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FRONTISPIECE: View of Glover Island on Grand Lake 

from the northeastern part of the study area. 

11 Au derneurant, je n'ai cherche de rien 

prouver, rnais de bien peinqre et d'eclairer 

bien rna peinture". 

Gide 
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ABSTRACT 

The area between the Grand Lake Thrust · and the Cabot 

Fault is underlain by metamorphic rocks ·that separate 

the most easterly exposures of the west Newfoundland 

carbonate terrane from the most westerly exposures of 

ophiolitic and volcanic rocks of central Newfoundland. The 

major rock types present are; felsic gneisses in the west, 

anorthositic rocks in the southwest, semipelitic to 

psamrnitic schists in the east, and granitic intrusions 

within the gneisses. Mafic dykes intrude the gneisses, but 

are u nknown within the schists. Finally, west . of the 

Grand Lake Thrust but included within the map area, are 

limestones and phyllites of the west Newfoundland 

carbonate terrane. · 

The limestones and phyllites occur in the western 

part of the map area, west of the Grand Lake Tn~list. They 

are deformed, and vary from unmetamorphosed to mildly 

metamorphosed( chlorite zone of the greenschist facies). 

The felsic gneisses locally contain granulite facies 

mineral assemblages, but are everywhere affected by later 

retrograde metamorphism that increases in intensity from 

greenschist to amphibolite facies, from west to east. The 

mafi c dykes intruding the gneisses exhibit the same effects 

of l ater metamorphism. The metamorphic change is accompanied 



by increasing intensity of deformation from west to 

east across the area. 

iv 

The semipelitic to psammitic schists are confined to 

the eastern part of the area, where they exhibit upper 

greenschist to amphibolite facies minera~ assemblages. These 

rocks are polydeformed and faulted against the gneisses to 

the west. 

The _ granitic intrusions occur within the gneisses 

only. Th~y contain no evidence of the early granulite facies 

metamorphic event present in the host g-neisses, and are 

for the most part massive. 

The _ gneissic rocks are interpreted as Grenvillian 

inliers(basement), and are correlated with similar rocks 

of the Grenvillian Indian Head Complex,nearby to the west. 

The limestones, phyllites, and polydeformed schists are 

interpreted as a cover sequence - affected by Paleozoic 

deformation, which also · involved the basement gneisses and 

mafic dykes. The granitic bodies are interpreted as later 

intrusions, possibly related to Taconic or Acadian orogenesis. 

The stratigraphic and orogenic development of the area can 

be related to the formation of the Late Precambrian contin­

ental margin of eastern North America~ and its Paleozoic 

destruction. 
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I. INTRODUCTI ON 

I-1 Preamble 

This study is part of a project to map a transect across 

the western Newfoundland Humber zone (lvilliams, 1979), from the 

Port au Port Peninsula to the southern t1p of Grand Lake. The 

area described in this tn.esis occurs mainly between the Grand 

Lake Thrust and the Cabot Fault(Williams,l978), and is part 

of a poorly understood transitional area between the west 

Newfoundland Lower Paleozoic carbonate platform and the centra~ 

Newfoundland volcanic belt. 

The area contains, for the most part, felsic gneisses, 

schists, anorthositic rocks, · and granitic intrusions, which 

have previously been mapped as undivided metamorphic and igneous 

rocks(Riley,l962). Imbricate thrusts of Grenvillian basement 

and Paleozoic cover rocks have recently been reported (\villiams 

and St -Julien,l978), indicating the need for more detailed 

work in this poorly understood yet important area. 

The present study delineates possible basernent ·and cover 

units,· and documents changes in structural _and metamorphic style 

across this transitional zone. 

I- 2 Location and access 

The study area is located in west Newfoundland, at the 

southern tip of Grand Lake(see figure ~l}. Two prominent 

topographic features, the east-west arm of Grand Lake and the 

Bottom Brook valley, form the northern and southern boundaries 
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of the map area respectively. To the west, the boundary 

coincides roughly with a flat bogland underlain by Pleistocene 

sediments. The Trans-Canada Highway(Routell) l~es at the eastern 

margin of this bogland. To the east, the boundary coincides 

roughly with the Cabot Fault, a major geological feature 

extendi~g from Port aux Basques to White Bay. This fault is 

oriented parallel to the northeast-southwest arm of Grand ~ake, 

northeast of the map area. The center of the map area lies 
0 I 1/ . 0 ,. II . 

approximatly at 58 06 00 longtitude and 48 36 25 latitude. 

Access to the map area is relatively easy. Route :ff:l _-

(the· Trans-Canada Highway) follows the western limit of the map 

area , while three gravel logging roads off Route #1, provide 

access to the interior of the map area. 

The northernmost of the logging roads branches east from 

Route #1, opposite the Gallan·t s turno.ff, and ends at the 

western tip of Grand Lake, at camp 33, an abandoned logging 

camp of the Bowater Pulp and Paper Company. The road is known 

locally as the Cal_Up 33 road and is rap~dly falling into disrepair. 

About 2 kilometers to the south of the Camp 33 _ road, along 

Route #1, is the entrance to a second logging road which crosses 

the entire study area. This road leads to Bo\vater logging camp 

1 85, and is referred to as the camp 185 road. It is still in 

u se and in good condition. 

To the south, a third road follows Bottom Brook as far east 

a s the Cabot Fault. This road is known locally as the Bottom 

Brook road and is no longer in use. It is rapidly falling into 

disrepair, and a bridge is washed out about halfway into the 

map area. 
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Numerous roads branch from these major l~gging roa ds, but 

few are passable by car. Small boats may be launched on Grand 

Lakei at the Camp 33 site, giving access to the northeast margin 

of the map area. 

Stephenville and Corner Brook are the major nearby popula-

tion centers(see figure ~1). Stephenville Crossing, Gallants ·-

and Spruce Brook are smaller towns along the Canadian National 

Railway line crossi~g the area(see figure 7l). The major 

i ndustries in the area are lo9ging and to a lesser extent, 

fi shing. 

Deer Lake, about 50 kilometers to the northeast of Corner 

Brook along Route #l(see figure -1), and Stephenville, both 

h ave airports with regular passenger service. Floatplanes may 

b e chartered at Pasadena near Deer Lake, and at Pinchgut Lake 

along P.oute #1. 

I- 3 Climate and physiography 

The summer climate is mild, temperatures ranging between 

5 and 23 degrees celcius, combined with westerly winds. The 

Long Range Mountains, however, seem to trap the bad weather from 

the coast, and rain and fog are frequent especially in the spring. 

August and September have the best weather for field work. 

Most of the map area is dominated· by north-south trending 

r idges of the Long Range Mountains. These form a dissected 

plateau with an average elevation of 500 meters. Individual 

p eaks may reach 600 meters in elevation, while the valleys have 

an average elevation of 320 meters, yielding a relief of about 

2 80 meters. The ridges are in all cases rounded on top, and 
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the west flank is commonly steeper than the east flank. The 

valleys are, in most places, boggy with numerous small ponds. 

Thi s top?graphy reflects major faults which are common in the 

area. 

The northwesternmost part of the map area is slightly lower 

topographically. The marked north-south trend of the ridges to 

the .southeast is less pronounced here, and the terrane is more 

· h ummocky. Here again, the west flanks of the hills are 

steeper than the east flanks. This terrane comes to an abrupt 

end to the west at a north-south trending cliff, beyond which 

are flat boglands of roughly 250 meters elevation. 

The east-west arm of Grand Lake, and the Bottom Brook valley~ 

f orm major east-west depressions within the map area. These 

o ccur at elevations of 100 and 40 meters respectively, and are 

thus lower than tha north-south trending valleys of the dis~ 

sected plateau. 

The majority of the area is covered by spruce forests with 

a small amount of birch. Most ridges are bald on top with a 

d ense halo of tuckamore in the upper slopes. The eastern part 

of the map area is covered by virgin forest. The western part, 

h owever, has been logged within the last 10 years, making it 

difficult to traverse. Abandoned roads, haul-off trails, and 

ridge tops provide the easiest traversing routes there •. 

The drainage system of the area is immature,possibly as a 

r esult of _ glaciation. 

s mall bogs and ponds. 

It consists mainly of small brooks draining 

Most of the runoff flows south into 

Bottom Brook and westward into St. Georges Bay. M~nor brooks 

wi th smaller watersheds flow into Grand Lake to the north and 
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Harry's River to the west. The overall stream pattern reflects 

the f aulting in the bedrock. 

I-4 Glac~al geology 

A thin veneer of glacial till covers most valleys and 

lower slopes in the map area. This is composed mainly of rounded, 

poorly sorted, granitic boulders to pebbles with a sandy matrix. 

At t he wes·t end of Grand Lake an outwash terrace covers the 

shoreline bedrock exposures. Other glacial features in the 

map are~ are; hanging valleys, rounded ridge tops containing 

erratic boulders(plate -1), and roches moutonnees. 

Saprolite occurs on the south flank of Hare Hill(see map). 

Thi s saprolite can be traced for two kilometers to the south­

east , and is developed exclusively in massive medium grained 

granite and syenite. Plate -2 shows.an exposure of saprolitic 

medium grained syenite with a one meter diameter corestone 

below the rock pick. ' Pegmatitic veinlets, less intensely 

weathered than the host rock occur throughout the outcrop, 

showing that it is otherwise underformed. This saprolite zone 

mus t have been protected from the glacial scouring so apparent 

elsewhere. 

Glacial striae are rare in the ma9 area making direction 

of ice movements difficult to determine. However, to the west, 

on t he Port au Port Peninsula, ~triae are common. The direction 

of these, as well as boulder tracing for the area in. general, 

indicate east-wes t ice movements(Brookes,l970). This is consistent 

with the generally accepted view that, during the Wisconsin 

glac iation, Newfoundland had an independent central ice cap -



Plate-]: Erratic boulder on 11 Bear Ridge 11
• Note the 

glacially polished outcrop. 

Plate-2: Saprolite with corestone in 11 Tulk's 
Pond" syenite. Note the fresh undeformed granitic 
veinlets. 
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and i ce movements were directed predominantly radially out\.•lard 

towards the coasts. The east-west arm of Grand Lake, and the 

Bottom Brook valley were probably deepened, if not formed 

entirely by,these ice movements. The presence of outwash deltas 

and moraines, both on and off shore, -in the Port au Port and Bay 

St. George area to the west, seems to support this as well. 

I-5 Geolo-gic setting 

The study area is part of the Appalachian -fold belt which 

extends for 3000 kilometers along the eastern coast of Canada 

and the United States. There have been numerous attempts to 

subdivide this belt into zones or domains(~odgers,l968;,Bird 

and Dewey,l970; Williams and Stevens,l974; ~iliiarns,l978). 

The latest and possibly most comprehensiven is incorporated in 

the Tectonic Lithofacies Map of the Appalachian Orogen(Williams, 

1978). This map separates the fold belt into five zones: 

the Humber, Dunnage, Gander, Avalon, and Meguma zones. Figure 

~ 2A shows the zonal subdivisions in Newfoundland, and the 

location of the study area relative to these. 

The study area lies at the eastern margin of the Humber 

zone, at the contact with the Dunnage zone. In terms of the 

current tectonic model for the Appalachians, the Humber zone 

represerits the Lower Paleozoic continental margin of Eastern 

North America, and the Dunnage zone the remnants of the Iapetus 

ocean and associated island arc(s). 

Th~ study area lies at the eastern margin, and includes 

par t of, the western Newfoundland Lower Paleozoic carbonate 

platform(figure ~2B). This platfo~m is part of a Lower Cambrian 
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t o Middle Ordovician continental shelf sequence recognized the 

ful l length of the Appalachians, and consists of shallow water 

mar i ne sediments, mainly carbonates(Rodgers,l9(;8). 

East of the platformal rocks and in faulted contact with 

these, is a terrane composed predominantly of felsic schists 

and _ gneisses and which underlies most of the study area. This 

te~rane is part of a belt of rocks which para~lels the carbonate 

rocksand has been referred to as the Eastern Margin Metamorphic 

Rocks(Williams, Kennedy and Neale,l974}, or as the Ortho-Tectonic 

zone(Church,l969; Dewey,l969). 

The belt is composed largely of metamorphosed clastic 

cover rocks of the Lower Paleozoic continental slope, ranging 

in age from Late Precambrian to Upper Cambrian, and of Gren­

villian basement inliers of the ancient North American craton. 

The metamorphosed cover rocks are mainly psarnmitic to 

semipelitic schist. They extend from the study area northeast­

ward to the Burlington Peninsula and beyond to the Grey Islands, 

where they form the Fleur de Lys Supergroup (figure -2Bi .Church, 

19 69; Kennedy,l971; .deV'7itt,l972i .Kennedy,Williams and Smyth, 

197 3; ·Bursnall, 197 S; . \~illiams, 1977 a ) . To the south similar rocks 

occur throughout the entire length of the Appalachian Orogen 

as the Rosaire and Caldwell Groups of Quebec, the Mendon Group 

and Pinnacle Formation of Vermont, the Glenarm series of Maryland, 

the Lynchburg Formation of Virginia and the Ocoee Group of 

Tennessee and Northern Georgia(Williams and Stevens,l974). 

The basement inliers · are composed mainly of psanuni tic to 

semipelitic paragneiss and schist with minor quartzite. These 

are intruded by granites and gneissic granites which are probably 
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. FIGURE 28. Geology of fhet Humber x_one 

modified from Williams 1978 

East derived flysch 
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(during the Ordovician) 
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related to the Grenvillian Orogeny(Lowden,l96lr Lowden et al, 

1963 ) . In Newfoundland, the baseMent rocks are known as the 

Lonq Range Complex(Clifford,l969) which forms the core of the 

Long Range Mountains, and as the Indian Head Complex(Riley, 

1962), to the west of the study area(see figure -2B). Remobi­

lized basement rocks have also been reported on the Burlington 

Peninsula(deWitt,l972) in the core of a large anticline. 

Similar occurrences of Grenville basement inliers in the New 

England and southern Appalachians are the Green Mountains of 

Vermont, the Berkshire, Housatonic, New Milford and Hudson 

Highlands massifs from Massachusetts to eastern Pennsylvania, 

and the Blue Ridge farther south(Williams and Stevens,l974}. 

Mafic dykes intrude the Eastern ~iargin Metamorphic rocks. 

These trend northeast, ~nd are believed to have been feeders to 

Late Precambrian to Lo~er Paleozoic flood basalts(Labrador basalts, 

Lighthouse Cove Formation) which locally overlie Grenvillian 

gneisses at the northern end of the Great Northern Peninsula 

of Newfoundland(Clifford,l965; Williams and Stevens,l969; Bird 

and Dewey,l970; Pringle, Miller and Warrel1~971; Strong and 

Wil liams,l972; Strong,l974). 

East of the study area, lie the mafic igneous rocks of the 

Dunnage zone(oceanic domain). The boundary of the Humber zone with 

the rocks of the oceanic domain is a zone of co-mingled, meta­

morphosed felsic and mafic rocks related to the Early Paleozoic 

deformation of the Iapetus Ocean. A prominent ophiolite belt at its 

eas tern margin is referred to as the Baie Verte-Brompton Line, 

and has been traced from Baie Verte through to the Eastern Townships 

of Quebec(see figure -2B) (WilliaMs and St-Julien,1978). At the 

northeast corner of the map area, the Baie ~Terte-Brompton Line 

is roughly coincident with the Cabot 
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Fault, a major feature extending from Port aux Basques north­

e ast to White Bay in Newfoundland. South of Grand Lake this 

line swings sharply east and felsic rocks and granite plutons 

o ccur on the east side of the Cabot Fault. 

Figure -3 shows a possible facies reconstruction of the 

lithologies present within the map area before the destruction 

of the ancient continental margin of North America. The Gren­

v illian inliers form a rifted basement upon which eastward 

t hickening clastic cover rocks of the continental slope were 

d eposited. These include greywacke derived from the rifted 

b asement as well as deep sea pelitic sediments to the east. 

The mafic dykes and plateau basalts were probably deposited 

d uring this initial rifting phase. As the margin continued to 

d evelop, the carbonate bank was formed along with a bank edge 

breccia at its eastern margin. Thi~ cut off the source· of 

coarse clastics to th~ west(craton), and a thin pelitic sedi­

mentary layer accumulated to the east of the bank on rift related 

clastics or on new oceanic lithosphere(Iapetus Ocean). 

Much of the metamorphism and structure present in the 

study area, as well as in the Humber zone in general, is related 

t o the Early Ordovician Taconic Orogeny, which marked the 

d estruction of the ancient continental margin of eastern North 

America and closing of the Iapetus ocean. Earlier structure 

a nd metamorphism(Grenvillian or older) are present in the Gren­

vi lle inliers, although in places these are masked by later 

d eformations. 

The Taconic Orogeny involved the displacement of oceanic 

lithosphere(i.e . emplacement of the Humber Arm and Hare Bay 



FIGURE 3. Facies distribution during the constructional phose of th& 
ancient continental margin of Eastern North America 
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allochthons) and the transport of continental slope and rise 

supracrustal rocks across the ancient continental margin of 

eas t ern North America. This was accompanied by intense deforma­

tio n and metamorphism farther east so that the rocks at the 

disturbed margin were telescoped into a series of westward 

directed thrust sheets. 

Later upright folding with a related steep penetrative fabric 

affected the entire area. This later phase of deformation is 

attributed to the Acadian Orogeny of Devonian age. 

Figures +4 and 5 ·show the ·geology in the vicinity of the 

study area,and the stratigraphic relationships in the Stephenville 

and Grand Lake areas respectively. 

I- 6 Previous work· in t~~ area 

Little NOrk has been done in the . study area. The earliest. 

work is that of Walthier(l949) who map ped the area 

between Corner Brook and Stephenville for the Geological Survey 

of Newfoundland. His results are given on a 1:38,500 scale 

map , which includes only the platformal rocks of the north-: 

western part of the study area. 

Riley(l957; 1962) mapped a large portion bf western 

Newfoundland, including the study area. His results are given 

on two 1:253,440 scale reconnaissance maps • . He referred the 

rocks of the study area to the Long Range Igneous and Meta­

morphic Complex and described them as Devonian or older in 

age . 

The significance of the crystalline rocks of the study 

area became more apparent when they were . correlated with the 



15 

FIGURE 4 . Geology of the Humber zone near th& thesfa moJ>· oreo 

modified from WIHJom·s 1978 
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rift related Fleur de Lys Supergroup of the Burlington Penin-

sula(Church,l969). More recently, imbricate thrusting of 

Grenvillian basement and rift related cover rocks has been 

reported (Williams and St-.Julien, 1978) in the study area. The 

same conclusion was obtained for similar rocks to the north of 

the study area(Kennedy,l978). 

Work is presently being done in similar rocks to the 

southeast of the study area, by the Geol~gical Survey of Canada 

(Herd,l978; Herd and Dunning,l979) and to the north_ by D.P. Kennedy·, 

as part of a masters degree at Memorial University of Newfoundland. 

I- 7 Purpose and sco·pe o ·f the pres·en·t st·u-ay 

The study area lies at the eastern margin of the Humber 

zone in a poorly understood terrane between the Lower Paleozoic 

carbonate platform and the remnants of the Iapetus ocean farther 

east . The area is part of a corridor presently being mapped 

across the ancient continental margin of eastern North America, 

in west Newfoundland. 

The primary purpose of the study is to map and interpret 

the geology of this intermediate terrane, so important 1n 

documenting the destruction of the ancient continental margin 

of eastern North America. In doing so, an attempt is made to 

separate the Grenvillian basement from itp Late Precambrian to 

Early Paleozoic cover rocks. The work also involves a documen-

tation of the changes in intensity and style of deformation and 

metamorphism across the study area .. and a comparison of these 

with features of the Indian Head Complex, a dated little deformed 

(by Paleozoic orogenesis) Grenvillian inlier farther west. 
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The results are compared with changes in metamorphism and 

structural style across the better known Grenvillian inliers 

of the Berkshire and Reading Prong massifs in the New 

England Appalachians. 

Rough structural and petrological des-criptions are 

included here, but it should be remembered that the main 

focus of the work lies in regional field mapping, and that 

much detailed follow-up work is now required in light of the 

results obtained. 

I-8 Field work --

The field work for this thesis was done during the 

months of June through August, 1978. An area of about 195 

square kilometers was mapped during this period. 

Most of the area is covered by a thin veneer of till, 

and exposures, which form less than about 5 percent of the 

surface area, occur mainly in stream beds, along ridge tops, 

along logging roads and haul-off trails, and along the shore 

of Grand Lake. 

Exposures along the shore of Grand Lake were mapped 

using a small boat, and with the help of E. Stander. Most 

other field work was done independently. The data was plotted 

on 1:50,000 scale topographic maps. Black and white air photos 

for the area are available, but these are 11 years old, ~nd 

do not show the main logging roads or recent features. 

I-9 Terminology 

Location names: 

The thesis map area contains very few location names 
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which appear on the National Topographic System 1:50,000 

scale maps. To aid in localizing noteworthy geological 

features, many streams, ridges, and ponds are informally 

named by the author. Where possible, the names used by the 

Bowater Pulp and Paper Company·.,._are used. Informal names (those 

not shown on the 1:50,000 scale maps) are in quotation 

marks both on the map -and in the text, to distinguish them 

from formal names. 

Rock names: 

Qualifiers such as mineral names are added to the rock 

names. In these cases the qualifier nearest the rock name 

designates the most abundant mineral, such that for hornblende­

plagioclase gneiss, plagioclase is more abundant than 

hornblende in the rock. 

Mylonitic texture, as used in this thesis, refers to a 

highly strained, recrystallized, foliated or lineated fabric, 

and has no genetic implications. 



20 

II. GENERAL GEOLOGY 

I I-1 Introduction 

The study area consists of a 9arbonate sequence forming 

p art of the western Newfoundland Lower Paleozoic carbonate 

p latform in the west, and crystalline rocks forming part of 

t he Eastern Margin Metamorphic Rocks in the east. 

