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1\n archaeocy~hid - r ic h biostrome cnmplex i:1 the 

middle of the Forte au Formation (Lower c,,mbri<J.n) of sout~-

ern Labrador , is divisible inlo two f~cics : (l) Oolite 

Sand Faci es , <l.nd (2 ) Biostrome Facies . Stratigrophic and 

sedimentoloqic analysis of eiqht selected are<lS indicates 

tha t the Biost~,"ome F CJcies was deposited ~ward uf the 

Oolite Sand Facies and that the p,,tcoslope sloped t o wards 

t_he south o:::- south - east. The hi<]hly irreqular nature of the 

contact between the two facie>s sug9ests th ilt s<llients and 

rece sses occur red ~td thin the Oolite Sand Fi1c .i cs and thilt 

the Bi ostrome Facies was deposited or. shil l l o w s•,;ales within 

recesses . 

Seven li, ologics milke up the Ooli .te S21nd Facies : 

skeletal grains tone , ooli ti c grainstone , mixed oolitic 

grainstone , mixed peloid packestonP, ni xed oncolitic gr<~.in -

stone, intraclast grainst-one, dolostone and dolomiti.c silt-

stone. These lithologies a·-e considered to f orm an oolite 

shoa 1 camp lex consisting of an active shoal, stable sand 

channels, storm-affected supra-tidal i sland s , and leewi'lrd 

oo l ite shoal s pil lover lobes . 

The A Lost rome Facies wa s deposited seawa rd o f, a n d 

shallow swale s between, the oo lite shoals. This facies 

consists of five distinct units Do lom ite Mound Unit (BD) , 

Red Mound Unit (BR), Nodular Mound Unit {BN) , Oolite 

Bioherm Unit (BB), and Grey Mound Unit {BG) . Each unit 

consists of t wo l ithofac ies (l) s keleta l calcarenite, which 
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docs net v.=~q· bceween units, ·.:mel (2) mounds tone, d 

genet i c rock - type applied t o mounds or bi ohe rms _of uncertain 

origin. Five different moundstone lithof.1cies occur , oil 

of which .conjain archacocyathids and sometimes CC\lcarcous 

algae, in a. nudstone matrix . The"moundstones form mounds , 

'\..· biostromes , and rarely bioherMs, il l 1 f J ankerl by skele t. <1 l 

calcarenites. Dolomitic Moundstones ( llD-1) ahd Nodular: 

l'loundstones .( BN -1 ) f orrr.ed in ,.rclatively deep water , seaward 

of Red Moundstone (BR-d) which accumulated in L'lteral contact 

with t.he active oolite shoal, Mound stone (FlG- !) and 

Archaeocyath i d Bioherms (BB-2) on shallow, 

protected 51 .. ; ales be tween oolite shoals . The Arch.leocy,lth i d 

Bioherm'" lithofacies, 'i...& flanked by ' quiet-water. ' oolitic 

calcarenites (BB-1). 

Diagenetic p r ocesses which modified the original deposit-

ionu l texture of the mounds t ones and calcarenites include: 

b ioe rosion , dissdlution and cementation , neomorphism, dolom-

itization , silicification, pre>ssure solution (s t ylol iti <::ation) , 

and fracturing. Diagenetic fab ri cs were formed by these 

processes operating in .a number of diagenetic environments . 

Micritization, macrobor1ngs and f<:~cies spcci fie cementation 

were formed by processes operating in the subinarine diagenetic 

environment. Selective dolomitization occurred in a zone o f 

--" 
mixing between meteoric phreatic and mcn ine phreatic wa ters . 

Minor dissolution and widespread cementatior;t occurred i n t .he 



.. vadose zone. ( Fa,.brics formed in the pt,rcatic Cnvironment" 

include ex t enSive stylolitization , dissolution, fra;turing, 

pore - fi l l cementation, and aggrading neomorphism ...A\i <.:h 

,includes a transitional micrite-microspar-pseudospar 

fabric affecting archaeocyathid skeletons. Widespread dolom-

itization and rare silicification and sty!o l itiz ,"ltion occurred 

in a late, unspecified diagenetit· environment . 

The autecology of arc!Jaeocyathids, calcareous algae, 

stromatolites, a new , primitive ' coelenterate ', brachiopods, 

t r ilobites, hyolithids~ echinoderms, and agmata (Sctltere l la), 

is reviewed and three faunal/floral assemblages are recognised: 

(l) mound - flanking Skeletal Calcarenite faunal assemblage, 

consisting predomin<lntly of ech inoderms with br<1chiopods , ' 

trilobites, _hyolithids and Salterella , (2) Mound-dwelling 

assern.blLJge, consisting predominan tly of archacocyathids and 

calcareous al.gae with brachiopods , trilobites, coelenterate,' 

sponges, hy o.l i thids and the ichnogenus Trypan i tes , ( Jj 

coe l obiti"c (cavity dwel l ing) assernbla(Je, found mainly beneath 

' ' reti l aminiforrn archaeocyathids and consisting of pendant 

calcareous algae, foraminifera, encrusting archaeocyathicls
1 ., 

ll..rchaeotrypa I sponges, trilobites 1 and' worms. 
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CI\1\PTL R I NT!10DtJCT lU T~ 

li.H1S 

?os~.;i l reefs , construc'tyd b y different gn)ups of 

n rq <misn~s ;1t r1iffercnt times in geoloqic history, ill· 

ustr .:J l c ,1 '<Jide var i ety of form cmd structut-c (h'Llsnn, l q7S ) . 

The c.:1rlics t_ shrdcl e~l reefs e~rc f o rmed by ,1n rxtinc t ;nc~az · 

O<l n, arch.lcncyathid.J (Hil l, \ 97 2), but such rccf s .Jtc 

poorly k now J·, ,1ncl h<tVf' tJccn r .1re l y dl' sc ribu l (!:lee 1\ppcndix [). 

Scllnc o! t h0 b~s l exposures o f Lo· ... ·or r .1mb ri ,1 n ,1rchaco-

cyathHI-rich r\Ccf s o u t. side of the ll . S .S. H . 0ccur in southern 

Labre~dor. Here , in the rorte au Fonr,ltion, t·i.·o scpar .:~te 

,lrchacncy;l t hid-rich h or izons h<~Vc been recoqnlscll (J <:mcs 

'p.1~cl ·. - rr•cf S('r ic:, ' (,! ,"' l!lf'S and Kobl uk, Jg 78) .1nd il l~ Ul•j•(•t· 

\ ,iostrome corn;>lt'X. The purpose of this study is to docun1c nt 

the iJinstrom<' comp le x, specifi c ally to:--

(I) l'l ap lhe lit_hofuclcs of the biostrorr.c . 

( 7) nocumcn_t the paleontologi c nl <lnd s e dimcnLolo -

qir:-1 \ £1Spects of t he b i os trome and ossoci iltr>tl 

f,1ciC'S to interpret_ Lhe envi r onment o f deposition. 

()} Outli ne the diag enet ic evolution t>f tlw ca rl>on ~ 

a t e rocks . 

(4) De term ine ccrtil i n aspects of the paleoecology. 
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STUDY ,\REt\' 

Physiography 

T he study a rev, southern Labrador, f o rr;~s the nDrth 

coast of the Strvit of Belle lsle (Fi g . 1), Hl a latitude of 

approx l n<~Lcly S\ 0 30 ' and Cl lonr.,;itude of 57°00 '. 

FlilL to(J pell h ills, bounded by terraq:-d cliffs and wide 

river valleys fnrm the coastal ilreo anJ give w<J.y in] rtnd t. 0 

rugged Prcc .lnlbt- iMI tC'rrain . The physioqraphy refL ects tile 

litholoyy o f the bed-rock and thP occurrence of LHll ts. 

!ligh, steep sca-clitfs such as those bctviCC'tl Bradorc <1nd 

L'Anse <Ill Loup {Fig.4), are formed of Lm•lf'r Cambr ian sand-

~~tones (llr,l(l o ~:c Forrlillion ). These cl iffs c1lso form the s ide s 

of tile m<~jor ,-iver va l leys. 'I' ll!• sandst one c liff s (;ivc 'W<lY t c 

r o II ing t o p o gr aphy, formed by (_", lt••bri<Jn limest o n(', 

si l tst o ne s <~nd sh.1les of the FortcLJu Formation, which rises 

m<lximum elevation of 843ft. (2:,':l m) •lbovc sca··lcvel notth -

~o.·c st of F o-rtPdl l. 

Well-developed terracing, formed by differential cros.ion 

(SchtJchC'r t and Dunbar, 1934) occurs when the Bradot-e Form.ltion 

il nd Fortc.Ju Formation are continuous l y expos!'tl, as to the 

west o f Schooner Cove. 

Four _major river valleys run pi'lrallel to cc:~ch other in 

a N.w.-s.r; . directi o n. These u-shaped va\lf>ys, cont.J.ining 

rivers draining into the sea at Blanc Si!blon, Forteau, L'Ans e 

au Loup, and L ' Anse au Diable, cut down into the underlyinq 

Precambrian crystal ~ ine basement . The upland drainage pattern 

is almo st completely controlled by faultinq {see be l o w). 
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GULf OF 

ST. Lf,WRENC[ 

C_::] Tr;w~ rortr;-rl C\.15tic R<,ck~ 

Bllutnchthnnou~ RoLk~ 
(domi n.1n t l y r ,lrhon .ltE'~ ) 

(8r i r:-urdc Ly',Supprc;roup 
PRECfiMBR I !IN 

~ C~~~ ~~~ ~ i !'(' BAsement ilnd 

Fig.\: M,l jo r nf'nlnrri ;· ;t] ('l<:>mt•nts nf W('St(' r n Newtoundlanc! 
,md southern Lab rndor lb,lscd on Williams, Jq?"Jl. 
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Th e rocks u!'lde r study occur in the upper [I<Jrt of Lln' 

r or te a u Form,-ltion <l s exposed in southern L,Jl>r<t d o r anc1 Quebe c . 

Sirnilar rO c ks <~ l so occu r in we s ter n Ncv>"foundl<Jnd ,1r~d U~c!'C 

CXolm i ncd bric•fly fo r COI'1('i'lratiVC rurpo ~ 

T0ctor· i <>llly, lhc study c~re.l lies W('SI •)f t he wc~L c rn 

undef o rrr,cd cq'.JiV •tl0n l ~>o f the Lomo nd Zone (t:rm c !\) of \·i i I I j,1rns. 

Fcnn cdy o~r 1d Nc.ll!' (1')7 c\l now r c n;n0d t !•c l lu r.1bcr 7. o nc (l'li 1 1 -

inms , !'J-I L l. T l1is 7011(' , lyinq ir~ wc~t.c rn Ne'-'·f o uncJl,l tlfl (Fi <t.l l , 

represents the r.o wer Pa leozoic st;1bl c c on tincnt .l l m,<rgin, p .lrLs 

emp ldc('rr,(·nt o f OL " (~,lnic crust (opl\io li trs} -1 nd <Jthct· .1 l lo~h t h 

rl idd](' Orrlcvici.lrt t.imc (\·ii II i.n•s , I'J7':.). 

!'he st •dinu.•nt ;try succession (Fiq./_) ovcr l l<'~; ,1 l'r (•c.lmb-

c o mple x of <"j"neisscs <Jnd schists o f C!"f'nv i l ie <.HJC cu t by 

900 m . y . qr ,l!1 it<'S (\'iilliams £.!_ ~-· J')74 l . Lnc,1\ ckvclopmcnls 

c [ pJ,llcau b,l !;,, 1 t:s, such as t hC> Li!Jlil house r: o vc- Form,ltion nf 

Bel le r.sle (Williams a nd Stevens , 19b9}, iJI pJ.l CCS 

to dire ct ly ovl' rli<' Precambrian b,1semcnt. r-1ost r,r the serli -

mcnt <HY sequence cons t sLs o f an e <1stward t hi c ~,cninq, L O'..J(•r 

Pu lcozo ic, ;Jartly c l.lstic but domin<~nt ly ctJ r!Jon.lte succession 

(Loqan , 1863; Schuchert .J.nd Dunbar, 193~; \._h i ~tinq ton ;lll d 

Kind l e, 1969; Cumming, in press) whi Ch c .1n be tr-il cecl lilter,llly 

along the l enqth of the i\ppalachi.1n -Coledonian oro qcn as [,lr south 

l\l il b,lma (Pal mer , l 'J71; Williams il nd Ste vens, 1971\), iJnd 

- 4 -



1500 r'1 

1000 Ill 

)00 r1 - 77"£/-c 
=d _- _...;. ---J--':-_ --r;;Tit J,_,r rlin F"' 

0 m 

-~ :::::::.::~:.: -~ 
Precan,hri.'ln c ~ y·a;o~ 1 1 ine !la<,('or.cnt 

' 

Fi g .;> Ct'!l t'r,l li7.cd !->l<"li g r .lphi c se c tinn ()( t he 
,,ut_ n c: h t honou s scqucr.c c of ·o<~ cstt~rn Newf o und l a nd 

Modifier! clftcr Swett ,"ln<l Smit 

19 7 2, Fiy. I 

- ' -



nor l hw.-trds tn l o Greenland , Sent land , <~t H I ~ ;p i t.:.lJcr<JCTl ( IILl r lat:d , 

1969; Swelt and S mi. t , 1972). 

The sequen ce in Newfoundla n d (fig.7) hds Leen dcscr~bcd 

t"'·o uncqu.Il si. l i ciclastic - calbOnat 0 tT c.•c!.IC'y'C l C's ( Levesque, 

James i!nd Steven s, 19771. The l ower cyc le i s much Lh innr•r ,1r;d 

of considerably shorter du ralion , bei ng entirely r,,y ... •cr C;1mbrL1n 

age , comp;ncd ·,o~ i t h the rnuch t\:lcker upp (' r cy c le v:!dch r.1nges 

fr o m Lower carnb t- iinl to :..:idd l c O rcl ov i ci <ln . I r t•ach the 

cycle commences with il 5iliciclast ic uni t., (the !'lr ,lc! (_) r e Fo r 111 a-

ti o n and l!ilWkc B<'TY fo rma tion , rcspectivclyl, which qradc ·,1p 

into a dominantly l ime s t.one sequence ( F o rtcau Forrn.tlion i n the 

lo•.,.er c ycl e , il nd t he St_ , Ge o rg e .:m d Table l!c;HI Form.1t ions in 

ttu • upper cycle) . 

Confnrmal:ly o vcr l yi n q the T ilblc l ! r-'dd Forn,,lt. inn (~iiddl(' 

Ord ov i cL .ln is p.lrt of ,, westwa r d tri1n<>qrc~.s_inq flys c h wedqe 

(Goose T i c k le Formation) Lhat ab ruptly tf'>rmin .lles thP c a rbo nL 

)1te succession (Willians ~ ~· , 1974) ,nd 1s t he ll iqllc>st 

autochthono u s un} t seen in W. New found land . The ro..'st of t.h c 

s~que n ce in t he Humber Zo ne consists n f an <t l l och tha nou s 

cssion of wPs l er Ly transported rocks , cmpLH:c d its sLructural 

slices. Sediment.lry roc ks, including l i ncstonc brec-

c i a, arc interpreted liS bcinq e,1stern c o ntcmporic s of the 

authochthn.n o u s success i on , r~nd occur i n th , Lowc r ~;t t·uctu r- . 11 

slices , while t h e higher slice s ilr£~ interpreted ., ~~ o phi o l it e 

sui t es (Wi l liams , 1 975) . 
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The y l>Unqc:~l Ordoviaia n stra tum ~ , ·en i 11 th i s 7<1(\ C i s 

the neoa u t-_hoc h lhon ou s Lo!1g Poi.nt Group :t\cryslr o m , nivi1 and 

K,"ly, 19 74); a series of biohermaL l i.mcs tones , shalf's, minor 

sandstones , ctnc\ re d - heels , of Upper c:1amp l ani:~n - Lo•,.;cr Cincin· 

·.-•(' r c depos i ted dis c o nfor mZJ bly(?) o:1 Lo the .1 il o c h t: hon (St <· vcn s , 

19 70). 

~~ ~~-'-- 1~1 _l_:5_'W~- C a n~_!?!l.E.~-2.!__!~~_2!~_1p_!_ t y~r:___:·~t~~!l 
~J_r~~J-

The clHC•"l ~~ tud ie cl in s c uthcrn L<Jhr<ldor cwnpl '.scs on ly 1!1<> 

bo.~al two - t llird s o f the thinner, l owe r mco:J.lcyc l c (,L1rrcs dnd 

Kcbluk, 1971:\l , r!' prc s cntcd !Jy rocks of Lhe ]. ;1br;nlor l: rn u p 

{!-' ig . 3) . Thl'SC rocks outcrop over a 40 km cnas~_ ,l l,.L c l t fn.\rn 

c.v;t o f J_,ourcles de !\1 .1nc Sab lo r~ Quebec, n o rt h-cc\~ t.war d s 

to \'lest St . 1-tnd " s t e in J,lbr a d o r (FirJS. 8 M'!d 7/. ) . Ou t c rop 

continuous in c l i ff-s0 c t.ion except. wh e re ttlc m.l Jo r riv er v.lli{' ys 

.:~ m .:~ x ian.1r.1 distance of 15 k m where l iH' Y <lrc f,l u\tC'd out ;1q,1inst 

l'rc c arnbrLln b;,scmPnt. Ou t l i.crs occur lo th<' north of Lhc 

m<~jor f,lult., b ul ,lr(• inac cessible by f ont . 

1\s t h e str .=tt ,1 i.n the a1'c .1 are qcner.llly fLlt- l yi.ny, lhe 

o nly st.r u c tura I complication s result f roll'. lngh ,,ngle n o rm.1 1 

[,lUlLs of sm.1ll rlisp\accmcnt whi.cl'\ .Jrt" v e ry t;ommon. T•,.;o Sf' lS 

o f L1u\t s c."ln be di st inrJuishcd {sec Fiq. 7 1 , in pocket) (I)· 
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t<o <::HJL' n•Llli n ll S hip s can be dCCIJ-'hered Lc;;..w•~ e n lhe l "'' o 

1\ smell ! numLcr o f L1ults h.:J ve anom <tlous t re>n d s· a tL ·~;- L1ul t 

run s Lhn•W_!h L ' /\n:o(• <1 U C l .:~ir, and t·w o n ~ 1 10r H,\·1.-S .l·:. l.tu l ls 

occut- on the l'ni.nt c Amour pen ins u l d . Vpl .1 n d dr .lirld'J '-' 

troll e d by l a ult.inq ~li t h all stredlllS f oll c>',•• i n•J the tn:nd o f 

the Lmlts . The mu j or river valleys flow a lunq Pn::! c ilmU-

whe t her th l' loca t 'i_on of these rive rs i s [ault contn;l lcr! <ll 

qlac:i<1 ll y cunt roll e d . 

fir adore_~ 

The Llruc)o rc Forn1<ftion (Schuchcrt .:~rd Dunbar, 193<1) 

{Fiqi4) wKonf o nH .tbly o v e rlies t he l'r cc<unbri;l:l Crcnv i l l c b .-tsc -

mcnt complex. 'J'L e cont a ct is a paleosub-<H •r l <ll sur f .-,ce (J ,tmcs 

and 1\o bl u~:, ! 97b ; Cum.<ning, 

base of the cliff t o the east o f Bl anc Sabl a n . The b.::~sal 

15 m consi s•.s or thln c onc,;lomeraLes and "red arkosic sands tones 

with a bimoda l et ml bipolar currcnt - beddin ~! distr i but i on (S\•;ett 

and Sm l L 1972) characteristic of t .i da l sand bo d i es (Reinec k 

and Singh, 1975) . The . upper S5 m 

to o r thoq uil rtzite . 1'he most obvious s tructu re in Lhesc scd i -

ments .:ne many vertical t ube's interpreted .ts water-c~cape 

structures (CumnHng, in press) but widely ,tcccpted ,,s bu t- -

rows <11:rl cal l ed Skolithus llnearis . Other trace f o ssils, 

i n cluding Mo nocraterion , Dolophichnus , and Linqu l ichnus , also 

• occur ln the Bradore fo r matio[l (P e mber to n , James and Kobluk , 

- 9-



Fig . 4: Sandstone cliffs of the Bradore 
Formation exposed to the east of 
L 'Anse au Loup . 
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l'J/1 ; : ' c'il\l; L' i l r> t t .tr rd f:u :JLuk, I 'l l (;) . 'I' ll , f! ltl y j , , d y f ]:; 

rqJo r l c d fr o!ll L!H· ~; ar. d st o n t_• dl"t:' !J r o kvn li!.td , i ' ' l; ' ''l •;lie!!~;, 

L>cil~vt::d to be obolleUds ( l::la l s.un, I 9/ J ) 

~IS 2 8 ') ft . (t3 6 JP) by :ic ltu c h c r t i.l nd ( ! Uil lo d t ( ( ') {·~). Ctltrurti rt< ] 

(i n pre s s) r <.: cnqni s t• s <1 - Lliickeninq tow , n .l ~; U w tt t H th - e.t:-; L 

j\'le s t St . l,todcs t c ) '"'h e re h e r L;co :-d s a t h i '-'k l rcs:, (•f 40 U ft . 

{ ! 21 m ). 

f o un d l a nd inclurl l; l hc C loud i'lount a ins l"onn.l t i o n, (B L'I:>:, 19 J'l ) 

in Ca n,lda Bay , <1nd t he Ur;Hlnr e Fo un d tio:J nn llt'llc JS]Q (V.' J\ 1-

iams .Jnd Slevc•n s , \ 96':i l . Swett ;tnd Srnit ( 19 7 2) suq • J l' ~; t 

c o rrclar.ivps in Scotland (Eribo ll S a nds tone!, t rHI a! :; o L e~ s t ­

Centra l Creen 1 and (Kl¢ifte l v f o r mati on ). 

Fo rteau Forma t ion 

T h e B r·odo l· e formation is conformably uvt•rlain by t he 

Forteau Fo rmation I Schuc hcrt a nd Du nU<H, 19 J 4). 'l'hc s0 s ed t ­

ments reco r d the first occurrence of carb o nu t c rocks during 

the evoluti o n of the Lower PLllco zoi c c ont:incnLal shelf. Only 

the basal 185ft. (5 6 m) occurs in L a brado r bul th e 11\aximurn, 

comple t e t hickness in the l!itjh l ands o f SL . ,J oh n is 386 ft. 

{117m ) (Schuchcrt and Dunbar, 1934) . 

The sequence IF i g . J) conuncnces ..,-ith a l..J<ts a l d o lonrite and 

shale u nit, 3- 4 m thick. This is overlain by an archae ocyathid 

patch - reef complex ~ Fig. 5) which has an aver<>,$!C thickness o f 
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Fig.S: Patch- reef facies of the Forteau Formation east 
of Fox Cove . A patch-reef (centre) is flanked 
on either side by bedded skeletal calcarenite. 

Fig.6: Shales and siltstones of the open- shelf facies, 
Forteau Formation, exposed in a quarry near to 
Ten Mile Lake, western Newfoundland. 
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Thl.:Y recD(_Jnise two laler<dly equivalen t facies ; a wulvsp r(.•<~ d , 

l alc i- :illy con t inuus lili
1
lE'S t o nc and sha l e i nt.e r bed sc'l ucncc, 

t.ern1ed t lH' ' op('n-shc 1 f [ ac.tes', Lind .1 cun1p I c•x 

,-,co cy-J t· h id rich biuhe nns and in~cr - b tu herm sediw(•Jll~;. tenred 

The ()pen-shel f sediments dr· p cyclic, eoch cyc l e c o vrscninq 

upw.1 r ds fr om s hale int o nodu ! vr li ~1eston c , jnto c<~ ! c "It 'O\JS ':i l l t.-

s l otH_• or sil t y li nr('Sl <'Jnc with a nraxiruum thi ckrH ~ss >Jf 2 rn. 

The p.ltch-rcef f:1c i ('B ( Fiq.S) co no; is ls prcdo~lin;mtly of 

nrchaeucyat.hids and Cillcareous alq<le ht Jlldl-.rix of li:-~re-mud. 

J'hcsc arc [l.lnkcd L;y off - reE!f skc l ct.1l _c .:tlcarenitcs e x tcndir1q 

iJUl 2 to!) n1 from the reef .Ji rtl gr<ld i n~ into.th i n nodula r 1i fl1C · 

ston e s ( J;wrc:-; ilnd J-:nbluk , 197b). 

T h e pntcll -rcc( comple x i s ove rl a ir: by up Lo 20m o f 

interbedded calcareous a nJ dolomiti c siltstones and sllnle s 

(,J ames .:~nrl KoU .l uk , 1978) which contain a t· ich <HH.l diverse 

trace - fossil asscmbl r1gc (Pemberton~~..!-. · , 197 7). 

The uppe r part. o f the sequence in Labrador consi sts of 

a comple x of arc haeocya thid-rich mo u nds , surrounded .:~nd int:er-

c:.:llaled with skeletal and/or oo liti c ca~careni_ tc s and l ime 

mudstone, U? to 20m ~hick (JC~mes and Fong, 19 7 6) ( F i g . 7) . 

These rocks are the subject of th is t hesi s . 

Traced eastwards into Newfound land , the pat ~,: h - reef comp -

lex o f t he Forteau Forma t ion g r ades into black potassium-rich 

shales (fiq 6) with mi nor limesto nes and silts tones (Jam E>s and 

Fonq , 197b). Th e biostrome comple x is prese n t in St. t·la rgare t s 

- 1 3 -



Fig. 7: Archaeocyathid- rich , lime- mud mounds and bedded 
calcareni tes of the biostrome complex , Forteau 
Formation, L ' Anse Amour . 
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ot St .. Joh n (Sc hucllcrt and DunU.Jr, \9 J~) . To the nort h (..1!\ 

Uell c I s l e (i,-Jilliarn!j <md S1evcns, l'J&<J ) and to the s o uth in 

1\ rllliH.' fl,ly (~:ch u che rt a.nd Du n\J a r, J 9]4), n o ,,n: h<-H.' Ocyatl~lds 

h<:~ vc t o d.l t c !J<!cr1 reported I r orn th e Fort c ,ul t' oJ-nl<ll i on , t.he 

sequen ce s beinq J ,ll"l.J C! y aryillcH:eous . 

Th e aqc o l the Forteau FonJO.al ion in Labrador lldS b ee n 

Jeterm i ned u~;inr; botf1 t.riloUitcs ilnJ .l r chacocyathid~;. Us 1ny 

of Fritz ( 1972) . The occurre nce o f ~d<JI1'U5 s p . .::tnd Uonni_il 

co l~1bcn sls suggests t hat the Fort.e.::tu Formo~tion fal ts into 

that 

Usin g arcllaeocyathids , the Forteau r o rmatinn is carrel,"! -

table with the Obrut chcv horizon 'of the Elanki."lO stage of t he 

.S ibcrt <l~l platform (Ro 2anov and Debrenne , 197 4). 

r\--.may De con cluded therefore-, usin(j both dates, that 

the Forte a u Fo rmation represents the topmos t Lower Cambr i an 

and makes the reefs amongst the youngest arch aeocya tt1id struct-

ures so far reco rded \J ames and Kobluk, 19 "/13). 

- 1~ -



~· 1 !!__~:.!_l____l_!_: - ~!!::'!~l~)_._'i__C•~l~ __ :!:_l_ ·~!i_~~~!Y~-" 

M~EAS St:L!::;CTt:O FOR DETAlLLD STUUY 

As a precursor to deta i led analysis of the b iostrome 

complex, reco nnrttssance mapping of the Llt-ed ' under study 

1-cveuled that sLruta overlyinq the widespn_; ild sll t ~tOtll'S 

and sha l es abo ve the rwer patch-reef se ';-ies, were either 

urchaeccyathid ·- _tich lime-·mudstone or oolitic cul c,neniLes 

(J.tn'.e s and Fonq, 19"16), Examinati on o f <1ll .1vail<~blc nut-

crops in sou t hern Labrador suggests that the se l~t.'o I i tho-

l ogies along with re spective associ.utcd 1 itllo l o <jies, com-

prise two distinct facies, herein called :' ( l) Bi o s t rome 

chapter 3) _ 

Lithcloqic variation betwe e n and within the two (de-

ies is such that ten urcas were s elected for Jetaj led 

study (Fig . 8) . rive o f these areas u r c . within the Bio-

strome Facies, four cire within the Oolite Fdcics, c1nd one 

area combines- both facies. Til ~ areas selected for detailed 

study are outlined below. The letter rcferst o tl:c position 

of the outcrop on the location map (Fig. 8). (1'1) Blanc 

~: This outcrop is the westernmost exposu re of the 

Biostrome F.ucies and consists of a good vcrtic,1l section 

which differs in lithofacies arrangement fr om the Pointe 

Amour peninsula. (B) Div~rsion Reef: This area, which in-

eludes the transition between the Biostrome Facies and the 

- 16 -
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north of L'/\rr se> au Cl <1ir. The cxposu rL' ~.; c~r c f uu11J ,.d<JJHJ 

a tr.:.~c Y. but .1re often covered , r,pvin<J incoruplctP S(: ctions. 

(C) ~ J_:;_lJI·S'y____B_e(_'.f : Thi s ext e>n sivc c l i tf exuns ur c , l oc:.lted 

to the n orth q f the m;tin r oad Uetwc e!l L 'l\n sc <~u C Ltir d nd 

Forteau, slt o ws the transiti on between the two faciL'S . 

(D) !~: This is the thickest, altho u<Jh p o orly e xp o s ed , 

s eC) uence 'Nithin t h e Oulil c Sand Fac ies .Htd occu rs in o ut-

crOj)S to t he sou th of the· main r o<ld lo t he wesl n f l'or t c .l\~ . 

"~ conplete 

vertical section through the 13iostt·ome Facies and e xtends 

lat e r ally for alr.10 5t J k111. (F ) !--~~~: Th i s is the only 

co.1stal c xp o:. r1r c o f the Hicsl r orr.c f',l,cics and is thL·ref o r e 

the on ly Inc.-It i o n wit h good beddinq pl arw e xposure . ( C) , 

;-;~hoonc~-~~£_: An a lmost complCte section o ccurs 111 iJ 

sequence i n which r od;s of both f ac ie s are present. (ll ) 

L'/10S£__~~: Al t h o ugh very poorly e x posed this is Lhe 

easternmost o u tcro p o f the Oolite S<1nd Facies tha t was s t ud-

ied. 

The strat igraphy and f acies relat ionshi!)S dr e dncument.ed 

in detai_l for each locality i n the Appendice s (A-ll) and arc 

discussed in the text. 

FlELD f>lLT!!OOS 

As the rocks under study constitute a b iost r omLll facies 

with great late r al variation, just as muc~ emphasis was p laced 

-16-
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vert i c ,JI !;Uc<'c ';';Jnn. Mo re o ft e n lli ,tn n <•l, l o~tt: l d l lit ho -

loqic chanqes sudden and as frt •qu •·rl t d S '.' v r ti c.\ 1 

cha n<Je:S . 

\\h en.• <lir 1 crop <~ ll <J\'Ied , p hoto- m< !S ili< · s '..t<· r •• t . t k t•Jt <;t 

observab le c l ose to U 1c outcrop . Scver .l l s m.tll -s c<~l v JHi i[JS 

i n cornplP X Abo ut 220 s arr,ple:-; 'Here c(> ] lcc l(.•d .t nd L tL-

elled fo r ld b()r a tor y cx·a~'- i nal~un . 

'l'ERH HWLOCY 

Due to the rn .:1n y tt:> r ms used to d o:.: scrilH' accumulat io ns of 

f o ss i l r ell\ .1)- n s , and thtc ofte!l mis l c.ldi_n q flr rnul t iplc dt.d-

in i. tions o f lhc i ndividua l terms, the f o ll o wincJ in i ef 

discu ss ion wirh defin i tions of t e r rn i no l u q y u!;(.•d Lhr o u q ll o u l 

this t hes is . In addition, new terms arc i ntrodu c ed where 

previous t e r~linoloqy is inadequate o r n o n-(•xiste!\l . 

The term biostrome hus sf' 'Jcral definiti ons the tJ£>0 · 

l ogical litera t ure ( see r e view in Nel son , J "'Jb2) . It i s used 

in thi s the s is t o describe a d. iver se suite of rocks, pred-

ominantly o rgan tc accumula tions which fo rm a s trJ ti cJruphi c 

' ent ity of consid e rabl e l ater a l extent, often measu r<lble in 

kilometres (cf. c umming, 19 32) . Se a-f l oor r elief w.::ts pres-

ent or absent tlut the unit probably d id not fnrm a wav e -

resistant struc ture. 

- 19 -



<l ccurnul.Jtior:, '"''l t h o r witho ut pri1nary de!~o~; iLional r el ief, 

but. i s not a sL r <J tirJr<~phic en tity Lu: ... cvu s r> il is SllrnHmdrd 

l;y r ock s o f d iff e rent litholoq y, .1nd has llln i t e ~! L !t:(':dl 

ex t.en t , me .J ~ i Uid!Jlc• 111 met r·es . /J iohcr-n: s dP nc; t fl,rJ :I ,, Wil V('· 

r esist<ml s tru cture (cf. Cloud, 1952) . 

II r eef is .Jn orqanic accumulation ,1nd docs f o rm ,1 w,lVC­

r csistc~nt ~; tru c t ure . r ts qeoi'Jet ry Cdn lA' expl ain e d us irHJ 

t he a d J ective• f o n ns o f the t(~nns bioherm and biost r om e t o 

qu.:tllfy t he word reef (cf. Nels o n, 1962). 

'""-e three most used lime s tone classificd t i ons (Folk, 

J9rJ'J; 1962; Uun h <Jm , 1962; Em bry and Klov .lrl, 197 \ i we re e ach , 

in their o ·.-m way tound to be inudC!quatc tn desc r 1bc Uw nJCks 

un d er· st udy. 

Embry ar1d Klovan (1971) recognised the inadcqutlcy <)f· 

both Folk's ,1nd Dunham's classif icati o ns rcqurdinq 'reel-

l i ke' uccumuluti on~ {sec discussion in Embry n nd Kl o v an , 197 1 ; 

p. 7])), but retained the useful grain--size d iscrimination of 

Folk ( 196 2 ), and t he textu r al classifi cntion of Ounhdm (1962) 

in tlle~r o·,..r n classification (Embry nnd Klov,ln, 1971 ; p . 734-737) 

whic h is widely used toda y (James, 197 8) . 

Us i ng Dunha m 's (1962) classification fer the a llocht hon ­

ous group n f r ocks (mudstone, wackes t one, p.:tckest o n c , and 

grainstone), Embry a n d Klovan introd u ced a new size fraction 

of particles la r ger than 2 . 0 nun and subsequ(i:ntly added two 

new names fo r rocks containing more than 10% of the greater 

\ 
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t ] ldl ! 2 . 0 tnlr' :-; 111 · fr<~cti<HI. T ile lW() r ock-

ui !> ]1,l. bl e o n te xtur <JL ll•nns , 1n k c epin<J wit h llunh.un, tnto, 

and rud r. t onc, •...rh ere t.h~.; l <~ryf' parti :::: le ~; df <' •; , •][ :-; upporlinq 

LmtJ_::;.' .-md Kl o V ."H'L a lso ~ubdiv ided ll w au t ••c: l tli Oti Ull S •Jr<Jdl1 i ' 

lntild ·ups into t hree distinct rock - types, the crlt<•r ia used 

be i nq l h e way i n which o rq ~m i sr:1s bound sf'd i men t . These 

rnc:ks tr <H~lc:;t o n e (•1 rya ni s ms co:1str t:c t inq it r i<Jid f r ,une-

i n q and b i ndin<J sediment), and )J ..:dfle s lr >lll' ( o r y,t n .isl~'~; .1ctinq 

b rlf flc s 3nd trappjng sediment). 

Problems ·• ri se v.'ith this class ifj crt t ion , however , whe n 

is appl icrl l<J the rocks undc !' st udy bc c oiUS (' it is o ft en 

difficult tn c]c,l.rly dt ffercnti.Ll l: be tween these th rt 'l' ro c k-

typt •s i n th e f ield. The interpretati on o f UafflC'Stor.c 

particularly <..lif fi cult and normal ly l·equi res e xce ll ent e xp -

osu re in three dimensions and c o nside r a bl e in t erpretation 

by the worker, as noted by t:mbry and Kl ov:m (1971 , p . 73 7 ). 

Fo r the purpose of t his s ludy , rt new n on-gene t i c ro c k ·· 

type is proposed; MOUtlDSTONt:. T!1i s is defined as ;::m 

ochthono us assemblage o f skeletons <.~ nr'l matrix sediment , com-

manly rr.udstonc, (bu t may a lso be ~o.·ackestmw or pdckcstone) 

which t ogether have ar. externa l yeometry o f il mo und, bios · 

trome , bioherm o r re ef. This rock- type has no genetic impl ica-

ti o ns and i s use d on l y to descr i be l ithologies of an au t hoc -

thonous n atu r e r,..·here t he proces s of sediment trapping is 

- 21-



Lh(• pr CJL' L'~~~; ,,f fr, rt '.l<lli o n is 10 doubt. t·\ull!Hist• mc llldj 

(_) therefo re include rocks that were for rncd IJy the l'ost mo r lvm 

J isinlcyr.! L icm -1nd s ul, sequcnt d L.T \IIIIUldt 1 •ll .t lf t !t <' nHt<i f 

Florida ('J'urrm>l and ~.;·,.,dnson, 1976), •.Jh lc l• is c1 pr<,ct·sc; n• lt 

considered by Lm!Jry .1nd Kloviln (1971) \·Jhcn t)H· \'r ucess 

of St~ d imc:nl .tccurnul.tlion is cleilr' rut , h(JW!:'Vt;J, rlivn t l\ (' 

class if ic. !l i<m o f !~n1bry .:md K.lovan ( l'J 7 ll ~s u~;ed 

Ci:!lcar(•nitc SdtHJ l!udics vary wtdcly in tlH•:r Sli•li>L'. 

morpt10loyies .:1re distinyuishec! (Fiq. 

( l) r.·: cd.:J.£~ This usually has 

') ). Tlwse morpho l ot~cs 

a f litt b dSC , t.<Jper u 1g 

fr~~ maxitnurn. thickness al one end to ;1 rni nimum thickness 

a n,d eventual dl.Silppe.Jrance at the other encl . T he contact 

with moundstone is interd igi tatory althouq h vcrticC11 in a 

broad sense. The calcarenite Inuy be horizont,l Lly UeJded or 

may drape o ff the moundstone; t angles of up t o 16 deg r ees . 

{2} ~: This is usually fla t -topped ilnd flat-based 

over much of its extent, but thins towards t!1e cont<K t with 

the moundstone. Lateral extent is in the order of tens of 

metres and tl')_e thickness generally le ss than 2 m . Contact· 

with the rr.oundstone may be horizontal or dr·apcd. {3) 

Tabular lens: This is usu.Jlly flat topped and flat - Uased 

and normally more than 1 m thick. It differs from a normctl 

lens in that the contact with moundst o ne is vertical ( al though 

- 2 2 . 
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(4) Sheet:: f\ thin bed that persists ove r several met res, 

und tapers out lateru lly . 

length of th e body is yrcc1ter t han tllC' t:1ick n..::. (L) 1_'~~1, 

where the hc1yht of the body is e~u,11 t o , 01 ~tel t.han' .. "' 

the thickness. 

As idc:-~tification of archacocy,lthic! L1xa is d i ffic\llt 

to ilchievc in the fielJ (Hill, 1972), emr' ll<~sis "''ls f-llacccl 

skele ta l m'lrpt10logy of the orlJdnisms, whi c h sl1nws c·tm -

siderable variatiOn. The basic, tmdi f fer·cntiatcJ archaeo -

cyathid ske le ton is a cup (Hil l, 1972), ,1nd where it is 

possible to sec the shape of the cup, u~cn the fo ll u...ring 

morphotypes are recognised ( riy, I 0) 

lOa), the cup has parallel sides thro·Jqh o ut the entire 

height, which is many times greatei- th.-m the dLln,etC[, it 

is ci r culilr in cro ss - sect i on ; nd may l.Jck an i ntet·v.tii.um. 

This form was later 'identified as either Ar c_ll~l~<;_..ya:"tl us 

at l anticus or !·1etaldetes simplinorous, (F. Debrenne, pers. 

comm., 1 97R ) . (2) Cone {Fig. lOb- c ) . This form is ess -

entially an inverted cone expandi ng vertic <llly from<~ basal 

.:::1pex. It is ci r cu lar in cross section . Two categories ,1rc 

recognised: narrow cones (Fig . lOb), where the angle of the 

sides of the cup from the hor i zontal is more than 45 de9rees 

- 24 -



l<il rrow con e 

f'lrchacocy<~t hu~ Jt l <i rll i cu s 

Wide cone d. Bowl 

Meta ldeti:'S profun du s Meta ltle t e '> p rof undu s 

Funnt>l 
Hetaldet es profundus 

f . Reti l ~m inifo r m 

Re t i l am i na amo u rensis 

F ig . 10: Sketch illustrating the d ifferent 
archaeoc yath id morphotypes, 
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o.nd 1.ddc cones l.fi g . JOe) , 'Hhere the anqlc is lcss1 th .:m 4~) 

degr~es. In the la tter category (althouqh very difficult 

to observe) , if there is no apex, then the ~orphotypc is 

a bmil (Fig . I Odl. If the apex o f tltc cone is elor;gatcd 

considerable distance with sides · p<~rullcl to one 

another, U1cn a funnel is recognised (Fig . IOc) . l\1 1 the 

arch,H!Oc~·alhids in U-.c category Lllcr iden t ified 

(3) !\~J::J}_~~ini fo r..!!_l (Fiy- . I Of). This nc·.-~ <Jrch.tcocyalh i d 

n1orphotypc .1nd genus , Hetilamina arnou r ens i ~ (Oebrennc and 

J-3mcs , in prep . ), r.: hich is dome-shaped to s!J(>ct-likc in form 

(see de~cripLion in Chapte r V: Pulcoccoloyy; .flrchaeocyath-

id ~) 

A n ew orycHJism , four;d in t he Lli osl r omc l·uc1cS, is of 

uncertuin zooloyical affinities but has been tentativeLy 

id enti fied as a primitive skeletal coelenterate . This organ -

ism is under- study by Kobluk and Sorauf (in prep . ) and 

for the purpose of this thesis it is refer red lo as a coel-

cnterLlte . 

