THE PROCESSNG AND INTERPRETATION OF DEER LAKE SEISMIC DATA

TOTAL OF 10 PAGES ONLY MAY BE XEROXED

(Without Author's Permission)

FARAZI KAMALUDDIN AHMED

THE PROCESSING AND INTERPRETATION
OF DEER LAEE SEISMIC DATA
by
(C) Parazi Kamaluddin Ahmed, M.Sc.

A thesis subuiteed in partial fulfilment
of the requirements for the degree of Master of Science

Department of Earth Sciences (Geophysics)
Memorial University of Newfoundland
December 1983

ABSTRACT

Seismic data were collected along a liskm long section near Squires Pond Park. Thesedata along with Shellatar for the area provided refraction and, reflection information on the subsurface structure of the area.

Computer programmes were developed and implemented to process the refraction and reflection data and the data were interpreted in terms of geologic structure. An ideal gynthetic seismogram was constructed and compared with the atacked section, and a`good correlation was obtained.

Two shallow reflectors and refractors at average depths about $75 m$ ànd $175 m$ were detected. The seismicinterpretation agrees with the locial geology and with the available gravity and magnetics interpretation.

Table of Contents

1 INTRODUCTION 1
1.1 Objective 1
1.2 Geology 3
1.3 Previous Geophyifal Work 9
1.3.1 Gravity and Magnetics 9
1.3.2 Paleonagnetism 11
1.4 Presert Survey 12
2 REPRACTIOR 14
2.1 Purpose of the Kefraction Studies 14
2, 2 Preilminary Velocity Deternination 14
2.2.1 Collection of Data 14

- 2.2.2 Proceseing of Shell Data 16.
2.2.3 Results.fron Shell Data 16
2.3 Squires Park line 18
2.3.1 Cóllection pf Data 19
2.3.2 Procesaing of Data 19
2.3.3 Refraction Interpretation 35
3 REPLECTION 38
3.1 Objective 38
3.2. Reflection Data Collection 38
3.3 Data Processing 39
3.3.1 Static Correction 41
3.3.2 Mute 41
36.3 Filter 42
3.3.4 CDP Gather 48
3.3.5. Velocity Analysis 50
3.3.6 Nozeal Moveout Correction 52
3.3.7 Stack 53
4 IRTERPRETATION 54
4.1 Reflection 54
4.2 Refraction 57
4.3 Correlation with Geology. Gravity and 58
Magnetics
5 SUMMARY AND CONCLUSIONS 60
5.l Suneary and Conclusións 60
5.2 Limitations and Suggestions for Further Nork 61
6 APPENDIXES 63
Append1x-1 63
Append15-2 64
Appendix-3 68
Append1x-4 70
Appendix-5 73
Appendix-6 76
Appendix'-7 78

7 COMPOTER PROGRAMMES
8 ACKNOWLEDGEMENTS
9 REPERENCES

LIST OF FIGURES
FIGURE
1.1 Geology of Deer Lake Baetn

Page
1.2 Geology of eastern Canada and adjacent areas
2.1 Shot point location map of Shell, 1.5
2.2-2.13 Time-distapce curve for shot 1 to 14 except shat 2 and 12

21-32
2.14 Refraction interpretation

36
3.1 Plot of demultiplexed data
(in pocket)
3.2 Plot of static corrected data (in pocket)
3.3 Plot of muted data (bn pocket.)
3.4 Plot of power gectrum beforefilter: 43
3.5 Plot of filtered data (in-pocket)
3.6 Plot of pofer spectrum afterfilei : 47
3.7 Stacking chłre . 49
3.8 Plot of CDP gather data $\quad \therefore \quad(1 n$ pocket)
3.9 Plot of data after NMO correction (in pocket)
3.10 Plot of stacked data \quad (inepocket)
4.1 Plot of synthetic stacked data'. (in focker)

LIST OF TABLES.

tABLE		Päge
2.1 $\therefore \quad 1$	Average velocity from Shell seisaic refraction data	17
2.2	Offset distance, intercept time, velocity, depth and crosiover distance of different shots in Squires Park line	33
3.1	Stacking velocity for the second refleçtor at different CDP	52

1 IHTRODUCTION

The present work is concerned with a seismic study of the. Deer Lake Basin of west central Nefoundand. The basin is approximately bounded by latitudes $49^{\circ} 00^{\prime} N$ and $49^{\circ} 30^{\prime} N$ and longitudes $56^{\circ} 50^{\prime} W$ and $57^{\circ} 30^{\prime} W$. Economic interest in the basin arises from the discovery of oil shales and coal (Hatch,1919), natural. gas, (werner, 1955), and uranium associsted sith solid hydrocarbons (Hyde, 1979; o'sulifvan, 1979) in the basin.
1.1 Objectítue

The main alm of the present study was, to process the seismic data and to lnterpret the final seismic sections in terms of geologic structure. As a mafor part of this work, comuter programmes were developed to process the sefsme data because, of nonavallablity of auch programmea at Memorial University. The developed programmes were used in data processing in order to get the final seismic sections for interpretation. A major obfective of the present investigation was to find the at titude, geometry and depth of the shallow reflectors and refractors below the squires Park line which traverses part of the Humber syncife (Hyde, 1979)(Fig.l.I). The seismic interpretation of the Squires Park line will be correlated with the local geology and with the recentily published gravity and magnetic interpretation of the area (Miller and Wright, l984).

Fig. 1.l Geology of Deer Lake Basin (After Hyde, 1979).

1.2 Geology

The Deer Lake Basin is a narrow elliptically shaped northeasterly trending basin in west central Newfoundiand. The basin extends north to White Bay and is connected with the Bay St. George Basin to the south (Fig.l.2). The basin containe Carboniferous t tocks (Hyde, 1979; Haworth and Sanford, 1976; Haworthet al.;1976) and is bounded on the northwest by the crystalline rocks of the Long Range Complex and on the east by the lower Paleozoic oceanic rocks of the Dunnage Zone (Williams, 1979)(Fig.l.l)

The stratigraphic and stuctural development of the Deer Lake Basin has been recently"studied by Hyde (1979.1983) and Knight(198i). Within the larger basinalframework, smaller sub-basing developed during different time intervals. For this reason, Carboniferous strata of variable age unconformally overlie pre-Carboniferous basement rocks from place toplace in the basin. The age of the strata within the Deer Lake Basing can not be eatimated. with certainty, but most if not all, strata were deposited during the time span Tournaisian-Westphalian A (Hyde, 1983).
\because Our main interest was the geology of the Humber Syncilne in the Deer Lake Basin as the. seismic line traversesthis area and is. described in detail.

The major part of the Deer Lake Basin is occupied by Carboniferous cocks which can be divided into two main parts based on the structure of the basin(Fig.1.1) (Hyde, 1983). In the western half of the basin is the major northeast

Fig. 1.2 After sanford, B.V. et al. (1979) Geology of Eastern Canada and adjacent areas, Geological Suyvey Canada, Map 1401A.
trending Humber Syncline of the Deer Lake group rocks , composed of North Brook, Rocky Brook, and Humber Falls Formations. In the eastern part of the basin the Deer Lake Group is represented by "Howley Beds" (Hacquebard et al., 1960). The Humber Syncline is fault bounded on the east by the Birchy Ridge Fault (Hyde, 1983). Small anticlinal and synclinal structurtes are found in the major syncline especially in the northern side of the Humber falls formation. The Squires. Parkseismic line passes over this area(F1g.1.1)

North Brook formation: The oldest unit in the Humber Syncline $1 s$ the North Brook Formation which unconformably overlies Lower Paleozoic metasedimentary strata in the western part of the basin. The stratigraphic thickness of this formation varies from a feather edge to possibily about 2000m elsewherein the basin (Fig.l.1) (Hyde, 1983). The North Brook formation is characterized by reddish, and to a lesser extent grey, sandstones, conglomerates and siltatones. This formation has all the characteristics of fluvial deposition.

Rocky Brook Formation: The Rocky Brook Formation is Visean in age (Hyde, 1979) and is conformable with the North Brook Formation in such a way that the lower part of the Rocky Brook is interpreted to be intertonguing with and the facies equivalent to the upper portion of the North brook Formation. The Rocky Brook Formation is about loonm thick as

Hyde(1983) suggested that the Rocky Brook Formation can be
internally subdivided into a lower member (not shown in Fig. . 1) which contains mainly red, calcareous siltstones, grey to green siltstones and mudstones, andintercalated calcareous dolostones and dolomitic limestones. The upper member contrasts with the lower member in that it lacks red strata and is dominated by grey, green and black mudstones, and grey to green siltstones. Pyrite, oil shale and fossil fish are much more abundant in the upper member than in the lower member.

Humber Falls Formation: This formation having a maximum thickness of about 250 m sharply overlies the Rocky Brook Formation in the western part of the Deer Lake Basin. The Humber Falls Formation is of Visean age and is composed of light grey to light green, pink, red, and orange, arkosic sandstones, pebble conglomerates, and red to grey sidtstones and mudstones. Sedimentary features are present in this formation. The Humber Falls formation is thought to be the product of fluvial deposition.

Hyde(1983) defined a new unit known as "Little Pond Brook Formation", which was previously considered to be the younger Howley Formation(Belt, 1969 ; Hyde and Ware, 1981). The age of this formation is in between visean to Namurian, which is quite distinct from the Weatphalian A assemblage of the Howley Formation. The Little Pond Brook Formation gradationally overlies the lower member of the Rocky Brook Formation at Grand Lake(not bhown fifig.l.l), but also appears aiong the eastern side of rhe Grand Lake. Although
-
the Humber Falls Formation overlies the Rocky Brook Formation, the Litie. Pond Brook Formation has enough Ithologic difference to remain as separate unit. It has the more abundant organic watter and greater lithologic heterogeneity that distingulshes the Little Pond Brook Formation from the Humber Falls Formation.

The Little Pond Brook Formation is about 750 m thick and consists of sandstones, pebble to boulder conglomerates and siltstones. Its formation is interpreted to be another fluvial. deposit in the Deer Lake Basin with drainage predominantly from the east.

Northwest of the Deer Lake Basin are the Precambrian rocks of the Long Range Complex consisting of metagabbro, gabbraic dikes, granitic gneisesandindividual granitic plutons; and southwest of the basin are the Late precambrian-Middle Ordovician rocks predominantiy carbonates, variably recrystalifzed dolostone, dolostone breccia (including tremolite-phlogopute marble), limestone, quartzite, quartzmica schist and mica schist (Hyde, 1983).

Southeast and northeast of the Deer Lake Basin are the pre-Carbonfferous rocks. The rocks to the southeast consist of the Devonian volcanic rocke, reddish conglomerate and sandstone, whereas to the northeastare the Devonian Gull Lake intrusive and $W i l d$ Cove Pond intrusive suite that consigts mainly of granite but alsogranodiorite, diorite and gabbro (Hyde, 1983).

The Howley Formation which $H y d e$ considers the youngest
stratigraphic unit in the basin is Westphalian Age. It lies east of the Cabot Fault, west of the Topsailis Igneous suite and south of the Wild Cove Pond Igneous suite. It is not considered part of the Deer Lake Group because of the age difference (Deer Lake.Groypmainly Visean). Hyde (l979) suggesta a maximum total stratigraphic thickness of 3l00m if there has been no repetition by falting or folding in an area if intermittent exposure. Neale and Nagh(1963) oonsidered the thickness to be 2440 m based upon their stratigraphe interpretation. Miller and Wright (1984) interpret the thickness to be lyon based on gravity and magnetics.

The Howley Formation consists of grey to refpeble conglomerates, and andstone that are interbedded wizh siltstone. and mudstones. Thin seams of bituminous coal are also present in the Howley Formation. This formation is interpreted to be a fluvial deposit (Hyde, 1983).

According to Hyde(1979) the hiotory of the Deer Lake Basin can not be interpreted in terms of a single basin deposition. He suggested that the whole is a pull-apart basin into which sedimentlu were deposited from the surrounding positive topographic features. The Humber Synetine as interpreted in this fashion but the Howley Formation genesis is pootly understood.

1.3 Previous Geophysical Work

In the past, several geological surveys had been conducted in, the Deer Lake Basin but, no regional geophysical work had been done 10 that area. Intense exploration geophysical surveys were conducted in limited areas: Recently, extengive gravity surveys were conducted (M11ler and Wright, 1984) and paleomagnetic studies were done by Strong and Irving(198.3).

1.3.1 Gravity and Magnetics

In.the mid 1960 a gravity survey was conducted by the Dominfon observatory with a mean station spacing of 13 km (Weaver, 1967). From Weaver's survey a high positive gravity anomaly was observed in the Adies Pond area which correlates with gabb'ro and/or dioritemapped by. Baird(1960). Weaver's survey also showed a pronounced eastward trending gravity low over the Howley Formation which was interpreted to be Skm thick compared with the geological estimate of 2440 m from Neale and Nash(1963).

In 1981 and 1982 gravity data were collected extensively by a Memorial Univeraity team (Miller and Wright, 1984) in the Deer Lake Basin. The Bouguer anomaly map shows that there are strong positive anozalies in the northeast and southeast part of the basin which correlate with the wild Cove Pond and Topsails igneous suiths respectively. Miller and Wright (1984) also showed a positive anomaly in the northwest part of the basin which agrees with the mapping of Weaver's. Adies Pond High and coincides with the location of the oldest crystalline rocks in the area.

