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FRONTISPIECE: Cathodoluminescence photomicrograph of a 
metamorphosed dolostone from the Curling 
Group (Cambrian to Middle Ordovician) of 
western Newfoundland. These rocks are 
composed of brecciated brightly luminescing 
dolomite annealed by weakly luminescent 
(dark) dolomite. The brecciation and the 
annealing processes are probably a result of 
the metamorphism. A weakly luminescent 
calcite fracture (yellow) runs the length of 
the photograph. Field of view, 1 centimetre 
by 0.75 centimetres. 
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ABSTRACT 

Seven varieties of dolomite and dolostone, the · --- . ' 
p.roducts of four stages of dol.o.IRitization, are recognized 

within the St. George Group (Lower Ordovician) of western 

Newfoundland. 

Dololaminites,...are syngenetic, formed, in a tidal flat . . i--
environment, characterized by prominent shallo~ water 

sedimentary structures, 1 ocal. bioturbation, 0 18o va 1 ues 

of -4 to -8 o/oo and cofupo~ed of anhedral, very finely 

crystalline, uniformly l~minescent dolomite rhombs. 

Siliciclastic minerals are ~ubordinate. 

Early-diagenetic (eogenetic) dolomitization, possibly 

initiated by the presence of mucopolysaccharide.s and 

cqntrolled spatially by permeability, has resulted in'three -

between -4 and ~10 o/oo. Mottle dolomite selectively 

replaces body and trace fossils and is localize~ ~long 

pressure solution seams. · Rhombs of matrix dolomite are 

evenly distributed in mudstones and wackestones and range 
• 

in abundance trom trace ~uantities to 80 . percent. Both 

varieties are characterize'ci by finely crystalline, well 

zoned, idiotopic to xenotopic: ~olomit·e.- Thoug;h i .nitia~ly 
. . 

nucleated · during early- d-iagenesis, they have: undergone a 

prolonged period of. gr;owt:h continuing at leas't until····. the 
of.Y. 

ons~t of pressure ~olution. 
I 

. . ___ .... -

• 
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Pervasive ·A dolostones are mottled rocks characterized 

by bimodal crystallinity: finely crystalline dolomite in 
I 

mot.tles, medium ~ cryst.alline dolomite between mottles. Both 
' 

-are/ xenoto.pi c and un_i forml y .1 urrii nascent to moderate 1 y 

zoned. f'hese rocks are coincident with early phases of 

mottle/matrix dolorititi~ation and may hav~ developed due to 

the mixi~g of meteoric and marine waters. They have not 

been subjected to late-diagenetic periods of growth. 

Hydrothe.rmal al.terat ion, probably related to tectonics . 

during init-ial phases· of the _. Tacon i c Orogeny (Middle · 

Ordovician), is .a late~diageneJjc (mesogenetic) event and 
- . ( . . 

in the northern portion of the study area (Great Northern 

Pehinsula), has developed two extensive fi~ld v~rieties. 

Pervasive B do}ostones are bimodal rocks ·resulting from ____ ... _____ .. . ·-----

overprinting of a dolomite-mottled limestone . Saddle 

dolomite is a void and fracture f i ll.i ng ·cement and is 

associat~~ with sphalerite minerali~ation near Daniel '.s 

Harbour, Newfoundland. Both varieties ar~ composed of 

coarsely crystalline, uniformly luminescent and straineq 

dolomite rhombs (commonly with curved crystal outliri"es), 

and are characterized by 6 18o values ranging from 
. ···-.. 

-a to -12 o/oo. ·---...... 
.. ··--

-
Hydr otherma'l dolomitization in the southern portion 
• 

- the s tudy area (Port au Port 'Pen i n s u 1 a ) is rare. Th i s 

vaiiety of matrix dolomite is restrj cte~ to the 

of 

intergranular (mat~ix) ~r~as of wackeston~s and packstones • 

... 
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It is similar boih petro~raphically and isotopically to 

saddle dolomite. --. 

Cavity-filling dol~stone h:s filleddissolution vojds 

i~ pre-existing dolostones formed ·during ~eriod~ of 

s~baerial ex.posure an~ i~ characterized ·by olBo values 

ranging ~rom ~6 to -9 o/oo. The - dolomit~ is very finely 

crystal) i ne, · unffo.rmly~ 1 umi nescent and anhedral • .Access.ory 
. . ' 

minerals are diverse and abundant. 
. . 

·KEYWORDS: St. George Gro.up, Lower O'rdovician, western 

.) 

Newfoundland, dolqmite, dolomitization, 

diagenesis, isotope geochemistry, 

cathodoluminescence, petrography • 

. ' 
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CHAPTER ONE • 

I 

INTRODUCTION 

1.1 PURPOSE: 

The St. George Group iR a sequence of ~hal .lnw w~ter 

carbonate rocks deposited duri11g Eat1y Orrlo.vici;sn time 

along the western continental Margin of the Proto-At1ant. ic 

(Iapetuc;) Ocean (Levesque, 1977, Willi;,ms, 1978, Pr~tt, 

1979, James and Stevens, 1982, ratt_ and Ja'mes, in press) • 

Over the past 

subject of many 

'sedimentology and 

1971a,h,. 1978a,h, 

press), economic 

.. 
·rocks t;'ave heen the 

s with emphasis on their 

stratigraphy . (Levesque, 1977, Knight., 

1980, Pra~, Pratt and James, in 

potential, (Cumming, 1968), conodont ... 
biostratigraphy (Rarnes ""d Tuke, 1970, Fnhr"eus, 1970, 

1977, Stouge, 1980, 1982) and palaeontology (Flowf"r, 197R, 

Fortey, 1979, Royce, 1979, Stouge and Royce, 1983). Little 

~ 

is known, . however, about'the dolomite and dolostone which 

accounts for approximately one third of the st. Genrqe 

characterize the differe~t varieties of dolomite and 

dolostone 
•. 

in the St. ~eorge Gr~up, by integrating d~tflled 

(i~ld study with petrographic an~ geochemical analyses. The 

_stratigrAphic and geographic distrihutions 6f the different 
~ 

varietie~, · as well as their paragenetic successioh will he 

-}-
-.. 



I 
,, 

determined ~nd sugqestions for possible mechanisms of 

,., dolomitization ~n 1 be offered. 

l.i LOCATION AND METHODS: 

. · This study is concentra~ed along the west coast of 

Newfoundland where the sedim~ntology~ stratigraphy and 

pal~eontology 6f the St. ~eorg~ Group have previously been 

documented (Levesque, .1977, Knight, 1977b, 1980, Pratt, 

1979, Smyth, 19B2a,p,c, Pratt and James, in press.). Ten 

strat i~raph ic sect ions were studied duri 'ng the summer of 

19PJ; six in the vicinity of the Port au Port Peninsula and 

four along ~he west coast of the Great Northern Peninsula 

(figur-e 1.1). In addition, several "key location·s• which 

contained interesting dolomite relationRhips, hut where 

sections could not bP measured hecausf' of uncert.:tinty in 

the stratigraphic position· of the outcrop, were also 

studied. These other locations include; Daniel's Harbour, 

Plum Point, Rive~ of Ponds, Spirity Cove, New Ferolle, 

Squid Cove, Canada Ray and Hare Ray (figure 1.1). Taken 

together, the measured sections and the key_locations cover 

a 11 known aspects of stratigraphy, sedimentoiogy and 

dolomitization found within the St. George. 

Each of the ten sect ions was mf'asureiJ by a 

combination of range pole and steel t ·ape. Detaile d ·. 
descriptions of eo lour, grain size, 1 i tho1ogy, sedimentary 

- · ... ~ 
structures And macro-palaeontology were made in the fie l d 



\ 

\ 
\ 

' \ 
; , 

FIGURE 1.1: Map of the study area indicating the 
distribution of Lower Ordovibian pl~tform 
carbonates (St. George Group) and the 
posit ionS\ of measured sect ions or key 
locations discussed in the text. 



-- - - - !... -.-~--=-

LEGEND 

eO MEASURED_ SECTION 

-- KEY LOCATION 

CD LOWER COVE 

@ ISTHMUS BAY 
@BERRY HEAD 
@) NW GRAVELS 

@ AGUATHUNA 
QUARRY 

@ SMELT CANYON 

25 0 

/ 

NEW FEROLLE 
ST. JOHN ISLA 

BACK ARM 

RIVER OF POND 

SCALE<km) 

25 50 75 100 

4 

c::::ic:::> 



·. 

.s 

for all lithologies (refer to appendix A) • The 

classification sch~~~ of Dunbam (1962) was employ~d to 

describe the lim~stones. 

Particular emphasis wa~ plac~d upon the _de~cription 

of dolomite -and nolostone. In 
':.). 

char:.acte ri st i cs outlined previously, 

localization, fabric _preservation 

~-

additio~ to the 
~ 

the crystal ~ize, 

and the amnunt of 

dolomite (vi-sually estimated) within each litho-

stratigraphic unit were also noted. 

Approximately 450 samples were collected from the ten 

measured sections and key locations and 375 poli~hed thin 

sections were made from these samples. All thin section~ 

were stained with a combination of Alizarian Red-S to 

differentiate calcite and rlolomi te ·, · anrl potassium 

ferricyanide to qualitatively estimate iron content. One 

hundred ana forty five thin sections were re-polished and 

examined by cathodoluminoscope. These analyses were 

supplemented with - electron microprohe data. 

Selective rlolomi te and dolostone ~ample~ wP.re 

processed for X-ray diffraction analysis to identify the 

insoluble non-carbonate fraction and to char~cterize the 

host carbonate~ Scanning electron microscopy was also used 

~o characterize the different varieties of dolomite and 

dolostone. 

Carbon - oxygen stahl~ isotope ~nalysi s was perfo~ed 

on 50 reprP.sentat i ve 1 imestone, dolomite and doloston-e 
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samples. Duplicates of these samples were analysed by· 

atomic absorption to deter~ine Sr2+ concentrations. , 

1.3 REGIONAL SETTING: 

The island of Newfo~ndland~ which ~arks the north~rn 

terminus of the North Americ~n Appalachians, has been · 
. I 

• I 
divfded into four ., tectono-lithographic zomes by . Williams 

\ 
{ 1978, · 1979). From west to east, these are t\,he Humber, the 

\ 
Dunnage, the 9ander · and the Avalon (figure· 1.2~ . 

The St. Georg~ . Group is wholly confi ~ed with i n the 
I 

Humber zone, which is interpreted a s \ the ancient 

. continental roargin of the Proto-Atlantic Ocean. 
( 

Sedimentation within the Humber zone began during 
I 

Eaily · Cambrian time following rifting of Gren~ill i an aged 

basement (ca. 1.0 billion years: williams \ 
and Stevens, 

I 

1974, James and Stevens, 1982). Rift facies cl~stics pass 
. I . 

clastic shelf depos~ts of·· 'the La b:rador Group upwttrd into 

and th~n into the predominantly carbonate deposits of the 

Middle Upper Cambrian Port au Port Group (figure 1.3 ) . 

-·~part fr:om a few minor? breaks, this stable carbonate she l f 

sedimentation continued through Early· Ordovician time (St. 

George deposition) and into Early Middle Ordovic i an time · 

(Table Head depositio~) (James and st:eyeons, 1982). The 

lower portion of the Table Head passes upward into deep 

wate r carbonates, shales and finally flysch recording the 

collapse of th e stable continental margin (Klappa ~tal., 
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FIGURE 1.2: Tectono-stratigraphic zones of Newfoundland . 
Th~ St. George Group is localized within the 
Humber Zone (stippled) (After Nilliarns, 1979). 
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FIGURE 1.3: Authochthonoous stratigraphy of the Humber 
Zone. The position of the St. George Group is 
indicated by the stippled pattern. Important 
~isconformities within the St. George are 
also identified (modiffed from Knight, 
1977b, James and Stevens, 19R2 and Lane,. 
1984). Allochthonous sediments of the Humber 
Arm Supergroup were emplaced during the 
Mi~dle Ordovician. 

\ 

' I 
I ' 
• I 
'~ / ......... __ / 
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19AO). Subs ide nee procee~ed emplacement of • alloch tt{onous 

Rtrata · (Humher Arm Supergroup) dedved from the east and 

·transported .·westward (Wi 11 iams, 1978, James and Stevens, 

1982: figure 1.3). 

In the Port au Port region (figure 1.1) , these .. 
allochthonous strata are overlain by the nE>oallochthonous 

upper Middle Oioovi~ian Long Point Group, by the Upper 

Silurian? Devonian Clam Ran~ f~rma t ion . and, the 

Carboni ferou!'; Cod roy Group (James and Stevens, 1982, Dix i 

1 9 8 2 : figure 1. 3) • 

I 

• 



CHAPTF:R 'nrK1 

STRATIGRAPHIC AN[) SEDIMFNTOLOGICAL FRAMF:WORK 

2 • 1 PREVIOUS WORK: 

Carbonate rocks which 
4 

cr.op out alonq the west coa!'lt 

of Newfoundland have been studied regular;ly ~ince the 

initial stratigraphic investigation carried out in 18fil by 

Sir James Richardson (published in Logan, 1863). Since that 

time, numerous studies involv·ing some aspect of ' the Lower 

Orapvician carbonates, (or carbonates that would later be 

~· assigned an Early Ordovician age), have been published. 

Those of interest to this study . are summarized briefly in 

table 2.1. 

Many of the previous studies summarized in table 2.1 

were primarily concerned with fitting ~hese rocks into a I 

strafigraphic framework. The name I st. George has been 
I 

retained since ij:s initial usage by Schuchert anc1 Dunbar 

(1934), but at various times, the St. George carbonate~ 

have been as~ igned format iona 1 status (J<inc1le and 

Whittington, 1965, Whittington and J<indle, 1966, Sm i t, 
' · 

1971, Coliins and Smith, 1975, Levesque, 1977), or group 

status (Sullivan, 1940, Flesaw, lq72, 1973, 1974, J<ni~t, 
- ·--

1'977b, Pratt and James, in press.). The most recent 

reassessment of stratigraphic nomenclature, and the scheme 

that shall b~ used in this study, is that proposed by 

Knight and James (in prep.). They assign Group status to 

-11-

I 
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TABLE 2 ol: Sununary of major previous studies concentrating 
on the St o Gegrge G~oup o 

PUBLICATION St.NMARY· OR IMPORTANT CCH;WSlONS 
.JUl ES (}~2) FJ~ST PERSON TO [ J AAJ N[ THE GEOLOGY OF WESTERN NEWFOUNDLAND, / 

~I CHAAOSON cum rrRST COIIPREHENSIVE STUDY OF THE STRATlGRAPHV OF TH, WEST COAST OF NEWFOUNDLAND 
?ESCRIIED AND NAMED THE POTSDAM GROUP UNITS A TO C , AND THE GUEB[C liJIOUP 

IN LO<iAN, UNITS II TO g), IIISTAKf"LY IDENTIFIED CNIPRO-OIIDOVICIAN ST.RATA AS LOWER 
SILURIAII IN_AGE. 

MURRAY (11166) EX_.,. I NED JPII LAR CARBONATES I N CAIIADA lAY A1D HARE BA~ (&REAT NOitTHERII 
PENINSULA ASSIGI l NG THEM EARLY ORDOVICIAN LLANDEILO AGE , ' . 

. REDH I NUl IIUCH r.F CNIBRO· yRDOVJ Cl All STAAT IGRAPHY, 
U-ASSIC.HEP RlrriARDSOH'$ 1161 POTSDAII GROUP TO THE UPPER CAIIIRIAN LAIRADOJII 
SERifS; ~I VIS I ~IU D TO I OF THE QUEBEC GROUP TO THE LOWER ORDOVICIAN ST. 

& DUNBAR (}9}~j) 
:. =:~:= ::•!<~, DIVISI ONS K TON TO THE TABLE HEAD SERIESJ DIV ISION 0 TO THE 

SCHUCHERT LOll<> POINT SERIES; DIVISION P 10 THE COW HEAD GROU .. ~NO DI.YIS ION Q TO THE 
6RHN POINT AND HUMBER SERIES ALL IIIDDLE ORDOV I CIAN , 
nACEll THE TYPE SECTION OF THE ST, 6EORGl SERIES AT THE GRAVE LS ON THE PORT . AU PORT PENINSULA . SUGGESTED THAT THE ST , · S~ORGE-TAELE HEAD CONTACT WAS 
UNCONF ORIIABLE, 

.. 
EX_.,.I,.ED T"E HARE SAY AR EA (GREAT NORTHE RN PENI NSULA) R[CO<i NI ZING THREE 

COOPER ()937) LIIIESTOIIE UtiJ TS. THE SOUTHERtl ARII AND IRENT ISLAND LI"ESTONES ARE CORRELATIVE 
WITH THE ST . GEORGE SERIES; THE HARE ISLAND LIMESTONE IS CORRELAT I VE HITH THE 
"I DOL[ ORDOVICIAN TABLE HEAD SER IE$, 

' fXAMINfn · Cl"~~O-ORDOV IClAH CAR80~ATE OUTCROP$ IN THE ~ANADA BAY AREA AND IN SO 
BETZ (!939) DOING, !lHII'ED fOUR NEW UNI TS . THE CHI 1114EY A~ fQRI\A.lWN WAS CORRELATIVE HITH 

THE ST, C.£0RC.F S~R I ES; THE REIIAINIHG THREE WERE CORRELATI VE WI TH C_.,.BRfAN OR 
IIIDDLE ORDOVICIAN STRATA, 

- STUOI ED THE G~CLOH OF THE PORT AU PORT AR EA AND ASSIGN ED THE ST. GEORGE GROUP 

SULLIYAH (}9q0) STATUS, SUGGfSTED THAT THE ST , GEORGE WAS I" fAULT CONTACT WI TH THE UNDERLYING 
CA/'IBAIAN 10CKS AliO THAT SUBSTANTIAL FAULTING HAD AFFEC TED SCHUCHERT AND 
DUNBAR'S 1934) TYPE SECTION Of TilE ST, GEORG£. 

TROELSON (}9q7) EXAI'I I NED TH.E IONNE lAY AREA AND DIVIDED THE ST. 6£C'RGE INTO fiVE Nut\IERED 
UNITS, SUGGESTED THAT THE IASAL PORTION WAS CAIIIRIAU IN AGE. 

.JOHN$ ON (}9149) 
PRODUCED A 7EGIO~AL DESCRIPTION OF THE ST, GEORGE GROUP , DISCOUNTED 
SULLIVAN'S lUO SUGGESTION THAT THE CAI'IBRIAN AND ORDOVIC IAN WERE IN FAULT . CONTACT ON TH[ PORT AU PORT PENINSULA, 

WALTHIU (}gq], 191f9) PROPOSED THAT THE BASAL UNITS OF THE ST, GEORGE HERE EQUIVALENT TO QUARTZITES 
FOUND WITHIN UII'P[R CAIIBRIAN STRATA. 

OXL(Y (1953) ~lAPPED T"E GFOLOGY OF THE PARSON'S POND - ST , PAUL'S AREA ON THE GR(!.T 
NORTHERN PENINSULA FOCUSING MSTLV OH ORDOVICIAN SUATA, 

. JOHNSON (195Q) STUDIED STROtiTI~ ORE DEPOSITS LOCALIZED IN PR£ - CAII!ON IFEROUS TOPOGIIAPHJC LONS 
WITHIN ST, GEORG£ STRATA IN THE PORT AU PORT AREA, 

N,ELSON (}955) MAPPED THE G~OLOGY OF THE ~OIITLAND CREEK-PORT S.t.UNDEIIS AREA (I~CLUDES ST , 
GECl~GE ROCKS OF TM£ GIIEAT IIORTHERN PEtit NSULA, -

WOOD ARJ) m57> I)[SCR I BED THE "RECRYSTALLIZED" DOLOSTONE$ OF THE ST, GEO~GE GROUP FROII THE 
PORT' AU CHOIX - CASTOR RIVER ARU OF THE GREAT IIORTHERN PEIII NSULA, 

STUDIED THE HUIUIEII GCRGE AND GOOSE ARII AREAS' OF WESTERN NEWFOUNDLAND AND 
LILLY CJ961J SUIDIVIDf.D THE ST. GEORGE 6R~UP INTO THE HUGHES IROOK AND CORNER BROOK 

FOID'IATI(1fl$, FI'IST (PLILISHED DETAILED PETROGRAPHIC AND GEOCHEIIICAL ANALYSES 
PE~FORII[D DN ST, GEORGE DOLOIIITES AND DOLOSTONE$, 

· II I LEY (]962) 
STUDIED THE STEPHENVILLE IIAP AREA (PORT AU POIIT PENINSULA) , REPORTED 
PREVIOUSLY UIIPUBLISHED DATA AND WAS THE FIRST PUBLISHED STUDY DISCUSSING 
MAGNETIC ANOIIOLIES DETERMINED FROII AN A(RC»\AGNETIC SURVEY, 

KINDLE & w"JTTINGTOHH~ llfDUCED THE ST. GEORGE TO FORtiATIONAL STATUS. DISCOVERED CAIIBAIAN TRILOB I TES 
I'MITTIN(;TON & KINDLE IN STAA(A PR~VI OUSLY INTERPRETED AS LOWER ORDOVIC f AM IN AGE 1Y SCHUCHERT AND 

DUNBAR UU , , · 

DISCO'+'ERED AN EROS I ONAL CHAIINEl CUT IHTO DOLOSTONE$ AT THE ST . GEORGE-TAIL£ 
C UO'II I NG (} 967) HEAD CONTACT AT AGUATHUNA QUARRY ON THE PORT AU PORT PENINSULA , THIS 

COIIF I liMED SCMUCHERT AND DUHIAR_' S BELl EF THAT THE CONTACT WA$ UNCONFOR ...... LI AT 
THIS LOCALITY, . 

CUP911 NG '()963) Dl SCUSS£D THE IIOLE OF. THE ST 1 GEORGE- TAIL[ HEAD UNCOHFOII~ITY ON SPHALEII I TE 
"INEIIALIZATION IN THE DANIELS HARBOUR AREA OF THE 6REAT NORTHERN ~E:II 'ISULA , 

,X..,..INED 1'10 PACKAG£$ 0' CN'IIIIIO- OIIDOVICJAN IIO<:U I N THE PISJOLET lAY AREA 
I'&AII THE ~OIITHERH TltHINUS OF THE 'REAl ~OIITNERN "ININSULA , THE FIIIST 

TuKE (1968) ~ACKAGE, AN AUTOCHTHOIIOUS SUITE. OF CLASTIC AND CARIOHATE STRATA, WEll[ 
COUHATIVf ~IT~ THE CAIIBRIAH AND LOWER TO MIDDLE ORDOVIC IAN (INCLUDU THE ST. 
l'EORGE GROUP • THE SECOND ~ACKAG[ WAS I IITERPRETED AS ALLOCHTHOIIO\JS AND IS 
~OMPOSED OF GII[YWACKU, VOLCANIC AND ULTRA IASIC IIOCKS, DETERII INED THAT THE 
T, G£0RGE-TAIL£ H[AO CONTACT WAS CONFORKAILf AT THIS LOCATI ON , 
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TABLE 2.1: Continued 

PUBLICATION SUMMARY OR IMPORTANT CONCWSIONS 

IAIINU a TUIC£ 09]0) STUD I ED CONODONTS F~~ THE ST , li£ ORGE fOR !'\AT I ON AND ASS I Gl'l(ll IHll'l A LOWER 
.\!lENlG AGE. 

WHITTINGTON t ~INDLE<l969) R~DEFIHED THE' STRATIGRAPHY OF THE CAIIBIIO·ORDOVICIAN ROC~$ IH THE Ll GHT OF 
THEIR TRILO~ITF. DISCOVERIES "AD£ SEVERAL YEARS EARlllR, 

FlHRAEUS (1970) EXAMINED CONODONTS fRO" THE ST, GEORGE 6ROUP AND OETUHINED THAT TH£Y COULD IE 
USED TO CORRElATE TM( ST. GfCJ$!Gf WITH iALTO·SCAHDIAN ICIUIVALENIS . 

SI'IIT (]97]) 
STUDIED THE CAIIBAtOIIDOV!CIAN CARIONAT£5 WITH RESPECT TO THEIII SEDIH(N IOLOGY 
AND PETROGRioPMY, 1[111 SWETT AND SI'IIT, 1912), (~PARED TME NEWf OUNDLAND 

SWETT At;D $1'111 <1~72) 5TRAT4 wiTH SIHILAII ROCKS Jrt NORTHWEST SCOTLAND AND GREEnLAND , THEY SuGGE ST 

., 

COMMON DE•OSITIONAL AND DIAGENETIC HISTORIES FOR AL L THESE AREAS . 

EXAMINED THE PORT AU PORT PENINSULA IN AN .,I.TT[I'IPT T~ lOCATE AND I'IAP 
MfTAUURGICAl c;RADE CARBONATE DEPOSITS TO liE USt'!l'IN THE ST£(L INDUSTRY OF 

.BESAW (1972.1973, }g]~) NOVA SCOTIA, ' REASSIGNED GROUP STATUS TO THE ST • . GEO$!Gf CAIIIIONAHS. DEf iNED 
FIVE LITHOLOGICAl UNITS TO THE ST , GEORG( GR OUP ; THE LOW£11 COVE. PIGE ON "fAD, 
riN[ TRH, wHIT[ HILLS AND PORT AU rORT . THE BASAL LC*U COVE WAS LAlU 
DETERMINED AS CAH8RIAN IN AGE . 

DEGRACE <1974) INVESTIGATEO THE LII'IESTONE RESOURCES OF N[WFOUNDLAND . AND LA.8R400R ( J!jC LODING 
T~E ST, GEORf.E GRruP, 

-- -
DAVENPORT ET AL, , (}9]5) 

STUDIED STRO~TIU~ AND LE4D DISTRIBUTION IN STAEAH SEDI"ENTS ON TMl PORI AU 
PORT PENINSUlA , 

STltDIED THE ST. GEORGE GROUP IN .THE PORT AU CHOIX IIREA AND DIVIDED I T INTO 
~lUYVEII (}975) THREE FORIIATION$, IN ASCENDING ORDER THES£, liRE; THE BARIACE POl NT. THE CATOCH[ 

AND THE POU AU CHO I X, · 

EXAMINED THE ST. GEORGF IN THE DANIEL ' S HARBOUA AAEA, AGAIN lllDUCII<IO IT TO 
COLLINS & SHITH (1975) FORHATIONAl STATUS, SUBDIVIDED Tit[ ST. GEORGE FORMATION ON THE IASIS Of 

DIAMOND DRILL CORE I~TO THREE UNIT$; THE lC*ER LIIIESTUNE, THE DARK G,:Y 
DOL""ITE AND THE CYCLIC ~OLOMITE, 

L[V[SOUE 11977) STUDIED THE gTRATIGRAPHY AND TMf SEDI~ENTOLOGY Of THE ST, GEO<I(o£ F OR~ATION IN 
THE PORT AU PORT AND PO$!T AU CHOIX AREAS. IDENTIFIED THR[( HEHBERS, THE 
LOWER CYCLIC MEHIIER, THE HIDDL£ LI~ESTONE HEHI[II AND THE UPPER CYCLIC IIEHI[R, 

- REDEFINED~ STRATIGRAPHIC N~ENCLATURE OF TH[ $1, GEORGE GROUP ON THE GREAT ' 
NOnHERN PE NSULA. IN ASCENDING DRD£R THEY DEFINED; Til[ UHF OR TllhAT( COVE 
FORMATION, THE WATTS liGHT FORIIATIOH, AN UNNAI'I£0 UNIT (LATER NAI'IED THE l Ol l 

ICHI GHT (1977 A. I, 1978, . l!JJ}) 
HARBOUR FOIIHATJON, KNIGHT, 1910), THE CATOCHE fORI'IATIOH , (w i TH THE LAIGNIT 
POINT H[l~llER lOCALIZED AT THE TOP), DIAGENETIC CARBOIIATES ANO T>iE SI~I((O~S 

I(NI Gil' ,_ 'SAL »w~ <191D> OOLD"ITE FORMATION. THE NAHE UNfOIITUIIAT£ COVE wAS DIIOPI'ED IY ~HIGHT. ltiO 
WHEN THE NATTS BIGHT FORHATION w4S A!OHINED. · 
THE WATTS liGHT AND IOAT HAR?OUR FOAHATIOH~ ARE APPIIOXIHAT(lY f0UIVAL£NT 10 
TH( IARIIACE POINT FOIII'IATION KLUYVER, UH AND THE DIAGENET tC CAABOIIATES lMO 

' 
SILICEO~S fOLD"llf ~OIIHATION ARE APPROXIHATELY EOUI~ALENT TO TH( PORT AU (HOI• 
FORMATION OP • . CJT, , 

fLoW~ A <1978) STUDIED ST. 6EOIIGE AND TAll£ HEAD CEPHALOPOD ZONATION IN WESTfiiN N[WfommtlND. 

BOYCE (1~8, 197~~ STUD I ED TRI LOBI Tf IIOSTIIATIGAAPHT OF THE CAI'IBIIO- ORDOVI C I AI< ROC IS Of. WU llRN 
STOUGE AND OYCE ( 83) NEWfOUNDlAND, 

fORT£Y <1979) STUDIED T~ILOIITE F AliNA$ FRO" THE CATOCHE FOIIIIATION OF THE ST. GEOIIGl GAOOP, 

KNIGHT <1993) 
SNOW AND KNIGHT (!979) 

KNIGHT AND BOYCE ( 984) 
SIJ'IIIARI£5 OF A REGIONA1. I'IAPPJifG f'qOJECT ON THE GRUT NOIITH(IIN P[NI NSULA , 

STUDIED THE IT, 6[0RGE GROUP r~~ PORT AU POIIT TO CAPE NOII"AN CDNCENTRATIN" 

PRATT (19]11 u•rl:l tHl. UYPTAlGAL. STIIUCTUR[$, THE ~!OIH!NTOLOGY AND 1H( DIAGENf11C ~ISIONY 
PRATT AND JAHEl 982) Of THE ROCKS . TH( fOIIHU TOPIC WAS DISCUSS(() IN PUTT AND JlU'IU UU • 

I'RATT AND JlU'IES IN PRESS) INTIIODUCED THE MAl'!( AGUATHUNA f OIIOIATIOH fOil THE U"EII IIIOST DIVISION 0~ l H[. 
ST. 6EOIIGE 5ROuP ( EQUIVALE~T TO KNIGHT ' S SILICEOUS DOL.OHITE fOIII'IATION , 
SUGGESTED A TIDAL FLAT • ISLAND DEPOSITIONAL IIIODEL TO EXPLAIN FACIES 
DISTRIIUTIOII wiTHIN THE ST . GEOIIG{ GROUP, 

STOUGE (1980, 1982) 
EXAHINED CDNODOIITS WITHIN THE ST. GEORG( GROUP FR~ PuTCI OPi ON THE G•lAI 
NORTHERN PENINSULA A~ DETERMINED A ZONATION SCHE~E I'OSSIJLY APPLICAill TO 
ENTI liE ST, UOIUi{ GROUI', 

l~l 

I,ANE (198~) ~!~:~9~C~=~~~~ llllCCIAI AISOCIATLD MITH SPHALERITE NINEIIAL IZAT ~~ AT 

HAYWICK AND ~AMES (1984) UOUPED Tl4l DOLOI"ITE AIID DOlOSTOtf£ 
SEVEN DISTlltCT VARIETIES, 

FOUND WITHIN THl IT , G[OIIGE GAOUI' · ~TO 
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the st •. George and·recognize four formations. In ascending 

order, these are: __ _ the Watts Bight, the Roat Harbour, the 

Catoche and the ~guathuna (figure 1.3). 

In contra~t to the voluminou5 amount of stratigraphic 

lit~rature that has been pu~lisbed, very little data has 

been. gathered with respect to the dolomites withi~ ~he St. 

George. The earliest studies simply stated that dolomite 

made up a s~gnificant proportion of the lithology and 

briefly described the textures that could be observed in 

the field (Schuchert and Dunbar, 1934, Sulli"van, 1940, 

Walthier, 1947, 1949, Oxley, 1953, Woodard, 1957).' 

Petrographic and bulk chemical analyses of laminated 

dolostones were integrated with field observations hy Lilly 

(1961) as part of his study of the geology of the Hughes 

Brook 

with the 

intere~!ted 
..-: ·-· 

Goose Arm areas. He was, however, not concerned 

chemistry of the dolostone, but was more 
~ 

in dekeriT\ining the relationships between 

dolostone and limestone (Lilly, 1961). 

Other studies- which investigated do los tones within 

the St. George Group did so for economic reasons. Johnson 

(1954) was interested in strontium deposits associated with 

pre-Carboniferous topographic lows within St • . George 

dolostones in the Aguathuna Ouarry area of the Port au Port 

.Peninsula. Besaw (1972, 1973_, 1974) was intere~ted in 

locating and mapping metallurgical grade carbonate deposits - . 
in the Port au Port area to be used in the steel industry 

of Nova Scotia. His studies relierl heavily upon bulk 
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chemical analysis of both limestones and dolostones. 

The discovery of sphalerite Mineralization in the 

area of Daniel's Harbour which was associated with •white 

sparry • . dolomite sparked many studies to understand these 

deposits (Cumming, 1968, Collins and Smith, 1975, Lane, 

1984}, and to J.ook 
. ' 

for other deposits e l,c;·ewhere (e.g. 

Kluyver, . 1975). The .•wh i te sparry• do 1om i tes have been 

doc~mented in Lower Ordovician strata from the Table Po i nt 

area to Cape Norman on the r.reat Northern Peninsula 

(Nelson, 1955, woodard, 1957; Tuke, 19fi8, Kluyver, 1975, 

Levesque, 1977, Knight, 197h,b, 1978, 1980, 198), Snow and 
• . .J 

Knight, -1979, Pratt, 1979, Knight and ScOtman, 1980, 

Haywick and James, 1984). 

Studies by Levesque (1977) and Pratt (1979) examined 

.outcrops .from the Port au Port Peninsula to ' Cape Norman. 

Le~esque recognized three varieties of dolomite which Pratt 

later confirmed. In approximate parage netic sequence, these -- ·· 
. 

varieties were classified as; syngenetic, diagenetic and 

epigenetic. 

2.2 MEASURED SECTIONS:· 

The stratigraphic sectione measured at each of the 

1 ten principle areas investigated as part of this study are 

prese nted graphically in appendix A (back pocket). ~ach 

section displays · general lithologies · (Dunham, 1962), 

faunal macroscopic content; sedimentary structures, .... 
.J 

stromatal it ic and thrombol it ic buildups, secondary 
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mi nera 1 i zation, and the degree of bioturbation· (refer to 

figure Al, back pocket .). Selective dolomitization or 

s i lie if ic'atiori of fauna ot ichnofossils are denoted by a 

subscript d or s respectively. The presence of abundant 

pressure solution seams or stylolites, chert pebbles and 

other· components, and the bitumin content are also 
' 

indicated. 

The amount of , dolomitization within each 

lithostratigraphic unit (visually estimated as between 0 

and 100 percent of the unit), is schematically summarized 

by way of a histogram on the left side of each section. The 

variety of dolomite or dolostone (discussed in chapter 

three) is also shown on this scale • 
....... 

2.3 WATTS BIGHT FORMATION: li~ormably upon The Watts Bight ·Formation 

dolostones of the Upper Cambrian Petit Jardin Formation 

(figure 1.3). The type section of the Watts Bight Formation 

at· Watts Bight, (near Cape Norman on ~he western side of 

the Great Northern Peninsula); is approximately 80 metres 

thick. It is composed of dark" grey to black, fine. to 
~ 

coarsely crystal·line, burrow mottled, vuggy, often cherty, 

stromatolitic and thrombolitic dolostones (Knight, 1977b, 

1978, 1980, _Knight and James in prep.). 

The pr-eservation of the stromatolites and 

thrombolites is often spectacular, due mainly to colour 

variations in the 'dolostone and selective dolomitization 

' 
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(plate 2.la,b). The growtP forms of the stromatqlites vary 

between SH-e, columnar and digitate SH-V types (as defined 

Logan, et al., 1964), stacked . hemispheroids and 

cryptalgal · laminations (Knight, 1977b). Crypta1gl'll 

structurea in the St. George have been discussed hy Pratt 

(1979) .• 

• The bas~l part of the Watts Bight Formation contains 

finely crystalline, laminated dolostones (dololaminites of 

Wanless, . 1975 and Haywick and . James, 1984), with abundant 

·cryptalgal laminations and chert. 

On St. John Isl~nd (hetween Port au Choix and New 

Ferolle; figure 1.1) , Knight and Boyce (1984) have 

identified partially dolomitized stromatolitic ~udstones 
tnat may be equivalent to the dolostones of the Watts Bight 

Formation elsewhere on the west coast of the Great Northern 

Peninsula. The exact correlation is not. yet well 

established and trilobite remains found in the limestone 

suggest possible equivalenc~ with the /overlying Boat 

Harbour Formation (Knight and Boyce, 1984.). 

On the eastern side of th~ Great Northern Peninsula 

in the ~tea of Canada Bay (Figure 1.1), ~ost of the· Watts 

Bight Formation is composed - of bioturbated lime mudstone 

and wackestone. The thickness of the stromatal i te i nterva 1 . . 

decreases from 80 metres to 17 metres and Ule dolostoneA 

that are prevalent on the western coast of the peninsula, 

are confined to the basal 7 to 17 ~e~res of the formation 

(Knight and Saltman, 1980). 

• ' 
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P~ATE 2.1: STRATIGRAPHY AND SEDIMENTOLOGY OF THE WATTS 
BIGHT FORMATION. 

) . 

A) Columnar thrombolites preserved in 
dolomitized strata; Cape Norman, These algal 
structures are recognizable because of 
selective ·dolomitization and colour 
differences. Hammer is 30 em in length. 

B) As above. · Field book is 1~ em long. 

C) A bedding-plane view of cerebral structure 
in partially dolomitized thrombolite mounds 
within the •Green Head Bibherm•; Isthmus Bay. 

D) Detailed ~lan view of the 
·thrombolites pictured above. 
has selectively ~eplaced the 
the thrombolites rather tha~ 
structures themselves. Lens 
diameter. 

dolomitized 
He"'f"e, dolomite 
matrix bet~een 
the algal 
cap is 6 em in 

E) Contact betwee.n dolostone (dolo) and 
1 ime.stone (lime.); Isthmus Bay. Both 
lithologies are mottled by abundant 
ichnpfossils. 

F) Breccia bed marking the contact between 
the Watt'S Bight and Boat Harbour 
Formations~ Cape Norman. This horizon has 
been interpreted as ~ disconformity 
surface by Knight, ( 1980). Wide divisions ­
on scale bar are 25 em in ~ength. 

··- ... - · -
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Dolostone is the dominant lithology of the Watts 

Bight Formation in the eastern Port au Port area. Partially 

dol omit ized stromatolites and \thrombolite 
\ 

are again 

abundant and commgnly form prominent mound complexes such 

as the "Green Head Biohe'tms" at Isthmus Ray on the Port au 

Port Peninsula (Pratt, 1979, James ___ and Stevens, 1982, Pratt 

and James, 1982J figure 2.1, plate 2.lc,d) • . The medium 

crystalline dolostone weathers buff to medium grey and is 

locally chert rich. 

