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ABSTRACf . 

The Cow Head Group is a base-of-slope apron depo~it composed of S 

litl\ofacies: (1) conglomerate, (2) calcarenite, (3) sil~stone, (4) 

shale, and (5) lime mudstone. Conglomerates were deposited by debris 

flows and th~ calcarenite grainstones by high-densit~ turbidity ~ 

currents. Siltstones and shales represent interbedded fi~e-grained 

turbidites and terrigenous hemipelagites. Rhythmically-bedded parted, 
'\ 

ribbon, and hodular lime mudstones, composed mostly of mi~rospar and 

pseudospar, resulted from the interplay of climatically-controlled 
. . ' ' --

carbonate-abundance cycles ·and event deposits. Peloids and intraclasts, 

derived ma~nly from the breakdown of the calcified algae'~irvanella and 

Epiphyton, are the most important allochems in the fine-grained 

sediments. 

Burial compaction occurred mainly in argillaceous sediments. Limestones 
6• 

are uncompacted and demonstrate only minor pressure sofution effects. 

Intrastratal deformation was due to -submarine failure and layer-parallel . .. . . 

compression · during Taconic oro~en~sis. Subtly-expre~sed _synsedimentary 

defarmation fabri~s indicate that slope failure was more common than is 
~ .. 

· - _ . ...---: ~paren1 based sol~!ly on th~ presence of intraformation-al trun-cation 

. su~s and slide masses~ \ _, 
.,..~ 

In conglomerates, clasts with diagenetic microfabrics identical to those 

of the thinly-bedded, fine-grained sediments indicate that 1 it hi ficat ion_ ... -· 

(calcite authigenesis,_ early dolomitization, and some silicification) 

occurred within several metres of the sediment-water interface. Carbon 

' 
isotope analyses suggest that carbonate precipitation was driven by 



, ~ . 

- U.i -

·, 

bacterial sul.phate reduction and methane generation. Trace element (Mg, 

Fe, Mn, and Sr) and cathode ·lumines·cence patterns record calcite 

precipitation trom progressively more reduced pore~waters. These · 

patterns are ·indistinguish~ble from those generated duri~g · 

• meteor1c-water diagenesis. 

'· 

ca't:l:':~e luminescence microfabric~ of radiaxial fibrous calcite from 

shallow-water boulders in conglomerates and~ situ displ~cive fibrous 

calcit~~-~cate that these crystals .are composite and grew bot'ft~a's·· . 

. sphe~stals and unit c.rystals. Aggrading neospar on the margins of 

\ 

mudstone beds and nodules resulted from decreased nucleation density and • 

precipita.tion of progressively younger calcite, commonly as 

asymmetrical, irregular increments. 

Three types of dolomite are differentiated: (1) detrital, (2) early 

diagenetic, and (3) late diagenetic. Silt-size· p~rticles of detrital 

dolomite were derived from weathering 9f older carQonate~ or 

penecontemporaneous dolomite from the adjacent, shallow-water platform. 

Diage net1caoTomite- ·occurs both as ·-a··-replaZement and a pore-filling 

phase. Early dolomitization was synchronous wi th or postdated the main 

phase of . calcite ~uthigenesis. Late dol.omitization is· related to 

tectonic faults and joints. Silicifi,ati on ' also . has a protr~cted 

diagenetic history, but its distribution is controlled primarily ·by the 

abundance of radiolaria and siliceous sponge spicules. , 

& " . 

-- · 
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Chapter 1 · 

INTRODUCTION 

1.1 INTRODUCTORY REMARKS 

Paleozoic deep-water carbonates are poorly understood rocks. · They are 
f ·' . not as ~idely exposed. as their Mesozoic and younger counterparts nor are 

they as extensive and well-studied as shallow-water carbonates in 

general. Commonly deposited· ~t continental margins, ancient deep-water 

successions are characteristi~ally tectonized and consequently 

unsuitable for detailed analysis ; ' Holocene analogues arenot easily 

exami,ned a~ though physical processes · and facies in deep-water carbonate 

slop~ environments are- gradually becoming better-known based on st~dy of 

Holocene slopes by dredging, coring , submersible observation, and remote 

detection~ As Paleozoic deep-water carbonates formed at a time 

preceeding the explosion of calcareous plankton in the Mesozoic , direct 

comparison ~ith post-Paleozoic deep-water carbonate sediments is not 

possible. The ~bove, in cohjunction with the paucity of exploitable 

hydrocarbon resources hosted within · deep-vat~r carbonates, has resulted 

in relatively fe~ studies of these sediments. 

Yet, deep-water slope carbonates are an extremely important element of 

the carbonate~cies spectrum. In addition to the evidence they contain 
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of vanished platform margins, slope successions yield important 

information regarding slope processes and products, and some aspects_ of 

paleooceanography. ·Futhermore, slope carbonates may be potential 

reservoirs for hydrocarbons or the conduits through which 

basinrgenerated hydrocarbon migrates upslope to platformal reservoirs; 

The Lower Paleozoic Cow Head Group ~s a relatively undeformed sequence 

of deep-water carbonates exposed in central western Newfoundland, mostly 

within the northwestern portion of Gros Morne National Park and the 

immediate'ly surrounding area (F~gures 1.1, 1. 2). The Cow Head Group 

outcrops mainly as extensive coastal exposures, and to a lesser extent 
/ 

along the shorelines of ponds and inlets and in roadcuts and quarries. 

This study is an analysis of the sedimentology and diagenesis of the 

fine-grained sediments in thfs sequence. 

1.2 PREVIOUS SEDIMENTOLOGICAL STIJDIES 

Schuchert and Dunbar (1934) conducted the first comprehensive regional 

study of w~stern Newfoundland stra:tigraphy and considered the "Cow Head 

Li~estone Breccia" as th~ "most striking and puzzling formation of 

western Newfoundland" {p. 73). Within this sequence, they included 

younger sediments now recognized to be autochthonous and indicated an 

age ranging from Upper Cambrian to Chazyan. Some of the finer grained 

sediments were included in a lowermost Ordovician "Green Point Series". 

They considered the brec.cias to have been shed frolll the noses of thrust 

sheets during Taconic Orogeny. 



Figure 1.1: Geologic setting of the Cow Head Group, western 
Newfoundland (modified from Stevens, 1970). 

/ 
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Outcrop localities (modified from James and Stevens. 
in prep.). Important locations and their abbreviate-d 
names as used in sample numbering and outcrop 
locations are listed below: ( 1) BB-Black Brook; ( 2) 
BPN-Broom Point North; ( 3) BPS-Broom Point South; ( 4) 
CHN-Cow Head North; (5) CHQ-Cow Head Quarry; (6) 
CHS-Cow Head South; (7) GP-Green Point;' (8) LC-Lobster 
Cove; (9) LH-Lower Head; (10) LP-Long Point; (11) 
MP-Martin Point; ( 12) SI-Stearing Islands; ( 13) 
SPN-St. Paul's North; (14) SPQ-St. Paul's Quarry; (15) 
SPS-St. Paul's South~ (16) WBPN-Western Brook Pond 
North; (17) WBPS-Western Brook'· Pond South; (18) 
WI-White Rock Islets. All references to Bed and unit 
numbers are those of Jame-s and St,evens (in· prep. ) • 

• 
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Johnson ( 1941) noted faulting in the Parson's Pond, St. Paul's, and 

Western Brook Pond areas which he interpreted as high-angle thrusts 

(Figure 1.2). An exceptional l9w-angle thrust was observed along the -
southeastern shore i-n St. Paul's Inlet where crystalline basement is 

thrust over Ordovician limestone. 

Oxley ( 1953) mapped the Cow Head area and suggested that regional 

structures indic~ted compression fro~ the southeast. He also agreed 

with Schuchert and Dunbar"< 1934) as to the stratigraphic location of the 

sequence but noted the difficulty iR correlating breccias over long 

distances. 

Nelson (1955) examined the sequence in the Portland Creek area (north of 
I 

study area shown in Figure 1. 2) and noted the limited range of 

lithologies within any one breccia unit. He suggest~d that breccia 

formation may have been due to earthquakes. affecting semi-consqlidated 

muds. Because Schuchert and Dunbar (1934) had, however, exami~ed more 

exposures, Nelson ( 1955, p. 45) stated that their origin hypot hesis "is 

probably the best so far presented." 

Kindle and Whittington ( 1958) elevated the sequence to "group" status 

and included both Schuchert and Dunbar's (1934) Green Point Series a nd 

older rocks n'ear . the type exp'osure on th.e Cow Head Peninsula · (Figure 

1.2). They compiled extensive faunal lists and noted that trilobites 

contained within fossilifel:ous clasts of the breccia units were 
\ 

approximately the same age as graptolites in immediately underlying 

shales . The Cow Head Group was found to range in age from late Middle 

Cambrian (Bathyuriscus - Elrathina ~) to earliest Middle Ordovician 

·. 
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(James ~ !.!.·, 1980), a time span of approximately 70 million years. At 

the type locality the sequence was informally divided, based on -
lithology and faunal content, into 14 beds (Figure 1.3). Kindle and 

Whittington ( 1958) suggested ·that the breccia clasts slid down a 

submarine slope. They deduced· the necessity of a raised source area for 

the product~oh of larger (exotic) clasts, and the flat cla~ts were 

thought to have been produced by simple slumping. The limited age range 

of the clasts was interpreted to reflect derivation from a low-relief, 

. submarine fault scarp, which initiated 'the slides. The entire Cow Head 

Group was considered· as a flysch sequence based on comparison with 

" flysch sequences known at that time. 

Baird (1960) conducted the first detailed sedimentological study of the 

Cow Head Group. He recognized four typ~s of breccias~ (1) chaotic 

megabreccia, which was composed of an unbedded "wild jumble" of large 

"chunks" of various limestones; (~) shingle breccia, . which was composed 

of flat, micritic, limestone clasts; (3) erratic boulder breccia, which 

was characterized by th~ presence of erratic boulders apparen·tly 

"dropped into a mass of normally accumulating sedimentary material" 

(Baird, 1960, p. 3); and (4) common limestone breccia, which by his 

description, app~ars to be an indistinct hybrid of the above-listed 
' . 

, . 

sediments. Baird (1960) envisaged the sediments of the Cow Head Group 

as originating. ~n a re-entrant in a northeast-trending shoreline. 

Earthquake shocks, faulting, or oversteepening .of some uplifted area may 

have all acted as triggers for the sliding, slumping, and turbidity 

currents. Locally, where the basin was sufficiently shallow, waves and 

shore currents produced intraformational 'conglomerates. 

~-

. ~ 
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Figure 1~3: Composite stratigraphic section of the Cow .Head Group 
type section from the Cow Head Peninsula (Upper 
Cambrian to Middle Ordovician) and White Rock Islets 
(Late Middle Cambrian), western Newfoundland (adapted 
from James and Stevens, in prep.). The Middle 
Ordovician. Blow-Me-Down-Brook Sandstone has been 
renamed the Lower Head Sandstone (Williams~ 2!·• 
1984). 

I 
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Rodgers ·and Neale (1963) rec~gnized that shallow-water, plat formal 

sediments surrounded on all three sides and probably underlay the 

deep-water sediments in western Newfoundland. The Cow Head terrane was 

noted to be similar to the Taconic Sequence and likewise was interpreted 

to be transported by westward gravity sliding to overlie' the platformal 

sequence. The de.ep-water sediments were considered to be the result of 

"slow" mua deposition and turbidity current sedimentation. They also 

suggested that exotic clasts were derived from a shallow-water carbonate 

sequence to the west, but a mechanism for breccia formation was not 

specified. 

Stevens (1970) recognized and described the Humber ~rm and Hare Bay 

allochthons and interpreted the Cow Head Group as a flysch sequence 

deposited in a continental terrace - rise prism. He further indicated 

that •he Cow Head Group was an~example of an Atlantic-type proximal 

- flysch and interpreted-many of the thinly-bedd~d limestones as 

turbidites. The source of these sediments was considered to be the 

"over-steepened" oceanward edge of a carbonate bank, that provided 

detritus from Middle Cambrian to Middle Ordovician time." (Stevens, 

1970, p. 167). 

Fahraeus et al. (1974) described "pseudopellets" [ l) from the C~n1 Head 

Group and considered them to be strongly cohesive micrit"ic \,ntraclasts 

scoured from the sea bottom. Their hydraulic equivalence with quartz 

sand grains within the same sediment was also established. 

1. These particles are reexamined in Chapter 6. 
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Jansa (1974) examined the U-shaped burrows which occur in some of the 
• 

bedded limestones and concluded that the trace fossil was Arenicolites, 

the result of a suspension-feeding polychaete (2]~ T~ supposedly 

inclined burrow shafts were also interpreted as indicative of a 

southward-dipping depositional slope. Water depth was estimated at 
I 

greater than 200 m and, deposition was slow. . . . 

Nowlan (1974) briefly described lithologies at the type section in a 

study focussed mainly on conodont biostratigraphy. Breccias were 

suggested to have originated on the continental shelf and upper slope 

and to have been deposited on the lower continental slope. The 

detachment of breccia clasts was interpreted to be the result of 

earthquakes or increased sediment pore pressures in conjunction with an 

unspecified stimulus. Mass gravity flows with minor turbidity currents 

were considered to be the most significant . transport mechanisms. Some 

"ungraded, well-so{ted" micritic limestones and non-calcareous shales 

were thought to be pelagic and hemi-~elagic sediments. Th~ lower 

continental slope depositional environment was based on the continuous 

bedding of some of the thinly-bedded sediments and some breccias, in 

contrast with the more channel-like deposits expected on the upper 

slope. 

Callahan (1974) and Suchecki (1975) examined most of the major 

stratigraphic sections of the Cow Head Group, describing the sediments 

a~d conducting numerous measurements of paleocurrents, breccia fabrics, 

2. These burrows are presently considered to be Diplocraterion by 
Narbonne and James (1984). • * 
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and various paleoslope ·indicators, Their data .were integrated into the 

more regional synthesis of Hubert~ al. (1977) who proposed a complex 

paleogeographic setting for the Cow Head Group with two narrow 

northwest-southeast trending carbonate platfQrms that were positioned on 
't 

a regional, nort'h~ast-dipping slope. Breccias ,lo(ere interpreted as 

debris flows. Paleocurrents in thinly-bedded limestones beds were found 
. 

to flow parallel to interpreted paleoslope contour, and thus thought to 

be contour currents. In addition to previously listed causes, debris 

flows were hypothesized to have been triggered by platform collapse due 

to patchy di~tribution of early sediments increasing the sediment mass 

(cf. Hopkins, 1977) or to tsunamis. 
.. 

Suchecki (1975) conducted a structural analysis of deformation at Broom 

Point (Figure 1. 2) and ·sugg.ested that all st rue t ures indicate 

northwest-directed compression, confirming Oxley~s (1953) conclusions. 

Suchecki (\975) also studied the mineralogy and chemistry of clays in 
.· - ~ . 

the Cow Head Group and l~ter published his significantly revised results 

in Suchecki ~ al. ( 1977). This study is considered further in Appendix 

B. 

James (1981) documel&ted the coourion white limestone clasts that occur 

-scattered throughout breccias in the sequence and found that they wero 

remnants of algal mounds or bioherms. Their principal components are 
(i 

the calcified algae Girvanella and Epiphyton, with Renalcis and minor 
' 
stromatolitic algae. These b~oherms were interpreted to be a margin 

facies common to the platform ~dge of North America during the Lower 

Paleozoic. 
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The monograph of Jamas. ~nd Stevens (in prep.) presents detailed 

~ostratigraphic and biostratigraphic data and analyses on all major 

exposures o_f the Cow Head Group. In · this work, much new data is ad <fed to 

and modifies the exist.ing biost(atigraphic framework. They reject 

Hubert ~ al. 's ( 197'Y) pr~vious assessment of paleogeography and propose 

a simpler reconstruction which is both internally consistent and 

congruous with regional considerations. This is d~scussed in more 

detail in a later section. The numerous graphic logs of measured, 
f'r' 

sections in their study (orm the foundation upon which sampling and 

field observations of the present study are based. 

Hiscott and James (in press) recently examined rheological aspects of 

the debris flows and concluded that paleoslopes were on the order of few 

degrees and that excess pore fluid pressures were important in 

permitting movement on such shallow slopes. Based on the thickest 

debris flows Jnd largest clasts being Ordovician in age, Hiscott and 

James (in prep.) suggested that the shallow-water, platform margin 
t 

progressivel~~pen~d through time. 
.. 

Their .measurements of clast · 

orientation fabrics provide a fur.ther basis for rejection of Hubert ~ .. 

al.'s paleoslope interpretation. 

Other studies of the Cow Head Group are mainly taxonomic and 

biostratigraphic and of peripheral importance tb the presen~ study. 

Published studies not mentioned above include Fahraeus (1970); Fahraeus 

and Nowl~n (1978); Fortey and Skevington (1980); and K~ndle (1982). 

These studies are consider'ed further i .n James and Stevens (in prep.). 

Other studies include graduate ,theses and various other projects in 

~ progress, and numerous abstracts. 

.. 
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1.3 GEOLOGIC SETTING OF THE COW HEAD GROUP 

The Cow Head Group is 300-500 m in thickness and is interpreted as a 

base-qf-slope carbonate apron deposited on the western flank of the Late 

Precambrian-Lower Paleozoic Iapetus Ocean (Stevens, · 1970; James and . 
Steven, in ·prep.). This succession occurs in a series of 

southeasi:ward-dippin'g thrust slices (Oxley, 1953; Williams, '1q75; James 

and Stevens, in prep.). Sediments vary considerably in composition and 

include coarse conglomerates, <;alcarenites, . li.me and dolomitic 

siltstones, ribbon,. parted, and nodular limestones, shales, chert s , and 

minor quartz-rich calcarenites (Figure 1.3). 

Partly coeval and lithologically similar' strata of the Curling Group are 

~xposed south of the Cow Head. region arid to the north surrounding Hare 

· Bay (Figure 1.1; Sttvens, 1970). Both the Cow Head and Curling Groups 

. occur within the lowermost structural slices of the Humber Arm 

allochthon, although only the Curling\Group is recognized in th~ Hare 

Bay allochthon. These allochtbons are major components of the 

tectonostratigraphic Humber Zbne which record~ the generation and 

des~fiction of the western margin of Iapetus (Stev~ns, 1970; Williams, 

1979): • 

The Cow Head and Curling Groups are interpreted to have developed as 

part. of the continental slope-rise complex (Stevens, 1970) which, based 

on palinspastic restoration of thrust slices, is suggested to have been . 

appr:oximately 200 km wide (WH.liams, . 1980). The Cow Head an·d Curling 

I 
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Groups along with minor interbedded volcanics and other transported 

sedimentary rocks constitute the Humber Arm Supergroup. This succession 

is structurally overlain by the Bay of Islands and Hare Bay ophiolite 

suites (Stevens;' 1970). Poss1 ble metamorphosed equivalents of the Cow 

Head or Curling Groups occur in the Fleur de Lys succession of the 

Burlington Peninsula (Stevens, 1970; Bursnall and de Witt, 1~75) and on 

the western sida o( White Bay (Lock, 1972). 

Adjacent to and possibly underlying the allochthon is a Z km~thick 

sequence of shallow-water, platformal carbonates and siliciclast i cs 

which range· in age from Lower Camb~ian to Middle Ordovician (James, 

1981). Th{s sequence rests directly upon Grenville crystalline basement 
) 

and is .generally considere~ to be autochthonous (Figure 1.3). The 

shallow-water, platform-edge equivalents of ~he Middle to Upper Cambrian 

- Port au Port Group [ 3] (James !.!_ &·., in prep.) and the Lower 

' 
Ordovician St. George Group (Pratt, 1979) both presumably were important 

contributors of detrital Garbonate to the slope environment, but these 
. . - ··· . 

platform-edge sediments are not exposed. 

The Taconic orogeny reflects the parti~ to complete closing of the 

Iapetus Ocean (Rodgers and Neale, 1963; Stevens, 1970). Dur~ng Early and 

Middle Ordovician time, eastward-imbricated slices of ophiolite 

travelled toward the western flank of the ocean. The upward-deepening 

facies of the autochthonou~, Middle Ordovician Table Head Group are 

interpreted to reflect this eastward tectonic loading (Klappa ~ al., 

3. Correlation of the Cow Head Group with time- equivalent, 
shallow-water, platformal sediments is found in James and Stevens (in 
prep.). 

" 

I 
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1980). This Middle Ordovi~ian platformal succession eventually foundered 

and an ea_sterly-deri ved ,. diachronous fly$ch capped both the ~at forma l 
\ . 

succession (Mainland Sandstone} and slope-rise complex (Lower Head 

• 
Sandstone; Williams~ al., 1984). The slope-rise sedi~ents were 

subsequently overthrust by the stacked allochthons~ incorporated into 

their bases, transported westward and finally emplaced over the 
, 

shallow-water, platformal succession (Stevens, 1970; Williams, 1979). ~ 

_Time of emplacement of the Humber Arm allochthon is estimated to be 

Llandeilian or ear~y Caradocian whereas the Hare Bay Allochthon may have 

been emplaced slightly }~arlier (Stevens, 1970). 

1.4 STRUCTURAL GEOLOGY 

1.4.1 Regional 

Three tectonic events, spanning a large portion of the Paleozoic, -
affected rocks in the northern Appal achians, although not all areas were 

, ·· '. 

equally deformed. The Middle Ordovi c i an Taconic orogeny was followed by 

Middle Devonian Acadian orogeny, and lastly the Permo-Carboniferous 

Alleghanian -orogeny. All three involved compression and shortening 

··along a sub-parallel, northeast-south.west struct'ural trend (Wi 11 iams ~ 

1 al., 1972; William~, 198~nedy, 1982). Based o.p regional syntheses·, 

the deformation styles of.,.se oroge'nies are known in a general way 

(Williams, 1979; Colman-Sadd, 1982). Recent detailed analyses suggest 

that the deformation history is complex and individual orogenies may 

consist-of more than one deformation event (Kennedy, 1982; T.J. Calon , 

pers. comm., 1983 ) .. 

Taconic deformation is generally characterized by west-facing · recumbe·nt 



-
. ' 

,.,t I - 18 

structures and westwar'd transport of allochthonous terranes. This 

orogeny· is e~plained by e plate tecto'nic.model in which the 

Iapetus-closing episode_ terminated with attempted eastwar.d subduction of 
' . . 

continental crust under oceapic crust (Dunnage Zone). Acadi~n 
l • 

deformation is mc:f; widespread. than Taconic defoJ:mation_ and is most 

intensely devele1ped. in. central Newfoundland where it is characterized by 

' 
tight, upright foJds, commonly northeast-plunging, and a steep. 

cleavage. The plate tectonic cause of this orogeny is uncertain 

a 1 though i't· is generally . assumed to be a ma.!jor cont inen:.tal collision 

east of the Avalon Zone. (WilHams, .1979:, Kennedy, 1982). According to 
. ' 

Wi 11 iams (1980.) the ·effects of Alleghanian orogeny at the northern end 

of the AJWa~acl)ians are minimal relative to effects found in the rest of 

the Appalachians (i.e. mainland Canada and the southern o·rogen), 

although deformation may be localized Co fault zones, of unknown 
. 

displacement (Kennedy,, 1982). The causes of this" oroge~y are uncertain. 

1.4~2 Humber Arm Allochtho!l and Cow Head Group St~ucture 

Ta_corTic and Acadian orogenies are the most important deformation events 

to have affected the rock~ of the Humber~rm alloc~.~hon al t~ough the 

· most widespread <leformat'ion is-generally regarded as Acadian (Williams, · · 

1979_} .... In cont);aSt. rec~nt unpubiished wo~k suggests that Taconic 
' . 

orogeny resulted in the most import~nt deformation and Acadian : orogeny 

only modified to a minor -extent an already deformed terrane (.T.J. Calo-n, 

pers. comm., 1983). 

- \ 
·Oxley's ( 1953) geological map of the Cow Head area demonstrates -that 

northeast-so_uthwe'st striking faults with dips of 30-85 d~grees SE are 

) 

' 
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the most salient aspect of the structure. Since\his early work, there 

have been no spe,cific studies of Cow Head Group structure exceB,t by 

Suchecki (1975) at Broom Point whose study of smaller scale structures 

such as small folds and vein patterns was in agreement with Oxley 1 s . 

(1953) major findings as well as more regional analy~es (Willi:lms ~ 

!!_., 1972). -, 

There is no avail&ble published data on the recognition of Taconic 

(emplacement-) structures from those of later Acadian and possibly 

Alleghanian orogenies in the Cow Head Group. Possible emplacemen~ 

- ' 
structures inclupe foldin~ at Lower Head 1 Broom Point North, and Mart in . . 

Point (R. K. Stevens, -pers. conun .• ~ 1983) and vertical-to.:..bedding 

pressure solution interfaces (discusse,d in Chapt·er 5). 

~ 

1. 5 PALEOGEOGRAPHY AND DEPOSLT!ONAL SETTING 

... 

1.5.1 Hypothesis of Hubert et al. (1977) 

'-e 

The paleogeographic reconstruction of the Cow Head Group (henceforth 

abbreviated "~) proposed by Hubert et .!!_. . ( 1977) was based on the 
. . . 

relationship between deduced- paleoslope orientation and measured 

paleocurrents. The orientation of the paleoslope was derived indirect 1 y 

from me~surements of synsedimentary boudins (discussed in Chapter 14 and 

Appendix 'M), "elongate load casts" or "load axes", and fold axes in .!!!. 

situ sediments (discussed in Chapters 3 ani 4) as well as in deformed 

1 clasts within conglomerates (Callahan, 1914; S~ecki, 1975; Hubert et 
.... ._ . ... - . 

al. 1 1977). Their treatment of tllese data led th9'J11 to conclude that 

. 
\ 

\ 

' ' •, / 

<-. 
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~ 
paleoslopes dipped mostly to the southwest and to a lesser degree, to 

the northeast. Furthermore, there were at least two northwest-southeast 

tr-ending carbonate platfoqns; one located between Cow Head and Lower 

Head and the other near Martin Point and G\llls Marsh. An additional 

platformal sou'rce southwest of Green Point was also hypothes i zed. These 

platforms were lpcated on a regional northeast.-dipping slope whose 

orientation was, "in part inferred from thirty Ordovician sections" 

(Hubert~~·· 1977, P· 139). 

Based on more t;.han 1200 measuremet~ts of c ross ..:. laminat i ons (mega-r i pple 

and ripple), flutes, grooves, and grain lineations, they found 

paleocurrents to be dominantly southeastward flow i ng [4). Their a verages 

for Cambrian and Ordovician strata are 150 and 130 degrees SE, 

respectively. There is <;9nsiderable data scatter, howe~er, and currents 

directed anywhere between east and south are common. The postu l ated . 

paleogeography necessitated t hat these paleocurrents be i nt e rpr e t e d as 

contour currents which flowed parallel to paleos l ope contours. In 

addition, these currents were presumably accelerated be t wee n the 

plat forms and thus depos:j.ted graded, ungraded, planar, and cross-bedded 

limestones. Flutes, grooves, and grain ~ineat ions were also formed by 

these currents. 

4. Their resu l ts have been confirmed by this study as well as t hat of 
James and Stevens (in prep.) and Hiscott and James (in press). 

\ 

.. 
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1.5.2 A Revised Paleogeography 

In light of regional, biostrati8raphic, a'nd lithostratigraphic 

considerations, the above pal'eogeogr·aphic model has been revised by 

James an~ Stevens (in prep.) who instead propose a simpler, 

interpretation without the complex elements of Hubert et al. 1 s ( 1977) 

model. The revi~>ed pct.leogeography is also supported by Hiscott and 

James (in prep.) and this study. The salient aspects of the 

preliminary model of James and Stevens (in prep.) are the following 

(Figure 1.4): · 

(1) Based on palinspastic reconstruction, there is a northwest-southeast 

change in the dominant lithofacies from proximal (area around Cow Head 

and Lower Head) to distal (Green Point). In the area of Cow Head and 

Lower Head, sediments are mainly conglomeratic 'lol.hereas thinly-bedded 

limestones and shales become more prominent southeastward. Accompanying 

this change is a decrease in the maximum clast size in conglomerates. A 

sharp change in the lithofacies transition occurs between Cow Head and 

St. Paul 1 s/ Broom Point which is interpreted by James and Stevens (in 

prep.) to represent a break in slope (see Figure 1.4) . 

• 
(2) The southeastward-oriented paleocurrents are not parallel to the 

presumed paleoslope contours . as suggested by Hubert ~ ~· ( 1977) but 

' instead are normal to the southeastward-dipping paleoslope as determined 

from regional considerations. These sediments were derived from a 

carbonate platform which was oriented approximately northeast ~southwest, 

normal to the observed facies trends. 
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, FIGURE 1.4: Depositional setting of the Cow· Head Group 
(allochthon) relative to hypothesize4 shelf break and 
autochthonous platformal succession. Generalized 
lithofacies distribution in the Cow Head Group is also 
shown. Outcrop localities are shown in Figure 1.3 
(modified from James and Stevens, in prep.) . 

... 
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The Middle Ordovician Lower Head Sandstone which overlies the CHG is 

interpreted by James and Stevens (in prep.) to have been derived from 

the north and deposited into an elongate trough with a relatively flat 

floor. This, in conjunction with evidence in the CHG for slope failure 

even in the most distal outcrops (see Chaptec 3), led James and Stevens 

(in prep.) to suggest a base-of-slope se~ting for the CHG. Sediments 

were deposited as a base-of-slope apron at the transition from the · 

continental slope to rise (see Cook, 1983b for discussion of ancient 

slope deposits). 

1.6 APPROACH TO STUDY 

1.6.1 Database 

This study is based on integration of field relationships and 

petr6graphy, supported by cathode luminescence, X-ray diffraction, 

scanning electron microscopy, and geochemical analyses (microprobe, 

atomic absorption spectrophotometry, stable isotopes)~ Field work was 

carried out over the course ~f two sununers in 1981 and 1982. A total of 

825 hand specimens wer~ collected and slabbed. Thin sections were .. 
· routinely stain~d with rstandard solutions of Alizarin Red S and 

' -( 

potassium ferricyanide, and then coated with a spray-on cover slip. 750 

stained thin sections vere examined during the course of this study from 

specimens collected by the author. An additional 400 thin sections were 

examined from the collection of N. P. James. Approximately 150 polished 

thin sections were studied with cathode luminescence; 60 

r· 
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thin se(:tions were analysed by microprobe. Samples used for atomic 
.. 

absorption spe~trophotometry, stable isotope analysis, and 

diffra~tion (sh=~~:·;~ .. described in Appendices B, I, and 

X-ray 

J. Technical 

procedures and instrumentation ate described in Appendices Band I. 

1.6.2 Organization 

This thesis is divided into 3 parts- A (Chapters 2-6), ~(Chapters 

7-13), and C (Chapter 14). Part A deals with various aspects of the 

sedimentology, including: primary sedimentation, especially of the 

fine-grained (non-conglomeratic) lithofacies; synsedimentary deformation 

related to slope failure and other. intrastratal deformation related to 

tectonic compression; effects of mechanical compaction and pressure 

solution; and the composition of the fine-grained (i.e. 

non-conglomeratic) sediments. In Part B the emphasis is on diagenesis, 

focussing primarily on the fine-grained sediments, but also 

incorporating information from select cqnglomerates. Calcite 

authigenesis, dolomitization, .silic.ification, replacement of si 1 iceous 

components, and barite and pyrite precipitation are all discussed. Part 

C synthesfzes previously examined field, ·petrographic, cathode 

luminescence, and geochemical relationships and interpretations and 

proposes physical and chemical models to explain the genesis of parted, 

ribbon, and nodular carbonate mudstones. 
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PART A: SEDIMENTOLOGY 

.f 
This section is a documentation of the physical aspects of the CrfG, 

including depositional mechanisms, submarine sliding, compaction, and 

sedimentary components. 

The lithofacies spectrum is described in Chapter ?, emphasizing the 

fine-grained (non-conglomerate) sediments. ;Five lithofacies are 

. recognized: (1) conglomerate, (2) calcarenite, (3) siltstone, (4) ~hale, 

and (5) mudstone. The m~dstone lithofaci~s. which includes parted, 

ribbon, and nodular limestones, is characteristic of many Paleozoic and 

Mesozoic deep-water carbonate suctessions. Some feature~ of this 

1
lithofacies cannot be explained o~ the basis of physical sedimentation 

alone, and these sediments are further analysed in Part B of this 

thesis. 

The evidence that the CHG was de,osited on a slope is outlined in 

Chapter 3 and includes discussion of synsedimentary deformation fabrics 

and a sediment failure model. 

In Chapter 4 enigmatic contorted limestones which commonly form 

dome-and'-basin structure~ are examined in light of hypotheses 

suggesting~ (1) synsedimentary deformation due to submarine sliding; (2) 

expansive crystallization; and (3) horizontal tectonic compression. 

- ~// 

The relative importance of mechanical compaction and pressure solution 

during burial diagenesis is examined in Chapter 5. In addition, pressure 

----- " , _ 
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solution rel~ed to tectoniCally-produced ho~izontal compression is 

discussed. 

· CHG limestones, as with many other Paleozoic shallow- and deep-water 

limestones, are characterized by abundant peloids. ,Microfabrics of 

exceptionally well-preserved peloids. are examined in Chapter 6 and it is 

proposed that many are algal in origin. 



. ' 
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Chapter 2 

LITHOFACIES OF THE COW HEAD GROUP 

2.1 INTRODUCTION 

Conglomerates in the CHG have been the focus of virtually all previous 

sedimentological studies (e.g. Schuchert and Dunba'r, 1934; Baird, · 1960; 

. Hubert~~ .• 1977; James, 1981; Hiscott and James, in press) • . In 

contrast, the relatively thinly-bedded, fine-grained. (i.e. 

non-conglo111eratic) sediments hav-e been li ttie studied. "First-order" 

appraisals of the fine-grained sediments include those of Kindle and 

Whittington (1958), Rodgers and Neale (1963), Stevens (1970), Callahan 

(1974), Fahraeu~ et al. (1974), Nowlan (1974), Suchecki (1975)i Hubert 

et al. (1977), and James and Stev~ns (in prep.). Although the temporal 

and spatial distribution o( the fine-grained sediments are well known 

(see James and Stevens, il'\, prep.), there are no detailed studies o( these 

sediments. • I' 

. ... 

Sediments of the CHG are divisible into 5 principle lithofacies: (1) 

' conglomerate, (2) calcarenite, (3) siltstone, (4) shale, and (5) 

mudstone. The siltstone and shale lithofacies are considered together 

in the same discussion for reasons that will be apparent later on. 

Although the primary focus of this chapter is the fine-grained 
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sediments, conglomerates are a1so examined in order to complete the 

sedimentologicel framework. Primary sedimentary processes responsible 

for deposition of ·the CHG can thus be compared to processes kno""n to • • 

occur on modern slopes (e.g. Mullins, 1983; Cook arid Mullins, 1983) a~ 

well as on other ~ncient slopes (e.g. Cook and Enos, 1977; Cook, 1983b; 

Mcllreath and James, 1984). ·The primary sedimentary framf'WOrk also 

provi-des the cr-itical foundation upon which all subsequent aspt-cts of 

this thesis are based. 

2 ."z CLASSIFICATION AND TERMINOLOGY 

2.2.1 Basic Definitions 

Some of the terminology used in this thesis is defined in the following 
: ... 

section. Deviation from these definitions are either e~plained where 

they occur or are left unexplained where their meaning is obvious from 

' their usage in context. The following definitions, except · for 

"composite bedding", are discussed further in Pettijohn (1975); 

Fairbridge a~urgeouis (1978); and Potter~~· (1980). 

Beds ·are relatively homdgeneous lithologic units separated from the-r 

neighbours by bedding planes or by changes in mineralogy, texture, 
\• 

colour, or other physical attributes.· These chan.ge.s may be primary 

depositional or diagenetic. Beds are differentiated from laminations by 

size; laminations are 1 em thick or less whereas beds are greater than 

em in thickness~ The different parts of the Bouma ( 1962) sequence are 

' 
referred to as divisions. ComposiFe bed, as defined in this thesis, 

' 
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' refers to a rock unit bounded ~bove and below by partings and which 

interrlally consists of two or more beds. 

2.2.2 Classification of Bedding 

I 
I 

An uncQmplic~ted, easily~pplicable classification for the qualitai·~e 
field description of bedding is used to describe depositional as we as , 
diagenetic bedd\ng characteristics, independent of origin. Two ba c 

char~cteristics are important:. (1) the proportion of carbonate beds 

relative to shale or marl beds, and (2) the geometry of th~ carbonate 

beds (Figure 2.1). 

Carbonate beds consist of limeston¢ and/or dol~tone.' Cstone 

textures range from mudstone through grainstone (sensu Dunham, 1962). · 
0 

Ali muds and mudstones referred to in this thesis are calcareous; 

siliciclastic muds are referred ~o as terrigenous muds and .their 

lithified equivalents are shales. Shale~contain little or no 

carbonate.. Narl refers to sediment composed of clays and' carbonate. It 

includes argillaceous carbonates through to car~nate-rich shales (see 

• Pettijohn, 1975). 

Carbonate beds 'are separated from one another by shales or marls. In 

this study parted [1} ~efers to a carbonate sequence (usually limestone) 

in ~hich the beds are separated by atgillaceous layers (shale, marl, or 

silicified equivalents) up to 1 em thick (Type 2 bedding in Figure 2.1). 

' 
1. The te~ni'ljarted" was originally · used to designate interbedded pure 
carbonates and argillaceous, siliceous, or silty carbonates whose 
weathering prod1,1ces a "flaggy character to the outcrops" (see Aitken, 
1%6. p. 411 ) • 

-·-
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Figure 2.1: Terminology for the description of bedding in the Cow 
Head ~roup sediments. See text for discussion. 

(J 

•• 
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Ribbon carbonates are differentiated from parted carbonates when the 

thickness of the argillaceous intertted is more than 1 em (Types 1 and 3 

bedding in Figure 2.1). ·Type 1 ribbon carbonates are _separated b)' 
(', 

relatively carbonate-free shales. Type 3 ribbon · carbonates, on the 

other hand, are interbedded with calcareous or dolomitic marls. Thes e 

bedding types are intez:gradational. 

Description of bed geometry considers two additional variab1es - bed 

continuity and thickness ·variation. Beds which are laterally continuous 

and have constant thickness are planar. Variations in thickness occur as 

syinmetrical or asymmetrical pi nch-and-swell - or wavy bedding. 

Discontinuous bedding is lenticular or nodular. Where interbedded marl 

or shale is minor (less than 1 em in thickness), wavy and len tic ul ar 

beds commonly demonstrate a fitted 2] fabric where thicks f i t into 

thins of ad~cent carbonate beds . . 

The terms "lenticular" or "nodular" are strictly non-genetic 

descriptors. "Concretion", on the other hand is genetic and refer s to 

carbonate of accretionary origin, i . e. carbonate beds or nodules 

growing from progressive, centrifugal precipitation of car bonate o r · 

other mineral phases. This process is common! y an ear 1 Y., 

pre-burial-compaction phenomenon. This is s ynonymous with "diage ne tic 

segregations" as used in Pettijohn (197'5). The above c_onforms with. usage 

in most other, recent studies. Early-cemented ·grainstones may also be 

considered as concretions .• 

2. Wanless (1979) also used this term to describe a similar fabric in· 
strata modified by pressure solution. 

" ·-. ... 
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This bedding geometry nomenclature is similar to that of Reineck and 

Wunderlich ( 1968). Fitted fabrics of this study resemble the effect of 

' 
mud flasers draping ripples . Wavy and lenticular beds in the CHG also 

demonstrate simi1ar geometric , though not necessarily genetic, 

relationships as those of Reineck and Wunderlich (1968). 

A number of complexities are ignored in applying the above 

~lassification. Tbese include the following: 

( 1) The carbonate-shale or carbonate- marl boundary is not always sharp 

and the limi ting "parting" thickness of 1 cm, in addition to being · 

arbitrary, is ,also . subjective. 

( 2) Shale or mari thickness varies in wavy and lenticular beds. 

( 3) Thick shale or marl interbeds often contain thin (few millimetres or 

less) pure carbonate laminations . 

. . 
(4) Silicification and dolomitization obliterate or alter primary 

sedimentary characteristics thus reduc i ng distinction between carbonate 

and originally more ar~illaceous interbeds. 

( 5) The ,field HCl test doe~ not readily differentia~e mixed carbonate 

• 
content (i.e. calcite and dolomite) in marls. A sediment whose 

1 carbonate fraction contains 20% calcite and 80% dolomite, for' .example, 

is only mildly effervescent. 

(6). Proper recognition of wavy and lenticular bedding ideally 

" necessitates mutually perpendicular vi ews o.! bedding (Reineck and 

Wunderlich,l968). This is a condition not commonly encountered in the 

'\ 
• ' 
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CHG•sediments. 

2. 2. 3 Clarification of the Term "Mudstone" 

Before proceeding to description, some discussion of the ter'm "mudstone" 

as used in this thesis is necessary. In his limestone . clas;;ification, 

Dunham (1962) used the term to describe rocks of detrital carbonate mud 

origin containing less than 10% allochems. In many carbonates, however, 

the occurrence of microspar or pseudospar often renders the pre::;ence of 

a carbQnate mud precursor to be' inferred from textural rela t ionship,s. 

The term "crystalline carbonate" was used by Dunham ( 1962) for 1 i mPstone 

or ·aoiostone which retained insufficient fabric rei i cs ncce ssar/ to 

successfully classify them according to depositional texture. This 

category could easily be expanded to include .P·urely seconda r y 

carbonates, for example concretions, whi ch are not nece s sarily, 

neomorphosed primary muddy sedj ments •· 

Field and laboratory examina~ion of parted and ribbon limes t o ne s 

demonstrates that they are what most s~d imentologists would 

unhesitatingly classify as microspar or pseudospar [3] " muds tones". It 

will be shown later that these ·mudstones a re, in many instances, 

petrographically and · geochemically identical to associated "crystall i ne 

limestone" nodules of probable concretionary origin. To avoid potential 
t . 

nomenclatural entanglements, the term "mudstone" is used in this· thesis 

not as Dunham (1962) originally intended, but instead to refer to 

limestones compos~d of micrite, microspar, · or pseudos par contain i ng less 

3. Definit i ons of these terms are provided in Appendix H. 

...... ..... . 
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than 10% detrital particles, irrespective of origin. These mudstones 

may be (1) entirely diagenetic in origin, ( 2) neomorphosed ''primary" 

mudstones, or (3) a combination of 1 and 2 above • 

• 
2.3 CONGLOMERATE LITHOFACIES: DESCRIPTION 

2.3.1 Introduction 

Conglomerates typically occur as resistant-weathering, extensive 

outcrops characterized by light to medium grey-weathering carbonate 

clasts set in a darker-coloured matrix. Traditionally inaccurately 

labelled as "breccia" (e.g. Schuchert and Dunbar, 1934; Hubert~~·· 

1977), these sediments range from monomictic to polymictic and have 

variable internal structure, clast~packing fabrics, and matric~s. Their 

lateral con~inuity is remarkable in some instances and correlations over 

distances of 20 km are possible (James and Stev'en, in prep.). Baird 

( 1960) attempted the first detailed sedimentolfl'gical study of this 

lithofacies and provided a t~mplate for the recent st~dy by Hiscott and 

James (in press) who recognized 5 different conglomerate sublithofacies 

types based on sedimentary structures, grading, matrix composition, 

sorting, and clast types. The following s~ction is based upon my own 

observations, supported and expanded where appropriate, by data from the 

above-listed and other studies. Conglomerates similar to those of the 

CHG are common throughout the geologic record. Other Appalachian 
\ 

examples have been described from the Taconi~ allochthon (Keith and 

Friedman, 1977) and the southern Appalachians (Pfeil and Read, 1980). 

\ 
\ 

\ 
\ 



2.3.2 General Description 

The most important variations in the conglomerates are a functio~ of 

their relative geograph~c locations. ~ In the northern part of the study 

area, such as Lower Head or Cow Head North (Figure 1.2), outcrops are. 

characterized by the most and thickest conglomerates, largest size and 

variety of clasts, poorest sorting, and greatest amount of basal scour 

(Plate la). Toward the south, for example at Martin Point or Green 

Point, conglomerates constitute a minor pdrtion of the se~uence, are 

reduced in thickness, and contain smaller, l ess variable clasts. 

Beds vary from 10 em to greater than 10 m in northern- outcrops. At Cow 
r 

Head North, a northern outcrop, conglomerates reach 25 m thickness and 
~-
'"· comprise 55% of the exposed sequence (Hiscott and James, in press) • . Bed 

geometry is gently wavy Q.r lenticula~ with abrupt or gradual, tapered 

margins (Plate 1b). Basal scour. is generally absent or minor, although 

some thicker conglomerates erod-e_ 10 metres or more of the underlying 

thinly bedded limes.tones and shales. Sole marks are infrequent and 

dominated by broad, elongate casts ~ which are either flutes or loads. 

"Mega-flames" (injection structures) of ribbon limestone, up to 8 m in 

length, occur at the base of conglomerates at Cow Head North and Lower 

Head and are characterized by rela~ively coherent or fragmented 

bedding. Several isolated boulders also appear to have sunk out of the 

conglomerate into the underlying ribbon limestones at C6w Head North 

(see Hiscott and James, in press). 

Conglomerate beds are both single and composite, the latter .consisting 

/ 

. , 
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·of two or more amalgamated ("welded") conglomerates. Recognition of 

composite beds is based on: (1) _abrupt vertical change in ~ominant clast 

size, relative abundance of various clasts types, or characteristics of 

matrix, or (2) in ~ relics of beds which capped a conglomerate (now 

lC?wer part of amalgamated unit) but were not completely __ eroded prior to 

or during emplacement of overlying conglomerate. 

2. 3.3 Clasts 

• 
Maximum clast size and bed thickness are commonly positively 

-correlated. In northern outcrops (e.g. Lower Head and Cow Head North), 

thick conglomerates of Bed 14 (Figure 1.3} contain several house-size 

and larger boulders, the largest being the "Lower Head Boulde~", which, 

in plan view; measures approximat~ly 200 X 50 m in size (Kindle and 

Whittington, 1958). Maximum clast size is usually considerably smaller, 

commonly within tfe cobble-size range or below, especially in more 

southern outcrops. 

Clasts are classified as "endemic" or "exotic", based on whether they 

were derived from the slope or from the shallow-water carbonate 

platform, respectively (Table 2.1). Based on qualitative estimates,. the 

proportt6n of exotic to endOmic c·/Jts may be as high as I: I in ·northern 

exposures. With decreasing bed thickness, there is a decrease in 

relative proportion and size of exotic clasts. 

Exotic Clasts: Exotic clasts span a wide variety of lithologies and 

commonly contain sedimentologic or faunal evidence· of shallow-water, 

photic-zone derivation, for example, blocks conta~ing calcified algae 
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TABLE 2.1: TYPES OF CONGLOMERATE CLASTS 

EXOTIC BOULDERS 

Shallow-water derivation. Lithologically variable, clasts are 
represented in the autochthonous succession of western Newfoundland with 
some exceptions (e.g. calcified algal mounds). Fractures in clasts 
ofteQ contain abundant radiaxial fibrous calcite. Fossils include 
trilobites, brachiopods, pelmatozoans, spopges, calcified algae, 
cephalopods, gastropods, ostracods, bryozoans, and stromatoporoids(?). 
Maximum size is 500 m (Lower Head). Up to 10-20 m size is common in 
proximal exposures. Most clasts are in the boulder-size range and 
smaller. 

FLAT CLASTS 

Slope derivation, dominated by mudstones and minor grainstones. ~lasts
may be massive, parallel-laminated, or more rarely, rippled. Dolomitic 
and chert clasts are alsa 16cally important. Maximum size is 1 m length _. 
and 15 em thick. 

RAFTS . ' 

Slope derivati~n. Consists of interbedded limestone and ~hale/marl . 
Limestone lithology is same as for. flat pebbles. Nodular rafts are 
ra~e. Clasti contain abundant evidence of soft-sediment deformation. 
Fragmentation of rafts produces flat pebbles and argillac~ous 
conglomerate matrix. Maximum size is 20 m. 

MISCELLANEOUS . 

Rare isolated fossils include cephalopods, planispiral gastropods. 
Other, presumably slope-derived clasts include dolomitic armoured 
mudballs, resedim~nted conglomerate fragment9, shale clasts, phosphatic 
pebbles, pyrite concretions, septarian and other calcite concretions, 
displacive fibrous calcite clasts. 

\ 



(Plate la; James, 1981). Their shape is usually equant to elongate and 

they are rounded to angular with no evidence of plastic, synsedimentary 
I 

· deformation. This implies they wer~ incorporated into the conglomerates 
• 

as well-lithified limestone. 

Flat Clasts: Most flat clasts are inferred to be the product of 

resedimentation of slope-derived material, although, iri most instances, 

this is d1fficult t6 ' prove directly in th~ field or petrographically. 

These endemic clasts are typically tabular, less than 30 em long and 2-5 

'em thick, have rounded to irr~gulei polygonal outlines, and are commonly 

bent and fractured. The tabular aspect diminishes with decreasing clast 

size (Plate 1~). They dominantly consist of massive ~r 

parallel-laminated mudstone with subordinate grainstone and packstone. 

Rafts: An important · exception· to the above size limitation of endemic 

clasts are large ''rafts"~ up to 25 m in length, of coherently-bedded 

pa~d and, to a much lesser extent, ribbon and nodular limestones. 

Rafts are most abundant in the Late Cambrian .strata at Cow Head North 

and Middle Ordovician strata at Lower Head and Cow Head North and South. 

Lithologically they are identical to (and likely the source of) the flat 

pebbles. The paucity of i-ibbon and nodular _limestone rafts is probably 

the ~~sult of their disaggregation to flat pebble clasts during 

transport, a functi~n of their relatively lower contept of limestone. 

"Soft sediment" foldi~_. .. faulting, fracture cleavage formation, and 

brecciation are common in large rafts and lucidly demonstrate the high 

d~ree of limestone lithification relative to plastically-deformed 

argillaceous interbeds. Competent limestone beds are .of constant 
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thickness and control folding in the rafts (Plate ld). In contrast, 

atgillaceous interbeds are characterized by similar folding where 

thickening occurs in fold hinge zones and thinning occurs in the limbs. 

Limestone beds which develop a pronounced fracture cleavage may also 

have the resultant microlithons (i.e. unit of rock bounded by cleavages 

and bedding) slightly rotated due to interlayer shear generated during 

folding (Plate ld). Faulting and brecciation within ~he rafts produce 

angular, commonly rectangular, limestone fragments' enclosed within an 
• 

argillaceous matrix (Plate le,f). The shape o£ these fragments reflects 

the influenc~ of an early fracture cleavage oriented perpendicular to 

bedding. 

These deformation characteristies are very _similar to those expected 

during "hard rock" t.ectonic deformation. Such an origin can be safely . 

discounted based on: (1) lack of associated veining, (2) lack of 

· consistent orientation of folds or fracture cleavages, and most 

importantly, (3) the invariable restriction of this style of deformation 

to rafts. 

2.3.4 Matrix 

Conglomerate matrix may be muddy (shale, marl, or lime mudstone), 

grainy, or any mixture of these. Less commonly, infiltrated lithic 

sands (Hiscott and James, in press), and bladed calcite cement and 

associated internal sediment (discussed in Part II) are found in the 

uppermost metre of some conglomerates. Grainy matrices are typically 

poorly-sorted peloid and intraclast ·grainstones and packstones. The 

boundary between conglomerate clast and matrix clast in these poorly 

\ 

\ 
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' · 
sorted sediments is arbitrarily assigned at 1 mm (cf. Naylor, 1980). The 

nature of the original matrix is uncertain in some conglomerates due to 

significant diagenetic overprinting. . ' 

2.3.5 Grading, Internal Struct~re, and Packing 

Most conglomerates demonstrate a massive (i.e. structureless), chaotic 

clast fabric, regardless of matrix composition (A in Figure 2 .2). Crude, _... .... 

normal grading of 'pebble-size clasts through to sand-size grainstone(~-----------

--in Figure 2.2; Plate 1c) and graded matrices are comparativ~y----fare, 
...----

_..--

found only in conglomerates which grade upward~o pebbly calcarenites 
~-- . 

- -- -··· 
(discussed in next . section). Many--conglomerates are capped by parallel-

. --· · 

and ripple-laminated gr-ainstone layers up to 15 em in thickness, a 

situation similar to the ~two layer" deposits described by Krause and 

Oldershaw (1979). 

Wave-forms such as those described by Hubert et al. (1977) are on}y 

locally developed and are neither as extensive nor as obvious as their 

descriptions suggest (Plate _2a; also see Hiscott and James, in press). 

Cross-bedding in conglome~ates is rare, and is delineated by flat clast 

alignment defining coarse foresets (Plate 2b). Other conglomerates are 

characterized by local clast imbrication and "swirled" domains (B in 

Figure 2.2), the latter displaying a gradual change in flat clast 

orientation. 

Clast packing varies between and within flows (Plates 1~, 2c; Figure 

2.2). Floating ("particulate rubble floatbreccia" -Morrow, 1982c) and 

clast-supported ("particulate rubble p~ckbreccia'') fabrics occur in 



Figure ~.2: Variations in clast-matrix and clast-clast 
relationships in the conglomerate lithofacies. 
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conglomerates with shale, mudstone, and grainy matrices. 

,Interpenetrating or condensed clast fabrics ate the ~esult of pressure 

- solution (discussed further in Chapter 5). 

2.3.6 Isolated Boulders 

The pres~nce of isolated, white limestone boulders in Bed 6 at Cow Head 

North was originally noted by Kindle and Whittington (1958; Plate 2d, 

Figure 1.3). The::;e boulders occur in a parted sequence of -mudstones·, 

grainstones, and marls. Some beds abruptly terminate at the . boulders, • ·~ 

I 

whereas others drape under and over them. Pebbles, which appear to have w;. 

been trapped, are found below the boulder shown in Plate 2d. 

2.4 CONGLOMERATE LITHOFACIES: INTERPRETATION 

Studies as early as that o~ Kindle and Whittington (-1958) suggested that' 

"slumping'' (sliding) formed these conglomerates, but it was not until 
. . 

the compilation of Hubert!!_ al. ·, (1977) that a debris flow {4) 

mechanism was proposed. Recently, Hill!!_&: ...(1982) and Hisc,ptt and · 

James (in press). have examined rheological aspectsr of these flows. 
' . 

Hiscott and James (in press) concluded tha~ CHG debris -~o~s h~d ~ 

streng~hs similar to those of modern subaer~'al debris flo~ 
. ~ 

4. The term "debris flow", is strictly a petrogenetic term, but it is 
also often used to describe the deposits of debris flows (synonymous 
with "olistostrome" a~ used by othet authors, e.g. Naylor, 1981). 
Debris flows are characterized by a clay and water matrix which has a 
finite yield stren~th (cohesion), which, in concert with buoyancy, 
provides the required particle support (Middleton and Hampton, 1976). .. 



--

_, 4& 

A debris flow origin for most CHG conglomerates is suggested by th~ 

followin~: (1) lack ~f or poor normal grading; (2) irregular tops with 

projecting boulders; (3) aQrupt thinning at margins; (4) ·lack of 

stratification; ( 5) broad basal scours and sharp relatively planar 

bases; and (6) incorporation of penecontemporaneously-deformed material 
' \ . . 

. ., 
(Cook .ll al .. , 1972; Middleton and Hampton, 1976; Surlyk, 1978; Kepper, 

1981; Hiscott and James, in press) .. 

The paucity of· mud matrix ;in many conglomerates interpreted as del)ris 

. I ,. 
· .· flows in- the CHG as well as in other successions indicates that other 

factors, s~ch as dispersive pressure and possibly turbulence, besides 

yielfl strength and buoyancy: m.ust be i,nvolved in particle suJ1port 

(Middleton and Hampton, 1976; Pierson, 1980). Water ' incorporated at the 

base or top of a flow, for example, may diminish effective viscosity · 

thus allowing clast·collisiops (dispersion) to assume a greater role in 

" part.icle support (Middletop and Hampton, 1976; Surlyk, 1978) . On the 

oth~ hand, in low velocity debris flows, a grain-support framework may 

be 81'! -imp.ortanf support mechanism (Pierson,· 1980). 

Coarse ' foresets in some CHG conglomen!tes w;re previously interpreted as 
. ' 

pseudo-cross-beds generated by flat cla~ts sliding down the front margin 

·Of the debris flow, producing down-slope imbrication (Suchecki, 1975). 

These coarse foreset laminations and rare nor~i grading are presently 

•interprete,? to result · from more· evolved flows in which particle 

, interaction and segregation are possible (cf.,. Surlyk, 1978). Grading 

could also be an expression of ,the gradual downward migration of the 

rigid plug boundary in a debris flow (Nemec !!. al., '1980). 

·, 

• 
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Conglo!Derates with both particle.tand matrix support suggest variability 

of flow mechanism within a single flow. Certain domains within the flow 

may be ~true debris flow (i.e. particles supported by matr · and 

buoyancy) whereas others could be density-modified grain 

Surlyk, 1980). This latter possibility can also explain the focal clast 

imbrication. Internal differential shear could also produce local 

imbrication of flat clasts and possibly reflect formation of a rigid 

plug (Walker,, _1975). 

.r 
I 

Parallel- and ripple-laminated gr~~1stone caps on CHG cong!omerates have 

been prev:iously attributed to contour current deposition (Callahan, 

1974; Suchecki: 1975; Hubert.!! al., 1977). Comparison with similar 

occurrences elsewhere suggests that these caps are turbidites. which are 

genetically related to the underlyigo debris flows (Cook-!!_ -~., 1972; 

Krause and Qldershaw, 1979; Crevello and Schlager, 1980). 

Smaller clasts trapped belfw the isolated boulder shown in Plate 2d 

suggest th_at it was once part of a more continuous debris flow. This 

situat i on may have occurred in several ways. These boulders may be the 

larger; . l'leavier, stranded freight of a debris flow whose competence . was. 

reduced through dilution and the flow was no longer able to carry heavy 

clasts eit~er suspended or by traction. Another pbssible explanation is .. 
that this situation arose from surges in the debris flow (cf. Hill .!tl_ 

al., 1982). The debris flo.w may have been scoured away by bottom or 

turbidity currents leaving behind the boulders as a lag deposit. 
"<! 

Evidence jor scour is, however, lacking. A fin{ll possibility is that .. 
the boulders outran the debris flow which originally transported them, 

similar to the situation dep!c,ted by Conaghan !!._ al. (1976) for the 

•·" 



isolated boulders in New South Wales. Smoothly lenticular, isolated 

boulders form "detrital nodules" but these may be easily mistaken for 

concretions (discussed later in this chapter). 

Using Walker and Mutti 's (1973) "turb~ite" facies classification, some 
., 

of CHG conglomerates are comparable to the disorganized conglomerates 

(Facies Al), characterized by sandy ·matrix, low mud content, and lack of 

' 
internal structures. Conglomerates with shale, mar.l, or mudstone 

matrices are placed in the chaotic deposits (Facies F) which is a ' . heterogeneous·. suite of lithofacies which also includes muddy matrix 

debris flows. These conglomerates may also be considered as 

disorganized conglomerates' but with a muddy matrix. Conglomerates with 

a sandy' matrix and internal sedimentary structures (normal grading, 

clast imbrication, and preferred clasts orientation) are similar to 

Walker and Mutti 's ( 1973) organized conglomerates (Facies A2). 

Conglom~rates with inter~al structures and shale, marl, or mudstone 

matrices could also be included here. 

The north to south (or palinspastically-restored northwest to southeast) 

decrease in"the size of the conglomerates and their clasts is 

interpreted by Hiscott and James (in pre\s) and James and St~ens (in 

prep.) t·o indicate a sou,t_heast-dipping paleoslope. This is consistent 

with the south- to east-directed paleocurrents (refer to Chapter 1) 

interpreted as turbidity flows (discussed in following sections). 

Outcrops in .the northern portioi of the stud{ area ('e.g. Cow H~ad North) 

are therefore interpreted to be proximal to the shelf preak. Toward the 

south, exposures are more· distal (e.g. Green Point). 
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2.5 CALCARENITE LITHOFACIES: DESCRIPTION 

·2.5.1 General Description 

A calcarenite-dominated lithofacies is locally important in Upper 

. Cambrian strata of the CHG (Figure 1.4; o~tcrops liste~ in Appendix A). 

Bedding is usually wavy or lenticular, o£Jen reflecting ripple and less 

commonly megaripple forms, and some outcrops demonstrate lateral 

transition ?f wavy. to lenticular beds. Bed thickness typically ranges 

from S-100 em. Solit<f!Y. lenses of calcarenite may reach 15-20 m in 

length and 1 m in thickness, but ·most are less than 5 m long and 

proportionately thinner. Recessive-weathering interbedded shales and 

siltstones are a few millimetres to SO em thick (Plate 3a). The 

lithofa~ies usually extends for 1-3 m in thickness, rarely reaching 10 m 

or more (e.g. Cow Head North Bed 6). Sediments are dominated by pelpids 

and intracl,asts, mostly as gl'ainstones (discussed · in Chapte,r 6). This 

lithofacies is spatiaily associated with and often grades upward from 

conglomerates with grain.y matrices. 

2.5.2 Grading and Stratification 

Most beds are massive (structureless); graded and trough cross-laminated 

beds are compara~ively rare. Normally-graded beds may have flat 

mudstone pebbles concentrated and locally imbricated at their bases 

(Plate 3b). In some beds, size and compositional grading is delineated 

by resistant-weathering siliciclastic sand and silt (Plate 3c). Such 
I-

. .... 
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grading, however, occurs only within the uppermost few centimetres of 

the bed. 

Trough cross-lamination foresets reach 30 em in height (Plates 3d; 

4a,b). Individual foreset laminations are rarely normally graded from 

medium to fine sand-size. 'Both parallel and cross laminations may be 

enhanced·by concentrations of siliciclastic sand or silt, shale 

intraclasts, or by s~ylolites (Plates 3c; 4a). 

