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Abstract 

The testing of physical analogues has been shown to be important in the 

development of theoretical models describing the relationships between fluid 

flow in fracture systems, and the state of stress and deformation within the 

host rock of the fracture. The flow and transport characteristics related to 

fracturing are often enhanced by the effects of the state of stress in the rock 

walls, which may open up secondary pathways and cause chemical 

alterations in the wall rocks. 

The objective of this study was to describe the influence of two, parallel, 

large scale fracture roughness asperities on: 1) the fracture stiffness, 

displacement and hydraulic transmissivity, 2) the local stress field in the 

adjacent wall rock, 3) the mode and patterns of secondary fracturing, and 

4) the effects on host rock permeability all as a function of changes in both 

normal and shear stress. The overall study approach included a series of 

experiments on an instrumented high strength concrete model of a fracture 

plane in a stiff biaxial loading frame, and comparison of the experimental 

data with numerical model simulations. 
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The concrete model (200 x 200 x 300 millimetres) was cast with 92 strain 

gauges mounted on concrete coupons embedded along the centre of the 

model, and 17 manometer ports intersecting the fracture plane to measure 

the fluid pressures across the length of the model. The fracture plane was 

formed by pressing an aluminium plate matching the form of the asperities 

into the wet concrete. This plate was separated from the wet concrete by a 

piece of geotextile. When the concrete was set, the second half of the 

model was cast on the geotextile (which was left in place). This geotextile 

provided the form of a uniform small scale roughness on the fracture surface 

after the blocks were separated. Four 6.4 millimetre diameter wells were 

drilled into the top of the model. These wells were used to estimate the 

matrix permeability changes of the concrete of the model as it was subjected 

to changing load conditions. 

Results of the study confirmed that the large scale asperities had a 

significant influence on the local strain field, as seen in the data recovered 

from the 78 strain gauges that survived the casting and pre-test processes. 

Three normal and four shear loading cycles showed repeatable internal 

strain patterns that reflected the effects of the applied boundary conditions. 
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Fracturing in the model was assumed to be caused by tensile stress 

concentrations at the base of the asperities, and at the ends of the sample. 

Displacement data indicate permanent normal closure of the fracture was 

greatest for the first normal loading cycle, and decreased over the following 

two cycles. During the final four cycles, the permanent fracture closure 

became essentially identical at about 20 per cent of the original closure. 

This suggests that fracture seating occurred during the first normal loading 

cycle, which is consistent with other experimental work. 

Fracture transmissivity was seen to decrease logarithmically with the cube 

root of the normal stress applied to the sample, and decreased further as the 

sample was sheared, causing closure of the aperture at the large scale 

asperities. 

The four wells drilled into the top of the model were pressurised with 345 

kPa (50 psi) water, and shut in. The pressure decline of each well was 

monitored sequentially throughout the shear cycles and these data were 

used to estimate the relative permeability of the concrete. All four wells 

showed similar decline curves over the periods that each well was 
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monitored. There was no indication that the permeability of the concrete 

was enhanced by the shear stress applied except by the propagation of 

secondary fracturing through the wells as the concrete failed. 

The post-test finite element analysis confirmed the assumption that induced 

tensile fracturing was the primary mode of failure in this experiment. Under 

normal load, finite element analysis showed that the large scale asperities 

caused local changes in the orientation of the stress field. Under combined 

normal and shear load, there were significant tensile stress concentrations 

associated with the restraining and releasing bends of the fracture, which 

provided the focus points for the onset of failure of the blocks. 
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Chapter 1 Introduction 

1.1 Statement of Problem 

Discontinuities have an important influence on the strength, deformational and 

flow characteristics of rock systems. Properties of the discontinuities, in the rock 

mass, include orientation, extent, planarity, roughness, aperture and the 

strength of wall rock asperities. Roughness, which influences the friction angle, 

dilatancy and peak shear strength, refers to the local departures from planarity 

of the discontinuity at both small and large scales, (i.e. short or long lengths of 

the fracture trace or cross-sectional profile) over which the roughness is 

measured. The surface friction of smooth rock and mineral surfaces derives 

from micro-interlocking and adhesion, which may require rock breakage for 

sliding, as well as "ploughing" of harder minerals into a softer matrix. The friction 

angle of a rock discontinuity is defined as the critical angle for sliding of one rock 

block against another as the angle of the discontinuity is increased. 

Several authors (Sholtz (1990), Lee et al. (1990)) have shown that the 

roughness of both fracture and large scale fault planes can be considered to be 

fractal. As such they are characterised, in a relative sense, by a continuous 

range of size of roughness features ranging from small scale (microscopic to 

millimetres) to large scale (centimetres to several tens of metres). While the 
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relationship between the strength and permeability of small scale roughness can 

be added by combining the basic surface friction with the local roughness term, 

the "i" term of Rengers (1970), characterising the contribution of large scale 

asperities to shear strength and hydraulic properties, has been more 

problematic. Barton et al (1985) used the Joint Roughness Coefficient (JRC) to 

include the strength properties of the large scale asperities for regular fracture 

planes, with trace lengths measuring on the order of metres to tens of metres. 

The Joint Roughness Coefficient is obtained from physical testing on samples 

as follows: 

JRC = a- <l>r where: 
log(JCS/o'no)' 

a = tilt angle when sliding occurs; 

a' no = corresponding value of effective normal 

stress when sliding occurs (weigh upper 

sample, correct for cosa, measure joint area) 

<l>r = residual friction angle (friction angle after 

sliding has commenced) 

JCS = joint wall compression strength. 

For large scale fault zones, the large scale roughness or asperities, referred to 

as jogs, are thought to form locking points on fault planes that are in a condition 

of incipient failure as defined by Scholz (1990) (Figure 1-1 ). As failure or 

macroslip approaches, it is assumed that sliding occurs on those parts of the 
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fault plane that are characterised by small scale roughness. However, at the 

locking points, the shear displacement or slip is restricted, resulting in zones of 

stress concentration being created in the rock mass around the jog with 

corresponding changes in the normal and shear stress acting on the 

fault/fracture plane. 

·-· FAULT 

--~- SLIP PLANE 

Figure 1-1: Schematic diagram illustrating the definition of jogs and steps. 
(Scholz, 1990, Fig. 3.28) 

Conceptual models for large scale fault jogs presented by both Sibson (1986) 

and Scholz (1990) suggest the presence of a zone of compressional stress on 

the restraining bend and tensional stress on the releasing bend of the jog, and 

thus any slip taking place at the jog would involve volumetric strain. This 

volumetric strain at the locking point(s) is assumed to take place by the creation 
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of new fractures in the rock mass and/or by failure along existing fractures in the 

jog. 

It has been seen in field observations that both small and large scale 

fault/fracture jogs are characterised by a series of "en echelon" tensile or shear 

fractures, with cross cutting connecting fractures (Gamond, 1987; Sibson, 1986; 

Segall and Pollard, 1983). 

Consistent with the conceptual models discussed above, a map detailing the 

fracturing associated with the rupture trace of the Borrego Mountain earthquake 

(Figure 1-2) has been provided by Sibson (1986). It was suggested by Sibson 

(1986) in this review that the fracturing from this fault movement increased 

the permeability of the host rock in the vicinity of the fault. However, this paper 

was mostly conceptual and did not included field measurements to confirm this 

assumption. 

There have been a few indirect field experiments to measure changes in 

fracture permeability and porosity within and adjacent to fault zones as reviewed 

by Pratt et at. (1977). However, we are only aware of the direct field 

measurements by Martin et at. (1990) of both stress concentrations and 
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Figure 1-2: Effect of Brittle PSS (Principal Slip Surface) infrastructure on 
brecciation processes in fault zones: (a) surface-rupture of the 1968 ML 6.4 
Borrego Mountain earthquake (star represents epicentre), showing broad­
scale infrastructure; (b) classification of infrastructure into dilational and 
antidilational jogs with respect to slip sense and far-field principal 
compressive stresses (cr1. > cr2 > cr3); (c) inferred internal structure of strike­
slip fault jogs, showing association with different brecciation processes 
(thrusts represented by sawtooth lines, fold axial traces by thick wavy lines, 
subsidiary strike-slip faults by cris-cross lines, vertical extension fractures by 
thin parallel lines, and normal faults by thick dashed lines with tick on 
downthrown side). (Sibson 1986, Figure 2). 

associated changes in fracture permeability at a fault jog. The close 

association of mineralised zones due to hydrothermal processes with specific 
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sections of large fault structures have been noted by many workers (Bjorlykke 

(1993), Kamineni et al. (1993), Morrow and Byerlee (1992) etc.). The 

hydrothermal alteration of wall rock adjacent to fractures and the presence of 

infilling vein minerals suggest increased permeability and porosity in these parts 

of the rock mass along and within the fault zone, relative to other sections along 

the same fault zone. It is apparent from these observations that a clear 

understanding of the stress and hydraulic conditions within and adjacent to large 

scale asperities is critical to understanding the role that the asperities play in 

fluid movement through fractured and faulted rock masses. 

In naturally fractured rock, given that laboratory and field studies have 

demonstrated that the permeability and porosity of fractures are stress 

dependent (see Brace (1978) for review ), it can be assumed that the stress 

concentrations created by jogs will have significant impact on the permeability 

and porosity of the fracture system making up the fault plane as well as in the 

adjoinin·g rock mass. 

The changes in the stress field along the fault trace and within the rock mass will 

change the normal and shear stress acting on the discrete fracture planes 

resulting in either closure or opening of the fractures within the zone of stress 
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concentration, thereby decreasing or increasing the permeability of that zone. In 

addition, changing stress concentrations can cause the formation of new 

fractures, which can increase the rock mass fracture permeability through the 

opening of new interconnections and pathways. Such changes in permeability 

must be accommodated in engineering and geotechnical applications such as 

nuclear waste disposal, subsurface contaminant transport, petroleum and 

minerals exploration and recovery, and dam engineering and construction. 

Large scale investigations of fractured rock are complicated by many factors. 

These factors include limited knowledge of the 30 fracture geometry, and 

permeability plus unknown flow and stress boundary conditions. Therefore, 

laboratory testing of physical models, or analogues, under controlled conditions, 

is an important and convenient process for developing and evaluating 

theoretical models that describe the relationships between the state of stress 

and deformation within the host rock and their impact on the fluid flow 

characteristics of the associated fracture systems. 

1.2 Scope and Objectives 

Natural fractures and faults rarely contain a single jog or large scale asperity. 

Therefore, it is important to establish how multiple large scale asperities, or jogs, 
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affects the changes observed when the fracture plane contain only one large 

scale asperity (Butt, 1994). It is assumed that when several asperities are in 

close proximity on the same fracture plane there will be a transfer of shear load 

between the large scale asperities which cause changing patterns in the 

matrix/fracture permeability. To investigate the effects of this load transfer on 

changes in stress, strain, and permeability, both within the fracture plane and 

the adjacent matrix, a physical model was constructed, containing two large 

scale asperities. The overall dimensions of the physical model were 200 mm by 

200 mm by 300 mm and the two asperities, each 10 mm high, 35 mm wide at 

the base, 15 mm wide at the top, with a 45 degree slope, crossed the width of 

the fracture plane perpendicular to the shear direction. The experimental stress, 

strain and permeability data obtained from a series of tests on this physical 

model, for a range of normal and shear stress conditions, have been compared 

to numerical, discrete fracture, coupled stress-flow, simulations of the physical 

model. 

After the testing process, the original and secondary fracture surfaces were 

observed directly by sectioning and coring of the model. Finite element 

numerical modelling was done to compare the strain distributions observed 

during testing with the stress distribution predicted by the Coupled Stress 
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Fracture Flow Code (Gale 1975). All data were integrated and compared to 

observations of changes in the flow characteristics of the artificial fracture in the 

model. 

1.3 Previous Work 

Most of the initial physical analogue studies (Goodman 1976, 1980) have 

focused on the effects of the large scale roughness on the stress and 

deformation along the fracture plane. For example, Fishman (1990), using 

photoelastic materials, examined the stress distribution and inferred the failure 

modes in a fabricated 'sawtooth' type joint (Figure 1-3). Fishman's work showed 

that under·shear loading, the compressive stress builds up across the ascending 

edges of the asperity with the highest concentrations located in the base and 

tips of the sawtooth asperities. His conclusion, similar to other authors, was 

that in real joints, ''the contact of Uoint) walls takes place not on the whole of the 

surface, but in a limited number of touches, the area of which is often not more 

than 1 - 5°/o of the total area of the joinf' (Fishman 1990). From this it follows 

that the prevalent type of failure in a natural joint will be rotation and crushing of 

the asperities, which will in tum help increase the permeability of the fracture. 
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N 

1 

Figure 1-3: Stress Distribution in a "Sawtooth" Joint (Fishman, (1990), Fig. 
2) 

However, in his experiments the material was not brittle and no measurements 

of strains or permeability were made. 

Hyett and Hudson (1990) cast impressions of natural rough joint surfaces using 

a photoelastic material, and subjected these reassembled models to various 

shear and normal loads. Under normal loading, they observed significant stress 

concentrations at intermittent points of contact between the joint surfaces. With 

increasing normal load, these concentrations were reduced as the fracture 

surfaces deformed and the contact area increased. Under shear loading, they 

observed significant stress concentrations at the restraining bends. 
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Gamond (1987) shows similar results from observations of small fault zones in 

the French Alps: He observed evidence of pressure solution along the faces of 

restraining bends and the precipitation of veins along the dilated releasing 

bends. Pressure solution is a form of diffusive mass transfer where material in a 

stressed zone is dissolved by a pore fluid. The dissolved material is 

subsequently precipitated in a region of available pore space, such as the areas 

of the releasing bends at other locations along the fault. 

Experiments have been conducted by several researchers on rough rock/steel 

interfaces to examine the failure modes of idealised high angle asperities. 

Handanyan et al. (1990) sheared triangular, spherical and rectangular models of 

asperities to failure under non-dilatant conditions. These models were cast 

using a high strength dental material, which had similar physical properties to a 

medium strength igneous rock. The authors observed combinations of shear 

fractures oriented parallel to the mean fracture plane and tensile fractures 

oriented approximately normal to the loaded bend face. Dilational shear 

experiments were completed on models constructed of gypsum by Fishman 

(1990). In these experiments, using the same fracture morphology as in his 

photoelastic study discussed previously, he observed that the asperities failed 

by rotation after a tension crack had propagated across the base of the asperity. 
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He derived equations predicting shear strength and dilatancy as a function of 

the rock crush strength, applied stresses, and the asperity dimensions. The 

differences in asperity failure modes between the two Fishman studies appear 

to be related to dilational constraints, with the rotation failure being easier under 

dilated conditions. Numerical simulations which predict the development of 

zones of high shear and tensile microcrack density on both sides of the loaded 

asperity face have been conducted by Aydan et al (1990) on rock asperities 

similar to those discussed above. 

Jones (1975) conducted studies of fracture permeability in a variety of 

substances, including natural rock and Portland cement, under various states of 

normal stress. In relating to the present study, the key conclusion of his work 

was that the cube root of the permeability contributed by fractures was found to 

be a linear function of the logarithm of the confining pressure. 

As noted earlier, Barton et al. (1985) summarised many years of their work by 

synthesising a coupled joint behaviour model which simulates stress and size­

dependent coupling of normal and shear stress, displacement, closure and 

dilation, and conductivity. This model uses tilt tests, Schmidt rebound tests, and 

borehole pumping tests (if available) conducted on jointed core or on exposed 
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jointed blocks to obtain estimates of the roughness (JRC) and conducting 

aperture as inputs to their model. 

In order to determine the impact of large scale roughness under various stress 

states on both the distribution of fracture/rock deformation and the 

corresponding changes in fracture/matrix permeability, a series of laboratory 

experiments are being undertaken by the Fractured Reservoir Group at 

Memorial University. In these experiments five samples are being tested: (a) 

two fabricated fracture surfaces (two physical models), (b) a sandblasted sawcut 

surface in a limestone block, (c) and two samples of Berea sandstone, one 

containing an induced fracture surface and a second with a machined fracture 

surface. 

The first physical model, constructed of high strength concrete, was designed to 

study the effects of a single large scale asperity Uog), on both fracture and rock 

deformation and the flow properties of the fracture plane. The results of this first 

experiment have been reported by Butt (1994), and Gale et al. (1994). In this 

model, strain gauges and manometers were embedded in a similar 

configuration to that in the present experiment. Butt's work demonstrated that a 

single large scale fracture roughness does have a significant influence on both 
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the normal and shear fracture stiffness, on the state of stress in the adjacent 

wall rock and on . the development of secondary fractures. In addition, there was 

a marked increase in the total volume of fracture porosity in the vicinity of the 

large scale asperity. 

The final three experiments on natural rock samples that are noted above, were 

done subsequent to this experiment, and therefore are not reported here. 
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Chapter 2 Design and Experimental Procedures 

2.1 Design and Construction of the Physical Model 

A physical model has been constructed to investigate in detail the effects of 

two parallel large scale asperities on the state of deformation and 

permeability of a single fracture. This model was identical in overall size and 

general configuration to that of Butt (1994), with the main difference being 

the presence of two large scale asperities. 

The small scale roughness on the fracture surface was created using the 

impression of a geotextile material in the uncured concrete. This texture 

was of the form of uniform small asperities, or roughness, averaging 1 mm 

in height. The shape of the two large scale asperities was superimposed on 

this small scale roughness. Both of these asperities were 10 mm high, and 

parallel to each other. They extended across the full width of the model and 

were oriented perpendicular to the shear direction. These parallel large 

scale asperities were separated by a distance of 70 mm, equal to seven 

times their height. The 45 degree ramps of the large scale roughness were 

designed to increase the tendency for failure to occur at the base of the 
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asperities, and to minimise the tendency for the fracture to dilate at low 

normal stresses. 

Within the model, 92 strain gauges to measure the matrix deformation of the 

concrete were mounted on both sides of four 80 mm by 125 mm by 14 mm 

concrete slabs or coupons (Figure 2-1, 2-2). These coupons, cut from 

cylinders that were formed using the same mixture used in the construction 

of this test specimen, were positioned along the centreline of the lengthwise 

vertical plane (Figure 2-3, Appendix A-3). 

Figure 2-3 illustrates the orientation and location of the strain gauges 

imbedded in this model. Of the gauges, 28 were orientated vertically 

(perpendicular to fracture plane), 28 were orientated horizontally, and the 

remainder were in rosette configuration (24 at ± 45° to the fracture plane, 12 

vertical). All gauges and wires were coated with a rubber like waterproof 

coating to protect them during the casting of the model, and the following 

testing procedures. In addition to the waterproof coatings, each strain 

gauge or gauge rosette had a small (1 0 mm by 15 mm) brass "shim stock" 

strip epoxied over it to aid in heat dissipation from the gauge during 

operation. To further aid in internal heat dissipation, small copper cooling 
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tubes were mounted over both sides of each coupon so that water could be 

circulated through these tubes to help dissipate the heat generated by the 

strain gauges. 

All of the strain gauges had a gauge length of 240 mils (6.1 mm), except for 

four of the rosette clusters (5-6-7, 28-29-30, 53-54-55 and 76-77-78), which 

had a gauge length of 60 mils (1.52 mm). These four rosette clusters are 

located at the lower centre (L), lower centre (R), upper right and upper left 

respectively. 

After the strain gauge coupons were mounted in the mold, the manometer tubes 

(17 in total, Figures 2-1, 2-2 and 2-4) and 8 LVDT anchor posts were fixed in 

place. The lower half of the model form was filled with the cement mixture and 

internally vibrated to remove air space with a vibrator inserted into the wet 

concrete. The double large scale roughness feature of the fracture plane was 

constru.cted by pressing an aluminium mold of the asperities into the wet 

concrete (Figure 2-1 ). This mold was separated from the wet concrete by a 

geotextile fabric (Miraffi™ 600 ). After the concrete had hardened in the 

lower half, the upper half of the model was cast on the geotextile (which had 

been left in place). As noted previously, the woven texture imprint of the 
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geotelKtile created the uniform small scale roughness on the fracture surface 

after tile blocks -were separated. 

LSR-2. S1ra1n Gauge Locat1ons 
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Figure 2-3 Lengthwise vertical section showing the location of the strain 
gauges in LSR-2. Gauges marked with an asterix failed prior to testing. 
Scale along both axes is centimetres. The dashed line represents the shape 
of the artificial fracture plane. 

The concrete was allowed to cure in a water bath for 44 days. The wooden 

forms were then removed, and the model was separated along the fracture 

plane using steel wedges. The upper and lower halves were carefully 

reass embled so as not to disturb or contaminate the texture on the fracture 
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plane, and secured with two stainless steel gear clamps located over the 

asperities (Figure 2-6a). 

Four 65 mm deep, 6.4 mm diameter wells were then drilled on the upper half 

of the block for matrix permeability experiments (Figures 2-2, and 2-5) into 

which thin walled brass tubing was epoxied to a depth of 35 mm, leaving 30 

mm of open hole. 

Finally, the model was cast into the lower half of the steel shear box (Figure 

2-6 (a)) using a grouting material made from a mixture of high strength 

epoxy resin, and a fine to coarse silica sand. After curing for two days, the 

upper half of the steel sample box was attached to the lower half with 

machined aluminium plates (to hold sample and shear box in precise 

alignment), and the assembly was inverted. The upper half was then filled 

with the same resin mixture, and allowed to cure. After curing, the side 

plates were removed one at a time, and the edges of the model were 

cleaned and additional epoxy was added to fill areas that were obscured by 

the side plates. The plates were replaced, and the model was lifted into the 

shear frame (Figure 2-6 (b)). 
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Figure 2-6 (a) Schematic diagram illustrating placement of LSR-2 in steel 
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Figure 2-6 (b) Biaxial Shear Apparatus with steel sample box installed. 
(from Gale, 1990, Figure 2.2) 
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2.2 Experimental Procedures 

Three normal, and four shear loading cycles were conducted (Figure 2-7, 

Table 2-1) using simultaneous displacement and load control. This was 

accomplished using an MTS servo controlled hydraulic system interfaced to 

a PC based control and data acquisition system (Viewdac/Keithley). Loads 

from the hydraulic actuators were applied to the physical model through 

hydrodynamic bearings fitted to the sample box (Figure 2-6 (b)). The loads 

and actuator displacements were measured using a load cell in each 

actuator assembly, and a LVDT mounted between each actuator piston and 

its base. The normal and shear displacements at the fracture plane were 

measured by eight LVDT's and machined steel wedges mounted on the 

corners of the model, using the anchors previously imbedded in the model. 

The load cells and actuator mounted L VDT's were scanned five times every 

second by the control system. These measurements were used in the 

control loop to generate analogue control signals for the displacement and 

load control of the biaxial loading frame. The data acquisition and storage 

loops operated concurrently with the control loop to read and record the 

strain gauges and thermocouples every 10 minutes. The sample LVDT's 

were read and recorded every 10 seconds, and the pressure transducers 

were read every 30 seconds and recorded as needed. 
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Table 2-1: Testing Schedule (see Appendix 2 for details of loading steps) 

Test Cycle 

Normal1 
Normal2 
Normal3 
Shear1 

Shear2a 

Shear2b 

Shear3a 

Shear3b 

Loading Sequence 

Normal load only to 10 MPa, then unloading . 
Normal load only to 10 MPa, then unloading . 
Normal load only to 10 MPa, then unloading. 
Normal load to 2 MPa, shear loading to 1 MPa, 
unload shear, then unload normal. 
Normal load only to 5 MPa, then unloading. Shear 
portion cancelled due to unstable electrical power 
caused by inclement weather. 
Normal load to 5 MPa, shear load to 2.5 MPa, 
unload shear, then unload normal. 
Normal load to 1 0 M Pa, then shear load to 7.58 
MPa. A fault in the hydraulic equipment 
necessitated the removal of the loads by shutting off 
power to the testing frame. 
Normal load to 10 MPa, then shear load to 9.46 MPa 
when the model failed. Shear load was reduced to 
6.25 MPa for epoxy injection into the fractures. 

The exposed edge of the artificial fracture plane was surrounded by a packer 

and packer retainer constructed from a small bicycle inner tube and a steel 

channel frame. The retainer was designed as a rigid frame to hold the 

inflated packer (inner tube) tight against the exposed edges of the fracture, 

but would still allow for shear movement of the assembly. Under the packer 

at the ends of the model were flow spreaders, consisting of a section of one 

half inch OD copper tubing, cut lengthwise, to allow the inlet and outlet water 

to spread evenly across the ends of the model. 
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Deionized and. partially degassed water was injected continuously into the 

fracture plane using a second PC controlling a constant displacement pump 

driven by a linear stepper motor. Water at a constant flow rate of 0. 7 

cm3/sec was injected (inflow) by this pump into one end of the model (port 

5), and withdrawn from the other end (port 14) in a lengthwise flow 

configuration (Figure 2-8). Fracture transmissivity was calculated from 

outflow measurements at selected normal and shear stress levels (Table 82-

8). For each stress level, a minimum of three measurements of outflow rate 

were made. The fluid pressures along the fracture plane were measured at 

13 of the manometer ports, at least three times for each flow rate 

measurement, using 7 pressure transducers that were connected through 

eight hand operated valves. Each of these valves had 4 ports, two of which 

were connected to constant head reference tanks for data quality control, 

and the other two were connected to manometer ports. 

The matrix permeability of the concrete was monitored for changes induced 

by testing by conducting pressure pulse tests (Brace et al., 1968, Forster 

and Gale, 1980) in the four wells drilled into the top half of the model, every 

30 to 45 minutes, throughout the shear test cycles. The wells were 
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pressurised with water to 345 kPa (50 psi), and shut in. The decays of these 

pressure pulses were recorded using a pressure transducer connected to a 

chart recorder. 

To preserve and examine the pore space of the fracture plane and the 

distribution of the contact points over the fracture surface, the fracture plane 

was evacuated at the end of the final shear cycle, flushed with alcohol to 

remove residual water, and injected with a low viscosity coloured epoxy 

resin. After curing, the machined side plates were replaced on the sample 

box, and the sample was unloaded and removed from the shear frame. The 

45 mm thick slab containing the fracture was then cut from the steel sample 

box with an industrial concrete diamond saw. This slab was sliced 

lengthwise into six sections. The resin-filled fracture plane was then 

photographed using a microscope to produce a final image of the fracture 

pore space at eighteen times enlargement. In addition, a series of cores 

were cut from the concrete remaining in the steel sample box to complete a 

profile of the fracture pattern in the model and to determine the nature of the 

bonding between the epoxy grout and the top and bottom of the model. 
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Chapter 3 Experimental Data 

3.1 Normal Stress versus Displacements and Strains 

The normal stress versus normal fracture displacement (averaged at all four 

corners of the sample), recorded for each normal loading test cycle, and the 

normal loading portion of the shear cycles, is illustrated in Figure 3-1. To aid 

in visualising the data, the starting points of each of the eight curves are 

artificially displaced by 0.2 millimetres along the X axis to avoid excessive 

overlapping of the data points. As shown in Figure 3-1, and schematically in 

Figure 2-7, for the three normal loading cycles, the maximum applied stress 

was 10 MPa. For the five shear cycles (Shear 1, 2a, 2b, 3a and 3b), the 

sample was loaded to a normal stress of 2, 5, 5, 10 and 10 MPa, 

respectively, prior to the shear stress being applied. As was noted in Table 

2-1, test Shear 2a had only normal loading to 5 MPa, because the shear 

portion of the test was cancelled due to inclement weather. 

Analysis of the normal displacements for the eight testing cycles showed a 

strong hysteresis effect between the loading and unloading portions of the 

tests (Figure 3-1) with permanent closure of the fracture plane being 

greatest (0.11 mm) for the first loading cycle (Figure 3-2). This permanent 

normal closure decreased in the second and third test cycles (N2, N3) as the 

test sample seated itself and stabilised at approximately 0.02 mm for each of 
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Figure 3-2: Effect of loading on permanent fracture closure at end of each 
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the shear cycles. The large closure seen for cycle N3 was likely due to the 

model being disturbed slightly by the packer pressure around the edge of 

the model at the end of the second normal cycle. These observations 

indicate that the artificial fracture plane seated during the first normal loading 

cycle and exhibited progressively higher stiffness in the following cycles. In 

all cases, the hysteresis effect gives an apparent lower fracture stiffness for 

the loading portion of the tests than the unloading due to the permanent 

deformation taking place. This is consistent with data from other 

experimental work (Raven and Gale 1985, Butt, 1994, Gale et al. 1994). 

This stiffness effect must be accounted for when doing the numerical 
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simulations and is discussed further in Chapter 4. It should also be noted in 

this discussion, that the total permanent closure of the fracture is the sum of 

the individual normal fracture closures seen in the seven test cycles 

illustrated in Figure 3-2. No normal closure was determined for cycle 38, 

due to the fractures intersecting the LVDT anchors. These fractures 

invalidated much of the displacement data for that cycle. 

The internal strains recorded during the three normal loading cycles show a 

similar pattern throughout the three test cycles. This is illustrated in Figures 

3-3 (a-j), which show the strains changing with the changi!'lg loads that were 

recorded during the loading portion of normal cycle 2 which was considered 

to be a typical cycle. The strain distribution recorded for all three of the 

normal cycles at peak load (1 0 MPa) is illustrated in Figures 3-4a to 3-4c, 

(Strain at Peak Load, Normal Cycles 1, 2, and 3). 

Relatively uniform, mostly compressional strains at low average normal 

stress levels (Figure 3-3 (a) and 3-3 (b)) are seen in a typical normal loading 

cycle. As the average normal stress level is increased to peak, however, 

the strains continue to change, breaking into compressional zones at the 

ends of each block, with extensional zones developing in the centres 
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Figure 3-3 (a): Strain Distribution, Normal Cycle 2, at 2 MPa Normal, 
Loading Cycle (0 MPa Shear). Numbers along axes are scale in centimetres, 
dashed vectors represent tensile microstrains, solid represent 
compressional microstrains. (See Figure 2-3 for strain gauge locations) 
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Figure 3-3 (b): Strain Distribution, Normal Cycle 2, at 4 MPa Normal, 
Loading Cycle (0 MPa Shear). (See Figure 2-3 for strain gauge locations) 
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Figure 3-3 (c): Strain Distribution, Normal Cycle 2, at 6 MPa Normal, 
Loading Cycle (0 MPa Shear). (See Figure 2-3 for strain gauge locations) 
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Figure 3-3 (d): Strain Distribution, Normal Cycle 2, at 8 MPa Normal, 
Loading Cycle (0 MPa Shear). (See Figure 2-3 for strain gauge locations) 
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LSR-2. NORMAL 2. 10 MPa NORMAL STRESS. PEAK LOAD 
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Figure 3-3 (e): Strain Distribution, Normal Cycle 2, at 1 0 MPa Normal, 
Loading Cycle (0 MPa Shear). (See Figure 2-3 for strain gauge locations) 
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Figure 3-3 (f): Strain Distribution, Normal Cycle 2, at 8 MPa Normal , 
Unloading Cycle (0 MPa Shear). (See Figure 2-3 for strain gauge locations) 
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Figure 3-3 (g): Strain Distribution, Normal Cycle 2, at 6 MPa Normal, 
Unloading Cycle (0 MPa Shear). (See Figure 2-3 for strain gauge locations) 
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Figure 3-3 (h): Strain Distribution, Normal Cycle 2, at 4 MPa Normal, 
Unloading Cycle (0 MPa Shear). (See Figure 2-3 for strain gauge locations) 
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Figure 3-3 (i): Strain Distribution, Normal Cycle 2, at 2 MPa Normal, 
Unloading Cycle (0 MPa Shear). (See Figure 2-3 for strain gauge locations) 

L~ R- 2 , NORMAL 2. 0 MPa NORMAL S1RESS, UNLOADED 

20r---------'-------------------------------~ 

15 f-

10 r- ---- ----------- ---- -----·---- ------------· -· 
~ · .. 
~ 
li; 
~ 
u :;; 

5 r- ~ 
~ 

+ 

' ... 