"Remnant• 1 imestone that has apparently escaped 

regional dolo~itization, is a common component _of the Watts 

Bight Formation in the Port au Port area and is usually of 

a mudstone or wackestone texture. Recently, conodonts 

obtained from lim~stones that crop out along th~ southern 

shore of the Port au Port Peninsula have yielded Early 

Ordovician (Early Canadian) ages (N, P. James, pers. 

comm.). These limestones may represent non-dolomitized 

equivalents of the Watts Bight Forma~ion. 

Bioturbation is ubiquiious in the Wa~ts Right giving 

a mottled appearence to both the dolostones and the 

1 imestones 

cephalopods 

(plate 

(eg. 

2.1e). Gastropods (eg. Maclurites), 

Clarkoceras, Ectenolites and 

Diaphragmoceras: B. Stait, per~. comm.), brachiopods and 

trilobites are common ~n these -rocks. Crinoids and corals 
I 

are present but only rarely. 

The contact between the Watts Bight and the overlying 

Boat Harbour Formation along the western coast of the Great 
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IIICONITIIUCTION Of ~I"WINO 

-A 
THROMBOLrrE MOUNDS 

"' .- . ' 

B GREEN HEAD BIOHERM 

FIGURE 2 ~ 1 ~ Reconstru.ctior.s o~ the living surface of mound 
buildups in the St. George Group. 
A) Thrombolite mounds_. 
3) · Lichenaria-Renalci s mounds . 
Thrombolites are coloured black. Other fauna 
include unspecified species of : sponges (S), 
trilobites (T); rostroconchs (R), nautiloids (N), 
gastropods (G), Lichenaria (L) and pelmatozoans 
(P). (From !'ratt a·nd James, 1982). 

l 
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Northern Peninsula i~ marked by a limestone, dolostone and 

chert c)ast breccia (plate 2.lf). Breccia filled fractures 

alsb · penetrate down into the . top of the Watts Right. 
I 

Knight ' 
(1980) interprets this horizon to r~present a 

disconformity that predates deposition•of the Roat Harbour 

rocks. This disconformity may be localized to the Great 
I 

Nottli~rn Peninsula as the cont-act appears conformable south 

in the Port au Port area (Hay~ick and James, 1984). 

2.4 BOAT HARBOUR FORMATION: 

The type section of the Roat Harbour Formation is 

loc~ed at Boat Harbour near Cape Norman on the Great 

Northe~n Peninsula (Knight and James, ·in prep.),(figure 

1. 1). It is approximately 120 metres thick and is 

predominantly composed - of bioturbated mui:tstones and 

- wackeetones. These . limestones are locally stromatol itic 

(plate 2.2a,b), grainy and are commonly interbedded with 

finely crystalline dololaminites (Knight, 19,77b, 1980, 

Pratt, 1979: plate 2.2c). 

.. The lithology of the Boat Harbour F6rma~ion is 

similar to the east in the Canada Bay area, and to the 

south in the region of Port . au Port. In the east, however, 

the typical interbedded limestone.- dololaminite litholog~ 

has a strong stromatolite, thrombolite and primat~ve-coraf - ) 
... ) 

mound ,component (Pratt, 1979, Knight, 1980, Knight and 

Saltman, 1980, Pratt and Jam-s, 1~82). 

The limestones and dololaminites in all areas ~re 

( 

.. 



.. 

PLATE 2.2: STRATIGRAPHY AND SEDIMENTOLOGY OF THE BOAT 
HARBOUR FORMATION. 

A) He~ispheioidal stromatolite~ 
bedded limestones; Isthmus &ay. 
carbonate mud is ~raped between 
stromatolites. Hammer is 25 em 
scale. · · · 

within thin 
fine 
the two 
long for 
i 

B) LLH stromatolitic mudstone in 
cross-section; Isthmus. Bay~ Lens . cap is 6 
em in diameter. 

. Q 
C) Finely crysta~line dololaminite 

····i:nteTbedded with lim,estone; Isthmus Bay. 

6lir .. 

Divisions on scale bar ar~ 25 em in length. 

D) Shrinkage cracks . atop . lime . mud~tone; 
Isthmus Bay. 

E) Bifurca'ting, symmetrical wave ripples, 
(trending approximately parallel to the 
hammer) atop a wackestone bed; Isthmus B~y. 
The lower · bed is characterized . by wave 
ripples of a different form (straight 
crested) and orientation (approximately 
parallel to the measuring pole), compared to 
those on, .the upper bed • 

F) Flat bottomed grainstone ch.annels 
(arrows) cut into a hardground within a 
thromboiiti~ mudstone; Isthmus Bay. 

G) Poorly developed stromatolite (arrow) 
wfthin dololaminite, Isthmus Bay. 

H) Preferentially dolomitized ichnofossils . 
in a wackestone . bedding plane1 Port au 
choix. 

... 

( 
I 
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characterized by a wide spectrum of shallow water 

sed imEf,1ltary structures and components • . The most abundant in 
/ 

in the limestones include desication cracks (plate 2. 2d), 

bifurcating and s~mmetrical wave t:.ip.ples (plate 2.2e). 

Lenticular. to laterally continuous, cross-bedded oolite 

beds, hardgrounds (plate 2.2f) a_nd herringbone 

cross-stratification are present, but are not as . common. 

Grainstone ho-ri -zons ra!'lge from continuous to lenticular and 

may . surround .. or fill topographic depres!':iOn!'; around 

cryptalgal mound structures (Levesque, 19771 , Pratt, l 'J79). 

Dololami n i tes are characterized . by <1esicc.at ion 

cracks, prism cracks, tepee structures, i ntraformat iona l 

breccias and poorly developed, small stromatolites (plate' 

2.2g). The~e. dolostones are frequently of a limited lateral 

extent and may grade into stromatolitic I thrombolitic 

horizons or mudstones (Levesque, 1977, Pratt, 1979, Pratt 

and James, __ .fn press.). 

Stylolites and pressure solution seams, usua 11 y 
\ 

marked' . by an accumulation of dolomite, are a common 

component of most Boat Harbour. limestones. Ichnofossils are 

also· very abundant and are often preferentially dolomi t i zed 

(plate 2.2h). The combination of the stylo l ites and the 

ichnofossils gives rise to the characteristic dolomitic 

mottling so prevalent in ·st. George . limestones. These 

mottles had previously been interpreted as •fucoids• by 

Schuche rt and Dunbar (1934). 

Argillaceous, dolomitic · shales, some of which contain 
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rounded quartz s i 1 t, are present with in the Boat Harbour 

Formation in the Port au Port area, but are minor. 

TowarJs the top of ' the Aoat Harbour Formation is a 

ho["iZOO cha["ac te[" i zed by quartz, chert and dolostone 

pebbles. This •pebble bed" is correlative from the western . 

side of the Great Northern P.eninsula south to .the Port au 

Port Peninsu1a and is generally regarded as an 

disconformity' (Knight, 1977b, 1980, P:t;att, 1979, Stouge ., 

1980, 1982, Haywick and James, 1984). An erosional surface 
. 

exposed northwest of Canada Bay _ which may be equivalent to 

the pebble bed (Knight and Saltman, 1980, Stouge, 1980, 

19Q2) strongly suggests that this exposure horizon is of 

widespread, regional extent. 

The ·pebble bed is well exposed on the Port au Port 

Peninsula where it overlies 14 metres of chert r"ich, 
\ . 

mottled dolostone. This dolostone is punctuated by numerous 

cavities that are filled with finely crystalline dolostone 

which Pratt (1979) interprets as karst solution pipes 

formed, and filled during sub-aerial exposure (figure 2.2). 

Above - --t-he pebbla--bed, stromatolitic and burrow mottled · 

limestone with very little chert or dolostone, is the 

dominant rock type. 

Stouge (1980, . 198 2) sampled the Boat Harbour 
I 

Formatiori across the ~ebble bed in the Cape Norman area and .. 
found it to yield a •meagre• conodont fauna. · Nevertheless, 

he did observe an abrupt change in fauna across the horizon 

suggesting the presence of a hiatus in deposition. Boyce 

, 

(' 



FIGURE 2.2: Sche~atic representation of the "pebble bed" and underlying strata at Isthmus 
Bay on the Port au Port Pehinsula (for location, refer to figure 1.1). The · 
rocks beneath the pebble bed ar~ extensively dolomitized, local~y brecciated 
(possibly by solution collapse) and are rich in chert. Solution pipes, 
localized in a horizon appro~imately 10 metres beneath the pebbl~ bed, are 
filled with fine grained sediment. In comparision, rocks above the pebble bed 
are mostly limestones with few diagenetic alterations. Names given in 
parentheses are specific varieties of dolostone defined and described in 
later chapters. (Drawn to scale). 
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( 1979) and Stouge ·and Boyce ( 1983) have also reported the 

absence of trilobite zone Gl at the pebble hed near Cape 

Norman further supporting this conclusion. 

Samples collected from just above and below the 

pebble bed at. Port•au Port as part of this study failed to 

yield significant numbers of conodonts preventing any 

biostratigra~hic determination of a hiatus in this 

location. 

2. 5 CATOCHE FORMATION: 

The Boat Harbour is conformably overlain by the 

Catoche Formation, a sequence of bioturbated, fossiliferous 

limestones which are locally extensively dolomitiu~d. The 

most complete section crops •out at Port au Choix on the 

Great Northern Peninsula where 100 metres· of limestone pass 

upward into . 50 metres of medium to coarsely crystalline 

dolostone (Knight, ~980). This prominent dolostone is found 

everywhere .north of Table Point (figure 1.1). In more 

southerly reg ion's (such as the eastern Port au Pc>rt 

Peninsula and Smelt Canyon), this upper interval lacks the 

coarsely crystalline component, but does contain lenticul~r 

to continuously bedded, cherty, burrow mottled, medium 

crystalline dolostones, interbedded with lime mudstones 

(plate 2.3a). 

The limestone in all regions is predominantly thin to 
.. 
medium bedded (1 centimetre to 1 metre) mudstone and 

wackestone. Grainstone beds · ·are less common and are 

__ ) 



PLATE 2.3: STRATIGRAPHY AND SEDIMENTOLOGY OF THE CATOCHE 
F'ORMATION. 

A) Mottled, and locally cher~y dolostones 
interbedded withi lime·stones; Smelt Canyon. 

B) Thinly bedded mudstone~ characterized by 
numero~s tepee structures (arrow) in the 
basal Catoche~ Isthmus Ray. 

C) Bioclastic floatstone bed containing 
abundant brachiopods,_ trilobites and spiral. 
and coiled gastropods; Lower Cove. Di vis:lons 
on scale bar are 5 em in length. 

D) Stylolites (arrow), marked by an 
accumulation of dolomite within a wackestone 
bed: Smelt Canyon. This is a common form of 
mottling within the Catoche Formation at this 
location. Viewed in vertical section. ---
E) Partially dolomitized thrombolite mounds: 
Aguathuna Ouarry. 

P) Solution ~nlarged jbint patterns 
atop fenestral mudstones: Aguathuna Ouarry. 
The age of the solution enlargement is likely 
Carboniferous. 

G) Interbedded dull grey and cream coloured 
dolostone; Back Arm. Together th~se rocks make 

· up a prominent dolostone horizon found near 
the top of the Catoche Formation everywhere 
north of Table Point. 

H) Coarsely crystalline dolomi t"e localized to 
fractures within dolostone: Table Point. This 
sparry dolomite is associated with spha l erite 
mineralization at Daniel's ~arbour. 

\ 
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typically lens6idal. Limestones in the basil portions of 

the formation are locally mudcracked (plate 2.3b) and may . --
contain bifurcating and ~ymm~trical wave ripples. 

Sponge, stromatolite and thrombolit~ mounds are 

present in all areas but are especially common in the 

Canada Ray and Hare Bay regions. Shelly fossils are 

abundant. everywhere in the formation and include trilobites' 

(Boyce, 1979, Fortey, 1979, Stpuge and Boyce, 198:3'), 

brachiopods, crinoid ossicles, coiled and spiral gastropods 

and cephalopods (Flower, 1978) (plate 2.3c)~ As i n the 

lower formations of the St. -George, ~tylolites are usually 

ma~ked by the accumulation of dolomite (plate 2.3d). Body 

and trace fossils are less commonly dolomitized in these 

rocks. 

Towards the top of the Catoche Formation in the Port 

au Port area (~?uathuna Ouarry section), a poorly exposed, 

mottled dolostone horizon passes upward into a partially 

dolomitized thrombolite moond i~terval (plate 2.3e) and 

finally into 20 metres of fenestral muds tone. The exposed 

mudstones are characterized by Carbon ~ferous solution 

enlarged joint patterns (N.P. James pers. comm.) (plate 

2.3f). Fine dolomite laminated intervals become more 

numerous toward the top of the Catoche and eventua l ly 

coalesce into discrete dololaminite beds of the overlying - -

Aguathuna Formation. 

The prominent dolostone horizon found north of Table 

Point is composed of alternating sequences of dull grey, 
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medium crystalline dolostone and cream coloured coar~ely 

crystalline . dolostone (plate 2.3g). Both . varieties of 

dolostone are mottled by a finer, darker dolomite and can 

be very porous and bituminous (Knight and Saltman, 1980). 

White sparry dolomite crystals u·p 'to 15 mi 11 imetres in size 
I 

are common and are localized in vugs and as fracture 'fill 
/ . 

cement-s. (plate 2.3h) •. This dolol'iite is a1So · associateci with 

-·sphalerite . mineralization in the . Daniel .'s Harbour area .. 
. (Cumming, 1968, Collin!'l and smith, 1975, Lane, 1984). 

' •._./ 

2.5 AGUATHUNA FORMATION: 

Knight (pers. comm • . 1984) has recently founc1 what he "' 

believes ·to be a disconformity at the Catoche- '{'guathuna 

contact on St. John Island. At ' its type section at Table 

Point on the Great Northern Peninsula, the contact appears 

con~able. Here, the · Agua thuna Fo_rma t ion is 60 met res 

thick and 

.dololamini tes 

Lane, 1984). 

crystalline 

composed primarily . :? finely crystalline 

(Levesque, 1977, l<~t, 1977b, Pratt, 1979, 

Burrow mottling is prevalent in the med.ium 

dolostones, more so in the lower portion of the 

formation than near the top (l<nighf 1 l977b). Shelly fosRils 

are nQtably rare in the Aguathuna Formation and are usually 

confined to burrow-mottled. 

The Aguathuna Format ion is much less d<?lomi't ic in the 

Hare Bay and P6rt au Port areas and limestones make up a 

~ignificant proporti6n of the rocks. The limestones on the 

·•· 
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Port au Port Peninsula contain a sparse sh~lly fauna 

(gastropods, 

oncol i tes and 

rare trildbite and orthocones), but many 

stromatolites. The - stromatolites are 

distinctly LLH in appearence (cf. Logan et al., 1964
1 

Pratt, 1979). Ichnofossils are also present, but are less 

commonly replaced by dolomite than limestones in other 

formations. ( 

The Aguathuna thins away from the type s~ction at 

Table Point. Near Hare Bay, Stouge (1980, 1982} estima~es 

that the formation measures approximately 35 metres in 

thickness. On the Port au Port Peninsula, it measures 50 

metres in thickness, •while near Port au Choix~ it is only 

10 metres thick and · consists of only a few dolol~minite 

beds (Pratt, 1979, K~ight, 1980, Haywick and James~ 1984). 

Approximately 26 metres below the A~uathuna - Table 

Head contact at Table Point, a thin dolomite ~emented 
. 

lithic arenite bed approximately 20 centimetres thi'ck, is 

interbedded with thick dololaminites. The dominant 

components of this sandstone bed include well"rounded to 

-angular and feldspar grains, reworked 

dololaminite intraclasts, detrital zircons and a filicified 

oo.lite nodule. Several tine .grained, argillaceous and/ or 

dolomitic shale beds also punctuate the section, not . o~ly 

at Table Point, but also ~n the south on the Port au Port 

Peninsula. 

Chert is· . a 
. 

common component of the Aguathuna 

formation in all parts of the study area and occurs as 

( 

J 
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discrete 1_10dules, in pebble horizons a~d in breccias 

(Stouge, 1982, Lane, 1984). Entombed sulphate· crystallites 
J 

have been, found in some nodules from the Port au Port 

Peninsula (James and Stevens, 1982) and from Smelt Canyon 

(this study) which suggests that evaporite minerals may 

have existed in these rocks. It is possible therefore, that 

many of the chert breccias were formed through the 

dissolution of these miner~ and subsequent collapse 

(discussed in Knight, 1977b). Other ~orkers feel that these 

brec~ias may a9tually be ~elated to ' sub-aerial expo~ure 

(Collins and Smith, 1975). Stouge (1982) has identified~ 

change in conodont faunai atross a prom~nanl breccia bed 10 

metres above the Catoche - · Aguathuna · contact at Table 

Point. Although the breccia bed does 'occur within a barren 

zone, Stouge feels that the faurial ~hange is real and that 

the breccia corresponds to a sub-aerial ,exposure horiz6n. 

The contact between the Agua thuria Format ion and the 

overlying Middle Ordovician Table Head 'Formation (Table 

Head Gro~up) is unconformable on the Port au Port Pe~insula 

and is marked by an erosional channel up ·tb 9 , ..;etres deep 

at Aguathuna Quarry (Schuchert and nunba/, 1934, Cumming, 

1967, Leve~que, 1977, Pratt, 1.979~ plate 2.4). The upper 

su~face of the Aguathun~ ~6i~ati6n is pitted and is locally 

marked b~ an accumulation ·of chert clasts and nodules, 

. which Pratt (1979) interprets as a silcrete horizon 

developed during sub-aerial ·exposure. F.lsewhere on the 

Great Northern Penirisula, the contact app~ars coriformable 
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PLATE 2.4: STRATIGRAPHY AND SEDIMENTOLOGY OF THE AGUATHUNA FORMATION. 

Panoramic photograph and interpretive sketch of th~ St. George - Table Head 
disconformity at Aguathuna Quarry on the Port au Port Peninsula. Rocks of the 
Table Head Group fill a nine ·metre deep erosional channel cut into the St. 
George dololaminites. The disconformity surface in the sketch is highlighted • 
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or is "'too podrly exposed for an accurate determination 

(Pratt, ,1979, Haywick and James, 198"4). 
.• 

Approximately 5 metres beneath the Table Head St. 
~ 

George contact at Aguathuna Ouarry and northwest of The 

Gravels, i rr;egular bedding 
-

planes are marked by an t.wo 

accumulation of red and green argillaceous shales. These 

surfaces may be correlative w-ith two red limestone beds 

' 
crqpping out on the western side of the Port au Port 

Peninaula .(R. St.ait, pers. comrn., 1984) and are interpreted 

here as solutiort seams resulting from pres,sure solution of 

,~ ,,_the limestone (plate 2.4). Pressure solution in other [?arts ' . ~ 

of these sectioos commonly results in thin, laterally 

d iscont i nous l_imestone beds truncated at their margins by 

large styloli.t~s (10 centimetre amplitude).· 

i. 7 FACIES INTERPRETATION: 

The palaeoenvironments in which th~ four format ions 

, of the St. George _Group were deposited have been discussed 

by, Levesque (1977), Pratt ( 1979) and Pratt arid James (in 

press). 

The rocks of the St. George Group were deposited in a 

stable shelf environment. The stromatal i tic and 

thrombolitic~rich, burrow-mo~tled limest9nes and dolostones 

of the Watts Bight Formation suggest that prior t.o regiona l 

dolomitization, these rocks were mostly subtidal shelf 

deposits (Levesque, 1977, Knight, 1977b, 1980, Snow and 

ICnight, 1979, Pratt, 1979, Pratt and James, in press). The 

' . ' · ~ 
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Catoche Formation, dominated by 1 ime mudstones and 

wacke stones an<;J reg io':la lly overprinted . by dolomitization 

near the top,_ is also thought to have been deposited during 

generally subtida 1 conditions·. 

The Boat Harbour and Aguathuna Format ions are thought 

to have been deposited in shallower-w1!ter than the other 

formations because they contain abundant dololamin i te beds. 

These dolostones have been interpreted as an upper. 

intertidal-supratidal facie& (Levesque, 1977, Pratt, 1979) 

similar to those presently forming in modern tidal flat 

environments (Illing et· al., 1965, Deffeyes et al., 1965, 

Shinn. et al., 19_6?, Wanless, 197~, MacKenzie et al., 1980, 

Shinn, 1983). The desiccation cracks, tepee structures, 

cryptalgal and millimetre scaled laminations, the lack of 

significant numbers of body fossils and evidence of nodular. 

evaporite minerals within these dolostones attests to their 

very shallow water origin. 

Interbedded dolo laminite limestone . lithologies 

typical of· the Boat Harbour and Aguathuna Formations, have . 
been interpreted in the rock record by soMe as the result 

of repeated shoaling. upward cycle5 in a shoreline-tidal 

flat environment (Bathurst, 1975, Wanless, 1975, Levesque, 

1977, Knight, 1977b, 1980, Snow and Knight, 1979: figure 

2.3). The va.riation observed in the lithology of the 

limestones (for' . example, from mudstone to grainstone) has 

been explained by Levesque (1977) as the periodic winnowing 

of subtidal muds, possibly through the action of storms. 
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FIGURE 2.3: Schematic stable shelf sedimentation_model proposed 
by Levesque ('1977) for the St. George Group during 
Boat Harbour - Catoche deposition. 
(No vertical or horiz6ntal scale implied) 
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This . is thought to result in laterally discontinuOU!; 

grainstone beds which interdigitate with nearby mudstones 

' or wackestones. A complete shoaling upwa!d ~ycle would 

therefore consist of s·ubtidal stromatolitic or thrombqlitic 

burrow . mottled and fossiliferous l.ime mudstone (with 

occasional lensoidal grainst~ne bed_s ~. grading upward int-o -

burrow mottled rocks of the intertidal zone and finally 

into supratidal dololaminites 
I 

(Levesque, 1977). The 

complete. cycle is however, rarely preserVed. 

To the east, in the vicinity of Canada Ray and Hare 

Bay, the shallow shoreline deposits of the R~at . H'~hour 

Formation pass gradually into subtidal stromatolitic and 

thrombolitic mound banks (Levesque, 1977, Knight,. l977b, 

Pratt,· 1979, Pratt and James, 1982). These (IIOunds are 

thought to represent high energy buildups at, or near, the 

edge of the carbonate platform. During Catoche time, the 

thick mound sequence continued to fluorish along the 

eastern margin of the shelf developing a pronounced mound 

barrier (Knight, 1977b, Pratt; 1979, Pratt and .J~mes, l9R2; 

figure 2.-3). 

Knight (1977b, 1980), Snow anc1 Knight (1979) anc1 

(1980, 1982) regard the !;t. George Group ag 

recordi••Y two •mega-cycles• of deposition on the Lower . 

Ocdovician · carbonate platform. Thi s is a continuation o f a 

tre nd first Jiarted d~ r ing the deposi t ion of the Middle -

Upper Cambrian Port au Port Group (Knight, 1980). The· 

develop~ent of the first mega-cycle in the ~arly Ordovici~n 

was initiated when the subtidal Watts Right Formation waA 
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deposited atop the dolostones of the Upper Cambrian Petit 

. Jardin Formation. This marked a regional transgression 

(Knight, 1977.h, 1980, Snow and Knight, ·1979, Stouge 1980,. 

1"982). The Boat Harbour Formation, itself composed of 

numerous smaller •cycles•, represents a regressive phase of 

deposition. A tr~nsgression again pioceeded the. deposition . 
. • 

of · the subtidal Catoche Formation followed by another 

regress ion and deposition of the Aguathuna Formation. 

Regional and ·localized sub-aerial exposure horizons within 

the Boat Harbour and Aguathuna Formation~ occur within 

these regressive deposits. 

The rare siliciclastic components of the St. George 

Group are ~onfined to the regressive phases of deposition. 

The paucity of non-carbonate lithologies suggests that 
• 

shelf sedimentation.took place at ~great distance frpm ·any 

land masses (Levesque, 1977, Pra~t, 1979). This makes the 

thin lithic arenite bed found in the Aguathuna Formation at 

Table Point rather disquieting·. It occupies a stratigraphic 

pqsition similar to that of a thick siliciclastic sequence 

found th~ low~r port~on of the Mingan Fbrmation 

(equivalent to the Aguathuna Formation} in Ouebec (A. 

ln 

Desroch~rs, pers. comm., 1984) and contains quartz-grains 

charact-erized by numerous inc Ius ions of tourmaline and 

possibly acicular rutile needles. If some inclusions are 

indeed rutile, one can speculate that the source rock of 

• 
these quartz grains was granitic (Blatt et al., 1972). 

The origin of the zircons' in the arenite is 
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uncertain. They are of a co~sistent size, shape, colour and 

luminescence which suggests · a common provenance (Rlatt ·e .t 

al., 1972), however, this provenance is ~ifficult to 

determine. Zircons can be metamorphic · or igneou~ or, 

because they are exceedingly stable, they may .even be 

derived from reworked sedimentary rocks (Blatt et al., 

1978, Folk, 1974b). 

The JllOSt likely source of the siliciclastic 

components of the arenite is a stable shield area, but to 

date, this source area has not been identified. The 

reworked dololaminite clasts ann the silicified oolite 

nodule are probably from a ~ore local source(s) • 

. The silt-sized ~uar~z grains found "floating• within 

the shales of the ·Boat Harbour Formation were likely 

transported to the shelf by wind during the regressive 

p,hases of sedimentation (Levesque, 1977); however, as in 

the lithic arenite in the Aguathuna Formation, the source 

area has ~ not been found. 

The quartz grains . are very well rounded 

(classification scheme of Powers, 1953) spherical and when· 

examined under a petrographic microscope, are cl~arly 

"frosted". Characteristics such as these were originally 

assumed to be indicative of an aeolian provenance .. 
(Cailleux, 1941) but other circumstances such as sudden 

temperature (LeRiRault, 1977) and/or chemfcal , 

dissolution (Kuenen, 1960, Kuenen and Perdok, 1962) are 

also capable of frosting ~rains. Scanning electron 
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microscopy has had so~e success in determining the 

provenance of quartz grains (J<rin"sley and Takahashi, 1962, 

Kri~~le~ and Doornkamp, 1973, Le Ribault, 1977, J<rinsley 

and McCoy, 1978, Rogerson and Hudson, 1983); however., when 

viewed with a scanning electron microscope, most of the 

surface of the Roat . Harbour quartz 9rains are pitted and 

lack the fine surface · features necessary for_an accurate 
... 

provenance determination. Subramanian ·· (1975) and Friedman 

et al. (1976) suggest that pitting of quartz may be a 

result of chemical dissolution during carbonate 

precipitation. This diagenetic alteration prevents any 

determination of the provenance of the quar~z grains. All 

that can be concluded with any degree of '.~onfidence, is 

that the rounding. and high ,9l!gree of "sphericity of the 

quartz . grains probably resulted from prolonged abrasion 

prior to deposition ... -with the shales of the Boat Harbour 

Format ion. 

The . processes which control the smaller scaled cycles 

within the Boat · Harbour and Aguathuna Formati_?f!S are not 

fully understood. Some consider cyclic deposition to be the 

result of episodic subs id'ence and/or sedimentation rates 

(see discussion in Bathurst, 1975)~ Subsidence is a 

regional phenomenon and if it were the principle parameter 

dictating dep()sition, regionally correlative limestones and 

dololaminites should result · (Pratt, 197-9). For the most 

part, individual dololaminites are not tracable over large 

areas, nor are grainy 1 imestones. l ·n fact, these 
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lithologies often grade ·laterally into other liMestone 

facies (Levesque, 1977, Pratt, 1979, this study). It is 

likely therefore, that episodic subsidence alone did not 

cause the facies variation observed in the Aoat ~arbour and 

They envision tidal flats accreting as "cy~lic" deposits on .. 
a gently subsiding sea floor punctuated by numerous low 

relief, tidal flat islands (figure 2.4). nololamin·ite 

deposition took place tn the sup~atidal zone on the islands 

and subtidal deposition took place in the subtidal zone 

between the islands. Facies variations were primarily 

controlled by local fluctuations in the rate of .. ~ - -·· ·· 

~edimentation. During deposition of the 'Watts Bight and 

Catoche Formations, the tidal flat areas were predominantly 

subtidal and very few (or no) islands developed. The Roat 

Harbour and Aguathuna Formations reflect times when islands 

were much numerous and subsequently, dololaminite 

deposition was much more extensive (Pratt, 1979, Pratt and 

James, in press. ) • 

J 

·' 
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FlGURE 2.4: Schematic island-tidal flat sedimentation -model proposed 
by P;ratt (19.79.) for the St. George Group during Boat 
Haxbour · - Catoche deposition. (No vertical or horizontal 
scale implied) (Adopted from Pratt and James, in press). 
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CHAPTER WREE 

FIELD CLASSIFICATIONS OF DOLOMITE AND DOLOSTONE 

3.1 INTRODUCTION: 

Four varieties of dolostone (rocks composed of greater 

than 50 percent dolomite) ·and two varieti·~s of dolomitic 

1 imestone (rocks composed of less than . . 50 percent dolomite) 

are recognized in the St. George Group. The four dolostone's 

are referred to as: 1) dololaminites,. 2) pervasive A 

dolostone, 3) pervasive B dolostone and 4) cavity-filling 

dolostone (Haywick and James, 1984). The two varieties of 

dolom.itic limestone are referred to · .as either: matrix 

dolbmite or mottle dolomite. A seventh va~iety which fills 

void space and fractures in pre-existing rocks is referred 

to as saddle dolomite. 

Parameters used to distinguish one type from another 

include: n crystal size, 2) proportions of dolomite within 

a lithostratigraphic unit, 3) faunal content, or lack of it, 

4) degree of, (and the nature of) mottling, 5) sedimentary 

structures, 6) colour and 

characteristics are summarized 

7) localization. 

in table 1.1. 

• These 

The 

stratigraphic and ~eographic distributions of .the seven 

varieties are summarized in table 3.2. and are Ahown 

schematically on the ten measured sections (appendix A) and 

in figures 3.1 and 3.2. 

- -----,- ··-
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TABLE 3.1: Summary of the main characteristics of the 
sev~n iarieties of dolomite and dolostone 
found in the St. Ge~rge Group. 

f 

·. 
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'VARIETY CRYSTAL COLOUR_ 

SIZE 
DISTINGUIS11NG 

CHARACTERISTICS 

I) DOLO- VERY 

LAMINITES FINE 

2) MATRIX 0.1 

DOLOMITE f'N, 

3)MOTTLE 
DOLOMITE 

0.1 
,......,, 

4)PERVASIVE O 
1 A I & 

DOLOSTONE 0 
I 
3 M"\, 

0.1 TO 5) PERVASIVE 
0.3 tiM',' .. 

8 -
& · 

DOLOSTONE 1.0 f't1, 

6) CAVITY.'-
VERY 

FILLING 
FINE 

DOLOSTONE 

7)SADDLE ro.s TO 

DOLOMITE 15.0 f'M. 

- ~- -- . 

DOLOSIOOE: 

.BUFF TO . c::cl'ITAINS AB~T SHAL.J..CW WATER 

. hHITE .: SEDit-'ENIARY, STRU~ES .(I ,E, PRISM. 
I 

CRACKS_. MUDrnACKS, I....AMINATIOOS) I 

IXX.CX11TIC LIMESTQNE: · , 

.. 'REPLACES MATRIX BETWEEN ALLOCHEMS, I 

BUFF BODY FOSSILS AND TRACE FOSSILS. I 
VARIES IN ~Ltfr FRQ'>1 5 TO q()% OF I 
~F HOST RARELY 85%. I 

BUF~ TO 

OOVE GREY 

OOLC11ITIC LIMESTctJE:-

SELECTI VELY REPLACES I CHJOFOSS I LS 
~INS AND Sa-1E I'U.WSCS I LOCAL­
!ZED ALONG PRESSURE SOLUTI~ SE#1S, 
RANGES IN AMO~_FROM TRACE 
QUNITIIIES TO LU4 O(ll-IE HJST, 

DOLOSTOOE: 

FINER CRYSTALLlt~E OOLCMITE IS 
··- ... - -- -. L{)(.ALI ZED TO f';'OTILES I COARSER 

CRYSTALLINE DOLCl-1ITE IS LOCALIZED 

MEDILM BElWEEN t-'OTTL.ES, STRCJ1ATOLITES, 

GREY THRCMBOU TES) M:lWJSCS AND S0'1E 
' TRACE FOS~ILS ME ~LY . TO 

· M-HTE PRESERVED, OFTEN BITUMINOUS, .. I 

DOLOSTONE: 

. BUFF. USUALLY GEOf>ETAL. FILLS IN <l>EN 

TO CAVJTIES_ A~ .VOID SPACE IN PRE-

GREEN EXISTING PERVASIVE A NID B - . 
OOLOSTONES, 

- OOLDSTCJjE : -
WHITE CCWOSED OF SADDLE-SHAPED OOL..a1ITE 

TO Ri-0'8S \iiJCH FILL IN F~S AND 
PINK VOJDS Win-liN PRE-EXISTING 

PERVASIVE B OOLDSTctlES I 

i--.._ 
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TABLE 3.2: Distribution, ~bundance and extent of the 
seven varieties of dolomite and dolostone 
found within the St. ~•ocge Group. 

•· 

. _ _j 
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·DISTRIBUTION 
. . 

ABUNDANCE 
VARIETY 

AND EXTENT STRATIGRAPHIC GEOGRAPHIC 
. 

AGUAlliUNA AriD i AB~ANT, PACI~ES . 

I) DOLO--
: -- BOAT HARBOOR ' ' OF OOLOL.PMINITES 

FOOI'1ATIOOS, 
1 WI DE SPREAD . 

LAMINITES BASAL NATIS AAE CORRELATIVE I 

.~HT. 
I 

OVER SEVERAL KMS. · ' 

' . 
2)MATRIX BOAT HARBOOR AND LOCALIZED RAAE, BEDS OF MATRIX 

OCCURRENCES 00 DOLCJ-1ITEAR~ 

DOLDMITE 
WATIS BIGHT POOT AU POOT AN!) CROSSCUITJ NG AtiD AAE 

F00'-1ATI ONS GREAT NORMRN -, OF- LI M·l TED. VERTJ CAL ___, 
· - PENINSULAS AtiD LA rtR:-\L EXTEN:[/ -

VERY ABUNDANT,· nifCK 

3)MOTTLE PACKAGES OF OOLa-11 TE 
WIDESPREAD WIDESPREAD t·x:JTILED LIMEST()'.JES 

DOLOMITE ARE CORRELATIVE 
OVER• REGIONAL 
DISTANCES, 

4)PERVASIVE ABUNDANT, INDIVIDUAL 

A WIDESPREAD WIDESPREAD 
DOLOSTONE$ ME STRATA 
BOU:ID, TiiiCK PACKAGES 

DOLOSTONE 
AAE CORRELATIVE OVER 
REGIONAL DISTANCES, 

.. 
.. _) 

VERY ABUNDANT. S I ~LE 
5} PERVASIVE 

~REA T NOOTiiERN 
OOLOSTOUES MAY BE 

B WIDESPREAD CROSSCUTTING, THICK . 
PENINSULA OOLY, PACKAGES AAE' 

DOLOSTONE CORREIJ\TIVE OVER 
REGI<l W.. DISTANCES, 

' 

G) CAVITY- BOAT -~ AND LOCALIZED VERY RARE I. CAVJ Tl ES 
OCC~ENCES 00 ARE SMALL MID AAE ·-· 

FILLING WATTS BIGHT POOT AU POOT AND t.OT LA TERAU Y 00 . GREAT t-mlHERN VERTICAU.Y 
DOLOSTONE FORMATIOOS I 

PENINSULAS COOl NOOJS , i 

C~. VEINLETS bF . 
SAOOLE OOLCJ-1ITE ARE 

nsADDLE \'II DE SPREAD .. GREAT NCRTI£RN . CROSsanTI NG. PAI;KN.;ES 
CF ROCK cOOTAINHx; 

DOLOMITE PENINSULA ~LY. SAOOLf OOI..Cl-11 TE f"A Y . 
BE COORELAnVE OVER 
SHQqT DISTANCES, 

.. 

) 
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. FIGURE 3.1: . Reg i"onal d istrit>ution of dolomite and dolostone varie.t ies from Port au 
Port to Cape Norman • 

.I 
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FIGURE 3. 2: Lithostratigraphic correlation of dolomite and 
dolostone varieties between two measured 
sections on the Port au Port Peninsula 

.. 

(location Map in inset). Thin units are 
genevally non-correlative over the five 
kilometres between the sections, whereas thick 
patkages are. The datum for the corr~lation ar_e 
two prominent solution· seams which are .present 
in both sections. 

f 
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3.2 DOLOLAMINITES ' 

DEFINITION AND DESCRIPTION: 

The definition and the g_ene.ral characteristics of 

dololaminites have been briefly discussed in chapter two. 

The majority of these dolostones are chara~terized by fine, 

often cryptalgal, laminations which are prominent because of 

the accumulation of dark organic rich, insoluble material 

(plate 3.la). Ripple scaled cross laminations, tepee 
- . 

structures (plate 3.la), desiccation cracks (plate 3.lb), 

~rism cracks and intraformational breccias (plate 3.lc) are 

also abundant. 

Cryptalgal laminations may pass vertically or laterally 
-

into dicontinuous centimetre to metre scaled, burrow mottled 

intervals (plate J.ld) or into thin (less than one metre), 

poorly developed, LLH stromatolite horizons. · Rarely·, no 

structures whatsoever ar~ preserved in these rocks, possibly 

as a result of intense bioturbation. Despite this 

variability, all of these dolostones . are essenti<:~tly t.he 

same. All are composed of the same buff to black weathering, I . 

microcrystalline · to very finely crystalline dolomite. They 

fre~uently · contain fenestrae and chert nodules with entombed 

evaporite minerals . ana may be hosts to centimetre-scale, 

calcite spar-filled vugs. Some vugs contain interrtf'l 

sediment displaying gEwpetal texture, and pseudt>morphs of 

calcite after gypsum. It would appear that textural 

variability, (on a very localized scale), i s itself a 

characteristic of dololaminites, and subsequently, further 



PLATE 3.1: FIELD CHARACTERISTICS OF DOLOLAMINITES. 

A) Fine millimetre scaled laminations ar.~ 
tepees (arrow) viewed in vertical sectionr 
Aguathuna Formation, N.w. Gravels. Divisions 
qn scale bar are 5 em in length. 

Bl Polygonal desic,tion cracks (arro~) atop a 
dololaminite1 Boat Harbour Formation,~Port au 
Choix. 

C) Rip up pebble breccia localized within the 
basal portion of a dololaminite bed; Boat 
Harbour Formation, Isthmus Ray. 

