be constructed only for an Earth
model with spherical rigid-fixed outer core boundaries, or deformable boundaries but with a
strictly neutral liquid core. Otherwise, the Hermitean property of the subseismic operator,
as in (13), is violated (Rochester, 1989; Wu & Rochester, 1990; Crossley & Rochester, 1992;
Rochester & Peng, 1993). This failure arises from a requirement in the boundary conditions
at the ICB and CMB that the Poisson equation has to be solved simultaneously with the
SSWE. Hence the main advantage of the SSA is lost. Whereas if the liquid core is neutrally
stratified, the Poisson equation reduces to a Laplace equation with a single potential field
Vi only, which then can be solved independently. The match of continuity conditions at the
ICB and CMB for solving the SSWE alone in a neutral liquid core are to be implemented
by a set of ‘effective’ load Love numbers, which [ shall discuss in Chapter 3.

While applying the SSA in the body of the liquid core gives satisfactory results (eigenfre-

23



quencies are obtained correctly), it fails badly near a boundary which does not move much,
such as the CMB. The mantle has a much higher rigidity and a larger volume compared to: -
those of the liquid core (Crossley & Rochester 1992). This fact grossly violates the inequal-
ity (12), which is the backbone of the SSA. Consequently, extending computations of the
eigenfunctions from the liquid core to the solid parts of the Earth, especially to the mantle,
is jeopardized. More specifically, it seems that conservation of the linear momentum across
the CMB is violated. [ will further discuss this problem in Chapter 4 with computations of
the eigenfunctions.

In short, it can be concluded that the best use of the SSA is to find the eigenfrequencies of
long period free oscillation modes for a relatively simple Earth model (e.g. spherical, rotating
Earth with a neutral liquid core and deformable ICB and CMB). The results so obtained are
close approximations to that of a more realistic Earth model, where non-neutral stratification
of the liquid core and/or elliptical stratification of the Earth may be present. With these
results as reference values, an exact calculation of the eigenvalue problem may be performed
using more stringent methods, such as the two-potential description of core dynamics (TPD,
Wu & Rochester, 1990), or extended direct integration. This indeed is the path this thesis

follows, for the Slichter modes.
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Chapter 3 Love Numbers at Spherical Core
Boundaries

3.1 Introduction

Due to absence of rigidity, the response of the liquid core to deformation at long period is
potentially more complicated than that of the solid inner core and mantle. For this reason, it
is often convenient to centre the analysis of long-period normal modes around the dynamics
of the liquid core, and treat the accompanying vibrations of the solid inner core and mantle as
their response to the deformation of the [CB and CMB. Based on this viewpoint, the linearity
of the relations between displacement, elastic stress and gravitational force suggests that the -
deformation of the solid side of a physical interface can be expressed as a linear function of
the disturbing effects acting from the fluid side. The coefficients of such a function, at each
of the core boundaries, can easily be made dimensionless. By analogy with the tidal Love
numbers, which express the relation of the deformation of the Earth's surface to the tidal
force potential acting there, these coefficients are called internal load Love numbers. This is
the way [ adopt in this thesis to describe the dynamics of the Earth.

It is known that the inner core translational motion involves a large ST* of the IC
spheroidal field. However, it is difficult to decide a priori, for a given Earth model, how
many terms in the coupling chain of the displacem;nt field u should be retained in a nu-

merical computation. Because of the enormous mass of the mantle, which accounts for 68

% of the Earth, its displacement in responding to that of the inner core for conserving the
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linear momentum of the system is much smaller than the latter, so is its contribution to the
Slichter oscillation. For this reason and also due to a much higher rigidity of the inner core
and mantle compared to those of the liquid core, it is reasonable for simplicity to ignore the
toroidal displacement fields generated by Coriolis coupling in the solid parts of the Earth.
Such a treatment has also been justified by calculation; the effects of coupling to TT* changes
the load Love numbers by no more than 0.0001% (Rochester & Peng, 1993). Therefore in
this and the subsequent chapters I consider the Coriolis coupling only within the same degree
(self-coupling) in the inner core and mantle, but will include the coupling of TF from ST to

™ in Chapter 7, where the ellipticity of the inner and outer cores are taken into account.
In the liquid core, the use of the SSA enables a much longer chain of coupled spheroidal
and toroidal fields to be used, for the same computational effort. The degree of truncation
of the trial function series in the liquid core will be decided experimentally for ensuring a
convergent eigenperiod.

The influence of the elasticity of the inner core and mantle on the liquid core dynamics
are represented by the frequency-dependent internal load Love numbers at the ICB and
CMB. To fully utilize the SSA when the core boundaries are deformable, a set of effective
load Love numbers appropriate to a neutral liquid core will be introduced in this chapter.
These effective load Love numbers are combinations of the ordinary load Love numbers at

the [CB and CMB.
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3.2 Internal Load Love Numbers at the Inner

and Outer Core Boundaries

The governing system of differential equations for an elastic sphere or an elastic spherical
shell with only the first order Coriolis self-coupling taken into account is most conveniently

expressed in AJP notations (Alterman, Jarosch & Pekeris, 1959):

dy _ :
:i: = .Ali (26)

where
y=(nny2-- ve)T

y1(r) and y3(r) are the radial parts (functions of r only) of the normal and transverse

displacement fields. Referring to the definitions (3) of Chapter 1, they are defined as

y2(7) and yu(r) are the radial paris of the normal and shear stress fields,

de™  2u™ —n(n+ L7 du™
p— 143 n 143 n 29
y2 = A dr + 7 )+ 2 dr (29)
— n . . n 30
wo= p(GE - (30)

where A and p are two of the Earth’s property parameters: the Lamé parameter and rigidity,
respectively. Referring to the definition (4) of Chapter 1, ys(r) is the radial part of the

additional gravitational potential field

ys(r) = &7 (7) (31)
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and yg(r) is the gravitational flux

dop
Y5 = —E"— — 4w CGpouy .. (32)

The matrix A in (26) consists of coeflicients of y;'s of the governing equations, and they
are functions of radius r, frequency w, azimuthal order m and/or degree n. The nonzero

elements of A are:

Az A +12p,

s T(lin:z;;;\

Az = —pow® - 4P:90 4(;;(3;\22)27‘12)
Agy = ———E

_(/\ + 2u)r
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r

These expressions of matrix A are analogous to those given by Crossley & Rochester (1980),
except they also included the Coriolis coupling to the toroidal field T, and T, .
System (26) can be integrated numerically by a Runge-Kutta method through the inner
core to obtair solutions at the [CB, and through the mantle to obtain solutions at the surface
of the Earth. Since the geocentre is a regular singular point of the sixth order differential
system (26), only three of the six fundamental solutions are regular there, and care must be
taken in selecting the starting values of these solutions at the geocentre. To start integration,
Pekeris (1966) suggested using a power series expansion near the geocentre, whereas Takeuchi
and Saito (1971) used aralytic solutions in a homogeneous sphere of small radius. Crossley

(1975) introduced a variable transformation to reduce the singularity from second order to
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first order, and showed how to select solutions that are finite at the geocentre (also see
Haardeng-Pedersen, 1975). This technique was used by Smylie et al. (1990) to compute
the static load Love numbers, and is used in this thesis to compute ihe dynamic load Love
numbers at the [CB. The latter result was reported in Rochester and Peng (1993). Wu and
Rochester (1994) give detailed starting values at or near the geocentre for Crossley’s method
or Pekeris’ method respectively. For the sixth order differential system here, either method
yields the same load Love numbers. However, for a more realistic Earth model which includes
the ellipticity of strata, [ shall start the integration a little distance away from the geocentre
to avoid possible computational instabilities.

Now define the dimensionless radius

(33)

o )

where R is the radius of the Earth. By defining the dimensionless AJP variables as §;’s,
the dimensioned y;’s are expressed in terms of these dimensionless ones according to the

following relation
1
% = agi{bi + 8ia + go(@)[po(a+)(biz + 6ia) + &is + ;51'5]} (34)

where §;; = 1 if i = j, and §; = 0 otherwise. Then the fundamental solutions at the
geocent.¢ can be represented as the following, which are equivalent to those of Crossley

(1975) except for the presence of Q here, or that of Wu & Rochester (1994):

g1= Azt A2 4 (35)
§o = Be" ' +(B'z™ +--- (36)
§a=Cz" '+ C'z" 4 ... (37)
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fa=Dz"* +(D'z" ~--- (38)

js = Ez™ + yE'z""? = .

(39)
G D E S s F (10)
where
- Foan )
v=a/R (43)

where 2(0) and po(0) are the rigidity and density of the inner core at the geocentre, a is the
radius of the ICB, and po(a.) the density of the liquid core just above the [CB. Note that
hereafter for convenience in writing, [ will drop ~ on the dimensionless y;'s. Whenever the
dimensioned y;’s arise, they will be referred to explicitly.

Of twelve coefficients listed in (35) - (40), only three of them are independent. I choose
C, E and A’ as the independent coefficients which will enable the case n = 0 (purely radial
deformation) to be handled easily - no separate treatment is needed. All the other coefficients

are expressed in terms of these three as the following:

A=nC (44)
B =2n(n -1)¢C (45)
D =2(n-1)%C (46)
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F=n(E-+C)

l

Col=
p1 — npa vB3
D'=4A"+nC’
B'zqu,—th'
l
"= —————[(n+3)A - 1)C’
s Tl A = +1)C

F'=(n+2)E -4

pr=2n[n(n + 2)a—§ —(n + 1)2]

P=nln+3)g2 - (n+ 1)

aj
g1 =2n[(n+ Q)EE

- (n+3)

a2
-

ag
<12=(n+3)ﬂ—3"4

from, the centre.

The general solutions in terms of these three independent constants have a form of

y = Cy_“) + 32(2) + A’IL(S)

32

R
{p2A' + —5lgofa)vF + (w? = 2mwQ + (3 = n)

ir
3 Cro

(0))aAl}

(47)

(48)

where ag and B are the compressional and shear wave velocities at the center of the Earth
respectively. If one chooses to start the integration at a point away from the geocentre, Wu
& Rochester (1994) demonstrated that it is adequate to keep only two terms in the above

power expansion, provided that the starting point is very close to, e.g. a few kilometres

(57)



where g(") are the fundamental solutions. At the inner core boundary, the solutions

y(a-) = Cya-) + Ey(a-) + A¥¥a.) (38)

must satisfy the necessary boundary conditions, namely the continuity of normal displace-
ment 0 - u, incremental gravitational potential V), normal stress n - r, and gravitational
flux n - [V} — 47Gpou], where n is the unit normal pointing out of liquid core (therefore
n=-r at the ICB, and n=r at the CMB), 7 is the additional stress due to the disturbance

of deformation.

By the definitions (4), (7), (27) and (31)

fous S p(rYe (59)
n=|m|
K= Y s (60)
n=|m|

Therefore, the first two boundary conditions mean that y; and ys are continuous across the
ICB. Note that for simplicity, the notation for the y;’s adopted here for calculating the load
Love numbers will not explicitly include their dependence on frequency and on azimuthal
order number m, nor their dependence on degree n.

Before proceeding further, it is necessary to look at the expression of the radial component
of the normal stress (denoted as 7,,) at the liquid side of the ICB. First, the reduced pressure

x may be represented by the superposition of a radial function and the standard spherical

harmonics

x= 3 XY (61)

n=|m|
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Referring to equations (8) and (16) of Chapter 2, the normal stress in the liquid core can be

written as

i

/\V~u=—pg(u-go+x+Vl)

Tor

= oo S [ aolr () + x7(r) + va(R Y (62)

n=|m|

At the point just above the ICB, the normal siress expressed in AJP notations is

AV.u= 3" yla,)V," (63)

n=|m|
As defined in equation (34), all AJP field variables of the inner core in the boundary condi-
tions can also be expressed in terms of the corresponding dimensionless quantities. Therefore,
with dimensioned quantities replaced by dimensionless ones, the condition of a continuous

normal stress across the ICB, y3(as) = y2(a-), can then be simplified as:

nla.) — ys(a) — yola.) = == (64)

where the fully dimensioned quantity x*(a;) is the radial part of the potential x just above
the ICB.

For an inviscid liquid core, the shear stress vanishes at the ICB
va(a-) = 0. (65)

Finally, the continuity of the gravitational flux across the ICB gives

4rGpo(a)a . 2} = 1 dys
OB (o) + wlo-) = ()., (56

Note that (%2),-,, of the liquid core remains a fully dimensioned quantity.



Equations (64), (65) and (66) are seen to depend on x™ and dys/dr of the liquid side of

the ICB only. Guided by this dependence, the internal load Love numbers can be defined in

such a way that

o e Ly

o) = M7+ o v e
_ a Xn(2+) " a 1 rdys \

@) = h@ )+ o) v (69)

where the load Love numbers &, and ks are the solutions y, and ys when

and k; and ks are those solutions when

mio Y L dys _
) =0 s d) -1 (70)

With the above conditions, the coefficients C, E and A’ can be obtained, hence the internal

load Love numbers:
hy or k, = Cygl) + Eyiz) + A ysz) (71)

hs or ks

Il

cy) + Eyl) 4+ 440 (72)

The internal load Love numbers at the CMB can be obtained with the same procedure as
that at the ICB (Rochester & Peng, 1993), subject to the boundary conditions at the free

surface of the Earth:
y2(R-) = 0 (73)

35



n-+1

R

ys(R-) + va(R-) = 0 (75)

and similar boundary conditions as (65), (64) and (66) at the CMB, but with x7(a;) and
gofa) replaced by x7'(b-) and go(b). The radial displacement and additional gravitational
fields at the CMB are now expressed in terms of the mantle load Love numbers A,(b), ks(b),

k\(b) and ks(b) at the CMB and the quantities x7'(b-) and (r dys/dr).=s_ just below the

CMB:
— Xn (6-) 1 r dys
yl(b) - hl(b) bg()(b) + kl(b) bgo(b) ( dr )r=b- (76)
3 Xn(b-) 1 [ dys
”“‘“w@w)+mmmw(w)¢' )

Note that [ have kept the inertial term w?u and the self-coupling contribution from the
Coriolis term 2iwQk x u in the original equation of momentum conservation, as well as
in the course of deriving the AJP governing system (26) and the starting solutions of the
integration at the geocentre. Similar care has been taken in deriving the load Love numbers
at the CMB. By doing so I correctly take into account the dependence of the internal load
Love numbers on frequency w and azimuthal order number m.

[t is shown, in the numerical computation, that the load Love numbers of degree 1 at
outer core boundaries display long period resonances (Table 1), which are natural frequencies
of the Earth’s subsystem. The reason for this occurrence is that the main restoring force for
degree | deformation of the inner core is gravitation (rather than elasticity). These ‘poles’
of Table 1, especially that of the ICB, are so close to the eigenperiods of the Slichter modes
that the load Love numbers at such periods are highly frequency dependent (dynamical),
even for a non-rotating Earth model. Therefore, in long period free oscillation modelling
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{e.g. the Slichter modes), serious error may arise if the dynamical load Love numbers are
replaced by the static ones (Crossley et al., 1992; Rochester & Peng, 1993). This closeness of
the resonance frequency of the load Love numbers to the eigenfrequency of the mode under
investigation is to signal that it is important to take into account inertial {(including Coriolis
self- couplirig) effects in the solid parts of the Earth when computing the eigenfrequency of
that mode.

In other words, the load Love numbers can be regarded as independent of frequency only
in those frequency ranges which are far from these poles. For deformations of degree n > 2,
the vibrational resonances of the solid inner core and mantle are all at period below 1 hour
due to their high rigidity. Little error would incur by treating the response of the inner core
and maatle, to disturbances from the liquid core, as essentia.lly‘_s!;atic. However, this is no
longer a case for n = 1 where the poles of the load Love numbers, especially that of the ICB,

are at periods not far from the Slichter medes themselves.

Table 1: Resonance periods (hr) of the degree 1 load Love numbers at the ICB and CMB for
the PREM model with a neutral liquid core. The azimuthal number m=0, 1, -1 represents
the axial, retrograde and prograde equatorial mode respectively.

non-rotating rotating
m=0 m=1 m=-1

ICB - 4.56962 4.56962 3.77971 5.52462

CMB 1.02800 1.02800 0.9944 1.06281
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3.3 Effective Load Love Numbers

The whole purpose of adopting the SSA is to avoid having to solve the Poisson equation
simultaneously with the momentum conservation equation. Instead one solves the SSWE
(15) first and then returns to soive the Poisson equation (14). It is necessary to incorporate
in the solution of the SSWE the continruity conditions at the deformable core boundaries,
expressed by the load Love numbers just derived. However, to use these boundary conditions
requires knowledge of dys/dr at r = a, and at r = b_, 1.e. the Poisson equation needs to be
solved first! There appears to be no consistent way of doing this, i.e. of taking full advantage
of the SSA, except in the special case when the liquid core is neutrally stratified. For then,
as already observed, the Poisson equation reduces to the Laplace equation, its solution can

be written a priori as

a

ys(r) = An(7)" + Ba(Z)™" (78)

T

o 3

where A, and B, are to-be-determined coefficients, ¢ and b are the radii of the ICB and
CMB respectively.
Teking the first derivative of (78), one can arrive at

dy

5 n+l
dr

a

(77 An = =—(Z)"*"*Ba. (79)

o 8

Since V; is continuous across the outer core boundaries, (78) and (79) can be substituted
into the load Love number condition (68) at the [CB and its equivalent at the CMB, which

then become:

Cu{)"An + C12Bn = hs(a)xy(a+) (80)

o | R
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Candn +Caa(t )n‘lB = hs(b)x(b-) (81)
where

Cu =1~ nks(a)

(82)
Ciz =1+ (n + 1)ks(a) (83)
Co = 1 = nks(b) (84)
Car =1+ (n + 1)ks(b). (85)

Now the constants 4, and B, are solved from equations (80) and (81):
= ~ G T h(aeT(on) + (5 + GG hs (O (-) (56)
B = (@R (0) = G (3T he(8)2(6.) (#7)
where

P =Cp— Clc‘,zc:“( b)’ﬂ“. (88)

Then the derivatives dys/dr at the ICB and CMB are expressed in terms of the load Love
numbers, the radial functions x7'(a,) just above the ICB, and x™(b_) just below the CMB.
Finally, substituting the latter into the load Love number condition (67) at the ICB and its

equivalent at the CMB, y; at these boundaries will be obtained
yi(a) = Hicxn (a+) + Kiexq (b-) | (89)
(b)) = Hygxn (6-) + Kirxn (a4) (90)
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where Hj-, Kj-, Hj and Kj; are the effective load Love numbers at the ICB and CMB

respectively:

Hig = ha(a) - L 4 1), 4 B (o)
Ko = (e, + (nrycul (92)
Hie = ha(8) = 28 (1 100 () 4 nCl (93)
Kif = -(%)"Jflf%’l’-‘-;—fﬂ[ncn +(n +1)Ca). (94)

These final results of y;(a) and y;(b) enable the continuity conditions ii-u at the ICB and at
the CMB to be expressed in terms of xT only. It needs to be emphasized that the effective

load Love numbers can be used only if the liquid core is neutrally stratified.
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Chapter 4 Variational Solution of the

Subseismic Wave Equation

4.1 Introduction

Applying the SSA in a neutrally stratified liquid core, the equation of momentum con-

servation and the SSWE can be written in compact forms:

W(1 - p*)u =T, - Vyx (95)
Lyx=0 (96)

where I, is the Hermitean tensor given in (23), and £, stands for the linear operator in (24).