The carbonate sequence is mainly limestone, dolostone, 

a nd marble, with phyllite at the base of the section. The 

c arbonates are a tightly folded and mildly recrystallized 

e quivalent of the little-deformed St. George Group and Table 

Head Formation to the west near the Port au Port Peninsula 

(Riley,l962). The phyllite at the base of the sequence is 

a southward continuation of the Grand Lake Brook Group to 

the north of the study area(Halthier,l949), in turn possibly 

equivalent to the Kippens, March Point and Petit Jardin 

Formations to the west near Stephenville(see figure -5). 

The crystalline rocks to the east are in faulted contact 

with the carbonate sequence and consist mainly of poly­

deformed and Metamorphosed felsic gneisses and schists. 

These are subdivided into the Long Range Complex and Loon 

Pond metasediments. 

The Long Range Complex contains, granitic and hornblende­

plagioclase gneisses, calc-silicates interlayered with 

quartzites, and anorthositic rocks including anorthosite 

gabbro and pyroxenite. Relict granulite facies mineral 

as semblages partially retrogressed during Paleozoic deformation 

occur locally within the granitic gneisses. The occurrence 
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of these relict high _ grade assemblages implies that these 

gneisses are part of the basement_ gneisses forming th~ core 

of the Long Range Mountains, and are correlative to other 

Grenvillian basement inliers such as the Indian Head Complex 

t o the west. 

The Long Range Complex is host to both granitic and mafic 

intrusions. · The mafic intrusions consist of northeast trending 

diabase dykes now altered by Paleozoic deformation and meta-

morphism. The felsic intrusions consist of granite and 

syenite, · for the most part massive and post-dating most of 

the deformation affecting the host rocks. 

The Loon Pond mstasediments occur in the eastern part of 

the map area, and ar~ everywhere faulted against rocks of 

the Long Range Complex. Rock types found within this unit 

are psammitic to semipelitic schists, . marble ~nd quartzite. 

These rocks are polydeformed and exhibit upper greenschist 

to lower amphibolite facies mineral assemblages_ The Loon 

Pond Metasediments are correlated with the Fleur de Lys Super­

group to the northeast in the Burlington Peninsula and represent 

Late Prec·ambrian to Lower Paleozoic cover sediments deformed 

along with the Long Range Complex basement during Paleozoic 

orogenesis. 

Paleozoic deformation and metamorphism increase - from 

west to east across the map area. The rocks of the carbona te 

sequence in the east, although t i qhtly folded, show only low 

grade metamorphic effects consisting mainly of recrystallization 

of some limestone beds, and the formation of sub-biotite 

zone greenschist facies assemblages in phyllites of the Grand 

Lake Brook Group. 
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Farther east, the rocks of the carbonate sequence are 

juxtaposed with gneisses of the Long Range Complex by a major 

northeast trending fault forming the southward continuation 

of the Grand Lake Thrust(Williams,l978}. The gneisses to the 

east of this fault contain mainly biotite to garnet zone 

greenschist facies assemblages{with locally occurring relict 

granulite facies assemblages) in the west, to amphibolite 

facies assemblages in the east. The same metamorphic variation 

is developed within ma~ic dyYes that cut the gneisses. 

As well as varying in intensity across the area, the meta-

morphic minerals define a major northeast striking south-

e ast dipping foliation axial planar to a · set of folds, both of which 

are best developed in the east. A related northeast striking 

s outheast dipping schistosity defined by upper greenschist to 

l ower amphibolite facies assemblage minerals, with associated 

fo lds, is also developed in the Loon Pond Metasediments in 

the east of the map area. 

The eastern boundary of the map area coincides roughly with 

the Cabot Paul t (Nilson, 1962 .: h7~b,l969;t'1illio.ms,Kenneqy and Neale,1970) 

In the northeast of the study area, this fault forms a north­

s outh trending fault zone intruded by granite{Knapp,Kennedy 

and Martineau,l979) which separates metasediments to the 

west from lower grade mafic volcanics of the Dunnage zone to 

t he east. The Humber-Dunnage zone boundary, the Baie Verte­

Brompton line(Williams and st-Julien,l978) is nearly coincident 

with the Cabot Fault in the northeast of the map area, but 

diverges sharply east in the vicinity of Little Grand Lake and 

southward. The latest movement along ~he C~bot Fault occurred in 

the Carboniferous, since the fault displaces rocks of this 
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age in the Deer Lake Basin to the north. 

Oth~r late feature~ include high angle block faults which 

now form the contacts betwee·n most of the map units. 

The Paleozoic deformational history for the area may be 

summarized as dee·p seated deformation involving both basement 

and cover in the east decreasing in intensity to the west such 

that th~ metamorphic effects become lower grade, and the structures 

di e out in the basement gneisses. The deformed basement and 

cover rocks were than thrust against the lower grade carbonate 

sequence rocks, followed by high angle block faulting. 

II-2A The Long· Rahge Complex, Introduction 

The Long Range Complex is subdivided into five units al-

though a large variety of lithic types are present. The units 

are granitic gneisses(map unit la), -. hornblende-plagioclase 

gneisses(map unit lb); calc-silicates and quartzites(map unit 

lc ), anorthositic rocks(map unit ld), and foliated granite 

(ma p unit le) . 

The above units are rough compositional groupings only, 

and contain both lithic and textural variations unseparated 

on the accompanying map. Textures are of little use as para-

meters in delineating sub-units, since these are observed to 

change on an outcrop scale. Yet another problem in choosing 

sub-units is that of transposition of contacts, which has 

obscured most original relation ships between rock types. 

The rough distribution of rock types within the Long Range 

Complex is as follows: granitic gneisses(map unit la) are 

juxtaposed against platformal rocks in the west, hornblende-
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plagioclase gnei s ses(map unit lb) contain fault bound slices 

of cover metasediments(Loon Pond metasedimen ts)in the east, and 

a block of anorthositic rocks(map unit ld)is surrounded by 

granitic gneisses in the southwest. 

Almost all contacts between the units of the Long Range 

Complex are faults, except locally on "Bear Ridge" where an 

intrusive breccia(plate-3)occurs between granitic gneisses(map 

unit la) and foliated granite(map unit le)- The breccia occurs in 

a zone of low finite strain, and indicates that the foliated 

granite is igneous in origin and intrudes the granitic gneisses. 

Elsewhere the foliated granite appears to grade into the 

grani tic gneisses. The age relationships among the other units 

of t he Long Range Complex are unknown. 

A systematic description of each of the units,including 

rough microscopic descriptions where available,follows. Few. mineral 

compositions are given,however,because the units represent rough 

groupings probably of varied origins, and because of their 

complex alteration history. · More sampling of the units is needed 

for a more detailed petrographic description of these units. 

II- 2B Granitic gneisses 

The granitic gneiss unit(map unit la)is named after its 

most common lithology,although a variety of different rock 

types, unmappable at the map scale,are included within the unit 

as well. The unit is the most extensive of the Long Range 

Complex,and although grouped into one unit here,the different 

occurrences are certainly not all genetically related. 

In the west of the map area, the granitic gneisses occur 
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as a thin band separating a younger granite(Hare Hill granite) 

map unit Sa)from the carbonate rocks to the west,across 

the Grand Lake Thrust. The layer has an outcrop width of 

approximatly 1/2 kilometer in the north,to two kilometers 

at the southern tip of the granite body(see map) .South of this,the 

Plate-3: Intrusive breccia on "Bear Ridge" 
showing foliated granite(white) conta£ning 
granular granitic gneiss blocks(grey). 
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carbonate platform rocks are displaced westward by faulting, 

and the granitic gneisses exten~ to the western edge of the 

map area. 

In the central part of the study area, the granitic 

gneisses are the host to granite and syenite intrusions("Goose 

Hill 11 granite, map unit Sb, and "Tulk's Pond" syenite, map 

unit Sc) and surround the fault bound anorthositic rock unit 

(map unit ld) . to the .south. 

In the east of the study area, granitic gneisses are· less 

abundant, and hornblende-plagioclase .. gneisses{map unit lh), 

and r ocks of the Loon Pond metasediments dominate. Some 

granitic gneisses outcrop at the eastern extremity of the 

study area, near the Cabot Fault. 

The unit is mapped as part of the basement Long Ra?ge 

Complex primarily because of locally occurring relict granul~te 

facie s mineral assemblages ·, unknown within any of the other 

units . Most commonly however, the granitic gneisses contain 

o nly greenschist facies mineral assemblages locally containing 

textural evidence of retrogression from higher grade assemblages. 

The r elict assemblages probably reflect an early(Grenvillian} 

metamorphic event, retrogressed in most places by 1ower grade 

l ater oossihly Paleozioc rnetamorphism(see section IV-6). 

The relict granulite facies mineral assemblages occur at 

" Disappointment Hill 11 in gabbroic to granitic gneisses. Here, 

both orthopyroxene and clinopyroxene occu~ along with plagioclase, 

f orming a relict granoblastic texture. Biotite,hornblende and 

c hlorite grains occur around pyroxenes, and albite rims and epidote 

inclusions are developed on the plagiocl.ase (An4o-so) ,indicating 



27 

later retrogression. 

More commonly the granitic gneisses contain quar-tz, alkali 

feldspar, plagioclase, biotite, and muscovite. Epidote, sphene, 

and iron oxides(magnetite or ilmenite) are common accessories. 

Zircon, clinozoisite, and garnet ·occur locally. The abundances 

of these constituent minerals vary, but generally fall within 

the range of granitic composition. 

The _ gneisses are _ generally pink due to the alkali feldspar, 

and vary from fine to medium grained. Textures vary from 

granular to well foliated, the fabric varying from cataclastic 

(with well developed augen) to mylonitic. The textures are 

de s-cribed below. 

The granular granitic gneisses are commonly fine grained 

equigranular, locally containing a poorly developed foliation 

due to the orientation of the micas • . Generally the texture 

appears to be a · metamorphic equilibrium texture, but locally -

is cataclastic in nature. 

eas t of "Bear Ridge". 

These gneisses are most common 

The granitic augen gneisses vary in texture from cataclastic 

with little interstitial material, to . well developed len s e 

shaped feldspar augen which define a foliation and are floating 

in a finer grained mafic rich groundmass, to pinstriped granitic 

gnei sses where compositional segregation has occurred such that 

the cataclastic _feldspar and quartz grains lie in thin layers 

alternating with mica rich layers. 

The augen are commonly pink feldspar, or more rarely quartz, 

and vary in size from about 2 centimeters . to about 2 millimeters. 

The l arger augen may be composite fragments of quartz and feld-
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spar as well as individual minerals. The composite augen show 

every gradation from lense shaped(occurring widely) to sub­

angular clasts formed by brecciation of granular gneisses(rnost 

common near "Harathon Pond"). 

\~ere compositional segregation has occurred, the felsic 

layers are _ generally l to 3 centimeters thick and the mafic 

rich layers 1 to 2 centimeters thick. The felsic layers are 

commonly pink and composed of 1 millimeter _large alkali feld­

spar and quartz, and the mafic rich ·layers are commonly a fine 

grained mixture of feldspar, quartz and micas. The pinstriped 

gneisses are best exposed along the shore of Grand Lake near 

"First Falls". Gneissic banding, two to five centimeters thick, 

occurs on "Bear Ridge", and at the northern tip of "'Tulk's 

Pond". 

The mylonitic gneisses consistently contain l millimeter 

thick bands of alternati~g pink feldspar and quartz. In some 

places an L-fabric defined by rod shaped quartz, is developed. 

These gneisses are most common on the west flank of Hare Hill, and 

along road 185 south of "Bear Ridge", \vhere they are associated 

with augen gneisses. 

The textural variations described above may reflect 

different protoliths for the granitic gneisses. However, the 

variability of textures over short distances is interpreted, 

here , as reflecting variations in finite strain rather than 

different protoliths, although both of these factors almost 

certainly contributed to the variety o£ granitic gneisses 

observed. Plates -4,5,6 and -7 show samples exhibiting some 

of t hese textures. 



Plate-4: Brecciated granitic gneiss _sample. 

Plate-S: Augened granitic gneiss sample showing 
lense-shaped felsic augen in a mafic rich matrix. 
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Plate-6: Pinstriped granitic - gneiss sample showing 
2 to 10 millimeter thick compositional banding. 

Plate-7: Mylonitic granitic gneiss sample showing 
rod-shaped quartz. 

30 
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Microscopically the alkali feldspars( mi crocline or ortho­

c lase) are generally porphyroclastic,may show cross-hatched 

twinning or perthitic exsolutions, or have a featureless 

turbid appearance. Th~ plagioclase(An3o-so)is generally smaller 

looks fractured , and contains polysynthetic twinning. 

Evidence ·of later retrogression of these grains consists of~ 

patch e s of small polygonal grains, albite rims, and muscovite 

and epidote inclusions in plagioclase. 

is c ompletely sericitlzed. 

Locally, plagioclase 

Quartz forms granoblastic layers, or patches developed in 

pressure shadows of feldspar augen . In the more deformed 

varieties, quartz forms elongate grains defining a foliation, 

or fine polygonal grains(recrystallized) forming layers. 

The l arger quartz grains commonly show undulose extinction 

indicating strain, and i n places show . good subgrain development. 

The micas occur mainly in elongate patches defining a 

foliation parallel to the layering . The long a x is of the 

individual grains, however is generally sub-parallel, or at 

an o blique angle to the foliation defined by the elongate 

mafic rich patches, indicating the elongate patches may rep resent 

a rel ict metamorphic texture(possibly related to the relict 

granuli tes). Biotite is much more abundant than muscovite. 

It i s pleochroic in shades of brown, and less commonly green . 

At " Di sappointment Hill" , biot i te and chlorite rim pyroxene 

in the gabbro i c gneisses, and biotite, hornblende and magnetite 

form patches possibly replacing pyroxene in tne granitic gneisses. 

In each case the b i otite rna~ represent later,possibly · P~leozoic 

(see section IV-6) retrogression o f the older Grenvillian granulites 
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The accessory minerals tend to occur in the mafic rich 

patches. Sphene forms individual small prisms or xeno­

morphic masses around iron oxides , chlorite forms as an 

a lteration product around biotite , and epidote occurs as 

i nclusions in plagioclase , or as discrete grains in· mafic 

r ich patches .. 

Compositional as well as textural variations occur 

wi thin the granitic gneiss unit. In places, such as the 

east flank of Hare Hill, some gneisses contain up to 40% 

quartz, possibly indicating a sedimentary protolith for 

these. As well , gneisses of granodioritic composition 

occur on the west flank of Hare Hill , at the eastern tip 

of "Tulks Pond", and on the shore of Grand Lake at "Second 

Falls". 

Finally , pegmatite veins about 5 to 40 centimeters 

thick occur throughout the granitic gneiss unit. These 

are parallel to the foliation in places , cross-cut it 

in others , and locally are folded. 

The granitic gneiss unit is , therefore , a rough 

grouping of mainly granitic gneisses with localized 

occ u rrences of different lithologies unmappable at this 

scale. The grouping does not imply similar origin or 

even age. The composition of these gneisses, however, is 

in general close to that of granite , and much of the unit 

may be igneous in origin . Locallized zones of low 

fini te strain , where the gneisses seem to grade 

into granite , support this interpretation • 
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The occurrence of quartz rich gneisses near Hare Hill, however, 

may indicate some of these had a sedimentary protolith. 

In summary, the unit contains evidence of a complex 

deformational history described more fully . in later chapters. 

This apparently involves the formation of the conunonly 

occurring gneissosity, possibly associated with granulite 

grade metamorphisrn(indicated by the "Disappointment Hill" 

samples, see plates -8 and 9) during Grenvillian times. 

The gneisses were then retrogressed by a later event, possibly 

·Paleozoic in age(see section IV-6) ,to the 'present greenschist facies mineral 

assemblages which are also related to a foliation(produced 

by the oblique orientation of the micas within the elongate 

p atches related to the gneissosity). 

The unit contains lithologies and textures comparable to 

t hose of the isotopically dated, Grenvillian. Indian Head Complex 

(see Chapter V) ,which also contains relict granulites. This similarity 

f urther supports its interpretation as basement. 

I I-2C Hornblende-plagioclase gneisses 

The hornblende-plagioclase gneiss unit(map unit lb) is 

n amed after its most commonly occurring lithology.although a 

v ariety of other lithologies unrnappable at the map scale - are 

i ncluded. The hornblende-plagioclase gneisses themselves show 

c onsiderable variation in relative mineral abundances compared 

t o the granitic gneisses, and are certainly not all genetically 

related . 

The unit is the second most extensive of the Long Range 

Complex. It forms a band in the east, extending the entire . 



Plate-S: Photomicrograph(plane light) of a relict 
granulite from "Disappointment Hill". The height 
of the photograph represents 1.8 millimeters. 

Plate-9: Photomicrograph(plane light) of a relict 
granulite from "Disappointment Hill". The height 
of the photograph represents 0.46 millimeters. 
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length of the study area, from Grand Lake in the north to 

the confluence of "Falls Brook" and Bottom Brook in the south. 

The band is 3 1/2 kilometers wide at its ·w~dest, due east of 

Beaver Pond, and 1/2 kilometer wide at its narrowest along 

Grand Lake. Some hornblende-plagioclase_ gneisses also occur 

on the west flank of "Bear Ridge"(see map). 

The contacts of the hornblende-plagioclase gneisses with 

t he granitic gneisses to the .west are unexposed, and minor 

e xposures of the granitic gneisses occur throughout the horn­

b lende-plagioclase gneiss unit. Alan~ Grand Lake, an almost 

c ontinuous exposure through the hornblende-plagioclase gneiss 

b and shows layers of granitic gneiss with northeast trends, 

parallel to the foliation in the gneisses and overall structural 

trend for the area. Whatever the original nature of the 

c ontacts(intrusive or interlayered), it appears, from their 

present orientation parallel to the structural trend, that 

they have been transposect during deformation. The major con­

tact between the granitic and hornblende-plagioclase gneiss 

uni ts also has a northeast trend(see map) and is probably 

structural in nature. The nature of the hornblende-plagioclase 

gneiss contacts occurring west of "Bear Ridge" are unknown. 

The eastern contact of this unit with the Loon Pond rn e ta­

sediments(map unit 2) is a south-southwest trending fault, only 

exposed along Grand Lake, where it forms a steeply dipping 

three meter thick shear zone(plate -10). The fault may be 

a t hrust fault similar to the Grand Lake Thrust, juxtaposing 

cover metasediments(Loon Pond metasediments) with Long Range 

Complex basement,or related to the late block faulting. 



36 

The hornblende-plagioclase gneisses are mapped as part of 

t he basemen·t Long Range Complex primarily due to the occurrence 

o f relict textures and mineral assemblages, and because of 

t heir close association with the granitic gneisses. The 

Paleozdic metamorphiri eVent, here, as indicated by mineral 

a ssemblages in the mafic dykes, is higher grade(amphibolite 

f acies) th~n in the granitic _ gneisses to the west, masking 

much of the earlier features. No re.lict granulites were found 

in this unit, and evidence of relict Grenvillian metamorphism 

o ccurs as an early hornblende-plagioclase assemblage locally 

present in the gneisses but absent in the cover metasediments. 

The hornblende-plagioclase gneisses generally contain 

plagioclase forming 40 to 60 percent of the rock, hornblende 

and biotite forming 10 to 20 percent of the rock, and quartz 

fo rming about 10 percent of the rock. Epidote, garnet, mus-

covite, sphene and iron oxides are common accessories forming 

about 10 to 15 percent of the rock. 

and clinozoisite occur rarely. 

Zircon, alkali feldspar 

These gneisses are fine to medium grained, white, and have 

a 11 salt and pepper" appearance. Textures vary from granular 

to f oliated to banded. Mylonitic textures· occur rarely. The 

textures are interpreted as reflecting local finite strain, 

and as is the case for the granitic gneiss unit, are not used 

to d elineate sub-units. 

The granular hornblende-plagioclase gneisses have meta­

morphic equilibrium textures, and show a complete gradation 

t o f oliated gneisses where the mafic phases define a foliation. 
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Plate-10: Fault related shear zone separating the 
Loon Pond Metasediments from the Long Range Complex . 

. Note the folded psammitic layer(white) floating 
in a sheared pelitic matrix(dark). 

Plate-11: Minor folds in hornblende-plagioclase 
gneiss along the shore of Grand Lake. Note the 
intense mineral segregation. 
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The banded hornblende-plagioclase gneisses contain bands 

which vary from 1 to 3 ·centimeters (plates -1:t and · 12.) i n thickness. 

Thi s gneissosity varie~ frommildly developed, where even the 

maf ic rich bands are leucocratic, to extreme, where the mafic 

rich bands(melanosomes) are black(see plate -11}. In general, 

the gneissosity in th~se ·is not so marked as that of the granitic 

gneisses. These banded gneisses are best developed on the west 

flank of "Bear Ridge", and in places along the shores of Grand 

Lake. 

Mylonitic hornblende-plagioclase gneisses are rare. These 

show poorly developed gneissosity with layers of approximat-ely 

1 c entimeter thickness. The constituent minerals such as horn-

blende,plagioclase, biotite and quartz are elongate, and define a 

lineation. 

Microscopically, the plagioclase.(An30_ 40 ) in these gneisses generally 

form polysynthetically twinned granobl~stic grains, and in places 

may be slightly porphyroclastic. Epidote and/or clinozoisite 

are common in plagioclase as alteration products. 

quartz inclusions occur as well. 

Small round 

Quartz forms patches of small recrystallized polygonal 

grains in places, but is commonly xenoblastic • Where mylonitic 

textures are developed, the quartz forms recrystallized elongate 

grains defining a L-fabric. 

c ommon. 