D) . Cross-section of burrow mottling (arrow) 
within a dololaminite; Aguathuna Forma~n, 
N.W. Gravels. Bioturbation..-has destroyed the 
fine texture of the dolostone in this 
interval 

E) Radly fractured dololaminiter A~uathuna 
Formation, Aguathuna Quarry. The broken 
blocks have sharp, jagged edges and concoidal 
fracture. Divisions on scale bar are 25 em · 
in length. · 

F) Dololaminite . (behind measuring pole) 
interbedded with lime mudstonesr Boat Harbour 
Formation~ Isthmus Bay. The contact~_ between 
the two lithologies in this example . are very 
sharp, but others can be more gradual. · 

G) Breciated contact between a dololaminite 
and a limestone (lime)r Watts Bight 
Formation, Berry Head. The fractures which 
penetrate into the limestone (arrow) are 
filled with light coloured dolomite from ·the 

·overlying dololaminite. · 

' H) Liesegang bands developed within a 
dololamini te •. This colour al tera t io.n 
developed adjacent t "'"o fractures as a result 
of oxidizing pore . . fluids migra"ting along the 
fractures. 

' j. 

; 
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subdivision of this varlety is unnecessary. 

Dololaminite beds range i~ thickness from a few 

centimetres to a maximum of three ~etres. Frequently, many 

des crete beds coalesce into intervals ~0, or more metres in 

thickness~ 

Stylolites 

. -..,p 
and pressure solution seams are rare within ... 

dololaminite . beds but commonly mark their boundaries with 
., , 

other lithologies. Body fossils are also rare components of 

' these dolostones. 

Dololaminites ar.e frequently fractured and this is 

responsible for the rubbly appearence of some beds (plate 

3.le). The broken blocks have sharp, jagged edges and 

concoidal fractures. Contacts with limestones are usually 

sharp tb stylolitic (plate . 3.lf), hut on occasion, are 

bre~ciated (~late 3.lg) or graduai. 

Man~ dololaminites oh the Port au Port Peninsula are 

s ta ir-ied a disti'hctive red colour, comrno.nly with the 

development of Liesegang bands adjace~t to vertical 

fractures that pass up~ard into the overlying Carboniferous 

Codroy Group (plate 3.lh). This colouration is ·secondary,. 

and probably, occurred as a r~sult of ·oxidizi~g . fluids 

passing a .long these fractures · after tpe deposit ion ·.of the 

red siliciclastic Codroy sediments (Di~, 1982). •, 

_._ ... . . . ... 
STRAtiGRAPHIC AND ' GEO~PHIC QISTRLBUTION: 

Dololaminites are confined, to the Boat Harbour and · 

Aguathuna · Formations and to t.he basal portion of .tbe Watts 

~ .. .. . ... 

.. 
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Right Formation. They are found in all parts of the study 

area. 

Individual - dololamini te~ _beds are generally not 

correlative over large or regional dista~ces (Pratt, 1979~ 

figure 3.l)J however, packages of dololaminites a metre or 

more in thickness can be tra~e-d approxi.mately 5 kilometres 

between measured sections on the Port . au Port Peninsula 

( figure 3 • 2 ) • 

Bioturbated intervals are best developed within the 

Aguathuna Formation northwest of The Gravels on the Port au 

Port Peninsula and at Table Point on the Great Northern 

Peninsula • 

. 
3.3-MATRIX DOLOMITE 

DEFINITION AND DESCRIPTION: 

This varie~y ot dolomite ·selectively replaces the 

matrix or intergranular areas in packs tones and 

grains.tones. Grafns·, allochem$, ceJ!Ients, body and trace 

fossils, are ustially ~nalteredJ however, occasionally 

dolomitization is more extensive and these ~omponents may 

also be replaced • . 
v 

Dolomite rhombs are medium· crystalline (200 to -390 

micrometres), ~hi-te to J'!ledium grey weathering and -range in 
..) 

- proportion from approximately · s percent to about 40 

p~rcent, de~endirig upon " the extent of rep i acement (plate 

· .3.2a). 
i 

Rarely, matrix dolomite may replace up.._,~to 85 percent 

of tre . precursor ._ lim~ stone. 

f 
I 



PL~TE 3.2: FIELD ~HARACTERISTICS OF MATRIX DOLOMITE. 

A) Matrix dolomite (arrow) within a 
packstone~ Watts Btght Format ion, Isthmus 
Bay. The dolomite rep-lacement is--ve~:.y .. . 
"patch~· and parts of the limestone are 
preferentially replaced over others. Lens 
cap is 6 em in diameter. 

B) Stylolites (arrows) rnarking~e contacts 
between matri~ dolomite- rich((tighter 
are&s) and matrix dolomite - poor in~ervals 
(darker areas): Watt~ Right Formation, 
Isthmus Ray • . This. rock is also in sharp 
contact with the underlying lithology: a 
dolomite mottled limestone. 

C) "Pod• of matrtx dclornite (dolo) within a 
lime mudstone: Aguathuna Formation, N.W. 
Gravels. This occurrentte of matrix dolomite 
is characterized by sharp lateral and-­
vertical contacts·resulting in a 
"concretionary like• appearence to the pod. 

D) Gradual transition frommatrix dolomite 
"rich" to matrix dolomite •poor• limestones~ 
Watts Bight Forma~ion, Isthmus Ray. The 
numbers painted on the side of the rock are 
approximate percentages (visually estimated) 
of dolomite within the limestone. 

E) Black, organic rich bands (arrow) within a 
matrix dolomite - rich interval: Watts Right 
Formation, Isthmus Ray. 

F) Small strbmatolite preserved within mattix 
dolomite - rich• interval (ca. 80 percent 
dolomite~ D) in a mudstone (lime)~ Watts 
Bight Formation, Isthmus Bay. 



62 



.. -. . . 

63 

Matr'ix dolomite is also found in some mudstones or 

wackestones~ ~ Rhombs of dolomite are evenly distributed 

throughout the rock (as opposed to being fabric selective), 

are . - finely cryst-al! i ne poo micrometres) - and buff 

weatherin9. - 'I:he degree of replacement is similar to that 

\. observed in coarse grained _limestones (ranges from 5 to 

approximatel1 40 - percent). 

Matri~, dolomite-rich intervals (those containing more ' : .... , 

{: percent dolomite) are of very 1 imi ted vert ica_l 

extent )nd are usually seperated from matrix dolomite-po?r 

i~terv~~ (those containing less than 50 perce~t dolomite) 

' 
by stylolites. The contacts between limestones c6ht~ininq 

matrix dolomite and other lithologies is also usually sharp 

and stylolitic (plate 3.2b). In rare mudstones, lateral 

transitions are also sharp and this results in 
·-

concretionary-looking pods of matrix dolomite (plate 3.2c). 

"Gradational variations in _ the - proportion of matrix 

dolomite, both laterally and vertically, are much less -

c9mmo~(plate 3.2d). 

In_ coarse grained limestones, matrix dolomite-tich 

ihtervals may be up to l metra in thickness, are buff to 

rust coloured ·and contain abundant intercrystalline 

porosity, late calcite pore filling calcite cement and 

black_, (org~_-rich?), material. Thi,s gives rise to a 

conspicuous dark and •wispy• ~ppearance to some of the beds 

(plate 3.2e). A prominent bituminous..- odour on fresh 
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surfaces is due to intercrystalline gaseous ~ydrocarbons * 

The original f~br~c of matrix dolomite rich limestones 

is seldom preserved. Occasionally though, the dolomite 

replaces some portions of the limestone bed over others 

thus preserving a portion of the original fabric. 

Stromatolites appear to be especially resistent and can be 

~ound •flo~ting• in these intervals (plate 3.2f). 

STRATIGRAPHIC AND GEOGRAPHIC DISTRIBUTION: 

Matrix ~olomite ~s uncommon and accounts for no more 

than one or two percent of the total do}omite within the 

St • 

Watts 

area 

Most 

being 

are 

George Group. It is best developed in packsto~es of the 

Bight and Aoat Harbour F.ormations in the Port au Port 

(Isthmus Bay and Rerry Head se~tions; appendix A). 

of these occurrences cut across bedding rather than 

confined to individual beds. Pods of matrix doiomite 
~ 

c~nt!ined within a mudstone bed in the Aguathuna 

Formation northwest of the Gravels and at Aguathuna Ouarry 

(figure 3,2). 

Matrix dolomite can also be found in minute quantities 

in the Roat Harbour and Catoche Formations on the Grea.t 

Northern Peninsula. Here however, it is more difficult to 

recoqnize because oJ additional phases of dolomitization 

which have overprinted the rocks. 

* A powdered sample of this rock yielded 0.43 milligrams of 
soluble organic extract per gram of rock. These organics 
are highly biodegraded and contain no normal alkanes (R. 

•Quick'; pers• comm.). 
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3.4 MOTTLE DOLOMITE 

DEFINITION AND DESCRIPTION: 

This variety of dolomite was originally referred to as 

intramuros (Latin for ·~ithin the walls•) by Haywick and 

James ( 1 9 8 4 ) • Subsequent study has demon.strated t:'hat this 

term is. too restrictive, and hence, it has been dropped in 

( favor of mottle dolomite. 

Mottle dolomite replaces specific components within 

limestones. The dolomite is usually buff to . light grey and 

'j is . finely . cryst~lline (ca. 100 micrometres). The · most · 

\commonly select~d components are ichnofossil~ (plate 

\3a,b), ~tylolites (plate 3.3c) and the shell walls of ' 

~oiled and spiral gastropods (e~p~cially Ma~lurites1 plat~ 

3.3d). Nautiloids, and the outer shell wall of othet 

cephalopods are less commonly replaced. 

Mottle dolomite often has a •salt and pepper• 

appearance due to ,the combination of light · coloure!i 

dolomite crystals and dark, lntercrystalline •porosity. 

Lichen, perhaps taking advantage of the increased porosity, 

preferentially grow within the mottles on tpe upper 

surfaces of limestones. 

Trace f6ssils are not very diverse in - St. Geoi~e 

limestones, but nevertheless, are abundant. The most 

abundant varieties, and those most frequently dolomltlzed, 
•· 

are the branching burrow systems: Palaeophycus, 

•• 
Thalassinoides and Spongell~morpha (G. Narbonne, pers. 

comm.). Other less common trace 
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PLATE 3.. 3: PI ELD CHARACTERISTICS OF MOTTLE . DOLOMITE. 

. ' 

A) Pre-ferentially dolomitized ich-nofossils 
( Palaeophycus?) _atop a limestone bedding 
plane; Boat Harbour Formation, Isthmus Bay~ 

·"' .· 
B)' Cross-section of preferentially 
dolomitized ichnofossils; Boat Harbour 
Format.ion, Isthmus Bay. Some of these trace 
fossils ' ha\'e been strun'g out horizontally, 
due to compaction and pressure solution 
( ~rrow). 

c)· cross-section of ·a polished rock slab 
mottled extensively by preferentially · 
dolomi t i zed burrows (arrow) a'nd solution 
seams; Catoche Formation, Smelt .Canyon. The 
dolomite is · 1 ight coloured in 'comparison to · 
the dark limestone. 

I 

D) Preferentially dolomitized gastropods atop 
a ·,1 imes.tone bedding plane: . . Boat Harbour 
Format ion, 1-iare Bay. Only the shell walls 
have· been· ·.replaced _ by dolomite. 

. 9 

E) -Preferentially dolomitized ichnofossils 
-·atop a 1 imestone bedding plane: 'aoat. Harbour 

Forl'!at ion, Isthmus Bay. · In- this example, -only 
the margins of the trace· foss'ils ate 
replace-d: the c;ores · remain free of dolomite. 

F) Preferentially dolomiti~ed ichnofossils· 
atop a limestone bedding plan~; Boat Harbour 
Formation, Isthmus Bay. Unlike those pictured 
above., these tr:ace· fossils ' ar~ ·completely 
repl~ced by do_loini te: 

G) Extensively. dolomitized trace fossils 
viewed in· cross-sect ion; Boat· Harbour 
Formatiol'}, Isthmus Bay. In this example, 
mottle dolomite has spread - out; from the 
confines of the trace fossils and into the 
neighbouring limestone. The original 
char·acter of the niot. t les is no longer . 
apparent -although some. ichnofossils are st. i 1'·1 
t:ecognizable (arrow); The majority of the 
mottles are also strung qut horizontally due 
to physical compact ion and/or pressure 
solution. ·(as at the bottom of the photo}. 

. . 

H) Variations in the ·amount of mottle 
dolomi£e within difte.rent textures of 
limestone; Watts Bight Formation, Berry Head. 
The mudstone (Mud) .contains approximately 20 
'percent mottle dolqmi te whereas the 
grainstone .(Grst) contains only a trace. 

I 
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' I 
~referentially 'dolomitized includel Trichnichus, Chondrit~s 

and the 1 ined burrow Diplocr;tterion (G. Narbonne,·p~s. ------~ - ~ / . 

I ~· 

· comm.). Skolithos burrows are rare and are not normally 

replaced by dol-omite. Burrows and burrow syst.ems range in 

' length from less than one, to approximately is cent:imetres. 
- . - - . 

Replaced ilfinofos~sils and shelly fossils are · most 

rea_d i ly identifiable on bedding s'urfaces. In cross-section, . \,'' . ;: ... _· 

many of these moU:les are •strung out • horizontally ' i11 
j, ·.: 

respo,nse to phys leaf compact ion (plate 3. 3b) • 

The 
• t . ' ~-

amount /• of. dolomite associated with thes'e 

components is ' :variabl'k. 
' 

In some 1 imestones, : only 
.·· · ·.- ;:~ . . . 

margins of ich'nofossils are repl'aced and the cores remain . 

free of dolomite (plate 3.3e), wherea\ . in other ' lim~stones· , 

the burrows are completely replaced .(plate 3.3f). 

Occasionally, the dolomite is not wholly c·onfi~d to the 

margins of body fossils _and trace fossils, and some of the 

adjacent limestone is also replaced (plate 3.3g). It is not . . . . 

possible solely on the basis of field relationships to 

determine whether this variation represents different 

intensities· of the sam.e dolomitization event, (in which 

case the . dolomite would be the same in all mottles), or if 
:- ,_ 

it repre~ents intial nucleation in the walls of the 

features followed ,by Later replacement of the surrounding 

medium· (in which case the dolomite in the margins would 

differ from the dolc;>mite around the margins: figure 3.3). 

In many limestones, mottle dolomite is 1ocali~ed 

\ 

·· "="'· 

• ·', 

- .-
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40 °/o Mottle 
Dolomite 

. 10 °/o Mottle 
Dolomite 

5°/o Mottle 
Dolomite 

FI GURF · 3 • 3 : Variatidns in the amount of mottle dolomite 
(colourer. ~>lack) observed atop a hypothetical SL 
George limestone bed (stippled): Mottle dolomite 
c~~e localized alonq ·the ~argins of 
ichnofossils, or within the shell walls of some 
shelly f,ossils (as in· A) , or it can completely 
replace ~hese components (B). Occas iorially, 
some of the surrounding limestone is also re~ 
placed making the i<le.ntification of the individ­
ual components difficult (C). This entire range 
of replacement can occur within a single limestone 
bed, but the t.ransi tions are more gradual than 
illustr~ted heie. 

.1. ,. 

. : 
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partially or entirely _ along pressure solution seams and 

stylolites (refer to plate 3:3c). These components range in 

· size from one to five c·entimetres in length and are 

associated with · planar to subplana r, · anastomosing 

stylolites (hummocky to ana~tom~sing configuration pf 

Logan and Semeniuk, 1976). 

The amount of mottle dolQmi te within lime;; tones is . 

variable and ranges, 'from trace quantitie_s to a maximum . of 

approximately 40 percent. The amount within individua.l 

limestones is normally fairly constant, but vertical and 

lateral variations are not uncommon. There may be a marked 

increase in the pumber of dolomitized ichnofossils upward 
l 

if the overlying · lithology is a dolostone. Variations in 

the amount of dolomi t .e along stylolites appears to be:.. 

related to the number of pressure solution seams. 

Dolomite crystals that are responsi~le for the mottles 

within St. .George limestones are " identical in size, 

crystallinity and colour regardless as to the principle . 

'component of 
c 

the mottles. The only significant difference 

is tt)at stylolite mottles are more recessive than 

ichriofossil mottles and may contain an appreciable clay 
• b" 

Limestone~ which -contain the most mottle dolomite ar"e . 
0 

usually fine-grained mudstones and wackestones. Grainstones 

are seldom host to more than five percent of this va r iety 

(plate 3.3h). Stylolites are. common .· in grainstones, but ate 
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of a columnar to peaked-high amplitude (to 2 centim~tres) 

., configuration (Logan al"'d Semeniuk, 1976), not the planar._ 

configuration that appears to be the locus for 

dolomiilzation along most stylolites. 

STRATIGRAPHIC AND GEOGRAPHIC DIS.TRIBUTION: 

Mottle dolomite is the most widespread variety within 

the St. George Group. With ·the possible exception of 

g.rainstones, it is present in alm_ost every limestone bed 

and - in every format ion ~hroughout the study area. 

Limestones containing mottle dolomite are? laterally 

continuous on a regional scale (figure 3.1). 

Most of the_ occurrences of .mottle dolomito are due to 

a combination of -· ichnofossils and stylolites • . timfstones 

which·· cont~in exclusively one or tp.e....__y-ther of these two end 

members are less common. •Rurrow-only• mottles occur in the 

' Watts Right Formation at Berry Head and Isth·mus Ray (Port 

au PQrt area); within the Roat Harbour Formation at Isthmus 

Bay and Lower Cove (Port au Port Peninsula) and at Port ~~ -. 
Choix, Back Arm and . Cape Norman (Great Northern Peninsula). 

They can aTso be found within the upper Catoche Format i on 

at Lower Cove, Port au Choix ~nd Back Arm. 

•stylolite-only• motties are best developed within the 

Catoche Formation at Smelt· Canyon and near Cape Norman. 
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- 3.5 PERVASIVE DOLOSTONES 

DEFINITION AND DESCRIPTION: 

Pervasive dolostones are rocks that have a distinctive 

mottled appearence _ to ·t;hem. Two subtypes, A and B, are 
· ... 

--.,;-ifllfn ' in both, the mottled recog~ized the St. George and 
-4::::--

areas are composed of darker, more finely crysta 11 ine 

dolomite than are the interareas. Both varieties commonly 

preserve stromatolitic and thrombolitic structures 

The two subtypes differ enough from each other to' 

warrant seperate classification and discussion. They are 
• ., 

distinguished from one another principally by -the nature of 

the dolomite in the interareas between mottles. 

Pervasive A Dolostone: 

The dolomite in the interareas in these dolostones is 

medium crystalline (averages 300 micrometres in size) and 

dove grey weathering. Mottles are darker imparting , a 

medium grey colour to the rock. Interareas, because of the 

coarser dolomite crystal size, are more poro~s than the 

mottled intervals and as a result, may contain min6r 

amounts of_ pore filling calcite cement. The rock em i ts a-

slight to strong bituminous odour when freshly broken. 

Mottles account for between 90 and 80 percent of the 

volume of pervasive- A dolostones and are usually non-

descript (plate 3.4a). Those -- / 
. exclu~ively ichnofossils. 

that can be identified are 
. -



PLATE 3.4: FIELD CHARACTERISTICS OF PERVASIVE A DOLOSTONE. 

A) Non-descript mottling within pervasive A 
dolostone: Boat Harbour Formation, Isthmus Bay. 
Mottles are composed of a finer crystalline 
dolomite than are.the intermottle are~s. Lens 
cap is 6'. ctn in diameter.. · 

B) Sharp vertical transition from limestone 
(lime) to pervasive A dolostone (dQlo) ;.·Watts 
Bight Fbrmation, Berry Head. The mottles'within 
the limestone are stylolitic: however, the 
mottles that are recognizable within the 
dolostone are usually ichnofossils. 

C) Lateral transition from pervasive A dolostone 
(dolo) to burrow mottled limestoner Boat Harbour 
Formation, Isthmus Bay. 

D) Digitate stromatolites (o~ thrombolites) 
pre~erved within pervasive A dolostone of the 
Green Head Bioherm; Watts Bight Formation, 
Isthmus BaY· 

E) Gastro~ods ~top per~asive A·dolostone; Boat 
Harpour Formation, Back Arm. The gastropods are 
preferent~ally re~laced bt the ·· same · fine' · 
dolomite that is found within the mottles. 

F) Pervasive . A dolostone (dolo) developed 
beneath the pebble b~d and cutting _across a lime 
wackeatone; Boat Harbpur Formation, Isthmus Bay; 

___ ... 

, · 

.... - . ' ' 

.. 

,..----

. . 
' 

\ 

r 

. --. 
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Pervasive A dolostones commonly grade vertically or 

laterally into dolomite mottl~d limestones. The transition 

~~ accompanied by a decrease in the amount of dolomite 

within, and between th~ mottles until a point is reached 

(normally well into the limestone), when · individual 

components become identifiable. Most frequently, . these 
~ . 

components are-ichnofossils (plate 3.4b,c, figure 3.4). 

Stromatolitic or thrombQlitic horizons, espe~ially 

within the Green Head . Bioherm (Watts Bight - · Formation, 
. . 

Isthmus Bay section), are readibly identifiable because of 

their characteristic shapes (plate Llb,c, 3. 4d). 

Bioturbation bet~een the mounds prior to lithification (and 

dolomitization) 1s suggested by the mottled appearance of 

these .intervals. 

.. Do 1om i t i z at ion of mounds and · bioherm · - buildups 

'(especially thrombolites) is variable. In rocks composed of 

less than about ninety 

between the thrombolites 

algal mound itself is 

percent dolomite, o1y sediment 

has been dolomitize while the 1 

unaltered: P.lsewhere, individual 

mounds within 

·spiral' 

limes to~ are preferentially dolomi t ized. 

and coile~ g~stropo~s and rare orthocon~s are 

preserved in these dolostones and easily recognized because 

their shell walls are composed of t~e . sa~e da~k; finely . 

crystalline dolomite that is localized within the mottles 

(plate 3.4e). Apart from these body fossils (and algal 

structures), nq other fauna or faprics are preserv~d in 

per~asive A dolostones. 
'-.... 

I 
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FIGURE 3. 4: A sketch illustrating the transition between 
pervasive A dolostone (A) and dolomite mottled 
limestone (B). The proportion of finely crystal­
line mottles (black) is much higher in the dolo­
stone than in the limestone (white) making their 
identification subjective. Intermottle areas · 
within the dolostone (stippled) are composed of 
a more coarsely crystaliine dolomite than are the 

·mottles. Only in the limestone can ·the mottles be 
identified, in this example as trace fossils 
smeared out along stylolites. 
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Single pervasive A doloston~ berls range in thickness 

from 30 centimetres to approximately 2 metres, 
~ 

but 

J 
sequences can be up to 15 metres thick without a cha~ge in 

the l.i tho logy·. 
. 

Host pervasive A do~ostones are stratabound, confined 

to · distinct beds and although they may be laterally 

discontinuous (as in 

Pervas1ve B Dolostone; 

plate3.4c), 

litht~gies (plate 3.H>. 

only rarely do they cut 

across or truncate other 

interareas between mottles in pervasive B 

dolostones are composed of ~hite to pink, coarsely 

crystalline dolomite (ranges from l to 5 l'lillil'le.t-res), 

' imparting a light pink to grey colour to this ro~k. 

Unlike . pervasive A dolostone, the proportion of the 

dark mottles seldom e~ceeds 40 percent of the host a~d if 

well exposed on bedding plane surfaces, they ca~ cle~rly be 

identified as ichnofossil traces (plates 3.5a,h). In 

cross-section however, burrows are not recognizable and 

mottles are noticably •strung-out• along st~lolites (plate 

· 3. 5,.. \ --eoi led a ... nd spiral gastropods a 're co~spicuous on 
~-~ 
· bedding pl~nes because .the shell walls are composed of the 

., 
same dark, finely crystalline dolomite as is found with i n 

the trace fossils and ~ottles (plate 3.5d). Stromatolites 

and thrombol i te.s in mollnd intervals are replaced by ~he 

coarser, ligh~er coloured dolomite rather than the finer, 

darker dolomi.te (r·efer to ~iate ~.la,b). 
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PLATE 3.5: FIELD CHARACTERISTICS OF PERVASIVE B DOLOSTONE. 

·' 

A) Ichnofossils (Palaeopnycus?; arrow) atop a 
pervasive B dolostone bedding plane: Cat~che 
Formation, Table Point. The dark mottles stand 
out clearly from the rest of the light coloured 
rock. · -

B) As above. The margins of these ichnofossils 
are prefeientially replaced by ' a finely 
crystalline dolomite. Compar~ this p~oto with 
the mot~le dolomite depicted in plate 3.3e}. 

C) Cross-section of a polish~d rock slab 
showing the appearance of the mottles· in 
cross-section; Catoche. Formation, Table Point. 
All of these mottl~s are strung out along 
stylolites. The letters a and b refer tQ sites 
sampled for isotopic analysis (sample TPii; 
chapter five and app~ndix B). .. - _, 

D) Gastropods (arrow) preserved atop a 
pervasive B dolostone bedding plane; ·catoche 
Formation, Table Point. These gastropods are 
composed of the same finely crystalline 
dolomite as are the mottles. Compare this photo 
with the gastropods preserved by mottle 
dolomite pictured i~ plate 3.3d. 

E) Continuous and extensive pervasive B 
dolostone beds; Watts Bight Formation, New 
Ferolle. Large divisions on scale bar. are 25 
em in length. 

F) Discontinuous •pan• of pervasive B dolostone 
in sharp contact with lime wackestones, C~toche 
.Format ion, Cape Norman. 

G) •Remnant• limestone (lime) within pe.rvasive B 
dolostones; Catoche Formation, Table Point. 

• . 

-. 

I 

, . 

' 
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Interareas between mottles exhib.it abundant 

i nte rcrys ta lline porosity. · Por~ space is often filled by 

calcite, chert, fluorite _ or euh<:?orcd quar-tz. Much of the 

intercrystalline por_e space in the · :..-~nterareas is also 

f1lled hy a black bituminous mateiial. C.e-ocnemic4'1 analysis 

o f a sam p 1 e of t h i s do 1 o s tone y i e 1 de d 0 • 2 6 m i.l l i q rams of 

soluble organic extract per gram of rock. · The original 

characte-t:: of the hydrocarbon is irideterminent. It contains 

no no ma.l p.araffins and is 1 ikeiy stronqly biodegrad~d· (.}3. 

Ou i c k., pe rs. comm. , 1 9E 4 ) • 

- . ... . d 1 P.ervas 1 ve . A -- o ostone is exceedingly · variable in 

extent. Some beds . ue laterally continuous over hunctreds -nf 
. \ . 

metres 9f s~tion ~'\d coalesce.with others into widespread 
' · 

_terranes (plate 3. Se) ~\ llihereas other beds come anrl go over 

distances 

v a r. i a b i 1 i t y 

int·ervals 

, 
as short as ·a ~ew metr~s (plate 3,5f). 

that is rJspon~ i bl~ for "remnant • 

It is this 

limestone 

found 1 o·c a 1 i zed w i t h i n o the r w i s e p e r vas i v e 1 y. 

dolomitized strata (plate 3.5-g). In almost all cases, the 

contacts between pervas;ive · R clolostone and arljacent 

1 imestones are shar_p and usually p_lanar (plate 3-.fia,b). 
r~ 

There are no clues within the remnant . limestones to explain 

why they have not been dol omit i zed or why th~ contacts with 

the dolostone are so sharp. There does not appear to be any 

lithological variation in the limestone and- most are either 

homogeneo~s mudstones or wackestones. 

Pervasive A dolostone · is also confined to distinct 

equid imens ional or flat-lying "pans• within 

- 1 
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PLATE 3.6:· FIELD CHARACTERISTICS OF PERVASIVE B DOLOSTONE. 

.. , 

A) Sharp contact between pervasive B dolostone 
(dolo) and a dolomite mott 'led hmestone (lime): 
Boat Harbour Fo~matio~, Port au Choix. 

B) 'Sharp contact between pervasive B dolostone 
(B), pervasive A dolostone (A) and limeston~ 
( 1 ime) : Catoche Format ion, Cape Norman. Large 
divisions on scale bar are 25 em in length. 

, , ' . -
c)·· Localization of pervasive 8 dolostone (D) 
along a vertical fractur"e· (highlighted) r Boat 
H8r'bour Formation, 'cape Norman. 

D) Localization of pervasive 8 dolostone along 
horizontal, . white sparry dolomite filled 
fractures: Catoche Formation, Cape Norman. 

•"·. 
E) Strata bound, .. e ·quidimensional "pod" (left) 
and flat lying "pan" (right) of pervasive B 
dolostone within lime ~udstones: Catoche 
Format ion, Cape Norman.. These occurrences do not 
appear to have any as soc ia t ion with fractures. 

F) Strata bound, flat lying "pans" of pervasive 
B dolostone, Catoche Formation, Cape· Norman. ·As 
in the photo above, these ·occurrences of this 
dolostone do not appear .to be ,,ssociated with 
any fractures or veins. 

G) Pervasive B dolostone localized within a 
single thrompolit~ (or stromatolite) mound Boat 
Harbour Formation, Back Ar~. 

I 

H) Pervasive B dolostone (dolo) localized along 
a fault in lime mudstones: Boat Harbour 
Formation, Plum Point. .The fault lies to the 
righ,t of this photo. 

.. 

·' 

~· 
fl. 

. .. 
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1 imestones. The pods and pans also have _sharp contacts and 

are localized either along vertical or horizontal fractures 

and joints (plate 3.6c,d), or are strata- bound without 

any obvious association with fractures (plate 3.6e,f). Some 

of these latter occurrences may 9e preferen'ti.ally 

dolomitized stromatolite or thrombolite mounds (plate 

3 • 6g ) • 

The area immediately adjacent to faults is also 

commonly altered to pervasive B dolostone (plate 3.6h). 

STRATIGRAPHIC AND GEOGRAPJ-{!"C DISTRIRtJTION .: 
' 

0 ! 

Pervasive A dolostone is very widespread both 

stratigrap~icall~ and geographically. It is found in all 

formations, and in every outcrop _studied·(figur_e 3.1). 

The Watts Bight Formation is predominantly composed of 

thii dolostone in the Port au Port area, but only contains 

a few beds in other parts of the study a 'rea. 

-1· The Roat Harbour Format ion is occasionally punc.tuated 

by pervasive .A dolostone beds in all outcrop?+- .p~~fularly 

beneath the •pebble . bed• on sections on th~ Port au Port 

Peninsula (figures 2.2 . and 3.1). 

The upper portion 

regionally correlative 

of the Catoche Formation contains 

pervasive A dolostones in J1 
sections studied (figure 3.1). Minor beds of pervasive· A 

dolostone ~re occasionally prese ~t in lower portions of t he 

Catoche Formation. 
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The Aguathuna Formation in all exposures ~nt~ins 

pervasive A dolostone beds. In the Port au Port area, these 
"' -

rocks are most abundant towards the upper p~rt of the 

formation and are developed just below the St. George-Table 

Head disconfor~it~ (figure 3.2). ..· 

In contrast to type A, pervasive R dolostones are 

restricted entirely to outcrops on the Great Northern .. 
Peninsula (figure 3.1). Stratigraphically, the distribution 

is quite widespread and pervasive R dolostones are found .. 
-. within all four formations of the St. George Group. · 

This doiostone is the dominant l'ithology in all 

, sections of the Watts Right Formation on the Great NQrthern 

Peninsula. It is m'uch less abundant within the Boat Harbour 

Formation and tends to be restricted to~areas adjacen-t to 

faults and fractures or as discrete pods and pans. P?ds and 

pans are also found with_in the Catoche Formation. Towards 
... 

the top of the Catoche, ~~ick sequen~es of pe~vasive R 

dolostone ' coalesce and become interbedded with the 

pervasive A dolostone.s. -This dolostone package, ·(the 

"diagenetic dolomites" of Knight, 1977_b, 19RO and Pratt, 

1979), occurs . everywheie on the Great Northern Peninsula 

and is -. ~eg ionally correlative (figure 3. 1 )._. In the southern 

portion of the study area, pervasive A dolostone is 

interbedded with lime~tone. -· 
1'1 ' 

Pervasive B dolostone is rare in the Aguathuna 

Formation, but can be found interbedded with dololaminites 

in th~basal part of the outcrop at Table Poi~t. , . 

, 
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3.6 SADDLE DOLOMITE 
.. 

DEFINITION AND DISTRIRUTION: 

This variety of dolomite is localized to fr.actures, : 

veins (plate 3.7a) and vugs '(plate 3.7b) · wit-hin other 

rocks. The dolomite crystals are white to pink ' in colour, 

are .very coarsely 1 to 15 millimetres in . 

s-ize) and usually possess curved, or distorted ~r~;; tal 

taces. This variety ot dolomite has been referred to as 

· •white sparry•. (Mattes and Mountjoy, . 1980), •baroque• (Fol~ 

and Assereto, 1974) . or •spddle• ., (Friedman, 198 0) and . in 

·- Ne;wfoundland, · is related to sphalerite mineralization· a;t 
I 

j \? I 
the NewfoundJand Zin~ Mines n&ar Dan~el's Harbour (Cummin~, 

' 
i 

1968, Collins and Smith, 1975, Coron, 1982, Lane, 1984'). ln 
I 

this study, this variety is referred to as saddle dolomi~e 

becaus~ of--·t-h~ diagnostic · • saddle ·-"Shape"· -of - some ·-o-F-+-•Trr----~~-----t 

crys(ta~s. 

Saddle dolomite, whether in vugs , veins or fractures, 

contains abundant intercry'stalline porosity which may be · 

. filled by bituminous material, · calcite or chert. The 

centres of v-Uqs and fractures are even more- porous and m'ay 

cor;ttain open voids up to 1 centimetre in diameter. Ouartz, . 
fluorite or gypsum ~ineralization . is occasionally localized 

, · 

here. ; 

Saddle dolomite is extensive in the vicinity of 
:.-c.~ 

Newfoundland Zinc Mines where it commonly develops a fabric 

referred to as •pseudobreccia• · (Col1ins . an~ S~ith, 1~75, 



PLATE 3.7: - FIELD CHARACTERtSTICS OF SADDLE DOLOMITE. 

• 

A) Fractures filled by saddl~ dolomite (white) 
within pervasive A dolostone: Catoche Formation, 

· Table_ Point. 

B) Saddle dolomite confined < ~o s~ical vugs . 
within pervasive A dolostone: Boat Harbour 

· Formation, Port au Choix. 

C) "Pseudobreccia•:_ Boat Harbour Formati6n, Cape 
Norman. The dark, finely crystalline dolostone 
clasts within these ~ocks, show a strong · 
horizontal imbrication and are ~enerally _insitu 

' within the rocks. · 

D) "True spar breccia": Catoche Formation, 
Newfoundland Zinc Mine, D·aniel's Harbour. This 
breccia differs from the pseudobreccia pictured 
above because the dark clasts have clearly been 
displaced ~nd rotated with~n the ~ost rock. 
------------------ ------------

E) Gastropod shell preferentially -replaced by 
saddle dolom~te · atop a pervasive A dolostone: · 
Watts Bight Formation, New Ferolle. · .-

' F) Saddle· dolomite preferentially replacing the 
coarse.l.v_.crystalline dolomite between mottles in 
petvasive ·B dQlostone: Boat Harbour Formation, . 
Back Arm. 

G) ~ine veinlets. 6f saddle dolomite passing 
through pervasive A dolostone: Ca t·oche . 
Formation, Table Point. The veioleta do not 
appear to have ~diagenetically altered ~he host 
dolostone. · . 
H) ~hin ve~nfet of saddl~ dolomite passing 
through a fine grained limeStone: Catoche 
Format~on, _ Table Point. ' unlike the veinlets 
which cut through the dolostones pictured above, ­
mino~ dolomitization in the vicinity of the 
veinlet has occurred. The · resulting dolostone i's 
identical in appearance to pervasive B 
dolostone. 

• 

' 

i 
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Lane, 1984). Pseudobreccias (plate.3.7c) are rocks composed 

of horizontally oriented, dispersed and angular patches of 

mottle dolomite •floating• in a 

saddle dolomite makes up from 

(Lane, 1984). 

saddle dolomi~_ cement. The 

5 to 80 percent a the rotk 

. . 

Lane (1984) distin<J.~.Jish~ between true spar hreccias 
t:'---

an\ pse,udobrecc ias. Clasts within the true spar breccias 

(plate 3.7d) have clearly been displaced and rotated, 

whereas the clasts in .the pseudobreccias are generally 

insitu • . Both are present in the mine area and wnen 

overlapping, are very difticult ~o distinguish from one 

another (Lane, 1984.). 
0 

Saddle dolomite appears to grow from the margins of 

open - spaces inward toward the centre. Subsequently, 

fractures 
. 

and vugs were probably open prior to being filled 

by the dolomite and therefore, this variety can be regarded 

as pore filling• 

Saddle dolomite also replaces part of the country rock 

adjacent to fractures or the finely crystallin~ dolomite 

within gastropod shells (plate 3.7e) • . Lane (1984) ohserved 

that saddle dolomite loca1ly replac~s the finely 

.crystalline dolomite that is the matrfx to some breccias 

near the mine (his •tine rock matrix breccias•). The 

coarser crystalline _ interareas of pervasive B dolostone are 

also commonly replaced by saddle dolomite (plate 3.7£). 

Thin veinlets and fractures pass cleanly through 

·-
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dolol~m in i te.s and - pervasive A dolostones without an 

~ppreci~ble effect on . the host rock (plate 3.7g). In 

pervasive. B dolos~ones, vei~lets may pass through th~ whole 

rock, or . may me!ge into the coarsely crystalline dolomite 

of the interareas. 

The effect ~f ~addle · dolo~ite veins and fracttires upon 
. . 

limestones is more dramatic. Small veins may cut across the 

limes~nes without visable effect or may cause minor, ,­

localized dolomitization (piate 3.7h). The resulting patch 

of dolostone is identical to pervasiv~ B dolostone pods and 

pans described . fr6m ·e~sewhere on the Great ~orthern 

Peninsula. Intense fracturing and "pseudobrecciation" are 

unknown in limestone lithologies. 

STRATIGRAPHIC AND GEOGRAPHIC DISTRIBUTION: 

Saddle dolomite is locat;.ed princip~lly within 

pervasive B. dolostone-rich intervals on the Great Northern 

Peninsula. It 
. D . 
1s a common component of the Watts A1ght and 

Boat Harbour Formations and is abundant in.the upper third 

of the Catoche Formation (especially at Table Point and 

Danie 1' s Harbour). Saddle do!omi te is also found within the 

Aguathuna Formation at Table Point, but is not common. 

There. is one very minor occurrence of saddle dolomite 

in the southern portion of the study area associated with a 

vertical fault that cuts across a pervasive A dolostone 

"\ 
sequence at Isthmus BAy. 

\ 
i 

' 
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3.7 CAVITY- FILLING DOLOSTONE 
.. 

