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Knowledge of its whereabouts 
Accounts for time unknown. 
Recovered by the element s , the 

~ Surfaces there are shown, 
~ dissolve away the doubts. 

* * * * 
Carbonates and gypsum 
~f a Carboniferous age, 
Depict a climate that was hot; 
Removed far from the Port a~ Port's present l o t. 
Onward time went, and, wi th a drifting continent, 
Yarns of suntanned weather,. are now co l d Wi nter ' s lament. 

Two Acrostics - GRD 
(in t he spirit of Lewis Carroll) 
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ABSTRACT 

Upper- Mississippian· sediments of the Codroy Group on the 

Port au Port Peninsula, wester"n Newfoundland, are remnants of a once 

extensive cover that mantled a karsted palaeoridge of Cambro-ordovic i an 

strata. Today, the sediment's are patchily preserved within karst 

depressions, and adjacent low-_lying basins. The p-resent topogr:aphy of 

the peninsula is, in part, an exhumed Eariy Mississippian ka~st land-

scape featuring a var i ety of karren, karst valleys and caves. The 

Mississippian relic karst has been locally rejuvenated. 

Codroy strata constitute three coeval lithofacies: (1) 

ma"t"ine carbonates, mainly bioherms, and inte.rbeddecj fluvial sandstones, .. 
(2) marine evaporites, primarily gypsum/anhydrite, with minor,laminat~d 

limestone and fluvial clastics, and ,0) alluvial-fan conglomerate_s and 

braided-stream sandstones . Prograding fluvial and alluvial sediments 

subsequently buried the marine basins. 

Fauna and sedimentology indicate that the mari ne sediments 

were deposited in a schizohaline .environment adjacent to a. we~l-drained 

landmass. Preserved miospores a,nd plant debris in the limestones, 

clastics, and gypsum indicate thaf plants, though notabundant, grew · on 

the slopes of the ridge • . Late Mi~sissippian seas along f:he nbrthern and 

western margins of th~ Port au Port ridge support ed a prolific .communi ty 

of brachiopods. bryozoans, blue-g_reen· algae, molluscs, and ostracode~. 

Cephalopods, foramini f ers, and conodonts a r e l ow bo t h in species and 

individuals, whereas true corals, and crinoids/ec hinoids are absent. 
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Fauna traditiopally used to differentiate between Upper .. :·LoJ 
Codroy ~strata are found to occur togeth.er ·within the marine c&rbo~ates, 
but~ in two distinct facies. This indicates that the marine macrJfauna; 

and probably microfauna, are facies-controlled prohibiting the~r u~e i n 

I 
. \ 

detailed biostratigraphic zonation. 
I 

\ Marlne. carbonates infilling palaeokarst valleys may 1 
\ I 

constitute .eit\ler bryoz'oan/algal biolithites plastered against ~he yal l ey 

walls an.d/or carbonate mounds of a similar lithology, wit h associated .. 
intermound sediment.. The buildups were lithified early as evident by 

the abundant synsedimentary cement (interpreted to have been magn.esium, 

calcite and aragonite). 

The complex diagene tic history of the marine ca:rbonates 

' records progression from \/mari!le environment with synsedimetftary 

cementation to a phreatic zone within which oc~urred fracturing, 

styl~litization, dissolution and cement precipitation. Mineralization 

by sulphides and ·sulphates spans the phreatic diagenetic history. 

Late stage phreatic ce~ent.. is pervasive in a ll ·other sediments of the 

"> 
carbonate lithofacies as well as throughout the carbonate and clastic 

sediments of the other lithofacies. 
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CHAPTER I 

INTRODUCTION 

1.1. General Overview 

In western Newfoundland, Lower Carboniferous sediments are 

preserved as areally extensive cover rock, in the Deer Lake-White Bay 

and southwest Newfoundland regions, and ~s small isolated outcrops 

infilling depressions cut into the underlying Cambro-ordovician strata 

on the Port au Port Peninsula. Since Alexander Hurray first visited 

western Newfoundland in the 1870's, the detailed study of Carbo niferous 

stratigraphy and sedimentology has been confined mainly to strata in 

the two large basins. In both of these regions, cover and/or faulting 

may complicate the vertical and lateral correlation of stratigraphy. 

Interest in the Upper Mississippian strata on the Port au 

Port Peninsula has largely been confined to (1) the economic potential 

of sulphide and sulphate mineralization in limestones and sandstones, 

and (2) the excellent preservation of fossils in the limestones. From 

the present study, the recognition, within the well exposed Upper 

Mississippian strata on the peninsula, of bryozoan/algal bioherms, 

facies-controlled fauna, ·and the coeval deposition of near-shore marine, 

evaporitic and terrigenous environments, gives an indication of the 

complex interrelationships in the stratigraphy and sedimentology that 

was not recognized by earlier workers. 

' This study documents the history of the Upper Mississippian 

strata in terms of their depositional setting, stratigraphy, sedimentology, 

palaeontology and diagenesis. 
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/ 
1.2. Location and Access 

The area of study includes the Port au Port Peninsula, and 

a small region east, in the vicinity of Stephenville and Kippens (Fig. 1 

- in pocket). Topographic maps, 1:50,000 scale, used for field l ocations, 

include NTS Map Sheets 12 B/6 (east half), 12B/7 (east hal f), 12B/10 (west 

half) and 12B/ll. 

There is easy access to the peninsula via Stephenville 

airport, and roads leading into the region from the Trans-Canada Highw~y. 

On the peni nsula, paved and gravel roads, and walking short distances 

make ·most outcrops very accessible. 

1.3. Geographi ca l and Topographical Considerations 

Most of the coastline on the peninsula and in t he regi on to 

the east, is cliffed and oft e n indented by numerous c oves and bays. Rock 

exposure along this coastline is excellent though in part inacce ssible . 

Inland, the heavy overgrowth conceals much of the outcrop and makes 

access by walking difficult. 

The peninsula is topographically divided in to two regions. 

The dividing line is r e presented by a NE-SW trending faul t which bounds 

the western side of two valleys; a nor t heast-facing valley tn the 

Piccadilly area , and a sout hwest- fac ing valley on the sout h shore near 

Ship Cove (Fig. 1). The we ste rn half of the p enins ula i s chara cte r i zed 

by several pla t eaus, high elevations, and an approximate radial stream 

pattern in which many va lleys are dr y. The eastern part of the peni nsula 

is domina ted by a low, east-west trending ridge cut by sever a l no rth-
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and south-facing valleys, some with streams. Valleys tend to have steep 

to vertical walls, are U-shaped, and taper inland with increasing 

·elevation. 

East of the peninsula, in the Stephenville-Ki ppens area, 

large deposits of Pleistocene · glacial outwash cover most of the region, 

obsc uring the Palaeozoic strata. The thick sequence of glacial sediments 

probably accounts for the lack of a definitive stream pattern, apart 

from a general southerly flow direction. On the peninsula itself only 

thin to locally thick Pleis tocene glacial s e diments are preserved. 

1. 4. Previous Work 

The first detailed account of Carbonife rous strata on t he 

Port au Port ieninsula was &.i ven by Alexander Murray in 1876 (Murray 

and Howley, 1881). He recognized a series of north-south trending faults, 

cutting Carboniferous limestone s in severnl coves on· the northeastern 

shore of the peninsula. and considered the rocks to be 'let ~own amongst 

strata of . (Ordovicifm)' (~ 3 31). Caverns and hollows within the 

Ordovician strata, encrusted with Carboniferous limestones, ·were thought 

to ha ve formed during Carboniferous time by wave action undercutting 

the Ordovician cliffs. 

Mineralization. primarily galena, was noted at Lead Cove . 

where a previous evaluation of the mining potentia l had been conduct ed. 

Murray (op. cit.) reported that this evaluation had indicated that the 

mining of t he l ead was not ~eonomlcally feasible. Ot her mi neralization 

· noted in the area was a thi.n coal seam at Blanche Brook. and gypsum at 

j 
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Romaine·s Brook, both within Carboniferous sediments. 

In their study of the stratigraphy of western Newfoundland, 

Schuchert and Dunbar (1934) also accounted for the preservation of 

Mississippian sediment on the peninsula py assuming the presence of 

grabens dev~loped within O~dovician strata. 

Hayes and Johnson (1938) collected fauna from very fossil!-

ferous Mississippian limestones, called the Codroy Group by Hayes and 

Johnson (19.37), in the region east and west of Aguathuna Quarry (Fig. 1). 

These were correlated with similar fossils from the Windsor Group in 

Nova Scotia and the assemblage was thought to represent a mixture ,of 

Upper and Lower Windsor· fossils. The Windsor Group had previously been 

correlated, with Upper Mississippian (Vis~an) strata in Britain (Bell, 

1929), and was divided into five faunal subzones: the Lower Windsor, 

subzones A and B; the Upper Windsor, sub zones C, D, and E. Hayes and 
,., 

Johnson (1938) also considered the Codroy to be depo~ited in graben 
\ 

structures in the Ordovician strata. 

Sullivan (1940) briefly described Codroy strata in the 

A~uathuna region and in Big Cove, on the west shore of the peninsula, 

and listed part of the fauna collectPd from both regions. As with the 

previous authors, he thought the coves represented grabens filled with 

strata of Mississippian age. 

Bell (1948) briefly resampled an outcrop of Codroy sediment 

in Aguathuna Quarry that Hayes and Johnson "(1939) had reported. This is 

an "island" of Codroy and Ordovician strata left standing due to 

quarrying operations. He came to the conclusion that the pre served 

sediments were equivalent to the Upp~r Windsor sediments. 

,, 

\ 
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Bell was the first to consider the coves on the northeastern 

coast ,of the peninsula as karst in o'rigin. In addition, at Boswarlos, 

west of Aguathuna, he recognized strata of the Codroy Group to be 

equivalent t o and slightly younger than the type ·section in southwestern 

Newfoundland (the Ship Cove Limestone). Bell considered the Boswarlos 

strata to repres~nt the first marine transgression in the region, with 

·' 
the second transgression represented by the more fossiliferous Aguathuna-

type limestones . This stratigraphy was used by Weller et ~- (1948) 

for the Port a~ Port regia~ in their compilation of Mississippian 

fo rmations of North America. The Boswarlos beds, however, were pl aced 

stratigraphlcall~above a unit of red-beds. Though red-beds occur on the 

south side of the peninsula, no mention of this unit w•s made by Weller 

et ~- (op. cit.) or their source of information listed as Hayes and 

Johnson (1938). 

Baird (1951) mentioned the presence of large gypsum outcrops 

' at Romaines Brook and in the subsurface south of Boswarlos. He considered 

.. 
the deposits to represent the filling of small basins whi ch overlapped onto 

the Ordovicia n basement. 

Johnson (1954) described various sulphate occurrences in 

Gillam's Creek, and Runan Brook, both west of Aguathuna Quarry. 

Riley (1962), in a summary of the stratigraphy of the 

Stephenville map area, noted tha t red- matrix conglomerates occur along 

the south shore o f the peninsula, north of Cape St. George, and at Red 

Island west of the peninsula. These may be the r e d-beds mentioned by 

Weller ~ ~· (1948). Riley (op. cit .) considered these deposits to be 

Late Codroy in age. Miospores t aken from th e coal seam, in Blanche 

. r 
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Brook, that Murray mentioned (Murray and Howley, 1881) yielded an age ' 
of Mid~le Pennsylvanian (cited in Kiley (op. cit.)). 

Belt (1968} refers to the presence of Barachois sediments 

(Lower Pennsylvanian) on the Port au Port Peninsula but does not state 

. a location. The Barachois strata overlie the Codroy G~oup in south.:. 

western Newfoundland. Apparently, these be ds yielded miospores indicating 

a Barachois affinity (cited in Belt (1968) as: Barss - written comm., 

1966). This conclusion is not substantiated by the results of the 

present study. 

Fon~ (1972) described well preserved . remains of a crustacean, 

Bellocaris newfoundlandensis Fong, recovered from the sediments in Aguathuna 

Plsland" •. Bel l (1948) had 111entioned the occurrence 'of crustaceans in 

the basal Codroy strata at Boswarlos. 

Besaw (1974), in a study of lime.•tone evaluation on the 

peninsula, mapped the many Upper Mississippian l ocalities . It is on the 
h 

basis of his map that the writer was able to locate the Upper Mississippian 

outcrops .• 

Von Bitter and Gerbel (in press) sampled conodonts. from the · 

Upper Mfsl3issipplan sediments in the northeastern part of the peninsula. 

Conodonts were recovered ·primarily from the Aguathuna Quarry "Island 11 , 

the basal Codroy member at Boswarlos, and Romaines Brook (where it occurs 

as well). They consider all the outcrops to be of equivalent age, and, 

that based on sampling of the Ship Cove Limestone, the Port au Port 

outcrops are e '!uivalent to Bell's subzone A. They also suggest, however,' 

that the range of the diagnostic conodonts used for the correlation 

may extend throughout subzone B. 

j 

j 
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The most· recent geological map for the Port au Port Peninsula 

is by Williams (Geological Survey of Canada, Open File No. 726, 1981). 

Private companies have looked at the Upper Mississippian 

strata with interest toward the mineralizatJon. The reader is directed 

to NTS Geoscan (1979) for a complete bibliography. 

1.5. General Geology 

To place Upper Mississippian strata of the Port au Port 

Peninsula into proper tectono-stratigraphic perspective, a brief · review 

of the geology of western Newfoundland follows. 

/ 
1.5.1. Pre-Carboniferous Strata 

Newfoundland represents the northeasterly extension of the 

Appalachian Orogen exposed in North America. Williams (1964) recognized 

three geological provinces by which to subdivide the island: t he Western 

Platform, the Central Mobile Belt, and the .Avalon Platform. This tri-

pa rtite division acknowl e dged a general geological symmetry of two 

platforms separated by a central volcanic region. 

With the concept of plate tectonics, as proposed by Wilson 

(1966) and ~ird and Dewey . (1970) • the symmetrical zonation in New­

·foundland fitted well with the idea of two plates colliding with oceanic 

material caught in between. Williams (1979~ subsequently divided the 

island into f our · zones based on general tectono-stratigraphic similarities : 

from west to east, the Humber, Dunnage, Gander, and Avalon Zones . 

Therefore, two dis crete continental plates , the Humber and Avalon Zones, 

, 
._/ 
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witt) the Gander Zone a~ting as a_ continental slope-rise sedimentary 

pris~ related to the Avalon (Kennedy, 1976), are ieparated by the 

Dunnage Zone, the vestiges of ~he ancient ocean, ~apetus. 

The Port au Port Peninsula is the most westerly part of the 

Humber lone in Newfoundland. Geologically, it contains part of the 

clastic-carbonate· sedtmentary prism that developed on the stable 

cratonic platform of proto-~orth America. The sedimentary units that 

characterize this are the Kippens Formation, March Point Formation and 

Petit Jardin Formation, all of Cambrian age, overlain by .the St. George 

Group, Early Ordovician in age (Fig. 1), Evidence for deepening and 
,."# 

destruction of the, stable platform due to plate collision is reflected, 

in part, by the changing carbon~te lithology within the Table Head Group 

(Klappa .!:.!. ~·, 1980), which is Middle Ordovician in age. On the 

peninsula, the Table H"ead G~oup appears to unconformably overlie the 

St. George Group. 

In western Newfoundland, the_ Taconic Orogeny is represented 

by wes tward-directed flysch, obducted ophiolites, and related transported 

sedjments . that were deposited and e'mplaced onto the Cambro-Ordovicipn . 
strata (Williams, 1975). On the peninsula, only a sequence of t rans-

ported sediments, and mafic volcanics, of the Humber Arm Supergroup 

reflect this obduction (Fig. 1). 

The transported strata are overlain by the\Long Poin t Group, 

• Middle Ordovician in age, with an int e rpreted unc onformable contact 

(Rodgers, 1965). The Long Point lithology, which includes reefal 

carbona tes , indicates the return of s t able shallow water conditions. 

j._ _ 
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Overlying the Long Point Group are marine to non-marine sediments of 

the Clam Bank Formation, Silurian to Devonian in age. 

During the Acadian Orogeny (Late Devonian), the peninsula 

was uplifted and fault e d. A karst topography, exhibiting a va~iety 

of landforms, was developed on the carbonate strata -of the St. George 

and Table Head Groups prior to deposition of Upper Mississippian sediments. 

A more extensive and detailed discussion of this karst is 

given in Chapter 2. 

1.5.2 Carboniferous of· Southwestern Newfoundland 

(i) Introduction 

Other sediments of Mississippian and Pennsylvanian age 

(Fig. 2) are located in the Deer Lake-White Bay district (Hyde, 1979), 

' in southwestern Newfoundland (e.g., Hayes and Johnson, 19JB; Bell, 1948; 

Baird and Cote, 1964; Fong, 1976; and Knight, 1976), s mal l isol a t ed regions 

in southeast Newfoundland (Strong, 1978), offshore, along the· 

south, wes t, and northeast coasts of the island, and along the southeast 

coast o f Labrador (c i ted, in Hyde, 1979; and Barss, ~ al ., 1978). 

Upper Mississippian strata on the Port au Port Peninsula are equivalent 

in age , and s imilar in stratigraphy to part of the Carboniferous sequence 

along the southeast coast of St. ·George's Bay (southwest Newfoundland). 

To place the Upper Mississippian sediments of the peninsula 

in proper perspective with regard to sed i mentation in the southwestern 

Newfoundland Carboniferous basi n, a brief summary is given of the 

lithostratigraphy, and interpreted environments to the south . 

. ' ·~"" 
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(ii) General Background 

The lithostratigraphic subdivisions of the Mississippian 

and Pennsylvanian sediments areshown in Figure 3, along .with the 

stratigraphic interpretation of the Port au Port Upper Mississippian 

strata by Weller!:!_ al. (1948). Any estimate of thickness of the 

~ ' 

Cod roy Group in southwestern N!:!wfoundUnd ,is camp licated by abundant 

folding and faulting throughout the section (Bell, 1948; and Baird and 

cote, 1964). 

Faults that initiate, and are coeval with, sedimentation 

prohibit the development of well preserved marker horizons (Hayes and 

Johnson, 1938; Baird ~d Cote', 1964), and a well developed faunal 

assemblage (Bell, 1948), making correct correlation estimates across• 

fault zones very tenuous. 

In southwest Newfoundland, the Codroy Group represents 

deposition of mar~ne to non-marine sediments within a shallow basin that , 
was fault bounded on the southeast by highlands (Belt, 1968). It 

appears that th~s same basin extended 'we~ . into Nova Scotia _dNew 

Brunswick (Hacquebard, 1972). 

(iii) Codroy Group . 

The initial sediments of the Codroy Gr"'up, the Ship Cove 

Limestone, record a marine transgression over alluvial braided stream 

sediments of the Lower Mississippian Anguille Group (Bell, 1948). The 

Ship Cove limestone is well-laminated, Pl1lleted, and in certain facies, 

.l 
very arenaceous. OVerlying the limestone are. the Codroy lleds; ~ thick 

succession of well-~edded to laminated gyps-iferous siltstones to ... 

! 



, 

{ 

PORT AU PORT CODROY 

Vl 
w 

I z 
- - - ·· · 4 ...... 

...... 

._. 

0 
;£ 

z Vl 
o:l: u.J 

BARACHOIS GROUP 
...... c 
ex 

sedi rnents 
::;) 

~ ,____ .. 
SEARSTON BEDS 

>-

" 
. z 

0 WOODY ex 
UJ 
t--
<n 

o;( u.J 

POI.NT :X: 

ex u 

' 

...., 
HOODY 

,. c . . 
.J 

AGUATHUNA COVE 
liMESTONE Vl 

. .. 

: -
: ~ -, BLACK POI NT LS . 

..... 
u 

aosWARLOS COD ROY 
...., 
:::E: 

BEDS ~ 
u 

...., 
beds > :::E: 

~~ ~-- .-- --
SHIP Ct'E LS • . 

r ed-beds z 
ANGUILLE < . -c.n UJ 

GROUP o;( <.!) 
:z: <( ·ex Vl 

' => 
. C) 

0 .... 

FIGURE 3: Stratigraphic chart fo r the Po r t au 
Por t area ( as per Weller tl u . 1948), 
and the Codroy area ( s outhwe stern Newfoundland ) , 
(Bell, 1948) . 

' 



.. 

}"~· 

i-

l 
r 

.-i!-

I 
I 

mudstones, sev~ral distinct gypsu1 zones. and rare but distinctive 

limestone units within the upper fart. The Ship Cove Limestone, the 

! 
Codroy Beds, and the distinctive rlimestone units comprise the Lower 

I 
Codroy. 

Overlying the Lower Codro·y are sandstones and siltstones of 

the Woody Cove beds. Rare and thin argillaceous limestones with both 

marine and freshwater fauna occur in this unit as well (Baird and Cote, 

1964). Overlying the Woody Cove are the Woody Point strata which are 

also sandstones and siltstones, with pebble lenses and well developed 

cross-bedding becoming important in the sandstones eastward f_owards 

the faultbound highlands. Thin and very argillaceous limestpne beds 

may also occur in this unit, containing freshwater to brackisij wate r 

fauna (Bell, 1948). 

(iv) Searston Beds 

These sediments are composed of very dis.tinctive micaceous 

green ·siltstones to sandstones, with pebble conglomerate lenses 

associated with abunda~t. trough cross-beds. This unit was conside red 

to be part 6t 

Bell (1948). 

th~ ~oy Croup and the overfing Bara~hoia Group by 

Knight;, (1976) stlggested that the unit is either younger 

or equivalent wfth the Upper Codroy. T~e difficulty in correlation 

• 
is due to faults which bound both the Upper Codroy units 1 and the 

Searston Beds. Plant .and tree debris within the unit. as well~:as 

miospore data. indicate a, very Late Mississipp t an (or ~amu\ian) to 
\ 

Early Pennsylvanian age (Bell, 1948; Utt'.lng, 1964). 

__ l 
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(v) Barachois Group 

The Barachois Group consists of fine to coarse-grained 

"' brownish feldspathic sandstones often with ripples, trough cross-

bedding, and abundant conglomeratic lenses . (Hayes and Johnson, 1938). 

Several coal seams and abundant plant fossils are found in t he unit. 

The age of these strata is Middle Pennsylvanian. 

(vi) Tectonic-Environment Analyses 

During the Late Mississippian (Visean), a shallow sea 

transgressed the Codroy Basin depositing the Ship Cove Limestone. With 

fluctuations in sea level, gypsum and limestone (e.g. Black Point 

Limestone) were deposited with siltstones indicating the continuation 

of a very shallow ~ea. Uplift in the southea&t highlands resulted in 

terrestrial and fluvial sediments being shed westward and northwestward 

into the basin (Woody Cove and Woody Point). 'With continual uplift, 

marine conditions completely disappeared and fluvial conditionsvprevailedr 

during . the time of the Searston Beds and the Barachois Group. 

1.6. Summary 

~";,; " 

Certain elements of the southwest Newfoundland Carboniferous 

stratigraphy, t ec tonics. and environment are similar with the Upper 

Mississippian sediments "on the Port au Port !'eninsula. These similaritie s 

include the Ship Cove Limestone, laminated gypsum. bryozoan bioherms, 

fluvial clastics, alluvial red- beds, and similar times of red-bed 

progradation. 
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Two important differences, however, occur between the two 

regions. First. Port au Port sediments are generally well exposed and 

preserved, with important' stratigraphic contacts preserved. This is , .l 
primarily the result of little post-Mississippian faulting ~omplicating 

or destroying the original · stratigraphic assemblage, Second, a well 

preserved karst topo~raphy, of Lower Mississippian age,, is developed 

on the Ordovicia·n carbonates. This karst, with its valley~ and other 

depressions, played a major rol~ in controlling the style, distribution, 

and preservation of Upper Mississippian sediments. 
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CHAPTER 2 

LOWER MISSISSIPPIAN KARST ON THE CAMBRO-ORDOVICIAN CARBONATES 

2.1. Introduction 

Karst topography is well developed on deformed Middle to 
. . 

Lower Ordovician caTbonates vhtch underlie most of the Port au Port 

Peninsula: On a large scale this topography is manifested by valleys 

and gullies. There is considerable variation in ' the, width and depth 

of these depressions, from Qroad and shallow to narrow and deeply 

incised, with the interdepression 'plateaus' exhibiting an ~ndulatin~ 

microtopography of incised fu~r~ws, shallow basins, and microplateaus, 

which mimic the large scale features. 

Karst .landforms are best preserved· and eKposed along the 

coastline, and inland within two kilometres of the shore. With increasing 

elevation, the valleys and gulliei either d{sappear or become too shallow 

to recognize. The microtopography, however, may . still be 'present inland. 

There are three regions on · the peninsula which exhibit a ·good exposed 

karst landscap~ (Fig. 4): 

( 1) the highlands t'rom Cape St. George, north to Big Cove; 

(2) isolated locations along the south coast, notably 
between Sheaves Cove and Fiods Cove; 

(3) the coastline, and parts inland, in the northeast region 
. of the peninsula between ~oswarlos and The Gravels. 

Two other minor localities also displ ay some karst fe a tures; (a) ·Dory 

Cove, and (b) South Head (Fig. 4). 
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Karst terrains have been exhaustively classified (see 

Quinlan, 1972; Sweeting, ~73; ~nd Bogli, 1980). Terminology used 

in this present study is a mixture of the classificationsused by these 

authors. s~veral types of karst (including bare, subsoil and mantled 

karst) and associated solution features·can be recognized on the 

peninsula! and are described below in general terms, to provide a 

• 
framework in which to place the La_te Mississippian s edimentation. 

Historically, the origin of the large deeply incised valleys 

and coves in the northeastern part of the peninsula were first considered 

to be related to graben development (Murray and Howley, 1881; Schuchert 

and Dunbar, 1934; Hayes and Johnson, ·1938; Sullivan, 1940). Bell (1948) 

and Johnson (1954), however, attributed the origin of the coves to 

karstification. Upper Mississippian sediments clearly overlie the 

karst valleys and a few of the smaller solution features. Though 

faults do cut Mississippian beds, the contact between Ordovician and 

Mississippian strata is cfearly depositional. Along the south coast 
. 

of the peninsula, depres~ions, herein interpreted as karst depressions, 

developed on the St. George Group carbonates and later infilled with 

red-matrix conglomerates, were reported by Riley (1962) and Besaw 

(1974}. Descriptions, or mention, of small scale karst solution 

f 
features do not appear in the literature. · Karst features along the 

south and north coasts cut across the attitude of the Ordovician 

strata. The uplif~ which has resulted in the-northward dip of strata 

occurred during the Acadian Orogeny. 

' - · . . -- - · ~-.· .... · · r· ~ 
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2.2. Parameters for Karst De~elopment 

'Karst may_ be defined as an aggregate of 
characteristic landforms and subsurface 
features produced primarily as a result 
of solutional removal of (bedrock)' 

(~uinlan, 1972; pg. 157) 

Sediment solution, precipitation, transport and deposition 

usually accompany the karstification process. Karstification refers to 1 

the concomittance of any of the above processes during which the topo-

graphy approaches that of a karst terrain. The degree of karst develop-

ment in any region is dependent upon six parameters: (l) lithology, 

(2) permeability; (3) physiography, (~) hydraulic gradient, (5) climate, 

and ( 6) time. The hydraulic regime, fundamental for karst development 

is in turn determined and modified by the above factors. In.~urn, with 

time, the karst waters will modify the region's physiography. 

No studies of the present day groundwater hydraul ic regime 

or surface runoff. were undertaken in this study. If modern karstification 

is affecting the Ord9vician carbonates, it is observed only as a surface 

runoff phenomenon restricted to furro~s and small shallow basins, some 

of which may po~sess soil cover. The furrows may be as deep as one Jbetre, 

and it is uncertain whether the present runoff could produce these 

furrows. The recognition of similar features overlain by Upper Mi'ssissi-

ppian s ediments suggests that · the cover had been eroded and the .karst 

rejuvenated (see Age of Karst). In terms of an analyses of par~eters 

affecting pre-modern karst development, only the host rock litholo~y and 

permeability can be discussed with confidence. 

.·.-. 
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Most karst landscapes a~e developed in limestqne and 

dolomite, though gypsum kars~ is very common (Sweeting. 1973), The 

texture and composition of the' host- carbonate is reflected in the 
\ 

response of./~strata to karstification. Relatively pure massive, 

thickly bedde d carbonates are roost susceptable to maximum development 

of karst, called holokarst (Sweeting, 1973), In areas underlain 
by , ~ 
joint s . 

of 

massive impermeable carbonat~s. karst waters are channelled into 

and along faults within the ·rock. These structures become zones 

permeability and may be widened by solution of the host rock, or infilled 

by precipitation of calcium carbonate from the karst , waters. This type 

of karstification is well displayed by the Table Point Formation on t h e 

peninsula. · Joints, and vertical to horizontal surfaces, exh i bit surface 

solution textures. 

In rock strata of alternating lithologies and permeabilities, 

preferential solution of the more permeable beds will allow intrastratal 

movement of the karst wa ters whereas the impermeable beds will only al l ow 
\ 

water to pass along joints OT faults. With time , . s ubside nce and collapse 

of strata will occur along the zones of karstification. This t ype of 

karstification is interpre t ed to have occurred in the St. George Group 

which is composed of interbedded dolomi t es, massive lime stones. and 

dolomitic and limey shales. Surface features as formed on the Tab l e 

Point limestone are rare and usually only occ~r ?" a - massive limes t one 

member of the St. George Group. The pre- existing northward dip of the 

Ordovic ian carbonates may enhance t he per colation of kars t wa te rs along 

the bedding planes making strata , suc h as the St. George Group carbonat es, ., 

. 
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more susceptable to cave formation, With respect to the Table Point 

limestone, karst surface features are enhanced downdip, 

2. J, . Types of Karst on the Peninsula 

Karst may be classified on the basis of two criteria: 

(1) lithologic and stratigraphic reiationships between the karst surface 

and overlying sediment (e.g. Bare karst, Subsoil karst, and Mantled karst), 

and (2) the present dynamics of the karst system (Modern and Relic karst). 

. ' __! 2.3.1. Stratigraphic Criteria 

Three varieties of karst can be observed in various locations 

on the Port au Port Peninsula. 

(i) Bare Karst - Karsted strata which possess no cover are 

c~nsidered as bare karst, Examples of this can be found east and sputh-

east of Big Cove well above sea level, and south of Gillams Cove, 

Aguathuna Quarry and Mistaken Cove (Fig. 35, in pocket). 

(ii) Subsoil Karst - Karst with a covering of Holocene soil 

is called subsoil karst. Examples may be found just south of Mistaken 

Cove and Bellman's Cove, in areas south of Gillams Cove and· Aguathuna 

Quarry (Fig. 35), and in isolated regions southeast of Bit Cove (Fig. 1'). 

(iii) Mantled Karst - This term refers to a karst landscape i. 
\ . , 

that is ·covered by a relatively thin cover of post-karst strata. On 

the northeastern and· southern sho.res of the Port au Port Peninsula, 

post-karst strata of Late 111ssissippian age, equivalent to the Lower 
.. 

Codroy. may be as much as 18 metres thick. infilling and overlying 

,. 

i 

l 
' \ 
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karst depressions. At Cape St. Ceoree, approximately 100 metres of 

conglomerate infills an interpreted karst depression. This is the 

largest karst feature on the peninsula. The bas ~'o f many of the larger 

depressions is not exposed as modern beach deposits cove! the· contact . 

Ex~mples that show good karst contacts with the Upper- · 
• 

Mississippian sediments are: (a) along the northeastern shore: Lead 

Cove, Mistaken Cove, Bellman's Cove, Aguathuna"Island ", Cillam~"s Cove, 

and the shoreline west of Gillam's Cov~ (Fig, 35); (b) along the south 

coast: southeast of Felix Cove, southwest of Ship Cove, and southeast 

of Sheaves Cove (Fig, 1). 

2.3.2, Dynamic Criteria 

Modern ~~a surface which is undergoing active karst ifi­

catiQn whether the surface i~ oare, covered by soil, or mantled by 

permeable rock strata. Rel i c karst refers to a surfa~e on which 

karstification was active before the Holocene. This relic surface is 

often undergoing modern karstification (rejuvenated relic karst). · The 
"\ ' -

classic karst in Jugoslavia is of this nature, being initiated in the 

l&iddle Tertiary (Quinlan, 1972). Relic karst not undergoing active 

karstification may also be called palaeokarst. 

On the peninsula, an example of modern karst is found at 

the contact of the modern soil with ~he Upper Mississippian sediments 

(e.g. Lead ~ove). Water percolating t hrough the soil is causing 

~ dissolution in the underlying strata. The dissolution decreases 

markedly with depth and is confined primarily to the soil-strata 

interface. Any modern karst associated with the solution f eatures on 
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the Ordovician carbonates is considered to be primarily a rejuvenated 

karst surface (see Age of Karst) . . 

. 2.4. Karst Landforms 

A variety of solution and precipitation features are present 

' 
within any karst terrain. Solution features exhibit standard c~aracter-

is.tics that c~n be categorized qualitatively~o that-:~~ comparison 

can be made with karst regions of different g ography and age. A 

comprehensive review of karst landforms is giv by Sweeting (1973), 

On the peninsulh, solution features vary from circular 

depressions to furrows; their size ranging from millimetres to tens of 

metres. Many features are similar to those described by Sweeting (1973). 

Some sqlution . furrows, or karren, appear to be gradational in size and 

morphology between the standard types of karren. This, however, should 

be expected in a dynamic karst system where continual solution · alters 

the initial morphology • 

• 
All solution furrows on the peninsula display a similar 

overall morphology, despite the obvious scale differences. Furrows 

millimetres in depth (rillenkarren) to ten~ of metres in depth (karst 

valleys) are U-shaped in cross-section, have steep sided walls, taper 

' in width and depth with elevation and bifurcate, or widen, downdip. The 

only difference is found associated with the surface textures; that is. 

smooth versus rough walls. and 

( Another similarity 

the relationship of the karst 

sharp versus smooth furrow margin edges. 

between the •=11 and larg-~• io 

surface and the overlying sediment. Both 

·- ___ ., ... _ __ , . 

• 
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\ ' 

' 
rillenkarren and the kArat valleys may be· part,1,ally to completdy 

./ . 

filled with Upper Missfssippian secUment. The · interpretation of 

this gradation from 11icro- to ma·c:roscale features <Y.splaying similar 

• • morphologies, as well as good evidence. of karst. features developed 

wit;hin the valleys and associated coves, suggest the valleys are of 

karst origin, and in some cases modified by la.ter faulting. A SWD!Daty 

of karst solution and precipitation features along with their location 

is given in Figure 5. 

2.4.1. Features of Karst Solution 

(l) Karren - Grooves, furrows and ~mall gullies are known 
~ 

as karren (Sweeting, 1973). These features cut across and down through 
.>-

.. the surface of limestone. 'A variety of well develop~d--karren are 

displayed in . two regions on the Port au Port Peninsula: . (a) . on the 

northeast coAst: south of Gillam's Cove, Aguathuna Quarry arid Mistaken 

'­
Cove, and (b) on the west coast: east and southeast of Big Cove between 

80 and 250 metres (approximately 250 . and 850 feet) above sea level. 