,. ............... . . 
.·· ·. 

- - ~ ---

30 

Figure 3-3 U): Strain Distribution, Normal Cycle 2, at 0 MPa Normal, 
Unloaded. (See Figur~ 2-3 for strain gauge locations) 
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LSR-2. NORMAL 1, 10 MPa NORMAL STRESS, PEAK LOAD 
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Figure 3-4 (a): Strain Distribution at Peak Load (1 0 MPa), Normal Cycle 1. 
Numbers along axes are scale in centimetres, dashed vectors represent 
tensile microst rains, solid represent compressional microstrains. (See 
Figure 2-3 for strain gauge locations) 
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Figure 3-4 (b): :Strain Distribution at Peak Load (1 0 MPa), Normal Cycle 2. 
(See Figure 2-3 for strain gauge locations) 
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Figure 3-4 (c): Strain Distribution at Peak Load (1 0 MPa), Normal Cycle 3. 
(See Figure 2-3 for strain gauge locations) 

(Figures 3-3(c), 3-3(d), 3-3 (e), Figures 3-4 (a), 3-4 (b), 3-4 (c)). The 

extensional zones, in roughly the centre of the upper and lower blocks, 

suggest bridging or pivoting on the large scale asperities causing rotation 

about the centre and closing of the fracture plane at the ends, and/or 

incomplete grouting or poor bonding of the grout above and below the centre 

of the sample. 

Post-test coring of the concrete and grout within the steel sample box 

confirmed that the above noted extensional strains were produced at least in 

part by incomplete grouting above and below the centre of the sample. It 
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can be seen in Figure 3-4 (a, b, and c), that development of these zones 

appear to decrease as the sample was repeatedly loaded. The rosette 

clusters closest to the corners of the block, 17-18-19, 40-41-42, 53-54-55, 

and 76-77-78 (see Figure 2-3) show greater strains in the line of action of 

the loading actuators, suggesting that transfer of the load from the actuator 

through the hydrodynamic bearing to the sample box produces a zone of 

stress concentration, which is reflected in the strain measurements. This 

suggests the principal stress directions undergo some degree of rotation 

within this part of the sample/shear box system. 

It can be seen that at rosette clusters 56-57-58 and 79-80-81 located directly 

above the fracture plane, the principal stress directions rotate by as much as 

90 degrees due to the influence of the extensional zone above the two large 

scale asperities, possibly caused by the incomplete epoxy grouting, and/or 

the large scale asperities themselves. In the immediate vicinity of the top 

side of the fracture plane, the horizontal strain components appear larger 

than the vertical, except at the ends, where the vertical components are 

slightly larger. This effect is likely due to edge effects produced by the 

exposed nature of the perimeter of the sample adjacent to the fracture plane. 

The distribution appears to be reversed in the lower block, where the pattern 
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of the measured strains close to the fracture plane are reversed relative to 

those above the fracture plane. The presence of residual strains at the ends 

of all of the loading cycles (as seen in Figure 3-3 (j)) suggest that the sample 

underwent plastic deformation. These primarily extensional residual strains 

were referenced to zero strain at the beginning of each subsequent loading 

cycle. 

3.2 Shear Stress versus Displacements and Strains 

Figure 3-5 shows the shear stress versus average shear fracture 

displacement recorded for each shear portion of the three shear test cycles, 

averaged at all four corners of the sample. To avoid excessive overlapping 

of the data points, the starting points of each of the four curves have been 

displaced along the X axis by 0.1 millimetres. During shear cycle 3a, one of 

the servo valves malfunctioned, requiring that the test be terminated and the 

sample was unloaded abruptly by shutting down the servo controlled 

actuators, producing the straight line shown in Figures 3-1 and 3-5. The 

curve for Shear 3b reflects a temporary malfunction of the servo valve on the 

loading frame at approximately 7.5 MPa shear stress. The sample appeared 

to have completely failed by 9.25 MPa, as seen by the horizontal line in the 

displacement curve. The shear stress was increased to 9.5 MPa and the 
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shear movement continued (Note that the sample was being loaded under 

displacement control). In order to stop the shear displacement, the shear 

stress was reduced to 6.4 MPa. The normal and shear loads were 

maintained, and epoxy was injected into the fracture plane to preserve the 

form of the fracture surface for the measured load and displacement 

conditions. 

Figure 3-6 (a to d) illustrates the patterns of normal and shear fracture 

displacements that are produced by the applied normal and shear stresses. 

The plots for shear 1 and 2 both show no fracture dilation (normal opening 

during shear displacement) with the application of 1.25 and 2.5 MPa shear 

stress, respectively. In both of these cases, all shear displacement recorded 

by the LVDT's took place after the peak normal stress of 2.0 and 5.0 MPa, 

respectively, was reached. The shear displacement returned almost 

completely to its original unloaded displacement only after complete 

unloading of the test specimen. Shear 3a showed a slight increase in 

closure at 5.5 MPa, then sudden dilation (0.8 mm) of the fracture plane at 

about 5.7 MPa for a total of 0.13 mm. During shear 3b, there appears to be 

a steady dilation totalling 0.1 mm, starting at 3.5 MPa shear stress, until 

failure at 9.46 MPa shear stress. The graph of shear 3b suggests further 
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Figure 3-6 (d): Shear 3b, Displacement versus Stress. 
a) Normal Displacement versus Normal Stress, b) Shear Displacement versus Shear Stress, 
c) Normal Displacement versus Shear Stress and d) Shear Displacement versus Normal Stress. 



closure at failure which is due to the failure of the block and the 

corresponding uncontrolled movements of the L VDT's. 

Figures 3-7 (a to d) (Strain Distribution at Peak Load) represent the strain 

distribution seen in LSR-2 during the shear loading cycles at the peak shear 

stress for each cycle. During the application of shear stress in each shear 

cycle, strain gauges 55 and 78 (see Figure 2-3) show the stress 

concentration effects produced by the actuators in the upper right of the 

sample. 

Unfortunately, two of the three corresponding rosettes in the lower left 

quadrant (5-6-7, 10-11-12) had failed prior to testing, so the corresponding 

compressional strain field is not obvious in this area. It is significant to note, 

however, that it is only during shear cycle 3b (Figure 3-7(d)), that rosette 17-

19 reflects the effects of the applied load. This is likely due to the effects of 

permanent deformation of the model at the end of shear cycle 3a, (Figure 3-

7(c)). This caused the stresses to be transferred from the upper block to the 

lower block by the left asperity in cycle 3b, rather than the right asperity, 

which appeared to be the case in shear cycles 1 to 3a. The transfer of 

stresses by the right asperity during 81, 82 and S3a would place the area of 
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high compressional strains in the lower left quadrant of the model in the area 

with no functional strain rosettes. By cycle 3b, the model had deformed 

sufficiently that the left asperity was transferring the load, and this is 

reflected in rosette 17-19. 

Corresponding to the zone of compressional strains acting diagonally across 

the model from the lower left to upper right, there are zones in the upper left 

and lower right showing large extensional strains (Figure 3-7 (c,d)). 

Post test observation suggests that the displacement profile for cycle 3b 

may not be completely due to shear movement on the fracture plane (Figure 

3-5). The sample fractured at the base of the left large scale asperity, and at 

the ends (Figure 3-8, 3-9). At least some of these fractures extended 

through the concrete to the epoxy grouting holding the model in the steel 

sample box causing the grouting to became partially detached from both the 

model and the steel. Much of the apparent fracture displacement seen for 

cycle 3b (Figure 3-5) can be attributed to the fracturing of the ends of the 

sample, to which the displacement L VDT's were attached. 
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Figure 3-7 (a): Strain Distribution at Peak Load (2.0 MPa Normal, 1.25 MPa 
Shear), Shear Cycle 1. Numbers along axes are scale in centimetres, 
dashed vectors represent extensional microstrains, solid represent 
compressional microstrains. (See Figure 2-3 for strain gauge locations) 
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Figure 3-7 (b): Strain Distribution at Peak Load (5.0 MPa Normal , 2.5 MPa 
Shear), Shear Cycle 2. (See Figure 2-3 for strain gauge locations) 
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Figure 3-7 (c): Strain Distribution at Peak Load (1 0.0 MPa Normal, 7.58 MPa 
Shear), Shear Cycle 3a. (See Figure 2-3 for strain gauge locations) 
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Figure 3-7 (d): Strain Distribution at Peak Load (1 0.0 MPa Normal, 9.46 MPa 
Shear), Shear Cycle 3b. (See Figure 2-3 for strain gauge locations) 

52 



3.3 Geometry and Timing of Induced Fractures 

To preserve both the artificial and induced fractures, the model was 

evacuated, flushed with alcohol, and injected with coloured epoxy at the end 

of the final shear cycle. The centre section was then sliced out of the steel 

sample boxes with a diamond saw. It was cut lengthwise into 6 slices, giving 

5 profiles showing the form of the fractures and fracture porosity near the 

artificial fracture plane (Figure 3-8). A series of cores were cut out of the 

remaining concrete in the sample boxes to complete a profile of the fractures 

in the model (Figures 3-9, 2-4, and 2-5). Once the cores were removed, it 

was seen that the epoxy-concrete grouting under both the top and bottom 

blocks was very porous, and was not even in contact with the concrete over 

much of the surfaces. This condition was suspected from the strain data. 

During shear cycle 3a, somewhere between 1 and 5 MPa shear stress (as 

determined from the index times on the well data), the model started 

separating from the grout in the upper box. This was seen in the failure of 

test well W1 imbedded in the concrete in the top of the model (Figures 2-2, 

2-5 and 3-9). The exact time of failure is impossible to determine, since only 

one well at a time was being monitored. The four wells were being 

53 



pressurised and monitored sequentially for 30 minutes each, giving an 

unmonitored window of 1.5 hours where the failure occured. On removal of 

the core containing this well, it was seen that the brass tube that was the 

casing for this well was sheared off outside of the concrete, and no fractures 

intersected the open portion of the well bore. By the end of shear cycle 3a, 

the model had begun to leak water from the extensional fractures on both 

ends of the profile illustrated in Figure 3-9. These fractures were probably 

induced by the centre of the model being pushed up into the cavity above 

and below the model caused by the incomplete grouting, and the ends being 

held in place by the better quality grouting around the edges. During shear 

cycle 3b, an extensional fracture extending upwards from the base of the left 

asperity started opening (Figure 3-9). This was seen in the test failure of 

wells W2 and W3, and confirmed by visual observation of the fracture in the 

cores. This fracture eventually extended to the top of well 4, which had 

failed after wells 2 and 3, and before the end of the test. 

The lower half of LSR-2 showed several small internal fractures of limited 

length which were difficult to trace, in addition to the major ones at the ends 

of the profiles. 
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3.4 Flow Data 

Flow data recorded during this experiment were used to calculate the 

fracture transmissivity as 1) a function of normal and shear stress, and 2) as 

a function of time, to see the effects on the permeability and deformation of 

the artificial fracture plane. 

Fracture transmissivity was calculated (Gale, personal communication, 1995; 

Raven and Gale, 1985) by substituting Darcy's law 

Q= K*dh*A = K*dh*(b*w) 
dl dl 

in the transmissivity equation 

T=K*b 

to give the form 

Q 
T= dh 

- *w 
dl 
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where: 

and 

b= aperture 
T= transmissivity (L 2yt), 
Q= flow rate (L 3/t), 
K = hydraulic conductivity (Ut), 

c;; =hydraulic gradient, 

w = width of the sample. 

This form of the equation is independent of the aperture term "b". The 

transmissivity was calculated and plotted throughout the testing. Once the 

values appeared to stabilise, the test was allowed to proceed to the next 

step. 

The following figures (3-10 (a-f)) clearly show the effects of increasing stress 

on the transmissivity of the fracture plane. Shear cycle 3b is not included, as 

the model had begun to fracture by this stage of the testing process, giving 

many uncontrollable leaks which invalidated the flow measurements. In 

Figures 3-10 (d, e and f), the shear portion of the loading cycle has been 

"combined" with the normal load and plotted incrementally from the end of 

the normal loading cycle, by adding the shear stress value to the normal 

stress value. This was done as a plotting "trick" to to help visualise the 

incremental change in fracture transmissivity as the sample is sheared. All 

test cycles show a decrease in the fracture transmissivity with increasing 
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normal load. This reduction in transmissivity is at least partially recovered 

as the sample was unloaded, mirroring the fracture closure hysteresis seen 

in Figure 3-1. 

Figures 3-11 (a and b) show the detail of flow data for shear cycle 3a. 

Figure 3-11 (a) shows the drop in transmissivity with time at each loading 

step as the fracture deforms and the transmissivity stabilises at its new 

value. Figure 3-11 (b), seen previously as Figure 3-10(f), illustrates the 

overall relationship of transmissivity in relation to the applied stress, 

suggesting a logarithmic relationship of some sort between the transmissivity 

and the normal stress applied. This figure also illustrates the effect of the 

further closing of the aperture at the large scale asperities, as the sample is 

sheared. To further illustrate this apparent logarithmic relationship between 

stress and the transmissivity, the log of the fracture transmissivity was 

plotted against the cube root of the applied stress (Figure 3-12), as 

suggested by the work of Jones (1975). As was done above on the linear 

plots of stress and transmissivity, the shear stress was combined with the 

normal stress, to cause a continuation of the plot after the end of the normal 

stress data to show the effect as the sample is sheared 
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(i.e. all data points to the right of 1.26, 1. 71 and 2.15 for shear cycles 1, 2, 

and 3a, respectively, are shear stress transmissivity measurements taken at 

2.0, 5.0, and 10.0 MPa applied normal stress). For the normal portion of the 

loading cycles, and over the range of stresses used, a linear relationship is 

seen in Figure 3-12. For the shear portions of the cycles, a slight increase 

in transmissivity (indicating dilation of the fracture) can be seen in Figures 3-

10 (d, e) and 3-12 for shear cycles 1 and 2, and a significant reduction of 

transmissivity, indicating closure, at the large scale asperities for shear cycle 

3a (Figures 3-10 (f), 3-11 (b), 3-12). 

The fracture transmissivity was calculated using the data from shear cycle 

3a by examining the gradients between the manometers along a lengthwise 

cross section of the test specimen to compare with the modelled fracture 

closures discussed in Chapter 4. These are shown in Figures 3-13 (a and 

b). The data points are plotted at the midpoints between adjacent pairs of 

manometers along the lengthwise cross section, showing the transmissivity 

at both the inlet and outlet ends, and across each of the large scale 

asperities (Figure 2-8). Figure 3-13 (a) suggests an uneven fracture closure 

caused either by bridging at the asperity closest to the outlet, or rotation of 
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the sample box in the test apparatus, at low normal stress levels. As the 

normal stress is increased to 1 0 M Pa, this variation is reduced significantly 

as the fracture deforms, leaving a relatively uniform fracture transmissivity 

(or closure) across the sample, with slightly more closure at the 

unsupported ends of the test specimen. As the model is sheared, the 

fracture transmissivity is further decreased along the model, except at the 

asperity closest to the outlet (Figure 2-8), which shows a significant increase, 

suggesting dilation at that asperity. 
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Chapter 4- Comparison of Experimental Results with 

Numerical Model Simulation 

After the testing process was completed, finite element numerical modelling 

was used to compare the actual strain distribution observed with the stress 

distribution predicted by the Coupled Stress Fracture Flow Code (CSFFC) 

(Gale, 1975). Modelling was completed over a range of normal and shear 

fracture stresses, incorporating friction angles and material properties 

determined from standard tables and previous experimental work. 

4.1 Numerical Model: CSFFC (Coupled Stress Fracture Flow Code) 

The method used in this study employs a fluid flow and plane strain finite 

element program described by Gale (1975), and adapted to run under SUN 

FORTRAN by Butt (1994). Numerical solutions are provided by an iterative 

process with convergence to user specified tolerances. Initial stress 

conditions, or non linear material loading behaviour can be included in the 

model in the form of easily varied input material and loading parameters and 

as residual stress components in the input file. This enables material 

properties used in the numerical simulation to conform to experimentally 

determined values throughout the loading path. 
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4.1.1 Mesh 

The finite element mesh (FEM) used in this study was modified from the 

work of Butt (1994), by repositioning the nodal co-ordinates to give two 

asperities matching the form of LSR-2. The dimensions and geometry were 

based on a vertical cross section through the biaxial shear frame sample 

box, sample and fractured plane as shown in Figure 4-1 (a and b). A plane 

strain formulation was considered suitable for this configuration, as most of 

the concrete model is constrained from deforming out of the plane of the 

model by the steel sample box. The model was rotated 45 degrees from its 

physical testing configuration to simplify the application of the boundary 

forces, which were applied along the X andY axes of Figure 4-1 (b). Roller 

boundary constraints were applied where the lower half of the sample box 

was restrained by the reaction members in the biaxial frame, and the loads 

applied to the nodes indicated in the upper half (Figure 4-1 (a)). 

4.1.2 Physical Properties 

Two intact concrete cylinders, and five epoxy concrete cylinders of the 

materials used in the assembling of this model were tested using the 

appropriate ASTM (02938-86, 03148-86, 04543-85) standards and 

procedures. The results of these tests enabled the determination of the 
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Figure 4-1 (b): Finite Element mesh for LSR-2, as oriented for numerical 
modeling. 
Note: Shaded area represents modified epoxy 
characteristics (see text). 
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elastic constants of the intact concrete and epoxy grout over and above the 

range of applied loads available from the biaxial loading apparatus. The full 

results of these independent tests are detailed in Appendix A4 and AS. The 

values used for the numerical model have been extracted from these data, 

averaged and presented in Tables 4-1 and 4-2. 

Table 4-1 Material Properties- Steel and Epoxy Concrete 

Steel* 
Epoxy Concrete** 
Modified Epoxy 

Concrete*** 

Young's Modulus 
(Pa) 

200.E9 
13.E9 
1.3E9 

Poisson's Ratio 

0.250 
0.260 
0.450 

*Value for steel estimated from standard tables (Beer and Johnson, 1981 ). 
**Value for epoxy concrete estimated from average of five small diameter 
cores. 
***See text, section 4-2, Fig. 4-1 b 

Table 4-2 Material Properties- High Strength Concrete 

@Stress 
(MPa) 

0.5 
1.0 
2.0 
5.0 
8.0 
10.0 

Young's Modulus 
(Pa) 

22.50 E9 
24.15 E9 
26.20 E9 
29.80 E9 
31.20 E9 
31.90 E9 
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Poisson's Ratio 

.295 

.285 

.255 

.240 

.230 

.230 



Fracture stiffness (Table 4-3) was determined for the purposes of the 

modelling from normal cycle 2 for the normal stiffness, and from shear cycle 

3a for the shear stiffness. The finite element code required the estimation of 

the stiffness by the secant method, rather than the tangent method. 

Table 4-3 Fracture Stiffness 

Normal Loading Steps Shear Loading Steps 

Norm Shear Normal Normal Shear Shear Friction 
al Stress Stiffness Stress Stress Stiffness Angle 

Stress (MPa) (GPa/m) (MPa) (MPa) (GPa/m) (deg.) 
(MPa) 

0.5 0.0 20.0 10.0 0.0 3550 22 
1.0 0.0 23.3 10.0 1.0 3550 22 
2.0 0.0 31.3 10.0 3.0 3550 22 
5.0 0.0 60.2 10.0 5.0 9081 67 
8.0 0.0 70.2 10.0 6.0 674.6 67 
10.0 0.0 82.6 10.0 7.0 348.6 67 
8.0 0.0 57.6 10.0 8.0 141.5 67 
5.0 0.0 38.2 10.0 9.0 84.8 67 
2.0 0.0 17.5 10.0 10.0 84.8 67 
1.0 0.0 10.4 
0.5 0.0 6.33 

4.2 Comparison of Numerical Model Simulation and Normal Loading 
Experiments 

The output from the finite element code CSFFC (Coupled Stress Fracture 

Flow Code) gives the two principal stresses at the centre of each cell (crmax 
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and crmin ), and the angle a to crmax (Figure 4-2). Plotting the magnitude and 

direction of th~ principal stresses is the ideal method of presentation of the 

state of internal stress of the model in that it enables one to easily see 

magnitude and direction of the stresses and the rotation of the stress field as 

the stress field changes. Since most of the strain gauges are in either a 

horizontal or vertical orientation, the stress field must be transformed using 

the Mohr's circle equations to resolve the principal stresses into directions 

perpendicular and parallel to the fracture plane for ease of comparison with 

the test data. This was accomplished by calculating both a horizontal 

(parallel to fracture plane) and vertical (perpendicular to fracture plane) 

component of a using: 

c;max+ a min c;max- a min 
a= + cosa, 

2 2 

where a is calculated for the horizontal a as a h = 2*(a-45°), and a v=2*(a + 

45°) for the vertical a. This is illustrated in Figure 4-2. 

The material properties were modified in selected cells of the finite element 

mesh to compensate for the poor bonding characteristics of the epoxy 

grouting above and below the model. These cells are highlighted in Figure 
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Figure 4-2: Mohr's Circle illustrating a) position of Omruo Omin• and a in 
relation to a and 't, and b) 45° rotation of principal stresses to local co­
ordinates for LSR-2 because of tilted FEM mesh (Figure 4-1 ). Data from 
element 666, lower right corner. 

4-1 (b), and the parameters are included in Table 4-1. The effect of these 

gaps is seen to be very dramatic in the simulations. When the epoxy grout 

bond is good above and below the model, the horizontal and vertical stress 

distribution across the top and bottom is uniform (Figure 4-3 (a)). When the 

bond is poor, using the modified epoxy characteristics (Table 4-1 ), the 

vertical component is reduced to near zero near the centre (Figure 4-3 (b)). 

This stress reduction corresponds to the zone of extensional and lower 

compressional strains seen in the same areas of LSR-2, as discussed in 

Chapter 3. It is interesting to note that the effect of the incomplete epoxy 

bonding on the strain field appears larger in the physical experiment than in 
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Figure 4-3 (a): Comparison of FEM Results- Principle stress vectors for 
complete epoxy bonding case at 10 MPa. normal stress (see Table 4-1). 
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Figure 4-3 (b): Comparison of FEM Results- Principal stress vectors for 
incomplete epoxy bonding case at 10 MPa. normal stress (see Table 4-1). 
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Figure 4-4 (a) (i) FEM Results- Normal Loading Cycle at 2 MPa (loading), 
principal stress vectors. 
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Figure 4-4 (a) (ii) FEM Results- Normal Loading Cycle at 2 MPa (loading), 
stress vectors resolved into vertical and horizontal components. 
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Figure 4-4 (b) (i) FEM Results- Normal Loading Cycle at 10 MPa (loading), 
princ· I 1pa stress vectors. 
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Figure 4-4 (b) (ii) FEM Results - Normal Loading Cycle at 10 MPa (loading), 
stress vectors resolved into vertical and horizontal components. 
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Figure 4-4 (c) (i) FEM Results- Normal Loading Cycle at 2 MPa (unloading), 
principal stress vectors. 
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Figure 4-4 (c) (ii) FEM Results - Normal Loading Cycle at 2 MPa 
(unloading), stress vectors resolved into vertical and horizontal components. 
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the numerical modelling. This effect has also been noted by Handanyan et 

al (1990) in their discussion of the role of tension in failure of jointed rock. 

They noted that "the finite element tensile stresses were lower than the 

measured surface stresses, but exceeded the tensile strength of the 

material". This is likely due to differences in the compressive and tensile 

Young's Modulus and Poisson's Ratio values for the concrete as only the 

compressive values were used in the modelling that relates to this 

discussion. 

Figure 4-4 (a to c) illustrates the internal stress distribution within LSR-2, 

through a typical normal loading cycle at average normal stresses of 2 

(loading), 10 (peak), and 2 (unloading) MPa. Each stress level in the 

loading cycle is presented as a plot of principal stress directions and 

magnitudes (i), and as the same data resolved into their vertical and 

horizontal components (ii). It is seen in this set of plots that there is a 

significant increase in the vertical and horizontal stress components in the 

vicinity of the asperities (Figure 4-4 (c) (i, ii)) to approximately 20 MPa 

vertical and 15 MPa horizontal, with an average normal stress applied to the 

model of 10 MPa. There is an increase in the horizontal component of the 

stresses at the ends of the fracture. This is a local effect caused by the 
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edges of the concrete being exposed in the vicinity of the fracture to allow for 

the placement of the packer and flow spreaders. The asperities are noted 

to cause rotation of the stress field in their immediate vicinity, with the 

principal stress direction crmax generally parallel with the 45 degree sid~s of 

the asperities. During unloading, the stress distribution around the asperities 

show an increase in both the vertical and horizontal (or crmax and crmin) 

components above the asperities, and a corresponding decrease b~low. 

This is due to a "binding" of the bumps, in the matching sockets. 

Figure 4-5 shows the fracture stresses and displacements acro~s a 

lengthwise profile of the fracture plane of the model. Three stress level~ are 

illustrated, 2 MPa during the loading cycle, 10 MPa at peak load, and 2 MPa 

during the unloading cycle. The stress and displacement normal to the 

fracture appears to drop over the 45 degree sloping faces of the asperities. 

In fact, these lower values reflect the effect of the 45 degree angle, an<:~ the 

stresses and displacements at these points are close to the values at the 

adjacent fracture elements. The closure profile shows larger closures a.t the 

ends of the fracture, reinforcing the supposition of pivoting action ort the 

asperities suggested by the strain and stress data from the physical and 

numerical modelling. As the model is unloaded (Figure 4-5 (c)), it is ~een 
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that the closure at the asperities in the centre of the model is permanent, 

suggesting that the previously noted "binding" is taking place, and the ends 

of the fracture open to values close to the aperture during the corresponding 

portion of the loading cycle. 

The average normal displacements calculated from the finite element model 

are in close agreement with the actual displacements measured during the 

testing of LSR-2 (Figure 4-6). These values are calculated as an average 

of all of the element displacements along the length of the fracture plane, 

and appear slightly low since they reflect the "lower" values at the angled 

portion of the asperities. 

4.3 Comparison of Numerical Model Simulation and Shear Loading 
Experiments 

Stress distribution within LSR-2 during shear modelling is illustrated in 

Figures 4-7 and 4-8. Figure 4-7 shows the principal stress distribution at 

shear stresses of 3, 6, and 9 MPa, while maintaining a normal stress of 10 

MPa. Figure 4-8 illustrates the stresses resolved into directions 

perpendicular and parallel to the average fracture plane, for comparison to 

the strain gauge data. Figure 4-4 b (i and ii) represent the start of this shear 
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Figure 4-7 (a) (i): FEM Results- Shear Loading Cycle at 3 MPa (loading), 
principal stress vectors, compressive component. 

Reference Vector 20 MPa 

Figure 4-7 (a)(ii): FEM Results- Shear Loading Cycle at 3 MPa (loading), 
principal stress vectors, tensile component. 
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Figure 4-7 (b)(i): FEM Results- Shear Loading Cycle at 6 MPa (loading), 
principal stress vectors, compressive component. 

' . 

" Reference Vector 20 MPa 

Figure 4-7 (b)(ii): FEM Results- Shear Loading Cycle at 6 MPa (loading), 
principal stress vectors, tensile component. 
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Figure 4-7 (c)(i): FEM Results- Shear Loading Cycle at 9 MPa (loading), 
principal stress vectors, compressive component. 
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Figure 4-7 (c)(ii): FEM Results- Shear Loading Cycle at 9 MPa (loading) , 
principal stress vectors, tensile component. 
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Figure 4-8 (a)(i): FEM Results - Shear Loading Cycle at 3 MPa (loading), 
resolved stress vectors, compressive component. 

Reference Vector 20M Pa 

Figure 4-8 (a)(ii): FEM Results - Shear Loading Cycle at 3 MPa (loading), 
resolved stress vectors, tensile component. 
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Figure 4-8 (b)(i): FEM Results- Shear Loading Cycle at 6 MPa (loading), 
resolved stress vectors, compressive component. 
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Figure 4-8 (b)(ii): FEM Results - Shear Loading Cycle at 6 MPa (loading), 
resolved stress vectors, tensile component. 
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/ Reference Vector 20 MPa 

Figure 4-8 (c)(i): FEM Results - Shear Loading Cycle at 9 MPa (loading), 
resolved stress vectors, compressive component. 

" ReferenceVector20MPa 

Figure 4-8 (c)(ii): FEM Results- Shear Loading Cycle at 9 MPa (loading), 
resolved stress vectors, tensile component. 
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cycle, at 0 M Pa shear stress. Both 4-7 and 4-8 are presented as separate 

plots of compressive and tensile stresses for clarity. 

As the shear load increases, it can be seen in Figures 4-7 and 4-8 that there 

is a corresponding increase in O"max. and O"min (or Overt. and ohorizJ on the 

loaded corners, and the compressive stress field lines itself up diagonally 

across the model, from upper right to lower left. There are no signs of 

tensile stresses appearing until the shear stress reaches 3 MPa, and these 

do not become significantly large until approximately 7 MPa. Between 7 and 

8 MPa, a significant tensile stress field has developed in the upper left half of 

the block, with the peak tensile stress focused at the base of both asperities. 

The tensile stress at these points is at least 10 MPa, at 8 MPa average 

shear stress and increases to approximately 20 MPa at 9 MPa shear (Figure 

4-7c). The compressional stresses locally reach values of 40 MPa in the 

immediate vicinity of the asperities at an applied shear stress of 9 MPa . 

It was noted previously that the shear stiffness parameters used in modelling 

were determined from the displacement data for run shear 3a. Several 

modelling runs were completed, in which the friction angle of the fracture 

was varied from 22 to 67 degrees, bracketing the actual test friction angle of 
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27 degrees, as determined from the displacement data. The calculated 

displacements are plotted against the actual displacements on Figure 4-9. It 

is evident from these data that more displacement was expected than was 

actually measured. The best fit to the experimental data was seen to be 

when the friction angle started out low at 22 degrees ( 0, 1, 3 MPa shear) , 

and increased to 67 degrees (22 degree friction angle, plus 45 degree 

asperity angle) after the fracture had slipped and closed up the gap in the 

fracture at the asperity (5 MPa and above) as shown schematically in Figure 

4-10. This slip and aperture closure essentially locks the fracture portion of 

the model into a solid block. Since the friction angle for the fracture plane 

was determined to be 27 degrees from the displacement data, this 

displacement profile is not unexpected since the physical model had reached 

the friction angle of 27 degrees twice previously to shear 3a, and had more 

than likely slipped and was in fact locked. 

The normal and shear stresses and displacements along the fracture plane 

are shown in Figures 4-11 and 4-12. Figure 4-11 shows the effects of 

fracture shear stresses of 3, 6, and 9 MPa on the normal components of 

fracture stress and displacement. The plots show closure and increasing 

normal stress on the leading side of the large scale asperities (left side), as 
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Figure 4-10: Schematic representation of a single asperity illustrating 
the resulting gap after the geotextile is removed. 
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the shear stress increases. The right side of the asperities shows unloading 

and dilation. 