A conventional approach to solving equation (96) is along the following lines: First,
use a spherical harmonic representation of x to reduce (96) to a set of first-order ordinary
differential equations. This equation set is built up from subsets of ordinary differential
equations corresponding to a particular degree n, and their coupled companions of degree
n—2 and n + 2 due to the Coriolis effects. Then, a decision is made to truncate the coupling
chain at a certain degree. Finally, the resulting set of ordinary differential equations are
integrated numerically by a Runge-Kutta method.

An alternative to such direct integration of the governing differential equations is to use
a variational principle. A variational principle exists if one can construct a functional which
becomes extremal (usually a minimum) only when the dependent variables of this functional

satisfy the governing differential equations throughout the physical body of interest. The
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functional, in this case, is a volume integral with integrand a quadratic function of the
dependent variables. In applying the variational principle, a set of trial functions, which are
linear combinations of simple basis functions that are linearly independent of (e.g. orthogonal
to) one another, can be chosen to represent the dependent variables. Thus the burden of
satisfying the governing differential equations by these dependent variables is shifted onto
the coefficients of these combinations. Finally, a set of algebraic equations linear in these
coefficients is produced by requiring the functional to be extremal. Usually the trial functions
are made to satisfy all necessary boundary conditions a priori, but it is always possible to
generalize the extremal property, by adding surface integrals to the functional, so that it
guarantees that the boundary conditions, as well as the governing differential equations, are
satisfied. Clearly the accuracy to which the equations and boundary conditions are satisfied
will depend on the number, and possibly the particular character, of trial functions used to
approximate each dependent variable.

[n this thesis, I will take advantage of the existence of the variational principle for the
SSWE which can be constructed using the effective load Love numbers. A trial function for ¥
needs to be chosen in this approach. [ will also take advantage that the boundary conditions
on n-u in the present case are so called ‘natural’ boundary conditions. This will allow for
adding appropriate surface integrals containing these boundary conditions to the functional,
which then can be made extremal. Hence the extra effort is no longer needed to make
the trial functions satisfy the boundary conditions e priori. With these natural boundary
conditions, the second derivative of the trial function in a functional will be eliminated upon

proper choice of weight functions in the surface integrals. However, a price has to be paid for
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these conveniences: the eigenfunctions so computed will exhibit slight discontinuities across

the inner and outer core boundaries where they should be continuous.

4,2 Variational Principle Based on the Subseismic

Wave Equation

Guided by (61), I construct a trial function y:

N
x(r,0,8) = Y xin_1(r)Pim_1(cos 8)e™® (97)
n=1
where
2(L-1) ,
Xi-i(r) = 2 em{Z) (98)
p=1 .

Here the constants ¢,y are coefficients of the radial trial function, L and N are experimentally-
decided integers specifying the truncation levels: 2(L — 1) for the radial function and 2N ~ |
for the associated Legendre functions. z is introduced for scaling and the integer v will be
given below. In writing (97), I have taken advantage of the fact that the Coriolis coupling
gives rise only to odd degree terms of x, therefore adds only odd-degree harmonics to the
fundamental degree 1 field, and the computations involving even-degree harmonics thus can
be avoided.

When the liquid core is homogeneous and incompressible, and rotation is neglected, x
satisfies the Laplace equation (Peng, 1990; Rochester & Peng, 1993), and its solution does
not contain a constant term or the term with a power of —1. This proves to be true also for

the more general core model treated here. Without losing generality, it can be assumed that
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the coefficients ¢, are real, and they can be replaced by a set of new coeflicients d, with
only a single suffix number & based on -1 correspondence (the exact relation will be shown

below). Then the trial function x will be written in a more convenient form:

AL-N .
x = 3 dfz)Pm ™ (99)
k=1 ©
where
k=p+2(L-1)(n-1), n=1,2 ..., N

v=p—-(L+1), z=a, for1<p<L-1
v=p-(L-1), z=b, for L<p<2L~-2

Note that the choice of scaling factor z as above ensures that r/z is always less than 1, which
then prevents the value of the radial trial function froin being too large.

First, a functional based on the SSWE can be defined in a neutral liquid core
Fi=[ xLoxdV 10
1 Lc X ~pX (100)

where the integral is over the volume of the liquid core. Using the divergence theorem, the
Hermitean property of [';, and the equation of the momentum conservation (95), the first

variation in F} is given by
- . &x” “ld
§F = [ [6xLox + (8% o) 1AV

_ 20y 2 S N
=uw’(l #)./;cmcnmpo(xn fu—dxn-u)dS (101)

where n is the unit normal pointing out of the liquid core. It is clear that, for rigid outer
core boundaries, a variational principle exists if F} is stationary in the domain of interest,
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l.e. §F = 0 for an arbitrary 8y, then x must satisfy the SSWE. Whereas for deformable
boundaries, (101) suggests that surface integrals accommodating continuity of the normal
displacement field i - u across these boundaries could be added to the functional F.

Now, let a new functional F be defined by adding to £ the surface integrals containing

the natural boundary conditions n - u at the outer core boundaries:

= [ xcxdv+ | ‘- (u—u, 2
F -/;cx'cpx ms+cua¢'n (u—u,)dS (102)

where x~, ¥; (i=1 or 2 referring to the [CB or CMB) are weighting functions, and u, is the
displacement field of the solid parts of the Earth, i.e. u;c of the inner core, or ups of the
mantle. Generally, x°, ¥; and ¥; are independent and the latter two are arbitrary, but it

may be advantageous if they are related in some manner. This point will become apparent

later.

The first variation now can be performed on the functional (102), which leads to:
§F = fL 6XLox + X LobX)dV

/ICB+CMB[6¢‘-ﬁ S(u—w,)+Pin- (bu - fu,)]dS. (103)

Equation (103) can be re-arranged into the following form
§F = [ 16xLox + (8x Lox) 14V

- ICB+CMB{6¢,-'1'1 c(u—u,)+ [6¢¥n-(u-—nu,)|}dS

= f [x"Lpbx — 6x(Lpx) 14V
Lc

[ (i (fu—6u,) - i - (w - u,)|dS. (104)
ICB+CMB
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Clearly, if the RHS of {104) vanishes for an arbitrary §x, then F is stationary in the
domain of interest and x must satisfy the SSWE and the associated boundary conditions.
Using the momentum conservation equation (95) and the Hermitean property of 'y, the

RHS of equation (104) can be written as:
RHS of (104) = /L AV (X pol, - V8x) = V- (xp0T; - VXNV

/Ica+cnfa[¢;ﬁ (6u - 6u,) - Syt - (u — ) ]dS. (105)

Applying the divergence theorem and equation (93) again, the above equation can be ex-

pressed as:

RHS of (104) = w?(1 — 4?) -/;CB+CMB pox M - udS

~wi(1 - pz)/ pobxnt-u'dS
ICB+CMB

[¥:n-(6u — bu,) - S;n - (u — u,)"|dS. (106)

-/ICB+CB'[B

Obviously, if [ choose

¥y = 9; = —w (1 - p¥)pox (107)

the surface integrals in (106) associated with i - fu and n - u* will be cancelled out, and

(106) is then simplified as:
RHS of (104) = w?(1 — 4?) op pol—X'T - Susc + 6t - upcldS

2 —_ 2 v, — r-u;
+w(1 — p%) - palX’T - Supr — 6xr - up]dS. (108)
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From (39),

n-ue = Y w7 (109)
n=!mi

n-uyr = Y. wn(d)Yr (110)
n=/mj

where y,(a) and y(b) are computed from equations (89} and (90), using the effective load
Love numbers and the liquid core quantities xj'. Note that y;(a) and y(b) in (89) and (9C)
are dimensionless quantities, while they are dimensioned in (108). The relation between the

dimensioned and dimensionless quantities is given by (34). Therefore,

ol 1 = e m e m ~m
r-bure = > [Hicbxn(a) + KicoxT (b)Y (111)
go(a) n=lm|
hed 1 e m ™
r-bup = D) Z (Harx(b) + Kiebxn(a)lY (112)
n=|m]

Note that nothing is lost by omitting the subscripts ‘+’ and ‘~’ of a and b in equations (1i1)

and (112).
Using the orthogonality properties of spherical harmonics, and substituting (111) and
(112), (108) can be re-written as:

4r(=1)™ pga’

RHS of(104)=“”(1“‘2)2( +1)! go(a)

x 3 (L ey KiGHEXR @ (B) - R )] (119

n=|m| PO

Using the ordinary load Love numbers, the quantity in the curly brackets of (113) is seen to

be proportional to

po(b-)b ki(b)  po(a+)s ki(a)
A= go(b)hs(b) go(a)hs(a) (114}
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It can be shown that A vanishes to within 1 x 107%, an error rnuch less than that of the
SSA itself (Rochester & Peng, 1993). Therefore, it can be concluded that the chosen trial
function x, which makes the functional F' extremal and is not constrained in advance by the
boundary conditions, will satisfy the SSWE and associated boundary conditions.

By substituting ¥; and 1; of equation (107) into the functional F of (102), and by using

the divergence theorem, the final form of the functional F is as below:

- “.T, - VyxdV .2—2/ 5
F /chon pr VxdV + (1 #)mmcmxmn u,dS (115)

Substituting (99) into the RHS of (115) makes the latter take the form of

AL-1)N AL-1)N

F= Z Z Grudid,. (116)
For F to be stationary, the choice of dy, dj, --+, dy, - -+ is constrained by the requirement
that

oF

— =0, k=1,:---- 2(L - 1)}N. 117

8dy (L=-1) (117)

G+ GHD =20 A (118)
where Gy is the k,{th component of the LHS of equation (117), and
_D_ = (dl dz et dk "‘)T. (119)

All integrals in Gi; can be evaluated analytically because a neutrally stratified liquid core

has been assumed. Then the eigenperiods are found from the requirement

Det(G + GT) = 0 : ‘(120)
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which guarantees that a non-trivial D exists.

Once the eigenperiod is found, the coefficients of the trial function can be obtained from
the eigenperiod condition (118) and (120). From analytic solutions of a simple Earth model
(Peng 1990), it is known that ds, at least when k = j, does not vanish when the corresponding
power of r of the radial trial functionv = 7 —(L+1) = ~20rv = 37— (L - 1) = L. Suppose

dg # 0 (it can be chosen arbitrarily, e.g. d; =1 for convenience), then (118) can be written

as
dp .
ngk(a:)=-qu) P=1:2,"':2(L‘1)N“1 (121)
q
where
Q=G+G". (122)

Note that the upper limit of pis 2(L — 1)N - 1, because one equation needs to be dropped
for solving that number of di./d,, with k # ¢ (for k=1,2,----.. , 2AL -1)N-1). A complete
set of coefficients consists of di’s (for k=1, 2, ------ y2(L—1)N —1) and d; = 1. When these
coefficients are found, the eigenfunction x of the liquid core follows. Then, the ordinary load
Love numbers and the eigenfunction x at the ICB and CMB can be used to compute 4, and
B, of equations (86) and (87). Consequently, ys is found from equation (78), and y, is found
from equation (13) according to definition (63). The radial and transverse displacement y;

and y; are found from the displacement field u of equation (95):

yr = un(r) = ulm (123)
Ifm=0,
1 m,n-1 m . n-2
Yg = vn.( ) = -—(71 + I)J"‘ [uﬂ - (n - Z)Hn-zyS (124)
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and if m # 0,

1

yg = =g+ L7yt (125)

where L7 = (n +2)JT ifn =1, 0r LT = —(n + 1)H],, otherwise, with

m_ (nt+m)

Jn = 2n +1 (126)
mw (nt+1l-m)

iy = o) (127)

The quantity y3*! in equation (125) is the coefficient of the toroidal field of the liquid core

displacement u

1

% = 40(0) = " - DR - BT ™) (128)
n+

where
1
Fit = —[n{n + 2)J0, HY + (n = 1)(n + DHT 7] +m (129)
m_ nAHT
DM = — (130)
E;ﬂ = _(_ni.%_ (131)

m

and u™*, u;"'i and u;"i are the radial, polar and azimuthal components of the displacement

field u of the liquid core respectively. Finally, y4 = 0 in the liquid core, and ys is found from

its definition

dys _

ve = -~ — 4wCGoy1. (132)
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4.3 Eigenperiods and Eigenfunctions: Numeral

Results Using the Subseismic Approximation

[ adopt the PREM Earth model for my numerical test in this thesis. The model consists of
an elastic inner core, an elastic mantle, and a non-neutrally stratified, inviscid, compressible
liquid core. The whole system is spherical in shape, and rotates at a steady angular velocity
2. The density contrast of this model at the ICB lies in the range preferred by the free
oscillation data examined by Shearer & Masters (1990), namely 0.4 - 0.7 x 10® kg m~3. For
applying the SSA in this chapter and the comparisons of the computational results in the
subsequent chapters, I assume an exactly neutrally stratified liquid core (Peng, 1990), and
use a modified density profile with |{8] < L x 1078, Other physical property data, such as
seismic wave velocities, density profiles in the inner core and mantle, as well as the dimensions
of the Earth’s subsystems, are retained from the original PREM model. However, the water
layer at the surface of the Earth is replaced with a solid layer, provided that the mass,
moment of inertia and P-wave transit time are preserved (Rochester & Peng 1993). This
modification simplifies the computation by avoiding handling a fluid layer in the mantle,
and its effects on the computed load Love numbers at the CMB should be negligible. Here [
also take advantage of the fact that the physical properties of the PREM model are given as
polynomials, which makes it possible to evaluate all volume integrals in (115) analytically,
though it may result in less precision than if [ use the tabulated data at discrete radii.

I started to search for the roots of the Det( G + GT ) from 1 hour to 10 hours with the

number L = 3 and degree N = 2 for each member of the triplet (i.e. Q =0, m=0; Q # 0,
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m=0, +1, -1), and narrowed the search range under the guidance of the roots found from
the first round of computation. Then L and N were increased until convergent roots were
obtained. The convergence was ensured by requiring the difference of eigenperiods between
two successive computations with different L and N be less than 1 x 1075 hr. Table 2
tabulates the eigenperiods of the triplet associated with different L and N. The results show
that ;N = 2 or 3 are adequate for a convergent eigenperiod in this case, and confirm Crossley’s
(1992) eigenperiods, achieved using coupling chain up to N = 3: 5.3172 hr (m = 0), 4.7733
hr (m = 1) and 5.9872 hr (m = —1). This means that the Coriolis coupling of a spheroidal
field in the liquid core need not be extended furtker than ST or ST, which is a factor 2Q/w
or (202/w)?® respectively beyond the calculations by Dahlen & Sailor (1975). Note that I did
not take the coupling to toroidal field T7' in the solid parts of the Earth, whereas the latter

authors did.

Table 2: Eigenperiods (hr) of the Slichter modes for PREM with a neutral liquid core using
a variational principle based on the SSA. L and N are the integers specify the truncation
level of the radial function and the degree of the spherical harmonics of the trial function x.
Therefore, x contains 2(L — 1) direct and inverse powers of radius, and 2N — | members of
the spherical harmonics. The spurious root is also listed at the bottom of the table.

non-rotating rotating
(L, N) (L, N) =0 m=1 m=-1
(3,1) 5.41190
(3,2) 5.30168 4.75933 5.96971
(5, 1) 5.41190 (5,3) 5.30168 4.75936 5.96972
(7,4) 530168 4.75936 5.96972

Spurious
root 5.76485 5.76464 4.5407T7 7.31700
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Two poles, and a spurious root, are also found close to the eigenperiods of the triplet
(see bottorm of Table 2). A close examination shows that the poles are identical to the
resonance periods of the effective load Love numbers of degree 1, which in turn result from
the resonance character of the ordinary load Love numbers (Table 1). Table 3 displays the
resonance periods of the effective load Love numbers of degree | for the PREM model with
a neutral liquid core. Again, the resonance character of these effective load Love numbers
suggests that they are strongly frequency-dependent, at least for degree 1. The spurious
root is an artifact of the SSA: a solution by direct integration of the governing equations
for a non-rotating Earth model shows that it is absent when the SSA is not invoked, but
appears from a very long period as the SSA 1s gradually applied, finally stopping at 5.76485
hr (Rochester & Peng, 1993). The latter test is achieved by multiplying the terms, which
will be omitted if the SSA is applied, with a factor changing from 1 to 0. However, with
the spurious root present, the real eigenperiod can still be easily identified by tracking it
down from the known eigenperiod for a non-rotating Earth model, as the rotation rate Q is

gradually increased from zero to its proper size. This can be achieved by multiplying the

functional F of (115) with Q2.



Table 3: Resonance periods (hr) of the degree 1 effective load Love numbers for the PREM

model with a neutral liquid core.

non-rotating rotating

m=0 m=1 m=-1
5.04588 5.04588 4.09303 6.22055
4.20360 4.20360 3.52967 5.00523

Next, I examined the effect of higher degree self-coupling of the displacement field in the
inner core on the Slichter periods (assuming a rigid-fixed mantle, i.e. a rigid mantle fixed
in the steadily rotating reference frame), and the effect of mantle elasticity (retaining odd-
degree spheroidal self-coupling of the displacement field of the n:;,ntle). The data in Table
4 and Table 5 show that the effects of higher (than one) degree displacement field in the
inner core and the effects of mantle elasticity are relatively small. Both are of the same
order, amounting only to abouvt one part in a thousand. It is apparent that the net effect
of these influences is to lengthen the eigenperiods of the Slichter modes slightly, because
they reduce the effective gravitational restoring force that sustains the vibration. Note that
the modification te t};e eigenperiods of the Slichter modes by these effects are also slightly
different for each mode. The increment of the eigenperiod of the prograde mode (m=-1) is
slightly larger than that of the. polar mode, and the increment of the retrograde mode (m=1)
is slightly less than that of the polar mode. This may be due to the nature of the Earth'’s

rotation. The eastward travelling waves are enhanced, whereas the westward travelling waves

are diminished. This is the same mechanism that causes uneven splitting of the mode.