(i) Rillenkarren -- Two different styles of rillenkarren 
r . 

are developed on th,e Table Point limestone. To the west of Gillam's 

Cove, rillenkarren with rounded crests is well preserved on a seaward 

dipping bedding plane.j A thin veneer of green arenaceous limestone of 

the Codroy Group partially covers the upper portions of the karren 

(Fig. 6). Another type of rillenkarr~n is associated with -the edges 

of solution basins or kluftkarren (see below) giving a fret ted appearance 

to the hqst feature. The crests may be sharp or rounded. Examples 

of this type are rare but may be fpund in both regions of karren 

' 

l 
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FICL'RF. 5: Ka~s~ features and l ocalities on the peninsu l R. 
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development, Both styl,es of rilJ.enkarren. exhibit bifurcation downslope. 

(H) Rinnenkarren -- Rinnenkarren, or sol ution grooves, 

occur where runoff water accumulates in streams (BBgli, 1981)). The 

amount of water increases downslope with the result that the solution 

feature becomes wider and deeper. On the peninsula, these features are 

partially covered by soil and/ or glacial sediments. Generally, the 

grooves attain a maximum depth of a half a metre. Examples of these 

solution groove s a r e found· both a long the northeast and west of 'the 

peninsula (Fip, . 7) . 

(Hi) Rundkarreh -- As defined by Sweeting (1973) , ruodkarren 

are g rooves that may be.::>eve r al metres wide and a Illetre ... in . dept h, and 

form by solut ion at a soil/rock interface, On the peninsula, one 

example of a shallow and narrow rundkarre is overlain by Codr oy sed i ments 

(Fig. 8). This is at the ~ame locali ty as the rillenkarren and covered 

by similar sediments. 

(iv) Kluftkarren and Flackkarren Also known as grike s ·· 

and clints (Sweeting, 1973), these solution furrows, and interfurrow 

'plateaus' •. respectively, are associate d with bare limestone pavements 

in the Gillam's Cove a n d Big Cove regions, and with soil/glacial se dimen t 

covered pavements, south of Aguathuna Quarry and Mist~ken Cove (Fig. 9 ) . 

~ 
The kluftkarreit '#re a maximum of one ll!etre in depth with the 

intervening flackkarren one to two met r es in width . The furrow t r oughs 

are ty"J)ically covered with modern soil whereas the flackka rre(l a r e 

eithe r bare or covered. Isolated furrows r esembling kluftkarren may . 
o ccur i n regions where no pavement i s presen t . 

I ---

I 
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FIGURE 6 ! Rillenkarren is partially mantled by Upper Mississippia n 
sediment (arrows and outlihed), west of Gillam's Cove. 
Solution furrows bifurcate downslope (t~ of 
photograph) . . Hammer for scale. 

FIGURE 7: Rinnenkarren increase in width and depth downslope 
(bottom of photograph) , south of Aguathuna QuarQ;. 
An example of deep kluftkarren is present on the right 
side. Hammer for scale. 

FIGURE 8: Narrow rundkarren are mantled by Upper Mississippian 
sediment; west of Gillam's Cove. Pitted Ordovician 
strata (arrow) contrasts with the relatively smooth 
Mississippian sediment surf ace (in outline) . 
Halllller for scale. 

. -

FIGURE 9: Kluftkarren ahd flackkarren, wi th minor rinnenkarren, 
occur on an inclined limestone pavement south o f Aguathuna 
Quarry. Hannner for s cale; 

., 

• 
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South of Gillam's Cove, karren exhibit rounded troughs and 

margin edges, often with fret• of- rillenkarren which may , have sharp 

crests extending down the smoothed ·furrow walls. East of Big Cove, 

kluftkarren have both sharp trough bottoms and margin edge~, and 

roughened side walls (Fig. 10). Where isolated kluftkatren occur, the 

surfaces and margin• edges may be of either text~re. 

(v) Karrenrohren Only one example of a karrenrohre, 

or solution pipe, was found. It is associated with the limestone 

pavement south of Gillam'~ Cove (Fig. 11). The pipe is partially 

infilled with a reddish-brown coloured coarse sand that also covers part 

of the pavement, It is approximately fifteen centimetres in diameter 

with half a metre of depth exposed. The ·sides and margin edges are 

smooth and rounded. 

(2) Larger Solution Grooves - Incised linear valleys and 

shallow, but wide, gullies occur along the northeastern coastline of 

the peninsula. These features, though . not strictly related to karren, 

possess a similar morphology. 

(i) Solution Gullies Several re-latively shallow gullies, 

partially cove.red by soil, occur southwest of Gillam's Cove, south of 

the main road. They are appro~imately five to ten metres wide, and one 

to three metres in depth, at maximum development, and taper in depth 

and width with increased elevation. Each gully appears to coalesce 

w~th othe~s downdip and terminate in a small steepsided embayment on 

the shoreline , The co.ve and -· solution gullies . exhibit vertical and 

approximately straight walls with rounded ~rgin edges. Overhangs of 

;, 
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the Ordovician limestone are sometimes present. 
I 

One such overhang was 

found encrusted with limestone of U~er Mississippian age. The base of 

the gullies is usually covered with soil and trees. These gullies 

posses~ a to~ographic expression visible on maps (see Fig. 35 ). 

Sweeting (1973) makes reference to solution furrows t hat·· are larger 

than kluftkarren but too Slllall to be karst valleys (see below). It is 

suggested that these solution gullies are either large scale rinnenkarren, 

or, have been produced in a region where extensive development of 

·rinnenkarre n formed a si-9gle large channel modified by continuing 

solution by karst waters. 

(ii) Karst Valleys In the northeaste rn part of the 

peninsula (Fig. 35), several _very promirtent north-south, l inea r , i ncised 

valleys taper in width and depth (to the south) with elevation, and 

terminate along the coastline in U-shaped coves (both in plan view and 

cross- section). In cross- section, the valleys are generally f l at-

bo ttomed, U-shaped, with ve ry steep t o vertical wal l a. Many of these 

valleys and their associated coves are partially to ~ompletely fi l led 

wi t h Upp~r Mississipp±an sediment, that is ei the r flatlying or gently 

dipping to t~e north. Mode rn ·streams have cut through this cover, and 

talus deposits of bot~ Upper Mis~issippian and Ofdovi cian strata are 

found along the sides of the vall eys (Fig. 12). 

Evidence of _unde r cutting and cave devel opme nt i n the 

. . ~ . . 
Ordovician valley walls prior to Upper Mississippian sedimenta~ion, 

can be seen at the pres~nt tide level in Lead· Cove, anq Bellman's Cove, 

and we ll above the pr esent tide level at Agua t huna "Isla nd•, A cave 
. 

with no Upper Mississippian sedi ments was found in Mine r's Brook. 

'• 
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The· preserved inf11led caves, or . hollo_ws, . appear to be shallow. No 

extensive cave system wa!' encount~red associated with the Ordovician 

strata, In Agua.thuna Quarry, a well _exposed undercut of several metres 

was reported by Johnson (1954, Pig, A, pg, 63), This has since beEm · 

removed by quarrying operations. 

The steep-walled valleys are ve.ry similar to allogenic karst 

valleys described by Swee~ing (19J3). Although the valley~ on the 

peninsula are much narrower than those she describes, they exhibit 

similar charact_~ristics: U-shaped cross-section, steep walls and 

tapering in width· and depth with. increasing elevation. ' The large 

solution gullies described above also display these .features. The 

presence of solut~bn surfaces, at Gillam's Creek (see below), and 

( -caves and undercuts along the walls of these valleys help to substantiate 

the interpretation of a karst origin, ... 
4 . 

Karst valleys are considered to develop from limestone 

solution either at the surface or in the subsurfac'e, along a linear ' 

,feature, such as faults or fi'1!ctures. If the solution occurs in t he 

subsurface, an underground drainage system develops, Collapse of 'the 

J cave system progre?ses downslope from continued solution producing a 

linear depression, often incised with respect to the surrounding 

topography (Sweeting, 1973). If solution is restr{cted to the surface 

then erosion of the limes tone would probably proceed in a similar 

manner as that in the formation of the small scale solution &rooves 

(e. g. rinnenkarren). In the Port au Port area, this· latter mechanism 

is considered to be more important though both karst styles may have 

: 
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coincided aiong the lineament&, On the basis of interbeclded lithologies 

of differing composition, the St, George Group carbonates would be host 

to a cave system, and with continued solution the overlying Table Point 

limestones would. become unstable, a!f the underground system became 

larger., and collapse w'oul~ occur, Continued solution of collapse debris 

by th~ subsequent valley river would produce the characteristic valley 
. . 

· morphology preserved today. 

In contrast to this, surface .solution along the lineaments 

Jwhich·may have been· sites of fracturing) would penetrate down "into the 

St. George Group carbonates allowing for faster solution and collapse 

of the strata. As solution occurs, development of overhangs and shallow 

embayments. within the surrounding strata could occur. In this manner 
0 

large scale collapse of ,strata is not an important function for valley 

formation, 

(3) Limestone Pavement - A~ the name suggests, corrosion 

over a wide area leads to a planar limestone surface. Two examples of 

inclined plan~r pavement . occur on the peninsula. The first, to the south 

. of Gillam''s Cove and Aguathuna Quarry, dips at 20 degrees northwards 

towat~s the sea. It is dissected by.kluftkarren and its surface may be 

bare, soil/glacial sediment covered, and/or covered by a .loose red-brown 

coloured coarse sand (Fig. 9). A non-karsted outcrop of possible Table 

Cove Limestone overlying the Table Point· Formation, immediately south 

of. the western part of Aguathuna Qua.rry (Fig. ] 1), indicates that the 

\ 
pavement has preferentially developed at the Table Cove/Table Point 

contact. 

r 
, 

j 
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The second area o{ inclined payements occurs e~st of the 

northern end of Big Cove at approximately 300 feet above sea level 

(Fig. 10). They are inclined to~ards the sea as well, but ~o the vest. 

The planl!r surfaces are bare and dissected by sharp-edged kluftkarren, , \ .,. 
and exhibit a more angular appearance than the pavement in the Aguathuna 

region. 
, 

All pavements are only a few hundred square metres in area. 

A horizpntal limestone pavement occurs immediately south 

of Mistaken . Cove. This example is well covered by soil and glacial 
' 

sediments, with only a small por t ion visible. 

(4) Solution Basins - These basins are shallow, less than a 

metre in depth, and circular to irregularly polygonal in shape with 

diameters rarely exceeding five metres, The edges ~re often bare and 

may be fretted with rillenkarren while the remaining part of the basin 

is filled with modern soil. 

Where several of these basins occur together, th~ fopographic 

. relief is low and hummocky. Examples of these features are sc~ed ... · 

tnroughout all regions of karst development on the peninsula. 

(5) Surf Karren ·- This is a term used by Bogli (1980) for 

karst developed on limestones · and dolomites that border a marine coastline. 

The surfaces are usually cockled with smali pits giving a rough abrasiv~ 

texture to the .rocks. The pit edges are usually sharp, 11ith the pits 

rarely greater than two centimetres in diameter. Coale scence of the pits 

may form lar~r pits, On tfie peninsula, this is very common as modern 

karst along the shorallne between Gillam's Cove and The Gravels, along 

the south coast where a limestone member of the St. George Group (similar 
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.. 
in lithology ~s the Table Point limestones) outcrops (e.g. aouth of Shi p 

Cove}, and as palaeokarst in contact with, or immediately adjacent to, 

Upper Mississ~yian sediments removed from. any influence of the modern . 
. ~ ·u 

ocean, at Aguathuna Island, and in Gillam's Creek approximately 200 metres 

south of the shoreline, 

Along the northeastern shoreline, the limestone cliffs 

are undercut .from zero to approximately two metres above mean tide level. 

The origin of the undercut is probably related to erosion by the sea. 

A wa've cut beach (parallel to a bedding plane within the limestone) 

usually occurs at the base of the undercutting and is just covered at 

high tide. 

(6) Solution Surfaces - Many examples of rock strata witn 

vertical or horizontal surfaces exhibiting smooth solution surfaces occur 

on the peninsula. Along the so~th coast two caves (see ~elow) display 

smooth and glossy surfaces in contact with .Upper Mississippian strata. 

These surfaces are similar to wall surfaces in active caves as observed 

by the writer. 

Surfaces associated with the karren developed on the Table 

Point limes~one do not possess the glossy finish, but may be as smooth. 

-- -~ Roughened karren walls are also common. 

·(7) Caves- Two caves within the.St. George Group on the 

south coast are associated with localities of l'pper Mississippian breccia 
I 

(Sheaves Cove West, Fig . 20; Ship Gove West, Fig. 'l9), In both 

examples the extent of the filled cave'inland is unknown. Both caves 

exhibit walls that have a smooth and glossy appearance. The caves are 

f 
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narrow '(less -than 5 metres in width) and are approximately four metres 

in height), 

(8) Open Depressions 

< 
r 

Two different styles of preserved 

open depressions are present on the peninsula and may be considered as: 

(i) collapse, and (ii) modified caves and karst valleys. 

(i) Collapsed Caves 
I.J 

On the east wall of Lead Cove, a 

vertical fissure two metres wide, five metres in depth, and approximately 

circular in plan view, is filled with unoriented blocks of moderately 

rounde~~-an~ular Table Point lime.~tone embedded in grey _ arenaceous 

mic~odroy limestone. The large Ordovician bloc.ks are chaotical l y 

oriented suggesting that at some point, the undercut limestones failed 

and collapsed, with the later Upper Mississippian limestone infilling 

the voids. 

(ii) Modifie~ sinkholes or caves Along the south and 

southwest coast of the peninsula about 15 depressions varying from f~ve 

metres to 100 metres in depth cut_ through the St. George Group carbonates 

and are infilled with conglomerate, breccia, and sandstone. The 

depressions are generally' circular in plan- view, or may be similar to 

s~ll gullies and valleys. The contact s'urface betwet!n the infill and 

· host strata may be jagged' or smooth. Several ef the iimestone blocks 

(St. George Group carbona~s) possess smoothed surfaces characteristic 

of solution erosion. The smooth glossy wa11-sdrfaces associared with 

the cave (described above) may also · be found associated wi'th 'open' 

depressions (Fig. 13). - Thus, it appears justified to consider some of 

the 'open' depressions as original ca:ves that collapsed and we're later -

modified by stream erosion. · 
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FIGURE 10: Inclined limestone pavement, east of Big Cove. 
Note the angularity of features in contrast to 
FIGURE 9. Hammer for scale. 

FIGURE 11: Karrenrohre. The Ordovician strata is overlain by 
a red-brown sand (outlined). This feature of karst 
w~s only found south of Gillam's Cove. Hammer . for 
scale. 

FIGURE 12: Karst valley (Gillam's Creek). Note t~e vertical 
scarp of Ordovician strata .on the west side of the 
valley. On the' east side, ·a terrace of Upper Missi­
ssippian sediment infills part of the valley. Exposed 
cliff section of Ordovician strata is •approximately 
30 metres in height. 

FIGURE 13: 'Open' palaeokarst depressiom (Ship Cove West). It 
is infilled with chaotic Upper Mississippian breccia 
(above the dotted line). Note the smooth solution 
surfaces (arrows) extending underneath the breccia. 
Bruce King (approximateh 1. 7 metres in height) for 
scale. 

' 
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The congloiDerate in.fill in all depressions or eaves does 

i 
not exhibit increased concentration of limestone blocks with depth. 

Therefore, if collapse did occur, erosion had removed any talus prior 

to infilling of the depressions. or caves by terrigenous clastics. 

Inland •. 'infllled and exhumed valleys can b(O! traced seaward 

into several of the depressions along the shoreline. These valleys 

also taper in width and depth inland with elevation though they tend to 

be ·less incised COJtiPBred to those on the north shore. ;rhe valleys on 

the south coast may · have a similar origin. 

(9) Fissures - Solution fissures developed in the Ordovician 

strata, and infilled by post-karst sediments, can be recognized on the 

peninsula. They are different from karren as they tend to be much 

narrower, . usually extend down into the host strata much deeper, and 
\ . 

are not as regular in form. , 

(i) Codroy sediment in fill -- These fissures • found within 

the Table Point limestone in Bellman's Cove, taper with , depth, ar~ 

approximately five to six metres in depth _and are filled with grey 

micriti c limestone of the Codroy Group (Fig. 14). 

(H) Unfossiliferous mud-filled fissures and solution vugs -

Southeast of the v~llage of Felix Cove, behind the Irving gas station 
., J 

along the shoreline, a few vertichl and narrow vettical fissures. filled 

with red and/or green mud, can be traced at depth to open into round, 
-.l 

subspherical solution vugs that sometimes display geopetal sediment 

similar in composition to the fissure mud. The vugs may have drusy 

,. 
calcite crystals i~ the void space above the sediment. It is more 

- .··--
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. coiiiiDOn,___.however, to find solution vugs without any obvious connecting 

fissure. Geopetal sediment and crystals may be present in these as 

well. Fissures filled with red to brown calc~reous mud, and displaying 

similar characteristics to those in the Felix, Cove region,' az;e a;ts~ 

present throughout the Sheaves Cove - Fiod' s. Cove area of the south 

coast (Fig, -15). 

The fissures that extend to the surface are overlain by either 

Pleistocene glacial sediments or modern soil; there is no obvious source 

for the red to green muds. Less than a kilometre north of Felix Cove, 

however, there is a small outcrop of Upper Mississippian red-matrix 

conglomerate which is located at the top end of a shallow broad valley 

that underlies the area. Within this valley, is a modern -misfit stream. 
"-

It is interpreted that the valley is re l ar.ed to a pre-Upper Mississippian 

karst, and, as the red-matrix conglomerate was laid down, the muds would 

filter down into the fissures and vugs related to the karst event.. c 

2.4.2. Features o(- Karst Precipitation • 
Karst waters may act not only as a corrosive .agent but a lso 

precipitate ca'lcium carbonate (~~eieothem deposits) both in t he subsurface 

and above ground level (Sweeting, 1973). The change from 1!!rosion to 

precipitation is dependent upon · various factors, amongst the more important 

of which are wa-ter te~erature and chemistry. On ,the Port au Port 

Peninsula, spel~thems occur in the regions of Sheaves Head, Lower Head, 

Fiod's Cove, south of South Head, and near The Gravels. Four styles of 

depositi~n can b e · recognized. 

.. 
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(i) Drusy Calc! te The first ~tyle o~ deposit ~s 

characterized by f'i.~sures • a iiew centimetres to tena of centimetres 

r 
· in width. developed in. St. G~.orge ·'Group carbonates. The fissure walls, 

possibly modified early, after their formation by solution, an! patchily 

lined with travertine .in the form of thin l.aminae of beige-:-coloured 

cryptocrystalline calcite. Secon~stage travertine laminae consists of 
, ' 

isopachous prismatic or cryptocrystalline calc! te crystals, variegated 

in colours of red, white and brown, or simply white and grey. The 

isopachous crystals increase in size and . may actually completely plug 

the remaining void space (Fig. lS). 

Two generat;:ions of this latter stage traver t ine are · present: 

(1) lining rims, and (2) surrounding clasts in the centre of fissures. 

The laminae microtopography is enhanced by rim surface irregularities. 

Void space, geopetal sediment or blocky calcite crystals represen~ a 

third stage and are usually found at the centre of very wide fissures. 

This style of deposit is found ·at Sheaves ·Head, Lower . Cove, 'andFiod's · 

t Cove. 

(ii) Travertine and "Red Beds - At Shea.ves Cove ·West, another 

style of speleothem deposit is present: thin cross:-bedded and fractured 

laminae of travert~ne partially i .nfill a fracture within the host 

carbonates. Alterna.ting with the laminae are interbeds and laminae of , 

··~~ calcareous muds. These are. similar to travertine deposits described , 

by Chafetz and Butler (1980; Fig. \oB, pg. 508). 

At Dory Cove • an informal name g1 ven to a small cove two 

( 

kilometres northeast of The Gravels, the east wall of the cove, consisting 

of karsted Table Point limestone is covered by a thin laminae of 

.. 
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beige-coloured travertine. 

(iii) ,Moonmilk South of South Head, on the north shore, 

large 

found 

blocks of moonmilk (see Thrailkill, 1971), l;l!:!ige in colour can be 

in ro~dfill. Th.e samples ~e sur~ace textures ~imilar to cauliflower. 

Galena and marcas.ite mineralization is' associated with the mo~nmilk. 

The source area for this speleothem is unknown tl'ough Howley's map of 

Newfoundland ·indicates the occurrence of lead in the same region as the 

roadfill (Howley, 1907). This is 1nterpr,eted to indicate th~t the so? 

is probably close to the present locality. 

(iv) Cave Deposits·- The fourth style of speleothem 

deposition can be found at a small cave (discovered by B. Pratt) just 

' 
southwe·st of The Gravels .. _Here-, beige-laminated Howstone, similar in 

texture to some of the variegated travertine in fissures at Sheaves · Head, 

dripstone structures, and carbonate sediment: infill have completely 

plugged a cave or hollow in the, St. George carbonates. The deposit is 

approximately tWp metres in dia~eter wit4 the contact between the speleO~ 

thems anji host oock wall varying from smooth to jagged. Rare marcasite 

mineralizatidn is pre,sent withi~nt infill. Fissures leading · 

away from · the base of the cave are fllled with bEdge t.o brown laminated 

flowstone. The dripstone structures consist of stalactites and 

stalagmites, soda straws and flows tone with a knobbly surface (Fig. 16). 

In Aguathuna "Island". flows tOne in the form of cave popcorn 

-is found in contact with Upper Mississippian sediments. Cave popcorn is 

also ~ssociated with T~ble Cape strata south oi the qufirry (see Thrailkill, . 

1971, for definition of this speleoth~m). ( 

( ' 
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' FIGURE 14: Fissure (arrow) cutting Table Point Formation strata 
is infilled with fossiliferous Upper Mississippian 
grey lime mudstone In Bellman's Cove. Note that the 
fissure extends down into bedded Upper Mississippian 
limestone infilling an undercut (above hammer). 

FIGURE 15: Red muds infilling a fissure in Fiod 's Cove within the 
St. George Group strata dispiay minor cross-bedding 
(arrow) which consists of interlaminated red m~d and 
travertine. Lens cap for 'scale. 

FIGURE 16: Cave precipitates, Pratt's Cave, south of The Gravels, 
display flowstone and a possible stalagmite (arrow). 
Lens cap for scale. 
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2.5. Age of Karst 

2.5.1. Mantled Karst 

Katst landforms that are mantl~d by' Upper Mississippian 

sediments, and cut across structure imposed by Acadian deformation, prove 

an Early Mississippian age for karstification on the Port au Port Peninsula. 

Karst surfaces of the Ordovician strata associated with this period of 

karstification tend to be smooth and well rounded,· Mantled karst is 

restricted primarily to the co'astline of the .peninsula; inland the Upper 

Mississippian sEdiments thin with higher elevatio~. Karst/Codroy ·contacts 

are well exposed only along the coastline. 

2. 5. 2. Bare and Subsoil Karst 

The age of bare and subsoil karst on the peninsula is 

problematic, These karsts are found primarily away from the shoreline 

and at higher 'elevations in co~trast to the mantled karst. The surface 

morphology of associated landforms "varies from smooth and we ll-rounded to 

c. 
rough and ·angular. A comparison of karst landforms that are mantl ed and 

' those which are bare or covered . by mo.dern soil is shown in Figure 17, 

All bare and subsoil karst features, with exception of rinnenkarren 

and solution basins, are found as mantled karst. Surf karren found 

along the shoreline may be, in Jart, modern in age (Fig, 17) • . The 

evidence of a pre- to syn-sedimentary Late Mississippian surf karren 

development complicates inte rpretation. I n Ship Cove Eas t, a smoot h 

glossy kaist surface is gradually overprint ed by surf karren within the 

1110de rn spray zone. Within the depression, the smooth surface J-s in 

' 
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Figure 17: Comparison of Karst Features and Age . 

contact with the Upper Mississippian breccia. This suggests that the 

surf karren in this locality is modern. 

South of Gillam's Cove, kluftkarren associated with limestone 

pavement is .partially covered by the red-brown coloured coarse sand of 

unknown age and mo·dern soil. The margin edges of the karst features 

are well rounded. The pres.ent distribution of these karren is well 

above. sea level (from 20 to 100 feet). Upper Mississippian marine sediment 

is found at eleva t ions above the lowest occurrence of kluftkarren (in 

Mistake n Cove, and parts of the· Gillamfs Cove pav~ment). This suggests 

that Uppe r Mississippian sediments may have been extensively eroded f rom 

t he underlying k.arsted surfaces. Evidence for later erosion comes from 

r 
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solution gullies near Gillam's Cove, in which: small patches of Upper 

Mississippian marine limestones were found encrusting the Ordovician 

strata and protected by an overhang. West of Gillam's Cove, Upper, 

Missis~ippian sediment is P}eserved overlying or infilling rillenkarren 

and rundkarren. The Upper Mississippian sediments are very rubbly and 

could be easily removed over a· short t~me interval. 

Much of the karren found at elevations 500 to 800 feet above 

sea level along the west co~st, are even more problematic in age. Using 

the similarit'y in surface textures between these karren and the p.roven 

· mantled karren, the age of the smooth and well rounded karren on the west 

coast may also be of an Early Mississippian age. In contrast, "east of 

Big Cove, an example of a limestone pavement exhibits sharp margin edges 

of kluftkarren and flackkarr~n. The angularity of these_ karren forms 

may be ·a function of age or karst process. Rillenkarren covered by Upper 

Mississippian sediment display rounded crests (west of Gillam's Cove). 

Modern rillenkarren exhibit sharp crests (Sweeting, 1973; Bt1gli, 1980). 

This suggests that the overall roundness of karst landforms on the 

peninsula i~ a function of age. Sharp crested tillenkarren do occur on 

the edges of solution basins and kluftkarren, possibly indicating a 

superposition of modern, or Pleistocene,karst on a palaeokarst. Bogli 

(1980) aotes, however, that. depending upon the amount of available 

runoff, rinnenkarren may have smooth or rounded features. Despite this, 

it is apparent that karst features · on the peninsula, whether associated 

with bare, subsoil, . or mantled karst, exhibit similar morphologies and 

surface textures. ,Noting that the Upper Mississippian strata thin onto 

the flanks of the peninsula, and that rare outcrops of Upper Mississippian 
<f"· 
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• 
sedim~nt are preferentially preserved within a karst gulley, indica~ing 

that erosion has removed the rest of the strata, it is i~terpreted 

that most of the karst on the peninsula is initially Early Mississippian 

in age but subsequent periods of karst may rejuvenate and overprint 

these iea~ures. ~ 

~ 
2.5.3. Speleothems 

Relationships between the speleothem deposits and Upper 

Mississippian strata, and ' with calcite veinlets related to Alleghanian 

deformation (see Chapter 4 - Structure), indicate that the deposits are 

pre-Alleghenian in ,age . In a ft!w examples a pre-Late Mississippian age 

can be substantiated, 

2.5. 4. Summary 

The interpreted general age of .the speleothems emphasizes the 

importance of a period of extensive and peninsula-wide karst.ification 

occurring prior to the Pleistocene. The karst-mantled solution features 

indicate that the majority of landforms were developed in the Early 

Mississippian. Subsequent karstification is probably occurring at the 

sbil-Ordovician strata contact rejuvenating these relict karst features. 

2. 6. Climate 

The style of karstification that is preserved, represented 
:4 

by limestone pavements, sinkholes, caves, and various surface karren , 

is similar to ka;st described by Swee ting (1973) for temperate environments. 

' ' . 
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However, joipts, fissures, ~nd caves plugged with karst precipitates 

are common in tropical karst environments. Sweeting (op. tit., pg. 296) 

warns of the difficulty, and misuse, of ap~lying karst landforms to 

define a particular __ ancient environment, as the parameters, which control 
., 

karstification may be so variable within any giv_en region that type 

karst landforms, or variation thereof, of several geographical climates 

may be found together forming a karst landscape. 

Palaeomagnetic studies indicate that during the Mississippian 

period, Newfoundland was situated at approximately 10 .degrees south 

latitude (Morel and Irving, 1978). Countries 'situated along this latitude 

today exhibit environments varying from very arid to very humid. The 

absence of abundant preserved organic debris within the early Codroy 

sediments on the Port au Port peninsula, and in southwest Newfoundland 

(Bell, 1948), suggests that the climate was arid or semi-arid. This is 

also considered to be the case in southern England and Wales during this 

same time interval (written comm., ·Wright, 1980). Assuming that the 

~orth American plate did not have any substantial movement between the 

Early and Late Mississippian, the peninsula probably had a similar 

environment during the ~arly Mississippian. 

r 
Thus, the presence of an arid, or semi-arid environment 

situated within a tropical region of the world, would probably give rise. 

to a great variation in style of karst ~andforms. 

2.7. Karst in Wes tern Newfoundland 

Other regions of karst terrains exist within western Newfoundland, 

though only one area is known to have been extensively .studied. 

_1· 
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<>~and Ford (1980) report a karst terrain, 'in the Goose 

Arm area of the Bay of Islands. They describe a pre-Wisconsin karst 

surface overlain b:r glacial till. Superimposed onto this surface is 

a modern karst. l-
Further to the north, in the Hare Bay region, a karst terrain, 

:: well covered with modern soil and bog, exhibits round ponds rimmed with 

trees, _,and disappearing _creeks (pers. comm., Stouge, 1980). To the 

e~st and _southeast in the Conche-Groais Island area, ~lei> and con­

glomerates of Early ca·rboniferous age unconformably overlie Ordovician 

metasediments (Baird, 1957) • . The Mississippian clastics are . preserved 

in a .tight syncline, the structure sugg~sting that they may have onlapped 

onto the carbonates further to the west in a s~milar manner as .in the 

Port au Port area. 

Ford a.nd Quinlan (1972;, dted in Thompson, 1976 • pg, 17) 

report the occurrence· of a sinking ·stream, North Brook, on the south-

eastern coast of St. George's Bay. 

Areas underlain by till-mantled gypsum of Late Mississippian 

age. in the Romaines Brook and southwest Newfoundland regions, often 

display a well-developed sinkhole topography due to the solution of the 

gypsum. 

Just east of Cor ner Brook, at the Humbermout h Quarry, a 
# 

collapsed sinkhole exhibits a cement matrix or orange-brown to pink 

coloured laminated, or very .,coarsely crystalline calcite, with 

occasional pocke ts of geopetal silt. 'Veins' and 've inle ts' of 

similar calcite cut across the vertical to steeply dipping Ordovician 

strata . 

( 
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In the Deer Lake Quarry, north of Deer La~e, several cave 

and fissure-fill deposits occur within Ordovician strata: (1) large 

fissures; up to tens of centimetres in width are £illed with green or 

red calcareous.silt; (2) soda straw stalactites occur within the fissures; 

(3) small ca:ves plugged with silt and breccia clasts, of Ordovic i an age, 

and coated with several laminae of travertine . 

The presence of kars_t terrain developed on Ordovician strata 

- f 
is obvio~sly w~despr~ad in western Newfoundland. It is interesting to 

consider the possibility that some of these karst terrains may b~ of an 

equivalent age 'to the mantled karst present on the Port au Port 

Peninsula . 

. 2 .8 Summary 

Karst features preserved on the peninsula demonstrate that 

(a) a major karstification event occurred during the Early Mi~sissippian 

producing a wide range of landforms, (b) surface karstification was 

predominant on the Table Point limestone, and in places possibly stil l 

active, (C) intrastratal karstification was predominant in the St. George 

Group carbonates forming caves which eventually collapsed, {d) surface 

and intrastratal karstification alo~g major lineaments produced during 

'• 
the Acadian Orogeny formed the linear to sub-linear valleys that are 

found in the Ordovician carbonates, and (e) the present topographic relief 

pf ,the peninsula is .in p8rt an exhumed Early Mississippian karst landscape. 

Thus, Acad ian deformation uplifted and fractured the 

peninsula; the edges of which would be susceptible t o karstification 

I __ 
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along the fractures and faults. The inland portions of the peninsula, 

possibly not as fractured, would exhibit surficial ka~st. The distri-

bution of the St. George Group and Table Point Formation ~arbonates; in 

part, also controlled the distribution o"f the style of karstification • 

. . 
/ 

.· 

·- ·- - -·-,. 



,, 

·~· 

·. 
..· 

'! 

)~- ·.• ···· 

... 

. -49-

CHAPTER 3 

STRATIGRAPHY AND GENERAL SEDIMENTOLOGY OF. THE 
UPPER MISSISSIPPIAN SEDIMENTS 

3.1. Introduct-ion 

Upper Mississippian sediments on the Port au Port peninsula, 

and mainland immediately to the east • oc~ur in three different lithologic 

associations: (1) red· terrigenous clastics, (2) ·mixed carbonate/clasti c 

sediments • and (J) mixed sulphate/ clastic sediments. The pre served 

localities of these lithofacies are spatially distinc t except in· t he Bi g 

Cove region, where . red-beds overlie a carbonate/clastic sequence, and 

in• the region eas t of Boswarlos, where all th.ree lithofacies intercalat e. 

It will be shown by lithostratigraphic analyses that all of the terrigenoue 

red-beds are equivalent and younge:r t:han the carbonate and sulphate 

sequences. 

On the peninsula-, red-beds are preserved aloilg'·· r;he south 
r 

coast between Felix Cove .and Sheaves Cove, along the southwest coast and 

inland betw'~en Cape St. George and B.ig Cove • and in isolated patches 

inland and on th'b shoreline ' in the northeast portion of the peninsula 

' 
east~ of Boswatlos (Fig. 1). West of Mainland. oft shore. red-beds also 

"' underlie Red Island (Fig, 1). East of the peniusula, ,in the Rothesay 

. Bay region. · red-beds and associated calcretes are f ound along the 

shor~iine (Fig. 1). 

The carbonate/cla8 t 'ic lithof acie s crops ou t along the northeast 

coast of the peninsula east of Boswarlos, at Dory Cove on t he east side 

-~: 
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of East Bay, iiJ;ld in Big Cove on th.e southwest coast of the peninsula 
I 

(Fig. 1, and 35). 

The sulphate/clastic lithofacies is fo.und on the ·-peninsula 

in the Boswarlos-Piccadilly region, and east of the peninsula at 

Romaines Brook (Fig. 1 and 35). 

A general intra-lithofacies stratigraphy can be established 

for the sulphate/ clastic and carbonate/clastic lithofacies. The lack of 

a detailed correlation within, or between these lithofacies · results from 

(a) the discontinuous nature of the strata, (b) local control of sedi-

mentation by predepositional topography (karst depressions), and (c) 

sediment and possible facies contac t s removed froiD between sections by 
i'-

later erosion. The stratigraphy is f~rther complicated by faults which 

cut strata within some depressions. These faults appear to have had 

little effect upon sur~ounding Ordovician strata, producing at most~ 

metre of .dip displacement across a •fault zone. 