A prominant northeast trend and the presence of eagt-west trend in the eastern portion of thé Deer Lake basin are, observed in the regional trend map.

The features close to the surface were prominent on the reaidual anomaly map which shows gifghty negative gravity features in the Humber Syncline coinciding with the geology of that area.

Miller and Wright (1984) also discused the reduced magnetic data for the basin. They showed that the major magnet ic anomalies were observed. in the northof the basin which is dominated by an east-west trending high towards the northwest extension of the basin and found that the trend of this anomaly pattern fs orthogonal to that of the major. syncline area. Another posifive magnetic anomaly having a north-south trend occurs in the central portion of the northern edge of the basin. They pointed out that both of these high magnetic anomalies terminate over Humber falla rockg and both have, uraniug occurences mapped, on their. flanks on Smyth Martineau's. map (Smyth and Martineau, 1982).

Miller and Wright (l984) used numerical two-dimengional gravity and magnetic modelifig techiniques to establish ine thickness of yarious features of che Humber syncifne and the Houley. Formation. They computed the gravity and magnetic results for the variouageological models whichevolved from Hyde's(1979) interpretation.

Their modelifng resulto show that che fain Humber syeline
has a maximum thickness of 1200 m . It la underiain on the west by a mafic/ ultramafic body and the east by material of higher than average density having a low magetic susceptibilfty: Another result from the modelifig is the constraint on the total vertical thickness. of the howley Formation. A good estimate of the Howley sediments thickness was made from the gravity and magnetic modelling and a maximum thicknegs of sediment was suggested to be 1500 m (Miller and Wright, 1984) which disagreés with the estimates of Heaver(1967), Neale and Nash(1963) and Hyde(1979).

1.3.2 Paleomagnetism

Strong and I ruing (1983) conducted paleomagnetic studies of the Deer Lake Basin sequence, and thereby obtained some indication of movements relative to other Carboniferous rocks of Newfoundiand. They studied the samples of Carboniferous St. Lawrence Granite and the Spanish Room and Terienceville Formations of, the Burin Peninsula(Avalon Tectonic zone) of eastern Newfoundiand, in addition to samples from Deer Lake Carboniferous Bain. Their data from four formations of the Deer Lake group all yield a consistent paleolatitude of about 20 degrees south, in agreement with the values derermined from the early Carboniferous (Tournaisian) Terrenceville Formation of eastern Nemfoundiand on the eastern side of the appalachian orogen. From the good agrement of the realts, strong and Irving suggeated that there is no paleomagnetic evidence for
previously proposed 2000 km displacement of the northern Appalachians from the south relative to cratonic North America during the Carboniferous (Kent and Opdyke, 1979), although it could have occüredearlier or it could have been smaller than could be detectable paleomagnetically.
1.4 Present Survey

The present seismic survey was conducted during August 1981 by members of the Earth Sciences department of Memorial University., Selsmic data were collected on a profile ss' along the road in the Squitea park area, north of miller \& Wright's (1984) gravity profile AB, (fig.l.1). Both the refraction and reflection data were obtained on the same records using shots consisting of ligg of dynamite buried at depths froml- 3 m . The near-offaet of the geophone was 25 m . A single geophone was placed every 50 m along the line using 24 geophone locations per spread with the tatal spread length of 1175 m from the shot to the last geophone. Fourteen shots were detonated at every aciond geophone location, that is, at an interival of 100 m giving atotal coverage of spproximately l. 4 km . Out of these 14 shots, shot number 2 and 12 were noise shots. The data were digitally recorded ubing a DAS recording system with. ample every lme. The elevations of the shots and the geophones were mearured with respect to the elevation of the gravity station 4003 (F1g-1.1).

In this thesis, the refraction data (Chapter 2), and the

$$
13
$$

reflection data (Chapter 3) are discussed. The processed data are interpreted geologically and compared with the avaflable gravity and magneric results (Chapter 4).

2 REPRACTION
2. 1 Purp.ose of the Refraction Studies

The purpose of the preliminary seismic refraction study was to determine the representative velocities of the different formations in the Deer Lake Carboniferous basin from Shell seismic data (Hestfield Minerals Ltd, 1981). The main objective of the refraction study along the squires Park line which craverses part of the Humber Syncline was to determine the depth of the basement from the first break information and hence to find the internal structure of the beds.
2. 2 Preliminary. Velocity Determination

In the preliminary refraction study, the velocity of the different formations in the Deer Lake Carboniferous basin was determined from Shell seismic data. The datacollection, theprocessing of these data and finally, the results obtained from the data which give the velocity of different formations in the Deer Lake basin are discussed below.
2.2.1 Collection of Data

In May 1981 , seismic refraction tests were conducted by Shell (Westeield Minerala Led, 1981) at twelve locationsin the Deer Lake basin (Fig.2.1). Two shots, one at each end of the spread were recorded in each location except at location 1. Five single shots were recorded in location l. one

Fig. 2.) Shot point location map (Mfter Vestfield Minerals Ltd., 1981).
kilogram of dynamite was used in each shot. The offset to the nearest geophone was 25 m and single geophones were spaced every 25 m along the 1 ine-using 12 geophone locations in each spread. The data were digitally recorded with sampling every lms and the record length.for each shot wag lsec. The average gain of each trace was 60 d . . There was no instrumental delay in recording and no filters were used.

2.2.2 Procesaing of. Shell Data

The Shell selsmic refraction data were processed from the plots of the data. The firgt refraction arival was marked on the field plot of the refraction data for each shot in every location of the Deer Lake basin and the time-distance curve was drawn through the first arrivals. No corrections were made for elevation differences since no elevation data was avallable. The velocity of. the upper layer was detarmined from the inverse slope of the time-distance curve. The aversge velocity and the range of the velocity of different formations were computed. Thelr values were tabulated in Table-2.1.
2.2.3 Results from Shell Data

The resulta of Shell seismic refraction data which show the range and the average velocity of the different Formations of the Deer Lake basin are given below (Table-2.1).

q			
Shot Point	Formation	Range of	Average
Location nos.		Velocity (a/g)	Velocity (m/s)
1	Humber Falls	2800-3200	3000
2,6,7	Rocky Brook	3200-4650	3925
3,4	North Brook	4400-4650.	4525
5,8	Precambrian	6600-7140	6870
10,11	Devonian	4500-5400	4950
9	Howley	4160	4160
12	Anguille Group	4880	4880

Table-2.1 Average velocity from Shell seismic refraction data.

Our main interest was to consider the yelocity of the Humber Falls, Rocky Brook and North Brook Formations because the Squires Park line traverses this area.. The velocity of these formations was foud to be significantly different from each other (Table-2.L). These velocities play an important role both of our refraction and reflection studies.

The average velocity of the Humber falla formation was 3000m/s which overlies the Rocky Brook Formation of higher velocity of appronimately $4000 \mathrm{~m} / \mathrm{s}$. The average velocity of the North Brook Formation is about 4500 me. On the basis of these velocity contrast the velocity contours were chosen to determine the layering in seismic refraction studies.

There are various implications of the velocity of Humber Falls, Rocky Brook and North Brook Formationg in reflection studies. Pirsty, the upper layer average velocity 3000 ofls was used in determining the static correction in both refraction and reflection data. Secondly, these velocitiea played an important role in estimating the atacking velocity
for the Normal. Moveout correction. Andfinally, rhey were
used to calculate the reflection coefficient for the synthetic modelifig in reflection interpretation.

The velocity of the other formations gave an idea of geology of the entire Deer Lake Basin.' The velocity of the Howley Formation was $4160 \mathrm{~m} / \mathrm{s}$. It was less than the velocity of the Devonian intrusive and Anguille Group Formations whose values were $4950 \mathrm{~m} / \mathrm{s}$ and $4880 \mathrm{~m} / \mathrm{s}$ respectively. These results were consistent with Hyde's interpretation whichs: considered the Howley Formation as the youngeat unit (Hyde, 1983). The Precambrian rocks of Long Range Complex had the maximum velocity in the range of 6660-7140m/s. The higher velocity in Precambrian rocks was reasonable as it consiste of compact high density metamorphic rocks such as quartzite. Bica schistsetc. (Hyde, 1983).

2.3 Squirea Park line

The Squites Park line traverses part of the Humber Syncline. The refraction and reflection data of the present study were collected together along that line. The refraction data were processed and interpreted and are discugsed in this chapter.

2.3.1 Collection of Data

Abstract

In August 1981 , seismic refraction data were collected by a team from Memorial University along the Squires Park line. The offser of the nearest geophone was 25 m and single geophone was placed every 50 m along the line using 24 geophone locations per spread. Fourteen shots were detonated at every second geophone location with an interval of 100 m giving a total coverage of about 1.4 km . Shot number 2 and l2 weremisfires and all the shots consist of lkg of dynamite buried at 1 to 3 m depth. The data were digitally recorded with sampling every lms. The shot and the geophone elevations were measured with respect to the elevation of the gravity station 4003 (Fig.l.1.) and their values were tabulated (Appendix-1).

2.3.2 Processing of Data

At first, the seismic refraction data were static corrected in the data processing. The purpose of the static correction was to eliminate the effect of differing surface elevation.

The technique for static correction was to correct the data to a "datum elevation" (datum plane) by removing the calculated travel times from the source to the datum and from the geophone to the datum.

The static correction is

$$
\begin{equation*}
\Delta t_{0}=\Delta t_{s}+\Delta t_{g} \tag{2.1}
\end{equation*}
$$

E_{S} and E_{G} are the elevation of source and geophone and $E_{d} i s$ the datum elevation which was chosen 40 m below the gravity station 4003 in order to be below the lowest elevation geophone. The average velocity to the datum, $V=3000 \mathrm{~m} / \mathrm{s}$ used for the static correcition which was obtained from preliminary refraction survey of Shell (Westifeld Minerals Ltd, 1981)(Section 2.2.3).

Since for each shot 24 traces were recorded, the shot correction was common to every trace.in. the record and the individual geophone correction was computed for each trace. For the 14 shots in Squires Park line, the total number of traces was $\mathbf{3} \mathbf{3} \mathbf{6}$ and each of them was ataric corrected.

Thé corrected data were plotted as travel times versus offaet distance of the geophones. These time-distance curves are shown in figures 2.2 to 2.13. The velocity of each layer was determined from the inverse sifope of the static corrected first break data for all shots. Their values were tabulated in Table-2.2.

Assuming horizontal layering, the depth tó the interfaces were calculated by using the relations (Appendix-2)

Fig. 2.10 Time-distance curve
*

Fig. 2.12 Time-distance curve

TABLE 2.2 Offset distance, intercept time, velocity, depth and crossover distance of different shots in Squires Park line.

$\begin{aligned} & \text { SHOT } \\ & \text { PGINT } \\ & \therefore O . \end{aligned}$	OFFSET DISTANCE IN METERS		INTERCEPT TIME(S) IN SEC		VELOCITIES IN M/SEC			THICKIVESS IN MLTERS		CROSSOVER DISTANCE IN METERS	
	$x_{\text {Off }} 1$	$\mathrm{x}_{\text {off }} 2$	$\mathrm{T}_{\text {il }}$	$\stackrel{T}{i 2}$	V_{0}	V_{1}	V_{2}	2_{0}	${ }^{2} 1$	computation	graph
1	148	-	. 052	-	3388	4546	-	132	-	695	700
3	151	-	. 041	-	3304	4167	-	116	-	654	625
4	101	266	. 028	. 060	3100	3846	4464	74	97	450	465
5	97	-	. 044	-	2961	4118	-	94	-	464	450
6	96	-	. 046	-	3012	4231	-	95	-	481	500
7	94	171	. 028	. 094	3036	3894	6372	75	124	428	435
8	127	258	. 022	. 086	3209	3611	5263	65	139	545	475
9	86	-	. 051	-	3014	4643	-	101	-	438	425
10	116	-	. 048	-	3268	4552	-	113	-	556	550
11	86	-	. 048	-	3146	4762	-	101	-	445	475
13	79		. 038	-	3125	4508	-	82	-	387	400
14	57		. 030	-	2959	4327	-	61	-	280	290

$$
\begin{equation*}
z=\frac{T_{i}}{2} \frac{v_{1} v_{0}}{\left(\mathrm{v}_{1}^{2}-\mathrm{v}_{0}^{2}\right)^{1 / 2}} \text { (Two layer case) } \tag{2,2}
\end{equation*}
$$

$z_{1}=\frac{1}{2}\left(T_{i 2}-2 Z_{0} \frac{\left(v_{2}^{2}-v_{0}^{2}\right)^{1 / 2}}{\cdot v_{2} V_{0}}\right) \frac{v_{1} v_{2}}{\left(v_{2}^{2}-v_{1}^{2}\right)^{1 / 2}}$
(Three layer case)
where T_{i} and $T_{i 2}$ are, the intercept times obtained from the time-distance curves for the two-layer and chree-layer cases.

