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FRONTISPIECE 

View northeast from Point Lake (foreground) showing 
terrane underlain by the sillimanite-bearing schists 
of the Itchen Formation, which are intruded by 
small, leucocratic pegmatite bodies. 
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ABSTRACT 

The Keskarrah Bay area, Point Lake, N.W . T. is undcr l ~ i n 

by Archean rocks of the Slave Province that form two 

distinct 1 i thotectonic elements: a sialic bosemcnt terr.u1~.:, 

consisting of high-grade gneisses and granodior i te, and a 

supr~crustal terrane, known as the Itchen Lake region 

supracrustal belt, comprising metavolcanic and 

metasedimentary rocks of the Yellowkni fc Supergroup . 

Conditions of regional metamorphi s m ilre documented 

mainly from metamorphic mineral assemblages in turb id i t <'!; , 

which comprise greywacke-mudstone and subordinate iro~ 

formation and Fe-r ich sediments. The sequent til l dcv e I o p m• ·nt 

of the key metamorphic index minera ls chlorite, b i oti t<·, 

ccrdierite, andalusite and sillimi1nite in p0l iti c 

lithologies and garnet, staurolite or Ca and Fc:>-r ic ll 

clino-amphibole in Fe-rich sediments occurre d domin :10tl y 

through continuous rather than discontinuou s me tamorphi c 

reactions. The measured trends of incrcasincJ Mq : Fc r.t tio:: o r 

the index minerals (c ordierite > muscovite chl o rit r· · 

biotite > amphibole > sta urolite ;.. ga r net) a r e u!;('d t o 

demonstrate changes in AFM topology, t rom whi c h tt1,. 

continuous reactions are interpre ted. 

The pattern of metamorphic isograds i s <lttrilmt <:d to .a 

s i ngle, progre ssive low pre ssure r e f) ionil l m0t <l norph k ,..,,·nt. 

Me t a morph i c grad e i ncrc~ses both c a !> tw;H-d :. t() ...,o~ r d: ; th•· ·,·., :-1 ' 

bathol i th, a nd westwa rds t •:lwa rd s +-.he ba ~;0m l:"n t qnr- i :: : ; f·:; .uvJ 
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the Pointless batholith. Prograde metamorphism in the 

supracrustal rocks was synchronous with retrograde 

metamorphism in the basement terrane. Peak metamorphic 

conditions, which reached a maximum of about 6oo·c +/- so·c 

and 4.0 +/- 1.6 kbar, were attained toward the end of 

deformation. The P-T distribution thi·cughout the area is 

consistent with the presence of a distant thermal dome that 

formed in the area of eventual batholith emplacement. 

Three or possihly four phases of deformation have been 

recogni7.ed in the supracrustal terrane. Proximity to 

basement is considered to have had an influence on the 

orientation and intensity of structures developed during the 

first two phases of deformation. East-west trending 

isoclinal folds (F1 ) and a penetrative s 1 fabric produced 

during o1 are recognjzed mainly along the western edge of 

the supracrustal belt. o2 resulted in the forrr.ation of 

north-south trending main phase r 2 folds that refold F1 and 

are overturned to the west, and an s 2 foliation, both of 

which predominate throughout much of the map area. Post-o2 

deformations produced crenulations of the s2 foliation, an 

L-S fabric defined by elongate biotite porphyroblast:. and 

southeast- and northeast-trending biotite schistosities 

(tentatively designated s 3 and s 4 ). These fabrics, which are 

well developed in central and eastern exposures of the 

metaturbidi tes, are unrelated to large scale foldi1:g. 

The polyphase deformation (Ox) in the basement terrane 

that led to the formation of the basement gneisses predated 
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deposittcn of the Yellowknife Supergroup. After deposition 

of the 'fellow)clife Supergroup, the basement qneisses 

adjacent to the supracrustal ro~ks were deformed by 

north-trePding mylon ·: tic foliations ;1nd !.1rqe :.:;c,de lu l d :: , 

which are correl<tted with s 2 and F2 respcctivC'I)! in ttw 

supracrustals. West-verg inq recumbent t ol ds ( pr<'-D
2

?) i n t h•' 

gneisses may indicate the formation of nappes , whi~h m y 

have also affected the supracrustal rocks. 

The westward overturning of main ph.l :>l' F;.> !old ~: i n t il •· 

supra crusta 1 terrane is towards b.1~0me nt . A :; i m i I" r· 

relationship is ubserved in p <lrt s of the ~out1 1 "n1 ~;Jdv • • 

Province, thus the formation -:Jf these fold:. r<' prf' ~f'nt : ; " 

major tectonic event in the Slnve Provine<'. The :;uqrw ::t • ·d 

deformational history of the Itchcn Lake r {' tJ i o n : :11p r.wn 1:: t ,, I 

rocks is that of a wcst-verqing fold-,,nrJ-thrw ;t 1·• ·11. 
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1. 0 INTRODUCTION 

This thesis is primarily a metamorphic and structural 

study of some Archean rocks in the Slave Province of 

northern Canada. I~ this first section some of the general 

characteristics of the Slave Province will be reviewed 

before the new data and interpretations of the 

tectonometamorphic history of a small part of the Itchen 

Lake greenstone belt, Keskarrah Bay area are presented. 

1.1 Slave Structural Province 

1.1.1 General Statement 

The Slave Province of the northwestern Canadian Shield 

is an Archean crustal remnant consisting of both low- to 

medium-grade granite-greenstone terranes and medium- to 

high-grade gneiss terranes (Figure 1; Stockwell, 1961; 

McGlynn and Henderson, 1970, 1972). The supracrustal rocks 

in the greenstone belts are interconnected over largP areas, 

but locally isolated by the intervening granitic and 

gneissic regions. In many respects the greenstone belts arc 

similar to those found in the superior Province of southern 

Canada, and in the Archean blocks of Australi~ and southern 

Africa (Goodwin, 1981). The most abundant lithologies, ic. 

mafic and felsic volcanic rocks and greywacke-mudstoncs o1 

turbiditic origin, are similar to those recorded elsewher~ 

in young Archean cratons. However, two po i nts of distin~tion 
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Figure 1: Generalized geologic map of the Slave Province of 

the northwestern Canadian Shield (inset diagram) 

modified after McGlynn (1977) and Padgham (1981) 

showing: known locations of basement to the 

Yellowknife Supergroup (BL - Benjamin Lake area, 

CR - Cameron River area, HR - Hackett River area, 

IL - Indin Lake area, PL - Point Lake area, RL -

Ross Lake area, YK - Yellowknife area) and the 

Thelon Front (TF). Outlined area represents the 

Itchen Lake region (Bostock, 1980) which is 

enlarged in Figure 3 and includes the area of 

this study. 

1 Aphebian cover rocks (includes Bear and 
Churchill Provinces and platformal Goulburn 
and Epworth Groups) . 

2 Granito ids. 

J Gneissic equivalents of the Yellowknife 
Supergroup (may include some older rocks) . 

4 Mainly greywacke - mudstone turbidites of the 
Yellowknife Supergroup. 

5 Mainly felsic - intermediate volcanics of the 
Yellowknife Supergroup with probable 
calc-alkaline affinities ('Hackett River' 
type). 

6 Mainly mafic volcanics of the Yellowknife 
Supergroup with tholeiitic affinities 
('Yellowknife type'). 

7 Gneissic granitoids (probable basement to the 
Yellowknife Supergroup). 

8 Boundary of the Slave Province. 

9 Fault. 
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are that in the Slave Province sediments are much more 

abundant than volcanic rocks, and that ultramafic lavas are 

rare. 

The relationship between the high-grade gneiss terranes 

and the supracrustal belts is not everywhere certain 

(Thompson, 1978~ Easton, 1985). The gneissic regions may be 

highly metamorphosed and deformed equivalents of the 

supracrustals or remnants of an older basement upon which 

the supracrustals were deposited. Basement-cover relations 

are well preserved in some localities (Figure 1~ Baragar and 

McGlynn, 1976). 

Radiometric ages support the existence of a circa 2.8 to 

3.0 Ga basement terrane of granitic to tonalitic composition 

(Nikic et al., 1975; Frith et al., 1977; Krogh and Gibbins, 

1978; Scharer and Allegre, 1982; van Breemen et al., 1987). 

Deposition of the supracrustal rocks, known as the 

Yellowknife Supergroup (Henderson, 1970), occurred about 

2670 Ma ago (Green and Baadsgaard, 1971: Lambert and 

Henderson, 1980; Frith and Loveridge, 1982; Henderson et 

al., 1987; van Breemen et al., 1987), and may have been 

completed within a 10 to 15 Ma time span (Henderson, 1981). 

Granitoid rocks were emplaced into the supracrusta1s between 

2500 to 2600 Ma ago (Green and Baadsgaard, 1971; Frith and 

Loveridge, 1982; Henderson et al., 1987; van Breemen et al., 

1987) and local migmatization and remobilization of older 

sialic terranes may also hav~ occurred at this time 

(Padgham, 1981). The pan-Slave low pressure-type metamorphic 
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event occurred about 2600 Ma ago, with the metamorphic 

culmination either coinciding with or pre-dating the last 

stages of deformation (Thompson, 1978) . 

1.1.2 Yellowknife Supergroup 

Basalt-andesites with tholeiitic differentiation trends, 

abundant in the southern and western parts of the Slave 

Province, comprise ~he 'Yellowknife' type volcanic rocks 

(Figure 1; Padgham, 1981; Frith, 1982). Many of these linear 

volcanic belts are thought to approximate the original 

margins of the supracrustal basins (Henderson, 1981) as they 

commonly form the base of the supracru~tal s~quence and 

occur along the contact with gneissic or granitic rocks th~t 

are suspected or proven to be basement. Calc-alkaline 

aL1esite-rhyodacite volcanic rocks of the 'Hackett River' 

type (Padgham, 1981; Frith, 1982), which are abundant in 

the northeastern part of the Slave Province, may form both 

at the base of the cover sequence and as centers within the 

sedimentary succession. Lambert (1976, 1978, 1~82a) ha~ 

documented caldera complexes in these calc-alk~linc rock~. 

Generally overlying the volcanic rocks is a sedim~ntary 

sequence dominated by immature greywacke-mudstuncs of 

turbiditic affinity (Henderson, 1975, 198:). Tufr~ccoun 

layers found within the turbidites locally atteGt to 

continued volcanism during sedimentation (P~clgham, }~ij~). 

Henderson (1975) and Jenner ct al. (1981) suqqcGtcd th~t in 

the Yellowknife area turbidites were derived from ~ mixe1l 



felsic volcanic and granitic andjor gneissic source terrane. 

Recently Easton (1985) has determined that mafic volcanic 

rocks contributed significant amounts of detritus to the 

turbidites of the Point Lake area. 

Conglomerate, with or without associated fluvial 

sandstone, is found at several localities within the Slave 

Province and typically shows a spatial relationship to 

volcanic or basement rocks (McGlynn and Henderson, 1970, 

1972; Henderson, 1975; Henderson and Easton, 1977a; 

Henderson, 1981). Henderson (1981) suggested that the 

depositional environment for these rocks may have b~en that 

of a rising fault scarp. 

Chemical sediments, such as limestone and iron formation 

comprise a very small part of the sedimentary succession and 

are found at the interface between felsic volcanics and 

turbidites. Iron formation, which is locally auriferous, 

also occurs widely as discontinuous beds within the 

turbidites (Padgham, 1981). 

1.1.3 Pre-Yellowknife Supergroup Rocks 

The best documentation of the sialic basement to the 

Yellowknife Supergroup is found at Point Lake where two 

different lithologies have been identified as part of a 

basement terrane: 1) a 3155 Ma old granitic body (Krogh and 

Gibbins, 1978) is unconformably overlain by conglomerate of 

the Yellowknife Supergroup that contains boulders of the 

granite (Stockwell, 1933; Henderson and Easton, 1977a, b): 
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and 2) tonalitic to granitic gnei~s is unconformably 

overlain by mafic volcanic rocks (Easton et al., 1981). 

However, basement-cover relations at Point Lake are 

controversial. The conglomerate was interpreted as a rift 

sediment by Henderson and Easton (1977a), Henderson (1981) 

and Easton (1985), but as a syn-thrusting molasse by Kusky 

(1987). The high strain zone that locally marks the gneiss­

supracrustal boundary was suggested to be a reverse or 

reactivated normal fault by Henderson (1981), Easton (1985) 

and Fyson (1987), but was interpreted as a deep level thrust 

by Kusky (1987). 

Elsewhere in the Slave Province the existence of 

basement has been inferred from: 1) the lack of intrusive 

relationships between granitoids and the surrounding 

Yellowknife Supergroup (Heywood and Davidson, 1969); 2) the 

presence of mafic dikes that cross-cut the granitoids, 

metamorphic complexes and overlying volcanic rocks, but not 

the younger turbidites (Davidson, 1972; Baragar and McGlynn, 

1976; Lambert, 1982b); and 3) the presence of clasts in 

metasediments that are similar to the underlying gneissic 

rocks (Frith and Hill, 1975). A relatively large part of the 

western Slave Province is characterized by mixed gneissic 

rocks (Figure 1), some of which may prove to be part of an 

older basement terrane rather than deeply uplifted Y.eelG of 

the Yellowknife supergroup. 
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1. 1. 4 Intrusive Rocks 

Detailed studies have documented the diversity of 

intrusive complexes in the Slave Province (Atkinson, 1987; 

King et al., 1988). Batholiths and plutons range from 

granite to diorite, with most being granite-granodiorite, 

however in some areas tonalite, quartz diorite and diorite 

predominate (Henderson and Thompson, 1980, 1981). The latter 

may be spatially and genetically linked to mafic and 

intermediate volcanic rocks (Frith and Roscoe, 1980; ; Frith 

et al., 1977: Jackson et al., 1987) and may pre-date 

intrusion of granite-granodiorite (Henderson and Thompson, 

1980, 1981; Frith and Lo•:eridge, 1982). Small bodies of 

metagabbro are related to mafic volcanism in some areas 

(Henderson and Easton, 1977a, b; Bostock, 1980; Helmstaedt, 

1985), but ultrabasic rocks are rare (Baragar and McGlynn, 

1976; Henderson and Thompson, 1981; Gibbins, 1986). 

Pegmatites are locally abundant (Kretz, 1969; Bostock, 1980; 

McKinnon, 1982; Meintzer and Cerney, 1983). 

Granitoid intrusions in the Yellowknife Supergroup are 

generally syn- to postkinematic but it is not unusual to 

find that in any one :.rea there is a r a nge in the age of 

pluton emplacement relative to deformation (eg. Fyson and 

Frith, 1979; King et al., 1988). Subordinate intrusions of 

dioritic to gabbroic compositions are generally pre- to 

synkinematic. 
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1.1. 5 Reqion'-11 Metamorphism 

Documentation of metamorphi~ conditions in the 

Yellowknife Supergroup of the Slave Provinca is aided by the 

abundance of turbidites, which are sufficiently aluminous to 

have developed some of the key metantorphic mineral 

assemblages typical of pelitic rocks. The predominance of 

andalusite-sillimanite assemblages indicates that low 

pressure, bathozone 2 (Carmichael, 1978) type regional 

metamorphism prevailed throughout the Slave Province. The 

distribution of the regional metamorphic zones, after 

Thompson ( 1978) , is shown in Figure 2. 

In general low-grade metasediments are characterized by 

the presence of chlcrite, muscovite and biotite (Thompson, 

197 8) . The onset of medium-grade metamorphism is widely 

indicated by the first appearance of knotted schists 

(Thompson, 1978). The knots commonly consist of cordierite, 

but andalusite may be present as well as, or occur instead 

of cordierite. Sillimanite first appears in rocks of 

med i urn-grade. 

High-grade metamorphism may be characterized by the 

breakdown of muscovite in the presence of quartz to form 

K-feldspar and sillimanite (Winkler, 1976), delineating a 

K-feldspar + sillimanite isograd (second sillimanite 

isograd), as in the eastern Point Lake area (King, 1981} . In 

general the zones of high-grade rocks are characterized by 

gneisses and/or migmatites (first appearance of granitic 

pods) derived from medium-grade metasediments. Kyanite 
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Figure 2: Regional metamorphic zones in the Slave Province 

(from Thompson, 1979) . Letter symbols as for 

Figure 1, with G = granulite facies, KY' = kyanite 

localities. 

dotted pattern 

vertical rule 

horizontal rule 

dot - dash 1 ine 

= low grade 

= medium grade 

= high grade 

= boundary of Slave Province 

solid heavy line = trend of volcanic belts 

unpatterned portion within Slave Province = 

granitoids 
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occurrences (Figure 2) document local variations to 

intermediate-pressure metamorphism within medium to high 

grade rocks (Percival, 1979). Granulite facies mineral 

assemblages are recognized only locally within the Slave 

Province (Figure 2). Many but not all of the high-grade 

metamorphic zones are adjacent to granitoid rocks (Figure 

2) • 

1.1.6 Structural Synthesis 

Throughout the Slave Province, patterns of deformation 

~ithin the supracrustal belts are broadly similar in style 

(Tho~pson, 1978: Fyson, 1981: Fyson and Helmstaedt, 1988). 

Generally, early folds associated with o1 are recognized by 

reversals in bedding facing directions; these F1 folds are 

isoclinal with steeply dipping axial planes and variably 

plunging axes; they typically lack an axial plane cleavage. 

Thompson (1978) noted that the presence of basement blocks 

may cause the variable orientations of o1 structures. 

During o2 , pre-existing F1 folds were either tightened 

or refolded, depending on their initial orientation. The 

main phase regional F2 folds are typically north-south 

trending, have steeply dipping axial traces and variable 

plunges, and were formed throughout the Slave Province. 

Later deformational events produced regional foliat i ons 

without associat~d large scale folds and resulted in the 

reorientation of the axial traces of the main phase r 2 folds 

into parallelism with the borders of batholiths and larger 
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plutons. These deformational events may be associated with 

granite emplacement (Fyson, 1981). 

Fyson ( 1981, 1982, 1984a) and Fyson and HelJilstaedt 

(1988) have synthesized the structural geology of a large 

part of the southern Slave Province. Fyson (1981) 

established; 1) the development of the regional F2 folds 

prior to granite emplacement; 2) the predominance of 

westward overturning of F2 folds and 3) the formation of 

roth F2 fold fan axes and s 2 cleavage fan axes were related 

to regional compression durir.g emplacement and uplift of the 

~ranitic plutons. Fyson (1982, 1984b) suggested that major 

refold patterns were developed in response to strike-slip 

movement of basement blocks along early formed crustal 

faults. 

1.1.7 Basin Development 

The origin of greenstone belts in Archean terranes has 

been vigorously debated for over a decade, with much of the 

discussion being centered on the nature of the basement to 

the supracrustal sequences - the Slave Province is no 

exception (eg. Green and Baadsgaard, 1971; Drury, 1977). 

More recent models for the Slave Province prefer a 

dominantly sialic basement, although both the coherency of 

this crustal block during greenstone formation and the 

mechanism(s) of basin formation remain disputed. 

The accordance observed in the 1 i tho logy, stratigraphy 

and orientations and styles of regional folds and foliations 

- 1 ·; -



together with the lack of significant accumulations of 

ultramafic rocks and the widespread development of 

low-pressure andalusite-sillimanite metamorphic mineral 

assemblages led to the speculation that the Slave Province 

behaved as a coherent crustal segment and to the proposal of 

extensional tectonic models. For instance, the 

intracontinental rift models of Henderson (1981) and Easton 

(1985) envisage small ensialic basins created during 

extensive block faulting of a coherent sialic crust, leading 

to the formation of gr~ben-like structures. However, re­

examination of many of these features has led to the 

proposal of horizontally directed compressional tectonic 

models. Hoffman (1986) suggested that the Slave Provine~ 

originated as a prograding trench-~rc system. Helmstaedt and 

Padgham (1986) considered the Yellowknife Greenston~ Belt to 

have developed in a back-arc basin setting. Fyson and 

Helmstaeat (1988) inferred that the 'Yellowknife' type belts 

are remnants of the floor of marginal basins and mod~ls for 

emplacement of these belts are comparable to either 

allochthonous or autochthonous ophiolites. 'Hackett River• 

type volcanics may .then have been emplaced in an accreted 

arc tarrane, as H,ffman (1986) suggested. Kusky (1986, 1989) 

proposed that the Slave Province originated through the 

collision between an Archean microcontinent (represented by 

the western gneiss terrane) and a paired accretionary prism 

(central sedimentary terrane) and island-arc system 

('Hackett River' type volcanics) that formed over an east-
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dipping subduction zone. Kusky (1986) suggested that all 

'Yellowknife' type greenstone belts are allochthonous. 

1.2 Regional Geologic setting 

The Itchen Lake region, which includes the thesis study 

area, lies in the west-central Slave Province (Bostock, 

1980; Figures 1 and 3). The northern half of this region 

contains Proterozoic cover rocks of the Goulburr. and Epworth 

Groups. The Yellowknife Supergroup forms the northern part 

of a supracrustal belt, which in the Itchen Lake region is 

pronouncedly arcuate, but to the south forms an elongate 

north-trending greenstone belt about 80 kilometers long. 

This predominantly metasedimentary belt contains two main 

areas of volcanic rocks known as the Central and Western 

volcanic belts (Figure 3; Bostock, 1980). It is bounded to 

the west by granitoid rocks and their host basement gnci s s0s 

(Henderson and Easton, 1977a, b; Bostock, 1980; Easton ct 

al., 1981, 1982; Henderson, 1981) and to the north and p ;l:>t 

by granitic batholiths and gneissic equivalents of the 

Yellowknife Supergroup (Bostock, 1980; King, 1981) . 

1.3 General Geology of the Keskarrah nay Arc~ 

The Keskarrah Ray area lies alonq the wes tern m~r~in ot 

the supra crusta 1 be 1 t that spcln9 part cf the 1 tt:hrn 1 ... 1 ~~· 

region (figure 1). Volc.1nic rocY.s in the <lr~'•1 t:omprlr.,. tllro 



Proterozoic 
cover rocks 

0 5 10 15 20 25 

km 

1-------- YELLOWKNIFE SUPERGROUP 

D . 
ltchen 

Formotioo 
Contwoyto 
Famation 

rn -' 
Plutonic rocks Basement gneisses 

and granitoids 

(known and probable) 

Keskarrah 
Formation 

Point Lake 
Formation 

Mainly gneiSSic supracrustals 
and granitoids ; hybrid rocks 

of Bostock (19BO) 

IV"-"-fault 

...,........,.-thrust fault 

Figure 3: Geology of the ltchen Lake region (modified erter Bostock, 1980). Outlined portion• 

represent ereas mepped by: Eeston et al., 1982 (AI, Henderson end Easton, 1977b (B~ 

and King, 1981 (C). Thla study Ilea within aree B. 

WVB Western Volcanic Belt CVB Central Volcanic Belt 

16 



Western volcanic belt (Bostock, 1980). The distribution of 

lithologies is summarized in Figure 4 (the complete geologic 

map, Figure 5, is included in the pocket). The reader is 

referred to the previous works of: Bostock (1980), for 

petrological and lithological descriptions of the 

supracrustal rocks; Jackson (1983, 1984) for lithologic 

descriptions; Henderson and Easton {1977a, b) for 

stratigraphic info~~ation; Easton et al. (1981, 1982} for 

description of the basement gneisses and the 'Pointless' 

batholith and McKinnon {1982) for detailed petrology and 

geochemistry of granites and pegmatites. Kusky {1987) 

examined the basement-cover relationships in the Point Lake 

area. 

Evidence in the study area (Figure 4) suggests that the 

Yellowknife Supergroup was deposited on a sialic basement 

terrane consisting of gneiss {unit 1) and g7anodiorite (unit 

2). In different locations within or near the m~p area, 

banded mafic volcanic rocks of the Point Lake Formation 

(unit 3) and mafic flows (unit 4) and Keskarrah Formation 

conglomerate (unit 8) all interfinger to form the base of 

the supracrustal sequence (Henderson and Easton, 1977a, b). 

The unconformity between conglomer~te (unit B) and the 31~~ 

Ma old granodiorite (unit 2: Stockwell, 1933; Henderson <~n ' l 

Easton, 1977a, b; Krogh and Gibbins, 1978), is exposed in 

the study area (Figure 4). Additional evidence for b~semPnt-

cover relations comes from a palcoweathcrinq zone which i~ 

found locally within this granodiorite (Easton, l~R~). A 

.. , 
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small stock of granodiorite, southwest of Tree Bay (Figure 

4), may also represent a basement block: surrounding mafic 

flows face away from the granodiorite (see map of Henderson 

and Easton, 1977b) and are not intruded by it. Relationships 

between the gneissic basement rocks and the supracrustals 

are more obscure. Easton et al. (1981) documented an angular 

unconformity between banded mafic volcanic rocks and 

gneisses about 5 kilometers west of the southwestern corner 

of the map area. Within the map area the volcanics of unit 3 

are either in fault contact with the gneisses, or are 

penetratively folded and in apparent conformable contact 

with them. However, Kusky (1987 and pers. comm.) suggests 

that these volcanics are allochthonous and were emplaced 

during westward directed thrusting of the supracrustal 

terrane. 

Turbidites of the Contwoyto and Itchen Formations (units 

9 and 10) overlie and interfinger with the volcanic rocks 

and conglomerate. Thin, discontinuous, and locally 

auriferous, layers of iron formation (unit 9c) are found 

within the turbidites of the Contwoyto Formation (Figure 5). 

The main accumulation of felsic volcanic rocks (units 5 and 

6) is also found within this turbidite sequence. Impure 

siliceous carbonate (unit 7} occurs along the eastern 

contact of these felsic volcanic units (Figure ~). 

Contact relationships within the supracrustal succc~~ion 

are often obscured by shearing along fault zones (mainly in 

the volcanic and conglomerate units) and folding (mainly in 
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the turbidite units), but lateral interdigitation of all the 

sup~acrustal units is suggested (see also Henderson and 

Easton, 1977a, b). 

Granite and pegmatite (units 11 and 12) intrude the 

supracrustal sequence and the basement gneisses. Small 

bodies that intrude the sillimanite-bearing metaturbidites 

of the Itchen Fo~ation (see Frontispiece) were likely 

derived by partial melting of the sediments at depth 

(McKinnon, 1982). Diabase dikes of several ages are noted 

(Henderson and Easton, 1977a, b), the youngest form part of 

the Mackenzie Dike swarm and intrude all units in the area. 

1.4 History of Geological Exploration 

At Keskarrah Bay, Stockwell (1933) recognized volcanics 

and a spectacular boulder conglomerate overlying what he 

suspected to be granitic basement. SubsequPnt reconnaissance 

surveys were carried out by Fraser (1964). During the 

summers of 1964 to 1966 Bostock :napped the Itchen Lake 

region at a scale of 1:250,000 and in a 1980 memoir 

established the formational nomenclature for the region . 

Henderson and Easton (1977b) mapped the Keskarrah Bay 

area at a scale of 1:50,000, documented the unconformity, 

suspected by Stockwell, between the conglomerate and the 

granite body and outlined the main metamorphic and 

structural trends. In 1979 Indian and Northern Affairs 

canada (INAC) initiated a 1:30,000 scale mapping program in 
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the Itchen Lake region. King (1981) studied the structure 

and metamorphism of the supracrustals in the eastern Point 

Lake area, and mapping associated with this study was 

completed in th~ western Point Lake area (Jackson, 1983, 

1984). Easton et al. (1981) mapped the gneisses and 

granitoids ('Pointless• batholith) in the western Point Lake 

area (Figure 3). 

Mineral exploration in the Itchen Lake region began in 

1957. The Canadian Nickel Company Limited discovered gold in 

iron formation contained within metasediments at contwoyto 

Lake (Figure 3) in 1961. This property now belongs to Echo 

Bay (the Lupin mine). In 1975 Texasgulf Inc. (now Kidd Creek 

Mines) discovered a base metal deposit at Izok Lake (Figure 

3) in quartzofeldspathic gneisses of probable volcanic 

origin. Giant Yellowknife Mines has recently explored the 

gold potential of the metasediments southwest of the north 

arm of Point Lake ('Tree' claims). Lhotka and Nesbitt 

(1989) examined the geological setting and petrological 

characteristics of iron formation in the Contwoyto Lake­

Point Lake region. 

1.5 Aims of this Study 

Much information is available on the stratigr~phy and 

petrology of the lithologic units in the Keskarrah Bay area 

(section 1.3). In this thesis the metamorphic history and 

- 21 -



structural characteristics of the area are documented, with 

emphasis on the supracrustal rocks. 

The extensive metagreywacke-mudstone turbidites of the 

Yellowknife Supergroup in the Keskarrah Bay area exhibit a 

variation in metamorphic grade and provide an ideal suite 

for the investigation of metamorphic reactions and 

estimation of crustal conditions presented in this study. 

The presence of iron formation within these turbiditic rocks 

allows an examination of the influence of bulk composition 

on the resultant mineral assemblages. The mineral 

assemblages developed in the metabasites provide additional 

constraints on the conditions of metamorphism in the 

Keskarrah Bay area. 

The metamorphic gradients previ~usly outlined by 

Henderson and Easton ( 1977b) indicate both an eastward and 

westward increase in grade. The eastward rise in 

metamorphic grade continues through into the eastern Point 

Lake area (King, 1981) , so investigations in this study 

permit correlation with the eastern area. The noted westward 

,netamorphic gradient toward the area underlain by the 

basement gneiss complex poses several questions: 1) is the 

western gradient temporally related to the eastern regional 

gradient and if so what is the nature of the intervening 

metamorphic depression? 2) if the western gradient is 
. 

unrelated to the eastern one, why does it increase toward a 

basement terrane? and 3) does the basement terrane contain 

evidence of this metamorphism? 
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Furthermore the Keskarrah Bay area provides an 

opportunity to study the effects of deformation on a 

basement-cover sequence within the Slave Province. The 

presence· of gneissic basement blocks to the Yellowknife 

Supergroup allows the following questions to be addressed: 

1) did the presence of a basement block exert an influence 

on the style of deformation or orientation of structural 

elements within the supracrustals? and 2) did the 

deformational events that affected the supracrustals leave a 

structural signature in the basement gneisses? 

1. 6 Methods of Study and Data Collection 

Float equipped aircraft chartered from Yellowknife 

provide the easiest access to Point Lake, although canoe 

travel is possible. Ice break-up at Point Lake is usually 

sufficiently advanced by the first or second week in July to 

allow access. At Itchen Lake it is slightly later . The 

field season is limited by deteriorating weather conditions 

in mid-late August, during which tim~ snow squalls may 

begin. 

Geological mapping was carried-out in the Keskarrah Bay 

area during the summers of 1981 and 1982, with a total of 

about 15 weeks spent in the field. Mappi::1g was completed by 

a two-person traversing team, with the deHavilland Beaver 

aircraft chartered by INAC providing logistical bad:-up. 

- . 



The map of Henderson and Easton (1977b) was used as a 

basis for the choice of · study area and location of 

traverses. The geological map (Figure 5) incorpore1tes much 

of their data together with the results of this study. 

Traversing was planned around four main points of interest: 

1) to examine the stratigraphy defined by Henderson and 

Easton (1977a, b); 2) to document metamorphic conditions and 

further delineate najor isograds; 3) to define the main 

structural elements; and 4) to explore the possibility of 

correlating the metamorphic and structural characterL:tics 

of the Keskarrah Bay area with those of the surrounding 

areas in order to suggest a regional tectonic setting. 

All major lithologies were sampled and examined in thin 

section. Sampling of the turbiditic units was undertaken 

from a metamorphic and structural viewpoint, !SO the samples 

contained representative and, if possible, a maximum number 

of metamorphic mineral phases and displayed the main fabric 

elements. 
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2.0 METAMORPHISM 

2.1 Introduction 

Regional metamorphism of the Yellowknife Supergroup 

rocks in the Keskarrah Bay area is documented largely on the 

basis of metamorphic mineral assemblages observed within the 

metaturbidites of the Contwoyto and Itchen Formations (units 

9 and 10). The sequential development of the key metamorphic 

index minerals biotite, cordierite, andalusite and 

sillimanite defines the four respective isograds which have 

been mapped in the field and are shown in Figure 6 . The 

isograds outline five metamorphic zones, corresponding to 

the index minerals previously listed, with the addition of 

the chlorite zone at lowest grades. Identification of the 

metamorphic reactions leading to the formation of the index 

minerals allows redefinition of the isograds into reaction 

isograds. 

The metamorphic grade in the area thus ranges from 

low-grade (greenschist facies) to medium-grilde (middle> 

amphibolite facies), and the observed pangenetj c seque nce 

indicates that low pressure-type metamorphism prevailed, d5 

documented elsewhere in the Slave Province (Thomp~on, 107H; 

Bostock, 1980; King, 1981). The distribution of mct<tmorphit; 

isograds (Figure 6) determined for the turbidite unit:; 

indicates an increase in grttde to both the ('i15t t1nd wc:;t 

- ' 
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from a low centered about the Keskarrah Formation 

conglomerate (unit 8). 

The eastern prograde metamorphic sequence consists of 

all five metamorphic zones, however it is evident that these 

zones have , in part, been telescoped by the Fubar fault 

(eg. andalusite zone rocks are displaced against those of 

the biotite zone). Only the first three zones are recognized 

in the western sequence. The western sequence also shows 

evidence of a retrograde e~ent, locally accompanied by 

shearing, thac resulted in the complete replacement of 

cordierite porphyroblasts by ser~cite and chlorite and the 

alteration of biotite to chlorite. Even in the rocks that 

show the least evidence of retrogression, it is apparent 

that mineral chemistry has been altered and th~s the 

documentation of prograde regional metamorphism in the 

Keskarrah Bay area is necessarily based on data from the 

eastern metamorphic sequence. Although data from the we~tcrn 

sequence are p1 asent(..d they cannot be used to depict tr~nd!> 

in mineral chemistry as a result of increasing met~morphic 

grade, nor can they provide a basis for the inference of 

prograde metamorphic reactions. 

2.2 Methods 

Locations of the metamorphic isoqrad~ wr.n• approxim.tt•".l 

in the field on the basis of the loc~tion!> of in10x 

minerals, and reaction isoqrads w~rc d~f int:•<l thrrJU'Jh 



pe~rographic study. The nature of the index mineral-forming 

reactions and changes in mineralogical compositions with 

metamorphic grade wer~ determined from electron microprobe 

analyses of participating mineral species. Limited X-ray 

diffraction analysis ,f samples from the eastern belt of 

low-grade Contwoyto Formation established the relative 

degree of low-grade metamorphism. Thin sections of the 

turbidite rocks from all metamo~phic grades were ntained to 

determine the presence and relative abundance of K-feldspar. 

Whole rock geochemistry was carried out on several samples 

of ~etasediments from both low and medium grades of 

metamorphism. Laboratory methods involved in most of the 

analytical techniques are given in the appendices. 

Microprobe work on such fine grained rocks was difficult, 

and this is reflected in the quality of some of the 

analyses. Average mineral compositions for samples analysed 

from each metamorphic zone are tabulated in Appendix A, 

which also contains a location map for all samples analysed 

by the various methods. Additional analyses are given in 

Appendix B. 

Meta!llorpt.ism of volcanic and associated carbonate rocks 

of the Point Lake Formation and conglomerate of the 

Keskarrah Formation is documented mainly through 

petrographic observations with limited microprobe analyses. 
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2.3 Bulk Composition of Metaturbiditic Rocks 

The formation of a paragenetic sequence developed during 

progressive regional metamorphism is dependent on the bulk 

composition of the rocks in question. In particular, 

variations in bulk composition may play a crucial role in 

the'documentation of continuous reactions. 

In the turbidite succession, the subtle compositional 

differences between greywacke and mudstone in a graded 

sequence are reflected in contrasting metamorphic mineral 

assemblage and microstructural development. Variations in 

the relative abundances of the mineral constituents in the 

greywackes considered in this study reflect subtle 

compositional differences. For instance, the lack of 

muscovite in some of the medium-grade rocks probably 

reflects less potassic compositions thar. in the muscovite­

bearing equivalents. 

A more drastic compositional difference is observed 

between the greywackes and iron formation (unit 9c). The 

bulk composition of the iron-rich sediments is reflected in 

the metamorphic mineral assemblages and mineral 

compositions, most particularly in the common occurrence of 

garnet which is conspicuously absent in the greywackcs. 

Five samples, including different portions of a graded 

bed, were analysed to determine their whole-rock 

geochemistry. The sample population should be larger iu 

order to present conclusive resu 1 ts. However, s i nee the tJu I k 



composition can also be determined on the basis of mineral 

assemblage, these analyses are included for illustrative 

purposes. The analyses (Table 1) are comparable to others 

from the Contwoyto and Itchen Formations in the Keskarrah 

Bay area (Easton, unpublished data; McKinnon, 1982), with 

the exception that Na2o:K2o ratios are anomalously and 

inexplicably low (elevated K2o contents). However, when 

plotted on an AKF diagram (Figure 7) tt.eir positions are 

consistent with respect to the observed mineralogies (i.e. 

chlorite and muscovite at low grades,' . The bulk rock 

analyses have also been plotted on an AFM diagram (Figure 

7). However, in this case the compositional range is 

inconsi~tent with the observed mineralogies (i.e. biotite­

cordierite-bearing samples fall outside the biotite­

cordierite field). Phase considerations, particularly that 

the assemblage chlorite-biotite is superseded by that of 

cordierite-biotite (see below), suggest that a more Mg-rich 

Al-poor bulk composition (below the field of chlorite 

compositions and within the cordierite-biotite field; x on 

Figure 7) is more likely. 

2.4 Metamorphic Zones 

2.4.1 Chlorite Zone (CHZ) 

Metagreywackes and mudstones of the Contwoyto Formation 

that outcrop adjacent to the Point Lake Formation mafic 

flows (unit 4) and Keskarrah Formation conglomerate (unit 8) 
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TA~LE 1: Whole-rock Geochemistry of Metaturbiditic Rocks 

Si02 
Ti02 
Al203 
FeO 
Fe203 
MnO 
f.tgO 
cao 
Na2o 
K20 
P2os 
LOI 
TOTAL 

la 

72.10 
0.44 

13.10 
3.66 
0.95 
0.06 
2.10 
1. 35 
2.00 
2.54 
0.06 
2.17 

100.53 

lb 

62.10 
0.63 

17.90 
5.21 
0.93 
0.08 
3.19 
0.36 
0.49 
4.15 
0.04 
4.14 

99.22 

1c 

57.80 
0.72 

18.90 
6.40 
1. 45 
0.10 
3.52 
0.93 
l.:H 
4.02 
0.04 
4.39 

99.48 

2 

58.10 
0.62 

19.00 
5.89 
1. 56 
0.09 
3. 72 
0.48 
1.88 
3.53 
0.13 
4.57 

99.57 

3 

59.90 
0. 54 

17.90 
().53 
0.63 
0.05 
3.50 
0. 27 
1. 24 
3. 96 
0.16 
3. 59 

98.27 

1a, lb, 1c: sample 81-V-373 from the western biotite zone u( 

the Contwoyto Formation; coarse, medium and finc-qraincd 
fractions of a graded bed. 
2: sample 81-V-451a from the cilstern ch!oritP. zonP of tlw 
Contwoyto Formation. 
3: sample 81-V-450b from the anda1usite zone of the 
Contwoyto Formation. 



Figure 7: AKF plot and AFM projection showing whole-rock 

compositions of metaturbidites (see Table 1) from 

the Keskarrah Bay area (solid rectangles). Dotted 

line outlines compositional field of other Slave 

Province metagreywackes and metapelites presented 

in Thompson (1978). Rock composition referred to 

throughout the text is denoted by (x); this 

composition is consistent with observed mineral 

assemblages. 

Note: for all AKF plots 

A; (Al 20 3) - ((Na20)+(K20)+(Ca0)) 

K= (K20) 

F= (FeO) + (MgO) + (MnO) 

for all AFM plots 

A= (Al 2 o 3 )-3(K20)/(Al2o3 )-3(K20)+(FeO)+(MgO) 

F,M= M/FM= MgO/(MgO + FeO) 

()=weight % oxide/molecular weight of oxide 
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record the lowest metamorphic grades observed in the 

turbidite units (Figure 6). 

Below the biotite isograd greywackes contain abundant 

relict sedimentary features. Throughout much of the eastern 

chlorite zone (ECHZ) and parts of the western CHZ (WCHZ) 

detrital quartz and plagioclase (albite) grains remain 

unrecrystallized (Figure 8) and the rocks contain a variably 

developed disjunctive cleavage (Powell, 1979). However WCHZ 

rocks also contain textures indicative of extensive 

recrystallization and locally have a schistose 

microstructure (Figure 9) suggesting that these rocks have 

been more highly strained than those in ECHZ. 

The matrix of the CHZ greywackes is predominantly 

composed of chlorite, muscovite and recrystallized 

quartzofeldspathic material. Detrital plagioclase grains are 

often crowded with sericite flakes, suggesting that some of 

the micas were in part derived from the breakdown of 

plagioclase. Muscovite and chlorite tend to be finer 

grained throughout the ECHZ (in many saulples they are < 0.06 

mm long) than in the WCHZ (grain lengths of 0.30-0.10 mm are 

common). However, there is considerable overlap in the 

grainsize of these minerals. The modal proportions of 

muscovite and chlorite are variable, although these are 

fine-grained rocks and abundances are difficult to 

determine. Opaque phases, present in amounts of up to 5%, 

typically consist of ilmenite, sulfides (pyrite, pyrrhotite 

and lesser chalcopyrite) and minor hematite. 
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Figure 8: Photomicrograph of m~tagreywacke from the eastern 

CHZ. Plane light. Detrital quartz and albite 

retain angular shapes of clastic grains . Wedk 

fabric oriented east - west. Length of section 

shown approximately 3.4 mm. 

Figure 9: Photomicrograph of metagraywacke from western 

CHZ. Note preferred alignment of quartz clasts, 

development of quartz-mica beards (indicative of 

pressure solution processes) and strong 

schistosity in comparison to greywdcke of Figure 

B. Plane light. Length of section shown 

approxim~tely 3.4 mm . 
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In thin section chlori tes exhibit pale green to 

colorless pleochroism with anomalous birefringent colors 

ranging from khaki (k-chlorite) to blue or purrle 

(b-chlorite; note that the use of the terms k- and 

b-chlorite is strictly informal). Differing chlorite 

compositions are suggested by the range in birefringent 

colors, however all analysed chlorites fall in the 

compositional field of ripidolite (Hey, 1954). In many of 

the samples there is no microtextural distinction between 

the two chlorites, but in the WCHZ there is some 

microstructural evidence 1ndicating that the formation of 

b-chlorite post-dated k-chlorite, and that b-chlorite is 

retrograde in origin. Muscovites range in texture from 

fine-grained sericitic aggregates in~ergrown with chlorite, 

to distinct crystals and rare porphyroblasts that overgrow 

the finer grained matrix phyllosil icates. 

The characteristic sub-assemblage typica 1 of the CIIZ i ~; 

muscovite-chlorite; observed assemblages are listed in T;1blc 

2. In AKF space (Figure lC') the CHZ rocks are represented 

by the two-phase assemblage chlorite-muscovite. Chlorit~ s 

have a very limited range of composition in this diagram, 

whereas coexisting muscovites are more variable, prccum.1bly 

due to variations in celadonite content. MU!>covitc-c..:tlloritP 

tie lines generally do not cross and the lateral !>hitt in 

tie lines thus reflects variations in bulk rock 

compositions. X-ray diffraction analy~es of the lowc~;t 

grade rocks within the ECHZ showed that neither pyroph/11 itr 



TABLE 2: Mineral Assemblages of the Metagreywackes 
!1etamorphic Husc Chl Bio Cord And S i ll Qtz Plag Rf Op Cc Sp To Ap Zir Zone 

CliZ X Xx Xd Xd Xx xa xa ad ad a a 
BZ Xx Xx XX Xd Xd X xa xa a d ad a a \.....) 

cz co X -r X X X X xa a a a a 
AZ Xx -r X X- X X X xa a a a a 
A*Z pr -r X Xx- X X X xa a a a a sz Xx -r X Xx- Xx- Xx X X xa a a d a s•z pr -r X Xx- Xx- XX X X xa a a a a 

X major component a -accessory phase p post- t ectonic phase X minor "omponent d detrital phase mineral not present r = retrog rade phase 
This is a summary table compiled from many petrographic observations. Where more than one symbo l is present , it refers to different samples. 
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Figure 10 : AKF plot of the mineral assemblage chlorite-muscovite from both eastern and 
western CHZ's. 



nor paragonite are present in sufficient amounts to be 

determined and that all phyllosilicates are highly 

crystalline (Appendix C). 

Table A.5 lists the average chemical compositions of 

chlorite, muscovite and plagioclase from both the eastern 

and western CHZ's. Most plagioclase analyses and optical 

determinations from both relict and recrystallized grains 

fall in the albite compositional range (An 0.2- 10), with a 

single analysis falling in the andesine range. The two sets 

of chlorite analyses from the eastern zone have similar 

chemical compositions (M/FM = .46); whereas chlorites from 

the western zone have variable Fe and Mg contents (.66 > 

M/FM > .41). In principle this could be due to: a) 

variations in bulk rock composition; b) variations in 

metamorphic conditions; or c) alteration of the mineral 

chemis~ry due to retrograde metamorphism (see above) . To 

ascertain the influence of point (c) the chlorite analyses 

have been arranged according to the degree of visible 

retrograde metamorphism in Table A.5 (samples 105 and 392a 

being visually fresh, and samples 395 and 223 being the most 

altered). K-chlorite (see above) is the only chlorite 

present in the fresh samples, whereas altered samples 

contain in addition abundant b-chlorite and the remaining 

samples contain only minor b-chlorite. In comparing the two 

extreme groups of analyses it can be seen that where 

k-chlorite is the only chlorite present, the M/FM ratio is 

higher (.656 to .594) than for those in which b-chlorite is 
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abundant (.411 to .456). These observations suggest 

retrograde metamorphism may be the main factor governing the 

M/FM ratios of the WCHZ chlorites, and examination of Table 

A. 5 shows that the reduction of M/FM ratio is due to both kg 

loss and Fe gain within altered chlorites. 

The composition of WCHZ muscovites also shows a 

relationship to the extent of visual retrograde 

metamorphism: muscovites from samples (105 and 392a) showing 

no visible evidence of retrogression have higher M/FM ratios 

(.682 and .675) than those from altered samples (395 and 

223) which have M/FM muscovite in the range .433 and .502. 

In this case the lower M/FM values of the latter are due to 

Fe-enrichment rather than Mg-depletion (Table A.5). 

Paragonite contents (NajNa+K) of the muscovites range 

from 4 to 11% and celadonite (Tschermak's substitution, sec 

2.5.5) contents are low. Following the works of Veldc (19 65 ) 

and Guidotti and Sassi (1976), the higher and more vari~blc 

celadonite contents of muscovites from the F.CIIZ, !:>uggcst~ 

that rocks of the ECHZ are of lower grade than those of the 

western zone. 

2.4.2 Biotite Zone (BZ) 

The first appearance of biotite in rock~ of rJrcyw.Jc b• 

compositions delineates the biotit£> isogrild and m;Jr..-.!; th1 · 

boundary between the biotite zone (BZ) and lower qr.ICh• Cl! i: 

(Figure 6). However, biotite is found loc,11ly in 1 ron 

formation within the CHZ, below the biotite i!;o(Jr •l d .1:: 

.. . -



defined for greywackes. The formation of biotite during 

low-grade metamorphism is known to be dependent on the bulk 

rock composition and has been previously recorded as forming 

first in Fe-rich compositions, then in greywackes and 

subsequently in more aluminous pelitic compositions (Mather, 

1970). 

