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ABSTRACT

The Grenville Front in eastern Labrador coincides with the Benedict Fault,
a south-dipping zone of heterogeneously deformed rocks. In the Smokey
archipelago, the Benedict Fault transects Paleohelikian plutonic rocks of the
Benedict Mountains Intrusive Suite (BMIS). Various members of the BMIS locally
contain a north- to northeast-trending pre-Grenvillian planar fabric known as the
Makkovik trend. Makkovik trend fabrics are defined by amphibolite-facies
mineral assemblages, an(i their presence characterizes the BMIS as a pre-
Grenvillian lithostructural domain, one of three identified in the area. The age of
the Makkovik trend is constrained by Rb-Sr (whole rock) dates determined for
granulite-facies gneisses (> ca. 1.9Ga) intruded by the BMIS, and by a 1676 +

77Ma age determined for ferrodiorite-ferrosyenite which intrudes the BMIS.

The White Bear Islands Granulite Complex (WBIGC), a second
lithostructural domain, comprises high-grade ortho- and paragneisses, which show
evidence of a period of passive retrogression to amphibolite-facies predating the
development of Grenvillian fabrics. Relatively high PT-estimates of 830-860 +
75C and 7-8 + 1Kbar were determined for the granulite-facies event using the
two-pyroxene geothermometer and the Al content of orthopyroxene coexisting
with garnet. Relatively low PT-estimates of ca. 685C and 4.6Kbar were derived
using various calibrations of the garnet-orthopyroxene (-plagioclase-quartz)

geothermobarometer.

Conditions of pre-Grenvillian retrogression of the WBIGC are estimated at
650 + 50C and ca. 5.5 + 1.5Kbar (garnet-cordierite geothermobarometry)

assuming P(H20) ~ 0.4P(total). The garnet-biotite and two-feldspar
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geothermometers give variable results which are interpreted to record points on

the cooling curve of the WBIGC.

The third lithostructural domain, known as the Bluff Head orthogneiss,
consists predominantly of amphibolite-facies granodioritic gneisses typical of the
northern Groswater Bay Terrane. Age relations of these gneisses with the BMIS
and the WBIGC are uncertain. Both gneissic domains, however, locally contain
pre-migmatitic metabasites bearing clinopyroxenes of similar composition,
suggesting equilibration under broadly similar metamorphic conditions. The
WBIGC and the Bluff Head orthogneiss are thus inferred to have shared a
common, early tectono-metamorphic history prior to the emplacement of the
BMIS. Pre-Grenvillian retrogression of the WBIGC is most pronounced in the
western portion of the study area, and may be transitional into the amphibolite-
facies assemblages near Bluff Head. Alternatively, the Bluff Head orthogneiss may
record the effects of significant recrystallization during the Grenvillian orogeny;
garnet-biotite and two-feldspar temperature estimates for the gneisses are

consistent with conditions determined for Grenvillian metamorphism in the area.

A zonal distribution of structural and metamorphic features attributed to
the Grenvillian orogeny is apparent from north to south across the Smokey
archipelago. Three east-west trending Grenvillian structural domains, separated
by major Grenvillian high-strain zones, have been recognized on the basis of
contrasting fabric development and metamorphic grade. North of the Benedict
Fault, Makkovik trend fabrics are locally retrograded to greenschist-facies
assemblages. Greenschist- to lower amphibolite-facies assemblages characterize

south-dipping Grenvillian fabrics in a ~3km wide transitional domain to the
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south of the Benedict Fault. The Cut Throat Island Fault (CTIF), a south-
dipping zone of mylonites, defines the southern extent of the transitional domain.
Garnetiferous assemblages of the epidote amphibolite- to lower amphibolite-facies
characterize Grenvillian fabrics south of the CTIF. Grenvillian L-S fabrics are
most extensively developed in this domain and formed during the second of three
phases of folding attributed to the Grenvillian orogeny. Temperatures of
Grenvillian metamorphism south of the CTIF are best estimated by low Mn-Ca
garnet-bearing mineral assemblages at ca. 550 + 30C (garnet-biotite, garnet-
amphibole thermometery). Mineral assemblages suitable for pressure
determinations are lacking; however the composition of amphiboles together with
the presence of garnet in domain G indicate a southerly increase in lithostatic

pressure in the map area.

