HYDROGEOCHEMISTRY AND PHYSICAL HYDROGEOLOGY OF THE NEWFOUNDLAND ZINC MINE, DANIEL'S HARBOUR NEWFOUNDLAND

CENTRE FOR NEWFOUNDLAND STUDIES

TOTAL OF 10 PAGES ONLY MAY BE XEROXED

(Without Author's Permission)

WENDY DOREEN DIAZ, B.Sc. (Honours)

National Library of Canada Bibliothèque nationale du Canada

Canadian Theses Service

Service des thèses canadiennes

Ottawa, Canada K1A ON4

NOTICE

The quality of this microform is heavily dependent upon the quality of the original thesis submitted for microfilming. Every effort has been made to ensure the highest quality of reproduction possible.

If pages are missing, contact the university which granted the degree.

Some pages may have indistinct print especially if the original pages were typed with a poor typewriter ribbon or if the university sent us an inferior photocopy.

Reproduction in full or in part of this microform is governed by the Canadian Copyright Act, R.S.C. 1970, c. C-30, and subsequent amendments.

AVIS

La qualité de cette microforme dépend grandement de la qualité de la thèse soumise au microfilmage. Nous avons tout fait pour assurer une qualité supérieure de reproduction.

S'il manque des pages, veuillez communiquer avec l'université qui a conféré le grade.

La qualité d'impression de certaines pages peut laisser à désirer, surtout si les pages originales ont été dactylographiées à l'aide d'un ruban usé ou si l'université nous a fait parvenir une photocopie de qualité inférieure.

La reproduction, même partielle, de cette microforme est soumise à la Loi canadienne sur le droit d'auteur, SRC 1970, c. C-30, et ses amendements subséquents.

HYDROGEOCHEMISTRY AND PHYSICAL HYDROGEOLOGY OF THE NEWFOUNDLAND ZINC MINE, DANIEL'S HARBOUR, NEWFOUNDLAND

C Wendy Doreen Diaz, B.Sc. (Honours)

A thesis submitted to the School of Graduate Studies in partial fulfillment of the requirements for the degree of Master of Science

> Department of Earth Sciences Memorial University of Newfoundland 1990

> > Newfoundland

St. John's

Y

National Library of Canada Bibliothèque nationale du Canada

Canadian Theses Service

Service des thèses canadiennes

Ottawa, Canada K1A ON4

The author has granted an irrevocable nonexclusive licence allowing the National Library of Canada to reproduce, loan, distribute or sell copies of his/her thesis by any means and in any form or format, making this thesis available to interested persons.

The author retains ownership of the copyright in his/her thesis. Neither the thesis nor substantial extracts from it may be printed or otherwise reproduced without his/her permission. L'auteur a accordé une licence irrévocable et non exclusive permettant à la Bibliothèque nationale du Canada de reproduire, prêter, distribuer ou vendre des copies de sa thèse de quelque manière et sous quelque forme que ce soit pour mettre des exemplaires de cette thèse à la disposition des personnes intéressées.

L'auteur conserve la propriété du droit d'auteur qui protège sa thèse. Ni la thèse ni des extraits substantiels de celle-ci ne doivent être imprimés ou autrement reproduits sans son autorisation.

. 4

ISBN 0-315-65336-1

ABSTRACT

The Newfoundland Zinc Mine, located in a karstified carbonate platform, has large groundwater inflows along joint, fault and bedding planes. Sinkholes are prominent along the hingeline of the dominant anticlinal structure in the area. The karst nature of this aquifer is exhibited by sinkholes and other surface features, as well as by the close correlation of groundwater geochemistry and flow rates with surface recharge fluctuations. Drill logs and previous hydrogeological work suggest that aquifer permeability decreases with depth and has both diffuse and conduit elements.

Measured fracture orientations indicate t o dominant fracture plane strike and dip orientations of 039/89 and 310/88. The near horizontal bedding planes form an important third set due to their ability to conduct large volumes of water. The mine drawdown cone shape established by mine dewatering is a manifestation of underground workings and dewatering operations. Irregularities in its shape and anisotropy observed in pump tests may be caused by the orientation of these two fracture sets and faults with similar orientations. The highly variable tritium values (1-41 TU) and atypical mid-depth groundwater chemistry may be the result of localized fracture flow dominated by these sets. Local flow lines are a function of the mine drawdown and the topography.

Groundwaters are Ca-HCO₃ and Na-Cl type waters and most are of a meteoric origin. The δ^{18} O vs δ^{2} H data indicate an evaporated surface water contribution to some groundwater samples

ii

and suggest a nearby lake as a source of shallow mine inflows. Apparent tritium ages indicate portions of these groundwaters have been recharged in the last 33 years. Inflows collected from different mine levels (L-Zone and T-Zone) are of two types 1) oxidized shallow inflows with low total dissolved solids and chloride (<40 ppm Cl) that may carry up to 4457 ppb zinc and 2) reducing, deeper saline groundwaters having high chloride (114-990 ppm) and sulphate (170-370 ppm) concentrations. Dissolution of gypsum or other soluble minerals locally may explain the salt content of some shallow groundwaters. The δ^{13} C vs DIC data suggest different evolutionary paths for the shallow and deep groundwaters and imply mixing of relict seawater with deep groundwater during the evolution of T-Zone groundwater.

Geochemical modelling indicates shallow groundwater evolution requires the dissolution of dolomite first under open or closed pCO₂ system conditions. This suggests recharge areas for this local flow system must be underlain by dolostone. Groundwater undersaturated with respect to carbonate minerals may reflect greater mixing *i*th rainwater and/or saline groundwater, or slow kinetics of mineral dissolution. The decrease in δ^{18} O with increasing Cl in deeper waters suggests they are a mixture of seawater and regional groundwater recharged at higher elevations. The δ^{18} O values inferred for the meteoric component of the deep saline water implies that recharge occurred during the last postglacial epoch.

iii

ACKNOWLEDGEMENTS

The author wishes to thank the following mine personel: Roland Crossley, David Tiong and Gerry O'Connell for assistance during the summer and winter field work as well as supplying maps and unpublished data. The author also wishes to acknowledge the excellent assistance of Glenn Bursey, Gerry Whelan, Denny Christian and Darren Perry during the summer field program, and of Shawn Perry and Derrick Payne during the winter sampling work. Sampling of lakes was made easier by a 1986 Helicopter Scholarship from Sealand Helicopters Ltd., Nfld., to the author.

Thanks are owing to Tyson Birkett and the Geological Survey of Canada for their financial support and interest in this project under the contract #23233-6-6-0579/01 ST. Personal funding came from the Graduate Studies Bursary and Supervisors' support payments.

For providing information pertinent to this study the author is very appreciative of Mike Maher of Golder Associates Ltd., St. John's, and of Tom Lane who assisted greatly in the geology.

Although many Earth Science graduate students contributed to this thesis by many helpful discussions, two individuals stand out in their contributions. The author sincerely appreciates Bob Macleod for his help with computer programs and the author is very thankful to David Van Everdingen for his approachability and genuine helpfulness in the computer work as well as other aspects of this thesis.

I wish to thank my two supervisors; Dr. John Welhan and Dr.

iv

John Gale collectively for their guidance during the work of this thesis. I am especially grateful to John Welhan for his continued support, enthusiasm, flexibility and suggestions during and up to the completion of this thesis. Dr. Robert Van Everdingen provided helpful criticisms on the final text.

And lastly, I truly thank Floyd Diaz for his faithful support and Amy Diaz for her unwitting inspiration.

TABLE OF CONTENTS

•

1.1 Jescription of Study Area and Setting 1 1.2 General Mine Hydrogeology 7 3.3 Previous Work 8 1.4 Purpose and Scope 9 Chapter 2 METHODOLOGY 11 2.1 Field Sample Collection and on Site Laboratory Work 11 2.1.1 Samplic collection and storage procedures 15 2.1.3 Field measurements 17 2.1.4 Laboratory work and sample treatment 18 2.2 Stable Isotope Analytical Procedures 19 2.2.1 Total dissolved carbon extraction and Carbon-13 measurement 1.4 Lemental Analysis 21 2.3 Radioactive Isotopes 21 2.4 Elemental Analysis 22 2.5 Fracture Analysis 23 2.5.1 Field methodology 23 2.5.2 Processing and manipulation of fracture data 27 2.5.2.1 Fracture orientation 28 2.6.1 Hydraulic head measurements 31 2.6.2 Pressure measurements 32 2.6.3	Chapter 1 INTRODUCTION	1
1.3 Previous Work 8 1.4 Purpose and Scope 9 Chapter 2 METHODOLOGY 11 2.1 Field Sample Collection and on Site Laboratory Work 11 2.1.1 Sample collection and storage procedures 15 2.1.2 Sample collection and storage procedures 15 2.1.3 Field measurements 17 2.1.4 Laboratory work and sample treatment 18 2.2 Stable Isotope Analytical Procedures 19 2.2.1 Total dissolved carbon extraction and Carbon-13 19 2.2.2 Oxygen-18 and deuterium analysis 21 2.3 Radioactive Isotopes 22 2.4 Elemental Analysis 22 2.5 Fracture Analysis 23 2.5.1 Fracture orientation 23 2.5.2 Trace length and spacing analysis 29 2.6 Hydrogeological Measurements 31 2.6.1 Hydraulic head measurements 32 2.6.2 Frace length and spacing analysis 32 2.6.1 Hydraulic head measurements 32	1.1 Jescription of Study Area and Setting	1 7
1.4 Purpose and Scope 9 Chapter 2 METHODOLOGY 11 2.1 Field Sample Collection and on Site Laboratory Work 11 2.1.1 Sample collection and storage procedures 11 2.1.2 Sample collection and storage procedures 11 2.1.3 Field measurements 17 2.1.4 Laboratory work and sample treatment 18 2.2 Stable Isotope Analytical Procedures 19 2.2.1 Total dissolved carbon extraction and Carbon-13 measurement 19 2.2.2 Oxygen-18 and deuterium analysis 21 2.4 Elemental Analysis 22 25 2.5 Fracture Analysis 23 2.5.2 Fracture orientation 28 2.5.2.1 Fracture orientation 28 29 26 Hydrogeological Measurements 31 2.6.1 Hydrogeological Measurements 31 32 31 32 32 2.6.1 Hydrogeological Measurements 32 32 32 32 32 32 32 32 32 32 32 33 <t< td=""><td>1.3 Previous Work</td><td>8</td></t<>	1.3 Previous Work	8
Chapter 2 METHODOLOGY 11 2.1 Field Sample Collection and on Site Laboratory Work 11 2.1.1 Sampling locations 11 2.1.2 Sample collection and storage procedures 15 2.1.3 Field measurements 17 2.1.4 Laboratory work and sample treatment 18 2.2 Stable Isotope Analytical Procedures 19 2.2.1 Total dissolved carbon extraction and Carbon-13 measurement 19 2.2.2 Oxygen-18 and deuterium analysis 21 2.3 Radioactive Isotopes 21 2.4 Elemental Analysis 22 2.5 Fracture Analysis 23 2.5.1 Field methodology 23 2.5.2 Trocesing and manipulation of fracture data 27 2.5.2.1 Fracture orientation 28 2.5.2 Trace length and spacing analysis 29 2.6 Hydrogeological Measurements 31 2.6.1 Hydraulic head measurements 31 2.6.2 Pressure measurements 31 2.6.3 Eracture orientation 32 3.4 General Geology 35 3.5 Surficial Geology 35 3.6 Structural geology 46 3.6.3 Fracture analysis 40 <td>1.4 Purpose and Scope</td> <td>9</td>	1.4 Purpose and Scope	9
Chapter 2 METHODOLOGY 11 2.1 Field Sample Collection and on Site Laboratory Work 11 2.1.1 Sampling locations 11 2.1.2 Sample collection and storage procedures 15 2.1.3 Field measurements 17 2.1.4 Laboratory work and sample treatment 18 2.2 Stable Isotope Analytical Procedures 19 2.1.1 Total dissolved carbon extraction and Carbon-13 measurement 19 2.2.2 Oxygen-18 and deuterium analysis 21 2.3 Radioactive Isotopes 21 2.4 Elemental Analysis 22 2.5 Fracture Analysis 23 2.5.2 Processing and manipulation of fracture data 27 2.5.2.1 Fracture orientation 28 2.5.2.2 Trace length and spacing analysis 29 2.6 Hydrogeological Measurements 31 2.6.1 Hydraulic head measurements 32 3.1 General Geology 35 3.2 Regional Stratigraphy and Description of Rock Units 40 3.3 Local mine stratigraphy and rock units 41 3.4 Description of ore and host rocks 45 3.5 Surficial Geology 48 3.6.1 Regional structural geology 48		-
2.1 Field Sample Collection and on Site Laboratory Work 11 2.1.1 Sampling locations	Chapter 2 METHODOLOGY	11
2.1.1 Sampling locations 11 2.1.2 Sample collection and storage procedures 15 2.1.3 Field measurements 17 2.1.4 Laboratory work and sample treatment 18 2.2 Stable Isotope Analytical Procedures 19 2.2.1 Total dissolved carbon extraction and Carbon-13 19 2.2.1 Total dissolved carbon extraction and Carbon-13 19 2.2.2 Oxygen-18 and deuterium analysis 21 2.3 Radioactive Isotopes 21 2.4 Elemental Analysis 22 2.5 Fracture Analysis 23 2.5.1 Field methodology 23 2.5.2 Processing and manipulation of fracture data 27 2.5.2.1 Frace length and spacing analysis 29 2.6 Hydrogeological Measurements 31 2.6.2 Pressure measurements 31 2.6.2 Pressure measurements 32 3.1 General Geology 35 3.2 Regional Stratigraphy and Description of Rock Units 40 3.4 Description of ore and host rocks 45 3.5 Surficial Geology 46 3.6 Structural geology 48 3.6.1 Regional structural geology 48 3.6.2 Local structural	2.1 Field Sample Collection and on Site Laboratory Work	11
2.1.2 Sample collection and storage procedures 15 2.1.3 Field measurements 17 2.1.4 Laboratory work and sample treatment 18 2.2 Stable Isotope Analytical Procedures 19 2.2.1 Total dissolved carbon extraction and Carbon-13 measurement measurement 19 2.2.2 Oxygen-18 and deuterium analysis 21 2.3 Radioactive Isotopes 21 2.4 Elemental Analysis 22 2.5 Fracture Analysis 23 2.5.1 Field methodology 23 2.5.2.1 Fracture orientation 28 2.5.2.2 Trace length and spacing analysis 29 2.6 Hydrogeological Measurements 31 2.6.1 Hydraulic head measurements 31 2.6.2 Pressure measurements 32 3.1 General Geology 35 3.2 Regional Stratigraphy and Description of Rock Units 40 3.3 Local mine stratigraphy and rock units 41 3.4 Description of ore and host rocks 45 3.5 Surficial Geology 48 3.6.1 Regional structural geology 48 3.6.2 Local structural geology 48 3.6.3 Fracture analysis 50 <td>2.1.1 Sampling locations</td> <td>11</td>	2.1.1 Sampling locations	11
2.1.3 Field measurements 17 2.1.4 Laboratory work and sample treatment 18 2.2 Stable Isotope Analytical Procedures 19 2.2.1 Total dissolved carbon extraction and Carbon-13 measurement 19 2.2.2 Oxygen-18 and deuterium analysis 21 2.3 Radioactive Isotopes 21 2.4 Elemental Analysis 22 2.5 Fracture Analysis 23 2.5.1 Field methodology 23 2.5.2 Processing and manipulation of fracture data 27 2.5.2.1 Fracture orientation 28 2.5.2.2 Trace length and spacing analysis 29 2.6 Hydrogeological Measurements 31 2.6.2 Pressure measurements 31 2.6.3 Eracture orientation 32 2.6.4 Hydraulic head measurements 31 2.6.2 Fressure measurements 32 3.1 General Geology 35 3.2 Regional Stratigraphy and Description of Rock Units 40 3.3 Local mine stratigraphy and rock units 41 3.4 Description of ore and host rocks 45 3.5 Surficial Geology 48 3.6.1 Regional structural geology 48 3.6.2 Local structural geo	2.1.2 Sample collection and storage procedures	15
2.1.4 Laboratory work and sample treatment 18 2.2 Stable Isotope Analytical Procedures 19 2.2.1 Total dissolved carbon extraction and Carbon-13 measurement 19 2.2.2 Oxygen-18 and deuterium analysis 21 2.3 Radioactive Isotopes 21 2.4 Elemental Analysis 22 2.5 Fracture Analysis 23 2.5.1 Field methodology 23 2.5.2 Processing and manipulation of fracture data 27 2.5.2.1 Fracture orientation 28 2.5.2.2 Trace length and spacing analysis 29 2.6 Hydrogeological Measurements 31 2.6.1 Hydraulic head measurements 31 2.6.2 Pressure measurements 31 2.6.3 Local mine stratigraphy and Description of Rock Units 40 3.3 Local mine stratigraphy and rock units 41 3.4 Description of ore and host rocks 45 3.5 Surficial Geology 48 3.6.1 Regional structural geology 48 3.6.2 Local structural geology	2.1.3 Field measurements	17
2.2 Stable Isotope Analytical Procedures 19 2.2.1 Total dissolved carbon extraction and Carbon-13 measurement 19 2.2.2 Oxygen-18 and deuterium analysis 21 2.3 Radioactive Isotopes 21 2.4 Elemental Analysis 22 2.5 Fracture Analysis 23 2.5.1 Field methodology 23 2.5.2 Processing and manipulation of fracture data 27 2.5.2.1 Fracture orientation 28 2.5.2.2 Trace length and spacing analysis 29 2.6 Hydrogeological Measurements 31 2.6.1 Hydraulic head measurements 31 2.6.2 Pressure measurements 31 2.6.3 Regional Stratigraphy and Description of Rock Units 40 3.1 General Geology 35 3.2 Regional Stratigraphy and rock units 41 3.4 Description of ore and host rocks 45 3.5 Surficial Geology 46 3.6 Structural geology 48 3.6.1 Regional structural geology 48 </td <td>2.1.4 Laboratory work and sample treatment</td> <td>18</td>	2.1.4 Laboratory work and sample treatment	18
2.2.1 Total dissolved carbon extraction and Carbon-13 measurement 19 2.2.2 Oxygen-18 and deuterium analysis 21 2.3 Radioactive Isotopes 21 2.4 Elemental Analysis 22 2.5 Fracture Analysis 23 2.5.1 Field methodology 23 2.5.2 Processing and manipulation of fracture data 27 2.5.2.1 Fracture orientation 28 2.5.2.2 Trace length and spacing analysis 29 2.6 Hydrogeological Measurements 31 2.6.2 Pressure measurements 31 2.6.2 Pressure measurements 32 3.1 General Geology 35 3.2 Regional Stratigraphy and Description of Rock Units 40 3.3 Local mine stratigraphy and rock units 41 3.4 Description of ore and host rocks 45 3.5 Surficial Geology 48 3.6.1 Regional structural geology 48 3.6.2 Local structural geology 49 3.6.3 Fracture orientation 50	2.2 Stable Isotope Analytical Procedures	19
measurement192.2.2Oxygen-18 and deuterium analysis212.3Radioactive Isotopes212.4Elemental Analysis222.5Fracture Analysis232.5.1Field methodology232.5.2Processing and manipulation of fracture data272.5.2.1Fracture orientation282.5.2.2Trace length and spacing analysis292.6Hydrogeological Measurements312.6.1Hydraulic head measurements312.6.2Pressure measurements32Chapter 3GEOLOGY353.1General Geology353.2Regional Stratigraphy and Description of Rock Units403.3Local mine stratigraphy and rock units413.4Description of ore and host rocks453.5Surficial Geology483.6.1Regional structural geology483.6.2Local structural geology493.6.3Fracture orientation503.6.3.1Fracture orientation503.6.3.2Fracture spacing503.6.3.3Fracture spacing653.7Summary67	2.2.1 Total dissolved carbon extraction and Carbon-13	
2.2.2Oxygen-18 and deuterium analysis212.3Radioactive Isotopes212.4Elemental Analysis222.5Fracture Analysis232.5.1Field methodology232.5.2Processing and manipulation of fracture data272.5.2.1Fracture orientation282.5.2.2Trace length and spacing analysis292.6Hydrogeological Measurements312.6.1Hydraulic head measurements312.6.2Pressure measurements322.6.3Local mine stratigraphy and Description of Rock Units403.4Description of ore and host rocks453.5Surficial Geology463.6Structural Geology483.6.1Regional structural geology483.6.2Local structural geology493.6.3Fracture orientation503.6.3.1Fracture orientation503.6.3.2Fracture spacing503.7Summary67	measurement	19
2.3Radioactive Isotopes212.4Elemental Analysis222.5Fracture Analysis232.5.1Field methodology232.5.2Processing and manipulation of fracture data272.5.2.1Fracture orientation282.5.2.2Trace length and spacing analysis292.6Hydrogeological Measurements312.6.1Hydraulic head measurements312.6.2Fressure measurements312.6.3GEOLOGY353.1General Geology353.2Regional Stratigraphy and Description of Rock Units403.3Local mine stratigraphy and rock units413.4Description of ore and host rocks453.5Surficial Geology483.6.1Regional structural geology483.6.2Local structural geology493.6.3Fracture orientation503.6.3.1Fracture orientation503.6.3.2Fracture spacing503.6.3.3Fracture spacing67	2.2.2 Oxygen-18 and deuterium analysis	21
2.4Elemental Analysis222.5Fracture Analysis232.5.1Field methodology232.5.2Processing and manipulation of fracture data272.5.2.1Fracture orientation282.5.2.2Trace length and spacing analysis292.6Hydrogeological Measurements312.6.1Hydraulic head measurements312.6.2Pressure measurements312.6.2Pressure measurements32Chapter 3GEOLOGY353.1General Geology353.2Regional Stratigraphy and Description of Rock Units403.3Local mine stratigraphy and rock units413.4Description of ore and host rocks453.5Surficial Geology483.6.1Regional structural geology483.6.2Local structural geology493.6.3Fracture orientation503.6.3.1Fracture orientation503.6.3.2Fracture spacing653.7Summary67	2.3 Radioactive Isotopes	21
2.5Fracture Analysis232.5.1Field methodology232.5.2Processing and manipulation of fracture data272.5.2.1Fracture orientation282.5.2.2Trace length and spacing analysis292.6Hydrogeological Measurements312.6.1Hydraulic head measurements312.6.2Pressure measurements312.6.2Pressure measurements32Chapter 3GEOLOGY353.1General Geology353.2Regional Stratigraphy and Description of Rock Units403.3Local mine stratigraphy and rock units413.4Description of ore and host rocks463.5Surficial Geology483.6.1Regional structural geology483.6.2Local structural geology493.6.3Fracture orientation503.6.3.1Fracture orientation503.6.3.2Fracture spacing653.7Summary67	2.4 Elemental Analysis	22
2.5.1Field methodology232.5.2Processing and manipulation of fracture data272.5.2.1Fracture orientation282.5.2.2Trace length and spacing analysis292.6Hydrogeological Measurements312.6.1Hydraulic head measurements312.6.2Pressure measurements32Chapter 3GEOLOGY353.1General Geology353.2Regional Stratigraphy and Description of Rock Units403.3Local mine stratigraphy and rock units413.4Description of ore and host rocks453.5Surficial Geology463.6.1Regional structural geology483.6.2Local structural geology483.6.3Fracture orientation503.6.3.1Fracture orientation503.6.3.2Fracture spacing673.7Summary67	2.5 Fracture Analysis	23
2.5.2 Processing and manipulation of fracture data272.5.2.1 Fracture orientation282.5.2.2 Trace length and spacing analysis292.6 Hydrogeological Measurements312.6.1 Hydraulic head measurements312.6.2 Pressure measurements32Chapter 3 GEOLOGY353.1 General Geology353.2 Regional Stratigraphy and Description of Rock Units403.3 Local mine stratigraphy and rock units413.4 Description of ore and host rocks453.5 Surficial Geology463.6 Structural Geology483.6.1 Regional structural geology483.6.2 Local structural geology493.6.3.1 Fracture orientation503.6.3.2 Fracture trace length503.6.3.3 Fracture spacing67	2.5.1 Field methodology	23
2.5.2.1Fracture orientation282.5.2.2Trace length and spacing analysis292.6Hydrogeological Measurements312.6.1Hydraulic head measurements312.6.2Pressure measurements32Chapter 3 GEOLOGY353.1General Geology353.2Regional Stratigraphy and Description of Rock Units403.3Local mine stratigraphy and rock units413.4Description of ore and host rocks453.5Surficial Geology463.6Structural Geology483.6.1Regional structural geology483.6.2Local structural geology493.6.3Fracture orientation503.6.3.1Fracture orientation503.6.3.2Fracture trace length613.6.3.3Fracture spacing653.7Summary67	2.5.2 Processing and manipulation of fracture data	27
2.5.2.2 Trace length and spacing analysis292.6 Hydrogeological Measurements312.6.1 Hydraulic head measurements312.6.2 Pressure measurements32Chapter 3 GEOLOGY353.1 General Geology353.2 Regional Stratigraphy and Description of Rock Units403.3 Local mine stratigraphy and rock units413.4 Description of ore and host rocks453.5 Surficial Geology463.6 Structural Geology483.6.1 Regional structural geology483.6.2 Local structural geology493.6.3 Fracture analysis503.6.3.1 Fracture orientation503.6.3.2 Fracture trace length613.6.3.3 Fracture spacing653.7 Summary67	2.5.2.1 Fracture orientation	28
2.6Hydrogeological Measurements312.6.1Hydraulic head measurements312.6.2Pressure measurements32Chapter 3GEOLOGY353.1General Geology353.2Regional Stratigraphy and Description of Rock Units403.3Local mine stratigraphy and rock units413.4Description of ore and host rocks453.5Surficial Geology463.6Structural Geology483.6.1Regional structural geology483.6.3Fracture analysis503.6.3.1Fracture orientation503.6.3.2Fracture trace length613.6.3.3Fracture spacing67	2.5.2.2 Trace length and spacing analysis	29
2.6.1Hydraulic head measurements312.6.2Pressure measurements32Chapter 3GEOLOGY353.1General Geology353.2Regional Stratigraphy and Description of Rock Units403.3Local mine stratigraphy and rock units413.4Description of ore and host rocks453.5Surficial Geology463.6Structural Geology483.6.1Regional structural geology483.6.2Local structural geology493.6.3Fracture analysis503.6.3.1Fracture orientation503.6.3.2Fracture trace length613.6.3.3Fracture spacing67	2.6 Hydrogeological Measurements	31
2.6.2 Pressure measurements	2.6.1 Hydraulic head measurements	31
Chapter 3 GEOLOGY353.1 General Geology353.2 Regional Stratigraphy and Description of Rock Units403.3 Local mine stratigraphy and rock units413.4 Description of ore and host rocks453.5 Surficial Geology463.6 Structural Geology483.6.1 Regional structural geology483.6.2 Local structural geology493.6.3 Fracture analysis503.6.3.1 Fracture orientation503.6.3.2 Fracture trace length613.6.3.3 Fracture spacing67	2.6.2 Pressure measurements	32
3.1General Geology353.2Regional Stratigraphy and Description of Rock Units403.3Local mine stratigraphy and rock units413.4Description of ore and host rocks453.5Surficial Geology463.6Structural Geology483.6.1Regional structural geology483.6.2Local structural geology493.6.3Fracture analysis503.6.3.1Fracture orientation503.6.3.2Fracture trace length613.6.3.3Fracture spacing67	Chapter 3 GEOLOGY	35
3.1General Geology353.2Regional Stratigraphy and Description of Rock Units403.3Local mine stratigraphy and rock units413.4Description of ore and host rocks453.5Surficial Geology463.6Structural Geology483.6.1Regional structural geology483.6.2Local structural geology493.6.3Fracture analysis503.6.3.1Fracture orientation503.6.3.2Fracture trace length613.6.3.3Fracture spacing653.7Summary67		
3.2 Regional Stratigraphy and Description of Rock Units403.3 Local mine stratigraphy and rock units413.4 Description of ore and host rocks453.5 Surficial Geology463.6 Structural Geology483.6.1 Regional structural geology483.6.2 Local structural geology493.6.3 Fracture analysis503.6.3.1 Fracture orientation503.6.3.2 Fracture trace length613.6.3.3 Fracture spacing653.7 Summary67	3.1 General Geology	35
3.3 Local mine stratigraphy and rock units413.4 Description of ore and host rocks453.5 Surficial Geology463.6 Structural Geology483.6.1 Regional structural geology483.6.2 Local structural geology493.6.3 Fracture analysis503.6.3.1 Fracture orientation503.6.3.2 Fracture trace length613.6.3.3 Fracture spacing653.7 Summary67	3.2 Regional Stratigraphy and Description of Rock Units	40
3.4 Description of ore and host rocks453.5 Surficial Geology463.6 Structural Geology433.6.1 Regional structural geology483.6.2 Local structural geology493.6.3 Fracture analysis503.6.3.1 Fracture orientation503.6.3.2 Fracture trace length613.6.3.3 Fracture spacing653.7 Summary67	3.3 Local mine stratigraphy and rock units	41
3.5Surficial Geology463.6Structural Geology433.6.1Regional structural geology483.6.2Local structural geology493.6.3Fracture analysis503.6.3.1Fracture orientation503.6.3.2Fracture trace length613.6.3.3Fracture spacing653.7Summary67	3.4 Description of ore and host rocks	45
3.6 Structural Geology483.6.1 Regional structural geology483.6.2 Local structural geology493.6.3 Fracture analysis503.6.3.1 Fracture orientation503.6.3.2 Fracture trace length613.6.3.3 Fracture spacing653.7 Summary67	3.5 Surficial Geology	46
3.6.1 Regional structural geology483.6.2 Local structural geology493.6.3 Fracture analysis503.6.3.1 Fracture orientation503.6.3.2 Fracture trace length613.6.3.3 Fracture spacing653.7 Summary67	3.6 Structural Geology	43
3.6.2 Local structural geology493.6.3 Fracture analysis503.6.3.1 Fracture orientation503.6.3.2 Fracture trace length613.6.3.3 Fracture spacing653.7 Summary67	3.6.1 Regional structural geology	48
3.6.3 Fracture analysis 50 3.6.3.1 Fracture orientation 50 3.6.3.2 Fracture trace length 61 3.6.3.3 Fracture spacing 65 3.7 Summary 67	3.6.2 Local structural geology	49
3.6.3.1 Fracture orientation 50 3.6.3.2 Fracture trace length 61 3.6.3.3 Fracture spacing 65 3.7 Summary 67	3.6.3 Fracture analysis	50
3.6.3.2 Fracture trace length 61 3.6.3.3 Fracture spacing 65 3.7 Summary 67	3.6.3.1 Fracture orientation	50
3.6.3.3 Fracture spacing	3.6.3.2 Fracture trace length	61
3.7 Summary 67	3.6.3.3 Fracture spacing	65
	3.7 Summary	67

. -

Chapter 4 PHYSICAL HYDROGEOLOGY	69
A 1 Ceneral Hydrogeology	69
4.1 1 Karst landforms and surface hydrology	69
4.1.1 Raist landforms and surface hydrology for the territor	74
4.1.2 Frecipitation and pumpage	78
4.1.5 Mille gloundwater legime	86
4.2 Permedulity	00
4.3 COnclusions	30
Chapter 5 HYDROGEOCHEMISTRY	96
5.1 Introduction	96
5.2 Results	96
5.3 Chemical Characterization of Waters	107
5.3.1 Major ion and carbonate chemistry	107
5.3.2 Trace element chemistry	127
5 3 2.1 Trace element abundances	127
5 3 2.2 Trace element groupings	130
5.3.2.3 Groundwater residence-time control on trace	200
olomonte	130
5 3 2 4 Local solubility control on trace elements	135
5 3 2 5 Controls on zinc solubility	142
5.3.3 Sequential campling	146
5.3.4 Testone geoghamistry	160
5.3.4.1 Stable overan and hydrogen isotones	151
5.3.4.1 Stable oxygen and nydlogen isotopes	167
5.5.4.2 IIIIII and Carbon Isotopes	160
5.4 Synopsis	102
5.5 Chemical modelling	104
5.5.1 Chemical speciation calculations	T02
5.5.1.1 Characterization of groundwaters	165
5.5.1.2 Sensitivity analysis on saturation indices	169
5.5.2 Shallow groundwater evolutionary paths	172
5.5.2.1 Closed-system model	176
5.5.2.2 Open-system model	182
5.5.2.3 Comparison of results from evolutionary path	
models	186
5.5.3 Dilute seawater/shallow groundwater mixing model	190
5.5.3.1 Assumptions and conditions	190
5.5.3.2 Results	194
5.6 Conclusions from Hydrogeochemistry and Chemical	
Modelling	198
Chapter 6 Conceptual Model of Flow Systems	202
6 1 Dhugigal Charactorization of Mine Play Desine	202
6.2 Crowndwator Coochemistry	202
6.2 Generatural Vedel	204
	206
REFERENCES	213

APPENDICES

Appendix	Α	Diamond drill logs and RQD plots for 1986 drill	
		holes	223
Appendix	В	Underground water sampling site descriptions	234
Appendix	С	Fracture mapping overlays for open pits	235
Appendix	D	Lead Lake outcrop fracture map	242
Appendix	Е	Fracture mapping codes and terms with their	
		definitions	243
Appendix	F	Fracture data file	244
Appendix	G	Stereplots from the STRPLO program	264
Appendix	Η	Program listing of DHLOOK.FOR	266
Appendix	Ι	Results from fracture analysis using the SPHERE	
		program	267
Appendix	J	Details on fracture analysis and manipulation	269
Appendix	K	Statistics for fracture histograms	271
Appendix	L	Hydraulic head data for 1985 + 1986 surveys	273
Appendix	Μ	Strength analysis of drill core	275
Appendix	N	Previous work done on rock permeability	276
Appendix	0	Calcium ICP/MS analysis	282

.

ť

LIST OF TABLES

.

Table	3.1	Orientation data for fracture sets	. 56
Table	3.2	Orientation data basic statistics	60
Table	3.3	Average pole orientation of major sets	60
Table	3.4	Basic statistics for trace length histograms	64
Table	3.5	Basic statistics for fracture spacing histograms	66
Table	4.1	1985 and 1986 component hyraulic gradients	83
Table	4.2	Underground mine pressure measurements	87
Table	5.1	Major ion analyses and water chemistry	98
Table	5.2	Trace element analyses	103
Table	5.3	En, ronmental isotope data	106
Table	5.4	Bequential sampling site description	147
Table	5.5	Species modelling results for L and T-Zone water.	166
Table	5.6	Sensitivity analysis results	170
Table	5.7	Average L-Zone and T-Zone groundwater	175
Table	5.8	Shallow groundwater evolutionary model results:	
		closed-system mixing models	179
Table	5.9	Shallow groundwater evolutionary model results:	
		open-system mixing models	185
Table	5.10	Seawater modelling endmember compositions	193
Table	5.11	Shallow groundwater and dilute seawater mixing	
		results	195

LIST OF FIGURES

Figure Figure Figure	1.1 1.2 1.3	Location map of study area Detailed map of study area Contour elevation map of study area	2 4 6
Figure Figure Figure Figure Figure Figure Figure	2.1 2.2 2.3 2.4 2.5 2.6 2.7	Lake water and spring sample location map Location map for mine groundwater samples Diagram of high vacuum line system Fracture mapping location map Fracture mapping technique Program sequence used in fracture analysis Pressure mapping location map	12 14 20 24 26 30 34
Figure Figure	3.1 3.2	Regional geology map Humber Arm Autochthon and St. George Group stratigraphy	37 39
Figure	3.3	Local geological map of the Newfoundland Zinc	АА
Figure	3.4a b c d	Pole diagram for entire fracture survey Pole diagram for Lead Lake outcrop Pole diagram for mine drift fractures Pole diagram for vertical wall fractures	52 52 55 55
Figure	3.5	Frequency histograms of orientation data	5 9
Figure	3.6	Trace length histograms for fracture sets	62
Figure	3.7	Trace length histograms sorted according to	
Figure	3.8	Fracture spacing histograms for fracture sets.	63 66
Figure Figure	4.1 4.2	General hydrology map of the mine area Mine pumpage rate and precipitation data for	73
-		A) 1984-1985	75
_		B) 1985-1986	76
Figure	4.3	Hydraulic head map for mine area in A) 1985	80
		B) 1986	81
Figure	4.4	Cross-section of 1986 water table map	82
Figure	4.5	Hydraulic gradient maps for A) 1985	85
Figure		B) 1980 \dots	85
Figure	4.0	summary man of mine bydrogoological features	21
rigure		summary map or mine nyorogeorogical reduies .	73
Figure	5.1	Observed calcite saturation indices	108
Figure	5.2	Trilinear diagram of major ion concentrations	109
Figure	5.3	Depth of sampling site vs Cl	111
Figure	5.4	Depth of sampling site vs D.O	113
Figure	5.5	Ca vs Cl concentration	114
Figure	5.6	Comparison of average shallow groundwater and	
-		anomalous samples	116

.

			118
Figure	5.7	Conductivity vs Cl	110
Figure	5.8	Sulphate vs Cl	121
Figure	5.9	pH vs Cl	1 1 2 2
Figure	5.10	Alkalinity vs Ca	122
Figure	5.11	Saturation Index of calcite vs Ca	123
Figure	5.12	Map of lake saturation index	120
Figure	5.13	Eh vs SO4	128
Figure	5.14	Eh vs D.O	129
Figure	5 15	V vs Cl	131
Figure	5 16	2n vs Cl	132
Figure	5.10		133
Figure	5.1/ E 10	re vs ca minimum second seco	138
Figure	5.10	Mo VC V	140
Figure	2.13	The anomaly contour man of mine region	145
Figure	5.20	Decults of 1986 semiential survey	149
Figure	5.21	Results of 1980 sequenced server	152
Figure	5.22	Deuterium vs 0 0 0	153
Figure	5.23	Oxygen-18 vs Cl	155
Figure	5.24	Depth of sample site vs 0-0	161
Figure	5.25	Carbon-13 vs TDIC	
Figure	5.26	Sensitivity of S.I. for calcite and dolomite	171
-		to pH error: T-Zone	T 1 T
Figure	5.27	Sensitivity of S.I. for calcite and dolomite	172
2		to pH error: L-Zone	T12
Figure	5.28	Comparison of shallow groundwater evolutionary	
		models	180
Figure	5.29	Seawater mixing results as Ca/Cl and SO4/Cl vs	
rigure	5.55	§180	195
Figuro	5 30	Seawater mixing results on Piper diagram	197
rigure	5.50		
Rimoro	6 1	Sketch of major controls on groundwater flow	
rigure	0. T	in the Newfounland Zinc Mine area	208
		III CHE NEWICUHIANA BING HIM I I I I I I I I I I I I I I I I I I	

Figure 6.2	Proposed groundwater flow directions in mine	
iguio ora	area	210

LIST OF PLATES

Plate 1	Photograph of underground sampling site	16
Plate 2	Circa 1965 aerial photograph of the proposed site of the Newfoundland Zinc Mine	70

Chapter 1 INTRODUCTION

1.1 Description of Study Area and Setting

The Newfoundland Zinc Mine is located 9.5 km northeast of Daniel's Harbour, on the Great Northern Peninsula of Western Newfoundland, (Figure 1.1). The mine is situated in a sequence of predominantly dolostone beds of the St. George Group. Since the mine's discovery in 1963 by personnel of Leitch Gold Mine Ltd. and its opening in June 1975 by Teck Exploration Ltd., drilling has outlined total ore reserves of 7.1 million metric tonnes averaging 8% zinc (Crossley and Lane, 1984). As of April 1986, a total of 5,902,118 metric tonnes had been mined from 12 ore zones (R. Crossley, pers. comm., 1986) covering approximately 16 km² (Figure 1.2). Sphalerite ore was excavated from open pits and underground drift workings (by room and pillar method) at relatively shallow depths (L-Zone) to a maximum depth of approximately 260 m (T-Zone). Exhaustion of ore reserves forced the closure of the mine in 1990.

The mine is located near the centre of a flat-lying to undulating coastal plain with numerous small lakes. The local relief of 50 to 100 m is marked by flat-topped hills (Figure 1.3), (Proudfoot and St. Croix, 1987). This plain has many intermittent streams with scattered swamps and black spruce forest in well-drained areas. The coastal plain is underlain by an autochthonous cover sequence of Ordovician dolostone and limestone sediments. These sediments lie unconformably upon

Figure 1.1 Location map of the study area. The Newfoundland Zinc Mine is located on the Great Northern Peninsula of Newfoundland.

Figure 1.2 Detailed map of study area showing boundaries, lakes, major drainage routes. The mine underground workings projected to ground surface are shown in solid black. (modified from Hornbrook et al., 1975).

Figure 1.3 Contour elevation map of the study area. Some contour lines have been omitted in the Long Range Mountain area due to the steepness of topography.

the Grenville basement which outcrops as the Long Range Mountains.

The study area centres around the underground workings of the mine and encompasses the open pits as well as the surrounding lakes within a radius of about 10 km (Figure 1.2). The Long Range Mountains, located 17 km due east of the mine, form the eastern boundary of the study area with an elevation of 457 to 673 m. The shoreline along the Gulf of St. Lawrence forms the western boundary of the study area. The study area's southernmost extent is Portland Creek Pond and its northern limit is arbitrarily marked by the Table Point peninsula. Access to the study area is by paved road along the coastal highway.

1.2 General Mine Hydrogeology

The Newfoundland Zinc Mine is situated on a karstified carbonate platform and consequently has large groundwater inflows. These inflows caused a significant subsurface dewatering problem throughout the mine's 12 years of operation. Inflows into the mine are primarily from steeply dipping faults and joints, subhorizontal bedding planes and boreholes of various orientation. Peak underground mine inflow exceeds 56,780 l/min in the spring of the year, while in the winter months less than 22,710 l/min has been pumped.

Several hydrogeologic studies were done by Acres Consulting Ltd. (1974a&b, 1975a&b, 1976, 1977, 1978, 1979) to determine the most efficient and economical method of pumping. Mine dewatering

at the Newfoundland Zinc Mine was done by underground pump stations that relayed water to storage sumps where it was eventually pumped to surface. Grouting of drill holes, major joints and faults was also recommended by Acres to control groundwater inflows. Water table drawdowns in the mining area exceeded 60 m, due to the sink created by the mine.

Karst landforms are in evidence across the plain as abundant sinkholes and springs; small sinkholes in dry lake bottoms (e.g., Lead and Spring Lakes) are seen near the mine site. Many small intermittent lakes and streams are found in the area, and these may also be indicative of early karst development. Hornbrook et al. (1975) found evidence for many streams flowing for some distance underground in the north-central part of the region.

1.3 Previous Work

Previous hydrogeological studies have been done by Acres Consulting Ltd. (1974a&b, 1975a&b, 1976, 1977, 1978, 1979) during the mining development. Acres' field investigations included pump tests, piezometer and pump discharge monitoring as well as tracer tests around the mine site. A compilation of previous hydrogeological work done on the Northern Peninsula was written by Nolan and Associates (1979); their report contained no new field work.

Detailed geological work at the mine site has been done by Lane (1984), Coron (1982), Crossley and Lane (1984), Collins and Smith (1975) and Cumming (1968). Structural geological

mapping at the regional scale was done by Cawood and Williams (1986), Knight (1985), and Williams (1979). Stratigraphy and sedimentology of the region has been extensively covered by James et al. (1989); Knight and James (1987), Knight (1984), Haywick and James (1984), and Klappa, Opalinski and James (1980). Fracture analysis of rocks on the peninsula is limited to one previous study near Parson's Pond (Kunkle, 1986).

A lake sediment study and exploration geochemical survey was carried out in the Daniel's Harbour area by the Newfoundland Department of Mines (Hornbrook et al., 1975). The most recent mapping of Quaternary deposits was done by Proudfoot and St. Croix (1987).

1.4 Purpose and Scope

This thesis is a followup to preliminary work done by Welhan and Gale (1986) and is the first intensive groundwater study in the region using both hydrogeochemistry and detailed fracture analysis. Prior to 1985, there had been no detailed fracture or geochemical analyses of the mine area and groundwaters, respectively. Quantifying the fracture network, using computer techniques, aids in determining specific directions of anisotropy in the rock mass. A statistical analysis of fracture patterns in outcrop and mine drifts proved necessary for two reasons 1) studies by Acres (1974a) showed that rock mass anisotropy seemed to be caused by two major joint sets and 2) karst groundwater is known to occupy both solution-derived conduits as well as bedding

planes, joints and other modes of diffuse flow (Smart & Ford, 1986).

The objectives of the thesis are:

- 1) to assess the physical components of the karstic groundwater flow regime in and near the mine;
- 2) to characterize the groundwater chemistry and stable isotope variations in order to delineate flow systems and to define the chemical evolution of groundwater and temporal/spatial effects on the hydrogeochemistry; and
- 3) to develop a conceptual model of the mine hydrology and related flow systems by hydrogeochemical and hydrogeological mapping.

Chapter 2

METHODOLOGY

2.1 Water Sample Collection and on Site Laboratory Work

2.1.1 Sampling locations

The field work for this study consisted of water sampling, measuring of water table depths, fracture mapping and drilling. Most of the field work was done during the unusually dry summer of 1986. Consequently, there were no inflows into the shallowest parts of the L-Zone underground workings (East drift), water levels in drill holes dropped significantly or became blocked, and bodies of surface water dried up in 1986. These conditions restricted water sampling to deeper levels of the L-Zone, and to exploration drill holes outside the perimeter of the greatest mine drawdowns, and also limited drilling of new holes to areas close to or within hauling distance of a water source. Including the preliminary work of Welhan and Gale (1986), a total of 110 water samples were taken during the 1985 and 1986 summer and 1987 winter seasons. Sample locations are shown in Figure 2.1 for the surveyed lakes, two flowing springs, and one river sample which were also sampled in 1986 and 1987. Figure 2.2 shows the locations of the remaining samples.

Four new diamond drill holes (DDH1,DDH2,DDH3 and DDH-4-86) were drilled using a J.K.S 15 Winkie Drill in 1986, see Figure 2.2. These holes were no more than 15 metres in length and their diamond drill logs are given in Appendix A. Drilling of DDH-4-86

Figure 2.2 Location of mine groundwater samples. This base map is used repeatedly throughout this thesis and is a modification of the base map produced by Glenn Bursey in 1986.

~

۰.

was stopped at 34 feet, due to the inflow of tailings from Spring Lake at depths of 25 to 30 feet and the anticipated danger of sanding the drill rods.

2.1.2 Sample collection and storage procedures

Water samples obtained for major ion analyses were taken in pre-cleaned polyethylene bottles. All water samples were refrigerated during storage.

A 'Waterra' hand pump attached to polyethylene tubing was used to sample water in drill holes. An airtight flow cell was used to obtain Eh-pH measurements from surface drill holes and a bucket into which water was continuously flowing was used to obtain these measurements in the mine. Lake samples were taken by hand at the shoreline, and underground mine samples were taken from various orifices. A photo of a mine sampling site is shown in Plate 1 and a list of other site descriptions, including the type of orifice that was sampled, is given in Appendix B. Detailed descriptions were only made by the author for the 1986 sampling sites; three of these sites were repeatedly sampled at three different times during the summer field season.

Samples referred to as 'spot samples' (DH-89 to DH-100) were obtained in the mine without supporting pH, Eh, temperature and conductivity measurements and were analysed for major cations only.

Samples for total inorganic carbon analysis were taken in 250 ml glass bottles with "polyseal" phenolic caps and liners to

Plate 1. Underground sampling site of sample DH-35, T-Zone. The arrow points to the exact drill hole that was sampled.

prevent CO₂ gas loss. A few grams of mercuric chloride were added to prevent microbial degradation. Samples for carbon-14 and tritium analyses were collected using methods outlined by Fritz (1983) in 20 l polypropylene carboys and 500 ml flint glass bottles, respectively. Samples for dissolved oxygen analysis were taken in 60 ml B.O.D. glass bottles for a modified Winkler titration analysis. Water samples for stable isotope analysis were taken in 20 ml scintillation vials of borosilicate glass with "polyseal" plastic lined caps.

2.1.3 Field measurements

Field measurements included temperature, pH, Eh, and conductivity. Storage-sensitive geochemical measurements (temperature, pH, Eh, dissolved oxygen) were done in the field at the sample site. Temperature, pH and Eh measurements were taken using an Accumet pH meter. A Pt-Ag/AgCl electrode was used to measure electrochemical potentials and then corrected to absolute Eh potentials. Temperatures taken with a thermocouple (precision of $\pm - 0.1^{\circ}$ C) were occasionally checked with a mercury thermometer ($\pm - 0.2^{\circ}$ C). The pH meter was calibrated using standarized, temperature-equilibrated buffers.

A Lakewood pH/conductivity meter was used in the 1986 field season to measure conductivity and was standardized before each measurement with a TDS/Conductivity standard solution of 2070 micromhos/cm. Two conductivity measurements were taken for each sample to check precision. Precision estimates for pH, Eh and

conductivity are +/- 0.02 pH units, +/- 30 mvolts, and +/- 2 % of readings, respectively. Different conductivity meters were used in the 1985 and 1986 field seasons. A comparison test between the two conductivity meters showed that the meter used in 1985 gave higher values than the Lakewood meter (up to 500 micromhos /cm higher for samples > 2400 ppm Cl) for the same water sample.

2.1.4 Laboratory work and sample treatment

Some storage-sensitive measurements (dissolved oxygen and alkalinity titration) and other procedures for the preservation of water samples were completed at the mine laboratory on the same day the sample was taken. Both cation and anion samples were filtered with 0.45 micron cellulose acetate filters before they were stored for shipment. The alkalinity titration was done with 30 ml of water before filtering. After filtering, 2 ml of concentrated nitric acid were added to the cation sample which was also used for trace element analysis. Filtering of some water samples was delayed a day due to slow filtering caused by low water pressure at the mine site.

Carbon-14 samples (25 1) were treated with 500g of barium chloride and 30 ml of sodium hydroxide according to a procedure developed by the Department of Earth Sciences, University of Waterloo which quantitatively precipitates dissolved inorganic carbon as BaCO₃.

A modified Winkler Method (phenylarsine oxide standard solution as titrant) was used to measure the dissolved oxygen

content with a detection limit of 0.01 mg/l (ppm). Alkalinity titration was done on all samples, except for the first 15 lake samples (DH-36 to DH-50) since the pH meter was not working on the day these samples were taken. The bicarbonate alkalinity for these samples was estimated by linear regression analysis of the other lake HCO_3/Ca data. Each titration was done immediately after the sample was exposed to air, to minimize CO_2 degassing. Precision of the alkalinity calculations is +/-4 %.

2.2 Stable Isotope Analytical Procedures

2.2.1 Total dissolved carbon extraction and carbon-13 measurement

A high vacuum system (see Figure 2.3) was used to convert the total dissolved inorganic carbon (DIC) in the water sample to CO₂ gas and to purify it for DIC and δ^{13} C measurement.

Carbonate ions in the water sample reacted with 98 t orthophosphoric acid to form CO₂ gas. This gas was separated from water vapour and any remaining air, using liquid nitrogen baths and vacuum pumps. The CO₂ gas was then transferred by Toepler pump, to a constant volume manometer where total dissolved inorganic carbon (DIC; as CO₂) was determined by measuring the temperature (precision of +/- 0.1 °C) and CO₂ gas pressure (+/- 0.05 cm of Hg). A precision of 0.1 °/oo is given for the extraction procedure.

The CO₂ gas was analyzed for δ^{13} C using the V.G. Micromass

Figure 2.3. High vacuum system used to extract CO₂ gas for carbon-13 analyses.

903E mass spectrometer. The "ô" is defined by the formula:

$S = \frac{R_{spl} - R_{std}}{1000} \times \frac{1000}{100}$	$R = abundance ratio {}^{13}C/{}^{12}C$ $R_{spl} = of sample$
R _{std}	$R_{std} = of standard$

Results were expressed relative to the PDB standard. Measurement precision was +/- 0.3 to 0.4 °/oo due to instrumental problems. An overall precision for the δ^{13} C is estimated at +/- 0.5 °/oo, resulting from both the extraction and measurement errors. Reproducibility of total dissolved inorganic carbon results was determined to be approximately +/- 3 ppm.

2.2.2 Oxygen-18 and deuterium analysis

The standard method for oxygen isotope analysis is outlined by Craig (1961); deuterium was analyzed at the University of Waterloo by the standard uranium reduction method (Gonfiantini, 1981) and by the zinc method (Coleman et al., 1982) at Memorial University of Newfoundland (MUN). Similar results were obtained from both laboratories. Oxygen-18 and deuterium values are reported ^relative to Standard Mean Ocean Water (SMOW). Precision for mass spectrometer analyses of 180/160 is +/-0.2 $^0/oo$ and +/-0.8 $^0/oo$ for deuterium.

2.3 Radioactive Isotopes

All carbon-14 and tritium analyses were done by the Isotope Laboratories at Waterloo University. Water samples were analyzed for tritium using the standard liquid scintillation beta-counter with electrolytic pre-enrichment procedure in 1985 and water
samples were directly analyzed without enrichment in 1986. Tritium values are stated as Tritium Units (T.U.) which are defined as: 1 T.U. = T/H x 10^{-18} with a detection limit and precision using enrichment of approximately 1 T.U. and +/- 0.80 T.U., respectively and with a precision for direct counting of +/- 7 T.U.. Carbon-14 analyses are expressed in percent modern carbon (pmc) relative to pre-industrial/pre-nuclear wood (Fontes, 1983a) with a precision of +/- 2%.

2.4 Elemental Analysis

The 1985 cation and anion analyses were done at the Water Analysis Facility, Department of Chemistry, MUN (Welhan and Gale, 1986) by atomic absorption spectrometer and AutoAnalyzer instrumentation. All water samples collected in 1986 were analyzed in the Earth Sciences Department at MUN.

Samples taken during the 1986 field season were analyzed for anions (Cl, SO_4 , NO_2 , NO_3) with a Waters Associates High Performance Liquid Chromatograph (HPLC) equipped with a model 450 variable wave length UV detector and M-45 solvent delivery system. A 3390A Hewlett Packard integrator was used to convert peak heights to peak areas. Precision for Cl, SO_4 , NO_2 , NO_3 , measurements was approximately +/- 1%, 2%, 6%, and 3%, respectively. Acidified water samples were analyzed for major cations by an atomic absorption spectrophotometer. Cation analyses are accurate to 0.2%.

Trace element analyses of acidified mine and well waters

were done at Memorial University using The Inductively Coupled Plasma/Mass Spectrometer (ICP/MS). The principles of this method of analysis are outlined by Strong and Longerich (1985). Ion intensities were measured against blanks and standard solutions. Averages of repeated measurements, as well as standard deviations, were calculated for each sample. Elemental concentrations were obtained at very low detection limits of 1 ppb with an estimated precision of +/-5 or less.

2.5 Fracture Analysis

2.5.1 Field methodology

A detailed fracture mapping survey of one surface outcrop, several open pits, and two drift walls was undertaken in the 1986 summer field season, to provide fracture data relevant to the hydrogeologic study of the mine area. A physical framework can be constructed for the development of a conceptual hydrogeochemical flow model by quantifying the fracture network. The following section describes the field methods and coding conventions used in the fracture mapping at Daniel's Harbour.

Locations of detailed fracture mapping areas are given in Figure 2.4. They include fracture mapping of vertical to near vertical surfaces in the H-Zone, F-Zone, A-Zone and two mine drifts in the entrance decline and lower L-Zone. Over half of the 923 fractures mapped were located on the near horizontal surface of a large outcrop in dry Lead Lake. Outcrop exposures are very limited and restricted to areas near some lake shores.

Figure 2.4 Locations of fracture mapping areas at the Newfoundland Zinc Mine.

Fractures were mapped using photographs taken from a helicopter and on the ground. Overlays were drawn for each photograph of the open pits (see Appendix C), and for the photo composite of the Lead Lake outcrop (see Appendix D). An example of this line survey/photograph technique introduced by J.E. Gale is illustrated in Figure 2.5. The sampling line (henceforth referred to as the scanline) was defined by a measuring tape placed along the outcrop surface. Scanlines varied in length from 1.2 to 32 m and averaged 15.6 m. Some of the vertical mine drift walls were uneven and the accuracy of recorded scanline lengths was +/-10 cm. All fractures, greater than 50 cm in length, intersecting the scanline were mapped by drawing the fracture trace with its number on the overlay (see Appendix C and Scanline orientations and basic fracture information were D). recorded on formatted field data sheets by using codes. Coding conventions were similar to those used by Gale and Witherspoon (1979) and their explanations are given in Appendix E.

Fracture type can be joints, veins, or bedding planes. Joints are fractures that contain no infilling minerals and have not experienced any movement along their surfaces (Rouleau and Gale, 1985a). However, joints are sometimes lined with a black, possibly dolomitic, coating. Veins are generally thin joints that contain infilling material. For simplicity, all fractures will be henceforth referred to as 'joints' since most of the fractures in this study occur as joints; and bedding planes will be referred to as such. All joints that were mapped are

Figure 2.5. Fracture mapping technique used for this study. Fractures are recorded on aerial photograph overlays of the same scale. A mapped portion of the Lead Lake outcrop is shown in this figure.

natural and were not induced by blasting. Joints induced by blasting are discontinuous, curved or botryoidal in nature.

This fracture mapping technique is affected by the following limitations. In the underground workings it was difficult to measure the entire joint length of long vertical joints, and only the portion exposed on the drift face (3 to 4 m high) was mapped. However, only a small number of the less abundant long joints were affected by this limitation. The Lead Lake outcrop is very extensive, and censoring of fractures due to outcrop limits only affected a small number of the peripheral joints and a few very long joints. The preferential sampling of joint sets perpendicular to certain rock face orientations is inherent in this procedure although an effort was made to minimize its effect by trying to map rock faces of different orientations.

2.5.2 Processing and manipulation of fracture data

Fracture data were entered into three separate files [Lead Lake (DNSHAR.DAT), Mine drifts (DNSHAR2.DAT), Open pits (DNSHAR3.DAT)] from field data sheets. Joints were segregated in this manner to facilitate comparison between areas and comparison of joints mapped with different censoring limitations. These files were combined to make a total data file of 923 joints. The complete "original" data files are given in Appendix F.

2.5.2.1 Fracture orientations

Initially, the poles to joint planes were plotted on lower hemisphere equal-area projections and contoured using the Schmidt

Method; a procedure used by Rouleau and Gale (1985a). The fracture data was processed and plotted using the STRDAT.FOR and STRPLO.FOR programs (Memorial University, 1987). Orientation plots (see Appendix G) using this method were made for comparison with similar plots produced using the SPHERE program (Diggle and Fisher, 1985). The complete fracture analysis is based on joint set orientations that were found using SPHERE, a contouring plotting program for data projected to a sphere.

The sequence of programs used in this next stage of fracture analysis is illustrated in Figure 2.6. Three programming environments were used: FORTRAN, SPSSX and the SAS system. A program DHLOOK.FOR (see Appendix H) was written by the author in order to extract orientation information from the original data files to be used by the SPHERE program. The final contoured orientation plot is accompanied by a scroen output of relevant data, such as the mean or principal vector of each plot in the form of eigenvectors and direction cosines (see Appendix I).

The visual technique of delineating joint sets is similar to the method used by Rouleau and Gale (1985a). For each file the sets were defined and numbered sequentially, in order of their importance within each file. Sets that are from different files (areas) but have the same number are not interctangeable. For example, set 3 from the open pits does not have the same orientation as set 3 from the mine workings but both are the third dominant joint set in their respective files. When the sets were determined, their orientation limits (defined by

drawing borders around contoured areas) were used to separate the original data file into smaller files using the modified program SETSLOOKWEND.FOR. This program assigns each fracture to a designated set if its orientation falls within the specified set range. The program outputs two files for the SPHERE program and for other trace length, spacing and orientation analysis programs. These programs are listed in Figure 2.6 as ORIENT.HIS, TRACE.HIS, SPACE.FOR, TRACE.SAS and CENSTERM.SAS.

2.5.2.2 Trace length and spacing analysis

The output file produced from SETSLOOKWEND.FOR was used to produce suitable input files for the trace length analysis programs. Frequency histograms for joint lengths were produced for each joint set by using the program TRACE.HIS. The TRACE.SAS program produced histograms segregated on the basis of censoring and termination mode. The program CENSTERM.SAS outputs univariant statistics for each level of censoring (0,1,2) only.

The SPACE.FOR program (Memorial University, unpubl.) calculated spacing between joints of the same set by processing the output files from the SETSLOOKWEND.FOR program. The SPACE.SAS program produced histograms and statistics for spacings in sets.

Spacing between joints was calculated using the distance approach method (Rouleau and Gale, 1985a) and formulae by Koch and Link (1971). This method defines spacing as the perpendicular distance between adjacent joints of similar strike. The main assumption of these calculations is that the joints of the

Figure 2.6 Sequence of programs used in the analysis of joint data from the Newfoundland Zinc Mine.

All SAS programs output two files: one that lists the desired data output with extension '.lis' and the other lists the sequence of commands that the program executed-errors can be checked in this file- with the extension '.log'. same set are parallel to each other and equal to the orientation of the mean pole for the set. Thus, sets that are very well defined and have the least range of orientations have the best representative values for spacing. Further explanation of fracture analysis and manipulation is given in Appendix J.

2.6 Hydrogeological Measurements

Physical measurements outlined below were done in the 1986 summer field season. The study area has numerous exploration drill holes for water table measurements but problems arose during this field season due to unusually low water table conditions. Two of the shallow (10 to 15m) holes drilled in July became dry after 1/2 hour of pumping at a rate of 1 1/min. In late July, water levels in these holes fluctuated by over 50 cm.

2.6.1 Hydraulic head measurements

Water level measurements were done with a conventional 60 m water tape. A total of 83 water table levels were measured over a period of 11 days from July 26 to August 5. The "blocky" nature of the dolostone caused some older holes surveyed in 1985 to cave in and repeating measurements in these holes was impossible. In a few cases, a one metre steel rod was used to clear holes before the water tape was lowered into the hole.

Exploration drill holes that did not intersect ore zones were not cased or surveyed for elevations by mine staff. All unknown drill collar elevations and the Spring Lake level were

surveyed relative to the common Teck Exploration Datum using a standard surveyors' level transit supplied by mine personnel. All relative elevations are +/- 5 cm. This arbitrary datum of 1000 ft has an absolute elevation of 343 ft (105 m) above mean sea level, as determined by altimeter. In 1987, this datum was checked by a transit survey carried out from the coast to the mine site and it was found that the datum is approximately 20 ft (6 m) below its true elevation (Bursey pers. comm., 1987).

Hydraulic head data were calculated by subtracting the casing (stick-up) from surveyed elevations and then subtracting the depth to water level from this measurement (ground surface), followed by correcting to mean sea level from the arbitrary datum. Components of the hydraulic gradients were calculated from pairs of adjacent hydraulic head measurements by dividing the difference in head by the distance between the open holes.

2.6.2 Pressure measurements

Pressure measurements were made on 19 drill holes, equipped with valves, using a 500 psi pressure gauge in the underground drifts (see Figure 2.7). All data was collected on July 31, 1986. Measurement error was estimated to be 5 to 10 psi.

Figure 2.7 Location map of pressure measurement sites in the mine underground workings.

Chapter 3

GEOLOGY

3.1 General Geology

The rocks underlying the coastal plain in the study area are an autochthonous sequence of Cambro-Ordovician carbonate and clastic sediments of the Humber Zone (see Figure 3.1). These rocks lie unconformably upon the Precambrian basement which outcrops at the eastern boundary of the area as the Long Range Mountains. The basement is of Grenvillian age and largely consists of massive, slightly foliated, pink, fine- to coarse-grained granite and granite gneisses (Cawood & Williams, 1986; Knight, 1985).

The Cambro-Ordovician strata and Grenville basement are autochthonous rocks and are structurally overlain by the Humber Arm Allochthon via thrust faults (Knight, 1984) to the south of the study area. Block faulting of the Grenvillian basement marked the beginning of Humber Zone's geological evolution (Williams, 1979). From Early Cambrian to Early Ordovician times, carbonate deposition occurred over a stable marine platform with an east-dipping continental slope (Klappa et al., 1980).

The Cambro-Ordovician rocks consist of 4 groups (Figure 3.2). The Labrador Group (directly above basement rocks) is overlain in turn by the Port au Port Group, the St. George and the Table Head Group. The mine occurs in rocks of the St. George Group. The St. George group is divided into four formations: Watts Bight Formation, Boat Harbour Formation, Catoche Formation and Aguathuna Formation, see Figure 3.2 (Knight, 1984).

Figure 3.1. Regional geological map of the Daniel's Harbour study area compiled by T. Lane (in prep.). Only carbonate sediments are subdivided into major rock groups. The cross-section through the mine area assumes the carbonate sequence as well as basement rocks are transected by steeply dipping faults.

۰.

Figure 3.2. Autochthon and St. George Group stratigraphy. The Newfoundland Zinc Mine is situated in coarse dolostones of the Catoche Formation. These coarse dolostones are overlain by fine dolostones of the Aguathuna formation and underlain by limestones of the remainder of the Catoche Formation.

3.2 Regional Stratigraphy and Description of Rock Units

Of the autochthonous sequence, the Cambrian rocks are generally less fossiliferous and more silici-clastic than the overlying carbonate-rich St. George and Table Head Group rocks (Knight and James, 1987). The following description is restricted to formations of the St. George and Table Head groups pertinent to the study area.

The St. George Group consists of well-bedded cream to grey dolostones and grey limestones with widespread bio-turbation (Cawood and Williams, 1986). Porosity varies most in the dolomites; lower parts of the section may be silicified (Cawood and Williams, 1986) whereas higher up in the section they are vuggy (Upper Catoche Formation; Lane, in prep.). Dolomit-ization occurred in several stages and the last stage was marked by the occurrence of saddle dolomite which is found in the ore host rocks at the mine (Haywick and James, 1984). Periods of subaerial exposure are represented by sedimentary breccias, pebble and sand lags and irregular solution surfaces (Knight and James, 1987). The Table Head Group consists of fossiliferous limestones with local dolomitization and shale interbeds (Klappa et al., 1980). The contact between the St. George and Table Head Groups is at present cited as a regionally conformable contact but this contact is locally disconformable (Knight and James, 1987) at the Newfoundland Zinc Mine.

The thicknesses of the St. George Group formations at the mine site are given in Figure 3.2. Of greatest significance to

this study are the Catoche and Aguathuna formations since they comprise most of the mine section.

The Catoche formation contains bedded, muddy, bioturbated, fossiliferous grey lime mudstones with *lgal-metazoan buildups (Ross and James, 1987; Knight, 1985). There are some diagenetic dolostones near the top of the formation (Knight and James, 1987). The dolostones of the Aguathuna contain minor limestone and shale (Knight and James, 1987). These dolostones vary in thickness laterally (Lane, in prep.). Bioturbation is extensive in the Aguathuna Formation at the mine site (Figure 3.2) and appears as mottling of the dolostones. A possible arid depositional environment and the formation of evaporites are suggested by the presence of chert with relict anhydrite (Ross and James, 1987).

The Table Point formation is the lower-most unit of the Table Head Group and is the only formation of this group that outcrops in the mine study area (Figure 3.3). It is a massive grey limestone with minor dolostone (Klappa et al., 1980). The Lead Lake outcrop (location of fracture mapping) is massive limestone with early selective dolomitization of abundant burrows and fossils (Haywick and James, 1984).

3.3 Local mine stratigraphy and rock units

The entire mine section comprises only the basal part of the Table Head Group and approximately the upper half of the St. George Group. The actual mining operations occur in the upper third of the Catoche formation (see Figure 3.2).

There is a further subdivision of the St. George and Table Head Groups' formations based on mine drill logs but it is not practical to map these sub-units at the scale of Figure 3.3 due to the abundant lateral facies changes within these units (Lane, pers. comm., 1987).

The Catoche formation can be subdivided into two units: the pseudobreccia unit and the lower limestone unit (see Figure 3.3). The Siliceous Dolomite and Dark Grey Dolomite units referred to in pump test data (Chapter 4) are subunits of the Aguathuna and Catoche formations, respectively (Knight and James, 1987).

The presence of gypsiferous pseudobreccia, gypsum in matrix breccias and in a large L-Zone vug (DDH 746; Coron, 1982), as well as the occurrence of chert with relict anhydrite in the Aguathuna formation, suggests the presence of evaporites in other parts of the carbonate sequence. Chert nodules found in various parts of the section (Figure 3.2) may have been pods of gypsum or anhydrite that have since been replaced by silica (Coron, 1982).

Matrix or collapse breccias (Figure 3.3) are referred to as pre-Middle Ordovician karst features (Crossley and Lane, 1984). The fine crystalline matrix of these bodies is relatively impermeable. Stylolites are pervasive in the mine section and are almost always lined with dolomite. They are probably contemporaneous with or earlier than the first stages of dolomitization in the limestone (Collins and Smith, 1975). Laboratory testing showed that stylolites reduce rock strength

Figure 3.3. Geological map of the Newfoundland Zinc Mine and immediate area. Underground workings have been projected to surface and open pit workings are also shown. (compiled by G. Bursey)

and core logging showed that they decrease core recovery (Appendix M).

3.4 Description of ore and host rocks

The Newfoundland Zinc Mine is a Mississippi-Valley type deposit of the Tennessee variety (Dearin, 1976). Sphalerite was mined for its zinc in this essentially monomineralic orebody (James and Stevens, 1982). The mineralization is associated with paleokarst-derived collapse breccias and fracturing, (Lane, 1984; Collins & Smith, 1975), epigenetic veining and crystalline white saddle dolomite (Crossley & Lane, 1984; Haywick & James, 1984). The mineralization is confined to the pseudobreccia unit (Lane, 1984). Sphalerite is concentrated in long (500-4000 m), sinuous en échelon ore lenses or narrow (7-70 m) stratiform bodies bordered by faults and subparallel fracture zones (Coron, 1982). Zinc, lead and copper values decrease sharply with distance from ore (Sangster, 1968).

Sphalerite contains very few impurities of which iron (1.3%) and cadmium (0.18%) are the primary ones. Accessory minerals listed in order of abundance are galena, pyrite/marcasite, chalcopyrite-bornite, and native sulfur. Barite, gypsum and celestite crystals, considered to be late-stage mineralization (Crossley and Lane, 1984), have been found in vugs from the mine workings near DDH 456 (see Figure 3.3), and in vugs of the L-Zone near the Trout Lake Breccia associated with pyrite and chalcopyrite, respectively (Coron, 1982). Secondary hematite,

limonite and smithsonite occur as supergene alteration products of the upper 6 m of mineralized bedrock (Coron, 1982).

Bulk analysis of zinc ore and ore host rocks reveal the following trends: Co (7 ppm), Mo (7 ppm) and Ag (1 ppm) have minor ore association; Cd (675 ppm) is associated with Zn (>10,000 ppm); Pb and Cu are elevated in ore (70, 185 ppm) and in pyrite (44, 7 ppm) that is associated with ore (Lane, pers. comm., unpublished mine analyses).

Most of the ore zones in the mine area are aligned more or less parallel to the regional structural trend of 040 (K, Q and C-Zones; see Figure 3.3). The A-Zone is aligned to the second major trend found also in the Grenvillian basement which runs perpendicular to the 040 trend (Coron, 1982).

3.5 Surficial Geology

Quaternary deposits overlie the carbonate platform and were last deposited and reworked by glaciers probably during the late Wisconsinan Age. These glaciers originated at the dome of the Long Range Mountains and advanced westward 12,800 +/- 150 years B.P. (Proudfoot and St. Croix, 1987). The glaciers coalesced as they spread out on the carbonate platform and terminated at sea. The general direction of ice movement is indicated by striations of 270 ^O +/- 40 (Hornbrook et al., 1975). The marine limit at this time was about 145 metres above present sea level (Proudfoot and St. Croix, 1987). Regional thicknesses of overburden range from thin and patchy over the Long Range foothills to

approximately 30 m along the coastal areas (Hornbrook et al., 1975). Some lakes underlain by St. George Group rocks have fine, white marl lake bottom sediment (Hornbrook et al., 1975). Field work in 1986 established that lakes 36, 53, 57, 58, 64, 65, 71 (see Figure 2.1) have fine grey bottom sediment. Most of these lakes are found near the coast and they are all underlain by the St. George Group (Figure 3.1).

The mine area is covered by unconsolidated sediment forming a high-relief (75 m) dissected plain that is classified as an eroded moraine complex consisting of raised beaches, wavemodified hummocks and cobbly beach terraces (Proudfoot and St. Croix, 1987). This unit has been extensively reworked by wave action with the admixture of finer marine sediment. The surficial material is composed of carbonate detritus and granitic erratics, and thicknesses are highly variable. Depressions contain sand- and gravel-sized carbonate detritus of marine origin e.g., shell fragments (Hornbrook et al., 1975). Clay was only deposited near the coastline of the study area. Local thicknesses measured from drill logs vary between 0 and 8.5 m (Crossley, pers. comm.) and average 1.8 to 2.7 m of calcareous till (Hornbrook et al., 1975).

If the rock exposed in the open pits is neglected, outcrop is very poor due to the extensive glacial cover in the area. Suboutcroppings of sphalerite in the vicinity of the portal decline entrance and at the north shore of Zinc Lake (see Figure 3.3) weathered and produced elevated zinc levels in the soil

(Hornbrook, et al., 1975). These zinc anomalies led to the discovery of the mine.

3.6 Structural Geology

3.6.1 Regional structural geology

Mild deformation of the Humber Arm Autochthon over most of the study area resulted in the platform being transected by numerous north-northeast trending faults (both vertical and thrust) and minor folds. Cawood and Williams (1986) found that fold axes and late thrusts on the carbonate platform are subparallel. They inferred that the folding took place during the regional compression of the Allochthon and Autochthon, just before brittle fracturing and fault overthrusting of the Precambrian basement. The carbonate strata are gently dipping to the southwest. Near the contact with the Precambrian basement, strata can be more deformed and exhibit recumbent folds and recrystallization/silicification of dolomite and calcite (Knight, 1985). Based on a compilation of all previous work (see Figure 3.1), the fault contact forming the eastern border of the study area is a vertical fault (Lane, in prep.). Structural deformation of this part of the Northern Peninsula probably was manifested as numerous near-vertical faults rather than one dominant thrust which is common to the south and north of the study region (Grenier R., pers. comm., 1988).

As can be seen from the regional geological map (Figure 3.1) long, curvilinear, steep reverse faults dominate the structure in

the area (Knight, 1985). They form a series of subparallel faults, trending 20 to 60 ^O east (Lane, 1984). The cross-section in Figure 3.1 shows these faults have a general dip-slip component displacing units upwards to a maximum of 1500 m (Lane, 1984).

It has been suggested that the shape (parallel to the Grenvillian basement) and structures of the carbonate platform reflect older structures in the Grenvillian Structural Province (Williams, 1979; Coron, 1982). The most prominent set of joints in both the Long Range gneisses and the carbonate strata trends 040 degrees. The northeast trend of the Long Range inlier itself is coincident with the general northeast trend of the faults and joints of the area. Minor east-west trending faults are found in the Grenvillian basement and in the carbonate platform.