In all cases undulose extinction is 

Two generations of hornblende are present. The earlier 

hornblende generally forms porphyroblasts, is pleochroic in 

s hades of green, and in places contains very fine exsolved iron 

oxide needles in the core of the grains. Quartz and plagioclase 



Plate-l2: Banded hornblende-plagioclase gneiss 
sample o 1 (M8-2-4 ) 
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exsolutions occur in some grains. The later hornblende is 

f resher and commonly forms idioblastic grains. These are pleo­

chroic in shades of green, but of lighter colour than the 

earlier hornblende. Both generations are oriented(their long 

axes) parallel to the gneissosity, where present(plate -13}. 

Biotite is pleochroic in shades of brown~ and muscovite 

i s colourless. Both micas, along with accessory minerals such 

a s epidote, sphene, and iron oxides, commonly occur in elongate 

p atches parallel to the gneissosity. The micas within these 

patches, however, locally define a second foliation at an oblique 

angle to that of the elongate patches. A second generation of 

biotite forming fresh decussate prophyroblasts is present and 

o ccurs throughout the area. 

Accessory minerals include epidote, chlorite, garnet, 

alkali feldspar, iron oxide, and sphene. Epidote forms discrete 

grains concentrated in mafic rich patches, or as an alteration 

product in plagioclase. Chlorite forms as an alteration 

product on the mafic minerals. Sphene forms small prism 

shaped grains or anhedral masses around iron oxides(ilmenite 

or magnetite). Garnet forms fragmented masses, probably 

r e presenting fragmented porphyroblasts, or less commonly 

inclusions in hornblende grains. 

It appears, therefore, that· the hornblende-plagioclase gneis­

ses have as complex a history as do the granitic gne~sses. The 

earlier hornblende gneration along with the porphyroclastic plag­

ioclase, may form part of an early(Grenvillian?) amphibolite facies 

mineral assemblage, while the later hornb1ende along with the 

granoblastic plagioclase and possibly garnet represent a later, 



Plate-13: Photomicrograph of a hornblende­
plagioclase gneiss showing two hornblende gener­
ations. The early hornblende occurs in the center 
and contains quartz, epidote, and iron oxide 
inclusions. The later hornblende grains occur as 
fresh idioblastic grains around the early horn­
blende. The height of the photograph represents 
1.8 millimeters. 
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Paleozoic, mineral assemblage. Both assemblages are associated 

with a foliation(northeast striking, southeast dippi~g). 

Finally, the epidote alteration on plagioclase and the forma­

tion of biotite, muscovite and chlorite in the mafic rich layers 

may indicate yet another metamorphic event. 

Some of the hornblende-plagioclase gneisses, particularly 

those on the west flank of "Bear Ridge", have compositions close 

to that of gabbro and granodiorite . and may have had igneous 

protoliths. Within the main band of hornblende-pl~gioclase 

gneisse~ to the east, however, the abundances of the constituent 

minerals are more variable. In a few places, the gneisses 

contain up to 60 percent quartz. This may indicate a sedi-

mentary protolith for these, or less likely strain induced 

s egregation. The former interpretation is favored here. If 

t hi s is so, the transposed granitic gneiss bands may indicate 

that the . granitic gneisses, interpreted as domina~tly igneous 

in origin(see section II-2B), intrude the hornblende-plagioclase· 

gnei sses ·and ar~ tl1us younger. The transposed nature of the contact 

b etween these makes definite proof of this impossible. 

Whether the above speculation on the genesis of the gneisses 

i s c orrect or not, the hornblende-plagioclase gneiss unit shows 

evidence of a complex structural and metamorphic history not 

present in the cover(Loon Pondmetasediments), and is inter-

preted as Grenvillian basement. The earliest metamorphic 

a ssemblage and associated gneissosity may be broadly correlative 

t o the gneissosity and related relict granulite racies mineral 

a ssemblages described earlier for the granitic gneisses. In 

t his case, however, the post Grenville structural and meta-



morphic history appears to be more complex and higher grade, 

indicating more ·intense later remobilization. 

II -2D Calc·-silicate·s 'and Quartzi·tes 

This unit(map unit lc ) occurs in two places; along the 

south~rn sh6re of Grand Lake 1/2 kilometer east of "Second 

Falls", and at the top of nBear Ridge". 
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The Grand Lake occurrence(see map) contains both calc­

silicate and quartzite layers trending northeast, parallel to 

the regional structural trend, and dipping vertically. The 

contacts of the unit are unexposed, but almost certainly faulted. 

The exposed width of the unit is about 20 meters·. The rock 

types occurring here ·are, from west to east, calc-silicates, 

phyllites, and quartzites. 

The total thickness of the calc-s.ilicate layers is about 

10 meters. These layers are fine to. medium grained~ and show 

compositional variations probably reflecting original bedding. 

Calcite, tremolite, and chlorite are the most common minerals, 

while biotite, talc, and iron oxides occur locally, in minor 

amounts. The textures are granular to mildly foliated. 

The ·phyllite layer has a total thickness of about 2 meters, 

is b lack, and contains large(about 5 millimeters} pyr1te porphyro­

b lasts forming about 3 percent of the rock. 

Farthest east are quartzite layers totalling about 15 meters 

i n thickness. These are composed of almost pure, fine to medium 

grained quartz. 

Microscopically the Grand Lake calc-silicates are composed 

o f co lourless idioblastic tremolite grains some of which are 
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partially altered to chlorite, dispersed ~n granoblastic calc~te. 

Biotite rich bands occur in places, possibly representing 

more pelitic laminations in the protolith. 

The "Bear Ridge" occurrence consists of a th~n band of 

about 5 meters in thickness which trends no~th-south on top 

of "Bear Ridge". Only calc-silicates occur here. To the west 

the unit is faulted against banded granit~c gneisses, and to 

the east against granular granitic gneisses. These calc-

silicates contain much more biotite(defin~ng a foliation) 

than those on Grand Lake. Microscopically the biotite is 

pleochroic in shades of brown, and in places is bent and 

altered to chlorite. Zircon inclusions, surrounded by pleo­

chroic haloes, occur in biotite in some places. Trernolite 

occurs here as well, but is generally altered to chlorite. 

Calcite fills the interstices , and has sharp boundaries. 

Both calc-silicate occurrences may represent metamorphosed 

impure limestones. In the Grand Lake occurrence, these were 

probably interlayered with sandstones(now quartzites) and 

siltstones(now phyllite). The relationship of these occurrences 

to one another, however, is unknown. 

The fact that this unit occurs entirely within gneisses, 

and that calc-silicates have been reported to both north and 

southeast of the map area(Kennedy,l978; Herd,l978) where they 

have been interpreted as Grenvillian in age, implies a Gren­

villian age for this unit. If this is so, the occurrence of 

Grenvillian age metasediments in the map area,~ lends credibility 

to the metasedimentary origin suggested for some of the gneisses. 



45 

I I-2E Anorthositic rbcks 

The anorthositic rock unit(map unit ld -) occurs within the 

g ranitic _ gneisses in the southwestern part of the Long Range 

Complex. It occurs in two places: forming a small hill along 

r oad 185 near "Steve's Pond", and underlyi!lg a large block 

centered about Lost Pond in the south(see map). Rock types 

occurri!lg within thi·s unit are gabbro, anorthosite and pyroxenite. 

The northe.rn block is less than a square kilometer in area. 

The contacts are unexposed, but the topography suggests faulted 

contacts with the _ granitic gneisses around it. The rocks are 

sheared toward the margins, _also supporting this inference. 

Th~ southern block is wedge shaped, about 6 kilometers 

wide at the southern boundary of the map area, and narrowing 

to about 1 kilometer at its northern termination. To the 

wes t, the block is in faulted contact ·with the granitic gneisses, 

the fault following roughly the Caribou Brook valley. The 

eas tern boundary is a fault as well, which, .in the south . 

near Bottom Brook, follows a small brook along which anorthositic 

rock s are in contact with granitic gneisses. Sheared granitic 

and mafic dykes occur along this fault contact. 

The nature of the northern boundary is unknown. Dykes of 

both granitic and syenitic composition occur, which may be 

related to the anorthositic rock unit or to the syenitic ­

intrusion to the north("Tulk's Pond" syenite). 

In the northern block, the gabbro is medium grained, 

conta ins mainly plagioclase and hornblende, and 6as an ophitic 

t exture. Toward the edges of the northern block, the gabbros 

a re p rogressively deformed until they show mylonitic textures 

(plate -14). 
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The anorthosite, here, is less common than the gabbro, 

occurring as 10 centimeter to ~ meter large rounded inclusions 

in the gabbro. In places, the anorthosite blocks form up to 

80 percent of the rock, making it look like an intrusive breccia. 

Fine grained anorthosite veins(2 centimeters thick) cut the 

gabbro in places. 

In the southern block near Lost Pond, the gabbro is 

slightly more plagioclase rich and contains mafic rich bands. 

The bands are about 5 centimeters thick, have a sharp base, 

and decre~se in mafic mineral content gradationally upward 

indicating that they may be magmatic seqregfit±on features . . · Black, 

fine to medium grained gabbroic rock also occurs near "Fog 

Pond", and near the northern contact of the southern block. 

These may be sills or dykes. 

The anorthosite in the southern block is a medium grained 

rock composed of ~bout 90 percent plagioclase and 10 percent 

interstitial mafic minerals(pyroxene or its alteration products). 

Near the eastern fault contact, coarse grained anorthosite() 

mill imeter large grains) occurs showing a cataclastic texture. 

The pyroxenite in both blocks is _me Qium to coarse grained 

and contains 70 to 95 percent pyroxene(or pyroxene alteration 

products). In the northern block, the pyroxenites occur as 3 

to 1 0 centimeter ·· thick veins cutting the gabbro. In the 

s outhern block, pyroxenite is restricted to the northern tip 

o f t he block, where it is the major rock type. Unlike that 

o f th e northern block, the pyroxenite here is ~oliated. 

The above rock types have been grouped into one unit because 

a ll are common in anorthositic terranes. Their genetic 
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association seems likely, since in the northern block, gabbro 

containing anorthosite inclusions is cut by pyroxenite and 

anorthosite dykes and veins. 

The exact relationship of the anorthositic rock unit to 

the surrounding granititc _ gneisses is unknown, due to the probab~e 

fau lted nature of the contacts. The fact that anorthosites are 

typical of the nearby Grenvillian IndianHead Com:r;>lex, Stee~ 

Mountain anorthosite lMurthy and Rao, 1975), and Grenville 

structural province in general, and that Paleozoic examples are 

rare (Foland and Muessig, 1978), indicates that the unit is 

mos t likely part of the basement complex {Long· Range Complex) • 

The unit's presence within th~ granitic gneisses a1so strengthens 

the attempted correlation of these to the isotopically dated 

Indian Head Complex gneisses. 

II- 2F Foliated granite 

The foliated granite (map unit le) resembles the granitic 

gnei$ses of unit la, and could be included within it. ·It is 

t reated independently, primarily because it is mappable at this 

scale, and because its intrusive origin can be proven_ 

The unit occurs at the top of "Bear Ridgen, forming a 

n arrow· (!;z to l!;z kilometers wide) north-south trending · band 

about 4 kilometers long. The western contact of the unit is 

probably a fault which follows the crest of "Bear Ridge" to 

its summit. Here, the contact diverges from the fault and forms . 

an i ntrusive breccia into the granular granitic ~neisses of 

unit la {plate -3). The nature of the other contacts is unknown. 

To t he north and north--west, the exposure is relatively good, 

b ut the distinction between foliated granite and granu~ar granitic 
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gneiss is difficult to make. The boundary may be gradational, 

and the location of that shown on the map is arbitrary. 

The foliated granite contains quartz, alkali feldspar, 

plagioclase (An 30 _ 40 >, and biotite. The alkali feldspar is 

usually pink and fo~ms about 60 percent of the rock. Quartz 

forms about 20 percent of the rock, while plagioclase and 

biotite form about 10 percent each. The unit is fine grained 

and the foliation is defined bv the orientation of biotite. 

The unit is interpreted as part of the basement Long Range 

Complex . The preservation of the intrusive breccia contact 

. (from transposition) and the lack of gneissosity in this unit, 

may indicate that the unit occupies a zone of low finite strain 

within the Long Range Complex. Some deformation has occurred, 

however, producing a foliation present in both the intrusive 

breccia unit (foliated granite) and in the included blocks of 

the host (granular granite gneiss). 

II- 2G Long Range Complex, Conclusion 

All rock units assigned to the Long Range Complex are 

interpreted as Grenvillian basement. The relationships between 

the units, however, are a problem. It appears that the horn­

blende-plagioclase gneisses \vhich occur in the east of· the complex . 

may have had a dominantly sedimentary protolith. The granitic 

gneisses to the west of the complex,. ho\-lever, appeq.r · to have 

had a dominantly igneous protoli.th, and occurrences of these 

in the hornblende-plagioclase gneiss unit may indicate that 

they intrude the latter. The calc-silicate and quartzite 

unit which is in fault contact with . the surrounding gneiss~s, 

forms the only definitely metasedimentary unit of the complex. 
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The relationship of the anorthositic rock unit in the 

south to the surrounding _ gneisses is unknown, but its presence 

suggests a Grenvillian age for the complex. The presence of 

anorthositic rocks also supports the tentative correlation of 

the gneisses of the map area to those of . the Indian Hea:d 

Complex, which also contains anorthosite. 

The ·Loon Pond metasediments(rnap unit 2) occur as two, 
-

polydeformed and metamorphosed, fault bound slices in the east 

of the map area. Lithologies within the unit are; semipelitic 

to psammitic schists, quartzites, and marbles. These form sub-

uni ts which are extended for a short distance inland on the 

map , using unpublished data furnished by E. Stander. 

The author's work within the Loon Pond metasediments is 

limited to the shoreline exposures along Grand Lake, and to a 

few i nland traverses on the western slice. Much of the unit 

is, therefore, left undivided, although exposures are sufficient 

to extend the sub-units to the south(E. Stander, pers. comm., 

1979) . The schistosities in both slices strike to the northeast 

a nd d ip to the southeast, parallel to the trend of both the 

b ounding faults and sub-units. 

The western slice is centered about "Loop Pond", and 

f orms a narrow band(less than 1/2 kilometer} trending about . 

4 kilometers to the southwest from Grand Lake. The eastern 

c ontact is a fault striking 035° and dipping 60° to the 
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s outheast, along the shore of Grand Lake. The western contact 

i s also a fault containing a granite fault breccia(described 

in section II-SC) . The nature of the southern contact with 

granitic gneisses is unknown. It is most likely a fault as 

wel l. 

The sub-units within the western slice trend parallel 

to the . faults bounding the slice. A 3 meter thick layer of 

pink marble interlayered with highly folded micaceous schists 

occurs on the west side of the slice. This is followed east-

ward by about 200 meters(exposure width) of mica schists 

containing minor amounts of quartz, garnet and small amphibole 

prisms lying on the schistosity. These schists are in sharp 

contact(possibly faulted) with a roughly 200 meter wide band 

of granitic gneisses followed eastward by schists and marble 

repeating a similar sequence to that described above. In 

thi s case, the mica schists contain larger amphibole prisms 

(up to 6 centimeters long) on the schistosity. 

II- 3C Easte~n slice 

The eastern slice is much more extensive than the western· 

one . It trends southeast from Grand Lake, and extends almost 

to the southern boundary of the map area(about ll kilometers 

in l ength), with an average width of about 1 l/2 kilometers. 

Both east and west contacts with the felsic gneisses are 

faul ted. The fault at the western contact of the slice with 

th h bl d 1 · 1 · strl·kes 190? and d1·ps 55° e orn en e-p ag1oc ase gne1sses, _ 

to the east at Grand Lake. Here, a roughly 5 meter thick shear 

zone is developed along the fault \vhere gneiss and psarnmi tic 
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s chist blocks are floating in a sheared pelitic matrix(plate -10) 

The stratigraphic sequerice for the ·sub-units with~n the sl~ce 

is unknown because of the complex folding and faulting 

present, . and the lack of facing data. The order of occurrence 

of the sub-units from west to east along Grand Lake ~s given 

below. 

a) tan weathering marble containi~g disrupted pe1itic 

laminations. The laminations weather out giving 

the rock a "swiss cheese" texture(l/2 kilometer 

exposed width). 

b) garnet-mica schist with minor marble and quartzite 

beds. Aside from garnet and. mica, the schist 

contains quartz, feldspar and amphibole prisms 

which lie parallel to the schistosity(l/2 kilo­

meter exposed width). 

c) quartzite, locally containing mica partings and 

small garnet crystals(l kilometer exposed width). 

d) semipelitic to psarnmitic schist. The semipelitic 

layers contain quartz,garnet and biotite· with 

locally occurring large kyanite,albite and garnet 

porphyroblasts, as well as srnall(2 millimeter) 

amphibole prisms lying on the schistosity. 

The psarnmitic layers are interlayered with pelitic 

schists and contain mainly quartz amphibole and 

garnet(l 1/2 kilometers exposed width). 

e) quartzites, locally containing large(l centimeter) 

garnet porphyroblasts(l kilometer exposed width). 

The nature of the contacts between the above sub-units, 

aside from the faults bounding the slice, are unknown. The 

contact between sub-units(a) and (b) may be grad~tional since 

marble beds resembling those of sub-unit(a} occur within sub-

uni t (b) . 
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II-3D Loon Pond Metased"~ment·s, Conc:lusion 

Th~ Loon Pond metasediments re~resent semipelitic to 

psamrnitic sediments,deformed and metamorphosed to produce a 

dominant, northeast striking southea.st dipping schistosity with 

associated upper greenschist to lower amphibolite facies 

mineral assemblages. They occur as two fault bounded slices 

within th~ Long Range Complex; and the orientation of the 

schistosity in these,parallel to the late foliation in the host 

gneisses, as well as the similar grades of the associated 

mineral assemblages, imply that both units were deformed 

together. 

The Loon Pond metasediments may be correlated with the 

Late Precambrian to Early Paleozoic Fleur de Lys Supergroup 

of the Burlington Peninsula(Church,l969; Williams and St-Julien, 

1978; Knapp, Kennedy and Martineau,l979). If this is correct, 

the deformation c-ommon to both the Loon Pond metasediments 

and surrounding Long Range Complex must be of Paleozoic age. 

No earlier higher grade mineral assemblages or textures 

occur in this unit, and it is interpreted, here, as a cover 

sequence to the Long Range Complex. 

Exposures along the north shore of the east-west arm of 

Grand Lake indicate that the sub-units may be continuous 

across the lake and to the northeast(Knapp, Kennedy and Martineau, 

1979). 

II-4A Carbonate sequence, Introduc t ion 

The rocks of the carbonate sequence(map units 3 and 4) 

lie on the west side of the Gran d Lake Thrust which juxtaposes 
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• them against graniuc gneisses. Their western limit in the 

map area is a series of offset north-south trendi~g cliffs 

(probably faults) followed westward by Pleistocene sediments. 

The southern contact of the ·sequence is a major northeast 

trending fault, possibly related to more minor northeast 

trending faults which produce the offsets in the cliffs at 

the western · limit of th~ sequence. 

In the study area these rocks are subdivided into tt:vo 

units; a basal black phyllite unit(map unit 3), and ·an over-

lying carbonate unit (map unit 4) . The lar1er unit torrns the southward 

COntinuation of. the Carr:brian Grand Lake Brook Group (~Jal thier, 1949 ;"lule~, 
1962) described to the· north of the map area. This unit may 

be equivalent in age to the upper part of the Loon Pond 

metasediments to the east, and to the I~ippens, March Point, 

and Petit Jardin Formations to the west, near Stephenville 

(see figure -5; Riley,l962). The upper carbonate unit farms 

the most easterly exposures of the St. George Group and/or 

Table Head Formation(Riley,l962) to the west. 

II-4B Grand Lake Brook Group 

The Grand Lake Brook Group(map unit 3) occurs to the 

nor th of Hare Hill, forming a 1 kilometer wide band wbich 

extends northward beyond the western tip of Grand Lake. The 

uni t is juxtaposed against granitic gneisses to the · east by 

the Grand Lake Thrust, and against the Hare Hill granite to 

the south by a northeast trending fault, possibLy related to 

the northeast trending faults producing the offsets in the 

cliffs at the western edge of the carbonate sequence. The 



western contact of the unit with the carbonate rocks is 

p:r-obabl"y conformable in nature. 

The unit is composed mainly of isoclinally folded black 

phyllit~,locally containing 1 millimeter large pyrite cubes. 

In places, thin(about· 2 millimeters thick) tan weatheri~g 

dolostone layers occur within the phyllite. Folded quartz 

veins are common. 
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A l meter thick layer of tan \"7eathering limestone occurs 

at the contact of this unit with the carbonates near the 

northea·st tip of "Boundary Pond". This layer contains disrupted 

pelitic layers which weather out producing a "swiss cheese" 

texture(similar to unit /.a ) . The presence of this bed near 

the margin with the carbonate unit may indicate that the 

phyllites become calca~ous tow~rd the west, and grade into 

the carbonate unit. 

The association of black phyllites and "swiss cheese" 

limestone observed here, is reminiscent of the Loon Pond weta-­

sediments to the east, where semipelitic schists and wswiss 

cheese" limestone occur. The units may in fact· be of similar 

age and composition, differing only in metamorphic grade 

(upper greenschist to lower amphibolite facies for the Loon 

Pond metasediments, and lower greenschist facies for the Grand 

Lake Brook Group) . This inference is consistent with the 

west to east increase in intensity of Paleozoic metamorphism 

observed in the map area. 
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II -4C Carbonate Rocks 

The carbonate rock unit(map unit 4) is an eastern equivalent 

of the St. George Group and/or Table Head Formation to the 

west near Stephenville(Riley,l962). In the map area, the unit 

is composed of tightly folded, well bedded limestone and dolo­

stone, and no attempt is made to separate the St. George Group 

from the Table ·Head Formation. 