The Grenville Front zone on the Labrador coast is thus characterized by a
southward-increasing Grenvillian metamorphic gradient which has been telescoped
across major thrust (or high angle reverse) faults, and by the heterogeneous
development of L-S fabrics which overprint pre-Grenvillian structural and
metamorphic features. Similar features characterize the Grenville Front zone
elsewhere in Labrador, and are consistent with the characterization of this portion
of the Grenville Province as a region of significant crustal thickening about 1Ga

ago.
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CHAPTER 1
INTRODUCTION

1.1 PURPOSE AND SCOPE

Precambrian shield terranes typically have prolonged and complex geologic
histories, and the diverse assemblages of rocks that they contain form ®provinces®
defined by the ubiquitous presence of the latest tectono-metamorphic overprint.
Boundary regions between geologic provinces are of particular interest as they
provide insight into relationships between earlier tectono-metamorphic effects and
the latest orogenic overprint. Evaluation of such boundaries must therefore focus
both on the examination of the lithologic characteristics of neighbouring domains,
and on the conditions and chronology of the orogenic overprints that characterize

each province.

The purpose of this study is to outline the tectono-metamorphic evolution of
an area straddling the Grenville Front on the Labrador coast. In this area, the
effects of the Grenvillian orogeny have remained a contentious issue in recent
years, emphasizing the problems enc‘ountered in the regional interpretation of
areas marked by a scanty data base. The present investigation is not, however,
restricted to a description and evaluation of Grenvillian elements to the exclusion
of earlier features. Rather, from the outset of the project, emphasis has been

Placed on establishing criteria whereby pre-Grenvillian features could be

distinguished from those demonstrably of Grenvillian age.

The study is divided into two parts; the empirical portion focuses on five

aspects of Grenvillian and pre-Grenvillian geology:

(1) the distinction and distribution of major rock
units straddling the Grenville Front



(2) the establishment of a structural framework embracing
Grenvillian and pre-Grenvillian deformational features

(3) the recognition and distribution of key metamorphic
mineral assemblages

(4) the estimation of P-T conditions of metamorphism

(6) the determination of the ages of selected rock units
in order to bracket the ages of orogenic events
that they record.

The interpretative portion of the study uses the empirical data to model the
evolution of the tectonic margin represented by the Grenville Front zone in

eastern Labrador.

1.2 LOCATION, ACCESS, AND DESCRIPTION OF THE STUDY AREA

The study area (Fig. 1-1) is centered on the islands of the Smokey
archipelago, and is bounded by 54.22’N and 54.42’N, and 56.50'W and 57.39'W.
The seasonally occupied hamlet of Smokey is a port of call of CN Marine coastal
boats, which run on a weekly basis from July through October between Goose

Bay and Nain.

Topographic relief in the Smokey area is subdued, although pl:ominent
ridges of mafic dykes (Michael gabbro) are locally evident. The study area is
sparsely vegetated; caribou moss, lichens and scrub brush obscure rock exposures
inland and in the center of islands in the archipelago. The climate is temperate
from mid-June to early September. The prevailing winds are from the northwest,
and are frequently sufficiently strong to hamper the piloting of small boats,

particularly in the northern and eastern portions of the archipelago.



T T T T T Y T Y T
: 60—
<.
# 4
i
<
- o
7 Hebron ]
. ’,
i
‘l
...
)
I
K]
s
¢
\u
)
’ 56
3
5 i
‘.\ Adlavik Islands
i Makikovik /cane .
e\ e Harrison S92
?_"\\} ~. ) Fig 127 v
I"'J S """‘\J Black | % }Smokoy Archipelago
3 ¥
‘
B artwright
~ -
I_‘ LABRADOR Domino Hr,
) Goose Bay
R A . 2
' rt o ) 5 g
(~ J ( A
( e ;
{ Y. 52
- ..."w"\'. ‘.'! 3_ - — o o =T ]
\) "’ — . — — — g o .‘ 1
.3 -
A\Yd \>Forteau Bay
50 km =
64 60’ s8°
i 1 1 1 fy 1

Figure 1-1.

Index map showing localities mentioned
in the text,

and indicating the locat-

ions of Figures 1-2 and 2-1.