In AKF space (Figure 11) BZ rocks are represented by the 

three-phase assemblage chlori te-muscovi te-bloti te. Crossing 

tie lines likely reflect variations in the composition of 

muscovite. The AFM diagram (Figure 12) is projected through 

muscovite of ideal composition (Thompson, 1957), such that 

in this topology BZ rocks are represented by the two-phase 

assemblage chlorite-biotite. From the M/FM ratios of 

chlorite-biotite pairs, it can be seen that chlorite is as 

Mg-rich or Mg-richer than coexisting biotite, consistent 

with the expected element partitioning. 

The western biotite isograd is well defined, at least 

along it's northern boundary. However the extent of 

retrogression during shearing of these rocks, a factor which 

is considered to be particularly important for the southern 

part of the zone, has not been ascertained. Definition of 

the eastern biotite isograd is hampered by a combination of 

poor exposure, faulting and associated alteration, and by 

the presence of units of iron-rich and carbonate-rich 

compositions. UZ rocks on the peninsula near Tree Bay 

(Figure 6) may represent slightly more Fe-rich greywacke 

- 42 -



A A 

Figure II AKF plot of the three-phase BZ mineral auemblage chlorite - muscovite - biotite for both the western (a) and eastern (b) zones. 
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compositions, as iron formation and disseminated magnetite 

are abundant in this area. 

Throughout the low-grade rocks biotite is first observed 

microscopically as minute flakes intergrown with aligned 

muscovite and chlorite. Biotite shows no consistent spatial 

association with disseminated opaque minerals (ilmenite, 

sulfides, minor hematite and rutile), but in some samples 

biotite has formed in areas once occupied by opaque - mica 

pressure solution seams that form the disjunctive cleavage 

in CHZ rocks. Biotite may also form aggregates with no 

apparent preferred alignment. Within the phyllitic to 

schistose rocks of the WBZ, detrital quartz and plagioclase 

(oligoclase) grains tend to be more recrystallized (Figure 

13) than in the CHZ and EBZ, although apparently 

unrecrystallized plagioclase (albite) grains can be 

observed. 

In the BZ, as in the CHZ, the modal abundance of 

phyllosilicates is variable; however there is a lower 

relative abundance of chlorite (most notable in the WBZ). A 

lightening in color of the BZ rocks reflects the increase in 

modal abundance of micas and coincides with a general 

coarsening of grain size. 

Within the EBZ, near the Fubar fault (Figure 6), the 

metasediments contain biotite poikiloblasts (Figure 14). The 

poikiloblasts are subidioblastic to xenoblastic and oriented 

at high angles to the s 2 schistosity (defined by the plan.lr 

alignment of biotite, muscovite and chlorite). 



Figure 13: Photomicrograph of metagreywacke from the western 

BZ. Note recrystallization of quartz clasts . Top, 

plane light. Bottom crossed nicols. Length of 

sections shown approximately 5.0 mm. 
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Figure 14: Photomicrograph of biotite porphyroblasts from an 

eastern BZ metaturbidite. Note alignment of 

porphyroblasts at a high angle to matrix fabric 

(S 2 ). Plane light. Width of section shown 

approximately 0.6 mm. 
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Microstructural relations of biotite porphyroblasts are 

discussed more fully in section 3.2.3. The BZ phyllites 

become schistose approximately coincident with the formation 

of biotite poikiloblasts. 

Represent~tive BZ mineral assemblages are listed in 

Table 2 and average chemical analyses of biotite, muscovite, 

chlorite and plagioclase in BZ are presented in Table A.6. 

Plagioclase compositions fall into two groups, An 1-10 and 

An 20-45, corresponding to albite and oligoclase-andesine, 

respectively. 

WBZ rocks show microscopic evidence of retrograde 

metamorphism similar to rocks in the WCHZ. However, with an 

increase in the visual extent of retrograde metamorphism in 

these BZ rocks, the change in M/FM ratios of muscovite and 

chlorite is directly opposite to that for CHZ. This may 

imply that a different exchange reaction took place 

involving another phase, presumably biotite. Samples which 

contain no visible evidence of retrograde meta~orphism and 

contain only k-chlorite (eg. sample 398) have the lowest 

M/FM ratio. In comparison, those which contain mainly 

retrograde b-chlorite (eg. sample 373) have appreciably 

higher M/FM ratios (Mg-enriched and Fe-deplet~d). Biotite 

compositions do not show this same relationship and appear 

to b~ independent of the visually determined extent of 

retrogression, perhaps because biotite is more abundant than 

either chlorite or muscovite. Variations in the composition 
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of muscovite, chlorite and biotite from the EBZ likely 

result from differing rock compositions. 

Average muscovites from both BZs differ little in 

paragonite and celadonite contents from those in CHZ. 

However, muscov i tes from the EBZ have higher and more 

variable celadonite contents than WBZ muscovites. 

Chlorite and biotite from the WBZ are generally more 

Fe-rich (lower M/FM ratios) than those from the east. 

2. 4. 3 Cordieri te Zone (CZ) 

The first appearance of cordierite, delineated by the 

cordierite isograd (Figure 6), marks the onset of medium­

grade metamorphism (Winkler, 1976). Cordierite zone (CZ} 

rocks ·outcrop in both eastern and western belts of the 

Contwoyto Formation. However, western CZ rocks are 

extensively altered, containing completely sericitized and 

pinnitized cordierites. The description of the CZ that 

follows is therefore based on observations within the 

eastern sequence.Location of the eastern cordierite isograd 

is made difficult by the lack of exposure in northern areas 

and the presence of a felsic volcanic center through which 

the cordierite isograd cannot be defined because of 

inappropriate bulk composition. As indicated on Figure 6, 

the narrow belt of CZ rocks cannot be traced along its 

strike through the central part of the map area, where 

post-metamorphic movement along the Fubar fault may have 

partly removed the surface expression of the CZ. 
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The· mineral assemblages found within the cz are listed 

in Table 2. In AKF space cz rocks are represented by the 

three-phase assemblage cordierite-biotite-muscovite (Figure 

15) and muscovite compositions are seen to be more 

restricted in comparison to BZ rocks (Figure 13). The 

two-phase sub-assemblage cordierite-biotite characterizes 

the CZ in AFM space (Figure 15). 

Distinguishing features of the CZ, apart from the 

diagnostic presence of cordierite porphyroblasts are: 1) the 

complete lack of chlorite in the equilibrium a~sernblage: 2) 

the overall coarser grain size of the matrix ccnstituents 

(muscovite, biotite, quartz) with respect to the> BZ 

equivalents: 3) the complete recrystalliz<".tion of detrital 

quartz and plagioclase grains: 4) the increased abundance 

and grain size of accessory tourmaline; and 5) the visual 

increase in modal abundance of biotite and possibly 

muscovite. 

In thin section cordier i te commonly forms irregular 

poikiloblasts incorporating matrix constituents such as 

recrystallized quartz grains, muscovite, biotite and 

ilmenite. However, many cordierite porphyroblasts either 

lack, or contain appreciably less biotite than the matrix 

(Figure 16 a,b). Figure 16b shows a cordierite porphyroblast 

that has overgrown a biotite-rich layer, but only trace 

amounts of biotite are present within the cordierite. The 

trace of bedding is faintly visible within the cordieri te, 

marked by a band containing slightly more opaques than the 
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Figure 15 :AKF plot and AFM diagram of the maximum-phase CZ mineral assemblage. Note the 
absence of chlorite from the equilibrium assemblage. Inset diagram shows the portion of 
the AFM diagram used for plotting. 
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Figure 16: A; Photomicrograph of part of a cordierite 

porphyroblast and its relationship to the 

schistosity. Plane light. Length of section shown 

approximately 3.4 mm . 

B; Sketch from a thin section showing cordieritc 

porphyroblasts that have overgrown biotite-rich 

layers. 
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rest of the cordierite. On the basis of this textural 

evidence biotite appears to have been involved in cordierite 

formation. 

Quartz inclusions within cordierite porphyroblasts are 

often finer grained than quartz of the matrix, suggesting 

that: 1) there was excess quartz in the area of cordierite 

growth and the included quartz is a product of the 

cordierite-forming reaction (similar to the ubiquitous 

quartz 'inclusions' in staurolite d~scribed by Carmichael, 

1969) and 2) the matrix quartz recrystallized to a coarser 

grain size while that within the cordierite did not. 

Chemical analyses of cordierite, biotite, muscovite and 

plagioclase (Table A.7) represent two samples from the CZ 

and two samples from an area within the andalusite zone 

(Appendix A) that were found to contain cordierite as the 

only porphyroblastic phase. Average plagioclase compositions 

fall in the field of oligoclase (Table A.7). 

Cordierite, with an average M/FM ratio of 0.64, 

represents the most Mg-rich mineral phase in the cz. Small 

amounts of Na2o (averaging 0.36 weight percent) and MnO are 

incorporated into the cordierite structure. Muscovites are 

noticeably less celadonitic and contain a greater p r oportion 

of paragonite (average NajNa+K = 17.5%) than muscovites from 

the BZ. Biotite and muscovite included in cordierite 

porphyroblasts differ somewhat in composition from those in 

the matrix (Appendix B). Biotites tend to be more potassic 

and less titaniferous and muscovites more magnesian. 
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Biotite porphyroblasts tend to have lower M/FM ratios 

and contain less K2o than biotite of the matrix (Appendix 

B). These compositional differences are slight and have been 

disregarded in calculations of the average biotite 

compositions. 

2.4.4 Andalusite Zone (AZ) 

The first appearance of andalusite in greywackes marks 

the andalusite isograd, with the andalusite zone occurring 

upgrade from the CZ (Figure 6). In central parts of the map 

area, adjacent to the Fubar fault, the first medium-grade 

rocks observed contain both andalusite and cordierite and 

hence have been assigned to the AZ. However, as mentioned 

previously, the presence of AZ rocks and absence of cz rocks 

adjacent to the lower grade BZ in this area is attributed to 

displacement on the Fubar fault. Definition of the 

andalusite isograd is not precise in the northern part of 

the map area. However it is clear that the area underlain by 

the AZ is much broader than that of the CZ (Figures 5 and 

6). AZ rocks have been mapped in both the Contwoyto and 

Itchen Formations and thus transacting the lithological 

boundary between the two formations in the northeastern part 

of the map area (Figures 5 and 6). AZ rocks have not been 

identified in the western sequence. 

Mineral assemblages observed within the AZ are given in 

Table 2. The characteristic sub-assemblage is represented by 

andalusite-cordierite-biotite- muscovite. AZ rocks and 
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muscovite-free rocks (denoted A*Z) are not illustrated in 

AKF space in this text. An AKF plot of the AZ maximum-phase 

assemblage requires that four phases be represented, which 

would seem to contradict the phase rule. However, Miyashiro 

(1973, p.l29) and Turner (1981, p.l86) point out that this 

number of phases can be depicted because of inherent 

features of the AKF diagram (i.e. Mg and Fe are grouped 

to~ether). A*Z rocks can be represented on an AKF plot by 

the three phase assemblage andalusite-cordierite-biotite. 

In the AFM diagram (Figure 17) AZ rocks are represented 

by the three-phase assemblage cordierite-biotite-andalusite. 

In outcrop pale pink poikiloblastic knots of andalusite 

are often difficult to distinguish from cordier~te knots, 

but andalusite in the form of large euhedral pink 

chiastolite crystals is readily identifiable. In thin 

section chiastolite crystals lack inclusions, except for the 

dusting of opaques and other irepurities or narrow zones of 

poikiloblastic andalusite that form the characteristic 

cruciform pattern. The terminations of some of the crystal 

faces are marked by convex outward aggregates of biotite or 

opaque minerals. This may be indicative of the forceful 

nature by which the chiastolite grew, with the impurities 

excluded from the crystal structure during its growth 

{Ferguson et al., 1980). In some samples chiastolite is 

surrounded by irregular, spongy poikiloblastic andalusite 

rims. Andalusite poikiloblasts are commonly seen to rim or 

form between cordierite porphyroblasts (Figure 18), a 
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Figure 17 :AFM diagram of the maximum-phase AZ mineral 
assemblage andalusite-cordierite-biotite. Inset diagram 
shows the portion of the AFM diagram used for 
plotting. 
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Figure 18: Photomicrograph of a sz metaturbidite showing 

poikiloblastic andalusite interstitial to and 

partly rimming cordi~rite porphyroblasts, a 

relationship also observed in the AZ. Sillimanite 

prisms have grown in andalusite. Top, plane 

light, bottom, crossed nicols. Length of sections 

shown approximately 3.4 rnm. 
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relationship also observed in the eastern Point Lake area by 

King (1981). The poikiloblasts contain abundant inclusions 

of quartz, biotite and opaques, but are never seen to 

include muscovite, even though some have grown within 

muscovite-rich layers. The exclusion of muscovite from 

andalusite suggests muscovite is involved in andalusite 

formation. 

The presence of biotite-rich rims around some andalusite 

crystals may be indicative of the formation of new biotite 

during the production of andalusite or that biotite was not 

involved in andalusite formation and was excluded from the 

growing porphyroblast (see above). 

Cordierite does not decrease in modal abundance within 

the AZ and cordierite porphyroblasts that are rimmed or 

partly surrounded by andalusite appear to be in textural 

equilibrium. Locally within the AZ, cordierite 

porphyroblasts are considerably larger (>4 to 5 em) than 

those of the cz. Additionally, cordierite may form clear 

xenoblastic rims on andalusite, attesting to continued 

growth of cordierite in the AZ. Xenoblastic cordierite may 

al~o be concentrated in irregular bands within the matrix. 

In contrast to the CZ, the modal abundance of biotite 

contained within some cordierite porphyroblasts is often 

only slightly lower than the biotite co~tent of the matrix. 

This may suggest that the formation of some cordierite 

in the AZ took place by a different reaction than that which 

initially produced cordierite in the cz. 
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Biotite and muscovite throughout much of the AZ differ 

little in textural relationships from their appearance in 

the CZ, with the exception of the previously described 

relationships to andalusite. Slight changes in the modal 

abundance of muscovite may reflect minor variations in bulk 

rock composition. However, several samples from the upper 

portion of the AZ lack matrix muscovite (A*Z) and it is 

uncertain whether this lack of muscovite reflects a 

different rock composition, or that muscovite was consumed 

in the production of andalusite, or a combination of both 

factors. These samples contain large muscovite crystals, 

that cross-cut the tectonic fabric(s) defined by biotite, 

and are not considered to be part of the equilibrium 

assemblage. 

The chemical compositions of cordierite, biotite, 

muscovite and plagioclase from the assemblage andalusite­

cordierite-biotite-muscovite are given in Table A.S, 

together with the cordierite-free and muscovite-free (A*Z) 

assemblages. Analyses of andalusite yielded a few tenths of 

a per cent Fe (probably Fe2o3) in the otherwise pure Al 2sio5 

formula. 

Average AZ cordierites are slightly more magnesian than 

those of the CZ. Biotite, muscovite and plagioclase 

compositions of the two zones are similar. In those rocks in 

which muscovite is not part of the equilibrium assemblaqP 

(A*Z), biotite is more potassic and titaniferous, whereas 

cordierite is more Fe-rich (lower M/FM values). It is 
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presumed that the consumption of muscovite in the A*Z led tc 

these enrichment trends in cordierite and biotite. For 

example, AZ muscovites contain approximately 0.60 to o.ao 

weight percent Tio2 and A*Z biotites are enriched in Tio2 by 

approximately the same amount. 

2.4.5 Sillimanite Zone (SZ} 

The lower boundary of the sillimanite zone (SZ) is 

delineated by the sillimanite isograd (Figure 6). In south 

central and northern exposures the sillimanite isograd 

transects bedding and structural trends, while in the 

central part of the map area the SZ is truncated by a major 

north-trending fault (Figures 4 and 6}. Near the lower 

boundary of the SZ, outcrop-sized pockets of AZ rocks can be 

found. The SZ occurs only in the eastern metaturbidite 

sequence and represents the highest metamorphic grade 

attained within the map area. Within the sz, numerous 

adamellite and tourmaline-garnet-bearing pegmatite 

(McKinnon, 1982} intrusions are found. 

Sillimanite first appears as microscopic fibrolite 

needles in andalusite-muscovite-bearing turbidites. Upgrade 

within the SZ sillimanite is seen to rim and finally replace 

both andalusite and cordierite and in far eastern exposures 

sillimanite forms a porphyroblastic ph~se. 

Microstructural associations of sillimanite with 

coexisting mineral phases include: a) large needle-like 

prisms within and projecting from andalusite (Figure 18); b) 
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fine sprays of sillimanite needles nucleated on biotite 

{rarely musco•.rite) in the quartz-rich matrix (Figure 19); c) 

chaotic mt.ts of fibrolite intergrown with biotite that have 

overgro'Nn coarse-grained plagioclase and polygonal quartz 

and may include bleb-1 ike ar.dalusi tE:: relics; d) prismatic 

and/or fibrolitic sillimanite found within ?r near felsic 

clots that consist of· coarsE:: grained plagio·.::::lase and quartz 

(+/- muscovite) and irregularly shaped relics of andalusite 

(Figure 20); and e) fibrolite nucleated on embayed and 

pinnitized cordierite relics. Muscovite a..; a matrix phase is 

part of the equilibrium assemblage throughout most of the 

medium-grade CZ and AZ rocks. However a large portion of the 

SZ contains rocks in which mnscovite is absent from the 

matrix assemblage (denoted S*Z). Instead, where present, 

muscovite forms either large, randomly oriented plates 

cross-cutting the biotite fabric(s) (as in the A*Z), and is 

considered to be a retrograde phase, or it occurs within the 

felsic clots {see above) which record the transition from 

andalusite to sillimanite. In this latter situation 

muscovite is a part of the equilibrium assemblage. 

The following mineralogical change can be interpreted to 

indicate an increase in metamorphic grade within the SZ, 

provided that bulk rock composition remains constant: as the 

abundance of sillimanite increases, the abundances of 

cordierite, andalusite and muscovite decrease and 

plagioclase and biotite contents increase. As in the A* z , 

the abse nce of muscovite from the matrix a s semblage i n the 
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Figure 19: A; Photomicrograph showing andalusite replaced by 

biotite. Fibrolitic sillimanite has nucleated o n 

biotite . Plane light. Length of section shown 

approximately 4 . 0 mrn. 

B; photomicrograph of a SZ metaturbidite showing 

andalusite (high relief) replaced by biotite 

(pe ripheral to andalusite). Sillimanite is 

present elsewhere in the thin section. Plane 

1 ight . Length of section shown approximately 4. 0 

rnm . 
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Figure 20: A; Photomicrograph showing andalusite blebs in 

felsic clots consisting of coarse grained 

plagioclase (clear). Note fine fibrolite sprays 

associated with biotite (center top edge of 

photograph). Plane light. Length of section shown 

approximately 4.0 mm. 

B; photomicrograph showing prismatic sillimanite 

(lower left) and irregular andalusite relics i n 

felsic clots consisting of coarse grained 

plagioclase and muscovite. Plane light. Length of 

section shown approximately 4.0 mm. 





S*Z may indicate either variation in bulk composition or 

consumption related to the formation of sillimanite, or a 

combination of both factors. 

In Table 2 the sz maximum-phase assemblage, in which 

andalusite persists metastably with sillimanite, is listed 

together with those assemblages that lack one or more of 

andalusite, cordierite and matrix muscovite (S*Z; SCAB, SCB, 

SAB; see abbreviations page xv). Mineral compositions of 

most of these phases are given in Table A.9. Average 

analyses of cordierite, biotite, muscovite and plagioclase 

from the sz differ little from those of the AZ, although SZ 

micas contain greater amounts of titanium. Individual 

cordierites in the SZ may be more Mg-rich than those in the 

AZ but the difference is minimal, so that the position of 

the sz assemblage in AFM space changes little from that of 

the AZ (Figure 21). 

In the cordierite-free assemblage sillimanite­

andalusite-biotite-muscovite (SABM), muscovite and biotite 

are more magnesian than in the maximum-phase assemblage. 

Biotite compositions from the S*Z assemblages diffe~ from 

those in the muscovite-bearing SZ assemblages in that they 

contain the highest Tio2 contents recorded in the turbidites 

(up to an average of 2.16 average weight percent, with 

biotite in sample 81-V-264 containing a maximum 2.85 weight 

percent Ti02). 

In AFM space, the sz maximum-phase asse mblage is 

represented by the three-phase subtriangle cordierite-
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Figure 21: AFM diagram of the maximum-phase SZ mineral 

assemblage sillimanite-andalusite-cordierite­

biotite. Note that andalusite is metastable in 

the presence of sillimanite and both 

aluminosilicates are present at the A-apex. Solid 

circle and heavy tie-line represent the two-phase 

assemblage sillimanite-biotite. Inset diagram 

shows the portion of the AFM diagram used for 

plotting. 
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biotite-aluminosilicate, with both andalusite and 

sillimanite present at the A-apex (Figure 21). The 

cordierite-free assemblage from the SZ plots as the 

two-phase assemblage aluminosilicate-biotite (Figure 21). 

The observation that this tie-line crosses those for 

assemblages containing cordierite implies that the 

aluminosilicate-cordierite-biotite subtriangle has migrated 

to Mg-richer compositions with increasing metamorphic grade, 

consistent with the consumption of cordierite. 

2.5 Variations in Mineral Compositions with Metamorphic 
Grade 

2.5.1 General statement 

The effect of metamorphism on a prograde sequence may be 

documented not only through the changes in mineral 

assemblages (discontinuous reactions), but also through the 

changes in individual mineral compositions across 

metamorphic zones, due to partitioning of elements between 

coexisting phases during continuous reactions. Since it is 

clear from AFM topologies that continuous reactions are 

dominantly controlled by variations in the M/FM ratios of 

coexisting phases, a part of the discussion that follows 

will deal with changes in Mg and Fe contents of the 

coexisting phases. Other compositional changes in the 

mineral phases, which may not be apparent in AFM diagrams, 

are also discus sed. 
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2.5.2 Plagioclase 

Plagioclase is present in the low-grade greywackes as 

detrital grains and as part of the fine-grained 

quartzofeldspathic matrix. Detrital grains from the 

low-grade rocks often have ragged grain boundaries and 

contain abundant sericite and chlorite, indicating lack of 

equilibrium with the matrix constituents. An-contents of 

these grains are variable, from albite (An <1) to andesine 

(An 45). Matrix plagioclases likely recrystallized and 

attained equilibrium with other matrix components. Most 

matrix plagioclases analyzed from the CHZ are albite (An 0.2 

to 11.6). Albite and oligoclase are found in the BZ, with 

the latter more common in the WBZ. 

In medium-grade rocks the rarely observed detrital 

plagioclase grains are partly recrystallized and plagioclase 

is most commonly found in the quartz-rich matrix surrounding 

the porphyroblastic phases. Plagioclase compositions in the 

CZ, AZ, A*Z, SZ and S*Z are generally in the oligocl ase 

range (An 11 to An 30), although one analysis of andesine 

(An 31.8) comes from the AZ, and an albite composition has 

been determined in the SZ. 

The range of plagioclase compositions throughout the 

study area is shown in Figure 22. With increasing 

metamorphic grade plagioclase should become progressively 

more calcic, with the amount of calcium available in the 

rock system placing an upp~r limit on this tendency. Figure 

22 illustrates that: (1) at low grades plagioclase of albite 
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composition is common; (2) BZ plagioclases show evidence of 

peristerite unmixing (see also Table 4); (3) at medium 

grades plagioclase is more calcic (oligoclase). Evidence of 

peristerite unmixing was not found in CHZ rocks and, 

although exsolution in these plagioclase grains may occur on 

a sub-microscopic scale, it is likely that insufficient data 

points were analysed to document this phenomenon. 

Plagioclase analyses from low-grade rocks that yielded 

An-contents greater than An 30 are suspected to represent 

relict grains. However those from the BZ represent relict 

grains which are recrystallized. These high An values are 

likely due to the fact that plagioclase is present only in 

minor amounts in these rocks, so that by medium-grade it may 

have attained maximum An-contents. 

2.5.3 Opaque Phases 

No systematic investigation into compositional changes 

of the opaque phases was made in this study. Visual 

inspection did not reveal significant changes in the modal 

amount of opaque minerals related to increasing metamorphic 

grade. Ilmenite and rutile are found in greywackes of all 

metamorphic grades. Magnetite, graphite and sulfides 

(pyrrhotite, pyrite and chalcopyrite) were also noted , but 

are less abundant than the titaniferous oxides. 
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2.5.4 Chlorite 

Several distinct habits of chlorite can be recognized: 

a) chlorite, dominantly with khaki interference colors 

(k·-·:::hlorite), that forms small platelets aligned with 

muscovite and/or biotite in the matrix of the low-grade 

rocks: b) chlorite with blue-purple interference colors 

(b-chlorite) that forms fine-grained, randomly oriented 

platelets or fine-grained aggregates often occurring in 

pressure shadows around detrital grains in low-grade rocks 

(esp. WCHZ and WBZ); c) large randomly oriented, idioblastic 

and often twinned chlorites with anomalous interference 

colors, which are quite common in medium-grade rocks and 

which post-date tectonic fabrics a~d appear to form 

pseudomorphs of biotite porphyroblasts; and d) 

coarse-grained sprays of chlorite within and associated with 

cordierite porphyroblasts. Ramsay (1974) considered that 

type (d) chlorite was an indirect product of cordierite 

formation; however, in this study a consistent association 

between type (d) chlorite and cordierite porphyroblasts was 

not found. Only type (a) chlorite is considered to be part 

of the equilibrium assemblage. Type (b) chlorite is 

pertinent to the discussion of the western metamorphic 

sequence (see above): types (c) and (d) retrograde chlorites 

are not dealt with further here. Ramsay and Karnineni (1977) 

described chlorites similar to those listed above from the 

Yellowknife area. 
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The atomic proportions in chlorite analyses presented in 

the various tables have been calculated on the basis of 18 

oxygens. Anhydrous totals approximate 90%, comparable to 

data presented in Deer et al. (1966). Following the 

classification of Hey (1954) all analyzed chlorites fall 

within the compositional field of ripidolite. Note that all 

chlorite analyses presented throughout the text represent 

type (a) chlorite, with the single exception of the analysis 

marked with (**) in Table A.5 and Figure 23, which is type 

(b) retrograde chlorite. 

The main compositional features of the low-grade 

chlorites are summarized in Figure 23. Al and Si contents of 

chlorites r~main relatively constant throughout both the CHZ 

and BZ. The variation in Al/Mn+Fe+Mg is rather restricted 

and unaffected by the more dispersed Mg/Fe+Mn ratios. 

Fe-rich chlorites have lower Al-contents, indicating the 

substitution of Fe3+ for Al (McNamara, 1965), whereas a 

sympathetic relationship exists between Al and Mg. 

Figures 23a and b show that chlorites from the EBZ are 

generally more Mg-rich than those from the ECHZ. This 

implies that the production of biotite, a more Fe-rich 

mineral than chlorite, led to the consumption of 

Fe-chlorite, with the average chlorite composition becoming 

more Mg-rich. These observations are comparable to those of 

Cooper (1972; see below). Chlorites from the WCHZ and BZ do 

not show this pattern; in Figure 23b it can be seen that 

these chlorites show a Mg-depletion trend toward the biotite 

- 77 -



Figure 23: Compositional variation of chlorite with 

metamorphic grade illustrated by: 

(A) The range in M/FM ratios of chlorite from the 

CHZ (i) and BZ (ii) for both eastern (open 

circles) and western (solid circles) sequences. 

Inset diagram shows portion of AFM diagram used 

fc:r::- plotting. 

(B) The mineral formula in terms of atomic 

proportions from calculated analyses presented in 

tables. Arrows indicate approximate trend toward 

higher metamorphic grade: (i) southern part of 

western low-grade rocks: ( i i) northern part of 

western low-grade rocks and; (iii) eastern belt 

of low-grade rocks (data points are not connected 

because of the irr .... qular distribution of the 

samples) . Both ( i) and ( ii) have a retrograde 

overprint denoted by (*) (see text). Chlorite 

analysis with ** (sample 373) is retrograde in 

origin. 
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isograd, but Kg-enrichment at or just above the isograd. 

These effects are interpreted to be dua to the widespread 

retrograde overprinting discussed in 2.4.1 and 2.4.2. 

Variations in the chemical composition of chlorite with 

increasing metamorphic grade are controversial. Coope~ 

(1972) suggested that M/FM ratios of chlorite increased with 

metamorphic grade~ however, A.B. Thompson (1976) pointed out 

that the change in M/FM ratios of a mineral phase is 

dependent on continuous reactions taking place in the rock. 

In rocks of similar composition and metamorphic grade to the 

low-grade rocks of this study, Brown (1967), Mather (1970) 

and Ramsay (1973a, b) noted no compositional trends in 

chlorite related to metamorphic grade. Ramsay (1973b) 

observed that chlorite is the only mineral prior to the 

formation of biotite that can accommodate the large 

quantities of Mg contained within the rock, whereas Fe can 

be contained in the opaque phases present. He thus argued 

that the M~-content of chlorite reaches a maximum at 

reasonably low grades. However, it is necessary to consider 

that a large amount of muscovite is usually present in 

pelites and that muscovites at low grade contain a 

significant proportion of the celadonite molecule. In these 

and other studies (Cooper, 1972~ Ramamohana Rao, 1977; 

Carmignani et al., 1982) the bulk composition of the host 

rock is stressed as being an important influence on the 

composi tion of chlorite. 
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2.5.5 Muscovite 

The microstructural habits of muscovite have been 

previously described and can be summarized into five main 

types: 1) fine-grained sericitic flakes in the m~trix in CHZ 

and parts of BZ rocks; 2) coarse grained platelets in the BZ 

through to the SZ that partly define the matrix fabric(s); 

3) large plates associated with the felsic clots of the S*Z; 

4) coarse-grained plates, cross-cutting the biotite 

fabric{s) of the matrix; and 5) long, slender laths that may 

be concentrated within cordierite porphyroblasts. Only the 

first three types are considered pertinent to this 

discussion. Types 4 and 5 are retrograde in these rocks, 

although Ramsay (1974) and Ramsay and Kamenini (1977) 

suggested that type 5 may be a by-product of the 

cordierite-forming reaction. 

Muscovite compositions have been suggested to vary 

systematically with increasing metamorphic grade (Guidotti, 

1973; Guidotti and Sassi, 1976) and some of the documented 

trends were suggested as possible petrogenetic indicators 

(Guidotti and Sassi, 1976), notably: (1) va~iation in the 

contents of celadonite (Tschermak's substitution; Mg, Fe, Si 

= Alvi, Aliv); and (2) variation in content of paragonite 

(substitution of Na for K; the extent of solid solution 

between the pure end members paragonite and muscovite). In 

all cases the authors stress the importance of considering 

bulk composition andjor mineral assemblage (in particular 
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limiting assemblages) in the application of muscovite as a 

petrogenetic indicator. 

The muscovite formula cation proportions were ~alculated 

on the basis of 22 oxygens. It is appropriate to note here 

that difficulties were encountered during analyses of 

muscovites by electron microprobe. These difficulties, the 

most notable of which is the accuracy of K-content, are 

described in Appendix A. It is suggested in Appendix A that 

the error in K-values determined by electron microprobe is 

standard, being consistently low (by about 1%, in comparison 

to wet chemical analyses). Therefor~ it is reasoned th~t tlae 

data can be used to document variations in K-content. Weight 

percent oxide totals obtained by electron microprobe 

analysis should indicate a water content of about 4% ( Deer 

et al., 1966) and possibly up to 7% (Ramsay, 1973b). Some 

muscovites analy~ed in this study show a deficit in tota ls 

of up to 10%. Since all analyzed muscovites arc a lso low i n 

total alkali cations it is uncertain whether this def i ciency 

is related to inaccurate analyses or actual vacancies in 

cation sites. Visual inspection of the data also shows th~t 

some of the lowest weight percent totals are ass oci a ted with 

low silica contents, suggesting inaccurac i es in s i l i c a 

analysis. 

Systematic changes in muscovite composition are evident 

throughout Lne paragenetic sequence develope~ in the 

Keskarrah Bay area. Variations i n ox i de proport i ons in 

muscovites from the different metamorphic zone s are s hown 

- 82 -



graphically in Figure 24. Total Al-contents increase at the 

expense of Mg and Fe indicating celadonite substitution. 

Titanium contents of muscovites increase systematically with 

metamorphic grade and, with the exception of the slight 

d~crease in the CZ (Figure 24) these trends are consistent 

with those observed elsewhere (Kwak, 1968; Guidotti, 1970). 

Y-site total occupancy (Alvi, Fe, Mg, Ti) is in excess of 

the ideal value (4.00) and although the range of Y-site 

values is relatively restricted and narrows with increasing 

grade, no other distinct prograde trend is noted (Figure 

25) • 

Muscovites from all grades are deficient in X-site 

~ations (Na, K), but a prograde filling of this site is 

noted, except for in the CZ where total X-site cations 

decrease ( .?igure 25), but Na is elevated. Butler (1967) 

suggested that cation deficiency in the X-site may enhance 

the ability of muscovite to accept Na ions in this site. 

McNamara (1965) suggested that deficiencies in the alkali 

sites may be balanced by an excess of octahedral cetions 

(Y-site), as is observed by Evans and Guidotti (1966) and in 

this study. 

The celadonite content of muscovite is low, as indicated 

on the SAF (ligure ~6; see figure caption for diagram 

explanation) and AKF diagrams (Figure 27). The compositional 

fields outlined in these diagrams enclose the low-grade 

rocks (CHZ,B1) and medium-grade rocks (CZ,AZ,SZ) .In both the 

SAF and AKF diagrams it is apparent that muscovites from 
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Figure 24:Compositional variations in muscovite with metamorphic grade. Data shown as oxide percent from analyses presented 
in tables. FeO= Fe- total. Average analyses (open circles). Ticks on data points indicate more than one analysis. 
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Figure 26: Muscovite analyses from all metamorphic zones 

plotted on a rortion of the SAF di~gr~m (~rr 

inset diagram for explanation of co-ordin;,trs) to 

show the change in celi\donite content .,..ith 

metamorphic grade . Dotted 1 inc out! in•~ ~ ; t h.-• I iP!d 

of low-grade rocJ.:s, d.lshcd 1 inc out.l in<· ~; tht:· 

field of medium-grade rocks in thi~ ~;tudy. tlot•.• 

that there is no distinct ch.lnqr in cC'l.,donitl' 

content of muscov i tc bctwC'cn CIIZ and HZ . 
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the two eastern low-grade zones show the most variation and 

highest celadonite contents, the variation presumably being 

a function of variable bulk composition. It is important to 

note that in both these diagrams muscovit~s from the CHZ 

overlap with those of the BZ; indeed some BZ muscovites are 

more celadonitic than those from CHZ. Celadonite content 

declines sharply at the CZ (Figures 24- 27), with decreases 

recorded ln both Fe and Mg (Figure 24). At the AZ a slight 

increase in Fe and Mg with a concomitant decrease in Al 

denotes more celadonitic muscovite. Muscovites from 

cordierite-free assemblages of the AZ have a higher 

celadonite content than those from cordierite-bearing rocks. 

Titanium contents a~e also elevated. sz mus~ovites are lower 

in Al and Fe but higher in K. Muscovites from the A*Z and 

S*Z assemblages containing cordierite have lower M/FM values 

(and lower celadonite contents) than AZ and SZ equivalents 

(Figure 29a). Those lacking cordierite have higher M/FM 

ratios, reflecting a decrease in Fe-content. 

In Figure 28 the XMg (= Mg/Mg+Fe) values of muscovite 

have been plotted against those of chlorite and biotite and 

the data indicate that: (1) muscovite is more magnesian than 

coexisting biotite and generally more magnesian than 

coexisting chlorite: (2) the distribution coefficient (Kd) 

approaches unity for the mineral pair muscovite-chlorite 

and; (3) Kd for the mineral pair muscovite-biotite does not 

appear to be temperature sensitive. 
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Numerous studies have documented the decrease in 

celadonite content of muscovite with increasing metamorphic 

grade (Velde, 1965; Cipriani et al., 1968; Mather, 1970; 

Guidotti, 1970; Ramsay, 1973b; Guidotti and Sassi, 1976). 

For a given pressure the substitution of Fe and Mg into the 

muscovite crystal structure is less favored at higher 

temperatures, and muscovite compositions approach ideality 

(Velde, 1965; Guidotti and Sassi, 1976) • The results of this 

study support this conclusion, with the most abrupt decrease 

in celadonite content occurring at the onset of medium-grade 

metamorphism {first appearance of cordierite). Brown ( 1967) 

however, noted that the celadonite content of muscovite from 

the low-grade rocks in his study showed no dependencE on 

metamorphic grade and Carmignani et .11. ( 1982) have 

documented an increase in celadonite content of muscovite 

with the incoming of biotite. 

Na and K contents of muscovite define distinct and 

antithetic trends with increasing metamorphic grade (Figure 

24). A plot of Na/Na+K (Figure 29b) shows the paragonite 

content of muscovite from each zone. In the eastern sequence 

paragonite content decreases from the CHZ to the BZ and from 

the CZ to the SZ, but the most notable change in muscovite 

composition occurs at the CZ, where there is a jump of about 

10% in the NajNa+K ratio.Muscovite compositions from the AZ, 

in those assemblages seen not to contain cordierite, have 

elevated Na/Na+K ratios (-15 - 20\) in comparison with 

cordierite-bearing specimens (-2 - 12%). A few of the late 
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cross-cutting muscovites from the A*Z and S*Z were analyzed 

(Appendix B). NajNa+K ratios are in all cases the same or 

lower than AZ and sz muscovites of the equilibrium 

assemblage. 

Guidotti ( 1969, 1973) pointed out that in order to 

examine the variation in paragonite content of muscovite 

with metamorphic grade, limiting assemblages must be used. 

The data shown in Figures 24-29 are restricted to a limiting 

assemblage only for CZ, AZ and SZ rocks where the assemblage 

muscovite-plagioclase-biotite exists in high-Al rocks (eg. 

cordierite and/or aluminosilicate-bearing assemblages; see 

also Guidotti, 197 3) • Muscovite is as rich in Na, K and Al 

as possible for a particular grade in these zones only. 

The prograde trend toward increasing paragonite content 

of muscovite in Al-rich, paragonite-free rocks has been 

reported to reverse when an aluminosilicate phase is formed, 

so that a plot of NajNa+K versus metamorphic grade is 

described by a bell-shaped curve that mimics relationships 

in the muscovite-paragonite pseudobinary phase diagram 

(Guidotti, 1970; Guidotti and Sassi, 1976; Evans and 

Guidotti, 1966). These authors also noted that NajNa+K 

values underwent abrupt changes on crossing a dehydration 

isograd. The plot of NajNa+K versus metamorphic grade for 

the muscoqites in this study (Figure 29b) shows a very 

abrupt change at the boundary between the BZ and the CZ, 

which is presumably related to the cordieri te forming 

reaction. The decline in Na/Na+K values upon the appearance 
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of an aluminosilicate phase (AZ) is as predicted, but this 

is a subordinate effect compared to the increase in values 

!rom the BZ to CZ. In comparison, muscovite analyses 

presented by King (1981) show no significant decrease in 

paragonite content until the K-feldspar-sillimanite (second 

sillimanite) zone. 

In aluminosilicate-bearing assemblages, the Na-contents 

of plagioclase and Na/Na+K ratio of coexisting muscovite are 

theoretically interrelated (Evans and Guidotti, 1966; 

Guidotti and Sassi, 1976). By projecting the assemblage 

muscovite-plagioclase-aluminosilicate through Al 2sio5 and 

onto the CaAlo2-NaAlo2-KAlo2 plane it is seen that albite 

coexists with Na-rich muscovite while ca-rich plagioclase 

should coexist with progressively K-r;cher muscovites 

(Guidotti and Sassi, 1976). Figure 30 shows the 

relationship between XNa (= Na/Na+K) muscovite and XNa 

plagioclase (where XNa = Na/Na+K+Ca) for the metamorphic 

zones of this study. The low-grade (CHZ and some BZ) and 

medium-grade (CZ, AZ, SZ) samples form two distinct 

populations. Muscovites from the low-grade rocks are 

generally low in paragonite content and coexist with either 

albite or oligoclase. Medium-grade muscovites have higher 

paragonite contents and coexist with more ca-rich 

plagioclase (oligoclase-andesine). A similar trend in low­

to medium-grade rocks is sug~est~d by the data presented by 

King (1981; indicated on Figure 30), but the trend reverses 

at high grade (i.e. both plagioclase and muscovite become 
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less sadie; Figure 30). The results of this study for the 

high-Al limiting assemblages are comparable with those of 

Guidotti and Sassi (1976) .·At the higher grades discussed by 

Guidotti and Sassi (1976), and as shown by King's data 

(Figure 30), both muscovite and plagioclase are 

progressively depleted in Na. Since muscovite apparently 

exchanges Na for K and plagioclase exchanges Na for Ca, 

there must be a Na 'sink' in these high-grade rocks. Perhaps 

Na is taken up in the formation of new plagioclase or in the 

production of K-feldspar (i.e. upper SZ or K-feldspar zone). 

2.5.6 Biotite 

Structural formulas of biotite presented in the various 

tables are calculated on the basis of 22 oxygens. Anhydrous 

totals indicate (OH,F) contents of 2-6\ which are 

approximately within the range presented in Deer et al. 

(1966). Inaccuracy in t~J Si analyses (Appendix A) may 

ac~ount for some of the variations in anhydr~us totals. 

Commonly observed changes in biotite composition with 

metamorphic grade include variations in Mg, Fe, Al, Ti and 

possibly Na and K. Kamineni and Carrara (1973), using a 

statistical method, discovered significant differences in 

the Fe, Mg, Al and Ti contents between porphyroblastic and 

fabric-forming biotites. However, although visual inspection 

of the biotite analyses from this study indicates small 

chemical differences between biotites in the two 

microstructural settings, no consistent trends were 
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distinguished (Appendix B) anc the two types are not 

separated in the analysis which follows. 

Average biotite analyses for each metamorphic zone are 

graphically represented in Figure 31, from which several 

important and distinct trends in biotite composition can be 

seen. Mg-contents increase slightly (by about 1%) at the cz. 

Above the CZ Kg-content is roughly constant. Fe-content 

(Fe-total) declines at the CZ and declines steadily until 

the sz, where it again increases. Fe-contents of biotite 

from the S*Z are lower than those of biotites in muscovite 

bearing rocks (SZ). 

M/FM ratios of biotite are illustrated on an AFM diagram 

and plotted versus metamorphic grade in Figure 32. Biotites 

from the WBZ have lower M/FM ratios than those from the 

eastern zone. Biotite analyses connected by the arrow in 

Figure 32 are from the EBZ and CZ, immediately below and 

above the cordierite isograd respectively. Biotite is most 

Mg-rich adjacent to the cz, but within the cz biotite shifts 

to more Fe-rich and more aluminous compositions (see below). 

In Figure 28 it can be seen that XMg biotite is less 

than XMg chlorite and muscovite and XMg ratios of coexisting 

chlorite-biotite show an approximately linear distribution 

(similar to the results of Cooper, 1972). The lack of a 

linear relationship between XMg muscovite and biotite is 

contrary to the results of Evans and Guidotti (1966) and 

Butler (1967) and may be due to the presence of an other 

element (eg Fe3+) in one or both micas. Both minerals show a 
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Figure 31: Variation in biotite composi~ion with metamorphic 

grade. Data shown as oxide percent from analyses 

presented in tables. FeO = total Fe. Ticks on 

data points indicate number of analyses: 0 ticks 

= 1 analysis, 1 tick = 2 analyses, 2 ticks = 3 

analyses. Average (large open circle) does not 

include data points represented by open squares 

(Mg-rich samples adjacent to the CZ). For 

abbreviations see page xv. 
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Figure 32: Variation in M/FM ratio of biotite with 

metamorphic grade. (A) AFM projection of biotite 

compositions from various metamorphic grades. 

Arrow in this diagram represents change in 

biotite composition with the formation of 

cordierite, connecting samples from immediately 

below and at the cordierite isograd. Inset 

diagram ~haws the portion of the AFM diagram used 

for plotting. 

(B) M/FM ratios of biotite plotted against 

metamorphic grade. Average (open circle) does 

not include data points shown as open squares 

(see Figure 31). For abbreviations see page xv. 
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general trend toward increasing M/FM values with increasing 

metamorphic grade. 

Total Al contents in biotite generally increase 

throughout the metamorphic sequence, although a slight 

decrease is noted in the sz (lower Alvi content). The AFM 

diagram (Figure 32a) shows a distinct jump in total Al at 

the cz. The introduction of an Al-rich phase (cordierite 

and/or aluminosilicate) indicates that the rock is Al 

~aturated and biotite is then as Al-rich as possible. 

Biotites from the assemblages lacking andalusite (i.e. CZ 

and some of the S*Z) have the highest octahedral Al 

contents. 

Bi~tite shows a trend toward increasing Ti-content with 

metamorphic .grade (Figure 31), similar to the trend for 

muscovite. Ti-contents of both micas decrease slightly at 

cz. In some S*Z biotites there is an abrupt in~rease inTi. 

Total Y-s ;_te (Fe, Mg, Alvi, Ti, Mn) occupancy is highest 

for biotites from the cz and lowest in the BZ and 

muscovite-free A*Z and S*Z assemblages. 

Deficiencies in X-site alkali cations are apparent in 

all analyzed biotites and appear to v~ry with metamorphic 

grade, with biotite from low-grade rocks being nearest to 

ideal (Figure 31). Total alkali content decreases at the cz, 

but subsequent increases in the AZ and SZ are slig~t and 

decreases are noted in the s•z. The small amount of Na 

present in the biotites shows systematic and continuous 

increases with metamorphic grade in all the muscovite-
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hearing assemblages. Biotites contained within cordierite 

porphyroblasts are slightly enriched in K relative to 

biotite in the matrix (Appendix B). 

The abrupt decrease in K-content of biotites at the CZ 

is puzzling, as K in musco~ites also decreases. Since the 

micas are the only abundant and significant K-bearing 

phases, the coupled decline implies that K may have been 

removed from the rock system, but another possibility is 

that there may have been an increase in the total mica 

content (see 2.4.3). 

Other evidence of K-loss comes from some SZ rocks in 

which biotite has been completely retrogressed to chlorite, 

except in the immediate vicinity of andalusite relics and 

sillimanite. These altered rocks define a patchy zone 1-2 km 

from a major fault. Thus retrogression may be due to the 

migration of fluids through an extensive microfracture 

system, suggesting that these rocks may not have behaved as 

a closed system with respect to K. 

2.5.7 Cordierite 

The structural formula for cordierite is cal=ulated on 

the basis of 18 oxygens. Oxide weight percents may be up to 

approximately 2* less than 100% and, because the cation 

totals per structural formula are very close to the ideal 

11, this deficiency is attributed to the presence of fluids. 

The analyzed cordierites contain minor quantities of Na 

(0.04 to 0.07 atoms per formula unit). Cordierite from all 
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zones is the most Mg-rich phase present, having higher M/FM 

ratios than coexisting biotite and muscovite (Figure 33). In 

addition, cordierite is the only ferromagnesian mineral in 

the analysed assemblages (of greywacke compositions) other 

than chl~rite to contain small but significant amounts of 

Mn. 

The main compositional changes in cordierite examined in 

this paragenetic sequence are variations in MgO and FeO 

contents (Figure 34). M/FM ratios (not shown) increase 

slightly throughout the CZ, AZ and SZ and cordierite in the 

S*Z has the highest M/FM ratio. A*Z cordierites have higher 

FeO contents and the lowest average M/FM ratios. 