J
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Table 4: Comparison of the eigenperiods (hr) for cases:

1. homogeneous elastic inner core, only the degree | displacement field is taken into account;
2. elastic inner core, the spheroidal self-coupling of the degree 5 displacement field is taken
into account. A rigid-fixed mantle is assumed for both cases.

non-rotating rotating
m=0 m=1 m=-1
1.(degree 1) 5.39946 5.28090 4.74922 5.95462
2 (self-coupling) 5.40589 529592 4.75412 5.96220
Difference 0.00643 0.00602 0.00490 0.00758
Increment 0.119% 0.114% 0.103% 0.127%

Table 5: Effects of a deformable CMB and the elasticity of the mantle on the eigenperiods
(br) of the Slichter modes:

1. Rigid-fixed mantle, elastic inner core, spheroidal self-coupling of displacement field is
retained in the inner core;

2. Elastic mantle and inner core, spheroidal self- couphng of displacement field is retained in
both the mantle and inner core.

non-rotating rotating
m=0 m=1 m=-]
1.(rigid-fixed mantle) 5.40589 5.29592 4.75412 5.96220
2.(elastic mantle) 5.41190 5.30168 4.75935 5.96972
Difference 0.00601 0.00576 0.00523 0.00752
Increment 0.111% 0.109% 0.110% 0.126%



The eigenfunctions of the mantle are obtaiﬁed upon integrating the mantle governing
differential equations. Following procedures in §3.3, the corresponding effective load Love
numbers at the CMB for field variables y,, y3, ¥, ¥s, and yg can be readily obtained. Then the
starting solutions of these variables at the CMB will be calculated using those effective load
Love numbers and the eigenfunctions x(a+) and x(b.) of the ICB and CMB (y,;(b) has been
calculated in §3.3). Crossley (1993, unpublished) has shown that the mantle eigenfunctions
have two disturbing features: y; is about twice as large as it should be, and u is reversed in
sign from the correct motion (Rochester & Peng 1993). The n = 1 part of the eigenfunctions
produced here show the same features (Fig. 1 - Fig. 8). The former can be clearly seen by
comparing Fig. 1 - Fig. 4 with Fig. 9 - Fig. 12, and the latter was shown in Fig. 5 - Fig.
8, which are the enlarged portions of the plots of the mantle eigenfunction y;. Note that
y of the mantle has the correct sign only for the retrograde (m = 1) mode (Fig. 7). The
feature of y; having a wrong sign in the mantle indicates a violation of the conservation of
the linear momentum across the CMB. As I discussed in Chapter 2, this unusual behaviour
of the eigenfunctions across the CMB and in the mantle arises from the fact that the basic
assumption of the SSA, the inequality (12), is violated. On the other hand, in the case of
a neutrally stratified liquid core, the SSA removes the sources of V; to the core boundaries
by reducing the Poisson equation to a Laplace equation. This distortion of V; in the liquid
core is probably responsible for starting ys off with the wrong value at the bottom of the
mantle. Without actually solving the Laplace equation, the solution of ys is assumed from
the nature of the Laplace equation, and computed from the quantities purely derived from

the SSWE alone. This latter character may also contribute tc the larger amplitude of ¥5 in



the mantle. Note that even if the conditions of y; = 0 and y; being discontinuous at the
outer core boundaries are met, all other y;'s have shown some kind of discontinuity at the
ICB and CMB, where they are supposed to be continuous. This discrepancy may well be
related to the approximating nature of the variational method and the use of the natural
character of the continuity condition n - u, and to the fact that the trial functions do not
satisfy the boundary condition a priori or a postertori at the outer core boundaries. Indeed
the procedure used here only ensures that the trial function satisfies the SSWE and the
boundary conditions in some average sense. Choosing to make the trial function satisfy the

boundary conditions a priori would have reduced the number of independent di's in (99).
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Figure 1: Eigenfunctions of the polar mode computed using SSA
For non-rotating PREM with a neutral LC
m=0, T=5.41190 hr, N=1
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Figure 2:Eigenfunctions of the polar mode computed using SSA
For rotating PREM with a neutral LC
=0, T=5.30168 hr, N=1
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Figure 3: Eigenfunctions of the retrograde mode computed using SSA
For rotating PREM with a neutral LC
m=1, T=4.75935 hr, N=1
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NORMALIZED RAMPLITUDE (Y)

Figure 4:Eigenfunctions of the protrograde mode computed using SSA
For rotating PREM with a neutral LC
m=-1, T=5.96972 hr, N=1
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Figure 5: Eigenfunctioﬁ 'y; of the mantle for the polar mode computed
using SSA for a non-rotating PREM with a neutral LC
=0, T=5.41190 hr, N=1
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Figure 6: Eigenfunction v, of the mantle for the polar mode computed
using SSA for a rotating PREM with a neutral LC
m=0, T=5.30168 hr, N=1
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Figure 7: Eigenfunction y; of the mantle for the retrograde mode

computed using SSA for a rotating PREM with a neutral LC

m=1, T=4.75935 hr, N=1
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Figure 8: Eigenfunction y, of the mantle for the prograde mode
computed using SSA for a rotating PREM with a neutral LC

m=-1, T=5.96972 hr, N=1
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Chapter 5 Two-Potential Description of
Core Dynamics

5.1 Introduction

[ have discussed and tested in Chapter 2, 3 and 4 the problems associated with application
of the SSA. The primary one was that the deformable core boundaries made it impossible,
except in the artificial case of a strictly neutral liquid core, to solve the resulting SSWE for the
scalar potential ¥ without simultaneously solving the Poisson equation for the scalar potential
V1. This difficulty greatly reduces the utility of the SSA, and at the same time stimulates
searches for the possibility of an exact description of dissipationless core dynamics using the
two scalar potential ¥ and ;. Wu & Rochester {1990) showed that this is possible. The two-
potential description of core dynamics they discovered indeed achieves the latter goal. This
description is an improvement on the conventional treatment of exact core dynamics using
the spheroidal and toroidal displacement field with the potential field ¥}, since it reduces
four field variables (three vector components and one scalar) to two, both of which are
scalars requiring similarly simple mathematical representation. The spheroidal-toroidal field
representation of conventional normal mode theory is simply bypassed and computational
effort is thereby considerably reduced.

In this thesis, [ intend to show the application of this two-potential description to solve
the Slichter modes eigenproblem, for a spherical Earth model in this chapter, and for an

ellipsoidal Earth model in Chapter 7, 8 and 9. The comparison of results obtained in this
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chapter with that obtained using the SSA and direct integration will also show the advantage
of the TPD Note that the bulk of this work using the TPD was completed before the

appearance of Crossley’s (1992) alternative exact calculation.

5.2 Governing Equations in the Two-Potential

Description of Core Dynamics

Wu & Rochester (1990) showed that the governing system (8), (8), (10) and (11) can be
reduced, without invoking any approximation, to a coupled pair of second order linear partial
differential equations based on exactly two scalar potential fields x and V. With x defined
in (16), they started from decoupling the mass conservation equation (9) by substituting
p1 from that equation in (10) and (11). Then they used (16) to eliminate p; from (8) and
(10). Finally invoking equation (22), six equations in the governing system were reduced to
five: >namely the equation of momentum conservation (vector), the Poisson (scalar) and the

entropy equations (scalar)

wiu — 2iwllkxu = Vx + [V-u+ (lgzﬂ)(x + Vi +u-go)l 8o (133)

V2V, = —4rGV - (pou) (134)

V.ou = _(x+Vl;u-go)_ (135)
Substituting (133) into (133) and (134), the latter pair become:

u — 2wk xu = Vy — fgo AT Vit U Eo) (136)

a?
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(x + W :—ﬂu-go).

Vi, = —4nGpo o (137)
Now the displacement field u can be solved directly from (136) as long as |w| # 20
2 2 2 2 c
Wil —p*lu =T Vx+uw?(l - p*)x+ W)= (138)

B
where T, C, B and p are defined in (19), (18), (17) and (20).
Finally substituting u from (138) in the entropy and Poisson equations (135) and (137) to

obtain two coupled second-order partial differential equations in only two potential variables

x and Vi:
2 2 c
VAL Ux + (1 -+ )5l
2 — 42
_‘."__(%B_“_)[c.vx—uz(l-pz)(x+vl)]=0 (139)
Cc.v L - (1 — p?
A A e e (140)

[n a neutrally stratified liquid core (8 = 0), this pair of equations becomes

po(x + V1)

V- (ool Vx) + w1 - u) PR

=0 (141)

polx + Vi)
ot

V3, + 4nG =0. (142)

Note that a negative 8 will introduce additional liquid core resonances of gravity wave
type to the Slichter modes eigen-spectrum. With a non-zero 3, the possibility exists that

B — 0 in some frequency range somewhere in the liquid core, which leads the equations
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(139) and (140) to become improper. This point becomes more clear if the Brunt-Viisiila

frequency NV is used in (17) according to the relation

2
Nt = -ﬁai;’. (143)

Then whenever B — 0, the following criterion from (17) holds

W=y ey (1)

o
That is to say that difficulties will arise in either the following period range:

(1) T > larger of (Tgy, 12 hr)

(i1) smaller of (Tpy, 12 hr) > T > H%J;‘;L)LZPF
where the Brunt-Viisiild period Tgy = 2x/N. For a non-negtrally stratified liquid core,
the period of the slowest core gravity mode is at least 6 ~ 8 hours, based on Masters’ (1979)
estimate of the core stability parameter 8 (Crossley, 1984).

To use the TPD in case of B — 0, (139) and (140) can be modified with (38)? and 8B

to yield
C-
(BB?V {Tp- Vx — —=IC-Vx — (1~ i*)(x + Vi)i}

— (1 -p?)BBIC-Vx—uw?(1—p*)(x+ V)] =0 (145)

1-8

a?

BBV, - p{fC-Vx — (BB A1 - (X + =0 (149)

Equations (145) and (146) are the forms of the governing equations suitable for a numerical
search for eigenperiods in a frequency range for which B may vanish somewhere in the liquid

core. These equations will be used in Chapter 6.
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An improvement on the two-potential description, which avoids the complexity of the
equations required when B may vanish, and retains the advantages of a variational principle,
was recently discovered by Rochester (unpublished m:s; Seyed-Mahmoud, 1994). However,
the discovery of this three-potential description came at such a late stage in my calculations

that it seemed unnecessary to incorporate it into this thesis.
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Chapter 6 Galerkin Solution of the Two-

Potential Description

6.1 Introduction

An alternative approach to solve the reformulated two-potential equations (145) and
(146) is the Galerkin method. This weighted residual procedure allows the trial functions to
satisfy the governing partial differential equations in a weighted mean sense. The difference
between the Galerkin method and other residual methods is that the former takes the trial
functions themselves as the weighting functions. The resulting expressions from substituting
the trial functions into the governing equations are orthogonal to the respective set of trial
functions. In principle, one can require the trial functions, x and V) in the case of the two-
potential description, to satisfy the associated boundary conditions a priori. But again, one
can take advantage of the natural character of the boundary conditions on x and V}, and
relax the latter requirement by adding necessary surface intégrals containing these boundary
conditions to the resulting Galerkin equations.

Suppose the two equations of the TPD (145} and (146) are written in a compact form
Lx=20 (147)
where L is constructed from the linear operators in these two equations:
L= (L L) (148)
and

x = (x W | (149)
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At the outer core boundaries, x are required to satisfy continuity conditions

s

x =10 (150)
where K are also linear operators in the associated boundary conditions:
K= (K K2)F. (151)

Then the compact form of the Galerkin equations incorporating the natural boundary con-

ditions is
| xLxdv / UK x dS =0 152
./r:cl"'x‘ * ICB+CMB__1 5=0 (152)

where " are independent weighting functions

U o= (¥, ¥, (153)

6.2 Two-Potential Galerkin Equations

Guided by (99), the trial function for the potential field V; can be constructed in a similar

fashion
(2L-2N _
Vi(r,8,¢) = Y Ck(;)"Pz'Z-xe"""- (154)
k=1

For convenience, x and V] can also be written in an alternative form

At
x =3, dixee™® (155)
k=1
M .
Vi=)Y aV;e™ | (156)
j=1
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where xe and V) ; are functions of radius r and the polar angle 6. As M — oo, the trial func-
tion set in a Galerkin method shall represent any function satisfying boundary conditions.
This is the so-called ‘completeness’ requirement (Zienkiewicz & Morgan, 1982).

Now using the definition (138) for the displacement u, [ will explicitly write the Galerkin

equations constructed in (152) as
209 _ .2 . 2val
WAL= ) [ xi(BBYV -udv
(L= ) [ xi(BBYC-Vx - w?(1 - p)(x + V1)

‘I’- - — Uy ds = 0 157
+./rca+cn13 Lt - (u - u,) (157)

l ™ -
anc(ﬁB) Vi V2VidV - /chom’l‘,c.vxdv
L(1-p _
+-/;C Pﬂvl,l[( ol )‘ﬁB -+ wz(l - p,z)ﬁ](x+ V1)dV

/ U3 (it (VVi = 4xGpou) — fa - (VV; ~ 4xGphu,)ldS = 0 (158)
ICB+CMB !

where xj, U5, U3, and V[, are weighting functions, p§, u, and V|’ are the density, displace-
ment and additional gravitational potential fields in the solid parts of the Earth.

Using the divergence theorem and equation (138) again, it is clear that if I choose

L3¥

1

—w’(1 — u?)x;(BB)’ (159)

1 .
W= ~gBBIVI (160)
equations (157) and (158) will be changed into

- [ 9i(BBY]- T, - Vx - Z1C- Vx - w1 - )+ KKV
LC
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- w1 =) [ xi(BB)C- Ix - wi(l - u?)(x + V)|V

. 2y 2y 2 -
‘./ICB-}-CMBw (1l —p*)x;(BB)®n-udS = 0

(161)
l
= 1nG L, BB VYV VW + Y V(8B)- V|4V
. (1=
- -/LC poBVC - VxdV + -/LC POVu[( azﬁ)(ﬂB) +w?(1 - ®)Bl(x + Vi)dV
1 ) N o
4rG rc5+c‘wa(ﬂ3) V47 Gpo — pi)it - u + 0 - V(]S = 0. (162)

Upon substituting trial functions (99) and (154) into equations (161) and (162) and using

the continuity conditions at the ICB and CMB, they may be written in 2 matrix form

GD=u (163)
where
G =(G G)f (164)
D = (didy v deeeecren oorcp o) (165)

G ;; and Ga; are the ¢, jth component of the LHS of equations (161) and (162)
Guij == [ V(BB {Ty- Vx5

C-
- —E-[C - Vx; —w(l = ) (x; + Va,;)]}r?sin 8drdd

~w?(l = uz)‘/;gxi'(ﬂB)[C - Vx; —w?(l = p?)(x; + VA,3)|r? sin drdd
~ w1 = °) [ xi (BB yi(a)e’ sin 649
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+ w1 = %) [ Xi(BBY ()6 sin 040 (166)

Gaij = — ‘/rGPoﬁV[,,-C . Vx,-rz sin 8drdd

* /,,a Vil ;zﬁ)(ﬁB )+ w1 = u)B)(x; + Vi;)r® sin 6drdo
N FIG'/,,V’B VWi VVi; + VV(BB) - VV j|r? sin 8drdd
- ooz [(8B)V; e Gan(aie) + vilaa sin 88
+ 4,+G [(BB)Vii{4mGa(b)3(b) + ¥i(b)]6” sin 8d5. (167)

Note that ¥i(a), yi(b), yi(a), and yg(b) in G, ;; and G, ;; are dimensioned quantities of the
inner core and mantle, and they are readily computed from the corresponding dimensionless

quantities.
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6.3 Eigenperiods and Eigenfunctions: Numerical

Results Using the Two-Potential Description

[n numerical computations, the volume integrals in G;i; can be evaluated analytically
for a neutral liquid core, whereas numerical integration with respect to r is required if the
stratification of the liquid core is not neutral. The # component of the integration is evaluated
analytically for any spherical stratification using the orthogonality relation of the associated
Legendre functions. Due to the use of the TPD, the resulting matrix of the determinant is
twice as large in size compared to that which results from using the SSA for the same level
of truncation.

Among these computed results, [ compared the eigenperiods of the Slichter modes for a
neutral liquid core calculated using the TPD, with that obtained from using the SSA. The
first part of the Table 6 lists the results of this comparison. In examining the accuracy of
both the SSA and TPD, [ also compared (in the second part of Table 6) the results from
the SSA and those from the direct integration method. Note that the latter is limited to a
non-rotating Earth model only.

Generally speaking, the error brought into the eigenperiod calculation by using the SSA
is small. From the above comparison, it seerns that the maximum difference appears in
prograde mode (m = —1) and the minimum difference appears in retrograde mode (m = 1),
with a shift of 0.043% and 0.006% respectively. The difference between the results from the
TPD and the results from the direct integration is much smaller than the difference between

the results from the SSA and the results from the direct integration, by a factor of about
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J or so. Note that a differen;:e of 0.00045 hr between the result from the TPD and that
from the direct integration is still large, whereas in principle they should be very small. This
discrepancy may well be related to the fact that, in this thesis, the trial functions in the
Galerkin method based on the TPD only satisfy the governing equations and the associated
boundary conditions in a weighted average sense. If the trial functions satisfy the boundary

conditions exactly, this discrepancy should be very small.

Table 6: Comparison of the eigenperiods (hr) from the TPD with those from the SSA
for the PREM model with a neutrally stratified LC.

non-rotating rotating
m=0_0 m=1 m=-1
SSA-VP 5.41190 5.30168 4.75935 5.96972
TPD-Galerkin 5.41367 5.30333 4.75960 5.97230
Difference 0.00177 0.00165 0.00027 0.00259
Percentage 0.033 % 0.031 % 0.006 % 0.043 %
Direct integ. 5.41322

Diff. to SSA 0.00132
Diff. to TPD 0.00045

77



Table 7 compares the eigenperiods of the Slichter modes for the original PREM model,
with those for the modified PREM model with an exactly neutrally stratified liquid core.
Both these results are calculated using the Galerkin method based on the TPD. It is shown
that if the core is exactly neutrally stratified, the Slichter periods are shorter than those of
the non-neutral liquid core. The largest decrease of 0.126% occurs in the non-rotating case,
and a decrease of 0.101%, 0.102% and 0.097% occur for the polar, prograde and retrograde
modes respectively. It is known that gravity modes with periods longer than the Slichter
modes would exist if the part of the liquid core is stably stratified. Therefore, it is expected
that, even though the existence of the Slichter modes does not depend on stable stratification

of the liquid core, the non-neutral stratification of it will lengthen the Slichter eigenperiods.

Table 7: Comparison of the eigenperiods (hr) of the Slichter modes for an exactly neutral
liquid core with those for a non-neutral liquid core rmodels. Both results are obtained using
the TPD.

non-rotating rotating
- m=( m=1 m=-1
Original PREM Model 5.42050 5.30871 4.76426 ©5.97838
Modified PREM Model 5.41367 5.30333 4.75960 5.97230
Difference of
Eigenperiods
0.126% 0.101% 0.097% 0.102%
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Next I compared the results obtained here for the original PREM model with those
obtained by Crossley (1992) and Wu & Rochester (1994), for both the non-rotating and
rotating Earth models. Crossley (1992) used ICB and CMB Love numbers but a direct
integration method and the spheroidal-toroidal field representation to solve the coupled
ordinary differential equations in the liquid core for the discrete data version of the PREM.
Wu & Rochester (1994) used the TPD and a Galerkin method for a polynomial data version
of PREM, as used in this thesis, but with the boundary conditions being satisfied a priori by
the trial functions. Table 8 displays these three groups of eigenperiods of the Slichter modes
respectively. In order to be consistent with Crossley (1992), [ only retained five significant
figures in the results of Wu & Rochester (1994) and those of this thesis. The line W-P in
Table 8 shows that while there is an exact agreement between the eigenperiod calculated in
this thesis and that of Wu & Rochester (1994) for the non-rotating case, the eigenperiods
of the polar mode, retrograde mode and prograde mode of this thesis are 0.030%, 0.048%
and 0.010% shorter than those obtained by Wu & Rochester (1994). These discrepaucies
may also arise from the different ways we handle ti}e boundary conditions: Wu & Rochester
(1994) made the trial functions satisfy the boundary conditions exactly, whereas [ used
the natural character of these boundary conditions so that the trial functions only satisfy
them approximately. The line C-W in Table 8 shows that there are very small differences
between the results of Crossley (1992) and those of Wu & Rochester (1994), only amounting
to 0.002% - 0.003%. These little differences may be caused by their 1se of :L.iferent data

| vérsions: discrete vs. polynomial data versions. It is clear that the differences shown in the

line C-P indicate a superposition of two sources of errors: one is due to my use of the natural
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boundary conditions in the Galerkin method based on the TPD, and one is due to my use

of the polynomial data version of the PREM.