The shear components at 3, 6, and 9 MPa show fracture shear stress 

decreasing in Figures 4-12 (a) and (b). In these two plots, the shear stress 

down the right side of the asperities is caused by the vertical component of 

the applied normal stress. This exceeds the upward component of the shear 

stress acting in the opposite direction, resulting in a net decrease in shear 

stress. In Figure 4-12(c), the shear stress component exceeds the normal 

(downward) stress component on the left side of the asperities, causing the 

fracture shear stresses to increase to approximately 23 MPa. The 

displacement profile at 3 MPa shear (Figure 4-12 (a)) is virtually identical to 

the displacement profile of 0 MPa applied shear stress. At 6 MPa shear, 

which is a load step just above the friction angle of the fracture plane (Figure 

4-12(b)), the shear displacement profile shows a uniform displacement of 

approximately 0.13 mm along the fracture plane. At 9 MPa shear, the profile 

shows significant displacement (closure) of approximately 0.66 mm on the 

right hand side of both asperities, and dilation on the left side of the 

asperities. 
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The uniaxial compressive strength of the concrete used as a modelling 

material is approximately 57 MPa (Appendix A5) based on unconfined 

uniaxial compressive testing. Since the concrete was confined by the steel 

sample box and epoxy grout, its compressive strength is likely higher. The 

tensile strength of the concrete mixture used is estimated to be 

approximately 5 to 1 0 percent of its uniaxial compressive strength (Butt, 

1994 quoting CPCA handbook, 1991 ). Thus, the tensile strength of the 

concrete used in the model would be in the range of 3 to 6 MPa. Therefore 

the most likely failure mode will be from the tensile stresses which locally 

exceed 3 to 6 MPa , since it is unlikely the local compressive stress 

concentrations would be high enough to cause failure of the sample. 

Examination of the post test fracturing patterns (Figure 3-12) in reference to 

these modelled tensile zones supports the premise that the failure was 

caused by tensile stress. 
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Chapter 5 Discussion, Conclusions and Recommendations 

5.1 Discussion 

5.1.1 Normal Loading Cycles 

Strain records for the physical model clearly show the extensional zones 

created by the incomplete epoxy grout in both halves of the block. The 

presence of these extensional zones is supported by, but not matched by, 

the numerical modelling. In the numerical modelling, these zones are seen 

as zones of decreased vertical stress, extending across the middle th i rd of 

the top and bottom of the two halves, to a depth of approximately 3 to 4 

centimetres. In the physical model, this same zone is much more extensive, 

reaching 6 to 7 centimetres into the model, with components of vertical and 

horizontal extension. The incomplete epoxy grouting over portions of the top 

and bottom of the model was determined to be the major cause for these 

zones of extension, but was likely enhanced by more bridging on the large 

scale asperities than was accounted for in the modelling. As well, the 

physical parameters used for the numerical modelling (Young's Modulus, 

Poisson's ratio) were determined from tests done on 2 unconfined cylinders, 

which may not fully represent the internal triaxial conditions of the sample 

tested. 
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The rotation of the stress field seen in the numerical model was seen in the 

rosette data in . the physical model. However, more rosettes should have 

been placed closer to the large scale asperities to see the effect of the 

asperities on the strain field. Rosette clusters 56-57-58 and 79-80-81, 

located just above both large scale asperities (Figure 2-3), hint at possible 

rotation caused by the asperities. However, the positions of these two 

rosette clusters are far enough back from the fracture plane (2.5 em) that 

they may not be seeing any of these local effects. In the numerical 

simulation, the equivalent positions to these rosettes show the principal 

stress directions pointing toward the middle of the block. In the physical 

model, the strain field appears to have been rotated by 90 degrees. The 

corresponding vertical gauges show almost no vertical component at these 

locations, whereas the simulation ·shows a significant vertical component 

when the strains are resolved into that direction. It can be concluded that 

these strain gauges are probably seeing more of the overall stress field in 

the block, reflecting significant influence of the extensional zone discussed 

above, than the local effects of the large scale asperities. As well, the 

numerical modelling was two dimensional only, and the physical model is 

likely seeing out of plane effects. 
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The rosette clusters located closer to the corners of the model (17-18-19, 

40-41-42, 53-54-55 and 76-77-78) (Figure 2-3) clearly show the effects of 

the applied stress field in the physical model as the model is loaded 

normally. The relative magnitudes of the minimum and maximum strains 

correspond well to the relative magnitudes of O'max and crmin from the 

numerical simulations. Using an approximate conversion of 40 microstrains 

per MPa of applied stress (calculated using an average Young's Modulus of 

25 GPa/m (see Table 4-2)), a measured strain value of 244 microstrains at 

strain gauge 55 (normal cycle 2, 10 MPa normal stress) would represent , 

for example, 6.1 MPa. The numerically determined stress in the same 

location would be approximately 1 0 to 12 M Pa, using the material 

parameters of Tables 4-1 and 4-2. If the conversion factor used by Butt 

(1994) was used (20 microstrains/MPa, based on a Young's Modulus of 50 

GPa/m), then the relationship would appear to be closer (12.2 MPa). It can 

be seen from this example the sensitivity of the simulations to the physical 

parameters input into the simulation. As noted above, the Young's Modulus 

for the simulations was determined from two unconfined test cylinders, which 

may not accurately represent all of the physical characteristics of the test 

block. Thus, this could account for the discrepancy between the data and 

the predictions. 
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The physical model generally showed a higher horizontal than vertical 

component to the strain field in the vicinity of the fracture plane. The cause 

of this is unknown, but it is suspected that it may be due to a combination of 

uneven loading from the incomplete epoxy grout, and the unconfined 

perimeter in the vicinity of the fracture plane. The numerical displacements 

were similar to the measured displacements of the physical model. This was 

expected since the numerical simulations were run using fracture stiffness 

values from the physical data. 

There was no allowance in the numerical model for the plastic deformation 

that was seen in the physical model. All residual strains were zeroed out at 

the beginning of the following cycle so the resultant cumulative strain level in 

the model is unknown. The presence of significant extensional strains 

during both loading and unloading portions of the test cycles suggest the 

possibility of some tensile fracturing during the normal loading cycles. 

However, as will be discussed, it is most likely that the resulting fracture 

patterns resulted from the shear testing. 
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5.1.2 Shear Loading Cycles 

Both the numerical modelling and shear testing of the physical model 

showed a corresponding increase in the internal stress and strain field from 

the loaded corners within the outlines of LSR-2, and an increase in the 

tensile and extensional fields in the unloaded corners. The numerical 

modelling suggest the development of a tensile strain field starting at about 3 

MPa, which reached significantly high values at approximately 7 MPa shear 

stress. These stress levels suggest zones for tensile failure at the base of 

the large scale asperities, and vertically along the ends of the model, both of 

which were seen in the physical model. The physical model appeared to 

have larger zones of tensile strains caused by the incomplete epoxy grout. 

These larger zones would enhance the likelihood of tensile failure. 

The numerical simulations suggest maximum compressive stress values of 

approximately 40 MPa at the top of the asperities when the numerical model 

was se·t for both 10 MPa normal and shear stress combined. Since the 

concrete of the model could be considered to be confined, and 10 MPa 

shear was not reached, it is doubtful that this 40 MPa stress level could 

cause compressional failure. Post test examination of the blocks showed 
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some localised crushing of aggregate grains on and near the fracture plane, 

but no indication of compressional failure. 

It is probably significant to note here that there appeared to be a significant 

failure at the end of the shear 3a cycle. It was during this cycle that a 

sticking servo valve on the shear frame apparatus caused loss of control of 

the equipment. Control was re-attained by shutting off the hydraulic power 

supply while the model was loaded at 10 MPa normal and 7.58 MPa shear 

stress, resulting in a near instantaneous return to unloaded conditions. It 

was seen in the data from the following cycle (shear 38), that the strain field 

had changed significantly within the model. It was only in this final cycle 

(shear 38) that the rosette cluster 17 and 19 (Figure 2-3), located below and 

to the left of the left asperity, detected any significant deformation in the 

concrete. This suggests the applied stress was now being observed in that 

area of the model for the first time. 

5.1.3 Well and Flow Data 

The well data provided a convenient means of monitoring for the presence of 

cracks in the concrete of the model. Actual permeabilities of the concrete 

could be estimated (Brace et al., 1968, Forster and Gale, 1980) by using the 
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injection well decline curves. However, due to the very low permeability of 

the concrete used in the model, it was unknown whether the pressure 

decline data measured were due to bleed-off into the concrete, leakage 

from the connections between the well and the pressure transducer, or the 

compliance (yielding, stretch) of the plastic tubing that made up the 

connections. The data were used, therefore, as an indicator whether the 

concrete was "tight", or fractured. When each well failed, the change was 

dramatic, enabling the time of failure to be pinpointed if the well was being 

monitored at that time. 

Flow data along the artificial fracture plane showed systematic fracture 

closure and decrease in fracture transmissivity with normal stress. The 

transmissivity was further decreased as the sample was sheared, closing the 

aperture at the asperities even further. Figures 3-11 and 3-12 show the 

apparent logarithmic relationship between the cube root of the average 

normal stress and fracture transmissivity that has been noted by Jones 

(1975), Gale et al. (1990) and others. This above noted relationship does not 

appear to hold up when a shear component is added. Gale et al. (1990) 

noted that the effect of shear on transmissivity was small for small 

displacements of the fracture plane. He pointed out that with larger 
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displacements one would expect to see a greater change in transmissivity. 

This pattern was seen in the data from the current tests. The fracture 

transmissivity decreased from 1 E-6 m2/s at the end of the normal loading 

cycle, to approximately 0.2E-6 m2/s at 7.58 MPa shear. Figure 3-13 (b) 

clearly shows an increase in fracture transmissivity due to shear stress at the 

downstream large scale asperity (for shear cycle 3a), whereas the 

numerical simulations suggest dilation at both. Visual inspection after shear 

cycle 3b shows that both large scale asperities were dilated on their 

downstream sides. From this, it can be concluded that the upstream 

asperity was bearing all of the load for shear cycle 3a, and was responsible 

for most of the decrease in the overall fracture transmissivity. The numerical 

simulations, however, start with a uniform aperture across the length of the 

test model. As a result, the load appears to be carried by both large scale 

asperities throughout the simulation resulting in the closure and dilation 

profiles seen in Figures 4-11 and 4-12. 

It is significant to note that when the specimen began to fail, it opened up 

many new pathways for the fluids to travel through, which effectively 

increased the fracture zone transmissivity. 
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5.2 Conclusions 

The results of this study confirmed that large scale asperities have significant 

influence on the local strain field, as seen in the data recovered from the 78 

strain gauges that survived the casting and pre-test processes. Three 

normal and four shear loading cycles showed repeatable internal strain 

patterns that reflected the effects of the applied boundary conditions. 

Displacement data indicate that permanent closure was greatest for the first 

normal loading cycle, and decreased over the following two cycles. During 

the final four shear loading cycles, the permanent fracture closure became 

essentially identical at about 20 per cent of the original closure. This 

suggests that the fracture seating occurred during the first normal loading 

cycle, which is consistent with other experimental work. 

It was concluded from both the finite element and the physical model 

analysis that induced tensile fracturing was the primary mode of failure in 

this experiment. The observed fracture patterns coincided nicely with the 

patterns of tensile stresses predicted by the finite element analysis. Under 

normal load the finite element analysis showed that the large scale asperities 

caused local changes in the orientation of the stress field. This effect was 

105 



not completely obvious in the model tested because of the masking effect of 

the incomplete . epoxy grout, and the lack of strain gauges immediately 

adjacent to the artificial fracture plane. Under shear load there were 

significant tensile stress concentrations associated with the restraining and 

releasing bends of the fracture which provided the focus points for the onset 

of failure of the blocks. 

The fracture transmissivity was seen to decrease logarithmically with the 

cube root of the normal stress applied to the sample, and decreased further 

as the sample was sheared, and the aperture at the asperities closed. 

There was no obvious relationship between applied stress and transmissivity 

for this further noted decrease. All fracturing induced in the model through 

testing enhanced the fracture porosity characteristics of the artificial fracture 

plane. This was very obvious during the latter stages of testing shear cycles 

3A and 38 when the secondary fractures caused many problems through 

leaks and new pathways in the fracture and well permeability 

measurements. The resin injection at the completion of testing confirmed 

this by preserving the fracture porosity decrease on the restraining bends 

and the corresponding increase on the releasing bends. 
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There was no indication that the permeability of the concrete was enhanced 

by the shear -stress applied except by the propagation of secondary 

fracturing through the test wells as the concrete failed. 

From a large scale perspective, the enhancement of fracture porosity by 

stress can cause or enhance the accumulation and transport of fluids. This 

is significant in both long term (geological) and short term time frames. 

Enhanced fracture porosity controls mineralization processes, entrapment 

and transport of petroleum and other fluids in the long term. Such fracturing 

can also influence mechanical characteristics and production rates of 

producing wells. In the short term, enhanced fracture porosity has 

significant engineering ramifications in the prevention and control of 

excavation and tunnelling problems . 

5.3 Recommendations 

5.3.1 Future Research 

Future research in this area can examine numerous related topics, some of 

which are planned and already undertaken as part of the ongoing research 

program in fractured rock at Memorial University. These could include the 

use of natural rock materials for the physical modelling (work in progress), 
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including both flat surfaces and artificial large scale asperities, a "no bump" 

case in concrete (now completed), investigations of the stress and strain 

variations in the out of plane dimension, and investigations of the matrix 

permeability changes in the vicinity of the fracture plane. As well, from the 

data set acquired from this experiment, future work could examine in greater 

detail the nature of the fracture transmissivity (such as the cross flow data), 

or the microscopic aperture variations seen in the resin preserved fracture. 

If possible, the numerical modelling code could be modified to accomodate 

additional types of deformation, such as plastic strain, brittle fracturing and 

out of plane deformation. If some way can be determined to measure the 

uniformity of fracture mating prior to testing, these data could be 

incorporated into the simulations to better predict the transfer of stress 

between large scale asperities. 

5.3.2 Recommendations for Changes in Testing Procedures 

The following list has several recommendations for changes (some of which 

have been implemented) for the testing and analysis procedures that have 

come from the completion of this project that may help prevent future 

technical problems. They are listed mainly to provide a record for future 
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workers and don't necessarily provide any scientific insight into this project. 

They are listed in no particular order. 

• The gauges that failed prior to the testing were for the most part in one 

quadrant of the model. If their location relative to the shearing direction 

had been known, the model would have been sheared in the opposite 

direction to see the full extent of the compressive strain field. 

• More rosettes should be used to see the changes in the internal stress 

field. As well, strain gauges should have been placed closer to the large 

scale asperities. 

• Better bonding is required between the epoxy grout and the model. A 

less viscous mixture would have ensured a better bond under and over 

the centre of the block. 

• The model could have had more test wells imbedded in it. If more wells 

are used, they could be hooked up in parallel so they could all be 

monitored simultaneously, and as they failed, eliminated from the testing. 

This would give a better picture of the growth and timing of fractures as 
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the model failed. As well, the tubing used for the well casings should be 

as continuous as possible to the outside of the model to eliminate the 

tubing material compliance considerations, and the leakage from multiple 

connections. Perhaps the use of gas (i.e. Nitrogen) instead of water as 

the injection fluid would give better indication of the permeability of very 

tight materials, such as the concrete used in this test. Care would be 

needed if using a technique such as this as the escape of gas through an 

induced fracture into the fracture plane could disturb the flow 

characteristics of the fracture plane. As well, the implications of using a 

gas injected into a water saturated matrix for permeability measurements 

would have to be considered. 

• A better means of sealing the fracture plane is required. The packer 

arrangement worked well until the model started breaking up, and then it 

was found to be almost impossible to make the seal effective. A good 

seal around the fracture is also crucial to obtain a good resin injection of 

the model. 

• The strain gauge equipment worked well, but would have worked better if 

heavier gauge wiring had been used on all of the strain gauges. As well, 
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the heat drift problem required corrections to be made to the data. The 

best way of taking strain readings for gauges mounted such as these 

would be to instantaneously turn on the power to each gauge, take the 

reading, and then turn it off. 

• The constant displacement piston pump used for the flow tests caused a 

pressure surge whenever the pump changed direction. A constant head 

tank connected to the output of the pump would act as a buffer during 

pump turn around. 

• A great deal of time was lost at the beginning of each test cycle waiting for 

the air in the fracture plane to be removed by the water. Continuous 

flooding of the fracture plane by water flowing at low rates during periods 

of non-testing was determined to eliminate much of this problem. 
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Appendix A- Details of Model Construction 

A 1- Fine Aggregate Concrete Mix 

Table A-1 Fine Aggregate Concrete Mix 

· 1/2 Test Block 
(300x200x100 mm) 

Cement 
Silica Fume 
Coarse Aggregate (#2) 
Fine Aggregate (#00) 
Water 
Daracem 100 

Total MassNolume 

3.34 kg 
0.29 kg 
7.25 kg 
3.63 kg 
1.60 L 

33.36 ml 

16.13 kg 

0.0011 m3 

0.0001 m3 

0.0027 m3 

0.0014 m3 

0.0016 m3 

0.00003 m3 

0.0069 m3 

All dry components are pre-weighed and placed in mixing bowl. The bowl is 

mounted on mixer assembly, using the paddle mixer rather than the "dough 

hook". Combine the water and Daracem 100. Start the mixer, and add all 

but 10 percent of the water mixture to the dry mix. Mix thoroughly, adding 

the last 10 percent of the water slowly, so that the mix does not become too 

runny. A proper mix will look slightly dry, but will liquefy readily when the 

internal vibrator is inserted into the bowl. After mixing, the concrete is placed 

in the forms, and thoroughly vibrated with the internal vibrator. 
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A2- Epoxy Resin Potting Mixture (per half box) 

Table A-2 Epoxy Resin Potting Mixture 

Aggregate 
Silica Sand 
l2poxy (Ciba Geigy) 

2-4.67 mm 
#2 

7.7 kg. 
13.23 kg 

3-4 cans resin + hardener 

Vvash and thoroughly dry the aggregate and sand. Mix aggregate and sand 

t()gether. Mix epoxy resin and aggregate mixture, stirring thoroughly. A 

9ood mix will require slightly more than 3 cans of resin/hardener mix for 

rl'laximum strength. Pack aggregate into sample box to minimise porosity in 

the final mixture. Extra epoxy mixture is poured over the exposed top 

surfaces as a seal and to improve bonding of potting compound to the model 

and box. 
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A3- Strain Gauge and Coupon Coordinates 

Note: Refer to Figure 2-3 for rosette orientations. 

Block Co-ordinates Strain Gauge Co-ordinates Strain Gauge Co-ordinates (cont.) 
X y_ Gauge# X y_ ~ Gauge# X y_ ~ 

0 0 1* 13.5 7.25 H 27 16.4 4.8 v 
30 0 2 13.5 7.15 v 28 16.4 2.4 R 
30 20 3 13.5 4.75 H 29* 16.4 2.4 R 
0 20 4 13.5 4.75 v 30 16.4 2.4 R 
0 0 5* 13.5 2.25 R 31 19.9 7.3 H 

6 13.5 2.25 R 32 20 7 v 
7* 13.5 2.25 R 33 19.9 4.9 R 

Fracture Co-ordinates 8 9.8 7.25 H 34 20 4.8 R 

X y_ 9 9.8 7.25 v 35 19.9 4.9 R 
1 0* 9.8 4.75 R 36 19.9 2.4 H 

0 10 11* 9.8 4.75 R 37 20 2.3 v 
10 10 12* 9.8 4.75 R 38 23.4 8.2 H 
11 9 13* 9.8 2.25 H 39 23.4 3.5 v 

12.5 9 14* 9.8 2.25 v 40 23.4 6.1 R 
13.5 10 15* 6.2 8.45 H 41* 23.4 6.1 R 
17 10 16 6.2 8.55 v 42 23.4 6.1 R 
18 9 17 6.2 6.05 R 43 23.4 3.6 H 

19.5 9 18 6.2 6.05 R 44 23.4 8.2 v 
20.5 10 19 6.2 6.05 R 45 26.9 8.2 H 
30 10 20* 6.2 3.55 H 46 26.9 8.2 v 

21 6.2 3.45 v 47 27 11.55 H 
22 2.7 8.45 H 48 27 11.45 v 

* Denotes Failed Gauge 23 2.7 8.55 v 49 23.5 11.55 H 
Prior to Testing 24 16.4 7.3 H 50 23.5 11.45 v 

25 16.4 7.2 v 51 23.5 14.55 H 
26 16.4 4.9 H 52 23.5 14.45 v 
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A3- Strain Gauge and Coupon Coordinates (cont.) 

Strain Gauge Co-ordinates (cont.) Strain Gauge Co-ordinates (cont.) 

Gauge# X y_ Iy_p.e .G.augeJt X y_ ~ 

53* 23.5 17.45 A 73 6.55 11 .9 v 
54 23.5 17.45 A 74 6.55 14.9 H 

55 23.5 17.45 A 75 6.55 14.9 v 

56 20.1 11 .95 A 76 6.55 17.9 R 

57 20.1 11 .45 A 77 6.55 17.9 R 

58 20.1 11 .95 A 78 6.55 17.9 R 

59 20.1 14.55 H 79 10.25 12.4 R 

60 20.1 14.45 v 80 10.25 11 .9 R 

61 20.1 17.45 H 81 10.25 12.4 R 

62 20.1 17.45 v 82 10.25 14.9 H 

63 16.5 11.55 H 83 10.25 14.9 v 

64 16.5 11 .45 v 84 10.25 17.9 H 

65 16.5 14.55 A 85 10.25 17.9 v 

66 16.5 14.45 R 86 13.55 12 H 

67 16.5 14.55 A 87 13.55 11 .9 v 

68 16.5 17.45 H 88 13.55 14.9 R 

69 16.5 17.45 v 89 13.55 14.9 R 

70 3.15 12 H 90 13.55 14.9 R 

71 3.15 11 .9 v 91 13.55 17.9 H 

72 6.55 12 H 92 13.55 17.9 v 
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A4- Summary of Mechanical Characteristics of Epoxy 
Aggregate 

Five test cylinders of the epoxy aggregate used in potting LSR-2 into the 

sample testing box were prepared and tested to ASTM standards D 2938-

86, 03148-86 and D 4543-85. Following is a summary of the mechanical 

characteristics determined. 

Table A4 Summary of Mechanical Characteristics of Epoxy Concrete 

Test Core Maximum Young's Poissons Description 
Unconfined Modulus Ratio 

Compressive (@50% C) (@50°/o C) 
Strength 'C' 

(MPa) (Pa) 
A 29.6083 -1.40E+10 0.24 High Porosity (30%) 
8 37.8162 -1.24E+10 0.23 High Porosity (30%) 
c 24.6842 -1.24E+10 0.25 High Porosity (30%) 
D 37.0939 -1.30E+10 0.23 High Porosity (30%) 
E 52.3454 -1.30E+10 0.33 Low Porosity ( 1 0%) 

Average 36.3096 -1.30E+10 0.26 

The test cylinders failed in the zones of highest porosity as a bulging in the 

aggregate. 
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AS- Summary of Mechanical Characteristics of Concrete 

Two test cylinders of the concrete mixture used in the construction of LSR-2 

were prepared and tested to ASTM standards D 2938-86, 03148-86 and 

04543-85. Following is a summary of the mechanical characteristics 

determined. 

Table A5 Sumtnary of Mechanical Characteristics of Concrete 

Test Max imum Young's Poissons Description 
Core Unco nfined Modulus Ratio 

Com pressiv (@50% C) (@50°/o 
e S t rength C) 
'C' (MPa) (Pa) 

H 50.9 -2.80E+10 0.22 6 inch cylinder cast 
during construction of 
large scale physical 
model, bottom block, not 
vibrated. 

63.4 -3.28E+10 0.28 6 inch cylinder cast 
during construction of 
large scale physical 
model, top block, not 
vibrated 

Average 57.2 -3.04E+10 0.25 

The test cylinde rs exhibited conical/splitting failure. 
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Appendix 81: Tabulated Strain Gauge Data 

Tables 81-1 through 81-7 provide the strain gauge data used to 
produce the strain plots presented in Chapter 3. One table is given 
for each loading cycle. 

Only the gauges that survived the initial testing of the block are listed. 
If the values for any given strain gauge are listed as 0.0 microstrains, 
that gauge has failed, and the erroneous reading replaced with 
0.0 for plotting purposes. All residual strains have been eliminated at 
the start of each loading cycle. 
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Table 81-1: Strain Data, Normal Cycle 1 

Strain Gau e 2 MPa (UP 6 MPa (UP) 8MPa (UP) 

2 -7.8 31.8 70.7 83.1 98.6 
3 -48.0 -123.1 -181.4 -245.1 -300.7 
4 53.2 72.4 109.6 117.7 135.9 
8 15.5 32.1 42.7 41.9 35.6 
9 -69.0 -145.2 -212.9 -266.4 -317.7 
16 46.8 101.5 144.4 162.7 191.2 
17 18.1 19.2 23.8 38.1 58.1 
18 -17.6 -51.1 -72.7 -92.6 -116.3 
19 -40.8 -81.7 -112.2 -142.2 -140.5 
21 -0.3 132.4 417.1 456.2 481.3 
22 -19.8 -45.3 -65.3 -82.8 -97.9 
23 -27.5 -59.0 -88.8 -124.0 -149.0 
24 43.7 76.9 98.5 107.4 116.3 
25 -71.8 -148.3 -214.0 -263.7 -311.1 
26 -42.7 -98.3 -125.5 -139.6 -41.3 
27 17.9 31.1 79.2 98.3 122.3 
28 29.3 505.6 813.7 859.7 907.5 
30 -60.1 179.9 401.7 414.5 428.0 
31 3.8 -50.8 -77.9 -101.8 -129.8 
32 24.3 46.8 70.7 83.0 87.8 
33 15.4 39.6 75.8 125.1 209.5 
34 31.8 43.4 57.2 54.2 47.1 
35 -17.5 -48.5 -67.0 -68.6 2.8 
36 -12.9 88.8 245.2 336.8 456.4 
37 14.0 -3.2 -17.1 -14.4 280.9 
38 -42.1 -66.8 -84.7 -111.4 -123.9 
39 -51.1 -61.3 -47.1 -53.5 -46.8 
40 -45.8 -61.9 -64.7 -75.6 -69.6 
42 -75.1 -148.3 -198.3 -239.9 -263.6 
43 -77.9 -122.5 -166.5 -161.1 323.5 
44 -9.6 11.1 13.4 -14.5 -24.3 
45 -75.9 -120.7 -120.1 -166.8 -171.1 
46 -40.7 -51.8 -50.8 -62.5 -67.0 
47 24.4 17.8 -11.0 -36.1 -58.0 
48 35.3 10.2 5.2 -10.0 -5.6 
49 -33.4 -78.7 -115.4 -137.6 -146.8 
50 13.7 7.0 15.1 1.8 -5.6 
51 40.4 -4.3 11.5 -27.8 4.3 
52 -4.6 -34.2 -75.6 -143.3 -316.5 
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Table 81-1: Strain Data, Normal Cycle 1 

Strain Gau e 2 MPa (UP) 4 MPa (UP) 6 MPa (UP) 8MPa (UP) 10 MPa (Peak 

54 -36.2 -69.3 -91.2 -107.4 -71.6 
55 -30.8 -50.6 -39.7 -180.7 -249.2 
56 16.0 -16.9 -40.0 -81.3 -116.5 
57 10.1 13.9 25.2 19.1 20.9 
58 -17.2 -45.4 -46.3 -67.8 -55.9 
59 7.7 -19.6 -25.5 -64.3 -44.9 
60 -12.5 -20.5 -24.4 -42.5 -48.3 
61 8.2 -7.1 -32.6 -78.7 -54.9 
62 7.7 7.6 23.2 26.6 46.0 
63 -30.3 -76.8 -109.1 -170.7 -183.4 
64 25.7 34.9 67.9 58.8 74.9 
65 3.8 -2.1 34.2 5.9 75.6 
66 6.3 13.2 31.2 27.7 42.7 
67 -31.3 -39.8 -26.7 -53.0 -43.3 
68 8.4 11.9 15.6 110.7 260.6 
69 13.9 15.4 14.0 11.9 26.6 
70 -12.5 -25.5 -28.3 -45.8 -47.8 
71 -27.3 -50.8 -53.2 -82.4 -81.6 
72 -38.3 -98.1 -148.3 -193.0 -206.2 
73 -15.9 -59.2 -60.3 -92.7 -103.1 
74 -25.0 -74.8 -117.9 -163.8 -195.5 
75 5.7 -5.8 -5.6 -8.1 4.3 
76 -46.9 -77.2 -103.5 -130.3 -23.7 
77 11.6 26.0 64.7 132.6 220.4 
78 -7.8 -12.4 -30.7 -1.8 -99.6 
79 -5.5 -29.6 -44.8 -57.2 -65.8 
80 -3.1 -9.7 -4.5 -8.0 -12.4 
81 -33.5 -76.4 -107.5 -133.2 -144.5 
82 -14.0 -47.6 -65.2 -86.5 -70.2 
83 12.9 16.2 30.2 25.1 19.9 
84 11.5 13.8 35.1 6.7 100.6 
85 19.5 5.7 -3.1 -19.0 -10.6 
86 -40.5 -106.0 -160.0 -207.6 -253.8 
87 3.8 5.4 27.5 21.5 30.7 
88 0.8 -11.4 -21.2 -24.7 -25.0 

89 15.5 23.2 42.1 39.8 46.5 
90 0.1 -15.4 -26.4 -40.5 -45.2 
91 3.9 13.3 33.8 114.3 176.9 
92 2.3 -6.1 -12.7 -10.8 2.5 
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Table 81-1: Strain D 

Strain Gau e 8 MPa DN) 6 MPa (DN) 4 MPa (DN 2 MPa (DN) 

2 93.5 88.1 73.9 62.0 
3 -252.4 -204.0 -148.1 -85.9 
4 147.3 143.5 157.7 147.8 
8 42.7 39.3 40.4 33.4 
9 -277.6 -239.0 -185.8 -131.8 
16 235.0 253.4 278.0 271.2 
17 76.1 65.4 70.4 73.0 
18 -90.4 -72.4 -51.8 -28.0 
19 -101.0 -72.1 -42.1 -2.4 
21 532.9 551.7 565.2 562.8 
22 -74.1 -54.9 -32.7 -13.7 
23 -99.0 -55.3 -15.2 28.4 
24 112.6 105.0 97.4 95.9 
25 -269.8 -225.4 -179.3 -109.2 
26 102.4 130.6 163.8 196.3 
27 135.6 134.5 134.3 126.9 
28 955.8 976.8 989.5 951.5 
30 448.3 452.5 435.9 440.1 
31 -88.5 -47.8 4.8 28.4 
32 90.5 85.5 84.4 72.2 
33 251.0 239.9 229.9 208.2 
34 39.1 31.2 42.2 27.8 
35 57.4 66.7 93.4 92.4 
36 513.0 524.6 534.8 519.7 
37 353.6 365.7 371.3 361.9 
38 -104.7 -77.0 -63.3 -27.4 
39 -47.2 -34.9 -48.2 -31.8 
40 -67.9 -51.9 -60.1 -41.5 
42 -229.9 -194.0 -162.5 -125.0 
43 495.4 540.2 558.2 582.7 
44 -55.1 -68.3 -81.2 -94.6 
45 -168.8 -124.6 -137.0 -78.2 
46 -39.6 -9.8 3.4 21.4 
47 -52.5 -31.7 -14.2 -12.8 
48 49.3 97.2 137.9 159.6 
49 -119.4 -88.8 -58.9 -24.9 
50 4.8 28.3 37.8 45.2 
51 -26.5 45.5 33.4 74.4 
52 -297.7 -230.4 -240.7 -249.6 
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Table 81-1: Strain D 