It is of interest to note that in many samples 

cordierite porphyroblasts show evidence of alteration 

(pinnitization). In thin section this alteration is 

generally readily visible and restricted to porphyroblast 

rims or fractures within the porphyroblast. Microprobe 

analyses of the altered portions of cordierite yielded 

variable results which are presented in Append i x B. In 

addition, several analyses of one visually unaltered 

cordierite porphyroblast yielded consistently 

nonstoichiometric results (Appendix B) which appear to be 

the result of incipient pinnitization. 
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2. 6 The Approach to Equilibrium 

2.6.1 General Statement 

Several factors must be considered in determining 

whether the r::.cks :.i:tairu~d or approachud equilibrium during 

metamorphism: a) textural evidence: b) the number of phases 

represented in the mineral assemblages; and c) chemical 

evidence and element partitioning between coexisting phases. 

Features suggestive of disequilibrium in the Keskarrah Bay 

suite include: 

1. The presence of two microstructllrally distinct 

chlorites in the WCHZ and WBZ rocks. 

2. Retrogression of bioti•-e to chlorite and cordierite 

and andalusite to chlorite and sericite. 

3. Detrital plagioclase grains in some low-grade rocks 

(particularly the CHZ) have ragged grain boundaries and are 

partly altered to sericite. 

4. Partial conversion of andalusite to muscovite, 

biotite, plagioclase or sillimanite and cordierite to 

sillimanite. 

5. The ragged appearance of some biotite grains within 

cordierite porphyroblasts. 

6. The metastable persistence of andalusi te in the 

presence of sillimanite, resulting in four phases in AFM 

space. 

7. The lack of systematic and consistent element 

partitioning (eg. Mg-Fe) between some coexisting phases. 

Features suggesting achievement of equilibrium include: 
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1. Sharp grain contacts are generally observe~ between 

the various phases (even in the case of andalusite rims on 

cordierite) and most of the phases are found in mutual 

contact. 

2. The absence of detrital grains from medium-~rade 

rocks and portions of the BZ. 

3. Most assemblages can be reasonably represented on 

phase diagrams. 

4. Compositional zoning of the minerals has not been 

recorded. 

5. Some coexisting phases are shown to have systematic 

and consistent element partitioning (eg. Mg-Fe; see above). 

In the medium-grade rocks much of the evidence for 

disequilibrium is probably due to retrograde metamorphism. 

In most cases how~ver, retrograde mineralogies can be 

distinguished petrographically from the minerals 

representative of the prograde event, and therefore 

retrograde effects can be eliminated from the discussion 

that follows. In the low-grade rocks, particularly tnose of 

the western se~1ence, microstructures suggest a retrograde 

metamorphic event affected the rocks. This is of particular 

importance in defining the biotite isograd for these rocks, 

as in some rocks it is difficult to distinguish a CHZ rock 

that never formed biotite from a retrogressed BZ rock. 

Textural evidence in part suggests metastability (points 

2-6 above) . The sluggish nature of the andalusite­

sillimanite transition (Turner, 1981) may be responsivle for 
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the presence of andalusite in the SZ, which is a common 

occurrence in many areas. The ragged nature of biotite 

contained within cordierite porphyroblasts may reflect 

rather rapid increases in metamorphic conditions, during 

which the minerals were unable to equilibrate, as suggested 

by Ramsay (1974). 

2.6.2 Chemical Equilibrium 

Numerous studies have documented that the distribution 

of elements between coexisting mineral pairs that have 

attained equilibrium varies in an orderly fashion as a 

function of P T and fugacity of the volatile constituents. 

In the pelitic rock system the variation and distribution of 

Mg and Fe between coexisting minerals is frequently a useful 

indicator of the attainment of chemical equilibrium. 

The XMg values for the mineral pairs muscovite-chlorite, 

,.::h"'.orite-biotite, muscovite-biotite, muscovi te-cordieri te 

and biotite-cordierite have been compared (Figures 28, 33). 

Table 3 contains XMg ratios for chlorite, muscovite, biotite 

and cordierite and Kd values for the mineral pairs of each 

metamorphic zone. These data establish the sequence of Mg:Fe 

as cordierite > muscovite >chlorite > biotite, which has 

been used to predict phase relations during progressive 

metamorphism (A.B. Thompson, 1976). 

At constant P, T and fH2o, the points on a Kd diagram 

should be distributed in a cluster (at constant rock 

composition) or show an approximately linear relationship 
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"''BLE 3: x11g Ratios and Kd Values for Coexisting Mineral Pairs for All Metamorphic Zones 
ZONE Sanple X~lg/Chl X:·l<;/Musc X}lg/Bio Xl>lg/Cord KdMusc/ KdChl/ l<d!1usc/ KdCord/ KdCord/ no. Chl Bio Bio Husc Bio 
ECHZ OS a .87 . 99 1.14 

277a .87 .94 1.08 WC!IZ 105 1. 91 2.14 1.12 
392 1.46 2 . 07 1.42 
108 1.33 1.19 .90 
221 1 20 1. 37 1.14 :z3 .84 1.01 1.20 
225 1.82 2.15 1.18 
395 .70 • 77 1.10 

EB: Ola 1. 06 1. 39 .89 1.31 1.19 1. 56 l99a l. 05 1. 41 .97 1.34 1.08 1. 45 200 .88 .81 1.22 
20la 1. 01 l. 23 .91 1.10 1.11 1.35 2C~b 1. OS 1.15 .97 1.01 l. 08 1.19 
~-3J 1.18 1.42 1.11 1.20 l. 06 1.28 ~ W!'IZ ll~ .80 1.34 .72 1.68 1.11 1.86 ~ 396 1. 03 1. 42 .95 1.40 1.08 1.50 0 
396 .79 .87 .74 1.10 1.07 1.18 373 .93 l. 21 • 72 1.30 1.29 1.68 c: 2-S~b 1. 20 .97 1.87 1.24 1.56 1. 93 2-3 1.10 .86 1.63 1.28 1.48 1. 90 13~ 1. OS .95 1.84 1.11 l. 75 1. 94 2-163 1.39 1. 00 1.87 1.39 1. 35 1.87 ,>.;: 439 1. 43 • ~6 1.67 l. 4Y 1.17 1.74 2-176 1. 39 1.05 1.98 1. 32 1. 42 1.89 4'~ 1.17 .90 l. 91 1.30 1. 63 2.12 
~ -: ... 3 1.16 .98 1.90 1.18 1. 64 1.94 H 1.16 .92 l. 73 1.26 1. 49 1.88 ::<~b 1. 31 .89 1. 75 1. 47 l. 34 1.97 s.: &.-.oL ... 1. 51 .95 1.95 1.59 1.29 2.05 34~ l. 6 3 .97 1.68 ' . ~ 1. 36 1. 01 2.09 1. 35 1. 54 2.07 ~' . 
)~ .,: 1.25 .89 1.84 1. 44 1. 44 2.07 
Jv~ l. 28 .88 l. 78 1.46 1. 39 2.02 

Aver-age 1\d V.1L:es : WCH: ZCHZ WBZ EBZ cz AZ sz 
"~"-! '; !'c · c~ ~ 1.22 l.ll l. 36 l.lB 
K~-::!".1 E~ o l.H 1.10 
ft'..!.~~~c . B~ ~ l. 55 l. 36 1. 26 1. 34 1. 50 
~· ...!..:c:-C :t·..:sc 1. 52 1. 43 1.41 
~C~ o r.d B . , 1.91 1. 92 2.06 
x.~ ., ~~~e:-..1: . C1g ~.; •Fe·~;. ~ (Fe ':V.g +Fe•:-!nl. Kd(!1g) X:~g(mi:-~eral A) / x:~g(minera1 B) 



(rock composition varied) if equilibrium was attained or 

approached (Kretz, 1961; Bartholome, 1962). Kd values for 

chlorite-biotite and cordieritP.-biotite pairs shown in TablP. 

3 are comparable to those presented in Osberg (1971). 

In contrast, Kd values for coexisting muscovite-biotite 

and cordierite-muscovite (Table 3; Figures 28, 33) are 

variable, suggesting chemical equilibrium was not attained. 

However, other indices that suggest an approach to 

equilibrium between these two mineral pairs are: 1) textural 

evidence, with muscovite being in contact with both biotite 

and cordierite; 2) average Kd values show systematic 

prograde changes (Table 3); and 3) the diffuse systematic 

variation seen in a plot of XNa muscovite versus XNa biotite 

(Figure 35; because of the jump in muscovite paragonite 

content at the cz, the points in this plot tend to form two 

clusters). Thus there is a considerable body of evidence 

pointing to the fact that muscovite reached equilibrium with 

coexisting cordierite and biotite, and the irregularities 

cbserved in muscovite XMg' which influences the Kd values, 

may be related to other elements substituting for Fe and Mg 

in the muscovite crystal structure (McNamara, 1965). 

Although the evidence is conflicting, it appears 

reasonable to assume that for the most part the rocks in the 

Keskarrah Bay area approached equilibrium. The observed 

equilibrium textures provide a basis for the proposed 

mineral - forming reactions and reaction mechanisms that 

follow. 
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2.7 Index Mineral-forming Reactions 

2.7.1 General Statement 

On the basis of textural and compositional evidence 

presented in the p4evious sections, the reactions leading to 

the formation of the index minerals are discussed below. In 

addition the metamorphic zones, which were previously 

identified according to the first appearance an index 

miner~~, are renamed in full to correspond with the proposed 

metamorphic reaction. Because of the effects of retrograde 

metamorphism on the rocks from the western sequence, the 

reactions proposed in this section are based on data from 

the eastern prograde sequence. 

As noted previously, the lowest grade rocks are 

characterized by the assemblage chlorite-muscovite-quartz­

plagioclase; the CHZ is referred to in full as the 

muscovite-chlorite zone. 

2.7.2 Biotite-forming Reactions 

Above the biotite isograd the stable mineral assemblage 

is muscovite-chlorite-biotite-quartz-plagioclase, with the 

diagnostic sub-assemblage of the BZ being 

muscovite-chlorite-biotite. 

Numerous reactions have been proposed in the literature 

to account for the formation of biotite in low-grade 

metapelites and metagreywackes. In the study ~rea, in rocks 
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of both the CHZ and BZ, K-feldspar is either absent or 

present only in trace amounts, so the reaction proposed by 

Mather (1970), which involves K-feldspar could not have been 

significant. Thus some or all of the remaining minerals, 

chlorite, muscovite, plagioclase, quartz and the opaque 

phases (ilmenite and rutile) must have reacted to form 

biotite. A decrease in modal abundance of chlorite with the 

formation of biotite indicates that chlorite is consumed 

during this reaction. The datct also indicate that ::::hlorite 

became Mg-richer as a result of the reaction. 

Since muscovite is the only K-rich phase present in CHZ 

rocks, it must have either been consumed to produce biotite 

or, as Tilley (1926) suggested, it may have contributed K 

for the production of biotite, leaving a K-poorer muscovite 

in the BZ. The data are inconclusive with respect to changes 

in celadonite content of muscovite with the appearance of 

biotite: some BZ muscovites are less celadonitic than CHZ 

muscovites, as would be expected if (Mg+Fe+Mn) was depleted 

and contributed to the production of biotite (Ernst, 1961: 

Ramsay, 1973a,b; Guidotti and Sassi, 1976), but others are 

more celadonitic. Therefore it seems unlikely that muscovite 

(celadonite) contributed significant Mg or Fe for the 

production of biotite. However, ilmenite is ubiquitous to 

both the CHZ and BZ and may have been consumed in small 

amounts to contribute Ti and Fe to the production of 

biotite. 
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An-contents of plagioclase change in the BZ, with albite 

compositions being subord~nate to oligoclase. However, it 

has not been ascertained whether plagioclase plays a role in 

biotite formation. 

Considering the evidence presented above a generalized 

biotite-forming reaction for these rocks could have had the 

form: 

Fe-chlorite + muscovite +/- ilmenite = biotite + quartz +/-

magnetite + H2o (R. 1) 

where the involvement of ilmenite as a reactant requires 

that some magnetite be produced or that oxygen is a product 

(i.e. b~lk reduction of the rock). Reaction R.l is similar 

to that proposed by Ramsay (1973a), with the exception that 

K-feldspar is not a by-product. 

2.7.3 Cordierite-forming Reactions 

CZ rocks are characterized by the assemblage cordierite­

biotite-muscovite-quartz-plagioclase and thus are referred 

to in full as the cordierite-biotite-muscovite zone. 

The formation of cordierite through the frequently 

proposed reaction involving chlorit.e + muscovite + 

aluminosilicate as reactants (Hess, 1969) is not tenable in 

the study area since low-grade rocks are not seen to contain 

an alurninosilicate phase. The bulk composition of the rocks 

plots below the muscovite- chlorite tie line in AKF diagrams 
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and within the chlorite-biotite two-phase field in AFM 

diagrams (Figure 7). Thus it is possible that the formation 

of cordierite took place by a continuous reaction of the 

type: 

muscovite + chlorite + quartz = cordierite + biotite + H2o 

(R.2) 

which is consistent with the measured intermediate XMg of 

chlorite compared to those of the products biotite and 

cordierite. This is a crossing tie line reaction in AKF 

space (Figure 36). According to Schreyer and Yoder (1961), 

Hess (1969) and Seifert (1970) the cordierite-biotite two­

phase field progressively moves to more Fe-rich compositions 

with increasing T, sweeping across the cordierite-biotite­

chlorite three-phase subtriangle (Figure 37a). However, in 

the present case Fe-chlorite was already consumed by 

reaction R.l, leaving only relatiVPly Mg-rich chlorite 

remaining for reaction R.2. The absence of chlorite in cz 

rocks is interpreted to indicate that reaction R.2 took 

place during the initial stages of cordierite formation, 

while Mg chlorite was still available. However, it is likely 

that a significant proportion of cordierite was produced by 

a reaction involving biotite and muscovite, which are both 

present below the cordierite isograd. It has already been 

noted that biotite is commonly depleted within cordierite 

porphyroblasts relative to the matrix and that biotite 
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Figure 36: AKF diagram illustrat1ng the changes in tie line topology with the 
formation of cordierite by reaction R.2. 
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Figure 37: AFM projections of continuous and discontinuous 

reactions leading to the formation of cordierite 

(reaction R.3, a-b), andalusite (reactions R.4 

and R.5, b-e) and sillimanite (reactions R.6 and 

R.7, d). Arrows indicate the direction of 

subtriangle migration across AFM face during 

continuous reactions. X is the inferred bulk 

composition of average metagreywackes in the 

Keskarrah Bay area (as explained in section 2.3). 
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compositions change (becoming richer in Fe, Al and Na) 

across the cordierite isograd. Although muscovite displays 

little textural evidence of involvement in the cordierite­

forming reaction, it decreases in modal abundance and also 

undergoes major compositional changes at the cordierite 

isograd (Figures 24 - 30, 35), becoming less celadonitic and 

containing a greater percent of the paragonite molecule. 

Thus reaction R. 3 may describe the for.ilation of some of the 

cordierite: 

Mg-biotite + muscc...vite1 = cordierite + muscovite2 (R.3) 

in which musc1 is K-richer and more celadoni tic than rnusc2 . 

However, although biotite involvement is implied by the 

textures, there is no significant change in M/FM biotite at 

the cz (Figure 32b), which I!lay im~ly that a significant 

proportion of Mg and Fe for cordierite carne from celadonitic 

muscovite, as indicated by the analyses (Figures 24, 29a). 

Seifert (1970) suggested that phengite-poor muscovite will 

coexist with cordierite and phlogopite (biotite in this 

case) , which is supported by the data in this study. 

Plagioclase does not appear to be involved in cordieri te 

fot"Ination, but it may have contributed Na to muscovite and 

biotite (see sections 2.5.4 and 2.5.5). 

Ilmenite forms abundant inclusions within cordierite and 

therefore does not appear to be a necessary phase in 

cordierite formation. 

- 120 -



Reaction (R.2) is a continuous reaction (Thompson, 

1978), the nature of which in AFM space is illustrated in 

Figure 37. Although chlorite is no longer present in the 

cordierite-bearing rocks of this study, it theoretically 

does not disappear from all bulk compositions in the AFM 

topology at this stage. As reaction R.2 continues, the 

cordierite-biotite-chlorite subtriangle migrates across the 

AFM face toward the F apex, resulting in the formation of 

cordierite first in more Mg-rich bulk compositions and later 

in more Fe-rich compositions. This movement of the 

subtriangle results in a shrinkage of the chlorite-biotite 

two-phase field at the expense of the cordierite-biotite 

two-phase field. In the study area the compositions of 

chlorite and biotite below the cordierite isograd and 

cordierite and biotite above the isograd indicate that the 

subtriangle encompasses a small area in AFM space (Figure 

37). Thus only a slight shift of the tie lines toward the F 

apex is required to cross the bulk composition of the rocks, 

leaving only the assemblage cordierite-biotite. Reaction 

R.3, involving predominantly a cha!"ge in the composition of 

muscovite, cannot be depicted in AFM space. 

2.7.4 Andalusite-forming Reactions 

The assemblage andalusite-cordierite-biotite-muscovite­

quartz-plagioclase characterizes rocks of the AZ and these 

rocks are referred to in full as the andalusite-cordierite­

biotite zone. 
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since andalusite forms at higher grade than cordi.erite 

and the concomitant disappearance of chlorite in the 

paragenetic sequence, it is possible that it forms via a 

reaction involving cordierite andjor muscovite as reactants. 

This type of reaction was proposed for oth~r areas of the 

Slave Province (Heywood and Davidson, 1969; Thompson, 1978). 

Hey-«ood and Davidson noted that in such a reaction both 

cordierite and muscovite would decrease in abundance while 

biotite would increase. 

In the rocks of this study, although partial rims of 

3ndalusite on cordierite suggests that cordierite was in 

some way involved in andalusite production, no change in the 

modal abun~ance of cordierite has been recorded. Indeed it 

appears that cordieri te growth continued in the AZ 

(cordierite rims on andalusite). Marginally increased M/FM 

ratios of cordierite are the only noted compositional 

changes in this mineral. 

Textural evidence points to the fact that mus~ovite was 

consumed during the formation of andalusite, but for the 

most part this occurred only locally, i.e. in the precise 

area that andalusite nucleated. Compositionally muscovite 

re~ords slight decreases in paragonite content and minor 

increases in Fe and Mg. Presumably the consumption of some 

muscovite to form andalusite left residual Fe and Mg (in 

small amounts as the muscovites are not highly celadonitic) 

that was taken up by the remaining muscovites. 
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Matrix muscovite was co:rr.pletely consumed in e:ome rocks 

within the AZ (denoted A*Z). The disappearance of muscovite 

in these rocks is presumably related to the formation of 

andalusite, but possibly also cordierite, and suggests A*Z 

rocks are slightly less potassic than AZ equivalents. 

Textural evidence also indicates that biotite was not a 

reactant in the andalusite-forming reaction and that 

possibly some new biotite was produced (biotite enriched 

zones around andalusite). Changes in biotite composition in 

the AZ include minor increases in Al, K and Ti contents 

(Figure 31) which may indicate that biotite accommodated 

some of the residual elements during the partial consumption 

of muscovite. Both Ti and K contents are higher in biotite 

from the A*Z than in the AZ equivalents, consistent with a 

decrease in the modal abundance of muscovite. 

The proposed andalusite-forming reaction, which is 

compatible with textural and chemical evidence is: 

cordierite + muscovite +/- ilme~ite = ~ndalusite + biotite + 

quartz +/- albite +/- rutile, (R.4) 

which is a modified version of that proposed by Heywood and 

Davidson (1969) and Thompson (1978). 

The continuous nature of reaction R.4 in AFM space is 

i.llustrated in Figure 37. Andalusite is formed together with 

cordierite in more Fe-rich compositions once the stability 

field of chlorite is exceeded by the discontinuous reaction 
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chlorite + muscovite + quartz = cordierite + andalusite + 

biotite + H2o (R. 5) 

(Winkler, 1976; Thompson, 1978), allowing the coexistence of 

andalusite, cordierite and biotite. Reaction R.5 is a 

terminal reaction for chlorite in muscovite-bearing rocks 

(Hess, 1969) in that chlorite compositions are reduced to a 

single point in the diagram and subs~quently chlorite is 

reacted out of the system. Although chlorite is not observed 

to be part of the equilibrium assemblage n~ either the CZ or 

AZ rocks in this study, Reaction R.5 may be responsible for 

the continued growth of cordierite within parts of the AZ. 

Once the three-pha~e subtriangle andalusite-cordierite­

biotite is formed, it migrates toward Mg-richer compositions 

via progressive Mg-enrichment of coexisting cordieritc and 

biotite (Figures 31 and 34). 

The cordierite isogrud is located down-grade of the 

andalusite isograd because the bulk composition of the roc~n 

is sufficiently Mg-rich in this area that it is intcrscct~d 

by the cordierite-chlorite-biotite subtriangle rather th~n 

the andalusite-chlorite-biotite subtriangle (Figure 37). 

2.7.5 Sillimanite-forming Reactions 

The SZ, the highest grade zone in the study ."\rf:'•,, ir; 

characterized by the assemblage sillimanite•;-~nd~lunitP­

cordierite-biotite-muscovite-quart~-plaqiocl~G~ ~n(J in 
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referred to in full as the sillimanite-cordierite-biotite­

muscovite zone. 

Three reactions can be related to the formation of 

sillimanite. The direct polymorphic transition of andalusite 

to sillimanite, represented by sillimanite needles or prisms 

that have grown within andalusite porphyroblasts, is 

..: .. 1dicati ve of the reaction 

andalusite = sillimanite (R.6). 

However this direct transition appears to have been rather 

rare. Within the SZ the depletion of cordierite and 

muscovite and increase in relative abundance of biotite is 

consistent with the continuous reaction 

cordierite + muscovite = sillimanite + biotite + quartz + 

(R. 7) 

which is the sillimanite analogue of reaction R.4, and in 

which Fe-cordierite is progressively replaced by the product 

assemblage (see Tables A.8 and A.9; Figures 31 and 34). As a 

result of this reaction, many of the SZ rocks were found to 

lack muscovite in the equilibrium assemblage (S*Z), although 

some contain minor amounts of late muscovite. The 

consumption of muscovite in the S*Z led to the formation of 

more biotite and changes in biotite composition, most 

notably an increase inTi-contents. Reaction R.7 has been 
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experimentally investigated by Seifert (1970) in the pure 

system !(MASH. In the system KFMASH the reaction is 

continuous and results in the sillimanite-cordierite­

biotite subtriangle shifting to more Mg-rich compositions 

(Figure 37), as indicated by increasing M/FM ratios of 

cordierite. Eventually the subtriangle breaches the bulk 

composition of the rocks leaving the two-phase assemblage 

sillimanite (+/-andalusite) - ~iotite. 

In muscovite-free S*Z assemblages, sillimanite growth 

appears to have occurred by an indirect process involving 

plagioclase, biotite, quartz and relict muscovite as 

intermediary phases in a set of complex cation exchange 

reactions of the type first described by Carmichael (1969). 

The textural features within the felsic clots (see 2.4.5), 

which provide microstructural evidence of these exchange 

reactions are summarized as follows: 

1. Andalusite is replaced by biotite and is partly 

surrounded by coarse-grained quartz. Sillimanite nucleates 

on biotite at some dist~~ce from andalusite (Figure 19). 

2. Andalusite is embayed by biotite and coarse-grained 

plagioclase (Figures 19,2~) and in some instances biotite in 

turn is embayed by plagioclase. Plagioclase and quartz m~y 

form a conspicuous rim around andalusite. Sillimanite 

needles or prisms nucleate on biotite and within plagioclase 

and quartz (Figure 19). A residual opaque phase can be seen 

within sillimanite-biotite aggregates. Eventually the site 

once occupied by andalusite is marked by a coarse-grained 
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aggregate of plagioclase and quartz, that contains 

sillimanite prisms and locally minute andalusite relics 

(Figure 20) and may have a biotite-fibrolite rim. 

3. Andalusite is replaced by biotite. Large muscovite 

plates and peripheral coarse-grained plagioclase engulf 

andalusite and partly digested biotite (Figure 20). 

Sillimanite prisms have grown in both muscovite and 

plagioclase and nucleated on biotite. 

4. In one sample coarse-grained tourmaline is associated 

with 2 and 3; tourmaline is replaced by biot:.te and 

fibrolite has nucleated on both biotite and tourmaline. 

2.8 Iron Formation and Iron-rich Metasediments 

2.8.1 Introduction 

Discontinuous layers of iron formation and iron-rich 

sediments (unit 9c), generally less than 1-2 meters thick, 

are interlayered with turbidites of the Contwoyto Formation 

(Figure 5). Henderson and Easton (1977a) and Bostock (1980) 

described the facies variation and distribution of iron 

formation in the Keskarrah Bay area. 

Minerals developed during metamorphism of iron-rich 

metasediments (unit 9c) include garnet, staurolite, biotite, 

chlorite and Ca and Fe-Mq-Mn amphibole. The presence of 

amphibole in iron formation rather than garnet or staurolite 

is a result of less aluminous bulk rock composition. In 

general there is a gradation between turbiditic sediment and 
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sulfide-bearing amphibolitic iron formation, which may 

include intermediary compositions such as irQn-rich 

turbidites and sulfide-bearing pelitic iron formation (see 

section 2.8.5 and Ford, 1988). In this study the effects of 

metamorphism on iron formation are focused mainly on data 

obtained from the more aluminous, pelitic compositions, 

although several amphibole-bearing iron formations are 

described. Bostock (1977) investigated low-alumina, 

amphibole-bearing iron formation from the Itchen Lake 

region. 

2.8.2 Amphibole-bearing Iron Formation 

Three s3mples of amphibole-bearing iron formation were 

examined: two samples (82-V-58a, 76a) are from the BZ and 

one (81-V-36b) is from the AZ (see Appendix A for sample 

locations). The amphiboles of both BZ samples are blue-green 

and form coarse-grained radiating porphyroblasts. In sample 

82-V-5Ba, these porphyroblasts are partly rimmed by 

colorless amphibole and are set in a fine-grained matrix of 

biotite, chlorite, quartz and feldspar. Epidote also occurs 

within a calcite-rich layer. In sample 82-V-76a, 

ca-amphibole porphy~~blasts are concentrated in layers, 

where they are set in a matrix of felt-like mats or 

aggregates of biotite which enclose recrystallized detr i t al 

grains of quartz and feldspar. The amphibol~-rich layers ~rc 

interbanded with fine scale quartz - magnetite layers, in 
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which there is only minor amphibole. Magnetite i.s the only 

opaque phase identified in both samples. 

Analyses of amphibole-biotite pairs are given in Table 

A.lO. In 82~V-76a the ca-amphibole is ferro par~asitic 

hornblende (Leake, 1978), whilst in 82-V-58a 

cummingtonite-grunerite (63% grunerite end member) occurs. 

Coexisting biotite from both samples is Fe-rich; M/FM values 

are 0.30 and 0.34. Plagioclase in 82-V-58a is oligoclase (An 

20). 

At medium grades garnet is commonly associated with 

amp,libole-bearing iron formation, an association that was 

also noted by Bostock (1977) in the Itchen Lake region. one 

sample (81-V-36b) examined from the AZ contains garnet and 

brown amphibole (probably gedrite). The amphibole is altered 

to an Fe··rich brown-orange chlorite and garnet and biotite 

are also chloritized. Analyses of garnet, biotite and the 

altered amphibole are given in Table A.lO. Both ilmenite and 

pyrrhotite are also present. 

Both amphibole analyses presented above are from the BZ, 

hence the data does not allow an examination of either the 

variation in amphibole composition or mineral assemblage 

with metamorphic grade. For this reason some of Bostock's 

(1977) results are included here. Bostock (1977) analysed 

the compositions of coexisting hornblende-grunerite, 

horr.blende-grunerite-garnet and hornblende-cummingtonite 

from silicate iron formation in the Itchen Lake region, in 

an attempt to determine any variation in Mg-Fe partitioning 
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between amphiboles that might reflect changes in metamorphic 

grade. He found that "the degree of alumina contamination of 

the iron formation beds is probably th~ predominant factor 

affecting the Fe-Mg distribution in amphiboles ... " and 

listed the important factors governing the composition of 

the amphiboles as: 1) the Mg/Fe ratio of the iron formation 

layer; 2) the alumina content of the layer, which affects 

the distribution of Fe-Mg in coexisting amphiboles through 

the degree of alumina substitution in Ca-amphibole~ 3) the 

occurrence of Fe-rich garnet, ·~hich produces higher MgjFe 

ratios in coexisting amphiboles and; 4) oxygen fugacity (the 

influence of this significant factor was not examined by 

Bostock because Fe3+ dP~9rminations were not of high enough 

accuracy). 

2.8.3 Chlorite - Biotite Zone 

The low-grade iron-rich samples examined are 

fine-grained shales or mudstones consisting predominantly of 

chlorite with lesser biotite, quartz and plagioclase. Some 

samples contain trace amounts of ~-feldspar. Muscovite is 

either present in small quantities or absent from these 

assemblages. Two of the samples (81-V-122, 137) contain 

abundant hematite and carbonate. 

Analysed chlorites and biotites are enriched in Fe 

relative to those from metagreywackes (Table A.ll, Figure 

38). Where muscovite is present it is celadonitic and 

Fe-rich, containing 3-4\ FeO (total Fe as FeO). In Fe - rich 
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bulk compositions, such as iron formation, biotite forms at 

lower grades than in greywackes. In AKF space (Figur~ 39) 

the muscovite-chlorite-biotite subtriangle is displaced 

toward the KF face in comparison with that for greywackes. 

2.8.4 Garnet +/- Staurolite-bearing Assemblages 

At medium-grades of metamorphism the iron formation and 

associated Fe-rich turb~dites may contain garnet, 

staurolite, biotite, quartz, plagioclase, magnetite, 

ilmenite, pyrrhotite and rare K-feldspar. In addition 

cordierite, andalusite and sillimanite are also found in 

some of the Fe-rich metasediments, and in many of these 

cases garnet and staurolite are metastable relics. Garnet 

andjor staurolite-bearing assemblages are not observed prior 

to medium-grades (also noted by Bostock, 1977). The mineral 

assemblages observed in the medium-grade Fe-rich 

compositions are listed in Table 4 and mineral compositions 

for most of these assemblages are given in Table A.l2. 

Coexisting minerals are depicted in AFM topology in Figure 

40. Iron enrichment of the Contwoyto Formation turbidites 

adjacent to iron formation demonstrates that a range of bulk 

compositions exists. The degree of iron enrichment can be 

gauged both by the mineral phases pr~sent and by the Fe-Mg 

contents of these phases (see 2.8.5). 
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Figure 39: AKF diagram illustrating the modelled 

relationship between the first appearance of 

biotite, celadonite content of muscovite and rock 

composition (adapted from Mather, 1970). In 

iron-rich, low-alumina rocks (rock 1) biotite 

coexists with celadonite-rich muscovite (Ml). As 

tem!'erature increases the amount of celadonite 

substitution in muscovite decreases, muscovite 

compositions migrate toward the A - apex (M2 then 

M3) and the muscovite-chlorite-biotite stability 

field shifts so that progressively more aluminous 

rock compositions become biotite bearing (rock 2 

then rock 3) . 
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TABLE 4 : Observed Garnet +/- Staurolite-bearing Assemblages 

Garnet - biotite 
Garnet - biotite -
Garnet - biotite -
Garnet - biotite -
Garnet - biotite -
(staurolite) 
Biotite - cordierite 
Biotite - cordierite 
Biotite - cordierite 
Biotite - cordierite 
Biotite - cordierite 
Biotite - andalusite 
- muscovite* 
Biotite - cordierite 

(staurolite) 
cordieri te -
a ndalusite -
cordierite -

-(garnet) 

(stauroli::e) 
sillimanite - (staurolite) 
andalusite - sillimanite -

-sillimanite - (garnet) 
- sillimanite - (staurolite) 
- andalusite - muscovite - (staurolite) 
- (st.-.urolite) - muscovite* 
-sillimanite - (staurolite) - (cordierite) 

- andalusite - muscovite 

r-' ' :~erals in brackets m:~y r e present metastable relics. 
Asterisk (*) denotes post-tectonic muscovite 
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Figure 40: AFM projection of mineral assemblages in iron 

formation and iron-rich metasediments. Method of 

projecting through plagioclase for muscovite-free 

assemblages is after Thompsen and Bard (1982). 

Assemblages have ~een plotted on several diagrams 

to lessen tie-line overlap. 

(A) 4 - sample 214b - staur- garn-bio 
5 - sample 2J - garn-bio 
6 - sample 383d - garn-bio 
7 - sample 38 - garn-bio 
10 - sample 39 - cord-bio-staur* 

(B) 3 - sample 252 - cord-bio-garn*-sill** 
9 - sample 347a - andjsill-cord-bio-staur* 

(C) 2 - sample 14J - garn-and-bio-staur• 
cord-and-bio-st~ur* 

(D) 1 - sample 15a - garn-and/sill-bio-staur* 
8 - sample 55h - cord-and-bio-musc 
11 - sample 153 - cord-~ndjsill-bio-stau~ * 

* relict phase 
** sillimanite observed in outcrop and sample but 
not in thin section. 
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i) Garnet 

Garnets vary from idiomorphic porphyroblasts contained 

within the quartzofeldspathic biotite-rich matrix or within 

andalusite porphyroblasts, to embayed relics surrounded by 

coarse-grained quartz and plagioclase in the matrix or in 

cordierite porphyroblasts. In one sample of the garnet­

cordierite-biotite assemblage garnet is present as embayed 

relics in the matrix but as idioblastic porphyroblasts in a 

plagioclase-rich layer isolated from cordierite. Rotation of 

some garnets with respect to the external matrix foliation 

is apparent, although other garnets completely overgrow the 

matrix fabrics. 

Garnet is the most Fe-rich phase present in these rocks, 

consisting of 75-87% almandine molecule (Table A.12). 

Garnets from the assemblages garnet-biotite and garnet­

staurolite-biotite tend to be the most almandine-rich, whil e 

those found in cordierite-bearing assemblages havo higher 

pyrope contents (Table A.12). The garnets are commonly 

zoned: inclusion-rich cores are surrounded by inclusion-free 

rims with locally a dusting of opaques (rutile/ilmenite ?) 

delineating cores from rims. Compositionally the cores 

usually contain more Ca and Mn and less Fe and Mq th<tn the 

rims (Table A.l2), exhibit i ng normal zoning (Holli s t e r, 

1966). One garnet (81-V-JBJd) was found to be 

compositionally homogeneous, containing no discernible ur 

consistent chemical trend from core to rim. Ga rnet from 
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sample 81-V-38 shows a trend toward more Fe and Ca and less 

Mn and Mg in the core than in the rim. 

ii) staurolite 

Staurolites range in size from 5 mm poikiloblasts to 

much less than 0.1 mm relics, and are rarely idioblastic in 

outl1ne. small embayed or subidioblastic twinned crystals of 

staurolite are found within xenoblastic cordierite, where 

they form armored relics (Figure 41). Staurolite relics 

within the matrix and less commonly within cordierite, are 

often embayed by coarse-grained quartz, pla9ioclase and 

biotite and in some samples are associated with randomly 

oriented chlorite laths. 

In a sillimanite-bearing sample (81-V-15a), staurolite 

is embayed by and included within andalusite porphyrcblasts 

(Figure 42). In the matrix of this sample staurolite is 

surrounded by coarse-grained plagioclase crystals. Garnet 

from this sample is idioblastic. 

Staurolite is partly replaced by garnet in sample 

81-V-214b. Here, staurolite is prejsyn-biotite schistosity; 

garnet on the other hand post-dates the biotite schistosity. 

The foregoing relationships suggest that staurolite formed 

prior to garnet in this rock. 

Variations in staurolite composition are dependent on 

the associated mineral assemblage (Table A.l2, Figure 40): 

staurolite coexisting with garnet-biotite has the lowest 

- 1J9 -



Figure 41: Photomicrograph of staurolite relics in 

cordierite. Plane light. Length of section shown 

approximately 2.9 mm. 

Figure 42: Photomicrograph showing staurolite embayed by 

cndalusite and subidioblastic garnet 

porphyroblasts in andalusite. Crossed nicols. 

Ler.gth of section shown approximately 3.0 mm. 





M/FM ratio, while that from cordierite andjor 

aluminosilicate-bearing assemblages is more Mg-rich. 

iii) Biotite 

In many instances biotites from the Fe-rich rocks have 

lower M/FM ratios than those in the muscovite-bearing 

greywackes (Figure 43). The most Fe-rich biotites are found 

in the assemblage garnet-staurolite-biotite, while the most 

Mg-rich occurs with garnet and cordierite (Table A.l2, 

Figure 40, 43). In the remaining assemblages M/FM ratios of 

biotite in iron formation and greywacke may differ only 

slightly. 

2.8.5 Compositional considerations 

The mineral assemblages that have been described do not 

represent a single, uniformly Fe-rich composition: they are 

representative of a range of compositions. This is because 

of the variable degree of iron enrichment of the 

interlayered greywacke rocks. The mineralogical effect of 

this progressive enrichment is illustrated below. 

Whether or not the iron enrichment of the greywackcs is 

primary or metamorphic cannot be determined from the data 

presented in this study. However, Ford (1988) carried out a 

thorough geochemical investigation of iron formation in the 

Slave Province (including the Tree claims found in this 

study area). He concluded that the progression from 

bordering metasediments to pelitic iron formation to 
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amphibolitic iron formation represents an original 

continuous spectrum of decreasing clastic sediment and 

increasing chemical sediment. 

A sequence of three samples from the AZ was collected 

from within a garnet-bearing iron formation layer and up to 

two meters from the layer (Figure 44). It was found that the 

abundance of garnet decreased from greater than 50% (sample 

a; Figure 44) to less than 2-3% (sample b) over a distance 

of about one meter. All the rocks within this interval 

contain the assemblage garnet-biotite, but two meters away 

garnet no longer occurs. The most distant sample (d) 

contains staurolite, cordierite, andalusite, biotite and 

muscovite, with staurolite present as inclusions in 

cordierite. The mineral assemblages and bulk rock 

compositions are depicted in AFM topology (Figure 44), along 

with an intermediate assemblage of garnet-biotite-staurolite 

(sample c) which was not observed but has been recorded 

elsewhere in the area. Possible rock compositions to account 

for the range of assemblages are also shown. 

In another location, a sample (Bl-V-55h) collected 

adjacent to garnetiferous iron formation was found to 

contain the maximum-phase AZ mineral assemblage (i.e 

andalusite- cordierite-biotite). However, the analysed 

ferromagnesian minerals are Fe-richer than greywacke 

equivalents (Table A.l2, Figure 40). 

The variation in Fe-content of aluminous metasediments 

adjacent to an iron formation layer is thus reflected in: 1) 

- 14h -



Figure 44: The influence of bulk rock composition on type 

and abundance of ferromagnesian minerals. (A); 

AFM projection of a sequence of samples collected 

from the AZ within and adjacent to a layer of 

iron formation showing the variation in 

mineralogy. Projection uses method of Thompson 

and Bard (1982). (B); abundances of 

ferromagnesian minerals as a function of bulk 

rock composition. See text for explanation. 
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the modal abundance of garnet~ 2) the presence of staurolite 

and 3) the Fe-content of cordierite, biotite and muscovite. 

2.8.6 Reactions in Garnet+/- Staurolite Assemblages 

All assemblages containing garnet andjor staurolite 

(Table 4) coexist with plagioclase, quartz and ilmenite. 

Muscovite is absent from most of these assemblages and as 

such is not considered as a participant in the majority of 

the reactions to be proposed. The available Al and K in 

these rocks may have been used to form biotite rather than 

muscovite. However, it is also possible that the rocks were 

muscovite-bearing originally but that muscovite was reacted 

out of the system. 

Chlorite is part of the equilibrium assemblage of the 

low-grade rocks, but in many of the medium-grade rocks it 

appears retrograde in origin as a result of the alteration 

of garnet and biotite. Whether chlorite coexisted with 

staurolite when cordierite and andalusite formed is not 

clear from the microstructures (see also Thompson, 1978). 

The reactions to be proposed for the garnet +/­

staurolite assemblages are represented on a sequence of AFM 

diagra1ns (projected through plagioclase) , following the 

principles of Thompson and Bard (1982; Figure 45). Xl 

through X4 are inferred bulk compositions and their progress 

is followed through reactions inferred from the observed 

mineral assemblages. 
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Figure 45: Depiction of reactions occurring in iron-rich 

garnet/staurolite assemblages as a function of 

bulk composition and increasing metamorphic 

grade. See text for expl3nation . Method of 

plotting after Thompson and Bard ( 1982) . 
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Garnet is considered to have formed at or near the onset 

of medium-grade metamorphism. The continuous reaction 

Fe-chlorite + quartz = garnet + H2o (R.S) 

(modified from Chakraborty and Sen, 1967) leads to the 

association garnet-chlorite-biotite in rock xl (Figure 45a). 

Biotite and remaining chlorite become more Mg-rich as a 

result of this reaction. The most Fe-rich assemblage 

observed occurs in the two-phase region garnet-biotite (rock 

x2), which remains stable throughout all the topological 

changes in the sequence. 

The presence of staurolite in chlorite-bearing rocks has 

not been established as neither chlorite nor muscovite is 

found in the staurolite-garnet-biotite assemblages. However, 

their previous existence is assumed (see above and Figure 

45a), so that formation of the staurolite-biotite-garnet 

assemblage may have occurred by the continuous reaction 

chlorite + muscovite ; staurolite + biotite + quartz + H
2
o 

(R.9) 

(Figure 45b; Hosheck, 1969). 

In rocks that contain both staurolite and garnet, 

microstructural evidence indicates that staurolite was the 

earlier formed of the two minerals. The formation of garnet 
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from staurolite may thus have proceeded via a continuous 

reaction of the type 

staurolite + chlorite + quartz = garnet + H2o (R.lO). 

It is possible to balance such a reaction without the 

presence of an aluminosilicate to compensate for excess Al 

in the products, if approximately 12 times the amount of 

garnet is formed as staurolite is destroyed. 

The formation of staurolite prior to garnet is possible 

only in rocks that were initially in the staurolite-chlorite 

two-phase region (x3 in Figure 45). Subsequently rock x3 is 

overridden by the staurolite-garnet-chlorite subtriangle and 

the abundance of garnet increases at the expense of chlorite 

and staurolite. The discontinuous reaction 

garnet + chlorite + muscovite staurolite + biotite + H2o 

(R.ll) 

simultaneously accounts for the coexistence of staurol ite 

and biotite in rock x3 and the disappearance of chlorite 

from rock xl, leaving the assemblage garnet-staurolite­

biotite in this more Fe-rich bulk composition (Figure 45b). 

The continuous reaction R.9 results in an increase in 

the proportions of staurolite and biotite and a decrease in 

chlorite content, leaving rock x3 in the staurolite-biotite 

field (Figure 45b-c). The staurolite-biotite-chlorite 
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subtriangle eventually encompasses rock x4 (originally 

containing chlorite-biotite) as it shifts to Mg-richer 

compositions (Figure 45c). 

The stable coexistence of cordierite and staurolite 

(which is implied but not observed) may be related to the 

discontinuous reaction 

chlorite + muscovite + quartz = staurolite + cordierite + 

(R.l2). 

Note that rock o subsequently lies in the cordierite-biotite 

two-phase region of medium-grade metamorphism (Figure 45d, 

e) and that rock compositions xl, 2 and 3 are unaffected by 

this reaction. 

The presence of minute staurolite relics within 

cordierite porphyroblasts suggests that the breakdown of 

staurolite led to the formation of cordierite which may be 

explained by the continuous reaction 

staurolite + biotite + quartz = cordierite + muscovite + H2o 

(R.l3). 

This reaction results in the depletion of staurolite and an 

increase in the proportion of cordierite in rock x4 . 

In theory the coexistence of staurolite and cordierite 

should be terminated by the discontinuous reaction 
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staurolite + cordierite + muscovite + quartz ; andalusite + 

biotite+ H2o (R.l4) 

so that rocks x4 and o enter the three-phase region 

cordierite-biotite-aluminosilicate (Figure 45 e-f). 

Reactions R.13 and R.14 could account for the observed 

staurolite relics within cordierite which itself rims or is 

partly surrounded by andalusite, if the growth of cordierite 

isolated staurolite from other reacting phases, or if 

muscovite was totally consumed so the reaction R.14 ceased 

before all staurolite was consumed. 

Rock x3 enters the three-phase staurolite-andalusite­

biotite region (Figure 45f) through the continuous reaction 

staurolite + muscovite + quartz 

+ H20 

aluminosilicate + biotite 

(R.l5). 

The final breakdown of staurolite in the presence of 

muscovite occurs by the discontinuous terminal reaction 

staurolite + muscovite + quartz = garnet + andalusite + 

biotite +H2o (R.l6) 

(Figure 45f; Hollister, 1966; Richardson, 1970). In the 

absence of muscovite, staurolite breakdown would occur at 

slightly higher temperatures by the reaction 
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staurolite + quartz = garnet + andalusite + H2o (R.l7). 

Reactions R.16 and R.17 account for the unstable appearance 

of staurolite (as relict inclusions in other phases) in the 

assemblages staurolite-garnet-biotite-aluminosilicate (rock 

x3), and imply that staurolite stability was been exceeded 

in both muscovite-bearing and muscovite-free rocks. 

Relatively unambiguous mineral parageneses in Fe-rich 

aluminous rocks such as these make the interpretation of 

reactions much easier than for greywackes. In addition many 

of the reactions have been experimentally calibrated and can 

be reasonably located on a petrogenetic grid, in comparison 

to some of the reactions determined for greywacke 

compositions. 

Iron formation typically occurs within turbidites of the 

Contwoyto Formation; only rarely are the Itchen Formation 

turbidites rich enough in iron to have formed garnet (or 

other Fe-rich ferromagnesian minerals). Since Itchen 

Formation metasediments occur continuously eastward from 

within the Keskarrah Bay area to east of the eastern Point 

Lake area and adjacent to the Yarnba batholith (Bostock, 

1980; King, 1981), there is a lack of information on the 

metamorphic mineralogies formed in Fe-rich rocks at higher 

grades than those described herein. 
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2.9 Point Lake and Keskarrah Formations 

2.9.1 Metabasites, Point Lake Formation 

Mafic metavolcanics (unit 4) in the central part of the 

map area were examined in order to compare their metamorphic 

signature with that of the turbidites of the Contwoyto 

Formation (unit 9a), which record low grade (CHZ) 

metamorphism. In Figure 46 the distribution of the mineral 

assemblages observed in these metabasites is illustrated, as 

well as the approximate locations of the boundaries between 

the chlorite, chlorite-actinolite and chlorite-actinolitic 

hornblende zones. The trends of the isograds separating 

these zones (Figure 46) together with the isograd 

distribution shown for greywackes suggest that the 

metamorphic grade increases from a low in exposures east of 

unit 2 (Figure 46) outwards towards both the northwest and 

southwest (Figure 6). However, as will be shown below, a 

discrepancy may exist between the metamorphic grade recorded 

by the metabasites and that recorded by the adjacent 

metasediments. 

Results of the limited microprobe analyses of 

amphibole-bearing metabasites are listed in Table A.13 and 

are plotted on an ACF diagram in Figure 47. Amphibole 

compositions range from actinolite to ferro-tschermakit i c 

hornblende (Leake, 1978) with increasing grade. Chlorites 

display a prograde trend toward more magnesian compositions 

and decrease ·in modal abundance. Epidotes contain about 
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10-20\ FeO (probably as Fe2o3 ). Plagioclase compositions (as 

identified optically) are variable, ranging from albite to . 
andesine, but n~ systematic variation was determined. 