Table 8: Comparison of the eigenperiods (hr) of the Slichter modes obtained by different
authors using different approaches.

C: Crossley’s (1992) results, using the direct integration and the spheroidal-toroidal field
representation in the liquid core;

W: Wu & Rochester’s (1994) results, using the TPD and a Galerkin method in the liquid
core with the boundary conditions satisfied a priort; )

P: Peng (1995), the results of this thesis using the TPD and a Galerkin method in a liquid
core with the boundary conditions not satisfied a prior:.

C-W, W-P and C-P are percentage differences between these authors results.

non-rotating rotating
m=0 m=1 m=-1
5.4206 5.3104 4.7667 5.9792
5.4205 5.3103 4.7666 5.9790
5.4205 5.3087 4.7643 5.9784

=0

C-P  0.002%  0.032% 0.050% 0.012%
W-P  0.000%  0.030% - 0.048% 0.010%

C-W  0.002% 0.002% 0.002% 0.003%
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After the eigenperiods have been obtained, the coefficients of the trial functions x and
V) were calculated using the same procedure as described in Chapter 4. Here [ only needed
to use the ordinary load Love numbers at the CMB for extending the eigenfunctions to
the mantle, since V) is explicitly involved in the liquid core now. For comparison with the
eigenfunctions obtained in Chapter 4 using the SSA, here [ plotted in Fig. 9 - Fig. 16 only
the eigenfunctions of degree 1 obtained using the TPD for a neutrally stratified liquid core.
[n contrast to those obtained using the SSA, these graphs in Fig. 9 - Fig. 16 look like those
obtained by direct integration, i.e. the abandonment of the SSA has restored the mantle
eigenfunctions to their correct amplitudes (particularly yg) and sign (particulacly y;, see Fig.
13 - Fig. 16). I conclude that the use of the SSA is responsible for the distortion of the
eigenfunctions in the mantle.

Note that the discontinuities of the eigenfunctions y;, y2, ys and yg at the [CB and CMB
are still present. Again, the particular way in which I applied the Galerkin method, i.e.
using the natural character of the boundary conditions to avoid making the trial functions
satisfy these boundary conditions precisely, may be responsible for these jumps at the outer
core boundaries. To explain this more clearly, let me present a brief review of just how these
cigenfunctions of degree | are obtained in the solid parts of the Earth, e.g. in the mantle.
Once the numerical solutions are found, values of ¥ and dys/dr on the liquid side of the
CMB are obtained from now-determined trial functions x and V). Using these quantities
and the exact load Love numbers, the starting values of y;, ¥2, ¥s and ys on the solid side
of the CMB are obtained (y4 = 0 and y; discontinuous there). These are the quantities that

ought to be continuous with the corresponding values of these AJP variables on the liquid
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side of the CMB. However, the quantities of the AJP variables on the liquid side of the CMB
are calculated from the numerical solutions for xT* and ys given by equations (99) and (154)

respectively. With xT'(b_) and ys(b-) so obtained, y(b-) can be calculated from equation

(138). Then y(b.) will be given by
yalb-) = polb-lao(8)ya(b-) = x7(6-) - ys(b-)] | (168)

and finally yg(b_) is computed from y, and dys/dr. All these quantities on the liquid side
of the CMB are based on the coefficients of the trial functions x and ¥} of equations (99)
and (154), which are not required to satisfy the boundary conditions exactly. Therefore,
one should not expect to see that the quantities computed on the liquid side nf the CMB
are continuous with the corresponding quantities computed on the solid side of the CMB.
That is the price to be paid for taking advantage of the natural character of the boundary
conditions, and indicates that future applications of a variational or Galerkin method should

use trial functions satisfying the boundary conditions a priori.
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NORMALIZED AMPLITUDE OF Y

Figure 9: Eigenfunctions of the polar mode computed using TPD

For non-rotating PREM with a neutral LC
m=0, T=5.41367 hr, N=1 .
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NORMRLIZED AMPLITUDE OF Y

Figure 10: Eigenfunctions of the polar mode computed using TPD
For rotating PREM with a neutral LC
m=0, T=5.30334 hr, N=1
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NORMALIZED AMPLITUDE OF VY

Figure 11: Eigenfunctions of the retrograde mode computed using TPD

For rotating PREM with a neutral LC
m=1, T=4.75960 hr, N=1
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NORMARLIZED RMPLITUDE OF VY

Eigenfunctions of the protrograde mode computed using TPD
For rotating PREM with a neutral LC
m=-1, T=5.9723G hr, N=1 ‘
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ENLARGED AMPLITUDE (y, x 10%)
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-12-

Figure 13: Eigenfunction y; of the mantle for the polar mode computed
using TPD for a non-rotating PREM with a neutral L
m=0, T=5.41367 hr, N=1
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ENLARGED AMPLITUDE (y x 10%)

=111

Figure 14: Eigenfunction y; of the mantle for the polar mode computed
using TPD for a rotating PREM with a neutral LC
m=0, T=5.30334 hr, N=1
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ENLARGED AMPLITUDE (y; x 104)

Figure 15: Eigenfunction y; of the mantle for the retrograde mode

computed using TPD for a rotating PREM with a neutral LC
m=1, T=4.75960 hr, N=1
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ENLARGED AMPLITUDE (y, x 104
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Figure 16: Eigenfunction y, of the mantle for the prograde mode
computed using TPD for a rotating PRE
m=-1, T=5.97230 hr, N=1

with a neutral LC
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Chapter 7 Effects of Ellipsoidal Stratification
and Centrifugal Potential

7.1 Introduction

Although the major effects of the Earth’s rotation on the Slichter eigenspectrum have
been taken into account by incorporating the Coriolis force into the equation of momentum
conservation, there remain two much smaller rotational effects which need to be considered:
cllipsoidal stratification and centrifugal potential. Studying these effects requires abandon-
ment of the assumption of a spherically layered Earth where an equilibrium gravity field is
purely radial. Now, in the undisturbed Earth which is regarded as in hydrostatic equilib-
riumn in a steadily-rotating reference frame, the surfaces of constant material properties are
ellipsoids (to first order in ellipticity) of revolution. Consequently, the equilibrium gravity
field is modified by the asphericity of the Earth, as well as the centrifugal potential.

However, the ellipticity of the Earth’s strata, défined as the ratio of centrifugsl force to
gravity, is not a large number. In fact, it never exceeds 1/300 anywhere throughout the
Earth, For oscillations which do not significantly redistribute angular momentum within
the Earth, such as the Slichter modes, the effects of ellipsoidal stratification and centrifugal
potential are therefore expected to be very small. This fact promoted a number of researches,
beginning with Backus & Gilbert (1961), to treat these effects as small perturbations to the
eigenperiods of normal modes calculated for a non-rotating spherical Earth model. After

an error in the original formulation of normal mode perturbation theory was corrected,
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Woodhouse & Dahlen (1978) and Dahlen & Sailor (1979) used Rayleigh’s variational principle
and conventional perturbation theory to obtain the effects of ellipticity to first order and
those of Earth’s rotation to second order. In addition Dahlen & Sailor (1979) tabulated the
splittings, due to ellipticity and rotation, of a large number of normal mode eigenfrequencies
computed for a particular spherical Earth model (1066A).

In this thesis, [ will explore a different approach to calculating the effects of the ellipsoidal
stratification and the centrifugal potential, by incorporating these effects into the governing
system of equations in the two-potential description of core dynamics. This will be done in
the current chapter (7), and the following two chapters (8 and 9).

In the remaining three sections of this chapter, I will discuss how to adapt the material
properties tabulated for the spherical PREM model to an ellipsoidally stratified Earth model,
and the methods for implementing governing system of equations in a mean sphere domain
(MSD), as well as in an equivalent spherical domain (ESD).

Compared to the properties of the inner and outer cores, those of the mantle play a
minor role in determining the Slichter eigenperiods. For this reason and also for saving
computational effort, the effects of ellipticity and centrifugal potential are fully retained in
the liquid core, retained for degrees n = 1, 3 in the inner core, and ignored in the maatle.
The effects of ellipticity and centrifugal potential on the proper choice of starting solutions
at the geocentre for the eigenfunctions are discussed in Chapter 8. A novel feature of this
work s the extension of the concept of load Love numbers, hitherto used only at spherical
interfaces, to ellipsoidal core boundaries. Chapter 9 will present a Galerkin formulation of

the TPD governing equations and the numerical solutions.
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7.2 Adapting PREM to Ellipsoidal Stratification

[ndced, inclusion of the effects of the Earth’s ellipticity of figure and centrifugal potential
to normal mode cigenfrequencies will introduce great complexity into numerical computation.
What one wants to do is tu calculate free oscillation periods for an ellipsoidal Earth model
(with volume Vg) using published material property data, which, however, are tabulated for
spherically-layered Earth models. The primary challenge is to bridge this discrepancy in a
consistent way. [n a rotating ellipsoidally-stratified Earth model in hydrostatic equilibrium,
material properties are constant on the equipotential surface Wp=constant. If the mean
radius of that surface is ry, and its ellipticity is €(rp), then in a cylindrical polar coordinate

system the equation of that surface is given to first order in ellipticity by
2
r=rfl — ae(ro)Pz(cos 8)}. (169)
The density at the point located by the position vector r, is given by
p(r) = po(ra). (170)
Then to first order in ellipticity

o(r) = po(r) + h%Pz(cos g) (171)

where h is defined for convenience in writing
2
hir) = are(r). (172)
Thus in equation (169), it could be used to denote

h(ro) =

[N V]

ro€(7o). (173)
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Equation (171) is the density in the ellipsoidal domain expressed in terms of that in the
mean sphere domain. Similar relations hold for rigidity p(r) and Lamé parameter A(r).

Smith (1974) developed a method of doma:n transformation to cope with the elliptical
configuration of the Earth. This method has been used to compute free oscillation modes and
wobble/nutation modes (Smith 1976, 1977; Wahr 1981). However, as Smith (1974) stated,
his method handles the dynamics in the interior of the Earth and that of the boundaries in
an inconsistent way. He assigned each external or internal elliptical boundary in ellipsoidal
domain a corresponding spherical boundary in an ‘equivalent spherical domain' (ESD). In
the interior of the volume Vg away from boundaries, he took the location vector r to be
identical to the location vector r in the ESD. The property quantities p, # and A expressed
in the ESD are transformed to the ellipsoidal domain. The expression (170) for density and
similar expressions for other material properties are precisely those used by Smith (1974)
in the interior of Vg away from boundaries, i.e. he identifies po(r), p{r) and A(r) with
those tabulated as a function of radius r for a spherically-layered Earth model, such as
PREM. However, at a point on an equipotential which forms a boundary, he used (169) for
radius r and transformed all boundary conditions into the ESD. Treating the interior regions
differently from the boundaries involves an error of first order in ellipticity, but only in the
vicinity of the boundaries (Smith 1974).

To avoid this inconsistency, one may want to apply Smith’s (1974) way of field variable
transformations used at boundaries to the interiors too. A consistent way of doing this is
to take material properties prescribed in a spherically stratified Earth to be the material

properties of the mean sphere corresponding to the ellipsoid of interest, and transform all
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field variables in the elliptical domain to the mean sphere domain. The mean radius rq of
an equipotential is taken to be the location vector in MSD, corresponding to the location
vector r of that equipotential, through the interiors and at the boundaries. This may be
particularly necessary for wobble/nutation problems, since the eigenperiods of the latter are
critically dependent on ellipticity. The details of this amendment will be discussed in section

7.3.

7.3 Governing Equations in Solid Parts of

Ellipsoidal Earth I: Mean Sphere Domain

The original Poisson equation and the equation of momentum conservation in terms of

the additional gravitational potential field ¥, and the displacement field u are

V2V, = 4rGV - (pou) (174)

(A+2u)[V(V-u)] -V x{(Vxu)+V(A+p)V-.u
+V x (ux V) + V(u-Vg) - uVipy
22 —pow?tt + 2ipowk X u — poVV; + goV - (pott) — V{pou - o). (175)

For an amendment to Smith's (1974) theory, i.e. taking a consistent treatment for both
the interior and boundaries, the relation (169) for radius 7, (170) for the density, and similar
relations for other material properties will be used.
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First | need to transform mathematical operators defined in the ellipsoidal domain into
those in the MSD. The simplicity of this transformation is that the spherical polar coordinate
system is retained, and directions of all vector components remain unchanged. Specifically,

r is oriented in the same direction as that of ry, and their relationship of magnitude is shown

in (169). Therefore, ro can also be expressed in terms of r as:
2
ro=r[l + se(r)Pz(cos 8)]. (176)

The gradient operator expressed in MSD domain is then

(Ve =F5+ 256 ¥ reind 59
_ .61'0 d éaro_a_ 0 $ _a_
=15 5 Tt 30 Ore T 96 T rsind 55

where quantities 8ro/Or and Ory/08 are derived from (176),
Oro L+ 2d(re)

-9 _ 178
or 3 dr P (178)
61‘0 2 dpz
—_— = =Te—— 179
9 3 df _ (179)
and
.0 60 $ 8
—- e = 180
Vo ’aro T ro 08 + ro sinf d¢ (180)
, 2 0
V' = ‘3'[£sz° + TOVO(EPZ)E;]- (lBl)

Based on one to one correspondence between an equipotential surface in the ellipsoidal
domain and an equipotential surface in the mean sphere domain, it can be assumed that the

geopotentials on these two sets of equi-surfaces have an identical value
1
Wo(ro) = Wo(r) = Vo(r) + 59’1‘2[1 — Py(cos 6)) (182)
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where V} is the gravitational potential on an elliptical equipotential surface, P, is the Legen-
dre polynomial of second degree, and the last term is the result of the centrifugal potential.

The use of equation (169) changes equation (182) to
1oz 2 1022 4422
Wo(re) — §Q rg = Vo(r) — EQ 7°Py(cos §) — §Q ro€P;. (183)

The LHS of equation {183) is the mean gravitational potential on the equipotential surface
‘ro’, and it is a constant on that equipotential. The RHS of (183) remains constant as well.

Now, one can write geopotential on rq as
1
Wo(ro) = Uo(ro) + 5927'5 (184)

where Uy(rq) is the mean gravitational potential on ry. Thus, the geopotential on an elliptical
equipotential surface, expressed in terms of the gravitational potential on an equilibrium

surface of a non-rotating Earth and centrifugal potential, is

2 dU
bVo(l') = Uo(r) +- 51‘5 ;:T)

P, + %Q’r’ (185)

dropping off quantities smaller than the first orcer in ellipticity. Therefore, the gravity at

the point r is

go(r) = VWo(r) = golr) + €'(r, ) (186)
where

go(r) = —Tgo(7) (187)

£(r.0) = ~3Vlerau(r)Pa] + 2907 (158)

Here go(r) is the gravitation of spherically layered Earth at point r, and g'(r,8) is the
additional gravity caused by the ellipticity of the figure and centrifugal potential.

97



With a simple transformation using relation {169), gravity in the mean sphere domain

will be written as

go(r) = go(ro) + g'(r0,9) (189)
where

go(ro) = —1go(ro) (190)
and

&(ro,6) = 30%(ro — hPy)E — ga(ro) V[h(ro)Pa(cos )] (191)

Here go(ro) is the gravitation of spherically layered Earth, and g'(ro,8) is the addition to
gravity due to the ellipticity and centrifugal potential.

Any field vector or scalar in the ellipsoidal domain can then be transformed into the
MSD readily using vector or scalar Taylor expansion, keeping only the first order quantity

in ellipticity. For example the displacement field u and potential field V; now are

a(x) = u{rs) = hlro) 3= P (192)
Vi(K) = Wlro) = hlro) groP. (199)

Substituting (169), (170), similar relations for other material properties, mathematical op-
erator (177), and field variables (192) and (193) into the Poisson equation and equation of

momentum conservation, the latter can then be written explicitly as

9 9
Vi - P, a—ﬁ(VéV,) = 4rG{[Vopo + V'po) - [u — P, il

3Vo -
ore ) (194)

+poV - u — poh P,
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(A + 2#){V0(Vo . u) - hP a—?.;VO(Vo . ll)]

—F[Vo X (Vo X u) - hpzéa—'Vo X (Vo X l.l)]
To

+(Vo + V')(A + [L)[Vo *u - th ‘a-?:o'VQ . UI

HVo + 9) x [(u = b8 3) x (Von + V)

g /
+(Vo + V')[(ll - hP, a—u') . (Vop + V'#)l - [u - th‘aﬂl(Vo + V') . [VQF +V [L]
To 37‘0
Ou . . a .. 0VoWh
—- . - _ - _ -
= —pow’[u tharo] + 2ipowQ[k x u - P, aro(k x u)] — po[VoVi - hP; Bre ]
' é AV, -
+(go + 8)(Vo + V')po - (u — hPyoe )+ po(Vo - u — hP,— u)]
61‘0 61‘0
. du .
—(Vo + V')po[(u — AP, 5o ) (80 + 8')]
To
' du .
~po(Vo + V)[(u - kP, _Bro) (g0 + &) (195)

Dropping off quantities smaller than first order in ellipticity and rearranging some terms,

these two equations become

[LHS of (174) — RHS of (174)]M50(ro.0.¢) = i Vh(l) (196)
[LHS of (175) — RHS of (175)IMSD(ro.O.¢) = - i mh(i) + f:fh(i) (197)

i=1 i=1
where the notation in subscript on the LHS of these two equations emphasizes that they are

to be evaluated at (ro, 6, ¢) in the MSD. The quantities in summations on the RHS of these

equations are as following
8 o
Va(1) = kP 2—(Vo 1) (198)
31‘0
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Va(2) =4xGV'pg - u

Va(3) = ~4xGhP,Vopo - %"-

0
6Vo~u

Va(4) = —4nGpoh P, Bre

ma(1) = (A4 2)[=kPs 2=Vo(Vo - u)

0
mx(2) = phP, ér—ovo x (Vo X u)

mu(3) = V(A +p)Vo-u
0
Mh(4) = -Vo(/\ + #)th 5—Vu () |
To
mu(5) = V' x (u x Vou)
mu(6) = Vo x (u x V'y)
Ou
mh(7) = —Vo X (hpga— X Voﬂ.)
To
m4(8) = Vo(u - V')
m;.(9) = V’(l.l . Voﬂ)
du
m;(10) = -Vo(hpza— - Vou)
To
m;.(ll) = —uVo . V'ﬂ.
m,.(12) = —uV’. Vo#

;
m(13) = hP, g}ovgy
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(199)
(200)
(201)
(202)
(203)
(204)
(205)
(206)
(207)
(208)
(209)
(210)
(211)
(212)
(213)

(214)



Ju

fu(l) = Powzhpza‘;; (215)
: d ,:
fn(2) = -2ipowSIh P, a—ro'(k < u) (216)
VoV,
f4(3) = poh Py a:o : (217)
du
fa(4) = ~goh P2aVopo - e (218)
To
oV, -
£(5) = ~gopoh P = (219)
To
£.(6) =goV'po - u (220)
£4(7) = —Vopou - g’ (221)
Ou
fh(S) = Vopoh Pzg— *Bo (222)
ro
f1(9) = 8'Vo - (pou) (223)
f;,(l()) = —V'pou *go (224)
du :
fu(11) = poVo(h Pa g~ - B0) (225)
To
£4(12) = —poVo(u - g') (226)
fa(13) = —poV'(u - go). (227)

Using the orthogonal property of associated Legendre functions and integrating over a
surface of a unit sphere, all m, and f, can be broken down to radial spheroidal, transverse
spheroidal and toroidal components respectively. As a result, a set of first order ordinary

differential equations in AJP notations can be obtained.
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Note that the work done so far on using the MSD shows that the number of additional
terms which need to be computed seems considerably larger than when one uses Smith’s ap-
proach (cf. §7.4). Apparently the reduction in the order of derivatives of material properties
involved is oftset by the increase in the order of derivatives of field variables. However, a
closer examination shows that the terms involving the second derivatives of the field vari-
ables are already first order quantities in the ellipticity. Therefore, these second derivatives
can be readily substituted by the zero'th order quantities involving only first derivatives of
the field variables, and these field variables themselves. Since the ellipticity and centrifu-
gal potential will make only small corrections to the Slichter eigenperiods, both approaches
discussed above should yield satisfactory results. Although the MSD formulation could be
particularly useful for wobble/nutation modes, in this thesis it does not seem profitable to
proceed further with the MSD formulation because the extra computational effort does not
seem to be warranted by the small corrections which ellipticity and centrifugal potential will
make to the Slichter eigenperiods (see §9.2 below). In this thesis, therefore, [ return to the

approach pioneered by Smith (1974).
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7.4 Governing Equations in Solid Parts of
Ellipsoidal Earth II: Smith’s Equivalent

Spherical Domain

Following Smith’s (1974) approach, [ adopt the elliptical domain for the interior of the
inner core in order to obtain the appropriate form for the system of governing equations.
The transformations of the material properties from the spherical domain to the elliptical

domain are given by Smith (1974):

p(r) = po(r) + hpy Pr (228)
p(r) = p(r) + hy'Py (229)
Ar) = A(r) + AXP; (230)

and the gravity go(r) and its additional part g'(r, ) due to the ellipticity and centrifugal
potential are given by equations (186) and (188). Note that the prime on py, £ and A
represents the radial derivative.