Strain Gau e 8 MPa (ON 6 MPa (ON) 4 MPa (ON) 2 MPa (ON) 

54 -8.7 28.9 55.8 79.2 
55 -221.0 -109.4 -95.0 -69.3 
56 -116.4 -81.2 -66.1 -42.7 
57 22.6 29.2 25.0 21.3 
58 -51.4 -20.5 -22.5 -3.2 
59 -29.8 24.4 26.2 52.1 
60 -38.0 -21.2 -17.3 -14.7 
61 -38.6 -13.1 -10.4 3.4 
62 33.3 32.9 16.5 10.6 
63 -148.3 -92.6 -79.3 -35.7 
64 64.1 77.5 58.5 53.8 
65 74.6 119.3 88.6 97.3 
66 38.5 44.1 29.0 21.8 
67 -19.5 8.4 -6.7 -3.6 
68 296.1 323.6 330.2 345.1 
69 14.0 11.4 4.4 3.1 
70 -13.2 16.7 33.4 44.5 
71 -32.8 14.9 29.3 48.3 
72 -157.8 -113.5 -72.2 -27.7 
73 -83.6 -39.0 -32.9 -6.4 
74 -145.4 -83.2 -39.9 7.5 
75 9.1 15.3 15.7 16.1 
76 197.0 243.0 266.5 284.3 
77 269.7 317.1 312.9 311.8 
78 -47.0 -3.2 -16.9 -17.5 
79 -42.6 -21.0 -3.3 11.1 
80 -14.4 -7.7 -13.3 -11.1 
81 -123.3 -102.0 -77.4 -45.2 
82 -42.2 -10.7 10.1 40.6 
83 21.9 33.0 23.2 22.6 
84 156.1 207.7 241.4 266.1 
85 -19.0 2.3 -19.4 1.0 
86 -210.8 -159.7 -116.5 -66.6 
87 22.2 38.5 8.9 17.0 
88 -15.7 -6.9 2.5 12.7 
89 42.0 45.7 31.3 32.7 
90 -31.0 -21.6 -10.6 -1.0 
91 235.0 277.6 294.6 300.8 
92 -6.0 -6.0 -20.6 -17.0 
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Table 81-2: Strain Data, Normal Cycle 2 

Strain Gau e 2 MPa (UP) 4 MPa (UP) 6 MPa (UP 8MPa (UP) 10 MPa (Peak) 

2 -6.3 16.9 51.6 76.4 93.4 
3 -16.2 -72.8 -38.7 -56.8 -99.7 
4 24.1 31.1 78.0 95.8 122.2 
8 10.4 18.5 37.2 36.9 36.2 
9 -75.0 -135.0 -173.6 -218.7 -259.2 
16 -74.0 -137.9 -174.2 -217.5 -255.6 
17 14.9 13.4 30.2 32.9 51.7 
18 -60.6 -84.2 -69.7 -84.6 -82.3 
19 -51.9 -88.3 -108.3 -136.7 -162.4 
21 0.0 0.0 0.0 0.0 0.0 
22 6.4 30.4 69.0 80.3 100.0 
23 -17.1 -39.9 -49.2 -65.5 -72.4 
24 -22.3 -56.9 -81.9 -117.5 -153.4 
25 34.9 51.8 86.4 98.9 116.4 
26 -43.3 -84.8 -97.7 -115.2 -106.8 
27 1.6 9.0 36.4 47.1 65.7 
28 -53.5 111.0 305.5 371.7 426.0 
30 12.0 85.1 157.6 166.3 183.5 
31 -24.9 3.3 176.9 188.7 225.3 
32 6.4 18.0 47.6 59.1 70.7 
33 9.7 24.2 92.3 133.3 191.3 
34 8.8 16.6 47.8 56.6 57.9 
35 -13.8 -23.1 7.2 15.5 56.0 
36 40.1 91.8 185.3 216.6 268.7 
37 -28.6 -0.9 69.0 98.2 135.7 
38 -13.6 -38.4 -78.2 -85.4 -74.8 
39 -27.2 -29.5 -36.3 -35.7 -24.2 
40 -20.5 -30.2 -44.3 -40.8 -14.6 
42 -85.1 -129.9 -158.3 -183.3 -197.7 
43 -65.3 -115.0 -103.0 -54.2 68.0 
44 -5.1 3.6 18.7 31.7 36.9 
45 -52.1 -87.0 -124.5 -136.9 -117.6 
46 -1.9 -14.2 -27.7 -42.0 -35.4 
47 32.2 29.3 14.0 11.0 -72.1 
48 -8.8 -32.2 -73.6 -106.7 -170.7 
49 -46.5 -84.2 -110.0 -128.1 -133.0 
50 17.2 12.4 7.4 -4.6 -47.9 
51 74.3 40.4 -9.0 25.5 -14.7 
52 32.1 40.0 -99.3 -162.4 -283.7 
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Table 81-2: Strain Data, Normal Cycle 2 

Strain Gau e 2 MPa UP 4 MPa (UP) 6 MPa (UP) 8MPa UP) 10 MPa (Peak 

54 -24.7 -47.3 -54.0 -30.3 7.9 
55 18.7 7.5 -77.4 -163.9 -244.0 
56 5.7 -16.0 -60.2 -78.2 -126.5 
57 14.2 21.6 28.2 33.7 36.0 
58 -18.7 -23.5 -45.4 -30.7 -44.6 
59 18.5 5.5 -49.7 -38.7 -36.0 
60 -7.3 -9.3 -21.7 -30.7 -34.9 
61 -7.0 -23.8 -46.4 -50.4 -53.0 
62 15.7 27.6 41.6 70.1 93.3 
63 -44.5 -69.3 -125.5 -137.5 -138.2 
64 36.6 56.6 55.8 80.9 82.9 
65 38.1 60.8 12.5 62.2 88.2 
66 7.8 20.8 23.1 45.2 71.7 
67 15.6 34.0 10.6 22.9 75.5 
68 23.4 22.7 7.7 50.0 138.1 
69 3.6 7.2 9.3 15.9 32.9 
70 -12.0 -18.3 -39.2 -56.1 -71.2 
71 5.8 0.7 -15.7 -41.1 -81.7 
72 -46.4 -89.6 -124.4 -160.9 -179.1 
73 -17.3 -23.9 -64.0 -71.8 -104.4 
74 -17.4 -52.9 -100.5 -144.8 -182.0 
75 8.3 3.7 2.9 4.5 8.6 
76 3.4 3.2 95.7 -48.9 -173.4 
77 154.6 232.0 261.8 145.8 30.0 
78 20.0 39.1 104.4 57.2 -52.7 
79 -0.9 -13.6 -27.5 -42.3 -53.4 
80 -0.2 7.3 3.3 2.1 -11.9 
81 -58.8 -90.5 -104.4 -120.1 -128.5 
82 -7.0 -33.8 -55.5 -66.9 -51.6 
83 6.8 16.5 10.9 15.8 12.4 
84 26.0 8.9 -32.1 -23.4 16.9 
85 -1.8 -1.0 -4.0 3.8 16.1 
86 -61 .2 -111.6 -158.8 -202.8 -257.2 
87 0.5 24.3 7.0 29.5 32.7 
88 -47.4 -54.0 -81.2 -79.7 -77.0 
89 5.6 21.3 21.5 38.3 53.1 
90 -11.7 -20.1 -33.8 -43.1 -38.5 
91 28.9 52.3 68.4 86.8 132.9 
92 8.1 18.7 18.4 29.0 35.5 
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Table 81-2: Strain D« 

Strain Gau e 8 MPa (ON 6 MPa (ON 4 MPa (ON 2 MPa (ON) 0 MPa (ON) 

2 81.2 68.5 55.3 37.1 14.7 
3 -69.0 -28.3 15.8 69.6 159.7 
4 118.6 115.8 116.0 109.9 130.3 
8 31.1 25.1 20.2 14.4 23.1 
9 -223.7 -183.5 -138.0 -84.6 32.6 

16 -214.5 -171.4 -123.3 -66.3 46.9 
17 44.7 38.2 54.3 58.4 61.2 
18 -68.7 -56.8 -44.5 -26.1 61.1 
19 -143.3 -117.9 -87.8 -48.8 35.9 
21 0.0 0.0 0.0 0.0 0.0 
22 103.7 106.5 110.0 111.5 129.4 
23 -57.9 -40.8 -19.3 -0.5 25.4 
24 -116.7 -74.8 -32.1 11.5 35.7 
25 108.0 92.8 82.8 71.5 51.9 
26 -84.1 -55.9 -25.3 16.1 94.6 
27 61.1 56.3 53.3 51.9 70.8 
28 413.2 385.4 338.4 307.6 388.2 
30 186.6 191.7 213.3 238.5 329.8 
31 289.2 354.5 402.6 434.0 555.4 
32 69.5 66.7 60.9 54.1 70.1 
33 179.2 171.2 162.3 157.4 159.9 
34 59.9 60.6 58.8 55.2 75.4 
35 66.1 77.2 87.1 98.6 146.2 
36 274.7 278.8 276.6 267.3 239.3 
37 145.3 150.1 152.6 155.2 151.2 
38 -71.9 -47.9 -33.2 10.1 -0.1 
39 -22.9 -18.6 -18.7 0.8 -18.8 
40 -16.5 -3.9 -0.2 24.9 -2.5 
42 -165.8 -134.8 -103.8 -59.0 12.0 
43 85.9 102.2 124.2 163.4 218.4 
44 32.1 25.2 19.1 12.2 -3.3 
45 -140.9· -112.3 -98.4 -22.3 -24.5 
46 -14.4 7.8 26.0 50.8 16.8 
47 -50.8 -33.5 -17.7 -5.9 -27.4 
48 -138.5 -119.3 -97.7 -77.2 -89.9 
49 -115.0 -91.9 -65.2 -31.2 11.6 
50 -30.4 -15.5 -4.5 6.2 3.9 
51 -43.7 -20.0 -5.2 24.8 43.7 
52 -208.1 -108.8 -50.3 -7.8 6.5 
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Table 81-2: Strain De 

Strain Gau e 8 MPa (ON 0 MPa (ON 

54 56.1 97.7 128.2 159.0 195.1 
55 -167.9 -61.4 12.4 75.6 121.8 
56 -120.6 -98.2 -70.1 -35.1 -29.5 
57 30.2 28.9 30.0 31.9 24.6 
58 -51.3 -42.8 -25.1 5.0 17.5 
59 -35.3 -10.2 15.1 59.5 60.6 
60 -25.1 -11.9 -2.0 6.5 21.7 
61 -42.9 -29.5 -11.4 6.9 14.2 
62 77.6 66.7 62.0 61.3 51.7 
63 -161.6 -124.5 -73.1 -13.6 27.3 
64 58.4 54.7 59.2 62.0 34.5 
65 27.8 26.5 70.9 108.4 25.6 
66 58.0 50.4 49.7 47.6 45.7 
67 49.4 59.2 81.6 90.8 99.6 
68 119.8 113.6 130.6 147.6 145.4 
69 16.4 8.0 7.5 7.1 4.0 
70 -44.9 -22.7 -5.2 7.4 28.0 
71 -40.1 -5.5 18.0 36.2 25.1 
72 -145.1 -106.3 -64.3 -21.1 10.4 
73 -105.7 -84.3 -51.1 -12.6 31.9 
74 -137.8 -84.4 -29.8 17.8 32.3 
75 6.0 8.2 15.2 21.7 19.6 
76 49.2 281.0 340.4 359.1 358.0 
77 120.0 221.6 278.2 288.0 177.8 
78 45.1 81.9 54.5 40.0 19.3 
79 -35.0 -14.8 -0.2 15.8 30.0 
80 -14.9 -8.9 -8.4 -3.2 11.6 
81 -115.3 -99.4 -78.9 -45.1 18.2 
82 -32.0 -1.5 23.8 59.2 59.1 
83 2.1 1.3 2.4 6.4 15.6 
84 2.1 29.8 92.2 139.2 114.7 
85 -0.8 10.5 17.8 32.1 42.0 
86 -216.0 -165.3 -120.6 -68.1 -4.5 
87 0.3 11.0 4.4 21.4 7.0 
88 -108.7 -93.7 -93.5 -54.7 -71.2 
89 32.5 30.6 21.0 22.7 21.3 
90 -39.7 -32.7 -28.1 -12.9 -3.5 
91 120.8 95.9 86.8 94.9 9.1 
92 16.2 20.4 17.8 28.2 25.8 
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Table 81-3: Strain Data, Normal Cycle 3 

Strain Gau e 2 MPa (UP 4 MPa (UP 6 MPa (UP) 8MPa (UP) 10 MPa (Peak) 

2 48.0 70.0 100.2 115.6 129.0 
3 -713.4 -921.1 -1347.2 -1466.1 -1788.0 
4 17.5 24.1 42.0 49.0 62.5 
8 25.7 36.0 52.5 59.4 55.7 
9 -61.0 -118.8 -158.6 -199.6 -245.5 
16 67.8 87.1 139.5 143.6 161.9 
17 44.3 38.9 48.1 49.7 49.0 
18 -32.8 -45.0 -38.6 -45.8 -54.1 
19 -37.1 -73.5 -97.4 -124.6 -162.8 
21 5.6 19.1 38.4 48.7 44.6 
22 -3.5 -25.6 -37.8 -54.9 -69.6 
23 -16.3 -59.0 -90.3 -132.3 -181.9 
24 47.2 62.0 82.0 93.1 102.1 
25 -60.7 -120.4 -160.9 -200.8 -243.4 
26 -19.2 -59.5 -71.3 -89.9 -97.2 
27 13.2 16.6 32.2 36.5 37.5 
28 -27.5 -59.2 -16.0 26.7 62.9 
30 -116.4 -99.1 -82.5 -75.0 -57.3 
31 -30.5 -73.2 -63.4 -91.5 -107.4 
32 21.1 30.1 50.6 57.0 63.5 
33 40.0 43.7 69.3 85.3 96.8 
34 26.5 33.5 52.3 57.8 61.6 
35 7.9 -3.3 6.2 -0.7 -5.9 
36 63.0 81.4 127.6 144.5 172.2 
37 -2.4 -7.1 -16.9 -23.5 -43.0 
38 -16.3 -29.8 -58.6 -72.1 -98.9 
39 -20.5 -24.3 -34.6 -40.2 -57.7 
40 -13.4 -19.6 -43.3 -47.1 -61.6 
42 -71.5 -114.4 -146.8 -179.7 -220.0 
43 -51.0 -95.9 -128.1 -146.6 -153.8 
44 21.2 36.4 28.2 27.3 21.8 
45 -68.1 -80.7 -122.3 -133.1 -151.4 
46 8.0 -5.1 -40.5 -63.2 -100.3 
47 18.4 15.0 43.6 20.2 -15.9 
48 11.1 -8.6 -0.1 -31.2 -47.3 
49 -34.8 -70.1 -103.5 -120.3 -135.2 
50 13.7 7.6 12.1 -6.3 -31.6 
51 36.4 21.9 19.8 37.1 54.7 
52 34.6 12.2 -102.1 -201.4 -306.7 
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Table 81-3: Strain Data, Normal Cycle 3 

Strain Gau e 8MPa (UP) 10 MPa Peak) 

54 -11.9 -33.1 -37.4 -56.7 -22.2 
55 -7.8 -36.2 -131.8 -236.3 -350.4 
56 -0.2 -17.2 -44.6 -72.7 -114.5 
57 22.7 31.6 35.0 32.8 30.4 
58 -10.4 -19.8 -33.3 -37.9 -50.3 
59 4.7 -12.3 -55.5 -71.3 -38.5 
60 -5.4 -6.8 -14.1 -27.2 3.8 
61 -11.9 -24.3 -34.1 -53.7 -33.3 
62 23.3 35.7 53.7 67.1 99.5 
63 -37.2 -63.5 -138.8 -169.2 -207.8 
64 27.7 44.0 51.1 56.8 63.0 
65 66.3 97.6 66.6 72.0 98.2 
66 17.7 29.6 34.5 44.2 72.2 
67 77.8 90.0 52.5 50.1 98.5 
68 28.4 29.8 34.6 59.6 101.2 
69 1.0 6.5 18.7 28.2 45.7 
70 -6.6 -15.3 -28.1 -50.1 -76.9 
71 7.5 3.7 -0.7 -33.4 -70.3 
72 -38.9 -82.5 -120.0 -155.8 -179.5 
73 1.0 -19.2 -56.4 -83.9 -111.7 
74 -11.2 -47.5 -84.1 -136.5 -176.9 
75 14.5 8.5 6.2 6.3 0.3 
76 82.0 129.4 106.5 -124.9 -315.1 
77 342.6 370.3 247.1 105.8 -14.6 
78 71.5 103.3 120.1 50.6 -49.9 
79 1.9 -10.0 -21.8 -36.9 -54.2 
80 1.0 5.8 8.9 7.0 -4.8 
81 -47.1 -78.4 -92.5 -103.9 -115.3 
82 -2.0 -27.2 -39.2 -60.1 -63.5 
83 -0.5 5.0 9.4 11.2 14.9 
84 27.5 23.8 -41.0 -19.7 4.6 
85 5.3 4.2 10.4 11.5 18.7 
86 -64.9 -113.2 -153.1 -199.7 -252.3 
87 1.7 13.9 24.1 27.6 20.4 
88 37.9 49.5 16.8 26.3 21.2 
89 15.8 27.6 40.6 52.5 58.4 
90 19.2 18.4 7.8 13.4 16.8 
91 62.0 89.7 21.5 62.1 76.9 
92 8.9 13.9 27.0 33.4 39.5 
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Table 81-3: Strain Da 

Strain Gau e 8 MPa DN) 6 MPa (DN) 4 MPa (DN) 2 MPa (DN) 0 MPa (DN 

2 123.1 111.1 97.3 82.3 57.7 
3 -1636.6 -1687.4 -1526.7 -1371.1 -147.8 
4 63.4 72.8 71.8 71.0 91.4 
8 54.2 52.3 48.4 44.5 57.7 
9 -206.5 -161.7 -114.9 -59.3 54.1 
16 178.4 215.8 226.6 230.3 234.3 
17 55.1 67.8 78.6 84.8 86.9 
18 -41.8 -24.4 -13.3 3.2 72.3 
19 -135.9 -103.5 -71.3 -30.7 64.3 
21 52.2 58.8 62.6 67.3 90.0 
22 -51.1 -28.7 -6.4 15.1 41.7 
23 -134.4 -82.8 -35.2 9.5 43.4 
24 93.8 89.1 80.5 69.0 54.0 
25 -202.9 -155.7 -106.8 -51.6 60.4 
26 -67.9 -27.5 6.1 43.9 142.0 
27 35.4 35.1 32.9 32.2 52.3 
28 39.7 5.3 10.0 27.6 125.8 
30 -47.8 -44.5 -29.5 42.3 176.0 
31 -74.2 -42.9 -8.9 35.2 113.7 
32 60.9 65.4 61.0 58.3 75.4 
33 93.1 93.5 96.7 100.4 112.0 
34 61.6 65.1 62.7 61.5 82.4 
35 3.7 19.0 34.8 56.1 112.6 
36 173.2 179.2 182.2 178.5 161.8 
37 -35.9 -50.0 -49.4 -45.4 -42.5 
38 -78.6 -54.4 -29.9 -13.0 -5.9 
39 -49.3 -53.0 -45.5 -35.0 -40.0 
40 -53.8 -47.7 -40.9 -37.0 -61.1 
42 -187.6 -162.4 -126.9 -79.6 4.2 
43 -128.4 -103.7 -68.5 -25.4 39.7 
44 16.1 4.8 -1.4 -9.7 -25.4 
45 -136.8 -117.1 -96.8 -66.9 -60.6 
46 -72.7 -49.8 -25.9 -10.2 -42.1 
47 15.5 9.6 42.8 67.8 60.2 
48 0.1 40.9 75.9 97.9 118.1 
49 -108.7 -86.8 -59.5 -32.3 19.3 
50 -6.6 8.4 24.1 31.9 40.3 
51 111.1 87.5 90.0 73.0 96.0 
52 -180.4 -59.4 31.2 55.4 105.2 
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Table 81-3: Strain Da 

Strain Gau e 8 MPa (ON) 6 MPa ON) 4 MPa (ON 2 MPa (ON) 0 MPa (ON) 

54 44.8 87.6 122.1 144.1 183.1 
55 -226.4 -122.5 -37.7 -12.8 54.6 
56 -76.9 -55.9 -22.4 -6.6 34.8 
57 40.3 39.7 42.5 35.2 36.4 
58 -14.5 -24.4 -0.7 3.5 34.9 
59 24.8 28.6 68.7 59.6 71.2 
60 36.3 53.8 71.6 73.1 90.0 
61 9.6 20.5 42.8 44.4 59.8 
62 110.4 99.5 101.8 90.2 93.6 
63 -135.1 -111.2 -62.4 -44.9 19.4 
64 80.0 63.0 66.1 49.2 42.2 
65 171.4 154.9 185.9 133.2 130.3 
66 78.5 67.0 64.0 51.0 57.2 
67 145.5 130.1 145.6 126.0 140.5 
68 166.7 167.1 176.1 148.0 160.2 
69 39.4 27.4 22.0 18.0 22.9 
70 -38.8 -13.6 2.8 9.6 35.6 
71 -12.6 12.0 34.3 42.3 36.3 
72 -136.3 -99.1 -55.8 -20.5 15.4 
73 -72.4 -69.2 -37.8 -22.8 8.5 
74 -115.3 -58.6 -5.6 34.7 55.8 
75 7.6 6.6 12.9 15.7 18.9 
76 -118.5 167.0 317.6 334.3 284.7 
77 46.6 132.6 195.0 203.3 75.2 
78 41.1 131.4 122.8 98.0 74.4 
79 -30.6 -12.5 1.4 14.2 23.6 
80 4.9 6.5 5.9 5.7 21.8 
81 -100.1 -86.2 -66.4 -34.4 33.1 
82 -9.7 23.8 53.6 78.9 87.1 
83 23.7 18.5 17.0 10.2 25.3 
84 29.0 64.1 116.6 128.6 96.2 
85 29.6 31.4 40.4 44.3 63.8 
86 -200.3 -153.6 -105.6 -57.0 19.5 
87 37.6 22.8 14.1 5.4 3.8 
88 81.0 64.4 44.6 25.0 28.7 
89 60.0 48.8 38.5 30.5 34.1 
90 42.1 43.7 36.4 47.6 56.9 
91 110.9 85.8 39.7 3.3 -130.4 
92 43.3 34.4 31.7 30.6 34.7 
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Table 81-4 Note: All Strains at 2 MPa Normal Stress except last (Unloade' 
Shear1 at 0 MPa Normal Stress 
Strain Gau e Shear Stress = 0 MPa (UP) 0.25 MPa (UP) 0.50 MPa (UP) 

2 54.5 53.0 66.6 
3 0.0 0.0 0.0 
4 30.2 35.9 41.0 
8 5.6 14.7 11.9 
9 -75.3 -75.4 -72.5 
16 29.8 41.2 51.8 
17 22.0 31.3 33.6 
18 -51.2 -52.1 -46.7 
19 -63.6 -64.9 -70.7 
21 -21.5 -21.4 -18.2 
22 -24.8 -25.9 -28.2 
23 -38.5 -43.9 -35.5 
24 22.5 25.1 26.1 
25 -83.0 -80.8 -77.9 
26 -43.7 -38.3 -34.6 
27 -7.7 -8.9 -3.9 
28 -3.1 -8.4 -2.0 
30 35.8 46.1 70.2 
31 -41.4 -56.0 -22.4 
32 -10.4 -15.9 -12.4 
33 7.4 5.7 10.1 
34 10.4 10.3 19.4 
35 -19.4 -12.9 6.5 
36 23.6 25.6 36.4 
37 -72.2 -79.7 -82.0 
38 -64.6 -36.5 -50.3 
39 -56.8 -47.7 -56.5 
40 -63.6 -24.6 -57.0 
42 -111.3 -97.9 -97.7 
43 -78.2 -65.0 -68.5 
44 -48.6 -49.8 -50.1 
45 -109.5 -61.9 -92.8 
46 -46.5 -37.4 -49.1 
47 -5.1 -3.6 6.3 
48 6.5 3.9 6.6 
49 -52.4 -50.9 -50.6 
50 -7.3 -8.1 -9.1 
51 4.3 43.7 41.6 
52 -6.1 10.9 7.1 
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Table 81-4 Note: All Strains at 2 MPa Normal Stress except last (Unloade• 
Shear 1 at 0 M Pa Normal Stress 
Strain Gau e Shear Stress = 0 MPa UP 0.25 MPa UP 0.50 MPa (UP) 

54 -37.6 -36.3 -35.8 
55 -45.5 -39.2 -43.1 
56 -18.5 -13.5 -21.7 
57 -1.0 3.8 2.5 
58 -36.0 -5.9 -6.9 
59 -22.8 -1.8 0.1 
60 -23.2 -21.2 -20.0 
61 -29.0 -18.1 -22.4 
62 -1.5 9.5 5.6 
63 -79.5 -42.6 -55.9 
64 9.1 28.4 19.0 
65 -7.2 59.0 41.0 
66 -5.2 3.3 0.7 
67 -12.1 45.9 12.3 
68 -8.7 29.4 14.4 
69 -18.8 -11.8 -17.8 
70 -27.8 -24.5 -27.5 
71 -23.6 -15.0 -20.5 
72 -67.5 -55.9 -61.0 
73 -36.0 -11.7 -26.5 
74 -30.2 -21.5 -21.3 
75 -9.5 -4.0 -10.2 
76 40.2 45.1 48.7 
77 239.3 241.5 243.6 
78 36.1 34.7 33.7 
79 -14.0 -6.0 -0.7 
80 -20.2 -16.5 -22.0 
81 -64.8 -70.7 -78.2 
82 -29.6 -14.1 -25.0 
83 -12.9 -6.4 -13.9 
84 -8.6 31.3 14.6 
85 -29.2 -11.3 -22.4 
86 -82.9 -76.3 -79.4 
87 -16.4 10.6 -8.5 
88 -68.2 60.4 -3.4 
89 -9.4 5.9 -1.8 
90 6.4 48.5 23.5 
91 -4.2 35.4 23.0 
92 -15.0 -2.0 -9.8 
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Table 81-4 Note: All Strains::!) which is 
Shear1 at 0 MPa I 
Strain Gau e Shear Stress= 1.0 MPa (UP 1.25 MPa (Peak 1.0 MPa DN) 

2 79.2 103.9 112.5 
3 0.0 0.0 0.0 
4 47.0 57.6 63.3 
8 18.3 23.3 22.9 
9 -69.1 -65.7 -62.2 

16 46.0 103.1 86.2 
17 -9.5 50.2 -13.1 
18 -34.6 -33.5 -29.0 
19 -69.0 -82.6 -69.3 
21 0.0 -10.2 0.0 
22 -32.5 -33.6 -25.9 
23 -33.9 -32.2 -27.0 
24 27.9 29.6 28.1 
25 -77.4 -71.0 -72.9 
26 -31.2 -21.2 -17.7 
27 -1.9 8.5 13.4 
28 -1.3 5.4 12.6 
30 93.5 136.5 153.9 
31 133.1 212.2 228.0 
32 -7.5 -6.9 1.0 
33 20.2 24.4 40.1 
34 38.9 62.1 77.4 
35 30.3 63.2 68.6 
36 50.3 65.2 67.1 
37 -90.1 -97.9 -90.2 
38 -51.4 -55.2 -53.9 
39 -53.7 -55.9 -54.6 
40 -64.9 -74.4 -69.0 
42 -74.7 -68.2 -70.8 
43 -45.7 -25.4 -24.6 
44 -58.3 -72.4 -68.3 
45 -88.0 -90.0 -95.5 
46 -50.7 -61.5 -58.7 
47 36.7 57.0 58.5 
48 9.9 18.8 28.7 
49 -48.7 -45.3 -40.3 
50 -8.6 -8.7 -2.8 
51 58.8 31.3 70.7 
52 1.4 -21.8 -4.0 

137 



Table 81-4 Note: All Strains:!) which is 
Shear1 at 0 MPa I 
Strain Gau e Shear Stress = 1.0 MPa (UP) 1.25 MPa (Peak) 1.0 MPa (DN) 

54 -38.9 -40.8 -33.4 
55 -54.5 -65.8 -53.5 
56 -32.6 -41.4 -27.8 
57 -0.3 -2.8 3.3 
58 2.2 6.6 14.6 
59 -11.0 -21.4 -7.1 
60 -18.4 -17.4 -13.7 
61 -16.3 -13.0 -9.3 
62 5.6 4.0 10.7 
63 -63.5 -65.3 -58.9 
64 18.7 14.5 27.5 
65 36.8 18.0 33.3 
66 -0.2 -0.6 4.8 
67 -5.2 -22.6 1.8 
68 9.0 -2.1 8.3 
69 -18.0 -20.3 -13.8 
70 -30.5 -32.2 -27.0 
71 -19.1 -21.1 -16.2 
72 -64.4 -71.0 -65.7 
73 -27.9 -35.4 -25.4 
74 -18.0 -21.1 -18.3 
75 -13.6 -16.7 -9.2 
76 57.6 60.1 61.7 
77 256.1 258.7 265.5 
78 36.2 37.0 42.9 
79 7.7 7.3 5.4 
80 -25.6 -30.4 -25.2 
81 -91.0 -94.8 -85.5 
82 -27.2 -34.2 -28.7 
83 -17.2 -20.0 -13.8 
84 -6.5 -27.0 -26.2 
85 -27.4 -31.8 -23.9 
86 -81.6 -85.6 -82.9 
87 -13.9 -18.7 -12.5 
88 -47.5 -65.1 -72.0 
89 -6.1 -7.5 -3.4 
90 -5.9 -15.7 -16.7 
91 -35.8 -67.7 -68.8 
92 -13.7 -13.7 -11.9 
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Table 81-4 Note: All Strains 
Shear1 at 0 MPa I 
Strain Gau e Shear Stress = 0.5 MPa (ON) 0.25 MPa (ON) 0.0 MPa (ON) Unloaded 