Upper and lower bedding contacts with interbedded siltstones, marls, and 

shales~ typically abrupt and centimetre-scale basal scour and loading 
,} 

into the underlying sediments is ubiquitous~ Large-scale' scour 

suggestive of channeling is rare (~late 4c). 

Lenticular grainstone beds, 2-4 m long with form-concordant laminations, 

are found in Bed 6 at the type section (Plate 4d). These lenses grade 

upward into rippled, silt-size grainstone which is locally scouyed from 

the lens margins. The sequence suggests parasitic ripples developed on 

isolated mega-ripples. 

2.5.3 Other Calcarenites 

Single beds of calcarenite are also dispersed within the siltstone, 

shale, and mudstone lithofacies. These calcarenites are usually less 

than 10 em in thickness': may be normally graded or ungraded: ma~si ve' 

parallel-, or ripple-laminated; and occasionaliy demonstrate 

Tac.... sequences. Their common wavy or lenticular bedding reflects both 

ripple forms as well as basal loading and scour. Some bedding. surfaces , 
are characte.rized by trains of sinuc;>usly-crested ripples with 

wavelengths of 15- 30 em (Plate lOc, d). Thl:! few ripple crest 
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orientations measured indicate paleocurrents to the south and southeast , 

confirming the paleocurrent measurements of Hubert ~ ~· ( 1977). 

2.6 CALCARENITE LITHOFACIES: INTERPRETATION 

• 
2.6.1 Interpretation of Calcarenite Lithofacies 

The predominantly massive bedding with rare normal grading resembles the 

TA division of the Bouma (1962) sequence. The lack of the "normal" or 

"classical" turbidite successions, however, and the occasional presence 

·of large-scale cross-lamination suggests that the Bouma (1962) turbidite 

sequence is inadequate to model this lithofacies. In addition., t.he lack 

of inverse grading suggests these deposits are not grain flow deposits 

(see Cook, 1983b). The ubiquity of small-scale scours indicates fluid 

turbulence is important, but the lack of large scours suggests channels .. '-. 
are rare or absent. 

Mega-ripple cross-lamination in carbonate flysch has been reported from 

several localities (e.g. Lower Pennsylvanian Dimple Limestone of Texas -

Thompson and Thomasson, 1969; Devonian Marble .CI"iff Beds of Cornwall -

Tucker, 1969; Cambrian of the Taconic sequence in New York - Keith and 

Friedman, 1977). To explain such occurrences, Hubert ( 1966) and Hube-rt 

et al. ( 1977) sugges.ted modification to the Bouma ( 1962) sequence where 

a _ ~une (mega-ripple) phase is inserted between the T& and Tc divisions. 

Beds in the calcarenite lithofacies shares various elements of Walker 

and Mutti 's (1973) A4 and B2 facies (organized pebbly sandstone ar1d 

massive sandstone without dish structure facies, respectively). 

--
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Included are: coarse-tail grading (A4), local pebble imbrication (A4), 

basal scour (82), and common ~enticular bedding (B2). This lithofacies 

lacks, however, the common amalgamation which characterizes Walker and 

Hutti's (1973) 82 facies~ The calcarenite lithofacies is also in part 

comparable to Walker and Hutti 's (1973) C facies, the "classical" 

proximal turbidites which are characterized by numerous beds which begin 

with the T,_ division. The_continuity of the Facies C turbidites does 

not, however, characterize the calcarenite lithofacies. 

" 
Bed~ in the calcarenite lithofacies closely resemble proximal turbidites 

described by ;.owe (1976), Surlyk (1978), Hiscott-and Middleton (1979),. 

and Hurst and Surlyk (1983). These turbidites were interpreted to be 

deposited from high density turbidity currents, thus explaining the 

diff i culty in applying the Bouma (1962) sequence which is only 

applicable to the low~r densi~y, "classical" turbidity currents (Lowe, 

1982) . 

.. 
Particle support in high density flows results.~rom the interaction of 

turbulence, hinder!!d settling, b'ouyancy, and dispersion. Deposition is 

thought to occur in three successive phases which reflect increasing 
"' 

flow un~eadiness (Lowe, 1982). These phases are: 

(1) A traction se~imentatiori Stage~ which produces bedforms of classic 

turbidites along with dune-:like features and er.osion. .This may a~coun 

for the lenticularity of some beds and the occasional development of 

trough cro~s-lamination. 

' (2) A traction caq)et ;freezing stage which may result in the 
.. 

\ 
I 

\ 
'preservation of inverse grading (also see Hiscott and Hiddl~ton, 1980). I 
This is not observed in CHG c~lcarenites. ~ 

I • 

l 
\ 

•• 
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(3) A direct suspension sedimentation stage which leads to loosely 

packed sedi~ents. This last stage of deposition is characterized by 

massive or normally graded bedding and i~ ·the - T~ di_vision. Most of the 
.. -

calcarenite lithofacies is interpreted to be an expression of this last 

phase of deposition from high density flows~ Residual flows then give 

' rise to finer grained turbidites with which 'they are conunonly 

interbedded (discussed in next section). 

The absence of dewatering structures in the calcarenite lithofacies is 

possibly explained by the lack of fine interstitia~ sediment. This may 

be the result of either original soiting (most probable) or diagenetic 

effects (cf. Hurst and Surlyk, 1983). 

2.6.2 Interpretation of Other Calcarenites 

Calcarenites dispersed in the siltstone, mudstoner and shale lithofacies 

are ' interpreted as turbidt"tes based on their ungraded to normally-graded 

beds; massive internal fabric, or parallel and ripple lami nations, often 

following sequeritially; and basal loading or ·scour. Many of the above 

characteristics have also been not~d ,in ot~er ~arbonate sequences, 

interpreted as turbiditic, throughout the geologic col umn from 
. . . 

. : . ' 
Precambrian to Quaternary (e.g. · Meischner, 1964; Thomson and Thomasson, 

1969; Tucker, 1969; Marcinowski, 1970; Eder,' 1971; various papers in 

Cook and Enos, 1977; Scholle, -1977; Cook, 1979; Crevello and Schlager, 

1980; Cook and Mullins, 1983). Massive and graded beds are interpreted 

to be the T" division whereas t~e 'parallel- and ripple-laminated beds , 

are the T6 and Tc divisions, r'espec~ively, commonly forming the 

· classical T~ tur-bi.dite sequence (Walker and Mutti, 1973). 

,. 

f 
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2.7 SILTSTONE LITHOFACIES AND SHALE LITHOFACIES: DESCRIPTION 

2.7.1 Introduction 

Siltstones and shales are volumetrically important in most exposures of 

the CHG. In the following discussion, _these sediments are considered as 

a spectrum with /a "siltstone lithofacies" as one end member and a "shale 

lithofacies" as the other. 

In the siltstone lithofacies beds of siltstone and shale are of 

comparable thick~ess and occur in approximately equal proportions (Plate 

5a,b). · This lithofacies is 1-4 m in thickness and some of the more 

extensive intervals are listed in Append-ix A. Many of these intervals 

are the "dolbmitic siltstones" designated in the stratigraphic sections 

of James ~nd Stevens (in pre~.; also see Figure 1.2); thes~ siltstones, 

however, may ~lso comprise fine-grained peloidal grainstones. 

siliciclasti~ siltstones (relatively rare)-, or COIM!Only mixtures of the 

above three components. Beds composed of very fine sand- or fine 

sand-size particles occur, but these are volumetr~cally minor relative 

to sil-tstones. Thinner ·intervals of interbedde'd s:tltstones and shales 

'(10-100' em thick) typically constitute the recessive· units interbe_dded 

with calcarenites and conglomerates throughout -the CHG. 

A$ siltstone beds become thinner and the siltstone/shale ratio 

decreases, sediments ' progressively approach the other end member of the 

spectrum, the "shale lithofacies". which is characterized by 
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shale-dominated intervals 1-10m or more in thickness (Plate Sc). 

Siltstones, though reduced in thickness and volumetric importance, are 

found .as "stringers" in all shale sequences in the CHG. Important 

attrib~tes of the shales include: (1) thickness of the intervals in 

. ~ 

wh1ch they occur! (2) variation and alt~rnation o~ colour on a 

millimetre to metre scali, and (3) the ab~ndance uf red ~hales in the 

Arenig sequence. The clap mineraiogy of t these ~hales was .initially 

studied by Suchecki et ai. (1977) and subsequently re-examined during 
-~ 

the course of this study. Based on this study, shales are dominated by 

chlorite and illite (also a conclt.Jsion of Suchecki ~ !:!_., 1977), may 

contain traces of kaolinite, and the Ordovician shales also contain 

minor corrensite. These results differ slightly from those of Suchecki 

~ ~- (1977) and further discussion, including analytica l methods, is 

provided in Appe,df i B. Scattered throughout most shales' are varying 

quantities of f.ine to medium silt-'size dolomite C1"ys tals, quartz-and 

feldspar silt, pyr~te· crystals and aggregates, and micr~spar. Shales 

may also be largel¥ dolomitized (dolomitic marls; see Chapter 12), 

silicified to . form bedded cherts (Chapter 13), or rarely, 

potassium-metasomatized to potassium feldspar (Tahl~ 8.2 in Appendix B). 

2:7.2 ·Colour 

Dolomitic and siliciclastic-rich siltstones typically weather dusk 

yellow (5 l 6/4 [dry); (5]), but fresh wet surfaces are light olive grey 

(5 Y 6/1) or' brownish grey (5 YR 4/f). _More calcareous siltstones 

. 5. Colours are of wet specimens unless indicated otherwi se and are based 
on the Geological Society of America rock colour chart . 
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weathe~ numerous shades of gret. 

'Three dominant shale colours ~re recognized: black (N 1), green (5 Y 

3/2, ~ Y 4/1), or red (5 GY 4/1). Slack and green s~ale;and green and 

red shales are commonly interbedded with one another. Interbedded black 

and red shales are never found. P~r~le shale (approximately 5 PB 3/2) 

is min~r and is i~terbedded with eit~er green or red shale. 

Beds dominated by one shale colour commonly reach 1-2 m in thickness 

("metre-cycles") a~e in turn consist of numerous millimetre to 

centimetre-thick colour alternations ("millimetre cycies") .• An . 
excellent example of this is a Lower Ordovician shale interval (unit 29) 

exposed at Green Point (Plate 5c). The sequence consists of 10-30 

em-thick, interbedded bla~k a~d green shales (metre-cycles). Each black 

and green band comprises numerous millimetre-size black and green 

laminations (millimetre-cycles), many of which are discontinuous in 

outcrop as well as thin section. Analogous relationships also occur in 

interbedded red and green shales. 

Red shale is commonly locally reduced to pal,e green but this accol!nts · 

for a negligible fraction of the green shale observed in the sequence. 

The most frequent ·occurrence is reduction of red shale immediately 

underlying and overlying s.iltstone stringers. .Reduced ~ands are 1-5 mm 

thick and gradationally pass jnto surrounding red shale • In addition, 

red sh~les are r~duced laterally within beds or along fractures and 

faults; reduction spher~s or ellipsoids occur scattered along preferred 

horizons; and reduced rims surround rare red shale clas'ts within 

conglomerates. 

.. 

j ' 

........ 
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~~7.3 B~dding.Characteristics 

Shales interbedded with dolomitic siltstones are commonly dolomitized 

(Plate Sd). Consequently, many resistant~weathering "beds" are actually 

composite bedsi consisting of two or more siltstone beds with ., 

intervening, dolomitized shale. Because prima-ry sedimentary structures 

are often faithfully preserved in these sediments, much of the 

information nn the silt ·to shale transition, grading, and other internal 

fabrics is drawn from s~h dolomitized siltstone-shale couplets. 

Siltstone beds in the siltstone lithofacies are 2-6 em thick, but 

occasionally beds reach 25 em in thickness. Stringers are considerably 

thinner, often only 5-10 mm in thickn~ss, rarely attaining a thickness 

as great as 2 em. Beds are tYpically pl~nar and continuous but become 

less so with decreasing bed thicknesi. Beds wit~ippled tops have an 

undulating upper surface and isolated (starved) ripples define 

lenticular beds. 

Basal scour, loading, and development of small flames are cur~on and 

many of these are visible only in thin section. Inorganic sole markings 

are common and dominated by small grooves and flutes with occasional 

bounce marks. A varied trace fossil assemblage is locally abundant and 

m~y initialize current scour around them (Plate Se). Parting lineations, 

when present, are only weakly developed. In contrast to their abrupt 

bases, siltstones typically demdnstrate a gradual u~per transition into 

overlying shales. In relatively undolomitized shale, this is seen as an 

increase in fissility and weathering recessiveness. Slab an~ thin 
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section study provides the important .details (discussed below). 

2.7.4 Internal Structures 

Massive or normally graded beds (TA of Bouma, 1962), some with basal 

accumulations ~f coarse sand- to granule-size clasts of quartz, shale, 

chert, and phosphate, are comparatively rare (Plate 6a). In contrast, 

parallel and ,cross laminations, commonly forming T &C sequel'lces, are 
~ 

ubiquitou~ (Plate 6c). Slabs and thin sections commonly demonstrate 

lateral transition from cross laminated silt to shale in the troughs -
I ' ' 

the "fading ripples" described in Stow and Shanmugam (1980; Plate 6b,e). 

These are equ~valent to Type C ripple drift cross-lamination of Jopling 
. .-

and Walker (1968). Climbing ri~ples are rare . 

Heights of ripples vary. In the thickest beds they are~l-2 em high and 

have wavelengths of 10-20 em. In thinner beds, especially stringers, 

ripples are less than 1 em high and may be as small as 2 mm. 

Wavelengths are correspondingly shorter, down ·to a minimum of 2 em. 

Convolute laminations follow undisturbed parallel laminations in some 

siltstones and a~e likely the result of dewatering or current drag 

effects on ripples (Plate 6c). Other convoluted laminations are found in 

isolated siltstone lenticles in shale and are due to loaaing of 

ripples. 

. . 
2.7.5 Graded Laminations 

Slabbed ~pecimens of siltstone- shale couplets clearly demonstrate that 

the transition from siltstone to shale is always gradual and expressed 
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as: (1) graded laminations, (2) grain or crystal-size Krading, l3) 

compositional grading, or (4) any combination of the above. 

Graded laminations (~ Piper, 1972); also termed graded rhythmites -

see Reineck and Singh, 1980, p. · 125) consi~t of continuous aqd 

discontinuous (on scale of slab or thin section) parallel silt 

laminations, which decrease in frequency, thickness, and grain size 

upward into overl-ying shale (Plate 6d, e). Individual laminations 

commonly r.ange from 50-50.0 }lm in thickness. Five to 15 silt laminations 

occur in a 1 em interval although most graded-lamination divisions are .. 
2-5 mm in thickness ~ 

A division of graded laminations commonly follows cross-laminated 

siltston~ and, in som~ samples, discontinuous graded laminations are 

preferentially developed over lhe positive relief of underlying 

ripples. Graded -laminations can also oc.cur immediately over shale, 

without the underlying siltstone (bottom cut-out - see later• 

discussion). 

2.7.6 Shale Microfabric 

Graded laminations pass gradat i onally upward into shale in which the 

microfabric is .either particle-foliated, inassive, or some interme«fia~e 

m~crofabric. The particle-foliated and massive microfabrics are end 

~embers of a textural spectrum and can be iaentified with certainty onfy 

· in thin section. .J 
/ 

Particle- foliated shale contains numerous opaque or_ yellow to brown 

translucent particles which are oriented para~lel to bedding and thus 

• 
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create a pronounC'ed bedding--parallel _foliation (Plate 7a). These 

pa~ticles are as. large as 0. S-2 mm length and generally less than 10 pm 

in thickness and a!"e especially prominent in many black shales in which 

, _they are· judged tol b~ l!lrgely responsi~le for the black colour. Bas"ed 

on prepared samples for 8 peRding ~yrobitumen Study of t ·hermal 
.. 

mattJration of the CHG, these parti.cles are probably largely 
' ...... ... . - - . . . 

~;~ndifferentiated organic l!laterials •. Occasionally, definitive rema~ns of 

partially flattened graptolite fragments can be identified: 
. ~ 

· In contrast ob,vious particle foliation is absent in massive, homogeneous_ 

sha.les. Mas:>ive shales also tend to have fewer and smaller dispersed 

. silic.'iclastic and dolomitic silt· grains and are generally lighter 

coloured · (grey or green) ;han the particile-foliat.ed shale. 

As is typical far shales in g~neral, there is a preferred 

bed~i_ng-parallel ·alignment ~f clay platelets as indicated .by the 

• . J 

aggregat.e illumination (Le. maxi!DutD li~~t transmi~sion) ' and extinction 

chara·cteristics und~i:cros~d polarizers. The preferred orientation in 

the massive · shales, however.' , appears to be greater ~han that of 

particle-fo-liated shales, based on more pronounced illuminadon. 

. ., 
Some shal~s consist ·of numerous alternations of millimetre-thick 

fatn1nations .of -particle-foliated and massive shale:.. these are seen in 

outcrops and slabs as the mi~liPietre-cycles referred to earlier. Upward 

'gradation of partic.le..-foliated to massive shale ·is more common than 

upward gr':'day.on- of_ massive into particle..:.foliated shale (Plate 7b) . . 

A relatively uncpmmon, third type of shale microfabric consists of 
~ -

l'esedimented and compac::ted i~traclasts of particle-foliated or •. ;massive 

\. 

• 
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shale (Plate 7c). These iotra~lasts ar~ lenticular, up to 5 mm in length 

and 0.5 nun in widt_h, and-.are fitted tight~y together, being separat~d by 

darker argillaceous or carbonaceous seams and scattered siliciclastic's 

and peloids. 

In addition to. the disruption of shale laminations due to submarine· 

sliding 'see Chapter 3) other secondary structur~s include tension 

crack~ (Plate 7d). These vertically-oriented, sheet cracks have been · 

observed in only one slab. They are clearly of pre-compaction· origin. 

In cross-sectional view they are approximately 1 mm wide and filled with 

60-200 pm-size, slightlt fer roan calcite. ~ii!l]lent. 

2. 7. 7 Trace Fossils 

a 

Trace fossils are common in many shale sequences, particularly · on the 

soles of siltstones {Plate 5e). Traces are especially grolific in red ... 
shales and t.heir siltstone stringers (Plates 6a, 8a). Burrows are 

distinguished from surrounding sediment by textural or compositional 

, differences, usually dolomite crystal size or the amount of -

intercrystalline, argillaceous materi.at -. The i'at t):!r produces the 
~ -

0 

distinctive red to purple co'1our of the burrows in siltstones within red 

.shale ' sequences. 

Common traces .include Skolithos, Paleophycus, and Planolites, and in red 

shale sequences, Syncoprulus (Plate 8b) and Cylindrichnus (Plate 8C: ; 

' . I 
Narbonne and James, 1984). Chondrites has also been identified (Plate 

8a): Bioturbation is inferred in some sediments characterized ,by 

dillrupte~ . silt and shale laminations and lacking distinct·ive burr-ows 

.. 
7 • 

' . 

. ' 
.. 
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(Plat~ ~d) •. :. 

The relationship of trace fossils · to sediment is readily observed in red 

~hales due to the abundance of burrows. In these sediments, traces are 

most common in the silty shale overlying a siltstone stringer and they 

bec<;>me less numerous towards the siltstone stringer (Plates 6a, Sa). 

Within si~tstones, burrows rarely demonstrate obvious compaction . 
• 

although they are usually squashed in undolomitizet! s,llales. Burrows in 

dolomitized and ..silicif'i.ed shales, however, are commonly uncompacted, 

indicating early lithification (Plate 8e; discussed in Chapters 12 and .. . 
• 13). 

2. 8 SILTSTONE LITHOFACIES AND SHALE LITHOFACIES: INTERPRETATION 

I 

· 2.8.1 Sequence of Sediment ary Structures 

The sedimentary structures in- the siltstone-shah~ couplets and siltstone - ~; 

stringers in _shale provides the basis for construction of a composite 

. .,. siltstone-shale cyc~e (Figure 2. 3) .· The lower par~s cycle is 

eo~,veilfently described with reference to the staradard Bouma (1962} 

turbidite sequence whereas the upper part is disc~ssed in terms of the 

·' 
--- ~ 

:1> I 
iuvdel for terrigenous mud turbidites proposed by Stow and Shanmugam 

(1980; Figure 2.4}. 

\ 
Massive and normally graded siltstones (T A } are rare and thus most 

cycles are bottom cut- out (i.e. the lower divisions are missing) with 

reference to the complete Bouma ( 1962) seq·uence. Instead, most 

.. 
·'-i 
. ~. 

~ 
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•. 

Figur~ 2.3: Schematic composite sequence of sedimentary s t ructures 
in siltstone-shale cycles in the Cow Head Group. 
Absolute or relative scale.s are not implied. 

\• . 
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· ( 

. ' .. 

• 



· I 
. ' 

' 

.. 
- 64 -
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siltstones are parallel-laminated (T~) or cross-laminated <Tc • T0 in 

Figure 2.3) at their bases and beds. composed of Te.cdivisions are 

common. The silts~one-shale transition is characterized by parallel, 

graded laminations (T 1_5) which are considered to be equivalent to 

Bouma's (1962) T0 division (Piper, 1972). The graded lamination division 

is commonly" followed by part:i,.cle-foliated shale ('i'e -ru11a•o•n ?) a·nd 

finally, tnassi ve, shale ( TE-HEMIPEUG.?). In red shale sequences, burrowing 

~s abundant in the shaly portion of the tycl~ and di~inishes toward the 

underlying siltstone. 

This systematic, predictable succession of sedimentary structures is . 

' 
accompanied by particle or crystal siie grading, usually from coarse to 

medium -silt-size. The normal gr~ding of dolomit~.crystal. size is more 

subdued than for peloids, this being largely 'a functio~ · of qiagenetic 

enlargell'lent of o_riginal detrital dolomite crystals as well as 

replacement of calcite ·allochems (see ,Chapter 12). Tn addition, 

compositional grading occjjrS where there is an increase · in sil_i ciclastic 

silt <?T":argillaceous 'inter.crystalline material upward. 
,·· ,_ 

• 
As wit.h the standard Bouma (1962) s~quence, fe.w cycles. demonstrate the , 

entire sequence of sedimentary structures seen in Figure . 2~3. Inveisions 

in the stiuctural sequence are rare except in shales, where the 

relationship between particle_-fol-iated and massive shale is neither as 

clear nor as consistent a~ foi th~ oiher parts of .the sequence. 

The thickness of the silt tO shale cycles - in the siltstone lithofaci~s 

is typically 10 em or less. As the quantity of shale increases and 

siltstone thickness and abundance d~~teases within an interval, tycles 
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. become smaller, and expectedly, bottom cut-out .is- more pronounced. 

Partial cycles may be only a few millimetr~s in thickness .. 

Silt laminations which are 40-600 pm in thickness, ungraded, continuous 

on the scale of the rock slab, and have planar and abrupt upper and 

lower surfaces do not fi~ ~ell into the sequence of structures. Such 

laminations are rare, however, and when they oc.cur they are in,. close 

proximity to laminations which do .fit ·the sequence. Such anomalous 

laminations are interpreted as bottom and top cut-out relics. 
, 

2.8.2 Interpretation As Fine Grained Turbidites 

Using criteria jn Stow and Piper (in pres~)~ a turbidite origin for the 

silt to shale cycles is indicated by th~ f6llowing : (1) a systematic, 

predictabie vertical sequence of structures is associated with normal 

grain size and compositional grading; (2) bioturbation is concentrated 

at the tops of beds; and (3) there is compositional, textural and other 

evidence to indicate that many grains are exotic to the depositional 

environment. 

Points 1 and 2 have been discussed in the previous section. 

Petrographic analysis of calcareous grains clearly · indicates their 

shallow-water origin (point 3), especially grains which contain evidence 

of calcified algae (se~ Chapter 6). In addition, detrital dolomi te, 

which is volumetrically significant in man'}' siltstones, ·may have been 

derived from vast supratidal ~ones on the contemporaneous or older 
' . 

shallow-water carbonate platform (see Chapter 12). Criteria which would, 

indicate rapid depositiqn, such as escape burrows and climbing ripples, 
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are generaliy lacking. 

The sequence of sedimentary structures and the graih size and 

compositional grading are comparable with those of the idealized 

· sequence described for fine grained tu~bidites from both modern and 

ancient slope, rise, basin plain, and submarine fan successions (Figure 

2.4; Shanmugam and ·Walker, 1978; Stow and Shanmugam, 1980; Kelts. and 

Arthur, 1981; Stow and Piper, in press). 

Fine grained turbidites have greater than 50% of the grains smaller tha~ 

'63 pm in size, i.e. they consist of silt- and clay-size particles. 

Sil~ turbidites are differentiated from terrigenous mud turbidites based 

on the relative amount of s/t ·and shale (Stow and Pi~er, in pres~) 
although the distinction is ~rbitrary in many c~ses because muddy 

turbidity currents can evolve from silty turbidity c~rrents in time or 

space, a situation analogous to that in sandy turbidites where ·distal 

and proximal turbidites are distinguished (see Walker, 1967). The 

prominence of silt-size particles in th~ siltstone-shale cycles of the 

siltstone lithofacies indicates ·these to be silt lutbidites. Jn 

contrast, the siltstone stringers and the finely interlaminated 

particle-~oliated and massive shales in the s~ale}ithofacies are 

terrigenous mud turbidites. 

Silt turbidites exhibit the same sequence of structures (TA through TE 

divisions) as the Bouma (1962) sequence for·.sandy turbidites (Stow and 

Piper, in press). Their interpretation, _c.onsequently, is the 

conventional one of a .9rogressively waning flo"" (Walker, 1967; Middleton 

and Hampton, 1976). Silt turbidites from the CH~ which ~tart at the T8 , 
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·Figure 2. 4: Correlat.ion ·of divisions in sand and silt turbidites 
(left side ¢f diagram) and terrigenous mud turbid i tes 
(right side of diagram). • Absolute or relat.fve scales 
are not implied. This diagram is ba~ed mainly on 
i~formation in Stow and Piper (in press) • 
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Tc, or Tt> divisions resemble the "classical" distal turbidites or Facies 

D of Walker and Mutti ( 1973). 

As grain size diminishes and sediments become more argillaceous, the 
' 'til 

Bouma (1962) sequence becomes progressively less applicable and facies 

models for finer grained sediments must be considered (Stow, 1982) .- Stow 

and Shanmugam (1980) proposed a standard structural sequence for fine 

grained (terrigenous mud) turbidites which was based on data from both 

modern and ancient sediments (Quaternary deep-sea muds of the Nova 

Scotian slope and rise, Middle Ordovician .Sevier Formation of the 

southern Appalachian Valley and Ridge Province, and the 

Cambro-Ordovician Halifax Slate of the Meguma Group in Nova Scotia). 

Their idealized standard sequence consists of 9 subdivisions - T0 

---~UBh Ts - and is shown in Figure 2.4 . The standard sequence is about 

7 em thick and as with the Bouma (1962) sequence for sandy turbidites, 

beds which contain all the subdivisions are rare . This sequence is 

approximately equivalent to the Tc.DE divisions of the Bouma (1962) model 

and· is interpreted to represent progressive deposition from different 

stages of a waning, low density, thick turbid flow . . 
' -

The similarity of the composite sequence for the CHG and that proposed 

by Stow and Shanmugam (1980) is striking and there is little doubt of 
,, 

their common origin~. The cross- laminated division in the CHG sediments 

is considered to be the T0 subdivision. The overlying discontinuous silt 

laminations are equival~t to the T1 and T2 subdivisions and _,the 

division of graded laminations is the T3 , T+, and possibly ·T~ 

. subdivisions of Stow and Shanmugam (1980). The shales are equivalent to 

+ 
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- -the T b to T 8 sub_di visiops. 

Alternation of silt arid terrigenous mud laminations to form graded 

laminations is interpreted to be the result of depositional sorting of 

sil~ grains from clay floes due to increase~ shear in the bottom 

bourtdary layer of a turbidity current (Stow and Bowen, 1978; 1980). 

Fading ripples are inte~preted to indicate a. high proportion of 
. 

clay-size materi~l in the _turbidity flow (Stow and Shanmugam, 1980). 

2.8.3 Shale Microfabrics, Colours, and Cyclicity 

The interpr&tation of partic_le-foliated and massiove shale mic'rofabrics 

with reference to the terr!genous mud turbidite mod~l is less certain, 

The higher abundance and larger s1ze of dispersed siliciclastic and 

dolomitic silt ~rains within particle-foliated shale relative to massive 

shale suggests that particle-foliated shale is genetically related to 

the under~ying turbidite. In additi.on, the numerous organic flakes and 
• 

the resultant darker colour which characterizes this microfabric 

indicate that entombment of organics occurred due to s_uffi.ciently rapid 

burial and escape from potential oxidation. The gark shale colours and 

~resence of ic.hnofauna suggest dysaerobic bot tom waters (dissolved ' 

oxygen between 0.1 and 1.0 ml/L); barren sequences indicate anaerobic 

bot~om waters (dissolved oxygen less than 0.1 ml/L; Byers, 1977; Savrda 

~ al., 1984). 

The magsive shale, in contrast, has more pronounced aggregate 

illumination (maximuiJ_I transmission of light) un~er crossed pblarizers 

indicating a higher degree of clay platelet orientation, and su~gesting 
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slow deposition -of dispersed, hemipelagic clays. This contrasts with 

suspen~ion fall-out from turbidity currents which would be relatively 
I 

rapid and the flocculated state of the clays as well as abundant 

dispersed silt-size gra.ins would not allow such an ordered· arrangement 

of clay platelets. This interpretation is supported by 0' Brien.. !:.E_ al. 's 

-- ( 1980) study of day fabrics iri terrigenous turbidite and , hemipelagic . ..__ ..... . 

muds . . The interpretation o~ particle-foliated_shale as turbidite and 

·massive shale as hemipelagite is also consistent with the observation 

that upward gradation from particle-foliated to massive shale is more ·:·: 

~ommon than the other way_ around. In addition, the genera~ly lighter 

colours of the .massive shales may be due to the oxidation of any 

entrained organics either during settling through' the water column, or 

while on the sea floor. 

In siliceous shales, radiolaria and sponge spicules also suggest a 

hemipelagic origin for massive shale. The rare occurrence of 

normally-graded. radiola~ia-sponge spi;cule laminations indicates that 

biogenic turbidites, in this case probably reworked pelagites, are 

comparatively rare (cf. Kelts and Arthur, 1981). 

Following from the above conclusions, millimetre-cycles of black and 

green shale are inte_rpreted to reflect interlamination of organic-rich 

turbi dites and _organic-poor hemipelagites. A similar explanation for 

millimetre-cycles of green and red shale is pro-posed; only in this case, 

the overall abundance of organics is reduced and botto~ waters are more 

oxidizing. 

Superimposed on these fine-scale alternations in shale are 

~-
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metre-cycles which may·contain hundreds of millimetre-cycles. Rather 
' 

than reflecting the' preservation potential . of organics in' event 

(turbidire) and background (hemip~lagite) sedimentation, these 

well as oxygen levels of bottom waters. The alternation of dominantly ..,. 
blac~ and dominant~y green shales~ throughout most 6f the CHG de~osition 

indicates that organic material was plentiful in the,source region of· 

the ~hale~(both turbidites and ~emipelagites) and that bottom waters 
, I 

contained low oxygen levels and ~ere p~obably either dysaerobic or 
- \-

anaerobic. .. \ 
I 

\ 
' With time, the increasing importa~ce ;f red shales in all but ~.most 
pcoximal ~utcmps' 9f the CIIG (Jam•\ and Stevens, i~ peep.) indicat,.. 

that oxl'en levels of bottom waters wer~ gradually increasing, 

exemplified especially clearly by the homogeneous, massive fabric of 
.. . 

many red shales and the proliferation of trace fossils in .the enc l~sed 

siltstones. R~d shales, such as these, are iridicative of depo~itibn or 
/ . . 

d~agenesis or both under oxidizing conditions (Hoffert, 1980). The 

relative paucity of millimetre-cycle laminations_ in red shales compared 

to black and green shales is interpreted to.result from either 
~ 

diminishtng ~mportance of~fine grained turbidites or obliteration due to 

· intensive bioturbation 6r both. · 

Similar fine- and coarse-scale alternations were descriDed in DSDP cores 

of ' Cretaceous and Miocene sediments from the continental margin off 

northwest Africa by Dean ~ al. . ( 1977). Centimetr~-thick cyc}es •f .. 
black~green shale alternations were interpreted as turbfdites of 

organ~c-rich, terrigenous muds Cblack shales) grachtrg 11'pward into 

.• ' '-
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hemipelagic mud~, which were often bioturbated and contained 

considerably less or:ganic carbon (green shales). Sequences dominated by. 

green and red sha'le alter·nations were also encountered sand-wiched .. 
n those dominated by black and green shale alternations. These 

wetre i~erpreted .to reflect cyclical vari.at ions ~in 

the amou.nt of organic material within th~ terri~enous sediments, a· 

' direct effect of climatic cycles. Times of higller .. organic matter 

productidn resulted in black-green shale alter~ations whereas r~ced . 

organic matter productiqn resulted in the green-red shale sequences. 

2.8.4 Orig~n Of Cracks In Shale 

The tension cracks from St. Paul's Quarry are clear"ly p{e-compact i .on. 

Lack of internal sediment within cracks and lack of confinement to 

specific beds or laminations suggest they formed substratally (c f. 
J 

, Plummer and Gostin, 1981). These cracks may be due to either synaeresis 

or tensional stress produt:ed by down-slope creep (Pot t er ~ al., 1 980). 

The single occurrence of these cracks does not provide sufficient 
' 
' 

-evidence to distinguish between these 2 ·'alternatives. 

2.8.5 Fi.ne-Grained Turbidites and Muddy Contourites 

From ttie preceeding discussion, it is concluded that the si.ltstone and 

shale lithofacies consist· of fine-grained (silt and terrigenous mud} 

turbidites interbedded ~with terrigenous hemipelag_ite. Studies of modern 

as well as other ancient. deep-water sediments have also documented the 

importance of fine-grained turbidites. Hesse (1975) indica.ti!d that up 
'· 

to 86% of the fine-grained beds in Cretaceous flysch of the Eastern Alps 
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was -deposited by turbidity curxents. This estimate was based on 

.evidence using carbonate content. colour. sequential analysis, and 

' micrgfauna. Based 9n compositionalt and textural criteria, cored . 

terrigenous muds from th~ Balearic Abyssal Plain (western Mediterranean) 

were suggestel! to co'ntain more than SO% turbtdite II}Ud (Rupke, 1978). In 

Pliocene and Quaternal"y sediments from the Gulf of California up to 

60-75% of the sediment was interpreted to oe terrigenous, turbidite mud 
.:.. -

( Einse le arid Kelts, 1982) • 

Quantitative estimates of the contribution of fine-grained turbidites · 

are not available for the CHG. Qualitative field and petrci~raphic 

evidence, however, suggest that fine-grained turbidites, as identified · 

by the previously discussed criteria, comprise at least half of the . 

sediment in the sii tstone and shale . lithofacies, an estimate which is , 
-.. 

consis\.ent with those from the above-listed studies. The remaining 

portion is composed of hemipelagites. 

Terrigenous, muddy contourites .(Stow and Lovell, 1979) must also be 

considered as a possi.ble origin for these fine-grained sediments. This 

orig.in, however, can be discouhted based oA.- fhe systematic, pre~ictable 

- - - --r sequence of sedimentary structures, many of which can be directly 

correlated with tbose of the Bouma sequence for sandy turbidites. In 

addition, the normal size and compdsitional gradin~ also indicate a 
--· 

turbidite origin for these sediments. In contrast, contourites are· 

characterized by a lack of a regular sedimentary sequence, occasional 

.normal or reverse grading, and a lack of evidence f<rrrelatively rapid 
•. 

deposit ion ·(Jupke, o. l978; Stow, 1979; Stow and Lovell, 1979; Lovell and 

Stow, 1981; Stow and Piper, in press). 
I 

-J '• 'I 
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. ,2. 9 MUDSTONE LITHOFACIES: DESCRIP!rorf 

2.9.1 Introduction 

-.. 
the numerous parted, ribbon, and nodular. sequences in the CHG are lumped 

together into a - "mudst«;me lithofacies,.. in order to emphasize their most 

important. common denolllinator ·- the- high _ content of l'ime mudstone. This 

li~hofacies is, to a greater degree than any other, a' complex assemblage 

of diverse primary as well as diagenetic elements. Only those aspects 

relat'ed to primary sedimentation, as observed in the field or 

laboratory, are detailed in this chapter. As witr be de-monstrated in 
/ . ' '-_ I 

th(~and~ later chapter~, the differentiation of primary from diagener~ ·~· -· 
is seldom clear, a. relevant e'xample being the inter-J)retation of some' 

·---· - -
lenticular Of' nodular limestones. Nodules are volumetrically important 

in this lithofacies but are also scattered throughout black and green 

shales as well as the calcarenite and siltstone lithofacies much in the 

same way as isolated ribbons of mudstone are. The spectrum of nodular 

lime1tones is considered here to complete the outcrop descriptions and 
/ . . . 

to ~mphasize relationships and similarities with their surrounding 

planar- or wavy-bedded sediments. 

_, 
The importan~e of this lithofacies is multi-faceted. Platy clasts as 

well as the mudstone, shale~ or marl matrices of th~ numerous debrls 
' 

flows finds a ready, local source. This lithofacles also preserves 

unequivoca~ evidence for in~ sediment insta_btlity and, conseque~tly~. 

deposition of the CHG on a . sloping surface (see Chapter 3). Finally, the 
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' mudstone 11 thofacies is · the . .locus of numerous complex diagenetic:: 

... 

phenomena which include fibrous ("beeC') and cone-in-cone calcite, 

s~ptarian concretions, silicification, barite precipitation, an~ 

contorted limest6nes. Thes~ topics ~~e considered in later chapters. ' · 

.The following discussion is divided into three parts_y The first is ~. 

d~stillate of information from numerOUS parted 1 f_ibbon 0 and nodular 

the more 

informative outcrops are described individually in Appendi 

• second part is concerned with additional description of no 

· limestones. The last part is an interpretation of the 

on the pr~viously discussed evidence. 

2.9.2 ~ddi~g_ Characteristics 

based 

Intervals of-ribbon, parted~ and'nodular limestones vary from 50 em to · 

greater than 30m in thickness (Plate 9a-d). Individual l~mestone beds 

typically range from 2~10 cm .in thickness but some beds may be as thick 

as 30 em. Systematic changes in bed geometry and thickness aTe 

generally not present except in the transition to shale-dominated 

intervals whete ~everal exceptional outcrops demonstrate thinning of 

mudstone beds in conjunction with increasing ienticularity (Plate 9b). A 
. 

similar change was also noted by Keith and Friedman (1977) in Cambrian 

deep- water limestones from New York State. Interbedded marls and shales 

are massive or parallel-laminated (Plate lOe) and vary from pa pe r -thin 

partings to 30 em in thickness. - -
Planer, wavy, end nodular beds occ ur in any proportion. Sequences 

\ 
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dominated by planar beds are . ma.i.nly compose«! of muds ton~ and many /are 

remarkable for their lateral continuity over hundreds of metres along 

strike, with little or no change in bed thick"nes~ (Plate 9d). In other 

sequences, wavy and lentictllar bedding demonstrate fitted fabrics .which 

preserve sediment package thickness (Plate lOa). Although mudstones are 
: . 

volumetr~cally the most significant sediment type - wackestones, 
,_ 

packstones: and grainstones - often interbedded with one another - are 

also locally important as planar, wavy, and nodular beds (Plate lOb). In .. 
contrast to grainstones which commonly demonstrate parallel ,and ripple 

laminations (see previous discussion), wacke stones and pa.c.kstones are 

usually massive (structureless). Grains include silt- _.Wl.d san4-s!ze 

peloids, bioclasts, limestone and shale intraclasts, dolomite, .. 
siliciclastics, and glauconite peloids. Accumulations of sponge 

spicules, trilobit~ and brachio~od (calcitic and pho~phatic) shell 

fragments, ·and. graptolites occur on some bedding planes. 

As with.the dolomitic siltstones described previously, many limestone 

beds, both continuous, wavy, and len~icular, are composite. These" 

typically consist of mudstone underlying; overlying_. __ or. completely 

enveloping grainstone _or packstone. There is no obvious control on the 

position of the mudstone bed rel~tive to the grainstone or packstone. 

2.9.3 Mudstone Microfacies 

.Mudstones consist of microspar and pseudospar (discussed in Chapter 8) 

with micrite occurring mainly ig jleloids and intraclasts. Siliciclastic 

and dolomitic silt, peloids, ·indeterminate shelly bioclasts, and 

radiolaria and sponge spicules also occur -in most mudstones 
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1n minor quantities. T~o intergradational mudstone microfacies are 

recognized: (1) homogeneous .mudstone and ( 2) marginally-aggraded 

" . ' 

mudston·e. 

Homogeneous Muditc:ine commonly consists ~f microspar mosaics ~ah 10-25 
·i., 

pm-size crystals to coarser mosaics dominated by 100 J.lm-,,size 

pfeudospar. Althougn usually massive (structureless) in outcrop, 

• 
exceptionally wel.l-polished outcrops suggest that su_b'tle paral!d 

laminations are more common than is usually apparent (Plate lOe). These 

laminatiof!s:appear as subtle colour variations in outcrop but in thin 

section are seen to be' caused .by diffe~ces in crystal size or 

concen~r;ations of peloids, siliciclastisilt, dolomitic silt, · or 

intercrystalline argillaceous material (Plate 13a). In some cases, 

however, the reasons for colour differen~~s are not recognizable 

texturally, either in outcrop, slab, or t.hin section. 
~ 

. \ 

.• '1.. , 

Marginally-Aggraded Mudstone is common, but varies greatly in its 

appearance.~. It is characterized by an increase in the crystal size of 
. ·· - ..... -·---····· ----- -----------·-------- --- -------. 

microspar or: pseudospar towa.rd the bed or nodule margins. 'This increase 

may be, subtly expressed. for . example a 'barely noticeable change from a 

5-10 pm mosaic at the centre of a bed to a mosaic of 10..-15 fm crystals 

at the bed margins, or the change may be 'striking, in terms of crysta}. 

size, shape_, interc.:rystalline paste content, and iron content as 

determined by staining with potassium ferricyanide. For exampl-e, 10-15 

pm-size mi·crospar at the bed centre may pass gradationally to Sd-60 

., pm-size or larger pseudospar at the bed margin. The crystals also 

become more fer roan and further separated from one another by a. 

J>rominent intercrystallin•·"paste" toward the margin. This change in 
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crystal.si~e, when pronounced~ can ea~ily be detected in the field with 

a hand lens. Otherwise, petrographic analy~is is necessary for . the . 
.. 

distinc~i~n of the two mudstone microfacies. . (. 

2.9.4 Clastic Dikes 

Clastic dikes [6] are generally compacted and less than 1 m _in length · 

(unfolded), but an exceptional dike at Broom Point North was traced 

through 4 m of section. Intruded lithologies are .ribbon mudstones and 

their associated shales and marls (Plate 2la). Sheeted dikes, consisting 

of two _or three sub-pa~allel, variably distorted dikes, are 

comparatively rare. Sills extending from dikes are also rare and 

difficult to distinguish from lenticular, primary beds. 

-- -~ikes m~stly consist of fine to . medium sand-size_grainstone, but larger ) 
/ : -·} , 

, ::1 dikes also contaifi flat mudstone _pebbles up to 10 em in lengih, often ! - .· 
... · · ..... . 

' . 

aligned sub-parallel q:> dike wal'ls. Dike width varies f.rom a few sr··ain > 

diameters to 15 em. -Some of the smaller millimetre-wide dik~s are 

uncompac-ted and encased l.n an envelope of mudstone (Plate 13e. f: 

discussed later). 

2.9.5 Transition to Argillaceous Matrix 

The transition from continuous mudstone beds or nodules ' to the ad.jacent 

argillaceous, often dolomitic, matrix may be abrupt, occurring within a 

millimetre or less, or gradational over a few millimetre·s ·----J _n 

6. Compaction ~stimates calculated from clastic dikes are discussed in 
'chapter 5 

., --------- -
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marginally-aggraded :lmldstones' microspar or pseudospar . becomes ;, .. 

·increasingly cof!i~-er and more disper-sed and then abruptly disappears. 
_ ___::!-.. . -

- P¥essure solution features such as peaked stylolites, prominent , , 

argillaceous seams, microstylolite swarms and accumulations of other - · 

insolubles in the transition zone are.rare (cf. Wanless, 1979, 1983). 

Field and· petrographic relationships· demonstrate that ·near-nodule 

margins, grainy laminations typically converge toward the horizontal 

axial.plane of the nodule (Plate 13g). In addition, grainy iaminations 

within nodules ar~commorily traceable into the adjacent internodular 

matrix until they disappear, usually within a distance of 2-5 em from 

the nodule. The petrographic changes which occur in the transition zone 

are detai1~d in Pl~te 53a-d. 

2.9.6·Trace Fossils 

Most beds in this lithofacies are devoid of trace~. They ~ay be local l y 

~ - abundant, however, and observed . in, on, or under planar through to 

lenticular beds. The irregular, lumpy bedding and pin~cushion-like 

surfaces of some mudstones can occasionally be correlated with the 

presence of burrows but many such beds have no apparent cause for the 

irregularities (Plate lOd). 

The horizontal traces Planolites and Paleophycus are found on bottoms 

and, less commonly, tops of mudstone beds (Plate lla; Narbonne and 

James, 1984). - The most obvious traces are Skolithos burrows which range 

fro~ 1-5 mm in diameter (Plate llb-d). They are usually -filled with 
. 

calcite cement, grainstone (Plate 11b), or mudstone (Plate 1ld) • 

.. - -- -

-·- .. .. 
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Pervasive or selective .pyritization of traces or their fill' is also 
- . 

common. In a few beds the U-sbaped spr_eite of Diplocraterion occurs 

(Narbonne and James, 1984) • . Burrows are · never compacted ln- mudsto_ne; but 

' those in shales are usually squashed. Some mudstones have an 

irr·egularly-mottled appearance and are- .interpr.eted as the result of 

. indeterminate bioturb~tion '(Plate 1le) •. 
I . I . . ·-- . .. 

2.9. 7 Nodular Limestones:. Derails 

2. 9. 7 ~ 1 Distribu'tion, Shape and Siie of Nodules 

,....,. 
When they occur in ribbon limestooe1 seq1,1ences, nodules tend to. be 

lenticular I~ cross-section; evenly spaced, usually separated by 

distances ranging from 10 em to. greater than 1 m; and distributed along 
r ' 

discrete horizons (Plates 12c-f; 13a). In parted limestones sequences, 

however, they are closely ''fitted" together and vary considerably mor~ . 

in shape. ·Some beds consis~ of fitted lense7- invariably with- the- long 

dimension of the nodule parallel to bedding (Plate 13b). Other beds 

consist of irregularlY.-shaped nodules that resemble loosely-fitting 

pieces of a jigsaw puzzle (Plate 12a). Rare
1 

beds exhibit 

irregular~y-shaped nodules which ·are elongated sub-vertical to vertical 

to bedding (Plate 13c,d). 

Isolateo- nodules in ribbon limestone or shale sequences reach up to 1 m 

- in leng~h and 30 em in thickness (Plate 12d). Most, however, are 

considerably smaller a~d typically range from 10-20 em in length and 2-4 

em in thickness, more or less the same thickness as associated continuous 

beds (Plate 12f; 13f). In plan view, nodules are sub-circular in shape 

-- -
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wlth th~ longest dimension 30-40% longe~ than the shortest (Plate 12cj 
£ . . ~ . . . 

see Appendix M). Fitted nodules range from ·1-10 em in the longest 

dimension and 1-4 em in -thickness.· Their shapes in plan view vary from • 

sub-Circular to irregular. · 

2.9.7.2 Types of Nodule·s 

Five types of limes ton~· nodules are diffQ.rentiated based ·mainly on field 

criteria:'. (l) grainy, (2) chaotic, (3) detrital, (4) mudstone,. and (5) 

cored. Thes~ are schematic~lly illustrat~d in Figure 2.5. 

·-------· 
Grainy nodules are common and are sirn-ply primary, laterally 

discontinuous beds which consist. of ~solated, loaded, or convoluted · 

~ 

ripples or scour-fills (Figure 2.5a-t; Plate 53(). Sediments are 

typically silt- and sand-size grainstone, ·but . also may include lenses of ' 

pebble-size conglomerat~. This type of ~odule occurs isolated or in 

fit ted pat terns. . 

Chaotic nodules are commonly fitted and consist of grainstone, 

packstone, or wackestone (Figure 2.5d;' Plate 12a). There is usually no 

• obvious cause far this fabric which is often referred to in the 

literature as "mottled., limestone. While comparatively rare in the CHG, 

this -fabric is extremely common in many shallow-water carbonate 

successions, .. for example the Table Point Limestone in western 

Newfoundland (see Klappa ll al., 1980). 

Detrital nodules reach 50 em in length and are relatively rare (Figure 

2.5e; Plate 12b). These nodules consist of silicified shal e and are 

lithologically distinct from surrounding sediments . . Evidence of thei r 

---· 
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Schematic summart of the various types of noduLar 
limeston~s in the· Cow H'ead Group. Labels "a" to "p" 
are referred to in text. 

- -- ---

-------
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origin is based on (1) their lithology(i.2) the higl\' 
• ... 

~ngle-i~-bedding of internal laminations in some samples; and (3) 

occaSi.Qnal accu~ulations 0~ .centimetre-size pebbles and granule.-size - .. - t? . ' . ' . . 
,• clasts at the ,....nc;>dule margins. These nodules' are probably .the heavier, 

larger freight from a debris flow which h~s been eroded away by late_r 
• ,. o; • • ' .._. _ 

currents or simply passed over the •rea leaving behind the heaviest . 

particle~ as , flo~ . compet~nce decreased. In this respect these ~odules 

are similar to -the · isolated boulders in Bed 6 at Cow Head North , -~ 

(discussed previously). 

The las;t two types of nodules - mudltone and cored - ate ..closely related 

- '""' and are the most important types of ~odules in the CHG, both in ·terms of 
' .. . 

abundance as well as the crifical . petrographic and geochemical" 
"' ... ' ' .. 

information they provide (Plate 12c).~ These are the only ~odules 'that . 
r · . 

are considered further in this thesis. They ·may form nodular intervals 
,, 

(Plate · 1.2f; 13b)' or occ~r isolated in sh~les. These nodules ais.o. 

-cominQnly occur in ribbon and parted ~equences. (Plat·e l2d). · 

. Mudstone nodules are generally ho~ogeneously crystalline o gradual~y 

coarsen toward t~eir margins (Figure 2.5f) occasionally 

conc~nJric banding characte.ri~ed by increasing crystal 

intercrystalline paste, and iron-con~ent in successive bands. Some 

mudstone 'nodules cort tain s.pindle-sh~ped septarian cratks (Figure. 2. Sg; 
'- . .. . '. 

Plate 12e) filled with calcite or, less commonly, pyrite. The cracks 

are 2-4 em in length and up to 1 em i'n width and are arranged normal to 

bedding. Calcite with:rn the cracks is ferroan, ·equant to slightly 

elongate, and up to 1 em in size. 

... 
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I 
Cored nodules are s~milar to mudstone nodules except that they have an 

• 
obvious core [7] (Figure 2. Sh-p; Plate 12f; 13a-g). The cores most often 

consist of one or several, millimetre-thick peloidal silt laminations 

(Figure 2. Sk) o_r: :isolated ripples and convolute laminations (Figure 

2.Sh-j; Plate 13a). These nodules occur either isolated or fitted 

together. · Mudstone envelopes may be asymmetrically=<Jeveloped or 

incomplete. 

• Burrows and ~rainstone dikes may also be enveloped by mudstone. 

Abundant burrows for-m beds of fitted nodules aligned parallel (Figure 

' 2.51; Plate 13b) or sub-vertical (Figure· 2.5m; Plate · l3c,d) to bedding" 

depending upon burrow orientation. Grainstone dikes tend to occur 

sporadicblly in ribbon or parted li~estone sequences and are commonly 

only a millimetre or so in thickness and may be difficult to see within 

the nodule other than in thin sect'ion (Figure 2.5n; Plate 13e,f). 

Compound nodules (Figure '2.5o, p; Plate 13g) result from the 

s uperposition and occasional merging of two or more s i mple, mudstone or. 
, 

cored nodules. Occasionally, compound nodules or two simple nodules 

,separated by a thin shale seam develop V-shaped <:racks near their 

'margins (Plate 53e). These cracks are filled _with calcite cement, 

c 
squeezed in shale, or both. 

I ·, 

. l 

7. Cathode luminescence demonstra'tes that the . cores' are l.ithified 
contemporaneously or earlier than their ~urrounding mudstone envelope . 

. ' 
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~10 ~IUDS TONE LITHOFACIES: INTERPRETATION 

2.10.1 Introduct:lon 

/-,., 

---- '-

Parted and ribbon limestones ar~ a characteristic lithofacies of 

carbonate}slope and, in some cases, basin sedimentation of all ages 

(Wilson, 1969; 1975) although .they are not restricted to these 

environments. This type of sediment is also found, commonly being quite 

nodular and more fossiliferous, in shallow-water,, subtidal shelf 

carbonates (e.g. Cambrian Whipple Cave Formation of Nevada -Cook and 

Taylor, 1977; Patter~on Member of Cambrian Shady Dolomite of 

southwestern Virginia- Pfeil and Read, 1980). In general, the following 
. ; .. 

characteristics, based on the CHG .and compiled from the following 

sources, apply to parted and ribbon.limestones: (Wilson, 1969; 1975; ,. 

·' 

'Mardnowski, 1970; Cook and Taylor, 1977; Evans and Kenrlnl l , 1977 ; Keith 

and Friedman, 1977.; Heml~ben and-Reuther, 1980; Pfeil and RPad, 19HO ; 

Read, 1980; Hurst, 1981; Bertrand-Sarfati and ~1c;'ussi ne-l'ouchkine, 19H3; 

Hurst an-d Surlyk, 1983): 

( 1) Limestones are dominated by mudstone and to a 1 esser extent 

wackestone. These 61r~ interbedded with argillaceou·s sediments - either 

shales or marls, calcare~s or' dolomitic, and occasionall y silicified -

to form parted or ribbon limestone~ ("rhythmites" of Wilson, 1~69) of 

remarkably const'ant thickness and spacing. These sediments are 

volumetrically important, and often dominate in slope successions. For 

example, 75% of the Cambrian Hales Limestone exposed in the·-Hot Creek 
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\. 
grey to black mudstone with minor 

wackestone and interbedded argillaceous sediments (Cook a~d Taylor, 

1977). The vertical persistence of this 1 ithof ac ies is also remarkable 

in many cases. This is most dramatically exemplified by the Late 

Proterozoic Dimamou Formation of West Africa where over 2000 m of ribbon 

1 imestones were measured ( Bertrand-Sarfati and Moussine-Pouchkine, 

1983). 

( 2) Beds are usually less than 10-20 em in thickness and are planar, 

having abrupt upper and lower contacts. Exceptional mudstones are more 

than 1 m. thick (e.g. 75-150 em - Evans and Kendall, 1977; 5-300 em-

Hurst and Sur1yk, 1983) but the .thickest recorded in the CHG is 30 em. 
-

Nodular beds may be locally important and randomly interspersed with 

continuous, planar beds and, in some cases, dominate the sequence. 

( 3) r~udstones ·are mass1 ve or very finely laminated on a 

mill f metre- Sq)1e, USually lacking bioturbation OP are only slightly. 

bioturbated. ~ludstones consist of micrite, microspar, or pseudospar, 

and contain -variable amou-;:;·ts of silt-size peloids, siliciclastics, and 

shelly bioclasts. Pelagic fossils such as radiolaria and sponge 

spicules are 1ocJlly abundant, occasionally dominating beds, and high • 

contentrations of these components are spatially associated with 

silicification, · in the form of nodules, stringers, and crusts within 

limestones and interbedded shale~ (see Chapter 13). Skeletons of , 
indigenous, calcareous benthic invertebrates, such as trilobites and 

br·achiopods, are also found. In Mesozoic and younger sediments, 

calcareous and aragonitic microplankton, notablty coccoliths, 

foraminifera, and pteropods, are important. 
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(4) Interbedded shales are oft~n dark, organic-rich, finely l~minated, 

and variably dolomitic: In Lower and Middle Paleozoic sediments, shales . 
are often graptolitic and may also contain radiolaria and spo~ge 

spicules either dispersed or- concentrated in lam~nations. 

(5) Sediments of this lithofac~es lack evidence of shallow-water 

deposition. Associated coarser sediments are various types of gravity 
. . 

flows, most importantly turbidites and debris flows. This lithofacies 

also' demonstrates evidence for deposition on a slope in the form of 

intraformational truncation surface~ 8nd deformational fabrics 

associated with sediment failure. 

2 .lO. 2 Depositional ~1echanisms for Parted and Ribbon 

Mudstones 

From basic field relationships, early lithification of mudston('s is 

certain. The origin of the rhythmite character of these sedi ments, 

however, is not straightforward and could be either primary, ('arly 

. diagenetic, late diagenetic, or all 3. For e~ample, interbl:'d<led shales 

and marls could be interpreted as "styl·ocumulates" (Logan and Sl:'mcniuk, 

1976) resulting from pervasive or "non-seam" pressure solution (Wanless, 

1979, 1983) which are interbedded with more "resistant units" (Wanless, 

1979; "idens" of Logan and Semeniuk, 1976) composed of relatively pure 

limestone. Most evidence, however, suggests that the "rhythmite" - -· character is a primary or early diagenetic feature, which has been 

modified subsequently by pref~rent i al compaction of the argillaceous 

interbeds (see Chapter 5). 



... -----··-·-

- 91 -

The s.trongest evidence for this is the contrasting rheolo_gic behavior of 

argillaceous and mudstone beds within rafts. The observation that 

·shales and marls deform plastically _around fragments of limestone and 

~into fold hinges demonstrates that the argillaceous sediments were 

not lithified early (Piate ld,e) •. This implies that signif~_s.anC;-_...,· 

fundamental differences in composition between th~ argilla~eous and 

limestone beds were present at the outset. 

Based upon (1) well-studied fine~grained siliciclastic muds from modern 

and ancient slope, ~ise, and basin systems, (e.g. Stanley, 1981; Stanley 

and Maldonado, 1981; Einsele and Kelts, 1982), (2) the carbonate slope 

and basinal sediments of the Bahama region (Mullins, · 1983 and numerous 

references therein), and (3) ancient slope and basinal sediments (-€.g. 

Cook, 1983b; Cook and Mullins, 1983; Scholle ~ !!.·, 1983), several 
• 

_depositional mechAnisms may account for the (1) dominance of mudstone, 

(2) lack of obvious structures attributable to traction s~imentation, 

(3) fine parallel · lamina-tions, ( 4) P.0..9J"- SOI:ting of enclosed'\peloids and 

bioclasts, (5) lateral -cbntinuity 6f beds , and (6) rhythmicitj of these 

sediments. These mechanisms include (1) dilute turbidity currents; (2) 

hemipelagic settling (or similar sett ~ ing from nepheloid layers or from 
\ 

turbid flows spread out over pychnoclines); and (3) bottom (contour) 

currents. These depositional processes are not easily separable. in time 
.> 

and space,' especially in slope and rise environments where turbidites, 

contourites, . and hemipelag1tes or pelagites are often interbedded with 

one another. Furthermore, a continuum m_ay.-tt_xist between dilute 

, ____ . 
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turbidity flows, bottom currents, and hemipelagic or pelagic sett_ling 

(Stow and Lovell, 1979) and di;:tfer~t depositional mechanisms may 
I 

interact or influence one another or their deposits. · For example, 

of turbidity currents may be deflected by bottom ~~rrents; or, 

or contour currents may feed nepheloid layers (Piper, 1978). 

2.10.2.1 Dilute Turbidity Current Hypothesis 

Transpor,tation and deposition of peri-platform muds [8] from 'dilute 

turbidity currents - ~ither the tail ends of sandy or silty flows, or 

-initially muddy flows - accounts for the above-listed characteristics, 

as well as the as'sociation of these sediments with coarser-grained. , . 

turb~dites and finely-laminated, interbedded turbiditic shales and 

marls. Dilute turbidity .currents have also bee'n suggested in. olhel" 

studies to account for the origin of parted and ribbon mudstones (e.g. 

Keith and Friedman, 1977; Pfeil and Read, 1980). 

The mechanism, however, has several inadequacies. Cnlike sediment~ ~n 

the silt~one and shale lithofacies, these mudstones do not show 

consistent grading relationships with overlying argillaceous sediments. 

Silty laminations within mudstones also do not demonstrat~ consistent 

grading relationships. Jhe uniformly-thick, planar beds, the lack of 

/ 
basal loading an~ scour, and the paucity of horizontal tr<)ces is also 

quite unlike the fine-grained turbidites in the siltstone and shale 

lithofacies. 

8. Schlager and James (1978) used this term to describe a mixture of 
shallow-water, platformal lime muds and bioclasts miXed with pelagic 
material and deposited on the adjacent slope or basin. 
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In addition, these mudstones do not immediately overlie -coarser peloidal 

sift- and ~and-size turbidites as might be expe~ted if they had arisen 

from the same flows. In the CHG, mudstones are .{ound under, over, or 

both under and over grainy sediments to form composite beds. Other 
' ' 

mudstone~ are not' associated with grainy sediments. This lack of a 

systematic relationship between mudstones and associated grainy 

sediments has also been noted in other studies (e.g. Bertrand-Sarfati 

and Moussine-Pouchkine, 1983). A mudstone""pre-phase" plastered to the 

base of Devonian carbonate turbidites in Germany was attributed to 

diagenet-ic m1gration of carbonate to these turbidites which were 

apparently favourable precipitation sites (Meischner, . 1964; Eder, 1971). 