DEFINI~ION , AND DESCRIPTION: 

. this variety of dolostone is 'best described as cavity-

filling ("Haywick and James, 1984). It occurs in small (less 

than 30 ~entimetres), irregularly shaped cavities within 

· pre-¢xisting · p~rvasive A and R < pL~te 

3.8a,b,c,d). It is buff ·to g-reen in colour, very fin_el~ 

crystalline (less. than 50 micrometres) and usually 

geopetal. It makes up less than about ten percent of the 

volume of the host dolostone. 

Laminations commonly drape over irregularities at the 

bottom of the cavities suggesting that fine sediment has 

rained down upon the floor of an open hole. 

The cav1ties clearly cut across cr~ptalgal laminations 

and. mottles within the host dolostone (figure 3~5>: 

however, in pervasive A rlolostones, veinlets of saddle 

dolomite are not c~t. Occasionally, g~opetal cavities are 

developed, in . association with the finely _ crystalline 

mottles of ~hese dolostones. Saddle doloml~e may fill the 

void space at the top of the cavit ~es (as in plate J.Ah). 

Beneath the "pebble · bed" . on the Port au Port 

P~ninsula, scalenohedral 
. · ·- ') 

calc1te spar crystals are 

lo~a1ized within open pote space near the top of the 

cavities~ These calcite crystals contain abundant, minute 

pyrite and bitumen - inclusions. A breccia, campo~ of ch~rt 
• I 

and pervasive A dolostone clasts is associated with the 

cavity - filling dolostone at this location. 



PLATE 3.8: FIELD CHARACTERISTICS OF CAVITY-FILLING 
DOLOSTONE. 

A) ~avity ~ filling dOlostone co~fined to ~ 
large cavity (arrows) within a pervasive A 
dolostone: Watts Bight Formation, Cape Norman. 
The sediment which fills fhe cavities is buff· 
to green,. argillaceous and is characterized by 
convex-down, faint laminations. 

B) As ~bove. In this example, the dolostone is 
filling cavities that have apparently only 
~ev~loped in association with the dark mottl's 
(arrow 1)·. Some sediment is geopetal and saddle 
do1omite fills t~e void space at the top of the 
cavity (arrow 2). 

ctt As above. 

D) ~avity-filling dolostone (highlighte~ and 
arrows) confined to suspected solution pipes 
(Pratt, 1979) beneath the pebbie bed; Boat 
Harbour Formation, Ist~mus Bay. · 



92 

AB 



, ,) 

9l . 

~ 
I I 

0 I 2 
(em.) 

FIGURE 3.5: Schematic representation of cavity-filling 
dolostone within stromatolitic pervasi vc 
dolosto"ne. The margins of the cavities clearly 
truncate the laminations of the stromatolites 
indicating thut cavity formation and filling 
postdates lithification and dolomitization. The 
fine. gcopeta l sedime nt which fills the cavities 
m.:1y b~ either laminated (1\) or homogeneous (13). 
Saddl·e dolomite> may fill the void space at the 
top of geopetal cavities in pervasive B. dolostones 
(a's in B). 

.· 
. J 
/ 
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STRATIGRAPHIC AND GEOGRAPHI£ DJSTRIRUTION: 

Cavity filling dolostone is the lea!';t ahunrlant 

(volumetrically) of any variety of dolomite or dolo!' t one 

within t 'he St. George. 

The best examples are associated wit h thf' 

stromatolite-thrombolite mound rich pervn!'\ivf' R dolo~t one!'; · 

of the Watts Right Formation at Cape Norman and on New 

Ferolle Peni nsula \:~(figure 1.1), Cavity- -filling. dolostone 

has not been identifiec1 in any other formation in t h i s 

region. 

In the southern portion· of the study area, cavity-

filling dolostone is confined to possible kar s t s olution 

pipes beneath the pebble bed within the Roat Harbour 

ForfTiation at Lo we r · cove ·and Ic;thmu!'; Ra y (refer to figure 

2.1). Th e re is al s o a minor occurrence within a perva~ivP A 

d o los tone in thP Cntoche' Form<'~tion at Smelt Canyon • 



CHAPTER FOUR 

P F:TROGRAPHY, CATHOOOLUM INESCF:NCE AND PARAGENESIS 

4.1 INTRODUCTION: 

In this chapter, the petrography, cathodoluminescence 

aild • interpreted paragenesis of the seven varieties of 

dolomite and dolostone are outlined and discussed. A 

summary of these data are presenterl in table 4 .1. 

For each variety, the diagenetic relationships 

hetween the dolomite and the other components withi'n th e 

rock are assessed and when possible, are integrated with 

the diagenetic history of nei,ghbouring limestones. The 

overall paragenetic history of the limestone and dolomite 

is summarized in figure 4 .1. 

4. 2 CATHOOOLITMINESCF.NCP. OF' CARRONATF:f': 

Cat hodo 1 urn i nescence was performed · using a Wilci 

microscope equippen with a NucliG~ F.LM 24 vacuum stage and 

power source. An operating voltage of from 12 to 1 A 

kilovolts at 

all analyse s. 

a beam current of 60 microamps was used for 

Cat ho do 1 urn i nesc e rfce resu 1 ts fro m bombarding a 

s u i t a h 1 e !";amp 1 e ( 0 n e t h a t i s c a p a b 1 e of 1 u m i n esc i ng ) , w i t h 

a concentrated electron heam (Pierson, l<Hn). Suhstituted 

tr.,ce elements in a crystal system can either a ctivate 

luminescence (in which case they are refered t o a s 

- qs-
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TABLE 4.1: Summary of petrography and luminesc~nce 

characteristics and paragenesis of the seven 
varieties of "dolomite and dolosot ne recognized in the 
St. George Group • 

.... 
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VARIETY PETROGRAPHIC 8 LUMINESCENCE 
CHARACTERISTICS OF DOLOMITE 

,•, 

• 97 

TIMING OF 
OO..CMTIZATION 

I) DOLO -cRYSTALS ARE CLEAR TO "TUmiD., J\NHEDRAL TO 
~ ElHDRAL #ID USUALLY FORM XENOTOPIC FABRICS; SYN-

LAM~'ITE"c- -Ut1INESCENCE tS UNIFORM OR CRYSTAI,..S ARE SEDlr-eiTARY. 
n . .;:> WEAKLY Z~ED (~EE Za-JES MAXIMLt1), 

2)MATRIX 

DOLOMITE 

• 

3)MOTTLE 
DOLOMITE 

4) PERVASIVE 

A 
DOLOSTONE 

5) PERVASIVE 

B 
DOLOSTONE 

MUDSTOOES: CRYSTALS ARE CLEAR., ElJ-IEDRAL /IND 
C>FTEN COOTAIN CLOUDED (l)RES, . -
DEDOL011TIZA2ION SS VERY C=, RHCNBS ARE . 
WELL Z~ED ( TO INTERLAYERS , 

PACKSTOOES :CRYSTALS ARE ANHEOOAL CxENOTOPJC) 
TURBID AND DISPLAY STRAINED EXTINCTION, 
LLMINESCENCE IS A ~!FORM BUT DULL PrnPLE 
TO RED COUXJR, Z~ATI 00 IS ONLY POORLY 
DEVELOPED, · 

-CHARACTERISTICS ARE VARIABLE, CRYSTALS 
RANGE FRCJ-1 EUHEDRAL JO ANHEDRAL., (IDIOT<JllC 
TO XENOTOPIC FABRICS ., AND ARE CLEAR TO 
CLOlDED I LLM I NESCENCE Is EQUALLy vARIABLE 
AND RJ\NGES FROM DULL TO BRIGHT, 26ooATI~ 
IS OFTEN SPECTACULAR ~E Tt-WI ZONES 

MAY BE DEVELOPED IN S0'1E CRYSTALS) I 

-MOTTLES J\ND INTm10TTLES ARE SIMILAR BOlH 
PETRCXlRAPHICALLY ftND IN THEIR Lli-1INESCENCE I 

. 

-cRYSTALS ARE CLEAR AND DEVELOP XENPTOPIC 
FABRICS, LLMINESCENCE TS NORMALLY A UNIFOOM 
AND M:>DERATE RED COLOJR, ZONATI 00 1 S BEST 
DEVELOPED IN THE INTERAREAS SUGGESTING LATER 
PERICDS OF GRCWT"H IN nESE AREAS TIWl IN Tt-E 
MOTTLES, 

OOTTLES: SIMILAR TO UNIFO~LY LLMINESCENT 
EX.AMP.LES OF MOTTLE OOLCJ-11TE AND PERVASIVE A 
DOLOSTONE, 

INTERM:>ffiES: 'CRYSTALS ARE LARGE, ANHEDRAL 
TO EUf-EmAL AND ARE D-IARACTERI ZED BY 
STRAINFD EXTINCT!~. U.t1INESCENCE IS USUALLY 
A UNIFCRM .. · MODERATE TO BRIGHT RED COLo.R, 

. LATER GENERATIONS ARE CCM-1Ct-lLY t-'ORE FERRQ.AN 
~ EARLl ER OOES I 

EARLY TO LATE 
DIAGENESIS 

LATE 

' 

EARLY TO LATE 

DIAGENESIS 

EARLY 

EARLY TO LATE 
DIAGENESIS 

LATE 

6) SADDLE -SIMILAR TO 1l£ IN'Tm'10TTLE DOLCl11TE IN 
DOLOMITE PERVASIVE B DOLOSTCJ-4E 

-ncAVITY­

FILLING 

DOLOSTONE 

-OOl...CMITE IS VERY FINELY ~YSTAU.INE, ANHEOOAL ASSOCIATED 
AND L~INESCES ~!FORM COL~S (RED TO Willi 
ORANGE) I ll.MINESCENCE IS DULL TO t1JDERATE. 

-FaDSPAR, OOARTZI MICA .. Pt{)SPHATE .. CLAYS #ID SLB-AERIAL 
INSOLUBU:S· AAE C~ ACCESSOOY MINERALS, EXPOS~E 
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FIGURE 4.1: Summary illustrating the paragenetic history of the St. George Group as 
suggested through.~etrography and cathodoluminescence. Events primarily 
associated with limestones are summarized in the upper portion of the 
diagram whereas those events primarily associated~with dolomites and 
dolostones are summarized in the lower half of the diagram. The distinction i 
between_syngenetic, early and late diagenetic ~vents are ·also indicated. 
Cavity - filling dolostone is related to periods of subaerial exposure and is 
not included on this diagram. 
Secondary mine~alization; SPH - sphalerite, F - Fluorite, 0 r quartz, 
GYP - Gypsum. 
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·~ctiv~t~rs•) or inhibit luminescence (in which"case they 

are' .reft;!red to as It is the · changes in 

conce~tration ot the activating and quenching elemehts that 

causes . var.iations in luminescence and optical zonation in 

cryg't·als •. · Several cations, · (including Ti2+, Ph2+ an<'! . 

'many rare earth elements) are activator elements; however, 

the· ~ost common activator in carbonate rocks is generally 

co~iidered to be Mn2+ (Pierson·, 1981). The most common 

i n·h.i b i t i ng cation in carhonate rocks is usua 11y Fe?.+ 

{Sommer, 1972, Pierson, 1981, Amieux, l9A2-). 

The luminescence e mission of dolomite is concentraterl 

within the spectral range of 620 to ~90 nanom~tres (orange 

to deep red) and peaks at approximately 650 nanometres 

(Pi~rson; 19Rl). So~mer 41972) states that the variety of 

colours may be due to the distance hetween atoms: shorter 

·bond lengths giving deeper reds than longer hond lengths. 

The valence state of manganese has also been state d as a 

CptJse 1\ (Pierson, 19Rl). Pierson concluded that Mn2+ 

concentrations of from 80 to 100 ·parts per million were 

sufficient t o d e velop lumine scence in nolomite. He ~lso 

reported that ~~ weight percent of F'e2+ was sufficient to · 

inhibit luminesc~nce, regardless of MnZ+ concentration. 

Frank (1981) however, suggestf!d that it was the 

F'e2+;Mn2+ ratio rather t~an the absolute amounts, that 

caused the luminescence he obser¥ed in dolomite ~hombs . from 

the Sauk limestone, Missouri. He found tha t 

luminescence was promoted in specific zones which were 
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characterized by Fe2+/Mn2~ ratios of less than 7.5, whereas 

.l:um i nesce nee was quenched when the Fe2+;Mn2+ ratio 

exceeded 7.5. 

In this stl,ldy, the Mn2+ and Fe2+ concentrations 

of select samples of dolomite and dolostone were determined 

by ele6tron microprobe in order to explain the luminescence 

c~~racteristics of the crystals. 

4.3 LIMF.:STONF.S: 

In order to fuliy understand the diagenetic e ve nts 

resp6nsib~P for dolomite and dolos tonP within the St. 

George Group, the paragenetic hist6ry of the l i mestones 

must be established as accurately as possible. To 

accomplish this," observations made on - limestones dur:ng the 

course of this ·study are comhine<'l with those made in 

studies more concerned with limestone diag~nests (eg. Smit, 

1971, Swe tt and Smit, 1972, Pratt, 1979). 

Di<lge netic events which affected St. George 

limestones can be divide~ into three stages: Jl synge ne tic 

(or syn~ed imentary)~ _ 2 ) anrl 3) 

intermediate to late-'diagenetic (Mattes and Mo untjoy, 

1980). ~hoquette and Pray (1970) in their st\Jdy o f 

carbonate porosity teqned the first two stag es eogenesis 
( 

and the third mesogenesis. They a l so recog nized a 

telogenetic stage wni c h they define d as•the pe riod of time 

during which long-buried ~arhonate rocks are i~fue nced · by _ 
.. 

processes associated with subaerial exposure. Ma ttP S an4 
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Mountjoy · equate telogenesis with t~ctonic and post-tec~onic 

events. 

CEMF.NTS: 

At least three generations of cal~ite ceme~t are 

reco~nized within St. George limestones (Smit, 1971, Pratt , 

1979) (f~gure 4.2). 

Radial blade~ c~lcite cement predates pore filling by 

lime mud (plate 4.la), forms isopach6us - fri~ges around 

carbona·te grains (plate 4.lh) and is non-fe rroa n ancl 

non-luminescent. These characteristics suggest that this 

cement precipitated out of well-oxygenated seawater during, 

and / or imm~diately after depostion (Aathurst, 1975, Grover 

and Read, lq83). Radial bladed calcite can therefore he 

regarded as syngenetic (Pratt, 1979). 

Syntaxial calcite spar is restricted to ~vergrowths 

around echinoid fragments and fabric preserving ooicts. - lt. , 

like radial bladed calcite, is no'n-ferro~n 

non-lumin~scent ann is a first stage, possihly syngenetic, 

cement in some o o id grainstones (plate 4.lc). Syntaxial 

overgrowths around echinoids commonly abut into ractial 

bladed calcite cement implying eithe~ cogenetic, or lat e r 

growth t~an the radial hladed cal~it~. Syntaxial calcite 

sparry· cement is therefore best interpreted as a synge netic 

to early diage ne tic c e me nt. 

Equant calcite is the mo st abundant CPme n t i ~ St. 

Geo rg e · grainston~s (plate 4. ld) and· is a common seconrl 



FIGURE 4.2: Simplified s~tches illustrating the diagenetic history o'f .St. George 
wackestones (Al to A6) and grainstones (B~·tn 86). 

WACXESTONES: 
. Al -Deposition 

A2 Syngenetic events; lithification and dissolution of skeletal 
aragonite. Shell molds are filled with micritic sediment (1). 

A3 - Early diagenefic events: continued ~issolution of skeletal 
ar~genite with the creation of pore space (2) and possi.ble 
microspar neomorphism (3). 

A4 to A6 - Late diagenetic events; equant calcite cement f,illing of pore 
space (4), pressure solution (5), pseudospar neomorphism (~) and 
tectonic fracturing (7). Microspar gener~tion may . . have occurred at 
anytime during late diagenesis; however, luminescent microspar 
appears genetically related to periods of tectonic fracturing. 

GRAINSTONES: 
Bl - Deposition 
B2 - Syngenetic events; internal sedimentation (1) postdating a period 

· Of isopachous radial-bladed calcite cement (2). Syntaxial ca1cite 
spar cement may also be a syngenetic event when associated with 
ooids (3). 

83 - Early diagen~tic events: syntaxial calcite spar around echinoid 
fragments (4' and selective silicification (5). 1 

84 to 86 - ~at~ · diagenetic events; equant .calcite cement filling of 
pore space (6), pressure solution (7), ·microspar neomorphism of 
micritic components (8) and tectonic .fracturing (9). 
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PLATE 4.1: PETROGRAPHY AND CATHODOLUMINESCENCE 
PHOTOMICROGRAPHS OF ST. GEORGE LIMESTONES. 

A) Isopact\OI}S bladed calcite cement around 
peloids and ooids: Boat Harbour Format~on, 
Isthmus Bay. After the initial cement~tion, fine 
grained sediment {arrow) percolated into the 
rocks to fill part of the porosity. Equant 
calcite cement has filled in the'remaining 
porosity. Plane polarized · light. · 

B) isopachous cal~ite cement: Boat Harbour 
Formation, · Lower Cove. This cemen·t predates a 
-second phase of equant calcite spar. P lan'e 
polarized light. 

C) Syntaxial calcite cement in optical 
continu.ity with ooid~ (arrow): Bo_a .t Harbour 
Formation, Isthmus ~~Y· Plane polarized light. 

D) Equant calcite spar cementing peloids:·· 
Catoche Formation, Smelt Canyon. This texture of 
cement is the most abundant variety fourid iri St. 
George lime.stones. Plane polarized light. 

E) Gastropod shell, now preferentially replaced 
by dolomite, penetrated by burrows {arrow): Boat 
Harbour Formation, Isthmus Bay. 

F) Gastropod shell which ~as been preferentially 
dissolved and filled by fine ·grained calcite 
sediment in a sponge wackestone: Catoche 
Formation, Smelt Canyon. The shell outline is , 
very irregular and suggests that dissolution may 
have penetrated into the surrounding · sediment as 
well. The fine graine·d calcit~ is usually 
selecti~ely replaced by dolomite (arrow). Plane 
pofarized light. 

G) Cathodoluminescence of microspar: Catoche 
Fo~mation, Porr au Choix. The centres of many of 
the microspar crystals are dark and suggest that 
the luminescent calcite grew syntaxially around 
non-luminescent cores. The large dark gra .i,ns are 
detrital quartz and the bright blue luminescent 
grains are detrital feldspar. 

H) Cathodoluminescence of algal grains (Nuia?): 
Boat Harbour For~ation, Lower Cove. In these 
examples, the internal structures of the 
organisms are more luminescent than other parts 
of the grains or the surrounding rock. 

( , 
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st<"_ge ceme-nt to grainstones cemented previously by rad i al 

hladec1 and/or syntaxial calcite cements (Pratt, 1979). It 

also fills pores {sqme of which are fossil molds). in all 

. textures of limest o nes. 

Crystals range from 30 to 200 micrornetres in size and 

are normally non-fer:'roan hut do oc;c~ssionally become more 

ferroan towards the centres of pores.j."Pratt, 1979) . This 

cement !.• 
l S generally non-lurni nescent, though some examp l es 

do.._ contain thin (5 to 10 micrometre) luminesc_ent- bands 

inter layered 
( 

in th i. cker (to· 200 micr9metres) 

non-luminescent intervals. 

In a recent study, Wilkinson et al. (1982) have 

documented J'l"'odern equant" syngenetic cements and have 

i~ferred that some ancient examples may also be syngenetic. 

The . majority .of equant calcite in the St. George is 

interpreted as a mesogenetic, burial cement precipitated 

ffom phreatic pore waters (Pratt, 1979) rather than a 

syngenetic cement. Th-is interpretation is based upon its 

petrographic and luminescence character and the fact that 

it . pos.~dates both radial. bladed and synt·axial Cl ll'lents. 

The fl·uctuations· from weakly luminescent calcite to 

non-1 uminescent (fen:·oan) calcite suggest precipitation 

from . predominaitly reducing conditions, perhaps with mi nor 

fluctuations in redox potential or in pH (Evamy, 1969, Hem, 

1972, Grover and Read, 1983) ..... 

-. 
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ARAGONITIC COMPONf.NTS: 

The major-ity of aragonite hody fossils npp<>il r to have 

been affected by an episode of dissolutiqn while within 

striking distance of burrowing organisms on, or near, · the 

seafloor. This is suggested hy burrows (not hores) which 
~ 

penetrate shell molds (Pratt, plate - 4.le) and hy 
. 

internal sediment which ' fills molds (pJate 4.lf). The 

outline. of the mold is frequently irreqular because the 

lime mud in contact with the shell walls was also prone to 

dissolution (as in plate 4.ld). Calcitic fossils 'Such as 

~~hinoids, trilobites and brachiopods were not subjected to 

this early event. 

( 197 7 ) in his stu~y of Palaeozoic limestones 

of Saskatchewan an~an i toba similarly observed gas t. ropocts 

pen'etrated tjy burrows and 'also favoured early dissolution 

of aragon~e body fossils. He argued convincinqly that the 
I 

- rack of geopetal structures (partial fills) ruled, out 

passive infiltration of ;;ediment during compaction or af t er 

burial. Instead, Kendall suggested that the lime "'ud was 
L 

introduced into the void space hy the churning of sediment 

' during bioturbation. •This is also a reasonable explanation 

to account for sediment-r'illed gastropods in the St. 
l..-

George. 

Replacement of aragonitic body fossils by non-fabric· 

p't"eservative, equant calcite spar i s alsq frequent and 

indicates dissolution o f the shell 9fter lithific.ation, but 
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prior to cem-entation (Rathurst, 1975). Replacement of these 

components with the preservation of the original fabric is, 

however, . rare. Thi's suggests that either the neomorphic 

conversion of aragonite to calcite {concommi tant 

dissolution and precipitation) was not a significant event 

in the St. George or {more . 1 ikely), most of the skeletal 

aragonite was dissolved prior to the onset of neomorphism. 

Overall, the diagenesis of aragqnite body fossils 

appears to have been restricted to syngenetic or early 

diagenetic disso.lution (figure 4.2). 

SILICIFICATION: 

Silicification of limestones is common, ' and is 

generally an early-diagenetic event (Pratt, 1979) {figure 

4.2). It often preserve~ the original fabrics of grains .and 

cements, especially radial bladed cements. 

MUDSTONF. LITHIFICATION AND MICROSPAR GENESIS: 

'Lithification of lime mud in mudstones and 

wackestones appears to have been a relative ly 

early-diagenetic event 'because . most cross-sectional trace 
. 

f,oss i ls are only slightly (plate 3.3b,g), or are 
I 

not 

compacted at all. Some burrows however, are very compacted 

{Pratt, 1979, l9fl2) and this variability may reflect 

sporadic lithification of the mud prior to compac t ion. The 

fact that molds remained opened-tduring ·infiltration of 

marine sediment {as opposed to collapsing) . and that 
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dissolution of aragonite has frequently penetrate<i into the 

surrounding 1 ime mud (plate 4.lf) also implies that some· 

mud was lithif.ied (Qr at least consolidated) on or near the 

seafloor. This is consistent with the .conclu"sion arrived at 

by Kendall (1977) for P~laeozoic carhonates of Saskatchewan 

and Manitoba. Kendall observed that the ichnofossils were 

often "re-bur rowed" by successiv,e generations of burrowing 

organisms. He suggests that ear.ly lith{fication of lime mu<1 

forced the burrowers to selectively "mine" the mon~ 

permeable, unlithified. ichnofossils ann sediment fille <1 

gastropod molds. 

Much of the micrite in these fine graine cl lime stones 

as well as the micrite in peloids., intraclasts, hurrow 

li'nings and some calcitic fossils (trilobites or 

brachiopods) , is . common! y a 1 tered to microspar. M i·c ros·pa r · 

is finely- crystalline (5 to 20 micrometres), of a n 
I 

interlocking to equant habit (Folk, 1965) ·and in the St. 

George, is exclusively non-ferroan. It may h e 

non-luminescent, or brightly luminescent (plate 4 .lg). 

The origin .of microspar is somewhat of an e n i gma in 

'"the diagenesis of ~arbonates. Most microspar fabrics, wi th 

the possible except ion of geopeta l deposit s (A a t hurs t, 

1975), are generally considered to ·be recrystallizatio n 

products (Folk, 196 SJ. In the St. Georg e , lumines cent 

microspar appears to be a s yntaxial overgrowth o f · "hriqht" 

calcite around a dark "core • (plate 4.lg). Thi s jl!(pli e s 
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recrystallization in waters of a reducing environment where 

· the ratio was sma 11 enough to promote 

luminescence (ie. a phreatic environment; Grover and Read, 

19A3). Colour and intensity of luminescence is similar to 

that exhibited by some of the calcite in fractures cutting 

, acro~s the microspar and intuitively, suggests· luminescent 

microspar was generated during late-diagenetic per~ods"of 

tectof')ic fracturing (figure 4.2). Fluids · introduced via the 

'fractures, may have · penetrated into the micrite along 

minute inter~rystalline boundaries and at the expense Qf 

some of the micrite, precipitated out luminescent calcite 

in optical continuity with · that of the core. Most microspar 

is however, non-luminescent, not crossed by tectonic 

fractures 

process. 

There 

microspar 

and therefore cannot be explained by this 

" 

are a number of other explanat~ons for 

gene rat ion. Folk ( 1974a), in h-is study of Mg2 + 

inhibition on calcite precipitation, suggested that Mg2+ 
/ . . 

is retained within the sediment after lithification and 

forms a •cage• around each miciitic calcite crystal 

preventing growth beyond a few micrometres. Only. after the 

has been flushed by fresh-water can 

recrystallization to coarser crystalline microspar t~ke 

place. 

Bertrand P.t al., (19.83) have suggested that at least 

the coarser crystalline fabrics observed in 

mudstones (including microspar) could evolve during thermal 
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maturation of the rock. Th~s mechanism would'o~erate during 

later periods of limestone diagenesis. 

!~dependant studies in the modern by Steinen (197A, 

1982) and Lasemi and Sandberg (1984) support Folk'~ {1Q74a) 

suggest ion · that freshwater is an importAnt _ factor in 

microspar development. They believe that mi~ro~par is 

produced directly from lime mud ( in their ca~e 

predominantly aragohit~) and does not first pass through ~ 

lithification stage as Folk contends: micrite anrl microspar 

. form at the same time (Lasemi and San~berq, 1QA4). The 

conversion is thought to involve dissolution of aragonite 

and precipitation of calcite in the resulting micro-pores 

and through displacive calcite crystallization (Steinen, 

l9A2). This is esseDtially t~e same process outlined hy 

Land (1967) to explain the Pleistocene limest'ones of 

Aermuda. Skeletal aragonite is dissolved in contact with 

freshwater, and provides the necessary ions for cementation 

of the remaining sediment . by calcite. 

The composition of ancient ma~ine sediments and 

ultimately, of ancient seawater, is much too complex an 

issue., to attempt to resofve · in this study; however, 

burrowed, sediment filled gastropod molds do sugqest that 

s kel e tal aragonite during St. George sed·imentation was 

prone to ~ssolution while essentially on or near the sea 
·.• . 

floor. It is questionable thereforef·wh~ther aragonite was 

a m~jor component of St. George muds and whether or not t he 

.. 
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conversion of ar~gonite . to calcite was the driving force 

for microspar generation. If the majority of mud deposited 

during ~arly Ordovician tim~ was calcite (or' magnesium 
. 

calcite) rather than aragonite, the. early diagenetic 

• 
evolut1on. of '!'icrospar via the m~thod proposed by St."e1nen 

~ t 
(1978, 1982) and Lasemi and Sa.ndberg (J.984) is difficult to 

envision. Calcite and Mg-calcite (-cqntaining less than - 1'2 .. 
rriole percent MgC03) could not produce the ions neces5ary .. 
for cement at ion of ' the mud becau's.~ they are less reactive . 
tha'n aragonite when affected by freshw.at'et (Rathur.st, 

1975). 

'· . 1 n . the st. ·George Group, mud appears to have been 

1 i th if ied early, perhaps while still on the seafloo~. 
) . . . very . · 

If · n1icrospar fanned directly from unlithj.fied . mud as 

( 1978., . 19.8 2) an.d L~ and Sandberg 

( 1984) then it must be an .~arly-diagen~jduct. On the 

some .. microspa'r, (the luminescent 

suggested by -·~fteinen 

other hand, at least 

variety), appears to be related to late- diagenetic periods 

of tectonic fracturing. Microspar in the St. George may 

have been generated several times during the paragenetic 

his tory of 1 imestones (early- to la te- d iagene s is; figure 

4.2). 

ALGAL COMPONENTS: 

Dascycladaceans and problematic algae (f? r example, 

Renalcis and Nuia) commonly luminesce more brightly than 

the background calcite (plate 4.lh) and often, a 

} 

.· 
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•. non-desciipt peloid can be identified as an algal clot 

s;imply by examining it with a cathodoluminoscope. The 

reason{s) for luminescence of these components is not 

clea~. There is not an obvious diagenetic alteration of t he 

algae (for example, it has not been altered to micro~par), 

and since not all the algae luminesce, it .seems unlikely 

· that luminescence is caused hy primary trace · element 

geochemistry. It is clear however, that cathodoluminescence 

can be a valuable tool in determining the identity of some 

quest.ionable grains • 
. ' 

.. 
PRESSURE SOLUTION AND TECTONIC FRACTURING: . 

Pressure solution iesults 
I 

in a variety of styloli(e 

forms and can locally develop "pse~rlospar•, (a neomorphic 

alteration of micrite to calcite greater than 30 

micrometres in size; Folk, 1965, Aathurst, 1 97 5) , in 

limestones immediate1y adjacent to stylolites. Pressure 

solution is a late-diagenetic event (figure 4.2) and is 

discussed further in this chapter and in. chapter seven. 

~part from dolomitization, the final diageneti~ event 

of signiticance in these rocks is tectonic fracturing and 

fill by a variety of ferroan and non-ferroan calcites • 
. 

Fracturing occurred several times during the altera t ion of 

limestones · (early- to late - diagene sis), but is c ommonly the 

last diage~etic event 1fig u r e 4.2). In the Po r t au Po~t 

are a , they are as young as Carbori~erous, as demonstra t~~ 

.. 
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by fractures filled with Codroy Group sediments that extend 

out from sinkholes • 

' . 
SYNOPSI6: 

The. paragenesis of St George limestones is grouped 

into synsedimentary (syngenetic), early-diagenetic 

(eogenetic;" · Choquette and Pray, ·1970) and . late-diagenetic 

events (rtlesogenetic; opt. cit.) (figures 4.1 and 4.2). Some 

St • . George .grainstones were cemented while on the sea floor 

by ~ynsedimentary marine cement~ (radial-bladed and 

possibly syntaxial cements) anrl at the same time, skeletal 

aragonite was dissolved. Lime mud may also hav€ been 

lithified while on the seafloor. 

syntaxial calcite spar cement continued to 

precipitate. around echinoids and some ooids during periods 

of 

to 

early-diagenesis and 

fill the remaining 

secbnd stage burial cemen~~ · began 

pore space in the grainstones. 

Silicification of some limestones also occurred durihg this 

period. 

Late-diagenetic events include; 1) cont i nued 

cementation of pore space by increasingly iron rich equant 

calcite spar cement, 2) pressure solution 3) locaL 

development of 

Dolomitization 

pseudospar and 3) 

occurred throughout 

tectonic fracturing. 

·the diagenetic' history 

· of limestones. In the following sections, it is placed i'\o 

its proper parage ne-tic context • . 
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4. 4· DOLOLAMINITES 

PETROGRAPHY ~ND CATHODOLUMINESCENCE: 

T~ese rocks are composed of closely ' packed, clear to 

turbid dolomite rhombs (plate 4.2a). Iron content . varies 

from 0.13 to 0.87 weight percent FeO as determ i ned hy 

ele~~ron microprobe and atomic absorption. 

Crystals in most dol"olaminites from the southern 

portion of._the study area are either uniformly luminescent 

(non-zoned; plate 4.2b) or are poorly zoned (plate 4.2c) . 

If 'zoned, they contain no more tha~ 3 interlayers; the 

innermost one being more lu~inescent than the outer two. 

Contacts between zones . are diffuse. In some rocks, rhombs 

.are cemented by a ferroan calcite cement. They are nowever, 

seldom dedolomitizated. 

Dololaminite crystals range from less than 10 to 

about 50 micrometres though' some may reach 100 micr:-ometres. 

Larger .. crystals · are euhedral and are commonly loca 1 i zed 

along laminations (plate 4.2d) or as cement between clasts 

in intraformational breccias. Zonation in larger crystal~ 

is only slightly bette.r ci~veloped than in smaller ones 

(plate 4. 2e). Rare ~olol~minites are composed almost 

exclusively · of this. coarser dolomit~ but do not differ 

outwardly from the · finer cr-ystal! i;e· eq~ivalents • 

range 

• 
Det-tit;aJ. ~ldsf11ar .~rn~ qu~rtz silt al"e ubiqu i t o us a nd 

in abundancer> from trace' quantities to appr~ximately 5 

percent. ~he~ are 20 to 60 micro~e~r-e~ in size, are angular 

to rounded• · and ' ace tommon~y distributed parallel to the 

: . 



,t· ' 

, 

PLATF. 4.2: PETROGRAPHY AND CATHODOLUMINESCENCE 
PHOTOMICROGRAPHS OF DOLOLAMINITES. 

. • 

A) Closely ~eked, xenotopic mosaic of finely 
crystalline, angular dolomite crystals in a 
typical dololaminite; Aoat Harbour Formati o n, 
Lower Cove. Plane ~arized light. · 

. A) Cathodoluminescence of the same dblolaminite 
sample depicted in A. The dolomite in this 
sampfe is essentially uniformly luminescent and 
non-zoned. 

C) Poorly developed zonation within dolomite 
rhombs in a well laminated dololaminite; Aoat 
Harbour Formation, Hare Bay. Detrital feldspar 
(blue luminescence) is very abundant in these 
rocks and is commonly concentrated along 
laminations. Cathodoluminescence. 

Dt Euhedr:aJ dolomite crystals developed along 
and between laminations (arrow); Aguathuna 
Formation, NW Gravels. Plane polarized light 

E) Zonation developed in coa~sely crystalline . 
dolomite crystals; Boat Harbour Formation, 
Isthmus Aay~ Despite the larger crystal sizes, 
the zonation is still quite weak and seldom are 
more than three interlayers developed. 
Cathodoluminescence. 

F) Scanning electron photomicrograph of a 
dololaminite; Aguathuna Formation, Aguathuna 
Ouarry. In this ~ample, as in most 
dolola~inites, the intercrystalline pore space 
( 2) between dolomite crystals ( 1) is filled by 
dark organic rich material (2). This material is 
also commonly .concentrated along laminations • 

G) Burrow mottl~d dololaminite; Aguathuna 
Formation, NW . Gravels. These rocks do not differ 
petrographically from other dololami~ites except 
for the presence o f tra c e fos s ils. Plane 
polarized light. 

H) Pseudomorphs of calcite after gypsum; Roat 
Harbour For~tion, Lower Cove. These 
pse.,udomorphs are from a ·cavity. developed in a 
dololaminite after dissolution of an evaporite 
nodule. Cathodoluminescence. 
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laminatoions (refer to plate 4.2c). 0\ -" 
Silica nodules are common (P~tt, 1979). They are 

composed of a variety of quartz and chalcedony fabrics, 

although replacement of evaporite nodules qppears to have 

been exclusively by euhedral mega-quartz or flamboyant 

q!Jartz (Pratt, 1979). 

Laminations, if not marked by an accumulation of 

l . 
coarser crystalline dolomite, are marked by an abundance of 

dark, amorphous, insoluble material (refer to plate 4.2d). 

This same insoluble material is also localized in 

intercrystalline pore space (plate 4.2f). Examples from the 

northern portion of the study area are normally "cemented" 

by a red, moderately luminescent dolomite which locally 

replaces the dark, insoluble material between the crystal~~ 

Burrow-mottled dololaminites are petrographically 

similar to laminated ~quivalents; however, bu~rqw walls are 

darker than the host rock because of i~soluble material in 

iritercrystalline areas {plate 4.2g). 

P"RAGENESIS: 

By di~ect comparison to laminated dolomit~ formin9 in 

modern supratidal environments (for example the Tunisian 

Coast), the initial dolomitization of St. George 

dololamiriites pr6bably : occurred pehecontemporaneously with , 

sedimen~ation (figure ' ; 1). The coarseness and the zonation 

of some of the cryst~Is - ~lso suggests ~hat dolomite growth 

··also con-tinued after burial. Early dolomitization had bee n 

" 

·, 
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suggested earlier by Pratt (1979) who found microdolomite 

intraclasts trapped within a silicified dololaminite-

grainstone. He argued that the pre-chert formation of the 

dolomite supported penecontemporaneous precipitation o~ 

dolomite during supratidal sedimentation. Early 

dolomitization and lithification is also supported by 

intraformational breccias and fracturing around replaced 

evaporite nodules. The fractures, from 10 to 75 micrometres 

wide, are filled by . sli~htly ferroan calcite and appear to 

have •developed because of the brittle nature of the .rock 

during compaction around the nodule. After dolomitization 

and lithification, the evaporites were dissolved and the 

pore space was partially filled with geopetal calcite 

sediment preserving possible pseudo~orphs of calcite aftPr 

gypsum (R.q.c. Bathurs~, pers comm, l9R4; ,plate 4.2h). 

Rare dololamin ~ tes appear to · have .he en compactPd 

prior tb extensive lithification (and dolomitization?). In 

th~se rocks, ~ompaction has caused unlithified portions of 

the bed to flow around lithified portions resulting in a 

"concretionary" look to -~~e }lOrizons. 

Apart from thO ~cificOtion of evaporite nodules 

and tecton~c fracturing,_ .dololamiJ1ites do not appear to 

. have been greatly affect~d by post-dolomitization events. 
_, 

I 
\ 
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4.5 MATRIX DOLOMITE 

PETROGRAPHY AND LUMINESCENCE: 

The matrix dolomite in fine grained 1 imestones 

differs from that in coarse grained 1 imestones and 

therefore, the two will be discussed seperately. 

Fine Grained Limestones: 

Within muds~nes and wackestones, matrix 'dolomite is 

clear, euhedral, non-ferroan, finely crystalline ( 100 

mic~ometres) and ·common.ly partially dedolomiti~~d. Crystag­

are zoned and can · contain from 2 to 20 internal layers: 

Cores ·ate more luminescent than outer zones and commonly, a .. 
thin, strongly ferroan band (containing up to 5.0 weight 

.. 
percent FeO), is developed near the midpoint or terminus of 

the rhomb (plat~ · 4. 3a). Contacts between individual zones 

are sharp in rhombs composed of more than three or four 

zones but are transit iona 1 in rhombs composed of fewer than 

three. Transects of · several dolomite crystals by ele.ctron 

microprobe suggest that these. zones are developed in 

response to fluc l uations in total iron content rathe r than 

in changes in Mn2+ concentration (figure 4. 3 ) • The 

concentration of iron is often great enough to impart a 

blue colouration to the zones,· (especially_ the. very ferroan 

. outer . zdne), l.n stained .thin sections. 