The unit lies in the northwest of the map area. Its 

western limit of exposure is the north-south trending cliffs 

(probably faults) . described earlier, and its southern limit is 

a northest trending fault. The eastern contact with the Grand 

Lake Brook Group is unexposed but probably gradational. To 

the south, the unit is ·juxtaposed on its eastern side against 

granitic gneisses by the Grand Lake Thrust. 

Grey limestone is the most common lithology . . It is composed 

of fine sparite and generally forms meter-thick beds, commonly 

containing such primary features as algal laminations, mud 

cracks, burrowing, channel fill, and soft sediment· deformation. 

Locally,mud cracks and channel fill indicate the facing 

directions. 

The section contains limestone breccia in places. These 

are composed of subangular 1 1/2 centimeter large clasts of 

grey limestone in a limestone matrix, possibly indicating 

periodic subaerial exposure during deposition. styrolites 

are common in the unit obscuring many of the primary features. 

In a few places, sinkholes occur. These are about 30 centimeters 

in diameter, and are now filled with glacial material. The 

holes are spaced about 3 meters apart, and disposed in a linear 
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p attern pbssibly related to jointing. 

Dolostone is the ·next most common lithology. It may 

f orm meter-thick massive beds, or units of 1.0 centimeter thick 

pink dolostone interlayered with 1 centimeter thick green 

phyllite. 

Black phyllite occurs in only one place within this unit, 

a bout 2 kilometers to the southwest of "Button Pond 11
• This · 

consists of a ·small outcrop of folded black phyllite in sharp 

unfaulted contact with ~rey limestone . . The outcrop occurs on 

the ex~erior of .the .limb of a major syncline, ·and may represent 

t he top of the Grand Lake Brook Group, or more likely indicate 

that the limestone becomes interbedded with black phyllite 

layers at the base of this unit. If this is so, it may serve 

as further evidence that the contact between this unit and the 

Grand Lake Brook Group is gradational. 

II-4D Carbonate sequence, · Conclusion · 

The rocks west of the Grand Lake Thrust form the eastern 

limit of the west Newfoundland carbonate sequence near the 

map area. The basal Grand Lake Brook Group· may be correlative 

in age to part of the Cambrian Kippens, March Point, and Petit 

Jardin Formations, to the west near Stephenviller and _to the upper 

part of the Loon Pond metasediments to the east{see figure-S). 

The carbonate unit forms the eastern limit of exposure of 

the Lower Paleozoic St. George Group and Table Head Formation. 

The unit occurs to the east of the type sections~ and its 

structural style inhibits stratigraphic subdivision. The 

nature of the contact(sharp or gradational) between the two 
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uni ts is unknown, but the increasing occurrence of lime~tone 

in the Grand Lake Brook Group toward the carbonate unit seems 

to indicate a gradational change. 

A metamorphic contrast occurs between the rocks of the 

carbonate sequence and the rocks east of the Grand Lake Thrust. 

T.he carbonate sequence rocks sh6w sub-biotite zone greenschist. 

facies metamorphism with no evidence of retrogression from 

higher _ grades. The granitic gneisses to the east, however, 

show middle to upper _ greenshcist facies metamorphism \'lith 

evidenc!e of retrogression from granulite facies in places. 

Thi s contrast in metamorphism across the Grand Lake Thrust, 

as well as the contrasting lithologies on each side, implies 

the fault is a major feature, possibly involving a large amount 

of displacement. This is consistent with the fault's inter-

pretation as a thrust. 

II-SA Felsic in·trusion·s, Introduction 

Three major felsic intrusive bodies are mapped 1n the 

study area. They are massive, medium to coarse grained~ pink, 

and are probably genetically related. The bodies are informally 

named the Hare Hill granite(map unit Sa}, hGoose Hill" 

granite(map unit Sb ), and "Tulk's Pond" syenite{map unit 5c ), 

and are described separatelyfto mafic dykes occur within these. 

Aside from the three main felsic intrusions, m~ssive 

granite also occurs at "First Falls" along Grand Lake. This 

granite grades laterally into granitic gneisses to the east, 

however, and it is not known whether -it is a re-lated intrusion 

or represents a zone of low finite strain within the granitic 

gneiss unit. 
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The Hare Hill granite (using the Streckeisen classification; 

Streckeisen, 1976) underlies Hare Hill .. It forms a roughly 

rectangular body about 1 ~ by 2 kilometers. The granite's 

western contact with the granitic gneisses is unexposed and 

its nature is unknown. To the north and south, the granite's 

contacts with units 3 · and la respectively, are inferred to be 

northeast trending faults. The eastern contact with the granitic 

gneisses is a fault which is exposed at the northeast tip of 
,I 

the body. The fault is vertical and trends about 350°. 

The granite contains perthitic orthoclase (forming about40% 

of the rock), quartz (25%), plagioclase (15%), amphibole and bio-

tite (15%} and accessory minerals (5%). It is medium to coarse 

grained, pink, massive to mildly foliated, and generally has 

an equigranular igneous texture. 

The perthite grains are commonly slightly larger than the 

other minerals, and are surrounded by clean quartz grains. 

Plagioclase (An10 _ 30 ) is roughly the sawe size as quartz, shows 

polysynthetic twinning, and contains epidote inclusions. The 

arr.phibole, microscopically indentified as hastingsite {R.P. Taylor, 

pers cornrn., 1979) is dark green, pleochroic, and occurs along 

vli th biotite in patches containing ·such accessory minerals· as 

sphene, calcite, apatite~ and iron o x ide . 

The body is compos.i tionally homogeneous excep-t; at its 

s outhern contact. Here, a deeply weathered more mafic rich nhase 

occurs which is intruded by veinlets of the main -Hare Hill ·grariite 

and therefore slightly older. This .more mafic rich phase is 

coarse qrained, contains up to 40 % ma f ic minera ls, and in places 

contains less than 10% quartz (quartz syenite). 
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II-5C "Goose Hill" gr·an·i ·te 

The "Goose Hill" . granite· ·occurs around "Beaver Pond". 

Its contact with the h6st rock is only seen on th~ east side 

of the ~ody, . where it is a fault forming a well e~posed breccia 

zone whi.ch is traceable from the ·sh6re of Grarid Lake southwest 

for a length of 6 kilometers. The ·north and east contacts 

of the body are ·inferred from the topography since it forms a 

marked topographic high.· The southern contact of the body 

with the "Tulk's Pond" syenite, is only seen in one place, near 

the north~.fest tip of "Hun Pond", where saproli tic syenite is 

intruded by a stockwork of granite veins belonging to the 

"Goose Hill" granite. 

The "Goose Hill" granite is compositionally and texturally 

similar to the Hare Hill granite. It contains northeast 

trending shear zones in places, and 50 centimeter thick white 

quartz vei.ns are common along the eastern margin. 

Also noteworthy are a few outcrops of calc-silicates 

within the "Goose Hill" _ granite, ·occurring in a northwest­

southeast trending valley containing "Beaver Pond". 

These may be rafts of calc-silicates related to map 

unit lc described earlie~(see section II-2D). 

The breccia zone on the east side of the body is ~about 

10 meters wide. It is mainly composed of lense shaped 5 

centimete~s l arge, sub-rounded fragments of grani t ,e • 

in a matrix of medium grained fragmented granite. Sub-rounded 

equant clasts of white quartz are also common. 

The breccia shows a gradational decrease in deformation 

westward most obvious where quartz clasts are abundant. These 



Plate-14: Photomicrograph of a mylonitic gabbro 
showing two foliations, from the north block of 
the anorthositic rock unit. The height of the 
photograph represents 1.8 millimeters. 
(M6-25-3) 
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can be traced from sub-rounded clasts in the breccia zone, 

to la~ger angular clasts,. .to disrupted veins, a .nd finally to 

under formed veins, wes·tward away from the breccia zone. 
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The breccia also occurs on the ·south shore of Grand Lake 

where it consists of . granitic material and rounded white quartz 

clasts, althriugh the hrist there is .the granite. gneiss-calc-

silicate contact. This occurrence is about 2 kilometers north 

of the last surface exposure of the. granite indicating that 

the. granite occurs· below surface, or less likely that the 

movement which ·produced the breccia had a considerable strike­

slip component. 

II-5D "Tulk' s Pond". ·syenite 

The "Tulk's Pond" syenite occurs around "Tulk's Pond", 

and forms a topographic low with 'few outcrops, many of which 

are saprolitic(plate -2). The contacts of this body are un­

exposed, and its shape is inferrec mainly from the topography. 

The ·syenite contains perthi tic orthoclase (forming about 40 ·% of the 

rock),plagioclase(20%, An10~30 ), biotite and hornblende (35%) , . 

and accessory minerals( 5%). It is medium to coarse grained, 

pink, massive to mildly foliated, and. generally has an igneous 

texture. In places, this unit is mafic rich and resembles ~he 

ma.fic rich phase(quartz syenite) which occurs at the south tip of t"le 

Hare Hill granite. Northeast trending shear zones occur, along 

which ·a local foliation is commonly developed. 
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II-SE· Fe·l ·s ·ic· ·i ·ntrusions·, Conclus:i ·on 

The Hare Hill and "Goose' ·Hill" granites are texturally 

and compositionally similar, and are almost certainly rel.ated. 

The "Tulk's Pond" syenite is probably also related to these, 

but may be an earlier phase. Evid~nce for this is the stock­

work of veins of "Goose Hill" grani.te which intrude the syenite 

near its ma~gin at "Mud Pond". The older mafic phase occurring 

at the south tip of the H~re Hill granite may be related to 

the "Tulk:' s Pond" syenite, and if so, also supports · this · inter­

pretat!on. 

The bodies are massive or only locally foliated, 

indicating that the bodies are younger than the deformations 

affecting the other units, or that the gneisses acted as a 

buttress protecting the intrusions from deformation. The 

former interpretation is favoured here since the bodies~nlike the 

granitic gneiss host ,contain pr.im::rrily igneous textures ~.vith no -r~;t.ict 

granulite facies assernblages,and contain no mafic dykes(which predate G~e 

deformation.Also, although intrusive contacts are rarely seen, 

the bodies are obviously discordant and do not grade into 

gneisses at their boundaries as does the foliated granite unit 

(map unit le ) . Finally, the rnineralogy(occurrence of 

h astingsite) appears similar to that of some phases found in 

t he Pa leoz o i c To psailsBatholith to the nor theast (R . Taylor , 

p ers. cornrn.,l979) which also suggests a post defor~ation 

Paleozoic age for these. 
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II-6A Mafic dykes, Introduction 

The mafic dykes are confined to the Long Range Complex, 

and occur most commonly in the centra,l T?art of the map area. 

Thev are 1 to 3 meters b;ick,generally fine gtained,locally folded,but are 
-t - . • ' -

rrore. corntonly UI1deforrrE<,1. The dykes strike northeast, dip steeply 

to the southeast, and truncate the Grenvillian gneissosity 

indicating that they are a later feature. 

The northeast trending dykes are most abundant and best 

exposed along the shore of Grand Lake, where they are locally 

on~y 10 meters apart. These are generally foliated parallel 

to sub-parallel to their contacts with the host. The most 

altered and deformed examples occur along road 185 due south 

of "Bear Ridge", and about 1 kilometer due east of "Steve's 

Pond". 

The dykes contain roughly the same minerals throughout 

the area, but a change in texture is observed from northwest 

to southeast across the area. 

II-6B Mafic dykes, Petrology 

The major constituents of these dykes are plagioclase 

{forming about 45% of the rock), hornblende(-35%), and biotite 

(-15%). Epidote, sphene, chlorite, and iron oxides are common 

a cce sso ries(-5 %) and qua r tz albi te, c a lcite , and zir con 

occur locally. 

In the northwestern part of the map area, the dykes are 

commonly altered, and the original nature of ~he minerals 

{igneous or rretarrorphic) is unkna,.m. The plagioclase {1\n4o-60 ) in t.llese 

dykes forms larger grains which a re co~monly polysynthetical ly 

tv-Tinned, and locally contain epidote inclusions and calcite 
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grains at its b_?~nda,ries, · as alteration products. Locally 

the plagioclase contains fine· polygonal quartz and albite 

along cleavage planes. 

~NO types of biotite occur. 
.. 

The most common is pleo-

chroic in shades of brown, h~s irregular shapes, ~s generally 

elongate, and defines a foliation. The less common type is 

pleochr6ic in sh~des of green and forms later d~~tissate . grains 

containing exsolved rutile needles along crystallographic 

plane~(sagenitic biotite). 

H<t>rnblende is generally idiol::;>lastic. , containing altered 

I 

cores rich in inclusions and fresher rims(plate -15). 

In places, the hornblende is rimmed by chlorite and iron 

oxides, and in others, contains exsolved quartz and plagioclase. 

Sphene forms small prism shaped grains in mafic rich 

patches containing epidote, chlorite, and biotite, or anhedral 

masses around iron oxides. Quartz commonly forms inclusions 

in,or small grains around, plagioclase. Zircon occurs as 

inclusions in biotite where it has pleochroic haloes. 

The altered plagioclase and hornblende probably form 

part of an early assemblage, the nature of which is unknown. 

The corroded appearance of these, and their alteration 

products imply a later recrystallization which probably resulted 

i n the formation of the hornblende rims and foliated · 

biotite. The polygonal albite and quartz are p~obably 

related to this event. Evidence ~f a later alteration occurs 

in the form· ofdecussate sageriitic biotite and chl0rite, and 

possibly the formation of the epidote minerals. 
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In the southeastern part of the map area,equilibrium tex-

tures are more common. lfornblende in these dykes defines a 

foliation and is of obvious metamorphic origin. It forms fresher, 

commonly idioblastic grains, locally containing plagioclase 

i nclusions (plate -16) • In places, an earlier altered hornblende 

containing numerous iron oxide inclusions occurs,probably re-

presenting an earlier assembl~ge of unknown nature. 

Pl~gioclase (An 40 _ 60 } appears interstitial between hornblende, 

and is fresher than to the northwest. It may show polysynthetic 

twinnidq, but more commonly is turbid and contains epidote 
I 

inclusions and calcite at its boundaries. Biotite is pleo-

chroic in shades of brown and forms decussate grains which 

commonly have sagenitic textures. Quartz forms small poly-

gonal grains near plagioclase, and chlorite is rare, occurring 

as an alteration product on hornblende or in mafic rich patches 

containing sphene, epidote, and iron oxide. 

The foliated hornblende and interstitial plagioclase, 

here (southeast) , form a metamorphic assemblage possibly related 

to the hornblende rims and foliated biotite to the northwest. 

If so, the earlier relict hornblende in the dykes to the south-

e as t is probably equivalent to the hornblende cores in the 

dykes to the northwest. All dykes contain decussate Sggenitic 

b iotite and epidote minerals, possi bly indicating a later 

metamorphic event of greenschist grade throughout the area. 

All of the dykes ~re probably altered diabase dykes, and 

a re probably genetically related. The differences occur in 



Plate-1 5 : Photomicrograph of a mafic dyke near 
"Steve's Pond"(northwest), showing a fresh amphi­
bole rim around an earli~r altered amphibole. The 
height 6f the photograph rep~esents 0.46 milli-
meters. (M6.--23~J L 

Plate-16 : Photomicrograph of a mafic dyke in the 
southeast of the ~tudy area, showing fresh ori­
ented hornblende grains. The height of the photo­
graph represents 0.46 millimeters. (MB - 13- 1 ) 

66 



67 

the alteration of these by subsequent deformation and meta-

morphism. The first recognizable event is the alteration ofthe 

dykes to a middle to upper greenschist facies mineral assem-

blage in the northwest of the area(indicated by foliated biotite, 

hornblende rims, and polygonal quartz and albite), and an am-

phibolite facies mineral assemblage in the southeast of the 

area(indicated by foliated hornblende and interstitial plagio-

clase). A later partial alteration to greenschist facies 

mineral assemblages occurren throughout the area, indicated 

by ldecussate sagenitic biotite and epidote minerals. 

The alteration of the dykes is of cruci~l importance in 

the interpretation of Paleozoic deformation and metamorphism 

for this area. The dykes are post Grenville and, therefore, 

record the Paleozoic events which overprint the already 

deformed Grenvillian basement units(Long Range Complex). At 

least two metamorphic events are recorded in the dykes of the 

map area. A first, produced amphibolite facies mineral assem-

blages in the southeast which decline to greenschist facies to 

the northwest. This was followed by a pervasive greenschist 

facies metamorphic event throughout the map area. The 

gradation in the earlier metamorphic event is consistent with 

the occurrence of greenschist facies mineral assemelages in the 

granitic gneisses which occur in the west and central part of 

the map area, compared to the amphibolite facies ~mineral 
I 

assemblages present in the hornblende-plagiocla-se gneisses 

which occur in the eastern part of the area. ~ 

Similar dykes have been reported in crystalline rocks 

to the north of Grand Lake(Knapp, Kennedy and Martineau,l979) 
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and in the Burlington Peninsula(Fleur de Lys Supergroup; deWitt, 

1972). In all cases the dykes are interpreted as Late Precambrian 

to Early Paleozoic feeders to rift related volcanic flows. 

The same interpretation is favoured here, and the fact that 

no dykes are found in the Late Precambrian to Early Paleozoic 

Loon Pond metasediments may be _fortuitous. 

II-7 General geology, Conclusion 

The rocks of the study area may be separated into the 
)' 

following groups: the Long Range Complex interpreted as Gren-

villian basement, the Loon Pond metasediments interpreted as 

Late Precambrian to Early Paleozoic metamorphosed cover(eastl~ 

the carbonate sequence interpreted as Early Paleozoic cover 

(west) , the mafic dykes interpreted as Late Precambrian to 

Early Paleozoic in age, and the felsic intrusions interpreted 

as late to oost orogenic Paleozoic intrusions. 

The Long Range Complex shows evidence of a complex meta-

morphic history, locally invo l ving relict granulites. These 

are probably features of Grenvillian metamorphism which have 

later been partially to totally retrogressed to greenschist 

(in the northwest) and amphi~olite facies(in the southeast) 

mineral assemblages by Paleozoic metamorphism. This east to 

west zonation in Paleozoic metamorphism is, conveni~ntly, 

recorded in the mafic dykes that cut ·the gneisses_ 

The cover units are all affected by the Paleozoic deforma-

tion, and show a variation in its intensity(the ~ deforrnation) 

from the southeast to northwest. This is indicated by metamorphic 

mineral assemblages of up to amphibolite facies in the Loon 
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Pond metasediments in the east, compare d to low~r _ greenschist 

facies mineral assernblaqes to no .recrystallization in the 

carbonate sequence rocks in the west. 

Massive felsic intrusions containing no mafic dykes, may 

form the youngest of .the map units in the study area. They 

contain localized shear zones \vhich may be related to the 

faulti!lg affecting this unit, and which form. the last deforma­

tional event recorded in the area (the faulting). 

Major faults in th~ area are th~ Grand Lake Thrust and the _ 

Cabot Fault. The Grand Lake Thrust j u xtaposes _ granitic g neisses 

showinq evidence of a complex structural and met-amorphic history 
/ 

(locally up to granulite facies} in the east, with -folded low 

grade (lower greenschist} rocks of the carbonate sequence in the 

west, implying major movement. 

At the northeast end of the map area, the Cabot Fault, a 

maj or feature extending across Newfoundland from Port aux Basques 

t o White Bay, separates the felsic crystalline rocks of the map 

a r ea from mafic volcanics to the east. 

Other faults in the area are the high angle block faults 

which separate the map units. These are of lesser importance, 

e x c ept for o n e northea st trending h iqh a n gle faul t sep arating 

the Long Range Complex from the eastern slice of the Loon Pond 

metasedimen -t s. This f ault dips s t eeply a t Gran d La~e, but 

t he fault could be a refolded major thrust like the, Grand Lake 

Thr ust·. The fault juxtaposes totally different litholoqies 

(fels:i:c gneisses in the west fr·o.:rn psanuni tic to sei:tipe l i tic 

schists arid carbonates ·in th~ eas:t }, but no major metamorphic 
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contrast is observed across it. 

The ·present configuration of the units, therefore, 

implies com~lex Paleozoic deformation of both cover and base­

ment, followed by th~ ·thrusting of the deformed basement­

c over block onto the carbonate sequence. The age of the 

grariitic intrusions relative to the thrusting event is unknown, 

but the ·fact that no granitic bodies or dykes occur west of 

the Grand Lake Thrust, and that th~se are common to the east 

of it, implies that the intrusions are older than the thrusting. 

I 
I 

I 
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IIT . STRUCTURAL. GEOLOGY 

II I-1 Ihtroduction 

Structures in the area vary from composite fabrics involving 

compositional segregation in the Long Range Complex, .to folded 

schistosity in the Loon Pond ~etasediments, to open folds with­

out penetrative clea~age in th~ carbonate sequence. Some 

plutonic rocks ~~ithin the Long Range Com9lex are massive with 

a locally developed foliation along shear zones. 

Th~ area is dominated by a northeasterly oriented Paleozoic 

stru c;,tural trend. Minor fold axis directions, and the composite 

fabrics in the Long Range Complex, however, indicate a complex 

deformational history, involving preserved Grenvillian 

structural elements. 

Because of the varying complexity of structures for the 

different units, and the uncertainties of correlating structural 

e lements, the units are divided into groupings which are described · ~ 

ander sep arate headings. The groupings are as follows: the ·Long. 

Range Complex (includes map units la; . .. b,c,d, and e), the r ..... oon 

Pond me tasediments (includes map units 2, 2a, . b,c,d, and e), 

the Grand Lake Broo k Group(map unit 3 ), t he .carbo nate r ocks 

(ma p unit 4), and the intrus ion s ( inc l ud i ng map units Sa, .b, 

and c, and the mafic d ykes). 