In contrast, carbonate .turbidites from the Devonian of Cornwall are 

devoid of a mudstone "pelitic" division (Tucker, 1969). This was 

interpr.e..ted to be di.Je either to the absence of mud in · the source region 

of the turbidites or continued downslope transport and deposition of f 
Keith and Friedman (1977), on the other hand, not~~ 

that mudstone beds were always associated with carbonate beds of other 

fines efsewhere. 

lithofacies. 

2 .10. 2. 2 Hemipelagic Settling Hypothesis 

The characteristics of parted and ribbon limestones could also be 

interpreted as the r.esult of suspension settling of peri-platform muds 

either from the ent1 re water column, nepheloid layers, or from turbidity 

currents which have spread out over pychnoclines. Suspension settling 

has also been suggested as a mechanism for the deposit ion o-f parted and 

ribbon limestones in other studies (e.g. Wilson, 1969: Cook and Taylor, - ·- .. 

' 
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1977; K~lth and Friedman, 1977; Hurst and Surlyk, 1983). The 

argillaceous interbeds are interpreted to represent times of little or 

no carbonate input into t\_e basin or slope environment and consequently, 

background sedimentation was more sili~iclastic, consisting mainly of 

detrital clays. 

2.10.2.3 Contourite _Hypothesis 

-The evidence for a contourite [9) origin for mudstones and grainstones 

in-the CHG as well as in other studies of ancient carbonates, is not 

compelling (e.g. Bein and Weiler, 1976; Cook and Taylor_l.9.77-; Cook and 

Egbert, 1981; Cook, 1983; Bertrand-Sarfati and Moussine-Pouchkine, 

~83). In parted and ribbon. . .&e<ruences of the CHG, the intim~te .,.. 

association of mudstones with sediments interpreted as turbidites based 

• on sedimentary structures as well as paleocurrent measurements, suggests 

that mudstones are unlikely to be contourites . 

.. 
2.10.3 Interpretation of Nodular Limestones 

Nodular limestones, specifically the "mudstone" and "cored" types, are 

similar to those described from many other sequences (e.g. Jenkyns, 

1974; Jones ~ ~·, 1979; ~nless, 1979). Co~sidering only mudstone and 

cored nodules, these, along with continuously-bedded ~udstones both 

exhibit the following characteristi~s: 

9. Lovell and Stow (1981; p. 349) defined a contourite as "a bed 
deposited or significantly reworked by a current that is persistent in 
t1me ~nd space and flows along slope in relatively deep water (certainly 
below wave base)". 
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(1) identical microfacies, 

(2) associatioq with "beef" and "cone-iri::...cone" fibrous calcite, 

(~) marginal aggradation of crystal size, 

(4) variable relationship~ with grainy sediments in cored nodules and 

composite beds. Mudstone may underlie, overlie, or surround grai~y 

sedirnents. 

(5) Both nodules and continuously-bedded parted mudstones commonly 

demonstrate fitted fabrics. 

Given the preceding it is difficult to accept any conclusion other than 

nodular and continuously-bedded mudstones are genetically~related. 

These sediments are commonly intergradational with successive' beds .. 
becoming either more nodular or continuous. The similarity of nodular 

limestones with associated, more continuously- bedded limestones has also 

been stressed in other studies (e.g. Garrison and Fisher, 1969; 
0 

Bjorlykke, 1973; Henningsmoen, 1974). Possibl~ mechanisms to ~xplain the 

relationship between nodular and continuously- bedded mudstones include: 

(1) synsedimentary boudinage (e.g. McCrossan 1 19581, (2) subsolutio~ 

(e.g. Holmann, 1962, 1964), (3) pressure solution (e.g. Logan and 

Semeniuk, 1976; Wanless, 1979), and (4) lateral coalescence of 

concretions (e.g. Henningsmoen, 1974; Jenkyns, 1974). Based on field 

evidence alone it is not possible to decide which is the most likely. A 

detailed evaluation of these mechanisms, based largely on slab study and 

petrography, is presented in Chapter 14. 
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2.11 SUHMARY OF LITHOFACIES INTERPRETATIONS 

Conglomerate Lithofacies: Most chax:acteristics of these deposits are 
··-........... ___ -

consistent with a debris flow origin. Those conglomerates with sandy 

matrices, crud~ pebble imbrication, normal grading, or coarse foresets, 

however, suggest deposition from more evolved flows in which particle 

segregation was po~sible: In these flows, dispersion or turbulence may 
, ' 

have been a complimentary particle support mechanism. 

Calcarenite Lith~facies: The Bouma (1962) sequence is inadequate to 

model the sediments of this lithofacies. Jhese sediments do, .however, 

resemble proximal turbidites described from siliciclastic successions. 

The typical massive bedding (TA) with l~ss common normal ~rqding are 

interpreted to result from a direct suspension settling from high 

density flo~s as they lost energy, evolving· toward more dilute flows. 

Other grainstones scattered throughout the sequence arc interpreted as 

turbidites deposited from such dilute flows. 

Siltstone Lithofacies and Shale Lithofacies: These two lithofacies are 

defined by the relative abundance of silt and shale within a given 

interval. Both contain siltstone beds which commonly grade upward into 

shale in a predictable, regular fashion. Both lithofacies are 

interpreted to consist· mainly of fine-grained tyrbidi tes (silt or 

terrigenous mud) which grade upward into terrigenous mud hemipelagites. 

Millimetre-cycles in shales are interpreted to reflect the different 

abundance as well as preservation potential · of organfc material in 
, 

~c • ,. 

• 
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ter~igenous turbidites versus hemipelagites. Thicker metre-cycles in 

shales are interpreted tq be the result of ~eriodic variations in the 

amount of organic matter in the. source regio~s for these shales as well 

as the oxygen levels of the .bottom waters. 

Mudstone Lithofacies: Mudstones may be either deposits of dilute 

t~rbidity curients or the result of settling of hemipelagic 

(peri-platform) fine~. Based 'on available data, including comparison 

with similar deposits in the literature, it is not possible to state 

unequivocably which is the more probable origin. Nodular mudstones are 

genetically-related to the continuously-bedded ~udstones but the 

fundamental nature of their relationship is not clear based on field 

observation. ., 

J 
The iriterpretation of the mudstone lithofacies according to the proposed 

depositional mechanisms is far from satisfactory. Aspects of these 
\. 

limestone sequences that are not adequately explained by turbidity 

current or hemipelagic settling mechanisms include: (1) fitted fabrics 

in both cont ; nuous and nodular beds; (2) composite beds and nodules with 

mudstone plastered under, oier, or both under and over grainy sediments; 

and (3) marginal aggradation of crystal size or <oarsening of calcite 

crystal siz~in certain bands within mudstones. 

If mudstones and grainstones are contourites, as inferred from the 

hypothesis of Hubert ~!l· (1977), it is unlikely that they ~ould be 

sufficiently distinct from . turbidites to be recognized as such. In 

addition~ the southeast paleocurrents are consistent with down-slope 

flow of turbidity currents, based on regional and lithostratigraphic 

' 
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considerations (James and Stevens, in prep.) and therefore a contourite 

origin for these sediments is highly unlikely. 

2.12 DISCUSSION: CARBONATE APRONS .. 
I 

From the preceding discussion and the measured sections of James and 

Stevens (in prep~ it is obvious that the ~HG is a disorganized, 

unpredictable array of lithofacies. .Thickening-upward packages of 

~ediments suggestive of a prograding submaiine fan . are not present, nor 

are other fan-like features such as thinning-upward sequences (as 

fan-channel fills) or extensive channeling (see Walker, 1984). The lacl 

of fan char~cteristics is now generallY. regarqed as typi~al for most 

carbonate slope deposits, modern and ancient (Cook and Mullins, 1983; 

Cook, 1983b; Mullins, 1983) .• This contrasts with siliciclastic systems 

in which sediments disgorge from a principle canyon ("point source"), to 

form a submarine fan. Siliciclastic~ fans are well-known from the modc~n 

as well as ancien.t record and their systematic spatial and temporal 

characteristics have le,d to the construction of a well-tested submarine 

fan model in which there is a systematic downcurrent (or downsect ion) -- ·- · 
" 

development of inner, middle, and outer fan facies sequences (see 

overview in Walker, 1984). There are no documented submarine fans in 

modern carbonate environments and only a few have been recognized in the 

ancien~ record (Cook, 1983b). The most notable of these occur· in the 

Upper Cambrian-Lower Ordovician of the Basin and Range Province (Cook 

and Taylor, 1977; · Cook, 1979)--·~l'i~ the Jurassic of southern Spain 

(Ruit-Ortiz, 1983) and Portugal (Wright and Wilson, 1984). The lack of 



- 99 -

fan characteristics has also been noted in numerous mod~rn and ancient 

carbonate slope studies (see numerous references in Mullins, 1983; Coo~ 

and Mullins, 1983; Cook, 1983b; Mcilreath and James, 1984). 

The rarity of carbonate submarine fans is-tA&ttght to be the result from 

dispersal of ~ediment along a semi-continuou~ line-source rather than 

from a major canyon as is the usual case for siliciclastic sediments 

(Schlager and Chermak, 1979). Carbonate sediments move down the slope by 

v~rious types of unchannelled, sheet-like gravity flows (Cook, 1983b). 

In the Bah~mas, turbidity .currents and debris flows are the dominant 

mechanisms of downslope transport, accounting for 25-30% of the sediment 

(Mullins, 1983). Deposition of carbonate sediments in this manner builds 

a wedge-shaped apron of sediment . In a "slope apron" the sediments 

extend from the platform margfn down to the basin whereas in a 

"base-of-slope" apron most of the sed:¥nents are depositt::d at the base of 

the slope and on the rise, but with some turbidites and debris flow 

conglomerates extending further basinward, away from the main 

~cumulation (Cook, 1983a). 

( 
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3.1 INTRODUCTION 

. Chapter 3 

SUBMARINE SL1DIN~: EVIDENCE FOR 

DEPOSITION ON A SLOPING SURFACE 

Evidence for slope failure is common in the parted and ribbon limestones 

of the Cow Head Group. Much of this evidence, however, is subtly 

expressed, which ' probably accounts for it having remained unrepor,ted 

until now. Qy cataloguing the various synsed1mentary defor~ation 

fabrics associated with rare, well-exp.osed truncation surface!~ and 

allochthonous slide masse~. it is possible to interpret many of the 

bedding disruptions in the~e evenly b.edded limestones as beiflg the 

expression of sediment failure. The recogni'tion and proper 

interpretation of these synsedimentary deformation fabrics -is especially 

important where outcrop( is limited or there is a lack of sufficiently 

extensive strike exposure that would allow straightforward recognition 

of intraformational truncation su~faces or allochthonous slide masses. 

Such sediment failures are unequivocal evidence for deposition on a 

sloping surface. 

-
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3. 2 T~RMINOLOGY . ·-· ; 

Reviews of processe~ and termi~£a.t~.~rrent.J_y _used· in the 

interpretation of sediment fa{lure and gravity flow hav~ been comp'iled : 
' ' )I' ; .• /"\ 

by numerous wotkers (e,J--8-: · Cax.t-~r:, - ~975; Nardin et al., 1979a;"' Cook and 

Mullins, .1983(;"rollow'.ing the definitions provided in Nardin ll_ a.l.. 

(1979a) ~ slide is defined as the movement of a rigid, internal~y 

undeformed mass a'lcmg a discrete sl)ear surface. Slides can be 

subdivided into slumps where rotational motion is apparent, and glides 

-: where the mass has translated along a planar surface. Differentiation 

·. 

'. 

of slumps from glides in ancient sequences is usually not possible 
I . 

because of insufficient exposure, therefore, only the general term slide 

is used (also see Cook and Mullins, 1983). 

Sliding .gives rise to an allocl'lthon<fus slide ~which is late1.ally 

displaced relative to · undE;rlying, assumed in situ sedip1ents. The 

original)position of a slide mass is demarcated by an 'intrafo~mational 

truncation surface wher~ beds in~ersect the surface with angular 

di sconformity. The trunc.ation surface is exposed on the seJ3noor and 

' . 
is subject to -~urial ' from subsequent deposition (cf. '!major cut-and-fill 

structure" of Wilson, 196~). Analogous truncation surfaces are 

r~cogni~ed on p:-esent-day continental slop~:> and other · slope!> as !rough 

or s~allop-shaped depressions commonly referred to as shde m or 

slump m (e.g. Cook and Mullins, 1983; Enos and Moore, _1983). 

. ' 

The surface along which. fai}.ure has taieel) ;~l~a~e.._. ~ay 
' . ' 

be .~a tr~ ~-"' 
•' . / -'· two-dimensional surface. It is,. however, commonly more apprt>priately 

~ ~ 

/-described as a sbet:tr . zo'ne which lacks &Jl ~bvious basal shear plfne. In 

.. 

·• 

"• 

,, 

-~ 
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this zone, plastic and elastic deformation · ~isrupts, and in S'Ome cases, 

homogenizes original sedimentary fabrics. A shear zone may develop 

immediately below a truncation. surface or where an overlying sediment 

mass moved a short distance downslope bu_t did not detach from underlying 

sediments. Similarly, the leading edges, the base, and in some cases 

the entire slide mass are also subject to deformation. Tank experiments 

(Schwarz, 1982), high resolution seismic observations and cores of 

modern slide masses (e.g. Nardin!!._ ,!!l. 1979b), and 'observations from 

the CHG demonstrate that internal deformatiq.n in slide masses is 
I 

common. The traQSition from slide movement to debris flow (e.g .. Cook, 
... 

1979; Cook and Mullins-, 1983) and ultimately ·to various gravity flows 

(e.g. turb'ldi'ty currents, grain flows) is readily 'attained in the 

submarine environment ~y .addition of water and mixing (Middleton and 

...,Hampton, 1976; Nardin et ,!!l~, 1979a). 

0 
. 3.3 FIELD DESCR~IONS 

The fo'ilowing section examines the field relationships between two 

well-exposed intraformational ~r~ncetion surfaces and th~ deformation 

fabrics in the shear ~ones. which im~ediately u~er i ie them. Following 

. 0 . • 

this, two allochthonous slide masses .l!~e also described. Relationships 
~ 

. established from these observations are subsequently used to interpret 

two other outcrops where the origin of deformation is less certain. A 

"listing of outcrops wh_ich contain evidence of sediment failure is 

provided in Table C. 2 of Appendix C. 

' 
. ! _ ~ ' 

, 

._ ) 
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3.3.1 Intraformational Truncation Surfaces 

3 .• 3.1.1 Lower Head 

A prominent trunca.t.ton surface is found- within the Arenig sequence 
/ 

beneath the m&ssi ve boulder conglomerate of Bed 14 at Lower Head (Figure 

3.1). Approximately 2.5 m of demonstrable erosion octurs in the measured 

area with an additional 3-4 m further along strike. The truncation 

~urface depression is filled with thinly-bedded parted limestones 

(gr,ainstones and mudstones: bed 1 [1] in Figure 3.1; Plate 14a). In 

contrast. sediments below the truncation surface tonsistt of black shales 

(bed 2), finely-laminated marls (beds 3 and 5), and ribbon limestones 

(beds 4 and 6). 

The effects of shear are seen both at and below the truncation surface. 

Ribbon limestones in beds 4 and 6 are fragmented and rotated (Plate 

14b,c). Although most of these fragments are irregularly shaped and 

-randomly distributed, tabular cLasts in bed 4 have a sub-parallel 

alignment and suggest a minimal .· amount of rotation of these slabs ~(Plate 

14b). In bed 6, some 3m below the truncation surface, ribbon limestones 

have been rotated so that they ate now oriented perpendicular to bedding 

and locaiized pods of intrafor.mational conglomerate are d~veloped by 

piling-up of mudstone beds (Plate 14d ,e). The draping of mudstone beds 

and laminated· .. rls om the perp::t~?-::_r slabs of ribbon limestone 

:::~~=-::at -disruption occurred ~or to significant compaction. 

\ :a ,_ 
l. These bed numbers refer to those "l:n Figure 3.1 only.-
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Figure 3.1: (a) Measured outcrop of Lower Head truncation 
surface. Details of lithologies and deformation 
fabrics are provided in text. The datum used for 
~easurement is a continuous grainstone bed in the 
sediments above the truncation surface; Rot,ted 
mudstone slabs and re-oriented and homogenized 
laminations in marls are shown in their approximate 
positions. "T.S." is truncation li~-e. 

' , 

(b) Measured outcrop of Green Point truncation 
surface. The successi6n is overturned but is turned 
right way up in this sketch. Details of lithologies 
and ftbrics are provided in text. "T. S." is 
truncation surface. Heavy lines "1" and "2" a're· small 
displacement synsedimentary faults which are traceable 
over most of the outcr~p. Wavy lines indicate the 
distribution of disturbed bedding as illustrated in 
Plate lSc. Position of drag folds are shown in exact 
positions imm~diately underlying truncation surface. 

II 
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Evidence for disruption is also found in the finely-laminated marls of 

beds 2 and 5. In most places 

undisturbed and continuous. 

the millimetre-size lamination is 

In some areas~ however, especially in the 

upper 15-20 em of bed 5, decimetre-size domains are defined by disturbed 

laminations which are variably re-oriented, often at high angle · or 

perpendicul.ar to bedding (Plate 14f). Other domains in these beds are 

devoid of lamination and the sediment appears massive, although this 

could be the effect of looking at a surface parallel to the 

laminations. Small displacement microfaults and isoclinally-folded 
. -- .. 

laminations are also observable in outcrop as well as thin section. 

3.3.1.2 Green Point 

Anothe'r truncation surface and its underlying shear zone is found in the 

Tremadoc section at Green Point (unit 2'8 of James and Stevens, in prep.: 
/ 

Fig~re 3.1). Approximately 2 ~of erosion occtirs in th~ measured area 

and the truncation surface can be followed sporadically for over 20 m 

outside the measured ~rea where it continues to gradually down-cut until 

~t is lost due to tectonic faulting. The dep;ession formed by the 

truncation surface is filled with sediments similar to those which lie 

above the 'Lower Head truncation surface (Plate- 15a). The parted to 

r~bbon limestones below the trunc~tion surface consist ' of planar, 

thinly-bedded, massive to parallel-laminated mudstones interbedded with 

dolomitic marls. 

The style of deformation in the shear zone is significantly different 

from that described from Lower Head. Here, the sediments are loca~ly 

drag-folded just ~elow the truncation surface (Figure 3.1, Plate 15b). 
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In addition, 2 small synsedimentary faults are. traceable throughout most 

of the ~easured outcrop and show discordance with both underlying as 

well as overlying beds (Figure 3.1). A large porti of the measured 

o'utcrop demonstrate!J irregular, wavy be~ding- which. an bq followed 

"laterally and vertically into relatively undisturbed planar-bedded 

sediments (Pla-te 15c). The disturbed bedding is most prominently 

developed immediately b~low the large drag-fold. 

- 3.3.1. 3 Interpretation 

The truncation surfaces at Lower Head and Green Point are not traceable 

to their displaced sediment masses, a situation typical for ancient 

sequences in general (see Davies, _1977) • These outcrops are interpreted 

as truncation ·surfaces (slide scars) rather than channels or current 

scours based on criteria, used collectively, to suggest a truncation 

surface origin. Channels and scours a're also common in ancient as well 

. as modern slopes (e.g. Walker, 1975; Cook, 1979; McGregor etl'~., ~982) 

a.nd some are extremely large, for example, the current scours uJ, t~ 500 

m wide and 20 m deep which have been described from the Navy submarine 

fan off the California borderland (Normark ~ al., 1979). 

Criteria from .Davies ( 1977) and Clari and Ghuibaudo (1979) which are 

applicable to interpretation of truncation surfaces at Lower Head and 

Green Point are ( 1) the absence of smaller scours or channels in the 

"footwall" beds, and (2) the absence of obvious lag deposits suggestive 
t# -

' ' 

of channels. In addition, the association with the underlying· disrupted 

sediments (shear zones) would be difficult to explain by current action 

o.r channel cutting whereas the" stresses generated during failure could 
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readily account for the observed deformation. Many other truncation 

surfaces, however, appear to lack obvious shear zone deformation (Figure 

15d) and may be scour-related (e.g. Yurewicz, 1977). 

3.3.2 Slides 

3.3.2.1 Green Point 

~· I . 

A slide mass separate from the truncation surface described above and 

which locally reaches 4 m thickness is traceable for appToximately 180 m 

alon~ strike in Tremadoc ribbon mudstone and shale sequence at Green 

Point (unit 27 of James and Stevens, in pr.ep.). The only lateral margin 

visi~le is markedly lenticular and approximat~ly 1 m of basal erosion is 

seen (Plate 16a). 

The transporte9 sediments consist o.f thinly-bedded, . locally burrowed 

parted mudstones. The greatest amount of internal bedding disruption 

and homogenization is found near _t_!J_e ..lateral margin; elsewhere, bedding 

is only slightly disturbed. Throughout most of this outcrop, there is 

no discernible basal shear .zone and the contact of the slide mass with 

underlying sediments is without detectable erosion or deformation. 

3.3.2.2 Cow Hfad South 

A slide mass of thinly-bedded parted grainstones disconformably overlies 

similar sediments in Arenig sediments at Cow Head South (Bed 13s . 4 of 

James and Stevens, in prep.). The slide is approximately 1. m thick and 

is overlain by 1.5 m of graded conglomerate (Plate 16b; lc). This 
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dis?\;forllity truncates beds below it and is probably, a truncation 

surta~e. 

Bedding iJ this slide is locally disrupted near its' base occurring as an 

anastomosing web of millimetre-thick partings defining phacoidal or 

fitted lenticular bidding (Plate 16 c ,d). Away from the base., intensity 

of bedding .-disruption diminish,es and bedding is more regular. 

3.3.2.3 Interp:etation 

The slide mass at Green Point is lithologically distinct from the 
II 

sediments into which it has moved. - This, in coril:ert with chaotic, 

locally homogenized, bedding and erosion of underlying sediment at the 

margin permits identification as ~ slide to be s~tforward.' For 

most of its exposure, however, the lack of a basal shear zon~ and basal 

erosion implies that such a slide mass could readily be mistaken to be 

undisturbed, in~ sediment. ThJs underscores the importance of 

carefully recording the most minute bedding irregularities and, if 

possible, tracing questionable beds laterally for exposures of either 

basal erosion or lateral pinching-out. If "host" sediments are not 

distincr ; ~~is the case at Cow Head South, the locally chabti2, 

homogenized, or phacoidal bedding in the basal region of the slide mass 

could serve as an important signal of sediment failure. 

The contacts of the slides with overlying sedimen~s do not contain 

evidence of their allochthonous nature, except at the lateral margin of 

the Green Point slide where chaotic bedding is apparent at the ·top of 

the slide. It is c·onceivable, howevert: that surfaces of slide masses 
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could be subjec~ed to preferential erosion and smoothing due -to their 

positive relief and a slope or base of slope position favourable to 

eroding currents (Schwarz, 1982) . 

...-:~ 

3.3.3 Possible Internal Shear Zones 

In the previous examples, there is clear evidence for the existence of 

both truncation surfaces as well as allochthonous slide masses. Their 

shear zones, where developed, are located precisely where expected -

just below the truncation surface where some deformation would occur as 

the slide mass moved a~ay, and in the case of the slide masses, at their 

bases due to stresses generated during initial movement or later 

downslope translation. 

There are numerous outcrops, however, where sediments are noticeably 

disiupted, but evidence of a truncation surface or allochthonous slide 

mass -is missing (Table C.2 in Appendix C). Although in some of these it 
~ 

is possible that the critical relationships discussed atiove are not 

exposed, the possibility that these are internal shear zones must also 
-·- ~-- · ·· 

be considered. Deformation in tnese shear zones would reflect minor 

downslope translation of an ~pper "package" of sediments relative to a 
.•. 

· presum~bly, though not necessarily, in situ lower package of sediments. 

(j 

Such internal shear zone~ could be regarded as approximately 

bedding- parallel, synsedimentary faults. In order to emphasize th~ir 

probable relationship to previously discussed sediment failures, 

however, these are considered. as one variatio~ in the' spectrum of shear 

zones generated by sediment failure on a sloping surface. 



3.3.3.1 Green Point 

Approximately_ 500 m south along strike from the previously described 

truncation surface at Green Point, there is an approximately 2 m thick 

interval in these ribbon and parted limestones in which several 

laterally extensive zones of disrupted sediments are found. The 

disrupted zones 1 v~ry from 20-30 em in thickness and consist of 

distorted, folded, and fragmented mudstones in a marl matrix (Plate 
./ ~ 

17a). One disrupted zone locally attains 1 m thickness but vanishes 200 

m northeastward along strike into regularly-bedded sediment. The sole 

of ' another zone is characterized by "mullion" structures which result 

from the sub-parallel alignment of intrafolial fold hinges. No obvious 

sense of overturning is apparent, but based on relative limb lengths, 

they suggest downslope translation of the overlying -~ediments towards .. 
the 'southeast [2]. Caution, however, is suggested in attempting to 

distill paleoslope information from a single outcrop (see additional 

discussion in Hiscott and James, in press). 
' 

3.3.3.2 Cow Head North 

Several disrupted zones also occur in the extensive La~ Cambrian 

sequence of parted mudstones and grainstones at Cow Head North (units • 

6.37-6.44). The most conspicuous disrupted zone varies from several 

centimetres to 1 m in thickness and can be traced laterally along strike 
~ 

2. Sixteen measurements of fold axes provide an average azimuth of 40 
degrees to the northeast. 

.. 

• 
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for 100 m after which it is no !o~e: safely accessible. Bedding 

disruption is most apparent in the thicker portions of this zone where'a 

chaotic array of folded and fragmented beds occur isolated or clustered 

together in a marl matrix (Plate 17b). Elsewhere, disruption in this 

zone and in the other, thinner zones is characterized by discordance 

with underlying and overlying beds where deformation fabrics are 

apparently absent. In addition, intrafolial drag folds may be developed 

in an otherwise apparently undisturbed sequence of sediments (Plate 

17c). 

' 3.3.3.3 Interpretation 

The disrupted zones exemplified by the outcrops at Gr_eeo Point; Cow H~ad 

North, and other locations (e.g Plate 17d) have received little 

attention by other workers. ' . These were interpreted as "slump sheets" 

which slid at the sediment-water interface by Hubert !.!_ ~· ( 1977, see 

their figure 38; also Suchec~i, 1975, his figure llA). In addition, 

these were reported to be commonty eroded prior to subsequent 

deposition. 

If the above interpretation of Hubert et ~· (1977) is correct, then 

other evidence which would enh~nce this interpretation might include: .. 

(1) ponding of sediment in depressions ·formed by the small scale relief 

of folded and fragmented beds, (2) iework{ng of fragmented bedding, (3) 

lateral transformation of "slump sheet" into flat pebble conglomerate, 

and (4) absence of discordance with overlying beds. 

Field observations indicate that none of the above criteria are 

• 

. , 

/ 
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present. · Instead, field evidence· suggests that these bedding 

disruptions are shear zones which occurred in the shallow subsurface due 

to sliding while sediments were still sufficiently unlithified to be 

folded and fragmented. In addition, overlying be~s are occasionally 
I 

drawn into the folding and fragmentation of the shear zone suggesting 

that disturbance was subseq8ent to deposition of overlyin~ strata • . 

The relationship between the truncation surface and the shear zone at 

• ·Green Point is uncertain. At the sout.hwestern end the unit is 

approximately 8 m thick. In contrast, SOO.m to tlfe northeast in .the J 

vicinity of the truncation surface it diminishes to 2 m in thickness. 

Due to str~ctural complications, it is not possible to follow the 

truncation surface for more than 60 m and the subsurficial shear zones, 

due to their lateral variations in size and degree of sediment 
• 

disruption, are also not traceable across the outcrop. Other sequences 

of similar ribbon limestones are remarkable for their ~ontinuity as well 
~ , r 

as constant thickness and it is therefore reasonable to assume that this 
. 

variation in thickness from one end of the Green Point outcrop to the 

other is the product ·of sediment failure. The truncation surface and 

the shear zone may be responses to the same or separa;e events. · 

3.4 DISCUSSION 

3.4.1 ~odel for Sedi~ent Failure 

Using the previously djscussed examples of sediment failu~e. a general · 

· model is outlined which relates displaced sediment to its slide surface 

~ --.. '- .. 
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or ·shear zone. Three end member cases or conditions are envisaged 
• 

(Figure 3.2). The first case is a bedding-parallel translation ("bedding 

translation") of sediments in which the verticel succession Temain• 

• ·/ 

~naffected as there is neither removal nor accumulation of sediment. 

t!J: ,. 

The shear zones at Green Point and Q6w Head North are probable examples 

of bedding translations. 

The second case is the formation of a truncation surface '(slide scar) by . __ 
- ·· " 

sliding away of sediment with the resultant depression subsequently 

filled bi younger sediments. The displac~d sediments are missing from 

the local stratigraphy and thus a ''sediment deficiency" (Fairbridge, 

1946) occurs. The truncation surfaces at Lower Head and'Green Point are 

examples of sediment deficiencies. 

(:0:_ 

In the third case, a sediment package is moved downslope to rest on top 

of equivalent age sediments, though the sediments may not be of -\ 

identical lithology. A local repetition of the stratigraphy or a 

"sediment excess" (Fairbridge, 1946) results. The slides at Green Point 
I 

and Cow Head South are examples of sediment excesses. 

Associated with each of the above ty~es of sediment failure may be shear 

zones characterized by a sulte of distu/bed bedding fabrics. For. 

bedding· t.ransl~tions, the shear zone occurs in the shallow subsurface · 

~nd separates an overlying downslope-translated sediment mass from a 

relatively in situ mass . For sediment deficiencies and excesses, a 

shear · zone occurs immediately below the truncation surface, or al?ng the 

sole of the slide mass or the surfac~ of the overridden sediments, 

respectively. / 

. , -
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Figure 3 . 2: Schematic diagram illustrates .shear zones and tbeir 
relationship to bedding-par,allel movement.s, truncation 
surfaces, and slide masses • . Refer to text for 
discussion. 
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Distinguishing among the three cases is not always straightforward and' 

rnay not· be possible, especially where stri'ke exposure is limited, such 

as in the CHG. If the slide mass is identical to enveloping sediments or . 
if the slide mass is too large and its boundaries cannot be defined, 

then ln!ttd1ng translations · and seditnent excesses may not be 

differentiable. Other criteria, such as repetitive biostratigraphic 

intervals (e.g. Embley and Jacobi, 1978) must be. relied upon, if 
1 

applicable. Obviously this would be inapplicable in many ancient, 

especially Paleozoic, sediments where biostratigraphic zonation is 
• 

likely to be much coarser than the thickness of sediments involved in 

the failures. ·on the other hand, the high resolution afforded by 
l • 

. --~--

Cenozoic marine biostratigraphy could easily tre repeated by sediment 

failures the size of those in the CHG. 

'\ 

Both bedding translations and slide masses may be discordant with 
.. 

underlying as well as overlying bedding depending on the geometry of the 

shear zone or basal erosion. .fn contrast, truncation surfaces are 

characterized only by discordance with underlying bedding·. In general, 

mudstones which fill the depression are · continuously bedded in contrast J 
to grainy sediments which are often discontinuously bedded .and drape the 

.· truncation surface. Drape of beds infilling a depression could be 

misinterpreted for discordance with overlying bedding. 

3.4.2 Dimensions of Truncation Surfaces and Slide Masses 

_ _:_~gest trurtcation ·surfaces in terms of cut-out sediment occur at --· ....... --
y/ .Green Point and Lower Head ·where up to 7 m- of erosion is demonstrable. · 

Host other CHG truncation surfaces show less than · 1 m of erosion. This 
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' contrasts to 15-25 m cut into Miocene slope ·sediments in the Piedmont 

Basin of Nor.thern Italy (Clari ~nd Ghuibaudo, 1979) or 100-150 m of 

erosion in Upper Paleozoic carbonates of the Sverdrup Basin (Davies, 

1977b). There is clearly insufficient e~posure of the CHG to appreciate 

., if structures of this scale are present ·; Such large truncation surfaces 

as those reported .frail the Piedmont and Sverdrup Basins are 
- .. 

exceptionally lafge for ancient rocks. Even these, however, are small 

relative to the largest slides recognized in present-day oceans (e.g. 

Embley, 1982). Further discussion of size . discrepancy between ancient 

slides and those recognizable in the modern ocean is found in Woodcock 

(1979). 

The largest shear zone examined in the CIIG is approximately 3m thick, 

occurring below tn~ truncation surface at Lower Head. At this depth, 

however, bedding disruption is minor. Shear zones are generally 1 m 

thick or less and thickne~ varies over short distances. In general, 

shear zone thickn~sses in the CHG are similar to those observed in the 

Hales Limestone (Late Cambrian -Lower Ordovician) of the Great Basin in 

Nevada where slide masses" vary from 2-10m in thickness (Cook, 1979). Jf 

there is a correlation in t~e thickness of shear zone and slide mass, 

then CHG shear zones suggest slide masses on the order of 10 m thickness 

or less. This is supported by the and 4' m thick (maximum) slide 

masses described from Cow Head South and Green Point which are the only 

examples available where thickness is measureable. Disruption in their 

basal shear zones is limited to a few tens of centimetres or less and in 

general, bedding disruption is minimal. 
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' 
3.4. 3 Causes of Sediment Failure in the CHG 

The causes of sediment failure are diverse (see volume edited by Saxov 

and Nieuwenhuis, 1982; Schwarz, 1982) and a brief overview of the topic 

is prdvided in Appendix C. Two major controls of sediment failure are 

recognized: tectonic and oceanographic. Of the tectonic controls, 

e~rthquakes ba~e long been cited as trigge~ing mechanisms of failures on 

both passive and · activ~ margins, in both ancient and modern oceans. 

Oceanographic controls involve elements of the hydrosphere, such as 

sediment .transport and sea level changes. 

The causes of sediment failure in the CHG are uncertain and both 

tectonic (e.g. earthquakes) and oceanographic (e.g. changes in sediment 

pore pressures) controls must be considered. The largest conglomerates 
j 

of the CHG, and also the Curling (Lower Cambrian to Lower Ordovician), 

and Table Head (Middle Ordovician Groups in western Newfoundland may be 

correlative with regressive events or changes in shelf sedimentation 

(James .£!.. ~·, _1979). 

3. 5 CONCLUSIONS 

Prior to recognition of truncation surfaces, slide masses, and shear 

zones in the CHG, the only evidence of •ediment failure was debris ~lows 
. • t . 

and possibly related turbidity currents. Detailed examination of 

several well-exposed outcrops exhibiting various types of evidence for 

sediment failure within parted and ribbon limestone sequences guides the 
.· ' 

interpretation of the numerous minor bedding disruptions in these 
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sediments and implies that sediment failure js a common and important 

part of the s~iment's history. 

-A simple model for slope failure is based on the position of the · 

detached mass and discordant bedding relationships. Sediment 

deficiencies occur with the formation o£ truncation surfaces and removal 

of the overlying sediments. Sediment excesses result from the 

emplacement of allochthono~s slide mass onto sediments of equivalent 

age. B~dding translations are the most difficult to identify relying 
/ 

.heavily on negative evidence for either truncation surfaces or slide 

masses. 

Shear zones are generated during sediment failure. They occur ( 1) in 

the shallow suLsurface of bedding translations, (2} below truncation 

surfaces, and (3) on the soles o'f slide masses or near: ;e surfaces of 

overridden, re lati vel y in ~ strata. Shear wnes u va: ia b!e in s i" 

although usually a metre or lfSS in thickness. The distilled model for 

the location of these shear zones is admittedly simplistic; for example 

' differential movement within a slide ~ass may produce internal zones of 

longitudinal shear parallel to the slide axis, in addition to basal 

shear (e.g. Prior~(;,, 1982). 

A suite of often subtly expressed deformation fabrics characterizes 
• 

these shear zones. These inClude: {-l) intrafolial folding, · (2) 

brecciation, and (3) rotation of slabs of limestone. Phacoidal bedding 

(4) may be produced in some mudstones and grainstones by the development 

of irregular, anastomosing, argillaceous seams. In addition., finely 

laminated shales and marls contain domai ns w~ere laminations are (5) 

- ·"'""'· I . 

• "· 
----

\ \ 
• It-· 
v 
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reoriented or (6) homogenized. Small-scale (7) isoclinal folding and 

(8) microfaulting are also local~y develo~ed. 

The recognition of truncation surfaces and slide masses usually requires 

e'xtensive strike exposure. In areas . of limited outcrop, however, the 

various shear zone de"formation fabrics may be the only clues to indicate 

the depositional environment was a sloping surface with sediments 

subject to periodic failure. Using the CHG as an example, intensive 

examination of outcrops which showed some bedding disturbances usually 

led to the discovery of other ; related deformation fabrics~ 

"In }he mapping of major geological structures, the field 
geologist often finds unaccountable little ~isturbances 
whi~h appear to have nothing to do wi~h the main issue." 
(Fairbridge, 1946, p. 84.) 

........ 

In the CIIG, t .he "little disturbances" are interpreted to be the result 

of sediment failure, an indication of instability in a stratigraphic 

seqh;nce, which, for various reasons, may otherwise go undetected. 

In addition to their paleoenvironmental and paleogeographical 

implications, recognition and proper interpretation of sediment failure 

may fieTp explain missing or repeated lithologies or biostratigraphic 

' 
intervals. Finally, detection of sediment failure in ancient sequences 

may be important economically, for example, where a porous carbonate 

sand sequence has slid into a shale basin and subsequently acted as a 

trap for hydrocarbons (Fairbridge, 1946; Schwarz, 1982). 

It is suggested that these subtle shear zone fabrics are more common 

than would be gathered from literature on ancient slope sediments. If 

this is so, sediment failures are probably more abundant · than previously 

< 
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thought. .This places the common sediment .disruptions encountered in 

piston and box cores from pr~sfnt-day dopes (•:8· Nardin .u ll•, l979b) 

in a more realistic perspect1ve relat1ve to the1r anc1ent counterparts. 

-

-

.. 
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Chapter 4 

ORIGIN OF CONTORTED LIMESTONES 

4.1 INTRODUCTION 

Many parted and P~on limestone sequences in the CHG are characterized 

by "contorted" ("wrinkled" or buckle-folded) limestones. Important 

outcrops are listed in Appendix D. These enigmatic folds were described 

~ in passing by Kindle and Whittington (1958) and Baird (1960) and a 

-- ·· - p , 

- --

submarine sliding origin was proposed. Although there is abundant 

evidence for submarine sliding in the CHG (see Chapter,3), structural 

and diagenet~c origins for the contorted 1imestones must also be 

considered. As will be shown from evidence presented in this chapter, 

arguments for a ~ubmarine sliding origin are difficult to substant i ate 

using field or petrographic data. Contorted limestones have also been~ 

described from other localities in the Appalachian orogen (discussed 

later) and, therefore, conclusions derived for the CHG may ~ave 
• 

applicability. 

t 

....... 
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4.2 FIELD DESCRIPTION 

Contorted limestones-are usually mudstones and lithologically identical 

to surrounding, unfolded limestones. Contorted grainstones are rare. 

Bed~ typically vary from 2-10 em in thickness and most are planar and 

continuous. Discontinuous and lenticular beds may also be . contorted but 

these appear to follow the distortion in the associated continuous 

beds. Within a parted or ribbon limestone sequence, the number of beds 

involved in ~~ intrafolial folding is 'variable~ In some sequences, 

only a single bed may be folded with underlying and overlying beds 

unaffected. In other cases several beds may be contorted, either 

harmonically or disharmonically (Plate 18~, b). 

In two dimensions, fold profiies are usually symmetrical, open; and 

rounded (Figure 4.1). Fold wavelength varies from 20-100 em with 

amplitudes generally less than.lS em. Layer-parallel shortening is 

estima~ed at 20% or less, assuming constant volume deformation, an 

assumption that may not be valid particularly wher'e the development of 

numerous vertical stylolites has occurred (see Chapter 5). Rare thre~ 

dimensional outcrops illustrate an elongate d-ome-and-basin ( peric linal) 

configuration, some of which demonstrate a predominant shortening 

direction (Figure ,4 .1: ·Plate 18c, d). Based on 7 three-dimensiona 1 

exposures, the average elongation trend of the fold pattern is 71 

degrees to the northeast (measurements in Appendix D). 

Some beds have the outer arc of the folds fractured, with cracks 
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Figure 4.1: Schematic diagram of a contorted limestdne illustrates 
the . dome-and-basin folding and the irregular geometry 
of polygons formed by fracturing along fold hinges. 
Bedding overlap is <\lso shown. This diagram is based 
largely on the contorted limestone in the Upper 

'Cambrian strata at Green Point (Plate 18c ,d). 

( 
; 
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partially or completely penetrati~~
into stylolites towards the inj arc of th~ 

I 

V~shap~d cracks may grade 

fold• and illustrat~ the 

presence of extensional and shortening domains separated by a neut~al 

surface within the folded bed. Extensional fracturing occurs on the 

outer arc of the fold under tensi~l stress whereas pressure solution 

occurs on the inner arc of the fol~ · ~der compressive stress ·(see 

Ramsay, 1967). Fractures may·occur eferentially either in the 

' anti formal or synformal portions of the bed or both. \t.'hereas the 

profiles of most contorted limes~nes are gently undulating, other beds 

are flat and only folded and fractured locally (Plate 18 a; 19a). 

The best three dimensional tptcrop of contorted limestones is found in 
~ 

· Upper Cambrian strata at Green Point (Plate 18c, d). ~ 25 em-thick 

inteTval consists of 4 few-centimetre-thick mudstones which are bQth 

continuously- and lenticularly-bedded and can be traced for over 200 m 

from the beach cliffs across the wave-cut platform. The cliff exposure 

demonstrates an elongate dome-and-basln morphology where preferenti~l 

f;act.uring of the synclinal fold hinge areas in the l~••ermost, 

continuous bed has iesulted in the production of numerous, irregular, 
\ 

30-40 em-size polygons: 

Two oth&r occurrences of contorted limestone merit separate mention: (1) 

at Martin· Point (unit 8) where a contorted, fractured mudstone is 

locally infolded into an overlying conglomerate (Plate 19b); and· (2) At 

Green Point (unit 18) where several lenses of sediment are found in the 

synclinal depression Df a coritorted bed (Plate 19c). A thin shale seam 

separates the contorted mudstone from this apparently "ponded" 

-----sediment. 

~ · · 
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.• : :~ding "overlaps" are associated with some contorted limest~nes (Figure 

. -~ _£..-tt' t:'1). The amount of overlap is generally less than 15 em alt.hottgh an 
... 

'ex2eptional occurrence with 3 m. of o~erlap has been recorded from Green 
. o · . . 

Point (unit 34). As overlaps are only seen in two dimensions and 

therefore direction of the displacement vector is unknown, estimates of 

shortening are minimal. 

·Other intrafolial folds developed in parted and ribbon sequences 

demonstrate chevron and box-like styles with beds folded harmonically 

over thicknesses of 1m or more\(Plate 19d). Axial plane crenulation 

cleavage, formed by a high-angle intersection of cleavage and pr4mary 

sedimentary laminations, is only rarely developed in the interbedded 

"' shales . Several of these folds which· occur in otherwise monotonous, 
.. 

evenly bedded mudstones suggest nucleation on bedding heterogeneities 

such.~ grainstone lenses or sedimentary dikes. . , .. 

4.3 VOIDS IN CO~TORTED LIMESTONES 

Several occurrences of contorted limestones have voids associated with 

• 
their fold hinge are.as (Plate 18b; 20a, b). These cavities are fill~d 

11 
by coarse, sparry calcite ld.~ minor amount!l of bar~te, quaortz__. and . ·- ·-pyrite. Mudstone intratlasts and peloids ate also found. 

i Calcite may be ferroan or non-ferroan, or zoned based on thin secLron 

~taining for iron. The mosaics generally corlsist of 0.2-1 mm-sized, 

anp~dral .to, subhedral (rar~}Y blad~~) crystals which are often int':~~,ely 

\ ~ 
~·,., / · ........ ......,. " I 

\ 
.. , ' 
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twinned. turbid, 81ld have undulose extincqon. Barite crystals up to 1 

Clll in size are found in anhedral mo~aics, either with calcite or by 

itself ... Hegaquartz is rare <!nd in thethe on~ occurrence discover'ed, it 
. 

was precipitated after calcite •.. Pyrite' commonly occurs as cubes, rods, 

or irregular . aggregates of. variable ~size. 
\ 

Several samples also contain 

minor authi&.,enic sphalerite. Veinlets in the cavitHreas may also 

contain similar .calcite and barite to that ·.which ' oc~s in the 

cavities. 

In addition to the authigeni~ components, some cavities also contain 

sand- to pebble-size, an'gular to sub-angular mudstone intraclasts and 
I o 

silt-size (25-;SO pm) peloids. The intraclasts conJ.st of microspar [ 1] 

identical to that of the enclosing contorted 1 imestones. Peloids are 

)1ot present in eve:y sample containing the larger intra~asts, but when 

they do occur;· they are geopeta'l. Some fold hinges also contain shale 1; 

which was plasticalJy deformed and squeeze.q into the cavity in addition 

to or in place . .of peloids and intracl.asts. 
. L. 

. '· 
4. 4 DISCUSSION 

4 .4.1 Other Occurrences 

Contorted limestenes have been found elsewhere besides western 

Newfoundland. Vanuxem ( 1842, p. 53). wrote that the Trenton Limeston~ at 

Trenton Falls, New York "exhibits extraordinary contortions for one 

tv 
1 ~ TeriRinology for: neomorphic calcites is discussed in Appendix H, 
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whose layers are. so regularly disposed' forming almost semicircular 

curvatures, and not unlike the writhings of a huge serpent". White 

(1896, p.89-90) further noted that the "semi-circular plications" at 

Trenton Falls were not accompanied by metamorphism. 

i 

I 
Other contorted limestones also octur in the ribbon limestones of the 

Dolgeville Formation exposed in the central Mohawk Valley of New York 

State (Fisher, 1979)'. In this sequence, a 2 m-thick zone of def armed 

strata lies between undeformed bedding. As with the Cow Head Group, 

deformation is characterized by ·broken fold hinges, bedding overlaps up 

to 15 om, and a variability in fold wavelength and amplitude. Fisher 

(1979, p.457) also indicated that "in a few cases, a sharp broken fo1d 

is over'lain by unfolded or gently folded limestone". 

l .-;> 
4·.4.2 Hypotheses of Formation 

There are 4 hypotheses which may explain intrafolial folding in the Cl!G 

as well as at the New York State localities. , These are: (1) expansive 

diagenesis, (2) formation at the sediment- sea water interface by 

submarine sliding, (3) formation in the. shallow subsurface within a ( · 

shear zone associated with submarine sliding, and (4) tectonism (Figure 

4.2). 
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' • 

Figure 4.2: Schematic summary of possible ong1ns for contorted 
limestones in the CHG. Refer to text for explanations. 

' 
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·"" 4.4.2.1 Expansive Diagenesis 

Expansive diagenesis, such as that responsible fQ{ "submarine 

anticlines'" and overthr.ust "teep.ee" structures from the Holocene, sea 

floo~ in the Persian Gulf (Shinn, 1969) as well as dolostone 

"megapolygons" in an Upper Jurassic shale sequence from southern England 

(Bellamy, 1977), results from tl)e "force of crystallization" (see Weyl, 

1959). There is abundant ev.iderice for expansive crystallization in the 

CHG most obviously illustrated by fringes of displacive fibrous calcite 

(Chapter 9), but also illustrated on .a much smaller scale by some 

neomorphic calcites (Ch.apter 8) and dolomites (Chapter 12). Most beds 

demonstrating expansive crystallization, however, •re not contorted. 

' Rare example~ which provide no evidente, petrographic or otherwise, 

to indicate anything but a coincidental relationship. Due to the lac~ 

of evidence to suggest otherwise, expansive-diagenesis is rejected .a~ · a 

viable mechanism to explain the Ot:'i~in of contorted limestone.s. 

4.4.2.2 Submarinf Sliding at the Sediment - Seawater 
------ ... 

Interfac~\ 
...._____-

" 
Aspects of sea-floor instability in the CHG were discuss~d previously in 

Chapter 3. In light of this, limestones could have formed by sliding on 

the sea floor at the sediment - seawater interface, somewhat analogous 

to the crumpling of a rug on a slippery floor; or they could have formed 

within a subs~rficial shear zone related tq _the downslope translation of 

overlying beds. If surficial sliding is the origin of contorted 

limestones, then there are a number ~ criteria with which this can be 
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tested. These include the following: 

il) physical· erosion (bevelling) or other evidence to suggest exposure 

at the sediment-sea water interface (cf. Lindstrom • . 1963); 

(2) lateral transformation to conglomerate; 

(3) intervals of missing sediment resulting from sliding· away and 

accumulation elsewhere; 

of younger, p~rticulate sediment into the broken fold 

hinge areas (ct: Lindstrom, 1963); 

(5) ponding of sediments in depressions; 

(6) spatial association with definitive slides or related shear zones. 
! • • ' ' 

\..L ' 
\ . There is no unequivocal evidtence of physi cal erosion (point 1), lateral 

.\ 
• I . 

transformation to conglomerate (point 2), &r stratigraphic intervals 

which suggest sliding away of a thin sheet of limestone and its 

accumulation elsewhere (point 3). The mu~stone intraclasts within 

cavi ties developed in some fold hinge areas (point 4 ) are identica l to 

the contorted mudstones and are the result of .!.Q_ ~brecc iation, 'with 

some mudstone fragments only slightly dislodged. from their former 
\ 

positions. In light of t~is, associated peloi4s are considered t o be 

small mudstone intraclasts. The geopetal fa~ric presumably could 

develop at any time. The nature of ttre-- poil<fed sediment at Green Point 

is also . equivocal (point 5). This sed.iment consists of pseudospar which 

is identical in all respects to that forming concretions. There is no 

petrogrfthic or field evi dence to suggest that this sediment _o r__a .- - · 
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precursor accumulated in a local depression on the sea floor. Contorted 

limestones are not spatially associated with the various sediment 

failure-related fabrics discussed in Chapter 3 (point 6). This is also 
~ 

an argument which is applicable in refuting ~ shallow subsurficial 

lshear zone) origin (discussed in next section) . 

. ·Examples of surficial folding have been found in other sequences. 

• 

Lindstrom (1963) described sedimentary folds from Lower Ordovician 

limestones in Sweden and conclu4ed that they resulted from gliding down ,, .. . 
an· '~lmost imperceptible slope". A sea floor origin. was postulated 

based on the presence of corrosion, glauconite, .and organism borings on 

fold crests and invasion of fold noses .by younger sediments. 

Lindstrom's plate 1 demonstrates that flexures and buckling are always 

directed up~ards, unlike those of the CHG. 

. . 
The contorted limestones described by Fisher (1979) were interpreted to 

have resulted from submarine gravity sliding of the Giddings Brook - Van 

Buren allochthon into a westward-lying basin. This interpretation · was ., 
'ill •' 

based mainly on the confinement of the folds to , a 2 m-thick 

stratigraphic interval, presumed erosive bevelling of folded limestones, 

and the relationship of age and attitude with the gravity slide suite. 

None of the possible criteria listed above to suggest a surficial origin 

for these folds are met in the Dolgeville sequence, however. The most 

critical relationship concerning the erosive bevel,lihg is only mentioned 

in passing and not substantiated in any form. Furthermore, confinement 

of the folds to a limited stratigraphic interval indicates a maximum age 

for the deformation but it does not bracket the upper age as would be 
. "-../ 

the c~~-if the foldins was a subsurficial shear zone ·or structural 

• 

... 
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decollement phenomenon (discussed below}. 

4.4.2.3 Synsedimentary Shear Zone Versus Tectonic Origin 

The two remaining hypotheses which need be considered are 8 submarine 

sliding or synsedimentary shear zone origin versus 8 tectonic origin. 

From discussion in Chapter 3 it was seen that deformation resulting from 

sedi~ent failure may extend from the sediment-water interface to depths 

of 3 m and possibly more. Because deformation in the shallow subsurface 

and during tectonism occurs within the sedimentary sequence, the problem 

of resolving synsedimentary versus tectonic deformation must be 

considered. This problem is particularly acute for these mudstones 

because they are lithified early in the sedime~t'~ history and are 

subject to elastic ,and plastic deformation in every way analogous to 

that of "hard rock'' deformation. 

Sliding on the southeastward-dip~ing paleoslope (James and Stevens, in 

prep.; Hiscott and James, in press) and dominant northwest-direct ed 

orogenic stress (Chapters 1 and 5} both could produce the observed . 
. 1 

northeast-southwest elongation o~ the dome-and-basin structures seen in 

beddin'g place views of contorted limestones. Ideally these two origins 

could be differentiated besed on asymmetry of the folds , but as 

described earlier, the folds are mostly symmetrical and therefore 

unsuitable for resolution using this criterion. 

Criteria ustd to differentiate synsedimentary versus tectonic 

deformation are discussed in Hobbs !!_ .!!_. (1976, p. 156- 159; also see 

Woodcoc~ ; 1976; Helwig, 1970), but these do not re6olve the question. 

\, 

.. 
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Of the t~n criteria listed in Hobbs et ~· (1976), only the first three 

taken individually are unequivocal. These criteria are that in 

tectonically deformed sedim~nts, deformed fossils (criter.ia 1) and 
. ----- ·-. . \ 

foliation-controlled secondary mineral development (criteria 2) is 

expected. In soft-sediment deformation burrows which post-date 

deformation er~ u~defor~ed (criteria 3)~ Unfortunately, these criteria 

are inapplicable to contorted limestones in the CHG. 

~ More equivocal criteria which require a "safety-in-numbers" application 

· to suggest synsedimentary deforma~ion are the following; (1) chaotic or 

opposing structures, '(2) absence of veins or joints, and (3) possibly 

the absence of axial plane cl~avage. The regularity of these 

intrafolial folds relative to deformation observed ~ithin submarine 

sliding sh~ar zones (see Chapter 3) suggests a tectonic origin more so 

than a synsedimentary origin. Veins and joints are abundant throughout 

the CHG and are therefore not reliable cr i teria. The d~velopment of 

\ " cleavage is another dubious indicator of a tecto·nic rather than 

synsedimentary origin. Cleavage can form during soft-sediment 
41., ' 

deformation (Williams et al., 1969; Geiser, 1975; Woodcock, 1976; Davies -- ' 

and Cave, 1976) as well as during tectonism. There is also evidence to 

suggest that the early development of cleavage in tectonic folds may be 
•· 

suppres~ed by high fJuid pressures which encourage grain boundary ' . 

sliding rather than cleavage format_ion ( Borradaile, 1978). In addition 
/" ~ > 

to cleavage, other aoft-sediment structures which are typical for 

tectonic deformation include nrtlrofold line.ations (Woodcock, 1976) and 

development of fold axial plane crenulation cleavage -(Naylm--~ 1981). 

The intrafolial folds characterized by chevron and box-like styles with 
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beds folded harmonically over thicknesses of 1 m or more are readily 
( 

interpreted as tectonic. There is, however, not a sharp boundary 

demarcating these from contorted limestones and numerous outccops 

• 

demonstrate characteristics intermediate to both types of folds~ This 

strongly suggests that contorted 11mestones are a tectonic pheno~enon 

unrelated to synsedimentary deformation. 

The different fold styles seen, from contorted to Chevron and box 

t styles, may be explained in- two ways. Firstly, the variety of fold 
~ 

styles rna~ represent a spectrum of deformation responses where 

si~usoidal (contorted) folding ultimately proceeds to chevron style 

fo.lds with increased shortening (Johnson, 1977; Hawkins and Jones, 
I 

1981). This, however, cannot be proven in the Cow Head Group due to the 

lack of str.ike sections which show the transition from c.ontorted to 

c,hevron folding. Secondly, it i s equally l i kely that contort ed 

limestones and the chevron or box-style folds reflect mechanical 

differences in the sequences in which they are developed rather than 

differential shortening (see Hobbs ~ ~·, 1976, chapter 4). 

The predominant northeast-southwest elonga tion direct i on of the 

dome-and-basi n structures is also parallel with other major and minor 

structural features whic~ indicate major northwest-southeast directed 

compression. Large-scale regional structures are mainly 

northeast-southwest trending folds and reverse faults (Oxley, 1953). 

Tectonic stylolites which are oriented vertically or at high angle to 

bedding also trend northeast- souihwest (discussed i n Chapter 5). These 

stylolites are interpreted to have arisen from the same comp~essional 

regime and caused layer-parallel shortening. Although no measurements 
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ar~ available for bedding overlaps, these, too, indicate 

horizontally-directed compression and layer-parallel shortening. 

A tectonic origin for the contorted limestones also . accounts for the 

enigmatic occurrence at Martin Point where a contorted mudstone is 

locally infolded ~hto an overlying conglomerate; Thi~ is explained by 

the mudstones foldi~g in respons~ to layer parallel shortening whereas 

the conglomerate likely accommodated this stress by pressure solution 

throughou~ mass, mostly along clast-matrix boundaries. A tectonic 

origin eliminate~ the necessity to invo~ mechanism which would allow 

\ 
a debris flow to override and come to rest ~n a contorted, irregular 

surface without frag~enting or otherwise effecting the thin underlying 

mudstone. 

Within the contorted limestones of the New York State foreland the 

occurrence of (1) northeast-southwest oriented fold axes (Miller, 1908; ... . 

Fisher, 1979), ( 2). northwest-trending bedding-parallel s.lickensides 

(Fisher, 1979), and (3) a homoaxial relationship between the contorted 

1 imestones and the regional structure (Miller, 1908) suggest th(lt these 

contorted limestones, too, _have a tectonic origin. There is no evidencs 

' 
presented in any of the cited papers to substantiate a synsedimentary 

origin. 

\ 
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4. 5 CONCLUSIONS 

Based on field and petrogrRphic data, contorted limestones in the CH~ 

.. are interpreted to reflect layer-parallel shortening generated by 

horizontal, tectonic compiession. Additional work on the structural 

geology of the Cow Head area is required prior to more definitive 

resolution of the time of deformation, i.e. whether deformation is a 

Taconic, Acadian, or possibly., although unlikely, an Alleghanian event. 

Unequivocal evidence of a surficial or shallow subsurficial sliding 

origin is entirely lacking. 

The above conclusions ace based on a simplified geologi~cy which 

assumes that synsedimentary and tectonic deformations are removed from 

one another in time and space, Synsedimentary folds, however, could be 

the result of instabilities generated by tectonism (Hobbs~~·, 1976). 

An example of this is an ocean closing episode where slide sheets 

de~eloped at the acti~e margin become involved in deformation assoc iated 

with incorporation of the ma~gi~ into a~ accretionary wedge · (Woodcock, 

1979). In addition, a soft-sediment deforme-d bed may have nucleated 

\ 
later tectonic folding because it formed ~ heterogeneity in the 

stratigraphi~ sequence. Finally, there may hav~ been more than one 

regional deformation event which caused intrafolial folding: This could 

account for the variation in the cavity fills ob~erved, for example 

variatiohs in the nature of cal~ite a~ !ell as the presence and 

abundance of barite, sulphides, and megaquartz. 

l 
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Chapter 5 

COMPACTION IN THE COW HEAD GROUP 

5. 1 INTRODUCTION 

Two types of compaction are recognized in this sequence: butial 

compaction, which is a response to increasing burial pressure from 

progressive sed_iQlenta tion and perhaps load irrg of a !loch thonous terranes; 

· and tectonic co~paction, which is the result of horizontally-directed' .,. 

compression, interpreted to be due mainly to r\conic and pos~ibly 
Acadian orogenesis. Burial compaction result~ in a vertical shortening 

' of the sequence, ~ither through mechariical and chemical processes (i.e. 

pressure solution), or both (see Bathurstr 1980b for review). Tectonic 
; . 

compaction, on the other hand, is evident as vertically-oriented zones 
, ;. 

of pressure solution resulting in horizontal shortening of the 

sequence. 

To a first approximation, mechanical and che~ical compaction are 

mutually exclusive and are relegated to the realms of shall6w-burial ~nd 

deep-burial diagenesis, respectively. Mechanical compaction is manifest 

as brittle fracture, collapse, or , rearrangement of components whereas 

chemical compaction is characterized by solution seams ("non- sutured - -· 
seams"; termi{lology of Wanless, 1979; 1983) and stylolites ("sutured 

/ 
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seams"). In · addition, pervasive· "non-seam ·solution" may occur where . 

material loss is evenly dis~ributed throughout the sediment without 

forming solution interfaces. 

The purpose of this chapter i
1
s to describe and iJ:tterpret the wide. range 

of compactive phenomena ·in the CHG, based on an integrated aypToach of 

field observ.ations and measurements, slab study, and petrography. 

Answex;Y to tQe foll_owing questions are sought: '( 1) How much cpmpat:t ion 

' 

has occur~ed te to burial and ~~e to tectonism? (2) With ~eferenc~ t..o ... - • 

burial compact\on, can the effects of mechanical compaction and pressure 
' 

solu~ion · be separated? (3) Is compaction homogeneously distributed 
0 \ . 

throughout the sequence or is it restricted to specific 'iyielding" 

lithologies? (4) What is the relative timing of horizontal and vertical 

pressure solution? 

.. 

5.2 BURIAL COMPACTION 

.. 

5.2.1 Field Observations and Measurements 

Clastic . dikes along with several miscellaneous 1eatures [1] provide 

estimates of compaction (Plat~2la; data in Ap~endix E). Dikes were 

unfolded and restored to original inclination using the method outlined . 

in Hiscott (1977). Based on clastic 'dikes, average compaction n.e. 

stratigraphic thinning) in sequences of ribbon limestones, snales, and 

1. The miscellaneous featu·res comprise: ( l) a rotated mudstone slab in a 
synsedimentary shear zone, (2) a nodule in silicified shale, and (3) 
vertical to sub-vertical mudstone nodules developed ·around grainstone 
dikes. 