Substituting (186), (228) - (230) into the Poisson equation (174) and the equation of
momentum conservation (175), and dropping off quantities smaller than the first order in

ellipticity, these two equations will be written

3
[LHS of (174) — RHS of(174)|espprae) = 3. Va(i) (231)

=1

[LHS of (175) — RHS of (175)|gsp(rey = — i my(3) + i £(3) (232)

ist i=1
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where
Va(l) = 4xG P,V (hgy) - u
Vi(2) = 4vGhpyV Ps - u
Va(3) = 4xGhpy P,V - u
ma(l) = A(X + 24") P, V(V - u)
my(2) = —hp'PV x (V x u)
mx(3) = VRN + p') B[V - u
mu(4) =V x [u x V(hp'P,))
mx(5) = Viu. V(hy'P,};
mu(6) = —~uV*(hy'P;)
fa(1) = —w?hpy Pyu
fn(2) = 2wQhp! Pk x u
£(3) = —hph BV,
fa(4) = 8oV - (pou)
fa(5) = 8oV - (hpg Pzu)

fa(6) = —V(hpg Pau - go)
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(233)

(234)

(235)

(236)

(237)

(238)

(239)

(240)

(241)

(242)

(243)

(244)

(245)

(246)

(247)



fw(7) = =V(pou - g'). (248)

Obviously, there is less work involved here than in the last section, namely one fewer V},, seven
fewer m,’s and six fewer f's need to be computed, and also there is no second derivative of
the displacement field and the additional gravitational potential field involved.

Next, [ am going to simplify equations (231) and (232) into a form analogous to those of
the AJP equations. Note that I have taken into account the elliptical and Coriolis coupling
between degree 1 and degree 3 spheroidal fields in the solid parts of the Earth in deriving
equations (231) and (232). Therefore, the degree 2 toroidal field is already included. To do
this, [ first define a set of extended AJP field variables y;, y2, - -, ¥14, where degree 1 field
variables ¥, y3, ¥s and ys (hence degree 3 field variables yg, ¥11, 113, 2nd y14) are defined as in
the original AJP notations, but y, and y4 (hence y,0 and y,2) are defined slightly differently.
Similarly, for degree 2 field variables, y7 is defined as in the original AJP notations, and ys
is defined slightly differently. These modified AJP variables are

dul 2u? -a(n+1)v7

Snavz + bnayio = d: + . (249)
_dup? a v - ul
Snys + Snathz = 7r - (250)
N {2 T2
ys=1o - (251)

The changes of these definitions slightly simplify the resulting governing ODE’s. It is evident
that it is not a disadvantzge for some of these field variables to be discontinuous across

material interfaces which are no longer spherical.
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Next, [ substitute these extended AJP variables in the Poisson equation. [t results in

one ordinary differential equation for degree n = 1

d
y‘ Z Ee. v: (252)

and another one for degree n = 3

d 14
ﬂ = Z: El-‘i i Yi (253)

i=1

Following a standard procedure, I will take inner product of the vector momentum con-
servation equation with vectors rY.*, VY*r and iVY} x r; then integrate the resulting ex-
pressions on the surface of a unit sphere to obtain the radial spheroidal, transverse spheroidal
and toroidal part of the momentum conservation equation respectively. Each of the radial
spheroidal and transverse spheroidal parts gives rise to two equations, one for degree n = 1
and one for degree n = 3. The toroidal part gives rise to one equation for degree n = 2. These

five resulting ordinary differential equations in extended AJP notations are listed below:

[. Radial spheroidal

n=1
B = R 25"’- % (254)

n=23
By ‘Zy’ = o dgr“’ +3 By  (259)

i=l

where Ep; and Eyp; (i=1, 2, -+, 14) are given in Appendix A, and

B = —h(XN +2u")AT,, (256)
afp = (A +2p) + A(X + 24) BT (257)
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A7 = ~h(X +24')C, (258)
al = (A + 2u) + h(N +24")B™ (259)

where AT, BT and C)} arise from the representation of P,Y™ as a linear combination of

spherical harmonics:

PYT = ADYD, + BV + OOV, (260)
with
m_dn+m)n+m-1)
A= i) (261)
m_ ®r+1)=3m?
"= @nt3)(en =) (262)
m_3r+2-—m)n+1-m)
Cx = 2(n + 3)(2n + 1) (263)
Solving equations (254) and (255) together, the ODE’s for y; and yyo follow
dyz _ 14
= § Az i (264)
dym 14
dr - ; AIO.: Yi (265)
where
1l 8% '
Agyi = —'—,;,‘{&,,%Ez,i + Eio.l - (266)
Qo a3 '»,‘\4‘
1 m
Ao = - — (B + g,z;'Ew.i]- : (267)
a2 &0

[I. Transverse spheroidal
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n=1

mdy2 o md¥s | mdys &
ﬁlz'?i:__ = "!u'aT al'.'_df' + ; By
n=3
md¥1  md¥s | ndyia |
ﬂ-‘l dT‘ —‘74 dT‘ +a4 dl' +¥E4lyl

where E;; and E,; (i=1, 2, « -+, 14) are given in Appendix A, and

n+3d

B = —#'hn—ﬁAnm+z

N2 = Imp'h ;(—;;_—I)J&

al =p+ p'h’i(f—(:—i)T;—sB,T
gp = - e,
7?=3m¢hﬂn+wﬂﬂl

Wy =p p'h%&?.

where J™ and HT are defined in (126) and (127).

[II. Toroidal

n=2

dys dy,
mids _ mT¥4
ﬂs d? Ts d?'

where E; (i=1, 2, --+, 14) are given in Appendix A, and

By = -~

dr

i=1

, n(n+1)—33m
a(n+1) "

d 14
+ a's"ﬂ + Z Ea',' Yi
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(268)

(269)

(270)

(271)

(272)

(273)

(274)

(275)

(276)

(277)



78 = Smp' h ( + I) n-1
— 3 h L m
as - ml‘ ( + l) n+l

Solving equations (268), (269), and (276), the ODE’s for y4, ys and ¥, are obtained

14

dy,
- = 2 A i Vi
dr = Wy

14

dys
d‘l" - g AB,: 'y.

where
1
Ayi = —E[Eu.iﬂaa? + Ea.s'ri'iai" + E4,;ﬂ;';ﬂ;" I
1
Agi= - E[Exz,ﬁ:' ay' - ayy(Egaf — E,iag))]

Auss = = 5[BuaiBPAP + B Buir? + Buibl)

= m m

(278)

(279)

(280)

(281)

(282)

(283)

(284)

(285)

(286)

There are seven ordinary differential equations listed above for ya, y4, vs, ¥s, 10, V12

and y;4. Another seven ordinary differential equations for ¥, s, ¥s, ¥7, ¥s, ¥11 and y,3 are

obtained from the definitions of ¥a, y4, ¥, ¥s, ¥10, ¥12 and y,4. These fourteen ODE'’s result

form truncating the series for the inner core displacement field and the potential field at

degree 3. The basic coefficient matrix £, from which the final matrix A of this equation set

is derived, is given in Appendix A.
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The basic governing equations for a rotating, ellipsoidal body have been developed in
this chapter for both mean sphere domain and equivalent spherical domain. However, only
the latter will be used in the numerical calculation of this thesis. This set of fourteen ODE's
now has to be integrated from the geocentre to the [CB, to provide the solutions from which
the spheroidal load Love numbers at that boundary can be derived. The procedure of doing

this and the associated boundary conditions will be discussed in the next chapter.
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Chapter 8 Love Numbers at Ellipsoidal
Core Boundaries

8.1 Starting Solutions at the Geocentre

From the 14th order ODE’s derived in §7.4, there are seven out of fourteen fundamental
solutions regular at the geocentre. First, I want to transform y;'s to dimensionless quantities

by the following modifications:

R i .
¥ = a §i{bi=137.011 + go(a)[bi=s1a + - i=614]} + ¥ibi=2,4,8,10,12 (287)

where § = | only if ¢ takes the indicated integer and § = 0 otherwise. The y;’s with a tilde
" are dimensiontess quantities. Note that ya, ¥4, ¥s, ¥10 and y;2 defined in §7.4 are already
dimensionless. Since I will hereafter work only with dimensionless y;'s, I drop the tilde ™ of
these y;’s for convenience in writing. Whenever a dimensioned y; arises, it will be referred
to explicitly.

Near the geocentre, let the solution y;'s and the material property quantities of the inner

core be expressed in series expansions:

yi= Y, Cip 2! (288)
k=0 '

"=#°+”2zz+.-. (289)

A=A0+A232+'°' (290)

po = po(0) + paz’ + -+ (291)
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where z is the dimensionless radius defined in (33), and v is an integer. The similar expres-

sions are adopted for gravity go and ellipticity factor k
4 4 3
go = §-7I’Gpo(0)R-‘B + gﬂ'GRng + .- (292)
2 2
h= §-R:z:(eo +ez’ +) (293)

where po, Ao. 00(0) and ¢ are values of these quantities at the centre of the Earth, us, A,
p2 and e are the coefficients of the terms of power two in the above series expansions, and
R is the mean radius of the Earth.

Substituting above defined quantities into the governing differential equations and group-
ing the coefficients of independent variable ¢ of the same power, starting from the lowest
order, I obtain a set of indicial equations which give rise to the dependent coefficients in

terms of seven independent coefficients. Then, the solutions of y;'s are found to be

n=A+A4z+... (294)
yo=vB'z+... (295)
y3=C+0C'z + .- (296}
va=vDz+.-- (297)
ys = Bz + yE'2* + -+ - (298)
Yo = vF + vy F'z? + ... (299)
yr=G'z? + -+ (300)
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ye =vH'z +--- (301)

yo = Az? + A’z + .- (302)
yo=vBT +.. (303)
m=0x+Cz"+... (304)
12 =vDz + vD'z® + ... (305)
ya=Ez® +yE'2° + ... (306)
Y4 = vFz? + vy Flzd + ... (307)

where 4, v are defined in (42), (43). In the above solutions, the independent coefficients are

C,E, A, G', D, F and D', and the dependent ones are

A=C (308)
F=E-+C (309)
B = — 510 + L FC + RoO)au(a)F (310)
D= 3(A - %B') (311)
C'=24'- %B’ (312)
H =0 (313)

' 1, 3, .2 p
U, T
Fr= =5 =55 * 5 000

eo(—3m’ + 2)14. (314)
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EI=lAI+£FI

: ; (315)
- 3=
1= ZD (316)
- 1 -
C = ‘ID (317)
= 1 - 12
-, 5 36 -, = 2, 2 Y
B = —m[ ?poD + po(O)Rgo(a)F + pO(O)R (w - 2mwQ)Al (319)
- 1 -, 22
A’ = _1_OBI + ED' (320)
=, 1 o, 12
C' = —%B + gD (321)
- 1., 2.
E = 5.4.' - 50' (322)
Fr=3E-4 (323)
where
ﬁ—w{snwswc 0)[(3m? -2 ? - 2mu
= po(O)(3m? = 2)eo +3] + 9(u” ~ 2mu)}. (324)

Letting one of the seven independent coefficients be unit at a time, the governing differential
equations can be integrated through the inner core to obtain seven sets of fundamental
solutions at the inner core boundary. The integrations are started from z = z,, a little

distance away from the geocentre (e.g. 1 km). The general solutions are then a superposition

of these fundamental solutions:

7 »
vi=) ¢yl (325)

i=1
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i=1,2 ..., 14

wherec, =C,c2=E,c3 =A", e, =G, ¢s = D, cg = F and ¢; = D’. To derive the load
Love numbers at the [CB [ must next apply the continuity conditions at the [CB to the

solutions (323).

8.2 Inner Core Boundary Conditions and

Ellipsoidal Love Numbers

In this section [ will complete the derivation of the load Love numbers at the ellipsoidal
ICB. As discussed in §7.4 that, at the liquid core boundaries, the material properties pre-
scribed for a spherically layered Earth are adopted to be those in the ESD, and all the field
variables are transformed from the elliptical domain to the ESD. This is the same treatment
as that used in the MSD. Following Smith’s (1974) notation, [ define the unit normal of

equipotentials

f=i+hVP (326)
and

p=r-hP; (327)

where p is the radius in the elliptical domain (what [ have called = in §7.3), and r is the
radius in the ESD (what [ have called rp in the MSD, where » of the ESD = rq of the MSD

on the outer core boundaries).
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Next [ want to transform all continuity conditions required at the elliptical liquid core
boundaries to the corresponding boundaries in the ESD. Here [ only need to write in detail
these boundary conditions at the ICB, the same forms apply to the CMB. Due to the presence
of ellipticity, the spheroidal and toroidal fields are now coupled together in these boundary
conditions. When it is necessary, [ shall write expressions for these boundary conditions at
the liquid side (2..) and at the solid side (. ) of the ICB explicitly. The AJP notations (with
modifications to some of them as discussed in §7.4) representing r-functions of the radial
spheroidal, transverse spheroidal and toroidal parts of the displacement, as well as that of
the additional gravitational potential will be used in these boundary conditions. But first [
will keep using notations u}', v, t™ and @7 for convenience, and will replace them with the
AJP’s y; notations when necessary. Again, the dependence of y;'s on order m and degree »
will not be indicated explicitly. However, I only list in this section the initial formulations of
the relevant boundary conditions. The analytical details will be presented in Appendix B.

(I) Continuity of normal displacement 1 - u

[-ule_ = [0 u,,. : (328)
(II) Continuity of additional gravitational potential 1

Vila_ = [Vila,. (329)
(111) Continuity of gravitational flux i - [VV; - 4rGpou]

[a- VWia - 47Gpo(a- )it - ujo_ = [0+ VWila, - 47Gpo(a)ia - ula, . (330)

(IV) Continuity of normal stress it - 7
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Here 7 is the additional total stress caused by disturbance. This continuity condition
should be assured by the continuity of its radial spheroidal, transverse spheroidal and toroidal
parts separately. To find these components, [ take the inner product of the normal stress of
degree n with t¥;", VY™ and i¥,™ x Vr of degree ! respectively after transforming them
onto the ESD, and integrate these over an unit sphere. The resulting expressions can then
be simplified using orthogonal relations of the Legendre functions. These three components
of the continuous normal stress are

(1) Continuity of radial spheroidal component of it - 7

(8- 7] adiat(2-) = {1 - T]ragiat( a4 ). (331)
(2) Continuity of transverse spheroidal component of 1 - 7

(1t - T)eraneverse(2-) = [0 T]ransverae(a+). (332)
(3) Continuity of toroidal component of n - 7

[« Tleoroidat{@-) = [ * T]eoroidat(@4 ). (333)

In Appendix B it is shown that upon use of the boundary conditions (I) and (II), the
boundary conditions (III), (IV) and (V) will result in a set of 7 algebraic equations linear in

the extended dimensionless AJP variables y;'s (i=1, 2, ---, 14)

14 l

;1\1.;!!-' = (@) (334)
14 m 1 dyS .

l_z:; Az.iya‘ = go(a)( ar )¢+ (335)
14

ATy =0 (336)

i=1
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14 1

Ani¥i = — x5 337
§ = (337)
o m 1 dyls

gz\s,;y, = 2ol a)(—dr—)..,, (338)
14

Y Agwi=0 (339)
=1

14

Y ATy =0. (340)

i=1
Note that all seven continuity conditions at the ICB depend on only four fully dimensioned
liquid-side quantities x*(e+), x5'(a+), (dys/dr)a, and (dyis/dr)a,.

To construct the general solution for y;, yz, -+~ or y14 2s a linear combination of seven
independent solutions regular at the geocentre, seven constants are needed. These seven
constants in turn can be determined as linear combinations of the four non-zero quantities
on the RHS of the equations (334) - (340). Alternately, I can write each of yy, y2, <+, y1a On

the solid side of the ICB ( except yq and y,2, which both vanish there) as a linear combination

of those four quantities:

- ™ 4 Hoay™ dys (e
yi(a-) = ago(a)[ff:.:x; + Hl.!X:l + Kt.l(r dr )°+ + K._z(r dr )04»1 (341)

i=1,2 ---, 14

where H;,, H;2, K;y and K;; are internal ellipsoidal load Love numbers at an ellipsoidal
ICB. Let one of the four quantities at the RHS of the boundary conditions (334) - (340) be
unit at a time (with the others zero), then the load Love numbers will take the corresponding
values of y;'s when the equation set of the boundary conditions is solved. Note that if the

ellipticity is set to zero, Hy,, Hay, --+, He1, K11, Ka,, -+ and K, will be reduced to
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spherical load Love numbers of degree 1, and Hq 3, Hio2, *«+, His2, Ko 2, K102, *+ 2nd K42
will be reduced to spherical load Love numbers of degree 3 respectively. By maintaining the
inertial and Coriolis terms in the governing differential equations of the inner core and the
starting solutions at the geocentre, the dependence of the ellipsoidal load Love numbers on
{requency and azimuthal order number m is fully taken into account.