Faults generally form. the boundaries between UI).its, and 

a re in most cases, the latest structural event. These are 

treated separately in a later section. A · rough ~synthesis of 

t he structu~s into a coherent deformational history follows. 
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III-2 Struc·tures in the Long· Ra·nge· Complex 

The earliest structure recognized in the Lo~g Range Complex 

is its gneissic foliation. This foliation varies both in type 

and in orientation, and is prob~bly not everywhe~e related. 

The gneissosity includes more than one type of texture. It 

varies from millimete~ thick ·layers in mylonitic gneiss to 

centimeter thick layers in pinstriped gneisses to several 

ceritimeter thick layers in the banded gneisses. The fact that 

no mineral segregation is developed in the cover units, and 

that t~ ~ gneissosity is overprinte~ by a later fabric developed , 

in both basement and cover, indicates a Grenvillian age is 

likely for the gneissosity. Similar gneissic textures are also 

common in the Grenvillian Indian Head Complex to the west. 

A second major type of foliation occurs in the gneisses. 

This is produced by the orientation of the mafic minerals. It 

is most co~monly developed in the mafic rich layers of pin-

striped granitic gneisses, and is sub-parallel to the gneissosity 

in these. In a few places, however, within the hornblende-

plagioclase _ gneisses, the foliation produced by the orientation 

of small(about 1 millimeter) hornblende prisms is axial planar 

to minor folds in the gneissosity, indicating that it forms a 

fabric related to a later event folding the gneissosity, 

possibly Paleozoic in age(plate -17). This fabric is also 

developed in the Late Precambrian to Early Paleoz~ic mafic 

dykes, supporting this observation. 

Lineations occur within the .gneisses, and are most commonly 

developed on the south and west flanks of "Bear Ridge". The 

lineations are produced by the parallel orientation of rod-



shaped quartz patches in mylonitic gneisses, to the parallel 

orientation of the long axis of hor~blende prisms in granitic 

and mafic(altered diabase dykes) g n eisses. The mylonitic 
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gneisses may represent localized zones of high strain produced 

at the same time as the gneissosity, or less · likely a later 

deformational event. 

Minor folds are common within the gneisses(plate -ll). They 

vary from simple folded gneissosity to refolded folds in the 

gneissosity. Larger scale folds(about 5 meters in amplitude) also 

occu~ . These were only recognized ~long the shore of Grand Lake, 

where they occur in both granitic and hornblende-plagioclase 

gneisses, but are best developed in the hornblende-plagioclase 

gneisses in the east of the map area. They(the folds) fold the 

Grenvillian gneissosity into tight upright folds with northeast 

t rending sub-hor izontal fold axes, and locally are associated 

with an axial planar fabr i c produced by the later Paleozoic 

foliation(oriented mafic minerals) described above. 

Locally the folds appear truncated by mafic dykes at the 

h inge(plate -18), apparently indicating the folds predate the 

emplacement of the _dykes. The dykes, however, also contain the 

axial planar fabric associated with the folds,indicating they 

are syn- or pre-folding. A likely explanation for this contra­

diction is tha t t h e folds are later and developed against the 

dykes. In some places the dykes are folded alon~ with the 

gneissosity(where these had differen~ orientatiod s from the 

axial planes of the folds) supporting th i s inf€rence. A similar 

occurrence has been documented in the Caledonides of Finnmark 

(Gayer, Powell and Rhode s ,l979). 
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Plate-17: Hornblende-plagioclase gneiss sample 
showing two foliations(l-gneissosity,and 2-ori­
ented mafic minerals). (M8-l-l) 

74 

l 



, 
I 

Plate-18: Northeast trending fold in the banded 
hornblende-plagioclase gneisses, truncated by a 
mafic dyke at its hinge(see sketch below) . 
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Th~ . gneissosity, as stated earlier, is variable in 

orientation. It shows, howe·ver, a: change to a more consistent 

orientat.ion to the south~ast, possibly related to th~ Paleozoic 

fo lding described above which is best developed to the east. 

Figures 6 .to 9 illustrate this observation. 

Figure -6 ; is a sketch map of the study area in which 

the Long Ra~ge Complex has been subdivided into three domains 

from th~ northwest to th~ southeast. The subdivisions are 

chosen k o coincide roughly with major faults. Figure -7 · is 

a stereoplot of poles to the gneissosity on a Schmidt equal 

area net for gneisses occurring in the northwesternmost domain. 

It shows a mild clustering of points on the western side of 

the plot. Figure -8, however, is a stereoplot of poles to 

the gneissosity for the central domain. It shm:vs a much 

stronger clu ster of poles in the western side of the plot. 

Finally, figure -9 is a stereoplot of poles to the gneissosity 

for the southeasternrnost domain. It shows a good cluster of 

points in the northwestern quadrant of the plot. Poles to the 

later foliation (parallel orientation of the long axes 

of h ornblende) are also plotted on figu r e -9 · These also 

fal l in a cluster within the northwest quadrant of the net 

indicating the two folia t ions a r e subparallel in this domain . 

The above stereoplots illustrate well the observ ation 

tha t th~ gneissosity becomes more regular in orient;a~ion 

(to a .northeast strike and a southeast dip) to the- -southeast. 

Furthermore, the later foliation only occurs to the southeast, 

a n d has a similar orientation to the gneissosity in that 
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same area. As stated earlier, a .set of Paleozoic,t~ght, 

northeast trending .folds is expos.ed along the south shore 

of ·Grand _Lake. These fold the gneissosity and appear to 

be most common in the eastern part of the area. It appears 

p ossible from these observations that the already folded 

Grenvillian _ gneissos1ty (folded by the Grenvillian or older 

deformations) becomes progressive-ly more folded to the 

southeast by these Paleozoic folds, till it becomes sub-

p arallel to the later fab~ic (the later oriented hornblende 

foliation) produced by this folding event. In other words, 

the latest folding event (_in this case Paleozoic in age) 

which is observed to be best developed to the east may have 

increased the regularity of orientation of the gneissosity 

in the previously deformed Lo~g Range Complex. 

III-4 Structures ~n the Loon Pond Metasedi~ents 

The Loon Pon9 metasediments are dominated bX a persistent 

northeast striking east dipping schistosity that is generally 

parallel to the lithic sub-units, possibly implying isoclinal 

folding. This schistosity is produced mainly by the parallel 

orientation of mi cas and is associated with uppe~ greenschist 

to lo\ver amphibolite facies mineral assemblages. This 

Paleozoic fab r ic (since the protolith is ro~ghly correlat ive 

with the Paleozoic Grand Lake Brook Group; Knapp, Kennedy and 

Martineau, 19 79} is sub-parallel. to parallel to th~ late 

similar grade Clower amphibolite ;t"acies) fabric develoPed in 
~ -

t h e adjacent part (east·) of the Lo~g Range Complex, and the 
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two are possibly related. The fact that this later fabric 

in the bas·ement gneisses is also developed in the intruding 

Late Prec·ambrian to Early Paleozoic mafic dyke·s also supports 

this observation. 

The fact that the ·schistosity and attitude of the lithic 

sub-units are sub-parallel along the shore of Grand Lake may 

indicate isoclinal folding forms the dominant feature within 

this unit. No fold closures wer~ seen to prove this. 

However, the fact that Paleozoic folds occur within the adjacent 

Long R~ng Gneisses would seem .to support the inference that 

the Loon Pond metasediments a~e tightly folded, although it 
' I 

should be remembered that the units are in fault contact and 

that the fabrics _are not nece$sarily related. 

Minor folds are rare in this unit. These are restricted 

to a few kink bands observed along Grand Lake. The only 

large scale folds observed in the area are open folds with 

east trending fold axes, which bend the sub-units on the 

large scale (see map) . The presence of these is inferred 

from the map pattern only. No penetrat~ve foliation is 

associated with these folds, and it is possible that they 

were produced by dra§ along strike slip faults (E. Stande r, 

pers : comm., 1979). 

Figure -10 is a stereoplot of poles to schistosity for 

the Loon Pond metasediments. A marked cluster of poies 
~ 

occurs in the northwest quadrant of the plot. Thi~,- cluster 

gives -an average northeast strike and steep soutl).~-a.st dip for 

the schistosity. As stated above, this orientation is sub-

parallel to that of the sub-units along the south shore of 
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Grand Lake, and may represent an axial planar fabric related 

to an isocl.inal folding event. Also noteworthy is the fact 

tha,t the ·schistosity is ·sub-parallel to the ~neissosi ty 

describ~d earlier for the _ gneisses in the southeast part 
I 

I 

of the Lo~g Ra~ge Complex. 

Aside from the cluster of poles in the northwest quadrant 

of the plot, a diffuse great circle appears to be present. 

This circle _ gives a t(-pole (or fold axis) with a trend and 

No grouping of minor folds was seen 

which may be associated with these. 

I 
, In summary, little can be said about the deformation of 

the Loon Pond meta~~ts with the scanty data available. 

A well developed schistosity parallel to the sub-units is the 

dominant feature, possibly indicating isoclinal folding with 

a northeast axis. Open folds with east trending axes form 

a later deformation, possibly related to faults. No fabric 

is associated with these. The occurrence of some minor folds, 

kink bands, and the great circle in figure -10, however, 

indicate a more complex deformational picture than given 

here, requiring detailed study of the unit. 

III-4 Structures in the Grand Lake Brook Group 

The Grand Lake Brook Group is dominated by a persistent 

northeast striking east dipping phyllitic cleavag~f ~ generally 

axial planar to tight minor folds bending thin dolo~itic 

layers where these occur. The· . . dolomitic layers occur only 

locally, and in general, the unit shows only the phyllitic 

cleavage. 



84a 

A crenulation is commonly present on the cleavage possibly 

indicati~g more than one foldi~g event. In one location, a 

poorly developed :phyllitic cleav~ge occurs sub- -parallel to 
--

the major one. This cleav~ge may be related to the crenulation 

f ound ~n the dominant cleavage, and the two features probably 

represent an event as widespread, but less intense, than that 

which ·produced the dominant cleavage. Both are now sub-

parallel, and axial planar to, the minor folds. 

The minor folds in the beddi~g are only recognized locally 

\vhere t::he dolomitic layers. occur. These form tight folds with 

1 meter wavelengths and consistent orientatioRs. No other 

folds were observed within this unit, however, although the 

two cleavages and crenulation indicate a more complex history. 

Figure -11 is a stereoplot of structures within the Grand 

Lake Brook Group. The few poles to bedding shown (solid dots 

on the stereoplot) fall on a _ great circle representing the 

folds described earlier. The rr-pole to the great circle 

(or fold axis) has a trend and plunge of 025° and 50° 

respectively. This axis coincides· closely with the axes to 

the observed minor folds in the bedding. 

The poorly developed phyllitic cleavage sub-parallel 

to the major cleavage, and associated crenulations on ~he 

maj or cleavage,indicate a more complex - deformational -history. 

The fact that the later cleavage is sub-parallel to k he 

ear lier one, and that the crenulatio~cluster around the 

minor fold axes on Figure - ·11 1 may .indicate coaxi~l-.- deformations. 

No refolded folds were ·seen, however, although folds in this 
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·unit can .only be seen whe.re .dolomitic layers occur, and 

these are ·rarely· pres·ent. 

III-5 Structures in the· carbonate rocks 
I 

The ·only structural fabric developed wi thi·n this unit 

cons~sts of a locally developed fracture cleavage. The major 

structures present are ·large scale folds with northeast 

trending axes. Evidence for these are minor folds developed 

in algal laminated limestone and in interlayered centimeter 

thick dolostone and limestone, and larger scale folds observable 

on t}:le map scale. 
I 

I 
One of these major folds is a large northeast plunging 

synform, the ·nose of which occurs about 2 kilometers southwest 

of "Button Pond". Another major fold is · a northeast plunging 

antiform located at "Garbage Pond" along the camp 33 road. 

The hinge of this antiform is truncated by an east dipping 

thrust fault. Both of these folds are probably related to 

the same event. 

Elsewhere within this unit, beddin9 generally strikes 

north-south to northeast and dips steeply. The few facing 

directions obtained, however , indicate that the beds are 

tightly folded about north-south to northeast trending_ axes. 

Farther west, along the cliff forming the westward limit 
.-. 

of exposure in the map area, a large open synform has an east 
' ,. 

trending axis. This fold is probably related to a ~ater 

event,since such an open .structure would probably -have been 

obscured by the tight .north~south folding if it were related 



87 

to an earlier event. The open folding could be related to the 

late, open, east treriding folds in the Loon Pond metasediments. 

Figure -12 is _a steretiplot of structures ~ithin this unit. 

The poles to the bedding fall in a cluster on- the west side 

of the/ stereoplot. This clus.ter may reflect the tight north-

south t ·rending folds indicated by the facing direction data. 

Minor fold axes are also plotted on the stereoplot. 

These _ generally lie in the ·northeast quadrant of the plot, 

but are not well clustered. It is likely that these minor 

folds q.-re related to the major northeast trending folds described 

earlier. It is unknown, however, whether these are related to the 
I 

tighl: north~south trending folds indicating hete~ogeneous 

defo"rmation, or represent a separate folding event. The 

lack of penetrative fabrics in the limestone make the deforma-

tional . history of the unit difficult to determine. 

In summary, the structures in this unit must be of Paleozoic 

age, and are probably roughly related to the structures 

developed in the Grand Lake Brook Group and Loon Pond meta-

sediments. No specific correlations can be attempted between 

this unit and the Loon Pond metasediments, however, because 

of the sketchy structural data on the latter and the presence 

of the Grand Lake Thrust between them. 

The folds observed in the a-djacent Grand Lake Brook Group 

are probably related to the same deformational events as 
, ,. 

those in the carbonate rock:s. The observed differ~nce in 

scale of the folds may- be due .. to the di f ference ].n- -competence 

of the two units. If this inference is true then one would 
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expect two fold generations with. :ro~ghly northeast trends in 

the carbonate rocks as appears to be the· case ·for the Grand 

Lake Brook Group, .although ·these were not proven to exist. 

Finally, the open folding events with ·east trending 
I . 

axes, _described in both ·the· 1·imestone unit and in the Loon 

Pond metasediments, may be ·correlative. These folds may be 

the latest folds in both units and may well have formed after· 

the Grand Lake Thrust; The folds a~e not recogniz~d in the 

other units, but this may be due to the lack of a penetrative 

fabric / associated with · the~e, and the fact that mappable sub-

units or bedding are necessary to identify them. 
I 

I 

III-6A Stru·ctures in the intrusive rocks, Introduction 

The intrusive rocks may be divided into two groups, the 

felsic intrusions and the mafic intrusions or dykes. The 

groups have different structures and will be treated separately. 

III-6B Structures in the felsic· i ·ntrusions 

The· felsic intrusions (map unit 5) are, for the most part, 

massive except for localized foliations defined by the orienta-

tion of mafic patches . . These form bands or are associated 

with deeply weathered rock (saprolite), and are interp+eted 

as shear zones. The localized foliations occur in varying 

orientations from northeast to northwest, and may be} related 

to one of the folding episodes, or more likely to the faulting. 

I -
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The ·mafic intrusions are ·probably altered diabase dykes. 

The nature ·of the .foliations ·in these has been · described 

earlier (foliated biotite in the ·northwest and foliated horn-
/ 

blende in the southeast) (see section II-6D}. The dykes are 

best exposed along Grand Lake. Here, ali are ~oliated sub-

parallel to their trend, that is, str~king northeast and dipping 

steeply to the southeast. 

TMe dykes, for the most part, appear unfolded. Many are 

axial planar to, and truncate, the l-arge folds in the gneis"""' 
I 

I 
sosity alo~g Grand Lake described earlier (see plate -18; see 

section III-2}, but some are folded along with the gneissosity. 

The folds are, here, interpreted as Paleozoic in age since they 

contain an axial planar foliation of similar grade (amphibolite 

grade) and orientation as do the Late Precambrian to Early 

Paleozoic dykes. A possible explanation for the above relation-

ship is that the dykes predate the folds, and that those dykes 

which were roughly perpendicular to the principal stress 

orientation were not as intensely deformed as those in other 

orientations. A similar case of folds developing against dykes 

has been documented in the Caledonides of Finnmark (Gayer, 

Powell and Rhodes, 1979}. 

Mafic gneisses occur along road 185 near "Bear Ri~ge". 

These show a mineral lineation, and appear more deformed than 

those ·alo~g Grand Lake. In thls ·case~ however, the lineation 

is also present in the granitic gnei.ss host. These may represent 
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dykes which are older than those along Grand La_ke, or more 

likely represent dyke-s o.f the ·same age in an area of larger 

finite strain. 
--

III-7 /_ FauTting 

The Grand Lake Thrust which juxtaposes basement gneisses 

with rocks of the carbonate sequence, ·and high angle block 

faults separating basement and cover units, form the- major 

faults in the area. Many . of the faults are inferred from sur-

face Mneaments such. as ridges or stri~gs of oriented ponds 

and bogs, since the fault planes are rarely exposed. The lack 
' I 

of marker units within the fault olocks makes movement directions 

difficult to estimate. Nevertheless four groupings areobserved 

and discussed separately. 

Probably the earliest fault recognized in the area is the 

Grand Lake Thrust (see map) ~ The fault is truncated at both 

ends by high angle northeast trending faults. The fault is 

nowhere exposed, but in a few places such as the south tip 

of "Button Pond", and between this p 0 nd and "Boundary Pond", 

exposures of granitic gneisses and grey limestone may be seen 

as close as 30 meters apart. The fault has been interpreted 

as a thrust, in the north (Kennedy, 1978), and this inter-

pretation seems reasonable for the map area as well. The 

metamorphic contrast fr-om slightly recrys-tallized grey lime-
, ;' 

stone (west)_ to greenschist· faci_es mylonitic grani t:ic gneisses 

(eastl indicates a cons~derable displacement, typical of 

thrusting. 



92 

A later group of faults has no~th-northwest 

trends. One of these is ~~pos~d at th~ northe~st tip of the 

Hare Hill granite · (map unit' Sa), where it dips ' vertically. 

The straight outline of these faults throughout the map area 
I . 

confirms a steep dip for the.se. Along road 185 near "Bear 

Ridge", and along the west ·flank of "Disappointment Hill", the 

faults appe~r sub-parallel .to the· mylonitic foliations of 

the host. If these textures are ·related to the faulting, the 

faults may be of similar age and origin to the Grand Lake Thrust. 

The ·straight trend of these faults, however, and the fact 

that they cut all map units including the carbonate sequence, , 
I 

indicates that they are probably unrelated to the mylonitic 

fabric near these, or represent in part reactivated older 

faults. 

A third group of faults, which offsets the Grand Lake 

Thrust in the map area, trends to the northeast. These 

also have straight outlines indicating steep dips, and are 

exposed along Grand Lake where they have dips of 70 to 80 

degrees to the east. The faults form the contacts between 

the rocks of the Long Range Complex and those of the Loon 

Pond metasediments. The "Goose Hill" granite breccia is a 

fault breccia produced by one of these faults. 

Some of the sub-units within the Loon Pond metasediments 

have fault contacts which trend northeast. These faults, how-
' J' 

ever, may be older and could represent bedding plarte faults 

r elated .to Paleozoic ·folding i .n these (describe~ e ·arlier} . 

The .northeast faults are definitely younger than the 

Grand Lake Thrust since they offset it, and are probably 
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responsible for the offset of the. carbonate seq~ence in the 

southwest of the map area. If this is so, these faults con-

tain a substantial _right lateral strike-slip component of 

displacement. 
I 
Finally, a set of northwe?t _and southwest trending faults 

occurs in the Loon Pond metasediments. These may be related 

to the folds with east trending fold axes as stated earlier 

(E. Stander, pers. comm .. , 19791. T~e faults were not recog-

nized within the Long Range Complex, and so are probably cut 

by the/ northeast set of faults (whi.ch form the boundary with 

the gneisses} , and, the~efore, are older than these. 
I 

I 

III-8 Structural synthesis 

The faulting between rock units and the diffenent competence 

of these in response to stress makes a detailed correlation 

of structures between units, difficult. A general synthesis 

is attempted here, however, · along with a possible evolving 

_model explaining the generation of these structures. 

The earliest structure occurring in the map area is the 

gneissosity developed in the Long Rang Complex. The variations 

in orientation and associated texture of the gneissosity, 

aspecially in the northwestern part of the complex where the 

basement is apparently least affected by (least remobilized) 

Paleozoic deformation lsee section III-2), indicates ~ a poly-
, ' 

phase history of deformation is likely for these gneisses. 

This ·gneis.sosity is locally associated with relief. _ granulite 

facies mineral assemblages (at "Disappointment Hill") not 
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developed in the cover units which were involved in Paleozoic 

deformation only, and is most likely a Grenvillian feature. 

Most of the subsequent structures are related to th~ Late 

Precambrian to Early Paleozo"ic evolution of the area. 
I 
In the Long Range Complex, evidence of Paleozoic deform-

tion is found in the post Grenvillian mafic dykes (see section 

II-2A} which are folded in places, and which generally contain 

a foliation produced by an ·amphibol_i te facies mineral assem-· 

blage. These features are best developed in the southeast 

part of the complex, indicati~g stronger Paleozoic influence 

there. A late amphibolite facies mineral assemblage, defining 
' I 

a fabric which is axial planar to the folds in the gneissosity 

on Grand Lake, occurs in the gneisses and is interpreted as 

a Paleozoic feature. The presence of these folds may explain 

the observed southeastward increase in clustering of the 

poles to the gneissosity on the stereoplots (figures-7, 8 

and 9} as reflecting increasing remobilization of the base-

ment gneisses to the southeast by folding. 

Little is known of the deformation of the Loon Pond meta-

sediments. The dominant fabric is a schistos~ty sub-parallel 

to the northeast striking east dipping lithic sub-units 1 pos-

sibly related to isoclinal folding. Kink bands, cren~lations, 

and minor fold axes indicate a more complex deformational 

history, however. 