2 111.6 117.1 120.8 108.5 
3 0.0 0.0 0.0 0.0 
4 59.5 72.9 74.6 81.3 
8 18.7 17.8 16.6 24.8 
9 -65.2 -63.4 -64.6 26.4 
16 109.3 108.7 127.7 113.4 
17 32.5 27.6 33.6 -29.0 
18 -32.8 -32.5 -33.4 22.5 
19 -62.4 -57.5 -46.9 25.1 
21 -10.3 -8.8 -9.8 0.0 
22 -21.7 -18.9 -13.7 11.0 
23 -27.5 -26.0 -25.1 11.9 
24 36.6 37.2 36.9 26.9 
25 -63.2 -61.9 -59.2 54.0 
26 -16.9 -16.9 -12.7 56.1 
27 15.9 17.5 21.9 33.7 
28 19.5 23.5 30.6 51.8 
30 142.6 143.3 154.2 232.9 
31 218.2 222.2 201.1 308.6 
32 7.0 9.8 15.0 30.7 
33 50.6 55.9 71.6 101.4 
34 83.2 87.0 97.9 124.1 
35 60.2 58.1 61.2 123.2 
36 57.4 55.8 52.1 59.1 
37 -88.8 -90.9 -100.6 -75.3 
38 -47.7 -62.4 -64.9 -32.2 
39 -50.1 -58.4 -63.1 -62.3 
40 -49.6 -65.0 -40.8 -88.4 
42 -80.1 -90.1 -101.6 -29.4 
43 -39.8 -51.3 -74.1 -0.2 
44 -67.0 -68.4 -67.5 -74.8 
45 -85.2 -108.7 -89.9 104.2 
46 -52.9 -58.0 -50.6 -57.9 
47 39.5 31.5 -3.4 21.0 
48 30.7 29.2 20.8 50.6 
49 -40.1 -39.0 -33.0 -3.8 
50 -3.4 -4.0 -9.3 6.1 
51 26.1 26.1 24.1 18.9 
52 -27.8 -26.0 -28.3 -21.5 
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Table 81-4 Note: All Strains 
Shear1 at 0 MPa I 
Strain Gau e Shear Stress= 0.5 MPa DN) 0.25 MPa (DN) 0.0 MPa (DN) Unloaded 

54 -34.6 -30.2 -31.8 9.5 
55 -55.9 -50.6 -42.2 -7.3 
56 -23.6 -22.4 -23.5 7.6 
57 2.1 2.7 1.8 2.5 
58 -12.5 -18.0 -37.5 2.4 
59 -20.9 -15.9 -9.4 -0.4 
60 -16.4 -16.5 -15.6 -3.0 
61 -16.4 -15.8 -16.0 -0.9 
62 4.8 4.9 2.1 8.9 
63 -67.4 -62.3 -15.4 -22.0 
64 20.2 18.9 15.0 8.6 
65 -3.4 -2.9 14.0 -9.6 
66 1.8 3.0 4.2 3.9 
67 -14.2 -4.2 16.1 -2.3 
68 -8.1 5.9 17.1 -9.0 
69 -17.2 -18.3 -20.4 -15.0 
70 -25.7 -26.8 -25.2 -1.8 
71 -18.6 -20.3 -20.7 -6.6 
72 -68.3 -67.7 -59.4 -10.2 
73 -34.2 -34.1 -31.5 -19.0 
74 -25.7 -29.0 -36.2 4.4 
75 -3.4 -5.5 -1.0 0.2 
76 57.9 54.6 49.9 34.3 
77 269.6 268.5 261.7 90.8 
78 45.6 46.2 42.4 15.9 
79 -2.4 -7.9 -11.9 3.6 
80 -21.3 -24.0 -19.4 -10.3 
81 -69.4 -64.8 -54.3 0.9 
82 -25.9 -33.1 -27.8 0.0 
83 -11.5 -12.6 -10.5 -4.2 
84 -28.6 -32.5 13.8 -56.0 
85 -17.5 -25.8 -12.8 -13.6 
86 -82.2 -86.1 -84.6 -2.6 
87 -4.2 -13.7 8.1 -18.7 
88 -57.9 -87.0 52.6 121.1 
89 0.9 -4.1 9.9 -6.7 
90 1.2 -1.0 57.3 8.2 
91 -59.5 -57.7 27.2 132.0 
92 -7.8 -11.7 0.5 -9.7 
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Table 81-5 Note: All Strains at 5 MPa Normal Stress except last (Unloaded) which is 
Shear 2 at 0 MPa Normal Stress 
Strain Gau e Shear Stress= 0 MPa (UP 0.5 MPa (UP) 1.0 MPa (UP) 2.0 MPa (UP) 

2 248.7 268.6 266.7 281.2 
3 0.0 0.0 0.0 0.0 
4 333.0 352.9 356.0 382.1 
8 11.6 22.2 22.7 30.1 
9 -165.9 -157.3 -158.1 -148.1 
16 -115.0 -108.1 -111.4 -110.3 
17 33.0 54.2 60.8 72.7 
18 -33.6 -26.5 -25.4 -11.0 
19 -120.1 -123.4 -136.3 -154.5 
21 0.0 0.0 0.0 0.0 
22 -15.0 -7.9 -6.9 6.5 
23 -61.7 -60.9 -66.2 -66.8 
24 -108.3 -102.4 -106.8 -101.9 
25 59.7 64.9 61.6 64.0 
26 -27.1 -12.0 -10.8 -3.2 
27 55.4 64.8 63.2 66.3 
28 2408.1 2439.7 2436.4 2439.2 
30 488.5 556.7 570.5 622.2 
31 17.1 31.8 35.2 44.7 
32 39.1 47.4 43.5 46.7 
33 35.1 48.7 40.6 34.1 
34 65.2 72.4 71.3 72.7 
35 29.8 63.1 77.7 111.8 
36 55.3 75.0 81.3 105.9 
37 -68.4 -73.4 -81.0 -95.7 
38 -86.4 -78.0 -87.1 -99.8 
39 -122.6 -118.0 -126.3 -123.1 
40 -108.4 -103.4 -120.8 -143.1 
42 -49.4 -51.2 -53.3 -56.2 
43 -186.5 -170.9 -163.9 -143.3 
44 -228.5 -215.8 -208.0 -191.5 
45 -91.7 -92.1 -101.2 -110.2 
46 -188.1 -168.0 -175.2 -175.6 
47 20.9 24.3 31.5 113.9 
48 -13.4 -19.9 -29.7 -40.9 
49 -106.2 -103.5 -105.3 -92.2 
50 -12.3 -15.9 -25.9 -38.4 
51 1.1 15.3 -22.9 15.7 
52 -101.7 -105.5 -135.8 -156.3 
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Table 81-5 Note: All Strains at 5 MPa Normal Stress except last (Unloaded) which is 
Shear 2 at 0 MPa Normal Stress 
Strain Gau e Shear Stress= 0 MPa (UP) 0.5 MPa (UP 1.0 MPa (UP) 2.0 MPa UP) 

54 -62.5 -52.6 -62.2 -56.4 
55 -114.7 -130.7 -165.0 -196.0 
56 -27.5 -32.9 -51.1 -52.3 
57 7.2 8.1 0.3 -1.6 
58 -46.2 -25.9 -23.1 35.3 
59 -51 .0 -45.5 -61.5 -37.4 
60 -29.2 -27.3 -31.8 -28.8 
61 -34.9 -33.5 -43.4 -37.3 
62 5.2 9.5 3.9 16.6 
63 -111.6 -96.8 -108.9 -55.4 
64 34.3 37.5 25.9 47.2 
65 16.3 38.3 29.4 112.4 
66 4.8 7.4 2.4 15.1 
67 -31.5 -29.5 -47.8 15.3 
68 7.1 18.1 8.7 51.1 
69 -7.9 -5.8 -8.6 2.0 
70 -50.7 -49.2 -52.5 -53.2 
71 -28.4 -23.0 -24.6 -17.4 
72 -128.3 -124.6 -126.2 -126.9 
73 -69.6 -62.2 -60.1 -37.0 
74 -82.1 -71.6 -64.9 -47.6 
75 -34.7 -36.1 -40.5 -44.5 
76 56.9 79.3 98.9 158.3 
77 204.9 230.5 255.3 340.4 
78 74.8 68.3 61.0 64.5 
79 -39.7 -25.2 -14.4 3.8 
80 -17.0 -16.5 -19.2 -26.3 
81 -104.9 -115.8 -130.0 -152.3 
82 -86.3 -74.3 -70.3 -59.3 
83 -4.5 -3.6 -6.3 -4.1 
84 -38.1 2.0 17.1 66.2 
85 -25.2 -17.2 -17.7 -14.1 
86 -152.4 -147.1 -146.9 -140.7 
87 -26.9 -16.9 -18.1 -16.0 
88 -83.2 -3.2 27.4 119.1 
89 7.8 15.4 16.4 20.1 
90 -8.5 17.6 18.8 33.9 
91 -71.7 -36.8 -8.6 17.9 
92 -7.7 -1.8 -0.2 3.5 
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Table 81-5 Note: All Strain 
Shear2 at 0 MPa 
Strain Gau e Shear Stress= 2.5 MPa (Peak) 1.5 MPa (ON) 0.5 MPa (ON) 

2 398.0 409.3 413.5 
3 0.0 0.0 0.0 
4 498.5 507.5 512.8 
8 37.1 28.6 21.7 
9 -139.3 -142.7 -147.5 
16 -60.0 -54.3 -52.7 
17 88.0 81.7 67.8 
18 6.3 1.0 -5.1 
19 -162.9 -139.9 -119.1 
21 0.0 0.0 0.0 
22 33.0 28.7 22.7 
23 -67.4 -58.1 -50.4 
24 -87.0 -88.7 -90.1 
25 78.2 80.2 81.3 
26 46.2 48.1 46.3 
27 104.0 109.3 113.0 
28 2556.4 2568.8 2581.2 
30 772.6 771.0 764.2 
31 531.8 549.0 565.1 
32 100.0 112.5 122.9 
33 123.6 148.8 168.6 
34 126.3 134.0 140.0 
35 209.1 196.2 181.9 
36 154.8 143.1 127.8 
37 -124.7 -122.0 -117.5 
38 -123.2 -118.3 -116.2 
39 -148.2 -149.4 -156.3 
40 -188.3 -170.4 -157.1 
42 -65.0 -65.0 -66.3 
43 -134.0 -152.2 -172.4 
44 -212.8 -224.8 -243.3 
45 -131.2 -127.6 -124.2 
46 -237.5 -246.7 -259.2 
47 191.8 177.2 160.5 
48 -41.7 -31.4 -21.8 
49 -90.7 -83.6 -85.5 
50 -47.2 -38.8 -30.5 
51 -4.9 3.7 2.8 
52 -200.8 -174.9 -158.0 
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Table 81-5 Note: All Strain 
Shear 2 at 0 MPa 
Strain Gau e Shear Stress = 2.5 MPa Peak) 1.5 MPa ON) 0.5 MPa ON) 

54 -29.0 -13.6 -3.9 
55 -243.2 -205.1 -172.4 
56 -67.7 -44.5 -26.1 
57 -13.5 -8.5 -5.2 
58 31.7 7.8 -15.3 
59 -59.1 -51.1 -50.5 
60 -17.6 -11.5 -7.7 
61 -48.3 -40.9 -35.4 
62 14.3 13.7 15.1 
63 -91.2 -84.8 -87.5 
64 35.2 37.3 39.3 
65 77.2 58.2 34.8 
66 14.1 17.4 19.6 
67 -53.8 -35.4 -20.7 
68 24.5 25.8 20.6 
69 -5.5 -6.5 -8.4 
70 -59.6 -58.9 -60.1 
71 -18.3 -22.0 -27.8 
72 -129.3 -139.3 -147.2 
73 -54.3 -58.6 -67.3 
74 -46.2 -64.0 -79.8 
75 -60.3 -58.5 -57.0 
76 196.1 175.4 146.7 
77 385.1 365.6 330.4 
78 71.3 76.6 81.4 
79 7.9 -12.9 -31.9 
80 -39.7 -37.0 -33.3 
81 -160.5 -136.5 -113.0 
82 -75.0 -82.8 -90.7 
83 -16.7 -12.6 -10.0 
84 -13.4 -25.6 -45.9 
85 -31.1 -29.2 -27.7 
86 -145.6 -151.1 -155.6 
87 -49.7 -43.9 -41.5 
88 -69.0 -83.3 -112.2 
89 5.2 6.4 6.7 
90 -40.7 -21.7 -13.5 
91 -165.2 -171.6 -207.2 
92 -7.7 -6.6 -7.4 
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Table 81-5 Note: All Strain 
Shear 2 at 0 MPa 
Strain Gau e Stiear Stress = 0.0 MPa (DN Unloaded 

2 458.4 427.3 
3 0.0 0.0 
4 568.5 578.6 
8 17.9 26.1 
9 -130.3 22.3 
16 -2.3 167.0 
17 68.8 27.8 
18 4.0 47.0 
19 -91.7 16.7 
21 0.0 0.0 
22 34.2 60.7 
23 -33.1 0.5 
24 -55.2 36.5 
25 87.7 52.4 
26 86.7 194.5 
27 145.8 151.8 
28 2645.4 2664.0 
30 837.3 891.2 
31 755.2 865.6 
32 155.8 156.0 
33 226.1 254.9 
34 180.5 184.4 
35 217.2 294.0 
36 148.5 172.2 
37 -127.7 -119.6 
38 -103.6 -11.6 
39 -154.8 -141.8 
40 -147.8 -130.8 
42 -62.8 -62.0 
43 -173.6 -54.3 
44 -256.4 -110.9 
45 -133.6 -153.1 
46 -251.5 -177.4 
47 129.2 73.2 
48 -20.9 18.3 
49 -87.9 -23.3 
50 -15.6 11.1 
51 38.4 19.1 
52 -118.5 -41.6 
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Table 81-5 Note: All Strain 
Shear 2 at 0 MPa 
Strain Gau e Shear Stress = 0.0 MPa DN Unloaded 

54 9.2 76.5 
55 -116.6 -26.2 
56 -5.1 44.4 
57 10.5 3.2 
58 -16.2 10.4 
59 -20.3 0.1 
60 -4.3 17.3 
61 -23.3 1.7 
62 19.4 19.4 
63 -65.8 9.7 
64 56.4 25.7 
65 49.7 1.9 
66 30.0 14.9 
67 30.9 -16.6 
68 39.7 14.5 
69 -2.2 -10.0 
70 -53.9 -17.0 
71 -14.9 10.1 
72 -144.9 -29.8 
73 -65.7 10.2 
74 -83.7 15.5 
75 -40.1 -22.1 
76 99.8 91.8 
77 270.0 111.8 
78 85.2 10.2 
79 -39.2 -5.3 
80 -23.4 -13.7 
81 -88.4 -4.0 
82 -83.7 -5.1 
83 -0.9 -3.1 
84 -23.5 -43.8 
85 -16.7 -10.2 
86 -149.1 -9.4 
87 -28.6 -45.8 
88 -86.3 -93.3 
89 16.3 -4.5 
90 21.6 29.5 
91 -156.1 -231 .6 
92 1.5 -3.9 
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Table 81-6 Note: All Strains at 10 MPa Normal Stress except last (Unlo< 
Shear 3a is at 0 MPa Normal Stress 

Strain Gau e Shear Stress = 0 MPa (UP) 1.0 MPa UP) 3.0 MPa (UP) 

2 209.6 229.6 239.7 
3 0.0 0.0 0.0 
4 112.0 129.1 134.4 
8 18.7 28.6 39.2 
9 -278.2 -273.4 -259.0 
16 44.3 42.5 61.9 
17 36.6 18.9 27.1 
18 -45.9 -39.3 -50.6 
19 -64.3 -64.3 -80.9 
21 0.0 0.0 0.0 
22 -27.4 -21.9 -27.8 
23 -33.8 -31.7 -43.9 
24 -48.8 -45.2 -67.0 
25 16.1 17.8 26.4 
26 -144.1 -139.2 -115.7 
27 21.5 23.6 19.6 
28 79.2 87.0 77.5 
30 88.0 107.1 144.4 
31 23.3 39.1 19.2 
32 27.2 24.4 14.6 
33 44.9 33.1 -0.3 
34 102.7 108.4 112.2 
35 -50.3 -22.9 26.1 
36 132.7 154.0 218.9 
37 -84.4 -89.5 -112.6 
38 -182.0 -200.9 -199.7 
39 -96.9 -106.3 -77.4 
40 -71.6 -99.2 -108.5 
42 -249.2 -231.2 -171.8 
43 -202.6 -186.4 -92.9 
44 -20.1 -28.4 -29.7 
45 -172.5 -192.2 -138.5 
46 -116.0 -122.5 -121.8 
47 -43.0 -43.8 -33.1 
48 -84.2 -95.9 -82.2 
49 -124.3 -120.9 -78.0 
50 -80.1 -91.7 51 .9 
51 24.9 -4.0 -13.1 
52 -408.8 -460.5 -555.6 
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Table 81-6 Note: All Strains at 10 MPa Normal Stress except last (Unloc 
Shear 3a is at 0 MPa Normal Stress 

Strain Gau e Shear Stress = 0 MPa (UP) 1.0 MPa (UP 3.0 MPa (UP) 

54 -71.5 -83.3 -29.2 
55 -330.8 -398.4 -490.1 
56 -101.4 -126.4 -144.8 
57 -5.7 -23.0 -130.9 
58 -42.9 -32.4 71.4 
59 -27.8 -45.8 -5.3 
60 18.9 -1.1 -113.9 
61 -95.3 -121.8 -93.5 
62 66.3 59.4 67.4 
63 -204.4 -206.0 -89.3 
64 68.1 59.6 93.8 
65 86.2 88.8 311.1 
66 68.5 59.6 62.6 
67 42.7 9.6 136.2 
68 63.3 61.4 145.3 
69 22.9 26.0 59.6 
70 -79.1 -71.4 -53.7 
71 -116.0 -104.2 -78.2 
72 -191.7 -186.3 -168.4 
73 -197.8 -197.5 -151.7 
74 -219.1 -200.3 -148.8 
75 -23.1 -31.5 -51.7 
76 -442.2 -368.6 -234.2 
77 -223.7 -186.1 -118.5 
78 13.0 33.0 38.8 
79 -66.0 -37.0 13.2 
80 -23.8 -25.1 -29.3 
81 -136.9 -163.1 -211.8 
82 -116.5 -110.3 -72.5 
83 31.6 30.0 39.5 
84 -70.0 -43.2 119.7 
85 11.5 9.7 31.2 
86 -264.6 -259.6 -242.9 
87 -7.6 -11 .2 3.9 
88 -74.5 -54.0 173.5 
89 26.6 27.3 49.5 
90 -7.9 -18.7 31.6 
91 102.3 129.7 294.9 
92 9.8 9.0 20.8 
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Table 81-6 Note: All Strains1ded) which 
Shear3a is at 0 MP• 

Strain Gau e · Shear Stress = 5.0 MPa (UP) 6.0 MPa (UP) 7.0 MPa (UP) 

2 273.9 296.7 305.7 
3 0.0 0.0 0.0 
4 157.5 167.7 171.4 
8 41.8 27.2 -4.1 
9 -248.9 -245.4 -243.0 
16 96.7 111.7 119.3 
17 44.6 59.4 56.3 
18 -37.9 7.1 4.3 
19 -79.5 6.7 6.0 
21 0.0 0.0 0.0 
22 -19.9 3.2 3.8 
23 -36.1 -8.8 -10.4 
24 -56.3 -1.7 -1.1 
25 23.1 -0.5 -1.4 
26 -72.4 -44.9 -4.7 
27 11.0 4.3 -8.2 
28 77.5 173.7 261.6 
30 182.2 196.5 195.3 
31 23.0 55.3 48.9 
32 24.3 41.9 50.2 
33 -11.6 2.1 15.8 
34 132.7 154.6 156.4 
35 109.7 173.0 244.5 
36 385.8 453.6 491.1 
37 -122.6 -128.9 -132.7 
38 -247.4 -281.8 -277.3 
39 -49.0 -34.5 -14.9 
40 -138.8 -163.2 -164.5 
42 -85.6 -40.8 21.0 
43 38.3 93.7 170.2 
44 -16.4 -20.5 -29.6 
45 -134.2 -161.5 -112.0 
46 -141.0 -159.6 -175.0 
47 299.8 674.1 0.0 
48 8.4 191.7 385.5 
49 -86.9 -86.2 -22.4 
50 318.5 456.4 542.9 
51 -97.1 -120.1 -56.9 
52 -669.2 -675.0 -657.5 
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Table 81-6 Note: All Strainslded) which 
Shear3a is at 0 MP< 

Strain Gau e Shear Stress = 5.0 MPa UP) 6.0 MPa UP) 7.0 MPa (UP 

54 108.9 186.1 200.2 
55 -590.4 -641.5 -647.0 
56 -179.3 -103.2 -64.9 
57 194.8 287.4 313.5 
58 79.5 153.2 231.7 
59 -9.5 14.9 18.8 
60 -169.4 -127.7 -113.9 
61 -182.9 -210.8 -219.6 
62 51.8 40.7 54.0 
63 -185.3 -147.2 -146.0 
64 110.9 195.3 237.8 
65 191.8 214.3 289.5 
66 59.2 58.5 75.3 
67 91.6 109.5 156.6 
68 95.4 104.4 149.0 
69 94.7 133.8 156.4 
70 -41.6 0.2 18.4 
71 -88.1 -85.8 -117.9 
72 -170.3 -115.5 77.1 
73 -157.9 -114.6 -72.0 
74 -103.7 -48.4 74.9 
75 -102.4 -109.0 14.2 
76 -56.0 35.1 320.6 
77 -43.7 -83.1 -175.9 
78 6.2 -134.7 -267.5 
79 56.5 89.3 125.6 
80 -64.3 -86.3 -123.3 
81 -248.9 -236.2 -220.9 
82 -48.9 -8.8 70.0 
83 31.0 39.0 48.1 
84 143.3 200.7 253.6 
85 23.9 17.9 45.7 
86 -225.5 -183.5 -114.3 
87 -46.6 -35.4 -29.1 
88 128.2 82.0 220.7 
89 45.9 37.8 41.4 
90 -61.6 -119.8 -86.5 
91 288.7 256.3 357.1 
92 13.5 6.8 21.6 
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Table 81-6 Note: All Strains 
Shear3a is at 0 MP• 

Strain Gau e Shear Stress = 7.58 MPa (PEAK) Unloaded 

2 326.4 271.2 
3 0.0 0.0 
4 175.9 192.6 
8 -36.7 42.8 
9 -243.7 31.0 
16 119.7 121.6 
17 48.0 46.7 
18 8.0 10.0 
19 3.6 3.9 
21 0.0 0.0 
22 6.0 6.3 
23 -9.1 -9.2 
24 0.0 0.6 
25 3.6 3.4 
26 12.8 58.0 
27 -22.1 27.9 
28 450.3 567.0 
30 168.5 126.7 
31 -20.2 152.2 
32 43.7 36.7 
33 23.7 70.7 
34 138.2 129.8 
35 281.3 153.8 
36 487.2 345.0 
37 -132.4 -60.6 
38 -293.9 -79.2 
39 -9.7 -45.6 
40 -158.7 -26.3 
42 85.9 -15.6 
43 264.5 295.8 
44 -88.1 -115.7 
45 -123.0 -92.1 
46 -189.7 -43.7 
47 0.0 0.0 
48 544.1 806.5 
49 37.7 -24.2 
50 632.4 690.6 
51 -3.2 241.4 
52 -524.3 620.6 
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Table 81-6 Note: All Strains 
Shear3a is at 0 MP• 

Strain Gau e Shear Stress = 7.58 MPa (PEAK) Unloaded 

54 209.0 301.5 
55 -308.1 0.0 
56 -42.9 159.8 
57 326.8 401.9 
58 261.3 109.4 
59 17.6 47.5 
60 -112.8 356.5 
61 -247.7 -43.1 
62 48.1 389.7 
63 -236.2 48.3 
64 241.0 241.3 
65 268.5 133.8 
66 50.8 244.9 
67 98.1 178.7 
68 113.4 282.2 
69 162.1 154.4 
70 27.8 50.2 
71 -97.0 146.6 
72 84.5 163.6 
73 -41.7 135.8 
74 65.0 96.9 
75 143.8 83.0 
76 324.5 179.8 
77 -282.2 -308.3 
78 -322.4 -221.0 
79 213.9 112.0 
80 -101.2 68.0 
81 -17.2 119.3 
82 33.8 143.4 
83 52.2 81.6 
84 135.8 247.9 
85 54.5 95.9 
86 -42.8 13.2 
87 -72.0 68.1 
88 119.0 84.7 
89 12.2 57.0 
90 -162.7 -17.8 
91 218.4 79.1 
92 15.1 23.1 
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Table 81-7 Note: All Strains at 10 MPa Normal Stress except last (Unloc: 
Shear 3b at 0 MPa Normal Stress 

Strain Gau e Shear Stress = 0 MPa (UP) 1.0 MPa (UP 3.0 MPa (UP) 

2 82.5 86.6 86.0 
3 0.0 0.0 0.0 
4 12.9 16.1 20.2 
8 -6.7 1.8 18.8 
9 -304.3 -302.8 -296.3 
16 -295.9 -293.4 -296.8 
17 -46.5 -34.2 -9.4 
18 -58.9 -55.0 -34.3 
19 -237.7 -263.2 -312.7 
21 0.0 0.0 0.0 
22 -44.6 -34.6 -17.3 
23 -11.0 -17.6 -14.9 
24 -473.6 -477.0 -487.6 
25 55.3 55.9 53.3 
26 -167.7 -162.7 -145.1 
27 -9.6 -8.3 -14.7 
28 -41.7 -53.0 -73.6 
30 44.9 62.1 86.5 
31 -298.5 -294.4 -285.7 
32 19.1 16.1 3.2 
33 -7.8 -20.6 -45.3 
34 23.1 27.0 23.2 
35 -139.1 -112.1 -59.4 
36 -48.4 -28.6 21.4 
37 -76.4 -81.8 -95.7 
38 -193.3 -212.0 -241.3 
39 -28.2 -36.0 -21.8 
40 -49.9 -84.7 -120.1 
42 0.0 0.0 0.0 
43 -228.2 -212.0 -153.6 
44 0.0 0.0 0.0 
45 8.9 5.9 3.5 
46 -64.4 -88.8 -78.3 
47 0.0 0.0 0.0 
48 0.0 0.0 0.0 
49 -203.5 -238.1 -222.3 
50 0.0 0.0 0.0 
51 -213.4 -286.3 -299.6 
52 -620.9 -652.4 -806.1 
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Table 81-7 Note: All Strains at 10 MPa Normal Stress except last (Unloc: 
Shear3b at 0 MPa Normal Stress 

Strain Gau e Shear Stress = 0 MPa (UP) 1.0 MPa (UP) 3.0 MPa (UP) 

54 -34.0 -54.4 -66.9 
55 -1741.7 -2455.7 0.0 
56 -182.6 -211.2 -201.2 
57 -21.1 -29.2 -1.8 
58 -101.1 -105.9 -17.0 
59 -42.2 -68.6 -39.9 
60 -225.9 -265.7 -355.3 
61 52.6 -11.6 -47.1 
62 -143.0 -176.7 -251.8 
63 -216.3 -263.0 -296.7 
64 -17.7 -45.4 -30.6 
65 -54.9 -117.4 -96.9 
66 0.0 0.0 0.0 
67 -53.4 -122.4 -129.4 
68 -104.0 -121.3 -147.1 
69 53.6 47.8 63.0 
70 -112.6 -102.3 -73.7 
71 76.6 86.0 92.2 
72 -145.0 -130.5 -104.2 
73 -206.4 -206.7 -174.5 
74 -77.6 -59.9 -14.7 
75 -59.2 -69.1 -81.7 
76 -371.4 -322.5 -228.9 
77 188.8 208.5 2.77.0 
78 63.8 73.3 37.6 
79 -59.0 -38.3 -6.5 
80 -8.5 -10.5 -16.5 
81 -101 .3 -126.9 -192.2 
82 -78.5 -72.8 -45.9 
83 -6.9 -9.7 -7.7 
84 167.9 171.3 238.5 
85 0.3 -8.4 -5.3 
86 -285.0 -282.7 -254.9 
87 0.0 0.0 0.0 
88 -39.1 -58.6 -55.8 
89 27.2 18.5 19.7 
90 -108.8 -161.5 -238.0 
91 293.9 286.0 283.0 
92 -3.0 -8.4 -9.1 
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Table 81-7 Note: All Strainstded) which is at 0.0 MPa Normal 
Shear3b at 0 MPa 1\ 

Strain Gau e Shear Stress = 5.0 MPa (UP) 6.0 MPa (UP) 7.0 MPa UP) 

2 90.9 96.5 93.8 
3 0.0 0.0 0.0 
4 18.2 9.0 0.2 
8 10.8 -6.1 -39.8 
9 -298.5 -298.7 -293.9 
16 -281.9 -256.6 -215.4 
17 27.1 54.0 91.8 
18 -10.8 -9.5 -0.5 
19 -376.5 -428.4 -496.8 
21 0.0 0.0 0.0 
22 12.2 19.3 27.3 
23 -21.4 -47.8 -61.2 
24 -358.4 -288.3 -220.0 
25 47.6 38.5 30.3 
26 -114.8 -93.3 -66.2 
27 -26.2 -33.2 -47.3 
28 -86.3 -82.6 -82.6 
30 107.9 115.4 116.5 
31 -278.1 -254.6 -244.1 
32 1.5 7.2 9.2 
33 -55.3 -51.4 -38.4 
34 22.8 27.0 21.4 
35 18.3 74.6 142.8 
36 97.9 129.2 166.2 
37 -115.8 -124.4 -130.2 
38 -270.7 -286.8 -288.1 
39 -0.8 3.7 12.1 
40 -154.4 -177.1 -185.3 
42 0.0 0.0 0.0 
43 -74.4 -23.8 63.6 
44 0.0 0.0 0.0 
45 2.2 2.3 -17.1 
46 -62.3 -65.8 -49.4 
47 0.0 0.0 0.0 
48 0.0 0.0 0.0 
49 -163.3 -139.9 -110.1 
50 0.0 0.0 0.0 
51 -362.3 -354.4 -288.3 
52 -802.1 -817.4 -731.7 
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Table 81-7 Note: All Strainstded) which is at 0.0 MPa Normal 
Shear3b at 0 MPa f\ 

Strain Gau e Shear Stress = 5.0 MPa (UP) 6.0 MPa (UP) 7.0 MPa (UP) 

54 -63.0 -75.7 -81.2 
55 0.0 0.0 0.0 
56 -198.1 -207.8 -221.7 
57 21.8 19.3 7.6 
58 38.2 58.3 81.5 
59 -51.9 -60.8 -77.3 
60 -354.5 -371.1 -376.9 
61 -107.6 -157.2 -203.5 
62 -325.7 -349.1 -354.1 
63 -313.7 -335.4 -386.5 
64 18.6 26.5 30.3 
65 -107.7 -90.6 -57.1 
66 0.0 0.0 0.0 
67 -158.5 -168.1 -165.7 
68 -192.9 -214.5 -172.0 
69 76.2 78.0 81.8 
70 -19.1 3.8 23.7 
71 70.8 6.5 10.2 
72 17.1 49.1 28.6 
73 -115.1 -111.6 -72.8 
74 64.6 67.9 29.6 
75 -85.0 -31.4 8.4 
76 -163.7 -86.9 -10.3 
77 101.0 98.9 133.2 
78 -312.7 -285.5 -203.3 
79 43.9 66.7 73.8 
80 -43.7 -71.8 -80.8 
81 -220.9 -228.2 -76.4 
82 2.3 10.1 27.5 
83 -3.6 -4.0 9.6 
84 427.1 396.7 339.1 
85 2.9 -5.3 6.3 
86 -208.3 -199.3 -182.4 
87 0.0 0.0 0.0 
88 29.6 14.5 64.9 
89 22.6 3.8 -13.8 
90 -240.6 -280.6 -256.2 
91 332.8 294.6 266.7 
92 -8.2 -11.5 -6.5 
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Table 81-7 Note: All Strains 
Shear3b at 0 MPa I' 