There are no visable nuclei at the cores of the 

rhombs ( ie. peloids, allochems Qr cry::;fallites of calcite 

or dolomite} suggesting that dolomite· growth ' was around 
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PLATE 4. 3: PETROGRAPHY AND CATHODOLUMI NESCENCF. 
PHOTOMICROGRAPHS OF MATRIX DOLOMITE. 

A) Well developed zonation within matrix 
dolomite rhombs: Aoat Harbour Formation, LO'wer 
Cove. A prominent non-luminescent is rleveloperl 
near the terminus of the majority of the 
crys ta 1 s. Cat hbdolum i nescen.ce. 

B) Coarsely crystalline matrix dolomite 
localized between peloids · in a packstone: Watts 
Bight Format ion, Isthmus Aay. These occurrences 
are characterized by very irregular crystal 
outlines. 'Plane polarized light.. · 

C >. Cathodoluminescence photomicrograph. of the 
same port ion of the sample depicted in Fl. 
Luminescence of the dolomite is a dull and 

. uniform purple to · red.. -

D) Matrix dolomi.te (dolo) partially extinct 
~ · postdating an earlier phase of por·e lining 

equant. calcite spar cement: Watts Bight 
Formation, Isthmus Bay. Crossed nichols. . . . 

E) Scanning electron microphotoqraph of a 
portion of a · matrix dolomite-riel' interval: 
Watts Bight Formation, Isthmus Ray. 
Intercrystalline porosity is very common in 
these samples. 

F) Secondary por;osity in a matrix dol'omite 
. "rich':' interval, Watts.Bight Formation, Isthmus 
Bay. Dolomite crystals in contact with the · 
pores have been partially dissolved. Plane 

·, po 1 a r i :z; e d 1 i g h t. • 

G) Dedolomitizat.ion of matrix dolomite crystals: 
Aguathuna Formation, NW Gravels. Th~ majority o f 
~he dedolomitization is concentrated ne~r the 
central -portion of · the crystals (arrow ) . 
Cathodal uminescence. 

H) beaolomitization of matrix dolomite c'rystals; 
Watts Bight Formation, Berry Head. The 
quilt - like . mosaic of these rhombs is caused · by 
the combination in luminescence of two pha se s o f 
calcite and the original dolomite. 
Ca thodofumi ne s r::::~ nce. 

I) Tectonic fractures filled by bright l y . 
luminescent calcite: Watts Right Formation, 
Berry Head. This same calcite also surrounds 
(arrow) or partially dedolomitizes the dolomite 
crys tals. Cathodoluminescence. 
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FIGURE 4.3: Schematic representation of matrix dolomite zonation correlated with -electron 
mic·roprobe traver.ses. Traverse A - A' is across a. weakly zoned rhomb whereas 
traverse B - B' i~ across a well zoned rhomb. In both examples, the zonation 
results from varia~ions in the concentration of iron rather than variations 
in the concentration of manganese. 
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microscopic nuclei. 

Coarse Grained Limestones: 

Matrix ·dolomite in grainstones and packstones is 

coarse~ (200 to 500 micrometres) and has very irregular 

crystal outlines where. it abuts against grains or:- earl i er 

cements ,(plate 4. 3b). In plane polarized 1 ight, rhomhs are 

faint .brciwn, turbid, strongly pleochroic and characterized 

by strained extinction. Luminescence is dull, Alniform anrt 

ranges in colour from purple to red (piate 4.3c). Zonation 

is poorly developed and is usually a non-luminescent zone 

surn)unding a weakly luminescent core. The trans ition 

between the two zones is always ·9radual. The dol om ite is 

pore-filling in grairistones, postdating non-ferro an equant 

calcite cement (plate 4.3d). 

Occasionally, replacement of the limestone has g o ne 

almost to completion and has r e sulted -in the matrix.­

dolomite rich intervals described in chapter three. Th~se 

intervals are composed of the same dolom ite tha t i s in 

packstone~ and grainstones, but the dolomite is be~ter 

cryst.all i ne (developing idiotopic mo s aics; F'riedman, 196?) 

(plate 4.3e) and the intervals are charac t eri zed by 

abundant primary intercrystalline a nd secondary disso lution 

porosities 

spar is 

~ suggesting 

of calci t e 

(plate 4.3f). Non-ferroan calcite void-fi l iing 

l ocalized to primary intercrystalline pores. 

that s e condary dissolution pqstd a t e s late pha s es · 

c e me ntation. S_tylolites an<l t e ctoni c fractures 
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are not present within these intervals. 

PARAG~NESIS: 

... 
Petrographic and field- evidence suggests that matrix 

dolomite in fine . grained limestones is the product of an 

early- · to !,ate-diagenetic event(s) (figure 4.1). Rarely, 

rhombs are etched by microspar and or by non-ferroan, 

equant calcite cement implying that at l~ast some growth 

predates neomorphic conversion of micrite to microspar and 

equant calcite ~ementation. On the basis of arguement~ to 

be given shortly, i t: is ·1 i k e 1 y t h a t do 1om it i z a t ion 

proceeded up until the start of dedolomitization which in 

these rock~, accompanied tectonic fracturing. 

Crystal zonation in fine grained limestones .suggests 

growth during numerous fluctuations· in pore water , 
chemistry, (that is, in Mn2+ and Fe2+ conce-ntr<tt ion), . . 

and intuitively suggests · a prolonged period of 

dolomitiiation. Chemical variations appear to have be~n 

local as the zonation iri the rhombs is not consistent 

everywhere.• The. partition coefficfent -of Mn2-+: in dolomite 

i~ much greater than that for Fe2+, and because the 

resipence time of fluid flowing through f.ine grained rocks 

is long compared - . to that of fluid flowipg thr6ugh coarse~ 

grained rocks,· initial dolomite precipitates . would be -

relatively rich (and more lu~inescent). Later 

precipita tes. would -be . Fe2+· · rich and correspondingly · l e ss 

lu~inescent. This may explain the patern_of zonation found 

.. 
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in fine grained rocks (D.W. Morrow, pers. comm.,-1984). 

Matrix dolomite in grainy limestones is 

petrographically different from the dolomite · in fine 
! 

grained. limestones and is the result of a later diagenetic 

event (figure ~.1). It postdates equant calcite cementation 

and b~cause it i~ not cross-cut by · stylolite~ or tectonic 

fractures, may <'! lso postdate these late c:1 i age~"tc events. 

Lack of zonation in the rhombs implies growth from fluids 

of a fairly constant trace ele~ent composition or 

alternatively,· a rapid dolomite growth rate. 

The intervals which .were more intensely dolomitized 

(matrix dolomite-rich intervals) have been affected by 

later of calcite spar cementation, secondary 

dissolution .and gaseous hydrocarbon accul'lulatinn, probahly 

because. of the high irtercrystall i ne porosity developed 

~ during and/or after dolomitization. 

-DEDOLOMITIZATION IN FINE GRAINED LIMF:STONES: 

Dedolomitiiation of matrix dolomite in mudstones and 

wackestories occurs in one of three fashions ( figur~ 4 _.~): 

1) in the cores of the crystals (plate 4.3g): 2) within the 

~ore ferroan and therefore, mQsi unstable zones (refer to· 

plate 4.3b): 3) randomly in the crystals. The last mode"of 

replacement · is the most common and imparts a "quilt-like•' 

I 

appearance to the dolomite crystals (plate 4.3h). 



- ·- ~~ 

/ 

B 

I 
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D9fomite 

Dedolomite 1 

Dedolomite 2 

FI GURE 4.4: CDmmon fabrics of dedolomitization observed 
through cathodoluminescence of matrix 
dolomite rhornbs. 

A) Dedolomitization of crystal core. 
B) Dedolomitization of specific zones 

(~sually the most f~rroan) 
C} "Quilt-like" mosaic caused by two 

phases of dedolomite. 
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Flui.ds ._,ere intrqduced into the limestone via very 
i 

fine to microscopic ~ate-diagenetic fractures (1 to 50 
• 

rnicrometres) (fig~re ~.5). In one particularly good example 

of dedolomltization. three pha~es of calcite can he 
. 

distinguished by their differen:t hlminescent properties and 

• 
C r()SSCU t t i ng relationships.. The earliest phase is 

. 
non-luminescent and non-ferroan and while it cuts acros~ 

the limestone and dolomite, it replaces neither. The second 

phase of .calcite is slightly ferroan and brightly 

luminescent*. It encircles dolomite crystals (plate 4.3i, 

figur~ 4.~). replaces both the dolomtte and the host 

limestone and has filled th~ intercrystalline pore space of 

equant calcite spar cement. 

The final phase of ca}cite is morlerately lumi~escent, 

non-ferroan and also CGtuses some .dedolomitization, however, 

it does not surround 

lumi~n==- of the 

dolomite rhomhs. It is the comhinerl 

two phases of "dedolomite" and the 

remaining dolomite that develops the quilt-like mosaic of 

the - crystals when viewed under cathodoluminescence (refer 

to plate 4.3g). 

It is likely that matrix dolomite grew by concomitant 

dissolution and precipitation. The brightly luminescent 

calc~te surrounding the dolomite -crystals appears to have 

\ 
* Electron microprobe analysis of th'i s calcite shows it to 
contain ~.20 weight · p e rcent FeO and 0.70 weight percent 
MnO: Fe2+/Mn2+ = 0.29). 
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FIGURE 4.5: Origin of the •quilt-like" luminescence 
observed within some matrix dolomite crystals. 
Matrix dolomitization initially proceeds 
through the dissolution of host limestone and 
the. prec ipi tat ion of dolomite on a microscopic 
scale (A). Following the majority _of dolomite 
growth, tectonic fractures begin to penetrate 
the host limestone. The first phase of calcite 
fracture filling cement is non-luminescent and 
causes little or ~o dedolomiti~ation of the 
rhombs (B). A second gene rat ion of fracturing 
partially utilizes the pathways provided by the 
first generation and is fill~d by brightly 
luminescent calcite. This phase of calcite 
fills in the thin layer of porosity associated 
with the dolomitization and causes significant 
dedolomitization of the rhombs (C). A third 
generation of fractures, this time filled by 
moderately luminescent calcite also partially 
dedolomitizes ttnr crystals (D) and it is the 
COmbinatiOQ Of of both phases of calcite and 

. the original dolomite which results in the 
•quilt-like" mosaic of the crystals when ~ie~ed 
under cathodolumninescence. 

0 
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been introduc.ed by fluids moving along the· microporosity 

_accompanying the·- d_issolution/precipi tat ion process and 

eft' ect i ve ly sealed the void ~pace. · . The last phase of 

mqderately luminescent calcite does not surroupd the rhombs 

because the intercrystalline .pore space h~d been filled 

previously. Cementation of . the ... microporosity by brightly , \ . 
t _.. - .---

lumine~cent cafcite may be · the / mechanism by which 

dolomitization was terminated. 

. _ .. ·· 

4.6 MOTTLE DOLOMITE 

- , ---- ' 
PETROGRAPHY ANO CATHO[)(ltUMINESCENCF:: · 

The petrographic and lumine·scent' propertfes of thi s 

variety of dolomite ~re varied. Rhbmbs-are fine to medium 

• crystalline (50 to 500 micrometres), idiomorphic to 

" 

xenotopic (Friedman, 196?), non-zoned to _exceptionally well 

zoned and range in luminescence from .dull purp.le to bright 

red. This entire . range in character Gan occur over an 

interval as small as one or two-metres . and commonly, one 

limestone bed immediately overlying another, may contain a 
*""" ; 
completely different dolomite even though the mottles look 

identical in'outcrop. 

There f3re hC>wever, many genera 1 i t _ies that can be made 

about • this variety. Rhom~s are commonly dedolomitized in. a 
" ~ 

fashion s)~ilar to ~hat of matrix dolomiie (figure 4.4 ) and 

most, abdut eighty percent of the total, are zoned by three 

or more discrete layers. Zonation is· more common in mottle 

dolomite from the southern port ion of the study a rea. In 
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the nor,th, rhombs are usu~frt · l.tniformly luminescent. 

Crystals from the southern portion commonly contain a 

strongly ferroan zone, (to 5.4 weight percent FeO), near 

their midpoint or terminus (plate 4~4a). Zonation in these 

crystals, as in matrix dolomite, is a· result of chal'lges in 

' total iron content rather than Mn2+ concentration (figure 

4.6). The vast majority of crystals must have grown aro~nd 

microscopic nuclei because in only one example (plate 

4.4b), were fine nuclei (10 micrometre calcite grains) 

observed. 

Intercrystalline por~ space is dark and composed of 

organic-.rich insoluble netritus. The distinct impression is 

that tnis material has been "~ushed out of the way• and 

concentrated into intercrystalline ·pore space, during 
" 

dolomitization. This is similar to porphyroblastic growth 

in .metamorphic rocks: The detritus is locally.replaced hy 

moderately ·luminescent dolo~ite in limestones on the Great , 

Northern Peninsula. 

Detrital feldspar and quartz are sparse accessory 

minerals in both the limestone host rock and the mottles. 

These minerals .are, however, 

stylolite-mottles (plate 4.4c). 

very 
~:; 

abundant within 

Mottle dolomite is commonly preserved in diagenetic 

silica nodules or in silicified fine grained lime stones 

(Pratt, 1979). 



PLATE 4. 4: PETROGRAPHY AND CATHODOLUMINESCENCE 
PHD TOM ICROGRAPHS OF MOTTLE. DOLOMITF:. 

A) Zonation within mottle dolomite crystals; Bo,at Harbour 
Formation, Lower ·cove. Most crystals have a very pronounced 
ferroan· (non-luminescent) zone developed near the midpoint 
or terminus of th&, rhombs. C9 thodolum i n~scence. 

R) Dolomite rhombs containing bright. orange luminescing 
calcite cores, Catoche Formation, Smelt Canyon. The central 
locatio!) of these grains suggests that they acted as nuclei · 
for dolomite growth. _ Cathodoluminescenc~. 

'C) Portion of a pressure solution seam containing an 
abundance of detrital feldspar (blue iuminescence) and 
dolomite (weak luminescence): Catoche Formation, Smelt 
Canyon. One can visually gauge the amount of pressure 
solution that affected the limestone by comparing the 

' amount of feldspar along the stylolite with that in the 
surrounding rock. Cathodoluminescence. 

0) Portio~ of a t ra~· fossil that has 
replaced by well zoned dolomite: Boat 
Isthmus Bay. Catho~oluminescence •. 

been completely 
Harbour Formation, 

E) lchnofoss il partially replaced by ctolomite: Roat Harbour 
Formation, Isthmus Bay. In thiR example, which is from the 
same th·in section as D, dolomite is localized to 'the 
marifins of the ichnofossil. The core has been · filled in by 

· a later phase of slightly - ferroan calcite.. · 
Cathodoluminescence. 

F) . Ichnofossil whose margin has been converted to 
microspar: Bbat Harbour.Formation. No dolomite is localized 
to this burrow but dolomite is found in another ,adjacent to 
it (arrow). This ichofossil is in the same thin section as 
nand E. Plane polarized light. 

G) Well zonerl dolomite crystals etched by the neomorphic 
conversion of micrite to microspar (arrow): Ca tache 
Format ion, Aguathuna Ouarry. After the neomorphism, the 
rema lfling porosity between 'the dolomite and the microspar 
was penetrated by fluids which precipitated brightly 
luminescent calcite (yellow). Thi's calcite also partially 
dedolomi ti zed part of the rhombs. Cathodoluminescence. 

. . 
H) Dolomite (nid) preferenti-ally replacing the fine grained 
sediment (dark) which has filled a gastropod _s,..!h~e::....:l~l~w.:::.::a~lo.,l~----­
after dissolution of the aragonite; Catoche Formation, 
Smelt Canyon. Cathodoluminescence. 

I) OOlomite (purple) abuting against an~ partially "', 
replacing a calcite filled gastropod sh~ll; Catoche 
Formation, Smelt Canyo·n. l Dolomite crystals are surrounded 
and are partially dedolomitized by brightly luminescent 
calcite. Cathodoluminescence. 
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....... 

Schematic representation of mottle .dolomite zonation correlateQ with electron 
microprobe traverses. Traveise A - A' is across a large, uniformly 
Iuminescerit crystal. The concentration of both mariganese (not .shown on this 
figure) and iron are essentially below th~ limits of detecfion of the 
m~croprobe~ Traverse B - B' is across a well zoned dolomite crystal and as in 
matrix dolomite, zonation appears to be~ response to fluctuations in iron 
content. The concentration of manganese in thi~ example is below the limit of 
detection of the microprobe. 

• 

• 
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PARAGENESIS: 

As discussed in chapter three, the replacement of 

ichnofossils by mottle _dolomite ·is variable. Some burrows 

are completely replaced (plate 4.4d), others. are only 

partially replaced (plate 4.4e), and some have no dolomite 

asssociated · with .them at all (plate 4.4f). In several thin 

sect ions, a 11 degrees of replacement are present enab' i ng 

the following conclusfons to be made: 

1) There is no petrographic difference between the 
dolom'ite in partially replaced, or completely 
replaced ichnofossils (co~pare plates 4.4d and e). 
This implies that nucleation and growth took place in 
all parts of a burrow at the same time and that 
burrows completely replaced by dolomite are not the 
result of an additional phase(s) of dolomitization 
on those that were only partially replaced. 

)) The cores of burrows· that have had only their 
margins replaced by dolomite are filled with 
slightly to moderately ferro~n (averages 0.24 weight 
~ercent FeO), pore-filling, equant calcite cement. 
This calcite locally replaces or etches some of the 
dolomite. 

3) The margins of burrows that are not replaced by 
dolomite are composed . of microspar (refer to plate 
4.4f). Rhombs are occasionally etched in contact 
with the microspar (plate 4.4g). 

4) Compacti9n of burrows is variable and predates 
dolomitization in all examples. This is the reason 
for the strung-out appearence of many of the burrows 
when viewed in cross section. 

Palaeophycus is the most commonly dolomitized 

ichnofossii in the St. George Group and it is likely that 

most of the ichnofossils encountered in thin section are of 

this genus. This trace fossil has a packed wall and remains 

open during occupation by the burrowing organism (G. 
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Narbonne, pers. comm. 1983: figure 4. 7). After the d-eath of 

the animal, some burrows must have . been filled with 

sediment, but . others, (those whose cores would later be 
~ 

\filled 

"empty" • 

by pore filling calcite), must have remained 

After lithification · of the host mud, but before . . 
periods of silicification, dolom1te began to replace the 

material in, · and lining the burrows. Initial phases of 
. . 

mottl~ dolomite ~ust therefore be regarded as the products 

of early diagenesis or eog~nesis (Choquette and ·Pray, 

· 1970). Those burrows filled en~irely with sediment were 

eventually completely r~placed, "'Whereas . the. empty burrows 

had only their margins replaced (figure 4. 7). Dolomite 

growth ' appears to have been continuous but affected by . 

changes in the pore water chemistry as displayed by 
-. 

zonation. These changes were local because the zona t io'n is 

not constant everywhere. In many examples, crystal size and 

zona.tion patterns (especially the prominent ferroan zone), 

are similar . to those of ··the mattix dolomite in nearby fine 

grained limestones. This stro~gly sug~esting that at least 

some matrix dolomite and mottle dolomite formed o ver th e 

same period of · time and as a· result of the same e venUs) 

(figure 4:1)· 

The etching of some -Qf the dolomite crystals by 

microspar (plate 4.4g) and by ferroan, pore- filling equant 

calcite cement ·suggests that dolomitization was interupt~d 

on occasion by the conversion pf micrite to microspar and 

by periods of late-diagenetic burial cementation (figure 



,. 

FIGURE 4.7: Schematic summary i'llustrating the process 
whereby mottle dolomite replaces the margins of _. 
ichnofosssils. Many of the trace fossils, 
especially those identified as Palaeophycus, 
are characterized by packed margins (A) and may 
have remained open after· they were overlain by 
sediment (B). After lithification of tne 
enclosing lime mud, dolqlll'i.te selectively 
replace'd the margins and ,:.the sediment which 
percolated into the open burrows (C), 
eventually forming an xenotopic mosaic cor. 
After dolomitization, ferroan calcite spar 
cement (stippled) filled the void space at the 
core of the burrow (E). Selective · 
dolomitization (black) · i~ a later diagenetic 
event. 
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4.7). Most ihombs however, are not altered by these everits 

suggesting that dolbmite growth was also continuous after 

~icrospar formation and burial cementation. This is also 

like matrix dolomite in fine grained limestones • . 

It is evident that mottle dolomite has undergone a 

prolonged · period of growth and must be regarded as a 

product of early- to late-diagenesis (mesogenesis of 
i 

Choquette and Pray, 1970) (figure 4. l ) • Dedolomitization 

and termination of dolomite growth may have occ~rred during 

periods of teritonic fracturing in a similar fashion to that 

postulated formatrix dolomite.(figure 4.5) • . 

Rvents responsjble for the replacem~nt of aragonite 

body fossils are essentially the same as those summarized 

abov~ with hut one important additjon~ Aragonite body 

fossils (especially gastropods) were subjected to 

dissolution prior to the start of lithification (figure 

4.1) and the shell ·molds were filled hy fine sediment. 

Dolnmi te, '\>referentially ' replaced this · fine grained 

sediment. Rhombs ~re petrographically identical to the 

dolomite in nearby ichnofossils (plate 4.lf). 

Fossils that have been filled or replaced by calcite 
' 

spar rather. than sediment are less commonly dolomitized . 

suggesting that in some cases, equant calcite cementation 

of aragonite shell molds predate~ dolomitization. The 

embayment of cement in contact with dolomite (plate 4.4i) 

further ~upports this conclusion. 
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The role that pressure solution has played in these 

rocks is variable. Frequently, stylolites cut across 

mottles, are ~eflected around them, or are nucleated alo~g 

the contacts between the mottles and the limestone 

indicating that pressure solution pQst<iates mottle 

dolomit\zation. In many limestones however~ dolomite has 

nucleated in, and grown wholly within the confines of the 

stylolites. It has not simply been collected during 

pressure solution. 

It is possible to visually guage the amount of 

pressure solution that has affected a rock by comparing the 

amount of detrital feldspar localized along stylolites with 

the amount· found · scattered in -the 1 imestone (for example, . .... 

refer to plate 

similar manner, 

4.4c). If 

it becomes 

the dolomite is compared in a 

clear that there is ju~not 
enough in the host rock to account for the amount lo~alized· 

along the stylolites;· 'dolomite must either postdate 

pressure solution, or must have accompanied ft. · 

Many dolomitized ichnofossils as well as matrix 

dolomite-rich intervals in fine grained 1 imestones are 

transected or; abut against stylolites. Given that t ·he 

fluids which passed along the solution seams ~uring and / or 

after pressure solution could have promoted dolomitization, 

it is not unre asonable to assume th'at they too w.ere 

subjected to this late-diagenetic period of dolomite 

~ growth~ This further implies t~at . mottle (and some matrix) 

dolomit~zation is ~ long live d event. 
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4.7 PERVASIVE A DOLOSTONE 

PETROGRAPHY AND CATHODOLUMINESCENCE: 

The dolomite that is responsible for the mottling in· 
/)• 

these rocks is to all intents and purposes, identical to 
I 

the dolomite between the mottles. Crystals in both areas 

. are ·clear, · anhedral and form xenotopic mosaics. 

Luminescence is normally a uniform· moderate . red colour. The 

only appar~nt difference between the mottles and the 

intermottle areas is a difference in crystal size: this 

being most apparent when the samples are examined under 

po)arized light (plate 4.5a). 

Mottles ca~ occasionally, be resolved into individual 

ichnofossils and as in mottle dolomite, the finer dolomite 
.cl 

is localized to the margin of the burrow (plate 4.5b). When 

viewed under cathodoluminescence however, resolution is 

much more difficult because of similarities in colour and 

intensity (plate 4.5c). 

Approximately twenty percent of the pervasive A 

dolostone samples examined with cathodoluminescence are 

composed of zoned dolomite. Zonation within the dolomite 

that makes up the mottles is poor, and seldom are more than 

one or two layers developed around a central core of dull 

red .luminescing \dolomite • The i nte rmot t le rhombs are 

usually better zoned and bave additional outer layer (s) of 

non-luminescent dolomite (plate 4.5d,e). The core to these 

crJistals is commonly larger ·than t .he dolomite f <'lund in the 

mottles, but luminesce in an identical fashion • 
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PLATE 4.5: PETROGRAPHY AND CATHODOLUMINESCF.NCE 
PHOTOMICROGRAPHS OF PERVASIVE A DOLOSTONF.S. 

A) Bimodal dolomite-crystal size within a pervasive A 
dolostone: Boat Harbour Formation, Isthmus Bay. Crossed 
nichols. 

B) Transverse seclion through an _ ic~nofossil (arrows): Aoat 
Harbour Formation, Cape Norman. Trace fossils are only 
tecognizable in these rocks by the localization of finely 
crystalline dolomite to .their margins. Plane polarized 
light. . 

C) Cathodoluminescence of the ichnofossil shown in R 
(arrows are in the same position as they are in A). In 
geAeral, the rhombs within the margin of the burrow 
luminesce the same colour and intensity as the dolomite 
between the burrows. The intercrystalline boundaries of the 
dolomite cry$tals have been penetrated by a later phase of 
moderately lumin~scent dolomite. This is typical of all 
samples from the northern part of the study area. 

D) Mottles (M) and . intermottle areas (IM) within a 
pervasive A dolostone; Catoche Formation, Smelt Ca~yon. The 
intermottle areas are composed of dolomite that is hetter 
zoned and has additional ou~er zone~ than the dolomite 
confined to the mottles. Cathodoluminescence. 

E) Exceptionally well zoned .dolomite crystals within the 
intermottle area of a pervasive A dolostone; Catoche 
Formation, Hare Bay. Part of the intermottle dolomite has 
nucleated around· the mottles which sugge~ts continual 
dolomite growth in these areas after dolomitization had 
terminated in the ~ottles (M). Cathodoluminescence. 

F) Dark insoluble material loc~lized along a stylolit~ 
(arrow); Boat Harbour Formation, Cape Norman. Despite the 
fact that the stylolite is only poorly developed, this 
indicates that pressure solution postdates perva~ive A 
dolomitization. Plane pblarized light. 

G) Individual .dolomite rhombs locali?ed in the i'Tlterareas 
between mottles in a wackestone close to a pervasive A 
dolostone - limesto~e contact; Roat Harbour Formation, 
Isthmus Bay; Plane polarize~~-- -~ight. 

H) Scanning electron photomicrograph of a partially 
dedolomitized perva~ive A dolostone; Roat Harbour 
Formation, Isthmus Bay. Prior to examination, this sample 
was etched in a we~ acid - solution to selectively remove 
th~ calcite. Dedolomitization is concentrated at the core~ 
of the rhombs. 
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• 
Three samples out of a total of twenty seven examined 

differ from the •standard• dolostones discussed above. 

~he~k rocks contain mottles that are composed of a clearly 

different dolomite 4tan makes up the i ntermot t le areas ~nd 

is not simply the addition of a few ct\tferent layer~ of 
4 

dolomite on top of the same core. The mottles are made up 
·' r 

of mod~rately luminescent dolomite whereas the intermottles 

are composed of non-luminescent dolomite with occa;ional 

and thin (less than 50 micrometres), bright bands. These 

different dolostones are scattered both geographically and 

str~~igraphically~ one is from Smelt Canyon (Catoche 

Format ion)'·· one is from Port au rPort (~oat Harbour 

Format ion) an~ one is from Hare R.ay ( Ca tache Format) on L 
-I 

They appear to be intert;>edded with the more typt,.al or 

•standard• pervasive A dolostones. 

Feldspar · is a cornmo~but sparsely distributed 

accessory mineral in pervasive A dolostones and is likely 

inherited _ from the former limestorre: Stylol--ites are also · 

common, though poorly developed. Rather than the sharp 

·seams •marked by the - accumulation of siliciclastic mineralR, 

stylolites - ~ the majority of these dolostones are uRually 

marked by brecciation ( o n a microscopic sc~le), grin~ing of 

the dolomite and the accumulati o n of dark i ns oluble s (plate 
~----------------------------

" 4.5f). Intercrystalline pore space is mark Pd hy the . 

accumulation of dark ins oluble material antl this is locally 

replaced by bright red luminescing dolomite on the Grea t 

NortherQ Peninsula (refer to pl~te 4 : Sc). _ 

' 
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PARAGENF.SIS: I 

Before sununar i zing the parage netic his tory of 

pervasive A dolostones as sugge'sted by petrographic and 

field observations, it is first necessary to outline some /' 

important cone 1 us ions that can be made t~r deduced) about 

these rocks. It seems likely that the mottles and 

intermottle areas within most pervasive A dolostones formed 

from fluids of ·the. same trace element composition and 

probab1.y .;tt the same time. This conclusion is based upon 

the identical luminescence of dolomite in the mottles and 

intermottles for the majority of the examples. Samples that 

ar-e composed .of zoned dolomite also support this 

conclusion, but th~ fact that there are acid it iona 1 zones 

added to the int~rmottle dolomite suggest~ further growth 

'after the rhomt>s harl coalesced in -the mottles. This is best 

explained by advoca.t i ng 
11 

a more rapid, or intense, 

nucleation rate within the margins of the ichnofossils than 

bet'o(een The . three excep't ions suggest 

dolomitization and will be addressed shor;tly • . 

\ 
a s 'econdart 

\ 
\ 
\ 
\ 

I 

/ 
/ 

/ 

,The relationship between mottles in the pervasive A \ 
\ 

· · dolostones and in adjacent limestones is not straight 

forward. Pervasive A do los tones share many common 

characteristics with dolomi"te mottled limestones: i) they 

commonly abut a~ain~t, or g,rade into one another ( plat~s 

3.4b,'c), · i> !J'Ottles can be traced from one lithblogy into 
.• 

the ot.her and 3) both contain gastropods and ichnofos.sils 

whose wall& are pre'ferentially replaced b" -· finely 

\ 

/ 
,/ 
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crystalline dolomite (compare plate 4.5b with plate 4.4e). 

These common characteristics suggest that pervasive A. 

. 
dolostones and ·mottle do lomite in limestones must 

closely related. Rhombs " in the limestone, however, differ 

petrogr(\phically from those within the adjacent dolostones. 

The central port: ion of the mottle dolomite crystals are 

' 1similar to those in the clolostone; they are uniformly 
i 

! luminescent if the adjacent pervasive A dolostone is 

composed of uniformly luminescent dolomite (the usual 

case), or are zoned if the adjacent pervasive A dolostone 

is composed of ' zoned dolomite .(rare occurrences). In almo st 

all examples however, th&· mottle clolomite has adctitional 

·zones ?upe rimposed on this central port ion which suggests 

further . dolomite growth within the limestone after 

' 
dolomitization had been completed in the dolostone.. It can 

also be deduced that crystal growth was more rapicl in the 

dolostone than in the li'mestone'because b~nds within the 

f. former' are usually thicker than are corresponrling banos in 

the lat.ter. 

Mottles in limestone and in dolostones also rli f fer in 

their accessory mineral compos ition. Mott.l~ dolomite is 

commonly strung. out along stylolite s and · contains abundant 

feldspa r, quartz and clays. " No · where in any of 

dolostones are there concentrations of this 

•stylocumulate", in · fact, the styloli'tes that are present 

brec.c i ate th e dolomite crystals • . The s e . obs e r vations 

indicate. that pervasive A dolo's tone predates · all phases of 

pressure solution. 
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Although very sharp in outcrop, contactp between the 

two lithologies in thin section is usually grad~tional. The 

transition from limestone to dolostone is accompanied by . a 

increase in ·the amount · of dolomite rhombs within the 

intermqttle ·areas (plate 4.5g), eventually coalesc~ng into 

xenotopic mosaics in the intermottle areas of the 

dolostone. In the limestone, dolomite rhombs are only 

spprad ically distribute d. 

Th;se field and petrographic observations are ·best 

explained by the to~.lowing sequence of ·events. Ichnofoss~ l s 

in both the limestones and the dolostones must tiave begun 

to be preferentially dolomitized at about the same time 

(figure 4.8). Rhombs probably nuclP<tted and gre.., qu i ckly, 

(but ' also coalesced quickly), near the ·margi ns of the 

ichnofossils in ·the dolostone as evidenced by their fine 
.• 

l .:. . ~. 

crystallinity ' ~nd xenotopic habit. Growth may have been 

less 4.apid in the limestone· as dolomite crystal~ ~ h~re are 

less commonly 

crystals is 

/~ 

and the · central portipn of the 

smaller , · than . corresponding crystals · in the ____ ...,, 
dolostone. Differences in nucleation and growth r?~es may /. 

\ . ' 

also explain why the transition from limestone to dolostone ( 
I 

is also accompanied by a shar.p increase in the proportion ( 
\ .. 

of mottle dolomite ( re.fer to the d is cuss ion i n -ch a pte r 

three and figure 3.4). At the same time, individual 

dolomite rhombs nucleated between the mottles and a l so grew 

-- rapidly ( ~.igure 4. 8). Because they we r e more spi'lrs e ly 
... 
distributed initially, the y ha d mo r e room t o g r ow a n d 



• 
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fiGURE 4.8: Paragenesis of per(vasive A'c;lolostones and its 
relationship to mot-tle dolo~te. Following 
bioturbation (A), ~olomite n~eation and 
growth began (R) • .' In some are~s (upper half of 
diagram), dolomit'~growth ""as ~rvasive. In 
other portions ( 1 wer ha 1 f of d 1agram), 
dolomite growth wa restricted to the burrows • 

. 
Nucleation appears ~o have been very rapid in 
t ·he ichnofossils an~ subseque

1
ntly, dolomite 

crystals coalesced q~icker ih the ichnofossils 
than between them (Cl\--DQ._lomite growth in the 
areas between the ichnofossils proceeded for a 
longer period· of time and this resulted . in 
coarser crystals wlth addi~ional outer zones 
(D) Pervasive A dolostones w~e not subjected 
to a later phase of dolomite ~ow along 
stylolites that affected the ~~ttle doloMite 
(E) • I 

I 
' \ 

,-
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Additional zones 
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coalescing. 

more fer roan 

during these 

4 0 4d) 0 The 

pervasive A 

dolostone took place re)ativel~ early diagenetically and -iD 

most examples, predates the onset of additional phases of 
I> 

zonation within the mottle dolomite in adjacent limestones. 

Pervasive A dolomitization is therefore primarily the 

result of an early-diagenetic event and is ~oincident with 

early phases of mottle/matrix dolomite (figure 4.1). 

The three samples of pervasive A dolostone which 

contain a different dolomite in the intermottles than found 

in the mottles suggests overprinting of a dolamite mottled 
' 

' 
limestone by a second later period of dolomi~lzation. These 

instances must have. been the result of several different, 

and very localized events as these rocks are so few in 

number and are widely distribut~d both geographically and 

stratigraphically. Timing these secondary dolomitization 

events is difficult and little apart from stating that they 

~ostdate the initial dolomitization responsible for the 

mottles, and that they may have accompanied periods of 

pressure solution ' can be safely concluded. 

Post-dolomitization events are similar to tho~e in 
I 

previously described varieties. Ferroan and non-ferroan 

calcite cementation of pore space, followed by chert 

replacement of this cement is common, as is tectonic 
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fracturing.· Selective dedolomitization (plate 4.5h), and 

late stage pore filling ferroan dolomite are less common 

events. 

4.8 PERVASIVE B DOLOSTONE AND SADDLE QOLOMITE 

PETROGRAPHY AND CATHODOLUMINESCENCE: 

Unli-ke pervasive A dolostone, the mottles and 

'-
i ntermot t les of pervasive B dolostone are bimodal and 

warrant separate oiscussions. The dolomite within · the 

intermottle areas of these rocks is petrographically 

identical to saddle dolomite in fractures and vugs, and 

t~erefore, these two ~arieties will be discussed together. 

Mottles: 

Dolomite within mo~tles in pervasive R dolostones is 

medium crystalline (100 to 200 micrometres), non-ferroan, 

anhedral, forms xenotopi'c mosaics (plate 4.6a) and normally 

-~ luminesce uniform hues of red or purple (plat,e 4.6b). 

Zonation is rare!~ developed. Ichnofossils and gastropods 

are exceptionally well preserved (plate 4.6c). 

In all cases, mottles have been d~agged out 

horizontally along· stylolites (refet to plate 3.5c) and 

corn.-nonly abundant detrital feldspar is associated wi'th them 

(refer to plate ~.6a). Stylolites usually do riot c ontinue 

into int~~ottle areas • 

• 
Dolostones from fthe Watts Bight Formation are 

composed 
'.... ' . 

of ·dolomlte which lum_inesce in a similar fashion 

' · 

,. 
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PLATE 4.6: PETROGRAPHY AND CATHODOLUMINESCENCE 
PHOTOMICROGRAPHS OF PERVASIVE R DOLOSTONE. 

A) Finely c~ystalline dolomite localized in 
mqttles within a pervasive. B dolostone; Catoche 
Formation, Table Point. The dolomite within the 
interareas is much mo~e coa~sely crystalline and 
is characterized by cu~v~d crystal ~utlines, 
and strained extinction. Plane polarized light.· 

B) Cathodoluminescence of the same· portion of 
the pervasive B dolostone shown in A. Th~ 
dolomite within: the mottles has clearly 
different luminescence than the dolomite hetween 
the mottles. 

C) Gastropod preserved within a pervasive A 
dolostone; Watts Bight Formation, Cape Norman. 
The finely crystalline dolomite· that is 
localized to the shell i' the same as the 
dolomite found in icDnof ssils. Plane polarized 
light. . 

D) Cryptalgal laminations preserved within a 
.pervasive B dolostone; Watts Bight Formation, 

Back Arm. Plane polarized light. 

E) Recrystallizatibn of do~omite within a 
pervasive B dolostone~ Watts Bight Formation, 
Cape Norman. The contact between the r~placement 
dolomite (r~d luminescence) an~ the origin~l 
dolomite (purple luminescence) is very irregular 
indicating that the luminescence characteristics 
of this example is not the result of zonation. 
Cathodoluminescence. 
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to that of the mottle dolomite but pres~rves, albeit 

poorly, cryptalgal laminations {plate 4.6d). Rhombs are 

also more coarsely crystalline ranging from 300 to 750 

micrometres in size. This characteristic more closely 

resembles the intermottle dolomite than it does the mott l e 

dolomite. As in other pervas~ve 8 dolostones, mottles are 

usually dragged out along ~tylolite~; however, in these 

rocks, th' stylolites also cu~ across the intermottles. 