1.3 REGIONAL SETTING

The Smokey archipelago straddles the junction between the Grenville and
Makkovik Provinces (Makkovik Subprovince of Taylor, 1971; see Gower and
Ryan, in press) in easternmost Labrador. In this area, the Grenville Front,
marking the northern extent of widespread Grenvillian deformation, coincides
with the Benedict Fault (Gower et al., 1980), a south to southwest-dipping zone of
heterogeneously-strained rocks. In the vicinity of the study area, the Benedict
Fault transects Paleohelikian plutonic rocks of the Trans-Labrador batholith
(Wardle et al., 1982). The Trans-Labrador batholith is one of three crustal
segments recently recognized in eastern Labrador by Gower and Owen (1984).
Gower and Owen'’s tripartite subdivision encompasses, from north to south, the
Trans-Labrador batholith, the Groswaﬁer Bay Terrane, and the Lake Melville

Terrane (Fig. 1-2).

The Trans-Labrador batholith is a composite suite of mafic to felsic
intrusions of Paleohelikian age (ca. 1790-1625Ma) extending some 400km
westward from the Labrador coast to Churchill Falls, where the batholith merges
with similar plutons comprising the north-trending Ungava batholith (Wardle et
al., 1982) of the Churchill Province. The Trans-Labrador batholith underlies
much of the Smokey area, where it comprises granitoids of the Benedict
Mountains Intrusive Suite (BMIS) (Gower, 1981) and a broadly coeval suite of
differentiated gabbroic rocks tentatively correlated with the Adlavik Intrusive
Suite (AIS) (Gower, 1981). North of the Benedict Fault, some plutons of the
Trans-Labrador batholith, particularly granitoids of the BMIS, contain north- to

northeast-trending fabrics, termed the ®"Makkovik trend® (Ermanovics et al.,



1982) after the predominant fabric orientation typifying the Makkovik Province.
South of the Benedict fault, east-trending Grenvillian fabrics are generally
predominant. The development of Grenvillian fabrics obscures the boundary
relations between the Trans-Labrador batholith and gneissic rocks of the
Groswater Bay Terrane. Although in places the Trans-Labrador batholith is
clearly intrusive into high-grade tectonites (the White Bear Islands Granulite
Complex, see below) in the central and eastern portions of the Smokey
archipelago, the age of these plutonic rocks relative to amphibolite-facies gneisses

of the Groswater Bay Terrane is less certain.

Gneissic rocks of the Groswater Bay Terrane are exposed near Bluff Head in
the southwestern corner of the study area. These granodioritic to (quartz)
monzonitic gneisses, known as the Bluff Head orthogneiss, are considered to have
been derived from igneous protoliths, and presently contain metamorphic mineral
assemblages characteristic of the amphibolite facies. Elsewhere in the Groswater
Bay Terrane, both para- as well as orthogneisses are prevalent, and comprise

mineral assemblages characteristic of both medium- and high metamorphic grade.

Paragneisses in the Groswater Bay Terrane (Gower and Owen, 1984)
include relatively high-grade migmatitic muscovite + kyanite + garnet-bearing
metapelitic rocks exposed to the northeast of Cartwright (Owen et al., 1983), and
lower-grade greywackes and siltstones preserving primary sedimentary textures on
Black Island on the north side of Groswater Bay. These lower-grade rocks may

postdate the higher-grade paragneiss.

Orthogneisses in the Groswater Bay Terrane are predominantly of tonalitic



to granodioritic composition, and generally contain amphibolite-facies mineral
assemblages. In this regard, the orthogneisses in the vicinity of Bluff Head are

typical of those exposed elsewhere in the Groswater Bay Terrane.

Tonalitic to granodioritic orthogneisses of the Groswater Bay Terrane have
been dated by several methods, yielding ages ranging from ca. 1610-1680Ma (Rb-
Sr, Nd-Sm: Brooks, 1982, 1983; U-Pb, zircon: Krogh, 1983). Massive to foliated
granitoids which in part intrude these gneisses include K feldspar-megacrystic
granodiorite and clinopyroxene-bearing monzonite. @ Krogh (1983) reports a
1632Ma age (U-Pb, zircon) for a pyroxene-bearing monzonite of the Groswater

Bay Terrane.

Several generations of mafic dykes occur in both the Trans-Labrador
batholith and the Groswater Bay Terrane. Gneissic rocks of the Groswater Bay
Terrane contain pre-migmatitic pyroxene-bearing metabasites which are crosscut
by at least three generations of amphibole-bearing mafic dykes also occurring in
plutonic rocks of the Trans-Labrador batholith. These later dykes predate a
major suite of Neohelikian mafic intrusions known as the Michael gabbro (Fahrig
and Larochelle, 1972), which in the study area is restricted to the area south of
the Benedict Fault (Gower and Owen, 1984). Including the Michael gabbro, there
are thus at least five generations of mafic dykes which were affected by

Grenvillian tectono-metamorphic activity.