Strain Gau e Shear Stress = 8.0 MPa (UP) 9.0 MPa (UP) 9.46 MPa (PEAK) 

2 100.5 97.3 93.5 
3 0.0 0.0 0.0 
4 -8.6 -17.4 -18.9 
8 -95.6 -120.7 -135.5 
9 -332.2 -411.6 -480.3 
16 -169.6 -144.8 -159.6 
17 154.2 64.9 76.4 
18 188.4 139.3 129.9 
19 -667.6 -768.8 -848.5 
21 0.0 0.0 0.0 
22 36.0 6.3 -6.7 
23 -45.4 -47.7 -66.8 
24 -114.4 -171.3 -181.2 
25 24.0 8.0 3.3 
26 -43.1 0.9 50.7 
27 -75.7 -86.2 -93.2 
28 -70.3 -54.4 -21.2 
30 127.6 103.4 89.0 
31 -326.5 -317.2 -319.3 
32 14.7 21.2 24.9 
33 29.9 120.8 147.4 
34 14.5 -8.8 -30.4 
35 228.2 317.4 357.6 
36 240.6 340.7 458.5 
37 -143.3 -147.1 -150.9 
38 -281.8 -247.6 -211.1 
39 27.7 45.2 48.7 
40 -138.2 -0.1 105.6 
42 0.0 0.0 0.0 
43 220.2 537.8 665.8 
44 0.0 0.0 0.0 
45 -61.7 -84.5 -86.0 
46 -54.5 -42.3 -41.5 
47 0.0 0.0 0.0 
48 0.0 0.0 0.0 
49 -123.2 -25.3 72.6 
50 0.0 0.0 0.0 
51 -253.8 -263.8 -236.0 
52 -620.9 -368.4 -269.6 
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Table 81-7 Note: All Strains 
Shear3b at 0 MPa t-

Strain Gau e Shear Stress = 8.0 MPa (UP 9.0 MPa UP) 9.46 MPa (PEAK) 

54 -108.9 -76.4 -50.0 
55 0.0 0.0 0.0 
56 -231.7 -254.4 -280.1 
57 0.4 6.3 1.6 
58 74.0 70.8 95.3 
59 -162.2 -183.2 -184.9 
60 -318.0 -143.9 -157.7 
61 -215.7 -344.7 -412.0 
62 -362.1 -516.7 -581.4 
63 -591.0 -695.0 -745.6 
64 65.4 116.1 111.7 
65 -51.6 -19.1 -37.5 
66 0.0 0.0 0.0 
67 -264.5 -373.2 -407.1 
68 -21.5 315.9 335.7 
69 77.7 44.4 148.0 
70 42.4 48.8 54.0 
71 53.2 122.5 184.3 
72 -36.4 -91.8 -6.0 
73 -68.6 -78.3 -98.3 
74 -30.4 -47.9 89.9 
75 61.0 90.7 59.4 
76 -104.3 -205.8 -5.0 
77 192.8 179.7 -267.8 
78 131.1 321.6 -234.2 
79 -222.3 -42.8 91.2 
80 89.6 139.5 174.2 
81 268.8 259.3 60.6 
82 24.8 20.9 147.8 
83 42.9 31.5 44.1 
84 -128.9 -333.0 690.6 
85 36.5 40.0 29.3 
86 -207.4 -184.8 108.2 
87 0.0 0.0 0.0 
88 252.2 277.0 657.4 
89 -71.1 -131.6 1051.4 
90 -183.2 -241.5 -271.1 
91 178.7 161.2 1571.3 
92 -10.2 -24.3 -26.4 
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Table 81-7 Note: All Strains 
Shear3b at 0 MPa f\ 

Strain Gau e Shear Stress = 7.0 MPa (ON) 6.25 MPa (ON) 

2 104.8 121.8 
3 0.0 0.0 
4 -8.5 5.0 
8 -140.6 -144.1 
9 -429.6 -409.4 
16 -134.4 -117.1 
17 60.7 118.0 
18 127.2 104.8 
19 -724.4 -682.3 
21 0.0 0.0 
22 -0.3 2.1 
23 -21.9 -4.3 
24 -224.1 -297.2 
25 6.8 10.3 
26 58.1 78.1 
27 -84.4 -57.3 
28 17.7 94.3 
30 87.3 183.5 
31 -322.5 -233.1 
32 39.8 83.4 
33 214.4 330.0 
34 -32.3 38.8 
35 244.1 322.5 
36 437.3 517.4 
37 -111.5 -77.0 
38 -164.0 -150.4 
39 39.4 38.7 
40 150.9 170.5 
42 0.0 0.0 
43 528.9 507.0 
44 0.0 0.0 
45 -57.0 -32.5 
46 -59.7 -145.3 
47 0.0 0.0 
48 0.0 0.0 
49 123.0 159.5 
50 0.0 0.0 
51 -188.8 -129.7 
52 -229.0 -191.1 
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Table 81-7 Note: All Strains 
Shear3b at 0 MPa f'\ 

Strain Gau e Shear Stress= 7.0 MPa (DN) 6.25 MPa (DN) 

54 27.5 74.0 
55 0.0 0.0 
56 -167.1 -149.8 
57 70.5 121.9 
58 52.7 14.7 
59 -178.9 -151.9 
60 -100.1 -36.3 
61 -377.6 -365.4 
62 -470.4 -420.9 
63 -591.8 -567.1 
64 169.6 173.4 
65 47.7 8.4 
66 0.0 0.0 
67 -242.7 -82.3 
68 371.6 366.5 
69 218.7 234.6 
70 32.6 24.1 
71 129.6 120.0 
72 72.1 91.4 
73 -118.4 -121.9 
74 184.0 182.1 
75 64.3 57.0 
76 -89.8 -165.2 
77 128.3 229.7 
78 -312.2 -59.4 
79 41.9 56.6 
80 174.9 179.3 
81 163.4 160.0 
82 146.7 142.9 
83 34.0 9.9 
84 1094.5 962.1 
85 5.4 21.0 
86 72.6 24.6 
87 0.0 0.0 
88 -167.6 -193.8 
89 933.7 882.9 
90 -109.2 -123.7 
91 1642.9 1880.3 
92 13.6 5.5 
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Appendix 82: Tabulated Flow Data for Lengthwise Flow 
Configurations. 

Tables 82-1 through 82-7 provide the flow data recovered 
during the testing of LSR-2. 

Table 82-8 lists the loading steps, and the flow tests performed. 

Flow rates are ml/second, and heads are metres. Refer to 
Figure 2-4 for the placement of the ports and model dimensions. 
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Table 82-1 Flow Data, Normal Cycle 1 

N_LOAD 
(MPa) 

0.1 
0.2 
0.5 
1 
2 
4 
6 
8 
10 
10 
8 
6 
4 
2 

0.5 
0.2 
0.2 

N_LOAD 
(MPa) 

0.1 
0.2 
0.5 

2 
4 
6 
8 
10 
10 
8 
6 
4 
2 

0.5 
0.2 
0.2 

Q Port 13 Port16 Port7 Port 4 Port 6 Port 2 Port 1 
(ml/sec.) PTRANS.2 PTRANS.3 PTRANS.4 PTRANS.5 PTRANS.6 PTRANS.7 PTRANS.8 

0.667 
0 .684 
0.711 
0.754 
0.771 
0.727 
0.722 
0.758 
0.721 
0.766 
0.725 
0.724 
0.763 
0.791 
0.762 
0.747 
0.765 
0.778 
0.000 

(metres) 

1.642 
1.673 
1.645 
1.690 
1.527 
1.626 
1.661 
1.563 
1.554 
1.554 
1.550 
1.554 
1.565 
1.563 
1.557 
1.546 
1.543 
1.544 
1.465 

(metres) 

1.350 
1.200 
1.295 
1.361 
1.398 
1.464 
1.489 
1.674 
1.699 
1.713 
1.708 
1.718 
1.829 
1.789 
1.744 
1.823 
1.838 
1.838 
1.339 

(metres) 

1.838 
1.862 
1.887 
1.949 
1.794 
1.931 
1.990 
1.905 
1.897 
1.900 
1.877 
1.890 
1.861 
1.832 
1.843 
1.797 
1.797 
1.794 
1.546 

(metres) 

1.981 
1.959 
2.002 
2.039 
2.040 
2.140 
2.162 
2.029 
1.976 
1.978 
1.941 
1.955 
1.900 
1.869 
1.858 
1.880 
1.881 
1.850 
1.649 

(metres) 

1.448 
1.348 
1.382 
1.413 
1.375 
1.390 
1.425 
1.550 
1.608 
1.645 
1.577 
1.625 
1.644 
1.667 
1.664 
1.635 
1.618 
1.553 
1.320 

(metres) 

1.360 
1.227 
1.251 
1.432 
1.549 
1.732 
1.695 
1.603 
1.595 
1.597 
1.594 
1.594 
1.596 
1.593 
1.591 
1.591 
1.588 
1.588 
1.543 

Q Port 15 Port 12 Port 8 Port 17 Port 1 0 Port 11 
(ml/sec.) PTRANS.2 PTRANS.4 PTRANS.5 PTRANS.6 PTRANS.7 PTRANS.8 

0.667 
0.684 
0.711 
0.754 
0.771 
0.727 
0.722 
0.758 
0.721 
0.766 
0.725 
0.724 
0.763 
0.791 
0.762 
0.747 
0.765 
0.778 
0.000 

(metres) 

1.664 
1.648 
1.689 
1.677 
1.418 
1.606 
1.608 
1.582 
0.966 
1.316 
1.370 
1.488 
1.566 
1.548 
1.547 
1.561 
1.552 
1.550 
1.464 

(metres) 

1.692 
1.693 
1.709 
1.700 
1.575 
1.684 
1.677 
1.581 
1.371 
1.575 
1.584 
1.570 
1.575 
1.573 
1.580 
1.591 
1.574 
1.586 
1.539 

(metres) 

2.152 
2.140 
2.207 
2.194 
2.030 
2.144 
2.136 
2.075 
1.746 
2.012 
1.981 
1.990 
1.971 
1.929 
1.923 
1.891 
1.879 
1.846 
1.648 
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(metres) 

1.509 
1.557 
1.635 
1.629 
1.919 
2.045 
2.031 
1.977 
1.467 
1.894 
1.879 
1.868 
1.813 
1.797 
1.770 
1.773 
1.778 
1.769 
1.595 

(metres) 

1.735 
1.745 
1.788 
1.764 
1.634 
1.765 
1.771 
1.689 
1.275 
1.673 
1.664 
1.665 
1.681 
1.657 
1.645 
1.646 
1.639 
1.637 
1.540 

(metres) 

0.805 
0.777 
0.817 
0.757 
0.880 
1.019 
1.015 
1.093 
0.325 
0.958 
0.945 
0.939 
1.334 
1.298 
1.272 
1.250 
1.235 
1.240 
1.107 

(metres) 

0.756 
0.711 
0.658 
0.650 
0.594 
0.690 
0.673 
0.711 
0.776 
0.800 
0.787 
0.830 
1.002 
1.007 
1.024 
1.1 15 
1.126 
1.158 
1.052 



Table B2·2 Flow Data, Normal Cycle 2 

N_LOAD Q Port 13 Port16 Port? Port 4 Port 6 Port 2 Port 1 
(MPa) (mVsec.) PTRANS.2 PTRANS.3 PTRANS.4 PTRANS.5 PTRANS.6 PTRANS.7 PTRANS.8 

0.2 
0.2 
0.5 
0.5 
1 

1 
2 
2 
4 
4 
6 
6 
6 
6 
6 
6 
6 
6 
6 
6 
6 
6 
6 
8 
8 
8 
8 
8 
8 
10 
10 
10 
10 
10 
10 
8 
8 
6 
6 
6 
6 
6 

6 
4 

4 
4 
4 
2 
2 

1.277 
1.330 
1.265 
1.290 
1.343 
1.318 
1.186 
1.206 
1.322 
1.198 
1.318 
1.190 
1.398 
1.360 
1.404 
1.376 
1.400 
1.386 
1.379 
1.363 
0.740 
0.743 
0.750 
0.727 
0.740 
0.730 
0.740 
0.711 
0.748 
0.745 
0.730 
0.734 
0.764 
0.740 
0.782 
0.767 
0.734 
0.748 
0.748 
0.732 
0.732 
0.781 
0.739 

0.750 
0.748 

0.732 
0.743 
0.731 
0.763 
0.773 

(metres) 

1.760 
1.710 
1.705 
1.729 
1.729 
1.603 
1.587 
1.603 
1.623 
1.599 
1.624 
1.610 
1.636 
1.623 
1.631 
1.630 
1.624 
1.615 
1.628 
1.608 
1.525 
1.521 
1.531 
1.524 
1.532 
1.531 
1.533 
1.520 
1.535 
1.537 
1.539 
1.539 
1.537 
1.540 
1.554 
1.548 
1.902 
1.557 
1.555 
1.559 
1.549 
1.561 
1.557 

1.561 
1.565 

1.555 
1.555 
1.564 
1.558 
1.564 

(metres) 

2.157 
2.087 
2.008 
2.103 
2.128 
2.004 
1.988 
1.995 
4.634 
1.980 
2.025 
1.971 
2.057 
2.047 
2.047 
2.032 
2.033 
2.028 
2.038 

2.004 
1.868 
1.873 
1.879 
1.873 
1.870 
1.880 
1.890 
1.874 
1.890 
1.880 
1.890 
1.875 
1.880 
1.870 
1.897 
1.917 
2.182 
1.898 
1.874 
1.868 
1.898 

1.864 
1.869 
1.870 
1.875 
1.865 
1.865 
1.880 
1.866 
1.881 

(metres) 

2.254 
2.175 
1.895 
2.162 
2.183 
2.141 
2.055 
2.080 
2.117 
2.079 
2.111 
2.088 
2.189 
2.150 
2.155 
2.123 
2.114 
2.104 
2.114 

2.088 
1.849 
1.863 
1.853 
1.861 
1.844 
1.860 
1.848 
1.847 
1.865 
1.868 
1.880 
1.879 
1.880 
1.890 

1.950 
1.960 
1.981 
1.902 
1.881 
1.883 
1.503 
1.883 

1.878 
1.885 
1.870 
1.863 
1.863 
1.872 
1.866 
1.865 
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(metres) 

1.977 
1.936 
1.754 
1.976 
2.007 
2.187 
2.130 
2.153 
2.181 
2.159 
2.185 
2.146 
2.185 
2.158 
2.158 
2.137 
2.116 
2.100 
2.101 
2.070 
1.874 
1.879 
1.880 
1.878 
1.881 
1.880 
1.887 
1.870 
1.884 
1.883 
1.893 
1.887 
1.893 
1.895 
1.950 
1.931 
2.184 
1.914 
1.911 
1.905 
1.605 

1.995 
2.001 
2.001 
1.977 

1.965 
1.960 
1.956 
1.934 
1.932 

(metres) 

2.018 
1.942 
2.016 
1.926 
1.949 
2.031 
1.931 
1.953 
1.992 
1.925 
1.956 
1.959 
2.050 
2.025 
2.025 
2.016 
2.010 
2.001 
2.009 
1.984 
1.777 
1.830 
1.835 
1.818 
1.799 
1.797 
1.805 
1.784 
1.791 
1.790 
1.815 
1.802 
1.801 
1.808 
1.891 
1.886 
2.058 
1.856 
1.847 
1.856 
1.573 
1.939 
1.929 

1.941 
1.901 

1.913 
1.898 
1.905 
1.890 
1.896 

(metres) 

1.768 
1.714 
1.742 
1.748 
1.755 
1.668 
1.647 
1.650 
1.662 
1.653 
1.660 
1.648 
1.671 
1.663 
1.666 
1.672 
1.668 
1.664 
1.670 
1.668 
1.617 
1.618 
1.617 
1.617 
1.618 
1.618 
1.619 
1.615 
1.618 
1.618 
1.621 
1.621 
1.621 
1.621 
1.627 
1.614 
2.017 
1.621 
1.621 
1.621 
1.621 
1.621 

1.621 
1.624 
1.621 

1.621 
1.621 
1.621 
1.621 
1.621 

(metres) 

1.416 
1.374 
1.387 
1.446 
1.462 
1.466 
1.436 
1.438 
1.450 
1.410 
1.422 
1.371 
1.386 
1.383 
1.376 
1.350 
1.335 
1.320 
1.320 
1.294 
1.143 
1.134 
1.140 
1.142 
1.1 43 
1.133 
1.142 
1.112 
1.138 
1.141 
1.161 
1.160 
1.161 
1.169 
1.220 
1.211 
1.547 
1.229 
1.240 
1.246 
0.930 
1.292 

1.289 
1.289 
1.283 
1.284 
1.290 
1.292 
1.305 
1.314 



0 .5 
0.2 
0.2 

0 .749 
0 .758 
0 .732 
0 .732 
0 .732 
0.739 
0.000 

1.558 
1.559 
1.549 
1.556 
1.544 
1.552 
1.479 

1.866 
1.861 
1 .860 
1.871 
1.856 
1.851 
1.725 

Table B2-2 Flow Data, Normal Cycle 2 (Continued) 

1.837 
1.835 
1.833 
1.829 
1.819 
1.796 
1.581 

1.900 
1 .893 
1.961 
1.946 
1.925 
1 .894 
1.718 

1.852 
1.847 
1.843 
1.822 
1.817 
1.795 
1 .607 

1.618 
1.615 
1.618 
1 .615 
1.615 
1.612 
1.570 

N_LOA D Q Port 15 Port 12 Port 8 Port 17 Port 1 0 Port 11 
(MPa) (mVsec.) PTRANS.2 PTRANS.4 PTRANS.5 PTRANS.6 PTRANS.7 PTRANS.8 

0.2 
0.2 
0 .5 
0 .5 
1 
1 
1 
2 
2 
4 
4 
6 
6 
6 
6 
6 
6 
6 
6 
6 
6 
6 
6 
6 
8 
8 
8 
8 
8 
8 

10 
10 
10 
10 
10 
10 
8 
8 
6 
6 
6 

6 

1.277 
1.330 
1.265 
1.290 
1.343 
1.318 
1.186 
1.206 
1 .322 
1.198 
1.318 
1.190 
1.398 
1 .360 
1.404 
1.376 
1.400 
1.386 
1.379 
1.363 
0.740 
0 .743 
0.750 
0.727 
0.740 
0.730 
0.740 
0.711 
0 .748 
0.745 
0 .730 
0.734 
0.764 
0.740 
0.782 
0.767 
0.734 
0.748 
0.748 
0 .732 
0 .732 
0.781 

(metres) 

1.701 
1.729 
1.759 
1.759 
1.781 
1.626 
1.593 
1 .614 
1.623 
1 .608 
1 .620 
1.627 
1.601 
1.664 
1.654 
1.654 
1.655 
1.649 
1.644 
1.648 
1.628 
1.528 
1.529 
1.522 
1.535 
1.533 
1.536 
1.521 
1.533 
1.539 
1.550 
1.546 
1.520 
1.550 
1.574 
1.559 
1.576 
1.574 
1 .567 
1 .571 
1.563 
1.593 

(metres) 

1.657 
1.632 
1.731 
1.725 
1.737 
1.637 
1.624 
1.625 
1 .619 
1 .639 
1.627 
1 .620 
1.622 
1.645 
1.640 
1.642 
1.640 
1.636 
1.643 
1.647 
1.628 
1.612 
1.610 
1.609 
1.613 
1.623 
1.607 
1.612 
1.618 
1.614 
1.604 
1.608 
1.607 
1.612 
1.617 
1.615 
1.614 
1.611 
1.602 
1.611 
1.229 
1.609 

(metres) 

2.262 
2.243 
2.264 
2.250 
2.275 
2.181 
2.131 
2.141 
2.150 
2.129 
2.159 
2.170 
2.119 
2.159 
2.136 
2.137 
2.124 
2.103 
2.095 
2.091 
2.069 
1.875 
1.873 
1.872 
1.880 
1.873 
1.882 
1.860 
1.876 
1.868 
1.891 
1.881 
1.878 
1.886 
1 .928 
1.905 
1 .900 
1 .897 
1.893 
1 .893 
1.598 
1.988 
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(metres) 

2 .040 
2.040 
2.062 
2.068 
2 .092 
1.999 
1 .968 
1.964 
2.002 
1.968 
1.980 
1.988 
1.971 
2.035 
2 .005 
1.998 
1.978 
1.970 
1.958 
1.966 
1.936 
1.759 
1.766 
1.769 
1.786 
1.776 
1.777 
1 .764 
1 .763 
1.724 
1 .774 
1.764 
1.761 
1.766 
1.803 
1.794 
1.759 
1.775 
1.768 
1.778 
1.501 
1.865 

(metres) 

1.805 
1.829 
1.858 
1.848 
1.880 
1.768 
1.742 
1 .757 
1.781 
1.775 
1.782 
1.787 
1.764 
1.802 
1.788 
1.791 
1.791 
1.786 
1.786 
1.792 
1.781 
1.672 
1.669 
1.669 
1.682 
1.676 
1.680 
1.673 
1.679 
1.606 
1.688 
1.688 
1.681 
1.688 
1.697 
1.688 
1.688 
1.688 
1.689 
1.688 
1.688 
1.691 

(metres) 

1.521 
1.539 
1.561 
1 .558 
1.583 
1 .458 
1 .420 
1.420 
1.427 
1.388 
1.400 
1.405 
1.362 
1.356 
1.356 
1 .351 
1.341 
1.329 
1.318 
1.320 
1.295 
1.146 
1.147 
1.141 
1.150 
1.150 
1 .149 
1.123 
1.140 
1 .037 
1.164 
1 .164 
1.161 
1 .179 
1 .222 
1.212 
1.235 
1.232 
1 .240 
1 .246 
0.937 
1.297 

1.294 
1.296 
1.306 
1.314 
1.321 
1.320 
1.211 



6 0.739 1.590 1.609 1.996 1.863 1.691 1.289 
6 0 .750 1.593 1.604 1.987 1.857 1.694 1.291 
4 0.748 1.593 1.600 1.968 1.836 1.688 1.285 
4 0 .732 1.582 1.602 1.959 1.840 1.685 1.288 
4 0 .743 1.578 1.601 1.956 1.830 1.688 1.295 
4 0 .731 1.578 1.598 1.936 1.825 1.682 1.289 
2 0.763 1.580 1.607 1.926 1.820 1.685 1.310 
2 o.n3 1.586 1.606 1.924 1.830 1.685 1.314 

0 .749 1.573 1.607 1.897 1.792 1.673 1.298 
0 .758 1.572 1.610 1.890 1.783 1.673 1.301 
0 .732 1.560 1.619 1.960 1.785 1.670 1.312 
0.732 1.561 1.611 1.947 1.n1 1.667 1.319 

0 .5 0 .732 1.544 1.618 1.926 1.761 1.664 1.324 
0 .2 0 .739 1.552 1.606 1.897 1.743 1.655 1.321 
0.2 0.000 1.470 1.579 1.725 1.597 1.573 1.213 
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Table 82-3 Flow Data, Normal Cycle 3 

N_LOAD Q Port 13 
(MPa) (mVsec.) PTRANS.2 

0.2 
0.2 

0.2 
0.2 
0.2 

0.2 

0.2 

0.5 

0.5 

0.5 
0.5 

0.5 
1 

1 

2 
2 
2 
2 

2 
2 
2 

2 
2 
2 

4 

4 

4 

4 

4 

4 
6 

6 
6 
6 

6 
6 

6 

6 
6 

6 

6 

0.749 
0.799 

0.796 
0.749 

0.780 

0.749 

0.749 

0.778 

0.755 

0.748 
0.780 

0.766 
0.797 

0.798 

0.747 

0.746 

0.741 

0.748 
0.748 

0.749 

0.743 
0.795 

0.747 

0.815 
0.794 

0.740 

0.741 
0.785 

0.791 

0.799 
0.740 

0.740 

0.782 
0.787 

0.791 

0.799 

0.744 

0.747 

0.796 

0.796 

0.730 

0.730 
0.777 

0.730 

0.729 

(metres) 

1.578 
1.590 

1.588 
1.578 

1.584 
1.570 

1.570 

1.587 

1.581 

1.580 
1.571 

1.585 
1.591 

1.581 

1.582 

1.587 

1.573 

1.573 
1.586 

1.587 

1.747 
1.611 

1.744 

1.606 
1.603 

1.592 

1.597 
1.599 

1.605 

1.600 
1.593 

1.598 

1.593 
1.602 

1.594 

1.593 

1.593 

1.597 

1.604 

1.592 

1.745 

1.731 
1.724 

1.709 

1.711 

Port16 Port7 Port 4 Port 6 Port 2 Port 1 
PTRANS.3 PTRANS.4 PTRANS.5 PTRANS.6 PTRANS.7 PTRANS.8 

(metres) 

1.862 
1.867 

1.867 
1.857 

1.873 

1.857 
1.838 
1.858 

1.853 

1.853 
1.857 

1.853 
1.868 

1.882 

1.873 

1.863 

1.840 

1.866 
1.878 

1.872 

2.173 
2.039 

2.154 

1.906 
1.906 

1.876 

1.866 
1.876 

1.911 

1.901 
1.891 

1.896 

1.911 
1.917 

1.911 

1.926 

1.902 

1.892 

1.917 
1.901 

2.172 

2.141 
2.141 

2.072 

2.072 

(metres) 

1.773 
1.795 

1.774 
1.754 
1.789 

1.766 

1.770 

1.790 

1.782 
1.778 

1.790 

1.789 
1.817 

1.815 

1.795 
1.802 

1.787 

1.778 
1.805 

1.806 

2.344 
2.261 

2.266 
1.915 
1.899 

1.863 

1.850 
1.869 

1.882 

1.871 
1.854 
1.849 

1.880 
1.875 

1.890 

1.885 
1.855 

1.852 

1.875 
1.886 

2.298 

2.227 
2.191 

2.090 

2.080 
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(metres) 

2.038 
2.048 

2.047 
2.028 

2.025 
2.007 

2.009 
2.034 

2.021 

2.020 

2.033 
2.034 
2.061 

2.060 
2.058 
2.047 

2.101 

2.104 
2.093 

2.089 

2.452 
2.368 
2.381 

2.043 
2.029 
1.998 

2.000 
2.005 

2.006 
2.000 
1.980 
1.977 

1.992 
1.997 

2.001 

2.000 
1.982 

1.976 

1.998 
1.996 

2.269 

2.187 
2.217 

2.158 
2.154 

(metres) 

1.856 
1.846 

1.840 
1.817 
1.821 

1.814 

1.809 
1.836 

1.824 

1.822 
1.837 

1.837 
1.858 

1.856 

1.839 
1.842 

1.872 

1.858 
1.865 

1.861 

2.369 

2.309 

2.282 

1.916 
1.905 

1.866 

1.866 
1.872 

1.884 

1.882 
1.859 

1.861 

1.873 
1.876 

1.883 

1.887 
1.856 

1.865 

1.882 
1.881 

2.329 

2.214 
2.214 

2.107 

2.102 

(metres) 

1.616 
1.619 

1.619 
1.616 

1.619 

1.616 
1.616 

1.622 

1.618 
1.616 
1.618 

1.619 
1.622 

1.622 

1.618 
1.618 

1.618 

1.614 

1.617 

1.617 

1.758 
1.773 

1.748 

1.628 
1.626 

1.622 

1.621 
1.628 

1.627 

1.627 
1.624 

1.624 

1.630 
1.627 

1.631 

1.630 

1.625 

1.624 

1.626 
1.626 

1.754 

1.699 
1.733 

1.723 

1.715 

(metres) 

1.589 
1.592 

1.594 

1.582 

1.597 

1.586 
1.586 

1.602 

1.596 
1.599 

1.606 

1.606 
1.622 

1.622 

1.612 

1.614 

1.606 

1.597 
1.612 

1.612 
1.927 

1.964 

1.883 

1.654 
1.659 

1.636 

1.630 
1.647 

1.641 

1.642 
1.627 

1.625 

1.634 
1.625 

1.630 

1.624 

1.618 

1.614 

1.622 

1.620 

1.859 

1.792 
1.811 

1.743 

1.731 



6 
6 
6 
8 
8 
8 

10 

10 
10 

10 

10 
10 

10 

10 
10 

8 
8 
8 
6 

6 
6 

6 
6 
4 
4 

2 
2 

0.5 

0.5 
0.2 
0.2 

0.780 

0.732 
0.714 
0.716 
0.777 
0.783 

0.730 

0.786 
0.731 

0.732 

0.731 
0.783 

0.790 

0.792 
0.729 
0.805 

0.796 
0.807 

0.729 

0.749 
0.800 

0.740 

0.748 

0.745 

0.757 

0.739 

0.745 

0.748 

0.733 
0.746 
0.790 

0.790 

0.733 

0 .000 

1.707 

1.707 
1.697 
1.697 
1.731 
1.700 

1.533 
1.618 
1.542 

1.546 

1.532 
1.541 

1.632 

1.638 
1.623 
1.630 

1.593 
1.606 
1.585 

1.583 
1.602 

1.587 

1.587 

1.589 

1.587 

1.580 
1.570 

1.572 

1.558 
1.553 

1.557 

1.559 
1.545 

1.470 

2.066 

2.087 
2.076 
2.062 

2.087 
2.057 
1.903 

2.002 
1.922 

1.918 

1.901 
1.947 

1.922 

1.928 
1.898 
1.909 

1.869 
1.889 
1.864 

1.873 
1.900 

1.868 

1.882 
1.868 

1.868 
0.746 

1.853 

1.855 

1.839 
1.825 
1.836 

1.836 
1.806 

1.676 

2.099 

2.071 
2.057 
2.058 

2.106 
2.076 

1.894 
2.030 
1.952 

1.953 

1.948 
1.971 

1.980 

1.930 
1.863 

1.843 
1.897 
1.915 

1.891 

1.907 
1.935 

1.948 

1.984 
1.960 

1.952 

1.934 

1.937 

1.921 

1.927 
1.923 
1.932 

1.925 
1.877 

1.635 

2.171 

2.159 
2.160 
2.156 
2.191 
2.166 

1.988 

2.115 
2.062 

2 .068 
2.079 
2.100 

2.285 

2.278 
2.253 
2.253 
2.188 
2.179 

2.131 

2.123 
2.130 

2.097 

2.098 

2.060 
2.046 
2.000 
2.000 
1.971 

1.962 
1.981 
1.970 

1.967 
1.933 

1.750 

2.124 

2.106 
2.084 
2.090 

2.131 
2.091 
1.965 

2 .019 
1.964 
1.975 

1.963 
2.001 

2.106 

2.102 
2.061 
2.085 

2.040 
2.043 
1.989 

1.985 
2.002 

1.986 

1.995 

1.968 

1.956 

1.927 

1.912 

1.894 

1.888 
1.912 

1.908 

1.910 
1.864 
1.641 

1.724 

1.721 
1.721 
1.721 
1.739 
1.724 

1.571 
1.635 
1.630 
1.630 

1.630 
1.633 

1.657 

1.657 
1.651 
1.655 
1.630 
1.633 

1.627 

1.627 
1.632 

1.627 

1.633 
1.633 

1.630 

1.630 
1.630 

1.624 

1.624 
1.618 

1.621 

1.621 
1.615 
1.569 

N_LOAD Q Port 15 Port 12 Port 8 Port 17 Port 1 0 Port 11 
(MPa) (mVsec.) PTRANS.2 PTRANS.4 PTRANS.5 PTRANS.6 PTRANS.7 PTRANS.8 