3.6.2 Local structural geology

The local structure of the mine area (see Figure 3.3) is dominated by the gentle folding of the shallow dipping (5° SW) northeasterly striking carbonate strata (Coron, 1982). The anticlinal fold axis trends in the north-northeasterly direction (from Spring to Mike Lake, Figure 3.3). Its west limb dips approximately 7 degrees to the west and the other limb gently dips approximately 10 degrees eastward. The east-west trending fault in the L-Zone area is interpreted as a second generation of faulting related to the major north-east trending faults (east of map area, Figure 3.3), (Coron, 1982). The northeast-southwest trending faults in the area have associated fracture zones that

are mineralized with sphalerite and these fractures have a 040 o trend. Most authors (Knight, 1977; Cumming, 1968; Coron, 1982; Lane, 1984; Crossley & Lane, 1984) agree that structural influences controlling ore deposition were limited to fracturing and faulting of the carbonate strata. All folding is post-ore and there are post-ore faults that displace ore lenses in some areas (Coron, 1982).

3.6.3 Fracture analysis

The fracture survey was designed to investigate the suggestion (Acres, 1974a) that drawdown anisotropy in the fractured rock mass was caused by two major joint sets that are nearly vertical. Details on fracture mapping techniques and data manipulation are summarized in Section 2.5.

3.6.3.1 Fracture orientation

Figure 3.4A is a plot of all poles to fracture planes mapped at the mine area using the SPHERE program. Poles were contoured according to estimated density function values introduced by Fisher et al. (pg. 41, 1987). High density of poles have high function values and low density areas have lower function values. Pole diagrams of fractures from vertical mine drift faces and open pit walls show a significant concentration of near horizontal bedding planes and joints (see Figures 3.4C, D).

Four fracture sets for the total survey (combining all fracture sites) are defined based on a visual inspection of

Figure 3.4A) Pole diagram for the entire fracture survey measured in underground drifts, open pits and Lead Lake outcrop. Four sets can be defined by the pole clustering. Seven equally spaced contours based on miniumum and maximum function values 0 and 2.572 respectively. Contour heights are as follows: 0.184, 0.551, 0.918, 1.286, 1.853, 2.021, 2.388.

.

B) Pole diagram for fractures mapped from the Lead Lake outcrop only. Six contours are equally spaced by function value: Min. function value of 0 and Max. of 2.798. Contour heights are as follows: 0.233, 0.700, 1.166, 1.632, 2.099, 2.565. The black dots represent scanline orientations. Fracture sets are numbered according to their importance within each site and are not interchangeable between sites.

contour line density (Figure 3.4A). Eighty-eight % of all fractures fall within the boundaries of the specified 4 sets. Seventy-seven % of the total fractures (joints) mapped are included in the two well defined major Sets #1 and #2, and 11 % of the fractures make up the somewhat weaker Sets #3 and #4. Set #1 is a steeply dipping set of joints with a north-east trend. Set #2 has a wider range of dip direction orientations and is also a steeply dipping joint set but with a north-westerly trend. A smaller third joint set is found only at Lead Lake and is steeply dipping with an east-west strike. Set #3 is separated from Set #2 on the basis of a second contour line that is only developed within the boundaries drawn for Set #3 (Figures 3.4A). A lower hemisphere equal-area projection of the same data using the STRPLO program (contouring according to density per unit area of projection) shows similar pole clusters (see Appendix G) which confirm the existing set boundaries. The shallow dipping bedding planes of Set #4 are not large in number but significant in their water conducting potential. Since they are sub-horizontal there is a very large range in strike direction.

In addition, fracture sets have been determined for each individual mapping site indicated on Figure 2.4. Fracture set orientations are given in Table 3.1. Fracture sets are numbered sequentially, according to the procedure outlined in Section 2.5.2.1, in descending order of their importance at each individual mapping site, not according to their significance within the entire fracture survey. For example, the third most

- Figure 3.4C) Pole diagram of fractures measured in the underground drift workings. Five equally spaced contours based on minimum and maximumum function values of 0 and 1.463 respectively. Contour heights are as follows: 0.147, 0.439, 0.732, 1.024, 1.317. Black dots represent scanline orientations.
 - D) Pole diagram of fractures measured in the open pits. Five equally spaced contours based on minimum and maximum function values of 0 and 1.856 respectively. Contour heights are as follows: 0.186, 0.557, 0.927, 1.299, 1.670. Black dots represent scanline orietations.

Table 3.1 Orientation (dip direction and dip) limits of fracture sets defined by contoured fracture data for entire mapping survey and for individual mapping areas.

original data file						DNSHAR . DAT			555 Poles to Planes (Lead Lake Outcrop)	
DNSHARTTL.DAT				923 Poles to Plane: (Total Fracture Set)	SET	1	* 355	DIP 75-90 72-90	DIP DIRECTION 285-322 108-143	
SET 1	L	# 581	DIP 75-90 72-90	DIP DIRECTION 286-336 107-146	SET	2	100	81-90 73-90	191-247 011-065	
SET 2	2	132	81-90 75-90	191-249 011-069	SET	3	52	80-90 80-90	352-359 000-011 172-192	
SET 3	3	54	80-90 79-90	173-192 353-359 . 0-012	DNSI	IAI	R2.DA	T ()	92 Poles to Planes fine Drift Workings)	
SET 4	4	44	0 -15 0 -15	258-351 082-176	SET	1	* 58	DIP 79-90 77-90	DIP DIRECTION 289-342 108-163	
					SET	2	12	0-25	233-343	
					SET	3	7	77-90 78-90	20 7-242 03 7-06 2	
					DNSHAR 3. DAT				276 Poles to Planes (Open Pits)	
					SET	1	# 176	DIP 68-90 70-90	DIP DIRECTION 285-341 105-161	
					SET	2	37	0-20 0-21	242-353 062-173	
					SET	3	32	71-90 78-90	212-260 031-080	

dominant set mapped in the underground drift workings (Set #3 in Figure 3.4C) does not correspond to the third most dominant set for the total fracture survey (Set #3 Figure 3.4A).

The stereograms/pole diagrams for each individual mapping area (Figures 3.4 C, D) indicate that there is areal variability in the dips of the bedding planes which can be related to the anticlinal structure in the area (see Figure 3.3). An orientation plot for the drift workings (Figure 3.4 C) shows a

set of bedding planes dipping generally to the west. This is logical since the drifts are on the western limb of the anticline (Figure 2.4). Figure 3.4D represents fractures mapped on vertical surfaces in the open pits and shows east and west dip directions for the shallowly dipping bedding planes. This is because the open pits are located on both limbs of the anticline.

Well defined Joint Sets #1 and #2 of the whole fracture survey (Figure 3.4A) can be related to this anticline and the major northeasterly faults in the mining area (see Figure 3.3). Stresses that would produce an anticline with a north trending axis and faults of approximately 240 ° strike (NE-SW trend) would have a maximum principal stress in the east-west direction (Price, 1966). This is confirmed by the trend of regional compression causing the westward thrusting of the basement rocks onto the platform (see Section 3.1.1). Some bedding planes may have been important planes of slippage (Spencer, 1977) at the time of folding and thrusting of these layered rocks, which caused enlargement along the bedding plane.

Minor joint Set #3 of the total fracture survey (Figure 3.4A), is perpendicular to the fold axis and may have formed under tensional stress, although there is no direct field evidence for this, because fracture surfaces were very weathered. Set #3 is found only at the mapping site nearest the anticlinal crest, which may suggest more intense weathering of the greater joint density found near the crest of an anticline. Joint Set #3 may also be a secondary set related to the small synclinal
structure (with north-east trending axis) located at the south end of Lezd Lake (Figure 3.3). Joint Sets #1 and #2 of the total fracture survey may be shear joints developed in response to the east-west maximum principal stress (Price, 1966).

Frequency histograms of orientation data (see Figure 3.5), with statistics assuming a normal distribution (see Table 3.2), were produced for each set of the total fracture survey by using the dip direction limits listed in Table 3.1. For each mapping site an additional set of statistics for their respective sets is given in Appendix K. By plotting the fracture orientations in this manner, previous set divisions are reinforced by the peaked distributions found for each set, substantiating these fracture sets that were defined solely on the basis of orientation.

The majority of dip angles between 75 and 90 $^{\circ}$ for Sets #1, #2, and #3 indicate most fractures measured in the mine area are steeply dipping. Low dip angles of 0 to 20 $^{\circ}$ in Set #4 are expected for near horizontal bedding planes. A wide distribution of dip directions in Set #4 is typical when measuring dip directions of shallowly dipping planes and may not be representative of the true dip direction distribution.

The mean vector for each set of the total fracture survey (see Section 2.5.2.1) was determined by the set rotation option in the SPHERE program. Analysis of the set rotation results is given in Appendix I. The mean vectors or average pole orientations are listed in Table 3.3. The average pole orientations for Sets #1 and #2 are the same as mean poles

Figure 3.5 Frequency histograms of orientation data for each of the fracture sets determined from the total fracture survey. For the purpose of displaying orientations on an histogram with a scale from 0 to 180°, data was manipulated as follows: 180° was subtracted from dip direction greater than 180° and their dip was subtacted from 180 also. Dips > 90° were calculated for fractures with dip directions > 180°. This was done for all sets except Set 3, for which dip directions are north-south.

Degrees

Table 3.2 Orientation data basic statistics for the four fracture sets defined for the entire fracture survey. Negative minimum for Set #3 refers to dip directions to the west of north or 360.

DNSHARTTL.DAT

Dip Direction	Set # 1	Set #2	Set #3	Set #4
Mean (^O)	129	41	3	132
S.D.	8	14	5	22
Min.	108	13	-6	84
Max.	156	68	12	163
No. of fractures	581	132	56	44
Dip	Set #1	Set #2	Set #3	Set #4
Mean (⁰)	89	88	90	9
S.D.	5	5	3	3
Min.	73	75	80	5
Max.	105	99	100	15
No. of fractures	581	132	54	44

Table 3.3 Average pole orientation for each set as determined from the SPHERE program.

	Plunge Azimuth	Plunge	Strike (of plane)	Dip	Dip Direction
Set #1	308.9	0.6	039	89	129
Set #2	220.6	1.7	310	88	041
Set #3	3.2	0.1	093	90	183
Set #4	108.3	89.2	198	01	288

determined by histogram statistics listed in Table 3.2. The discrepancies between Table 3.2 and Table 3.3 for Sets #3 and #4 can be explained by the specifics of the histogram program (subtract 180° from dip direction; see explanation in caption of Figure 3.5) and the poorly defined distribution for dip directions, respectively.

3.6.3.2 Fracture trace length

Trace length histograms for each fracture set are shown in Figure 3.6 (sorted in terms of censoring) and 3.7 (sorted in terms of termination mode). Basic statistics for the trace length analysis of the entire fracture survey are given for its 4 sets in Table 3.4. Trace length statistics for individual areas are given in Appendix K.

The distributions illustrated in the trace length histograms are skewed to the right. This positive skewness may be partially due to the 0.50 m cut-off for the trace length survey. Without a more detailed statistical analysis (ie. corrections for censoring and termination mode) of the trace length data it is difficult to compare mean lengths and determine an exact mean trace length for each set. Set #1 has some of the longest fractures, but Set #4 has consistently the longest fracture lengths of any set. Most of the fractures measured have some degree of censoring (cens = 1 Trace length histograms sorted on the basis of or 2). termination mode (see Figure 3.7) show that most of the fractures have both ends free (term. mode = 0). The two major sets may be from the same period of deformation since they very seldom terminate with each other (censoring 1 and 2).

Some fractures of Sets #2 and #3 have a splayed termination style. Although the average fracture length has not been corrected for censoring and termination mode, there does appear to be a significant difference in length between sets.

The fracture data give very little information on the

Figure 3.6 Trace length histograms for each major fracture set sorted in terms of censoring style. See appendix E for censoring code explanation.

Figure 3.7

Trace length histograms for each major fracture set sorted according to termination mode. See Appendix E for coding explanation.

Table 3.4 Basic statistics for trace length histograms shown in Figure 3.6.

DNSHARTTL.DAT		Sot	#1		50t #2	
		Sec #1		36C #2		
Censoring	ο	1	2	0	1	2
Mean (m)	2.93	2.20	2.30	1.58	1.97	2.11
S. D. (m)	3.04	2.28	2.09	1.36	1.56	1.73
Min. (m)	0.50	0.50	0.50	0.50	0.50	0.50
Max. (m)	16.30	15.30	10.00	6.70	9.80	7.40
No.	166	294	121	38	54	40
		Set	#3		Set #4	
Censoring	0	1	2	0	1	2
Mean (m)	2.14	1.64	1.07	2.27	2.61	3.99
S. D. (m)	1.39	0.64	0.74	1.85	1.67	1.25
Min. (m)	0.60	0.60	0.50	0.70	0.90	1.40
Max. (m)	5.70	2.90	1.90	6.80	7.40	5.20
No.	39	14	3	10	25	9

relative ages of the major and minor fracture sets, because only one fracture was observed to offset another (no. 32 Appendix F). This northeasterly trending joint offsets an older northwesterly trending joint. In the underground drifts joints 478, 479 and 480 were observed to terminate at bedding planes indicating the obvious younger relationship of joints to bedding planes. A number of northeasterly trending joints belonging to Set #1, with an average pole orientation of 306/89 (NE trending), are very (<2mm) and are partially or completely filled with thin weathered, black dolomite. This type of infilling in the Lead Lake outcrop, where most joints dominantly open, may suggest that Set #1 includes joints from more than one generation. Small fracture zones of similar pole orientation (310/87) or NE-

trending joint planes were also observed in the Lead Lake outcrop.

Other observations from the original data sheets (see Appendix F) show that small pits on the surface of the Lead Lake outcrop are aligned along the regional northeast (Set #1) and northwest (Set #2) trends. This indicates structural control of limestone dissolution typical in other karst regions such as the Ocala limestone of Georgia (Brook and Allison, 1983).

3.6.3.3 Fracture spacing

Spacing histograms for each set of the total fracture survey are shown in Figure 3.8 and statistics are given in Table 3.5. Spacing statistics for individual areas are given in Appendix K. Analyzing fracture maps for the calculation of fracture spacing is affected by many sources of error (Rouleau & Gale, 1985a), as indicated by the large standard deviations for the mean spacing (see Table 3.5). These data are only apparent spacings and not true spacing values because of the truncation error in this survey. An analysis was undertaken anyway, so an estimate of spacing between major sets could be determined, since there were no data available from orientated boreholes to provide better spacing values (Rouleau & Gale, 1985b).

The histograms for the 4 sets do not have the shape of a theoretical normal distribution but they are positively skewed (to the right), similar to spacing histograms at Stripa, Sweden (Rouleau and Gale, 1985b). These empirical distributions

Ą

Figure 3.8

Fracture spacing histograms for each set of the total fractures mapped. Basic statistics to accompany histograms are listed in Table 3.5.

Table 3.5 Basic statistics for the calculated spacing between fractures of the same set for the entire fracture survey (DNSHARTTL.DAT).

	Set 1	Set 2	Set 3	Set 4
Mean (m) S. D. (m) Min. (m) Max. (m) No.) 0.55	1.75	2.01	0.32
	m) 0.90	1.88	2.31	0.30
	0.01	0.00	0.15	0.03
) 11.86	9.56	13.02	1.27
	551	105	42	30

approximate the exponential model.

Generally, joints belonging to Set #1 are closely spaced (0.55 m), those in Set #2 are more widely spaced (average 1.75 m), and those in Set #3 are even more widely spaced. Bedding planes (Set #4) are an average 32 cm apart.

3.7 Summary

Geological components covered in this chapter will be used to construct the conceptual flow model of the mine and region. Significant geological information for the mine area and region can be summarized by Figures 3.3 and 3.1, respectively.

The layered carbonate terrain, consisting of a succession of limestone and dolostone beds that dip south-westerly, is underlain by a Precambrian basement of lower permeability. This relatively low relief platform is bordered to the east by the Long Range Mountains. In the past, subaerial exposure and ancient karstification may have caused selective dissolution of carbonates and the precipitation of gypsum, barite and anhydrite, as well as the formation of collapse breccias. These ancient geological formations suggest karstification was very important in localizing ore and is important in the development of secondary porosity of these carbonate rocks.

Quaternary deposits cover most of the area but vary greatly in thickness, both locally and regionally. Reworked by wave action during the marine inundation over 12,000 years ago, they contain abundant carbonate detritus and lack clay-sized material,

except in coastal areas. Recharge through these deposits is considered to be extensive due to predominance of sorted till and coarse-grained sediment. Less infiltration is anticipated in the small areas covered by fine, lake bottom marl sediment and clay.

The northeast regional structural trend caused by regional compression and thrusting of the layered carbonate rocks is predominantly manifested by faults regionally and joints locally. Present-day dissolution may have originated along stylolites and bedding planes that have undergone slippage during regional deformation, as well as along joints in the local anticlinal axis.

The rocks of the Newfoundland Zinc Mine are transected by two major steeply dipping joint sets and shallowly dipping bedding planes. Joint Set #1 is presumed to be the most important water-conducting feature, next to the more horizontally extensive bedding planes, due to their frequency, close spacing and relatively long length. The mean fracture plane orientation for important fracture sets are:

Joint Set #1 039/89 Joint Set #2 310/88 Bedding plane Set #4 198/01 (sub-horizontal)

Joint Set #1, determined by local fracture mapping, is also coincident with the most prominent regional joint set of 040 degrees. The bedding planes are visibly influenced by the anticline in the area, and the joint sets may have been produced by the same stress field that caused the formation of this anticline.

Chapter 4

PHYSICAL HYDROGEOLOGY

4.1 General Hydrogeology

A physical hydrogeological framework for the mine and the regional groundwater flow regime is constructed by using air photographs, mine pumping and precipitation records, water table elevations and previous hydrogeological studies.

4.1.1 Karst landforms and surface hydrology

Lineaments visible on aerial photographs (Lattman, 1958) represent zones of high fracture concentration and may correspond to subterranean water passages or surface drainage routes in karst regions (Lattman & Parizek, 1964; Kastning & Kastning, 1981). Few lineaments can be discerned from 1:50,000/1:12,000scale aerial photographs due to low relief, swamps and poor A repetitive northeasterly trend, highly modified by outcrop. swamps, can be distinguished in areas northeast of Mike Lake and south of Table Point (see Figure 1.2). Part of one lineament trending NO28E is shown in Plate 2. In the Portland Creek watershed area (Figure 1.3), lakes like Brian's Pond exhibit some modification due to the bedrock NE-SW trending structural lineaments. Other surface drainage follows the same regional trend with the exception of Bowing and Bound Brooks (Figure 1.2) which follow the regional topography gradient towards the west.

Sinkholes are predominant in the region (Hornbrook et al., 1975) and are most visible on dry lake bottoms. Areas underlain

- plate 2. Circa 1965 aerial photograph (1:50,000) of the mine area before mining operations. The northeast structural trend of surface drainage and lakes that are presently dry due to mine pumping are indicated. Photograph courtesy of Newfoundland and Labrador Department of Energy Mines and Resources photo library.
- wide strandline surrounding Lead Lake
- lineament of regional NE structural trend lakes dry in 1986 field season
- X
- lake/swamp with sinkholes dry prior to mining

by the St. George Group (Figure 3.1) are characterized by solution-collapse terrain, disappearing streams and intermittent lakes and springs (Hornbrook et al., 1975).

Surface hydrology and sinkholes of the mine study area inferred from topographic maps, past hydrologic reports (Acres, 1974a) and 1986 field work are shown in Figure 4.1. Plate 2 shows the mine area before mining operations commenced. A11 lakes which are now permanently dry (shown as "x") as a result of mine dewatering are restricted to areas north and south of the L-Zone. An old dry lake bottom (marked with an "+"), with numerous small sinkholes aligned in a NO26E direction, was dry before the commencement of mine dewatering. Small sinkholes (less than 5m diameter) are found in the centre of Zinc and Lead Lakes and the northwest shore of Spring Lake (see Figure 4.1). During July 1986 the Spring Lake sinkhole drained the lake at an estimated rate of 200 1/min (as much as 500 1/min in other years; Welhan and Gale, 1986). Dye tracer tests performed by mine staff did not establish a connection between the Spring Lake sinkhole and mine inflows (R. Crossley, pers. comm., 1986). Lead and Zinc Lakes are now permanently dry, but Spring Lake also became dry in August 1986, except for a small pond near its outflow.

Sinkholes indicate cavernous zones at depth in maturely karstified regions (Legrand and Stringfield, 1971). At the mine though, sinks appear to be related to an anticlinal axis (Figure 3.3) and not to large solution channels below ground surface. Rauch and White (1970) found that most caves and solution

Figure 4.1. General hydrology map of the mine area. Surface drainage divides/flow directions, sinkholes and bedding plane seeps found underground are indicated.

.'

channels are restricted to micritic, pure limestones and not dolomites. The pervasiveness of dolomite, sparite and other impurites (eg. quartz) in the mine rocks (see Section 3.3) would tend to inhibit cave development (Rauch and White, 1970).

The broad strandline around Lead Lake shown on Plate 2 indicates fluctuating water levels in the past. An intermittent stream joining Lead Lake and Spring Lake, first reported by Acres (1974a), may have followed a zone of increased permeability between the two lakes. The intermittent nature of the stream may also have been the result of lake level fluctuations caused by sinkhole development. This stream now appears to have been destroyed by mining operations (Figure 4.1). The area north of the L-Zone provided much of the underground inflows into the mine before Lead Lake became dry (Acres, 1974a) and may still contribute to inflows during peak rainfall periods.

4.1.2 Precipitation and pumping rates

The region receives an average of 900 mm precipitation annually (Environment Canada records quoted in Nolan et al., 1979) with approximately 45 % falling as snow over 5 months of the year. Peak surface runoff occurs during late spring and early summer. The summer of 1986 with 205 mm of rainfall was significantly drier than the previous summer, when more than 300 mm fell during the same months (see Figure 4.2).

A comparison of the mine pumping data with the monthly precipitation data is shown on Figure 4.2A and B from 1984 to

Figure 4.2A Dewatering (pumpage rates) and climatological data compiled by D. Tiong of the Newfoundland Zinc Mine for the years A)1984-1985. Peak pumping rates coincide with peak rainfall periods.

Figure 4.2 B Dewatering and climatological data for the years 1985-1986.

Compiled by David Tiong

1986. These records show that variations in mine pumping rates are directly related to seasonal variations in precipitation, typical of karst groundwater regimes (Legrand and Stringfield, 1971). Large spring inflows result from high winter snow storage, whereas periods of low precipitation show a reduction in mine inflows (Acres, 1978). Peak snowfalls from November to January do not contribute immediately but in addition to the high spring rainfall they increase mine inflows substantially during the May melt. A more direct correlation between peaks in precipitation and pumping rate can be made in the summer months.

In 1985 low groundwater storage in the aquifer after minimal precipitation in August and September produced a one-month lag between heavy October rainfall and high pumping rates in November. Rapid response to changing recharge necessitates many conduits of flow from surface to underground and implies highly permeable rocks.

Other factors affecting the pumping rate are the extent and depth of underground workings. The increase in average monthly pumping rate was approximately 1890 l/min in 1976 and in 1979 rose to 3785 l/min (Figure 4A & 5B in Welhan and Gale, 1986). During this period the most extensive and shallowest (0-40 m depth) mining operations (L-Zone) took place. After 1979, the mine was extended to deeper levels (T-Zone; 40-260m). The T-Zone is less extensive and did not contribute significantly to the overall pumping rate. Pumping rates dropped after peaking at the end of 1979 (63,000 l/min) and then maintained an average

37,855 l/min. The higher pumping rates from the L-Zone may indicate that rock permeability is greater in the upper parts of the mine.

4.1.3 Mine groundwater regime

Hydraulic heads have been plotted and contoured on Figure 4.3A for 1985 and Figure 4.3B for 1986. The extent of the mine drawdown cone increased in 1986 as a result of that year's summer drought. In 1986, water table drawdowns (with respect to ground surface) ranged from 0 to >60 m in the artesian wells above the T-Zone and in wells near the L-Zone, respectively. These drawdowns were significantly larger than 1985 measurements (Welhan and Gale, 1986). Water table elevations near the hill north of the L-Zone (see Figure 4.3B) were as much as 15 m lower in 1986 than in 1985 (see Appendix L).

Drawdowns were large north of the L-Zone and substantially lower south of the L-Zone (Figure 4.3B). This drawdown cone asymmetry in the north-south direction is illustrated by the cross section through the mine workings shown in Figure 4.4. The drawdown cone's oblong shape in the east-west direction may be due to increased permeability associated with the major faults (Figure 3.3) that are sub-parallel to the axis of the mine (Acres, 1975a). However, the fact that the drawdown cone extends and deepens in the direction of the mine workings (Acres, 1978) implies that the cone's shape is likely a manifestation of the dewatering operations centered around the L-Zone.

Figure 4.3 Hydraulic head (or water table elevation) maps for the mine area in A 1985 and B 1986. Oblong drawdown cone mimics shape of underground workings. Drawdown of water table increased in extent in 1986 due to low precipitation.

 $\frac{t_{\alpha}}{3}$

Figure 4.4. Cross section B-B' through the 1986 water table map (see Figure 4.3B). The drawdown cone is asymmetrical in a NW-SE direction arould the L-Zone workings. Evidently, pumping affected the north side (B) of the mine workings more than the south side.

Horizontal components of hydraulic gradients calculated from 1985/1986 data are listed in Table 4.1 and are shown on Figures 4.5A and 4.5B, respectively. The well groupings for these water table surveys establish only single components of the gradient, in the directions indicated on Figures 4.5A and B. The fact that most of the gradients are small may mean that they are very large These gradients are within the range in another direction. (0.004-2.95) found at other mines in karstified fractured rock (Motyka and Wilk, 1986). About half of the gradients, calculated from water levels in wells that were measured both in 1985 and in 1986, were greater in 1986. The largest gradient increase occurred to the west in the vicinity of gradients # 17, 18, 21 and near the hill where gradient # 9 was measured (Figure 4.5B). Comparison of individual gradients between 1985 and 1986 is difficult since the well survey for each year did not consist of

Table 4.1 Components of hydraulic gradients for 1985 and 1986 surveys. Reference numbers refer to gradient labels shown on Figure 4.5A and B. Reference labels with the same number for both years do not represent the same set of well pairs for 1985 and 1986.

• •

Ref.	1985	1986	Ref. #	1985	1986
1	0.0286	0.0087	13	0.0054	0.0214
2	0.0165	0.0420	14	0.1029	0.0161
3	0.009 8	0.0510	15	0.0476	0.0068
4	0.0120	0.00	16		0.0139
5	0.0139	0.0047	17		0.0333
6	0.1220	0.0479	18		0.1135
?	0.0240	0.0319	19		0.0084
8	0.0434	0.0802	20		0.0239
9	0.0408	0.3668	21		0.0460
10	0.0980	0.0301	22		0.0076
11	0.0609	0.6603	23		0.0089
12	0.0214	0.0197			

Figure 4.5. Component hydraulic gradient maps for a) 1985 and b) 1986. Gradients (listed in Table 4.1) are largest around the L-Zone workings and directions are in response to underground pumping.

the same wells and this method (see Section 2.6.1) of calculating hydraulic gradients is prone to error in anisotropic terrain (Stojic et al., 1976). Acres (1974a) concluded from piezometer monitoring that there were no significant vertical gradients. They rejected the possiblility that artesian pressures exist in the L-Zone and indicated there was no aquifer confinement by impermeable strata. This implies excellent vertical hydraulic connection.

Water (gauge) pressures measured underground, and their hydraulic head conversions, are listed in Table 4.2. The low pressure measured for P-5 (*) may be due to pressure loss when the valve was opened (see Section 2.6.2). Despite the uncertainties in these data, a general decrease in hydraulic head with depth is suggested, possibly in response to the regional topographical slope towards the west.

4.2 Permeability

Assessment of the permeability for the region and mine host rocks is based entirely on previous work because it was not possible to do pump or pressure/packer tests at the mine site during the summer of 1986 for logistical reasons. The packer equipment of the necessary diameter was not available for the newly drilled holes. A summary of the work done by others is given in Appendix N.

Major groundwater-bearing conduits in the mine workings are bedding planes, faults, and fractures. Other major sources of

Table 4.2 Pressure measurements taken underground at Daniel's Harbour Mine. See Figure 2.7 for their locations. Gauge pressures were converted to hydraulic head by the formula h = P/pg - z where p=density, g=acceleration due to gravity, and z=elevation with respect to datum. Combined error of pressure-gauge measurement and estimation of site elevation for head values is 3.5-5m. * - this pressure is anomalously low (see text).

P #	SITE	Gauge (PSI)	Pressures (kPa)		Hydraulic Head (m)	Elevation (masl)
P-1	T-Zone	265	1.827 x	10	3 0.7	-186
P-2	T-Zone	285	1.965 x		15.0	-186
P-3	T-Zone	290	2.000 x	**	18.0	-186
P-4	T-Zone	320	2.210 x	Ħ	36.0	-190
P-5	T-Zone	15	0.103 x	11	-182.0*	-193
P-6	T-Zone	220	1.517 x	**	-29.0	-184
P-7	T-Zone	150	1.034 x	11	-79.0	-184
P-8	Mid-Zone	160	1.103 x	11	25.0	- 87
P-9	L-Zone	105	0.619 X	**	32.0	- 31
P-10	L-Zone	25	0.172 X	11	18.0	1
P-11	L-Zone	60	0.414 x	88	43.0	1
P-12	L-Zone	55	0.379 x	11	39.0	1
P-13	L-Zone	75	0.517 x	91	55.0	2
P-14	L-Zone	70	0.483 x	88	51.0	2
P-15	L-Zone	70	0.483 x	11	51.0	2
P-16	L-Zone	65	0.448 x	11	17.0	-29
P-17	L-Zone	65	0.448 x	61	17.0	-29
P-18	L-Zone	60	0.414 X		15.0	-28
P-19	L-Zone	40	0.275 x		0.4	-28

seepage include backs (ceilings of drifts), joint-bedding plane intersections and drill holes (Acres, 1975b).

In the mine many bedding planes are intersected but only some conduct significant inflows. These surfaces may have been planes of slippage during regional compression (see Section 3.6.3.1). Bedding planes (Set #4) are consistently longer than any other fracture type (see Section 3.6.3.2), emphasizing the role of bedding planes in conducting groundwater to the mine despite their relatively low numbers. Wet lines appear on the backs where joints intersect the bedding planes and conduct water into the open drifts. Faults with major inflows have an average orientation of 225/80 (Acres, 1975b). Flow velocities of 2.3 x 10^{-2} m/s to 3.1 x 10^{-2} m/s were calculated during dye tracer tests (Acres, 1975a) and were only an order of magnitude lower than maximum mean tracer velocities of 1.7 x 10^{-1} m/s for openchannel flow measured at Castleguard Meadows, Alberta (Smart & Ford, 1986).

In 1986, inflows from bedding planes were measured by timing the filling of a 500-ml container at various locations along 3 major bedding plane seeps (main decline near DH-27, see Figure 2.2). Seepage varied along the bedding planes and ranged from nil to 0.02 l/s every 3 m. A total inflow of 1.25 l/s over a length of 81 m was estimated. In the L-Zone, where a major grouted fault (216/72) intersects bedding planes (vicinity of DH-32, see Figure 2.2), inflow of 9.8 l/s over a length of 14 m was measured in 1986. The number of water-conducting features decreases with depth in the L-Zone decline, which implies rock permeability decreases as well.

RQD plots (see Appendix A) for the 1986 drill holes show that areas of dense fracturing do not appear to be related to specific (sparite) porous layers in the pseudobreccia unit. The lowest RQD values (dense fracture, low mean core length) consistently occur in the first 2-3 m of core and they are not restricted to the more vuggy sparite sublayers. The total hole RQD range was 43.9 to 79 % with a low average of 62 %; indicating

poor to fair rock mass conditions. Stylolites (perpendicular to core axis) were very common in the core, and some core sections could be broken by hand along these irregular suture-like subhorizontal discontinuities (see Appendix A). Stylolites decrease rock strength, as evidenced by rock strength tests (see Appendix M), and may localize dissolution by groundwater. Diamond drill core analyses by Acres (1974a) showed that the upper 15 m of core exhibited the highest permeability due to solution-enlarged jointing and sinkholes. Thus, permeability decreases with depth as frequency and weathering of flow conduits decreases with depth.

The pressure-test data done by Acres (1974a) indicated that the upper and lower contacts of the pseudobreccia commonly had high hydraulic conductivities of 1 x 10^{-3} m/s. Permeability, found by pressure testing (Acres, 1974a), was greatest in the uppermost weathered zone of 1 to 10 m (most often in the upper 3 m in both the Table Head limestone and siliceous dolomite) and in zones of open conduits such as faults and redding planes. The permeability variation can be larger within the same lithological unit than between different lithological units. These fluctuations may be caused by well bore intersections with major bedding planes or fracture seeps within each rock type. In individual units there is a minor trend to higher permeabilities laterally towards the east. This could be caused by an increase in the fracture size/or extent of dissolution as one gets closer to the crest of the anticline (see Figure 3.3). Acres' concluded

that individual flow conduits such as bedding planes and fractures are very significant to the permeability distribution in the carbonate rock mass at the mine. The analysis of Acres data and the 1986 drill logs shows that permeability is not necessarily a function of lithology in this aquifer; at least not in the upper few hundred metres of the carbonate platform.

Two pump tests were undertaken in the same pumping well at different depths by Acres (1974a). Final drawdown cones and specifics for each pump test are given in Figure 4.6. The Acres pump test results were reanalyzed using the Jacob distancedrawdown method (Heath, 1983). There is a large scatter in the plotted points on distance-drawdown plots, suggesting that this aquifer is anisotropic. Newly calculated transmissivity and storativity values are given in Appendix N.

The axis of maximum transmissivity for the aquifer tested by pump test #1 (Acres, 1974a) was determined by the method of Papadopolous (1967). The N63E oriented axis (see Figure 4.6) corresponds to an average orientation between the two documented major joint sets in the mine area and the dominant regional NE trend (see Section 3.6.1). The previously mentioned major fault conduits have similar orientations as Joint set #1 and obviously contribute to the aquifer's anisotropy as well.

4.3 Conclusions

Figure 4.7 summarizes the essential physical information discussed thus far for the mine area. The regional NE stuctural

Figure 4.7 Composite map of essential hydrogeological features for the local mine area.

.

;

. .
trend controls surface drainage, intensifies dissolution along NE lineaments (thereby controlling sinkhole development) and influences groundwater flow directions. Karst development related to structure was observed in areal photographs of this study area. The Newfoundland Zinc Mine rocks are only moderately karstified and dissolution is limited to sinkholes. Lakes with widely fluctuating water levels are also characteristic of karst regions.

Mine dewatering mainly affects areas within 2 km north and south of the eastern part of the L-Zone underground workings. Mine inflows are intimately associated with precipitation and are greatest in the shallow L-Zone workings. The Spring Lake sinkhole is an important source of recharge to the subsurface but a direct link to the L-Zone is not yet established. The shape of the drawdown cone mimics the outline of the underground workings, both being aligned parallel to the NE trending faults that crosscut the area. Hydraulic gradients are within documented ranges for karst areas (Motyka and Wilk, 1986), despite the influence of mine dewatering, but they varied between surveyed years in both magnitude and direction. Gradient and water table maps were used to infer groundwater flow directions.

The carbonate rocks in the area make up a highly anisotropic aquifer whose permeability is a function of the degree of weathering of the major conduits of flow rather than of the position of major lithological units within the carbonate sequence. The presence of local highly conductive structural

features (eq. faults, bedding planes and joints) causes increased permeability in certain directions or anisotropy, and varied permeability on the local scale. Major dissolution of these conduits along the local anticlinal axis would cause a zone of increased permeability in the eastern part of the study area (see Figure 4.7). Major faults and lakes with wide strandlines (Lead Lake) may also indicate areas of greater permeabililty. The axis of maximum transmissivity is oriented N63E, again coinciding with the regional trend. Permeability generally decreases with depth but complications arise due to the above mentioned structural and lithological features (weathered lithological contacts rather than separately assigned permeabilities to the total lithologic Permeability profiles, results of 1986 field work, and units). drill core analyses show that there is no clear correlation between permeability and lithology, and indicate greatest permeability variance with depth. Good vertical hydraulic connection is probably due to the intense weathering of the predominantly vertical joints in the upper 50 m of section.

Bedding planes increase permeabililty on a small scale and the unit would be considered homogeneous with respect to its many bedding planes on the regional scale. Regionally, the Precambrian basement underlying the carbonate sequence is assumed impermeable as in other regional flow system studies (Toth, 1978).

Chapter 5

HYDROGEOCHEMISTRY

5.1 Introduction

The objective of this chapter is to describe the hydrogeochemistry of groundwaters at the mine and its environs in order to determine different groundwater types. Geochemical trends exhibited by major- and trace-ion plots help to determine the mechanisms that control elemental concentrations, thereby indicating possible evolutionary paths and mixing relationships of groundwaters. Stable isotopes are used to differentiate waters with similar major-ion compositions, and to determine origins of mine inflows and possible history of the different groundwater types. Hypotheses deduced from elemental trends are tested with geochemical mcdelling.

5.2 Results

Chemical analyses for waters sampled in 1985, 1986 and 1987 are given in Tables 5.1 to 5.3. Table 5.1 includes major-ion chemistry, and other chemical parameters, as well as charge balance error for the major ion analyses. Some analyses in Table 5.1 are not reliable because they have charge balance errors greater than 40 %.

Trace element analyses for all mine and well waters sampled in 1986 are shown in Table 5.2. Environmental isotope analyses for deuterium, oxygen-18, carbon-13 (of total DIC), tritium, and radiocarbon are listed in Table 5.3.

Table 5.1 Major-ion and water chemistry of the groundwater, lake and spring water sampled in and around the Newfoundland Zinc Mine. Major-ion concentrations are in ppm. Charge balance has been included as a measure of analysis reliability. The charge balance error was calculated as follows:

 $E(%) = \frac{SUMm_{c}z_{c} - SUMm_{a}z_{a}}{SUMm_{c}z_{c} + SUMm_{a}z_{a}} \times 100$

where m and z is the molality and ionic charge of each cation(c) and anion (a), respectively. For a complete sample site description see Appendix B. Alkalinities and charge balances for lake samples denoted with a * were estimated by linear regression.

Samples DH-001 -- DH-023 taken in July 1985 Samples DH-025 -- DH-103 taken in July-August 1986 Samples DH-104 -- DH-111 taken in March 1987

Alk. = alkalinity Diss. O_2 = dissolved oxygen Cond.= conductivity T = temperature

Sample ID: well- sample taken from surface drill hole sump- sample from the mine sump discharge mine- groundwater from underground drifts Sample AREA: location of sample site with respect to underground workings

DH-4	ID.	AREA	T'°C	øН	Eh mV	Cond.	Diss.O,	Ce	MA
1985	•						i Main		and the second second
1303.	Jake	SOUTH	15	7 25	448	480		10	6 4
2	wall	SOUTH	5	7.56	-32	1320		20	17
3	well	NORTH	5	6.96	365	1500		55	19
4	sump	NORTH	6.9	8.26	218	1450		54	28
5	mine	T-ZONE	5.6	7,41	-33	2750		38	32
6	mine	T-ZONE	5.8	7.42	78	4000		52	36
7	mine	T-ZONE	5.8	7.52	-59	10100		83	54
8	mine	T-ZONE	5.6	7.51	-59	5900		55	37
9	mine	L-ZONE	5.8	7.29	238	1315		51	30 .
10	mine	L-ZONE	6.7	7.55	310	1260		50	26
!!	mine	L-ZONE	5.9	7.30	314	1570		62	33
12	mine	MID-DEPTH	5.3	7.48	-47	9400		98	84
1 13	mine	MID-DEPTH	4./	7.20	52	1240		48	22
14	mine lake		0,1 15	7.25	13	2800		56	31
10	lake		10	7.00	340	000		35	9.1
17	lako	SOUTH	15	7.39	392	250		29	8.4
119	lako	SOUTH	15	7 03	404	200		9.0	2.4
19	lake	NORTH	15	8.37	372	760		20	3.4
20	lake	SOUTH	16 9	8 45	405	1225		52	29
21	lake	NORTH	15	8.22	403	650		32	77
22	lake	SOUTH	15	7.35	436	152		5.6	1.9
23	rain		15	5.71	218	218		1.5	0.9
1986:									•••
25	weli	NORTH	8.5	7.13	538	930	1.3	139.20	62.20
26	mine	MID-DEPTH	5.2	7.88	410	880	2.2	60.30	34.30
27	mine	L-ZONE	6.2	7.61		530	3.1	63.50	29.80
28	mine	L-ZONE	4.1	7.57	496	430	0.9	51.60	27.10
29	mine	L-ZONE	4.6	7.60	516	640		92.30	32.60
30	mine	MID-DEPTH	5.0	7.71	15	1500	0	80.00	48.00
31	mine	L-ZONE	4.4	7.60	416	480	5.2	59.30	30.60
32	mine	L-ZONE	6.4	7.38	339	655	3.1	73.30	40.70
33	mine	T-ZONE	6.1	7.79	-18	3000	0	71.50	58.50
34	mine	T-ZONE	5.0	7.82	42	1250	0.9	54.50	32.00
30	lako*	T-ZUNE EAGT	0.0 15 5	7.67	32	800	0.4	38.40	27.50
30	lako*	EAST	15.5	7.50		40		3.33	1.00
38	lako*	FAST	17.8	7.00		20		2.75	0.36
30	lako*	FAST	22.2	7 90		100		14 10	2 77
40	lake*	NORTHEAST	20.0	7.30		56		5 72	2.77
41	lake*	WEST	25.0	7 50		200		28.00	7 42
42	lake*	WEST	26.7	8.40		140		16 60	5.61
43	lake*	WEST	25.0	8.20		310		38.50	19.50
44	lake*	NORTHWES	28.8	8.25		320		33.60	20.80
45	lake*	NORTHWES	25.6	8.10		130		12.40	8.32
46	lake*	NORTHWES	26.7	8.20		300		35.90	12.80
47	lake*	NORTHWES	24.4	8.40		290		38.50	16.20
48	lake*	SOUTHWES	24.4	7.50		72		5.50	2.58
49	lako*	SOUTHWES	25.6	8.10		130		19.40	3.14
50	lake*	SOUTHWES	24.4	7.80		64		2.14	1.45
51	lake	NORTHWES	16.7	8.09		300		36.40	6.82
52	IAKE	NORTHWES	18.3	7.67		120		9.79	4.28
53	IAKe	NUHTHWES	18.8	8.94		260		42.70	14.40
54	lake	NORTHWES	20.0	8.52		230		26.30	9.35

DH-#	ID.	AREA	Na	к	Alk.	CI	SOA	NO3	NO2	Charge Balance
1985		2.7 H MH 1								
1	lake	SOUTH	4.85	0.54	70	8.4	3.4			0.06
2	well	SOUTH	62	14	298	17	8.5			-0.06
3	Well	NORTH	3.2	3.8	222	48	85			-0.13
45	mine	T-ZONE	190	16	284	180	9 0			0.06
ĕ	mine	T-ZONE	290	19	279	329	170			0.04
7	mine	T-ZONE	500	23	209	717	310			0.01
8	mine	T-ZONE	280	15	230	25	83			-0.04
10	mine	L-ZONE	12	2.2	212	23	81			-0.05
1 11	mine	L-ZONE	16	2.4	292	35	83			-0.07
12	mine	MID-DEPTH	710	31	189	988	370			0.06
13	mine	MID-DEPTH	30	6.5	248	41 210	80			0.03
14	mine lake	SOUTH	150	0.82	201	19	6.2			-0.14
16	lake	SOUTH	23	3	148	20	8			0.01
17	lake	SOUTH	6	0.61	31	11	3.1			0.01
18	lake	SOUTH	8.1	0.68	43	11	2.2			0.08
19	lake	SOUTH	4.80	24	212	25	59			0.01
20	lake	NORTH	4.92	0.58	137	9.2	3.3			-0.02
22	lake	SOUTH	3.23	0.31	17	5.1	1.9			0.11
23	rain		0.55	0.21	9	0.5	0.7			0.00
1986:		NODTH	7 10	1 05	207	10 4	311.6	24	0.0	0.10
25	weli		76.40	7.59	231	125.2	87.9	0.0	0.0	0.01
20	mine	L-ZONE	15.16	4.05	251	20.8	47.7	0.0	0.0	0.06
28	mine	L-ZONE	12.24	1.50	231	18.2	24.1	0.0	0.7	0.06
29	mine	L-ZONE	8.15	1.37	251	10.2	128.0	0.0	0.0	0.04
30	mine	MID-DEPTH	201.80	17.30	231	320.4 18.7	41.9	24.2	0.0	0.06
31	mine	L-ZONE	16.89	3.01	276	39.1	52.2	3.9	0.0	0.08
33	mine	T-ZONE	485.90	27.00	212	790.8	190.8	0.0	0.0	0.01
34	mine	T-ZONE	169.90	13.00	226	258.9	77.0	0.0	0.0	0.02
35	mine	T-ZONE	106.80	13.60	261	114.0	58.0	35.0	0.0	0.03
30	lake" loko"	FAST	5.10	0.28	11	5.1	1.4	0.0	0.0	0.15
38	lake*	EAST	3.76	0.19	3					
39	lake*	EAST	6.22	0.40	58			• •	• •	0.10
40	lake*	NORTHEAST	5.27	0.28	23	5.3	0.5	0.0	0.0	0.13
41	lake"	WEST	10.17	0.70	68	10.9	4.1	0.0	0.0	0.47
42	lake*	WEST	9.93	0.65	157	15.1	7.5	0.0	0.0	0.11
44	lake*	NORTHWEST	10.10	0.75	137	17.1	4.6	0.0	0.0	0.15
45	lake*	NORTHWEST	8.97	0.38	51	11.6	2.3	0.0	0.0	0.17
46	lake"	NORTHWEST	9.93	0.63	146	18.4	5.6	0.0	0.0	0.04
47	lako*	SOUTHWEST	9.03	0.49	22	19.2	0.9	0.0	v.v	0.00
49	lake*	SOUTHWEST	9.10	0.69	79					
50	lake*	SOUTHWEST	7.26	0.41	9					o 4=
51	lake	NORTHWEST	8.41	0.42	197	19.8	3.2	0.0	0.0	-0.17
52	lake	NORTHWEST	7.74	0.31	59 192	11.0 124	2.0	0.0	0.0	0.04
53	lake	NORTHWEST	14.75	0.51	103	24.5	6.5	0.0	0.0	0.04

DH-#	ID	AREA	T,ºC ∽	Ha	Eh mV a	Cond. mho/om	Diss.O,	Ca	Ma
55	lake	NORTHWEST	18.9	8.61		290	det nut ministrations	41.00	15.30
56	lake lake	NORTHEAST	17.2	7.73		150		19.20	6.02
57	iako	NORTHEAST	15.5	8 11		220		46.80	10.00
59	lake	NORTHEAST	22.2	7.83		74		8.50	3.08
60	lake	NORTHEAST	21.0	8.15		110		14.50	4.46
61	lake	NORTHEAST	21.0	8.59		120		13.20	7.12
62	lake take	NORTHEAST	20.0	8.58		220		29.70	9.53
64	lake	NORTHEAST	18.8	8.52		240		36.40	9.53
65	lake	WEST	17.7	8.10		290		42.00	9.53
66	lake	SOUTHWEST	18.3	8.47		390		53.40	16.70
67	lake	SOUTHWEST	10.0	7.31		100		6.36 5.72	3.26
69	lake	SOUTHWEST	17.8	7.41		120		5.00	4.04
70	lake	SOUTHWEST	17.8	7.16		110		5.50	3.68
71	lake	SOUTH	16.1	8.37		500		66.40	33.70
72	lake lake	SOUTHEAST	16.6	7.95		160		20.70	7.00
73	lake	SOUTH	16.6	7.00		170		24.70	10.40
75	iake	NORTH	16.6	8.04		330		44.50	16.80
76	mine	T-ZONE	6.1	7.45	-177	3000	0	71.80	60.10
77	mine	MID-DEPTH	4.9	7.27	-175	1500	1.3	82.80	49.30
78	mine	L-ZUNE NORTH	7.9	7.34	184	485	4.4 11 R	61 10	31.90
80	sump	NORTH	5.6	7.66	175	620	10	62.70	31.60
81	mine	L-ZONE	5.9	7.13	230	500	2.2	61.00	34.50
82	well	SOUTH	10.4	7.29	236	580	10.5	70.80	38.70
83	well	SOUTH	10.5	7.11	321	540	8.3	65.10	33.00
85	well	NORTH	13.7	6.92	245	505	7.4 5.2	109.30	57 20
86	well	WEST	11.6	7.57	20	455	0.9	44.00	25.70
87	well	NORTH				535	10.5	64.50	38.20
88	well	NORTH	12.8	7.76	-85	448	0.9	35.10	16.70
90	mine	T-ZUNE				2390		43.90	29 10
91	mine	T-ZONE				1600		48.60	37.80
92	mine	T-ZONE				895		45.20	28.90
93	mine	T-ZONE				3100		79.80	69.40
94	mine					655 745		67.80	31.20
96	mine					500		52.50	23.20
97	mine	L-ZONE				445		51.90	20.70
98	mine	L-ZONE				945		57.50	29.90
99	mine					530		62.50	30.80
100	mine	L-ZUNE	67	7.81	-106	3100	00	73.80	41.40 60.20
102	mine	MID-DEPTH	4.6	7.31	-97	630	1.7	39.90	30.30
103	mine	L-ZONE	6.7	7.28	148	530	7.9	63.80	32.70
1987:									
104	river	SOUTH				775		8.00	4.02
105	iake	SOUTH				000		7.10	2.63
105	spring	SOUTH				380		5.30	3.40
108	lake	NORTHEAST				255		4.60	1,25
109	lake	NORTHEAST				330		6.60	1.55
110	lake	SOUTHWEST				280		1.90	1.04
111	snow	EAST				25		0.20	0.06

2000										Charge
DH-#	ID	AREA	Na	<u> K</u>	Alk.	CI	<u>SO4</u>	<u>NO3</u>	NO2	Balance
55	lake	NORTHEAST	10.24	0.67	187	17.3	10.9	0.0	0.0	0.00
50	lake lako	NORTHEAST	0.03 5.77	0.49	128					
58	leko	NORTHEAST	6.53	0.54	177					
59	lake	NORTHEAST	5.49	0.34	34			_		
60	lake	NORTHEAST	5.48	0.35	69	5.2	1.0	0.0	0.0	0.01
61	lake	NORTHEAST	6.26	0.22	64					
62	lake	NORTHEAST	6.31	0.38	133					
63	lake	NORTHEAST	5.70	0.40	113					
64	lake	NORTHEAST	15 14	0.59	143					
65	lake	COUTUWEET	15.14	1.13	217					٠.
00	lake	SOUTHWEST	12.46	0.52	25					
88	lako	SOUTHWEST	10.13	0.56	25					
63	lake	SOUTHWEST	15.76	0.76	20					
70	lake	SOUTHWEST	15.34	0.81	20					
71	lake	SOUTH	13.63	2.06	236	22.8	48.2	0.0	0.0	0.10
72	lake	SOUTHEAST	7.20	0.53	.94	9.0	2.7	0.0	0.0	0.02
73	lake	SOUTH	10.01	1.05	133					
74	lake	SOUTH	6.26	0.50	108	10.4	20.0	00	0.0	0.06
75	lake	NORTH	470.20	26.90	207	756.0	172 A	0.0	0.0	0.02
76	mine		470.30	20.00	207	348.0	140.0	0.0	0.0	0.03
	mine		14 43	2 32	231	21.1	13.3	0.0	0.0	0.44
70	wall	NORTH	9.33	1.15	222	12.9	64.9	7.5	0.0	0.06
80	SUMD	NORTH	37.83	4.81	236	50.0	59.3	0.0	0.0	0.07
81	mine	L-ZONE	14.35	3.03	236	19.7	46.4	0.0	0.0	0.10
82	well	SOUTH	13.52	2.65	276	21.5	41.3	0.0	0.0	0.10
83	well	SOUTH	12.61	2.16	217	17.3	58.1	0.0	0.0	0.11
84	well	SOUTH	12.74	2.16	271	18.8	62.3	0.0	0.0	0.09
85	well	NORTH	9.38	1.10	202	12.5	73.8	29.8	0.0	0.34
86	well	WEST	23.08	9.40	201	16.0	26.6	0.0	0.0	0.04
87	Well	NORTH		9 90	270	10.0	14 5	0.0	0.0	0.04
88	Well		40.22	25 60	200	18.0	14.0	0.0	0.0	0.0.
03	mine	T_ZONE	79 40	12.40						
91	mine	T-ZONE	227.00	19.80						
92	mine	T-ZONE	103.10	12.40						
93	mine	T-ZONE	445.90	29 .10						
94	mine	MID-DEPTH	33.38	4.66						
95	mine	MID-DEPTH	46.74	5.73						
96	mine	MID-DEPTH	23.00	5.98						
97	mine	L-ZONE	16.05	2.32						
98	mine	L-ZUNE	91.25	9.00						
1 400	mine	L-ZUNE	16.01	2.14						
100	mino		465 10	27.30	212	798 6	189.6	0.0	0.0	0.00
101	mina	MID-DEPTH	59 35	11.50	261	45.5	42.4	0.0	0.0	0.12
103	mine	L-ZONE	13.99	2.47	231	21.8	55.8	0.0	0.0	0.14
1007				_,						
11987:	river	SOUTH	77 10	9 42						
104	lako	SOUTH	13.00	1.35						
106	soring	SOUTH	8.70	1.36						
107	sorina	SOUTH	17.40	1.74						
108	lake	NORTHEAST	7.90	0.66						
109	lake	NORTHEAST	8.00	1.10						
110	lake	SOUTHWEST	36.40	2.28						
111	snow	EAST	3.60	0.51						

Table 5.2 Trace-element analysis of groundwater samples from mine and environs done by ICP/MS in ppb. The minesump and tailings pond water samples were also analyzed. Trace elements are grouped according to their relationship with chloride (analyzed with HPLC in ppm). Group 1 elements show a positive correlation with Cl and group 2 have an inverse relation with Cl. Chloride concentrations are listed for comparison. Iron and strontium do not conform to these two groups. Refer to Table 5.1 for sample identification and location. Terms are defined as follows: ND - not detectable NA - not analyzed

			Group 1				Group 2	
DH-# ID	CI	٧	Rb	1	Zn	Mn	Co	Ni
1985:	h	L						
DH-001	8.4			2.5	9.4			
DH-002	17.0			3.0	12.5			
DH-003	12.0			3.0	20.8			
DH-004	48.0			2.7	18.2			
DH-005	180.0			3.0	12.0			
DH-006	329.0			4.0	12.0			
	254 0			5.0	11.4			
	25.0			3.1	16.9			
DH_010	23.0			2.3	20.1			•.
DH_011	35.0			4.1	16.9			
DH-012	988.0			4.9	17.2			
DH-013	41.0			2.1	15.5			
DH-014	210.0			3.7	13.0			
DH-015	19.0			1.9	8.7			
DH-016	20.0			2.8	11.8			
DH-017	11.0			1.7	11.3			
DH-018	11.0			1.9	NU			
DH-019	9.6			1.2	10.4			
DH-020	25.0			3.4	10.2			
DH-021	9.2			0.2	5.3 10 4			
	5.1			ND.	ND			
01-023	0.5							
1986:	10.1	0.0	^ 0	0.0	1086 0	28 5	23	43.9
DH-025	125 0	0.3	2.4	0.0 2 A	51.3	0.4	1.1	13.5
	20.2	0.2	1 0	1 4	239 1	7.6	1.5	14.8
DH_02/	18 2	0.2	0.9	1.4	144.8	0.3	0.7	10.3
DH_020	10.2	0.1	1.0	0.8	3428.1	7.2	2.3	40.4
DH-030	320.4	2.9	6.4	6.5	8.1	1.2	0.6	10.8
DH-031	18.7	0.3	0.9	1.6	618.3	0.6	0.5	10.8
DH-032	39.1	0.4	2.1	10.9	168.2	59.8	1.7	15.5
DH-033	790.8	6.7	11.1	15.8	8.7	0.6	0.5	8.6
DH-034	258.9	2.3	6.3	4.4	5.3	4.8	0.4	7.1
DH-035	114.6	1.1	6.5	3.2	2.9	0.6	0.3	0.5
DH-071	_22.8	0.5	1.3	2.9	433.1	0.1	1.0	14./
DH-076	756.0	6.3	11.0	14.0	50.4	1.9	0.0	12.0
DH-077	348.0	3.5	7.1	0.5	20.1	0.2	0.7	15.6
UH-078	21.1	0.3	1.4	2.3	301.3 2 QAC	48.0	2 4	13.8
	12.9	0.4	2.4	3.5 2 A	A72 2	- Q 1	1.1	14.9
	10.0	0.0	2.4 2.6	2.4 4 7	142.3	43.2	3.2	15.2
	21 5	0.3	1.6	4.2	1199.3	34.6	1.4	61.3
DH_002	172	0.0	1.4	2.0	1471.0	33.4	4.2	52.5
DH_004	18.9	0.5	1.4	2.0	841.6	34.1	2.3	28.1
DH_085	12.5	0.9	1.1	2.3	3756.8	36.6	1.8	80.7
DH-086	18.6	0.2	3.3	3.2	11.3	8.6	0.4	5.8
DH-087	16.0	0.8	1.1	1.4	4457.3	37.0	6.5	286.5
DH088	19.6	0.2	3.8	1.5	11.1	12.4	0.3	5.7
DH-101	798.6	7.3	11.6	20.6	406.0	2.3	0.8	30.0
DH-102	45.5	0.6	5.2	2.0	430.4	1.0	0.6	27.7
DH-103	21.8	0.3	1.5	2.6	864.2	0.8	0.9	39.2

				Group 2				
DH-#ID	CI	Мо	Cd	Ba	Pb	U	Fe	Sr
1985:	~ ~ ~							
	8.4 17.0	ND		18.7		ND		17.2
	12.0			21.9				32.7
	48.0	21 8		24.2		10.2		20.1
DH-005	180.0	ND.		20.3		ND		29.0
DH-006	329.0	ND		19.7		ND		36.6
DH-007	717.0	ND		18.8		ND		37.0
DH-008	354.0	ND		21.3		ND		35.9
DH-009	25.0	22.8		21.6		10.7		31.6
DH-010	23.0	23.3		24.3		10.7		31.6
DH-011	35.0	20.7		25.8		10.1		29.4
DH-012	988.0	ND		19.1		ND		36.3
DH-013	41.0	20.2		22.3		10.2		29.6
DH-014	210.0	18.2		21.9		9.3		32.0
DH-015	19.0	ND		20.2		ND		18.3
	20.0			21.0		NU		26.2
	11.0			16.0				10.4
	a p	ND		10.0				16.3
DH-020	25.0	23 1		24.5		104		31.2
DH-021	9.2	ND		19.9		ND		18.0
DH-022	5.1	ND		13.6		ND		15.2
DH-023	0.5	ND		ND		ND		ND
1986:								
DH-025	104	20	0.3	48 1	49	13.7	4329	71 5
DH-026	125.2	5.1	0.3	54.0	0.6	3.4	2194	435.1
DH-027	20.8	8.4	0.1	149.3	1.5	5.6	NĀ	136.8
DH-028	18.2	2.1	0.2	74.1	0.3	2.2	1618	51.5
DH-029	10.2	10.3	1.7	108. 3	0.3	16.1	2763	72.9
DH-030	320.4	0.9	0.0	33.4	0.4	0.4	2287	1039.7
DH-031	18.7	2.8	0.8	76.6	0.5	4.0	1706	54.6
DH-032	_39.1	4.3	0.2	160.5	1.3	4.7	2339	250.8
DH-033	790.8	0.1	0.1	11.6	0.4	0.4	1916	NA
DH-034	258.9	0.4	0.0	199.9	0.5	1.2	1610	988.7
DH-035	114.6	0.8	0.0	32.6	0.5	0.5	1137	NA
	22.0	5.3	0.5	117.9	2.2	5.5	2072	128.8
	249.0	0.1	0.3	26.6	2.9	0.4	1804	1145 B
	040.U 21 1	6.9	1.3	05.0	4.0	0.5	2472	201 0
DH_079	12 9	28.5	0.4	33.0 89.6	15.7	5.9	2600	57.5
DH-080	50.0	57	0.3	108.2	0.5	45	1963	326.3
DH-081	19.7	6.0	0.3	107.4	1.1	5.5	1916	290.1
DH-082	21.5	4.1	2.1	133.2	29.1	3.9	2573	235.9
DH-083	17.3	20.1	2.3	105.8	26.2	47.7	2336	189.3
DH-084	18.8	7.0	2.1	195.2	30.6	11.2	3055	243.3
DH-085	12.5	4.1	3.1	514.0	158.0	6.7	3959	47.3
DH086	18.6	0.6	0.0	261.5	0.3	0.3	1320	247. 3
DH-087	16.0	7.7	2.6	297.2	142.0	14.1	3014	39.9
DH-088	19.6	0.6	0.0	204.1	0.3	0.2	1212	282.4
[DH-101]	798.6	NA	0.5	15.0	4.0	0.4	2121	NA
DH-102	45.5	NA	0.5	29.2	3.6	0.2	1309	1046.0
DH-103	21.8	7.0	1.5	107.3	5.Z	7.7	2093	222.1

C

Table 5.3 Available environmental isotope data for selected samples. Also listed is the chloride concentration for comparison. Precision for 1986 tritium and carbon-14 measurements is +/- 7 T.U. and +/- 2% modern carbon, respectively. Detection limit and precision for 1985 analyses are 1 T.U., +/-0.8 T.U., respectively. Additional deuterium analyses for samples: DH-18,29, 30, 84, 35, 76 were done at Memorial University in 1988. Symbols and short form explanations:

> * = contamination suspected, ** = C-13 analysis for DH-25 = -7, DH-27 =-11.4 and DH-85 = -9.8 ^O/oo DIC = dissolved inorganic carbon as ppm HCO₃.

Refer to Table 5.1 for sample identification and sample location.

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	DH	CI ppm	2H 0/00	180 0/00	13C 0/00	ppm	Trium C T.U. %	modern arbon
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1985: DH-02 DH-03 DH-05 DH-108 DH-108 DH-108 DH-108 DH-108 DH-108 DH-112 DH-112 DH-115 DH-125 DH-115 DH-125	8.4 17.0 12.0 329.0 717.0 25.0 23.0 354.0 25.0 988.0 41.0 210.0 19.0 11.0 19.6 25.0 9.2 5.1 0.5	-74.1	-9.0 -10.0 -10.3 -10.0 -10.2 -10.4 -10.1 -9.7 -9.9 -10.5 -9.9 -10.5 -9.6 -10.1 -8.7 -9.2 -5.4 -7.8 -7.8 -7.3 -9.2 -9.7 -11.1 -12.3			7 1 7 25 38 *	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1986: DH-25 DH-25 DH-27 DH-28 DH-29 DH-30	10.4 125.2 20.8 18.2 10.2 320.4	-75.1 -76.9 -75.1 -75.8 -79.0	9.7 -10.1 -9.4 -9.9 -8.8 -10.1	-10.2 -7.2 -9.1 -5.7	235 195 188 179	29 36 20	29 ** 58 **
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	DH-31 DH-32 DH-33 DH-35	18.7 39.1 790.8 114.6	-75.9 -77.1	-11.3 -9.7 -9.7 -10.2	-12.5 -10.6 -7.4 -5.8	246 295 211 192	22	
DH-82 21.5 -9.6 DH-83 17.3 -74.3 -9.9 33 DH-84 18.8 -80.0 -9.9 33 DH-85 12.5 -80.8 -11.1 41 60 DH-87 16.0 -10.4 21.8 -10.2 21.4 DH-88 19.6 -10.5 -7.6 214 DH-102 45.5 -10.6 21.4 21.8 -9.4 -7.2 231	DH-76 DH-77 DH-78 DH-79 DH-80 DH-81	756.0 348.0 21.1 12.9 50.0 19.7	-72.5 -76.4 -75.0	-9.0 -9.8 -8.5 -10.0 -10.2 -9.8	-5.7 -11.7 -8.0	211 180 194	14 32	
DH-85 12.5 -80.8 -11.1 41 60 DH-87 16.0 -10.4 10.4 10.4 10.4 DH-88 19.6 -10.2 10.5 -7.6 214 DH-101 798.6 -10.5 -7.6 214 DH-102 45.5 -10.6 10.6 DH-103 21.8 -9.4 -7.2 231	DH-82 DH-83 DH-84	21.5 17.3 18.8	-74.3	-9.6 -9.9 -9 9			33	
DH-88 19.6 -10.2 DH-101 798.6 -10.5 -7.6 214 DH-102 45.5 -10.6 DH-103 21.8 -9.4 -7.2 231	DH-85 DH-87	12.5 16.0	-80.8	-11.1 -10.4			41	60 **
DH-103 21.8 -9.4 -7.2 231	DH-88 DH-101 DH-102	19.6 798.6 45.5		10.2 10.5 10.6	-7.6	214		
	DH-103	21.8		-9.4	-7.2	231		
1987: DH-104 -10.1 DH-106 -10.0 DH-107 -10.1 DH-111 -14.0	1987: DH-104 DH-106 DH-107 DH-111			-10.1 -10.0 -10.1 -14.0				

.

The range of observed calcite-saturation indices in lakes and groundwaters is shown in Figure 5.1. These indices are defined as: $SI = IAP/K_{SP}$, where IAP is the ion activity product and K_{SP} is the solubility product for calcite at the measured temperature. SI < 1, = 1 and >1 indicate the groundwater is undersaturated, in equilibrium with, and supersaturated with calcite, respectively. The saturation indices for groundwaters and lake waters were estimated from carbonate chemistry and assumed activity coefficients of unity. Major assumptions in the indices' estimation will be discussed in Section 5.5.1.2 and refined values based on chemical speciation modelling for groundwater samples only will be presented in Section 5.5.1.1.

5.3 Chemical Characterization of Waters

ľ

5.3.1 Major ion and carbonate chemistry

The percentage of each major constituent was calculated (equivalents per million) and plotted on a standard trilinear diagram (Piper, 1944), (see Figure 5.2). In all three areas of the diagram seawater composition is given as a reference. Most lake waters and groundwaters from wells are of the calciummagnesium bicarbonate type whereas the mine groundwaters range from a calcium-magnesium-bicarbonate type to a sodium-chloride +/- sulphate type. This diagram shows chemical trends in mine groundwaters which reflect the dissolution of limestone and dolostone and the mixing of this water with a more saline endmember. Some samples lie outside the fields defined by the

Figure 5.1

Estimated calcite-saturation indices (S.I.) are shown as frequency histograms for A) lake water and B) groundwater samples. S.I.(calcite) = mCa x mCO₃/ K_{sp} CaCO₃, assuming activity coefficient = 1. Groundwater in equilibrium with calcite has S.I.=1.

Figure 5.2

Major ion analyses are represented as percentages of total equivalents per million (epm) on this standard trilinear diagram (Piper, 1944). EPM is defined as ppm/gew, and gew is the gram equivalent weight (gram formula weight/valence). Seawater composition is indicated on each plot. Note that mine waters are scattered between well and seawater compositions. Some of the lake waters lie in two distinct fields outlined in the anion plot as having high Cl and SO₄ concentrations (see discussion for Figure 5.12).

majority of samples. Saline groundwaters are typically enriched in both sulphate and chloride but the high percentage of sulphate in DH-25 is not associated with a chloride increase. DH-88, DH-86 and DH-02 are high in sodium without a corresponding high chloride concentration.

Mine samples show the greatest range in chloride content (10-988 ppm) and generally the deepest mine samples have the highest concentrations of Cl^- , Na^+ , and K^+ (Table 5.1), indicating an increase in dissolved salt load with depth (see Figure 5.3). High chloride levels at mid-depths (-40 m a.s.l., see Figure 5.3) in samples DH-26,14 and DH-30,77 (deep drill hole, see Appendix B) may indicate a zone of increased permeability connecting this mid-zone depth to deeper mine waters, resulting in more mixing between shallow and deep groundwaters. DH-12 has the highest salt load and thus the greatest contribution of deep saline groundwater. Local dissolution of known occurrences of gypsum and celestite in vugs (Coron, 1982; see Figure 3.2) may be a source of high salinities in DH-26,77 and is supported by high Sr in these samples (see Table 5.2). These soluble minerals will be henceforth referred to as sulphates for convenience. Road salt may be responsible for high Na and Cl in DH-14 but does not explain the low salt content in groundwaters from the L-Zone decline where the road salt was applied. High sulphate in deep groundwaters rules out road salt as a source of T-Zone salinity.

The fact that saline waters are found at a certain depth in

Figure 5.3 The depth of mine groundwater sampling sites has been plotted against chloride concentration. Samples 30 and 77 were collected from a deep drill hole that extends several hundred feet below the indicated collar elevation. The uncertainity in depth of groundwater source is shown by arrows under these samples. Generally, chloride concentration increases with depth.

the mine implies that there is a saline water zone in this aquifer. Depth to the saline water zone is probably highly variable between localities due to the anisotropy of the aquifer, mixing of waters, and depression of the water table due to mine dewatering. However, chloride and dissolved oxygen concentrations found in the mine show that saline, near to and reducing groundwaters (>100ppm chloride and no detectable dissolved oxygen) were first intersected beneath the L-Zone workings, at about 100 m below sea level or about 175m below ground surface (see Figure 5.3 and 5.4). This depth is further substantiated by geophysical work done on N-Zone drill holes (see Figure 3.2). Saline waters were suspected to have caused a large offset in the spontaneous potential logs at 116m below ground surface or 25 m below sea level (J. Mwenifumbo, pers. comm.; 1986). Very saline water (up to 3600 ppm Cl) has been recently found in deep artesian exploration boreholes 3 km west of the mine, indicating that saline waters occur at depth, over a wide area beneath the study region. The saline interface may represent a boundary between a local (dilute) and regional (saline) groundwater flow system which may extend over a wide area.

Mine and well waters tend to have higher levels of calcium than lake waters. Calcium content gradually increases with chloride content (see Figure 5.5). This trend may be due to the ionic-strength effect whereby deeper salt-rich groundwater of higher ionic strength causes a decrease in the activity of each

Figure 5.4

The depth of sampling site vs dissolved oxygen graph shows a decrease in D.O. content with deeper sampling location.

.

Figure 5.5 This plot shows a general increase of calcium with chloride concentration for the mine-water samples. Lake waters appear to be a mixture of rainwater (little Ca) and shallow groundwater. Some well samples have very high concentrations of Ca. Spring Lake and the mine sump are also indicated.

ion in the solution and thus more carbonate minerals can be dissolved until equilibrium with calcite is attained (Back and Hanshaw, 1970). Calcium may also be increased in deeper waters even after equilibrium with calcite is reached by the dissolution of Ca-bearing silicate minerals such as anorthite.

A typical shallow groundwater composition is displayed in Figure 5.6, based on the average of all shallow groundwater samples except the anomalous groundwaters (DH-25, 29, 85) and the flowing artesian wells (DH-86, 88). DH-25 is unique in that it has low sodium/chloride and high sulphate contents (Figure 5.6). Samples DH-85 & DH-29 also have higher calcium and sulphate concentrations than the average shallow groundwater. These wells may have acquired sulphate by extensive bacterial oxidation of sulphides (Hoag and Webber, 1976a), which is supported by their very high Zn concentrations (>2000 ppb), or by dissolution of minerals such as gypsum.

Flowing artesian wells DH-86 (plotted on Figure 5.6) and DH-88 differ slightly from other shallow groundwaters in that they have elevated Na and K concentrations that are possibly related to ion exchange effects. The area is located in a poorly drained mud plain with sand and compact subsurface till (Proudfoot and St. Croix, 1987), and ion exchange may occur between clay in the till and carbonate groundwater. The similarity in chemistry between DH-86, 88 and DH-02 (1985 flowing artesian well) illustrates the homogeneity of this discharge zone (about 700 m between wells).

Figure 5.6

Relative concentrations of major ions have been plotted on this percent of maximum concentration vs ion plot for shallow groundwater samples that deviate from the average shallow groundwater composition (shown on graph by patterned double line). DH-25 (dashed line) has higher than average Ca^{2+} & SO₄²⁻ concentrations whereas DH-86 (dotted line) has a high K⁺ concentration.

SHALLOW GROUNDWATER GEOCHEMISTRY

Figures 5.7 and 5.8 exhibit the mixing relations between water types shown in Figure 5.2. Surface water samples (lakes) result from a two component mixture of rainwater (DH-23 at essentially the origin in Figures 5.7 and 5.8) and dilute shallow groundwaters. Mine waters result from a mixture of these shallow groundwaters and a presumed deeper water with high salt content. These mixing trends are manifested in all major ions (eq: see Figure 5.8).

A distinct separation between 1985 and 1986 mine conductivity data is shown in Figure 5.7. Cross-checks between instruments showed measurements were consistently 400-500 umhos/cm higher for the 1985 meter than for the 1986 meter (See Section 2.1.3). The sulphate vs chloride plot (Figure 5.8) shows a similar separation of data and indicates that mine groundwaters sampled in 1985 were indeed more concentrated than groundwaters sampled in 1986, but measurement error can only account partially for the differences illustrated in Figures 5.7 and 5.8. The spread of data in Figure 5.8 suggests the additional possibility that the distinction between 1985 and 1986 water chemistry represents a sampling bias to high sulphate waters that were sampled more often in 1985. This is possible since deep groundwaters sampled in 1985 and 1986 were collected from different sites.

The low sulphate content of DH-08 measured in 1985 (see Figure 5.8) may indicate that multiple sulphate-producing mechanisms are operating in the shallow groundwaters. Much of

Figure 5.7 Conductivity (umhos/cm) vs chloride plot for 1985 and 1986 water samples. Symbols apply to both Figures 5.7 and 5.8. Two types of mixing trends are shown: one for Cl contents <25 ppm, represented by lake waters which are a mixture of rainwater and shallow groundwater and the second for Cl contents >25 ppm whereby mine groundwaters represent a mixture of dilute shallow groundwater and more saline groundwater. There are higher conductivities reported for 1985 samples than for 1986 samples.

Figure 5.8 Sulphate vs chloride plot for 1985 and 1986 water samples. The same mixing trends as in Figure 5.7 are exhibited in this figure. Differences between 1985 and 1986 shown in Figure 5.7 are illustrated in this figure with some scatter (eg. DH-08).

the sulphate in deeper groundwaters is not derived from sphalerite oxidation since high sulphate concentrations are found only in deep reducing mine waters and not in the shallow parts of the mine where known sphalerite orebodies and oxidizing conditions exist.

All waters range in pH from 6.76 to 8.94 for 1985/1986. The widest range is found in the surface water samples (Figure 5.9). Mine samples range in pH from 7.13 to 7.88 with a range of 7.4 to 7.8 in the deep mine waters (Figure 5.9). The high buffering capacity of the carbonate rocks prevents the development of acidmine drainage because H^+ ions produced in sphalerite oxidation are consumed by dissolution of carbonate rocks.