Relative o.bundance of o rgan isms 1s given as follows: 

f..bsent, 0~ of rock volume ; Rare, 0-5~; Present , 5··10t ; 

(y 
Common , 10 -25 1. ; Abut~dant , 25-50%; Ve r y Abundant , more 

t han 501, . 
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i'L'I'k( lCRA!'IIY 

Samples fr om the two facies "''ere s!abbt•r! ,1nd ap;)roxitn-

atc l y 150 t.hi n -!'>ections were prepared from represent a tive 

portions of Lhe slab . The thin -sections WC'rc ~; t ain•:d with 

ll. liz Llrin Red-~ Cin e! po tassium ferricyi<ni~c to di fft~n•nl i.atl• 

between c.:~lcite a:1d dol omite. and tn dPtcrminL' Lhc dis tribu -

tirm of forr ous iron in the sumples (Di ck ~on, J g(,(l ; J),1vic;; 

and T ill , J9rJ8) . 

l:st.inwtt.•S of p e rccnlLlge o[ components ·.:ere made visu-

ally .:~s wus the approximution of the clcqree of sorlinq ( poor , 

_moderate, good), The grain size is st,lnclardized .JS foll ows: 

mud/mi cri t.e (less lh3n 4u), silt (4-100 u), fin e Sd!lt~ (100· 

250 u), medium sand (0 . 25-0 .Smrn) , cuarst:• sand (0 . 5-2 . 0 mm), 

granule (2-4 mm) , pebble (more th.ln 4 mml . 

Sediml!nt.Jry and biogen) r: structures ·.-.:ere noted in the 

field. i-:ost of t.. he biogenic structures (Uurr ows, etc:.) e~pp-

ear to be d u lomi~ ized (mottlet'l and arc referred to CIS bic-

turbation, t he percentage of which ·.:as estimated visue~lly. 

The majo r components can be divideU into skeletal anll 

non-skelet<~l categories. Skeletal components occur in 

various states of preservation , mos t of which arc character-

ist ic for each individual taxon , and are used, along wilh 

skeletal morphology, for petrographic identification. "Ech·· 

inodern plates, lri lobi te carapaces, ~___!__!-_crella cones , fora- J 
miniferd, calcareous algae (Renalcis, renalcid, and 

17-



~_::9ncll.J), n un··calcan:ous Drachicpods, d rld mos•_ dr e h-

,,ency<~thid skeletons have retained most o f tlleir originill 

skeletal structures and are identified by these al~ng with 

their char<Jctcristic morpho l ogies . Some ar cll .:~cocy<Jthid 

skeletons h<~ve undergone uggrading neomorphism :1nc: somet i mes 

dolomitization (sec Cha?ter I V, Diagenesis) bu t ure still 

recogn isilble b y th eir skeletal morphology. On the other 

ha!Jd, hyolithid cones and ca l ca reous br<~clii_ rmods (the maj-

o r ity of b ru c hi opods present) hLtvc cll l been leLtchcd a nd the 

voids later filled by a calcite cement . Identification of 

these components is more difficult in this c<ts£> and mor -

pho l ogy alone must be relied on . 

Non - skeletal components, because of the ir wide var -

iety of forms and hence tcrminolOSJy,on· de~;cril>cU b eta· .... . 

f.;ud matrix 

The original mud._sized matrix has nc.Jrly always bce"n 

neomorphosed lo microspar (up lo 25 u). Retict pal c hes 

of micrite (less than 4 u) arc rare ly seen, usua l ly in 

shelter cavities or between clumps of calcareous algae. 

Ooids are the most common non-skelet<I] component in 

t he Oolite Sand Facies but also occur in Oolitic C.Jlc<Jren-

ites of the Biostrome F'acies. They il re preserverl in a 

variety of ways inc luding; a radial··concenlric fub ri c, a 

pseudospar fabric, and a dolomite fabric. These fabrics a r e 

- 28 -
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descr ibed in deta il below (Chapter lV, Diagc-ncsls). 

In the rocks under study composile grains co nsist 

predominantly o f ooids and echinoderm plates . Th e y arc 

often an important consti ~nt in Oolitic Calcarenites of 

the Biostrome Facies and occur sporadically in the oo li. tic 

and oncolitic gr.Jbstones of the OolitC' s.lnd F'a.ciPS . They 

smaller in the oolitic gr<:~instoiles (750 u) and consist 

of 2 or- 3 ooi.ds embedded in micrite , bo~h in the in ters tices 

and around the milryin of the grain. They .:1 rc both i arger 

and more common in the oncolitic <:]rainstonc and the Oolitic 

Co1lca r enites of the Diostrome Facies . Some of the compon-

ent.s dCP trum:at.f>d ut the margins of the compos ite gra~n 

>..:hich is sutJsequcntly r immed with mi c rite. The composite 

grains commonly form the nuclei of the oncolites . Foll-

owing Lhc termi nology commonly used (Tiling, 1')5~; Purdy, 

1963; I·Jinland and Hathews, 1974; ), the composite gra1ns in 

the rocks under study are probably grCJ.pestoncs. 

The term peloid embraces all gr-ains constructed of 

aggregate of c;yptocrystalline carbonate , irrespective> 

of origin (1'-~cKce a nd Gutschick , 1969), thus avoiding genetic 

irnpli cati.ons. I t is thought however, that elongate ellip-

soidal peloids may represent fecal pellets (Bathurst, 1971 ), 

In this study, the only peloids, except for the occasional 

micr i tized ooid or skeleton, are very well - sorted , sma 1 1 
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{_1 30 x 85 u), e l ongated ellipsoids, suqycsting d conunon 

or ig in; prot.Jably fecal. 

Rarely, the pe l oids are r eplaced by a single calcite 

crystaL and commonly arc replaced b y do l ornitc , in the 

form o f either .J. single rhomb or several smaller r!1ombs 

(cf . ooids) . 

Oncolilcs, occurring only in the Oo litic S;~nd Facies , 

range in si z~ '" f rom 7 mm to a maximum o f 35 mm, and h.1vc a 

nuc leus which is either a single sk eletal fraymcnt 

compos'..te grain . The nuc l ei are then encrusted with tubules 

of the ~ l ue-grecn alga ~ alonr; with entrapped 

quartz gr.Jins anC: smal l s keletal fragments . The o ncol itcs 

are n o t deformed .Jnd have even , l.J.minae arbund the nucleus 

(type ss-e of Log;m , Rezak and Ginsburg , 1964). Th e y s how 

evidence of more than one period of g r owth with a maximum 

of th r ee being observed . 

Encrus tctl grains are defined in this study as qrLlins 

that a r e. coated on one side only by Girvanella. They 

make up mo re than 5% of the rock vol ume. 

Algal intraclasts 

The o nly observed intraclasts consist of ~irvanella 

tubules with microspar filling the inte r stices, and r ,,ni!C 

size from single filaments up to clasts 6 nun l ong . They 

vary in morpho l ogy from elongated c las ts wit h ragged margins 

and a high proportion of microspar, t o perfectly rounded 
/ 
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bcllls wi th Jesser arnounls of microspar. They differ from 

onco l ites in that they do not posses v nucleus . 

Quilrtz grains occu r only in the silt grLldc o.s. sub­

vng • lar to sub-rounded grainl'i makiny up lo SO';, o f s ome of 

the dolonlit ic siltstone, and occurring in small proportions 

throughout the sequence. 

-31-



LATI::ML OlSTRISUT ION OF F1\Cli::S 

Reconnnissance mapping of the study area reve,lled thilt 

the biost rome com p lex consis ts of two later,d ly equiv.:~lenl 

facies (see Fiq . 72, in pocket): II} Th e •·ui o strorrc Fa c i e s " 

consists n[ <l series o f archaeocyilthi d- ric:L, 1 ime-mud mounds 

and flan k ing skeleta l calcarenites. (2 ) r,n "Oolite Sand 

Facies" consi s t s o t a series of cro s s -bedded oo litic 

s t o ne s , mixed c o mp o nen t grai:1slones, d o\ oston c s , ,1nd ske\(~ -

tal calcare nites. 

Th.:~t the two Llcies are lateral equivalents with respect 
! 

to each other i s not in doubt. 1''-'ith the exception of . tr.e 

section of Schuo n!'r Cove (A?pcndix G) , a ll of the outcro ps 

ex dm ined i. n th e area consist of l j tliologics of clther the 

13iostrone Facie s or the Oolite Sand Facie s . The l r zms i tion 

bet~<.·een the t;..·o facies can be seen in the large cl iff out · 

crop ;:it Osprey Reef (l,pp e ndix C) where t he lil OStromc F.:tcic~ 

passes laterally into cross-bedded o o lites o f the Oo lite 

Silnd racies (see rig. 73, in pocket). A.t Diversion Reef 

{Appendix B), the Biost rome Fac i es passes n o rthwards into 

~~lterclla-rich oolites, burrowed oolites, dolostones , and 

calcare ni tes o: the Oolite Sand Facies. 'l" he only section 

where the two fi1cie s are :i.nterbeddcd is at Schooner Cove 

(Appendix G) where archaeocyathid-rich mounds of the Biostrome 

racies are in ter-bedded with oolitic and oncol itic grain stones 

of the Oolite Sand Facies . 
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lHUSTROHE Fi\C J ES 

Introduction 

The lliostrom!? Fncie~ is a complex assemblilqc o f litho·· 

l oy:ies be tween 1::. and 20m t hick, Ll1<11" ,, •.;~ide 

Using the clat.<l from mcas\Jred sectiuns it is possil.Jlc 

to subc.lividc the Bi ostrome Facies into severed distinct 

lithcloqical ehtitics . T he f ,1cie s is fi{t rli"vidcd into 

UNIT:;, ·...:hich defined as latera l ly cn"hti rwous stt:"·lla 

\)(; unded by sh,lrp upper e~nrl lowe r cont .lct.s . L<~ch unit m.:1y 

con t.Jir. d iverse I i. tllo log i es Uut os a ·,...rho lc i!O regarded cts 

a stratigraphic entity over <1 large arect ,1ncl can be used 

in local marping (but not reconnaissance napplny) . h'ithin 

each unit., Ll"::"!IOfli.ClE~i cdr\ be rccoqni.scd all(! defined ."ls 

d iscrete rr1ck ,1s scmblagcs tho.t an; L1t e r<ll cquivttlcnt.s to 

o ne an o ther within a unit . Each lithofacic~; me~y contain 

up to thr e e clisr"rcte .lithologies •Nhich il.rc noted in the 

desc r iption o f the lLthufaci es (see below). The vari ous 

lithounits ~re design.:-ltcd as f ollows:- the Biostrome f' tlcics 

is designated by un upper case B. Ec~eh uni t is lJi-..ren identi-

fy i :H:J upper case letters. Lithofoc:i.cs arc given numbers . 

Using this sehemc, the Biostrome Facies can be sub-

divided i nto five distinct units. I'Hthin e ac h o( these units, 

2 or 3 Lltera1ly ~~quivalent lith~f.Jc ics c'iln be rec o gni sed 

·.vhich may contain up to three discrete, litholog ies. 
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~;eper<ll i zcd Se cti on 

1\ qencrali zcrl vcr t jca l section o f the H i ust.rorr.c f' ,:)c ics 

is outlined here, and in Figure 11. This ts u s e d as a basis 

f o r de~cribir.g the v p rious lithoun i.ts. '!'llis section u; a syn ­

thes is of the measured sections dcscritJcd in i!p pe ndice!;, 1\ -H. 

The bilse of the Biostr ome Filc ies is \_akc n a s the first 

occur rence 0 f mo und s t on e or ske lel.ll co \c,l rcnile ovC' rl ying 

the si lts t oncs ond shales o f the open-shelf f acir'S . ln r·.o st 

cases, Do lomiti c ,~~oundstonc (BD- 1), v1ith l<~ tc r ztl 1 y equi\.:,t -

form the b<1 Sill unit. ShartJ latcrd l ccn t M:t s occur bcb;een 

arc~aeoc y.:tthicl mnunUs tone v;ith dolomit~ polis, dnd c a ! cJr -

c ni tc bodies . For cont ro.!fl, bla c k shales and s i l tsu,nes 

grade latera l ly int o bolh moundstones and c.:llc e~ rcr. i tP . ·~· l~i s 

unit is char,tcterizcd by the larqc do lomite p o i:Js, hy i ~fcr -
bedded shales , and by a faun a and fl o r.:1 o f relat i ve l y low 

densit y and diversity . 

The Do lomite Mound Uni t s tc r minZ~ t ccl by a thin but 

laterally extens ive shee t of skele ta l c~llcuccrllte ',Jh ich is 

over lain by the Reel 1-\ound Unit (BR). Th i.s u ni t consists c f 

archaeocyathid - rich Red !>16undstonc (BR-1) nnrl f lankinc: 

Ske l €-tal calca r e nite (13R-2). This unit. tliffers from the 

under l ying Do l omite nound Un i t by its r ed co Jour a nd .:t f a un a 

and flc;ra of very high density a nd diversity. 

T he Red Nound Unit grades upwards into the Nodular ... 
1-lound Un it _(BN) which consists or a bla ck to ddrk - grey 
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fig. 11: Generalized section of the Biostrome Filcies 
il lustr- at i ng t he division into fi ve units a nd five vari ous 
lit hofacie!;. 
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Nodular noundstone (BN-1 l ;.;ith wide-co ne arch,leocy o~t h ids 

and lateri:llly equ i valent Skeletal Calcarenites (UN-21. 

This unit is characterized by the nodular appeJr<lncc of 

the beds u.nd .l f.Hm .J. of low dens1ty ,,nd diversity . 

A sharp contZlct scp.-1r u lcs the Nodu l ar r~.ound t!n i t from 

the overlyinq oOlit e Bioherm Unit (BB), Ool i tic Calcarc r. -

ite (p,lckesU,ne to grainstone) is the dorninant litholoqy 

IU!)-1) but contained •.;it!1in the oolites arc ·small /\rcl~.:tco -

cyatllid !Jio:'lcrrns (Bij - 2) . 

T!1e Loprnos t unit seen in Labr<Hlor is the Crcy ~lound 

Unit (BG) , '....rhich overlies the Oolite Bioherm Un i t. 'fhis 

Unit consi:>ts cf (;rcy ~1c:;undst or.e (BG- 1 ) flanked by Skclet<:~l 

Calc.:J r cn it. es { fl(i - 3) , .1n d rare Siltstone {D (;-2) . lt is 

ch .;racterizGrJ Oy a grey colour, the abundance of CcllcarcDus 

algae, and Ute presence of stromatolites . 

Descr ip tio~ of Li.lhounits 

Five di5 tinc t units are recog'n i sed witlnn the Biostrome 

1-'<Jcies in southern Labrador . Within these five units t he 

two mos t comr:10n lithofacies 
( ll Mounds tune, and ( 2) 

Skelcl<ll Calcarenite . Siltstone and sha l e also occ·c~r i n 

some of the unit s but only in·minor .1!110\..!nls , rhe skeletal 

calcarenite lithofac ies nre ~imilur in composition throuqh-

o ut the f ive units so this lithof<Icies 
ricscribec! only once. 

On the other harid, the composition o: the moundstone varies 

,., 
greatly frorn unit to unil .,and these ~ifferences are h ighlighted 
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in the in(\i vidual descriptions . 

Lithofacies Skeletal Calcarenite: (BD-J, I.JR-2, 8N-2, 

The skeletal calcurenitc consists of .1 ·.-.dli.tc to light-

brown resistant "''ackestone to pil.ckes t nne (l·nm mo:1) t.o <Jr21i:l--

stone to arch ileocyath id fl?<Jtstonc with u p<~ckcstcmc m,ltrix 

{Fig . 12). The calc.:trcnitc is composed most.ly of ecl1i nm lenn 

debris with di s<~r t iculated, but unbroken, inart.icul,lte 

brachiopod shells, and to a lesser ext.ent t.rilobi t_e~ .1 ncl' 

hyolithids. L.1rqc ilrchaeocyathid fragments 

t 
Jacent to the rno undstones but are rare aw<1y f rom it. 

Pockets, up tc 2(} em thick , consist nlrno st entirely o l 

articu late lJr,lchiopod shells and e1rc n·loUvcly common. 

l-ind matr-ix c omprises from 0-35% of the rock volume. 

The calcarenites arc massively beddcC Cl!ld fo r thl' most 

part conta in no diagnostic physical sedim<:'ntary structures . 

f-linor cross-bedding occu rs adJacent to the mo unds where the 

calcarenites often dip off the moundstone ilt anqll's up t o 

15 degrees . The cross-bedd i ng always Uip!'l away (rom the 

motl nd. (Fi g . 25) . Other physical sedirnent,1ry structures 

are rare, occurring only locally r,.:here t hey .Jre generally 

restricted to one horizon (Ei.g. mega-r ipp le s ,1nd ri.{.>ple-

marks in t. h0 Dr>lornite t!ound unit at Fox Cove (Fi(_J. I ] and 

14) . Stylolites e~rc common throug hout. 
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Fig.l2: Bedding- plane exposure of skeletal calcarenite 
which flanks Dolomitic Moundstone (BD- 1) at Fox 
Cove. The small, white areas (bottom , right) are 
archaeocyathid fragments. 
Scale is 30 ern long. 

Fig . l3: Bedding-plane exposure of mega-ripples in skele­
tal calcarenite (BD- 2) at Fox Cove . 
Hammer is 25 ern long. 
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Fig.l4: Bedding-plane exposure of rippled skeletal cal­
carenite (BD-2) at Fox Cove. 
Scale is 30 em long. 

Fig.lS: Dolomitic Moundstone lithofacies (BD-1 ) at Fox 
Cove. A pod of dolomite (D) is surrounded by 
nodular moundstone . 
Notebook is 20 em long. 
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The skeletal calcarenite s occur in a varit•ty of yeorn­

~ries including wedges , tabular lenses, lenses, sheets and 

channels. 'i'hey also occu r a s small lensf's ·"'ithin severa l 

of the moundstone lithofacies . 

~nit DO: Dolomite ~lound 
This unit occurs in sections only on the Pointe Amour 

peninsula al L'Anse Amour , Fox Cove and Schooner Cove but 

is laterally pors i stent within the peninsula. I t is illso 

exposed in the cliff-section at St. t-larg<~ret's quarry 

'•Jestern Newfoundland . The rocks are c h <ya~terized by the 

presence of pods and small lenses of dolomit---k. 

Three laterrtlly equivalent lithofacies occu r within 

this u n it; archrtcocyathid moundstone characterized by larqc 

,pods emU small lenses of dolomite (DO-l), coarse skeletal 

calca r enite (BD · }), relatively minor occurrences o f (;lack 

shale (BD-21. 

Lithof_acies UD-1: Dolcmi tic Mounds tone 

This l ithofacies is a light-to durk-grey or green 

archaeocyathid rich moundstone with a mudstone (common) to 

packestone (rare) matrix and weathers grey to g r Pen to bro-wn 

with a pitted appearance . The skeletal frilction is dominated 

by archucocyathids, most of which are upr i ght. Other skele-

ta l components include t he coelenterate which is only lac-

ally abundanl and is often absent altogether . Subordinate 

skeletal components include inarticulate brachiopods and 

t ril obites . Detrital quartz silt is very commo n in th is 

lithofacies. 

- 4'1 -



Stylo lit es, often Jclinc<~!-Cd by dolmnil c ,arc r;rcval -

ent t hrou<Jhout t he moundstone giv i ng it a n od ulur ,lppcu r-

A very coarSely crys ta lline pink ca l c i te c ommonly 

fills vo i ds. 

Smal l (several ce nt i metres}, skelct<ll c<~lC<lrcni tc 

lenses contribute approximately 15 '1. by v o l ume to thl' I it ho -

facies and rnuy have orginally con t ributed mo r e <t S t hei r 

mao:-gins are CJlso :narkcd by stylolites . 

One of the di ~gnostic features of the [lolomiti.c­

~tound stone lithofacies is the occurrence o f l arqc (ten s of 

centimet r es) pods of fin ely c rys tall i ne durk - C]rccn to li g ht-

grey d o lorr.itc , which weatht:'r light to d,lrk Lrown and Uuff 

(f ig.I S) . The r eL.H . i vcl y ! urge pods or l enses atte~ln ,1 

i rr;um s~ ze o f 2 . 0 x l. "> m and every grad.J.t i on is sec> n in the 

geometry f roT"it a laterally expanded lens to Ct L1te ra!l y com -

pressed p od. The contac t with t he surrounclinq moun<lstone 

is always stylolitized and it is probLJ.bly because o f the 

intense development of sty l oUtcs _i n t11c mo undstonc .:~ nd 

absence of them in the dolomite thaL causes the moundstonc 

to have the ,1ppearance of bei.ng "wrapped ilr o und" the dolomite 

pods. Several pocls show, i n we a thered c ros s-section on l y, 

distinc t l<H7lin .ltio ns and evidence of organi c ,l~tiv i ty in the 

form of vertical a nd inc l incd . burrO'.NS (Fig.l6l. Skeletal 

particle s a re, however, rare as only o ne o r two upright ar c h -

aeocyathid cups were found along with the rare skeletal cal · 

carenite lenses . 
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Lithofacies B0-2: Black Shales 

This I ithofacies consists of fissile, black shales 

which grade laterally a·nd ver ically inlo fine siltstones 

with occasional small lens s of ske l etal calc.:trenite. The 

shales are ~of small latera e x tent passing laterall~·, 

a few metres, into both eletal calcarenite and moundstone. 

The contact be tween calcarenite and shale is t .ransitional 

through silts, but the contact between shales and mounds tone 

(seen only at Fox Covel shows the shales to be druping off 

the moundstone at angles up to 30 deg r ees . Small-scale rip­

ples rarely occur in the sha.les <..i.lnd both skeletL~l and ichno-

fauna arc absent . 

Lithofacies i:lD-3 : Skeleta l calcarenite 

Skeletal calcarenites in the Do l omite Mound Unit occur 

wedges of limited late ral extent, tabular lenses, and 

sheets, both extending for tens of metres. 

unit BR: Red t-lound 

This-wi despread unit occurs at Blanc Sablon, Osprey 

Reef, L'Anse llmour and Fox Cove and is dist inguished by it s 

red col o ur and high faunal and floral density t~nd diV('rsity. 

Although la te ral ly persistent, t he unit is often relatively 

thin dnd always variabJ.e, attaining substantial thickness 

(more t han 15 m) only at Osprey Reef. 

Two L\:lterally equivalent lithofacies dist ingui shab i.e 

within the unit: an archaeocyathid rich, red moundstone 

{BR-1); and laterally equivalent medium to coarse-grained 

calcarenite (BR-2). 
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Litho(ucics UR-1· Red /1o undstone 

This lithofacies is a red archaeocyuthid moundstone 

wit h a mudstone, to rarely packestone matrix containing 

minor detrital quartz silt ilnd skeletal llldt eri~l (up to 15 "' ). 

The rock weathers dark red to green, and has a distinctive 

nodulat- appearance because of jntense stylolitization (Fig. 

17) , No sedimentary structures are present. The skeletal 

corr.ponent is dominated by upright archaeocyat-.h ids, v•ith 

nar ro;./ cones predominating over stick for ms . Retilamini-

forms are common and wide 
Brachiopods an~ 

common but trilobites are 
The coeleriterate cccurs 

throughout und calcareous algae is abundant. A coarsely 

cry~talline pink calci t e commonly fills p rimary cavities. 

Abo ut 1 0~, of the lithofacies consists of small len ses 

of skeletal calcarenite which ar e always bounded by stylo-

lites. 

Lithofacies BR-2: Skeletal calcarenite 

Skeletal calcarenites occur in the Re ll Nound Unit as 

wedges of small extent, and a s a complex lithofacies mosa ic 

at Osprey Reef (see l\ppendix C a nd Fig. 73). 

Unit BN: Nodular HounrJ 

This unit is found only on the Pointe Amour peninsula 

at L'Anse Amour and rox Cove. It is distinguished by the 

w~ that it. weathers which gives it il nodular, rubbly, dark-

coloured, apparently feature l ess a ppearance; and by the 

relativety low density of archaeocyathids (Fig. 16). 
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Fig.16: Weathered exposure of a dolomite pod (in BD- 1 
at Fox Cove) showing laminations and burrows. 
Scale is in centimetres. 

Fig .17: Archaeocyathid- rich , nodular Red ~loundstone (BR-1) 
at Fox Cove. Scale is 30 ern long. 
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1\gcrin t·,.o laterully equiv<:~lcnt lithoL1c ics arc r ccoq -

nised within this unit; an archaeocyathid-bear i ng nodula r 

mounds tone, and a coarse-grained skeletu l calcC~.reni te. 

Lithofacies BN-1 : Nodular Hounds tone 

This lithofacies consist of black to d Z~r k- g rcy nOd-

ular mo undstone wi th a mudstone and quartz sil l (up to 1St ) 

matrix, and weathers dark brown to black with a rubbly ilpp­

Skeletal elements include rare to common, up-

right o r t o ppled archaeocy.:Jtpi_ds with funnel sllu pcs more 

common than stick form s or cones . Subordin.::~ te fauna con-

sists of unbroken, disarticulated inarticuliJte brachiopods, 

rare coelenteratesand Girvanella, and skelctul debr is. Tl,c 

bedding is nodulilr bcc.:luse of the profu!'lion of styllolitcs. 

Skeletal c alcarenite lenses with in the moun<.lstone 

c omprise between 10··50% o f the volume of the rock and a green 

to black lime-shale comprises approximately 5 7 of the tota l 

volume . 

Lithofacies BN-2: Skeleta l Cal~ 

Skelet<:~l calcarenite occurs only a s wedges with a m.:Jx-

imum latera l extent of 20 m. 

unit BB: Oolite Biohern; 

This uni t 
only in sections measur ed on the 

Poirite Amour peni.nsula · at L ' Anse Amour, rox cave, and Schooner 

cove. Th ree lithofacies are recognised, <:~n archaeocyathid 

moundstone with a mudstone matrix forminf} small bioherms 

(BB-2), oolitic calcarenite (packestone-s-grainstones) (BB-ll, 
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vnd skclct.:.l c alcarenite nm- 3). The unit .l s distin q uishcd 

by the presence of oo l itic grainstones, the dominance o f 

calcctrenite over moundstonc, and tl".e occurrence of mound -

stone in small, discrete bioherms. 

Lithofacies DU-1· Oolitic Calcaren i te 

Thl.s litho facies consists of u. diversC> suite of oolitic 

packcstones vnd grainstones (Fig . 18). The lithofilcics 

includes clc<tn oolitic g rainstoncs; a COifiJT, U~l occurrence 
. ' 

of oo liti c p,td;cstoncs (15~ mud mctlrix) '\it.h irreg u l -

arly coated oo i d'>, grapestones , oolit i c.-:~lly coated grains, 

and local developments of skeletal st r omatol ites; a very 

coarse··g raincd skeletal oolitic grainstone where o oids 

occur with br itchiopo'ds , trilobites, occdsi.on.tl .:~rch,co-

cyathf d cups und ~u l tcrcl l a c o n e s. 

The size of the ooids varies gre.Jtly and fining up-

wards sequences occur, reflected in both the size of the 

ooids and tl'.e pr o portion of ske letul materia 1. No other 

sedimentary structures occur ulthough sh.Jrp c ontacts wi th-

in the seque n ce are common . Selective dolomitization of 

ooids occurs and stylol i tes are present. 

Lithofacies IHl-2: ,.Archaeocyathid Bi o herms 

Red to grey to green archaeocyathid mo unrls tone bio-

hcrms with a mmlslone to packestone matrix occur locally 

throughout the unit. The biohe rms have a flu~,----tn- .Slightly 

convex base and s"rongly convex at the to\ The maximum 

thickness is at the centre of the structure and\tapers ~way 

\ 
l 
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en ~olh Sides until -the str·uc t ure pinclJcs oul illloyL•lhcr . 

The contact "''ith the oolites is interdigitatorv . No scdi -

mentary structures are observe~. Rctila:nir.iform 2l r chaco­

cyathids arc •lhundant ut the b<J~c occu rri nq with c,? J car-

cous ulgae but arc replaced upwards by n ,lr rnL~ conb .Jrchdco·· 

cyathids ·..,rilh thick ~>.'a i ls, dnd ~ticks. 11<~chiopods, 

trilobite s <Jnd culcareous algae arc present . .S%clctal . 
debris furrns up to 201, by volume of th e ~l<ltt·ix . Stylo· 

,]_ i tes arc present . 

Lithof.1c ics B0-3 -: Skclct.ll Calcarcnits:_ 

Skeletal calcaren ite s in the Oo lite Bioherm L'nit occur 

latcrdl l y impcrsistent lenses e xtending lcltcr ;tl1y fnr 

up to lcnr; of me tres. 

Unit IJG: Grey ~\ound 

This unit occurs in sect.io ns measured at lll<1nc S.:Jblon, 

L'Anse 1\rnour and Fox Cove, '-lhlre it forn1s the hic!hest beds 

It distinguished by u predomincnllJ: light-to 

dark - grey colour , the abund<Jnc'3 of calcareous Ult:fde,, and 

the occu rrence of non-skeletal and skclet ,ll stromatolites . 

Compared with o ther units it is rel at i~cly poorly exposed 

so the lateral ~xten t and equivdlent rock-types ,1rc poorly 

known . Three laterally equivalent lithof<~cics r:.ln bf' rec -

pqniscd, however, an algul/.Jrch.:wocyathid grey mounds tone 

(BG-1), medium to coarse-grained skelet,ll calcilrcn it c (BG-3), 

and calcareous siltstone (BG-2). 
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Lithof<Jcies BG - l: Grey ~!ound!>to~c 

T his alg<ll-archacocyathid mound!>tone is ligb.t-grey in 

colour and has a mudstone matrix , containinq up to JO~ 

quar t z silt , and weat hers li<]ht-to dark ·-grcy '"' ith <.1 pitted 

.su r face {Fig. 19). Bedding and et he r sedimentary structures 

are ab s ent . t"lrcha.cocyathids are rare to ab~:~dant, both 

upright and overturned, und a r e gene r ally_smal l e r in size 

t han in other units . Cones, stick-forms, and n~LiLnn in i -

f orms arc present . Bruchiopod s arc present , Cillcarcous algae 

and Loth skeletal (Girvanella) and non:skelctal stromo.to-

lites are widespredd. Stylolites, illthough presen t , 

not as common as in lbe o ther un i ts. 

This lilhofacies cons is t s of a fine-qr,1incd, s li g l1 tly· 

calcareous siltstone which occurs only al the base of the 

un it in one outcrop, as the L:lteral equ ivalent to Lhe ske l e -

tal ca l carenite and i n t ur n lhe moundstone . The contact 

bct'w·een the silt <~nd the calcarenite is transitional, one 

g rading into the other over a sho r t distance (less them l 0 ml . 

The sil tstone is lam inated and shows ripple-l aminations 

well as interference ripple-marks. No skeletal fauna is ob-

se r ved but there i s a profuse ichnofauna wi th wel l p reserved 

b urrows, tracks and t rai l s . Thi s siltstone is very similar 

to that found i n the open-shelf facies underlying the bio-

str.ome complex. 

Lithofacies BG- 3: Skeletal Calcarenite 

The skclet<J l calca renite of the Grey Mo und Un i t occurs 
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Fig.18: Cliff- section of Nodular Moundstone (BN-1) over­
lain sharply by bedded Oolitic Calcarenites (BB-1) 
at Fox Cove. 

Fig.19: Cliff- section exposure of Grey Moundstone (BG- 1) 
and flanking skeletal calcarenites (BG- 2) at 
Blanc Sablon . Range pole is graduated in 20 ern 
increments . 
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u s sm.:1ll "Hedge s , t.:<bular len s e s , and as a ch,lnncl-likc 

structure at Dlanc Sablan which is des(:ribed i:-o deta .i l 

Appendix A. 

UOLlTE !:;AND 1-ACIJ:;S: Dl::SCHTPTION OF LITII OLOGlC:S 

Tn C (mtr.:~ s t t o the Btostromc Facies, t he Oolite Sand 

Facies is ve ry poorly exposed and in onlr three .:1reM; 

sec ti o11,s be M(',lS\l r e (] (~;ec Appendice s C, D, H). Us in<! t he 

data from these sections , augmented by pctrO(JrCtphic .:~n ,lly-

s~s , a totil] of seven lit(10loyies can be recognised; (I) 

Skeletal grainstone, (2} Oolitic grainstone, (3) ~lixcd 

ooliti c grainstone , (4) Hi xed pelo i d packcstonc, ( 5 ) 

tlixcd o ncolitic grninst o ne, (fi) lnu-,-~ c las t o:Jr Lnnstone, 

( 7 ) Dolost n nc-do l omi .. tic siltstone . 

Lithcl ogics arc n<Jmed using the most ilbundant cornp -

anent, and depo.si t.i o.nal_ texture (af ter Cunham, l'J 62; Embry 

and Klovan, 1971) but other featu r es were also t,·tkP.Il ,_i nlo 

account in their description, e.g. so rt ing, grili n si.'/, and 

physica.l and biogenic structures. The lithologic::; 

marizcd in Tab l e 1 ar.d are descrihe!i below. 

Lithologic:> 

';'he skeleta l grr~i n stones are poorly to moderatel y sorted 

ilnd range in SJ-:>:e from silt through to granule grade . The 

skeletal c omponents, in orde r of decreasing importance are; 

ech i noderm pl<~tes, Sdltere lla cones, tri lobite cilrapaces, 
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llyulitllid o.hclls, br.:.~ ch i opod sJu~ll s , i!nd tut.H.iles of tllt• 

blue-green .1lque Gi rvane lla . Less tha n I "d. of Lhe c om-

poncnts ar e non-skeletal allocher:1s; ooids , peloids, quartz 

silt, and encrus ted gra .ins. '!'he sedi tnents ,lrt) yen(•raily 

bioLurbated with dolom ite mottle occupyiny up Lo 20 ~ of t he 

rock. This calcarc!litc differs from t.hc skclctill culcaren-

ite of the Bi uslrome l'acies in that it is bioturbated, ofter. 

con t ains S~_!_l~!.!:'-~ cones, encrusted yr .1in s, <~wider variety 

of allochems, an.d contains no mud fraction. 

( 2 l. Oo l it;ic gra~~tone 

The oolite grainstones are well - sorted and consist pre-

d ominant 1 y of course, sand-grade ooids I U!-J to 90~ of 

component s), minor amounts cf skeletal components, 

quartz silt,' ;md composite groins. In some s;unpl('s skeletal 

components , m<!inly echinoderm pldtes, t rilobites, and Sal.~-

erel~, make up to 20% of the total components . Planar cro ss-

bed(.ling is comrnon (fig . 20), 

(3) . Hixed oolit~c grainstone 

The mixed oolitic grainstone is a modera tely sorted , 

medium to coarse-grained, sand-siz e grainstone conslstinf] 

mainly of ooids (40-80%), but with lartJe proportions of 

other componc.nts, .in Lhis case peloids a nd skeletal materio.l 

(echinoderms, trilobites, and brachiopods) . 

( 4) . Nixed peloid packestone 

Th~ mixed peloid packestonc. is a poor to moderately 

sorted {mud to granu le -size grade) packestone with peloids 

forming the ma i n component (40't), but with a large skeletal 
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Fig.20: Cross- bedded oolitic calcarenites of the Oolite 
Sand Facies , Osprey Reef . 
Scale is 30 ern long . 

Fig. 2 l :Photornicrograph (plane light) of the mixed oncolite 
grainstone lithology showing two large oncolites 
(one with three periods of growth) in a grainstone 
matrix of ooids , peloids , echinoderm plates and 
other skeletal material . 
Scale bar is 5 rnrn. 
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c o ntent (40%) a t ~~tercll~ cones, cchinodcnn plutcs, Lrilu-

bites, hyolithids and Girvanclla. About 10% of t he rock 

consists of dolomitic mottling (probably bioturbation) . 

(5). ~iixcd u nc o l itic grainstone 

The mixed oncolitic grainstone is a poorly sorted, 

silt to pebble gr<lin-sizc grainstone compo:acd of Cir·vanclla 

oncolites, ·,...ith lesser, but signific.:tnt proportions of 

ooids , peloids, quartz silt, and composit e g ruins (rig. 21) 

Skeletal components include Salterelld, ccltinoder1ns, hyo -

lithids , and trilobites. Up to 20% of the rock--volume is 

dolomite mottling {bioturbation), 

(6). Int raclast grainsL:me 

The int. r uc.li1st grainstone is a poorly sorted , silt to 

pebble grade yr.1 in~tonc consisting almost entirely o f algal ( 

intracl<lsts, either as rounded balls or as elongated clasts 

with ragged edges {Fig. 22), The intraclasts consist of 

Girvanella tubules . with no apparent nucl ei. Skeletal 

(unidentif ied) grains encrus ted with Q!_rvan~ contribute 

less than 5%. One-third of the rock-volume cons ists of 

very coarse spar which f ills in the primary porosi.ty, and 

geopclal microspar. 

(7). Dolostone- dolomitic siltstone 

This lithology ranges from 100% crystalline dolomite 

with a very sucrosic texture, to a dolomitic siltstone con-

sisting of 50% crystalline dolomite and 50~ detrital quartz 

silt. Skeletal components occur sporadically but are always 
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Fig.22: Photomicrograph (plane light) of the 
intraclast grainstone lithology show­
ing both rounded and elongate, ragged 
clasts, both consisting entirely of 
Girvanella tubules. Note geopetal 
sediment (arrowed) above ragged clast 
and the abundance of pore-fill cement. 
Scale bar is 0.45 mm. 
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p.J.rtia l ly dolmn i tiLed . ScUimcnt<~ry s t ructur (' s .in c l.ur!t' 

horizontal, para -llel., and ripple lamination . /\bout l Ot of 

the rock i s bioturU.:1ted. 

D I SCUSS LON 

Cor r eldt iun 

GeolO(JiC mapping of the area studied indicates th.J. t 

the Oiostrorr,c Facies and the Oolite Sand Facies arc lateral 

equivalents and represent two completely different scdimcn--

t.::ary regimes ,.-hich occurred simultaneously al the time of 

deposition (see Fig. 72, in pocket). Contilct.s bRtwecn the 

two fncic~ a r c e ither abrupt and can be ,..alkcd out alon(_J 

strike (r~ s at Ospr·e y Reef , Appendix C; Clnd'Oivcrsion Reef, 

Append i x B) o r are in t er-digitatory (a5 at Schooner Cove , 

Appendix G) wi t h rocks characlerislic of euch fi.lcie..s alterna· 

ting in a vertical sequence. ln other measured sect ions, 

using the top of the open-shelf facies as a c\aturn , the seg-

consist wholl~- of either the Biostrom~ Facies or the 

Oolite Sand Facies . \~ 
1-Hthin each facies l~thologic correlati. o n is extremely 

difficult due to the lateral vdriation of 1 ithofacies and 

lithologies . This i s exemplif i ed in the Oolite Sand Facies 

at Divers ion Heef (P.ppendix B ) where incomplete exposure 

and lateral variation of lithologies make correlation impos -

sible. Such variation ind i cates that rapid lateral chanyes 

in environmental conditions occurred in the sedimentary rc-· 

gime al the time of deposition. It has been established , 
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howe ver, t h <ll the Oolite Sand Fac i e-s c o ns i sts of S L' Vcn 

distinct. but yradat i onal litholiqies , each c ha racteristi c 

oc' -the environment i n which it was deposited s o the gen­

eral pict~re o f the sed imentary e1~onment c an be ~ormu­
ly.tcd. Differe nces between thr_• fi~ u n i t s o f the B1 o stromc 

facies are> real , a l thoug h slight, bu t could be used fur 

de tailed map p ing o nly bec~:f t he rap id la t era l c h a n ges . 

1111 t he un its are s imilar in ter~ of t e xture (t hey arc all 

moundsto ncs) , mu s t. have id~ntical f l ankinq skeletal c a l -

c arenites, and a l l contain archaeoc yat_h i d s . The m<Jjor 

difference~ b e tween the units arc c olou r o f sediment, den -

sity & divers i t y o f orqanisms, morpho l o gies o f archaeo-

c~·athids, a nd dive r s ity of c alc areo us a lqac . 

The !Jo l om iti...: Mounds t ont:! (BO-l l i s charuc t criz c d by 

t he presence o f dol omite pods at ce rtain l ocaliti es . The..:e 

i.s a relatively "low dens ity and dive rsity of o rgani s ms while 

ca lea reous a l~ae is abscn t. 