0.2 
0.2 
0.2 
0.2 
0.2 
0.2 
0.2 
0.5 
0.5 
0.5 
0.5 
0.5 

0.749 
0.799 
0.796 
0.749 
0.780 
0.749 
0.749 
0.778 
0.755 
0.748 
0.780 
0.766 

(metres) 

1.585 
1.597 
1.595 
1.587 
1.592 
1.578 
1.576 
1.595 
1.592 
1.590 
1.582 
1.594 

(metres) 

1.581 
1.589 
1.597 
1.596 
1.599 
1.602 
1.599 
1.589 
1.594 
1.577 
1.592 
1.596 

(metres) 

2.055 
2.057 
2.050 
2.036 
2.035 
2.023 
2.028 
2.054 
2.034 
1.934 
2.051 
2.054 
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(metres) 

1.780 
1.779 
1.783 
1.766 
1.771 
1.763 
1.764 
1.780 
1.773 
1.649 
1.783 
1.781 

(metres) 

1.665 
1.668 
1.668 
1.658 
1.664 
1.658 
1.655 
1.668 
1.661 
1.661 
1.667 
1.667 

(metres) 

1.593 
1.601 
1.602 
1.592 
1.603 
1.593 
1.591 
1.610 
1.602 
1.605 
1.613 
1.612 

1.755 

1.731 
1.720 
1.709 
1.740 
1.738 

1.538 
1.624 
1.579 

1.574 

1.564 
1.579 

1.554 

1.543 
1.501 
1.504 

1.441 
1.440 

1.400 

1.400 
1.411 

1.357 

1.367 
1.348 

1.334 

1.312 
1.303 

1.274 

1.269 
1.237 

1.234 
1.233 

1.209 
1.082 



1 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
4 
4 
4 
4 
4 
4 
6 
6 
6 
6 
6 
6 
6 
6 
6 
6 
6 
6 
6 
6 
8 
8 
8 
10 
10 
10 
10 
10 
10 
10 
10 
10 
8 
8 
8 
6 
6 
6 

0.797 
0 .798 
0.747 
0.746 
0.741 
0.748 
0 .748 
0.749 
0 .743 
0.795 
0 .747 
0.815 
0.794 
0 .740 
0.741 
0 .785 
0.791 
0 .799 
0 .740 
0 .740 
0 .782 
0.787 
0 .791 
0 .799 
0.744 
0.747 
0 .796 
0 .796 
0.730 
0.730 
0.777 
0.730 
0 .729 
0 .780 
0 .732 
0.714 
0 .716 
0.777 
0.783 
0 .730 
0 .786 
0 .731 
0 .732 
0 .731 
0 .783 
0 .790 
0 .792 
0 .729 
0 .805 
0 .796 
0.807 
0 .729 
0.749 
0 .800 

1.606 
1.596 
1.596 
1.599 
1.587 
1.585 
1.590 
1.590 
1.814 
1.830 
1.781 
1.603 
1.602 
1.592 
1.594 
1.599 
1.609 
1.604 
1.604 
1.606 
1.604 
1.607 
1.610 
1.606 
1.606 
1.609 
1.620 
1.607 
1.816 
1.789 
1.787 
1.753 
1.748 
1.751 
1.729 
1.718 
1.730 
1.781 
1.741 
1.638 
1.677 
1.634 
1.643 
1.634 
1.656 
1.662 
1.661 
1.645 
1.654 
1.627 
1.630 
1.606 
1.608 
1.619 

1.597 
1.599 
1.594 
1.592 
1.580 
1.578 
1.580 
1.573 
1.712 
1 .711 
1.701 
1.589 
1.594 
1.587 
1.597 
1.592 
1.602 
1 .595 
1.590 
1.592 
1.604 
1.597 
1.601 
1.597 
1.594 
1.590 
1.595 
1.595 
1.705 
1.690 
1.701 
1.695 
1.687 
1.688 
1.688 
1.689 
1.697 
1.720 
1.710 
1.600 
1.615 
1.592 
1.594 
1.589 
1.592 
1.581 
1.561 
1.516 
1.480 
1.565 
1.565 
1.576 
1.581 
1.596 

2.080 
2.078 
2.073 
2.064 
2.135 
2 .139 
2.126 
2.125 
2 .513 
2 .527 
2 .412 
2.043 
2.071 
2 .035 
2.014 
2.035 
2 .034 
2.037 
2 .011 
2 .006 
2.025 
2.037 
2.034 
2 .033 
2.014 
2 .008 
2.036 
2 .029 
2 .257 
2.207 
2 .187 
2 .120 
2 .126 
2 .161 
2 .150 
2.159 
2.162 
2 .201 
2 .185 
2 .093 
2.164 
1.990 
1.995 
1.996 
2 .024 
2.216 
2.210 
2.182 
2 .189 
2.136 
2.157 
2 .1 10 
2.103 
2.112 
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1.794 
1.797 
1.779 
1.783 
1.806 
1.804 
1.796 
1.791 
2.188 
2 .210 
2.119 
1.815 
1.811 
1.783 
1.780 
1.791 
1.809 
1.799 
1.784 
1.782 
1.793 
1.796 
1.807 
1.806 
1.789 
1.789 
1.803 
1.801 
2.183 
2.126 
2.082 
2.025 
2.009 
2.027 
2.006 
1.994 
2.000 
2.034 
2.018 
1.893 
1.954 
1.878 
1.897 
1.887 
1.915 
2.015 
2.004 
1.979 
1.998 
1.964 
1.958 
1.912 
1.906 
1.914 

1.677 
1.676 
1.667 
1.667 
1.663 
1.663 
1.672 
1.672 
1.919 
1.925 
1.876 
1.698 
1.696 
1.686 
1.685 
1.695 
1.697 
1.700 
1.691 
1.688 
1.700 
1.700 
1.704 
1.703 
1.695 
1.694 
1.706 
1.702 
1.919 
1.870 
1.870 
1.836 
1.833 
1.843 
1.834 
1.828 
1.831 
1.864 
1.849 
1.745 
1.782 
1.730 
1.730 
1.727 
1.743 
1.761 
1.755 
1.740 
1.746 
1.727 
1.724 
1.71 2 
1.709 
1.724 

1.623 
1.630 
1.617 
1.617 
1.605 
1.598 
1.612 
1.613 
1.926 
1.958 
1.896 
1.633 
1.637 
1.624 
1.619 
1.636 
1.636 
1.636 
1.626 
1.623 
1.628 
1.622 
1.632 
1.623 
1.614 
1.614 
1.626 
1.618 
1.856 
1.810 
1.797 
1.760 
1.747 
1.760 
1.743 
1.732 
1.728 
1.775 
1.757 
1.631 
1.675 
1.596 
1.593 
1.579 
1.600 
1.565 
1.551 
1.503 
1.503 
1.447 
1.439 
1.389 
1.403 
1.409 



6 0.740 1.619 1.639 2.119 1.911 1.715 1.363 

6 0.748 1.620 1.651 2.118 1.911 1.718 1.370 

4 0.745 1.607 1.661 2.075 1.888 1.712 1.346 
4 0.757 1.604 1.652 2.060 1.877 1.712 1.338 
2 0.739 1.599 1.645 2.020 1.854 1.703 1.313 
2 0 .745 1.582 1.635 2.012 1.844 1.703 1.306 

0.748 1.579 1.666 1.991 1.828 1.691 1.274 
0.733 1.569 1.662 1.982 1.821 1.691 1.267 
0.746 1.571 1.666 2.007 1.843 1.685 1.237 

0.5 0.790 1.571 1.675 1.998 1.840 1.688 1.234 
0.5 0.790 1.571 1.665 2.000 1.838 1.685 1.229 
0.2 0.733 1.546 1.667 1.955 1.807 1.667 1.206 
0.2 0.000 1.468 1.637 1.761 1.643 1.569 1.079 
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Table 82-4 Flow Data, Shear Cycle 1 

N_LOAD S_LOAD 
(MPa) (MPa) 

0.2 
0.2 
0.2 
0.2 
0.2 
0.2 
0 .2 
0.2 
0.5 
0.5 
0 .5 
0 .5 
1.0 
1.0 
1.0 
1.0 
2 .0 
2.0 
2 .0 
2.0 
2.0 
2 .0 
2.0 
2.0 
2.0 
2.0 
2.0 
2.0 
2.0 
2.0 
2.0 
2 .0 
2.0 
2 .0 
2.0 
2.0 
2.0 
2.0 
2.0 
2.0 
2 .0 
2.0 
2.0 
2.0 
2 .0 
2.0 
2.0 
2.0 
1.0 
0 .5 

0.0 
0.0 
0.0 
0 .0 
0.0 
0.0 
0.0 
0 .0 
0.0 
0.0 
0.0 
0.0 
0 .0 
0.0 
0.0 
0 .0 
0.0 
0.0 
0 .0 
0.0 
0 .0 
0.0 
0.0 
0.0 
0.0 
0.3 
0 .3 
0.3 
0.5 
0.5 
0.5 
0.8 
0.8 
0 .8 
1.0 
1.0 
1.0 
1.0 
1.3 
1.3 
1.3 
1.3 
1.0 
1.0 
1.0 
0 .5 
0.5 
0.0 
0.0 
0 .0 

Q Port 13 Port16 Port? Port 4 Port 6 Port 2 Port 1 
(ml/sec.) PTRANS.2 PTRANS.3 PTRANS.4 PTRANS.5 PTRANS.6 PTRANS.7 PTRANS.8 

0 .714 
0.731 
0.732 
0 .731 
0.731 
0 .715 
0 .742 
0 .714 
0 .731 
0 .731 
0 .728 
0.731 
0.732 
0 .732 
0 .725 
0 .729 
0 .716 
0.725 
0.726 
0.729 
0.720 
0 .713 
0 .722 
0 .725 
0 .774 
0.716 
0 .729 
0.730 
0 .730 
0 .730 
0.729 
0 .728 
0.723 
0 .732 
0 .731 
0.730 
0 .712 
0 .732 
0 .727 
0.732 
0.732 
0.729 
0 .728 
0 .731 
0 .723 
0 .732 
0.746 
0.731 
0 .735 
0.723 

(metres) (metres) (metres) 

1.694 
1.679 
1.673 
1.660 
1.673 
1.666 
1.653 
1.649 
1.645 
1.647 
1.628 
1.634 
1.639 
1.627 
1.625 
1.629 
1.630 
1.635 
1.638 
1.639 
1.636 
1.596 
1.581 
1.576 
1.589 
1.590 
1.589 
1.582 
1.585 
1.580 
1.572 
1 .581 
1.576 
1.578 
1.584 
1.582 
1.583 
1.579 
1.586 
1.578 
1.596 
1.593 
1.576 
1.583 
1 .585 
1.582 
1.590 
1.586 
1.582 
1.578 

1.753 
1.909 
1.879 
1.873 
1.890 
1.885 
1.859 
1.865 
1.856 
1.851 
1.840 
1.826 
1.827 
1.836 
1.836 
1.847 
1.854 
1.837 
1.838 
1.862 
1.853 
1.828 
1.812 
1.818 
1.808 
1.809 
1.789 
1.793 
1.789 
1.800 
1.780 
1.780 
1.780 
1.795 
1.780 
1.780 
1.775 
1.775 
1.750 
1.744 
1.780 
1.779 
1.774 
1.780 
1.795 
1.765 
1.770 
1.770 
1.748 
1.729 

2 .084 
2.015 
1.982 
1.962 
1.956 
1.939 
1.933 
1.916 
1.923 
1.925 
1.899 
1.905 
1.938 
1.921 
1.919 
1.919 
1.936 
1.929 
1.947 
1.940 
1.939 
1.930 
1.919 
1.903 
1.911 
1.882 
1.898 
1.891 
1.869 
1.873 
1.866 
1.866 
1.866 
1.860 
1.865 
1.861 
1.867 
1.870 
1.866 
1.867 
1.850 
1.845 
1.864 
1.871 
1.854 
1.869 
1.869 
1.861 
1.851 
1.824 
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(metres) (metres) 

2.006 
1.997 
1.985 
1.971 
1.979 
1.969 
1.965 
1.955 
1.969 
1.962 
1.962 
1.970 
1.970 
1.965 
1.976 
1.988 
1.994 
2.003 
2.021 
2.024 
2 .010 
2 .183 
2.169 
2.170 
2.164 
2.159 
2.165 
2 .168 
2.148 
2 .140 
2 .127 
2.127 
2.127 
2.130 
2.127 
2.135 
2 .129 
2.133 
2.140 
2 .136 
2 .187 
2.176 
2 .172 
2.169 
2 .150 
2.152 
2 .159 
2.164 
2.169 
2.161 

2 .188 
2 .120 
2.089 
2.070 
2.062 
2 .043 
2 .030 
2 .012 
2 .016 
2 .011 
2.004 
1.991 
2 .005 
1.992 
1.988 
1.997 
2.003 
2 .001 
2.011 
2.006 
2.013 
1.994 
1.984 
1.975 
1.967 
1.963 
1.955 
1.957 
1.949 
1.940 
1.929 
1.931 
1.932 
1.932 
1.937 
1.931 
1.934 
1.932 
1.930 
1.937 
1.951 
1.947 
1.944 
1.946 
1.935 
1.934 
1.934 
1.934 
1.933 
1.917 

(metres) (metres) 

1.723 
1.714 
1.714 
1.714 
1.721 
1.713 
1.710 
1.703 
1.693 
1.696 
1.689 
1.689 
1.685 
1.676 
1.673 
1.682 
1.683 
1.681 
1.685 
1.676 
1.676 
1.624 
1.623 
1.618 
1.617 
1.629 
1.624 
1.624 
1.623 
1.623 
1.623 
1.617 
1.614 
1.616 
1.616 
1.619 
1.616 
1.616 
1.616 
1.617 
1.614 
1.609 
1.612 
1.609 
1.614 
1.610 
1.616 
1.609 
1.612 
1.608 

1.898 
1.886 
1.888 
1.865 
1.868 
1.859 
1.850 
1.841 
1.836 
1.831 
1.827 
1.818 
1.826 
1.807 
1.805 
1.812 
1.819 
1.820 
1.822 
1.823 
1.828 
1.839 
1.835 
1.833 
1.825 
1.826 
1.827 
1.813 
1.811 
1.808 
1.805 
1.810 
1.812 
1.815 
1.818 
1.824 
1.816 
1.827 
1.827 
1.830 
1.849 
1.851 
1.846 
1.856 
1.859 
1.865 
1.863 
1.876 
1.946 
1.938 



Table 82-4 Flow Data, Shear Cycle 1 (Continued) 

N_LOAD S_LOAD Q Port 15 Port 12 Port 8 Port 17 Port 10 Port 11 
(MPa) (MPa) (nil/sec.) PTRANS.2 PTRANS.4 PTRANS.5 PTRANS.6 PTRANS.7 PTRANS.8 

0.2 
0.2 
0.2 
0.2 
0.2 
0.2 
0 .2 
0.2 
0.5 
0.5 
0 .5 
0 .5 
1.0 
1.0 
1.0 
1.0 
2 .0 
2 .0 
2.0 
2 .0 
2.0 
2.0 
2.0 
2.0 
2.0 
2.0 
2.0 
2 .0 
2.0 
2.0 
2.0 
2.0 
2 .0 
2.0 
2.0 
2.0 
2 .0 
2.0 
2.0 
2.0 
2.0 
2 .0 
2.0 
2 .0 
2.0 
2.0 
2.0 
2.0 
1.0 
0 .5 

0 .0 
0 .0 
0.0 
0.0 
0 .0 
0 .0 
0.0 
0 .0 
0 .0 
0 .0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0 .0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.3 
0.3 
0 .3 
0 .5 
0 .5 
0.5 
0 .8 
0 .8 
0.8 
1.0 
1.0 
1.0 
1.0 
1.3 
1.3 
1.3 
1.3 
1.0 
1.0 
1.0 
0.5 
0.5 
0.0 
0 .0 
0 .0 

0 .714 
0 .731 
0 .732 
0 .731 
0.731 
0 .715 
0 .742 
0.714 
0 .731 
0 .731 
0 .728 
0 .731 
0 .732 
0.732 
0 .725 
0.729 
0.716 
0.725 
0 .726 
0 .729 
0.720 
0.713 
0 .722 
0 .725 
0.774 
0 .716 
0.729 
0.730 
0 .730 
0.730 
0.729 
0.728 
0.723 
0.732 
0.731 
0.730 
0 .712 
0.732 
0.727 
0 .732 
0 .732 
0 .729 
0 .728 
0 .731 
0.723 
0.732 
0 .746 
0 .731 
0 .735 
0 .723 

(metres) (metres) (metres) (metres) (metres) (metres) 

1.741 
1.714 
1 .703 
1.685 
1.703 
1.690 
1.669 
1.666 
1.665 
1.659 
1.646 
1.647 
1.660 
1.650 
1.647 
1.651 
1.658 
1.660 
1.666 
1.665 
1.664 
1.623 
1.608 
1.602 
1.613 
1.615 
1.614 
1.604 
1.608 
1.603 
1.599 
1.608 
1.603 
1.602 
1.606 
1.599 
1.602 
1.605 
1.606 
1.598 
1.608 
1.604 
1.598 
1.601 
1.606 
1.598 
1.605 
1.609 
1.607 
1.592 

1.690 
1.685 
1.682 
1.688 
1.690 
1.682 
1.688 
1.677 
1.663 
1.665 
1.652 
1.654 
1.663 
1.652 
1.654 
1.653 
1.654 
1.657 
1.658 
1.654 
1.655 
1.598 
1.593 
1.594 
1.591 
1.599 
1.607 
1.602 
1.593 
1.603 
1.589 
1.593 
1.590 
1.593 
1.590 
1.593 
1.597 
1.594 
1.596 
1.602 
1.590 
1.590 
1.590 
1.591 
1.593 
1.600 
1.596 
1.592 
1.592 
1.583 

2.421 
2 .354 
2 .335 
2.305 
2 .307 
2 .291 
2 .271 
2.248 
2.258 
2 .242 
2.240 
2.232 
2 .233 
2.221 
2.223 
2.229 
2.236 
2.236 
2.243 
2 .245 
2.241 
2.205 
2.195 
2 .195 
2.183 
2.179 
2.186 
2.182 
2 .170 
2 .163 
2.152 
2.153 
2 .143 
2 .146 
2 .153 
2.145 
2 .148 
2.156 
2 .148 
2 .142 
2.203 
2 .194 
2.191 
2.194 
2.176 
2.176 
2.175 
2 .185 
2 .190 
2 .183 
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2 .087 
2.040 
2 .022 
2.001 
2 .001 
1.984 
1.969 
1.952 
1.952 
1.944 
1.936 
1.926 
1.933 
1.924 
1.920 
1.924 
1.932 
1.928 
1.936 
1.934 
1.936 
1.918 
1.910 
1.901 
1.897 
1.891 
1.887 
1.894 
1.873 
1.871 
1.863 
1.867 
1.856 
1.862 
1.862 
1.851 
1.858 
1.864 
1.857 
1.856 
1.877 
1.874 
1.868 
1.869 
1.865 
1.861 
1.858 
1.860 
1.857 
1.849 

1.821 
1.796 
1 .790 
1.781 
1.794 
1.780 
1.771 
1.758 
1.760 
1.757 
1.753 
1.747 
1.749 
1.743 
1.743 
1.746 
1.756 
1.754 
1.759 
1.761 
1.761 
1.715 
1.708 
1.703 
1.703 
1.705 
1.703 
1.703 
1.696 
1.696 
1.690 
1.693 
1.688 
1.690 
1.689 
1.686 
1.689 
1.690 
1.689 
1.690 
1.681 
1.679 
1 .679 
1.679 
1.684 
1.680 
1.680 
1.679 
1.679 
1.669 

1.924 
1.900 
1.895 
1.880 
1.892 
1.874 
1.861 
1.851 
1.846 
1 .832 
1.837 
1.827 
1.833 
1.812 
1.815 
1.816 
1.827 
1.832 
1.838 
1.837 
1.831 
1.847 
1 .843 
1.840 
1.834 
1.836 
1.834 
1.825 
1.822 
1.815 
1.812 
1.822 
1.815 
1.815 
1.830 
1.825 
1.827 
1.833 
1.832 
1.836 
1.852 
1.859 
1.863 
1.859 
1.870 
1.875 
1.876 
1.884 
1.948 
1.946 



Table 82-5 Flow Data, Shear Cyole 2 

N_LOAD S_LOAD 
(MPa) (MPa) 

0.2 
0.2 
0.2 
0.2 
0.2 
0.2 
0.5 
0.5 
0.5 
0.5 
0.5 
0.5 
0.5 
0.5 
0.5 
0.5 

1 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

Q Port 13 Port16 Port? Port 4 Port 6 Port 2 Port 1 
(mVsec.) PTRANS.2 PTRANS.3 PTRANS.4 PTRANS.5 PTRANS.6 PTRANS.7 PTRANS.8 

0.731 
0.724 
0.733 
0.740 
0.747 
0.728 
0.749 
0.733 
0.749 
0.719 
0.731 
0.755 
0.747 
0.738 
0.736 
0.731 
0.743 
0.732 
0.732 
0.733 
0.734 
0.732 
0.731 
0.731 
0.725 
0.747 
0.733 
0.718 
0.742 
0.715 
0.712 
0.712 
0.713 
0.721 
0.722 
0.730 
0.714 
0.730 
0.723 
0.724 
0.730 
0.731 
0.716 
0.732 
0.739 
0.725 
0.730 
0.727 
0.715 
0.730 

(metres) (metres) (metres) (metres) (metres) (metres) (metres) 

1.690 
1.714 
1.701 
1.693 
1.696 
1.699 
1.697 
1.674 
1.668 
1.665 
1.661 
1.651 
1.658 
1.652 
1.644 
1.645 
1.623 
1.627 
1.623 
1.626 
1.621 
1.606 
1.603 
1.615 
1.606 
1.602 
1.591 
1.677 
1.685 
1.699 
1.700 
1.740 
1.697 
1.718 
1.680 
1.630 
1.686 
1.694 
1.683 
1.383 
1.403 
1.402 
1.499 
1.520 
1.514 
1.664 
1.667 
1.664 
1.669 
1.669 

1.871 
1.875 
1.880 
1.886 
1.887 
1.872 
1.872 
1.851 
1.837 
1.838 
1.832 
1.840 
1.839 
1.828 
1.829 
1.829 
1.823 
1.829 
1.819 
1.819 
1.820 
1.813 
1.813 
1.809 
1.810 
1.810 
1.804 
1.993 
2.013 
2.009 
2.009 
2.034 
2.000 
1.994 
1.963 
1.903 
1.980 
1.974 
1.968 
1.858 
1.863 
1.858 
1.799 
1.813 
1.810 
1.871 
1.881 
1.861 
1.871 
1.866 
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1.940 
1.947 
1.946 
1.948 
1.945 
1.934 
1.951 
1.929 
1.935 
1.909 
1.905 
1.910 
1.897 
1.887 
1.881 
1.881 
1.907 
1.931 
1.885 
1.877 
1.886 
1.888 
1.879 
1.877 
1.906 
1.903 
1.899 
2.136 
2.134 
2.118 
2.110 
2.137 
2.099 
2.095 
2.076 
2.053 
2.103 
2.093 
2.088 
1.986 
1.999 
1.975 
1.990 
2.012 
1.999 
2.151 
2.135 
2.114 
2.088 
2.095 

2.362 
2.388 
2.388 
2.388 
2.380 
2.379 
2.378 
2.354 
2.352 
2.333 
2.331 
2.333 
2.327 
2.315 
2.313 
2.307 
2.318 
2.319 
2.299 
2.297 
2.294 
2.294 
2.286 
2.284 
2.281 
2.270 
2.272 
2.481 
2.488 
2.487 
2.478 
2.476 
2.464 
2.463 
2.459 
2.392 
2.437 
2.431 
2.412 
2.325 
2.346 
2.352 
2.137 
2.138 
2.121 
2.154 
2.143 
2.135 
2.121 
2.116 

2.043 
2.052 
2.061 
2.058 
2.047 
2.039 
2.046 
2.032 
2.023 
2.004 
1.998 
1.999 
1.993 
1.984 
1.980 
1.972 
1.993 
1.990 
1.972 
1.968 
1.967 
1.968 
1.966 
1.959 
1.974 
1.972 
1.972 
2.239 
2.232 
2.206 
2.196 
2.1 98 
2.179 
2.165 
2.1 56 
2.105 
2.155 
2.153 
2.143 
2.044 
2.065 
2.066 
2.026 
2.035 
2.027 
2.159 
2.146 
2.133 
2.112 
2.115 

1.697 
1.708 
1.704 
1.698 
1.698 
1.698 
1.689 
1.680 
1.677 
1.652 
1.720 
1.667 
1.661 
1.658 
1.649 
1.649 
1.643 
1.640 
1.637 
1.632 
1.634 
1.631 
1.631 
1.631 
1.627 
1.626 
1.624 
1.689 
1.715 
1.716 
1.719 
1.753 
1.732 
1.736 
1.725 
1.675 
1.722 
1.727 
1.719 
1.616 
1.619 
1.619 
1.620 
1.628 
1.618 
1.643 
1.642 
1.641 
1.641 
1.659 

2.003 
2.016 
2.017 
2.013 
2 .006 
1.987 
1.977 
1.968 
1.952 
1.921 
1.901 
1.897 
1.880 
1.871 
1.855 
1.839 
1.800 
1.792 
1.772 
1.763 
1.748 
1.731 
1.722 
1.712 
1.632 
1.618 
1.612 
1.682 
1.702 
1.675 
1.659 
1.685 
1.662 
1.648 
1.642 
1.586 
1.634 
1.626 
1.627 
1.556 
1.579 
1.582 
1.805 
1.828 
1.826 
1.931 
1.930 
1.919 
1.909 
1.918 



5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 

2.5 
0 .2 

0 
0 
0 
0 
0 
0 
0 
0 

0 .5 
0 .5 
0 .5 
0 .5 
0 .5 
0 .5 
0.5 
0.5 
1 

1.5 
1.5 
1.5 
2 
2 
2 
2 

2.5 
2 .5 
2 .5 
2 .5 
2.5 
2.5 
1.5 
1.5 
1.5 
0 
0 
0 
0 
0 
0 
0 

N_LOAD S_LOAD 
(MPa) (MPa) 

0 .2 
0.2 
0.2 
0.2 
0 .2 
0 .2 
0.5 
0.5 

0 
0 
0 
0 
0 
0 
0 
0 

0.741 
0 .725 
0.729 
0.730 
0 .733 
0.747 
0 .736 
0 .731 
0 .731 
0 .735 
0 .731 
0 .735 
0.734 
0 .734 
0 .730 
0.732 
0 .716 
0.723 
0.714 
0.713 
0 .716 
0.713 
0 .723 
0.714 
0 .713 
0 .727 
0.715 
0.714 
0 .731 
0 .716 
0 .731 
0 .715 
0 .715 
0.723 
0 .722 
0 .715 
0 .722 
0.733 
0 .714 
0.714 
0 .714 
0 .713 

1.677 
1.673 
1.686 
1.676 
1. 711 
1.709 
1.712 
1.712 
1.710 
1.714 
1.716 
1.702 
1.701 
1.714 
1.711 
1.723 
1.703 
1.720 
1.714 
1.697 
1.701 
1.706 
1.708 
1.700 
1.692 
1.699 
1.688 
1.677 
1.690 
1.641 
1.641 
1.630 
1.640 
1.647 
1.639 
1.637 
1.645 
1.642 
1.664 
1.649 
1.682 
1.675 

1.875 
1.865 
1.861 
1.875 
1.892 
1.895 
1.897 
1.892 
1.903 
1.903 
1.902 
1.896 
1.903 
1.893 
1.897 
1.918 
1.901 
1.897 
1.902 
1.872 
1.898 
1.893 
1.898 
1.889 
1.892 
1.909 
1.899 
1.882 
1.894 
1.850 
1.840 
1.833 
1.839 
1.849 
1.838 
1.839 
1.839 
1.848 
1.868 
1.855 
1.872 
1.826 

2.085 
2.089 
2.092 
2.098 
2.116 
2.120 
2.115 
2.105 
2.120 
2.138 
2.115 
2 .120 
2.115 
2.220 
2.110 
2.112 
2.109 
2 .111 
2 .107 
2.113 
2.105 
2.103 
2.145 
2.122 
2.116 
2.131 
2.154 
2.155 
2.170 
2.102 
2.106 
2.102 
2 .099 
2.112 
2.101 
2.119 
2.101 
2.109 
2.143 
2.138 
2.138 
2.008 

2 .115 
2 .100 
2.095 
2.100 
2 .114 
2 .118 
2 .113 
2.101 
2.107 
2 .113 
2.112 
2.102 
2 .098 
2.101 
2 .1 01 
2 .097 
2.085 
2.083 
2 .084 
2.063 
2.060 
2.058 
2.065 
2 .058 
2.048 
2.053 
2.024 
2.014 
2.023 
1.962 
1.963 
1.960 
1.950 
1.953 
1.951 
1.955 
1.947 
1.950 
2.021 
2.010 
2.027 
1.964 

2.117 
2.108 
2.105 
2.112 
2.119 
2 .133 
2.129 
2.118 
2.125 
2 .1 30 
2 .1 27 
2 .1 24 
2 .1 22 
2.118 
2.127 
2.126 
2.114 
2 .114 
2 .1 10 
2.105 
2 .102 
2.098 
2 .115 
2.107 
2 .103 
2.102 
2.112 
2.105 
2.114 
2.062 
2.053 
2.058 
2.054 
2.062 
2 .051 
2.057 
2.056 
2.060 
2.128 
2.115 
2.126 
2.034 

1.668 
1.664 
1.663 
1.672 
1.688 
1.696 
1.689 
1.684 
1.687 
1.700 
1.703 
1.702 
1.703 
1.700 
1.711 
1.713 
1.708 
1.707 
1.707 
1.703 
1.698 
1.693 
1.699 
1.694 
1.695 
1.694 
1.670 
1.669 
1.679 
1.621 
1.620 
1.621 
1.621 
1.620 
1.619 
1.619 
1.619 
1.619 
1.623 
1.619 
1.644 
1.649 

Q Port 15 Port 12 Port 8 Port 1 7 Port 1 0 Port 11 
(mVsec.) PTRANS.2 PTRANS.4 PTRANS.5 PTRANS.6 PTRANS.7 PTRANS.8 

0.731 
0.724 
0.733 
0 .740 
0.747 
0.728 
0 .749 
0 .733 

(metres) (metres) (metres) (metres) (metres) (metres) 

1.730 
1.742 
1.721 
1.725 
1.729 
1.724 
1.720 
1.696 

1.698 
1.695 
1.689 
1.681 
1.679 
1.674 
1.669 
1.671 
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2.428 
2.435 
2.437 
2.426 
2.415 
2.402 
2.416 
2.397 

1.977 
1.982 
1.984 
1.981 
1.970 
1.965 
1.964 
1.949 

1 .758 
1.763 
1.762 
1.756 
1.750 
1.750 
1.750 
1.740 

2.011 
2.016 
2.014 
2.008 
1.997 
1.993 
1.981 
1.977 

1.924 
1 .908 
1.914 
1.918 
1.953 
1.938 
1.929 
1.926 
1.930 
1.941 
1.942 
1.944 
1.943 
1.939 
1.931 
1 .953 
1.946 
1.944 
1.950 
1.946 
1.946 
1.943 
1.957 
1.953 
1.956 
1.953 
1.962 
1.957 
1.970 
1.921 
1.922 
1.931 
1.924 
1.926 
1.914 
1.929 
1.927 
1.931 
1.950 
1.945 
1.957 
1.922 