The ·orientation of th~. dominant schistosity, :associated 

with :upper _ greenschist to lower amphibolite fac~es· mineral 

assemblages, parallels ·the late foliation with associated am-



95 

.phibolite facies mineral assemblages in the gneisses, possibly 

indicating that these fab~ics are related. It should be 

remembered that the units are in fault contact~ however, and 

perhaps a safer statement is that both are Paleozoic features. 
I 

The northeast trending hi.gh angle :faults between sub-units 

in the Loon Pond metasediments may be related to this folding 

event, and may represent bedding plane faults developed during 

the folding. 

West of the Grand Lake Thrust, the Grand Lake Brook · Group 

and ca:tbona te ro-cks were also deformed by Paieozoic events. 

The units may show up to two·, now coaxial (see section III-4), 
I 

I 

folding events. These have northeast trending axes, as is 

the case for the Paleozoic structures described above for the 

Long Range Complex and the Loon Pond metasediments. The 

structures in these units, however, are associated with lower 

grade assemblages. In the case of the Grand Lake Brook Group, 

the deformation produced minor folds with related lower green-

schist_ grade phyllitic cleavage. In the limestones, large 

scale folds were produced with a locally developed fracture 

cleavage. 

The contrast in metamorphism associated with these .folding 

events across the Grand Lake Thrust, indicates that this 

feature is younger than the ·deformations. The relative age 

of the Grand Lake Thrust may further be bracketed by~ the fact 

that it is offset by the hi9h angle block faults (se~ map) , 

indicating that it is older than these. The fau~t may well 

be a late feature assoc~ated wLth the folding events described 

above. 
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The felsic intrusions show- igneous textures with green-- . 

schist facies alteration, but no evidence of higher grade 

met·amorphism. Thi-s appears to indicate that the bodies post-

date the ·deformation. The massive nature ·of the bodies further -
/ 

supports ·this assumption. 

Undeformed unaltered dykes, associated with these bodies, 

occur commonly within the host granitic gneisses, but no igneous 

phases are present on the ~e~t side _of _the Grand Lake Thrust 

desplte the fact that the Hare Hill granite occurs as close 

as ~ kilometer from the fault. Th~s appears to indicate 

that the felsic intrusions pre-date the Grand Lake Thrust. 
I 
The large scale open folds with east trending axes and 

no associated fabric, described in the Loon Pond metasediments 

(east) and in the carbonate rocks (-\vest) , form the latest 

folding event(s). The folds bend the schistosity in the Loon 

Pond metasediments, indicating that they are later features. 

The folds are probably related to minor faults within this 

unit which are truncated by the northeast trending faults, 

indicating that the folds are older than the northeast trending 

faults. The open folds with east trending axes in the 

carbonate rocks probably also form the latest event there 

(see section III-5), and may be related to those in the 

Loon Pond meta sedime nts. If th i s is so , the folds may well 

post-date the Grand Lake Thrust since they occur on ~oth 
' ,. 

sides. The lack of these folds in the other units,1 if they are in-

deed related and postdate th~ .thrust, may be due : to higher 
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competency in the case of the crystalline rocks~ or to the 

lack of traceable sub-units necessary to show the folding 

(since .no related · fabric occurs) in the case of the Grand Lake --
Brook Group. I -

In any case, these folds are of minor importance 

only. 

The latest deformational event of the area is the high 

angle block faulting since these faults cut all units and are 

unfolded. The relative ages of the. north-northwest and north-

east trending faults are a problem, however. All are unfolded 

and mdst do not appear otfset where they cross. The steeper 

west flank of most ridges in the map area (described earlier) , 
I 

is probably caused by the high angle faulting. 

The lithologies and deformation present within the study 

area can be related to the present model for the evolution of 

the ancient continental margin of North America (Williams, 1979). 

In terms of this model; the Long Range Complex may represent 

the ancient craton (last deformed during the Grenville event), 

the Loon Pond metasediments and mafic dykes may represent rift 

related clastic cover sediments _and rift related dykes 

respectively, and the carbonate sequence may represent part 

of a carbonate platform which developed later along the rifted 

margin. An idealized cross-section of the ancient con~inental 

margin prior to its destruction is shown in figure -13A. 
·, 

Most of the deformation in the cover units anp ~n the ,. 

eastern Long Range Complex may be attributed to th~ ·Paleozoic 

destruction of this continental margin. This defo·rmational 

event is commonly referred to as the Taconic Orogeny, a poly-
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phase event of Early to Middle Ordovician age (Williams, 1979). 

Figure -l3B and C show progressive deformation of the margin 

during this event·. 

The area w-as further deformed by the Acadian Orogeny of 
I 

Devoni.an ~ge {_William, 19791 . . In the study area, Taconic and 

Acadian structures are difficult to disti~guish since no dated 

Late Ordovician or Devonian rocks occur. The felsic intrusions 

and the later Grand Lake Thrust may be late Taconic or Acadian 

features, indicating that much of the Paleozoic deformation 

whichwas described as earlier than the intrusions is Taconic 

in origin. Figure -l3D is a schematic cross section of the 

' study area showing the present configuration of the units 

after deformation. 

, ,. 

,j ... 
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FlGURE-13. Evolving model for tre deformation of the ancient continental margin to 

its p-esent configuration, os seen in the map area : 
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IV METAMORPHIC GEOLOGY 

The units within the map area vary in metamorphic grade 

from J nmetamorphosed to lower greenschist facies in the west, 

to amphibolite facies in the east. · No isograds are located, 

however,· because of the abundance of· faults within the map area. 

A general southeastward increase in Paleozoic metamorphic grade 

is present, however, and is documented here. Aside from faulting, 

anothe~ problem in describing the metamorphism for the area, 

is the fact that most of the rocks are quartzo-feldspatlric 

which are relatiyely insensitive to pressure-temperature changes. 

The limestones and dolostones which form unit 4 show in-

creasing crystallinity toward the Grand Lake Thrust,but are poor 

indicators of metamorphic conditions west of the thrust. 

Fortunately,unit 3, the Grand Lake Brook Group(which also lies 

on the west side of the Grand Lake Thrust) is of pelitic compo-

sition and forms an ideal indicator of metamorphic conditions 

on the west side of the fault, permitting comparison of the 

metamorphic conditions on both sides of the thrust. 

The units are described in individual groups. These are: 

the Long Range Comp l ex, the Loon Pond metasediments, t~e Grand 

Lake Brook Grou p, and the intrusive rocks. A general synthesis 

of the metamorphic events for the entire area follows. 
' ,. 

1 . 

IV-2A Met·amorphism in the Long· Ra·nge Complex, In]:.roduction 

Metamorphic assemblages within the Long Range Complex vary 

from the lower greenschist to granulite fac i es. The granulite 
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facies mineral assemblages occur locally as relict assemblages, 

now partially retrogressed by a later event producing green­

schist facies mineral assemblages in the west; and amphibolite 

facies mineral assemblages in the east. Evidence of possibly 
I 

another later retrogressive event is widespread. 

The . general variation in metamorphic assemblages, from 

greenschist facies mineral assemblages (retrogressed from 

higher grades} in the northwest, to. amphibolite facies mineral 

assemblages (overprinting an older assemblage) in the southeast, 

has lead to the separation of the complex into two domains, 

the northwest and southeast domains. The boundary bet\veen 

these ~s an arbitrarily chosen roughly northeast trending 

line through "Bear Ridge" (see figure -14), coinciding roughly 

with the structural subdivisions and lithological change from 

granitic gneisses to hornblende-plagioclase gneisses. 

IV-2B Northwest domain 

The rocks of the northwest domain are dominantly of green-

schist facies, but locally show evidence of retrogression from 

higher grade. Evidence for this earlier higher grade meta-

morphism is a commonly occurring relict tex ture generally 

consisting of an early mineral segregation where the m~cas 

which form the mafic rich bands are unoriented or oriented at 

an oblique angle to these mafic bands, indicating ~hht they 

are (the micas, biotite and muscovite) probably al £eration 

products developed afte~ the mineral segregation ~ · The feld-

spars, occurring (with quartz) in the felsic rich bands or as 
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augen, locally show albite rims or alteration to sericite 

or epidote minerals. 

Relict granu~ite facies mineral assemblages occur at 
-

"Disappointment Hill" in granoblastic gabbroic to granite 

gneis es, providing further evidence for an earlier meta-

morphic event. The gabbroic gneisses contain both orthopyroxene 

and clinopyroxene (plate -8 and 9), which ~long with altered 

form a hypidioblastic granulite facies 

mineral assemblage. The granitic . gneisses contain no pyroxene, 

but contain patc~es of xenoblastic hornblende, biotite, and 

iron oxides, possibly representing altered pyroxene. All 

I 
samples show partial retrogression to greenschist facies 

mineral assemblages. 

The relict textures and mineral assemblages described 

above represent an earlier metamorphism, which locally at 

least ("Disappointment Hill"), produced granulite facies 

mineral assemblages, and which probably produced the mineral 

segregation. No granulite facies mineral assemblages are 

recognized in the Paleozoic cover units, indicating a Gren-

villian age is likely for this event. This conclusion is 

consistent . with the Grenvillian age interpreted for the 

gneissosity in Chapter III. ., 

The later, retrogressive, greenschist faci e s min~ral 

assemblages in this domain, consist of epi dote and/o~ clino-

zoisite, biotite, muscovite or sericite, and quartz~ . Albite, 

calcite, and garnet ·Occur locally. I ' 

Epidote and clinozoisite commonly form inclusions in 

altered plagioclase (An
30

_
50

l 

as discrete small grains 

grains. Locally they occur 
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around plagioclase or in mafic rich patch~s. Biotite forms 

patches of small lath shaped grains. It is commonly pleochroic 

in shades of brown, more ·rarely_ green, and asSociated with ir-

regular shaped grains of iron oxide. Iri most cases the biotite 

patchels are elongate parallel to the gneissosity, although 

the individual biotite grains are commonly oriented at an 

oblique angle to it(gneissosity). Muscovite forms small in-

elusions in plagioclase, or may form discrete lath shaped grains 

within biotite patches where it commonly has the same orientation 

as biotite. 
)-

The quartz forms small grains around larger relict 

qu~rtz or plagioclase, and albite forms fresh rims or discrete 

grains around the relict plagioclase(An
30

_
50

). Finally, calcite 

tends to form interstitial grains between altered plagioclase, and 

garnet fo~ms small broken masses within biotite patches. 

'!'he middle greenschist facies mineral assemblages are 

widespread, and interpreted as later(possibly Paleozoic), 

partial to complete retrogression of the earlier Grenvillian 

metamorphism. ~he oriented biotite and muscovite grains which 

form part of the assemblage, indicate a dynamothermal event as 

was the case for the earlier assemblage. These oriented phases 

occur in mafic rich patches or layers probably representing 

totally retrogressed earlier mafic phases related to the earlier 

Grenvillian event. In the relict felsic layers, albite rims 

and epidote and muscovite inclusions formed in the e~rlier 

p lagioclase. Discrete albite, calcite, quartz and epidote 
' . 

grains also formed around the ·relict quartz and f~1dspar. 

The gneisses of the northwest domain show evidence o ~ 

further · partial retrogression from the biotite and garnet zone 
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greenschist facies mineral assembl~ges described above, to a 

chlorite grade alteration. Evidence for this is the widespread 

occurrence of chlorite rims around biotite, and of chlorite 

patches. The green pleochroic biotite described above may 
. I 

be related to this event as well. No foliation is associated 

with these minerals, and they may represent a further stage 

in the same retrogression,or a separate event. 

The calc-silicate unit (map un~t lc) and the north block 

of the anorthositic rock unit (map unit ld) also show greenschist 

facies mineral assemblages. In the case of the calc-silicates, 

the assemblage observed is calcite, tremolite, and biotite. 

The tremolite and biotite may or may not define a foliation. 

The latest sub-biotite zone partial retrogression, described 

in the gneisses, may also be present in the calc-silicates as 

chlor ite f orming on tremolite grains. 

In the case of the northern block of the anorthositic 

rock .unit, the assemblage noted is epidote, clinozoisite, 

albite, calcite, and muscovite. Once again the latest partial 

retrogression may be present as chlorite on or next to the .rrafic phases. 

IV-2C Southeast domain 

The rocks of the southeast domain show dominantlY, amphibolite 

facies mine ral assemblages with later partial retrogression to 
•j. 

greenschist facies mineral assemblages. The amphibolite facies 
' r 

mineral assemblages form a fabric related to the P~leozoic folds 

described earlier, indicating that the metamorp~ism is Paleozoic 

in age. Similar grade mineral assemblages are developed in the 

Late Precambrian to Early Paleozoic mafic dykes, supporting this 
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conclusion as well. 

Evidence of an earlier relict Grenvillian event, here 

(southeast domain)_, is rare, probably because "of the masking 

effect of the more intense ·Paleozo'ic metamor-phism in this domain. 

Some d vidence of an older relict ass-emblage, possibly of Gren-

villian age, does occur locally, however, as altered plagioclase 

porphyroclasts and irregular shaped altered hornblende containing 

abundant needle-like iron oxide inclusions. No evidence ' of 

granulites were found in this domain. 

The later(Paleozoic) amphibolite facies mineral assemblages 

consists of plagioclase (An30_40) , hornblende, quartz, and biotite. Ga.rnet 

occurs locally. This metamorphic event may be related to the 

greenschist facies event described above for the northwest 

domain, .indicating a northwestward decrease in intensity for 

this event. This correlation is sup?orted by the east to west 

decrease in metamorphic grade of the assemblage~ developed in 

the mafic dykes described earlier. 

The plagioclase and quartz form hypidioblastic grains. 

The plagioclase grains are commonly larger than the quartz 

grains, and in places, an augen texture with la!ge plagioclase 

augen is developed. Hornblende is pleochroic in shades of green, 

and in most places oriented parallel to the foliation. It ., 

(hornblende) is commonly associated with grains of brown, pleo­

chroic biotite, which have the same orientation as ~e hornblende. 

In some places, two hornblende generations occur. 1 ~ne of these, 

the· latest, is fresh, id.ioblas.tic and defines a ~o-iiation, while 

the other has irregular grain .outlines and contains what appear to 

be exsolved, very fine, iron oxide grains in the crystal cores 
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(plate -13) . This earlier altered hornblende is interpreted 

as evidence of an early, possibly Grenvillian,metamorphic 

event. The later .foliated hornblende is related to the Paleozoic 

amphibolite facies metamorphic event. Garnet, where it occurs, 

forms ~dioblastic grains to fractured masses. 

The later partial retrogression to greenschist facies 

mineral assemblages is developed in all . samples observed. 

The assemblage produced by this metamorphf"sm consists of epidote 

and/or clinozoisite, biotite, muscovite, and calcite. 

Epi~ote, clinozoisite, and to a lesser extent muscovite, 

occur most commonly as inclusions in the hypidioblastic plagio-

clase grains. All may also occur, locally, as discrete grains, 

and in one location, the epidote is oriented parallel to · a 

foliation defined by oriented biotite and muscovite lath shaped 

grains. Calcite occurs near plagioclase, and is most likely 

a product of the alteration of plagioclase. Finally, biotite 

forms brown, pleochroic grains. These are oriented such that 

they define a foliation, and in places, biotite rims hornblende 

as an alteration product. 

The fact that some biotite rims hornblende may indicate 

that the greenschist facies mineral assemblage was indeed 

produced by a later metamorphism than that which produ~ed the 

amphibolite facies assemblages. This metamorphism may be 

equivalent to the greenschist facies metamorphism occurring in 
I / ' 

the northwest domain, or more likely the event produced little 

retrogression in the northwest since the earlier _: assemblage 

there(possibly equivalent or older than the amphibolite facies 

mineral assemblages in the southeast) was already of greenschist 
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facies. A new metamorphic event may, therefore, be represented 

here. 

Finally ( as in the case of the northwes't domain) a late 

greenschist facies retrogression may be indicated by the forma~ 

. I 
t1on of Chlorite patches on some biotite and hornblende grains 

and the formation of 2 millimeter large, decussate biotite 

porph.yroblasts. 

IV-3 ·Metamo"rph.ism in the =Loo·n Pond Hetas·ediments 

Most of the data on the metamorphism of this unit is based 

on observation of the section exposed on the south shore of 

Grand Lake. Consequently no detailed account can be given here. 

The · Loon Pond metasediments were metamorphosed to the upper 

greenschist to lower amphibolite facies. Evidence of a later 

partial retrogression of the mafic phases to chlorite is 

present, as is the case for the Long Range Complex. 

Assemblages noted are: calcite, quartz, biotite, and mus-

covite for the calcarious sub-unit 2a in the west, and quartz, 

biotite, muscovite, garnet and an amphibole in the semi-pelitic 

to psarnmitic sub-unit 2d in the east. In the first case (in 

the west) all minerals are oriented such that they define a 

foliation. In the second case (jn the ~ast) biotite ,1 muscovite, 

and the amphibole are oriented such that they define a foliation, 

but quartz and garnet have equant shapes and are porphyroclastic. 

Porphyroblastic garnets -occur vli thin similar rocks : north of 

Grand Lake, but in this case are affected by a l~ter crenulation 

cleavage which is associated with partial retrogression to form 

chlorite (D. Kennedy, pers. comm., 1979). The amphiboles in 



109 

the study area are locally pseudomorphed by chlorite, supporting 

this observation as well. 

Evidence of higher grade assemblages occurs along Grand 

Lake within sub-unit 2d, where a kyanite grade assemblage is 
I 

developed (D • . Knapp, pers cornrn., 1979) containing kyanite, 

garnet, biotite, muscovite, and albite. The biotite and mus-

covite define a foliation which is overprinted by biotite, 

kyanite, albite, and garnet porphy~oblasts. Here again, the 

garnet grains contain chlorite al~eration in their cores~ 

indicating a later retrogression. 

It appears, therefore, that the Loon Pond metasediments 

were affected by a prograde metamorphic event, producing both 

foliated micas and porphyroblastic garnet, kyanite, albite 

and biotite. This event may be, related to the amphibolite 

facies metamorphic event developed in the southeast domain 

of the Long Range Complex (described in section IV-2C) . 

Evidence of a later retrogression to the lower greenschist 

facies, associated with a deformation (crenulation cleavage), 

occurs as well. This may be equivalent to the greenschist facies 

metamorphic event occurring in the southeast domain in the 

Long Range Complex (see section IV-2C) . 

d ... 
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IV-4 ~1etamo·rphism in the Grand Lake· Brbok Group 

The unit is, everywher·e, _composed of black phyllite with 

locally occurring thin calcareous layers. No porphyroblasts 

-
or relict higher grade mine~als occur, and the unit unlike 

the Lo g Range Complex west of the thrust, was probably never 

subjected to higher grade than the chlorite zone of the green-

sch£st metamorphic facies. Thi·s observation is substantiated 

by the adjacent limestones of map unit 4 which show only minor 

re~rystallization to sparite, and in a few places marble beds. 

A drop ~in met~morphic grade is, therefore, indicated across 

the ~rand Lake Thrust, from sub-biotite grade on the west side, 

in the Grand Lake Brook Group, to middle greensch£st facies 

mineral assemblages within the granitic gneisses. 

IV-SA t-1etamorphisr:1 in the· Ih·trusiv8 rocks, · Introduc·tion 

As in the section on structure, the intrusive rocks are 

separated into felsic and mafic intrusions. The felsic intrus~ons 

are considered first. 

IV-SB Felsic intrusions 

The felsic intrusions, which include the Hare Hill and 

"Goose Hilll! granites (map units Sa and Sb) , the "Tulk's Pond 11 
., 

syenite(map unit Sc), and their relaten dykes, are generally 
·. 

massive with localized foliations related to shear zones. The 

textures ~re, in most cases, igneous, but show part~a~ alteration 

to greenschist facies mineral assemblages. 
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The assemblages developed consists of muscovite, calcite, 

biotite, and epidote. Muscovite and biotite form randomly 

oriented lath shaped grains occurring in patche·s '\vhich also 

--contain iron oxide, commonly rimmed by sphene. Epidote occurs 

as inc usions in feldspar _ grains which appear slightly fractured 

in places. Calcite occurs in the mafic rich patches where 

magmatic amphibole (hastingsite) is altered and rimmed by biotite. 

Quartz shows undulose extinction, and this along with the 

slightly fractured feldspar, indicates some straining (possibly 

trigger~ng the alteration). 

The alteration in the felsic intrusions could be late 

magmatic or equivalent to any greenschist facies metamorphic 

event which post-dates its emplacement, if any occurred. 

The absence of relict granulite facies assemblages and lack 

of penetrative deformational fabrics, however, seem to indicate 

the emplacement and subsequent alteration of these intrusions 

post-dates the Grenvillian granulite facies metamorphic event 

described earlier (see section IV-2A) . 

A later partial retrogression occurs, forming chlorite 

rims and patches on biotite. This retrogression may represent 

a further stage in the same retrogression or be correlative 

with a possible late retrogression developed within the 

Long Range Complex (see section IV-2B, C). 

' r 

IV-SC Mafic intrusions 1 . 

The mafic intrustions consist of the mafic dykes exhibiting 

a northwest to southeast variation in textures, described earlier 

(see section II-6B) . 
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In the northwest, the dykes show disequilibrium altered 

textures, making it difficult .to prove the nature (igneous or 

metamorphic) of the earliest· assemblages consisting of 

altered plagioclase and hornblende. The plagioclase (An40 _ 60 ) 

graind generally have irregular shapes, contain epidote or 

clinozoisite inclusions, or may be sericitized at the grain 

cores. Albite rims or calcite · filling interstices around 

plagioclase grains may be developed. The hornblende grains 

generally have irregular shapes and highly corroded cores. 

The shape of these grains makes it difficult to determine if 

these once defined a foliation. The grains, in most cases 

however, · contain fresh hornblende rims definitely indicative 

of a later metamorphic recrystallization (plate -15) . 