It was necessary to compute the offset distance for each ghot to locate the exact horizontal position from which the refraction starts. These distances were computed (Appendix-3) by using the relation

$$
\begin{equation*}
x_{o f f}=z_{0} \tan i_{c} \tag{2,4}
\end{equation*}
$$

-1
where Z_{0} is the depth of the interface and $i_{c}=\operatorname{Sin}\left(v_{0} / v_{1}\right)$, the critical angle of refraction and their values were tabulated (Table-2.2).

The velocity contrast at the boundary of the layers was plotted againgt the shot numbers taking care of depthand offact dibtance (Fig.2.14). From this. plotit was clearly observed that two distinct layers were preaent at about 3000m/s and $4000 \mathrm{~m} / \mathrm{s}$ velocity contrasts.-At these velocities, two contours were drawn and were interpreted in the next section.

2.3.3 Refraction Interpretation

The results of the refraction data of Squires Park line are shown in fig. 2.14. Fron the velocity contours of this plot, it was observed that the average depth to the interface between the first and second layers was about 90 m and the average depth to the finterface between the second and third layers was 170 m . It was also observed that there Was an anticlinal shaped interface with the firstyayer interface cresting at shot 6 and two sharp changes of velocity near shot 7 and in between shots 10 and ll. The 4000w/s velocity contour interfage roughly followed the first layer except, in between shot 6 and 10 where a distinct change was observed.

The nature of the velocity contours of the section (Fig.2.14) indicate that two major features are evident. Firstly, thereis an anticline cresting at shot 6 and a gentle westward dip of the Deer Lake Group rocks. The formation beneath the anticifne is Humber falls which overlies the Rocky Brook of higher velocity, Secondly, there are, faults at shot 7 and in betven shots 10 and 11 with a gentle syncline in between the faults. The velocity contours observed in between the two falts were interpreted to mean that the layers of this part were uplifted: The formation beneath this section was Humber falls overlying the Rocky Brook.

A change int velocity grádient was observed from shot ll to 14 indicating the presence of a compact, high density

Fig. 2.14 Refraction interpretation
formation. The velocity beneath that part was higher than the velocity of the other part. It was interpreted that the formation beneath this section was North Brook with gentle dip towirds the falt line which agrees with the local geology (Hyde, 1981).

3 REPLECTION

3.1 objective

The main objective of the seismic reflection study was to interpret the stacked section for the determination of depth and attitude of reflectors and to delineate, the configuration and internal structure of the partof the Humber Syncifine basin oyer which the Squires Park line traverses. Computer prggrames were developed for the data procesing sequence (Section 3.3) and implemented to obtain the final stacked section. In order to obtain the stacked aection, the reflectidn data were procesaed to enhance the signal to nofse ratio. In order to achieve the goal of the reflection study, high resolution (msec sample) data were collected which could precisely determine the configuration and geometry of the reflectors.

3.2 Reflection Data Collection

On the Squites Park line, the reflection and refraction data were collected cogether. The, reflection'data were recorded in Common-depth-point(CDP) gather with the coverage of 600% or 6-fold (Mayne, 1962). The reflector was assumed to be horizontal and the subsurface coverage was half of the surface coverage. First, . shot 1 was deronated and thè sefsmic signal was recorded by the geophone groups to 24. The subsurface coverage extended below geophone to 12 . Secondly, shot 2 was. detonated and the geophone groups 3 to

26 recorded the seismic signal with the subsurface coverage below geophone 3 to 14 . The change of the geophone group was done by moving the seisulc cable. Thirdly, shot 3 was detonated and the seismic signal was recorded by the geophone groups to 28 with the absurface coverage below geophone 5 to 16 and, so on. The data were recorded. with high time. resolution, that is, sampledevery maec using a DAS recording system.

3.3 Data Procesfing

The objective of the seismic reflection data procesing was to improve the quality of the data and to present the data in form that was convenient for geologic interpretation. The data recorded in the field. were in a multiplexed format. At first, the data were demultiplexed in order to change the trace order and after demultiplexing the traces were in secord order, that is, the traces of.each record were together. The demultiplexing was done by Sefel(Calgary). The demultiplexed data were normalized. The normalization. was done by dividing each sample of the data by the largeat' absolute value of the samplefor each trace. The normalized data were plotted. (Fig. 3.1): Since there vere two misfices having shot number 2 and 12 , the traces of these shots were. not further processed. These traces were elitinated by zeroing out before. NMO correction. All the other demultiplexed datp were procesised following the sequence of processing as given below.

The programmes for this processing sequence were developed and are presented in Section 7 .

3.3.1 Static Correction

The first step of our processing was to apply a static correction to the normalized demultiplexed data. This correction was done only for the difference in surface elevation since there was no weathered layer (Low velocity Layer) in the Squires Park area.

The basic technique for static correction was to correct the data to datum elevation (datum plane) by removing the calculated travel times from the source to the datum and from the geophone to the datum. The detailed technique of static correction has been discussed io Section 2.3, 2 . This correction was done for all the 24 traces with each of 14 shots, that is, for all the 336 traces. The static corrected traces are shown in Fig. 3.2.
3.3.2 Mute

It was observed in the plots of the data (Fig.3.2) that there were other eventa besides the primary reflections on the, ${ }^{\text {erecord. The amplitude of these events was higher than }}$ that of the primary reflections. It was necessary to remove these events from the record as our interest was to consider the primary reflections only.

The most prominent other events were the refracted waves whose amplitude was larger than that of our primary reflections. The refracted waves were eliminated from the records by muting the traces, that is, by zeroing out those portions of each trace that contained refracted waves. The

Abstract

data, also contained "firmes". This was the energy that. had traveled from the source to the receivers through the air at the velocity of sound in the air (about 330m/a). The air. waves were also muted out from the record. Ther the muted data were renormalized and the traces were plotted (Fig.3.3). As can be seen from these traces the reflection events are now prominent. Note for example the events numbered A\& B.

3.3.3 Filter

The purpose of the filtering in geismic reflection work is to remove noise, in other words, oignal with undesirable frequencies from the record, leaving the primary reflections having geological meaning. Before the filters were chosen, an average power spectrim for each ahot was calculated and plotted. A sample plot for shot 1 is shown fingure 3.4. From this figure it is clear that there was an interference effect with the power line frequency at 60月z. To eliminate thigeffect, the 60Hz baind rejection filter (or notch filter) was used. To exclude the nolse which was malnly due to surface waves (ground roll), a band pase Butterworth filter was used with a cut of low frequency 20 Hz and high frequency 120 Hz :
Notch filter
The notrh filter (Truxal, 1955) was designed to reject 60hz interference in data. To design this filter, a \quad-diagram (Kanasewich, p.249) was considered on which 60hz frequency.

FIG. 3. 4 PLOT OF POWER SPECTRUM BEFORE FILTER
was ploted around the unit circle (Appendix-4). The frequency corresponding to an angle of $\pm \Omega$ on the unit circle was

$$
\begin{equation*}
\Omega= \pm \frac{60}{f_{N}} \cdot 180= \pm 21.6^{\circ} \tag{3.1}
\end{equation*}
$$

where $f_{N}=1 / 2 \Delta T=500 H z$ is the $N y q u i s t$ frequency, since the sampling interval ΔT msec. This frequency plays an important role in designing, filter because the power spectrum above this frequency is folded back which is known as aliasing (Kanasewich, p.110-114).

Two poles just outside the unit circle were considered so that the signal spectrum was not affected away from 60 Hz .

The z-transfrom of the impulse response function was given by (Appendix-4)

$$
\begin{equation*}
\eta=\frac{Y(z)}{X(z)}=\frac{0.9899 .\left(z^{2}-1.8596 z+1\right)}{1-1.8406 z+0.9800 z^{2}} \tag{3:2}
\end{equation*}
$$

where $Y(z)$ is the outgut and $X(z)$ is the input series.
The recurife relation for the output becomes

$$
\begin{align*}
Y_{n}= & 0.9899 X_{n}+1.8408 X_{n-1}+0.9899 X_{n-2} \\
& +1.8406 Y_{n-1}-0.9800 Y_{n-2} \tag{3.3}
\end{align*}
$$

Uaing the above recursive relation(3.3), the filtered
output was obtained but withe phase shift. Toget rid of this problem, that $1 s$, to get a zero phase shift rejection filter', the output from this process was reversed and passed through the same filter again. Then the output vector was reversed to obtain the desired zero phase shift data.

Band-pisis Butterworth filter
The purpose of chosing the, band-pass filter was to eliminate the \quad urface waves from the data. The low cut frequency was chosen as $20 H_{2}$ for the elimination of surface waves and the high cut frequency was chosen 120Hz, considering the significant contribution in the average power spectrum up to that frequency.

There are number of techniques availablefor designing band-pass recursion filters (Kaiser, 1963; Whittlesey. 1964 ; Robertson, 1965 ; Holtz and Leondes, 1966). The most suitable technique for designing a class, of filters known as Butcerworth band-pass chosen (Guillemin, 1957, p. 588-591). This filter has 8 poles in the s-plane and was applied in forward and reverse directions to, have à zero phasefilter.

A bilinear, Z-transform. was used In designing the filter to prevent, pliasing problems (Golden and Raiser, 1964). The Z-transform of the topulse response has the form (Appendix-5)
$F(z)=\left(1-z^{2}\right)^{4} /\left(B_{1}(z) B_{2}(z) B_{3}(z) B_{4}(z)\right)$.
where

$$
B_{j}=1-D_{2 j-1} z_{2 j^{2}} z^{2}
$$

$$
j=1,2,3,4
$$

 low and high pass cutoff frequencies. The impulse response of the filter (equatio n(3.4)) was equivalent to the cascaded product of four filters

$$
\begin{equation*}
F(z)=F_{1}(z) F_{2}(z) F_{3}(z) F_{4}(z) \tag{3.5}
\end{equation*}
$$

where terms alike F_{1} have the form

$$
\begin{equation*}
F_{1}(z)=\left(1-z^{2}\right) /\left(1-D_{1} z+D_{2} z^{2}\right) \tag{3.6}
\end{equation*}
$$

Since the filter was cascaded four times in succession to produce the $Z-t r a n s f o r m$ output; recursive equations for. programming were developed and used (Appendix-5). A Fortran subroutine for the zero phase shift Butterwort filter which was given by Gaily (Kanasewich, p.274-277) was used in the programming for filtering the data and the output is normalized and plotted (fig.3.5). The average power spectrum of filtered data was calculated and one of them is shown(fig.3.6). From Fig.3.6, it vas evident chat both of our chosen filters worked proper ty since the 60 Hz peak and the frequencies below 20 Hz and above 120 Hz are attenuated on

fig. 3. 6 plot of power spectrum after filter

> this spectrum compared with the amplitude on the previous spectrum(fig. 3.4$)$.

3.3.4 CDP Gather

The purpose of the "CDP Gather" was to rearrange the traces from shot point order to depth point order. The traces of the Squirea Park line were sorted or gathered into depth point order before stacking. All the traces of the first depth point wexe followed by all thetraces of the second depth point and so on.

Since the shots were at an interval of two geophones and a 24-geophone group was used, a maximum coverage of 6-fold was posisible. The number of fold coverage increages the signal to noise ratio by n, where n ia the number of fold coverage. In order to achieve subsurface coverage up to. below the shot 4, east of which there is an anticiine structure(Section 2.3.3); 4-fold and 5-fold coverage were also considered; and a total number of 44 reflection points throughtout the 1 ine of, survey was obtained. Finally, CDP gather was obtained with the help of stacking.chact (Fig:3.7) (Mayne, 1962) and irtividual traces were plotted(F1g.3.8).

STACKING CHART

```
SHOT
DEPTH POINT NOS
```



```
    1
    2
    3
    1
    1
    1 
    1
    1
    1
    1
    1
    1
                                    1
1 2 3 4
```

Fig. 3.7 Stacking chart.

3.3.5 Velocity Analysis

The main objective of the velocity analysis was to determine the velocity function which will yield the best normal moveout correction and the auxillary objective of the velocity analysis, was to identify lithology.

It was observed that the reflection seismic record for each shot looks like a hyperbola(fig.3.8)(Telford et al., 1976 p.261)

$$
\begin{equation*}
\mathrm{T}^{2}=\mathrm{T}_{0}^{2}+\mathrm{X}^{2} / \mathrm{V}_{\mathrm{rms}}^{2} \tag{3.7}
\end{equation*}
$$

where $T_{0}=2 D / V_{r m s}$ is the vertical two-way travel time and $D^{\text {the }}$ and $V_{\text {rms }}$ are the depth and rms velocity to the reflector respectiveiy.

The relation(3.7) gives a straight lineif T, is plotted againgt X and the velocitylcan be determined from the slope $\left(1 / V_{\text {rms }}\right)$

The normal moveout (NMO) is the difference between the reflection time at an offset X and the reflection cime zero offset and is given by

$$
\begin{equation*}
\Delta \mathbf{T}=\mathbf{T}-\mathbf{T}_{0} \tag{3.8}
\end{equation*}
$$

Substituting the value of T from equation(3.8) in equation (3.7) and simplifying (Appendix-6)

$$
\begin{equation*}
\Delta T \triangleq \mathrm{X}^{2} / 2 \mathrm{~V}_{\mathrm{rms}}^{2} \mathrm{~T}_{0} \tag{3.9}
\end{equation*}
$$

It fis evident from the above relation that for a paricular offaet, the normal moveout tme depends on velocity ($\mathrm{V}_{\mathrm{pms}}$). Our alm was to determine this velocity, known as stacking .velocity, by measuring the NMO.