L 

I , 

. . 
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.· 
IDBrls is 52% (8 mf!JUllrements), with individual values ranging hom 

37-84%. Measurement of compaction of shale dra·pe around the 

•iscellaneous features averages 64% (4 measure_men;r. with 

values ranging from 55-81%. In ribbon limestone ·;tquences, . ..., 

interb~qded . shales or ma·r ls are compac:ted . 

. 5. 2. 2 Slab Study and Hic·roscopy 

individual 

only the 

In general, brittly-fractured components i~ limestones are extremely 

r.are (Plate 21b). This, and the occurrence of unsquashed burrows (Plate 

llb;c,d) and graptolites in both mudstones:and grainston~s, implies that 

early
0 
lithification prevented significant compaction. Most grainstones 

. . 
demonstrate normal, uncondensed packing fabrics and are devoid of 

intergranular microstylolites (Plate 22a-f). Some phosphate-rich 

granular sediments, however' were brittly fractured and compacted prior 

to· cementatioQ by .chalcedony (Plate 21c). This relative timing_ is 

consistent with some a-ilicification postdating the main phase of calcite 
' . 
· \cementation, whieh for unkno~n ~easons, appears to 
. ) . : . . . 

have missed these 

.. 

particular se~iments (see Chapte~ 13). Stylolites, solution seams, and . 

accumulations of siliciclastics in the transition . zone from continuous 

or nodular lime~tones to the 'surro.und~ng argillaceous- sediments occur 

~ 

but are not co11100n (cf. Logan and Semeniuk, , 1976; Wanless, 1979; 1983): 

Shales and marls, on the ~and demonstrate: ( 1) sq~ashed burrows 7------ --;, . 
and dikes (Plate llb,c) ~ (2) squashed graptolites; (3) squashed cracks 

~ ' ' 
of synaeres~ or synsedime~tary shear origin (Plate 7d); and (4) 

conv~rge~ laminations at the margins of nodules (Plate 13g). 

t , · ·.., 
•. 
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In contrast to the general absence of distinctive pressure solution 

features in the above-described sediments, some ot the thicker 

grainstone beds exhibit prominent bedding-parallel, peaked stylolites 

outl.ined by accumulations ·of siliciclastic sand and silt (Plate 3c). 

More rarely, fore set ·bedding in mega-ripple~s sim:iljr ly outlined 

(Plate 3d; 4a). Conglomerates often display condensed clast-packing with ' .. _ .. 

prominent circumgranular 5/llolites and argillaceous seams . l!lE_olubles, 

comprising mainly clays, organics, pyrite, dolomite, and ·siliciclastics, 
. I ~ 

are often. concentrated at styloli t Fs or seams . 

• 

5.2.3 Interpretation and Discussion 
• 

Compaction measurements, in _c on'!junction with qualitative evaluatfon of 

numerous unmeasureable dikes indicate that ii. Lervals with mor,;e shale ar 

marl compact to a higher degr.ee than !hose with a relatively greater 

proportion of limestone. This conclus~on is consi stent with informi.lti on 

from s~a-b and petrographic study whi ch indica t.es that 1 imestone 

compaction is usually minimal or nil and c;:om pac tion of argill aceous 
• 

sediments is mainly responsible for compaction in the suc c_ession. t hat 

limestones, particularly -mudstones, show little or no. evidence of 
.• 

compaction has also been noted in other· studies and has beeno interpreted 

to indi~-~-t~ early lithification (e.g. Weller, 1959; Bathurst, '1975; 

Steinen, 1978; cf. Shinn n .!.!.·, 1977: Bhattacharyya and Friedman, 

1979; Shinn and ROObin, ,1983). · 

The average compaction measurement is lower · than that expecte~ in pure . 

terrigenous muds but the 2 highest compaction .measurements f~m clast i c 
' , . ' 

dikes - 74 and 84% - are consistent with expected deposi.tional· ) 
. I , 

"-~, 
\ 
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-
porosities in terrigenous muds, which often range from 70-85% (Raiswell, 

197la;Pet~ijohn, 1975, p. 263). This suggests that the obs~rved 

c0111pact ion caQ be explained largely as the result of mechanical 

compaction of argillaceous sed:i.ments, with pressure solution being 

generally unimportant. The presence of stylolites, argilla~eous seams, 

' ' and accumulations of insolubles at the interface between some limestones 

and adjacent, argillaceous sediments does, however, indicate that 

pressure sol uti on has occurred at these lithological transi tio!ls, but 

such occurrences are rare. Over-all, obvious pressure solution effects 

are lacking. This topic is pursued further in Chapter 14. 

The common occurrence of c~rcumgranular stylolites and seams in 

conglomerates and ·stylolites in thicker grainstones is interpreted to be 

due to the ~reater thickness of these beds relative to more 

thinly-bedded sediments. Thickev-bedded · conglomerate and grainstone 

sequences contain !ess easily-compactabl~ shale per unit. volume than 

thinly-bedded sediments . . Consequently, some of , the burial stress iey 
.. 

accommodated by pr~ssl)re solution within these thicker limestone beds, 

either along bedding-parallel (horizontal or fore,set) stylolites in 

grainstones, , or at clast-matrix transitions in conglomerate~ 

Horizon.tal stylolites 'in ·grainstones imply that these are due to 

burial. Foreset-paral,lel stylolites in grainstones ana 

chaotically-ar:i.en_te~ stylolites and seams in conglomerates may be due . . 

either to burial or' tectonic compaction or both. 

~· 
/ 

/ 

\ 
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) 

5. 3 TECTONIC corfl'ACTION 

5. 3.1 Desc.;iption of Pressure Solution Effects- · 

Included in thP. followin~}scu~sion are the effects of regional 

. horizont:l compression anK ~structural perturbations; the ~ormer 
may be considered as the "background" against which local structural 

features are developed. Regional and local structures are likely 
. . I 

related, as suggested Ln Suchecki's (1975) ~tudy, but for discussion 

purposes, their separate consideration is convenient. 

Most out'Crops of the CHG are relatively undeformed on an outcrop scale, 

although regional structures indicate northwest-directed compression 

(Oxley, 1953). Based on field and petrographic evidence, horizontal 

shortening caused by pressure solution i~ a common occurrence. These 

pressure solution zones are oriented perpendicular or at high angle to 

bedding and are dominated by peaked stylolites, 'thin argillaceous s t-ams, 

a.nd- ' inore rarely, diffuse horsetails and microstyloli te swarms (Plat e 

·-- 21d.,e; - 48d; 53f; Wanless, 19.79; . 1983). In the following discussion these , 
various pressure solution zones are i.ncluded in the umbrella term 

"stylolite". The amount of lateral shortening these tectonic stylolites 

represent is unlmown and nfust await further refinement of the structural 

geology. 

"" Stylolite spacing is variable, typically ranging from 2-15 em but may be 

i 
as close a$ 5- 10 mm apart . Within individual beds, however, s.pacing is 
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uniform. Tectonic stylolites are almost invariably restricted to 

limestones or their dolomitized equivalents, and only rarely extend into 

the interbedded argillaceous sediments. Insolubles accumulated at 
1 

stylolites ~elude clays, organics, P.Yrite, dolomite, and 

siliciclastics. These stylolites cros's-cut all other diagenetic fabrics 

and components ~xcept for (1) fault-related dolomites (see Chapter 12) 

and (2) some late stage ~alcites in fractures (see· Chapter 8). 

Ori~ntations of vertical stylolites were measured from ·several major 

. outcrops (Figure 5.1: data 'in Appendix E). Their orientations 

demonstrate a prominent northwest-southeast compressional regime, 

consistent with the orientation of larger-scale ~structures. 

\ 
\5.3.2 Local Structures 

. 
\ ,_ 

; Localized folds, GUtcrop-size or larger, in an otherwise apparently .: { . 
' 
1 undisturbed sequence of sediments com'lnonly· illustrate: (.1-) condensed 

. I 

grain-packing fabrics (Plate 2lf); l.3J intergranular microstylolites, 
\ 

includi'ng between quartz sand grains wt#ch have come i11to contact; (3) 
! 

disturbed nodular horizons; (4) local 1renulation cleavage developed in 
\ 

shales; (5) two or more sets of ~ntersec~i~ stylolites or joints or 

both; (6) ,increased extinction undulo~ity and twinning and formation of 

distinct subcrystals in calcite; and (7) occasionally st~in. 

granularization, or .fracturing of quartz sarid_ grain& 

pressed together. 

5.3.3 Interpretation and Discussion 

/ 
which -have been 

/ 
;: .. 

j . 

-\· 

Tectonic . strlolites · (also termed "solution cleavages" l. Geiser and 
~ . 
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Figure 5.1: Orientation of vertical stylolites in the Cow Head 
Group (n=35). Field measurements are found in Table 
E.2 in Appendix E. 

\ 
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!VERTICAL STYLOLITEs'! 
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Sansone, 1981; "stylolitic joints" ·- Drexler and Schaer, 1979). both ,. 
parallel and perpendicular to _bedctfn'"~. have 'been recognized by others 

' . ··--- -~· -- ''"" 
and used in structural analysis of sedimentary sequences in the 

Appalachians (Geiser and Sansone, 1981). Rhone Valley (Baud and Masson. 

1975), Jura Mountains (Droxler and. Schaer, \979); and Rhinegraben 

(Buchner. 1981). The above studies demonstr~te that vertical stylolites 

more.or less define the principal plane perpendicular to the axis of 

maximum· shortening. 

The orientation of vertical st~lolites, along wi~h reverse faults, 

thrusts. and folds in the CHG reflect horizontal shortening caused by 
- ' 

_the .regional northwest:.soutlwest stress system which characterizes the 

Appalachians (see Chapter \). Timing of the forma~ion of vertical 
. 

stylolites is, however, ambiguous. The consistency of their orientation 
/ 

·their regional orient ion ~oth suggest that . they formed to 

in similar stresses throughout. The most 

probable time for this condition to be met is during allochthon 

emplacement (i.e. Taconic orogeny) prior to complication of the 

structure and stress fi:Id which may . have occurred du~i·~g .. a later phase 

of Taconic orogeny or Acadia-n orogeny. In addition, the consistency of 

paleocurrent data (Hubert et ~·, 1977) and vertical stylolite. 

orientation suggests that if : the CHG consists of several structural 

slices, then no significant rotadon of sl~ces ~ ve to one_ another, 

in a horizontal plane. has occurred / 

I . 

• 
-.--- ' 

,. 



.... 151 ~ 

5.3.4 Relative Timing of Burial and Tectonic Pressure 

So~uti6n 

Although most burial compaction in the CHG can be explained as the 

result of mech~nical rather than chemical processes, it is suggested 

that whatever burial pressure solut~on there is preceded pressure 

solution due to tectonism. This suggestion is based on qualita~1Ne 
... . . r 

arguments; field and petrographic cross-cutting: relationships y~~~/ ' 
. \ . . / 

ar)d their interpretation. equivocal. Assuming t.h~e· 300-500 m 

' ' of the CHG was deposited, then overlain by 1000 m or more of Lower Head 

Sandstone (James, pers. comm., 19~4) prior to significant Taconic 

hori~ontal compression, these buria.l depths were sufficient for burial 
·. 

pressure solution which , based on thft available fiterature, f starts at 
• • 0 . 

depths ranging from 300-900 m [2l. Depths would be expected to be 

variable, however, reflecting both mineralogical and fabri~ parameters 

(the "diagen'etic potential" of Schlanger ;nd Douglas, 19?4·) as well as 

· s'olution chemistry (Neugebau~, 1974). 

5.4 SUMMARY AND CONCLUSIONS 
•. 

Integration- of information from field, ·slab, and thin section study 

2, The following are m1.n1.mum depths suggested for the onset of pressure 
solution: (1) 600-900 m limestones in the Middle East (Dunnington. 
1967), (2) ~()()min chalks (Neugebauer, 1974), and (3) 300m depth in 
limestones~the Aquitane Basin (Sellier, 1979 - cited in Bathurst, 
1980b). 

.,/'' ~-

- --

• 



- 152 -

indicates that burial stresses have been accommodated mainly by 

compaction of argillaceous sediments whereas limestones are uncompacted, 

except for some thick grainstone beds and conglomerates which contain 

intrabed stylolites. The lack of compaction is consistent with evidence 

for early lithification suc~s flat pebble clasts and rafts in 

conglomerates; unsquashed burrows, graptolites, and other components; 

and general lack of microstylolites and other features suggestive of 
I 

pressure solution. 

Based on measurement - of clastic dikes, the CHG has been compacted by 

approximately 50-60%. Sequences dominated by thick grainstones or 

conglomerates may have compacted less, depending on the importance of 

intr~bed pressure solution. Sequences with greater amounts of 

' 
argillaceous sediment may have compacted more, up to 80%, a value 

consistent wit.h original depositional porosities of terrigenous muds. 

This implies that the obs_erved compaction can be . exp,lained lar.gely as 

the result of mechanical compaction of terrigenous mud- rich sediments, 

with pr~~sure solution being relatively unimp~rtant. Laieral 

1 compression from regional tectonism resul~d in the- formation of 

vertical styloJ ites throughout the CHG; however, the amount of 

horizontal shortening involved fs not known. - Pressure solution due to 

b~ri~l probably preceded that due to tectonism based on qualitative 

ar~~~e9~ ;heir ~elative timing based -on field and petrographic 
. -

relationships is equivocal . 

- ( 

• 



Chapter 6 

\ 
\ 

SEDIMENTARY PARTICLES AND THE ROLE OF CALCiFIED ALGAE AS 

SEDIMENT PRODUCERS IN THE COW HEAD GROUP 

6.1 INTRODUCTION 
. ' 

Grains in the CHG are divisible into 2 major groups: (1.) grains of 

c~rtain origin such as poids, detrital siliciclastics, and bioclasts 

(including calcifi~d algae), and (2) grains of uncertain cirigin, 

) 

dominantly peloids [ 1) and larger, mostly microcrystalline grains "{hich 

may be intraclasts [2]. 

Peloids are conspicuous particles in c.arbonate sed'\ments of all ages, 

but especially Lbwer Paleozoic limestones, many of which ar~ composed 

almost entirely of these particles (Beales, 1Q58; Folk, 195~). Whereas 

thes~ particles are usually considered to be domi nantly faecal pellets, 
~ 

petrographic study of these grains and "associated intraclasts in the CHG 

1. The term "peloid" was introd~ced by McKee and Gdschick (1969) to 
embra~e all microcrystalline to cryptocrystall;i.ne grains regardless of 
their origin. Included in_ this umbrella term ar.e faecal pellets, s::1all 
intr~c1asts, micritized bioclasts and ooids, as well as precipitated • 
m~critic carbonate (Folk, 1959; Bathurst,_ 1975; Purser, 1980). 

2. An intraclast is a fragment of penecontemporaneous, generally weakly 
consolidated sediment that has been eroded from the sea bottom and 
redeposited (Folk, 1962). 

. . 

;'~ .... 
/ 
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demonstrates an important algal co~tribution to sand- and silt-size 

sediments (Coniglio and James, 1984). This contribution is at least as 

important as that of faecal pellets. 

·' 
\ 6. 2 GENERAL DESCRIPTION OF SEDIMENTS~ 

Mudstones and the matrices of wackestones and pack~tones mainly consist 

of miclij>spar and pseudospar [ 3] where~s micrite is restricted to '\---allochems. Two mudstone microfacies are recognized: (1) homogeneous · 

mudstone, characterized by uniformly crystalline microspar and 

pseudospar, and (2) marginally-aggrad~~-~udstone in which crystal size 

progressively increases from th~entre to the margin of the bed or 

nodule. These microfacies have already been described in Chapter 2·. 

Wackestones are texturally similar, except for "pseudowackestones" which 

~re actually spicule- · and radi.olerian-rich grainstones or packstonE's. 

This sediment t ype is discussed lurther in Chapter 13. The present 

chapter concentrates mainly on the grains which comprise grainstones and 

packstones, and,which ~re dispersed in wackestones, mudstones, marls, 

and shales. 

In addition to peloids •nd intraclasts, other locally important 

components i.clude dispersed sand-and ~ilt-size crystals of dol omite, 

9oids, argillaceous and dolomitic lithoclasts, and sand- and silt7 size 

clasts o~ feldspar and quartz, the latter commonly being well-rounded. 

3. These terms are discussed in Appendix H. 

) 

,. 
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9 

Ubiquitous bioclast·s include calcified algal clasts (discussed below), 

pelmatozoan debris, trilobite, brachiopod, and ostracod fragments, 
. 

radiolarians, and sponge spicules. Sponges, bryozoan and gastropod 
,-"'-

clasts, graptolites '(1 conodonts, chi tinozpa, '&h.uconitic peloids, 

unidentifie~ heavy minerals, and mica flakes (white mica~ biotite, and 

chlorite) are less abundant. Micrite envelopes, usually less than ~0 pm 

in thickness, are developed on many ooids and bioclasts. Minor, 

sand-size, siliceous constituents include quartz arenite and chert rock 

f~agments, silicified ooid grainstone fragm~nb;, and isolated, 

' silicified ooids. Phosphate, a(Sr~chior'a fra~ments and as replaced 

allochems, shale and limestone it~tr1acla!f'ts, and dolomite crystals, is 
. ' \ \._ I . 

locally important. Brief petrographlc .~escriptions of ooids and 
r:/•' 

siliciclastics and chemical analyses of feldspar and phosphate are found ... 
in Appendix F. Dolomitic and siliceous components are detailed in 

Chapters 12 and 13, respectively. 

In general, sand-~ize siliciclastics are more abundant in Cambrian 

grainstones than iri their Ordovician counterparts (Figure 6.1). 
' 

Siliciclastics ':(sand and silt) usually consti-tute less than 20% of the 
, _.--

sediment although an exceptional sampl~ from the quartz sand-rich Bed 6 

at Cow Head North contains 58% · ~.ua~t.~. : ...... In corrtrast, Ordovician 

sediments are considerably more fossiliferous than their Cambrian 

counterparts (Figure 6.1). Bioclasts usually constitute less than 10% of 

the sediment volume. Cathode luminescence dsmonstrates that 

radiolarians and sponge spicules are sig[l.ificantly underrepresented in 

some sediments, especially "pseuqowac)<estones" (see Chapter 13). 

Using the vi~ual t~mparison cbart in Flugel (1982, p. 193, fig. 25) 
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Figure 6.1: Point-count histograms for representative Cambrian and 
Ordovician grainstones. Data fro~ which the.se were 
drgwn are found in 1able F.l in Appendix F. 

' 
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sorting in both sand and silt-size grainstones ranges from .poor to 

good. Grain packing varies according to ( 1) the importance of 

grain-to-grain pressure solution (usually negligible) and (2) the 

of authigenic overgrowth on dolomite and feldspar silt. 
,.. 

!"· ·~ ~~. 
, \, .-

6. 3 PELOIDS I MICRITIC, INTRACLASTS I AND PELOIDAL 

INTRALCLASTS 

What are commonly regarded as undifferentiated peloids and intraclasts 

are here subdivided 'into 3 separate 1 blj.~ inte>gradaqonal categories -

peloids, micritic intraclasts,. and peloidal intraclasts (Figure 6.2). 

Cpllect:lv-=ly 1 these grains account for as much as 65% of the volume in 

• gra;nstones, the ' remaining volume being largely calcite cement (see 

Table F .l in Appendix F). · 

(1) Peloids: Up to 80% or more of the g£ains in medium sand-size and 

smaller grainstones 'are p~Ioids (see ; Appendix F). Peloid~ are usua.lly 

.equant, ranging fr9m 10-~00 pm in size -and corrunonly composed of dense, 

homogeneous micrite ·(Plate 22a, b, c). Less common are microspar 

P:elo.tds __ with crystals .up to 10 pm in size. Some otherwise micritic 
'·-·~ _.....:_ .. ~'; 7·( .• ·. 

peloids ·anay have micros pat centres. 

(2) Micritic Intraclasts: The upper size limit (4] of 500 pm is 

ar·bitrary and serves to distinguish p~loids fro11 micritic intraciasts, 

4~ Flugel (1982) suggested that the bo~>nda.ry be placed at 200 t~m but ~0 
· pm appears to be a more suitable boundary for .the-Cow Head Grovp 
sediments~ 

,--

: 



. Figure 6 . 2: Schematic diagram illustfafing_ the relationship . 

__J ' 

between peloids, micritic intracla~t_s, and peloida-l 
intraclasts as discussed in text. 

.• 

i 
/ 
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~hich have an identical microfabric to peloids but are larger and 
~-- f 

E ./ . ! 

c!.. ...:_""'- _____ commonly more ,angular and may· contain bioclasts alo'!g with dispersed 

dolomitic and siliciclastic silt (Plate 22~) •. Up to 28% of the grains in 

med:Lum sand--size and ~ coarser grainst<?~es are micritic intraclasts, the· 

remaining grains being peloids, dolomite, siliciclastics, and peloidal 

intraclasts (see Appendix F) • 

. (3) Peloidal tntraclasts: This group includes grains illustrating a wide 

varietX of microfabrics. At one end of the spectrum are intraclasts · 
- ~. 

compose~ of -~eloids with subordinate ooids, siliciclastics, dolomite, or 

bioclasts and calcite cement (Plate 22d ,e). Other peloidal intraclasts 

contain peloids in which the grain-matrix contact ij- gradational (Plate 

22e,f). I~ -these intraclasts, peloids are poorl3-defined pat.ches of 

·-
micrite or microspar ( 10-15 pm crystal size) . set in a matrix. ?f s-lightly 

coarser calcite spar. At the 6ther end of the spectrum are _ intraclasts 

in which the micrite patch-matrix boundaries are obscure and gradational -. 
and the overall mitrofabric is the familiar structure g~umeleuse or 

"clOtted" limeston~ (Cayeux, 1~ common in PhanerO"zoic limestones. 

Peloidal intraclasts may be as small as 200-300 pm in size but th~ size 

range more commonly is 500-1000 pm. ' occasionalty reaching granule_- or 

small pebble~size. In sand-size grainstones, peloidal intraclasts 

account £or up to 77% of the grains (see Appendix F). 

Structure J!Umeleuse may be considered in a purely descriptive sense as 

a transitional fabric which bridges the spectrum of progressive change 
f 

between a homogeneous micrite matrix with vague peloids {pelmicrite) and , 
sediment in whicb peloids are sharply demarcated from interpartic;le · 

matrix (Bathurst, 1975). The peloids or clots which ar.e a·n integral part 
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. . 
• 

,. 
microfabric usually vary in size from silt to fine sand [5] . 

.' ·~ .... 
Di on str~cture grumeleuse is provided in Appendix G. 

} .r'l"' .. . 

" 
. 6.4 PARTICLES OF CALCIFIED ALGAE 

Algal . particles ere comparatively rare in Cambrian sediments relative to 

their Ordovician counterparts: Based on point counting of 10 Ordovician

grainstones, the identifiable algal contribution varies from 3-9% of the 

total rock volume (Fi~ure 6.1). In contrast, the 

Cambrian grainstones is typicall.Y less than. 1%. 

· particles ~r~ Girvanella~ith les~er amounts of 

visible 

The most 

E2i2h~ton 

contribution 

common algal 

and Nuia. 

Girvanella, Epiphyton, and Renalcis [6] are considered to 

cyanophytes (Wray, 1977) now generally rega,rded as cyanobact~-i-a (Pr 

1984). Recently, ho~ever, Pratt and James (1982a) and Pratt (1984) 
. 

. suggested that qoth Epi2hyton and Renalcis ar~ 

in ~hfch "genera•• and "species" ar'e a functiory 

the nature of J:alcification. Nuja is a problematical 

probable al_gal all..inities(Toomey and Klement, · 1966). 

6.4.1 Girvanella 

' 
5. Size· ranges of 20-150 pm, iO-lqD pm, and 50-150 Jlm for peloids in 
structure grumelepe are reported in Schwarzacher ( 1961), Fuchtbauer 
(1974). and Flu gel (1982). respectively • 

to 

6. Renalcis is not seen in these fine grained li.mestones but is found 1n 
algal boundstone boulders- discussed later. 

I 

\ 

" 
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Girvanella is a uniform diameter, unbranching, and non-septate tubule 

5-25 pm in external diameter and up to several h1,mdred micrometres in 

~ngt~ Diameters from 10-15 pm are the most abundant (see Danielli, 

198r). The tubule wall- is less than 5 pm thick and is composed of 

micritic calcite. 

Four types of Girvanella clasts can be differentiated in these 

sediments: single tubules, rafts, oncolites, ~nd intraclasts. In clean, 

moderately-sorted grainstones, the most common algal particles are 

intraclasts. As sediments become more poorly-sorted and shell-rich, 

Girvanella rafts, single tubules and oncolites are more abundant. 

6.4.1.1 Single Girvanella Tubules 

Single Girvanella tubules are generally straight to sligh,tly sinuous, 

and up to 75 J!~ in length (Plate 23a) •· The micrite walls and coarser 

microspar c.ores of these tubules suggest that scattered, equant, 

silt-size peloids with microspar c«!ntres and micritic margins may be 

either fragmented tubules or transverse views (Plate 23b). In the . same 

sediment~ num~rous "rods" of dense micrite are found with exa~tly the 

same shapes and dimensions as the tubules (Plate 23c) . In addition, 

there are large numbers of peloids whit;-h . are identical to those 

destribed· above as being derived from Girvanella tubules, except they 

are, like the rods, dense micrite throughout, without the coarser 

m~crospar core. Such peloids are 'dominant particles i~ many limestones 

in the CHG. ,. 

..... 
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6.4.1.2 Girvanella Rafts 

Rafts consist of loosely to tightly intertwined Girvanella tubules, . 
equant to elongate in shape and up to 1 mm in l~ength by 0.1-0.2 mm in 

width (Plate 23d). 'In elong~~e rafts, tubules are tlearly sub-parallel 

to one another and the long dimension of the raft. Rafts\are usually 

much larger than associated sand and silt-size particles suggesting that 

these algal clasts were deposited as brittle, porous particles which 

were hydraulically equivalent to the surrounding, smaller.grains. The 

presence of former void ~pace in the rafts is indicated by blocky inter-

and intra-tubule cem~nt identical to calcite spaT'[>etween grains. 

preservation ~f these porous, delicate rafts necessitate~! 
-" reworking prior to transport into the slo~e environm~nt. _ .. 

6.4.1.3 Girvanella Oncolites 

The 

Girvan~lla oncolites 'range from fine to coarse sand-size and consist of 

a few layers of sinuously-disposed tubules arranged around spherical to 

elliptical nuclei which appe'ar .to be cement-fille~ · molds (Plate 23e). 

These grains are uncommon r"elative to the other Girvanella particles . 

6.4.1.4 Girvanella Intraclasts 

Girvanella-bearing intraclasts are sub-rou~ded to rounded, equant to 

elongate in shape, and coarse sand- to pebble-size. The amount of 
.----·"· 

Girvanella in any rne i~traclast v~ries; some consist erltirely of 

tightly interwoven tubules whereas other:s are (l few loosely intertwined ..... 

tubules surrounded by micrite and microspar (structure grumeleuse; Plate 

~ 

I 
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24a,b). These iRtraclasts were deposited as non-porous grains, unlike 

rafts (discussed above), because they ar~. alway& -the ,same size as 
) 

surrounding grains, indicating hydrauli~ equivalence. 

' 
The sharpness of the boundary between Girvanella tubule and surrounding 

microspar is variable. In some intraclasts the transition is. sharp and 

Girvanella preservation is perfect (Plate 24b, d) while in others 

Girvanella is represented by dense micritic filaments or threads in 

which the tubula.J structure is not apparen..t and the transition to 

inte;filament microspar is gradational {Plate 24c). Except for ~he . .;: . 
presence of Girvanella tubules or related dense micritic filaments, the 

range of microfabrics in Girvanella intraclasts is identical to that of 

peloidal intraclasts~ 

; 

In larger intraclasts, radial fibrous cement and more finely crystalline 

cements are identical to those found in the ·algal boulders described by 

• James (1981). Obvious algal intraclasts as well as peloidal intraclasts 

decrease in number with smaller particle size. 

6.4. 2 Epiphyton 
'<) . 

Epiphyton intraclasts can be positively' identified 6nly where elongate 

portions of thalli can be seen (Plate 25a,b). Transverse views are, in 

most cases, not differentiable from well-sorted peloidal grainstone 

intraclasts. Epiphyton within intraclasts consists of dense micritic 

branches which vary from 35~60 r• in diameter. 

.. ) . 
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6.4.3 Nuia 

Nuia is usually spherical, rarely elongate, 200- 350 pm in dia~eter, and 

characterized by radial arrangement of elongate calcite crystals 

("radial-hyaline ··wall structure" of Toomey and Klement, 1966) with a 

small, dark nucleus ("central canal"). These grains are scattered 

throu.ghout the Ordovician and less commonly Cambrian grainstones (Plate 

22c; 34b). 

6"4,4 Summary 
.. 

The most obvious algal contribution to limestones in the CHG (excluding 

conglomerates) "is from Girvanella, in the for~ of pebble-sized 

intraclasts through to silt-sized single tubules. Silt-siied grains 

that have a clear, coarser microspar ~entre were derived from attrition 

of the tubules. More abundant, however, are micrite rods and peloids 

identical in size to the above, except tha~ they lack the clear, coarser 

spar centres. 

Girvanella can be obvious in intraclasts and constitute a large 

proportion of -the grain, or i~: can occur as barely. resolvable tubules or 

micritic filaments set in a matrix of structure grumeleuse. feloidol --
intraclasts characteriUid by structure grumeleuse and without evidence 

of calcified algae are-important components in many grainstones. 

Epiphyton is present as identifiable fragments in intraclasts and Nuia 

occurs as single, sand-size particles. 

--- ·-
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6.5 ALGAL SEDIMENTS FROM THE PLATFORM MARGIN AND INTERIOR' 

6.5.1 P~trography of Platform Margin Boulder·s 

Conglomerates in the Cow Head Group contain boulders of white to ligh~ 

gray limestone which are composed primarily of calcified algal 

boundstones (James, 1981). These .boundstones, dominated by Girvanella , 

Epiphyton, and to a lesser extent Renalcis Stnli cemented by . submarine, 

radial fibrou~ calcite cement, w~re interpreted to re~resent mounds 

which grew within the photic zone at a platform margin 'characterized by 

ag~tated conditions and locally ooid-rich grainstones. Petrographic 
I 

r'lationships indicate that the anhedral, finely crystalline calcite 

spch cementing Girvanella and Epiphyton, with•n Girvanella tubules, _and 

forming par~ of the structure grumeleuse microfabric ·is cogenetic with 

the well-defined radial fibrous cry~tals. Pertinent details of the, 

petrography of these boundstones are provided in the following 

paragraphs, based upon information in James (1981) and further work. 

In the boulders Girvanella are loosely to tightly intertwined and define 

slightly curved to planar sheets or crusts up to 1.5 mm thick (Plate 

26a). Sheets containing well-preserved Girvanella (Plate 26b) may grade 

laterally over a distance of several tens of micrometres into poorly 

preserved filame!ltS ("micritic threads" of James, 1981) and to irregular 

peloidal ~icrite - microspar mosaics forming structure grumeleuse with 
·' 

no preserved filaments (Plate .26c). Sheets tormed by dense micrit i c 

threads and structure grumeleuse are more common than sheets in which 

. ' 

/ 
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we,ll-preserved Girvanella tubules are abundant •. 

Epiphyton is well-preserve~~ and occurs as arborescent clusters 

("bushes") up to 1 em in size which consist of straight to slightly .. 
curved, branches 35-60 pm in diameter (Plate 25b). The common 

microfabric is one of dense, homogeneous ~icrite but in many samples the 

branches,are chambered and following the taxonomy of·Korde (1973) could 

be Gordonophyton. Some chambered branches grade in the same branch to 

dense micrite. suggesting that differences in the degree of 

calcification may result in the recognition of different algal 1'gencra" 

and "species" (Pratt, 1984) • 
.. 

Renalcis typically occurs as a series of superposed lunate"chambers with 

a poorly-defined micritic wall which grades into slightly larger and 

more transparent spar at the centre of the chamber. 

Grainstones within the algal bobndstone boulders contain numerous 

" peloidal and Girvanella intraclasts and Girvanella rafts. commonly 

granule-size or larger, identical to those in fine-grained slope 

limestones. This., together with their occasional elongate shape and 

radial fibrous calcite cement, suggests that they came from Girvanella 

sheets on the nearby mounds • .. . 
Algal boundstone boulders have also been described from the ~ower to · 

Middle Cambrian Shady Dolomite of the southern Appalachian Valley and 

Ridge Province (Pfeil and Read, 1980; Read and Pfeil, 1983)~ As with the 

CHG boulders, some of the microfabrics in the southern Appalachian · 

boulders illu~trate variability in the preservation of Girvanella and 

possibly also Epiphyton. Girvanella was commonly recrystallized to a 

\ . 

.. 
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.,gray microspar . and some thrombolites contained a : "wispy" 

suggested faintly preserved filaments of~ • 

6.5.2 Algae of the Platform Interior 

.l 

fabr\ which 

~ situ platform-margin equivalentS to tne CHG algal boundstones are not 

·" found in the western Newfoundland autochthonous platform su.ccessiori du.e 

to erosion, metamorphism, or burial by allochthonous slices emplaced . . . 

\ 

during Taconic-9rogeny (James, 1981). Cryptalgal structures (Aitken, 

1967), however, are important in the autochthonous, platform-int~rior 

sediments '(Figure q.3). Previous work on ·the Middle to Upper Cambrian 

Port au Port Group and the Lower Ordovici~n St. George Group indicate 

that stromatolites, thrombolites, and thrombolite-metazoa mounds are 

~ommon (Swett and Smit, 1972; ~vesque, 19771 Pratt and James, 1982b). 

In contrast to the Cow Head Group boulders, Renalcis is an i~portant 
·, 

' constituent of. some. of the Lower Ordovician mounds (Pratt and James, 

1~82b) w~ereas Epiphyton is absent (Pratt, · 1979); this is consistent 

with its apparent preference for platform-edge lithofacies (James, 1981; 

Demicco ll !.!_., 1982; Read and Pfeil, 1983). 

6.~.3 Summary 

Algal boulders from conglomerates in the Cow Head Group indicate that 

calcified algae were ·major sedi~ent producers at the shelf margin. 

Here, . poorly preserved Girvanella $heets, characterized either by dense 

micritic filaments or structure gr~meleuse, are volumetrically as 

important -as sheets in which Girvanella tubules are ~learly 

. differentiable. Bot~ Girvanella and Epiphyton are equally abundant in 

• 
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Schematic. reconstruction of the distribution of Lower; _ 
Paleozoic calcified and non-calcifying algae hom 
western Newfoundland. The reconstruction of the 
platform interior setting is based on the synthesis of 
Lower Ordovician algal carbonates by Pra~t and James ··· 
(1982b). ·The Middle to Upp~r Cambrian distribution is 
assumed to be similar to the Lower Ordovician·~ · ' 
Vertical·and horizontal distances ar~ not to s~ale. 
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• 
the boundstone boulders but in the- thinly-bedded slope limestones, only 

Girvanella is · c6~~on and Epiphyton is rare. Sediments associated with 

. the algal boulders -contain particles identical to those found in the 

slope limestones. The presence of radial-fibrous calcite within these 

grains .• and in some cases t their elongate s~apes suggest that they are 

fragmented Girvan;lla sheets, probably derived locally from adjacent 

calcified algal mounds • 

6.6 DISCUSSION · 

·-; 
., 6.6.1 Girvanella 

Wh~ -~observations on the distribution, relative abundanc~. and fabric of 

calcified algae in both limestone. boulders and slope limestones are 

· ·. integrated, a clearer picture of the contribution of algal particles to· 

the sediment ell)erges. Fragmentation of Girvanella sheets which comprise 

the algal ,boundstones produces i ntraclasts both \,rith and without obvious 
\ 

in algal boundstones (Figure 6.4). With minor synsedimentary 

cementation, porous rafts result instead, which in tur n, fragment to 

yield single tubu.les and ultimately peloids with microspar centres and 
•. 

micritic margins. If the tubular structur.e is not preserved, dense 

,micrite rods and the ubiquitous, dense, silt-size pelo':ids result. It is 

not nec~ss_ary tQ_ look further than dre platform margin algal boundstone 

lithofacies tQ find a source for: ' (1) Girvanella clasts; (2) many 

peloidal intraclasts, especially tho.se with structure grumeleuse: and 
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Sununary diagram of break-down of calcified algae. 
Girvanella sheets from the platform edge lithofacies 
provide a potentially wide variety of algal clasts. 
Peloidal intraclasts chara~terized by structure 
grumeleuse abound in Cow Head Group sediments and also 
find ~ ready source in the platform eclge lithofacres~ 
Oncolit?s probably form in less energetic settings 

- than· the .platform margin algal boundstones and are 
swept from the,platform interior to locally contribute 
to sl~pe sedimentation. ' 

Break-down of.Epiphyton is not as readily traceable as 
that for Girvanella. Destruction of the _typically 
dense micritic branches will provide coarse silt- to 
very fine sand-!;>ize algal clasts which contain no 
distinguishing miirostructure and are not ' 
differentiable from other similar-size peloids. 
Larger intraclasts are only differentiable from 
peloidal-grainstone intraclasts if elongate portions 
of the branches are seen. 

The importance of the modern codiacean Halimeda as a 
contributor of granule- to mud-size carbonate provides 
a possible modern analogue for the anc~ent forms 
Girvanella and Epiphyton. This portion of the figure 
is adapted from Folk and Robles (1964). 

' 

~ · 
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(3) micritic! silt-size peloids which charact~rize numerous limestones 

in this succession. 

Although structure grumeleuse microfabric can form in numerous ways (see 

discdssion in Appendix G), study of Girvanella sheets in algal 

boundstone boulders sugg~sts that some structure grumeleuse may be due 
. . 

to synsedimentary processes affecting living or dead fi lame.!!..tous and 

coccoid algae. ·. This structure gr~leuse may be the result of either 

,j'overcalcification" '\"i th consequent closs of diagnostic microfabric; or · 
' . 

insuf..ficient calcification to define the Girvanella form . .. 

6. 6. 2 Epiphyton ... 

The "importance of ~piphyton as a sediment ~reducer is not as obvious as 

for Girvanella. The importance of Epi~hyton in algal boundstones and the 
\ 

paucity of distinct E_piphyton clasts in fine-grained slope l~mest,ones 

implies that th~ Epiphyton contributi6n is .extremely s~btle. The 

d·~a~eter of the .Epiphytorr bra~ch ( 35-60 pm) suggests that fragmental ion 

will readily provide coarse silt- to very fine sand-size peloids. Due ~, 

to the mictitic cofuposition of .these branches, peloids produced in this .. 
. way will provide no h1.nt of their algal origin. Rees (in preparation) 

recently ~arne tQ the same <;one~ us ion regarding the. lack of obvious 

Epiphy\on clasts in ~hallow-water; Epiphyton-rich lithofacies of the 

Middle Cambrian Wheeler Formation in western Utah. 

~ilriestones of the CHG are · not the on~y sediments in whlch an important 

alg~l contribution has been suggested. Wolf (1965) described the 

breakdown products from calcified algae in the Lower Devonian Nubrigy~ 
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. 
Format ion .of New South Wales. Aitken (1967) documented Girvanella in 

.Albertaa Other studies in which algal clasts have been reported inclu,de 

Ahr ( 1971), Toomey and Ni tecki (1979), and Markello a·n4. Read (1981) ... 

In addition to an algal origin for many of the pel~ids in the CHG, 

~\ faecal pell<.ts m~st also be important based op the amo~nt of shelly 

. I debris found in the CHG as well as in the shallow-water equivalents of 
·;~r''-.: '. 
. ,;•' ·~\ 

' 
the ~latf6imal succession. The possibility that micritized . bioclasts 

' ""'--, and ooids may be the parent grains of these peloids is di~counted 

because micrite envelopes on bioclasts and ooids are never wid~r 'than 10 

pm and grains transitional between these and dense micri~ic peloids are 

nev~r seen. An intraclastic origiri 'is also a possibility but small, 

micritic intraclast'~ would not be readily differentiated from mic~iti'£. 

peloids' of other origins (see Fahraeus ~ al., 1974). 

·----.,-------,.c:--:-----:--:--:---=-=---:-:-:--~· -···--~---------------------1 ----- -- -----6.6.3 Comp-arison With Modern Calcified Algae 

In moaern tropical oceans, calcified algae, notably calcified 

chlorophytes and .rh6dophytes~ are 1mpo~tant sediment contributors on 

carbonate shelves (Wray, 1~77)._ Although physiologically quite 
r. 

different, modern coralline and codiacean algae appear to have largely 

supplanted the Paleozoic calcified cyanobacteria in a major 

s_edimen i '-producing role. Art,iculated corallines, such as Amphiroa, 
( 

readily disintegrate to produce sand-size particl~s. The codiacea·n 

-- Halimeda forms . easily re~ognizable sand- to granule-size plates · upon 

. ·- . death and disaggregation and is regarded as the "single most abundant 

grain constituent in many sub-tropical lagoon and back-reef L 
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.environmen·ts" (Wray, 1977, p • . 142; Ftgure 6.4). The role of Halimeda as 

an important sediment producer has been documented repeatedly in the 
.. 

literature on ~~dern carbonate platforms (e.g. Purdy, 1963; Folk and 
q, 

Robles, -1964; Bathurst. 1975; Drew, 1983; Liebezeit ~ ~·, 1984). The 

destruction of Halimeda, Penicillus (also a codiacean), and other -- .: - ' 

I 

calcified gr~en algae also results in the productioq of ~iny aragonite 
J 

\ 
needles to form lime muds (Folk and Robles, 1964; S~ockman ~ al., 1-967; . '· \ . 

1977). ' . '· 
Wray; 

'" -Recent work on deep-water sediments adjacent to shallow-wa\er carbonate 

P.~atforms in the modern ocean has shown · t_hat sign_ificant amd\jnts of 
-\ ·-~ 

calcified algae. notably Halil!leda, in addition to froagments of\ coralli~e--~ 
\ 

alg!i~ · and shallow water faunas (e.g. mollus_ks, benthic foramini~era, 
) I 

ec.h{noids, _corals), are 

and Hoo~e (1977) 

transported ~to deep-water environments.\ Land 
- ~ . ' 
- I 

reported Halimeda in sedimen~s from water depth~ of 

___ _ _______ 1_00-200 ~on ~~ ~s-~a_n_d _ slope off Jamaica. James and Ginsburg ( 19~) 

-. 

\ 

also reported algal': elates from the -cliffed fore-reef off Glovers .a\oll 
.. ~ ' 

' . . . 

et a depth of 310 m and from 2200 m depth fro~ the Cayman Trough off 

Belize. Crevello and Schlage~ (1980) examined sandy turbidite5 from 1200 

m and greater depths in Exuma Soun-d in the Baha_mas and indi~ated an 

important Halimeda contribution._ Halimeda plates also form an ~ajor 

part of the sand-siz~ assemblage recovered from ~ -modifi~d grai~ flow" 

deposited cored at 4000 m depth at the base· of the Bahqma Escarpment ·-._ _ ·. . 

------~- , ..•. : . " ·· · .... . -.... 
(Hull ins _and Van Buren, 1979). The large carbonate sedimerl't •,rif~ s ~t 

_, d~pths up to 800 m in the northern Str-aits of Florida also co;iain; 

Halimeda (Mullins e,t !..!.·, ,1980b). Halimed~ was found in sediments dredged 
t 

from the deep ·waters ( 1400 m) surrounding the Bikini ato-ll (Em~ry ~ 

•. 
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6.7 CONCLUSIONS 

. 
Clasts of the calcified algae Girvanella and Epiphyton were derived from 

algal mounds which grew at the shallow platform margin. These parti~les 

are volumetrically ·the most abundant bioclastic particles in _ 

fine-grained limestones of the CHG. Four ~ypes of Girv~nella part~cles . . 
are differentiated- oncolites, . rafts, single tubules, and intraclasts; 

Breakdown of Girvanella sheets in the platform-J!largin mound·s provided 

intraclasts with obvious Gi~vanella as well as. a variety of peloidal 

·intraclasts ·lacking evidence of calcified·· ~lgae but instead 

character~zed by stiucture grumeleuse. In contrast to Girvanella, the 

petrographic evidence f6r Epiphyton in fine-grained limestones is rare, 

occurring only as intraclasts. 

Micii~ic ' peloids and peloidal intraclasts, many characterized by 

structure grumeleuse, are the dominant particles in CHG limestones. 

Comparison of microfabrics in these particles with thos e in the algal 

boundstone boulders suggests ·that most peloids and peloidal intraclasts 
• 

are cryptalgal. 
• 

Peloids and intraclasts such as those in the CHG als~ characterize many 

other Phanerozoic limestones and suggest that the role of calcified 

~lgae as sediment producers may be considerably underestimated! Testing 

of this hypothesis must await additional studies which seek to integrate 

data from known calcif i ed algal accumulations with their surrounding 

--· 

-. 
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"peloidal:' sediments. 

··---_..-·,o· 
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PART B: DIAGENESIS ---

INTRODUCTION 

The authigenic com~on~nts in the ~HG are, in order of volumetric 
# " 

importance, calcite, dolomite, silica, and barite. Pyrite arid potassic. 

feldspar qvergrowths on detrital 'RUclei are also present and ubiquitous; 
. , ..... , 

but not. abundant.' Authigenic minerals of only mirror and local 

importance include sphalerite, glauconite, chlorite, and flourite 

.(~escribed in Appendix- L). Aut~igenic clay minerals in . shales presumably 

include illite and chlorite, · in addition to the terrigenous fraction, 

and the mixed-layer clay, eorrensite (discussed in Appendix B). -

Chapters 7- 11 deal mainly with calcite diagenesis, although dolomite 

(Chppter 12), silica, batite, and pyrite (Chapter 13) are also 

considered. Fine- grained as well as conglomeratic sediments are 

. studied, and collectively they illustrate an extensive suite of 

diagenetic fabrics wiih which the diagenet~c history of this succession 

can be deciphered. All diagenetic aspects ·discussed in the following 

chapters are the result of in situ •processes. A notable · exception, 

however, is radiaxial fibrous cement fpund in some boulders in 

conglomerates. These cements, transported along with their host 

boulders from shallow-w~ter, are examined i n order to complei e the 

inventory of fibrous calcites found in the CHG (see below). The 
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... 
diagenesis o[ clasts in conglomerates are not detailed in this thesis, 

but - reconnaissance observations of clasts presumed to be reworked slope 

sediments are considered. 

Routine\analysis of these sediments included thin section staining 
• I 

) 
· (calcit4e versus dolomite, ferroan versus non-fer roan [ 1]) and extensive 

. l 
usr ·of cathode luminesc.ence (abbreviated ''CL") [ 2·]. The pegree of 

I 

chemical heterogeneity resolvable with CL allows it to be used as a . 
sensitive "fingerprint" of temporal and spatial chemi,cal attributes of a 

/ . 

. -- ·-----
carbol)ate-precipitating pore-water system, complimenting · both staining 

and ~hemical arialys~~. T~e sensitivity tif luminescence colour and 

•intensity to slight changes in trace element composition allows the 

recogni\ion·of chemical heterogeneity in crystals which otherwise appear 

homogeneous by any other analytical method. . In addft .ipn; CL plays an 

important role in the study of microfabrics. Such fea~ures as solu.t,ion . 

unconformities (corrosion surfaces), detiital calcite and ~olomi~e 

particles, composite crystals, and m<;>rpnologies of c ~ ystals at 

intermediate stages of growth can be seen. 

TYPES OF CALCITE 1 ,. 

' 
Diagenetic or authige~ic calcite is that which "bas crystallized 

essentially in situ w~thin . the sediment .. J ' -, -- -(Folk, . l965, p.23) • 
. .. 

~ 

... 
) 

1. The terms ferroan and .!!£!1-ferroan simply refer to whether or riot an 
iron stain is detectable in calcite or dolomite. 

2. · Procedure~ and instrumentation data are provided in Append i x I. 

• 

.~ . ~-
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Diagenetic calcite forms in 4 ways: (1) direct precipitation as a cemertt 
' 

into a "void, ( 2) by neorriorphis!D of previous calcite or aragonite' ( 3) by 

displacive precipit~tion, and (4) .by replacemen~ of oiher non-CaCQ3 . 
·• 

minerals • . All~ types are found in the CHG. although only the first 3 ., 

are of ~n·y volumetric.importance as well as .informative in' terms of 

providing usefu,l data concerning the diagenetic history. The fourth 

type is represented by scattered. occurrences of d~dolomite and . 
replacem_e_nt._of sphalertte,pyrite, and barite. 

A brief discussion on terAlino~~gy and definitions related to cementati.on 

and neomorphism is provided in Appendix H. In additio~ .the criteria used 

to distinguish cements from neomorphic spar ar.e also reviewed. In this 

thesis the term "neospar" is adopted to refer · to both microspar and 

pseudospar, or either,when their separate distinction is not important. 
- - - ·· 

The spectrum of diagenetic calcites in the CHQ is conveniently divided 

into 6 categories, some of which are intergradational. Thl:!se are listed 

and briefly described below. 

.. 
( 1) "Radiaxial Fibrous Calcite: ("RFC") ceme"nts are invariably restricted 

to the shallow-water boulders in conglomerates. These cements have the 

characteristic distally-convergent extinction of RFC. This distinguishes 

them from in situ fibrous calcites (see below). RFC is described in 

Chapter 7. 

(2) Congl0111erete Fibrous Calcite: ("CFC") cement crysta ~s are elongate 

(i.e. fibrous), have unit extinction, and ~ommonly develop scai~nohedral 

· terminations. They occur in conglomerate matrices and are therefore in 

situ precipitates. CFC .is also associated with equant calcite cement, 
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dolomite cement, and internal sediment. These calcites are described in 
,. 

Chapter 8 . 

'(3) Displacive Fibrous Calcite: ("DFC") is abundant thr_oughout the CHG. · 

These crystals have· unit extinction or the characteristic sweep\ng 

extinction o'f radial fibrous aggregates. As with CFC, DFC ·may develop 

scalenohedral terminations, but unlike ~both RFC and CFCl DFC commonly · --- . 

contains a fibrous inclusion pattern ·. DFC is not a pore-fiiling, but 

instead occupies space resultin'g from its owh displacive growth. DFC 

forms enigmatic "beef" and "cone-in-cone" fringes, as well as 

~ micros~opic fringes de~eloped around ar~illaceous intraclasts. These 

ca}£1tes are described in· Chapter 9. 

' ( 4) Equan·t Cement: Intra- and interparticle equant · cement is (ound in 

gr~instones, grainst~ne matrices of con~lomerates,_ and conglomerates . ~ . -
with a sparry matrix. Most sand- and sil t-"-s'ized, grain-s-upported 

sediments are grainstones. This cement, along with fracture cements, 

and neospar {see belo~). are described in Chapter 8. 

I i ·-(5) Fr~cture Cements: V~in and fracture.cements ar~ ubiquitous ·and 

generally composed of ~ua'nt calcite. crystals. The fractures aFld -veins 

range ofrom a shallow-burial orig}n to postdating tectonically-related 

dolomitization. 

(6) Neospar: Equant to loaf-shaped crystals of intra- and interparticle 

·' neospar occur ·in packstones, wackestones, mudstones, and conglomerates 
. ·- ·- -

with these matrices. 

CL microfabrics of RFC, DFC, and some pseudospar suggests growth as 

.. 

. . 

• 
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spheroc rystals... similar to what Kendall (in press) recently pro.posed as 

a reinterpretation of RFC in general. Many CL mi_crofabrics illustrated 

in these ·chapters have not, to my knowledge, been reported elsewhere in 

' the literature. The exceptional.l¥-.:informative CL of RFC from the CHG 

provides . fhe ·basis for a .mo~iification of Kendall's (1ri pres~) 
. ' 

explanation of dista 11 y-coni.-ergent extinct ion in< these crystals. 

Trace element geochemistry of calcite as a function of progressive 

precipitation is discussed in Chapter 9. In Chapter 10 the stable. 

. 
isotopic geochemistry of a wide variety of authigenic calcites, a~ - well 

as RFC from the shallow-water boulders, is examined. 

,, 

OTHER DIAGENETIC MINERALS 

Other important ~enetic processes in the CHG include dolomitization, 

silicification, replacement of si liceous components by calcite, and 

precipitation of barite and pyrite. Field, petrographic, and CL 

characteristics of dolomitization, along with trace elements and stable 

isotopes, are discussed in Chapter 12. Chapter 13 deals mainly with 

field rel<ttionships and petrography of silicification and replacement of 

siliceous components by calcite. This chapter also illustrates the 

• .. 
power of CL as a microfacies tool and the importance of siliceous 

' microfacies in the CHG. Barite and pyrite are also bri'efly examined in 

this chapter. 
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• Chapter 7 

RADIAXIAL FIBROUS CALCITE 

7.1 INTRODUCTION 

Radiaxia1 fibrous calcite ("RFC" [1)) and fascicular opti'c calcite 

("FOC" [2]) are corrunon constituents of ancient shal low-wat er and, to n 

lesser eX'tent, deep-water limestones (e.g. Kendall and Tucker, )971; 

Garrison, 1972; Kendall aRd Tucker, 1973; Tucker, 1973; Mountjoy and 

Walls, 1977; James and Klappa,' 1983), Until recently, these fibrous 

calcites were interpreted 'as neomotphosed, fibrous, marine cements 

" 
(Kendall and Tucker, 1973; Kendall, 1977), Thei r assoc i at ion with 

intPrnal marine sediments in primary, often reefal, cav i ties provided 

the basis for a marine cement origin (however, see Ross n ~·, 197'); 

Crpss and Klosterman, 1981). That RFC were not primary, however, was 

based on t?e presence of distally convergent c-axes and apparent lattic e 

strain; curved twins, cleavages, and glide plains; divergent 

1. Radiaxial fibrous refers to a microfabric within single large 
crystals which is characterized by diverging subcrystals, dis t ally 
convergent optic axes, and curved twins, cleavages, and glide lamellae 

t () (Bathurst, 1959; Kendall, in press). 

2. The characteristics of FOC are similar to those of RFC except that, 
the optic axes are distally divergent (Kendall, 1977; & in press). 

,. 

., 
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sub-trystals; non-planar intercrystallin"e boundaries: inclusion patterns 

in calcites which appeared to not respect crystal boundaries and which 

formed irregular or rhombohedral growt~ fronts; lack of competitive 

growth fabrics; and· occurrence of RFC an.d FOC in the same pores which 

suggested that they were diagenetic variants of one another (Bathurst, 

1975; Kendall- and Tucker, 1973; Kendall, 1977, in press). Kendall and 

Tucker's (1973) classic interpretation of RFC invoked the migration of a 

fluid film through the fibrous precursor, from base to top, dissolving 

the original cement crystals on one side and precipita~ing .RFC on the 

other. Replacement was · hy.Pothesized to occur most rapidly between the 

original bundles of crystals thus leading to the centres of the 

neomorphic crystals being established here. A similar interpretation, 

though without the necessity of replacing preferentially along 

boundaries of the original acicular bundles, was proposed for FOC 

(Kendall, 1977), 

Numerous papers published after that of Kendall and Tucker ( 1973) . . 
describe RFC, though provide littl~ fresh insight in~o its 

interpretation beyond its probable original Mg-calcite mineralogy 

~ (Davies, "1977a; Lohmann and Meyers, 1977). Kendall's (in press) 

reevaluation of th~gin of RFC dismisses most of the previous 

arguments demanding a neomorphic origin for these crystals and concludes 

that the fabric is indeed primary, and is the result of compasite 

crystal growth. 

RFC in the CHG, first recognized and described by Suchecki (1975), is 

found in various shallow-water boulders which were transported to the 

deep-water slope environment within debris flows. Although not part of 



-·187 

the in ~ diagenetic assemblage, their pet rogr~phic, CL, and isotopic 

characteristics are important and relevant to the present study. 

First!Y· the CL characteristics of RFC are similar to those of 

displacive fibrous calcite ("DFC" - discussed in Chapter 9) and together 

they provide a clearer picture of the kinds of ~icrofabrics associated 

with spherocrystal growth.· As with DFC and in agreement with Kendall 

(in press), the CL characteristics of RFC in the CHG are interpret~d to 

be primary, not . neomorphic. Based on . these samples, a modification of 

Kendall's (in press) hypothesis for the origin of the 

distally-convergent extinction p~ttern is proposed. S~condlr. the lack 

of significant alteration of these crystals, as shown by CL, adds 

impetus for their use as an internal standard with whic~ other CHG 

calcites can be compared. This also lends support to the use of fibrous . 

marine calcites as an index of the changi~.g oxygen "isotopic composition 

of the ocean through the Phanerozoic (James and Choquette, 1983). 

7. 2 FIELD RELATIONSHIPS 

RFC is restricted to boulders of shallow-water derivation within 

con·glor.nerates but is otherwise unrestricted stratigraphically or 

geographically. Host lithologie_s include fossiliferous wackestones to 

packstones as well as algal boundstones (see Chapter 6). RFC occurs 

mainly in fractures and.vugs (Plate 27a,b) and less commonly it is· , 
associated with enigmatic, decimetre-size and larger, mound structures 

which occur in some of the large shallow-water boulders at Lower Head 

(Plate 27d,e). The nature of thes.e mounds and the role of RFC in them\s 

• 
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presently unclear and awaits· further study. 

Fractures are usually less than 2 em in width, m~ extend for a metre or · 

more through the boulder, and never continue beyond into the surrounding 

conglomerate matrix or into other clasts·~ This evidence indicates that· 

fractures were filled with RFC and the boulder was subsequently 

transported into the slope environment. Both fractures and vugs are 

commonly lined by _a prominent, rusty-weathering, millimetre-thick rind 

of chalcedonic chert at the base of the RFC fringe. Less commonly, 

thin, discontinuous crusts of glauconite up to tOO pm _in width 

containing scattered pyrite crystals preceed the earliest_RFC. ~ater 

megaquartz cement or laminated internal sediments occlude remaining 

fracture or vug porosity. In ~nd on the mound structures in the 

boulders, RFC forms hinges up to4 5 em in width, some of which consist 

of numerous, mutually-interfering botryoids up to 1 em in size (Plate 

28b). 

• 
Fractures and vugs are generally not fabric-controlled, however, 

"zebra-rock" boulders at Lower Head· and Cow Head North demon·strate 

primary fabric control (Plate 27c). In these boulders, alternating, 

discontinuous, centimetre-thick beds of mudstones and wackestones and 

RFC layers resemble those from the Middle Ordovician Meiklejohn mbund 

(see Ross ~ al., 1975). 
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7. 3 PETROGRAPHY 

7.3.1 General Description 

RFC crystals are non-ferroan and vary . from 500 pm to ~ em in length with 

length to width ratios of approximately 10:1. In simple fringes composed 

of the latger crystals, each half-fringe· is spanned ~Y a single crystal 
G . . . . 

and the two fringes meet along a niedi:al suture (Plate 28a), or the 

half-fringes are overlain by ~quant, occasiona~ly slightly ferroan, 

spar. In some cases, RFC crystals have rhombohedral terminations buried 

by th~ spar. More complex fringes are iharacterized by 2 -or more 

superposEd fringes of RFC. Smaller .crystals are spindle-shaped and form 

aggregates which. resemble the "coconut-meat" microfabric described from 

speleothe!lils 1Plate 28c; Folk and Assereto, 1976). Most of the following 

petrographic characteristics are based on examination of the easily 

studied, larger crystals. 

Subcrystals typically vary from 30-250 pm in width and are defined by 

inclusion patterns, extinction domains, and CL (distussed later). 

Subcrystals are ~ubparallel to one another within a major crystal, or 

they diverge radially from the base of the crystal~ Crystals are length 

fast with the extinction pattern ' showing the char~cteristic, 

distally-convergent ·optic axes (see later discussion). A 20-25 degree 

rotation of the microscope stage is usually necessary to sweep the 

extinction band through the crystal. These calcites are commonly 

twinned but only rarely are curved twins seen. Intercrystalline 

/ 
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boundaries are irregular to concertal. 

7.3.2 Inclusion Patterns 

~ ....._ __ 

Most inclusions are micrometre-size and include irregular, opaque and 

translucent materials {possibly organics, cl~ys, or pyrite), dolomite, 

microquartz, as well as rare two-phase, fluid inclusions. Three 
.... 

~egories of inclusion patterns are recognized - Types A, B, and C. 

These are similar t .o those seen in DFC (Chapter 9). ~ .b_ is the 'most 

comm9n inclusion pattern and is simply an homogeneous distribution of 

inclusions throughout the crystal. The~ ~· inclusion pattern is 

defined by thin to broad incl~sion-rich domains parallel to the· ftinge. 

These may form convex-upward, botryoidal surfaces (Plate 28e,f) or more 

iarely define one or more rhombohedral surfaces within a crystal (cf. 

Kendall and Tucker, 1978; Kendall, in press). The density of inclusions 

within some of these bands may become reduced laterally. The .:!:i:.P!. f 

pattern is a sub-parallel to radiating array of inclusions which 

- out lines the subcrystals within a major crystal (Plate 28e, f). A fine 

fibrous inclusion pattern similar to the Type D pattern in DFC is not 

found in RFC; this is consistent with observations of other RFC 

(Kendall, in press). 

7.3.3 Microdolomite 

Variable quantities of anhedral to euhedral dolomite crystals up to'' 50 

~m in si2e, though usually 10 ~ or less, are randomly scattered ' 

.throughout many RFC crystals. Etching of polished thin sections is not 

. required for their observation (cf. Lohmann and Meyers, 1977) and they 
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are easily viewed in stained thin sections under high power (Plate 28d) 

and are red-luminescent and. zoned inCL. Where dolomite is particu1ar'ly 

abundant, their alignment along -the calcite cleavage directions 

indicates crystallographic control on thev distribution as well as a 

replacement origin. 