The Red Moundstone lithofacies ( BR- 1) d iffers greatly 

from the Dolo mitic Moundstone by be i ng r ed i n c o lour, having 

the hi yhcst d ensity and diversity of organ isms, and c ontain-

ing abundant calc areous algae. 

The No dular Mounds tone lithofac i es (BN - I l if> v e ry stmi -

lar t o the. Do lomi t i c Moundstepe b ut hil s mor e shales ilnd ~ 

lower density and diversity of organi sms. 

· The Grey Mo undstone lithofacies (BG-l) is character-

ized by its grey colour and by the abundance of calcareous 

algae and both ske l e t al and non - skeleta l stromatolites . 
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The 1\rch<H_:ocyathid Bioherm lithofacies (BB-2\ is 

ternally similar to the Red Mounds tone but differs by form­

li1<J discrete bioherms within Oolitic Calcarenites (BB- 1 ) . 

On a broad scale, the five units were probably dep o sited 

simi \ dr environment with sliqh.t di f ferences i n param­

e ters (depth, light, energy, etc.) producinq the character-

istic features of the un i ts. 

The units within the Biostrome Faci e s can be correla t ed 

loc ally on the Pointe Amour peninsula between L ' Anse Amour, 

Fox Co ve, and to a certain extent Schooner Cove . This qivcs 

indication of .,the true biostromal nature of the facies. 

On a l arger scale, however, lateral variation of measured 

secti o ns prevents precise correlation, but laking the top 

of the o pen - shelf facies as a datum, it is c o nsidered that 

the sect i ons are contemporaneous . 

The la t eral distribution of the Red Mound Unit (BR), 

the most 1Nidespread of the five units, illustrates the 

problems of correlation and emphasizes the lateral varia-

tion within the Biostrome Facies. At Blanc Sablan (Appendix 

A) , Red Moundstone is only·l.30 m thick and is both under­

la i n and overlain by rocks of the Grey Mound Unit (BG). 

About 8 km to the east at Osprey Reef (Appendix C), the Red 

Mound Unit exceeds 15 rn in thickness and occurs in lateral 

contact with the Oolite Sand Facies. A furt.her 10 km to 

the ectst the Red 1-'oundstone is 2. 30 m thick at Fox cove 

(Appendix F) where it is underlain by Dolomitic .Moundstone 
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(BLJ- L) and over lain by Nodular Mu~ndstunc (!IN- L I. l,c~;:; 

than 5 km to the north-east at Schc~oner Cove , h owever, 

the Red Mound Unit docs not occur at all, possibly repl<tccd 

by rocks of the Oolite Sand Facies . 

Other units; the Dolomite Mound (l.ID), Nodular 1-\ound 

{ON), und Oolite ~i oherm (BB ) , are restricted to, !Jut laLer-

1 ally persistent within, the Pointe llmour pcni.nsula. Most 

of lhe section at Blanc Sablan consists of rocks o f the 

Grey Mound Unil . This unit is only seen at the . top of the . 
sec ti on at Fox Co ve and L'/\nse Amour- and is inter-bedded 

between oolitic calcarenites at Schooner Cove. This fur ther 

illustrates the difficulty of both locr~l and lartje sca le 

c arrclilt i o n 'H ithin the Biostrome Facies. 

Denosi ti oni<>l Environment of the Oolite Sand facies 

t:ach of the seven 1.i thologies documented in the Oolite 

Sand Facies have diagnostic features which are used to form-

tJlate an appropriate environment of depos i tion. The litho-

logies described earlier are discussed in turn below. 

( l) Skeletal grai n stone 

The grainstdne texture of this li tholOCJY and the worn 

and often broken nature of t .hP. components suqqcsts an en-

vironment of cons tant wave or current action where muci i~ 

removed by y,;innowing (Wilson, 1975). The skeletal content 

of the calcaren ites suggests a shallow, sub-tidal origin o£ 

the components (Heckel , 1972). S uc h sediments are accurnula -

ting today in the Persian Gulf and the Bahamas in a position 
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sc<..~Wi1 rJ o ( ucoll ll• tidal sho,1ls (l leck c•l , Jll'/2 ; l' u:~;.__· r, l'' il ; 

N, J<J.meti , pers , t.:omm . ) . The str.iti<Jril!Jh il: occurrence o ( 

tiH.' s kclt-tal yrains tone wi th ool i t es in the l·ocks u nder 

study wo ul d suppo rt .1 shallow, ·;ub- tid,l \, .:nJi l..:~tc•d L'nvi r o n -

ment seawa r d o f .;~n ool i tc s.:Jnd s hoa I. 

(2) Uo l ilH; <Jr.:.inslonc 

By comp<Hiso n with mo dern occu , rcnc<.•s o f well -fo rme d 

(uniformly co;1 tcdl oo ids , the bo litic ' Jl"·l in s t o n <'s <~rc 

in terpreted t o have f o rmed i n well - <..~ <Jil;.dlPd in t o•L-r i du l 

o r Sh ... dlo w sub- t idal e n vironments (13.Jthurst, 19 '1 1) . 'l'hc 

of hc r rinq - b.on e cross - bedding .1t Osprey Hccf 

(Append ix C) indi c ates current r eversal a nd infers 

inter - l i Jal u d qin ( Reineck and Sin9h, Jq7SJ tdt.houq h rneM.:-

u r emcnt o f c ur rent clircct .iun from .Jll t·r oss-Uc ds at Osprey 

l<ecf indicates a polymodal direction t Fi q . LJJ . Thl:! oo l-

i t "i c rJrains tones ..Jre con s idC!re d, t he refo r e , to h .1 ve f ormed 

i n i nter-ticl.:ll o r shal l o w sub-tidal , hi <Jh encnJy oolite 

tidal shoals , similar to environmen t s described from the 

Bahamas (Bal'l, l 9h7 ; Bathurs t , 197 1 ) and the Per-s i un Gu lf 

(Lareau and Purser, 19 73) . 

( 3) Mixe d ooli tic grainstone and ( ~ ) ~.!._x_c9_~~ 

packeslo nc 

No sedimentary st ructures were observed i n either of 

these l i thol lHJ ies so a n alogy wi t h mode rn env ironments mus t 

be r elied o n to interp r et the depositi ona l en v i r:-onment. 

Skeletal, peloid c alca r e nites arc accumulati n g in inter - tidal 
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Fig. 23: Rose di<'gram of inferred pztleocurrent 

direc tions from cross - bedded ' oolitcs, 

Oso~ey Reef. 
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of the Persi<ll1 Gul f (Loreau,.and Purse r, 1971; Purs t•r e~ n d 

t:v.Jns, 1 '1"7 3) . l\s t\u;'r c is n o i••tll ca tiol: of i.J~ 1 PI- t id<Ll 

structu r es .lrFl the s k c l. eta l compoL Lenl :; :; ,r qqc•st. d suli-t i d;1l 

origin , t. \H_' sha ll ow , prote c ted s u b-Lid,l l cnviL"OLLHLl ·nt. behind 

an oolite shcul i:; preferred. The mixed uo liti c qr<tin:~lonc 

can be cunside r cd y r adution<:~1 \.Ji.lh the mixed J>vlu i ,! qr.:lin-

s t o n e u nd f ormed i n a simila r cnvironmqa t al t h ou<Jh l" l u,;c•r 

to the actual suun.:c of oo i ds. 

(5) Mi xed 0nco li t i c grai nston(' 

Di <HJnostic com~oncn ts i n this li.tholoqy .:tr c composite 

grains (<JrO JH'Sto n cl , und oncolitl'S . Grc~pc' ston t>s occ ur in 

of uneven ~~u-bu l encc (a l tcrna l in'l i nt t'rv.tls cf ccr.LL, ol-

at ion a n d 3lJilationl , low sedi)TlCn la tion r· ,llc~·. and !li<J!l ·w;) LC' r 

c t' rculation rates (Winland a nd Mathews, 107 4 ) . Oncolit 8 s 

form i n avariet.yofenvironmen ts , some favourinq hiqh - cner<:Jy 

and cont inu;d mot i on {Ginsburq , 1960;- J,...o<Jdr\ ':::'___!.,:_ ,~l· , 106 4), 

shallow.,-w.:-~ter and moderately hi gh -cnen;y (Wil!;on , !97'1) . 

They are al so found in shelte r ed, inter-tidal a r eas ;m d in 

stabl e sand channels between. mobile ool Jt.e shfMIS (DCJ.thu r st , 

1971 ) . l\s sev e ral of th e o n colitcs show p eriodic growth , 

with grapes tones forming the nuclei, a hiqh-cncrqy, conlinual 

motion en viron me nt is not f a voured. ll sh<~llo,.,, sub- Lidal, 

medium-h i gh ene r gy environment wi th slow deposition and 

fluct ua t ing turbulence is favoured. This ~enviionment muy 
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""'"' in st_,llJ IP s.oHl channels be t ween ouli \ (• ~;ho,ll~; (ll<~Lh-

urst, 1971), 

The fraqmen t c d (raqged) to rounded nLllllJ:e of the> 

from a nca r-by source, !JI:Obab ly an alq<1\ (~;:~~~ella} mut , 

and redeposited . The derJree of r o un.dr'J ess may r ef lect 

different len<!Lhs of time in the transpor t Jl•yim<' . The 

qeopct<~l mictospar muy have been becondari ly int rod uced 

{vadose silt?) i-lS it occurs i n leached skcll•Lons no"f filled· 

'Nith cement , implyi nq that the skeleton WLlS lcac t'.ed befor'e 

de posit ion of the silt. 1'he intr cJC lJsl qrainstonc 111ay 

therefore, be a s t orm deposit, formed in un c nvironmt•nt 

usually abovt• sca-1evcl and only submcr(:cd durinq st.on\ 

ftoadin(_J. The rapid deposition would ex~ lai n why all of 

I 
the clasts not rounded in what would appear to· b e a hi<:Jil 

energy deposit (<~.grainstone texture). 

(7) q_olos t.one- dolomitic siltstone 

The envir-onment of deposition of this lithology is 

also not clear . The of dolost o ncs .in a L.1 c ics 

which is, for the greater part , unrlolomilized may suggest 

that dolomitization was early, !'ossibly penecontemporaneous 

with deposition. Recent penecontemporaneous dolomite is 

recorded fro:n the supratidal environment, fo r ming inches 

above the high-tide level (Shinn ~ ~· , 1965) . The dolo -

stones under study are , for the most part, structureless but 
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lar, being for the most part structun:-lesswith o c~c.1s.iona l 

lc~mina tions , burrows , .:md muU c-- d cks , {.Shinn~:.!._~., 1'-l h"J) . 

No mud ct-acks were ohsflrvcd in the dolosloncs but this 

have b e en due t o the badly we<~liH• reJ nalurr_· of t lw uu tc ro[' . 

The dolostones arc considered, thL·rc forc, t<) h . l V C' f o r med 

in a dorni 11.1nt ly supra-t i dal environmen t wliL.·ll w.J • ; p•Iiud-

ic<llly submerged (during sLo rms?l to acco!lll110d<ltL' t11e quartz 

silt, and vr oducc rare ripple 'Ll mi~ a t iuns. 

The seven 1 i tholoq ics . de.scr.ibed and dLsc u ~; ;cd ca n al l 

be attributed to f o rmat i ~ within e~n' oolit-(• shod\ c:omplex, 

and can !;c compared to modern duy environn·cnts, ) .. J.1 rl~ it · ufur l y. 

in the Persian Gulf (Loreau <~nd P urse r, t l) 7J ; Purser and 

Evuns 19 73) _ Luck of o u tc r op prevents dctai led di sc u ss i on 

of the geometry of the oolite sho...1l a:Jthouqh a qcn e rul model 

be presented. 

Cross-bedded oolit ic qrai'nstones fur~e d wnlpr optimum, 

high-energy cond iti ons for ooid qrowth, prob,_;bly in the 

in~- er - tidal or shallow sub-tidal environments. In between 

individual shoals, mixed oncolitc grainstone .1ccumulutcd 

slow 1 y in stable sand char;ne ls , The ooJ i te shoals built up 

suffic ien tly to becOme emerged above the hiqh - liCt.~ leVP l 

wher e supt·u-tidal dolomite formati o n occurrc;_d. This e nvir­

onment, on the crest of the shoals, was p eri od i c ally inundated 

by storm floods, p ossibly also producing the intraclast 

grainstone. Wi nnowed, ske l etal grai ftstones occurred seaward 
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6f the oolite shoal in a medi'urr.- energy, shullow,. sub-

tidal envi ronment, where a wide variety of organisms fl ou r-

ished in well-aerated wa t ers. In quieter areas, behind the 

oolite shoa ls t he mixed oolitic grainstories and mixed pel-

aid packe~E!~ccumulated as ool itC Ghoal spillover with 

mixed ool itic gr}instones occurring closer to the shoal. 

Oeposition~l Environment cf Lhe Biostrome Faci es 

Essentlally , two major lithofacie!:i occur witb.in the 

Biostrome Facies; skeletal calcarenite, and moundstone. 

Variation is considerable within the mounds tone> but the 

calcarenites Whi ch flank the mounds are essentially the 

same and ~ndic')te that the variation in , environmental para­

!lleLer s whtch c.bn trolled the distr ibut ion of organ isms which 

contribute sediment to the calcarenite lithofacies was not 

great. 

Diagnostic charact.eristics of a pnrticular deposi tiona 1 

env ironment are lacking in the calcarent i es . They probably 

formed under sub-tidal conditions , almost certainly quiet -

wat~r a,s there is a lock of fragmentation or ·wear of the 

skelet.al compon e nts , and there is a mud content of up to 

30\ which was not".winnowed out. This is the opposite situa -

tion to the skeletal calcarenite of the Oolite Sand Facies 
~ 

which is a grainstone and often has fragmented and worn 

skeletal compo nents . This s uggests that the skeleta l cal-

carenite o f the Biostrome Facies accumulated ina lower energy , 

more protected e.nvir'onment, possibly be l o w the wave base. 
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For" the mosl part, lhe skelet,'l l calcarenites ,\ r c m ~ ssivc 

bedded and do not c ontain any sedimentary structures. Where 

sedimentary structures do o ccur they arc restricted to a 

si n gle horizon as at Fox Cove (1\ppendix F) \.Jhere mega-ripples 

(with wJ elengths of more than 1 m) can be tr"ced in ;1 

single bed for more t h an 300 m (Fiqs. 13 and 70) . Meg;:J.-

ripples an"! c;enerally indica t:.ive of Vf:!ry hi~h - ent•r g y 

(Reine c k und Sinqh , 1 975) , but as this i~ t he only indic<:~ -

' tion of h~energy , the meya-rip~->led hori zan is inter­

preted as storm generated. The fact that. the mcqa-ripples 

are preserved and have not b een re•.;orked i~ a possible in -

dication of the rrevailing low energy concHtions. Ripple 

marks (symmetrical , asvrrunetrical and inlcrfcn'!ncc ) 

oft_en associ,llcd with calcarenites and silt s tones at the 

base of the Biostrome Facies adjacent to the contact with 

the open - shelf facies (e . g. Blanc Sablan, Appendix A; Fox 

Cqve 1 Appendix F ; L ' 1\nse Amour, Appendix E), but llie occur-

rences are regarded as indicative of the sedimcntJ.ry re -

gime of the open-shelf facies and that the contact between 

the is really transitional. 

The origin, of the oo ids in the Oolitic Calc<~rcn i te 

l ithofacies (BH-1) merits special at te n tion . 1\ proport-

ion ( 20-30\) of the ooids show a high degree of asymmet_r;y 

of the oolitic layers about the nucleus (Fig . 2 4 ) 1 and some -

times the nucleus protrudes through incomplete coatings . 

The incomplete coati n gs abut the nu~ leus so are not the r~-
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S'.Jlt o f abrasion, and although the c oating s have> a seal -

loped appearance, i t is the result of differential growth 

o f t he layers. 

Ooids are generally consiJered to be g.eneratcd in a 

high-energy environment (BathurSt, 1971). The irreg ular 

ooids, ho~-o·eve r, are similar to lhose formed t oday in a low-

energy environment in the Lauguna Madre, Tex a s and described 

as 'quiet-waler ' oOi ds lrreeman, 19(; 2). The mud c onten t 

(approximately 15\ of rock volume) o f t.he s c oo litic pa c k-

estones, and the absence of sedimenta r y s tructures indi c a-

tive of high-enerf)y c onditions, supports the orig i n of these 

ooids in a relati vely quiet-water enviro nmen t . · 'The occur-

of s rr.all, archaeocyathid bioherms and small, skele-

tal (~~) stromatolites embedded within the ' c: uie t ­

water' ooids sugl)es t no r mal m.irine condi t ions as regards 

circulation, salinity, elc . The Presence of n o rmal ooids, 

however , suggests that an active oolite shoa l was close by 

( and probably acted as a source for the majority of ooids, 

some of which then grew irregular. coatings in the lower- energy 

environment. 

The skelclcd calcarenite lithofacies throughout most 

of the five unils is interpreted therefore a s having formed 

under normal marine, relative l y quiet-water conditions, but 

probably shallow-water ~nough to be affected by storms. 
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As the ,trchaeocyathid mounds .J.rc ;llw e~ ys found in Li t. -

cral contact with the skeletal calcarenites , lhcn .:1 simi-

lar environment (low-energy, shallow murine) is interp reted t:t 

for the mounds as well. Suppo .: ting evidence for relatively 

quiet 'Haler conditi ons i s the h i gh perccnl .llJ C of upriqht 

archaeocyuth i ds in all of the moundstonc lithofacies and 

SU:>porting shallow 'Nilter is the occurrence' of c<tlcareous 

algae in some of the :noundstoncs . 'The dominance of sus-

pension feeders (archaeocyathids, echinoderms, brac hiopods, 

etc.) and presence of si l l-grade quarlz in !Jolh t hl~ mound-

stones and calcarenites suggests however, that tlle water 

v:as con tinuou sly turbulent to some degree, •..;ith currc>nts 

powerful enough to keep silt l.n suspens1on . I t 1s poss-

ible, however, th<J.t the silt muy have been of windLl own 

origin. 

The draping (up to 15 degrees) of the skeletal calcar-

enite beds off the mounds implies that t he- Mounds formed 

topographic highs on the sea-floor a1thouqb field obscrva-

tions suggest that this relief was in the order of on ly 

one or two metres. The elevation of the mounds (not always 

seen) may have been induced by the bo1fflill(j o f mud by 

archaeocyathids, or ear ly cementation of the mounds, 

combination of both. 

Differences between the five moundstone lithofacies 

sufficient for more precise environments of deposition 

"to be suggested. These difference~ along with stratigraph­

• ical evidence be used to suggest a paleogeographical mode l . 
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The Dolomite t-\ound Unit (BD) is restricted to the 

Pointe Amour peninsuia and consists of low elevation, 

but laterally extensive mounds flanked by skeletal cal-

carenit.es (F\g. 25), and rarely shales. 'fh~ mounds are 

devdid of calcareous alqae and have e1 l ow density and div­

' crsity of archaeocyathids and other orqanisms. The absence 

of c a lcarcous \ algae, 'Nhich is commonly associated with 

ar c haeocya th ids e 1 se'Nhcre in the ~que nee, may sugge st 

deposition below the photic zone. The exact depth of 

deposition is :-.ot known, but the occurrence of cal c urenites 

interpreted as storm- i nduced deposits interbedded with c<J.l ­

carenites indi"catin<j prevailing low~ergy conditions sug­

gest_s that deposition probably ~ccurred below wave-base, 

but in water shallow enough to be affected by storms . The 

dolomite pods are interpreted as being initially small 

areas of mud occurrin<) within, but differing from, the mound 

sediments (see discussion in Chapter IV , Diagenesis). The 

muds supported a different fauna (as evidence by trace fos -

sils which do not occur in the moundstones) and probably 

occurred in shallow, protected depressions within the arch-

aeocyathid mounds. The Dolomite Unit contains shales, ,has 

a high S i lt content, and overlies and is in part lateral l y 

equivalent to the siltstones and shaLes of th1 open-shelf 

facies. I t probabl.y represen t s the init_lal stage of t h e 

development of the biostrome complex . The widespread Red 

Mound Unit (BR) consists of a comp l ex l ithofacie s mosa i c 
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Fig.24: Photomicrgraph (plane light) of irregularly coated 
ooids in the Oolitic Calcarenite (BB-1). Note in­
complete coatings which give the scalloped appear­
ance of ooids. Scale bar is 0.45 mm. 

Fig.25: Contact relations~ips between Skeletal Calcarenite 
(BD-2) and Dolomitic Moundstone (BD-1) at Fox Cove. 
Skeletal calcarenite thins towards, and is replaced 
laterally by, moundstone. Structurally, the strata 
a~ flat-lying but the calcarenite drapes off the 
moundstone at about 12°. Note minor cross-bedding 
(arrowed) associated with the angle of drape. 
Scale (centre left) is 30 em. 
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of l at era lly restricted (tens of metres)., low elev ation 

mounds and flankin g skeletal calcarenites. Calc:;areous 
;) 

algae, and to a lesser extent non-skeletal s t romatol i tes, 

are abundant in the Red Moundsto ne (BR-l) implying dc posi-

tion wi t hin the photic zone. The high dens i ty and diversity 

of archaeocya t hids and o ther organisms suggests a well-

ae'rated environment. The thickest development of the Hed 

Mound Unit occurs at Osprey Reef (Appendix C ) where it is 

in la t eral contact '"'ith cross - bedded ool ites. The channe l-

in<J of the moundstones by skeletal calcareni te s (Fig. 26) , 

along with their association with cross-bedded oolites 

would suggest that deposition of the Red Mound Unit was 

under relat i vely high-energy conditions, possibly within 

the surf 

The red colour of the moundstones ?Oses a problem as 

marine red beds are rare i n the stratigraphic record. · In 

order fo r them to be preserved, either continuous oxidiz-

ing conditions are needed during deposition, or rapid burial 

must occur before red uction t akes place {tlec ke l, 19 72). 

In view of the shallow water, we ll -oxygenated, high-enerqy 

environment of the Red Moundstone lithofacies, it is more 

likely that the sediments remained in a continously oxidiz-

ing condition during deposition and burial. 

The Nodular ,..ound Unit ( BN) is restricted to the Pointe l\mour 

peninsula and consists of indistinct, but laterally exten-

sive, low relief mounds flanked by wedges of skeletal cal -
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Fig . 26: Red Moundstone (BR- 1) channeled by Skeletal 
Calcarenite (BR- 2) at Osprey Reef . Note irreg­
ular outline of erosive contact , and truncation 
of archaeocyathid skeleton (arrowed) in the 
mounds tone . 
Scale is in centimetres. 
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caren i tc o.t L',\n sc Amour {Appendix E) . At Fox Cov0 (1\l'l' -

endix F ) however , smaller but still in d is tinct n1ouncis are 

re co~1 nised by; an increase in the density _of archaeo-

cyathids, an increase in t h e proportion of skelctu.l c,·dca r-

cnite , a nd .:tn absen c e of shales. These mounds <Jre surroUtH.I-

ed by minor shales a nd nodular mudston~s which supporl o. 

'Sparse fauna. On the whol e , the Nodu la r Mo undstonl.' 1 i t.ho -

facies (RN-1) r c s embl.cs the Do l omitic t-loundst. o n c (!3D-I ) . 

There is a n Ctbscncc o f stromatolites a nd C<Jlcureou~ alqae 

(except for rCJ re s k e l eta l componen ts coated -..,.it h (;irvun-

el l a which may be transpor t ed). The densi ty and diversity 

of archae ocyathids and other organisms is simi l .:~r ly low. 

The Nodular ~lo und Un it (BN), therefore , occupies a simil d r 

e nvironme nt . .--Js the Dolomite 1-lound Unit (130) ; b o lh clcpos itcd 

in a relat i vely deep-water (b e low the p ho tic zone u nd wu ve ­

. basel, q uiet environment . 

The locul l y deve loped mounds t o nes of t l1c Oo l i t·.e Bio-

he rm Unit (88) arc i nternally similar to those o f the Red 

Mqundstone litho facies ( DR-1), with abundant ca l careous 

algae , and ~Nith a high density and diversity of .::~rchaeo -

cyathids and othe r organisms. Geomet rically , h owev e r, the 

Archaeocyathid Bioherm -lithofacies (BB -2 l fo rm s smal l, 

discrete, strongly convex mounds or bioherms whi ch .:~re fl.a~-
ked by ' quiet -water ' oolitic calcarenites {!-:ce .:~hovel. The 

exact depositional environment of this unit c an only be 

speculated because of the peculiar nature of the sedil'ilents. 
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lt is SUfJrJestPd , however, that the secllments were deposited 

a shallow (within the photic zone), clear , .re l atively 

quiet environment with, perhaps, periodic mode rate turbu-

lcnce which formed the irregular CoC\tCd ooids . This en-

vironmcnl i s likely to be found in a shal l o w swale between 

ooid shoa Is where " mi x of the t:haraclerislics o [ Lo th 

t.he Biostrome facies a nd t h e Ooli t e Sand Fac ies ..... :a uld 

The most charactCri stic feature of t he Gr ey Moundstonc 

l i thofac i es ( BG- l) i s the common occurrence- of skeletal 

(Girvanella) and non- skeletal stromdto li tes . Small, digit-

ate , non-skeletal stromatolites (Fig. 27) (SH- V type of 

Loqan .£.!:: ~·, 196 4) occur at Bl;mc Sablan (Appendix 1\l 

where arc haeocy.1 th'ids are rare o r absent . Skclct.:~l ( Girv-

anellal stromatolites (Fig . 281 (LLII-C type of Logan ~ ~· --.. 
1964) occur at t.he top o f the sequence at L'Anse Amour 

(Appendix E) and may indicate temporary inter-tidal con-

di tions. For the most part , the Grey Mounds tones form low 

relief, laterally extensive (tens of metres ) mounds which 

contain abundant archaeocyathids and calcar eous algae , and 

wh ich are flanked by s keletal ca l c arenites consi stin g of 

f ossi l s representing a normal, s u b - tid al fauna , whi c h show 

no s1gn s of transport o r wear . This would indicate that 

the Grey Mound Unit was deposited in a p redo minantly shall"-ow 

sub- tidal l ow-energy environment which poss·ibly shallowcd 

periodical ly into the inter-tidal zone. The lateral contac t 
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Fig.27: Photomicrograph (plane light) of 
non-skeletal stromatolites (type 
SH-V) in the Grey Moundstone 
lithofacies (BG-1) at Blanc 
Sablon. Note archaeocyathid 
(Archaeocyathus) at bottom left. 
Scale bar is 4.5 rnrn. 
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Fig . 28: Skeletal (Girvanella) stromatolites (type LLH- C) 
in the Grey Moundstone lithofacies (BG-l ) at 
L 'Anse Amour. 
Scale is in centimetres. 
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of the Grey Mound Uait wi th the spil l over par t of t he oo l i t f' 

sho al at D ivers io n Reef ( Append ix B), and Lhe vert ical 

association o f the two uni ts al Scll ooner Cove (A(-l!J-

e ridix G) sug~est;s that the Grey Mo u nd Unit occupied a pos ­

i t ion behind the .Jctive p.Jt:t of the uolite shoal and con-

seq"uent ly favou re d a protecte d environment o ft e:1 aci j acent 

to the s pil l over part o f the oolite shoa-r-:-. 
~ 

Statigraphv 

Ma;)pi n g of UlP. m.-> Jor fa c ( es i ndicatcs t h .>t the Oolite 

Sand F a cies "as dcoosi ted t o t:'tfe nor t h or no rt h-west o f 

the Biostr ome Facies and that the contact be tween the two 

facies is h iq h l y i rreg ular. The map (F'ig . 72, in pocke t ) 

i rtdicatcs t hat sa lients o f the Oo lite Sand \aci'cs .existed 

to the we st of F"or teau and a ro und the Uay of 'L ' MJ SC au Loup , 

with co1·respon dinq rec esses to t he nort h o f Blanc Sablan 

and on the Pointe Amc u'r pen i n s ul a {·wj th the e x ception o f 

Schoon(Cr Covel. 

The d ist ribut ion of J3 ios t rome Facies un its s u gges t s 

' that t he maximum development of t he deeper7water units 
""i 

(BD and BN) occupy positions furth er away 'tram the OoHte 

•Sand Facies in a south- east direct ion wh il e s h a l low-water 

units (BR and BG) o ccur with their max imum develOpment 

adjacent to Ooli te Sand Facies and occuny a pos i. tion to the 

nor t h-west o f t he deeper-water unitS. ' Th is woul d i ndica t e 

tha t the paleos lope was trendi ng towards the s outh-ca1;t 

and that the Biostrome FaCies was depos ited seaw.J.rd of the 
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Oolite So:~nd r.,_cics . 

f i gure 29 i llustraf:es a s i mpl i ficati on of t.he facies 

a nd unit~ relationships interpreted from the measured sec-

tion . (Append ices 1\- fl) and uses Fox Cove ,1s the reference 

secti on . Deeper - wate r units (ED ilnd EN) occ ur only on the 

Pointe Amour peninsula. In the meas u red section s at Fox 

Cove (Appendix F) and L ' Anse i\mou r (Append ix E), the Dol-

amite Mound llnit (DDI and the. tJodu l ar Mound Un i t (BN) are 

separate d v~rtically l:ly a thin bed of Red 1>\oundstonc (l3R-t) . 

This re l ati ons h i p suggests that the Dolomilt'; Mound and Nod -

ular Mound Units were deeper-wate r, lateral equivalents of 

the Red Mo und Unit which was deposited seaward , i1 nd thick -

towi.1r;J~ a cont act with the Oolite £ tmd !'<lcies {see Fig . 

29) . Tht~ lower part o f the s e quence at f ox Cove and L'Anse 

Amo ur cq. n be interpre ted ,as a gradual shallm·dng <lnd then 

deepening episode . The Do l om i te Mound Unit (BD) ini -

tially deposited as a l ateral equiva lent to , anQ then over-

lay, the siltstones and shah~s o f t h e open - shelf fa cie s . 

The Dolom i te Mound Un i t t hen shallowe d suf f i ciently fo r the 
I 

deposi~i.on of the calcareous alg a e - ri c h Red Mou n~ Unit t o 

be defOsited . This event was short-lived , however, as the 

deeper- water Nodular Mound Uni t overlies the Red Mound Uni t . 

The remai n de r of the sequen ce consists o f shal low-water 

units ; Oolite B i ohe rm (BBJ and Grey Mound (BGJ Units . 

These are sepa r ated f r om t h e unde rl ying Nodula r Mou nd Un i t 

by a planar erosion surface . The occ urrence o f these sh<lllow-
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water ~n i ts nn the Pointe 1\mour peninsuJ a .m.1y rcrn;scnt a 

general regres sion il). the 

The measui'_e d section op the north - east side of t he 

Pointe Amour pen i nsu l a , at St.:hoone-r Cove lflp'penG.i x G) is 

the only sequence where rocks of the Biostrome f.:~c ics and 

Oolite San d racics a re intercalated. The ·Do l omite Mound 

Unit (BDJ agai n overlies . the open-shelf Facies but is 

·~IJt>Verlain itse l f by ske:l c tal calcarenite wh i c h becomes ooli-, 

t ic towards the top .~ This is prnbubi y t lH' iateral cquiva-

lent of th e Red l--1ound Unit at Fox Eave . Th e r emuinde r of 

the sequence c~ns i sts of the shallo·..,- wat e r Grey Mound Uni t 

(BG) i n tercalated with rocks characteristic of the spill­

area o;"tl~c. ,oo litc sand shoal. The correspond ing beds 

a t Fox Cove would be the deeper-wate r Nodu l .l r Hou nd Unit 

{BN) . At the t op of :=;ection archaeoc yathirl. Cioherms are em-

~cdded i n 'quiet - water ' oolites. Most of the succession 

a t Schooner Cove 
1
would seem t o represent lateral shifting 

of shallo w- water deposits . Such l ateral shifting is sug -

gest ed as the sequen ce at Fox Cove a n d L ' l\nse Amour has the 

Grey Mound Unit {BG) ove r lying the Ool ite Bioherm Unit (B!J) 

while 3 krn to the n or th-east at Schooner Cove , the reve r se 

is 

The inlund sect ions at Osprey Reef (/\ppen?ix C) and 

Diversion Reef (l\ppendix B) are i mportant as bo t .. h sections 

show lateral re lat ionships between the Bi ost rome Facies 

and the Oolite Sand Facies and are t h erefore useful in any 
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paleogeogru;chic reconstruction. Basically, the scct icn 

at Osprey Reef shows 'the thickest development of Red 

Mound Unit (BR) in lateral cOntact with cross.:.bedded qolite" 

representing a cti ve oolite shoa l . At Diversion Re'ef, 

however, the Grey r-tound Unit (BG) is in l<Jtcrul conlacl 

with mixed skeletal-peloid-coli ti'C-oncol i ti c ca 1 carenit fi: 

and dolos lones characteristic of the spi l lover area of an 

oolite shoal. It is significant that the ooen -shcdf facies 

thic kens considerably in the northern part of t)l.e' section 

at Diversion Reef (Fiq . 65, Appendix B) indic<:~tinq thot 

the Oolite S and Facies whole is tapcrinq north·,.,rards. 

This sugqcsts that the oolite shoa l i ts e lf is merely a 

lens, replaced to the south by the Biostrome Facies and to 

the north by t he open -shelf fac ies. 

The most north - westerl y measured section of the !J.io-

strome Facies to the north of Blanc Sab lan (Appendix A) 

consists entirely of shalloW-watet· deposits overlying 

siltstones and shales of the open-shel.f facies . Th e se­

quence consists of two beds of rocks of the Grey Mound llni t 

(BG} separated by a thin bed of Red Mounds tone (BR - 1) . Th is 

sequence may poss ibly be correlated with the lower part of 

the sequence at ro.x Cove and L ' Anse Amour where a thin bed 

of Red Moun ds tone separates the deeper-waler Dolomite ~lound 

Unit (8D)· and the Nodular Mound Unit (BN). These success -

ions may have been caused by ~ temporary expansion of the 

oolite sand shoal which caused the adjacent Red Mound Unit 
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to displace othe r units. In the case o r Fo:-: l"OVL' , Uie 

deeper , seawdrd Units (SD , BN) 'Here repl~ced; v1hi l c ut 

Blan,c .Sablan, the shallow- water Grey Mound Un j t •..,ra~ dis -

placed. Tile lack of rocks representing the Oolite SZ!ncl 

Facies in the area around ~lan e Sablan indic<Jtes the~t thi!; 

area wus a recess in the oolite s·hoal, h ut !hC"' shallow-

·water nature of the rocks may ind icute tll<ll they were de-

p osited bct· .• :ccn L·H o oolite shoa.ls (~ Fig. JO) . 

'l'hc se<:uer:cc at Forteau (Appendix D) an d L'/l.ns'e 

L oup (Append LX 1! ) consistsenti r~ly of rocKs of the Oolite 

Sand Facies . Both sequences cun be considered to be caused 

by lateral shifting of facies within the sni ll ovc r area 

of the oolite sho,ll . 

~~ !'alcoaeoqcophy 

Bcc<:lusc1 of the rapid lateral and vcrtic<~l_ chanqes in 

lithology cxp~rienced in most of the o'u tcrops , ~1ny p.:tlco-

geoqraphi cal model must be an oversimp 1 if icilt ion of the 

true distcibution of lithofacies. Bc,'l.rin<J in mind thdt lat -
;,-

eral shifting of t he shallow-water fac ies was probably con-

siderable, the model presented (f i g. 30} 'lives an indic.:;. -

tion of the facies distribution at one particular Lime . 

Stratigraphic evidence suggests that the Biostrome Fuc i cs 

was deposited seaward and south-e,:ls t of LhC' Clo 1 i lc Sand 

Facies. The Oolite Sa~d Facies consisteC o f rocks const i l u-

ting a'IOO!if.e shoal which can be divided into; iln ,1ct ivc 

oolite shoal of cross - bedded oolitic grainstoncs depos ited 
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i n a sh<Jllo w-waJter, h i!]h - enerqy environment, and a shea 1 

spil lover w~ich was de~~n quieter-';'ater behind the 

active oolite shoal. Seaward, bu t in contact with the ac -

1 t.1ve oolite shoa"l, was deposited the Red Moun <a Unit (OR) 

'in shallow-water , high- energy ~onditions. In slightly" 

d eeper-water· (be l ow the shallow phot i c zonel, sediments 

of the' Dolomite Mound Unit (BI!l) at1cf Nod_u la r Mo und Unil 

(BN) a.ccumu la ted and ~robably passed se.-.ward into silt-

·stones and shales (N . Jame s , pe r s . comm) ·. ' ' Facies mapping 

i"ndicates that the contact between the Oolite Sand Filcies 

and the niostrome Faci.es is highly ir r egular .and suggests 

that salients , recesses, and possi bly breaks occurred be-

tween shoal~ . In some shallow swales between oolite shoals , 

archacocyathirl bioherms acc umulated, flanked by ' !]uiet- , 

wa ter ' oolites (Un iy BBl , with the ooids i nit i.J.lly dcr~vcd 

from t h e adj.1c:ent s hoal s . Also on the shallow swales, but 

generally occupying positions behind the aclive oolite shoal 

but in lateral con tact with the shoal, spi I lover, the Grey 

Moundstone Unit {BG) was deposited . Th e development of 

' extensive stromatolites in this unlt sw::~qests that inter-

tlida l c onditions may have prevailed f or some of the time . 

Such a ~ac ics dis tribu tion !,las broa~ similarities With 

r ecent car.bonate envi r o nments such a~ thE! Trucial Coast o f 

the Pers ian Gulf (Purser and Godfrey, 1973), and Joulters 

Cay , Bahamas (N . James, pers. comm.). I n both cases , o rganic 

reefs are acc~mulating seaward of an active oolite shoal 
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with spill o ver sediments accumulat i ng be{lind. TJ-ic model 

has a c lose anal o gue with the Type 1: _Downslope mud 

mula.tion, 'shel f m"':rgi n p rofi le of Wil s on (1975). 

. , 
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CHAPH:R IV: DIAGHII::SlS 

INTRODUCTION 

Diagenesis of the various calcarenite litholo<Jies 

in the Oolite Sand Facies and _the fl~nking calcarenites 

of the Biostrome Facies are described as one entity he-

cause the diagenetic proc~sses which affected them arc 

essentia l ly the same, differing only in m~n or detail . The 

various mounds t one lithologies of the five af;signed units 

also shi.lre a common diagenetic history , uquin only diff -

ering in detail, and so are described as a ~ccon-t _entity. 

The diagenetic features are also- tabulated using the 

sedimen t ologica l division so that comparisons of features. 

can be made within each unit of the Biostrome Facies 

(Table Il}. 

Several processes have modifed t he ori;J ina l de~ositi -

tiona! texture of both the moundsto~s and the ca-lcarenites; 

bioe roslon, · cemen ta1:ion, neomorp)lism, dolomitization , 
) 

silicificati.on, pressure solution, and fracturing . Euch 

of the prOcesses is described in turn {where ilpplicabie) 

for both moundstones and calcarenites. 

OI/\GENESIS OF TtlE MOUNIJSTONE LI~IIOFACIF.S 

Bioerasion 

Evidence of mi c roboring org'Anisms (such as mi cr itic 

tUbules or env!O!lopes} is absent from the moundstone 

pdnents although macroborings are relatively common in 

several of the units ,(Figs. 31 and 32). The macrobot ings 

are J1indrical tubes wi th,,a diameter. of between 0. 5 mm 
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Fig.31: Bedding-plane exposure of Dolomitic Mound-
stone (BD-1) at Fox Cove showing archaeocyathids 
(Metaldetes) and lime-mud matrix, both penetrated 
by macroborings (small, dark dots) of the ichno­
fossil Trypanites. 
Scale bar is in centimetres. 
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Fig.32: Photomicrograph (plane light) of 
archaeocyathid skeleton (left) 
truncated by the macroboring 
ichnofossil Trynanites. The 
vacant boring has since been in­
filling with skeletal debris 
(right) . 
Scale bar is 0 . 45 mm. 
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and 2 mm , and a l ~ nqth of between 2."5 mm ;md J . 'i ITUII. /\s 

such these trace~ can be assignCd to the morphogcnus 

Trypar\ites -(riag,f rau). They penetrate archaeocy?thid 

skeletons, clumps of r enalcid algae, and the matr.i>t ,of 

the rock, whi ch is- either cut cleaAly , trrplying lithific~-

tion, Dr is· pushed as ide o The bor i ng s h,l·vc been subse­

quently filled with eith~r the surruunct'inq m;1trix, (f.).g. 

32) or with cloudy, fibrous calcite Cement (fi(j . 48). 

Ccrrt€ntation 

The amo unt of obvious cementation is dependent 

the available pore-srace cind varies <Jreatly between units, 

in some cases occurring only in intra-ske>lcti!. l pores of 

archaeocyat.hid skeletons. 

Two categories of Cements are re cogn i s~d within the 

mounds tone: ( 1) Rim- cements, whicb fringc,?article;; 

(2) Pore-fill cements, which fill thu.t part of ~he par~ . ' 

not already occluded by rim-cement. 

Rim- cements· 

Three different r im- cements can be distingu)shed with-

in the mounds tone: ( 1) a cloudy fibrous c~mcnt (_comn]on), 

(2) a clear scalenohedron cement (common), ( 3{ a r.ticrite 

.cement (r<tre?). 