The bicarbonate content is represented by the alkalinity at these pH's. Figure 5.10 shows the mixing trend of 1985/1986 lake waters between rain water and groundwater compositions. The data show good reproducibility of lake water analyses from year to year, particularly for the alkalinity measurements. The widening of the lake chemistry field (see Figure 5.10) as it approaches the groundwater composition may reflect groundwater contribution from different flow systems with characteristically different calcium and bicarbonate concentrations.

Figure 5.11 demonstrates the combined effect of rainwatergroundwater mixing (varied Ca concentration) and the loss of CO_2 (causing supersaturation). Discharging groundwaters (with high pCO_2) equilibrate with the atmosphere at lower pCO_2 , causing the pH to rise. The discharged water thus becomes supersaturated

Figure 5.9 Water samples from 1985 and 1986 show buffering of deeper groundwaters by the carbonate rocks at pH 7.4 -7.8. Surface water samples (<50 ppm Cl) show the widest pH range.

Figure 5.10 Alkalinity vs calcium plot for 1985 and 1986 data. Groundwaters fall into a distinct field and the arrow indicates increasing groundwater contribution to the lakes. Lake chemistry is the result of mixing of rainwater with groundwater. Sump discharge is a mixture of all mine groundwaters.

Figure 5.11

The trend seen in this plot (S.I.calcite vs Ca) is a result of the combined effects of groundwater input and CO₂ loss on lake-water chemistry. Lakes with greater groundwater input have high saturation indices. The solid line indicates calcite saturation.

Calcium ppm

with respect to calcite and dolomite. Therefore, lakes with high saturation indices have large groundwater inputs. The sump discharge for both years (DH-04, DH-80) is supersaturated with respect to calcite and dolomite because of CO_2 loss during pumping and outflow.

Spring lake (20,71) and the mine sump (4,80) have very similar major-ion chemistry and plot near each other on majorion graphs (see Figure 5.5, 5.10 and 5.11). Minesump water has only slightly elevated values of Na, K, Cl, and SO₄ indicating a major contribution from the shallow L-Zone and a minimal contribution from the T-Zone. The sump and Spring lake are both supersaturated with respect to calcite (Figure 5.11). This is because much of the mine outflow is discharged into Spring lake.

Lake calcite saturation indices used to construct the histogram in Figure 5.1A are displayed on a regional map of the study area in Figure 5.12. For the most part lakes supersaturated with respect to calcite occur near the coast as well as down-gradient from the mine and are classified as discharge lakes, the teas near the Long Range Mountains (regional recharge areas) only low saturation indices are observed. Lakes with marl bottom sediment are all calcite supersaturated except DH-36 (see Section 3.5). On the basis of their chemical compositions, lakes near the coast contain water derived mainly from local flow systems and not from deeper saline waters of a presumed regional flow system. However, all lakes with relatively high concentrations of SO₄ and Cl (circled in Figure

Figure 5.12 Regional map of the study area showing calcite saturation indices of lakes sampled in 1986. Most supersaturated lakes are concentrated in an area within 8-10 km from the coastline indicating this is a groundwater discharge area, possibly for regional flow.

.

5.2) are located in a presumed discharge area within 8-10 km of the coast and may represent a component of regional discharge.

Figure 5.4 shows dissolved oxygen content decreasing with increasing depth. Figures 5.13 and 5.14 show that reducing groundwaters (negative Eh) are low in D.O. and high in sulphate. Oxidizing groundwaters (high D.O., positive Eh) generally have low sulphate concentrations.

5.3.2 Trace-element chemistry

5.3.2.1 Trace-element abundances

With a few exceptions, trace-element abundances in groundwater are well below the recommended maximum levels for drinking water by American (Matthess, 1974) and Canadian standards (Health & Welfare Canada, 1987). Iron for all samples is consistently above the 'aesthetic objective' of <0.3 mg/l (300 ppb) listed in the Canadian Drinking Water Guidelines, (Health & Welfare Canada, 1987). The concentration of Pb in DH-85 & 87 exceed the 'maximum allowable concentration' of 0.05 mg/l (50 ppb) (Health & Welfare Canada, 1987).

The mine sump discharge and Spring Lake have very similar trace-element chemistry (see Table 5.2). Cobalt, Mo, Cd, and Pb are all elevated in groundwaters that also have zinc anomalies (> 1000 ppb Zn). Since these elements are also associated with sphalerite ore (see Section 3.4), dissolved Zn is probably derived from local ore bodies near or upgradient from the groundwater sampling points. Figure 5.13 Lake and well waters are oxidizing whereas mine groundwaters range from oxidizing to reducing conditions. Deeper mine waters (high SO_4) are reducing. DH-25 & DH-29 (high SO_4) are highly oxidizing and may indicate sphalerite oxidation as a SO_4 -producing mechanism.

Figure 5.14 Eh vs D.O. plot for the 1986 groundwater samples. Generally higher D.O. contents (> 2 ppm) indicate oxidizing conditions; reducing waters have less than 2 ppm D.O. Well samples DH-86 and 88 may be the result of a shallow/and deep water (oxygen-depleted) mixture (see discussion of Figure 5.6). DH-80 indicates oxygenated water from mine sump discharge.

5.3.2.2 Trace-clement groupings

Two different groupings of groundwaters are distinguished using the trace-element data. Group 1 elements (V, Rb, and I) show a direct correlation with Cl as illustrated in Figure 5.15. Zinc concentrations noticeably decrease in deep mine waters as salinity (Cl) increases (see Figure 5.16) and the same relationship applies to the majority of the trace elements analyzed: Mn, Co, Ni, Mo, Cd, Ba, Pb and U (Group 2 in Table 5.2). Zinc values greater than 1000 ppb are found only in the shallow mine waters (<100 ppm Cl), with the exception of sample DH-101. Iron and Sr show no or weak correlations with Cl. On a Sr vs Cl plot some samples have a direct and others an inverse relationship with Cl. The scatter of points on the Fe vs Cl plot shows no pattern although Fe and Ca are directly correlated as shown in Figure 5.17.

5.3.2.3 Groundwater residence-time control on trace elements

High iodide concentrations are found in 1986 T-Zone samples (DH-101,33,76), and high levels of Br and Li were found in 1985 T-Zone samples (Welhan & Gale, 1986). Iodide, Br, and Li are associated with easily dissolvable salt-type minerals as well as deep chemically evolved saline water, so their occurrence depends on mineral availability which would increase with groundwater residence time in the aquifer. Thus I, Br, and Li are indicators of a residence-time control on trace-element abundances in groundwater. High levels of these elements in T-Zone

The direct relationship between V and Cl is illustrative of trace element Group 1 (Rb,I) in Table 5.2.

The inverse relationship between Zn and Cl in this plot is common to other Group 2 trace elements (see Table 5.2).

Figure 5.17 Fe vs Ca plot for 1986 groundwater data. The direct relationship between these two elements suggests Fe in groundwater is derived from the dissolution of impure carbonate rocks. Numbered data points have high Zn concentrations. Ca from ICP/MS analysis (see Appendix 0).

groundwaters may indicate that salt minerals along the groundwater flow path are a source for the high salinities, and suggest that these groundwaters are more chemically evolved than L-Zone waters.

Rb concentration increases in the deep saline waters. The common substitution of Rb for K in minerals such as sylvite (Faure, 1977) supports this mechanism as a source for the salinity in these deep waters which would increase with time as more salt-type minerals are dissolved.

Although vanadium and uranium are often associated (Brookins, 1988; Garrels & Christ, 1965; and Langmuir, 1978) they do not show the same relationship with chloride in these groundwaters. Vanadium is concentrated (> 2 ppb) in deep T-Zone waters whereas uranium is concentrated (> 2 ppb) in the shallow groundwaters of L-Zone. The elevated vanadium levels in the T-Zone are below concentrations necessary for equilibrium with the relatively insoluble vanadium oxides V_2O_4 and V_2O_3 which are the most stable compounds in these reducing waters of intermediate pH levels (Garrels & Christ, 1965; Langmuir, 1978). Thus, vanadium levels are not controlled by mineral precipitation. Vanadium may be segregated from uranium by its preferential incorporation into the lattice structure of clays (Brookins, 1988) which may be present in the surficial materials of this area. In this environment vanadium solubility could be enhanced by SO_A complexing (Garrel & Christ, 1965). Positive correlation of V with Cl, like Rb and I, suggests that it has accumulated with

time during groundwater chemical evolution.

5.3.2.4 Local solubility control on trace elements

Strontium is common in carbonate (Back & Hanshaw, 1970) and silicate rocks and one would expect an increasing Sr content with water residence time as the groundwater dissolves more and more rock. As groundwater dissolves carbonate rock it will quickly become saturated with respect to calcite. Both calcium and strontium concentrations may still increase if silicate minerals such as anorthite are dissolved during groundwater evolution. This is indeed the case in 1985 samples where Sr levels generally increase in the deeper mine waters. However in 1986 samples, T-Zone groundwaters contain both high (DH-34 at 989 ppb) and low Sr levels (no detectable Sr in DH-33, 35, 76, 101).

Deering et al. (1983) reported up to 32 ppm Sr in groundwaters from areas in northwestern Ohio with known celestite deposits. They explained low Sr concentrations (<16 ppm) in the same area by high sulphate values that caused SrSO₄ precipitation. This conclusion is irrelevant to the Sr data for 1986 T-Zone groundwaters, since samples that contain relatively high SO₄ (DH-30) also contain relatively high Sr (> 1 ppm), SO₄ and Sr concentrations found in the mine are much lower than those of the Ohio study, and equilibrium calculations indicate that T-Zone groundwaters are undersaturated with respect to celestite.

The Sr/Ca ratio for Daniel's Harbour dolomites is 0.00006 (T. Lane, pers. comm.) and for some Ordovician limestones is 0.00047 (Helz and Sinex, 1974). The same ratio for T-Zone groundwaters is much larger (0.0012), possibly due to the dissolution of local occurrences of celestite and/or strontianite. Isolated celestite occurrences apparently cause locally high Sr levels in sample DH-26 with 435 ppb Sr, and in the samples with the highest Sr concentrations (DH-30,77,102). These samples correlate with known celestite and gypsum occurrences in vugs near drill hole 456 and DH-30 (see Figure 3.3 & Section 3.3). Strontium levels are well below those needed for saturation with respect to both celestite and strontianite and thus if these minerals are indeed a source, Sr content could be controlled locally by mineral availability.

The 1985 and 1986 data indicate that Sr concentrations in groundwater may be controlled by: 1) uniform Sr distribution in rocks of the flow system as trace impurities in carbonates or possibly dispersed in primary salt and sulphate-type minerals; 2) mixing of Sr-depleted shallow groundwater and Sr-enriched deep groundwater in varying proportions; and 3) high Sr content near vug-filling celestite and strontianite.

In general, the dissolved concentrations of trace metals depend on the geochemical mobility, as well as on the presence of the metals in the bedrock. The mobility of heavy metals is dependent on the solubility of their stable solid phases (minerals), the availability of complexing anions, Eh/pH conditions, and the presence of removal mechanisms in the environment.

Iron forms soluble Fe^{2+} in the pH-Eh environment found at the mine (Hem, 1985) and it would be expected in groundwaters of this type if a source was available. The direct correlation between Fe and Ca (Figure 5.17) can be explained in part by the dissolution of Fe which commonly substitutes in impure calcite and dolomite (Faust & Hunter, 1967; Hurlbut & Klein, 1977).

Samples (DH-25, 29, 84, 85, 87) with high Ca also have high Fe and Zn (see Figure 5.17 and 5.18). There is also a direct correlation of Fe with Zn, especially in T-Zone samples, suggesting that Fe is derived from impure sphalerite as well. This is supported by chemical analysis of the zinc ore which indicates only two impurities: iron and cadmium (see Section 3.4). Thus, Fe may be linked genetically with both calcite and sphalerite. Sphalerite oxidation produces H^+ (acid production) and Fe^{2+} ions, promotes calcite and dolomite dissolution, and thereby raises the Ca and Fe as well as the Zn concentrations in groundwater. Iron may also be linked with Ca and Zn by the oxidation of sphalerite and its accessory mineral pyrite (see Section 3.4).

Molybdenum and U are enhanced in some shallow groundwaters of the L-Zone and in wells within 1.5 km north and east of the mine workings. The locations of these wells are near known ore zones and open pits (Figure 2.2 and 3.2). There is a minor association of Mo with sphalerite (see Section 3.4), suggesting an ore source for the Mo. It was demonstrated by Welhan et al. (1988) that zinc concentrations found in the mine-water samples

Zinc vs SO₄ plot for 1986 groundwater data. Numbered data points refer to groundwater from wells and mine that exceed 1000 ppb Zn. Generally, high-sulphate groundwaters have low Zn concentrations. DH-25 has a higher than average SO4 concentration and does not fit this trend.

can be explained by the combined processes of sphalerite oxidation and $2nCO_3$ precipitation. Molybdenum versus Zn data (for 1986 only) have a correlation coefficient of 0.49. Hence, the poor to fair correlation between Mo and Zn may be explained by sphalerite oxidation (producing Zn & Mo ions) and ZnCO₃ precipitation (decreasing Zn levels), thereby masking the genetic link between Zn and Mo in groundwater.

The low Mo values for deep waters may be due to molybdenum's lower solubility under reducing conditions (Hansuld, 1966). In alkaline-oxidizing water, molybdenum occurs as mobile anions MoO_4^{2-} and $HMoO_4^-$, and it would be expected in groundwater under L-Zone conditions near a Mo source. Barakso & Bradshaw (1971) also found high Mo contents in alkaline waters near sources of ore. Thus, the major control on Mo is the presence of local ore zones along groundwater paths.

The plot of molybdenum vs uranium (see Figure 5.19) illustrates a direct correlation for the 1986 mine and well samples. Unlike Mo, uranium is not associated with this type of sulphide deposit. However, there is a direct relationship between uranium and zinc in the shallow groundwater that is statistically significant with a good correlation coefficient of 0.77. Deeper groundwaters, if belonging to a regional flow system, may have acquired U from the granitic rocks of the Long Range Mountains during recharge; but this source does not explain the observed U levels in the some of the shallow groundwaters. Uranium and Mo may have a separate source than the zinc by

Molybdenum vs U plot for groundwater samples. There is a direct relationship between these two elements that may be related to sphalerite oxidation (source of Mo) and carbonate dissolution (source of U). Exceptions to this relationship are DH-79 & DH-25.

possibly being derived from the granitic erratics found in the calcareous drift which covers the mine site (see Section 3.5). There is a strong Mo-U association in the late Precambrian granites of the Long Range Mountains (P.H. Davenport, pers. comm.). However, this soil source for U and Mo does not explain the sporadic or localized occurrences of high U and Mo levels in shallow groundwaters or the good correlation between Zn and U. One would expect evenly distributed high U and Mo levels in the shallow groundwaters (eg. low values in DH-28, 31) since the entire mine area is covered with glacial drift. A possible source of U could be impurities in carbonate rocks. By analogy with the Fe-Ca-Zn relationship, a dual mechanism such as sphalerite oxidation (producing acidic waters and Mo) followed by carbonate dissolution (U liberation) could explain the U-Mo correlation despite their different sources. Uranium forms soluble mineral phases at T-Zone Eh-pH conditions since redox levels are still too high to render the uranium ion immobile. The low U concentrations in the T-Zone groundwaters may be the result of less oxidizing conditions in the T-Zone inhibiting sphalerite oxidation and thus the mechanism by which U is liberated from the carbonate rocks.

It would appear then that there are two main controls on trace elements in the groundwaters at Daniel's Harbour. These controls are the availability/local occurrence of associated minerals, and the residence-time of the groundwater. Rubidium, iodide and vanadium (Group 1) are controlled by the latter and

are concentrated in deeper groundwaters; zinc, manganese, cobalt, nickel, molybdenum, cadmium, barium, lead, and uranium (Group 2) are controlled by the former mechanism and are concentrated in the shallow groundwaters. Strontium is controlled by both mechanisms and iron is likely controlled by impurities in sphalerite and/or carbonate rocks.

5.3.2.5 Controls on zinc solubility

Zinc has the highest concentrations of all trace elements analyzed; as much as 4457 ppb Zn is dissolved in shallow groundwaters (DH-87). Other studies (Hoag & Webber, 1976b) have found anomalous Zn values (up to 2920 ppb) in groundwater with pH 6.4 to 7.8 (similar to Daniel's Harbour). Van Everdingen (1970) explained high Zn contents (177 ppm) in acidic groundwater by sulphide oxidation and dissolution of zinc sulphide minerals.

Sphalerite oxidation is also a likely mechanism by which Zn is released into Daniel's Harbour shallow groundwaters. Under pH conditions and sulfur concentrations similar to the L-Zone environment, Zn will form the soluble Zn^{2+} ion in oxidizing waters (Salomons, 1984). From Figure 5.16 it appears that significant aqueous Zn concentrations are supported in the shallow, oxidizing groundwaters of the mine. Maximum Zn levels may be controlled by zinc-carbonate precipitation at high pH's and Zn^{2+} concentrations greater than several ppm (Salomons, 1984; Welhan et al., 1988). The occurrence of smithsonite in the upper, weathered portion of mineralized bedrock at the mine (see

Section 3.4) is direct evidence for sphalerite oxidation and ZnCO₃ precipitation.

Anomalously high Zn and traces of Fe and Mn (associated with the mineralization itself) found in the groundwaters probably indicate point sources of sphalerite since metal values in the carbonate host rock fall away rapidly to background with distance from ore (Sangster, 1968). Groundwater Zn concentrations change a great deal in the same area (ie. >1000 ppb northeast of Spring Lake to <100 ppb 500 m north; see Figure 5.20) and provide a further indication of localized sources of zinc, precipitation of ZnCO₃ and/or dilution soon after dissolution of sphalerite. In general, any element observed at concentrations below 0.1 ppm or 100 ppb is considered a trace constituent of groundwater (Freeze and Cherry, 1979) and thus concentrations below this value were not considered anomalous in this area.

The limited areal extent of Zn concentration anomalies in groundwater around the mine is similar to that for U-Mo anomalies. These anomalies can be correlated with open-pit ore zone locations and trends seem to be spatially related to different mine areas and depths. This is shown in the contoured Zn anomaly map (Figure 5.20). Wells with high Zn as well as Mo and U concentrations (DH-25, DH-87 and DH-85; see Table 5.2) are in the Lead Lake area, near open pit operations that at one time contained major ore zones. Other anomalous well waters (DH-82, 83, 84) are found east of the Spring Lake tailings pond and the unmined O-Zone (Figure 2.2). Further evidence for the close

Figure 5.20 Groundwater zinc analyses have been plotted and contoured to produce this groundwater zinc anomaly map. Sites with >1000 ppb Zn are considered anomalous and Zn concentrations fall rapidly away from these sites. When compared with the geology map of the same area (see Figure 3.3) the high Zn areas correspond to areas of ZnS mineralization.

proximity of an ore source to such Zn-rich groundwaters is that these waters have an enrichment of the less mobile Pb ion. These observations are important because trace-element anomalies in groundwater may indicate paths of groundwater flow over short distances and thus locate ore zones elsewhere.

The Zn distribution shown in Figure 5.20 is significant hydrogeologically. Patterns developed in the shaded areas may be the result of Zn-bearing shallow groundwater flowing southwest from Mike Lake and north from Spring Lake and is consistent with hydraulic gradients discussed in Section 4.1.3.

5.3.3 Sequential sampling

Three underground mine sites were sampled more than once during the summer of 1986 in order to determine temporal variations in water chemistry at different levels in the mine. Sample site descriptions are given in Appendix B and relevant data for the samples is listed in Table 5.4. Major and trace ions have been plotted for each sample site on Figure 5.21.

The last round of sampling (August) indicated a significant change in chemistry at Site 2 from the previous two rounds of sampling. There was a large decrease in major and trace constituents: Cl^- , $S0_4^{2-}$, Mg^{2+} , Ca^{2+} , Fe^{2+} , I^- . Ions characteristic of the deep saline waters (Cl^- , $S0_4^{2-}$, I^-) show the greatest dilution (see Figure 5.21). The conductivity change from 1500 to 630 jumhos/cm (Table 5.4) indicates that the groundwaters at this site were diluted with rainwater by approximately 50%. Table 5.4 Pertinent data on sampling sites used in the sequential sampling site analysis. Each site was sampled at 3 different times during the summer of 1986 with the exception of site 3; it was sampled only twice. Accumulated rainfall between each sampling date is shown in Figure 5.21.

	<u>July 18</u>	July 29	<u>Aug. 12-14</u>
SITE # 1			
Sample#	DH-33	DH-76	DH-101
Conduct.	3000	3000	3100
δ ¹⁸ 0	-9.7	- 9.97	-10.46
SITE # 2			
Sample#	DH-30	DH-77	DH-102
Çonduct.	1500	1500	630
918 ⁰	-10.09	n.a.	-10.59
SITE # 3			
Sample #		DH-78	DH-103
Conduct.		500	530
9-00		-8.52	-9.4

Results of the 1986 sequential sampling survey. Concentrations (log scale) of selected major, minor and trace groundwater constituents have been plotted against time. Sampling dates are underlined. Numbers 1, 2 and 3 refer to sample site locations listed in Table 5.4. Rainfall prior to the sampling date is shown at the bottom of the graph. Most ions (except Zn) show a dilution at sample site 2 during mid-August. If there was no change in water chemistry with time, each ion would plot as a horizontal line.

The decrease in ion concentrations may have been caused by dilution brought about by the increase in rainfall after the second and before the third round of sampling (see Figure 5.21). The apparent association of dilute water with a high rainfall event suggests a major connection or increased permeability between ground surface, mine levels and the L-Zone, allowing more infiltration at Site 2 than at the other sites. Fontes (1983b) pointed out that a specific problem in karstic systems is the possible occurrence of inactive or 'by-passed' reservoirs which are discharged and recharged during high rain periods. If there is a physical connection (eg. fault, see Figure 3.2) between the drill hole and the surface then dilution of saline water may occur during times of increased recharge.

Fluctuations in groundwater chemistry that occur only at Site 2, and only after increased rainfall, are further evidence for aquifer anisotropy, indicating a specific zone of increased permeability due to the dissolution of carbonate rocks along faults. Major-ion chemistry and oxygen isotopes show temporal variations in groundwater that reflect changes in aquifer recharge.

5.3.4 Isotope geochemistry

Environmental isotopes were used to study the mine flow regime and to further differentiate waters of similar major-ion chemistry. These isotopes helped in flow-system delineation, determination of mixing between different waters and sources of

mine inflows, and provided age estimates for the groundwaters.

5.3.4.1 Stable oxygen and hydrogen isotopes

Oxygen-18 and deuterium signatures of precipitation vary locally depending on the climate of the geographical region. As a result, δ^{18} O and δ^{2} H values will plot on a regional meteoric water line (see Figure 5.22) with the same slope as the global meteoric water line but with a different 'y'-intercept (Gat, 1981).

Figure 5.22 shows that Newfoundland Zinc Mine groundwaters are of a normal meteoric origin. Sample DH-18 is an example of surface evaporated water (lake) which plots off the meteoric water line on an evaporation slope. DH-78 is a shallow mine groundwater in close proximity to Spring Lake and its position in Figure 5.22 implies that shallow inflows may be derived from Spring Lake. This hypothesis is supported by deuterium analyses of shallow groundwater near L-Zone workings (DH-29 in Figure 5.22) which also indicate an evaporated surface water contribution.

Figure 5.23 summarizes oxygen isotope data for mine, borehole and surface waters. The T-Zone groundwaters show more scatter in δ^{18} O in 1986 [average= -10.09 o/oo, standard deviation= 0.33] than in 1985 [average= -10.25 o/oo, standard deviation= 0.19], suggesting more mixing between δ^{18} O--variable L-Zone groundwater [average= -9.65 ^O/oo, standard deviation= 0.80] and T-Zone groundwaters in 1986, and/or a changing

Figure 5.22 Most groundwater samples from the Newfoundland Zinc Mine have a meteoric origin. Samples 78, 76 29, have been modified by evaporation. A lake sample (DH-18) is used to illustrate the evaporated surface water contribution to mine groundwater inflows. "M.W.L." indicates meteoric water line.

Figure 5.23 A decrease in oxygen-18 with increasing chloride content (solid line) for deep mine groundwater samples suggests a higher elevation of recharge for the deeper saline groundwaters. Saline groundwater samples above this line (circled) may indicate mixing with surface water enriched in δ^{18} O.

hydrogeologic flow regime during this year. Surface samples show the greatest range in oxygen isotope ratios from -5.43 $^{\circ}/_{\circ\circ}$ (lake) to -13.97 $^{\circ}/_{\circ\circ}$ (snow) reflecting evaporation of lake waters and the seasonal variation in precipitation (Gat, 1971).

Perennial springs (DH-106 and 107) and the flowing artesian well (DH-88) are isotopically very similar (see Table 5.3), illustrating the homogenizing effect of groundwater flow (mixing) on the varied isotopic ratio in yearly precipitation (Gat, 1971). Further homogenization of isotope values occurs in the deeper saline water as shown by the decrease in oxygen isotopic variability with depth (see Figure 5.24). The same phenomenon was exhibited by oxygen and tritium isotopes in the deep groundwaters found in the fractured aquifer at Cheju Island, Korea (Davis et al., 1970).

The oxygen-18 vs Cl plot (Figure 5.23) suggests mixing between isotopically light shallow groundwaters (wells), characteristic of mean annual local precipitation, and isotopicallyenriched lake water, similar to trends indicated by major-ion data (eg. Figure 5.5). A second mixing trend, between isotopically light deeper saline waters and slightly more δ^{18} oenriched shallow dilute waters (Figure 5.23), also mimics mixing trends seen in major-ion data (Figure 5.8).

Samples that lie above the deep/shallow groundwater mixing line (DH-33,76; circled on Figure 5.23) may indicate local mixing of deep oxygen-18 depleted groundwater with more enriched nearsurface groundwaters or lake water along fracture conduits. DH-

A decrease in the variation of δ^{18} O with depth is typical of fracture-flow dominated aquifers.

.

77 is a sample from a deep drill hole (see Section 5.3.1) but lies above this mixing line, also suggesting a mixture between saline water and lake water or shallow groundwater. High tritium contents in DH-77 and 33 support this local mixing hypothesis (see Section 5.3.4.2).

As shown in Figure 5.23, δ^{18} O decreases with increasing Cl. Although the deep/shallow mixing line has a very shallow negative slope, this line (y-intercept = -9.74) has a correlation coefficient of 0.81 indicating that this slope is statistically significant giving good evidence for the argument that there is indeed a decrease in oxygen-18 with increasing Cl in the deep mine groundwater. Possible reasons for this are 1) different sources for shallow and deep groundwaters and 2) isotopic exchange between deep groundwater and rock. However, isotopic exchange between groundwater and carbonate rock would result in an increase in the heavier isotope (Faure, 1977) and not a decrease which is found in the deep groundwaters of the Newfoundland Zinc Mine. Therefore, the low oxygen-18 values exhibited by saline groundwaters probably reflect a different recharge environment than that for the dilute shallow groundwaters. The lower δ^{18} O may be the result of an altitude effect (Eriksson, 1983) and thus an inferred higher elevation of The Long Range Mountains represent such a possible recharge. environment. Groundwaters which recharge in the mountains and discharge near the coast would belong to a regional flow system (eg: Toth, 1963).

T-Zone groundwaters may belong to a regional flow system; they may have obtained their salinity by mixing with modern/ ancient seawater or dissolution of sulphate-type minerals and salts. A possible saline source could be ancient seawater that was trapped by isostatic depression during the last glacial advance (see Section 3.5). Water sources associated with glacial periods have lower δ^{18} O values reflecting recharge under cooler climatic conditions (Gat, 1971), suggesting that T-Zone groundwaters may have been recharged during the last ice age.

5.3.4.2 Tritium and carbon isotopes

Groundwater age can be defined as the time since infiltrating water became isolated from the atmospheric tritium/ radiocarbon reservoir. When infiltrating water enters the saturated zone its radioactive isotope content will decrease due to radioactive decay. Apparent piston ages (t) for groundwater samples were calculated by assuming no mixing/dispersion, and substituting known atmospheric tritium levels typical for eastern North America (I.A.E.A., 1981; I.A.E.A., 1983a; I.A.E.A., 1986), and measured tritium concentrations from Table 5.3 into the radioactive decay equation. Because of the variability in tritium levels in atmospheric precipitation during the past 35 years due to fallout from thermonuclear testing in the 1950's and 1960's (Freeze and Cherry, 1979) groundwater samples have a wide range of tritium contents.

Generally the presence of tritium above 4 T.U. in northern

latitudes indicates the presence of 'young' waters that have been recharged since the initiation of thermonuclear testing in the 1950's (Freeze and Cherry, 1979). Any tritium level above 20 T.U. implies that a component of the water has been recharged since 1961 (pg. 59 I.A.E.A., 1983b).

Estimated ages from tritium data indicates relatively young groundwater in the deep and shallow levels of the mine which vary from 13 to 33 years. Generally, the variation in tritium levels throughout the mine and between sampling years supports the concept of groundwater flow through an anisotropic aquifer (Davis et al., 1970), with permeability in the rock mass dominated by individual faults and major joint and bedding-plane systems. These conduits conduct shallow groundwater to the deeper parts of the mine at different rates, resulting in a range of measured tritium levels.

Initially, radiocarbon analysis of groundwater was undertaken to determine transit times for Daniel's Harbour groundwaters, but in light of all the 1986 tritium age estimates of less than 33 years, radiocarbon data would not contain any useful quantitative information on the ages of the groundwaters.

However, carbon-14 analyses may give some measure of the carbon-14 dilution caused by dissolution of carbonate rocks which have essentially no radiocarbon content. Of the three samples analyzed for radiocarbon only one sample, DH-25 (see Table 5.3) shows significant 'dead' carbon dilution. DH-25 contains half as much % radiocarbon as the other samples which are downgradient

These observations further emphasize the pecularities from it. of this sample mentioned earlier in Section 5.3.1. Its lower radiocarbon content cannot be interpreted as a simple increase of dead carbon with length of flow path. An increase in 'dead' carbon in DH-25 may be due to the previously stated process of local sphalerite oxidation producing acidic conditions which in DH-27 and DH-85 have turn cause more carbonate dissolution. relatively high radiocarbon contents (Table 5.3) and show little dead-carbon dilution if one assumes the recharge radiocarbon content was lower than 85 % modern (Vogel, 1970) due to the presence of carbonate minerals in the soil zone. The relatively low dilution for these samples is consistent with the hypothesis that these groundwaters belong to a local flow system. DH-27 has a slightly lower radiocarbon content than DH-85 consistent with flow gradients and proposed flow paths originating north of, and flowing towards the L-Zone.

Carbon-13 in conjunction with DIC (dissolved inorganic carbon) can provide clues to the evolutionary paths of groundwaters. The δ^{13} C of groundwater in carbonate terranes is a function of the δ^{13} C acquired during recharge (soil zone CO₂ δ^{13} C = -20 to -24 °/00) and the δ^{13} C of local carbonate rocks (δ^{13} C = -1.0 to -1.5 °/00; Lane, in prep.). The δ^{13} C values (-12.46 to -5.42 °/00; Table 5.3) for inorganic carbon in most mine groundwaters fall within the range typical for natural groundwater (-15 to -8 °/00; Fritz, 1983), but others are heavier than what is expected for the equivalent DIC in carbonate

groundwater (-19 to -15 ^O/oo; Deines et al., 1974).

Figure 5.25 is a plot of δ^{13} C vs the reciprocal of dissolved inorganic carbon (DIC). Half the samples analyzed show a large discrepancy between field DIC measurements (alkalinity titrations performed in the field laboratory) and laboratory DIC measurements (DIC measured on the δ^{13} C extraction line). The remainder of the samples showed little or no difference between the field or lab DIC and are plotted as an average of these two values (circled dots). Lab DIC for samples DH-27, 28, 30, 35 and 77 are consistently lower than the field DIC, possibly as a result of CO₂ degassing. Degassing may have occurred at the sample collection site or during storage. Most of the above samples were taken from drill hole valves and degassing may have occurred if bubbles formed as water poured from the valve. In general, the mine environment may promote groundwater degassing in drill holes and fracture seeps. Sensitivity calculations of pH error effects on calcite and dolomite saturation indices indicate that T-Zone samples are near or at a state of equilibrium and show little or no degassing at the sample site (see Section 5.5.1.2). Thus, the observed difference between field and lab DIC may be from leakage during storage of the bottles.

Assuming that the lab DIC and measured δ^{13} C for samples DH-27, 28, 30, 35, 77, and 78 result from CO₂ loss and subsequent carbon-13 fractionation, an attempt to correct for this was made by a simple Rayleigh calculation. The original δ^{13} C of ground-

Relationship between δ^{13} C and $1/C_t$ (total dissolved inorganic carbon). The scatter of data may be partly the result of CO₂ degassing during storage. The solid arrow represents calculated fractionation effect due to 20% gas loss at 5°C. Black dots represent calculated δ^{13} C and field DIC, assuming CO₂ gas loss (see text). Circled dots represent waters with no discrepancy between field and lab DIC. The high δ^{13} C for T-Zone samples may be the result of mixture with seawater. Symbols are as follows:

L = L-Zone, T = T-Zone samples.

water was found by using the fractionation factor for CO_2 -HCO₃ = 0.98975 at 5°C (Mook et al., 1974), and assuming that the ratio of lab to field DIC is the fraction of gas remaining. The field DIC and the calculated $\delta^{13}C$ are plotted as solid dots in Figure 5.25 with a trajectory back to the measured $\delta^{13}C$ and lab DIC.

The expected relationship in most carbonate terranes would be an increase in DIC for the deeper groundwater samples (eg. DH-76) which is the opposite of the trend suggested in Figure 5.25. An alternative hypothesis is that L-Zone groundwater evolved differently or has a different source than the T-Zone waters, and a mixing relationship is indicated. This would be consistent with mixing relationships suggested by major ions and \S ¹⁸0 values.

L-Zone groundwaters are overall, closer to the δ^{13} C range and expected DIC for groundwaters that have dissolved carbonate rocks (δ^{13} C = -15 to -19 °/00; Deines et al., 1974). The δ^{13} C data suggest that T-Zone groundwaters may have obtained their higher δ^{13} C and lower DIC by mixing with seawater thereby supporting a seawater source for T-Zone salinity as indicated by δ^{18} O data.

5.4 Synopsis

The groundwaters of the Newfoundland Zinc mine and environs are basically of two groundwater types based on major-ion chemistry:

1) calcium-bicarbonate type--shallow, oxidizing, low total dissolved solids typical of surface wells and shallow mine inflows

2) sodium-chloride type--reducing, high dissolved solids, saline groundwater found in the deeper parts of the mine.

The occurrence of gypsum, celestite, and barite in the mine and the shelf-type depositional environment of carbonate rocks which may host evaporite lenses, provide possible sources for the elevated salt content in these waters. High salinities may also be derived from relict seawater preserved in the deep groundwaters. Carbon-13 data argue against the dissolution of sulphate-type minerals and salts in carbonates as a source for T-Zone salinity and support seawater as a source of the salts.

Major-ion and trace-element chemistry, dissolved oxygen and oxygen-18 trends support the hypothesis that the deep saline T-Zone waters represent a regional groundwater flow system. Recharge for such a regional flow system may occur in the Long Range Mountains, as suggested by the oxygen-18 depletion in deeper groundwater samples.

Local dissolution of soluble minerals, and oxidation of sphalerite appear to control trace element concentrations. Isolated anomalies of zinc and other metal ions associated with zinc ore are restricted to shallow oxidizing groundwaters near known occurrences of developed and undeveloped sphalerite. Contours of high dissolved Zn concentrations indicate that local, shallow groundwater flows from Mike Lake south to Spring Lake.

5.5 Chemical Modelling

Two major questions can be asked in light of the geochemistry of Daniel's Harbour groundwaters: 1) How exactly do the shallow carbonate groundwaters evolve and what does this reveal about the hydrogeology? and 2) Do the saline groundwaters derived from ancient seawater that has mixed with groundwater belong to a regional flow system?

The purpose of this section is to establish possible evolutionary paths for the shallow carbonate groundwaters and origins for the deep saline waters of the Daniel's Harbour area, using the computer program PHREEQE (Parkhurst et al., 1980). The computer program calculates individual species concentrations, activities, saturation indices of possible minerals, and allows limited reaction-path modelling. PHREEQE is applicable for water temperatures from 0 to <100 degrees C. Activity coefficients are calculated by the extended Debye-Huckel method. The relevance of PHREEQE modelling results to real groundwaters is dependent on the thermodynamic data used, the validity of the extended Debye-Huckel activity coefficients, the choice of possible ion pairs, and the applicability of equilibrium calculations to natural systems.

Basic principles for developing geochemical models were implemented in the following modelling strategy (Plummer et al., 1983). Equilibrium speciation calculations were used to determine calcite and dolomite saturation indices and pCO_2 of the groundwater samples. These values were then used as constraints

on the carbonate evolution and saline source groundwater models. Mixing of waters as a modelling procedure was done in the saline groundwater source models. Available geochemical evidence such as Ca/Mg and other molar ratios, oxygen-18 and trace-element data were used to constrain the choice of models. Mineral phases and reactions were chosen in light of the geology of the area and in no way represent the only possible models in this system, since one can model any final groundwater chemistry by choosing a variety of phases and reactions. Thus, a possible although not unique reaction path is suggested, using this type of modelling approach (Plummer et al., 1983). Models that will be discussed in the following text are: chemical speciation calculations, sensitivity analysis on saturation indices, shallow groundwater evolutionary paths, and saline groundwater origins.

5.5.1 Chemical speciation calculations

5.5.1.1 Characterization of groundwaters

As an initial step, chemical parameters (Eh, pH and T) and ion analyses were specified for each groundwater sample and the chemical speciation, saturation indices for relevant minerals and pCO_2 were calculated by PHREEQE. Results are listed in Table 5.5 for some of the water samples collected in 1985 and 1986. The chemical analysis entered for each of the samples was charge balanced using the elements Br and Ba since these do not complex significantly with the major species. The field temperature of each sample was used in the equilibrium speciation calculations.
Tal	ble 5.5	5.5 PHREEQE species modelling results for selected sample taken in 1985 and 1986. The saturation indices and log pCO ₂ values found here were used as constraints later models. Samples are sorted according to sample location/type. Symbols used in this table are:											
		 * rainwater sample used as the initial solution for modelling of evolutionary paths L groundwater samples from the L-Zone T groundwater samples from the T-Zone M mid-zone depth between the L and T Zones B borehole or well S sump discharge 											
Ty	pe Spl#	Ca/Mg	рH	Eh	pe	sıc	sıd	log(pCO ₂)					
19	85:												
* L L	DH-023 DH-009 DH-010	1.67 1.03 1.17	5.82 7.29 7.55	218 255 332	3.68 4.30 5.60	<.01 0.38 0.66	<.01 0.09 0.25	-3.49 -2.04 -2.32					
L M	DH-011 DH-013	1.14	7.30	337 53	5.70	0.59	0.19	-1.94 -1.38					
n T T	DH-014 DH-005 DH-006	0.72	7.41 7.42	-35 83	-0.60	0.34 0.41 0.51	0.15 0.19	-2.00 -2.07 -2.09					
T T T	DH-007 DH-008 DH-012	0.93 0.90 0.71	7.52 7.51 7.48	-65 -65 -53	-1.10 -1.10 -0.90	0.64 0.56 0.55	0.29 0.23 0.28	-2.33 -2.27 -2.35					
19	86:												
B S	DH-025 DH-080	1.36	7.13	538 187	9.09 3.16	0.55	0.16 0.65	-1.93 -2.39					
B B L	DH-082 DH-086 DH-028	1.11 1.04 1.15	7.29 7.57 7.57	236 20 534	3.98 0.34 9.02	0.74 0.93 0.75	0.38 0.68 0.29	-1.94 -2.23 -2.31					
L L L	DH-029 DH-031 DH-032	1.72 1.18 1.09	7.60 7.60 7.38	545 416 362	9.37 7.03 6.11	1.38 0.92 0.81	0.67 0.43 0.02	-2.31 -2.32 -2.04					
L L	DH-078 DH-081	1.21	7.34	195 246	3.30 4.15	0.60	0.21	-2.07					
ы М М	DH-103 DH-026 DH-030	1.18 1.07 1.01	7.28 7.88 7.71	158 439 16	2.66 7.42 0.27	0.49 1.61 1.25	0.14 1.53 0.96	-2.01 -2.62 -2.47					
M M T	DH-077 DH-102	1.02 0.80	7.27 7.31 7.79	-188 -104	-3.17 -1.76	0.46 0.35	0.13	-2.04 -1.99					
T T	DH-034 DH-035	1.03 0.85	7.82 7.87	45 34	0.76	1.20	0.89	-2.58					
T T	DH-076 DH-101	0.72 0.74	7.45 7.81	-189 -113	-3.19 -1. 91	0.50 1.21	0.23 1.34	-2.27 -2.62					

166

•

The degree of mineral saturation is expressed by the saturation indices in the following format:

S.I._c = $[Ca^{2+}][CO_3^{2-}]/K_{sp}(calcite)$ S.I._d = $[Ca^{2+}][Mg^{2+}][CO_3^{2-}]^2/K_{sp}(dolomite)$ S.I. = 1 or log(S.I.) = 0 is a state of saturation S.I. < 1 or log(S.I.) < 0 is a state of undersaturation S.I. > 1 or log(S.I.) > 0 is a state of supersaturation.

The log pCO_2 for these waters (see Table 5.5) is generally higher than that of the atmosphere indicating derivation of CO_2 from the soil zone (Freeze and Cherry, 1979). These groundwaters are more saturated with respect to calcite than to dolomite. This could be the result of the slower rate of dolomite dissolution (Rauch and White, 1970). Calcite supersaturation in a dolomitewater system can occur at temperatures observed in Daniel's Harbour groundwater (Palmer and Cherry, 1984).

Although saturation with respect to calcite and dolomite is typical of groundwaters in carbonate terrain and soil zones with abundant carbonate minerals (Thrailkill, 1968), many Newfoundland Zinc Mine samples deviate from this condition. Generally, saturation indices calculated using PHREEQE (Table 5.5) show that 1985 groundwaters were less saturated than 1986 groundwaters. Some 1985 samples were much more undersaturated than samples taken at the same site in 1986 (eg. DH-11 vs DH-32). None of the 1985 (L-and T-Zone) samples were saturated with respect to calcite and dolomite, whereas half of the 1986 L-Zone samples saturated within calculation uncertainity were limits (see Section 5.5.1.2). Most 1986 T-Zone samples were saturated to supersaturated with respect to calcite and dolomite. The fact

that DH-29 was supersaturated with calcite and had δ^{2} H and δ^{18} O shifted along an evaporation slope supports the hypothesis that some L-Zone groundwaters are derived from the supersaturated Spring Lake waters.

The undersaturated groundwaters may be explained by dissolution kinetics or by the mine hydrogeology. As long as 16 days may be required for a solution to reach equilibrium with calcite (Plummer et al., 1979) and dolomite dissolution can take much longer (Rauch and White, 1970). Undersaturation could be the result of slow kinetics of dissolution versus the high flow rates that were experienced in 1985 (mine pumpage up to 38,000 l/min) in response to higher rainfall (see Figure 4.2). The 1986 summer drought caused lower groundwater inflows (24,000 l/min); lower velocities may have allowed more time for groundwaters to equilibrate with mineral phases (Freeze and Cherry, 1979).

Another explanation for this undersaturation is the occurrence of secondary processes such as mixing and dilution. This theory is in agreement with the mine mixing relationships indicated by major-ion trends (Section 5.3.1). Initially saturated groundwater that mixes with another saturated groundwater of different pH and pCO_2 , or a more dilute undersaturated water, may cause undersaturation of the resultant groundwater (Plummer, 1975). Higher rainfall during 1985 and subsequent greater mine inflows may have caused shallow groundwater to mix more with T-Zone groundwater and with rainwater (dilution). Supersaturation of 1986 T-Zone samples may

also be due to degassing at the sample site or a result of HCO_3/pH measurement errors (see Section 5.5.1.2).

5.5.1.2 Sensitivity analysis on saturation indices

It was suggested previously that the calculated 1985 and 1986 saturation indices (Table 5.5) may be different for hydrogeological reasons but their difference could also be due to pH, temperature or alkalinity errors.

The saturation index for calcite is defined by the following formula: $S.I.calcite = \frac{[Ca^{2+}] [HCO_3^{-}] K_{HCO3-}}{[H^+]} K_{SD}(calcite)$

Uncertainties for each of the above measured parameters add up to estimated accumulated uncertainity of +/- 10 % for the an saturation index. This is assuming a 0.2 % error for Ca (+/- 0.1 ppm; see Section 2.1.4), and 4.0 % uncertainity for alkalinity and pH measurements (assuming +/- 0.02 pH unit error); in addition, a possible error introduced by a change in temperature from the time of sampling to the actual time of measurement (5 $^{\circ}$ C 15 % change in S.I. calcite; see Figure 5.26) must be considered. However, if degassing at the sample site is significant, as suggested by some DIC samples (Section 5.3.4.2), then an even larger effect on the calcite saturation indices would be expected. As CO2 evolves from solution, the resultant pH rise would cause an increase in CO_3^{2-} concentration and hence an increase in the saturation index of carbonate minerals.

A sensitivity analysis was done on 16 mine samples from 1985

and 1986 to test the susceptibility of saturation indices to pH error; results are given in Table 5.6. The pH input to PHREEQE was changed by small increments to simulate possible errors for a given pH measurement. The measured temperature of each sample was used in the sensitivity calculations.

Most of the 1986 T-Zone groundwater samples have very similar pH-crossover points for both saturation indices (<0.07 pH units deviation) indicating conditions near or at equilibrium. Representative samples, DH-33, 35 and 101 have been plotted on Figure 5.26. Samples DH-30, 34 are also close to a state of equilibrium (<0.1 pH unit difference). DH-76 and DH-12 are exceptions since they have very close calcite and dolomite crossover points but not at the measured pH. Aqueous phases in these samples could be in equilibrium with calcite and dolomite

Table 5.6 Results from an analysis of the sensitivity of calcite and dolomite saturation indices to errors in pH. Samples considered at or near saturation had < 0.1 pH unit between the crossover points for saturation indices at equilibrium and measured pH. Groundwaters truly undersaturated had a difference >0.10 pH unit. A pH measurement error of 0.3 pH units may be the cause of disequilibrium for the samples DH-12 and 76. ApH = measured pH - calculated pH for equilibrium

Truly Saturated	Truly Undersaturated	Probably Undersaturated
Spl.# Location ApH	Spl.# Location ApH	Spl.# Location ApH
DH-30 Mid-Zone 0.10	DH-09 L-Zone -0.43	DH-12 T-Zone -0.26
DH-33 T-Zone 0.03	DH-10 L-Zone -0.18	DH-76 T-Zone -0.30
DH-34 T-Zone 0.08	DH-11 L-Zone -0.23	
DH-35 T-Zone 0.08	DH-14 Mid-Zone -0.47	
DH-101 T-Zone 0.08	DH-28 L-Zone -0.13	
	DH-32 L-Zone -0.11	
	DH-103 L-Zone -0.31	
	DH-08 T-Zone -0.24	

Figure 5.26 Sensitivity analysis of pH error on saturation indices (S.I.) of calcite and dolomite. The measured pH for each sample is given in the upper left corner of the figure. T-Zone samples in this figure have similar measured pH crossover points for log(S.I.) of calcite and dolomite, indicating these samples are in, or close to a state of equililbrium. Symbols and the error bar (due to a maximum 5°C shift in temperature) also apply to Figure 5.27. Temperature for sensitivity calculations was the field measured temperature for each sample.

if a large pH measurement error of - 0.30 pH units was made (i.e. if measured pH was too low). But this error is much greater than the reported precision of +/- 0.02 pH units.

Samples that are truly in a state of disequilibrium have a difference between measured pH and saturation crossover point equal to or greater 0.10 pH unit (see Table 5.6). DH-9, 28 and 32 are plotted on Figure 5.27 as examples.

The following conclusions can be made from the sensitivity analysis: All 1986 shallow (L-Zone) groundwater samples tested are in a state of disequilibrium with respect to calcite and dolomite. Generally, 1986 T-Zone samples are near or at calcite/dolomite saturation. T-Zone samples DH-30 and DH-35 show large differences between field and lab DIC (see Section 5.3.4.2). Since these samples are not supersaturated then the lower lab DIC suggests CO₂ loss during storage rather than at the sample collection site. Results for L-Zone samples may suggest secondary disequilibrium caused by groundwater mixing. Only one sample (DH-12) from 1985 could be in a state of equilibrium with the carbonate minerals (if a large error of 0.26 pH units was assumed). The state of disequilibrium (with respect to calcite and dolomite) in most 1985 groundwaters may be a result of the fast flow rates for this 'wet' year or increased mixing due to higher water table elevations in 1985.

5.5.2 Shallow groundwater evolutionary paths

It was established in Section 5.5.1.2 that shallow mine

Figure 5.27 L-Zone groundwater samples appear to be in a state of true disequilibrium since their log(S.I.) vs pH crossover points are greater than 0.10 pH unit. The measured pH is consistently lower than what is required for calcite or dolomite saturation.

groundwaters (L-Zone) are indeed undersaturated with respect to calcite. Two possible evolutionary paths for the shallow groundwaters were tested in this modelling exercise to account for their observed chemical compositions: 1) closed-system dissolution of carbonate minerals to partial equilibrium (assuming groundwater infiltration along fractures allowing only partial dissolution of calcite/dolomite below water table) and 2) open-system dissolution to equilibrium followed by mixing/dilution (assuming infiltrating groundwater equilibrated with carbonate minerals in the soil zone).

Several assumptions were made in modelling these possible evolutionary paths. It was assumed: 1) that groundwaters flowed through dolostones and limestones, hence dolomite and calcite were the mineral phases chosen; and 2) that aqueous phases reacted with pure minerals (Mg-calcite was not used in the models).

The initial water used to dissolve the various minerals was represented by a sample of rainwater (DH-23) collected at the mine site. The log pCO_2 for rainwater in equilibrium with the atmosphere was assumed to be -3.5. In each model the Eh is held constant at the value measured in the field. Two average waters were chosen to represent (A) groundwaters of the L-Zone, and (B) deeper saline groundwater of the T-Zone (see Table 5.7). Modelling results were judged by how well they compared with average groundwaters. The reaction steps that were modelled are typical for carbonate terranes: an acidic rainwater equilibrating

- Table 5.7 Averages and ranges of some chemical parameters for A) dilute shallow and B) deep saline groundwater, used in evolutionary models and for comparison of saline water source models. Ranges of the most important parameters are included for comparison. Average molar ratios were calculated from average element concentrations, not from an average of all calculated ratios. Samples used for the shallow groundwater average are DH -28,31,32,78,81,82,83,84,87,103 and for the saline groundwater average DH-5,6,7,8,12,33,34,35,76,101.
 - * only 1986 samples in Table 5.6 used for this average,
 - ** only L-Zone mine samples used for this average
 *** range does not include 33 and 76 (see Figure 5.23)

parameter	average	e range	average	range
pH Fb (myolts)	7.4	(7.13-7.60)	7.61 -37	(7.41-7.87)
	5.7 **	(4, 1-10, 8)	5.84	(4,6-6,7)
	-2.12	(-1.86 to -2.32)	-2.14	(-2.62 to -2.07)
S.I.o	0.656	(0.33-0.92)*	1.169	(0.5-1.21)*
S.I.a	0.242	(0.02-0.43)*	1.083	(0.23 - 1.34) *
Ca/Mg	1.2	(1.01-1.44)	0.79	(0.71-1.03)
Ca (ppm)	65.55	(52-83)	63.6	(38-98)
Mg "	34.14	(27-41)	48.1	(28-84)
Na "	13.47	(11-17)	367	(107-500)
HCO3 "	226.00	(217-276)	231	(207-284)
\$0 <u>4</u> "	43.20	(13-62)	172	(58-310)
C1 ⁻ "	21.22	(10-39)	505	(115-988)
Sr "	0.178	(0.04 - 0.290)	0.299	(0 - 1.046)
δ0-18 (⁰ /00)	-9.84(-1	1.31 to -8.52)	-10.21	(-10.59 to -10.03)**
NO ₃ (ppm)	4.00		7	
K "	1.80		21	
Fe "	0.03		0.1	
Mn "	0.01		0.0	
Al "	0.20		0.3	
Ca/Cl	3.22		0.11	
Mg/Cl	2.63		0.13	
Na/Cl	1.13		1.12	
Na/K	12.59		29.72	
SOA/Cl	0.99		0.13	
Sr/Ca	0.0012		0.0021	

A) SHALLOW GROUNDWATER B) T-ZONE SALINE GROUNDWATER

with soil-zone CO_2 , dissolving calcite/dolomite while pCO_2 decreases and pH and saturation indices of the water increase (Palmer and Cherry, 1984). The observed saturation indices for 1986, were used as reaction end-point constraints in the modelling.

5.5.2.1 Closed-system model Assumptions and conditions

The undersaturation of L-Zone groundwaters may represent a partial approach to equilibrium due to the kinetics of carbonate dissolution. Kinetic factors would be most effective if recharge occurred dominantly through joints, sinkholes and faults where the ratio of rock surface area to volume of water is low. Consequently, higher flow velocities and minimal rock/water contact in these fractures would prevent or delay the infiltrating groundwater from reaching equilibrium with calcite/dolomite in the soil zone, even if abundant carbonates were present in the soil zone. Thus, little carbonate dissolution would occur, even in the presence of a continuous supply of CO₂ (soil zone), and most dissolution would occur beneath the water table under closed-system conditions (restricted supply of CO₂). High flow velocities have been documented as a major control causing undersaturated conditions in carbonate terrains (Thrailkill, 1968).

For the first modelling phase, carbonate undersaturation is assumed to be a function of slow kinetics of dissolution, and is

approximated by a partial approach to equilibrium. Five separate scenarios were modelled to cover the possible mineral sequences encountered by infiltrating water. These are listed below:

Model 1 - calcite dissolution only Model 2 - dolomite dissolution only Model 3 - dolomite and calcite dissolution simultaneously Model 4 - dolomite then calcite dissolution Model 5 - calcite then dolomite dissolution.

Palmer and Cherry (1984) emphasized that the sequence of minerals encountered by water is an important influence on the chemical evolution of groundwaters.

To simulate the lack of attainment of equilibrium under closed-system conditions, rainwater was equilibrated initially with specified pCO₂ levels and then was allowed to dissolve carbonate minerals to specified saturation states characteristic for shallow groundwater: calcite to a S.I. of 0.656 and dolomite to a S.I. of 0.242 (Model 3, 4, 5) or 0.246 (Model 2). The range for the log pCO₂ for the soil zone (initial log pCO₂) was chosen to be -1.4 to -1.2, characteristic of northern North American topsoil (Palmer and Cherry, 1984; Deines et al., 1974). Field log pCO2 measurements are unavailable for Newfoundland soils; but soil log pCO2 values calculated from shallow groundwater chemical data collected from eastern Newfoundland are high and range from -0.87 to -1.37 (S. Schillereff, personal communication). The temperature was held constant at the average temperature for shallow groundwater (5.7°C).

Results

Selected results from closed-system modelling are listed in Table 5.8 and summarized in Figure 5.28. The model numbers listed in column 1 of Table 5.8 refer to the five mineral scenarios specified previously. Initial soil-zone log pCO2 of -1.4 to -1.2 gave the most reasonable ranges for the final pCO₂ observed in the Daniel's Harbour groundwaters (log pCO2 -1.86 to -2.32; Table 5.7A). From preliminary modelling it was determined that at a higher temperature (15°C) an initial soil-zone log pCO_2 of -1.3 would give the best approximation of the observed shallow groundwater parameters. This value is close to the lowest values calculated for eastern Newfoundland soils (S. Schillereff, personal communication). Lowering the temperature to 5°C raises the bicarbonate, Ca and Mg concentrations and has about the same effect on the HCO_3^- concentration as raising the log pCO_2 by 0.1. The final dolomite saturation index for Model 4 is slightly higher than what was initially specified because of the sequence of mineral dissolution. After the groundwater reached the prescribed state of equilibrium with dolomite it then dissolved calcite which increased the Ca concentrations and thus the S.I. of dolomite.

Models # 1 and 5 can be discarded on the basis of very high Ca/Mg ratios and their inappropriate saturation indices for dolomite. In Model 1, the Ca/Mg ratio is large and the dolomite S.I. is too low because pure calcite was the only mineral dissolved and there was no additional source of Mg except the Table 5.8 Selected results from closed-system carbonate dissolution models. Initial pCO₂ conditions were varied in each model. These models assumed that L-Zone carbonate groundwater had not reached equilibrium with carbonate minerals due to kinetic factors and so observed S.I.'s were specified to approximate partial attainment of equilibrium. Symbols are as follows:

ASG	average shallow groundwater (for comparison)
*	in ppm
^	models plotted on Figure 5.28
S.I.c	saturation index for calcite
S.I.A	saturation index for dolomite
i,f	initial and final pCO ₂

Mdl#	log pCO ₂ i	log pCO ₂ f	molar Ca/Mg	Ca*	Mg*	нсо3*	рН	s.I.c	s.I. _d
1	-1.3	-1.84	59.4	88.1	0.9	315	7.18	0.656	0.005
2	-1.4	-2.20	1.0	42.0	25.5	269	7.50	0.624	0.246
2 2	-1.3 -1.2	-1.99 -1.80	1.0	49.8 58.4	30.2	404	7.24	0.624	0.246
3	-1.4	-2.15	1.1	44.4	24.0	269	7.50	0.656	0.242^
3 3	-1.3 -1.2	-1.97 -1.78	1.1 1.1	52.6 61.6	28.4 33.4	330 403	7.37 7.24	0.656 0.656	0.242
4	-1.4	-2.21	1.0	42.5	25.4	270	7.51	0.656	0.269^
4 4	-1.3 -1.2	-2.00 -1.81	1.0 1.0	50.4 59.3	30.1 35.4	331 405	7.38 7.25	0.656 0.656	0.268^ 0.267
5	-1.3	-1.85	59.4	88.1	0.9	315	7.18	0.656	0.005
	ASG	-2.12	1.2	65.6	34.1	226	7.40	0.656	0.242

Figure 5.28

Comparison of shallow groundwater evolutionary models under open and closed pCO₂ conditions. The best approximation of the average shallow groundwater is obtained by models 2, 3, and 4. The bar represents parameter ranges found in shallow groundwater of the mine and serves as a comparison with the possible evolutionary paths represented by the selected models. Shallow groundwaters included in this range are DH -28,31,32,78,81,82,83,84,87,103. Closed-system Models 2, 3, 4 and Models 2 and 4 from the mixing models (open-system) have been plotted. Initial and final pCO₂ are also included for comparison.

initial rainwater. Groundwaters that flow through limestone become saturated with calcite and when they reach dolomite, already laden with Ca^{2+} , they become supersaturated with respect to calcite as very little dolomite is dissolved. In Model 5 the Ca/Mg ratio is large and the final dolomite S.I. is too low because not enough dolomite was able to dissolve in order to increase the Mg concentration under the specified conditions.

With the exception of the high HCO3⁻ content, closed-system models 2, 3, and 4 at log pCO₂ between -1.4 and -1.3 approximate the observed shallow groundwater carbonate chemistry. The most realistic final log pCO2, Ca, Mg and HCO3 values are obtained with an initial log pCO_2 of -1.4 and these scenarios are plotted in Figure 5.28. Lower HCO3⁻ concentrations could be obtained by using an initial log pCO₂ lower than -1.4 but this would also lower the Ca and Mg levels. Ca and Mg contents do not match exactly the 'Shallow Groundwater' in Table 5.7A but they are close to the lowest observed concentrations, indicating that reasonable Ca and Mg concentrations can be obtained from models that always dissolved dolomite in the modelling scenario. Higher Ca concentrations were obtained in Models 1 and 5 but observed levels of Mg are not obtained since calcite is dissolved first. Raising the pCO₂ would obtain higher Ca and Mg concentrations but this would result in too high HCO3⁻ concentrations, producing a lower than representative pH and generating an unrealistic final The average saturation indices may not approximate the pCO_2 . system as well as they were intended and a more suitable

(greater) index could be chosen to better approximate the equilibrium state and the Ca and Mg concentrations for the shallow groundwaters. However, this would not help in distinguishing between the 3 best models, thus requiring other constraints for subsequent elimination of the remaining models.

5.5.2.2 Open-system model

Assumptions and conditions

In the second phase of modelling, carbonate undersaturation in shallow groundwaters is assumed to be the result of secondary processes: mixing and dilution of initially saturated groundwaters. Groundwaters would attain equilibrium quickly if they were recharged through overburden containing carbonate minerals (see Section 3.5). Thus, carbonate dissolution would occur under open-system conditions (continuous supply of CO_2) in the soil zone.

In the first step of this modelling phase, saturated shallow groundwater, produced by equilibrating rainwater with carbonate minerals at an initial log pCO_2 value of -2.12, was mixed with saturated average T-Zone groundwater. The lower initial pCO_2 as compared to closed-system models, was necessary for open-system carbonate dissolution (continuous supply of CO_2) if the models were to approximate observed pCO_2 values in shallow groundwaters. An average log pCO_2 value of -2.12 is still a reasonable value for North American soils. A low log pCO_2 value of -2.12 for closed system modelling would result in lower Ca, Mg and HCO₃

concentrations than what is observed in shallow groundwater and thus higher initial pCO_2 values were required in the closed system models since the CO_2 reservoir is diminished and not replenished as groundwaters dissolve aquifer minerals.

The T-Zone endmember was found in a separate exercise by taking an average T-Zone groundwater in Table 5.7B and equilibrating it with calcite and dolomite. The resultant solution from the mixture of shallow and T-Zone groundwaters was not re-equilibrated with the carbonate minerals. For these models, the major source of Cl in shallow groundwater would be T-Zone water with minor contributions from rain. Thus, the range of Cl concentrations in shallow groundwater (10-39 ppm, average=21ppm) was used as a constraint on mixing proportions. For example, to obtain the maximum L-Zone Cl content of 39 ppm, 0.92 parts shallow groundwater.

In the second step of this modelling phase, Cl was assumed to be derived only from rainwater. The constraints on mixing would be mixing proportions that result in Cl concentrations of 10 to 21 ppm. In this scenario, shallow carbonate groundwater is produced by rainwater dissolving carbonate minerals to equilibrium under open-system conditions and then mixing with a second solution, the chemistry of which was rainwater.

Only the most reasonable mineral sequences (models 2, 3, and 4) from the initial closed-system modelling (see Section 5.5.2.1) were repeated in the open-system modelling. All the modelling

was done at a temperature of 5.7° C.

Results

Results from the open-system mixing models are listed in Table 5.9. The only source of Cl in models that mixed saturated shallow carbonate groundwater with rainwater is the rainwater itself. Hence, observed L-Zone Cl concentrations greater than 0.5 ppm cannot be obtained by simply equilibrating rainwater with carbonate minerals and then mixing the resultant water with rainwater. Low Cl concentrations observed in shallow groundwaters could be obtained by mixing with T-Zone groundwater in lower proportions (0.98 in Table 5.9). However, this did not result in undersaturation of the final groundwater. Higher Cl levels could have been obtained by a two-stage mixing process: 1) mixing of Land T-Zone groundwaters followed by 2) mixing with rainwater. This hypothesis was not tested.

Table 5.9 shows that when shallow groundwater was mixed with T-Zone groundwater in the most appropriate proportions (0.92-0.96) the resulting groundwater was only slightly undersaturated with respect to calcite and dolomite in Models 3 and 4, and saturated with respect to calcite in Model 2. The one example of rainwater mixing (see Table 5.9) best approximated the undersaturation observed in shallow groundwaters, but its Ca/Mg and Cl concentration were too low. This may indicate that dilution with rainwater as well as mixing with saturated T-Zone groundwater was responsible for calcite/dolomite undersaturation

- Table 5.9 Results from open-system carbonate dissolution models. Mixing initially saturated shallow groundwater with T-Zone type (saturated) water. One model representing a mixture of saturated shallow groundwater and rainwater (undersaturated) is also given. The resultant groundwater for most models is slightly undersaturated with respect to calcite and dolomite. Initial log pCO₂ of -2.12 (average for shallow groundwater) and T=5.7°C. Symbols are the same with the following exceptions:
 - f final pCO_2
 - * these models have been plotted on Figure 5.29
 - * in ppm
 ** in this model Cl = 0.5ppm for a 80% S.G. and 20%
 rainwater mixture
 - S.G. shallow groundwater
 - ASG average shallow ground ster

Mal#	Portion S.G.	n log pCO ₂ f	molar Ca/Mg	Ca*	Mg*	HC0 ₃ *	C1*	рĦ	s.I.c	s.I.d
^2	0.92	-2.14	1.0	57.7	36.5	360	41	7.56	1.205	0.957
2	0.96	-2.13	1.0	57.7	35.8	365	21	7.56	1.230	0.977
2	0.98	-2.13	1.0	57.7	35.4	367	11	7.55	1.245	0.989
3	0.92	-2.14	0.6	46.1	44.2	363	41	7.56	0.977	0.955
3	0.96	-2.13	0.6	45.6	43.7	368	21	7.56	0.989	0.975
3	0.98	-2.13	0.6	45.3	43.6	370	11	7.56	0.993	0.986
^4	0.92	-2.14	0.9	51.5	36.5	341	41	7.54	0.971	0.697
4	0.96	-2.13	0.9	51.3	35.8	345	21	7.54	0.984	0.705
4	0.98	-2.13	0.9	51.1	35.4	347	11	7.53	0.991	0.709
3	0.80**	-2.19	0.6	36.4	34.9	29 8	0.5	7.54	0.690	0.519
								•		
ASG		-2.12	1.2	65.6	34.1	226	21	7.40	0.656	0.242

in the shallow groundwaters. In that case, the saturation index would not be the most sensitive criterion to determine the best representative model for the evolutionary path of the shallow groundwater.

All three models approximated observed values for final log pCO_2 , exhibited higher than average pH values and Mg concentrations (although still within L-Zone range) and very high HCO_3^- concentrations. As a result, the most sensitive indicators in open-system modelling are Ca/Mg ratio and Ca content which indicate Model 2 (dolomite dissolution) and Model 4 (dolomite then calcite dissolution) represent the evolution of shallow groundwater better than Model 3 (dolomite and calcite dissolution simultaneously).

5.5.2.3 Comparison of results from evolutionary path models

The best runs from both closed- and open-system modelling are plotted in Figure 5.28. These models approximate the lower limit of the ranges for Ca and Ca/Mg observed in shallow groundwaters of the Newfoundland Zinc Mine. The shallow groundwaters with very high Ca concentrations (>85 ppm; DH-25,29,85) were excluded from the range shown in Figure 5.28. This is an arbitrary cut-off and samples included in the range with relatively high Ca (65-85 ppm) may not be representative of calcite dissolution, and other processes such as local salt-type mineral dissolution may be involved (see Section 5.3.1).

Each model run represents a submodel (referred to as Models

2, 3 or 4) from either closed- or open-system modelling that was run at different pCO_2 or mixing proportions, respectively. Only one mixing ratio (0.92) for Models 2 and 4 is plotted in Figure 5.28 since differing mixing proportions for each open-system mixing model changed the carbonate chemistry very little.

Under closed-system conditions, dissolution of mineral sequences represented by Models 2, 3, and 4 results in solutions having chemical compositions similar to shallow groundwaters at the mine, provided the initial log pCO_2 is -1.3. Similarly, appropriate concentrations can be obtained by Models 2 and 4 under a continuous supply of CO_2 at log $pCO_2 = -2.12$ and if mixing proportions of saturated shallow and saturated saline groundwater are (0.92-0.96) and (0.08-0.04), respectively. Closed-system modelling results suggest that shallow groundwater may be the result of carbonate mineral dissolution to partial equilibrium by rainwater under a restricted supply of CO_2 .

The most sensitive criterion in distinguishing between openor closed-system models is the concentration of Ca. Ca/Mg ratios are very similar for both closed- and open-system models, with the exception of Model 3 (see Table 5.9) and the saturation indices were fixed in the closed-system modelling. The undersaturated state of shallow groundwaters could not be duplicated by the open-system models, arguing against singlestage mixing as a part of shallow groundwater evolution. However, the best absolute Ca concentrations were obtained by open-system modelling suggesting these models are oversimplified

and multi-stage mixing could be responsible for the undersaturation. Closed-system models at log $pCO_2 = -1.4$ reproduced the undersaturated state and approximated Ca content in shallow groundwaters. Thus, on the basis of this modelling and the stated criteria, shallow groundwaters from the mine may have evolved by dissolving dolomite only, dolomite and calcite simultaneously, or dolomite then calcite to undersaturation under a restricted supply of CO_2 , or by dissolving the above mineral sequences to saturation and then mixing with a different type water under a continuous supply of CO_2 . These simple models were useful in proving that dolomite is necessary in the mineral dissolution sequence and that a more complex evolution than what has been modelled thus far is necessary to duplicate observed values for all diagnostic parameters.

Based on geological evidence it is more realistic to assume that open rather than closed conditions exist at the mine site. Open-system conditions would occur in the carbonate rocks above the depressed water table and in the glacial overburden which contains carbonate minerals (Section 3.5). Geologically, closedsystem dissolution of carbonates is unlikely because it would restrict recharge to the relatively rare fractured outcrops in the area and infiltrating water would assuredly encounter carbonate minerals before reaching the depressed water table. However, Deines et al. (1974) established that closed-system rather than open-system dissolution of carbonate rocks resulted in δ^{13} C similar to L-Zone groundwaters (-9 to -12.5). This

information suggests that recharge at the mine site is dominated by joint and sinkhole conduits and not by more diffuse modes of flow that would occur in the glacial deposits.

Simultaneous dolomite and calcite dissolution (Model 3) is physically quite possible due to the lateral facies changes between limestone and dolostone within an assigned unit. Models 1 and 5 (closed sytem) and Model 3 (open system) were discarded after preliminary modelling indicated that shallow groundwaters most likely evolved by dissolving dolomite first. Thus, the sequence of mineral assemblages encountered is important in the evolution of these groundwaters (eg. calcite dissolution cannot precede dolomite dissolution).

The hydrogeological implication of this conclusion is that the shallow groundwater must have first dissolved dolostone and was not recharged in limestone (ie. not along the anticlinal axis; see Figure 3.3). This limits groundwater recharge to areas underlain by dolostone. The association of known sinkholes with dolostone areas suggests that groundwaters are recharged through sinkholes, which in turn supports the assumption that kinetics are a cause of disequilibrium. The Mike Lake-Zinc Lake-Lead Lake basin (see Figure 4.1) appears to be a logical area of recharge since it is underlain by dolostone and has known sinkholes (e.g. Lead lake sinkhole that may have an underground connection to the mine; Acres, 1974). Most of the L-Zone workings are overlain by dolostone implying possible d_rect recharge to the mine from above.

One would expect that groundwater encountering dolostone first, would have a lower Ca/Mg ratio than groundwater that first encounters limestone. The opposite is the case for diamond drill hole DH-82 (collared in dolostone) and DH-86 (collared in limestone; see Table 5.5). With this limited information from drill samples it is difficult to draw conclusions about the evolution of the shallow groundwaters in light of the local variations seen in the groundwaters (DH-25) already discussed in previous sections. More data from other wells in both limestone and dolostone areas would be needed to determine if there is indeed a connection between the chemistry of the groundwaters and the major rock type at the well collar location. In these modelling exercises the Ca/Mg ratio was a sensitive indicator in determining the best model that represented the mineral dissolution sequence in shallow groundwater evolution.

5.5.3 Dilute seawater/shallow groundwater mixing model 5.5.3.1 Assumptions and conditions

In this modelling section shallow groundwater/dilute seawater mixing was tested as a possible origin of the saline water found in the deeper parts of the mine. The source of seawater may be modern seawater encroaching inland, or ancient seawater now relict at deeper levels in the carbonate aquifer. A 1:18 seawater/shallow groundwater mixing ratio is needed to produce T-Zone chloride concentrations of 1000 ppm. This dilution can not reproduce δ^{18} O values of -10.3 °/00, typical of

average T-Zone groundwater. Thus, direct mixing with seawater (seawater intrusion) can be ruled out on the basis of \S^{18}_{0} values. However, a low \S^{18}_{0} , saline groundwater could have been produced by mixing seawater with groundwater recharged at a higher elevation in a regional flow system. Ancient seawater may have been trapped during the Wisconsinan ice age when this platform was inundated by seawater. This hypothesis is tested quantitatively in the following section.

The decrease in δ^{18} O values with increasing Cl concentrations in T-Zone groundwaters is assumed to be the result of a higher recharge elevation for the meteoric component of these waters. Since direct mixing of shallow groundwater with seawater can be ruled out on the basis of δ^{18} O, it is proposed that T-Zone groundwater is a mixture of local shallow groundwater and a concentrated endmember, which in turn is a mixture of highaltitude recharge and seawater. For the mixing hypothesis, the dilute endmember was an average shallow groundwater (given in Table 5.7A). Assuming a maximum altitude effect of -0.5 $^{\circ}/_{\circ \circ}$ per 100 m increase in elevation (Gat, 1981), a maximum depletion of 3 o/oo in $\delta^{18}O$ could be expected for the 600 m rise in elevation between the mine and the Long Range Mountains. Thus, for a mean δ^{18} O value of -9.8 O /oo for shallow groundwater, the highaltitude recharge should not have a δ^{18} value lower than -12.8 º/00. Based on this value and assuming that the concentrated endmember is a mixture of seawater and high-altitude water, the concentrated endmember would have a maximum Cl concentration of

2230 ppm and δ^{18} 0 of -11.4 o/20.

Samples collected recently (Welhar, pers. comm., 1989) revealed an even higher Cl concentration of 3600 ppm in deep flowing boreholes west of the mine. In light of these findings, it was reasoned that a more concentrated endmember than the 2230 ppm Cl component was more appropriate for the T-Zone modelling. It was assumed that an average of the highest Cl concentration observed west of the mine (3600 ppm) and the estimated endmember Cl concentration in the T-Zone (2230 ppm), would be a more appropriate Cl content for the concentrated endmember in the immediate mine area. The estimated saline endmember (Table 5.10), thus has a Cl concentration of 2900 ppm and δ^{18} 0 of -11.9 The δ^{18} O of the high-altitude recharge component that °/00. would be required to mix with seawater to produce this concentrated endmember would be much lighter than contemporary high-elevation recharge (-14.0 %). Thus, it is proposed that the seawater component may be relict, trapped during the last ice age, and mixed with a more $\{180$ -depleted paleo-meteoric water, recharged during glacial periods.