3. 2. Terrigenoas Red-Bed Lithofacies . .-; 

3.2.1. Definition and Distribution - Three rock units comprise 

this lithofacies: (a) chaohc oligomictic breccia. (b) well bedded to 

chaotic oligomic;tic 'conglomerate, and (c) feldspathic to _lithic arenite. 

All rock types are distinctively red in colour. though green mottling 

due to reduction by per_colating subsurface .fluids is often evident. 

Isolated reduction spots may also occur. Strata 'are preserved along 

the south and sou~hwest cpas'tlim!s as well as inland (Fig. 1), infilling · 

palaeovalleys and interpreted collapsed, c-aves. The fact that strata are . ' . 

. . 
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found in depressions even inland on the peninsula (e.g. east of · Big 

Cov~ Ship Cove, Abraham's Cove, and Felix Cove, Fig. 1) suggests that 

these red-beds were originally more areally exte~sive than at present 

and that much has "been removed by erosion. 

Because of this patchy distribution, the defini Uon of a 

detailed lithostratigraphic sequence cannot be satisfactorily established. 

The karst depressions may be infilled with 11-ny combination of the three 
~ 

rock types: a sequence of interbeds of breccia/conglomerate, 

conglomerate/arenite, or breccia/arenite. In a · few depressions, such 

as at Pigeon Head North and Sheaves Cove Central, gradation between the 

arenite and bedded conglomerate is apparent. Lateral and vertical facies 

changes, either abrupt or gradational, are characteristic of this 

lithofacies. 

3.2.2 . Chaotic Oligomictic Breccia- This is a clast-supported · 

oligomictic breccia, composed of fragments ranging -frolj pebble to boulder 

size (maximum diameter . is 2 metres), derived primarily from limestones 

and dolomites of the S L George Group. R.are red calcareous quart;zose 

arenite blocks of possible Clam Bank Formation afff,nity. may also be 

included. The matrix of the breccia is a red feldspathic arenite with 

calcite cement. Quartz and total feldspar (dominated by pO:tassic feidspar) 

comprise approximately 30-35 percent, and 6-15 percent of the rock 
I 

respectively. Lithic carbonate fragments and muscovite grains may co~ 
/ 

prise as much as 10 percent of the rock. Mud matrix within the aren;J.te 

. 
is_ less than 10 percent. All of the above grains or clasts are angular 

to moderately angular. The red colouration is due to iron-oxide which 

I 
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coats grains and mud matrix, ) 
Clast orientation is mostly chaotic· with exception of rec~angular 

'· . 
' blocks, often ori e nted parallel to the slope of the k.ars t depre ssi on walls. 

Intercalations of well-bedded, lentitular lenJes of feldspathic arenite, 

less than 2 metres long and 0.5 metres thick may occur within the breccia. 

In .Fiod 1 s Cove, along the nor;thwest. wall, a series .of brecc ia lobes 

•dipping at 10 t.o .. 15 degrees to the southeast are stacked vertically (Ft g. 

18). Within eac h l obe, the breccias remain chaotic . Some o f t he l i me-

stone blocks within these lobes are moderately rounded and have karst 

solution surfaces and pits . .. 
The maximum pres erved thickness of breccia i s 18 me tre s, and 

oc curs at Ship Cove West (Fig. 19} where the base of the breccia is 

covered by beach gravel. In some cases breccias thin laterally onto the 

flanks of the depressions . Where younger strata overlie . the breccia 

(e.g. Fiod 'a Cove) this relationship is clearly a primary ·feature and 

not due to· later erosion. The deepest and narrowest depressions~ and 

caves (e.g. Ship Cove West and Sheaves Cove West, Fig. 20) illustrate' no 

pinchout and are completely filled with c haotic breccJ.a. 

Inland, north of, Fe l;f..x Cove, and at t_he villa_ge of Abraham's 

Cove, pebble-breccias overlie shallow undulating palaeoval leys tha.t f ace · 

to the south (Fig. l). The brecc:i,as are i4entical wi.th those on the 

south coast e xcept for a• smalle r clast size. 

In summary, c haptic breccias may be interbedde d wit h bedded 

conglome rate/bre c cia (Shi p Cove East, Fig. 19L. ove r lain by inte rbedded 

arenite and bedded conglomerate/breccia (Fiod's Cove , Fig . 21), or 

\ 
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FIGURE 18:_ Debris breccia lobes at Fiod 's Cove within the terri­
genous lithofacies. Three lobes are vertically stacked 
(A,B, and C),'and dip to the southeast. Green mottling 
due to groundwater percolation (arrow) cross-cuts the 
lobes along fractures. Hammer for seale . 

FIGURE 23: Bedded red-matrix conglomerate at Cape St. George. 
Approximate!¥ 60 metres of vertical section are shown 
in the photograph. 

FIGURE 24\ Green calcareous arenite (A), Late Mississippia~ · in age, 
is in fault contact with St. George Group carbonates 
(B) at Sheaves Cove Cedtral,. Red arenite (C) 
conformably overlies the green arenite. The dotted 
line shows the approximate contact zone. Hammer 
(arrow) for scale. 
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completely fill the karst depression or cave (Ship Cove West, Fig. 19; 

Sheaves Cove West, Fig. 20). 

3.2.3. Bedded Red-Matrix Conglomerate 

This lithology is similar in many respects to the chaotic 

breccia. Differences between the two lithologies are: (a) the boulder-

size clasts are mu~h more rounded whereas the pebbles are typically 

angular, (b) bedding is present and generally dips to the south at .10 to 

15 degrees; trough cross-bedding and channel development are common , 

(c) the sandy matrix surrounding the clasts may include up· to 20 

.-" percent carbDnate lithic fragments, and (d) red/green mottling parallel 
... 

to bedding·due to groundwater percolation is co!lllllon (e.g, Fiod's Cove). 

The rock unit is typically medium to thick-bedded th.ough 

thin-bedded conglomerate/breccias do occur. Bedded conglomerate,s are 

. interlayered with red feldspathic arenites in depressions east of Sheaves 

Cove Central, several depressions west of Lower Cove (Fig. 1), north 
,. 
1 ' 

of Pigeon Head (Pigeon Head N9rth, Fig. 22), and at Fiod's Cove (Fig. 21) . .. 
Fining-upwar~ s~uences, from conglomerate to arenite, are apparent at 

these localities. These successions are typically less than a metre thick. 

and conglomerate tends to be the dominant lithology. Generally, abrupt 

contacts are ~ore typical between the two lithologies. Well-bedded 

pebble to cobble red-matrix conglomerates outcrop east of Big Cov~. 

Cape St'. George, and on .Red · Island (Fig. l). Along the west coast o( ' 

the peninsu:la, isolated outcrops exhibit bedding dipping generally to 

the west (Fig. 1). It is evident ·from the attitude of the beds that 

the underlying palaeovalleys, or depressions. influenced palaeoflow , 

.· 
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SHI_P COVE WEST 

SHIP COVE EAST 

FIGURE 19: Ge ometry and l i thology of Ship Cove West and Ship Cove 
. Eas t. (bg - beach gravel; c - cover) 
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SHEAVES. COVE WE~T 

FIDD'S COVE 

FIGURE 20: jpeometry and 
lithology oi'Sheaves Cove West. 
(bg - beach gravel; c - cover) 

FIGURE 21: Geometry and ·lithology of Fiod's Cove. Bedded conglomerate, arenite, and chaotic br~ccia 
all occur in this cove. (bg - beach gravel ; c - cover). 1 
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PIGEON HEAD NORTH 

Geometry and lithology of the northern end of 
Pigeon Head North. The conglomerate and arenite 
overly St. George Group carbonates. 
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direction. "" Southeast of Big ' cove, flow direc tion i~:> in t erpreted as 

being both north and west (Fig. 1}. On Red Island, conglomerates with 

·good planar cross beds and fore&ets dip to the nor t hwest. CJ.a.sta are 

composed of Ordovician carbonate s arid red porphyritic volcanics, a nd 

are commonly found along the beaches betwee~ Lourdes and Win~erhouse . 

Thickness of the bedded conglomerate lithology found on the 

penin~ula usually· varies between four metres (Pigeon Head North) and 

30 metres (west ·of Lower Cove region). An anomalously thick accumulation 

of bedded conglomerates is found near Cape St. George infilling a 

depression which is 100 metres deep (Fig. 23). 

3.2.4, Red Feldspathic Arenite 

This lithology is thi n to medium-bedded, with troug~~ross-

beds, or cross-laminations. The sediments dip shallowly ~o the south, 

and cross-bed orientation indica t es . that palaeocurrent flow was in the 

same general direction. The base o'f . the cross-beds may be composed of ~ 

well-rounded pebblesto cobbles of St. George Gr oup carbonates, and 

·green and red calcareous quartzite. These congl omeratic lenses grade 

laterally and vertically into the red a;ren.ite. Percentages of quartz 

and feldspar (dominated by pota ssic f e ldspar) in thi s li thology are 

approximately 30 and 14 ·percent ·respectivel y, with lithic clasts ranging 

up to 40 percent but typically less than 20 percent. The remaining 

portion of- this•lithology is a ainor mud matrix. with rare detrital 

mUscovite grains, and a calcite cement. 

In Sheaves Cove Central, loosely indurated red~beds partially 

overl i e well- indura t ed strata comp?sed of green calcareous quartz arenite 
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(Fig. 24). Calcite veinlets form a stockwork through the green 

sediment and rarely penetrate the overlying red-beds. The difference 

in .induration and colouration between the two units is probably due 

to the calcite stockwork. This is related to a fault which bounds the 

north side of the depression and deformB the bedding of both green and 

red strata. Why t~stockwork is so localized is unknown . . 
In summa y, the red arenit~s on the peninsula completely 

infill a depressio~ Sheaves Cove Central, Fig. 25), or are intercalated 

with pebble conglo~erate/breccias (Fiod' s Cove, and others). Inland 

along the northeast coast, east of Boswarlo~, red-beds partially underlie 

the region, and overlie sulphate/clast~c and carbonate/clastic litho-

facies. The red-beds are poorly preser.ved and exposed in this region. 

Along the shoreline of Rothesay Bay, thin to medium-bedded 

brick-red, red-brown, and ,green feldspathic litharenites, and shaley 

sandstone, dipping slightly to the southeast overlie with unconformity 

Precam9rian gneisses of the Indian Head .Complex. Plant debris is common 

especially in the more shaley beds, with calcium carbonate nodules, and 

a calcrete associated with the red-beds. 

3.2.5. Discussion 

The variable stratigraphic position of the three unita described 

above, with regard to one another, and with the underlying St. George 

Group and Table Point c,arbonates,. make it difficult -to establish a valid 

intra-lithofacies stratigraphic sequence. Stratigraphic r elationships 

that suggest this difficulty are the following: 

... ______ ... __ ..., .I 



~· 

.. i 

. : 

j 
··-..::::---- ---

., 

SHEAVES COVE CENTRAL 

:. ~ ~ . 
'•, I ... 

•~~t ------------'----·------
FIGURE 25: Geometry and lithology of Sheaves Cove Central. The arenite 

and conglomerate lenses overly St. George Group carbonates. 
(bg - bea·ch gravel; c - cover) 
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(i) all three units may directly overlie the Ordovician 
strata at the same present-day topographic level. 

(ii) a bedded conglomerate is found interbedded between two 
thick beds of chaotic breccia (Ship Cove East). 

(iii) feldspathic and Uthi.c arenites .appear as vertical and 
lateral facies equivalents of bedded conglomerates. 

(iv) the truncated betiding. of the sediments at the present 
erosion surface (e.'t. Ship Cove East) and the patchy 
distribution o£ strata inland, suggests that the red-beds 
were more areally extensive than now preserved. and 
that adjacent infills which are preserved today 'as 
distinct lithologies were probably intercalated in 
some manner. 

(v) the sandy inatrix of the brecc'ia, and conglomerates, is..__ 
similar in mineralogy and texture .to'-the-feldspathic · "'-.. 
and lithic arenites. l - ~ , . 

The textures of the red-beds (conglomerate/breccia versus 
.. 

arenite) wou1d- depend upon the topographic slope,· amount of physical 

energy imparted pn the source rocks an~ eroded sediments. the amount of 

transport medium available, the time interval available for deposition, 

and the distance travelled from the source. The similarity in mineralogy 

of the arenites (whether acting as matrix or distinct lithology) suggest 

a common source for the three lithologies. 

Thl! most abundant unit within this lithofacies - ts ---the bedded 

conglomerate • with associated arenites. The sedimentary features, the 

variable thicknesses of the red-bed sequence, and the relatively abrupt 

facies co~trasts, suggest that this lithofacies is the product of an 

alluvial fan complex fringing and/or overlying the south, southwest, and 
'-J . .. 

northeast cDasts of the peninsula, and on ' the mainland east of the 

peninsula. 
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Descriptions of modern and known ancient fans (Rust~. 1979) 

indicate that · beddelf' conglomera t~s· , " intercalated sands, as well as 
. 0 . . 

complex lateral and vertical faci.es ~han,ges are typical p~ alluvial 

fan development . and progradation: The chaotic breccias, wit~ evidence 

o/.lobe structures, are 'similar to described debris flows, 
, . .. 

The degree of erosion preve~ts. any lateral. ~.orrelation ·between 

coves. r't' is co~si~d that the karst. topography would certainly control 1 

the initial style of deposition. 'which is preserved in the coves at 

· present, ';'ut that .. as deposition continued and depressions infill~d', the 

., 

.. . 
facies variatio~ .• mai have become more.' unifor11 blanketin~ the inland 

.regio~s. 

The source ' are.a for the red-beds on the ,pentn·sula ·was clearly .. 
the St. ·George 

limel!tones and 

Group carbonates 
. . ) . . 

S t • George 'Group 
\ 

along the south coast, and the table Point 

carbgnates along . the southwest coast. 

This impli~s that the' clast's were. transported .only .ovey; a shor~ dist.a.~ce. 

This is substantiated by ,many of the .large clasts within the red-beds 

with preserved karst surfaces, Th~ origin of ~he red calcareous quartzite · 

clasts, the . abundant angular quartz and feldspa'r hagments\ arl!l the 

muscovite , flakes is problematic. . Possible source rocks on · the peninsula 

are the Clam Bank Formation and .t:})e Humber Atu Supergroup. · The orien-· .. 
tation of the red-bed strata indi.cate that the sediaents were radially 

.· ~hanneled · a~ay from the centre· ~f the p~nin~ul.a (Fig. 1} ~ implying that' 

the Clam Bank Formation and/or the allochthon sediments would have .to be · 

more areally extensive th.an now preserv.ed·. A randoa grab eaaple -of 

arenite from th,.e Clal! Bank Formati.on, j\st wes t of Lourd~s alon1i t he 

ahoreli.ne yj.elded quartz an~ feldspar percentages of . 35 and 18 reap~ctively; 

..i . 

~ 
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mafic volcanic fragments comprised approximately 20 percent of the 
· ·--·-------···--·--·-----··-·---~----

rock . With exception of the lithic fragments, the mineralogy is ~imilar 

to that· found in the. Upper Mississippian red-beds. ReworkiRg and 

transport could remove the unstable volc~mic · fragments prior to 

deposition within the depressions. A detailed study of the Clam Bank 

Formation litho~ogy .would shed light on this provenance problem. 

The source of the red volcanic clasts on Red Island is even 
'll 

more problematic. There is no close e'posed source for these volcanics. 

The cobbles, quartz-feldspar porphyry, are similar in lithology ~o volcanics 

of the Springdale Group in western-central Newfoundland (pers . cmmn. , 

Strong, 1981). The Springdale Group is approximately SUurian-Devonian 

in age (Dean, 1978). The .size of the cobbles on Red Island suggests that 

I 
transport distance was not great, thus indicating a local source. Within -
the Clam Bank Formation, only sediments are exposed along the western 

coast of the peninsula. During the Silur.ian-Devonian, ho\lever, clastic 

sediments and associated felsic and mafic volcanics were deposited in 

Newfound~nd Nova Scotia (Douglas, 1970). Therefore, it is possible 

that the Clam Bank Formation possessed a similar suite of volcanics that 
.. 

were subsequently e ·roded and deposited to · form the lithology utiderlying 

Red Island. 

In swmnary, an alluvial fan complex which prograded to . the 

south, west, and north is ·partially preserved fringing, and overlying, 

th~ peninsula. Initially, a complex of individual fans developed at t he 

mouths .of t hE\ karst palaeovalleys, but, with continued sedimentation, would 

• . 
coalesce to form an extensive aprol}, or bajada, f r inging t he 'peninsula' 

cliffs. Each karst depression wou~d influence, at first, 

' ' 



I 
. J 

i . 

... 

-64-

the style of sedimentat.ion, but as the stra,ta built up·, the style of 
..• -- --··- - ··-·---·--- -·-

sedime.ntation may have become more unifo.rm. Development such as this 

would produce complex vert1cal· and lateral facies changes. 

3.3. Sulfate/Clastic Lithofacies 

3. 3.1. Definition and Distribution 

The lithologies associated with this lithofacies -include 

limestone conglomerate, laininated li~stone, sandy gypsum and green 

lllicaceous sandstone. These are preserved in two, small, spatially 

distinct basins: (1)· at Romaines Brook, and (2} in the Boswarle&-

Piccadilly region (Fig. l). Both basins exhibit a similar sequence of 

lithologies (Fig. 26) which · unconfot1118bly overlie Humber Arm Supergroup 

strata. 

3. 3.2. Basal Conglomerate 

This is a poorly bedded oligomictic, clast-support con-

glomerate COIIpOSed of well tO IDOder~tely-rounded claStS, Cobble tO 

boulder size (up to 0. 75 metres in diameter) • of St. George Group 

carbonates . and Table Pot.nt limestones with rare clasts of red calcareous 

quartzose arenitea. The matrix of the conglomerate is a green 

calcareou~ quartzose arenite. I.n Romaines Brook, the uni.t iS 2.1 metres . 
' 

thick whereas at the Boswarlos section the conglomerate Ia approximately 

1.0 metre thick,. Relief on' the unconformable contact at Roll8ines . Brook ·-1 
is less than 10 centimetres but well defined and sharp (,-tg. 27). In 

the Boswarlos section, the relief appears to be as much as 1.0 ~tre 

but this ma'y be enhanced by later tectoRic events. 
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FIGURE . 26: 

CORRELATION OF THE STRATIGRAPHY IN THE 
"ROMAINES BROOK AND BOSWARLOS-PICCADILLY REGIONS 

Romai nes· Bk 
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In both localities, the unit overlies red and green shales 

of the Humber Arm Supergr.oup. South of the shoreline at Boswarlos·, 

Bell (1948; pg. "34) :r;eported that no conglomerate was encountered during 

a drilling operation. This would suggest that the conglomerate is 
p 

restricted to low lying ·areas. At Romaines Brook, only one outcrop of 

_s9.e unit is exposed. At both localities, the conglomerate is conformable 

with the overlying limestone. 

3.3.3. Laminated Limestone 

This unit differs greatly in appearance between the two regions, 

though the lithology is generally similar. In Rdmaines Brook (Fig. 27). 

the unit is a grey, well indurated, laminated pelletal packstone, 1.9 

metres thick, with rare ostracod fragments. Angular quartz and potassic 

feldspars make up only about five percent of the rock.. The -laminae are 

smooth to wavy and may drape over the clasts of the underlying con-

glomerate. 

At Boswarlos, along the shoreline, the unit is approximately 

7. 7 metres thick, and is co-.posed of interbedded to interlalllinated pl ant-' 

bearing green · calcareous feldspathic arenites. and intraclastic 

packstones (Fig. 28). Locally, the bedding is contorted and brecciated 

in .two horizons (Section A, Fig. 29 - ·in pocket). The lilies tone interbeds 

typically possess a combined 10 to 15 percent quartz and potassic feldspar 

content; micaceous siltstone .lithic clasts may also be co.mon. Within 

the saqdstone interbeds, quartz and potassic feldspar percentages are 

approximately 30 and less than 15 respectively. Fauna within the limey 

beds include ostracodes, brachiopoda, and a telli ocarid crustacean 

· o 
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interbeds plant debris and ost ·acodes are common. 

In hand specimen, tH intraclasts possess marked positive 
0 

relief·, are usually 1-2 millimetres in diameter, and are either rounded 

to angular clasts of micrite or pelsparite. These 'have previously been 

interpreted as oncolitic, or pellets (Bell, 1948; von Bitter· and Gerbel, 

in press). No algal structures are evident, both angular and rounded , 
micritic clasts are present, and the peloids within the pelsparite c l asts 

resemble faecal pellets. clotted in a fine crystalline spar ma~x. 
These latter clasts may either be eroded mounds of pellets, and/or 

grapestone. Usually. a thin micrite rim surrounds the clasts suggesting 

algal? micritization of the clast .edges, 

The limestone beds at Bosva.rlos are rubbly in appearance; 

porosity may be as much as 20 percent in the form of moldic porosity 

developed in the faecal/grapestone clasts. or as minute spaces, · less 

than 30 micco~tres distributed within the micrite matrix. Porosity is 

also associated vi th rare pa.rtially dissolvied gypllum within the micrite 

matrix and sometimes associated with ' the intraclasts. 

The limestone unit, in Romaines Brook, is confined to the 

same outcrop as the conglomerate unit. In the Bo_swarloa region, the 

unit, or parts thereof, is found alo~ the shoreline north and east of 

Boswarlos (Figs, .1; Section A, Fig. 29; Halfway Point - Section B. 

Fig, 29), occurs inland along Miner's Brook (Fig • . 1) • and vas encountered 

" in the subsurface near Boswarlos by driliing as reported by Johnson 

(1954). The unit may overlie (l) Ordovician li.estone (Miner's Brook; 

.,.. 
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Nor~h Shore s"ection - Section G. Fig. 29; (2) the bas~l conglomerate 

with conformity (Boswarlos, Section A, Fig. 29) • (3) grey bioh~rmal 

limestone and green sandstone (Halfway. Point), or (4) be interbedded 

with beige to grey coloured biohermal limestones (Gillam's Cove -

Section D, Fig. 29) . 

Inland, southwest of Boswarlos, drilling has shown t hat the 

.unit pinches out toward the south (cited in Bell, 1948). These 

observation.s suggest that like the conglomerate, the laminated limestone· 

is restricted to lower elevations and thins onto the flanks of the 

Ordovic ian ·highland . to the south. 

3.3 . 4. Sandy Gypsum 

Gypsum with .green-grey laminations (Romaines Brook) or 

gypsum described as sandy (Boswarlos; Hayes and Johnson, 1937) overlies the 

laminated limestone with apparent conformity. In both regions, the contact 

is not exposed though in drill core near Boswarlos, no evident break 

occurs with the underlying unit (Johnson, 1954). At Romaines Brook, -the 

gypsum outcrop is spatially distinct from the limestone and conglomerate 

outcrop. At this locality, the laminated gypsum is exposed in a cliff 

section on the east side of the brook (Fig. 30), and has a well developed 

sinkhole topography on its upper surface. The laminations · are coumonly 

faulted and contorted due either to later tectonics which affect the·. 

area and/or anhydrite-gypsum hydration. The gypsum in the Boswarl os-

Piccadilly basin rarely outcrops. The topography i8 low lying · and 
• 

generally hillocky suggestive of a karst topography developed on the 

sur face. 

· ' 
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FIGURE 27: Basal sulphate/elastic lithofacies, Romaines Brook. 
Conglomerate unconformably overlies Humber Arm 
Supergroup strata, and is overlain conformably by 
well-indurated laminated limestone. Hammer for 
scale. 

FIGURE 28: Basal sulphate/clastic lithofacies, Boswarlos section. 
Rubbly interlaminated limestone and calcareous sand­
stone overly the basal conglomerate with conformity. 
Lens cap for stale . 

FIGURE 30: Sandy gypsum at Romai nes Brook. Approximately 20 
metres of section is exposed. Note faint laminations 
and well developed· sinkhole topography within the • 
gypsum. 
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The thicknesses of. the gypsum units !ire everywhere approximate. 

Based on th.e exposed, structure of the Romaines Brook strata, it is . 

estimated that the gypsum may varyfrOIIl 20 to 60 metres. ·Twenty metres 

of gypsum is exposed in the cliff sect"ion and it is unknown how far it 

ex_tends i.n the subsurface. As the strata are dipping approximately 

5 to.lO degrees to.the south, the maximum computed thi~kness , based on 

the exposed thickness, ·is about 60 metres. I .t is doubtful, however, 

that the gypsu~ would act as a coherent block during the later uplift 

of the strata and would probably flow producing a greater apparent thick-

ness . Near Boswa~os, the gypsum has been estimated to be about 14 
• 

metres in thickness (Hayes and Johnson, 1937), Inland, drilling has shown 

that the unit thins onto the Ordovician highland and dir~ctly overlies 

the Table Point limestone (Bell; 1948). In the Romaim!s Bro~k region, all 

contacts of the gypsum with the surrounding Ordovician .basement are covered. 

3.3.5. Micaceous Green-Grey Sandstone 

This unit is found in the Romaines Brook basin only., and occurs · 

both faulted against the gypsum, east of th-: bridg~. and overlying the 

gypsum, southeast of the bridge along the shoreline (Fig. 1). In the 

: ""' ] 
latter outcrop, the ·sandstone, a few centimetres thick, may not be in 

situ as it is. overlain by Pleistocene outwash deposits. 

The unit is a thinly bedded, platey, green-grey, micaceous 

plant-bearing ·calcareous f"eldspathic:: arenite with maximum exposed 

thickness of 3.5 metres. The mica (muscovite) and plant debris are 

abundant along the bedding .planes. Quartz: and potassic feldspars are 

angular to subangular, and comprise 35 and 16 percent of the rock , 

~~----· ··----------. • ·, -~. -~:" ..;: ·· ~­
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respectively. A mud matrix may be present but is rarely_ greater 

than a few percent. 

3.3.6. Red-Beds and Glacial Sediments 

' Thin red-beds, poorly exposed, overlie the gypsum unit in 

Boswarlos-Piccadilly region. It is unknown whether the green sandstone, 

found in Romaines Brook, occurs between the gypsum and the red-beds. 

In both Romaines 5rook and the Boswarlos-Piccadilly region, 

deposits of outwash sands and conglomerates of Pleistocene age, varying 

up to tens of metres in thickness, overlie, with unconformity, the 

sulphate/clastic and red-beds. Some of these· deposits are -described 

by Brookes (1974). 

3.3.7. Discussion 

The presence of plant-bearing calcareous sandston~s inter-

preted as fluvial in origin interbedded and/or overlying arenaceous 

limestones (e ~ g. Boswarlos) and gypsUIII (Romaines Brook) suggests that 

deposition of the laminated limestone unit and the gypsum occurred i n 

nearshore shallow water basins influenced by fluvial conditions. The 

lack of sandstone within the Ro.aines Brook laminated limestone unit 

implies leas influence of the nearshore processes and perhaps slightly 

deeper water. The occurrence of apparent early gypsum within the 

limestone beds at Boavarlos, suggests that local increases in salinity 

.occurred for the precipitation of the sulphate. 

The basal conglomerate is similar in appearance to conglomerates 

found in creek ~alleys. or wadis, draining highlands in arid cl L.atea 

. . -~.-. · ·. 

·-· · ; :· 
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(Reineck and Singh, 1977; Fig. 289, pg. 193). , As the green ~andy 

·utrix within the conglomerate is si"lDilar to the fluvia+ sands~o_!le_s . _ 

in the overlying units, the conglomerate is a probable proxiAal facies 

of the sandstones, and/or represents deposition under flood conditions 

within a . wadi (e.g. Gillam's Cove) or in shallow basins (e.g. Romainea 

Brook, and Boswarlos). 

In sUJII!Ilary, marginal carbonate and sulphate environments 

influenced by fluvial clastic deposition developed in two spatially 

distinct basins. The similarity in stratigraphic sequence and lithoiogic 

types is considered to be controlled primarily by the underlying basin 

geometry, Both basins are developed on the soft .shales of the Humber Arm 

Supergroup in contrast to the resistant limestone of the intervening 

region of the Port au Port P,eninsula: erosion prior to marine trans~ 

gression would produce relatively broad shallow basins. With an increase 

in sea level much of the basin would be covered by very shallow water 

creating an environment susceptible to high evaporation rates and 

increased salinities. 

l . 
~ 

3.4. Carbonate/Clastic Lithofacies 

3.4.1. Introduction 

This lithofacies is found on the peninsula again in two 

spatially distinct regions: {1) Big Cove~ on the southwestern coast, 

and (2) in the northeastern part of the peninsula between Boswarlos and 

The Gravels (fig. _ 1). A small outcrop of this lithofacies occurs as 

. I 
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well at Dory Cov..e on the· east shore of East Bay. In both main regions, 

the sediments can be traced ·tnl~nd aloog ·valleys where they thin with 

increasing elevation. The stratigraphy within each region is described 

and correlated. 

3.4.2. Definition and Dis~rioution in Big Cove. 

A well exposed sequence of interbedded carbonates, calcareous 

sandstones, and limestone conglomerates/breccias occur at Big Cove, i~ 

cliff-section, ~nd along the lover portio, of Big Cove Creek (Fig. 1; 

and Fig. 31). Jn the cliff-section, three d1screte lenses of this 

lithofacies overlie with pronounced angular unconformity steeply-dipping 
I . ' 

strata'of the Ordovician C~pe Cormorant Formation. Each lens is composed 

of subhorizontal strata which dip to the west and thin both to the nor.th 

and south onto the flanks of the underlying depression. Only the northern 

basin, depicted in Figure 31, and its extension inland is described in 

detail because of its accessibility. The upper 29 metres of.the cliff 

is vertical and inaccessible, therefore the thickness and de~cription 

of lithologies can only be estimated. 

Four distinct un~ts can be defined within the cliff section. 
. ' 

First, a basal poorly-bedded li.estone ·conglo~~erate unconfot11ably overlies 

the steeply-dipptng Ordovician strata. · This is a~imilar-looking con-

glomerate to that found in the basal Bo8Varl~a section. This unit is 

overlain, ·in ascending order, by (2) lensoid and bioher.al lt.e&tone, 

(3) interbedded calcareous sandston~s/limey shales/sandy limestone · .. 
breccia, with well-developed bryozoan bioherms, and (4) an uppermost 

unit of well-bedded limestone conglomerate/breccia.· 

' 

' 
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l 
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(1) Basal Conglomerate - The texture of. this conglomerate 

is similar to the Boswarlos basal conglomerate. Lithologies of the 

clasts are Table Point limestones, St •• George G~oup carbona\es, and Cape 
f 

Cormorant limestones. ciasts, up to 1.0 metre in siz~, · may exhibit 

.. 
karst solution surfaces and pits. The thickness of the unit varies 

from 1.0 to 4.0 metres; an approximate general thickness is -2.0 metres. 

The conglomerate is continuous along the base of the lens with masses 

extending down to the waterline apparently draping down over the steep 

Ordovician strata. 

(2) Lensoid and Biohermal Limestones - This unit is 2.2 metres 

thick and is conformable with the underlying conglomerate. A thin bed 

of green calcareous quartz arenite, pebble-rich at the base and becoming 

shalier towards the top, marks the gradation between the two units. The 

limestone unit is composed of beds, tens of centimetres thick , of 

fining-upward pebble breccia. A thin bed of black shaley, limestone is 

found near the base of the unit. The fragments in the limestone beds 

may be several centimetres in length and are surrounded by a packstone 

matrix. The fragments are Ordovician carbonates, dark micaceous siltstone, 

f and less than 10 percent of quartz and feldspars. Each ·bed of this 

breccia grades upward into an argillace ous packstQne top. The beds are 

oft;en lensoid in shape and usually incorporate mounds of bro~ micrite 

within which a colloform structure is present. These mounds are 0.5 

metre s thick and up to 6.0 metres in length. ·Smaller, more obl ate 110unds, 

tef!S· of centimetres to 2.0 metres in length and thickness, consist of 

upward branching bryozoans. Thick brown calc ite crusts, up to 2 .0 

centimetres in thickness and with a mammellose surface texture of ten 

coat the bryozoans (Fig. 32) • 
. ·. 

.· 
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-----. 
.I Gradational with and overlying .. the lensoid limestones is 

'a sub-unit of'bedded green arenaceous packstones. No macrofossils are 

present, although some ostracodes may be found. Terrigenous clastics 

may comprise · up to SO percent o.f the uri.it. Distorted and conto-rted 

bedding similar to that described at Bosvarlos occurs within this 

subunit, 

( 3) Calcareous sandstones /limey shales/ sandy limes tone breccia 

- These strata are composed of alternating resistant calcareous cliff-

forming and shaley recessive· slope-forming sections. Generally, each 

section is composed of beds, centimetres thick, of feldspathic arenites, 

Lalcareous shale, and limestone breccia. The bedding is typically flaggy, 

with very shallow lenticular trough cross-beds. The shalier strata have 

abundant plant and wood fragments along the bedding planes. Current 

lineations directed east-.west are commonly found within the sandstone 

beds. The limestone breccia beds are similar in lithology to those 

described in the underlying unit, although the clast size is generally 

larger (2.0 to 4.0 centimetres in diameter). 

Within the basal 17 metre s of this unit, towards the northern 

·and southern ends of the margins of the depression, large bryozoan 

bloherlll!;, up to 4 metres thick and 8 metres in length, and generally 

biconvex in shape, are found either isolated o; stacked vertically on 

lower mounds (F.ig. 33) . The mound density rapidly decreases towards 

the centre of the minibasin. 
r 

(4),.. Bedded Limestone·conglomer ate/B r ecc i a - Blocks of thiS 

unit are found as talus at the base of the c liff. Strata, in situ, are .. 
inaccessible within the cliff section. The unit, 20 metres thick, is 

' 



. --

-77-

... 

I 

FIGURE 32: Mammallose texture of possible magnesium calcite 
cement (now a l tered to calcite). The marine cement 
coats skeletal elements within the Lower Sequenc e 

" carbonates . The solid arrow points to the smooth 
outer surface of one mammallon, whereas the open 
arrow indicates a fresh broken surface. Scale bar 
is 3. 0 centimetres. , 

FI GURE 33 : Bryozoan mounds surrounded by sandy and lime 
intermound sediment . In the photograph, one isolate d 
mound and severa l stacked mounds (folming a biohe r m 
complex) are shown. Sca le bar is 1.15 metres • 
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divided into two sub-~nits. The basal unit, 4.0 metres thick, is a 

medium-bedded oligomictic pebble clast-support conglomerate/breccia.~ 

Clasts are subround to angular, less than 4.0 centimetres in diameter, 

and of Table Point Formation and St. George Group affinity. The matrix, 

a grey calcareous arenite, is usually less than 5 percent of the rock . 

This sub~unit displays well-developed planar foresets, dipping approxi -

mately 10 degrees to the south. 