Chlorite is a ubiquitous member of the equilibrium 

assemblage and on this basis the metabasites document 

low-grade metamorphic conditions (Winkler, 1976, p.170). The 

appearance of actinolite in the equilibrium assemblage, 

possibly through the reaction chlorite + calcite + quartz = 

epidote + actinolite+ co2 +H2o (Deer et al, 1966, p. 67), 

may indicate the change from lower to upper low-grade, but a 

reaction of this type is strongly dependent on the 

composition of the vapor phase present. The blue-green color 

of hornblende in these rocks is indicative of the upper 

portion of low-grade metamorphism (Miyashiro, 1973, p.254). 

Moody et al. (1983) noted the following changes across 

the low-gradejmedium-grada boundary that characterize the 

transition zone and are pertinent to this study: 1) the 

first appearance of actinolite or actinolitic hornblende and 

a decrease in the amount of chlorite below the boundary; 2) 

above the boundary amphiboles contain increasingly more Al, 

Ti and Na until in medium-grade hornblende is present 

without chlorite; 3) chlorite becomes Mg-richer as its 

abundance diminishes; and 4) the disappearance of chlorite 

marks the end of the transition. 

The mineralogical changes noted within these mafic 

metavolcanics are comparable to those cited by Moody et al. 

(1983) and indicate that metamorphic conditions reached the 
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low/medium-grade transition zone but did not breach the 

boundary (hornblende and chlorite stable) • . This conclusion 

is in contrast with the metamorphic grade determined for the 

adjacent metagreywackes, which record uniquely low-grade 

(muscovite-chlorite) conditions. However, given the 

abundar.ce of calcite in the metabasites, it seems likely 

that the fluid phase was enriched in co2 relative to that of 

the metagraywackes and that this resulted in the reactions 

occurring at lower temperatures than those predicted for an 

H20-rich fluid phase. It is, however, also possible that the 

pattern of metamorphic zonation between these two units 

reflects a structural overprint - a combination of folding 

and faulting of the isograds. The present data are 

insufficient to distinguish between these two hypothesis . 

Mineral assemblages observed in the banded mafic 

volcanics (unit 3) lack chlorite; the dominant equilibrium 

assemblage is hornblende-plagioclase. The stability fie l d of 

low-grade metamorphism has therefore been surpassed for 

these rocks (Winkler, 1976; Moody et al, 1983). This is in 

accord with the medium-grade assemblages recorded by the 

neighbouring metagraywackes. 

2.9.2 Metafelsites, Point Lake Formation 

Metamorphism of the felsic volcanic rocks (units 5 and 

6) predominantly resulted in the development of muscovite, 

biotite and chlorite, with less aluminous compositions being 

muscovite-free and containing garnet-biotite+j-amphibole. 
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Microprobe analyses of garnet, biotite and amphibole from 

two widely separated samples (81-V-170, 82-V-73: Appendix A) 

are given in Table A.14: the data from sample 8l··V-170 are 

of poor quality, but they are included in the text for 

illustrative purposes. The amphiboles are within the 

compositional range of ferro-tschermakit~ to ferro­

tschermakitic hornblende (Leake, 1978); and biotite is 

relatively Fe-rich, having M/FM values comparabl e to those 

of biotite in iron formation. Garnets from both samples are 

almandine-rich, although compared to garnets from iron 

formation they contain more Ca and Mn. The analysed garnet 

from sample 82-V-73 is compositionally zoned, with rims 

containing more Fe and Mg and less Ca and Mn than the cor e 

(normal zoning). 

The presence of hornblende and absence of chlorite in 

the felsic volcanics indicates that medium-grade metamorph i c 

conditions were approached or reached, with precise 

definition being hampered by the quartzofeld~pathic 

compositions. No variation in metamorphic grade could be 

determined within the felsic volcanic unit and it appears 

that the presence or absence of garnet is controlled by bul k 

composition rather than the physical conditions of 

metamorphism. 

Amphibole from the siliceous carbonate f ormation {unit 

1: sample 81-V- 430a), which is associated with the felsic 

volcanics, approximates hornblende in composition (Table 

A.14). 

- 160 -



2. 9. 3 Keskarrah Formation conglomerate 

Chlorite and muscovite are the only Fe-Mg-Al silicates 

identified within the conglomerate (unit B) and lithic 

clasts show a variety of intricate primary textures. The 

absence of biotite and preservation of primary textures 

indicates the low metamorphic grade of the unit. 

2.10 Geotherrnometry and Geobarometry 

2 .10 .1 General Statement 

The garnet-biotite geothermometer and garnet­

aluminosilicate-plagioclase-quartz geobarometer have been 

applied to two samples of the medium-grad.., metasediments of 

the Contwoyto Formation (unit ~} c) and one sample of the 

Itchen Formation (unit 10). Two domains were analysed in 

each of the Contwoyto Formation samples to yield two 

pressure and temperature estimates, which are used to 

determine consistency and accuracy of the analyses. Results 

from several garnet-biotite assemblages, including one 

sample from the felsic volcanics, provide additional 

geothermometric constraints. The conditions of metamorphism 

and predominance of Fe-poor whole-rock compositions 

precluded the widespread development of garnet-bearing 

assemblages and so there is a limited distribution of 

pressure and temperature estimates. 

· The compositions of coexisting garnet-biotite pairs have 

been previously listed (Table A.l2). Atomic proportion of 
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Fe
3

+ in garnet is estimated by assuming electrical 

neutrality, with any site vacancies being occupied by Fe3+; 

Fe
3

+ content of the garnets thus calculated is small. The 

garnets are zoned and calculations have been performed on 

core, inner rim and outer rim compositions (see 2.10.4). 

Biotites display no evidence of zoning; Fe in biotite is 

assumed to be all re2+. 

2 . 1 o. 2 Geothermomet ry 

Ferry and Spear (1978) calibrated the partitioning of 

Fe
2

+ and Mg 2+ between coexisting garnet and biotite to 

estimate temperatures of metamorphism. Their polybaric­

polythermal equation has been applied to the medium-grade 

rocks of this study. Garnets fall within the compositional 

bracketsof ((Ca+Mn) 1 (Ca+Mn+Fe+Mg)) <0.20and 

0.80 < (Fe I (Fe+ Mg)) < 1.0, respectively, that were 

recommended by Ferry and Spear. Temperatures thus derived 

are estimated to be accurate to within 5o·c. Table 5 

presents the data relevant to Ferry and Spear•s calibration, 

with sample locations given in Appendix A. 

2. 10. 3 Geobarometry 

Metamorphic pressures are estimated using the 

equilibrium constant equations for the assemblage 

plagioclase-garnet-aluminosilicate-quartz derived by Ghent 

(1976) and modified by Ghent et al. (1979). The latter 

authors empirically estimated a value of -o. 4 for the 

activity coefficient product to relate the grossul.ar-
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TABLE 5: Results fro~ Geothernometry and Geobarometry 

l·lq/Fc ln Kd TeMp(•c)• XCa*• log Kd Pressure (kbar) ••• 

GARN BIO G,\flN PLliG 
O.R I.R CO~E O.R I.R cone o. n I.R CORE 

sample no. 
O.R 1. R CORE O.R I R CORE O.R I. R CORE 

81-V-14 3 ( 1) . 120 .133 .13 3 .687 -1.74 5 - 1.642 -1. 642 565 605 605 . 037 .037 .038 .286 -2.664 -2.664 -2.630 3.1 3. 6 3.8 ( 2) .110 .122 .lJ3 . 687 -1.832 - 1.728 -1.6 42 535 578 605 .031 .037 .038 .286 - 2.895 - 2. 664 -2.630 2 . 0 3.4 4.0 
81-V-1Sa (1) . 100 .110 .110 .672 -1. 905 -1.801 -1.801 510 545 54 5 .047 .050 .o~e . 4 S6 -2 . 961 - 2.880 - 2 . 93) 1.5 2.2 2 . 0 ( 2) . 101 .111 .099 . 657 -1.87] - 1.776 - 1.89] 520 551 51 5 .046 . oso . 047 • 4 50 - 2 . 9 72 - 2.8G3 -2.944 1.6 2.3 1.6 

81-V-252 .197 1 . 114 -1.7 33 565 . o: a .243 -2.816 2.7 

81-V-381 ( 1) . 113 . 1 08 .095 .655 -1.757 -1.803 -1.931 558 543 504 
(2) .119 . 113 . 114 .667 -1.724 - 1.775 - 1.767 569 552 554 

81-V-231 .127 .13 2 . l OR .816 - 1.860 - 1.822 - 2. 022 52 5 537 479 

81-V-214b# . 0 75 .072 . 445 -1.781 -1.821 550 537 

81- V- 383dl . 107 • 70 51 -1.8~5 518 

82-V-731 .086 . 083 . 681 - 2 . 069 -2.105 467 458 

I Fcrrv and Spear (1978) calibration at 2.07kb: (1n I<• -2109 / T ( " I<) • 0.782, where 1n I<• I ( Mg / F'e; garnet) I (11q / Fe; bioi tel I . Exceot for those sam~les marked with I temperature i s derived fro11. Ferry a nd Spear's 11978) polybaric/polythermal equation 
Csee text). 
xca ... (Ca)/[(Ca l o(~n)o(Fe)o(Mgl I for garnet and xca .. (C~l / [ (Ca )o(Sa)o (K) 1 fo r plagi oclase, where ( )• atomic proportion. 
Ghent (1976) calibration modi fied by Gh~nt et al. (1979): 0 : -2551.4 /T (•K) . 7 .1 1 11 - 0.2842(P- l)/T(°K) + log Kd - ( - 0 .4), 
where l og Kd= llog Xqarnet/grossular - Hog Xpla~ iaclase/ anorthite. 



anorthite curve to the kyanite-sillimanite isograd. This 

value has been adopted in the calibration of this study 

although the samples used here approximately straddle the 

andalusite-sillimanite isograd. Data relevant to this 

geobarometer are listed in Table 5 and the calculated 

pressures are considered to be accurate to within 1.6 kbar 

(Ghent et al., 1979). 

2.10.4 P-T Estimates 

The Ferry and Spear (1978) and Ghent et al. (1979) 

calibrations can be simultaneously solved to yield a unique 

P-T estimate for each mineral association providing it is 

assumed that the geothermometer (exchange reaction) and 

geobarorneter (net transfer reaction) both blocked at the 

same point on their P-T trajectory. This assumption has been 

made in the P-T estimates that follow even though the zoning 

in garnets indicate continued reaction subsequent to peak 

conditions. Results of this study are shown graphically in 

Figure 48 and are also tabulated (Table 5) • 

Tracy et al. (1976) noted that at medium grades of 

metamorphism (such as in this study) growth zoning (both 

prograde and retrograde) in garnets may be preserved. 

Previous studies (for example Ghent, 1976: st.onge, 1984) 

have concluded that it is the inner rim portion of a zoned 

garnet that is in equilibrium with compositionally 

homogeneous minerals such as biotite and plagioclase. 

However, Tracy et al. (1976) reasoned that Kd determined for 
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Figure 48: P-T estimates from garnet-biotite-plagioclase­

aluminosilicate-bearing assemblages. Sample 81-V-

143 (A and B), andalusite-bearing; sample 81-V-

15a (C and D), andalusite-sillimanite-bearing; 

sample 81-V- 252 (E), Itchen Formation, 

sillimanite not observed in thin section but is 

present in outcrop. See text for explanation. 

Relevant data presented in Table 5. 
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garnet cores and matrix biotite should yield a substantially 

correct estimate of prograde temperature provided that the 

rock contains very little garnet, andjor retrograde outer 

rims of the garnets are extremely narrow and there are no 

other abundant Fe-Mg-Mn phases. The studies of Spear and 

Selverstone (1983) and Spear et al. (1984) have utilized 

garnet zoning profiles to determine quantitative P-T paths 

(see below). Because most of the analysed .garnets of this 

study are zoned, results are shown for core, inner rim and 

outer rim portions (Figure 48; Table 5). 

Three samples were analysed to provide P-T estimates, 

two of which contain zoned garnets. Garnet analyses was not 

carried out in the detail required to determine zoning 

profiles (or composition maps), therefore the width of the 

garnet retrograde rims is unknown. However, the relative 

modal mineralogy of these samples is compatible with the 

criteria recommended by Tracy et al. (1976), enabling the 

u~e of the composition of garnet cores and matrix biotite to 

determine prograde temperatures. Sample 81-V-15a (containing 

about 5-10% garnet and 1% staurolite) comes from just above 

the sillimanite isograd, while sample 81-V-143 (containing 

about 3% garnet and 1% staurolite) was collected 4 km 

further up-grade within the SZ (Figure A.l; Appendix A). 

Using inner rim compositions, P-T estimates for the samples 

range from 2.2 kbar and 545"C to 3.6 kbar and 605"C (Table 

5) . While both samples yielded internally consisten~ P-T 

estimates, there is considerable variation between the 
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samples (Figure 48), so the variation in the P-T data may 

reflect actual differences in metamorphic conditions. 

However, estimates from sample 81-V-15a place this sample 

within the AZ according to the aluminosilicate phase diagram 

of Holdaway (1971), which is inconsistent with the observed 

SZ mineral assemblage. 

As indicated in Figure 48 (a,b,d) garnet cores appear to 

have equilibrated at higher temperatures and pressures than 

the outer rims, suggesting that garnet growth continued 

during decompression associated with retrograde metamorphism 

(Spear and Selverstone, 1983). Figure 48c could indicate 

garnet growth during initial prograde compression, followed 

by decompression and retrograde metamorphism (Spear and 

Selverstone, 1983). 

Geothermometric data from samples lacking sillimanite 

(Table 5) als0 suggest prograde garnet growth, with cores 

recording lower temperatures than rims. This is also 

supported by the normal compositional zoning of these 

garnets (Table A.l2). The range of temperatures (from about 

480• - 55o•c) for these samples (derived from Ferry and 

Spear's (1978) calibration at 2.07 kbar) is within the realm 

of medium-grade metamorphism. The sample from the felsic 

volcanic unit gives temperatures of approximately 460"C 

(Table 5), slightly lower tha~ the range of temperatures 

from the medium-grade iron formation. 

Sample 81-V-252 is from the SZ of the Itchen Formation 

and contains the assemblage garnet-biotite-cordierite-
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staurolite. Garnet is compositionally homogeneous and is 

present as embayed relics within cordierite. Because of the 

scarcity of garnet in the mineral assemblages of the Itchen 

Formation, P-T estimates were carried-out on this sample 

even though it is not part of an equilibrium assemblage with 

plagioclase and biotite. P-T determinations of 2.7 kbar and 

565•c (Table 5, Figure 48e) place this sample within the 

field of andalusite (Holdaway, 1971), however within the 

limits of analytical error results are consistent with the 

observed SZ mineral assemblage. 

2.11 Petrogenetic Grid 

A petrogenetic grid has been constructed for both the 

metagreywackes and iron-rich metasediments of the area 

(Figure 49a,b) to illustrate the P-T relationships of many 

of the reactions. In estimating the P-T path the following 

have been considered: 1) observed textural relationships 

between coexisting phases; 2) observed sequential 

development of mineral phases; and 3) results of 

geothermometry and geobarometry. 

Continuous reactions occur in P-T space as bands or 

zones across which reactions affect different rock 

compositions. Most of the continuous reactions affecting the 

rocks of thiE are~ have not been bracketed by experimental 

calibration and so most are not illustrated in Figure 49. 

The curves on the P-T grid thus correspond mainly to the 
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Figure 49: P-T grids constructed for the Keskarrah Bay area; 

(A) for greywacke compositions; {B) for iron-rich 

compositions; {C) estimated P-T path from garnet 

zoning profiles. Curves representing reactions 

R.11, R.12, R.14, R.16 and the breakdown of 

muscovite to form K-feldspar and Al2sio5 are from 

the unpublished works of Carmichael, presented in 

Bailes and McRitchie {1978) and Ermanovics and 

Froese (1978). Solid circles in A and B show 

present erosion level. Aluminosilicate triple 

point after Holdaway (1971). Numbered curves 

correspond to reactions discussed in the text: 

1) generalized "biotite-in" reaction from Winkler 

(1976) 

3) chl+celadonite+Mg-bio+qtz+/-plag = cord+musc+ 

Fe-bio+H2o (modified after Thompson, 1978) 

4) cord+musc+j-ilm = and+bio+qtz+/-plag+j-rut 

(Thompson, 1978) 

5) chl+musc+qtz = cord+and+bio+H2o (modified from 

Hess, 1969) 

7) cord+musc = sill+bio+qtz+H2o (Thompson, 1978) 

11) garn+chl+musc = staur+bio+H2o 

12) chl+musc+qtz = staur+cord+bio+H
2

o 

14) staur+cord+musc+qtz = and+bio+H
2

o 

16) staur+musc+qtz = garn+and+bio+H2o 
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discontinuous reactions proposed in the text. The 

aluminosilicate triple point of Holdaway (1971} is employed 

as it is the most congruous with observed mineral 

assemblages and estimated pressures and temperatures 

obtained from geobarometry and geothermometry. curve (1) 

represents the generalized biotite-in continuous reaction of 

Winkler (1976} and is used to depict the biotite-forming 

reaction (R.1) of this study. curves representing the 

continuous reactions leading to the formation of cordierite 

(R.2} and andalusite and sillimanite (R.4 and R.7) are 

compiled from the works of Thompson (1978} and King (1981), 

with the combined consideration of the isograd spacing found 

in this study aiding in the positioning of the curves. 

Although the positions of these curves are poorly controlled 

in P-T space, their relative locations can be determined. 

For instance, reaction R.2 is constrained by its occurrence 

subsequent to the formation of biotite, its intersection 

with the discontinuous reaction R.5 within the stability 

field of andalusite and the position of the andalusite­

kyanite boundary. 

Reactions illustrated on the P-T grid that correspond to 

the more Fe-rich garnet and/or staurolite-bearing 

assemblages (Figure 49b} have been compiled from the 

unpublished works of D.M. Carmichael presen~ed in Bailes and 

McRitchie (1978} and Ermanovics and Froese (1978). 

Figure 49 also shows that there is a slight discrepancy 

(of about 0.25 kbar} between the placement o~ the 
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metamorphic .field gradient (erosion surface P-T curve) 

indicated for metagreywacke compositions (Figure 49a) and 

that for Fe-rich compositions (Figure 49b) • This discrepancy 

may reflect inaccurate positioning of the cor.tinuous 

reactions R. 3 1 R. 4 and R. 5 (Figure 49a) 1 which have not been 

experimentally calibrated. 

Although the pressure is poorly constrained at low­

grade, it is better defined at medium-grade as a result of 

the andalusitejsillimanite transition and the 

geothermometric and geobarometric investigations. The 

erosion surface P-T path thus delineated falls within 

bathozones 1 to 3 of Carmichael (1978): the andalusite­

sillimanite assemblages are diagnostic of bathozones 1 to 3 

and reaction R. 16 occurs within bathozone 2. 

Geothermobarometric results using zoned garnets have 

been used to construct both a P-T-t path for the highest 

grade rocks (Figure 49c). The retrograde part of this path 

is determined largely from the P-T data illustrated in 

Figures 48a and b. The prograde path represents the combined 

data from the erosion surface P-T path and maximum P-T 

estimates from geothermobarometry (using garnet core-matrix 

biotite data; Figure 48a). The P-T-t path indicates 

decompression (uplift) from about 4 to about 2 kbar 

accompanied by a decline in temperature from 6oo·c to soo·c. 

This pattern emphasizes the importance of cooling and upl i rt 

as suggested by England and Thompson ( 1984) and Thompson and 

England ( 1984) • These authors investigated P-T-t (time) 
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paths of regional metamorphism and noted that metamorphism 

to andalusite-sillimanite facies series is not likely 

without additional heat supply from intrus!.ves. In the 

Keskarrah Bay area such intrusives are not immediately 

apparent, other than the vol~metrically small amount of 

pegmatite and adamellite within the sz metaturbidites , which 

may have been derived by partial melting of the sediments at 

conditions of about 660"C and 5 kbar (McKinnon, 1982). 

However, the Keskarrah Bay area is situated between two 

batholith terranes (the Yarnba batholith to the east and 

'Pointless• batholith to the west) which could conceivably 

have provided additional heat sources. 
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3.0 STRUCTURE 

3.1 Introduction 

Structural elements observed in supracrustal and 

basement rocks of the Keskarrah Bay area are indicative of 

polyphase deformation and depict a complex tectonic history 

for the area. Dominant structural trends in the supracrustal 

rocks parallel the gneiss-greenstone boundary (Henderson and 

Easton, 1977b) and elsewhere throughout the Itchen Lake 

region these trends parallel the arcu~te shape of the 

greenstone belt (Bostock, 1980; King, 1981). Large scale 

folds formed in the supracrustal rocks are mainly overturned 

toward the western margin of the belt (Bostock, 1980; King, 

1981), a relationship that is also observed over a large 

part of the southern Slave Province (Fyson, 1981; Fyson ~nd 

Helmstaedt, 1988). Deformation of the basement rocks in part 

pre-dates that of the supracrustals and also involved 

several phases of deformation (Easton, et al., 1981; Kusky, 

pers. comm.). 

The map area is divisible into two lithotectonic 

elements; the base~ent gneiss terrane and the supracrustal 

terrane. The important structural features of each of thes e 

terranes are described in the following sections and arc 

summarized in Table 6. Figure 50 shows the salient 

structural characteristics of the area and is included in 

the text for ease of reference. 
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DEFOR!-tAT!O:lAi. 
EVENT 

TABLE 6 : Summary of Deformational Events in the Reskarrah Bay Area 

SUPRACRUSTAL TERRANE 

Crenulation and kinking of S2 . 
Biotite porphyrobl~s ts oliqned i nto L-5 fabric 
(E-~E plunqe, do~n-dip of 52 plane) . 
~ormation of biotite foliation at a high angle to 
52· 
Formation of SE and NE trending biotite foliation 
(SJ and S4?). 

F2 : Macroscopic N-trending folds of s 0 ts1. Steep to 
~od~ratc plunges, variable plunge direction. ~1 
isocl ines refolded. 

S2 : Dominant foliation . N-trending, steep east-dipping . 
A~i~ l planar to F2. 

~1: Isoclinal folds of bedding, developed in western 
areas; E- t rending. 

s1: Penetrative axial plane cleavaqc in w~sterr. areas. 
Wna~ cleavage developed i n east-central areas; 
E- trending . 

NOT RECOGIHZF.D 

BASEI1ENT GNEISS TERRI.NE 

NOT RECOGNIZED 

Macroscopic NE-plunging folds of gneissic bandi ng 
and F1 isoclines (?). 
Weak axial plane foliation. Mineral l ineations 
subparallel F2 fold axis. 

Formation of isocl inal folds of gneissic banding 
or f l attening of pre-existing folds (? ) with 
de vel opmen t of axial plane 
foli.1tion. 

Formation of gne i ss@s, accompani ed by hiqh ~ cade 
metamo rph ism and anat~xis. Developmen t of 
qneissosity, pa~sibly E-trendinq. 
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Figure 50: Structural features of the Keskarrah Bay area. lsograd patterns as Figures 5 and 6. Inset diagram 
shows zonation of foliation trends 



It is appropriate to note here that inland exposures 

have a ubiquitous lichen cover which obscures some 

structural relatic.aships. Much structural informat.i on was 

gleaneu from the wave-washed and ice-scoured exposures on 

the shoreline of Point Lake, but in many instances attempts 

to trace structures inland from the shoreline were 

fruitless. 

3.2 Jeformation of t~e Supracrustal Terrane 

3. 2. 1 Folding ~vents 

i) o1 Structures in the Volcanic Units 

Compositional layering (S0?) within banded mafic 

volcanics (unit 3) was interpreted by Bostock (1980) as 

bedding within a tuffaceous unit. However, Kusky (pers. 

comm., 1986) suggested that the layering in these volcanics 

is, at least in part, tectonic in origin. A conclusion was 

not drawn in the course of this study regarding the origin 

of this layering. Therefore, should Kusky's interpretation 

be correct, the sequence of deformational events presented 

below may be incomplete. 

In t~e southwestern part of the map area, composit i onal 

layering (S 0?) within the banded mafic volcanics is folded 

into isoclinal, horizontal to shallow east-p~ ung ing F 1 folds 

(Figure 50). The associated east-trending axial planar 

foliation (S1 ) is defined by the alignment of micas and 

amphiboles. Interbedded mafic flows (~~it 4) also contain 
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the easter.l~· trending s 1 foliation (see also the map of 

Henderson and Easton, 1977b) and s 1 maintains a relatively 

consistent trend implying that the steeply plunging Y2 folds 

are little developed in this area (east cf this area F2 

folds have reoriented o1 structures: Henderson and E~~ton, 

1977b). Toward the south, s 1 dip directions ch~nqe from 

south to north and the amount of dip varies from steep to 

shallow (Figures 5 and 50). Thus the east-trending P 1 

isoclines change from upright folds in the north to folJn 

that are overturned toward the south in the ~o11thern P·' r· t u l 

the area. 

In the northwestern map area several synform.1l fold~; 

within the banded mafic volcanics have been dP.siqn<ttP.d F1 

structures (Figures 5 and 50) on the basis ot: the pn·~:Pnt · r· 

of a foliation that is considered to be s 1 is p•sr.lllel to 

the compositional layering and both this fabric and thP 

compositional layering arc folded about l<tter phil nc ~- 2 
folds. 

Mafic flows (unit 4) exposed on the islismh; in thr• nurtll 

arm of Point Lake have east-trend inq f 1 ow c o nt.s c t :; ( ~ ; 0 ) •llld 

foliations (S 1?; Figures 5 and 50). These D1 r;truc t11r.1l 

trends are preserved between domains that ;1rc ov,...rpr i nt ,.rf 1•1• 

o2 structural trends . Felsic volcanics (unit!; •, .-,nd ' ' ) 

locally contain east-trending comp•'lsition.1l l •lmin.,ti o n: : 

(S0 ?) wh i ch are parallel to a mica tol i.1tion ttl •\t m-1y 

r e present s 1 . 
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ii) o1 in Metaturbidites 

F1 folds are defined largely on the basis of che>·,ges in 

younging directions as obtained from graded bedding. several 

fold hinges have been seen, however, in the shoreline 

exposures of the low-grade Contwoyto Formation (Figure 51). 

The F1 folds are long limbed isoclines (Figure 52) that are 

in all cases refolded by later phase folds such that their 

initial orientation cannot be precisely defined over a large 

area. However, many observations of F1 fold closures were 

made where be.r.ding has an easterly strike (Figures 51,52) 

and is steeply dipping suggesting F 1 folding was about 

easterly or westerly trending horizontal axes with steep 

axial planes. 

Elsewhere in the turbidite succession opposing bedding 

facing directions are also observed and some are interpreted 

to be indicative of F1 folding. However, the axial traces 

defir~d by many of these bedding reversals have a northerly 

orientation (Figure 51) creating uncertainty as to whether 

they are the result of F 1 or F2 folding. Fo~ instance, in 

the medium-grade Itchen Formation schists these axial traces 

parallel second phase fold traces in the eastern Point Lake 

area (King, 1981). King has, however, indicated that F1 

folds with probable easterly orientations are present in the 

eastern Point Lake area, suggesting that easterly trending 

o1 structures were once more widespread. 

Deformation of the metaturbidites during o1 was 

associated with the development of an s 1 cleavage, which has 
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Figure 51: Locatiom: of observed F1 folds in low - qr,,de 

metaturbidites (unpat~erned). Folds not dr~wn to 

scale. Bedding form lines, faults and F, ~xi~l .. 
trace and plunge direction (if known) are also 

indicated. Ticks on bedding form 1 incs i ndic<lt£> 

tops. F1 folds in 1 and 2 arc as:.;oci.ltt•d with ,, 

penetrative sl ;- .. .cial pl .-tne clcava')e; th(J: ;p in) 

and 4 are not. An s 2 axial pl;,ne cleav.,•w i:> 

associated with all F2 folds st1own. 

v =volcanic rocks; + = gntnodioritc; dot:t"d 

pattern = Kes•:ilrr<lh Formation conqlom('f".tt •· . 
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Figure 52: Mesoscoplc r 1 fold styles showing the 

relationship between r
1

, 5
1

, r 2 ~nd 5 2 . A is from 

location 1 and B from location 2 on Fiqure !>2. 

Note the tight style of F1 folds ver~us the more 

open r 2 folds. s, z and m symmetry or r
1 

minor 

folds are defined by ~m~ll sc~lc told~ or 

compositional l~yering in the turbiditr~ (A and 

B) and quartz vcinlcts (B). F."lult in (H) !~hm .. ·~ 

sinistral offset. Sketchl:'s .trc dr·.twn 1 n>m 

photographs, with viewing direction oric•ntc •d 

approximately north. I<apidoqraph p1·n len ::c.t l P i n 

A. Hammcrhe~d for ~cdlc in B. 



(b) 

1: · : f: ~ j coarse- grained, medium- grained greywacke, shale 

f6il ~ ~1 : best developed in greywacke portions 

limJ ! s2 : best developed in shale pOJtions 
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a variable character. In the western area a penetrativ~, s
1 

cleavage is developed that is axial planar to F
1 

isoclines 

(Figure 52). In eastern areas a weak, non-penetrative ,,xi~l 

planar s 1 cleavage is locally developed in the hinqc zones 

of isoclinal F1 folds. s 1 here is defined by thin scdm~ of 

opaque Fe-oxides and a weak al iqnment of micas (prrssur·r• 

solution seams). Locally a weak beddinq-p.'lr.lllcl cll'.lV.ICJP 

is noted and since both of these surfaces <\r<' fo1d t•d l>y 

later F2 folds, this cleavaqc is likely iln !i
1 

f11t ' ric. 1\n ::
1 

fabric has not been recorded in the mcd i um-qr.sdP rod;:; . Th•· 

characteristics of the s 1 fabric dcvclop<'d in thr> 

metaturbidites arc discussed in a l<iter !:>Cction ( 1.2.!). 

iii) Inferred Macroscopic F
1 

Folds 

in this study: documentation of beddinrJ f •u : inq dir•·• · t i"n:. 

and bedding-cleavage relationships to ~;ub:;t,lflt i.•t•· tlw: ;c· 

folds is lacking. However, sm<lll GC<t i c F 1 f u 1 •I:; .utd ., 

..,estern margin ot thr> supr.lr: ru:.t.-,1 br•lt (:••·•· .,t..,·.·c•} .• ·~<! • n 

represent the loc•,tionG cf m:qor F 1 royn•: lln.,l r•J!d .,;,:•·' · · 

Ev idcncc prc~cnted at; O'Jf' ( !it>t.:t ion ! . /. 1 1 1} r;IJrl ' l'"'" •• t tt,,• l ' l 

.. ' 
. . ' \. 
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by a broader, dome-like anticlinal structure. Ramsay (1967, 

p. 383) describes this type of fold pattern as being common 

at basement-cover interfaces in other orogenic belts and 

suggests that it is due to the competency contrast between 

the relatively dry rigid basement rocks and their more 

ductile cover. 

iv) 0 2 in Metaturbidites 

Large scale north-trending F2 folds are characteristic 

of the main phase of folding throughout the supracrustal 

terrane (Figure 50) • Westward overturning of these folds is 

suggested by the predominance of steep east-dipping beds and 

easterly dips of the s 2 axial plane foliation. 

Throughout much of the map area a northt:.:.:ly to 

northwesterly foliation is the dominant planar feature. This 

foliation is locally axial planar to both F 2 minor and major 

folds and thus it is ascri bed to the o2 event. The s2 

foliation is predominantly defined by the alignment of 

planar minerals such as micas (muscovite, biotite +/­

chlorite). Cordierite and andalusite porphyroblasts have 

overgrown the s 2 fcliation. The nature of the s2 fol i ation 

developed in turbiditic rocks is discussed in greater detail 

bel ow ( 3. 2. 3) • 

Within the low-grade Contwoyto Formation two major F 2 

synformal fold traces are delineated (Figure 50). While the 

western synform was defined by Henderson and Easton (1977a, 

b) and substantiated during this study, the eastern syn f orm 
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is poorly documented; Bostock (1980) noted an antiformal 

fold trace to the north of this eastern structure. F2 fold 

axes are steeply plunging (Figures 5 and 50); this reflects 

the initial orienta·tion of the steeply dipping beds on the 

limbs of the F1 folds. In exposures of the western Contwoyto 

Formation on the north arm of Point Lake, F 2 fold axes 

plunge to the south on the north shore, but to the north on 

the south shore. A similar orientation is noted in shoreline 

exposures on the main part of Point Lake. This suggests that 

the Point Lake topographic low is a plunge depressi,?n. 

These opposing plunge directions may partly account for tfle 

elliptical map pattern of the western Contwoyto Formation, 

inferring a basin-type of fold interference pattern. 

The geometry of the F 2 minor folds seen in the 

metaturbidites is interpreted to reflect that of the major 

folds (compare areas 1 and 2 with 3 in Figure 51). Open 

folds with round closures characterize minor folds in the 

eastern part of the map area. In the western part of the map 

area, minor folds on the limbs of the F 2 synforms are 

typically tight with angular closures (Figure 51, areas 1 

and 2). Hinge zones are often not observed and Bostock 

( 1980) suggested that this may indi<""ate removal of isoclinal 

fold closures along shear planes. Evidence of shearing 

related to r 2 folding was not found in the turbidite units, 

however o2-related shear zones are noted within volcanic 

units (see 3.2.1 v, below). 
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Throughout rouch of the turbidites macroscopic F2 folds 

have not been inferred. The F 2 minor folds are tight to 

open, steeply plunging reclined folds with axial planes 

dipping steeply to the east and subangular to round fold 

closures. F2 minor folds in some shoreline exposures can be 

seen to fold an earlier cleavage (51?) that parallels 

bedding: these folds are moder~tely northeast-plunging and 

have a dominant s-sense of asymmetry. Most of the minor 

folds within the low-grade Contwoyto Formation have this 

same pervasive s-sense of asymmetry, while those in the 

medium-grade rocks have no dominant sense of asymmetry. 

F2 fold axes in the turbidites have rather variable 

plunges and trends, which may indicate either: 1} variations 

in strain during o2 ; 2) the variable orientation of bedding 

surfaces prior to o2 or 3} the effects of later deformation. 

A combination of these factors seems likely. 

v) o2 in Conglomerate and Volcanic Units 

Sandstone and carbonate-rich lenses and beds within the 

conglomerate serve as marker horizons, albeit discontinuous, 

that define a large, steeply north-plunging synform (Figure 

54a). An axial planar foliation (5 2 ), defined by the 

parallel alignment of micas within the matrix and mafic 

volcanic clasts (Figure 54b}, indicates a north-trending, 

steep to vertical axial surface. This foliation is the 

dominant fabric in the conglomerate and is an L-S fabric as 

indicated by the elongation direction of mafic volcanic 
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Figure 54: A; Photograph showing calcareous sandstone beds 

that outline the F2 synform in the Keskarrah 

Formation conglomerate. View is to the north. 

Rock face is approximately 10 meters high. 

B; mafic volcanic clasts of Keskarrah Formation 

conglomerate aligned in s 2 foliation (parallel to 

hammer handle). Note that granitic clasts are 

relatively undeformed. Hammer points 

approximately north. 





clasts. The long axes of the stretched clasts, wtlich are 

contained within the foliation plane, plunge steeply and 

appear to parallel tha major F2 fold axis. Granitic clasts 

are generally little deformed (Figure 54b) and only locally 

contribute to a linear or planar fabric. 

Banded mafic volcanics and turbiditic sediments in the 

western part of the map area are folded into a large scale, 

moderate northeast-plunging F2 antiform (Figure 50; see also 

section 3.2.1 iv). In the hinge zone area the volcanics 

contain a weak s2 axial plane foliation. On the north side 

of the lake, the turbidites are folded into a steeply 

south-plunging F2 synform and antiform associated with a 

strong axial plane s 2 cleavage. 

The hinge zones of the large scale antiforrns within the 

felsic volcanic and mafic flow unit (Figure 50) are not 

readily observed in the field and were defined by Henderson 

and Easton (1977a, b) largely on the basis of stratigraphic 

relationships. The felsic volcanics contain a penetrative 

north-trending s2 mica foliation. Near the F2 hinge zone on 

the north arm of Point Lake, easterly trending compositional 

laminations (S0js1?) are offset on a millimeter to 

centimeter scale along the s 2 foliation. A consistent sense 

of displacement was not determined. 

Throughout the area the highly deformed state of many 

pillows within the mafic flow unit precludes top 

determinations. Flattened pillows are parallel to the s2 

foliation (defined by the alignment of chlorite, biotite and 
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amphiboles) • Locally the pillows are also elongate and have 

steep to vertical plunges down the dip of the s 2 foliation 

plane, parallel to mineral lineations (amphiboles) and small 

scale crenulations. Steep amphibole lineations, which form 

an L-S fabric, indicate that o2 involved extension as well 

as flattening. The s 2 foliation is often defined by discrete 

north-trending high strain zones in which randomly oriented 

amphiboles are progressively aligned into the north-~rending 

foliation. These zones vary from several centimeters to tens 

of meters in width, but neither the sense nor amount of 

displacement was determined. 

3.2.2 Post-o2 Foliation-forming Events 

Throughout the turbidite sequence, although dominantly 

within the eastern exposures, there is evidence of 

deformation that post-dates the main phase o 2 fold and 

fabric-forming event. Documentation of post-o2 deformation 

comes largely from microstructural evidence, with fi e ld 

observations being limited . Deformation subsequent to o2 

resulted in fabric formation and modification of the 

pre-existing and domin~~t s 2 foliation. Associated folds 

have not been found. 

The evidence for post-D2 deformation includes: 

1) At low metamorphic grades small scale crenul a t i ons 

or k i nks of the s 2 mica schistosity, which may be 

accompanied by the formation of a disc ~ete or zonal 
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crenulation cleavage (Powell, 1979), are oriented at a high 

angle (approximately easterly) to s2 ; 

2) In some BZ and a few medium-grade (CZ and AZ) rocks, 

biotite porphyroblasts are preferentially aligned parallel 

to the axial surfaces of the small scale crenulations. The 

same high angle orientation to s 2 is noted (Figure 51 and 

55) ; 

3) Many samples from the sz contain two e'~ually 

developed biotite schistosity trends, one being the 

northerly s 2 trend, the other being at a high angle to s 2 : 

4) In some samples from the AZ and sz, muscovite laths 

have consistent conjugate orientations suggesting that they 

were once kinked or crenulated but subsequently annealed. In 

addition an annealed crenulation texture of muscovite may be 

retained within cordierite porphyroblasts but is not 

observed within the matrix; 

5) Although most cordierite and andalusite 

porphyroblasts have overgrown both s 2 and post-s2 fabrics 

(specifical~r those fabrics noted in points 3 and 4 above), 

some that grew post-s2 schistosity show evidence of 

rotation; 

6) Within the northeastern exposures of the 

sillimanite-g::.:ade Itchen Formation there is an isolated 

occurrence of a southeast-trending biotite schistosity that 

post-dates the north-northwest-trending s 2 foliation (Figure 

50). King (1981) has established a o3 fabric-forming event 

that resulted in a southeast-trending regional foliation 
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with which this later schistosity is te.1tatively correlated; 

7) A biotite schistosity with a northeast trend is 

recorded within some low to medium-grade rocks, but becomes 

much more apparent in the eastern exposures of the Itchen 

Formation, where it is locally seen to post-date the 

northerly to northwesterly s2 biotite schistosity (Figure 

50). This northeasterly trend is consistent with the s 4 

foliation trend of King (1981) which is well developed in 

the adjacent eastern Point Lake map area. 

i) Biotite Porphyroblasts 

Biotite porphyroblasts developed in the prograde 

metamorphic sequence adjacent to the Fubar fault, in the 

eastern BZ, have a distinctly angular, poikiloblastic habit 

{Figare 12). They define an L-S fabric {Figure 55), the 

planar component of which ls marked by the preferred 

alignment of the porphyroblasts at a high angle (easterly) 

to the northerly trending s2 foliation. The linear fabric is 

contained within the s 2 plane, with the long axes of the 

porphyroblasts plunging to the east or southeast, 

maintaining a roughly perpendicular relationship with the 

Fubar fault. In one outcrop cordierite porphyroblasts show a 

weak alignment parallel to this linear fabric (Figure 55b). 

The biotite porphyroblasts show evidence of having been 

deformed (kink bands, undulatory extinction, development of 

pressure shadows and deflection of the s 2 foliation around 

+hem). Although the biotite porphyroblasts often contain 
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Figure 55: Orientation of linear fabric defined by biotite 

porphyroblasts and cordierite porphyroblasts. 

stereonet (A) represents data from the EBZ, near 

the Fubar fault and the eastern medium - grade 

zones (lower hemisphere projection using Schmidt 

net) . Schematic block section (B) taken from a 

hand specimen (about 1/2 actual size) showing the 

orientation of the L-S fabric defined by biotite 

porphyroblasts and less commonly cordierite 

porphyroblasts. s 0 and s 2 are oriented . 

approximately north-northwesterly and dip about 

60·. 
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quartz inclusions, these inclusions were not seen to define 

trails, such as those described by Fyson (1975, 1980). 

Characteristic habits and relationships of the biotite 

porphyroblasts to the northerly striking s 2 foliation are 

illustrated in Figure 56. The textural evidence indicates 

that while some of these porphyroblasts clearly truncate 

(and therefore post-date) s2 , others deflect (and may either 

pre-date or have formed du~ing) 5 2 . This suggests either two 

periods of biotite porphyroblast growth, or alternatively 

porphyroblast growth was initiated during s 2 and continued 

during post-52 fabric formation. 

Lister et al. (1986) examined the mechanism of 

porphyroblast growth in a detailed optical and electron 

microscope study of biotite porphyroblasts in pelitic 

schists frvm the Pyrenees. Their proposed mechanism involved 

the growth of biotite porphyroblasts into their own dilating 

pressure shadows. While no attempt was made to examine 

mechanisms of porphyroblast growth in this study, it is 

interesting to note that the biotite porphyroblasts studied 

by Lister et al. (1986) exhibit features similar to those of 

this study, notably: evidence of growth of the 

porphyroblasts during and after small scale folding, and 

crenulation of a pre-existing fabric resulting in 

porphyroblasts with crenulated or kinked basal cleavage 

planes and the formation of quartz-rich pressure shadows 

(Figure 56). 

- 2 00 -



Figure 56: Characteristic habits of biotite porphyroblasts 

from the BZ (A- D), AZ (E) and SZ (F). In A and 

B biotite porphyroblasts overgrow the s 2 

foliation and are approximately aligned axial 

planar to open warps and small scale kinks in 

s 0;s2 . B is an enlarged view of the small circled 

area in A. The biotite porphyroblast in c 

overgrows the kinked and crenulated s 2 fabric but 

also contains evidence of deformation (kinked 

basal cleavage planes). s 2 foliation in D (upper) 

is deflected around the biotite porphyroblast and 

quartz and chlorite have grown in pressure 

shadows. The biotite porphyroblast in D (lower) 

may have grown syn-s2 as it has been kinked 

during deformation of s 2 . Biotite porphyroblasts 

in E contain muscovite, the external muscovite 

fabric is deflected around the porphyrobl~sts, 

the biotite cleavage planes are kinked ~nd there 

is quartz growth in the pressure shadows. Biotite 

porphyroblasts in F overgrow the external 

muscovite fabric but display kinked clcav~ge 

planes and coarse grained quartz h~s qrown in the 

pressure shadows . 
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those with no cleavage detail represent basal sections. 
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3. 2. 3 Fabric &Jevelopment 

i) General Statement 

This section contains a more rigorous examination of 

the foliations formed during the o1 and o2 deformational 

events. In addition possible mechanism(s) of fabric 

formation are discussed. The terminology of Powell (1979) 

has been adopted in the classification of cleavage, 

foliation and crenulation types and is summarized in 

Appendix D. 

ii) s 1 

In the WCHZ, s1 forms a well defined rough cleavage or a 

schistosity defined by the planar alignment of chlorite and 

muscovite and the preferred dimensional orientation of 

quartz clasts and opaques-. Quartz-mica beard overgrowths 

have formed on some of the quartz clasts (Figure 57). The 

majority of quartz clasts are strained, exhibiting 

undulatory extinction and many show evidence of 

recrystallization. Within the WBZ detrital quartz clasts 

were extensively recrystallized during o1 (Figure 13). In 

southern exposures of the WCHZ the s1 foliation is a well 

developed rough cleavage partly defined by opaque seams, and 

the cleavage may be refracted across layers of different 

competency. 

Samples from the vicinity of r 1 folds in the eastern 

low-grade rocks contain a discrete s2 crenulation cleavage, 

with s 1 preserved in closely-spaced microlithons in which 
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Figure 57: Photomicrograph of quartz-mica beards developed 

in pressure shadows between quartz clasts. Note 

recrystallization of smaller quartz clast (center 

bottom of photograph). Top, plane light. Bottom, 

crossed nicols. Length of sections shown 

approximately 0.6 mm. 





fine-grained mic~s are aligned parallel to the bedding 

surfaces (50). 

iii) 52 

The northerly striking s 2 foliation is heterogeneously 

developed throughout the turbidite sequence. This variation 

results from metamorphic grade contrasts, varying 

lithologies and the presence or absence and intensity of the 

earlier formed s 1 cleavage. 

Within the CHZ, where there is no visible evidence of an 

earlier fabric, the s 2 cleavage in the greywackes varies 

from a weak anastomosing cough cleavage to a well defined 

rough cleavage (Figures 9, 58) defined by the alignment of 

opaque seams and very fine-grained micas. The degree of 

microlithon fabric alignment appears to vary with the grain 

size of the phyllosilicates, which is in turn a function of 

metamorphic grade. The finest grained micas are randomly 

oriented while the coarser-grained micas display a stronger 

preferred orientation. Detrital quartz and plagioclase 

grains in greywackes have weak to well developed quartz-mica 

beard overgrowths and while both grain types may show a near 

random orientation, the long axis of quartz clasts are often 

aligned parallel to the cleavage. Quartz grains and quartz 

aggregates both tend to be strained, although there is some 

indication that in those rocks that have the weakest 

cleavage development there js a higher proportion of 

unstrained grains. Plagioclase grains on the other hand 
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Figure 58: Photomicrograph of an eastern BZ metagreywacke 

showing weak development of quartz-mica beards 

and a strong disjunctive cleavage that is defined 

by opaque-mica seams. Length of section shown 

approximately 3.4 mm. 

Figure 59: Photomicrograph of F2 folds, spaced s2 axial 

plane cleavage and penetrative s1 cleavage 

(folded) in a western CHZ metagreywacke. Length 

of section shown approxi~ately 3.4 mrn. 





rarely show any evidence of strain. In some of the 

coarser-grained greywackes from the WCHZ, s 2 forms a 

continuous schistosity. 

Pelitic or more shaly compositions always show a 

stronger cleavage development than the greywackes and 

possess a close-spaced smooth cleavage or continuous 

cleavage. Refraction of the cleavage is common in passing 

from a shale to a greywacke layer. The rare detrital quartz 

grains have a preferred alignment parallel to thn. slaty 

cleavage or schistosity that forms at higher grade~. 

Within the BZ the phyllosilicates are coarser grained 

and their dimensional orientation defines a continuous 

cleavage or schistosity. Quartz and plagioclase are 

generally recrystallized, although detrital grain shapes are 

retained and quartz-mica beard overgrowths can be observed 

in some samples. Within the upper portion of the EBZ (where 

biotite porphyroblasts are observed) and in the medium-grade 

rocks, the 52 fabric is defined by a biotite-muscovite+/­

chlorite schistosity. In these rocks quartz and plagioclase 

form equant polygonal crystals: only rarely are detrital 

grain shapes retained and quartz-mica beards are not 

developed. 