The structure of the Groswater Bay Terrane is dominated by a major west-
plunging antiform with its axial trace passing through George Island (Fig. 1-2).

Shallowly west-plunging folds in the area are outlined by deformed gneissic fabrics
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and mafic dykes, and are attributed to an early period of Grenvillian deformation.
These early Grenvillian folds were subsequently refolded about south- to
southeast-plunging axes during the development of Grenvillian L-S fabrics, which

are predominant south of the Benedict Fault (Owen and Rivers, 1983).

The junction between the Groswater Bay Terrane and the Lake Melville
Terrane coincides with the Rigolet thrust zone, a south-dipping zone of schistose
to mylonitic rocks. The Lake Melville Terrane contains both gneissic rocks and
massive to foliated plutonic rocks, as does the Groswater Bay Terrane. In the
Lake Melville Terrane, however, paragneisses are areally more extensive,ﬂ and
compositionally the orthogneisses are predominantly granodioritic rather than
tonalitic to granodioritic as in the Groswater Bay Terrane. The paragneiss
includes pyritic psammitic schist, which in places is interlayered with quartzite
and metacarbonate, and a variety of pelitic schists. Aluminous metapelites
generally contain sillimanite + K feldspar. However, within the Mount Gnat
granulite belt, a subdivision of the Lake Melville Terrane, metapelites locally
contain orthopyroxene and bear kyanite close to the Rigolet thrust zone. Massive
to foliated granitoid rock-s in the Lake Melville Terrane include K feldspar-
megacrystic granodiorite, quartz diorite to monzonite, and hornblende- and

clinopyroxene-bearing quartz syenite to granite.

In contrast to the relatively simple structural trends of the Groswater Bay
Terrane, the Lake Melville Terrane is characterized by complex patterns
interpreted to be the result of the interference between Grenvillian and pre-
Grenvillian structures. Recent mapping in the Paradise River area, south of

Sandwich Bay (Gower et al., in press) indicates that the Lake Melville and



Groswater Bay Terranes may have undergone a similar structural evolution,
marked by north-directed Grenvillian thrusting. The southwestern margin of the
Lake Melville Terrane coincides with a major structural break, possibly a strike-
slip fault (C.F. Gower, pers. comm., 1985). Gabbroic, anorthositic, and
monzonitic plutonic rocks in the Mealy Mountains (Emslie, 1976; Gower et al.,

1982) occur to the southwest of this fault.

The geology of the Smokey archipelago is dominated by plutonic rocks of
the Trans-Labrador batholith, although amphibolite-facies orthogneiss of the
Groswater Bay Terrane is exposed near Bluff Head, in the southwestern corner of
the study area. The amphibolite-facies orthogneiss, referred to as the Bluff Head
orthogneiss, of the Groswater Bay Terrane is distinguished from granulite facies
para- and orthogneisses exposed in the central and eastern part of the Smokey
archipelago. The Trans-Labrador batholith, the Bluff Head orthogneiss, and the
White Bear Islands Granulite Complex (WBIGC) comprise a lithostructural
subdivision of the Smokey archipelago which recognizes contrasts in pre-
Grenvillian metamorphic mineral assemblages and structures between the three
groups. This lithostructural subdivision was introduced by Owen et al. (in press)
to provide a descriptive framework for the interpretation of pre-Grenvillian
features of this part of the Grenville Front zone. It coincides with Gower and
Owen’s (1984) regional-scale subdivision of eastern Labrador except for the

additional distinction of the high-grade tectonites of the WBIGC.

The three lithostructural domains in the Smokey archipelago have been
heterogeneously overprinted by Grenvillian structures and metamorphic mineral

assemblages. The zonal distribution of these features from north to south across
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the area has led to the recognition of three structural domains separated by
Grenvillian high-strain zones (see Owen and Rivers, 1983). Details of these two
tripartite subdivisions of the Smokey archipelago wusing structural and

metamorphic criteria are presented in Chapter 3.