By now [ have derived the spheroidal load Love numbers of the inner core which permit
closure of the solution of the governing dynamical equations in the liquid core. Together
with the mantle load Love numbers (spherical), they will be used in the surface integrals of
the Calerkin equations for representing the effects of the inner core and mantle on the liquid

core dynamics. This is the subject of Chapter 9.
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Chapter 9 Galerkin Solution of the Two-
Potential Description in
Ellipsoidally-stratified Outer Core

9.1 Formulating the Galerkin Equations

In an elliptical liquid core, the Galerkin formulations based on the TPD take equivalent
forms to the equations (161) and (162) of §6.2, with unit normal N of the inner and outer
boundaries of the liquid core defined in the elliptical configuration (note that [ have previ-
ously used n as the unit normal of the liquid core boundaries for spherical Earth models).
Now let fi be the unit normal of the equipotentials, then A = —N at the ICB, and A = N
at the CMB. For convenience, [ shall carry out the calculations of the surface integrals of
the Galerkin equations in the transformed ESD, and the volume integrals in the elliptical
domain. The gravity go(r) and the material properties p(r) and A(r) shall be modified

accordingly. I now discuss in detail the handling of these two kinds of integrals.

9.1.1 Surface integrals on the surfaces of the

equivalent spherical domain

[n the ESD, [ simply take material properties prescribed in a spherically stratified Earth
to be the material properties in the ESD, and transform all field variables [the position vector

p, the gravity go(p) and the additional gravitational potential Vi{p)| and trial functions from
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the elliptical domain to the ESD:

p=r—-hP (342)
. 2 , dh

go(p) = F{—go(r) + 3% (r = hP2) = gom=Ps| = go(r)hV P, (343)

W(p) = Vi(r) - h%‘-Pz (344)

X (p) = xr(r) ~ 1%L, (345)

The stability parameter 8(p) must also be a constant on an equipotential, thus

B(p) = B(r). (346)
Therefore
B(P)B = w(1 - u®)a® + Bgl(p) — uBlk - go(p)]*. (347)

The other quantities involved in the surface integrals of equations (161) and (162) are as

follows:
2 2 2 dh
95(P) = (=go + 39°r)* — 2(=go + Vr)(ZhPy + g - P2) (348)
3 3 3 dr
- 2 dh h
k- go(P) = 2(~go + F0(r — hP2) — go==Ps| - 3g0~2(1 ~ 2*) (349)
z = cosf (350)
. — {4, D™ E ! . mdP,:" i?_ my _ du:‘ m) imé
n-u=urPM+ . 2(— sin fv]] 0t msinGP" h o P,Pl)e (351)
dS = a¥(1 — %e(a)Pg) sin8dfdé  on the ICB (352)
ds = b*(1 - %e(b)Pz) sin fdfd¢ on the CMB (353)
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where a and b are radii of the ICB and CMB respectively, and ¢ is the ellipticity.

At the ICB, uP* = y, ul* = ys, T = ys and ®F = y,; are calculated using the
internal ellipsoidal load Love numbers of degree 1 developed in §8.2, and the others (either of
higher degree or zero’th order) are calculated using the spherical internal load Love numbers

developed in §3.2. At the CMB, all these quantities are calculated using spherical internal

load Love numbers of the mantle.

9.1.2 Volume integrals in the elliptical domain

Transformation of the material properties gy, A and the gravity go prescribed on a spher-
ically layered Earth to the elliptical domain is given by equations (228), (230) and (186).

The same transformation applies to the stability parameter §:

Ble) = A(r) + K P (354)

Another related quantity is

B(r)B = w*(1 - p*)a® + Bgi(r) — pB(r)[k - go(r))* (355)
where
. da?
a'(z) = a®(r) + hd—rP’ (356)
ga(r) = (—go + _er)z —2(~go + §Q2 )¢ (;90 +90%)Pz (357)
k. go(p) = z[~g0 + %Q r - (hdgo gojh)P-_.] - Sgo—:c(l - z?%) (358)

and z is defined by (350) in §9.1.1.
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All resulting volume integrals can be reduced to double integrals, reflecting the depen-
dence of radius r on 8 (azimuth dependence can always be integrated out in advance when
the Earth is modelled as cylindrically symmetric). The integrations with respect to r are
from a(z) = e[l ~ 3eo(2) Pa(2)] to b(z) = b[1 — 3eo(b) P2(z)), where @ and b are mean radius of
the ICB and CMB respectively. In principle, after the above transformations, each integrand
can be written as a product of a function of r with a function of z, then integration by parts
can be performed to reduce a double integration to 2 single integration. For example, let an

integrand T(r, z)r? = f(r)g(z), then
I= /L _T(r,2)rdrdvdg
o pb(z)
= 21‘./-1/1:(:) f(r)g(z)drdz
= an [ (FIRIERE o(e)de
=or [ II{F[b — h(8)P)] - Fla — h(a)Py)}g(z)dz (359)

where f(r) = dF(r)/dr. Expanding F of the above expression in Taylor series and only

keeping quantities of first order in ellipticity, then equation (359) becomes

r=2n( [ f(r)dr [ g(a)de = (h)() - A(a)f(a)] [ g(=)Pula)de}. (360)

However, if the liquid core is non-neutrally stratified, some of the terms in the final
integrals will be so complicated that changing from double to single integrations will involve
very heavy algebra. Therefore, in this thesis, some double integrations will still be present

in the final computations, at the expense of a prolonged computational time.
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9.2 Eigenperiods: Numerical Results for the

Ellipsoidal Earth Model

Dahlen and Sailor (1979) derived a convenient formula for calculating the rotational and
elliptical splitting of normal modes. Their tabulated splitting parameters are for the Earth
model 1066A. For the Slichter eigenperiods, they predict the combined effects of the ellipticity
and centrifugal potential to be as follows: a decrease of 0.090% for the polar mode {m = 0)
and increases of 0.080% and 0.097% for the retrograde and prograde modes (m = +1 and
m = —1) respectively.

By extending Dahlen & Sailor’s (1979) calculations to PREM, Wu & Rochester (1994)
have estimated the fractional effects of ellipticity and centrifugal potential on the Slichter
eigenperiods for that Earth model, with Coriolis coupling fully taken into account. They
found that these effects increase the eigenperiods of the retrograde mode (m = 1) and the
prograde mode (m = —1) by 0.080% and 0.097% respectively, and decrease that of the polar
mode (m = 0) by 0.088%.

The results of my calculations, listed in Table 9 (for PREM with the outer core modified
to be strictly neutral) and Table 10 (for PREM), are of the same sign but slightly different
in magnitude from the effects predicted by the perturbation theory. For the modified PREM
model, [ obtained a decrease of 0.094% for the polar mode (m = 0) and increases of 0.063%

and 0.101% for the retrograde and prograde modes {m = +1 and m = —1) respectively.
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Table 9: Rotational and elliptical splitting of the Slichter modes for PREM Earth model
(with a neutral liquid core).

L=7 (the number of the radial triai function)
N=5 (the degree of the associated Legendre functions)
Eigenperiods are in hr.

rotating
m=0 m=1 m=-1
e=0 5.303 4,760 5.972
€e#0 5.298 4.763 5.978

Increment -0.094% +0.063% +0.101%

Table 10: Rotational and elliptical splitting of the Slichter modes for the original PREM
Earth model.

L=4 (the number of the radial trial function)
N=3 (the degree of the associated Legendre functions)
Eigenperiods are in hr.

rotating
m=0 m=1 m=-1
e=0 5.307 4.763 5.972
€e#0 5.304 4.767 5.980

Increment -0.056% +4-0.084% +0.134%
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To assure a convergent eigenperiod, the highest number of the radial function and the
degree of the associated Legendre function in the trial function are L = 6 and ¥ = 5
respectively for a spherically stratified Earth. Here the number L specifies that a 2(L - 1)-
term polynomial will be used for the radial part of the trial function, with the lowest power of
—L and the highest power of L -1 respectively (omitting v = 0 and 1, as in the construction
of expression (99)). The accuracy of the convergence is up to 1 x 10~° hour. However, when
the ellipticity of the inner and outer core are taken into account, the convergence with such
a radial number and degree can only reach 1 x 10~3 hour. A close examination shows that
while the eigenperiod converges very well with the associated Legendre functions (one only
needs to retain it up to degree 5), it starts to oscillate once the number of the radial trial
function exceeds 7 (Table 11). Although there will always be a danger in approximating a
function with a polynomial of order greater than 5 (Hornbeck 1975), the problem here may
well be related to a more complicated formulation of the Galerkin equations. If a different
type of trial function, such as Legendre function which has an orthogonal property (Wu,
1993), is chosen, it might have some advantage. For the case of a neutrally stratified liquid
core, all the integrations with respect to polar angle @ are carried out analytically, and those
with respect to radius r are carried out numerically. In this latter case, the round-off error
may easily accumulate if a great deal of numerical integrations are involved. If L is increased
above 6, it seems to add only numerical ‘noise’ to the results. It might be helpful to use

double-double precision in computations so as to avoid the accumulation of numerical noise.
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Table 11: Display of the convergence of the eigenperiods (hr) of the Slichter modes for an
ellipsoidal Earth model. The radial trial function is approximated with a polynomial.

[: PREM Earth model with a neutral liquid core

[I: PREM Earth model with a non-neutral liquid core.

[
L N m=0 m=1 m=-1

5.29231 4.76426 5.97734
5.29662 4.76697 5.98123
5.29952 4.76232 5.98093
5.29893 4.76292 5.98000

> I BN N
o W O =

£
(<]

5.29894 4.76293 5.98001
5.29894 4.76293 5.98001
5.20894 4.76293 5.98001

-
w0 -~

5.20873 4.76289 5.97949
5.29844 4.76284 5.97874
5.29817 4.76277 5.97799
5.30205 4.95154 5.98947
5.29572 4.76052 5.98868

@O 00 ~3 O Cn
or Oy OO

II

5.20504 4.76542 5.97817
5.29811 4.76728 5.97986
5.30412 4.76733 5.98445
5.30385 4.76815 5.98747

= O NN
W W W
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As [ mentioned in the last section, if the assumption of a neutral stratification of the
liquid core is dropped, it will result in a great increase in CPU time for the eigenperiods
computation, in which several terms of double integrations need to be evaluated. From
computational practice, [ found that it is very difficult to obtain a convergent approximation
for these terms, especially when the number L and degree N are larger than 3. In fact when
L and N increase, the integrands of these terms become nearly singular. To handle these
singularities successfully, an extraordinarily long CPU time is needed. Because of limited
capacity of the present computing facilities, I will list in this thesis only the results for the
PREM model at a lower number L{=3) and degree N(=3): a decrease of 0.06% for the polar
mode (m = 0) and increases of 0.08% and 0.15% for the azimuthal modes (m = +1 and
m = —1) respectively. In order to avoid using extremely long CPU time, the best way to
improve calculations is to transfer all the double integrations into single ones, even if a great
amount of algebra is required. This transformation may also remove singular points in these
integrands. On the other hand, using a different type of trial function in formulations and
using double-double precision in computations would improve the convergence.

The work I presented in Chapters 7, 8 and 9 is an advance on the calculations by Smith
(1976). First, Smith did not take the Coriolis effect into account in the outer core as com-
pletely as [ have. His calculations were equivalent to truncating the liquid fields at N=1,
whereas my calculations retained the field of at least N=3. Second, Smith did not explicitly
distinguish the numerical effects of Coriolis coupling and those of the ellipticity and centrifu-
gal potential, whereas I did. Due to the smallness of the ellipticity, and the gravitational

nature of the restoring force, the influence of the ellipticity and centrifugal potential on the
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Slichter modes is relatively small, compared to that of the Coriolis effects. The work reported
in Chapter 7, 8 and 9 also improves on the calculations permitted by the work of Dahlen
& Sailor (1979) because the Coriolis effects are more fully taken into account in the liquid
core in my calculations. Indeed, it provides a direct test of the validity of the perturbation

theory for computing the effects of the ellipticity and centrifugal potential.
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Chapter 10 Effect of a Mushy Inner
Core Boundary

10.1 Replacing the Inner Core Boundary
by a Thin Mushy Transition Zone

The density contrast at the ICB is inferred mostly from the amplitude ratio PKiKP /
PcP. The poor determination of this contrast is due to insufficient detection of the PKiK P
wave and also the strongly scattered nature of a PcP wave. While the uncertainties in
interpreting PcP observations are introduced by possible complex structure at the CMB
(Buchbinder et al., 1973; Souriau & Souriau, 1989), the weakness of the signals reflected
from the [CB may indicate uncertainty in the ICB itself: it may not be a sharp discontinuity,
instead it may be a transition zone with low rigidity. The thickness of the possible transition
zone is also poorly determined. In a recent study based on synthetic seismograms using
PKiKP and PKJKP data, Cummins & Johnson (1988) proposed that the thickness of the
transition zone must be 5 km or less, which broadly agrees with the result of Phinney (1970).
The latter author obtained a thickness of 1.5 km or less using a different approach which
retains a special form of the transition zone where analytic solutions exist. For the purpose
of investigating its influence to the Slichter mode, it may be useful to look at a variation
of the thickness, for example, from 1 km to 5 km, upper bounded at the PREM inner core
boundary (1221.5 km). Also, for the sake of simplicity, the Earth is taken to be spherical in
order to examine how a mushy zone at the [CB affects the Slichter eigenperiods.
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First [ wurn to Loper & Fearn (1983) for guidance in constructing a model of the transition
zone at the [CB. Currently, the Earth models deduced from seismology all place a sharp ICB
iminediately beneath the liquid outer core. Studies of the anelasticity and P wave speed of
the inner core also indicate a non-homogeneous region several hundred kilometres thick
immediately below the ICB. Therefore, from a seismological point of view, the transition
zone at the ICB is most lik='y of a form in which the outer core contains no solid but the
inner core may contain liquid in a dendrite mushy zone (Loper & Fearn, 1983). This mushy
zone should have a significant mass fraction of solid which forms a mechanically rigid matrix
capable of sustaining shear waves. The model also should allow for liquid inclusion to occur
in the interstices of the solid matrix. If the shear modulus of the inner core is g,, the shear
modulus g, of the transition zone can be estimated using Loper & Fearn’s (1983) formula

(64)

pe = (1 - fPu, (361)

where f is the fluid fraction parameter defined as
f=W/V (362)

I, is the volume of the fluid in the transition zone, and V is the total volume of the transition
zone, and ¢ > 1.

In principle, [ could require that the density (po) and the elastic parameters (A and
) change smoothly through the transition zone and continue across its upper and lower
boundaries. While the requirement for continuity of the Lamé parameter A and the density

po can be implemented easily, such a requirement for the shear modulus g will pose some
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difficulty. When g = 0, two of the six ordinary differential equations of the transition zone
become improper, so a special treatment is needed at this point. To avoid this difficulty,
[ allow for a little discontinuity in shear modulus at the upper boundary of the transition
zone (PREM’s ICB). For example, I take gz, = 0 just outside of the ICB, at a + h/20 or
so, where a is the radius of the ICB and & the thickness of the transition zone. A fitted
polynomial using this point just above the ICB and another point at the lower boundary of
the transition zone will give a small non-zero g, just below the ICB.

The procedure for modifying the PREM inner core model to have a mushy transition
zone of thickness & can be outlined as follows: (1) Find values of the density, rigidity and
Lamé parameter at the lower boundary of the transition zone a — h, using the profiles of
these properties of the inner core; (2) Find values of the density and Lamé's parameter just
above the upper boundary of the transition zone (PREM's ICB) using the profiles of these
properties of the liquid core (rigidity vanishes at this point); (3) Use a cubic spline technique
to determine polynomials for these properties in the transition zone (note that to obtain a
small non-zero p, at the upper boundary of the transition zone, [ choose the second point
for interpolating g, to be a + A/20); (4) With g, computed at any point in the transition

zone by the corresponding fitted polynomial, equation (361) can then be used to obtain the

value of p; at that point for any chosen f and ¢.

132




Table 12 lists the values of the density and Lamé parameter at the lower and upper
boundaries of the transition zone, as well as at its middle point. Since the density and Lamé
parameter are functions of radius r (hence h) only, [ table them separately from the rigidity.
The latter is not only a function of r, but also a function of f and @. The thickness k varies
from | - 5 km and ¢ = 1. Table 13 displays the values of p; as f varies from 0.0 - 0.5,
h varies from | - 5 km and ¢ = 1. It is obvious that due to the intrusion of fluid in the
transition zone, the rigidity of the zone is reduced. Softening of the transition zone then
in turn reduces the effective elastic restoring force at the inner core boundary; hence the
Slichter eigenperiods are slightly lengthened.

In programming, [ integrate the inner core governing differential equations of the PREM
model from the centre of the Earth to the lower boundary of the tranmsition zone, then
continue across the transition zone to reach the upper boundary - the ICB. In the transition
zone, the density, rigidity and Lamé parameter of the inner core are replaced by the above
modified ones. At the lower boundary of the transition zone, I need not do any extra work
since this is a boundary where the density and elastic parameters change smoothly. Finally,
a set of internal load Love numbers can be found at the upper boundary, where the general
solid/liquid continuity conditions apply.

Although the density of the transition zone has been slightly altered from that of the
PREM inner core, it seems safe to assume that the effect of the change in mass of the inner

core is negligible.
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Table 12: Density po (10° kg m~*) and Lamé parameter A (10" kg m™'s~2) of the transitions
zone. h: 1 - 3 km (for any chosen f and ¢).

r.=a-h, the lower boundary of the transition zone;

ra=a-h/2, the middle point of the transition zone;

ra=a, the upper boundary of the transition zone, where a=1221.5 km (the radius of the
PREM’s ICB).

Pk (km) 1 2 3 4 5
r 12,7642 12.7647 12.7652 12.7657 12.7663
oo T 12.4635 124637 12.4640 12.4643 12.4645
ra 12.1628 12.1628 12.1628 12.1628 12.1682

™ 1.23898 1.23909 1.23920 1.23931 1.23942
A ) 1.27159 1.27165 1.27170 1.27176 1.27181
r3 1.30420 1.30420 1.30420 1.30420 1.30420
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Table 13: Rigidity gy (10'° kg m~'s~2) of the transition zone. h: 1 -5 km; f: 0.0 - 0.5;
¢=1. ry=a-h, the lower boundary of the transition zone; r,=a-h/2, the middle point in the

transition zone; ry=a, the upper boundary of the transition zone. (¢=1221.5 km, the radius
of the ICB).

f=0.0

r\k (km) 1 2 3 4 5

™ 1.56770 1.56801 1.36831 1.56862 1.56892

T 1.53066 1.33081 1.53096 1.53111 1.33127

3 1.49361 1.49361 1.49361 1.49361 1.49361
f=0.1

r\h (km) 1 2 3 4 5

ry 1.41093 1.41121 1.41148 1.41175 1.41203

T2 1.37759 1.37773 1.37787 1.37800 1.37814

3 1.34425 1.34425 1.34425 1.34425 1.34425
f=0.2

Pk (km) 1 2 3 4 5

n 1.25416 1.25441 1.25465 1.25489 1.25514

T2 1.22453 1.22465 1.22477 1.22489 1.22501

3 1.19489 1.19489 1.19489 1.19489 1.19489
f=03

r\h (km) 1 2 3 4 3

) 1.09739 1.09761 1.09782 1.09803 1.09824

T2 1.07146 1.07157 1.07167 1.07178 L.0718S

T3 1.04553 1.04553 1.04553 1.04553 1.045353
f=0.4

r\h (km) 1 2 3 4 5

™ 0.94062 0.94080 0.94099 0.94117 0.94135

T2 0.91839 0.91849 0.91858 0.91867 0.91876

r3 0.89617 0.89617 0.89617 0.89617 0.89617
f=0.5

r\h (km) 1 2 3 4 5

™ 0.78385 0.78400 0.78416 0.78431 0.78446

T2 0.76533 0.7654% 0.76548 0.76556 0.76563

ra 0.74681 0.74681 0.74681 0.74681 0.74681
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10.2 Eigenperiods: Numerical Results for

the Mushy Inner Core Boundary

The Slichter eigenperiods for a suite of transition zone models are listed in Table 14. To
obtain these results, [ have set the parameter ¢ of equation (361) to be 1. I also examined
the cases where ¢ equals 2 and 3, and the results show that the eigenperiods are affected
very little, only about 0.003% changes from eigenperiods in Table 14. In other words, the
Slichter modes seem to be insensitive to this parameter.