Microdolomite is not obvious ia all the radiaxial ca1cit~ crystals 

examined but.,_ .in general, it is more abundant in RFC than in other ·-

fibrous calcites in the CHG. The ubiquity of similar microd~1omites in 

the host sediments of DFC, other clasts in conglomerates, and in t ·ht.•. i ri 

' ~ sediment,s precludes estimation of original MgCt3 con~e~t of these 

calcites (cf. Lohmann and Meyers, 1977). 

7.4 CATHODE LUMINESCENCE 

In general , C~ of RFC illustrates the~ to be mostly dark 

(non-luminescent), but often speckled with irregular, 

decimicrometre-size luminescent patches or streaks reminisc ent of those 
.~ a 

commonly encountered in pelmatozoan debris. This "blotchy" luminescence 

appears to be typical for RFC (cf. Meyers, 1974; Lohmann and Meye rs, . . 

1977~ James and Kla~pa, 1983). Some RFC are exceptional, however, in 

that they illustrate details of the mic rofabrics and growth h i storit.•s of 

these crystals which have not been previously docum~nt ed from 

luminescent specimens. 

-Bright-luminescent zones v~y from 5-200 ~m in width and the growth 

surfaces they define · range from euhedral (Plate 29a,b) to anhedral 

_ :-~-
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(Plate 30c ,d), the latter often demonstrating irregularly-shaped 

projections convex toward the crystal termination. Many .of the euhed-ral 

growth surfac7s are flat or have the shape of obtuse rhombohedra (Plate 

29a, b; 3la-~). The degree of "euhedralness" varies from one zoRe to the 
' 

. . nex·t · artd ·may gradually become higher or lower with ·progressive growth 

(Plate 30a, b; 3la-d). Some faces which appear to be plana·r are, upon 

closer inspection, actually non-planar "pseudofaces" (Pl~te 30 a, b). 

Similar gro~th surfaces are observ~d in DFC (see Chapter 9). 

-Within crystals, elongate domains characterized by either euhedral or 

anhedral growth zones can be correlated with the subcrystals seen in 

" polarized light (Plate 3la,b). Other crystals contain non-luminescent 

rods with parallel, planar sides which vary from 30-180 pm in width and 

' extend for short distances through th& crystal. Several of these .rods 

may be found splaying outward from a euhedral or anhedral growth 'surface 

within the crystal (Plate 30a-d). In ot'her crystals, they dominate 

certain portions of the fringe (Plate 29c,d). 

1.5 INTERPRETATION 

7.5.1 In~lusion Patterns 

v 
The homogeneous Type A inclusion . pattern is common in RFC of the CHG as 

well as 

Tucker, 

in other RFC dfscri~ed in. the literature (e.g. Kendall and 

1973). The I~e B pattern which parallels the fringe and 
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substrate is interpreted to reflect changes in the physico-chemical 

conditions of precipitation during fringe growth. At certain times 

conditions were conducive for the creaiion and preservation of numerous 

inclusions and at Other times conditions favoured the precipitation of 

more inclusion~free crystals. Their paralleirsm~o the substrate 

reflects the morphology of the growth surface at any given time, and 

this is interpreted as a primary feature, not the former position of a 

neomorphic replacement front (Kendall, in press). The Type C irtclusion 

pattern outlines stibcrystals which, from CL, 9ften appear as individual 

crystals (Plate 3la,b) or finger-like botr~oids. The lack of a fibrous 

inclusion. pattern similar to the Ty~e D pattern in DFC, if one was ever 

present, may be due to masking by a younger generation of inclusions, or 

fluid-filled inclusions may become filled by calcite and thus be no 

longer visible (Kendall, in press), 

7.5.2 Cathode Luminescence 

~.~.2.1 I~terpretation as Composite Crystals 

The close association of euhedral or subhedral growth surfaces and more 

irregular or botryoidal surfaces suggests that RFC in the CHG are 

composite crystals, similar to those recently described by Kendall (in 

press). Obtuse rhombi~ and flat growth surfaces (zones) are here 

interpreted to indicate growth as a unit crystal, whereas anhedral 

~including botryoidal) growth surfaces suggest spheroc!ystal growth 

(Maleev,. 1972; Kendall, in press- discussed below), A composite 

crystal origin for RFC in general has recently been suggested by Kendall 

.. 
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(in press) based ,on petrographic stu_dy of RFC from neptunian sills in 

Devonian forereef limestones from Australia. Unlike most RFC described 

in the literature, the Australian RFC exhibit a prominent radial fibrous 

inclusion pattern which provided Kendall {in pre~with · a basis for 

- ----- The this revolu~!2nary reinterpretation of these enigmat.ic calcites. 

basic tenets of the composite crystal concept are also applicable to 

interpretation of DFC (discussed -in Chapter 9). 

Details concerning the nature of composite crystals are briefly reviewed 

in the [allowing paragraphs (also see Kendall, in press). 
'· 

Spherocrystals, as defined~{ Maleev (1972; p. 2) are spherulites that 

form bJ "a continuous splitting of the ends of one crystal and the 

deflection of its branches.". The splitting referred to is the 

split-..iJi,owth process of Grigor '~v ( 1965) where .~ single_, monocrystalline 

nucleus is laterally transformed into an aggregate of sub-parallel- to 

parallel-oriented crystallites to a fascicular bundle or a 

sheaf of weakly divergent crystallites [3]. With additional growth and 

divergence, a spherulite or botryoid ultimately results (Grigor'ev, 
I 

1965; Maleev, 1972; Spry, 1976; Kendall, in press) • Split-growth has 

been ~served in synthetic and speleothem calcites as well as in 

numerous other minerals (e.g. chalcedony, tourmaline, barite, and augite 

- Grigor'ev, 1965; Maleev, 1972; Kendall and Broughton, 1978; Kendall, 

in press). 

In ~rder to maintain the small diameter of crystallites in the 

3. The term "crystallite" is used in this thesis to refer to 
micrometre-wide or smaller fibrous or equant crystals. "Major" crystals 
consist of crystallites. 



- 195 -

··---
increasingly divergent bundle as well as the optical continuity, 

. additivnal crystallites of ne~r-identical lattice orientation fill 

spaces between the older crystallites (Kendall, in press). Crystallites 

in RFC from the CHG are too small to· resolve us:lng CL, but their 
. 

existence is inferred based . on the anhedral to subhedral shapes of 

growth surfaces. In addition, comparison with DFC, in which 

crystallites are commonly obvious, indicates by analogy that 

crystallites occur in RFC (see~hapter 9). 

Crystallites growing ai equal rates in all directions result in the 

formation of a spherulitic or botryoidal growth surface (Maleev, 1972) . ... 
Crystallites growing at variable rates relative to one another produce 

more irregular growth surfaces. Planar cryst'al faces result when 

conditions are conduciva to the development of monocrystalline surfa.es 

which can grow layer by layer. Intermediate or transitional conditions 

form pseudofaces of varying shapes. Similar variations in shape of the 

growth surface also occur in DFC of this study (Chapter 9); in .some 

Australian RFC (Kendall, in press); and'in laminated, crystalline crusts 

formed in some Welsh streams (Braithwaite, 1979). 

, 
7.5.2.2 Controls on Growth Surface Morphology 

Kendall (in press) interpreted the variations in RFC growth surfaces to 

~-· a function of the saturation state of the solution from which the 

calcite was precipitated. Higher saturation conditions, perhaps aided 

by a high crystallization rate, poisoning, or other causes (see Folk, · 

1974; Hartman, 1983) are thought to give rise to the growth of 

crystallite!! and consequently, anhedral growth surfaces·, whereas smaller 
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levels of oversaturation may result in the growth of euhedral faces . 

Controls on crystal morphologies and original mineralogy. also include 

the effects ·Mg, Na, .!Uld SO+ (Folk, 1974), .a~d possibly also the 

[Ca)/[C03 ] concentration ratio (Lahann, 1978; Hartman, 1983). 

7.5.2.3 Uncertainties 

The identical petrographic characteristics of those 'segments of RFC 

crystals with flat or rhombic terminations and those segments containini 

anhedral zones suggest that unit crystal growth may be only apparent 

with the euhedral shapes resulting from perfectly aligned crystallites 

· growing as a single crystal face. If this was not the case. continuity 

of the optical properties, such as sweeping extinction ~nd subcrystal · 

domains, through these crystals could not be reasonably explained. The 

existence of composite euhedral crystals does not dismiss Kendali 's 
II> 

suggestion as to why euhedral versus anhedral growth surfaces form (see 

above discussion). 

Another unc~~tainty regarding the growth mechanics of these composite 

crystals is how anhedral surfaces growing as spherocrystals become . 
gradually more euhedral with progressive precipitation. This is 

especially common in DFC .crystals {Chapter 9). Euhedral surfaces (zones ) 

followed by progress ively more anhedral growth surfaces are interpre t ed 

to reflect the transition from unit cry,tal growth to spheroc rystal ·--
growth where crystallites grow at different rates depending on their 

orientations relative to the original monocrystalline nucleus as well as 
• 

other possible controls. However, the opposite case where an uneven or 

botryoidal growth SUrface grOIIS tO become progressivet'y more euhedral is 
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less straightforward to explain. To do this the crystallites may 

coalesce at their distal end and fill ~he resulting uneven surface to 

ultimately provide a flat crystal face which then can grow by even, 

face-wide increments. 

7.5.2.4 Crystal Boundaries, Subcrystals 

In the CHG, concertal and ir.regul~r, intercrystalline RFC boundaries are 

interpreted to result from the mutual interference of numerous 

crystallites or groups of crystallites. Such boundaries are predicted 

when composite crystals compete for space (Kendall, in press). 

Composite crystals in which crystallites grew as groups or bu~dles . of 

slightly varying orientation account for the orig-in of subcrystals as 

seen in pola~ized light as well as the Typ~ C inclusion pattern. The 

cause of the initia\ grouping Hito sep~rate, but approximately 

similarly-oriented bundles is uncertain, although slight misorientations 

co~ld have occurred during the early stages of crystal-spl~tting, as 

rece~tly suggested by Kendall (in press). Relationships between 
I 

crystallites and the occurrence of subcrystals and concertal 

intercrystalline are discussed further in Chapter 9. 

The non-luminescent rods which are differentiable with CL have also been 

noted in other studies of RFC (e.g. Lohmann ~d Meyers, 1977; Meyers and 

Lohmann, 1978). These rods in the CHG are interpreted to be primary 

precipitates based on their euhedral · shapes and sh~rp zoning, when 

present. Each rod is further i~erpreted to consist of a bundle of 

crystallites which, for reasons unknown, differs in its trace efement 
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i 

c001positi?n . (and therefore CL) relative to the surrounding 

syn£hronously-precipitated calcite. Within RFC crystals described by 
I . 

·Lohmann and Meyers ( 1977), fibres of non-luminescing calcite were 10-20 

~m. in width and 100-300 pm in length. As 'with the RFC of this study, 

there is more highly-:luminescent, syntaxial calcite between the fibres. 
, 

In Lahmann and Mey.ers' ( 1977) stt)dy, the non-luminescent fibres were 

interpreted to represent the original cement fabric, and consequently 

the fibres were· the site of Mg remobilization and mttrodolomite ---
precipitation. The luminescent, interfibre calcite was interpreted to 

be a later, meteoric-water cement. 
6 

The "blotchy" ' luminescence in many<RFC of this . ~ther studies is ctt 

best confusing and usually not interpretable with any degree of 

confidence. 
. -

Blotchy luminescence may represent domainal alteration, 

either in terms of dissolution ~ith subsequent precipitation of calcite, 

or possibly neomorphism of the original cement. 

7 .5.3 Optic Axes Convergence: Kendall's Hypothesis · 
I ' 

I 

In the Devonian RFC examined by Kendall (in press), incl usi6n-defined 

fibres or. crystallites were observed growing on unit crystal 

· terminations.' RFC iil the CHG and in g~neral lack such a radial 
I 

inclusion pattern and the Austral.ian,..eiampi~s are atypical i~· ~his 
·. ... ~ . ' ,. 

respect. ·, Other petrographic properties, howeve·r, are ~ypicaJ. of RFC,. 

·. 

s ·uggesting ~hilt the Australian examples are simply better-preserved, not 

of a diHerent origin. ~ rn these, crystallite$, -as,.:.de termined by the 

·• 

·-y 
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inclusion pattern, consistently curved toward the apex of the major 

crystal. To explain crystallite curvature and the characteristic RFC 

convergent extinction, Kendall (in press) co~clqded that these 

attributes are the product o~ a spheroc rystal growth mechanism, but with 

the crystallites growing at different rates depending on their 
\ 

orientation relative to the underlying unit crystal substrate. The 

variation in growth rates of the crystallites leads to "asymmetric 

growth" (Maleev, 1972) in which the fas.ter growing crystallites overtake 

their slower growing neighbours and they, in turn, are overtaken by even 

faster-growing crystl;lllites. Competition for spa~e in c:onjunct ion with .. 
' 

spl~t-growtn causes crystallites to be deflected toward the 

slowest-growing part of the surface, assumed to be the apex of the 

crystal (Figu,-e 7 .la). The convergent extinction pattern thus forms as 

the fast-vibration directions (optic or c-axes) in individual 

crystallites become.more parallel with the growing surface by curving 

inward toward the Ce{!tre of 1 the cr.ystal. e 

1 . 

mor) (in press) proposed 
.. 

~endall two possible hypotheses to explain the 

slowly-growing apical regions, "either 
, / . 

the composit\e crystals (1) 

behaved more as spherocrystal5 and began to essume their most stable 
9 

form - that ,of a spheruhte, ~r (2) they lbehavi!d more as single crystaLs 

- crystals that were changing habit from length-fast to length-slow 

stable forms." The first possibility was dismissed based on the premise 

that a spherulitic growth form results when crystallites grow at equal 

rates, not the differential rates ·which are necessary to explain the ... 
~ 

slower-growing apical region. 

Kc:ndall 's (in press) argument favouring the second ?ossibility is based 

_: .. _. · 
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(a) Radiaxial fibrous calcite crystal at left 
illustrates distally-convergent c-axes. At right, 
asymmetric split-growth causes crystallites to 
defrect, along with their c-axes, toward the more 
slowly growing centre of the major ·crystal (adapted 
from Kendall, in press). · 

(b) Diagram schematically iliustrates a modification 
to Kendall's (in press~ hypothesis to explain 
distally-convergent extinction in radiaxial fibrous 
calcite. Growth of crystallites from a lengt)l-slo~ 
seed crystal causes crystallites to deflect toward the 
more slowly growing central part of the major crystal, 
causing the characteristic distally-convergent _ 
extinction. Greatest growth vectors in the {1011~ · 
unit rhombohedron are from Dixon (1978). See text for 
details. 

-

I 
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-upon: (1) interpretation of the acute rhombohedral· or scalenohedrai 

tetmination of th~ unif crystal substrate to be indicative of 

length-fast calcite, and (2) that the gradual flattening of the optic . . 

axis in individua1 crys·tallites implies the crystallit;es gradually 

evolved toward a le~gth-slow character. The change from length-fast to 

length-slow growth results in faster growth rates on the sides of the 
/ 

former length-fast calcite substrate and elower growth rates in the 

apical region and, consequently, ~asymmetric growth. Therefore, 

convergent extinction is ultimately a function of whether or not 

split-growth is initiated. According to Kendall (in press), this arises 

from changes in the physical or ch~mical conditions of precipitation 

(previously discussed). 

7.5.4 A Modification to Kendall's Hypothesis 

Kendall's (in pre~s) hypothesis explains all the characteristics seen in 

RFC. Kendall (in press) admits, however, there is little direct p~oof 
, 

that length-slow crystal habits were favour~d during RFC growth. More 

important·~y, his hypothesis does not explain the occurrence of RFC and 

.. FOC within the same pores as described from other studies (e.g. Kendall, 

1977; Chafetz, 1979; James and Klappa, 1'983). It is difficult . to imagine 

changes in physical or chemical conditions which would allow some 

cements to retain their length fast-character (FOC) and others (RFC) to 

change. An alternate hypothesis is outlined below. 

It is suggested that an entire RFC crystal grows as a length-slow 

crystal, where c-axes are oriented approximately perpendicular to the 

substrate and parallel or approximately parallel to the crystallite 
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elongation (Figure 7.lb). The greatest growth vectors are approximately 

parallel to the substrate (see Dixon, 1978; 1983). The crystallites are 

elongate in the fast-direction qr close to ii, depending on their 

initial orientation relative to their substrate. The result of this is , 
that they appear to be leRgth-fast as does the composite crystal they 

form. What must be differentiated between is the length-char~cter of 

the composite crystal, which is an apparent one caused by length-fast 

crystallites, and the true crystallographic length-character, which 

reflects the relationship between the c-axis and the fastest growth 
• 

directions. 

CL study of RFC from the CHG provides the basis for a modification . of. 

Kendall's (in press) hypothesis . The interior growth surfaces are 

commonly flat or have obtuse rhombohedral terminations (Plates 29b, 

not 30a-{> . These shapes are interpreted t.o reflect unit rhombohedra and 

the a>. rhombohedral (scalenohedral) habit, which is length fast. In 

length-slow forms, these flat or obtuse faces persist because of their 

relatively slow growth rates. In length-fast forms, where the angular 

separation of the c-axis and the greatest growth vectors is smalle:, the 
J 

- . 
fastest growing crystal faces are Tapidly eliminated, thus prciduc i~g 

acute rhobohedra or scalenohedra (the familiar dogtoot.h crystals), forms 
/ 

that are conspicuously dominated by relatively s~owly-growini fac~s (see 

"' also explanation in Kendall, in press). 

In light of the above, the distally-convergent optic axes in RFC are 
I 

explained as follows (Figure 7.lb). Crystallites begin to grow on a unit 

crystal substrate, which could be any size. The length character of 

tl'tis substrate determines the subsequent growth and optical 
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charateristics of the. resulting composite cry tal. Assuming that the 

c-axis of thi~ seed crystal is normal to the ubstrate, the most 

divergent crystallites ~ill have the greatest ngular relationship 

between the c-axis, . which they inherit 'from the unit crystal substrate, 

and crystallite elongation. These crystallites will be approximately 

length-slow. As indicated by Kendall (in press), the c-axis is not 

necessarily parallel to crystallite elongation. Crystallites which are 

parallel to the c-axis will appear to be length-fast. 

Because of the relationship between c-axes and crystallite orientation, 

the fastest-growing crystallites will be those whose orientation most 

nearly parallels the greatest growth vectors. In the length-slow major 

crystals, the greatest growth vectors are almost parallel to the 

substrate and perpendicular to the RFC crystal elongation. Therefore ., 

the most divergent crystallites grow fast,est. This ex~lains the 

slower-growing central portions of RFC crystals. 

Because the most divergent crystallites have the most o&tuse 

relationship betwee~ crystallite elongation and Craxis, their growth and 

curvature due to upward asymmetric, split-growth results .in £lattening 

of the c-axis, as described by Kendall (in press) • . ft.is ·explains 

distally-convergent optic axes which characterizes ~C. , 

the 

7. 5.·5 Explanation of Fascicular-Optic Calcite 

Kendall's (in press) hypothesis pra.vides no explanation for the 
r 

simultaneous precipitation of RFC and fascicular optic calcite (FOC). 

The hypothesis suggested here, however, provides a basis for ex~laining 

.. 
~ 
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the origin of FOG simply as a furrction of the length-character of the 

earliest precipitate upon which crystallite growth occurs. FOC is 

interpreted to be the result of asymmetric growth of crystallites from a 

length-fast form. Crystallites growing with their c-axis parallel to 

crystallite length in the apical region of the crystal grow more quickly 

than adjacent crystailites which have a more divergent relationship 

between crystallite elongation and c-axis. Consequently, the 

crystallites and c-axes splay-outward as a result of asymmetric, 

split-growth. 

If the above suggestions are valid, how can the occurrence of RFC and 

FOC in the same fringe be explained? The most straightforward way to do 

this is to have the earliest precipitates, upon crystallites nucleate, 

vary from length-fast to length-slow. Thus, ' for length-slow nuclei, the 

resultant cement crystal will be RFC. For length-fast nuclei, FOC 

results. · These two types of calcite could thus grow in the same pores 

at the same time from the same pore-waters. 

Substrate control of length-character was also suggested by Kendall and 

Broughton (1977) in a discussion of Folk and Asserto's (1976) paper on 

elongate length-slow and length-fast speleothem calcites from'the 

Carlsbad Cavern. Kendall and Brqughton (1977; p. 1399) interprered 

these calc1tes to have grown simultaneously on a speleothem surface 

where "fabric control by the chemistry of the depositing waters was 

minimal, whereas control by the substrate was of greater importance"; 

The control of the length-character by Mg as proposed by Folk and 

Assereto ( 1976; or some either chemical variable (see Lindholm, 1972, 

1974) could not occur if they were simultaneous precipitat~s, 
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~ 7.6 SUMMARY AND CONCLUSIONS 

I 

RFC in the CHG i's restr,icted to occurrences in fractures, vugs, and 

enigmatic mound structures in shallow-water boulders of conglomerates. 

Most RFC crystals have the typical "blotchy" luminescence described from 

other studies. Some, however, demontrate exquisite CL zoning which 

supports Kendall's (in press) recent reinterpretation of these crystals 

as primary, not a neomorphosed fibrous cement. 

Both RFC and FOC (not seen in CHG) are interpreted t .o have grown as 

spheroc:ystals which unde~went asymmetric growth. The framework for the 

mechanics of their growth is essentially that described by Kendall (in 

press) but with some modification. In both RFC and FOC, c-axes are 
• 

perpendicular to their substrate but their length-slow and length-fast 

nature, repecti '!'_ely, control the growth rates -of the crystallites as 

well as the ultimate optical characteristics of the major crystal. 
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Chapter 8 

AUTHIGENIC CALCITE CEMENT AND N~OSPAR 

8.1 GENERAL INTRODUCTION 

The following chaptef describes authigenic calcites occurring both as 

neospar and cement. For ;clarity, ·this chapter is subdivi ded into 4 
I 
! 

sections. The first describes · equant--calcite 'cement anp neospar, This 

is followed by description of sparry calcite cement filling fractures 

· which range in origin from shallow bur i al to tectonic. The third 

section examines the enigmati& fibrous calcites cementing some 

ionglomerates. These particular ca1cites are especially important 

because they are interpreted as submarine cement~lthough 

isotopically, as will be discussed in Chapter 11, ~ey were 
I 

probably 

de r.ived fro~modified seawater. Lastly, the foregoing eclectic ~ 

assemblage of calcites, along with DFC (discussed in subsequent chapter) 

combine to generate a simple CL model, which, along with field and 

petrographic evidence, provide the basis for interpretation of most o~ 

these calcites as having formed during shallow burial on the sea floor. 
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8.2 EqUANT CEMENT AND NEOS?AR 

In the CHG all grainstones and, to a lesser extent, conglomerates are 

cemented .by blocky, sparry calcite. Mudstones, as well as the "muddy" 

matrix in packstones and in some comglomerates, consist of neospar. 

Such neospar is conventionally regarded as having been derived from the 

• 
aggrading neomorphism of micrite, which in turn resulted from the. 

alteration of lime mud (Folk, 1965). At first glance, these two types of 

calcite -cement and neospar - are unremarkable, resembling cements and 

neomorphic calcites described from countless other studies. 

8.2.1 Eq~nt Cement 

The most easily-studied cement microfabrics are those in conglomerates 

and in medium sand~size and coarser grainstones. The larger 

interparticle spaces in these sediments permit a more advanced state 

"maturation'' (~Dixon, 1983) to be reached prior to porosity 

occlusion. Cement crystals range from 25-150 pm in size and may reach 2 

mm in the coarser sediments. Within a given sample, however~ the size 

range is considerably more restricted • . The largest cement crystals are 
• 

often syntaxial, poikilo~opic overgrowths of pelmatozoan debris. In 
. I 

place of equant crystals, fibrous, ~yntaxial fringes comprising crystals 
~ 

up to 12Ypm in length and several tens of micrometres in width are 

found on many trilobite fragments and radial ooids. 

A cement origin is suggested by the following: 

(1) Intercrystalline boundaries are sharp and there is no 
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"intercrystalline paste" (Plate 34a; cf. Plate 34d). 

(2) Where calcite lines voids, crystal terminations are euhedral and 
"' 

remaining pore-space m~ be empty (rare) or filled with ferroan 

dolomite, megaquartz, or chalcedony (Plate 34b). 

(3) In sediments with a bimodal'grain size distribution of carbonate 

sand and siliciclastic silt, the silt is geo~etal (perched on top of 

grains) or it is found between the sand-size framework grains (Plate 

34c) . .. 
· ···- · -

(4) The earliest CL zones clearly show euhedral outlines whic~ are 

maintained until adjacent crystals impinge and subsequent growth zones 

are continuous across ~he compromise boundary (Plate 35a,d). 

With a decrease in irystal size, the abovet characteristics become 

increasingly more difficult to observe and differentiatipn from neospar 

is less certain. Cements identified by the above criteria are more 

equicrystalline than neospar in packstones and are found in better . 

sorted sediments. The dubious cement criteria of planar 

intercrystalline boundaries as well as enfacial juncti~ns (see Dixon, 
r 

1983) are also more common in these mosaics relative to their neomorphic 

' counterpar.ts.. Competitive growth fabric is rare and when it does occur 

it . is crudely develoRed or immature. (~ Dixon, 1983). Solution 

unconformities are occasionally visible with CL in coarser crystals 

(Plate 3Sb). 

Calcite cement~ contain few micrometre-size inclusions, are generally 

untwinned, and have straight extinction. Cements may be uniformly 
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' 

non-ferroan or ferroan, or zoned, typically with a non-ferroan early 

stage.and a late ferroan stage. Th~n ferroan zones are rarely found in 

cry~tals that are otherwise non-fer roan. 

The petrographic and luminescence characteristics of cement are 

generally consta~t within samples although some parillel- or 

cross-laminated grainstones demonstrate subtle variations in 

~ iron-contenJ as well as zonation patterns between different laminations 

or in different parts of the same bed. These variations likely reflect 

permeability and porosity differences in the bid as a function of grain 

size and they imply the sediment was not cemented all at once . 

• 
8.2.2 Neospar 

Neospar is differentiated from cement by the. follQwing characteristics: 

(1) Intercrystalline "paste" is conunonly prominent and crystals are 

easily differentiated from one another ("Plate 34d) • . 

(2) There is variability in facial jdeve"lopment during the growth pistory 
/ 

of crystals, as revealed by CL. In the early ~~ of growth crystals 

tend to develop faces to a greater exten-t than ater stages. 

Development of anhedral shape during latter stages is commonl.Y the 

result of discontinuous and unevenly distributed growth increments 

(zones) around the cryst&l, typically with preferential growth of 

crystals away from the centre of the bed or nodule (Plate 35e; -44a-b; 

46f). Other neospar crystals demonstrate alternations of euhedral and 

_subhedral_ f~ces during crystal grow~h (Plate 44a~d). Still other 

crystals are a~hedral throughout their growth history. 
l, 

' 

• 

• 



' -' 

J 

I 
I 

21'3-
,' 

. ' 

(3) Neomorphic ·halos consisting of pseudospar up to 100 pm in size in a . . 
mat~.! of . ter mic~ospar occur around select grains. Folk (19?5, p. 

40) describ~s this microfabric _,as an "aureole of neomorphism". 

~ 4) Crystal shape is generally anhedral for crystals smaller than 50 

pm • . In l~~ger crystals, particularly those near· ~he .JTiargins .of beds · or 

· nodules, shape var'ies from euhedral, 1unit or acute rhombohedra to 

loaf-shaped crystals (Plate 35e, 46f) to crystals characteri?ed by 

irregular,' ameboid shapes, often ' {n close . proximity to one another. 

In grain-supported sediments, neo.spar mosaics identified by the •above 

characteristics. are commonly ' l~ss equicrystalline than cement mosaics. 

Neospar mosaics also tend to have· obvious .:curve.d intercrystalline 

boundaries and l~ck enfacial junctions (Plate 34d). 

The promin_ent interGrystalline paste which characterizes many neospar 

!'lggregate~ -'is interpreted to be the result of purging of impurities, 

such 'a~ clays and organics. from the growing crystals. Purging implies .. 
that_ the c;ryst~l~ are displacive on a micz;oscopl:c scale; such 

occurrences. however, are conventionally regarded as ne.omprphic. Folk 

0 965) al'So considered purging of imputities to have been operative in 

the neos-pars of hi.s study. With ~L the i1rtercry~talline paste contains 

numerou~, blue-luminescent, micrometre- size specks which are interpreted 
' \ 

to be detrital feldspar.dust purged alogg with other impurities: 
. \ 

roikilotopic enclosure of silt by neospar is uncommon. 

In- packstones. neospar spans the same range of crystal· size as cement 

( 25-150 pm). 
' ', 

In wack~tones and mudstones, however. the r~nge is 

...., 

,. 
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considerably higher, from 10-300 p.m. and · mosaics often coarsen from the 

centres to. the edges of beds or lateraL margins of nodules (Plate 

34e,f'). As with cement, neospar contains few inclusions and may be 
(~ . 

unifo.rmly non-ferroan, ferroan, or zoned from an early non-ferr'oan 

calcite to a late ferroan calcite. Extinctio'n is generally sharp (cf. 

Bathurst, 1983b). 

8.2.3 Timing: Evidence for Early Lithification 

. 
Equant calcite cement and neospar are int-erprete'd to be the res_pl t of 

early, shallow-burial diagenesis based on .. the following evidence: 

(l) Grainstone and mudstone clasts in . conglomerates contain ident ica 1 

l!licrofabrics and CL as their bedded counterparts. This. implies 

that these sediments were 1ithified prior to incorporation into debris 

flows. In addition, mudstone clasts are ,.commonly angular, and in rafts 

mudstone beds may develop a fracture c1eavage, further suggesting early 

lithification (Chapter 2). Similarly, in synsedimentary shear zones, 

early-lithified beds fragment into slabs (Chapter 3). 

(2) . Although a rare occurrence, some nodular mudstones suggest expo!'Jure 

on the sea floor, thus indicating an early origin for these (Plate 
.. ·---

53e, f). Details are provided in Appendix N. 
\ 

(3) ·Mudstones to grainstones rarely demonstrate any evidence of 

JDech,jnical compaction, implying early lithification (Chapter 5). · 

('4) CL zoning illustrates that mudstone substrates of DFC fringes were 

lithified prior to growth (e~g .. Pl~ 43b). Similarly, the more fer roan 

Stage C luminescence of many DFC . fringes on grainstone substrates 

cemented by less ferro_an Stage B or C calcite -indicates that porosity in 

.· 
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grainstones was entirely .occluded prior to growth of the fringes. From 

field evidence, DFC fringes are interpreted as the product of 

shallow-burial diagenesis (Chapter 9). 

8.2.4 Marginal Aggradation in Mudstones 

Many mudstone beds and nodules are "marginally aggraded"; ~hese 

l 
mudstones are character~zed by a coarsening of neospar crystal size 

toward the margins of the beef or nodule (Plate 34e,f; 3Se; 37e,f). Some 

of these marginally aggraded beds grade further into fringes of 

. displacHe fibrous calcite (see Chapter 9); but the muqstone itself is 

identical regardless of whether or not subsequent DFC growth occurs. 

Marginally aggraded mudstones illustrate 2 fundamental relationships: 

( 1) Marginal aggradation is characterized by progressively fewer 

crystals separated .. from each other by increasingly greater amounts of 

intercrystalline paste. · Some crystals are isolated. 

( 2) Accompanying the above change is a compositional change which 

invariably leads to progressively more ferroan calcite with later 

precipitation. 

The first relationship is interpreted as the result of a decrease in 

nucleation density toward the bed margins. •. Marginal crystals grow to a , 

large size simply as a function of availabl~ space prior to either 

impingement with neighbouring crystals or cessat.;i.on of calcite 

precipitation. 

Considering the second relationship, CL microstrati,graphy illustrates 

-that marginal crystals .contain absolutely and proportionately more, 
~ 
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younger calcite than crystals at the centre of the bet! or nodult>. Many 

of these marginal cr:ystals contain calcite at their cent res with 

luminescence ident~_fal to that of crystals ~ill the more finely 
I . 
i 

crystalline paf'ts df the bed. This critical observation indicates that 

the large margina·l crystals do not develop at the expoose of sma L lt>r 

ones. 

Some mudstones contain continuous to discontinuous bedding-parallel 

laminations or millimetre-size patches of coarser neospar whdh differ . 
from surrounding neospar by their larger crystal siz~. more prominent 

intercrystalline paste, and in some cases, later ferroan composition. 

These characfis.tics 

marginal aggradation. 

suggest they are the intra-bed equivalents of 

The laminations they form in otherwise monotonous 

mudston~s is responsible for some of the vague bedding seen in some 

mudstones. 

8.2.5 Discussion: Implications for Aggrading 

Neomorphism 

8.2.5.1 Introduction 

For Quaternary lime muds which are generally aragonite-dominated and 

contain . smaller amounts of Mg-calcite and calcite, the range and 

variability of neomorphic processes [ 1] is relatively well-understood, 

paving been observed -by SEM in various degrees of completion (e.g. 

Steinen, 1978, 1982; Lasemi and Sandberg, 1984). Neomorphism in these 

1. Definitions ·and related discussions are found in Appendix H. 
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sediments is controlled by the absolute and relative stabilities of- the 

constituent particles in their ambient pore-waters. Recent studies have 

also shown that cementation in Quaternary lime muds is locally important 

(e.g. Steinen, 1978., 1979, 1982: Bhat tacharyya, 1979: La semi and 

Sandberg, 1984). 

ls applied te most ancient carbonates, however, neomorphism, still 

appears to be truly a "term of ignorance" (Folk, 1965), a situation no 

doubt complicated by the wide v.ariety of diagenetic environments in 

which it occurs, including: (1) meteoric-water diagenesis (e.g. 

Bathurst, 1975: Steinen, 1978): (2) while on the sea floor (e.g. Zankl, 

1969); (3) during burial diagenesis (e.g. Longman, 1977; Bertrand~ 

~ .• 1983); and (4) during re-exposure of limestones to surface 

weathering processes (e.g . . Chafetz, 1972). Furthermore, interpretations 

-based on Quaternary muds may .not be applicable to some Paleozoic 

mudston~s where calcite is suggested to hav~ dominated organic as well 

as inorganic precipitation (see review in James Qnd Choquette, 1983). 

Ba~ed on the presence of aragoni~e relics, Lasemi and Sandberg (1984) 

recently suggested that lime• muds 'at least to the Ordovician may have d 

been aragonite-dominated. Details concerning mineralogy and neomorphism 

of ancient lime muds, however, are still too meagre to safely 

generalize. Regardless o~ mineralogy, an even more fundamental 

uncertainty is whether smaller crystals were consumed to produce the 

resultant micrite, microspar, or pseudospar mosaic. The se~uence of 

micrite to pseudospar is usually assumed to reflect increasing 
1 

"maturity" of the sediment (e.g. Brand and Veizer, 1980). 
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8.2.5.2 Cathode Luminescence: Growth of Neospar 

"Aggrading neomorphism" is defined as the process by which numerous, 

small carbonaee crystals are recrystallized into fewer, coarser ones 

(Folk, 1965), This can occur along, two possible pathways, either by 

porphyroid or coal~scive neomorphism (refer to Appendix H) . Although 

conceptually~ound, definitive evidence of lime mud neomorphism having 
. . ~ 

been arrested in intermediate stages is not found in ancient mudstones. 

The presence of micrite and microspar in the same sample does not. 

necessarily imply microspar aggraded from micrite,· although in many 

cases it is likely (e.g~ Folk, 1965, figure lOc). All that is known with 
• 

certainty is that some parts of ' the mosaic are now micrit i c, others 

consist of"microspar (also see Lasemi and Sandberg, 1984) . 

Using CL would appear to be a reliable way to test whether coalescive or 

porphyroid neomorphic processes were operative by noting the critical 

relationships between an older, more finely crystal l ine mosaic and a 

coarser, younger one . If aggrading' neomorphism is ever arre'sted in an 

intermediate stage, the replacement and corrosion relationships should 

be visible. For coalescive neomorphism. more finely crystalline (less 

evolved) and more coarsely crys~alline (more evolved) mosaic$ could be 

characterized by calcites with differing luminescence. Porphyroid 

neomorphism should be especially straightforward to recognize. 

CL data from · the CHG strongly _suggests that aggrading neomorphism, at 

least in the coarse microspar to pseudospar size-range, is not e~plained 

by either coalescive or porphyro~d processes; but inse~ad takes place by 

precipitation of progressively younger calcite on the margins qf s r.owiftg 

-.., ? --
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beds and nodules. This is not aggradinB neomorphism ~ strict~ 

because there has not been any consumption of older, smaller crystals to 

form the coarser, younger crystals. This conclusion is bas~d upon 

detailed and reconnaissance CL examination of more than 100 thin 

sections containing neospar, none of which revealed any evidence of a 

coarser neospar mosaic replacing a more finely crystalline one. 

If the above observations are correctly interpreted, then it is apparent 

that calcium and bicarbonate ions must be allochthonous rather than 

derived from the gradual, in situ consumption of ·a more finely 

crystalline mosaic, as would be the case for neomorphic alteration 

(Figure 8.1). In Ch~pter 14 it i~ suggested that dispersed micrite-size 

crystals of calcite are dissolved and locally concentrated and 
['> 

reprecipitated to form calcite cement or neospar. 

8.2.5.3 Other Ancient Examples of Aggrading Neomorphism 

The lack of CL studies of other neospar precludes comparison with the 

CHG. The similarity 6f_ CHG -microfabrics as revealed in transmitted light 

' to ' those of other ancient mudstones, · however, implies that relationship~ 

observ~d in the CHG are not unique. It is particularly relevant to note 

that some of the neomorphic microfabrics described by Folk (1965) are 

from mudstonei, some of. them nodular, associated either with interbedded 

shales or dispersed clays (Bathurst, 1975, p. 514) . Many of Folk's 

(1965) illustrations of neomorphic microfabrics are strikingly similar 

to those of the CHG (e.g. fig. 12f in Folk, 1965). 

Aggraded burrows ~nd fossiliferous beds were noted by Tucker (1973) in 
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Figure 8.1: Schematic diagram of aggrading neomorphism by 
coalescive and porphyroid mechanisms according to Folk 
(1965) and aggrading neomorphism as it occurs in the 
C~w Head Group. Refer to text for details. 

\ 

• 
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Devonian pelagic limestones of West Germany. Longman (1977) described --. coarsening of neospar crystal size around shale clasts and along 

contacts with interbedded shales in ·l',im~sto_nes from the Middle 

Ordovician 'Bromide Formation of south-central Oklahoma. Carozzi and 

Textoris (1967; their plate 48) il~ustrated "lenticular" calcite 

crystals which they interpreted as pseudomorphs after gypsum from the 

·Devonian Jeffersonville Limestone of Indiana. Given the limited 

information available and the fact that these "pseudomorphs" are 

monocr}'olii_talline, these crystals could He origipal calcite pseudospar 

comparable to that found in the margins of some aggraded CHG mudstones. 

The SEM photographs of Fisher .~&· ( 1967, figs. 85,87 ,88) clearly _ 

demonstrate irregularly-shaped neospar crystals with prominent scalloped 

margins within organic-rich, deep-water limestones of the Devonian 

Waterways Formation from Alberta. These ~nd the equant to subrounded, 

loaf-shaped crystals up to 400 pm in diameter described by Tucker (1973) 

also resemble some of the coarser, more isolated marginal pseudospar in 

the CHG. 

8.2.6 Conclusions 

Equant calcite cement and neospar are both interpreted tQ be early, 

shallow-burial precipitates based on abundant evidence for early 

' lithification of grainstones to mudstones as well as conglomerates. 
/ 

Using transmitted light microscopy in conjunction with CL, cement can be 

readily differentiated from neospar, but this becomes increasingly more 

uncertain with progtessively smaller crystal size. 
/' -

Marginal aggradation in mudstones, ill~strating microfabrics 
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. 
conventionally considered as those of aggrading neomorphism, is common 

and explained as the result of decreasing nucleation density toward bed 

•margins in conjunction ~ith precipitation pf pro~ressively younger 

calcite on the nuclei. Coalescive. and porphyroid neomorphism as 
. . 

described by Folk (1965) cannot explain marginal aggradation in these 

mudstones and therefore aggrading neomorphism in the CHG, and possibly 

in other ancient sediments, is not neomorphism sensu stricto [2]. 

Precipitation of allochthonous calcite is resporlsible for crystal 

growth, not the in situ transformation of a more finely crystalline 

mosaic. It should be noted, however, that the above interpretations are 

based on neospar from argillaceous carbonates. This mechanism clearly 
'·· 

does not apply ~o calcitization of aragonitic bivalve shells, for 

example, in which a more finely crysta~~ine c~ystal mosaic (the original 

microfabric) is replaced by a coarser mosaic • 

8 .'-3 FRACTURE CALCITE 

• 
8.3 . 1 Introduction 

Early lithification of limestones in the CHG ' implies tha~ these 

sediments were brittle at the outset and fractures could have occurred 

and been filled with calcite at any time during th~ diagenetic history • 

Petrographic and CL study demonstrates this explicitly and samples with 

2. For simplicity, the terms neomorphism, neospar, aggrading 
neomorphism, etc. will continue to be used, although these are not 

, neomorphic~ stricto processes or products. 
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two or more generations of fractures are ··not uncommon. ·fracture calcite 

crystal,,s are us-ually less tha~ 500 pm in size; occasionally, some are as 

coarse as 1 em. Intercrystalline boundaries are conspicuously planar. 

Ferroan and non-ferroan calcite are both equally common as well as zoned 

crystals charac tl!rized by later iron-'enrichment. Most fracture calcites 

consist of dark, dull, or very weak orange-brown luminescent calcite . 
.. ' 

Two end-member types of fracture calcite can be recognized, and to a 

first approximation, these correspond to early, shallow-burial 

diagenesis and later tectonism. Intermediate types are equally common, 

however. 

8.3.2 Early Fracture Calcite 

This type of calcite occurs in septarian cracks (Plate 12e), "ladder 

cracks" (Plate llc,d; 46a), and V-shaped fractures on the margins of 

nodules (Plate 13e; 53a,e). Calcite cements in these fractures as well 

as in many of the ubiquitous millimetre-wide, penetrative fractures are 
. ___.) •. 

similar to those in grainstones (d1scussed above) except for the larger 

crystal-s~ze range and the ' more obvious planar intercrystalline 

boundaries. Crystals are· usually unstrained, ha~e minor or no twinning, 

tontain few inclusions, and may be associated witt scatierea ~olomite 

cry¥tals which have 'nucleated upon dolomitic particles cut by the 

fracture. 

8.3.3 Late Fracture Calcite 

The best examples of late fracture calcites are found in tectonized 

' .. 



- 225 

outcrops. This type of calcite does not occiur in ladder cracks, 

septarian cracks, and V-shaped marginal fra,tures, but is found in many 

millimetre-wide, penetrative fractures. These calcites are often 

intensely twinned and have pronounced uhdulose extinction. These are 

··- interpreted as strain effects. Late fracture calcites are also , 
inclusion-rich, occasiona~ly . for~ mosai<:s of lath_:.shaped crystals,· and ' 

\ 1 

may truncate and displace vertical stylolites. CL characteristics are 

usually distinct from those of interparti~le cement or neospar in th~ 

host sediment. 

' 
Fracture calcites having characteristics intermediate to those of the 

end members described above are common and their interpretation is 

usually equivocal. Some could also be early-diageneti.c fractur'e .f~lls 

which were enlarged or strained by subsequent tectonism or deeper 

burial. 

8.3.4 Origin of Early Frac'tures 

8.~.4.1 .Septarian Cr~ks 

The spi ndle- shaped fractures found in some mudstone nodules are 

interpreted to be septarian cracks (Plate 12e). The nodules resemble 

those described by Raiswell(l971a) but cracks from the thi s s t udy and • 
Raiswell's (1971a) study have a ~tlmple fracture pattern which differs 

fro~ the concentric and radial patte~ns whicb characterize more 

"classical" septaria (see illustrations in Richardson, 1919; Tarr and 

Twenhofel, 1932; Pettijohn, 1975). The ferroan calcite fill, and to a 

lesser extent, the pyri~ fill, i s typi cal of · septaria. Previous 
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.. 
studies suggest that these fractures form in early-diagenetic 

concretions close to the sediment-water_interface (e.g. Raiswell, 197la; 

Lindholm, 1974; Baird, 1976). This early origin is also supported by 
.... 

their rar~ occurrence in~HG conglomerates and by stable isotope studies 
<J 

of this and other studies (see Chapter 11). 

The origin of septarian nodules has been the focus of considerable 

attention, especially in the early 1900's; a concise review of the early . 
theories of formation are given in Richardson (1919). The opposing view\ 

were shrinkage versus expansion, but most evidence appears to favour the 

former (Richardson, 1919; Lippmjln, 1955- cited in Raiswell; 197la). 

Richard . .son (1919'; p. 337) proposed that "cracking of the nodules i.s due 

" to the dessication of a colloidal centre by chemical means ... . Raiswell 
•\,-

.,. 
(197la) modified t~s basic idea and suggested the following orjgin (p. 

156): 

"The earliest growth stages of .septarian concretions 
occurred in loose, uncompact~d sediment and the growing 
concretion was hydroplastic, due to the lutrrica~ion of 
interparticle con~acts by water films ...• As the 
growth ... proceeded, cementation occurred in compacted 
sediment with ,diminished hydroplastic properties and the 
outer c~ncret±onary layers were therefore more rigid than 
the preceeding layers. The fissures then developed by 
water-loss and the subsequent contraction of the relatively 
hy1droplastic concretion centre." 

· .. 
8.3.4.2 Ladder Cracks 

The term "ladder cracks" is used in this study to refer to a series of 

evenly-spaced, parallel. spindle-shaped crack• whbse distribution 

resembles the ru-ngs on a ladder (Plate llc ,d; 53e). These cracks occur 

" ~n thin grainstone dikes, burrow-fills, and lamiriations, and are always 

' . 

I 

11 
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encased in mudstone. Ladder cracks -are also found in 'mudstone clasts 

within conglofrrerates and more rarE!ly in mudstone-filled burrows. The . ,. 
- ) 

cracks are typically r-5 mm wide and are invariably. oriented ' 

perpendicular to;, the dike, .burrow, or lamination. The shape of these 
. ~- . 

creeks rese~bles simple septarian cracks. They are widest within the 

dike, burrow, or lamination, and they wedge-out near the contact with 

surrounding mudstone. The crack is usually filled with equant calcite 

cement which may be predated by a thin crust. of ·pyrite cement. 

The origin of these cracks is uncertain. Based on petrographic and CL 

relet ionships, however, they ~re inter-preted to be the result of minor 
~ 

displacive crystallization of the surrounding mudstone. CL 

microstratigraphy demonstrates that graJny laminations, burrows, or . c . . -
dikes are often cemented ea.rlier than theit associated mudstones. ·-Later 

displacive gro'!'th in the s1:1rrounding mu"'dstone results in the ~mall 

tensional fractures in the earlier-1 ithified grainstone.' An anal<?sous 

situation is suggested for development in mudstone burrow-fills. 

Ladder crack-s ·strongly resemble tectonically-produced .,"microboudinage" 

described by Geis~r (1974) in which rupturing -of burrows perpendicular 
, 

to length "Was attributed to horizontal compression. Such an origin for 

the ladder cracks of this study can be safely discounted for 2 reasons: 

..ll 
(1) tflere are no other tectonic microstructures (e.g. styloli te!J) 

associated with ladder cracks, and (2) the calcite cement which fills 
(I .. 

these is smoothly transitional, in terms of st~ining and 'cL, from the 

host microspar. · 
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8 .. 3.4.3 V-Shaped Marginal Fractures 

V.,.shaped, marginal fractures in nodules (Plate 53a,e) have been observed 

in other studies of nodular limeston~s> and reflect "tension fracturing 

caused by preferential thinning between nodules ,and shear perpendicu l ar 

to the fractures " (WanlftSS, 1983, p. 391). Presumably such fractures 

could· arise at any time during the burial history of the sediments; from 

e&rly (e.g. McCrossan, 1958; Fuzesy, 1980) to .late burial.(e .. g. Hopkins, 

1972, p. 82). Marginal fractures in the CHG , nodules are interpreted to 

have been 'formed during sh~llow burial based on similari ty of fracture 

cements ~o those which cement grainstones. 

l 

8.3.5 Conclusions 

Early fracture calc;ite i n septaria, ladder -cracks, and V-shaped marginal 

" . 
cracks is commonly smoothly gradational in terms of_ staining and CL from 

grainstone cement or . neospal" of the host sediment. This sugg-ests tha t 

the fractures and subsequent preCipitate are also early, shallow bur i a l 

features. Early fractures are forme d in a number of wa ys: ( 1) septarian 

cracks arise .by slight shrinkage of the centre of concretionary mudstone 

nodules; (2) ladder cracks arise by slight displacive crystallization of 

mudstone su:r;rounding earlier-lithif ied laminations, burrows, or dikes; 

and (3) V-shaped marginal cracks arise by tensional fractur i ng of nodule 

margins during burial. 

Late fracture calcites are multigenerational and usually distinct from • 

cement or neospar in the host lime stone. These crystals are commonly 
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, 
strained and associated with tectonic folding and faulting. Fracture 

-calcites with properties interm~diate to those of early and late 

fracture calcite are common but their timing is not interpretable with 

any confidence. 

8. 4 CONGLOMERATE FIBRmJS CALCITE 

8.4 • .1 Introduction 

The origin of matrix in most conglomerates is readily traced to the 

thinly-bedded slope limestones. , These matrices consist of shale, marl, 
I lo 

grainstone to mudstone including their dolomitized and silicified 

equivalents, equant cement~ and neospar. In some conglomerates, . 

however, the matrix consists in part of a fringe of conglomerate fibrous 

calcite ("CFC") apparently precipitated into an open framework of 

conglomerate clasts. Commonly associated with the fringe is dolomite, 

equant calcite cement, or internal sediment. -\These matrices ha ve been 

found in only 3 beds at Cow Head North (Beds 2, 4, and 7); the most 

widespread occurrence is a l m-thick zone at the top of the Bed 2 

conglomerate (Plate 32a, b). 

These calcites are important because they are the only in ~ fibrous 

.calcite cements in the CHG. All other in si-tu cements are equant. RFC 

c_ements are transported into the slope environment within their host 

boulders, whereas DFC's are not cements. The relationship of CFC with 

internal sediments indicates a synsedimentary marine cement. 

,-

\ 
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8. 4. 2 Petrography 

8. 4 . 2 . 1 Cemeii t 

CFC crystals vary from 5-10 mm in length and have length to width ratios 

of approximately 10:1. The crystals are length-fast,. oriented normal to 

substrate, and form discontinuous to continuous fringes around pebbles 

and over earlier, internal geopetal sediments (Plate -32c; 33c ,d). 

Competitive growth fabric is obvious in many cases. Some fringes are 

isopachous, but more often they are not. One crystal usua/fy spans the ... 

width of the fringe; however, some fringes are composite, being . .. 
interrupted by thin, discontinuous layers of .euhedral pyrite crystals, 

dolomite cement (Plate 33b), or internal sediment. 

Intercrystalline boundaries are mostly jagged and characterized by 

micrometre-s~ale irregularities which appear· to be controlled by 

cleavage (Plate 33b). Crystal terminations are commonly scalenohedral 

(Plate 33a-c), but where overlain by dolomite, are serrated due to local 

replacement by dolomit~ (Plate 33b) . Extinction is typically sharp. Tht> 

scalenohedral terminations along with sharp, unit extinction 

distinguishes these calcites from RFC. 

Most inclusions are micrometre-s~ze, have high relief relative to 

calcite, and iJPP'~ar to be solid. Twinning varies from absent to 

abunc'ant (Plate 33a-d); in some fringes the latter is associated with 

·stylolitization and suggests Cl deformational rather than growth origin. 

· Inclusions are generally evenly scat.tered throughout the crystals, 

although in some samples, they are more concentrated in the latest 
I 
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precipitates. CFC crystals do not demonstrate any evidence, such as 

fibrous inclusion patterns or internal, anhedral botryoidal growth 

· surfaces, of having a more finely-fibrous microfabric (cf. RFC in 

Chapter 7 and DFC in Chapter 9). 

These calcites are mostly non-ferroan; only rarely is there a · thin~ 

late, inclus~on-rich, ferroan stage. With CL the earliest precipitates 

' 
are dark or have dull luminescence and occasionally exhibit 

micremetre-scale zoning (Plat~ 27c). Later precipitates have weak to 

bright orange luminescence . . The transition from the zoned, early 
. J 

precipitate to the outer, mo(e ·luminescent calcite may be demar~ated by 

an abrupt, irregular to scalloped bou~dary which suggests corrosion 

pr~or to renewed. calcite growth. In other crystals, the tran~ition is 

smooth and conformable. 

8.4.2.2 Internal Sediments -
Internal sediments which predate CFC comprise peloidal grainstones and 

_packs tones. These are either .perched on top, of pebbles in conglomerates 

(Plate 33c) or nested between the clasts (Plate 33d). Internal sediments 

postdatins CFC are mi~rospar mudstones and peloidal wackestones. These 

sediments may be replaced in part by isQlated pseudospar crystals up to 

1 mm in silze or dolomite or both (Plate 33a; 3Sc). The pseudospar is 

~nhedral ~o subhedral and tends to be ferroan when associated with the 

replacement dolomite. This dolomite is intensely zoned under CL, 

usually non-ferroan, and also replaces other types of limestone matrices 

~ besides internal sediments associated with CFC. This type of dolomite, 

including the cement, is the conglomerate matrix dolomi te discussed in 
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Chapter 12. 

which include a stage of CFC precipitation have . . 

porosity-occlusion histories. The most complex matrix 

this study includes 6 stages of cementation and internal 

CFC (stage 1) encrusts conglomerate clasts and is 

overlain by a th1n, discontinuous lamination of microspar internal 

sediment (stage 2) p~r to renewed CFC growth (stage .. 3). The top of the 

fringe is overlain by more microspar internal sediment 

is then followed by dolomite cement(?) ~ith scattered 

(stage 5). Remaining porosity. is occlJded by a coarse, 

(stage ~ich 

pyriryryst-al~ 

blocky calcite 

(stage 6). A similar sequence\ut with a single CFC growth episode is 

illustrated in Plate 32c; 33c. 

8.4.4 Interpretation and Discussion 

The infiltration of mar~ne internal sediments before and after 

precipitation of CFC suggests that the conglomerate ¥~S porous and in 
\ 

' direct contact with the overlying seawater. Less compelling evidence of 

a submarine origin for CFC is based on a clast of conglomerate cemented 

by CFC within the Bed 2 conglomerate at Cow Head North. This clast 

clearly must have been lithified prior to its erosion and . incorporation 

into the Bed 2 conglomerate (see' figure 7 tn James and Choquette, 1983). 

These sediments do appear to have undergone at least minor settling 

prior t~ cementation,. however, as indicated by mudstone clasts with 

V-shaped fractures filled with CFC (Pla 



• 

- 233 -

Based on available literature, conglomerates with fibrous cement 

matrices are_not common occ~rences [3]. The most famous is the Scheck 

Limestone conglomerate of Austrian Jurassic. This 1-2 m thick 

conglomerate consists of reworked nodules cemented by RFC (Hudson and 

Jenkyns, 1969; Hudson and Colem~n, 1978). As with CFC in the present 

study; the Scheck is clasv-supported and contains internal geopetal 

sediments of marine origin. Isotopic analyses of the internal sediments 

and RFC support a marine origin for these components. Formation at 

depths of less than 150 m was suggested. 

"S~heck"-type. breccias also· oc·cur in Devonian stromatolitic and 

terrigenous marginal-siope deposits of the Canning -~sin reef complexes 

(Kerans and Playford, 1984). These relatively thin (HJ..:tQO em) breccias 

consist of clasts of mudstone and are clast-supported, 

inversely to normally graded, and contain perched and sheltered internal 

sediments of marine origin. These sediments are cemented by RFC and a 

fibr?us calcite which petrographically _ r_esembles CFC from the present 

study (4]. Depositional depths were estimated at tens to hundreds of 

metres on slopes which range from 10-14 degrees. 

3. Fibrous calcite-cemented conglomerates have been observed by the 
author in Cretaceous slope deposits in Oman as well as in Ordovic ian 
slope deposits from the St. Lawrence south shore in Quebec. The Quebec 
example exhibits microfabrics and dolomite iaentical to those of the 
CHG. 

4. There is no mention of the latter fibrous calcite in the published 
abstract of Kerans and Playford (1984) - this information was made 
available at their poster session during the meeting for which the 
abstract was publis~ed. 



8.4.5 Origin of "Scheck"-Type Conglomerates 

The origin of the CFC-cemented conglomerates in tne CHG is considered to 

result from dilation of the sediment during flow (Hiscott and James, in 

pre$S ) •· These authors hypothesize that dilation, which is due to 

• 
intergranular friction, increases the volume of the debris flow, and 

matrix at the top of the flow i~ subsequently inhaled downward to fill 

the .expanding intergranular s~aces. 

Another hypothesis to explain such deposits is that proposed by Kerans 

and Playford (1984) for the Devonian breccias- as bimodal 

density-modified grain flows. The breccias were deposited by frictional 

freezing and the residual, finer-grained flows continued to travel 

. 
downslope leaving only minor perched sediments in their wake. Submarine 

cementation subsequently fol~owed (Kerans and Playford, 1984). 

In addition to the the above hypotheses, winnowing of an original matrix 

• 
must also be considered. ·lin Chapter 2 it was shown that density-driven 

currents have played a major role in sedimentation in the CHG. 

Presumably these currents could winnow finer matrix from debris flows as 

they passed over them (cf. Krause and Oldershaw, 1979; Mullins, 1983). 

8.4.6 Conclusions 

CFC is interpreted·to be a synsedimentary (submarine) cement based on 

. the presence of marine int~rnal sediments which pos~date and 

occasionally interrupt fringe gtowth. Internal sediments, as well as 

the precipitation of dolom{te and pyrite, occasionally lead to .pores 

with complex occlusion histories. CFC crystals are petrographically 
\ 
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distinct from RFC in the shallow-wa~er boulders and, .except\for their 

elongate shape, these cements resemble more closely equant cements in 

grainstones and other conglomerates. The origin of the open framework 

conglomerates is uncertain but is most probably due to winnowing of the 

original fine-grained matrix by density-driven or other currents. 

8.5 CATHODE LUMINESCENCE OF CALCITE 

8.5.1 Luminescence Stages 

~tost calcite shows at least minor CL zoning, with ~olours .typically 

ranging from orange-brown to orange to orange-yellow. Integration of 

data from cements and neospar defines 3 major CL stages which may be 
# 

found in all sediment types (Plate 35a-e; Plate 46a-f). 

Stage ~ is non-ferroan and no_n-luminescent or dull_ but may have 

micrometre-size, luminescent zones within. It is volumetrically minor 

and seldom dominates a cement or neospar mosaic. 

Stage ~ calcite is the main luminescence stage of these calcites and 

,.nges from weak orarige~brown to bright orange or orange-yellow. 

Hicrometre~cale zoning is common. Dull or dark zones are present but 

volumetrically minor. Stage B calcite may be non-ferioan or ferroan and 

there is no obvious correlation between stain-detectable iron content 

and luminescence intensity and colour. 

Stage £ calcite luminesces dull or weak orange-brown and is commonly 

ferroan. These may also show micrometre-scale toning. Grain-supported 



236 - • 

samples which are dominated by this type of calcite are especially 

difficult .to study due to the similar luminescence of typical peloids 

and interparticle matrix. 

The transition between zones of contrasting luminescence may be 

characterized by (1) razor-sharp boundaries, ~2) a gradual 

unidirectional change; or (3) a zone of micrometre-scale interbanding of 

the two adjacent luminescent zones. 
. . 

Most cement and neospar mosaics c6nsist largely of Stage B or Stage C 

calcite or both (Figure 8.2). Grainstones which show all 3 ~tages are 

typically dominated by Stages B and/or Stage C calcite with Stage A 

calcite relegated to thin rims around peloids (Plate 3Sa) and less 

commonly as syntaxial overgrowths on pelmatozoan and trilobite debris. 

The preferential overgrowth of these bioclasts has been termed 

"competitive cementation" [S). These calcitic (Mg-calcite?) grains 

appear to bave ~rovided a convenient nucleus for prec ipitation prior to 

the attainment of conditions which allowed a more general cementation. 

These early-cemented grains fortuitously preserve the 3 lumi nescence 

stages of cementat~on history in a sediment that otherwise apQears to be 

devoid of Stage A calcite. Similar competitive cementation by Stage B 

calcite occurs in mosaics dominated by Stage C calcite. Neospar 

crystals in which all three CL stages occur typically have a 

barely-resolvable Stage A calcite in the centres of crystals. 

5. Competitive cementation was a term coined by L. C. Pray communicated 
to Bathurst (1975, p. · 423) to account for the "observation that cements 
nucleated on different particles, and therefore on different substrates, 
occupy different volu,mes of t~ porosity." 
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1 

Figure 8.2: Summary diagram of CL characteristics for various 
calcites encountered in the Cow Head Group. 

\ 



z 
c 
0 
c 
a: ... ... z 
0 
z 

z 
c 
0 
c 
c ... ... 

w 
1-
G 
...J 
< 
() 

IJJ 
a: 
~ 
1-
() 
< a: 
u. 

I 
I 
I 
I 
I 
I 

I 

I 

I 

UJ 
1-
G 
.....J 
< 
() a: 
1- < z a.. 
<( (/) 
::> 0 
0 w 
w z 

I• .. I 

I I 

I 
I 
I 

I I 
I I 
I I 
I I 
I I 
I I 

-

- 238 -

,..Y' 
' 

\ 
LUMINESCENCE 

STAGES (.) () (j 
u. u. u. 
(.) 0 a: 

t 

A 
' 

·- --- ·-
I I 

I 
I 

I I 

I I 
I 

I B 
I 

• I 

I 

c 

/ ' 



• 

- 239 -

The similarity of the CL properties of equant cements and. neospar in the 

CHG clearly implies that they wete precipitated from pore-waters of ' 

similar composition, and in samples which contain both cement and 

neospar, they are clearly synchronous precipitates. 