1.4 PREVIOUS WORK

Initial geological investigation in Labrador was restricted to readily
accessible coastal areas. The earliest work has been reviewed by Kranck (1939),
who provided a geological sketch map of much of the Labrador coast, from
Forteau Bay to Hebron. Two aspects of Kranck’s contribution are particularly
significant to the present study. The first of these concerns the protoliths of
quartzofeldspathic gneisses in the Groswater Bay area. These gneissic rocks were
collectively termed the "Domino gneisses® by Lieber (1860), and were interpreted
as layered metasediments by Packard (1891) and Daly (1902). Kranck (1939)
recognized that this composite unit has a broadly granitic composition in the type
locality at Domino Harbour, and attributed the gneissic fabric to the deformation

of a heterogeneous assemblage of felsic plutonic rocks.

Kranck’s second important contribution stems from his distinction of
massive granitoids north of Indian Harbour (part of the Trans-Labrador batholith)

from the gneissic rocks exposed to the south (part of the Groswater Bay Terrane).

The merits of Kranck’s pioneering work were not fully appreciated by some
later workers. Both Douglas (1953) and Stevenson (1970) suggested that the
gneissic rocks bordering Groswater Bay were largely derived from sedimentary
protoliths, an interpretation refuted by more recent investigations (Gower et al.,

1980; Gower, 1981). Stevenson, whose report incorporates the first systematic
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attempt at mapping the Smokey archipelago, confirmed, however, the presence of
massive granitoids in the Benedict Mountains, and contrasted these with
quartzofeldspathic gneisses cropping out to the south. The most comprehensive
description of the geology in thé general vicinity of the Smokey archipelago is
provided by C.F. Gower’s report and 1:100,000 scale maps (Gower, 1981; Gower

et al., 1983).

The position of the Grenville Front in eastern Labrador has been the subject
of considerable controversy in recent years. Criteria for the positioning of the
Front have been reviewed by Gower et al. (1980), who adopted Stevenson’s (1970)
suggestion that the northern limit of widespread Grenvillian deformation coincides
with a major high-strain zone, termed the Benedict Fault by Gower, in this area.
Gower et al.’s (1980) extrapolation of the position of the Benedict Fault in the
Smokey area, has, however, proven to be inaccurate. Their extrapolation placed
the Benedict Fault along the north coast of Cut Throat Island, a locality now
known to coincide with another distinct, major high strain zone. The present
study places the Benedict Fault some 3km to the north of the position suggested

by Gower et al. (1980).

Considerable attention was paid by early workers to polyphase suites of
mafic dykes occurring in both gneissic rocks and massive granitoid rocks along
coastal exposures. Douglas (1953) described five generations of mafic dykes and
distinguished pre- and post-migmatization dyke suites. Kranck (1947) postulated
that the emplacement of late mafic dykes was controlled by continental rifting.
Grasty et al. (1969), seeking dykes of Tertiary age related to the opening of the

Labrador Sea, reported instead Helikian and Hadrynian (middle and upper
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Proterozoic) dyke ages (K/Ar, whole rock). From these, Grasty et al. (1969)

suggested that the Grenville Front passes through the Smokey archipelago.

The significance of the Michael gabbro, originally described as "trapdykes®
by early workers (Kranck, 1939, 1953), has recently been reviewed by Emslie
(1983). Emslie postulated that the preservation of delicate corona structures in
these dykes, and the retention of pre-Grenvillian K-Ar ages in mafic dykes in the
Mealy Mountains provided evidence that the Grenvillian orogeny in eastern

Labrador was characterized by relatively low metamorphic grade.
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1.5 GENERAL FEATURES OF THE NORTHERN MARGIN OF THE
GRENVILLE FROVINCE

Recent geological investigations in various regions of the Grenville Province
have added immeasurably to our knowledge of this portion of the Canadian
Shield. This is particularly true in the case of the Grenvillian geology of
Labrador, which has benefitted from cooperative efforts from geological surveys at
both federal and provincial governmental levels. The central and northern
portion of the Grenville Province is now quite well known in several localities,
particularly at Coniston, Ontario, Chibougamau, Quebec, and in western
Labrador. @ Before presenting new data from easternmost Labrador, it is
worthwhile to briefly summarize salient features of Grenvillian geology from these

regions.