The cloudy fibrous cement is· non-ferroan. but. r.i.ch in 

inclus i ons l•;hich give it a brown colour. It occurs as the 
\ . 

first c ement precipitated in '8 radiav'"fibrous h.lbiP.-with 
' . 

sweeping ext'inction in the follow ing plac~s: in the intra-
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skeletal pores of archaeocyathid skelpt:ons (Firr . 34) ; be-

tween, and encrusting bases of pendant coe l obiti<;: organ­

isms (Fiq. ]3); in between hc<~ds of small diqit<'lte stroma-

tolites;· intcrlaycred with internul sediments; lininrJ the 

floors of ci:lvitics. It is also f o und as blocky, equ,1nt 

crystal rinds within internal sedl.ment 'in the cavities , 

around skeletons wit_hin the sedi ment, and lining t h'i' floors 

of cavities . nroken , e('"uant fr.a<:rnents of this cemen t ;J!so 

1'·Ht of the interna.l sediment (FicJ. 3'>1 . 

The clear, sc,1lcnol1edron calcite Cl't:11~nt is also non-

ferroan an~l varies from ea u ant , blo.cky r.- ryst<~ ls , to blades, 

to a fibrous fabric. Correspondinqly, the axirtl ratio 

v~;ries fr o m 2:1, t·o .c~n averaqe of 3/4:1, to 8: 1. The. cc!'l­

(";'nt nc c ur·s rhiPfly in skeletons of arch<lcocyilthids whore it 

is either the first cement pr-ecipitated \'"i q . . Hi), or is 

preciritated on top of cloud,Y flhrous cement (never the 

r-everse), in ~1hich case lhc bases of the individu<l l crystals 

are in opti c ai conti nuity ~o~i th th(' cement s.uhstratc. Pores 

ar-e often m.:cluded w_\th this comen.t. It tl.lso succf'eds 

clou dy fibrous ccmf'nt. encrusted onto the h<~sP of t he coelo -

bitic organisms in cavities beneath rctilaminiform ilrch<~eo-_ 

cyathids ,,nd sonetimes occl ud~d with hlildcs of this cement . 

!\ possihlc lnic rite c ement is preci:,d t<J ted bct~een c l um~'S 

of pendant n~nalcid· algae in cavities but is probdbly much 

more wides6read (see discussion) . 
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Fig.33: Photomicrograph (plane light) of a 
cavitv beneath Retilamina. The under­
side of the skeleton of Retilamina (top) 
has a thick development of cloudy fibrous 
cement (C) . Both the fracture (Z) and the 
remaining cavity (F) are occluded by 
iron- rich pore-fill cement . Note 
internal sediment forming the floor of the 
cavitv . 
Scale- bar is 0.45 mm. 
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Fig.34: Photomicrograph (plane light) of archaeocyathid 
skel eton. Original microgranular skeleton (black) 
has undergone aggrading neomorphism to microspar 
(M) and pseudospar (P). The central cavity lright) 
has been partially filled with internal sediment 
(S) . Intra- skeletal pores often have thick rinds 
of cloudy fibrous cement (C) and are occluded , 
along with the remaining space in the central 
cavity by iron- rich pore- fill cement (F). Some 
of the intra-skeletal sediment has been dolomi­
tized. (D) . 
Scale bar is 0 . 45 mm. 
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Fig.35: Photomicrograph (plane light) of part of a 
skeleton of Retilamina (dark area) . Beneath 
Retilamina is a matrix consisting mostly of 
broken fragments of cloudy blocky cement. 
Scale bar is 0 . 45 mm . 

Fig . 36 : Photomicrograph (c r oss- polarized light) of an 
archaeocyathid skel eton . · Intra- skeletal por­
osity is occluded by a r i m of clear , iron- poor 
scal enohedron calcite cement (R) followed by 
i ron- r i ch pore- fill cement . 
Scale bar is 0 . 4 mm . 
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Pores within archaeocyathid s keletons, ~;ynde~Josition-

al cavities, and so l ution c.1 vLti es not a lrci1dy occluded by 

rim-cements, .l rHl al l fracturr>s ,1re fill ed with [e:r ruCJ n, 

pink., oft-_rn crvlr.c;ely crystalli n e CCilcitr (i'i ~Js. ll , 34 

and )6) . SnJut l o n of m.Jny , raq o ni t i c c; k C'lc lon~ (!J~c~ c·h -

iopods , hyolitllid!; , etc . ) p r o bab l y occ ur re d coPv.:~l \<lith or lust 

!Jrior to the pr·ccipil.ltion 0f this c-ern(•nt .1s lllr C<t\' iti l':; 

thus formed a r·p alw.:~ys filled '.-'ith fcrro;m cprnrnt (r,lrcly 

lhc rim-cern!• rrt c;f, 

Neomorphism 

Three' diffe rent neomorphic fobri cs are rccnqnio,cd in 

the mounds tone li tho(a c ies: ( 1) aqqrad i nq neomor:'h i sm l'f 

mud m<.~lrix t.o microsp ar, (2) .l<J<JT.:Hlin<J n c•n mu r;,hisrn of 

archaenr::y.rthid ske l etons to microsp<H L1nd p;,rudn~par, 

(J) . rccryst,lll i zat ion o f cement 1abric,; t o pscudn:q.J<~r . 

r-tost of U 1c mud - Sized matrix o f the rnound:;loncs has 

undergone anqrudin<j neomorphism fr o m mi<~rilc t o h0rnoqt~ncous 

microspar (2Su). Rar e patches o f r elict. mtcri tC> exist , 

normally bcwteen c lumps nf coelobite or<JiHl lc; mc: in c.-1vit ir>s. 

The mic rogranula r (calcite) skeleton of .lrrh,lcocyathids 

has common l y under(Jonc aggradinq ne omorph i sm f r0m its or 1 r;-

inal form to microspar with r('lict patches o f the mic r o -

qrar.ula r f.1bric enclo sed within i l. The . . nd l:rosp;lr has thlm 

been agq.r aded to clear crystals of fer roan pseudo spa r, which 

st r ongly r Psrmhlcs a pore-fill cement, but is rPqardc-d 

- 94 -



i-

neomorphi c .1~~ Lhc cmnp lct c t r.:msi l ion [r : >ll1 rnicroqJ '.llltl l ,u 

calcite to pseudospar is o ften observed (l,.i •J. 37). 

The recrystal l ization of the r<~dt<~ l cloudy fi brous 

calcite cement to a blocky , c l cudy ps[• u do~3 1'•'r fabric 

r arcl y e>ccurs , 

The most extens i ve dolomitic fabr i cs f <Jr m the J,·Jn)e dol-

01'1i lc pods (Fi g . 1r, ) i n t h e LJolomitc l'loundc;tunc lit ho f tlCiC'S 

(Bll -1 ) , T IH' d olom it e rhcmbs .:~rc cllil crir.l. l .m<l f orm a h omo -

gc ncous, idiotopic texture . lndividu,l. l cryst.l l ~ .1.rc lr o n -

rich, wit.h ill l <~ V t • r <~ y t• size of 25u . Sm,•ll iso lil l.cd p atches 

of skcle>t<t l c.1.1 ~:acc n ite and ar c hilcocy,llhids ar~ enclosed 

by t h e d <Jlom i tc, an d isolated rhomb s o cc11! thru \J qil otl 1 t he 

calcurc~ i tc. 

Parti.:d, piltchy dolomitiz<~tion is com~\lm t hr qu •Jh out 

the mounds t on e . The dolomi tc is ag a in homn<Jf'ncous , cu ll e d-

r a l , i di o topi c , .1nd iron - ri ch \•lith crys t ,lls dV~.:raqin q 

b e tween 30-ftO u in s ize but rv.nqinq from 2S-2n ou. l'< l.1tl'r , 

coarser do l omite occurs rarely wi t h rhomb!i <~V('r,Piin q 18 5-

200u, Both st.Jqe s post-date fracturinn of the rock , 

rela t ive l y lil. te in the diage netic hist n ry . 

l\l t houq h pe r vasive , the dolomiti.z,lti o n o ft ('n lcc\Vc s 

e c h i noderm p l at e s undo l om i tizcd excte'pt f o r' cnrr od!'d rn.1 rq1ns , 

but s o metimes preferentially selects <~.rch a cocy.Jthid s k ele t o ns , 

partic ul ar l y t h o Se already ne?mo r phosed t o pspudospa r . 

Dolomite r hombs atso occur as stylorc.lclales. 
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Fig.37: Photomicrograph (rlane light) illustrating the 
aggrading neomorphism of an archaeocyathid 
skeleton . The original microgranular skeleton 
(dark area) has been aggraded to microspar (M) 
and pseudospar (P). 
Scale bar is 0 . 3 rnrn . 
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1\bundan~ stylolites occur as two t ypes ; (1). Irreg -

ular, anastomosing swarms of non-sutured scams (W<~nless , 

in press ) , whe re the seilms are gently undu latinq , often 

.r;Hviclc (lnd re j oin, and ilre_ associu tcd with thick s Lylo -

cumulates, (2) . llorsc -tail s t yloli tes , defined ,--.s "w ispy . 

subparal lP l micr!lstylol i.tes th<1 t r~ofl!erqc int o .:t sin'llf' 

rcsidt~o<l scam " (1--lossop, 1972 ). 

t-;"ithin the units, stylolites vary in d en sity f r· o rn 

absen t to ahund,--.nt , and when abund,--.n t q ivc i l st_y\cno dular 

appearance t o ~he rock. 

Que~rtz silt, c l<Iy minerals, ..:Jn d hr,--._vy ndnpr,lls qen -

cr<I l ly occur ,1 s stylocumulates, and Uo\omit!• r·hom!Js <JrO'"' e1s 

st y lorc.<c ta t cs . 

Fracturing 

Fractures vary in density"'from absent t o common, and 

a l thouyh ttw y can h e up to 3 mm '1i~P, dH' cwm~rCl ll y much 

smill ler. Frac t uring occ urre c'l after t.lit precip~t.<tJon of 

rim-cement and was probably roeval w i. th th (' p rc c i ;; i t 'i,ation 

of the equant fcrroan pore - fi l l cemen t-_ •n•hirh alw.1ys ac e -

ludcs the fractures (Fig. 33) . 

!Hf\GENESIS OF TtiE C,\LC/\RENrTEs_ 

Biocr(JSion 

E~ce of the ac~ivity of mi c roborcrs is indica ted 

by the n·r~sence of micriti c envelopes (B a t hurst , 19f>6) aro und 

componen t s ~d by the · rarer oc~~r!ence of totally micritizcd 

peloids w~h, because of their- size .td shape, are not 
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fecal pellets . 

· ln this study , mie-roborings are c o mmo nly found in ech­

-inoderm plates , Salte r ella cones, hyolithid s , and ooids in 

the skeletal , oolitic , mixed oo l itic, <md onco l itic qr<nn-

sto nes o f t he Oolite Sand Facies 1md ur~ r c str.i c t e d t o lhe 

Oolitic Ca lcareni t es (BB- il in the 13~ostro~c Fac i e s. In al 1 

situa t i o n s , mic r o borings a re preserved a s rn i c ri t i.c t ubules 

well-preserved eno u<Jh t o be a:tlribu'tcd t o t h e blue -g r('cn 

algae Girvane ll a (Fig. SOl . 

Hicrite i " the envelope has often been d o l omitizcd and 

hils ra r ely been ncornorphosed to microspar . 

Cemcn tat ion 

T·wo t:i'ltcqnri c:, o f cement o ccur i n t he c. ll c ,•rcni.tc s: 

(1) H i m-c ements \olh i ch fringe the p .orti c lC'S , <~nd ( 2 ) 

Po r e -fill cemen ts o f precipi t a t ed c a l c ite whi ch occ lude th.:~t 

part o f the p o re n o t occ luded by the ri m- c ements . 

Rim- cements 

A total o f 5 different , but somet imes qradationa l, ca l-

cite rim-cements c an be dis t i nguished wl thin the calcar-en-

ites . Syntaxli!l overgrowth s and b l aded scil l cno hcdra are 

wh ile r ildia l - fibro us, blocky s c aleno he drCI , and micrite 

Syntaxi a l c ements occur most commonly o n , and within, 

echinoderm p lates, ei ther f illing the pores in the plates or 

en l arging their margins by syntaxial overgrowth (Fig . 50) . 
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This cenent occurs in a ll l i lhol ug i es contai ninq echinoderm 

plates but i s not s een o n p la tes p os sess ing mi cr iti c en-

v elopes wh ic h apparent ly inhibit an y sy ntaxial overgrowth 

(fig . 50 ). A second type of syntaxial ceiT'cnt is prccipi t c-t-

ted as non -ferro.c.n bladed sca l enohed r a bct .,..•ccn 7 5 u and 300u 

long with a n ax i al ratio of 5 :1, precipitilled i n .optica l 

continuity on to concav.)!' ... lower su r faces of trilob i tes in 

mixed peloid ~ nd mixed on coli tic gra i nstoncs o f t h e Oo\ itc 

S .:~n d fac i e::> !Fig. 18) . The origin of this f.:~b r ic as cemen t 

.f is not unequ ivoc .c.l , h owever, and a neomorph i c origi n cil nnot 

be ruled out (sec below). 

A clear , non-fer r oan scalenohedron c ement of bl <:~ded 

h ~lbit with pyramid,1l "terminations (often iron-ric;ll) to the 

individu<Jl cryfi l a l :-; whi c h r.:~ngc Uetwccn 4 00u .:~ nd 50 0u l o ng 

with a n ax idl r.ltio o f 3 to 5: I , is often n u c lea \lfed as Lhc 

f irst ce:rent . T h is c ement is found on ooids and pel oids 

in t he ske l etal grainstones; bene ill h tril o llites i~ the mi xe d 

oo l it i c gr.-:l i nstones; o n peloids and oo i ds in the oolitic 

qrain stones. It also o cc u rs on t ri lob i tes, br<Jchiopods, 

archaeocyat hi ds, and ooids in t he calc.:~ren i. tes of t h e Bi o-

strome fa c i es . 

The l ess commo n ra'Ciial -fibrous cement occurs as need-

l es or elongated blndes, J0 -4 0u l o ng w ith <In axial r <t tio 

of 7·1 o n ooi ds in the oo litic calcarenites of bot h facies . 

Blocky s par consists of sub-equant c ry sta ls (axi al r a tio 

l eS s t h a n 2: l ) between 30u and I OOu in s i ze. I t 
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Fig.38: Photomicrograph (plane light) of a trilobite 
carapace illustrating gravitational cement. 
On top of the carapace a thin rim of clear, 
blocky , calcite cement has been precipitated 
(arrowed) \·lhile on the undersurface, a much 
thicker rim of clear , bladed, calcite cement 
(R) occurs . Iron-rich , pore- fill cement occ­
ludes the pore-space above the trilobite while 
large, iron-rich dolomite rhombs (D) occur 
beneath the bladed calcite cement. 
Scale bar is 0 . 15 mm . 
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the top surf,lce of t rilobite car,, p ,l c t's ·e~hicli 1l.-1vc blade:! 

ceme nts on conc .1vc lower surfaces (Fig . 38), and 

lOOu crysta ls on micritized p~ loids. and ooids in t. hc r;nixecl 

oncolitic g,rair.stones . It i s Wll l d isplay e d in the intr:1-

clast grLlino.tone forming a rim of 4 0 u crysta.ls .1rouncl algal 

i nt raclasts '""hictl arc not in direct contact ,.,i.th ~n c rosp ,1r. 

A presumed micr i tc cement occurs .w i I hi n the 

compos i te qr,lins in the oo liti c grilinstones diH l ITlixorl 

colitic grainston es of lhe Oo l ite S<~r'ld F,lcic!;. 

The same ferroan , coarsely crysta l line pore-fill ccm -

ent that in the moundstoncs e~lso oc/.:urs in most of 

th~ calcarenite lithotypes. It is rtb~cnl, howcv<>r, frc,m 

lithologies consisting entirely of echinoderm pL1tes but 

contributes up t o 40% of the r ock volume in the inlr .l cl.t~st 

grainstone of the Oo l ite Sand Facies (fio. 22) . 

Neomorphism 

Neomorphic f,lbrics occur throughout the c~,,lcarcnites 

varying. umounts and are rcpre senterl hy ii ~I'JLl cl.ing ncomor-

ph ism of micrite mud to microspar and formation of microspar 

and pseudospar in archaeocyathids. Doth of these L1b r ics 

identical to those des·cribed from the moun~lstoncs. 

Other neomorphic fabrics i nclude the form,ltion o f pseudo:;;par 

/ and pseu'do- r Mlla\ microspar in ooids; syr.xi. <ll nen~nnrphic 
rims and blades on echinoderms p lates and tril o bites, 

pectively; ilnd a complete recrystallizati on fabric. 
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Ooids in the ooli t ic calcarenites arc ncoiT'orphoscd in 

one of two ways. Common ly the ra.diul-conc·entric structure 

of ooids has been uggraded to a sing le crystal of clear, 

fer::-oan pseudospar ·..-ith a "ghost" rclicl nucleus of an ech-

inoderm fragrr,cnt ( non -ferroan). The mat'gins of t.he ooids 

nearly a l ways composed of a dark layer, possibly or'!anic, of 

varying thickness (f ig .39) . l{arely, and only observed ir. 

the oolit e ci1lcarenitet of the Biostrome Facj('s, the rarli il l -

concentric structure of t he ooids has t:ecn neomcrphosed t.o 

microspar which disp l ays a pscudo-r<Jdial fa bric due to the 

elongation of some of . the cryst<~ls normal to the surface o f 

the nucleus o f th e o oid . 

Some o f the syntaxl al ovcrqro..,...ths ob~crvcd on cchino-

dcrm plctlcs ,1ncl t ri l o bite carapacct~; m<Jy be nf neomorphic 

origin as they cmb,Jy ,'the mud {micro-spar) Datrix which is 

probably of p rim<~ry o rigi n as the texturC' of the sediment 

in some places is a wackestone, implyin<J thi"ll the o riginal 

c omponents ,hc.d to be mud - supported. In one instance, bladed 

syntaxial· crystals develop on the underside of a two walled 

skeleton and rcplacJ the, interior of the , shell as well a~ 

the lower skeletal wall and subsequently cmbay echinode rm 

plates. Thl~ m.1y suggest a neomorphic origin of some of 

the bladed cement fabrics described above . 

A total r 'ecrystall4 zation fabric in some of the 

oolitic and mixed oolitic grainstones close to the contfct 

with the Biostrome Facies at ~sprey Reef. The f.1bric dev-
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Fig.39: Photomicrograph (plane light) of neomorphosed 
ooids . The original radial- concentric structure 
of the ooids has been replaced by a single cry­
stal of iron-rich pseudospar. Note the relict 
"ghost " nucleus (arrowed) in some of the ooids , 
and the black rim on all of the ooids . 
Scale bar is 0.3 rnrn . 
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eloped her~· is a n~osai c of llolomitlzerl ouids {wiH.•rt> dolon; ite 

rhombs have overgrown the margin of the uoid), and mediurn 

to finely crystalline pseudospar. 

DolO!uiL iza_~)~l 

Do lomitization is prevulcnt in tt1c c;~Jcurenites in a 

number of · forms including se lective dolomit i zation of prev-

iously neomorphosed archaeocyathid skeletor.s and of indiv-

idual ooid~ , a dolom1.tc mottling fabric, ar;d to ta l (rolomit-

ization . 

Archaencyal h id skt>lt>tons (in lhc Biostrome Facies cal­
l 

car.eni.tes) , that have previously been neomorphosed h<t.ve 

often u~dergone selective dolomitizution with large (250u) 

f e r roan dolomi Le ihombs replacing the pseudospar, 

Dolomitized ooids are common in both facies . Three 

basic t,>'pcs ot rlolomitized ooids occur in lhe Oolite Sand 

Facies ooids. The first type occurs when the ooid is 

replaced by a single crystal of ferr oan dol~mtite of aver-

age size 300u which is generally confined to t he original 

boundaries of the ooid but occasionally trilnsgresses that 

boundary (Fig . 40). 1' he second type occurs when the ooid 

is replaced by several smaller (60u) crystals of ferroan 

dolomite (Fig. 41). This type of dolomitization also occurs 

in the Biostrome Facies ooids. "The third type consists of 

a mosaic of numerous, very smal l (20-25u) rhombs of ferroan 

dolomite. In the latter two cases, the nucleus is rarely 

preserved as a cor.roded echinoderm plate. 
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Fig.40: Photomicrograph (plane light) of dolomitized 
ooids. The original ooid can be seen as a 
vague, dusty relict (arrowed) in the centre of 
the large dolomite rhomb . The ooid has been 
replaced by the single rhomb of dolomite which 
continued to grow beyong the margins of the ooid, 
Scale bar is 0 . 15 mm . 
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{\ du) <JIIil\' mo ttliJH,j t_exture Cd11 ( Jft(~l1 !JL' c)\.l ril;utud 

to prcfercnll a l d o lon.i tization of e~reas o( biolurbal.iun 

burrowintJ (Fig. 4 2 ), but in other cases th is pcrv ,l sivc 

te xture is not obviously re l ated to ,1ny particulur fa ct or. 

Oistinct dnl or.,itized burrows oftl.'n have i J 1-·defined rrarqins 

which extend i nto the encompassi r.y sed iment. The doloruite 

forms u.s ir On - rich equLtnt rhombs in an icii otopic tex t ure 

t1 lth o ugh illdiv idu,ll rhombs .:Jre o ften smiillcr .lt Lht_• centre 

o f the l;urrnws (1':.-2J;u ) than at the margin~ (30-74u). Simi -

la r size r,ln<:JI.'S .1nd te x tures arc seen in the pervasive 

dolomite rnot tlc.s. In both cases, i ~ola.ted skeletal com-

ponents (echinode rm plates and trilobites) surrounded 

by dolondte rt-.ombs, but have corroded ma rgins. The rnott-

ling is seen in ,1 11 lithotypes except the oo l ilic, mixed 

ool itic, dnd in trac last grainstones. Two slat]es of dolorn-

itization can be distinguisheU in the calcarenites which 

flank Grey />\oundstone (BG-l). Both stages consist of 

euhedral, idiotopic , iron-rich rhombs, differentiated by 

their crysta l size; the first stage averaging 150u, a nd the 

Late r stage 600u "'-'hich commonly occurs in origina l sydep-

ositional cavities. 

Dolostoncs a nd dOlomitic siltstones l"lre common within 

the Oolite S<1 nd f'acies . The dolostones can be divided into 

;abrics which retain their original components and textures 

"ghost" relics, and fabrics wher: no original components 

textures are preserved. 

The original texture is best displayed J.:>y doloraitized 

oncol it ic grainstones at the top of the section to the west 
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Fig . 41: Photomicrograph (plane light) of dolomitized 
ooids . The original ooids have been replaced 
by several rhombs of iron- rich dolomite. Note the 
rim- cements around the ooid have remained unaltered. 
Scale bar is 0 . 45 mm . 

Fig . 42: Photomicrograph (plane light) illustrating a 
burrow in skeletal calcarenite of the Oolite 
Sand Facies . The burrow (centre) has been 
selectively dolomitized while the matrix remains 
unaltered . 
Scale bar is 0.45 mm . 
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o f Fort e <lll. 'l'hc u nly yrilin s ,left un<.l o l o rnit.Lwd tlrt.' e c /JIIJ o -

dern: plates, but they have corroded mur<Jins. The 

dolo11ite 'matrix' c o nsists of equant idi o top i c (7 5-2 50u), 

F'c-r ich rhorr·bs. ('"Dmponcnts s t ill idenUfiab l o in ttw 

'j.latrix' i n<: l udc S a lterell.:l, who se cone s h a ve been re p l a ced 

by cleur , non ferro<ln rhombs (50-JOOu) with the matrix in--

side t he conch consisti n g of smaller (25-75u), dusty rhon·bs. 

Oncoli.tes now co nsist of a nucleus of f ine l y crystalline, 

c loudy dolomite ( 5 0 - 75u), surrounded b y c l e ar,. coarser, 

hypidiot o pic dolondte rhombs (50-200u), J n d r i u:llle d with 

medium size ( 50-I25u), cloudy rhombs. A later stage 

ferro<ln, coarse (up to 2 rrun) dolomite with strained crysta l s 
\ 

(curved twins and undu l ose extinction), p<'lrl l y r e places 

the ear l ier dolomite texture of .s o me _of the onco1itcs. 

Do l ostones wi t h no prese..rved textures. consist of euhed-

ral rhombs ,in an idiotopic texture and may conta in up to 

50% quurtz silt. Textures with both ferroan dolomite rhombs, 

~ surround7d by a mosaic of coarser crystals, probably rep-

resent original burrows. 

Sil i cification 

Silicification is uncommon.' late stage und restricted 

to the Oolite Sand f'acies where chert replaces internal mat-

rrx in Sa l te rella cones and forms a fabric consisting of 

30% dolomi'te rhombs and 70\ chert. Very rarely, euhedral 

dolomite r hombs have been totally replaced by quartz. 
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Pressure so lu t i o n at grain contac ts du e to 

compaction is rare a nd is o n ly seen in Llo l o mit i c silt -

stones of the Oolite Sand Facies where quartz qrai ns 

Circ seen to embay one another. Stylolite<.; are common 

i n all of tile t:cdL:aren i te s and t wo types ca n be 

distinc;u ished: (l) Ir regular, non-sutu r ed seams 

(\V ,l nlcss , in p r e ss) . The scams ar e qcn t ly undu l atinq , 

often divide and re join, and are •lSSoc ialcd with thic k. 

(up to 1 mrn ) sty l ocumu latcs consisti ng predominantl +f' 

. l.J.Uartz, c l oy mineral s, and opaque minerals . (2) Clea n, 

sutured (Wanless, ~ress). 'l'he seams <Ire 

jagged of lo'<l ampli ~udc and with thin sty locumul ates . 
~ 

They t rend ma inl y pa ra l le l to bcddinq, b ut arc r.:1..rcly 

norma l t o t he bedding . 

It. is apparent by the concentration of quartz grains 

the stylocumulate as compared to the rest of. the 

sediment, and b y the visible dissolution, in 
/ 

of 90't o f some ooids, that dissolution was Conside rable. 

Styloli(izalion app.ears t o h ave occur red at several 

times d uring the history of the rock. as it nredat e s 

pervasive do l omitization in the skeleta l grainstone s (common), 

post-dates dolomitization of dolostones (rare) as part 

of the rhombs have been dissolved, . and post-dates 

dolomitization of the ooids in t he mixed oolitic g rainston e 

(rare). 
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Fractures .Jre rare and consist o f thin cracks {Less 

than 65u). The event occurred a f ter the precipitation 

of rim-cements, and W.J.S probably c oeval with the 

precipitation of erJuant ferroun pore-fi 11 cement which 

alw.1ys occl udes t he f r ac t ures . 

01/I.Gi;;NESIS OF OOIDS 

1'hc dia<wnct i c sequence o f r r cse r vat ion <~nd 

replacement o f ooids i s surninarized diaq rama tic.'l JJ y ( Fig. 

43). The o rder o f re:)laceJ:lC!Il is a l ways the s nme; 

l he i n itiul radia l-concen tric fabr ic consisting of a 

n ucleus (echi noderm fragmen t) surrounded by u rad LHi ng 

cortex o f c a:l cite prislns interrupted in the o u ter t.wo-

t h irds of the ooi d by concentric lamellae o f dark, 

possibly orqcmi c , milte rial, i s neomorphoscd to a single, . . 
c l ear , fer r oan pseudospar · Crys ta l {Fi!). 39) . Micritization 

(mi crite e nvelope o r pe Laid) sor:~eti r.~es precceds 

neomorphism. Partial ly neomorphoscd ooid s .1.re o nly 

rarely encountered, possibly suggesting a n efficient 

mec hanism of r eplacement . Doth ncomorphosed ooids and 

ra"~,concen tric ooids that did n;t undergo neomorphism 

were do l o mi tized in o ne o f several ways. CofMionly t h e 

oo i d is r eplaced by a sing l e , fer roan dolomite r h omb 

which occa s i onally overg rows t he margi n of the ooid 

(Fig . 40). Sevcrdl s maller'(25-60u) ferroan dolomite 

rho mbs o ften replace t he p;-e-existinq fab r ic (F'ig . 41) 

and soihetimes overgrow the margin of the ooid . The 
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nuclc~s· (echinoderm fragmenll is rarely !JrCscrvcd 

dolomitizeU oo i ds ant't ind i cates that some o f the 

radial-concentric ooids were dolom i t i zed without first 

undergo i-ng ncomoiphi sm, In mosl cilses, bot h nc omor-

phased and. doloMilized ooids are surrounded by a 

concen tric , ma rgina l l ayer o f dark possib ly organ ic-

r ich mate ri a l (Fig . 39) . I n all cases , r i m- cc("lents 

prec ipi ta t e d o nto lhc oo ids remain unal tc rc!tl unless 

the ma rg i. n o f the ooid (and the cement) is o vergn.,wn 

by dol omi tc r hombs . 

DI SCUSSIO!" 

Bi ocrosion, i n the form o f micro-and mac r obori iHJS 

p l ay!> a s iqni ficant r o le in lhe~,devclopment of modern 

day reefs IJ a mes , 1970; '"Br::omley , 1976) by wea kening 

skeletal frameworks and producing scdirr.ent. Al t hough 

the activity o f both mi c roborers (reor esented "by t ubules, 

micritic envelopes and pe loids) and macroborers {rep­

resented by. borings attributed to the morphogenuS 

Trypanitc~), is present,, their cont ribution t o the o verall 

fabric o f the rock i s minima l. The importance o f the 

mac roborer ·Trypcmites lie_s in the fact that it i s t he 

o ldes t macrobore r yet r ecorded (James , Ko bluk and 

Pembe r ton, 11 77) and thus has importan t implications in 

the evolution of mac r oboring organisms (Kobluk, James 

and Pemberton, 1978) . 
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Rim· cements 

The several types of rim-c emen ts, inclmlinq 

mi c rite , "''ere p r obably rrccipi t .ltcci i n .. numb(' r o f 

di aqcnct i c en vi rnnmc n ts . With t he ilb St'Ot:l' n f 

c h a r ac t e r istic eri t c ri a however, it i·s o f tr.•n di f fi c ul t 

t o p i n - poj nt the prec i se l ocation of prr>c i n i t<n lon 

of sor.1e o f tlu~ ceme nts , par t i e ul tt rl y .1s i t i s unwi s(' 

t o rely o n t lw CC'mc n t fabric alone wh i c h i s more rJ ftcn 

t h an not seen t o be Dre ci;->i t<\tc d in more t_h.m 

cnvironmcnt (Sch r o eder , 19731. 

The c l o udy f i b r ous cement is inte rpreted .\5 h c inq 

s ubmar i ne i n o ri g in f9r a · numbcr. of reasons . I I is 

fac ies s rcc l fie , (Jccur r inq on l y i.r1 the f!'lound:. t onC!s ii!;HJ 

ne ve r in t h o fl a nkin<; c alc a r enites . ruc i cs :.pcc ifi t:i t y 

of cements i s k nown only in submarine c n v i romncnts (.James, 

Ginsburg, Ha rszalek and CIHXJUette , 1976 ) . \<lh c r c present it 

always the first rim- ceme n t prec"i p itatCd b ut may be o ver-

lain by others. The cement is i nterlayered with internal 

sediment inside c a vities and l o o se, d e t.1ched blo cks .of 

cement occ ur wi th i n sediment , imp l y i ng Lh a L c e rnl!nt a ti on 

a n d s edime nta t l.o n were contempo rary. The fabri c o f the 

ceme nt is f i bro us a nd inc lus i o n - r ich, a c ommon cht~rac tcr-

istic ;Jf recent s ynsedi n:entary cemen t s (Brick e r, 1971 ; 

p. 4 7) . Last ly the c l o udy fibrous cement i s penetrated 

by borings wh ose vacan t cylinders a r e also oft~n 'occluded 

with this CCMC'nt . The penetrat ion of cements by boring:; 
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i.s o fte n used to <.lcn o tl! a submarine orly i n for 

(e . g._ Purser, 196 9; James and Kob l uk, 19 78) . 

l\ v olume tri ca lly impo rta n t rim-ceme n t t he 

syntaxi cd ove r gro•-.·th on ech i noderm p lales . Th i s type of 

cement ha s been i nlerpre ted in o ther rocks to bf' of 

sul>m<l rine or i yin ( Purser, 1969 ) , of vado se c riqin 

(Ta lbot~ 19 7 1), or phreatic origin (Evamy and Shearman, 

Hlfi ~,) . 'I'h f' non - fcrroa n na ture o f t h is c c rncn t in the 

rocks un de1· study , -.hich have a hllJh iron content 

(J ames and Kobl uk, 1978 ) suggests t hat iron was in ,1 

ferr ic- state , a bove the water table and in contac t with 

air so was.unable to be acco rrunodated in t o the c ryst a l 

l attice . The s ynle~xL1l ceme n ts were , therefore probab ly 

precipitat ed from meteoric wu t er s in the vadose 

(cf , Ta l bot , 197 1 ) . 

The vadose diagenetic environment was p robabl y 

the site of a cons ide:rable amount of rim-cementation, 

The block y a nd bladed spar cements are in t erpreted ,a s 

being of vadose ori g in as they show qeostrophic growth 

(Fig . ~8) with bladed spar o f len occurr infj on the under -

5 ide of shells growi ng downwards an d achiev i ng 

conside rahl€' leng th, while on the upre r surfnce of the 

shell, blocky , equant s par o f ' more restricted dimensions 

has been preciri tated. This'· denotes. t'hat the c ement wa s..;;· 

' precipitated unde r t he i nfluence of g rav i ty from meteoric 

waters percolating down through the rock. This type of 

geostrophic cementation is well documented from subaerial 

environments (e.g. Taylor and Ill,ing , 196 9 ; Purser, 1%9; 
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MuLLer., 1971) ,lnd is of t en kn ow n .1s qr<..~viL-tUon,ll o r 

s talacti tic cc-ment. The non-fcrroe~n n<~turc of these 

cements also infers a subaerial, v<:~Jose environment 

(Talbo t, 1971). 

'l'hc most difficult rim-cement lo interpret the 

radial-fibrous/bladed fabric occurrin(J on the oo i ds 

i n both Oolite Sand fa c ies and the O_i_ostrome facies. 

The ooids arc rimmed with a fibrou s/bl<ld!'d ccF.Jent nround 

thr:_ enti rc c ir;umference of the q ra in , but t.he ceme n t 

thickens uway f~om gcain contacts and into the pore' 

spa.ce. This impl i es that the i ni t ial pore srilce was 

' ' entire~y fillpd with pore-water, a situillion found in 

saturated conditions below the water table, c i ther-
1 

in u 

submarine or phrC>atic environment. i'ore-waters in the 

vadose en vi r onmcnt are often, r~tricted to grain contacts 

and produce meniscus cements (Dunham, 1971) , The 

presence of several laterally restricted erosion surfoces 

in the Oolitic Calcarenites (AB - 1) of the Biostrome 

faci es suggests that early lithification of the sediment 

occurred and may indicate a submarine' oriqin. Th e cement 

fabric is also simil~r to cements previously attributf~d 

to submar i ne environments (Purser, 1969). 

Circums tan tial evidence suggests therefore that the radial 

fibrous cements around the ooids may be synsedimentary 

and therefoue submarine. 

A synsedimentary (submarine) or~gin for a ~icrite 

cement is indicated for hatH the moundstones and inter -

particle be,tween grains in the ' gra!'lestone of the Oolite 
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S.1nd L1cics. Hp c cnl q r apcstonc5 r:;eport.Pd to he 

cemented by the precipitation of ar.:t rronit. ic micrite 

(Bathurst, 1971) and probably occurred in the rocks under 

st udy, Early lithification o f the mounds tones is 

indicil.tcd <IS the mud matrix {now microspar) is 

cl ~arly by macroborings (Trypani tes) sugge~ting that 

a micrite cement may have been involved. Mi crite 

cements of ~ubma.rinc orig in arc commonly recorded 

from Re c ent e nv i r onments ( Schroeder , 1973; James~ Q..!_ . 

1976) . 

Pore-fill cement 

Pore -fi ll ceme nts of anhedral Coarse nink 

calcite arc interpreted as being dcposi ted in the 

phreatic diagenetic environ Ment . The cements 

invariably ferroan implying that the i r on was in a 

ferrous (reducing) state and able to be incorpor ated 

into the crystal latti~e. Thi s process out of 

co n t act wi th air , below the water table i n the p hreatic 

zone (Evamy, 1969; Talbot , 1971; Bathurst , 1971). Th e' 

large size of Cr ystals relative to the vadose cements 

· i s also indicative of the ·ph reatic zone (Land , 1970 ; 

Thorstenson, Mackenzie and Ristvet , 1972; Steinen, .1974) . 

· Neomorphism. 

The most common type of neomorphism is aggrading 

neon-.orphism of micrite to microspar , o ften repor ted from 

ancient rock9 (Fo lk, 1975) and probably occurring in the 

phrea tic envi r onment (Bathurst , 1971) although there is 
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d1rect cvid~'I!C'C f or this. 

All of the ex,unples o f pseudosl)ar i n t h e rocks 

under study ferro.:tn '""hi c h infers th<tt the qrol•<th 

o f [H>0udoStJ.l r a t the expense of the oo id fab r i c or 

.:trchaeocyathid skeleton was in f luenced by the pore-

wa t er, almost c ert a inly in the phreatic en vi r onrne n l . 

'i'h 1s implies that the y rowth of neomor~' llic spar occ urred 

i n .:1 environment, ?rob.lb ly by the mi q r;1 t i on o f a 

solution fil m in a system o f pores between two cr ystal 

lat.t_ ices (On thurst, lq 7]) nnd incorp or.:~t ed iron 

ferrous stil e into the g r owing latti ce from t he ::-or e> 

fluid . 

~ I t is d~(fi.cult to usce rt ai n whether the t r ansition e~l 
fabr ic , rr. i critc - microsPar-pse udosPa r o b ser ved tl1e 

archacocyathid ske l etons i_s the result o f one two 

events of neo mo rphism. But if o ne considers that the 

g rowth of neomo r phic spar occurs by migr ation of a 

solution fil m between two crysta l lattice s with o ne 

crystal qrowing nt the expense of another (wet boundary 

migration of Bathur s t, 1971 ) , t_hP n there must bave been 

two stag"es of g rowth . The first stage .. o r "ru,lse" of 

wet boundary migration converted part of t·he micrite 

skeleton to ~icrospar and then stopped; the sefond stage 

or "pu lse " then converted the microspar to clenr, ferroan 

pseudospar and then either stopped, or continued. If 

the process continued past the terminati ng point of the 

firs t pulse, then the micrite skeleton was not con~erted 

, ___ to pscudospLir, but to microspar thus making the effects 
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of 2 ~u\sps indistinguishail lc (Fiq .4 4 ) , .~ llhouqh i t. 

c an be argued tha t the e xtent of pseudospar i;, Ct"!U<d to 

the .extent of neomorphism in the fi rst p u l se iiS pseudospar 

orily r ep luces microspar. 

. Aggrading n:eomorphlsn o f some ooid~ ,, Jso pre.'ic l1ts 

intcr est. i:'lg problems . Very of t en the ' s-host ' nucle us 0 f 

the acid , u lmost' a h,a.ys an echinoderm p late , . i s present 

and ~s <li'ways non - f e rro an wherea s t he cncirc l i nq c ryst o. l 

of pscudospo. r is aL.•ays of fer r o an cul c i t c though bo th 

nu~leus and pseudospar are optically a single c ryst.,l. 

Unaltered ooi ds seen i n thin-sect i on gcncral;ly consis t 

o f 2 to 3 con c e ntric l aye.rs of what appea r ~; t o be 

o rgur.i c -ric h mat e rial . ~-;'hat has h,, EJ~cncd thcrcfon~ la 

those l uycrs during the growth o f p scud o s p .:Jr? 11\ t ho uqh 

lit tle is kn o wn on the subject , it is qcnc r illly beli e ved 

that o r ganic materia l inhibits t he precipitati on of 

ca l cite (Bath urst , 19 71 ) . 'Pe trographic o b servations 

s uggest that the o r1,a nic material has been pushed to the 

marg in of t he o o id during the srowth of pseudospar, as 

re is a n u sua ll y thi ck rind of dark material i n that 

p osition (fig . J ) . The optica l relati o n sh i p beLwccn 

the nuc leus a n d the pseudospar suygests thi'l t t he rsc u dospar 

is a neomor phi c syntax ial rim of an echinode rm ·o l.1te. 

But if t h is. Js so, why i s t he inargin of · t h e ooid never 

breached by pseudospa r? Suc h de t ai led p roblems 

beyond t he scope of this study. 
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STAG£ 1: INITIAL HICROC RANU LA R 
SKEL ET ON 

STf,Gf 2· FI RST i'ULS[ OF \lET 
BOUNDARY ~:1 GR·'I. T I Qr~ 
P,rt o f the or i '1 in.11 m i c ro~ 

nrar~u l ar ~ke l e 1 on i ~ agyraded 
t o rric: rosrar ( ~-40 ) . 