High-altitude recharge water was assumed to be similar in chemical composition to shallow groundwater with respect to the dissolved salt load content. This assumption is considered valid since the pH of groundwater that has dissolved silicate minerals can be as high as 7.23 (Palmer and Cherry, 1984) and dissolved Cl (2 to 20 mg/l) and SO₄ (1 to 11 mg/l) concentrations (Freeze and Cherry, 1979) are similar to those observed in shallow carbonate

Table 5.10 Chemical parameters for the endmembers (seawater and high-altitude groundwater) used in determining the CONCENTRATED ENDMEMBER which in turn was mixed with shallow groundwater to model T-Zone water (* average analysis from Parkhurst et al., 1980 and Hem, 1985). Endmember ion concentrations were determined by 0.15(seawater) and 0.85(high-altitude groundwater).

para	ameter/unit	SFAWATER* S	HIGH-ALTITUDE GROUNDWATER	CONCENTRATED ENDMEMBER (dilute seawater)
~ 1/				
pn	(0-)	8.22	7.4	7.24
T.	(°C)	5.5	5.7	6
Eh	(mvolts)	500	355	-37.9
Ca	(ppm)	411	66	
Ma	ii ii	1321	24	119
Na	#	10624	34	226
HCO		10034	13	1606
50.		142	243	228
SU4		2706	43	448
CI		19177	21	2900
K	11	395	2	61
Şr.	**	8.1	- 2	
9180	(⁰ /00 SMOW)	0.00	-14.0	-11.9
Ca/M	g	0.19	1.2	0.33
Na/C	1	0.85	1.1	0.32
S04/	C1	0.05	1 0	0.84
Sr/C	a	0.0090	1.0	0.06
		0.0090	0.0014	0.0054

groundwater.

A pH of 7.24 for the concentrated endmember used in the modelling was found by mixing (15 %) pure seawater and (85%) shallow groundwater. An Eh of -37.9 mvolts (typical of T-Zone waters) was chosen for the concentrated endmember and held constant throughout the simul-ations. Solutions were reequilibrated to typical S.I. values for calcite (log S.I. = 0.0677) and dolomite (log S.I. = 0.0345) after mixing. Thus, groundwaters were allowed to precipitate carbonate minerals which would be expected in older, slower groundwaters where there is sufficient time for equilibration.

5.5.3.2 Results

Results for the mixing of shallow groundwater with the concentrated endmember in various proportions are given in Figure 5.29 and Table 5.11. The observed δ^{18} O range in T-Zone ground-waters was used to constrain the modelling results. The observed δ^{18} O values and SO₄/Cl and Ca/Cl ratios in T-Zone groundwaters are compared with results from the mixing models in Figure 5.29.

The mixed-water compositions listed in Table 5.11 are within observed ranges for saline groundwater (see Table 5.7B), but they do not match the average T-Zone ion concentrations exactly. Thus, it is possible to obtain T-Zone salinities by mixing 95% to 70 % shallow groundwater with 5 to 30 % dilute seawater.

Model 3 gave the closest match to average T-Zone groundwater. Sr in Model 3 (0.253 ppm) closely approximates the

Figure 5.29

9 Molar ratios of SO_4/Cl and Ca/Cl are plotted against $\delta^{18}O$ for dilute seawater modelling runs. Observed T-Zone range of $\delta^{18}O$ (dashed line) was used to constrain the possible ranges of mixed water compositions which are listed in Table 5.11. The ranges of observed Ca/Cl and SO_4/Cl ratios are also indicated.

Table 5.11 Results from mixing dilute seawater with shallow groundwater. Explanation for symbols: ADG = average deep groundwater of the T-Zone * = Sr for model 3 is .253 ppm, Mg/Cl=0.18 S.G.= shallow groundwater

Md: #	Portion	δ ¹⁸ 0	Ca ppm	Mg ppm	Na ppm	K ppm	Cl ppm	SO4 ppm	HCO3 ppm	pH	SO4/Cl { mol	Ca/Cl ar }
123456	0.95 0.85 0.82 * 0.80 0.78 0.70	-9.94 -10.15 -10.21 -10.25 -10.29 -10.46	67 84 89 93 96 109	51 63 66 69 71 81	93 253 302 334 366 494	5 11 13 14 15 20	165 459 547 606 664 899	70 109 121 129 137 169	278 7 275 7 274 7 273 7 272 7 269 7	7.62 7.59 7.58 7.57 7.57 7.55	0.16 0.09 0.08 0.08 0.08 0.08 0.07	0.36 0.16 0.14 0.13 0.13 0.11
AI	DG	-10.27	64	48	367	21	505	5 172	2 231	7.61	0.13	0.11

average concentration in the T-Zone (0.299 ppm), suggesting a single seawater source for Sr, despite arguments presented in Section 5.3.2.4 for a local Sr source. Barium is dissolved in trace amounts in T-Zone groundwaters. Minerals that contain Ba (barite) probably do not contribute significantly to the salt load but it must be emphasized that local mineral occurrences may also explain the wide range in Ba (and Sr) found in the T-Zone.

The Na, Cl and K concentrations from Model 6 are near the maximum observed levels in the T-Zone but its SO_4 concentration remains below average. It appears that SO_4 has accumulated in T-Zone groundwaters in excess of amounts that would be produced solely from a seawater source, thus again suggesting dissolution of gypsum or oxidation of sphalerite. The HCO₃ content decreased with increasing salinity since seawater has a much lower bicarbonate content than shallow groundwater. The T-Zone DIC contents are indeed lower than the L-Zone DIC contents as discussed in Section 5.3.4.2, and these modelling results support the hypothesis that the observed increase in δ^{13} C for saline samples is due to mixing with seawater.

The results from mixing models also approximate the relative ion concentrations found in the T-Zone groundwaters and the best fit models (+) fall within the T-Zone groundwater fields in Figure 5.30. The resultant water from Model 3 is closest to the average T-Zone groundwater composition in all fields. The arrows in Figure 5.30 represent increasing proportions of the saline component in the mixing models. This figure illustrates that T-

Figure 5.30 Results from dilute seawater/shallow groundwater mixing models. Numerals refer to the respective runs of seawater mixing models (+) from Table 5.11 that most closely approximate the average T-Zone composition. Arrows indicate increasing salinity in the resultant groundwater.

Zone groundwaters could indeed be the result of a mixture of dilute seawater and shallow groundwater in varying portions. Chloride and oxygen-18 mass balance arguments further suggest that mixing involves three endmembers, including isotopically light late Wisconsinan recharge water and relict seawater of similar age.

5.6 Conclusions from Hydrogeochemistry and Chemical Modelling

The Ca-HCO₃ type water of the L-Zone and the Na-Cl type water of the T-Zone mix in varying portions to produce the groundwater chemical compositions observed in the drawdown cone created over the Newfoundland Zinc Mine. This mixing trend is supported by major ion data, δ^{13} C-1/C_t and δ^{18} O-Cl data and indicates vertical interconnectivity between the L- and T-Zone mining areas. Two flow systems make up the flow model in this mine environment as suggested by the dilute chemistry of the L-Zone (local flow system) and the salinity of the T-Zone groundwaters (regional flow system).

Dissolved oxygen, pH and δ^{18} O data support the hypothesis that the deep T-Zone groundwaters belong to a more chemically evolved regional flow system. The decrease in δ^{18} O with increasing Cl (Figure 5.23) is most likely due to a higher elevation of recharge for the dilute component of the regional groundwater.

Trace elements (I, V, Rb) appear to be controlled by residence-time in the deep flow system and their direct

relationship with Cl supports accumulation of salt load in an evolving regional (roundwater. However, high δ^{13} C values for DIC in T-Zone waters argues against evolution solely by carbonate dissolution, and suggests seawater mixing. Zinc, U, Mo, etc., are enhanced in the shallow groundwaters of the local flow system and appear to be related to dissolution and oxidation of specific sphalerite ore sources. Zinc distributions outline flow lines of a local flow system that are directed toward the L-Zone workings from surrounding areas. Barium and Sr concentrations also appear to be influenced by local occurrences of soluble minerals in vugs and to a lesser extent by dissolution of impure carbonates or mixing with seawater. Relatively high tritium values, and undersaturation of some T-Zone groundwater samples suggest direct mixing with dilute surface water along major conduits such as faults, individual joints or zones of increased permeability due to persistent joint patterns typical of karstified rocks.

Stable isotopes (δ^{13} C and δ^{2} H) indicate that all the groundwaters have a meteoric origin, and they help to distinguish between waters of the same flow system. Major contributions to the mine inflow are from shallow groundwater. Calcite supersaturation and stable isotope "evaporation" shifts in mine samples nearest Spring Lake indicate that some mine inflows contain a component of evaporated surface water, and that at least some mine inflow originates from Spring lake.

Geochemical modelling indicates that the undersaturated nature of shallow carbonate groundwater sampled in 1985 and 1986

could have resulted from secondary processes such as mixing and dilution of two different types of water, or from kinetic factors related to rapid rainwater recharge through sinkholes etc.. However, other mixing scenarios, such as two-stage mixing/dilution, could also be responsible for observed disequilibrium. Due to (a) the prevalence of carbonate minerals in the overburden and (b) the depressed water table, some recharge most likely becomes equilibrated with calcite and dolomite above the water table under open-system conditions, whereas groundwaters recharged through major conduits (such as sinkholes and faults) would predominantly dissolve carbonate minerals below the water table under closed-system conditions.

Both open- and closed-system models could explain the undersaturated state of L-Zone groundwater. Modelling showed that shallow groundwaters evolved by dissolving dolomite first. Thus, shallow groundwater evolutionary modelling suggested that these waters were recharged in the Lead Lake basin area (underlain by dolostone, with a number of known sinkholes) and not in areas underlain by limestone (eg. along the axis of the anticline).

The Cl, Na, and K levels in T-Zone groundwaters can be reproduced by mixing shallow (L-Zone) groundwater with diluted seawater. Stable isotope-chloride mass balance calculations suggest that seawater is diluted with an isotopically light groundwater, probably of Late Wisconsinan age, so that the seawater source may be relict. The relatively high δ^{13} C and low

DIC values measured in T-Zone groundwaters support the hypothesis of a seawater source for the T-Zone salinity. Thus, it is possible that groundwater recharged in the Long Range Mountains flowed regionally and mixed with ancient seawater that was trapped within the submerged platform during the last ice age and that this regional groundwater in turn mixed with shallow local mine groundwater at or near T-Zone depths. Sulphate concentrations cannot be explained solely by a seawater mixture and Ba variability in T-Zone groundwaters suggests local occurrences of sulphate-type minerals in the mine area.
Chapter 6

CONCEPTUAL MODEL OF FLOW SYSTEMS

6.1 Physical Characterization of Mine Flow Regime

The Newfoundland Zinc Mine is situated in an highly anisotropic, moderately karstified, carbonate aquifer. Fracture mapping and analysis has determined two major joint sets with a mean plane orientation of 039/89 for Set 1 and 310/88 for Set 2. A third joint set was also distinguished but is less dominant than the first two sets. Underground conduit mapping showed that the closely spaced, long, sub-horizontal bedding planes which form the fourth fracture set, are an important water conducting feature in the mine. Undisturbed surface drainage follows the northeast regional (geological) trend and coincides with the prominent regional fault orientation of NO28E. The axis of maximum transmissivity (calculated from pump-test data) is N63E and corresponds to an average orientation of the two documented major joint sets, the dominant regional NE trend, and an average of major local fault orientations. Extensive dissolution along these discontinuities, common in karstified carbonate terranes, contributes most to the permeability of this aquifer.

Carbonate dissolution is evident along the local anticlinal structure, along the regional lineaments where sinkholes are dominant, and along the joints, faults and bedding planes in the shallow L-Zone mine workings where large groundwater inflows occur. On a small scale, stylolites may localize dissolution by

groundwater and decrease rock strength. Sinkholes have very limited areal influence as confirmed by dye tracer tests (Acres, 1974a) in which dye injected in the Spring Lake sinkhole was not detected in the nearby shallow L-Zone workings.

Permeability decreases with depth and is greatest near the ground surface weathering zone of the carbonate platform. This conclusion is supported by drill-core analysis, underground water -conduit and open pit mapping, packer testing, and a compilation of regional water well surveys. Hydraulic conductivity for the upper 10 m of the aquifer (greatest permeability) ranges from 1 x 10^{-2} to 1 x 10^{-3} cm/s (Acres, 1974a). Major individual conduits of groundwater flow are very significant locally for the permeability distribution in this carbonate aquifer. The highly variable tritium levels (1-41 T.U.), variation in δ^{18} O/Cl trends, and changing chemistry found in mid-depth groundwater sequential samples may be the result of localized flow controlled by major faults, joints or increased fracturing in zones. Geochemical evidence for mixing of L- and T-Zone waters, and the dominance of near-vertical joint sets and faults suggest excellent vertical connection between the shallow and deep parts of the mine.

The large drawdown cone centered over the mine is primarily a manifestation of dewatering operations. It has depressed the natural level of the water table by over 60 m. Hydraulic gradients around the L-Zone are towards this drawdown cone. Irregularities in its shape and the drawdown anisotropy observed in pump tests appear to be related to the above-stated fracture

and fault geometry.

Mine pumping rates are directly related to seasonal variations in precipitation. Effects of mine dewatering on the local flow system are restricted to an area 1.5 km north and south of the eastern L-Zone workings and do not appear to extend to the T-Zone area. This is indicated by the reversal of the hydraulic gradients towards the west over the T-Zone area (in response to the topographic slope), and by the chemical homogeneity of the discharge zone near the T-Zone. The limited areal extent of pumping effects may be a function of the close proximity of this eastern area to increased permeability near the crest of the anticline and near the most extensive underground workings and pumping operations in the L-Zone.

6.2 Groundwater Geochemistry

Groundwaters sampled at the Newfoundland Zinc Mine and environs are of two types: 1) oxidizing, shallow waters with low total-dissolved-solids and chloride content (<125 ppm), and 2) reducing, deeper, saline waters of Na-Cl type with high chloride (700-1000 ppm) and sulphate (300-400 ppm) concentrations and low δ^{18} o values. Major-element relationships suggest mixing of these two types of groundwaters within the mine environment.

Higher than average SO₄ and K concentrations in some shallow groundwaters indicate local dissolution of gypsum, sylvite and other salts. However, sulphate in shallow groundwaters probably has 3 sources: local gypsum dissolution, sphalerite oxidation,

and mixing with T-Zone groundwater. Variability in the 1986 Sr and Ba levels is controlled by more than one factor: dissolution of impure carbonate, mixing with low Sr groundwater, seawater mixing and local dissolution of sulphate-type minerals.

There are two types of trace elements: 1) those that are elevated in the T-Zone (I, V, and Rb) and related to high salinities indicative of control by groundwater residence-time; and 2) other elements such as Zn, Cd, Mo, and U which are more concentrated in shallow groundwaters and associated with sphalerite oxidation.

Shallow carbonate groundwaters carry up to 4457 ppb zinc near known sources of sphalerite mineralization. Zinc solubility in the groundwaters of the Newfoundland Zinc Mine is controlled by the availability of sphalerite in the carbonate host rock, by redox conditions (sphalerite oxidation), and to a lesser degree by carbonate-ion complexing.

Based on modelling results, it can be deduced that undersaturation due to 1) slow dissolution kinetics resulting from high flow rates and 2) secondary mixing of saturated but chemically different waters are both possible evolutionary paths for shallow groundwaters. Shallow carbonate groundwaters most likely evolved by dissolving dolomite first in the carbonate sequence. Rapid recharge through sinkholes situated in dolostone areas supports closed-system dissolution, but the widespread occurrence of carbonate minerals in the overburden implies opensystem dissolution followed by mixing as a cause of

disequilibrium. Thus, both open- and closed-system dissolution could produce the observed shallow groundwater geochemistry.

 δ^{18} O values with increasing decrease in The **C1** concentrations in deep mine waters suggests that saline groundwaters may have been recharged at a higher elevation (Long Range Mountains) and consequently may belong to a regional flow system. Saline groundwaters may have derived their elevated salt concentration from a deep regional flow system that has dissolved minerals such as gypsum, halite and sylvite. However, δ^{13} C-1/DIC data argues against this hypothesis and the high δ^{13} C and lower DIC for T-Zone groundwaters suggest the possibility of mixing of shallow groundwaters with a seawater-type carbon source. The Quaternary record (inundation of the carbonate platform by seawater during the last ice age) implies a possible relict seawater source for the T-Zone salinity and DIC. Under the modelling constraints an average T-Zone groundwater can not be matched exactly by mixing a dilute seawater with shallow groundwater. The variable Ba, Sr and SO₄ contents in 1986 T-Zone samples supports some local dissolution of sulphate-type minerals suggesting a more complex model is necessary to explain the observed salinities.

6.3 Conceptual Model

The Newfoundland Zinc mine is situated in an aquifer that has both diffuse and conduit flow characteristics. The pervasive dominant joint sets imply that the aquifer has primarily diffuse

characteristics with enlarged faults, joint and bedding-plane conduits controlling groundwater flow on a local scale. Figure 6.1 displays the interaction of the major conduits and natural controls on groundwater flow in this mining area. It emphasizes the role of the vertical joints and sinkholes in conducting surface recharge to more extensive bedding planes and faults in the subsurface. Increased dissolution near the anticlinal axis (eq. sinkholes) may serve to channel waters underground and emphasizes the importance of karstic processes in the hydrogeology of this mining area. The frequency of these discontinuities and the effects of weathering decrease with depth, resulting in a decrease in aquifer permeabililty. Mine dewatering increases hydraulic gradients and draws water along these conduits at a greater rate than in an undisturbed environment. This is evident from the permanent draining of Lead Lake and Zinc Lake since the commencement of mining, and the 60 m deep drawdown cone over the mine.

Groundwater flow rate can be as much as 2.3×10^{-2} m/s along major faults within the shallow L-Zone. Based on tritium analyses, portions of all analyzed groundwaters have been recharged within the last 33 years, illustrating the dynamic nature of this groundwater regime.

Local groundwater flow directions at the Newfoundland Zinc Mine are shown in Figure 6.2. These flow lines are based on the hydraulic-head maps and supported by well/mine water geochemistry and geochemical modelling. Flow directions are towards the L-

Figure 6.1 Sketch of major controls on groundwater flow in the Newfoundland Zinc Mine area. Vertical joints and sinkholes conduct surface recharge to solutionenlarged faults and laterally extensive bedding planes. Aquifer permeability decreases with depth.

Figure 6.2 Deduced groundwater flow directions for the Newfoundland Zinc Mine area. Local flow system flow lines are based on hydraulic gradients calculated from 1985 and 1986 water-table surveys, geochemical maps and evolutionary modelling. Possible areas of recharge underlain by dolostone are also outlined on the map.

.

Zone mine workings. Only the area immediately surrounding the underground workings and an area 1.5 km north of these workings seems to be affected by the mine drawdown cone. Geochemical modelling suggests that shallow groundwaters were recharged in areas underlain by dolostone (see Figure 6.2), which restricts recharge to the Mike Lake-Zinc Lake-Lead Lake basin. Recharge consisting of lake water from Mike Lake and rainwater that enters the dry lake bottoms of Zinc Lake and Lead Lake via sinkholes, fractured outcrops and overburden, is drawn towards the L-Zone underground workings in response to the gradients imposed by underground pumping. Sinkholes are more prominent along the anticlinal axis and suggest greater dissolution due to increased permeability. The sinkholes coincident with dolomite areas, and their close proximity to the anticlinal axis, suggest that this lake basin is the principal recharge area for shallow mine Groundwater may also be recharged in a zone further inflows. east on the other limb of the anticline (Figure 6.2). The apparent contribution of evaporated surface water in shallow mine groundwater samples, and supersaturation in one L-Zone sample indicate that Spring Lake contributes directly to shallow mine inflows via joint and bedding planes intersecting the lake bottom or the lake's northwest edge (Figure 6.2).

The regional flow system proposed to account for the more saline groundwaters is assumed to be flowing below the local flow regime. The greater depth of the regional flow system suggests it to be less affected by mine dewatering. The Grenville

basement, more than 1 km below the ground surface, is regarded as the regional flow-system boundary. Carbonate supersaturation in most lakes in the coastal region, and undersaturation in lakes elsewhere give evidence for both local and regional flow systems discharging near the coast of the carbonate platform on the Great Northern Peninsula of Newfoundland.

The following conclusions are based on stable isotopechloride mass balances, DIC/carbon-13 data and geochemical modelling which support the seawater salinity source. It is suggested that the deep, saline (T-Zone) groundwaters of the mine result from a two-stage mixing process in which groundwater with low δ^{18} O values, recharged in the Late Wisconsinan at high altitudes in the Long Range Mountains, flows westward in a regional flow system and mixes with a paleowater. This paleowater appears to be relict seawater, trapped during isostatic rebound following the last ice age, when this platform was inundated with seawater. In the mine, mixing of shallow groundwater with this saline groundwater produces the observed range of salinities. Locally, dissolution of sulphate-type minerals may account for some of the T-Zone and L-Zone salinity.

REFERENCES

ACRES CONSULTING SERVICES, LTD. (1974a) Groundwater Study, Daniel's Harbour, 'L' Zone Orebody. Newfoundland Zinc Mines unpublished report, 22p.

ACRES CONSULTING SERVICES, LTD. (1974b) 'L' Zone Orebody decline, Estimate of well dewatering quantities. Newfoundland Zinc Mines unpublished report, 16p.

ACRES CONSULTING SERVICES, LTD. (1975a) Groundwater conditions. Newfoundland Zinc Mines unpublished report, 15p.

ACRES CONSULTING SERVICES, LTD. (1975b) Groundwater conditions 'L-Zone' Daniel's Harbour. Newfoundland Zinc Mines unpublished report, 9p.

- ACRES CONSULTING SERVICES, LTD. (1976) Review of Groundwater Conditions, Daniel's Harbour. Newfoundland Zinc Mines unpublished report, 12p.
- ACRES CONSULTING SERVICES, LTD. (1977) Review of the effect of mine water discharge on groundwater conditions. Newfoundland Zinc Mines unpublished report, 13p.
- ACRES CONSULTING SERVICES, LTD. (1978) Pumping Requirement Estimates for future development, Daniel's Harbour Mine. Newfoundland Zinc Mines Ltd. unpublished report, 13p.
- ACRES CONSULTING SERVICES, LTD. (1979) Review of groundwater conditions 1978-1979. Newfoundland Zinc Mines Daniel's Harbour Mine unpublished report, 11p.
- ASTM (1978) D 2936-78 Standard test method for direct tensile strength of intact rock core specimens. ASTM (1979) D2938-79 Standard test method for unconfined compressive strength of intact rock core specimens. 466p.
- ASTM (1980) D 2664-80 Standar test method for triaxial compressive strength of undrained rock core specimens without pore pressure measurements. 411p.
- BACK W. and HANSHAW B. B. (1970) Comparison of chemical hydrogeology of the carbonate peninsula of Florida and Yucatan. Journal of Hydrology, 10, 330-368.
- BARAKSO J. J. and BRADSHAW B. A. (1971) Molybdenum surface depletion and leaching. Geochemical Exploration, Special Volume, 11, C.I.M. 78-84.
- BECK F. B. (1986) Groundwater monitoring considerations in karst on young limestones. in Proceedings of the Environmental

Problems in Karst Terranes and their Solutions Conferenc. 229p. National Water Well Association

- BONI C. F. (1975) Recherches geologiques et geophysiques. in International Union of Geological Sciences Series B, Number 3. Hydrogeology of Karstic Terrains, Burger A. and Dubertret L. (editors) 91p. International Association of Hydrogeologists.
- BROOK G. A. and ALLISON T. L. (1983) Fracture mapping and ground subsidence susceptibility modelling in covered karst terrain: Dougherty County, Georgia. in Environmental Karst, Dougherty P.H. editor, Geo Speleo Publications.
- BROOKINS D. G. (1988) Eh pH Diagrams for Geochemistry Springer -Verlag 176 p.
- CANMET (1977) Pitslope manual: Supplement 3-1 Laboratory Classification tests. Energy mines and Resources Canada, 22-29.
- CARTER F. B., MAHER M. L. J., ANNAN A. P. and RICHARD J. A. (1986) Specialized investigation techniques for defining Karstic Cavities. in Proceedings of the Environmental Problems in Karst Terranes and their solutions conference. Bowling Green, Kentucky, 345-367.
- CAWOOD P. A. and WILLIAMS H. (1986) Northern extremity of the Humber Arm Allochthon in the Portland Creek area, western Newfoundland, and relationships to nearby groups. Current Research, Part A, Geological Survey of Canada, Paper86-1a, 675-682.
- CHRISTIAN D. (1986) Diamond drilling at Holyrood and Daniel's Harbour Newfoundland. unpublished drillers report for J.E. Gale, Dept. of Earth Sciences, Memorial University.
- COLEMAN, M.L., SHEPHERD, T.J., DURHAN, J.J., ROUSE, J.E. and MOORE, G.R. (1982) Reduction of water with zinc for hydrogen isotope analysis. Analytical Chemistry, 54, 993-995.
- COLLINS J. A. and SMITH L. (1975) Zinc deposits related to diagenesis and intrakarstic sedimentation in the Lower Ordovician St. George Formation, Western Newfoundland. Bulletin of Canadian Petroleum Geology. 23, 393-427.
- CORON C. R. (1982) Facies relations and ore genesis of the Newfoundland Zinc Mines Deposit, Daniel's Harbour, Western Newfoundland. unpublished Ph.D. Thesis, University of Toronto, 164p.

CRAIG H. (1961) Standard for reporting concentrations of

deuterium and oxygen-18 in natural waters. Science, 133, 1833-1834.

CROSSLEY R. V. and LANE T. E. (1984) A Guide to the Newfoundland Zinc Mines Limited ore bodies, Daniel's Harbour. Newfoundland Department of Mines and Energy, Report 84-3, 45-51.

CUMMING L. M. (1968) St. George-Table Head Disconformity and Zinc Mineralization, Western Newfoundland. Canadian Institute of Mining and Metallurgy Bulletin, 721-725.

- DAVIS S. N. (1969) Porosity and permeability of natural materials. Flow Through Porous Media, ed. R. J. M. De Wiest. Academic Press, New York, p. **.
- DAVIS G. H., LEE C. K., BRADLEY E. and PAYNE B. R. (1970) Geohydrologic Interpretations of a volcanic Island from Environmental Isotopes. Water Resources Research, 6, 1, 99-109.
- DEARIN C. (1976) The stratigraphy, diagenesis, and possible origins of the Lower Ordovician zinc deposits, Daniel's Harbour, Newfoundland. Maritime Sediments, 12, 1, 36p.
- DEERE D. U. (1964) Technical description of rock cores for engineering purposes. Rock Mechanics and Engineering Geology. 1, 17-22.
- DEERING M. F., MOHR E. T., SYPNIEWSKI B.F. and CARLSON E. H. (1983) Regional hydogeochemical patterns in ground water of northwestern Ohio and their relation to Mississippi Valley -type mineral occurrences. Journal of Geochemical Explortation, 19, 225-241.
- DEINES P., LANGMUIR D. and HARMON R.S. (1974) Stable carbon isotope ratios and the existence of a gas phase in the evolution of carbonate groundwaters. Geochimica et Cosmochimica Acta, 38, 1147-1164.
- DIGGLE P. J. and FISHER N. I. (1985) Sphere: A contouring program for spherical data. Computer and Geosciences. 11, 725-766.
- ERIKSSON E. (1983) Stable isotopes and tritium in precipitation. in Guidebook on Nuclear Techniques in Hydrology, Technical Reports Series No. 91, I.A.E.A., Vienna, 439p. (19-33).
- FAURE G. (1977) Principles of Isotope Geology, 464 p. John Wiley and Sons Inc.
- FAUST, S.D. and HUNTER J.V. ed. (1967) Mineralogic factors in natural water equilibria by Bricker O.P. and Garrels R.M.

p.449-468 in Principles and Applications of Water Chemistry. 643p. John Wiley and Sons Inc.

- FONTES J. -CH. (1983a) Dating of Groundwater. in Guidebook on Nuclear Techniques in Hydrology, Technical reports series No. 91, International Atomic Energy Agency, Vienna, 285-336.
- FONTES J. -CH. (1983b) Groundwater in fractured rocks. in Guidebook on Nuclear Techniques in Hydrology, Technical reports series No. 91, International Atomic Energy Agency, Vienna. 337-350.
- FREEZE R. A. and CHERRY J. A. (1979) Groundwater, 604p. Prentice-Hall.
- FRITZ P. (1983) Environmental isotope hydrogeology: Tools to compliment the classical techniques of physical hydrology and geochemistry. Dept. of Earth Sciences, University of Waterloo, Ontario, 46p.
- GALE J. E. and WITHERSPOON P. A. (1979) An approach to the fracture hydrology at Stripa, preliminary results. Lawrence Berkeley Laboratory Report LBL-7079, SAC-15.
- GARRELS R. M. and CHRIST C. L. (1965) Solutions, Minerals, and Equilibria, 450 p. Harper and Row.
- GAT J. R. (1971) Comments on the stable isotope method in regional groundwater investigations. Water Resources Research, 7, 4, 980-993.
- GAT J. R. (1981) Chapter 10: Groundwater. in Stable Isotope and Oxygen-18 in the Water Cycle. Technical report series No. 210, (p. 223-229). I.A.E.A, Vienna, 337p.
- GOLDER ASSOCIATES. (1983) Report to Newplan Consultants Ltd. Geological Assessment, Proposed Supplementary Water Supply Port au Chox, Newfoundland. Report # 831-5034, 21p.
- GONFIANTINI R. (1981) Chapter 4. The § -notation and the mass -spectrometric measurement techniques. in Stable Isotope Hydrology: Deuterium and Oxygen-18 in the Water Cycle, Technical Reports Series No. 210, (p.35-81) I.A.E.A., Vienna, 337p.
- HANSULD J. A. (1966) Eh and pH in geochemical prospecting. in Proceedings, Symp. Geochemical Prospecting, Geological Survey of Canada, Dept. of Energy, Mines and Resources, paper 66-54, 172-187.

- HAYWICK D. W. and JAMES N. P. (1984) Dolomites and dolomitization of the Lower Ordovician St. George Group of Western Newfoundland. Current Research, part A, Geological Survey of Canada, Paper 84-1A, 125-130.
- HEALTH AND WELFARE CANADA (1987) Canadian Drinking Water Guidelines, 12-17.
- HEATH R. C. (1983) Basic ground-water hydrology. United States Geological Survey Water-Supply Paper 2220. 84p.
- HELZ G. R. and SINEX S. A. (1974) Chemical equilibria in the thermal spring waters of Virginia. Geochimica et Cosmochimica Acta, 38, 1807-1820.
- HEM J. D. (1985) Study and interpretation of the chemical characteristics of natural water. United States Geological survey Water-Supply Paper 2254, 263p.
- HOAG R. B. Jr. and WEBBER G. R. (1976a) Significance for mineral exploration of sulphate concentrations in groundwaters. CIM bulletin, 69, 776, 86-90.
- HOAG R. B. Jr. and WEBBER G. R. (1976b) Hydrogeochemical exploration and sources of anomalous waters. Journal of Geochemical Exploration, 5, 39-57.
- HORNBROOK E. H. W., DAVENPORT P. H., and GRANT D. R. (1975) Regional and detailed geochemical exploration studies in glaciated terrain in Newfoundland. Newfoundland Department of Mines and Energy, Report 75-2, 116p.
- HURLBUT JR. C.S. and KLEIN C. (1977) Manual of Mineralogy. 532 p., John Wiley and Sons.
- INTERNATIONAL ATOMIC ENERGY AGENCY/I.A.E.A (1981) Statistical treatment of environmental isotope data in precipitation. Technical Reports Series No. 206, Vienna, 255p.
- I.A.E.A. (1983a) Environmental isotope data no. 7: World survey of isotope concentration in precipitation (1976-1979). Technical Reports Series No. 226, Vienna, 241p.
- I.A.E.A. (1983b) Isotope techniques in the hydrogeological assessment of potential sites for the disposal of high-level radioactive wastes. Technical Reports Series No. 228, Vienna, 151p.
- I.A.E.A. (1986) Environmental isotope data no. 8: World survey of isotope concentration in precipitation (1980-1983). Technical Reports Series No.264, Vienna, 184p.

- ISRM (1981) Brown, editor. Suggested method for determing indirect tensile strength by the brazil test. Pergamon Press 211p.
- JAMES N. P. and STEVENS R. K. (1982) Excursion 2B:Anatomy and evolution of a lower paleozoic continental margin, Western Newroundland. 11th International Congress on Sedimentology, McMaster University, Field Excursion Guidebook 2B, 75p.
- JAMES N. P., STEVENS R. K., BARNES C. R. and KNIGHT I. (1989) Evolution of a Lower Paleozoic Continental-Margin Carbonate Platform, Northern Canadian Appalachians. in Society of Economic Paleontologists and Mineralogists Special Volume No. 44 Controls on Carbonate platform and basin development, editors Crevello P.D., Wilson, James L., Sarg J.F., Read J. 123-146.
- KASTNING K.M. and KASTNING E.H. (1981) Fracture control of dolines, caves, and surface drainage: Mississippian Plateau, Western Kentucky, U.S.A. Proceeding's of the 8th International Congress of Speleology, 696-697.
- KLAPPA C. F., OPALINSKI P. R. and JAMES N. P. (1980) Middle Ordovician Table Head Group of western Newfoundland: a revised stratigraphy. Canadian Journal of Earth Science, 17, 1007-1019.
- KNIGHT I. (1977) Cambro-Ordovician platformal rocks of the Northern Peninsula, Newfoundland. Nefoundland Department of Mines and Energy, Report 77-6, 27p.
- KNIGHT I. (1984) Mineralization in Cambro-Ordovician rocks, Western Newfoundland. In "Mineral Deposits of Newfoundland, a 1984 Perspective" H.S.Swinden (compiler) Newfoundland Department of Mines and Energy, Report 84-3, 37-44.
- KNIGHT I. (1985) Geological mapping of Cambrian and Ordovician sedimentary rocks of the Bellburns (12I/5/6), Portland Creek (12I/4) and Indian Lookout (12I/3) map areas, Great Northern Peninsula, Newfoundland. Newfoundland Department of Mines and Energy, Report 85-1, 79-88.
- KNIGHT I. and JAMES N. P. (1987) The Stratigraphy of the Lower Ordovician St. George Group, Western Newfoundland: The interaction between eustacy and tectonics. Canadian Journal of Earth Sciences, 24, 1927-1951.
- KOCH JR. G. S. and LINK R. F. (1971) Statistical analysis of geological data. Vol. 2, 438 p., Dover Publications Inc.

- KUNKLE D. (1986) Fracture system and hydraulic and acoustic properties of bedrock at Parson's Pond, Western Newfoundland, unpublished B.Sc. Thesis, Memorial University, Newfoundland.
- LANE T. E. (1984) Preliminary classification of carbonate breccias, Newfoundland Zinc Mines, Daniel's Harbour, Newfoundland. Current Research, Part A, Geological Survey of Canada, Paper 84-1a, Report 84-1, 505-512.
- LANE T. E. (in prep.) Ph.d. Thesis, Memorial University, Newfoundland. Dolomitization, brecciation and Zinc mineraliztion and their stratigraphic and structural framework, Upper St. George Group Daniel's Harbour Western Newfoundland.
- LANGMUIR D. (1978) Uranium Solution-Mineral Equilibria at low temperatures with applications to sediment ore deposits. Geochimica et Cosmochimica Acta, 42, 547-569.
- LATTMAN L. H. (1958) Technique of mapping geologic fracture traces and lineaments on aerial photographs. Photogrammetric Engineering, 24, 568-576.
- LATTMAN L. H. and PARIZEK R. R. (1964) Relationship between fracture traces and the occurrence of ground water in carbonate rocks. Journal of Hydrology, 2, 73-91.
- LEGRAND H. E. and STRINGFIELD V. T. (1971) Development and distribution of permeability in carbonate aquifers. Water Resources Research, 7, 5, 1285-1294.
- MEMORIAL UNIVERSITY OF NEWFOUNDLAND (1987) Unpublished computer programs, Newfoundland.
- MATTHESS G. (1974) Heavy metals as trace constituents in natural groundwaters and polluted. Geologie en Mijnbouw, 53, 4, 149-155.
- MOOK W.G., BOMMERSON, J.C. and STAVERMAN W.H. (1974) Carbon isotope fractionation between dissolved bicarbonate and gaseous carbon dioxide. Earth Panetary Science Letters, 22, 169-176.
- MOTYKA J. and WILK Z. (1986) Zone of nonlinear groundwater flow around mine workings in a karst-fractured rock massif and its significance for the reliability of mine water inflow predictions. Archiwum Gornictwa, 31, 2, 417-445.
- MWENIFUMBO J. (1986) Personal communication. Borehole Geophysics Section, Mineral Resources Division, Energy, Mines and Resources Canada, Geological Survey of Canada, Ottawa,

Ontario.

- NOLAN, WHITE AND ASSOCIATES LTD. (1979) Hydrogeology of the Great Northern Peninsula. Water Resources Report 2-1 Groundwater Series, Dept. of Consumer Affairs and Environment, Water Resources Branch, Newfoundland, 68p.
- PALMER C. D. and CHERRY J. A. (1984) Geochemical evolution of groundwater in sequences of sedimentary rocks. Journal of Hydrology, 75, 27-65.
- PAPADOPULOS I. S. (1967) Non-steady flow to a well in an infinite anisotropic aquifer. in Proceedings, Dubrovnik Symposium on Hydrology of Fractured Rocks, International Association of Scientific Hydrology, 1, 21-31.
- PARIZEK R. R. and SIDDIQUI S. H. (1970) Determining the sustained yields of well in carbonate and fractured aquifers. Ground Water, 8, 5, *.
- PARKHURST D. L., THORSTENSON D. C. and PLUMMER L. N. (1980)
 PHREEQE A computer program for geochemical calculations.
 U. S. Geological Survey, Water-Resources Investigations, 80
 -96.
- PIPER A. M. (1944) A graphic procedure in the geochemical interpretation of water analyses. Transactions American Geophysics Union, 25, 914-923.
- PLUMMER L. N. (1975) Mixing of sea water with calcium carbonate ground water. in Quantitative studies in the geological sciences E.H.T. Whitten (editor) Geological Society of America, memoir 142, 219-236.
- PLUMMER L. N., PARKHURST, D. L. and WIGLEY, T. M. L., (1979) Critical review of kinetics of calcite dissolution and precipitation. in: E.A. Jenne (Editor), Chemical Modelling in Aqueous Systems, Speciation, Sorption, Solubility and Kinetics. American Chemical Society Symposium. Ser. 93 537 -573.
- PLUMMER L. N., PARKHURST D. L. and THORSTENSON D. C. (1983) Development of reaction models for groundwater systems. Geochimica Cosmochimica Acta, 47, 665-686.
- PRICE N. J. (1966) Fault and Joint Development in Brittle and Semi-Brittle Rock. Oxford Pergamon Press, 176p.
- PROUDFOOT D. N. and ST. CROIX L. (1987) Quaternary geology of the Bellburns (121/5 and 6) map area. Current Research, Newfoundland Department of Mines and Energy, Report 87-1, 11-21.

RAUCH H. W. and WHITE W. B. (1970) Lithologic controls on the development of solution porosity in carbonate aquifers. Water Resources Research, 6, 4, 1175-1191.

- ROSS R. J. and JAMES N. P. (1987) Brachiopod biostratigaphy of the middle Ordovician Cow Head and Table Head groups, western Newfoundland. Canadian Journal of Earth Science, 24, 70-95.
- ROULEAU A. and GALE J.E. (1985a) Characterization of the fracture system at Stripa with emphasis on the ventilation drift. in Lawrence Berkeley Laboratory Technical Information Report, No. 52, 115p.
- ROULEAU A. and GALE J. E. (1985b) Statistical characterization of the fracture system in the Stripa Granite, Sweden. Int. J. Rock mech. Min. Sci. and Geomech. Abstr., 22, 6, 353-367.
- SALOMONS W. F. U. (1984) Metals in the Hydrocycle. 349p., Springer-Verlag Berlin, New York.
- SANGSTER D. F. (1968) Some chemical features of lead-zinc deposits in carbonate rocks. Geological Survey of Canada, Department of Energy, mines and resources, Paper 68-39, 17p.
- SMART C. C. and FORD D. C. (1986) Structure and function of a conduit aquifer. Canadian Journal of Earth Sciences, 23, 919-929.
- SPENCER E. W. (1977) Introduction to the Structure of the Earth, McGraw-Hill Book Company.
- STENZEL S. R., KNIGHT I., and DAMES N. P. (1990) Carbonate platform to foreland becaus: revised stratigraphy of the Table Head Group (Middle Ordovician), western Newfoundland. Canadian Journal of Earth Sciences, 27, 14-26.
- STOJIC P., MILICEVIC M. and MILANOVIC P. (1976) Use of piezometers boreholes for karst investigations. in Karst Hydrology and Water Resources, Proceedings of the US -Yugoslavian Symposium, Dubrovnik, Volume 1, Karst Hydrology. Yevjevich V. (editor) 409-418, Water Resources Publications.
- STRONG D. F. and LONGERICH H. P. (1985) Machinations: The Inductively Coupled Plasma/Mass Spectrometer (ICP/MS). Geoscience Canada, 12, 72-75.
- THRAILKILL J. (1968) Chemical and hydrologic factors in the excavation of limestone caves. Geological Society of America Bulletin, 79, 19-46.

. .

- THRAILKILL J. (1986) Models and methods for shallow conduit-flow carbonate aquifers. in proceedings of the Environmental Problems in Karst Terranes and Their Solutions Conference, 17-31.
- TOTH J. (1963) A theoretical analysis of groundwater flow in small drainage basins. Journal of Geophysical Research, 68, 4795-4812.
- TOTH J. (1978) Gravity-induced cross formational flow of formation fluids, Read Earth Region, Alberta, Canada: analysis, patterns and evolution. Water Resources Research, 14, 5, 805-843.
- VAN EVERDINGEN R. O. (1970) The Paint Pots, Kootenay National Park, British Columbia--acid spring water with extreme heavy-metal content. Canadian Journal of Earth Sciences, 7, 831-852.
- VOGEL J. C. (1970) Carbon-14 dating of groundwater. in Isotope Hydrology, I.A.E.A., 215-223.
- WELHAN J. A., MILLAR, W.D., GALE, J.E. (1988) Geochemistry of groundwater-lake interaction in a carbonate terrain: application to geochemical exploration. Abstracts of Geological Association of Canada, Mineralogical Association of Canada and Canadian Society of Petroleum Geologists joint Conference, St. John's.
- WELHAN J. A. and GALE J. E. (1986) Hydrogeological approach to mineral exploration preliminary results from Newfoundland Zinc Mine and area, Daniel's Harbour, Newfoundland. unpublish report.
- WILLIAMS H. (1979) Appalachian Orogen in Canada. Camadian Journal of Earth Sciences, 16, 792-807.

APPENDIX A

Diamond drill logs and ROD plots for 1986 Drill Holes

Basic information on diamond drill holes drilled during the 1986 field season (Christian, 1986), their drill logs and RQD/fracture frequency/mean core length plots are given in this appendix. Core from the newly drilled holes discussed in Section 2.1.1 was logged for rock quality designation, RQD (Deere, 1964). RQD is the percentage of core length that is longer than 10 cm. Fracture frequency, mean core length and rock lithology were also recorded along each drill core. A metre interval was used with a 20 cm "moving average approach" to measure the RQD and fracture frequency, adopted from methods used by Rouleau & Gale (1985a). Core was also logged for any distinguishing characteristics, for instance the presence of stylolites, mineralogy etc.. All drill holes were collared in the pseudobreccia unit and drilled vertically.

DANIEL'S HARBOUR Diamond Drill Holes (AW core)

Hole	Footage	Orientation	Top of casing elevation*	Location
DDH-1-86	50	vertical	303.1 m	Mike lake
DDH-2-86	45	vertical	303.0 m	Lead lake
DDH-3-86	47	vertical	317.7 m	H-Zone pit
DDH-4-86	34	vertical	300.2 m	Spring lake

* relative to Teck Exploration Datum

DDH-1-86

METE: FROM	RAGE TO	FORMATION	DETAILS
0	0.35	pseudobreccia	collar, stylolites, grey bed, 1 foot casing
0.35	1.29	pseudobreccia	35 % sparry pseudobreccia 10 % vuggy, 1mm2cm range vug size, brecciation extensive, 1mm4cm diameter black fragments
1.29	1.70	pseudobreccia	fg light grey mottled, white veining, stylolites perpen. to core axis at 1.55 interlayer with no vuggy sparite
1.70	3.05	pseudobreccia	'120' marker bed, similar to previous interval, 35-40 % sparry matrix, 5 % vugs within sparry dolomite
3.05	3.66	pseudobreccia	light grey interbed, with white blebs/mottling
3.66	4.16	pseudobreccia	20 % sparry matrix with < 5% vuggs
4.16	5.03	pseudobreccia	light grey white sparry minute veinlets, interbed, black with some stylolites
5.03	5.64	pseudobreccia	15 % white sparry matrix, < 1% vugs, 2% disseminated pyrite
5.64	6.86	pseudobreccia	fg light grey interbed with white sparry veinlets, same as previous interval
6.86	7.56	pseudobreccia	30 % white sparry matrix, 1-5% vuggs
7.56	8.11	pseudobreccia	mainly black fracture veinlets probably dolomitized stylolites, 2mm wide white sparry veinlets
8.11	8.72	pseudobreccia	15 % white sparry matrix, 5 % vugs
8.72	9.42	pseudobreccia	light grey, fg, mottled, 2-3 mm white sparry veins
9.42	9.91	pseudobreccia	15 % white sparry matrix, 5 % vugs, interconnection of vugs, rust in vugs
9.91	10.15	pseudobreccia	interbed with distinct stylolites that are perpen. to core axis, contact between vuggy matrix and interbed appears to be stylolite
10.15	10.64	pseudobreccia	25 % sparry matrix, 5% vugs,

.

4

. •

14.51	15.15	limestone	fossil fragments. specks of pyrite, white sparry vein running core length dolomite/ls transition, original limestone structure preserved, speckled, dolomitic limestone
14.14	14.51	limestone	vugs dolomite/ls transition,very smooth mottled light grey interbed?, blebs 3mm, circular
13.11	14.14	pseudobreccia	<pre>contact, transitional pseudobx, < 5% sparry matrix, <1% of <1mm</pre>
12.65	13.11	pseudobreccia	fg interbed, rare spar veins, mottled
11.73	12.65	pseudobreccia	incipient white sparry dolomite, approaching 1s contact, 5 % white sparry matrix. < 1% yugs
10.64	11.73	pseudobreccia	by pyrite grains, 10 cm of vug interconnection fg, light grey, mottled interbed, small sparry matrix bed,occasional white spar veins
			by purito grains 10 covered

·

DDH-2-86

T,

METER	RAGE		
FROM	то	FORMATION	DETAILS
0	.305	Casing	bedrock setup
.305	.58	pseudobreccia	weathered pitted core, <15 %
			white spar, grey interbed,
EQ	05	ngoudobroggia	Stylolites 5 mm white evoid shapes light
. 20	.03	pseudobreccia	arey mottled interbed.
			stylolites
.85	1.55	pseudobreccia	10-15 % vugs, 35 % white sparry
		-	matrix, 7 cm of vug
			interconnection, fracture along
			stylolite surface at 2.6 m
1.55	2.09	pseudopreccia	interbod stylolites form
			fracture surfaces, ovoid shapes
2.09	3.26	pseudobreccia	10-15 % open crystal vugs, occ
		•	stylolites, 15-20 % white spar,
			dark grey , very vuggy
3.26	3.76	pseudobreccia	light grey smooth, mottled
			interded, white ovoid relect
3.76	5.68	pseudobreccia	top of '120'marker bed, 15-20 %
01/0	0.00	pocucione	vugs, fractures along vug
			connections, 33 % white sparry
			matrix
5.68	6.16	pseudobreccia	grey smooth, mottled interbed,
			stylolites perpend. to core
6 16	6.74	nseudobreccia	10 2 yugs 402 white sparry
0.10	0.74	preduoprecera	matrix. stylolites preserved
6.74	7.21	pseudobreccia	pitted grey interbed,
		-	stylolites weathered, <5% spar
			incipient pseudobx, 5.9m
			stylolites preserved in white
7 21	7 99	nceudobreccia	pseudopreccia smooth grou mottled many
/.21	/.50	pseudobreccia	stylolites large round ovoids
			?fossils, grev interbed
7.98	9.01	pseudobreccia	10 % vugs, 30 % white sparry
		-	matrix, large vugs across
			diameter of core extent
9.01	9.60	pseudobreccia	light grey mottled interbed,
			white sparry veins, white small ovoids?fossils dark stylolito
			form fractures perpend. to core
			axis
9.60	10.51	pseudobreccia	moderate pseudobrecciation 40 %
		-	white spar, 10 % vugs

.

			interconnection of vugs, fracture along stylolite contact, black infilling in stylolites
10.51	12.07	pseudobreccia	pitted, mottled grey interbed, black veinlets, stylolites, 2mm-10mm ovoid fossils
12.07	12.47	pseudobreccia	incipient pseudobreccia, 15 % white sparry matrix, 2% vugs,very tight matrix
12.47	12.56	pseudobreccia	small interbed, many stylolites
12.56	13.47	pseudobreccia	pitted surface, poorly developed pseudobx, 10-15% white sparry matrix
13.47			F.O.H.

. .

DDH-3-86

METERI FROM	AGE TO	FORMATION	DETAILS
0	0.305	pseudobreccia	collar,collared approx. 3 m
.305	0.62	pseudobreccia	45 % white sparry matrix, 2% vugs. small 3mm diameter
0.62	1.46	pseudobreccia	dark grey, irregular 2mm wide spar white veins, interbed, few
1.46	2.07	pseudobreccia	55 % white sparry matrix, fractured core, <1% disseminated sphalerite, 1 %
2.07	2.62	pseudobreccia	irregular white dolomite veins occasional ovoids spar filled mottled interbed
2.62	3.14	pseudobreccia	40 % white spar matrix, fractured core oblique angle to core axis
3.14	3.86	pseudobreccia	interbed, white spar veinlets
3.86	4.30	pseudobreccia	45 % white sparry matrix, 2% vugs, modgood pseudobreccia
4.30	5.06	pseudobreccia	dark grey interbed, 8 cm of white spar matrix, white sparry veinlets causes brecciation of dark dolomite
5.06	5.32	pseudobreccia	<pre>very tight pseudobx, <15 % white sparry matrix, no vugs</pre>
5.32	5.82	pseudobreccia	dark grey interbed, 5mm white spar irregular veinlets, mottled black wispy layers
5.82	6.58	pseudobreccia	35 % white sparry matrix, rubbly core 6.56-6.58m,<1% vugs
6.58	8.70	pseudobreccia	pitted interbed, white ovoids, no veins, same bed as 13.1m in ddh-1-86, probably '150' marker bed, mottled
8.70	9.88	pseudo breccia	incipient pseudobx. with pitted texture, smooth light grey interbed with fossils at 8.7
9.88 1	0.67	pseudobreccia	light grey interbed with many white spar veins, occasional blebs of white spar, fracture zone 10.36-10.67
10.67	11.58	pseudobreccia	smooth light grey mottled interbed, white spar ovoids and occasional stylolites,fractured core 11.28-11.58m

11.58-13.99

lower limestone

contact, grey limestone, many black filled stylolites, occasional blebs of dolomite, white spar veins oblique to core axis E.O.H.

13.99

DDH-4-86

METERA FROM	GE TO	FORMATION	DETAILS
0 .305	.305 1.11	pseudobreccia	casing buff grey dolomite, black rough stylolite ebery 1-2 cm, pitted core surface, rough fracture
1.11	1.87	pseudobreccia	surfaces grey mottled dolomite, occasional white dolomite blobs paraibly policit forgils
1.87	2.47	pseudobreccia	20-30% white sparry dolomite many black filled stylolites
2.47	2.91	pseudobreccia	dark grey mottled dolomite, many black irregular rough stylolites, <1mm diameter white
2.91	3.94	pseudobreccia	spar blebs 35 % white spar dolomite, occasional preserved dark
3.94	4.38	pseudobreccia	very mottled grey dolomite white spar blebs, many
4.38	5.30	pseudobreccia	stylolites, few pyrite blebs 35 % white sparite with occasional stylolite, large 1 cm vugs joined by fracture perpend. to core axis, core
5.30	5.56	pseudobreccia	dark grey mottled interbed, many stylolites pyrite blebs
5.56	6.51	pseudobreccia	30% white spar, vugs 2mm occasional black stylolite
6.51	7.05	pseudobreccia	5mm dolomitized ovoid ?fossil dary grey interhed
7.05	7.30	pseudobreccia	small white spar interlayer
7.30	9.50	pseudobreccia	dark grey mottled dolomite many stylolites, very pitted surface
9.50			E.O.H. many intervals of ground core so total length of core logged is less than was drilled

232

.

DDH-4-86

APPENDIX B

<u>Underground water sampling site descriptions</u> Descriptions of each 1986 sampling site in the underground mine groundwater survey are given in the following table. (*-estimated flow rate only, lpm = litres per minute, ** -sequential sampling site, ***-photograph of this site given on plate 1).

SAMPLE	NO.	MINE	SAMPL	E SI7	re deș	CRIPTION	
		Locat	ion	Flow	Rate*	Pertinent	Notes

DH -26	L-Zone	225-455	-north side of L-Zone -proximal to pyrite zone
DH-27	L-Zone	2	-pipe flushed for 15 min. -iron oxide stained rock -organic scum in C-14 bottle
DH-28	L-Zone	23	-from blast hole north side -drinking water drill hole near portal decline -plastic pipe inserted into drill hole
DH-29	L-Zone	drip	-DDH drilled vertical from surface,dry above DDH -iron staining on rock face -very well defined bedding plane seep -tubing stuck in 2 cm wide
DH-30**	L-Zone	135-180	fracture intersection -DDH on floor near raise -rubber tubing stuck in valve -strong smell of sulfur
DH-31	L-Zone	1-2	-drilled to 150 m below floor into Trout Lake breccia body -near east drift sump -fractured zone in dark dolomite bed above pseudobx.
DH-32	L-Zone	23	-tube was not used -bedding plane seep
DH-33**	T-Zone	18	-below major fault zone -very strong sulfur smell -spl from bottom of 6 holes -hole is plugged with pipe
DH-34	T- Zone	11	with shut-off valve -white and rusty film on rock -60 cm above "66" marker bed
DH-35***	T-Zone	23	-pipe has on/off valve -rusty stain on rock from pipe with no shut-off valve
DH-78**	L-Zone	drip	-faint suffur smell -bedding plane seep just below back, dripped into bottle a few cm below discharge area

Construction of the

APPENDIX C

Fracture mapping overlays for open pits

Fractures were drawn on overlays while field mapping progressed except in the case of the A-Zone open pits. These photos were not available and fractures were drawn on overlays after fractures were recorded in the field. Legend for symbols used in the fracture mapping technique is given below. There were no photos available of the underground drifts. The open pit locations are shown in Figure 3.3.

LEGEND:

V 056 00	Scanline label, azimuth, plunge
••	Scanline
\sim	Fracture
616	Fracture number (shown for first and last
E.	fracture intersecting each scanline) Exposed fracture face Limit of outcrop/rubble

L

APPENDIX D

Lead Lake outcrop fracture map

The enclosed plate (see envelope) is a composite of all fracture overlays used in mapping the Lead Lake outcrop. A total of 15 photographs were used in this composite fracture map of the only horizontal surface mapped at the mine site. The location of the Lead Lake outcrop is given in Figure 2.4.

.

. •

APPENDIX E

Fracture mapping codes and terms with their definitions

CODING CONVENTIONS-DANIEL'S HARBOUR ERACTURE MAPPING (adapted from Cale, 1981)

..

- * FLAG 11=data 22=scanline 33=comment
- * PHOTO LOCATER not used; 4 digits
- * SCANLINE use label A, B, C etc. one letter for each scanline on overlay
- SCANTREND 0-360 azimuthal scanline trend (000 = true north)
- * SCANPLUNCE 0-90 inclination (O=horizontal)
- * FRACTURE NUMBER 1-999, sequential labels; mark on overlay; start number 1 at north or east end
- * SCANLINE DISTANCE distance in meters (+/- 1 cm) where fracture crosses scanline; start at north or east end
- FRACTURE TYPE Joint JT Vein - VN Bedding Plane - BP
- * ORIENTATION Dip direction 0-360 azimuthal bearing (000 = true north) Dip 0-90 inclination down to right side (RIGHT HAND RULE)
- TRACE LENGTH to nearest 0.1 m; may continue off photo if exposed; minimum length = 0.5m (truncation length)

* CENSORING TYPE - 0 = both ends exposed >>

- 1 = one end covered
- 2 = both ends covered
- * INFILLING U=unknown R=rubble D=dolomite C=calcite (list in order of abundane; maximum of three)
- * ROUGHNESS Large scale (L) S= stepped _____ U=undulating ~
 - C= curved plane ____ P=flat planar -
 - Small scale (S) R= rough $\frac{1}{3}$ K=slickensided \mathbb{S} S= smooth \square
- * ROCK rock types X= pseudobreccia (sparry dolomite) L= limestone
- * TERMINATION STYLE Blank= if censoring is 1 or 2 O=both ends free 1=T junction 2=H junction

3=splay >

 COMMENT - pertinent details: age relationships, unusual rock types or structures, weathering-rusty, vuggs, etc.

APPENDIX F

/

. -

Fracture data file

The following data files consist of the original fracture information used in the computer analysis.

33*********** ********** 33**** 33******Daniel's Harbour Fracture Data************************ 33**New Coding Conventions: Fracture Type BP=BEDDING PLANE**** 33**Infilling D=DOLOMITE Roughness=V=vuggy ROCK-L=limestone,* 0******* A15200 48 26.10 22 33**FRACTURE MEASURE-BEARING OF DIP**************************** 33***PAGE 1********************************* 0.08JT 12287 0.62JT 31289 11 1 3.7 OR PRLO July 21, 1986, 1.0 OR PRL1 11 2 0.86JT 31290 3 6.6 OR PRL1 July 28,1986 11 1.34JT 13385 5.7 OUR CRL partially filled 11 4 .9 OU 1.39JT 30080 5 PRL1 11 1.53JT 01088 1.0 OR 6 PRL2 11 2.36JT 13089 2.42JT 31280 2.98JT 31985 5.9 OR 7 PRLO 11 11 8 2.7 OR PRL1 Q 1.6 OR CRLO 11 4.24JT 13085 CRL2 10 3.8 OR 11 4.40JT 00088 11 3.9 OR PRL2 DIP? 11 .8 OR 11 12 4.54JT 14480 CRL1 5.70JT 00985 1.5 OR 11 13 PRLO 6.21JT 00689 1.6 OR 14 PRL2 11 8.06JT 31090 16.3 OR PRL1 11 17 8.70JT 31289 FG BLCK INFIL 5.2 OUR PRL1 11 18 11 19 9.03JT 11888 7.2 OR PRL2 9.86JT 31290 11 20 5.5 OR PRLO 21 10.01JT 35889 0.7 OR PRL2 DIP? 11 22 10.54JT 30290 23 10.80JT 20289 24 11.03JT 10185 11 4.5 OR URL3 JULY 30,1986 0.6 OR CRLO 11 11 1.2 OR CRL3 25 12.10JT 01786 1.4 1R CRL3 11 26 12.22JT 30090 0.9 OR PRL3 11 27 12.67JT 06090 1.8 OR PRL 11 28 13.32JT 02190 5.5 ORU CARB INFIL? 11 CRL3 29 13.71JT 18088 4.4 ORD CRL3 DOLO. VRY 11 3013.87JT000902.10R3114.14JT303901.70R3214.41JT125854.30R 11 CRL PRLO 11 CR OFFSET NORTH 11 *********** ********* 33****PAGE 2****** 33 15.23JT 24083 9.8 1R CRL **#32 OFFSETS** 11 33****#33/ #33 IS OLDER FRACTURE , INFILL IS EVEN LATER*****

 34
 15.23JT
 02288
 2.1
 0R

 35
 15.86JT
 12287
 10.0
 2R

 36
 16.37JT
 17887
 5.7
 0R

 CRL 11 11 CRL SPLAY IN 11 CRL 33**MIDDLE OF FRACTURE******************************** 37 18.29JT 35485 5.3 OR SRL 11 38 19.10JT 31390 11 3.2 OR CRL DIP? 39 19.95JT 31587 2.7 OR CRL3 11 40 20.79JT 30687 11.5 OR PRL FADED OUT 11 33**BOTH ENDS********** **************** 41 21.55JT 30590 5.1 OR PRLO 11 42 22.14JT 13089 4.8 OR SRL 11 33******VERY ROUGH, RUBBLY********* 43 22.29JT 13288 2.3 OR SRL 11