A small area of the Grenville Front zone in the Coniston area has been
described in detail by LaTour (1979, 1981). At Coniston, two mylonite zones of
differing character mark the sites of metamorphic and structural breaks. The
more southerly shear zone juxtaposes lower- to upper amphibolite-facies rocks
against greenschist- to epid.ote amphibolite-facies assemblages farther to the north.
The more northerly shear zone, which coincides with Lumbers’ (1975) Grenville
Front Boundary Fault (GFBF), juxtaposes these latter rocks against greenschist-
facies rocks of the Southern Province. LaTour noted that the two mylonite zones
differed both in the character of the structures that they contained and in the
effect that mylonitization had on earlier metamorphic mineral assemblages. At
Coniston, the GFBF spans a zone containing well-developed isoclinal folds, and

coincides with the staurolite-in isograd in metapelites, and with the chlorite- and
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epidote-*out® iz>grad in metabasites. In contrast, the more southerly mylonite
zone is marked ty "swirled®, rootless folds and coincides with the garnet isograd
in Fe-rich metabasites. According to LaTour’s model, the GFBF is the younger of
the two shear zones, and developed during late isostatic rebound and cooling of
Grenville crust. The other, apparently older shear zone is interpreted to be the
root zone of one of a series of nappes responsible for crustal thickening during the

Grenvillian orogeny.

The model of foreland-directed thrusting proposed for the Grenville Front at
Coniston is consistent with descriptions of the Front elsewhere, particularly in
western Labrador (e.g. Rivers, 1983b; Rivers and Nunn, in press; Rivers and
Chown, in press), and near Chibougamau (Chown, 1984; Daigneault and Allard,
1984; Kline, 1984; Baker, 1980). Both strike-slip and thrust faults characterize
Grenvillian deformation in the Chibougamau area, alt_hough some of these faults
probably developed along earlier structures. Fault zones marked by sub-
greenschist facies mineral assemblages occur to the northwest of greenschist-facies
mylonite zones within the Grenville Province (Chown, 1984). The Mistassini
Fault, a major thrust zone in the area, separates sedimentary rocks of the
Mistassini Basin from basement rocks transposed from the Grenvillian hinterland

farther to the southeast.

An important feature common to Coniston, Chibougamau, western
Labrador, and, as will be seen, the Smokey archipelago, is the transition from low-
to medium-grade Grenvillian mineral assemblages southward across the Front.
This suggests that shallow to moderate crustal levels of the Grenvillian crust are

exposed at these localities. Elsewhere, Grenvillian metamorphic zones have been
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telescoped across major thrust faults (e.g. the Grenville Front), and are presently

inverted (see Calon and Hibbs, 1981).

Evidence suggests that high-grade assemblages documented elsewhere along
the Front may have been inherited from a pre-Grenvillian tectono-metamorphic
event. For example, in western Labrador, a metamorphic sequence comprising
low-grade assemblages initially interpreted (Rivers, 1983) to grade into high-grade
kyanite + K feldspar parageneses farther to the southeast, is now interpreted to
contain both Grenvillian and pre-Grenvillian assemblages (Rivers and Nunn, in
press). An appraisal of geochronological data to the north and south of the high-
grade assemblages suggests that the kyanite + K feldspar isograd approximately
coincides with a major thrust fault, which separates an allochthon of pre-
Grenvillian gneisses with ca. 1.65Ga isotopic ages from parautochthonous rocks
reworked during the Grenvillian orogeny (Rivers and Chown, in press). The
parautochthonous rocks yield Grenvillian (ca. 1Ga) ages in various isotopic
systems (Rb-Sr, K-Ar, 40Ar/39Ar), and similar ages are provided by U-Pb data
which plot very close to concordia, suggesting significant lead loss resulting from
reworking during the Grenvillian orogeny. Upper intercepts on U-Pb concordia
diagrams for the same parautochthonous rocks yield Paleohelikian ages,
synchronous with the age of contiguous autochthonous rocks in the Grenville

Foreland zone (Rivers and Nunn, in press) north of the Grenville Front.

The regional distribution of diachronous isotopic ages in western Labrador
and eastern Quebec suggests that there may be a plethora of allochthonous
terranes in this portion of the Grenville Province. On the basis of these isotopic

dates coupled with reinterpretation of geological data, Rivers and Chown (in



16

press) have identified a belt of allochthonous rocks lying to the southeast of the
Grenville Front zone. This belt coincides with a regional gravity "high®, which
contrasts with the negative Bouguer anomaly associated with the
parautochthonous rocks of the Grenville Front zone (Wynne-Edwards, 1972). The
allochthons, in&ividually tens to hundreds of kilometers in diameter, typically
define a northward-convex lobate pattern, and have a distinct aeromagnetic
signature. Due to poor exposure, sole thrusts at the base of the allochthons have
not as yet been identified during mapping in western Labrador. However, Gower
(1984) reports the presence of strongly lineated rocks which may correspond to a
boundary mylonite zone underlying a lobate extension of high-grade rocks of the
Lake Melville Terrane overlying the Groswater Bay Terrane in eastern Labrador

(approximately 150km WSW of Smokey).