SL'I.C£ ): SfCONO PU LSE OF 'riO 
60UN 0/\ RY ~11 GRfl T I 0~ 1 

Hore o f thl' or i q inal m i c r o ~ 

q ranu l."l r ske le t o:1 i.., a ~ 19 ' aded 
lo microspa r. Th e P>i cros'>ar 
formed i r stace 2 i s .3<J<Jraded 
to pseurlosp;n 

Fig. 44: Sketch illustratjnq .:~qqradi n<J ncomor !Jhi::;m of 
cnchaeocy<:~thid s k eletons (based on f ig. 38) . 
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Dolomiti'lation 

The selective dolomitization of certain struct'ures 

[lrime problem of the rocks under study. This 

phenomena , whether it is dolomite mcttling , or the 

selective dolo1':1itization of sedimentary Str').lctures is 

well documented in the rock record (Beales, 1953; Sh1nn, 

1968 ; Kendall, 1977; Morrow, 1978), and is usually 

CX[)lained by sediment hcte r ogenet ty which tlllows ,dolo ­

mitic bri n es to selective l y p<!'sq through th_e rock . This 

' prob a bly tht"' crtse with the rocks under study . The , 

two features l•.d-:ich are most often selectively d~lo-

mitized <~re t!)c dolomite pods which occur in the 

Dolomitic Hdu ndstonc · lit hofacies (BD-~) and bioturbdtion 

(includinq bu!'_rowinCJ) features COrnllon in the Oolite 

Sand Facies. 

I n the case of t he d(') lomite pods, the sediment 

heterogeneity may have been caused by the ear l y lithifi -, 

cation of t h~ mounds'tone relative to t he pods, Evidence 

for synsedimentary cementation of the rnoundstone has 

already been pr€'sen 4!'ed (submarine ccmer.ts· and micrit.e 

cut by borlnqs) and a l though . the ~ature of t h e original 

sedimen t of the dolorii t e pods has been obliterated , several 

struct u res a r e still prese r ved. F or .example, on spme 

wea_t~er!'!d sur f aces , horizonta l lamination s and t/D 

fossils (burrows, track. , and t r ai.ls) ar~ see n ~~~ 

Ne\ther l aminat i ons nor trace fossils occ ur within t h e 
\ 

mounds tone s u gge'stin<J that the t wo adjacent deposits 
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lliffen~d g re.:~t ly in their original forr:t, the moundstoncs 
I 

~eing lithified to some degree, and the pods remain~ng 

as soft sediment. This would provide the necessary 

heterogeneity f o r the dolomitic brines to preferentially 

select the more permeable pods (cf. Kendall , 19 77). 

The dolomite mottling caus ed by the preferentia l 

dolomitization o f burrows and bioturbation fabr ics 

has been described several t i mes from tflc rock record 

(Kendall , 1977; Morrow, 1978) . This fabric occurs in 

the biotiubuted sediments o f the Oolite Sand Facies in 

lhe rocks under study . Heterogeniety in the sediment 

was established possibly because the bi oturbated sediment 

'"'as more porous then the matrix and was therefore 

selectively do l omit i zed (Morrow , 1978). As tbe matrix 

is a grai ns tone! , however , the r eVerse wou l d !JrobaUly 

have been true as grainstones have very high initia l 

poros i ty {DunhaM , 1 9ff2) . The <~lternativc is that the 

matrix {grainstone) underwent early l i thification 

{vadose) relativ'e to th.e bioturbated sedimen \ r-einained 

uncemented and hence more permeable and suscept i ble to 

dolomitization by percolating brines {cf. Kendall, 1977).~ 

If "the mechan ism of selective dolomi'tizat1.on H~s , 
by the percolation 2f brine s t hough a permeable versus 

non- permeable sediment then dol o~itizati on must have 

been r elative ly early, before li thification of t'he sediment . 

Petrographic eviden ce suggests, however , that dolo~itization, 

was diagenetically late, i.e . pOst phreatic {last stage) 
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cementation and si:ylo litizati o n; cvicJcncc cont r.1ry to 

the hypo_t heses . Field evidence on the other hand 

indicutes t ha t t he dolomite pods were lithi ! ied prior 

to the intense stylo liti zat i on t.ha t affected ~-he 

moundstones. Stylolites do not pass throu'lh the !>Qds 

but give the impression that the moundstone i~ "w rap~lcd 

• ar<;>und" the pods ( rig . 15). This implies two thinqs: 

(1). That the pods '"'~re lithificd relati vely c.1r l y 

(prc-styloli tiz,l.tion ); (2) , The ?Ods did n ot cons ist 

of calcite when they were lithified o tiH'r'.•l i S•' t~"' 

stylolites wou l d n o t have avoided them. 1\ loqicC~ l 

planation there f ore is that the pods were lithif i cd by 

earl,y dolornitiz<ltion , the f <'lb rics o f whi dl h.wr 

been masked by il later event of d o lomitizuLi on . The 

early do lomitiz.:~t i on may have ·acted as .1 centre o f 

nucle ation f o r the l<1tcr dolomitization (inco r porating 

several sta•JCS) which W<IS however, more Hic.ll'Sprcad , 

involving d olomi t i zat i o n o f pt'reatlc cements , !)Sl'Udosp .~r 

and occasiona lly other sediments . 

The timing .:1nd environment of P.arly,._.dolomitization 

is not clear as the fabrics have bee n m<~skcrl l1y J:1tcr 

dolom'i t'izati on . · The dolomite was prob<1bl y not formed 

i n the Submarine environment as thi s c::ener<1.lly requi re.s 

salinities between 4 and 6 times tha t o f n o rmal sea-

wate r and is usua l ·ly associated wi th the e 1 i min"at"ion o f 

calciuq~ sulphate (Liebermann , 1967). There is no 

evidence of hypersal ine conditions cxistinC] in the Facteau 
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Form<1ti on as the o rganisms are cons idered stenoh aline 

Weckel, 1972) and no evaporite deposits are present. 

The most likely env ironment for t he e<trl; dolomitization 

is at the in t erface between meteqr i c phreatic water a.nd 

marine phreatic water (zone of mi xin<J), where carbon 

dioxide- rich meteoric waters _infiltrate the scdiffients 

(selectively) and mix with sea-water and p r ecip.i tate 

dolomite, (Land , l973a,b) . 

~ty l ol}_tj~z~tion and Fr_a_ct ur iny 

Two type !"l of stylolites arc seen to be facies 

specific in the biostrome complex. Clean, su tured seams , 

rjenera lly of low amplitude and often later,, lly persistent 

are res tricted to the calcaren ites. In the mound stones 

stylo li tes occur as anastomosin'] s·w.:~rms of f:inc non-

su.tured seams, grad i n<J into horse-tail stylolites_. The 

reason for the di fference i n stylolite type is probab ly 

related to t he percentage of insolublcs present in each 

lithol ogy. The relatively hi o h silt ,1nd clay content in 

the moundstones conce n t rates at stylolite seams 'Nhere i t 

eventually in.h i bits f ur t he r solution by ' clogqing up' 

the scam . This initiates s ol ut ion in another, adjacent 

area, resulting in a mosaic of anastomosing so lu t i on 

which eventually lead s to a nodu l ar appearance in 

the roc k. Coarse skeletal mate~ial, in this case 

archaeocyathids, are known to provide structural 

resist a nce to stylolitization an d may define the p os i tion 

and size of a nodule (\iar:tless, in press). This is 

certai n l y the case in moundstones where s ty loli tes are 
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often seen to abul a<Jainst archaeocyatt1id skeletons. 

' The calc"'-rcnite5 contain mu ch lc::;s insoluble 

material a~d ~~ ~ result solution is not inhibited along 

any seam allowincJ the development of clean sutured 

which arc well-sPaced and occur in much fewe r n umbers, 

than the non-sutured seams of the mo undslones. ll oweve r, • where the silt and c lay fraction is hi gh in tt:tc 

ca lcarenites, anastomosing, non-su t ured seams do occur . 

Stylolitization co-occurs wi th fracturing and the 

precipi tation of iron -r ich pore:fill cement although it 

is evident that either stylo litizatio n or fracturin g is 

t he dominunt form of pressure release in any one th in -

sec t ion studied. 'The abundant styloliti7.ntion is ;,n 

obvi ous source of'the iron-rich pore-fill ceme nt in t he 

phreatic en ·;i ronment. 

Surrunary of Diagenetic History 

'i'able III summa r ize s the diagenetic histo r y a nd 

relates petrog raphic fabrics t'l!l diagenetic processes 

and environment. Fabric$ are interpreted to ha ve 

formed in submari~c, mixed meteoric phreatic-marine 

phreatic, vadose phreaUc, and a late uns pecified 

diagene tic e nvironment. 

Submarine diagenesis was restricted to bioerosion 

(by both micro-organisms and metazoans ) and facies 

specific cementation, lithifying the moundstoones and 

cementing the ooid grainstones . 

As t he sediments were buried, selective dolomit-

-....t i on , and lithification of pods and bioturbation 
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TABLE r LI. _summary o f dL.1gene tic rroce sses and fabrics. 

ENVIRONMENT PROCESS 

Bioerosion 

SUBMARINE 

FABRIC 

macroborincJS (Trypanites) 
microtubular CGirvanella) 
micritic envelopes­
peloids 

-------- ------1-------------------4 

ZmiE Of 
MIXING 
(meteorfc 
phreatic ­
marine 
phreatic) 

VA DOS~ 

PHREATIC 

UNSPECI FIED 
.{Late diagen-

Cementation 

Dolomitization 

Dissolution 

Cementation 

fracturing 

Dissolution 

Stylolitization 

c·emen~tion 

Neomorphism 

Dolomitizati on 

etic~ Silicification 

Stylolitizati Cfl 
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mi.cri te 
cloudy-f ibrous cement 
radial fibrous cement on 

ooids 

selective dolnmitization 

rare solution cavities 
rare l eaching of aragonite 
she ll5 

synt<txial cement on 
echinoderm plates ~ 

blocky spar cement 
bladed S?a r cement 

small factures 

rare cavities 
common lea ching of arag­

onite shells 

stylolites 
nodula r l;ledding,-,----------j 
fcrroan pore-fill cement 

microspar 
!JSeUdOSj:ar 

dolomite 

rare s ilica rerlacement 

r aro- stylolites 

J 



fa b rics occurred in the zone of mixing between 

\ meteoric phreatic and marine phreatic waters (L<J.nd, 197-3 ) 

a, b), Bur i al was probably not great as t he sediments 

wer e then uplifte'd in_to the vadose diilg~nti c 

lnvironment where rim-cementation occurred affecting 

all lithologies . Minor dissolution must have occurred 

at this time as rare small_ solution cavities nrnJ l each ed 

aragon iti c shel l s <~re rimmed with " vadose cements. 

EX?OSUrc to the vadose environment must have been for 

a considerable time as the cements are quite wel l -

developed in an environment where diagenetic processes 

notorio usly slow (Land, 1970; Stejnen , 1974), 

Burial into the phreatic environment caused 

extensive fracturing, disso lution -of ara<]oniti c shells, 

stylolitization, pore-fill cementation utilizing iron-

rich solutions rele ased.by stylolites, and neomorphism. 

Burial was prub.:tbl y considerable to cause such 

extensive pressure solution and fracturing from overburden. 

1\ l<J.te, undated dia9enetic event caused further 

dolomitization, minor replacement by silica, and rare 

sty 1 oli ti za ti on. 
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C!li\P 'I'ER V : PALI::OI::COLOGY Of THE BIOS T ROME FI\C lES 

INTRODUCTI ON 

This is a q ualita tive review of t he distr i bution of 

org an i sms in the rrou'nd s and ca l careni t e s , the r o l e s that 

thes e o r r; a n isrrs played , and the struc ture o f e ac h 

organ i sm a s soc iation wi t.h r ega rd to trophit; q r o"U!?ing . 

Data was obtaine d from field o bse r va tions and 

supp l emen t e d by t hin - sec tion s t udy . Where o ut c r o p wa s 

sufficient , metre s q ua r e 11 uadrants were marked of f and 

the orq.:1nisms c oun t ed , with part i c ular attent ion beinq 

paid to t he mor phology , size , and prcscrva tion of , 

archaeocyathids i n t he moundstone . Whe r e outcrop was 

r e str·ic t e d , a reil s o f va r yin•; size s were coun ted and the 

not ed. 

In f o rma tio n r e <}arding t he dens i t y o f or~anisms in 

the mounds is bia sed .because of the i ntense st~tlolitization 

that has masked t h e original di s positio n of the skeletons 

a nd has cau5;ed severe vert i c a l di slocation s o f i nC:ividual 

skeletons re l a ti ve to each other . I t is noticeable 

that the 1:1ud ma t rix was dissolved mo r e t han archaeocyathid 

ske letons as the stylolites o ften be nd aro und skeleton s 

or abut acJainst them . In View of t he sty l o litization 

probl em , t he density of the distribution o f o r ga n isms is 

considered a maximum figure and was probably less a t t h e 

time of depos i tion. 

The aute cology (1\ge r, 1963) of the main organ1sms 
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. ..,.hich occur i n t he mo unds and ca lc,Jrcnit ('."i of th e 

BiO:.ytrome ra_::ies is described and discus sed. The 

synecolorJl: (Agcr, 196-3) de s cr ibes thrt! e distinc t f aun<Jl 

asscnihlac!CS: the mound assemb ... aCJc , the ca l c a r-en i tc 

' assembla<Je, and a coelobitic [ca'&ity dwl'llinq ) asscmbLl<JC 

which occurl'l.in some of t-.he mound lithofolc,ics : The • 

mound and calcarpnite assemblages·· are cons Hlercd to be 

oriqinal se;ara t c "communitie~ y becdu{('; { 1 ) There i s 

llttle cvHlcncc, of transporta"tio" of skclC't,ll clcmt•nts 

in either lithofacies, a gre_u t proportipn of t he mound 

organisms are prcservc'd in sit.u, and skc t c t<J l clements of 

the ca'lcarenitcs are mostly-unbroken, althyugh often 

disar tic ulated ('..,rhich is due t o sponLmeous disintcq r ,'Jtion 

' u pon death) , (2) 'The separation of orqilni sms 

betw~?en the 1110,11lds and calcarenite!> is too cle<1 r 

to be. fortui tous and must reflect the or'i<Jinul distributi o n 

of the or')<lflisms . 

The relative distribution of the br<1anisms in the 

various moundstone and calcarenite l ithofaciC's is l a bulated 

in Table rv and is dis cussed later. 

AUTECOLOGY 

1\rchneocyatti'ids 

Archaeocyathids. ar-e _the princ'ipal s~elet.Jl components 

in the Biostrome racieS . Very little is known of their 

paleoeco l o<Jy (Hill, 1972), but by countin<J , mcasurinq, 

and noting morphologi,.es within the five lithofacies, it 
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TABLf IV . Distribution and re la ti ve abundance of orqa n1sms 
in the fi v e units ." 

DOLOM I TE RED NODULAR 
MOUND MOUND MO UND 

Mound Ca l c . Mou~ Calc ~ound Calc 
ARCHAEOCYATHIDS 
Cones / Stic ks A SD A SD 

Ret ilarnina 

TRILOBITES R p ,P 

BRACHIOPODS~ C/A 

COELENTERATE A -- c 
' RENALCID ALGAE A 

I Epi e hyton 

1 Girvanella CIA 

NON - SKELETAL 
STOMATOLITES 

Tr;tpani tes A 

SPONGE · SPICULES 

ECH I NODERMS ' SD A c A SD 

HYOL ITHIDS 

Sal tere l la 

FORAMINIFERA 

•'. Archaeotryoa 

'" BURROWS ( ?1-IORHS) 

~ 

GREY 
MOUND 

Hound Ca l c 

A SD 

p p 

C/A --
R 

C/A --

so A 

. 
OOLITE . 
BIOHERM 

Mo und calc 

so 
c 

p " p \._, 

A 

C/A 

SD 

C/A 

p • 

-\ 

...... 

KE Y 

- Absent 
- Rare 
- Pres ent 
- COMmon 

A - Abundan t 
so - Skeleta l 

debris 



was hoped to ascertain w~ether r.:erta i_n petrameters cou ld 

be correlated with environment. Counts were made in- four 

of the five li tho facies. Because of the l.ladly weathered 

surfaces a nd s t ylonodular structure o f the Nodular 

Moundstone . (BN - 1) ITO count was possibl~ al t hough it was. 

noted t hat forms p resen t appeared to be large diameter . .,.ide 

cones, funnels , o r bowls. 

The diversity o f archaencyathid t <1.xa i n the Biostrome 

Facies is very l o w, 'consisting predo~ina!lt ly of 

Metaldetes prof undus, llrchacocyathus a tlant i c us 21nd a 

new genus and mo rphotype , Retilamina a mouren.sis (Debrenne 

and James, i n pre p .). Retilamina is dome - shaped to sheet-

l ike , s i ng l e -wall e d with a reticulate s kelet on , and an 

uppf?r surf.:~.cc whi c h has large po r es . . s econdary thickcn i nq 

of t h e wall is common . I ndividuals can bo up to sever a l 

centi metres l ong but the wall is only l - 2 mm thiCk 

(Figs. 4 5 and 57) . 

When the relative proportion o f st i c k - forms (!1.:. 

profundus and ~ atlanticus) aga i nst cone- fo rms (!i!_ profundus) 

is plotted f or each lithofacies, a t r end. i s seen (see Fiq . 46). 

The l ower outcr ops of r.rey Moundstonc at Blanc Sabla n 

consists o f sticks and cones in a ra tio of 8 .: 1; the Red 

Moundstone consists of sticks and cones in r o u ghly equal 

proportions, while t he Dolomitic Moundston e h<is sticks 

and cones in a ratio of 1:10. • Th is gives a further 

indic ation o f the distinction between the five lithofacies 
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Fig.45: Cliff-section exposure of the Grey Moundstone 
lithofacies (BG-1) at Diversion Reef . Laminar 
Relilamina (arrowed) support a pendant growth 
of calcareous algae (dark areas, labelled A) 
beneath them. The lighter areas consist of 
lime-mud matrix. 
Scale is in centimetres. 
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so 

IS 

X - Ool~r.1itic MoundstorJe litho facies(B0-1) 

r: - Red Muundstone lithofaces (BR- 1) 

•- Archacocyath id Bioherm lithofacies 
{BB-2) 

+ - Grey Moundstone lithofaci es (BG -1 ) 

Blanc Sablan 
(upper hor izon) 

Blanc Sab I on 
~ 

Fox Cove 

L'"nse Amou r 
(0) 

~ Bl ancSa blon 
~ (lowe r hori zon ) 

2S so 7S 100 

PER CENTAGE STICK FOR~1S 

Fig. 46: Plot of re lative pe.rcentagfil of ca1es versus s t icks 
in varirus lithof.::~cies. 
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althoU<Jh it i5 not c l ear .Jt the moment. wh.<t ~:en' l ht.• 

controllinfj fac t ors in the distr ibution of. <1.rchaeocyalh i d 

rnorphotypcs between lithofac ie s . for the purpose o f 

the synecology, howeve r, archacocyathids .:i re considered 

as sess i le , bethon i c organisms feedin g out o f Lhe \'i<ltcr 

column , probuUly by filtering (Hill , 1964 ; Balsam , 1973) . 

Calcareous algae 

Renalcis , rcnalcid a l qae , and Epiphyton 

The c alcareous algae Renalcis, ~J:.!l_y~o~, and a 

Renalcis-like orqanism (he r ein termed rcna l c i dl .1n.' 

restricted to the mounds and have the Silme ecol o<J ical 

fu n ction, so arc described together. Preliminary notes 

on thrir affini tics and p r ev i o u sly dcscr-ibC'd p.-llC"oe>co ln'ly 

given scpcrately , however. 

Re'ncJ.lcis (Vologdin) consists o f hollnw, infJ,,tcd 

c hambers wit h thick ca l c areous walls and c.:1n occu r either: 

as indiv idual chamber s or as botryoidal oqqrcq.:1lC'S 

(Riding and Toomey, 1972) (F' i c; -4 7) . Although this organism 

has a wo rld-wide distribution <:md is quu n t it ative l y very 

important in Paleozoic r eefs (Riding and T oom~..:y , 1972; 

Wray, 1977) the biolOfJical affinities nf Rcn u!_c~ arc sti ll 

uncerta in. several aut h ors be li eve th;Jt ~~ is, 

f oraminifcr,ln( El ias, 1950; Ridi ng , 1972 ; Rid i nrJ and Bra!';icr, 

1975) on t he basis that t.he size and morp h oloqy 

consis t ent wi th F'oraminife r a, and that t t)e ch.:mbe rs are 

a n o r der o f rr.agnitude l arger than those as·sociatccf with 
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Fig.47: Photomicrograph (plane light) of a clump of 
chambered Renalcis occurring in the Red Mound­
stone lithofacies (BR- 1) . 
Scale bar is 0 . 3mm. 

Fig.48: Photomicrograph (plane light) of tubules of 
Girvanella encrusting the central cavity of 
an overturned archaeocyathid (right) . Note 
the penetration of Girvanella by the macro­
boring ichnofossil Trypanites (bottom centre) . 
Scale bar is 0.45 mm . 
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blue- g r ee n u l(fOC (sec discussion in !Hd l mJ .Jnd Brilsicr, 

197~). They are therefore consi.dercd as u separate family 

( Renalcidae , n. fam.) Of the Parathuranuninacea -(Riding 

a ~\ Brasier, _1 975) . On the o ther - hand, they t~rc o ft e n 

c~~dcrcd as b lue - green al<Jae O< o rd c , 1973; llofm<tnn , 

19 751 or at lcas·t pr o blemati ca l bl u e - gre-en alq a e (Wray, 

1977 ) , A reocent wo rk (Brasier , 1977) illustra(cs well-

preserved Renalcis in onc9lites fr om lhc Ei l l'.:in llubh 

Fo rmation o f the ciurness Group (Lower Cambri ;,n) in 

S<;:otland. Brasier (1977 ) des cri bes t he walls as 

.cons isting o f a cha~n o f mi nute coccoid ce lls with the 

.packing of the cel:ls re ducing towards the ccn tr ,,l 

.• ch.:~mbCr. nrasl.cr (1977) concludes th.ll tiles!' r<'sPmhlc 

colonies o f co~coid c yan ophytes (bluc - q r ccn atq.1ed 

emb~d in a gelati n ous e nvelope, but concedes that 

Rena let. may be a_!l a.rtificial o r polygot qenus (Bras i er , 

19 7.7) . In the light o f this study, Renul cis i s considered 

here as a cyanophyte .(blue-gr c.en algae). 

Epiphyton (B o rnemann ) consists of densely branched 

c alcareous t halli with no d i scernable inte r nal structure 

and is qenerally less than o n e mm in ov e r a l l d~ mc n sions 

(Riding and Toomey, 19 72; \'lray, 19 77,.1 , I t i!> !'J l ,,ccd 

in the Cyanophyta (as problematical bluc - grC'cn a' l qae l b y 

Wr ay (19 77 ) because of t he resemblan c e to Renal cis , t h e 

lack of micro-structure in most specimens, ,1nd the non-

definltive illustration o f claimed micros t ruct ure . 
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Epiphyton is generally considered a member of the Rhodophyta 

(Red algae) by most authors (Riding and Wray, 1972; Riding 

and Toomey, 1972; Korde, 1973), based on the cellular 

microstructure with cell -wall· pores and sporal)gia, 

noted by Korde (.in Wray, 1977), and this interpretation 

is followed in tt"!is study. 

Epiphyton and Rencdcis ~onunonly occur in the L~er 
Cambr ian (Korde , 197 3; Brasier, 1976; Zammare iio; lq77 ; 

James and Kobluk, 19 78) sometimes forming alga~ mounds, 

and also occurring in .massive algal limes.tone (Za~areiio, 

1977). In Lo~er Ord~vician mo.unds, Epiphvton and ·Renalcis 

are mutua lly as sociated as sedimen t binders and 

stabilizers by forming dense clusters in sediment 

between and s urrounding the mound forming o rganisms 

A"rchaeoscyphia and Calathium, but preferring a firm sub-

strate (Riding and Toomey, 1972). Renalcis also encrusts 

other or'ganisms but it is not certain whether Epiphyton .. 

encrusts in the same fash1on , Both Renalcis and Para­

epiph;rton (later placed as junior synonym o f Epiphyton 

(Riding and Wray, 1972)) are regarded as qood indicators 

of reef facies in the Upper O&vonian, where they occur 

encrusters, sediment stabilizers and binders (Wray, 

1972)'. 

Zhuravleva (1960, in Hill, 1972) claims that Renalcis 

and Epiphyton are mutually exclusive, with Renalcis occurring 

with archaeocyathids at depths down to 50 m and Epiphyton 

occurring ~>lith archaeocyathids at dc:oths between 50- 100m, 
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iJ l thOU<Jh Rid ing 11q 75) qucsti_ons the> uss~··i<~ t.ion . 

F'o l lowi nq Kob luk and James (i n p:cp.l, .:~n u r q.:lnism 

similar to both Renalcis and E:piphy ton is r e f e rred to as 

renalC"id alg ae . r t resembles Rl:na l cis si zr , mode O'f 

growth., <J.n d ocCurrence but f f ers in beinq un c humbcrC'd, 

morcurborcscent , ttnd branch ng. I t resembles I::pi p hyt:a n 

in being branc hed , unchamb red ·, and arbo rescent but 

diffe r s i n bein!J l £!_r ger Figs . 57 and 58 ) . Th C' r e n ulc i d 

al !JilC always occurs with Renalcis, s o i n t hC' f.ollo~oodng 

text the "two o rgan i sms are both refe rred t o as r e nill c id 

algae unless s t a ted otherwise". 

1'he pa leoecology o f r cnal Ci d a l gal! a nd ~piphytcn is 

essen tially the s.:tmc i n t h e Biostrome F.lc i cs o f the 

Forte au- Fo rm.1t ion . They . ure a 11 rest r i ctcd ! o mo llnds l onc 

lithofacies <Jnd a re comp l ete l y abs.ent from the fl,lnk ing 

calcarenites . The y are , however, totally a bsent from 

the Dolomitic tloundstone {BD- 1) a nd . t he Nodular Mo lllidstone 

(BN-'1) bu t a b undan t in t he other ttee mound5tonc l1t ho­

fac ies (BR- 1, BG- 1, BB- 2). This p ttern o f occurrence 

is the same as t he di s tributiOn o ~t.tldmtn a with wh1 ch 

t he calcareous algae are a l ways in timate l y ass oc i c1ted 

( Figs. 45 and 57), a Jtho ug h they do occur i n o ther 

situat ion s a s wel l. In all occurrences, rcn<~lcid ·alqaP. 

are the most co!Mlon. ~ is con s ide r ed rare althoug h 

this may -be d ue to t he difficulty in separa ting the 

o rgan ism within dense g rowths of rcnalcid a l 9ae . 

The ma i n hab"itat o f calcareous algae is in cav ities , 
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<Jrowwq as rcndan t s from ~he unders i des of ~~ 

(Figs. 45 and S7) which forms the roof of lhe cavities . 

These algae a lso co~runonly occur as thin (sev€lral 

millimetres maximum) encrustati c ns on the oulside of 

archacocyath id cu p s ancJ. coelenterate skeletons but · often 

have geostrophic growth, wi t h thick est accumuL1tions on 

the bases of skeletons. 

The role of the c al careous a lq ae in t h(' mounds is 

envis<HJCd as be ing two-fold. They nrc the primary 

producers (autotrophs) i n the trophic structure in the 

mounds, and also act as sediment stabili zcrs and binders 

when they occ ur nn the outside of skeleton s (cf. niding 

and Toomey, 1972). 

~ 
Girvanella (Nicholson and Etheridge) is ,1 f l cxous , 

tubular fi famcn t of uniform di.Jmet-.er 1 composed of 

relatively thick calcareous walls and i s.qcneral ly accepted 

as a membec of the Cyanophyta (blue-green alqae) (Wray, 

1977), althouqh it has also been consi dered us a Fora-

mini.fera, spon<]e, or green alga {see discussion i n "'Rid ing, 

1975). ~ has often .been placed more pcecisely 

into the family Oscillatoriaccae (e. g . J,,1uritz c n Lind 

Worsley, l'J74), but !J robably represents the rcrn~lin s of 

taxa possibly belonging to several families of 

blue-green algae (Ridinq, 1975; Wray, 19 77) I particularly 

when it i s considered that most of the features by .. whi ch 
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extant blue-green alqae are classified are lost durin'J 

fossilization (Riding, 1975; 1977a). 

~-he recorded geologic range of Girvanella extends 

from the Cambrian to the Cretaceous (Riding, 1975), 

though extant forms are being documented (Riding, l977a; 

Kobluk and Risk, 1977). Most of the fossil forms of 

Girvanella are from marine sediments although freshwater 

forms from Cretaceous lacustrine limestones · are known 

(Colin and Vachard, 1977). Girvanclla is often used as 

a shallow-water dep-th indicator but this may be suspect 

if Girvanella is indeed representative of a number of 

taxa, each with its own tolerahces (Riding, •1975). 

However, it hils been cautiously suggested t!at the 

prostrate gicowth form of r.irvanella (Agathidia) compared 

with the erect growth form of the morphologically similar 

Q.Etonella (ThamnidiaJ may indicate that Girvanella 

inhabits high light availability areas (i.m~lying shallow-

Water) whereas the phototrophic growth of Ortonella 

suggests physical confinement as regards light availability 

(and hence sometimes, but rtot always, dee?er water) 

(Riding, 1977al. 

Girvanella has been described from many environments 

and as performing many roles in its geologic history. 

It is ' commonly found as an encruster and binder in back-. 

reef environments in the Silurian (Lauritzen and Worsley, 

1974) and Devonian ·(wray, 1972). lt is documented as 
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epdolithic (bori nCJ) o rganism in the Lowe r Ordov i c ian 

(Klement a n d Toomey , 1967), and . occurs in clusters 

or- 'nests' in the back-reef environment in the Silurian 

(Lauritzen a nd Wo rsley, 1974). Girvane l la is commonly 

the c hi ef . component in s keletal ~tromatolitcs ( Lcrm a fte r 

Riding, 19 77 b) in the Upper Cambrian (i\hr, 1971 ; 

Cha,fctz, 1973), where i t also • f ormg biohe r ms . I n these 

bi0herms Girv<:~nella has a dendriti c qro wth f o r m whi c h 

baffles sediment by 9rowing vertically in t .1 ng l es of 

almost strui ght tubules t o f orm a series o f bushes up 

to five em high which toc;;e'=.her constitute a b ioherm 

(Ahr, 1971}. 

Girvancl l a occurs in the Biost r ome F'.-t c i cs and 

also the Oolite Sand Fac ies in a variety of motles o f 

life: (1} e nc rus ting onto s k e l etons; ( 2) as s ke l etal 

stromatolites and o n colites; ( 3 ) in 'nests' or c lusters; 

(4J ns an endolith. 

I::ncrustiniJ Girvanella: The most common mode of 

occurrence far Gi rvanel.la is as' thin encrust.ltions onto 

other skeletons, particularly arc haeocy.athids (Firy.4Bl . 

This occurs in all of the mounds tone li t hofac i es except 

the Dolomitic Moundstone (BD-1) and is parti c ulculy 

common in Red Mo unds tone (DR-1 ). More commonly, Gi rvanc lla 

entrusts the top and sides of archaeocyathids but it also 

occurs as a coelObitic encruster on the undersides of 

Retilamina. Girvancll:a ocCasionally enc rus t s the upper 

surface of trilobites in skeletal grainstone , mixed ?C \id 
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packestone <l'nd mixed oncolitic grainstone of the Ooli t e 

Sand Facies. 

Girvanella as skeletal~ stromatolites and oncolites: 

The microstructure of some of the stromatoli tes in t_he 

Grey Moundstone (BG-1) and the Oolite Bioherm lithofacieJ; 

(BB-1) consists of Glrvanella tubules, lit the top of 

the section at L' Anse Amour, Gi rvanella stromali tes , 
have a structure consistirig of laterally li nked 

hemispheroids t>ith close lateral linkage (LLH -C of 

Logan ~ tl• , 1964). The mi~crostructu.re consis~ 

prostrate Girvane l la tubules which cumulative,ly "'torm 

vertical b\..lsh-like • structures that possibly had the 

<1bility to baffle sediment . Th e C:::irvanella stromatolites 

embedded in Oolitic C::lfcarenites {B£3 -l) form small 

ovoids in plan (diameter of several centimetres) and 

have a ~tructure of laterally linked hemispheroids with 

spaced· lateral linkage. This · grades vert.i,cally {within 

one em) into la terally linked hemispheroids with close 

lateral linkaqe (LLt:-S/LLH-C of Logan ~ ~·, 1964). The 

/ 
type I, LJ! structure is interpreted from modern stu.dies 

to occur in the marine, intertidal mWHlat environmen_:, 

mainly in protected re-entrant bays and behind barrier 

islands an? ridcjes where wave-actio n usually slight 

(Logan ~g., 1964). 

Girvane11a oncol,tes occur commonly in the mixe"d 

oncoU tic grainsto~es of the Oolite Sand Facies (Fig. 49) 

where they h<lVe a structure of concentrically stacked 
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Fig.49: Photomicrograph (plane light) of Girvanella 
occurring at the centre of an oncolite in the 
mixed oncolite grainstone lithology . The on­
colite enlarged here is the same as that ill ­
ustrated at the top of Fig.l4. 
Scale bar is 0.3rnrn . 
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spheroids !SS-e o f Loqan gj; i!:.l-, lc:lfi 4 ) , no r.m.:~J ly <1r uund 

a n u cleus of .1 compound grain (qrap6-stoncJ . Up to three 

periods of gro..,:th are indicated in some of th.c o nco litcs 

(fi g . 21) . Type ss-e structures indicate contin uol.ft 

r.10tion lo a c hieve concentricall y ~tacked s p h eroidal 

lal!linations SU<}qes_ting a high-energy cnv1 ronincnt for the 

mixed on y o llticgrainstone (Gi n sburg , 19fi0 ; Lo<Ja n et al., 

' Nests ' o r cluste r s of Girvancll.3: Rare occurrences 

o f spheroidal c l uste r s of intert ..., ined tUbu l cs· o f 

G!rv<Jne l lu occur as aggregates up t o sever al mi II imetrcs 

in some o f t he mounds. A similar mor!Jhology occurs 

in the intraclast grainstone of the Oo l ite S,lJHJ F\1cics 

(fig . 22) but these may be f ormed by, .tranS;JortaUon . 

ra rvanella as Endolith S: A.n iso Lated o ccurrcri.cc o. E 

Girvanella as an end o li thic o r ga n ism is in the 

mixed o nco liti cq r a insto nc of the Oo lite S,1nd racics 

1 where o n e half of an ec hi noderm ..,late now consi o.ts 

entire l y o f i nt ertwined tubules of Girvane l l a while t he 

ot her half r ema ins unaltered (Fi g . 50 ). 

No n - Ske l.e ta l Strom.ltoli tes. 

The on ly n o n- skeletal stromatolites (term after 

Riding , 197 7b l in t he Biostrome Facies arc small (less 

than one em h i g h), v,erti cal stacked hcfY! isphcroids with 

a variable basal radius ( type SH- V of Lo•Jan ~ i:.! · , 1964) . 

, They commonly occ ur in groups in thC -Grey Moundstonc 

(BG - 1) at !Jlanc Sab l an (Fig. 27) but occur r.:1rc ly as 

iso l ated stacks in t he Do l omit i c 11ound stonc I~D - ll ,1nd 
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Fig . SO: Photomicrograph (plane light) of the mixed on­
colite grainstone lithology. The top part of 
the ?echinoderm fragment (E) has been micritized 
by the endolithic activity of Girvanella, tubules 
ofwhich can still be seen . Note that syntaxial 
cement (T) occurs on parts of the fragment not 
bored into but is inhibited on the micritized 
part of the fragment. The ooid (left) has been 
dolomitized by numerous, small, dolomite 
rhombs. Note the dark outer layer of the ooid . 
Scale bar is 0.4 mm. 
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the RcJ Muuru .. btone (IJR -2 ) at !-'ox Cove . 

Coelenterate. 

/1. new, primitive coe len terate (?) occ., rs sporadi c,1 l l y 

in the Biostrome F'acics . tr The ske l eton , c urren t l y l.lein•: 

desc r ibed by Ko bl uk and Sorauf (in prl!p , ) c ons i sts- o f 

hig lily br.:~nched f ro nds up to 10 em lonrJ , each b r <Inc'h 
I 

t a pe ring to a point (Figs . 51 and 52) . The intcrn.ll 

;tru:turc is n ot vis i ble fl S t ho • c~ ifJina l skcl(._•ton he~ ·s 

been dissolved a nd the resul tant v oid fillc'd o,.1ith 

cement (F i q . S2} . 

The' di 5 tr ibu tion of the coe lenterate i s very 

ir r cgulc;tr. I t is ver'} abundant i n t-he nn rtllc.rn ou t crop 

of the Do l om it--ic Moundston e CBD - 1 ) <1t Fo x Cn \'" • bul is 

.Jbscnt fr om equivalent strata 300 m _to the! ,south . IL 

also occurs in lhl! Do l omitic !>lo undst onc CUD - I ) in thC' 

·cli ff s at L 'An se Amo ur. It occur s throurjhout the Hcd 

J.loundst o n e (BR - 1) , particul i\ rly in a colon ization assemb l aqc 

(see belo w), but i s rare, in t h e Nodular Mo unds tone ([:N - l) , 

a nd i s absent from the Gr ey Mounds t one (Br.-n .:~nd Ool itc 

Bioherms (BB:-'21. 

The role o f t he coelente r ate in the mound structure 

is unce r t.:~in . The branched mo r p ho l oqy ,1 npc .:~r s t.o fJ TOW 

ei ther - ho ri zont. " lly alo n g the sediment dow no,.,:;nds, 

a l thOUtJh an aLL a chment point is not seen . Its rno rphol ogy 

suggests that it trapped sedimen t w i.thin i ts branc hes 

which were also used as attachmen t poi.nts f b i- penda n t 

c al careou s a l g ae. 
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Fig . 51: Cliff- section of Dolomitic Moundstone (BD- 1) . A 
frond of the coelenterate organism (X) lies 
below three archaeocyathid (Metaldetes)cups. 
Scale bar is in centimetres . 

Fig. 52: Photomicrograph (cross- polarized light) illustrating 
skeletons of the coelenterate organism in Red 
Moundstone (BR- 1). The skeletons have been leached 
and infilled by pore- fill cement . The matrix was 
lime-mud (now microspar) with a proportion of 
quartz silt . The dark sediment (S) surrounding some 
of coelenterate fronds may be stromatolitic in 
origin . 
Scale bar is 2 . 5 rnrn. 
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Urilchiopod::;, 

Early Cambr ian brachiopods are a moderiltely larqe, 

quite complex (not p,rim.i..tive), diverse g r oup of organisms 

which bear witne~s to a major p hase of evolutionary 

radiation (Rudw i ck, 1970). Inarticul<tte brachiopods 

are more common than articulates in the Cambrian, 

part i c ul ar ly in the Lower Cambrian 'Nhere five inart i culate 

superfarnilies are known and only two articulalt-> super-

families. Schuctwrt and [)unbar (1934) list six species 

of brachiopods from the f'orteau Formation but Fon1 

(1967) and Balsam (1973) list <ynly three : ~ 

~hrorna tica, Kutorqia cingulata (both inarticu.late) a nd 

Nisusia ~ (an .o~hid articulate), 

Ecoloyically , recent brachiopods can lm described 

·as bi valved, sessile benthonic, epifaunal (permanently 

attacheJ:l.), l ow- level filter-feeders (lophophorates). 

The feeding system of f ossi 1 brachiopods can be inter-

preted t o be functionally the same as extant forms 

(Rudwick, 1970) suggesting that fossil forms 

ecologically similar to the living forms. The ingestation 

and digestion Of inarticulates is essentially the same 

as the articulates, diffe r ing only in the e xpulsion of 

waste (articulates through the mouth, inarticulates through 

the anus) and the food is the same, both c lasses having 

the ·ability to assimilate dissolved substance ~ lus 

bacter ia, colloids, organic detritus and algae (Steele ­

PetroviC, 1976). The food of f o ssi l brachiopods was 
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prob<lbly tl!c sane as extant forms (Sleelc-l 't'l rovil::, l97f•). 

Brachiopods arc <I t t ached to the substratt> t;y ·~ pcdic lc 

or by cementation (Rudwick, 1970), but the Low<•r Cambrian 

forms, particularly Obclella, h.:..d a reclicll' .tlLlchmcnt 

(Balsam, 197 3) 

Brachiopods are reported from "re,_•f-likc" 

ments throughout the Phanerozoic . 1\1 though <1 mj nor 

phylum todily, they are p resent in modern ree fs, but 

,occupy a coelobitic habitat (Jackson, Goreau ;md llf<rtm;1n, 

1971; Logan, 1':177), and only crilerg.e fr o m the:w cryptic 

environments wit..h increasing depth (Loqan, 19-17). 

Inarticulate, acrotretide brachiopods sllow l! n•,ll 

diversity ( 17 <_;cncra) in the Ordovician Mcik lcjohn !'lourHls 

of N~vada, rc>flecLin<J the aduptution in to numerous 

microhabitats (Rowell and Krause, 1'}72) . 

In the Biostrome Facies of the Fortcuu f'ormalion, 

brachiopods, particularly Obelel~ •. are found S!)Or<Hlically 

in both rnnunds toncs and Cillcarenites. rn"thc mounctstone, 

Obele lla an.d rarely ~ occur as isola ted individual~ • 

and are noticeably more common where there is .:1n a_bund.J.ncc 

of calcareous algae, especially in the Rctl Moundstonc 

(BR - ll. They may have attached themselves to calcareous 

algae ·as sugge sted from their ~ccurrence in the Ordovician 

MeiKle john mound (Rowell and Krause, 1972). Thcfe is no 

evidence fo r the..ir attachment in this mode in the rocks 

under study, b ut this is not usual as the soft J?ed icle 

rots awuy upon death (Rudwick , 197 0) . 'fhcy were not found 

in a coe l obi tic habitat . 
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Brachiopods .:IT(' the chief skclr:-'t,•l comp <m(•nl. , <tlon•r 

with echi n oderms, of isola ted poc kets ( sina 11 lenses) o f 

ske leta! ca.lcaren i te occurrin<] within the Do l omitic 

Moundstone (BD-1) , Red Mound s t onc (BR-1), und Nod u la r 

Houndstonc ( DN-1) and probably rep resent ;lrc•,:~! ; within 

the mounds fuv ouring brachiopods and echino dr>rm!"l. 