44									
1 1		44	23.	50JT	23285	4.2	OR	CRL3	
11		45	5 24.	10JT	30189	9.6	OR	SRLO	DIP?
11		46	24.	62JT	13089	1.7	1R	RPL	
11		47	25.	68JT	12590	2.7	OR	CRL1	
11		48	26.	10JT	00490	2.1	1R	PRL	
22	B15802	31	28.	36					
11		49	0.	70JT	30690	3.9	1R	PRL	
11		-50) 1.	11JT	30490	1.6	OR	PRL	
11		51	1.	53JT	1 22 75	5.2	1R	PRL	BLACKINFILL
11		52	1.	66JT	30490	1.0	1 R	PRL	
11		-53	1.	93JT	12481	1.9	OR	PRL	
11		- 54	2.	72JT	13489	7.0	OR	PRL1	
11		55	3.	O5JT	12887	1.6	1R	PRL	
11		56	З.	19JT	31082	15.3	1R	PRL	
11		57	3.	80JT	30185	8.1	1R	PRL	
11		-58	4.	31JT	30283	9.4	1R	PRL	
11		- 59	5.	66JT	30885	4.7	OR	PRLO	DOLOMITEINEILL
11		60	6.	34JT	12085	1.4	OD	PRLO	NOT WEATHERED-
331	****OUT BLA	CK	CANC	E IN	FILLIN	G PRO	BABL	YN DOL	OMITE******
11		61	7.	96JT	13288	2.0	ZR	CRL	
11		62	8.	77JT	12688	1.7	ZR	PRL	
11		63	10.	39JT	31390	1.4	IR	PRL	
11		64	10.4	81JT	00272	2.3	2R	CRL	
11		65	11.4	49JT	28090	0.7		PSL	
33*	*****PAGE	3**	* * * *	* * * * *	******	*****	****	*****	
11		_66	12.	<u>51JT</u>	30890	2.8	10	PSL	BLACK FILLED
33*	* * CANGE NO	T W	EATH	ERED	OUT ,,	TENS.	ION	GASH**	************
11		67	13.3	20JT	12389	1.1	OU	PRLO	
11		68	13.	37JT	12489	2.7	OR	PRLO	
11		69	14.	3OJT	30788	3.6	ZR	PRL	
11		70	14.0	58JT	30085	1.3	ZK	PRL	
11		71	15.4	48JT	30490	6.3	OR	PRIO	PARTIALLI
33*	********	*D01	LOMI	TE FI	LLED**	****	****	*****	*********
33* 11	* * * * * * * * * * *	*DOI 72	LOMI : 16.6	FE FI 51JT	(LLED** 30790	5.6	**** 1R	CRL	* * * * * * * * * * * * * * * *
33* 11 11	* * * * * * * * * * *	*DOI 72 73	LOMI: 16.6 16.9	TE FI 51JT 91JT	30790 31087	5.6	1R 1R 1R	CRL PRL	**********
33* 11 11 11	* * * * * * * * * * *	*DOI 72 73 74	LOMI 16.6 16.9	TE FI 51JT 91JT COJT	LLED** 30790 31087 20883	5.6 1.9 2.5	1R 1R 1R 1R	CRL PRL CRL	
33* 11 11 11 11	*****	*DOI 72 73 74 75	LOMI 16.6 16.9 17.0 18.6	TE FI 51JT 91JT DOJT 50JT	LLED** 30790 31087 20883 12482	5.6 1.9 2.5 6.3	1R 1R 1R 1R ORU	CRL PRL CRL PRL2	BLACK CANGE**
33* 11 11 11 11 33*	**************************************	*DO) 72 73 74 75 S PJ	LOMI 16.6 16.9 17.0 18.6 ARTI	TE FI 51JT 91JT DOJT 50JT ALLY	LLED** 30790 31087 20883 12482 FILLEE	5.6 1.9 2.5 6.3 FRA	1R 1R 1R ORU CTUR	CRL PRL CRL PRL2 E, VERY	BLACK GANGE** ROUGH*****
33* 11 11 11 11 33* 11	**************************************	*D01 72 73 74 75 5 PJ 76	LOMI : 16.6 16.9 17.0 18.6 ARTIA 19.5	TE FI 51JT 91JT 50JT 50JT 4LLY 50JT	LLED** 30790 31087 20883 12482 FILLEE 31390	5.6 1.9 2.5 6.3 FRA(4.8	**** 1R 1R 1R ORU CTUR 2RU	CRL PRL CRL PRL2 E, VERY PRL	BLACK GANGE** ROUGH*******
33* 11 11 11 33* 11	**************************************	*DOI 72 73 74 75 5 PJ 76 77	LOMI 16.6 16.9 17.0 18.6 ARTI 19.5 21.9	TE FI 51JT 91JT 50JT 50JT 50JT 50JT 96JT	LLED** 30790 31087 20883 12482 FILLEE 31390 00090	5.6 1.9 2.5 6.3 FRA 4.8 0.8	1R 1R 1R 0RU CTUR 2RU 2R 2RU	CRL PRL CRL PRL2 E, VERY PRL PRL PRL	BLACK GANGE** ROUGH*******
33* 11 11 11 33* 11 11	******************	*D01 72 73 74 75 5 PJ 76 77 78	LOMI 2 16.6 16.9 17.0 18.6 ARTI 4 19.5 21.9 24.1	TE FI 51JT 91JT 50JT 50JT 50JT 96JT 10JT	LLED** 30790 31087 20883 12482 FILLEE 31390 00090 13289	5.6 1.9 2.5 6.3 FRA(4.8 0.8 2.1	1R 1R 1R ORU CTUR 2RU 2R OU 2R	CRL PRL CRL PRL2 E, VERY PRL PRL PRLO	BLACK GANGE** ROUGH******
33* 11 11 11 33* 11 11 11	**************************************	*D01 72 73 74 75 5 PJ 76 77 78 79	LOMI 2 16.9 16.9 17.0 18.6 RTI 2 21.9 24.1 28.3	TE FI 51JT 91JT 50JT 50JT 50JT 50JT 60JT 10JT 36JT	LLED** 30790 31087 20883 12482 FILLEE 31390 00090 13289 12089	5.6 1.9 2.5 6.3 FRA 4.8 0.8 2.1 5.6	1R 1R 1R 0RU 2RU 2RU 2R 0U 2R	CRL PRL CRL PRL2 PRL2 PRL PRL PRL PRL0 SRL	BLACK GANGE** ROUGH******
33* 11 11 11 33* 11 11 11 11 22	**************************************	*D0) 72 73 74 75 75 76 77 78 79 37	LOMI 16.6 16.9 17.0 18.6 ARTI 19.5 21.9 24.1 28.3 32.5	FE F1 51JT 91JT 50JT 50JT 50JT 60JT 10JT 36JT 52	LLED** 30790 31087 20883 12482 FILLEE 31390 00090 13289 12089	5.6 1.9 2.5 6.3 FRA0 4.8 0.8 2.1 5.6	1R 1R 1R 0RU CTUR 2RU 2R 0U 2R	CRL PRL CRL PRL2 PRL2 PRL2 PRL PRL PRL SRL	BLACK GANGE** ROUGH******
33* 11 11 11 33* 11 11 11 11 22	**************************************	*D0) 72 73 74 75 5 76 77 78 79 37 80	LOMI 16.0 16.9 17.0 18.0 ARTI 19.5 21.9 24.1 28.3 32.5 00.1	TE FI 51JT 91JT 50JT 50JT 50JT 50JT 10JT 50JT 10JT 52 14JT	LLED** 30790 31087 20883 12482 FILLEE 31390 00090 13289 12089 30090	5.6 1.9 2.5 6.3 FRA(4.8 0.8 2.1 5.6 0.8	1R 1R 1R 0RU CTUR 2RU 2R 0U 2R 1R 22	CRL PRL CRL PRL2 PRL2 PRL2 PRL PRL PRL0 SRL SRL	BLACK GANGE** ROUGH*****
33* 11 11 11 33* 11 11 11 11 22 11	**************************************	*D0) 72 73 74 75 5 76 77 78 79 37 80 81	LOMI: 16.0 16.9 17.0 18.0 ARTI/ 19.5 21.9 24.1 28.3 32.5 00.1 00.5	TE FJ 51JT 91JT 50JT 50JT 50JT 50JT 50JT 50JT 50JT 50	LLED** 30790 31087 20883 12482 FILLEE 31390 00090 13289 12089 30090 06589 20495	5.6 1.9 2.5 6.3 FRA 4.8 0.8 2.1 5.6 0.8 0.8	1R 1R 1R ORU 2RU 2RU 2R 0U 2R 1R 2R	CRL PRL CRL PRL2 PRL2 PRL2 PRL PRL PRL0 SRL SRL CRL DST	BLACK GANGE** ROUGH*******
33* 11 11 11 33* 11 11 11 11 11 11 11	**************************************	*D0] 72 73 74 75 76 77 78 79 37 80 81 82	LOMI 16.6 16.9 17.0 18.6 ARTIA 19.5 21.9 24.1 28.3 32.5 00.1 00.5 1.2	IE F 51JT 91JT 50JT 50JT 50JT 50JT 50JT 60JT 60JT 52 4JT 51JT 27JT	LLED** 30790 31087 20883 12482 FILLEE 31390 00090 13289 12089 30090 06589 30485	5.6 1.9 2.5 6.3 FRA 4.8 0.8 2.1 5.6 0.8 0.8 0.6 2.2	1R 1R 1R ORU 2RU 2RU 2R 0U 2R 1R 2R 1D	CRL PRL CRL PRL2 PRL2 PRL2 PRL PRL PRL0 SRL SRL CRL PSL	BLACK GANGE ** ROUGH ************************************
33* 11 11 33* 11 11 11 11 11 11 11 11 33*	**************************************	*D0 72 73 74 75 75 76 77 78 79 30 81 82 82 82	LOMI 16.6 16.9 17.0 18.6 ARTIA 19.5 21.9 24.1 28.3 32.5 00.1 00.5 1.2 C GAM	TE FJ 51JT 91JT 50JT 50JT 50JT 50JT 50JT 50JT 10JT 51JT 27JT 27JT	LLED** 30790 31087 20883 12482 FILLEE 31390 00090 13289 12089 30090 06589 30090 06589 30485 HAT IS	5.6 1.9 2.5 6.3 FRA(4.8 0.8 2.1 5.6 0.8 0.6 2.2 5.0 0.6	1R 1R 1R 0RU 2RU 2RU 2R 0U 2R 1R 2R 1D WEA	CRL PRL CRL PRL2 PRL2 PRL2 PRL PRL0 SRL SRL CRL PSL IHERED	BLACK GANGE ** ROUGH ************************************
33* 11 11 33* 11 11 22 11 11 22 11 11 33*	**************************************	*D0 72 73 74 75 75 76 77 78 79 30 82 82 82 82 82	LOMI 16.6 16.9 17.0 18.6 ARTIA 19.5 21.9 24.1 28.3 32.5 00.1 00.5 1.2 C GAN 1.6	TE FI 51JT 91JT 50JT 50JT 50JT 50JT 50JT 60JT 60JT 52 4JT 51JT 27JT 80JT 52 14JT 51JT 52 7JT 80JT	LLED** 30790 31087 20883 12482 FILLEE 31390 00090 13289 12089 30090 06589 30485 HAT IS 30888	5.6 1.9 2.5 6.3 FRA(4.8 0.8 2.1 5.6 0.8 0.6 2.2 5.0 1.1	1R 1R 1R 0RU 2RU 2RU 2R 0U 2R 1R 2R 1D WEA 1D	CRL PRL CRL PRL2 PRL2 PRL2 PRL PRL PRL PRL PRL SRL CRL PSL IHERED PSL CRL	BLACK GANGE ** ROUGH ******** VERY THIN FRACT. OUT ************************************
33* 11 11 33* 11 11 22 11 11 22 11 11 33* 11	**************************************	*D0 72 73 75 76 77 78 77 78 77 77 77 77 77 77 77 77 77	LOMI 16.6 16.9 17.0 18.6 ARTIA 19.5 21.5 24.1 28.5 32.5 00.1 00.5 1.2 C GAN 1.6 1.6	TE FI 51JT 91JT 50JT 50JT 50JT 50JT 50JT 60JT 60JT 60JT 60JT 60JT 60JT 60JT 6	LLED** 30790 31087 20883 12482 FILLEE 31390 00090 13289 12089 30090 06589 30485 HAT IS 30888 00688	5.6 1.9 2.5 6.3 FRA(4.8 0.8 2.1 5.6 0.8 0.8 2.2 5.6 0.8 0.6 2.2 5.0 1.1 1.0	1R 1R 1R 0RU 2RU 2R 0U 2R 1D 1R 1D 1R 1D 1R	CRL PRL CRL PRL2 CRL PRL2 PRL2 PRL PRL0 SRL PRL0 SRL CRL PSL IHERED PSL IHERED PSL	BLACK GANGE ** ROUGH ******** VERY THIN FRACT. OUT ************************************
33* 11 11 33* 11 11 22 11 11 11 33* 11 11 33*	**************************************	*DOI 72 73 75 76 77 77 77 77 77 77 77 77 77 77 80 82 84 84 84 84 85	LOMI 16.0 16.0 17.0 18.0 ARTIA 19.5 21.0 24.1 28.3 32.5 1.2 C GAN 1.6 (LAT	IE F 51JT 51JT 50JT	LLED** 30790 31087 20883 12482 FILLEE 31390 00090 13289 12089 30090 06589 30485 HAT IS 30888 00688 HITE D	5.6 1.9 2.5 6.3 FRA(4.8 0.8 2.1 5.6 0.8 0.6 2.2 5.0 0.6 2.2 5.0 1.1 1.0 0.0001	1R 1R 1R 1R 2RU 2R 0U 2R 1D 1R 1D 1R 1D 1R 1D 1R 1D	CRL PRL CRL PRL2 CRL PRL2 PRL2 PRL PRL0 SRL PRL0 SRL PRL0 SRL PRL0 SRL PRL0 SRL PRL0 SRL CRL PSL IHERED PSL IHERED PSL CRL	BLACK GANGE ** ROUGH ******** VERY THIN FRACT. OUT ************************************
33* 11 11 11 33* 11 11 11 22 11 11 11 33* 11 11 33*	****AND MOS: CO8402 ********BI ****CROSSEI	*D0 72 73 75 76 77 78 77 78 77 77 77 77 77 77 80 82 84 84 84 85 85	LOMI 16.0 16.0 17.0 18.0 ARTI 19.5 21.5 24.1 28.3 32.5 1.2 00.1 00.5 1.2 C GAN 1.6 (LAT 3.1	TE FI 51JT 50JT 50JT 50JT 50JT 50JT 50JT 50JT 50	LLED** 30790 31087 20883 12482 FILLEE 31390 00090 13289 12089 30090 06589 30485 HAT IS 30888 00688 HITE D 30986	5.6 1.9 2.5 6.3 FRA(4.8 0.8 2.1 5.6 0.8 0.6 2.2 5.0 0.6 2.2 5.0 1.1 1.0 0LOMI 1.2	1R 1R 1R 1R 1R 1R 2RU 2R 0U 2R 1D 1R 1D 1R 1D 1R 1D 1C 1C 1C 1C 1C 1C 1C 1C 1C 1C	CRL PRL CRL PRL2 CRL PRL2 PRL2 PRL2 PRL2 PRL2 PRL2 PRL2 PR	BLACK GANGE ** ROUGH ************************************
33* 11 11 11 33* 11 11 11 22 11 11 11 33* 11 11 33* 11 33*	**************************************	*DOI 72 73 75 76 77 77 77 77 77 77 77 77 77 77 77 77	LOMI? 16.0 16.0 17.0 18.0 ARTI/ 19.5 21.5 24.1 28.5 32.5 00.1 00.5 1.2 CGAN 1.6 (LAT 3.1 CTURE	TE FI 51JT 51JT 50JT 50JT 50JT 50JT 50JT 50JT 50JT 50	LLED** 30790 31087 20883 12482 FILLEE 31390 00090 13289 12089 30090 06589 30485 HAT IS 30888 00688 HITE D 30986 LLED,	5.6 1.9 2.5 6.3 FRA(4.8 0.8 2.1 5.6 0.8 0.6 2.2 NOT 1.1 1.0 0LOMI 1.2 SPLA	**** 1R 1R 1R 1R 1R 2RU 2R 0U 2R 1D 1R 1D 1R 1D 1R 1D 1C 1D 1C 1C 1C 1C 1C 1C 1C 1C 1C 1C	CRL PRL CRL PRL2 CRL PRL2 PRL2 PRL2 PRL PRL0 SRL PRL0 SRL CRL PSL CRL PSL CRL CRL CRL PSL CRL PSL CRL PSL CRL PSL CRL PRL2 PRL2 PRL2 PRL2 PRL2 PRL2 PRL2 PR	BLACK GANGE** ROUGH******* VERY THIN FRACT. OUT************************************
33* 11 11 11 33* 11 11 11 22 11 11 11 33* 11 33* 11	****AND MOS CO8402 *********BI ****CROSSEI **GANGE , I	*DOI 72 73 75 77 77 77 77 77 77 77 77 77 77 77 77	LOMI? 16.6 16.9 17.0 18.6 ARTIA 19.5 21.5 24.1 28.5 32.5 1.6 1.6 (LAT 3.1 CTURE 4.1	TE FI 51JT 51JT 50JT 50JT 50JT 50JT 50JT 50JT 50JT 50	LLED** 30790 31087 20883 12482 FILLEE 31390 00090 13289 12089 30090 06589 30485 HAT IS 30888 00688 HITE D 30986 LLED, 30690	5.6 1.9 2.5 6.3 FRA(4.8 0.8 2.1 5.6 0.8 0.6 2.2 NOT 1.1 1.0 0LOMI 1.2 SPLAY 4.1	**** 1R 1R 1R 1R 1R 2R 2R 2R 2R 1D 1R 1D 1R 1C 1R 1C 1C 1C 1C 1C 1C 1C 1C 1C 1C	CRL PRL CRL PRL2 CRL PRL2 PRL2 PRL2 PRL2 PRL2 PRL2 PRL2 PR	BLACK GANGE** ROUGH******* VERY THIN FRACT. OUT************************************
33* 11 11 11 33* 11 11 11 22 11 11 11 33* 11 11 33* 11	****AND MOS CO8402 *********BI ****CROSSEI **GANGE , I	*D0 73 75 77 77 77 77 77 77 77 77 77 77 77 77	LOMI 16.6 16.9 17.0 18.6 ARTI 21.5 24.1 28.5 32.5 1.6 1.6 (GAN 1.6 (LAT 3.1 CTURE 4.1	IE FI 51JT 50JT 50JT 50JT 50JT 50JT 50JT 50JT 50	LLED** 30790 31087 20883 12482 FILLEE 31390 00090 13289 12089 30090 06589 30485 HAT IS 30888 00688 HITE D 30986 LLED, 30690 19884 26690	5.6 1.9 2.5 6.3 FRA(4.8 0.8 2.1 5.6 0.8 0.6 2.2 0.8 0.6 2.2 0.0 1.1 1.0 0 CLOMI 1.2 SPLAY 4.1 1.3	**** 1R 1R 1R 1R 1R 1R 1R 1R 2R 2R 2R 2R 1R 1R 1R 1R 1R 1R 1R 1R 1R 1	CRL PRL CRL PRL2 CRL PRL2 PRL2 PRL2 PRL2 PRL2 PRL2 PRL2 PR	BLACK GANGE** ROUGH******* VERY THIN FRACT. OUT************************************
33* 11 11 11 33* 11 11 11 22 11 11 11 33* 11 11 33* 11	****AND MOS: CO8402 *********BI ****CROSSEI **GANGE , I	*D0 73 75 77 77 77 77 77 77 77 77 77 77 77 77	LOMI 16.6 16.9 17.0 18.6 ARTI 21.5 24.1 28.5 32.5 32.5 00.5 1.6 1.6 (LAT 3.1 CTURE 4.1 5.2 5.2	IE FI 51JT 51JT 50JT 50JT 50JT 50JT 50JT 50JT 51JT 52 14JT 52JT 52JT 52JT 52JT 52JT 52JT 52JT 52	LLED** 30790 31087 20883 12482 FILLEE 31390 00090 13289 12089 30090 06589 30485 HAT IS 30888 00688 HITE D 30986 LLED, 30690 19884 26690	5.6 1.9 2.5 6.3 FRAC 4.8 0.8 2.1 5.6 0.8 0.6 2.2 0.0 0.6 2.2 1.1 1.0 0.0 00LOMI 1.2 SPLAY 4.1 1.3 0.5	**** 1R 1R URU 2R UZ 2R UZ 1R 2R D 1R 1R 1D 1R 1R C 1R 1R 1R 0R 1R 1R 1R 0R 1R 1R 1R 0R 1R 1R 1R 0R 1R 1R 1R 1R 0R 1R 1R 1R 1R 0R 1R 1R 1	CRL PRL CRL PRL2 CRL PRL2 PRL2 PRL2 PRL2 PRL2 PRL2 PRL2 PR	BLACK GANGE** ROUGH******* VERY THIN FRACT. OUT************************************
33* 11 11 33* 11 11 22 11 11 11 33* 11 11 33* 11 11 33* 11	****AND MOS: CO8402 *********BI ****CROSSEI **GANGE , I	*DO 72 74 75 77 77 77 77 77 77 77 77 77 77 77 77	LOMI? 16.6 16.9 17.0 18.6 ARTI/ 19.5 24.1 28.5 32.5 1.6 1.6 (GAN 1.6 (LAT 3.1 CTURE 4.1 5.2 5.6	IE FI 51JT 51JT 50JT 50JT 50JT 50JT 50JT 50JT 50JT 50	LLED** 30790 31087 20883 12482 FILLEE 31390 00090 13289 12089 30090 06589 30485 HAT IS 30888 00688 HITE D 30986 LLED, 30690 19884 26690 30489	5.6 1.9 2.5 6.3 FRAC 4.8 0.8 2.1 5.6 0.8 0.6 2.2 0.0 1.1 1.0 0 LOMI 1.2 SPLAY 4.1 1.3 0.5 3.2	**** 1R IR URU 2R UZ 2R UZ 1R ZR DA 1D ZR 1D	CRL PRL CRL PRL2 E.VERY PRL PRL0 SRL PRL0 SRL CRL PSL CRL CRL CRL CRL CRL CRL CRL CRL CRL CR	BLACK GANGE** ROUGH******** VERY THIN FRACT. OUT************************************
33* 11 11 33* 11 11 11 22 11 11 11 33* 11 11 33* 11 11 11 11 11 11 11	****AND MOS: CO8402 *********BI ****CROSSEI **GANGE , I	*DO 72375 777777777777777777777777777777777	LOMI? 16.6 16.9 17.0 18.6 21.9 22.5 23.5 24.1 28.5 32.5 1.6 1.6 (LAT 3.1 TURE 4.1 5.2 5.6 7.1	IE FI 51JT 51JT 50JT 50JT 50JT 50JT 50JT 50JT 50JT 50	LLED** 30790 31087 20883 12482 FILLEE 31390 00090 13289 12089 30090 06589 30485 HAT IS 30888 00688 HITE D 30986 LLED, 30690 19884 26690 30489 31090	5.6 1.9 2.5 6.3 FRA 4.8 0.8 2.1 5.6 0.8 0.6 2.2 0.0 1.1 1.0 0 0 0 0 0 0 0 0 0 0 1.1 1.0 0 0 0	**** 1R IR URU 2R UZ 2R UZ 1R ZR DA 1D LR 1R CO 1R RORR 1R OR 1R OR 1	CRL PRL CRL PRL2 E. VERY PRL PRL0 SRL PRL0 SRL PRL0 SRL CRL PSL CRL PSL CRL CRL CRL PSL CRL CRL CRL CRL PSL CRL PSL CRL PSL CRL PRL2 PRL2 PRL2 PRL2 PRL2 PRL2 PRL2 PR	BLACK GANGE** ROUGH******* VERY THIN FRACT. OUT************************************
33* 11 11 33* 11 11 11 22 11 11 33* 11 11 33* 11 11 11 11 11 11 11 11	****AND MOS: CO8402 *********BI ****CROSSEI **GANGE , I	* 773 775 7777777777777777777777777777777	LOMI? 16.6 16.9 17.0 18.6 21.9 22.5 28.3 32.5 32.5 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6	IE FI 51JT 51JT 50JT 50JT 50JT 50JT 50JT 50JT 50JT 50	LLED** 30790 31087 20883 12482 FILLEE 31390 00090 13289 12089 30090 06589 30485 HAT IS 30888 00688 HITE D 30986 LLED, 30986 LLED, 30690 19884 26690 30489 31090 01863 2120	5.6 1.9 2.5 6.3 FRA(4.8 0.8 2.1 5.6 0.8 2.1 5.6 0.6 2.2 NOT 1.1 1.0 0LOMI 1.2 SPLAI 4.1 1.3 0.5 3.2 16.3 3.9	**** 1R IR URU 2R UZ 2R UZ 1R Z ID WID 1R E D OI 1R C IR R R C 1 R R IR R R R R R R R R R R R R R R R R	CRL PRL CRL PRL2 CRL PRL2 PRL2 PRL2 PRL2 PRL2 PRL2 PRL2 PR	BLACK GANGE ** ROUGH ************************************
33* 11 11 33* 11 11 11 22 11 11 33* 11 11 33* 11 11 11 11 11 11 11 11	****AND MOS: CO8402 *********BI ****CROSSEI **GANGE , I	*D0 73 75 77 77 77 77 77 77 77 77 77 77 77 77	LOMI? 16.0 16.0 17.0 18.0 21.9 22.1 28.3 32.5 32.5 1.2 00.5 1.6 1.6 1.6 1.6 24.1 28.3 32.5 1.6 1.6 24.1 28.3 32.5 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6	IE FI 51JT 51JT 50JT	LLED** 30790 31087 20883 12482 FILLEE 31390 00090 13289 12089 30090 06589 30485 HAT IS 30888 00688 HITE D 30986 LLED, 30690 19884 26690 30489 31090 01863 31289	5.6 1.9 2.5 6.3 FRAC 4.8 0.6 2.1 5.6 0.6 2.2 NOT 1.1 1.0 0LOMI 1.2 SPLAN 4.1 1.3 0.5 3.2 16.3 3.9 5.6	**** 1R IR URU 2R UZ 2R UZ 1R Z ID WED 1R TO OS 1R RORROR 000 1R CORROR 1R CORO	CRL PRL CRL PRL2 CRL PRL2 PRL2 PRL2 PRL2 PRL2 PRL2 PRL2 PR	BLACK GANGE ** ROUGH ************************************
33* 11 11 33* 11 11 11 22 11 11 33* 11 11 11 33* 11 11 11 11 11 11 11 11 11 11 11	****AND MOS: CO8402 *********BI ****CROSSEI **GANGE , I	*D0 73 75 77 77 77 77 77 77 77 77 77 77 77 77	LOMI 16.9 16.9 17.0 18.9 21.9 224.1 28.5 224.1 28.5 24.1 28.5 1.2 00.5 24.1 28.5 1.2 00.5 2.4 1.5 2.4 1.5 2.4 1.5 2.4 1.5 2.4 1.5 2.4 1.5 2.4 1.5 2.4 1.5 2.4 1.5 2.5 2.5 1.5 2.5 2.5 1.5 2.5 2.5 1.5 2.5 2.5 1.5 2.5 2.5 1.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2	IE FI 51JT 50JT 50JT 50JT 50JT 50JT 50JT 50JT 50	LLED** 30790 31087 20883 12482 FILLEE 31390 00090 13289 12089 30090 06589 30485 HAT IS 30888 WHTE D 30986 LLED, 30690 19884 26690 30489 31090 01863 31289 02580	5.6 1.9 2.5 6.3 FRA 0.6 2.1 5.6 0.6 2.1 5.6 0.6 2.2 1.1 1.0 0.0 0 1.2 SPLA 1.3 0.5 3.2 5.2 16.3 9 5.2 7 0.7	**** 1R IR URU 2R UZ 2R UZ 1R R 1R CTURU 2R UZ 1R R 1R CTURU 2R UZ 1R R 1R CTURU 2R UZ 1R R 1R CTURU 1R C	CRL PRL CRL PRL2 CRL PRL2 PRL2 PRL PRL0 SRL CRL PSL CRL PSL CRL PSL CRL PSL CRL PSL CRL CRL PSL PSL CRL PSL CRL PSL CRL PSL PSL CRL PSL PSL PSL PSL PSL PSL PSL PSL PSL PS	BLACK GANGE ** ROUGH ************************************
33* 11 11 33* 11 11 33* 11 11 11 22 11 11 33 11 11 11 11 11 11 11 11 11 11	****AND MOS: CO8402 *********BI ****CROSSEI **GANGE , I	*D027345977777777777777777777777777777777777	LOMI 16.9 16.9 17.0 18.9 21.9 224.1 28.5 224.1 28.5 224.1 28.5 1.2 00.5 2.4 1.2 00.5 2.4 1.5 2.4 1.5 2.4 1.5 2.4 1.5 2.4 1.5 2.4 1.5 2.4 1.5 2.4 1.5 2.4 1.5 2.4 1.5 2.4 1.5 2.4 1.5 2.5 2.5 1.5 2.5 2.5 1.5 2.5 2.5 1.5 2.5 2.5 1.5 2.5 2.5 1.5 2.5 2.5 1.5 2.5 2.5 1.5 2.5 2.5 1.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2	IE FI 51JT 51JT 50JT 50JT 50JT 50JT 50JT 50JT 50JT 50	LLED** 30790 31087 20883 12482 FILLEE 31390 00090 13289 12089 30090 06589 30485 HAT IS 30888 00688 HITE D 30986 LLED, 30690 19884 26690 30489 31090 01863 31289 02580 11888	5.6 1.9 2.5 6.3 FRA 0.6 2.5 1.9 4.8 0.4 8 2.1 5.6 0.8 2.1 5.6 0.8 2.2 1.0 0.0 1.2 5.2 1.0 0.0 1.2 5.2 1.3 0.5 2.5 7.2 5.2 1.0 0.5 2.5 5.6 2.7 1.0 0.5 2.5 5.7 2.5 5.6 2.7 1.0 0.5 2.5 5.6 2.7 1.0 0.5 2.5 5.6 2.7 1.0 0.5 2.5 5.6 2.7 1.0 0.5 2.5 5.6 2.7 1.0 0.5 2.5 5.6 2.7 1.0 0.5 2.5 5.6 2.7 1.0 0.5 2.5 5.6 2.7 1.0 0.5 2.5 5.6 2.7 1.0 0.5 2.5 5.7 1.0 0.5 2.5 5.7 1.0 0.5 2.5 5.7 1.0 0.5 2.5 5.7 1.0 0.5 2.5 1.0 0.5 2.7 2.7 1.0 0.5 2.7 2.7 1.0 0.5 2.7 2.7 1.0 0.5 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7	**** 1R IR URU 2R URU 2R URU 2R URU 2R URU 1R R DO 1R DO 1R DO 1R R DO 1R DO 1R DO 1R R DO 1R DO 1R DO 1R	CRL PRL CRL PRL2 CRL2 PRL2 PRL2 PRL2 PRL2 PRL2 PRL2 PRL2 P	BLACK GANGE** ROUGH******** VERY THIN FRACT. OUT************************************
33* 11 11 33* 11 11 33* 11 11 11 22 11 11 33 11 11 11 11 11 11 11 11 11 11	****AND MOS: CO8402 *********B] ****CROSSEI **GANGE , I	*D2 77 77 77 77 77 77 77 77 77 77 77 77 77	LOMI? 16.9 16.9 17.0 18.9 21.9 224.1 19.5 224.1 28.5 224.1 28.5 1.2 00.5 2.2 1.2 00.5 2.2 1.2 1.2 1.2 5.6 1.2 7.6 8.3 2.1 7.6 8.3 1.2 7.6 8.5 7.6 7.6 7.6 8.5 7.6 7.6 7.6 7.6 7.6 7.6 7.6 7.6	IE FI 51JT 51JT 50JT	LLED** 30790 31087 20883 12482 FILLEE 31390 00090 13289 12089 30090 06589 30485 HAT IS 30888 00688 HITE D 30986 LLED, 30690 19884 26690 30489 31090 01863 31289 02580 11888 18189	5.6 1.9 2.5 6.3 FRA 0.6 2.5 1.9 4.8 0.4 8 2.1 5.6 0.8 2.1 1.0 0 0 1.2 5 5.7 1.3 0.5 2.5 1.0 0 0 0 0 0 1.0 0 0 0 0 1.0 1.0 5 0 2.5 5 0 0 0 2.5 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	**** 1RRURU 2RU2 2RU2 1RR 1RR 1RR 1RR 1RR 1RR 1RR 1R	CRL PRL CRL PRL2 CRL2 PRL2 PRL2 PRL PRL0 SRL SRL CRL PSL CRL CRL PSL CRL CRL PSL CRL CRL PSL CRL CRL PSL CRL CRL PSL CRL CRL PSL CRL CRL PSL CRL CRL CRL CRL CRL CRL CRL CRL CRL CR	BLACK GANGE** ROUGH******** VERY THIN FRACT. OUT************************************
33* 11 11 33* 11 11 33* 11 11 22 11 11 33 11 11 11 11 11 11 11 11 11 11	****AND MOS: CO8402 *********B] ****CROSSEI **GANGE , I	*D23459777773888248898888899999999999999999999999999	LOMI? 16.9 16.9 17.0 18.7 19.5 24.1 224.1 224.1 224.1 224.1 224.1 224.1 224.1 224.1 224.1 224.1 224.1 225.5 1.6 224.1 225.5 1.6 224.1 225.5 1.6 224.1 225.5 1.6 224.1 225.5 1.6 224.1 225.5 1.6 224.1 225.5 1.6 224.1 225.5 1.6 224.1 225.5 1.6 224.1 225.5 1.6 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7	IE FI 51JT 51JT 50JT 50JT 50JT 50JT 50JT 50JT 50JT 50	LLED** 30790 31087 20883 12482 FILLEE 31390 00090 13289 12089 30090 06589 30485 HAT IS 30888 00688 HITE D 30986 LLED, 30986 LLED, 30690 19884 26690 30489 31090 01863 31289 02580 11888 18189 01589	5.6 1.9 2.5 6.3 FRA 0.8 2.1 5.6 0.8 2.1 1.0 0 0 0 0 0 0 0 0 0 1.1 0 0 0 0 0 0	**** 1R IR URU 2R URU 2R URU 1R R DA 1 R R DO 1 R R DA 1 R R DO 1 R	CRL PRL CRL PRL2 CRL2 PRL2 PRL PRL0 SRL SRL CRL PSL CRL PSL CRL PSL CRL PSL CRL CRL0 PRL1 PRL1 CRL0 PRL1 PRL10 PRL1 CRL0 PRL1 CRL0 PRL2 CRL0 CRL0 CRL0 CRL0 CRL0 CRL0 CRL0 CRL0	BLACK GANGE** ROUGH******** VERY THIN FRACT. OUT************************************

• •

11	98	10	.01JT	30290	4.5 (DR URL3	SAME AS JT#22	
11	4 - 99) 11	.80JT	20485	3.0 (OR CRL1	********	
11	100 THC) 13 N.FS	.60JT	02090			LINEAR CHAIN OF	
11	101	14	.74JT	31390	9.1 (DR CRL1		
11	102	19	.78JT	12487	2.6 (DR SRLC		
11	103	20	. 46J T	32285	4.8 2	IR CRLC IRU PRL	SAME AS JT#76	
11	105	25	.69JT	12986	4.5 1	RD PRL		
11	106	28	.41JT	31487	1.32	R CRL	MOSSEILLED WIDE	
11	108	30	.07JT	12885	4.9 1	R PRL		
11	109	30	. 40JT	12889	3.3 1	R CRL		
11	111	30	.93JT	13380	1.6 2	R PRL		
11	112	31	.52JT	13089	1.2 0	R SRL	MOSSFILLED WIDE	
11	113	31	.77JT	13689	3.1 1	R CRL		
11	115	32	.1651 .39JT	30986	2.9 1	R CRL		
11	116	32	.52JT	31286	0.7 2	R PRL		
22 D16100	41	23	.18 1 1 0 0 11/			OVEDACEN	AUG. 2/86 LINE IS	;**
11	117	60	.46JT	03790	1.10	R CRL1	•	
11	118	Ŏ	.78JT	31090	1.4 0	U PSLO	VERY THIN VEIN***	***
33*****NOT W	EATH	EREI	D OUT	, DOLON	IITE FI	LLED MAY	BE, TENSION PRODUCED)?**
33*****WIDE	****	***	*****	*****	U./ 1	.U SSL	5AME A5 ADUVE, 3	2 * * * *
11	120	1	.70JT	31183	1.8 1	r prl		
11	121	2	. 27JT	13189	2.9 0	R PRL1	MOSS FILLED, WIE)E
33*****WIDE	.M T	HEY	HAVE	BEEN W	IEATHER	ED OUT C	HAIN OF POTHOLES?**	.ə :***
11	123	2	.90JT	17886	4.2 0	R CRL1	MOSS FILLED, WIDE	2
11	124	3	. SOJT	12387	2.90	R CRL1		
11	125	3 4	.91JT	31387	1.81 2.71	RD PRL	MANY BLACK VEINLE	TS
33****OVERPR	INTE	DB	Y DOL	MITEV	EINLET	S*****	*****	* * *
11	127	4	.48JT	00188	3.1 0	R CRL3		
11	128	5	.69JT 97.JT	13287	3.60	R CRL3	DIP? MOSSETLLEDWI	DE
11	130	õ	. 30JT	30690	4.1 1	R SSL	SAME AS #86	
11	131	6	.66VN	35986	1.1 0	D PRLO	DIFF.WEATHERED W	HITE
33****DOLOMI	5***	21N'	*****	******	*****	*******	********	****
11	132	6.	.88JT	01089	1.1 0	R CRL2	ESTIMATE OF STRIK	E
11	133	7.	. 32JT	31086	1.3 2	R CRL	VERY ROUCH	
11	134	7	53JT	11689	1.0 1	RD PRLO R CRL		
11	136	8	93JT	13489	3.1 2	R PRL		
11	137	9.	42VN	18089	1.10	D SRLO		
11	138	9. 9	75VN	35889	2.9 1	DR PRL	DOLOMITE FILLED	
33*****5 CM	WIDE	;***	****	*****	*****	******	*****	
11	140	10.	OUT	13184	1.8 1	R PRL		
11 11	141	10.	28.IT	13089	-1.00	R CRL	MOSS FILLED WIDE	
11	143	<u>11</u> .	95VN	00485	2.6 1	DR PSL	VERY GOOD MEASUREM	ENT
11	144	13.	39VN	00485	1.1 1	DR PSL		
⊥⊥ 11	145 146	13. 13	04JT 99.IT	00490	1.4 1	NR PKLZ		
11	147	14.	27JT	12885	1.10	R PRL1		
11	148	14.	69JT	22589	4.4 1	R CRL		
11 11	149 150	15. 15	23JT 76JT	30590	8.4 1	R CRL1 R PRL	WIDE MOSSFILLED J	OINT
- -								

11		15	1 16	5.99J	T 13388	3.	9 OR	PRLA	D PETTERS OUT AND CURVES
- 33	*****AT ON	IE EI	ND*1	****	******	****	****	******	* * * * * * * * * * * * * * * * * * * *
11		15	2 17	7.40J	r 18386	1.	1 OR	PRL	2 VEIN-TYPE FRACTURE
11		15.	3 18	3.09J	r 12287	10.0			SAME AS E#35 MOSSFILLED
11		154	4 19).74J.	r 31490	3.		PRL	WIDE MOSS FILLED
11		15	5 21	L.11J.	r 30988	<u> </u>	7 OR	PDI	
11		120	5 21	530	[31088			PKL	PARTIALLI WIDE
33	********MO	1 52	1 93 1 1 1 1		CIIERS	2001	⊾⊔ Ur ⊏ຳອ	NE END.	ADDITIDADY IT WITE MORE
11	*********	- T2	1 23	2 1 5 J 1		END (5 2 R		
33	ттт Е10201	U, 4	23.2	SPICIO	urs 10	END C	ус г.		
22	E19301	1 5 6		/.07 0.0717		1 (DCIC	VETN TO WEATU BLACK
224		DOLT DOLT) 4 	*****		****		******	
11		150	5 7	00 77	04783	1 '	7 1 P	DDI.	
11		160	, 2 , 7	621	1 18389	1 2)
11		161	΄ Δ	74	18289	2 1		I PRI.1	
11		162	- 1 - 1	95.11	04585	4 6	12R	CRI.	VERY WIDE & RUBBLY
11		167	6	4717	1 00690	3 1		I PSLC	
11		164	, ,	90.11	00287	2 5		PRIC	
	********	*PAC	F 6	* * * * *	*****	****	****	*****	, **************************
11		165	10	89.11	04389	3.0) 2R	PRI.	VERY APPROX WIDE MOSS
334	********)***	* * *	****	******	****	****	*****	*****
22	F17600	022	16	55					
า้า้	11,000	166	ĨÕ		01890	0.7	1 R	PRL1	
îî		167	ō	4311	29890	0.9		CRL	
îî		168	ŏ	.95JT	29989	2.4	IR	SRL	
11		169	3	42.IT	11786	1.5	2R	CRL	
îī		170	3	5317	00187	Ô.e	IR	PRI	
11		171	3	69.IT	33285	0.6	IR	CRL	
îī		172	3	94.17	04488	0.5	OR	CRI.2	
îî		173	4	45.IT	30390	3.0	1R	SRL	
11		174	5	2317	04285	1.3	2R	CRL	WIDE MOSS FILLED
îî		175	7	78.11	13085	2.1	1R	PRL3	ONE SPLAY ENDING
îî		176	Ŕ	87.11	30687	1.9	OR	PRLI	CHAIN OF SOLUTION
33*	HOLES FRAC	TUR	E??'	7777*	*****	****	****	*****	**************
ĩĩ		177	- · · · g		31190	2.8	1R	PRI.	
11		178	12	.06JT	13088	5.5	1D	PSL.	GASHLIKE 1-3MM WIDE
īī		179	12	21JT	30990	5.7	1D	PSL	GASHLIKE 1-3MM WIDE
īī		180	12	.93JT	12785	0.8	OR	SRLO	SOLUTION-HOLE CHAIN
11		181	14	.04JT	21165	1.2	IR	CRL	SHALLOW-DIP TRUEFACE
11		182	14	65.JT	22386	1.0	2R	PRI	
īī		183	14	.76JT	31090	0.5	OR	PRL2	
īī		184	15	.27JT	11188	1.7	OR	CRL2	
$\overline{11}$		185	15	.71VN	13088	0.6	OUD	PSLO	3MMWIDE BLACK JOINS UP
33*1	WITH OTHER	FR	ACT	JRE O	FSIMIL		HARA	CTER**	**********
11		186	16	.08JT	03290	0.7	OR	SRL1	VERY APPROXIMATE
11		187	16.	. 55JT	18380	1.2	1R	SRL	
22	C17000	019	15.	.60					
11		188	00.	11JT	13087	0.8	2R	PRL	
11		189	00.	77JT	20690	5.7	2R	PRL	
11		190	01.	BOJT	11080	0.9	1R	PRL	
11		191	2.	16JT	05083	2.4	1R	CRL	WIDE, VARYING WIDTH, MOSS
11		192	3.	77JT	30790	5.6	OR	PRL2	AUGUST 5, 1986
11		193	6.	96JT	12288	7.3	2R	PRL	WIDE MOSS FILLED
11		194	7.	50JT	31089	5.8	OR	PRL3	
11		195	8.	70JT	21987	2.3	2R	CRL	WIDE, VERY
33*1	******* A	PPRO	NIX	IATE A	ND EXT	REMEI	LY WI	EATHERI	ED****************
33**	********PAG	E 7	* * *	****	*****	****	* * * * *	*****	*************
11		196	10.	O3JT	30290	2.4	OR	PRL1	SLIGHTLY CURVY JACCED
11		197	10.	77JT	29690	1.8	1R	CRL	
11		198	11.	95 J T	30186	6.9	2R	CRL	
11		199	12.	49JT	30990	5.0	1R	PRL	
11		200	13.	32JT	21468	3.2	2R	CRL	FAULT?WIDE MOSSFILLED
11		201	13.	64JT	12389	4.9	1R	CRL	VERY ROUGH APPROXIMATE

•

11		2 02	: 14	I.OJJT	30790	1.5	5 2R	CRL	
11		203	14	.26JT	12288	1.7	1 1RD	FRL	
11		204	14	. 66J1	12589	0.9		PRL PRIA	
11		200	15	5.60JT	30890	0.7	7 1R	PRL	
22	H2440	4 34	23	6.60		•••			
11		207	0).90JT	31088	1.0) <u>1</u> U	PSL	
11		208	2	.48JT	13088	5.2		PSLO	
11		209	2	72.17	05785	1.0		CRL1	
ii		211	2	.84VN	00690	3.1	ODU	PSLO	SAME AS F#163
11		212	3	.34JT	21478	3.1	1R	CRL	
11		213	4	.77JT	04248	2.1	1R	CRL	WIDE, MOSSFILLED
11		214	5	15JT	04585	4.0		CRL	SAME AS F#162,WIDE
11		215	5	93.JT	30087	1 3		CBT	
ii		217	7	.03JT	30386	4.6		CRL	WIDE MOSS FILLED
11		218	8	.22JT	00186	1.5	5 1R	PRL	CHAIN OF SOL'N HOLES
11		219	9	.43JT	04785	1.6	1R	CRL	
11	****			.99JT	29483	3.6	2R	CRL	WIDE, MAYBE 2 PARALLEL
11	RACI	221	11	81.TT	29389	1 0	18	CRT.	
11		222	12	.64JT	13085	2.1	1R	PRL	SAME AS F#175.SPLAY END
11		223	12	.65JT	03685	2.7	2R	PRL	VERY ROUGH OPEN JOINTS
11		224	13	.70JT	13087	1.3	1R	PRL	
11		225	14	.42JT	03570	1.9	2R	CRL	
11	++++0.00	226	15	.22JT	30288	1.2		CRLO	SNAKE-LIKE FRACTURE
11	PAG	227	17	OBJT	12389	4.9	1R	CRI.	SAME AS F#201 AUG 6/86
11		228	17	.59JT	30590	1.7	OUR	PRLO	
11		229	18	.65JT	30590	3.7	OR	PRLO	SAME AS F#205
11		230	18	.98JT	30890	0.7	1R	PRL	SAME AS F#206
11		231	20	.40JT	27287	0.8	ZR	PRL	EDGE OF O/C, FELLAWAY
		232	20	. 12JI	10278	1.1			MOSS FILLED
11		234	21	.42.JT	13388	0.8		CRL	FRACTURE ZONE
īī		235	21	.65JT	09070	1.9	1R	CRL	
11		236	21	.70JT	31085	2.0	1R	PRL	MOSS FILLED FRAC.ZONE
11		237	22	.04JT	31289	0.9	1R	PRL	
11	******	238	22	.35JT	31090	2.5	2R		WIDE, MOSSFILLED,
11	<u>-</u>	239	23	20NE	31586	1 2	18	PRI.	FRACTURE ZONE
īī		240	23	.60JT	13089	1.6	2R	PRL	FRACTURE ZONE
22	I16900	033	18	. 30					
11		241	∞	. 30JT	12983	0.5	1R	PRL	CHAIN OF SOL'N HOLES
11	* * +1JAT T C	242		.81JT	05588	0.6			IRREGULAR FRACTURE
11	WALLS	743	00	N OC 2 86.TT	30483	17	08	PRT.1	SAME COMMENT AS ABOVE
ii		244	ĩ	.26JT	31090	2.3	OR	PRLO	SOLUTION HOLES ALONG
33***	* * FRACTU	IRE**	* * * 1	*****	*****	****	****	*****	*************
11		245	3	.05JT	29575	2.1	2R	PRL	DOL.FILLED BLACK
33**1	***3CM W	IDE*'			20000	****	1 * * * 1 070	******	
11		240	3. A	22 11	30088	1./	2R 2D	DDI	SAME COMMENT AS ABOVE
11		247	4	95.IT	30590	2.2	2R	PRI.	SAME COMMENT AS ABOVE
33***	**ONLY 8			****	*****	* * * *	* * * * *	*****	****
11		249	5.	. 22JT	12488	1.3	1 R	PRL	SAME COMMENT AS ABOVE
33***	****ONLY	4CM	WIE)E****	*****	****	****1	******	*****
11	*****	250	<u>,</u> 6.	06JT	30070	5.7	2R		SAME COMMENT AS ABOVE
ა კ ≂т' 11		251	א מיג א	אבטעד א ידי ליכי	30305	1 4	110	SPT	
11		252	6 6	99.TT	31884	1 1	2R	CRI.	
īī		253	7.	47JT	13286	3.9	1R	CRL	WIDE BLACK DOL FILLED
33***	15CM WT	DESH	IAT.T	OW FR	ACTURE	DIP	TOWA	ARDS TH	E SOUTH EAST******

11		_					
11	254	7	.91JT	04485	2.4	2R CRL	WIDE DOL.FILL, 15CMWIDE
11	255	8	.21JT	03975	3.9	IR CRL	SAME COMMENT AS ABOVE
11	256	ã	67 17	30578	1 7		SAME COMMENT AS ABOVE
	200	0	.0751	30378			SAME CONTIENT AS ABOVE
11	257	- 9	.46JT	31290	0.7.	IR PRL	THIN FRACTURE CAUSING
33****SOLUT	ION	HOL	ES TO	DEVEL	0P * * * *	*******	* * * * * * * * * * * * * * * * * * * *
33********	F Qt	* * *	****	* * * * * *	* * * * * * *	*******	* * * * * * * * * * * * * * * * * * * *
11 11	้าร์ด	•	71 10	12450	201	ז כות מי	MIDE 1 COM DIACK +++
11	200	9	. /131	13433	2.9		WIDE ISUN, BLACK
33****DOLOM	ITE 🛛	FIL	LED**	* * * * * *	******	*******	* * * * * * * * * * * * * * * * * * * *
11	259	10	.43JT	04389	0.51	IR PRL	
11	260	10	61.TT	12385	1 4		BLACK DOLOMITE FILLED
11	200	10	.0101	12303	1.1		
11	261	11	.11JT	044/2	0.87	CK PRL	WIDE ZOCM WIDE, DOLEILL
11	262	11	.35JT	12483	8.1 2	ZR CRL	VERY WIDE 15-20CM
11	263	11	5317	30686	07	R PRT.	
± 1	200	11		200000	12.7		
11	204	13	.3371	30480	12.0.		VERIWILE LONG JT, ZOUMWD
11	265	14	.11 JT	31785	0.6 2	2R PRL	THIN LINE OF SOLUTION
33*******	LES 1	WTT	H FRAG	CTTIRE*	*****	******	* * * * * * * * * * * * * * * * * * * *
11	260	1 /	1010	03600	A 2 '	ז סדי סג	EDACHINES VERY WINE COA
	200	14	. 1971	03030	4.3		ERACIORE: VERI WIDE SPA
33*****CE ,	5-10	CM 1	WIDE*	* * * * * * *	******		*******************
11	267	14	.23JT	30385	0.7 1	R PRL	
11	260	14	6017	31000	7 2	זפיי פו	VERY WITTE 15-20CM EDCTED
11	200	17	.0001	31090	1.4		VERI WIDE 15-2004 FROM
11	269	15	101	11385	0.9		NOT CONSTANT WIDTH, SOLN
33****HOLES	ALO	NG 1	FRACT	URE***	* * * * * * * *	*******	*******************
11	270	16	41.TT	12580	44(WR CRL	3
11	271	10		12406			•
11	2/1	TO	. A20 I.	12480	7.1		
11	272	17	.43JT	30289	1.30	JR SRL	O CHAIN OF SOLUTION HOLES
11	273	18	30JT	30085	2 1 1	IR CRI.	CHAIN OF SOLUTION HOLES
11 TOTEOE	027	1 2	000	00000			
22 307505	027	12	.03				
11	274	0	. 42JT	12687	3.6 2	R PRL	EITHER SIDE OF WIDE
33****FRACT	URE S	SPA(CE****	* * * * * * *	***.****	*******	* * * * * * * * * * * * * * * * * * * *
11	275	0	76 17	20000	1 2 3	זכומי סו	SAME COMMENT AS ABOVE
* 1	215	Š	. 703 1	23330			SAME COMMENT AS ADOVE
11	276	0	.89J.L	06687	0.70)R CRL	SOLUTION HOLE FRACTURES
11	277	1	.01 J T	21888	1.4 ()R CRL	SOLUTION HOLE FRACTURES
11	278	1	63.17	29890	140		O SOLUTION HOLE FRACTURES
* *	210				I • I \		
22++++++00000	היה הוד						
33*****OFFSI	ET BI	E FI	ACTUR	RE****	*****	******	****
33*****OFFSI 11	ET BI 279	E FE 1	ACTUR	04790	1.2 0	R CRL	1 SOLUTION HOLE FRACTURES
33******OFFSI 11 11	ET BI 279 280	E FI 1. 1	ACTUR	04790 32288	1.20	R CRL	1 SOLUTION HOLE FRACTURES
33******OFFSI 11 11	ET BI 279 280	E FH 1	ACTUR 77JT 81JT	04790 32288	1.20	OR CRL	1 SOLUTION HOLE FRACTURES 1 SAME AS ABOVE
33******OFFSI 11 11 11	ET BI 279 280 281	E FH 1 1	ACTUR 77JT 81JT 67JT	04790 32288 24490	1.2 (1.6 (1.2 2	DR CRL DR CRL DR CRL 2R CRL	1 SOLUTION HOLE FRACTURES 1 SAME AS ABOVE SAME AS ABOVE
33******OFFSI 11 11 11 11 11	ET BI 279 280 281 282	E FH 1 2 3	ACTUR 77JT 81JT 67JT 41JT	24490 14166	1.2 (1.6 (1.2 2 0.6 1	DR CRL DR CRL DR CRL DR CRL DR CRL DR PRL	1 SOLUTION HOLE FRACTURES 1 SAME AS ABOVE SAME AS ABOVE
33******OFFSI 11 11 11 11 11 11	ET BI 279 280 281 282 283	E FH 1 2 3 4	ACTUR 77JT 81JT 67JT 41JT	E***** 04790 32288 24490 14166 30578	1.2 (1.6 (1.2 2 0.6 1 1.7 2	DR CRL DR CRL DR CRL DR CRL DR CRL DR CRL	1 SOLUTION HOLE FRACTURES 1 SAME AS ABOVE SAME AS ABOVE MAPPED AS FR#256
33******OFFSI 11 11 11 11 11	ET BI 279 280 281 282 283 284	E FH 1 2 3 4	ACTUR 77JT 81JT 67JT 41JT 00JT	E**** 04790 32288 24490 14166 30578	1.2 (1.6 (1.2 2 0.6 1 1.7 2	DR CRL DR CRL DR CRL DR CRL DR CRL DR CRL	1 SOLUTION HOLE FRACTURES 1 SAME AS ABOVE SAME AS ABOVE MAPPED AS FR#256 MAPPED AS FR#256
33******OFFSI 11 11 11 11 11 11 11	ET BI 279 280 281 282 283 283	E FH 1 2 3 4 4	ACTUR 77JT 81JT 67JT 41JT 00JT 47JT	E***** 04790 32288 24490 14166 30578 03975	1.2 (1.6 (1.2 2 0.6 1 1.7 2 3.9 1	XR CRL XR CRL XR CRL XR PRL XR CRL XR CRL	1 SOLUTION HOLE FRACTURES 1 SAME AS ABOVE SAME AS ABOVE MAPPED AS FR#256 MAPPED AS FR#255
33******OFFSI 11 11 11 11 11 11 11 11 11	ET BI 279 280 281 282 283 284 284 285	E FH 1 2 3 4 4	ACTUE 77JT 81JT 67JT 41JT 00JT 47JT 92JT	E**** 04790 32288 24490 14166 30578 03975 22185	1.2 1.6 1.2 0.6 1.7 2 3.9 1.4 2	OR CRL	1 SOLUTION HOLE FRACTURES 1 SAME AS ABOVE SAME AS ABOVE MAPPED AS FR#256 MAPPED AS FR#255 FILLED WITH BLACK
33******OFFSI 11 11 11 11 11 11 11 11 33*****SEDIMI	ET BI 279 280 281 282 283 283 284 285 ENT, 0	E FH 1 2 3 4 4 4 0RC	ACTUE .77JT .81JT .67JT .41JT .00JT .47JT .92JT ANIC	C4790 32288 24490 14166 30578 O3975 22185 - SPACE	1.2 (1.6 (1.2 2 0.6 1 1.7 2 3.9 1 1.4 2 FRACT	XR CRL	1 SOLUTION HOLE FRACTURES 1 SOLUTION HOLE FRACTURES 1 SAME AS ABOVE SAME AS ABOVE MAPPED AS FR#256 MAPPED AS FR#255 FILLED WITH BLACK
33******OFFSI 11 11 11 11 11 11 11 33*****SEDIMI	ET BI 279 280 281 282 283 284 285 ENT, (286	E FH 1 2 3 4 4 0RC/ 5	ACTUE .77JT .81JT .67JT .41JT .00JT .47JT .92JT .NIC .15JT	C4790 32288 24490 14166 30578 03975 22185 -SPACE 09488	1.2 (1.6 (1.2 2 0.6 1 1.7 2 3.9 1 1.4 2 FRACT	X CRL X	1 SOLUTION HOLE FRACTURES 1 SOLUTION HOLE FRACTURES 1 SAME AS ABOVE SAME AS ABOVE MAPPED AS FR#256 MAPPED AS FR#255 FILLED WITH BLACK
33******OFFSI 11 11 11 11 11 11 11 11 11 33*****SEDIMI 11	ET BI 279 280 281 282 283 284 285 ENT, (286 286	E FH 1 2 3 4 4 5	ACTUE .77JT .81JT .67JT .41JT .00JT .47JT .92JT .NIC- .15JT	E***** 04790 32288 24490 14166 30578 03975 22185 SPACE 09488	1.2 (1.6 (1.2 2 0.6 1 1.7 2 3.9 1 1.4 2 FRACTU 1.1 2	X CRL XR CRL	1 SOLUTION HOLE FRACTURES 1 SAME AS ABOVE SAME AS ABOVE MAPPED AS FR#256 MAPPED AS FR#255 FILLED WITH BLACK SAME COMMENT AS ABOVE
33*****OFFSI 11 11 11 11 11 11 11 33*****SEDIMI 11 11	ET BI 279 280 281 282 283 284 285 ENT, (286 287	E FH 1 2 3 4 4 4 5 5	ACTUR 77JT 81JT 41JT 41JT 41JT 92JT 92JT NIC- 15JT 51JT	E***** 04790 32288 24490 14166 30578 03975 22185 SPACE 09488 10089	1.2 (1.6 (1.2 2 0.6 1 1.7 2 3.9 1 1.4 2 FRACT(1.1 2 1.1 (X CRL XR CRL	1 SOLUTION HOLE FRACTURES 1 SAME AS ABOVE SAME AS ABOVE MAPPED AS FR#256 MAPPED AS FR#255 FILLED WITH BLACK SAME COMMENT AS ABOVE 3
33******OFFSI 11 11 11 11 11 11 11 33*****SEDIMI 11 11 11	ET BI 279 280 281 282 283 284 285 ENT, (286 287 288	E FH 1 2 3 4 4 5 5 6	ACTUE 77JT 81JT 67JT 41JT 00JT 47JT 92JT 47JT 15JT 51JT 70JT	E***** 04790 32288 24490 14166 30578 03975 22185 SPACE 09488 10089 06188	1.2 (1.6 (1.2 2 0.6 1 1.7 2 3.9 1 1.4 2 FRACT(1.1 2 1.1 (7.4 2	X CRL XR CRL	1 SOLUTION HOLE FRACTURES 1 SOLUTION HOLE FRACTURES 1 SAME AS ABOVE MAPPED AS FR#256 MAPPED AS FR#255 FILLED WITH BLACK SAME COMMENT AS ABOVE 3 SAME COMMENT AS ABOVE
33*****OFFSI 11 11 11 11 11 11 11 11 13 33*****SEDIMI 11 11 11 11 11 11 11 11 11 1	ET BI 279 280 281 282 283 284 285 284 285 ENT, (286 287 288 288	E FH 1 2 3 4 4 5 5 5 6 7	ACTUE 77JT 81JT 67JT 41JT 00JT 47JT 92JT 47JT 92JT 51JT 51JT 70JT	C4790 32288 24490 14166 30578 03975 22185 SPACE 09488 10089 06188	1.2 (1.6 (1.2 2 0.6 1 1.7 2 3.9 1 1.4 2 FRACT(1.1 (7.4 2	OR CRL	1 SOLUTION HOLE FRACTURES 1 SOLUTION HOLE FRACTURES 1 SAME AS ABOVE MAPPED AS FR#256 MAPPED AS FR#255 FILLED WITH BLACK SAME COMMENT AS ABOVE 3 SAME COMMENT AS ABOVE
33*****OFFSI 11 11 11 11 11 11 11 11 11 33*****SEDIMI 11 11 33*****WIDE A 33******	ET BI 279 280 281 282 283 284 285 284 285 287 286 287 288 280	E FF 1 2 3 4 4 4 5 5 6 1	ACTUE 77JT 81JT 67JT 41JT 00JT 47JT 92JT NIC- 15JT 51JT 50JT 50JT	E***** 04790 32288 24490 14166 30578 03975 22185 SPACE 09488 10089 06188	1.2 (1.6 (1.2 2 0.6 1 1.7 2 3.9 1 1.4 2 FRACT(1.1 2 1.1 (7.4 2	OR CRL	1 SOLUTION HOLE FRACTURES 1 SAME AS ABOVE SAME AS ABOVE MAPPED AS FR#256 MAPPED AS FR#255 FILLED WITH BLACK SAME COMMENT AS ABOVE 3 SAME COMMENT AS ABOVE
33*****OFFSI 11 11 11 11 11 11 11 11 11 1	ET BI 279 280 281 282 283 284 285 ENT, (286 287 288 287 288 ABOUI	E FF 1 2 3 4 4 4 5 5 6 1 10*1	ACTUE 77JT 81JT 67JT 41JT 00JT 47JT 92JT NIC 15JT 51JT 70JT 50JT	E***** 04790 32288 24490 14166 30578 03975 22185 SPACE 09488 10089 06188	1.2 (1.6 (1.2 2 0.6 1 1.7 2 3.9 1 1.4 2 FRACT(1.1 2 1.1 (7.4 2	OR CRL	1 SOLUTION HOLE FRACTURES 1 SOLUTION HOLE FRACTURES 1 SAME AS ABOVE MAPPED AS FR#256 MAPPED AS FR#255 FILLED WITH BLACK SAME COMMENT AS ABOVE 3 SAME COMMENT AS ABOVE
33******OFFSI 11 11 11 11 11 11 11 11 33*****SEDIMI 11 11 11 33*****WIDE 4 33******P4 11	ET BI 279 280 281 282 283 284 285 284 285 ENT, (286 287 288 4BOU 288 4BOU 289	E FF 1 2 3 4 4 4 5 5 6 5 6 10*1 7	ACTUE 77JT 81JT 67JT 41JT 00JT 47JT 92JT 47JT 51JT 51JT 50JT 509JT	E***** 04790 32288 24490 14166 30578 03975 22185 SPACE 09488 10089 06188	1.2 (1.6 (1.2 2 0.6 1 1.7 2 3.9 1 1.4 2 FRACT(1.1 2 1.1 (7.4 2	R CRL	1 SOLUTION HOLE FRACTURES 1 SOLUTION HOLE FRACTURES 1 SAME AS ABOVE MAPPED AS FR#256 MAPPED AS FR#255 FILLED WITH BLACK ************************************
33*****OFFSI 11 11 11 11 11 11 11 11 11 1	ET BI 279 280 281 282 283 284 285 ENT, (286 287 288 287 288 ABOUT AGE 1 289 290	E FF 1 2 3 4 4 4 4 5 5 6 1 10*1 7 7	ACTUE 77JT 81JT 67JT 41JT 92JT 47JT 92JT 15JT 51JT 5CM*** 09JT 48JT	C4790 32288 24490 14166 30578 03975 22185 SPACE 09488 10089 06188 10089 12483 13286	1.2 (1.6 (1.2 2 0.6 1 1.7 2 3.9 1 1.4 2 FRACTU 1.1 2 1.1 (7.4 2 8.1 2 1.4 1	A CRL OR CRL	1 SOLUTION HOLE FRACTURES 1 SAME AS ABOVE SAME AS ABOVE MAPPED AS FR#256 MAPPED AS FR#255 FILLED WITH BLACK SAME COMMENT AS ABOVE 3 SAME COMMENT AS ABOVE MAPPED AS FR#262 TINY FRACTURE WITH
33*****OFFSI 11 11 11 11 11 11 11 11 11 1	ET BI 279 280 281 282 283 284 285 284 285 286 287 288 287 288 4BOU 288 287 288 287 288 287 288 289 290 290	E FF 1 2 3 4 4 4 0RC/ 5 6 7 10*1 7 7	ACTUE 77JT 81JT 67JT 41JT 00JT 47JT 92JT NIC 15JT 51JT 50JT 609JT 48JT	E***** 04790 32288 24490 14166 30578 03975 22185 SPACE 09488 10089 06188 ****** 12483 13286	1.2 (1.6 (1.2 2 0.6 1 1.7 2 3.9 1 1.4 2 FRACT(1.1 2 1.1 (7.4 2 8.1 2 1.4 1 HOLES	OR CRL	1 SOLUTION HOLE FRACTURES 1 SAME AS ABOVE SAME AS ABOVE MAPPED AS FR#256 MAPPED AS FR#255 FILLED WITH BLACK SAME COMMENT AS ABOVE 3 SAME COMMENT AS ABOVE MAPPED AS FR#262 TINY FRACTURE WITH
33*****OFFSI 11 11 11 11 11 11 11 11 11 1	ET BI 279 280 281 282 283 284 285 284 285 ENT, (286 287 288 287 288 4BOU 289 290 CHA	E FF 1 2 3 4 4 0RG 5 5 6 10*1 7 10*1 7 1N	ACTUE 77JT 81JT 67JT 41JT 00JT 47JT 92JT NIC 15JT 51JT 70JT 50JT 48JT 92JT	E***** 04790 32288 24490 14166 30578 03975 22185 SPACE 09488 10089 06188 ****** 12483 13286 LUTION	1.2 (1.6 (1.2 2 0.6 1 1.7 2 3.9 1 1.4 2 FRACT(1.1 2 1.1 (7.4 2 8.1 2 1.4 1 HOLES	OR CRL	1 SOLUTION HOLE FRACTURES 1 SAME AS ABOVE SAME AS ABOVE MAPPED AS FR#256 MAPPED AS FR#255 FILLED WITH BLACK SAME COMMENT AS ABOVE 3 SAME COMMENT AS ABOVE MAPPED AS FR#262 TINY FRACTURE WITH
33*****OFFSI 11 11 11 11 11 11 11 11 11 1	ET BH 279 280 281 282 283 284 285 284 285 286 286 286 286 288 288 280 288 280 288 289 290 CHAI 291	E FF 1 2 3 4 4 5 5 6 6 7 7 10*** 7 10*** 7 10*** 7 10*** 7 10 10 10 10 10 10 10 10 10 10	ACTUE 77JT 81JT 67JT 41JT 92JT 47JT 92JT 15JT 51JT 50JT 48JT 0F SOI 36JT	E***** 04790 32288 24490 14166 30578 03975 22185 SPACE 09488 10089 06188 ****** 12483 13286 UTION 14084	1.2 (1.6 (1.2 2 0.6 1 1.7 2 3.9 1 1.4 2 FRACT(1.1 2 1.1 (7.4 2 1.1 2 1.1 4 HOLES 1.8 (WR CRL	1 SOLUTION HOLE FRACTURES 1 SOLUTION HOLE FRACTURES 1 SAME AS ABOVE MAPPED AS FR#256 MAPPED AS FR#255 FILLED WITH BLACK ************************************
33*****OFFSI 11 11 11 11 11 11 11 11 11 1	ET BI 279 280 281 282 283 284 285 284 285 286 287 288 BOU 286 287 288 287 288 287 288 290 290 CHAI 291 292	E FI 1 2 3 4 4 4 4 4 5 5 6 7 1 1 1 1 2 3 3 4 4 4 4 4 4 7 7 1 1 1 1 2 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4	ACTUE 77JT 81JT 67JT 41JT 92JT 47JT 92JT 15JT 51JT 50JT 609JT 48JT 05 SOI 36JT 43JT	E***** 04790 32288 24490 14166 30578 03975 22185 SPACE 09488 10089 06188 10089 06188 10089 06188 12483 13286 UTION 14084 04080	1.2 (1.6 (1.2 2 0.6 1 1.7 2 3.9 1 1.4 2 FRACT 1.1 2 1.1 2 1.4 1 1.4 1 1.4 1 1.4 1 1.4 1 1.4 1 1.4 1 1.8 (1.8 1) 1.8 1 1.8 1 1	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	1 SOLUTION HOLE FRACTURES 1 SAME AS ABOVE SAME AS ABOVE MAPPED AS FR#256 MAPPED AS FR#255 FILLED WITH BLACK SAME COMMENT AS ABOVE 3 SAME COMMENT AS ABOVE 3 SAME COMMENT AS ABOVE 4 MAPPED AS FR#262 TINY FRACTURE WITH 4 1 SOL'N HOLES WITH FRCT WIDE 10-15CM JOINT
33*****OFFSI 11 11 11 11 11 11 11 11 11 1	ET BI 279 280 281 282 283 284 285 284 285 286 287 288 287 288 289 290 CHAI 292 292 293	E FI 1 2 3 4 4 4 4 5 5 5 5 6 7 7 7 1 1 1 2 3 4 4 4 4 4 5 5 6 7 7 7 1 1 1 1 1 1 1 1 1 1 1 1 1	ACTUE 77JT 81JT 67JT 41JT 92JT 47JT 92JT 15JT 51JT 51JT 50JT 48JT 0F SOI 43JT 65JT	E***** O479J 32288 24490 14166 30578 O3975 22185 SPACE 09488 10089 06188 ****** 12483 13286 LUTION 14084 04080 30480	1.2 (1.6 (1.2 2 0.6 1 1.7 2 3.9 1 1.4 2 FRACT(1.1 2 1.1 (7.4 2 1.1 2 1.8 1 1.8 1 1.2 6 1.2 7 1.2 6 1.2 7 1.2	WR CRL WR CRL <td< td=""><td>1 SOLUTION HOLE FRACTURES 1 SAME AS ABOVE SAME AS ABOVE MAPPED AS FR#256 MAPPED AS FR#255 FILLED WITH BLACK ************************************</td></td<>	1 SOLUTION HOLE FRACTURES 1 SAME AS ABOVE SAME AS ABOVE MAPPED AS FR#256 MAPPED AS FR#255 FILLED WITH BLACK ************************************
33******OFFSI 11 11 11 11 11 11 11 11 11 1	ET BI 279 280 281 282 283 284 285 284 285 286 287 288 287 288 287 288 287 288 289 290 CHAI 291 292 293	E FI 1 1 2 3 4 4 4 5 5 6 1 1 5 6 7 7 1 1 1 2 3 4 4 4 5 5 6 7 7 1 1 1 2 3 4 4 5 5 6 7 7 1 1 1 2 3 4 4 5 5 6 7 7 7 7 7 7 7 7 7 7 7 7 7	ACTUE 77JT 81JT 67JT 41JT 00JT 47JT 92JT NIC 15JT 51JT 70JT 50JT 48JT 950I 36JT 43JT 65JT	E***** 04790 32288 24490 14166 30578 03975 22185 SPACE 09488 10089 06188 ****** 12483 13286 UTION 14084 04080 30480	1.2 (1.6 (1.2 2 0.6 1 1.7 2 3.9 1 1.4 2 FRACT(1.1 2 1.1 (7.4 2 1.1 2 1.1 2 1.4 1 HOLES(1.8 1 1.8 1 1.8 1 1.2 6	R CRL	1 SOLUTION HOLE FRACTURES 1 SOLUTION HOLE FRACTURES 1 SAME AS ABOVE MAPPED AS FR#256 MAPPED AS FR#255 FILLED WITH BLACK ************************************
33*****OFFSI 11 11 11 11 11 11 11 11 11 1	ET BH 279 280 281 282 283 284 285 284 285 286 286 287 286 287 288 280 280 280 280 280 290 CHAI 292 293 294	E FF 1 1 2 3 4 4 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5	ACTUE 77JT 81JT 67JT 41JT 92JT 47JT 92JT 51JT 51JT 51JT 50JT 48JT 95 48JT 95 50JT 43JT 65JT 63JT	E***** O4790 32288 24490 14166 30578 O3975 22185 SPACE 09488 10089 06188 102483 13286 UUTION 14084 04080 30480 11085	1.2 (1.6 (1.2 2 0.6 1 1.7 2 3.9 1 1.4 2 FRACTU 1.1 2 1.1 2 1.1 2 1.1 2 1.1 2 1.4 1 HOLES 1.8 1 1.8 1 1.8 1 2.2 1	CRL CRL CRL CRL CRL CRL CRL CRL	1 SOLUTION HOLE FRACTURES 1 SOLUTION HOLE FRACTURES 1 SAME AS ABOVE MAPPED AS FR#256 MAPPED AS FR#255 FILLED WITH BLACK ************************************
33*****OFFSI 11 11 11 11 11 11 11 11 11 1	ET BI 279 280 281 282 283 284 285 284 285 286 287 288 287 288 289 290 CHAI 292 293 294 295	E FI 1 2 3 4 4 4 5 5 6 7 10 * 7 10 * * 10 * * 10 * * 10 * * 10 * * * 10 * * * 10 * * * * 10 * * * * * * * * * * * * *	ACTUE 77JT 81JT 67JT 41JT 00JT 47JT 92JT 15JT 51JT 51JT 50JT 48JT 0F SOI 48JT 0F SOI 48JT 65JT 63JT 67JT	E***** O479J 32288 24490 14166 30578 O3975 22185 SPACE 09488 10089 06188 ****** 12483 13286 UTION 14084 04080 30480 11085 06685	1.2 (1.6 (1.2 2 0.6 1 1.7 2 3.9 1 1.4 2 FRACT 1.1 2 1.1 2 1.3 2 1.	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	1 SOLUTION HOLE FRACTURES 1 SAME AS ABOVE SAME AS ABOVE MAPPED AS FR#256 MAPPED AS FR#255 FILLED WITH BLACK SAME COMMENT AS ABOVE 3 SAME COMMENT AS ABOVE 3 SAME COMMENT AS ABOVE 4 MAPPED AS FR#262 TINY FRACTURE WITH 4 1 SOL'N HOLES WITH FRCT WIDE 10-15CM JOINT MAPPED AS FR#264 WIDE DEEP WEATHERED
33******OFFSI 11 11 11 11 11 11 11 11 11 1	ET BI 279 280 281 282 283 284 285 284 285 286 287 288 287 288 289 290 CHAI 291 292 293 294 295 295 296	E FI 1 1 2 3 4 4 4 5 6 7 7 10 10 10 10 10 10 10 10 10 10	ACTUE 77JT 81JT 67JT 41JT 00JT 47JT 92JT NIC 15JT 51JT 51JT 50JT 48JT 63JT 63JT 63JT 67JT 98JT	E***** 04790 32288 24490 14166 30578 03975 22185 SPACE 09488 10089 06188 ****** 12483 13286 UTION 14084 04080 30480 11085 06685 10981	1.2 (1.6 (1.2 2 0.6 1 1.7 2 3.9 1 1.4 2 FRACT(1.1 2 1.1 (7.4 2 1.1 2 1.1 2 1.4 1 HOLES(1.8 1 1.8 1 1.8 (1.8 1 1.2 2 1.3 2	CRL CRL CRL CRL CRL CRL CRL CRL	1 SOLUTION HOLE FRACTURES 1 SOLUTION HOLE FRACTURES 1 SAME AS ABOVE MAPPED AS FR#256 MAPPED AS FR#255 FILLED WITH BLACK ************************************
33*****OFFSI 11 11 11 11 11 11 11 11 11 1	ET BH 279 280 281 282 283 284 285 284 285 286 286 287 286 288 286 288 280 280 280 290 CHAI 292 293 294 295 296 295 296	E FI 1 1 2 3 4 4 4 5 5 6 5 6 1 1 1 7 7 1 1 1 2 3 4 4 4 5 5 6 1 1 1 2 3 4 4 4 5 5 6 1 1 1 1 2 3 4 4 4 5 5 6 1 1 1 1 1 1 1 1 1 1 1 1 1	ACTUE 77JT 81JT 67JT 41JT 00JT 47JT 92JT NIC 15JT 50JT 50JT 48JT 09JT 48JT 65JT 63JT 63JT 67JT	E***** 04790 32288 24490 14166 30578 03975 22185 SPACE 09488 10089 06188 ****** 12483 13286 UTION 14084 04080 30480 11085 06685 10981	1.2 1.6 1.2 0.6 1.7 3.9 1.4 FRACTU 1.1 7.4 5.1 1.1 HOLESU 1.8 1.8 1.8 1.8 1.8 1.3 2.2 1.7 2.2 1.7 2.2 1.7 2.2 1.7 1.7 1.7 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8	CRL CRL CRL CRL CRL CRL CRL CRL	 SOLUTION HOLE FRACTURES SAME AS ABOVE MAPPED AS FR#256 MAPPED AS FR#255 FILLED WITH BLACK SAME COMMENT AS ABOVE MAPPED AS FR#262 TINY FRACTURE WITH SOL'N HOLES WITH FRCT WIDE 10-15CM JOINT MAPPED AS FR#264 WIDE DEEP WEATHERED WIDE DEEP WEATHERED
33*****OFFSI 11 11 11 11 11 11 11 11 11 1	ET BI 279 280 281 282 283 284 285 286 287 286 287 288 ENT, 286 287 288 287 288 290 290 291 292 293 294 295 296 297	E FI 1 2 3 4 4 4 4 5 5 6 5 6 5 6 5 6 1 1 1 2 3 4 4 4 4 5 5 6 5 1 1 1 1 2 3 4 4 4 4 5 5 6 1 1 1 1 1 1 1 1 1 1 1 1 1	ACTUE 77JT 81JT 67JT 41JT 92JT 47JT 92JT 15JT 51JT 51JT 50JT 48JT 65JT 63JT 63JT 63JT 98JT 19JT	E***** O479J 32288 24490 14166 30578 O3975 22185 SPACE 09488 10089 06188 10089 06188 12483 13286 UTION 14084 04080 30480 11085 06685 10981 11888	1.2 (1.6 (1.2 2 0.6 1 1.7 2 3.9 1 1.4 2 FRACT 1.1 2 1.4 2 FRACT 1.1 2 1.1 2 1.1 2 1.1 2 1.1 2 0.6 1 1.7 2 0.7 1 0.7 1 0.7 2 0.7 1 0.7 2 0.7 1 0.7 1 0.7 2 0.7 1 0.7 1 0	CRL CRL CRL CRL CRL CRL CRL CRL	 SOLUTION HOLE FRACTURES SAME AS ABOVE MAPPED AS FR#256 MAPPED AS FR#255 FILLED WITH BLACK SAME COMMENT AS ABOVE MAPPED AS FR#262 TINY FRACTURE WITH SOL'N HOLES WITH FRCT WIDE 10-15CM JOINT MAPPED AS FR#264 WIDE DEEP WEATHERED WIDE DEEP WEATHERED
33*****OFFSI 11 11 11 11 11 11 11 11 11 1	ET BI 279 280 281 282 283 284 285 284 285 286 287 288 289 290 290 290 290 291 292 293 294 295 296 297 298	E FI 1 2 3 4 4 4 5 6 7 10 *** 7 10 *** 7 10 *** 7 10 *** 7 10 *** 7 10 *** 11 12 12 13 14 14 14 15 15 15 15 15 15 15 15 15 15	ACTUE 77JT 81JT 67JT 41JT 00JT 47JT 92JT 15JT 51JT 51JT 50JT 48JT 65JT 65JT 63JT 63JT 63JT 98JT 19JT 91JT	E***** O479J 32288 24490 14166 30578 O3975 22185 SPACE 09488 10089 06188 ****** 12483 13286 UTION 14084 04080 30480 11085 06685 10981 11888 32590	1.2 (1.6 (1.2 2 0.6 1 1.7 2 3.9 1 1.4 2 FRACT(1.1 2 1.4 2 FRACT(1.1 2 1.4 2 HOLES(1.8 1 1.8 1 1.2 6 1.8 1 1.2 6 1.8 1 1.2 6 1.8 1 1.8 1 1.7 2 1.8 1 1.8 1 1.7 2 1.8 1 1.8 1 1.7 2 1.8 1 1.8 1 1.8 1 1.7 2 1.8 1 1.8 1 1.7 2 1.8 1 1.8 1 1.8 1 1.7 2 1.8 1 1.8 1 1.8 1 1.7 2 1.8 1 1.8 1 1.7 2 1.8 1 1.8 1	CRL CRL CRL CRL CRL CRL CRL CRL	 SOLUTION HOLE FRACTURES SAME AS ABOVE MAPPED AS FR#256 MAPPED AS FR#255 FILLED WITH BLACK SAME COMMENT AS ABOVE MAPPED AS FR#262 TINY FRACTURE WITH SOL'N HOLES WITH FRCT WIDE 10-15CM JOINT MAPPED AS FR#264 WIDE DEEP WEATHERED WIDE DEEP WEATHERED
33******OFFSI 11 11 11 11 11 11 11 11 11 1	ET BI 279 280 281 282 283 284 285 284 285 286 287 288 287 288 287 288 289 290 CHAI 291 292 293 294 295 295 295 297 298 299	E FI 1 1 2 3 4 4 4 5 5 6 7 7 10 10 10 10 10 10 11 12 10 10 10 10 10 10 10 10 10 10	ACTUE 77JT 81JT 67JT 41JT 00JT 47JT 92JT 15JT 51JT 70JT 51JT 70JT 50JT 48JT 63JT 63JT 63JT 67JT 91JT 91JT 91JT	E***** 04790 32288 24490 14166 30578 03975 22185 SPACE 09488 10089 06188 ****** 12483 13286 UTION 14084 04080 30480 11085 06685 10981 11888 32590 10483	1.2 1.6 1.2 0.6 1.7 3.9 1.4 FRACT 1.1 7.4 FRACT 1.1 1.1 0.6 1.4 1.1 1.1 1.1 1.4 1.4 1.8 1.8 1.3 2.2 1.7 1.8 1.7 1.3 1.7 1.8 1.7 1.7 1.8 1.7 1.8 1.7 1.7 1.8 1.7 1.7 1.8 1.7 1.7 1.8 1.7 1.7 1.8 1.7 1.7 1.8 1.7 1.7 1.8 1.7 1.7 1.8 1.7 1.7 1.8 1.7 1.7 1.8 1.7 1.8 1.7 1.8 1.7 1.8 1.7 1.8 1.7 1.7 1.8 1.7 1.8 1.7 1.7 1.8 1.7 1.8 1.7 1.7 1.8 1.7 1.8 1.7 1.7 1.8 1.7 1.7 1.8 1.7 1.7 1.8 1.7 1.7 1.8 1.7 1.7 1.8 1.7 1.7 1.7 1.8 1.7 1.7 1.7 1.7 1.7 1.7 1.8 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7	CRL CRL CRL CRL CRL CRL CRL CRL	 SOLUTION HOLE FRACTURES SAME AS ABOVE SAME AS ABOVE MAPPED AS FR#256 MAPPED AS FR#255 FILLED WITH BLACK SAME COMMENT AS ABOVE MAPPED AS FR#262 TINY FRACTURE WITH SOL'N HOLES WITH FRCT WIDE 10-15CM JOINT MAPPED AS FR#264 WIDE DEEP WEATHERED WIDE DEEP WEATHERED
33*****OFFSI 11 11 11 11 11 11 11 11 11 1	ET BH 279 280 281 282 283 284 285 286 287 286 287 286 287 288 287 288 287 288 287 288 290 291 292 293 294 295 296 297 298 299	E FF 1 1 2 3 4 4 4 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5	ACTUE 77JT 81JT 67JT 41JT 92JT 92JT 15JT 51JT 51JT 5CM** 48JT 0F SOI 48JT 65JT 63JT 63JT 63JT 98JT 19JT 91JT	E***** O4790 32288 24490 14166 30578 O3975 22185 SPACE 09488 10089 06188 1089 06188 13286 UTION 14084 04080 30480 11085 06685 10981 11888 32590 10483	1.2 (1.6 (1.2 2 0.6 1 1.7 2 3.9 1 1.4 2 FRACTU 1.1 2 1.4 2 FRACTU 1.1 2 1.4 1 HOLES 1.8 1 1.8 1 1.3 2 0.7 1 1.8 1 1.4 1 1.4 1 1.8 1 1.4 1 1.8 1 1.4 1 1.4 1 1.8 1 1.4 1 1.4 1 1.8 1 1.4 1 1.8 1 1.4 1 1.8 1 1.4 1 1.4 1	CRL	 SOLUTION HOLE FRACTURES SAME AS ABOVE MAPPED AS FR#256 MAPPED AS FR#255 FILLED WITH BLACK SAME COMMENT AS ABOVE SOL'N HOLES WITH FRCT WIDE 10-15CM JOINT MAPPED AS FR#264 WIDE DEEP WEATHERED WIDE DEEP WEATHERED
33*****OFFSI 11 11 11 11 11 11 11 11 11 1	ET BI 279 280 281 282 283 284 285 284 285 286 287 288 287 288 287 288 287 288 287 288 290 290 291 292 293 294 295 295 296 297 298 299 300	E FI 1 2 3 4 4 4 5 5 6 10 10 10 10 10 10 10 10 10 10	ACTUE 77JT 81JT 67JT 41JT 00JT 47JT 92JT 15JT 51JT 51JT 50JT 48JT 565JT 48JT 0F SOI 65JT 63JT 67JT 98JT 19JT 91JT 07JT	E***** O479J 32288 24490 14166 30578 O3975 22185 SPACE 09488 10089 06188 10089 06188 ****** 12483 13286 UTION 14084 04080 30480 11085 06685 10981 11888 32590 10483 11188	1.2 1.6 1.7 3.9 1.7 3.9 1.4 FRACT 1.1 7.4 8.1 1.4 HOLES 1.8 1.8 1.8 1.8 1.3 1.7 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4	CRL CRL CRL CRL CRL CRL CRL CRL	 SOLUTION HOLE FRACTURES SAME AS ABOVE MAPPED AS FR#256 MAPPED AS FR#255 FILLED WITH BLACK SAME COMMENT AS ABOVE MAPPED AS FR#262 TINY FRACTURE WITH SOL'N HOLES WITH FRCT WIDE 10-15CM JOINT MAPPED AS FR#264 WIDE DEEP WEATHERED WIDE DEEP WEATHERED
33*****OFFSI 11 11 11 11 11 11 11 11 11 1	ET BI 279 280 281 282 283 284 285 284 285 286 287 288 287 288 290 290 290 291 292 293 294 295 296 297 298 299 300 023	E FF 1 1 2 3 4 4 4 4 5 6 7 10 10 10 10 10 10 10 11 12 10 10 11 12 10 11 12 10 11 10 10 10 10 10 10 10 10	ACTUE 77JT 81JT 67JT 41JT 00JT 47JT 92JT 15JT 51JT 51JT 50JT 48JT 65JT 63JT 63JT 63JT 63JT 98JT 98JT 99JT 19JT 91JT 89JT	E***** O479J 32288 24490 14166 30578 O3975 22185 SPACE 09488 10089 06188 ****** 12483 13286 UTION 14084 04080 30480 11085 06685 10981 11888 32590 10483 11188	1.2 (1.6 (1.2 2 0.6 1 1.7 2 3.9 1 1.4 2 FRACT(1.1 2 1.1 (7.4 2 1.1 (7.4 2 1.1 2 1.1 2 1.1 2 1.1 2 1.1 2 1.4 1 1.2 6 1.8 1 1.2 6 1.8 1 1.7 2 1.8 1 1.8 1 1.7 2 1.8 1 1.8 1 1.7 2 1.8 1 1.8 1 1.7 2 1.8 1 1.8 1 1.5 11 1.5 11 1.5 11 1.5 11 1.5 11 1.5 11 1.	CRL CRL CRL CRL CRL CRL CRL CRL	 SOLUTION HOLE FRACTURES SAME AS ABOVE MAPPED AS FR#256 MAPPED AS FR#255 FILLED WITH BLACK SAME COMMENT AS ABOVE MAPPED AS FR#262 TINY FRACTURE WITH SOL'N HOLES WITH FRCT WIDE 10-15CM JOINT MAPPED AS FR#264 WIDE DEEP WEATHERED WIDE DEEP WEATHERED
33*****OFFSI 11 11 11 11 11 11 11 11 11 1	ET BH 279 280 281 282 283 284 285 286 287 286 287 286 287 286 287 286 287 288 290 CHA 292 293 294 295 296 297 298 299 300 293 301	E FI 1 1 2 3 4 4 4 5 5 6 7 7 10 10 10 10 10 10 10 10 10 10	ACTUE 77JT 81JT 67JT 41JT 00JT 47JT 92JT 15JT 51JT 70JT 51JT 48JT 63JT 63JT 63JT 63JT 19JT 91JT 91JT 89JT 17JT	E***** O479J 32288 24490 14166 30578 O3975 22185 SPACE O9488 10089 O6188 ****** 12483 13286 UTION 14084 O4080 30480 1085 10981 11888 32590 10483 11188 21088	1.2 (1.6 (1.2 2 0.6 1 1.7 2 3.9 1 1.4 2 FRACT(1.1 2 1.1 (7.4 2 1.1 2 1.1 2 1.1 2 1.1 2 1.1 2 1.1 2 1.4 1 1.8 1 1.3 2 1.7 2 0.7 1 1.8 1 1.3 2 1.7 2 0.7 1 1.8 1 1.3 2 1.7 2 0.7 1 1.8 1 1.3 2 0.7 1 1.8 1 1.4 1 1.3 2 0.7 1 1.8 1 1.3 2 0.7 1 1.8 1 1.3 2 0.7 1 1.8 1 1.4 1 1.5 1 2.3 3 1.4 1 1.5 1 2.3 3 1.5 1 1.5 11 1.5 11 1.5 11 1.5 11 1.5 11 1.5 11 1.	CRL CRL CRL CRL CRL CRL CRL CRL	 SOLUTION HOLE FRACTURES SAME AS ABOVE SAME AS ABOVE MAPPED AS FR#256 MAPPED AS FR#255 FILLED WITH BLACK SAME COMMENT AS ABOVE WIDE COMMENT AS ABOVE WIDE DEEP WEATHERED WIDE DEEP WEATHERED WIDE OPEN. 10CM WIDE
33*****OFFSI 11 11 11 11 11 11 11 11 11 1	ET BI 279 280 281 282 283 284 285 286 287 286 287 288 287 288 287 288 287 288 287 288 290 291 292 293 294 295 299 299 295 298 299 300 307 298 300 291 292 293 295 296 297 298 299 300 291 292 293 295 296 297 298 299 300 291 292 293 295 295 295 295 295 295 295 295 295 295	E FI 1 2 3 4 4 4 4 4 4 4 5 5 6 5 6 1 1 1 2 3 4 4 4 4 5 5 6 5 1 1 1 1 1 1 2 3 4 4 4 4 5 5 6 1 1 1 1 1 1 1 1 1 1 1 1 1	ACTUE 77JT 81JT 67JT 41JT 92JT 92JT 15JT 51JT 51JT 50JT 48JT 65JT 48JT 65JT 65JT 63JT 19JT 98JT 19JT 91JT 72 17JT	E***** O479J 32288 24490 14166 30578 O3975 22185 SPACE 09488 10089 06188 10089 06188 10089 06188 10289 06188 11288 32590 10483 11188 21088 11260	1.2 (1.6 (1.2 2 0.6 1 1.7 2 3.9 1 1.4 2 FRACT 1.1 2 1.4 2 FRACT 1.1 2 1.1 2 1.4 2 FRACT 1.1 2 1.4 2 FRACT 1.1 2 1.1 2 1.3 2 1.3 2 1.3 2 1.5 1 1.5 11 1.5 1 1.5 11 1.5 11 1.5 11 1.5 11 1.5	CRL	 SOLUTION HOLE FRACTURES SAME AS ABOVE MAPPED AS FR#256 MAPPED AS FR#255 FILLED WITH BLACK SAME COMMENT AS ABOVE MAPPED AS FR#262 TINY FRACTURE WITH SOL'N HOLES WITH FRCT WIDE 10-15CM JOINT MAPPED AS FR#264 WIDE DEEP WEATHERED WIDE DEEP WEATHERED WIDE OPEN, 10CM WIDE
33******OFFSI 11 11 11 11 11 11 11 11 11 1	ET BI 279 280 281 282 283 284 285 286 287 286 287 288 289 290 CHAI 292 293 294 295 296 297 298 299 300 023 301 302 300	E FF 1 1 2 3 4 4 4 5 5 6 1 1 2 3 4 4 4 5 5 6 1 1 1 1 1 2 3 4 4 4 5 5 6 1 1 1 1 1 1 1 1 1 1 1 1 1	ACTUE 77JT 81JT 67JT 41JT 92JT 47JT 92JT 15JT 51JT 51JT 50JT 48JT 0F SOI 43JT 65JT 65JT 65JT 63JT 98JT 991JT 991JT 991JT 972 72	E***** O479J 32288 24490 14166 30578 O3975 22185 SPACE 09488 10089 06188 ****** 12483 13286 UTION 14084 00480 30480 11085 06685 10981 11888 32590 10483 11188 21088 11260	1.2 (1.6 (1.2 2 0.6 1 1.7 2 3.9 1 1.4 2 FRACT 1.1 2 1.4 2 FRACT 1.1 2 1.4 2 HOLES 1.8 1 1.2 6 1.8 1 1.2 6 1.3 2 0.7 1 1.8 1 1.7 2 0.7 1 1.8 1 1.5 1 0.7 1 1.8 1 1.5 1 1.	CRL CRL CRL CRL CRL CRL CRL CRL	 SOLUTION HOLE FRACTURES SAME AS ABOVE MAPPED AS FR#256 MAPPED AS FR#255 FILLED WITH BLACK SAME COMMENT AS ABOVE MAPPED AS FR#262 TINY FRACTURE WITH MAPPED AS FR#264 WIDE DEEP WEATHERED WIDE DEEP WEATHERED WIDE OPEN, 10CM WIDE