Two generations of biotite occur. The earlier of these 

consists of brown, pleochroic grains which define a foliation, 

and are probably associated with the hornblende rims. These 

are altered to chlorite in places. The later generation con-

sists of green, pleochroic, decussate biotite. These are 

commonly sagenitic (contain exsolved rutile needles). 

These post Grenv~llian dykes, therefore, ~ontain evidence 

of possibly two metamorphic events of Paleozoic age. This 

involves the retrogression (late magmatic or metamorphic) of ., 

a plagioclase and hornblende assemblage, followed by ·a , period 

of hornblende growth (fresh hornblende rims) . The e~rlier 

(foliated) · biotite generation, and the albite rims F~Y be 

related to this metamorphic event. This was fol~owed by 

partial retrogression producing decussate biotite and chlorite 

grains, and possibly epidote and clinozoisite inclusions 
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in pl~gioclase(although these may. have been produced duri!lg 

the .event which altered the earliest assembl~ge). 

In the southeast, . the dykes· contain the s ··ame primary 

assemblage as do those in the northwest. The plagioclase 
I 

grains show the same general features as those described above, 

but two _ generations of ho'rnblende are present. The. earlier 

hornblende is corroded and is xenoblastic. These hornblende 

grains are equated with the rimmed h9rnblende in the northwest, 

altho~gh in this case, no fresh rims are developed. The later 

generation of hornblende consists of fresh idioblastic grains 

'\vhich define a foliation (plate -16) . These are correlated 

with the hornblende rims and foliated biotite in the dykes to 

the northwest. 

Biotite in the dykes to the southeast, consists of sagenitic, 

descussate, lath shaped grains which are pleochroic in shades 

of brown. Chlorite, here is developed on some hornblende _ grains 

as is the case in the dykes to the northwest. The bioti.te 

and chlorite may be correlative with the later biotite and 

chlorite in the dykes to the northwest. 

It appears, therefore, that both northwest and southeast 

type dykes have a similar history. This involves the partial 

retrogression of the early assemblage of plagio-

clase and hornblende, followed by a metamorphic event producing 

foliated hornblende in the southeast and foliateq bio~ite _ grains 

and hornblende rims in the northwest. The observed tdifference 

·in phases from southeast to northwest indicates tpat this meta-

morphic event was more intense in the southeast. 

The origin of the epidote, clinozoisite, calcite and seri-

cite, associated with the plagioclase is unknown. They may have 
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formed from the plagioclase duri~g the alteration of the earliest 

ass-emblage (igneous or metamorphic), or during a later partial 

retrogression. However, since a similar grade·· assemblage 

occurs within the host hornblende-plagioclase- gneisses in the 
I -

southeast of the map area, where it i"s shown to post-date an 

amphibolite facies mineral assemblages (see section IV-2), it 

is likely that the greenschist facies mineral assemblage in 

b~e dykes, similarly, post-dates the latest hornblende genera-

tion in these (~ykes). 

These events were followed by a late partial retrogression 

which produced decussate _ sagenitic biotite and chlorite 

patches in both sets of dykes. This retrogression could be 

related to a possible late -retrograde event noted in the Long 

Range Complex (see section IV-2B, C). 

IV-6 Metamorphic synthesis 

A possible metamorphic history for the study area and 

the relation of this to its structural history is given here. 

This data is summarized in figure -15, which gives possible 

ages and evidence for these metamorphic events. 

The oldest metamorphic event recognized in the area is 

that which produced the relict augen texture and mineral segre-., 

gation in the gneisses of the - northwest domain (see section IV-2). 

Associated with this metamorphic event are the gran~lites at 

"Disappointment Hill", and possibly the oldest plagioclase-... 

hornblende assemblage found in the southeast dornpih gneisses. 

This metamorphic event (Hl} is probably a Grenvillian feature 

related to the development of the gneissosity in the gneisses 
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of the Long Range Complex, and is restricted to the basement 

gneisses. 

Post-dating the Grenvillian (Ml) event is a middle green-
... -

schist (west) to amphibolite facies (east) metamorphic event. 
I 

Assemblages related to this metamorphic event (M2) may be 

developed in all units except those to the west of the Grand 

Lake Thrust, where a drop in metamorphic grade makes correla-

tion difficult. 

Wi thi·n the mafic dykes, the event produced oriented horn-

blende> and biotite grains in the southeast, and oriented biotite 

grains in the northwest, indicating that this metamorphic event 

decreases in intensity to the northwest (see section IV-5). 

The upper greenschist to lower amphibolite facies assemblages 

(locally up to hyanite grade) related to the dominant schistosity 

noted in the Loon Pond metasediments (see section IV-3) may 

be related to this event further supporting the postulated 

southeastward increase in intensity for this metamorphic 

event. 

Within the southeast domain gneisses, the metamorphic 

event produced oriented hornblende grains and hypidioblastic 

garnet grains. These oriented hornblende grains occur parallel 

to the gneissosity (which strikes northeast and dips to the 

southeast) within this domain, and are probably related to 
·~ 

the earliest Paleozoic tolding event with northeast t trending 
, r 

fold axes (described in section III-8). 1· 

Within the no-rthves·t domain gneisses, howe~r, this meta-

morphic event is more difficult to recognize, since no amphi-

bolite facies mineral assemblages are produced. It is possible 
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that this metamorphic event decreases rapidly i~ intensity, 

and has produced the greenschist facies mineral assemblage 

noted h .ere _ Another possiblility is that the greenschist 

facies mineral assemblages here, represent a Grenvillian 
I -

feature, and that the later Paleozoic event produced only 

minor effects on these gneisses. This · is supported by the 

fact that the ~ortheast stri~ing foliation related to this 

metamorphic event in the southeast domain, is only mildly 

developed in the gneisses of the northwest domain. 

Tfie chlorite zone greenschist facies metamorphism in 
' -

the Grand Lake Brook Group could in part be related to this 

event, since the group does contain Paleozoic folding with an 

associated phyllitic cleavage. This assumption is reasonable 

considering the postulated decrease in intensity of meta-

morphism, and the possible telescoping produced by the Grand 

Lake Thrust. 

Yet another metamorphic event (M3) may be responsible 

for the partial retrogression of the amphibolite fac~es mineral 

assemblages to middle greenschist facies mineral assemblages. 

Evidence for this consists of muscovite, biotite, calcite, 

epidote and clinozoisite assemblages in the Long Range Complex 

units. The chlorite alteration associated with a crennlation 

cleavage described in the Loon Pond metasediments could also 

be related to this event. Evidence that the event is indeed ' ,. 
retrograde is the fact that the biotite rims earl~er hornblende 

grains, and that epidote minerals and calcite are -developed 

in and around altered plagioclase grains in the southeast 

domain gneiss-es. In the northwest domain gneisses, the effects 
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of this event are difficult to estimate since the gneisses 

may have already contained greenschist ~acies mineral assemblages 

(.the Ml metamorphic assemblages may have been · ·retrogressed 

by M2 or even earlier during Grenvillian ti~~s). 

~he assemblage produced by this retrograde metamorphic 

event rarely defines a foliation, except locally in the horn-

blende-plagioclase gneisses where biotite defines a: foliation 

which is axial planar to the earlier folded gneissosity (see 

section IV-2) . ~he folded gneissosi ty in these cases forms 

northeast trending minor folds, possibly related to the major 

(Paleozoic) northeast trending upright folds (described in _ 

section II!-2) . 

Finally, the partial retrogression of the mafic phases 

of most units to chlorite, and the formation of decussate 

biotite grains and prophyroblasts,may be related and may 

represent the latest metamorphic event in the area (M4) 

(although it is possible that these are all features of a 

further retrogressive stage of the earlier event (M3)). 

No foliation is associated with this meta~orphic event. 

The chlorite rims are recognized in all units except those 

to the west of the Grand Lake Thrust, which are never higher 

in grade than the chlorite zone of the greenschist fa~ies. 

The decussate biotite occurs mainly in the southeastern part 

of the area, where it occurs in the hornblende-plag~~clase 
' r 

gneisses as porphyroblasts, and in the mafic dykes 1 ~s hypidio-

blastic grains. In the ·northwestern part of the , a r ea, decussate 

biotite occurs as hypidioblastic grains within the· mafic dykes 

only. -
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In conclusion, possibly four metamorphic events may be 

represented in the area. The earliest of these is restricted 

to the Long Range -Complex and related to the 'development of 

the _ gneissosity in these rocks. This metamorphism locally 
I 

attained ·granulite facies conditions and is most reasonably 

interpreted as a Grenvillian feature. 

This earliest metamorphic event was followed by a Paleozoic, 

middle greenschist (in the northwes:t) to amphibolite facies 

(in the southeast) metamorphic ·event, forming a fabric related 

to Palreozoic folding with northeast trending axes (see section 

III-8). The intensity of metamorphism associated with this 

metamorphic event dies out to the northwest. This is consistent 

with the associated structures, which die out rapidly to the 

northwest within the basement gneisses; although related folds 

and foliations may be developed vli thin the _less competent 

cover units (map units 3 and 4) to the west, across the 

Grand Lake Thrust. The metamorphic grade associated with these 

structures here is of the lower greenschist facies, further 

supporting the postulated northwestward decrease in intensity 

for this metamorphic event. 

Finally, possibly two Paleozoic retrogressions occurred, 

the earlier involving the development of middle green~chist 

facies assemblages locally defining a foliation, and 'the later 

involving lower greenschist facies alteration and l~cally 

decussate biotite. The effect of these events on khe units 

west of the Grand Lake Thrust . are unknown if any, since these 

units show chlorite zone mineralogy only (with no evidence of 

relict higher grade ass'emblages) . 
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V COMPARISON OF THE GRENVILT-'IAN ROCKS OF THE 

MAP AREA TO AREAS OF ST1-1ILAR GEOLOGIC SETTING 

V-1 Introduction 

Inliers, like the Lo~g Range Complex of th~ map area, 
I 

occur the entire length of the Appalachian system. In Newfoun.dland 1 

other inliers are the Long Range "Mountains of the Great Northern 

Peninsula, the Indian Head Complex, and the Steel Mountain 

anorthosite. To the south, other inliers are gneisses of the 

Green Mountains of Vermont, the Berkshire, Housatonic, New Milford 

and Hudson Highlands massifs of the northern United States, 

and the Blue Ridge massif of the southern United States. A 

slice of basement, imbricated within the internal domain of 

the Quebec Appalachians at Saint Malachie, may be included within 

this group(Vallieres, Hubert and Brooks,l978). Figure -16 

shows the distribution of these along the Appalachians. 

The above massifs are part of the Grenville Province of 

the Canadian Shield, exposed in horsts or anticlines within 

the Appalachians. Many of these contain similar tectonic features, 

implying a co~mon origin. The map area is, here, compared to 

three of these massifs ( the Indian Head, Reading Prong, and 

Berkshire massifs) in an attempt to substantiate the results 

obtained in this study as well as to speculate on the origin 

of some features in the map area by analogy with similar features 

to the south. 
, r 

" J • 

V-2A Th~ Indian Head Complex, Ihtroduction 

The Indian Head Complex occurs to the west of the map area, 

near Stephenville(see figure -17). It forms a ridge composed 
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of Grenvillian crystalline rocks unconformably _overlain by 

relatively undeformed and unmetamorphosed Early Paleozoic 

sedimentary rocks(indicating that the complex has sustained 
. -

very little Paleozoic deformation), and unconsolida.ted recent 

sedim~nts .(glacial outwash). The ridge extends from Indian 

Head on St. Geo~ges Bay, from which it gets its name, .north­

eastward for 16 kilometers, and has a width of ro~ghly 2 kilo-

meters. 

The crystalline rocks of the Indian Head Complex have been 

isotopically dated(Lowden,l96l; Dallmeyer,l978) as Precambrian 

in age. They occur about 15 kilometers to the west of the west-

ernmost occurrence of crystalline rocks in the map area, and . 

resemble some of the gneissic units described earlier. 

Reconnaissance mapping and sampli!lg of the Complex was 

done in an effort to compare, and possibly correlate, these 

dated gneisses with similar rocks occurring in the map. area. 

No map of the Indian Head Complex can be produced from this 

brief effort, but a rough description of the complex follows. 

The data for this section comes from the author's personal 

experience, as \•Tell as from earlier published data on the 

complex(Reyl and Ronan,l954; Riley,l962; Colman-Sadd,l969). 

Figure -18 is a sketch map of the southern part of the ~ Indian 

Head Complex, where most of the work has been done. 

V-2B Ge·ne·r ·a ·l geology ·of ·the Tndi·an· Read Complex 
4 
J • 

The contacts of the Indian Head Complex with. the surrounding 

sediments are faulted or unconformable. To the north, the complex 

is flanked by rocks of tha ·Kippens Formation which contains 

mainly sand-
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stone at the base, and shales interbedded with limestones 

containing Lower Cambrian fossils(Walthier,l949) toward the 

top. To the south, the complex is ·flanked by recent uncon-

solidated sediments, and around the ·edge of Rothesay Bay, by 

I a narrow outcrop of the Carboniferous Codroy Group. 

The complex has been mapped in detail in the south 1 where 

access is relatively easy and e~posures are good. To the north, 

access is difficult and exposures occur only at the tops of 

ridges, therefore 'little is known of this part of the complex. 

Rock types occurring within the complex are; gabbro, 

anorthosite, felsic gneisses, and granitic pegmatite, all of 

which are Grenvillian, and Late Precambrian to Early Paleozoic 

mafic dykes. The granitic pegmatites and mafic dykes were 

never seen by the author, but are described by previous workers 

(Heyl and Ronan,l954; Colman-Sadd,l969). The relationships 

between rock types are, for the most part, unknown. 

The southern part of the Indian Head Complex is composed 

mainly of anorthosite ri~ed by gabbro(see figure -18). 

The gabbro is intruded by anorthosite, pegmatite, and mafic 

dykes, and is probably older than the anorthosite which it rims. 

It has heen interpreted as a marginal chill zone phase of the 

magma from which the anorthosite differentiated(Heyl ~nd Ronan, 

1954). The anorthosite forms cliffs at the tip of Indian Head. 

It is coarse grained(with plagioclase crystals up to 15 centi-

meters long) and has an ophi tic texture, except at :t ·i ts boundaries 

where it is finer grained and altered. I • 

The felsic gneisses· occur com.rnonly within the central 

and northern parts of the complex. Some of these gneisses 
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contain the same mineralogy and textural variations as the 

granitic gneisses of the northw.est domain of the map area 

(augened, pinstriped, banded, and locally massive or mildly 

--
foliated). Locally, these contain two foliations(l-g~eissosity 

and i~orierited mafics) . The lack of recognizable metamorphism 

in the Paleozoic cover, h~re, implies polydeformation of these 

basement gneisses prior to the ·P,aleC>zoic deformation des·cribed 

· to the east ·in the map area. 

The mafic dykes were not seen by the author, but have 

been J:"eported by previous workers(Heyl and Ronan,l954; Colman-. 

Sadd, 1969). ~hese are unfolded, contain plagioclase and pyro-

xene, and form an ophitic texture . indicating that these are 

probably igneous phases. The dykes commonly sho~1 partial 

alteration of these phases to greenschist facies mineral 

assemblages. 

IV-2C Indian Head Complex, Conclusion 

The rocks of the Indian Head Complex are comparable to 

those of the Long ~ange Complex of the study area. On a large 

scale, both massifs consist of anorthositic rocks in the south 

(map unit ld in the study area and the gabbro and anorthosite 

in the Indian Hea~ Complex) and dominantly felsic gne~sses in 

the north. Pegmatitic veins and felsic and mafic d~kes are 

·• common to both. 
; ,. 

The granitic gneisses of the Indian Head ComBl~x and the 

northwest domain of the Long Range Complex have ~ similar textures 

and mineralogy. These generally contain relict granulite facies 

mineral assemblages, now partially retrogressed, and textures 
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varying from locally massive to augened to pinstriped(locally 

containi~g two foliations) . The comparison, however, does 

not hold so well with the gneisses of the southeast domain 

which contain a dominant northeast striking fabric, and associated 

folds ( These southeast domain gneisses are juxtaposed with 

polydeformed and metamorph6sed cover sediments wh£ch also contain 

a northeast fabric, however, compared to the Indian Head gneisses 

which are unconformably overlain by gently folded relatively 

unmetamorphosed cover sediments. The differences between 

these ~nei~ses is interpreted as reflecting differing degrees of 

overprinting by the Paleozoic deformations. 

The mafic dykes in both massifs are confined to the base-

rnent lithologies, have northeast trends, and are probably related. 

In the Indian Head Complex, these dykes contain relict pyroxene 

and plagioclase forming an ophitic texture, now partially 

retrogressed to greenschist facies mineral assemblages. This 

indicates that these dykes post-date the Grenvillian meta-

morphism, and serve as convenient recorders of the Paleozoic 

deformation of the area(since they don't intrude the cover and 

therefore pre-date it). 

The relict pyroxene and plagioclase(forming an ophitic 

texture) develop~d in the mafic dykes of the Indian Head Complex, ... 

implies that the early hornblende-plagioclase assemblage in 

those of the Long Range Complex is probably a metamqrphic one, 
I I' 

and that the deformational history given in chapte~ _IV is an over 

simplified one. Furthermore, the Paleozoic gree~schist facies 

event which caused alteration of the mafic dykes in the Indian 

Head Complex, probably does not account for all the retrograde 
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assemblages developed in th~ other lithologies, and some of 

these are almost certainly of Grenvillian age. The same is 

certainly true for the Long Range Complex, and the retrograde 

assemblages noted in the northwes·t domain may represent any 

. or a i l ·of the. Grenvillian, and two Paleozoic greenschist facies 

retrogressions(indicated bY the mafic dykes and cover units). 

In the southeast domain, however, the assemblages ·can be shown 

to be Paleozoic in age, since they form a northeast trending 

fabric(with related folds) developed in both the dykes and 

the cover units. 

The major differences between the two massifs are the 

greater alteration of the mafic dykes in the study area(from 

partially altered igneous mineralogy in the Indian Head Complex 

to amphibolite facies mineral assemblages defining a fabric 

in the southeast of th~ study area) , the lack of massive felsic 

intrusions in the Indian Head Complex, and the more intense 

folding and faulting present in the study area. All are inter-

preted as Paleozoic features. 

It seems likely, therefore, that the Long Range Complex 

is correlative with the Indian Head Complex, and forms a Gren-

villian basement inlier. The correlation, however, is best 

between the Indian Head gneisses and northwest domai~ gneisses 

(of the Long Range Complex), because of the increasing intensity 
·~ 

of Paleozoic deformation to the southeast(which significantly 
' ,. 

overprinted the southeast domain gneisses). The ;increasing 

alteration of the mafic dykes, and increasing iptensity of 

folding and metamorphism in the cover units, from the Indian 

Head Complex in the northwest to the southeast margin of the 

studv area, supports this interpretation. 
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V-3 Tha Reading Prong massif 

The Reading Prong massif forms a highland of Precambrian 

rocks in eastern Pennsylvania and southeasterh New York(see 
-

figure -16). It is composed of_ gneisses which have been deformed, 

metadorphosed, and intruded by syntectonic granitic rocks during 

the Grenville orogenic event. Most of the massif was unaffected 

by Paleozoic metamorphism, except for the northeastern end, 

east of the Hudson River, whe~e it has been affected by high 

grade Paleozoic metamorphism(Dallmeyer,l974). 

Th~ ~ocks of the northeaste~n end of the massif consist 

chiefly of biotite-quartz-feldspar paragneiss, amphibolite, 

and hornblende-quartz-feldspar orthogneiss, classified as 

represeriting hornblende granulite facies regional metamorphism. 

They form narrow structural blocks which are separated by a 

series of northeast trending high angle faults, and which are 

overlain by a Lower Cambrian quartzite unit that grades upward 

into Middle to Upper Cambrian to Lower Ordovician carbonate 

rocks. The Paleozoic retrograde alteration(garnet grade) of 

the prograde Grenvillian assemblages is widespread east of the 

Hudson River, and less intense to absent west of the river 

(Dallmeyer,l974). This observation is supported by the fact 

that the Cambrian-Ordovician section also shows no Pa~eozoic 

metamorphic effects west of the Hudson River. 

The Reading Prong massif lies approximatly 1500 kilometers 
' r 

to the southwest of the study area, making detailed structural 

and/or metamorphic correlations meaningle~s. Th~ · two· areas'· 

however, do show -noteworthy similaritie~ on the large scale. 

Both areas contain Grenvillian basement gneisses which show 
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evidence of up to granulite facies prograde metamorphi-c mineral 

assemblages. It appe~rs th~t a large portion of th~ Reading 

Prong massif, howeve~, is not as affec~ed by Paleozoic retro­

grade metamorphism as is the Long Range Complex of the study 

area. / This may be due to th~ ~reater area of the Reading Prorig 

massif, _or to diffe~ing intensities of the Paleozbic events. 

The Paleozoic cove~ in bdth · th~ Re~ding Prong and the 

study area contains quartzites and carbonates, indicating a 

Pale6zbic tectonic history involving similar elements of the 

Early Paleozoic continental margin of North }\merica. Furthermore, 

the east to west decrease in intensity of Paleozoic metamorphism, 

developed in both the Reading Prong massif and in the Long Range 

Comple~ of the study area, implies a similar style ~f deformation 

for both areas. The coiTmon occurrence o~ northeast trending 

high angle faults, in both areas, is yet another similarity. 

V-4 Berkshire ~assif 

The Berkshire massif forms a highland area in western 

Massachusetts and Connecticut(see figure -16), composed of 

biotite-hornblende-quartz paragneiss, granitic gneiss, calc-

silicate rocks, and amphibolite, deformed during the Grenville 

orogenic event. The western end of the massif is com~osed of 

imbricate thrust slices of recurnbently folded Precambrian 

gneisses and unconformable Lower Cambrian and Upper ,.'Precambrian 
, / 

metasedimentary cover(Dalton Formation and Cheshir;e _Quartzite) 

These assemblages are thrust over Lower Cambria~ -to Upper and 

Middle Ordovician sedimentary rocks which were deformed prior . , 

to overthrusting(Ratcliffe,l969). 
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A blastomylonite fabric related to the thrusting, is 

developed in the Berkshire gneisses. This fabric is parallel 

to, and best developed near, the base of .the thrust slices. 