Intercrystalline pore 

all mottles, as in most 

space of the dolomite within 

ot~er vari~s of dolomite and 

dolostone on the Great' Northern Peninsula, is filled by 

dark, organic rich insoluble material which is locally 

penetrated and replaced by red, moderately luminescent 

dolomite . This same red luminescing dolofuite also replaces 

part of the original dull-purple lumines~ing dolomite in 

some Watts Bight dolostones. The ·contact between the two 

different dolomites is very patchy and irregular suggesting 

that it is a :replacement rather than simple zon~t_i?n _ _!_p~~~---. 

4.6e). These are the only clear-cut examples of d'olomite 

recrystallization found in the St. George. 

INTERMOTTLES AND SADDLE DOLOMITE: 

Rhombs from between mottles in pervasive A dolostone 

and in saddle dolomite are turbid, show sweeping or hour 

glass extinction (plate 4.7a), can be very coarsely 

crystal! i ne, (saddle dolomite crystals in fractures ca(l 

measure to 15 millimetres), and range in shape ( from 
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PLATE 4.6: PETROGRAPHY AND CATHODOLUMINgSCENCE 
PHOTOMICROGRAPHS OF PERVASIVE B DOLOSTONE .• 

A) 1-' inelt crystalline dolo~t·e localized in · 
mottles within a pervasiveiB dolostone; Catoche 
Formation, Table Point. The dolomite within the 
interareas is much more coarsely crystalline and 
are characte~ised by curved crystal outlines, 

• and strained extinction. Plane pOlarized light. 

B) Cathodoli.Jmi n-ascence of the same . port ion of 
the pervasive B dolostone Shown in ~· rhe 
dplomite within the mottles has clearly 
differen~ luminescence than the dolomite between 
the mottles. 

C) Gastropod preserved within a pervasive B 
dolostone; Watts Bight Formation, Cape Norman. 
T.he finely crystalline dolomite that is 
localized to the shell is the same as the 
dolomite found in ic~nofossils. Plane polarized 
light. 

D) Cryptalgal lam Jnaticns preserved within a 
pervasive B dolbstone; Watts Bight Formation, 
Back Arm. Plane polarized light. 

E) Recrystallization of. dolomite within a 
pervasive B dolostone; Watts Bight Formation, 
Cape Norman •. The contact between the replacement \ 
dolomite (red luminescence) and the original 
dolomite (purple luminescence) is very irregular 
indicating that the luminescence characteristics 
of this example is no.t the result of zonation • . 
Cathodoluminescence. · 
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anhedral intergrown to rhombohedral and stron~ly curved 

(plate ·4.7b). Pore-.fi 11 i ng saddle dolomite crystals 
~ 

nucleated· along both sides of the fractures and grew with 

their optic, or C axes, oriented perpendicular to the 

fractures. Cleavages are also commonly curv~d and large 

cryst~ faces are composed of smaller rhombs which are 
1 

ident ica 1 in appearence to the stepped or disrupted 

surfaces d~scribed by ~adke and Mathis (19RO) {plate 4. 7c). 

The dolomite is usually non-ferroan, rarely zoned and 

uniformly luminescent {moderate to "bright red) ·(refer to 

plate 4. 6a )'. It is this dolomite that occupies 

intercrys~alline pore space in all other dolomite and 
.. 

dolostone varieties . on the Great Northern Peninsula. 

Exceptions to this luminescence do exist, particular within 

pore filling ~addle dolomite. Successive 9enerations are 

commonly more ferroan, {incr~ases froM 0 weight percent FeO 

to 2. 5 weight percent FeO are not uncommon), and are 

cor~espondingly less luminescent. 

Inter~rystalline pore space in the intermottle areas 

of pervasive B dolostone is occupied by either dark 
/ 

iAlsoluble material, or microcrystalline chert. Too 

intercrystalline pore space preserved in the saddle 

dolomite-filled fractures and vugs is either empty, or 

contains megacrystalline, non-ferroan calcite, euhedral 

quartz or rarely, gypsum and fluorite • 

.. 
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PAP.AGENESIS.: 

The parage netic rel~tionships ' between saddle 

dolomite, pervasive B dolostone and the surrounding countr'y 

rocks are complex. Because of petrographic· and luminescence 

similarities, it is likely that most saddle dolomite and 

pervasive R dolostones were derived from fluids of similar 

character. It is clear however, that ·all the pe~vasive R 

dolostone and saddle dolomite did not form at the same 

time. There are different events of both as eviden~ed by: 

l) Veins of saddle dolomite that cut across some beds · 
of pervasive R dolostone which also nucleate 
pervasive R dolomitization in nearby limestones 
(refer to plate 3.Rh), 

2) · saddle dolomite veinlets which do ncft 
completely · across pervasive R dolostones, 
instead, merge into the intermottle dolomit&, 

cut 
but 

3) Saddle dolomite 
intermottle d.'olomite 
(refer to plate 3.8f). 

which 
within 

locally 
pervasive 

replaces the 
A dolostories 

With the possible ~xception of the Watts Right 

Fonriation, there is no doubt that per~asive R dolostones 

are products of late diagenetic events (figure 4.1) and 

were caused by a second phase of dolomiti~ation 

overprinting a dolomite mottled limestone. This conclusion 

is subs_tantiated by several 

observations: 

1) Mottles in the dolost'one 
in nearby limestones (both 
luminescence) and commonly., 
another·~~ U~l ike pervasive · A 
both lithologies have been 
solution. 

peirographic and field 

4 

look similar to mottles 
have the same uniform 

they grade into one 
dolostones, mott l es in 

dragged out by pressure 
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2) Pods of pervasive B dolostone a~e COrtUROn within 
1 imestones on the Great Northern Peninsula ·~ · never 
in any other litho logy. . . . - · - .. 

3) .. If) some remnant limestones, saddle dolomite 
· _pucleates around - pre-existing dolcm~te crystals in 

mottles and a·long stylolite's (plate 4 ·.7d). In all 
cases, this ' phase of dolomitization postdates all 
diagenetic· alterations - of the limestone (i-ncluding 
compaction, cementation, neomotphic conversion of 
m'i cri te to microspar and pressur~ so1ut ion). 

Pervasiv.e B dolostone in the Watts Bight Formation 

differs from dolostones 'in stratigraphically higher , 

forma.t ions: 1) it preserves cryptalgal laminations, 2) is 
•) 

not characterized by two distinctly different dolo~ites, 3) 
""- ~ ,, 

cut by stylolites and 4) is (rarely) recrystallized is 

(plate 4.6e). It is this latter characteristic that is most 

important as it suggests that an earlier phase of dol~mite 

was replac~d by late-diagenetic dolomite.; Rather than 

' 
overprinting a limestone, pervasiv~ B dolomitization in the 

Watts _Right Formation -may have overprinted a pre-existing 

dolostone. Overprinting may also explain why, g ive':l the 

prominence of zonation in most southern examples of mottle 
...... ..,-
dolomit~, mottles in northern limestones and pervasive · B 

dqlostone ar~ · · composed of uniformly luminescent crystals. 

This may either reflect original differences in character 
·, 

(that is, the rhombs were never zoned), or destruct ion of 

zonation by overpr;inting. Given that the one example' of 

r~rystallization was .at the expense of ztmed - crystals, 

this latter possibility is entirely feasible. 

The replacement of 1 iine$tone by intermottle dolomite 

must · have been accomplished by · dissolut i on and 
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prec ipi tat ion along a very sharp front and on a mic.roscopic . ' 
.scale rather than large scale d i.S$0~ ut ion prior to 

dolomitization. There is no · bther way to account for the 

sharp contacts· which often occu·r between pervasive. R 
l " 

do los tones and 1 ime~tones .• 'Fhese contacts appea"t'--shaql.:....even 

in thin section {plate 4.7e). Had the dolomitization been 

preceded by large scale dissolution, the mottles wquld not 

be expected to be insitu and manY. examples of solution 

collapse would be expected. With the except ion of the 

Newfoundland Zinc Mines {discussed shortly), Rolution 
( .. ' 

colla,ps7 is not a major component in the paragenetic 

·history of these rocks. 

Pervasive B dolomitization was probably_ in it ia t~ci 

during the earliest phases of tectonic fracturing. Flu ids 

passing up the f>:ac.tures migrat-ed i':lto surrounding · rocks 

where they developed the first gene'rations of pervasi.ve R 

dolostone ( f igu_re 4, 9). · 'The - replacement of the 

intercrystalline mate~ial in the other dolostones i s also 

likely to havf: occurred during, th~ passage of these fluids. 

As these 1 imes tones were being dolomi t,i zed, new 

g~nerations of saddle dolomite either utilized the previous 
·, / 

fractures or filled new one's. These fractures, and st'ill 

later generations, cut cleanly through the dolo laminites, 

·and the pervasive A "'and B do los tones but locally caused 

per~asive B dolomitizatio"n when limestones were' encountered 

( f igute 4. 9) • The .. pods• .and •pans• described in chapter 

three are probably produc.ts of this dolomitizatioh. 
, ·. 
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Probable origin of pervasive B do los tones. 
Initially, -country rocks (limestones and 
dolostones) were subjected to tectonic 
fracturing {·and· fill by saddle dolomite (A). 
From these sites, stratabound dolomi t i zing 
fluids passed into limestones along a shaq> 
dissolution/precipitation front · (B). Dolomit~ 
growth . ma~~ ~-~so have nucleated ' along ~he . ·""' · 
pre-exl~t 109 .. crystals that were local1 zed to ........ "' 
mottles ( ins~t). Whole 1 imestol)e beds were . \ 
replaced in this manner (C). Later '-
generations of fractures cut through the - "'--
dolostones and nucleted dolomitization in 
other l~mestones. Replacement of ~he 
inter-mottle areas by later generatidris · of. 
saddle dolomite also occurred during this time 
as the aggressive solution continu.~d to po¥ 
out. from the fractures . (D)~ ~imestones c~ld 
agun· be completely replaced, . or only , ____ _ 
partially replaced~ The latter results in 
stratabound pods or pans (E). 

J 

• . 

' - , 
I 

-r 
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Fracturing is most intense in the area of the 

Newfoundland Zinc Mine where . true spar breccias and 

pseudobreccias are locally developed. The upper portion of 

.the Catoche Formation underwent local dissolu_tion prior to 

deposition of Table Head sediments and this sub~equently 

caused collapse (Collins and Smith, 1975, Lane, 1984). 

Elsewhe"re on the Gre~t Northern Peninsula, the roc k's in 

" this part of the sect ion are composed of interbedded 

pervasive A and pervasive B do los tones. Collapse at the 

mine appears to have resulted from selective dissolution of 

limestone inte rbeds during, or irrstead of, pervasive B 

dolomitization. This can be conclud~d because the ' pervasiv~ 

A dolostone beds, which are referred to as •dark grey 

dolomites• · (T. Lane, pers. comm., l9J3), are preserved il'1 

' 
the mine. 

..;· 

~fter collapse, sediment filled in the ~depression, 

and saddle dolomite precipitated out a$ a cement for the 

hr~ccias and into fractures which extended into the country 
c 

crock. The precipitation must have been exceedingly rapid 

because saddle dolomite can account for up to abou_t sixty 

percent o.f the volume of the rock in true spar breccias and 

it seems unlikely that an unstabl~ ~ass such as this could 

have existed ~ery long ~ithout cementation. 

S-addle dolomite: also replaces· porti~ns of the 

surrounding host: rocks 4 especially the intermottles · o f 

pervasive B ·dolos tone). This ~e~lacement i s parti~l ly 

responsible for pseudobi eccia development ('refer to plate 

"" 



168 

3.8c) 
, 

J 

and for . patch~s of saddle dolo~ite within pervasive 8 

do los tones (refer to plate 3.8d). Replacement appears to 

have been caused by ~harp fronts that passed through the. 
c; 

dolostones in a similar fast\ ion to how pervasive R 

do los tones formed (figure 4. 9). rr. fact, it is likely . t;hat 

the ffuids responsible for replacement, originated from the 

same fractures that were the source of pervasive R fluids 

and relatively speaking, almost 
,.,~ : 

at the same time (figure 

4. 9). These were· very aggressive flu ids and appear to have 

been capable of replacing dolomite that had just formed. 

Although replacement is very cle~r in out~roR, it is 

difficult to resolve in thin section because · of · 

petrographic sim-ilarities between the dissolution front and 

the · normal intercrystalline contacts (plate 4.7f). F.~ly 

phase~ of ' the replacement dolomite commonly have s.imi lar 

optical and luminescent properties to the pre-existing . 
dolomite and ·grow syntaxially around· it (plate 4,7g). Later 

phases of saQdle . dolomite are more ferroan (less 

lum~nescent) a~dh.ccas ionally f i 11 fine fractures wh icti cut 

across the early do~~e . (figure 4.10). 

Sphalerite is complex at Newfou~dlanrl 

Zinc Mines and Lane (1984) has identified as many as four 

stages .of preci(:>itation which he d-istinguishes from one 

· anotber on the bas is of colour d i ffe~ences. In this study, 

sphalerit~ mineral~zation was investigated only in a 

cursory fashion·, but most· appears to have predated or 

ac~.ompanied · early phases of saddle dolomite precipitation 
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FIGURE 4.10: Re~lacement of intermottle dolomite by saddl~ 
dolomite in pervasive B dolostones. The 
replacement is first preceded by dissolution 
(A) whi'ch at least partially follows the 
crystal outlines of the dolomite crystals . 
After dissolution, dolomite b•gan to 
precipitate out in optical continuity with ·the 
pre-existing crystals. Usually the 
luminescence character of the new dolomite is 
the same as the pre-existing dolomite, and the 
dissol~tion front becomes very difficult to 
recognize in thin section (B). Later 
gener.atiops. of saddle dolomite (in this 
example of a different luminescence 
character), fill in the remaining pore space 
of the rock (C) • 

• 

·. 

./ · 
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(plate 4.7h). This is in agreement with the conclusions of 

Lane (1984). -• 
. The timing and the ddration of pervasive B and saddle 

dolomitization in the Catoche Formation can be estimated by 

·examining the overlying Table Head Gr6up. The lowest part 

of these limestones are pervasively dolomitized ~n the mine 

area, at River of Ponds (refer to fig~re 1.1} and at Port · 

-au Choix. If pervasive B dolomitization began around the 

time of solution collapse of the Catoche Formation, it can 

be speculated that the dolomitization{s) occurred over . the 

interval represented from the deposition of the ~guathuna 

Formation (Valhallan; Stouge, 1980) to at least earliest 

Middle Ordovicia·n time (Whi~e Rock: · Stouge, 1980). 

It is likely · that the scattered occurre~ces fo~nd 

within the Boat Harbour Formation also formed at the same 

time. This i~ suggested by saddle dolomite . fractures which 

extend from the Boat Harbour into t.he. Catoche at Port au 

Choix, Rack Arm and Cape Norman. 

The association . of . pervasive B dolostone with some 

faults suggests ~hat dolomitization brocaded up ~ntil at 

least the onset of regional tectonism. ~long the west coast 

of · Newfoondland, faulting 'is thought to have begun during 
. ~ • t 

the Middle Ordov.ician (H • . wilJtams, ! pers. comm., 19R4). 

Other periods of faulting occurred during the Devonian and 

the Carboni fereous (H. Williams, pers. comrn., 198 4 ) • 

Intuitively, one would expect that the phases of fau l ti.!"q, 

-~ associated with this· dolomitization ar~ early (M i ddle 

Ordovician) as · pervasive H dol.ostones aire· confined to the 

f 

-. 
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lower Table Head Group and have f\Ot yet been recognized in 

stratigraphically younger rocks. This is coincident with 

early phases of the Ta~onic orogeny. This conclusion 

however, must remain tentative unti~ further structural and 

· biostratigraphic data is collected • 

. Possible overprinting of the Watts Bight Formation 

and crosscutting by saddle dolomite-filled fractures must 

also have occurred during this time~ This conclusi u ., is, 

however, less conclusive because there is little relating 

Watts Bight examples to those.of stratigraphically higher 

-
formations (for example, saddle dolomi.te veins crossing 

from the Watts Bight into the Boat Harbou·r). "There is also 

th& quest~on of the nature of the pre-existing dolostone 

overprinted by late dolomitizatibn. As will be demonstrated 

shortly, the occurrences of cavity- filling dolostone in 

these rocks st~ongly suggests that they formed from an 
. 

earlier event, probably be fore the deposit ion of the 

overlying Boat Harbour Formation. The fact th.at · they 

preserve cryptalgal structures suggests that they may h'ave 
~ 

been very similar to pervasive A dolostqnes prior tp 

overprintirlg. 

4. 9· CAVITY - FILLING DOLOSTONE' 

PETROGRAPHY AND CATHODOLUMINESCENCE: 

The '' sediment 
' . .. ..., 

that fills cavities within pre- existing 

dolostone is finely crystalline (10 to 100 micrometres) and 

is composed of a wide ·, variety of minerals including 

anhedral dolomite, feldspar, micas, phosphate gra1ns 

. I 
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(collophane), insoluble organics arld clays (plate 4.8a). 

Dolomite is· by far the most abuhdant mineral but the other 

accesso.ry ~ minerals can a.c.count for up to 15 percent by · 

volume, of the fill. Laminations are very prominent and as 

observed in outc~p-;-commonly drape over irregularities at 

the base of the cavity (plate 4.8a,b). 

Dolomite crystals luminesce weakly from ora.nge to red 

(plate 4.8c) and zonation is seldom developed. Samples from 

· different parts of the study area differ from one another 

both in their lumi'riescence (in colour and in intensity), 

and in the abundance of the accessory rrtinerals. Ouartz and 

' " ' feldspar is ~specially abundant in the cavities beneath the 

pebble bed on the Port au Port Pe~insula whereas micas, 

phosphates and quartz is common in many of the examples 

from the ~atts Bight Formation on the Great Northern 

Peninsula. The lone example from the Catoche Formation at 

Smelt Canyon contains abund"ant _ clays and · insoluble 

material, but little quartz or feldspar. 

Cements are diverse and include a second phase of 

dolomite or chert (Great Northern Peninsula) and clays? or 

calcite (Smelt Canyon). The sediment filled cavities 

beneath the pebble bed on the Port au Port Pe_.ninsula are 

extremely friable · and are only weakly cemented byfdo.lomite • 

. • 
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PL-ATE 4. &': PETROGRAPHY AND. CATHOOOLUMINESCENCE 
~HOTOMICROGRAPHS Of CAVITY-FILL.JNG .OOtOSTONE. 

. ,;; 

A) Cavity- filling ~olostune (Cav) drapping over 
a depression in~ ervasive B.dolostone; Boat 
Harbour Formation, Isthmus Bay. Laminations 
(arrow) a.r.e ..promin nt in this exa·mple. Plane 
polarized light. 

B) Laminations within cavi~y-filling dolostone; 
Watts Bight Formation, New Ferolle. The 
dolostone js char~cterized by anhedraL to 
euhedral dolomite crystals and a variety of 
accessory mineral~ including; quartz, feldspar, 
collophane, org~nics and clays. Plane polarized 
light. 

C) Cavity-filling dolostone (Cav) is usually 
uniformly luminescent and is seldom zoned as in 
this example: Catoche Formation, Smelt Canyon. 
Sediment has rained down into the cavity after a 
phase of pore rimming ferroan (non-luminescent) 
dolomite growth. · The dolomite nucleated along 
the margin of .the cavity atop of pre-existing 
pervasive ~. dolostone crystals. 
Cathodolum~escence. 

D) . Cavit~-filling dolo.tone (Cav) penetrating 
into the intercrystalline pore space of 
pre-existing rhombs in a perv~sive A dolostone. 
This is the same thin section depicted by 
cathodoluminescence in C. Plane polarized light. 
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PARAGENESIS: 

P~rageneticall~, · it i~ clear that cavity-filling . 
postdates pervasive A'dolomitization as the sediment often 

penetr~tes into the rock by way of the . intercrystalline 

boundaries of the dolomite rhombs (plate 4.8d). In the 

example from the Catoche For~ation at Sme~t Canyon, 

sediment · fil'ling po~tdat-as · a per·iod of p()re lining ferroan .. 
dolomite : growth (plate 4.8c). 

'· . 
This dolomite nucleaterl 

around pre-existing dolomite crystals at the margin of the 

cavity and grew inward prior to, and probably immediately 

after, s~diment spilled into the ~~vity. 

Cavilty-filling dolostone also cross-cuts . algal 

structures in pervasive B dolostones of the Watts Right 

Formation (indicating that it postdates initial 

dolomitization), but is never observ€d cutting veins ·of 

saddle dolomite (chapter three). This, plus the fact that 

saddle dolomite often fills void space at near the top of . 

geopetal cavities, suggests that cavity~filling predatPs 

saddle dolomite. This is consistent with the suggestion 

made ear~ier . in this chapter that per~asive Rand saddle 

dolomitization may have overprinted a precursor mottled 

dolostone. 

Though composed predomi_nantly of finely crystalt
1
ine 

~ : ·· : 
dolomite rather than fine grained calcite, ~he habit of .. 
these c·avities and the } characteristics of the inte"rnal 

sediment is not unlike the •vadose silt~ describe~ by 

Dunham .(1969) and Bathurst (1975). This sediment is ' tti"b~ght 

. r 

a 
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to result from •winnowing• · or · ef"osion of host. rock, by 

moving ground water in the va-dose zone. Differences in host 

rock compos it io!" woul"d be'· ref lected-..-...i n the- make . up bf the 

sediment, and this may explain the pe'trog:raphic variations 

obser~d in cav~ty-filling dolostone ·. 

All the . known occurrences of this dolostone .seem to 

be loc,alized beneath documented (or suspected) exposure 
' . 

' horizons .. Fc.r example, cavity-filling dolostone is abundant . ~ . ........... 

· immediately beneath the pebble bed on the Port. au Por,t' 

Peninsul~, but no where else on the Port au Port . , 

Pennisu la. · Knight (1977b) suspects a d iscon form it y at the . , 

Watts Right 
. 

Boat H~~bour contact on the Great Northern 

"Pen'i'nsuia and ·· it is .beneath this horizon that cavity-. \· . 
filling dolostone is found. Kriight (pers. comm.) has·also 

. ' 
' • I 

recognized a disconformity seperating the Catoche Formation 
' A ! 0 

. . 
~tom the Aguathuna Formation on _parts of the Great Northern 

Peninsula. Unfortunately, the contact is . not exposed at 

Smelt Canyon or on the Port au. Port Peninsula and it is not 

possible at the ·present time t"o assess the significance of 
~ 

Knight's observation for the southern portion of the study 

area. If an exposure horizon does exist - i n t h is 

. stra figraph ic position, then · the . lone of 

cavity- filling dolostone f ound in the upper- part of the 

Catoche Formation at Smelt Canyon may be associat~d with 

it. Otherwi s e,· it 
. 

may be related . to the erosional 

unconfornti ty at the . St. George - Table Head contact, an 

estimated 50 metres above its position. 
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·and 
( 

petrographic character of the sediment, it seeros 1 i kely 

that c~vity-filling dolostone is~ directly . related to 

subaerial exposure. 

4. 10 DOLOMITE AND DOLOSTONE IN O'IliER ROCKS: 

As part of this 
J 
study, dolomite and dolostone in 

··rocks of similar a.ge to the St. George outcroping along the 

.. 
reg ion of western Newfound land were examined in a 

v.:z ' ·~ ' ' 

fashion. It was (-fel\_ that by examin"ing these rocks, 
' ' 

·c.oastal_ 

cu'rsory 

the diffe-rent variet~~t-~·ognized within the St. George 

Group would be better placed in their stratigraphic context 

and other add it iona 1 ·varieties not present within the St. 

George might be 'identi-fied. 

Only three varieties of dolomite or dolostone found 

within the St. George Group are found in .other rocks. As 

d iSCI.ISSed earlier, - pervasive B dolostone . is locally· 

developed within parts of the lower Table Head Group at the 

Newfoundland Zinc Mines, River of Ponds and at Port au 

Choix. These are petrographically identical to the 
/ 

equivalents in the St. George ·croup. 

Dololaminites are a. dominant component of the Upper 

Cambrian Petit Jardin Format ion and mottle dolomi-te. is a 
~ 

sparse component of the Upper Ca,mb.rian and lower Table_ Head r- -
Group. These varieties do not differ significantly from 

those of the St • . George Group. 
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Mottle dolomite is also fotind within certain hreccia 
.i.... 

clasts in the -Middle Cambrian to Middle Ordovician .Cow J-\elld · 

Group near 

i nterpret.ed 

C'ow 

as 

Head (figure 1. 1) •.. The'Se rocks are 

sl6pe debris shed partially ~rom th~ 

adjacent stable shelf ( tl)e site ·of St. George deposition; 

James and S~evens, 1982). The mottles are strung out, are 

wholly confined to the clasts . and do no(· cross into the_ 
' . 

. matrix or into other.clasts. preliminary conodont analysis 

.of the. dolomite mottled clasts .have yielded only ·sp.arse 

data which is insufficient to determine . their ages (S. 

Pohler, · pers. co.mm., 1984). ·should these clasts prove to be . ' ' 

derived from ·st. Georg~ rocks, it · would . reaffirm that 

initial mottle dolomitization and compaction was early, as 

it must have preceded their transport into the slope area. 