The upper sub-unit is composed of horizontal to sub-horizontal 

beds of conglomera~eccia, dipping to the west, that are identical 

in lithology with the sediments in the underlying sub-unit. Clast 

diameter is generally larger but less than 10 centimetres. Interbeds 

of pebble to sand-size clasts may be present within the upper part of 

this subunit, 

3.4.3. Distribution in Big Cove Creek 

A compilation of the Upper Mississippian section found along 

the creek is given in Figure 34. The creek cuts down through Upper 

Mississippian and Ordovician strata and empties into the Gulf of St. 

L~wrence just north of Big Cove. Erosion has removed much of the Upper 

.Mississippian section along the creek making correlation between outcrops 

difficult·. 

The basal part of the preserved section along the creek 

consists of bedded limestone conglomerate/breccia, with l ittle matrix 

, and'a cal:ci te cement. This lithology is similar to · the uppermos t unit 

~escribed in the cliff-section at Big Cove. Within the creek the strata 

l unconformably overlie Ordovician carbonates and grade upward in to a 

, ' 
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1.0 metre thick matrix-rich conglome rate. The matrix comprises up ,to 
<l 

30 percent of the strata and is a gre~n calcarequs arenite . This lith-

'ology is not unlike the basal conglomerate · in · the cliff-section. 
\ 

Overlying these conglomerates with conformity are massive 
I 

biohermal limestones approximately 5.0 to · 7.0 metres thick . · In another 

outcrop, upstream f rom the . latter, !"imestone conglomerate/breccia 

dippi ng approximately 10 degrees to the west, is overlain by interbedded 
' . . . . ., 

sandstone~ and sandy limestone within which occurs a bioherm. Locall y, 

near the base of the bioherm, there is laminated biomicr i te consistin$ 

of a l ternating calci te and muds tone , very similar to what has been 

called z:ebr a rock. (e.g., Lees, 1964). 

The most easterly outcrop of Upper Mississippian sediments 

along the creek is massive skeletal packstones sandwiched between two 

thick beds of conglomerate / breccia. Immediate!~ to the nor.th o f t h i s 

locality, the conglomerate/bre~ thins onto the underlying Or dov i c i an 

s trata: 

3.4.4. Discu ssion of Big Cove Strat i graphy 

It is apparent that east o f the cliff,..sec t i on, limes tone beds 

and thin sandstone beds are i nte rbedded wi th the limes t one conglomerates/ 

breccias. In the c liff-sec t i on at Big Cove, this relation!hip does 

not occur, and it is interpreted that t he thick sequence of green 

arenit es , s ha les and limeston~s i n t he cli f f are basin- centre facies 

equival ent to t he ~onglomerate/breccias and/or the•interbedde d s~eletal 

carbonates (Fig . 3 4) . .. Th e ba sa l conglome r a te in t he cliff- sec tion and 

( 
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the 1.0 metre thick conglomerate in the creek section are yery similar 

and may indicate that the basal conglomerate in the cliff-section 
;;...,,-

extended inland, and is a facies of the ~onglomerate/breccia which 

overlies it in ~he c liff-section. Cleariy, a significant input of green 

sandy arenite . during deposition of the bedded uppermost co-nglomerate/ 

breccia unit would produce a lithology not u~like the basal c~nglomerate. 

The green sandstone-s, in the cliff-section, exhibiting 

shallow lenticular cross-bedding parting lineations, plant debris, and 

a paucity of marine fauna suggest that these beds were deposited in a 

fluvial-influen ced e~vironment. The orientation of the crossbeds, 

parting lineations, and strata suggests that 1the palaeocurren~ direction 

was from east to west. The bryozoan bioherms b{th~, · n this -~nit and the . , 

. ·t:11t "" 
· ~hru~derlying unit, however, indicate the presence of' rine conditi ons . 

Thus, the environment was one of brackish condit i ons. 

Overlying the Big Cove cliff-section are th.in, poorly preserved, 

beds of the red-bed lithofacies. This relationship can also be seen in 

colour air-photos where red tinges appear on the ground just east of the 

cliff edge a·t Big Cove, and implies that the red-beds eventually prograde d . 
. 

out over the depressions, and are probable fac~es ~quivalents of the 

bedded limestone conglome.r:ate/brec,cia (Fig. 34), Be dding of the red.,. 

matrix congloaierates we-ll east of the cove (Fig. 1) would suggest that 

palaeocurrent direction during the_ir deposition was generally fro!ll east · 

to west. The southward directe d fores e ts at the base ~f the upper most 

unit in the cliff-section may represent a local variation caused ·by 

control of the fluvial syste m by the surrounding basin , t opography . As 

. • 
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the cliff only gives a ~we-dimensional representation of the fores~ 

however. the true direction of currents i'S unknown • 

.... 

. The relati~nship of limestone conglomerate/breccia prograding 

over and infilling small marine depressions is also found in ·New Guinea 

both during the Pleistocene and Holocene (Chappell, 1974). Deltaic 

gravels are recognized overlying and laterally equivalent with coral 
\ 

reefs. The progradation occurs during lowering of sea level. Within 

. the Pleistocene succession, several generation~ of reef and deltaic 

gravel are preserved. It is of interest to note that the study area of 

Chappell's, ~n New Guinea, possesses a similar latitude as that interpreted 

tor the Port au Port region during the Upper Mississippian (Morel and 

Irving; 1978). 

3.4.5. Definition and Distribution in the Northeastern Port au Port 
Peninsula 

Bedded limestones with bioherms, calcareous sandstones, and 

sandy limestone breccias lie unconformably on the karsted Ordovician 

Table Point and St. George carbonates along the hortheast shoreline of 

the peninsula, _and inland a'long major valleys ~nd gullies (Fig. 35). 

This assemblage of lithologies is quite different to that found in the 

adjacent Boswarlos-Piccadilly region. East of Boswarlos, sediments 

characteristic of th,e sulphate/clastic lithofacies intercalate with those 

of the carbonate/clastic and rJd-bed sequences. Such a transition is 

not evident in the Romaine·s Brook basin. 

The most exposed, and best preserved carbonate/clastic sequence 

is found along the shoreline at Bellman's Cove, Mistaken Cove, and Lead 

.. 
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Cove. Other localities which help to define the stratigraphic sequence 

include Aguathuna Creek, Aguathuna "Island". and Aguathuna East (Figs. 

29 an4 35). Despite the discontinuous nature of the strata, a general 

' lithostratigraphy can be defined. 

The carbonate/clastic lithofacies can be subdivided · into two 

groups: (1) a lower sequence composed of carbonates, : i n terbedded 

calcareous sandstones 'and sandy breccias all with bioherms, and (2) an 

upper sequence made u·p of calcareous sandston.es, limestone conglomer ate/ 

breccia and minor lime mudstone. The division between, the two is marked 

by an interpreted break in sedimentation. The generalized geologicaY history 

is shown in Figure 34. 

(1} Lower Sequence 

(iT Biohermal Limestone -- This unit is composed of beige 

to grey. massive, 'unbedded 'bryozoan mounds inte~mound bedded skeletal to 

pelletal packstones/grainstones, and well -developed biolithites of similar 

· lithology to the mounds but lacking th~ associ~ted bedded sediments 

(Fig. 37). A detailed discussion i s found in Chapter 6. 

Biolith~tes are located in Lead Cove, and in Bellman's Cove 

(Fig. 29) where they are plastered against the depression wal ls and have 

-bu\lt out towards the centre of the depressiods. These deposi~s may be . 

as much as 16 metres thick and tens of metres in width • . They are 

overlain abrupt'ly by the middle unit of this sequence with evidence of 

an erosi onal contact. The contacts may be vertical or subhorizontal . 

The centre of the depressions are filled with the younger · units of the 

Lower Sequence. 

I 
i 

t .. 

\ 

l 



,. _____ .._ .. 

l 
i 

I 

~ 

..... 

·t"- ' · ·r: 

··':· 
. . . : 
f 

t 
" t 
! 
~· 

.i 
t 

.. 

• i-

-R4-

• ' . 

The mounds may comprise up to 60 percent of this un~t 

within indiV:idual depressions. Theh' shape and size. vary (Chapter 6; · 

Fig~ 64) though they are generally lensoid to ellipsoidal. Within . the 

depressions, :it is evident th~t mounds . and associated sediments ac~reted 

inward toward the centre. The large•St mounds are found within the 

largest depressions, while abundant intermound sediment and small mounds 

are associated wl th the s~aller depressions,' 

Lithologically, the mounds and biolithites are composed of 

tiny colloform structures with cores of bryozoans, algae and serpulid-

type worm tubes. Associated fauna incl~de brachiopods, pe~ods, and 

·, "'" ' worm? tubes. The intermdUnd sediments are typically large cylindrical 

skeletal and pelletal packstones/grainstones, though thin black shaley 

limestones (Mistaken Cove) ·may occur. Intermound sedimen<s display 

onlap-offlap drapes wiSh ~e mounds. Apparent dips of the strata, 

toward the centre -of th~ depressions, may be as much as _30 degrees 

(Mistaken Coye) • 

In Mistaken Cove, Bellman's Cove, Lead Cove, and Aguathuna 

"Island", the biohermal limestones are locally separated from the Table 

Head limestones by a grey-green micritic and arenaceous ·limestone (Fig. 

3S). In Bellman's Cove, and Lead Cove, the limestone infi~ls -fissures 
' 

and a collapsed cave respectively . 

. (11) Sandy .... Limestone Breccia: and Sandstone -- Tliis unit, up 

to 10 metres thick, is composed of well-bedded to podrly-bedded clast-

support to matrix-support limestone breccia with a green calcareous 

quartzose arenite matrix. The clasts are pebble to granule in s ize, 

and typically very angular (Fig. · 39). Their composition is similar to 



FIGURE 36: 

IDEALIZED 
STAGES OF SEDIMENTATION 

WITHIN 
KARST VALLEYS 

A KARST TOPOGRAPHY C LOWER SEQUENCE 

B INITIAL TRANSGRESSION D UPPER SEQUENCE 

~ ORDOVICIAN LIMESTONE df!ll' BIOSTROMAL LIMESTONE 

!;'.:i.: GREY,ARENACEOUB MICRITE - MICRITIC LIMESTONE 

~ BIOHEAMAL LIMESTONE ~ CONGLOMERATE 

'?::~·/t':! FLUVIAL MARINE ARENITE C(.~Oq BRECCIA CONGLOMERATE 

TERRIGI!NOUB RED-BEDS 

I 
0 
li 
I 



\ 

. . '· -86-

that of Table Point and St" G~orxe Group Locally, some 

.frfigments of the underlying ·biohermallimestone are prese~t. .Interbedded 
~ . - : . 
~ 

with the breccia,· are ~la~t-be~ring gtee~~c&lcareous ~uartiose arenit~s. 

Quartz and feldspar clasts may comprise ~ ~otal of 50 p~rcent of the 

roc~ • . Cross-bedding is common, as are channels of breccias within these 
......, 

sandier beds. Breccia lenses m~y thin and thicken laterally very rapidly; 

In Bellman's Cove, Mistaken Cove, an~ Lead Cove (~ig, 2g), this unit . 

dips toward the centre of the cove, and northWard into East Bay. It ·is 

be'st exposed in Bellman's Cove and varies in thickness Jrom 0 to 10 \ 

metres. 

Thin lensoid-shape bryozoan mounds (less than 15 centimetres 

thick) and ragged~looking blocks eroded from the underlying biohermal 

unit occ'ur within the sandy breccia and sandstones. 

Green plant-bearing calcareous sandstones and shaley limestone. 

1.1) Agu~,thun!'l ••Island" is ·an equivalent facies of the unit . (Section E; 

Fig. 29}. It overlies the biohermal limestone unit but is only approxi­

mately 30 centimetres thick. It is interpreted, that this is indicative 

of the unit thinning to the west. 

fiii) Biostromal Limestone with Mounds -- Bedded skeletal 

packstones and wackestones with small bryozoan mounds occur as discrete 

lensoid bodies. within green calcareous to shaley sandstones similar to 

the sandstones of the underlying unit. The limestone lenses vary in 

preserved thickness from 0 to 5 metres ~d preserved lengths are 

app~oximately t to lO .metres. This unit is poorly exposed and found 

in Bellman's Cove, Lead Cove, and an equivalent facies ~ri Aguathuna 

~sland'(Fig. 29). At the latter locality, only mounds and bedded 

--- --......,..-.... ............... ~ . . -
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FIGURE 37: Biohermal limesto~e, Lower Sequence, of the carb onate / 
clastic. lithofacies at Aguathuna "Island". Note 
intermound sediment \above the hammer • . '. 

FIGURE 38: Contact of biohermal ' limestone with grey time mudstone 
(within dotted lines).' Both iithologies unconfo rmably 
overly Table Point limestone. The lateral distri bution 
of the' grey ,lime mudstone is very local. 

FIGURE 39: Typical breccia within siliclastic unit of the Lower 
Sequen.ce, Be11man's Cove . Width of scale is 3. 0 
centimetres. 
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limestones are present. A large rounded bioherm (3 metres in diameter) 

surrounded by the green sandstones occu'rs at the same stratigraphic 

level as the biostromes in Be.llman' s Cove (Fig. 40). 

The upper contact of these biostromes may be (a) faulted, 

and in contact with the Upper Sequence sediments, (b) the present erosion 

surface, or (c) overl~in by the interbiostromal sandstones. Fractures 

wi.thin the lenses may b e infilled with green calcareous sandstone similar 

to arenites associated within the Upper Sequen ce (Fig. 41), 

(B) Upper Sequence 

The Upper Sequence is characterized by calcareous sandstones, 

conglomerates/breccias, and minor limestone. Lithostra t igraphic correlation 

between out c rop localities is tenuous except in a few instances. Therefore, 

lithologies and loca lities are not described in any particular . order.' 

Discuss1.on of the correlation is give n later , 

(1) Sandy Pebble Conglomerate This unit is found ,in 

l'lellman' s Cove and Dory Cove, and consists of well-be dd e d sandy pebble 

to cobble conglomera te/breccia; t he clasts are of Ordovician lithology. 

In Bellman's Cove, calcareous green sandstone locally underlies the 

unit. Both the conglomerate/breccia and arenite overlie vith sharp 

unconformity ··the underlying lime stones of the Lower Sequence (Fig. 42 ). 

The clastics dip steeply (less than JO degrees) towards the centre of 

the depression in both l o calities. The thickness of the unit varies 

f rom 0 to 6 metres. In Bellman's Cove a fault parallel to the cove 

axis repeats part of this section. 

The unit is overlain with abrupt to gradational contact by 

.. --- -- -l . 
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FIGURE 40: Large mound in Bellman's Cove, surrounded by 
argillaceous intermound sediments. This mound 
is stratigraphically equivalen t with biostromal 
limestones in the cove as well. Hammer for scale. 

FIGURE 41: Fracture in biostromal unit infilled by Upper 
Sequence calcareous arenite (within dotted lines) 
in Lead Cove, Hammer for scale. 

FIGURE 42: Upper S~quence arenite and breccias dipping toward 
the centre of Bellman's Cove (above dotted line). 
These overly, with apparent uncon f ormity, Lower Sequenr:e 
carbonates and breccia (below line). Hammer for 
scale. 
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a thin grey micritic limestone in Bellman's Cove. In Dory Cove, 

Pleistocene deposits overlie the sandy pebble conglomerate with sharp 

unconformity. 
; 

./ 
(11) Calcareous Sandstone and Shaley Limestones -- Interbedded 

calcareous plant-bearing sandstone and shaley limestone are found in 

Aguathuna Creek. These cover biohermal limestones of the Lower Sequence, 

and underlie a grey limestone conglomerate/breccia. The thickness of 

the exposed portion of the unit is 2.0 metres. Both the upper and lower 

contacts are covered. Abundant plant and tree fossils, as well as whole 

shelle d and fragmented ostracodes are preserved in the sediments. The 

• strata are similar to the calcareous sandstone/shaley limes t one unit 

in Big Cove. 

(iii) Grey Micritic Limestone -- Laminated grey mudstone is 

found in Hellman's Cove, Lead Cove, and Aguathuna Creek ove rlying or 

interbedded ~ith conglomerates or breccias. The thickness varies from 

0 to 1.0 metrE' (Aguathuna Creek) and is appr~imately half a metre at 

the other localities. 

(iv) Calcareous Feldspathi c Areni te -- Grey-green and red 

feldspath1 c micaceous arenites with cal cite cement, and abund~n t plant 

debris are on top of the micritic l imestone in Bellman's Cove and Lead 

Cove (Fig. 29). At the no.rthern end of Agua thuna East (Section F; 

Fig. 29) the unit overlies the Lower Sequence. Typically, the basal 
._, 

part of the unit is pebble to granule-rich and fines upwards into 

arenite. Clasts are generally derived fro m the Ordovician st rata . 

Pebble leases and beds may be common in the l ower 10 metres of the unit 
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/ 
interbedded with sandier beds. The thickness of the unit ~aries between 

25 metres (Lead Cove) and 1.5 metr~s (Aguathuna Eas·t). 

The· strata in this unit are thin and ' platey-bedded, P.oorly 

indurated with abundant small planar and trough crossbeds, current 

lineations parallel to the north-south axis of the depressions, and 

pebble channels and small ripple drift structur.e directed to the north • 
(Fig. 43). These sedimentary structures suggest that the palaeocurrent 

direction was to the north and that the sediments were deposited under 

a mid- to upper flow regime. 

Locally, nodules with relic chickenwire texture occur within 

the arenite, The noduies are completely calcitized. · 

Later faulting has uplifted or broken the strata in Bellman's 

Cove and Lead Cove. Pleistocene deposits cover the top of the unit i n· 

all localities except Aguathuna East where a limey pebble breccia overlie s 

the unit. 

(v) Limestone Breccia -- This unit is found in the upper 

~eaches . of Aguathuna Creek, and at Aguathuna East (Fig. 35). Two breccias 

are pr~served in Aguathuna Creek: (a) the oldest, and less extensive, 

is a dark limestone breccia with sandy calcareous matrix, overlain 

conformably? by (b) a light grey well-bedded breccia with a limey matrix 

·(F;ig. 44). Fragments of the dark breccia occur locally at the base of 

the upper breccia unit. Othe r fragments within the brecc ias are all of 

o'rdovician carbonate lithology,· with rare clasts of the underlying 

Lower or Upper Sequence sediments. Locally, pink barite may act as 

cement and matrix in the second breccia. 



' . 

FIGURE 43 : · U~per Seque nce feldspathic arenite, in Bellman's 
Cove. Allegh~nian faulting has fractured and 
uplifted the strata. Scale bar approximatelv 
1.0 me tre. 

FIGURE 44: Upper Sequence conglomerate/breccia in Aguathuna 
Creek. Hammer for scale. 

FIGURE 45: Lower Sequence limestones (a ) are overla in by 
Upper Sequence feldspathic areni te (b), and pebble 
breccia (c). The latter two units thin onto 
a well-karsted Ordovician boulder of Table Point 
lithology. Scale bar is 1.5 metres . 
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overlie, and are probably conformable with, the limestone brectia in · 

Aguathuna Creek though no outcrop of the contact is preserved. 

3.4.7. Dis cussion of Northeast Port au Port Stratigraphy 
' . 

" The ,. relations hip between the Upper and Lower Sequences of 

the carbonate/clastic lithofacies is reflected in Lead Cove. A 

fracture within the uppermost limestone of the ~ower Sequence is fi l l ed 

with green sandstone indicating that priqr to the depos ition of the 

' . Upper Sequence, a break in sedimentation occurred. The exten t of 

e rosion of the limes tones and sandstones during the break, or, by the 

sediments in the Upper Sequence upon resumption of sedimentation i s 

unknown. 

It is ~pparent that the biohermal limestone in the Lower 

Sequence developed on the sides o'f depressions and built outwards into 

the bas in centre. Subsequent deposition ofbyounger units would produce 

a relationship in which th~ older beds could possibly be topographically 

higher than the clastics without any erosion. This is se~n in Bellman's 

Cove , Aguathuna East, Lead Cove, and considered for the distribution of 

the brecc ias and biohermal sediments in Aguathuna Creek. Thus, within 

t he Lowe r s~quence contemporaneous de position of the biohermal limestones 

and sandy breccias and sandstones is possible. The lack of abundant 

Lower Sequence sedime nts in the breccias of the Upper Sequence in 

Aguathuna Creek can be explained by a channe ling of the terrige no us 

clastics down the middle of the depression where no biohermal sedi~nts 

had been de posited. Only in the lower sections of the cree k do thes e 

i 
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limestones occur within the centre of the depression. Unfortunately, 

all other sediments that may have overlain the limestones have been 

eroded or are well covered. 

3.4.8. Other Outcrop Localities 

Many isolated, poorly exposed to well exposed outcrops of the 

Lower and Upper Sequences have not been fully described. in the above 

descriptions (Fig. 35) • . These localities, however, fit well with the 

stratigraphy as established above. 

Iu Miner's Brook, Gillam's Creek, ~nd in the lower part of 

Aguathuna Creek, massive bedded to thinly bedded biohermal limestones 

are poorly exposed. In Gillam's Cr~ek and Miner's . Brook t hese a~e 

overlain by a gre en-grey s~ndstone ~hich may be found loca lly at a lower 

topographic ·level than the limestones. Here, a similar relationship 

is preserved between the sandstone and underlying limestone as found 

in Aguathuna Creek. The sandstones are interpreted to be Upper Sequence 

equivalents. 

In Gillam's Cove , Boswarlos -type laminated lime stone is 

interbedded with beige-coloured biohermal and bedded limestones. A basal 

conglomerate similar to conglomerates in Romaines Brook, Boswarlos section, , 

and the BiR Cove cliff-section, is found plastered against one wall of 
<l . 

the Gillam's Cove and grading upwards into rubbly limestones of the 

Lower Seque nce (Fig. 29). 

In Aguathuna East , beige-coloured biohermal limestones 

underlie the Upper Sequence at the nor t hern end of the sect ion, but are 

r 
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topographically higher towards the southern end. Again, no obvious 

fault displacement has occurred. 

·It appears certain that the stratigraphy along the shoreline 

can be extended inland along the valleys. During the Late Mississippian, 

the environments of de~osition in the karst depressions· were relatively 

uniform along the northeast shore of the peninsula. As a result, a 

stratigraphy can now · be recognized despit~ the present isolated nature 

of· the carbonate/clastic outcrop localities. 

3.5. Lithofacies Correlation 

Intercalation of the three lithofacies occurs in two regions: 

(a) Big Cove, and (b) east of · Bo~?warlos. 

In the Big Cove~ region, as'described previously, red-beds 

overlie and are interpreted as facies equivalents of the grey limestone 

conglomerate/breccia found in the cove. South of Big Cove, red-matrix 

bedded conglomerates can be found at the same present topographic le.vel 
·' 

rather than the carbona~e sequence in Big Cove. East of Big Cove, in 

well-exposed out crop, red-ma trix congl omera t es lie at a higher topographic 

level that the carbonate (Fig. 1). As no major faults cross-cut the 

region betwee n,Big Cove and the areas to the east and s outh, deposition of 

the red-bed sequence is interpreted to hav\ be.en initially coeval· wi th the 

carbonate/clastic succession, an~ with time, prograded out over the 

carbobate basin. 

East of Boswarlos, all three lithofacies are intercalated. 

In Gillam's Cove , the 

facies is interbedded 

laminatet limes tone o f the 

wi t hin b~ limestones of \ . 

/') 

s ulphate/clasti c litho-

the carbonate/clastic 
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sediments typical of the coves to the. east. Just west of Gillam's 

CDve in a small depression (Section C; Fig. 29), red-matrix conglo~erates 

with green mottling of the matrix lie spatially distinct from the beige-

coloured limestones and the laminated limestone, but all within me t res 

of one another. Inland, underlying ·the present erosion surface, red 

sediments are patchily exposed, Therefore, a complicated lateral and 

vertical facie.s Intercalation between the three lithofaci~s is obvious 

in the n?rtheastern part of the peninsula, and indicates that the 

sulphate and carbonate sequences were contemporaneous followed by 

development of an overlying red-bed lithofacies (Fig . . 46). A transition 

between carbonates and sulphates does not occur with:!~e Romaine s Brook 

basin because of the presence of a palaeoridge (Ordovician carbonates) 

that· is still preserved between the two areas, 

Correlation of similar styles of deposition between Big Cove, 
\..J 

and the Aguathuna Creek region is possible despite the 40 kilometre 

distance between the regions. In both localities there is a similar 

sequence of calcareous sandstones and shaley limestones (Lower Sequence) 

overlain by coarse limestone breccia which grades up into red-beds 

(Upper Sequence). The similarity in stratigraphy and lithologies suggests 

that environments of deposition as this strattgraphic level. and the 

causes for progradation of sandstones a~d breccias seaward, were 

relatively uniform across the peninsula~ In southwestern Newfoundland, 

alluvial red-bed progradation (represented by the Upper Codroy Group) 

was caused by uplift in the southeast along the f aulted basin margin 

(Belt, 1968), A similar, and probab)y related, uplift is envisaged for 

the cause of the fluvial and red- bed progradation on t he peninsula. 

··' 
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of V · Interpreted schematic geometry and cor.relation 
lithofacies between Boswarlos-Piccadilly and Romaines 
Brook. Note the Ordovician palaeoridge creating two 
distinct basinal regions. Relative thickness~s are 
approximate .' Karst valleys are not ' shown. 
Legend: Blue - limestone with str~ight angled lines 

( 

is Cambro-Ordovician in age. 
- limestone with vertical lines is the 
laminated limestone and limestone 
conglomerate of the sulphate/clastic 
lithofacies . 

- lim_es,tone with horizontal wavy lines 
is the -LOWJ!r Sequencer.of the 
carbonate/clastic lithofacies. 

Purple - allochthonous Humber Arm Supergroup. 
Yellow"- gypsum/ anhydrite. . 
Green clastics of the Upper Sequence. 

Red - clastics ·o f the ,.terrigenous 
lithofacies. 

O·range/Red - Pleistocene 'sediments. 
/.,.// -non-deposition and/or erosion 
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Palaeontological e vide nce, ho'o1ever, suggests that it may have occ urred 

somewhat earlier than in southwest Newfoundland (Chapter 5 -

Pa-~aeontology and Biostratigraphy) . 
. .,. 

-- ,.J 

3.6. Summary 

In summary, initial Carboniferous sedimentatiof! on the 

peninsula, involved terrigenous sediments along the south and southwes t 

coasts, marine carbonates a long the so uthw~st and nor thea~>t cuast~>, and 

sulphates/carbonates along the northe a st and in the Romaine s Brook 

vicinity. Basins in which carbonates and sulphates were deposited were 

always influenced by continual inp~t of fluvial clastics. Subsequen t ly, 

progradation of the fluvial sediinents over the marine basins o cc un·ed , 

a~ a result of uplift of the peninsula. The style .of fluvial sedimentation . ' 
varied, controlled by karst topography, as ev!dent from the strata in the 

Upper Sequence ·. The pres ence of relic chickenwire gypsum within the 

-~ ·: 
sandstones indicates that ldcally"--.the arenites we re subjected t o hype rsa l i ne 

conditions.' This probably occurred 1fter burial but prior to lit hi-

fication. 'With conti~ued uplift breccias were deposited as deltaic 

sediments fo1Io'o1ed by red-beds of alluvial . fan-braided stre am origin 

(Fig. 47). Thus. the Upper Mississippian stratigraphy on the Por t au 

Port Peninsula records a chang~ from marine to terrestrial ·conditions. 

c 
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CARBONATES 

.AND RED-BEDS 

CLASTICS 
SULPHATES 

AND 
CLASTICS 

FIGURE 47: Interpreted lithofacies c:orrelattol and red-bed 
progradation during the Late Mississippian. 

•' 

The diagram shows the t h r ee ini tially-co e val 
lithof a c iest but; with t ime , the red-bt!d li t hofaci e s 
progrades out over t he other two sequences . 
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CHAPTER 4 

DEFORMATION OF THE UPPER MISSISSIPPIAN STRATA 
IN THE PORT AU PORT AREA 

4.1. Introduction 

Three periods of deformation have affected the Palaeozoic 

strata of western Newfoundland: (i) the Taconic Orogeny, Middle 

Ordovician in age, reflected by transported sediments and ophiolites, 

with relatively flat thrust contacts and west-facing folds, (ii) the 

Acadian Orogeny, Late Devonian in age, characterized by high angle 

faulting, and (iii) the Allegenian Orogeny, Pennsylvanian-Permian in 

age, which locally is typified by high angle faults (see Williams, 1979, 

for summary). The latter deformation is restricted to narrow zones whereas 

the other two deformational events are regional. 

4.2. Pre-Carboniferous Structure on the Peninsula 

The Taconic Orogeny is reflected by the superposition of 

transported sediments and mafic volcanics of the Humber Arm Supergroup 

on top of autochthonous Cambro-Ordovician carbonates and sandstones 

(Williams, 1975) (Fig. 1). Prior to the development of karst and Upper 

Mississippian sedimentation, Acadian deformation tilted the Ordovician 

strata underlying the present peninsula gently to the northwest. On the 

western side of the peninsula, Lower and Middle Ordovician carbonates, 

the Middle Ordovician Long Point Formation, and Silurian-Devonian Clam 

Bank Formation are faulted and steeply dipping to the west and northwest, 

with portions of the Clam Bank overturned (Fig. 1). 
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Flatlying Upper Mississippian' conJlomerates in the Big Cove region 

overlie portions of this steep structure. Several major faults, not 

covered by Carboniferous strata, transect the peninsula from north 
~ 'i.l 

tq south (Fig . 1). However, association with either the Acadian or 

Alleghenian Orogenies . is difficult to determine. 

4. 3. Deformation of the Upper Mississippian Strata on the Pe ninsula 

Deformed Upper Mississippian strata are found (a) along the 

south coast at Sheaves Cove, Lower Cove, and (b) along the northeast 

coast.at Lead Cove, Bellman's Cove, ~d Boswarlos, and (c) a~ Big Cove 

on the west coast. 

4.3.1. South Coast 

In the Sheaves Cove region, two outcrops of red-beds, 

:Sheaves Cove West, and Sheaves Cove Central, are bounded on their nor,.hern 

sides by normal faults striking 50 degrees and dipping steeply to the south. 

At Sh~ves Cove Central, a parallel fault within the red-beds occurs 

near the southern contact of St. George Group strata and red-beds. 

The centre of the outcrop is dropped down a few metres at most. 

' . . 
Cutting red-beds, Ordovician strata, and speleothem- filled 

fissures," are numerous veins and veinlets composed ·of white fine to 

coarsely-crystalling equan t calcite. In the Sheaves Cove region, the 

veinlets are parallel to the fault that bounds the northern side of th.e .. 
Upper Mississippian outcrops . . In Sheaves Cove West, a 15 centimetre thick 

calcite vein part i ally coincides with the fault trace. 
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West of L~wer Cove, large metre-wide fault zones infilled 

with red conglomerate and sandstones, are cut by coarse crystalline 

equant and drusy calci~e veins, Dip displacement on the faults may be 

up to two metres. Fragments~thin the conglomerate are red sandstones 

which appear· to be reworked Codroy red sandstones. It is here , inter-

'preted that faulting and , veins postdate the sediment infill. 

4.3.2. Northeast Coast 

I .n Be·llman's Cove and Lead Cove, normal faults displace the 

Codroy sttata vertically as ·much as ten metres. In Bellman's Cove, 

faults are parallel to the cove-vall~y axis, are found on both sides 

of the cove, and are contained within Codroy strata. The faults are 

high-angle and dip steeply towards the middle of the cove resulting in 

a graben structur~. In Lead Cove, a fault zone has flexed the Upper 

Sequence sandstones fr~m a horizontal attitude in the mid-cove region · 

to a 30 degree west dip adjacent to the fault on the eastern s~de of 

the cove. Lower Sequence limestones and sandy breccia beds, in the 

fault zone, are steeply dipping as well. Only one fauJt zone is 

recognized in the cove, though Pleis,tocen~. cover and later vegetation 

may cover another zone near the west side. 

In Romaine~ Brook, strata are tilted 5 to 10 degrees to 

the south. Cover prevents exposure of· the contact relationships of 

the Upper Mississippian strata and the. underlying Ordovician strata. 

In the Ro~warlos region. two types of deformation ·are .. . 
exposed: (i) high-angl€ normal faulting, and (i,i) intrastratal " 

brecciation due to solution collapse. Several small high-angle faults 

I 
I 
l 
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with a north-south orientation cu'\ the Table Point limestone. At 

Halfway Point, a fault parallel to these minor faults j uxtaposes 

Table Cove limestone and the laminated limestone of the sulphate/ 

clastic lithofacies. · In the Boswarlos section itself, the Upper 

Mississippian beds are preserved in a shallow syncline plunging 

gently to the northeast. This syncline is either a result of the 

high-angle faulting or reflects the palaeotopography of the under-
' ... 

lying Humber Arm Supergroup. 

The second style of deformation, intrastratal brecciation , 

consists of distorted and brecciated beds sandwiched between undis-

turbed calcareous sandstones and ~renaceous limestones (Section A, 

' Fig. 29). This brecciation only occurs in the most westerly ou tcrop 

on the shoreline at Boswarlos. It is not fotmd at the same strati-

graphic level in the adjacent outcrop to the east. This style of 

deformation also occurs in Big Cove. 

In the Aguathuna region, veinlets of calcite often con-

taining mareasite and galena cut Ordovician strata. Calcite veinl ets, 

' in Upper Mississippian strata, lack sulphide mineralization but may 

have rare barite. 

4. 4. Discussion l 
) 

~ .. 
The style of faulting in Bellman's Cove, Sheaves Cove 

-· 

Central, and Lead Cove, suggests that min~-graobens developed, down-

faulting the centre of the coves. There is no visible displacement 

\ ! • 

1 .... ..... ~_.· -
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of the Ordovician strata across these coves except for ~heaves Cove 

Central. In Bellman's Cove, and Lead Cove, depositional contact 

between the Codroy and Ordovician strata is well preserved. It is 

apparent that graben structures do affect some coves on the peninsula 

but only the distribution of the Codroy strata, and the Ordovician 

carbonates underlying the Codroy strata within the grabens the1118elves. 

In the other coves, and inland along the valleys, no 

apparent large fault displacements of Ordovician strata are recognized. 

It is, however, difficult to discern faulting within the Codroy sed!-

menta along the"valleys where cover is so t:xtensive. In Aguathuna 

~Island': the strata orientation changes dramatically from 10 degrees 

northwest to 60 degrees westward over a distance of 10 metres. The 

change in dip is continuous with no f racturing present along the 

flexure. Quarrying has removed the western ~vician-Codroy contact 

thereby .making it difficult to determine whe ther the structure is 

caused by faulting. 