To determine the atacking welocity of the first reflector, the least squares method (Kossack et al., p.399-401) was applifd. For each CDP reflection, the arrival tifes for different offset X was known from the CDP gither section (Fig. 3.8)". Using the different values of offiet x and the corresponding values of arrival time T in equation(3.9), the vertical two-way travel time T and the velocity V were determined for the first reflector. It was found that the velocity was almost constant for each CDP and its value was equal to 3000 ± 200 m/s. This velocity agrees with the velocity of the upper layer Humber Syncline which was obtained from Shell seismic refraction results.

To estimate the stacking velocity for the second reflector, the vertical two-way travel time twas taken to be 112ms which was estimsted from refraction(fig.2.14). This value of T was used in equation(3.9) for different offaet. The different. values of vanging from $3700 \mathrm{~m} / \mathrm{s}$ to $4300 \mathrm{~m} / \mathrm{s}$ with an interval of 100 /s were considered and the moveout time was calculated. This moveout time was applifed to the traces to get the best alignment of the traces. The same procedure was repeated for al the common depth pointa. Different velocities were found (Table-3.1) to be best for the different $C D P$. These different velocitiea are caused by
local changes in the lithology and geometry of the reflector.

CDP	Nos.	Stacking Velocity(m/s)	CDP Nos.	Stacking Velocity(m/s)
1		4000	23	3700
2		3900	24	3800
3		4100	25	3700
4		4000	26	3900
5		4000	27	3800
6		3700	28	3700
7		3700	29	3800
8		3900	30	4300
9		4300	31	4300
10		3800	32	4300
11		3700	33	3800
12		4000	34	4200
13		4000	35	4000
14		4200	36	3800
15		3700	37	4000
16		3900	38	4200
17		4000	39	4100
18		4000	40	4300
19		3700	41	4100
20		3800	42	4000
21		4000	43	4300
22		3700	44	4100

Table-3.1 Stacking velocity for the second reflector at different CDP.

3.3.6 Normal Moveout Correction

The normal moveout correction was done before stacking the traces. It was noticed that the reflection event on the seismic record is curved. This occurs because the ray-path from the source to the geophone with some offset is longer than that with no offset. The difference in the arrival time for a reflection on $\begin{gathered}\text { zero-offset trace and an offset trace }\end{gathered}$ is called normal moveout (NMO).

Abstract

The NMO correction was computed by using the stacking velocity (discusaedinsection 3.3.5) in equation(3.9) for each trace. This correction was done by shifting the reflection up by that amount and the traces were found to be alignedfor each reflection point. The data after NMO correction is shown in fig. 3.9.

3.3.7 Stack

After the necessary corrections of the traces, all that remained was to otack the data, that is, to sum all the traces for (each comon depth point, resulting in a single atacked trace being output for each depth point.. Each Individual trace in the atacked line is actually the sum of all the traces st depth point. Because of the different fold coverage, not all depth points contain the same number of traces. To coapensate for this and to insure that all stacked traces have the same overall level, each atacked trace is scaled according to the number of traces in the depth point. For the first four depth points, each gathered trace consisting of freaces was multiplied by $1 / 4$ when stacked. For the next four depth points, each stacked quace consisting of 5 traces was multiplied by $1 / 5$ when, stacked. The remaining 36. depth points, that ia depth point number 9 to 44, each poipt consisting of 6 riaces was tuitiplied by 1/6 when stacked. After stacking, the finai section was plotted (fig. 3.10) and this section was interpreted in thes next chapter.

Abstract

4 INTERPRETATION

The second purpose of this thesis was to interpret the seismic daca, that ia the trangormation of the seismic Information into geological terms. for the Squires Park line whichtraverses part of the Humber Syncifne of the Deer Lake Basin. The. interpretation of both seismic reflection and refraction data is discussed in this chapter. The interpretation of the seismic data is correlated with the interpretation of geology (Hyde, 1979; 1983) and with.the interpretation of the gravity and magnetics data (Miller and Wright, 1984).

4.1 Reflection

A two-dimentional geological interpretation of tbe reflection seismic data of the Squires park line was done © from the(final(stacked) section (Fig. 3.10). The refiection events having the highest-amplitudetroughs (or peaks) are easily identified in this. section. The troughe of the reflection events of the different traces were found to follow each other except at two.places, where pabrupt abor change was observed. The trough to trough of the reflection events were joined and it was ciear that there were to shallow reflectors along the selame 11 né, The average depths of the reflectors were estilated to be about 75 and 175n asuming velocity of thefirat and fecond reflectars 3000m/s and $4000 \mathrm{~m} / \mathrm{s}$ respectively (section 2.3.3) based on the refraction velocities and atacking velocit for the
layers. Two major structures are evident frow the stacked section (fig. 3.lo) Firstly, an anticifal structure cresting at shot 6 was observed. Secondly, two faults at about shot 7 and 11 are evident where there is an abrupt discontinuity in the reflection events. The beds, east of shot 7 and west of ghot 11 are uplifted. There were vertical throws of about 70 m and 120 m in both the faults of the first and second reflectors. Which show that the faits appear to be growing rapidly with depth. There was no diffraction pattern in the stacked section. (fig. 3.10), since the faults are at shallow depth. It was observed that the upiffed bed has a gentle synclinal structure and the reflectors below shot il ro 14 have gentle updipindicating higher velocity at lower depth towards the end of the profile.

To. Interpret the stacked section (Fig. 3.lo) geologically, a synthetic stacked section was generatersuming a simple geologic model. This model was based on the local geology and 'the refraction information. The synthetic stacked section was generated asuaing a tworeflector model at an average depth of 75 m and 175 n whthe presence of the two major structures discused earlier.

To generate synthetic stacked section means to generate synthetic seismograms (Peterson et al. 1955) which are artificial reflection recarda me by convolution of the reflectivity function with cource pulse. The two-way zero offset times from the source to the reflectors were calculated for each shot by agumang the velocity $3000 \mathrm{~m} / \mathrm{s}$
and $4000 \mathrm{~m} / \mathrm{s}$. for the first and second reflector and a locally horizontal reflecting surface. The travel time was digitized with lms inferval which is same as the ampling interval of our field dati. Since the reflectors are at shallow depth and the change of velocity from the firgt to the recond layer is large, the travel time of the second reflector is lower than twice the travel time of the first reflector and hence, multiples were not fncluded in generating the synthetic stacked section. The reflectivity was calculated (Appendix-7) at the two layer boundaries at 75 m . and 175 m depth assuming velocities $3000 \mathrm{~m} / \mathrm{s}, 4000 \mathrm{~m} / \mathrm{s}$ and $5000 \mathrm{~m} / \mathrm{s}$ with the corresponding densities $2.5 \mathrm{gm} / \mathrm{c} \cdot \mathrm{c}, 2.54 \mathrm{gm} / \mathrm{c} \cdot \mathrm{c}$ and 2.7 gm/c.c respectively. A $50-\mathrm{Hz}$ Ricker wavelet ingtead of minimum phase waver was chosen as the source pulse because good Ricker wavelet was oberved in the plot of the data after filtering(fig. 3.5). The chosen $50-\mathrm{Hz}$ frequency is within the usual seisulc range and is consigtent with the Erequency band used in reflection data procesifig (Section 3.3.3).

The synthetic stacked section is plotted(fig.4.l) and compared with the original stacked, aection(fig.3.10). The nature of the two plote was almostidentical. from these it was evident that there are two reflectora with an average depth of about 75 m and 175 m wh the.presence of two major structures. Firstly, an anticilief eresting at shot with the slanting surface of about 25 and secondly, two vertical falte near shot 7 and 11 with an uplift of bed in betwen
the faults having fault throws about 70 m and 120 m of the firat and second reflector, respectively.

4.2 Refraction

The seismic refraction data were interpreted from the velocity contours(fig.2.14). The refraction interpretation has been discuased in detailed in section 2.3.3. It was interpreted from the velocity contours that there are two Interface of the layers at average depths 90w and $170 m$ and that of the other two mafor structures, discussed in the reflection interpretation, are present. A discrejency of 15 m is, observed in the firgt layer depth(Section 4.l), because the velocity contrast was drawn at discrete shot point locations which gives. certain ergrin interpolating the velocity contour for depth calculation. Moreover, depth calculation by refraction time-distance curve gives an approximate idea bout the depth of different layera aince here we used the assumption of horizontal layering but the data indicate dipping lagera. The two major structures which are present: an anticline cresting, at shot 6 arfd faults at shot 7 and in betwen shots 10 and 11 with a gentle syncifie in between the faults. The formation beneath the anticline fs Humber Falls which overlies the higher velocity Rocky Brook. These formations are identified on the basis of their velocities $3000 \mathrm{~m} / \mathrm{s}$ and $4000 \mathrm{~m} / \mathrm{s}$ respectively (section 2.2.3). The layers in between the faults are uplifted and the formation beneath thig area ia alao Humber falla overifing
the Rocky Brook on the basis of their velocities. There was an updip gradual change in velocity from ahot 11 to shot 14 . The formation beneath this part is Norif Brook, which has higher density and velocity than the other two formations(Section 2.3.3), with a gentlediptowards the fault line agreeing with the local geology as explained by Hyde(1983),

4.3 Correlation with Geology, Gravity and Magnetics

"The seismic data for both reflection and refraction were correlated withthe localgeology (Hyde, 1979; 1983) and with the gravity and magetics data (Miller and wright, 1983). According to Hyde, the part of the Humber Syncine Basin which our seismic line traverses is composed of three rock groups, namely, North Brook, Rocky Brook and Humber Falls formations. From reflection as wellas refraction interpretation it was evident that there is afalt in the vicinity of our shot li and east of the fault, from ghot 11 to 14 there is updip slope of the North Brook formation Kbose density is higher than that of the other formations. This interpretation correlates with the geology of that area (Hyde, 1983).

Hyde's(1983) geology also suggests that there are syncifal, and anticifnal structures in the major humber Syncifine with the fumber falls formation overlying the higher density Rocky Brook formation. An anticilne cresting at shoo 6 was observed on the selsmic data from the

5 SUMMARY AND CONCLUSIONS

S. 1 Sumary and Conciusions

- A seismic study of the Deer Lake Basin of Newfoundand was undertaken. High resolution data (lmsec) were acquired along the Squires Park ifne in the Humber Syncifne by using G-fold CDP technique.

A preliminary refraction study was done from Shell seismic data and the representative velocity of the different formations of the Humber syncline was used in data processing and interpretation.

Prior to reflection iterpretation, refraction data were processed and interpreted in order to estimate the geologic structure in the Squires Park line area.

In the refiection study, programea were developed and implemented to use the conventional data procesing aequence in order to get the final stacked section for interpretation. An ideal synthetic seismogram was constructed based on the available geological and geophyaical information. A comparison was made between the synchetic and the original, stacked sections and a good correlation was observed. On the basis. of the refraction as well as the reflection interpretation, the following conclusions were draun:

1. There are two refiectors at average depths of about 75 . and 175 m .

-

2. There is an anticifie cresting at shot 6 .
3. The formation beneath the anticline is Humber falls overlying the higher velocity Racky Brook.
4. Two vertical faults are present at shot 7 and ll with an uplift of beds in between the faults having fault throws about 70 m and 120 m of the first and second reflector, respectively.
5. A gentle synclinal structure is present in the uplifted bed and the formation beneath this structure is Humber falls overlying the Rocky Brook.
6. "Ttrere are gentle updip reflectors below shot 11 to 14 with the presence of compact and high density North Brook formation beneath this area.

The above conglusions are in agreement with the local geology and with the interpretation of the available gravity and magnetics data.
5.2. Limitations $\underbrace{\text { qud }}$ Sugestions for Further Work

These are the following limitations of the present work:

1. A two dimensional seismic interpretation is done since the data were available in a single line.
2. The quality of data in some traces was not good, so the noise could noit be reduced to the optimum level.
3. Migration technique vas not applied to the data and, therefore, accurate position and shape of the anticifne and faults was not possible to determine.

It is suggested that quality seismic data should be acquited in differenc. ilnes fot chreedimensional seismic
interpretation of the entire Humber Synciine. It is also suggested that the migration rechifque should be applied before interpretation for the accurate determination of the structure.

6 APPENDIXES

1 Appendix-1

Shot elevation from survey data.

\therefore Geophone elevation from survey data.