The Table Head Group at Table Point and the Cow Head 

Group at •The Arches• . (35, kilometres northeast of Tahle 

Point) are punctua~ed by linear~y · trending, dolo'!'itized 

bodies. T)te dark gr!!y dolostone ~ppe~rs to be associated 

with faults ' at Table Point as limestones on either side of 

the bodies dip at different an:tJles and the trends of the 

I 

dolos.tone · ( 032 2120) are roughly parallel to that- of 

regional faults.· The Cow Head occurrence is somewhat more 

speculative because with the exception of the dolostone, 

the rocks in the immediate area are not exposed. The 

linear trend, however, also parallels the . regional fault 

p~ttern, and once aga~n sugge~ts an asiociation with 

tectonics. 

- ~~~-----------
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In thin, .section, th& dolomite . is characteriied by 

~nhedral or sutured crystal outline~, strained extinction 

and uniform luminescence (dull red to purple)~ It is medium 
. I 
crysta 11 i ne (200 to 500 micrometres), transected .by 

numerous stylolites of all orientations and . has- been 

affected by a late period of dissolutiQ.n and ferroan-
. . 

calcite ceme~tation. Thii dolomite, although superficially 

resembling $addle dolomite or the · interare~s of perv~sive 8. 

dolostone (eg. strained -· extinction), has different 

luminescent properties and · has undergone a different 

paragene_tic history. After cursory ~xamination, it seems 

likely . that the Cow Head and Table Head fault related 

dolostones are . unique to· these rocks and may be due to 

later . periods of faulting · than those associated ~ith 

pervasive E\ dolostones in Lower Ordovician strata. Further 

study will reveal if this supposition is 6orrect or not. 

In· . tbe vicfnity of ~nglee, Newfoundland (figure 1.1), 
~ 

metamorphosed shales and limestones of the allochthonous 

Cambrian to · Middle -Ordovician Curling Group contain 

numerous lenticular beds and diseminated blocks of yellow 
" 

weathering dolostone. These roc-ks are composed of 

' ' 

·' 

' . 

brecciated ·bright red luminescent dolomite, annealed by a ~ . 

non-luminescent dolbmite (~ro~tispiece). This is unlike any 

other variety in the ~t. George and much of it, especially 

the brecciation and annealing process appears to be related 

to met~morphism. 
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4.11 DOLOMITIZATION SYNOPSIS: 

.,. 
Four different generations o~ dolo~lte make. up the 

seven field varieties ~ec6gnized in the St. Geo~ge Group. 

Dololaminites are syngenetic and . formed during 

deposition in tidal flat en~ironments (figure 4.11). They 

are ·composed of fi~ely - crystalline, u~if~rmly luminesceht .. 
anhedral dolomite. Con'tinued growth after burial is 

suggest·ed by ·coarser, better zoned crystals in some · .. 
dololaminites. 

Matrix dolomite in fine grained limestones and mottle 

dolomite . ate the result of long _lived (eariy- to late-

· diagenetic) events. Pervasive A dolostones are .coincident 

with earlier phaseli of these · varieties (figure l.ll -). 

Petrographic and lurninest::ence character of the dolomite' in 
.. 

these. varieties is diverse and appears to reflect local 

wate""'r chemistry. 

Matrix dolomite · in coarse grained limestones ,' sadd ~e . 
dolomite and the intermottle 'dololl)ite •· in pervasive B 

. 
do1ostones are late-diagenetic . . .. events~ They are 

characterized · by coarsely· ·c~ysta 11 ine ·, un i forrnl y 

luminescent, and -r:trained dolomite cryst-als. Pervasive.-~ 
• 

do los tones ovetprint · pre-existing · dolom'ite 
r 

limestones, · or : in the . Watts Right Formation, may .instead . 
- ~ 

overprint a pre-existing (p~rvasiv.e A ?) dolostone •. This 

e~ent(s) is related to tectonics, perhaps _ coin~ident wi-th • 

early phases of the Taconic Orogeny. 
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FIGURE 4 ~1: .Schematic representation, arranged in 

chronological order (A to J), illustra.ting 
the parageneti~ relationships betwe~n the 
differen~ varieties - ~£ dolomite and dolostone 
recognized in the St. George Group. Refer to 
text for details. 
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·II ' DOLOLAMINITES 

~ · MOTTLE DOL9MI.TE 

~ .. 

P·ERVA 

CAVITY-FILLING DOLOSTONE 

PERVASIVE B ~OLOSTONE 

FRACTURES (FILLED BY SADDLE 
DOLOMITE) 
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-SUPRATIDAL DEPOSITION 
(DOLOLAMINITES) 

-LOCAL RISE IN SEA 
LEVEL FOLLOWED BY 
SUBTIDAL DEPOSITION 

-CONTINUED DEPOSITION 
-COMPACTION AND 

LITHIFICATION · OF 
--~~-~v.i:qps~_-fiEpo£q-~--~ - ~· 

-INITIATION OF MATRIX~ 
MOTTLE AND PERVASIVE 
~A' DOLOMITIZATION 

-TERMINATION OF 
P E RV AS I V E A --· . -
DOlOMITIZATION 

-CONTINUED GROWTH OF 
MATRIX AND MOTTLE 
DOLOMITE 

-EXPOSURE. CREATION OF 
CAVITIES AND FILL BY 
SEDIMENT 
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FIGURE 4 .11 Continued 
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-SUBMERGENCEJ DEPOSITION 
OF OVERLYING SEDIMENT 

-LITHIFICATION AND 
INITIATION OF MATRIX 
AND MOTTLE DOLOMITIZAT­
ION IN EARLIER DEPOSITS · 

-SIGNIFICANT BURIAL 
DEPTHS REACHED 

-BEGINNING OF PRESSURE 
SOLUTION. CONTINUED 
MOTTLE DOLOMITE GROWTH 

. - .. 

ALONG STYLOLITES 

-TECTONIC FRACTURING 
AND FILL OF FRACTURES 

-
BY SADDLE DOLOMITE 

-START OF PERVASIVE B 
DOLOM-ITIZATION 

-CONTINUED TECTONICS 
AND PERVASIVE B 
DOLOMITIZATION 

-CONTINUED TECTONICS 
AND PERVASIVE B 
DOL_OM I TI ZATI ON I 

-:" ... 
- . . - - ' 
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Cav i _ty-f i 11 i pg dolost.one f i ll·s ca~ities · created 

during periods of subaer.ial 'exposu·re (figure 4_.11). The 

sediment is characterized ' by finely crystalline, · anhe(:lral 

and uni~ormly lurtP!nescent dolom,ite rhomps and a wide 
. 

spectrtim of . accessory minerala (feldspars, quartz, clays, 

phosphates and micas). 

' . 

I 
I I. 
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CHAPTER FIVE' 

. ) 

CARBON AND OXYGEN STARLF. !~TOPE ANh TRACF. 

• ELEMENT GEOCHF..:Ml~TRY 

5.1 INTRODUCTION: · 

carbon 
' . 

and · oxygen stable isotope ·.geochemistry has· . 

be~h ~ employed ~ successfull~ in numerou~ studie~ de~ling wit~ 
. .-. 

limeston·es · in an attempt to' supplement or provide data 

regarding .· diagenesis · (Dickson · · and Coleman, 1980); 
~ 

pal~eogeoth~tmometry (Bottinga and Javoy, 1~73) a~d in 

· ~ asses~ ing · .pa heoenv i ronme nfs (Allen e t a l., H 73 ). T~Ose 
isQt6~es ~ are eqtially "useful in the . stud~ of f l uids 

including hydr~carb6ns (Stahl, 1979), mariue and fr~sh 
"'. 

waters (Craig, 1961, Chase and Perry, 1972) ~nd ground and 

· po~re . waters (Deines et · a_l., . 19? 4) making them va 1 uab1e · 

tracers of low temperature ;, fluid-r-ock interact ionA 
·~· 

(Longstaff, 1983). 

In this study, carbon and oxygen st·a-hle isottp~ 

geochemistr~ · is . use.~ primarily as a means of .char~ter i zing 

the different · va~ieti~~ of dolomite and dolostone and to 
' . 

determine whether the classification scheme devised in the 

field and through petrographic analysis, i~ supported by 

chemical data. Isotopic ·analysis may , also resolve the 

ques~ion as to whethet the vast quantity of dolomite within 

the St. George Group i& the iesult of one or many, 

different events. 

-187-
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The s~mples· chosen for isot9pic analysis are 

cons ide red· · the. most re_presentat i ve Of the seven var iet i.es 
' . 

of · dolomit~ and · dolostone. T~ey_ were selected from all 

formations of the St. George Gropp and from all areas .where 

sec~ions were studied. 

The rocks were washed with distilled wat~r and 
•, , 

methanol p~ior t6 dlasggregation with an ultrasonic probe 

to reduce possible contam-ination by foreign or loos~ 

materi~l~ As individual crystals cotild not be isolated, all 

data ~onstitute bulk mineral analyses. ~ 

Powde'red aggregates were taken ·from both the mottles · . . 
eo 

and the interareas between mottles for samples of dolomite 

mottled limestones and the pervasive dolostones to 

determin.e whether the motties _differ ge9chemically and/o·r 
.,. 

i ,sotopica1ly . from, "the rest of the host rock; Interareas of 

dolomite-mottled limestones, composed of lime mudstone or 

wackestone, are ·used to estimate the Lower Ordovician 
. .- . 

marine ·isotopic signature. 

In total,- 51J.powder;ed.mineral aggr~_g_ates·from 36 rock 

samples. were forw~rded to Teledyne Isotopes (New Jersey) 

for isotopic analysis. Three huridred to 500 milligram 

samples were reacted with 100 percent phosphoric acid at 

, 50 . co. -The 1 ibera ted co2- -:-qas was passed directly to a 

' mass spectrometer to determine the isotopic ratios of 

carbon and oxygen. All reactions were run to completion so 

that any P?wder present in the sample was completely 

• 
~ .. ..-- -

I· 



,. 

dissolved. The 

,. , . 

. ~ /............._ 
completio'\. of ~ the 

• 

reaction was . checked 

visu~lly and by ther~oco~ple gauge. 

" -.'!.,_... 

These data are expressed by way of the delta notation 

- (F.attre, 1977) : 

13c(dolo) 
f 3 .I 1 2 1 3 12 1'0) = (( C/ C)dol9-( C/ C) ref) X ( 5 .1 ) 

. 1 3 1 2 . 
- ":". ( · r;/ C ) re 'f 

18o(dolo.) 
1 8 16 1 8 i 6 3 

= (( 0/ O)dolo-( 0/ o) ref) X 10 ('5 • 2 ) 

-. 1 8 16 . . 
( 0/ O) ref 

These are relative difference f~nctions ~hereby the 

iso.topic composition of a · sample (d~lo) is compared to · a . . 
· standard reference (ref). In this study, the referen-ce uRed 

to report variatibns in both th~ oxygen and carbon isotopic 

ratios . is the PDR standar.d: a belemnite . (Belemnitella 

-
americana) fro.m the Cretac;:eous Peede~ Formation of southern, 

Carolina (Faure, 1977). '-
Duplicate powclered samples ( 1. 0 .·~ 1 •. 5 gramR} were 

I . 

... -

~lace~ ~n 25 ml of di.lute HC~ so~utir(approximate·ly 8\ ,-

- H. Coniglio, pers. ~., 1984) until mo.st volume/volume: 

of the ~arbonate co~ponent was dissolved: an average .of 90 
J • 

minutes. The leachate was f,iltered using pre-weighed fil~r 
/ 

paper aJ'Id'. brought to 50 ml- of solution by washing in 
. . 

distilled water, The ~olutions were analysed with an ato~ic 

absorpt.ion · spectrophotometer for · sr2+ concentra.t ion by G.­

Andrews . of Memorial University._ 

. \ 

• 

. ... 
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5. 3 Jt.ESULT~: 

,<; l3c 'for all 50. 
,. 

samples -- analysed }:ri this studv i!i 

cluRtered hetween -O.SO ' and -4.01 o/oo (table,-5.1, figure 

5 :) ) • Values . of tS18o are much more variable and rang e from-

-4.74 to -12. ·73 o/oo (table t5.1, figure 5.2). sr2 + 

concent rat i.on ranges from a miniMum of 40 to a maxil'lum o f 

6 l8o • 320 ppm. A complete listing of o 13c and s r2+ for 
. ·' 

the 50 samples 
,. 

well their stratigraph i c ~ and as as 

geographic positions are contained in appendix H. 

5.4 AACKGROUND: 

The stabl~ isotope g'Pochemistry of dolomite is poorly 

understood. Dolomite has yet to be synthesized in 

experiments that approximate near surface conditions, ~nq 

there f o re, ·fundame ntal relationships necessary to interpre"t 

these "datil, (!;uch a~ thP. r~l a t i,o n s h i p betwee n tempetat ure 

and oxygen isotop-e tract iona tion that e xist between 

dolomite an<1 wate r),, can only · be inferr ed fro m succe ssful 

. hydrotherma 1 syntheses (Land, 1980, Arthur e t al., 1983). 
~ 

Several different relations h i ps have b e en determined f or 

the system dolcmite- water: 

1000 ln,, "' 3.2 X 106T-2- 2.00 ( 5. 3 ) 
(Northrup and Cl a yton, 19~:9 ) 

1000 lnll .. 3. 34 X lOfiT-2 - 3.34 ( 5. 4) 
(O'Neil ahd Ep s te i n , 1966 ) 

• 
1000 ln" .. 3.23 X 106r2- 3.29 ( 5. 5 ) 

( Sheppa r~ y.hd Schwa r cz , 1970) 
,.· 

1000 ln° a 2.7R X 106T-2+ 0.11 ~ 5.6) 
(Fritz and Smith, 1970) 

/ 

" 
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DOLOMITE I .DOLOSTONE 
6 13C (0/oo) 6 180(o/oo} 

RANGE AVG. RANGE AVG. . 
OOLOLAMINITES , -0.50 to -4.01 -1 .99 -4.78 to -7.94 -6.31 

MATRiX DOLOMITE - 1.62 to -1.85 -1.74 -9.03 to-9.72 -9.38 

DOLOMITE MOTTLED MOTTLES - ·1.21 to- 1.99 -1.67 -5.47 to.:.J0.34 -7.77 

LIMESTONES INTERMOTTLES (L) - .1.56 to-2.30 :.1.89 -7.95 to-IQ31 -8.95 

PERVASIVE 'A' . MOTTLES - 1.18 to -2.05 -1.52 -14.74 to -10.58 -7.36 

PER\ASIVE . INTERMOTTLES u.-· I .19 to -1.82 ..:1.54 -5.36 to-11.16 -8.34 

DOLOSTONES . . MOTTLES,.. -o. 1a to -1.~ -1.07 -8.47 ff)-9.38 -8.f33 
PERVASIV~ '8' 

-0.62 to -1.66 ..:.1.30 -8.18 to-12.73 -10.89 · INTERMOTTLES 

CAVITY-FILLING DOLOSTONE -0.61 to -1.78 -1.41 -6.45 to -8.93 -7.28 

SADDLE DOLOMITE - 0.8 9 to -1.5 7 -1.35 :-9.04 to-10.47 -9.61 

(L)- denotes limestone samples 

.. 
TABLE 5.1: S~ary of ;arbon and oxygen isotopic data for St. George limestones (L) and 

dolostones. A complete listing is given in appendix B. 

1-

. . 
,. 
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. 
6 .13C (%o) vs Poe • 

-4 -3 -2 -I 0 
DOLOLAMINITES ·-

~ • CltO 0 0 

MATRIX DOLOMlTE . 00 

DQLOMITE ' MOTTLES ooee o o 
MOTTLED . 

INTER- (U · Ll MES TONES MOTTLES · 
<ID .., 

PERVASIVE I A.' MOTTLES 0 ~· -
INTER-

-.-

DOLOSTONE e-=> oe 
-- MOTTLES 

PERVASIVE' 'B'. MOTTLES •• • 
DOLOSTONE 

INTER- •• • MOTTLES • 

CAVITY-FILLING DOLOSTONE •ooo • 
SADDLE DOLOMITE ' ••• • -

(L)- denotes ~m~toot sompl" • -samples from the Great N9f'thern Ptninsulo 

o-sampes from the Port ou Port area 

• FIGURE 5.1: Schematic representation of carbon stable isotope 
da.ta for the seven field varieties of dolomite 
and dolostone observed within the St. George 
Group • . 

\ 
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-· 
6 180 (%o) vs PO~ 

-t2 ;o -e -6 -4 

-,_OOLOLAMINITES . ce ee CD 00 
' 

MATRIX DOLOMITE 0 0 • 
DOLOMITE MOTTLES Q • o.• 0 00 

MOTTLED 
LIMESTONES 

INTER- (L\ . 
MOTTLES ·1 • eeo 00 

. 
PERVASIVE 'A' MOTTLES • <D 0 • 0 

DOLOSTONE 
INTER- • • 0 

MOTTLES 
. • 0 0 

PERV~SIVE 'B' MOTTLES ••• 
DOLOSTO,.NE 

INTER- • • • MOTTLES • - -

CAVITY-FILLING DOLOSTONE • 0. (J) 

SADDLE DOLOMITE • -· 
(L)- denotK limestooe s~ o -sa~ from the Port ou Port area 

• --scrnpiH from the Great Northtrn Penlmulo 
.. • 

F:t:r,tlR_F. ~::,. /.: SrhPmrtt.j ~ reoresentation of oxvoen s table isotope 
data for the ~ue:Q. field varieties of dololmi te and 
d~lostone found within the St. George Group. 
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·where ( a) is the fractionation factor between dolomite and 

water at a temperature (T). Larid (19801 has discussed the 

problems with this aP.proach and most authors now recognize 

the 1 imitations of j these relationships. They are 

qualitative at best for low temperature conditions 

n:rorthrup and Clayton, 1966). Plots of these expressions 

may be found in Arthur et al. (1983) (their figure 4.1). 

As most dolomite appears to- · be the replacement 

product of a precursor limestone1 there has al~o been 

considerable interest in establ fshing the oxygeJ:'l iso~ope 

fractionation for the system dolomite calcite. 

Unfortunately, this relationship is just as poorly 

understood. Most experimental ·results suggest that dolomite 

should be enriched in heavy oxygen by +5 to +7 o/oo 

relative to calcite, whereas heavy carbon shou~d be only 

slightly enriched in the dolomite (Schwarcz, 1966, Sheppard 

and Schwarcz, 1_970). One study by Degens and Epstein (1964) 

suggest~ . 'that syngenetic 

isotopi_crlly- similar. 

conclus~on because some 

Land 

of 

dolomite and calcite are 

(1980) h~s. criticized this 

the co-existing dolomit~ 

calcite pairs were not cogenetic. For example, some of the 

data Degens, and Epstein obtained was hased upon HolocenP. 

lime muds which contained windblown, detrital dolomite. 

The shift in 6 18o between •cogenetic• limestone and 

dolomite that is actually observed in nature is somewhat 

less than that predicted hy exper imentation. Dolomite now 
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forming penecontemporaneously with calcite in sabkha~ (for 

example, the Persian Gulf, McKenzie et al.~ 1980), in other 

hypelrsaline environments (Raffin Bay, · Texas, Rehrens and 

- ~and, 1972: Coorong, · southe.rn Australia, Mu.ir et al., 1980: 

Deep Spring Lake, California, Clayton et al., 1968) and in 

~eep water environmen·ts (F:newetak Atoll, equatorfal Pacific 

Ocean, Saller, 1984) are enriched in lAo by only 2 to 4 

o/oo relative to the calcite. This discrepancy between what 
• 

is predicted by experimentation and what is actually 

observed has caused much ·speculation. Recent ciolomi te 
-

precipitates as 
... 
a poorly ordered, metastahle mineral 

("protodolomite" of Gain~s, 1977) a,nd some author·s . (F'ritz 

and Smith, 1970, Katz and Ma~thew~, 1977) have ·!'lugge~ted 

that the protodolomite -water fractionAtion is les~ than 

that of dolomite - water. Later, when the protodolomite is 

recrystallized to ordered dolomite, the isotopic si9nature 

~is simply transferred to the "new" mineral. Land (1980) 

argues' convincingly against this reasoning and presently, 

the issue is not resolved. 

The isotopic signature of other dolomi tPs /r~nrl 

dolostones, those not forming pe-necontemporaneously with 

calcite, w6ulci be expecteci to vary depending upon when, or 

how, they formed during the diagenetic history of the rock. 
' 

Ref ore these can be discussed however, the isotopic 

signature of the Lower.. Ordovician limestones must be 

established. Th)is gives a starting, or reference point from 

which to recognize trends exhibited by the dolomite. 

/ 
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5. 5 LIMESTON~ AND THE EARLY ORDOVICIAN MARINE SIGNATIJRE: · 

Limestones of the St. George Group are characterized 

by 6 13c values similar to those , observ~d in Holocene 

equivalents (Hudson, 1977). These •normal• values indicate 

that sulphate redu~tion (resulti~g in an isotopically light 

carbon · sign'ature) and organic fermentation (resulting in an 

isotopicalt\ he~vy carbon signature) did not play major 

roles durin~ limestone rmation or diagenesis (Ir.ving_et 

a 1. , 1977). known about carbon stable isotope 
\ 

\ 

geochemistry, however, that 1 itt le more can be said about 

these data (Land, 1980). 

Ancient limestones ar~seyerely 
· compared to those of Holocene 'age. To a 

depleted in 

lesser extent, this 

secular trend is also apparent within the Ordovician ~eriod 
' . 

(figure 5.3) and at the present time, three explanations 

have heen proposed to explain this; 

., 

1) Th~ concentration of lBo in ocean water 
was less in the past (Knauth and Epstein, 
1976, Rrand and Veizer, 1981),. 

2) The temperature · of ocean water du~ing 
carbonate precipitation was hi~er in the 
past resulting in less •heavy• oxygen being 
incorperated into the ~ocks (Perry, 1967, 
Perry and Tan, 1972); 

3) There-has been steady post-depositional 
exchange (re-equi11brium) with water of a 
lighter isotopic composition (i.e. of a 
meteoric ,origin), or water of a higher 
temperatJ.Jre (Degens and Epstein, 1964, 
Dickson and Coleman, 1980). 

No one explanation has received unanimous support, 

but more · and more evidence is being gathered 
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FIGURE 5.3: Summary plot of slBo· values for Ordovician 
marin~ limestone from this, a nd othe r studies. 
All data, with the exception of that obtained 
by Ross et al. ~ (19i5) and this study were . 
~erived through bulk ' rock analysis ~ The most 
likely limestone isotopic signatures f or each 
major studi are indicated by an ~rrow. Data 
!.rom K~ith and Neher (1964)-K: Dege ns--and 
Epstein (~964) -D; Badiozarnani (1973)-B; 
Ross et a l., (1975)--; Ve i z..e r and ·Hoels 
097_6) - v; Corou (19 82) -c: a·na this 
stufy - • . 
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----~ favouring t~e first~roposal: that· ocean waters have varied 

1s0· in composition throughout the Phanerozoic (James and 

Choquette, 1983). The las~ proposal (3) is also an 

important consideration in assessing the .is~topic' 

composition of the limestone. Most diagenetic reactions 

involve meteoric water, and would therefore shift 018o 

within a li~e~one toward lighter values~ In siliciclastic j ' ~ . . 

poor sequences, only a reaction with water of a strang ·cor/ . 

exclusive) marine · ctiaracter cOuld shift 18o tO~arf 
heavier values. For this reason, the •heaviest• samRles are 

usually the least diagenetically altered (James and 

Choquette, 1983). 'This vas first suggested by Choquette 
• . 

( 1968) and also appear~ to be_ true for tfl.e limestones 

analysed in this study. The two limestones (hoth L 

wackestones) which cluster at -7.95 and -8.15 o/oo show few 

diagenetic alterations and , both the matrix .and peloids 

remain micritic. The sa~ple which deviates the most, a 

·peloidal wackestone close to a pervasive B dolos~one front 

on the Great Northern Peninsu~a 1 has been completely 

~ converted to moderately luminescent microspar suggesting 

recry~tallization · in a freshwatet phreatic environment 

(Grover and Read, 1983). 

The · other limestone samples that lie between these 

end members are either partially converted to microsp~r, or 

are traversed by many fine fractures filled by ver~ 

brightly luminescent calcite. These diagenetic alterations 
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probably account . for the depletion in 18o relative to the 

heavier limestones. 

The unmodified signature of the Lower 

Ordovician limestones is ·most likely to be cl9sest to the 

two heaviest analyses. These values compare favorably to 

the 'lheaviest isotopic data cdllected on the same rocks by 

Coron (1982) . in western Newfoundla-nd and on other Lower 

Ordovician limestones analysed by Veizer and Hoffs (1976) . 

from Tasmania (figure 5.3). T~~ not however, compare 

favorably with Lbwer Ordovician limestones analy~ed from 

Pennsylvania and Sweden by Keith and Webber (1964) or from 

Illinois . by Degens and Epstein (1964) (figure 5.3). Perhaps 

most significantly, the data oljtained 

comparabl~ to thai obtained by Ro~s 

in this study are 

et al., (H75) for 

lowest most Middle Ordovician mudmounds in Nevada. Their 

study i s the most detailed of any focusing upon Ordovician 

carbonate s. Selective sampling o~ both calcilutite~ and 

marine cements, none of whi~h .appeared to have been 

affected by metP-oric diagenesis, led Ro!';~ and hi~ 

co-workers to conclude that the basal Middle Ordovician 

limestone signature was approximately - 9.00 o/oo (relative 

to PDR). If one assumes that the heaviest analyses a~e the 

closest to the true marine signature, this value is c[oser 

to -8.00 o/oo. It is like ly that the Lo we r Orcioviclan 

s ignature i s simil a r t o thi s value and the refore,· the best. 

representation of the oxygen isotopic signature of ~t. 

' 
.. 
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Georg~ limestones is considered tb be .!pproximately -8.00 

o/oo (relative to . PDB). 

5.6 DOLOMITES AND DOLOSTONES: 

The ~arbon isotopic ratios of the different varieties 

of dolomite and dolostone are clustered within a narrow 

range and are ess~ntially. identical to those of the 

limestones. ~ubsequently, the arg~ements put forward for 

the limestones are equally applicable h~r•. ln general, 
l 

there is a trend towards heavier 

dolomitization events (figure 5.1). Two dololamiriite 

analyses are noticably depleted in ~ lc relative to the 

others. Thi~ depletion i~ noi strong enough to advocate a 

100 percent organic origin to the carbon, but as the 

dolomite cry!;tals in thP.se samples are zoned·, it is 

possible that dolomitization procee ded long enough to 

incorporate an or.ganic signature in some of thE' (outer 

. ' 
most?) zon~s. Re-equilibrati~n with migrating fluids is 

unlikely because the dolomite crystals are well zoned ( th'a t 

is, 'unaltered) and because dolomite is fairly isotop i cally 

~table with respect to carbon. · (Once established, 6 llc 

does not appear to be . modified by later diagenetic 

processe~: Fritz, 1967, L~nd, l9RO). 

o lBo . of the seven var.iet ie~ . of dolomite and 

dolostone is quite varied, and with the e xcept i on of the 

four saddle dolomite and two matrix dolom~t~ samples, no 
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FIGURE 5.4: Plot of sr2+ concentration (in parts per million) versus sl8o for the 
seven varieties of dolomite and dolo,stone recognized with in the St. George 
Group. In general, samples with lighter oxygen isotope ratios contain less 
strontium .than do samples with heavier ratios. Late vc;srieties, such as 
saddle dolomite ~nd pervasive B dolostone are signilicantly lighter and 
contain less strontium than do earlier varieties. 
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variety is characterized by a distinctrve oxygen isotopic 

composition (figure 5.2). There., is also considerable 

overlap when the alSo~\ va·lues are plotted again~t sr2+ 

concentrations (figure 5.4). Veizef et al., (1978) foond 

that dolostones in a Lower. Paleo~oic carbo~ate Requence in 

Arctic Canada could. be grouped into 3 strontium 

populations: low, intermediate and high. Low-s~2+ (66 +/-

45 ~pm) dolostones were usually the products of a late 

phase of dolomitizatio.n; int~rmediate""'sr2+ ( 18-0 +/- 66 

ppm )do.lostones were products of penecontemporan~ous-early 

dolonli t i zat ion. Celestite rich dolostones formed the 

high-sr2+ statistical grou~. In this study, dololaminites 
' . 

contain on average the most' strontium and woulci be grouped 

within · the intermediate-sr2+ population; wherea~ saddle 

dolomite · and pervas.i ve R dolostones contain the lE>as t an<'! 

would be · grouped within the low-sr2+ povolation. The~e 

conclusions are similar to those determined. hy ~izer and 

his co-workers • . The • fact that the intermotile dolomite in 
c • 

pervasive R dolostones and saddle dolomite contain the 

least amount of intuitively implies · that the 

dolomitization fluids.had a low sr2+;ca2+ ratio . • 

The o~per varieties of dolomite and dolostone are 

characterized by sr2+ ~oncentrations th<'lt l. fall 
, 

between 

t!lle!';e two end members. High-sr2+ dolostoneR are rare in 

the St. George Group. These results strongly suggest that 

in the St. George Group, later phases of dolomitization or 
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dolflmite growth are characterized by lower concentrations 

of strontium. 

1, lBo data fall into two diffuse groups on the basis 

of where they were sampled geographically. Stratigraphic 

position d<1es not appear to ·be a · factor. Most sarrtples from 

the north are depleted in 6 18o relative to southern 

equivalents and this is unquestionably the result of the 

additional dolomitization events responsible for northern 

occurrences of saddU~ dolomite. and pervasive B dolostone. 

Saddle <'lolomite and pervasive R interniottle dolomite are 

essentially the s ·ame isotopically; both characterized by . 

very negative 6 18o (-8.18 to -12:73 o/oo). This is within 
I 

the range of hyrlrothermal dolomite d ~scussed by Engei et 

al., (195R) and Mattes and Mountjoy 0980) (figure 5.5)_ 

andit is probable that ·the saddle dolomite in vei'ns and 

fractures (Coron, 1982) and the intermottle dolomite in 
... 

pervasive ~ R .' dolostone owe their origin to hydr,othermal 

fiuids. 

It · is possible to estimate the pr~cipitation 

temperature of .saddle dolomite and the dolomite between __ , 
mottles in pervasive B . dol~sto.nes by substituting 

• 
5l8o( dol'o) i n:ko the following express ion: 

'r • 31 • 9 - 5. 55 ( 5 (dolo)- 6( w) } + 0. 17 ( 6 (dolo)- 6( w) ) 2 
r -

(Fritz and Smith, 1970, Dickson and Coleman, 1980). 
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Assuming a 6 18o for water of -8 • 0 0 • o/ oo ( 6 ( w) ) , 

prec ipi ta·t ion temperatures range from 37oc 6 (dolo)= 

-9.0) to 64°C ( 6 (dolo) = -13.0). These temperatures' are 

significant 1 y cooler than temperatures deduced by Radke and 

Mathis (1980) (60 to lSOOc) but are still ~~tithin the 

hydrothermal range. 

In chapter four, it was demonstrated· that saddle 

·dolomite were the latest stage dolomites, often nucleated 

on, and intruded into the interc.rystalline pore space 

between pre-existing dolomite crystals (refer to plates 

4. 5c ~. 
4
The majority of the northern is'ot?pic ana lyses must 

therefore be regarded as •masked" or •contaminated" by a 
~ 

later hydrothermal- related overprint. Interpretation of 

the isotopic character of the remaining varieties of 

dolomite and dolostone is best made on samples from the 

south. 

Diagenetic overprinting also explains some of the 

l~l8o variations within seperate dolomite types, both in 

the 'north, and in the south. For example, dololaminites, 

the deposits of hypersaline tidal flat environments 

(discussed in chapters two and three), should be enriched 

rel-ative to li11e stones 2 . to 4. o/oo, providing 

fractionation during F.arly Ordovician time was · similar to 

what is observed at present (Land, 1980). The oxygen 

isotopic signature of St. George limestones is 

approximately -8.00 o/oo (PDA) and therefore, 

206 
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the dololaminites should fall within the range -4.00 to 

-6.00 o/oo. All of the d'ololaminites are shifted toward a 

more positive o l~o compared to st. George limestones, but 

. only four of the ana.lyses (all from tt'!e south) fall within 

the predicted field. These dololaminites are 

composed of uniformly luminescent, very finely crystall i nP 

dolomite crystals. The dololaminite~ that do not fi'lll 

within the predicted field .have been affected by later 

diagene-sis. Some, those tha·t deviate most strongly~ are 

composed of mor-e coarsely crysta 11 i ne Z<?liec1 dolomitP. 

crystals (to 100 micrometres), whereas others, those that 

are close to the predicted field, contain a second phase of 

dolomite as a cement (figure 5.6). These· samples do not 

fall within tl1e predicted dololaminite range because only a 

portion of the dolomi~e crys~als, the cores, are the 

product of a · hypersaline environment. The rest of ,the 

dolomite ~rystals are later over-growths. As a general rule, 

the : larger the dolomite crystals, the larger the diagenetic 

overprint, · and suhsequent.ly, the. stronger the depletion in 

o18o (Pritz and Jackson, 1971, Land et al, 1<175, fo4orrow, 1 

1982a). This also explains 
\ , 

the trend observed in sr2+ 

concentration versus lBo (figure 5.4). Strontium !!=; 

highest ·in those dololaminites showing the least diaqenetic 

growth, and lowest in those dololami ni tes showing the most 

diagenE!tic growth. As concluded earlier, later stages of 

dolomite g.rowth, even if restricted to dololaminites,- are 

characterized by lower concentrations · of sr2+. This 
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F-IGURE 5.6: Petrographic and sl8o characteristics of 
dololaminites. The four dololaminite samples 
~rom the southern portion of the study area 
(open circles) that fall within the predicted 
hypersaline field are characterized by very 
fine crystallinity and appear relatively 
unaltered diagenetically. The two samples from 
the northern part of the study area (solid 
circles) are finely crystalline, but are 
cemented by a second "hydrothermal" phase of 
dolomite. The sample most removed from the 
predicted hypersaline field is composed of 
coarsely crystalline, zoned dolomite and is 
cemented by ferroan dolomite suggesting 
significant diagenetic growth after deposition. 



... 
..J 

f . 

.. 
209 

is equally applicable to all varieties of 

dolomite and dolostone (figure 5.4). 

The isotopic relationship between mottle dolomite and 

host limestone is inconclusive as there is no consistent 

isotopic fractionation between them. In some samples, 

dolomite is enriched in 618o relative to the host 

limestone, whereas in others, it is deple~d (figure 5.7). 

This is partially explained by the fact that the mottle 

dolomite varies petrographically from sample to sample. 

Some mottles are composed of zoned crystals whereas others 

are composed of non-zoned crystals, but neither the 
(J 

uniformly 'luminescent, nor · the zonerl crystals · are 

characterized by a unique (ractionation compared to the 

limestones. Por example, two different sample·s, both 

composed of petrographically identical oolomite may show 
• 

~ompletely opposite trends (refer to figure 5.7). The 

nature of the mottles also does not seem to be a faftor. 

Those me.ttles . that are characterized by a strong 

ichnofossil component are just as variable as those mottles 

that are characterized · by a strong stylolite component. 

Given the prolonged growth period of this variety and th~ 

. likely 

mottle 

hood of 

dolomite 

local aquifers, it is not surprising that 

is flOt characterized by a unique ~ 180 . (or 

petrographic) signature. 

Similar variability is also obseFved for the mottles 

within southern exampl~s of pervasive A dolo~tone. In these 

rocks, the mottles . and intermottles have sieilar iso~opic 

,., 
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FIGURE 5.7: Fractionation trends for dolomite -calcite 
pairs in dolomite mottled limestones from the 
southern portion (open symbols) · and the 
northern port ion (solid symbols) of the study 
area. Plots that are joined are analyses from 
~he same samples. There is no unique \ 
fractionation b~tween dolomite and calcite 
pairs. The two limestone analyses from the 
south that fall within the •unaltered 
limestone field• are characterized by 
dolomites of very different character even 

e though the dolomite in both of them appear 
petrographically identical. Dolomite -
calcite pairs from the northern portion of 
the study area are all shifted toward more 
negative oxygen values because of 
hydrothermal alterations. See text for 
discussion. All data is compared to the PDB 
Standard. 

PIGURE 5.8: Fractionation trends between dolomite mottles 
and host rock for neighbouring dolomite 
mottled limestones and pervasive A dolostones. 
Symbols are as described in figure 5.7. The 
southern samples ~re all clustered withiri a 
narrow range suggesting that mottle dolomite 
and pervasive A dolostones all .formed together 
from fluids of the same isotottic composition. 
The northern samples are much more widespread, 
most likely a result of hydrothermal 
alteration • 

• 
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compositions (appendix R, figure 5.8) suggesting cogenetic 

origin. The 618o values of pervasive A dolostone are also 

very 6~8o values· of mott~e dolomite 

9btained from neighbouring limestones "(figure 5.8) which 

further suggests that early mottle dolomite and pervasive A 

dolostone originated from fluids of the same isotopic 

character and probably at the same time. These conclusions 

agree with those made earlier during petrographic and 

cathod~lumlnescence analysis. 

Any interpretation of the i·sotopic character of 

northern examples of pervasive A dolostone and the mottles 

~ithin perva~ive R dolostone is _more speculative because of 

the later hydrothermal dolomitization overprint. It seems 

probable on the basis of paragenetic relationships and 

petrography that they also . had a similar isotopic 

composition to the nearby I'IOttle dolomite p·~r to 

hydrothermal overprinting. .... 
The two analyses of. matrix dolomite were ~arried out 

on packstones from the southern portion of the study area 

that were matrix dolomite-rich (greater than 50 percent 

dolomite) because of difficulties in obtaining siza ble 

quantities from matrix dolomite-poor (less t~an 50 percent) 

limestones. As discussed in chapters. three and four, coarse 
.. 

grained limestones contain a diff~rent matrix dolomite than 

do fine grained limestones and therefore, these two 

analyses are not representative- of all examples o f matrix 

dolomite · within St. George 1 inrestone's. One of the ~amples 
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analysed contained gaseous hydrocarbons (R. Ouick, pers. 

comm., 1984), but •normaP 613c values for both : of ~he 

analyses indicate that the organics did not play a 

significant role in this matrix dolomitization. 

The two samples are among the lightest . with respe~ 
to 6 180 of any analysis in the south, and \further. . 

implies that they ar"e the result of a d i {fi~-re n t 

dolomitization event than those r"esponsible "for the other 

vari~ties. The analyses are similar isotopically to saddle 

dolomite and the intermottle dolomite within pervasive R 

dolost6nes and fall within ~he fields delineated by these 

two varieties in a plot of sr2+ concentration versus 

.sl8o (figure 5~4). On th~ basi~ of these observations, it 

is likely that the matrix dolomite in packstones and 

grainstones which crop out in the southern portion of the 

~tlldy area is a hydrothermal p~oduct, but not necessa~ily 
4 

the same one that developed the pervasive B dolostones. 

Two c~vity-filli.ng dolostanes ,-Were analysed ·- from 

beneath the pebble bed on the Por"t au Port Peninsula, two 
~ -

samples were analys~d from the Watts Right Formation on the 

Great Northero Peninsula and one sample was analyzed from 

the Catoche Formation at Smelt . Canyon. Despite this 

stratigraphic and geog~aphic distribution, all but one of 

these analyses, (one from the Great Northern Peninsula), 

plot within a narrow range of a lSo. These are similar 

values to those reported by Badiozamani (1973) for 
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\ 
dolostones in Wisconsin which he attributed to mixed water 

dolomitization~ Evidence .has been given in previous 

chapters which suggests that this dolostone.is directly 

related to subaerial exposure ~nd though not entirely 

conclusive, ~8b values also favor~ the supposition . that 

meteoric waters contribu~ to the· dolornitizing fluids. 

I 

-----
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CHAPTER SIX 

X-RAY DIFFRACTION 

6.1 HI1TRODI)CTION AND LABORATORY MF:THODS: 

X-ray diffract ion has been employed success fully for 

, many purposes tncluding the determination of mineral 

crystallographic parameters, mineral . identification and .. 
mineral ~he~istry. The principles behind this for~ of 

analysis are discussed in Cullity (1956). 

X-ray diffraction was empLoyed in this ~tudy for two 

purposes: l) to characted ze· the · seven different field 

varieties of dolomite an~ doJosto~e· a~d 2) to identify ~he 

clay minerals that may t:Je associated with them. This . study 

is primarily concerned with :the iden~ification of the clay 

and accessory mi~erals 'rather than their absolute 

abundances and th~refore~ quantitative measurements were 
J - ' not made on any of the analyses • 

. Representative samples, a minimum of two from each 

dolomite or dolostone variety,· were crushed and gr·ound with 

mortar a~d pestle. The less than 50 micrometre fractions 

were mixed with a small q~antity of ground sodium chl'Oride 

or fltiorite (as internal standards) and were examined by 

powder x-ray . diffraction. For the two varieties . of 

pervasive dolostone, sep~rate analys~s w~re run on - mottle 

· and intermottle samples. In total, 27 analyses were 

performed. 
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Duplfeate powdered sampl~s were allowed to rsettle out 

of a water . column for four hours and the still-suspended, 

fraction (ca. less than 2 micrometres) was centrifuged, 

. transferred to filter .paper, and finalli to a gl~ss slide 

in preparation for analysis. 

All analyses were performed on a Phi 11 ips \ X-ray 

diffractometer with Cu-Ka radiation at ·a scanning speed of 

10 21)/minute. 

Clay mineralogy samples were alsQ exposed to 

saturat~d ethylene glycol vapours to detect the presence of 

montmorillonite and mixed layer clays. 

6~2 RRSULTS AND DISCUSSION: 

DOLOMITE AN.D DOLOSTONE: 

The proportions of MgC0
3

' ·and CaC~ with in dolomite 

can pe determined by assuming a linear relationship · between 

d(l041 and the substitution of MgCOJ into ihe carbonate 

lattice (Goldsmith and Graf, l958a). By this argument, 

Go~dsmith et al:, (1961) established a curve which allowed 

for rapid determination of MgC03 and CaC03 content in 

naturally ' occurring_ and synthetic carbonates. Blatt et al.,. 
/. . 

(19i2) found that b~ using sodium chloride as an internal 

standard, they could deter;:mine stoichiometr_y right from the , 

diffractometer trace with an precision. of 0 . 02 mol % 

magnesium. In the St. George Group~ all dolomite i s calc ium 

rich. Representative samples of dololaminites, mottle 

dolomite, pervasive A dolostone and ·Cavity-filling 

I 

/("' 

. fJ 

.. 

r~ 
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( 

\ 
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dolostone 'contain from 51 to 52 mole percent CaC03 

whereas matrix dolomite, ~addle dolomite and the 

intermottles · in pervasive R dolostone are slightly more 

enriched with respect to CaC03; 53 to 54 . percent (figure 

6. 1 ) • . These data suggest that hydrothermal phases of 

dolomite are enriched 
. 

CaC03 relative to other 

varieties and this probabl~ explain~ the,curved crystal 

faces and sweeping extinction exhibited by the rhombs 

(Radke and Mathis, l980). ~xceptions to this conclusion do 

exist. The most notable are some strongly curved saddle 

• dolomite crysta.ls from the Newfoundland Zinc Mines • . These 

crystals are strained and . strongly curved, yet are 

stoichiometric (figure 6.1). 

The presence of strong •sup~rstructure reflections• 

within th.e diffra.ctometer traces (for exam~le the 10 .I, 

10.5 and 02.1 peaks~ Lipp~ann, 1973), and ~hrough direct 

comparison with samples analysed by G.oldsmlth and Graf 
' ' 

< · 

( 1958b l, indicates that all ol;Iipe st. George dolomites 

analysed in this study a~e ve~ll ordered (figure 6.2 

and 6.3). "Protodolomite• (poorly ordered dolomite of 

Gaines, 1977) does not exist in these rocks. 

· The mos~ apparent difference between the 

· traces in figures 6.2 and 6.3 is their buik 

mineralogy. Dololaminites, mottle d9lomite, pervasive . ' .. A 

and R dolostones .(both mottles and intermottles) and 
) 

cavity-~illing dolostone .are characterized by subordinate 

s i 1 iclast ic - peaks, pr_esumably because they i nhert t these 

.. 



FIGURE 6.1: .. 
I 

::: 

Determination of the stoichiomet'ry of 
representative dolomite and dolostone samples· 
following the method outined by Blatt, 
Middleton and Murray ( l972) ~ A sample of saddle 
dolomite (sample DH-1) from the ,area of 
Daniel's Harbour is stoichiometric: however, 
most saddle dolomite (sample GN-25) and the 
intermottle dolomite of pervasive B dolostones 
is calcium rich (averages .54 mol ' calcium). A 
sample of coarsely crystalline matrix dolomite 
(PP-117) is also enricP\ed in calcium. Other 
va.rieties, including dololaminites tsampl~ 
LC-2), mottle dolomite (sample PP-112C), 
pervasive A dolostone and cavity-filling 
dolo.stone are only slightly calcium rich 
(av-erages 51 - to 52, mol %) • 
Relative peak ~ights reflect variations in the 
proportions of · dolomite and sod i um chloride in· 
each analysis. · 

., 
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F~GURE 6.2; Portions of diffractometer traces taken with 
Cu radiation of a representative sample of 
dololaminite, matrix dolomite (coarse grained 
limestone), cavity-filling dolostone and saddle 
dolomite. The peaks in the top trace are identifie~ 
as either dolomite (D), calcite (C), quartz (Q) 
or· feldspar. The hk .l indices for dolomite are 
also indicated. The flourite internal st~ndard 
peak has been removed from these sampleso 
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FIGURE 6.3: Portions of diffractometer traces for 
representative samples of mottle dolomite, 
pervasive A and pervasive B dolostones . 
Refer to figure 6.2 for explanation of 
peak identifications. 
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minerals from the pre-existing limestones. Saddle dolomite 

which is pore-filling, does not. 

CLAY .MINERALS: 

The less than 2 micrometre fraction of 24 of the ·27 

sa.mples analysed were found to contain only illite with 