The dark to weak-luminescence of the centres of CFC crystals and 

subsequent weak to ~right orange-luminescence is considered to be 

equivalent to Stages A and B in equant cement and neospar. In the 
.... . 

altered internal sediments associated with these crystals; the isolated, 

non-.farroen, pseudospar crystals are Stage B, and the ferroan crystals, 

including later, marginal ferroan zones, are Stage C. 

CL of early fracture calcite may be identical to its host neospar or 

ce111ent .or rnore ferroan and less luminescent. In ladder cracks, for 

example, calcite may show lumine~ceri~e Stages B and C whereas the 

associated grainstone cement and neospar is mainly Stage A (Plate 46a). 
,·, 

Septarian nodules dominated by ferroan, dull-luminescent, Stag~ ·c 

calcite mai have septarian cracks filled with more strongly ferroan, 

less luminescent Stag; C calcite. The luminescence of calcite cement in 

V-shaped marginal fractures in nodules is often identical to the latest 

marginal pseudospar of the nodule, usually a ferroan Stage C calcite . 

• 

8.5.f Cathode Luminescence and Trace Element Composition 
I 

of Mn and the quenching effect of Fe on the CL of 

to a lesser extent calcite, is well estab1ished 

(e.g. ~ippel and Glover, 1965; Amieux, 1982; Frank et al., 
t --

. child, 1983). The quantitative aspects of luminescence, • 

however, are poorly known, especially· for calcite. The complexity of .. 
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the variablei involved and their mutual interaction likely accounts for 

variability ' in the empirically-determined luminescent fields (Figure 

( i 
8.3; see recent d1.scussion by Fairchild, -1983). 

S·emi-quantitati ve microprobe analysis (see Appendix I) for .Fe and Mo in 

numerous calcite samples from th~.CHG suggests ·that the dominant 

controls on their CL are the relative concentrations pf Mn and Fe 

(Figure 8. 4). The role of sensitizers ·such as Ce and P~ (e.g. Mac he 1 , 

1982) was not evaluated during this study. For concentratio~s of MnO 

less than 0.1 wt %, calcite is dull or dark, regardless of iron 

content. For concentrations greater than 0.1 wt % MnO and i~ss than 0.3 

wt% FeO, calcite . is bright luminescent. 

' 
8.5.3 Discussion of Cathode Luminescence Trends 

The sequence pf CL stages observed in cements and neospar from the CIIG 

is similar to that d~s~ribed from other studies of calcite cements (e.g. 

Meyers, 1974, 1978; Oglesby, 1976; Frank!!_!.!_., 1982; G£over and _Read, 

1983). Comparable studies of neospar, however, are lacking and therefore 
lo 

the present study , is untque in this res~ct. 

The transition from Stage A through C ls most. simply interpreted in 

terms of the evolution of pore-waters from initially oxidizing 

conditions to progressively ~re reductng with time. A model also 

incorporating the effects of dissolved sulphUr content and to a lesser 

extent, pH, was proposed by Frank e't ai . (1982), ~ed on the Upper 

. ( 

• 
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8.3:- Surrimary of luminescence cfata for dolomite and calcite 
from literature sur~ey.·. 'Dolomite: Stippled area 
denotes zone which separates lumin.escent from ' 
non-1 uminescent dolorni te. Lines vithin and bounding 
stippled area are quench an~ luminescent lines from 
Pierson '(1980), Fairchild (1983), and Frank (1981) as 
depicted in Fairchild (1983). Calcite: Line A is Hn 
activation hne from Fairchild (1983). Below the line 
calc::ite is n~n-luminescent. Lines B, C, and D are 
approximations of boundary lines vhich separate 
luminescent fields in Frank et al. (1982). Fe/Mn 
(molar) ratios of lines B, C-,-and D are· 0. S., 1 .0, and 
2.0, respectively. Line E is the approximate boundary 
wh:ic;h' separates bright-luminescent calcite (above) 
from dull calcite (below) and line F separates dull 

. calcite (above) fr~ non-luminescent calcite (below) 
from Grover and Read (1983). Lines G and Hare for 
caleites in the CHG; detaih are illustrated in Figure~ 

· 6.4. Diagram is substantially modified from. Fairchild 
- (1983~ • 
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.. 

Figure 8.4: Luminescence fields t'or calcite cement, neospar, and 
minor DFC from the CHG. This diagram outlines the 
positions of 3 luminescence fields - bright, weak, and 
dark and dull. The plot is based on 57 paired 
semi-quantitative microprobe analyses (see Appendix 
I), each of which is an average of at least 4 and as 
many as ·10 individual spot analyses. Minimum 

· detection limit for FeOand MnO is 0.1 wt % • 

.. 

I 
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Cambrian Taum Sauk Limestone of southeast Missouri. In this model, 

bright-luminescent -cements are precipitated from oxidizing or reducing .. 
solutions in which the Mn activator is incorporated ivto calcite but Fe 

forms either oxides/hydroxides or sulfides. In any case iron is not 

1 available for incorporation into calcite. In intermediate Eh 

condition~. both Mn and Fe are incorporated into ~alcite resulting in 

dull-luminescent cements. Extremely reducing (most evolved) 'fluids or 

extremely oxidizing (most pristine) fluids precipitate reduced or 

oxidized Mn and Fe compounds, "respectively., with little o_r no Mn or Fe 

incorporated into calcite. Unfortunately, the difficulty in 

demonstrating co-precipitation of calcite with associated oxides or 

,sulfides which act as sinks for Mn and Fe precludes rigorous practical 

testing of this model (Frank .!:.!_ ~·, 1982). Frank et ~· (1982) also 
\ 

demonstrated that the Fe/Mn ratio affects luminescence and slight 

fluctuations in the relative amounts of Mn and Fe could account for the 

ubiquitous fine;..scale zoning. Presumably similar fine-scale zoning 
•" 

might also reflect availability of Mn and Fe in pore-waters at constant 

Eh (see Meyers, 1978). 

Variations of this model have been applied exclusively to di~genetic 

studies of shallow-water carbonate -sequences (e.g.Meyers( ~9J4, 1978; 
/ // 

Oglesby, 1976; Frank~!!.·, 1982; Grover a~d Read, 1983). In these 

- '"' 
studiei the sequ.nce from oxidizing to reducing is interpreted ~a 

represent initial cementat.i,sn in the oxidizing environment of the _vadose 

zone - uppermost meteoric phreatic zone. With increased distance below 

the water table, ground waters become progressively more reducing and 

' thus able to incorporate first divalent Mn and then both Mn and Fe into 
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the cements (also see Evamy, 1969; Champ!!_!!.!_., 1979). Phreatic around 

waters may be of meteoric derivation (e.g. Grover .and Read, 1983) or of 

meteoric-marine mixing zone origin (e.g. Oglesby, 1976; Meye~s. 1978). 

Fine-scale zoning in the cements is usually interpreted in terms of the 

·position of the paleoaquifer as controlleo by sea level, or seasonal or 

other effects. 

.. 
8.5.4 Conclusions 

/ 

Based on CL examination of CHG calcites, the predictable sequence going 

from oxidizing at the outset to progressively more reducing also takes • 

place during early diagenesis below the sea floor. ~ased solely on CL 

examination or staining, such sediments cannot be ~ifferentiated from 

those which have undergone m~teoric to burial uiagenesis or meteoric to 

mixed meteoric-marine phreatic diagenesis. 
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Chapter 9 

DISPLACIVE FIBROUS CALCITE . 

9.1 INTRODUCTION 

Displacive fibrous calcite ("DFC") fringes or veins commonly referred to 

as "beef" [ 1) ·and ·"c.one-i n-cone" [ 2] are common cons tit uen tf ·of 

organic-rich shale sequences throughout the geologic column, from . .. 
Precambrian to Tertiary, including marine and non-marine sequences 

~ . . 

(Woodland, 1964; Marshall, 1982). The association of DFC and organic 

material has been hypothesized for some time (Reis, 19~, cited in 

Richardson, ·1923, p. 93; Brown, 1954; Mackenzie, 1972}: and has been 

verified by stabl~ isotopes (e . g. Hodgson," 1966; Campos and_ Hallam, 

1979; ~arshall.' 1982; this .study Chapter 11). Its tendency for 

widespread distribution in specific horizons has also made DFC an 

important stratigraphic marker in SQme outcrop and subsurface Studies 

(e.g. Twenhofel and Tester, 1926; Mackenzie, 1972). 

-~------· 

l. "Beef" )lias a term used by quarry workers in Dorset County to refer to 
fibrous calci~e veins in strata of Purbeckian age (Chambre syndicale de 
la recherche, 1966, P· . 229) 

2. The te~ .i\ ~sed to describe radiating or plumose aggregates of 
fibrous calcite crystals which form mutually interfering cones and ir 
some cases are nested one ·"inside the other. 

. "' 
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Cone-in-cone was first described and illustr-ated in 1793 by Reverend Ure 

(Cayeux, 1935). The initial uncertainty regarding its inorganic or 

organic origin led Hildreth (1836) to consider it as a fossil columnar 

Madrepore and that "these fossils must have been among the first created 

animal productions of that ancient ocean ••• " (p. 100). With reference 

to the state of understanding of cone-in-cone b,Y the middle 1800's, ,• 

Sorby (1860, p. 
( 

124) stated that "no one appears to have . . . given any 

satisfactory explanation of its origin." Nearly 200 years after its 
./ 

formal introduction by Ure, Stoneley (1983), addressing the more 

funda~ental origin of fibrous _calcite in the first place, remarked "The 

difficulty in understanding the fbrmation of these veins is knowing how 
-~ 

. the bedding planes were held or forced apart again~t the confining 
I 

pressure' o'f the overburden. to allow the,· mineralizing fluids to pass and 

the calcite to crystallize." (p. 1427). 

The origin of DFC is neither simple nor straightforward, nor is the re 

necessarily a unique origin [3]. An early or shallow-burial or i gin for 

DFC is suggested by most studies, based on association with . 

pre-compactive or slightly compacted, occasionally septarian concretions 
'· 
and . the demand for high plasticity :irn the surrounding shales to 

accommodate volume expansion (e.g. Richardson, 1923; Shaub, 1937; 

Woodland, 1974; Franks; 1969; Mackeinie, 1972). Other studies postulate 

a later diagenetic origin . after the main phase of bacterial m·ediation of 

3. In adpition to calcite, other phases which demonstrate cone-in-cone 
structure include dolomite, gypsum, celestite (Cayeux, 1935), siderite 
(Hendricks, 1937), ankerite (Fuchtbauer, 1974), pyrite, and silica, The 
last two are generally thought to .be replacements of calcite (Woodland, 
1%4; Love et al., 1983) altho·ugh Hudson (1982) recently described 
pyrite with-co~-in-cone stiucture which he interpreted to be original. 
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pore-waters, concretion formation, or even hydrosarbon emplacement· 

(Fuchtbauer, 1974; Marshall, 1982; Stoneley, 19~). 
v 

Upon casual observat~on, DFC in the CHG appears to have only . local 

significance, and is little more than an interesting diagenetic curio. 

Integration of field and petrographic observations, 'however, 
I 

demonstrates DFC to be widespread both. as: fl) "macro-fringes", which 

are macroscopically recognizable in most ccises, and which are laterally 

continuous on thin sec.tion.-scale, and (2) /~icro-fringes" which surround 

granule- and sand-size argillaceous intr~lasts in grainstones to 

' . 
mudstones. DFC is genetically linked to cementation and neomorphism in 

:1 
these sediments and it is therefore another 'important expression of 

early, post-depositional alteratioi in the CHG . 

This chapter explores the nature of ~hese intriguing calcites based on 
. ' 

field and petrographic observations. Their CL, which has not been 

previously reported in the literature, provides additional insight into 
. ' 

the mechanics \t spherocrystal growth (see Chapter 7). Trace. element and · 

stable isotopic analyses are discussed elsewhere (Cha~ter~ 10 and 11) • . 
The following discussion is concerned primarily with the petrography pf 

DFC in the macro~fringes. A bri.ef. ... discussion of DFC in micro-fringes 

is provided later. 

.., 
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9.2 FIELD RELATIONSHIPS 

DFC fringes occur throughout the succession. Two localities were 

sampled intensively: (1) the Lower Ordovician sequence at Cow Head 
( 

North, and (2) the Upper Cambrian and Lower Ordovician sequenc~ at Green 

Point. Much of the follo~ing petrogra,PhY relies heavily, though not 

exclusiYe1y, ~n information trom these localities [4]. DFC is also found 

-
as scattered clasts in many conglomerates (see section 9.Y.l). 

DFC fringes vary from 1 mm to 5 em in thickness and are attached to 

mudstone to grainstoil'e "substrates" (on and/or under). Fringes whi.ch 

appear to lack an obvious substrate in the field often reveal in thin 

section the presence of millimetre-size or smaller si1t law.inations 

which have acted· as substrate. "As with the previously discussed nodular 

limestones, DFC ftinges occur in discrete horizons, although indivi~ual 

fringes are rarely more continuous than l m l.n length. One part i cul<;tr 

· fringe exposed along the wave-cut platform 8t Green Point was traced 

intermittently for 200 m. 

Fringe - substrate relationships ~re variable and the spectrum of CHG 

occurrences is iLlustrated schematically in Figure 9.1. l{l planar and 

' 

4. The one single interval with the most abundant as well as v·ariable 
fibrous calcite is 'from Bed 8. 30 at Cow Head North: This 2 m thick 
sequence consists mainly of nodular mudstones up to·SO em in length with 
subordinate grainstone beds. DFC is associated with many, but not all, 
mudstone · and grainstone beds. Associated shales'are black, fissile, 
slightly calc~reous, and locally siliceous. 

\ 

.. 
~· 

·~ 
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wavy beds, fringes over, under, or both over and under a substrate are 

equally common ("a" in Figure 9.{).· In many outcrops, the cumulative 

thickness of substrate and fringe is often roughly maintained along 

strike. A typical example of this is a fringe on top of a bed which 

progressively thins with concomitant growth and increasing thickness of 

a fringe from the underside of the be~ (a). 

Cons~rvation of fringe substr~te thickness is also exemplified by 

multiple fringes within parted/ limestones (b). In these, the multiple . 
. r 

fringe is composed of a f~' nge nuclea~ed on the underside of the upper 

bed and a fringe nucleated the top of the lower bed. Fringes lacking 

---(apparent or real) substrate are comparatively rare (c), and these, too 

may be multip~e (d). In both of the above cases, the mutually 

interfering fringes meet along a medial shale seam. Occasionally, 

multiple fringes con~ist of fitted DFC lenticles separated from each 

other by shale seams (e). DFC may create relief in continuous beds 

which, otherwise, would be planar (f), and forms on and accentuates 

previous substrate swells in ~avy beds (g). . , . 

Nodular be~s demonstrate a comparable range of fringe - substrate 

relationships. Fringes commonly grow on and under a mudstone nodule and 

mey be restricted to th~ nodule (h) whereas other fringes continue into 

the internodular areas (i) where they grow ~ntitaxially (~Durney 

and Ramsay~ 1973) from a medial shale or silty seam. Some nodules, like 

continuous parted limestones, contain an internal, multiple fringe of 

fibrous calcite with a prominent medial shale seam (j) • 

. 1 

More complex fringe - substrate rela~ionships are found but these are 

- ·--· - ·-----· -·-·-

.. 
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J 

Figure 9.1: Schematic summary of the various relationships 
observed between fringes of aisplacive fibrous calcite 
and its substrate. Letter labels are referred to in 
text. For scale, width of fringes is 5 em. 

, 

.---
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comparatively rare. Three examples are illustrated in Figure 9.1. In· 

the first (k), the upper ha~f of - a nodule consists of fibrous calcite 

whereas the lower half is mudstone. More comple~ relationships result 

where elements of the above ~aria(ions are randomly combined (1, m). 

9. 3 PETROGRAPHY 

\ 
9.3.1 Types of Displaci~e Fibrous Calcite 

Two categories of DFC are differentiated based on t~eir petrographi~ 

characteristics~ for Simplicity these are termed Types l and 2 ("DFC-1" 

and "DFC-2"). These calcites differ wit,h respect to their crystal 

~hapes, inclusion patterns, and extinction characteristics. DFC~1 is 

most apparent in the -Lower Ordovician sequence at Cow Head North, 

whereas DFC-2 is found mainly, though not exclusively, at Green Point 

' 
(Plate 36). 

The most obvious difference between these calci~es is the occasional 

presence of euhedral or subtiedral termi-nations.· on DFC-l crystals which 

\ - contras~s with the typical anhedral terminations of DFC-2 (also see 

Tarr, 1932) • . DFC-1-type crystals ha.ve not been previously documented in 

the literature with the possible exception of the radial calcite 

aggregates described by Lindstrom (1979) ftom Lower Ordovician 
I 

hardgrounds in S~eden. DFC~2, on the '6~~er hand, is the familiar "beef" 

which, in some instances, develops "cone-in-cone" str~cture. Fringes 

with characteristics intermediate to these two ~ypes are comparatively 

rare. 

' 
.. 

- I 

I . 
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• ' ... 
Ther.e is no difference in the mode of occurrence of either DFC-:1 or 

DFC-2 fringes, except that DFC-1 clasts are more common than DFC-2 
... 

·clasts in conglomerates and only DFC-2 fringes dem~mstrate curved . 

cry.stals (disc.ussed later). In the following discussion, DFC-1 · and 

DFC-'2 fringes are described together, noting separately any important 

differences. 

9.3.2 Gli'fleral Characteristics . 

Size: DFC ~rystals fuay be as smal:l as 150 pm ·in length and 25 pm 1n 

width to as large as 3 em in length and 5 mm in wid t h. They are 

typically narrowest at their bases and . they progre!?si vely widen with 

~rogressive growth. 

--- - ·r 

·Crystal Terminations: The crystal terminations of both DFC--i and DFC-2 

are most common~y anhedral, and form: ( 1) one or several smooth, 

. c-onvex-up_ward, botryoidal surfaces (Plate 37a), (2) smooth or blunt 

surfaces (Plat~ 37b), or (3) several · irregular, stubby projections 

(Plate 39e). DFC-;1 crystals also may be characterized by rhombic. or 

sca1enohedral (steep rhombic) termtnations or subhedral terminationi 

(Plate 37a,c) ~ Thin sections cut perpendicular to crystal elongation 

demonstrate that cross-sectional shapes ar~ mostly anhedral. 

E¥tinction: Extinction in DFC-1 and DFC-2 is usually sharp (unit 

extinction) or undulose with slightly divergent c-axes. In most cases 

the extinction sweep occurs within 10.:.15 degree rotation of t!.e 

·,' . m1c roscope stage. Similar extinction ~haracteristics have been noted i'n .., 

.9ther studies (e.g. Cayeux, 1935; Woodland, ' 1964). DFC calcites are 

.. 
·.·,· ~ ·· 
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length-fast, although in SOII)e D~c::.2 crystals, crystal length and c-axis 

are separated by an angle of up 30 degrees. 

-
Subcrystals: Many of the larger DFC crystals consist of-' several 

subcrystals up to 250 pm in width, each with its own s~igbtly sweeping 

extinction. There is no correlation apparent between the posit ions of 

these subcrystals and inclusi on patterns (discussed below). 

1.: 

Intercrystall ine Boundaries: In 

intercrystalline boundaries may 

both DFf~i and DFC-2 fringes, 
; \ -

be plan,r \ (Plate 38d,e) to smoothly 
~j, 

curved or wavy (Plate 37b,c,d; 39a; 40a), especialLy if they are 

surrounded by a prominent intercrystal1ine argillaceous paste. In other 

fringes, the lateral margins of the crystals are "stepped" or jagged due 

to groups of · filu'es with blunt terminations (see below) extending into 

the intercrystalline shale "paste" (Plate 39d,e; cf. "minor fractures" 

of Gilman and Metzger; 1967). Where stepped margins from qne bun'dle 

impinge on another · crystal, the -shale is squeezed into "corrugated" 

patches (cf. Mackenzie, 1972, fig. 4). Other intercrystalli~_e 

. boundaries are _.concertal with mutual interpenetration ·up to 50 pm (Piate 

38b) ~ Within .more. obviously tectonized fringes of both DFC-1 and DFC-2 
! 

calcites, fntercrystalline boundaries are microstylolitic. 

Twinning: Both DFC-1 and DFC-2 calcites vary in their degree of 

twinning. Curved twins are rare and appear to be a strain feature 

related to tectonism. fwinning is not always pervasively developed 

within individual crystals but instead may be .concentrated in the 
-' 

relative.ly inclusion,..free centres of some crystals or may be patchily 

peveloped within crystals. 
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Iron Staining: DFC fringes are usually evenly ferroan, judging by iron 

stain and are,considered t _o have late Stage C luminescence. ~ In some 

" cases, however, the fringe is non-ferroan at its base and grades upwards 

into more ferroan calcite. Non-ferroan fringes and fringes which grade 

from a ferroan base to a no_pJ..ferroan top are comparatively rare. 

Millimetre-wide non-ferroan zones are occasionally found in the last 

stages of growth in _some otherwise predominantly fer roan fringes. 

9.3.3 Inclusions 

lflclusions in DFC appear to be identical to those found in calcite 

cements and neospar. Four types of inclusion patterns are recognized in 

these. crystals, designated as Types A through D. 

TYPE ~: This inclusion pattern is characterized by a homogene)Xl's 
( 

. ' 
distribution of inC:lusions t1i"roughout the crystal. However, ·their 

relcative abundance£ vary in different samples. 

\ 

TYPE_!!: In this pattern, inclusions are concentrated into bands parallel 

to the growth surface of the fringe. The surface morphology is 

~ 

typically irregular although occasionally there are smooth botryoidal 
. ~ - . 

surfc;lces (Plate 37a) and surfaces outlining former subhedral or e,uhedral 

terminations (Plate 38b). This type of inclusion pattern is_ also 

-_expressed in RFC (see Chapter 7) •. The Type B pattern is explained as the 

result of slight changes in physico- chemical conditions during 

precipitation of the fringe. 

TYPE £: This inclusion pattern outlines elongate, relatively 

inclusion-free "cores" within DFC crystals, some of which extend for 

...... 
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most of their length. The cores vary in thei~ abundance and size. 

Where only one or a few cores are present, their width typically varies 

. from 200-400 pm. These cores may correspond to the subcrystals defined 

in polarized light. " -In crystals containing numerous cor.~s. they are 

considerably smaller (25-100 pm wide) and are discontinuous tn t .he two 

dimensional view of a .thin se~·tion (Plate .38a). Regardless of their : 

size, cores defined by the Type C pattern are usually less ferroan {and 

slightly more luminescent - discussed later) than the surrounding 

r~latively inclusi~n- and iron-rich calcite. 

These cores. may be especially obvious in thin sections cut perpendicular ' . . 

/ ' to crystal elongation. Some DFC-1 crystals consist of 3 or Z. roughly 

circular cores joined together and surrounded by more inclusion-rich 

calcite (Plate 38c). Cross-sections of several DFC-2 samples demonstrate 

1 inclu;ion-rich trigonal-shaped centres which· contain numerous small, · 

circular to irregularly-shaped, inclusion-free cores outlined by 

inclusions (Plate 38e,f). The ttigonal centres may be syntaxially 

enlarged by inclusion-fr-ee calcite until adjacent crystals meet along 

planar intercrystalline boundaries (Plate 38d,e) or enlarged further by 

inclusion-rich calcite (Plate 38f). 

TYPE D: This ·inclusion pattern is the most. common one and grades 

transitionally from the Type C pattern as the re!~tively clear cores 
- ~ 

· diminish in size and become progressively less distinct. The Type D 

inclusion pattern consists of lineariy~arranged inclusions which either 

splay from a mediaL:lnclusion trail ·which travels up the centre of the 
I i 

crystal, similar .,tp :the arrangement' of the "hairs" on a ~eather, or the 
J.. ' 

· inclustons_ may radiate from a single point near the base of the crystal 

_. 
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(Plate 39a,d). In addition, at the tips of some DFC crystals, slivers of 

\~Ieite project a short distance into adjacent shale and the thin 

inclusion-outlined fibres may be clea~ly seen (Plate 39b). The spacing 

of these fibrous inclusion trails typically ranges from 10-50 fm. As 

will be seen, this _jnc!usion pattern indicates the presence of fin~, 

fibrous crystallites only .clearly visible with CL. 

Distribution of Incl~siori Ty;es: DFL may exhipit all 4 inclusion 

patterns whereas DFC-2 are mostly dominated by the Type D inclusion 

pattern and less commonly, the Type C. pattern._ In both types of 

calcite, crystals with the. Type B inclusio; pattMn are rare. 

•9.4 CATHODE LUMINESCENCE 

The common fer roan composition of these crystals renders many unsl.ii table 

for CL study (e.g. Plate 43a,b). CL zones which range in width' from , . 

micrometre-size to millimetre-size are, however, detectable in .some 

crystals, or certain parts of crystals. Growth surfaces delineated by 

fringe-wide changes in CL colour or intensity rep~esent the s~rface 

morphology of a fringe at various times during its growth history. 

As with ~rystal terminations, DFC-1 growth surfaces range from 

irregular, anhedral ~r botryQidal shape~ to euhedral. Upon iloser 

examination it is apparent that some of the euhedral faces are not truly 

planar but instead are slightly convex or gently undulatinga 

"pseudofaces" (Pla~e 46g). These "pseudofaces" are characterized by . .. .· 

uneven, often sporadic, development of the youngest growth zenes, a 
. -\ . ' 
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situi:,ion · similar to that described from neospar (discussed, in Chapter 

'a). Some crystals demonstrate a tendency for the-growth surface to 

. 
become progressively more euhedral .during subsequent growth, ultimat~ly 

generating a crystal bearing· a rhombic termination (Plate 4la-d; 46h). 

This relationship is not universal, however, and euhedral or subhedral ---growth surfaces _ may grade into progressively niore anhedral surfaces. or 

euhedral and anhedral surfaces may alternate unsystematically (Plate 

42a-d). In contrast to DFC-1, growth surf~ces of DFC-2 are always 

anhedral, an4 occasionally botryoidal. 

CL illustrates that portions of some DFC crystals consist of numerous, 

parallel-oriented to slightly diverging, fibrous crysta flites 10 pm or 

less in width. Their orientation and siz'e correspond to the Type D 

inclusion pattern. In many crystals, offsets of , CL zones betw~en 

adjacent cryst<:lllites or groups of trystallites res~;~Jt in the formatio~ 

Of pseudof ~ces or mic romet re-scale _i :::-:-~gu l ar i ties on the g~owth . surf ac ~ 
' .. ., 

(Plate 42c), 'Equant ne_ospar :Within or ~ransitional tb a DFC fringe may 

also be characterized, either ~hroughout or just on their margin~. ~Y a 

parallel or radiating Type D inclusion pattern (Plate 39c), 

mfcrometre- wide fibrous cryst~llites, and C~ ione offsets (Plate 43c ~ d; 

44a-d; 46e). In other DFC crystals as with-most neospar and RFC (see . 

Chapter 7), crystallites are not apparent and growth surfaces appear 

smooth. 

:t!- : 
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9.5 FRINGE ORGANIZATION 

Fringes may be simple, in which one calcite crystal spans tbe width, or 

they may be complex where numerous, parallel-oriented crystals nucleated 

continuously d~ing growth of the fringe, with very few crystals, if 

any, spanning the width of the fringe (Plate 36d). Discontinuities 

within fringes marked by . terminatidn of crystal growth and renewed 

nucleation upon, but independent of the crystallographic orientation of, 

the older crystals are comparatively rare (Plate 36b, c; cf. · Marshall, 
c 

1982). 

Both DFC-1 and DFC-2 fringes may be composed either of pallisades of 

elongate crystals (mostly DFC-1; Plate 36a, 37b,c) or numerous, 

inte~fering bundles of crystals, which in shape and distribution, 

resemble the wool tufts in a hooked rug (Plate 36b,c,d). Radiating 

bundles are also found in ' fringes which are otherwise dominated by a 

pallisade of crystals. Although present in both DFC-1 and DFC-2 

fringes, radiating bundles are only well-developed within DFC-2 

fringes. The apices of the bundles or "cones" (see below) are 

fnvariabiy pointed ~oward their substrate and occas i onally the bundles · 

form raised circular ar:eas on the surface of the fringe ("pustulate 

pro-tuberance~" of Kendall and Simpson, 1974). 

Most fringes are characterized by competitive growth fabric where 

smaller, more equant, and more variably-oriented crystals progressively 

yield to fewer, more e1ongate, · and larger crystals in a pa1l i sade or 

/ 
/ . / 

· ·/ 
' / 
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·radial arrangement (.Plate 36c; 37c). ,Th.e degree to which the competitive 
I 

growth fabric is developed .varies and in 5ome fringes it is absent.~ . 

The radiating bundles are comparable to the "cone-in-cone" structure 

described from numerous other localities (e.g. Woodland, 1964; Franks, 

1969 and refererices therein) ~here bundles of crystals form mutually 

interfering cones and in some cases are nested one inside the other~ the 

latter are truly cones inside of cones. Good examples of the nested 

cone-in-cone variety have not, however, been recovered from the CHG. 

Not all fringes consis~ of well-organized pallisade or "coned" 

crystals. ,Other fringes contain only scattered ros~tes of elongate 

crystals or isolated crystals oriented nor~l to bedding, both of these 

being su_rrounded by coarse, equant pseudospar (Plate 37f). Equant 

pseudospar ranging from 100-1000 pm in size also may: ( 1) over 1 ie. a DFC 

fringe (Plate 37e); (2) occur as irregularly-shaped, mill'imetre-siZl' 

patches within fringes; or (3) form linear ~rails petween DFC crystals 

(Plate 37d). ·--

~ 

9.6 TRANSITION FROM SUBSTRATE TO FRINGE 

Many samples exhibit a gradual transition from marginally-aggraded •. 

coarse, equant pseudospar to DFC in terms of crystal size, shape and 

orientation; iron stain; CL (Plate 43a,b); ~nd stable isotope~ (Chapt~r · 
I 

11). Equant pseudospar may evolve into elonJate DFC crystals by further 
I 

precipitation of calcite preferentially to~rd the margins of a bed or 

toward shale ~ntradasts. This leads to .. ollous asy,...tric zoning 
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within individual crystals (Plate 44a-d). Iron stain· and CL of DFC 

fringes nucleated on grainstones are commonly smoothly gradational from 

the interparticle cement. 

In some samples, isolated rosettes and single elongate DFC crystals have 

identical staining and CL properties as their surrounding equant · 

pseudospar matrix. In other samples, staining, CL, and stable isotopes 
. . 

of pseudospar and DFC are similar even though they \'ccur on opposite 

sides -of a ._bed (Plate 37e,f). 

f 
_, 

A peculiar micro abric seen in some mudstones which aggrade into DFC 

fringes do so via a transition zone of numerous bedding-parallel, 

calcite lenticles which are closely fitted to one another and are 

separate·d by a prominent, inter lenticular paste (Plate 40b). These 

lenticles,~ay be either monocrystalline or poly~rysta'lline, reach 

up 1 mm in length and 250 pm in width: 

9 :7 NATURE OF ASSOCIATED SHALE 

Shales which overli~ or underlie DFC fringes are identical to those 

described in Chapter 2. These shales are always black or.green; DFC is 

never in contact with red shales. Millimetre-thick shale seams are also 
~ 

important components within DFC frin~es. Horizontally-oriented shale 

seams occur at t~e junction of two inwardly-growing fringes (Plate 

37b,c) or act as a coDIDOn substrate for two oppositely-growing fringes 

(Figure 9 . lb,d.j,l). U- or V-shaped seams outline and separate cones 

from one anos:her. Vertical shale _seams or patc~es of shale also form 

·the intercrystalline past~ between individual DFC crystals or associated 

pseudospar. .,; 
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9.8 DISPLACIVE OgiGIN OF FRINGES 

These fibrous calCites are dlsplacive in origin, having pushed aside 

adjacent terrigenous muds and other insolubles during their growth in 
./ 

order to make room for themselves. This interpretation is based on the 

relative lack of siliciclastic silt within the fringe~ relative to the 

adjacent shale~; shale paste caught between t~e ~longate crv~tals of the 

fringe; and numerous other straightforward petrographic relationships, 

such as the occurrence of fringes surrounding ~udstone nodules, which 

preclude ·a pore-filling origin. There is no evidence to suggest that 

the origin of the fringes is related to the filling of sheet-cracks · 

(e.g. Kendall and Tucker, 1971; Tucke~. 1973). Other studies have used 

other lines of evidence for a displacive origin, including the displaced 

upper and lower surfaces of trilobites, ammonites, · and fpssil fi~~ 

(Brown,. 1954; Woodland, 1964), and floating grains,. suggesting an 

expanded detrital framework (Franks, 1969) . 

Some grains, however, were not pushed aside duriri"s fringe growth. 

' Scattered grains of siliciclastic silt, up to 20 ~~ in size, are 
' ,., 

poikilotopically enclosed by some DFC crystals, · but_ their, abundance is 

considerably smaller than that in the adjacent shale or limestone. 
e 

Non-ferroan, anhedral to subhedral dolomite crystals are also randomly 

scattered in DFC crystals although in some, dolomite is 

crystallogtaphically controlled and therefore likely authigenic. One 
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fringe was obser~ed to contain scattered, variably-preserved, 
l 

calcite-replaced radiolaria in which the replacement crystals were 

syntaxial with the enclosing DFC crystals (Plate 40a; c'f. Mackenzie, 

1972 [5)) . . 

9.9 EARLY ORIGIN OF DFC FRINGES: FIELD ·EVIDENCE 

Severai lines of evidence, used jointly, indicate that DFC is the 

product of early diagenesis, probably formed within 10 m of the 

sediment-water interface. 

-
9.9.1 Fibrous Calcite Clasts 

The strongest evidence for an early diagenetic origin is that DFC is 

found as clasts in tonglomerates. These occurrences include: (1) 

nodular mudstone clasts with a peripheral fringe of DFC (Plate 45a); 10 

em-size or smaller pebbles, both with and without a substrate (PlatE 

45b); and parted mudstone rafts which contain DFC (Plate 4Sc). Only the 

pebble-size clasts are common, however. That the fringes are not in 

~ growths wit~in conglomerates is suggested by the lack of fringes on 

adjacent pebbles as weil- as the improbability of DFC fringes having 

~ro:~ in conglomerates with grain~ matrices. 

9.9.2 Curved Crystals 

Several DFC-2 fringes consist of crystals which ~re conspicuously curved 

. , 
5. Mackenzie (1972) described unidentified thin-walled spherical bodies 
approximately 200 pm in diameter within a DFC fringe which could also be 
radiolaria. 
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(Plate 45d;e). The curvature may begin at the base of the fringe or 

curvature may be apparent only near the upper portion of the fringe, the 

lower portion being straight and normal to its substrate. Curvature is 

usually not apparent in the field; it is most readily observed in slabs 

or thin sections. 

Crystal curvature is interpreted to result from growth during 

synsedimentary shear related to submarine.sliding (refer to Chapter 3). 

To test this · hyP<>thesis, t;wo DFC fringes with obvious crystal curvature 

were measured in the field (Pl;te 4Sd). Assuming crystal curvature 

reflects relative movement of an upper pile of sediments over a lower 

stationary one, the upper sediment mass was translated eastward [6]. 

This sense of movement is consistent wi th..tan east to southeast dipping 

paleoslope as determined independently by other mea~ (discussed 

previously). 

Curved DFC have also been reported in other studies. Kendall and · 

Simpson (1974) suggested the curved crystals from the Upper Cretaceous 

Medicine Hat Sandstone of the subsurface of southwestern Saskatchewan 

resulted from lateral shearing during expansive crystallization, which 

also caused micro-imbricate thrusting of the fringes. Marshall (1982) 

proposed a similar cause and suggested local stress conditions, possibly 

resulting from the crystallization itsQlf, to have caused the curved 

crystals. 

., 

6. These fringes are from the Upper Cambrian strata at Green Point 
(units 7 and 8). Directions of 54 degrees NE and 110 degrees SE were 
measured. 

. .. 
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9.9.3 Truncation Surface Deformation 

The fragmented and rotated mudstone slabs which underlie the prominen~ 

truncation surface at Lower Head contain minor DFC-2 calcite (Plate 

45f). These fringes are developed patchily on one or both sides of the 

mudstone fragments with crystals oriented normal to their substrates, 

regardless of sla~ orientation ~elative to bedding. The patchy 

distribution of the fringes is unlike those typicafly encountered in 

undisrupted sediments, an<t suggests a ·syndeformational origin. 

"" ;.,. 
Other evidence to suggest a syndeformational origin is based on a \ 

,' \ 
! 
;, discontinuous DFC fringe which intersects the truncation surface 

southwest of the outcrop- depicted in Figure ~.lain Chapter . 3. Wi thin 

this otherwise unremarkable fringe is found a spherulite of DFC-2 

calcite (Plate 4Sg). Such a i~dial ~rrangement of crystals is pot 

recorded from any of the undisturbed fringes al}.d suggests a 

syndeformational origin. 

In both of the above examples , DFC growth is not considered to be 

post- deformational based on the assumption that properties of the strata 
" 

return to their predeformed state afterwards and therefore only~ 

undisturbed "normal" DFC growth could occur . 
. . 

'·· 

• 
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9. 10 MICRO-FRINGES OF DISPLACIVE FIBROUS CALCITE , 

9.10.1 Introduction ., 

Micro-fringes of DFC· are developed around shale intraclasts, and 

together with the intraclast, they form a di§tinctive ''grain~ that is a 

common c6nstituent of many limestones in the CHG (Plate 40c ,d). The _ 

recognition and proper interpretation ~f these ubiquitous "grains" is 
•J 

important because ,they indicate that displacive crystallization is _a 

common diagenetic process, to a much greater extent than ~ould be 

• inferred from the abundance of ~aero-fringes of DFC (7] ~ This 

microfa~ric does not appear to have been.previously recorded in t~e 
. --..._ 

literature, except po~siory-15'9\Mora;wietz (1961, fig. 2a) at the base of a 
'--...... . ~~ . 

cone-in-cone fringe. The poor qu{li ty of •'his published photograph, ' 

however, does not ,Permit a/~~ert~in .assessment. Based on reasoning 

analogous to that used to indicate a displacive origiri for macro-fringe 

DFC, the shale intraclasts are interpreted to have been comprt-ssed 

during growth of Jthe micro-fringe. Sim,:dar micro- fringes grow into 

discontinuous shale seams within some limeston' beds. The origin of 

· these shale seams is uncertain- they may be- either shale flasers or 

large, squashed intraclasts • 

• 

·:) 

7. Reconnaissance petrography of calcite•cemented sandstone concretions 
from the Tourell~ Formation in Gaspe (see Hiscott, 1977) demonstrates 
that micro-fringes of DFC also occur here. \ 

1 •. 

' 

r 

.. 
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9.10.2 Petrography 

Hicro-fringes ere usually spanned- by only one c rysta). Crystals 

composing micrc:>-fringes vary from 35-125 pm in length and 10-35 pm in 

width; only rarely are they are large as 500 prn :_}n length and 125 pm in 
' . ... 

width. Some micro-fringes lack obvious elongate crys~al~, c·onsisting of 

equant 40-50 pm-:-size crystals instead. This, · however, may be due to· a 
.. 

thin section orientation 'effect. Fringes are seldom evenly distributed 

around · the shal~ intraclast; more often crysta 1 s are perpendicular to 

the clay t>latelet foliation of the shale intrac~ast and only minor .or no 

calcite grows parallel t .o·the plane of the foliation. Crystal 

terminations and cross-sections· through the fibr,~us crystals range from 

anhedral to euhedral ~ and in some cases irregular; -sl< e f e tal extensions 

of the crystals branch into the shale intraclast. Some or the larger 

crystals demonstrate a fibtous inclusion pattern similar t·o the Ty.pe C 
., 

pattern recognized in the macro-fringe DFC: crystals. 
( 

I . 

9.10. 3 Iron Content and Cathode Luminescence ,. 

~1icro-fringe DFC cpnsists mainly of non-ferroan calci·te but many 

crystals' have a latest stage iron enrichment. 
0 

In this respect these arc 

si.milar to or more "evolved'' than th;·ir surrounding ncospar or cement 

matrixt much in the same way as macro-fringe DFC r'elestes to4'i-ts 
. 

substrates . · Thes.e calcites are .commonly bright-luminescent and become 

dull near their tips, indicat,ing t'hat most represent CL Stages Band C 

(Plate Sle,f). As with macro-fringe DFC • . micro-fringe DFC com~on l y 

g.-:des smoothly from the host neospar or cement crystals,, both in t'<~rms 

of iron content and CL properties. In many instances, micro-fringe DFC 

t . 
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is syntaxial.ly develoP-ed upon neospar or ce~nt substrates. pelmatozoan 
I 

debris. and trilobite fragments. M:lcro-fringe DFC demon!ltrates . 

prominent CL zoning, variable facial development during growth of the 

crystal, and CL offsets. The similarity of DFC microfabrics in both the 

macro- and micro-fringes is due to their common displaciv.e origin~ 
• 

which, in some cases, can be demonstr.,ated with CL to be 

contemporaneous. 

9~11 INTERPRETATION AND DISCUSSION 

9 .11.1 Interpretation of Microfabrics 

The presence .of fibrous crystallites in some parts of DFC crystals, 

especially near their terminations. and the variation in ~rowth sudace · 

morphologies and crystal terminations indicates that these crystals have 

a complex origin. DFC crystals or portions of l>FC crystals showing 

evidence . of fibrous .• micrometre::-wide crystallites along with anhedral 

and occasionally ..,botryoidal growth surfaces are readily interprete~ to 
' 

have grown as spherocrystals. This contrasts with "unit" ·c.rystal growth 
'-

. which lacks crystallite development but instead exhibits euhedral 

terminations or internal growth surfaces. These crystals appear to 

consist of one c<?ntinuous. uninterrupted lattice. Crystals showing 

anhedral growth su-rfaces and planar zones or crystal boundaries imply 

that they grew as composite crystals - in part as spherocrystals and in c. . 

part as unit crystals . 

.i 
Discussion of composite crystals, spherocrystals. and split-growth has 

· been presented in Chapter 7 and the reader is referred to this source 

- · 

\ 

<> 
•. 

.. 
I 
I 

! 
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fer The following interpretations are based maiRly on--

ir/t. mati~n .from DFC macro-fringes. These interpretations are also 

/Jlicable to micro-fringe DFC as well as . pseudospar exhibiti~g similar 
/ 

to DFC. 

---------- and Subcrystals: The sharp to slightly undulose extinction in 

most DFC cr~stals fs readily explained ·by unit crystal growth or 

sphe.rocrystal growth irr'which asymmetric growth has been relativaly 

unimportant, otherwise the pronounced undulose extinction of RFC or FOC 

might' be exp~~-ted (see Chapter 7). As suggested for RFC, subcrystals are 

interpreted to be the •result of crystallite bundles of slightly varying 
,- . 

oriei:!__tation. 
) 

The cause of the initial grouping into separate, but 
< 

approximately similarly-oriented bundles is uncertain' although slight 

misorientations could have occurred during the early stages of 

crystal-splitting, as Kendall (in press) suggested for RFC subcrystals. 

The origin of these subcrystals also explains the Type C inclusion 

pat tern. \ 
Intercrystalline Boundaries: Concertal and irregular, intercrystalline 

boundaries in DFC are, in most cases, attributable to the interference 

of individual crystallites or group$ of crystallites Hom the juxtaposed 

' major crystals. This effect is clearly seen in some samples in which 

DFC crystals are separated fr~m- one another by,a shale paste and the 

jutting-out of groups of crystallites, as defined by the Type 0 

inclus~on pattern' creates a prominent step-like surface on the side of 

each major crystal (Plate 39d). Where crystallites are more or less 

parallel to major crystal elongation, a$ is commonly seen in some DFC-2 

crystals, intercrystalline boundaries are correspondingly smoother. The 
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remarkably planar boundaries bet~een some DFC crystals are interpreted· 

as compromise boundaries between unit cryst~ls. 

CrYstallites: The Type D inclusion pattern is the result of in•lusions 

caught between /the crystallites or small groups of crystallites. These 

crystallites are interpreted to be primary rather than relicts of some 

neomorphosed f.ibrous precursor. Their primary nature is suggested by 

t.he sharpness of CL zoning and the unlikely possibility that neomorphism 

could occur and still retain such exquisite zoning detajl. In addition. 

the CL zoning is fringe-wide. Alteration -of the · DFC fringe by the 

migration of a neomorphic front starting at the base does not explain 

the same zoning sequence observed in associated pseudospar crystal~ in 

which . zones are concentric. although commonly quite asynvnetric. 

9.11.2 Controls on Growth Surface Morphology and DFC Type 

The shape of crystal terminations and intern~! growth surfaces as 

revealed by CL range from euhedral to ahhedral. Crystals demonstrating 

anhedral or bo~ryoidal surfaces which grow into more euhedral surfaces 

or terminations with progressive precipitation. or the opposite change. 

- imply that the,physico-chemical conditions of precipitation evolved . . -

unidirectionally. At -times growth as sp-~erocrystals was encouraged and. 

at other timesi uriit crystal growth occurred. Unsystematic fluctuati6ns 

in these conditions are presumed to a.c.count for unsystematic changes in 

the natur.e of the -.growth surface. As for RFC. a major uncertainty in 

understanding this type of growth : is how spherocrystal growth eventually 

transforms to unit crystal ~rowth in which the major crystal is able to 

grow by' discrete face-wide increments. 

' 
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As for RFC, the transition from spherocrysta~ to unit crystal growth is 

likely regulated, in part, by the physico-chemical conditions of 

.pre~ipitation. Kendall (in press) suggested for RFC.that the degree of 

solution saturation or the concentration of minor ions tould control the 

type of crystal growth, whether ~pherocrystal or unit crystal. The fact 

that these calcites are displacive in origin suggests that the physical _ 

and chemical characteristics of the enveloping terrigenous muds, 

including lithostat..ic pressures, may also · influence the growth surface 

morphology and perhaps other petrographic characteristics of DFC 

crystals. Theoretical determinations (Kamb. 1959) indicate~that the 

c-axis in calcite grows preferentially in the direction of highest 

stress; DFC crystals are at least responding in orientation, if not also 

in habit, to lithostatic factors. 
i • 

.,'- ·." 
The almost total restricticm o'f DFC-2 calcites . to Green Point suggests -A_. 

.• . 
, . 

that local, early diagenetic'conditions are somewhat unique, a~ least 

with respect to the formation of DFC-2. Nucleation density may -a1so be 
•. 

important as to whether.precipitation of DFC-1 or DFC-2 occurs.• If the 

nuc;lei are spaced far'(l""apart, the radiating aspect ~ommon to the DFC-2 

and other cone-in-cone calcites will be encouraged (Fuchtbauer, 1971). 

Where nuclei are close together, a pallisade ~rrangement of crystals 

will be preferred. 

In most samples examined in this study, staining and CL evidence 

indicates that growth of. DFC postdates marginal aggradation of mudstones 

as well ~s cementation in grainstones. In some samples, however, it is 

evident that pseudospar and DFC growth was synchronous; oc-curring either 

together in the same fringe or on opposite sides of the same· bed. A 

similar situation occurs for micro- fringe DFC and its ·enc~osing 

, .... 

! 
I 
I 

I 
l 
I 

__ j 

- · 
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pseudospar or ceQJent. The identical CL _and staining of the pseudospar 

and DFC crystals indicate that they: were precipitated by identical 

pore'-wa.ters but extremely local conditions must have determined whether 

the growth habit was to be the ~longate DFC cryst~l or more equant 

pseudospar: The pr,esence of compressible terrigenous muds next to 
, 

limestone beds and. clay irltraclasts within beds ~a~pears to ~e a 

controlling factor as to why DFC pr~cipitates·where it · does; . but why DFC 

.. in some ca~s and coarse marginally-aggraded .pseudospar,, in others' is 
. -....... 

not certain • . 

9.11.3 Implication~ for Neospar as Composite Crystals 

An uncertainty in the _.present understandih~ of DFC is whether the 
. 

presence of .QOn-planar growth surfaces implies spberocrystal gro~th, 

even though !::here is no fibrous inclusion pattern, nor are crystallites 

d;.scernible with CL. Not only is this an important question for the 

origi n o f DF€-;-- -tmt· it ·ts- ·also--of fundamental importance for .the 

· understanding of more conventional neomorphism in general. From Chapter 

7 it was concluded spherocrystal growth occurs in RFC although it 

characteristically does not show a fibrous inclusion pattern (see 

Kendall, in press) or CL-visible, 'm.icrometre-wide crystallites-. By 

analogy, this must be considered ~s a likely possibility in DFC and 

neospar lacking evidence of spherocrystal growth, either by a fibrous .. . 
inclusion pattern or CL-visible crystallites. 

~xcept for coarsely crystalline ~eospar associated with DFC fringes , 

.· 

(. 
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neospar crystals in general have neither CI.-visible crystallites nor . 

_spherulitic, radiating inclusion patterns • . The fact that crystals ·w~ich . 

do show crystallites and a radiating inclusion pattern are intimately 

' 
associated wi'th pseudospar lacking these but which . are otherwis~ 

identical iit tertns of shape, CL-zoning, and _ ~taining (e.g. Plate 44a),. 

suggests that neospar, in genera_!, also grew in part as spherocrystals,' 

The lack of resolvable c-rystallites in many DFC and most neospar is 

" ' explained as a res~~i of the extremely smal• size of these crystallites 

in conjunction with even, crystallite growth-rates. The even . growth 

rate.s discourage both the form~tion of CL zone offsets as well as the 

trapping of intercrystallite inclusions necessary to produce the 

inclusion P.atterns. 

- If t~e above suggestion that .neospar . grew in part as spherocrystals1 s 

true, other aspects of aggrading neomorphism in general are more readily 

explained. These are ~riefly discussed below. 
--------- - .. , .. 

_(1) By anal9gy with DFC crystals, growth of neospar by the same 

mechanism may account for the displacement (i.e. "purging") of 

impurities, notably clays, in neospar mosaics of this as well as in 

numerous o_ther s.tudies (e.g. Folk, 1965, 1970; Chanda, 1967; Weider and 

Yaalon, 1974; Bathurst, 1975). Physi cal displacement of '~crlitls is also 

possible, however, with non-fibrous crystals (e.g. Steinen, 1982) . 
.... ~-

· ---. 

( 2) The ir·regular, commonly scalloped, and embayed outlines--()-r-·lOan.y 

neospar crystals and their irregular, uneven CL growth zones are also 

readily explained by a spherocrystal growth mechanism in which different 

bundles of crystallites within a major crystal grew at different rates. 

"\ 

I 



276 

. t 
This type of uneven spherulitic growth could . account for complex 

interlocking boundaries and ameboid fabrits seen in other neospar 

mosaics (e.g. Fi-sher~;..!..·, 1967f Steinen, 1978, 1979; Bhattacharyya, 

1979). 

A fibrous crystallite mi.Lrofa.bric in neospar was also noted by Folk 

(1971) in bladed, neomorphic calc4te crystals formed in the clay-rich 

portions of a rock of unknown origin. These crystals were citcular i~ 
. . . ~ 

cross-section. were patchily distributed in.- a more finely-crystalline. 

microspar matrix, ftad undulose extinction, and consisted of. _ 

poor:ly-defined coalescing fibres. Some of these crystals tapered at 

their ends and others splayed out "like a worn toothbrush" (Folk, 1971, 

p. 163). 

9"'.11. 4 Origin of DFC and Cone-in-Cone Structure 

It is not intended to .review thEt numerous explanations 'for, DFC and 

especially .cone-in-cone structure that have been suggested during the 

• last 200 yearsi there are s~veral outstanding works which p~ovide 

detailed and cri t'ical revi_ews of these hypotheses. Notable among these 

_works are Cayeux (1935), the classic monograph of Woodland (1964), a~d 

Franks (1969). During the last decade or so there has been only a 

h~_ndful of studies on DFC (e.g. Mackenzie, 1972;. .Kendall and Simpson, 

1974; Marshall, 1982). · 

A partial list of the various hypotheses concerning the_origin of DFC 

and cone-in-cone structure and the authors which support or partially 

support them, though not necessarily are the originators of the 

. , 
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' hypotheses; includes the folloving: organic origin (Hildreth, 1836); 

aragonit-e to calcite transition; result of gas risift8 through muds, or 

(Shaub 1937); dilational fract~re fills (Twenhofel and 

Shearman~&·, 1972; .. ~~ey, 1983).; ~nd displacive 

(Woodland; 1964; Mackenzie, 1972, kendall and Simpson, 

1982). The fibrous nature of the calcite, crystals 
I 

prompted some a_,uthors to infer an aragonitic precursor (e.g . .13rowr, 

1954; Mackenzie, 1972) and even aragonite with. minor vat-erite. The 

• 
presence of vaterite was based on associated · calcite crystals exhibiting 

-
radial or "spherulitic" extinction (Gilman and Metzger, 1967; also see .. 
Fong and Hesse, 1982) • 

0 

The current model for the formation of DFC and ·more _specifically 

cone-in-cone structure iS summarized by Woodland (1964) and restated by 

Franks (1969). DFC and the cone-in-cone· structure are interpreted to 

result from concreti:on _growth 1.'Tf"""wh1ch stress produced by the ·overlying 

beds re~ults i n the displacive pr ecipitation of the calcite [8], and 

a~counts for its orientation, gr~wth characteristics, and ultimately the. 

cone-in-cone structure • . ' The time of pretipitation is considefed to be 

during early diagenesis under a s~all sediment load, as confirmed in 

this study by field and geochemical relationships (discussed in Chapters 

_!.L.and 14}. Whether or not cones form and their attributes, such as size . 
and apical angle, are thought to be ~ function of the chemical 

. 8. Durney (1976) defines such "pressure growth" as the "synkinematic 
additive _o~r~rowth crystallization of a mineral at a grain contact 
sub~to ,. pressure''·' • . The term pressure growth replaces the 
iimbiguous "force of crystallization" and is independent of 
idioblasticity. 

I 
$ ' 
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conditions of precipitation as well as shale properties, especially 

plasticity. Based on,Kamb's (1959) work'illustrating preferential 

' growth of the calcite c-a'Xis in the predominant stress d"irection, and 

for successively younger crystals . to lie at angl~s of up to 25-30 . ' .... : 

degrees to the original ·host crystal, displacive pr-ecipitation 

ultimately yields . the· conically-shaped tufts ~f DFC crystals. Lateral 

stresses induied by displaciv~ precipit~tion crystallization ~robably 

also contribute to the f~n of cone structures (Kendall and • . 

Simpson; 1974). 

Woodland (1964) invoked the necessity of some compaction, although 

minor, to haye already taken place in the shales because he . thought that 

stratiform layers of DFC would not precipitate in a homogeneous, watery 

mud. , This rea:soning. is far from coQvincing, however, as the CHG 

sediments and most ·other shales contain silt laminations or other 

bedding-parallel heterogeneities which could readily lqcalize and 

control the • pr~cipitation of DFC layers parallel to· bed~ing. 

The early origin for DFC, based primarily. on fie~d relationships and 

geochemical evidence, is also supported by Reikes principle which states 

that the solubility of many minerals, inclu~ing calcite, increases with · 

increasing pressure. Therefore, DFC precipitation becomes increasingly 

more unlikely with increasing burial pressure. This pressure is 

transmitted to the crystal through a water layer only a few molecules 

t'hick (Weyl, 1959). For displac.ive crystallization to occur, the 

tendency ·f.or dissolution inu.st be surmounted by a . sufficiently high 'flux 
fl 

of solute ions toward the crystal (Weyl, 1959). An brief review of 

experimental and theoretical literature concerning displacive 

, 
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crystallization is provided ~~ · As~ereto and Kendall (1977) and Lhe 

reader is directed to this source for furth;r information· . 

. , 
S~llow burial ideally meets the necessary conditions for displacive 

gro'wth of calcite~ The overlying seawater column, anaerobic decay of 

organic matt~x:,~ and possibly dissolut·~on of dispersed_ CaC03 p~~de a 

ready source of solute ions. Shallow buriAl also implies that 

surrounding muds arr largely uncompacted and therefore permeabl~, 

allowing solute ions to easily migrate through. Thes~. uncompacted muds · 

also easily accommodate displacive crystal growth. 

--
9.12 SUMMARY AND CONCLUSIONS 

DFC growth is a significant diagenetic process in the CHG. Macroscopic 
' 

fringes of DFC grow _on both continuous and nodular beds, with crystals 
' I • 

oriented in pallisade fashion or as a series of mutually fnterfeti'ng 

cones. Micro-fringes of DFC are ubiq~itous an9 are identical, both 
·~ . 

genetically and in ~erms of microfabrit (where ~ssessable), to the 

macro-fringes of DFC. Ba~ed on stainins and CL, DFC grew during the 
'-

later stages, or as a continuation. of marg;i:'nal aggradation in mudstones 

and cementation in grains tones . . · Why DFC grow~ on some beds and not on 

" 
others is uncertain although the juxtaposition of DFC against 

~, 

easily-compre~i4H:-e-- terrigenous muds appears to be a necessity. 

Petrographic evidence indicates ~ha-t'DFC calci-tes are displacive, but 
/' 

minor poikilotopic enclosure of silt grains and scattered radiolaria 

also occur. 

·•' 
.• 

. ·~ 
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DFC are int~rprefed to have been precipitated during shallow buria1. 

This is indi~atea by the incqrpotation of · DFC clasts in conglomerates 

and by the distortion of DFC fringes by synsedimentary.shearing. An 
>. 

... 

early oriiin .1;:;· also supported by stable iso_topic data (see Chap.ter 11). 
~ 

A fibrous, radiating inclusion pattern and the presence .o~rystal ·~ite·s ·• . 
\. 

vis~ble 'fith CL suggest that DFC grew as_ spherocrystals· at tiin~s, and as 

unit crystals at other times, with both types of growth often Gccurring 

.:: . .;._- within the same crystal. The sharp ~L zoning and presence of' 

micrometre-size ~oning ~ffsets indlcat~ t~at these crystallit~s are 
~ ,.;~. ' 

primary and not a relict of neomorphism. Growth surfaces on crystals 
. . • 

vary from ' euhedral when growth occurred as a ·unit crystal to anhedral, . 

.. and occasionally ~otryoidal, ~hen spherocrystal growth occurred. • The 

' control of whether -spherocrystal or unit crystal grQwth occurs ~s 

uncertain, although crystallizatio~ rate and the presence of impurities 

may be important. 

Neospar associated with DFC occasionally also shows spherulitic . 
. e 

incluiion patterns and crystallites. It is su~geste~ that o~her neosp~r 

crystal~ also grew as spherocrystals only that the small size of their 

, crysta(lites as well as their even growth rates precludes ,, 

· straightforward detection. ·It is suggested that fibrous microfabrics 

and spherocrystal growth are· more widespread than is generally 
~ 

app~rent. 

• 

.. ·-
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.. Chapter 10 
, . ' 

CALCITE· TRACE ELEMENT GEOCHEMISTRY 

·-:!-

10 .1,. INTRODUCTION 

• . , --~ _; ' -~,.~~. 
~ •• t 

Authigenic. calcites in the CHG are commonly non-ferroan in their. ear~y . - ' 

'st;ges b~t b~come . ferroan in later stag~s. ideally evolving through 'CL~ 
, . 

• 

· .. . . . - . ,:, ' ... 
. , Stages A to C (Chapter 8). In context ·qf: th~ CL . tr~nds and the spectrum 

·· of prev.iously .discussed diagenetic calcites, the purpose · of this chapter 

is to describe and: fnterpre_t elemental oxide profiles as. a function of 
.. -- ·· • 

·progressive precipitation. 

Microprobe analyses were c·ar;ried out using a 10 second counting time, a 

2 pm beam diameter, and for Fe and. Mn, non-carbonate standa~ds. Mg. was 
"'-'' 

standardized ·on dolomite. As such . these analyses ar·e corrsidered to be 

semi-quantitative.. Nevertheless, the overall relative incr-eases or 

decreases of. Fe, Mn, and Mg with progr~ssive prec i pitation are 
. ~ 

considered to be real. Operating conditions for the microprobe analyses ·-are discussed in Appendix I -, reprod~cibility of analyses is demonstrated 

in Table I.8. 

. ·' Intracry$talline trac• element variatio~s (Mg, F~~ Mn) were an~lysed in 

polished thin sections ·br automated microprobe travers~s. usuarly from · 

their c entres (cores) or bases to their . rims or tips (Figure lO.la-i; 

'• 

. step analysis P.aths and GL characteri-stics are shoWn in Plate 46.). The .. 

-

-~-· 

. .. 
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selection of crystals for microprobe analysis and traverse paths 

foilowed CL examination. Individual traverses consist of 5-25 

equidi~tant points, depending on crystal size. After mic't'oprobe 

andysis, samples were 'reexamined with CL to determine the exact 

position of analys~_s spots within ~L zones. 

\ 

' I 
Bulk samples of calcite were · ~lso analysed by atomfC absorption 

spectrophotometry (AAS) of HCl acid- leachates for all major elements 

(see Appendix I) but only the. results fot' Fe, Mn, and Sr are reported,. 

Mg concentrations as determined by this me,thod aier judged to be 

• ' unreliable due to c·ontamination by finely crystalline dolomite also 

~dissolved in the leachate. The elements Na, K, and Al show strong 

positive correlations with Si, indicating a significant contr.ibution of 

these elements by the -leaching of clays and perhaps feldspars. On the 

other -hand, t~e correlation of Fe and Mn with CL pr?perties, staining, 

Ond miuo,prob.,\ analyses ~tates that contamination of Fe and Mn by 

leached insolubles is not a ~Prpblem, nor does original Sr appear to be 

significantly contaminat'ed. These elements all show poor correlation 

w.ith Si. 