The intrastratal brecciation. in Boswarlos had been sug-

gested t o be due to landslides (cited in Bell , 1948). It is inter-

preted, in t hi s study, t o be c aused by sol ution collapse due to the 

solution of gypsum within limestones. Evideace . t o sugges t this 

conclusion is as follows: 

(i) the deformed structure grades laterally and 

vertically into undisturbed bedding; 

rr 
' 
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(ii) the matrix of the breccia is identical to the 

" lithology of the f!agments; 

(iii) the limestones are very porous; some pore 

spaces have remnant gypsum whereas others are 

filled with late stage calcite cement; or are 

empty; 

(iv) the deformation is preserved as a spatially j 

localized "event". 

The presence of a thick gypsum unit . overlying the laminated 

limestones inland at Boswarlos, and the evidence of partially dissolved 

gypsum within the pores of the limestone sugg~st that local ponding 

within the Boswarlos basin raised salinities high enough to precipitate 

gypsum and gypsiferous sediments. Alteration between saline and 

brackish conditions (interbedded limestones and sandstones, respec-

tively) would create unstable conditions for any gypsum previously 

deposited. During sandstone deposition, the groundwater would be more 

brackish, facilitating early dissolution of the gypsum. The presence~ 

of contorted and brecciated sediments suggests that the strata were 

still wet and/or semi-lithified such that flexing of the beds during 

collapse would nat necessarily lead to complete fracturing. If this 
.r 

interpretation is correct, then dissolution would need to be early. A 

similar environment relationship is considered for Big Cove . 

, __ 
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4.5. Summary 

Two styles of deformation affect some of the Upper Miss!-
;--- I 

ssippian strata oh'the Port au Port Peninsula: (i) high angle normal 

faults due to Alleghanian deformation which may develop graben. struct~res; 

and (11) intrastratal brecciation caused ~y solution of gypsum. 

Faults associated with ··Alleghenian deformation are clearly 

defined only where they cut Up~~r'Mississippian strata: Faults that 

deform these strata within the karst valleys strike gene rally parallel 

to the valley axes, which in turn are parallel to some of ~he major 

faults that deform. pre-Mississippian strata in the central and western 

parts of .the periinsula. Minor faulting along the northeastern coastline, 

however, which is parallel .to these major faults is interpreted to be the 

result of Alleghenian deformation as well. These minor faults,as well 

as the katst vall~y faults,do not appear to transect the peninsula • 

. ·-- ··-- -.. ., ... .....,..,., ........ 
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. CHAPTER 5 

'PALAEONTOLOGY AND BIOSTRATIGRAPHY 

5.1. Introduction 

Numerous, well-preserved fossils are associated with the 

carbonate-clastic and sulphate-clastic lithofacies on the Port au 

Port Peninsula, and at Romaines Brook., and in the Barachois GJ"oup 

sediments in Blanche Brook to the east. Systematic descriptions of .the 

fossils withtn these sediments have never been published. In the 
t 

following discussion, macrofauna! identific.ation is based on deecrip-

tio~s of Upper Mississippian fauna in Nova Scotia by ~ell (1929), and 

Moore and Ryan (1976), and the description of a crustacean in Newfound-

land by Fong (1972). Miospore names are used according to Utting 

" (1978). 'The foraminifera and conodont nomenclature is used according 

to Marne~ (1970) and von Bitter and Gerbel (in press). 

5.2. Macrofauna 

The macrofauna found in Upper Mississippian strata of the 

Peninsula, along with their varirius locations and lithologies , are 
v. 

listed in Figure 48. Though previous workers have ' sampled some of the 

outcrops (Hayes and Johnson, 1938; Sulliv~n, 1940; Hell, 1948) no des-

cript1on of the precise lithology surrounding each fossil was noted. 
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In general, the most fossiliferous sediments are the 

carbonates associated with the carbonate/clastic lithofacies along 

the .- northeast coast of the Port au Port Penin~la. The most unfos..: · 

siliferous sediments witn poorly preserved, or no macrofauna, are the 
• 

clastic units (e.g., as in Bellman's Cove, and along the south shore). 

In Mistaken Cove and Aguathuna "Island", the biohermal 

limestones are locally separated fr.om the underlyiRg Table Point For-

mation by a grey to grey-green arenaeeous lime mudstone. In Bellman's 

Cove and Lead Cove, this same rock-type occurs within fissures and a 

collapsed cave. These latter outcrops are now spatially distinct from 

the n~arby biohermal limestones and are interpreted to be laterally 

equivalent to the biohermal limestones. The most common, and diagnostic, 

fossil associated with the grey lim~ mudstone is the spirifer Mar t inia 

galataea Bell (Fig. 49A). Other species include brachiopods~and one 

pelecypod. In Mistaken Cove, on the northern end of the east wall, a 

' dense accumulation, or cluster, of these brachiopods is present (~ig. 

49B). Most of the fauna associated with this rock type are not ·found 

within the biohermal beige-coloured limestones. 

The biohermal limestones have an abundant and diverse fiu~al 

assemblage. The most common brachiopod found is Beecheria sp. (Fig. 

50). These may be found as individuals or comprise colonies of varying 

dimensions. Beecher ia sp. was found in many forms and no attempt was 

~to. classify to a specific level a9 in Moore and Ryan (1976) . 

• 

l 



FIGURE 48: 

F 0 s s . I l 

T y p E s 

COELENTERATA 

Paraconularia planicostata (Dawson) 

BRYOZOA 

Diploooraria so. 
Stenoporella? sp. 

BRACHIOPODA 

~bocoelia acidica Bell 
leecheria so. 
Camarotoechia acadiensis (Davidson) 
Csmarotoechia atlantica Bel! 
Composit.a so. 
Cranoosis? so .. 
Diaphragmus avonensis (Bell) 
Diaohragmus tenuicosti!ormis (Beede) 
Martella parva Bell 
Hartinia . galataea Bell 
Hartinia thetis Bell 
Ovatia dawsoni (Beede) 
Ovatia lyelli (Verneuil) 
Schellwienella sp. 
Schuchertella? sp. 
Spiri!er nox Bell 
undetermined encrusting brachiopod 

PELECYPODA 

Aviculopecten lyelli Dawson 
Leptodeama ~ (:Beede) 
Leptodes-a dawsoni (Beede) 
Lithophaga poolii (Dawson) 
Modiolus dawsoni (Bell) 
Pteronites gayensis Dawson 
Sanguinolites parvus Bell 

GASTROPODA 

Stegocoelia abrupta (Bell) 
Stesocoelia compactoidea (Bell) 
Straparollus minutus De Koninck 

CEPHALOPODA 

Diodoceras avonensis (Dawson) 
Michelinoceras vindobonense (D~son) 

ANNELIDA 

Serpula annulata (Dawso~) 
Spirorbis caperatus McCoy 
undeter.ined worm tubes 

FORAMINIFERIDA 

Biseriammina? sp. 
Earlandia ap. 

OSTitACODA 

undifferentiated 

ALGAE 

undeterwdned blue-green algae 
Calciaphaera ap. 

OTHER 

lellocaria newfoundlandensis Fong 
Tel 1 'ocarfe sp .. cf .. I- loudgnen'i.U 
Cornulites? .sn .. 
undeterained calcareous tube 
fish teeth 
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Two type~ bryozoans were noted. 
~ 

The most common is 

Stenoporella7 sp. (Cuffey, pers . comm. , 1981) found both as indi-

viduals and as a framebuilder wirhin the biohermal limestones (Fig. 

51). This bryozoan may be free-standing or encrusting. Often coLumns 

are Rresent, composed of vertically stacked encrusting fot:1Ds. The 

other common bryozoan is a delicate brancking pinnate form called 

Diploporaria sp. \These are found as individuals only (Fig. 52). 

Other ~oundant macrofaun~ ·within the biohermal limestones 

are the pelecypods, Leptodesma acidica Beede, Lep todesma dawsoni· Beede, 

and Pteronites gayensis Dawson, the gastropod Stegocoelia abrupta .!lell, 

the conularid Paraconularia planicgstata Dawson (F~. 53), worm tubes of 

Spirorbis caperatus McCo..t· (Fig. 51), and large laminated tubes of possible 

annelid affinity (1:\ig. 54). 

. . 
These latter rubes are particularly common as individuals in 

the biohermal limestones. In addition, a c luster of several ind i '!'iduals '-

occurs in Lead Cove on the southwest wall. The tubes are roughly circular 

in cross-section, taper wirh length, are curved or sinuous in long 

" secti on and possess a laminated wall of fibrous . brown-coloured calcite 

which i s similar to cement · lining various cavitie s within the sediment. 

This cement may have ·coated a membranous tube. The walls also include 
. I. . 

disc r e t e voids altgne d parallel to the walls along the length, and con-

centric in· cross-section (Fij'· 55). · Microfossil s • somewhat similar to 

os-tracodes in outline, may be_ incorporated within the walls. These , 

calcareous tuhes ar~ typically broken at each .end and. may be as much as 

20 centimetres in length. A c omplete tube was never found. 

' 

. ·, 
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.fiGURE 49A: Three views of Martinia galataea: brachial, latera l 
and anterior. Three different individuals are figu r_ed. 
True size. 

FIGURE 49B : . A monotypic shell bed of~· galataea within the f 

grey lime mudstone immediately overlying Ordovician 
strata. · Two individua ls are indicated: · (1) the large 
arrow points io a specimen in positive relief whe reas 
(2) the smalle'r a:rrow indicates a cross-section of the 
fossil. Hamme~; head ·f o r scale. 

FIGURE 50: Beecheria sp.. Brachial view of two individuals. 
True scale. 

FIGURE 51: A photomicrograph of Stenoporella? sp . enc rus ting 
Spirorbis caperatus. Scale bar is 1.2 millimetres . 

FIGURE 52: One branch of a Diploporaria sp. colony is shown. 
Preservation of these bryozoans is generally poor. 
This specimen is approximately · 2. 2 tnillimetres in 
length. 

FIGURE 53: Paraconularia planicos tata. The length of thi .<i 
indiviaua l is 10 centimetres. 
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The lack of septae or cameral deposits removed any possi-

bility• that these are orthoconic cephalopods. The presence 'of 

• 
multiple geopetal fabrics of differing orientation within some of 

these tubes suggests -t+tat they were freely rolling on the sediment 

surface. There is no similarity between these tubes and worm tubes 

described in the Treatise (Moore, 1965). The closest~alogy in form 

may 'be the large worm tubes ' that have been found near · the Gal apagos 

Rift (Ballard- and Grassle, 1979). The broken nature of the ttt9es 

suggests that they were broken from an original habitat and deposited 

on the sea floor. 

Another unusual but common fossil is the _ shrimp-like 

crus"tacean, Bellocaris newfoundlandensis Fong ( 1972). Detailed 

sampling has shown that thi'S crustacean is located in all DIQjor coves 

along the northeastern shoreline froin Lead Cove to Gillam' s Cove. A 

similar organism, Teailiocaris sp., is always associated with Bello-

' 
.. caris · newfoundlandensis in the carbonate/clastic lithofacies but occunr 

alone in the sulphate/clastic lithofacies in the Boswarlos section 

(pers. comm., Dewey , "1981). Bell (1948) · mentioned the presence o f a ;: 

crustacean in the Boswarlos beds but did not describe the fossil. 

In general terms, within the bioherms of .. the carbonate 

unit s , brachiopods, bryozoans, and Spirorbis cS:peratus dominate ·the 

assembla_ge. Within the intermound calcarenites, the assemblage ls 

typicall( dominated by bivalv·es and gastropods. 

.. 

f 
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5. 2.1 Brachiopod Colonies 

Colonies of Beecheria sp., roughly circular to irregular 

• 
:f,n cross-seciion, are found within the biohermal limestones in Lead 

Cove, Aguathuna East, and at Aguathuna "Island" · (Fig. 56). Rarely 

associated with the colonies are .individuals of Composita sp. (Fig. 57), 

Pteronites gayensis, and small conularida. · Vague stratification may be 

found within the colonies. As the clusters are exposed in 'cliff faces, 

only two dimensions are visible. Studies of population density and 

length-frequency analyses were undertaken. Unfortunately only in 

two of the five localities studied could all the individuals be removed. 
r. · \ 

In localities where no specimens cou ld be removed, only population 
. ' 

·density_ was calculated. 
·.t 

F~gure 58 gives the locality of the colonies, 

the number of individuals removed and/or measured, and the population 

density. Figure 59 indicates the form of the ·length-f requency· curves. 

It is apparent from Figure 59· that the five colonies studied 

_.sll display a normal distribution curv~. Another important aspect 

of the dis tribution of the various curves is t hat ·two of the large 

colonies have curves indicating a larger. average size for the brachio-

pods sampled than the average size in the small colonies. · As only 

portions of the large col'onies could be .sampled, however, this variation 

may be a sampling bias; 

., 
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FIGURE 54: Worm? tubes. Three views, from left to right: 

middle section of tube: a tube "cut o.pen showing 
the wall.; and a base of tube showing taper arid· curve. 
Tube bases are very rare in outcrop. Scale: True size . 

FIGURE 55: A section ofaworm? tube 'wall' showing faint 
laminations and vugs (now filled with late stage 
calcite cement) roughly parallel to the length­
direction of the wall.' The flat bases of the vugs 
are oriented towards a dark lamination running the 
length of the 'wall'· (arrow). This lamination . 
may have been the site of the original tube membrane 
around which cement later precipitated. Note the 
microfossil (ostracode?'- open arrow) _in the bottom 
le f t of the photograph, en.corporated within the wall. 
Photomicrograph with·cross-polar!zed l ight. Scale 
bar is 1.5 millimetres. 

FIGURE 56: Brachiopod colony (outlined) within biohermal 
limestone . Hammer head for scale .• 

FIGURE 57: One individual of Composita sp. shown in brachial 
view. True size. 

FIGURE 60: Typical blue-green algal columnar thrombolites from 
biohermal limestone mounds. Photomicrograph with 
cross-polarized light. Scale bar is 1.5 millimetres. 

I . 

f 

_j 





t 
j 
\ 

.. 

I 

-116-
i. 

Brachiopod clusters in·limestones are known in other areas, 

such as Englafld (Hallam, 1961). The pr~sence of normal distribut i on 

plots for length-frequency diagrams was sug'gested by - Boucot (1953) to 

indicate a fossil death assemblage. Olson (1957) stated that this 

theoretical · approach could only be realized if population dynamics were 

considered negligible; that is, in beds deposited during an interval 

' greater· than a few years. Craig (!966) suggested that the curve form 

is initially related to the interplay of mortality and growth rates 

, within a colony. It becomes apparent that there are three conditions 

that will help produce a normal dil!ltribution plot within a living 

colony: (i) predation; (ii) a high mortality/growth rate; and (iii) 
. , ' 

strong currents or wave action. The first and third conditions will 

physically remove the young and weaker individuals. 

Evidence for the brachiopod clusters found on ·the Port au 

Port Peninsula as be·ing life assemblages are the following: 

(i) the colonies are composed only of brachiopods wi th 

rare occurrences of pelecypods and conularida; 

(ii) the irregular shape of the. colonies are not suggestive 

of currents sweeping the shells together ; . 

. (iii) some individuals are visibly attached to other 

specimens or the substrate; . 

( i v) the rela tive simila r density in all colonie s despi te 

the different localities; 

j 
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FIGURE 58: Brachiopod colonies - size and ldcation 
~ · 

location Number of Colony Area (cm2) Brachi opod/Area Brachiopods I 
...... :,./ 

Aguathuna East: ...... 
...... 

~a} most easterly depression 69 166 1:2.98 I 

(b) second depression from 
the east 714 2083 1:2.92 

(c) most westerly depression 736 1944 1:2.64 
Aguathuna 'Island! 1 362 1260 . 1:3.48 
Aguathuna 'Island' 2 ·298 900 1:3.02 
Lead Cove 1 1810 5355 1:2.96 
Lead Cove 2 82 225 1:2.74 

' 0 

· ·~ 
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6 Lead Cove 
0 Aguathu.na East 
• Aguathuna East 
0 Aguathuna Island 
• Aguathuna Island 

BRACHIOPODS (in em) 
total :· 82 
total: 182 of 362 
total: 200 of 714 
total: 69 
total: 166 of 298 

FIGURE 59: Si ze-f requency diagram for five 
br a ch ion od colonies. 
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(v) there is a wide range in shell size, not suggestive. 

of - intense sorting by .currents; 

(vi) th'e good preservation of whole complete shells; 

intense agitation by currents would tend to separate 

the .valves. 

Stratification within some of the colonies suggests that 

currents did orient the individuals either during life or after death. 

It is difficult to determine the effect of predation, or whether the 

mortality/growth rates were high. No borings are visible on brachiopod 

shells and no fractured shells could be found. 

The colonies are overlain and surrounded by beige- coloured 

packstones. It is not clearly understood why colony growth was tert!Ji­

nated. Sediments within the surrounding ·carbonates display rare local · 

concentrations of synsedimentary gypsum. This suggests that s·alinity 

conditions fluctuated, possibly creating unsuitable environments for 

brachiopod colony growth. 

5.2.2. Carhonate Mounds 

The fossils commonly associated with the.biohenns are the 

bryozoan, Stenoporella? sp . the worm Spirorbis caperacus, blue-green 

alga, the large worm? tubes, acce~sory molluscs and few conulari da. 

The br~ozoans and algae from a baffle within the bioherms, 

around which a cement and later sediments• accumulate. The algae occurs 
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as small columnar thrombolites (Fig. 60). Spirorbis caperatus may be 

found encrusting both the bryozoans and alga, or by itself. The 

large worm? tubes may constitute the only fauna within a mound. 

5. 3. Microfauna 

The microfauna in these rocks consist of ostracodes, 

conodonts and foraminifera. 

·,_ Ostracodes - These -arthropods are abundant in all 

More ostracode species occur in the biohermal limestones as compared 

to the arenaceous and argillaceous limestones in the carbonte/clastic 

and sulphate/clastic lithofacies (pers. comm., Dewey, 1981) .• Exact 

details of this diversity are the focus of a present thesis by Dewey 
.• . 

and theref ore only the typical ostracodes ·found are listed here for 

complet~ness. Synonyms for the forms Bell (1929) considered in the 

superfamily Paraparchitacea are Shishaella sp., Shivaella sp., and 

Ca nishae lla sp. Belonging to the superfamily Bairdeacea are: Bai rdia 

ap., Or~obairdia sp., Rec t obairdia sp., Macrocypris sp . , Bythoeypris 

sp., and Fabalicypr i s sp. · Palaeocopids that occ ur in the eadiments -

are Aechmina sp., Moorites sp . , Amphissites sp ." and Binodella sp. One 

example of a Cytheracean, Basslere,J.lJ.i sp:, an·d a s pecimen of Monoceratina 

sp. of unknown affinity are a l so f ound in the ostracode assemblage. 

I' 
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(ii) Conodonts- Limestone.samples from two to five 

kilograms wer~ . collected, for conodont p_rocessing, from all major· 

Upper Mississippian outcrop localities along the nor-theastern shore-, 

line of the peninsula, and at Big Cove. Unfortunately, no conodonts 

were recovered. Fish teem, phosphatic tubes and possible fish scales 

were the only fossils. fo~after processing the rocks. These were 

r ecovered from the grey laminated limestone in. Aguathuna Creek. 

Conodonts have been recovered from Boswarlos , Aguathuna 

Quarry region, and th~laminated limestone in Romaines Brook by von 

Bitter and Gerbel (in press): Fauna recovered include Cavusgnathus 

windsorensis · Globensky, and the form- genus Diplogna thodus. Mine r's 

Brook, Bellman''s Cove, Lead Coye, and Dory Cove were als o sampled but 

only a singl e Oz element o~Cavusgnathus windsorensis was recovered 

(written coum., Gerbel, ' 1981). ' 
(iii) Foraminifera - Two identifiable types of forams con-

sistently occur within the biohermal limestones: (1) Biseriammina? sp • 

and Earlandia sp. The fotams are micritized and poorly preserved bu t 

· relatively abundant . 

5.4. ·flora 

5.4.1. Macr oflor a 

· Plant a~ tree d~bris in the Upper Mississippian strata 

on t he Penins ula are typically t oo carbonized and poorly p rese rv.e d to 

.~ -·• 
J"lt_ 
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be identifiable. Organic carbon fragments a're always found in the 

sandstones of the carbonate/ clastic and sulphate/ cla_stic __ lithofacies. 

They also occur only in the Ship Cove West outcrot alopg the south .. ~ .. r~ 
shore. Thin coal seams approximately two to th~'ee~timet;es thick .. 
occur in sandstones of the Boswarlos section, and in Aguathuna Creek.' ~ ... 

Well preserved macroflora samples were obtained in Blanche Brook 
.. 

appr'oximate.ly one ,kilometre north of Stephenville, in Barachois Group 
/ 

sediments. This location overlies a thin coal seam approximately 12 

centimetres thick previously mentioned by Murray arid._ Howley (1881). 
-() 

As of yet, the list of plant names is not complete, though an age 

(see.below) was obtained (pers. comm., Forbes, 1971). 

5.4.2. Micro£ lora 

(i) Algae - Blue-green algae are present as discrete 

thrombolitic columns (Fig. 60), and as encrusting layers covering other 

fossil-s . in the biohermal limestones: Within the columns, chambers may 

be discerned but differentiation into species was not possib~e. 

Calcispheres~are rare to common within the biohermal lime-
... 

ston.es. They may range up to 200 micrometres but are commonly 100 
.;// 

micrometres in diameter. No preserved specimens of _dasyclad algae or . 

other calcareous algae have been noted . 

(ii) Miospores - Miospores are co~D~~~on in the green limey 

sandstones, all limestones, 6nd gypsum, in t~e Lower and Upper Sequence 

of the carbonate/clastic and sulphate/clastic lithofacies. The red-

) ' 
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\ 

beds do not possess any preserved miospores though wood and uniden-

tifiable plant debris in the Ship Cove West outcrop indicate the 

presence of vegetation during deposition. Preservation of miospores 

varies from gQod tc poor. The assemblage of spores recovered (pers. 

comm., Barss, 1981) include: 

Rugospora minu ta Neves and Ioannides 
Schopfites claviger Sullivan 
Rugospora polyphycta Neves and Ioannides 
Crassipora trychera Neves and Ioannide'S 
Punctaspori tea planus 'Hacquebard 
Retusotriletes· incohatus Sullivan 

'vallatisporites ciliarus (Luber) Sullivan 

Other forms include several undescribed sp.ecies of 

Discernisporites sp. and Spelaeotriletes sp. 

5. 5. Chronostratigraj?hy Based on Fauna and Flora 

\ 

All fauna and flora associated with the Carbon:lfero~s 

!tediments on the peninsula and at Romaines Brook indicate an Upper 

Mississippian age. The flora found in Blanche Brook indicate a West-

phalian C (Middle Pennsylvanian) age (pers. comm-., Forbes, 1971). 

The coal seam underlying these flora had been dated as Pictou-equiva-

lent, or Middle Pennsylvanian (cited in Riley, _1962). 

The fauna anp' flora of the Codroy Group on c;he peninsula , 

are correlative with those in the Windsor Group of N~a · Scotia (Hayes . . ·~ 

and Johnson, 193~- This has been verified by work of Sullivan (1940), 
\ 

Bell (1948), and von Bitter and Gerbel (in press). 

.... ·· 
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(i) Macrofauna - Bell (1929) subdivided the Windsor Group 

of Nova Scotia into five faunal subzones (A to E). ·The Lower Windsor 

(A and B) was di;tinguished by the presence of Compos ita dawsoni, 

whereas the Upper Windsor (C, D, and E) was characterized by. ·the 

presence of the coral Dibunophyllum lambii and the ab\mdant occurrence 

of · the bracbiopods Martinia galataea and Martinis thetis (Bell '. 1929; 

.PS· 71). This zonation by Bell (1929) was confirmed by later work done 

in Nova Scotia "by Stacy (1953) ' · Sage (1954), ·and Moore and Ryan (1976). 
. . .... . 

Prior to this study, a mixture of Upper and Lower Windsor 

fauna was recognized in Aguathuna "Island"" (Hayes and Johnson·, 1938; 

Bell, 1948). Bell (1948; pg. 34) states: . 

· " ••• the fauna includes many species most condonly 
found in subzone B, e.g., (Beecheria) latum, (Ovatia) 
lyelli, Leptodesma acidica, Leptodesma~oni, 
Edmondia rudis, (Paraconularia) planicostata, and. 
Serpula annulata. But, in addition, the fauna .includ-es 
species, e.g., Martinia galataea, Ambocoelia acadica , 
Sphifer nox, and (Ovatia) avonensis that are indica­
tive of an Upper Windsor age. 

(The' brackets surround generic . names now used, as defined by Moore and 

Ryan (1976)). 

Despite this strange assemblage of fauna, the age of the 

sediments was said to be "not older than subwne C and may be as ym;ng 

as subzone E" (Bell, 1948; pg. 34). Other localities studied such as 

f 

Big Cove, Boswarlos, and the c oves to the east were considered to be 

subzone B in age (Sullivan, 194_,0; Bell, 1948). Several genera f ound 

by Bell ~nd others vere not found by the author. This may be. due to 

( 
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the localities being "picked clean" of the fossils by later entbusi-' 
J 

as tic collectors, or, in the case of Ag~athuna "Island", quarrying 

operations having removed portions of the outcrop some of which may . 

have included areas where ~ell an~ the other workers satupled • 
• 

Detailed sampling has shown that the grey to grey-green 
[I 

micritic limestone underlying' the beige-coloured limestones, at Agua-

thuna "Island" and Mistaken Cove, and within fissuns and a collapsed 

cave in Bellman's Cove and Lead Cove respectively, have a fauna of 

Upper Windsor affinity. The diagnosti.~ fossil for this unit (Martinia 

galataea) is clearly. restricted to this rock type. The associated, 

but less abundant brachiopods are also restricted to this lithology 

wit'h one exception (Fig. 48). Similarly, the brachiopods Beecheria 

sp. and the less ajumdant Compos ita sp. are confined to the beige 

biohermal limestones. It would appear that in the Port au Port· Upper 

Mississippian 13ediments, Beecheria , sp. is replacing Composita sp. as 

the most abundant fossil (in contrast to the Windsor Group). 

t' 
Lithostratigraphic relationships indicate that the grey 

limestone is older than, and "equivalent to, the beige-coloured lime-
' 

stones; that is, it is' found either · at the bottom or sides of the 

depressions (Chapter 3). · The presence of Upper Windsor fauna under­

lying or equivale!tt to Low~r Windsor fauna suggests that the faunal 

zonation estab-lished for the Windsor Group in Nova Scotia is not. 

>tpplicable when used to zone the sediments on the Port· au Port Penin- · 

sula. r < 

• 
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(ii) Miospores Further col)lplications wit!, the zonation 

of Bell (1929) ar.Jse when the miospore data is considered. The 

assemblage of miospores found in the sediments correspond to the 

Assemblage Zone 1, of Ut ting (1978; ~), confined to ~h~. Lower 
• 

Windsor strata. The undescribed species of Discernisporites and 
~ ' 

Spelaeotriletes are not similar to species of the same genera described 

by Utting (1978) in the Upper Windsor (written comm., Barss, 1981). 

Therefore, Upper. Sequeqce and Lower Sequence sandstones, Lower C:odroy 

-7 as defined by the miospores, .overly, or are equivalent to, the grey 

micritic limestones which,_ based on Bell's zonation, possess an Upper 

Codroy fauna . 

. (iii) 'conod~nts · : .. : The conodonts found in the Upper Missis-

sippian sediments have been assigned .to the Diplognathodus zone which 

is equated to Be'Il 's subzo.ne A (von Bitter and Gerbel, . in press; and 

'Written COIIID,, Ger~el, 1981). One' of the areas sampl'ed .was the 

biohermal limestones within Aguathuna "Island". Therefore, again, 
I 

conodonts equated to the subzone A overly a lithology possesSing Upper 

Codroy (Windsor) rl'auna. ~ 
. t 

5 .6. .Facies Control- of Fauna 

From the foregoing, it appear!! th<lt macrofauna are 
~ 

restricted to certain lithologies. Correlation of microfauna and 

miospore~ with macrofauna'' produ~ incompatible results. ~n Nova Scotia. 

r 

( 

r 

I 

J 
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the concept of facies controlled fauna in the Windsor Croup was 

first put forward by Sc9enk (1967) and reiterated b! Kelley (19611). 

,,. The restriction o{ certain fauna on the Port au Port 

Peninsula to the grey micritic ' li~estone suggests that they were 

more tolerant of .restricted condit,ions; that is, increased salinity 

and/or a muddier eneironment. The presence of the monotypic Martinia 

galataea shell bed, or cluster in Mistaken Cove, suggests that, 

assuming the bed was not created by the currents sweeping tog~ther 

the individuals, the spe~ies was opportunistic and quickly invaded 

the locality with the initial marine transgression. With the influx 
I 

of more "open" and possibl:y: turbulent waters (biohermal limestones) 

the species disappeared completely, proba~ly due to competition by 

Beecheria sp. which was more suited to the changed environment. This . 
c 

concept_ has also been used by :r:nrsich. and Hurst (1980) to explain the 
) 

colonization patterns of marginal marine enviq>nments by articulate 

brachiopods • . 

Martinla galataea may.also be considered more suitable 

for feeding in muddy substrates with its strongly folded she l l, as 

opposed to the smooth forms of Beecheri a Rp. and Composi ta sp. , 
'. 

anothe r spi rifer (Fnrsich and Hurst, 1974). Such conditions would be 

found in the more protected portions of the coves such as the fissures 

and un!ierhangs along the side walls where muds would preferentially 

be deposited. 

·r 
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5.7. Correlation with the United !t~tes and England 

Correlation of the age of the Lower Codroy sediments on 

the Port ~u Port Peninsula with similar strata in the United States 

.and England . is fig~red ~~Figure 61. Utting (1978) recognized a Similar 

assemblage of miospores in Britain, within the Arundian stage of the 

Dinantian, to his Asse~blage Zone 1. He considered the zone to be as 

young as Holkeria~ or Asbian. Bell (1929) correlated the macrofauna 

with the Vis~an of Belgium and England. In England, the Upper Caninia 

(c2s1) zone to tpe Lower Dibunophyllum (D
1

) zone is corre~ated with 

the Lower Windsor Group. 

With respect to the United States, the Lower Codroy appears 

equivalent to the Early to Middle Meramec of the Mississippian. This 

is based on .the correlation of fauna between Britain and the. United 

States by George et al. (19761, 

Bell (1929) noted that the correlation of Nova Scotian 

brachiopods with brachiopods of similar age in the United States was 

tenuous, and tha't a much better correlation could be made with fauna 

from Britain. This lack of correlation is considered to be due to a 

faunal barrier, the exposed Appalachian'belt, dividing t he Atlantic 

Carboniferous basin from the mid- and western United States faunal · 

provinces (Bell, 1929). 
' . 

·l 
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5 • 8cauna Peculiar! ties on the Port au Port Peninsula 

.B.l. The Peculiarities 

.The Upper Mississippian sediments are notable for the 

excellent preservation of fauna, the enlarged size of ' certain species, 

and · the reduction in divers! t:y and total absence of ce!tain species. 

It is interpreted here that these pecu1iarities are governed by one 

controlling factor: the presence of a marginal marine depositional 

· envirornnent with fluctuating salinities. 

Many of the. fossils can be remqved as whole, intact, . 

.specimens: ' The ins~de structures are typically dissolved, the shells 

recrystallized, and infilled.with combination of silt:, coarse spar 

or sulphide/sulphate minera-lization. 

The size of some fossils with those described by Bell 

.(1929) indicates that several species tend to be much larger; e.g., 

well preserved conularida may be as much as 10 centimetres in length. 

Other good examples are Martinia galataea, Beecher! a sp., a:nd 

Pteronites ·gayensis. Not all individuals conform to this generalization. 

There appear', however, t·o be enough l arge forms for this pectiliarity to 

be recognized. 

The most peculiar aspect of these sediments is the 

absence, or reduction in diversity, of certain fauna in comparison to 

• 
fauna collected by Bell (1929) in Nova · Scotia. Absent from the sedi-

menta are: 

.I 

!) 
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(i) true corals 

(11) fragments of ca~areous algae 

(iii) crinoids/echinoids. 

Reduced to a few individu[ls are: (i) cephalopo~. 

Reduced to two genera are: (i) for~ms'," and (ii) conodonts. 

The complete absence of corals, and crinoids/echinoids, 

from these sediment·s indicates somewhat unusual maTine conditions; ,. 
the reduction of Cephalopods to a few individuals -a iso sugge-sts such 

condt tions. The absence of large numbers of crinoids and echinoids ' 

is found throughout the Codroy and Windsor Groups in eastern Canada 

(Bell, 1929; 1948). This is in complete contrast with equivalent to 

sli,ghtly older rocks both in Britain and the United States where 

crinoids are an integral part of the faunal assembl~ge (Wilson, 1975). 

The low foram and conodont diversity suggests that the environment was 

not of normal marine conditions but one of high stress, excluding a 

large number of g,nera that were abundant at this time in the Missis-

sippian. The conodont Cavusgnathus sp. i s considered to be ·restricted 

to near-shore envi~onments (Higgins, 1981). The numer_ous peculiar 

large worm? tubes also suggests an odd environment. This latter f ossil 

does not appear to have been reported elsewhere from .Carboniferous 

sediments. 

The presence. of only a few cephalopods is of great impor -

tance when c onsidering the f aunal heirarchy. Missing are obvious 
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numbers of this primary predator. The reason for the numerous 

cbmplete articulated brachiopods · and other fauna may be the reduced 

to complete lack of predation of this organism. 

5.8.2. Discussi~n 

~ 
As faunal contt:ol by 1i tho logy is well defined in the 

Upper Mississippian sediments along the northeastern shore of the 

peninsula, the diversity and numbers of each phyllum may also be 

controlled by the overall environment. · 

The carbonate/clastic and sulphat.e/clastic lithofacies 

have been interpreted to represent near-shore marginal marine \ 

environments (Chapter 3). The changing lithology of the intermound 

sediments in the Lower Sequence biohermal limestones, and the change 

in lithology from limestone to sandstone units within the Lower 

Sequence, suggests that physical parameters were continually changing, 

strongly influenced by the fluvial clastic sedimentation. This type 

of ehvironment would stress fauna and flora and remove the forms 

intolerant of changing conditions (e.g . , salinity being the most 

important). These forms would include corals, crinoids/echinoids, 

and various calcareoy.s algae '(Tasch, '1973). The environment would 

also reduce the diversity of the remaining marine fauna, such as 

forams' conodonts. cephalopods. to only the more tolerant foms. 

I 1 
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.Gigantism of fauna iS usually attributed to environmental 

influence (Brouwer. 1967). In the Port au ·Port example, the nutrient-

rich waters draining the exposed landmass, and the abnormal salinity 

conditions may have been ·factors. 