Brachiopods are considerably more conunn n in the 

fl'lnk i ng skclctol culcarenites where t hey occur as 

unb roken, d is .:~rticulated valves, eit h er s i ngly,or in 

"nests" suggestin g a g r egarious !ilodc of l ife. It 1s , 

however , important t o differen ti a te between li[\.! <lnd 

death assemblar_1es . . T his is diffi c u lt with inarticulate 

brachiopods as the shells become di sarticul ated up on 

death (Ager , l9fi7) . The indi vidui\1, dis<trti cu lalcd 

valves of the "ne s ts" are unbroken a n d show no other 

signs o f wear suggesting that transpor t was minimal, 

It i s considered therefore, thut bLll.::ltiopoth in the ( 

Biostrome Facie s occu rred as single indi viduuls in 

the mounds possibly attached to c alcare o us algae , and 

occurred as both single individuals or in ne sts or 

pockets of calcarenite in the mounds und in the flunkin g 

ca l carenites . In both cases they were low - leve l filler 

feedcx-s . 

Trilobi t es . 

Lower Cambrian trilobites are a very c;omplcx and 

diverse group of organisms with 4 ord£I"S ilnd 24 families 

(Harr ington, 1959), In the Bios t rome F<tc ies the o nl y 
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genera recognised ar:e Bonnia ~· (fam. DorypyrJirlae) ilnd 

1-'lannerid ~· (fam . Olencllidae) although a third f o rm, 

o nly in thin-section, may be another taxon, 

In spi te of t he abundance of tri lobi tcs in the 

fossi 1 record and the •Jast amoUnt of taxonomic data on 

t hem, little is known o f t heir paleoecology. It is 

possible however, that their rn.,ode of life may be deduced 

from their functional morphology (BergstrOm, l 9 7J). 

The ma in morphological features of Bonnia are: 

a wide rhachis (axis); a smoo th exterior; a hiqhly convex, , 
isopytjous body, p art icular l y the cephalon;. and small 

eyes. The wide rhachis al lows p lenty of room for 

appendages and muscles so that the animal had considerab.le 

power, useful for a sw!J(?er, crawler, or burro wer. The 

smooth exoskeleton would cut down the friction if the 

animal wa s a swimmer and would keep sediment from 

adhering to the skeleton if it was a burrower. The high l y 

convex shape would be a restriction t o a swinuner, but not 

to a burrower. The isopygous skeleton may suggest that 

the r:ms~le ,power was evenly distribut_ed, po::; sihly 

allowing the animal to burrow backwards into t he sediment 

as su-ggested for trilobites with similar morphologies to 

Bonnia (BergstrOm, 1973), It is likely therefore that 

Donil.ia was a burrower, and as BergstrOm (1973) suggests 

for similar trilobites, the cephalon may have rested on 

the surface while the thorax and pygid i um were inclined 

(not verticallyr into the substrate. Burrows were not 

in the sediment studied but they are not often 
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prcscrvcJ (Jh'r•jslrom, 1973; p . !i2) , Bonn_i__:"_! ;11'!'l'•1rs ln b• 

restri c t ed t o the moundstonc where i t prol..J,lbJy burrowed 

and lived on ' foot! within the sediment. Hany ~imi L1r 

trilobite morphologies have beer, found reef -rock s of 

the />li ddle and Upper ordovician of S;.:cden (in 13crqstr('lm, 

19731 . 

~ is characterized by a reticuL1tc network 

of raised l incs on the skeleton which disti _nf)uish i.t 

from Olenellus in the field . Its ma in mor•lholoqical 

features arc: an clonqate, micropyqous exoskeleton 

which is nearly flat or with low convexity; large eyes; 

! 
long gen\i:J.l spines; a wide cephalon; and 

pygidium (the <1xis tapers from cc~ha lan to pyqidium). 

A taper i ng exoskeleton suggests that the muse l'•s .-wd 

appenda g es were concentrated towa~ds the front of the 

animal, possibly indicating that the organism crL~wled 

along Lhe surC.:tce or burrowed head firsl. The lonq gen.1l 

spines and general spinose nature of the org.1nism 

precludes a burrowing or swimming habit. but not -·1 

crawling habit. The large eyes suggest th,;t the 

animal either searched selectively for food or was prone 

to attack from predators and used them for warning of 
A 

It is probabl~ that Wanneria was part of the attacks . 

mobile benthos, possibly a scavenger or d e pos i .t feeder . 

' It was restricted in its d i s~ribution to the flcmkini} 

calcarcni tes. 

The third trilobite, on l y in ' t hin-ser.tion, 
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'(Fiy.53) 1s very smal l (1 mm across) with a hi<Jhly 

convex cilr<.~pace .:md occurs only within the internal 

sediment of cavilies, They arc however, not spinose? 

as are lhe coelobit i c trilobite::, of lowl'r pa t c h rocfs 

IKobluk and James , in prep.). Not enouqh is known of 

their morphology t o infer a mode of life but · they must 

have lived either on or within (as b~row~:ns) lhe 

internal Sedim~Jnt , probubly as scav~crs or dc;)osit 

feeders. 

llyolithi~-
llyolithids are extinct, Operculate, bil,ltcrally 

syrrunetrical animals V1ith a calcareous, vcntr<1lly 

f l attened, con i c.:Jl shell, and are of uncc r L.lin 

affinities (Runncgar, Po j eta , 1-lorris, Tolylor, Tayl o r 

and McClunq, 1975). The;' are either considered il 

separate phylum but related to the Mollusca or Sipunculoid e a 

(Runncgar tl. !!..!_., 1975) or are placed as SCflLIC<tte ol.ass 

in the phylum Mollusca ('lochclson, 196 1 ; ~are~: and 

Yochelson, 19.76). 

The hyolithid skeleton consists of three parts: 

(1) An elongate conc (2) A closc - fittin'J operc ulum 

(3) Two narrow, dorsally curVed appcndacJCS whi c [l project 

from slots between the operculum and shell on opposite 

sides of the orqanis~:~~ The hrangement o f; the muscle 

scars suggest that the head could be prot~actcd or 

retracted, the operculum could open and close, and 

appendages cou ld be moved (Runncgar l.tl_ <!.!..·• 1975). 
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Fig.53: Photomicrograph (plane light) of internal sedi­
ment in a cavity formed by Retilamina in Red 
Moundstone (BR- 1) . Sediment was lime mud (now 
microspar) . Note small , highly convex , trilobite 
carapaces . The lighter areas (now spar) were 
probably small worm burrows . 
Scale bar is 0.45 mm. 

Fig.54: Photomicrograph (plane 
cone in skeletal grainstone 
Facies. 
Scale bar is 0.45 mm . 
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T he functio r1 o f the t wo il ppendaycs is cont rovcJ:f;ia I. 

They may h.1ve been used as Oilr!? in a rov·:inq uction to 

r-rorel the organism along (Runnegar ~ ~-, 19 75) 

al.though there arc no special mLlscles to sug<]CSL thi s 

(M.,rek and YochelsOn; 1976). Yoc hc lsu n ( 1974 } c laims 

that the uppendagcs acted as stabili zers <] ivin(J U1c animal 

lateral stabili.ty. If movement of jjny kind .involved 

the appendoJges then it would have been s}OII,' a nd s poradic , 

and of the prdcr of a few millimetres at a ti.mc (f·!arck 

and Yochelson, 1976). The presence of sediment i n,. Lhc 

gut of well-preserved specimenS sUggests i'l dcppsit -

feeding mode of life (Runnegar ~ ~ .. , 1975) Hith a most 

plausiple food s o urce of mixed detritus ,tnd micro-

' o rganisms l iv ing on or within the scdiment..-v.•a tcr intcrfe~ cc 

(Marek and Yochelson, 19 76). ~ food w<:1s mos t li kely 

coJ,lected by either a short proboscis thot projected 

ventrally between the operculum and con e (Runneoar ~ ~ -

1975) -or by -tentacles, whic h ... Jou l d have a lso facilitated 

movement (l>larek and Yochelson, 1976), 

Hyolithids occur in both the moundstones and 

calcarenites, particularly the more muddy calc_ureni te 

lithologies, .. :here they were probably semi-sessi le 

omnivorous d e posit feeders. Their di s t r ibu t ion is 

inverse to the distribution of preserved calcZ~reous algae 

suggesting that they are deposit feeders and n o t algal 

browsers as suggested by Balsam (1973). 
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Four cliisscs of primitive et:hinoders drc rcco(jniscd 

from the Lower Cambrian; ~ocrinoidea (Bla.slozoit), 

He lic6pla'Cuidca, l::drioasteroide;,. and Camptu !:it_rnmatoidea 

{all t:.:chinozoa). This initial exrlosive radiation in Lhe 

Lower Cambrian sug!)est s that there was considcrubl(~ 

Precamtfrian evolution of this group (Durhu m, 1CJ6 4~ which 

allowed divcrs.ification of the basic morphuloqit:211 dcsiC"Jil 

when the orqanisms coloni_zed a new cnvironme11t in thC' 

Lower Cambrj.m <tnd uda!)ted to a novel mode o f life 

[Paul, 1917). 

All of t he Lower Cambrian class~s w~re morpholo')ically 

inefficient (l'.:tul, 19~7) . They consisted o f ,1 flexible 

theca of imbricated plates, although tlh! (>O.Ti.n oi ds had 

a small oral surface of weakly tesselated ~)latcs. The 

relatively large theca and small cxchanqe surf,ice~ for 

oxygen and carbon dioxide suggests that respira ti on was 

inefficient (Paul , 197'7) . Th e large theca nl so i ndicates 

a large food requirement but with the s!'l<d 1 f i 1 ter 

available on Lower Cambrian echinoderms (see P;ml, 197 7; 

I 
p . 138) then f~eding must also have bc~n very i.ncf:ficient. 

?a.ul {1977) rerJards all of the Lo....,er Camt:rian 

ecl\incderm classes as being filter-feed.crs bu t SFrinkle 

(197~) regards the camptostromatoids (only one genus 

known from the Lower Cambrian) as part of the mobile 

benthos or as shal l ow burrowing detritus feeders while 

eocrinoids are h igh-level filter feeders, and hclicop­

lacoidea and edriOasteroids are low- level filter feeders . 
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The si :.:: c of the (ood grooves in the f ood-q<~t lu•rinq 

brachioles ;md ambulacra of the eocr i noids suqgests 

that the food was microscopic plankton. The cocrinoi.ds 

theref ore micr o nhagous higL-level fi ILC'r feeders 

livinrJ in .-:In upri rjht p o siti o n with u l o nq ~1 L luch1;H~ nt 

appendage (holdfast) at the aboral end sup:1ort i nq a 

globular c<J.lyx '.-lith mou t h , ambu l acr.:~l i"lrms and food - ~ 

galheriny concen.tratcd at the .:,ummi t (S!>rinkle, 19 7 3). 

The cocrinoid~ were ulso gregarious, livtnq in "<prdcns" 

situated at favourable local i ties for fc.._,ct i nq, cJttc~chment, 

reproduction (Sprinkle , 1973) _ 

In the rocJ ... s under study, only di s art.icu l .l l c d 

plates of e c hinoderms are preserved so nc taxa .1rc 

identifiable . This suggests that t h e cch i. nodc:-ms we re 

not rapidly buried as they possess skeletons which usually 

disintegrate rapid l y after death (Puul, llJ77 ) , so a.rc only 

preserved as whole skeletons upon ra p id bu r i a l (S]Jl"inkle, 

1973) _ In the s"iostrome Facies, ·the dis.:~rtlcutatctl pl.3tcs 

make up a very large proportion of the rr:ound-flunkin<J 

skeletal calcarenites and are locally u.bund;;~nt in Red 

Mounds tone (BR- 1) at Blanc Sab l an, but are absent from 

the rest of the moundstones except as skcle t<ll debris 

which was probably wished in, They do howevc r, occur 

in the small lenses of calcarenite "lhich occur wi t hin 

of the mounds. 

· The echin,oderms t here f ore be said to be a 

ubiqu i tous member of the sands f l anki n g the archaeocyathid 
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mounds where they were proba!Jly high-level filter 

feeders forminq <jardens, and also occurred in favourable 

positions wi t)1in the mound, ~long_ with other skeletal 

fauna (brachiopods, trilobites, etc.), but wen'! absent 

or very rare from most of the mound, 

Sal te re llu 

Salterel.la sp. (Fig. 54 ) consist. s of a normally 

radially symmetrical, simple cone of calcium carbonate, 

which has grains, selected for size and share., placed 

layf! r Uy layer wi t hin it, and each layer of t}rains is 

held in p la ce by a thin layer of calcium c;:arbonate . The I' 

apical !)art of the cone is filled except for a central 

tube of unifor:m diameter (Yochelson, 1977) . 

The affinities of ~-are in doubt; Yochelson 

(1977) places the genus, along with .:mother closely 

related genus Volborthella, in a new phylum, 1\gmata, 

although Volborthella ·l,las also been ascribed to the phylum 

Annelida (Glaessner, 1976). 

Ecologically, Salterella has a functional morrhology 

which does not have a suitable e'cological niche. It 

has a geographiCal distribut ion throughout the Tl.ppalachians 

but is apf,rently restricted Lo the tO? portion o f the 

Bonnia Olenellus 7.0ne of the Lower Cambrii'l.n (Yochelson, 
v 

1970). Using sedimentological evidence, ~ 

inhabited environments which demonstrated a wide ranCJe 

of _energies but were predominantly shallow-water, w~th 

depths between a few centimetres ar1.U a few metres (Yochelson, 

.. 
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l <J7 ·7). The prescn<.:e of selected qrnin!'; in the conch ilnd 

absence of buoyancy structures rules out a pelagic or 

nektonic mode of life as their weiqht wou ld have been 

too grea t . Glacssner (1976) draws the analOilY between 

the c l ose l y -rel.ated Volborthella a n d the si.lbcllar i id worrns 

and s uggests that Volborthella liyedt .a pex downw,ud in the 

sediment wit h the top p'!rt exposed and was a fi l ter -

feeder which also pi.c ked silt- size grains out of the 

w.:lte.r-coluii'til as they Jrifted past. But Yochelson (1977} 

correctly pointn out that any current strong enough to 

carry silt would also be stronq enough either to wash 

the small animal from the sea-floo r or smother it 

completely. Th e mode of l ife has bL>en compared to 

ccrithid IJC!.Stropods (~l!inhard t nnd \•1all, 1975). Th is 

is based on similarities of gross shell-shap~ ctnd - d e a t h 

assemblages . However, the funct.ior:al morphology o f t he 

t <..ro animais diffe r s too much for a d irect compar ison t o 

pe made. -I\ mobile life-style is suggested, partiC'Ularly 

' ' as grains in the con ch are often rare in the sediment matrix 

suggesting that t he animal ,moved towards, and selected 

partj c:u l'ar grains . Cont rary t o this hypot he 'si s hoWever , 

is t!Je !Hl)ng of the cone which wo uld i nC.icate that 

the o rJa n ism may have lived apex d o wn and thau if Saltere lla 

was mobi le then t he conch would have to be dragged along 

(Yoche l son, 1977) . It seems likely therefo re, that 

whatever ~ode o f life was utilized by Sal tere lla it 

ve r y i nefficient , 
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/\lthnlltjh conunon in the skcletu l qrdin s tun (_• , mi.'\c ~l 

peloid packcs tonc, und mixed unco li ti c qro i nstone litho-

loyies of the Oo l ite Sand Facies, ~i!...!_lc rcJ~ is ab:::H•n t 

from t he. moun~.btone and ca l carcr.itc~ o f the Biostro me 

Facies, occurrinq on ly in the Oolitic Ca lc .lrcn i t Ps ((.lB-1) 

which flank the lli~hcrms (BB -2 ) ut Schoon l-•r C0V(' . In thi~ 

lithofacies Sv.J.terel la is ve ry a,bund<;~flt .:ld)accnt to t h e 

bioherms (•.o.~i th i n 2 m) but becomes-· rarpr aw.:ty from t ht•m , 

possibly surjges ti ng ;1 greater foo~ -sourc e ne_ .·rre r t o , ... . 
and possibly derived from, the bioh erms . It .is C'r\V i se~qed 

therefore th.:~t the ~ W<lS a very inefficient member 

o f the mobi l e ben thos, possibly il b rows e r o r deposit-

feeder. 

S'lN ECOLOGY 

Mound-flanking Skelet.1l Cal carenit e faun a l ass c ml}Ll<.Je 

The tcr_m· assemblage is prefcred to c o mmunit y <:~s 

t his is only a qualitative descri!)t ion a nd lhc laxa 

involved are onl y , idcnti fied o ·1 a very brood so.:tlc (never 

to the speci es le":e l ) . 

~he assemblages are documented with a view to the 

role of the organi sms , in t he assemb l age anct t.o t heir 

trophic grouping, so tha ~ a g~ne ra l, summa;y- l ik c 

struc; t ure o f t~ various assemblages can be rJrcscnted 

' forming a basis fo r future detailed analys i s with t ighte r 

taxonomic c ontrol. 

The skeletal comr:osition of th ~ fl<lnkinfj calcarenites 

is more or less the Same for each lithofacies, consisting 

of five groups of or~·ani~ms; echinoderms, br.:~chiopods, 
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trilobites, hyoli thids , and Salterclla. II.Jscd on their 

a utecolOgy , thC!se orqanisms can be divided into sessile 

epifa.una and vagi l.e epifauna (se~ Table V) . The sessi le 

epifauna ;onsists o f echinodcn:~ ::. a n d brachiopods ,1nd 

can b e. reyarded as high and low-level fj 1 tcr suspen s ion 

fee der5 respectiv~l_Y thus partitioning t he food supply . 

The vagile epifauna con s is ti ng 0£ tri lobiti!s , hyoli thids , 

a nd ~ can be c~n side rcd as sedimcnl dependent 

o rgan isms ; either deposit feeders of bro"Nscrs. Volume trically, 
r '\ 

echinoderm p lates form the bulk of t t1P sed iment with 

b rach iopods and trilob ites the. next most importunt ; 

hyolithids and par ticula r ly Salterella <~rc r<He. Tl.s 

reqards the structure of t he assemblage, the preserved 

t roph ic chai n (Fig. S5 ) is very simple l .:tck i n CJ both 

primary producers {aut.ot r ophs ) and predators. Be.l.ring 

in mind that not all the organisms o f the or igina l 

communi ty will have been preserved (see discussion in 

s.tanton and Dodd, 1976), the dominance of fi I te r- feeder s 

Within the asi!i e mblage sug')ests that the e nv ironme n t was, 

to some de gree, turbid as the food supply t o the 

majority of organ.isms was in the water column. 

Mound-dwelling faunal assemb lage 

The faunal assmeblages which inhab i t the niou nd 

environment are generally more complex than the calcarenite 

assemblage. There are differenqes in the diversity of 

organisms between the five 1110uri.dstone lithofacies, and 

these are noted laler. Because of these differences, 

the most col'ftplex assemblage, that of the Red 1-!oun'dstone 
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TABLE V. Role of organisms in the ca lcaren it.e 
assembla!)e. 

ORGANISM-NICHE RELA.T!Oi'lS lilP 

Sessile epJ-fauna 

echinoderms 

bra~hiopods 

vagile~ 

trilobites 

hyolithids 

- 161 -

TROPHIC GROUP 

high-levei'i"ritcr ·· 
suspension feeders 

low-level' filter 
~J.isp.en~ion feeders 

deposit feeders 

deposit feeder;; 

deposit feeder 

~;-.;.' . -~ - .;. ~·; ~- -
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RECUPERATORS 

( 

Trilobites 
SEDIMENT Hyolithids 

/'""'""'" 
DETRITUS 

~ 
WATER COLUMN Echinode r ms 
FEEDERS Brachi opods, 

WATER-FLOW Nutrients 
Oxygen 
Waste removal 

Fig. 55: Trophic structure of the, calcarenite assemblage. 
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li.t,hofacies (DR-1)), is described here . 

In relation to the subs t r ate , the mound - o rganisms 

Qe divided in~ a; sessile epi f auna , mobi Lc epifaun a , 

a n d endoliths (see Tahle Vl). I. division o f the sessile 

epi fauna can be made into organisms which pcoh,lbly uctcJ 

as sediment ba fflers and organisms "'hich ac ted as 

sedimc•nt trappers and, binders (Table Vl) , l\ more 

complex tiophic st r ucture is represented in the mound 

where prima ry producc~s , consume r s, a n d rccupcrators 

well -represented (:"'ig . 56) . 

The main difference between the mound ond calc.1rcnitc 

assemblages a re two-fold; ( 1) the presence o f different 

kinds of high-level suspension feeders; ( 2 ) the presence 

of cal careous algae in the mound. 

The mound ilSsernblage is domin a ted by a r c haeocyathids 

and calcareous algae (renalcid algae , Epi r hy ton , and 

Gi rvanellal with less common brachiopods, coel enterate, 

tri lobites , hyol ithids , and sponges . 'l'hc arc haeocyathids 

are of very low diversity 'With on l y three species 

represented (Metaldetes profundus, Archaeocy.:~thus 

~. and Retilamina amourensis) (Debrenne and James 

in prep.) . 1'he erect g r owth form of a r chaCocyalhids may 

have served as ·sediment baff l ers along with r LHC sponge s, 

the coelentera te and possib ly brachiopods. 1\lthough ca l-

careous algae is mo st common in cavities, it a l so gre1.,. 

in clumps in the s.ediment and encrusted onto and within 

the archaeocyathid skeletons where it probably trapped 
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TABLE VI. Role of organisms in the mound 
assemblage. 

ORGANISM-NICHE RELA~IONSHIP 

Sessile epifauna 

( 1) Possible sediment bafflers 

archaeocyathids 

coelenterates 

brachiopods 

s _oonges 

TROPHIC GROUP 

high-level suspension 
feeders 

?low/high - leve l 
suspension feeders 

lO\,t-lcvcl filter 
suspension feeders 

suspension feeders 

( 2) Sediment trappers and binders 

calcareous algae (outside 
of cavities) 

Renalcis 
ren<~lcid algae 
Girvanella 

· Epiphyton 

non - skeletal stromatolites 

Vagile eoi f auna 

Hyoli thidb 

?trilobites 

trilobites 

~ 

Tr ypani tes 

" .. 

autotrophs 

autotrophs 

deoosit feeders 

deposit feeders 

deoosi t feeders 

I 
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RECUPERATORS 

PRIMARY 
PRODUCERS 

SEDIMENT Hyolithids 

?""""""' 
DETRITUS · 

• ~ Archaeocy~th~ds 
?Coelenterate 

WliTER COLUMN Brachiopods 
FEEDERS Sponges 

. / 
Calcareous Algae 

AUTOTROPHS Non-skeleta l Stroma tali tes 

/ 
LIGHT WATER-FLOW 

Nutrients 
Oxyg'"'en 
Waste removal 

Fig. 56: Trophic structure of the mound assemblage, 
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and bound sed iment . Semi-sessile hyo l ithids .:a.nd burrowin9 

trilobites (cf. Honnia) may ,have been deposit f e eders. 

Macroborers als~ played a role in the mound. The form 

Trypanites, i nterpreted as a sipuncu lid wo r m (James~ 

<!.±.· , 1977) , i~ relativeLy common in most o f the IT10unds 

but as it is t h e only macroborer in the rocks , and 

because o f its relatively small size , the dcs tn.Jctio n 

o f th~ mounds is nowhere ncar as gre a t as i n that o f 

endolithic orqani sms i n modern reefs (.James l970 ; Sco f f in 

and Garrett , 19 7 4; Bror:tley , 1978). 

The trophic st Aucture of_ the mound , a l t hough 

complex than the ca l carenite assernblaqc i5 s till 

re latively simpl e (Fiq . 56) . Ca lcareous alyac <.1nd 

ske l etal s tro m<'1toli tes acted as pr i F.la ry ~ reducers 

(autotro!)hs) supplying nutrients for the r·l.rti t i onc<:f 

suspension feede r s (consumers). Ar chaeocyathids , 

sponges, and some coelenterates were high-level . susrension 

feeders whi le brachi~ods , smaller coelenterates , und 

possibly sipunculids (Trypanites) were l ow-level suspension 

feeders. Both a·u totrophs and consumers contributed 

nutrients to the sediment a n d in turn to t he clepos i t 

feeders , lri l obites , and hyolithids. No ?redut ors are 

recorded . 

Coelobitic (cavity dwelling ) assemblage 

The dome-shaped nature of Reti lamina amourensis forms 

a n~tural, although small (several centimetres high and 

wide) cavity which s upports a relatively diverse coelobitic 
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assemblage, ~f similar structure to the cavity-dwollin(_J 

assemblages found in the 'patch-reef ' series (Kobluk 

and James, in prep . ). Two substrate-niche relati onships 

are recognised: (1 ) Organisms which att<tch themselves 

to the roof of the cavity; {2) Org~n i.s ms wh ic h 

found i n the internal sediment (see Table Vlll. 

Those organisms which are attached to the roof o f 

t he cayities inc lude r .enalcid algae a nd rarely t::ni::>hyton 

whicM grew in pendants resemb li ng bunches of qrupes. 

·Girvane lla occasiona lly encrusted directly o nlo the 

roof. Sinqlc-chambered and .multi - chambered (cf. 

Wetheredellal Foraminifera either at.t,ached themselves 

directly onto the roof· Or "/ere attached within clusters 

of calcareous algae . . Encrusting archacocyathids 

(Me t aldetes sp.) were also either attached direc t ly onto 

the roof (fig. 57) or within 'clusters of cqlcareous algae. 

The enigmatic formS l\rchaeotryra and ~ were encrusted 

directly onto the cavity roof (Fi.g.53). Both forms 

characterized by an irregular cellular st racture of 

tightly-packed rounded-polygon,al cells, differing in that 

Archaeotrypa was larger, has more regular wb.lls, and a 

skeleton that has i'!.lways , been lee~:ched and filled .wi th 

cement (Fig . 58) . ~is considered either a coelent­

erate or .an alga {Johnson, 1966). ~rchaeotrypa is also 

of doubtful affinities, considered either a bryozoan, or 

coelenterate {see discussion in Kobluk and James , in prep. l ·· 

Organisms inhabiting the internal sediment of the 

cavities included sma ll {one mm), highly convex, 

' 
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TABLE VII. Role of organisms in the coelobite {cavi ty 
dwelling) assemblage. 

ORGANISM-NICHE RELATIONSHIP TROPHIC GROUP 

Attached (cavity roof encrusters) 

Calcareous algne 
Renalcis 
renalcid algae 
Gi rvanella 
~ 
~-- O.T-alg:l 

forilmini fer a 

arch.aeocyathids 

Archaeotrypa 

Sediment dwellers 

trilobites (infaun~l) 

?worms (infaunall 

sponges (epifaunal) 

- 168 -

autotrophs 

suspension feeders 

suspension feeders 

susnension feeder 

deposit feeders 

·deposit feeders 

suspension feeders 



Fig.57: Photomicrograph (plane light) of Retilamina 
(arrowed) forming cavity . Encrusting archaeo­
cyathid (G) and renalcid algae (A) are attached 
to the underside of Retilamina (the cavity roof) 
Scale bar is 3 rnrn . 

Fig .58: Photomicrograph (plane light) of an archaeo­
cyathid forming a cavity. Renalcid algae and 
a leached (now spar) skeleton of Archaeotryoa 
(arrowed) encrust the underside of the archaeo­
cyathid. Non- skeletal ?stromatolitic sediment 
(S) occurs on the top side of the archaeo­
cyathid. 
Scale bar is 4 rnrn . 

- 169 -



I; 

spi nose ·tri lubiles (see ,\utccology : tri lubitcs) which 

were probably burrowers . They occur on l y in the 

larger cavities. Sponge spicules (monaxon and tri.axon) 

or.cur sporadic.J.lly in the interr <~.1 sediment .:md s.pongcs 

may have inhiibited the cavity. In cavil ics tha. t <trc 

large enourjh, the internal sediment often conl<1ins small, 

·~ylindrical burro'"'S, attributed., in the low+.'r patch-

ree[ series, to v10rm s (Kobluk and .James, in prep . ) . 

The trophic structure of the coclobitc assembl<1.yc 

is relatively complex (Fig S9l _, As primary rroducers 

{calcareous algae) form the bulk of the biovolumc, then 

light must have been able to penetrate into the ·cavities . 

Organisms dependent on the water column (suspcnsiori 

f~eders) include Fo rami ni fer.a , arch<1cocyathid s, 

sponges, Archaeotrypa, and possibly ~' and ,,their ·' 
presence fmplies that there was a constan t exchange of 

water in and out of the cavity , bringing in nutrients and 

oxygen a nd removing waste . . The trilobite s and worms 

act as recuperators, either as scavengers or de~osit feeders. 

Vertical zonation in mounds 

It has been established that more or less orderly 

changes occur. in a communi ty . through t imc, thus c.tusi ng 

a succession of carrunUni ties preserved in the ros~i 1 

record as a vertictl zonat1on (\lalker and P.lbcrstadt, 

1975). Such vertl- al zonat1.ons are documented from 

reefs from the Or. ov1.c1.an to Cretaceous {N1.col , 1962, 

Alberstadt and \'lalker, 19 73 ; Alberstadt, Walker and 

Zurawski, 1974; Kauffmann, 1974 ; Walker <~nd Albcrstadt , 
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RECUPERATORS 

PRIMARY 
PRODUCERS 

SEDIMENT Worms 

~Trilobites 

, DETRITUS 

. ~ 1\rchaeocyathids 

LIGHT 

WATER COLUMN Foraminifera 
FEEDERS Archaeotrypa 

WATt:R-FLOW 

Sponges 

Nutrients 
Oxygen 
Waste removal 

Fig. 59: Trophic structure of the coelobite (cav ity dwelling) 
assemblage. 
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1975) , \"'alkcr a n d fdbcrsta;It (1975) rcco r;n i~e four 

stages of deve l opment, each characterized b y its own 

communi ty, in the development o f '{.Cr tical zonations. in 

ancient reefs . These stayes an: ( 1) St_ilhi li zation 

(pioneer) stage: This involves t he stCJblllzution of the 

subst ra te, usual ly by the growth of echinoderms . <Jnd the 

accumulation o~ their debris; (2) Co l on iz ut i on sta'qc: 

This i nvolves the initial c6lon iz alion o f tlw substrate 

by ree f -bui lding organ isms , normalL y by :J r ,·mchi'fHJ c:r 
enc rusti n g onFtnisps. T h_is sta(Je is norma.lly of sho r t 

duration , (3) Di versif ication s tage: The increase in 

niche space brought about by the colonization ,s taq e 

l eads t o a r apid dive r sification , usu<Jl ly at hiqh tilxon­

omic levels, but is sometimeS rest r ic ted wi th i n o ne 

major taxon. This stage comprises the bulk of the reef . 

( 4) DOminati o n sta"'ge: The final stage involves '\ 

de c r ease in both the number of taxa an d in the qrowt h -

habit s , o ft e n with t he encrusting qrowth-habit dominating 

to the exclusion of o thers. \olalker and J\lberstadt ( 1975) 

claim t:hat the first three stages; stabilization , 

co lonization, and diversification are due to in t rinsic 

fa ctors, so that the succession is biologica lly accommoda ted. 

The f o urth stage, d ominat ion, may I.Je due to extrinsic • 

factors, therefore p hysically induced and was m.:~ybcl c <tu scd 

by the r eef growi ng into t he surf-zone. 

The ·mounds o f the Biostrome Facies sometimes show 

a distinc t vert·fcal zonat~on, correliltah le wl th the 
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stabil i zulion , c'olOnization and divcrsifi c.1tion ·sL.l<~<'" · 

of Walker' and 1\lberstadt (l97S), but never:: shm·• u 

domination stac:je. Ttjis may suggest that tlw Lower 

cambrian rn()unds never grew into the surf-zone '' ltl)nugh 

sedimentological evidence possiblv sU<Jqesls othe ~1i se. 

The vertic<ll zonation in the Biostrome ~·acies is 

best termed as a "recolon.ization process lcil.din<J to 

diversificat ion", and is ·best displayed at tlH' b.lsc o f 

the Red Moundstone (DR-1) at Fox Cove and il.l OSprey 

Reef. In all cases the succession appears lo be t he 

(Fig;60); a devel.o~ment1 of moundstone is brouqh t \ a\1 

end by an influx of skeletal calcarenite whiCh occut\s 

as a thin ( less than 20 em) bed, sometimes with an 

el:osivc base suggesting an al-lochthonous source (possibly 

a. storm-deposit). The calca::-enite consists prcdomin.1ntly 

of echinoc1crm debris with trilobites, brachiopods, und 

hyolithids . · This is n similar lithology .JS would Uc 

produced by the stabilization community of \\lalkcr .1nd 

Alhers1!.adt (1975) •· This thin calcarenite bed is then 

succ_eeded by an assemblage ddminated by Rcti lam~ (Fig!?. 

60 and til) with minor occ urrences of the coelente rate i\nd 

stick-foriR archaeocyathids (Archaeocyathus utlanticu::J). 

Associated \"lith the Ret1:llamina is the, coc l obitic 

assemblage described above. 1\11 of the organisms in thi!; 

assemblage in a lime-mud matrix, the mud probably 

being trapped by the closely packed Reti lam in~ ,and 

,.~e_ lert~_erate fronds along with,_ in places ) ca;c.:~rcClus 

algae. This colonization ... e.mb~agc is."r('lativ('ty lhi.n 

j 



Fig . 60: Cliff-section exposure of vertical zonation 
of the Red Mound Unit at Osprey Reef. Red 
Moundstone (BR , bottom) is terminated by a 
sheet of skeletal calcarenite (K) . This is 
overlain by the pioneer community (N) con­
sisting of mainly Retilamina and calcareous 
algae in a mudstone matrix. This passes 
vertically into Red Moundstone (BR, top). 
Scale is 25 em long. 
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Fig.61: Bedding- plane exposure of the pioneer comm­
unity of the Red Moundstone lithofacies 
(BR- 1) at Fox Cove . Thin lines (arrowed) 
are Retilamina skeletons . Darker areas 
are cal careous algae ; Lighter area is 
lime mud matrix . 
Scale bar is in centimetres. 
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{le~n> th~n ]0 em) -a nd <Jradcs ve r lic,1,l l y ll11t t .lpidl y ln t o 

what can be te r med lhe d iversi fi coJtion st.l.CJC ( Fi <J . 60), 

_.T wh i c h i n t he case of Red Moundstone consis.ts of 

/\rchacocyal h us atla nticus (st_icY. -forrr:l, cmd Hctilurni~ 

ano'urcns i s (retil<lminif,~ml in equal proportions •• 1.l onq 

with the coelenterate , sronges , calcareous ,,] fF H', 

b rachiopods , l r ilobLtcs , and hyolith i ds, pl u s t11e 

Coe l obitic assemb lage . Th .ts d i vcrsific.:Jti(~n ;u;scmb\,1 0:)(' 

forms t .he bulk of the: mounds, as i t d oes in tlw c<tses 

c i ted by 1-J a lkcr n nd 1\lberst<:~dt (1975). No dnmination 

st<1ge is seci1 in these rocks, i nstea d the Red ~1ouncl stonc 

passes 'vertically intc Nodular Moundstone (BN-l) whic h 

consis t s of f e wer archaeocyathids and a <JrC<~t]y r e duced 

subsid iary f aunil (s ee Tabl e I V) . This i s, t rca t0d as 

.J.llogenic pha se as t here i s an obvious c h.1nqe in the 

style of se dimentatton (into nodul.:1r limPst o n o:- s a1c d 

shales with calcarenites) an <'! is not considcr·cJ ;1s nart 

o f t he vertical zonation. 

l\s the calc<lrenite _at the base o f the su c c('ssion 

is p-robably al loch t honous i n origin it c .-;n h;nLlv be u sed 

t.hc sto:~bilizai:ion assemblage in the sense o[ Wt1lkcr 

and Alberstadt (1975) , Th e ca.lcarenit(> i5 n u t :)a rt o f a 

biological .succes sion , indeed its chief function wus t o 

terminate the deyelopment o f t he under lying mo unds tone 

as indicilted by its eros ive base in pl.:tces. It is 

imposs i ble La ascertain YJhether or not the cu l carenit e 

was st i 1 1 mobile when colonized by the Rct.ilamina assemblage. 
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1 f the calcarenite wus sli ll mobile them t he Hcti 1 ilmi n<l 

assemblage must have serve'd the dual purpose of 

stabi l ization and co l onization. If on the other hand 

the calcarenite was stable at tile time of co loniz<~tion , 

then _ the ~ <~ssemblage must huv(' co lon iz ed a 

stabili?.ed , allochthonous substrate. Tf this is the 

'------......... 
case with any bf t~e other stabi liza tion/coloni;::.:~ t i on \ 

st>Ccessions prev i ously desc r ibed, then the termino l o gy :~ . 

o f h'al kc r .:~nd Al berstactt· (1975) for this rroccss ne e ds \) 

slight modific<1tion or qualification. 

Variation in fauna/flora between lithofacies 

The r:1a in differences in the diversity of organic;ms 

bct·,.;ecn l ithofac~ ;1ppears to depend on tile rrcsc ncc 

or absence of ~· It is totalfy abscnl [rom 

both the Dolomitic Moundstone ( BD-1) and rurc in the 

--~odular 1>1oundstone (DN - 1 ), hence, none of t he coclobilic 

organisms assoc ia ted with Retilamina arc !'Jrcsent in these 

lithofacies . In <Jddition, ca'carcous ,llg ile arecomplelC>ly 

absent fro m outside c!"lvities · i n the Dolomi ti c ilnd Nodu l ar 

Mounclstones. 

/\part from the presence and absence of rctil2\mini ~ 

form archaeocya thi ds and calcareous a l'] <JC , und the 

variation in archacocyathid morpholo9.Y {sec llutccology: 

archaeocyathids) , there is U t~e difference in t he 

structure· o f the mounds in terms of organisms (see 

Table 1 V) . 
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As regards diversity and abu~ance of organisms, 

it would appear that the Red Moundstone (BR-1) 

repr~sented the optimur:' conditions for m·ound devel opment 

with every organism present except Salterella . 
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CHAPTE~ VI: SUMMARY. J\ND CONC LUSIONS 

This study concent"rated on a 1 5 -2~. m thick a t·chaeocyat hid- · 

bedring biostrome complex in the Lower Camb r ian Forteau Forma-

tion of sout hern Labrad?r . The Fortcau For';lation marJ;c:.s the 

first occurrence of carbo"T\ate in the developrr;ent of the Lowe"r 

Paleoz oi c stable continental marg in , la ter destroyed by·-west-

ward transpd~~d op hi olite complexe s . The Fo rteau Formation 

o ver l ies the sandstones of. the Bradorc~ l"orf¥-tion which·rcs t 

unconformably on Precambrian basemt'! nl:. 'l'wo <lrchaeocyati""'.id 

hor i zons occur in the Forteau Formation : a low~ 'pa tch reef 

series', and. an upper 'bi os trome complex.' 'T'h e Jurpose of 

this study was to document the facies distri bution, strati­

graphy, sed imentology; diagenesis,. 'aQd p a leoecology of the 

biostrome compl e x. 

Re conna issance mapping and subsequent det.,ilcd L~nalysis 

of eight selected arc.:1s revealed that the bi ost r ome complex 

of the f or t e au Formation can be divided into two laterally 

distinct facies; the Doli te Sand Facies, and ttJe Biostrome 

Facies. Strati-graphical and sedimentological evidence 

suggests that t he Biostrome Facies wa~ depos i t . .ed seaward of 

the Oolite .S and Facies with the paleoslope ti'io-nding to the 

south or south-east. The conta'ct between the twd facies is 

hicjhly irregular and indicates that there we re sulicnts 

and recesses in the Oolite Sand Facies with the Biostrome 

Facies occupying shal l ow swales in the recesses. Lateral 

shifting of facies is partly responsible for the complex 

lithofaci es mo saic which makes any paleoenvironmental 
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reconstructioh a simplif ication of the t ru e p~leogcography . . . ' 
The· Oolite Sand Facies consis~s of .seven lithologies; 

skeletal gr(ins'tone , oolitic grainstone , mixed oolitic 

g rainstone , mi x ed peloid packestone_., mixed or~col i tic grain ­

stone~ intraclast qrainstone, and dolostone and dolomitic 

·' siltstone. These lithologies be attributed to a'n 

o rigin with.in an ool'ite shoal complex comparable with 

modern day environments (Pers ian Gulf, Bahamas). The 

act~vc oolite shoal consisted of cross-bedded oo li t i c grain -

stones which f ormed in a .high-energy, irl t er - tidal or shallow 

sub-tidal environment. Mixed oncolitic grainstones 

accumulated in stable sand channels between shoals. Surra-

tidal dolomite developed on subaerially exposed areas on 

top o f s hoa ls. Dolomitic sil.tstones and intraclast gr.ain-

stone are interpreted as storm deposits i:n a usually 

subaeriah. environment on top of the shoa ls. Ske l etal 

grainstones occurred in a well-aerated, shallow subtida l 

enviro nment seaward of t~e a ctive shoal. Ooids from t he 

. active shoal were transported into quieter areas behind 

-t he shoal and accumulated as shoal spillover forming mixed 

oolitic grainstones adjacent to the s!'\.oal with mixed pelo'id 

p~ckestones further away. 