Geophone Loceations	Geophone Elev. E(m)	Geophone Locations	Geeophone Elev. E(m)
1	-1.32	26	$3^{-20.76}$
2	-2×60	27.	-21:41
3	-3.12	28	-21.91
4	-4.45	29	-22.52
5	-5.2/4	30	-23.23
6.	-5.49	- 31	-24.08
7	-6.04	32	-25.09
8	-6.88	33	-25.65
9	-7.49	34	-25.77
10	-7.86	35	-26.90
11	-8.63	36	-26.61
12	-9.80	37	-26.93
13	- -10.35	38	-27.04
14	-10.29	39	-27.51
15	-10.80	40	-28.32
16	-11.88	41	-28.54
17	-12.61	42	-28.17
18	-12.99	43	-27.63
19	-13.29	44	-26.94
20	-15.59	45	-26.47
21	-16.61	46	-26.23
22 -	-17.04	47	-26.06
23 -	-17.84	48	-25:97
24	-18.99	49	-26.82
25 \%	-19.97	50	-28.61

Appendix-2

1. Two-Media Case(After Dobrin, 1976)

Consider twomedia with respective velocities.of V_{0} and V_{1}. separated by a horizontal discontinuity at depthz.

The direct wave travels from shot to detector near the earth's surface at a velocity of V_{0}, so that $T=x / V_{0}$. This is represented on the plot of T versus as a straight iline Whigh pasiea through the origin and has a slope of I / V_{0}. The wave refracted along the interface at depth, follows the path ABCD making a crifical angle icwith che horizontal.

The cotal time along the refraction path ABCD is

$$
\mathrm{T}=\mathrm{T}_{\mathrm{AB}}+\mathrm{T}_{\mathrm{BC}}+\mathrm{T}_{\mathrm{CD}}
$$

$T=z / V_{0} \cos i_{c}+\left(x-2 z \tan i_{0}\right) / V_{1}+z / V_{0} \cos i_{c}$
where
$\sin i_{c}{ }^{\prime}=v_{0} / v_{1}, \quad \cos i_{c}=\left(1-v_{0}^{2} / v_{1}^{2}\right)^{1 / 2}$ and $\tan i_{c}=v_{0} /\left(v_{1}^{2}-v_{0}^{2}\right) 1 / 2$

After gimplification, the time-distance relation finally becomes

$$
T=x / V_{1}+2 z\left(V_{1}^{2}-V_{0}^{2}\right) 1 / 2 / V_{1} V_{0}
$$

On a plot T versus x, this is the equation of atraight line which has a ope of $1 / v$ and whichintercept the Taxis(x=0) at atime

$$
T_{i}=2 z\left(v_{1}^{2}-v_{0}^{2}\right)^{1 / 2} / V_{1} v_{0}
$$

T_{i} is known as the intercept time.
From the above relation the depth zecomes

$$
z=\left(T_{i} / 2\right) v_{0} v_{1} /\left(v_{1}^{2}-v_{0}^{2}\right)^{1 / 2}
$$

Three-Media Case (After Dobrin, 1976)

Consider three-media with velocities V_{0}, V_{1}, and $V_{2}\left(V_{2}>V_{1}>V_{0}\right.$) . Then the ray corresponding to the least travel time takes -l an angle $i_{l}=\operatorname{Sin}\left(V_{0} / V_{2}\right) \underset{\sim}{\text { with }} \begin{aligned} & \text { (he vertical in the uppermost }\end{aligned}$ layer and an angle $i_{2}=\operatorname{Sin}\left(V_{1} / V_{2}\right)$ with the vertical in the second layer.

The total travel time from A to F is

$$
T=T_{A B}+T_{B C}+T_{C D}+T_{D E}+T_{E F}
$$

since $T_{A B}=T_{E F}=z_{0} / V_{0} \cos i_{1}=\left(z_{0} / V_{0}\right) /\left[1-\left(V_{0} / V_{2}\right)^{2}\right]^{1 / 2}$

$$
T_{\mathrm{BC}}=\mathrm{T}_{\mathrm{DE}}=\mathrm{z}_{1} / \mathrm{V}_{1} \cos \mathrm{i}_{2}=\left(\mathrm{z}_{1} / \mathrm{V}_{1}\right) /\left[1-\left(\mathrm{V}_{1} / \mathrm{V}_{2}\right)^{2}\right] 1 / 2
$$

The total travel time becomes

$$
\begin{aligned}
T & \left.=\left(2 z_{0} / V_{0}\right) /\left[1-\left(V_{0} / V_{2}\right)^{2}\right]^{1 / 2}+\left(2 z_{1} / V_{1}\right) /\left[1-V_{1} / V_{2}\right)^{2}\right)^{1 / 2} \\
& +C D / V_{2}
\end{aligned}
$$

where $C D=x-2 z_{0}$ tan $i_{1}-2 z_{1} \tan i_{2}$

$$
=x-2 z_{0}\left(v_{2}^{2}-v_{0}^{2}\right)^{1 / 2} / v_{2} v_{0}+2 z_{1}\left(v_{2}^{2}-v_{1}^{2}\right) / v_{2} v_{1}
$$

Rearranging terms, wè get
$T=x / V_{2}+2 z_{0}\left(v_{2}^{2}-v_{0}^{2}\right)^{1 / 2} / V_{2} v_{0}+2 z_{1}\left(v_{2}^{2}-v_{1}^{2}\right)^{1 / 2} / V_{2} V_{1}$

The intercept time(at $x=0)$
$T_{i 2}=2 z_{0}\left(v_{2}^{2}-v_{0}^{2}\right) 1 / 2 / V_{2} V_{0}+2 z_{1}\left(v_{2}^{2}-v_{1}^{2}\right)^{1 / 2} / V_{2} V_{1}$

Solving for z_{1}, we get
$z_{1}=1 / 2\left[T_{i 2}-2 z_{0}\left(v_{2}^{2}-v_{0}^{2}\right)^{1 / 2} / v_{2} v_{0}\right] v_{2} v_{1} /\left(v_{2}^{2}-v_{1}^{2}\right)^{1 / 2}$

The depth to the lower interface is the sum of and a , where $z_{0} 1 s$ computed by two-media case.

Appendix-3

Crossover Distance

The crosiover distance is the distance at which the direct wave and the refracted wave meet each other. at distance less than chis, che direct vave traveling along the top of the V_{0} layer reaches the detector first. At greater distances; the wave refracted by the interface arifer before the direct wave.

Therefore, the time distance relacion of the direct wave, $T_{0}=x / V_{0}$ and thé refracted wave,

$$
T_{1}=x / v_{1}+2 z\left(v_{1}^{2}-\cdot v_{0}^{2}\right)^{1 / 2} / v_{1} v_{0}
$$

are equal at xcrós

Hence, $x_{c r o s} / v_{0}=x_{\text {cros }} / v_{1}+2 z\left(v_{1}^{2}+v_{0}^{2}\right) / v_{1} v_{0}$
and $z=v_{0} v_{1} x_{c r o s}\left(1 / v_{0}-1 / v_{1} \dot{j} / 2\left(v_{1}^{2}-v_{0}^{2}\right) 1 / 2\right.$

Simplifying and solving for x. we obtain

$$
x_{\text {cros }}=2 \mathrm{z}\left(\mathrm{v}_{1}+\mathrm{v}_{0}\right)^{1 / 2} /\left(\mathrm{v}_{1}-\mathrm{v}_{0}\right)^{1 / 2}
$$

Offset Distance(After Dobrin, 19.76)
Consider, two-media with velocities $\|_{0}$ and Y_{1} separated by a horizontal discontinuity at depth elf

The offset distance, $x_{o f f}^{18}$ given by

$$
x_{o f f}=z_{0} \operatorname{tam}_{c}
$$

where $i_{c}{ }^{1 s}$ the critical angle of refraction and $\sin f_{c} \nabla_{0} / v_{1}$ _

- The value of

Therefore,

$$
x_{o f f}=z_{0} v_{0}\left(v_{1}^{2}-\dot{v}_{0}^{2}\right)^{1 / 2}
$$

Appendix-4

Notch Pilter

A notch filter can be designed directly with the help of a Z-diagram on which frequencies are plotted around the unit circle. The objective was to design a filter for rejecting 60 Hz frequency by locating zeroes of the filter at the points on the $2-p l a n e$ unit circle corresponding to that frequency. To reject 60 Hz with data of lms intervals, the Z- plane points which correspond to that frequency occur on the unit circledat angles $\pm \Omega$, deterained as follows:

$$
\Omega= \pm\left(60 / f_{N}\right) 180= \pm 21.6^{\circ}
$$

where $\mathrm{f}_{\mathrm{N}}=500 \mathrm{~Hz}$ is the Nyquitat frequency.

The location of, the zeroes in the \dot{Z}-plane are denoted by'. α_{1} and α_{2}.

$$
\begin{aligned}
& \alpha_{1}=\cos 21.6^{\circ}+j \sin 21.6^{\circ} \\
& \alpha_{2} \leq \cos 21.6^{\circ}-j \sin 21.6^{\circ}
\end{aligned}
$$

or,

$$
\begin{aligned}
& \alpha_{1}=0.9288+j 0.3685 \\
& \alpha_{2}=0.9288-j 0.3685
\end{aligned}
$$

In order not to disturb the signal spectrum away from 60Hz, two poles just outside the unit circle (say r=1.01 and $\Omega=$ $\pm 21.6^{\circ}$ and close, to the two zeroes are located. Then the poles are located at

$$
\begin{aligned}
\beta_{1} & =1.01\left(\cos 21.6^{\circ}+j \sin 21.6^{\circ}\right) \\
B_{2} & =1.01\left(\cos 21.6^{\circ}-j \sin 21.6^{\circ}\right)
\end{aligned}
$$

or

$$
\begin{aligned}
& B_{i}=0.9391+j 0.3722 \\
& B_{2}=0.9391-j 0.3722
\end{aligned}
$$

The 2 -transform of the fupulse responge function with a - static gain G, to ingure aganof unity at che Nyquigt. frequency is

$$
\left.W(z)=G\left[\left(z-\alpha_{1}\right)\left(z-\alpha_{2}\right)\right] /\left[z-\beta_{1}\right)\left(z-\beta_{2}\right)\right]
$$

```
Rearranging and separating real and imaginary parts yield
```

$$
W(z)=\frac{G\left[z^{2}-\left(\alpha_{1}+\alpha_{2}\right) z+\alpha_{1} \alpha_{2}\right]}{1-\left(\beta_{1}+\beta_{2}\right) z / \beta_{1} \beta_{2}+z^{2} / \beta_{1} \beta_{2}}
$$

where $G=\frac{\left[1+\left(\beta_{1}+\beta_{2}+1\right) / \beta_{1} \beta_{2}\right]}{2+\left(\alpha_{1}+\alpha_{2}\right)}$

Substituting the values of α 's and β^{\prime} in the above equations, the impulse response beciomes

$$
W(z)=Y(z) / X(z)=\frac{0.9899\left(z^{2}-1.8596 z+1\right)}{1-1.8406 z+0.9800 z^{2}}
$$

where $Y(z)$ and $X(z)$ are the output and input series.
The recusive relation for the output is

$$
\begin{aligned}
& Y_{n}=0.9899\left(X_{n}-1.8596 X_{n-1}+X_{n-2}\right)-0.9800 Y_{n-2}+1.8408 Y_{n-1} \\
& \text { i.e. } \quad Y_{n}=a_{0} X_{n}+a_{1} X_{n-1}+a_{2} X_{n-2}+b_{1} Y_{n-1}+b_{2} Y_{n-2}
\end{aligned}
$$

: '
where $=0.9899, a_{1}=1.8408, a_{2}=0.9899, b_{1}=1.8406$ and $b_{2}=$ -0.98000.

The initial value of the output \mathcal{D}_{0} was deterained from the
initial value of the input data X_{0}, that is at $n=0, y_{0}=a_{0} x_{0}$ and the all other rerme are zero. When $\mathcal{F}=\mathrm{T}, Y_{1}=a_{0} x_{1}+a_{1} x_{0}+$ $b_{1} Y_{0}$ ', and the other terms are zeros and, so on.

Appendix-5

Band-pass filter
The recuspion filtering (Golden and Kaiser, 1964; Shanks, 1967) involves a feedback loop using the polynomial of the Z-transform of the impuse response of recursive filtef is of the type
$F(z)=\frac{N(z)}{D(z)}=\frac{N_{0}+N_{1} z+N_{2} z^{2}+\ldots+N_{n} z^{n}}{I+D_{1} z+D_{2} z^{2}+\ldots+D_{m} z^{m}}$
where N and D^{\prime} s are the coefficients.
Since $F(z)=Y(z) / X(z)$, where $Y(z)$ and $X(z)$ are the output and input series, the recursive relation of the output is

$$
Y_{n}=\sum_{i=0}^{n} \quad N_{i} X_{n-i}-\sum_{j=1}^{m} D_{j} Y_{n-j}
$$

The band-pass Butterworth filter having lower and upper cutoff frequencies of 20 Hz and 120 Hz , respectively and Whaving 8 poles in the $Z-p l a n e$ was chosen. Thefilter was applied in forward and reverse directions so as to have zero phase.