Where the eastern low-grade rocks contain a pre-e~isting 

planar anisotropy (thought to result from development of the 

s 1 cleavage), 52 may form a closely spaced crenulation 

cleavage of either the discrete or zonal type. Th~ s 2 

discrete crenulation cleavage is formed by discontinuous 
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opaque seams on the limbs of crenulations that are axial 

planar to F2 minor folds. Where observed, the s 2 zonal 

crenulation cleavage is defined by the parallel alignment of 

micas rather than opaque seams. 

In the western part of the map area s 1 forms a 

penetrative schistosity which is folded and kinked by F2 

folds (Figure 59), with the s 2 cleavage localized in 

micaceous layers, forming a zonal crenulation cleavage. Two 

sa~1les from the hinge zone area of the western F2 synform 

are shown in Figure 60. The samples contain a compositional 

layering (S0?) of quartz clast-rich (psammitic) layers and 

micaceous (pelitic) layers. Quartz clasts have weakly 

developed quartz-mica beards. Both s1 and s 2 cross-cut the 

layering and both cleavages are refracted across the 

layering. In the psammite, s 1 is defined by the preferred 

alignment of micas, quartz clasts (most prominent in Figure 

60a) and widely spaced, poorly defined opaque seams. Whereas 

s2 in psammitic layers forms a spaced crenulation cleavage, 

partly de!ined by opaque seams and a weak alignment of 

quartz clasts (Figure 60b). In pelite the s 1 mica cleavage 

is tightly crenulated by s2 and s2 is defined by prominent 

close spaced opaque seams. The apparent offset of the quartz 

vein in Figure 60b does not require a component of shearing 

as it may be explained by folding during sl, with removal of 

the fold limbs accomplished by a combination ~~ attenuation 

and pressure solution processes. 
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iv) Summary of Cleavage Development 

At the lowest metamorphic grades recorded in the study 

area (ECHZ and part of the WCHZ), both s1 and s2 foliations 

in the greywackes are defined as rough cleavages that vary 

from weak and anastomosing to well-defined. Quartz clasts 

often have corroded and indistinct boundaries with the 

fine-grained mica-rich siliceous matrices. Quartz-mica beard 

overgrowths are common on quartz and plagioclase clascs, but 

are variable in degree of development. 

Gray (1978) concluded that, while the alignment of 

phyllosilicates is partly due to 

crystallization/recrystallization, this type of cleavage 

forn. ~d dominantly by a solution transfer mechanism, with tt1e 

opaque-mica seams representing pressure solution surfaces. 

Inherent in this process is the lack of internal deformation 

structures and evidence of recrystallization within the 

clast-forming phases. However, in the samples from Keskarrah 

Bay it is evident that although feldspar clasts are 

typically undeformed, the quartz clasts invariably sh~w 

evidence of deformation. It is uncertain whether the 

deformation reflects an original feature of the source rock 

or was acquired during cleavage formation. Should the latter 

be the case then the solution transfer mechanism envisaged 

by Gray (1978) cannot be solely responsible for the 

formation of the cleavages, and some ductile deformation of 

quartz must have accompanied it. 
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Within the BZ and parts of the WCHZ, the micas are 

coarser-grained, have a strong preferred alignment and the 

s1 and s2 cleavages are of the continuous rather than 

disjunctive type (Powell, 1979). Quartz-mica beard 

overgrowths can still be observed and quartz clasts are 

recrystallized. At grades higher than, and within parts of, 

the BZ polygonal grain aggregates and triple junctions 

(between quartz grains) indicate that recrystallization and 

plastic deformation are likely responsible for schistosity 

development. It is to be expected that these processes would 

obliterate evidence of solution transfer mechanisms that may 

have taken place at lowest grades. 

3.3 Deformation of the Basement Terrane 

3.3.1 Gneiss-forming Event (Ox} 

The earliest deformation~, event (Ox) in the study area 

is recognized only in the basement gneiss terrane and led to 

the formation of gneissic banding. Complex relationships 

observed between different phases of the gneiss suggest that 

the gneisses were formed during more than one event. For 

example: 1) on the north arm of Point Lake (about 1.5 km 

west of the supracrustal contact), unit la contains an 

enclave (unit 1b) in which Easton et al. (1981) recognized 

three phases of folding and 2) about 2.5 km west of the 

supracrustal contact, on the north shore of Point Lake, a 

basin and dome interference pattern is noted in hornblende 
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tonalite gneiss which is cross-cut by later miqmatitic and 

intrusive phases. The evidence therefore indicates that Ox 

included multiphase deformation accompanied by extensive 

migmatization, intrusive activity and medium to high-grade 

metamorphism. 

The lack of migmatization in the schistose rocks of the 

Yellowknife Supergroup suggests Ox pre-dated deformation in 

the supracrustals. Other evidence that ox pre-dated 

deposition of the Yellowknife Supergroup includes the 

documentation of an angular unconformity between the 

gneisses and supracrustals and the recognition of gneissic 

cobbles in the Keskarrah Formation conglomerate , that are 

lithologically comparable to units within the gneiss terrane 

(Easton et al., 1981, 1982). 

Other structural elements superirr.posed on ox are also 

observed in the basement terrane. These may be correlative 

with the structures in the supracrustal terrane , and are 

discussed below. 

3.3.2 Isoclinal Folds (D1?) 

Locally the gneissic banding is folded into small scale, 

tight, upright folds (Figure 50) that vary from long limbed 

isoclines to intrafolial folds. The initial orientation of 

these folds is uncertain as they are refolded by F2 (see 

below). In the thickened hinge zones of the folds, micaceous 

minerals are aligned in an axial plane foliation. Major 

folds related to these small scale structures have not been 

- 214 -



identified. These isoclines may be correlative with o 1 in 

tha supracrustal terrane as a aimilar style of folding is 

documented within the banded mafic volcanics (unit 3). 

However, it is also possible that these folds were formed 

pre~o1 and that during o1 they were tightened into 

isoclines. 

3.3.3 n2 Northerly Oriented Structures 

The northeast to east-trending gneissic banding 

prevalent in western exposures of the gneiss terrane becomes 

progressively reoriented towards northerly trends near the 

contact with the supracrustal& (Figure 50). This change in 

structural trend is partly accomplished through the 

development of macroscopic folds formed during the o2 event, 

which also affected the supracrustals. 

Macroscopic F2 folds initially outlined from aerial 

photographs (Figure 50) are defined by the trace of the 

gneissic banding, the contact between the gneisses and 

banded mafic volcanics and the asymmetry of minor folds. The 

synforrnal and antiforrnal folds thus outlined (Figure 50) 

plunge moderately to steeply to the northeast. Minor folds, 

representative of o1 or Dx folds, are folded about these 

m~jor structures. Locally, a weak biotite +/- chlorite 

schistosity is axial planar to these folds and small scale 

crenulations are parallel to the fold axes in the hinge 

zones of some folds. Mineral lineations (defined by 
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plagioclase and epidote) are rare, but where present are 

also parallel to F 2 fold axes. 

Adjacent to the supracrustal terrane the steeply 

dipping, northerly trends of gneissic banding indicate a 

complet·!! reorientation of earlier structural trends into the 

02 orientation (Figure 50). In this area the gneisses and 

granitoids commonly have mylonitic textures which are partly 

defined by muscovite and chlorite, indicating that they were 

formed during low-grade metamorphism. 

3. 3. 4 Recumbent structures 

Southern exposures of the basement gneiss terrane 

(Figure 50) are characterized by recumbent folds and gently 

to moderately dipping and plunging planar and linear 

features. To the west of the gneiss-supr~crustal boundary 

Easton et al. ( 1981) noted a west-verging recumbent fold in 

banded mafic volcanics. Kusky (1987) has re-interpreted the 

outlier of Yellowknife Supergroup rocks (Figure 3: 

identified by Easton et al., 1981) as a klippe. On the north 

shore of Point Lake west-verging recumbent folds, a few 

meters (Figure 61a) to tens of meters in amplitude on 

vertical ou:crops, have shallow north to northeast-plunging 

fold axes and shallow east-dipping axial planes. Typical of 

these folds is a progressive steepening of the 1 imbs from 

the antiforrns into the synforms, so that the antiforms are 

recumbent but the synforms are upright. This relationship is 

sketched in Figure 6lb which also illustrates a possible 
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Figure 61 : Top;photograph of granitic gneiss showing possible 
interference between recumbent and upright folds. 
Bottom~ interpretative sketch of above photograph. 



interpretation of the upright folds refolding earlier formed 

recumbent folds. Alternati~lely the folds may be of the same 

generation. Kusky (1387 and pers. comm.) is investigating 

the possible existence of nappe structures in this area of 

the basement gneiss terrane. The relationship of the 

recumbent structures to the previously described macroscopic 

F2 folds is uncertain due to limited outcrop and an 

abundance of intrusive rocks. However the. shallow east-dips 

of granitic sheets and gneissosities progressively steepen 

toward the contact with the supracrustals suggesting 

reorientation into o2 structural trends. Thus the formation 

of the recumbent structures may predate o2 . 

3.3.5 Basement Granodiorite-granite 

Exposures of the basement granodiorite on the north arm 

of Point Lake (Figure 4; Henderson and Easton, 1977b) 

contain thin (about 10 em wide) southwest to 

east-west-trending retrograde shear zones with mylonitic 

textures. Mafic dikes which intrude the granodiorite also 

contain an east-west orie"lted foliation. Elsewhere the 

granodiorite contains localized north-trending shear zones. 

The shear zones are composed of quartz-eye chlorite schist 

or phylloni te which is interpreted to have formed 

contemporaneously with the metamorphism of the 

supracrustals. Thus it is 1 ikely that this basement terrane 

acted as a relatively rigid block during deformation of the 

supracrustals and responded to deformation through the 
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development of localized shear zones rather than a 

penetrative fabric. 

3. 4 FI'IUlting 

3.4.1 Gneiss-supracrustal Boundary 

Henderson and Easton (1977a, b) recognized a series of 

four faults, which Henderson (1981) speculated were active 

during basin de·;elopment. The most westerly of these faults 

is represented by the gneiss-supracrustal boundary (Figure 

50; Henderson and Easton, 1977a, b). Along this boundary 

volcanics of the Yellowknife Supergroup contain thin 

chlorite-rich shear zones while the gneisses and younger 

granitic phases (units lf, 12) contain narrow mylonite zones 

also of low metamorphic grade (see 3.3.3). Within the 

gneisses these textures become less apparent with increasing 

distance from t~1e contact and 2 to 3 kilometers to the west 

only discrete 1 meter wide shear zones are ~ecognized. It 

was previously suggested (section 3.3.3) that some of the 

mylonitic textures formed during o2 • Easton (1985; his 

Figures 2 and 3) indicates that the mylonite zone along the 

gneiss-supracrustal boundary is folded by F2 , suggesting 

some mylonitization pre-dated 02 . While these observations 

do not relate mylonitic processes to basin formation they 

suggest that deformation p:ocesses related to faulting along 

the boundary were long-lived. Kusky (1987) suggested the 

gneiss-supracrustal boundary may represent a deep level 

thrust and the presence of recumbent folds within t~c gnci~~ 
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terrane may indicate that the basement terrane was also 

involved in westward directed thrusting. 

3.4.2 Faults in the Supracrustals 

Two major north-trending faults are found within the 

central exposures of the turbidite units (Figure 50). The 

Fubar fault occurs within the Contwoyto Formation whereas 

the easternmost fault marks the contact between the 

Contwoyto and Itchen Formations for most of its length. 

South of Point Lake the two faults may merge (Figure 5), but 

neither can be traced into the northern area because of 

extensive drift cover. 

The eastern fault is steeply dipping and marked by 

chloritization of biotite and pinnitization of cordierite. 

Widespread chloritization of the Itchen Formation schists is 

noted to the east of this fault, suggesting that it may have 

been the locus of extensive fluid mobility post-dating peak 

metamorphism. 

Fubar fault is a moderately east-dipping fault zone that 

forms a gentle arc concave to the east, approximately 

parallel to bedding and s 2 schistosity trends. It is clearly 

a post-metamorphic feature as it juxtaposes AZ rocks against 

the lower grade BZ equivalents along part of its length and 

southeast of the map area SZ rocks are displaced against 

those of the BZ (Henderson and Easton, 1977b; Bostock, 

1980). Medium-grade rocks within the Fubar fault zone are 

extensively hematized and chloritized and quartz vei11s are 
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abundant indicating the previous passage of hydrous fluids. 

Axial traces of folded quartz veins within the fault zone 

are parallel to the strike of the fault, with axes plunging 

down the dip of the fault plane (reclined folds) • Folding of 

the quartz veins into long limbed isoclines and conjugate 

kink banding within muscovite-rich layers indicate that 

deformation associated with faulting took place, at least in 

part, in the ductile regime and may indicate a prolonged 

movement history on this fault. Although movement along the 

Fubar fault is indicated to have been combined dip-slip and 

strike-slip, telescoping of the metamorphic zones suggests a 

significant dip-slip component. The Fubar fault is suggested 

to be an east-side-up contraction fault. 

Numerous northeast-southwest-trending faults transect 

the map area (Figure 50; Henderson and Easton, 1977b). Some 

of these faults offset lithologic boundaries and foliations 

and possibly also rome of the north-trending faults, 

suggesting they formed late in the deformational history. 

3.5 Structural Overprinting and Refolding 

Throughout the supracrustal terrane there is a m~p sc~le 

zonation of structural elements associated with each 

deformational episode that can be viewed as the result ot 

structural overprinting. This zonation is illustrated in 

Figure 50 and is based on the relative intensity or 

dominance of one fabric element over nnother. Giv~n two 
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fabric-forming events, the preservation of the earlier 

fabric depends, amongst other factors, on the relative 

intensity of the event that follows, as does the type of 

interference pattern observed between two folding events 

(Pearson and Lewry, 1974). 

In the supracrustal rocks in the western part of the map 

area, it has been shown that s 1 is locally an intense, 

penetrative axial plane cleavage associated with F1 

isoclines. Although F2 resulted in folding of this s 1 

foliation, there was little fabric development associated 

with o2 folding. Thus the preservation of s1 in this area 

indicates 01 was more intense than 02. The resultant 

refolding of the inferred F1 isoclines by large scale F2 

folds (Figure 62) has given rise to interference patterns 

similar to the type 3 patterns described by Ramsay (1967). 

Interference patterns such as this are observed along the 

shores of Point Lake (Figure 51, 52). 

Throughout most of the map area, however, o2 fabric 

elements dominate (F2 , s2: Figure 50) and evidence of o1 is 

either lacking or only preserved as a weak cleavage. s 2 is 

generally northerly trending and F2 folds plunge moderately 

to the north and south. 

The development of a post-02 fabric is noted only in 

central and eastern exposures of the turbidite sequence. In 

the central area s2 is the dominant mesoscopic fabric and 

post-s2 fabrics are noted at the microscopic scale, but in 

extreme eastern exposures this relationship is reversed with 
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post-s2 fabrics dominating at the mesoscopic scale and s 2 

being recognized only in thin section. 

3.6 Basement Control During Deformation of the Supracrustals 

It has already been noted that the presence of basement 

rocks may have exerted some control on the style of 

deformation and the orientation of structures within the 

supracrustal terrane. This is discussed further below. 

The metavolcanics and metasediments that form the 

inferred macroscopic F1 synclines (Figure 53) were intensely 

deformed during o1 , the main fabric-forming event locally. 

This is considered to be due to the local infolding of the 

cover sequence into the basement, with narrow pinched in 

synforms of cover rocks separated by wide antiformal arches 

of basement in a pattern similar to that described by Ramsay 

(1967, p. 383) from the Alps. 

Basement control on o2 structures in the supracrustals 

may be illustrated by contrasting the tight, angular folds 

of the western area adjacent to the basement with the more 

open, rounded folds observed further east. F2 folds in both 

areas are overturned towards the west, i.e. towards the 

basement gneisses . Considering the evidence presented above 

that the basement was a relatively rigid block during the 

deformation of the supracrustals, it is likely that it acted 

as a buttress against which the supracrustals were deformed. 

This situation would explain why F2 folds formed adjacent to 
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the buttress at the margin of the defoi~ing belt exhibit a 

tighter style of folding than those nearer the center. 

Evidence that the degree of overturning of these folds 

increases toward the basement-cover interface was not fcund 

during the course of this study. However, west-verging 

recumbent folds are abundant to the west of the gneiss­

supracrustal boundary (Easton et al., 1981; Kusky, 1987) and 

the presence of large~ scale recumbent structures are 

suggested in this area (Kusky, 1987). In addition these 

relationships can be used to postulate that the 

gneiss-supracrustal boundary represents a crustal detachment 

zone, perhaps the deep level thrust that Kusky (1987) 

suggested, along which the cover rocks were transported. 



4.0 RELATIVE TIMING OF METAMORPHISM AND DEFORMATION 

4.1 General statement 

The time relationship between metamorphism and 

deformation within the area has been determined largely from 

observations made within the turbidite units. Fabric 

development is best documented in these rocks and the growth 

of porphyroblasts enables the establishment of the relative 

timing of peak metamorphic conditions relative to fabric 

formation. 

Metamorphism associated with the deformation (Dx) of the 

basement gneisses was at medium to high-grades and was 

accompanied by anatexis. These rocks were subsequently 

partly retrogressed during the low-medium grade metamorphism 

of the supracrustal sequence. Evidence of this retrogression 

of the basement rocks is the replacement of hornblende and 

biotite by chlorite and the presence of low grade foliations 

correlated with those in the supracrustals, which are 

defined by the alignment of chlorite, biotite and muscovite. 

The basement granodiorite was also affected by 

retrogression, as indicated by chlorite-filled fractures and 

extensive alteration of feldspars. 

- 226 -



4.2 Metamorphic Mineral Growth Relative to Fabric Formation 

Throughout the study area, the predominant fabrics (51 , 

52 , post-52) are mainly defined by the preferred alignment 

of micaceous minerals, and in the case of volcanic rocks, by 

amphiboles. Porphyroblastic phases, with the local exception 

of biotite, amphiboles and rarely cordierite, do not define 

planar or linear fabrics. Prograde metamorphic mineral 

growth in relation to the fabrics and folds formed during 

deformational episodes is summarized in Figure 63. 

In the low-grade Contwoyto Formation, metamorphic 

mineral growth accompanied the formation of 5 1 and 52 . 

Although metaturbidites in the western belt have undergone a 

retrograde metamorphic event, muscovite, chlorite and 

biotite are seen to define both 51 and 52 . In the western 

area retrograde chlorite growth occurred during and after 52 

fabric formation. While in the eastern sequence biotite 

growth during o1 has not been established, it defines s2 as 

well as post-52 fabrics. 

Western exposures of medium-grade metaturbidites of the 

Contwoyto Formation have been disrupted by faulting and have 

undergone retrograde metamorphism so that a precise 

determination of the relative timing of meta~orphism to 

deformation cannot be made. However, completely pinnitized 

cordierite porphyroblasts have overgrown a mica schistosity 

(51?) and have been rotated prior to or during the 

development of a second mica sc~istosity (5 2?). In view of 
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these relationships, in Figure 63 cordierite is indicated to 

have grown between o1 and o2 in the western sequence. 

In the medium-grade Contwoyto and Itchen Formati~ns of 

the eastern prograde sequence, evidence of the formation of 

either s 1 or F1 haR not been established, and peak 

metamorphic conditions in this area post-date o2 . Chlorite 

was not observed in the equil~brium assemblage of the 

medium-grade rocks, of e~ther greywacke or Fe-rich 

composition. However, several of the previously proposed 

reactions require the presence of chlorite, for example in 

the initial form~tion of cordierite . Therefore chlorite is 

indicated in Figure 63 as a fabric-forming phase, it's 

stability slightly overlapping with that of cordierite and 

andalusite . Growth of porphyroblasts of garnet and 

staurolite may have occurred prior to o2 , however 

porphyroblasts of cordierite and andalusite, have overgrown 

and contain the s2 biotite schistosity. 

Many samples from the CZ, AZ and western parts of the SZ 

contain cordierite and andalusite porphyroblasts that have 

also overgrown the L-S biotite fabric and the post-s2 

biotite schistosity. This indicat~s that porphyroblast 

growth post-dated the development of all these fabrics (sec 

3.2.2). However, although rarely observed, cordierite is 

also seen to form a linear fabric parallel to the lineation 

of biotite porphyroblasts. These relationships indicate that 

the growth of some cordierite was initiated during post-o2 

deformation but outlasted it. 
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The :metamorphic minerals defining the foliations within 

the mafic volcanic r~cks indicate prograde metamorphism 

during o1 and o2 . The locally developed s1 foliation in the 

mafic flows is defined by chlorite (+/- biotite, 

actinolite) 1 as is the more widespread s 2 foliation. 

Hornblende porphyroblasts are reoriented into north-trending 

s2 shear zones, indicating the metamorphic peak was attained 

during or slightly before D2 . The banded mafic volcanics 

may have been within medium-grade metamorphic conditions 

throughout both o1 and o2 as both foliations are defined by 

the alignment of hornblende +/- biotite. 

In summary (Figure 63) 1 peak metamorph1c conditions were 

attained prior to or during o2 in the western prograde 

sequence. In the eastern sequence evidence from 

porphyroblasts of cordierite and andalusite indicates peak 

conditions post-dated o2 and occurred before, during and 

after the post-o2 event(s). Limited observations place 

growth oi these porphyroblastic phases prior to the 

formation of the northeast-trending biotite schistosity (S 4 

of King 1 1981) • 

4.3 Disposition of Metamorphic Isograds 

Fabric analysis in the eastern prograde sequence 

indicates the metamorphic peak was est.ahlished subsequent to 

the formation of the s 2 foliation, suggesting the 

metamorphic pattern post-dates large scale F2 folding and 
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was not significantly affected by this main phase of 

deformation. 

The attitude of the isograds in central and western 

parts of the area is problematical. In this area the lowest 

grade rocks, which also partly represent the youngest 

lithostratigraphic units, (Keskarrah Formation conglomerate 

and sandstone and Contwoyto Formation turbidites) are 

exposed in the core of a syncline. This fact, combined with 

the pre- to syn-D.., metamorphic mineral growth recorded in .. 
both volcanic and sedimentary units, suggests that the 

central and western isograds have been folded . 

At least one major discontinuity in the isograd pattern, 

coinciding with the Fubar fault, indicatef~ westward 

telescopinq of the metamorphic zones. A second discontinuity 

may be indicated in the central map area by the discrepancy 

in metamorphic grade recorded by mafic volcanics (unit 4) 

and the adjacent turbiditic sediments. 
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5. 0 REGIONAL COMPARISONS AND DISCUSSION AND SUMMARY 

5. 1 Regional Conparisons 

5. 1. 1 General statement 

The dispositions of metamorphic isograds and structural 

trends in the supracrustal rocks of the Itchen Lake region 

are roughly parallel to the arcuate shape of the greenstone 

belt (Figure 3). The metamorphic gri'\de increases toward the 

major batholiths east and north of the study area (Tremblay, 

1976; Bostock, 1980; King, 1981) and westward, toward the 

basement gneiss and 'Pointless' batholith terrane in the 

Keskarrah Bay area (Henderson and Easton, 1977a: this 

study). Since the eastern edge of the Keskarrah Bay map area 

adjoins the eastern Point Lake area examined by King ( 1981) 

the metamorphic and structural evolution of the present 

study area can be compared and correlated with the results 

therein (Figures 64-67; King, 1981). 

5.1.2 Metamorphism 

The eastward increase in metamorphic grade i n the study 

area continues progressively through the eastern Point Lake 

area (Figure 64) to the Yamba batholith (Figure 3). West of 

this batholith schists of the Itchen Formation are 

transformed into gneisses (cordierite + granitic melt 

isograd), the highest metamorphic grade mapped by King 
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(1981: Figure 64). In the Keskarrah Bay area metamorphic 

grade also increases westward towards the basement gneisses 

(Figur~ 64) and the granitoids of the 'Pointless' batholith 

(Figure 3). In this terrane outliers of the Yellowknife 

Supergroup are thought to have been metamorphosed to medium 

and possibly high grade (Easton et al., 1981, 1982). 

The dominantly continuous metamorphic reactions leading 

to the formation of cordierite, andalusite and sillimanite 

documented in this study are similar to those suggested for 

the eastern Point Lake area by King (1981). One notable 

difference between the two areas is the absence of muscovite 

from the equilibrium assemblage of some of the AZ and sz 

ro~ks noted in this study. King does not record this 

assemblage in the eastern Point Lake area, as muscovite is 

apparently present below the second sillimanite isograd in 

the K- feldspar zone (KZ). In the case of muscovite-absent 

assemblages, the higher grade KZ equivalent would be the 

assemblage sillimanite + quartz. 

P-T estimates indicate that temperatures ranged from 

45o•c in the low-grade rocks to about 7oo•c in the 

high-grade gneissic rocks of the eastern Point Lake area 

(King, 1981). Pressures operative during regional 

metamorphism were relatively constant at about 3.0 kbar for 

low- to medium-grade rocks, but increased to about 4.5 kbar 

for the high-grade region of the eastern Point Lake area 

(King, 1981). These pressure estimates imply burial of the 
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supracrustal pile to depths of about 10-15 km and some 

degree of differential uplift or tilting of the crust. 

5.1.3 Deformation 

Prior to deformation of the supracrustal rocks the 

basement gneiss terrane underwent anatexis, migmatization 

and several phases of folding. This early deformation of the 

basement terrane is poorly understood at present. Subsequent 

deformation of the gneisses can be correlated with that 

which affected the cover sequence and resulted primarily in 

a marginal overprint of F2 folds and localized mylonitic 

fabrics (s2?). West-verging recumbent folds within the 

gneisses may have developed during or before o2 deformation 

of the cover sequence, although their relative age is not 

precisely defined. 

In Table 7 the characteristic structural elements of the 

supracrustal rocks of the Keskarrah Bay and eastern Point 

Lake areas are compared and in Figure 65 foliation trends 

for both areas are compiled. 

F1 folds are only locally observed in the eastern Point 

Lake area, but may have been widespre~d ~nd ~re everywhere 

refolded by second phase folds (King, 1981). In both the 

Keskarrah Bay and eastern Point Lake areas F1 isocline~ ~re 

easterly trending, but the associated s1 fabric is vari~bly 

developed. It is absent in the eastern Point I~kc arc~ 

(King, 1981), but as already noted it form5 n pcnctr~tivc 



TABLE 7: Comparison of deformational events and characteristic structural elements recognized in the supracrustal 
terran~ of the Keskarrah Bay and eastern Point Lake areas. 

KESKARRAII BAY ARI:A 

Ft: E-li isoclinal folds of So, luqe scale folds in western 
area. Refold~d during 02 . 

St : £-trending axial plane cleavaqe, penetrative (continuous 
chl - musc•l-bio schistosityl in western exposures, weakly 
developed (preserved in spaced microlit~onst in eastern 
areas. Folded during 02. 
chl-:r.usc•/-bio qro•.,th. 

F2: Major phase folds . N-S tre nds of axial planes ~nd some 
fold a~es. Moderate to ~teep or vert1cal plunges. 
Steeply overturned to west. Reclined folds. 

52: Do~inant N-trending foliation throughout most of the area, 
axial planar to F2. Varies from first pha se rough 
c!eavaqc to discrete and zonal crenulation cleavaqPs to 
r.ontinuous bio-musc~t-chl schistosity. 
Chl-mu~c-bio growth. 

EASTERN POINT LAKE AREA 

F1: E-W folds of So. 

S1: Notdeveloped, no metamorphic mineral growth . 

F2 : Maj or phase folds. NE-SW trends common. Upright to 
over~urned with subhorizontal plunges or upright to 
steeply reclined isoclines with modera~e south 
plunges. Disposed in convergent and divergent f~n 
axes. 

S2: Local axial plane foliation to some folds. 
Biotite growth? 

?ost-D2 Folds: 5~all scale crenulations and kinks of s2 foliation. 

o., 

Fabric: High angle orientation to S2 (easterl y) . Varies from 
discr~te and zonal crenulation cleavage to biotite 
s~hi stosity . Bcotito and r~re cordierite porphyroblasts 
dr.finc L - 5 fabric (E-SE plunges ) . Correlative to 5 4 ? 
~usc-bio-cord• /-chl•/ and 9rowt~. 

F J: ~o ~a;or fold~ rec~~nizeC . 

5): SF.-tr~ndinq bi~tite ~chistosity in eastern exposures of 
:tc~ P.n Fnr~~~ion. 

F4 : ~~ rnaj o~ folds recognized. 

S4 : NE-t rendi ng biotite schistosity noted throu~hout ~edium 
~rade Contwoyto and Itchen Formation. Predomi nant in far 
eastern exposures. 

D3 : No major folds; small scale folding of quartz veins. 

S3: Regional foli~tion (140-160" trends), domin~nt 
in medium-~igh grade (~neissic) ltchen rorm~tion. 

No major folds; strong ~xial plane crenulation 
cleavage, warps F2 in high grade terrane. Steeply 
plunging fo lds of sa and F2 axial traces. 
Reqional foliation (010- 060" trend) d omi nant in 
low to m~diurn grade Itchen F~rmation. 
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axial plane cleavage in the western part of the Keskarrah 

Bay area. 

The main phase of folding in both areas occurred during 

o2 , although differences occur in the degree of s2 fabric 

development, the orientation of the F2 folds and the 

direction of overturning of these folds. !n the Keskarrah 

Bay area these folds are consistently overturned to the west 

and are associated with a regional foliation (52 ) • In the 

eastern Point Lake area F2 folds are overturned about 

divergent and convergent fan axes and these folds are 

associated with only a locally developed axial plane 

foliation (King, 1981). In the southern parts of this area, 

where the supracrustal belt narrows between the basement 

granodiorite and Yarnba batholith (Figure 3), F2 fan axes are 

absent and bedding steepens (King, 1981). In addition, in 

the western parts of the eastern Point Lake area westward 

overturning of F2 folds is noted (Bostock, 1980; King, 

1981). Axial traces of F2 folds conform to the arcuate shape 

of the supracrustal belt and the geometry of both F2 folds 

and that of the greenstone belt may have been established 

during o2 (King, 1981). 

In the eastern Point Lake area two events (03 and 04) 

led to the formation of the southeast-trending (5 3 ) and 

northeast-trending (54) regional foliations (King, 1981). 53 

and 54 transect F2 axial traces (King, 1981) and therefore 

post-date o2 regional folding. Both fabrics can be related 

in time and intensity of development to emplacement of the 
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Yamba batholith (King, 1981; King and Helmstaedt, 1989). 

However, these fabrics maintain a consistent high-angle 

orientation to the margin of the Yamba batholith, suggesting 

that the stresses that dictated their orientation were not 

solely related to batholith emplacem~nt (King and 

Helmstaedt, 1989). These foliations have apparent 

correlatives in the eastern part of the Keskarrah Bay area 

(Figure 65), although definite documentation of this is 

lacking. On the basis of its northeast orientation, the 

predominant post-o2 fabric recognized in the Keskarrah Bay 

area is correlated with s 4 mapped in the eastern Point Lake 

area by King ~1981). 

The Fubar fault (this study) and the Norma fault 

(Tremblay, 1976: initially named Point Lake fault by King, 

1981) display several characteristics in common, including: 

1) a dip-slip component, suggested by the juxtaposition of 

higher metamorphic grade rocks against those of lower grade; 

2) they transect metamorphic isograds: 3) both are concave 

to the east and southeast, with an inferred west to 

northwest sense of tectonic transport and 4) both occur 

within the sedimentary terrane, displacing the metasediments 

against volcanic rocks and toward the basin margin. King et 

al. (1988) re-interpreted the Point Lake fault of King 

(1981) to be an extension of the Norma fault which is a 

dextrally oblique dip-slip {north-side-down) Proterozoic 

fault. However, King et al. (1988) also noted that in the 

eastern Point Lake area displacement along the Norm~ f~ult 
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is predominantly dip-slip. Therefore, within the Point Lake 

area, both the Fubar fault and the Norma fault are 

considered steep contraction or thrust faults that may 

connect southeast of the Keskarrah Bay area (King, 1981). 

Thus throughout both the Keskarrah Bay and eastern Point 

Lake areas there is a broad similarity in the sequential 

deformational events recorded in the supracrustals (Table 

7). The noticeable differences are: 1) the prominence of F1 

folds and formation of a penetrative s1 axial plane fabric 

in the supracrustals near the contact with the basement; 2} 

the orientation of main phase folds and degree of 

development of the associated s2 fabric and: 3) the 

prominence of post-s2 fabrics. These differences may be 

related to two factors: the involvement of the basement 

terrane during deformation and proximity to the Yamba 

batholith. 

It has been argued previously in this text that the 

presence of basement in the Keskarrah Bay area influenced 

the orientation of structures formed in the supracrustal 

pile during the first two phases of deformation. A 

penetrative s 1 fabric is recognized only in the Keskarrah 

Bay area, along the west edge of the supracrustal belt. 

Proceeding eastward away from the basin margin, s 1 becomes 

progressively less intensely developed until in the eastern 

Point Lake area o1 was not accompanied by metamorphic 

mineral growth or fabric formation. F2 fold fan structures, 

which were noted in the eastern Point Lake area (King, 
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1981), are absent around the ~eskarrah Bay area where F2 

axial traces are vertical or dip steeply to the east, 

indicative of westward overturning toward the basin margin 

and basement gneiss terrane. F2 folds also appear to tighten 

toward the gneisses. The north-trending s2 foliation is 

dominant in the ~eskarrah Bay area, but only locally 

associated with F2 folds in the eastern Point Lake area. 

These contrasts are considered to reflect the increased 

intensity of deformation adjacent to the basement buttress. 

The development of regional foliations (S 3,s4) 

post-dating the main phase of folding (F2 ) and toward the 

end of the metamorphic culmination may be a result of 

thermal zonation formed in response ~o granitic plutonism 

and batholith emplacement (King, 1981), similar to 

relationships-observed in the southern part of the Slave 

Province (Fyson and Frith, 1979; Fyson, 1980). The Keskarrah 

Bay area is relatively distant to the main area of granitic 

emplacement, possibly accounting for the less widespread 

development of these foliations. 

5.1.4 Relationships Between Metamorphism and Deformation 

Figure 66 (modified from King, 1981) summarizes the 

relationships between metamorphism and deformation in both 

the Keskarrah Bay and eastern Point Lake areas. Throughout 

much of the Itchen Lake ~egion, the metamorphic peak was 

attained late in the deformational history (Tremblay, 1976; 

Bostock, 1980; King, 1981; this study). In both the eastern 
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part of the Keskarrah Bay area and the eastern Point Lake 

area cordierite and andalusite porphyroblasts nest-date o2 

and in the eastern Point Lake area they are also post 0 3 

(King 1981). In both areas these porphyroblasts locally 

pre-date the la~t phase of deformation (04). The gneissic 

fabric developed in the Itchen Formation metasediments 

adjacent to the Yamba batholith was formed prior to or 

during o3 but before o4 (King, 1981). However, in the 

western part of the Keskarrah Bay area the metamorphic peak 

probably pre-dated that in the eastern area, with 

metamorphism initiated during 01 and continuing up to or 

through o2 • In metabasites hornblende is aligned in the s2 

foliation plane and in metaturbidites cordierite 

porphyroblasts have overgrown a mica schistosity (S1?) and 

were subsequently rotated (during the formation of s2?). 

The data presented above illustrate the P-T distribution 

during peak metamorphism across this part of the Itchen Lake 

region. In addition, Thompson (1978) constructed a P-T 

profile for part of the Slave Province that included the 

Point Lake area and concluded that: 1) the metamorphic 

pattern of the Slave Province can be accounted for by 

"differential erosion of an irregularly spaced group of 

thermal highs and lows" and 2) " ..• granitoid rocks produced 

in the core of a thermal dome may intrude overlying 

metamorphic rocks related to the same thermal dome ... ". 

Thompson (1978) indicates that the P-T distribution in the 

Keskarrah Bay area may be comparable to the metamorph i c 
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pattern that formed on the distal part of a thermal dome 

which accompanied granitoid emplacement ('iamba batholith). 

In both the eastern part of the I<eskarrah Bay area and 

the eastern Point Lake area the metamorphic peak is 

suggested to have been established subsequent to main phase 

F 2 folding. Later deformational events did not result in 

large scale folding and it is presumed that the isograd 

pattern in these areas is not folded. The broad expanse in 

the central part of Figure 64 is underlain by the SZ. The 

presence of pockets of AZ rocks within the sz is interpreted 

to reflect the shallow, undulatory nature of the isograds 

(see King (1981} for discussion of the attitude of isobars 

and isotherms). The close spacing of the isograds in the 

high-grade Itchen Formation towards the east of Figure 64 is 

attributed to an increase in the thermal gradient at the 

margin of a thermal do~e into which the 'iamba batholith was 

emplaced (King, 1981}. King (1981) also notes an increase in 

the slope of the isobars in the gneissic metasediments 

adjacent to the Yamba batholith, which may indicate 

structural doming of both isotherms and isobars. The 

batholith may have dragged up its metamorphic envelope in a 

manner similar to that described by Flood and Vernon (197B} 

for the Cooma granodiorite. However, in Flood and Vernon's 

model the metamorphic envelope is compressed around the 

intrusion, whereas such a situation is rather unlikely 

around the Yamba batholith, given the aerial extent of the 

gneissic envelope. 
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Assuming that the metamorphic zonation in the eastern 

Keskarrah Bay and Point Lake areas is related solely to 

emplac"!ment of the Yamba batholith, then the thermal 

overprint extends at least to the low-grade zones of the 

Keskarrah Bay area, a minimum distance of 50-60 km from the 

present position of the batholith (Figure 3). such distances 

are well within reas~n, given the extent of the regional 

metamorphic aureoles suggested by Thompson (1978). However, 

McKinnon ( 1982) indicated that some pegmatite and granite 

intrusions in the sz rocks may have formed through partial 

melting of the sedimentary rocks at depth. Thus it is 

possible that a granitic intrusion, perhaps part of the 

Yarnba batholith, underlies the sz and provided an additional 

heat source for metamorphism in this area. 

In the Keskarrah Bay area, the westward increase in 

metamorphic grade may be explained by a thermal dome lyinrJ 

to the west of the study area, into which the 'Pointless' 

batholith (Easton et al., 1981) was emplaced (Figure 3). 

The presently exposed low-grade metamorphic zones in the 

Keskarrah Bay area may thus form a very narrow (5 km or 

less) thermal depression or trough between two regional 

thermal domes. Although radiometric age data are unavailable 

for the Pointless batholith, Easton (pers. comm., 1982) has 

suggested it is a late syntectonic intrusion, which is 

compatible with the above interpretation. However, in the 

central and western area the metamorphic peak was attained 

prior to or during o2 , suggesting that the isograds in thi s 
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area were deformed during nain phase F 2 folding. Therefore 

an alternative explanation is that the low-grade zones 

represent a structural depression in the regional 

metamorphic zonation that forms the distal part of the 

thermal dome surrounding the Yamba batholith. 

5 . 2 Discussion and Summary 

Much of the early (D1 and earlier) deformational history 

of the Itchen Lake region is poorly understood. However, the 

documentation of structural elements related to subsequent 

deformation is of sufficient detail to attempt tectonic 

modelling (King, 1981; Kusky, 1987; King and Helmstaedt, 

1989; this study). 

Across the Itchen Lake region supracrustal belt F 2 folds 

exhibit a progression westward from the fan structures 

defined in the central part of the belt (King, 1981), to 

westward overturned folds near the basement terrane and the 

margin of the belt (Bostock, 1980; this study) and to west­

verging recumbent folds west of the gneiss-supracrustal 

boundary (Easton et al., 1981; Kusky, 1987; this study). The 

gneiss-supracrustal boundary is marked by mylonite zones for 

much of it's length and Kusky ( 1987) suggested it represents 

a ductile detachment zone along which the cover rocks we r e 

thrust over the basement gneisses. The combination of these 

structures has led to the recent interpretation of the 

deformational history of the Itchen Lake reg i on s upra crus t a l 



belt as that of a west-verging fold-and-thrust belt (Kusky, 

1987, 1989; King and Helmstaedt, 1989). The driving forces 

for development of the fold-and-thrust belt are considered 

to be independent of batholith emplacement (King and 

Helmstaedt, 1989). 

Several factors point to subsequent modification of the 

west-verging structures: 1) the shallow-dipping gneissosity 

and recumbent folds within the gneiss terrane progressively 

steepen toward the gneiss-supracrustal boundary; 2) along 

the gneiss-supracrustal contact mylonitic foliations within 

the basement rocks and the compositional layering within the 

banded mafic volcanics (suggested by Kusky (1987) to be 

tectonic in origin) are vertical to steeply east-dippi,g; 3) 

east of the gneiss-supracrustal contact F2 main phase folds 

are steeply plunging, have vertical to steep east-dipping 

axial planes and appear to tighten toward the gneisses and 

5) a prominent north-trending, steeply east-dipping s
2 

foliation is developed in the Keskarrah Bay area, but is 

only locally developed in central parts of the belt. Many of 

these points suggest that the proposed buttressing effect of 

the basement terrane was superimposed on the cover sequence 

subsequent to westward directed thrusting over basement . 

The development of the regional foliations during o
3 

and 

D4 can be related to the thermal but not the strain aureole 

that accompanied intrusion of the Yamba batholith (King, 

1981). King and Helmstaedt (1989) suggest that horizontally 

- 247 -



directed forces, external to the dynamics of batholith 

intrusion, were responsible for their orientation. 

Regional metamorphism of supracrustal rocks across the 

Itchen Lake region has been shown to be that of a single 

progressive event which documents low-pressure andalusite­

sillimanite facies metamorphism. The metamorphic zonation is 

interpreted to reflect the thermal pattern produced during 

granite batholith emplacement. Subsequent modification of 

this pattern is indicated by: 1) suggested folding of the 

isograds in the western Keskarrah Bay area during main phase 

F2 folding; 2) structural doming of the high-grade isograds 

in the eastern Point Lake area, which may have occurred 

during emplacement of the Yamba batholith and 3) telescoping 

of the isograds across two fault zones, the Fubar and Norma 

faults. 

Some of the structural elements of the Itchen Lake 

greenstone belt described in this text and the studies of 

King (1981), Kusky (1986, 1987) and King and Helmstaedt 

(1989) appear to lend support to the previously described 

contractional tectonic models. The development of recumbent 

folds in the western area, geometry of main phase F2 folds 

and arcuate outline of the belt may have resulted from 

westward directed folding and thrusting of the cover rocks 

during an accretionary stage. King and Helmstaedt (1989) 

suggest that the two regional foliations formed in response 

to ongoing metamorphism and convergence of the belt. 

Modification of the metamorphic zonation along the Fubar and 
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Norma faults resulted in telescoping of the metamorphic 

isograds. 

Although the accretionary theory proposed by Kusky 

(1986, 1987, 1989) presents a convincing argument for o
2 

and 

younger deformational events, some important features are 

not explained in this model. For instance: 1) the 

relationship of easterly trending r 1 folds to the suggested 

westerly directe~ tectonism; 2) the apparent lack of 

recumbent folds within the supracrustal terrane and 3) the 

orthogonal relationships observed between successive phases 

of deformation eg. easterly-trending F
1 

folds are 

overprinted by north-trending F 2 folds and the regional 

southeast-trending s3 foliation is overprinted by a 

northeast-trending s4 regional fabric. In addition, the 

early tectonometamorphic history of the basement gneiss 

terrane remains poorly understood. 

This thesis has examined the metamorphic and structural 

history of a small part of the Slave Province. Correlation 

and comparison with studies in adjacent areas has allowed 

the integration of data for a large part of one supracrustal 

belt within this Archean terrane. However, much detailed 

information remains to be acquired throughout the S lave 

Province to allow precise testing of the various prc~osed 

tectonic models. 
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Appendix A: Electron Microprobe Analysis 

Appendix A contains the following tables of electron 

microprobe analyses, which are discussed in the text: 

Table A. 5; Chemical compositions of CHZ minerals. 

Table A.6; Chemical compositions of BZ minerals . 

Table A. 7 i Chemical compositions of cz minerals. 

Table A. 8; Chemical compositions of AZ minerals. 

Table A. 9; Chemical compositions of sz minerals. 

Table A. 10; Microprobe analyses of minerals from 
amphibole-bearing iron formation. 

Table A.ll; Chemical 
minerals. 

compositions of low-grade Fe- rich 

Table A.l2; Chemical compositions of minerals in 
garnet;staurolite-bearing assemblages. 

Table A.lJ; Microprobe analyses of minerals from ma fic 
flows. 

Table A.l4; Chemical compositions of minerals in felsic 
volcanics. 

The tables are arranged in an order that corresponds 

with the text and are presented following the discussions on 

Methods and Problems in Analysing Phyllosilicates by 

Electron Microprobe. Locations of all samples examined i n 

thin section and analysed by electron microprobe, x-ray 

diffraction or for whole-rock compos i tion are shown in 

Figure A.l. 
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Methods 

Samples were chosen that: a) contained little or no 

evidence of alteration or retrograde metamorphism and b) 

contained representative mineral assemblages. 

Thin sections were hand polished using 1.0, 0.3 and a 

final .05 micron synthetic powders. The amount of time 

required to achieve the necessary degree of polish varied 

with grain size and mineralogy of the sample: micaceous 

minerals in fine-grained greywackes were the most difficult 

to polish. Areas were selected in the thin section for 

analysis and circled and the section was then carbon-coated. 

Samples were analysed with a JEOL JXA-50A wavelength 

dispersive electron probe microanalyser with Krise! control 

probe system and built-in Bence Albee correction factors 

hou3ed at the Department of Earth Sciences Memorial 

University, st. John's, Nfld. In most cases each mineral was 

analysed for 11 elements (Na, Mg, Al, Si, K, Ca, Ti, Cr, Mn, 

Fe, Ni) with an analysis time of 30 seconds andj or 60,000 

counts (for analysis of some plagioclases and opaque pha~es 

analysis time was cut to 5 seconds and 30,000 counts). 

The internal standard used for analysis was 

clinopyroxene (ACPX) and occasional checks were made using 

other standards (garnet, plagioclase). oxide abundances for 

the ACPX clinopyroxene standard are given in Table A.1 along 

with other standards used f or element calibration. 
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TABLE ,,_1: Chemical Composition of AC?X Clinopyroxene Standard and Other Standards Used During Electron Microprobe Analyses 

Standard 
1\) 

1\CPX FCPX 2442GARN K-GNT LC PLAG BENS HEDEN MCKAY KRE£P LOWK K-HB• JOPX 

~ t1a20 1.27 1. 27 n.d n.d 3.45 .36 .44 n.d 1.06 n . d 2.60 .13 ~ :1g0 16.65 15.47 11.53 18.504 . 134 .00 1.47 7. 38 10.84 7 . 16 12.80 26.79 
A1zOJ 7 .36 7.86 22.10 23.7 32 Jo.n 19.2 4 l. 58 13.42 17. Jl 9.94 l4. 90 1.23 
SiOz 50.73 49 . 85 39.00 41.46 s 1. 2 5 63.42 47.12 44.65 48.80 39.18 40.37 54.09 
KzO n . d n.d n.d n.d . 175 15. J 4 .OS . 02 .52 .OS 2.05 n.d 
CaO 15.82 17.75 4.20 5.1€3 13.64 .08 21.97 12.25 10.00 12.07 10.30 1.52 
TiOz . 74 . 83 .08 .47 .045 . 00 .01 6.59 1. 68 10.12 4. 72 .16 
CrzOJ n.d n.d n.d .• d .01 .00 n.d . 14 n.d n.d n.d .75 
1·1n0 .13 .14 .~9 .28 .H6 .10 2 .62 13.95 .19 18.63 .09 .49 
FeO 6.768 6 .17 n.o4 10 .678 n.d .02 24.41 n.d 8.90 n.d 10.919 15.22 
N10 n.d n.d n.d n.d n.d .62 n.J .25 .18 .35 n.d n.d 
TOTAL 99 . 97 99.34 99.H 100.287 100 .06 99.18 99.67 98.65 99.48 97.50 96 .69 100.25 

•!!20 contP.nt 0.14 WP.ight percP.nt 



A large muscovite grain from pegmatite was used as an 

external monitor during analysis of the phyllosilicates. The 

composition of the muscovite monitor as determined by wet 

chemical analysis (Table A.2) differs from that determined 

by electron microprobe analysis (Table A.3): K is lower in 

almost every microprobe analysis relative to wet chemical 

analysis (higher K-contents were determined during one set 

of analyses) and Si-contents are inconsistent: L.O.I. 

indicates a water content of 5.4% but microprobe oxide 

totals are in the range of 90 to 95 indicating water 

contents of 5 to 10%. 