subordinate chlorite. Three samples of saddle dol.omite do 

not contain significant quantities of clay minerals. 

its 

Illite was identified in the diffractometer traces by 

basal reflection at . 10 
0 
A and chlorite by i ts basal 

r~flections at 7 and 14 K. Neither illite nor chlorite was 

affected by exposure to ethylene glycol (figure 6.4). 

Wood ( 1983) analysed shale sam,ples- from Cambrian and 

Lower Ordovician rocks of tne Port au Port . Peninsula and 

also found them to cqntain mostly illite (77 to 99 percent) 

and chlorite. · She argues that this suite of clay minerals 

is likely detrital rather than diagenetic by citing two 

li n~s of evidence~ 

1) A diagenetic suite of illite and.chlorite 
can only be generated if burial temperatures 
exceeded 2QQOC. The · colour indices of 
conodonts from nearby limestones suggest ~hat 
temperatures never excee ded 6doc. 

2) The illite is poorly crystalline as 
indicated by the diffuse 10 A peaks and this . is 
indicative of a detrital rather . than diagenetic 
source (Wood, 1 ~) ~· 

By these same arguments, it is likely that the clay 

minerals a~sociated with. ~he dolomite and dolostone are 

'also detrital and were probably transported by wind onto 
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FIGURE 6.4: Portion of diffractometer traces of the less 
than 2 micrometre fraction of a dololaminite 
sample. The only clay minerais that are 
present are illite (I) and chlorite (C), . 
~either of which are affected by gycolation. 
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, the carbonate shelf during deposition of the Lower 

Ordovician sediments. Wood speculates that both the illite .. 
and chlorite were ptobably derived through - th~ weathering ... 
of granitic rocks. 

As was discussed in chapters three and four, mottle 

dblomite characterized by a strong or exclusive stylolite 

component (refer to plate 3.3c), also contains significant -

quantities of clay minerals and oxides. If the clays are 

d~trital rather than di~genetic, it must be concluded that 

their localization. along the stylolites is · purely the 

result of the accumulation of insoluble minerals duri~g 

periods of pressyre solution. 



CHAPTER SEVEN 

MECHANISMS OF DOLOMITIZATION ANO . CONCLUSIONS 

7.1 INTRODUCTION: 

Dolomite is still one of the most perplexing p~~s 

in the field of carbonate geology. Despite numerous 

studies,· it is still not clear why dolomite, ~iven its 

atiundance in the rock record, is not a more common 

component in modern sediments, 9r what the exact mechanisms 

of dolomite growth are (two aspects of the so 'called 

"dolomite problem";·_ Land, 1980). 

To resolve these and other problems, sedimentologists 

have searched for an all encompassing dolomitization model 

and to date,. many have been proposed (Morrow, 1982b). The 

most popular include7 seepage refluxion (Adams and Rhodes, 

1960, Def feyes et al., 1965), capillary evap~rat i on 

(McKenzie, et al., 1980), cannibalization (Goodell and 

Garman, 1969), mixed water, or Dorag ( Hansaw et a 1., 1969, 
* 

Bad iozamani, 1973, Land, 1973, Folk and Land, 1975)~ burial 

compacti~n (Mattes and Mountjoy, 1980), pressure solution 

(Wanless, 1979) and hydrothermal alteration '(Lovering, 

1969). 

Dolomite grows ·under a variety of conditions (thi s is 

in part responsible for the many different models) and as 

this . study has demonstrated, do1omitiz~tion may be 
.... 

reactivated many times~ and fo~ many ·different reas ons 

-225-
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during the diagenetic h(story of ~ rock. 

In this chapter, possible mechanism~ responsible for 

syngenetic, early- and late-diagenetic dolomitization are 

• discussed and applied to proposed sedimentation models 

devised. for the St. George Group. As ear-lier generations of 

dolomite commonly act as nuclei for later growth, 

particular emphasis is place upon initial nucleation. 

Suggestions . · for further study to resolve some tent~tive 

conclusions are also offered. 

7.2 MECHANISMS OF DOLOMITIZATION 

SYNGENETIC DOLOMITE - DOLOLAMINITES: 

Dolonii t i zat ion of limestone or lime sediment is 

basicall.y a hydrologicr:tl process (Land, 1983). On modern 

sabkhas, the best documented environments where dolomite 

forms synge net i call y, hydrological . parameters are 

reasonably. well understood. -beawater · is .pushed onto the. 

flat-lying sabkhas by the . action of storms (McKenzie et 

a 1 • , 1980, Patterson and ·Kinsman, 1981, 1982) and 

evaporates, increasing both the ionic strengt~ and 18o of 

the remaining brine (Adams and Rhodes, 1960, Craig et al., 

1963, Illing et al., 1965, McKenzie, et al., 1980). Fluids 

circulate through the sediment due to increased hydros~a_t i c 

head caused by floqd recharge, capi11~ry e~apora~ion and 

evaporative pumping. These three fa~tors represent a 
' / 

co~plete hydrol.ogical cycle (McKenzie, et ~1., 1980). 
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Dolomitization on sabkhas is thought to be controlled 
' 

by a number of factors: 1) high Mg2+ /Ca2+ . * ratios 

(McKenzie, et al., 1980, Patterson and Kinsman, 1981, 

1982), 2) gypsum precipitation (a sink for ca2+) 

(Patterson and Kinsman., 1982), 3) low 

concentrations. Recent experimental studies by Baker and 

Kastner (1981) and Kastner (1984) have demonstrated that 

dolomite replacement of aragonite can be inhibited by 

504 2- t t. t concen ra 1ons grea er than ~ . to 7 percent that 

found in seawater (28 mMol). Gunatilaka et al. (1984) also 

suggested that this is a principle factor di~tating 

subtidal dolom'itization of aragonite sediments in a saline · 

lagoon in · Kuwait. These studies advocate · removal of 

sulphate by reduction, a 
'I> 

process which B~ker and Xastner 

claim 
' 

further; 

alkalinity and 

promotes 

producing 

' dolomitization by increas i ng 

(ammonium ions can 

exchange- .with complexed Mg2+ ions, "releasing them and 

increasing the Mg2+;ca2+ ratio). It is not entirely 

clear if such a mechanism is responsible for St. George 

dololaminites. They likely originated from very shallow 

water ~use of the abund~nce of sedimentary structures 

(chapters tw~ and three); but, these features need not have 

formed in a Persian Gulf-like sabkha environment. Oxygen 

* Mg/Ca ratios aa high as 
parts of the Persian Gulf 
comparison, normal seawater 
(Kastner, 1984). 
, 

~ 

27 have been observed . in some 
(McKenzie et al., 1980). In 
has a Mg/Ca ratio of 5.3 
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isotopes . :r lBo suggest u 

f 

enrichment · of 
' 
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the dololarninites 

compared t6 seawater (consistent with a rapid evaporational 

setting, Craig et al., ,l963); however, ext_ensive evaporites 

are not present · in these rocks. Dololaminites also differ; 

from modern 
...., 

sab}<has in ~.hat they. are well laminated, 

whereas most sabkhas are not (Patterson and Kinsman, 1982). · 

Aragonite, the dominant component of modern ~abkhas, 

is normally easier to dolomitize than is either calcite or 

Mg-calcite !less than 12 Mol% MgCOJ) (Baker and Kastner, 

1981). Evidence given in an earlier chapter suggested that 

St. George tidal flats were composed primarily of calcitic 

mud, not aragonitic mud. Given favorable conditions (i~e. 

high Mg2+ ;ca2+ ratios, low concentrations; 

figure 7.1), dolomitization of the tidal flats could (and 

did) occur. It may hav~ been a slower process than that 

observed ory modern aragonitic tidal flats and may hav~ only ..., 
produced finely crystall·ine nuc)ei. Xenotopic faprics 

caused by · the coalescence of rhombs could b~ p shallow 

burial feature. Later zones of dolomite around some cores 

may represent - this ~hase of dolomite growth. · 

Most dololaminite beds are thin and stratabound 

between intertida"l or subtidal limestones. ·Evidence has 

been given earlier suggesting that lithification of lime 

mud was commonly early and possibly syngenetic. It is 

p6ssible therefore, that early lithification caused th~ 

underlying substrate to act as a barrier, or aquitard, to 

the fluid!s · -which were initiating dolomite growth in the 
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FIGCRE 7.1: A sketch illustrating a possible mechanis~ of 
dololaminite formation. Seawater is pushed 
onto tidal flats by storm surges (A). After 
precipitation of evaporite minerals and/ or 
the dilution of the sea~~ter of meteoric · 
water, t~e.Mg-rich, so4 poor f~ui~s_bcqan 
to dolom1t1ze the permeable (unl1th1*cd ) 

:sediNents (B). Lime mud that was lit: ificd 
early acted as a barrier to the fluid . 
(Aquitard) and subsequently, escaped dolD­
mitization. 

I 
.I 



230 -
- ·- ~-::- -

A 
· STORM ~ 

RECHARGE '--V' 

B 



~ • "''· tJ 

·._:·r~· 
.· .: .. {~ ,. ~ · ~· 

231 

overlying, more permeable intervals (figure 7. 1 ) • 

Intuitively, · this implies dolomitization of unlithified . 
sediments. 

....: 

EARLY DIAGENETIC DOLOMITIZATION - MOTTLP. DOLOMITE, MATRIX 

DOLOMITE {FINE LIMESTONES), PERVASIVE A DOLOSTONE: 

In addressing early diagenetj~ dolomitization, two 

questions must be answered: 1) the mechanism of dol6mite 

nucleation and 2) the nature of the fluids responsibl~ for · 

crystal growth. 

1) Nuc 1 eat ion: 

The most important clue in solving this problem is 

the selective . replacement of burrow linings . and the 

sedimen~ which . has filled burrows or fossil molds because 

these. components were especially susceptible to 

dolomitization. In previous studies of Palaeozoic dolomite 

mottled 1 imestones, the general consensus has bee.n that 
. '; 1 

ichnofossils were more permeable than the enclosing 

1 imestone (Beales, 1953, Kendall, . 1977, Morrow, 1978a). 

Permeability is without question, an important factor in 

dolomitization of St. George ·ichnofossils. Some burrows 

remained open until after dolomitization as evidenced by 

et~hed rhombs in contact with pore-filling calcite cement. 

These trace fossils must have acted as •mini-pi~elin~s· 

transporting fluids through the rock. 

/ \ _, 

.. 
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Kenda 11 (1977) suggested that sediment within 

-ichnofossils and gastropod m?lds remained unlithified after 

ltthificafion of the surrounding lime mud. This· he felt, 
' . .J>. 
could explain the selective burrowing of sediment-fill 

within the gastropods {as in pliite 4.1e) • . Petrography 

demonstrated that at least some mottle dolomite formed 
{) 

during periods of early-diagenesis and it is possible that 

it selectively replaced the unlithified {more permeabl e) 

· col'nponents. By this same arguement, unlithified mud 

1 nterval)' · or · beds may / have been the predecessors of 

pervasive A dolostones. Lateral and vertical· transitions c ----
into burrow-mottled limestones may simply reflect 

gradat ion·s from permeable sediment· into aqw tards 

(1 i thif ied sediment). 

Loc;Uization, of dolomite to· ·Palaeophycus margins 

suggests that the orga_nic lining may have been influencial 
t 

to dolomiti -zation; at least in nucl~ation. This may also 

explain ·why mottles in pervasive A dolostones are composed 

of finer crystalline dolomite than the int~rmottles. In 

chapter -four, it was suggested that this reflected 
~ 

different nucleation rates; mottles (burrows) were s)tes of 

more intensive nucleation than were intermottles • 

ThP.re are two possible ways in which organics can aid 

· (or promote) dolomitization; 1) by removing sulphate during 

biogenic decay (reduction) (Lippmann, 1973, Kastne r , 1 9-84) 

or 2) by concentrating . Mg2+ through organic complex i ng 

(Get>elein and Hof_fman, 1973). 

. . 
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Dolomite~. which has formed as a result of sulphate 

reduct ion (referred to 
I , 

as •organic• dolbmite by Lippmann, 

1973) !'?hO'Uld 'be characterized by. deficient heav,y ca~bon 

provided that it. has grown pri!"arily while reducing 

c.onditions have prevailed (Arthur ·et al., 1983)~ As 

Lippmann states however: 

"When sulphate , reduction is no longer active, 
i.e. due to consumption of utilizable organic 
matter, a normal is~topic composition may be 
restored for .the carbonate species dissolved in 
the . · interstitial solution." (Lippmann, 1973, 
pl86). 

~spite the fac.t ,that St. George dolomites are not 

characterized . by enrichment of 'ght ~arbon (chapter five) 

it is still possible thiH some of the dolomite uitimately 

owes its origin to biogenic ·decay and ,sulphate reduction. 

The nuclei for further growth could have been es tabJ ished 

during early reduction of the organic burrow linings. 

Organic complexing of magnesium was sugge"tted by 

Gebelein and Hoffman (1973), in their study of algal mats. 

They postulated that Mg2+ concentrated into algal sheaths 

during growth was released into the rock during burial 'and 

• 
biogenic decay (reduction). This inturn, initiated 

dol om i t i za t i on. The resulting dolomite should also be 

deplet7d . in 613c. 

Chlori.de' ions, and form ion 

pairs with most common anions: however, apart from Gebelein · 

and Hoffman's study, the role of organic complexing (for 

example chelation by amino acids o'r aromatic molecules in 

\ 



.. 
. . 

mucopolysaccharides), in 
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. .# -
carbonate diagenesis has not been 

fully addressed. It is not kttown what (if any) cations are 

capable 'of being complexed or if other dissolved species 

(for example are · involved. Biolo,Jists have 

studied mucopolysacchari des secreted from mar i ile organisms 

• 
( i . e. crustaceans, Ehrlich, et al., 1981; foraminifera, 

Spin~ler, 1978;- and advanced· invertebr~'tes, Patel et aL' , 

1980), however~ few studies have examined the chemistry of 

mucopolysaccharides associated _with icl1,nofossiis. The most 

relev.ant .of these ~o dat~ is a _study by Trench ( 1973). He 

examined the mucopolysaccharides . ·secreted by the marine 
.) 

slug Tridachia crispata and determined it t.o be of large 

molecular weight, acidic, sulphated and . composed of 

glucose, glucuronic ·acid; glucosamfne, galactosamine and 

traces of galactose. ·It is not possible in this study to 
.. 

accurately · assess the ef'fects these compounds would have on 

the sediment or seawater, but it is worth while to 

speculate. If some of the organics in ancient 

mucopolysaccharides were capable of camp 1 ex i ng · with 

s.ulph'ate ions (in light of Trench''s finding that some 

modern rnucopolysaccharides are sulphated, it becomes a 

distinct possibility), a mechanism of dolomite nucleation 

without requiring reducing conditions may_ exist. 

Following bioturbation and lithification· of the 

sur~ounding lime 

removed so 2-4 . from 

mud, 

the 

sulphate complexi ng could have 

area enclosed by . the 

. 
• 

organic 
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1 i ni ng. Thi's is either . the packed margin of the 

ichnofossils, or in the case of sediment-filled burro~s and 

shell. molds, the unli'thified internal sediment. Dolomite 

• 
nucleation (essentially from.oxidized seawater) would occur 

probably as sub-micron sized crystallites. These would be 

the substrates for early- and late-diagenetic growth. 

Morrow (1978b) considered- the possib.ility th.at 

organics influenced dolomite. growth in Palaeozoic rocks of 
. . 

the Canadian Arctic Archipelago, but rejected it because he 

believed that the bioturbated matrix material should have 

also have been r.eplaced. This'argument doeS' not apply to 

the St. George Group for two reasons: 1) matrix material is• 

of ten dolomitized (witness pervasive A dolos.tones anCl 

matrix dolomite i .n fine grained limestone): 2) St. George 

' mud was lithified early. This latter characteristic makes 

it unlikely that dolomite would grow within the lithified 

mud, even if dolomite crystallites were pervasively 

distributed. 

After nucleation, dolo~ite growth continued whenever 

(and wherever) fluids and ·conditions favorable for 

dolomitization occurred. This is responsible . for the 

variable pett:'ographic and is.otopic character of mottle 

. dolomite and matrix dolomite within fine grained 

1 i mestones. 

2) Nature of Dolomitizing Fluids: 

After nucleation, dolomitization would begin in 

earnest once favorable fluids began, to pass th['ough the 
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·rocks. Growth was by concomitant dissolution and 

precipitation. 

The possible chemical nature of the fluids have been 

addressed by Kendall (1977) and Morrow (1978b). Kendall 

suggested that dolomi t i zing fluids which affected 

Ordovician limestones of Saskatchewan and Manitoba were 

derived from an ov~rlying evaporite sequence and advocated 

refluxion of Mg2+-rich brines through the burrow networks 

as a probable cause. In the s ·t. Geot:ge, this is feasible 

only for limestones interbedded with dololaminites in the 

Aguathuna and Boat Harbour •. Formations •. It cannot explain 

the occurrences of dolomi t i zed ichnofossils in the 

pre~ominantly subtidal Catoche or Watts Bight Formations. 

Morrow's (1978b}, study area is free of evaporites 

and therefore, · he endorses a different process. He 

suggested that initial dolomitization of +he burrow-filling· 

sediments was the .result · of salinity fl~tuations in 
' 

overlying shelf water and cites. fresh water dilution as the 

probable cause. Dolomitization · is thought to have been 

promoted through th~ diffusion of Mg2+ from seawater into 

the permeable burc..>ws. By way of mathematical ar.guement, 

Morrow demonstrated that a significant portion . of an 

ichnofossil caul~ be r&pl~ced in a very short time, perhaps 
i 

in just 100 years. 

Mixed water dolo,itization is an attractive option to 
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explain early-diagenetic dolomitization in the St. George 

Group; especially for pervasive A dolostones. By . mixing 

meteoric · water with seawater, the ionic strength and 

soluble sulphate are both reduced fac~rs which have been 

cited as possible causes of dolomitization (Folk and Land, 

1975, Kastner, 1984). Mixed·water dolomitization could also 

explain the localization of pervasive A dolostones beneath 

suspected or documented subaerial exposure horizons. If .. 
dolomitization was caused by mixing together of seawater 

with meteoric water, the resulting dolomite would be 

expected · to reflect the combined isotopic signature .of the 

. fluids. 
..:.\ 

Predicting the isotopic composition of Early 

Ordovician meteoric water is speculative,· but comparisons 

can be made 'to the modern. Rainwater: in coastal tropical 

areas is depleted in 6 18o relative to seawater by 

approximately 2 to 4 o/oo. This depleti~n is very much 

dependant upon land mass confi~urati~ns, wind direction~ 

and/or temperatures and can be greate~ (or lesser) in some 

coastal regions (J. Whelan, pers. comm~, 1984). Badiozamani 

(1973) suggested · dolomiti~ation would be · favored when 

seawater was diluted with from 30 to 95 percent freshwater. 

Assuming modern rainwater is depleted by 4 o/oo relative to 

seawater, the resulting solution would have f> l8o values 

ranging from approximately -1 o/oo to almosi -4 o/oo. 

Extrapolating to the St. George examples, it is very 
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possible tl1at some of the isotopic variation observed in 

pervasive A dolostones is a result of mixing seawater with 

freshwater in different proportions. Not all of the 

variatton can be . explained in this manner. There must be 

other local factors as well. 

The actual mechanism of pervasive A dolomitization 

may be very similar t6 that proposed for the dololaminites. 

Both probably developed because occasionally~ unlithified 

sediments were subaerially exposed. The only difference 

between them is in the composition of .the dolomitizing 

fluids and in the exposure time. Dololaminites formed in 

areas where recharge was frequent and pore fluids were 

predominantly seawater, whereas pervasi·ye A dol ostones .. 

formed in areas where ,·, !lie teor i c water contributed 

sigryificantly 

development of 

to the 

exposure 

pore fluids (figure 7.2). The 

horizons atop sequ~nces of 

pervasive A dolostone (for example, the St. George Table 

Head contact, Port au Port), commonly with the development 

of dissoluticin voids filled with cavity-filling dolostone 

(for examp-:le; beneath the •pebble bed•, Port au Port; Watts 

Bight Boat ' . Harbour contact, Great Northern .Peninsula 

[later overprinted · by pervasive B dolomitization]) implies 

that occasionally, .longer periods of exposure occurred with 

partial di ssol uti on of the previously dol omit i zed str.at-a 

(figure 7 0 2) 0 In retrospect, stratabound pervasive A 

dolostones with no evidence of overlying disconformities 

may imply shorter periods of exposure. 
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FIGURE 7.2: A sketch illustrating a possible mech~nism for 

Pervasive A dolomitization. Pervasive A 
dolostGnes are commonly developed beneath 
disconformities or interbedded with dolo­
laminites suggesting that they may be caused 
by mixing ~eawater with freshwater (A) The 
dolomitizing fluids may have,preferentiaily 
replaced unlithified sediments (D) but not the 
early-lithified mudstones. These dolomite­
mottled lim~stones acted as aquitards to the 
fluids . (C). .1\ftcr prolonged exposure, discon~ 
formities may develop, punctuated by voids and 
cavity-filled dolostone. · Scale in all sketches 
is generalized. 

'•. 
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Pressure solution and dolomitization of . the St. 

George Group had been questioned previously by Pr_,.att (1982~ 

in \response to a paper published earlier by Wanl~ss (1979). 

Wanless ar~ued that ~hree styles of . pressure solution 

response prevailed in Palaeozoic rocks of Arizona, western 

M~ryland and southeastern ~ansas. Sutu~ed-se~m solution 

developed common stylolites artd grain contact sutures. 
' 

Non-sutured-seam solution developed microstylolite swarms 

(or anastomosing st·ylol i tes), and were commonly the locus 

of • dolomitization. Non-seam solution results in the 

pervasive thinning o~ a limestone and frequently caused 

widespread dolomitization. Pratt (1982) ar~ued against 

pressure solutjon as a cause of widespread, stratigraph~c 

buri~l dolomite in the St. George (pervasive A dolostones). 

•The results of this study are in agreement ~ th · his 

conclusions. His rebutal to Wanless' suggestion of 

dolomitization along stylolites is not necessarily correct. 

Some mottle dolomite in the St. George has grown wholly 

along stylolites (chapter four, plate 4.4c) and may have 

accompanied pressure solution. Magnesium-bearing fluids 

passing along stylolites could have reacted with calcium 

released during · solution of the 1 imestone (Logan and 
.. 

Semeniuk, 1976, Wanless, 1979, Mattes and Mountjoy, . 1980). 

Anastomosing (or microstylolitic) swarms (Wanless, 1979) 

appear to be the locus o~ this dolomit1zation whjch may 

have · been aided significantly by the presence any 

, dolomite l'rysta1 s or crystallites collected during 

limestone solulicn. • 
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LATE-DIAGENETIC DOLOMITE: PERVASIVE B DOLOSTONE, SADDLE 

DOLOMITE, MATRIX -DOLOMITE (COARSE LIMESTONES): 

There is no doubt that the occurrences of pervasive B 

doyostone 

Peninsula 

and ·· saddle dolomite on the Great Northern 

are the result of a late diagenetic event 
I 

involving hydrothermal fluids. The field characteristic~, 

as well as petrographic and . isotopi~ pr6perties are all 

consistent with this interpretation. 

Matrix dolomite associated with packstones and 

grain~tones in the south, are simil~r both petrogra~hically 

and isotopically to saddle dolomite and are ~lso likel~ 

related to hydrothermal dolomitization. They are however, 

m~ch more limited in extent. 

Models involving hydrothermal .fluids have been 

actively sought because of their economic potential when 

associated with Mississi~p-i V_a_lley Type ores (Lovering, 

1969, Collins and Smith, 1975, Beales and Hardy, 1980, 

Coron, i982, Sangster, 1983, Barnes, 1983). Fluids are 

thought to be derived through the de-watering of basinal 

sediments during burial metamorphism (Barnes, 1983}~ As 

suggested earlier, these fluids were pr~bably depleted in 

sr2+. Temperatures of the dolomitizing fluids are usually 

less than 2sooc, commonly in the range of 60 to Isooc 

(Radke and Mathis, 1980, Morrow, 198ib). Pre cipitation 

temperatures determined via isotopic analysis for St. 

George saddle dolomi t'--e and pervasive .. B . . Q.olostones are in 

the range' of 37 to 64oc. Fluid ' inclusions, although 



... 

- 24 3 

abundant· in saddle polomi~e and the intermottle dolomite 

within pervasive B dolostones, are not clearlyo primary in 

the St. George samples examined preventing an estimation of 

formation_ temperatures. · rn . coexisting fluorite however, 

primary fluid inclusions from Port au Choix have yielded 

· consistent minimu~ formation temperatures pf from 135 to . 

150 °c {J. Maloney, pers. _comm., 1984) • . Th~,e ~ata are 

similar to the ~i~i~u~_formation temperatures determined by 

·Pratt (1979) on fluori -te samples from the Cape Norman area 

( 120 to u;ooc}. The difference between these temperature 

estimates. and - those derived through isotopes either 

indicates that fluorite pr«cipitated· out from hotter 

solutions, or (more likely), the isotopic composition of 

the dolomitizing solution ; ( 6 (w)) was ·significan.tly 

different than -8.00 o/oo.· 

11 Temperatures the oroer of lOQOC have been used to 

successfully· synthesis dolomit~ .. in l~boratories (~efer to 

chapter fiv~) and it seems likely that this condition would 

favor more rapid rates of dolomite precipitation. This 

property, may explain the cementation of unstable breccia 

masses by saddle dolomite near Daniel's Harbour (before 

stabi 1 i zat ion occurred; chapter three>.. and the uniform 

luminescence or . diffuse z.onat ion in the rhombs 

(precipitation was more . rapid. than were chan~es in 

porew~ter _chemistry. Higher temperatures m~y also be 

capable of sidestepping some of the probl e ms encountered in 
( 

near surface conditions, such as nucleation. 
'· 

L.. 
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The common association of saddle dolomite with 

sp,halerite mineralization near Daniel's Harbour_ sug9ests 

that they are the products of the same major ~vent (Coron, 

198..2): Two schools of thought exist OIT the transport of the 

metals. One group contends that the~re is the result of 

mixing two solutioris, one rich in ~n2+ and the other ~ich 
-

in sulphide (possibly throug_h the reduct.ion of sulppate by· 

organics). The other group feels that the aqueous metal 

ions possibly complexed by organics, and · the su1ph4de must 

have been carried together in the same solution (Barnes, 

1983). Whatever the'- exact transpbrt mechanisms ·are, it is 

clear that they w-,e of 
. . I 

local extent compared _ to th~ 

widespread nature of the pervasive B dolostories and -saddle 

dolomite. 

: 7.3 DOLOMITIZATION AND PROPOSED SEDIMENTATION MODELS: 

Two ·models of sedime~tati_ on have been p_r_QpoS,fd in 

previous studies for the St. Geor.ge Group: 1) stable shelf 

sedimentation (Levesque, 1977, Knight, 1977b) and 2) 

island-tidal flat sedimentation (Pratt, 1979, Pratt and 

James, in press). Dolomitization mechanisms suggested in 

this study are equally applicable for both: however, the 

island-tidal flat model better explains the spatial 

distribution and variable petrographic and isotopfc 

chara9teristics of some varieties of dolomite and 
! 

doloatone. In an island setting, local aquifers . of 

different water chemistry (mostly meteoric beneath exposed 
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islands /and mostly marine be-neath. ~ tidal flats) would be 

develope~. Such ·a model would also explairi the lateral 

disc.ontinuity of some dolostones (especia-lly dololaminitesr 

P rat t , 1 9 ~ 9 ) • Do 1 om i t i z a t i on i n r e 1 a t i on t o s t a b 1 e s he 1 f 

and' island-tidal flat - sedimentati:on is schematically 

· illustrated in figures 7.3 and 7.4. 

7.4·RECOMMENDATIONS FOR FURTHER STUDY: 

Some of the conclusions proposed in this thesis are 

tentative 'pending 'further collection o.f data ~nd assessme-nt 

by other sttidies. The follCIWing topics will test some of 

the suppositions made in this thesis and are recommended 

for further study: 

1 ) A detailed palaeontological study (especially 

focusing upon conodonts) of the Catoche"to Table Head 

portion of the stratigraphic section ~orth of Table 

Point in necessary to accurat~ly establish the timing 

and duration of pervasive B and saddle 

dolomitization. 

2) A study of the association of faults with 

pervasive B and· other dolostones, perhaps including 

core obtained · from ·-The Gulf ~f St. Lawrence and the 

Strait of 
.....___ .. . 

Belle ·k,Je, will better assess the role of ---- -
tectonics on pervasiv~ B dolomitization and may 

I 
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FIGURE 7;3: Dolomi.tizGttion mechanisms and ~table 
shelf sedimentation. Dolomini'ties form · 
on tidal flat environm~nts whe-reas 
pervasive A dolostones form beneath 
expos~ surfaces. Mottle dolomite forms 
during early-diage~esis in lithified 
mudstones. Later phases of dolomitiz~­
tion (e~. Pervasive B dolostone, saddle 
dolomite) overprint these earlier g~nera.­
tions. No scale implied . 
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"FIGURE 7 . 4: Dolomitization mechanisms island-:tidal 
flat sedimentat~on . .Dololaminites form 
on tid al flat environments whereas 
pervasive A. dolostones form beneath 
exposed surfaces. Mottle dolomite forms 
during ea~ly~diagenesis in lithified 
mudstones. Later phase s of dolomitiza-· 
tion (eg. Pervasive B dolostone, saddle 
dolomite) overp~nt these earlier genera­
tions. No scale implied . 
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explain its localization to the ~orthern part of the '- . .. -

study area. 

3) Further work , must be done to discover the nature 
I 

of the alledged Watts Bight Boat Harbour 

disconformity ·on the Great Northern Peninsula. This 

rnay better explain the origin' of the pervasive B 

dolostones in th~ Watts Bight ~ormation · and whether 

they a~e actually pverprinted pervasive A dolostones. 

i 

4) A biochemical study of mucopolys~ccharides 
I 

associated with ~odern ichnofossils, especially in 
I 

regards to the FOmplexing ability of the various 
I 

organics~ is long overdue to determine the role that 

these compounds play in the di ag~nes is. of modern 

rocks and througr i'~ference, the role that they may 

have played in the: rock record. 

7. 5 CONCLUSIONS 1 

The Lower Ordovi~ian St. George Group is a sequence 

of carbonates that were deposit~d in a stable shelf 

environment subject to periodic exposure. Dolomite makes up 

approximately one thir~ of these rocks and seven field 

varieties are distinguished. 

1 ) Dololaminites are common components of ' the 

Aguathuna · and Boat Harbour Formations in all parts of the 
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study area. They ~~e buff to grey, stratabound, laminated 

dolostone$ characterized by di1frse and abundant shallow 

water sedimentary structures (including des1ccation cracks 

and t~pees)~ lack of body fossils, chert nodules with rare 

.entombed evaporites and 
J 

local bioturbation. s l3c and 

l)l8o values range from _.0.5 to -4.01 o/oo. and -4.78 to 

-7.94 o/oo (relative to PDB) respectively. sr2+ varies 

from 75 to 240 ppm. 

Petrographically, dololaminites are composed of 

uniformly 1 umi nescent to poorly zoned, very finely 

crystalline and non- to slightly ferroan x~notopic 

dolomite. Windblown feldspar and quartz s i It are 

subordinant. 

2) Two varieties of matrix dolomite are recognized ; 

In mudstones and wackestones, rhombs are buff weathering, 

euhedral, finely· crystalline, very well zoned and 

distributed e_venly within the limestone. A prominent 

non-luminescent (ferroan) zone is commonly developed near 

the mid-point or terminus of the crystals. 

Amounts of this variety range from trace quantities 

to 100 ~ercent and usually, matrix dolomite-r i ch i nterva ls 

(those containing more than 50 percent dolomite) are 

separated from matrix dolomite-poor intervals (those 

containing less than. 50 percent dolomite), by stylol.ites. 

Dedolomitization is frequent. 



~· 

252 

Matrix dolomite in packstones and grainstones 

weathers buff to white, and is usually restricted to 

intergtanular areas but may on occasion, expa~d to replace 

the whole rock. Rhombs are medium crystalline, anhedral, 

\ non-ferroan and uniformly 1 umi nescent. Tlolo analyses 

----·--­__ . 

yielded ol3c value~ of -1.62 and -1.85 o/oo and ol8o 

value~ of -9.03 and -9.12 ojoo. sr2+ concentration in 

both ·samples is 40 ppm. 

Intercrystalline and secondary dissolution· porosity 
---·· 

is abundant in extensively dol omit i zed intervals and is 

filled with either dark insoluble (organic rich) material, 

gaseous hydrocarbons or calcite cemen~. 

Both varieties of matrix dolomite are rare and are 

best developed · within the Watts Bight and Boat Harbour 

Formatipns in the Port · au Port area. 

3) Mottle dolomite is buff to light grey arid is. 

localized to ichnofossils, body fossils and pressure 

solution seams. This variety is abundant both 

stratigraphically and geographically and m~y account for up 

· to 40 percent of the volume of a rpck. 

The petrographic properti_es of mottle dolomite are 
.. 

variable. Rhombs are fine to medium crystalline, .uniformly 

luminescent to well zoned, idiotopic to xenotopic and are 

ch~racterized by ol3c values of -1.27 to -1.99 o/oo, 

valueli of -5.71 to -10.34 o/oo and sr2+ 

concentrations of 70 to 195 ppm. Dedolomitization in a 

fashion .similar to that observed in some matrix dolomite is 

common. 
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4) Pe~vasive ~ dolostones are ~imodal, mottled rocks. 

Mottles. (occa.s ionall y identified as ichnofossils or 

gastropods), account for between 50 and eo percent of the 

rock 

the 

Both 

aQd are composed of_finely crystalline rhombs, whereas­

intermott]es are composed of medium <;rystalline~mbs. 

are xenotopic, non-ferroan, uniformly to moderately 

zoned and are characterized by 
./ 

from -1.18 to -2.05 ojoo and . -4.74 to '-11.16 · o/oo 

respectively. sr2+ ranges from · 35 to 185 ppm. Similarity 

with respect to these properties for the mottles and the 

intermottles suggests that they" were dolomitized at the 

same time. ~dditional zones· occasionally super~mposed 

aiound cores in the intermottles suggests later periods of 

growth in these areas. Dedolomitization is rare in these 

Pervasive A dolostones are common components of .all 

formations of the. St. George Gro~p and are also ~id~spread 

- geographieaHy· ~ They are particularly well developed 

. immediately beneath subaerial- expos·ure horizons. 

5) Pervasive B dolostones are also mottled. rocks 

characterized by bimodal crystallinity. They are widespread 

on the . Great Northern Peninsula but are especially common 

in the Watts Bight For~atiori and the upper portion of the 

Catoche Formation. Pervasive B dqlostones frequent.ly abut 

_sharply ___ ag_ai_ns..t~ _ _ Qt:.. ___ form equidimensional •pods• or 

flat-lying •p_ans• within dolomite-mottled. limestones .• · 

- ., . 
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Mottles are d~rk, organic rich, finely crystalline 

. and on bedding planes, are clearly recognizable . a~ 
' . 
ichnofossils or body fossils. In ~ross-section, all mottles 

have been dragged out along stylolites. 

Int:ermot~le areas are whi~o pi'nk and· are composed 

of coarsely crystalline, strained, calcium-rich (to 54 mol . 

' ca2+) and 
. t 

un1 forml Y. luminescent dolomite rhombs. 

Crystal faces are commonly curved. Rhombs are usually 

but occasio~lly may co~tain up to ~.5 weight non-fe rroan, 

percent FeO. 018o arid the concentration of sr2+ 

in 'the interm6ttle dolomite varies from -0.62 to -1.66o/oo, 

-8.47 to -12.73 .o/oo and from ~5 to 135 ppm respectively. 

Saddle ~olomite is a pore~filling cement localized to 

voids or . fractures and also replaces p6rtions . of pre-

existing dolostones (especially<- . body . fossils and 

intermottle areas in pervasive B dolostones). It is similar 

both petrographically and isotopically to the intermottle 

dolomite in pervasive B dolostones. The ·stratigraphic and 

geographic distribution is also the same. 

Cavity-filling dolostone fills small (less than 30 

centimetre) dissolution voids ~n pre-existing dolostones, . 
" 

is commonly · geopetal, laminated and is characterized by 

buff to green, very 

subordinate feldspar, 

finely 

quartz, 

crystalline dolomite with 
--......__ 

phosphate, micas, clays and 

insoluble (organic-rich?) material. Dolomite rhombs are 

anhedral, uniformiy luminescent and · c_?ntain from 45 to 

165 ppm sr2+ • . 0 13c varies from -0.61 to -1.78 o/oo and 
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~So ranges from -6.45 to -8.93 o/oo. This variety is rare 

in the St. George Group ~nd is re~tricted to intervals 

beneath documented or suspected disconformity surfaces. 

The seven varieties of dolomite and dolostone are the 

result of four generations of dolomitization. ~ater 

' -generations frequently overprint earlier generations and . in 

so · doing, modify both · the petrographic and isotopic 

character of the original dolomite. 

Dololami ni tes are syngenetic products formed ·during 

deposition of . supratidal 

environment. Dolomitization 

high ratios 

s~dim~s in a tidal flat 

may ha~e-been nucleated due- to 

and/or low so42- which 

prevailed on the tidal flats. Continued growth a~ter bu~fal 

is suggested by additional zones superimposed on some 

rhombs. 

Matrix dolomite in fine grained limestones and mottle 

dolomite are the result of the same lon~ lived (~arly~ to 

late-diag~netic) events. They initially nucleated after 

lithification of lime mud, possibly due to the presence of 

mucopolysaccharides associated with bioturbation and grew 

by concomftant di sso.l uti on and precipitation. These 

dolomites were also subjected to further growth during 

periods of pressure solution. 

Pervasive A ~olostones are coinGident with early 

phases .of matrix/mottle dolomi-tization and predate pressure 

solution. Their localization beneath · documented or 
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suspect.ed subaerial exposure· horizons suggests that they 

•may be due · to mixed water dolomitization. 

Matrix dolomite in fine grained limestones, mottle 

dolomit~ and pervasive A dolostones have been affected by 

late-diagenetic periods of tectonic fracturing and 

dedolomi~ization. 

Pervasive B · dolostones are the result of 

late-diagenetic hydrothermal events which have overprinted 

dolomite mottled limestones. They' probably evolved at the 

start of. the Taco'nic Orogeny and were generated by fluids 

passing along tectonic fractures and . into susceptible 

I imestones. ... Fractures and void space were simultan~ously 

f i 11 ed with sadd-1 e dolomite. 

Southern examples of matrix (those 

occurrences within packstones and wackestones) are ~lso due 

to h~drothermal alteration but not necessarily the same one 
j 

resporisible for pervasive B dolostone or saddle d6lomite. 

• Cavity-filling dolostone is similar to vadose silt 

(Dunham, 19~9, Bathurst, 1975) and m~y have been derived in 

a similar fashion, that is, through the mechanical erosion 

of host . rock by moving ground water in .the vadose zone. 

This variety is directly related to subaerial exposure • 

.· ; 

, ! 

\ 
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APPENDIX A: 
M.EASURED STRA'l'IGRAPH IC SECTIONS . . 

r 

Th~ stratigraphic sections ' ' mea~ured at each of the ' 
ten principle areas . investigated as part-.of this study are 
·drafted on a ·scale of· 1 centimetre .to 2 m~tres. They 
display the general lithologies, the variety, and estimated 
proportions of dolomite or do'!ostone with-in the . 
lithostratiQraphic unit, sedimentary structures, secondary 

. mineralization, the estim~ted bitumen content and · 

-·. 

palae~ntological and/or other pQmponents 5~efer to legend, 
back pocket). The ten sectiong are also located in the back 
pocket. 
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APPENDIX B 
CARBON AND OXYGEN ISOTOPE AND SR2+ GEOCHEMICAL ANALYSES OF 
.REPRESENTATIVE LIMESTONE AND DOLOSTONE SAMPLES FROM THE ST. 
GEORGE GROUP (LOWER ORDOVICiAN) OF WESTERN NEWFOUNDLAND 

DOLOLAMINITES: 
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SAMPLE t LOCATION FORMATION s18o(PDB) s13c(PDB). sr2+(ppm) 

PP172A 
LC 2 
CN30 
PC 9 
SC25 
PC32 

pp 134 
pp 212 

IB 
i.e 
CN 
PC 
sc 
PC 
NWG 
NWG 

MATRIX DOLOMITE: 

BOAT HBR. 
BOAT HBR. 
BOAT HBR. 
BOAT fJBR. 
AGUATHUNAJ 
AGUATHUNA 
AGUATHUNA 
AGUATHUNA 

-5.17 
-7.94 
-6.33 
-6.54 
-4.78 
-7.83 
-5.98 
-5.96 

~ 
SAMPLE t LOCATION FORMATiON s18o(PDB) 

pp 117 
pp 119 

IB 
IB 

WA:rTs BIGHT 
WATTS BIGHT 

..,.9.72 
- J9. 03 

-1.38 
- -4 .,ol 

-1.88 
-2.70 
-o. so· 
-1.86 · 
-1.89 
-1.66 

-1.62 
-1.85 

85 
75 

240 
185 

90 
as 
85 

160 

40 
40 

DOLOMITE MOTTLED LIMESTONES: 
SAMPLE· t LoCAtfolr----mRMATION s1Bo< PDB > s 13c c PDB > sr 2+ <ppm> 

PP 112C 
MOTTLES. 

LIMESTONE 

sc 16 
MOTTLES 

LIMESTONE 

CN 42 
MOTTLES 

LIMESTONE 

CN 43 
MOTTLES 

LIMESTONE 

pp 1138 
MOTTLES 

LIMESTONE 

PP35A 
MOTTLES 

PC37 
LIMESTONE 

IB WATTS BIGHT 

sc CATOCHE 

CN CATQCHE 

CN CATOCHE 

IB 

IB BOAT H~R. 

PC BOAT HBR. 

-9.31 
-8.15-

-5.71 
-8.87 

:-8.86 
/-9.21 

-10.34 
-9.18 

-5.47 

-10.31 

-1.44' 
-2.30 

-1.27 
-1.56 

-1.74 
-1.78 

-1~67 
-1.67 

-1.89 
-2.30 

-1.99 

-1.75 

.. 

70 
165 

190 
235 

165 
290 

---. ------

175 
275 · 

ISO 
235 

195 

320 



;. 

I 
280 

;,.;-

PER~.IVE A OO~OSTONE: 
SAMPLE t LOCATION FORMATION s18o(PDB) S 13c ( PDB) sr2+(ppm) 

PP 1138 . fB WATTS BIGHT 
.~ 

MOTTLES -7.10 -1.54 140 
INTERMOTTLES -7.09 · -1.82 130 

sc. 12 sc CATOCHE 
MOTTLES -4.74 -1. ~0 175 

INTERMOT'I:LES -5 .'36 -1.64 185 

PP112 IB WATTS BtGHT 
MOTTLES -8.33 -1.37 105 

INTERMOTTLES -8.77 . -1.72 75 

CN 4-J. CN CATOCHE 
.MOTTLES -5.15 -1.18 140 

INTERMOTTLES -9.99 -1.37 55 

PC 35 PC BOAT HBR. 
MOTTLES · -10.58 -1.59 ·35 

INTERMOTTLES -11.16 -1.51 "35 

PP48D IB BOAT HBR. 
MOTTLES 

) WATTS 

-8.24 -2.05 100 

CN 12 CN BIGH'l' 
INTERMOTTLES -7.65 -1.19 70 

PERVASIVE B DOLOSTONE: 
SAMPLE f . LOCATION FORMATION slBo(Pt}B) s13c(PDB) Sr~+(ppm' > 

TP ii . TP CATOCHE 
MOTTLES -8.94 - 1.13 80 

INTERMOTTLES -10.51 -1.35 85 

CN 42 CN CATOCHE 
MOTTLES -9.38 -1.31 90 

INTERMOTTLES - 12.09 -1.59 75 

PC18B PC CATOCHE 
MOTTLES -8.47 -0.78 15 

INTERMOTTLES -a .18 -0.62 35 
'· 

PC )7 PC BOAT HBR. 
INTERMOTTLES -12.73 -1 .66 135 .. 



\ 

\ 
\ 

. 281 
, 

SADDLE 'DOLOMITE: 
SAMPLE t LOCATION FORMATION sl8o(~DB) sllc(PDB) sr2~(ppm) 

CN 5 
CN25 
PClO 
DH. l 

- !: 

CN. 
CN 
PC 
DH 

WATTS BIGHT 
BOAT HBR. 

CATOCHE 
CATOCHE 

CAVITY-FILLING DOLOSTONE: 

-9.04 
-9.48 

! -10.47 
-9.45 

-0.89 
-1.57 

- -1..69 
-1.26 

70· 
~5 

not run 
40 

SAMPLE t LOCATION FORMATION slBo(PDB). sllc(PDB) s~2+(pp~) 

CN 1 
CN14 

pp 438 
pp 480 

SC13 

CN 
CN 
IB 
IB 
sc 

WATTS ·BIGHT 
WATTS BIGHT 

BOAT .HBR. 
BOAT liBR, 

CATOCHE 

-7.08 
. -8.93 
-7.38 
-6.57 
-6.4.S 

-0.61 
-\.78 
-{.53 
-1.50 
.;_1.62 

45 
so 
65 
85 

165 . 

Analytical uncertainty is one standard deviation and varies 
from a minimum of 0.01 to a maximum of 0.08 parts per mil. ­
Locations: IB, Isthmus Bay: LC, Lower Cove: NWG, Northwest 
Gravels: SC, Smelt Cany~n: DH, D,aniel's Harbour: TP_;- Table 
Point: PC, Port au Choixt CN,· Cape Norman. 
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