10.2 MAGNESIUM 

, Most cal~ites contain 0. 5 wt % MgO or less; concentrations as high as 1 

wt %_Mg0 are relatively. rare. In both pseudospar and equant cement, MgO 
. 

content is highest in the centres of crystals and gradually decreases . 
towaid the edges to 0.1-0.2 wt %or below the detection limit (a,b,c , e 

in Figure 10.1). CFC calcites are uniformly low in MgO, generally less 

than 0.2 wt %. MgO depletion with progressive crystal growth is, 
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Figu~e-1'Q...l: In this"'figu-re a.re plotted microprobe step-traverst•s 
,-/ ~across selected cements, neospar, and fibrous 

_t ~l~ites. "i" is an exception however (see 
c~~ion). _ Jba-~naiyses points for each traverse are 
plot~ on the X".l,axis. On the Y-axis is the wt % 
•oxide\ior MgO, Mrtp, and FeO. Cathode luminescence 
descrip'hon; ~rer provided at the top of iiach pl ot -
the abbre~n "M.Z." rgjeJ:.S. -~~1 ti - zoned". All 
of the step-traverse!} -aS w~ll as the CL 
cliaracteristics of the crystals are shown in Plate 
46. Sample locatiO!)' and age .data are also provided in 
the caption to Pl<Ff~ 46. 

(a) Ceme~-~-n/~eptarian ladder crack in parted 
mudstone ~minated by CL Stage A microspar. The 
analysed . emarystal clearly demonstrates an 
MgO- rid(, ~n-lu inesc e nt, CL Stage A calcite with 
low Fe01an MnO, nd incr.,ases in these el ements along 
with coil\omi t decrease of MgO in later (Stagt·s B 
and C) pr~ipitates. Traverse length is 91 pm. 

'-.. 

(b) Intraparticle cement in intact brach i opol shell. 
MgO decreases with successive precipitation and FeO 
and, to a lesser extent MnO, increase. Traverse 
length is 304 pm and goes from. CL Stages B to C. 

(c) Pelmatozoan fragment and syntaxial cement· 
overgrowth. The earliest cement is characterized by 
an · increase in MgO over the levels present in the 
pelmatozoan, but these relatively high levels - fall 
off with the latest precipitates. MnO and Fe.O are 
both low in the pelmatozoan and only MnO is present 
in any significant amount in the earliest cement. 
Traverse length is 195 ~m and goes from CL Stages B 
to C. · 

continued on ne xt page 
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Figure 10.1 (continued) 

(d) Cement in conglomerate matrix. This sample 
demonstrates that the earliest, non-luminescent 
precipitate is depleted in all the trace elements·, 
but with later precipitation, MgO, and in the latest 
stages, FeO, are important. Traverse length is 341 
pm and goes from CL S.tages A to C. 

" 
(e) Coarse neospar at the base of DFC-1 demonstrates 
a general decrease in HgO with successive 
precipitation and a concomitant increase in FeO. The 
latest calcite also shows an increase in MgO. 
Traverse length is 271 pm and is mostly within CL 
Stage B calcite. 

(f) Isolated, floating pseudospar crxs tal on lowe r 
margin of marginally-aggraded mudstone . This 
traver~e demonstrates a slight increase in MgO with 
successive precipitation and decreases in MnO anti 
FeO. FeO increases slightly near the ~argin of the 
crystal. Traverse length 1s 108 pm and goes from CL 
?tages B to C. 

continued on next page 
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Figure 10.1 (continued) 

(g) DFC-1 fringe at base of grainstone. ~ith 
successive precipitation, MgO, FeO, and MnO all 
increase. Traverse length is 813 pm and goes from CL 
Stages B to C. " 

(h) Termination of DFC-1. MgO increases slightly 
toward margin whereas both FeO and MnO ~ecrease. 
Trav~rse l~ngth is 1052 pm and is mostly within CL 
Stage C. 

(i) DFC-2 (no complimentary CL microphotograph in 
Plate 46). Each point ~s an average of 3 
closely-spaced analyses. Points are evenly-spaced 
over a distan&e of ~oximately 1 em. MgO . and FeO 
both increase in-the latest precipitate. MnO remains 
~low the detection limit. Traverse is mostly within 
CL Stage C calcite. Green Point, Upper Cambria n, 
unit 8, sample GP-3-A. 
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howeve'r, not universal. In the youngest zones of some coarse pseudospar 

crystals, the MgO depletion trend ceases and MgO contents gradually 

increase (Figure IO.le,f). Other crystals of cement and pseudospar have 

approximately sonstant or irregularly varying MgO as well as FeO and 

MnO. Constant, irregularly varying, or increasing~MgO content al~ -

characterizes DFC where concentrations of up to 0.7 wt% MgO occur 

(Figure IO.lg,h,i). As with other elemental ox~des~ MgO fluctuates 

considerably, ~~ally so in samples with obvious fine scale C
1

L zoning 

(e.g. Figure IO.lh)~ 

10.3 IRON 
( 

FeO cont~nts ·typically range from below th~ detection limit to 0.5 wt % 

[ 1]. As indicated by staining, later growth • s\ages _in many cement, 

pseudospar, and DFC crystals are ferroan (Figu\e 10.1a,d,e,g) and coarse 

pseudospar and DFC are often completely ferroan \ Figure lO.li). 

Subsequent non-ferroan zones, if present, are re atively thin and 

infrequent. 

The tendency for inc~easing FeO with progressive ptecipitation is 

- lucidly shown in Figure 10.2a. Bulk serial ~amples of microspar 

(non-ferroan}, pseudospar {ferroan mostly, but occasionally non-ferroan 

or zoned), and where present, DFC· from continuous and nodular beds were 

analysed. These serial analyses are- numbered as Trends 1- 10. One 

1. Comparison of stain with aicroprobe and AAS analyses indicates that 
calcite will slightly stain at FeO concentrations as low as 0.1-0.2 wt 
%. This contrasts with the higher minimum levels of FeO, approximately 
0.5 wt %, necessary to slightly stain dolomite - refer to Chapter 12. 



------

Figure 10. 2: (a) FeO and MnO trends, as determined by atomic absorption 
"' . spectrophotometry, of serial samples of microspar, 

pseudospar, and dispacive fibrous calcite. Circled numbers 
(horizontal axis) refer to the following~erial samples 

t (see Table 1.1 in Appendix 1): (1) GP-41, (2) SPN-66-D , (3) 
CHN-36-B, (4) CHN-101, (5) CHN-102, (6) GP-2, (7) GP-23, 
(8) GP-57, (9) GP(81-7), (10) LH-76-A. 

(b) Sr trends, as determined by atomic absorption 
spectrophotometry, of serial samples of microspar, 
pseudospar, and dispacive fibrou~calcite. 

... 
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grainstone (Trend 5) is also included. In most cases, - ~rginal 

aggradation from microspar to pseudospar and -the subsequent development 

of -fibrous calcite is characterized by an increase in bulk FeO co~tent, 

confirming both stain and microprobe analysis. DFC-2 (Trends 6, 7, 9, 

10) are more ferroan than DFC-1 (Trends 3, 4, 5). 

Not all samples examined by AAS and microprobe analysis, however, 

demonstrate this progressive increase in FeO with progressive 

crystallization. In some crystals, FeO appears to fluctuate randomly, 

and in others, it decreases in later precipitates (Figure 10.1b;f,h; 

Trend 8 in Figure 10.2). r'n CFC, FeO is below detection limits. 

J 
10.4 MANGANESE 

,_ 

HnO content in neospar, equant cement, and DFC is usually less than 0.2 

wt %, but occasionally reaches 0.5 wt %(Figure 10.la). In CFC, 

concentrations are usually below the detection limit. MnO 

concentrations ·tend to be greatest where FeO levels are also high 

(Figure lO.lf, g, h). Few samples contain larger amounts of MnO than . 
• 

FeO (Figure lO.lc; Figure 10.2a). 

In contrast to FeO, systematic changes in MnO concentration in the 

serial analyses are not apparent (Figuie 10.2a). Sdme samples 

demonstrate an increase in MnO concentration accompanying an increase in 

crystal size sod FeO content .(Trends 2, 4, and 5). Oth~rs have 

approximately constant MnO (Trends 6, 7, 8, and 9), and still others 

demonstrate decreasing MnO (Trends 1 and 10). 



10.5 STRONTIUM 

Sr content, as determined by AAS, ranges "from 60-700 ppm •(Figure 10.2b; 

Figure 10.3). In most serial ~amples, the change from microspar to 

pseudospar to DFC, if present, is accompanied by a decrease in Sr 

concentration (except Trends 7 and 9), a tendency opposite · to that seen 

with FeO. This decrease in Sr concentration is also apparent using 

average values for all microspar (average • 280 ppm, n • 13), pseudospar 

(average • 233 ppm, n = 8), and DFC-1 (average • 126 ppm, n • 4) 

------- analyses. The lack of correlation of Sr concentration with insoluble 

residue or Si (see Ta~le I.l in Appendix I) suggests that leaching of 

clays and feldspars is not responsible for these trends. 

Three of the DFC-2 analyses in Trends 6, 7, and 9 (all from Green Point) 

are exceptional in that they contain _relatively high Sr concentrations 

thus raising this group average to 381 ppm (n • 5). Microspar and 

pseudospar in these trends as well as in Trend 1 (also f,rom Green PoiRt) 

also demonstrate elevated Sr concentrations. An anomalous sample of 

pseudospar in Trend 6 contains 2900 ppm Sr, an amount 4 times higher 

than ~e next highest concentration analysed. Otherwise, there is 

nothing distinctive about this sample with respect to its petrographic 

or CL characteristic.s, or other trace element concentrations. Trends 8 

and 10, also from Green Point, have levels of Sr comparable to other 

calcites analysed. 

Sr content of CFC (average • -l22 ppm, n • 3) is similar to that of 

DFC-1. Both of these groups' averages are considerably smaller than 
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Figure 10.3: Sr distribution in various diagenetic calcites, a~ 
de termined by AAS . The squares are the average values 
for each individual group. In the pseudospar group, 
the anomalously high value of 2886 ppm Sr is not 
included in the average. 
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: averages for the other groups. 

··. 10.6 INTERPRETATIO~ AND DISCUSSION 

/) 

·-

Microprobe and AAS analyses of various types of calcite illustrate the . 

following relationships: 

. . 
.. 

( 1) In maru crystals, MgO concentration decreases with progressive 

precipitation. Other crystals;- however, show a lat~ stage increase in 

MgO content. 1 

'( 2) I F 0 <. n many crystals, e concentrations increa~e in later 

precipitates . . This . is also ~onfirmed by bulk rock seriaL analysis and 

staining with potassium-ferricyanide solution . 

(3) MnO concentrations increase, decrease, or are relatively constant 

within ·successive precipitates. 

( 4) Serial analyses illustrate a reduction of Sr .. concentration in 

-
successive · precipitates. ' By analogy with FeO, i ndividual crystals must 

also mirror this decrease · ,;i th progressive precipitation. 

\ 
More complex, often uninterpretable relationships may reflect local 

differences in pore-waters, as well as "aliasing" effects inherent in 

tile microprobe step analysis method. .. . .. · ~ 
~~ 

--- ~ J - "- · 

~he later· ·stage decreases in Mg and Sr and increases 'in Fe anl .. 
occasionally Hn can be vie toted in context of trac~ element partit i oning 

behavior and degree ef system c~losu~e, illus.tra t ed 'ichematically in 

Figure 10. '4lt.-. In tb.i.a figure por~-waters a r e assumed tQ be fresh, but 
.. 

. 
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Figure 10.4: (a) This simplified model of trace element 
distribution illustrates the behavior of partiti.oning 
coefficients (k) greater and smaller than unity in 
diagenetic systems characterized by high ("open") and 
low ("closed") water-rock ratios. The model assumes 
solid phases of mariJ1e origi~ mainly aragonite and 
Mg-calcite, and a typical, low-Mg meteoric 
pore-water • . Calcite is the precipitated phase. The 
dissolution of aragonite and Mg- calcite is assumed to 
be the dominant control on the availability of Sr and 
Mg; both of these elements have k less than 1. Mn and 
Fe are both assume.d to have k greater than ~. These 
elements are initially at "background" levels in the 
pore-water. ,,Calcites precipitated in such a 
simplified open system ideally wi 11 show no 
concentration gradien.1ii)f trace elements. 

In a closed diagene'tic system, concent~Yations of ~g 
and Sr will progressively increase in pore-water::; a nd 
successive precipitates w'ill conta.in higher 
concentrations (heavy stipling), the ltfltiting. 
concentratiqns being those of the sourc\ aragonite 
and Mg-·cal£ite. For Fe0 and Mn, at constant Eh, the 
earliest precipitates will sca_venge these elements 
(heavy stipling) and later precipitates will contain 
progressively less Fe and Mn. This model is explained 
more fully in Appendix K • . 

(b) Schematic distribution of Mg, Sr,· Fe, and Mn in 
authigenic calcites of the CHG. 

\ 

) 

' 
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they need not be so. Marine or modified marine pore-wet ers do not 

change the fundamental enrichment-depletion relationships illustr-ateo 

although the effects will be dampened somewhat relative to those of 

meteoric-water diagenesis (Veizer, 1?83). The tr_ace element distribution 

in authigenic calci_tes of the CHG is schematically illustrated in Figure 

10.4b. Comparison of Figure 10.4b with Figu~e 10.4a suggests that the 

observed relationships are not explainable in terms of the relationship 

b,etween a partitioping coefficient and the degree of system closure. In 

·~he following disc~ssion it is assumed that deep-marine waters ·o9 

Cambro-Ordovician slope were similar in elemental composition to m~ 
seawater (see discussion in Vetzer, 1983) and pore-waters are derived 

·from this marine water. 

- 10.6.1 Magnesium and Strontium 

The observed decreases in Mg and Sr concentrations with progressive 

precipitation ar~ explained by ~he incorporation of these elements into 

other authigenic phases ("sinks"). This is a 1 ikely possibility based on 

interstitial water studies from DSDP cores of pelagic and hel)lipelagic 

sedimen~ .. Progressive Sr depletion with increasing sub-sea depth in 

deep-sea carbonates an4 tocreases in Sr concentrations in adjacent 

pore-wat.ers have' been explained as the result of
1
recrystallization of 

. \ 
carbonate minerals · (e.g. Sayles and Manheim, 1975; • Matter !!_ ~·, 1975; 

Gieskes, 1981; Baker ~ al., 1982). The accumulated Sr .. in pore-waters 

.. 
may ultimately reach a maximum concentration plateau or steady state 

·-.. (Gieskes, 1981; Baker et al., 1982) bal~nced by incorporation of excess 

---< 
Sr into clays (e.g. Matter~ al., 1975) or possibly by diffusion upward 

through the sediment pile to the surface or downward to some unknown 

sink. The question concerning removal of Sr from sedimentary pile, 

• 

• 
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however, is not satisfactorily answered. 
, 

Decreasing Mg concentrations i,rt_ some CHG calcites may be explained by 

removal into sinks of quite diverse origin. These i,nclude: (1) 

dolomitization or Mg-calcite formation (e.g. Sayles and Manheim, 1975) 

and (2) silicate authigenesis (e.g. Harrison et al., 1982). Other 

potential (but unlikely for the CHG) sinks for Mg are discussed in 

Gieskes ( 1981). As will be shown in Chapter 12, dolomitization may be 

synchronous with or may postdate calcite authigenesis, and is therefore 

a likely sink for Mg. In addition, the domination of the clay mineral 

suite by illite and chlorite, and to a lesser extent corrensite (see · 

Appendix B) also implies that clay mineral diagenetic reactions consumed 

Mg, but these_ probably occurred too late in the dia.genetic history to 

effectively remove Mg from the shallow-burial pore-waters from which 

most, if not all, authigenic calcites ~ere derived. As discussed 

preyibusly, Mg-depletion with progressive precipitaiion is not 

ubiquitous, and local unknown factors may be important. Mg 

concentrations in some DSDP calcites have alst> been observed to increase 

I with sub-sea depth (e.g. Baker~ al., 1982) but information is too 

scarce to confidently interpret such changes. 

Considering published partitioning coefficients of Mg and Sr as 

order-of-magnitude estimates only (see Appendix K), the concentrations 

of Mg and Sr in authigenic calcites of the CHG could be derived from 

unmodified seawater if the elemental composition of Lower Paleozoic 

seawater is identical to that of the modern ocean and the appropriate 

partitioning coefficient is assumed (Table 10.1). This is also 

consistent with other evidence indicating a near- surficial origin for 

JDany neospars and cements. · The anomalously high analysis of 2900 ppm Sr 
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Table 10.1: This table compares pore-water chemistry calcul ated 

from chemical analysis of CHG calcites with the 
expected equilibrium precipitates from modern seawater 
for a wide range of possible partition coefficients 
{k). Calculations use the Berthelot-Nernst equation 
witH the appropriate simplifying assumptions ·(see 
Appendix K). Diamond-shapes indicate calculated Cow 
Head Group pore-water Me/Ca ratios that are within an 
order-of-magnitude of ratios in modern seawater. 

CHG~~d modern seawater concentrations of elements are 
ass ea to be identical: Ca•411 mg/kg; Mg•1290 mg/kg; 
Sr=8 ~; Fe•0.002 mg/kg; Mn-0.0002 mg/kg (source: 
Table 10.i in Drever, 1982). 

k valu~ are obtained from the following sources: · 
Ran&es of k~ and kMn are for earth surface conditions 
(Veizer, 1983, table 3-1; Brand and Veizer, 1980). 
Ranae of k~ is for 0 degrees C (Baker et a1., 1982, 
figure 1). k... of 0.02 is extrapolated tO below 5 
degree_s C (Fuchtbauer ami Hardie, 1976). klllt of 
8.1Xl0 4 is estimated at 5 degrees C (Baker !.!_ !.!_. , 
1982). 

I 
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in a pseudospar sample is interpreted to represent precipitation from 

pore-waters with elevated Sr ratios which resulted from a local, more 

closed diagenetic system than for other calcites analysed. 

These results do not imply that all calcites in the CHG and throughout 

the geologic column containing similar levels of Sr and Mg are also 

derived this way. Clearly, at this stage in o.ur understanding of 

partitioning coefficients and ancient ocean chemistry, without the 

appropriate field and petrographic data (including CL), such a 

conclusion would,at best be extremely suspect. 

10.6.2 -Iron and Manganese 

The change from non-ferroan to ferroan calcite cements in limestones of 

diverse ages is Unquestionably the most often-reported geochem~ca~trend 

described in ancient limestones ,(e . g. Oldershaw and Scoffin, 1967; 

Evamy, 1969; Frank~ al., 1982; Grover and Read, 1983; James and 

«lappa, 1983). This trend, and a comparable one for Mn, are 

conventionally explained as the result of a decrease in Eh, thus 

mobilizing Fe and Mn contained in various oxides and hydroxides which 

form colloids or are adsorbed onto various types of particulate matter .. 

Assuming comparable Fe, Mn, and Ca concentrations in the Lower Paleozoic 

arid modern oceans, to reach 0.1 wt% FeO or MnO would involve an 

.increase in the metal/Ca ratio of at least 20 times for Fe and over -100 

times. for Mn. The presence of reducing pore- waters .within the uppermost 

metre, even few millimetres of the sediment-seawater interface in 

organic-rich sediments is well-established (see Chaptek" 11). Fe and Mn . 
can also be released during later burial diagenesis from "the alteration 

of clays or pressure solution (e.g. Oldershaw and Scoffin; 1967; Boles, _, 
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1978). DSDP interstitial pore-water profiles for Hn are often complex, 

' 
but some show a close correlation between the concentration of dissolved 

Hn and dissolved silica. This may be explained by mobilization of 

adsorbed Hn-oxide pha~es on siliceous skeletons (Gieskes, 1981). 

Based upon the relative st&bility fields of Fe and Hn and their 

co~pounds in Eh-pH space (Krauskopf, 1979; Berner, 1980; Maynard, 1983), 

upon depressing . Eh, remobilization of Mn should occur first, followed by 

Fe as conditions become progressively more reducing. This earlier~ 

preferential mobilization of Hn over Fe explains the sequence of CL . 

stages discussed previously in Chapter 8. Stage A is dull or dark due to 

insufficient activator ion (Mn). Stage B reflects conditions 

characterized by Hn-activated luminescence. Stage C occurs when Fe 

levels rise above a critical concentration and quench Mn-activated 

luminescence. 
. '-

10.7 SUMMARY AND CONCLUSIONS 

Neospar, cements, and DFC commonly demonstrate decreasing Sr and Mg 

concentrations and increasing Fe concentrations with progressive 

precipitation. Hn concentration trends ate not consistent although 

this may be in part a function of low concentrations. Extrapolation of 

CL data (discussed in Chapter 8) suggests that Mn concentrations _do 

increase with progressive precipitation although its presence as an 

activator may be masked by the quenching effects of iron. The decrease 

in Sr and Hg is explained by incorporation into mineralogic sinks (e.g. 

Hg in dolomite) or possibly diffusion upward into the overlying water 

mass. Fe and Hn enrichment in the later stages of crystal ~rowth 

.· 
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results from a lowering of Eh which remobilizes these elements from 

various dispersed oxides and hydroxides. The above trends are not 

without exceptions; for example some crystals demonstrate an enigmatic 
' t.: . .._ -

late stage inarease in Mg concentration. 

Trace element trends such as those from the CHG are also typical of 

meteorically-altered limestones where mineralogical stabilization 

proceeds by replacement of aragonite, incongruent dissolution of 

Mg-calcite, and precipitation of calcite with lower ~r and Mg 

concentrations (e.g. Bathurst, 1975; Pingitore, · 1976; Brand and Veizer, 

1980; James and Choquette, in press). An origin related to meteoric 

water diagenesis, such as migbt arise dur~~g eustatic sea level drop 

with resultant formation of major subaerial uneonfurmities on the 

equivalent-age shallow-water platform, is not supported by field or 

petrographic evidence. Sedimentation on the equiva1ent-a~e 

shallow-water platform appears to have been relativel y continuous for 

t~ duration of CHG deposition (see James and Stevens, 1982). Studies of 

sediments drilled from the modern ·ocean floor as well as sampled by 

I 

submersible have a!so shown stabilization trends similar ·to those which 

occur during meteoric diagenesis (e.g. Schlager and James, 1978; Baker 

et al., 1982). 

(_ 
Using publish~d partitioning coefficients for Mg and Sr extrapol ated to 

below 5 degrees C, and assuming Lower Paleozoic seawater was identiqt1 

to modern seawater with respect· to Ca, Mg, Sr, and Mn concentrations, 

the~ the earliest precipitates in the CHG could have precipitated from 

unmodified or slightly modified seawater, a likely possibility ~iven the 

· abundance of . field and p~trogr~ph.ic evidence to sus.gest early, 

shallow-burial lithification. 
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Chapter 11 

CALCITE STABLE ISOTOPE GEOCHEMISTRY 

11.1 INTRODUCTION 

Analysis of carbon and oxygen stable isotopes in carbonates has in 

recent years been a routine complement to studies of carbonate 

diagenesis (e.g. Bathurst, 1975: Hudson, 1977; Allan and Matthews, 1982; 

~nderson and Arthur, 1983). Isotopic analyses provide important 

information regarding pore-water. chemistry and other parameters 

unassessable by any other method . 

From previous discussions, it was shown that field and petrographic 

relationships indicate lithification within a few metres of the 

sediment-seawater interface. At such shallow burial depths the effects 
" 

of marine as well as "evolved" pore-waters are expected. Pore- waters, 

particularly those associated with organic-rich sediments, undergo 

profound changes in their stable carbon isotope content as a function of 

several, important, bacterially-mediated reactions which oxidize organic , 

matter (discussed below). The importance of these oxidation reactions 

in the early diagenesis of, carbonate sediments has been illustrated 

repeatedly in the last decade or so by DSDP drilling (e.g. Sayles and 

Manheim, 1975; Claypool and Threlkeld; 1980; Garrison, 1981; Gieskes, 

. r 



1981; Kelts and Mackenzie, 1982). As a result of these as well as 

numerous on-land studies particularly of Mesozoic, organic- rich 

sediments (e.g Sass and Kolodny, 1972; Irwin~ al. 1977; Hudson, 

1978), the sequence of diagenetic changes which starts in the 
. 

ne~ly-deposited sediment and then evolves as a function of time, 

progressive burial, and alteration of pore-water chemistry are well 

known. 

Samples for isotope analysis were analysed courtesy of Marathon Oil 

Company Den~ Research Centerin-~~ttleton, Colorado, using standard 

procedures. Analyse~ are reported i~ parts permil (o/oo) o13C or o16o 

relative to the PDB-1 standard. Precision for both o1'3c and 0 11~'0 is 0.1 

- 0.2 oloo based on selected replicate analyses (Appendix I). Technical 

and analytical data are provided in Appendix I. 

The terms "enriched" and "heavy" refer to larger o13C or o 11~o values 

such samples contain more of the heavier isotop~. Likewise the terms 

"depleted" and "light" refer tO smaller 013C Or 0180 V!!lUeS - these 

contain more of the lighter isotope. 

11.2 BACKGROUND: FUNDAMENTALS OF ORGANIC MATTER OXIDATION 

11.2.1 O~dizing Reactions · 

Before proceeding to description and discussion of stable isotope 

. analyses, a brief review of some fundamental aspects of the oxidation of 

organic matter is presented, empha~izing mainly the expected carbon 
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isotope fractionation. 

On an oxidized sea floor, the earliest oxidation reaction is aerobic 

bacterial oxidation, occurring at and nea~ the sediment-seawater 

" interface '(Table 11.1). Below the sediment surface, pore-wat~rs become 

suboxlc and eventually anaerobic at depths as shallow as a few 

millimetres (e.g. Fruth and Sherreiks, 1982) to a few lO's of 

centimetres (Berner, 1980). Oxidation of organic matter then continues 

by sulphate reduction followed by methane generation. Other inorganic 

oxidants are consumed; for example nitrate and manganese or iron oxides 

and hydroxides, but these are of ielatively minor importance in terms of 

the amount of organic matter oxidized (Froelich !l al., 1979). With 

' progressive burial and concomitant increase in temperature (greater than 

SO degrees C) remaining reactive organics are everttually cons~ed during 

the thermogenic {ormation of mJthane and other hydrocarbons.. Oxidation 

continues as long as th~re is a supply of metabolites or until suitably 

reactive organics are consumed. 

The preponderance of black and green shales in the CHG sugges~s that 

bottom waters were generally dysaerobic or possibly anaerobic (refer to 

Chapter 2~. In the younger, red shale-dominated part of the sequence, 

however, deep waters were obviously aerobic but pare-waters were 

eventually reduced so as to allow the formation of dolomite and thin 

reduction rims in the shale immediately underlying and overlying 

dolomitic siltstones (see Chapters 2 and 12). In the less oxygenated 

· ' bottom waters associated with the deposition_ of,dark-coloured shales, 

aerobic . oxidation reactions may have not occurred; instead, suboxic or 

. anoxic organic oxidation reactions such as nitrate reduction and 
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sulphate reduction could have occurred at the sediment-seawater 

interface. 

The bacterial oxidation reactions (Table 11.1) all yield COa which 

increases concentrations ·of bicarbonate as well as other carbon 

species. In a~robic ~dation, ~ore~water co~unication with the 

overlying sea water buffer maintains alkalinity but lowers pH thus 

forci~g the cfrbonate equi:ibrium toward undersaturation (Gieskes,_. 

1974), In contrast, an~ of great significance in anoxic pore fluids, the 

addition of bicarbonate leads to increased alkalinity and saturation 

with respect to va.rious carbonate phases, the most important be-ing 
r:o, 

calcite, Mg-c~lcite, aragonite, dolomite, siderite, ankerite, 

Mn-carBonates, and . ankerite (Gieskes, 1981; Anderson and Arthur, 1983). 

Tpe increase in alkalinity is controlled, to various degrees, by the 

production of ammonia, precipitation or d~ssolution . of inorganic 

phosphate, pH buffering by proteolytic formation of hydrogen sulfide, · 

effects of weak ac}ds and bases, charge transfer between different ionic 

species, authigenic silicate formation, an) sulphide precipitation 

(Berner~ al., 1970; Sass and Kolodny, 1972; Ben-Yaakov, 1973; Gieskes, 

1~;4; Suess, 1980). Wh~ther or not precipitatio~ indeed occur 

depends on the effects of organic an~ ino~ganic ~itors and 

also 

pre-exist.ing carbonate nuclei (Berner ~ .!!_., 1970; Baker and Kastner·, 

1981). Discussion of the above effects on the solution chemistry of 

interstitial fluids is beyond the scope of this study and the reader is 

referred to treatments in the above citations • 

. During ~shallow burial these reactions are controlled by a mutually 

exclusive succession of bacteria. At a given point in time, the 
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REACTION . 

CH~o · +. 0~ -+ C02 + H20 

5Ct-\O +. '4N03--+ 2N2 + 4HCo; + C0
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+ 3H
2
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CH20 + 3C02 + ~20 + .2Mn02 -+ 2Mn•• .+ 4HCO; . 

. CH20 +.- 7C02 + 4Fe(OH)3 -+ 4Fe ++ + ·~HCO; + 3H
2
0 

2CH20 + sq.--~ H
2
S + 2HC0

3
-

2CH20~ CH4 ~ C~2 

OXIDATION 
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sequence of reactions defines a depth-related diagenetic zonatioA \ 

("spatial s~ccession'~) ; , or, if viewed against a backdrop of progressive 
• . i, 

sedimentation, the reactions record the upward migration of ' several 

micro-ecological suites ("temporal succession"; Claypool and Kaplan, 

1974; Mechalas , .. 1974). The ~equence of reactions is characterized by a 
. . . ·. 1 

progressively diminished rate of c~ production as well as free energy r~·~·· 

yield (Claypool and Kaplan'· 1974;, Froelich n ll·, 1979; Irwirt ~ al., 
· .. 

' 1977; Berner, 1980). 

11.2.2 Isotopic Signatures 
I 

The various diagenetic reaction zones are characterized by isot_opically 

distinc.t C02. (and therefore bicarb~~ate) o\.3c from that of seawater 

which, in the modern ocean, is approximately 0 -oloo. Bicarbonate 

resultin.g from bacterial oxidation (Zone I of Irwin!!_ al., 1977) and 

sulphate reduction' (Zone II) reflects the light, iarge1y unfractionated 

carbon ·aerived from precursor organic material, approximately -25 o/oo 

PDB (Irwin!!, al., 1977). In contrast, there is a large fractionation 

associated with bacterial methane generation~ (Zone III). The mechanism 

is less than perfectly understood . although the strong carbon isotope 

fractionat-ion that chanicterizes it is well-establi~hed (Irwin ~ al., 

1977). Because methane concentrates the light ' isotope of . carbon. (~ 13c up 

to -50 to -100 o/ oo; Ander son and Arthur, 1983) , residu~l COz. is 

~13 . . 
t:haracterized by large u C, up to +10 tp +15 o/oo (Irwin !!_ al., 1980; 

Pisciotto, 1981). Upon further burial, abiotic reactions once again 

produce isotopically light ~02. wit.h o13c values of -10 to -25 o/ob .• 
~ 

Carbonate precipitation associated with these reactions ideally will 

·r:· 

J 
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reflect the isotopic composition of pcre-water bicarbonate, the 

principal carbonate species in solution~ 

Stable isotopes are affected by a -number of v1;1riables. The main 

influence on 013C is ,trC:m oxidation of organic matter (Hudson t 1977; 

~13 . 
Irwin t!. al. 1977). The u C of a carbonate will therefore reflect 

mixing of marine 013
C with either very negative or positive bicarbon~te 

derived from oxidation of organics. rrhe small amount of dissolved 

carbon in pore-waters implies that pore-water 0 13c ~ill · be strongly 

moderated by any dissolutio_n of the host sediment or by any o~her 

input. The resultant precipitate will also reflect this. In contras_t, 

0 18
0 is controlled by ~rperature, as well as the isotopic composition 

of the waters from which carbonate precipitates ('fiudson, 1977). The o1•o 

of pore-waters may be influenced by formation of diagenetic Qlinerals _or 

other water~mineral reactions, biological fractionation, isotopic 

composition of a precursor solid, salinity, secular changes, and 

water-rock ratios (Keith and Weber, 1964; Hudson, 1977; Brand and 

Veizer, 1981; Brand, 1982; Anderson and Arthur, 1983). 
j 

11 • 3 CALCITE STABLE ISOTOPES 

The following section examines the distribution and -relation ships of 

various types of authigenic caicite in the CHG. RFC is not part of the 

.!.!!. ~diagenetic suite; however, it does provide a convenient and 

conventional marine "base- line"' to which other types of calcite may be 

compared i sotop-i cally. CFC is an i n s itu submarine cement, but ' as. will 
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be shown below, its carbon isotopic composition demonstrates a variable 

organic influence. Microspar, pseudospar, and DFC are treated both 

separately and together, noting transitional relationships of one to the 

other. Grainstones and miscellaneous fracture-fill calcite cements are 

also examined, tbe cements in particular to characterize an early from a 

late, tectonic fracture calc.ite. 

11.4 RADIAXlAL FIBROUS CALCITE 

11.4.1 Samples and Data 

Six samples of RFC were analysed from Lower and basal Middle Ordovician 

boulders at Cow Head North (Beds 10, 12, and 14) and from the enigmatic 

~ 
mounds in the large boulder at Lower Head (Group A in Figure 11.1). 

Their 01&0 range from -5.46 to -6.65 o/oo, averaging -5.78 o/oo. Their 

c5 15C range from +0.54 to -0.84 o/oo, averaging -0.07 o/oo. 

11.4.2 Interpre~ation 

The clustering of stable isotopic analyses, along with their sharp 

primary trace element distribut.ion as · indicated by CL (see Chapter 7), 

suggests that RFC are sufficiently unaltered to establish a "best 

estimate" of inorganically-precipitated calcite from Lower to Middle 

Ordovician seawater. Ap~lyses of RFC from the CHG lie between James and 

Choquette's (1983, figs. 2o, 21) best estimates of unaltered fibrous 

marine cements for the Lower Cambrian and Middle Ordovician. These 

estimates were obtained by using the "heaviest", an presumably most 
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\3 It, . 18 0 C versus 0 0 of RFC, CFC, and miscellaneous 
calcite cements. Also plotied in this diagram are 
the "best estimates" of Middle Ordovician and Lower 
Cambrian fibrous marine cements from Jameg and 
Choquette (1~83). Circled letters are referred to in 
text. See text for discussion . 
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·original, isotopic compositions of fibrous cements from a covariate data 

set. The validity of the. marine isotopic "memory" in such· fibrous 

calcit~s is supported by their significant anj consistent temporal 

variations throughout the Phanerozoic (see compilation in James and 

Choquette, 1983). 

Using the most positive RFC 0180 of -5.46 o/oo and assuming a 
r, 

precipitation temperature of 23 degrees C, RFC were precipitated from 

sea water with 018 0 (SMOW) of -4 o/oo[ 1]. .There is an · uncertainty, 

however, in using RFC as an internal baseline. Although the RFC-bearing 

boulders are found in Lower and Middle Ordovician debris flows, the 

boulders may be older than their beds and some of the data scat t er may 

reflect reaL temporal variations in the oceanic bicarbonate reservoir . 

The relatively small degree of data scatt~r, however, suggests t hat this 

effect, if it indeed occurs, is minor and can be safely ignored. 

11.5 IN SITU AUTHIGENIC CALCITE: SAMPLES AND DATA 

11.5.1 Conglomerate Fibrous Calcite 

CFC's exhibit a narrow range of o180 from -6.26 . to -6.85 o/oo (Group B 

in Figure 11.1). Their o1~C. however, are more variable, ranging from 

1. T~ese values were calculated using the modified paleotemperature 
equation of Shackleton and Kennett (1975): 

T•l6. 9-4. 38(0 .. 0.-W)+O .10(0160-W) 

where Tis temperature in degrees C,0180 and Ware the isotopic 
compositions of calcite and water, respectively. 

.. 
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+0.58 to -2.09 o/oo with 4 of the 6 analyses clustered toward more 

negative values. 

11.5.2 Equant Calcite Cements . 

Also plotted in Figure 11.1 are analyses of an early and a late 

fracture-fill calcite cement, their timing being determined~ priori by 

field relationships and petrography (previously discussed). The early 

cement has ferroan zones and occurs in a marginal _fracture of a mudstone 

nodule (0 13
C _• +0.28 o/oo and 0180 • -:6.04 o/oo; Plate 53e). The late 

cement is entirely ferroan and fills a void developed in the fold nose 

of a contorted mudstone 'Plate 20). This calcite has the most ~~~ive 

0 1&o measured at -8.83 o/oo. The 01"3C is -2.05 oloo. 

11.5.3 Grainstones 

_ Whole-rock analysis of grainstones (Group H) plotted in Figure 11.2 

include: (1) quartz-rich grainstone (non-ferroan cement); (2) grainstone 

substrate to DFC-1 (iron-zoned cement; also plotted in Figure 11.4); and 

(3) grainstone core to a mudstone envelope (non~ferroan cement). 

Grainstones vary little with respect to 013C, all within 1 o/oo of each 

other (-0.39 to -1.12 o/oo). Their 0160 range from -5.29 to -7.47 

o/oo. 

11.5.4 Microspar 

Microspar analyses are plotted in Figure 11.2 in Groups C-G. These are 

petrogrephically similar, being all non-ferroan though some show CL 

.. 
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Figure 11.2: o't versus 0'~0 of various microspars , grainstones, 
and a wackestone nodule . Number 11 refers to a 
serial analysis of a rippled grainstone surrounded by 
a mudstone envelop~. Circled letters are ' referred to 
in text. See text for discussion • 

• 
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zoning. Included are: (1) microspar asso~iated with DFC (Group C; also 

plotted in Figure U .4); ( 2) homogeneous microspar mudstones (Group D); 

(3) mictospar which marginally aggrades to , pseudospar but which is not 

associ~ted with DFC (GroupE; also shown in Figure 11.3), (4) microspar 

~ envelopes in cored nodules (Group F), including one · analysis of a 

.grainstone core (Trend 11), and (5) microspar mudstone and wackestone 

nodules enclosed in silicified shale (Group G). 

Their o13
C range from slight positive values (+0.24 o/oo) to pronounced 

negative values (-6.87 o/oo). The most negative values are those of 

'microspar associated with DFC (Group C) and the mudstone and wackestone 

' . nodules in silicified shale (Group G). The high~st 0 1~C mi~rospars are 

homogeneous mudstones, including continuous beds and nodules (Group D) , 

·,and mudstone envelopes (Group F). The grainstone and its mudstone 
f 

envelope (Trend lli contain similar 013C and 016 0~ Microspar ~hi c h 

aggrades to pseudospar, but which is not associated with DFC has 

intermediate ·values of 013C (Group E). 

.· ... , 
The 018

0, with 'one exception, range...b.e_t.Ween -5.24 and -7.60 o/ oo. The 

exceptional sample is a muds_tone envelope dev:~.9ped around a peloidal 

silt grainstone (not analysed). This mu~;e has the highest 0180 . 

encountered in this study ( 0180 -2.81 o/oo). 

( 
11.5.5 Pseudospar and Related Cement 

The analyses plotted in Figure 11.3 include: (1) pseudospar associated 

with DFC (Group I; also plotted in Figure 11.4); (2) a septarian nodule 

.. ·-·--· 
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/' 
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'\ ' 

Figuce 11.3: O''c ,.rsus O"o" of '"rious psuedospars, assoti~ /, . . 

microspars, and a calcite cement filling a sep:~~~a~ 
crack. Trends 1 and 2 are the same serial analyses 
as in Figure 10.2 . Circled letters are referred to in 
text. See text for discussion. -1
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pseudospar with calcite cement filling crack (Tr~nd 12); (3) marginally 

aggraded pseudospar which is t 'ransitional from microspar plotted in -
\ 

·Figure 11.2 (shown as Trends. 1 and 2 [2]); (4) pseudospar in 
~) ' 

c:onslomerate matrix (Group J); and (5) pseudospar from "ponded sediment" 

~ above a contorted l,imestone (see Chapter 4). Stable isotope analysis 

demonstrates the following: 

( 1} Pseudospar crystals in Group I may be fer roan, non-ferro~n. or zoned 

and grad.e into DFC. They span a .eonsiderable range of o~'~c. from +1.04 
' 

to -7.78 o/oo, 'with 0 11~0 ranging from -6.09 to -8.05 o/oo. 

' "' 
.f;,• 

(2) The seJ:!tarian· nodule and i,ts associated blocky calcite cement are 
:> 

both ferr081) and con~ain similar o18o value~ (-6.87 and -6.91, o/oo, 
· r · . ' . -·-·' , . ' 13' 

.respectively , ). The-cement, however, h<is considerably more negative 0 C 

than its host pseudospar (-4.45 vs -1.54 o/oo~ respectively). 

/
, I~ Pseudospar crystals in Trends 1 an~ 2 are ferroan. and have more 

......... ---~ 

negative o'Joc (-2.06 .and - 5.27 o/oo) and o'&o (-5.69 and -7.55 o/oo) 

than microspar to which they are transitional. 

( 4') Ps~udospar in conglomerate matrices (Group J) is fer roan or -
non-ferroan and has o'~c of -0.67 to -2.82 . o/oo and 0160 of -6.10 to . 

-6 .42 o/oo. 

( 5) The "ponded· sediment" pseudospaz: is fer roan and C'i:m tains the second 

heaviest oxygen ( o18o • -3.11) of all calcifes analysed.- Its carbon 
. . --· --

isotope~, however, are light (0 1 ~C. -2.92 o/oo). 1 

• 
2. The trends numbered 1-10 are the same as those discussed in Chapter 
10~ 
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11.5.6 Displacive Fibrous Calcites and Associated Neospar 

Seven serial analyses of neospar-~o-DFC transitions are plotted in 

Figure 11'.4. Also included are single analyses . of: (1) DFC-1 without 

accompanying substrate analysis·, (2) DFC-1 with grainstone substrate 

(a~so plotted in Figure 11.2), ani_ (3) psE!~dos-par substrate (also 

plotted in Figure 11.3) to DFC-1 (not analysed) in a conglomerate 

clast • 

• DFC-1 (Group K) and DFC-2 (Group L) are isotopically distinct, DFC-1 is 

1'3 ' 
clustered closely together with 0 C t".anging from -0.30 to -1.28 o/oo 

d .tleo • I an u ranging fro~-5.96 to -6.31 o oo. In contrast, DFC-2 vary 

widdy with respect to both o'~c and 0 180, and -ihese calcites also have 

more negative 0 13
C and 01&0 than DFC-1. In o'" .. these, . C ranges from -0.61 

to -9.93 o/oo and o"•o ranges from -6.09 to ~8.41 , o(oo. 

Isotopic analysis of the serial trends previously exa,mined in Chapter 10 

demonstrates that the progressive preci.pi tat ion of microspar, 

pseudospar, and DFC is accompanied by changes in isotopic compositions. 

Considering only DFC-1 ·trends, the transition from microspar to · 

pseudospar· to DFC in Trends 3 and 4 and from g·rainstone to DFC in Trend 

5 is characterized by increasing o1'c with minor' unsystematic 

fluctuations in 01&0. In contrast to .the above, o13C of DFC-2 trends is . 

more variable. Trends 8, 9, and 10 all show significant decreases in 

0 1 ~C from microspar or pseudospar to DFC, or from microspar to 

pseudospar. In Ttefld 10 microspar at the centre e1f the bed grades 

downwarcf tq. pseudospar and upward into ferroan DFC (Plate 37e). The 013C 

/ 
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Figure 11.4: o'"3c versus 0111~0 ( PDB) of serial analyses of 
microspar, pseudospar, and DFC. The solitary 
ps4iludospar analysis grades to DFC (not; analysed). 

Trend numbers are the same serial analy&es as in 
, Figure 10.2. Circled letters are refer red to in 

text. See text for discuision. 

~---. \ 
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of the pseudospar and DFC is identical (-2.92 o/oo), a result congruous 

with the identical iron staining and CL. Trend 7 shows an increase in 

613c in . the transition from microspar to pseudospar to DFC, opposite to 

Trends 8, 9, and 10. Trend 6 shows little variation in 6 13C. 

In DFC-2 trends, 0 180 variations are more pronounced than in the DFC-1 
r 

trends, · w~th a tendency for decreasing 0~0 with progressive 

precipitation. Trend 10 is an exception. In the transition from 

microspar to DFC, 0180 increases slightly, but the change from microspar 

to pseudospar is characterized by a decrease, which resembles Trends 

and 2 in Figure 11.3. Trend 6 shows the most dramatic decrease fr;m 

pseudospar 0180 of -7.44 o/oo to DFC 0160 of -8.41, this value being the 

second smallest 6180 measured in calcites of this study. 

11.6• INTERPRETATION oF CALCITE ~s 
, 

11.6.1 Introduction 

In situ calcite in. the CHG demonstrates a wide range of 01&0 and 013C 

values but there is a cluster ,of 0180 values between -5.5 and -7.0 o/oo 
~13 . ~ 

and a cluster of u · C values between· 0 and -2.0 o/oo. These values are 
' . 

"typical" for limestones of this age (see Keith and Weber, 1964; Veizer 

and Hoefs, 1976). 'A significant humber of 013C analyses, however, fall 

below this range, indicating incorporation of isotopically-light 

bicarbonate derived from the oxidation of organics. Serial trends -·-.\ 
CHarly demonstrate that many limestones with "typical"- o'!tc values are 

genetically-related to limestones illustrating a much more obvious 
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organit carbon signature.· . 

The greater variation in 01~C relative to 0180 of calcites in the CHG is 

similar to that expected during meteoric-water diagenesis. 

Precipitat~o~ of carbonate in the vicinity of a subaerial surface 

commonly results in low but va'riable o13c values due to · incorporaqon o( 

carbon from isotopically lig~ soil gases (e.g. Allan and Matthews, 

1982; James and Choquette, in press). A meteoric origin for the~ situ 

calcite in the CHG is dismissed.based on the previously-discussed field 

and petrograp~ic evidence to ~dicate deposition and early lithification 
f 

in a deep~water setting. A submarine, freshwater aquifer extending 

seaward under the shelf area to the slope is unlikely to have existed u.. . - . ' f 

dUe to the high terrigenous mud content of these sediments and 

associated low p_ermeabili'ties. Furthermore, such a freshwater aquifer 

would be expected to isotopically homo$enize these sediments, not 
' 

· produce the small- scale isotopic · variations observed within samples. 

Using the previously-discus~ed paleotemperature equation and assuming ,a 

precipitation temperature of 4 or 5 degrees c' the average o11o of 

approximately -6 o/oo for in situ diagenetic calcites indicates tha~ 

-- thQse calc~tes precipitated from pore solutions .c~aracterized by o'8o of -

-9 o/oo. t he highest o'8o analysed ( -2.81 o/oo fr~m a mudstone envelope) 

indicates tec~p~ta~ian from p~re s~~uti~ns w~t~0 16o of app~oximately -6 

o/oo. The qu1.1l.bn.um oxygen 1sotop1c compos1t1on for calclte at these 
l• :J : 

low temperatures, assuming an initial seawater 01&0 of -4 oloo : is -1 

o/oo. 

To explain the observed, 180-de~eted authigenic calcites, either: ( 1) 

( 
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the original precipitation temperature estimate for shallow-burial on 

the sea floor is significantly in err-or; ( 2) late-diagenetic 

recrystallization occurred at elevated burial temperatures ( 26 degrees C 

assuming pore-water~18o equal to that ·of seawater); (3) meteoric waters 

were . involved; or (4) shallow-burial pore-waters rapidly evolved toward 

a more •eo-depleted state. 

Geologic constraints requiring ~shallow-subsurficial origin rule out 

the first possibility. The heaviest ~180 of -2 .En o/oo indicates a 

temperature of 12 degrees C for precipitation from unmodified seawater. • 

The more typical ~110 of -6 o/oo indicates a precipitation temper.ature of 

26 degrees C, an unrealistic figure for such ~ deep-water setting. Such 

a temperature might be attained at•a burial _depth of approximately 1 km, 

depending on the geothermal gradient, but this is inconsistent with a 

shallow-burial ~rigin as deduced independently from field and 

petrographic data. The heterogeneity of trace element distributions and 

sharp CL zoning (discussed in Chapters 7-?) dismiss the second 

possibility, i.e. a late diagenetic, higher temperature 

recrystallization during deep burial. Regarding the third possibility, 

the improbability of meteoric water influences has already been 

discussed (Chapter 10). Furthermore, the near equatorial position of the. 

Lower · Paleozoic of western Newfoundland (Ziegler ~ al., 1979) implies 
• 

that the isotopic composition of meteoric waters may not have been very 

different from that of seawater (approximately -4 o/oo). 
'-.. / 

The remaining possibility is that early diagenetic pore-waters became 
• 

rapidly depleted in the heavy isotope of oxygen. The concentration. of 

the heavy isotope of oxygen in non-carbonate diagenetic minerals or in 
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altered pre-existing minerals could lead to a decrease in the o11b of the 
• 

res~du~l pore-water (e.g. Lawrence £l_al., 1976). There is no evidence 

of such reactions having been impo~tant in the CHG; however. 

The introduction of isotopically iight oxygen from the oxidation of 

organics•or exchange with organics could conceivably also lead t o 180 

depletion in early diagenetic pore-waters (e.g. Coleman and Raiswell, 

1981). Carbon isotopes are variable and interpretable i n terms of early 

"diagentic, bacterial oxidation processes (detai!ed in · following 

section). Could not ~xygen isotopes also undergo~ pronounced 

disequilibrium fractionation? "Vital" effects are well-documen t ed in 

isotopic studies of echinoderms, corals, .foraminifera, and 

coccolithophorids (see discussion in Anderson and Arthur, 1983). The 

paucity of data in the literatu~e. however, is insufficient to 

confidently generalize .regarding tfie disequilibrium effects in oxygen 

isotopes from the bacterial oxidation of organic matter. Regardless of 

' the above uncertainties , an early ;iagenetic l i ghtening of pore-water 

01~ possibly related to the bacteriai oxidation of organic mattet 

appears to be the orily viable expl anation for in situ diagenetic 

calcites in the CHG. 

11.6. 2 Cements: ·CFC, Equant'.!' ·Calcites, and Grains tones 

... 
CFC (GrouP, B) are interpreted to be ~~ submarine cements (se e 

Chapter 8) • . The negative o''c and o1&o values indicate incorporation of 

isotopically-light, organically-derived bicarbonate, probably from the 

decay of organics in the underlying ·strata. In the following 

discussion, CFC are used as a convenient reference point with which to 
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. ,. 
compE.re other .!.!!. situ diagenetic calcites. 

\ 

The single analysis of early calcite cement from a marginal fracture in 

a nodule lies close to the CFC field. An early origin for this cement 

is suggested by petrographic evidence which indicates the nodule was 

exposed at .one time on the sea floor (see Appendix N; Plate 53e). The 

late calcite cement within a fold nose in a contorted limestone contains 
.• ' 

moderately negative ~ 13C and strongly. negativ~ 61&0. This particular 
. . 

sainple, the most 186-depleted of ~his study, may n!flect either the 

influence of meteoric groundwaters circulated during tectonism, or 

precipitation from hydrothermal waters. 

Grainstones (Group H) were previously int€rpreted to have been cemented 

during very shallow buria~. The fact that5hey consist of 60-70% 

transported shallow-water allochems with the remaining volume being 

early cement accounts for their proximity to the CFC field. The 

cement-precipitating pore-waters are interpreted to be similar to those 

.which precipitated CFC. 
• • 

11.6.3 Microspar and· Pseudospar (Omitting Groups C and I) 

Ho~ogene~ microspar which forms continuously-bedded mudst~nes (Group 

D) or mudstone envelopes .around grainy sediments (Group F) have similar 

01)C 'and similar ~ 1&0 values. Although their fields do not overlap, . 
based on field and petrographic· evidence, they are interpreted to be 

early d~agenetic precipitates. An exceptional mudstone envelope (Group 

' 
F) has an anomalously heavy o'•o, the highest analysed in this study. 

This particular sample is interpreted to have been precipitated from 

, 
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pore-waters which had not ."evolved" as highly as those which 

prec_ipitated most other diagenetic calcite-s. 

The pronouncea negative 0 1~C of microspar mudstone and wackestone 

nodules in silicified shale (Group G), and to a lesser extent microspar 
. I 

in Group E, are typical of many concretionary limestones which contain 

organically-derived carbon (discussed below). GroupE ml.crospars have 
, ........ _. ~ ........_,-

higher ~~C than their associated pseudospar in Ttends 1 and 2 implying 

that with progressive calcite precipitation, the contribution of 
.) 

isotopjcally light bicarbonate~ probably from sulphate reduction, became 

increasingly more import~nt. A similar trend occuri in the septarian 

nodule between the ·host p$eudospar · and the later, more 1~C-depleted, 

calcite cement (Trend 12). Pseudospar in conglomerate matrices (Group J) 

also may show distinctly negative . ~·~c. 

Trends 1 and 2 also demonstrate a decrease in ~ 1 &0 with progressive 

precipitation. This can be explained b~ either a slight temperature 

effect or precipitation from slightly more evolved 1'o-depleted 

pore-waters. A temperature, increase of only a few degrees would be 

sufficieftt to cause the largest increase in ~1&0 seen (Trend 1 ) .. In Trend 

12, the ~160 shift is negligible. Pseudospar comprising the "ponded 

sediment" has moderately negative ~l:'c, but more importantly, it has the 

second highest ~·•o measured in calcites of this study. This suggests 

precipitation from relatively unevolved pore-waters, similar to those 

which precipitated the 160-enriched mudstone envelope (discussed above). 

\ 
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11.6.4 Displacive Fibrous Calcite and A!*;ociated Neospar 

Without the accompanying neospar analyses, it would be tempting to 

interpret the range of ~13c and \, 0180 and tight clustering of DFC-1 I 

(Grcup K) analyses as being indicative of relatively early precipitation 

from modified, m~rine pore-waters, analogous to the interpretation 

proposed for CFC ; Serial sampling, however, shows that this is not the 

case. The two serial analyses going from microspar to pseudospar and 

then to DFC (Trends 3 and 4) clearly demonstrate the youngest calcite, 

the DFC, to have been precipitated from pore-waters which had already 

reached a maximum light carbon stage due to sulphate reducti9n. The 

pore-water ~~~C tren~ then re~ersed due to. the increasing importance of 

heavy carbon bicarbonate from fermentation reactions. The ~roximity of 

the o13C values in the grainstone substrate and DFC fringe in Trend 5 

also suggests a similar trend, but the change in ~~~C is small, possibly 

due to relatively heavy marine carbon in the allochems which make up 

60-70% of this sediment. 

DFC-2 tre'Qds are characterized by constant, increasing, and decreasing 

013C with progressive precipitation. Neospar in Trends 6, 8, and 10. are 

interpreted as early precipitates from modified seawater, as suggested 

for Groups D, F, and H. In Trends 8, 9, and 10, decreasing o 1~C of 
\ 

successive precipitates sugg~sts incorporation of bicarbonate generated 

from sulphate reduction. The "interpretation for the increasing o'~c in 

Trend 7 is the same as that for DFC-1 trends. Little change in c5 1~C is 

found in Trend 6. 
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The minor variations of 01&0 in DFC-1 trends indicates that thermal or 

other effects are negligible. The slight shift to ~ore negative o18o in 

DEC-2 trends suggests a minor temperature increase (less than 5 degrees 

C) .. or a · minor decrease in pore-vater 01&0 vith progressive 

precipitation. .. 

11.7 DISCUSSION: COMPARISON WITH OTHER STUDIES 

In the CHG, lithification occurs by the growth of neospar, cementation 

of granular sediments, and precipitation of DFC. The relatively lov 0 1~C 

values of continuously-bedded as well as nodular limestones suggests 

that these processes happen early, vith carbonate precipitation driven 

by the anoxic decay of organic matter. Early lithification of these 

limestones (i.e. concretion formation) is thus substantiated 

isotopically as vell as by a plethora of previously-discussed field and 

petrographic evidence. In an isotopic study of t~e limestone-shale 

rhythms in the Blue Lias of Dorset, Campos · and Hallam (1979, p. 27) 

also cogcluded that "the limestone beds and obviously secondary 

concretions are no more distinguishable isotopically than they are in 

grqss composition and texture." 

Variable and low 013C reflecting incorporation of bacterially-generated 

bicarbonate also oh~racterizes nodular concretions in numerous other 

studies (e.g. Keith and Weber, 1964; Hodgson, 1966; Galimov ~!!·• 

1968; Sass and Kolodny, 1972; Hudson and Friedman, 1974; Dickson and 

.- -", Barber, 1976; Hudson, 1977, 1978; Campos and Hallam, 1979; ColemaA · snd 
\ 

/ 

( , 

( 
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Raiswell, 1981; Marshall, 1982). The o 18o'of qmcretions in some studies 

indicates that they may have formed •in contact with normal marine water 

but 
1
in other studies, concretions with more negative 0180, are 

interpreted as later precipitates from warmer or more evolved 

pore-waters (Hudson and Friedman, 1974; Hudson, 1977, 1978; Campos and 

Hailam.. 1979; bi'ckson ·and Coleman, 1980; Marshall, 1982). Coleman and 

' Raiswell (1981) demonstrated a significant difference (gr~ater than 5 

o/oo) in the 0180 composition of 2 nodular concretions separated 

stratigraphically by 5 m and suggested that local, early 'diagentic 

pore-water effects were responsible for these differences, rather than 

thermal or meteoric water influences. 

As in the CHG, other studies have shown that concretion growth may start 

vith extremely negative 0 1~C which gradually increases with progressive 

growth, ultimately converging toward more "typical" limestone values · · 

(e.g. Hoefs, 1970; Hudson and Friedman, 1974; Hudson, 1977). These 

changes are inte;preted to signify elth~r: (1) the ces~ation of the 

contribution of organically~derived bicarbonate and dilution with normal 

marine bicarbonate (Hudson and Friedman, 1974; Hudson, 1977; Marshall, 

1982); or (2) they may signify the onset of methanogenesis and the 

production of heavy carbon bicarbonate (Irwin~~·· 1977: Irwin, 

1980). These changes are often accompanied by a decrease of· 0160 for ' 

reasons discussed above. 

t: 
Although they have received considerable attention in the literature, 

isotopic analyses of DFC are few i.n number (e.g Hodgson, 1966; Campos 

and Hallam, 1979; Hudson, 1978; Marshall, 1982). Their wide-ranging·o 1!)C 

~~ I 
and. u . -0 values are co.inparable to those of non-DFC concretions. For 
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example~ the beef seams analysed by Campos and Hallam are characterized 
; . 

by slightly positive ~ 1 'c, ranging from -0.48- +1.17 o/oo (5 analyses) 
/ 

~hereas DFC .analysed by Hodg~on (1966) ranges from -29 o/oo to as high 
., 

as +2 o/oo ( 18 analyses). The single analysis reported by Hudson ( 1978) 

has ~~~C • -0.90 o/oo. 

Notal:tle among isotopic studies of DFC is the recent .... work of Marshall 

. 0982) who examined DFC from various Mesozoic shales in England. His 

study was based on detailed serial analysis of several samples of DFC 

and in some, the mudstone or grainstone substrate. As many as 40 points 

were analysed for 013C and 0180 in ~ne partcicular sample. In contrast 

td the findings of this study, .013C of the British DFC is approximate}y 

0 oloo whereas ·o18o varies from -4 to -11 o/oo. These isotopic 

compositions were interpreted to indicate precipitation of DFC at burial 

depths of tens or hundreds of metres, after the termination of bacterial 

degradation of organics and after sfgnificant modification of the 
~ 

pore-water oxygen isotopic composition. The mudstone substrates were 

characterized by markedly negative ~13C (as low as -14 o/oo)' but o13
C , ... '~ 

values progressively increased until the last stages of DFC growth were 

approximately 0 o/oo. Reversals in isotopic trends were noted in some 
-

samples and were correlated with sharp fabric, ;tscontinuities in ,the 

fringes. · 

0 
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'11.8 SUMMARY AND CONCLUSIONS 

·' 
~Sotopic anai<ysis of calcite demonstrates wide-rangiRg. 01!1C values, 

reflecting 4erivation of bicarbonate from -bacterial degradation of 

organic matter as well as the chang~ng importance .of _!!ifferent 

__ degradation reactions. Isotopic analyses are c:.ongruou·s with field and 
~-

J 

petrographic evidence which indicate early lithification of limestones, ·. 

ranging from grainsto~es to parted, · ribbon, and nodular mudstones. 

RFC analyses, although not part · ·of the.!!!,.&!,!! diagenetic s'uite, are 

clustered . toget~er a~4 suggest, along with CL evidence, retention of 

their prilll8ry isotopic signature. Most authigenic, in situ calcites are . 
chara.cter ized by more negative·· o'"c than RFC, indicating a variable 

contribution of organically-derived carbon. 

Serial analyses· illustrate trends which are characterized by decreasing 

or increasing 013
C with progressive precipitation. In the first case, 

preci.Jlitation is still largely driven by sulphate reduction, wherea.s in 

the second, rising o'~c reflects ' the increasing importance of 

fermentation in controlfing th~ 01~€ of pore ... wat~rs. Serial analyses 

also show that some microspar and pseudospar mudstones are lithified. 

before . 01!C becomes obviously negative. Other mudstones contain 

prominently negative o'~c. su.ggesting relatively later lithifica~ion 

well within the zone of sulphate reduction. 