The effect of adding the mushy transition zone at the ICB is to lengthen the eigenperiods
of the Slichter modes, as would be expected, since the effective density jump is slightly
reduced and the rigidity of the ICB is also reduced. The results displayed in Table 14
show that, with the thickness of the mushy zone up to 5 km and the fluid content up to
50%, the eigenperiods of the Slichter modes are altered only slightly, with 0.604%, 0.577%,
0.467% and 0.647% increments for non-rotating, rotating-axial, prograde and retrograde
modes respectively. This outcome reflects the nature of the Slichter modes with their main
restoring force being gravitation (the elasticity of the inner core plays only a minor role in
sustaining the oscillation). On the other hand, the smallness of the eigenperiod increment is
also due to the limited thickness of the transition layer. It is evident from Table 14 that the
eigenperiod change with respect to the change of the thickness of the mushy zone is much

larger than that with respect to the change of the fluid fraction of it.
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Table 14: Eigenperiods (hr) of the Slichter modes for the PREM mode! with a mushy ICB.
f: the fluid fraction; h: the thickness of the transition zone. L=5, N=5, and ¢=1.

non-rotating (PREM: 5.42047)

S\k (km) 1 2 3 4 5
0.0 5.42694 5.43342 5.43992 5.44643 5.45296
0.1 5.42695 5.43344 5.43994 5.44647 5.45301
0.2 5.42696 5.43346 5.43997 5.44650 5.45305
0.3 5.42697 5.43347 5.44000 5.44654 35.45310
0.4 5.42698 5.43349 5.44003 5.44658 5.45315
0.5 5.42698 5.43351 5.44006 35.44662 5.45319
rotating, m=0 (PREM: 5.30868)
S\k (km) 1 2 3 4 5
0.0 5.31475 5.32081 5.32688 5.33297 5.33907
0.1 5.31475 5.32082 5.32691 5.33301 5.33912
0.2 5.31476 5.32084 5.32693 5.33304 5.33916
0.3 5.31477 5.32086 5.32696 5.33307 5.33920
0.4 5.31478 5.32088 ©5.32698 5.33311 5.33925
0.5 5.31479 5.32089 5.32701 5.33314 5.33929
rotating, m=1 (PREM: 4.76424)
F\h (km) 1 2 3 4 5
0.0 4.76915 4.77405 4.77897 4.78391 4.78885
0.1 4.76915 4.77407 4.77900 4.78393 4.78888
0.2 4.76916 4.77408 4.77902 4.78396 4.78891
0.3 4.76917 4.77410 4.77904 4.78399 4.78895
0.4 476918 4.77411 4.77906 4.78402 4.78899
0.5 4.76918 4.77413 4.77908 4.78405 4.78902
rotating, m=-1 (PREM: 5.97827)
S\k (km) 1 2 3 4 5
0.0 5.98594 599359 6.00126 6.00895 6.01666
0.1 5.98595 ©5.99361 €.00129 6.00900 6.01672
0.2 5.98596 5.99363 6.00133 6.00904 6.01677
0.3 5.98598 5.99366 6.00136 6.00908 6.01683
0.4 5.98598 5.99368 6.00139 6.00913 6.01688
0.5 5.98600 5.99370 6.00143 6.00917 6.01694
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Chapter 11 Summary

This thesis is a systematic study of the Slichter modes for a realistic Earth model which
takes into account basic properties of the Earth, such as elasticity of the solid inner core
and mantle, radial stratification of the liquid core (neutral and non-neutral), ellipticity of
the inner core and liquid core, and possible mushy state of the inner core boundary. [ have
employed both recent theories and traditional mathematical methods such as the subseismic
approximation, the two potential description of core dynamics, variational principle and
Galerkin method. The study confirms that, for a realistic Earth model such as PREM, the
periods of the Slichter triplet are 4.76, 5.30 and 5.98 hours.

In the past few years, a great deal of effort has been expended to detect evidence of core
undertones and the Slichter oscillations. For the latter, there has been a major increase in
observational possibility due to development of superconducting gravimeter, formation of a
globally distributed network, and advance of more sophisticated data analysis techniques.
Together with previous research (Slichter 1961, Busse 1974, Crossley 1975, Smith 1976,
Dahlen & Sailor 1979, Crossley et al 1992 and Rochester & Peng 1990, 1993), this study
provides a theoretical reference for the anticipated observations and possible identification of
the modes. In turn, the data observed will put strong constraints on the internal structure
of the Earth’s core, and help to gain a better understanding of the planet’s evolution.

The main achievements of this study can be summarized as:

(1) I correctly take into account the frequency-dependent nature of the internal load
Love numbers at the ICB and CMB. This is done by keeping both the inertial and Coriolis

self-coupling terms in the equation of the momentum conservation of the solid inner core
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and mantle, as well as in the derivation of the starting solutions at the geocentre. Therefore,
the load Love numbers developed in this thesis are dependent on the frequency of vibration
and the azimuthal order number m, as well as the degree n of a particular member of
the coupling chain of the displacement field. The idea of introducing the internal load
Love numbers is to represent the effects of the solid inner core and mantle on the liquid
core dynamics in an economic way. Because these load Love numbers (especially at the
ICB) exhibit strong resonance at periods long enough to be comparable with the Slichter
eigenperiods, it is absolutely essential to use dynamic load Love numbers in modelling these
long-period normal modes.

(2) [ apply the SSA and a variational principle to estimate the Slichter eigenperiods for
a rotating Earth model with a neutrally stratified liquid core. The assumption of neutral
stratification of the liquid core enables the deformable ICB and CMB be fully taken into
account in conjunction with the SSA and the variational method. The main advantage for
applying the SSA in a neutral liquid core is that the SSWE, one of the resulting governing
partial differential equations, can be solved independently for the potential field x. The
Poisson equation can then be solved independently for the other potential field V.

To fully take advantage of the SSA and the variational principle, I introduced the novel
effective load Love numbers, which are also strongly frequency-dependent. The application of
these effective load Love numbers made it possible to avoid a requirement in the associated
boundary conditions that the Poisson equation has to be solved simultaneously with the
SSWE for V;. Of course the effective load Love numbers are only useful when the SSA is

invoked, and when the liquid core is treated as neutrally-stratified.
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The application of the SSA and a variational principle is limited due to the nature of its
approximation and the stringent requirement of fixed outer core boundaries or deformable
boundaries with a strictly neutrally stratified liquid core. However, it can be used effectively
to obtain a close reference value of the eigenperiod for a realistic but relative'(yI simple Earth
model. While the eigenperiods of the Slichter modes are obtained correctly using the SSA
(with an expected small error), the eigenfunctions so calculated in the mantle exhibit some
kind of distortion. The displacement field u in the mantle has the wrong sign when SSA
is used in the core. This strongly suggests a failure of the SSA to properly conserve linear
momentum. In a neutral liquid core, the SSA removes the sources of V] to the core bound.
aries by reducing the Poisson equation to a Laplace equation. This distortion of V; in the
outer core may be responsible for starting ys off with the wrong value at the bottom of the
mantle. Therefore, one should totaiiy avoid using this approximation if the computation of
eigenfunctions are involved, even for a simple Earth model. The alternative is to use the
two potential description of core dynamics, extended perturbation theory, or extended direct
integration method.

(3) I applied the exact TPD of core dynamics and a Galerkin method to calculate the
eigenperiods of the Slichter modes for a realistic Earth model, with both spherical and
ellipsoidal stratification.

The results for the neutrally stratified liquid <ore provide a test of how accurate the
predictions using the SSA are. The calculations have proved that the SSA only brings minor
errors (0.043%, 0.031%, 0.006%) to the eigenperiods of the Slichter modes. It is clear that the

situation for a non-neutrally stratified liquid core can be handled equaily easily by the TPD.

PR
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‘The assumption of neutral stratification of the liquid core leads to small changes (0.102%,
.101%, 0.097%) in the eigenperiods of the Slichter modes for PREM. The use of the Galerkin
method avoids the constraint in a variational principle that the linear operators in both the
SSA and TPD must be Hermitean. Therefore, the Galerkin method is an effective tool to
be used in core dynamics, as far as the computational economy is concerned.

In the applications of the variational principle and the Galerkin method, I have taken
advantage of the natural character of the boundary conditions, namely the trial functions
of an eigenvalue problem are not required to satisfy these boundary conditions exactly.
Instead they satisfy these boundary conditions only in an average sense. This is achieved by
adding the proper boundary conditions into the functionals of the variational principle or the
resulting Galerkin equations. The use of the natural boundary conditions also conveniently
reduces the need of calculating the derivatives of the liquid core field variables from second
order to first order. However, the approximate nature of such a treatment causes some
discontinuities of some eigenfunctions (y;, y2, ys and ys) across the outer boundaries. These
discontinuities are not present when the direct integration method is used or when the trial
functions satisfy the boundary conditions exactly. This is the price which has to be paid for
the convenience of using the natural property of the boundary conditions.

{4) I have taken the Coriolis coupling chain of the displacement field of the liquid core
longer than previously undertaken for the Slichter modes. Due to the absence of rigidity in
the liquid core, one has to retain enough terms in the coupling chain of the displacement field
to ensure a convergent eigenperiod. For a long period free oscillation, such as the Slichter

mode, when one cannot be confident that a perturbation treatment, or a heavily truncated
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coupling chain (Crossley, 1975; Smith, 1976), would yield satisfactory resulits, an alternative
treatment has to be sought. The approaches used in this thesis, such as the SSA and the
TPD, or the extended direct integration method used by Crossley (1992) are all capable
of retaining a longer coupling chain in the numerical computations. For a spherical Earth
model, it is shown that truncating the coupling chain at degree 3 will be enough to have
a convergent eigenperiod for PREM. However, in the latter case, [ only take into account
the self-coupling of the spheroidal displacement field in the solid parts of the Earth, whereas
Smith (1976) kept coupling up to the toroidal field of degree 2. The practice of ignoring
toroidal field in the solid parts of the Earth has been justified by calculation (Rochester &
Peng, 1993). For the ellipsoidal Earth model, [ have retained the toroidal coupling of degree
2 to degree 1 and 3 in the inner core.

For a given Earth model, the minimum truncation level of the coupling chain required for
obtaining a convergent eigenperiod is also dependent on the complexity of the problem. It
seems that the more complicated the formulation is, the longer a coupling chain needs to be
retained. In this thes's, this number is 3 for a spherical stratification, and 5 for an ellipsoidal
stratification, of the PREM. The latter is seen to have a more complicated formulation than
the former. On the other hand, the convergence of the eigenperiods is also dependent on
construction of radial trial functions. The calculations of taking into account the ellipticity of
the inner and outer cores and the centrifugal potential demonstrate that when the truncation
number of the radial trial functions of polynomial-type exceeds 7, the eigenperiods start to
fluctuate rather than further converge. This may suggest that a different type of radial trial

function, such as Legendre polynomials which have a property of orthogonality, should be
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used in the latter case. To prevent adding more numerical noise, it might also be helpful
to eliminate all double integrations resulting from the complicated formulations which arise
from taking into consideration the ellipticity and centrifugal potential.

(5) The Slichter modes are indeed dominated by degree | displacement field of the inner
core. The results of this thesis show that the effects of higher degree displacement field of
the solid inner core and mantle are relatively small. They result in a correction of only 0.1%
to the eigenperiods of the modes.

(6) This is the first time that ellipsoidal load Love numbers have been used to estimate
the effects of the ellipticity and centrifugal force on the Slichter sigenperiods. This approach
provides an alternative to the perturbation calculation of Dahlen & Sailor {1979), or the
direct integration by Smith (1976). For the purpose of developing the ellipsoidal load Love
numbers, [ have discussed in detail the formulations of the governing differential equations
in a way which treats both the interior and boundaries of an ellipsoidal body consistently. I
have also given the formulation using Smith’s (1974) approach, in more detail than he did,
and have emphasized that his approach involves a small discrepancy in the vicinity of the
boundaries. To save computational effort, in the final calculation of the eigenperiods, I chose
lo use Smith's (1974) approach for taking into account the ellipticity of the inner and outer
cores. This is based on the fact that the main restoring force for the Slichter oscillation
acts at the ICB and is gravitational in nature. The effects of the ellipticity and centrifugal
force are small corrections to the eigenperiods of the modes calculated for a spherical Earth
model. Therefore, the small discrepancy between the method of treating the interior and

the method of treating the boundaries should cause only negligible errors in the eigenperiods
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of the Slichter triplet. Again, the frequency-dependent nature of these ellipsoidal load Love
numbers is correctly retained in this thesis.

(7) This is the first time that the effect of a mushy inner core boundary on the Slichter
modes has been investigated. | have modelled the transition zone with different thicknesses
(1 -5km)and different liquid contents (0 - 50%), which may include most possible states of
the zone. With the presence of the mushy zone, the rigidity of the inner core boundary and
the density jump across it are reduced. These effects in turn reduce the effective gravitational
restoring force, which results in an increase in the vibration periods. The results obtained in
this thesis suggest that the influence of the mushy inner core boundary on the Slichter triplet
is relatively small. The increments in eigenperiods are about 0.577%, 0.467%, and 0.647%
for a realistic Earth model such as PREM, with a mushy zone of 5 km in thickness and 50%
in fAuid content. However, though small, the effects of the mushy inner core boundary on
the Slichter modes are comparable to, or larger than, some effects discussed in this thesis.
Therefore, the possibility of a mushy inner core boundary could significantly influence mode
identification. It seems reasonable to say that the central period of 5.3 hours is the lower
bound of the Slichter modes for PREM, insofar as a softer inner core boundary is a sound
and practical theory.

(8) Some ideas discussed in this thesis may be useful to other theoretical modellings. For
example, ellipsoidal Love numbers may be conveniently applied in wobble/nutation problems.
Since the existence of the latter depends totally on the ellipticity and centrifugal potential,
the consistent way of formulating the governing equations in the interior of a body and on

its boundaries, as discussed in §7.3, should be used. Since the accompanying displacement
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fields are of the form given by (6), with m = %1, this will result in a set of new ellipsoidal
Love numbers other than those developed in this thesis.

The use of Love numbers also makes the estimate of the effects of the transition zone
at the ICB convenient. [f present, such a rmushy layer will affect the modelling of other
phenomena, such as free inner core nutation, anelasticity of the inner core, effects of the
inner core on inertial/gravity modes, etc.

Clearly there are still more things to be studied about the Slichter oscillation. For exam-
ple, it may be worthwhile to look further into the damping of the oscillation due to liquid core
viscosity, and estimate the time scale of damping by this mechanism. [t may also be worth-
while to carry out an independent calculation (e.g. with an alternate approach) to confirm
the apparently negligible effect of thermal damping studied by Rochester (unpublished).

Certainly more effort is needed to further study the excitation of the Slichter oscillation,
and to develop more sophisticated data processing techniques to extract useful signals from
existing observational data, such as that from superconducting gravimeter observations. To
separate a surface gravity signal as weak as 0.5 nanogal (Crossley, 1992) from various noises
in the observational data is indeed a challenge. After all, any prediction of the eigenperiods

of the Slichter modes has to be tested by observations!
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Appendix A Coeflicients of 14th Order System of
Ordinary Differential Equations in
the Ellipsoidally-Stratified Rotating

Inner Core

In §7.4 the system of ordinary differential equations governing the Slichter oscillation field
variables of degree n = | and n = 3, coupled by the Coriolis effect, ellipticity and centrifugal

potential, is put into the form

d‘ 14 .
- ZA.,y, i=1,2 -, 14

where A;; = E;jfori =1,3,5,7,9, 11, and 13, and A;; are expressed in terms of E;; for
i=2, 4, 6, 8, 10, 12 and 14. I list in this appendix the matrix E. Note that some of my field
variables differ from those used by Alterman et al (1959), as explained by equations (249) -

(251) of §7.4. The non-zero coefficients E; ; are:
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Appendix B Continuity Conditions at Ellipsoidal

Core Boundaries

Results of the first section {B.1) of this appendix will be used in the second section (B.2)

of this appendix.