5.9. Environment Interpretation Based on the Occurrence of Fauna and 
Flora 

The genera within the biohermal limestones are recognized 

as shallow water fauna. Recent studies indicate that some articulate 

l>rac.~o.da and brya.zo.ans are . .capabl" of colonizing slightly saline to 

brackish environments (McKinney and Gault, 1979; Furisch and 

Hurst, 1981). The restriction o~ Martinia galataea and other associated 

fauna to the grey arenaceous limestones on the Port au Port 

Peninsula is therefore either a function of mud content and/or salinity. 

1 The biohermal limestones are a more open environment though influenced 

by salinity changes. 

The Upper and Lower Sequence sandstones may contain 

ostracodes but always plant and wood debris. The ostracode diversity 

is lower in the sandstones than in the biohermal limestoRes (pers. 

comm., Dewey. 1981) suggesting an environment of increased stress. 

Plant and flora content as well as sedimentary struc tures in the sand-

stones (Chapter 3) suggest a fluvial influeqce, probably indica ting a 

brackish environment where fresh and marine waters were mixed. 

··~ ·~ - - .. ,,.. .. _ .. -.-:·-:- . . 
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~ 
A similar relationship of alternating_ marine/fluvial 

environments occurs in the sulphate/clas~ic lithofacies. Few fossils 

of ostracodes, and crustaceans, are found in the arenaceous ~mestones '-. . 
whereas abundant ostracodes and thn-a occ~r in the interbedded sand-

stones. Evidence of early gypsum in the limestones beds suggest 

salinities were higher than those in the san~stones. Again, this is 

interpreted as suggesting the influence of fluvial conditions re~ucing 

the salinity of the environment as clastics and plant debris are 

deposited. 

_Along th'e southshore, rare plant debris occurs fn the 

n~d-beds. This, along with sedimentary. structures • implies a com-

pletely terrestrial environment for these deposits. 

' 5.10. Summary; 

It ·is apparent that the biostratigraphy established i n 

Nova Scotia for the Windsor Grqup is inapplicable as applied to the 

Port au Port Peninsula. This in turn has implications f or t he validity . 

of macrof auna! subzones and resultant stratigraphic interpreta tion . 

As the macrofauna are f acies-controll ed, the brachiopod Martinis 

gal ataea cannot be used in a d~tailed time-stratigraphic sense as Bell 

(1929). It would appear tha t the only good control on age may be 
oJ 

0 

miospore zonation. 
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The environment of deposition for the carPonate/clastic 

and sulphate/clastic lithofacies is suggested to b~ a near-shore 

shallow water marine environment episodically influenced by fluvial 

clastic deposition. This influence creates fluctuating chemical and 

physical conditions such thatr changes in the environment from hyper-
. . 

saline to brackish .occur. This fluctuation is int~rpreted to restrict 

fau!la in numbers and 'diversity. Notably absent are true corals and 
. . II 

crin6ids/echinoids which cannot tolerate such conditions. The presence . 
of bryozoan- and brachiopod-rich sediments in an a9normal marine envi-

ronment adds to the•increasing recognition that these fauna, normally 

vconsidered open marine, may colonize brackish to hypersaline environments . 

. 
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CHAPTER 6 

BRYOZOAN/ALGAL BIOHERMS 

6.1. Introduction 

In the Early Carboniferous, carbonate mud mounds ·(called 
I 

Waulsoitian mua mounds from their tyPe locality in Belgium) developed 

in what is now the Unit~d States, Britain and Europe (Wilson, ~975). 

These mounds are mud buildups cha~acteristically containing crinoid 

and bryozoan debris, and developed in o.pen marine facies. The bio-

genic buildups in Upper Mississippian strata on the Port au 'Port. 

Peninsula (this study), in southwestert'\. Newfoundland (Knigh_t, 1976), 

and buildups with similar affinities in Nova Scotia (Giles~ al., 

1978) differ from the Walsortian mounds in structure, lithology, and 

associated sedimentary facies. 

1 .The carbonate/clastic lithoJacies in the northeast p~rt 

of the peninsula, and equivalent lithol~gies in Big Cove, represent 

bioherm development in a shallow-water marine environment which was 

periodically dominated and always influenced by fluvial clastic sedi-· 

mentation. These areas of marine/fluvial deposition were contempora-

neous with basins of evaporite deposition and alluvial fan development. 

Thus, the carbonate/clastic lithofacies is part of a complex interplay 

of terrigenous and marginal marine environments that developed immed·l-

at~l~ adjacent to, ana on the ~dge . of, an exposed highland. 

\ 
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6.2. In te rmound Sediments 

Three different lithologies comprise the sediments 

deposited with the bryozoan/algal buildups in the Lower Sequence of 

the carbonate/clastic lith~facies : (1) limestones; (2) calcareous 

sandstones/shales; and (3) black shaley limestones. 

(1) Thin to medium, well bedded skeletal and pelletal 

wackestones t o grains tones, and pebble. limestone breccias with a pack-

stone matrix (in Big Cove) may surround the mounds. The. fauna is 

• typically dominated by molluscs and ostracodes. Local concentrations 

of brachiopods occur as colonies and in discrete beds (excep t in Big 

Cove). ·Pther allochemS .in these sediments are pellets and trlnor 

intraclasts. Bioturbation is common although not so extensive as to 

destroy bedding. These intermound sediments onlap onto, and drape 

over, the mounds and may exhibit marked lateral thickening away from 

a mound (Fig. 62). Pinchout of tlte strata either against or -unde1: a 
. / . 

mound are coiiDIIon, though less extensive when associated with the 

smaller mounds. · ~ 

(2) ~alc~reous sandstones and shales, with associated 
~ .. 

arenaceous' limestones, described in Chapter J, comprise. a major part 

of the Big Cove cliff sec tion where they s ur round and overl ap bioherms. 

·. 
(3) Thi n fissile beds of b l ack shal ey limestone under l fe 

and overlie several bioherms in Mistaken Cove, as well as 1.nterfingering. 

with l i mes tone lntermound sedime nt s in a thi ,ck d rap e str u c tur e on !:he 

- " 
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south wall of the cove. Loading structure due to overlying biohermal 

limes tones may cause pinch. and swell fabric within the shaley lime-

stone beds (Fig. 63). Tho11gh black shaley limes tones are found in 

sections at Boswarlos and Big Cove, ~they d.o not occur as intermouhd 

sediment.s . 

.. 
6. 2 .l. Di.scussion 

The onlap and drape relationships of intermoul'ld sediments 

with .the QUildups indicate fhat •bioherms possessed positive relief 

'· during sedimentation. It is difficult to estimate the percentage of 

relief 
1
iaJ;; any particular time: however, some mounds may have possessed 

up_ to one or two metres relief 9n the . sea floor . . Positive relief of 

the biostromal limestone (upper unit of the Lower Sequence) was pro.-. . . 
?ably no lllOre than tens of centimetres. Biostrome-:intermound relation-

ships suggest that regions of the sea floor during this period of 

deposit ion were "islands". of biogenic ~uildup with surrounding channels? 

· o.f ·siliclastics. Poor exposure of this unit prevents conclusive evi.:.. 

dence. 

The alternating mound development arid black shaley ~ime-

stone, in Mistaken Cove,-- is interpreted as being caused by ch~nging 
' 

salinity c~nditions, restricting fauna gTowth 41'\d/or changing physical 

energy conditions within the depr~ssion, allawing the deposition of mud and 

creating rather . turbid conditions for carbonate· development. Mistaken 

Cove. unlike the adjacent coves, does qot. have~ extensive · incised . 

• 
.. 
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FIGURE 62: Intermound sediment, fossiliferous carbonate and 
black shaley limestone, are sandwiched between two 
mounds ( M and arrows) in Mistaken Cove. Note the 
sediment drape and thickness increase away from 
the lower mound; Hammer for scale. 

FIGURE 63: Load structures. 'Pinch and sweli of black shaley 
limestone (B) due to load of biohermal limestone (A). 
This package of sediment ove_rlies more bioherrnal 
lilflestone (C). Mistaken Cove. Hammer for scale. 
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kars1; valley extending inland from the coast. Within the adjacent 

coves, it is interpreted that fluvial deposition of sandstones was in 

part contemporaneous with the biogenic buildups along the depression 

walls (Chapter 3). Therefore, the lack of a valley south of Mistaken 

Cove, may have restricted the fluvial influence to mud and· silt 

deposition. The middle unit of the Lower Sequence,, however, is 

represented in the cove. overlying the mound-shaley limestone sequence. 

This suggests that during periods of increased fluvial activity (lower 

sea level?), the cove, as with others. in the region, was inundated by 

fluvial sedimentation. 

6.3. · Biogenic Buildups 

6.3.1. Physical Shape and Size 

\ogenic buildups, in che form of bryozoan/ algal baffle-: 

stones are found either as: (1) discrete mounds within intermound 

sediment; or as (2) large biolithite masses liith little or no inter­

mound sediment, generally plast~red up against the walls of depressions . 

(Bellman's Cove and Lead Cove). 

The buildups vary considerably in size and shape generally 

having an irregular polygonal cross-section (Fig. 64). Both three-

dimensional and plan views of the m~unds are rare due to cover by soil 

and vegetation, or intermound sediment overlapping these structures . 

. ~ 
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A GILLAM's covE 

B AGUATHUNA ISLAND 

C BIG COVE 

0 MISTAKEN COVE 

E BELLMAN'S COVE 

F BIG COVE 

G BELLMAN 'S COVE 

H AGUATHUNA ISLAND 

CROSS-SECTIONS OF MOUNDS 
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Isolated mounds are generally biconvex in cross-section whereas those 

associat,d with DtOund comolexes are irregular to lensoid in shape ; 

The biolithites attached to walls of depressions are the largest 

buildups pr~served in the study area . and tend to be roughly· rectangular 

(higher than wide) in shape. 

Mounds in the lower limestone unit of the Lower Sequence 
' 

exhibit sharp boundaries with the intermound sediments. Mounds in the 

biostromal unit (upper unit of the sequence) in contrast have less 

distinct boundaries and grade laterally into the biostromal limestone. 

Mounds in any of the · units may be isolated or vertically ·to horb:on-

.<' 

tally stacked to form a bioherm complex. ··Uithin small depressions a 

mound complex may completely fill the depression. 

6.3.2. Composition 

The biogenic builaups are made up of: (i) skeletal ele-
\ . 

menta; (ii) syn-sedimentary cement; (iii) fauna/ cement structures; 

(iv) intracement s diment; and (iv.J geopetal sediment. 

(i) keletal Elements - Carbonate mounds are typically 

<;omposed of the trepostome bryozoan Stenoporella? sp. and/or to l umnals 

'of blue- green algae. Bryozoans may be found as upward branching free­

. ·standing ''bushes" oJ a~ encrustations. In thin section, each branch 

of a bryozoan ''bush" may be composed of several, vertically stacked, 

. generations of encrustation (Fig • 65). 

·-' Digitate algal columnals exhibiting poorly preserved 

internal structure occur in prone to vert'ical orientations (Figs. 

60 and .66). Internal structure may appear as slightly inflated ch&mbers 

' 
a 
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with micritic walls. Vague laminations of these chambers roughly 

perpendicular and/or parallel to the growth l,iirection of the columna! 

may occur. More commonly, the structure resembles the clotted 

texture of a thromb-olite (F-ig. 67). 

Both bryozoans and algae in turn encrust other organisms 

such as worm tubes, ostracods, molluscs, and brachiopods, or one 

·another. 

Spirorbis ~aperatus and the large worm? tubes are 

locally significant in the buildups_. Algae and bryozoans encrust 

both, and in some cases use the fossils as a base for colony growth. 

Spirorbis -caperatus and the "large. worm? tubes may also be the sole 

fossil types in a buildup (Fig. 68). Other faun<f associated with the 

mounds are listed in Figure 48 under the heading "bei-ge-coloured 

limestones". Typically faunal variation between mounds _ is negligible. 

(ii) Synsedimentary Cement - Surrounding the bryozoans, 

algae and Spirorbis caperatus are thin (less than 50 microns) to 

thick (several tens of millimetre&) laminations qf fascicular-optic 

calcite and/or equant pseudospar. These are interpreted as neomorphic 

replacements of early cements (see Chapter 8 - Diagenesis)·. 

The fascicular-optic calcite coatings are usually smooth­

edged and connect adjacent faunal elements leaving potential cavities 

or pore spaces which are filled by later geopetal sediment. Th~ 

multiple cement generations are defined by thin micritic laminae which 

can be traced from one coated structure to the next. In ou~crop, 

' 
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FIGURE 65: 
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• Bryozoan bushes composed 9f vertically stacked 
encrusting Stenoporella? _sp •• ' An algal thrombolite 
(arrow) is also pre8ent. Scale as shown. 

FIGURE 66: Prone blue-green algal thrombolites grow right 

FIGURE 67: 

F!GURE 68: 

to left in biohermal limestone. Bases of several 
'colonies.' are apices of the outlined areas on the -

. p\wtograph (e.g., at arrow). Sc.ale bar is 10. centi­
metres. 

Deta iled structure of algal thrombolite. The 
poorly defined chambers give the structure a 
fuzzy appearance. Photomicrograph with .pl ain 
light. Scale bar is 230 micrometres. 

Structures (outlined by dotted line) composed of 
cement (open arrow) and Spiro~bis caperatus (solid 
arrow.) may occur in biohermal limestones. Photomicro­
gr-aph wihh cross-polarized light. Scale bar is 500 
mi ~rome t res . 

.. 

•. -~ .. .. 

, 

! 
i 

j 
f 
l 
j 

l 
! 

l 



!' ... 



.... 

-145-

~·theoe l .. tnae, be~ge 
tens of centimetres. 

to yellowish-white in colour, can be traced for 

In many· cases, there is no visible fossil ;:ore 

to many of these cement structures, and .in thin section, under cross-

polarized light, the structure appears ass spherulite (Fig. 69A). ' 

In hand specimen, · this cement is a dark beige to brown laminated to 

n9n-laminated coating. Cements may comprise up .to 60 percent of a 

mo'und. 

The micrite laminae may also surround discrete "bodies" 

of brown-grey to beige coloured crystalline mudsto.ne (F-ig. 69B)". In 

thin section, the mudstone is pseudospar. These spar bodies are 

i .rregular in shape as defined by the )>ounding laminae, and often have 

a wavy to contorted outline (Fig,' 69C). Several of these ''bodies" may 

be stacked in such a manner that eac.h subsequen.t cement generation is 

built away from the core (whether skeletal or sediment}. 

<iii} Fauna/Cement Structures 

Intergrowths of cement and skeletal elements produced 

rigid structures around which sediment was deposited. Often the outer 

edge of a fascicular-optic calcite fauna/cement structure is lined 

with discontinuous crystallites? of possible manganese oxide. This 

rim may be in contact with intramound ·sediment, or late stage phreatic 

cement (Fig. 70). 

(iv) . Intracement. Sediment 

Intracement sediment includes peloids, skeletal debris 

(whole-shelled ostraco~ forams, and Spirorbis caperatus), micrite 

and few .angular quartz and feldspar clasts (Fig . 71). The distribution 

·--~--··· · · -- -··---

~-

· -----•. - ... - ....J.,. . _. 



FIGURE 69A: 

-146-

Spherul ite stru~· urea (a) . Originally com.posed of 
possible magnesi calcite cement, these structures 
show no faunal or · sediment core around whi ch the 
cement precipit ed. Coarser crystalline cement 
appears to infi 1 voids between these str~tures 
(arrow). Photomicrograph with cross-polarized 
light . Scale bar ·is 500 micrometres. 

FIGURE 69B: Micritic lamina~ (white in photograph)t4efine 
non-geostrophic to geostrophic (vertically 
stacked) mudstone bodies (grey in photograph). 
Large dotted . arrow indicates geopetal? micrite 
fill surrounding finger-like mudstone stuctures 
(l~rge white arrow) composed of laminae and 
mudstone. Various size micritic laminae, shown 
by smaller arrows, may b e found. Photograph of 
a slabbed hand sample. Millimetre rule for 
scale. 

FIGURE 69C: DeP8ils of micrite laminae within mudstone,· as 
in FIGURE 69B. Pseudospar and rare peloids occur 
between the laminae. Very similar geometries 
occur in FIGURES 83, 84, ·and 85. Photomic r ograph 
with plain light. Scale bar is 230 micrometres. 
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of sediment within the cement may be dispersed, concentrated to form 

• clotted textures, or as laminae which ·exhibit the same orientation 

as the cement laminae. lntracement matrix is sporadic in distribution. 

(iv) Geopetal Sediment 

This sediment is characteriz~~ by multigeneration sedi-

mentation (Fig. 71 and 73), and varies in composftion from bioturbated 

micrite to biosparite. The most common allochems are peloids; skeletal 

· fragments and/or whole shells of molluscs, brachiopods, forama, and 

ostracodes; intraclasts (some of which are fragment; of :h~emented 

structures); and less than five percent quartz and feldspar ~s • . 

Spirorbis caperatus is notable in its absence from thi's. type of sediment. 

Each .s~ccessive deposit of sediment is recog~ized by a graded sequence 

and has a ·geopetal fabric. Subsequent generations of sediment become 

more micrite-pellet rich: the skeletal content decreasing very abruptly. 

Microspar occurs as a geopetal fabriC:: within last .stage coarse calcite 

cement infilling pores, and commonly in the ·last sediment generation 

underlying the above fabric~ In 'some mounds, thin beds of euhedral 

gypsum crystals occur near the top of the graded sequenc~s (J.:ig •. 72~. 
. ,. . 4 

Fascicular-optic isopachus cement is usuallY found between 

sediment generations and as an irttraparticle cement i~ packstones or 

grainstones within t~e mounds (Fig. 73). ToWards the top of each 
rli 

generati on of sediment the cement increase~ in ~undance. Contact 
".J 

between the faun~/cement structures and these sediments is always sharp 
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FIGURE 70: 

FIGURE- 71: 

FIGURE 72: 

I FIGURE 73: 
I 
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FIGURE 74: 
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. C> 

,Large scale micritic laminae (large arrow) within 
[biomicrite and coated with possible manganese oxide 
·'{black in colour). A central cavity displays two 
geopetal sediments (1 and 2) and late stage calcite 
cement (white). At A. complex geometry and stages of 
sediment infill ~in cavities is evident by the .-·' 
various laminae. Field photograph. Scale bar is 10 
millimetres. 

lfltracement matrix, along with cement. form rigid 
structures (e, g., above scale bar). Intermound 
sediment, composed of four generations (1, 2, 3, 
and 4), is capped by late stage cement. Note the 
abrupt decrease in allochem percentage between the 
first and second sediment gener~tions. Photomicro­
graph with cross-pohirized light. Scale bar ,is 
1.5 millimetres. 

Euhedral anhydrite/gypsum .crystals within geopetal 
sediment (arrow). Photomicrograph with cross­
polarized light. Seale bar is 230 mic rometres. 

Well preserved multigeneration cement and sediment. 
At ieast seven generations (bottom of photograph) 
o'f sediment possess cement-enriched horizons. These 
horiz.ons oc.cur -primarily .at the top of each generation 
(arrows). In the upper left of the photograph (arrow), 
a fauna/cement structure appears to have blocked the 
flow of, sediment (no sediment occurs to the right of the 
structure). Photomicrograph with cross-polarized 
light. S4ale bar is.1.5 millimetres. 

'ReWorked I . geopetal sediment. The infilled worm? tube 
(open arrow) displays an early ' lithified s.ediment 
(dotted' arrow) inverted with. respect to later geopet~l 
sediment (a). , Small arroW indicate tops 'ot each · 
respective sediment in fill. Ift · the upper left of the 
photograph, another warm? tube shows only earlier 
inverted sediment. The remaining porosity in both 
tubes is filled with late stage calcite cement. Field 
photograph. Scale bar is shown in inches . 
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and well defined (Figs. 71 and 72). It is apparent that there is 

I 
much more cement associated with the fauna/cement structures than 

with the multigenerations of matrix. The cement laminae in the matrix 

are not part of the fauna/cement structures, and it is apparent t hat · 

the development of these structures was near completion . prior to the 

matr.ix deposition. In a few examples, cement laminae comprising part 
v 

of a structure do overlie matrix ; however, this i~ not common. 

"Reworked" geopetal fabric (Fig. 74) and evid~nce that 

th.f cemented structures were actively blocking sediment depo~ition 

(Fig. 73) are two other features associated with the second type of 

matrix. Most geopetal fabrics with brachiopods, mounds and worms? 

tubes are oriented horizontally to shallow subhorizontally with 

respect to the present sea level. Within the worm? tubes, the fabJIIic 

is usually parallel to the length of the tube, Geopetal fabric of 

differing orientations (some invert~d w:!.th respect to the present 

sea level) may occur within a single worm? tube. This indicates 

early' lithification of the initial matrix prior to subsequent reworking 

of the fossil, and infill by a second sediment generation. This fabric 

also suggests that the worm? tubes are rolling freely on•the sea floor. 

6.4. Discussion 

The following sedimentologic and diagenetic criteria 

suggest that the buildups within the _Lower Sequence were . rigid positive 

features on the sea floor, and that this was in large part due t o early 
. , 

lithification: 

' 
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(i) intermound sediments show onlap onto and drape 

over the mot,~nds; so~e drapes originating from a 

mound thic~n dramatically away from the mound 

.along the flBnk; 

(2) fragments of the mounds may be foupd in an over-

lying unit (e.g., the siliclastic unit of the 

Lower Sequence) as well as in intramound matrix; 

(3) fascicular-optic calcite, and pseudospar, associated 

with micrite laminae, are interpreted as. neomorphic 

replacements of early cement!J, and are pervasive 

throughout the mounds coating and cementing together 

bryozoans, algal columnals and early matrix sediment; 

the cement and skeletal elements form a framework 

around which the matrix is deposited; · 

(4) multigeneration internal geopetal sediment, decreasing 

in skeletal content tmd becoming more mi\:rltic 

towards the top of each graded l~yer suggests a con-

striction of !!ediment flow related to the changing 

po,re size and permeability of a rigid cement framework; 

(5) evidence that sediment being depos i ted within the 

mound was actively blocked by a rigid cement' structure; 

(6) multiple geopetal orientations within worm? .tubes 

suggest early lithification; syn-sedimentary cementa-

tion by fascicular-optic calcite is associated with 

" 
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multigenerations of matrix; the increasing abundance 

of this cement towards the top of each sediment 

generation, suggests that .pulses of sedimentation 

inhibits· cementation; 

(7) sharp boundaries between the cement and the inter-

stitia1 matrix occurred prior to deposition of.the 

matrix; 

(8) the orientation of Spirorbis caperatus within the 

fauna/cement structures suggest that the worm was 

encrusting a hard substrate. 

Mounds developed in a nearshore environment would probably 

be affec ted by wave action, tides, and storms, which w'ould create a 

continually agitated environment . This agitation would have sufficie.nt 
• • 

energy to provide a pumping action to drive the several generations of 

sediment into the pores and cavities of the mounds. Other processes 

that may be involved in producing the' sediment are: (1) sediment 

fallout, after a period of agitation, percolating into the cavities, 

and (2) in tramound gene rat ion of the sediment. This last pro cess, how-

ever, would not adequately explain , the several generations of fining 

upward sediment sequences as observed. As a mound accretes, the· grain 

size of the interstitial sediment is determined by the changing fabric 

of the cemented framework. · The centre of a bioherm could receive only 

the finest ma terial whereas the edge would receive coarser skeletal 

material . 

\ 
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One peculiar aspect o~ these bioherms and intramound 

sediment is the lack of boring. Th~ccurrence of Spirorbis caperatus 

apparently encrustiJI& the fauna/cement structures suggests that cemen-· 

tatiori .provided a hard substrate. It is possible that the microenvi-

ronment on the cement surface occluded .boring organisms. 

In summary, these bioherms are interpreted to have formed 

from abundant .synsedimentary marine cements coating skeletal. elements. 

The subsequent fauna/cement. framework was a labyrinth of interconnec~ 

pores and cavities ·which effectively trapped sediment. Seawater pumping, 

and/or sediment fallout from periods of agitation are interpreted as 

the mechanisms which provided multigeneration sediment that was trapped 

within the mounds according to the changing framework fabric of the 

bioherms. At times of quiescence, marine cementation lithified the 

intr4mound sediment. B~ildup of geopetal sediment in the more con-

stricted cavities produced microenvironments of high saJinity in which 

layers of gypsum crystals and nodular gypsum were occasionally precipi-

tated, whereas in the more open cavities, oxidation produced a manganese 

coating at the ·cement/seawater interface • 

• 
6.5. Mound Development in ·the Lowe-r; Carboniferous 

Bioherms in the Upper Mississippian sediments in the Port 

au Port region are almost contemporaneous with the Waulsortian-type 

mo\lnd development in the Lower Carboniferous ill the United States 

. . , 
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(e.g., Pray, 1958; Troell, 1962: Cotter, f96SJ, England (Parkinson, 

1957; Bathurs~, 1959), and Ireland (Schwarzacher, 1961; Lees, 1964). · 

Similar mounds are also found in France, Belgium, and parts of 

central Europe . Waulsort:f.an mounds are characterized by sparse 

crinoid and bryozoan fragments within a mud matrix. The mounds are 

generally found in an open marine shelf~margin facies, or open s.helf 

facies, with negfigible influence from an exposed landmass (Wilson, 
" 

1975) . The size of the buildups varies considerably from tens to 

hundreds of IIU~tres in thickness and hundreds of metres in length •. 

There is no preserved skeletal framework, or baffle structure, nor 

any visible evidence of early multiple generations of syn-s(!dimentary 

cement such as the fascicular~optic calcite in the Port au Port 

mounds. Early lithification is suggested by redeposited fragments of 

the mound facies along the periphery of a mound (Schwarzacher, 1961). 

Other features that may be associated with the mounds are stromato-

' 
tactoid structures (zebra rock). It is thoup;htthat the sparse 

crinoids and bryozoan fragments are remnants of colony of baffles that 

were not preserved. Sea grasses may also have helped to stabilize the 

muds. Ha;os of crinoid debris 11111y surround the lllUd 110unds lending 

support to the idea of crinoids originally acting as baffles (Cotter. 

1965). 

It is apparent that the Port au Port mounds are unlike 

the Wauiaortian-type mounds in size, lithology, and palaeoenvironment. 

One exception is a mound that is underlain by an 'outcrop of zebra rock 
. . 

in Big Cove Creek. The zebra rock may be acting as t he basal part of . 
the 110und. 

· j'i 
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Mounds similar to those on the peninsula occur in south-

western Ne\ifoundland in the Ship Cove region, and inland to 'the 

southeast (Knight, 1976).' At Ship Cove, the Cdrmorant Limestone, 

a black b.ryozoan-brachiopod rich limestone is laterally equivalent to, 

and overlain by, evaporites and/or evaporite-rich siltstones . . It attains 

a maximum exposed thicknes's of 15 metres and ·extends laterally 

for at least several hundred metres. In thin section • there are similar 

cement textures to those in the Port au Port mounds. Although Bell 

(1948) commented on the fauna within this limestone he did not con-

sider it as a discrete mound .or reef. Knight (1976) reported the 

occurrence of a black patch reef on the North Branch of the Grand 

Codroy River, southeast of the Ship Cove region. No de s c rip t i on of 

its lithology was given, but it is as11umed cot;relative to the mound at 

Ship Cove. Bryozoan-algal carbonate banks in the basal Wi ndsor 

Group in Nova Scotia are mentioned by Giles ~ al. (1978), but, unfor­

tunately • the geometry of these banks (or mounds?) was not fully 

described. Thin sections of the bank facies, as depicted in photo-

gra~hs within the report, look very similar to structures within the 

mound facies of the Port au Port mounds . In all the above examples, 

red-beds and evaporites are e:l,ther lateral equivalents, or overlie the 

bioherm (or bank) facies . 
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6; 6. Comparison with Upper Carboniferous Reefs in the Canadian Arctic 

In the Sverdrup Basin, as exposed in northwestern Elles-

mere Island in the Canadian Arctic, Upper Mississippian to Permian · 

strata record ~he change in sed!mentation from the initiation and 

deposition of non-marine red-beds (Borup Fiord Formation) through 

shallow water evaporite and limestone deposition (Otto Fiord Formation) 

to deep water and foreslope carbonates of the Hare Fiord and Nansen 

Formations, respectively (Davies, 1978). Carbonate mounds are ,pre-· 
.. 

served within the evaporites in the Otto Fiord Formation and in the 

carbonates of the Hare Fiord Formation and Nansen Formation. 

Within the Otto Fiord Formation, the mounds are primarily 

composed of tubular algae, though other marine fauna including brachia-

pods and fenestre~lid bryozoans are associated (Davies, 1976). The 

algal mounds are bounded by thid iimestone units t~at sit within thick 

evaporitic sequences. Towards the basin margins, the red-beds of 

the Borup Fiord Formation intertongue with the evaporite/li~~~estone 

succession of the Otto Fiord Formation. 

Within the basal Hare Fiord Formation well preserved 

fabrics occur in bryozoan reefs. Isopac~oua multigenerstion cement 

and sediment are c011110n (Davies, 1977) • . Encrustation of the early 

cement by marine organism in these reefs is analogous to the inter-

preted encrustation of cement by Spirorbis caperatua in the Port au 

Port mounds. · An interesting aspect of the cements .described by Davies 
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(1977) is the occurrence of micritic laminae which separate genera-

tions of cement. These laminae ~re similar, both' in composition and 

·orientation, to the laminae found throughout the Port au Port mounds. 

A more detailed comparison and discussion of cements is given in 

Chapter 8 -_Diagenesis. 

6. 7 Sumry 

Mound development as recognized in the Upper Mississippian 

sediments on the Port au Port Peninsula represents one style of bio-

genic buildup that occurred during Early Carboniferous time. It is 

apparent that these mounds differ from the typical Waulsortian-type 

mounds which are considered characteristic of this time interval 

(Bathurst, 197S; Wilson, 197S). The Port au Port mounds show 'simila~ 

textures and facies relationships to described mounds ~tnd reefs in the 

Upper Carboniferous in Arctic Canada. A peculiarity of the mounds and 

intermound sediments in the Port au Port region is the lack of cri noid/ 

echinoid debris which is ubiquitous during the Early Carboniferous in 

United States a~~ Europe. This peculiarity is general in the Upper 
•. ,'l 

Mississippian sediments in Nova Scotia and southwestern Newfoundland 

· (Bell, 1929; .1948) indicating that the marine sediments represent 

abnormal salinity and/or physical conditions. 
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CHAPTER 7 

SULPHIDE/SULPHATE MINDERALIZATION OF THE 
UPPER MISSISSIPPIAN SEDIMENTS 

7.1. Introduction 

On the Port au Port Peninsula, uneconomic sulphide and 
D . -

sulphate mineralization occurs as stratabound deposits associated 

with Upper Mississippian sediments, and as vein deposits which cut 

both Ordovician and Upper Mississippian strata • 
. - - ---·· · 

Compilation of the mineral types and occurrences related 

to the Upper Mississippian strata is given in Douglas (1976; p. 73-74). 

·\ 
There is no attempt in this study to compile or synthesize the previous 

work, mainly b~ private companies, concerning various aspects of rhe 

mineralized sediments on the peninsula. Mineral evaluations over the 

last hundred years has produced a voluminous amount of literature and 

the reader is directed to NTS Geoscan 1979; Newfoundland, for the 

·· most up-to-date bibliography. The observed. stages of mineralization 

which occur in the Codroy strata, are predicated on the detailed car-

bonate diagenesis, which is fully discussed in. Chapter 8. For the purpose 

.of the following discussion, the reader is directed to Figure 102, p. 192, 

which places the timing of mineralization in context with the overall 

diagenetic sequence. 

7.2. Distribution and Types of Mineralization 

Sulphide and/or sulphate mineralization occurs as strata-

bound de posits within the carbonate/clastic and sulphate/clastic 

lithofac ies along the northeast coast of the peninsula, and at Romaines 

.· .. ~ 
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Brook to the east. No mineralization was found at Big Cove . Sul-

phide-bearing calcite ve~ns and veinlets ~ut Ordovician strata along 

the northeast'ern shoreline of the peninsula near Gillam's Cove, along 

the north coast near The Grave;.> • and the Piccadilly region (Sullivan, 

1940), and-· in tbe Lourdes region (Watson, 1943) . 

7.2.i Sulphates 

Gypsum, an~ydrite, barite, and celestite are the most 

common sulphates associated with the carbonate/clastic 'and sulphate/ 

clastic lithofacies . 

(i) Gypsum and Anhydrite - Economic potential of the 

thitk deposits of the gypsum at Romaines Brook and in the Boswarlos~ 

'Piccadilly region has been described by Hayes and Johnson (19~7). 

Within the limestones of· the carbonate/clas~ic sequence, euhedral to 

I anhedral crystals of gypsum and anhydrite occur within the packstone 1 
. I 

to micrite matrix of some bioherm complexes. These are typically / 

I found as thin l.ahers at the top or close to the top of graded geoptjtal 
I 

sediment. Gypsum also occurs rarely as large euhedrai .crystals W~thin 

late stage calcite cement, and in the micrite matrix of the lamiJ ated 
I 

limestone of the sulphate/clastic sequtmce in Boswarlos. Calcite 
I 

pseudomorphs of lenticular gypsum (Fig. 7 5) occur in micrite t 6und 

I 
at the base of the upper limestone unit of the Lower Sequenc~ in 

Lead Cove, Prismatic calcite pseudomorphs of possible anhydrite 

were found partially infilling a· palaeocavity within a mound (Fig. 76). 

' 
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(ii) Barite and Celestite - -Barite and celestite are 

commonly found together as replacement mineralization within the 

limey sandstones of the Upper Sequence at Gillam's Cove, the 

limestone unit in the Lower Sequence at Aguathuf\a "Island", and 

within the limey sandstone in Ronan Brook. Descriptions of the 

sits in Gillam's Creek and Ronan Brook are given in Johnson (1954). 

Barite also occurs as a cavity-filling mineral within 

the limestones of the lower bioherm sequence in Bellman's Cove, Lead 

Cove, Mistaken Cove, and the deposits in the Aguathuna Quarry ~egion. 

Barite is present as a cement locally, with.in the limestone breccia 

in Aguathuna Creek, and in the chaotic red-matrix breccias in Ship 

Cove West. 

Within the limestOn,:!s, barite, in thin section, COIIBllonly 

covering marcasite and galena, tyt>ically has an interlocking sutured 

crystalline appearance oftep developed as crystal+~ne aggregate splays 

and spherulites within the cavities (Fig. 77). Late stage calcite 

often overlies the barite and infills the rest of the cavi~y. In hand 

sample, the barite is found in ~~ form of crystallized botryoids 

surrounding aqd overlapping sulphides. Strontium content in the barite 

may be as much . as one percent. Chemical analyses of the barite and 

celestite associated with Giilam's Creek and Ronan Brook are found in 

Johnson (1954). 

.. 
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... 8.2.2 : Sulphides 

Marcasite, 'sphalerite~ . salena, and minor pyrite_. are the 
. . , 

common sulphide minerals associated with calcite veins, and cavity-

fills within the ca!bonate/clastic lithofacies. 