The Bfostrorne Facies was deposited seaward of lhe 

' Oolite Sand Fac ies and cons i sts of five distinct units; 

Dolomite ~ound Unit (BD), Red Mound Uni t (BR), Nodular 

Mound Unit (l:!N), Oo lite Bioherm Unit (BEl, and Grey Mound 

Unit (BG) . For the most part, the five units consist of 
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two L"ltcrally co~ivu le nt lithofacies , moundst6n c <Jncl 

skeletal ~a l ca ren it e . Moundstone is a new , non-genetic . . 
roc k- ;type def i ned as ail aut,;ochthonous assC~mbl cnJ e of 

s ke l ctons and ma t r i x sediment ,commonly m.ud¥one) of 

uncertain o rig in , wh ic h occur s as mounds or bioherms . 

In the rocks under _ study the sk e lct.1 l component s o _f lhc 

mounds tone 1 i thofacies are: arch,wocy;~thids, lesser 

al'lo'unts o f brachlpods, tr ilobites , and hyo l ithids . 

Calcare o us a l (Jae are !xlme t imes V(!ry T he mourtdsloncs 

for-m mounds , biostromes o r bioherms of considerable lateral 

e xtCnt ( tens of metres) but which had sc:1.-floo r relief o f 

"9 only I o r 2 metres. The mounds a r e f l a nked by. the second 

majo rt' li thofacies ; skeleta l J:alcaren i tc, which dru.;H~s 

o f.f the moun d u t <ingles o f up t o 15 dcqrccs . The Ce~ l ce~rcnite 

is essentially a skeletal packestone consis~in<J mostly o f 

ech inoderm plates which ·show n o signs o f wee~r, unbrokep, 

diSarticulateq brachiopod valves , wi th lesser amounts of 

tri lobi tes and hyolithids. Th is faun a indicil.tes <1 

s ha l low, low....>.energy, sub-tidal environment . . The skeletal 

ca l car.enitc does n o t vary between the five unils, b ut fi ve 

different moundstone litho facies are recog n i sed whi ch 

be inte rpret ~d as forming i n di ffer.cnt f:'nv_tronmcnL"s. 

Do Lomitic MoUndst:one (BD-1 ) and Nodular ~1ound::;tonc 

(BN-1) are both flanked by skeletal calcarenit e s anQ are 

devoid of ca lcareous algae. They formed low, but extensive 

(t~s of metres) mounds or bio_stromesin rhlatively dee.P 

water . They were deposited seawar d of the Red Mo undstorie 
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lithofacies ( BR-:"ll which formed smaller mounds in shallow 

water, flanked by Skeletal , Calqarenites (BR-2) and in 

lateral contact wi th the active oolite shoal. Thi_s well-

aerated, moderately high-energy environment suprorted ~ 

fauna and floru of high diversity. Sediment~ of the Grey 

Mound Unit (BG) and Oolite Bioherm Unit (BB) a ccumulated 

on protected, low e nergy swaleS between oolite shoals. 

Fo r the most part, the Grey Moundst one lith o facies (BG -1 ) 

formed . low but ~xtensive {tens of metres) mounds, flanked 

by skeleta l . calcarenil;.e (BG-2), deposited on a shallow 

swale in a re l ativel y quiet -water enVironment in late ral 

contac t wilh the oolite shoal spillover. Stromatolites, 

inte rbedded within the unit suggest that at times , t he 

Grey Mound Unit was de pos ited in an inter-tidal environment. 

Sciall (less than 10 m.) Archaeocyathid IHoherms (BB-2) 

are internally similar to the Red Moundstone lithofacies 

(BR-1) but form discrete bioherms flanked by 'quie t-wat.er ' ) \ 

Oolitic .Calcarenites (BB-1). These l ithofacies were also 

deposited on shallow swales, but probably i n a protected 

environment adjacent to an active oolite shoal_. 

The diagenesis of the moundstones versus calcarenites 

was documented and discussed in terms of process, fabri \ 

andl histor.y . Several processes hav~ modified the original 

depositiona l texture. These include bioerosion, dissolution 

and cementation, neomorphism, dolomitization, silicification , 

pressure solution (stylolitization), and fracturing. These 

proceSses are attributed to several diag eneti c environmen ts 

- 1R2 -



inclu!i ng ; submarine, a zone of mixing between meteor-ic 

phreatic and marine phreatic 1;1aters, vadose~ phreatic , 

. and a l ate , ~nspecified environment. 

The two most ilnportant processes operating in the 

submarine envi r onment were bioerosion and early c ement<Jt ion. 

Bioerosion was not extensive and consisls of microborings 

(forming micritic envelopes and pelOi·dS , etc . ) in 

calcal'e'nites , and macroborings (ichnogenus , Trypanites) 

in some o f the moundstones . Early submarine cementation, 

ih the f orm of lithification of nlicritc in moundstone , 

a n d c l oudy fibrous r i m-cement which is facies specific 

(occurrin c; only in t:he moundstones and not in the flankinq ' 

calc a renite s) is common . A radip fibrous / b l aded 

ceme n t, wh ich occurs in oolitic grainstoncs, moy a lso bi? o f 

submarin~ origin . 

Selective, early d o lonii t ization of muds (now dolomite) 

pods ·,o~i thin the Do lom i tic Mounds tone li Lh o facies) and of 

bioturbation fea t ures in cal c a renites occurred due to initia l 

sediment heterogene i ty in a zone of mixiog betwe e n me t eoric 

phreatic and marine ph r eatic waters. 

Hiner dissolution of aragonitic shel l s and considerab l e 

rim- cementation , including exten sive syntaxial cements on 

e c hinoderm plates, occ_u rred i n the vadose diagene tic 

environ ment . 

Diagenet i c processes in the phrea t ic envi r orvnent 

include fract u ring , dissol u tion , cementat i on , neomorphism , and 

pressure solution (styloliti z ation) . Calcium 
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carbonate released during ex'tens ive styloliti z'tit ion was 

the source o f i ron -r fc h cement which ' occ l uded pores 

and f i l led ' fractures. A transitional neomorphic f abric , 

micrite-microspar- pseudospar, is i nterpreted t o be the 

result o f two events, or pulses of wet boundary mig ration 

of a solution film . 

Late diagenetic e ven ts include ; extensive dol omitlzation 

whi ctl often obscures earlier dolomite · fabric s , ,ra r e 

silici fi cat i on , and ra r e s t ylolitizati on . 

Ce rtain aspects of t h e p aleoecology of the Biostr'omc 

,Facie's were investigated us~ng field and labo r atory 1 

techniq ues . The autecology o f archaeocyathids , calcareous 

algae , !'; tromatoli t es , a n.ew, primitive ·c ~)(: lenterate', 

brachiopods, t r i lobi tes, hyo 1 i thids , e ch inoderms , and 

agmata (Sa'-l tenh l a) is reviewed and d iscu ssed as t o the 

r ole of the org'anism in the bi ostrome . The synecology 

of three distinct faunal/flo ral assemblages are d ocumented 

using t r ophic grouping and the f unction of the" organism 

in the a ssemb l age to describe the structu r e of the as-semblage. 

The mound f la'nk ing "sk e le tn 1 calca rcni te a ssemb. l age" 

has a very simp le st ru c ture dominated by suspension feeders 

(echi noderms and . br21chiopods) with minor- occurr~es o f 

d eposit feeders ( tr i l obites , hyolithids, and Salterella). 

The "mo und dwe,lling assemblage" ~as a more complex 

l?tructure consistin-g of; p1rimary producers (calcareous 

algae and non -skelet<.~l stromatolites), dominated by suspension 

feeders _(part icularly archaeocyathids with lesser oc~rences 
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of 'coelenterate' 1 brachiopods, and -rurc sponqC>s), w"itll 

less siqni ficant occurrences of deposit fC>cdcrs 

(trilobites and hyolithi-ds) . 

The "coelObite (cavi'ty dwf.:lling) asseml>la•te" 

in cavities within the moundstone. The cavities arc mostly 

forme9 by lhc dome-shaped a~;;.chaeocy<.~th id Hcti l<lmina 

amourensis wh i ch may also contribute to the structure of 

the assembL:HJf'. l\ diverse biota 'either encrusts the 

cavity roo f, or occurs on, or within in t er111al sediment. 

Primary producers (calcareous algae; includinq ~' if 

an algae) dominate the biota and occur i'IS cn.crusters . 

• 
SUspension ~eders (Foraminifera, encrusting~ archacocya thids, 

Archucotrypa, and spohgcs) are corrunon us arc dcposi. t fccd0rS 

(trilol.Jitt:'s omd worms) which oc~ur on or 1-d th in intcrnill 

sediment. 
~ 

Vertical zonation occuis in the Red Mounds tone 

lithofacies (BR - 1) and is best defined as "a rccolonizutlon 

~roces,.s leading to diversification " , 
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INTRODUCTION 

Ap{)endices A to H document the vertical successions 
and lateral relationships of the areas studied in detai l 
(see CH. II). The areas are docwnented in geoqraphical 
order from west to east (Fig. 8) , and the facies to which 
they belong are noted in the heading. Stratigrarhic 
sections a:re included (wher.e possible) for eac h area. The 
symbols used are the same for each section J.nd a key is 
given in Figures 62 and 63. The sections are discussed 
in Chapter III of the text. 

Appendix 1 is a detailed account of the hi story of 
archaeocyathid research and the present world distribution 
of archaeocyathids and associated reefs. 
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CARBONATE ROCKS 

A I lc}:h thonous 

~Packestone 

~Grainstone 

~ S ift yl i lllestone ­
l:::±::::±:j calcareous si Its ton e s 

2. Aut ochthonou s 

~Boundstone 
~ 

). Dolom ite 

~Doloston e 

~Dolomit ic limestone 

L. :,·:.J 

~ 

~ 

~ 

S i l l C I CLAS TIC ROC KS 

Sandstone 

Si I tstone 

Si 1 ty shale 

Shale 

PODS AND LE NSES 

Do lomite Pod 

<D Skeletal ca lca renite lens 

0 S! I tstone lens 

~. Silty dolom i te-do l omitic siltstone 

.., 
.I 

Fig. 62: Key t o li thogies used in 
section figures. 
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SKflE TAL COMPON ENT S 

V Archaeocyathi ds (cups) 

Reti lami na 

A Cal car eouS a l g<~ e 

Gi rvanella 

eN. Strofllatolire~ 

-* Coelenterate 

Brachiopods 

~ Tr i lobites 

Hyol i thidc; 

0 Ech i noderrr.s 

BIOGENIC STRUCTURES 

Macroborings (lrypani tes) 

u0 Bur rows (D= Dolomiti.zed) 

Tr a cks and trails 

NON-SK l LETAL CC MPONEN TS 

o Ooids 

aD Oncolites 

Peloids 

c;:;>lntraclasts 

••• Grapestones 

,. r:!_uartz silt 

SEDIHENT/\RY STRUCTURES 

-U- Cross -bedding 

._L_. Minor c ro~s-beddina 

r>J"\Syl!lnetrical ripples 

..-.....-Asynmetrical ripples 

~nte r ference ripples 

£Graded bedding 

.....-;v.5tylolites (N: nouular) 

Fig. 63: Key to symbols of compon e nts 
and structures used in section 
figures. 

- 203 - J 



·L 

APPEN D I X II 

Blanc SabLon (Oiostrome Facies) 

This outcrop is l oc.'lted 3 . 5 km nor~ h o f lllanc Sab l an 
(F'i q . 8) where it forms a consp icuous tonrKJT aph i c feat u re 
rising to .1 hciqht o f 46 1ft . ( I SO m) abovt-~ o~ f lat t ra c-t 
o f l and con s isti ng mostly o f l o wermost f-'o rtc au for1:1 ati on . 
Th i s butt e is the western -most outcror stud i ed . Outc r op 
is r es tricted, h owever, to t he s out h sitlc o f tlu~ hi l.l .:lnd 
to t h e ve r-y top where exposures of mour.d s tonc form t win 
pee1ks, scper.Jt.cd br recessive weathering calcarenite . In 
all, app r oximiltc ly 7 . 0 m o f contin uous ve rti c al f'X;Jos u re 
can 'be r('qarded as Biostrome Fa ci es. La teral exposure 
is rclatviely poor , extend in c:- f or not no re th an 20 . 0 m 
a lo n ~J any ont? horizon. 

At the base of the Bios trome Fa c ies siltstone is 
transit iona l and lateral ly efjuiva lent to skeleta l 
calcareni t e (Fig. li4) . About 0.50 m hiqher in the 
SCClucnce, part of t his c a l carenite is r eplaced by arc haeo ­
cyat hi d moundstone wh ile the part of the calcarenite adjacent 
to the sil t stone persists. 

The sil t stone litho fa cies is l.4'i rn thick, is s l ightly 
calcareou s a n d c ontains an abunda nt i chnoLluna wi t h vertical 
blirrows .:tnd nu me r o us hor iz o ntal tra c ks a nd trails . The 
»i lt st o n':' is laminated throughout and often r i pglc-mu:ked . 

~s~:;~~~~ c~l r~;ii;~-;~.:.~~d a~~e a ~~~~~~w~!~ny2 ~;a) . and 1ndi cate 

Asymmetrical in terference ripples oc cur .,..ith u "''aveleng th 
for the ma jo r ri pples of 9.5 om and an arnu l i tude of 1.2 em . 

~~=~~ ~~~g~ r~hi!e~ii~:~~n~ 1 ~s ~~!~~i~~~ ~~7°~n~i~~~e~e 
regard ed as a continua tion of, the open- shelf facies of 
the Lower Forteau Formation. 

The si l ts t n ne !lasses; la terally and is tra nsit i onal i nto 
skeletal ca lcarenite (BG-3) which is o ften very coarse - g rained, 
esr-cc ia l l y c l ose t o the mounds tone contact "'here archacocyathid 
f r a<Jcments are cmrmon. The majori ty o f t he ske l eta l debris 
is e c hi noderm, but convex-up, disar t iculated, ina rt icula te 
b rachiopod shellS, o ften leached, a re also common. This 
ca l carenite , best described as a t runcated wedg e , has a 
rnaximun thickness of 0 .82 m and a lateral extent of 1.60 m. 
The contact with the moundstone is no t well exnosed but is 
interdigitatory. TBe calcarenite drapes off the n o undst one 
at a n gles up to 15 . Minor cross -bedding , always di pping 
a.way fro m the rr:ounds t one, occurs in the drapinq ca lcarenites . 
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· Fig. fi4: Stratigraphic section in the Biostrome Facies 
at Blanc Sablan. 
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Di (fusP ripples occur at the very top ol the c<t l ca rcnite . 

Lat£>rally eq uivalent Grey 1-~oundston e lithofacies (£3(;-}) 

lies d i rectly on the $:'alcarcnitc. Of the arciWO(.}'thids, 
stick - forms dominate over narrow, thick - walled cones 
by il ratio of 2:1 - 3:1. Calcareous ul gac is ubundanl. 
The muximum thickness of the unit is 3 . 1 m, and withi_rr 
t hi s unit , the dQnsity of archaeocyathids differs q rc atly . 
t\r c haeocyuthids increase in density f rom the Lase t owar;ds 
the middle of the unit and be come rare towilrds the Lop 
where only the occassional "colony" of stick-forms 
(1\rchaeocya t hus) i s present along with abundant, small, 
digitate , non-skeletal stromatolities (Stl-V ·type of Logan 
et al., 1964). Tnarticulhte brachiopods are present_ where 
arc hacocy athids occur. Stylolites _are present but not 
as abundant as in other units . 

The moundstone sequence is lateral ly persist.enl except 
for a "channel -like" body of c alcarenite. This body is 

~. ~~n~e;i~:s:n~n~. ~~i~s t~!~1r:ii~ ~o~~r~:~~t~;o~0~ ~:~!mum 
thickness in the centre. THe calcarenite is graded , from 
a very coarse skeletal grainstone at the base upwards into 
packestone <Jnd wackestone, and into skeletal siltstone at 
the t,op where laminations and minor cross -bedding occur. 
The Uase and sides of the unit in contact ...,ith moundstone 
is covered. 

Confornably overlying the Grey l-lound Unit but with 
a distinct contact are rocks of the Red Moundslone litho­
facies (BR-1). This bed is laterally persistant, averages 
1. 30 m thick, and has a sty l onodular appearance. Small 
lenses of calca,ren ite' occur within the moundslone. Upright 
archaeocyathids are abundant with stick forms (Archaeocyathus) 
and thinner-welled, low-angle canes (Met a ldetas) being 
present in equal amounts. Retilamina, associated with 
calcareous algae is common and inarticulate brachiopods 
are present throughout. Echinoderm debris is also conunon 
throughout the lithofacies. 

Overlying the Red Moundstone lithofacies is the Grey 
Mound Unit again with a thickness of 1.90 m. The unit 
begins with a thin (.08 m) mudstone· layer which grades 
upward ifltO a very styloli ti zed mudstone ( 0. 10 m thick), 
almost stylolaminated, with well defined clay stylocumulates. 
The bulk o[ t he uni t consists of grey algal/archaeocyathid 
moundstone. Thin-walled, low-angle cones (Meta ldetes) are 

~~~i ~~!fn~0~~n ~l~~t~~=~~infliZ~~~~=~cS!~~~~ ~~ightly 
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la;g e r towurds t he top. Calcareous alqae is abu nd ant. 
The mound stone forms the two peaks at the t op of the hi 11, 
separat.ed by a tabular lens of skeletal c a lcarenite whi c h 
extend s for 40 - 50 m. Contacts between moundstone and 
calcaren.ite are straight but int·erdigitatory. A thicker 
unit of c alcarenite ( 1.60 m) is partiaNy exposed to the 
south-west of t-he main summit. No draping occurs in the 
calcarenites. 
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APPENDIX B 

Di ve rsi on Ree f (Oolite Sand Facies and Uioslrome facies transition) 

This section in the Oolite facies is !'Oorly exposed 
alO;J<J a t ra ck over a distance o l: some 0 .8 km;; , si t u a tad 
approximately 4 kms !:o the n orth of L'l\n sC' -au-Clai r (Fig.8 ) . 
Because of the und ula ting nature of the topoq r ,>phy in this 
area , no cont in uous vertica l section can Ue measured but 
a n appr o xima te compos ite cros s-section, consisting of 5 
vertical sections c an be compiled (F i.g . 65) . · 

The t ran::;iti on from the Biostrome Facit'S to the Ool i te 
Sand facies is n ot ,1s sharply delineated as at Os p re y 
Reef (Append ix C) but occu rs gradually. Skeletal calcarenites 
(qrainstoncs) of the Oolite Sand fa c ies con<>i stin r,! 
predominantly of Saltcrella cones , ec hinoderm plates , 
trilob ite debris, and inarticul a te bruchiopods , both over -
lie anU are in lateral con t ac t wit h th"e \.rcy Mo un d Unit 
COG) of t-he Biostrome Fac ies. The Oo li te Sand Fncies 
rer:Jaces the Bios trome Facies northwards ( sect ion a, b , c; 
Fig.6S). 

SPc t- -ion c (Fig.65) begins with - a small outcrop of 
thf' a r chacocyathidr i c h Grey Moundston c lit ho fa c ies {BG- 1} 
follm.,rcd by a covered interval of 1.58 m. The next expo~ure 
c onsists o f Sa l tcrel la-ric h skeletal grainstone (2.22 m) 
w~h passes upwa r ds into 0.23 m of burrowed, ool iti c, 
r, e ; eta l grai nstone. The burrows are dolomitizcd and the 
s keleta l f raction consis ts of abundant Saltcrella cones 
and echinodermplates along with trilobites and inarticulate 
brachiopods. A covered interval of 0 .44 m is succeeded 
by ::t light-to dark-grey, burrowed (do l omitized) , skeletal 
g ra instone with abundant Salterella and echinoderm plates 
a long with minor aiTiromnts of trilobite debris, hy o li thids , 
silt -g r a de quartz, ooids, and coated (Gi rvane l la) grains. 
The t hickness of this unit is 0.93 m. Ano ther covered 
int erval ( l.t> S m) is followed by 1.3 m of burrowed, 
oncolit ic, skeleta l grains tone. The oncolites , consisti ng 

·of Girvan e lla tubule s, have a maxi mum size o f 3 em and 
occur with minor amounts of silt-grade c: uart z , peloids, 
a,Rd ooids . The ske leta l fra c tion ( 40\ of total r ock-vol ume) 
consists o f Salterella cones, hyolithids, e chi noderm plates, 
and td l obi tes. 

section d ( Fig.65) commences with shales and calcareous 
silts ri c h in trace-fossils, characteristic of the l ower 
part of the Forteau Format ion open-shelf facies (James 
and Kobluk, 1978), and is a pparently laterally equivalent 
to the Bios trome Facies exposed to the south (section c, 
Fi g . 6Sl . This· implies that the lower part of t he Forteau 
Formati on 1 s much thicker to the north and consequently 
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the Oo lit e ~ ;tnd l 'acies must thin northwards. The base 
of the Oo lite Sand 1-'a.cic s is taken here o s ,, l.f. m 
exoosure of calcareous si It stone with numcrouz tracks, 
tr~i ls, and burrows, which conformably overlies the 
shales . This lithotype is taken as the base of the 
Oo lite Sand Facies as it is often seen tiS thC' basal 
member of the BiOstrome Facies e l sewhen• {BldrtC Sc1blun, 
L'Anse Amour , a nd Fox Cove). A covered interval of 
J. 78 m is followed by 3 . 82 m of burrowed, skeletal grain ­
stones consist inq o f Salterella cones and echinoderm 
plates with subordinate elements of hyoHthids and 
t r i lobi tel;. These are the highest beds seen . 

The northermost section outcrops in a sm.:~ll c l iff 
(3 . 27 m) and is equivalent in part to the top of the 
covered un i t a nd base of. the skeletal qr.:~instone in , 
.section d (see s ec tion e , Fig.65) . The basal litho logy 
(0.90 rn) is burrowed dolomitic siltst one with a minor 
skeletal fraction (less t han 10%) of echinoderm plates, 
tr ilobites, an d rare Salterella cones. This is overlain 
by 0. 77 m of ool itic grainstone containing less than 15% 
echinoderm plates .:md Salterella cones, p lus a minor si l t 
fraction. The ooids are dolomi t i zed, The sef'uence 
terminates with 1.6 m of bt1rrowed s kelelal gr~inslones, , 
again, domi.n<J.ted by echinoderm plates, Salterel·la cones, 
tril o bites, and minor occurrences of silt and coated 
grains . 
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APPLNDI X C 

Osprey HQCf (Ooli_lc S a nd Facies and ni ost r ome f".lcics transition) 

Th i s outcrop is situated a~'proxim<llfdy 4 km to the 
north-cast of L'/\n se-au-Clair (pas . c, F ig.8) where thP 
rocks arc e x posed almos t continu<il l y in a i<ltcral section 
extcndinf) for " 800 m. The bi ostromal comp l ex of the For-tcau 
Formation is here fa u lted against the l ower pat c h-reef 
series of t tw Fortcau formation . This is .111 impo rtant 
section because i t dcmonstra(.es the Lllcril l relationship 
between the two major facies; the Biostrome F<:tt:ies 
and the Oolite Sand Facies (Figs. 66 and 7JJ . 

The fiiostromc Facies here is csscntL1l ty a c ompl e x 
of t wo distinc t li tho facies; Red Mound stonc (BH-1) .:~nd 

Skeletal Cu lcarenitc !RR - 2) which are £>xposcd in outcror 
at the ratio o f 2:3, respectively. Lat era l and ver-ti ca l 
c hanges in litho facies are extreme ly ra!Jid, occurr in q Over 
a few metres . The macro -relationships ;:u:e shown diagram­
atically in Fi g . 7J (in pocket), compiled from a photo-mosaic 
a nd field sketches. Field observations were restricted 
due to the inaccessibility of much of the C'Xposure . The 
section is desc ri bed from south-west t o north-east . 

To t.hC' south-~1cst (section a on Fiq s . no <tnd 7)), 

the sect i ~Jn is p r c d om.inant ly a very coarsc-qr.1incd skeletal 
ca lcareni te with a th inly-bedded ga instonc wi t h a matrix 
of a "rchacocya t hids bra!:hiopods , trilobites , arld ech i noderM , 
debris . Verti c ally, the calcarenite becomes more massively 
bedded but still re t ains its coarse - gra ined character. 
At 6 . 15 m 'from the base o f the section is a t hi n (9 em) 
band of c l<~ careous siltstone with symmetrical ripple marks . 
This si I tstone is in turn overla in by coarse -~ rained 
skeletal ca lcarenite. The total exposed seq uen ce is 
8.0 m t hi ck. f 

Fu rthe r to the nor t h-east (section ~ ), ske l etal 
ca l carenite both overlies and passes laterally into Red 
Mou~stone (B R-1). The ske l etal calca r e nite i s . interrupted 
again by another, l a t era ll y impersistent ca l careous silt 
bed a bout I. 0 m wide and 8 em thick a t the max imum, tapering 
both wa ys to the stylocumulate of a stylolit~;". The s i lt ­
stone contains asymmetrical ripples with a wavelength of 
50 mm and amplit ude o f 6 nun. 

The sequence at section J i~ dominated by the typical 
Red Moundstone lithofacies . Ar c haeocyat hids ar,e very 
abundant with low-ang~e cone~ (Hetaldetes ) o u t numbering 
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s ti cks (/\rd~<.woe yCl thus) by 2 l; Hc t ll<lrPi ~:_<l is r:onunun , as 
are brachiopu ds. The moundstone has a ~;tyl onudul ,lr 
appearance clue to i ntense stylolltizat ion. Contact 'Hith 
the ~urrounging C<llcarcnb t e is both straiqht an,? sharp, 
drilp,lnq (39 towaL·~J!o; 140), and interdir;itatory. Small 
lenses of calcarenlte, averag 1ng 20 CfT1 x 7 em (max1mum 
48 em x l'i em) , occur within the moundstone but make u o 
less t h an 1 0% o f t h e lithofaci es . · 

Later ;llly equivalent to the moundst onc is Ll thick 
(5 m) scquer.ce of homogenous skeb:>tal calc ,orcni t e ( seclion 
'il which extends latc r.u l ly for about 21 m i.Jcforr• a L'O ntact 
with mounc.Jstone (secti on 6). The con tact between the 
moundston c and c alcoJrcnile is stra i qht but inte>rdilJitatory . 
Wi t hin t lw mou ncl stonc a r e thin (up i:o 20 em) , rersist0nt 
(10 . 0 m) sheets of ca lcarenite, Wherever th(;'SC sheets 
occur, th e overlying moundstonc is " r~colon i sed" by a thin 
(2 5 em) bed with numerous reti lamini form (Rcti lamina) 
arch acocy.1thids in a grey to green t o red mudstone matrix 
with c harac teris ti c pendent calcarebus olqal' qrowinq on 
trw underside of each archaeocyathid, Relilami n a ske l etons 
are all orientated convex - ur , rare l y touch each other , 
but occur in profus i on stacked close lo e<Jch other. Coarsely 
crystalline cement (pink ) f ill s in the cavity between the 
calca reous algae whi c h yrows on the "' undersidc of Rctilamina 
and internal sediment. Other fauna associa ted with 
Retil am i na i s rare, a lthourjh stick - form archacocyathids 
(fl rchaeocyathus) occassionally occur. l\ r.:~o id transition 
occurs vcrticall_y into the norma l Red Moundstonc where 
cones (Met aldetesJ and sticks (Archaeocyathus) are abundant 
and Rcti l.:~mi na subordi nate . 

The s.:~me " reco l onization" process is seen again (section 
7) on top of an erosive channel of ske l etal calcarenite. 
This c han n el h.:~s a ho r izontal upper surface but a very 
irregular bottom surface with relief varying by a~ much as 
10 em. Consequently the thickness of the body varies 
between 25 em and 35 em. It is over l ain by the reti l amini ­
f orm moundstone assemblage followed by typical Red Moundstone . 

To the n o rth - east of section 7 , two normal faults 

~~c~~a~i ~~:p!:~~m~~~t ~~~:e~~~' o~~~r~lc~!~o:~s a;~~~se . 
(section 8) where Red Moundstone and skeletal calc".irenite 

laterally juxtaposed in smal l exposures. 

On!" sma l l exposure (section 9) represents the last 
time that ~he Red Moundstone is seen a l o n g this section , 
the remainder of the outc rop is f ormed of rocks of t he Oolite 
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S<Jnd Facif>s . The outcrop consists of both Red Mo unds tonc 
and ool i. l i c rJrainstone whi ch arc seen t o <]radc o n t o the · 
o ther . The Red Moundst o n e con sists of three times us 
many st ick - f o rms as cones and ret i l amin ifo rms . 1\ • 
considerab l e number of the c up s ar e t opplP.d. Ooids c an be 
seen in ab u nda nce in the moundst one matr ix whi c h also 
con tai ns a lot o f skeleta l debris. 1\ l o t o f skele t a l 
debris, inc lud ing archacocyathid cups , al so occur s in t he 
adja ce nt oo l it ic grainstone, whi c h aJ.ong with skeletal 
c a lcarcn i t.cs, makes up the remainder of the sectio n. to 
the north-east . 

Two small sections wei"~ measured in the Oolite s .lnd 

~:c i~~ a~~~ c~ ~~~~n c 2~n~ ~f q~ h=i~~~t~~t a:f t~ 3~~--{~~;~~~m~ 
u nd s ection d is l ocated appro ximately 50 m to the north ­
east of section c. 

Sect i o n c (total t hi c kness 3 . 10 m) consists entirely 
of roc ks o f the Oo lite Sand Facies. The basal 86 e m 
consis ts of l igh t - grey, orange - speckled, c ross - bedded, .. 
partially dolomitized , ool~tic g;-ain s t o nes . /\II the ooid ~ 
are d o l omtt ized .and there ts <llso partial dol omitization 
o f the matrix. It is overlain by ·a li']ht-qrey, c ross ­
bedded , oo lit ic gr in stone (74 e m) with a minor t ril obi t e 
fr acti on <1 nd d o l o ed ooids. The t o pnios t unit is a 
l iy ht-qrey "oo litic() instone ( 1.50 m)' with a rela t ive l y 
hiCJ h skeletal con ent consisting predomin an t -ly o f echi rroderm 
pla t es. The ooids are again dolomitized, but rlo cross ­
bedding occu rs. 

Section d ( t otal thickness 2.94 m) consists of 
bu r rowed dol os ton es , ske letal, oo l itic grain s tones, and 
skelctul gra i*l stones. The lowermost exposed beds consist 
of 66 em , o f burrowed do l ostones with a small silt 
fract 'K>n, apparently restri c ted t Q t h e burrows . Th is unit 
is interrupted by a thin (6 em) bed o f horizontally 
laminated dolomitic siltstone consisting of equal propo~tions 
of finely crystalline d o l omite and sub- anyul ar t o sub-rounded 
silt- grade quartz. This bed occurs at 0. 4 5 m from the 
base of the section. 

The dolostoncs arc ove.rlain by 1 . 08 m of cross - bedded·, 
light-grey oolitic gr ainstones with vary ing amounts o f · 
skeleta l materi al a nd pe loids . To wards t h e base o f this bed 
do l omitized ooids and peloids occur in e(!ua l p r oportions 
wi t h a relatively small (less than l.!)..i) ske let a l fraction 
e onsist i ng of echinoderm plates, inarticulate brachiopods, 
and t r ilobites . The pe loid fraction disappears upwards 
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replaced bY partially dolomitized ooids and a skeletal 
fraction (20~) of echinoderm plates, brachiopods, and 
trilobites .... 

The oolites are overlain by a part ially dolom.i.tiz_ed 
(mottled, 20" of volume), cream to pink, skeletal grain ­
stone consisting predominantly of echinoderm plates with 
minor quantities of trilobites and brachiopods. This 
grades into a s.keletal grainstone with min or dolomiti z ati on 
(less than 10~) and a 151. f r action of dolC~mitizcd ooids. 
'fhe combined thickness of the skeletal grainstones, the 
highest beds e ~posed , is 1. 20 m. 

' I\ rose diagram of 17 measurements o f cross-bedding 
current dire c tion taken from the oolites (Fig,23) 
indica tes a widespread polymoda l I:'Urrent d irection. This 
result mny be due to insufficient da.ta. 
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APPEt;:DIX D 

.£:2.!.!eau (Oolite Sand facies) 

The thickest measured section ( 18.5 mJ in the"' Oo l ite 
Sund racies occurs in poorly exposed 01Hcrops along the 
ma1n road e~bout 1 km Lo the east of Forteau, and in s mall 
quarries adjacent to a track heading southwards off the 
main r oad .(position d, Fig.BJ. 

/1. cornplf."!t e section of the For tea u Formation from the 
contact wi th the Bradore formation to the prr:'sent day 
level of erosion can be measured. The base of the Ooli te 
Sand Faci e s is taken .:lt the confo rmable contact' between 
platey lime stone and shale Ueds, characteristic of the 
lo·Ner p<~rt of the Fortcau Formation and a s keletal 
calcareni te c hnracteristic of the upper !)<lrt of the 
fortcau formution in Labrador (Fiq.67) _. 

The basn l ca lca tenite (l.6 m) is part i ally dolom­
itizcd (mottled, totaling 20~ of toLl l rock volume), 

~~~~0~~~· b~~~~~g~~~~m·=~~~ e~~l e~~~~~~!~~8p~~~~~ ~t~~i t~!ella 
cones, and trilobite debris, a1of11 with a 10% si Ttfracticn . 

Th is i~ overLJin by a dark grey, intr<Jcla;,t grain­
stone (4.0 mm) cons is tirHJ entirely of intr,lclasts cemented 
together by coarse l y crystallin e pink ca lcite whlch ma k'es 
up 40". of the r ock volume. 'I'he intraclasts are stretched­
out or roundea ' rip-up ' clasts consisting entirely of 
tubules of the blue-green algae Girva nella. At the base, 
the clasts are elongated with ragged margins but higher 
up the clasts are more rounded. · 

This pa::;ses vertically into a poorly-sorted, dolomite-
mo t tled, oncoli tic-oolitic grainstone (I. 2 m) with a ' 
ske1etnl fril ct ion consist.Lnq of Salterella cones, echinodGrm 
plates, and minor occurrences of hyolithids and trilobites . 
The oncolit.es consist of a nucleus of comrosite grains, 
ooids, or skeleta 1 fragments surrounded by t ubules of 
Girvanella and are up to 3 em long . 

The oncoliti c grainstone is succ eedNl by a dark grey 
skeletal grai n stone (2 . 0 m) with brown - orange mottles 
(dolomite). The grai nstone consists mainly o f echinoderm 
plates and trilobite carapaces and the occassional hyolithid 
cone and brachiopod valve. 

The grainstone is overlain by a light-g rey to light­
brown dolostone with a minor skeletal fraction of abraded 
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Fig. 67: St rati graphic section in the Oo li te Sand 
Facies at Forteau. 
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trilobites <tnd brachiopods. This qr·ade;.; vertically into 
a ripple-lamina ted domomi tic siltstone with some burrows. 
Altogether, th(s unit is 1 m thick. 

Overlying the dolomite beds.is a I m thick bed of 
burro,.,ed (dolomitized), dark-grey, oolitic grainstone 
with a minor {less t han 10%) skeletal fraction of echinoderm 
plates and Salterella cones. 

Following the oolite i s a relatively thick (4 m) 
sequence. of black to dark-brown onco litic and ool iti c 
grainstones. Onco li tes , up to 2.5 em across and 
consiSting of Girvanella tubules, occur in a !1latrix of 
acids, peloids, composite grains, echinoderm plates, 
trilobite debris, and hyolithids. 

The top of the exposed sequence consists of 3.5 m 
of burrowed dol ostone, often with dolomi.tized oncolites 
and with a skeletal fraction of · less than 5%, 
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1\PPENDIX E 

L'Anse Amour (Biostrome Facies) 

The largest continuous outcrop of the Biostrome Facies 
is found i n a e li ff-section to the south-west of the Pointe 
~lour Peninsula (position E, fi<].8). This clif: is found 
about SO m inland from the high-t1dc level and ts in excess 
of 35 m high . The vertical exposure totals some 15 m 
and forms the brow of the cliff which extends la terally 
f or 2.:.!) km. Severa l minor faults cross lhe cliff but the 
displacement is small. Although the land s ur face rises 
gently inland fr om the cliff-section, the strata is 
repeated by fau lting so the most complete section is seen 
in the eli (f itself . Four sections were measured along 
the length of the outc rop (Fig.68). 

Ttw cont<:~ c t with the open-shelf fac;ies o f the rorteau 
Formation is seen only at the southern end of the cli ff. 
Dolomitic Moundstone (BD-l) is in direct contact 'ro'i t h 
shales and silstones of the open-shelf facies and the 
moundstonc fauna here consists of large, high-angle cones 
and bowl-shape archaeocyathids (Metaldctcs). Moundst o ne 

· qr<Jdcs latcrtllly into skeletal calcarenl te whi ch in turn 
g r ades latera lly into a r ippled· calcareous si l tstone and 
then back !.nto skr:-leta l calcarenite. The calcarenite 
is a ~kclcta l grainstone with small archacocyth).d fragment'-/\_ 
brachiopods, and tri lof:lites; is less lhan 20 en th1ck ~ 
and extends l aterally for 75 em from the moundslone to 
the siLtstone. It passes both laterally and vertically 
into r i ppled-laminated calcareous siltstone {the rip:oles 

~~~i~~~~~e~~~~~~t ~;~:c~i~~~~~:~~~~ ~! 46~. em T~~d v:~t ica 1 
extent of the s1.ltstor1e var i es between 10 em adj acent to 
the tnoundstonc and 25 em away from it. T\bove the siltstone , 
adjacent to the mound is 40 em of skeletal calcarenite 
which drapes of f the mounds tone at angles of less than 10° . 
The calcarenite is replaced vertical ~y by moundstone. 

The most complete section at L'Anse Amour occurs 
about 250m from the souther'n end of the c liff. The basal 
division cvnsists- of 2.2 m of Dolomitic Mounds tone (base 
not seen in measured section) which is at least in part 
equivale nt to the shales and siltstones to the south. 
The mounds tone is typically dark grey or green, archaeo­
cyathid-ri ch with a· mudstone matrix (litho facies BD-ll. 
No large dolomite pods are seen although small patches 
of dolomitization occur along with small len;;es of skeletal 
calcarenite. Weathering obscures much of the detail 
although a certain vertical zonation of fauna is apparent. 
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Fig. 68: Stratigraphic sections in the Biostrome Facies 
, at L'Anse Amour. 
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Towards the hase, narrow cone arch.1cocya.lhids lt1etaldetcs l 
do minate wi th oill y the occasion a l iso lated st ick-fo rm 
(A r c haeocyathus). In t he top 0. 35 m, clumps o f b ranchinq 
stick f o rms occur which are even l y spaced (c . 0 . 35 m apart) 
and a r e associated . .,.ith scattered coe l entera t e fronds . 

Overly inq the Do lomi tic Mo undstone liti10facics ( BD-1 l 

~~d t~~u~~!~~~~t ( ~~~ i ~~a;~ep~~~~~~=~~ ~~i ~ . ~~n~~~i~~e of 
mcusure d secti o n but is o ft en less a n d ran~ l y more t h ;:m 
tha t fi gure . Thi s unit is c haracterized by the deep red 
colour o f the mudstone ma t r i x, the s tylonodula r 
appearance , and abundan ce o f Uf'right archaeocya thid.s. 
Narro w cones dominate the archaeocyath ids f <"! una with st i c k­
fo r ms a nd r et i lami niforms <:~l so playing an importan t role . 
Calcareous alg.1c is commo n t hroughout the unit.!", coe l en­
t erat.-. fron ds occur loc ally ; and inarticulate brachiopods 
arc coillr:lOn . Sma l l l enses o f skeleta l ca lcLJrcnite ma ke u p 
less than 1 0% o f t he r ock by volume. 

The mai n part of the outc r op con sis t s of Nodula r 
Mo undstone (BN- ll , Thi s unit averages 6 m lhick and 
con sist~ of badly weathered, rubbly , black to dark r.,!' rey , 
nodu l ar mound stone with a mudstone to wackc~tone mat ri x . 
Sma l l l enses o f s keleta l ca l c a r enile and s ma ll i soLtted 
patches of s hale> occur within . the mo undstonc . Arc h aeoc ya t h i d 
dens i ty is l ow bu t cons i sts p rimaril.y of narro w and wide 
con es (Met.a lde t es). Brachio pods are r"re . 'l'he uni t i s 
l atera lly persistent a nd occurs i n sections measured 2 k m 
away to the north . ~H thin the L ' Anse Amoyr area (and at 
Fo x Cove) the Nodula r Mound Unit (BN) i s terminoJted by 
a pl a nar e r os i on- surface contact wi th oolit ic and s k eletal 
grainstones ( Uni t BB) . 

Within al l th ree u~·ts IBD , BR, BN ) exposed be l m.· 
the e r osion surface, larg accumula tions of skeletal ' 
calcaren i te occur as we d ges hic h fl ank the moundstone. 
In the area between the sett l emen t o f L' Anse Amour and t h e 
s outhe r n ex t ent o f the cliff (about 1. 0 km) there a r e six 
s uch wedges which va r y in size from 1 . 5 m to 4 . 5 tn thick 
by 2. 5 m. to 28 m l ong at the b ase (maxi mum extent ). ln 
all six occu rrences, ca l c aregi te drape o f f the mounds t o n e 
a t angles b esween 11° a nd 18 , a n d in direc ti o n s be tween 
013° and 050 , Mi nor c r oss-bedding i: s of ten s een o n the 
i n c lined bed s, always d i pp i ng aw<~y from t h e mounds . 
Fo ur of the wedges are adjacent to the nod u la r moundston e 
(BN-1), one i s ad jacent to the Red Moundstone (BR-1), 
and o ne, t h e l argest , i s a d jacent to a ll three litho facies 
(BD-1, BR-1, and BN -1 ) . The largest wedge ( size 4 . 5 m 
by 28 m) occurs a t the southern end of the c liff. This 
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wed<Je consists o f skeletal packestone? to yrainstone with 
several beds, up to 20 . cm thick, cons"isting solely of 

~~~r~=~~ l~r~~~i ~~~d m~~~~e~ i e s;h~~:n b~~8~i~~~d~~!c~o~~~~ntal 
within 25 em from the mound. The contact between the 
moundstones and calcarenite interdigitatos over 50 em. 
At the top of the wedge is a large symmetrical megaripple 
with a waveleng th of 1 . 85 mandan amplitude of 16 em. 
Current directions could not be measured . lt is dirf'ctly 
underlain hy·..o~ 4 em thit:k. bed with slightly asymrnetricLJ. l 
ri.pples (wavelength of 10 cml. 