The thrust fabric post-dates ·two folding events and a· meta-
/ 

morphic .event of Paleozoic ~ge, but is cut by a granitic intrusion 

dated isotopically as Late Ordovician in age. This indicates 

a Taconic age for the thrusti~g(Ratcliffe and Harwood,l975). 

The thrusts were later folded, which produced a crenulation 

in the thrust related fabric. This may be an Acadian effect. 

A similar history is reported at the north end of the Berk-

shire· massif, where Taconic thrusts and associated recumbent 

folds are refolded. The Precambrian rocks, here, exhibit 

mineralogies and textures suggesting that they were metamorphosed 

to at least kyanite and probably sillimanite grade, before 

Paleozoic metamorphisrn( No r ton,l975). These assemblages were 

later retrogressed by lo\·Ter grade Paleozoic me.tarnorphic events. 

Once again, as is the case for the Reading Prong massif, 

large scale comparisons nay be made bet"Yreen the study area and 

the Berkshire massif. The striking similarity here, is the 

Paleozoic thrusting of a slice assemblage of folded and faulted 

basement and cover rocks, west,,rard, above deformed Paleozoic 

cover rocks. The major diff e rence, however, is the a~sociation 

of a blastornylonite fabric with the thrusts in the Berkshire 
·~ 

massif. Similar fabrics occur in the study area, b~t do not 
, r 

appear associated with thrusts, although these wer:e not studied · 

in detail ·. A mylonitic fabric is developed alo:og the Grand Lake 

Thrust to the north of the study area near One Mile Pond, however 

(Kennedy,l978). 
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· The Berkshire massif, .like the Reading Pr_ong massif and 

the study area, contains evidence of prograde Grenvillian 

metarnorphi.sm , re:trograded by· Paleozoic metamorphic .events. 

In this(Berkshire) case, the Grenvillian event produced kyanit~ 

and ~illimani te. grade ass·embl~ges which are retrograded by the 

later Paleozoic _events, but the east to west decrease in Paleozoic 

metamorphic. grade . is not noted here. 

Both areas(the Berkshire mas~if and the study ar~a)contain 

Paleozoic granites intrudi~g .the Precambrian basement. In the 

Berkshires, the. granite is post thrusting. In the study area, 

however, one of the . granites(the Hare Hill granite) is near 

the Grand Lake Thrust but never cuts it, nor are any igneous 

rocks found west of this thrust, indicating the thrust is 

probably later than this intrusion. 

The greater abundance of thrusts in th~ Berkshires may 

indicate that this massif is more allochthonous than the Reading 

Prong or the Long Ra~ge Complex of the study area. Alternatively, 

it is possible that the study area contains more thrusts than 

are recognized, and that these are folded or obscured by later 

events. 

, r 

" ·' . 
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VI GENERAL SYNTHESIS AND" CONCLUSION 

VI-1 Introduction 

A general synthesis . giv~ng the ~ossibl~ -ages, significance~ 

and d~formational history for the different map units is _ given 

here. This is divided into two sec"tions; the depositional 

phase, and the deformational phase(Paleozoic deformation). 

This is followed by ~ section relating the res~lts of the study 

to the present model for the format~on and subsequent destruction 

of the Early Paleozoic continental margin of North America. 

VI-2 Dep·o ·si tional· Phase 

The oldest rocks of the map area are the gneisses and 

anorthositic rocks(map units la, b,c,d and e) of the Long Range 

Complex, which form a basement to the other units. The gneisses 

are correlated(section V-2C) with isotopically dated(Lowden, 

196l; Dallmeyer,l978) Grenvillian gneisses of the Indian Head 

Complex; while the anorthositic rocks are interpreted as Pre-

cambrian because of their close association with t~e gneisses 

in both the Indian Head Complex and study area, and because 

most anorthosite occurrences are of Precambrian age(Foland 

and Muessig,l978). 

The calc-silicates and quartzites along Grand Lake and 

on "Bear Ridge"(map unit lc are assumed to be Pre6ambrian 
' r 

because they lie within the gneisses, and calc-si~icates 
) . 

have been interpreted as such in similar geolog~Gal settings 

to both north(Knapp, Kennedy and Martineau,l979) and south 

(Herd, 1978). Calc-silicates and quartzites also occur within 

the Precambrian Grenville structural province of the Canadian 
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Shield, further supporting this assumption. 

The Grenvillian Long Range ·co'mplex forms the basement to 

the other units, and as · such contains structural and meta-

morphic features not developed in the later- ~over units. The 

isot~ic ages obtained in the Indian Head gneisses{800-900 

million years) almost certainly record the last major pre 

Paleozoic metamorphi·c and deformational event affecting this 

basement. 

In the map area, the Grenvill1an features have been obscured 

c6nsiderably by the later(Paleo'zdic) events. Some of these 

(Grenvillian features) are the _ ~neissosity in the Lo~g Ra~ge 

Complex, and the relict granulite facies mineral assemblages 

and textures in the granitic _ gneisses. 

Following its Grenvillian deformation, the basement 

(both Indian Head Complex and Long Range Complex) was intruded 

by a group of near vertical, north to northeast trending mafic 

dykes. Those within the Indian Head CoMplex, however, are 

undeformed, and although they are . altered, show relict igneous 

textures(Colman-Sadd,l969). This indicates that they are younger 

than the ·last Grenville deformation affecting the gneisses. 

In the map area, these dykes are deformed and metamorphosed. 

This indicates that these deformational events(in the dykes 

of the study area) must be post Grenville, and furthermore 

that they do not extend as far west as the Indian H~ad Complex. 
' ,. 

The deformations and metamorphic events registered~ in the dykes 
J • 

of · the map area, are used in the next section i~ .cnaracterizing 

the Paleozoic deformation and its northwestward decline in 

intensity. 
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The Loon Pond metasediments(in the southeast) and Grand 

Lake Brook Group(in the northwest} were probably deposited as 

cover on the Grenvillian bas~ment at roughly ~he same time, 

or slightly later than, the intrusion of the mafic dykes. 
I 

The fact that no dykes are found in the cover of both the 

map area and the Indian Head Complex, indicates that these 

(dykes) are probably slightly older(Late Precambrian to Early 

Paleozoic) than the cover. 

The protoliths of the Loon Pond metasediments are mainly 

psamrnitic to semipelitic, with rare calcareous layers. No 

stratigraphy is given in these because of the complex deforma-

tion; but the psamrnitic units probably represent sediments 

derived from erosion of the basement, while the more pelitic 

and calcareous units represent later marine deposition, once 

erosion of the local basement ended. 

Similarly, the protolith of the Grand Lake Brook Group 

is mainly pelitic with minor calcareous beds, indicating that 

it may be broadly equivalent in age to the later semipelitic 

units of the Loon Pond metasediments~ 

To the west, near the Indian Head Complex, clastic and 

carbonate cover rocks unconformably overlying the basement 

gneisses are interpreted to be roughly of similar a~e to the 

cover units in the map area. These are the Kippens, March 

Point and Petit Jardin Formations, \-lhich have been fPalaeonto-
' / 

logically. dated as Cambrian (Riley, 1962). 4 , 
,! • 

The carbonate rocks of the map area lie copfo~mably above 

the Grand Lake Brook Group(H. Williams, pers. comm.). These 

rocks are correlated with the St. George Group and Table Head 
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Formation to the west, and _form part of an extensive carbonate 

-
bank extending the length of the Appalachians, fr·om Newfoundland 

to Alabama(_Ro~gers,l968; Williams and Stevens,l974). The 

bank ranges in age from Early Cambrian to Midale Ordovician. 

Pb ssibly the latest rocks to form in the map area are the 

pink, medium to coarse grained, massive felsic intrusions 

(Hare Hill and "Goose Hi-11"- granites, and ':Tulk's Pond" syenite). 

These bodies are massive, show no evidence of relict high grade 

Grenvillian metamorphism, are discordant to the gneissosity 

of the host, and do not have any equivalents in the Indian 

Head Complex. No mafic dykes were observed in these. 

VI-3 Deformational phase 

The map area contains evidence of Paleozoic deformation, 

and its decrease in intensity toward the west. The overall 

northeast structural trend of the area is of Paleozoic age 

since it is best developed in such cover lithologies as the 

Ordovician limestones(map unit 4), the Cambrian Grand Lake 

Brook Group(map unit 3), and Late Precambrian to Early 

Paleozoic Loon Pond metasedirnents(map unit 2). It is poorly 

developed in the Grenvillian Long Range Complex, especially 

in the northwest domain gneisses. 

The earliest recognized Paleozoic deformational · event in 

the map area, varies in intensity from southeast to northwest 
t 

across the area. 
' ,. 

In the Loon Pond metasediments the event 
1 . 

may have produced the dominant ~chistosity(associated with up 
I • 

to kyanite grade assemblages in one sub-unit), and the 
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beddi~g plane faults. Both of these features may reflect an 

isoclinal folding event. 

The event is recognized in the Long Range· Complex to 

the northwest, specially within the southeast domain, where 

it prJduced northeast trending folds in the gneissosity with 

an associated amphibolite facies axial planar fabric. The 

mafic dykes intruding this ·domain also contain a related, 

parallel, amphibolite facies fabric and truncate the folded 

gneissosity, indic~ting that it(gneissosity) is an earlier 

Grenvillian feature affected by the Paleozoic event. 

In the northwest domain, the northeast trending folds are 

not so common as in the southeast domain, and may be locally 

associated with a lower grade, greenschist facies, fabric. 

This apparent northwestward decline in intensity of the deforma-

tional event is further substantiated by a drop in metamorphic 

grade of the fabric in the mafic dykes, from amphibolite facies 

in those of the southeast domain . to greenschist facies in 

those of the northwest domain. 

This deformational event is difficult to . correlate across 

the Grand Lake Thrust because of the drop in metamorphic grade 

across this feature and its(the deformational event) north-

westward decrease in intensity. The northeast trendi~g folds 

in both the carbonate rocks and in the Grand Lake Brook 

Group(where they are associated with a chlorite zone green-
' r 

schist facies phyllitic cleavage} are possibly rel~~ed to 

this deformational event, indicati~g that the fo_;Ldlng 

continues · farther westward than its associated metamorphic 

fabric. 
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The fabric associated with .thi_s event is not recognized 

in the basement gneisses of the I..ndian Head Complex to the 

west(where the mafic dykes show relict igneous textures 

(ophLtic) with .only minor alteration), but may be related to 
. I 

the open folds in the cover, indicating that the event extends 

farther west in the ·cover. 

A later, Paleozoic, deformational event is present in 

most units of the map area. In the Loon Pond metasediments, 

the crenulation cleavage(associated with retrograde green-

schist facies metamorphism in correlative rocks north of 

Grand Lake(Kennedy, pers. comm., 1979} may be related to 

this event. 

In the Long Range Complex gneisses of the southeast 

domain, this deformational event is associated with retro-

grade greenschist facies metamorphism, but no associated 

folds are recognized. Similar retrograde greenschist facies 

mineral assemblages occur within the northwest domain 

gneisses; but it is difficult to determine whether the 

assemblages are related to the earlier Paleozoic event 

(which may decrease in intensity to greenschist facies 

assemblages to the northwest), to a Grenvillian retrogression, 

or to this later event. The fact that retrograde greenschist 

facies mineral assemblages occur in the mafic dykes and 

possibly in the felsic .intrusions(map unit 5) (whi~H are mas­

sive and may postdate th.e earlier Paleozoic event) .f indicates 

that the later Paleozoic event did affect the ho.st northwest 

domain gneisses. 
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Again, as is the case for the earlier Paleozoic event, 

this later deformational event is difficuit to correlate 

across the Grand Lake Thrust. A reasonable assumption is 

that the event produced the .lower _ greenschist facies 
I 

crenulation to phyllitic cleavage in the Grand Lake Brook 

Group. 

To the west, in the Indian Head Complex, the effects 

of this deformational event, if any 1 are not determined. 

The retrograde greenschist facies alteration which occurs 

here~ may be Grenvillian, ·or associated with either of the 

Paleozoic events. 

The exact age of the Grand Lake Thrust is unknown. 

However, it is most likely related to one of the Paleozoic 

deformational events described above. The contrast in 

metamorphic grade in the cover units on both sides of this 

fault, may indicate that the Grand Lake Thrust is a 

later feature, possibly representing a late compressive 

pulse. 

A minor folding episode with east trending open folds 

may be present on both sides of the Grand Lake Thrust, indicating 

that it(the folding) is a later feature. These folds may be 

developed in the carbonate rocks in the west, as well ~ as in 

the Loon Pond metasediments in the east. The folds have 

no associated fabric. 
I ,1' 
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The last deformation in the mao area formed the high 

angle block faults wh~ch cut all units, as well as the Grand 

Lake Thrust. These may be related to simila~ faults which 

cut C rboniferous sedimen.ts to the northeast, near Deer Lake 

(Webb,l969), but could also be older reactivated features. 

The Cabot Fault, which marks the eastern boundary of the map 

area, similarly, cuts Carboniferou~ rocks near Dee~ Lake, 

definitely indicating some Carboniferous movement did occur 

in the area. 

VI-4 Model 

The units and structures of the map area may be explained 

in terms of the present model for the construction and subsequent 

destruction of the Early Paleozoic continental margin of North 

America{see figure -13)". 

In terms of this model, the Grenvillian Long Range Complex 

forms part of the ancient craton which was rifted in the early 

stages of development of the ancient margin. Fragments of 

the ancient craton may be seen the entire length of the 

Appalachians(see figure -16). These occurrences are referred 

to as Grenvillian inliers. They are characterized by _isotopic 

ages of about 800 to 1000 million years, and are part of the 
.. 

Grenville Province of the Canadian Shield, exposed ~n horsts 
I /' 

or anticlines. 

Possible correlatives to the Long Range Cornpie'x of the 

study area are the gneisses of the Great Northern Peninsula 

and Indian Head Complex in Newfoundland. Other Grenvillian 



141 

inliers to the south are th~ Gre~n Mountains of Vermont , 

th~ Berk~hire, Housatonic, New Milford, and Hudson: Highland 

massifs of the norther·n un:i ted States, and th~ Blue Ridge 

massif of the southern United States. A Grcfnville basement 

slice/, imbricated within the internal domain of the Quebec 

Appalachians at Saint-Ma·lachie, may also be included in this 

group(Vallieres, Hube~t and Brooks,l978). 

The Grenvillian basement was intruded by mafic dykes 

during the rifting stage which produced the Proto-Atlantic 

Ocean(Iapetus). These dyk~s are ~resent in both the Long 

Range Complex of the study area and in the Indian Head Complex~ 

·where they crosscut the Grenvillian gneissosity, but are unknown 

within the Paleozoic cover lithologies. Similar dykes have 

also been reported in the Fleur de Lys Supergroup cover sequence 

of the Burlington Peninsula(deWitt,l972; Bursnall,l975; Bursnall 

and deWitt,l975), as well as in the Grenvillian gneisses of 

the Great Northern Peninsula(Clifford,l965,1969; Pringle, Miller 

and Warrell,l971; Strong and Williams,l972; Strong,l974). It 

is not known why the dyke~ are absent in the cover units of 

the map area. A likely explanation is that the cover sediments 

of the map area were deposited after the rift related intrusions 

were emplaced. The dykes are, the refore, Late Precambrian 

(post Grenville) to Early Paleozoic in age. 

The Loon Pond :metased i ments(southeast) and Grand Lake 
, .1' 

Brook Group (northwest) were probably deposited as 9 o_ver along 

the rifted basement margin, roughTy at the same , ~ime(or slightly 

later) as ~he mafic dykes wer e ernp l a c e d(probably as £e~ders 

to rift related volcanism not represented in the map area}. 
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The psammitic units in the Loon Pond metasediments probably 

-represent the earlier sediments derived from local erosion 

of the rifted basement. Th~ more pelitic layers of the Loon 

Pond metasediments are probably correlative - Eo the dominantly 

pelit c Grand Lake Brook ·Group, _and both ·are probably equivalent 

in age to the clastic to carbonate rocks of the Kippens, 

March ·Point and Petit Jardin Formations near the Indian Head 

Complex. These sediments probably represent later deposition 

when the margin was more fully developed, and the local source 

of coarse clastics was cut off by the development of a carbonate 

platform to the west. The association of calcareous beds 

with the sernipelitic layers in the ~ap are~ supports this. 

Equivalent clastic cover lithologies along the le~gth 

of the Appalachian system are; the Fleur de Lys Supergroup of 

the Burlington Peninsula of Newfoundland, the Rosaire and 

Caldwell Groups of Quebec, the Mendon Group and Pinnacle 

Formation of Vermont, and the Glenarm Series, Lynchburg Forma-

tion and Ocoee Group farther south. Parts of the clastic 

sequence also occur in the allochthonous terrains of the 

Humber zone of Newfoundland(Maiden Point and Summerside Forma- . 

tions). 

The carbonate rocks are correlative to the St. George 

Group and Table Head Formation to the west, and form part of 

an extensive carbonate hank which follows closely the locus 

' / 

of Grenvillian inliers the length of the Appalachians, from 

Ne\vfoundland to Alabarna(Roo.gers,l968; Williams ~l}.d Steven,l974). 

This bank ranges in age from Early Cambrian to Middle Ordovician, 

and marks the final stage in the development of the margin. 
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The oldest deformation in the study area(Grenville) 

affected only the Long Range Complex rocks and is unrelated 

to the Late Precambrian to Early Paleozoic evolution of the 

ancient continental margin of North ·America. The ·later Paleozoic 

I evenes, however, are probably related to the destruction of 

this margin. 

It seems likely th~t the first event, which decreases in 

intens.i ty from southeast to northwest, represents the Early 

to Middle Ordovician Taconic Orogeny(Rodgers,l97l; Williams,l979). 

The ·southeast to northwest dec·rease in metal!lorphi:c grade of 

this deformational event may indicate that the locus of 

most intense deformation (the e~ge of the· Grenville basement) 

was to the southeast. The rapid east to west decrease in 

intensity of folding in the Long Range Complex, relative to 

the cover which is tightly folded throughout the area, may indicate 

that the basement behaved competently relative to the cover, 

localizing the most intense deformation near its margin. 

Farther west, the deformation produced by this event 

is weak or absent in the Indian Head Complex. Other features 

of the Taconic Orogeny near the map area are; the pre Middle 

Ordovician unconformity in the carbonate bank, the thick ac-

cumulations of east derived flysch, · and the presence Qf the 

Bay of Islands Allochthon. These features may be sl~ghtly 

later than the deformation in the map area, since t~e map 

area is nearer to the basement edge where the defarrnation 

was most intense, and probably longest-lived. 'the structural 

and metamorphic history of the cover is more complex to the 

east, supporting this. 
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The Taconic Orogeny is interpreted by some(Williams,l979) 

as marking the closure of the Iapetus Ocean. 

Th~ later Paleozoic event may be related . to the Acadian 

Orogeny of Devonian age. Some Acadian features may be the 

fault which bring up_ the Indian Head Complex as a horst 

through th~ Paleozoic cover; and possibly the felsic intrusions 

and later Grand Lake ~hrust in the map area, although these 

may also be Late Taconic features. 

The Acadian Orogeny is interpreted by some workers as a 

late compression after the ~losure ~f the Iapetus Ocean(Williams, 

l979),and by others as a final continental collision, and closure 

of the Iapetus Ocean(Bird and Dewey,l970; McKerrow and Cocks,l977). 

VI-S Conclusion · 

The study area is composed of a folded and faulted slice 

assemblage of Precambrian Grenville basement and Late Precambrian 

to Lower Paleozoic metasedimentary cover, thrust westward into 

juxtaposition with deformed platformal Paleozoic cover rocks 

- during the Lower Paleozoic destruction of the Early Paleozoic 

continen-tal margin of North America. 

The Grenvillian basement rocks, here named the Long Range 

Complex, are composed of granitic _ gneisses, hdrnblend~-plagio­

clase gneisses, calc-silicates and quartzites, foliated granite, 

and anorthositic rocks. The gneisses exhibit relic\ prograde 
, .I 

granulite facies mineral assemblages and textures, -~ I?-ow largely 

altered by retrograde Paleozoic metamorphic events· and related 

deforma·tions which are also recorded in Late Precambrian to 

Lower Paleozoic mafic dykes. 
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The cover rocks consist of the Loon Pond metasediments 

in the east, and the Grand Lake Brook Group and carbonate 

rocks in the west. Th~se ·are affected by both pr~grade and 

retrograde Paleozoic metamorphic events(and related folds), 

which/ also oroduced the retrograde assemblages in the Grenville 

b~semerit gneisses. 

The· earlier Paleozoic (Taconic?)deforrnation appears to 

increase in intensity to the ·south~ast. Evidence for this is 

the northwestward decrease in Paleozoic folding and metamorphic 

grade in the Long Range Complex, and the overall decrease in 

tightness of Paleozoic folds in the cover units, from the 

study area westward to the Indian Head Complex area. Later 

Paleozoic folding and metamorphism(Acadian?) is also recorded 

in the area, but is less intense and difficult to characterize. 

The Long Rang.e Complex is intruded by Paleozoic felsic 

intrusions which predate ·the Grand Lake Thrust. This fault 

juxtaposes the Long Range Complex and Loon Pond metasediments 

(slice assemblage) against the previously deformed, platformal, 

Grand Lake Brook Group and carbonate rocks. Both intrusions 

and thrust fault may be late Taconic or Acadian features. 

The latest deformational events in the map area, are east 

trendi~g open folds of unknown age, and high angle block faulting, 
, ,/ 

probably of Carboniferous age. d . . 
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