(1) Calcite Veins - Thin to thick equant crystalline to 

drusy calcite veins and veinlets cross-cut Ordovician strata on the 

north and south coasts, and Upper Mississippian red-bed lithologies 

along the south coast. Veinlets of calcite cross-cut Upper Missi~­

sippian strata on the nQrth coast of '" the , peninsula but 4o ~ot carry 

sulphide mineralization. Associated sulphides in the veins commonly 

occur along the contacts of , the calcite and the host ro~k (Fig. 78). . , .. 
Generally, euhedral galena crystals are developed on colloform m(lrca-

site. · A mineralogically and paragenetically comple~ vein deposit in 

the Lourdes region (the Goodyear Prospect) is outlined by Watson (1943). 

(ii) Stratabound Deposits - Galena, marcasite, iron-poor 

sphalerite, and rare pyrite infill cavities within the Lower Sequence 

sediments of the carbonate/clastic lithofacies and rarely are as sociated 

with the Upper Sequence clastics. Galena and·· sphalerite occur as. 
. , 

euhedral to anhedral crystals whereas marcasite typically has ·a bot-

ryoidal splay shape. Generally, galena is found overlying the mares­

~· and sphalerite is commonly overlyi,ng'marcasite. All three 

minerals may line the inside walls o f a cavity. An example of geopetal 

sphalerite crystals within a worm tube was noted, ·and suggests the 
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FIGURE ~5: Calcite pseudomorphs of lenticular gypsu!l)o (grey­
white in photograph). Originally, the gypsum grew 
within micrite (dark colour in photograph), but was 
altered to carbonate by late-stage phreatic fluids. 
The arrow indicates a preserved crystal termination. 
Photomicrograph in plain light:. Scale bar ls 375 
micrometres. . \ 

FIGURE 76: 'Prismatic calcite pseudomorph~ of possible anhydrlte. 
The arrows describe the splay ·orientation. The 
alteration from sulphate to carbonate is considered to have 
occurred during late stage. diagenesis. Photomicrograph 
with cross-polarized light. Scale bar is 230 micrometres. 

FIGURE 77: Sutured crysta.l boundaries of barite repl,acing. part of 
a fauna/cement structure. Photomicrograph with cross­
polarized light. · Scale bar is 230 micrometnis. 

FIGURE 78: Calcite/marcasite veinlet cutting Table Point ,lithology. 
The sulphide is always in botryoidal splays · iirllng the 
sides of the veinlet. Haiiiiller fo~ -Beale. 
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passive settling of crystals from a solution. Large pyrite <;ubes 

'Were found in Bellman's Cove associated with gossan zones. Pyrite is 

generally rare in other localities. Late stage iron-rich and iron.: · 

poor calcite~occurs in contact 'With all sulphide minerals and is the 

last precipitate within the cavities. Replacement of late stage 

calcite by marcasite or pyrite occurs rarely and is associated with 

Upper Sequence clastics in the carb'onate/clasti c lithofacies. 
r 

The ~uperposition _ of sulphates on sulphides is common in 

deposit:s where the two types of "minerals occur. Contemporaneous 

deposition is · interpreted 'Where adjacent examples of ~his relationship 

and its :reverse are found. A superposition of marcasite-sphalerite-

galena occurs within the sulphide assemblage. This relationship is 

similar to the order of precipitation of sulphides from a fluid con-

trolled by Eh and solubility J:JOtential (Barnes, 1979). The large pyrite 

cubes at Bellman's Cpve appear more related to precipitation from fluids \ .. 
m~ving a long late~ fault · zones, and thus are not confide red part of the 

above sequence. 

If the solubility sequence of sulphides is extended, 

sulphates (barite to celestite) precipitate after galena (Barnes, 1979). 

Although no sequence of precipitation 'Was noted bet'Ween barite and 

celestite in the study area, barite commonly overlies sulph ides. 
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7.3. Controls of Mine~alization 

7.3.1. Stratabound Deposits 

Factors which appear to control the style and distribution 

of mineralization in these deposHs are : (i) faults;. (ii) texture of 

.the host sediment; (i ii) basement topographic relief; and (iv) the 

distribution and d'iageneti-c environment of the host strata and the 

minera lization source. 

(i) Faul ts - Several north-south oriented faults cut t he '· 

Ordovician and Upper Mississippian sediment in the northeas t e r n p a rt 

of the peninsula. In Bellman's Cove, Lead Cove, and Mistaken Cove, 

gossans are associated with these faults. Faults cutting t he Uppe r 

Mississippian strata , or Ordovic i an strata, ~lsewhere on the peninsula 

have no similar associated gossans • . It is . within these gossan zones · 

that the large pyrite cubes occur. 

In Lead Cove, and Mistaken Cove,Cinine~alization appears 

to pre-date the faulting. Faulted mineralized blocks of -limestone a re 

surrounded by.non-mineralized fault breccia. In other mineralized 

localities to the west, no faults are apparent, though mineralization 

'1s just as pervasive . 

(ii) Texture of the Host Sed i ments - Stratabound depos its 

are found within t:11bbly, relatively porous limestones , and sands ton es 

of the Lower Sequence, and rarely within the Upper Sequence sands t o nes 

ev en though they are almost as porous. These depos its do not oc cur 

J 
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within the terrigenous red-bed lithologies along the south or southwest 

coast, though loca}ly, barite was found replacing late stage calcite . 

cement. At the time of mineralization, it is interpreted that inter-

granular pores within the intermound limestone and sand.stone sediments, 

as well as the intramound P?res, provided good porosity and ·permeability. 

The porosity of these sediments is in marked contrast with 

the relatively impermeable Table Head and St. George Group carbonates 

whtch 'under~e the Upper Mississippian sediments. Fluids penetrat!"ing 

the region would preferentially ·travel through t:he Upper Mississippian 

sediments. Mineralization within these sediments may locally penetrate 

the. Ordovician strata via cracks within the contact w~lls (e.g . , 

Aguathuna "Island"). Apart from this minor variation~ the only miner-

alization occurring within the Ordovician sediments, related to this 

time period, are sulphide vein deposits . 

. (iii) Ba sement Palaeotopographic Relief - The kars t I 

topography developed on the Ordovician prior to deposition.of Upper 

Mississippian sediments has been previously discussed in detail 

(Chapter 2). It 'is sufficient to say that fluids travelling down- .' ,~ 

gradient would be preferentially channeled into buried karst valleys 

"due to tl'le l ow permeability of the Ordovician rocks, and the lower 
. . 

piezeometric gradient _within the valleys .caused by the palaeorel~~f 

of the Ordovician surface. The fluids would probably travel along or 

near the base of the Upper Mississippian-Ordovician contact. 
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' 
(iv) Distribution and Diagenetic Environment of Host Rock 

' and Miner:alization Source - Two observations can be made with respect 

.<J 
to the stratabound deposits on the peninsula in conjunction with 

relating a mineralization source rock or area to the host strata. First, 

relatively thick deposits of 9andy gypsum are adjacent to, or in the 
. ~ 

vicinity of, the stratabound mineralizatipn, and occur at a somewhat 

higher ele~ation,. '· Second, stratabound• deposits only occur in a marine/ 

fluvial sediments and never in the terrigenous red-beds along the south 

or southwestern coasts. 

Gypsum strata would "provide an ·abundant and adequate. 

source of sulphate to be complexed with barium and strontium, and 

reduced/complexed with lead, iroR ·and zinc. An equally abundant, and 

adequate, medium within which which the complexes can be transported 

from source to host strata, is a groundwater system. Other factors 

_which suggest that this model may be correct are: (i) it is interpreted 

that much of the mineralization in these deposits is pre-faulting; 

(11) 
. . . ~ 

the palaeorelief of the· Ordovician surface is sufficient to pro-

vide effective flow gradients; and (iii) the buried karst valleys are 

effective channelways ' for groundwater which would travel through tb.e 

Upper Mississippian sediments due" to th-e contrast in porosity with the 

Ordovician strata. The observation of the gypsum-mineraliza\~on rela­

tionship as outlined above would explain the paucity of mineralization 

in Big Cove; that is, no gypsum source is available. I~ the northeastern 

part of the peninsula, the present distribution of gypsum is restricted 
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--to the Boswarlos-Pi~cadilly region. The gypsum may have been more 

areally extensive, or its drainage system, such that th~ coves f*ther 

. ~ 
to the east were affect-ed by the sulphate-laden waters. 

The second observation, . that stratabound deposits only 

oCcur in the ' marin~/f'!Uvial ·sediments:~~ suggests some kind of. control . ' ' 

associated with a meteoric-marine interaction. Though th~ host strata 

--wouli have' to be ·i11111ersed within the phreatic zone during mineraliza-

tion, a marine basin may have still existed to the n~rth of the region. 

·The recognized sulphide-sulphate solubility ordering found within the 

. . 
sediments, however, would tend to indicate th,at Eh and solubility 

potential were more important than · a meteoric-marine interaction. 

Although the mechanism for transport and .mineralization 

of the limestones and sandstones of the Lower SequEJnce has been dis-

cussed, the source for the cations (P~, Zn·, Fe, Ba, and Sr) is more 

problemcitic. The barium and strontium may be supplied by the removal 

of strontium from the limestones during their diagenesis. The source 

for the other cations may pe the source ro~k of the · terrigenous 

cla.stics in the red-beds, and the Upper Sequence terrigenous sandstones 

which cover or ' are adjacent to the Lower Sequence sediments. 
. t1i 

7. 3 .2. Vein Deposits 

The controls of mineralization for this style of mineral!-

zation is interpreted to be tectonic. The source of the fluids within 
! ~ 

the vein deposits could be verified by sulphur and le~d isotope studies. · 
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This is beyond the scope of this study. However, a brief discussion 

dealing with the problem is given. • 

If the veins are interpreted to be related to . Alleghenian 

fauf.tinS. then it is possible that the fluids were derived in some 

manner from ~renville basement under,lying the Cambro-Ordovician strata 

on the peninsula . Gravity anomaly maps (Zietz et al., 1980) indicate -- ' -

a near surface gavity anomaly underlying most of the peninsula. As 
Grenville basement outcrops south of Stephenville, it is interpreted 

that the ~nomaly is basement. 

· 7.4. Summary I 

The model used here to explain the stratabound mineral 

depo~ts _ is similar to models used for barite and celestite deposits 

of equivalent age in Nova Scotia (Felderhof, 1978) . It is suggested 

that four mineralizing events took place during and after the deposition · · 

and burial of the potential host strata: 

(i) primary synsedimentary mineral'iza tion of, gypsum · and 

.anhydrite; 

(ii) ·sulphide and sulphat e mineraliza tion from groundwater 

controlled by host strata porosity, Eh and the s ol u-

bility,and poss i bly some meteoric-marine int erac t ion; 

(iii) locally res tric ted replacement of str~ta by bari t e 

and celestite; 
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I 

(iv) faulting and associated mineralization-locally over­

printing a pre-tectonic mineralizatio~~in~ occur , 

within the Ordovician and Upper Mi~issippian lithol­

ogies. 

Later vadose alteration of the sulphide and sulphates would 

dissolve and/or redistribute the elements from their original sites. 
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CHAPTER 8 

~ 

DIAGENESIS OF THE CARBONATE/CLASTIC 
LITHOFACIES (and Speleothems) 

·8.1. Introduction 

Diagenetic textureg in the carbonate/clastic lithofacies, 

and speleothe111 cements, which coat and/or infill fissureS"' in the Ordo-

vician 11.mestone, are described and divided temporally into three 

paragenetic stages (Early, Middle,' and Late).· The textures include 

.. " - I 
e~rly and late cements, fabric s pecific dfssolOtion features, several 

styles of neol)lorphism, desulpherization, dolo-mitization and mineral{za-

tion. · Thin section pet:ro&raphy, iron and ~alcite staining techniques 

(Evamy~ 1969), electron microprobe analyses, and cathodo,luminescence 

were used t:o ou!=li_ne t:he diagenetic tex.~ures. ·The first part of this 

chapter· contains· descriptions of the diagenetic textures; this is 
' 

folldwed by their interpretation, and a discussion. 
b ~ · 

8 . 2. Cemen.ts 

Six types of cements are recognized (Fig. 79). The first 

two, fascicular-optic calcite and spherulitic calcite, are restricted 
~·: 

to the marine carbonates. Three cements are c onfined to speleothem 

deposits: radial columnar calcite, plumose calcite, and radial bladed 

· calcite. The sixth cement, equant blocky calcite., is found throug~out 

all lithofacies. ·All cements but radial bladed and equant blocky c a l-

cite appear as neomorphic alterations of -an original p_recursor with 

relict internal fabric preserved in some cases . 

l . ' 
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(i) Fascic~lar-Optic , Calcite ~FOC) Singie to multi- , 

·generation fascicular-optic ·calcite (Kend<!-1.1, 1977) acts as· an inter-
. \ 

and intragranular cement. It is particularly conspicuous coating 
Q . ~ 

bryozoans, algae, and· worm tube~, to form complex fauna/cement struc-
' . 

tures in bioherms. This cement is the neomorphic replacement of a 

fibrous to acic~lar prec~rsor, with radially divergent relic fibres 
. . 

(Kendall, 1977) . . In Port au Port examples, relic fibres, or inclusions 

defining o»iginal fipres, are commonly pr~served (Fig . 79). The neo-
... 

morpbic alteration of an aggregate of fibres yields a fan shape. ,The 

fan·g are usua!.ly elongate, often with consertal to sutured boundaries, 
' ' \ 

vary in length from 100 to 1000 micrometres, ~a~d with length 

Under crossed-polarized light, each from 100 up to 500 micrometers. . . I . 
fan displays sweeping ~xtinction that. terminates at the contact 'with 

an adjacent -{an : The ends of a fan may be sharp lmd well defined 

. . /' 
(/ 

(Fig. BOA) ~or ragged (Fig. 94), terminating in fibres of unequal length . . 
~ . 

Where many fans are stacked_ together, a compoun4-1ens effect is ~-

duced by the ~imilar oriente~ extinction patterns (Fig. SOB). 

Peloids, Spirorbis caperatus, foraminifera, thin micritic 

laminae, and dispersed micrite are found within the cement where it 

forms a fauna/cement st~ucture. The micrite laminae separate single 

to multiple ~enerations of cement precipi~atio~ that are concentr i c 

around faunal elements (Fig. SOC). Fascicular-optic calcite is also 

found infilling or coating other bryozoans , ostracodes, brachiopods 

.. _ 
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and pe~ecypods ·not a~sociated 
. \' 

~~ ~:1.- fauna/ co~n t 't roc turo~ ; • in <or-
; 

1amina'ted with mul!igeneration ·sediment, ;iS well aa, occ:luding inter­

preted cavities in zebra rock f?und in Big Cbve Creek. · As d_escdbed 
. . 

in Chapter 3, zebra rock is ·composed of inter~minated biomicrite and 

calci.te spar. The latter is composed ot fascicula~-Qptic ca'l.cite .as 

fan-shaped masses infilling horizontal cavities (Fig. 81). Assoc·i~t;ed. - . \. . . 
with the FOC cement is· equant blocky calcite similar in · mor~hology to .. . 
the late stage cement (see below). 

_ Micr~probe analy~es indicate that the cement gener;lly has 

between 0.3 t9 0.6 mole percent magnesium carbonate, but may contain 

as much as '!.0 percent. No detectable strontium and usually less than 

0.5 perc ent of· iron oxide are present. This type of calcite does not 

luminesce. 

(ii) Spherulitic Calcite (SC-A and SC-B) - SC-A- Calcite 

fan-shaped masses, composed of ~quant blocky ps~udospar' (Folk, 1965), 

herein called spherulitic calcite, and exhibiting discontinuous laminae 

perpendicular and parallel to fan elongation~ are locally very ab.undant 

in one mound at Agt.Wl thuna Creek (Fig. 79). Fans are commonly one milli-
.<--"' • 

metre in length by one .millimetre·at greatest width. The 1argest fan was 
4 

4 millimetres in ~ength, with a maximum width of 2.5 millimetres~ Lami-v 

nations (dusty and/or f luid inclusions) cut across th·e pseudospar which 
• • 

develops an interlocking mosaic of generally elongate crystals, 50 to 250 

micrometres in l ength and 50 to 125 micrometres in width. The crystals 

exhibit Rtraight to faint sweeping extinction and are radially divergent 

.. 
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FIGURE BOA: Fans of fascicular-optic calcite, possible 
'111a15ne~i1.1lll calcite cement, with sharp terminations •. 
Overlain by late stage calcite cement. Photomicro­
graph with cross-polarized light. Scale bar is 500 
micrometres. 

FIGURE BOB: An artay'; of fascicular-optic calcite fans, with apices 
o't'ien t~d '·towards a sediment c~re (bot tom 
of photograph). The cement' with encorporated matrix 
(above the scale bar) is of the same mineralogy 
but does not display fan morphology. Photomicro­
graph with cross-polarized lighL Scale b'ar is 
2.0 millimetres. 

FIGURE SOC: Fascicular-optic calcite fans forming isopachous 
rims, Each cement generation is separated by a 
micrite laminae (arrow). The pse9dospar ( above 
arrow) associated with the possible magnesium calcite 
cement may be altered aragonite cement (see FI9URES 
82 and 85), Photomicrograph with cross-pnlari?.ed 
light. Scale bar is 2.0 millimetres. 

FIGURE 81: Zebra rock sh~ing laminae of biomi;t:r e separated 
hy fascicular-optic calcite, •. geopeta micrite, and 
blocky calcite. Splays of fhe earl cement on the 
ceil {ng and floor of the palaeocavities extend down­
wa rd and upward respectively. Arrows point to the 
downward extent of sweeping extinction from the 
early cement into the blocky calcite. Sharp boundaries 
betwPen thE' fascicular-optic calcite and blocky c RlcitP 
also occur.· Holdic porosity within the biomicrite is 
common. White specks in th.e biomicrite are quartz 
and feldspar grains. with rare dolomite rhombohedra, 
Photomicrograph with cross.:polar!zed light. Sc ale 

.,bar is 500 micrometres. 
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from the apex of the fan. Fans are attached to a micrite substrate 

or to other fans. The contact .of two fans is a thin micritic laminae 

similar to that :f.n FOC cement. In one instance, a laminae of FOC 

cement was found coating an outer edge of an SC-A fan, and the contact 

between the two was also defined by a similar looking thin micritic 

laminae (Fig. 82). Free terminations of SC-A calcite are also micritic 

and lll8.Y exhi bit feathery to chisel-shaped edges. No inclusions of 

fauna or other allochems within the fans were noted, though dispersed 

micrite is cormnon. The fans contain betwee n 1.0 and 1.5 percent mag-

nesium carbonate, n~ detectable strontium, and less than 0.2 percent 

iron oxide . This type of calcite also does not luminesce . 

SC-B - This type of calc! te cement is common in mounds, 

and well developed in the grey micritic limestone of the Upper Sequence 

in Aguathuna Creek. In the latter locality, well formed botryoids, of 

blocky equant pseudospar defined by micrite la111inae often exhibit 

feathery and chisel shaped edges (Figs. 79, 83, 84). The blocky calcite 

texture with associated micrite laminae is common in fauna/cement struc-

tures. The laminae, in this case, however, rarely outline botryoidal 

morphology and the pseudospar occurs in much more irregular shapes 

(Fig. 85). P•eudospar crystals are equant, vaguely radially divergent 

w~en found in botryoids, and are 10 to 300 micrometres in diameter. 

Crystal boundaries within the pseudospar are sharp and irregular. 

Cathodoluminescence indicates th~ presence of inc lusions, not seen in 

plain light, aligned in a radially divergent pattern from the apux or the 

botryoids. These terminate at the micrite laminae on which another 

botryoid is developed. 
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FIGURE 82: Typical spherulitic calcite, interpreted as being 
possible arago nite cement. The fan is directed 
downwards infilling a cavity within a micritic-rich 
mound. The upper arrow indicates faint horizontal 
and vertical laminations (inclusions define primary 
textures). The lower arrow points to a micritic 
contact between this type of cement and an isopachous 
rim of fascicular-optic calcite cement. Photomic ro­
graph with cross-polarized li~ht. Scale bar is 460 
micrometres . 

FIGURE 83 : Botryoids o f spherulitic calcite with peloid 
inclusions and well developed micritic contacts 
between botryoids. Arrows point to patc h es of 
coarser pseudospar indicati ng extent of alte r ation 
from the interpreted aragonite to pseudospar. Photo- • 
micrograph with cross-polarized light. . S c ale bar is 
560 micrometres . 

FIGURE 84: . Detail of micritic laminae from FIGURE- B:L Black arrow 
points to poorly developed Bquare. chisel-shaped 
l aminae terminations. Note apparent boring? in Lwge 
peloid (white arrow). Photomicrograph with plain light. 
Scale bar is 500 micrometres. 

FIGURE 85 : Irregu1ar to botryoidal bodies of altered cement, 
with inclusions of peloids. Not e large patches of 
coarse pseudospa r similar to those i n FIGURE 83 . 
Extreme alteration may yield very coarse blocky calcite . 
Photomicrograph with c ross-polarized li ght. Sca le 
bar is 500 micrometres . 
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Within the mounds, irregular shaped ''bodies" of s pheru-

litic calcite are sometimes vertically stacked normal to the substrate 
i~ 

(either fauna or FoC c ement), but are more often nongeostrophic (Fig. 

86). In the micritic l:!Rstone at Ap;uathuna Creek, all botryoids are 

• 
oriented normal to the bedding. This cement type contains leas than 

1 .0 mole percent magnesium carbonate, no de tee table str,ont i um, less 

than 0.2 percent iron oxide, and is non-luminescent. 

(iii) Radia l Columnar Calcite (RCC) - This cement is found 

as stalactites in Pratt's Cave. The crystals, neomorphic after a 

previous speleothem fabric vary up to 3.0 mrn in length, and 0.1 to 0.55 

micrometres in width ."', Some crystals have sharp re-entrants as des-

cribed by Kendall and Broughton (1978) but are generally well def i ned 

and collumnar in shape (Figs. 79 and 87). A single laminae o f this 

calcite may have several ill-defined aggregates of radially divergent 

crystals, each aggregate having a preferred direction of extinction. 

As a result, converging extinction is .. found at the junction of adjacent 

crystal aggregates. In some cases, convergence occurs within a single 

~ crystal. The crystals cut across primary structures of the speleothem 

(crystal terminations and laminae defined by dusty inclusions). Alter-

nating iron content parallel to primary growth is apparent by staining. 

These cements have no detectable strontium, leas than 1.0 mole percent U 
magnesium carbonate, and strongly luminesce. Iron oxide content varies 

from 0.0 to 0.65 percent in the iron "rich~' zones. 

I 
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(iv) Plumose Caldfe)(PC) - This cement is a peculiar 

I 

and localized neororphic replacement of an original speleothem fabric. 

Several curved crystals form plume-shaped maeses up to 1500 micro­

metres in length and up to 500 micrometres at greatest width (Fig. 

79). Inclusions and sweep-ing extinction follow the curvature of the , 

crystals . Several of these plumes adjacent to one another give the 

appearance of a feather headband (Fig. 88). Larger crystals (Type 
• 

COC; Fig. 79) with subcrystals, are elongate to more equant in shape 

and have an extinction pattern that converges at the centre of the 

large crystal. These cements fabrics are.related to the PC cement 

and may be some variation in.neomorphic alteration within the cement. 

The original speleothem structure appears to both control, and be cut 

by, the neomorphic calcite. This type of calcite does not luminesce. 

(v) Radial Bladed Calcite (RBC) - This cement is found 

as speleothems at Sheaves Cove and Pratt's Cave. Aggregates of up to 

ten crystals are found as lsopachous layers rimming earlier druse. 

The blades are 50 to 500 mic rometres in length, and 20 to 50 micro-

metres at greatest width (Figs.' 79 and 89). There is a sweeping 

extinction pattern within the individual crysta~s. Inclusions of 

micrite range from numerous to few throughout the cement. The miner-

alogy of alternating laminae vary from calcite to dolomite. 

(vi) Equant Blocky Calcite (EBC) - - Equant blocky fine to 

coarsely crystalline calcite spar acts as a late stage inter- and 

intragranular pore-filling cement (Fig. 79). Within some of the Upper 
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FIGURE 86: Non-geostrophic' to geostrophic altered cement and 
laminae (arro~s). White arrow points to cement 
bodies, defined by micr i te laminae, ~hich are 
inverted with respect to those in the middle or 
top of the photograph. Photomicrogra ph in plain 
light. Scale bar _is 500 micrometres. 

FIGURE 87: Typical radial columnar calcite from stalactites 
in Pralt 's Cave . Photomicrograph with cross­
polarized light. Scale bar is 360 micrometres. 

FIGURE 88: Plumose calcite . Local i zed speleothem cement 
texture. Photomicrograph with cross-polarized 
light. Scale b'ar is 250 micrometres , 

FIGURE 89: Radial bladed calcite. Associated with speleothe~ 
flowstone. Photomicrograph ~ith cross-polarized 
light; Scale bar is 250 micrometres. 
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Sequence sandstone, as well as tbe terrigenous clastics associated 

with the re4-beds on the south. shore, intergranular pore sp~r:e 'is 

infilled with iron-rich blocky calcite cement foll'owed by iron-.free 

calcite. In the carbonates of the Lower Sequence, and som~ clasti c s 

of the Upper Sequence and red-bed lithology, this i r on sequence i s 

commonly reversed ~ Typical.ly, however , no iron is present a t all. 

Late-stage veinlets which locally cut Lower Sequence limestones con-

sist of iron-poor .blocky calcite. 
/ 

Within a pore, there is usually an increase in crystal 

size toward ,the centre, with an isopachous to discont i nuous laminae 

of equant and/or slightly bladed spar rimming the substrate> wall . 

Crystals range in size ' from microns to several centimetres. The · 

highest ir~n content in any of the blocky calcite observed is 0.6 

\percent. These cements brightly luminesce and up to four stages of 

precipitation may be f ound in a single cement-f illed pore . 

8.3. Allochems 

Within the carbonates, various allochems exhibit different 
· , 

styles 

(a) brachiopods, annelida (Spirorbis caperatus), bryozoans, 

and ostracodes generally retain their f abric; 

(b) the large worm? tubes are identical to the ' fabric of 

FOC cement and may be a result of cementation occurring 

along a membranous organic? tube within which the 

organism r esided; 
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-(c) gastropods are general!' dissolved and replaced_hy 

EBC ceinent; only one gastropod possessfng a micrite 

rim was found though the remainder of the shell had 

been cOmpletely dissolved; 

(d) pelecypods are either completely dissolved and 

replaced by EBC cement, or retain their fabric; 

(e) ~ntraclasts of faeca~ mounds? or grapestone?, fro~ 

the lamin~ted·limestone at · Boswarlos, have a fine 

crystalline matrix surrounding the peloids within 

the intraclasts (Fig. 90); it is uncertain whether 

the matrix is neomorphic or cement spar. 

8.4. Dissolution Features 

Peloi,fs, blue-green algal structures and gypsum are pre-
. . ~ b , . 

ferentially suscep"uble to dissolution. This process is visible in 

various st;rges of development·, and when well developed produced moldic 

porosity. Micrite surrounding dissolution pores often displays a green 

colour a tion. 
. 

Round ed· to lobate peloids associated with intermound 

packstones in the biohermal limestones are particularly suscepteble t o 

dissolution. Various degrees of dissoiution are preserved with the 

most extreme producing good peloid moldic -porosity (Fig. ~1). In some 

peloids, a vague interior structure may oceur resembling . the micritic 

foraminifers fou~d in related sediments. 
t · 
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Micrite laminae associat~d with the algal structures are 

commonly preferentially dissolved. · Porosity is moldic as well, with 

affected structures producing · con~entric laminar vugs (Fig. 92) •. The 

~urrounding rock, including both FOC and EBC ;cements, appear unaffected. 

J Round to irregular shaped thin micrite rims are infilled 
~ 4 

w;l th EBC: c:ement. In the laminated limes.tone of the sulphate / clastic 
'·~I ' . . 

li~hofacies various stages of dissolu~ion, including micrite rim develop-

ment. followed by ·cement infill are found in the lithoclasts interpreted 

as eroded mounds of faecal pelle t s , or grapestones (Fig. 90); 

Gypsum and barite crystals infillin~ fractures or primary 

voids are completely to partially dissolved. Remnant gypsum often 

has an associated finely crystalline a l teration product (clay?) 

developed along the edges and along the cleavage traces. If fractures, 

originally. ~ontaining.gypsum, cut a micrite host sediment, a green 

colouration is noted in the micrite along the fracture edge. 

8 . 5. Neomorphic Textures 

8.5.1. Microspar 

Microspar (Folk, 1965) ~is fo~nd: (i) adjacent · to, and 

replacing micrite; (i!) within fauna/cement structu~es adjacent to 

j)AeudoRpar; (iii) partially replacing SC-type cement; and (iv) as 

"geopetal" sediment within cement-filled mound voids. In the mounds, 

the rnicrospa·r exhibits an abrupt cot;ltact with the underlying mate rial, 

either structure cement, or graded multigeneration sediment. Peloids 

/ 

• 

r 
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r 

and ~err~ous . cla~tic grains may be associated with this fabric 

although tHese inclusi~ns are rare.· Spar size is t ypically 10 to 40 

micrometres in length, and less than 30 micrometres in width, with 

contacts .curved to st~aight. 

, ·, 
8.5.2. Pseudospar 

,J 

Pseudospar (Folk, l9b5) partly to complete ly r eplaces 

all cements, some micritic allochems, and portions of the fauna/cemen t 

structures. Two stages of neomorphi s m of the ceme nts occur: 

(i) Neomorphism 1 - With respect to r eplacement of cement 

types FOC and SC, the r esult:ant fabric is an interlocking mosaic o·f 

equant to elongate crystals which may cross-cut .the original cem~nt 

texture (see above ; and F!&· 93). 

(ii) Neomorphism 2 - A second stage of neomorphic replace-

ment is associated only with the FOC cement. This alteration produces 

coarse spar whi ch nas the appearance of EBC cement. Replacement occur s 

at the .edges of the FOC cement fans, and extends towards the f a n 

apex. The fan~ may be in contact wi t h EBC cement (e.g., in mound 

cavities), This pseudospa r . t exture is r ecognized by (a) r e l ic 

fibre~ o f the origina l FOC cement f ans CP ig, 94 ) , and (b) relic swpep i ng 

extinction e xtending from the FOC ce ment into the EBC-typ~ pseudospar 

(Fi g. Bl). An extreme form of the r epl acement o ccurs in the zebra rock 
\ 

f rom Bi g Cove Creek. In . t his case . l aminae of coarse pseudospar (EBC-

, r 
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·• 

FIGURE 90: Dissolution of intraclasts and precipitation of 
late stage calcite cement within the molds (arrow). 
The outer r i m of an intraclast is still preserved 
(arrow) . Compaction of sediments has resul~ed in 
the fractur i ng of an ostracode test (lower left of 
photograph): Photomic~ograph in plain light. Scale 
bar is 400 micrometres. 

FIGURE 91: Peloid, and intraclas t, moldic porosity. Photomicro­
graph with cross- polarized light. Scale bar is 500 
micrometres. 

FIGURE 92: Moldic porosity (left and centre of photograph) 
associated with blue-green algal thromobolite. 
No t e that late stage cemen t (whit'e) in the 
surrounding sediment is unaffec ted. Late stage 
diagenesis. Photomic rograph with cross-polarized 
light. Scale bar is 750 microm~tres . 

FIGURE 93: Algal moldic porosity (black in phoiograph) and 
j~xtaposition of bo~h possible magnesium calcite 
and aragonite cements, now altered to c a lcite. 
Photomicrograph with cross-polarized light. 
Scale bar is 450 micrometres. 
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type) have replaced cavity filling FOC cements fans·. The laminae of 
' 

the EBC-type pseudospar t;ary in thickness from 0 to 1000 micrometres. 

The replacement textures vary from well d~loped to non-existant 

along a · single cavity fill (Fig. 95). Large sweeping extinction 

patterns within the second pseudospar are the ·clue - that the replacement 

has occur,red. Commonly, sharp boundaries between the two calcites 

may occur giving the appea ranee of F.BC cement inf i 11 ing a cavity that 

is lined by FOC cemt!nt (Fig. 81). 

Fractures cut through the host biomicrite and FOC cement 

within the zeb:.:Jock. Where !!he fractures cut biomicrf.te only, they 

are infilled with well-defined EBC cement. Along the same fradur~s, 
0 .. 

where the fraCture cuts through the FOC cement fans, the fracture 

"infill" is clearly the, EBC-type ps~udospar (Fig. 96). It is inter­
.; 

preted that cavities developed within the biomicrite were infilled 
I , 

with the FOG cement. Fracturing was preferential along the original 

cavity orienta~ion, and EBC fluids p~rcolated along the ~tures. 
replacl,ng FOC cement, or, precipitating EBC cement in fractures not 

assocJated with Yoc cement. 

8.5.3. Aggrading Neomorphism 

( 
As d _efined by Folk (1965), 'this term is used to describe 

the change from micrite through microspar to pseudospar. · Although 

examples of this change are rarely jill defined in · the Port au Port 

Upper Mississippian strata, one wel~ developed example is found in a 

,--- - - --· ·--·---- . ··- . .. 
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micritic facies of the biostromal limestone (uppe'r limestone unit of 

the Lower Sequence) at Lead Cove, immediately overlying the middle 

siliclastic unit. Here, microspar grades into local patches of 

pseudospar, 100 to 200 micrometres · in diameter (Fig. 97). Iron 

sulphi,de blebs may be locall~ present in the pseudospar. This calcite 
~ 

texture has replaced lenticular gypsum . . .. 

8.6. Dolomitization 

Two types of dolomite can be found, though both are rare. 

The first is the . replac~ment of micrite .by small beige-coloured 

rhombohedra 10 to 40 micrometres in diameter. Often broken · reworked 

I 
n rhombohedra occur in packstones of the Lower Sequence (e.g., Big Cove) . 

'I 

In the zebra ~ck, dolomite .rhomboh4dra are found in micritic fragments 

of the host biomicrite, and surrounded by the FOC cement (Fig. 98). 

, 
of cement, 

The s~le of dolomite is the complete replacement 

micrite and allochems. This occurs"in small 2.0 to 3.0 . . 
millimetre P.atches wi.th irreguiar edges (Fis-. 99). This style of 

dolomitization was found only in the upper limestone unit of the Lower 

~querice in Aguathuna •rsland~ and is a·ssociated temporally with barite/ 

celestite replacement. 

8 . 7. Desulfitiz:ation 

This term is used for the replacement of both gypsum and 

anhydrite crystals by calcite. Evidence of this is .rare, but when 

discovered is well developed. Grey calcite nodules w1 th a maiiDDellose 

' . 
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FIGURE 94: Ragged terminations of fascicular-optic calcite (FOC) 
fans extending into coarse pseudospar. Not e at solid 
arrow the pseudospar unde rlining the ragged terminations. 
The substrate to FOC cement appears to be peloids 
and/or clotted micrite (open arrow). Photomicro graph 
with cross-polarized light. Scale bar is 230 
rnicrometres. 