This filcer has four $S-p l a n e$ zeroes at $S=0$, and eight S-plane poles.at

$$
\begin{aligned}
& S=-36.60 \pm j 123.97 \\
& S=-134.44 \pm j 98.90 \\
& S=-218.28 \pm j 739.30 \\
& S=-480.89 \pm j 353.80
\end{aligned}
$$

and the transfer function is of the form

where g's aré constants.
Using bilinear Z-transform (Golden and Kaiser, 1964).

$$
S=\frac{2}{\Delta T} \frac{1-z}{1+z}
$$

©
where $\Delta T=1 m s$, sampling interval; the transfer function of the filter becomes

$$
F(z)=\left(1-z^{2}\right)^{4} /\left(B_{1}(z) B_{2}(z) B_{3}(z) B_{4}(z)\right)
$$

$$
\text { where } \begin{aligned}
B_{1} & =1-1.91361 z+0.92966 z^{2} \\
B_{2} & =1-1.74003 z+0.76443 z^{2} \\
B_{3} & =1-1.24588 z+0.68060 z^{2} \\
B_{4} & =1-1.16038 z+0.38739 z^{2}
\end{aligned}
$$

The transfer function $F(\mathbb{C})$ may be written as a cascaded product of four filters
-

$$
F(z)=F_{1}(z) F_{2}(z) F_{3}(z) F_{4}(z)
$$

Where terms like $F_{1}(z)$ have the form

$$
\underset{1}{\mathrm{~F}(z)}=\left(1-z^{2}\right) /\left(1-D_{1} z+D_{2} z^{2}\right)
$$

where $D^{\prime} s$ are coefficients.

- The filiter is cascaded four times (Kanasewich, 1981, p. 243-244). In succesaion produces a z-transform output and the recursive equations for programing are

$$
\begin{aligned}
& c_{n}=x_{n}-x_{n-2}+1.91361 c_{n-1}-0.929665 c_{n-2} \\
& d_{n}=c_{n}-c_{n-2}+1.74003 d_{n-1}-0.76443 d_{n-2} \\
& e_{n}=d_{n}-d_{n-2}+1.24588 e_{n-1}-0.68060 e_{n-2} \\
& y_{n}=e_{n}-e_{n-2}+1.16038 Y_{n-1}-0.38739 Y_{n-2}
\end{aligned}
$$

Appendix-6

Normal moveout in horizontal reflector (After Telford et al., 1976).

Consider a horizontal reflector $A B$ at a depth D below the shot point S. Energy leaving S along the direction $S C$ will be reflected in such a direction that the angle of reflection equals the angle of incidence.

Denoting the average velocity by V, ${ }^{\prime}$, the travel tiae for the reflected wave is (SC+CR)/Vminowever, SC=CI so that IR is equil to the length of the actual path, SCR. Therefore, $T=I R / H_{m s}$ and in terme of offaet X, we can write

$$
V_{\mathrm{rms}}^{2} T^{2}=X^{2}+4 D^{2}
$$

The travel times for a geophone at the shot i.e. at $\mathrm{X}=0$, we obtain

$$
T_{0}=2 D / V_{r m s}
$$

or, $\quad 4 D^{2}=T_{o}^{2} V_{r m s}^{2}$

Substituting the value of $4 D^{2}$ in the above equation and

$$
T^{2}=T_{0}^{2}+X^{2} / V_{r m s}^{2}
$$

To obtain Normal Moveout (NMO) ΔT, we substitute $T=T_{0}+\Delta T$:

$$
\left(T_{0}+\Delta T\right)^{2}=T_{0}^{2}+X^{2} / V_{r m s}^{2}
$$

After simplifying

$$
\Delta T \neq \mathrm{X}^{2} / 2 \mathrm{~V}_{\mathrm{rms}}^{2} T_{0}
$$

Appendix-7

To calculate the reflectivity at the interfaces of the layers below the Squires Park line in Humber Synciine, the density and velocity of different formations must be used. There are three layers, Humber Falls, Rocky Brook and North Brook formations in that area. Their densities are 2.5 gm/c.c, $2.54 \mathrm{gm} / \mathrm{c} . \mathrm{c}$ and 2.7 . gm/c.c respectively with the corresponding velocities $3000 \mathrm{~m} / \mathrm{s}, 4000 \mathrm{~m} / \mathrm{s}$ and $5000 \mathrm{~m} / \mathrm{e}$ respectively. The reflectivity or the reflection coefficient of the interface of the layers (Waters, 1981, p.26)

$$
\begin{aligned}
& \rho_{1}=2.5 \mathrm{gm} / \mathrm{c} . \mathrm{c}, \quad \mathrm{~V}_{1}=3000 \mathrm{~m} / \mathrm{s} \\
& \mathrm{R}_{1} \\
& \begin{aligned}
& R_{2} \frac{\rho_{2}}{}=2.54 \mathrm{gm} / \mathrm{c.c}, \quad \mathrm{~V}_{2}=4000 \mathrm{~m} / \mathrm{s} \\
& \rho_{3}=2.7 \mathrm{gm} / \mathrm{c} . \mathrm{c} . \quad \mathrm{v}_{3}=5000 \mathrm{~m} / \mathrm{s}
\end{aligned}
\end{aligned}
$$

$$
R_{i}=\left(\rho_{i+1} v_{i+1}-\rho_{i} V_{i}\right) /\left(\rho_{i+1} v_{i+1}+\rho_{i} v_{i}\right)
$$

$$
i=1,2
$$

where ρ_{i} and v_{i} denote the density and velocity.
Using che values of and v 's in the above equation, R_{1} 0.51 and $R_{2}=0.141$ are determined.

8
7 COMPUTER PROGRAMMES

PROGRAM FOR STATIC CORRECTION

```
C Static correction of the deer lake data
    DIMENSIOONOIRAHD(336),H(336),X(1000),Y(1000)
    INTEGER*2 HEAD(200)
c
C OPEN(UNIT=4,FILE='MFAO:`.RECL=12I,BLOCKSIZE=12100,
C * STATUS='OLD',RECORDTYPE='FIXED',READONLY)
C
    READ(3,115) HEAD(1), HEAD (2), HEAD (3)
    WRITE(6, 105) HEAD(1), HEAD(2), HEAD (3)
    FORMAT(1X,16,15,16)
    format(1X,'reel no ',16,10X, 'no of thaces -
    *,I4,10X,'DEL TIM',I6)
c
109
    WRITE(6,109)(M(II),II=1,336)
    FORMAT(1615)
        K=361
        II=1
C
1. READ(3,117) IRAHD(1),IRAHD(3),IRAHD(4)
        HRITE(6,107) IRAHD(1),IRAHD(3), IRAHD(4)
        FORMAT(1X,16,15,16)
        format(1%,'tra no ',15,10X,'field rec no *
        *,15,'FIELD TRA NO'.I5)
c
    READ(8)(X(I), I=1,1000)
        IKK=M(II)+1
        N=0
        DO 90 JM=LXXK,1000
        N=N+1
        90. Y(N)=X(NM)
        J=1000-M(II)
        WRITE(9)(Y(I),I=1,J)
    C
        II =II+1
        K=X+1
        IF(K.LT.697) Go TO 1
C
    STOP
        END
```

0
PROGRAM FOR MUTING THE DATA
c
C
READ(3,115) HEAD(1),HEAD(2),HEAD (3)
WRITE(6;105) HEAD(1),HEAD(2),HEAD(3)
FORmAT(1X,16,15,16)
105 FORMAT(1X,'REEL NO ',16,10X,'NO OF TRACES '
*,I4,10X,.DEL TIM ',I6)
READ(2,109)(M(II),II=1,336)
FORMAT(1615)
READ(5,104)(GD(J),J=1,24)
104 FORMAT(10F8.1)
READ(5,106)(V(I), I=1,14)
l06 FORMAT(10F8.3)
READ(5,102)(DELT(I),I=1,14)
102 FORHAT(1OFB.1)
K=361
II=1
AIRV=1.35
C
DO 60 11=1,14
DO 60 J=1,24
Tl=(GD(J)/V(I1))+DEIT(I1)
T2=GD(J)/AIRV
IT1=T1
IT2=T2
READ(3,117) IRAHD(1),IRAHD(3),IRAHD(4)
WRITE(6, 107). IRAHD(1), IRAHD(3), IRAHD(4)
FORMAT(1X,16,15,16)
107 FORMAT(1X,'tRA NO ',15,20X,.'FIELD REC, NO *
*,15,'FIELD TRA NO',15)
N=1000-M(II)
C
READ(B)(X(I),I=1,N)
c
In 40 IJ=1,N
Y(IJ)=X(IJ)
COntINUE
c
DO 50 IK=1,IT1
Y(IK)=0.0
contINuE

```
```

c
IF(IT2.LE.N) GO TO 3
GO TO.70
DO 70 IM=LT2,N
Y(IM)=0.0
CONTINUE
c
NRITE(P)(Y(I),I=1,N)
II=I.I+I
K=K+1
60 CONTINUE
stop
END

```
        PROGRAM FOR NOTCH FILTER( 60 HZ REJECTION)
    C 60 HZ REJECTION USING NOTCH FILTER IN TIME DOMAIN.
        DIMENSION IRAHD (336),M(336),X(-1:1000),Y(-1:1000)
        *, YY( \(-1: 1000\) ), \(Z(-1: 1000), \mathrm{ZZ}(1000)\)
        INTEGER*2 HEAD(200)
    C
        READ (3,115) HEAD (1), HEAD (2), HEKO(3)
        WRITE \((6,105) \operatorname{HEAD}(1), \operatorname{HEAD}(2), \mathrm{HEAD}(3)\)
115 FORMAT(1X,16,15,16)
105 Format(1X,'reel no ', \(16,10 \mathrm{X}\).'no of triaces
        *,I4, IOX, 'DEL TIM', IE)
        \(\operatorname{READ}(2,109)(M(I I), I I=1,336)\)
109.: FORMAT(1615)
        L=361
        II = I
        \(\operatorname{READ}(3,117) \operatorname{IRAHD}(1), \operatorname{IRAHD}(3), \operatorname{IRAHD}(4)\)
        HRITE (6.107) IRAHD (1) :IRAHD (3), IRAHD(4)
117 FORMAT(1X,16,15,16)
107 Fokmat ( 1 X, 'tRa no ', 15,10X. 'FIELD REC NO' '
        *, I5,'field tra no', 15)
        \(\mathrm{N}=1000-\mathrm{H}(\mathrm{II})\)
c
        \(\operatorname{READ}(B)(X \neq 1), I=1, N)\)
```

 c
 A1=0.9899
 A2 =-1.8408
 A3=0.9899
 B2=1.8406
 B3=-0.98
 c
 DO 20 I=1,N
 J= I-1
 IF(J.GE.1) GO TO 30
 X(J)=0.0
 Y(J)=0.0
 continue
 K=I-2
 IF(K.GE.1)GO TO.40
 X(K)=0.0
 Y(K)=0.0
 continue
 Y(I)=(A1*X(I))+(A2*X(J))+(A3*X(K))+(B2FY(J))
 *+(B3*Y(K))
 continue
 PASSING THE IN REVERSE ORDER
 DO 50 I I I=1,N
 YY(IJ) =Y(N-I'J+I)
 continue
 c
DO 60 1K=1,N
IL=IK-1.
IF(1L.GE.1) GO TO 7D
YY(IL)=0.0
Z(IL)=0.0
CONTINUE
IM=IK-2
IF(IM,GE.1) GO TO 80
YY(IM)=0.0
Z(IM)=0,0
80: CONTINUE
Z(IK)=(A1*YY(IK))+(A2*YY(IL)) +(A3*MY(IM))
**(B2*Z(IL))+(B3*Z(IM))
continue
C c reversing the data agiain
DO 90 IN=1,N
ZZ(IN)=Z(N-1N+1)
90. CONTINUE
c
HRITE(9)(ZZ{I),I=1,N)
II=II+1
L=L+1
IF(L.LT.697)'GOTO 1
c
STOP
END

```

```

 DIMENSION IRAHD(336),M(336),V(1024), X(1024)
 * , PONER(1024)
 |NTEGER*2 HEAD(200)
 COMPLEX X
 READ(3,115) HEAD(1),HEAD(2), HEAD(3)
 WRITE(6,105) HEAD (1),HEAD(2), HEAD(3)
 FORMAT(1X,16,I5,I6)
 105 FORMAT(1X, 'REEI: NO ',I6,10X,'NO OF TRACES
 ,I4,10X,'DEL TIM.I6)
 READ(2,109)(M(II).,II=1, 336)
 FORMAT(16I5)
 K=361
 II=1
 N=10
 SIGN=1.0
 C
 1) READ(3,117) IRAHD(1),IRAHD(3), IHAHD(4)
 WRITE(6,107) IRAHD(1), IRAHD(3), IRAHD(4)
 117 FORMAT(1X,IG,I5,I6)
 107 FORMAT(IX,'TRA NO '.I5.10X,'FIELD REC NO'
 *,15,'EIELD TRA NO',I5)
 MN=1000-M(II)
 READ(8)\Y(I),I=1,NN)
 C
 DO 55 IJ=1,NN
 X(IJ)=GMPLX(VIIJ),0.0)
 C
 L=NN+1
 DO 2 J=L, 1024
 X(J)=CMPLX (0.0,0.0)
 CONI゙INUE
 CALL NLOGN(N,X,SIGN)*
 DO :3 I=1,1024
 A=REAL(X(1))
 B=AIMAG(X\I))
 AMP=SQRT(A**2+B**2)
 PONER(I)=(AMP)**2
 WRITE(9)(POWER(I), 1=1,1024)
 II=II*I
 K=K+1
 IF(K.LT.697) GO TO 1
 C
 STOP
 END
    ```