11	304	2 20.1T	12082	1 1	112	ന്ന	
11	305	2 60 1	02177	1.5	20		
11	305	2.0001	11704	1.4		UKL	
11	306	3.06JT	11/84	1.3	TK	PRL	
11	307	3.49JT	14187	0.6	OR	PRLO	
11	308	4.00JT	18687	1.9	2R	CRL	5-10CM WIDE FRACTURE
11	309	4 12.IT	30589	24	18	CRI	
11	310		12004	1 1	10	DDT	
11	210	4 50 70	112004	1.4	71	PRL	
	311	4.58JT	11/80	3.9	ZR	PRL	10CM WIDE FRACTURE
33****SPACE*	****	*******	*****	*****	* * *	******	*******
11	312	5.12JT	12288	1.1	2R	PRL	
11	313	5.58JT	12688	2.2	1R	PRI.	
11	314	5 80 1	04080	ĩễ	10	CPI	MADDED AS ED#202
11		5.001	12000	1.0	TL .		MARELD AS ER#292
11	315	0.0301	13/85	0.9	UR	PRLO	
11	316	6.54JT	14084	1.8	OR	CRL	MAPPED AS FR#291
11	317	7.62JT	13275	1.0	2R	PRL	
11	318	7 95 JT	30480	12 9	18	CRI.	MAPPED AS FR#264
11	210	9 10 IT	30500		10	CDI	MAILD AD IN#204
	213	0.1001	30390				
33********	AGE .			*****	***		
11	320	8.60JT	26482	1.6	2R	URL	IRREGULAR JACGED FR.
11	321	10.10JT	30980	2.9	1 R	URL	20 CM WIDE FRACTURE
33*****CAT.T.FI	א ר	SPACE FR	ACTTIRE	MAYBE		FPACTTE	FS WEATUEDED OUTStates
	້າງງາ		OC10RL	2 4	ຳກັ	TIMOTOR	MUDDED AG EDU 200
11	326	10.2901	00100	1.4	ZK		MAPPED AS FR#288
11	323	10.72JT	00673	0.6	2R	PRL	END OF SCANLINE 12.45M
22 L07003	032	10.08					
11	324	O.88.JT	12588	3.0	2R	CRI.	MOSS+PLANT FILLED
11	325	1 02 1	04184	1 2	20	IDI	
11	325	1 20 1	12605	10.0	110	DDI	
	320		12082	10.9	TK	PKL	WEATHERED COMPLETELY
33*****OUT.	FRAG	CTURE GO	ES OFF	THE A	IRF	NO OTOHY	TO NEXT ONE **********
11	327	1.40JT	31.090	1.0	1R	URL	SOLUTION HOLES
11	328	1.66JT	30588	1.8	1R	CRL	SOLUTION HOLES
11	320	1 76 1	21080	0.5	10		SOLUTION HOLES WITH IT
11	323	1.7001	12003	0.5	TL OD		SOLUTION HOLES WITH JI
T	330	2.0001	13083	1.0	OR	PRLZ	
11	331	2.41JT	12475	3.5	1R	CRL	
11	332	2.86JT	22285	0.9	1R	CRL	
11	222				10		
		2 97.IT	11688	2 2	1 64	UDI.	
11	333	2.97JT	11688	2.2	TR	PRL	
11	334	2.97JT 3.23JT	11688 13377	2.2	OR	PRL PRLO	
11 11 11	333 334 335	2.97JT 3.23JT 3.40JT	11688 13377 13073	2.2 1.3 2.0	OR OR	PRL PRLO PRLO	
11 11 11 11	333 334 335 336	2.97JT 3.23JT 3.40JT 3.80JT	11688 13377 13073 13083	2.2 1.3 2.0 1.4	OR OR 2R	PRL PRLO PRLO PRL	
11 11 11 11	333 334 335 336 337	2.97JT 3.23JT 3.40JT 3.80JT 4.11JT	11688 13377 13073 13083 29583	2.2 1.3 2.0 1.4 0.5	OR OR 2R OR	PRL PRLO PRLO PRL PRL2	
11 11 11 11 11	3334 335 336 337 338	2.97JT 3.23JT 3.40JT 3.80JT 4.11JT 4.38JT	11688 13377 13073 13083 29583 31284	2.2 1.3 2.0 1.4 0.5	OR OR 2R OR 2R	PRL PRLO PRLO PRL PRL2 PRL2	WIDE MICHST Q 1996
11 11 11 11 11	333 334 335 336 337 338	2.97JT 3.23JT 3.40JT 3.80JT 4.11JT 4.38JT	11688 13377 13073 13083 29583 31284	2.2 1.3 2.0 1.4 0.5 5.5	OR OR 2R OR 2R	PRL PRLO PRLO PRL PRL2 PRL2	WIDE AUGUST 9, 1986
11 11 11 11 11 11 11	333 334 335 336 337 338 339	2.97JT 3.23JT 3.40JT 3.80JT 4.11JT 4.38JT 4.96JT	11688 13377 13073 13083 29583 31284 12885	2.2 1.3 2.0 1.4 0.5 5.5 6.1	IR OR OR 2R OR 2R 2R 1R	PRL PRLO PRLO PRL PRL2 PRL URL	WIDE.AUGUST 9,1986 WIDE OPEN DEPTH 6 INCH
11 11 11 11 11 11 11	333 334 335 336 337 338 339 340	2.97JT 3.23JT 3.40JT 3.80JT 4.11JT 4.38JT 4.96JT 5.53JT	11688 13377 13073 13083 29583 31284 12885 13285	2.2 1.3 2.0 1.4 0.5 5.5 6.1 1.5	IR OR OR 2R OR 2R R OR	PRL PRLO PRLO PRL2 PRL2 PRL URL CRL3	WIDE.AUGUST 9,1986 WIDE OPEN DEPTH 6 INCH
11 11 11 11 11 11 11 11	333 334 335 336 337 338 339 340 341	2.97JT 3.23JT 3.40JT 3.80JT 4.11JT 4.38JT 4.96JT 5.53JT 6.20JT	11688 13377 13073 13083 29583 31284 12885 13285 13075	2.2 1.3 2.0 1.4 0.5 5.5 6.1 1.5 2.6	IR OR OR 2R OR 2R 2R 1R 0R 1R	PRL PRLO PRLO PRL2 PRL2 PRL URL CRL3 PRL	WIDE.AUGUST 9,1986 WIDE OPEN DEPTH 6 INCH
11 11 11 11 11 11 11 11 11	333 334 335 336 337 338 339 340 341 342	2.97JT 3.23JT 3.40JT 3.80JT 4.11JT 4.38JT 4.96JT 5.53JT 6.20JT 6.44JT	11688 13377 13073 13083 29583 31284 12885 13285 13075 12385	2.2 1.3 2.0 1.4 5.5 6.1 1.5 2.6 0.8	IR OR ZR OR	PRL PRLO PRLO PRL PRL2 PRL URL CRL3 PRL PRL	WIDE.AUGUST 9,1986 WIDE OPEN DEPTH 6 INCH
11 11 11 11 11 11 11 11 11	333 334 335 336 337 338 339 340 341 342 343	2.97JT 3.23JT 3.40JT 3.80JT 4.11JT 4.38JT 4.96JT 5.53JT 6.20JT 6.44JT 6.80T	11688 13377 13073 13083 29583 31284 12885 13285 13075 12385 06075	2.2 1.3 2.0 1.5 5.5 1.5 2.6 2.8 2.8	IR OR 2R 2R 2R 2R 2R 2R 2R 2R 2R 2R 2R 2R 2R	PRL PRLO PRLO PRL2 PRL2 PRL CRL3 PRL PRL SDT	WIDE AUGUST 9,1986 WIDE OPEN DEPTH 6 INCH
11 11 11 11 11 11 11 11 11 11	333 334 335 336 337 338 339 340 341 342 343	2.97JT 3.23JT 3.40JT 3.80JT 4.11JT 4.38JT 4.96JT 5.53JT 6.20JT 6.44JT 6.80JT	11688 13377 13073 13083 29583 31284 12885 13285 13075 12385 06075	2.3 1.0 1.5 5.5 1.5 0.8 2.1	IR OR ZR	PRL PRLO PRL2 PRL2 PRL URL CRL3 PRL PRL SRL SRL	WIDE.AUGUST 9,1986 WIDE OPEN DEPTH 6 INCH VARIABLE DIP?
11 11 11 11 11 11 11 11 11 11	333 334 335 336 337 338 339 340 341 342 343 344	2.97JT 3.23JT 3.40JT 3.80JT 4.11JT 4.38JT 4.96JT 5.53JT 6.20JT 6.44JT 6.80JT 7.01JT	11688 13377 13073 13083 29583 31284 12885 13285 13285 13075 12385 06075 12786	2.2 1.3 2.4 0.5 5.5 1.5 0.8 1.1	IR OR ZR	PRL PRLO PRL2 PRL2 PRL URL CRL3 PRL PRL SRL PRL2	WIDE.AUGUST 9,1986 WIDE OPEN DEPTH 6 INCH VARIABLE DIP?
11 11 11 11 11 11 11 11 11 11	333 334 335 336 337 338 339 340 341 342 343 344 345	2.97JT 3.23JT 3.40JT 4.11JT 4.38JT 4.96JT 5.53JT 6.44JT 6.80JT 7.01JT 7.15JT	11688 13377 13073 13083 29583 31284 12885 13285 13075 12385 06075 12786 12883	2.2 1.3 2.0 1.5 5.5 1.5 6.1 2.0 8 2.2 0.2 1.1 0.8	IR OR IR OR IR IR OR IN OR INTO OR INTO OR INTO OR INTO OR INTO OR INTO	PRL PRLO PRLO PRL2 PRL2 PRL2 CRL3 PRL SRL PRL2 PRL2 PRL2	WIDE.AUGUST 9,1986 WIDE OPEN DEPTH 6 INCH VARIABLE DIP? PARTIALLY WEATHERED
11 11 11 11 11 11 11 11 11 11	333 334 335 336 337 338 339 340 341 342 343 344 344 345 346	2.97JT 3.23JT 3.40JT 3.80JT 4.11JT 4.38JT 4.96JT 5.53JT 6.20JT 6.44JT 6.80JT 7.01JT 7.15JT 7.29JT	11688 13377 13073 13083 29583 31284 12885 13285 13075 12385 06075 12786 12883 30580	2.2 1.30 1.45 5.5 1.56 2.1 10.8 1.8 2.1 2.2 0 2.1 0.4 7	IR OR R OR R R R R R OD OR	PRL PRLO PRLO PRL2 PRL2 PRL CRL3 PRL PRL PRL PRL2 PRL2 PRL2 PRL2 PRL2 PR	WIDE.AUGUST 9,1986 WIDE OPEN DEPTH 6 INCH VARIABLE DIP? PARTIALLY WEATHERED WEATHERED WIDE
11 11 11 11 11 11 11 11 11 11	3334 3355 3356 3357 3389 3401 3422 3434 3445 3445 3445 3447	2.97JT 3.23JT 3.40JT 3.80JT 4.11JT 4.38JT 4.96JT 5.53JT 6.20JT 6.44JT 6.80JT 7.01JJT 7.15JT 7.29JT 7.27JT	11688 13377 13073 13083 29583 31284 12885 13285 13285 13285 12385 12385 12385 12786 12883 30580 23178	2.3 1.3 1.5 5.1 1.5 6.1 1.8 7 1.8 7 1	IR OR Z OR Z IR OR I Z IR OD OR Z OR Z IR OR I Z IR OD OR Z OR Z I OR I Z I R OD OR Z I O OR	PRL PRLO PRLO PRL2 PRL2 PRL CRL3 PRL PRL2 PRL2 PRL2 PRL2 PRL2 PRL0 PRL0 PRL0 PRL0	WIDE AUGUST 9,1986 WIDE OPEN DEPTH 6 INCH VARIABLE DIP? PARTIALLY WEATHERED WEATHERED WIDE WIDE VARIABLE
11 11 11 11 11 11 11 11 11 11	333 334 335 336 337 338 339 340 341 342 343 344 345 344 345 346 347	2.97JT 3.23JT 3.40JT 3.80JT 4.11JT 4.38JT 4.96JT 5.53JT 6.20JT 6.44JT 6.80JT 7.01JT 7.15JT 7.29JT 7.27JT	11688 13377 13073 13083 29583 31284 12885 13285 13075 12385 06075 12786 12883 30580 23178	2.2 1.3 2.0 1.4 0.5 5.5 1.5 0.8 2.1 1.1 0.8 4.7 1.1	IR OR 2 R OR 2 R R R R R R R R R R R R R	PRL PRLO PRLO PRL2 PRL URL CRL3 PRL PRL2 PRL2 PRL2 PRL2 PRL2 PRL0 PRL0 PRL0 VRL	WIDE.AUGUST 9,1986 WIDE OPEN DEPTH 6 INCH VARIABLE DIP? PARTIALLY WEATHERED WEATHERED WIDE WIDE, VARIABLE
11 11 11 11 11 11 11 11 11 11	3334 335 336 337 338 340 341 342 343 344 345 346 345 346 347	2.97JT 3.23JT 3.40JT 3.80JT 4.11JT 4.38JT 4.96JT 5.53JT 6.20JT 6.44JT 6.80JT 7.01JT 7.15JT 7.29JT 7.27JT 01P AND	11688 13377 13073 13083 29583 31284 12885 13285 13285 13075 12385 06075 12786 12883 30580 23178 STRIKE	2.2 1.3 2.4 0.5 5.5 1.5 0.8 1.1 0.8 4.7 1.1	IR OR 2R OR 1 ROLE 1 OF 1 O	PRL PRLO PRLO PRL PRL2 PRL2 PRL CRL3 PRL PRL2 PRL2 PRLO PRLO PRLO URL	WIDE.AUGUST 9,1986 WIDE OPEN DEPTH 6 INCH VARIABLE DIP? PARTIALLY WEATHERED WEATHERED WIDE WIDE, VARIABLE
11 11 11 11 11 11 11 11 11 11	333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 346 347	2.97JT 3.23JT 3.40JT 3.80JT 4.11JT 4.38JT 4.96JT 5.53JT 6.20JT 6.44JT 7.01JT 7.15JT 7.29JT 7.27JT 01P AND 7.90JT	11688 13377 13073 13083 29583 31284 12885 13285 13075 12385 06075 12786 12883 30580 23178 STRIKE 03175	2.2 1.3 2.0 1.4 0.5 5.5 6.1 1.5 0.8 2.1 0.8 1.1 0.8 4.7 1.1	IR OR OR 2R OR 2R IR OR 1R 2R IR OR IR 1R IR OR IR IR IR OR 1R IR IR IR IR IR IR IR IR IR IR IR IR IR	PRL PRLO PRLO PRL PRL2 PRL2 PRL2 PRL PRL PRL PRL2 PRL0 PRLO PRLO URL	WIDE.AUGUST 9,1986 WIDE OPEN DEPTH 6 INCH VARIABLE DIP? PARTIALLY WEATHERED WEATHERED WIDE WIDE, VARIABLE
11 11 11 11 11 11 11 11 11 11	333 334 335 336 337 338 340 340 341 342 343 344 345 344 345 346 347 345 346 347 348	2.97JT 3.23JT 3.40JT 3.80JT 4.11JT 4.38JT 4.96JT 5.53JT 6.20JT 6.44JT 6.80JT 7.01JT 7.15JT 7.29JT 7.27JT 01P AND 7.90JT (E******	11688 13377 13073 13083 29583 31284 12885 13285 13285 13075 12385 06075 12786 12883 30580 23178 STRIKE	2.2 1.3 2.0 1.4 0.5 5.5 6.1 1.5 0.8 2.1 0.8 4.7 1.1	IR OR 2R 2R 2R 1R 1R 1R 1R	PRL PRLO PRLO PRL2 PRL2 PRL2 URL CRL3 PRL2 SRL PRL2 SRL PRL2 PRL0 PRL0 URL	WIDE.AUGUST 9,1986 WIDE OPEN DEPTH 6 INCH VARIABLE DIP? PARTIALLY WEATHERED WEATHERED WIDE WIDE, VARIABLE
11 11 11 11 11 11 11 11 11 11	333 334 335 336 337 338 339 340 341 342 344 344 344 344 344 344 344 344 344	2.97JT 3.23JT 3.40JT 3.80JT 4.11JT 4.38JT 4.96JT 5.53JT 6.20JT 6.44JT 7.01JT 7.15JT 7.27JT 01P AND 7.90JT (E******* 8.00JT	11688 13377 13073 13083 29583 31284 12885 13285 13285 13285 12385 06075 12786 12883 30580 23178 STRIKE 03175	2.2 1.3 2.0 1.4 0.5 5.5 6.1 1.5 2.6 0.8 2.1 0.8 4.7 1.1 ****** 1.7	IR OR OR 2R OR 2R IR OR 1R IR OOR IR IR OOR IR IR OOR IR IR OOR IR IR OOR IR OOR IR OOR IR OOR IR IR OOR IR IR OOR IR OOR IR IR IR OOR IR IR IR OOR IR IR IR IR IR IR IR IR IR IR IR IR IR	PRL PRLO PRLO PRL2 PRL2 PRL2 PRL2 PRL2 PRL3 PRL2 PRL2 PRL2 PRL0 PRL0 PRL0 PRL0 PRL0 VRL	WIDE AUGUST 9,1986 WIDE OPEN DEPTH 6 INCH VARIABLE DIP? PARTIALLY WEATHERED WEATHERED WIDE WIDE, VARIABLE
11 11 11 11 11 11 11 11 11 11	3334 335 336 337 338 339 340 342 343 344 345 344 345 344 345 347 346 347 348 347 348 347 348 347 348 347 348 347 348 347 349 350 340 340 340 340 340 340 340 340 340 34	2.97JT 3.23JT 3.40JT 3.80JT 4.11JT 4.38JT 4.96JT 5.53JT 6.20JT 6.44JT 6.80JT 7.01JT 7.15JT 7.29JT 7.27JT 0IP AND 2.90JT (E****** 8.00JT 8.33JT	11688 13377 13073 13083 29583 31284 12885 13285 13285 13285 12385 12385 12385 12385 12385 12385 12786 12883 30580 23178 STRIKE 03175	2.2 1.3 2.0 1.4 0.5 5.5 6.1 1.5 0.8 1.1 0.8 4.7 1.1 ***** 1.7	IR OR OR ZR OR ZR OR IR ZR OR OD OR IR THE OR IR	PRL PRLO PRLO PRL2 PRL2 PRL2 PRL2 PRL2 PRL2 PRL2 PRL2	WIDE AUGUST 9,1986 WIDE OPEN DEPTH 6 INCH VARIABLE DIP? PARTIALLY WEATHERED WEATHERED WIDE WIDE, VARIABLE WIDE, VARIABLE WIDE, VARIABLE ***
11 11 11 11 11 11 11 11 11 11	3334 335 336 337 338 340 341 342 343 344 345 344 345 346 347 348 346 347 348 346 347 348 346 347 348 346 347 348 346 347 348 346 347 348 346 347 348 346 347 348 346 347 348 346 347 348 346 347 348 346 347 348 346 347 347 348 346 347 348 346 347 348 346 347 348 346 347 348 346 347 348 346 347 348 346 347 348 346 347 348 346 347 348 346 347 348 346 347 348 347 348 347 348 349 347 348 349 349 349 349 349 349 349 349 349 349	2.97JT 3.23JT 3.40JT 3.80JT 4.11JT 4.38JT 4.96JT 5.53JT 6.20JT 6.44JT 6.80JT 7.01JT 7.15JT 7.27JT 7.27JT 01P AND 7.90JT CE****** 8.00JT 8.33JT	11688 13377 13073 13083 29583 31284 12885 13285 13285 13285 12385 12385 12385 12385 12385 12385 12786 12883 30580 23178 STRIKE: 03175 15485 24070	2.2 1.3 2.0 1.4 0.5 5.5 6.1 1.5 2.6 0.8 2.1 1.1 0.8 4.7 1.1 1.8 *****	IR OR OR ZR ZR ZR ZR ZR ZR CO R ZR ZR CO R ZR ZR CO R ZR ZR ZR CO R ZR ZR ZR ZR ZR ZR ZR ZR ZR ZR ZR ZR Z	PRL PRLO PRLO PRL2 PRL2 PRL2 PRL2 PRL2 PRL2 PRL2 PRL2	WIDE AUGUST 9,1986 WIDE OPEN DEPTH 6 INCH VARIABLE DIP? PARTIALLY WEATHERED WEATHERED WIDE WIDE, VARIABLE WIDE, VARIABLE VARIABLE DIP + STRIKE
11 11 11 11 11 11 11 11 11 11	3334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 57814 348 57814 349 350	2.97JT 3.23JT 3.40JT 3.80JT 4.11JT 4.38JT 4.96JT 5.53JT 6.44JT 7.01JT 7.27JT 7.27JT 7.90JT 7.90JT 8.00JT 8.33JT 8.33JT	11688 13377 13073 13083 29583 31284 12885 13285 13075 12385 06075 12786 12883 30580 23178 STRIKE 03175 ******	2.2 1.3 2.0 1.4 0.5 5.5 6.1 1.5 6.2 0.8 1.1 0.8 1.1 0.8 1.1 0.8 1.1 0.8 1.1 0.8 1.1 0.8 1.1 0.5 1.5 6 1.5 6 1.5 6 1.5 0 1.5 6 1.5 0 1.5 6 1.5 0 1.5 5 1.5 0 1.5 5 1.5 0 1.5 6 1.5 0 1.5 5 1.5 0 0 1.5 0 0 1.5 1.5 0 1.5 1.5 1.5 1.5 0 1.5 1.5 0 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5	IR OR OR Z RO Z RO R Z RO	PRLO PRLO PRL2 PRL2 PRL2 PRL2 PRL2 PRL2 PRL PRL2 PRL0 PRL0 PRL0 PRL0 VRL VRL1 URL1 URL1	WIDE.AUGUST 9,1986 WIDE OPEN DEPTH 6 INCH VARIABLE DIP? PARTIALLY WEATHERED WEATHERED WIDE WIDE, VARIABLE WIDE, VARIABLE VARIABLE DIP + STRIKE
11 11 11 11 11 11 11 11 11 11	3334 335 336 337 338 340 341 342 343 344 344 345 344 345 346 347 346 347 346 347 348 346 347 348 346 347 348 346 347 350 340 342 345 340 341 345 340 340 341 345 340 340 340 340 340 340 340 340 340 340	2.97JT 3.23JT 3.40JT 3.80JT 4.11JT 4.38JT 4.96JT 5.53JT 6.20JT 6.44JT 7.01JT 7.01JT 7.15JT 7.27JT 01P AND 27.90JT 27.90JT 27.90JT 27.90JT 28.00JT 8.33JT 8.00JT 8.33JT	11688 13377 13073 13083 29583 31284 12885 13285 13285 13075 12385 06075 12786 12883 30580 23178 5TRIKE 03175 ****** 15485 24070	2.2 1.3 2.0 1.4 0.5 5.5 2.6 0.8 2.1 0.8 1.1 0.8 1.1 0.4 1.1 0.5 1.5 0.1 1.5 0.1 1.5 0.1 1.5 0.5 1.5 0.5 1.5 0.5 1.5 0.5 0.5 1.5 0.5 0.5 0.5 1.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0	IR OR OR ZR OR ZR ZR OR IR ZR OR R ZR OR R ZR OR R ZR OR R ZR OR ZR R ZR OR ZR R ZR OR ZR R ZR OR ZR ZR OR ZR ZR OR ZR ZR OR ZR ZR OR ZR OR ZR ZR OR ZR ZR OR ZR ZR OR ZR ZR OR ZR ZR OR ZR ZR ZR OR ZR ZR ZR OR ZR ZR ZR ZR ZR ZR ZR ZR ZR ZR ZR ZR ZR	PRL PRLO PRLO PRL PRL2 PRL2 PRL2 PRL2 PRL2 PRL2 PRL2	WIDE AUGUST 9,1986 WIDE OPEN DEPTH 6 INCH VARIABLE DIP? PARTIALLY WEATHERED WEATHERED WIDE WIDE, VARIABLE WIDE, VARIABLE VARIABLE DIP + STRIKE
11 11 11 11 11 11 11 11 11 11	3334 335 336 337 338 339 340 341 342 344 344 344 345 344 345 346 347 348 346 347 348 346 347 348 346 347 350 351 351 352	2.97JT 3.23JT 3.40JT 3.80JT 4.11JT 4.38JT 4.96JT 5.53JT 6.20JT 6.44JT 7.01JT 7.15JT 7.27JT 7.27JT 01P AND 8.00JT 8.33JT 4GE 12** 8.59JT 8.96JT	11688 13377 13073 13083 29583 31284 12885 13285 13285 13075 12385 06075 12786 12883 30580 23178 STRIKE 03175 ****** 15485 24070 ****** 30690 11580	2.2 1.3 2.0 1.4 0.5 5.5 6.1 1.5 2.6 0.8 2.1 0.8 4.7 1.8 4.7 1.8 4.7 1.8 4.7 1.8 4.7 1.8 5.5 0.8 0.8 0.8 0.8 0.8 0.5 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8	IR OR OR ZR OR ZR ZR R C IR R C R C R C R C R C R C R C R C	PRL PRLO PRLO PRL2 PRL2 PRL2 PRL2 PRL2 PRL2 PRL2 PRL2	WIDE AUGUST 9,1986 WIDE OPEN DEPTH 6 INCH VARIABLE DIP? PARTIALLY WEATHERED WEATHERED WIDE WIDE, VARIABLE WIDE, VARIABLE VARIABLE DIP + STRIKE
11 11 11 11 11 11 11 11 11 11	3334 335 336 337 338 340 341 342 343 344 345 344 345 344 345 346 347 348 346 347 350 352 352 353	2.97JT 3.23JT 3.40JT 3.80JT 4.11JT 4.38JT 4.96JT 5.53JT 6.20JT 6.44JT 6.80JT 7.01JT 7.29JT 7.27JT 01P AND 2.90JT (E******* 8.00JT 8.33JT 8.96JT 8.96JT 9.16JT	11688 13377 13073 13083 29583 31284 12885 13285 13285 12385 12385 12385 12385 12385 12385 12385 12385 12385 12786 12883 30580 23178 STRIKE 03175 ****** 15485 24070 ****** 30690 11580 08980	2.2 1.3 2.0 1.4 0.5 5.5 6.1 1.5 0.8 1.5 0.8 1.1 0.8 4.7 1.8 ***** 0.9 5.6 1.3	IR OR 2R 2R 2R 2R 2R 2R 2R 2R 2R 2R 2R 2R 2R 2	PRL PRLO PRLO PRL2 PRL2 PRL2 PRL2 PRL2 PRL2 PRL2 PRL2	WIDE AUGUST 9,1986 WIDE OPEN DEPTH 6 INCH VARIABLE DIP? PARTIALLY WEATHERED WEATHERED WIDE WIDE, VARIABLE WIDE, VARIABLE WIDE, VARIABLE ***
11 11 11 11 11 11 11 11 11 11	3334 335 335 336 337 338 340 342 343 344 345 346 345 346 347 348 345 346 347 348 345 346 347 352 352 352 352 355	2.97JT 3.23JT 3.40JT 3.80JT 4.11JT 4.38JT 4.96JT 5.53JT 6.20JT 6.44JT 7.01JT 7.27JT 7.27JT 7.27JT 7.90JT 8.33JT 8.33JT 8.30JT 8.33JT 8.59JT 8.96JT 9.16JT 10.03JT	11688 13377 13073 13083 29583 31284 12885 13285 13285 13075 12385 06075 12786 12883 30580 23178 STRIKE 03175 ****** 15485 24070 11580 08980 10085	2.2 1.3 2.0 1.4 0.5 5.5 6.1 1.5 0.8 1.1 0.8 1.1 0.8 1.1 0.8 1.1 0.8 1.1 0.8 1.1 0.9 1.5 1.8 0.9 1.1 0.5 1.5 0.8 1.1 0.5 1.5 0.8 1.1 0.5 1.5 0.8 1.1 0.5 1.5 0.8 1.1 0.5 1.5 0.8 1.1 0.5 1.5 0.8 1.1 0.5 1.5 0.8 1.1 0.5 1.5 0.8 1.1 0.5 1.5 0.8 1.1 0.5 1.5 0.8 1.1 0.8 1.5 1.5 0.8 1.1 0.8 1.1 0.8 1.1 0.8 1.1 0.8 1.1 0.8 1.1 0.8 1.1 0.8 1.5 1.5 0.8 1.1 0.8 1.1 0.8 1.1 0.8 1.1 0.8 1.1 1.8 1.5 1.5 0.8 1.1 0.8 1.1 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1	IR OR R ZR OR ZR OR I ZR OR OF OR I A THE OR	PRL PRLO PRLO PRL PRL2 PRL2 PRL2 PRL2 PRL PRL2 PRL0 PRL0 PRL0 PRL0 VRL VRL1 URL1 URL1 URL1 URL1 URL1 URL1 URL1	WIDE AUGUST 9,1986 WIDE OPEN DEPTH 6 INCH VARIABLE DIP? PARTIALLY WEATHERED WEATHERED WIDE WIDE, VARIABLE WIDE, VARIABLE VARIABLE DIP + STRIKE CURVED AT ONE END
11 11 11 11 11 11 11 11 11 11	3334 335 336 337 338 340 341 343 344 345 346 347 346 347 346 347 346 347 348 347 348 346 347 351 352 355 355 355 355	2.97JT 3.23JT 3.40JT 3.80JT 4.11JT 4.38JT 4.96JT 5.53JT 6.20JT 6.44JT 7.01JT 7.01JT 7.27JT 7.27JT 7.27JT 7.27JT 8.00JT 8.33JT 8.33JT 8.59JT 8.96JT 9.16JT 10.03JT	11688 13377 13073 13083 29583 31284 12885 13285 13075 12385 06075 12385 06075 12786 12883 30580 23178 STRIKE 03175 ****** 15485 24070 ****** 30690 11580 08980 10085	2.2 1.3 2.0 1.4 0.5 6.1 1.5 0.8 2.1 0.8 1.1 0.8 1.1 0.4 7 1.8 4.7 1.8 4.7 1.8 5.6 1.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0	IR OR OR Z OR Z IR OR IR Z IR OR ODF OR IR IR IR OR IR IR IR IR IR IR IR IR IR IR IR IR IR I	PRL PRLO PRLO PRL2 PRL2 PRL2 PRL2 PRL2 PRL3 PRL2 PRL0 PRL0 PRL0 PRL0 VRL1 URL1 URL1 URL1 CRL1 URL1	WIDE AUGUST 9,1986 WIDE OPEN DEPTH 6 INCH VARIABLE DIP? PARTIALLY WEATHERED WEATHERED WIDE WIDE, VARIABLE WIDE, VARIABLE VARIABLE DIP + STRIKE
11 11 11 11 11 11 11 11 11 11	3334 335 336 337 338 340 342 343 344 345 340 344 345 346 347 346 347 346 347 346 347 351 352 353 355 355	2.97JT 3.23JT 3.40JT 3.80JT 4.11JT 4.38JT 5.53JT 6.20JT 6.20JT 6.44JT 7.01JT 7.15JT 7.27JT 7.27JT 7.27JT 7.27JT 7.27JT 21P AND 8.33JT 8.33JT 8.59JT 8.59JT 9.16JT 10.03JT 10.08JT	11688 13377 13073 13083 29583 31284 12885 13285 13285 13075 12385 06075 12786 12883 30580 23178 5TRIKE 03175 ****** 15485 24070 ****** 30690 11580 08980 10085 04283	2.2 1.3 2.0 1.4 0.5 5.5 6.1 1.5 0.8 2.1 1.8 2.1 0.8 1.1 0.4 7 1.1 4.7 1.8 4.7 1.8 5.6 1.3 1.2 1.3 1.2 1.3	IR OR OR ZROR ZROR IR ZROR OR ZROR ZROR	PRL PRLO PRLO PRL2 PRL2 PRL2 PRL2 PRL2 PRL2 PRL2 PRL2	WIDE AUGUST 9,1986 WIDE OPEN DEPTH 6 INCH VARIABLE DIP? PARTIALLY WEATHERED WEATHERED WIDE WIDE, VARIABLE WIDE, VARIABLE VARIABLE DIP + STRIKE
11 11 11 11 11 11 11 11 11 11	3334 3355 337 338 3390 341 3345 3390 341 3344 345 345 344 345 344 345 344 345 344 345 344 345 345	2.97JT 3.23JT 3.40JT 3.80JT 4.11JT 4.38JT 5.53JT 6.20JT 6.20JT 6.44JT 7.01JT 7.15JT 7.27JT 01P AND 7.90JT (E****** 8.00JT 8.33JT 8.33JT 8.59JT 8.96JT 9.16JT 10.03JT 10.08JT 15.50	11688 13377 13073 13083 29583 31284 12885 13285 13285 13075 12385 06075 12786 12883 30580 23178 STRIKE 03175 ****** 15485 24070 ****** 30690 11580 08980 10085 04283	2.2 1.3 2.0 1.4 0.5 5.5 6.1 1.5 2.6 0.8 2.1 0.8 4.7 1.8 4.7 1.8 4.7 1.8 4.7 1.8 4.7 1.8 4.7 1.8 4.1 0.5 5.6 1.1 0.8 1.1 1.8 1.1 0.8 1.1 1.8 1.1 1.8 1.1 1.8 1.1 1.8 1.1 1.8 1.1 1.8 1.1 1.8 1.1 1.8 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3	IR OR OR ZROR ZROR ZROR ZROR ZROR ZROR Z	PRL PRLO PRLO PRL2 PRL2 PRL2 PRL2 PRL2 PRL2 PRL2 PRL2	WIDE AUGUST 9,1986 WIDE OPEN DEPTH 6 INCH VARIABLE DIP? PARTIALLY WEATHERED WEATHERED WIDE WIDE, VARIABLE ************************************
11 11 11 11 11 11 11 11 11 11	3334 3355 3335 3357 3339 3412 3445 345 345 345 345 345 345 345 352 355 355 355 355 355 355 355 355 35	2.97JT 3.23JT 3.40JT 3.80JT 4.11JT 4.38JT 4.96JT 5.53JT 6.20JT 6.44JT 6.80JT 7.015JT 7.29JT 7.27JT 0IP AND 8.00JT 8.00JT 8.00JT 8.33JT 8.96JT 9.16JT 10.03JT 10.08JT 15.50 1.09JT	11688 13377 13073 13083 29583 31284 12885 13285 13285 12385 12483 30580 23178 15485 24070 11580 08980 10085 04283 30785	2.2 1.3 2.0 1.4 0.5 5.5 6.1 1.5 0.8 1.1 0.8 1.1 4.7 1.8 4.7 1.8 5.6 1.3 1.2 1.3 3.2	IR OR R ZR	PRL PRLO PRLO PRL PRL2 PRL2 PRL2 PRL2 PRL2 PRL2 PRL0 PRL0 PRL0 PRL0 VRL VRL1 VRL1 VRL1 CRL VRL1 CRL	WIDE AUGUST 9,1986 WIDE OPEN DEPTH 6 INCH VARIABLE DIP? PARTIALLY WEATHERED WEATHERED WIDE WIDE, VARIABLE WIDE, VARIABLE WIDE, VARIABLE*** VARIABLE DIP + STRIKE
11 11 11 11 11 11 11 11 11 11	3334 3355 3335 3357 3337 3341 3342 3343 3443 3445 345 345 346 347 335 3443 3445 3467 3512 3523 3551 3552 3551 3557 3557	2.97JT 3.23JT 3.40JT 3.80JT 4.11JT 4.38JT 5.53JT 6.20JT 7.53JT 7.27JT 7.27JT 7.27JT 7.27JT 7.27JT 7.90JT 8.00JT 8.33JT 8.33JT 8.96JT 9.16JT 10.03JT 15.50 1.09JT 1.47JT	11688 13377 13073 13083 29583 31284 12885 13285 13075 12385 06075 12786 12883 30580 23178 STRIKE 03175 ****** 15485 24070 11580 08980 10085 04283 30785 12685	2.2 1.3 2.0 1.5 5.5 1.5 0.1 1.5 0.2 1.1 0.7 1.8 4.7 1.8 1.7 1.8 1.2 0.5 1.2 0.5 1.5 0.1 1.5 0.1 0.5 1.5 0.2 1.1 0.5 1.5 0.2 1.1 0.5 1.5 0.2 1.1 0.5 1.5 0.2 1.1 0.5 1.5 0.2 1.1 0.5 1.5 0.2 1.1 0.5 1.5 0.2 1.1 0.5 1.5 0.2 1.1 0.5 1.5 0.2 1.1 0.5 1.5 0.2 1.1 0.5 1.5 0.2 1.1 0.5 1.5 0.2 1.1 0.5 1.5 0.5 1.5 0.2 1.5 0.2 1.5 0.2 1.5 0.5 1.5 0.2 1.5 0.5 1.2 0.5 1.2 0.5 1.2 0.5 1.2 0.5 1.2 1.5 0.5 1.2 1.5 0.5 1.2 1.5 1.5 0.5 1.2 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5	IR OR R ZR R ZR R R R R R R R R R R R R R	PRL PRLO PRLO PRL PRL2 PRL URL CRL3 PRL PRL2 PRL0 PRL0 PRL0 PRL0 PRL0 URL1 URL1 URL1 URL1 URL1 URL1 URL1 URL1	WIDE AUGUST 9,1986 WIDE OPEN DEPTH 6 INCH VARIABLE DIP? PARTIALLY WEATHERED WEATHERED WIDE WIDE, VARIABLE WIDE, VARIABLE VARIABLE DIP + STRIKE CURVED AT ONE END

11		359	2.19JT	30380	0.8 1R	PRL	
11		360	2.41JT	11383	3.7 OR	URLO	
11		361	2 82.IT	12986	1 7 OR	PRL1	
11		262	2.0202	03083	2 2 1 2	TIDT	
11		302	3.1131	03082		ORL	
11		363	3.5IJT	17780	4.8 IR	CRL	
11		364	3.66JT	31090	2.1 OR	PRLO	
11		365	4.13JT	12789	4.2 1R	PRL	
11		366	4 26.IT	02685	071R	CRI.	
11		2000	4.001	20000			
11		307	4.9001	30990	2.4 UR	PRLI	
11		368	5.00JT	02570	2.8 OR	CRL2	
11		369	5.17JT	30386	2.0 OR	PRLO	
11		370	5 31.17	12680	6 1 OR	PRIO	
11		271		02505	1 7 20	DDT	WIDE ETLED WITH MOCO
11		3/1	5.3011	02585	1.7 2R	PRL	WIDE, FILLED WITH MOSS
11		372	5.69JT	11685	3.9 1R	PRL	
11		373	6.06JT	21090	0.9 OR	URL2	APPROXIMATE DIP+STRIKE
11		374	6 12.TT	11884	1 5 1R	PRI.	· · · · · · · · · · · · · · · · · · ·
11		275	6 10 TT	30000	1 2 10	DDT	
11		373	0.1011	30330	1.2 16	FRL	
11		376	6.45JT	12487	4.0 1R	PRL	
11		377	7.36JT	30490	2.6 1R	CRL	
11		378	7 81 JT	12481	0 9 1R	CRI.	APPROXIMATE DIP?
11		270	9 10101	20300			
11		3/9	8.1001	30390	1.0 2K	PRL	ROUGH ERACIORE
11		380	8.29JT	12785	1.4 1R	PRL	
11		381	8.62JT	03680	1.1 2R	URL	
33***	******	****	*PACE 13	******	*******	*****	******
11		202	0 60 10	17296	7 6 10	זסת	
11		302	0.0901	12200	7.0 IK	PRL	
ΤT		383	A'80 1L	30290	$1.5 \mathrm{IR}$	SRL	
11		384	11.37JT	30490	1.0 IR	SRL	
11		385	12.00JT	12085	162R	URT.	
11		304	12 4217	20000	2 0 10		
11		300	12.44JI	29990	2.0 IR	PRL	
11		387	13.100T	05080	$1.5 \mathrm{IR}$	URL	
11		388	13.17JT	12088	2.7 2R	PRL	
11		389	13 26.IT	30385	0 9 1R	PRI.	
11		200	12 51 17	20000		DDI	
11		390	13.5101	30090	0.5 IDR	PRL	
11		391	13.62JT	12285	3.0 1R	PRL	
11		392	13.65JT	12086	1.1 1R	PRÍ.	
11		202	14 02 17	1 2 8 9 2	2 8 10	DDT	
11		200		12002	2.0 IN	FRL	
TT.		394	14.43JT	17180	3.5 OK	PRLO	
11		395	14.90JT	30890	3.3 OR	PRL1	
11		396	15.50JT	11383	0.5 1R	PSL	END OF LINE 15.67M
22	N07603						
11		028	8 87				
T T	107003	028	8.87	10176	0 7 ID	DDT	
	107003	028 397	8.87 0.54JT	10376	0.7 1R	PRL	SMALL FRACT. ZONE
11	107003	O28 397 398	8.87 0.54JT 0.91JT	10376 10270	0.7 1R 1.3 1R	PRL PRL	SMALL FRACT. ZONE SMALL FRACT. ZONE
11 11	107003	O28 397 398 399	8.87 0.54JT 0.91JT 0.76JT	10376 10270 09868	0.7 1R 1.3 1R 0.9 2R	PRL PRL PRL	SMALL FRACT. ZONE SMALL FRACT. ZONE SMALL FRACT. ZONE
11 11 11	107003	028 397 398 399	8.87 0.54JT 0.91JT 0.76JT 2.45 IT	10376 10270 09868 29086	0.7 1R 1.3 1R 0.9 2R	PRL PRL PRL PRL	SMALL FRACT. ZONE SMALL FRACT. ZONE SMALL FRACT. ZONE
11 11 11	107003	028 397 398 399 400	8.87 0.54JT 0.91JT 0.76JT 2.45JT	10376 10270 09868 29086	0.7 1R 1.3 1R 0.9 2R 0.7 1R	PRL PRL PRL PRL	SMALL FRACT. ZONE SMALL FRACT. ZONE SMALL FRACT. ZONE
11 11 11 11	107003	028 397 398 399 400 401	8.87 0.54JT 0.91JT 0.76JT 2.45JT 2.94JT	10376 10270 09868 29086 11179	0.7 1R 1.3 1R 0.9 2R 0.7 1R 2.2 1R	PRL PRL PRL PRL URL	SMALL FRACT. ZONE SMALL FRACT. ZONE SMALL FRACT. ZONE
11 11 11 11 11	107003	028 397 398 399 400 401 402	8.87 0.54JT 0.91JT 0.76JT 2.45JT 2.94JT 3.05JT	10376 10270 09868 29086 11179 29490	0.7 1R 1.3 1R 0.9 2R 0.7 1R 2.2 1R 0.9 1R	PRL PRL PRL PRL URL PRL	SMALL FRACT. ZONE SMALL FRACT. ZONE SMALL FRACT. ZONE
11 11 11 11 11 11	107003	028 397 398 399 400 401 402 403	8.87 0.54JT 0.91JT 0.76JT 2.45JT 2.94JT 3.05JT 3.27JT	10376 10270 09868 29086 11179 29490 10377	0.7 1R 1.3 1R 0.9 2R 0.7 1R 2.2 1R 0.9 1R 0.6 1R	PRL PRL PRL URL PRL CRL	SMALL FRACT. ZONE SMALL FRACT. ZONE SMALL FRACT. ZONE
11 11 11 11 11 11 11	107003	028 397 398 399 400 401 402 403 404	8.87 0.54JT 0.91JT 2.45JT 2.94JT 3.05JT 3.27JT 3.53IT	10376 10270 09868 29086 11179 29490 10377 30184	0.7 1R 1.3 1R 0.9 2R 0.7 1R 2.2 1R 0.9 1R 0.6 1R 0.6 1R	PRL PRL PRL URL PRL CRL CRL	SMALL FRACT. ZONE SMALL FRACT. ZONE SMALL FRACT. ZONE TAPERED FRACTURE
11 11 11 11 11 11 11	107003	028 397 398 399 400 401 402 403 404	8.87 0.54JT 0.91JT 0.76JT 2.45JT 2.94JT 3.05JT 3.27JT 3.53JT	10376 10270 09868 29086 11179 29490 10377 30184	0.7 1R 1.3 1R 0.9 2R 0.7 1R 2.2 1R 0.9 1R 0.6 1R 0.8 1R	PRL PRL PRL PRL URL PRL CRL CRL	SMALL FRACT. ZONE SMALL FRACT. ZONE SMALL FRACT. ZONE TAPERED FRACTURE
11 11 11 11 11 11 11 11	107003	028 397 398 399 400 401 402 403 404 405	8.87 0.54JT 0.91JT 0.76JT 2.45JT 2.94JT 3.05JT 3.27JT 3.53JT 4.05JT	10376 10270 09868 29086 11179 29490 10377 30184 29185	0.7 1R 1.3 1R 0.9 2R 0.7 1R 2.2 1R 0.9 1R 0.6 1R 0.8 1R 2.0 OR	PRL PRL PRL URL PRL CRL CRL URLO	SMALL FRACT. ZONE SMALL FRACT. ZONE SMALL FRACT. ZONE TAPERED FRACTURE
11 11 11 11 11 11 11 11 11	107003	028 397 398 399 400 401 402 403 404 405 406	8.87 0.54JT 0.91JT 0.76JT 2.45JT 2.94JT 3.05JT 3.27JT 3.53JT 4.05JT 4.50JT	10376 10270 09868 29086 11179 29490 10377 30184 29185 12985	0.7 1R 1.3 1R 0.9 2R 0.7 1R 2.2 1R 0.9 1R 0.6 1R 0.8 1R 2.0 OR 1.2 OR	PRL PRL PRL URL VRL CRL CRL CRL URLO PRLO	SMALL FRACT. ZONE SMALL FRACT. ZONE SMALL FRACT. ZONE TAPERED FRACTURE
11 11 11 11 11 11 11 11 11 11	107003	028 397 398 399 400 401 402 403 404 405 406 407	8.87 0.54JT 0.91JT 2.45JT 2.94JT 3.05JT 3.53JT 4.05JT 4.50JT 4.52JT	10376 10270 09868 29086 11179 29490 10377 30184 29185 12985 03086	0.7 1R 1.3 1R 0.9 2R 0.7 1R 2.2 1R 0.9 1R 0.6 1R 0.6 1R 2.0 OR 1.2 OR 0.8 2R	PRL PRL PRL URL PRL CRL CRL URLO PRLO URLO	SMALL FRACT. ZONE SMALL FRACT. ZONE SMALL FRACT. ZONE TAPERED FRACTURE
11 11 11 11 11 11 11 11 11 11 11	107003	028 397 398 399 400 401 402 403 404 405 406 407 408	8.87 0.54JT 0.91JT 2.45JT 2.94JT 3.05JT 3.27JT 3.53JT 4.05JT 4.50JT 4.50JT	10376 10270 09868 29086 11179 29490 10377 30184 29185 12985 03086 11377	0.7 1R 1.3 1R 0.9 2R 0.7 1R 2.2 1R 0.9 1R 0.6 1R 0.8 1R 2.0 OR 1.2 OR 0.8 2R 1.1 1P	PRL PRL PRL URL PRL CRL CRL URLO PRLO URLO URL	SMALL FRACT. ZONE SMALL FRACT. ZONE SMALL FRACT. ZONE TAPERED FRACTURE APPROX. DIP&STRIKE
11 11 11 11 11 11 11 11 11 11 11	107003	028 397 398 399 400 401 402 403 404 405 406 407 408	8.87 0.54JT 0.91JT 0.76JT 2.45JT 2.94JT 3.05JT 3.27JT 3.53JT 4.05JT 4.50JT 4.50JT 4.50JT	10376 10270 09868 29086 11179 29490 10377 30184 29185 12985 03086 11377 21200	0.7 1R 1.3 1R 0.9 2R 0.7 1R 2.2 1R 0.9 1R 0.6 1R 0.6 1R 0.8 1R 2.0 OR 1.2 OR 0.8 2R 1.1 1R	PRL PRL PRL URL PRL CRL CRL URLO PRLO URL URL	SMALL FRACT. ZONE SMALL FRACT. ZONE SMALL FRACT. ZONE TAPERED FRACTURE APPROX. DIP&STRIKE
11 11 11 11 11 11 11 11 11 11	107003	028 397 398 399 400 401 402 403 404 405 406 407 408 409	8.87 0.54JT 0.91JT 2.45JT 2.94JT 3.05JT 3.27JT 3.53JT 4.05JT 4.50JT 4.50JT 4.50JT 4.90JT 4.96JT	10376 10270 09868 29086 11179 29490 10377 30184 29185 12985 03086 11377 21280	0.7 1R 1.3 1R 0.9 2R 0.7 1R 2.2 1R 0.9 1R 0.6 1R 0.6 1R 0.8 1R 2.0 OR 1.2 OR 0.8 2R 1.1 1R 1.1 2R	PRL PRL PRL URL PRL CRL CRL CRL URLO PRLO URL URL URL	SMALL FRACT. ZONE SMALL FRACT. ZONE SMALL FRACT. ZONE TAPERED FRACTURE APPROX. DIP&STRIKE
11 11 11 11 11 11 11 11 11 11	107003	028 397 398 399 400 401 402 403 404 405 406 407 408 409 410	8.87 O.54JT O.91JT O.76JT 2.45JT 3.05JT 3.53JT 4.05JT 4.50JT 4.50JT 4.50JT 4.50JT 4.50JT 5.33JT	10376 10270 09868 29086 11179 29490 10377 30184 29185 12985 03086 11377 21280 11486	0.7 1R 1.3 1R 0.9 2R 0.7 1R 2.2 1R 0.9 1R 0.6 1R 0.8 1R 2.0 OR 1.2 OR 0.8 2R 1.1 1R 1.1 2R 0.5 2R	PRL PRL PRL URL PRL CRL CRL URLO PRLO URL URL URL URL URL	SMALL FRACT. ZONE SMALL FRACT. ZONE SMALL FRACT. ZONE TAPERED FRACTURE APPROX. DIP&STRIKE
11 11 11 11 11 11 11 11 11 11	107003	028 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411	8.87 0.54JT 0.91JT 2.45JT 2.94JT 3.05JT 3.53JT 4.05JT 4.50JT 4.50JT 4.50JT 4.50JT 5.33JT 5.67JT	10376 10270 09868 29086 11179 29490 10377 30184 29185 12985 03086 11377 21280 11486 09475	0.7 1R 1.3 1R 0.9 2R 0.7 1R 2.2 1R 0.9 1R 0.6 1R 0.8 1R 2.0 OR 1.2 OR 0.8 2R 1.1 1R 1.1 2R 0.5 1R	PRL PRL PRL URL PRL CRL CRL URLO PRLO URL URL URL URL CRL CRL	SMALL FRACT. ZONE SMALL FRACT. ZONE SMALL FRACT. ZONE TAPERED FRACTURE APPROX. DIP&STRIKE
11 11 11 11 11 11 11 11 11 11	107003	028 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411	8.87 0.54JT 0.91JT 2.45JT 2.94JT 3.05JT 3.27JT 3.53JT 4.05JT 4.50JT 4.50JT 4.50JT 5.33JT 5.89JT	10376 10270 09868 29086 11179 29490 10377 30184 29185 12985 03086 11377 21280 11486 09475 10075	0.7 1R 1.3 1R 0.9 2R 0.7 1R 2.2 1R 0.9 1R 0.6 1R 0.6 1R 0.8 1R 2.0 OR 1.2 OR 0.8 2R 1.1 1R 1.1 2R 0.5 2R 1.8 1P	PRL PRL PRL URL PRL CRL CRL URLO PRLO URL URL URL URL CRL CRL CRL CRL	SMALL FRACT. ZONE SMALL FRACT. ZONE SMALL FRACT. ZONE TAPERED FRACTURE APPROX. DIP&STRIKE VERY APPROX. MEASUREM.
11 11 11 11 11 11 11 11 11 11		028 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412	8.87 0.54JT 0.91JT 2.45JT 2.94JT 3.05JT 3.27JT 3.53JT 4.05JT 4.50JT 4.50JT 4.50JT 4.96JT 5.33JT 5.67JT	10376 10270 09868 29086 11179 29490 10377 30184 29185 12985 03086 11377 21280 11486 09475 10075	0.7 1R 1.3 1R 0.9 2R 0.7 1R 2.2 1R 0.9 1R 0.6 1R 0.6 1R 0.8 1R 2.0 OR 1.2 OR 0.8 2R 1.1 1R 1.1 2R 0.5 2R 1.5 1R 1.8 1R	PRL PRL PRL URL PRL CRL CRL CRL URLO PRLO URL URL URL URL CRL CRL CRL	SMALL FRACT. ZONE SMALL FRACT. ZONE SMALL FRACT. ZONE TAPERED FRACTURE APPROX. DIP&STRIKE VERY APPROX. MEASUREM. VERY APPROX. MEASUREM.
11 11 11 11 11 11 11 11 11 11	*******	O28 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412	8.87 O.54JT O.91JT O.76JT 2.45JT 3.05JT 3.27JT 3.53JT 4.05JT 4.50JT 4.50JT 4.50JT 4.50JT 5.33JT 5.67JT 5.89JT	10376 10270 09868 29086 11179 29490 10377 30184 29185 12985 03086 11377 21280 11486 09475 10075 104***	0.7 1R 1.3 1R 0.9 2R 0.7 1R 2.2 1R 0.9 1R 0.6 1R 0.8 1R 2.0 OR 1.2 OR 0.8 2R 1.1 1R 1.1 2R 0.5 2R 1.5 1R 1.8 1R	PRL PRL PRL PRL CRL CRL CRL URLO PRLO URL URL URL URL CRL CRL CRL	SMALL FRACT. ZONE SMALL FRACT. ZONE SMALL FRACT. ZONE TAPERED FRACTURE APPROX. DIP&STRIKE VERY APPROX. MEASUREM. VERY APPROX. MEASUREM.
11 11 11 11 11 11 11 11 11 11	******	O28 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412	8.87 0.54JT 0.91JT 0.76JT 2.45JT 3.05JT 3.53JT 4.05JT 4.50JT 4.50JT 4.50JT 4.96JT 5.33JT 5.67JT 5.89JT ***PAGE 6.13JT	10376 10270 09868 29086 11179 29490 10377 30184 29185 12985 03086 11377 21280 11486 09475 10075 14*** 12282	0.7 1R 1.3 1R 0.9 2R 0.7 1R 2.2 1R 0.9 1R 0.6 1R 0.6 1R 0.8 1R 2.0 OR 1.2 OR 1.2 OR 1.1 1R 1.1 2R 0.5 2R 1.5 1R 1.8 1R ************************************	PRL PRL PRL URL PRL CRL CRL CRL URLO PRLO URL URL URL URL CRL CRL CRL	SMALL FRACT. ZONE SMALL FRACT. ZONE SMALL FRACT. ZONE TAPERED FRACTURE APPROX. DIP&STRIKE VERY APPROX. MEASUREM. VERY APPROX. MEASUREM.
11 11 11 11 11 11 11 11 11 11	******	O28 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414	8.87 0.54JT 0.91JT 0.76JT 2.45JT 2.94JT 3.05JT 3.53JT 4.05JT 4.52JT 4.52JT 4.70JT 4.96JT 5.33JT 5.67JT 5.89JT ****PAGE 6.13JT 6.35JT	10376 10270 09868 29086 11179 29490 10377 30184 29185 12985 03086 11377 21280 11486 09475 10075 14*** 12282 03586	0.7 1R 1.3 1R 0.9 2R 0.7 1R 2.2 1R 0.9 1R 0.6 1R 0.6 1R 0.8 1R 2.0 OR 1.2 OR 0.8 2R 1.1 1R 1.1 2R 0.5 2R 1.5 1R 1.8 1R **********	PRL PRL PRL URL PRL CRL CRL URLO PRLO URL URL URL URL CRL CRL CRL CRL CRL CRL	SMALL FRACT. ZONE SMALL FRACT. ZONE SMALL FRACT. ZONE TAPERED FRACTURE APPROX. DIP&STRIKE VERY APPROX. MEASUREM. VERY APPROX. MEASUREM.
11 11 11 11 11 11 11 11 11 11	*****	028 397 398 399 400 401 402 403 404 405 406 407 408 406 407 408 409 411 411 413 414	8.87 0.54JT 0.91JT 0.76JT 2.45JT 2.94JT 3.05JT 3.27JT 3.53JT 4.05JT 4.50JT 4.50JT 4.50JT 5.33JT 5.67JT 5.89JT ***PAGE 6.13JT 6.59JT	10376 10270 09868 29086 11179 29490 10377 30184 29185 12985 03086 11377 21280 11486 09475 10075 14*** 12282 03586 22870	0.7 1R 1.3 1R 0.9 2R 0.7 1R 2.2 1R 0.9 1R 0.6 1R 0.6 1R 0.8 1R 2.0 OR 1.2 OR 1.2 OR 1.2 OR 1.2 OR 1.2 IR 1.5 1R 1.5 1R 1.8 1R 2.3 1R 0.6 1B	PRL PRL PRL URL PRL CRL CRL URLO PRLO URL URL URL URL CRL CRL CRL CRL CRL CRL CRL CRL CRL C	SMALL FRACT. ZONE SMALL FRACT. ZONE SMALL FRACT. ZONE TAPERED FRACTURE APPROX. DIP&STRIKE VERY APPROX. MEASUREM. VERY APPROX. MEASUREM.
11 11 11 11 11 11 11 11 11 11	*******	O28 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415	8.87 O.54JT O.91JT O.76JT 2.45JT 3.05JT 3.27JT 3.53JT 4.05JT 4.50JT 4.50JT 4.50JT 4.50JT 5.33JT 5.67JT 5.89JT 5.89JT 6.13JT 6.35JT 6.91T	10376 10270 09868 29086 11179 29490 10377 30184 29185 12985 03086 11377 21280 11486 09475 10075 14*** 12282 03586 22870 13096	0.7 1R 1.3 1R 0.9 2R 0.7 1R 2.2 1R 0.9 1R 0.6 1R 0.6 1R 0.8 1R 2.0 OR 1.2 OR 0.8 2R 1.1 1R 1.1 2R 0.5 2R 1.5 1R 1.8 1R ************************************	PRL PRL PRL PRL CRL CRL CRL URLO PRLO URL URL URL CRL CRL CRL CRL CRL CRL CRL CRL CRL C	SMALL FRACT. ZONE SMALL FRACT. ZONE SMALL FRACT. ZONE TAPERED FRACTURE APPROX. DIP&STRIKE VERY APPROX. MEASUREM. VERY APPROX. MEASUREM.
11 11 11 11 11 11 11 11 11 11	*****	O28 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 415	8.87 0.54JT 0.91JT 0.76JT 2.45JT 2.94JT 3.05JT 3.53JT 4.05JT 4.50JT 4.50JT 4.50JT 4.50JT 5.33JT 5.67JT 5.89JT 6.13JT 6.59JT 6.91JT	10376 10270 09868 29086 11179 29490 10377 30184 29185 12985 03086 11377 21280 11486 09475 10075 14*** 12282 03586 22870 13086	0.7 1R 1.3 1R 0.9 2R 0.7 1R 2.2 1R 0.9 1R 0.6 1R 0.6 1R 0.8 1R 2.0 OR 1.2 OR 1.1 1R 1.1 2R 0.5 2R 1.5 1R 1.8 1R ************************************	PRL PRL PRL PRL CRL CRL CRL URLO PRLO URLO URL URL CRL CRL CRL CRL CRL CRL CRL CRL CRL C	SMALL FRACT. ZONE SMALL FRACT. ZONE SMALL FRACT. ZONE TAPERED FRACTURE APPROX. DIP&STRIKE VERY APPROX. MEASUREM. VERY APPROX. MEASUREM.
11 11 11 11 11 11 11 11 11 11	*****	O28 397 398 399 400 401 402 403 404 405 405 405 405 406 407 408 409 410 411 412 413 414 415 416 417	8.87 0.54JT 0.91JT 0.76JT 2.45JT 2.94JT 3.05JT 3.53JT 4.05JT 4.52JT 4.52JT 4.52JT 5.33JT 5.67JT 5.89JT 5.89JT 6.13JT 6.91JT 6.97JT	10376 10270 09868 29086 11179 29490 10377 30184 29185 12985 03086 11377 21280 11486 09475 10075 14*** 12282 03586 22870 13086 30090	0.7 1R 1.3 1R 0.9 2R 0.7 1R 2.2 1R 0.9 1R 0.6 1R 0.8 1R 2.0 OR 1.2 OR 0.8 2R 1.1 1R 1.1 2R 0.5 2R 1.5 1R 1.8 1R ************************************	PRL PRL PRL URL PRL CRL CRL URLO PRLO URL URL URL URL CRL CRL CRL CRL CRL CRL CRL CRL CRL C	SMALL FRACT. ZONE SMALL FRACT. ZONE SMALL FRACT. ZONE TAPERED FRACTURE APPROX. DIP&STRIKE VERY APPROX. MEASUREM. VERY APPROX. MEASUREM.
11 11 11 11 11 11 11 11 11 11	******	O28 397 398 399 400 401 402 403 404 405 406 407 408 407 408 407 408 411 412 413 414 415 416 417 418	8.87 0.54JT 0.91JT 0.76JT 2.45JT 2.94JT 3.05JT 4.05JT 4.05JT 4.50JT 4.50JT 5.33JT 5.67JT 5.89JT 5.89JT 6.13JT 6.59JT 6.91JT 6.91JT 7.08JT	10376 10270 09868 29086 11179 29490 10377 30184 29185 12985 03086 11377 21280 11486 09475 10075 14*** 12282 03586 22870 13086 30090 11584	0.7 1R 1.3 1R 0.9 2R 0.7 1R 2.2 1R 0.9 1R 0.6 1R 0.6 1R 0.8 2R 1.2 OR 1.2 OR 0.8 2R 1.1 1R 1.1 2R 0.5 2R 1.5 1R 1.8 1R ************************************	PRL PRL PRL URL PRL CRL CRL URLO PRLO URL URL URL URL CRL CRL CRL CRL CRL CRL CRL CRL CRL C	SMALL FRACT. ZONE SMALL FRACT. ZONE SMALL FRACT. ZONE TAPERED FRACTURE APPROX. DIP&STRIKE VERY APPROX. MEASUREM. VERY APPROX. MEASUREM.