FIGURE 95:. Zebra rock alteration. At arrows, fa~ cicular-optic 
calcite cement is altered to pseudospar (white). 
Photomicrograph with cross-polarized light. Scale •' 
bar is 230 microme tres . 

FIGURE 96: Late stage blocky calcite cement versus pseudospar 
in zebra rock. The left arrow points to late stage 
cement in contact with biomicrite. The right 

• arrow indicates a point where fascicular-optic calc i.t e 
is altered to pseudospar. Note that this occurs where 
a fractura through the biomicrite extends into. the 
fascicular-optic calcite as well. Photomicrograph 
with cross-polarized light. Scale bar is 230 
micrometres. 

FIGURE 97: Aggrading neomorphism. Microspar, initially altering 
gypsumtlrade·s into pseudospar (white) .. Black iron 
sulphide blebs are associated Wth calcite · 
suggesting that ~l teration from gypsum to calcite 
occurred during late stage diagenesis. Photomi c ro­
gra}:lh in plain light. Scale bar is 230 micrometres • 
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surface texture have an internal nodular texture mimicing chickenwire 

gypsum (Fig. 100). These are found in the feldspathic arenites of 
, l\ 

the Upper Sequence in. Lead Cove. The replacing calcite alternates 

fr-oa iron-free to iron-poor as illustrated by staining, and may show 

increasing cryst~l size towards the centre of each individual nodule 

in the chickenwire structure. This chitkenwire texture is also found 

in some of the fauna/cement structures in the mounds but is not as 

well developed as above. 

In the biostromal li~estone unit of the Lower Sequence 

at Lead Cove, masses of lenticular gypsum within a micritic l imestone 

host rock are replaced by microspar and pseudospar (Figs. 75 and 97). 

A third 'type of desulfitization is found in primary vugs 

within' t.he mounds. Pore-filling splays of prisma,tic anhydrite are 

replaced by calcite with the primary structure of the sulphate still 

retained (Fig. 76). Within the same vug; t.he ~eplacing calcite acts 

as pore-filling EBC cement occlud;ing the porosity. 

8.8. Barite, Gypsum, and Marcasite Replacement 

ExamJ>les of barite and gypsum replacing fr agmehts , shells, 

and EBC cement are common ·in packstones and grainstones, as well as 

mounds, from Gillam's Cove, the upper limest_one unit in Aguathuna 

"Island" and in Aguathuna East. Barite replaces c ement in some r~d 

conglomerates in the Ship Cove area, and ·in t he grey breccias of the 
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Upper Sequence in Aguathuna Creek. Rare marcasite is found replacing 

cement in some red-bed sandstones and. conglomerates along the south 

coast. 

8.9. Other Diagenetic Fea tures 

Other features that complete the diagenetic seque nce are 

the following: 

(i) Fractm:ing of allochems due to compaction; th.is i s 

found both before and aftef . FOC cement rims the 

allochems. , Often brachiopods and ostracodes lined 

with this cement are found broken and the remaining 

porosity is filled with EBC cement. 

(ii) Frac tures cutting through both fauna/cement sttuc-

tures and associated intrastructure sediments. and 

intermound packstones and grainstone~, are filled 
' 

with EBC cement and/or sulphide/sulphate minerali za-

tion (Fig. 101). 

(iii) Vei~lets or iron-poor calcite (recognized by stai ning) . ,, 

cross- cut sediment, early and late stage cements ,·. and 

mineralization; sulphates and barite may occur locally 

' within these· veinlets. 

(iv) Four stages .of mineralization are recognized: (i ) pre­

. cipitation of anhydrite and/or gypsum in primary vugs 
• · 

·~ and muds ; (ii) sulpbi~e an~ sulphates d epqsited with 

f 
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FIGURE 98: Dolomite rhombohedra (arrows) within biomicrite. 
···Only one well formed dolomite rhombohedron is 
present (large arrow). Photomicrograph with 
cross-polarized light. Scale bar is 230 micrometres. 

FIGURE 99: Massive dolomite replacing both late stage calcite 
cement and se.diment (including allochems)-see arrows. 
Photomicrograph with cross polarized light. Scale 
bar is 230 micrometres. 

FI,GURE 100: ·Relic chickenwire gypsum. The sulphate is replaced 
by late stage calcite. Photomicrograph with cross­
polarized light. Scale bar is 600 micrometres. 

FIGURE 101: Fracturing of biohennal limestone, with the fractures 
and remaining porosity infilled with l a t e s tage 
calc! te cement. Photomicrograph with plain light. 
Scale bar is 500 micrometres. · 

' 

"' 
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EBC cement; (iii)'barite, celestite and gypsum, 

with loc~l accumulations of marcasite replacing 

cemented sediments; and (iv) veinlets with minor 

and sporadically distributed sulphate mineralization, 

locally concentrated near faults; associated with 

.faults is pyrite mineraliiation. 

8.10. Discussion 

8 . 10.1. Introduction 

The . recognition of pervasive synsedimentary cementation 

in the submarine environment is well documented for both modern and 

ancient reefs and mounds (e.g., Krebs, 1969; Land and Gareau, 1970; 
. . 

Bricker (ed.), 197l;'Ginsburg a~d James, 1976; James.!.!_~ . • 1976; 

Davies, 1977 ; Mazul1o and Cys, 1979; and James and Ginsburg, 1979). 

Associated mu1tigeneration sediments and cement is also recorded· for 

both Holocene and Palaeozoic reefs (e.g., James~ al., 1976; Davies, 

1977; and others). 

This pervasive cementation and related sedimentation( 

comprises a major part of the carbonate/c.lastic lithofacies on the 

) 

Port au Port Peninsula. Complex ' neomorphic textures, however, ,commonly 

overprint this early fabric. Evidence of possible vadose fabrics , 

consist only of fabric-specific dissolution, and are interpreted as 

occurrin~ in the latest stage of diagenesis and are probably still 

active at present. G 
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Although microprobe data indicates that all structures 

interpreted as cements, allochems, and micrite found in the biohermal 

~imest~('are nolo/ low magnesium carbonate with less than 1.. 5 percent 
r 

magnesium carbonate, the~r original mineralogic precursor can be deduced 

by comparison of fabrics with kno~o~n or previously interpreted 

examples published in the literature. The following discussidn of 

fabrics will be dealt w~th according to the different stages of dia-

genesis (Early, Middle, and Late); a compilation of these stages and 

.their. defining parameters is given in Figure 102. 

8.10.2. Eaily Diagenesis 

• The most abundant cements found .in the mound facies and 

intermotlnd sediments are fascicular-optic calcite, interpreted to be 

_originally a magnesium calcite cement, and spherulitic calcite whi ch is 
I 

interpreted to be aragonite i~ origin. 

(i) Possible Mg-Calcite Cements - Fascicular-optic calcite 

recognized in the Port au Port samples is similar to that described by 

Kendall (1977; pg. 1058, Figs. lA, B, and E; and pg. 1059, Fig. 2). He 

stated that the original mineralogy could be either calcite or aragonite, 

indicating that fabric alone was an insufficient criterion. The 

cement acts as an inter- and intragranular cement and incorporates an9 

coats marine organisms. Overlying the cement laminae, with ab rupt 

contact, is sediment exhibiting marine organisms as well. Thus, it is 

interpreted that the cement is of marine origin. 
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DIAGENETIC SEQUENCE IN THE CARBONATE/tLASTIC 
LITHOFACIES 

Parameters ' 
Early cements 
Sedimentation 
Micritization 
Compaction 
Mineral fzation: 
(a) sulphate 

. (b) sulphide 
· -Neomorphism 1 

Neomorphism 2 · 
Fracturing 
Stylolitization 
Late sta~e cement 
Desulfitization 
Dolomitization 
Veinlets 
Dissolution 

EARLY 

XXXXX X X 
xxxxxxxxx 
xxxxxxxxx 
xxxxxxxxx 

X XXXX 

submarine 

LATE 
MIDDLE 2 3 

XXXXXXXXXX.)( X X 
XXXXXXXXXXX X X 

xxxxxxxxxxx 
XX XXX X 

X X XXXXXXX 
X X XXXXXXX 

XXXXXX X 

XXX XXX 
.xxxxxx 

phreatic 

XXX XXX 
XX XXX 

4 

XX XX XXX 

vadose 
FIGURE 1~2: Interpreted diagenetic sequence for t he carbonate/clastic 

lithofacies. 
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Early neomorphic alteration of the fibrous precursor ~s 

similar to the alteration exhibited by the ske1etal clasts known to 

be of calcite mineralogy (e .g., brachiopods, ostracodes, ~pirorbis 

caperatus, and .bryozoans). Their fabri~ as in the fascicular-optic 
• • 

calcite, is wholly or partially r~tained. 

Laminated crusts of modern magnesium calcite cements 

(Land and Gareau, 1970; pg. 460, Fig. 5) .look very similar to crusts 

of the FOC cement enveloping bryozoans in the mounds at Big Cove 

(Fig. 32) and Agua thuna "Island". The presence of micrite laminae, · 

peloids, and/or dispersed micrite within, and separating the thick-

nesses of the FOC cement suggests episodic to slow s edimentation 
/ 

during growth of the cement. The presence of Spirorbis caperatus 

encrusting, and engulfed.by, the cement suggests that the cement 

provided a hard substrate for these organisms. 

The overall morphology, internal fabric and sediment-

cement relationship of this cement is similar ~o d~scribed h i gn Mg-

calcite crusts in modern an~ ancient reefs or mounds. The lack of 

luminescence associated with this cement support~ its interpretation 

as an early marine cement (Myers, 1974). On the basis ·of these 

criteria, the cement is interpreted to he an early diagenetic, 

possibly high Mg-calcite cement. 

(ii ) Possible Aragonite Cements - Two cement types SC-A 

/ and -B are interpreted to h av_e an aragonitic precursor. SC-A is very 

similar in gross morp.hology and crystallinity to cement fans described 
, 

, 
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by Mazullo and Cys (1979). They describe relic ray-crystals oriented 

radially divergent within the cem~t fans, with portions of the 

crystals engulfed by composite (pseudospar) crystals, which are also 

radially divergent. In other words, the composite crystal cut across 

the original fabric. Sweeping extinction of each composite. crystal 

is caused by the addition of individual extinctions of the included 

ray-crystals •. 

Port examples, relic fibres are not preserved 

but defined b (either dust or fluid) aligned as radially 

divergent line from the base of a fan. Perpendicular to these 

lineations are discontinuous laminae which may be breaks in fan 

growth. The pseudospar that includes portions of the lineations and 

laminae is similar in morphology to the composite crystals of Mazull o 

and Cys_ (1979). The yseudospar 

though. distribution of these is 

exhibits faint sweeping extinction, 

sporadic within a fan. The faint 

extinctions may r'epre~ent relic and poorly preserved "ray-crystals" 

within the pseudospar. 

Mazullo · and Cys (1979) suggest an aragonitic precursor 

for their fans. In the Port au Port e~amples the fans have a different 

style of neomorphism than the fascicular-optic calcite. This is well 

depicted in one sample where the latter type of cement encrusts SC- A 

cement (Fig. 82). Isolated fans or botryoidal laminae of aragonite 

are described in modern strata (e.g., Ginsburg and James, 1976). The 

• 
• ' 

\ 
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. \ 
fans in the Port au Port example are found in groups of two or three 

or, commonly isolated, attached to and infilling small cavities. They 

are never in an isopachous fringing -a-·ttitude as is tbe interpreted· 

.Mg-calcite cement. Based on the above comparisons, the fans are con­
~ 

sidered to have had an original aragonite mineralogy. 

A related type of calcite, the SC-B cement, is found in 

vertically to horizontally stacked botryoids in the ·minor micritic 

lime!ttone in. Aguathuna Creek. This fabric is similar· to fabrics 

described by Davies (1977; pg. 14, Fig. SA) for aragonite botryoids 

in intermound sediments associated with Permo:-Pennsylvanian reefs in 
~ 

the Canadian Arctic. He shows chemically and petrographically tha t 
;-

the botryoids were probably com'posed of fibrous · radially divergent 

aragonite crystals which may be .altered in various st,ages, to equant 

pseudospar. With the alteratiort, thf' strontium content decreases. 

" As in his example, the Aguathuna Creek limestone has 

internal sediment of peloid's altd micrite suggesting continual to 
1 

sporadic sedimentation during cement growth. Some of the sediment 

in fills depress~ons between botryoids indicating that the cement . surf ace 

was a rel~tively hard substrate. Cathodoluminescence shows the 

presence of inclus:!,6ns, not seen in plilin light, which a re aligned in 

radially divergent lineations converging at the base of each botryoid. 

These cement types are alao non-luminescent again .suggestive of marine 

deposition (My~rs, 1974). The tops of the botryoids, defined by 

micri~e laminae, often show vague chisel-e nds to fibrous fabrics not 

. ~ 
. " 

., 

f 
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unlike textures interpreted as evidence for aragonite by Loucks and 

Folk (1976). 'f!lus, this type of cement is also interpreted to be an 

early di~genetic aragonite cement. 

In the mound facies, pseudospar similar to SC-_type calc:l,te 

occurs, in irregular isolated to stacked "bodies", d'fined by bounding 

mic;:rite laminae.· This micrite laminae is similar to th~ laminae 

associated with arago.ni te cements described above. Most laminae can 

be traced between structures or are built up from some base. Small 

botryoids, 60 to 100 micrometres long, some with chisel to feathery 

edges, may be associated with these buildups enhancing the interpreta-

tion that these irregular bodies are aragonite cement as well. Davies 

(1977) suggested that the micrite l~minae within his samples may be 

of an organic origin. 
\ 

J 
No evidence of organ'ics (algae, etc.) associated 

with the micrite in the laminae in the Port au Port examples was noted .. 

It is suggested that the laminae represent breaks between cement 

growth, where vertically stacked botryoids or irregular cement bodies 

are formed, or a form 6f sutured boundary edges of fans 

converge. 

(iii) Other Earl enetic Fea'tur s ...:; One stage of 

mineralization is interpreted to have taken place early in the dia-

genetic· history of these rock8: !lulphate precipitation. Prismatic 

anhydrite occurs in well developed crystal sp~ays infilling vug.11, and 

lenticular gypsum is found formed in micritic muds . . Both examples are 

calcitized by late stage phreatic: fluids • Lenticular gypsum is found 

• 
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in modern environments, in unconsolidated muds down to depths of several 

metres in the sub-surface (Cody, 1979). This form of gypsum indicates 

both organic-rich muds, and alkaline fluids within the groundwater system 

(Cody, 1979). 

The micri ti za t ion of unknown particles, and some gastropods, 

took place within the marine environment during deposition of sediment. 

Compaction of allochems, producing broken fragments, occurred in the 

early stage of' diagenesis both prior to, and after, cemeotation by Hg-

calcite and aragonite. 

The time 1bf neomorphism of the original mine·ralogy and fabric 

in speleothem deposits is unclear in the Port au Port region. Dolomiti-

zation of some of the laminae within cave deposi.ts can occur early due 

to changing Mg/Ca ratios' in the cave waters (Thrailkill, 1967, 1971). 
, .t ...... ,_ 

Though Mg-rich calcite or d'~omite may precipitate as a primary depos i t 

in caves (Thrailkill, 1971~, the cry'stal t~xtures in the.Port au Po~·t 

samples suggest calcite (possibly high Mg-caldte), with dolomite forming 

as a secondary replacement. The bright luminescent quality of m;st.of 

the speleothem deposits indicates that they were deposited under phreatic 

conditions (Myers, 1974). -

Replacement of micrite by dolomite rhombohedra is considered 

to occur in the early stages of diagenesis. In the zeb):a ,rock, 

dolomite rhombohedra are found in a fragment of the host biomicrite 

, 

-. 
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surrounded by interpreted high magnesium calcite cement iFig •• 9~). 

The cement infills horizontal cavitj.es developed in t,he biomicrite. 

The cement ·also acts as intergranular cement in the biomicrite_sand-

wiched between the palaeocavi ties. Thus, a possible ·syn-sedimentary 

to pre-cementation replacemept of micrite by dolomite is considered. 

Packstones in Big Cove have fragmented rhoS?ahedra. These are similar 

in texture to the rhombohedra in the ' zebra rock, though not necessarily 

derived from this source. This suggests erosion and redepo~ition within 

the Upper Mississippian marine environment. 

8.10.3. Middle Stage Diagenesis 

Dissolution of elements such as gastropods, some pelecypods~ 

" and unkpowns proaucing micrite rims, took place as solutions passed 

through diss6lving unstable aragonite. As" no vadose textures ace pre-

served (e . g.~ vadose cements), it is suggested that most dissolution 

took place under meteocic phreatic condi~ions. An important' middle 

stage . feature is the evidence of widespread fracturing of fauna/cement 

structures and inter- and intramound sediment. This fractu~ing is found 

both in outcrop localities which have obvious late faulting, as well 

as in . outcrops where no faulting -is evident . The competent natur~ of, . . ~ 

the intramound micrite suggests early 11 thific.ation despite lack_ of 

visible Mg-calcit~ or 'aragonite cements. This suggests lithification 
. ;" ) ' 

·.,.· of micrite prior to fracturing. Fracturing occurs prior ·to precipita-

tion of late · stage cement. (EBC-type) but after all early cel!lents. No 

fractures ,are 11ned with a.ese latter cements. Therefore, the frac-

turing occurred prior to the phreatic environment. 
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Stylolites are associated with f -racturing in the 

mot,mds, and may exhibit ·. up to 20 millimetres relief. They prefer-

ef)tially affect the fauna/cement structures, and are not seen to cut late 

• · ·stage cement or fracture,s. Therefore, they developed as fracturing induc ed 

pressure in the well-lithified strata. The cause a·) the fracturing, 

a--d associated stylolites, is unclear. Buxton and Sibley -(1981) note 

that well develo ped stylolites occur in lithifie d sed iments with only 

1500 metres of depth of ~ur~al. In the Pori au Port example, as prograding 

fluvial and red-bed sedimentation bu i lt up the overlying thickness of sediments, 

fracturing may have been induced within the carbonates, which we re a lre ady 

well l ~thified due to the early cementation . 

The time of alteration of the early aragonite and Mg-

' calcite c ements is interpre ted to be middle· ~tage· a s well. This is 

Neomorphism 1, referred to above. The lack of luminescence assoc i a ted 
•. 

witK the spat in- tne aragonite cements .suggests that the cement wa s 

completely altere d to l ow Mg-calcite by the time late stage phreatic 

fluids were moving . No solution moldic- reprec i pitation e~ltera tion of 

the aragonite cement occurs. Initial alteration of the interpreted high 

Mg-calcite cements occurred prior. to late stage diagenesis as well. However, 

during Neomorphism 2 (movement of ph reatic fluids),. t he edges o f t he 

FOC fans (prev ious,ly, the Hg-calcite cements) were neomor·phos ed t o 

coarse pseudospa r. Well developed FOC f ans are most sus ce ptible suggest i ng 

a . possible crYstallographic control for this s econd a lteration even t . 

.... 
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8.10.4. Late Stage Diagenesis 

This stage of diagenesis can be divided into four parts: 

(i) cementation, mineralization, and Neomorphism 2; (ii) replacement 

of cemented sediment by dolomite, barite/celestite,' and minor marca-

site; (iii) ferroan calcite v~inlets and minor mineralization · associ -

.ated with faulting; and (iv) dissolution forming moldic porosity. 

(i) Equant blocky calcite infills any remaining pore. 

.. spaces and fractures in all clastic and carbonate sediments in all 

three lithofacies Qn the Port au Port Peninsula. Luminescent studies 

show that the cements luminesce brightly, reflecting the amount of 

manganese and iron within the calcite lattice. In order for the 

calcite lattice to incorporate the cations, a reducing environment 

(e.g., phreatic fluids) is . needed. At least four stages of cement 

prec-ipitation within a given pore may be recognized. A detailed 

study of the cement stratigraphy in the different lithofacies was not 

attempted. The irregular nature in the alteration of iron contents 

within this cement between thE! Upper Sequence and Lower Sequence of 

the carbonate/clastic lithofacies suggests different stages of cement 

deposition. Mineralization of marc·asite, minor pyrite,, galena and 

sphalerite, a s well as barite and rare gypsum is assoc i ated wi t h the 

cement. 

.• Desulfitiza tion , and calcitization, of anhydrite and 

gypsum occurred during this stage. Calcite r,eplacing the anhydrite 

in pores may ei4end laterally without break into EBC-type cement, 

_., 
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which infills the remainder .of the •por~. Small blebs of iron sulphide, 

probably marcasite·, are associated with the -altered lenticular gypsum 

suggesting alteration by EBC mineralized fluids. Phreatic fluids can 

~eplace sulphate without a solution phase (West, 1964). 

In the zebra rock of Big Cove Creek, partial alterati on 

of the possible magnesium calcite cement to the coarse pseudospar 

occurred at this time as wel~. It is suggested that fluid~ migrated 

along fractures dev~loped at the contact8 between downward-directed 
I 

coarse fans of FOC cement (that are interpreted to infill horizontal 

cavities within a biomicrite host) and the underlying mixture of this 

cement and sediment (peloids and micrite) in which rare fan development 

occurs (Fig~ 163A,B). The fluids altered both edges of the crack, but 

appear to alter much more of the fan cement (due to a more ordered 
t 

morphology of the cement?). Neomorphism of the underlying peloid/ 

micrite/cement mixture produces microspar to fine-grained pseudospar 

with the included sediment. The density of the .included sediment 

rema4ns fairly coqstant if adjacent neomorphic and original fabrics are 
. . . . 

compared. Moving fluids may also have contributed to the sediment 

content. 

The geopetal microspar which overlies graded sediment in 

mound pores and cav1ties is considered to be produced by neomorphism 

by phreatic fluids moving through the vugs. Commonly, the top layers 

of the multigenerated sediment may also be neomorphosed • 

. ~ 

.. 
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FIGURE 103A: Zebra rock~ Alte~ation of fascicular-optic 
calcite cement to coarse pseudospar (a) . Arrow 
points to contact of coarse pseudospar (possible 

· replaced ·cement) and peloid/pseudospar (early 
geopetal sediment during growth of the marine . ~ 

fans?) . Photomicrograph in plain light. Scale 
bar is. 450 micrometres. 

FIGURE 1038: Same view as in FIGURE 103A, but cross-polarized . 
light, · To the right of (a) and above (b), 
sweeping extinction extends into the pseudospar, ; 
Near (a), the extinction extends down to the contact 
indicated in FIGURE 103A. It is suggested that 
fractures developed along this junction between 
the cement . splays and the possible geopetal sediment 
altowing late stage phreatic fluids to penetrate 
the rock. The fluids would then alter the early 
cement sporadically. Photomicrograph. Scale bar 
is 450 micrometres. 

I 
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(ii) After the late stage cement has produced a well-

cemented rock, replacement of cement and allochems by dolomite, barite/ 

celestite, and locally marcasite and/or pyrite may occur (e.g., . \ 

Aguathuna "Island", Gillam's Cove). The presence of magne'!ium and the 

' " . so4 radical within replacing fluids suggests that the evaporites are 

acting as source region for the fluids. 

-~ (iii) The third part of the late stage diagenesis occurred 

after late cementation, but its relation wit'h (ii) is unclear.. Ferroan 

calcite veinlets cross-cut strata, mineralization, and late stage cement. 

Poorly developed barite may be included in the veinl;ets. -This may be 

reactivated barite, as most of the veinlets are unmineralized. Wit~ 

the fault zones, minor pyrite occurs. 

(iv) The last stage of diagenesis is taking place today. 

Preferential dissolution, sporadic in distribution, of certain peloids, 

micritic laminae associated with algal structures, and gy~um, leaves 

strata extremely porous and rubbly. This dissolution is d~ mo"4ern 
I 

karstification of the Upper Mississippian strata, though this is . 

primarily confined to' the soil/rock in'terface. It is evident that the 

o karst effects . decrease with depth. The gypsum is unstable in the 

present vadose environment as evident from the karst topography in the 

·gypsum cliffs at Romaines ~rook. A curious problem associated with the 

dissolution process is, why is it confined in the carbonates to the 

micritic structures, and what is the cause of the green colouration 
- ~ 

associated with affected micrite? 
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8}11. Summary 

~e diagenetic sequence discussed above .is .shown diagram-

matically in Figure 102. Not all features can be found at any one 

cov~, or, in any one hand specimen. In summary, the diagenesis of the 

carbonate/clastic lithofacies involved a progression from marine cementa-

tion and . sedimentation~ to fracturing (by the overburden of terrestrial 

sediments?) and postburial cementation and mineralization in the phrea t ic 

zone. In~ervals of neomorphism continued from middle to late stages, and 

include the alteration of original aragonite, and Mg-calcite cements, 

to composite crystal and fascicular-optic calcite, respectively, during 

' the Middle Stage. 

Alteration of fascicular-optic calcite to pseupospar, 

which mimics late stage calcite cement, and alt eration of micrite to 

local patches of microspar and pseudospar occurred during ·Late' Stage 

diagenesis. The ferroan calcite veinlets interpreted to be associated 

with faulting that deform some of the Upper Mississippian sediments, 

imposes a control on the conclusion of late stage cementation. The 

veinlets cross-cut late stage mineralization and cement. This cement is 

interpreted to have lithified both the Upper and Lower Sequence of the 

carbonate/clastic lithofacies and probably the overlying red-beds. 

Therefore, all diagenesis, except , for late dissolution and minor miner-

alization, has occurred prior to faulting. Unfortunately, this does 
I 

not impose a control on the age • .of the faulting or. the length of 

the Upper Sequenc e sedimentation. 

0 
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The alteration of the original speleothem textures to 

their presently preserved textures would have'taken place in a similar 

diageneti~ environment as was present for the initial neomorphism of 

the marine cements (Neomorphism 1). The interpreted age for the 

speleothems is pre-All~nian; whether they were contemporaneous with, 

or formed before, the Upper Mississippian sediments is unknown. 
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CHAPTER 9 

I 
CONCLUSIONS 

In His~issippian time, the Port au Port Peninsula was an 

uplifted ridg~ of early Palaeozoic carbona.te strata which were first 

karsted and then gradually buried- by coeval depo~ition of carbonates, 

evaporites, and terrigenous clastics which prograded out over adjacent 

marine basins. Post-Mississippian erosion has removed most. of this 

cover and exhumed the karsted early Palaeozoic core with small pre­
• 

~erve~remnants of th: once extensive Upper Mississippian cover 

fringing the ri~ge. 

TWo styles of karstification are preserved on the Ordo-

vician carbonates. The first, a surf~ce-solution phenomenon, formed 

on Table Point Formation carbonates, and a similar limestone lithology~ 

in the St. George Group, exhibits karst features which 're predominantly 

solution grooves ranging ' from small (rillenkarran)· to large (karst 

valleys) . .. The second style, controlled by subsurface drainage, formed 

within the alternating dolomites and limestones of the St. Georg~ G~oup. · 

Caves1 and interpreted collapsed caves (now valleys), form the present • 
day landscape. Speleothems of Early,;to Late_ Mississippian 'age are 

rare, but where. present include drusy-calcite fissure fillings and , 
cave precipitates. Modern karst affects the Upper Mississippian sedi-

·inents producing moldic porosity and appear s to have locally rejuvenated 

the Earp Mississippian karst l~dscape. 

.f· .• 
j '~. 
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Upper Mississippian sediments (Codroy Group), preferen­

tially preserved in karst depressions ·and low lying areas of the 

peninsula, are subdivided !nto three lithofacies: 

-

.. 
(1) terrigenous clastic facies- (red "sandstone, con-

' ' •f' t · 

glomerate, and bret1,j.1l,. depos:tted in an f!Zluvial 
.• i )"". ·. t .• 

fan - braided st~eam environment and. o~erlies 

both table Point Formation, St. George Group (both 

Ordovician i~ age) and earlier Mississippian strata; 

(2) sulphate/clastic facies· (conglomerates, laminated 

0 
micritic limestone, laminated sandy gypsum, and sand-

stone) deposited _initially in a nearshore, shallow 

water hypersaline environment which later became 

brackish to fresh (sandston~ and overlies Humber 

~- Arm Supergroup (Ordovician) and th:lnll onto Table 

Point Formation~ 

(3) carbonate/clastic facies (Lower Sequence: biohermal 

and b.iostromal limestone, and int,~rbedded sandstone; 

Upper Sequence: sandstone conglomerate, breccia and .. 
minor micritic limestone) deposited initially in a 

near-shore marine environment fluctuating fr~m hyper-

saline to brackish water c~nditions, followed by 

dominantly brackish to fresh water conditions (clastics), 

\ ~nd overlies Table Point Formation and St. George Group. 

,, 
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Upper Mississippian seas along the northern and ·western 

marsins of the Port au Port ridge supported an abundant community · 

dominated by brachiopods, blue-green algae, bryozoans'· pelecypods, 

ostracodes. and gastropods. Notably ab!'lent are crinoids/echinoids and 

.. true corals (only conularida occur); reduced to a few species and/or 

~ individuals are forams, conodonts and cephalopods. Detailed sampling 

of the macrofauna indicates that they are facies-controiie.d within the. 

carbonate/clastic lithofacies. Fauna assigned to Upper Cod roy strata 

by Hayes and Johnson (1938) and Bell (1948) occjbelow and/or are 

equivalent to Lower Codroy fauna. Few macrofauna occur in the sulphate/ 

clastic lithofacies. and none occur in the terrigenous clastic litho-

facies. Plants grew on the . slopes of the exposed Port au Port· ridge, 

as interbedded sandst9nell in both sulphate and carbonat~/clastic litho-
~ . . 

facies contain a well preserved spore assemblage. Plant debris is also 

associated with the sandstones but poorly preserved. ' -
The Lower Sequence carbonates .are composed of bryo~:oan/ 

algal mounds. Intennound sediments include fossilif,erous carbonate, 

black shaley ~imestone, and/or calcareous sandstone. The mounds are 

eitl)er isolated or are vertically and horizor:ttally stacked to fom 

bioherm complex'es. Molluscs aad ostracodes are predominate within the · 

intermound sedimenir~ whereas bryozoans, algae, brachiopods and worms ar~ 

prevalent within the mounds. Most molttlds have a well prese~ved bryozoan 
~ . 

baffle which consists of individuals coated and joined together by syn-

-
~ --··---
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sedimentary marine cement. Multigenerations of graded sediment infilled 

the pores and cavities in this structure .. Locally, restriction of pore 

waters within the mound allowed salinities to be raised t:o sufficient 

levels for precipitation of anhydrite/gypsum. 

The diagenetic history of the carbonate/clastic lithofacies 

includes: (1) the precipitation of probable aragonite and magnesium 

calcite cements, in a marginal marine environment, followed by; (2) 

shallow burial by pro.grading fluvial' and terrestrial sediments, 

resulting in; (3) fracturing and stylolitization of the lithified 

sediment. Within the remaining primary porosity and fractures, pre-

cipitation of (4) late stage phreatic ceme\lt, and associated ·sulphide/ . '-
sulphate mineralization occurred in the phreatic zone. Sulphate 

mineralization also took place after this latter event replacing the 

late stage cement, as well as in early diagenesis' during the deposition 

of the carbonate sediments. 

The early isopachous magnesium calcite cements . are neo-

morphosed to fascicular-optic calcite, and then locally altered by 

late stage. phreatic fluids to a blocky equant pseudospar similar in 

texture to the late stage cement. Evidence of this secondary al tera­

tion is the extension of the sweeJ~ing extinction of th: fascic~ar-
optic calcite, and rare relic fibres (or inclusions} into the coarse 

pseudospar. 

Ca'lcite spar interpreted to once have been aragonite 

cement is preserved as fans, botryoids, and/or bodies of irregular 

shape, ex*ting micritic outlines some of which have poorl y defined 

.. 

\ 
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chisel-shaped terminations. These structures are always altered to 

~quant or slightly elongate ~·seudospar and never form isopachous rims. 

In both cement types, incorporated sediment and encrusting _worm tubes 

suggest: that during se4imentatton the cement structures were rigid 

." 
features. -

Late stage calci~ cement is ·co~ed _of coarsely crys-

talline ferroan to non-ferroan calcite, and is the last cement pre-- . 

cipitate ""in ·all lithofaciefj. No consistent pattern in the order of the 

irpn content is distinguis~ble but ·non-ferroan calcite is the most 

common. 

Subsequent to the preceding 'diagenesis, f aul t:ing, inter-

preted as occurring during Alleghenian deformation, formed _ graben 

structures within "some karst V!llleys. Minor sulphide mineralization 

may be associated. These faults are thougQt to have developed ·along 

palaeolineaments initial.ly formed during the Acadian Orogeny. 

Three significant" .observations during th~s study have 

important implications for the Atlantic Carboniferous basin : · (1) 
. . 1. 

facies-controlled ·fauna' and abunqant "marine" fauna in 111arginal marine 

conditions; · (2) coeval deposition :tn markedly different environmen t s 

in a small region; and (3) the occurrence of mounds in the marine sedi-

ments. 

(1) Macrofauna, and probably microfauna, are facies-con-

"trolled casting doubt upon current biostratigraphic zonations for the 

Uppe r Mis s:l,.ssippian in Atlantic Canada. It ~s suggested that miospores, 
~ 

t 
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unaffected by marine conditions, would }?e inore suitable for detailed 

chron?stra~igraphic evaluati~ns. The ~resence of brachiopods and 

bryozoans in interpreted hypersaline to bracki'sh ·environments adds to 

the growing realization that thl!se fauna are ' not restricted to normal 

marine conditions. 
: r--

(2) The lateral equivalence of markedly different Upper 

.. 
Mississippian environments as defined .on the Port au Port Penins 

has profound significance in areas elsewhere in 

erous basin where outcrop exposure, or control, is poor. 

deposits of gyps·um~ thin associated limestone units, and fluvial to 

alluvial red-b~d seg~ences are characterist-ic of the Late Mississippian 

in ·Nova Scotia, New Brunswick, and Newfoundland: Using the stratigraphic . 
relationships of the Port au Port: Peninsula as at! example, the apprecia-

tion of complex lateral facies changes would be critical in piecing . . .. 
together ' t:he vertical stratigraphiy sequence. · 

(3) The occurr•nce of carbonate mounds in the Late Missi s-

sippia~ in the, Port au P~ part: of a worldwide phenomenon 

during the Early Carboniferous. Their lithology (wlth well _preserved 

. ' I 
baffle structure) and sedimentary facies (nearshore, marginal marine), 

however, is in ma~ked contrast to the .Waulsortian-type mounds described 

in the United States and Europe (dominantly shelf-edge, open marine). 

It is unknown whether 110unds exist i n the offshore Mississ i ppian sedt ­

mertts in the Port au Jf>rt area; the preJ~ence of , a rocky ka~sted shore-

line may have provided unique e ne rgy and e nvi-ronmental conditions. 

( 
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