Overlying t he Nodul ar Mound Unit (AN ) and seperated 
by a plunar erosion surface described above i~ another 
5.56 m of section, divisable into 2 units (BB <tnd DG). 
The Oolite Bioherm Un ~t (88) · lies on ~op of the erosion 
surface and has a maxtmum thickness of J. 05 m. At the 
south end of the cliff, coarse ske l etul culca renite (80-3) 
with a thicknesS of 27 em occurs at the base and pas-ses 
vertically into skeletal oolitic calcarenite ([JB - ll more 
than 2 m thick, with no sedimentary structures. A sma l l 
archacocyath"id-rich moundstone occurs as a Bioherm lBB - 21 
of unkno·.m l<l teral dimensions (p r o bably less than 1.50 ml 
and 0.40 m thick. 

About 2:.0 m to the north a coarse , skelcta I, coli tic 
gr.ainslone (oc casionally floats t e) is at the base (thick­
ness 32 em) a nd conta i ns large arc aeocyathid c ups 
echinode rm fragments , brachiopods, and tri l obites <ts well 
as asymmetric ooids . This grades pwards into an oolitic 
packestone (48 e m t h.ick) , in whi c h he ooids are selectively 
dolomitized. Above the dolomitized oolite bed is a very 
clean, light - grey oo l itic packestonc (6 em thick) with 
very litt l e ske lA a 1 material which tru ncates the dolomi li zed 
ooids underneath . The light - grey ooid$ are in turn, 
truncated by 'ts em of very coarse skeletal oolitic 
packestones (BB-1). Both erosive contact.-are ·planar, 
distinct l ines bu't. only occur locally. 

The next horizon of ooli ti _c packestones (95 em) 
contains anot her sma l l bioherm of unkn own , but restricted 

~~~~~~~~n~~rt'~~-i~p~!~h=~~f:~~ :i!~a~h;o~~~ ~~~~~~~e~r1gy a 
the overlYing unit. The bion'erm, in the same level as the 
one to the : south and of another 1 km to the north , consists 
of a red to grey archaeocyathid moundstone in a mudstone 
to packestone matrix. Stick -form archaeocyathids out- number 
cones by 2:1 ; retilaminiforms are common; trilobites , 
brachiopods , and calcareous algae are present. The largest .,.-t 
bioherm is the one to the north which has yaximum height 
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of 1.60 mat the central point of the structure and is 
5 m wide at the base. The contact between t he bioherm 
and the ool~.tes .is straight although interdiqitatory. 

Two kilo~t~et res to the north of L ' Anse Amour, 
equivalent beds consists of 1.15 m of skeletal pi!ckest.one 
to grainstone overlain by 1.60 m of coarse, 
but fining up·,.,ards skeletal oolitic calcarenites, 

The highest beds exposed overlie the Do l i tc Bioherm 
Unit (88) and consist of rocks of the Grey Mound Unit 
(BG) . The Grey Mounds t one lithqfacies (DG-1) consists of 
abundant clacareous ?llgae" often associated with 
rctilaminiform archaeocyathids wi th c ones o utnumber in!J 
stick-form archaeocyathids by 2:1. The cones (Mctaldetesl 
are larye untl thick-walled. Poorly exposed outcrops o f 
laterally equivalent calcarenites occur but thei r r,;eometry 
i.s unknown. About 1 km to the north of L ' 1\n s c Amour, a 
course skeletal calcai:-enite (BO em thick) which grades 
upwards from the underlying coli tic packestone is 
apparently the lateral equivalent of the moundstone. 
One km further north , the same Grey Moundstone occurs 
( 0 . 50 m thick ) although the basal 0. 20 m of grey mudstone 
ap}'Je,us unfossiliferous, At L'llnse Amour the grey 
mounds tone is 2 . 80 m thick, Ou t the top 0 _ 30 m consists 
of skeletal (Girvanel l a) stromatolities (type LLII -C of 
Loqan ct a!., 1964) which are the ·highest beds seen but 
are also-Taterally equiva l ent in part to the Grey Moundstone. 
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APP ENDI X F 

Fox Cove (Bio's t r ome Facies) 

The on ly coasta l exposure of tho Biostrome facies 
i s f o und at f o x . Cove on the Po intC Amour penins ular 
(posit.ion F, rig.8) where it is faulted against the 
patch- reef series o f t h e Forteau Fo rma tion . Alt iiiDU<J.h less 
than 14 m of section i s ex posed vertical ly, about 300m 
of st r at.J is exposed l a te rally . The strati graph,i. cal 
cont act o f the Biostro me Facies with the open - s hel f fa c i es 
o f the Fa cteau F'ormation is seen on l y at t h e n o rth-east 
end of F o x Cove (Figs. 69 a n d 70), 

The s equence (see Figs . 69 and 70) comme nces with a 
thick (2 . 5 m) unit of massively bedded calca r enite which 
grades, 20m to t he south-we s t into ca l ca reo us siltstone 
wi th common trace fossils. Several set::; of ripple-marks 
are associated wi th the si lt stone including si nous 
symme trica l r ipp les , interference ripp le s, an d asymmetroca.l 
ripples. Current direction varies between 030° and 172 . 

The s keletal ca l c arenite pa sses upw.1rd into 27 em 
o f wcl l- l.Jmin,1ted c al ca reous s il tston e with i ntcrbe>ddcd 
s h ales cont.1 i ning smal~ len ses of ske l ct.:~l c .Jlc.:lrc nite. 
This unit .i s o verla in b y 1. 20 m of massively bedded, 
homogenous, c oa rse - grained ske le tal ca l carcni te (packcstone 
t o fl oatstone with rackeston e matrix) . Ar c h.1eocyathid 
fragments are fai rly common bu t most of the mate ria l consists 
o f e c hinode r m plates , with brac hi opods, and occas i onal 
lr i lob i tes and hyo l i thid s. The unit terminates with a 
mega-rippled surface o f symmet rica l ripples having wa ve ­
le ngths a; between 18 and 35 em.. C res~ s of the ripple s 
tren d 055. This me ga-rippled horizon 1S also a een 5 0 m 
to the south-west wh'ere the wa ve length is 96 em with 
symmetrical crests t r ending 0 49 ? Three h undred me tres 
to the south - west , nea r t o t he beach, both symmetr ical 
mega-r i!)plcs (wave l e ngth o f 34 t o 45 em , crests trend i ng 
06 6 ° - 085°) an d si nous, as ymmetri c al me8ar i pplcs (wave -
l e n gth of 15 em , c urrent direc ti o n 166 ) o ccur. 

Overly in g the mega -rippled c alcare nite is a l<~terally 
diver-se suite o f s hales and silts (lithofacies BD - 2), 
Skeletal Calcare ni te (BD-3) and Dolomitic r1oundston e · (BD-1); 
which togethe r attain a maximum t hi ckness of 4. 0 m. Towards 
the north-e as t , t h e sequence commences wi t h l .l'i O m o f 
shales and ca l ca r eous si ltstones. Sha l es d o minate at the 
base b ut sediments b·ecome silty towards the top with 
occo31sional small r i pple laminations. Rare, small lenses 
of skeletal calcareni te {maximum s i ze 33 e m x 5-- c~) occur 
within the unit, 
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Fig . 69: Stratigraphic sections in the Biostrome 
Facies at Fox Cove. 
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Ove rlying the sh;des with an irrcgulilr con tact is 
the Dolom i tic Mo undstone (DD-1). In places , the base 
of the mounds tone consists of toppled stick - form 
archaeocyathids (Archaeocyathus) in a mud /s ilt matrix. 
This grades latera ll y into either a purer calcanwus 
siltston e or a brachiopod packestone with convex - up in­
articu la te brachiopod valves forming beds less than 
15 em t hi ck. p;i!ost of the time, the moundstone l ies 
direclly onto the shales and silts. In this situation, 
very large, wide cones and bowl-shaped archacocyathids 
(MC!ta!detesl with diameters averaging 10. 5 em dominate 
the fauna ,llong with inarticu l ate brachiopods. Associated 
fauna includes large stick - form archaeocyathids and an 
occ asional frond of coelen~croJte . About 1.0 m higher, 
however , sticks o ut numbe r narrow cones and the coelente rate 
has -an errat i c distribution from absent to very <lbundant, 
somet imes occurrin<J as the sole skeletal element. 
Branching, stick-form archaeocyathfd (Arc haeocyathus) 
~·c olonies " are common at this horizon and very evenly 
spaced 35 em apart . Skeletal ca l carenite lenses or pods 
and small pod~ of fine-grained dolomite are p resent but 
are not extensive. The top of this unit is not exposed 
at the north-east end of Fox Cove. 

Tr".::iced to th_e ··sou th-west , the underlyin <J shales 
{BD-2J become more silty in nature and · eventually 
calc.:t rcous si I tstonc is replaced by Skelct<~l ca l ca renite 
(BD-3), all witbin 50 m from the north - east end . 
Do l omitic Moundstone ove rlies the ca lcaren i t e . Thirty 
metres further to the. south -west the ca l carenite t hins 
against laterally equ iva lent Dolomit ic · Moundst one (DD-ll, 
The calcarenbte drapes off the moundstone at angles of 
less than 10 , ·and has an interdigitatory contact. 

The shales are seen again to overlle the me ga- rippled 
calcarenite a t t he south-w·est ··end of Fox Cove , 300 m from 
the previou.sly described occurrence, an~ o n the same 
stratigraphical- horizon. The shales here are b lack, 
featureless, almost 1 m thick and extend at least 50 m 
further to the south- west. They underlie the Dolomitic 
Moundstone in the lower part and occur as l ateral equivalents 
in the upper part where a tongue of shale drapes off the 
moundsto ne at angles up to 30 , 

The Dolomitic Moundsto ne to the sout h-wes t differs 
from thal to the north-east in at least two important 
ways·. The proportion of dolomite present and the size 
of the pods in which it Is found is much greater to 
the south-we st. The dolomite makes up approximately 25% 
of the lithofacies and is found in large pods and l enses 
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{maximum more than 2 m l ong) which are su rrounded b y 
stylonodular rnoundstone which because of the differential 
intensity of stylolitization, appears to have wrapped 

._ itse l f around the dolomite pod •. Some p ods on wea thered 
surfaces show l aminations and bioturbation features 
(vertical and inclined burrows~. Upright archaeocyathid 
c ups and ' relict' (?) patches of skeletal calcarenite 
occur occasionallv. The second ,difference between the two 
areas is the abserlce of coelenterate in the south-west, 
the fauna there cons1sting predominantly o f narrow cones 

~:~~=~~e~~:l t~~m~~~~\~;~~u~~~c~~f~r~!n~ r-~fh:k~!~~;~usl . 
~'calcarenite (coarse-grained packestone) at least 1, 40 m 

thick and cxtendiny laterally for 35 m. Only o ne contact 
with the moundstone is seen (south-west endl where the 
calcarenite thins towards and dr ape s off the mounds 
at gentle angles. Adjacent to the contact, archueocyathid 
cups arf': seen in the calcarenite , otherwise the skeletal 
composition consists of echinoderms, brachiopods, or 
trilobites. 

The Do lomite Unit {BD) at Fox Cove is brought to an 
abrupt end by a very th in but laterally extensive (more 
t.h an 300 ml sheet of s kel etal ca lca renite. TwO occurrences 
of ripples a re seen in the sheet. They are both s ymmet rical 
with Wavelen gths ranging fr om 5 .0 t.g 7.5 c ni 2nd c rests 
of the .5ii?ples trending be t ween !50 <Jnd 277 i n o ne case, 
and 124 111 the other. The contact wi th the underlying 
moundstone is planar and apparently erdsional as archaeocy­
athids arc truncated. The upper eroded surface of the 
moundstone is covered with numerous, small black do t_s 
which represent the apertures of marco!Jorinqs, !Oimi lar to 
those described from the lower _patch-reef series (James et 
~·, 1977) and attributed to the mor phogcnus T rypanites:­
These borings , now filled wi"th sediment are seen to 
penetrate archaeocyath id skeletons and surrounding matrix 
(Fig. 31) . They are absent in some . places and very dense 
in o thers; up to :ZOO borings _occurring in 10 square cent­
imetre areas in places although the avcrage.i~ . . bet....,een 150 
per 10 s q uare centimetres (n,;5): 

Overlying the tjalcarenite sheet are isolated exposures 
of Red Mo undstone lithofacie s (BR-ll. When e ver the base 
is exposed, t he colonization assemblage documented fr om 
Osprey Reef occurs averaging 30 c~ thick. This grey/green 
mudstone consists _mainly of abundant reilaminiform . 
archaeocyathids a~ociat.ed with the pendent growth-form of 
calcareous algae on the undersid,e . Another significant 
skeletal component is the coelenterate whose fronds appear 
to spread out_· both horizontally a nd dOwnwards. ·-occc:sional· 
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stick-form Ztr c hao e c yathids are also f o und. Thi s unit passes 
transitionully upwurds into more typical Red Moundstone 
(BR-1) where abundant, upright narrow cones are the dominant 
fauna, along with st i ck- forms; bowls are rare. Calcareous 
algae is common , inarticulate brachiopods .:~represent to 
common while trilobites are rare. The coe l enterate is 
locally commo!i . The unit, of maximum thickness 2 . 2 5 m has 
a stylonodular appearance. small lenses of skeletal 
calcarenite make up less than 10' of the volume, The 
corresponding skeletal calcarenite lithofacies (BR-2) does 
not occur at Fox Cove probably due to inadequnte exposure . 

Red Boundstone passes transitionally over a few 
centimetres into the oyerly.tng Nodular Moundstone litho­
facies (BN-l) which is 3.9 m thick. Alth o ugh very hadly 
weathered , it can be discerned that there i's a 'distinct 
partition between adjacent areas where arch<leocyatllids 
are common and where they are rare. They are common in 
areas o f up to 1 - 2 m across and about 1 m high. Thi c k­
walled archacocyathids and funnels dominate with minor 
s tick-forms in <1 mudstone matrix. Brachiopods are common. 
Skeletal calcarenite makes up to SO% of this unit 
and occurs as s mall lenses and alongated tubular lens 
(maximum s i ze! 1.0 m by Od5 m). The composition of the 
ca l c<Jr e nite is oftefl dominated by unbroken, inarticulate 
brach i opod valves. 

The adjacent strata, with a sparse arc hac ocya t hid 
faun.J is a nodu l ar mudstone with smeLl I, skeleta l 
(·brachiopods) calcarenite lenses (less than ·10% volume) 
and green, limy shales (5%}. Although fossils are rare, 
isolated archaeocyathids do occur:-, par t icularly t.o· ... ards 
the top. Branching stick-forms dominate this sparse 
f.auna <Jl o ng with wide cones, funnels and bowls. Narrow 
cones ''"ere not observed. 

The Nodu lar Mound Unit {BN) is truncated by a planar 
erosion surf<lCE' and .pverlaln by- skeletal, oolit i c 
packestones {OB-1). At the base, bot/1 skeletal grainstone 
containing several large trilobites (\->'anneria} along with 
mi nor ooids; and oolitic grainstones occur, The skeletal 
grainstone has a maximum thickness of 60 em and thins 
laterally .and evcntuafly passes i ·nto oolitic packestone. 
Throughout the o o lite sequence exposed ( 1. 05 m thick) 
there is a skeletal element present. The basal 0.65 m 
consists'·of <l fining upwards sequen c e of ooids with a 
corresponding decrease in ~keletal content. Th~ base is 
extremely coarse -grained with several large archaeocyathid 
cups . The oolite sequence is interrupted by i! thin, 4 em 
bed of skeletal packestone which is followed by another 
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coarse oolitic skeletal packcstone bed (8 em) and then by 
a purer oolitic packcstone (28 em). 

A·l though con fused by fauling and poor exposure, the 
succession con:tinues inland with further isolated exposures 
of oolitic pack:estone. In some of the oolitic packestones 
however, small (several ' centimetres) ovoid in plan, 
skeletal (Girvanella} stromatolites (LLH-5/LLH-C of Logan 
et al., 19~ Apparently overlying the oolites 
are grey moundstones and calcarenites indicative of the 
Grey Moundstone lithofacies (BG - ll. 
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APPENDIX G 

Schooner Cove (Mixed Biostrome and Doli te Sand Facies) 

end oi~r 5~~~~~~~o~0~~ Fi !~~~~ =~o~h=n n~~~~~:~st 
sequence from the Bradore Format ion th r ouqh to the For t eau 
Formation bi pst rome complex. Exposure o f the b i ost rome 
complex. is 1 imited l.:tteral ly except at the very top o f 
the hill, but a useful, though incomple-te sequence occurs 
(Fig. 71) . . 

Thn contact with t he o pen s h e lf facies o f the Forteau 
Form.:~tion is not ·seen but c<:~n be placed to within l m. 
The base o f the biostrome consists o f 3. 7fi m o f Do l o mitic 
Mounds tone ( rm- 1) , comparable to that at the north- east 
end of Fox Cove although no coelenterate occurs. Th is is 
over lain by 1.18 m of coarsely skeletal, par-t l y oolitic 
pack estone whi ch becomes a purer oolit i c grainstone towards 
the top . r~ o sedimentary structures occur in this rock. 

1"1. thin £6 5 em) , poorly- exposed unit of grey , 
weatherin~ orange-brown , moundstone with a mudsto ne matrix 
follows with a fauna domi nated by stick -fo r'm ar-clJacocyathids 
and retilamin i fo rms occur in g with ca l careous algae. 
This r ock is comp,1rable with the Grey Moundstone lithofacies 
(BG-1). It i s ovl:! rlain by skeletal, partly oo l i ti c , 
partly onco l itic grainsto ne of thickness 1. 30 m, The 
top 10 e m exposed (top is covered) consist s o f larqe ()em) , 
brown weathering oncolites set in a skeletal , oolitic 
matrix. This bed may be thicker but the next 0 . 80 m is 
not exposed . • 

The se~ucncc recommences with a la n]e exposure of Grey 
Mo undstone (BG-1 ) with laterally es uiv..-tlC>n l coarse ske l t>ta l 
ca l c areni te . Thick -walled wide cones a nd rctilaminiforms 
with associated cal ca-t eous algae dominate the skeletal 
element. Trilobites "(Bonnia ) ·are present. The maximum 
e xpo sed thickness is 1..._96 m but neither- the base nor top 
i s expo sed . A 9ap o f 0.80 m is followed by a t hin (20 em) 
bed of poor-ly exposed s keletal packestonc wllich 1Jrades 
upwards int o a sequence of oolitic, ske leta l grainstones 
associated with small bioherms , typica l o f t he Oo li te 
Bioherm Unit (BB). Less than 2.0 mof this unit is 
exposed verticil lly but widesr-'read laterul exposures o ccur 
as the beds lie on the top of a hill.' A total of 9 small 
bioherms, rr.ostl y o f unknown maximum dimeflsions are partially 
exposed. T h e large.st bioherm is ll n by 5 . 5 m a nd 2 m high 
although the t op is neve r seen. These bioherms consist of 
grey/green algal-arc haeocyathid moundstones with a mudstone 
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Fig4 71: Stratigraphic section in the mixed Biostrome Facies 
and Oolite Sand Facies at Schooner Cove. 
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matrix. The bioherms have a flat base with 11 strongly 
convex upper surface. Calcareous ·algae appears to be the 
dominant organi.sm, with stick-form archaeocyathids, 
low-angle cones, and retilaminiforrns common. The bioherms 
are surrounded by an apprently structureless but well­
bedded assemblage· of Qolitic, skeletal grains,tones. The 
contact with the bioherms is interdigitatory bu.t no 
draping of the calcarenites occurs. Close to the bioherm, 
the oolitic grainstones show an abundance of Salterel la 
cone.s which diminish in density a wa y from the bioherm until, 
at about J m distance, they become scarce. This is seen 
on all "sides of the bioherms and is not restricted to 
j ust one side. 
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APF'ENDIX H 

L'l\nse au Loup (Ool"ite Sand Facies) 

Along the main road, to the north-east of L'Anse au 
Loup (position H, Fig.8), the Oolite Sand Facies is 
poorly and infrequently exposed so that no measured 
section could be 8btained. HOU\<tever, rocks characteristic• 
of the Oolite Sand FaCies do occur there. These· include 
mottled, dolomitic siltstones; oolitic, skeletal 
grainstone"s, and burrowed skel.etal grainstone~. 

• 
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1\PP!::NDI X I 

Ar c haeocya thids: Research and Distribution 

f..r ch aeocyalhids are possibly the only major animal 
phylum to have be come extinct (Ifil l , 1972). Their lack o f 
de scendants is reflected by t h ..: uncerL1inty of th ci r 
affinity. They were regarded primar i l y as cora ls by 
the discoverer, C.:tpt . Ot1yfield, in 184 5 , ,,nd l <:ttcr by 
Billin<JS {18(,1), Dorncrman ( 18 8 6), ,; nd !Iinde ( 1889). 
During the Silmc: period o f time , howeve r, they were also 
regarded as Protozoan (Billings , 18G 5l as [(n-i1rninifcra 
(Dawson, 18fi 3 ; Meek, 1868) as sponges (Walcott , 1886; 
Tayl o r, 1910) as a rece?t acl.). litid (Roemer, 1878}, ~,nn 
a s calca reo u s algae (Van Toll, 1 889 ), '1\lyl or ' s work w.:t s 
apprcnt.ly rcqa rded as definitive as it w.:~s over 25 years 
la befor e the auestion of their ,;ffinity wa s aq<tin 
di c sed when they were placed into a subphy lum o f the 

era {O ed(ord ,1nd Bt>dford, 1 9 39; Vologdin , 1937). 
were first ph·lCe d into a phylum of thei r own , the 

Arch ocya tha, by Okulitch and De Laubenfels ( 1953) and 
hav~aintain ed that status ever since (H ill, 196 4o 197 2) 
<~!though several wor ker s regard them as bcin<J so simi l<J r 
to the s pon11e s as to not warrant a scpar.1t.c r; hyl um 
(Ziegler and Rietschel, 1970; Balsam, 1973 ). 

Al t hou gh .morpholoqica l va ri<1tion is 9 rc<tt, the mo~l 
common form , .:m i nverted cone, superfic ia l l y resembles 
a rugose coral , but the similarity ends there. The 
archaeocyathid ske leton consists of 1 or, more commonl y , 2 
perforate walls wh ich are connectEd by perforC\te r.:~dial 
plates and rods, imperforate dissepimcn ts and t abulae 
or tu b ules (liill, 196 4}. /1. cav ity occupies the ce ntral 
part o f the skeleton . The morpholOgy varies from s t ick - _ 
like forms (sometime s branchin g) , to bmd -and plate-like 
forms . Noth ing is knolo!n of the sof t tissues o f 
archaeocyathids. tf' 

Stratigraphically, archaeocyat hids rd.ngc. throughout 
the Lower C<lmbrian after which they bc c<:~ffic e xtinct . Most 
taxonomic and stratigraphi_c work has been done in Russ i <l, 
particularly on the Siberian platform {Lena River section) 
and Altai-Sa j an fold-belt whe re a rchaeocyat hid s urc 
present throuqhout the Lower Carribrian strata from the 
earliest Tommot ian through the 1\tduban iun , Leni .1n, and 
Elank.i an , Nowhere e lse in the world is there sl.lch a complete 
sequence (Rozanov and nebrenne, 197 4). 
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E<Jrly history of archaeocyathid research 

1\rchaeocyathids were discovered on the south coast of 
Labrador in 184 5 by Captain H.W. Bayfi.eld, but were 
misidentified as a rugose coral Cyathophxllum (Bayfield, 
1845). The first Russian discovery of an archaeocyathid 
was by a mining engineer, Meglisky, in 1850 along t he Lena 
River section in Siberia, but it was identified as the 
Upper Carbon iferouS plant Calamites cannacformis, 'I'he first 
scientist to collect archaeocyathids wa s Richardson of t he 
Geological Survey of Canada . Unfortunately, his collection, 
all from southern Labrador, was lost as the ship, returning 
to Mont real with the specimens, sank . Only one specimen 
survived and was subsequently illustrated by Logan (1863}. 

The term archaeocyathid was1 derived by Billinqs 
( 1861 ) who erected the genus Archaeocyathus , and' named 
two species: A. atlanticus and A. minganensis, bot~ from 
the Forteau Formation in Labrador. A. minqanensis .,.Jas 
also found in the Ordovician age Beekmentown Group on 
Mingan Island in the Gulf of St. Lawrence. Billings 

~~:~!~d f;~:t m~~~ l:~~d d!~~:~a!~~m~h!~ ~= ~~~~!~o~u~B~~i~~gs • f 
1865) . t'luch later, A. minganensis was found to be a 
sponge (Archaeoscyphia) but A. atlanticus was an 
archaeocyathid. 

Present day distribution. of archaeocyathids 

Worl~-wide distribu-tion 

Since 1861 archaeocyathids have been reported from 
every continent and substantiated in all but South America 
where t hey were descr.t,bed by Fergulio (1949} but .refuted 
by Hill (1972). 

By far the most extensive occurrences of 11.rchaeocyathids 
are in the USSR, and this · has resulted iri a vast amount 
of literature, mainly monog raphic, which is summarized by 
Hill (196 4). The forms occur in two main areas; the Siberian 
platform, including the Lena River section , and the Altai­
Sajan fold-belt. As archaeocyathids are present throughout 
t he continuous Lower and lower Mid'dle Cambrian sections 
in these. regions, it has been suggested that four stratigraphic 
stages can be recognised using the development of arCh­
aeocyathids as the t i me control, and that these stageS! could 
serve as the basis for a division of the Lower Cambrian 
and world-wide correlation (Rozanov and Oebrenne, 19:74} ~ 

The four stages recognised in ascending order are the Tommotian, 
Atdabanian, Lenian , and Elan~ian. The Elankian may, in 
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part, be Middle Cambrian (Rozanov and Debrcnne , 1974). 
The only other Asian occurrence of archaeocya thids is 
from China (Blackwelder, 1904; Ogawa, 1905). 

European· occu rren ces o f archaeocyathids are relatively 
few. Probably the best exposed outcrops cue in Soaln 
where 2 major l ocalities are known, both in the nOrth-west 
part of t he country. · . Archaeocyat:Jlids are found in the 
Lancasa Formation of t.he Esla Valley where they are 
associated with oncoli\,es and bioclastic debris (Dcbre nn c 
and Zamarreiio , .1970) , and in the equivalent Vegad~o 
Formation ln the' region of Po nferrada, both of Lenian 
age (Debrenne and Zamarieiio, 1975). The second occurrence 
is from Las Ermitas and yields an ·older, early Atdabanian 
age fauna (Roza n ov and Oebrenne, 1974). · 

' In the Iqlesiente-Sulcis region of S.W. Sardinia, 
archaeocyathids occur in algal bioherms and within c las t.ic 
strata of the Matoppa men"tler of the Nebida Fm. (Oebrenne, 
196 4; Brasier , 1976). A Lenian or possibly Upper Atdabanian 
age is indicated by the assemblages (Rozanov and Oebrenne, 
1974). 

Two poor exposures are found in France, Len ian 
archaeocyat;hids are found in the ' Ca lcaire a Archaeocyathus' 

~!u~:~ ~~~;~;~7; ~~i~t~~~=n~~~~~;n~Ro!!~~~ ' a~~i~~b~e~~~~ 
1974 ) , is found in. Carteret, Normandy (Debrenne , 1964). 

_ InN. Norway , on the Isle of Stzlr¢y, archaeocyathids 
have been reported within a highly deformed, matamorphosed 

~ ~~~~~~~e~~c~~~~}o i7H~~i~~d 0!n~a~~u;~~ 1 i~~6~, ro~~s t~!~h!~e 
~~dly preserved, they can only 'be placed down to the 
~~r Ajacicyathida. 1 

I The most recent European discovery of archaeocyathids 
was at Inchnadamph in N.w. SCotland where they occur as 

1 rare fragments in silicified dolomite c lpsts, 1 0 m above 
t h e base of the Ei lean Oubh Fo rmation o f the Ourness Group , 
and assigned, i n this preliminary study, to the family 
Ajacicyathacea (Brasier , 1977), 

flrchaeocyathids · have . been reported from the Middle 
Cambrian o f the lloly Cross Mountains in Poland. (Orlowski, 
1959; 196 0) but have since been re.- interpreted as the 
blastozoan echi noderm class Ctenocystoidea (Sprinkle, 
1973, p. 111). 

Archaeocyathids have been reported from erratics in 
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the Dwyka Ti llitc in S. Africa (Rozano;J and Debrcnne, 1974), 
but the major African occurrence is iry Morocco where Lower 
Lenian forms arc found from the · slop~ of the Anti-i\tlas 
Mountains {Rozan.ov and Oebrenne, '!974) and · also in older, 
Middle Atdabanian (possib ly Tommotian) rocks in the 
"Schisto-Calcaire'' succession of the north slooe of the 
Anti-Atlas (Ocbrenne, 1964) where' the~· occur in bioherms 
(Debrenne, 1975). 

Extensive archacocyathid pearing beds are found in . 
the Flinders Range of Australfa, described by Taylor (1910). 
and subsequently revised by r;febrenne (1970; and the AjaX 
Mine fauna, 1974): Aspects / of the paleoecology are 
discussed by Brasier ( 1976~' . Two levels of archacocyathids 
are found in the Flinders Range. The lowest is the 
Wi lk.owillina Limestone of Atdabanian age and the uppermost 
is the Wirreolpa Limestone of Lenian age (.Rozanov and 
Debrenne, 1974), 

In Antarctica, there was a 50 year gap between the 
discovery of archaeocyathids in glacial erratics (Pr iest ly 
and David, 1910) and of their in situ discovery (Laird 1 

and Waterhouse, 1962) and Subseauent documentation (Hill, 
1965). A possible Atdabanian oi Leniun age has been 
proposed for this faura (Rozanov and Debrenne, 1974). 

The genus Archaeocyathus is illustrated , amongst other 
fossils, from the Ella g Formation of the East - Central 
Greenland fold-belt where they occur in lilrge numbers · 
(Poulsen, 1932). ! 

North 1\meri can occurrences 

The distribution of archaeocyathids in North Ameri ca 
can be divided into two distinct geogrilphical areas: the 
Western Cordi 11-e!a and the Appalachian~. 

Canad!h~a~e~~~~~o~r~!~~~~=: of T~~c~!!~ci~~t~~~~i ~~~~~ ~;e 
listed and well:-ref.erenced by Stelck and Hedinger (1975). 
They occur in a linear belt approximately 1200 kms long 
and 250 k.ms wide , trending N.N.W. - S.S.E. (Stelck. and 
Hedinger, 1975; p. 2015) which presumably extends into 
the U.S.A. where they have been described from Washington 
State (Ok.ulitch and Greggs, 1958), A well-documented 
occurrence from the fo'cKenzie and Cassi~r Mountains of the 

~~;~~[~=~~, Tr~~i~o;~~=~ ~h;a~~~~~;k.;~, ::~! t!~:n c~~~~~i!ted 
with the Altai-Sajan fold-belt of Russia, but RozanoV and 
Oebrenne (1974) suggest a younger, Lower Lenian age when 
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cor r elated ,.,·ith tho Sibcriun PL:~lforru. T)l(' occurrcn(.;c 
of ~rchaeoq:athids in biohQrms is often mentioned from 
the Canadi.:ln Cordillera (e.(j. !lrabb, l%7; Fritz, 1974) 
but they have not been described in de tal 1. 

In the Great Basin Silver Peak RantJC of \<J. Nevada 
and the Whi!.:c and Inyo Mountains of C.J.lifornia , archaefJcy­
athids occur 'Nithin a G,OOO ft. (1828 r:1) t hick Low('r C'<1mbrian 
sequence which is part of n continuous_ section from the 
late Precambrian to the late Cambriun ·· (McKee ,1nd G<JIHJ ! o ff, 
1969) . 'I;he archacocyathlds, which occur in the midd le 
third of the sequence , have been correL1t0rl with the 
Lenian stage of the Sibc!-"L:m Plat'form (Ro7.anov and 
Debrcnnc, 1974). They form bioherms less th ;1n lfJfl ft. 
CJO m) lons-, 5 ft. (1.5 m) high in the ~1ontencnro Member 
of the Campito formation and the lower purt of thr 
Harkless Form~tion, and occur as isa1uted ind ividua ls 
i n the intervening rOleta Formution (f.lcKcc and C:ant]loff, 
1969; Morqan, 1976). 

'I'h(! Appalachians: Isolated occurrences of Ltrchaeo­
cyathids arc documented throughout the Cunddi<l.n .-md U.S./\. 
Appalachian ~ount.J.in system>_. 

The northernmos t occui-renc£> is from the rortcau 
Formation of southern Labrh-Qor, eastern Quebec, und N.~<J. 
Newfound l and ( Schuchcrt and oU.nbar, 1934; ,J.:Jmes ,1nd Kobluk, 
1978; Cummin'l, in press). These are probably f:hc best 
exposures of such r ocks in the flppalachiun systcn: , 
partly because they are exposed to- the west of the western 
limit of Appalachian deformation. 

The only rcp.qrted occurrence of 1-':iddlf' C.1mbriun 
archaeocyathids i n North America is from the St. ,John 
Group at St. Martins in New nrun5wick and arr C! ll icd 
to the Atlantic Province fau11as (Okulitch, 194 :41), 

F'ra9mcnts of archaeocyathids h,lve been reported 
from limestone blocks in the Bic Conglomerate at Bic 
Harbour , . Quebec {Okulitch , 1943). 

In the northern U.S .A., archaeocyathlds arc known 
from the Schodack Formation to the north -eas t: of Troy, 
New York State Crord , 1873 ; Okulitch, 1943), und from 
York Co., Pennsylvania (Stose and Jonas, 19 ]9). They havq. 

~~~~~~~~a ~~c:n~c~~ r!~:~ 1 a~i~~~~~:i~~o~s t~~~;~~c~f the ( 
Leithsville Formation in New Jersey, and subseCJuently 
correlated with the Forteau Formation (Palmer and 
Rozanov, 1976). 

Archaeocyathids have long been known from the Shady 
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De lomitC :m d Wei sne r Fo rm<ttion in t h e gou thcrn 
Appalac hi.:ans . /\ rchacocyathid " reefs" ·..,rc r e described 
from Austinville, Virq.inia ( ~essCr, 19 38) . These 
structures have been re - investigated and rc- inlcrpreted 
as burrow comp l exes (Ba l sam , . 1970; 1974) a l though 
isolated archae.ocyathid individual s a re presen t t n the 
a rCa (Balsam , 1 974 ; l>.'i lloughby , 1976 ) . Archa eocyo thids 
were aJ.so re po r ted from the Shady Do l omite in C.conJitl 
(Kesler,· 19 5 0) and Alabama (Butts , 1926) . 

The most recently documented U(.:cu r rcncc i s f rom 
the va~ley and Ridge " S l eeping Gi ants" Pro vi nce whi c.h i s 
part o f the Coosa de f ormed belt · near Tall,,dcqa , 1\J.:~bama , 

where small mounds and indiv.iduals a r c rcpo.r tcd (Bc-.:-.r cC'! 
and Mc Kinney , 1977) . · 

1\rc haeocyathi.ds as "reef"-bui ldc;s 

Compared with the •ta st amount of li tcr,:at urc "m the 
taxonomy of archaeocyathids , notably by wo r kers in the 
USSR, very little research has been ai med towurds an 
undcrstilnding of the pa leoecology of the or<"jan isms·, 
particularly as to their ~ole as Cambria~-bU'ildcrs . 

struc~~~::e~~Y~!~~d=l~~~s r~~~~n~~~~i~~s ~~~~~~: ~~~ biohc rmal 
dis t r i bution ) , b ut t hese st r uctures h,wc not bc-Pn 
desc r ibed .in ,,ny dct<1 il. Oc brc"nc {1959) rcsor1n i sC'd t h .r cc 
modes of occur rence of arc h ae ocyathids ; a s i solutccl 
individuals associated with o ther org,,ni sms such at 
trilo bites , brachiopods, and hyo lithids; in latc r.11ly 
conti nuous banks (biostromes) ; and in b i oher ms hav inq 
topographical r elief and sometimes associa ted ~1 ith calcareous 
al'gae . 

Zhuravle va ( 1960; 1966) recoqni sC'd a v;Jr .i c-ty of 
arc hae'?cyathid biohermal structures from the Siberian 
Pl at form and sugqested t hat the dis t'r ibu tion of 
archaeocyathi ds was dept h controlled ! i n Hil L, . tf.J72, p. 1::. 
281. She c l<lime d that s ma l l bio he rms flourished ,,~ 

derths o f 20- JO m a nd down to 50 m. Th is ·idC'a w,:as lwscd 
on the asse<;iatio n of the archaeocyathids wi t h the ca l careo u s 
alga Renalci s . When archaeocyathids are f ound ,lSsociatc d 
wi t h the calcareo u s a l g a - Epiphyto n, then dep t hs of 50-
100m are suggested (Zhur~60; in llil l , 19 72 )'. 

1\rc haeocyath id (organo<Jeni cl build -ups from the 
Altai-Saj&(l,. f old-belt o f Russia have been c l<~ ssificd into 
f our structures . (Zatlorozhnaya, 1975); bios t romes, bioherms, 
biohermal massifs , and reefs. The distribution of these 
structures in both t-ime and tectonic settinq is also noted . 
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t," •N. o·ti• " , Nncrtca, Okulitch (19h9) d oubted the ootcnia! 
of .::archacocyu.thids to form reefs unless ac coml'an j cd. by 
algae. Hm .. cver, he reco rded ' colonics ' 1 o f t he o rgani s ms 
in structures with lateral dimensions of up t o scv0ral 
m"i l e s but with vertical expressions of on l y a few feet. 

!liohcrmal structure s have lon<J been knu·...rn from the 
White and l n yo Mountains of Eastern Culiforni .:~ (Mcf.; ec an d 
Gang l off , 1969) where they form lcn~c - sll.:l pc cl l imestone 
beds 100ft. (30 m) :._J. ong and S ft . (1. 5 m) hi.gh ·.dl h 
primary t o po<Jra p hi c al relief. 'fhc maxi mum thi <:kness 
o bserved by f.1cl<c e a nd Gang lo ff is 18 ft _ (5. 5 m), but from 
the s.Jmc area and formation (~1ontencgro ~ !ember o f th e 
Campi to Form.Jtion), lenticular mounds of 19 4 m long wi th 
th icknesses of 10 m are recorded n1o rqCJ n, 19 75) . 
These structu r es are mud-sup!)Drtcd with the mud supposedly 
de r i ved fr om t he b r e akdown o f a lqal thul l i , <1 situ.:~tion 
analaqotis to the carbonate banks of Fl or id a (f.1o rqan, 1975) . 

, The only detailed wo r k on archae>ocy a lh i ds from both 
a sed i men toto9ic<:~l and palcon t o logi c ul view dc<1ls with 
the "patch-ree fs" of the Fo rte au Formati o n i n southern 
Labrado r (James and Kobluk, 1978) . It h~ s e merged from 
their study t hat features wh i c h charactcr i t:cd mode rn 
r ee fs suc h as biologi ca l ilCc re tion, int c rn,l ] scdimcnt.:tli on , 
earl y l i thi ficat ion, and b io logica l cll'st r u:::tion c.:1n he 
recognised in t hese Camb rian struc t ures. 'J'hc s c ~a~ch - rccfs 
consist o f l oa f-sha!='ed mound s of arcthlCocya thtd-ri c h 
mudstone il l on g w it h Re nalci s and a ret stacked on t op of 
each other .and flanked by ske'leta l Cillcarcn i tes and 
shales (Jame s and Kobluk , 1978) . · 
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Fig.72. Geology of the studyc!Fea between Lourdes de Blanc. Sablon (Q·ueb 
and West St. Modeste (S Labrador) 
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Fig. 73. Facies ~elationships of exposed strata at Osprey Reef 
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