\section*{C}- TO CACULATE ROWER SPECTRUM BY USING FET

SUBROUTINE MLOGN(N,X,SIGN)
```

SUBROUTINE NLOGN(N,X,SIGN)
NMAX=LABGEST VALUE OF N TO BE PROCESSED
NONDUMAY DIMENSION H(NMAX)
DIMENSION M(1024)
DIMENSION X(2**N)
DIMENSION X(2)
COMPLEX X,HK,HOLD,Q.
LX=2**N
DO 1 I I=1,N
M(I)=2**(N-I)
DO 4 L=1,N
NBLOCK=2**(I-1)
LBLOCK=LX/NBLOCK
LBHALF=LBLOCK/2
K=0
DO. 4 IBLOCK=1,NBLOCK
FK=K
FLX=LX
V=SIGN*6.2831853*FK/FLX
WK=CMPLX(COS(V),SIH(V))
ISTART=LBLOCK*(1BLOCK-1)
DO 2 I=1, LBHALF
J=ISTART+I
JH=J+LBHALF
Q=X(JH)*WK
X(JH)=x(J)-Q
x(J)=x(J)+Q
continue
DO 3 I=2,N
II= I
IF (K.LT.M(I)) GO TO 4*
K=K-M(T)
K=K+M(1I)
K=0
DO 7 J=1,LX:
IF (K.LT.J) GOTO 5
HOLD=x(J)
x(J)=x(K+1)
X(K+1)=HOLD
DO 6 I=1,N
I1=1
IF (K.LT.M(I)) GOTO }
K=K-M(I)
K=K+M(II)
IF(SIGN.LT.O.O) RETUHN
D 8 l=1,LX
X(I)=X(I)/FLX
RETURN
END

```
program for averaging the poher spectrum

C AVERAGE POHER SPECTRUM DIMENSIOM IRAHD(336), V(512,24),SUM(512),AVPW(512)
c
INTEGER*2 HEAD(200)
c
c
\(\operatorname{READ}(3,115) \operatorname{HEAD}(1), \operatorname{HEAD}(2), \operatorname{HEAD}(3)\)
WRITE(6, 105) HEAD (1), HEAD (2), HEAD (3)
115 . FORMAT ( \(1 \mathrm{X}, 16,15,16\) )
105 format(1X,'reel no ',i6, 10X.'no of traces '
*,I4.10X,'DEL TIM',I6)
DO \(81 \quad 1 X=1,14\)
\(\operatorname{READ}(4,210)\) ISPNO
WRITE \((6,220)\) ISPNO
210 FORMAT(15)
220 FORmAT( \(20 x\),'ShOT NUMBER', 15)
DO 80 I \(Y=1,24\)
READ (B) (V(I,IY), I: 1,512 )
80 continue
C
DO \(12 \mathrm{~J}=1,512\)
SUM(J) \(=0.0\)
DO \(12 I=1,24\).
\(\operatorname{sum}(J)=\operatorname{sum}(J)+V(J, 1)\).
12 CONTINUE
c
DO \(13 \mathrm{~K}=1,512\)
\(\operatorname{AVPW}(K)=\operatorname{SUM}(K) / 24\).
13 COntinue
c
HRITE(9)(AVPN(I), I=1,512)
81 CONTINUE
STOP
END
\(\psi\)

PROGRAM FOR THE BAND PASS FILTER

BUTTERWORTH BAND PASS FILTER(20 HZ TO 120 HZ ) DIMENSION IRAHD (336), H(336), \(\mathrm{X}(1000), \mathrm{D}(8)\)
*, XC(3), XD(3), XE(3) INTEGER*2 HEAD(200) COMPLEX P(4),S(8),Z1,Z2
c
READ (3,115) HEAD(1); Hitad (2), HEAD(3)
HRITE (6, 105) HEAD (1), HEAD (2), HEAD (3) FORMAT( \(1 \times, 16,15,16\) )
105 Format (1X,'REEL NO', 16,10X. 'No OF TRaces
*,I4,10X, 'DEL TIM', I6)
\(\operatorname{READ}(2,109)(\mathrm{M}(\mathrm{II}), \mathrm{II}=1,336)\)
109 FORMAT(1615)
\(L=361\)
11=1
C
\(F 1=20.0\)
F2 \(=120.0\) DELT=1.0
c
c \(T H O P I=6.2831853\)
\(\dot{c}\)
DT=DELT/1000.0
TDT \(=2.0 / \mathrm{DT}\)
FDT \(=4.0 / \mathrm{Dr}\)
1SW=1
\(P(1)=\) CMPLX \((-.3826834, .9238795)\)
\(P(2)=\operatorname{CMPLX}(-.3826834,-.9238795)\)
\(P(3)=C M P L X(-.9238795, .3826834)\) \(P(4)=C M P L X(-.9238795,-.3826834\) ) H \(1=T W O P I *{ }^{-1}\) H2=THOPI \(* F 2\) H1=TITT*TAN(W1/TDT) H2=TLT*TAN(H2/TDI) HWID \(=\left(W_{2}-W 1\right) / 2.0\) WH=W 1 *W2
c
Do \(191=1,4\)
Z1=P(I)*HHID
Z2=21*Z1-W
\(22=\operatorname{CSQRT}(22)\)
S(I) \(=\) Z1 + Z2
\(19 \quad S(I+4)=21-22\)
c
```

G=.5/HHID
G=G*G
G=G*G
DO 29 I=1,7,2
B=-2.0*REAL(S(I))
Z1=S(I)*S(I+1)
C=REAL(Z1)
A=TDT+B+C/TDT
G=G*A
D(I)=(C*DI-FDI)/A
D(I+1)=(A-2.0*B)/A
G=G*G
READ(3,117) IRAHD(1), IRAHD(3), IRAHD(4)
HRITE(6,107) IRAHD(1),IRAHD(3),IRAHD(4)
FORMAT (1X,16,15,16)
FORMAT(1X,'TRA NO',I5,10Y, 'FIELD REC NO'
,I5,'FIELD TRA NO,IS)
N=1000-M(II)
READ(B)(X(I),I=1,N)
CALL FILTER(X,N,D,G,IG)
HRITE(9)(X(I),I=1,N
I = II + I
L=L+1
IF(L.LT.697) GO TO 111
STOP
END
FILTER IN FORWARD DIRECTION
SUBROUTINE FILTER{X,N,D,G,IG}
DIMENSION X(1000;,D(8),XC{3), ,D(3),XE{3)
XM2 = ((1)
XM1 =X(2)
XM=X(3)
XC(1)=YM2
XC(2)=XM1-D(1)*XC(1)
XC{3)=XM-XM2-D(1)*XC(2)-D(2)*XC(1)
XD(1)=XC(1)
XD(2)=xC(2)-D(3)*XD(1)
XD{(3)=XC(3)-XC(1)-D(3)*XCD(2)-D(4)*XD(1)
XE(1)=XD(1)
XE(2)=XD(2)-D(5)* XE(1)
XE(3)=XD(3)-XD(1)-D(5)*XE(2)-D(6)*YE(1)
X(1)=XE(1)
y(2)=XE(2)-D(7)*X(1)
X(3)=XE(3)-XE(1)-D(7)*X(2)-D(8)*X(1)

```
C
111
117
107
\[
\text { DO } 39 I=4, N
\]
\(\mathrm{XM2}=\mathrm{XM1}_{1}\)
\(X M 1=X M\)
\(X M=X\) (I)
\(\mathrm{K}=\mathrm{I}-((\mathrm{I}-1) / 3) \times 3\)
GO TO \((34,35,36), K\)
\(X M 2=X(N)\)
\(X M I=X(N-1)\)
\(X M=X(N-2)\)
\(X C(1)=X M 2\)
\(Y C(2)=X: M 1-D(1) * X C(1)\)
\(X C(3)=X M-X H 2-D(1) \star X C(2)-D(2) \star Y C(1)\)
\(x D(1)=x C(1)\)
\(X D(2)=X C(2)-D(3) * X D(1)\)
\(X D(3)=X C(3)-X C(1)-D(3) * Y D(2)-D(4) * 2 D(1)\)
\(X E(1)=X D(1)\)
\(X E(2)=X D(2)-D(5) \star X E(1)\)
\(X E(3)=X D(3)-X D(1)-D(5) * X E(2)-D(6) \star X E(1)\)
\(X(N)=X E(1)\)
\(X(N-1)=X E(2)-D(7)+X(1)\)
\(X(N-2)=X E(3)-X E(1)-D(7) * X(2)-D(8) * Y(1)\)
C
D0 \(49 I=4, N\)
\(X M 2=X M 1\)
\(X M 1=X M\)
\(\mathbf{J}=\mathbf{N}-\mathbf{Y}+\mathbf{I}\)
\(X M=X(J)\)
K=I-((I-1)/3)*3
GOTO \((44,45,46), K\)
\(M=1\)
\(M 1=3\)
\(\mathrm{H} 2=2\)
GO TO 47
45
\(\mathrm{M}=1\)
\(M 1=3\)
\(M 2=2\)
GO TO 37
\(=2\)
\(M 1=1\)


GO TO 37
\(M=3\)
\(M 1=2\)
\(M 2=1\)
\(X C(M)=X M-X M 2-D(1) \star X C(M 1)-D(2) \star \times C(M 2)\)
\(X D(M)=X C(M)-X C(M 2)-D(3) \star X D(M 1)-D(4) \star Y D(M 2)\)
\(X E(M)=X D(H)-X D(M 2)-D(5) * X E(M 1)-D(6) \star X E(M 2)\)
\(X(I)=X E(M)-X E(M 2)-D(7) * X(I-1)-D(8) \star X(I-2)\)
FILTER IM REVERSE DIRECTION
\(M=2\)
```

 M1=1
 M2=3
 GO TO 47
 M1=2
 M2=1
 47 XC(M)=XM-XM2-D(1)*XC(M1)-D(2)*XC(M2)
XD(M)=XC(M)-XC(H2)-D(3)*XD(M1)-D(4)* KD(M2)
XE(M)=XD(M)-XD(M2)-D(5)*XE(M1)-D'(6) \#XE(M2)
49 X(J)=XE(M)-XE(M2)-D(7)*X(J+1)-D(8) \& X(J+2)
IF(1G.NE.1) RETURN
DO 59 I=1.N
59 X(I)=X(I)/G
RETURN
END

```
    \(46 \quad M=3\)
PROGRAM FOR COP GATHER(6-FOLO)
C CDP GATHER(6-FOLD)
        DIMENSION CDPNO (36), M(336;, Y(1000)
        INTEGER CUPNO
        \(I A=20\)
        \(1 B=40\)
        \(1 \mathrm{C}=60\).
        \(1 D=80\)
        \(I E=100\)
        IF \(=120\)
C
        \(J=1\)
    - \(L L=0\)
    \(3 \quad L=1\)
c
    \(2 \operatorname{READ}(1,15) \operatorname{CDPNO}(J)\)
15 EORMAT([5)
        HRITE \((6,19)\) CUPNO(J)
C
        \(\operatorname{READ}(2,25)(M(11), I I=1,336)\).
    25 FORHAT:1615)
        \(K=1\)
        \(I I=1\)
    \(1 N=1000-M(I I)\)
        MEAD (E)(X(I),I=1,N)
C
```

 IAA=IA+LLL+L
 IBE=IB+LL+L
 ICC=IC+IL + I
 IDD=ID+IL+L
 IEE=IE+LLL+L
 LFF=IF+LL+L
 .c
IE(K.EQ.IAA) GO TO 100
IF(K.EQ.IBB)GOTO 100
IF(K.EQ.ICC)GO TO 100
IF(K.EQ.IDD) GO TO 100
IF(K.EQ:IEE)GO TO 100
IE(K.EQ.IFF) GO TO 100
c
GO TO 200
c
100 CONTINUE
NN=N+1
DO 50 I=NN,1000
50 X(I)=0.0
WRITE(9)(X(1),I=1,1000)
WRITE(6,89) M(II)
c
200 II=II+1
K=K+1
IF(K.LT.337) GO TO 1
c
REWIND \&
REWIND 2
J=J+1
L=L+1
IF(L.LT.S) GO TO 2
C
LI=LIL+24
IF(LI.LT.193) GO TO 3
19 FORMAT(1OX,'COMMON DEPTH POINT NO'.I5)
89 FORMAT(I5)
C 99 FORMAT(SF16.5)
STOP
END
PROGRAM FOR THE EIImINATION OF NOISE TRACES

c to eliminate the traces of noise 5hot after nmo
DIMENSION X(1000), NUMBER(20)
OPEN(UNIT=2,FILE='NSTEL.DAT',TYPE='NEW')
DATA (NUMBER(I), I=1,20)/2,8,14,20,25,31,37,43.
*150,156,162,168,173,179.185.191.196,202,208,214/
K=1

```
```

1. {READ(B)(X(1),I=1,1000)
IFLAG=0
DO 20 I=1,20
IF(K.EQ.NUMBER(I)) IFLAG=1
continue
IF(IFLAG.EQ.1) GO TO 30
GO TO SO
continue
DO 40 J=1,1000
X(J)=0.0
continue
c
C50 WRITE(2,19)(X(I),I=1,1000)
50 HRITE(9)(X(I),I=1,1000)
K=K+1
IF(K.IT.217)GO TO 1
C CLOSE(UNIT=2.STATUS='SAVE')
Cl9 FORMAT(8F10.5)
STOP
END
```