B.1 Coefficients of the 4th Order System of Ordinary Differential

Equations in the Spherically-Stratified Rotating Liquid Core

In a spherically stratified liquid core, there are 4 governing differential equations of degree

n linear in modified AJP variables y;, y2, ys and yg (cf. §7.4)

?,.1 =@, ¥ + @i2y2 + 2i3ys + ¢isys + GieYs {B.1)
i=1,¢,56

and one algebraic equation for y;

Y3 = — —=[aq, Y1 + a4,2¥2 + 2a5¥s] : (B.2)

aza

where the non-zero a; ; are

2
a1 = —;
a2 =
n(n +1)
a3 = n
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For deriving some quantities which will be used in the ellipsoidal boundary conditions
of §8.2, [ will modify these governing equations of the spherical liquid core, with the field
variable y, replaced by x* and ys replaced by (dys/dr).,. Recall that y; is defined slightly
differently in §7.4 from the original definition of AJP. By comparing with (62) and (63) of
§3.2, it can be written forn = 1
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¥2 = —25[XD + ¥5 — qom] (B.3)
therefore,
XT = -’y + gotr ~ ¥s. (B.4)

Substituting (B.3) into (B.2); substituting the resulting expression and (B.3) into dy,/dr

of (B.1), the latter can then be expressed in terms of the variables y;, ™, ys and s, i.e. ya

is replaced by xT

8 = Ty + TaaxT + Taays + Trave (B.5)

where

@2,384,2)  @2,3d4,1

Ty =03 + %[az.z -

Q4,3 24,3
T, = 1 a3,304,2
22 =~ —;[Gz.z - =]

a 0.4'3

G23a45 1 @3,304,2
Tpp = ———= = —[a32 — ——=

24,3 a 24,3

Tz.4 =aze

Next, taking the first derivative of equation (B.4) to get dxT*/dr, substituting (B.5) into
the resulting expression, and making the necessary substitutions for y; and y3 in dys/dr, as
well as in dyg/dr of (B.1), the governing equations of degree 1 can be expressed in terms of

variables y;, xT*, ¥5 and ys

%’ = e % + e, 2XT + €1,3Ys (B.6)
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€4,4 = Qg6

With above equations and definitions, the second derivative of ys, which is needed in the

boundary conditions at the [CB, can be obtained readily

(%‘;")q = Faay + FaaxT + Faays + Fsqye. (B.10)

However,

Yo = —asuy1 + W (B.11)

therefore,

(%)u = (Fay - as, Faa)n(as) + F3:2X’ln(a+) + Faays(a)

+Fyq(32),, (B.12)

where

das.l

Fay = dr

+ as1€11 + €4,
F32 =ag 012+ €42
F33 =ag181,3+¢€43
F3,4 = e44-
Substituting (B.11) into (B.7), the expression for dxT'/dr is obtained

KL = (21 — asae24)01(a.) + e22xT(a4) + e2.a¥5(a4) + e2,4(2 ), - (B.13)
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"The corresponding degree 3 quantities can be obtained in a similar manner. Therefore,

forn=13
Y10 = —po[XT + N1z — GoVsl (B.14)
X3 = = Y10 + Jo¥o — Y13 : (B.15)
and
313 _ m
(j:r',—)a,, = (Frs — Fraaae)ye(as) + Frexs(as)
+Frama(as) + Fra(%2)a, (B.16)
DG _ (g5 - rsacas)in(as) + eqsxP(ar) + easpis(as)
dr €g5 — 213,0€6,8)Y9(C 4 6,8X3 ¢+) €q,7Y131 G4
Feoa( 8}, (B.A)
where ST
d
Frs = ?3'9 + 13,0655 + e85
r

Frg = ajag¢s,6 + €8,

Fr7 = ajapes,7 + €87

Fr8 =egp
891101210, Jo  B9,110128
ess =ago + (agr0— ——— )5 - ———
212,11 (o] 212,11
1 @9,11412,10
ess = —— (a0 - ————4o)
(o] 12,11
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ag9,11212,10 Q13,1389,11

€51 = — —,'(ae.m
a 21211 12,11

t)
’go da 2 dgo

= —~—-——~a'Tgg+ = + gotss — @
€a,5 o dr 8.5 dr Go€ss 12,9

2 da
~Z— — a®Ts6 + goess
adr

€g,8

2da

—=— - T4 7 + goes,r
adr

€g,7
- 2T

€gs = — lgg — Q13,14

€15 = Q13,9

€rs = 13,14

au 1

€ss = [@129 + g0 a12 10]

Q12,11

l a12,10814.11
a?  ajp

€g8 =

14,81, Q12,10
egr=———\— + @12,43) + @14,13
a2, a?

€8 = Q14,14

€10,11812,10 a10,11212,9

Tos = a109 + g—‘;[am.m -
o

212,11 Q12,11
1 210,11812,10
Tes = — (1000 - ———
x @12,11
. a10,11212,13 a10,11a12,10
Ts 7= e —re P —;[am,lo - ——t
dizn a 12,11

Ts.a = Q10,14
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B.2 Analysis of Continuity Conditions Across an Ellipsoidal

Inner Core Boundary

[ have listed in §8.2 the initial formulations of the boundary conditions at the ellipsoidal
ICB. They are equations (328), (329}, (330), (331), (332) and (333).

Now, substituting (326) and (327) in the LHS of (328), expanding the resulting expression
in Taylor series (dropping quantities smaller than the first order in the ellipticity), and
using the linear independence of, and recurrence relations among, the associated Legendre
functions of different degree, the normal displacement on the solid side of the ICB can then

be written as:
61 ule = Toz, (- ujme™™? (B.18)
where
ol m.,n m ™m h m m m m m m m
[n * u]ﬂ.'. = un Pn + ;vﬂ [2("' + 1)‘4"!1 Pﬂ—z + 3Bﬂ Pﬂ = 2"'01\ Pﬂ+2]
-3mbien(JrPm, + HP PR — hSE[ATPR, + BRPT + C P ] (B.19)

where A™, BT, C7 are defined in (261), (262) and (263), and JT and H} are defined in

(126) and (127) respectively. For n = 1 and n = 3, (B.18) gives rise to two equations linear

in y;'s
[o-u]pt = L Qe (B.20)
(- u)p? = Sl Qs (B.21)
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where the non-zero Q; ; are
Q21 = P — hE,((B"P™ + CT" P™),

Qa2 = —hE12(B"F" + CT A7)

h

Q23 = =3B P" — 207" Fy") — hE\ (BT P[" + CT'Fy")

h
Qz,7 = -3m-a-H{"P2m
h o pm
Q5.7 = —3m;J3 Pz
Qs9 = Py" — hEao(Ay PI" + By Py")

Qs'm = —hEg.m(Ag‘le + B?P;n)

h
Qs = —(847 A" + 383 P") — hEoi(AF'P" + By A7)

where E; ;'s are from Appendix A. Note that the above procedure will be applied to all the

boundary conditions.

Similarly, LHS or RHS of (329) will be defined as
Wila = oL (Vi]omeme
where

[Vlmn = @ Py — k&R [ATFR, + BRP + C P,

n‘n=2

Then, the following relations will be found from (329) forn =1 and n = 3:

$7(a,) = h(ATEL 4 POy, L dm(a_) - A(APEL 4 il
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dT(a,) = h(BP G- + CPGh)a. + B7(a-) — R(BP = + O h ). (B.25)

using the linear independence of the associated Legendre functions.
Using the boundary conditions (328) and (B.23), the equation {330) (boundary conditions

(IIl)) can be written

[0 VW]a. = [2- VW]a, = —47C Apo [ - u}a_ (B.26)
where
Apo = po(a+) = po(a-) (B.27)

The expression (B.26) will be expanded explicitly, using the linear independence of, and

recurrence relations among, the associated Legendre functions, as:

d(b:l(a—) d¢:(a+) m i m m m pm mpm
(=~ B+ (80 (e-) - B (e )l2(n + AT FZ, + 3B F]
d'¢r(a_)  d*@p(as)

(A7 Py + BR BT + CF PL,)
= —47G Apo (it - u™, (B.28)

Since ®™(a.) — ®7(a4+) = 0 to first order in the ellipticity, the second term on the LHS of
equation {B.28) is of second order, and thus can be ignored. In the third term on the LHS of
equation (B.28), the quantities (d?®7/dr?),_ and (d*®T /dr?),, are needed only to zero'th
order in the ellipticity. Therefore, they ere equivalent to d*ys/dr? and d?y,3/dr? of (B.12)
and (B.16) in Section B.1 of this appendix. Since y;, yo, ys and 3 in equations (B.12)
and (B.16) all are zero'th order quantities, they are continuous across the ICB and can be

replaced by those of the solid inner core.
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[t is desirable at this point to write down some spherical solid inner core quantities which
will be used in the derivations of the boundary conditions at the ICB, in terms of the modified

dimensionless AJP variables:

W = aBay +y2+ B30 (B.29)
éj‘;‘- = aBgeys + 10 + aBe iy (B.30)
W= Tk A (B.31)
o = T, A (B.32)

where A, are the coefficients of the modified governing differential equations for a spherical
inner core. Therefore, AY; = A, j(¢ = 0), and the latter are derived in §7.4. By using (B.31),

(B.32), and the expression for dys/dr and dyy;/dr (cf. §7.4 and B.1 of this appendix), the

second derivative of y; and yg can be obtained

LU = TiL, b (B.33)
%?‘ = 1, L (B.34)
where
§ri= G(d—%'l + B}, + E1aB3a)8iy + Brbia + a(dlj:'a + EnEm + E\3E33)5;3
+Ea6;4 + w(i)A’f.,-
€ai = a( df:.s + E3 o+ Eon1BE110)8i0 + Eoebio
+a(%l—l' + Eg9Bony + Eo i Bua)fin + Bonabinz + w(i)Ay;
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where w(i)’s are factors arising from changing the y;'s from the dimensioned quantities to
the dimensionless ones according to the relation (287) of §8.1, e.g. w(1) = a, w(5) = age(a),

etc. Similarly

U = aBs.1y1 + go(a)ye (B.35)
W = aEraeye + go(2)y1e (B.36)
($8)a- = Ty briwi | (B.37)
(B, = T b | (B.38)
whete

dF
€2 = a( d:'l + Ev1Es5)6i1 + E12B5,16i2 + a( By 3E5,1 + Eg3)6i3

+ago(a)Essbis + g0(a)Eeebise

dEsg

= a{ —— o + Eg9E13,13)8i0 + Es10E13,00i10 + ¢(Eep1 Erag + Erea1)bin

+ago(a)Ers138i13 + go(a) Ey4,146i 14.

Substituting (B.12), (B.16), (B.20), (B.21), (B.35), {(B.36), (B.37) and (B.38) into equa-
tion (B.28), moving all the terms involving solid inner core quantities to the LHS, moving all
the terms involving liquid core quantities to the RHS of (B.28), and using the dimensionless

AJP variables in the inner core, equation (B.28) can then be writtenforn =1andn =3 as

A NR(a) = Z51gaaxT + g2axT + 92.3(%2)ay + g24(%2), ] (B.39)
2 07u(a-) = lgsaxt + g52x3 + 93( R oy + goa(Wd)a, ] (B.40)
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where

irG a h .
03 = —=A i+ ——Es bi5 + 6ijg — —(ATEs; M
ha m
+——{B"(Fs,1 ~ Fasas1)8i1 + Fag0(a)6;s)
go(a)
+AT(Frs — Freai30)bio + Fr290(a)6i1a]}
ixCG a h
oy, = —A it ——Ei39i9 + 814 — ——(B&; + CMéa;
5, 20(a) PoQs g0(a) 13,80i,9 14 go(a)( 3 &5, i)

h
o {CT[(Faa — Faaasa)biy + Fa90(a)6; s
go(a)

+B7((Frs — Frga139)8:9 + Fr290(a)i 3]}
J1 = —hB{"FS.Z
922 = —hAT Fr g
g2a=1~hB"F3,
924 = —hAT Frs
gsg = —hC[*F3 2
gs2 = —hB3 Frge
gsa = —hCTFy 4
ga=1—hBIFyg.

Similarly as in (I) for the normal displacement, [ define the radial spheroidal, transverse

spheroidal and toroidal components of the normal stress as:
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[+ Plradiot = T, - 7] 60 (B.41)

—n=1

in . T]trnruuene = Zr:l[ﬁ - T!::::uueneeim¢ (842)
[f‘ “ T)ioroidal = Loy [0+ T]:';:idazeim (B.43)

At the solid side of the ICB, the above three components are found from taking inner product
cf the normal stress of degree n with £Y;™, rVY;™ and i¥;™ x Vr of degree ! and intcgrating
the resulting expressions over unit sphere. These expressions are then simplified by using
the orthogonality properties of the associated Legendre functions. For n = L, n = 3 ana

n = 2, these components at the solid side of the [CB are represented by the following:

(B 7likale-) = Ti, Qu v (B.44)
(8- T)radial(2-) = Z12) Qaiyi (B.45)
(8- 7lranmerse(a-) = Lid; Qa i (B.46)
[ Tlanmerse(@-) = Til; Qo.iv: (B.47)
iR - T)oroigai(@-) = Tid, Qr: (B.48)
where

Q1 = 2ua(Ey 161 + Eyabia) + Abiz

—h{A(AT Al + BT A2,) + 20(AT€ai + BT i)l

hy

+—(8AT b1z + BTbiq — 3mJ7" i)
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A
Qui = 26 - ph(4AT Ay — BPAL) - 3mphJT AQ; + ~h(=2AT 610 + BT'6:2)
2p m m 2 m m 24, m
+ :{h(—2,43 89 + Bloiy) + ;;h(32.4.3 bin1 — 3BM6ia) + er—zh.}z 8.7
Q,‘..- = 2[“1( E9I96|'.9 + Eg,nb‘i‘u) + /\6“_10 - h{/\( B:';‘A?O.i + Cr.‘lg"-)
m m hit o o m m
+2u( BT €4; + CT 61 )] + 7(33.1 i1z ~ 2CT6; 4 — 3mHT b 8)
A
Qo = 2ubiaz = ph(9BT Aly; — 4B AY,) — 3muh HT' A3, + “h(3B36:10 + 8CT'6:2)
2 2 9
+ r—‘:h(aag‘a,-,g +8CM6i1) + r—’z‘h(zw;'a.-,u — 8C™6ia) - 9m-r-’,-‘hH;"5.-,,
A
QT.i = 6[16.'.3 - 3mph(J;" A?z.i + H;nAg") - 3#’&3;".42" - 31’!’1;1"’1.(.1:';.l %,10 + H;ﬂ&"z)
) 2
—3m£—h(.l§"6.',g + H™ ) + 3m-a—’,‘h(sJ5"6.-,u + H™6:3) + 36 :——2hB;"6i,7.

At the liquid side of the ICB, the normal stress in terms of the reduced pressure x and

additional gravitational potential V] is

[0+ 7)(as) = —p(as)[x + Vi + u - Bolp=r-np, 11 (B.49)
where
U g0 = —|glp=r—hp: [0 Ua, = ~|Blp=ronp, (it - ua_ (B.50)

using the boundary condition (I), and

—|glp=r-bp: = —90(r) + 3Vr + Q%P - Zl—':yopz- (B.51)
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Substituting (B.30) into (B.49), the radial spheroidal part of the normal stress in the

ESD at the liquid side of the ICB is then expressed in terms of quantities on both the liquid

and solid sides of the ICB
. _immn m m d d(b"‘ n
[0 rldialas) = —pola ){(x + em)[JO); - ( x‘ : N2  }rcas
2 2 m n h m n h’- m n
+po(a+)[gola) - 59 a}{uf"{JOJ} + P (J1]F + m;zt, [J3J7
~h L [J2)p Y ema_ + po(a)[Lgo(a) — 20%h]u(a-)[J2)p (B.52)
where

gr(—=1)"
[Jolrz 5"'111_(_...)__

2n +1
17 = [2(n + 3)A b me2 + 3B 61 — 2(n — 2)C 6 z]47"(—1-)"‘
‘ ' ' Eon=on 41
n m m m dx(—-1)"
(J2If = [ 81ne2 + B b1n + ClM 81 n2) 27(1 " )1
4 (-1
37 = (=3 bimsr + HP et 2 +>1 _

Note that the integer ! arises from the independent set of the associated Legendre functions of
degree ! which are multiplied to the boundary condition (IV) to obtain its three components.
Therefore, ! will be determined by the choice of degree n.

Since {fi * T}padiat{a+) = [0 * T]radiat(@-) at the [CB, the final expressions of this condition
for n =1 and » = 3 can be reached by making the following substitutions: ®T* and $7' from
(B.24) and (B.25), dx}'/dr and axF from (B.13) and (B.17), and dy,/dr and dys/dr from
(B.29) and (B.30); replacing all the zero'th order quantities, which are continuous across the
ICB on the liquid side of the ICB, by those on the solid side of the ICB, and moving all

quantities of the solid inner core to the LHS
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.-x Mhyi(e-) = agrrl(d)lgl.lx'ln + q12x3 + 91.3("?3‘)“ + 91,4(4‘39)::4] (B.33)
H n't ‘y,(a.-) = ag,,l(a){gtlx'ln -+ 94.2X? + 94.3(44!,1)0. + 94,4(1%1)::4,] (B54)

where

1

0 =~ (e )oo@ 2 T 2gala)

ORI

(a)[( & B e au(a) - 9‘h](A"6.9+ Bl6ia) — &is

h 1 1 )
+E[A?(m313.95;'13 + ;6.'.14) + B ( )Es 18is + 61‘.6)]
g B ){A:| [(ea,5 — e6,6213,9)6i,0 + €6,790(@)5i, 1]

+B|(e2,1 — €2,485.1)8i,1 + e2,390(a)b; 5]}

mo_ 1 a)- Q%
n4.i = G-Po(a+ )go(a)Q 3 ( )[90( ) Q ]Q5.|
1 ., dh 2., ™ -
+g—omt(a‘;)a-9o(a) =~ 3WAI(BT 8is + O i) — bins
+—= [B:T( ( )EI:I 9di1a + 5-.14) + CT( z )Es 1is + 5i.s)]

h
+m {B3'[(ess — €a.8a13,0)i9 + €6.790(a)b; 13]
+C"((e21 = e24a51)8i1 + €2,3g0(a)5i 5]}
q1a =1 —hBlea2
qi2= —hATess

Qi3 = —hBleaqs
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s = -h-‘ﬂ"es.s

m
g4 = —hCl €3,2

g4,2 = 1 - hB?ee.g

943 = —hC{"'eM

J44 = —hB:';" €s,8

Similarly, continuity of the transverse spheroidal and toroidal components of the normal

stress leads to three more boundary conditions, n = 1 and n = 3 for the spheroidal and

n = 2 for the toroidal:

14

i2 MTwi(a-) = ga xT* + g32x5'
12, M7wi(a-) = geuXT + go2X5

2, M7yi(as) = graxT + graxs

where
I = = Qs — 5 (go(a) = S00%]
e ™ B
(=24T6:0 + 3BI6:1) - 2—a(—2A§‘6.-,m +3B76:5)
= - !

12p0(a+ )ago(a) *

12ah (a)[gO(a) - -Qza](335"5. o+ SC"‘& 1) a(3B;"6i.13 + 80;’16“'5)
= e @ ——ﬂ’lG'"s + HP8:,)
e 6po(a+)ago(a) Ch 6ago (a)[go(a) al{(G3'6is 1 %,
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6
3 ABT
B4 2 a%ge(a)
__hAT
a2 az_qo(a)
2 hCT
Je.t Jalgy(a)
1 h B
9.2 4a3go(a.)
m hHI
gra 2 azgo(a)
m hJ7
912 =3 aige(a)

The above 7 continuity conditions (B.53), (B.39), (B.55), (B.54), (B.40), (B.56) and
(B.57) at the ICB depend on only 4 quantities from the liquid side of the ICB x*, x7,
(dys/dr)s. and (dy1a/dr)a... Because this set of equations is linear in these 4 variables, they

can be further simplified into the final forms listed in §8.3

AT = T (B.58)
B AR = (), (B.50)
T ATy =0 (B.60)
RATY = X (B.61)
2 AT = st (H)a, (B.62)
=0 (B.63)

.!.:1 A::e!li
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2 ATy =0 (B.61)
where
AT.' = [1 + hB;n(F:M + 52.2)](92.3[1?; - 9%.3“?_) - 91.2‘\:.' - 91.41\?:.'

o

1 m m o m m

A'z':i = —‘[nz.i - ‘192.1(92.3n1.i - gunz.i)] = agz.ﬂ\q.i - 92.41\'5':.'

92,3 a

s = I35 — ago(a)(gsaAT; + 932A%%)
1

A::; = ‘_[ng:i - 94.1(92.31-1'1':5 - g'l‘en'z'.'i - &H'{s - &A;’:‘-
4,2 a @ a

Ag; = —a(gan + 95.1)92,3017; = (943 + g5,3)117; + ags 2 [17;

~[1 + hB7*(eee + Fr)|IT5;
Agy = ITg; — ago(2)ge.1 AT — ago(a)ge 20\

A:l':i = mz':.’ - ﬂgo(a)g'r.lAY:i = 090(4)97.21\:.'."

Note that the order of calculation is: first AT}, then ATy, AT;, AT;, ATy, AR, and finally AT
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