		420	-	00.70	05005	1 0	20		
11		420	1.	841.L	05985	1.0	ZR	URL	
11		421	7.	99JT	12884	1.0	1R	PRL	
11		422	8.	18JT	03587	2.2	2R	URL	
11		423	ē.	72 1	12388	1 2	10	CRI	
11		123	<u> </u>	077	02200	1.4	441		
T T		424	8.	8/JT	03/89	0.9	IK	URL	E.O.L. 9.2 METERS
22	016701	053	29.	90					
11		493	0	55.JT	12489	3.2	OR	CRI.	AUCUST 11 1986
11		404	õ.	62 TT	12690	1 4	OP	DDI	100001 11,1900
11		171	<u> </u>		12009	1.1	OR OR	FRL	
ΤT		495	Ο.	74JT	02680	1.4	2R	URL	
11		496	1.	60JT	12186	1.6	OR	URLO	
11		497	2	94.IT	03490	1 9	18	TIRT.	VERY APPROX DIP?
11		100		60 TT	1 2 2 0 0	7.5	20		MADDED AC EDH 103
11		470	J.	0001	12200	1.3	28	PRL	MAPPED AS ER# 193
11		499	4.	49JT	12/89	1.7	1DR	PRL	
11		500	5.	48JT	22080	2.8	2R	URL	VERY APPROXIMATE
11		501	6.	27JT	17487	2.2	1DR	PRI.	
11		502	7	26 7	10/00	3 7	ODD	DDIA	
<u>+</u> +		502		2001	10100	3.7	ODK	FREO	
11		503	<u> </u>	3001	17282	T.A	OR	OKLO	
11		504	8.	O9JT	11685	1.3	OP	DRLO	
11		505	8.	88JT	17688	2.6	OD	PSLO	
11		506	10	1317	12580	ĀŌ	10	(TDT	MADDED AS ED#201
<u>+</u> +		500	10.	1301	20500	3.7			MAPPED AS FR#201
TT.		507	10.	94J ±	30230	3,1	OR	PKLO	MAPPED AS ER#205
11		508	12.	16JT	30290	0.9	1R	URL	NO PHOTO COVERAGE
11		509	12.	53JT	30890	4.7	1R	PRI.	NO PHOTO COVERAGE
11		510	12	7317	10797	1 1	10	TIDT	NO PUOTO COVERACE
<u>+</u> +		510	13.	7331	13/07	7.7	TU	ORL	NO FROID COVERAGE
11		511	14.	COL	11480	3.8	IR	CRL	PARTIAL PHOTO COV.
33***	******	****	* * * *	*PACE	E 15***	* * * *	****	*****	* * * * * * * * * * * * * *
11		512	14.	92JT	27485	1.9	OR	CRLO	NO PHOTO COVERAGE
33***	ADTIRAT F	TNI	FDAC	ם חיי	15 1-1	ด ไว้ไ	METED	C++++	*****
11	KODDE	110 1			10.1-1				
TT		213	10.	83JT	20886	0.9	ZK	OKLO	PHOTO COVERAGE?
11		514	17.	O3JT	12980	0.9	2R	PRL	
11		515	17.	79JT	11084	0.7	OR	URL1	APPROX. DIP?
11		516	18	35.17	12485	1 9	18	CRL	
11		E17	10	0010	02000	1 2	10	CDI	
11		517	10.	8371	02900	1.2			
11		518	19.	19JT	11685	1.2	1R	SRL	
11		519	19.	45JT	21188	2.8	2R	CRL	
11		520	20	13.17	11689	0 8	OR	CRLO	
11		520	20.		1 2000		OP	CDII	
11		541	20.	2231	13066	0.5	OR		
11		522	20.	99JT	13086	0.9	1R	CRL	MAPPED AS FR#416
11		523	21.	O4JT	30090	0.7	1R	PRL	MAPPED AS FR#417
71		524	21	17.JT	11584	2.5	OR	URL1	MAPPED AS FR#418
11		525	21	07 11	30200	N K	10	CDT	
11		525	21.	0701	00290	2.0	177		
TT.		526	Z I.	920 L	03586	2.3	TK	OKT	MAPPED AS ER#414
11		527	22.	39JT	11685	3.9	1R	PRL	MAPPED AS FR#372
11		528	22.	76JT	12185	2.3	1R	PRL	
11		529	22	78 11	20787	1 2	OR I	CTRT 2	
11		520	22.	121	12006	<u> </u>	10		
11		530	23.	1231	12080	0.8	IR	PRL	
11		531	23.	38JT	30187	1.0	ZR	PRL	
11		532	24.	19JT	11487	3.3	2R	PRL	VERY APPROX DIP?
11		533	25	22.TT	12587	6 8	2R	PRI.	
11		E 24	25.	06 1	12206	7 6	10		MADDED AC ED#302
11		554	23.	0011	12200	<u>.</u> .	IR	PRL	MAPPED AS IR#302
11		535	26.	O5JT	03683	1.7	2R	PRL	
11		536	26.	52JT	12388	8.4	1R	PRL	
11		537	26	92.TT	12785	24	1R	PRI.	
11		530	27	OO IT	03700	10	N P		ADDDAY DIDO
11		555	41.	0931	03/90	1.0		OKLT	AFFROX. DIF:
11		539	27.	78 J L	11982	4.4	IK	PRL	
11		540	27.	99JT	30590	3.0	1R	PRL	
11		541	28	15.IT	12385	3.7	2R	PRI.	
11		547	20	20 1	21099	1 4	10	IDT	
11		542	20.	4331	21003	1.0	11	DDT	
11		243	20.	42JT	TOORR	0.0	TK	PRL	
33***	******P/	AGE 🗄	16**	****	******	****	****	*****	***********
11		544	29.	62JT	30890	1.9	1R	PRL	
11		545	29	90.TT	04485	4 1	18	URT.	E.O.L. PO METRES
33 * * *	* * * * * * *	VED	៴៓៱៝	vodd	CTD TV	E . T	מזרו ת	* * * * * * *	****
55	D1 (000		- <u>~</u> F	TRUA	SIGIC		אום ס		
77									

11	546	00.00JT	13286	4.0	2R	PRL	
11	547	0 12 TT	13180	0 9	OR	URL1	
11	540	0.1201	10107	2.2	2010	DDI	
11	548	0.39JT	13287	5.0	ZR	PRL	
11	549	0.54JT	31388	3.9	1R	SRL	
11			1 7 7 9 9	20	N	ב זמס	
11	220	1.0551	12/00	2.0	<u>U</u>	FRES	
11	551	1.52JT	30890	3.7	OR	PRLO	
11	552	2 O2.IT	30890	18	OR	URLO	
11	552	2.0201	120030	1.0		DDI	
11	553	2.29JT	12083	1.8	TK	PRL	
11	554	2.62JT	01090	1.5	OR	URLO	
11	EEE	ייד פרי ב	13495	3.2	OP	DDIO	
11	555	3.7001	13403	3.2		FRIO	
11	556	4 .24JT	13289	4.8	OR	PRL1	
11	557	5 14.TT	31082	15.3	1R	PRI.	MAPPED AS FR#56
11	557	5.1101	11002	10.0	100		
11	228	5.53 JT	13088	4.0	TDR	PRL	
11	559	6.15JT	19086	1.4	OR	URLO	
11	560	6 42 TT	10786	1 9	OP	CPL1	
11	500	0.4201	19700	1.0			
11	561	6.49JT	13187	6.4	ODR	PRLO	
11	562	7.07.IT	13186	1.0	OR	PRI.1	
11	500	7 66 10	12500	5.7			
11	203	1.2011	12203	2.1	UR	PRUI	
11	564	7.93JT	30089	13.6	OR	PRLO	MAPPED AS FR#15
11	565	9 35 TT	13185	Q 1	1 🖸	DDI.	
11	505	0.0001	10100		<u> </u>		
11	566	9.03JT	30290	0.9	OR	PRLO	
11	567	9.50JT	03690	2.3	1R	CRL	APPROX.DIP+STRIKE
11	E C O	0 67 17	21000	16 2		DDT 1	MADDED AS ED417
11	200	3.0/11	21090	10.3	<u>OR</u>	FRLI	PAPELO AS ERHII
11	569	10.71JT	13285	3.2	1DR	PRL	
11	570	11 O2 TT	13087	0.8	1 DP	DDT	
	570	11.0201	13007	0.0	TDA		
11	571	11.13JT	31389	1.6	1D	PSL	
11	572	12.31JT	19886	2.0	OR	PRI.2	DIP IS APPROX.
11	675	12.00101	12207	4 1	100	DDI	
11	513	17.8311	1228/	4.1	IDK	PRL	
11	574	13.35JT	12988	1.1	OR	PRL1	
33**** 0405 1	7 * * * *	*******	*****	*****	* * * * *	*****	* * * * * * * * * * * * * * * * * * * *
JUNE PROPERTY					0D	DDLO	
11	575	13.43JT	18383	1.4	OR	PKTO	
11	576	14.20JT	31190	5.5	2R	PRL	APPROX.DIP+STRIKE
11	577	14 06 17	20000	0 6		DCIO	
11	5//	14.0011	20990	0.0		PSLO	
11	578	15.58JT	35590	0.6	OD	PSLO	
11 11	578	15.58JT	35590	0.6 9 1	OD	PSLO CRL1	MAPPED AS FR#101
11 11	578 579	15.58JT 16.67JT	35590 31390	0.6	OD OR	PSLO CRL1	MAPPED AS FR#101
11 11 11	578 579 580	15.58JT 16.67JT 18.76JT	35590 31390 17885	0.6 9.1 1.7	OD OR 1D	PSLO CRL1 PSL	MAPPED AS FR#101 E.O.L. 19.9M
11 11 11 33******PAGE	578 579 580 18*1	15.58JT 16.67JT 18.76JT	35590 31390 17885	0.6 9.1 1.7	OD OR 1D	PSLO CRL1 PSL	MAPPED AS FR#101 E.O.L. 19.9M
11 11 11 33******PAGE	578 579 580 18*1	15.58JT 16.67JT 18.76JT	35590 31390 17885	0.6 9.1 1.7	OD OR 1D	PSLO CRL1 PSL	MAPPED AS FR#101 E.O.L. 19.9M
11 11 11 33******PACE 22 Q20000	578 579 580 18*1 023	15.58JT 16.67JT 18.76JT 30.19	35590 31390 17885	0.6 9.1 1.7	OD OR 1D	PSLO CRL1 PSL	MAPPED AS FR#101 E.O.L. 19.9M
11 11 33******PAGE 22 Q20000 11	578 579 580 18*1 023 881	15.58JT 16.67JT 18.76JT ******* 30.19 1.69JT	35590 31390 17885 ******	0.6 9.1 1.7	OD OR 1D *****	PSLO CRL1 PSL *****	MAPPED AS FR#101 E.O.L. 19.9M
11 11 33******PAGE 22 Q20000 11 11	578 579 580 18*1 023 881 882	15.58JT 16.67JT 18.76JT 30.19 1.69JT 2.32JT	35590 31390 17885 ****** 13086 13385	0.6 9.1 1.7 *****	OD OR 1D *****	PSLO CRL1 PSL PSL PRL PSLO	MAPPED AS FR#101 E.O.L. 19.9M
11 11 33******PACE 22 Q20000 11 11	578 579 580 18*1 023 881 882	15.58JT 16.67JT 18.76JT 30.19 1.69JT 2.32JT	35590 31390 17885 ****** 13086 13385	0.6 9.1 1.7 ***** 2.2 0.5	OD OR 1D 2R OR	PSLO CRL1 PSL PSL PRL PSLO	MAPPED AS FR#101 E.O.L. 19.9M
11 11 33******PAGE 22 Q20000 11 11 11	578 579 580 18*1 023 881 882 883	15.58JT 16.67JT 18.76JT 30.19 1.69JT 2.32JT 5.35JT	35590 31390 17885 ****** 13086 13385 31090	0.6 9.1 1.7 2.2 0.5 4.8	OD OR 1D ***** OR OR OR	PSLO CRL1 PSL PSL PRL PSLO PRL1	MAPPED AS FR#101 E.O.L. 19.9M
11 11 11 33******PAGE 22 Q20000 11 11 11 11	578 579 580 18*1 023 881 882 883 884	15.58JT 16.67JT 18.76JT 30.19 1.69JT 2.32JT 5.35JT 5.59JT	35590 31390 17885 13086 13385 31090 05689	0.6 9.1 1.7 2.2 0.5 4.8 3.9	OD OR 1D ***** OR OR 1R	PSLO CRL1 PSL PRL PSLO PRL1 URL	MAPPED AS FR#101 E.O.L. 19.9M
11 11 11 33******PACE 22 Q20000 11 11 11 11 11	578 579 580 18*1 023 881 882 883 884 884	15.58JT 16.67JT 18.76JT 30.19 1.69JT 2.32JT 5.35JT 5.59JT 7.17JT	35590 31390 17885 13086 13385 31090 05689 06087	0.6 9.1 1.7 2.2 0.5 4.8 3.9	OD OR 1D ***** OR OR 1R 1P	PSLO CRL1 PSL PRL PSLO PRL1 URL	MAPPED AS FR#101 E.O.L. 19.9M
11 11 11 33******PACE 22 Q20000 11 11 11 11 11	578 579 580 18*1 023 881 882 883 884 884 885	15.58JT 16.67JT 18.76JT 30.19 1.69JT 2.32JT 5.35JT 5.59JT 7.17JT	35590 31390 17885 13086 13385 31090 05689 06087	0.6 9.1 1.7 2.2 0.5 4.8 3.9 1.3	OD OR 1D 2R OR OR 1R 1R 1R	PSLO CRL1 PSL PSL PSLO PRL1 URL URL	MAPPED AS FR#101 E.O.L. 19.9M
11 11 11 33******PAGE 22 Q20000 11 11 11 11 11 11 11	578 579 580 18*1 023 881 882 883 884 885 886	15.58JT 16.67JT 18.76JT ******* 30.19 1.69JT 2.32JT 5.35JT 5.59JT 7.17JT 8.46JT	35590 31390 17885 ****** 13086 13385 31090 05689 06087 31390	0.6 9.1 1.7 2.2 0.5 4.8 3.9 1.3 4.8	OD OR 1D ***** OR OR 1R 1R 1R 2RT	PSLO CRL1 PSL PRL PSLO PRL1 URL URL PRL	MAPPED AS FR#101 E.O.L. 19.9M ***********************************
11 11 33******PAGE 22 Q20000 11 11 11 11 11 11 11 11	578 579 580 18*1 023 881 882 883 884 885 886 886 887	15.58JT 16.67JT 18.76JT ******* 30.19 1.69JT 2.32JT 5.35JT 5.59JT 7.17JT 8.46JT 10.89JT	35590 31390 17885 ******* 13086 13385 31090 05689 06087 31390 00587	0.6 9.1 1.7 2.2 0.5 4.8 3.9 1.3 4.8 1.3	OD OR 1D ****** OR OR 1R 1R 2RT 1R	PSLO CRL1 PSL PRL PSLO PRL1 URL URL PRL PRL PRL	MAPPED AS FR#101 E.O.L. 19.9M ***********************************
11 11 11 33******PACE 22 Q20000 11 11 11 11 11 11 11 11 11	578 579 580 18** 023 881 882 883 884 885 886 886 886 887	15.58JT 16.67JT 18.76JT 30.19 1.69JT 2.32JT 5.35JT 5.59JT 7.17JT 8.46JT 10.89JT	35590 31390 17885 ******* 13086 13385 31090 05689 06087 31390 00587 00485	0.6 9.1 1.7 2.2 0.5 4.8 3.9 1.3 4.8 2.7	OD OR 1D ****** OR OR OR 1R 1R 2RT 1R	PSLO CRL1 PSL PSLO PRL1 URL URL PRL PRL IET	MAPPED AS FR#101 E.O.L. 19.9M ***********************************
11 11 11 33******PACE 22 Q20000 11 11 11 11 11 11 11 11 11	578 579 580 18* 023 881 882 883 884 885 886 886 887 888	15.58JT 16.67JT 18.76JT 30.19 1.69JT 2.32JT 5.35JT 5.59JT 7.17JT 8.46JT 10.89JT 12.75JT	35590 31390 17885 ****** 13086 13385 31090 05689 06087 31390 00587 04485	0.6 9.1 1.7 2.2 0.5 4.8 3.9 1.3 4.8 1.3 2.7	OD OR 1D ****** OR OR OR 1R 1R 2RT 1R 1R 1R	PSLO CRL1 PSL PSL PSLO PRL1 URL URL PRL PRL URL URL	MAPPED AS FR#101 E.O.L. 19.9M MAPPED AS FR#76 APPROX.DIP+STRIKE
11 11 33******PAGE 22 Q20000 11 11 11 11 11 11 11 11 11	578 579 580 18** 023 881 882 883 884 885 886 886 886 886 888 888 888	15.58JT 16.67JT 18.76JT ******** 30.19 1.69JT 2.32JT 5.35JT 7.17JT 8.46JT 10.89JT 12.75JT 13.06JT	35590 31390 17885 ****** 13086 13385 31090 05689 06087 31390 00587 04485 22488	O.6 9.1 1.7 2.2 0.5 4.8 3.9 1.3 4.8 1.3 2.7 2.2	OD OR 1D 2R OR OR 1R 1R 2RT 1R 1R 1R 1R	PSLO CRL1 PSL PSL PSLO PSLO PSLO PRL1 URL URL URL URL URL URL	MAPPED AS FR#101 E.O.L. 19.9M ***********************************
11 11 11 33******PACE 22 Q20000 11 11 11 11 11 11 11 11 11	578 579 580 18*1 023 881 882 883 884 885 886 886 886 886 888 888 888 889 889	15.58JT 16.67JT 18.76JT 30.19 1.69JT 2.32JT 5.35JT 7.17JT 8.46JT 10.89JT 12.75JT 13.06JT 14.00JT	35590 31390 17885 ****** 13086 13385 31090 05689 06087 31390 00587 04485 22488 18889	O.6 9.1 1.7 4.8 3.9 1.3 4.8 2.7 2.2 4.8 3.9 1.3 2.7 2.2	OD OR 1D ****** OR OR 1R 2RT 1R 1R 1R 1R 0RD	PSLO CRL1 PSL PSLO PRL1 VRL VRL VRL VRL VRL VRL VRL VRL VRL VRL	MAPPED AS FR#101 E.O.L. 19.9M ***********************************
11 11 11 33******PACE 22 Q20000 11 11 11 11 11 11 11 11 11	578 579 580 18*1 023 881 882 883 884 885 886 886 886 888 886 888 889 890	15.58JT 16.67JT 18.76JT 30.19 1.69JT 2.32JT 5.35JT 7.17JT 8.46JT 10.89JT 12.75JT 13.06JT 14.00JT	35590 31390 17885 ****** 13086 13385 31090 05689 06087 31390 00587 04485 22488 18889	0.6 9.1 1.7 2.2 0.5 4.8 3.9 1.3 4.8 1.3 2.7 2.2 1.5	OD OR 1D ****** OR OR 1R 1R 2RT 1R 1R 1R 0RD 0DF	PSLO CRL1 PSL PSL PSLO PRL1 URL URL URL URL URL URL URLO DSLO	MAPPED AS FR#101 E.O.L. 19.9M MAPPED AS FR#76 APPROX.DIP+STRIKE APPROX.DIP+STRIKE PARTIALLY VEIN FIL
11 11 11 33******PAGE 22 Q20000 11 11 11 11 11 11 11 11 11	578 579 580 18* 023 881 882 883 883 885 885 886 885 886 888 885 888 889 890 891	15.58JT 16.67JT 18.76JT 18.76JT 30.19 1.69JT 2.32JT 5.35JT 7.17JT 8.46JT 10.89JT 12.75JT 13.06JT 14.00JT 15.53JT	35590 31390 17885 ****** 13086 13385 31090 05689 06087 31390 00587 04485 22488 18889 01090	O.6 9.1 1.7 2.2 4.8 3.9 1.3 4.3 2.7 2.2 1.5 3.9	OD OR 1D 2R OR OR 1R 1R 2RT 1R 1R 1R 1R 0RD ODR	PSLO CRL1 PSL PSL PSLO PRL1 URL URL URL URL URL URL URLO PSLO	MAPPED AS FR#101 E.O.L. 19.9M MAPPED AS FR#76 APPROX.DIP+STRIKE APPROX.DIP+STRIKE PARTIALLY VEIN FIL PARTIALLY VEIN FIL
11 11 11 33******PACE 22 Q20000 11 11 11 11 11 11 11 11 11	578 579 580 18** 023 881 882 883 884 885 886 886 886 886 888 889 889 889 8891 892	15.58JT 16.67JT 18.76JT 18.76JT 30.19 1.69JT 2.32JT 5.35JT 7.17JT 8.46JT 10.89JT 12.75JT 13.06JT 14.00JT 15.53JT 18.74JT	35590 31390 17885 ******* 13086 13385 31090 05689 06087 31390 00587 04485 22488 18889 01090 02285	0.6 9.1 1.7 *** 2.5 4.8 3.9 1.3 4.8 2.7 2.5 2.5 1.3 1.3 2.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1	OD OR 1D ****** OR OR 1R 2RT 1R 1R 1R ORD ODR 1R	PSLO CRL1 PSL PSLO PRL1 VRL VRL VRL VRL VRL VRL VRL VRLO PSLO VRL VRLO VRL	MAPPED AS FR#101 E.O.L. 19.9M ***********************************
11 11 11 33******PACE 22 Q20000 11 11 11 11 11 11 11 11 11	578 579 580 18*1 023 881 882 883 882 883 884 885 886 885 886 888 889 890 891 893	15.58JT 16.67JT 18.76JT 30.19 1.69JT 2.32JT 5.35JT 7.17JT 8.46JT 10.89JT 12.75JT 13.06JT 14.00JT 15.53JT 18.74JT 22.09JT	35590 31390 17885 ****** 13086 13385 31090 05689 06087 31390 00587 04485 22488 18889 01090 02285 04185	0.6 9.1 1.7 2.5 4.8 3.9 1.3 4.8 1.3 2.5 1.5 3.9 1.5 3.9 1.5 3.9 1.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3	OD OR 1D ****** 2R OR OR 1R 1R 2RT 1R 1R 1R ODR 1R 2P	PSLO CRL1 PSL PSL PSLO PRL1 URL URL URL URL URL URL URL URL URL URL	MAPPED AS FR#101 E.O.L. 19.9M MAPPED AS FR#76 APPROX.DIP+STRIKE APPROX.DIP+STRIKE PARTIALLY VEIN FIL PARTIALLY VEIN FIL APRROX.DIP+STRIKE MAPPED AS FR#33
11 11 33******PAGE 22 Q20000 11 11 11 11 11 11 11 11 11	578 579 580 18* 023 881 882 8883 8883 8885 8885 8885 8886 8887 888 8890 891 892 893	15.58JT 16.67JT 18.76JT 18.76JT 2.32JT 5.35JT 5.59JT 7.17JT 8.46JT 10.89JT 12.75JT 13.06JT 14.00JT 15.53JT 18.74JT 22.09JT	35590 31390 17885 ****** 13086 13385 31090 05689 06087 31390 00587 04485 22488 18889 01090 02285 04185	0.6 9.1 1.7 2.5 4.8 3.3 4.3 12.7 2.5 9.1 3.6 3.6	OD OR 1D 2R OR OR 1R 1R 2RT 1R 1R 1R 1R 0DR 1R 2R 0DR 1R 2R 0D 0D 2R 0R 2R 0R 2R 0R 2R 0R 2R 0R 2R 0R 2R 0R 2R 0R 2R 0R 2R 0R 2R 0R 2R 0R 2R 0R 2R 0R 0R 2R 0R 2R 0R 0R 2R 0R 0R 2R 0R 0R 2R 0R 0R 2R 2R 0R 0R 2R 2R 0R 0R 2R 2R 0R 2R 2R 2R 2 2 2 2	PSLO CRL1 PSL PSL PSLO PRL PSLO PRL1 URL URL URL URL URL URL URLO PSLO URL PSLO	MAPPED AS FR#101 E.O.L. 19.9M MAPPED AS FR#76 APPROX.DIP+STRIKE APPROX.DIP+STRIKE PARTIALLY VEIN FIL PARTIALLY VEIN FIL APROX.DIP+STRIKE MAPPED AS FR#33
11 11 11 33******PAGE 22 Q20000 11 11 11 11 11 11 11 11 11	578 579 580 18* 023 881 882 883 882 883 885 888 885 888 885 888 889 891 892 893 894	15.58JT 16.67JT 18.76JT 18.76JT 30.19 1.69JT 2.32JT 5.35JT 7.17JT 8.46JT 10.89JT 12.75JT 13.06JT 14.00JT 15.53JT 18.74JT 22.09JT 22.31JT	35590 31390 17885 ******* 13086 13385 31090 05689 06087 31390 00587 04485 22488 18889 01090 02285 04185 29885	O.6 9.1 1.7 ***** 2.25 4.8 3.9 1.3 4.8 2.25 1.3 2.5 9 1.3 5.1 3.9 0.9	OD OR 1D 2R OR OR 1R 1R 2RT 1R 1R 1R 1R 0RD ODR 1R 2R 1R 1R 1R 1R 1R 1R 1R 1R 1R 1R 1R 1R 1R	PSLO CRL1 PSL PSLO PSLO PRL1 URL URL URL URL URL URL URL URL URL URL	MAPPED AS FR#101 E.O.L. 19.9M ***********************************
11 11 11 33******PACE 22 Q20000 11 11 11 11 11 11 11 11 11	578 579 580 18** 023 882 882 882 882 883 885 886 888 886 888 888 889 889 8991 892 893 895	15.58JT 16.67JT 18.76JT 18.76JT 30.19 1.69JT 2.32JT 5.35JT 7.35JT 7.17JT 8.46JT 10.89JT 12.75JT 13.06JT 14.00JT 15.53JT 18.74JT 22.05JT 22.55JT	35590 31390 17885 ****** 13086 13385 31090 05689 06087 31390 00587 04485 22488 18889 01090 02285 04185 29885 03585	0.6 9.17 1.77 2.58 3.93 1.83 7.25 9.6 9.1 2.5 9.6 9.1 2.5 9.1 6 9.1 7 1.7 3.9 1.5 8 9.1 2.5 9.1 5.1 0.8 9.1 7 1.7 5.1 2.5 8 9.1 2.5 9.1 8 9.1 2.5 8 9.1 2.5 9.1 8 9.5 9.5 8 9.5 8 9.5 8 9.5 8 9.5 8 9.5 8 9.5 9.5 8 9.5 9.5 8 9.5 9.5 9.5 8 9.5 9.5 8 9.5 9.5 9.5 9.5 8 9.5 9.5 9.5 9.5 9.5 9.5 8 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5 8 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5	OD OR 1D ***** OR OR 1R 2RT 1R 1R 2RT 1R 1R ORD ODR 1R 2R 1R ORD ODR 1R 2R 0 R 0 R 0 R 0 R 0 R 0 R 0 R 0 R 0 R	PSLO CRL1 PSL PSL PSLO PRL1 URL URL URL URL URL URL URL URL URL URL	MAPPED AS FR#101 E.O.L. 19.9M ***********************************
11 11 11 33******PAGE 22 Q20000 11 11 11 11 11 11 11 11 11	578 579 580 881 882 8884 8885 8884 8886 8887 888 8886 8889 8991 893 895	15.58JT 16.67JT 18.76JT 18.76JT 2.32JT 5.35JT 5.59JT 7.17JT 8.46JT 10.89JT 12.75JT 13.06JT 14.00JT 15.53JT 18.74JT 22.09JT 22.31JT 22.55JT	35590 31390 17885 ****** 13086 13385 31090 05689 06087 31390 00587 04485 22488 18889 01090 02285 04185 29885 29885 33585	0.6 9.17 1.7 2.58 4.8 3.8 3.8 3.7 2.59 1698 12.5 3.028	OD OR 1D 2R OR 1R 2R OR 1R 1R 1R 1R 0DR 1R 2R 1R 0DR 1R 2R 1R 0D 0D 0D 0D 0D 0D 0D 0D 0D 0D 0D 0D 0D	PSLO CRL1 PSL PSL PSLO PRL PSLO PRL1 URL URL URL URL URL URL URL URL URL URL	MAPPED AS FR#101 E.O.L. 19.9M MAPPED AS FR#76 APPROX.DIP+STRIKE APPROX.DIP+STRIKE PARTIALLY VEIN FIL PARTIALLY VEIN FIL APRROX.DIP+STRIKE MAPPED AS FR#33 APPROX.DIP+STRIKE
11 11 11 33******PAGE 22 Q20000 11 11 11 11 11 11 11 11 11	578 579 580 18* 023 882 883 882 883 885 888 888 888 888 889 891 893 895 895 895	15.58JT 16.67JT 18.76JT 18.76JT 30.19 1.69JT 2.32JT 5.35JT 7.17JT 10.89JT 12.75JT 13.06JT 14.00JT 15.53JT 18.74JT 22.09JT 22.31JT 23.64JT	35590 31390 17885 ****** 13086 13385 31090 05689 06087 31390 00587 04485 22488 18889 01090 02285 04485 29885 03585 30189	0.6 9.17 1.77 2.58 4.83 1.38 1.38 1.35 1.69 8 02.86 2.6	OD OR 1D 2R OR OR 1R 2RT 1R 1R 2RT 1R 1R 2RT 1R 1R ORD ODR 1R 2R 1R 0R 0D 0D 0R	PSLO CRL1 PSL PSL PSLO PRL1 URL URL URL URL URL URL URL URL URL URL	MAPPED AS FR#101 E.O.L. 19.9M ***********************************
11 11 11 33******PACE 22 Q20000 11 11 11 11 11 11 11 11 11	578 579 580 18** 023 882 882 882 882 885 886 888 886 888 8890 8891 8893 895 895 897	15.58JT 16.67JT 18.76JT 18.76JT 30.19 1.69JT 2.32JT 5.35JT 7.17JT 8.46JT 10.89JT 12.75JT 13.06JT 14.00JT 15.53JT 18.74JT 22.31JT 22.55JT 23.64JT 24.85JT	35590 31390 17885 ****** 13086 13385 31090 05689 06087 31390 00587 04485 22488 18889 01090 002285 04185 29885 03585 30189 22388	0.6 9.17 1.77 2.5893837259169868 1.302159169868	OD OR 1D ***** 2R OR OR 1R 2R 1R 2R 1R 1R 2R 1R 0D 0DR 1R 2R 1R 0RD 0DR 1R 2R 1R 1R 0RD 0DR 1D 10 10 10 10 10 10 10 10 10 10 10 10 10	PSLO CRL1 PSL PSL PSLO PRL1 URL URL URL URL URL URL URL URL URL URL	MAPPED AS FR#101 E.O.L. 19.9M ***********************************
11 11 11 33******PAGE 22 Q20000 11 11 11 11 11 11 11 11 11	578 579 580 881 888 888 888 888 888 888 889 891 893 895 895 895 896 897 897 897 897 897 897 897 897 897 897	15.58JT 16.67JT 18.76JT 18.76JT 30.19 1.69JT 2.32JT 5.59JT 7.17JT 8.46JT 10.89JT 12.75JT 13.06JT 14.00JT 15.53JT 18.74JT 22.09JT 22.31JT 23.64JT 23.64JT 25.54T 25.54T 25.54T 25.55JT 25.55T 25	35590 31390 17885 ****** 13086 13385 31090 05689 06087 31390 00587 04485 22488 18889 01090 02285 04185 29885 03585 03585 03585 03585 03585	0.617 9.1.7 2.58938372591698680 14.122135302921	OD OR 1D 2R OR 1R 2R OR 1R 2RT 1R 1R ODR 1R 2R 1R ODR 1R 2R 0D 0D 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0	PSLO CRL1 PSL PSL PSLO PRL PSLO PRL1 URL URL URL URL URL URLO URL URLO URL URLO URL URLO URL URLO URL URLO URL URLO URL URLO URL URL URLO URL URLO URL URLO URLO	MAPPED AS FR#101 E.O.L. 19.9M MAPPED AS FR#76 APPROX.DIP+STRIKE APPROX.DIP+STRIKE PARTIALLY VEIN FIL PARTIALLY VEIN FIL APRROX.DIP+STRIKE MAPPED AS FR#33 APPROX.DIP+STRIKE MAPPED AS FR#45
11 11 11 33******PAGE 22 Q20000 11 11 11 11 11 11 11 11 11	578 579 580 1023 8823 8882 8883 8885 8885 88890 8912 893 895 895 895 895 895 895 895 895	15.58JT 16.67JT 18.76JT 18.76JT 30.19 1.69JT 2.32JT 5.35JT 7.17JT 8.46JT 10.89JT 12.75JT 13.06JT 14.00JT 15.53JT 18.74JT 22.31JT 22.55JT 23.64JT 24.85JT 25.84JT	35590 31390 17885 ****** 13086 13385 31090 05689 06087 31390 00587 04485 22488 18889 01090 02285 04485 29885 03585 30189 22388 02590	0.6 9.17 1.77 2.589383725916986802.8 1.222135.6986802.8 9.2.0	OD OR 1D 2R OR 1R 2R OR 1R 2RT 1R 1R 1R 1R 2R 1R 0D 1R 2R 1R 0D 0D 0R 1D 0D 0R 1D 0R 1D 0R 1D 0R 1D 0R 1D 0R 1D 0R 0R 1D 0R 0R 1D 0R 0R 0R 0R 0R 0R 0R 0R 0R 1D 0R 0R 1D 0R 0R 0R 0R 0R 1D 0R 0R 0R 0R 0R 1D 0R 0R 0R 0R 1D 0R 0R 0R 1R 0R 0R 0R 1R 0R 0 0R 1R 0 0R 0 0R 1R 0 0R 1R 0 0 0 0	PSLO CRL1 PSL PSL PSLO PRL1 URL PRL1 URL URL URL URL URL URL URL URL URL URL	MAPPED AS FR#101 E.O.L. 19.9M MAPPED AS FR#76 APPROX.DIP+STRIKE APPROX.DIP+STRIKE PARTIALLY VEIN FIL PARTIALLY VEIN FIL APRROX.DIP+STRIKE MAPPED AS FR#33 APPROX.DIP+STRIKE MAPPED AS FR#45
11 11 11 33******PACE 22 Q20000 11 11 11 11 11 11 11 11 11	578 579 580 18* 023 882 882 882 882 882 885 888 885 888 8890 8891 8895 895 895 895 895 895 895 895 895 89	15.58JT 16.67JT 18.76JT 18.76JT 30.19 1.69JT 2.32JT 5.35JT 7.17JT 8.46JT 10.89JT 12.75JT 13.06JT 14.00JT 15.53JT 18.74JT 22.31JT 22.55JT 23.64JT 24.85JT 25.95JT	35590 31390 17885 ****** 13086 13385 31090 05689 06087 31390 00587 04485 22488 18889 01090 02285 04185 29885 03585 30189 22388 02090 05090	0.6 9.17 1.77 2.589383725916986802 1.5302986802 1.22135302986802 1.22135302986802 1.22135302986802	OD OR 1D ***** 2R OR 1R 2R 1R 2R 1R 1R 1R 0D 1R 2R 1R 0D 1R 2R 1R 0D 0D 1R 2R 0D 0D 1D 1D *****	PSLO CRL1 PSL PSL PSLO PRL1 URL URL URL URL URL URL URL URLO SRLO URL VRL URL URLO SRLO URL PRL1 URL URLO SRLO URL PRL1 URL URL URLO SRLO VRL PSL O PRL1 VRL PSLO PRL1 VRL PSLO PRL1 VRL PSLO PRL1 VRL PSLO PRL1 VRL PRL1 VRL PRL1 VRL PRL1 VRL PRL1 VRL PRL1 VRL PRL1 VRL PRL1 VRL PRL1 VRL PRL1 VRL PRL1 VRL PRL1 VRL PRL1 VRL VRL VRL VRL VRL VRL VRL VRL VRL VRL	MAPPED AS FR#101 E.O.L. 19.9M ***********************************
11 11 11 33******PAGE 22 Q20000 11 11 11 11 11 11 11 11 11	578 579 580 882 888 888 888 888 888 8890 8912 893 895 896 8991 895 896 8990 8990	15.58JT 16.67JT 18.76JT 18.76JT 30.19 1.69JT 2.32JT 5.35JT 7.17JT 8.46JT 10.89JT 12.75JT 13.06JT 14.00JT 15.53JT 18.74JT 22.09JT 22.31JT 22.55JT 23.64JT 25.84JT 25.84JT 25.95JT 27.59JT 27.59JT	35590 31390 17885 ****** 13086 13385 31090 05689 06087 31390 00587 04485 22488 18889 01090 02285 04185 29885 03585 03585 03585 03585 03585 04485	0.6 9.1.7 2.5893837259169868021 1.7 2.589314.37259169868021 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.	OD OR 1D 2R OR 1R 2R OR 1R 2R 1R 1R 1R ODR 1R 2R 1R OR 1R OR 1C 0R 1D 0R 1D 0R 1D 0R 1D 0R 1D 0R 1D 0R 1D 0R 0R 1D 0R 0R 0R 1D 0R 0R 0R 0R 0R 0R 0R 1D 0R 0R 0R 1D 0R 0R 0R 0R 1D 0R 0R 0R 1D 0R 0R 0R 1D 0R 0R 0R 1D 0R 0R 0R 1D 0R 0R 0R 1D 0R 0R 0R 0R 0R 0R 0R 0R 0R 0R 0R 0R 0 0R 0 0R 0 0R 1 0 0 0 0	PSLO CRL1 PSL PSL PSLO PRL PSLO PRL URL URL URL URL URL URLO VRL URLO VRL URLO VRL URLO VRL URLO VRL URLO VRL URLO VRL URLO VRL 1 URL URL URL URL URL URL URL URL URL URL	MAPPED AS FR#101 E.O.L. 19.9M MAPPED AS FR#76 APPROX.DIP+STRIKE APPROX.DIP+STRIKE PARTIALLY VEIN FIL PARTIALLY VEIN FIL APRROX.DIP+STRIKE MAPPED AS FR#33 APPROX.DIP+STRIKE MAPPED AS FR#45
11 11 11 33******PAGE 22 Q20000 11 11 11 11 11 11 11 11 11	578 579 580 123 882 882 888 888 888 888 888 888 8890 893 895 8990 8990 8990 8990	15.58JT 16.67JT 18.76JT 18.76JT 30.19 1.69JT 2.32JT 5.35JT 7.17JT 8.46JT 10.89JT 12.75JT 13.06JT 14.00JT 15.53JT 18.74JT 22.55JT 23.64JT 22.55JT 23.64JT 25.84JT 25.84JT 25.95JT 27.59JT 27.59JT 27.59JT 27.59JT 27.59JT	35590 31390 17885 ****** 13086 13385 31090 05689 06087 31390 00587 04485 22488 18889 01090 02285 04185 29885 03585 30189 22388 02090 05090 04488	0.617** 2.58938372591698680272	OD OR 1D 2R OR 1R 2R OR 1R 2R 1R 1R 1R 1R 1R 0D 1R 2R 1R 0D 1R 0D 0D 1R 2R 0D 1D 0D 0D 1D 1D 1D 1D 1D 1D 1D 1D 1D 1D 1D 1D 1D	PSLO CRL1 PSL PSL PSLO PRL1 URL URL URL URL URL URL URLO SRLO URL PRL1 URLO SRLO URL PRL1 URLO PRL1 URLO PRL1 URLO PRL1 PSLO PRL1 PSLO PRL1 PSLO PRL1 PSLO PRL1 PSLO PRL1 PSLO PRL1 PSLO PRL1 URL URL URL URLO PRL1 PSLO PRL1 URL URL URL URLO PRL1 PSLO PRL1 PSLO PRL1 PSLO PRL1 PSLO PRL1 URL PSLO PRL1 URL PSLO PRL1 URL URL URL URL URL URL URL URL URL URL	MAPPED AS FR#101 E.O.L. 19.9M MAPPED AS FR#76 APPROX.DIP+STRIKE APPROX.DIP+STRIKE PARTIALLY VEIN FIL PARTIALLY VEIN FIL APRROX.DIP+STRIKE MAPPED AS FR#33 APPROX.DIP+STRIKE MAPPED AS FR#45
11 11 11 33******PACE 22 Q20000 11 11 11 11 11 11 11 11 11	578 579 580 18* 023 882 882 882 882 882 883 885 888 8890 8912 895 896 899 900 900	15.58JT 16.67JT 18.76JT 18.76JT 30.19 1.69JT 2.32JT 5.35JT 7.17JT 8.46JT 10.89JT 12.75JT 13.06JT 14.00JT 15.53JT 18.74JT 22.55JT 23.64JT 24.85JT 25.95JT 27.59JT 28.39JT 28.39JT	35590 31390 17885 ******* 13086 13385 31090 05689 06087 31390 00587 04485 22488 18889 01090 02285 04185 29885 03585 30189 22388 02090 05090 04488 24388	0.617** 258938372591698680273	OD OR 1D 2R OR 1R 2R OR 1R 2R 1R 1R 1R ODR 1R 2R 1R 1R 0DR 1R 2R 0R 1R 2R 1R 1R 1R 0R 0R 1R 2R 1R 2R 0R 1 1 0 R 0 R 1 1 R 0 R 0 R 1 R 0 R 0	PSLO CRL1 PSL PSL PSLO PRL1 URL PRL1 URL URL URL URL URL URLO PSLO URL URL URL URL URL URLO SRLO URL URL1 URL1 URL1 URL1 URL1 CRL1 PSL CRL1 PSL PSL PSL PSL PSL PSL PSL PSL PSL PSL	MAPPED AS FR#101 E.O.L. 19.9M ***********************************
11 11 11 33******PAGE 22 Q20000 11 11 11 11 11 11 11 11 11	578 579 580 882 888 888 888 888 888 8890 8912 893 895 8990 8990 8990 8990 8990 90012	15.58JT 16.67JT 18.76JT 18.76JT 30.19 1.69JT 2.32JT 5.59JT 7.17JT 8.46JT 10.89JT 12.75JT 13.06JT 14.00JT 15.53JT 22.55JT 23.64JT 25.84JT 25.84JT 25.84JT 25.95JT 27.59JT 28.39JT 29.84JT	35590 31390 17885 ****** 13086 13385 31090 05689 06087 31390 00587 04485 22488 18889 01090 02285 04185 29885 03585 03585 03585 03585 03588 02090 05090 05090 05090 05090	0.617 9.1.7 2.589383725916986802739 14.1221353029211.30	OD OR 1D 2R OOR 1R 2R OOR 1R 2R 1R 1R 1R ODR 1R 2R 1R OOR 1C 0 0 R 1D 0 R 1D 0 R 1D 0 R 1D 0 R 1D 0 R 0 R 1D 0 R 0 R 0 R 0 R 0 R 0 R 0 R 0 R 0 R 0	PSLO CRL1 PSL PSL PSLO PSLO PSLO PSLO PSLO PSLO P	MAPPED AS FR#101 E.O.L. 19.9M MAPPED AS FR#76 APPROX.DIP+STRIKE APPROX.DIP+STRIKE PARTIALLY VEIN FIL PARTIALLY VEIN FIL APRROX.DIP+STRIKE MAPPED AS FR#33 APPROX.DIP+STRIKE MAPPED AS FR#45
11 11 11 33******PAGE 22 Q20000 11 11 11 11 11 11 11 11 11	5780*1 023102882 888288888888888888888888888888888	15.58JT 16.67JT 18.76JT 18.76JT 2.32JT 5.35JT 7.17JT 8.46JT 10.89JT 12.75JT 13.06JT 14.00JT 15.53JT 13.06JT 14.00JT 12.55JT 22.55JT 23.64JT 22.55JT 23.64JT 25.84JT 25.84JT 25.84JT 25.95JT 28.39JT 29.84JT 30.19	35590 31390 17885 ******* 13086 13385 31090 05689 06087 31390 00587 04485 22488 18889 01090 02285 04185 29885 03585 30189 22388 02090 05090 04488 02090 05488 02090 05488 02090 05488 02090 05488 02090 05488 02090 05488 02090 05488 02090 05488 02090 05488 02090 05488 02090 05488 02090 05488 02090 05489 05489 05590 05590 05587 05689 05687 05689 05687 05689 05687 05689 05687 05689 05687 05689 05687 05689 05687 05689 05687 05689 05687 05689 05687 05689 05687 05689 05687 05689 05687 05689 05687 05689 05687 05689 05687 05689 05687 05689 05687 05689 05687 05687 05687 05689 05587 05689 05587 05587 05587 05587 05587 05587 05587 05587 05587 05587 05587 05587 05587 05585 05585 05585 05585 05585 05589 05587 05587 05587 05587 05587 05587 05587 05587 05587 05587 05587 05587 05587 05587 05587 05587 05587 05587 05585 05585 05589 05587 05587 05587 05587 05587 05587 05587 05587 05587 05587 05587 05587 05589 05587 05589 05587 05589 05587 05589 05587 05589 05587 05589 05587 05590 05587 05590 05587 05590 05587 05590 05587 05590 05587 05590 05587 05590 05587 05590 05587 05590 05589 000000000000000000000000000	0.617** 2.5893837259169868027397	OD OR 1D 2R OR 1R 2R OR 1R 2R 1R 1R 1R 1R 1R ODR 1R 2R 1R 0D 1R 2R 0D 1R 2R 0D 1R 2R 1R 2R 1R 1R 1R 1R 1R 0D 1R 1R 2R 0D 1R 1R 2R 0D 1R 1R 2R 0D 1 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 1 0 0 0 1 1 0 0 0 1	PSLO CRL1 PSL PSL PSLO PRL1 URL PRL1 URL URL URL URL URLO SRLO URL1 PRL1 URL1 PRL1 URL1 PRL1 URL1 PRL1 PRL1 URL1 PRL1 PRL1 PSLO	MAPPED AS FR#101 E.O.L. 19.9M MAPPED AS FR#76 APPROX.DIP+STRIKE APPROX.DIP+STRIKE PARTIALLY VEIN FIL PARTIALLY VEIN FIL APRROX.DIP+STRIKE MAPPED AS FR#33 APPROX.DIP+STRIKE MAPPED AS FR#45 APPROX.DIP+STRIKE E.O.L. 30.42 METPES
11 11 11 33******PACE 22 Q20000 11 11 11 11 11 11 11 11 11	578 579 580 123 882 882 882 882 882 882 882 882 882 8	15.58JT 16.67JT 18.76JT 18.76JT 2.32JT 5.35JT 7.17JT 8.46JT 10.89JT 12.75JT 13.06JT 14.00JT 15.53JT 14.00JT 15.53JT 22.31JT 22.55JT 23.64JT 25.84T 25.84T 25.84T 25.84T 25.85T	35590 31390 17885 ******* 13086 13385 31090 05689 06087 31390 00587 04485 22488 18889 01090 02285 04185 29885 03585 30189 22388 02090 05090 05090 04488 24388 06090 31590	0.6 9.17** 2.5893837259169868027397	OD OR 1D 2R OR 1R 2R OR 1R 2R 1R 1R 1R 1R 1R 0RD 1R 2R 1R 0R 1R 2R 1R 1R 1R 0R 0R 1R 2R 1R 1R 1R 1R 1R 1R 1R 1R 1R 1R 1R 1R 1R	PSLO CRL1 PSL PSL PSLO PRL1 URL PRL1 URL URL URL URL URLO PRL1 URLO SRLO URL URLO SRLO URL1 PRL1 URL1 PRL1 URL1 PRL1 URL1 PRL1 PRL1 VRL PRL2 VRL PSLO PRL1 VRL PSLO PRL1 VRL PRL1 PSLO PRL1 VRL PRL1 VRL PRL1 VRL PRL1 VRL PRL1 VRL PRL1 VRL PRL1 VRL PRL1 VRL PRL1 VRL PRL1 VRL PRL1 VRL PRL1 VRL PRL1 VRL PRL1 VRL VRL PRL1 VRL VRL PRL1 VRL VRL VRL VRL VRL VRL VRL VRL VRL VRL	MAPPED AS FR#101 E.O.L. 19.9M MAPPED AS FR#76 APPROX.DIP+STRIKE APPROX.DIP+STRIKE PARTIALLY VEIN FIL PARTIALLY VEIN FIL APRROX.DIP+STRIKE MAPPED AS FR#33 APPROX.DIP+STRIKE MAPPED AS FR#45 APPROX. DIP+STRIKE E.O.L. 30.42 METRES
11 11 11 33******PAGE 22 Q20000 11 11 11 11 11 11 11 11 11	578 579 580 023 8823 8884 8885 8885 8886 8890 8932 8934 8955 89901 8995 89901 9001 9003	15.58JT 16.67JT 18.76JT 18.76JT 2.32JT 5.35JT 7.17JT 8.46JT 10.89JT 12.75JT 13.06JT 14.00JT 15.53JT 22.55JT 23.64JT 25.84JT 25.84JT 25.84JT 25.84JT 25.95JT 27.59JT 28.39JT 29.84JT 30.19JT 29.84JT 30.19JT 29.84JT 30.19JT	35590 31390 17885 ****** 13086 13385 31090 05689 06087 31390 05689 06087 31390 00587 04485 22488 18889 01090 02285 04185 29885 03585 03585 03585 03585 03585 05090 05090 05090 05090 05090 05090 05090 05090 05090 05090 05090	0.6 9.1.7 2.5893.8 31.837259169868027392.0 1.7302.7 30.292.8 1.221.59169868027392.0 1.27397	OD OR 1D 2R OR 1R 2R OR 1R 2R 1R 1R 1R 1R 0DR 1R 2R 1R OR 1R 2R 0R 1R 1R 0R 1R 2R 0R 1R 1R 1R 1R 0R 1D 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	PSLO CRL1 PSL PSL PSLO PRL PSLO PRL URL URL URL URL URL URL URLO VRL URLO VRL URLO VRL URLO VRL URLO VRL URLO VRL URLO VRL VRL VRL VRL VRL VRL VRL VRL VRL VRL	MAPPED AS FR#101 E.O.L. 19.9M MAPPED AS FR#76 APPROX.DIP+STRIKE APPROX.DIP+STRIKE PARTIALLY VEIN FIL PARTIALLY VEIN FIL APRROX.DIP+STRIKE MAPPED AS FR#33 APPROX.DIP+STRIKE MAPPED AS FR#45 APPROX.DIP+STRIKE E.O.L. 30.42 METRES
11 11 11 33******PAGE 22 Q20000 11 11 11 11 11 11 11 11 11	578 579 580 023 8823 8882 8888 8888 8888 88890 8934 8990 99012 8990 99012 99012 90000000000	15.58JT 16.67JT 18.76JT 18.76JT 2.32JT 5.35JT 7.17JT 8.46JT 10.89JT 12.75JT 13.06JT 14.00JT 15.53JT 13.06JT 12.31JT 22.55JT 23.64JT 22.55JT 23.64JT 25.84JT 25.84JT 25.84JT 29.84JT 20.19JT	35590 31390 17885 ****** 13086 13385 31090 05689 06087 31390 00587 04485 22488 18889 01090 02285 04185 29885 03585 30189 22388 02090 05090 04488 24388 06090 31590 *****	0.61 9.1.7** 2.5893.8372259169868027397**	OD OR 1D 2R OR OR 1R 2R OR OR 1R 2R 1R 2R 1R 1R 1R 2R 1R 2R 1R 0D 1R 2R 1R 2R 1R 2R 1R 2R 1R 2R 1R 2R 0 R 0 R 1D 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	PSLO CRL1 PSL PSL PSLO PRL1 URL PRL1 URL URL URL URL URLO SRLO URL PRL1 URL1 PRL1 URL1 PRL1 URL1 PRL1 VRL1 VRL1 PRL1 VRL1 VRL0 PRL1 VRL VRL VRL VRL VRL VRL VRL VRL VRL VRL	MAPPED AS FR#101 E.O.L. 19.9M MAPPED AS FR#76 APPROX.DIP+STRIKE APPROX.DIP+STRIKE PARTIALLY VEIN FIL PARTIALLY VEIN FIL APRROX.DIP+STRIKE MAPPED AS FR#33 APPROX.DIP+STRIKE MAPPED AS FR#45 APPROX.DIP+STRIKE E.O.L. 30.42 METRES
11 11 11 33******PACE 22 Q20000 11 11 11 11 11 11 11 11 11	578 579 580 123 882 888 888 888 888 888 888 8890 123 882 888 888 888 8890 123 888 888 888 890 900 123 899 900 123 800 100 100 100 100 100 100 100 100 100	15.58JT 16.67JT 18.76JT 18.76JT 2.32JT 5.35JT 7.17JT 10.89JT 12.75JT 13.06JT 14.00JT 15.53JT 14.00JT 12.55JT 22.55JT 23.64JT 25.84JT 25.84JT 25.84JT 25.84JT 25.84JT 25.84JT 27.59JT 28.39JT 29.84JT 30.19JT 20.19TT 20.19T	35590 31390 17885 ****** 13086 13385 31090 05689 06087 31390 00587 04485 22488 18889 01090 02285 04485 29885 03585 30189 22388 02090 05090 04488 24388 06090 31590	0.6 9.17 1.77 2.5893837259169868027397 1.302.7397 1.302.7 1.302.7 1.302.7 1.302.7	OD OR 1D 2R OR OR 1R 2R OR OR 1R 2R 1R 1R 1R 2R 1R 1R 2R 1R 0D 1R 2R 1R 0D 1R 2R 1R 2R 1R 2R 1R 2R 0D 1 1 2 8 0 0 8 1 1 8 2 8 0 0 8 1 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1	PSLO CRL1 PSL PSL PSLO PRL1 URL PRL1 URL URL URL URL URL URLO PSLO URL PRL1 URL1 PRL1 URL1 PRL1 URL1 PRL1 VRL1 PRL1 VRL1 PRL1 VRL VRL PSLO PRL1 VRL PSLO PRL1 VRL PSLO PRL1 VRL PRL1 VRL PRL1 VRL PRL1 VRL PRL1 VRL PRL1 VRL PRL1 VRL PRL1 VRL PRL1 VRL PRL1 VRL PRL1 VRL PRL1 VRL PRL1 VRL PRL1 VRL PRL1 VRL PRL1 VRL PRL1 VRL VRL VRL VRL VRL VRL VRL VRL VRL VRL	MAPPED AS FR#101 E.O.L. 19.9M MAPPED AS FR#76 APPROX.DIP+STRIKE APPROX.DIP+STRIKE PARTIALLY VEIN FIL PARTIALLY VEIN FIL APRROX.DIP+STRIKE MAPPED AS FR#33 APPROX.DIP+STRIKE MAPPED AS FR#45 APPROX. DIP+STRIKE E.O.L. 30.42 METRES

11 11 11 11 11 11 11 11 11 11	905 906 907 908 909 910 911 912 913 914 915 916 917 918 919	1.00VN 1.65JT 2.76JT 3.65JT 4.60JT 4.78JT 6.73JT 7.49JT 7.76JT 8.32JT 8.39JT 9.36JT 9.74JT 10.25 T	35290 13084 18287 24285 30590 18889 30386 18884 18388 12880 12789 31685 12087 18085 31087	1.2 2D 1.6 1R 0.6 OR 3.0 1R 1.1 OR 1.9 ORD 4.6 1R 3.7 ORD 1.6 ODR 2.8 1R 1.3 2R 1.8 2D 1.7 1R 1.6 1R 2.8 1R	PSL CRL PRLO URL CRLO PRL1 CRL MAPPED AS FR#217 PRLO PRLO PRL PRL PSL URL PRL PRL PRL PRL PRL
11	920	10.25JT	31288	3.6 ODR	PRI.1
11	921	10.60JT	12087	0.8 1R	CRL
11	922	11.39JT	31085	1.3 1R	PRL
11	923	11.77JT	12785	2.5 1R	PSL E.O.L. 13.40METRES

33********* 33*******DANIEL'S HARBOUR FRACTURE ************ 33**********MINE UNDERGROUND DRIFT ************************* 33****NEW CODING CONVENTIONS: Fracture Type BP=Bedding Plane, ***** 22 S24708 U PSL CENSORING? 425 00.50BP 30410 04.6 2 11 CENSORING?BLAST FRC.? 32775 0.6 1 U USL 426 1.60JT 11 U PSL CENSORING? 427 3.50JT 35075 0.6 1 11 3.90BP 4.6 1 U PSL 32014 CENSORING?SAMEAS 425 428 11 6.00BP 33410 5.0 2 U PSL CENSORING?LENGTH? 429 11 CENSORING?LENGTH? 2 U PSL 11 430 6.40BP 33314 5.0 6.90JT 20365 1.6 1 U USL CENSORING? 431 11 CENSORING? 11 432 7.30JT 11877 0.6 1 U PSL U PSL CENSORING? 11 433 7.50JT 31243 1.0 1 4.90JT 12052 U PSL 434 0.7 1 CENSORING? 11 T00607 22 U SPL 436 0.24JT 14684 0.6 2 11 O.25BP 27621 7.9 2 U UPL 11 437 1.0 2 0.76JT 12689 U PSL 438 11 0.8 2 0.7 2 0.84JT 13285 U PSL 11 439 U PSL 13685 11 440 0.95JT 1.00JT 13085 0.8 2 U PSL RUBBLY ROCK 1.1-1.5M 441 11 1.42JT 13183 0.6 2 U PSL 11 442 U USL 1.50JT 0.9 1 11 443 13076 1.80BP 444 30615 2.4 1 R USL 11 445 2.20JT 12682 1.7 1 U PSL 11 2.26JT 15986 0.8 U PSL 11 446 1 2.64JT 24070 0.5 1 U PSL 11 447 2.73JT 13286 0.8 0 U PSLO 11 448 D PSL 449 3.40JT 24568 0.8 1 11 4.52BP 27715 R USL 1.2 1 450 11 451 5.10JT 31189 1.0 1 DR PRL 11 5.54JT 32587 7.23JT 13386 1.5 1 11 452 D PSL 0.6 1 U PSL 453 11 0.7 O Ū 454 7.69JT 24190 PSL. 11 0.9 1 R 455 7.84BP 16215 URL 11 7.92JT 22090 1.2 2 U 11 456 PSL 0.8 O U 30680 11 457 8.51JT PSLO 0.5 1 U 0.7 0 U 458 8.63JT 33785 USL 11 PSLO 11 459 8.97JT 31075 460 9.00BP 27016 2.4 1 R USL 11 461 11.10JT 30585 1.1 O U PSLO 11 462 11.50JT 30384 PSL 11 0.8 1 U 463 11.67JT 31387 1.2 1 U PSL 11 11 464 11.70JT 23690 0.9 1 U CRL 1.2 2 11 465 11.95JT 31090 PSL 466 12.64JT 22587 0.6 O U CSL2 11 467 13.20JT 30590 1.2 2 U PSL 11 33********PAGE 22********* ********** * * * * * * * * * * * * * * * * * * 11 468 14.20JT 31090 1.4 1 U PSL 469 14.70BP 10420 470 15.05JT 31585 URL 4.1 1 R 11 470 15.05JT 31585 0.9 1 U PSL 33****SET OF ALL ORIENTAT. 15.10-17.30****** SHORT FRACTURE 11 471 17.44JT 30988 0.6 1 U PSL 11 472 18.31JT 05086 0.5 1 U PSL 11 CSLO SHORT FRACTURE 473 18.80JT 27307 1.0 O U 11 11 474 20.23JT 14027 0.7 2 U PSL

11 133****SET OF 11 11 33*****THESE 11 11 11 11 11 11 11 11 11 1	475 476 ALL 477 478 FRAC 479 480 481 482 483 484 485 486 485 486 487 488 489 490 491 492 5 FL 3	21.40 21.70 0RIEN 23.60 24.72 TURES 26.60 26.84 27.15 27.40 27.69 28.16 28.16 28.17 28.45 28.93 29.00 30.00 31.80 32.00 NE***	UT 05080 UT 13386 CATIONS UT 09840 UT 13584 SEEM TO UT 13883 UT 13683 UT 13683 UT 13687 UT 13687 UT 13789 DF 25711 UT 11285 UT 11285 UT 32088 UT 31189 UT 32088 UT 31189 UT 32088 UT 31189 UT 2989C SP 29518	0.6 0.9 22.50- 1.0 2.4 (STOP 1.8 1.5 2.1 1.9 2.5 1.8 (1.4 1.2 (2.3 (2.3 (2.3 (2.3 (2.3 (2.3 (2.3 (2.3 (2.3 (2.3 (2.3 (2.3 (2.3 (2.3 (2.3 (2.3 (2.3 (2.3 (2.5)) 2.5 (2.5)) 2.5 (2.5)) 2.5 (5 (5 (1.9)) 2.5 (5 (5 (1.9)) 2.5 (5 (5 (1.9)) 2.5 (5 (5 (1.9)) 2.5 (5 (5 (2.1)) 1.8 (1.9) 2.5 (5 (2.1)) 1.8 (1.9) 2.5 (2.1)) 1.8 (1.9) 2.5 (2.1)) 1.8 (1.9) 2.5 (2.1)) 1.8 (1.9) 2.5 (2.1)) 1.8 (2.3)(2.5)(2.1)) 1.8 (2.3)(2.5)(2.5)(2.5)(2.5)(2.5)(2.5)(2.5)(2.5)(2 U L U 2 3.7: L D 0 U AT BI L U L U L U L U L U L U L U L U D U D U D U D U D U D U D U L	PSL PSL USL PSL1 EDDING PSL PSL PSL PSL PSL1 USL PSL2 PSL2 PSL2 PSL2 PSL2 PSL2 PSL2 PS	SHORT I	TUBE A 478,479	E ****** T 24.9M ,480-82**
22 UO5400	E 0 1	\sim	TT 12506	1.0	•	DCI			
11	582	0.50	JI 12580 IT 13484	1.0	1	PSL PSI			
11	583	1.00	JT 30888	1.5	1	PSL			
11	584	1.50	JT 32090	0.9	1	PSL			
11	5 85	1.78	JT 31080	1.0	1	PSL			
11	586	2.50	JT 3108 8	1.4	1	PSL			
11	587	3.15	JT 02581	0.6	1	PSL			
11	588	3.39.	JT 32078	0.8	1 D	PSL			
11	589	3.73	JT 31588	2.5	1	PSL			
11	590	3.97	JT 13087	0.8	1	PSL			
11	591	4.10	JT 31890	0.7	1	PSL			
11	592	4.95	JT 14088		1	CRLI			
11	593	5.20	JI JI000 TT 13300	2.0	⊥ 1	DCI			
11	505	6 74	IT 30586		1	DCI			
11	596	7 20	IT 32188	1 4	i	PSL			
11	597	8.80	TT 32186	0.9	$\frac{1}{2}$	PSL			
11	598	9.75	JT 22578	1.1	ī	PRL			
11	599	11.10	JT 12578	3.0	2	PRL	END OF	LINE 14	METRES
33***BREAK IN	ITT N	E SAME	LINE***	*****	****	*****	******	******	******
11	600	19.70	JT 33084	8.0	2	PRL	WATER	FILLED	SEEPING
11	601	20.70	JT 31083	4.0	2	PRL	WATER	FILLED	SEEPING
11	602	21.10	JT 31087	1.1	1	PSL	WATER	FILLED	SEEPING
11	603	21.90	BP 31587	2.4	2	PSL	WATER	FILLED	SEEPING
11	604	23.00	3P 31513	4.5	Z	PRL	WATER	FILLED	SEEPING