Pre-Grenvillian ages clustering around 1.65Ga are recorded by Rb-Sr, K-Ar,
and some 40Ar/39Ar dating techniques applied to the allochthonous rocks. The
predominance of ca. 1.65Ga ages has led-several workers in Labrador to postulate
a major tectono-metamorphic event at this period, recently termed the
Labradorian orogeny (e.g. Nunn et al., 1984; Thomas et al., 1984). No Grenvillian
ages have yet been determined in the allochthons; U-Pb diagrams are very close
to concordia. The apparent absence of ca. 1000Ma isotopic ages from the
allochthons suggests that these rocks were not profoundly affected by the
Grenvillian orogeny. The 'timing of their emplacement is at present uncertain; it
is possible that the stacking of crustal slabs (allochthons) provided the elevated
lithostatic pressures for Grenvillian metamorphism at depth. In this case, there is

a causal relationship between the thrust sheets and the youngest metamorphic

m
event recorded the underlying rocks.
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1.6 FIELD WORK, SAMPLING, AND ANALYTICAL WORK

Mapping in the Smokey archipelago was conducted at a scale of 1:50,000
during the summer months of 1982 and 1983. Although a few foot traverses were
made to extend geological contacts inland, most work focused on shoreline
exposures, which are wave-washed and virtually continuous. Emphasis was placed
on determining the distribution and relative chronology of major rock units and
their possible correlation within, and to the north of the Grenville Front,
represented in the area by the Benedict Fault (Gower et al.,, 1982).
Representative samples of different rock types were collected for subsequent
analytical work in whole rock and mineral geochemistry, geothermobarometry
and geochronology. Aspects of the sampling proceedure and sample preparation

are discussed in Appendix A.l.

All major rock units were analysed for major elements and for 18 trace
elements (Appendix A.2). Average bulk rock compositions of the different units
are presented below. In selecting samples for these analyses, emphasis was placed
on outlining trends or variations in the chemistry of suites of Paleohelikian
plutonic rocks and on determining the influence of bulk rock compositions on the
composition of key minerals in Grenvillian and pre-Grenvillian metamorphic
rocks. Consequently, only a few individual units or groups of rocks are extensively
represented in these analyses; rock units deemed less important in achieving either

of these goals are represented by only a few analyses.

Isochrons and (or) errorchrons of seven units dated by the Rb-Sr (whole

rock) method are presented in order to place absolute time constraints on the
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relative chronology established in the field. Details of the analytical procedures
and the isotopic compositions of these three units are presented in Appendix A.3.
Errors associated with the isotopic dates reported in this study are expressed at

the 2-sigma confidence level.

Estimation of PT-conditions associated with Grenvillian and pre-Grenvillian
metamorphism is based on various calibrated geothermobarometers (Chapter 4).
Mineral analyses were determined using the electron probe microanalyser
(microprobe). Details of the operating conditions, precision, and accuracy of the

microprobe are outlined in Appendix A.4.
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CHAPTER 2
FIELD RELATIONS, PETROGRAPHY, AND GEOCHRONOLOGY

2.1 PREAMBLE

This chapter outlines aspects of the field occurrence and relative and
absolute ages of 'major rock units, and summarizes important features of their
petrography. The distribution of major rock units is shown in a generalized
geological map of the Smokey archipelago presented in Figure 2-1. The 1:100,000
scale field map (Map 1), of which Figure 2-1 is a simplified version, and a sample-

location map (Map 2) are provided in the pocket at the end of the thesis.

Eight major groups of rocks have been distinguised in the study area. The
three oldest groups comprise pre-Grenvillian metamorphic rocks described by

Owen et al. (in press):

(1) gneissic to migmatitic granulite-facies paragneiss
and orthogneiss, comprising the White Bear Island
Granulite Complex (WBIGC) :

(ii) gneissic to migmatitic orthogneisses, containing
amphibolite-facies mineral assemblages, comprising
the Bluff Head orthogneiss (Groswater Bay Terrane):

(iii) Paleohelikian granitoids of the Benedict Mountains
Intrusive Suite (BMIS) (Gower, 1981), a part of
the 