Problems in Analysing Phyllosilicates by Electron Microprobe 

The discrepancies in K-contents determined for the 

muscovite monitor by the 2 different methods is a problem 

that was recognized buc could not be rectified. Craw (1981) 

observed that in K-bearing phyllosilicates K ions will 

migrate within the sample due to vo1atization of OH ions by 

the microprobe beam and that the beam cause~ internal 

oxidation of Fe2+. Initially K ions migr~te to the beam 

spot, but subsequently the ions migrate away from the spot, 

apparently as the result of the oxidation of Fe 2+. Craw 

(1981) also noted that the direction of change in Fe:Mg:Al 

ratios during oxidation is unpredictable. Table A.4 presents 

microprobe analyses carried out repeatedly on one spot of 
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TABLE A.2: Chemical Composition of Muscovite 
Adsorption Analyses 

Monitor from Atomic 

Analyses no. 1 2 3 4 Trace Elements 

Si02 45.8 45.8 45.8 45.6 Pb 3 
Ti02 .10 . 10 .10 .10 Th 1 
Al203 32.0 32.0 32.0 32.0 u 4 Li .13 .13 .13 .13 Rb 2095, 0.2% l\) 

Fe203* 4.25 4.25 4.22 4.21 Sr 4 
(}'. 

co MnO .10 .10 .10 .10 y 38 
MgO .39 .39 .40 .40 Zr 2 CaO .07 .06 .11 .08 Nb 246 
Na2o .67 .66 .66 .66 Zn 432 
K20 10.36 10.46 10.42 10.46 Cu 7 
P2o5 .05 .03 .05 .05 Ni 17 LOI 5.43 5.43 5.43 5.43 La 26 
TOTAL 99.35 99.41 99.42 99.22 Ba 88 

Ti 14 
v 11 
Ce 13 
Cr 0 
Ga 165 

"' Fe203 = Fe total. 
Tra c e element data in ppb. 



TABLE A.3 :Chemical Composition of 1-iuscovite Monitor from 
Electron Microprobe Analyses (using ACPX standard) 

batch no. 1 2 3 4 5 Aver aye 
no. of 
analyses 4 6 6 4 3 23 

Na20 .57 .58 .55 .66 .73 .60 
MgO .43 .44 .44 .47 .43 .44 
Al203 31.61 32.50 33.04 31.46 31.35 32.16 
Si02 47.12 45.70 46.78 44.58 45.10 45.96 
K20 9.57 9.50 10.77 9.39 9.73 9.86 

1\) CaO .00 .DO .00 .00 .00 .00 
{)'\ Ti02 .14 .13 .14 .12 .13 .14 

"' Cr203 .00 .00 .00 .oo .00 .00 
MnO .08 .09 .06 .11 .04 .08 
FeO 3.02 3.19 3.02 2.87 3.00 3.04 
NiO .04 n.d .01 .00 .0() .00 
TOTAL 92.56 92.12 94.81 89.66 90.52 92.28 

Na ~149 .154 .143 .179 .198 .160 
Hg .084 .089 .087 .096 .091 .089 
Al 5.109 5.294 5.260 5.262 5.206 5.236 
Si 6.466 6.316 6.318 6.329 6.356 6.350 
K 1. 675 1.675 1.855 1.700 1. 749 1. 736 
Ca .000 .000 .000 .000 .000 .000 
Ti .012 .012 .012 .012 • 01.2 .012 
Cr .000 .000 .000 .000 .000 .000 
Mn .008 .008 .004 .012 .004 007 
Fe .347 . 365 .341 .337 .357 .350 
Ni .004 n.d .000 .000 .000 .000 
TOTAL 13.849 13.913 14.019 13.927 13.967 13.940 

for:nu1a oasis: 22 oxygens per fornula unit 



TABLE A.4: Repeated One Spot Electron Microprobe Analyses of /1uscovite /-toni tor (using ACPX standard) 

analysis no. 1 2 3 4 5 6 7 8 
Na 2o 1.01 .64 .21 .18 .28 .07 .11 .18 MgO .54 .49 .46 . 29 • 52 .so .45 .34 Al2o 3 30 . 99 32.22 30.75 32.97 29.95 31.86 29.00 29.54 Si02 42.61 43.57 43.54 45.60 42.44 41.27 38.45 41.38 K20 10 . 79 9.48 7.38 6.37 5.33 ].31 5.58 3.52 CaO .oo .00 .00 .00 .oo .00 .05 .oo Ti02 .13 .17 .17 .12 .14 .19 .11 .17 Cr2o3 .02 .00 .03 .06 .00 .00 .00 .00 !\) HnO .04 .15 .11 .06 .00 .20 .oo .11 --.) 
FeO 2.58 2. 71 2.80 2.92 3.32 2.57 2.80 2.70 

0 
NiO .00 .18 .13 .01 .00 .00 .oo .00 TOTAL 88.70 89.60 85.57 88.59 81.98 79.97 76.55 77.94 
Na .282 .175 .056 .049 .080 .018 .033 .055 Mg .115 .100 .099 .057 .115 .111 .110 .078 Al 5.315 5.414 5.318 5.445 5.345 5. 719 5.565 5.448 Si 6 . 199 6.21) 6.)90 6.391 6.425 6.287 6.264 6.477 K 2.002 1.724 1. 378 1.135 1. 026 .644 1.157 .698 Ca .000 .ooo .ooo .000 .000 .ooo .004 .000 Ti .013 .017 .017 .012 .013 .018 .009 .018 Cr .000 .ooo .000 .004 .000 .ooo .000 .ooo t1n .004 .017 .013 .004 .000 .022 .000 • 014 Fe .312 .322 .340 .341 .417 .326 • 377 .354 Ni .000 .017 .013 .000 .000 .000 .000 .ooo TOTAL 14.241 13.998 13.623 13.439 1:1.42 2 13.144 13.520 13 . 141 

1-t/FM .267 .228 .219 .14 2 .216 .242 . 226 .175 Na/~a+K .123 .092 .039 • 041 . 072 .027 .028 .073 A!Vl. 3.514 3 .627 3. 708 3.836 3.770 4.00<3 3.829 3.925 Aliv 1. 801 1. 787 l. 610 1. 609 l. 575 1. 713 1. 736 1. 523 
formula bilsis: 22 oxygens pP.r formula unit 



the muscovite monitor, from which it can be seen that 

K-contents decreased and Fe-contents increased during the 

course of the analyses. 

Craw (1981) suggested that defocusing the beam 

(increasing the width and decreasing the intensity} is a 

solution to alleviate K ion migration. In the rocks of this 

study the width of the phyllosilicates (especially 

muscovite) often approximates the smallest beam width 

obtainable, so beam defocusing could not be attempted. 

Other problems encountered include: a) difficulties in 

precisely locating the beam; b) the beam position must be 

constantly checked for wandering during analysis of 

fine-grained micas; c) in some instances it is possible to 

focus on a mica that is just beneath another grain (quartz, 

feldspar); d) basal sections of the micas are almost 

impossible to polish and e) none of the internal standards 

used during analysis for this study compare closely enough 

to muscovite or biotite mineral chemistry. 
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TABLE A.5: Chemical Composition of CHZ l1inerals 
EASTER II BF.LT 

:~liSCOVITE CHLORITE 

Sa:nple no. OSa 277a 171 356 122 05a 277a 
no. of 
analyses 7 3 3 ti 3 3 2 

Na20 .44 .46 .46 .43 . 4 7 .26 .13 
:1g0 1.13 .69 .57 .so .50 12.9 9 13. OJ 

Al203 32.23 32.56 34.01 33.00 33.92 21.99 21.44 
S i02 48.43 46 . 87 44.81 47.18 45.96 26.32 25.13 
K20 9.35 10.06 9. ~ 10.31 10.08 . 07 .35 

N cao . 00 .00 .00 .00 .0 0 .G2 .01 
--..] TiOz • 34 .40 .24 .23 . 20 .OS .06 
N Cr~C3 .00 .03 .04 .00 .02 .01 .19 

!-I nO . 02 .02 . oo .03 . 03 .14 . 1 4 
FeO 2.04 1. 30 1. 22 1. 27 . 82 26.47 26.70 
NiO .02 .01 . 03 .03 . 0~ .00 .OJ 
TOTA~ 9L OO 92.42 90 . 59 93.29 92.04 88.32 88 . 41 

Na . 111 .120 .122 .111 .1 23 .067 .029 

:~g . 223 .136 .115 . 159 .1 00 2 .5 97 2.624 
Al 5 . C'l0 5 . 245 5. 569 5.270 5. 4 74 3.475 ). 417 
Si 6.490 6.405 6 . 220 6 .3 96 6 . 293 3.572 3.558 
K 1. ~55 1. 75 1 l. 629 l .":' S2 1. 760 . 009 .. 055 
C.l .000 .000 . coo .oc o .occ . 001 .ooo 
T i .030 .OB . 023 . C23 . 020 . GCJ .oo.; 
C:: .coo .001 .OC2 .coo .0 01 . oco .Gl8 
:·:n .c o: .001 .aoc . ceo . CC3 . c:s .. ol.; 
Fe ~ ~~6 . l~ 5 .. 1 3 8 . :~3 . 0 !12 2 . 9~9 ) . 1):'1 

~ ~ . CCl .O Ol . cc: . ceo .C C3 . coo .C 0 2 
T C-:".'\:. !:3. 6.2-:' !.J. S45 l3 . Sl3 13.0 5~ l3 . 869 12 . :-:.a l2.H~ 

:·~ , r:·~ 
.. .. , ..; s .; .. . 5' : • .; 5-:' . .: 6s 

:->a. :;,,. o: • () 7 • -:os.; ' . 0 5 
>.. . \'i 3. 55 3.E5J ;;. • I 3. 66 3 . € 2 • . . 2.HS .. 
A::\' : . 5: :.5 9:: l.~ c ' c 2 . ~ : 2. es c· ... . 
i:-::~:.::3 : a~ : s• : 

. , ' ' -- 2: lG 
~ r::.;7':".t-e:- ~. axy~e~.s -.. - :c :~;-.:: a ~ :-: ;.-: 



TABLE A.S (co~.t~~."~ec): :;E S7£F. :~ B"' ~ --· 
:~uscov:TE CHLORITE 

Sa:r.?lt:! nc . 105 3'12a lOB 225 221 395 223 105 B2a 108 225 221 395 22 3 
no . o f 
analyses 3 3 8 3 4 6 10 2 6 7 10 

1:a20 . f;O .45 .44 . so .50 .30 .77 . 0~ .01 . 03 .Cl . 03 . 03 . 0 4 
r110 .48 .69 . 75 . 70 . 62 .65 .6 9 19 . 06 18.05 16 . 94 19 . 11 16 . 3~ 11.7 3 12.99 
Al203 35.21 3 3. 53 34.96 3L28 36.39 33.31 33. 99 23 . 41 22 . 74 22.60 23 . 55 23 . 30 22.69 23 . 65 
Si02 47.79 44 . H 48. 35 4 6 . 80 c 18 46 . 08 46.30 26 . 91 24.56 27 . 28 26 . 02 25 . 59 24 . 65 25.53 
K20 8.70 10. 09 9. 34 9.0 3 9 .03 9.i9 9.29 .02 . 03 . 01 . 07 .02 . 01 . 0 5 N cao .oo . 00 .00 .oo . 00 . 00 . 00 .01 .Ol . 03 .Ol . 01 .01 .01 -...) 

VJ Ti02 . 10 . 55 . 39 .11 .20 .29 . 19 .03 . 06 . OS .03 . 03 . 06 .0 4 
Cr2o3 .03 . 07 . 08 .02 . 01 .08 .01 . 09 .06 . 07 .03 .02 .01 .02 
!I. nO . 02 .03 . 01 .02 . 02 .08 . 02 . 13 . 19 .20 . 20 .52 .19 . 24 
FeO . 39 • 72 .89 .59 . 81 l. 51 1 . 21 17 . 80 21.96 22 . 69 18.77 24. 32 29 . 98 27 . S7 
NiO .01 .00 .02 .00 .03 .02 .03 . 09 . 06 . OS . 01 .03 .03 . 03 
TOTAL 93.37 90 . 59 95.2 3 92 . 05 96 . 89 92.11 92.SO 87 . 59 87 . 73 89 . 94 87.81 89 . 31 89 . 40 90. 17 

Na . 163 . 120 . 109 .128 . 12 3 . 078 . 202 . 007 . 003 . 005 . 001 .007 . 004 .007 
Mg . 092 . 168 . 114 . 140 .118 . 130 .137 3 . 682 3. 583 3 . 266 3.708 3 . 191 2 . 369 2 . 567 
A1 5 . 523 5 . 517 5 . 411 5 . 4 79 5 . 518 5 .383 5 . 450 3 . 575 3. 571 3.447 3. 898 3 . 596 3.635 3.695 
Si 6 . 360 6.201 6.350 6.346 ti . 328 6 . 318 6.294 3 . 487 3.269 3.525 3 .3 89 3.352 3.351 3.363 
K l. 4 76 1 .797 1. J63 1. 561 1.482 1. 712 1. 612 .002 .002 .000 .008 .002 .000 .006 
Ca . 000 . 000 . 000 .000 . 000 . 000 .000 .000 .000 . 002 .0 00 .000 .000 .ooo 
Ti .008 . 056 .037 .009 .018 .031 . 017 .000 . 005 .002 .000 .001 . 00 3 .oo: 
Cr . 002 .007 .006 . 001 . 000 .001 . 000 . 007 .005 .001 .000 .000 .004 .001 
Hn . 000 .OO:S .ooo . 001 . 002 . 003 • 001 .013 .021 . 018 . 016 . 023 .014 . 025 
Fe . 043 .081 .0'16 .065 .086 . 170 . 136 l. 929 2 . 447 2. 4 54 2.040 2 . 662 3 .410 3 . 057 
Ni .000 .000 . 001 .000 . 002 .001 .002 .005 . 004 . 003 .001 .001 . 002 .002 
TOT,\L 13 . 66 7 13.950 13.687 13.730 13.677 13.827 13.851 12.707 12.910 12.726 13.062 12.835 12.788 12.724 

!1/ F!1 .682 . 675 . 5~3 . 683 • 578 . 413 . 502 .656 .594 .571 .645 .515 .411 .4 56 
Na./Na+K • 100 .063 . 065 . 076 . 077 . 044 .111 
A1V i 3.883 3.718 3. 761 3.8:0:5 3.846 3.701 3 . 744 2.576 2.915 2 . 517 2 .7 28 2.786 2.787 2 . 769 
Aliv 1. 640 1 . 799 1. 650 1. <j54 1.672 1. 682 1 . 706 2.985 2 . 640 2.845 3.335 2.808 2.867 2.979 
A1 /11g+f·e+l4n . 531 . 43 6 . 496 .579 .478 . 495 .527 
formula basis#:22 22 22 22 22 22 22 i8 18 18 18 18 18 18 
# number of oxygens per formula unit 



S«mple no. 
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TABLE A.6: ':!:e::-.ica: Cc~::csi.t:..o ~.s o: EZ !~ .:. ~.e:-a:s 

E.;s:-=:F.~~ B"='."" 

r~~SCO\' ITF: CHLORITE 

Sa:"';:.le no . Ola 1S 9,J 200 20la 2Clb 2-13 Ola l99a 200 20la 20lb 2-3 3 2-5h no . of 
analyses 2 6 11 1 2 6 5 5 3 

Na20 . 1 2 .25 .41 .33 .30 .55 .01 .04 .09 .02 . 03 .02 . 01 
MgO 1. 7 5 1. 04 .99 .79 .90 .67 H.98 15.05 12.59 14.51 1L92 15.83 18.06 
Al203 30.94 34.25 32.47 35.02 34.50 35.51 20.6 1 22.33 21.55 22.09 2 2 .61 2 3.40 21.74 
Si0 2 44.92 48.58 46.44 47.83 48.76 48.75 24.32 25.97 27.07 26.37 25.91 25.34 2 5 .94 
K20 10.82 10.39 10.09 10.90 10 . 7C 10.33 . 01 . 10 .34 .21 .OS .OJ .04 l\) CaO .01 . 0 1 .oo .01 .01 . 01 .02 .02 .03 .03 .01 .03 .OJ ---.} Ti02 .51 . 40 .39 .29 .34 .33 .07 .06 .06 .11 . 07 .07 .06 \ J\ Cr2o3 .01 . 06 . 04 .04 . 0~ .05 .03 . 04 . 03 . 06 .04 .07 .14 HnO .06 .02 .01 .02 .02 .01 .21 . 22 .22 .16 .27 .31 .32 
FeO 2.26 1. 33 2.18 1.15 l. 38 .84 25 . 13 ~5 . 60 25.53 25.70 25.27 23 .81 21.56 
NiO .04 .02 .02 .02 .0~ .02 .OS . 03 .06 .02 .01 .04 .05 
TOTAL 91.58 96.35 93 . 04 96.40 96.99 97. 07 85.45 89 .4 6 87 . 57 89.28 89 . 19 88.95 87.95 

Na .030 . 060 . 106 .083 . 075 .136 . 000 . 0 10 . 020 .002 .007 .oos . 00 0 Mg . 365 • 20 1 . 1 98 .152 .172 . 126 3. 1 22 2 . 97 1 2 .545 2. 874 2 . 950 3.117 3.562 
Al 5 . 108 5.284 5 . 233 5 . 421 5.301 5.153 3.392 3.488 3.422 3 . 453 3 . 534 3 . 644 3 . 562 
Si 6 . 291 6. 361 6.347 6.280 6 . 355 6.319 3. 396 3.411 3 .660 3.502 3.438 3. 349 3.432 K 1. 930 1. 734 1. 758 l. 825 1. 778 1.707 . 000 . 016 .054 .033 .006 .003 . 005 
Ca . 000 .000 .000 .000 .000 . 000 .000 .001 .002 .003 .000 .002 .001 
Ti . 052 . 0 37 . 036 .026 .030 .030 .004 .003 .008 .009 .005 .004 .002 
Cr . 010 .003 .000 .001 .002 .003 . 000 .002 .000 . 004 . 001 . 005 .012 
l1n .005 .001 .000 .000 .001 .000 .024 .021 .022 .016 .02 8 .032 .034 
Fe .263 . 14 3 .244 .124 .14') .08'1 2 . 937 2 . 837 2.905 2 . 855 2 . 801 2.6~2 2.386 
Ni . 001 .001 .002 .000 .003 .009 .004 .002 .004 .001 . 000 .002 .005 
TOTAL 14 . 055 13.825 13. 924 13.912 13.866 13.572 12 . 879 12 . 762 12.642 12.752 12.770 12.795 12.829 

1'./Fl~ .581 .584 .448 .551 . 536 .586 . 513 . 510 . 465 .sao . 511 .539 .595 
lla/Na+K • 015 .03 3 .057 . 044 .040 . 074 
l\1vi 3.399 3.645 3 . 580 3.701 3.656 3 . 472 2 . . 18 2 . 694 2 . 307 2 . 553 2.652 2.791 2.662 
l\1iV l. 709 1. 639 l. 653 l. 720 1. 645 1. 681 2.558 2.732 3.016 2.818 2 . 845 2.87 7 2. 611 
A1/Fe •l1g•l~n . 421 . q69 . 55 1 .491 . 492 .498 . 436 
formula basis#:22 22 22 22 22 22 18 18 18 18 18 18 18 
I nu •.• be r o f oxygens per formula unit 

- - - ----··- - ··- -·-· ····-. - -·-- ---- - - ------------- ------- - - ---------- --------



TABLE A.6: (continued) 

CAS TERN BELT 
BIOTITE 

Sample no. Ola 198a 199a 20la 20lb 2-33 2-54a 
no. of 
analyses 4 7 3 3 .6 7 7 

Na 2o .11 .10 .OJ .03 .07 .10 . 19 
MgO 9.71 7.96 10.31l 10 .09 10.51 11.05 12.67 
Al203 18.38 18.97 18.60 18.88 18.81 19.04 17.76 
Si02 35.52 35.78 35.96 36.83 36.20 36.97 36.21! 
K20 9.89 9.87 9.98 10.36 9.93 10.0j 9.11 

!\) CaO .00 .00 . 01 .00 . 01 .01 .00 
-.,.) 

Ti02 1. 74 l.H l. 73 1. 62 1. 77 1. 42 1. 36 
~ 

Cr203 .05 .05 .06 .08 .05 .07 . 16 
HnO .07 .08 .08 .08 .11 . 14 . 16 
FeO 19 . .;6 21. iS 19.15 19.87 19.30 17.70 17 . 34 
:-.io . 00 .03 .06 .01 .01 .03 . 01 
TOTAL 94.67 96.33 96.0-< 97.85 96.77 96.56 95.05 

N,l. . 03 3 .027 . 009 .o1.; .020 .025 .050 
!-~Q 2.225 1. S06 2 .339 2.237 2.347 2.450 2.866 
Ai 3. 333 3.407 3.3 1~ 3 . 307 3.325 3.338 3.132 
~i 5 .423 S .tf 52 s . .;37 5 . ·:76 4 • .;72 5.501 5.522 
K !.9~9 1. 91 7 1.92.; :.962 !.897 1. 902 1. 704 
C-1 . GJ: .coo .0 (10 .00? .O OJ . 001 .oco 
Ti • : ~ 0 .1~7 .:? 5 .177 .197 .156 .l.;9 
C::- . oo .; . 003 .oo.; . oos .o c .; . 007 . 0:9 
:·!:1 . 0~6 .acs .0 07 . aoe .012 . 015 . c: J 
Fe :.::>3 ., , ... :.4:J : . .; io 2.12 :J 2.2 04 2 .13~ ~. 

~: i. . Cl' (' • 2 ~! 2 . oo .; . oo : . co: .. OC l .oc: 
T ... '':' .;~ : s . o5 - : 5. 59 r:) :5.651 : s . H:J 1 5 .56~ 15 .. 59 7 1 5 .. 597 

:·! F~! . ~ . . .;~ . , . , 2 i • 5 3 

~~ ~1 :~ a·!\ . c' .·:' - .G " 3 . " " .'\: ... ~ .7~ E - : - ~ 2 " . ~ .; 
'\ . ~ \' : .:-- :. s.:: : . 5 ::: . s 3 ~ '. ~ 2 ·' . ~ c 
: ::-:- c: : .1 ~-~$:S: .:- x·.·:: ~:;:; : =·=-:- ·..: : .l . 



TABLE A.6: (CO!'l~i:n:e:i 1 

\·n:S':' ER~; B::L T 

:~USCOVITE CHZ..ORI TE B;OTITE 

Sam;:..le no. 398 336 11 2 373 393 
no . o f 

3 96 112 3 73 3 98 396 112 3 73 

a nalys e s 5 3 3 5 3 2 6 3 4 3 7 .; 

!:a20 .6J . 22 . 38 . 3 2 . 0 1 .0 4 . 0 2 .0 2 .08 .04 . 07 .02 
:~gO . 41 .84 .74 . 7 5 1 2.58 1.;.51 12 .94 1 4. 35 9. 04 10 .04 8 . 84 8.95 
Al 203 34.31 3 2 .9 6 3 5 .60 33.2 5 22 . 6 ::i 2 3 . 7 7 22 .78 19. 1-1 18 .68 1 9. 74 19 . 27 17 . 7J 
S i 02 4 4.4 1 4 7 . 6 5 48 .3 1 47. 00 2 4. 5 2 2-l. 71 25 .3 3 27 .3 5 35. 97 34 .50 36.69 37 . 01! 
K20 9 . 4 0 10 . 05 9.30 9.42 . 0 3 .07 .02 .02 9.14 9 . 5 9 9 .1 5 8 . 81 l\) CaO .00 .00 .00 . 01 .01 .0 1 .03 . 01 .00 .01 . 0 3 .00 --J Ti02 .29 .43 .29 .45 .06 .06 . 08 . 0 4 1. 53 1. 96 1. S3 1. 41 --J 
Cr 20 3 .04 .0 2 . 04 . 01 .0 5 n . d .0 2 .0 2 .07 n . d .05 . 02 !1n0 .01 .02 .0 2 . 0 2 . 42 . 44 .37 . 47 . 19 . 22 . 1 6 . 23 
Fe O .85 1. 0 7 1. 00 1. 10 28.38 2 5 . 25 28 .67 27.49 21. 78 18 .82 21. 8 6 22.01 NiO .02 .04 . 0 1 .03 .00 n . d .0 3 .04 . 0 6 n .d .04 . 03 TOTAL 90 . 37 93.30 95. 69 92. 3 6 88 .71 88. R6 90. 27 88 . 9 5 96 .54 94 . 92 9 7 .68 96.29 

Na . 1 G7 . 055 . 094 . 082 .0 0 3 .000 . 0 03 .0 05 . 021 .00 7 . 0 19 . 004 Mg .084 . 167 .143 .149 2. 551 2 .889 2.574 2.836 2 . 041 2 . 2~6 1. 964 2.01~ 
Al 5. 634 5.239 5.482 5 . 3 27 3. 637 3.735 3.58 4 3.04 4 3.33 7 3 .555 3 .3 88 3 . 165 Si 6 . 185 6.4 29 6 . 314 6 . 386 3.33 2 3.2 94 3.38 3 3 .689 5.451 5 . 275 5.474 5.614 
K 1.670 1. 7 28 1. 54 9 l. 631 . 002 .009 .0 0 1 .001 1 . 76 6 1. 8 68 1. 741 1. 702 
Ca .000 . 000 . 00 0 . 000 .00 2 .0 09 . 0 0 1 .001 .00 0 . 000 . 002 . 000 
Ti .028 .041 . 0 2 7 . 044 . 0 0 5 . 000 . 006 . 001 .171 . 226 . 169 . 11:0 
Cr . 0 0 2 .ooo .002 .ooo .004 n.d .00 0 .0 0 0 . 00 9 n.d . 003 .00 0 
l~n .00 1 .001 . 001 . 0 0 1 . 04 7 .036 • 04 0 .050 .022 . C2 6 . 019 . 02 6 Fe .097 .118 . 107 . 123 3 . 231 2 . 8 08 3 .2 0 0 3.100 2 . 7 60 2 .4 05 2. 726 2 . 78 7 
Ni .000 .003 . 000 .on . 000 n.d . 001 .00 3 . 00 3 n . d . 003 . ooo 
TOTAL 13.841 1 3 .781 13. 719 13 .7 4 5 1 2 .812 1 2 .771 1 2 .7 9 4 12.7 79 1 5.581 1 5 .648 15.508 15.477 

l~/ F11 . 4 64 .586 . 5 72 .548 . 438 .504 .44 3 .478 .425 . 487 • 419 . 42 0 
Na/Na+K .091 . 031 . 057 .0 4 8 . 0 1 2 .004 .011 .002 A!Vi 3 . 8 19 3. 6 68 3.796 3. 713 2.81 7 2 . 876 2 . 73 8 2 . 262 . 78 8 .83 0 . 862 . 7 7 9 AliV 1. 815 1. 571 1. 686 1. 61 4 2 . 1'140 2 . 9 34 2. 8 3 7 2 . 473 2.549 2.725 2.526 2 . 386 
A1 /Fe +Hg+Hn .<187 . 512 . 483 . 41 0 
formula basis # :22 22 22 22 18 18 18 1 8 22 22 22 22 



TABLE A.6: (continued) 

PLAGIOCLASE 

I~ES7ERN BELT EASTERN BELT 

Sample no. 112 398 373 37:1 Ola Ola 199a 20la 20lb 2-33 2-54a 
M M c M c M c M c M M 

no. of 
analyses l l l 2 l 1 1 1 2 2 1 

:<~a2o 6.68 8.26 11.59 9 . 20 11.78 12.08 11.10 8.20 11.81 8.71 7.08 
~toO .00 . 00 .02 .01 .01 . 00 .00 . 00 . 01 .10 .00 
Al203 2 5 . 06 24 .36 20.66 2 3 . 3 3 19.00 19.82 19.62 25.01 20.17 23.43 2 4 . 52 
Si02 59.98 60.05 71.03 62.23 66.~5 69.07 73.21 62.03 73.60 63.08 59.95 

N K~O .04 .07 . 03 . 05 .04 .04 .03 .08 . 03 .13 .03 
~ cao 9. 45 6.73 1. 56 5 . 5~ .25 .68 .17 7.54 .39 5.59 6.95 
ro T102 .00 .04 .00 .0~ .00 .04 . 01 .0 0 .00 .01 .02 

Cr;:03 .00 .00 .00 . 00 . 0 0 .oo .01 . oo .02 . 01 .01 
MnO .05 .00 .01 . 02 .00 .04 . 01 .oo .02 . 01 .01 
FeO .11 .1 2 .03 .09 .08 . 05 . 09 .09 .OS . 32 . 01 
NiO . 00 .H . 00 .00 .02 .05 .00 .00 .05 .02 .02 
TO':'AL 101.39 99.7B 104 .93 10~.4i' 97.64 101. 8 7 104.24 102.95 106.13 101.40 98.59 

:-;a . 57 2 . 715 . 938 . 789 1. 023 1 .0 07 .895 .689 .941 .740 .616 
=·~a . 0(10 .000 .00 1 .000 .000 .000 .000 . 000 .000 .006 .000 
.:u 1. 3 53 1.16 ~ 1. 015 1. 219 1. 00 4 1. 005 .962 1. 278 . 97 5 1. 20 9 1. 296 
s:. :. ~ 1\.' 2 .31 2 2.965 2 . 755 2.98 J 2.972 3. 047 2.690 3.02 :!. 2 . 764 2.6!"16 
K . oo;_ .oo: . 00 1 .oc~ .oo: . 0 01 .001 .OOJ . 00 ! . 007 .000 
~ ~1 .~ H; . :-h~ . 065 .2 E: . 01 2 . ~30 .007 .35 0 . Ol7 .262 . 336 
~ . • O C ~,1 n~· . ... .... - . C' OC: . l'C' O . :'O J . Cl ') . CCC . 000 • OC J . ce o .O G0 
l ::' • 1..~ c "'" . c.:: :~ . reo . C'U '" " • • \.1 ~-

n·~ 
• \..:U · • . ':00 • 01)0 .CG: .C'J (: . oar. 

~-~~ 
....... . . :. 2 c . c ~ J . (':: • .; ~ r: . . -~ :J: . G':J.) • OC·C • :: S C· • (J ·JO , () ()~ . .. \ . 

!""t' • : .~ J . ~t- .; .: ('C. . c.: 3 .. >: : . oo : . ': ~ : . OG2 • G ~: " .. . .... . ~ .0 00 ... ... ... , ...... 
• v \. l 

. ' . 
• v\.· 1 . ~c~ . ~ ~: . ... ~ c 2 ....... , . .; •.; ... r - r • J IJ .... . coo "~ ' . .., . .., ... • G C: ~ ! . Cv O 

7 ~'7r\~ ~ • ~) ~ 2' ~. ~' :~ 4. ~ a, S .C':~ c:: "''~ .. :. : 2-: .;. 1:5 s.o:3 .; . ~:,- 4.~ :.~ 4.j~~ 

A~. - ... - ...... : !:! ~~:. ........ : -~' . ~ : .; . ~ . . - -. - .J .: 3:; • '3 r. . ~ H .: 3 5 . 3 
. :-..·: t' ~= - .l : · ·. \ 
:· ~ ... !" :":"". ~~ ·' t~' '?: s - "-""' XV~Ci. S ::e:: :c-:-:::...::a l:::: .. : !"t.:t ._"" :- ·~· ~: :; : :. =l.' ~ :-::.1•:-ix ;::J.:::c:.He 
: : :- c ~ :· •; ... ~ ~ ..1 ... : = ~ .. : e:-!..3;:.~c : .1~e ;::: 3:~. ~ 



TABLE A. 7: C!'"-.'.?:-:'1 .: :-a : C .. ; :'"" ;.:.~s4.~:-:-:"".:3 c: '- '- :·~:. :-.~ :"3: s 

:~·:scc\~:::7;: a: : :- : :- :: 

Sarr.p:e :10 ~- s ~ !:· 2-3~ 1.32 2-lC3 .-54b ~-3.; 13: 2- l 6 3 
no. of 
analyses 6 7 7 ~ 7 5 8 6 

~;a20 .97 1.113 1. 29 l. 39 .H .11 .15 .12 
HgO .48 • .; 3 • l • 4 3 10.83 9.53 10.73 10.26 -~-
A1203 3t;.Ol 36 . 00 36.25 34.5 5 l<l.64 20.00 19.62 18.85 
Si02 4~.0~ 48.67 49. :o 45.47 36.45 36 . 71 37.17 3S.-13 
K20 8.61 8.70 8.23 8.56 8.53 8.69 6.57 8.7 7 
CaO .00 .02 .00 .00 .00 . 01 .00 .00 
Ti02 . 31 . 31 . 36 . 3 7 l. 3 5 1. 36 1.-13 1. 36 

1'\) cr20J .05 .06 .05 .05 .Oii . 06 .06 .06 
-...J I-I nO . 01 .01 .01 .02 .06 .10 .08 .Od 
'[) FeO .72 .70 .73 .54 19.81 19.77 20.15 18.26 

rlio . 03 . 0 l .02 . 0 3 .05 .02 .03 .03 
TOTAL 96.23 96.09 96.47 91.41 96.75 96.-12 97.99 93.22 

Na .2-12 .295 .321 .367 .037 .047 .042 .035 
11g . 091 .081 .080 .085 2.396 2.117 2. 347 2.354 
A1 5.491 5.50-1 5.507 5.578 3.440 3.515 3.394 3.423 
Si 6. 344 f:. 318 6.329 6.22~ 5.414 5.475 5.455 5.461 
K 1. 420 1. 4 38 l. 351 1. 495 l. 581 l. 653 1.602 1. 7 24 
Ca . ooo .002 .000 .000 .000 .OOil .ooo .000 
Ti .027 .027 .032 .036 .148 . 150 .156 .155 
Cr .002 .00-1 .002 .002 .006 .005 .005 .007 
:~n .coo .000 .000 .001 .008 . 011 .008 .009 
Fe . 07':) .074 .076 .061 2.460 2.465 2.473 2.351 
Ni .002 .000 .000 .002 .003 .002 .002 .003 
TOTAL 13.695 13.743 13.698 13.856 15.493 15.440 15 .4 64 15.522 

M/FM .5-15 .523 . 513 .582 .493 .462 .487 .500 
Na/rla•K .146 .170 .192 .197 . 023 .0 2 8 .026 .0 20 
.1\1 vi 3.835 3.822 3.836 3.807 .854 .990 .849 .884 
AliV 1.£56 1. 682 1.671 1.771 2.586 2.525 2.545 2.539 
formula basis : 22 oxygens per formula unit 



TABI.E A.7: (continued ) 

CORDIERITF. P LAG IOC LP.S £: 

Sample no. 2-5<1b 2-34 132 2-1~3 2-54b 132 2-H3 
no. of 
analyses ll 5 3 5 1 

... ;320 .3 8 .52 .27 .19 8.65 8.34 10 . 10 
MgO 8.42 8.00 8.41 8 .1€ .00 . 00 .00 
Al2C'3 32 . 18 31.69 3~.15 31.55 22 . 72 23.30 22.19 
Si02 ~9.66 51.80 49.09 48,.;9 64. 7') 64.36 62 . 30 
K,Q 0 01 . 01 .00 .01 .06 .0 5 . C4 
ci\o .0 1 . 0 2 .00 .00 4.48 5.00 3. 54 
Ti 0 2 .01 . 01 .00 .00 .01 .00 .0 1 
Cr203 . 0 0 .co .00 .O l . 00 .oo . 00 

"-' 11:'10 . 2 7 .H .19 .2 9 .03 .DO .oo 
co reo 8.04 8.77 8.15 7. 77 .01 .OJ .1~ 

0 1: io .00 .00 .00 . 00 .04 . 00 . 05 
T C>7AL 95.98 10 l.:;: 6 9b.28 96.~9 lO O.i9 1 01. 08 98.38 

!' .1 . 0 75 . 093 . os.; . 038 . i3 2 . 705 .861 
~1...; 1.282 1.1 92 l. 289 1.271 .000 .DOC . 000 
,,.:.. 3. 87~ 3 . 793 3 . ~00 3 . 29-l .1 . • l GS l.HB 1.177 
5: 5. 0 7 .. ~.186 s.os: S.O ? :J 2.8}2 2.BC9 2 . 80 ~ 

K . ceo . 000 . 000 .000 .0 02 . 002 • 001 
Ca . 00 0 . coo .c eo .oco .~09 . 2 3 3 . l70 
':'~ .OGO .GOO .DOC .one .oc o . coo .OCCi 
L: . 0 ·:O . ('co . c~ c .C'CC • ;J v u . JCO .000 

• I~:: • \: 3 5 . a: s .. o: ; ..... ~ .... . ~~0 .c c.~ 0 ... ~ ... .. 

F~ . 686 .- 33 . f.? :i . ~~· • (: 00 , jOQ f". (' ~ 
• 'J •.J .J 

... . CC.J 0 c ·=~ .~ . c: : ··- . rj 1 . C!JO . 0~ 1 . , ..... .J 

.. · ·"''-' :: . ·: !. J :0 . ~!3 : : . ':..:': : ( . ~ :· ~ 4.:.: -:: 4 . : .;.; 5 . 03 ~ 

:-~ F:·! . 6 .;.; • E ~' 5 ~ .. ...... 0 6-f .; 
~ :;- c .;-. :-: :t?~ ·- ! ::".c:e.: -..::3 :- ·. 22.2 2L S 1L2 
: ;· ;'7",.;. s 
!..'.=!. :s• : :=.: • 0 • • : :.: :. ~ . ) ~ . : c . : €. . .. ~ , 

~~. :: e.:: ". .:-x·;·;e ~. ~ :: e ~ :~=- ·;: .~ 



TABLE A.8: C!::<"~.:cai Compcsit~ons 0! AZ ~~:~~ra ts 

:'.t:SCYVI:'E B!UTIT£ 

Sar.-.r.-!e no. 09 2-l7G 427 2-:..73 3~ 2-2~lJ 135 439 2-176 4'~ ::-i7J 39 2-2::8 135 ~ I 

no. of 
analyses 2 5 7 3 ' 7 1 1 9 5 7 15 3 

Na2o 1. 52 ! .11 1. 4~ .'}8 1.16 1. 09 . 85 . 22 .13 • 16 • 13 .:?2 .07 . 1~ 
~gO .46 .49 • 44 .48 .50 .56 .~2 10. 41 10.83 .0.1 6 1C.69 9.93 9 . 8 7 1 0.~1 (\) Al203 3G. 22 36.00 36.06 34 .8r. 35.16 34.75 37.88 19.63 19.46 19.78 19.32 16 .94 19.6q 20.4 5 (X) Si02 48.13 47.117 48.09 H . l7 48.65 45.17 4 6 . 90 36.9'13 36. 90 37.51 3 7. 30 35.52 36 .3 7 37.69 ..... 
K20 9.37 9 . .; 5 7.99 8.6'i 8.69 8. ~)5 8.79 9.63 9.4 0 8.85 8. 7l 8.91 8.56 8 . 84 
Cao .oo .01 .00 .co .00 .00 .01 . no . (10 .00 . 01 .01 .00 .00 
Ti02 .30 .45 .27 . 4) .B .41 .33 1. 52 1. so 1. 53 l. 4 3 1. Ill 1. 4 7 1. 27 
Cr203 .05 .OS .04 .04 .06 .06 .C5 .10 .OG . 05 .06 .O'l . 06 .05 /1n0 .04 .02 .02 .o: .01 . 01 . 02 .07 . l ~ . 09 . O'l . 07 .08 . 06 
FeO .sa .62 .67 .74 .76 .74 .82 19.28 18.32 20.20 1 ~. 38 19.25 19 .85 20 .3 6 
NiO .04 .00 .02 .01 . 01 • OJ .02 .00 .03 .04 . 01 .05 .04 .06 
TOTAL 96.71 96.08 95.02 92.40 95.59 91.35 9fi.19 97.85 96.82 98.39 9 i . 13 94.80 96 . 06 9 9 .15 

Na .379 .278 .358 .257 .2<>3 .286 .2 11 .061 .o4e . 050 .034 • 061 .017 .038 
:1g .087 .092 .084 .095 .09 5 .110 .099 2.287 2.363 2 . 21.; 2.350 2.254 2 .1 98 2 . 20 (. 
A1 5.540 5.538 5.558 5. 560 5 . 416 5.529 5.804 3 .411) 3. 359 3 . .:10 J. 360 3.4C2 3 . 4 74 3. 494 
Si 6.2H 6. 247 6.289 6. 249 6 .3 56 6.194 6.092 5.~55 5.406 5.~36 5.512 5. 415 5.454 5 .4 6 2 
r. 1. 549 1. 572 1. 3 32 1. 4 9 3 1. 483 1. 4')4 1.~55 1. 809 1. 756 l. GSO 1. GJd l. 7 33 1.632 1. 634 
Ca .000 .ooo .000 .000 .ooo .000 .000 .000 .ooo .000 .001 .000 .00 0 .000 
Ti .027 .043 .024 .04~ .036 .040 .031 .165 .164 .166 .157 .206 .163 .13 4 
Cr .003 .003 .002 .001 .005 .003 .033 .009 .00~ . 004 .006 .010 .oo s .00 4 
11n .002 .001 .001 . ooo .000 .000 .001 .007 .J14 .007 .009 .006 . !JOB .00 5 
Fe .06 1 .066 .072 .082 .082 .084 .087 2. 37G 2.213 2 . 469 2. 391 2. 453 2. 483 2 . 469 
Ni .000 .ooo .001 .ooo .000 . 000 . 001 .ooo .000 . 00 3 .001 .00 7 .002 .007 
TOTAL 13.893 13.840 13.721 u. 781 13.766 13.740 13.784 15.5H lS.SH 15.45? 15.459 15.547 15.436 15.4 5 3 

M/FI1 .58R .582 .538 .537 .537 . 567 .532 .4 90 .512 . 472 • 4 .l~ .478 . 469 . 4 71 
Na/!lla+K .197 .150 .212 .14 7 • 165 .161 .127 .033 .027 .029 .02 0 .034 .010 .on 
A1Vi 3.785 3. :85 3.847 3.809 3. 772 3. 723 3.8? 6 .865 .765 . 8% .872 .817 .928 .9 56 
,uiv 1. 7'>5 l. 753 1.711 1. 751 1. 644 1. 806 1.108 2.545 2 .594 2.514 2.488 2.585 2.546 2.538 
formula basis: 22 number o f oxy<Jens per forl'!uta uni t 



TABLE A.8: (ccntinucdl 

COR::J!EP.ITE Pl.AGIOCLASE 

Satr.plc no. 43 9 2-17 6 427 2-173 39 135 ~-176 427 2-173 3? 2- 221:> 135 
nc>. of 
ol:l .ll yses 8 3 7 1 1 2 

S,l ~O .21 17 . 35 .20 .74 . 26 9.01 1!.30 8 . 38 9.43 9 . 1:1 7. 6~ 

:-!r.O 8.3d 8.53 8.20 8.63 7 . 72 7 .69 .00 .02 . o:. . 0 2 .co . 00 

I\) Al:O J 32.18 32.0C 31. 74 31.92 32.04 36 . 68 23. 13 21. 65 23. 7a 22.H 22 .44 21).50 

()) SiO: 51.82 49.H 4 9 .53 50. 96 5o.eB 46 .59 64.59 63. 91 65 . 00 (;2.53 6.: . 10 (1 0 31 

I\) 1\20 .O l .00 .0 ! .Ol .01 . 0 l . 04 .04 .Ci7 .H . 06 .03 

l" .lO . Ol .01 . c l . 0 l . 0 3 .01 4. ~2 2.57 6 . 30 3. n 5 . 21 6.50 

TiO' .(11 .00 .co . 00 • O:J .01 .00 . 00 .c o . c 1 . () 1 . 0: 
(::-~03 . 0: .01 G' . 0: .00 • '· - .00 . 0 l .00 .00 . 01 .co 
~:l(.l .:s . ~- 0 ~ 3 . 3 J 0 27 .] 9 . 01 .02 .00 . 00 . u2 . 01 
!-~(',) ~ . 9 > 7. 7! 7 .67 8. ! : " . 98 : .86 . 0~ . 0 3 16 .1 0 .C7 1~ 

:; :,1 . c~ .as . 0 ] • 0 3 .co .04 . GO . 00 . 05 .00 . 00 . ~ 1 

T\..'~A~ ~n.s~ 95 .73 97.'78 1co. :: 99. 67 99 .~.; 101.35 lC.;. 55 103 . 75 97 . 7< 10: :1 lr.2 .23 

S.\ .03? • OJ 1 .06~ • C3a 1~ 3 . c .;~ . 75 :l .922 . 6 13 .8£~ • 77) .1,;4 1j 

:·~ ~1 1.:.; 2 ~.3 c - 1. ~f. ~ 1.2?; 1. : 6; ' :-: - • 00 ·1 . 001) .O 'JQ .0 ~ ~ . 000 . ory, .. 
... : ) . ' 3.85.; 3. 3 5 l 3. - ::3 3 ~=~ 4 . . v 3 1. 136 o-. : :17 1. !71J : . 2C: l .)~~ . ~ 

~: s. !S:' 5. c ~: 5. ::J 5 . -- 5 . lSt: .. "7 -t .j 2. 5: : 2 0 9 ."} ~ :: . 7 7 7 2.; ~; 2 .-~ _! l. ~ ,_; 

.. • .: ~ l) • .._ L '- . : CJ . ~: . c :: !; en · . cc. : . o : .~ c .:: .~ ': 7 ~02 0 ~ (., ~ 

.... • .1 0 . ; .. ~ ~ .~ (':' . ~ '-" ... .2 2J 0 ::·: 2 
_ ... ,.,. . :: ' .11 ~ . ::- ~.:-: 0 " ... -,, 

.. . '"" .. ~ • ::: i."~ : ~ C' 
...... .. n·~ r'n ; ~- ·) ;: ( . 'j(· :.-:.(; .; '"' "' 

, . 
, l . ... .. • • .J\) 

.. · :- ' .., ...... . :: c . C': -: . .: : · (l 
n. • ( , _ . ... ' • ~ ·-. -J .. : • .. 