33*******	****	********	*****	* * * * * *	*****	* * * * *	********************
33*****DAN	IIEL'S	HAR BOUR	FRACT	URE D	ATA**	* * * * *	**********************
33********	ULY-A	UGUST 198	36 ***	* * * * *	* * * * *	* * * * *	**********************
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	ОТТ <b>#1</b>	(H-ZONF)	Έριπ	#2/F-2	ZONE	. PIT	#3 (A-ZONE) **************
33******			VENTIO	NG · F	cactu	, ro Th	ne BP=Bedding Planetttttttt
			) omito		accu		pe br-bedding Flane
33	niili.	1 ng D = D0.	lomice	, Roud	gnnes		uggy, ROCK L=Limestone
33*****	010101	mite, X=1	seudo	precc:	1a		
33******P	ACE 2	4 PIT #1	LARGE	PIT 1	IN H-2	ZONE,	WHERE DH-3-86 IS LOCATED***
22 V0560	ю (X						
11	605	00.70JT	31886	01.2	2 C	PRX	
11	606	1.24JT	31285	00.8	2 C	PRX	
11	607	1 89.17	13890	14	2 Č	PRX	
11	609	A 1090	14907	1 1	i pn	DDY	
11	600	4.2000	20006	1.0	1007	DDV	
11	609	4.3301	20000	1.0	111	FICA	R1-R031
11	610	4.95JT	08086	1.5	10	051	
11	611	5.55 JT	31084	1.8	1C	PRX	•
11	612	6.09JT	31086	0.8	1C	PRX	
11	613	7.35BP	14015	3.0	1R	PRX	VUCCY=V
11	614	8.48JT	11584	0.9	1DC	USX	
11	615	8 71JT	13789	1.2	ORTD	PSX1	END OF LINE IS 11,25M
22 W0009		0.7201	20.02				
11	616	0 3480	14000	1 5	100	DDY	2 ADM TENOTY OF SC ITHE
11	610	0.346	14000	1.5		FRA Imiv	Z.42M LENGIA OF SC.LINE
11	617	0.598P	15015	1.4		URX	VUGGY, INTERSECTS AT
33*****4.9	SMETRE	S ON THE	PREV.	TOUS 2	SCANL.	INE	
11	618	0.70BP	15010	1.4	ORD	PRXO	APPROX. STRIKE/DIP
11	619	0. <b>81</b> BP	14910	1.3	OU	PSXO	
11	620	1.42BP	15506	3.2	ORT	CRXO	
11	621	1.73BP	14807	1.3	1RD	PRX	SAME AS BP#608
22 X1280	∩ <b></b> -	1					
11	ິ ຣາກ		21605	06	211	DCV	
11	022	0.4501	31085	0.0	20	FOX	
11	623	0.7001	31088	0.6	10	PSX	
11	624	0.92JT	13090	0.8	20	PSX	
11	625	1.40JT	13290	1.0	2RC	PSX	
11	626	1.46JT	31685	0.7	1C	PSX	
11	627	1.62JT	13390	0.6	1U	PSX	
11	628	1.75JT	13485	1.1	10	PSX	
11	629	2 06 11	14285	0.6	111	USY	
11	620	2.0001	14400	1 2	20	DCY	
11	630	2.4501	14490	1.4	10	POX	
11	63I	7.08.T	13490	0.7	IC	PSX	
11	632	3.08JT	31688	1.Z	1C	CSX	MAYBE DOLOMITE VEIN
11	633	3.11JT	32086	1.5	2C	PSX	MAYBE DOLOMITE VEIN
11	634	3.26JT	14086	1.5	2C	USX	
33*******	*PAGE	25*****	*****	* * * * * *	****	****	*******
11	635	3 72.17	13387	13	211	USY	STRIKE OTP APPROXIMATE
11	636	3 76 1	13090	1 1	10	DCY	onthey on Arnovinail
11	637		21000	1 2	111	LICY	
11	037	4.40JI	31089	1.3	10	027	
11	638	4.58JT	31286	1.2	10	CSX	
11	639	4.70JT	13884	0.6	00	PSXO	
11	640	4.96JT	13288	0.8	OU	CSXO	
11	641	5. <b>43J</b> T	32089	1.0	1	PRX	
11	642	5.62JT	30985	1.2	1SP	PSX	
11	643	5 75 IT	30885	1 6	10	PSY	
11	644	6 02 1	30689	1 0	201	DCY	
11	645	6 50 IT	14190	1.0	20	DOV	
11	240		13005	1.3	4R	LOY DDA	
11	040	Two.a	12002	0.7	IC	PKX	
11	647	7.02JT	19685	0.8	1C	PRX	
11	648	7.04JT	13485	0.6	1D	PSX	
11	649	7.10JT	13088	1.1	1D	CSX	
11	650	7.26JT	14086	1.0	OD	PSXO	
11	651	7.44.IT	13284	0.7	iū	PRX	
11	652	7 8217	14588	0.6	õ	DCAI	REFAC TH ROCK AND TIME
33+++POCK U	າດູເກັ	FTFD±±±+	*****	*****	*****		
	~~~~~	7 05 17	33300		10		
11	033	1.701	33300	1.1	10	r SX	
1.1	0.04			, ,	111		

11 11 11 11 11 11 11 11 11 11	655 656 657 658 669 661 662 663 663 665	8.30 8.99 9.46 9.86 9.90 10.24 10.30 10.49 10.65 11.20 11.70 METR	JT 14 JT 15 JT 14 JT 32 JT 32 JT 32 JT 32 JT 32 JT 32 JT 32 JT 32 JT 32 JT 32	1890 5090 1590 2585 2288 1488 2683 1683 2689 2284 2089 2284	2.7 2.5 1.1 1.6 0.9 1.8 0.5 0.7 3.7 0.7 0.8	2D 2RT 1R 2U 1U 2C 1 1C 1R 1U 1C	PRX PRX VSX PSX PSX PSX USX USX PSX PSX	WEATHERED END OF LINE AT
33****PACE	26***	*****	* * * * *	****	****	*****	****	*******
22 Y00090								
	666	00.00	BP 33	3205	4.0	2R	URX	INTERSECT LAST SCANLINE
33*****AT 5	.12 M	ETRES			****1	*****	*****	***************
11	668	0.53	DP 22	2306	1.9	ZR	URX	
11	669	1.22	BP 22	2007	29	2R 1R		END OF LINE IN BOTTOM
33********	*** 0	FRUB	BLE**	****	****1	*****	* * * * *	
22 ZOOO9O								
11	670	0.33	BP 33	3009	1.2	1RRT	URX	STRIKE/DIP? UPPER WEATH-
33*****ERED 2	ZONE	OF PI	[***	****	* * * * *	****	* * * * *	* * * * * * * * * * * * * * * * * * * *
11	671	0.67	BP 30	XXX 9	1.4	1RRT	URX	STRIKE/DIP?
11	673	0.91	BP 25	408	1.6	1RRT	URX	
11	674	1 75	DF 43	A11	1.4	LKRI		
11	675	1 32	BP 28	3008	1.0	1 P P T		
11	676	1.63	BP 22	2510	3.4	1RRT	USX	
11	677	2.00	BP 22	2414	1.7	2RRT	PSX	END OF LINE 2.22METRES
22 A12700								
11	678	0.00	JT 13	3886	0.6	2C	PRX	
11	679	0.06	JT 13	3886	1.2	2C	PRX	
	680	0.36	JT 14	1890	0.9	10	PSX	WEATHERED FRACTURE
11	ANL AL	ROUND		DING (0.37-	-1.098	METRE	
11	682	0.03	JI 14 ፲ሞ 14	1003	0.7	1D	PKX	DOLOMITE VEIN?
11	683	0.95	3P 14	1008	3.0	28	IRY	
11	684	1.15	IT 32	2289	1.7	2R	PRX	
11	685	2.12	JT 14	085	0.9	ĩũ	PSX	
11	686	2.48	JT 13	890	1.2	ĩČ	CSX	
11	687	2.66	JT 31	.088	0.8	1D	PRX	
11	688	3.12	JT 14	085	1.0	2D	PSX	
11	689	3.53	JT 3C	489	1.0	2R	URX	
11 22 BO3000	690	3.89	JT 3C)385	0.8	2D	PSX	
11 603900	691	0 52	TT 1/	007	1 1	10	עפס	CUODE I INE ON TELE COLUMN
33*****EAST	FACTI	NG SLO	10F**	* * * *	1.1 *****	 ; * * * * * *	PRA *****	SHORI LINE ON THE SOUTH
11	692	0.75	ÎT 31	590	1.6	10	PRY	
11	693	1.11	JT 31	786	0.7	îč	PRX	
11	694	1.41	JT 14	085	1.3	īŭ	USX	
11	695	1.78	JT 31	.989	1.7	1R	USX	
33*******PAC	E27*	*****	****	****	* * * * *	*****	* * * * * *	* * * * * * * * * * * * * * * * * * * *
11	696	1.83	<u>JT 12</u>	789	1.6	1R	USX	
11	697	2.39	JT 22	185	0.5	2D	PSX	
⊥⊥ 11	098 600	2.80	יד 32 דר דד	287	3.8	ZRID	CSX	
11	700	3.40	/1 31 FTF 1日	080	1.J	1U 2D	CSX	END OF LINE 2 ON LONG
33*******PAC	F 28) * * * * *	****	∠. * *****	2R *****	007 *****	END OF LINE 3.8M LONG
22 C19800	0							
11	701	0.363	T 11	089	1.4	1U	USX	
11	702	0.40	IT 34	135	0.7	10	USX	PARALLELS VEIN
11	703	0.65	JT 32	728	1.0	1D	USX	SLICKS (MOVEMENT) VEIN
11	704	0.783	JT 31	984	0.5	OD	PSX1	

		705	0	ידו גם	32185	07	111	DCY	
11		706	1	24 17	22102	1 2	<u>n</u>	DEVO	
11	<u>_</u>	700	<u>-</u>	. 3731	32107	1.3			
11		101	3	. 3911	32200	1./	10	POX	
11	•	108	্র	. /8BP	11308	6.8	OD	PSXO	
11		709	4	.95JT	13288	1.9	10	PSX	
11		710	5	.74JT	12885	0.9	oc	PRXO	
11		711	6	.29JT	31488	1.1	OCD	PSX1	
11		712	6	.46JT	32084	2.1	OU	URXO	
11		713	Ř	74.IT	27478	12	ŌŪ	PRX2	
11		714	ă	1117	24070	A O		TIDY2	STRIVE (DID ADDOON
11		716	Š	I I J I	24070			DCVA	SIRIRE/DIP APPROX.
11		715	2	.0901	30384	0.5	00	FOXO	
11		/10		. /ZJT	02313	6./	0	PRAI	
11		717	10	.48JT	22174	0.7	10	URX	
11		718	10	.68JT	31982	0.7	1U	SPX	
11		719	11	.04JT	23979	1.0	1R	SRX	
11		720	11	.19JT	12589	1.2	OD	PSX1	CUTOFF AT TOP END
33	*****BY BED	DIN	្វីគ្ន	ANE *	******	****	****	****	*****
11		721	์ ำ ำ	QR.TT	11685	25	011	PSY1	
11		722	12	、 プロジェ つつ TTT	20500	1.0	10	DGA	
1 1 1 1		722	12	2201	29309	4.0	10	POA UDV	
11		123		. /8JT	29280	4.0	10	UKX	FRACTURES PARALLEL
33	***TO ROCK	FAC	EFF	*****	******	*FRAC	TURE		ONGER THAN 4METRES***
11		724	13	.02JT	12224	0.8	OU	PSXO	
11		725	14	.15JT	13085	0.5	2D	PSX	
11		726	14	.35JT	24586	0.5	OU	URX1	STRIKE/DIP APPROX.
33	********	π	RET	A BT.A	ST FRAC	* agin	****	*****	*****
11		727	14	06 IT	31700		20	IDV	
11		720	15	. 500 I	10264	0.5		DCV1	
11		128	12	.02J1	19204	0.5	00	PSXI	
11		729	15	.99JT	32685	1.0	1D	PSX	
11		730	16	. 40JT	32189	1.3	1U	PSX	
11		731	16.	.82JT	16089	0.7	OD	CSX1	
11		732	17	. OOJT	12184	0.7	OD	SSX1	
33	******PAGE	29*	* * * *	****	******	****	****	*****	*************
11		733	18	OOIT	12990	10	7	DCV	
11		733	18	COJT	12990	1.0	2D	PSX	
11		733 734	18 18	. COJT . 6OJT	12990 00790	1.0	2D OU	PSX URXO	APPROX.DIP/STRIKE
11 11 11		733 734 735	18 18 18	.00JT .60JT .73JT	12990 00790 13274	1.0 1.1 0.5	2D OU 2D	PSX URXO PRX	APPROX.DIP/STRIKE
11 11 11 11		733 734 735 736	18 18 18 20	00JT 60JT 73JT 43JT	12990 00790 13274 20785	1.0 1.1 0.5 0.7	2D OU 2D 1R	PSX URXO PRX PRX	APPROX.DIP/STRIKE WALL ROCK DISLODGED
11 11 11 11 11		733 734 735 736 737	18 18 18 20 21	.00JT .60JT .73JT .43JT .49BP	12990 00790 13274 20785 11507	1.0 1.1 0.5 0.7 3.2	2D OU 2D 1R 2R	PSX URXO PRX PRX PRL	APPROX.DIP/STRIKE WALL ROCK DISLODGED APPROX.DIP/STRIKE
11 11 11 11 11 11		733 734 735 736 737 733	18 18 18 20 21 23	.00JT .60JT .73JT .43JT .49BP .03JT	12990 00790 13274 20785 11507 14875	1.0 1.1 0.5 0.7 3.2 1.1	2D OU 2D 1R 2R 2U	PSX URXO PRX PRX PRL PRX	APPROX.DIP/STRIKE WALL ROCK DISLODGED APPROX.DIP/STRIKE
11 11 11 11 11 11 11		733 734 735 736 737 733 733 739	18 18 18 20 21 23 23	.00JT .60JT .73JT .43JT .49BP .03JT .49JT	12990 00790 13274 20785 11507 14875 14287	1.0 1.1 0.5 0.7 3.2 1.1 0.9	2D OU 2D 1R 2R 2U 1U	PSX URXO PRX PRX PRL PRX PRX	APPROX.DIP/STRIKE WALL ROCK DISLODGED APPROX.DIP/STRIKE
11 11 11 11 11 11 11 11 22	D19700	733 734 735 736 737 733 739	18 18 20 21 23 23	.00JT .60JT .73JT .43JT .49BP .03JT .49JT	12990 00790 13274 20785 11507 14875 14287	1.0 1.1 0.5 0.7 3.2 1.1 0.9	2D OU 2D 1R 2R 2U 1U	PSX URXO PRX PRX PRL PRX PRX	APPROX.DIP/STRIKE WALL ROCK DISLODGED APPROX.DIP/STRIKE
11 11 11 11 11 11 11 22 11	D19700	733 734 735 736 737 733 739 740	18 18 20 21 23 23	.00JT .60JT .73JT .43JT .49BP .03JT .49JT	12990 00790 13274 20785 11507 14875 14287	1.0 1.1 0.5 0.7 3.2 1.1 0.9	2D OU 2D 1R 2R 2U 1U	PSX URXO PRX PRX PRL PRX PRX	APPROX.DIP/STRIKE WALL ROCK DISLODGED APPROX.DIP/STRIKE
11 11 11 11 11 11 11 22 11	D19700	733 734 735 736 737 733 739 740 740	18 18 20 21 23 23 00.	.00JT .60JT .73JT .43JT .49BP .03JT .49JT .00JT	12990 00790 13274 20785 11507 14875 14287 17373 23270	1.0 1.1 0.5 0.7 3.2 1.1 0.9 2.6	2D OU 2D 1R 2R 2U 1U 2R 2C	PSX URXO PRX PRX PRX PRX PRX PRX	APPROX.DIP/STRIKE WALL ROCK DISLODGED APPROX.DIP/STRIKE
11 11 11 11 11 11 11 22 11 11	D19700	733 734 735 736 737 733 739 740 741	18 18 18 20 21 23 23 00. 0	.00JT .60JT .73JT .43JT .49BP .03JT .49JT .00JT .01JT	12990 00790 13274 20785 11507 14875 14287 17373 23270	1.0 1.1 0.5 0.7 3.2 1.1 0.9 2.6 1.2	2D OU 2D 1R 2R 2U 1U 2R 2C 2U	PSX URXO PRX PRX PRX PRX PRX PRX URX DSX	APPROX.DIP/STRIKE WALL ROCK DISLODGED APPROX.DIP/STRIKE FAULT WITH SLICKEN.
11 11 11 11 11 11 11 11 11 11 11	D19700	733 734 735 736 737 733 739 740 741 742	18 18 18 20 21 23 23 23 00 0	00JT 60JT 43JT 49BP 03JT 49JT 00JT 01JT 32JT	12990 00790 13274 20785 11507 14875 14287 17373 23270 18065	1.0 1.1 0.5 0.7 3.2 1.1 0.9 2.6 1.2 3.1	2D 2D 2D 1R 2R 2U 1U 2R 2U 2U 2U 2U	PSX URXO PRX PRX PRL PRX PRX PRX URX PSX	APPROX.DIP/STRIKE WALL ROCK DISLODGED APPROX.DIP/STRIKE FAULT WITH SLICKEN.
11 11 11 11 11 11 11 11 11 11 11 11	D19700	733 734 735 736 737 733 739 740 741 742 743	18 18 20 21 23 23 23 00 0 0	.00JT .60JT .73JT .43JT .49BP .03JT .49JT .00JT .01JT .32JT .69VN	12990 00790 13274 20785 11507 14875 14287 17373 23270 18065 32805	1.0 1.1 0.5 0.7 3.2 1.1 0.9 2.6 1.2 3.1 1.1	2D OU 2D 1R 2R 2U 1U 2R 2C 2U 1D	PSX URXO PRX PRX PRL PRX PRX VRX PSX PSX	APPROX.DIP/STRIKE WALL ROCK DISLODGED APPROX.DIP/STRIKE FAULT WITH SLICKEN.
11 11 11 11 11 11 11 11 11 11 11 11	D19700	733 734 735 736 737 733 739 740 741 742 743 744	18 18 20 21 23 23 23 00 0 0 0	.00JT 60JT 73JT 43JT 49BP 03JT 49JT 00JT 01JT 32JT 69VN 00JT	12990 00790 13274 20785 11507 14875 14287 17373 23270 18065 32805 14487	1.0 1.1 0.5 0.7 3.2 1.1 0.9 2.6 1.2 3.1 1.1 0.9	2D OU 2D 1R 2R 2U 1U 2R 2C 2U 1D 1C	PSX URXO PRX PRX PRX PRX PRX PRX URX PSX PSX PSX	APPROX.DIP/STRIKE WALL ROCK DISLODGED APPROX.DIP/STRIKE FAULT WITH SLICKEN.
11 11 11 11 11 11 11 11 11 11	D19700	733 734 735 736 737 733 739 740 741 742 743 744 745	18 18 20 21 23 23 00 0 0 0 0 1	00JT 60JT 73JT 43JT 49BP 03JT 49JT 00JT 01JT 32JT 69VN 00JT 40JT	12990 00790 13274 20785 11507 14875 14287 17373 23270 18065 32805 14487 14885	1.0 1.1 0.5 0.7 3.2 1.1 0.9 2.6 1.2 3.1 1.1 0.9 0.7	2D OU 2D 1R 2R 2U 1U 2R 2C 2U 1D 1C OU	PSX URXO PRX PRX PRX PRX PRX PRX URX PSX PSX PSX1	APPROX.DIP/STRIKE WALL ROCK DISLODGED APPROX.DIP/STRIKE FAULT WITH SLICKEN.
11 11 11 11 11 11 11 11 11 11 11 11 11	D19700	733 734 735 736 737 733 739 740 741 742 743 744 745 746	18 18 20 21 23 23 00 0 0 0 0 1 1	.00JT 60JT 73JT 43JT 49BP 03JT 49JT 00JT 32JT 69VN 00JT 40JT 93JT	12990 00790 13274 20785 11507 14875 14287 17373 23270 18065 32805 14487 14885 09462	1.0 1.1 0.5 0.7 3.2 1.1 0.9 2.6 1.2 3.1 1.1 0.9 0.7 0.5	2D OU 2D 1R 2R 2U 1U 2R 2C 2U 1D 1C OU 2U	PSX URXO PRX PRX PRX PRX PRX PRX URX PSX PSX PSX PSX1 PSX	APPROX.DIP/STRIKE WALL ROCK DISLODGED APPROX.DIP/STRIKE FAULT WITH SLICKEN.
11 11 11 11 11 11 11 11 11 11 11 11 11	D19700	733 734 735 736 737 733 739 740 741 742 743 744 745 746 747	18 18 20 21 23 23 00 0 0 0 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2	00JT 60JT 73JT 43JT 49BP 03JT 49JT 00JT 69VN 00JT 40JT 93JT 01JT	12990 00790 13274 20785 11507 14875 14287 17373 23270 18065 32805 14487 14885 09462 15085	1.0 1.1 0.5 0.7 3.2 1.1 0.9 2.6 1.2 3.1 1.1 0.9 0.7 0.5	2D OU 2D 1R 2R 2U 1U 2R 2U 1U 2R 2U 1D 1C OU 2U 1U	PSX URXO PRX PRX PRX PRX PRX PRX PRX PSX PSX PSX PSX PSX PSX PSX PSX	APPROX.DIP/STRIKE WALL ROCK DISLODGED APPROX.DIP/STRIKE FAULT WITH SLICKEN.
111111111111111111111111111111111111	D19700	733 734 735 736 737 733 739 740 741 742 743 744 745 745 747 749	18 18 20 21 23 23 00 0 0 0 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2	.00JT 60JT 73JT 43JT 49BP 03JT 49JT 01JT 32JT 69VN 00JT 40JT 93JT 01JT	12990 00790 13274 20785 11507 14875 14287 17373 23270 18065 32805 14487 14885 09462 15085 03790	1.0 1.1 0.5 0.7 3.2 1.1 0.9 2.6 1.2 3.1 1.1 0.9 0.7 0.5 0.5	2D OU 2D 1R 2R 2U 1U 2R 2U 1D 1C OU 2U 1U 1U 1U 1U	PSX URXO PRX PRX PRX PRX PRX PRX PRX PSX PSX PSX PSX PSX PSX PSX PSX	APPROX.DIP/STRIKE WALL ROCK DISLODGED APPROX.DIP/STRIKE FAULT WITH SLICKEN.
$ \begin{array}{c} 11\\ 11\\ 11\\ 11\\ 11\\ 11\\ 11\\ 11\\ 11\\ 11$	D19700	733 734 735 736 737 733 739 740 741 742 743 744 745 746 747 749	18 18 20 21 23 23 00 0 0 0 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2	.00JT .60JT .73JT .43JT .49BP .03JT .49JT .00JT .32JT .69VN .00JT .40JT .93JT .61JT .62JT	12990 00790 13274 20785 11507 14875 14287 17373 23270 18065 32805 14487 14885 09462 15085 03790	1.0 1.1 0.5 0.7 3.2 1.1 0.9 2.6 1.2 3.1 1.1 0.9 0.7 0.5 0.5 1.8	2D 2D 2D 1R 2R 2U 1U 2R 2U 1D 1C 2U 1U 2U 1U 2C 2U 1D 2D 2D 2D 2D 2D 2D 2D 2D 2D 2	PSX URXO PRX PRX PRX PRX PRX PRX PSX PSX PSX PSX PSX PSX PSX PSX PSX PS	APPROX.DIP/STRIKE WALL ROCK DISLODGED APPROX.DIP/STRIKE FAULT WITH SLICKEN.
11 11 11 11 11 11 11 11 11 11	D19700	733 734 735 736 737 737 737 737 741 742 743 744 745 746 748 749	18 18 20 21 23 23 00 0 0 0 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2	00JT 60JT 73JT 43JT 49BP 03JT 49JT 00JT 32JT 69VN 00JT 40JT 93JT 01JT 64JT 83JT	12990 00790 13274 20785 11507 14875 14287 14287 14287 14287 14285 32805 14487 14885 09462 15085 03790 13476	1.0 1.1 0.5 0.7 3.2 1.1 0.9 2.6 1.2 3.1 1.1 0.9 0.7 0.5 0.5 1.8 0.8	2D 2D 2D 1R 2R 2U 1U 2R 2U 1D 1C 0U 2U 1U 2U 1U 2U 2U 1D 2D 2D 2D 2D 2D 2D 2D 2D 2D 2	PSX URXO PRX PRX PRX PRX PRX PSX PSX PSX PSX PSX PSX PSX PSX PSX PS	APPROX.DIP/STRIKE WALL ROCK DISLODGED APPROX.DIP/STRIKE FAULT WITH SLICKEN.
11 11 11 11 11 11 11 11 11 11	D19700	733 734 735 735 737 737 737 737 737 741 742 744 745 746 748 749 755	18 18 20 21 23 23 00 0 0 0 1 1 2 2 3 3	00JT 60JT 73JT 43JT 49BP 03JT 49JT 01JT 32JT 69VN 00JT 93JT 01JT 64JT 83JT 29JT	12990 00790 13274 20785 11507 14875 14287 17373 23270 18065 32805 14487 14885 09462 15085 03790 13476 12873	1.0 1.1 0.5 0.7 3.2 1.1 0.9 2.6 1.2 3.1 1.1 0.9 0.7 0.5 0.5 1.8 0.8 1.0	2D 2D 2D 1R 2R 2U 1U 2R 2C 2U 1D 1C 2U 1U 2C 1U 2C 1C 2U 1D 2C 2D 1C 2D 1C 2D 1C 2D 1C 2D 2D 2D 2D 2D 2D 2D 2D 2D 2D	PSX URXO PRX PRX PRX PRX PRX PRX PSX PSX PSX PSX PSX PSX PSX PSX PSX PS	APPROX.DIP/STRIKE WALL ROCK DISLODGED APPROX.DIP/STRIKE FAULT WITH SLICKEN. SMALL FRACTURE ZONE
11 11 11 11 11 11 11 11 11 11	D19700	733 734 735 735 737 737 737 737 737 741 742 7445 7445 7445 7445 7445 750	18 18 20 21 23 23 00 0. 0. 0. 1. 1. 2. 3. 4.	00JT 60JT 73JT 43JT 49BP 03JT 49JT 00JT 69JT 60JT 93JT 64JT 83JT 29JT 10JT	12990 00790 13274 20785 11507 14875 14287 17373 23270 18065 32805 14487 14885 09462 15085 03790 13476 12873 12580	1.0 1.1 0.5 0.7 3.2 1.1 0.9 2.6 1.2 3.1 1.1 0.9 0.7 0.5 0.5 1.8 0.8 1.0 1.0	2D 2D 2D 2D 2D 2D 2D 2D 2D 2D	PSX URXO PRX PRX PRX PRX PRX PRX PSX PSX PSX PSX PSX PSX PSX PSX PSX PS	APPROX.DIP/STRIKE WALL ROCK DISLODGED APPROX.DIP/STRIKE FAULT WITH SLICKEN. SMALL FRACTURE ZONE
11 11 11 11 11 11 11 11 11 11	D19700	733 734 735 736 737 737 737 737 737 741 743 745 7445 7445 7445 7451 751 752	18 18 20 21 23 23 00 0 0 0 1 1 2 2 3 4 6	00JT 60JT 73JT 43JT 49BP 03JT 49JT 01JT 32JT 69VN 00JT 93JT 01JT 64JT 83JT 29JT 10JT 03JT	12990 00790 13274 20785 11507 14875 14287 14287 14287 14287 14885 09465 32805 14487 14885 09462 15085 03790 13476 12873 12580 19681	1.0 1.1 0.5 0.7 3.2 1.1 0.9 2.6 1.2 3.1 1.1 0.9 0.5 0.5 1.8 0.8 1.0 1.0 1.2	2D 2D 2D 2D 2D 2R 2U 1U 2R 2U 1U 2R 2U 1D 2C 2U 1D 2C 2U 1D 2C 2U 1D 2C 2U 1U 2C 2D 2D 2D 2D 2D 2D 2D 2D 2D 2D	PSX URXO PRX PRX PRX PRX PRX PRX PSX PSX PSX PSX PSX PSX PSX PSX PSX PS	APPROX.DIP/STRIKE WALL ROCK DISLODGED APPROX.DIP/STRIKE FAULT WITH SLICKEN. SMALL FRACTURE ZONE
11 11 11 11 11 11 11 11 11 11	D19700	733 734 735 736 737 737 737 737 737 737 742 743 745 744 745 744 745 755 755 755 755 755	18 18 18 20 21 23 23 00 0. 0. 0. 0. 0. 1. 1. 2. 3. 4. 6. 6.	00JT 60JT 73JT 43JT 49BP 03JT 49JT 01JT 32JT 69VN 00JT 40JT 93JT 01JT 63JT 29JT 10JT 03JT 23JT	12990 00790 13274 20785 11507 14875 14287 14287 14287 14885 032805 14487 14885 03462 15085 03790 13476 12873 12580 19681 12890	1.0 1.1 0.5 0.7 3.2 1.1 0.9 2.6 1.2 3.1 1.1 0.9 0.5 0.5 1.8 0.8 1.0 1.0 1.2 1.1 0.9 1.1 0.5 0.5 0.5 1.8 0.5 1.8 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	2D 2D 2D 1R 2R 2U 1U 2R 2U 1D 2C 2U 1D 2C 2U 1D 2C 2U 1D 2C 2U 1D 2C 2U 1D 2C 2U 2D 2D 2D 2D 2D 2D 2D 2D 2D 2D	PSX URXO PRX PRX PRX PRX PRX PRX PSX PSX PSX PSX PSX PSX PSX PSX PSX PS	APPROX.DIP/STRIKE WALL ROCK DISLODGED APPROX.DIP/STRIKE FAULT WITH SLICKEN. SMALL FRACTURE ZONE
111 111 111 112 111 111 111 111 111 111	D19700	733 734 735 736 737 737 737 737 737 737 741 742 743 745 744 745 744 745 751 753 753 753	18 18 18 20 21 23 23 00 01 11 22 33 4 6 6 6	00JT 60JT 73JT 43JT 49BP 03JT 49JT 01JT 32JT 69VN 00JT 40JT 93JT 64JT 83JT 10JT 03JT 23JT 23JT	12990 00790 13274 20785 11507 14875 14287 17373 23270 18065 32805 14487 14885 09462 15085 03790 13476 12873 12580 19681 12890 14090	1.0 1.1 0.5 0.7 3.2 1.1 0.9 2.6 1.2 3.1 1.1 0.9 0.5 0.5 1.8 0.8 1.0 1.0 1.2 1.1	2D 2D 2D 1R 2R 2U 1U 2R 2U 1D 2C 2U 1D 2C 2U 1D 2C 2U 1U 2C 2U 1U 2C 2U 2U 2D 2D 2D 2D 2D 2D 2D 2D 2D 2D 2D 2D 2D	PSX URXO PRX PRX PRX PRX PRX PRX PSX PSX PSX PSX PSX PSX PSX PSX PSX PS	APPROX.DIP/STRIKE WALL ROCK DISLODGED APPROX.DIP/STRIKE FAULT WITH SLICKEN. SMALL FRACTURE ZONE
$\begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 $	D19700	7334 7356 7377777777777777777777777777777777	18 18 20 21 23 23 00 01 12 23 01 11 22 33 4 6 6 6 6	00JT 60JT 73JT 43JT 49BP 03JT 49JT 01JT 32JT 69VN 00JT 64JT 83JT 10JT 64JT 10JT 23JT 52JT	12990 00790 13274 20785 11507 14875 14287 17373 23270 18065 32805 14487 14885 09462 15085 03790 13476 12873 12580 19681 12890 14890 14890 21599	1.0 1.1 0.5 0.7 3.2 1.1 0.9 2.6 1.2 3.1 1.0 9 0.7 0.5 0.5 1.8 0.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.1 0.9	2D 2D 2D 2D 2D 2D 2D 2D 2D 2D	PSX PRX PRX PRX PRX PRX PRX PRX PSX PSX PSX PSX PSX PSX PSX PSX PSX PS	APPROX.DIP/STRIKE WALL ROCK DISLODGED APPROX.DIP/STRIKE FAULT WITH SLICKEN. SMALL FRACTURE ZONE
$\begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 $	D19700	7334 7357 7357 7377777777777777777777777	18 18 18 20 21 23 23 00 01 12 23 00 01 12 23 01 12 23 4 6 6 6 6 6 6 6	00JT 60JT 73JT 43JT 49BP 03JT 49JT 00JT 32JT 69JT 00JT 64JT 83JT 29JT 10JT 23JT 52JT 56JT	12990 00790 13274 20785 11507 14875 14287 17373 23270 18065 32805 14487 14885 09462 15085 03790 13476 12873 12580 19681 12890 14090 21588	$\begin{array}{c} 1.0\\ 1.1\\ 0.5\\ 0.7\\ 3.2\\ 1.1\\ 0.9\\ 2.6\\ 1.2\\ 3.1\\ 1.9\\ 0.7\\ 0.5\\ 1.8\\ 1.0\\ 1.2\\ 1.1\\ 1.7\\ 0.9\\ 1.2\\ 1.1\\ 1.7\\ 0.9\\ 1.2\\ 1.1\\ 1.7\\ 0.9\\ 1.2\\ 1.1\\ 1.7\\ 0.9\\ 1.2\\ 1.1\\ 1.7\\ 0.9\\ 1.2\\ 1.1\\ 1.7\\ 0.9\\ 1.2\\ 1.1\\ 1.7\\ 0.9\\ 1.2\\ 1.1\\ 1.7\\ 0.9\\ 1.2\\ 1.1\\ 1.7\\ 0.9\\ 1.2\\ 1.1\\ 1.7\\ 0.9\\ 1.2\\ 1.1\\ 1.7\\ 0.9\\ 1.2\\ 1.2\\ 1.2\\ 1.2\\ 1.2\\ 1.2\\ 1.2\\ 1.2$	2D 2D 2D 2D 2D 2D 2D 2D 2D 2D	PSX URXO PRX PRX PRX PRX PRX PRX PRX PSX PSX PSX PSX PSX PSX PSX PSX PSX PS	APPROX.DIP/STRIKE WALL ROCK DISLODGED APPROX.DIP/STRIKE FAULT WITH SLICKEN. SMALL FRACTURE ZONE
$\begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 $	D19700	7334 7356 7377777777777777777777777777777777	18 18 18 20 21 23 23 00 01 11 22 33 4 6 6 6 6 6	00JT 60JT 73JT 43JT 49BP 03JT 49JT 00JT 32JT 69VN 00JT 93JT 00JT 83JT 00JT 83JT 23JT 56JT 56JT 66JT	12990 00790 13274 20785 11507 14875 14287 17373 23270 18065 32805 14487 14885 09462 15085 03790 13476 12873 12580 19681 12890 14090 21588 32187	$\begin{array}{c} 1.0\\ 1.1\\ 0.5\\ 0.7\\ 3.2\\ 1.1\\ 0.9\\ 2.6\\ 1.2\\ 3.1\\ 1.1\\ 0.9\\ 0.5\\ 1.8\\ 1.0\\ 1.2\\ 1.1\\ 1.7\\ 0.9\\ 0.7\\ 1.2\\ 1.1\\ 0.9\\ 0.7\\ 0.5\\ 1.8\\ 0.8\\ 1.0\\ 0.7\\ 0.7\\ 0.7\\ 0.9\\ 0.7\\ 0.7\\ 0.7\\ 0.9\\ 0.7\\ 0.7\\ 0.7\\ 0.9\\ 0.7\\ 0.7\\ 0.9\\ 0.9\\ 0.9\\ 0.9\\ 0.9\\ 0.9\\ 0.9\\ 0.9$	2D 2D 2D 2D 2D 2D 2D 2D 2D 2D 2D 2D 2D 2	PSX URXO PRX PRX PRX PRX PRX PRX PRX PSX PSX PSX PSX PSX PSX PSX PSX PSX PS	APPROX.DIP/STRIKE WALL ROCK DISLODGED APPROX.DIP/STRIKE FAULT WITH SLICKEN. SMALL FRACTURE ZONE
$\begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 $	D19700	7334 7335 7337 7377 77777777777777777777	18 18 18 20 21 23 23 00 01 11 22 33 40 6 6 6 6 6 7	00JT 60JT 73JT 43JT 49BP 03JT 49JT 01JT 32JT 69VN 04JT 93JT 01JT 69VN 04JT 93JT 01JT 23JT 56JT 56JT 56JT	12990 00790 13274 20785 11507 14875 14287 14287 14287 14287 14885 09462 15085 03790 13476 12873 12580 19681 12890 14090 21588 32187 13488	1.0 1.1 0.5 0.7 3.2 1.1 0.9 2.6 1.2 3.1 1.1 0.9 0.7 0.5 1.8 0.8 1.0 1.2 1.1 0.9 0.7 1.2 1.1 0.9 0.7 1.1 0.9 0.7 1.2 1.1 0.9 0.7 1.2 1.1 0.9 0.7 1.1 0.9 0.7 1.1 0.9 0.7 0.5 0.5 0.5 0.5 1.2 1.1 0.9 0.7 0.5 0.5 0.5 1.2 1.1 0.9 0.7 0.5 0.5 1.2 1.1 0.9 0.7 0.5 1.2 1.1 0.9 0.7 0.5 1.2 1.2 1.1 0.9 0.7 0.5 1.2 1.2 1.2 1.2 1.1 0.9 0.7 0.5 1.2 1.2 1.2 1.2 0.7 0.5 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2	2D 2D 2D 2D 2D 2R 2U 1U 2R 2U 1U 2R 2U 1D 2C 2U 1D 2C 2U 1D 2C 2U 1D 2C 2U 1D 2C 2U 2D 2D 2D 2D 2D 2D 2D 2D 2D 2D	PSX URXO PRX PRX PRX PRX PRX PRX PRX PSX PSX PSX PSX PSX PSX PSX PSX PSX PS	APPROX.DIP/STRIKE WALL ROCK DISLODGED APPROX.DIP/STRIKE FAULT WITH SLICKEN. SMALL FRACTURE ZONE
$\begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 $	D19700	7334 7357 7367 73777777777777777777777777777	18. 18. 20. 21. 23. 23. 00. 0.	00JT 60JT 73JT 43JT 49BP 03JT 49JT 01JT 32JT 69VN 00JT 93JT 01JT 69VN 01JT 63JT 29JT 10JT 23JT 56JT 56JT 35JT 46JT	12990 00790 13274 20785 11507 14875 14287 17373 23270 18065 32805 14487 14885 09462 15085 03790 13476 12873 12580 19681 12890 14090 21588 32187 13488 14086	1.0 1.1 0.5 0.7 3.2 1.1 0.9 2.6 1.2 3.1 1.1 0.9 0.5 0.5 1.8 0.0 1.0 1.0 1.0 1.2 0.7 0.5 1.8 0.7 1.1 0.9 0.7 1.1 0.9 0.7 1.1 0.9 0.7 0.5 0.5 0.5 1.8 0.0 1.0 0.5 0.7 0.5 0.5 0.5 1.8 0.0 0.5 0.5 0.5 0.5 0.5 0.5 0.5	2D 2D 2D 2D 2D 2R 2U 10 2R 2U 10 2C 2U 10 2U 2U 10 2U 2U 10 2U 2U 2U 10 2U 2U 2U 2U 2U 2U 2U 2U 2U 2U	PSX URXO PRX PRX PRX PRX PRX PSX PSX PSX PSX PSX PSX PSX PSX PSX PS	APPROX.DIP/STRIKE WALL ROCK DISLODGED APPROX.DIP/STRIKE FAULT WITH SLICKEN. SMALL FRACTURE ZONE
$\begin{array}{c} 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ $	D19700	7334 7357 737777777777777777777777777777	18 18 20 21 23 23 00 01 11 22 33 4 6 6 6 6 6 6 6 7 7	00JT 60JT 73JT 43JT 49BP 03JT 49JT 01JT 32JT 69VN 01JT 64JT 10JT 64JT 10JT 23JT 52JT 56JT 35JT 46JT 94JT	12990 00790 13274 20785 11507 14875 14287 17373 23270 18065 32805 14487 14885 09462 15085 03790 13476 12873 12580 19681 12890 14090 21588 32187 13488 14086 12680	1.0 1.1 0.5 0.7 3.2 1.1 0.9 2.6 1.2 3.1 1.1 0.9 0.7 0.5 0.5 1.8 0.0 1.0 1.2 1.1 0.9 0.7 1.2 1.1 0.9 0.7 1.1 0.9 0.7 1.1 0.9 0.7 1.2 1.1 0.9 0.7 1.2 1.1 0.9 0.7 1.2 1.1 0.9 0.7 1.2 1.1 0.9 0.7 1.2 1.1 0.9 0.7 0.5 0.5 1.8 0.10 1.2 1.1 0.9 0.7 0.5 1.8 0.7 1.2 1.1 0.9 0.7 0.5 1.8 0.7 1.2 1.1 0.9 0.7 0.5 1.8 0.7 0.7 1.2 1.1 0.9 0.7 0.5 1.8 0.7 0.7 0.5 1.2 1.1 1.1 0.9 0.7 0.5 1.8 0.7 0.7 0.5 1.8 1.2 1.1 1.1 1.7 0.7 0.7 1.2 1.1 1.1 1.2 1.1 1.1 1.1 1.7 0.7 0.7 1.2 1.8 1.4 1.4 1.1 1.1 1.1 1.7 0.7 1.8 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4	2D 2D 2D 2D 2D 2R 2U 10 2C 2U 10 2U 10 2U 10 2U 10 2U 10 2U 10 2U 2U 10 2U 2U 10 2U 10 2U 10 2U 10 2D 10 2D 10 2D 2D 2D 2D 2D 2D 2D 2D 2D 2D 2D 2D 2D	PSX PRX PRX PRX PRX PRX PRX PSX PSX PSX PSX PSX PSX PSX PS	APPROX.DIP/STRIKE WALL ROCK DISLODGED APPROX.DIP/STRIKE FAULT WITH SLICKEN. SMALL FRACTURE ZONE
$\begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 $	D19700	7334 77356 777777777777777777777777777777777	$\begin{array}{c} 18\\ 18\\ 20\\ 21\\ 23\\ 23\\ 23\\ 0\\ 0\\ 0\\ 0\\ 0\\ 1\\ 1\\ 2\\ 2\\ 3\\ 4\\ 6\\ 6\\ 6\\ 6\\ 6\\ 7\\ 7\\ 7\\ 8\end{array}$	00JT 60JT 73JT 43JT 49BP 03JT 49JT 001JT 32JT 001JT 32JT 000JT 64JT 23JT 23JT 23JT 23JT 23JT 56JT 35JT 46JT 29JT	12990 00790 13274 20785 11507 14875 14287 17373 23270 18065 32805 14487 14885 09462 15085 03790 13476 12873 12580 19681 12890 14090 21588 32187 13488 14086 12680 23086	1.0 1.1 0.5 0.7 3.2 1.1 0.9 2.6 1.2 3.1 1.0 9 0.7 0.5 0.5 1.8 1.0 1.0 1.2 1.1 0.9 7 0.7 1.2 1.1 0.9 7 0.7 1.2 1.1 0.9 7 1.2 1.1 0.9 7 1.2 1.1 0.9 7 1.2 1.1 0.9 7 1.2 1.1 0.9 7 1.2 1.1 0.9 7 1.2 1.1 0.9 7 1.2 1.1 0.9 7 1.2 1.1 0.9 7 1.2 1.1 0.9 7 1.2 1.1 0.9 7 1.2 1.1 0.9 7 1.2 1.1 0.9 7 1.2 1.1 0.9 7 1.2 1.1 0.9 7 1.2 1.1 0.9 7 1.2 1.2 1.1 0.9 7 1.2 1.2 1.1 0.9 7 1.2 1.2 1.1 0.9 7 1.2 1.2 1.1 0.9 7 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2	2D 2D 2D 2D 2D 2D 2D 2D 2D 2D 2D 2D 2D 2	PSX URXO PRX PRX PRX PRX PRX PRX PRX PSX PSX PSX PSX PSX PSX PSX PSX PSX PS	APPROX.DIP/STRIKE WALL ROCK DISLODGED APPROX.DIP/STRIKE FAULT WITH SLICKEN. SMALL FRACTURE ZONE
$\begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 $	D19700	7334 7335 7737 7777777777777777777777777	18. 18. 18. 20. 21. 23. 23. 00. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 2 3.4. 6	00JT 60JT 73JT 43JT 49BP 03JT 49JT 001JT 32JT 600JT 40JT 600JT 40JT 600JT 64JT 52JT 56JT 56JT 56JT 56JT 56JT 73JT	12990 00790 13274 20785 11507 14875 14287 17373 23270 18065 32805 14487 14885 09462 15085 03790 13476 12873 12580 19681 12890 14090 21588 32187 13488 32187 13488 14086 12680 23086	1.0 1.1 0.5 0.7 3.2 1.1 0.9 2.6 1.2 3.1 1.9 0.7 0.7 0.5 1.8 1.0 0.7 1.2 1.1 0.9 0.7 1.2 1.1 0.9 0.7 1.2 1.1 0.9 0.7 1.2 1.1 0.9 0.7 1.2 1.1 0.9 0.7 1.2 1.1 0.9 0.7 1.2 1.1 0.9 0.7 1.2 1.1 0.9 0.7 1.2 1.1 0.9 0.7 1.2 1.1 0.7 0.7 1.2 1.1 0.7 0.7 1.2 1.1 0.7 0.7 1.2 1.1 0.7 0.7 1.2 1.1 0.7 0.7 1.2 1.1 0.7 0.7 1.2 1.1 0.7 0.7 1.2 1.1 0.7 0.7 1.2 1.1 0.7 0.7 1.2 1.1 0.7 0.7 1.2 1.1 1.7 0.9 0.7 1.2 1.1 1.7 0.9 0.7 1.2 1.1 1.7 0.9 0.7 1.2 1.1 1.7 0.7 1.2 1.1 1.7 0.7 1.2 1.1 1.7 0.7 1.2 1.1 1.1 1.7 0.7 1.2 1.1 1.1 1.7 0.7 1.2 1.1 1.1 1.1 1.1 1.1 1.1 1.1	2D 2D 2D 2D 2D 2D 2D 2D 2D 2D 2D 2D 2D 2	PSX URXO PRX PRX PRX PRX PRX PRX PRX PSX PSX PSX PSX PSX PSX PSX PSX PSX PS	APPROX.DIP/STRIKE WALL ROCK DISLODGED APPROX.DIP/STRIKE FAULT WITH SLICKEN. SMALL FRACTURE ZONE
$\begin{array}{c} 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ $	D19700	7334 7335 777777777777777777777777777777	$\begin{array}{c} 18\\ 18\\ 18\\ 20\\ 21\\ 23\\ 23\\ 23\\ 0\\ 0\\ 0\\ 0\\ 1\\ 1\\ 2\\ 2\\ 3\\ 4\\ 6\\ 6\\ 6\\ 6\\ 6\\ 7\\ 7\\ 8\\ 8\\ 0\end{array}$	00JT 60JT 73JT 43JT 49BP 03JT 49JT 001JT 32JT 40JT 40JT 40JT 40JT 40JT 50JT 56JT 57 56JT 57 56JT 57 56JT 57 56JT 57 56JT 57 56JT 57 56JT 57 56JT 57 56JT 57 56JT 57 56JT 57 56JT 57 56JT 57 56JT 57 56JT 57 56JT 57 57 57 57 57 57 57 57 57 57	12990 00790 13274 20785 11507 14875 14287 17373 23270 18065 32805 14487 14885 09462 15085 03790 13476 12873 12580 13476 12873 12580 19681 12890 14090 21588 32187 13488 14086 12680 23086 32286	1.0 1.1 0.5 0.7 3.2 1.1 0.9 2.6 1.2 1.1 0.7 0.5 1.8 1.0 0.7 1.2 1.1 0.7 0.5 1.8 1.0 0.7 1.2 1.1 0.7 0.5 1.2 1.1 0.7 0.5 1.2 1.1 0.7 0.5 1.2 1.1 0.7 0.5 1.2 1.1 0.7 0.5 1.2 1.1 0.7 0.5 1.2 1.1 0.7 0.5 1.2 1.1 0.7 0.5 1.2 1.1 0.7 0.5 1.2 1.1 0.7 0.5 1.2 1.1 0.7 0.7 1.2 1.1 0.7 0.7 1.2 1.1 0.7 0.7 1.2 1.1 0.7 0.7 1.2 1.1 0.7 0.7 1.2 1.1 0.7 0.5 1.8 1.0 0.7 1.2 1.1 0.7 0.7 1.2 1.1 0.7 0.5 1.8 1.0 0.7 0.7 1.2 1.1 0.7 0.7 1.2 1.2 1.1 0.7 0.7 1.2 1.2 1.1 0.7 0.7 1.2 1.2 1.1 0.7 0.7 1.2 1.2 1.1 0.7 0.7 1.2 1.2 1.1 0.7 0.7 1.2 1.8 1.4 1.1 1.1 1.2 1.1 1.2 1.2 1.2 1.2	2D 2D 2D 2D 2D 2D 2D 2D 2D 2D 2D 2D 2D 2	PSX URXO PRX PRX PRX PRX PRX PRX PRX PSX PSX PSX PSX PSX PSX PSX PSX PSX PS	APPROX.DIP/STRIKE WALL ROCK DISLODGED APPROX.DIP/STRIKE FAULT WITH SLICKEN. SMALL FRACTURE ZONE
$\begin{array}{c} 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ $	D19700	7334 77356 7337 7777777777777777777777777777	$\begin{array}{c} 18\\ 18\\ 20\\ 21\\ 23\\ 23\\ 23\\ 23\\ 0\\ 0\\ 0\\ 0\\ 1\\ 1\\ 2\\ 2\\ 3\\ 4\\ 6\\ 6\\ 6\\ 6\\ 6\\ 7\\ 7\\ 8\\ 8\\ 9\\ 2\end{array}$	00JT 60JT 73JT 43JT 49BP 03JT 49JT 001JT 32JT 69VN 40JT 69VN 004JT 50JT 56JT 57 56JT 57 56JT 57 56JT 57 56JT 57 56JT 57 56JT 57 56JT 57 56JT 57 56JT 57 56JT 57 57 56JT 57 57 56JT 57 57 57 56JT 57 57 57 57 57 57 57 57 57 57	12990 00790 13274 20785 11507 14875 14287 17373 23270 18065 32805 14487 14885 09462 15085 03790 13476 12873 12580 19681 12890 14090 21588 32187 13488 14086 12680 23086 32286 23589	$\begin{array}{c} 1.0\\ 1.1\\ 0.5\\ 0.7\\ 3.2\\ 1.1\\ 0.9\\ 2.6\\ 1.2\\ 3.1\\ 1.9\\ 0.5\\ 0.5\\ 1.8\\ 0.5\\ 1.0\\ 1.2\\ 1.1\\ 0.9\\ 1.2\\ 1.1\\ 0.9\\ 1.2\\ 1.1\\ 0.9\\ 1.2\\ 1.1\\ 0.9\\ 1.2\\ 1.1\\ 0.9\\ 1.2\\ 1.1\\ 0.9\\ 1.2\\ 1.1\\ 0.9\\ 1.2\\ 1.1\\ 1.1\\ 0.9\\ 1.2\\ 1.2\\ 1.2\\ 1.2\\ 1.2\\ 1.2\\ 1.2\\ 1.2$	2D 2D 2D 2D 2D 2R 22U 10 22U 10 22U 10 20U 20U 20U 20U 20U 20U 20U 20U 20U 20	PSX URXO PRX PRX PRX PRX PRX PRX PSX PSX PSX PSX PSX PSX PSX PSX PSX PS	APPROX.DIP/STRIKE WALL ROCK DISLODGED APPROX.DIP/STRIKE FAULT WITH SLICKEN. SMALL FRACTURE ZONE

22+++++DACE							
33*****PAGE			23 205		- -		
11	764	10.04JT	31285	1.51		PRX	
11	/05	10.0/JT	23009	2.5 1	10	USX	
11	/66	10.94JT	02380	0.5 0	50	CRXO	
11	/6/	11.0/JT	25189	1.4]		PSX	
11	768	11.72JT	31887	0.5 2	ZDRT	PSX	END OF LINE 11.90M
33****PIT#2	PAG	E 31****	******	*****	*****	****	* * * * * * * * * * * * * * * * * * * *
33*******	****	********	******	*****	*****	****	* * * * * * * * * * * * * * * * * * * *
33********	****	*******	******	* * * * * *	* * * * *	*****	* * * * * * * * * * * * * * * * * * * *
22 E07800							
11	769	00.40JT	00880	0.5 2	20	PRX	
11	770	0.95JT	23673	0.5 1	10	PSX	
11	771	1.10JT	12770	0.5 1	10	SSX	
11	772	1.29 JT	33015	1.0 0	DD	PRXO	VUGGY/DIP&STRIKE APPROX
11	773	1.35JT	32288	0.6 2	2U	PSX	
11	774	2.00JT	33289	0.7 2	2U	PRX	
11	775	2.10 JT	2 84 85	0.8 1	1U	PRX	
11	776	2.69JT	32086	0.6 2	20	PSX	
11	777	2 .97JT	31 8 89	0.7 1	1D	PSX	
11	778	3.29JT	1 96 16	1.2 1	1CD	USX	APPROX. STRIKE/DIP
11	779	3.37JT	07885	0.5 1	1U	CSX	APPROX STRIKE/DIP
11	780	3.49JT	14488	0.9 1	1U	URX	·
11	781	4.52JT	3 361 0	2.3 0	DD	PSXO	AUCUST 16/86MAYBE BEDP
11	782	5.25JT	32085	0.9 2	2D	PSX	•
11	783	5.50JT	31280	1.0 1	1U	PSX	
11	784	5.69JT	32290	1.4 1	1D	PSX	
11	785	5.82JT	32089	1.6 1	1D	PSX	
11	786	6.65JT	30212	0.7 0	JU	USXO	
11	787	6.71JT	32083	1.8 1	1 U	PSX	
11	788	7.59JT	32090	1.2 1	1D	PSX	
11	789	7.79JT	12288	0.8 0	DD	PSXO	
11	790	8.29JT	14087	1.3 0	ĴŪ	URX3	
11	791	8.39JT	32490	2.6	2D	PRX	SLICKS ROUCH
11	792	8.93JT	12085	1.7	īĎ	URX	
11	793	9.15JT	13286	0.8	2D	PRX	
11	794	9.89JT	14475	2.8		URX	VERY RUSTY
11	795	10.00JT	13486	0.8	1D	CSX	
11	796	10.05JT	13378	0.7	10	USX	
11	797	10.24JT	10680	1.0	าับ	PSX	
11	798	10 65BP	25505	34	าับ	USY	VERY COOD SHALLOW
33*****MEASU	EME	NT OF BEI	DING P	LANE *	****	****	*****
11	799	10 72.IT	08984	180	OU	URX1	
11	800	10 94 TT	23680		SR SR	URYI	APPROX STRIKE /DIP
33********	32*	*******	* * * * * * *	*****	* * * * *	****	*****
11	801	10 92 17	33495	1 0 1	111	DDY	
11	802	11 99.17	25174	1 1 1	ÎŬ	CRY	APPROX MEASUREMENTS
11	802	12 24 IT	32690	0.0	<u>oŭ</u>	DSY1	a de la svolu y l'held otter (1914 e d
11	903	12 03 17	14799		111	DCA	
11	805	13 14 17	26070	1 1 1	<u>n</u>		
11	806	13 3217	25495	<u> </u>	00 10	UDV1	
11	907	12 42 17	25760			CDYJ	
±± 11	<u>a</u> no	13 /210	30624	1 2 (USV1	
11	000		25705	1 5 1	10	VOVI	
11	Q10		23103	1.3 1	111	DGA	
⊥⊥ 11	010	16 75 7	32030	<u>т.т</u> т	10	DCV	
11	011	17 A7 TM	34003		20	DDY	
11	012		31/82	4.0		LKY LCA	
11	013 013	18.7501	33085	1.01		LOX	ADDOX DID (CODING
11	814	19.48JT	11106	2.5	TDK	USX	APPROX.DIP/STRIKE
11	812	19.90JT	06/88	2.1	TK	PKX	SMALL FRACTURE ZONEBLAST
11	816	20.06JT	24486	1.Z]	TU	PRX	
	817	20.26JT	33685	3.3]	10	PSX	END OF LINE 20.65M
22 F00090	. ~-			T			
33*******THIS	SC	ANLINE I	S ON JO	INT F	ACE, E	ACIN	G 140DEGREES SOUTH
11	818	00.00BP	31210	2.9 1	1 V	PSX	CENSORING?

11	910	00 14BP	13005	7 4 11	PSX	CENSOR ING?
11	820	OO BOBD	12208	6 1 11	PSX	CENSOR ING?
11	020		11607	4 6 11	PSY	CENSOR ING?
11	977	1 14RD	11205	3 3 11	PSY	CENSOR ING?
11	022	1 2200	13709	2 8 11	PSY	CENSOR ING?
11	023	1 A2DF	08805	1 0 10	DCY	CENSORING?
11	024	1.42DF	10707	2 0 10	DCY (TENSORTHO:
11	823	1.90DF	10/07	3.310 3.4111	DCY	CENSORING: BAULAB 730
	020	2.90DF	10400	*******	*****	
33**********	E 33	*******	******	*******	*****	******
33********	*****	*******	******	*******	*****	********
22 001404						LINE ON LOODECREES
22 001404	C WAT	T FAST C			TAKEN	****
33**** EACIN	້ວາງ		30880		PCY	
11	020		34008	1 5 00	IRYO	IT FNDS AT 2M FLAG
11	010		31090	1 2 10	UCY	II ENDO AL LA EMO
	047	1	25975	1.5 IK	DCY	
11	030		20675	1 4 10	DCV	
11	031	1.5501	30070		FOA DCYO	
11	032	1.0001	310/4		DCV	
11	033	2.2501	3.1404	0.0 10	DCV2	
11	034	2.0901	34109		DDV	
	033	2.70JI 4 01 IT	11005	1.01K	DDV	ENHT DEVEDSE
	000	4.2101	11903	4.5 IC	DDY	EXOLT, KEVEKSE
11	03/	4.4901	34077	3.0 20	DCVA	
	030	4.03JI	31304	1 2 10	IICY	
11	839	5.08J1	31400			
	840	2.89JI	31/65	2.4 100	DCV	
11	841	6.02JT	13388		PDA	
11	842	6.29JT	12400	0.5 10	DOV	
11	843	6.75JT	13489		PSA	
11	844	6.88JT	30588	0.9 10	POX	
11	845	7.0811	22588		POX2	
11	846	7.20BP	15310	3.5 OK	URX3	
11	847	7.73JT	31/85	2.2 100	PSX	
11	848	8.1911	31987	0.9 10	PSA	
11	849	8.70JT	30984	1.4 200	PDX	
	850	9.15JT	31085	0.9 20	PRA	
33****PAGE	34***					
22 H29300			NODDECC			LINE RUNS ALONC IOP
33"""UE S	PECKL	ED PSEUL	UBRECC	IA BED	DOVI	
11	851	0.07JT	12/85		POXI	
	852	0.55JT	14085		PSA	
11	853	0.65JT	32084	0.9 20	PKX	
11	854	0.75JT	30385		PRA	SMALL FRACTORE ZONE
11	855	1.13JT	24884	1.0 10	PKA	NODON DID (CODINE
11	855	2.06BP	34305	2.6 10	URX	APPROX.DIP/SIRIRE
11	857	2.27JT	13689	2.1 10	USX	
11	858	2.48JT	30085	0.5 OD	CSX2	
11	859	2.67VN	34068	0.6 OD	PSXO	
11	860	2.89VN	30787	0.9 1D	USX	
11	861	3.10JT	21890	1.1 20	PRX	
11	862	3.15JT	05585	0.8 10	PRX	
11	863	3.29JT	31289	0.6 10	PSX	
11	864	3.79JT	30887	0.9 OCD	PSX1	
11	865	3.95JT	05780	1.4 10	URX	
11	866	4.71JT	30986	2.0 1D	URX	
11	867	5.29JT	31586	0.6 OU	PRX2	
11	868	5.67JT	05288	0.6 OR	CRX1	
11	869	6.37BP	03704	1.6 1C	PRX	VUGGS
11	870	6.92VN	29075	0.8 OD	USX1	
11	871	7.39JT	29683	2.3 1D	PRX	
11	872	7.63JT	07080	1.1 OU	URXO	
11	873	8.00JT	29982	0.8 1R	PRX	
	071	0 4017	10201	0710	DDV	

.

11	875	9.58JT	06485	0.6	2U	CRX				
11	876	9.81JT	04274	0.7	2	CRX	WATER	SEEP	ING FRO	M
33*****FRAC1	URE	*******	******	****	***	******	* * * * * * * *	****	******	•
11	877	9.82JT	30486	1.3	1U	PSX				
11	878	10.09JT	31282	1.9	1U	PSX				
11	879	10.70JT	04087	0.8	1U	PRX				
11	880	11.40JT	22790	0.6	2U	PRX	END OF	THE	SCANLIN	JE
33*******A	[11.	. 70METRES	5 WATER	SPRI	NG	AT 10.	89 11.70	O MET	RES	
33*****ALONC	; THI	S SCANL	[NE****	****	***	******	******	****	******	i \star 🖈 -
33********	****	*******	******	****	***	*****	*****	****	******	***
33********	****	*******	******	****	***	*****	******	****	******	***
33********	****	*******	******	****	***	******	* * * * * * *	****	******	

stereoplots from the STRPLO program

Lower hemisphere pole diagrams of fracture orientations using the STRPLO program are given in this appendix for i) Total fracture set ii) Lead Lake outcrop only.

APPENDIX H

Program listing of DHLOOK.FOR

C**** C DHLOOK.FOR W. MILLAR JUNE 1987 C DHLOOK.FOR W. MILLAR JUNE 1987 C THIS PROCRAM LOOKS THROUCH EACH FRACTURE DATA FILE OF DANIEL'S HARBOUR C (MUST SPECIFY EACH FILE WITHIN THE PROGRAM) FOR FRACTURE ORIENTATION C AND OUTPUTS A DATA FILE WITH A DIP, DIP DIRECTION FORMAT THAT CAN BE C USED BY THE PLOTTINC PROGRAM 'SPHERE'. C CHARACTER DATA'80 JUNE 1987 ************************ CHARACTER DATA*80 INTEGER DPDR, DP, FLAG С OPEN (10.FILE='DNSHAR.DAT',STATUS='OLD') OPEN (11.FILE='DNSHAR.OUT',STATUS='NEW') . С С READ (10, 16, END=999) DATA FORMAT (A) READ (DATA, 17) FLAG FORMAT (I2) 15 16 17 С IF (FLAG.NE.11) GO TO 15 С READ (DATA, 30) DPDR, DP FORMAT (25X, I3, I2) WRITE (11, 40) DP, DPDR FORMAT ('', I2, 2X, I3) 30 40 CO TO 15 ğ99 STOP END

APPENDIX I

Results from fracture analysis using the SPHERE program

Example of computer screen data output (i) from the SPHERE program. Tabulated results (ii) for each designated fracture set are also given together with a description of the rotation of pole clusters (iii).

i.

An example of the SPHERE output to the screen during the running of the program, for area 1 set 1. (SPH11) Data analysis will be done on poles to planes 355 Eigen-analysis for 355 data points Eigenvalues 0.9822 0.0115 0.0063 Eigenvectors as direction cosines L : 0.5842 0.8023 0.1215 M: 0.8114 -0.5736 -0.1116 N : -0.0198 0.1651 -0.9863 and as coordinates of end-points plunge: 9.51 215.56 plunge: 1.14 plunge azimuth: 305.75 80.50 42.56 Estimate of optimal smoothing constant from Watson Bipolar model: 806.87 Cross-Validation method: 1030.97* Plot 1 4 contours O equally spaced contours by function value 30 % probability contours Minimum function value 0.0000 Maximum function value 1.2198 Contour heights 0.1525 0.4574 0.7624 1.0673 Plot 2 6 contours O equally spaced contours by function value Minimum function value 0.0000 Maximum function value 1.2198 Contour heights 0.1016 0.3049 0.5082 0.7115 1.1181

ii.r

RESULTS FROM THE ROTATION OF SETS FOR EACH AREA AT DANIEL'S HARBOUR THAT ARE DEFINED FROM SPHERE GENERATED CONTOUR PLOTS.

AREA	SET	# P	OPTIMAL SMOOTHING	EIC	EIGENVALUES RESULTANT VECTOR* DIRECTION COSINES				PLUNCE	PLUNGE AZIMUTH	
		L E S	CONSTANT	S1	\$2	S3	L:	M:	N :		
1	1	355	1030.97	0.9822	0.0115	0.0063	0.5842	0.8114	-0.0198	1.14	305.75
	2	100	162.93	0.9405	0.0519	0.0076	0.7880	-0.6146	0.0357	2.05	217.95
	3	52	819.46	0.9907	0.0065	0.0028	0.9989	-0.0464	-0.0054	0.31	2.66
2	1	58	274.12	0.9694	0.0233	0.0072	0.6816	0.7315	-0.0182	1.04	312.97
	2	12	388.91	0.9869	0.0092	0.0039	0.0947	0.1954	0.9761	77.46	115.86
	3	7	184.67	0.9753	0.0156	0.0091	0.6484	-0.7613	-0.0022	0.12	49.58
3	1	176	315.34	0.9630	0.0265	0.0105	0.0784	0.7058	0.0106	0.61	135.11
	2	37	451.79	0.9772	0.0197	0.0031	0.0172	0.0091	-0.9998	88.89	332.22
	3	32	98.55	0.9315	0.0523	0.0162	0.5386	-0.8414	-0.0444	2.54	57.38
TOTAL	1	581	614.85	0.9722	0.0203	0.0075	0.6281	0.7781	-0.0097	0.56	308.91
	2	132	190.12	0.9342	0.0577	0.0081	0.7593	-0.6501	0.0290	1.66	220.57
	3	54	805.05	0.9904	0.0064	0.0032	0.9984	-0.0559	-0.0010	0.06	3.2
	4	44	608.27	0.9713	0.0253	0.0034	0.0046	0.0140	0.9999	89.15	108.28

* THESE VALUES OF DIRECTION COSINES WERE USED IN THE SPACE.FOR PROCRAM TO CALCULATE SPACING VALUES BETWEEN FRACTURES OF THE SAME SET.

iii. EVALUATION OF ROTATION OF SETS RESULTS USING SPHERE PROGRAM

AREA	SET	# POLES	OPTIMAL SMOOTHING CONSTANT	CL OU	USI TLI	TER NE	CLI PE	US: AK	USTER CLUSTER		TER I TY	COMMENTS	
				q	E	Ī	U	B	0	С	Ī	D	
1	1	355	1030.97	X			X			X			Well defined set
	_2	100	162.93		X				X	ļ	X.		<u>Moderately defined set</u>
	3	52	819.46		X		X				X		Moderately defined set, high smoothing constant
2	1	58	274.12		x		X				x		Moderately defined set
	2	12	388.91			X			X		X		Set not well defined, not enough points
	3	7	184.67			X			X			x	Set not well defined, not enough points
3	1	176	315.34			x	X				x		Moderately to well- defined set
	2	37	451.79		X			X		X			Moderately defined set symetrical may be 2 sets dipping in opposite dir
	3	32	98.55			X		X				X	Poorly defined set
TOTAL	1	581	614.85		x		X			x			Well defined set
	2	132	190.12		X		X				X		Moderately defined set
	3	54	805.05		X		X			X			Moderately to poorly defined set
	4	44	608.27			X		X		X			Moderately defined set or two sets.
C - CIRCLE U - UNIMODAL C - COMPACT E - ELLIPSE B - BIMODAL I - INTERMEDIATE I - IRREGULAR O - OTHER D - DIFFUSE													
FORMA	Ť /	CORMAT ADAPTED FROM DAVE BRIGGINS REPORT.											

APPENDIX J

Details on fracture analysis and manipulation.

Sphere contour plots were generated for each fracture set and these sets or fracture clusters were rotated to the center of the sphere so an evaluation of the cluster distribution for each set could be made. One can obtain a true shape of the fracture cluster and its mean vector using the rotation option of SPHERE; see Appendix I for results of these plots. An even distribution would exhibit a cluster at the center in the shape of a circle.

The next stage in the fracture orientation analysis was the plotting of set distributions as frequency histograms using the program ORIENT.HIS; a program using the SPSSX batch system which is a comprehensive tool for managing and analyzing data. Two histograms were produced for each specified set; one for dip direction and the second for dip. Each histogram is accompanied by basic statistics which include variance, mean, sum, minimum and maximum value and standard deviation.

Standard statistics for trace length histograms are the same as produced by ORIENT.HIS. These statistics give results for only each length of fracture in a set, and disregard censoring and termination mode.

Further manipulation of trace length data was done using the SAS system programs available for histogram plots and statistics. The TRACE.SAS program decodes fracture data according to fracture type, length, censor, termination mode and set number. Histograms were produced first with distinction being made for censoring and then for termination mode. Univariant statistics on the entire file or set are printed with no regard to termination or censoring. Statistics given were mean, standard deviation, variance, minimum and maximum values, sum, skewness and kurtosis.

The SPACE.FOR program produced a list of fractures, their set number, scanline label, actual length, angle phi and the calculated spacing between consecutive fractures of the same set. In calculating the fracture spacing, first the direction cosines listed in Appendix I(ii) of the average plane for each fracture set {determined from sphere output, Appendix I(i)} was entered into the SPACE.FOR program. Secondly, the direction cosines (p,q,r) of the scanline were computed using the following formulae by Koch and Link (1971):

 $p = \cos u x \cos v$

q = sin u x cos v

r = sin v

where u is the bearing of the scanline in radians and v is the plunge of the scanline. The angle phi between the scanline and the average pole of the fracture set computed by the following formula:

 $\cos phi = Ph x Pf + Qh x Qf + Rh x Rf$

where the h refers to the scanline and f refers to the pole to the average fracture plane. Lastly, the true spacing between two

consecutive fractures of the same set is calculated using the simple formula: SPAC = 1 x cos phi where 1 is the distance along the scanline between consecutive fractures of the same set (see Figure below for illustration).

- --

APPENDIX K

Statistics for fracture histograms

Trace Length statistics from Trace.his program, without consideration for censoring.

		(m)	(m)	(m)	(m)	(m)	
Data file	#	Mean	Std. dev.	Min.	Max.	Sum	Comments
DNSHAR.DAT	555	2.72	2.54	0.50	16.30	1507.00	unimodal
Set 1	355	3.13	2.91	0.50	16.30	1112.10	unimodal
Set 2	100	2.19	1.60	0.50	9.80	219.20	unimodal
Set 3	52	1.92	1.22	0.60	5.70	99.90	unimodal
DNSHAR2.DAT	92	1.66	1.46	0.50	8.00	153.00	unimodal
Set 1	58	1.52	1.15	0.50	8.00	87.90	unimodal
Set 2	12	3.67	2.04	1.00	7.90	44.00	no peak
Set 3	7	0.80	0.27	0.50	1.20	5.60	unimodal
DNSHAR3.DAT	276	1.44	1.11	0.50	7.40	398.60	unimodal
Set 1	176	1.25	0.77	0.50	4.60	220.00	unimodal
Set 2	37	2.69	1.66	0.70	7.40	9 9.60	no peak
Set 3	32	1.23	1.10	0.50	6.70	36.00	unimodal
DNSHARTTL.DAT	923	2.23	2.19	0.50	16.30	2058.60	unimodal
Set 1	581	2.43	2.51	0.50	16.30	1409.60	unimodal
Set 2	132	1.90	1.56	0.50	9.80	250.60	unimodal
Set 3	54	1.92	1.23	0.50	5.70	103.90	unimodal
Set 4	44	2.81	1.72	0.70	7.40	123.80	no peak

Trace Length statistics for each data file (area) and their fracture sets, by degree of censoring (cens = 0, 1, 2).

Data file		Set	1	S	let 2		Set	3	
DNSHAR.DAT	i								
Censoring	0	1	2	0	1	2	0	1	2
No.	129	163	63	29	39	32	37	14	3
Mean (m)	3.44	2.90	3.09	1.73	2.35	5 2.43	2.13	1.64	1.30
S. D. (m)	3.27	2.79	2.38	1.17	1.66	1.80	1.39	0.64	0.56
Min. (m)	0.50	0.50	0.50	0.50	0.60	0.60	0.60	0.60	0.80
Max. (m)	16.30	15.30	10.00	5.50	9.80	7.40	5.70	2.90	1.90
Sum (m)	444.2 4	173.1 1	94.8	50.1	91.5	77.6	78.7	23.0	3.9
DNSHAR2.DA	T								
Censoring	0	1	2	0	1	2	0	1	2
No.	10	34	14	1	6	5	2	3	2
Mean (m)	1.54	1.33	1.96	1.00	2.67	5.40	0.65	0.83	0.90

S. D. (m) Min. (m) Max. (m) Sum (m)	0.60 0.80 2.40 15.40	0.68 0.50 3.60 45.10	2.02 0.60 8.00 27.40	/ 1.00 1.00 1.00	1.37 1.20 4.60 16.00	1.42 4.50 7.90 27.00	0.07 0.60 0.70 1.30	0.31 0.50 1.10 2.50	0.42 0.60 1.20 1.80
DNSHAR3.DA	T								
Censoring	0	1	2	0	1	2	0	1	2
No.	29	99	48	9	23	5	8	18	6
Mean (m)	0.95	1.29	1.35	2.41	2.66	3.36	1.55	1.08	0.70
S. D. (m)	0.45	0.76	0.90	1.91	1.65	1.40	2.09	0.46	0.25
Min. (m)	0.50	0.50	0.50	0.70	1.00	1.40	0.50	0.50	0.50
Max. (m)	2.50	4.50	4.60	6.80	7.40	5.20	6.70	2.10	1.10
Sum (m)	27.6]	127.6	64.8	21.7	61.1	16.8	12.4	19.4	4.20

Spacing statistics for the individual areas and their sets.

DNSHAR.DAT			
	Set 1	Set 2	Set 3
No.	338	82	42
Mean (m)	0.52	1.85	2.05
S. D. (m)	0.89	1.97	2.29
Min. (m)	0.01	0.00	0.14
Max. (m)	11.45	9.78	13.02
Sum (m)	174.34	152.08	86.16
DNSHAR2.DAT			
No.	54	9	5
Mean (m)	0.25	1.54	0.42
S. D. (m)	0.42	1.23	0.56
Min. (m)	0.04	0.01	0.13
Max. (m)	8.53	1.19	3,18
Sum (m)	45.45	2.23	7.69
DNSHAR3.DAT			
No.	167	26	24
Mean (m)	0.42	0.27	1 25
S. D. (m)	0.56	0.25	1 25
Min. (m)	0.00	0.03	1.20
Max. (m)	3.83	1.06	5 20
Sum (m)	70.73	7.10	2.20
• •			23.31

APPENDIX L

<u>Hydrauli</u>	ic Head data for 198	5 and 19		~	
Water to	able elevation data	je fol	lowed by	5	• • •
ground s	surface of the water	r tablo	Nine and	(/) the	e depth below
based or	the datum of 104	t capie.	Alle Sur	veyed e	levations are
wells.	+ = Water above c	U M d.S	.I. Symbo.	ls are:	* = artesian
between	Vears: '-' decrease	i = 100c	** = dl1	ference	in drawdown
DIAMOND	DRTLL # 1985 /m	, TU 1980	relative	to 1985	•
DDH-1	51(220 # 1985 (m)	1986	(m)	(m) * *
DDH-2			95.50/	7.11m	
DDH-3			90.20/1	12.26	
DDH-A			106.40/1	10.7 <u>1</u>	
GH=1			92.70/	6.98	
367		-	68.06/	2.05	
509	<89.03/>1	5			
503	5.01/ 5	5.01			
569	<78.82/>28	3			
715	75.43/ 28	3.89			
715	65.01/ 45	5.87			
/10	62.07/ 48	3.37			
824	90.94/ 8	3.34			
826			75.60/2	2.57	
1043	74.00/ 26	5.39			
1118			70.73/2	7.12	
1119			70.35/2	7.08	
1120			68.34/2	9 32	
1244			72.60/	6 64	
1246	73.13/ 7.	14	72.38/	7 00	0.76
1248	76.79/ 4	11	76 93/	2.90	0.76
1249	73.75/ 2.	06	73 54/	2.30	-0.15
1250			70 12/	2.28	0.22
1251	71.13/ 4.	52	72 00/	2.70	1 05
1253			75 61/	2.0/	-1.85
1254			71 00/1	9.04	
1255			70 10/1	5.00	
1259			74 12/2	5.80	
1260	78,58/19	13	74.13/2	2.63	
1261	79 90/17	90	75.48/2	2.23	3.10
1285	<88.43/\50	00	10.21/2	1.44	3.64
1306	100145/250		33 36 4		
1307			//.75/>	18.29	
1308			80.31/>	16.46	
1315	<57 12/NEA		88.85/>	11.58	
1316	59 42 /40	F.0			
1322	56.42/48.	28			
1323			116.62/	7.13	
1326	89.9//11.	04	83.33/1	7.68	6.64
1327			104.85/1	6.68	
1328	86.81/29,0	01	82.84/32	2.97	3.96
1220	84.19/34.0	51	79.67/39	9.13	4.52
1220	89.06/23.9	98			
1222			<64.10/>	50	
1300 T335			<76.17/ 8	3.12	
T 200	94.03/21.3	31	78.53/36	5.81 1	5.50
			•		
1415			76.24/34.08		
--------------	------	---------------------------------------	--	-------	
1418		92.37/22.47			
1435			<78.76/>53		
1630		72.77/ 5.05	- ,		
1631		73.13/ 5.59			
1642			56.57*/0		
1646			70.77/ 3.69		
1647			67.12/ 3.81		
1698			111.08/14.61		
1699			110.66/13.46		
1700			110.45/14.88		
1751			74.25/27.49		
1752			76.59/25.12		
1756			76.59/24.53		
1758			76.39/25.49		
1759			76.40/25.62		
1761			76.02/26.46		
1762			76.42/25.64		
1767			75.93/25.02		
1770			80.07/21.60		
1863			68.93/ 0.02		
1864			69.36*/+0.20		
18 67		69.62*/+0.20	,		
1868			69.47/ 2.90		
1869			70.14/ 2.67		
1870			67.41/0.0		
1871			>66.81*/0.0		
2201		71.40/4.17			
2202		73.61/0.0	73.61*/+0 31		
2204		76.16/0.0	76.22*/+0.06		
2235		59.77/0.0	>59.77*/ 0.0		
2236		61.01/0.33	>60.68*/ 0 0		
2237		70.40/2.94	70.35 / 2 98	0.04	
2238		74.46/0.43	74.55 / 0.34	-0.04	
2239		59.58/0.00	>59.58*/ 0.0	-0.09	
2240		· · · · · · · · · · · · · · · · · · ·	>59 72*/ 0 0		
2241		60.33/+0.50	>59.83*/ 0.0		
2273		, <u> </u>	108.35 /15 95		
2287			72.80 / 2.95		
2288			72.54 / 2 97		
2293			76.24 /12 99		
2294			79.37 /24 08		
2295			79.97 /29.05		
2296			81.65 /31 52		
2376			74.25 / 3.85		
2381			73.81 / 6 /6		
2382			73.96 / 7 06		
238 3			74.90 / 3 91		
2384			74.95 / 3.91		
2385			74.38 / 9 01		
2390			74 41 / 4 40		
Spring	lake		····· / ······························		
-					

APPENDIX M

Strength analysis of core

A series of 5 rock-strength tests were done on samples of the vuggy pseudobreccia from underground and pit areas. Cores for the tests were drilled perpendicular and parallel to bedding directions. The tests included the direction tension test, uniaxial compressive test, and triaxial compressive test following the procedures outlined in the ASTM (1978 and 1980) standards publication; the Brazil (indirect tensile strength) test following the procedures in the ISRM (1981) guidelines; and the point load test following the CAPMET (1977) standard procedure. The tests were repeated on at least five samples to obtain more representative results. Only one triaxial test was made due to the difficult procedure.

Results

Strength test results from Newfoundland Zinc Mine diamond drill core.

TEST TYPE	SPECIME	N #1	SPECIME	N #2
unaxial compressive strength	-100	MPa	-151	MPa
tensile strength (direct tension)	2.2	MPa	1.5	MPa
point load strenth index	5.9	MPa	6.4	MPa
Brazilian test (indirect tension)			8.5	MPa

Tensile strength was less if the test was done perpendicular to bedding. The compressive strength was less parallel to bedding as was expected in light of the inhomogeneities of this drill core (stylolites, veining, vugs = 10 % porosity, bedding plane surfaces). Stylolites decrease rock strenth and may localize dissolution by groundwater.

APPENDIX N

Primary permeability of dolomite and limestone belonging to shelf-type facies is assumed to be low (Boni, 1975) and in the order of 10^{-9} to 10^{-6} m/s (Davis, 1969). Permeability of the mine host rocks is more a function of secondary voids rather than the original porosity of the rock matrix and this is supported by evidence from other carbonate areas on the Northern Peninsula (Golder Associates, 1983). Carbonate rocks characteristically have an uneven permeability distribution, and dolomitization as well as ancient and present-day karstification of these platformal rocks accentuates this feature and increases permeability.

Relationship between groundwater flow and conduits

Major groundwater-bearing conduits in the mine workings are bedding planes, faults, and fractures. Other major sources of seepage include backs (ceilings of drifts), joint-bedding plane intersections and drill holes (Acres, 1975b).

Bedding planes are prevalent throughout the mine and about two-thirds of the backs are bedding plane surfaces (R. Crossley, pers. comm.). In the mine many bedding planes are intersected but only some of these conduct significant inflows and these surfaces may have been planes of slippage during regional compression (see Section 3.5.3.1). Bedding planes (Set #4) are consistently longer than any other fracture type (see Section 3.5.3.2), emphasizing the role of bedding planes in conducting groundwater to the mine despite their relatively low numbers. Wet lines appear on the backs where joints intersect the bedding planes and conduct water into the open drifts. In 1976 from May 14-15, over half of the total mine inflow was contributed by bedding planes (378 1/s from bedding planes "66" and "80") (Acres, 1979). Other inflows measured during this Acres survey are:

95 l/s from faults 71 l/s from rock bolts 38 l/s from diamond drill holes 58 l/s from raises

Large inflows occurred (Acres, 1977) in the mine where faults (subparallel to orebody) and three major bedding planes (9, 18 and 24 m below the worms marker horizon) (see Figure 3.2) intersected the L-Zone drifts. Faults with major inflows have an average orientation of 225/80 (Acres, 1975b). The importance of these faults was established in 1975 by dye tracer tests (Acres, 1975a). Dye injected elsewhere in the mine discharged soon afterwards at drift-fault intersections. Flow velocities of 2.3 $\times 10^{-2}$ m/s to 3.1 $\times 10^{-2}$ m/s were calculated, only an order of magnitude lower than maximum mean tracer velocities of 1.7×10^{-1} m/s for open-channel flow measured at Castleguard Meadows, Alberta (Smart & Ford, 1986).

In 1986, inflows from bedding planes were measured by timing the filling of a 500-ml container at various locations along 3 major bedding plane seeps (main decline near DH-27, see Figure 2.2). Seepage varied along the bedding planes and ranged from nil to 0.02 l/s every 3 m. A total inflow of 1.25 l/s over a length of 81 m was estimated. Golder Associates (1983), duringtheir pump testing at Port au Choix, also found distinct water-bearing zones that coincided with a geological contact between limestone (Catoche Formation) and the overlying dolostone (Aguathuna Formation).

The shallow east drift (NE of portal decline; Figure 3.3) was very wet in June 1975 and seepage from a zone of intense vertical jointing was observed (Acres, 1975a). In July 1986, the east drift was dry with the exception of minor seepage from a small joint zone near DH-31 (see Figure 2.2). In another part of the L-Zone where a major grouted fault (216/72) intersects bedding planes (vicinity of DH-32, see Figure 2.2) inflow of 9.8 l/s over a length of 14 m was measured in 1986. The number of water-conducting features decreases with depth in the L-Zone decline, which implies rock permeability decreases as well.

Permeability versus lithology

- 2

According to Nolan et al. (1979), no real aquifers exist in the surficial deposits of the Northern Peninsula, due to their thinness, discontinuous nature and low permeabililty (K of glacial drift = 10^{-2} to 10^{-10} m/sec, with yields of 0.03 to 0.17 l/s). Although the overburden and lake sediments around the mine site were not explicitly tested, a general consensus is that they have low permeability (Acres, 1975a; 1976) ranging from 10^{-12} to 10^{-6} m/s for glacial till (Davis, 1969).

RQD plots (see Appendix A) for the 1986 drill holes show that areas of dense fracturing do not appear to be related to specific (sparite) porous layers in the pseudobreccia unit. The lowest RQD values (dense fracture, low mean core length) consistently occur in the first 2-3 m of core and they are not restricted to the more vuggy sparite sublayers. This implies that permeability is not a function of lithology. Low vug interconnectivity may lessen the permeability of the sparite sublayers. On a small scale, the pseudobreccia unit appears heterogeneous with respect to lithology and porosity; but the repetition of sub-layers makes this unit essentially homogeneous on a regional scale. Areas of increased r rmeability in carbonate rocks, caused by highly fractured water-conducting zones, can be found better by caliper logs in drilled holes

277

(Lattman and Parizek, 1964; Parizek and Siddiqui, 1970).

The following conclusions were derived from pressure-test These tests were done on 8 diamond drill data (Acres, 1974a). holes located 60 m from the northern shore of Trout Lake in the vicinity of the present L-Zone workings (see Figure 2.2). A11 wells were collared in either the siliceous dolomite (Aquathuna formation; see Section 3.2.3) or the Table Head formation. The pressure tests involved pumping pressurized water into a 3-metre perforated section sealed by double packers. Acres (1974a) suggested that in some holes, mud-filled voids may have been washed clean by this testing method. This method is also subject to errors if shallow and deep cavities interconnect a short distance from the well bore, allowing vertical leakage between successive zones of the aquifer, and producing exaggerated permeabilities (Parizek & Siddiqui, 1970).

A numerical listing of the permeability values was not given in the report (Acres, 1974a). Due to the poor quality of data presentation, a qualitative assessment of the permeability values versus depth was possible for only 3 of the holes tested. Two of the diamond drill holes, collared in the siliceous dolomite, were not tested every 3 m, due to caving of hole walls.

From these data it was concluded that the permeability of the siliceous dolomite tends to be greater than that of the underlying dark grey dolomite (Catoche Formation). The pseudobreccia unit gave some of the lowest permeability values in the tested section, but it is also lower down in the carbonate sequence and farther from the surficial weathering zone. The upper and lower contacts of the pseudobreccia commonly had high hydraulic conductivities of 1×10^{-3} m/s. The permeability variation can be larger within the same lithological unit than between different lithological units. These fluctuations may be caused by well bore intersections with major bedding planes or fracture seeps within each rock type. There is also as much a fracture seeps within each rock type. variation in permeability between holes laterally in the same formation, as between different lithologies in the same hole vertically. The lateral difference in permeability between piezometer holes is not great despite the known facies changes in lithologies throughout the area (T. Lane, pers. comm.; 1987). In individual units there is a minor trend to higher permeabilities laterally towards the east. This could be caused by an increase in the fracture size/or extent of dissolution as one gets closer to the crest of the anticline (see Figure 3.3).

The above information further substantiates Acres' conclusion that individual flow conduits such as bedding planes and fractures are very significant to the permeability distribution in the carbonate rock mass at the mine. The analysis of Acres data and the 1986 drill logs shows that permeability is not necessarily a function of lithology in this aquifer; at least not in the upper few hundred metres of the carbonate platform.

Permeability vs depth

Based on the compilation of data on yield and depth for 250 wells, Nolan et al. (1979) found that the most productive hydrogeologic unit on the Northern Peninsula is the St. George Group, with maximum recorded yields of 3 l/s. The shallower (less than 40 m) drilled wells maintained the highest yields and deep wells had low yields. They believe that the water-producing zones were of 2 types: fissures and solution cavities.

Large well yields may be obtained from fractured aquifers, especially at fracture intersections (Rauch and White, 1970) and at shallow depths (Thrailkill, 1986). The more weathered, highly fractured Table Head Limestone in the St. Anthony airport region was found to be more permeable than the underlying, less fractured St. George formation (Carter et al., 1986), which further emphasizes permeability as a function of depth and not lithology on the Northern Peninsula carbonate platform.

Permeability logs from the pressure tests (Acres, 1974a) show that the maximum permeability values occur in the upper 10 metres of the section, and most often in the upper 3 m regardless if the hole is started (collared) in Table Head limestone or siliceous dolomite. High permeability values occur sporadically down hole at bedding plane/geologic contacts and zones of fracture intersections (Acres, 1974a).

Acres further subdivided their quantitative permeability data into upper and lower zones. The first 45 to 60 m tested (upper zone) resulted in hydraulic conductivities of 1×10^{-5} to 1×10^{-6} m/s and lower horizons (underlying the ore zone) had hydraulic conductivities ranging from 1×10^{-6} to 1×10^{-7} m/s. Greater hydraulic conductivity of 8.0 x 10^{-4} m/s was calculated at ground surface from inflow measurements into the highly fractured K-Zone open pit (Acres, 1975a). In the upper 3 m of the open pits, fractures and bedding planes are more weathered and extensive. This is evidence for a layered permeability in the dolostone aquifer due to weathering rather than a permeability controlled by lithology.

Diamond drill core analyses by Acres (1974a) allowed a qualitative assessment of relative permeabilities in the rock sequence at the mine site. The upper 15 m of core exhibited the highest permeability due to solution-enlarged jointing and sinkholes. This conclusion is based on the following drillers' observations: loss of water, rod drops in the first 20 m, closely spaced fractures in upper sections of boreholes, low core recoveries and audible water flow into the hole. These observations correspond with the 1986 drilling results from 4 shallow holes (Appendix A) which had a total hole RQD range of 43.9 to 79 % and a low average of 62 %; indicating poor to fair rock mass conditions. Stylolites (perpendicular to core axis) were very common in the core, and some core sections could be broken by hand along these irregular suture-like subhorizontal discontinuities (see Appendix A). Stylolites decrease rock strength, as evidenced by rock strength tests (see Appendix M), and may localize dissolution by groundwater.

The Acres (1974a) drill core analysis indicated that rock horizons below 15 m and extending 45 to 60 m below the ground surface comprise a moderately permeable zone consisting of essentially homogeneous dolomite whose permeability gradually decreases near its bottom. This zone segregation is based on visual logging of core, fracture spacing, frequency of cavities and a RQD of 60%. In this phase of their study, Acres divided the permeability by lithological units with some regard to the weathering profile, but pressure testing later supported the hypothesis that permeability was not dependent on lithology. Thus, permeability decreases with depth as frequency and weathering of flow conduits decreases with depth.

Transmissivity and storativity

Two pump tests were undertaken in the same pumping well at different depths by Acres (1974a). Final drawdown cones and specifics for each pump test are given in Figure 4.6. The first water level measurement was taken 25 minutes after the pump test began and hence no early time data were recorded. Acres (1974a) employed analytical techniques based on the assumption of steadystate flow conditions. Transmissivities and hydraulic conductivities determined from each pump test range from 7.0 x 10^{-4} to 1.0 x 10^{-3} m²/s, and from 5.7 x 10^{-6} m/s to 8.1 x 10^{-6} m/s respectively, for an aquifer "hickness of 122 m.

Due to the number of observation wells, the Jacob distancedrawdown method (Heath, 1983) was the most applicable method for reanalyzing the pump test results since early time data necessary for Theis type curve analysis were unavailable. There is a large scatter in the plotted points on distance-drawdown plots, suggesting that this aquifer is anisotropic. Newly calculated transmissivity and storativity values are listed below:

Pump test #1 average T = $1.24 \times 10 - 3 \text{ m}^2/\text{s}$ Pump test #2 average T = $1.01 \times 10 - 3 \text{ m}^2/\text{s}$

Pump test # 1S = 0.007Pump test # 2S = 0.002

The new transmissivity values closely approximate and validate

the values calculated earlier by Acres Consulting.

The axis of maximum transmissivity for the aquifer tested by pump test #1 (Acres, 1974a) was determined by Papadopolous' method (1967). This method determines directions of aquifer anisotropy using pump test data from a minimum of 3 observation wells. The N63E oriented axis (see Figure 4.6) corresponds to an average orientation between the two documented major joint sets in the mine area and the dominant regional NE trend (see Section 3.4.1). The previously mentioned major fault conduits have similar orientations as Joint set #1 and obviously contribute to the aquifer's anisotropy as well.

Other pump tests were done on the Northern Peninsula in the same rocks, by Golder Associates (1983). One can explain the disparity between Acres' transmissivities of 0.0007 to 0.001 m^2/s and Golder's values of 1.45 to 1.8 m^2/s by differing methods of analysis and by different water table levels in each case. At the beginning of the pump test the water table at Daniel's Harbour was 15 m below bedrock surface and much lower than at Port au Choix. Much of the water-producing section at Daniel's Harbour was lost, producing the lower transmissivity Groundwater was drawn from more of the bedrock's values. weathered portion at Port au Choix, as indicated by the perturbation in the drawdown curve after 200 minutes of pumping (Golder, 1983). Parizek and Siddiqui (1970) found in carbonate aquifers of Pennsylvania that a pumping well's yield is determined more by the position of the water table with respect to zones of increased permeability or openings than by the proportion of saturated rock that is transected by the well itself.

Aquifer Classification

Many authors have attempted to classify carbonate aquifers. (Beck, 1986; Legrand and Stringfield, 1971). The carbonate rocks of this region have characteristics that belong to all conceptual carbonate models introduced by Thrailkill (1986). Features such as: large well yields at shallow depths and dominant void space fractures, the presence of sinkholes as and the intimate association of aquifer flow with surface hydrology, the dominance of diffuse flow in an interconnected network of joints and bedding planes that are slightly enlarged by dissolution, are characteristics of The Weathered Fracture, Shallow Conduit-Flow Carbonate, and Deep Continuum-Flow Carbonate Aquifer Models, respectively (Thrailkill, 1986). The physical conceptual model for this study area, combining all these characteristics, may be called the Weathered Fracture-Shallow Conduit Carbonate Aquifer Model.

APPENDIX O

Calcium ICP/MS analysis

Water samples taken in 1986 were analyzed for trace elements on the ICP/MS as well as for calcium. Listed in this table are the Ca analysis in parts per million (ppm). These analyses were used in Figure 5.17 of the text.

DH25	119
DH26	60
DH27	56
DH28	45
DH29	79
DH30	65
DH31	52
DH32	67
DH33	57
DH34	46
DH35	34
DH71	58
DH76	56
DH77	71
DH78	57
DH79	60
DH80	55
DH81	53
DH82	63
DH83	58
DH84	71
DH85	91
DH86	39
DH87	59
DH88	30
DH101	61
DH102	37
DH103	57

1

1

·

·

.

r

.

I

i**muth**

PILATION

. -

Ľ

1

. .

.