0.5 
0.5 
0.5 
0.5 
0.5 
0.5 
0.5 
0.5 
1 
1 

1 
1 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

0.5 
0.5 
0.5 
0 .5 
0.5 
0.5 

0.749 
0.719 
0.731 
0.755 
0 .747 
0.738 
0 .736 
0.731 
0 .743 
0 .732 
0 .732 
0.733 
0.734 
0 .732 
0 .731 
0 .731 
0.725 
0.747 
0.733 
0.718 
0.742 
0.715 
0.712 
0 .712 
0.713 
0.721 
0.722 
0.730 
0.714 
0 .730 
0.723 
0.724 
0.730 
0.731 
0.716 
0.732 
0.739 
0.725 
0.730 
0.727 
0.715 
0.730 
0 .741 
0.725 
0 .729 
0 .730 
0 .733 
0 .747 
0 .736 
0.731 
0.731 
0.735 
0.731 
0.735 
0.734 
0.734 

1.691 
1.686 
1.687 
1.671 
1.676 
1.667 
1.663 
1.658 
1.645 
1.649 
1.643 
1.645 
1.643 
1.630 
1.626 
1.634 
1.630 
1.628 
1.616 
1.753 
1.740 
1.763 
1.755 
1.770 
1.750 
1.760 
1.705 
1.669 
1.711 
1.711 
1.706 
1.613 
1.598 
1.599 
1.648 
1.642 
1.651 
1.729 
1.726 
1.709 
1.734 
1.690 
1.733 
1.713 
1.724 
1.671 
1.718 
1.709 
1.712 
1.740 
1.702 
1.746 
1.750 
1.709 
1.703 
1.710 

1.663 
1.656 
1.659 
1.649 
1.647 
1.638 
1.637 
1.633 
1.628 
1.631 
1.629 
1.618 
1.620 
1.622 
1.619 
1.618 
1.613 
1.625 
1.614 
1.672 
1.693 
1.692 
1.698 
1.729 
1.710 
1.731 
1.706 
1.658 
1.708 
1.703 
1.699 
1.612 
1.597 
1.588 
1.621 
1.630 
1.614 
1.628 
1.629 
1.628 
1.628 
1.644 
1.661 
1.651 
1.655 
1.670 
1.678 
1.687 
1.688 
1.672 
1.684 
1.692 
1.694 
1.698 
1.699 
1.700 
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2.385 
2.364 
2.364 
2.358 
2 .351 
2.346 
2 .342 
2.334 
2.335 
2.337 
2.330 
2.329 
2.325 
2 .322 
2 .317 
2.315 
2.312 
2.307 
2.311 
2.253 
2.243 
2.214 
2.227 
2.241 
2.210 
2.198 
2.181 
2.189 
2.234 
2.231 
2.221 
2.142 
2.165 
2.170 
1.992 
1.991 
1.988 
1.701 
1.686 
1.679 
1.683 
1.703 
1.694 
1.707 
1.702 
1.707 
1.735 
1.739 
1.746 
1.743 
1.754 
1.769 
1.782 
1.772 
1.778 
1.795 

1.941 
1.930 
1.924 
1.923 
1.914 
1.907 
1.905 
1.900 
1.899 
1.898 
1.891 
1.888 
1.887 
1.889 
1.881 
1.880 
1.887 
1.883 
1.884 
2 .138 
2.126 
2.107 
2.104 
2.117 
2.095 
2.084 
2.064 
2.011 
2.057 
2.051 
2 .044 
1.945 
1.958 
1.963 
1.923 
1.925 
1.922 
2.025 
2.015 
1.993 
1.986 
1.989 
1.994 
1.992 
1.990 
1.988 
2.011 
2.013 
2 .011 
2.004 
2.000 
2.011 
2.012 
2.007 
2.006 
1.999 

1.735 
1.725 
1.729 
1.724 
1.722 
1.716 
1.713 
1.707 
1.707 
1.704 
1.701 
1.696 
1.698 
1.698 
1.695 
1.695 
1.697 
1.696 
1.694 
1.844 
1.840 
1.835 
1.838 
1.863 
1.845 
1.843 
1.826 
1.788 
1.832 
1.834 
1.828 
1.723 
1.722 
1.719 
1.718 
1.722 
1.713 
1.762 
1.764 
1.754 
1.754 
1.769 
1.775 
1.770 
1.773 
1.779 
1.797 
1.802 
1.799 
1.794 
1.800 
1.807 
1.809 
1.808 
1.807 
1.804 

1.961 
1.931 
1.915 
1.906 
1.887 
1.878 
1.861 
1.838 
1.802 
1.794 
1.781 
1.766 
1.752 
1.741 
1.730 
1.716 
1.640 
1.629 
1.620 
1.710 
1.686 
1.673 
1.666 
1.683 
1.663 
1.658 
1.652 
1.596 
1.638 
1.630 
1.629 
1.585 
1.591 
1.604 
1.847 
1.859 
1.853 
1.996 
1.976 
1.959 
1.958 
1.954 
1.955 
1.942 
1.953 
1.952 
1.968 
1.969 
1.969 
1.961 
1.962 
1.969 
1.974 
1.976 
1.977 
1.965 



5 0 .5 0 .730 1.707 1.698 1.802 2.006 1.811 1.957 
5 0 .5 0 .732 1.741 1.701 1.807 2.006 1.814 1.978 
5 -0 .716 1.700 1.693 1.812 2 .000 1.808 1.976 
5 0 .723 1.711 1.690 1.818 1.999 1.808 1.980 
5 0 .714 1.731 1.691 1.814 1.992 1.808 1.979 
5 1.5 0 .713 1.714 1.687 1.807 1.986 1.801 1.972 
5 1.5 0 .716 1.727 1.686 1.822 1.982 1.799 1.979 
5 1.5 0 .713 1.706 1.686 1 .813 1.979 1.794 1.972 
5 2 0 .723 1.731 1.705 1.844 1.992 1.806 1.985 
5 2 0 .714 1.705 1.689 1.831 1.982 1.797 1.978 
5 2 0 .713 1.685 1.684 1.845 1.980 1.796 1.982 
5 2 0 .727 1.749 1.692 1.855 1.980 1.800 1.985 
5 2 .5 0 .715 1.728 1.655 1.882 1.971 1.786 1.983 
5 2 .5 0 .714 1.727 1.672 1.875 1.972 1.788 1.990 
5 2 .5 0 .731 1.733 1.681 1.894 1.980 1.798 2.000 
5 2 .5 0 .716 1.686 1.598 2 .007 1.916 1.734 1.943 
5 2.5 0 .731 1.682 1.598 2.007 1.916 1.733 1.940 
5 2 .5 0 .715 1.671 1.596 2 .005 1.918 1.737 1.949 
5 1.5 0 .715 1.675 1.598 1.995 1.919 1.737 1.943 
5 1.5 0.723 1.675 1.601 2.001 1.922 1.735 1.943 
5 1.5 0 .722 1.672 1.587 1.997 1.913 1 .732 1.929 
5 0 0 .715 1.669 1.599 1 .996 1.915 1.735 1.943 
5 0 0 .722 1.690 1.594 2.005 1.920 1.735 1.945 
5 0 0 .733 1.684 1.603 2 .003 1.918 1.738 1.948 
5 0 0 .714 1.582 1.596 2.075 1.977 1.748 1.972 
5 0 0 .714 1.583 1.590 2 .061 1.968 1.747 1.979 

2.5 0 0 .714 1.729 1.629 2.082 2.001 1.781 2 .016 
0.2 0 0 .713 1.670 1.631 1.982 1.932 1.732 1.953 
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Table B2-6 Flow Data, Shear Cycle 3a 

N_LOAD S_LOAD 
(MPa) (MPa) 

0.2 
0.2 
0.2 
0.2 
0.2 
0.5 
0.5 
0.5 
0.5 

2.5 
2.5 
2.5 
2.5 
5 
5 
5 
5 

7.5 
7.5 
7.5 
7.5 
7 .5 
10 
10 
10 
10 
10 
10 
10 
10 
10 
10 
10 
10 
10 
10 
10 
10 
10 
10 
10 
10 
10 
10 
10 
10 
10 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

3 
3 
3 
3 
3 
3 
5 
5 

0 Port 13 Port16 Port? Port 4 Port 6 Port 2 Port 1 
(mVsec.) PTRANS.2 PTRANS.3 PTRANS.4 PTRANS.5 PTRANS.6 PTRANS.7 PTRANS.8 

0 .731 
0.736 
0.723 
0.713 
0 .728 
0.725 
0.732 
0.728 
0.733 
0.718 
0.731 
0 .732 
0.738 
0.731 
0.731 
0 .714 
0.731 
0.737 
0.729 
0 .722 
0 .724 
0.746 
0.717 
0 .716 
0.724 
0 .734 
0 .714 
0 .726 
0 .735 
0.726 
0 .717 
0.733 
0 .744 
0.712 
0 .715 
0 .716 
0 .738 
0 .719 
0 .710 
0 .732 
0 .717 
0 .716 
0 .724 
0.717 
0.712 
0 .715 
0 .708 
0 .714 
0.715 
0 .690 
0 .698 

(metres) (metres) (metres) (metres) (metres) (metres) (metres) 

1.623 
1.600 
1.609 
1.610 
1.598 
1.611 
1.609 
1.619 
1.604 
1.628 
1.621 
1.619 
1.623 
1.646 
1.628 
1.639 
1.630 
1.653 
1.650 
1.647 
1.652 
1.669 
1.657 
1.662 
1.652 
1.670 
1.666 
1.681 
1.6n 
1.687 
1.692 
1.693 
1.688 
1.678 
1.691 
1.687 
1.856 
1.863 
1.814 
1.811 
1.819 
1.812 
1.819 
1.808 
1.791 
1.808 
1.841 
1.866 
1.841 
1.883 
1.870 

1.768 
1.742 
1.739 
1.739 
1.742 
1.760 
1.760 
1.760 
1.753 
1.791 
1.786 
1.784 
1.791 
1.812 
1.804 
1.802 
1.816 
1.843 
1.858 
1.828 
1.843 
1.874 
1.878 
1.873 
1.882 
1.883 
1.913 
1.908 
1.922 
1.929 
1.929 
1.919 
1.933 
1.922 
1.939 
1.928 
2.180 
2 .165 
2 .150 
2.138 
2 .100 
2 .109 
2.084 
2.102 
2.101 
2.100 
2 .316 
2.336 
2.343 
2 .372 
2.394 
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1.924 
1.907 
1.902 
1.900 
1.900 
1 .981 
1.982 
1.981 
1.991 
2 .062 
2 .037 
2 .051 
2 .048 
2 .136 
2 .129 
2.118 
2 .135 
2.249 
2 .255 
2 .254 
2.258 
2.414 
2 .416 
2 .419 
2 .436 
2.434 
2.576 
2.611 
2.661 
2.684 
2 .647 
2.743 
2 .693 
2.688 
2 .687 
2 .692 
2 .842 
2.849 
2 .821 
2 .803 
2.n4 
2.794 
2 .769 
2.870 
2.842 
2.868 
3.408 
3.440 
3.458 
3 .432 
3 .471 

1.859 
1.839 
1.839 
1.837 
1.835 
1.858 
1.857 
1.856 
1.863 
1.896 
1.880 
1.885 
1.882 
1.924 
1.915 
1.913 
1.915 
1.952 
1.963 
1.952 
1.953 
1.995 
1.995 
1.998 
2.004 
2.009 
2.041 
2.053 
2 .067 
2.066 
2.069 
2.104 
2.081 
2.079 
2.082 
2 .080 
2.353 
2.341 
2 .333 
2 .311 
2.276 
2 .287 
2 .261 
2.304 
2.291 
2 .297 
2 .553 
2 .558 
2 .574 
2 .639 
2 .662 

1.975 
1.960 
1.960 
1.954 
1.953 
2 .005 
2.005 
2 .005 
2 .004 
2 .048 
2.036 
2 .050 
2.045 
2.087 
2 .085 
2.090 
2.090 
2 .132 
2 .149 
2 .144 
2.150 
2.251 
2.221 
2 .225 
2 .236 
2.247 
2 .298 
2.308 
2 .332 
2 .327 
2.330 
2.369 
2 .342 
2.339 
2 .337 
2.341 
2 .597 
2 .586 
2.564 
2.552 
2.511 
2.521 
2 .494 
2.549 
2.534 
2.545 
2.890 
2 .915 
2.937 
3 .022 
3.052 

1.620 
1.606 
1.605 
1.605 
1.604 
1.608 
1.610 
1.607 
1.616 
1.613 
1.615 
1.613 
1.613 
1.618 
1.615 
1.616 
1.620 
1.620 
1.619 
1.619 
1.619 
1.629 
1.625 
1.625 
1.625 
1.625 
1.629 
1.628 
1.633 
1.632 
1.630 
1.635 
1.635 
1.631 
1.631 
1.630 
1.747 
1.751 
1.726 
1.729 
1.720 
1.716 
1.706 
1.702 
1.691 
1.696 
1.680 
1.688 
1.694 
1.694 
1.701 

1.638 
1.628 
1.627 
1.625 
1.621 
1.644 
1.638 
1.637 
1.659 
1.668 
1.671 
1.690 
1.6n 
1.730 
1.710 
1.715 
1.715 
1.738 
1.745 
1.744 
1.748 
1.784 
1.774 
1.no 
1.1n 
1.785 
1.806 
1.835 
1.831 
1.830 
1.832 
1.849 
1.849 
1.846 
1.842 
1.848 
2 .167 
2.155 
2.135 
2.121 
2 .083 
2 .100 
2.075 
2 .112 
2.092 
2.089 
2 .282 
2.301 
2.319 
2.373 
2 .398 



10 
10 
10 
10 
10 
10 
10 
10 
10 
10 
10 

6 
6 
6 
6 
6 

6 .4 
6.8 
7 

7 .2 
7.2 
7 .4 

N_LOAD S_LOAD 
(MPa) (MPa) 

0.2 
0.2 
0.2 
0.2 
0.2 
0.5 
0.5 
0.5 
0.5 
1 

2.5 
2.5 
2.5 
2 .5 
5 
5 
5 
5 

7.5 
7.5 
7.5 
7.5 
7 .5 
10 
10 
10 
10 
10 
10 
10 
10 
10 
10 
10 
10 
10 
10 
10 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 -
0 
0 

0.664 
0 .681 
0.681 
0.674 
0.683 
0.632 
0.615 
0.565 
0.500 
0.500 
0.500 

2.021 
2 .101 
2.164 
2.270 
2.294 
2.325 
2 .444 
3.100 
3 .429 
3.417 
3.625 

2.847 
2.979 
3.109 
3.233 
3.284 
3.792 
4.557 
5 .007 
2.348 
2.338 
6.018 

4.297 
4.538 
4.673 
4.907 
4.981 
5 .731 
6 .737 
7.295 
8 .006 
8 .025 
8 .351 

3.181 
3 .341 
3.464 
3.610 
3.674 
4 .239 
5 .063 
5 .532 
6.182 
6.256 
6.569 

3.763 
3.960 
4.114 
4.303 
4.376 
5.046 
5.970 
6.435 
7.064 
7.247 
7.474 

1.652 
1.648 
1.664 
1.673 
1.665 
1.635 
1.635 
1.654 
1.654 
1.654 
1.654 

Q Port 15 Port 12 Port 8 Port 17 Port 1 0 Port 11 
(mVsec.) PTRANS.2 PTRANS.4 PTRANS.5 PTRANS.6 PTRANS.7 PTRANS.8 

0.731 
0 .736 
0 .723 
0.713 
0.728 
0.725 
0.732 
0.728 
0.733 
0.718 
0.731 
0.732 
0.738 
0.731 
0.731 
0.714 
0.731 
0.737 
0.729 
0 .722 
0.724 
0.746 
0.717 
0.716 
0.724 
0.734 
0.714 
0.726 
0.735 
0.726 
0.717 
0.733 
0.744 
0.712 
0.715 
0.716 
0.738 
0.719 
0.710 
0.732 
0.717 

(metres) (metres) (metres) (metres) (metres) (metres) 

1.647 
1.617 
1.623 
1.629 
1.615 
1.633 
1.630 
1.632 
1.621 
1.652 
1.647 
1.642 
1.649 
1.680 
1.675 
1.676 
1.666 
1.701 
1.697 
1.697 
1.694 
1.725 
1.720 
1.720 
1.714 
1.727 
1.748 
1.764 
1.756 
1.769 
1.774 
1.n5 
1.767 
1.no 
1.n 2 
1.n4 
1.999 
1.990 
1.9n 
1.952 
1.940 

1.608 
1.592 
1.593 
1.593 
1.592 
1.591 
1.585 
1.594 
1.588 
1.586 
1.587 
1.588 
1.594 
1.593 
1.590 
1.588 
1.591 
1.590 
1.592 
1.593 
1.597 
1.595 
1.590 
1.595 
1.597 
1.589 
1.583 
1.591 
1.598 
1.592 
1.588 
1.591 
1.598 
1.590 
1.595 
1.592 
1.715 
1.713 
1.683 
1.687 
1.668 

1n 

1.909 
1.889 
1.890 
1.886 
1.882 
1.920 
1.918 
1.913 
1.928 
1.944 
1.945 
1.949 
1.948 
2.002 
2.006 
1.996 
1.994 
2.061 
2.061 
2.058 
2 .058 
2 .131 
2.133 
2 .135 
2.144 
2 .149 
2 .217 
2 .242 
2.251 
2.258 
2.258 
2.278 
2.281 
2.281 
2.282 
2.288 
2.539 
2.531 
2.510 
2.483 
2.461 

1.897 
1.878 
1.8n 
1.874 
1.870 
1.902 
1.896 
1.892 
1.897 
1.911 
1.914 
1.913 
1.915 
1.941 
1.947 
1.943 
1.941 
1.972 
1.975 
1.969 
1.970 
2.014 
2.003 
2.000 
2.010 
2.010 
2.043 
2.050 
2.059 
2.057 
2.058 
2.068 
2.068 
2.056 
2.056 
2.068 
2.317 
2.307 
2.292 
2.272 
2.238 

1.702 
1.5e5 
1.Ge5 
1.6e1 
1.6eQ 

1.699 
1.698 
1.698 
1.698 
1.714 
1.715 
1.717 
1.717 
1.740 
1.743 
1.738 
1.742 
1.766 
1.766 
1.762 
1.763 
1.793 
1.790 
1.793 
1.796 
1.796 
1.a24 
1.as2 
1.S37 
1.a33 
1.S37 
1.S42 
1.S45 
1.S39 
1.a38 
1.S44 
2.079 
2.071 
2.049 
2.037 
2.007 

1.668 
1.655 
1.659 
1.653 
1.649 
1.671 
1.666 
1.665 
1.670 
1.691 
1.697 
1.705 
1.704 
1.744 
1.747 
1.744 
1.752 
1.780 
1.784 
1.n9 
1.789 
1.822 
1.817 
1.81 2 
1.823 
1.828 
1.857 
1.879 
1.886 
1.885 
1.887 
1.906 
1.912 
1.910 
1.901 
1.915 
2 .215 
2 .203 
2.183 
2 .162 
2.130 

2.862 
2.997 
3.113 
3.231 
3.279 
3.782 
4.556 
5.039 
5 .761 
5 .545 
6.120 



10 0 .716 1.936 1.667 2.467 2.240 2.012 2.134 
10 1 0.724 1.936 1.664 2.450 2.220 1.995 2.117 
10 3 0 .717 1.946 1.652 2.497 2 .237 2.006 2.119 
10 3 0.712 1.951 1.648 2.514 2.247 2.008 2.123 
10 3 0 .715 1.961 1.655 2 .520 2.248 2.013 2 .128 
10 3 0 .708 2.145 1.658 2.878 2.496 2 .213 2.334 
10 3 0.714 2.146 1.651 2.877 2.483 2.213 2.336 
10 3 0 .715 2.149 1.656 2 .913 2.520 2.246 2.361 
10 5 0 .690 2.227 1.661 2 .943 2.580 2.282 2.443 
10 5 0 .698 2.248 1.662 2.954 2.597 2.286 2.451 
10 6 0.664 2.834 1.633 3 .692 3.246 2.822 3.028 
10 6 0 .681 2.847 1.635 3 .743 3.278 2.855 3.047 
10 6 0 .681 2.989 1.628 3 .882 3.413 2.984 3 .176 
10 6 0 .674 3.170 1.623 4 .061 3.561 3.106 3.315 
10 6 0.683 3.168 1.616 4.080 3.577 3.116 3.320 
10 6.4 0 .632 3.780 1.598 4.827 4.261 3.675 3.946 
10 6 .8 0.615 4.517 1.605 5 .704 5.132 4.378 4.755 
10 7 0 .565 4.925 1.596 6 .167 5.592 4.699 5 .217 
10 7.2 0 .500 5.671 1.596 6.856 6.285 5.212 5.897 
10 7.2 0.500 5.668 1.591 6 .876 6.279 5.201 5 .889 
10 7 .4 0 .500 5.968 1.589 7 .117 6.602 5.430 6 .245 
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Table 82-7 Flow Data, Shear Cycle 3b 

Due to fracturing-of the model, no useful flow data were recovered. 
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Appendix 82 Summary of Flow Tests run on LSR-2 
Table 82-8 

Test Normal Shear Flow Test Normal Shear Flow 
Stress Stress Test* Stress Stress Test* 
(MPa) (MPa) (MPa) (MPa) 

N-1 0.1 0.0 L N-3 cont. 6.0 0.0 L, C 
0.2 0.0 L 8.0 0.0 L 
0.5 0.0 L 10.0 0.0 L, C 
1.0 0.0 L,C 8.0 0.0 L 
2.0 0.0 L 6.0 0.0 L, C 
4.0 0.0 L 4.0 0.0 L 
6.0 0.0 L, C 2.0 0.0 L 
8.0 0.0 L 1.0 0.0 L, C 
10.0 0.0 L, C 0.5 0.0 L 
8.0 0.0 L 
6.0 0.0 L, C S-1 0.2 0.0 L 
4.0 0.0 L 0.5 0.0 L 
2.0 0.0 L 1.0 0.0 L 
1.0 0.0 L,C 2.0 0.0 L, C 
0.5 0.0 L 2.0 0.3 L 
0.2 0.0 L 2.0 0.5 L 

2.0 0.8 L 
N-2 0.2 0.0 L 2.0 1.0 L 

0.5 0.0 L 2.0 1.1 L 
1.0 0.0 L,C 2.0 1.2 L 
2.0 0.0 L 2.0 1.3 L,C 
4.0 0.0 L 2.0 1.0 L 
6.0 0.0 L,C 2.0 0.5 L 
8.0 0.0 L 2.0 0.0 L 
10.0 0.0 L, C 1.0 0.0 L 
8.0 0.0 L 0.5 0.0 L 
6.0 0.0 L,C 
4.0 0.0 L S-2 0.2 0.0 L 
2.0 0.0 L 0.5 0.0 L 
1.0 0.0 L,C 1.0 0.0 L 
0.5 0.0 L 2.0 0.0 L, C 
0.2 0.0 L 5.0 0.0 L, C 

5.0 0.5 L 
N-3 0.2 0.0 L 5.0 1.0 L 

0.5 0.0 L 5.0 1.5 L 
1.0 0.0 L, C 5.0 2.0 L 
2.0 0.0 L 5.0 2.5 L,C 
4.0 0.0 L 5.0 1.5 L, C 
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Appendix 82 Summary of Flow Tests run on LSR-2 
Table 82-8 

Test Normal Shear Flow Test Normal Shear Flow 
Stress Stress Test* Stress Stress Test* 
(MPa) (MPa) (MPa) (MPa) 

S-3a 2.5 0.0 L S-3b 0.2 0.0 L 
0.2 0.0 L 5.0 0.0 L 
0.5 0.0 L 10.0 0.0 L, C 
1.0 0.0 L 10.0 1.0 L 
2.5 0.0 L 10.0 3.0 L 
5.0 0.0 L 10.0 5.0 L 
7.5 0.0 L, C 10.0 7.4 L 
10.0 1.0 L 
10.0 3.0 L 
10.0 5.0 L, C 
10.0 6.4 L 
10.0 6.8 L 
10.0 7.0 L 
10.0 7.2 L 
10.0 7.4 L 

*Flow Test: L =Lengthways, C =Crossways 
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Appendix C- Strain Gauge Completion Bridges 

The standard method for measuring strains is by the use of electrical 

resistance strain gauges. These are read by a precision voltmeter 

measuring the output of a balanced Wheatstone Bridge composed of three 

precision resistors (120 ohms, 0.1 percent tolerance) and a strain gauge, 

whose resistance varies with the amount of strain applied to the gauge. 

Figure C-1 illustrates a typical Wheatstone bridge circuit connected to a 

voltmeter, such as a HP3455A, which was used in the testing of LSR-2. 

Excitation Voltage 

+ 

Strain Gauge 

Figure C-1. Typical Wheatstone Bridge Circuit 

Suitable equipment for the measurement of strain was in short supply during 

the testing of LSR-2. Completion equipment to monitor 40 strain gauges 
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was built in house at Memorial University as an economic alternative to 

buying or renting commercial equipment. These completion bridges were 

connected to a Hewlett Packard HP 3455A precision (6 1/2 digit) voltmeter, 

through a HP3495A forty channel switch. The data was recorded by a 

scanning program written in the Viewdac programming language, run on the 

PC that controlled the loading of LSR-2 . 

The completion bridges were built on glass-epoxy etched circuit boards, with 

10 channels per board. Figure C-2 is the circuit board pattern. Note that the 

board is set up for 2 or 3 wire strain gauge configuration. Details on 3 wire 

configuration can be obtained from any standard text on strain gauges, or 

manufacturers notes. For the testing of LSR-2 , two wire configuration was 

used. 

The system was tested for accuracy with a cantilever beam arrangement, 

with a single strain gauge on the top of the beam. The beam was securely 

mounted, and four equal weights were added to a hook attached to the other 

end of the beam. The resultant strains were monitored with a HP3497A 

strain gauge set-up, and with the "Home Built" bridges. Output from the test 
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is presented as Figure C-3, Microstrains versus Time, for each apparatus. 

Note that the output is in positive microstrains for tensile strain. 

10 CHAI'IHEL STRAIN GAUGE: BRIDGE COI1PL£TION SYSTEI'I 

Figure C-2 Circuit Board Pattern for Strain Gauge completion bridges. The 
Voltmeter terminals are along the bottom of the diagram, power supply 
excitation is on the left end, and the strain gauges are connected along the 
top. For two wire configuration, the middle and right terminal of each group 
of three were joined. The full size dimensions of the board are 190 mm by 
SOmm. 
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Figure C-3 Results of the Cantilever Beam test on the strain gauge bridges. 
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Appendix D - Determination of Thermal Characteristics of 

LSR-2 and Strain Drift Correction Procedures 

D-1 Determination of Thermal Characteristics of LSR-2 

Prior to the construction of the model for this series of experiments, a test 

block was constructed to investigate the effects of the heat sinks and cooling 

loops on the thermally induced strain gauge drift. This block contained 9 

strain gauges, brass heat sinks, and a cooling loop of similar configuration to 

that incorporated in LSR-2. As well, several temperature monitoring ports 

were incorporated into the block, to measure the internal temperature 

variations due to the strain gauges and the application of cooling water to 

the cooling loop. Initial results were encouraging for a direct temperature -

drift relationship. However, when similar procedures were applied to LSR-2, 

it was found that with 78 active gauges in a block of similar size, a 

relationship couldn't be determined due to the overlapping effects of the 

many gauges in close proximity to each other, unless the temperature could 

be monitored at each individual strain gauge. It was noted that the 

application of cooling did help reduce (but not eliminate) the drift in the strain 

readings. Further experimentation with the test block, and LSR-2 prior to the 

testing, showed that the drift could be reduced even further by turning on the 
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strain gauge excitation voltage immediately prior to the strain reading, and 

shutting it off after, to allow the heat to dissipate from the gauge. The duty 

cycle eventually selected was to turn on the power to all gauges for 20 

seconds to allow the power supply to stabilise, scan all gauges (2 minutes) 

and then shut off the power for 7 minutes 40 seconds. Throughout all these 

tests, the power supply was run at 3.4 volts output, which was the minimum 

voltage the supply could be set at. 

Butt (1994) noted that the self heating curves for the strain gauges used in 

his experiment had self heating curves of the form f(t) = Atb. To verify this, 

four 5 day data collection background surveys were run prior to testing. It 

was noted that after the first 24 to 36 hours of strain gauge monitoring, the 

drift was essentially linear for most gauges. However, from test to test, the 

slope of the drift curves for each gauge were never the same. Therefore, to 

aid in the removal of a linear drift from the gauges, the strain gauge record 

was started approximately 2 days prior to the test. 

D-2 Strain Drift Correction Procedures 

The strain gauge data were measured by two Hewlett Packard datalogger 

configurations. The first configuration was an HP-3497A with five 10 
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channel strain gauge cards, for a total of 50 channels. The second 

configuration was an HP-3455A Voltmeter in combination with its HP-3495A 

scanner unit, with four 10 channel in house built strain gauge cards. This 

latter 40 channel configuration, combined with the first configuration, gave a 

total of 90 strain gauge channels read. The data were recorded on a PC 

running KeithleyNiewdac software in 9 groups of 10 channels, plus a tenth 

group recording the loads and internal model temperatures. 

Data collection were run continuously throughout the duration of the testing 

schedule to record background data. This was essential for the removal of 

the self heating drift of the strain gauges. 

The raw data were imported into Microsoft Excel 5.0, where they were 

converted to microstrains, and plotted against time, for each group of 10 

strain gauges (Figure D-1 ). 

From this point, the raw microstrains were corrected by subtracting out the 

drift data obtained from the dummy gauges imbedded in the Thermal 1 test 

block. This drift was seen to be generally small with respect to the overall 

thermal drift in LSR-2, and is attributed to the effects of room temperature on 
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the strain gauge wiring. These effects were most noticeable during the days 

of severe weather conditions during the testing process. The slope of each 

data curve was determined over a 20 hour period prior to the test. This 

slope was subtracted from the data in the form: corrected data = raw data -

(slope of background * elapsed time since data record began), which 

flattened out the data records. All strain gauge data were then zeroed at the 

beginning of the test by subtracting that value from all of the values in the 

data file (Figure D-2). 

Once the thermal drift has been removed, the strain gauge data were then 

tabulated and plotted against stress (Figure D-3). 

5•,-------------------------------------~~ 

MCFO STRAINS •• . Tl M: 
NORM'Il 1 RA'v/ DATA 

.• •. • --SG'*l..[) 

- SG"(..E) 

--~-~"4_- -SGlll (.E) 

10 

-100 

ELAPSED HOURS 

Figure D-1. Typical plot of uncorrected microstrains versus time. Note the 
plot of Normal Stress versus time superimposed over the data. The strain 
gauge data on either side of the loading data curve are background data 
essential to the removal of the strain gauge drift. 
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Figure D-2 Data are flattened on the pre-test background, then zeroed at 
the start of loading. 
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Figure D-3 Typical plot of stress versus corrected strains. 
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