~~;: . c: : ~} : . ~: : 2 0::: t : ~: . r: c: ·:r; • r• · '' ' ' . . " . 
F'c -.;3 0 f· 5 :'l • r. t\• . ~ 5 ) ( ... = • ~ ': i- · .- · . c 0-:- o • . ;; -.. ~ . ~ ~ ---.. . c ' ; :8 - . - : 
. .. .. ·- .. o- .' .. . .lS.: -- ... . . . . :. : _4 . . ; ~ ~ ':&:~ ~ 1~ 4.1;, :. . ,; •,~ ... 4 .1 

'! F:~ -' " ' . ' .. .;; ". ;. . ---
; 7' : ' ~ l- :·. :c ...... ~.: .l !"' . . .: • < : ~ . 2: - .i: ... . -. - . - -. 
.. . ... • 1 ·"'· -:. :. ~~ .. :: .. -· . : ~ '! 

• -.. - - . ~ -.;,;: ::c ~ .. \.- .. .: --- , - -· .. : 



TABLE .\.8: ( CC:'l t!.:; t,; pd l 

"·. z Bl~T:TE n•z COP..J l !:F:TE A•: PLAGI OCLASE 

s.-.mF le ,-:o. 2-4~a 2-42 2-180 2-183 2 - ~0a 2-42 ~-lao ~-183 2-aa 2--i~ 2-160 2-ltlJ ~.0 0 t)! 
analyse.: 5 5 5 7 8 14 7 5 1 
s.,,l") .23 .10 .11 .20 .2:! .23 .2.: . l 7 6.86 8.4J 9.39 9.~3 11'10 10.'50 9 . 53 9.88 10.80 8.90 7.8~ 8.61 8.78 .00 .00 .00 .01 A12('3 19.90 19.84 19.45 19.50 32.59 31.70 32 .58 32.53 22.57 23.20 22 0 79 22.49 Si02 37.69 35.93 36.63 37.22 50.68 49.47 50.08 50 . 9 6 64.61 63.61 6L 71 64.00 

/\) 
1<20 8.77 9.61 8 . 79 9.40 .01 .01 .00 .01 .07 .02 .04 .05 

(X) 
CaO .01 .03 .02 .01 .01 . 02 .01 .01 5.13 5.39 4. ~s 4.27 

\....) 
Ti02 2.01 l. ~0 1. 95 l. 83 .00 .00 .01 .01 .oo . 00 .00 .00 Cr203 .08 .10 .08 .08 • Cl .01 .01 .01 .00 .01 .')0 .oc I~ no .12 .10 .12 .12 .30 .36 .31 . 3 5 .oo .02 .02 .00 FeO 19.02 19.88 18.99 19.39 7.78 8.87 7.77 8.16 .08 .a.: .00 .07 NiO .01 .02 .02 .02 .03 .02 .02 .02 • 02 .03 .oo .01 TOTAL 98.44 96.54 96.04 98.57 100.53 98.53 99.64 101.01 99.37 100. 77 101.32 100.34 
Na .063 .028 .029 .055 0 041 .044 .045 • 031 .587 .717 .792 .805 Ma 2.296 2.133 2.200 2.353 1. 331 1. 203 1. 299 l. 308 .000 .000 .000 .000 Ai 3.407 3.515 3.425 3.359 3.851; 3. 849 3.890 3.836 1.172 l. 200 l.169 1.167 Si 5.478 5.402 5. 4 74 5.441 5.087 5.097 5.0H 5.100 2.849 2 . 792 2.819 2.818 Y. 1. 624 1. 842 1. 674 1. 751 .000 .000 .000 .ooo .003 . 001 .Oill .002 Ca .000 .002 .003 .000 .000 .000 .000 .000 .242 .252 .203 .200 Ti .216 .1 54 . 217 .199 .000 .000 .000 .01)0 .ooo .000 .000 .ono Cr .007 .009 .007 .008 .ooo .000 .000 .000 .ooo .000 .000 .ooo l~n .014 .0!0 .013 .013 .024 .030 .025 .028 .000 . 000 .000 .000 Fe 2.311 2.496 2. 371 2.370 .652 .763 .657 .682 .00:! .001 .000 .002 Ni .001 .001 .001 .002 . 001 .001 .001 .001 .000 .000 .000 .000 TOTAL 15.417 15 . 592 15.414 15.551 10.992 10.987 10.991 10.986 4.856 4.963 4. 985 4.994 
M/FI~ .497 .460 .480 .497 .663 .603 .656 .648 Na/Na+l< .037 .015 .017 .031 A1Vi .885 .917 .899 .8oo AliV 2.522 2.598 2.526 2.559 
An-content (molecular '-> 29 . 1 26.0 20.4 19.9 formula basisl:22 22 22 22 18 18 18 18 8 8 8 8 I number of oxygens per formula unit 



TABLE A.8 (continued): Cordierite-free Assemblage - ABI1 

sample no . 437 128c 

no. of 11USC BI O PLAG MUSC BIO 
analyses 3 6 1 3 4 

Na20 1. 39 . 1 2 9.94 1. 34 .1e 
11g0 . 36 10.06 .00 .48 10.16 
Al203 35.20 19.42 21.86 34.03 19.16 
Si02 46 . 72 36.83 65.36 45.84 35.97 
1\20 8.19 8.88 .04 8 . 49 9 . 05 

l\) CaO .00 . 00 3. 42 .00 .00 co Ti02 . 35 1. 62 .oo .31 1. 40 
~ Cr203 . o.: .o.; . 02 .04 . 03 

1·1n0 .02 .09 .00 .01 .08 
FeO .53 20.26 .00 .69 19.85 
NiO . 03 .03 . co . 02 .OS 
TOTAL 92.82 97.35 100.64 91.25 95.93 

Na . 358 .033 .8 4 3 . 353 .048 
?·~a . 071 2 . 222 . coo .096 2.280 
A1 5.572 3 . 393 1.128 5.501 3.405 
s.:.. 6 . 2i7 5 . .;6o 2.861 6.287 5.429 
1\ 1. .: o.; 1.678 .001 1. 484 1. 740 
Ca .coo .000 .!59 .')00 .ooo 
Ti .03: .180 .000 .029 .155 
C=- . 00 0 .003 .000 .001 .000 
:-~n .~ DO .OlC .oco .000 • 009 
Fe .059 2.510 . oco . 'J76 2.502 
~; i .o c. ~ .00 2 .000 . 000 .00~ 
TC'~.~:.. :'..3. 772 15 . .;91 .:.992 .!.3.827 15.573 

!•t I' ~·:,~ . - '5 .H9 . 558 . 4 76 
:;a ~;a.:·. - 3 . Cl9 .192 .02i . ' A: \"i 3. 5 3 .es: 3.788 • . : 3.: 
··iv ..... : 3 2.s.;o 1 . 7l3 2 . 57: ..... 
.;:1-.:o~ ~e:-. t (-:cle :;:a=- • I ... 15.5 
:::-:7:'..l:a =as:.s• : : 22 c 22 :<2 • :-: ·.:::-~e=- ~~ ox·:c ~S' ?e=- ! :>:-::-:.:.::a t::::.t 



TABLE A.9 : ~~e:-.ical CC:O::??Si~ic~ s o: s: !·!l:'lP.!"a!.s 

!·1\.:SCGV:TE BIOTITE 

sa~p1e no . 2-21 H 2 3;6 34 0 307 2 - 21 3~ 2 346 34 0 3 07 
no. o f 
ana l yses 4 5 4 4 5 7 3 6 5 

r;a 2o l. 2 3 l. 07 l. 08 l. 42 1. 29 . 13 .18 .22 .1 3 . 20 
!~gO .53 . 52 . 55 . 48 .4~ :..0.83 10. 28 10.57 10.60 9 . 81 
A 1 21) 3 3 6 . 02 35 .72 33. E.l 35 .88 35 .8 6 19 . 51 1 9.4 1 19. 25 1 9 . 60 19.36 
Sio2 4 8.20 4 7 .77 4 3. 9 0 47 . 91 47 . 9 3 37 . 30 36. 57 3 6 .8~ 36 . 90 36.93 
r. 2o 9 .15 9 .80 8. 5 8 8 . 96 9 . 21 9. 0 4 9.9 0 8 . 87 8 . 90 9.71 

N cao . 0 1 .00 . 00 . 0 0 . 00 .00 .00 . 00 . 00 . oo co Ti02 .51 .4 4 .91 . 40 .61 1. 9 3 1. 95 1. 97 1. 9 4 l. 49 
V\ Cr2o 3 .07 .03 . 08 . 0 4 .05 .08 .06 . 09 . 0 7 .07 

~1n0 . 01 .02 . 03 .03 .02 .11 . 13 . 15 .15 . 09 
Fe O . 64 .58 .72 . 68 .62 20 .26 1 8 .94 18 .62 21. 3 2 19 .88 
tliO .02 .01 . 01 .02 .02 . 03 . 0 3 . 01 .04 . 02 
TOTAL 96.2 1 95 . 96 8 9.67 95 . 82 96 .0 5 99 . 22 97. 47 96 . 59 99 . 65 97 . 56 

Na . 309 . 269 .385 . 3 60 .32 3 .03 4 . 051 .06 1 .042 . 057 
Mg . 10 1 . 101 . 113 .092 .08 3 2 . 3 4 8 2 . 2 71 2 . 336 2 .300 2.197 
A1 5.514 5 . 513 5.58 3 5. 513 5. 513 3 . 34 5 3. 3 96 3. 368 3.363 3.U1 
Si 6.26 2 6.256 6. 14 9 6 . 270 6 . 25 3 5 .~26 5 . 421 5 .469 5 . 373 5.4 1 5 
K 1. 5H 1.634 l. 5 3 3 l. 49 4 1. 532 1. 675 1.8 73 1. 67 9 l. 652 1 . 859 
Ca .000 . 000 .00 0 .000 . 000 .000 . 000 . 000 .OOCJ .ooo 
Ti . 0 48 . 0 41 . 094 . 0 38 . 0 57 . 2 08 . 216 . 21 8 .209 . 166 
Cr . oo .< .00 1 .00 7 .00 2 .003 .00 6 . 003 .0 08 .006 .007 
~In .ooo . 1)0 0 .002 .002 .00 1 . 012 .0 15 . 017 • 0 1.1 . 009 
Fe .067 . 06 2 .083 . 072 . 06 5 2.46 4 2 . 347 2 . 313 2 . 5:)5 2 . 497 
Ni .002 .000 . 0 00 .001 .001 . 00 2 . 0 02 .001 .00 3 . 00 1 
TOTAL 13. 82 1 1 3 . 877 13. 9 4 9 13.84 4 1 3. 831 1 5 . 520 15 .595 15 . 47 0 15. 5 56 15.639 

M/FH • 60 1 .620 . 577 . 561 . 56 1 . 4 87 . 490 .501 . 469 . 467 
Na/NatK .170 . 141 . 20 1 . 194 .174 .020 . 027 . 035 . 025 .030 
At vi 3 . 776 3.76 9 3 .73 2 3.78 3 3 . 7 66 . 771 .817 . 83 7 . 736 .846 
A1iv 1.738 1.744 1. 851 1. 730 1. 74 7 2 . 574 2 . 579 2 . 531 2 . 627 2.585 
for~u1a b asis#:22 2 2 22 22 22 22 22 22 22 22 
I nuMber of oxygcns per formula unit 



TABLE A.9: (cont inued) 

(Cordierite - free; SABl~ ) 

CvR:JIERIT<: PLAGI OCLASE MUSC :no PLAG 

Sample no. 2- ~1 346 340 3 0 7 2 - 21 342 346 34 0 307 34 3 343 3 43 

""· o f 
ar. aly~es 13 5 14 l l 2 l 1 4 6 l 

~.1:!0 .22 .37 . 31 . 23 9. 19 9.55 9.4 7 10.68 9.78 1. 4 1 .29 11.25 

!-1ql."' 8 .60 8 . 7 3 8. 5 9 8 . 18 . co . 00 . 00 .OG .00 .ss 10.57 .00 

A: z OJ 3 2. ~ 0 3 1.64 J2 .~7 3 2 . 21 23.22 22.09 22.29 20 . 9 3 21.96 3 5 . 0 7 1 9 . 04 21.24 
1\.) Si02 51 . 40 ~8 . 57 ~ 1. 0 4 48.66 66.2 3 65.78 61.30 68. 34 67.50 4 7 .4 9 36 . 85 65 . 84 
en 

"' 
K2(' .oo .00 . 01 . Ol .04 . 05 . 05 .04 . OG 8.11 8 . 62 . 0 4 

C.JC .01 . 02 . 0 1 .01 L JS ~ . 4 1 ~ . 0 1 l.H 3.70 . co . 00 2.29 

TiC, . 00 .01 . 0 0 .00 . 00 . 00 .0 0 . 03 .00 . 43 1. 7 5 . 00 

Cr:03 .00 . oo .01 • 01 . 0 0 . 00 . 00 .02 . 02 . o.: .as .01 

X:-.C . 33 . 3 ~ .32 . 3 2 . 00 .01 . 04 .OJ . 0 3 . 01 .17 . 03 

Fe0 8.06 1. 46 8 . 32 8. 20 .01 . 0 3 .oa . 05 .06 . 69 18. 43 .13 

SiC' .02 .0~ .C! . 03 . 01 .00 .02 . 05 • OS . 03 .05 . 00 

TC'·T . .\ :... l iJ l . Z4 97. ! 5 lo:.J9 97.98 1 03. 0 8 101.9 3 97. 7 6 101. 90 103 .15 93.84 95 . 82 100 . a2 

~.l . GH . C1 . 053 .055 .761 . e . e3l . 890 .809 • 362 . 082 • 9~4 

~.:: 1.3(~6 1.3 5 1.~79 1.258 .000 .a 0 .000 .000 . ooc . l OS 2 . 352 . 000 

"~ 3.50 - 3 . 88 3.5 2> 3.931 1 . 1€8 l. l 7 1. :8 '1 1.060 1. 10~ s . ~ <:~ 3.352 1. 0'15 

5:. 5 . ! ~C 5 .. ~ 5 s.:aa s . o ; ~ 2. 830 2.8 ., 2 . 733 2. 930 2 . 630 ~ . 3 ~ .; 5 . 5~~ 2 . ~ 1! 1 

~ C"., .c: . ~co . ~:) . OCl • G . OC2 • oc l . 002 l. 3 72 :.6~ 1 . 00 1 

(' ~\ . ,: .~ J . ... , .. . !.' C'(' .c:c. . 199 . - . :94 • C79 .169 .0':.~ . 000 . 1~~ 

.. . ~C~) . c~ O MC':) . ce o . a co . c • C C•O . ceo • ~~ ·:J . ~ 4 2 . 1';5 . OG Cj 

.::- .: ~;) · -· ..):0 . co . occ • J . ·:C'J .0 :'0 . 00 ~ .0':1 . oc .; .(; ()(.. 

~ :-: "' - .02 . ·= = 5 . ·: ::- . ; ·~ (\ • 0 0 • JC. C· .J ; C .'J'JO . c:: . o~;, • :;or~ 

fo> . r~~ -~.; .O:?S . - : s .(' ('- 0 . ~- .: c-:; ' -. .~-:-:. .:7 .; 2.~ :, : .. r-"lj; 

s. .c.:>c ,, 
•-''-· 

,~, .. _ .., ~,. ... ! . %: ,.. .. _. -~ ';'.) . GG) • CU ·': . ............. -· _ _ .... _ :: .?7 .. : :. . :3 :c.~?.; : :. ::- : 2 4. ?€ -~ .;.? s.:,.: -; ~- ·~:; .;. 9~7 ::! .. ':'; :1 :~ . .;:.; :. .. :: .; ~ 

... :~-~ . ~;: - ~ -=-- , .; .; · ~~: . ~ - ' 

~ -' ~.;~ .~ 
. 2 ' ~ ... 

A: ,. ~ 
3. ':' . ~ 

,; ~ :\ ~-~ 2 . .; 
! _- -.. ,'\ - .. : :::.!:: ·. .. , : : . ; s.: . -. 2 . .. .. . -
.. .... : ;•. :-: ~ . : .. -· -- <2 ~t 

• ~ ·- -:- .: .· :- -· :" X ':· - . :; ;:'f' :" :: .- :--: ...:.:. ~l - .... -



TABLE A.9 (c .:>r. 't.inued): s•z ( £C~B ) 

BI OT:':'E COR:JIERIT E 

S-l:r.?le no . 2'i8 264 3 50b 2 - 33 444 268 264 3 50b 2-38 4H 
no. o! 
a" a lys es ll e 5 6 3 12 4 8 4 6 

~a20 . 22 . 18 .12 .19 .19 .21 . 19 .so .26 . 27 
r~g') 10.60 9.7~ 10.32 10 . 32 10.18 8 . 65 8 . 45 8 . 56 8 . 76 8 . 72 
.a.:2ol 19.83 19 .62 19 . 62 19 . 30 19.54 32. 3 2 3 :< . 48 32.31 32.45 32. 4-1 
S i02 36 . 38 36 . 86 37 .15 37. 40 3 5 . 84 48 .8 6 50. 28 49. 31 50 . 20 50.66 
K20 8.66 8.76 8 .60 9 . 85 8.70 . 0 1 .01 .n . 01 . 01 t..J CaO . 0 0 . 0 0 . 01 .0 1 . 00 .01 .02 . 02 . 01 .01 co Ti 02 2 . 02 2.59 2 . 15 1. 92 2 . 05 . 0 0 . 01 . 01 . 01 . 01 "'-J 
Cr203 .08 . 09 .09 . 1 2 . 10 . 01 .01 .00 .01 .00 
r~no .13 .11 . 12 .10 . 12 .44 . 30 .46 .27 .30 
FeO 18.09 18.79 17 .83 19. 18 19 . 40 7.6 2 7 . 71 7.19 7 . 45 7 .52 
NiO . 04 . 03 .02 . 06 . 04 .02 .04 . 02 . 01 .02 
TOTAL 96 .05 96.77 96.03 98.45 96.16 98 .1 5 99 . 50 98.39 99 . 44 99 . 96 

Na .061 . 0 50 . 0 3 5 .050 .054 .0 40 . 034 . 097 .048 .051 
t4q 2 .351 2 . 149 2.2 80 2.2 5 4 2 . 273 1. 3 26 1. 276 l. 307 1.322 1. 309 
A1 3 . 478 2 . 4 24 3.427 3 .334 3. 4 5 3 3.923 3 . 87:) 3.907 3.876 3.853 
Si 5 .415 5 . 458 5 . 506 5 . 484 5.371 5. 03 2 5 . 096 5 . 058 5,087 5 . 107 
K 1. 642 1. 653 1. 626 1. 840 1. 663 .000 . 000 .000 . 00 1 . 000 
Ca . 000 .ooo . 001 .000 .000 .ooo . 001 . 000 .000 .000 
Ti . 223 .285 .237 . 210 .228 .ooo . 000 . 000 . 000 .ooo 
Cr .007 . 008 . 00 8 • 011 . 008 . 000 . 000 .ooo . 000 .000 
Mn .016 . 0 12 .013 . 011 .011 .037 .025 .039 . 022 .024 
Fe 2 .2 51 2.326 2 . 208 2 . 351 2 .4 32 .65 5 . 652 . 616 .630 .63 3 
Ni . 002 ,003 .002 .005 .003 . 0 0 1 . 002 . 001 . 000 • 00 1 
TOTAL 15.446 15.404 15.343 15.550 15.496 11.014 10 . 965 11.025 10.986 10.978 

M/Fr4 .509 .479 . 507 . 488 . 482 . 657 . 653 . 666 . 670 . 666 
tJa / N<HK . 0 36 . 0 29 . 021 .027 .OJ2 
Alvi .893 .882 .933 .818 . 824 
Aliv 2.585 2.542 2 . 494 2.516 2.6 29 
formu l a basis#: 22 22 22 22 22 18 18 18 1f 18 
I number of oxygen s per formula unit 



TABLE A.9 ( c ont i nued): s• z 

( SCAB) ( SCBl (SAB ) 

Sa:r;>1e !10 . 268 2 64 J50b 2 - 38 4 H 250b H 2a 304 

PLAGIOCLASE BI O COPO PLAG BIO PLAG BIO PLAG 

n o. of 
an..Jl:r·ses 4 2 1 4 6 6 6 7 

N320 8.87 8 . 95 9. 5 4 9 . 3 9 9 . 73 . 24 .28 9 .48 . 2 8 9 . 4 6 .23 9 .83 
MqO .01 • 01 . ll . 0 0 . 01 10.63 8 .82 . 0 0 1 0. 6 0 .00 1 0 . 55 .oo 
A1 ]C3 2 ]. 74 2 3. 3 2 2-l . 2 6 22 . 95 21.75 19 . 83 32 . 02 22 . 77 1 9.21 2 2.59 1 8.90 21.69 
Si02 6~ . 22 6 ~. 38 6~ .6 3 6L n 6 5 . 79 3 7 . 06 50 . 00 64.5 3 3 6 . 66 64. 2 1 3 5 . 99 6]. 0 0 
K20 .04 .06 .08 .06 . 04 8.90 .01 . 10 8.6 7 . 0 5 9 .07 . 04 
C.l.J 5 . 58 -l .SS 4.02 4 . 2 0 2 . 68 . 0 0 . 02 4 . 27 . 0 0 4 . 14 . 0 0 J. 73 

1\) THh . 00 .01 . 01 . 01 . oa 1. 84 . 01 .00 2. 0 5 . 0 0 2.00 .00 
co ~r :3J . oc . 00 .00 • 01 . 02 . 06 .0 1 . 00 .06 .00 .07 .00 
CXl ~no . 02 .01 .OJ .02 .0-l .18 . 52 .O J . 17 .00 .21 .00 

rev . 0~ . 04 . 17 . 07 . 12 18.28 7 . 77 .05 17. 8 0 .10 17 . 87 .02 

~; l '-"' .01 . 00 .(I-t .oo . 05 . OJ . OJ . 02 .00 .00 . OS .02 
T·:":'.!\!.. l\h1 . 53 10l.H 111 ~ . 8~ 9 8 . 15 10 0 .22 97 . 05 99.~9 101. 2 6 95 . 5 1 100.57 94 . 96 98 . 35 

s., .. 5..1 .75 •a •'· . d2 .825 . 06 • OS -I .802 .078 .806 . 065 . 856 
:-lc . ooc .0 0 .oc .oc . 0 0 0 2. 33 l. 3 35 .000 2. 383 . 000 2. 377 . 000 
A: 1. ~ 35 :.:9 1.22 1 . 22 .:22 3.44 3 .83:' L 172 3 . 4!6 1.169 3.370 1.149 
Si 2 . ..., ~ ~ 2.2~ 2. 7 ; z. 17 2.sa~ s . .;6 5 . ~8.; 2.816 s • .: Jo 2 . 8ZO S . 4H 2.831 
K .00:! .00 • ·J ·: . oo .0 :1 l. ~ 7 . ceo .oo.; 1 . 666 . OC2 1. H a .002 
;:a . :t.; " .18 . 2C .125 . 00 • 'J C· 0 . 200 . coo .1 3 ~ .000 . 1H .. ·"'""" .f.(' .cc . o::: . c::·.: • 2 C· CO C . ooc . 231 . IJO(; . 2:C:5 • :J fJV 

: r • C" ,~ t . cr . ;,. ... . .. .., . J:J . cc • J ..... .O?C . C06 . 000 .C 07 .V:JO 

--- ,.. .~ ·"' . ~ ~"" 0 .:. ~ ~" . 0 2 ~ . , . 001 . 'l21 . 000 . 02 .; ,lj Q(s . ~... .. ... . .... ,..· .... _ ,_, .. .. 
Fe . :J:: . .:'~,." . c: . c J 3 ~- 25 . 5:! o• . 2.2 .;.; . ~02 2.251 • C0 ~.; 

• 0 0 0 .... :.,~ -

... • I?:-.." ., 
" A' ' .0 C ,. .. . , <J':): .:Q(. , ';')0 .IJ O ~ .00V 0 ~ _ , -

:-. :- .~:. :. . o .. -:~ '. 
,. 

~ - ~: 5- . ':' ~3 .; . 9 60 1S.15 ::-.: : ~ .: .99- : : . .;-:-.; .;,1 ; .; ! ~ .:.t:z S. 'J:7 

"' F"~ 0 5 ~~ .6: : . ::3 .s::, 
:\~ '; .1 .. . : 3; ..... . = . 0 3£ . .. .. ... 
. ~ ~ -... -...... -:-. t."':"" ":' 
-~~: t:'.:" : .1:" ·. ::. s :3. : :~ .. :? . 5 :: . - .... ~ ... ! : 0,; :7.::. 

·' 
\": -· ~~ -· 

.~ ;.\' -. -. ". - 2. =-~ 
:-~:.l t-~~~~• : :t -. 2 , ---= t"'!' 

_.· :xy.:c?:a.s -.. ~ :::-::_ : .] -··· -!"' - · 



TABL E A.lO: :-: :..c !" -:;;. ~:-:;!::.e- ;..:-: <l::.n :;e:; c: :.:: :-. e~3.!: ~=-=-!':"1. ~~~i~c:e-~ea:: ~g ! rc::. F~r:":" . .a -:.:. o :": 

Sa::.?!e r.<:.o. 2-Sca 2-7Ea 36!:: 

!-1 i ne !'al A:-~?~ BI0 A.' lPH aro GARN BIO A:·li?H CH:. 
O. R L R Core 

no .. o f 
a nalys es 3 3 3 1 3 3 5 1 4 2 

r;~ 2c .08 .09 1.45 . 04 .03 .00 .00 . OS .oo . 01 
M'JO 11. 80 7 . 61 5.12 7 .09 3.48 l. 66 l. 46 11. 84 10 . 08 16.51 
Al203 .4 3 16.19 14. 05 15 . 82 21.02 20.34 20 . 27 17 . 54 13.88 21.81\ 
S i 0 2 53.07 35.90 42 . 25 35.21 3 5. 66 37 . 26 37 .46 36. 53 28.3 4 24.20 
1< 20 . 0 1 10. 33 .so 9. 70 .0 1 .01 .oo 8. 56 .!3 .04 
CaO .31 . 00 10 . 98 . 02 2 . 02 3 .28 3.36 . 0~ . 04 . 00 
Ti 0 2 .co 1. 48 . 29 . 99 .0 0 . 05 .02 l. 47 .01 .09 

r-.> c r 203 .0 3 . 07 . 03 . 03 . 00 .00 . 00 . 12 . 02 .02 
(X) MnO . 4 2 .14 .14 . 11 .26 . 74 .60 .13 . 06 .04 
'i) FeO 34. 94 26.26 25 .59 29 . 24 36 .7 5 35.70 36 .3 9 17 . 39 34.34 22 . 90 

NiO . 0 3 .OJ . 04 . 05 . 00 . 05 .00 . 00 . 03 . 0 4 
TOTAL 101.11 98 .11 100.44 9 8 . 27 99 . 2 3 99 . 11 99. 57 93. 6 5 86. 93 85 .72 

Na .000 . 027 . 0 4 . 009 . 005 . 000 . 00 0 .013 . 000 .000 
Mg 2 .599 l. 74 4 1.150 l. 639 . 4 24 . 201 .176 2 . 687 2. 64 0 3 .378 
Al . 0 69 2. 93 8 2 .4 84 2.899 2.025 l. 954 l. 9 42 3.1 48 2 . 872 3.543 
Si 7 .889 5.527 6. 371 5 .479 2 . 914 3.038 3.04 7 5 . 567 4 .97 6 3.3 22 
K .000 2.029 .092 1. 922 . 0 01 . 00 0 . 0 00 1. 663 .025 . 0 04 
Ca . 0 46 . 00 0 1. 771 . 000 .177 .284 . 291 . 000 . 005 . 0 00 
Ti . 000 .171 . 023 . 114 .0 00 . 002 .0 00 . !65 . 000 .008 
Cr . 00 0 . 00 4 . 0 00 .000 .000 .ooo . 000 . 013 . 000 .000 
14n .046 . 013 .000 .014 .018 .050 .041 .013 .005 . 004 
Fe 4.3 24 3 .380 3 . 220 3 . 80 3 2. 5 12 2. 43 .! 2 . 4 74 2.213 5. 043 2 . 6 28 
Ni . 0 00 . 000 . 000 .004 .000 . 002 . 0 00 . 00 0 . 00 0 .000 
TOTAL 14 . 996 15 . 833 15.548 15 . 884 8. 0 76 7 . 962 7.971 15 . 483 15 . 567 12.887 

rVFM . 387 .340 . 275 . 30 0 . 144 . 075 . 065 . 547 . 470 . 56 2 
Fe2+ 4 . 117 3. 0 36 2. 511 2 .38 8 2 . 452 .L97 4 
Fe l + . 207 .184 .0 01 . 044 .022 2.069 
Alman 80 . 2 81.7 83 . 6 
Pyrope 13.6 6 . 9 6 . 0 
Gro ss 5.7 9 . 7 9 . 8 
Spess 0. 6 1.7 1. 4 
f ormula basis#:23 22 23 22 12 1 2 12 22 23 18 
I number of oxygens per formula unit 



TABLE A.11: Chemi.::al Composition of Low-grade? Fe-rich Hinerals 

rmsc CH!..ORITE BIOTITE 

Sam?1e no. 226 226 122 lJ7 163 109a 226 122 

no. of 
analyses 1 4 1 3 3 5 3 3 

Na 2o .11 .00 .00 .00 .00 . 01 .06 .07 

MaO .52 6.68 7 . 79 5.50 10.33 13.20 4.12 6.97 
Ai 2o 3 34.91 .H 20.78 19.31 21. OS 22.81 20.17 15 . 49 

5i02 52.05 22.JO 24.35 24.53 25 .04 24.92 32.78 37.19 

1<20 8.50 .04 .04 .02 .00 .00 9.03 9.02 

cao .09 .01 .05 .02 .02 .02 .00 .03 
TiOz .18 .07 .14 .05 .11 .04 2.25 2.33 

Cr203 n.d n.d .00 .00 .03 .00 n.d .01 
~lr.O .00 .13 .16 .oo .20 .17 .06 .02 

1\.) FcO ~.49 37.24 35 . 27 41.63 33.33 28.07 27.31 35.27 

"' NiO n.d n.d .05 . 00 .00 .00 n.d .04 
0 TOT.'\L 99.86 90.48 88.63 91.06 90.10 89 .2 3 95.78 98.34 

Sa .022 .000 .ooo .000 . ooo .000 .U5 . 01 6 

r-:<~ .095 1. 391 1. 642 1.166 1.114 2.651 .967 1. 581 

Ai 5.160 3.857 3.~67 3.239 3.409 3.625 3. 747 2.781 

s~ 5 . 160 3.200 3.450 3.495 3.Hl 3.360 5.168 5.669 

K l. 353 .C J5 .00~ .000 . coo .000 1.815 1.752 

Ca .o:1 .cor. .004 .coo .000 .000 .ooo .003 

Ti .0"5 .000 .012 .004 . 008 .0 00 .265 .265 

C:- n.d n.c .000 .000 . 000 .000 n.c! .ooo 
::n . ~ cc· .0 0~ .017 .ooc .C20 .016 . 00 7 .001 

F~ .. 3~..; 4. 3 56 4. 178 L95E 3. 829 3.165 3.600 3.463 .. ~ n.C o. . c! .~04 .coo .oco .oco n.c! .004 

TV:".\:. 13.5 5 4 l:.E:J 12.7 - ... !2 .8~ 1 12.622 12.813 ~5 . 58 4 15.53 5 

~1 f'·' '~ .:.;: '.' • : j ;J , -. .456 . 212 • 313 . .:..:: ... .. -~ 
fc::-,.,:.:la b.!sis~: i E ' - 15 12 18 22 22 . : ,. 

'!"'. :..: ~.!:e:- ..:-: oxy e :"".: ::e:- ~ ::- !"' :-:. ·.; : a 1.:.:"':. :. "; 

.:: . c ' a r:ct Ce~ =:-1:..;a.ed 



--

' \ . ,...,.. . 

Table A.12: Chemical compositions of minerals in 

garnet/staurolite-bearing a 3semblages. This 

Table consists of 7 pages of analyses, presented 

according to mineral assemblage. 

Ca* = (Ca+Mn)/(Ca+Mn+Fe+Mg) 

Al** = (Alvi+Ti)/(Alvi+Ti+Fe+Mg) 

O.R, I.R = garnet outer rim and inner rim 

Formula basis# = number of oxygens per formula 
unit. 

Garnet end members calculated using molecular %. 

Garnet analyses for 81-V-143: (1) near 

plagioclase contact, (2) near biotite contact. 

Fe2+ and Fe 3+ in garnet calculated by charge 

balance. 

; . . -- - ~ . 



TA8lE A.12: Chemical Compositions of ~linerals in Garnet/Staurolite-Bearing Assemblages 

Assemblage: c;.RN£T-BIOTITE 

Sample no. 81-V-38 81-V-383d 

Mineral C.\R~ET BIO BIO CAR B!O ? LAC 

(1) (2) (3) ( 1) (2) 

O.R I.R COR F. O.R I.R CORE O.R I.R CORE 
no. of 
analyses 2 2 1 l l 2 2 3 8 3 2 

Na20 .04 . 01 .03 .00 .15 . 08 . 07 .05 .05 . 11 .17 n.d .35 10.13 

MgO 2.50 2.34 2.04 2.52 2.41 2.43 2.55 2.57 2.31 8. 02 7.95 2.27 8.80 .01 

.\1~03 21.11 10 . 98 21.06 20 . 5:. 20 . 63 20.68 20.78 21.21 20.97 19.27 19.34 20.53 19.82 2 2 .45 

SiC2 34.73 36.96 35.56 35 .; 0 37.21 38.42 34.47 34.83 35.83 35.03 35.30 36.63 3:>. 53 64.52 

K>O .00 .01 .00 00 .02 .00 .01 .02 . 00 8 . 67 8.82 n . d 8.70 . 0 7 

c:lo 1.77 2.04 2.18 1. 73 1. 73 1. 79 1. sa 1.80 l. 83 .oo .00 . 79 .00 3.~2 

1\) TiO> .01 .OS • (•4 .oc .00 .oo .01 .03 .05 1. 23 1.18 . 01 1.30 . 00 

\,!) Cr~03 .00 .co .OJ .00 .00 .00 .02 .0 0 . 0 2 .04 .02 .00 .05 .00 

1\) MnO .06 .03 .12 .12 .11 .12 .13 .04 .14 .02 .01 .52 .04 .01 

FeO 39.70 38.89 38.93 38.03 38 .38 38.5 1 J7.5S 38 . 43 38 . 87 21.85 21.21 )7. 75 22.28 .15 

siv .00 . 0) .07 .00 .00 . c~ .01 .00 .02 . 0 5 .01 .03 . 03 . 01 

TL'-T.l..!.. 9<l.9~ 1·:'1 1 . 3.; HJ.06 99.15 100.65 102.02 97.18 98.98 1 00.09 94.29 94 . 01 98.52 96.89 101.16 

~a .004 .000 . 004 .ooo .023 . 011 . :no .007 . 007 • 032 .050 n.d .097 .858 

~q .JC~ . :79 . ~-17 .305 . 28 9 . :86 . 313 .315 .279 l. 851 l. 833 .27 7 1. 97 9 .000 

A~ 2.0-1-:" 1.93 (, 2 . 029 1. 9es 1. 960 1.930 2.061 2.01\ C, 2.017 3 . 520 3.52a 1. 9'10 3. 52 4 1.156 

Si 2.SS9 : . 970 2 . 913 2 .. 96"" 3. 0 03 3 . ('1 .;..; 2.e97 2.877 2.92~ 5.42~ 5. 4 7 0 3 . 0H 5.357 2.a22 

!( .0~0 .o~c .OOJ .ve e .oc~ .~00 .0 0 ~ .000 .000 1. 714 l. 741 :l.d l. 67 3 .002 

(3 .15~ .175 .18 - . l.Sl .H9 .. 15: ... 1!:.7 .160 .ceo . 000 . 0 ~7 .00 0 .l7G 
.J. ..... 

_ , 
.J0 ~ . nc! . o~~ - ~ ~ j . ~n . :oo . oco . 00 ) .00~ . 14~ .13~ . 0 00 . 14 I; .0 0(1 

,. .::' (" ·.:' • Cf"C· , (':"" 0 .ce o .::"C O . ~ ~('· .~ C C .0 00 .000 .oco .00~ . CCG . Qt'j .; .000 .. ~ . ~ ~~ . CC'(' .cr·- ..., ,- - . cc - - 0 , - . 0 ~3 . : <;2 . 009 .OO J . ooc . G36 . OC4 .00 0 

re ~-~~2 : . t :.; 2.E5~ 2.e C€ 2.5l'8 :? .5 5 2 . 6 33 2.65.; 2.6:.; 2.E28 2 . 717 2.S~~ 2. an . o~:; 

-.;, ...... .. ').: : . '. "\ "" ·"' . 0·> :' . JJ . CJ ~ .ceo . 0 ·)1 .004 . 0 0 0 . G ~ O . Oli O . 0 1) (, .... ..... • '- 1... 

-:- :- :- .~:. s. :J ..; $ . J:' {· e. Js: 8 . .:: :. P.c: :: 7.9~ e.c-.,. .: . J ~ 5 a. o 5 3 ~ :.S l d ~ 5. ~-= 5 7 .5~.; : :: . :: n 5.0<2 

:c..~ = .. = .. !' c. ~ -, . . :·:- 2. ~· ~ 2.5~ .. 2 . ~ . 6: 2. E2 C 2. ~ ~ 

r, •. ' - • l 3-:' ~.; .c: . l': . : J r> · .c: . . .......... 
., 

=~-~ . : .:~ ~ . ~: 0 c:;. . c9 : .3 )! . ~ : c - ~ ~ . 4 : ) 

.... ~ .l • .. .. ... _•: .: .; • .:-5 .c: .. I: 5 5 . ... j :; . r; ; 
~ ... .: 59 . : :; ; . :s 
.~: -~- ~ :- . .; ... .. . c.;. - .. a7 . 2 

; :- :;. t"' " . -: s. ... 9 •• 

.... -::. ~ , 
~ . L ~ . • 2 " > 

,. . . L , 

" ..... -;: ::- .. . 0 ~ : :.~ 

.. : ,; !" .:~:- :. .:; . : : .: : l 2: ~2 ;:, ~ 

·' - ~~ .. ~ ~ ........ ... - ... ~ ~ ... ~· .: : J. ~". .. ? : .1 ; .: : : 3 ~ ~ 



TABLE "-12: \ C~~. '=. i!"H!eC. ' 

;..s::e:--=.:a·:e: GAR ~:E7- 3:C7r7~-C=RJ:ER::~- STA~R:L~7E-AL~~:~cS:L!CATE 

sa~?:-ao .. J . e:-·;-1~3 

:~.:.:-:~r a l c·-·· B:;J S:'At;R P!.AG h!'" . • t 

( :) ( ~) 
O.R r ~ R CORE ! 4 R O. R 

no. o! 
analyses 3 3 3 3 3 3 5 3 

Na20 !1.1: n.d n.d n.d n.d .15 .02 8.42 
MgO 2.46 2.69 2.67 2 . 47 2.29 8.48 1. 56 .00 
Al203 2o . n 21.07 21.00 20.41 21.01 19.11 52.43 23.63 
sio2 36.48 37.60 3 7 .08 37.60 36 . 30 35.39 26.95 62.02 
K20 n.d n .d n.d n.d n.d 8.91 .01 .05 
cao l. 29 l. 27 l. 30 l. 25 1.09 . 00 .00 6 . 13 
Ti02 .01 .00 .00 . 00 .01 l. 51 .35 .01 
Cr203 .co .01 .00 .04 .02 .07 .01 .00 
11r.o 1.16 1. 28 1. 48 1.19 1. 41 .04 .08 .01 N FeO 37 . 16 36. 3l 36 . 0~ 36.24 37.20 22.00 14.61 .10 ' .0 

'..-.) NiO .00 .04 .00 .00 .00 .02 .03 . 00 
TOTAL 99.n 100.26 99.57 99.17 99.33 95.68 96.05 100 . 38 

Na n.d n.d n.d n.d n . d .040 .003 .72 2 
l~g .299 . 3 21 .321 .298 .2 78 1. 933 . 170 .000 
Al 1. 996 1. 996 2.004 1. 955 2.024 3.440 4 .559 1. 232 
Si 2.979 3.021 3.002 3. 053 2.970 5.410 2.017 2. 745 
K n.d n.d n.d n.d n.d 1. 736 .000 .002 
Ca .112 .108 .111 .107 .093 .000 .000 .290 
T i .000 .000 .000 .000 .000 . 170 .018 .ooo 
Cr . 000 .000 .000 .000 .000 .004 .000 .ooo 
Mn .079 .084 .100 .081 .096 .004 .004 . 000 
Fe 2.538 2.441 2.441 2.462 2 . 545 2.813 .90 1 .002 
Ni . 000 .000 .000 .ooo . ooo .ooo .002 .000 
TOTAL 8.003 7.972 7.979 7.956 8.006 15.551 7.674 4.994 

FE2+ 2.498 2.421 2.407 2.453 2.S2 .. 
Fe3• . 040 .0 ~ 0 .034 . 027 .024 
MIF!'I .100 .110 .109 .102 .093 .407 .159 
ca• .063 .065 .071 .064 .063 
A1** .177 
Almand 83.6 82.5 81.9 83.4 84.8 
Pyrope 10 . 1 11.0 10.9 1 0.2 9.3 
Gross 3.8 3.7 3.8 3 . 7 3 . 1 
Spess 2.6 2.9 3.4 2.8 3.2 
formula basis# : 12 12 1 2 12 12 22 12 8 
An-content (molecular ~) of plagioclase 29 



·r ABLE A. 12: (continued) 

As'"'"'·!:> 1age: CARS ET-B l DTITE- STAURDLITE-ALUMl NDS l LI CATE 

S.lm;>1c no. 81-V-lSa 

Mineral -------- t: .~R:lrT BID BID BID (GJ STAUR P LAG P LAG OT ____ - ------
-n~- ( l) (2) (l) ( 2 ) 

O. R I.R CORE O.R I. R CORE 
no. o f 
analyses l 3 l l l 2 2 

Na ~O n . d n . d n.d n.d n.d n . d . 11 . lJ . 08 .00 6.23 6 .5 1 
MqO 2.13 2.2 6 2.30 2 . 14 2. 3 2 1.97 7.95 1.87 8.08 1.02 . 00 .00 
A:.20 3 20 . 18 20.24 20 . 17 20 . 51 19. 90 20 .06 19. 68 19.39 19 . 33 55. 83 26. 34 26 . 75 
Si .J1 37.93 37 . 89 31 . 48 37.13 37.27 38.15 36.45 35.42 35.91 28.13 58 . 31 57 .28 
l<lo n.d n . d n . d n . d n .d n . c 9 . 15 9 . 14 8 . 90 .00 .04 . 04 
~d0 1. 6~ l. 7C 1.6 7 1. 57 l. 78 1. 6 7 .oo . oo .00 . 02 9. 50 '}. 68 
T1 C'l 2 .00 .00 . 00 00 .02 .02 1. 78 1. 95 1. 8~ .54 . 00 . 00 
Cr:OJ . 00 .00 .00 .00 . 00 .00 .05 . 0 7 . OS .05 . 00 .oo 

1'\) 
M:!1l) .so !.26 1.88 .76 1. 23 3. 10 . 02 .03 . 04 .0 3 .04 .00 

"' 
Fe O 38. 06 36. 53 36 . 99 37. 91 37 .80 35.79 21. 09 21. 55 21. 99 13 . 50 . 1 1 . 08 

+=" S 10 . 01 .00 . OS .OJ . 01 . 0 l . 0 3 . 01 .06 .0 3 .oo .co 
Tl'T,\!... 1011.75 99.88 10C . SS 100.05 100 . 32 100 . 96 96.30 95.H 96.28 99 . 15 100 .58 100.35 

S.l n .c! r..d n .c! n . d n. d n . d . 0 2 6 . OJ6 . 021 . 000 .538 .565 
~~ . 2 S . ~-:o .2 7 5 . 25 7 . 28 1 .2 36 1 . 786 1. 781 1.823 . 11)7 .000 . 000 
A: l. 9 i ~. 9 ZS 1 .. 9 2! l .9El 1 . 90 -9 :.899 3.-99 5 J . .: gs 3 . .; s 1 4 .~78 1. 382 l. 41 1 
S: :. J. 05 J. Of2 l. O ~Q 3. 0! 4 ) .0:6 3. C6 7 5. 4 ~5 5 . US 5 . ~~3 2 . 001 2 . 596 2. 5'> 5 
!( n.t.! n.d n.d n.:l n .d n.c :. 7 5€ l. 781 1.7 1~ . 001) . 001 . 001 
l ' .\ ' " ..... _ . : -1 7 .: .: s . ur, . !. 5 2 ' ,. ....... ..~. . 000 . oco . oco .OC1 . 4 S2 , , 6 4 
Tl . OJ C .000 . 000 .oco .OCJ . ac o . !9 9 . 220 . 209 .028 . 000 . 00-J 
'-.. !" . J·:o . 000 .il~O .ucc .!)~J . C~J . oo .; . co .; . Q~ 4 . 00 2 . GOO . OOG 
~:: . l') ~ • Oi' 5 .::~ . 0~C .08 3 - ~= -= .coo . QOC . 00 4 . 00! .COl . 0 00 
Fe:" ~ .56 3 :. ~6:. : . : VJ :.s-J :'. 51)6 2.4 C7 :. ~ : <; 2 . 754 2. 78 4 . e~2 . oo.; . 0:02 
'> : , ._, ,· \._· . ~' ... ' ... ".' . o ~ r . ::t :· . 'J~C . ~c c . :~o . ~ G ~ • J 'J.&. .':.CJ . ~~c 

!\· : .:.:. ; • l ~ 3 - . ~ ~: 7,~Q? 7. ~ a: a.~:2 7.1 - 5 ls . .; ~ 3 :s . .;~ s ! S. ~ {. ! -; . ~2 1 ~ .91 .; :, ,!'jQ ~ 

ft._.:. .: .~ ... , , J : . .; .. : . : . : : . J.: -.. 
FP ] .. . : :t .0 .: = -
!" :-- ·~ •::. ' ... ~ · . .... ... ..... . 3 ~ ~ . 1 )~ . :: ~ 
~ .,· ' -. . ·.' ~ ..... 
A: • • ,, . . ::--;, 
-~ > -•~ -' ~=- .. :: .-:: ·' .. 3 ~ . .: 01 . : ':' ;, . s 
~:-= -· ;:-~ ~ . ~ . -. . - . ;; 
.. :--;- ...... ~ ::- -. . - .. .; . ~ .; . ~ -. -. . 
$ ;: ... ,5~ -. l . .. -. 5 
: .· :- "": .. : _, ~ ~~:= I ; 22 . <. 8 
-~c- ::-:. ...... ... .. . ... ·. .. ?: .!= .:. s . , ... 
.. . . . : ., :- ";..l..:'':. . -.. .; .! :- :-.::""' ":.. 