PROGRAM FOR THE DETERMINATION OF VELOCITY BY L.S. METHOD

c The velocity and tht at zero off-set
c by least square method.
c
DIMENSION OFFSET(6), \(Y(6), X(5)\)
DATA(OEFSET,(I) \(, 1=1,6\) )/25.,225. .425. (625.,825. .1025./
\(\mathrm{H}=500\).
\(V=3000\).
\(N=6\)
C
DO \(30 \quad \mathrm{I}=1,6\)
\(Y(I)=(4 *(H * * 2)+(\operatorname{OFFSET}(1) * * 2)) /(V \star * 2)\)
\(X(I)=O F F S E T(I) * * 2\)
CONTINUF
SUMX \(=0.0\)
SUMY \(=0.0\)
SUMXY \(=0.0\)
SUMXX \(=0.0\)
```

 DO 40 1=1,N
 SUMX=SUMX+X(I)
 SUMY=SUMY+Y(I)
 SUMXY=SUMXY+(XiI)*Y(I)) . . M,
 SUMXX=SUMXX+(Y(I)**2)
 CONTINUE
 B=(SUMXY-(SUMX *SUMY)/N)/(SUMYY-(SUMX **2)/N)
 A=(SUMY/N)-B*(SUMX/N)
 VĖL=SQRT(ABS(A./B))
 TWT }=\mathrm{ SQRT(A)
 C
 WRITE(6,50) VEL, THT
 50 FORMAT(10X,'VELOCITY=',F5.0,'M/S',10X,'VERTICAI.
 * TWT=',F&.3,'SEC')
 STOP
 END
 *
 SAMPLE PROGRAM FOR THE VELOCIT'Y SCAR
 C VELOCITY SCAN EOR FIRST CDP:TRȦCES
 DIMENSION X(6),TO(7),IDELTIM(6,7),M(6),Y!1000),Z(1000)'
 OPEN(UNIT=1,FILE='VLST, . DAT','TYFE='NEW';
 V=3.0
 DATA(X.(I),I=1,6)/1025.,825.,625.,425.,225.,25./
 DATA(TO(J),J=1.7)/60.,66.,72.,78.,84.,90.,96./
 DATA(M(II),II=1,6)/18.18.18,18,19,18/.
 C
 DO. 30 J=1.7
 DO }30\quadI=1,
 IDELTIM(I,J)={(X(I)**2)/(2*TO{J)*(V**2)))
 C : *-((X(I)**4)/(8*(TO**3)* (V(J)*+4)))
 PRINT *,IDELTIM(I,J)
 cONTINUE.
 c
J=1
II =1
3 N=1000-M(II)
READ(B)(Y(I),I=1,N)
LKK=IDELTIM(LI,J)+1
NN=0
DO 90 JM=LKK,N
NN=NN+1
90 2(NN)=Y(JM)

```

L=N-IDELTIM(II, J)
HRITE (1, 18) \(L\)
WRITE(9) (Z(I), I=1,L)
II=II+1..
IF (II.LT.7) GO TO 3
REWIND 8
\(J=J+1\)
IF(J..LT.8) GO TO 2
CLOSE (UNIT=1,STATUS = 'SAVE')
C:
IB FORMAT(1615)
C 19 FORMAT(0F10.5)
STOP
END

PROGGRAM FOR THE NORMAL MOVEOUT (NMO): CORRECTION
C. . . PROGRAM FOR NMO DIMENSION X(216), TO (216), IDELTIM(216), Y(1000), Z (1000) \(V=3.0\)
\(\operatorname{READ}(3,15)(X(1), 1=1,216)\)
15 FORMAT(6FB.0)
C
\(\therefore \operatorname{READ}(4,17)(\operatorname{TO}(1), 1=1,216)\)
17 FORMAT (12FS.0)
C \(\quad\) DO \(30 \quad I=1,216\)
IDELTIM \((I)=(X(I) * * 2) /(2 * T O(I) *(Y * * 2))\)
30
CONTINUE !
WRITE(6, 18)(IDELTIM(I), \(1=1,216\) )
18 FORMAT(6112)
c
\[
\begin{aligned}
& I=1 \\
& \operatorname{READ}(8)(Y \text { Y(II), } I I=1, N) \\
& \text { LKK = IDELTIM(-1) }+1 \\
& N N=0 \\
& \text { DO } 90 \text { JM=LKK,N } \\
& N N=N N+1 \\
& Z(N N)=Y(J M) \\
& L=N-I D E L T I M(1)+1 \\
& \text { DO 50-IK=L, N } \\
& 2(I K)=0.0 \\
& \text { WRITE (9) (Z(J),J=1, 1000) } \\
& \mathrm{I}=\mathrm{I}+1 \\
& \text { IF(I.IT.217) GO TO } 3 \\
& \text { C19 FORMAT (8F10:5) } \\
& \text { STOP } \\
& \text { END }
\end{aligned}
\]

DO \(50 \quad I=1,6\)
\(\operatorname{SUM}(J)^{\prime}=\operatorname{SUM}(J)+X(1, J)\)
50 CONTINUE
\[
\operatorname{SUM}(J)=\operatorname{SUM}(J) / 6.0
\]

40 CONTINUE
C HRiNT * HEADING.
HRITE(9) (SUMiJ), J=1,1000)
30 CONTINUE
15 FORFAT (9F10.5)
STOP
ENO

\(\mathrm{K} L=1.92 *(\mathrm{I}-1)\)


CALI SYMBOL (YL, 4. 2,0.14,7HSP=
VAL \(=I\) CALL NUMBER (XL \(+0.5,4,2,0.14\), VAL, 0.0, -1)
50 CONTINUE
\(X(1)=1.000\)
DO \(51 \quad I=2,1000\)
\(51 \quad X(I)=X(I \sim 1)-0.001\)
\(x(1001)=0.000\)
\(X(1002)=0.25\)
\(Y(1001)=-1.00\)
\(K=361\)
\(N=1000\)
\(1 . \operatorname{READ}(8)(Y(I), I=1, N ;\)
CALL LINE \((Y, Y, 1000,1,0,2)\)
CALL PLOT(0.OE.0.0, -3)
\(K=K+1\)
IF(K. LT.697) GO TO 1
STOP
END
S

\section*{8 ACEHOWLEDGEMENTS}

0

research grant to. Memorial Univeraity Barth Sciences tean congibting of Drs. R.N. Hiscott, Dr. H.G. Miller, Dr. J.A. Wright and Dre D.F. Strong; Department of Minea and Energy, Governmént of Newfoundland and Labrador for supplyfg geological mapa.

I am aleo grateful to the University of Chitigiong, Bangladesh for granting me study leave for my studies abroad.

Finaliy, \(I\) am very much indebted to my wife, farida, and members of ay family for their examplary patience and constant encouragement, without which this work, would not have been possible.

\section*{9 REFERERCES}

Baíd, \(D . M, 1960\), Geological map of Sandy Lake (west half); Newfoundland. Geological Survey of Canada; Map-471959.

Belt, E.S., 1969, Newfoundland Carboniferous stratigraphy and and its reftation to the Maritimes and Ireland: Amer, Assoc. Pet. Geologists Memoir lZ, M. Kay (Edition), p.734-753.

Dobrin, M. B., 1976 , Introduction to Geophysical prospecting,
 -

Gold, R.My and'Raiser, J.p., 1964 , Design of a, side-band sampled data filter. The Bell telephone Technical Journal. pp.1533-1547.
 John wiley and Sone, Inc.

Hacquebard, P.A., Brasi, M.S. And Donaldson, J.R., 1960, Distribution and stratigraphic significance of small spore genera in the upper Carboniferous of the Martitime provínces of Canada: \(4 t h\) International Carboniferous Stratigraphy and Geology Cong: Heerlen , 1958, Comptes Réndus, V.1, P.237-45.

Hatch; H.B., l919, Deer Lake, Humber River and Grand Lake

3
Shell. Report to Reid Newfoundiand Co. on file with with Nfid. Dept. Mines and Energy.

Haworch, R.T. and Sanford, B.V., 1976 , Paleozofc geology of the southeas.t Gulf of Saint Lawrence Geoiogical Survey of Cenada, Paper 76-1A, pp-1-6. \(\because\)

Haworth, R.T.; Poole, W. H : , Grant, A.C. and Sanford, B. V.,
1976, Marine Geoscience survey north.east of Nfid. - Geological Survey of Canada, Paper 76-1A, pp.7-15.

Holtz, \(H \cdot\), and Leondes, \(C . T: 1966\), The syntheais of recurive digital filters: Jour. ACM, V.13, io.2, pp.262-280.

Hyde, R.S: 1983, Geology of the Carbonfferous Deer Lake Basin, Nfld. Dept. of Mines and Energy Map 82-7, 1:100,000.

Hyde, R.S: 1979 , Géglogy of Carboniferous strata in portions of the Deer Lake Basin, uestern Newfoundland: Neld. Dept. of Mines and Energy Report 79-6, p.43.*

Hyde, 4 R.S. and Ware, M.J \(\therefore\), 1981 , Geology of portiong of the Cormack(12R/6) and Silver Mountain(12H/11) map-areas , Nfid. Dept. of Mines and Energy Map 8011, 1:50,000.

Kaiser, J.FA 1963, Design methods for asmpled data filters: Proc. First Allerton Conference on circuit and System theory, p.221-236.

Kanasewich, E.R., 1981 , Time Sequence Analysis in Geophysics;

3rd Edition, The University of Alberta Prese.

Kent, D.v. and opdyke, N.D., 1979 , The, early C̣arbonfferous paleomagnetic field of North America and its bearing on tectonics, of the northern. Appalachians'. Earth and Planetary Science Letters, 44, pp. 365-72.

Knight, I-, l982, Geology of the Carboniferous Bay St. George Sub-basin: Nfld. Dept. of Mines and Energy Map 82-1, 1:125,000.

Kossack, C.F. and Claudia, I. H., 1975, Introduction to Statistics and Computer Programing, Pilot Edition, p.400-405.

Mayne, W. H : , 1962 , Common Reflection Point horizontal data stacking techniques, Geophysics, Vol. XXVII, No. 6 , Part-II, pp.927-938.

Miller H.G: and Wright J.A. , l984, Gravity and magnetic interpretation of the Deer Lake Basin, Newfoundiand. In press, Canadian Journal of Earth Sciences, Jan. 1984 ed.

Neale, E.R.W. and Nash; W.A: 1963 , Sandy Lake (east half)
Nevfandland. Geological Survey of Canada Map 62-28.

O'Sullivan, \(J \dot{j}, 1979\), Report on geological, geochemical and feophysical surveys, Northgate Exploration ltd., Project 721 Cormack.

Peterson，R．A．，Fillippone，W．R．and Coker，F．B．，1955；The． synthesis of betsmograms from Well Log Data， Geophysics，voil 20，p．516－538．

Robertson，\(⿴ 囗 十 ⺝ 丶 ⿸ 丆 口\) ， 1965 ，Apptoximate design of digital filters： Technometrifs，V．7，no．3，p．387－403．

Shanks，J．J．， 1967 ，Recursion filters for digital，processing， Geophysics，vol．32，p．33－51．．．

Smyth，W．R．and Martineau，Y．，1982，Geology Sandy Lake， Mineral Development Division，Dept．of Mines and Energy，Government of Newfoundland and Labrador， Map 82－54．

Strong，D．F．and Irving，E．C：1983，Paleoingigetism of the Carboniferous．Deer Lake Group，western Newfoundiand no evidence for míd－Carboniferous displacement of ＂Acadia＂．Preprint，paper submitted tor earth and Planetary．Science Letters，Sept．， 1983.

Telford，W．M．，Geldart，L．P．，Sheriff，R．E．and．Réys，D．A．，， 1976，Applied Geophysics，Cambridge Úniversity Press， Cambridge．

Truxal，J．G．， 1955 ，Automatic feedback control syaten


Waters， Toronto，p．26．\(\because\)

Weaver, D.FA 1967, A geological interpretation of the Bouguer anomalyfield of Newfoundand Publications of the Dominion Observatory, ottawa. V.35, p.223-51.

Werner, \(H . J \therefore\) 1955, The geology of the Humber Valley, Nfld. Private report tol Newifk Mining Co. on file Mineral Development Divi, Nfld. Dept. of Mines and Energy.

Westfield Minerals Ltd., l981, Geology of Deer lake, Nfld. (Unpublished Geology map).

Whittlesey, J.R.B., 1964, A rapid method for digital filterih̆g: Comm. ACM, V.7. no.9, p.552-556.

Williams, H., 1979, Appalachian Orogen in Canada. Canadian Journal of Earth Sciencea, vol.16, pp.792-802.
\[
20 \%
\]












\section*{206}

\section*{CDP GATHER DATA․}


\section*{3 of 3}




\(\square\)
SYNTHETIC




FIG. 4. 1 PLOT OF SYNTHETIC STACKED DATA
- Synthetic stacked data
 TACKED DATA

IC STACKED DATA
```