TABLE A. 12: ( c"::::~.:Jec ) 

A:;:: e:-.::. : ~::"=; c;;..?.::!. -: -e: ·~ :: : E -·: : ?.:: £?. :--:::: S':'X.:?. - CORJ-5 : o - A<.S : :..:.:.:.,:-:;:: 

S-:..:: ::.:~ n~. a2-·:-2J 8 :-\·-!53 

!·~ir:P.~~!. c .;?:: s:o ?' .,,... sr.;:.:~ CORD B!O P!...A\i ~nv 

C:. !' I .n Cv?.S 
r.o . c.f 
ana!.yses 3 3 4 ~ 1 7 6 4 

Na20 n.d n.d n.d • 2 3 8 .75 .04 .37 .19 9.3 7 
!1g0 2. 73 2.78 2.22 9.81 .co 1. 36 8.38 10.08 .00 
Al203 20.47 20.42 20.52 18.53 23 . .;3 5 2.22 32.01 19. 65 23 .60 
Si02 37.96 37.65 36.79 35 . 51 6!.16 28 .41 49.29 35.79 63.29 
r:2o n.c! n.d n.d 8 . 69 .06 .00 . 0 1 8.78 .04 
CaO l. 00 1. 20 1.14 . 01 5.76 .01 . 02 .00 4.95 
Ti02 . 00 .02 . 02 1. 53 .0 0 .57 . 01 l. 69 . 0 0 
Cr203 . 00 . 01 .00 .06 .oc .03 .00 .07 . 00 
MnO . 16 .13 .98 .01 .03 .39 .31 .10 .oo 
FeO 38 . 38 37.82 36.80 21.41 .16 13.25 7.86 18.79 .OS 
NiO . 02 .02 .05 .O S .01 .OS .01 .0 3 .00 
TOTAL 100 . 72 100.05 98.51 95.86 9 9 .40 96.37 98.27 95.18 101.29 

Na n .d n.d n.d . 0 67 .759 .004 • 072 • 054 .794 
Mg .325 .334 .270 2.224 .000 .148 1. 284 2.269 .000 
A1 l. 937 1. 942 1. 987 3.323 1.236 4.512 3.883 3.500 1. 217 
Si 3.046 3.039 3. 024 5. 404 2.739 2.083 5. 073 5. 407 2. 769 
K n.d n.d n.d 1.684 .002 .000 . 000 1.690 .001 
Ca .084 .102 .099 .0 00 .276 .000 .000 .000 .231 
Ti . 000 . 000 .000 .174 .ooo .030 .000 .190 .ooo 
Cr .000 .000 .000 .004 .000 .004 .000 . 007 .000 
~n .009 .007 .067 .000 .ooo .023 .025 . 010 .000 
Fe 2. 57 5 2.553 2 .527 2. 724 .005 . 811 . 675 2 .3 74 .001 
Ni .00 0 .ooo .002 .004 .000 . 00 2 .000 .002 . 0 00 
TOTAL 7.977 7 .977 7.976 15.607 5 . 018 7.617 11.012 15.503 5.013 

Fe2+ 2 . 556 2.527 2.510 
Fe3• .019 .026 .017 
M/ FM . 109 .113 .092 . 4 50 . 15.; .655 .489 
ca• . 031 . 036 • OS6 
.a.J.•• . 154 
Almand 86 . 0 85.1 85.2 
Pyrope 10.9 11.3 9.2 
Gross 2 . 8 3.4 3 . 4 
Spes s • 3 .2 2.3 
formula basis# : 12 12 12 22 8 1 .4: 18 22 8 
An-c ontent of plagioclase (82-V-23) is 27 . 



TABLE A.12: (conti n u e d) 

Asse mblage : GARNET-BI OTITE-STAU ROLITE STAUROL I TE-CORDIERITE-BIOTITE 

Samp l e no. 81-V-252 8 1 -V-34 7a 8 2 -V-39 
GAR N B!O CORD PLAG STAUR CORD RIO PLAG STAUJ\ CORD 8 10 PLAG 

no . of 
analyses 3 6 4 5 2 7 9 2 7 6 6 3 

Na~o .00 .21 . 21 9. 2 6 .00 .29 . 19 8. 54 .00 . 23 .1 7 9 . 41 
MgO 3. 72 11.40 9.03 . 01 1.41 8 . 53 10.32 .00 l. 66 8 . 46 10.08 .00 
A1 z03 20.69 18 . 29 3 1. 93 23. 2 1 52 . 46 32. 61 19 . 86 24.20 51. 6 2 32 . 19 19 . 24 2 2.77 
Si02 37 .7 5 37. 24 4 9 .7 2 63 . 02 27 . 77 50 .65 3 6.62 63.20 27 .4 2 49 . 8 3 36. 37 62. 6 4 
KzO n.d 8.75 . 0 0 . 0 5 .01 .01 8. 74 . 0 5 .1)0 .00 8 . 9 6 . 0 4 
CaO 1.00 . oo . 0 2 5.38 .01 . 02 8.74 5 . 75 . 00 .00 8.96 4. 5 4 
TiC'- . oo 1. 98 .00 . 01 .54 . 0 1 1. 6 9 .01 .56 .oo 1. 90 . 0 0 
cr2o3 . 0 0 .1 2 .02 .01 .3 6 .00 .09 .oo .14 .00 .14 .00 
MnO 2. 98 . (1 6 .21 .01 .40 .30 .10 .00 .35 . 27 . ll .03 
reo 33. 7 0 18. 24 7. 52 . 03 1 2.93 7.90 1 9. 0 5 . 05 12. 8 9 7.96 18.97 .04 
NiO . 03 . 02 . 01 .03 .00 . 0 1 .03 . oo .02 .OJ .0 3 . 01 
TOTAL 9 9 .87 96 .31 9 8. 6 7 101.02 95.89 10 0 . 33 96. 69 1 01.62 9 4.6 6 9 8. 98 95.97 99 . 48 

I\) Na .O'JO .058 .039 . 7 84 .00 0 .055 .0 51 .722 . 000 .045 .049 .8ll 

"' Mg . HJ 2. 522 l. 3 7~ .0 0 0 .15 3 l. 279 2 .2 83 .ooo .184 l. 287 2 . 250 . 0 00 
a- Al 1. 9 5~ 3 .20 1 3. 8 4 5 1. 208 4 . 5 56 3. 8 6 8 3.4 12 l. 2~ 3 4. 4 52 3. 870 3 .39 9 1.194 

Si 3.032 5. 532 5. 0 8 2 2. 76 8 2 . 045 5. 09 1'i 5 .4 3 ~ 2 .75 0 2.0 45 5 . 08 5 5 . 454 2.789 
K r. . d 1. 656 . 000 . 002 . 00 0 .0 00 1. 654 .002 .000 .000 1. 712 .001 
C.J .084 .00 0 . 00~ . 252 . ooo . 00 0 .ooo .26 7 .000 . 000 . 0 00 .215 
:'"l . ooc .218 .oco . 00 0 . 028 . 000 .187 . 000 .031 .000 . 211 . 00 0 
Cr . 0 00 . 01~ . 000 . 000 .013 . 00 0 .0 03 .000 . OOG . 000 . 0 1 5 . 0 00 
!'1:-. . 200 .ocs . Cl6 .000 • 02 3 . 02 4 • 010 .00 0 .()21 . 022 .012 .ooo 
Fe ;2, ~ 6 3 2.26 ~ e . . , 

• ~k . oco . 795 . 663 2. 3 63 • 00 1 . 80 3 . 677 2 . 377 . 0 01 
:..: . coc . oo: .00;) .OOl . coo . 000 .000 . 000 . 001 . 002 . 0 01 .000 
':' .. "'~.!\:~ 7, 48: 15. 464 11 . 0~0 5 . 013 7 .. € ~ : 10.98 5 15 .~ 6 4 4. 98 4 7 . €4 3 1 0 . 988 15.H!O 5.011 

FP,: .. 2 . 2 ~ g 
f("_:,. (' '-' ... .. 
X F~·! • !.~ -~ .525 .IS~ 6 . l~: . 653 . H: .1 ~15 . 655 . 48'. 
~: :-.:t r.~ 75 . 6 
i'y:-:-re H. " 
~=.:ss: ;. . s 
$;= t?s:t 6 .~ 

..::t • . 09S 

.~: .. .:.. o-: 

.:\:-. - ""'0::-:.!:e:-.:. , :=:.,: t'.:~: ar ·• \ ~.; . ! =~ . 9 2Q.S 
~ .. ~ =-~ ·.: : .l ~ .1:; :. $ • : :.: .. 6 :a 22 e 12 1~ 2~ ~ 



TABLE A..12: i c:. ;. ~: ~ -e:! 

;.. ;: c.:~-=-:~::(· ; CA? ~: E:-a::::~!-!:~; ~ ~ ~ :~E r ::- ?.:-:;; ~~:- :~R~ -e: ~-~~s~ .. ~: . 

::::~:"";..:oe :lJ. a:- ·: -::.;:.. B :-\'-55~. 

GA?~;:;:- e·· s::. St• a: :.::; l s:-.>.:.:R P:..A~ CCRD s : J : :~ : s:o :s 1 s:0l -.: ! :-t~:;~ .. 
! . ? 0.? 

r.c. c! 
ana~/Sf!s 4 2 2 

r;, 20 n . d n.<l .12 .0 ~ ... .0 1 8.81 l. 10 .2~ .19 .21 1 . .; 1 
MqiJ l. ~1 l.4a 6. 7; 6.~0 6.70 . 64 . ~4 7. 52 9 . 39 9. 27 10 .81 .38 
!\! lO) 20 . 1~ 1~.29 19.7.; 19.37 19.67 53 . 1~ 21.78 30.27 19 . .;8 19.33 20.02 l5 .ll 
5102 37.5~ 37.90 35.18 33.21 H . H 28.31 66.10 50.68 36 . 48 37.97 J 5 .9S 50.34 
11 20 r..d n.d 8.23 7 . 7 0 7 . 9C . 00 . 93 . oo 8.54 8 . 81 1.62 8 . 53 cao . 4! .57 .00 .oc .00 .00 2.57 .00 .00 . 00 . 00 . 01 
T1?2 .00 .04 1.15 1. 38 1. 38 . 29 .00 .00 1. 46 l. 50 1. 25 .38 
Cr2o3 .oo .00 .OJ .07 .06 .04 .02 .00 .06 . 0 7 .H .OS 
MnO 2 . 09 3.61 .05 .00 .OJ . 05 .00 . 27 .06 .07 .08 .oo 

tv FP.O 38 . 30 36.73 26.95 27.61 26.04 13.64 .19 10. 07 23.53 22. 7l 21.83 .87 
'-C) IHO .00 . oo .OJ .01 .05 .0 4 .00 .01 .OS . 04 .04 .oo --.] TOTAL 100. 13 99.82 98.12 95.81 96.36 96.21 100 . 44 99 . 93 99.27 99.97 98 . 0 1 9 7 . 10 

Sa n.c! n.d .031 .014 .033 .000 . 747 .216 .061 .051 . 061 .34 9 
Mq .193 .180 1. 522 1. 493 1.537 .069 .001 1.14 7 2 . 060 2 .007 2.384 . 060 
Al 1. 935 1.858 3.530 3. 575 3.5H 4.596 1.122 l. 648 3.384 3.314 3.485 5. 310 
Si l. 055 3.096 5.333 5.198 5.2H 2.076 2.892 5. 186 5.380 5.526 5.314 6 . 453 
K n.d n.d 1.593 1. 535 1.570 . 000 .OSl .000 1.605 1.636 1.435 1. 396 
Ca .Oll .048 .000 .000 .000 .000 .119 .000 .000 .000 .000 . 000 
Ti .000 .002 .129 .161 .157 .015 .000 .000 .160 .162 .139 .035 
Cr .000 .000 .000 .004 .006 . 0 02 .000 .000 .004 .004 .013 .002 
Mn .14 3 .261 .004 .000 .001 .002 .000 • 021 .004 .008 .008 .000 
re 2.606 2.508 3.H8 3.612 3.357 .834 .006 . 862 2.89 9 2. 763 2.696 .084 
Ni .000 .000 .000 .00 0 .003 .000 .000 . 000 .004 .004 .000 .000 
TOTAL 7 .966 7.953 1S.561 15.591 15.532 7.594 4.938 11.080 15.561 15.476 15.534 13.689 

r..,2• 2.581 2 . 498 
rel+ .025 .010 
M/F:1 .065 .060 .308 .293 
ca• .059 .103 

. 314 .076 .565 .415 .421 .469 

Al•• .167 .155 .173 
Almand 37.5 83.6 
Pyrope 6.5 6 . 0 
Gross 1.1 1.6 
Spess 4.9 8.7 
formula basis#:l2 12 22 22 22 12 8 

' 
18 22 22 22 22 

St:: bio in contact with staur. G :: bio in contact with garn. M matrix bio. s ,. bio oriented at a high angle to BIO ( MJ • c .. bio 
included in cord porphyroblast. 
An-content of plagioclase (molecular 1.) is 13.0 



TABLE A.13: Microprobe Analyses of 11inerals from Mafic Flows 

MPH I BOLE CHLORITE PLAG 

Sample no. 99a 106 107 220 2-32a 99a 106 107 220 32a 391 4lla 2-32a 
no.o! 
analyses 3 3 3 1 2 3 3 3 1 1 2 2 1 

~.1?0 .12 .20 .20 .21 1.58 .oo .oo .00 .01 .00 .03 .03 8.96 
MgO 18.96 14 . 38 14.44 12.04 9.05 22.31 14.40 17.73 15.43 20 .18 13.86 17.20 .00 
Al20l 1.33 2 . 36 4.02 8.20 13 .32 19.82 19.75 20.71 17.44 17.59 21.38 20 . 71 24 .49 

!\.) SiOz 56.32 52.96 51.58 -12. 60 43.74 28.13 26.44 27.13 26.64 28.08 25.18 25.93 61. 49 

"' K20 .O.J .0-l .09 . 16 . 37 .00 . 00 .00 .09 . 20 .02 .00 .08 
(X) CaO 12. B-1 11.98 11.74 11.31 11.55 . 13 .01 .02 .03 .02 .00 . 03 6.22 

Ti02 .oo .16 . 0 3 .02 .:!1 .oo .03 .02 .06 . 01 . 05 . 06 .00 
CqOJ .06 .00 .10 .77 .02 .H .00 .00 • 7 3 .02 .02 .04 . 00 
~!nO . 23 . 36 .2 9 .30 .24 . 25 .41 .43 .34 .22 .14 . 51 .00 
FeO 9.07 16.73 15.98 18.87 19.20 18.56 28.32 24.78 27.02 26.67 28.64 25.93 . 14 
SiO .01 .0-' .o.; .OJ .00 . 14 .05 .14 .01 .10 .OS .03 .02 
TO':' A!. 98.90 99.21 98.50 94.50 99 . 28 89.83 89.41 90.96 87.80 89.09 89.37 90.46 101.40 

:->a .023 . 046 . 046 . 0~6 .046 .000 . 000 .000 .000 .000 . 008 .COl .763 
~:: 3.933 3.082 3.U8 2 . 806 2 . 001 4.239 2.892 3.434 3.154 3. 960 2.794 3 . 377 .000 
A_: .207 .. 391 .690 1.495 2.323 2.978 3.138 3.170 2.820 2. 728 3.405 3. 219 1.269 
Si 7.SU 7.659 7.ns 6 . 67 0 6.463 3. 5S4 3.5~5 3.525 3.658 3.697 3. 405 3.417 2 .704 
K • C' L'O .000 . DOC .0:! 3 .co .GOC .000 .ooo .016 • 031 .~04 .ooc . 00 3 
Cd 1.909 l.Bf:J 1. 817 1. 33 6 1.8! 7 . Ol ~ .000 . 00 0 .o o.; . 00 ') . 000 .00 3 . 29 3 
Ti. .OOJ . OJ O .ooo .000 . OC C' . C:lO . ooo .00 0 .0 04 . 000 . 004 . 00 3 .00 0 
c= .000 .000 . 000 . C92 .oc c .o.; a . 000 .O O'J .176 .000 .000 .00 3 .00 0 
~!:-:. .C:!3 . 023 .~c3 . C2 3 C23 ,'j 2 ~ . 0~3 .o.;s .031) • 02 3 . 012 • 0 54 .OIJ O 
Fe ! .~ 5S :! . 0 01 1.932 2.Hl 2.3€~ 1. 97 9 3. ~9 3 2 .693 3 . 1 02 2. 43€ 3.233 2 .25 5 . O'l 3 
:.;~ . o: ~ . C.' J .ooc . oco " .. ~~ · .011 - ~~ c . O~ i' . oc .; . 000 . 00 0 . .. ..... • ....... .L • ·.;•.J 1 

':'~ ':".!\: : .. " ~~ ~ 15.C5S :5 . 1 3~ 15 . 5C2 1 ~ . ::s : 2. 87 9 ! 2 . 835 l2 . 87a 12 . &70 l2.9U 12 . 87 5 12.93~ 5. 03 5 

~~ : :t 2 . :i~.: ,. • 5 < .EC2 • .; -:-s • ; t$ ;1 . s ~ .; . '5 : ~ .HJ . 5 ~ 2 
: e 1• ' 1. -:- :; .; .; ,3 : . 3 1. --
~e.3 • ··-....... =~ ' . f 
: .:-. r~:..: : .. ~ ~.Js : s • : : J - n :J lE ! E. 1 ~ 13 l? 1a ~e <l 

• :1 :..:.- ~~ =- - . .::\.·; - ~ -Q- fc-:-:-:.:: ~ .... .. --



T,t,BLE "-1 4: c::e~:c a : Cc;.;:~s:~:~:-.s c= ~~:~.t :-a:s i:-: Fe: s.:. .:- ·~·c : ca!":ic:-: 

~a:"".:-.. :e ··- .. 2 - -3 17 0 .;) ~ 3 =·~:~--= :- a;. c;,~:; nr:; ~·:?H :J T ., ... G.'\.:-.:; 3:0 .;;.: i'H s:J ~~?E 
....... "'\•1 

P. ir.-, Cere 
n rJ . c: 
an a:y~es 2 3 2 2 !! 3 3 ~ 

!; e 2rJ .. 01 . 00 . oo 1. 71 3 . 88 .00 . l3 l. 04 .05 . 66 !1g0 l. 55 1.:!9 8.69 1 7.94 . oo . 62 5.94 3 . 91 10 . 12 7 . 23 11120 3 2 0. 37 19 . 82 16.87 1 i . 94 28.60 20. 43 17 . 19 14 .4 9 1 7 . 18 11.95 Si02 37.4 5 34. 98 35.2 1 39 . 23 52 . 21 3 8 . 5 ~ 35 . 31 39 . 89 37.06 43.37 K20 .01 .02 9 . 0~ . 30 .OJ . 00 10.63 . 07 9 .13 . 9 0 cao 3 .22 4. 20 .02 9.78 1:? . 07 5 . 29 . 00 1C .89 . 05 11.25 T i02 . 07 . 07 .96 .14 . 03 .os 1. 0 ~ . 0 8 1. 50 • ~8 Cr203 .00 .00 .oo .co . 00 . 02 .02 .00 . 08 . 06 HnO 3.93 8. 56 . 04 . 62 . 12 9 . 46 .27 . 4 3 . 23 .38 FeO 32 . 24 27.88 22 . 77 21.80 . 1 5 29 . 46 27.97 25.93 20 . 60 19.58 NiO .00 .02 .09 .01 . 00 . 00 .04 .00 • 04 .00 N TO':AL 9 8 .85 96. 8 2 9 3 .6 7 9 5 . 81 97 .08 10 4. 12 98.55 97 .4 6 96 . 04 96.06 '-() 
'-() 

Na . 000 .ooo .000 . 515 .34 9 . 004 . 03 6 .299 . 000 . 253 !1g .187 . 161 2 . 040 .984 . 000 .094 1. 36 9 . 92 0 2.288 1. 656 Al 1. 958 1. 972 3 . 132 l. 567 3 . 283 1. 887 3 . 136 2 . 668 3. C5 8 2 . 162 Si 3 . 05 4 2.9 53 5. 552 6.097 2.429 3.022 5.~68 6 . 256 5.61 0 6.6 70 K . 000 .000 1.813 .054 .001 . 000 2. 100 . 138 1. 760 .161 Ca . 280 .379 . 000 1. 628 . 601 .444 . 00 0 1. 8 17 . 000 1. 8~0 T i .002 . 002 . 111 .ou . 000 . 002 . 118 .000 . 154 .046 cr .000 .0 00 . 000 . 000 . oco . 0 00 .ooo . 0 00 .ooo . 00 0 Mn .270 . 6 12 . 004 . 077 . 004 . 628 .0 3 2 . 0 46 . 022 .046 Fe 2 . 200 1. 96 7 2 . 9 98 2 . 3 32 . 0 0 5 1. 9 31 3 .62 3 3.381 2.596 .: • 507 Ni .000 .ooo . 0 09 • 0 ( 0 .000 .000 .004 .000 . 000 . 000 TOTAL 7.950 8. 04 5 15 . 65 9 15. 484 4.956 8 . 013 15. 88 5 15.525 15. 488 15. 34 1 
M / Fr~ .079 .077 . 4 05 . 290 . 047 . 274 . 225 . 469 .411 
Fe2+ 2.172 1. 94 1 2. 412 l. 886 3 . 174 2.369 r e3+ . 028 . 026 . 420 . 045 . 207 . 138 Ca* .189 .320 
Al *" .136 
Alman 74.7 62.8 
?yr ope 6 . 4 5 . 2 
Gross 9.6 12.3 
Spess 9 .3 19 . 8 
formula basis#:l2 12 22 23 8 12 22 23 22 23 I number of oxygen s per formula unit 
Plagioclase has an An-content of "3. 
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APPENDIX B: Additional Analyse~ 

The compositions of various minerals referred to in the 

text are tabulated and compared in: 1) Table B.l - biotite 

and muscovite included in cordierite porphyroblasts comp<.1rcd 

to those in the matrix; 2} Table 8.2- matrix biotite or 

biotite in the s2 foliation plane versus biotite 

porphyroblasts or biotite oriented at a high angle to s 2 

(post-52 fabric orientation}; 3} Table B. 3 - late 

(post-tectonic) muscovite anc". ; 4) Table B.4 and Figure B.l -

altered cordierite porphyroblasts. 

- 300 -



:-,;a:!: E.-; t: ~J:-:- :. ::a: C:.:-.;.:s:.-:.l.c:--. c: ~~ ·..: s c~ ·: : <:€ a~. = ::::::::e I::.;:: ·..:Ce.:. . ~ C=::.:.:.e::::e ? -=' =::~.y:: .,~ :as:~ ..:.:-~.pa :-c.: t~ ·.~. ~ E e :~:: :-. : :-. "7 :.!".e ~·~ = ~!" :. x 

.::~~.~: f: :-. -:.... 2-: tr£3 ~-3.; .;:: so 2-1-.; =·~£: -;~~-::;.: ~~- :.c 
z-:~.e cz c: AZ A: 
~:.:1e::-al :"!:.:sccv: :=:: BI ~TlTE e: c :- ~ -:~ s:o7::-J:: B!07:7E 

!-' .... \':'?. rx PO?.i? P. !'.A7?.I X POR?H 1-:A!?!X POR?H ~·!AT ;:: : X POR?H MATR I X PCRPH 
no. of 
analyses 4 3 I) 5 4 3 5 2 3 3 
liazO l. 39 1. 57 . 12 .23 .14 .25 .21 .29 .09 .20 MgO .43 .38 10.26 10.56 9 . 70 !1. 47 10.~5 10 . 47 10.68 10.79 A1203 34.55 34.71 18.85 19.26 19.93 19.38 19.46 19.70 19.29 19.68 Si02 45.47 44.4 7 3 5. 43 35.81 36.61 37.03 36.73 37.59 37 . 77 36.02 Y.20 8.56 8.60 8 . 77 8.7~ 8 . 5 8 8. 41 9.66 8.93 8.63 8.35 C a l) .00 .00 .00 .00 .00 .00 .oc .00 .oo . 0 0 Ti02 .37 .26 1. 36 1. 30 1. 36 1. 39 1. 54 1. 57 1. 41 1.37 Cr203 .05 .09 .06 .10 .ns .37 .10 .22 .OS . 18 linO . 02 .03 . 08 . 08 .u,. .15 .07 .05 .11 .08 'vJ FeO .54 .58 18.26 18.59 J9.94 18.89 19.34 20.87 19.48 19.31 

0 
tliO .03 .oo .03 .OS .02 .00 .00 .01 .00 .02 

.... 
TOTAL 91.4 1 90.73 9 3. 22 94.72 96.4 3 97.34 97.56 99.69 97 .53 95.:.:. 
Na .367 .422 .035 .065 .039 .069 .056 .076 .025 .057 lig .085 . 077 2 .354 2.388 2.156 2.490 2.307 2.258 2.335 2.403 Al 5.578 5.661 3.423 3.445 3.506 3.362 3.394 3.364 3.335 3.471 Si 6.229 6.153 5. 461 5.434 5.465 5.435 5.436 5.449 5.546 5.391 K 1 . 495 1. 515 1. 724 1.689 1. 630 1. 578 1.825 1. 650 1.616 1. 590 Ca .000 .000 .000 .000 .000 .000 .000 .ooo .000 .000 Ti .036 .028 .155 .145 .149 .151 .169 .170 .155 . 153 Cr .002 .008 .007 .010 .004 .040 .008 .021 .004 .017 Mn .001 .000 .009 .008 .008 . 017 .008 . 004 .013 .008 Fe .061 .065 2.351 2.357 2.489 2.325 2.394 2.526 2.392 2.417 Ni .002 .ooo .003 .003 . 003 .000 .ooo .000 .000 .000 TOTAL 13.856 13.929 15. 522 15.546 15.445 15.485 15.597 15.519 15.421 15.507 
M/FH .582 .540 . 500 .503 • 493 • 514 • 491 .472 .494 .499 Na/Na+K .197 .220 .020 .037 .023 .034 .030 .044 .015 .035 Alvi 3.807 3.814 .884 .873 . 854 .800 .830 .813 .881 .862 Jl.llV 1. 771 1. 847 2.539 2.572 2.586 2.57~ 2.564 2.551 2.454 2.609 formula b asis : 22 oxyge ns per formula unit 



TABLE B.l (continued) 

Sample no. :<-21 340 346 Metamorphic 
Zone sz sz sz 
llineral HUSCOVITE MUSCOVITE BIOTITE MUSCOVITE BIOTITE 

lo\ATRIX PORPII MATRIX PORPH MATRIX PORPH AATRIX PORPH AATRIX PORPH 

No. of 
analyses 4 2 3 3 3 3 2 2 3 3 

Na2o 1. 23 1.27 1. 39 1. 41 .16 . 26 1. 05 1.07 .21 .18 HgO . 53 • 52 .so .46 10.57 10.79 .4 9 .61 10.56 11.13 
Al203 36.01 35.77 35. 75 35 .54 19.60 20.23 33.75 33.87 19.24 19.42 
Si02 48 .22 48.74 4R.72 48.53 36.74 37.04 43.93 43.87 36.83 36 ... 9 

\..,.) K~O 9.15 8.66 Y.0 4 8 . 67 9.03 8 . 31 8.62 8. 55 8.87 8.83 
0 cao .00 .00 .00 .00 .00 .02 . 00 .00 .00 .00 N Ti02 . 51 . 63 . 4 3 .43 2 .0 (, l. 4 5 .87 .93 1.37 1. 56 

cr2o3 .07 .O:l .. o.; .15 .0 7 .. 10 . 09 .07 .09 .08 
HnO . 00 .01 .03 .00 . 13 .11 . 03 .03 .15 . 12 
FeO . 6~ .79 . 7 3 . 72 21.09 19.72 . 71 • 7 3 18.62 16 . 84 
~iO .00 .0~ .02 . 00 .04 .05 . 00 .02 .00 .03 TOTAL 96.35 96 . 50 96.E~ '35 . 92 99.43 98.06 89.53 89.73 96.55 94.159 

Na .3 09 .315 . 346 .355 .0 ~2 .073 . 284 .288 . 061 .048 
Ma .099 .099 .095 .087 2.296 2.347 .103 . 123 2.338 2.491 Ai 5. 511 5.453 5.~63 5 .4 51 3.3i1 3 .4€~ 5. 577 5.588 3.368 3.4 39 
Si L262 6.3C8 6.315 6 .318 5.36 3 5. 415 6 . 1E2 6.14J 5.475 5.481 
K 1. 5l3 l.CS l . .: 95 1.~36 1. €79 l.S~9 1 . 539 1. 524 1. 679 1. 6'13 
L .. 'l .. ceo .CCC . coo . coo .ceo . 000 .00() .coo .000 .coo 
Ti ,(;9 .c6: .033 .c;2 .2!8 .1 59 . 090 . C94 . 21e .176 
Cr . C03 . 0:'7 . 000 ~,. .CCB .oca . 008 .00~ .002 .009 ..... ~:I 
!~:; . CC'C ,..,~ . oc-c . ceo .c:; .0: 3 . cc: .coo .011 .c:3 •¥1..\o.: 

!" ... . (f.$ .CE3 . C7f .C76 2.57 .; 2 . 4 :: .. 0SZ .:82 2 .. ~ : 2 2 . 1:6 
!\i .:):'C .. )::,:~ .o : ~ . c :: J .coJ .c:.; • O'i:l .coo .oco .coo 
"!"0':'.~:.. l: .. E 1.: 13. 7:.-;- u . s:~ 1.!.78::. 15.5 € ~ 15.H2 ~1 .. e.; ~ U.S.;6 !5 .. .: 76 1 5.~57 

~ · ~!~ • 5 ~ . ssr. • 5 ~ 2 • 4 - .6~) .5 ~ 3 .5 ~: . ~ ,. 
X~·K 

, 
l .: 6~ . .. 3 ~ . - 5 . l . 153 .C.1S .on 

A \"! - 3 . -73 - 9 • € 9 ' - ., ... ., .. .En .~LJ . . -. ~ . ~ . ' .... ~ --

" 
;. \ " , 

~.665 :.6 2 2. 2.5 5 : . e 1 .057 2.S2~ 2.5: ~ : !":"" ..: .. a !:"~1~:~: ' cxy;e:-. ~e= :~ =::-:.;:a -··· -



T~ELE 8.2: Chemical C~~~c z i ti o~ o: Bi ot ite i G ~2 Fo:ia~ ic~ 
( n.::::.2l 

Sanple r.o. 

:.:eta:nor;:.hic 
Zone 

no. of 
analyses 

!1a20 
HgO 
Al203 
Si02 
1<20 
CaO 
Ti02 
Cr203 
MnO 
FeO 
Ni02 
TOTAL 

Na 
~o:g 

Al 
Si 
K 
Ca 
Ti 
Cr 
r~n 

Fe 
Ni 
TOTAL 

132 

5 

.19 
10.79 
1'l.65 
37.72 
8.70 

.00 
1. 41 

. 05 

.07 
19.82 

.oo 
98.40 

.051 
2.344 
3.375 
5.497 
1.617 

.000 

.154 

.004 

.004 
2.417 

.000 
15.461 

cz 

3 

.10 
10.62 
19.57 
36.24 
8.36 
.oo 

1. 43 
. 05 
.11 

20.68 
.04 

97.19 

.026 
2.350 
3.427 
5.385 
1. 583 

.000 

.157 

.004 

.013 
2 . 568 

.000 
15 . 513 

.490 .480 

.030 . 020 

.872 . 81 2 
2 .503 2.615 

M/Fl~ 
Na/Na+K 
Alvi 
Aliv 
forl'lula bas is: 22 oxygens per 

.;17 

AZ 

4 

.18 
10.19 
19.93 
37.55 

8.57 
.oo 

1. ~B 
.05 
.06 

20.11 
.04 

98.61 

.049 
2.219 
3.434 
5.492 
1. 597 

.ooo 

.161 

.003 

.005 
.2.459 

.002 
15 . 421 

.474 

.030 

.926 

Bl02 

.19 
10.15 
19.67 
37.47 
9.08 

.Oii 
1.57 

• OS 
.10 

20.27 
.05 

98 .60 

.050 
2.210 
3.390 
5.481 
1. 693 

.000 

.170 

.004 

.009 
2.478 

.004 
15.489 

.471 

.029 

.871 
2.508 

formula unit 
2 . 519 

2 

.24 
10.31 
20.05 
37.63 

9.52 
.00 

1.46 
. 11 
.07 

19.14 
.00 

98.53 

~3 9 

AZ 

.066 
2.240 
3.448 
5. 493 
1. 771 

.000 

.156 

.008 

.006 
2.332 

.ooo 
15.520 

.489 

.036 
• 941 

2.507 

BI0 2 

5 

.2! 
10.46 
19.46 
36. 73 

9 .6 7 
.00 

1. 54 
.10 
. 07 

19.33 
.01 

97.58 

.05\l 
2.306 
3.395 
5.439 
1.824 

.000 

.16 8 

.010 

.007 
2.394 

.0 (1 0 
15.602 

.490 

.031 

.834 
2.561 

6 

.16 
10.82 
19.41 
36.80 

9 . 43 
. 00 

1. 47 
.07 
.14 

18.45 
.04 

96.79 

.044 
2.368 
3.358 
5.404 
1. 767 

.000 

.161 

.006 

.015 
2.265 

.000 
15.388 

. 509 

. 024 

. 762 
2.596 

5 

.20 
10.84 
19.53 
37.02 
9.36 

.01 
1. ss 

.06 

. 13 
18.17 

.02 
96.89 

.053 
2. 357 
3.360 
5.409 
1. 742 

.000 

.169 

.oos 

.014 
2.217 
.000 

15 . 3 2 6 

.514 

.030 

.769 
2.59 1 

6 

.07 
9. 67 

19.68 
36.53 
8.80 

.00 
1.48 

.07 

.09 
20.16 

. 02 
96.57 

2::b 

. 017 
2.147 
3.455 
5.470 
1.671 

.ooo 

.165 

. 0 05 

.009 
2.512 

.001 
15.452 

.460 

.010 

.92 5 
2.530 

BIOz 

.06 
10.01 
19.71 
36 .27 

8. 40 
. 00 

1.46 
.OS 
.08 

19.64 
.04 

95.72 

.017 
2 .232 
3.486 
5.443 
1. 6 06 

.000 

. 16 3 

.004 

.008 
2. 465 

.003 
15.427 

.474 

.010 

. 929 
2.557 



TABLE D.2 (continued) 

Sample no. 342 340 307 
!1etamorphic 
Zone sz sz sz 

BI01 BI02 BI01 BI02 BI01 BI02 
no. of 
analyses 2 5 3 3 3 2 

Na20 .15 .20 .10 .15 .22 .13 
11q0 10.27 10.29 10.57 10.62 9.54 10.22 
A1zOJ 19.40 19.44 19 .61 19.59 19.20 19.61 
Si02 36.76 36.49 36.73 37.07 37.14 36.60 
K20 9.88 9.92 9.03 8.77 9.75 9.65 
cao .00 .00 .oo .00 .00 .00 

I....J 
Ti02 1. 96 1.95 2 .00 1. 87 1. 56 1. 39 

0 cr2o:: .06 .OS .07 .08 .07 .07 
~ 11n0 .l ~ .13 .13 .16 .10 .08 

FeO 18.89 18.96 21.09 21.54 19.70 20.16 
NiO . 04 .02 .05 . 03 .02 .02 
TOTAL 97 . 55 97.45 99.38 99.87 97.30 97.98 

Na .on .055 .(,.;2 .0 41 .062 .050 
Mg 2.261 2.275 2.302 2.298 2 .158 2.255 
Al 3.::86 3.400 3.373 3.354 3.436 3.424 
Si 5.441 S.H3 ~ .3 60 5.396 5.412 5 .419 
K 1. 862 1.377 l. 6 7 9 l. 62~ ::.. 885 1.821 
Ca .000 .OO:J . 00~ . 000 .000 .000 
Ti .: 16 .: :us .217 • 202 . 175 .152 
C:- .. :)0 4 . ~C3 • ~07 .oos .007 .006 .,_ 

.0!5 .O!S .013 . 014 .010 .006 
f~ 2.3;9 2 . 35! :.576 2 . 613 2.198 2.496 
~ i . C02 .C'C:! .~ 0 3 . C03 .. :·Ol . oco 
7~':'.~ 15.56- 15 .60": 15.5i2 l~.s.;o 15.5.;4 15.~2 9 

~·~ ::·~ 0 ,. ~ ... .. , , .... E€ . 462 . 47 
~a :;.1.;: : ? .C 2~ 25 . C32 .02 
:\. \' :. .733 ~ ~ • s.;s . 8 ~ 
;,: : ·.,~ Q 

~ . ~. 5 .::: ~ ... 2 .5€8 2.5€ ~. . . 
::.:- :- :,-. ~: : .l ~a:;!.s: cx·:=e" pe= fc:-:7.~:a t::. i~ 



-:;..z:.= s. 3 : :-~ i-= =c!=lrCbe A::a: y ses o f ?os-:.-«:~c~ o:-. i c =·~-..:s::c,·:~es 

f.\e -:.a ::-.or;:.~.ic 
Zone .;•z A*Z A•: s•:: s•: s•z s•z 

CAB CAD CAD S C.>.B SCA.9 SAB SA I! Sa::m1e no. 2-120 2-183 2-4 0a 268 2-3 8 30 4 4 -t 2a no.of 
analyses 3 2 2 4 1 l. 2 

"'a20 1. 08 1. 23 1.09 .84 1.10 1.16 1.18 ~~gO .44 .35 .43 .48 .39 .54 .48 Al203 35.69 3 6 .06 36. 70 36.01 36.04 34.50 34 . 54 Si02 47 .20 48.23 47.32 46.82 48.05 43.00 44.16 
1<20 9 . 4 5 8.69 8.51 8.93 9.31 8.79 3.74 Ca O .00 .00 .01 .00 .02 .OS . 05 Ti02 . 31 .60 .52 .39 .36 .64 .55 Cr203 .04 .06 .05 .02 . 09 .00 .02 MnO .01 .01 .01 .00 .02 .OS .OS FeO .68 . 63 .51 .62 .79 .77 .72 NiO .01 .02 .02 . 03 .04 .00 .04 TOTAL 94.91 95.88 95.17 94.14 96.19 89.46 90.49 

Na . 2 74 .306 .272 .215 .275 .314 .319 Mg .084 .065 .083 .093 . 072 .111 .098 A1 5 .560 5.529 5.666 5 .6 36 5.533 s. 723 5. 654 Si 6 .242 6.276 6 . 199 6.218 6.260 6.054 6.132 K 1. 592 1. ~40 1.419 1.511 1. 545 1. 578 1. 548 Ca .000 .000 .000 .000 . 000 .000 . 000 Ti .030 .058 .050 .037 .034 .066 .057 Cr . 003 .003 . 003 .001 .007 .00 0 . 000 r1n .000 .000 .ooo .000 . 00 0 .004 .00 4 Fe .073 .067 .0 52 . 065 .084 .091 .081 Ni .000 .ooo . ooo .000 .003 .000 .0113 TOTAL 13.858 13. 7 44 13.744 13.839 13.814 1 3.940 13.696 

r~/ F!1 .535 .492 . 615 .589 . 462 .5 50 .548 Na/lla+K .14 7 .175 . 161 .125 . 151 .166 .171 Alvi 3 .802 3 .805 3.865 3.854 3.793 3.777 3.786 Aliv 1. 758 1. 724 1.801 l. 782 l. 740 1.946 1.1!68 

formula basis#: 22 oxyger.s per formula uni t 



Figure 8.4: Schematic diagram of cordierite porphyroblast 

from the AZ (sample 81-V-135) showing the areas 

analysed by electron microprobe (analyses given 

in Table B.4). Area 1 is the only area analysed 

that shows visible signs of alteration (orange 

coloration due to pinnitization ;in plane light 

and isotropic in crossed nicols). Dashed line 

marks area of pinnitization. Porphyroblast has 

indistinct boundaries with th~ matrix and has 

overgrown recrystallized quartz grains and 

possibly a crenulated fabric (see dashed lin~s 

mar.king zones of different mica orientations ~ nd 

different crystallographic orientation of 

porphyroblast). Muscovite is more abundant thnn 

biotite within the porphyroblast, but biotite is 

more abundant in the matrix. 
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TABLE B.4: Cher.~ical Co!'\positions of Isotropic Rims of Cordie rite Porphyroblasts (Al and of an 
Altered Cordierite Porphyroblast (B) 

(A) (B) 

sar.19l e no. 340 2-21 2-21 307 2-135 

area anal)•sed 1 2 3 4 5 
no. of 
analyses 2 3 2 1 2 3 3 3 3 

Na20 .01 .03 .07 . 00 .04 .20 .20 .34 .26 
MoO 4.55 5.58 4.76 4.13 3.06 6.00 7.07 8.00 7.69 
Ai 2o 3 33.41 30.40 31.37 30.86 34.94 47.07 40.75 35.79 36 . 68 
Si02 40.19 43.95 45.46 42.48 41.80 36.90 42.57 47.91 46.59 
K20 .17 1.73 3.42 .13 .19 .02 .02 .01 .01 
CaO .25 .31 .12 .43 .16 .u4 .02 .02 .01 

\.JJ Ti02 .00 .00 .02 .00 .co .01 .oo .00 .oo 
0 cr2o 3 .00 .co .oo .02 .00 .oo .00 . 00 .oo 
()) MnO .08 .10 .08 .11 .04 .29 .34 .35 .38 

FeO 9 . 23 8.73 7.16 7.13 6.36 6.54 7.52 8.23 7.86 
NiO .04 .00 .01 .03 .03 .oo .01 .oo .04 
TOTAL 87.91 90.83 92.46 85.30 86.63 97.07 98.55 100.64 99.52 

Na .000 .ooo .000 .000 .000 .040 .048 .065 .051 
l·lq • 7 7-1 .936 • 774 .720 .522 .934 1.085 1. 201 1.166 
Al 4.590 4.050 4.104 4.28.; 4.752 5.806 4.950 4 . .250 4. 404 
Si 4.680 4.968 5.040 5.00~ 4.824 3.861 4.387 4.830 4.748 
!( . 018 • 252 .(68 . 000 .018 .003 .000 .000 .000 
Ca .C>lB .C3E .coo .036 .000 .003 .coo .coo .000 
Ti .000 .000 .coo .ceo .000 .000 .000 . ooo .000 
cr .coo .000 .coo .oco .000 .O OQ .coo . 000 .ooo 
1·1:\ .00() . 0:)0 • ':·CC . oc: .000 .. (: 24 . 0 27 .02 9 .030 
Fe .881 .810 .5H .702 .612 . 571 . 6.;7 .692 .669 
:\i .occ .co ~ .00 0 .00 ;) .CDC .ceo .000 . coo .000 
T::."T.:O..:.. 1C . 96 :Z 11. 052 ll. OS: 1 0 . 7a 1 ~ .726 11.2 ~2 1:.:•s 11 .. :€6 11.068 

~ f~'· .a-:- . 536 .538 .506 .H:J . €11 . 6 17 . C25 .625 
!cr:":':a·.l :.:t b~~is; 1S oxyge:1s ;:er for=."Jla u:-.i t 



APPENDIX C: X-ray Diffraction Studies of Low-Grade 

Metaturbidites 

x-ray diffraction patterns of five whole rock samples 

from the central exposures of the CHZ Contwoyto Formation 

and one sample from near the Fubar Fault on the south shore 

of Point Lake (sample 81-V-413a) are shown in Figure C.1. 

These samples were chosen for XRD analyses to determine the 

relative degree of low-grade metamorphism by establi~hing: 

a) whether paragonite or pyrophyllite are present and~ b) 

the crystallinity of the micas. 

Analyses were run at 1,000 cps with a goniometer sp~ed 

of bot~ · 1 o 28/mi n and 1/2 o 28/min and the graph rate set at 

10 mm/min; 1/2° 29/min runs on samples 81-V-139 and 413a had 

a graph setting of 2.5 mmjmin (Figure C.1). 

The characteristic peaks of some of the minerals 

identified during analyses are labelled on Figure C.l. The 

characteristic peaks for paragonite and muscovite are very 

similar, but the diffraction pattern~ obtained from these 

low-grade samples are more comparable to muscovite than 

paragonite (the peak for paragonite at 27.7 and those at 

approximately 37, 41, 43 and 47 2" theta (8) are absent). 

Pyrophyllite is not present, at least not in sufficient 

quantities to be determined. The sharpness or width of a 

peak measured at half height gives an index of the 

- J09 -



crystallinity of the mica (Thompson and Frey, 1984, and 

references therein). Although actual measurements were not 

made in this study, the sharpness of the muscovite peaks i~ 

taken to indicate a high degree of crystallinity. 

- 310 -
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APPENDIX D: Su"':l'~ry of Cl<=·l'J'l'JC Terminology (after Powell, 1979) 

I I ) ~:1 , .ar·r· d: 

CL!,;,SI FICAT lOll CF CL.F:I\VI\GE 

f>i c. i11nr:Hvc Cl"!avaqe (no pre-existing planar anisotropy): 

<:tyJr,J i•. ir. anrl an;H: t o mosing; typical of weakly deformed 
ror.J.::; with littl~ or no fabric development in the 
micro! ithons. 

"'"'"" h; typ1r.al of slates. 

<;rr•nllla t inn C)<>,,V,<JP (pre-cxi~ting planar anisotropy): 

rli r. r.rr-t"; thin, sh~trply dcfined discontinuities in the 
c-renulatcd fabric. Pre-existing foliation in the 
microli t.hons is truncated by the cleavage domains. 

znna I ; c I P.<l vag<o! dom<~i ns represent wide lamellar zones 
c o i nc id0n t: with fold 1 imbs. Zones have diffuse, 
<Jr,, rla t ional boundaries . Crcnulated fabric can be traced 
through cleavage domains. 

- <li "r.rr> ~ c ,,nd zonal may grade into one another. 

" "'""" o f rti··rol ithon fabric alignment.: 

H-"'"' ""' "" .· : i<Jnmr>n t of dr>trital grains, no preferred orientation of 
p hy i lo>sil ic~tf":>, no bellrd ovcrqrowths. 

W•· ·•k : ! : I iqht rl<'trital qrain alignment, visible preferred orientation 
of ptly llor:i li ca tcs, some beard overgrowths. 

:; • ,-;· u·r: r•r< •lninf'rtt rlonCJ .-tt_ion of detrital grains, strong preferred 
nri,.n t .ll i on of phyllosilicatcs, detrital grain bo:.mdaries are 
ind 1 ~ tinct, with prominent beard overgrowths. 

<'onu>l• · t •·: " " hi r. t o s c mi cro(abri.c, all detri t al g rain shapes lost, strongly 
orir>nted int.rrCJrowt.h o f quartz, feldspars and micas, where 
rt ... w,,'ln cl<Jmains <:rc indistinct passes into continuous 
C 1 (! o\Vtlq~ • 

random 
1'4~:~· '··t);·· ·" '-( 1_. ,; 

weak stron~ complete 

li
p;• 

d~ 
t • • • 

I ·''. 

stylolitic anastomosino rough - - - - - - _,smooth 

Type B 
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12 
I 

·68 . r..·.· 

Beddmg tops known = incl ined, vertieal , overturned 

Bedding tops unknown ' inclined , vertical , trend 

Pillows tops known , unknown (trend) 

s 1 inclined , 11er1ical, trend 

S2 incltned I 1/ertical I trend 

Pillow elongation parallel to S2 (with arrow tops known) 

S3 (largely inferred) : inclined 1 vertical 1 trend 

S4 (largely tnferred) and undifferenttoted · inclined, verttcol, trend 

Gnetssostty tncllned, vertical, trend 

Mmor fold axis (may 1nclude fold shape /sense of asymmetry) 

Mmerol /clast I tn1ersection ltneotion, crenulotion axis 

Late sub-hor zontal slickensides 

8 
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SYMBOLS 

N.B. 

f d)
. anticline ~ (X ont•form;veri 1Cnl . 

F1 Oli.IOI trace (mamly In erre . 
1
. / '!of- r F2 Oli.IOI trace sync me X synform; ver t1 :... nl, ( 

Area of outcrop 

Geoloc;pcal contact observed , readily assumed , mferred 

Reverse fault ornament on hangmg wall 

Fault 

Exposed unconformity 

Btatite tsogrod (note 

Cord•erite isogrod 

Andalus1te isogrod 

Sillimanite isogrod 

1st appearance of biotite may occur 10 rocks of o p pr op r .o 

composition below the b•o1tte •so~ rod) . 

Ornaments on high-Qrode side of isograds 

, 1982 and compiled from Henderson and Easton ( 1976) 
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