Assuming a temperature of 23 degrees· C for the prec~pitation of RFC in 

·. 
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the shallow waters of the platform margin. seawater o16o is .. estimated· to 

be approximately ~4 o/oo. Assuming a bottom temperature of 

approximately ' S deg~ees C, mos~ in !ll.!!, diagenetic calcites in the CHG 

suggest precipitation from pore-waters with o180 of -9 o/oo. This -

pore-water depletion' of 11lo is suggested ' to be related to bacterial 

oxidation of organic matter during early · diagenesis. Serial analyses 

show either appro~ima~ely constant o"f. during precipi~ation or a small 

decrease in o'•o of the precipitates . . The decr·ease may be due. to either 

a small temperature increase (a few degrees C), · or further bacterial 

modification of pore-water o"o. 
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Chapter 12 

DOLOMITIZATION. IN .THE COW HEAD GROUP 

12.1 INTRODUCTION 

Dolomite in the CHG is conveniently divided into ·two major groups 

/ ,· 
I 
\ 

"Early" and "Late" - based on field and petrographic relationships. 

This simple dichotomy belies the complexity and variability within each 

of these groups. The Early dolomite. group js the most important in 

terms of · stratigraphic and .geogni
7
phic .. extent and vol1,1me. These 

. dolomites are also signifi<;ant petrogenetically't>ecause, itt some 

instances, they can be related to calcite diagenesis. The group 

includes: (l) dolomitic siltstone; (2) matrix dolomite, (3) • 

limestone-hosted dolomite, and ( 4) conglomerate matr i x dolomite. Late 

dolomite, on the other hand, is geograph'icall y restricted although when 
\ 
"ft occurs it may be the dominant carbonate present. Included in this 

\ 
g~oup are (5) joint dolomite and (6) pervasive replacement dolomite. 

Jo\nt dolomite demonstrates structural control, 'namely faults and 

joi~s, although the controls of the more widespr~ad penasi,. 

repla\ement dolomite at the White Rock Islets · ... and a few smaller 

occurr'rnces, is uncertain. Petrographically, pervasive replacement 

dolomi t\ is similar to joint dolomite. 

.. ' 
\ 
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. An additional occurrence of dolomite is in microvein1ets. These are 

unrestricted geographically and_).U.atigraphically and occur in all .. 

lithologies; truncate primary sedimentary structures, and may also 

include variable proportions of calcite\ microquartz, and megaquartz. 

The petrographic 1 CL, and staining chara~teristics of these dolomites 
\ 
\ 
\ 

are similar to those of dolomite in the ho~t sediment. Consequently, 
~ \ 

these likely have'~lar origin, which c~uld be either Early or Late. 
\ 

No further consideration~en to microveinlet dolomites. 

--~ 
'\ 

\ 

""' . 

I ~ ·- . e 

. " · /~-
~ ; " 

12.2 EARLY DOLOMITES 

--- 12.2 .1 Distribution 

Early dolomites are distributed in the sediments in various ways, 

detailed below. 

(1) Pervasive Dolomitic Siltstone: In outcrop these siltstones are 
I 

~.n-coloured and resistant-weathering. Interbedded shales may be any 

col~r and are commonly also dulomitic (Plate Sb,d,e; 6a- e). Ih these 
\ 

sedime~~mary sedimentary struc~ures and burrows are well-preserve<! 
'-...... 

and undistorted _{Plate 8c). Many of the outcrops of siltstone 
... --.... / .... / . 

liihofacies described. in· Chapter 2 are dominated by these pervasive 

dolomitic siltstones. 

(2) Matrix Dolomite: This dolomite occurs as the familiar 

tan-weatliering, marl interbeds in ribbon limestone sequences, 

internodule matrix in nodular intervals, and as the paper-thin ~ partings 

·' 



I 

- 339 -

in parted limestone sequences. Dolomitic shales (marls) may grade into 

shales containing few or n9 obvious dolomite '"ystals. 

(3.) Limestone-Hosted Dolomite: These dolomite crystals are dispersed in 

muds.tones to grainstones. Also included in this _group .are 

polycrystalline clasts of dolostone~ In sediments which have undergone 

tectonic pre~sure solution (see Chapters 5 and 13) dolomite crystals are 

concentrated ~t stylolites along with ~rgillaceous material and 

siliciclastics (Plate 48d). 

(4) Conglomerate Matrix Dolomite: Conglomerate matrix dolomite is 

restricted mainly to the matrices of C~mbrian conglomerates at Cow Head 

Narth and 'at Martin Point. Where associated with GfC at Cow Head North, 

it occurs as a pore-filling which post-dates the calcite, either as a 

dis~ontinuous crust or filling the remainder of the pore; or it 

selectively replaces internal mudstone and wackestones sediments which 

post-date the fibrous calcite (Plate 32b,c; 33a-c). 

12.2.2 Petrography 

Early dolomite crystals typically range from 10-75 pm in size, although 

within indi~idual samples, there is usually only minor size variation. 

In dolomitic siltstones and limestones, the size of these crystals is 

~ommonly closely correlated with that of associated calcitic peloids and 

siliciclastics. Conglomerate matrix dolomite is generally more coarsely 

crystalline, and 50-100 pm-size crystals are common, and some reach 250 

pm in size. Sand-size clasts of dolostone are well-r~d and consist 

of numerous tightly-intergrown crystals up to 80 pm in size. 
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Crystal shape varies from subhedral to euhedral, the latter commonly 

forming sucrosic mosaics in pervasive dolomitic siltstones, matrix 

'-' 
dolomites, and conglomerate ~trix dolomites. Undulose extinction is 

observable in most of the larger crystals and is also observed in 

silt-size crystals in high quality, doubly-polished, ultra-thin 

sections, Larger crystals also demonstrate gently curved crystal 

f'act!s. r 

Most of these dolomite crystals are characterized by cloudy cores and 

relatively clear, inc~u~ion-free rims ("CCCR"; Plate 48a). In some 

crystals, especial!~ conglomerate matrix dolomites, inclusions are 

evenly distributed. throughout. Core shape, as determined by the 

abundance of inclusions as well as CL (see below), varies from euhedral 

(rhombic) to anhedral; occasionally, some anhedral cores are spherical. 

The majority of inclusions are. micrometre-size and generally 

unresolvable by methods used in this study. Pyrite cubes and Fe-free 

calcite inclusions up to 5 ~ in size are differentiable and appear in 

some cases to replace portions· of their host dolomite crystal. 

Dolomitization occurs preferentially ·along ~elected laminations within 

some grainstones (Plate 47a). In other beds, bioclasts, peloids, an,d 

ootds are preferentiall.y dolomitized over other allochems or calcite 

cement. Peloids and ooids are occasionally replaced by micrometre-stze, 

anhedral dolomite crystals which faithfully retain original 

microfabrics. Where clast dolomiti2ation is only partial, only the ..._ 

outer margins of grains are dolomitized. In some ooids the nuclei are 

• 
preferentially dolomitized whereas in others the opposite is true. 

Dolomitization is also selective in some grainstone lithoclasts where 

peloids are do_lomitized and interpartic,le calcite remains unaltered. 

Impingement (~Sibley, 1982) of peloids and bioclasts by dispersed 
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dolomite ' crystals occasionally preserves the original g?ain outline as--

"dust" inclusions in t_lle _dolomite crystal (Plate 34a; 48c). 

12.2.3 CathoQe Luminescence and Trace Elements 

CL study demonstrates that most dispersed, matrix, and pervasive 

ail tstone do1omi te crystals consist of a central or innermqst "core" and 

outer' "rim". Later it will be shown that many cores are detrital grains, 

·' most are replaced calcitic peloids, 'and fims a~e diagenetic overgro~ths 

which nucleated upon the cores or grew outward· from the replaced 

peloids. Rims are distinguished from their cores by geometric or zoning 

discontinuities, or by the uniform crystal "microstratigraphy" of rims 

which contrasts with the variable zoning seen in cores. The common 

microstratigr.aphy of the rims reflects authigenesis under the same 

prevailing pore-wat$r conditions. 

12. 2. 3. 1 Cores 

-~. 

The rhombic to spherical shape of many cores seen in ~~ corresponds t~ 

the inclusion- rich central regions seen in transmitted light. Most 
\ 

cores are dull-lUJDinescent or ~rk and show l ittle or no CL zo-ning 
. ' ' 

(Plate 49d), except in some cases~ b~ lengthy photographic exposures. 

Bright-"luminescent red, orange_. and yellow multi-zoned cores are locally 

common, and may be dominant in some dolomitic siltstones (Plate . 

49a,b,e). When abundant, it is clear that these bright cores comprise a 

heterogeneous ar~up. in ter!Ds of t~eir CL zoning. patterns and. 

intensities. Zones within these brii~t· cores are often discordant with 

subsequent overgrowth (Plate 49e). Sand-size, ·dolostone clasts are 
" 

especially obvious with CL because of their larger size as well as 

vari_able luminescence characteristics (Plate 49e. f). 
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Most medium silt-size and smaller crystal.s are difficult to examine with 

CL because of their small size; this problem is especially acute in most 

sil~stones associated with red sha.les (Plate {.~c). Scattered bright 
. 0 . - . ' 

orange, red, and yellow specks in limestone, matrix, and finely 

crystalline siltstones are logically interpreted to be more finely 

crY.$talline counterparts of the larger, easily-resolvable bright, zoned 

cores. 

12.2.3.2 Rims 

Rim size in crystals with ·cores is variable, typically 20-40 % of the 

cry~ (ca. 40-60 %·volume; Plate 49a-e,f). Most matrix do fomites 

(Plate ~9h,k) and conglomerate matrix dolomites (Plate 3Sc) do · not have 

""--resolvable cores as described a.bove, but instead ·au crystals with i n a 

given sample share the same CL microstratigraphy from the centre to the 

edge of the crystal. The CL microstratigraphy of these crystals as well 

as the rims in cored crystals is uniform within samples, . but varies 

widely between samples. On the other hand, in some mudstone$, dispersed 

dolomite crystals appear to lack rim growth altogether. 

Many Early d~lomite crystals with cores have'~ims ~ich are totally, or 

just peripherally, ferroan [1}. Internal ferroan zones, crystals with 

more than one ferroan zorie, and ferroan cores are comparatively rare. 

1. As for calcites .. the terms fer roan and non- fer roan simply reflect the 
.presence or absence, respectively, of an iron-stain using potassium 
ferricyanide solution 

-· 

,. 
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Conglomerate matrix dolomite may be either non-ferroan or totally 

ferroan whereas _many matri~ dolomite crysta~s are mostly ferroan. 

Strongly ferroa~ (i.~. intensely stained) zones in rims (greater than 

1.0 wt% FeO [2]) are dark whereas weakly ferroan (0.5-1.0 .. wt % FeO) or 

non-ferroan (less than 0.5 wt % FeO) zones hav~ weak to bright, 

red- luminescent rims. however, are not· 

applicable ·to cores, which ~r dark, unstained, and 

contain less than 0.5 wt % FeO. 

The peripheral increase i~ iron content is most pronounced in dolomite 

crystals within arB iliac eo us sediments . This is clear I y S~n in the . 

transition from limestone to argillaceou~ matrix wnere dolom~ crystal 

rims become progressively more ferro;n as they undergo add ition~- -.., 
growth. This. relationship suggests that dolo~i-t~ crystals in 

argillaceous sediments continue . to grow after comparable crystals in 

limestone have ceased,growing, a relationship also confirmed by CL. 

CL and microprobe analyses demonstrate that iron zoning occurs on a much 

finer scale than in-dicated by staining with zones t ypically ranging from 

5-40 pm in width. These CO(Ilmonly can be further subdivided into 

numerous micrometre-wide, subtly-varying subzones ~ 

In most dolomites iron content controls luminescence of this mineral 

·(Figure 12.la)._ This is not the case, however, in siltstones in red 

shales where elevated concentrations of MnO ~use bright red 

luminescence (Plate 49c,d). In these crystals MnO contents commonly 

• 

2. FeO of 2 wt % is common in the .outermost zones; the most fer roan zone 
analysed contains 7 wt % FeO. 
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. . 
(a) Microp~~be step traverse (FeO wt % versus 
microprobe step number) across a replacive, 
conglomerate matrix dolomite crystal from the same 
thin section as shown in Plate 35c. Zones 1, 2, · and 3 
are all dark whereas the intervening areas are 
fine~y-zrined and moderately bright, orange-red 
luminescent. MnO is not detectable in this sampl~ 
and CL appears to _be exclusively controlled by FeO 
content. Di9f.ance between each stey is 2 ~m. Cow 
He&d North, Upper C~mbrian, Bed 2, sample CHN-2. 

(b) Micioprobe ste~ traverse (FeO wt t versus . 
microprobe step number) from the centre to the edge 
of a fracture-filling joint dolomite cement from the 
same thin section as . shown in Plate 49i. CL 
characteristics are indicated on diagram. MnO is _not 
detectable in this sample and CL appears to be 
exclusively -controlled by FeO coAtent. Distance 
between each step is 5 ~m. Broom Point South, Upper 
Cambrian, unit 33, sample BPS-33~A. 

,# 

, 

,_ 
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. reach 0.5 wt %; the most manganiferous zone analysed contains 2.6 wt % 

MnO. These dolomites are usually non-ferroan throughout. As with iron 

trends in other dolomite crystals, dolomite in red shales may show 

incre~sing . MnO co~centrations with progressive growth, with or without a 

complimentary increase in FeO. 

12.2.4 Corrosion 

Dissolution or corrosion occurred during growth of some dolomite 

.crystals. This was usually followed b~ additi~nal dolomite growth, 

calcite precipitation (dedolomitization), or silicification. 

12.2.4.1 Corrosion Followed by More Dolomite Precipitation 

I 
With CL, corrosion and renewed .·growth of dolomite is suggested by 

embayed and jagged boundaries between core and rim or between successive· 

zones within the rim (Plate 49g). These corrosion surfaces are not 

correlateable from sample to sample and most do not contain any evidence 

of corrosion. Peripheral corrosiQn of dolostone 1ithoc1asts also occurs 

(Plate 49f). 

_) 12.2.4.2 Corrosion Followed by Calcite 

Some dolomite crystals, especially those dispersed in limestone or , 

forming pervasive dolomitic siltstones appear to have been corroded, 

with simultaneous or later precipitation of calc i te. Th i s calcite 

occurs in the following ways: ·(1) as irregular to 

crystallographically-controlled embayments into the dolomite crystal; 
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(2) within the core; (3) i~termittently along the contact of core and 
l_ 

rim; and (4) as dispersed, micrometre-size calcite inclusions. Rare 

dolomite cores are completely calcitic, have a rhombic shape, 'and are 

surrounded by a dolomite rim with which it is in optical continuity. 

12.2 . 4.3 Corrosion Followed br-Chert 

Dolomite-corrosion also occurs in some siltstones associated with red 
I 

shales (Plate 48b). In these siltstones, the dolomite crystals often 

appear pitted and suspended within a chert matrix. 

12.2.5 Stable Isotope~ 

Twenty-three bulk ·samples of Early and Late dolomite were analysed for 

their stable isotopes of carbon and oxygen; these are plotted in Figdre 

12 2 1 ·' I J. t: te.... . , isteu in Appendix , and samples described in Appendix u ~ 

values are uncorrected as recommended by Land (1980). The most serious 

drawback of using such averaged results is that characteristic isotopic 

' finger __ prints from diagenesis in one or more bacterial oxidation zones 

may be masked (see Chapter 11). For example, if dolomite commenced 

growth during sulphate reduction, the earliest dolomite might have 013C 

as low as -25 o/oo. Subsequent precipitates, perhaps in the zone of 

methane production, could produce dolomite with o13c as high -~~- - ~15 o/oo 

(Irwin et al., 1977). Depending on the relative volumes of dolomite 

precipitates with thes~ isotopic signatures, the resultant "averaged" 

o''= value may be· quite unremarkable and indicate nothing of the 

importance of organic matter degradation in the generation of .these 

dolomites. 
'• f 

J 

, 
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c51'c versus o'Eb plot of ~arious types of dolomite 
recognized in the CHG. 0 0 value& are uncorrected. 
Stippled area denotes the position of CFC from Figure 
ll.L CFC and conglomerate matr.ix dolomite are the 
only calcite-dolomite pairs in which there are 
petrographic relationships to suggest possible 
co-precipitation or precipitation of one §hortly 
after the other • 

t 
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Three types of Early ·dolomite were analysed: (1) pervasive siltstones 
•r 

associated with green and black sha~es, and those associated with red 
' 

shales, (2) matrix dolomite, and (3) conglomerate matrix dolomitt! 

(Figu!.e 12.2). Only two samp~es of dolomitic siltstone assoCiated wi-th .. 
black and green shales were analysed. Their 0 1~ are similar but their 

o'Jc differ by approximately 2 o/oo .• Dolomitic siltstones in red shales 

clutte"r closely together, . h!lving 1 o/oo or less variation in both 0 13C 

and o1Eio. Matrix dolomites vary ~idely with respect to both o13c and 

o18o; The¥ contain the highest o13
C· of the Ea~ly dolomites (+1.42 o/oo) 

as well as a greater than 2 o/oo variation in 01
-eO. Conglomerate matrix 

dolomites vary considerably in their 0 13
C ( -0.23 - -3.11 o/oo} but have 

minor variation in 0180 (ca. Q,.. .3 o/oo). 

·12.2.6 Timing 

The -lack of obvious compaction of primary sedimentary structures and 

burrows ~n pervasive dolomitic siltstqnes and their associated, 

dolomitized ~hales and the periodi c int~rruption of CFC'submarine cement 

·' fringes by conglomerate · matrix dolomite suggests tha~ these dolomites 

are of an ~at-ly, precompaction origin (Plate 33 b; Figure 12.3). In 

contrast, matrix dolomite is interpreted to have fully 1 i thified after 

1 imestone lithification and after some compaction,· but prior to final 

/ 
compaction. Tt(is is indicated by the convergence of grainy laminations 

"'-· 
at ;the margi ft'~:jarl,y-lith:ified , limestone nodules as well ,as 

relationships su~h as that illustrated in Plate 47b . . Tliis particular 

outcrop illustrates that ~ matrix dolomitization preceded final.-<:ompaction 

of the argillaceo~ sediments. Here, a 15 em-thick, ta·n-weathering 

.. 
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Figure 12.3: Schematic summary of dolomitizationfin the Cow Head 
Group. In the field sket•che~lomite is lightly 
stippled, limestone is ....pite and shale beds are ' 
black. In the thin section sketches, dolomite i's 
represented by black rhombs, calcite is white. 

- · 

--. 

-

Precompaction dolomitization is indicated by 
dolomitic marls containing uncompacted burrows and 
dolomitic siltstones which have underformed primary 
sedimentary structures. Early-formed dolomite 
incorporated into conglomerates may act as plastic 
matrix or clast. In 'thin section, periodic . · ,. 
interruptio.n of CFC fringe growth indicates early 
dolomite precipitation. 

Syncompac t ion dolomitization is indicated by squa,shed 
burrows in dolomitic marl, convergent laminations at 
the margins of early-lithified limestone nodules, and 
dolomitic marl laterally grading to a more compacted 
shale. 

Postcompaction dolomitization . occurs along joints and 
faults ovetprinting both limestone and older · 
dolomite. In thin section dolomite is found at 
stylolites. Comparison of these .dolomites with those 
dispersed in limestone indicates that the stylolite 
has i'lot . .:;been the focus of dolomitization but rather 
has simply mechanically gathered ea~y-formed 

·· dolomite. '-, 
\ 



- 352 -

FIELD . THIN. SECTION 

z 
0 - . ... - ·: .. 
0 
c 
Q. 
~ 
0 
(J 
LLI 
a: 
Q. 

/ 

z ~ 

0 -- ... 
(J 
c 
Q. 
~ 
0 
(J 
z 
>-
(J) .. ., 

. z 
0 ., - ~ - til --· ~ •• -., 

~~ -c - i' • "' • Q. ... , • :l -h. -0 , .it (J ~ . -.... - . -" en . # 
0 • , 

- -- · Q. 

.. 

I 
\ 



/ 
.• 

- 353 -

dolomittc marl is observed to grade laterally. over a distance of a few 

cen~imetres. into a 8 em-thick black shalj, Relative compaction is 

approximately 50 %. The petrographic characteristics of this marl and 

its laterally equivalent -shale are identical to those of other marls and 

shales examined from the CHG. 

That ~olomitization is a shallow-burial phenomenon is also indicated ' by 

the incor-poration of dolomite into conglomerates, either as di.screte 

flasts ~r local. plas~ic,lly-deformed matrix (Figure 12.3). 

Dolomitization must have occurred within a few metres :of -the 

sediment-water interface so as to have dolomitic sediments available for 

incorporation into debris flows. The lower depth limit or-

dolomitization. how.ever. is not known. Whereas lack of compactiv~ 

relationships indicate lithification during shallow .burial, the converse 

does not necessarily hold true. For example dolomitization may have 

occurred very.early in a terrigenous mud but was not sufficiently 

widespread, perhaps ~ue to lack of suitable nuclei, to develop a 

self-supporting framework and the terrigenous muds, ~herefore, were 

allowed to compact; 

Additional uncertainties in estimating the timing of dolomitization are - · .~ 

related to their complex and protracted diagenetic histories suggested 

in part b~ the extremely variable, fine-scale CL _zoning. Dolomite may 

have started growing during very sharlow burial and continued to grow 

' -
until it was ~eeply buried (cf. Irwin. 1980; Kelts and McKenzie. 1982)~ 

or, sediments whictt were partially dolomitized early may hav.e been 

er~ded· and_ incorporated intb debris flows only to. have acte~ as a 

template for later~ deepef burial dolomitiz~tion. 
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- " Dolomite crystals gathered at stylolites in ·limestones are identical to 

thO"se dispersed throughout the limestone host. · This implies that 

prec:ipitation of Early dolomite crystals predates pressure solution, 

12.3 INTERPRETATION OF EARLY DOLOMITES 

, 
A detrital [3] or clastic origin for the bright, multi-zoned cores seen 

in CL accounts for the following: (1) variation in core shape and ' 

luminescence, (2) zoning discordan1:e with subsequent overgrowtq, and (3) 

the association with calc~re~us and siliciclastL~ grains of similar 

size. Variabiiity of luminescence zoning patterns and co.lours, is 

interpreted, to reflect _multiple sources,, either geographic or 

s_~ratigr'aphic, · for' thes~ clastic dolomite· grains. The discoq1~nce of 
.. ' 

. core zoning with that of subsequent overgrowth and their often rounded 

shape i~ the result of mec~anical abrasion during erosion and 

transport. Polycrystall.ine- dolomite clasts, w.i th their- variably-zoned 

and tightly intergrown dolomite mosaic, are interpr~ted to have been 

----------\ , 

. ' . 

3. The terrn "detrital" has been used by . different authors to mean 
different things. For example, Sabins (1962) · used the term to refer to 
polycrystalline grains eroded fro~extrabasinal dolostones. These were 
distinguished from "primary" dol'o111ite grains which were single crystals 
of dolomite formed, eroded, transported, and deposited intrabasinally. · 
The present usage is consistent with that of Freeman ~ !.!_. ( 1983) 
where "detrital" refers to grains which have been transiJorted and 
sedimented. 1 Detrital grains may be synsedimentary · and 
intrabasinally-derived or extrabasinally-derived · from lithified 
dolostone. In the la<tter case such grains are also commonly referred . to 
as terrigenous. 
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derived fro~-the erosion of lithified dolostone. 

In contrast to the relati;~ly bright, multi-zoned cores, interpretation 

of the dark to· weak-luminescent cores is less straightforward. Their 

correct interpretation is critical, however, as most pervasive dolomitic 

siltstones and dispersed dolomite crystals co~tain - this type of core. 

In siltstones associated with red shales, dark to weak-luminescent cores 

are overwhelmingly dominant. The size and shape of the dark to 

weak-luminescent cores suggests that they are either detrital, as are 

the ~right-luminescent, zoned cores, o~ a diagenetic altera~ion of 

calcitic peloids. A detrital origin for these c6res implie~ that the 

primary sediment was a dolomitic siltstone containing no calcitic 

peloids. The existence of a primary sediment with such a composition, . 
lack~ng calcitic peloids, is unlikely~ given the ubiquity of peloids in 

all other sediments (i'Ocluding s;licified and phosphatiz~d 

equivalents). Based on this, the deposition of such pure detrital 

dolomite beds is considered to _be highly unlikely. 

The preferred explanaqon is that the dark to'wl!ak-luminescent cores 

result from ~he replacement _of silt~size ~alcitic peloids by dolomite. 

Inclusions are 'interpreted to be peloid relics, either calcite· that was 

subsequently dis~olved (there are no c~lcite relics now), or possi bly 

argillaceous, organic, or pyritic materials that ~ere part of the 

· peloi-ds-prior ~o doloiilit iza t i"n. A similal" conclusion was reached by 

Sibley (1982) in a study of CCCR (cloudy-centered, clear-rimmed) - . 

Pliocene dolomi~es from the Netherlands Antilles. This explanation is 

also support~d by dolomite cry~tali which impinge undolomitized peloids 

and bioclasts but preserve relic inclusions which outline the boundary 

~ 

•, 
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- of the partially-replaced allochem lPlate 34a, 48c). Some of the dark 

and dull-luminescent cores must be detrital (why should deirital cores 

all be bright-luminescent?), but a peloid precursor for most of these is 

compositionally and texturally consistent with other sediments in the 

CHG. 

Thus, do~omitization of these sediments occurs along two pathways: (1) 

diagenetic enlargement of detrital dolomite cores and (2) replacement of 
:1 

calcitic peloids and further enlargemen~ by precipitation of relatively 

clear dolomite. CL microstratigraphy of authigenic overgrowths 

indicates ~hat alteration along these two pathways occurs 

simultaneously. Together they account for the highly sorted nature of 

dolom{tic siltstones, the CL characteristics, and the ubiquity of cloudy 

cores and clear rims. 

Dolomite crystals with detrital cores have also been described in other , ' 

sediments ranging in age from Middle Ordovician to Tertiary (Sabins, 

1962; Amsbury, 1962; Reed, 1
0
968; Lindholm, 1969; Freeman ,ll al., 1983). 

Like CHG dolomites, these de~rital dolomites are dominated by single 

crystal grains; polycrystalline dolomite grains are comparatively rare . 
. 

Pitted, broken, and rounded rhombs occur and the ~bundance and size of 

detrital dolomite is positively correlated with their associated · 

. 
' • 

siliciclastic~. ln addition, these detrital crystals form the nuclei or 

cores for ~ubsequent overgrowth (i.e. diagene~ic enlargement) by 

relatively inclusion-free dolomite, thus forming the familiar crystals 

with. cloudy cores and clear rims (e.g. Lindholm, 1969; Freeman ,ll !!·, 

1983). 
• . 

. . .... 
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12.3.1.1 Source 

Two po~sible sources for ·detrjtal dolomite must be considered: (1) -derivation from an older carbon~~~ terrain (e.g. Amsbury, 1962; Sabins, · 

1962;- Lindholm, 1969; Freeman et &·, 1983), and (2) erosion of 

penecontemporanebus dolomite from tidal flats, the supratidal, or high 

intertidal zone (see Zenger,l972). Considering the first possibility, 

the heterogel')ei ty of luminescence characteristics in the 

. ' bright-luminescent cores and polycrystalline dolomite grains is 

interpreted to reflect geographic and/or stratigraphic variation in the 

parental carbonates. Furthermore, th~ high ~gree of crystal 

~ntergrowth and grain rounding exhibited by polycrystalline clasts 

indicates that the source sediment must have been lithified. Subaerial 

_or submarine highlands or fault scarps, far ~xample, may have provided 

sufficient relief _to expose a variety of doiosto~es to coptribute both 

single crystals and polycrystalline clasts~ 

.A brief study CL study of · representative dololaminites which 

characterize much of the Middle to Lower Ordovician autochthonous, 

platformal succession in wes~ern Newfoundland was undertaken in order to 

assess the second possibility; i.e. the dull to dark cores could also 

be detrital (4]. A supratidal to shallow subtidal origin for these 

sediments is suggested by stratigraphic considerations as well as 

millimetre-scale laminations, mudcracks, prism ~racks, tepees, and 

flat-pebble brecdi!s (Haywick and James, 1984). Crystal size, cloudy 

cores, and clear rims are similar to thos~ of the CHG .and 4 out of the 5 

-4. Five dololaminites were examined, provided courtesy of D. Haywick. 
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samples examined are non-fer~oan . throughout. L~min~scence is dull to 

weak orange-red and zoning is detectable in only one sample. The dull 

to weak luminescence of . these crystals, their low iron content, and 

their size suggests that dololaminites, such as these Lower Or~ovician 

aries, could also be a source for some of the dark to weak-luminescent 

dolomite cores in the CHG dolomites. 

12.3.2 Cathode Luminescence and Trace Elements 

The strong control of luminescence in the authigenic dolomite' by iron 
~ (/ 

is consistent with data in Pierson (1981).' This may apply, however, only 

for low Mn ~oncentrations (Fairchild, 1983). For the low MnO 

concentrations of this study, CHG dolomite is dark at FeO concentrations 

.of 1 wt %. or more ~ This limiting value corresponds closely with that 

determined in a number of other studies (compiled in Fairchild, 1983; 

see Figure 8.1). 

Th~ increase in iron content of many dolomites with progressive 

precipitation is consistent with progr~ssively decreasing redox 

potential of the pretipitating soluttons a~d inereasingly solubility 

(and· availability?) of iron. Pertinent details have already ~een 

presented in Chapter 8 for calcite. 

12.3.3 Interpretation of StabLe Iso~opes 

6180: The variations in the trace element geochemistry as indicated by 

staining, microprobe, and more sensitively by CL, suggest that 

intracrystalline variations in isotopic composition are also probable. 
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Given this, it is surprising that the petrographically-defined fields 

are isotopically distinct (Figure 12.2). From petrographic and CL study, 

dolomitic siltstone analyses are a mixture of older isotopes derived 

from their detrital cores, as 'well as younger isotopes from the 

authigenic rims. Peloids which were dolomitized may have also 

influenced the composition of cores. Collectivelr these dolomites h~ve 

the heaviest 61&o values of the Ea.rly dolomites analysed (ca. -4 o/oo). 

In contrast, matrix dotomites ana conglomePate matrix dolomites have 

slightly smaller 6180 values (ca. -5 o/oo). These particular dolomites 

are almost totally authigenic; any detrital cores would contribute a 

· volumetrically negligible amount of old isotopes to these analyses. 

Based on this simplistic approach, detrital cores ha~e heavier 6180 than 

authigenic dolomite. This conclusion is also consistent with a tidal 

flat origin for many of the cores (Haywick, pers. comm., 1984). 

In his summary paper on dolomitization, Land (1980) indicated that the 

o1&o of doiomite should be greater than that of coprecipitated calcite 

by a value of 2-4 o/oo at 25 degrees C, although values from 1-7 o/oo 

are possible depending on assumptions made. The 6180 of -5 o/o~ for 

dolomite and the clustering of 6180 around -6 o/oo for the various 

calcites analysed roughly approximates the expected relationship for 

coprec~pitates. From petrography, however, this is neither 

unequivocally establiShed nor is it probable in many instances 

tdiscussed previously) . 

\_ 
013

C:Variation in 61'C is considerably greater than that for 6"0. The 

siltstone and the conglomerate matrix dolomites both reach low 613c of 
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less than -2 o/oo and suggest incorporation of isotopically light carbon 

derived from the decomposition of organic matter, a situation analogous 

to that previously . described for calcite. Matrix dolomite~, which are 

collectively t~e most ferroan and latest(?) of all the Early dolomites, 

also have the highest o13C. The relatively high iron content of matrix 

dolomite, either concentrated in pe_ripheral .zones Ol' more evenly spread 

thrdughout the crystal, ~ggests that these dolomites were precipitated 

or continued to grow later t~ao other Early,dolomites analysed. 

A plot of bulk FeO compositi~n (det~·rmined by AAS [5}) versus o13C shows 

that they are positively co;~elated [6] (Figure 12 .4). Assuming that 

most of th.e irori in dolomite is concentrated in the stained,· fer roan 

rims, then with progressive precipitation, dolomite .incorporates 
.t 13 . . . 

increasingly heavier o C. The most ferroan rim analysed contains 

approximately 7 wt % FeO, and the 0 13C of this precipitate is. est.imated 
I 

to be approximately +3.5 o/oo. 

The above approach is admittedly simplistic and necessarily ignores a 

' host of potentially complicating factors, a most . important one being 

that carbon in dolomite could remobilized from a precursor· calcite. If 

this was the case and the rock-water system was ~lased to carbon, then 

5. Atomic absorption spectrophotometry (AAS) of dolomite leachates 
yielded· high le.vels of Si and Al and suggest significant · contamination 
by dissolution-of clays and possibly other minerals (Appendix I~. These 

.. analyses were also treated using R-mode factor analysis (SPSS) without 
~, yielding meaningful results other than confirming the contamination 

1 __ pr9blem. Despite this, FeO concentrations are sufficiently high to be 
~relateable to staining trends, CL, and microprobe data. 

6. A linear regression for FeO wt % versus o13C yields r • 0.64 for n • 
16. This is significant at the 99% confidence level. 
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12 . 4: Plot of Early dolomite 013c versus bulk FeO . 
concentration as determined by "_AAS. o13C is positively 
correlated with FeO concentration (at 9~% confidence 
level; r•0.64) . Filled squares - pervasive dol9mitic 
siltstone as.aciated with black and green shal es; open 
squa(es - pervasive dolomitic siltstone associated 
with/red shales; filled circles- conglomerate matrix 
dolomite; open circles - matrix . dolomite • 

\ 
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dolomite would take· on .ihe carbon isotopic 'fingerpr_ints. of whatever 

calci~e was replaced.. In this manner even late burial or 
·' 

, 12,q DISCUSSION 

The mechan sm which best explains Early dolomites i-n -the CHG is similar . ··~ 

to that for calcite authigenesis, i.e. carQonate prec i pi tat ion during 

the arioxic oxiqation of organic matter. This ·mechanism is entirely 

consistent with the following observations: 

('1) Field and petrographic evidence indicates a shallow-burial origin. 

(2) The negative 013c of some of these dolomites (less tha~ -2 o/oo) 
' I 

suggests incorporation of light, drganical~y-derived carbon. Thes( 

light as the calcites analysed b~t a 

I 

. do lorn~ tes are not as isotopically 

·· ........ _ 

protracted growth history for the dolomites might aCCQUnt for th_is. The 

earliest precipitates could ·have been greatly depleted in due 

·to sulphate reaucd.on but the latest' ferroan precipitate is re'latively 

enriched in this 'component, probably due to the domination of -
pore-waters by progressively greater amounts of methanogenic 

bicarbonate. The averaging . inherent in bulk anal)'sis fails tt> detect 

such a cri t i.cal evolutionary trend. 

(3) Most dolomites are associated with orga~ic-rich, often pyritif!!_rous 

.. 
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.black and green shales. Dolomitic silt!ftones found in red shale 

intervals are ·also interpreted to be the result of anoxic or sub-oxic 

(sensu Froelich et ~·· 1979) diagenesis. The presence of thin~ green 

shale rims_ surrounding dolomitic siltstones enclosed in red shales. as 

well. as . the incor:-poration .of Mn indicates reducing conditions, though · 

not as reducing required to precipitat~ ferroan rims on dolomite 

crystals. 

Shal~ow-burial, low temperature dolomitization has been recogni~ed 

largely ·due to the Deep Se.a Drilling Project which has shown repeatedly, 

that · organic-rich sediments along c ·ontinental margins and in small ocean 

basins ar,~ commonly the site of dolomitization (Pisciotta, 1981; 

Garrison, 1981 and references therein). Promine1ft among the various 

sediments in which this type of dolomitization has been described are 

the Neogene hemipelagic, diatomaceous muds of the continental margin of 

California, Baja California, and the Guif of California (Pisciotto and 

Mah9ney, 1981; Kelts and McKenzie, 1982) and the. equivalent land 

outcrops of the Mont~rey Formation in California (Murata ~ al., · 1969; 
I , 

'-

Friedman and Murata, 1979). Other localities where early, authigenic 

dolomites have been studied include the. continental margin of Peru (Kulm 

ll!l· (1981); the Red Sea (Supko et !!..!.·• 1974), and the slope 

sediments north of ~ittle Bahama B~nk (Mullins· ~!!..!.·, 1984) .. .,..Ancient 
. '~ 

examples are considerably fewer in number and include dolomitic . 

concretions in the Middle Ordovician ·flysch of Gaspe, Quebec (Islam, ... 
1981), the well-known dolomitic layers in the Upper Jurassic Ki mme ridge 

' 
Clay of Dorset (Irwin !t !!.·, 1.977; Irwin. 1980), and several other 

studies (Fruth and Sherreiks, 1982; Jorgensen, 1983). 
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_ In g~neral, - t_~se dolomites are less than 10-15 }Jm in size and commonly 

- euhedral bu~' may ~e intergrown to form anhedral mosaics. 

Compositiortally they are Ca-rich (e.g. 49-56 % CaC03 in the Monterey 

Formation'; Pisciotta, 1981), and are occasionally ferroan~ Dolomi~ 
' 

occurs }lS isolated crystals, or lenses and co'ntinuous layers which are 
. 

gener~lly less t~an a metre in thickness. Calcite m~y be an associ~ted 

_phase; either interspersed with dolomite or forming limestone layers. 

The crystals occur as cement or a replacement of' calcareou~ bioclasts, 

commonly foraminifera. ~imary bedding fabrics and sedimentary 

structures ·are commonly uncompacted relative to the host sediment, which 

is typicaVy an organic-r"i-ch, pyri_!: iferous, or siliceous 'shale (e.g. · 
. ,- ··· . . ·-:-,,. ~ .. ~.,.._ ._ 

-Montere~orm~tion\. Depths oO ormation vary from near the 
' ' )-

sediment-water interface to sreater than 500 m (Murata~~·, 1969; 

Davies and Supko, 19.73; Friedman .and Murata, 19~; Irwin, 1980; Islam, 

1981; P'.isciotto, 1981; Pisciotta and Mahoney, 1981; Kelts and McKenzie, 

1982). 

A 1 isting and description, by no means comprehensive, of a number of 

occurrences of authigenic, organicall~-der~ved dolo~ite is presented in 
I 

Table 12.1. All of these studies are chara¢terized by highly variable 

0 13C, reh~ting theo changing impo~tance o;f the various a~aerobic 

COl-producing reactions, na~y sulphate ~~duction, methanogenesis, and 

-- ' I 
abiotic reactions. The isotopic analyses / from these studies are plotted 

, } I 
I 
/' 

in Figure 12. S. ... 

· Pore-waters which precipitate these dolorrji tes al"elnghly alkaline and 
·I 

are characterized by a high ammonia cont~nt and a low sulphate content. 

-In addition, Mg/Ca ratios are commonly b~low the 5. 3 value of. 
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Figure 12 . 5: h'3c versu~ 01&0 plot· of "methanogenic" dolomites 

,~ 

\ 

from other studies and Early dolomites of this study. 
All 0180 values are corrected downward by 0.8 o/oo 
(Sharma and Clayton, 1965). (A) Murata et al. (1969),_. 
n=36; (B) Irwin ( 1980), n•21; (C) Pisciotta and 
Mahoney (1981), n•22; (D) Islam (1981), n•l9; (E) 
Kelts and McKenzie (1982), n:s29_; CHG, n•16. 
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--··.·· 
present-day seawater (Kelts and McKenzie, 1982; Kastner, 1984). In 

Quat~rnary anoxic muds in the Gulf of California, for example, th~ Mg/Ca 

ratio may be as low as 1 (J(elts and McKenzie, 1982; also see Pisciotta 
~ 

and Mahoney, 1981). Until a few years ago, such low Mg/Ca ratios were 

thought to be incongr'uous with the precipitation of awthigeni C' dolomite 
'J ' 

(e.g. Sa~s and Kolodny/1972). 

Present-day seawater is saturated wi'th respec» to dolomite yet dolomite 

is not precipitated in any significant quantity. Until recently, the 
. 0 --

prevailing dogma to explain the lack of dolomite p~ecipitation in 

seawater was that kinetic obstacles hindered the process and the 

seawater Mg/Ca ratio ~ad to be surpassed in o~der for dolomite'to form 

(Baker and Kastner, 1981). Evaporative pumping, evaporative reflux, 

shale d-ewatering, and solution cannibalization models all.owed the Mg/Ca 
'· 

ratio of pore-waters to increase to appropriately high values (Baker and 

controls on-dolomitization, Bak€r and Kastner (198J) concluded that the 

absence or reduction of dissolved sulphate was the critical condition 

for dolomitization to occur, not ' the Mg/Ca ratio as had been previously 

proposed. Sulphate was found to be an effective inhibitor to 

dolomitization of calcite at concentrations as low as 5% of t·he ' seawater 

value; for aragonite the limitirtg value is highet, approximately 50% of 

the seawater value ( Baker,..and Kastner, 1981; Kastner, 1984 )-;- Io __ !Jnoxic, 

deep sea sedime~ts the appropriate conditions ociur once sufficient 
0 

sutphate is removed by bacterial reduction of sulphate, a process which 

also encourages carbonate precipitation by the consequent increase in 

--·alkalinity and the production of-~nia. Ammonia may exchange with Mg 

' 

I 
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in ion-exchange sites in ~lays, thl)s adding Mg to the solution (Baker 

and Kastner, 1981; also see McHargue and Price, 1982, for significance 

of tlays in post-compactional dolomitizatioi). Mg for dolomite could 

also be derived frdm ambient interst~tiAl waters or solution 

cannibalizatjon of Mg-calcites, or from chlorophyll in organic matte~ 

(Irwin, 1980). 

.;_.--.,--

~- ... -
12.5 LATE DOLOMITE 

12.5.1 Introduction 
.. 

\- . 

--· 
Both joint and pervasive repl~cement dolorRites are scattered throughout 

~he CHG · but pertasive replacement dolomite also replaces much of the 

conglomeratic sediment on the White Rock Islets. Similar dolomite is 
• 

found at th~ "Arches", an isolated conglomeratic outcrop north of the 

study area (Plate ,47e). The stratigraphic affinity of this particular , 
conglomerate,- bowev'er; is unfertaio; it may. be either CHG or part of the 

·cape Cormorant Formation of the Table Head Group (Middle Ordov~cian; 

N.P. James, pers. comm., 1983). 

· Joint dolomitization occurs as 10- 20 em thick "halos" or zones adjacent• 

to joints or small. faults with less than scr em stratigraphic· thr~ 

(Plate 47c,d). Thin dolomitic stringers extend laterally from tt)e halos 

into the host-limestone and either eventually dissipate or link up with 

a.~other. joint dolomitized zone. Dolomi tized sediments include 

conglomerates, grainston~s to mudstones, and, their -int1:!rbed~_ed shales. 

These dolomitized sediments weather a tan colour and are more resistant 

•. 

.. 

/ 
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··-
than laterally equi yalent, i.mdolomitized sedimint. Primary sedimentary 

structures such as parallel and ripple laminations and graded bedding 

are usually thoroughly overprinted; their presence and the nature of the 

precursor sediment must be inferred from
9 

:~~nt, relat{velr 

undolomiti.zed sediment. · ·" .... _,. 

Per~a~ive r~placement dolomite is characteriied by preservation of · 

-:-pr.imary fa.brics due to differential dolomitization of clasCand 
-. 

· interparticle matrix. This ~esults from the combined effects of: (1) 

crystal size, (2) degree of intergrowth ~i~e. euhedral or anhedral 

mosaics), (3) iron content, (4) luminescence characteristics, and (5) 

abundance of relict calcite. _-:> --
12.5.2 Petrography 

Joint and pervasive replacement dolomi,te crystals are similar in inany 

ways to Early dolomites. These similarities include the following: (1) 

variable inclusion content, (2) cloudy cores and clear rims, and (3) 

variation in the degree of crystal intergrowth resulting in euhe.rlral to 

-' 

. \ 

anhedral mosaics (Plate 48e). Other pervasive replacement cryst-1s may ~ 
:· . 

be cloudy throughout and have thin (•25,..35 Jlm) clear rims. Cry sial size 

varies from 5-75 pm in joint dolomites and is strongly controlled by the 

grain or crystal size of the precursor limestone. Consequently, 

replaced mudstones and marls are most finely crystalline. The largest 

crystals .are fracture-filling cements (see below), attaining sizes up to_ 

500 pm. Pervasive replacement do~omite c~ystals have the coarsest 

average size of all CHG dolomites, typically ranging from 150-500 pm in 
~ 

size, Both joint as well as the pervasive replacement dolomites have 

• 

, 
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pronoun€ed·undulose. extinction and pleochroism and strongly resemble 

l•te-disgenetic "saddle'' dolomites in the Lower Ordovician autochthonous 

succession (Haywick, pers. comm., .1984). · 
' 

Joint dolomite may -be replacive or may be cemenL Replacive dolomite is 

' 
.typically more inclusion-rich and more commonly anhedral whereas 

dolomite cement varies from stibhedral to euhedral with the occasi9nal 

. development of cur:.ved· crystal ,fac.es (Plate 49i). In some thin sections 
' 
dolomite cement extends from replacive mosaics without interruption. 

Three types of secondary porosity are present: (1) intercrystalline 

(Plate 48f,g) which may grade into . (2) vuggy, and (3) ·fracture (all 

sensu Choquette and Pray, 1970). Excluding fracture porosity, the . 
largest pores are . 0. 5-1.0 mm-size -vugs. Qualitative estimates suggest 

genera!ly less than 2% porositi, but the most porous sample examined - a 

joint dolomitized grainstone- has 8% vuggy porosity (7) . 

In vuggy and intercrystallirie g<>res distinct clay morphologies are not 

observed with SEM; most of the solids present are nondescript (Plate 

48f). Some pores, however, do contain an opaque to translucent, 

yellow-brown, amorphous substance which iS interpreted to be bitumen 

(Plate 48g). ~uthigenic -mic;oquart~ and megaqu~rtz prisms and possibly 

clays predate the ~mplacement of bitumen. A later calcite cement, which 

may be fer roan or non- fer roan, post-dates all other pore-Tilling 

phases • 

. -7. This particular sample is from unit 25 at Broom Point South. Porosity 
estimate is based on thin section point count of 382 points. 

' . . 

---·.-

# • 



.• 

' . 
- 373 -

I 

12.5. 3 Cathode L.umine~cence and Trace Elements · 

Luminescence colours in Late dolomites. are usually red, pink-red, and 

orange-red, occurring in 5-20 ~m-wide zones. Later growth stages are 

usual!y moie lbm~nes~ent than the _central portions of cry~tals which are 

commonly d~ll or weak-luminescent.· In joint dolomites, many of centr~l 
I 

portions are rounded ·or ellipsoidal and sugge~t, along with as~ociat~d 

sand~ and silt-size siliciclastics, replacement of peloids in 8 manner 

analogous to that whicti formed doio~itic siltstones. 'The central 

porticins in other crystals constst of irreg~lar, poorly-defined · patches 

of weak luminescent and dark ~olomite. 

Most crystals are non-ferroan; however, some do have thin (10 pm or 

less) internal or marginal ferroan zones. Iron content is typically 

less than 1.0 wt% though locally may exc~ed 7.0 wt %. In both joint and 

pervasive replacement dolqmites, MnO content rarely rises above the 0.1 

•Wt %rmi~roprobe detection limit. An exceptional dolo~itized 

conglome"rate from Gr~en Point (u.nit 44), howeve·r, contains approximate~y . . . 

7 wt % MnO. In this sample fluctuations in MnO concentration are 
. 

detectable with microprobe but iron content }s approximately tonstant,, 
. 

(average of 22 point analyses is 0. 30 wt %) • As with the Early 

·dolomites, iron contoot conlr.ols luminescence {Figure lt.lb). 

Joint ~olomite slearly RPSt-dates rim growth in Earl~ dolomite~ -as well 

as vertical pressure solution. In limestones, for example; dolomite 

crystals with non-luminescent, ferroan rims are gathered at stylolites. 

The outer margins of these crystals are obviously corroded by joint 

dolomite (Plate 49j). 

. . . ~-

/ 

-' 
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· 12.5.4 Stable Isotopes 

. Four stable isotope analyses of Late . dolomites .are plotted in Figur.e 

---12 2 Th · 1 · d 1 ·· h both ~ 1go and ~ 13c and • • · e&.e_ ana yses vary wi e y Wl t respect to u u 
18 . ~13 I 

include the ,most negative 0 0 and u . C analysed (-7.73 o/oo and -5.89 

oloo, respectively). 

12.6 INTERPRETATION 

12.6.1 Field Relations~ips and Petrograp~y 

' 
Dolomitization related· to- faults and joints has also been reported in ., 
other studies (e.g. Zenger,·1~6; Jones, 1980; Dickso~ and Coleman, 

1980; Haywick and James, 1984). Field and petrographic relationships 

indicate that the Late dolomitization event(s?) post-dates all other 

·-·diagenetic modification of CHG carbonates, except perhaps for migration 

of hydrocarbons, some quartz au~higenesis, and preci~itation of latest 

' calcite cement in fractures . . . 
The occurrence of dull or weak-luminescent centres in many crystals, 

especially in mosaics which are interpreted to have replaced grainstone, 

is interpreted analogously to _the cloudy cores in dolomi tic siltstones, 

i.e. the central · &~$ reflect the presenceof precursor allochems, . 
mostly peloids. In other mosaics the cause of the-cloudy centres is not 

apparent. 
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• 

' 
• 

12.6.2 Stabie Isotopes 

,The variability in the petrographic and luminescence characteristics -o-f 
1' 

Late dolomite and the occasional geochemical anomaly, such as the high 

Mn ,content .in . one particular sample. is 'further manifest in . their stable 

isotopes. Due to the limited-number .of analyses and their wide sca~ter, 

little sense can be made of these. Their late diagenetic origin implies 
·• 

ppssible thermal fuctionation effects on o18p but these' are not . be' 

differ8fltiable from those related to a high. degree of pore-water 

evolution as discussed for in situ ~uthi~~nic ccilcite __ (Chapter 11). The 

• • . ~13 
.. most negati v~ u C value could be due to· either incorporation of 

... .-
isotopicaily l~ght carbon from a precursor limestone, or~eteoric 

ground-waters may have been circulated dur~ng the dolo~itization . . 
process. 

.. 
12.7 CONCLUSIONS 

12.7.1 Early Dolomites 

Br~ght-luminescent cores in many dolomite crystals ch~racterized , by 

cloudy cores afld clear rims within pervasive dolomitic ·siltstones and 

d~spersed in limestone and shale are interpreted to be detrital dolomite 

grains which ~ere subsequently overgrown by authigenic dol~mite. Most 

" 
dolomite- core:s, howev-er, are dark or dull-luminescent amt are 

interpreted to be the result of dolomitizaiion of silt-, and to~ lesser 

extent, sand-size peloid~. Based on compari son oL..GHG dolomite to Lower 

Ordovician dololaminites, dark and dull-cores may also be detrital, 
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'having been derived from the shailow subtidal to supratidal environments 

on the carbonate platform to the west. Therefore, the most probable 
,· 

precursor of dolomitic siltstones is interpreted to have been a peloidal 

grainstone contail'ling scattered clasts of detrital dolomite and 
I 

- - ! 
silicicbstics. 

,, 
Fe content of Early dolomites stronglr controls their CL. Their cores, 

' !1owever, are usually non-ferroan and have little or no luminescence. Mn 

is rarely detf!ctable with microprobe. 

Fiel.d and pet"rographic relationships indicate that dolomitization was. ·_ 

early, occurring in uncompacted and partially-compacted sediments . . 

Precipitation may have. been contemporaneous with calcite authigenesis, 

but the latter stage of growth of dolomite postdated calcite growth. . . 

~he complexity and variability of the CL zoning in do l omite suggest that 

the growth history was protracted. 

. . ""~ 
t13 

The light CJ G values ?f some crystals suggests incorporation of 

isotopically light carbon derived from decomposit i on of organic matter. 

Linear regression of bulk 0 1~C witll , FeO concentration indicates that 

with ·continued precipitation, methanogenically-produced bicarbonat e 

became progressively more fmportant. 

A dolomitization mode.l invol:ving anoxic diagenesis, s i mi lar t o what is 

described from numerous shallow-buried organic-rich sediments, i s 

compatible with all characteristics of Early dolomites, especially the 

absence of or limited compaction, the petrographic relationships with 

early-formed calcite cement or neospar, and stable isotope data . 

• 
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r · 

12.7.2 Late Dolomites 

Late dolomites a'te spatially related to joints and small-displacement 

faults (joint dolomite), or they petrographically resemble these 

dolomites (pervasive replacement dolomite). Late dolomite may be either 

. 
a replacement or a cement. Some s·amples are · porous, though most contain 

less than 2% porosity. An amorphous substance, interpreted to be 

bitumen, is. found in some intercrystalline areas. Late dolomites 
I 

corrode Early dolomites aM- also postdate tt:ttonic pressure solution . 

·' 
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Chapter 13 

SILICIFICATION AND MlNOR AUTHIGENIC PHASES 

13. 1 GENERAL _ INTRODUCTION 

In this chapter the remaining authigenic components of volumetric or 

paragenetic:: significance- sihca, barite, and pyrite -are descr i bed 

and interpreted. In addition to these minerals, traces of authigenic 

sphalerite, flourite, and authigenic chlorite also occur. Petrographic 

descriptions of these minor components are Jound in Appendix L. 

13.2 SILICIFICATION 

.J 
13.2.l Introduction 

Chert, occurring as replaced limestone or shale, ot cement, is a common 

diagenetic phase in the CHG, particularly in the Ordovician par:t of the 

succession. Silicified sediment weathers resistantly commonly• with 

distinctive orange-brown to black-green colour. Exceptional silic ified • 

shales at Western Brook Pond North are characterized by vivid blue, 

green, yellow, and red colo~rs arranged in irregular, convoluted 

patt-erns. Some of the green colouration is due to glauconite; other 
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colours may be due to oxidized iron compounds. 

The importance of examining chert _ ~n this succession is two-fold . .. 
First, silicified sediments are volumetrically ·important and therefore 

silicification is an integral part of the overall , diagenetic history of 

the succession. Second, by studying siliceous sediments and their 

spatially-associated limestones and shales, the contribution of biogenic 

silica, predominantly from rad.iolaria and sponge spicules, can be 

evaluated. 

• 
13.2. 2 Field Description 

In outcrop chert occurs in a variety of ways. These are listed and 

bri'eqy discussed below. 

13.2.2.1 Conglomerate Crusts 

The most striking chert, both in terms of appearance and utility as a 

stratigraphic marker, are hackly-weathering crusts, usually )-20 em 

thick, which cap many Ordovician conglomerates (Plate 50a). These crusts 

are generally continuous and penetrate downward, replacing tonglomerate 

matrix. In other cases chert replaces the calcarenitic cap of the 

conglomerates, or overlying parted and ribbon limestones. 

13.2.2.2 Marginal Crusts 

In some parted mudstones and wackestones, the top and botto(Y-centimetre 

or so of'many beds is silicified to varying degrees (Plate ~c). 

Incipient silicification is characterized by diffuse. tan-weathering 

"' 
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rinds whereas completely · silicified margins weather prominently. 

13.2.2.3 Completely Silicified Shale and Limestone 

Compl~tely silicified · limestones and ~hales demonstrate evidence for 

both early as well as late, post-co.mpactional, silicification .. . Because 

limestone is seldom compacted, field evidence alone cannot confirm 

whether limestone silicification is pre- or post-burial. 

Early-silicified shales are indicated by unsquashed, vertical burrows . 
• 

(Plate Be). Early silicification also accounts for chert clasts in 
. 

conglomerates and erosion of silicified, parted· mudstones by 

~ conglomerates (Plate SOb). The sharpness of the contact between the 

conglomerate ahd silicified parted mudstone suggests silicification 

preceded erosion. The drape of laminations in silicified shale 

surrounding li~esto~e nodules indicates a later origin, after s6me 
' 

compaction. In some cases the differe~tiation of silicified limestone 

from shale must rely on the presence of palimpsest structures. 

13.2.2.4 Nodules 

Chert nodules in mudstones to grainstones vary from regularly-shaped and 

spaced forms, usually less than 20 em in length to irregular, "rop~y" 

nodules whirh may cross-cut bedding (Plate SOc). The limestone-cher\ 

contact is typically razor-sharp. Incipient silicification appears as 

vague, tan-weathering, elliptically,shaped domains in mudstones. Local 

silicification in shales elso . forms nodules. 

I 
I 
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13.2.2.5 Allochthonous(?) Chert 

Chert is found as millimetre-thick crusts replacing the. lower portions 

of RFC fringes in fractures and vugs in shallow-water boulders (see · 

~pter 7). Obvious megaquartz crystals may postdate these calcite 

fringes. In conglomerates, chert also occurs as flat pebble clas~s up 

to 30 em in length or as crusts on mudstone clasts. 

13.2.3 Petrography 

13.2.3.1 Components of Chert . ' 
The terminology used to describe authigenic quartz in this thesis 

follows that outlined by Folk and Pittman (1971). M~croquartz refers to 

equant crystals less than 20 pm 1n size or chalcedonic fibres of 

- unspecified l~ngth. Megaquartz is coarser than 20 pm in size. 
. I' 

Chert typically consists of microquartz whi~h is equant and less than 5 

pm in size or micrometre-wide chalcedony fibres commonly up to 100 pm. 

rarely up to 1 mm in length. Chalcedony may be either le~'th- fast or 

·l.ength-slow and in some cases it demonstrates zebraic extinct ion. 

Megaquartz, occurring as limpid, anhedral to subhedral crystals up to 

500 pm in size, is comparatively rare. 

13.2.3.2 Replacive Chert \ 
Chert is both replacive and pore-ftlling. Replacive chert is mostly 

equant microquartz, with crystal size variations preserving, to various 
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degrees, theJ. microfabric of the precursor . sediment. In slightly 

silicified limestones, bi_oclasts (mainly pelmatozoan and trilobite 

fragments) and ooids are preferentially silicified over other 

allochems. Although data are far from conclusive, some t~in sections 

suggest preferential silicification of ferro.an aliochems (e.g. trilobite 

fragroents) over non-fer roan ones. The razor-s..,harp limestone-chert 

boundary in outcrop is eq~a)ly as sharp ~t the thiri section scale, 

occurring over a distance of 250~500 pm and occasionally silicifying 
; 

only port~ons of grains straddlin~ the boundary. In some samples, 

silicification is spatially related to minor dolomitization . . A 

dolomitic zone, up to 250 pm in width, containing I!Tlhedral to euhedral 

crystals up to 60 pm in size, maY separate mudstone from its silicifie~ 

counterpart. Anhedral dolomite crystals less that 5 ~m in size are also 

.seen in some silicified peloids and are largely responsible for their 

apparently high relief in plane light. 

13.2.3.3 Pore- filling Chert 

'\Microquartz cement is dominated by chalcedonic fringes _up to 100 pm in 

width which isopachously coat substrate particles. Where pore spaces 

are sufficiently large, growth surfaces of cement fringes are botryoidal 

and some demonstrate internal, inclusion-defined growth bands. 

Pore-space not completely filled by chalcedony may be further occluded 

by megaquartz or ferroan calcite. Based on the above relationships, 

including the lack ·Of relict calcite cement, these chalcedonic fringes 

ar~ interpreted to be original cement, not a replacement of an earlier 

calcitic cement. 
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Microquartz and, to a lesser exte~. megaquartz are common ·in veinlets 

within chert-rich sequences. The intercrystalline ~atr~x in sucrosic 

dolomitic siltstones in such sequences may.also be mostly microquartz. 

13.2.4 Diagenesis of Siliceous Bioclas~s 

13.2.4.1 Introduction 

Silicification in the CHG is spatially associated with spicules and 

radiolaria, many of which .are now calcitic. To e~~Jain the amo~nt of 
( 

silicification observed, however, many more radiolaria and spicules than 

are obvious must have been consumed without leaving a trace of their 

former presence. This suggestion has been made in innumerable other 

studies of " b~th shallow- and deep-water sediments(e.g. Wilson, 1969; 

Wise .and Weaver, 1974; Geeslin and Chaftez, 1982; Eley and Jul1, 1982; 

Hein and Karl, 1983), but convincing petrographic evidence is seldom 

offered. In the present study, CL used as a primary microfacies tool 

demonstrates an unexpectedly high contribution of spicules and 

radiolaria to many limestones, g..articularly those with 
• ' .t:~ 

"pseudowackestone" depositional fabrics (discussed below) . . 

13.2.4.2 Petrography of Radiolaria and Spicules 

Radiolarians are most commonly 60-80 fm in diameter with exceptional 

tests reaching 250 pm in size. Circular ~ross-sections of spicules vary 

from 5-40 ·,ita in diameter and rarely extend up to 100 fm. Spicules range 

from few hundred micrometres in length up to a maximum of 2 mm. Thin 

section examination illustrates a predominance of monaxon spicules with 

.. 
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relatively few poly~xon spicules (Plate SOd). Reconnaissance study of 

insol~ble residues indicates that polyaxon spicules are significantly 

underrepresented in thin section views. In many radiolaria, the 

double-wall microstructure is preserved, and in spicules, axi3l canals 

are differentiable. CL often demonstrates excellent microfabric 

preservation in samples which appear, by conventional microscopy, to be 

~oorly ~reserved. 

Two microfacies "groups" are recognized based on the lithology of the 

host sediment: (1) a limestone group and (2) a shale group. Microfacies 

from these two groups commonly occur in close proximity, for example 

packst?~~ wackestone nodules in a silicified shale sequence • 

• 
13.2.4.~ Group 1: L}mestone Microfacies 

In this microfacies group, radiolaria usually cons'ist of several 

\ 
no~-ferroan, .weak to bright orange-luminescent calcite crystals which 

\ 
range from 10~50 pm in size (Plate Sla,b). This calcite is usually 

identical to su~rounding neospar or cement matrix. Radiolaria rarely 

consist of equant or chal<edonic microquartz. Spicules are generally 
I 

composed of slightly ferroan calcite which has weak or 

dull-luminescence, and a higher abundance of inclusions than surrounding 

neospar or cement. In transverse sections, most spicules appear to be 

spanned by only one crystal, but in sections parallel to length, they 

are seen to consist of several calcite crystals. These calcitic 

spicules may have their axial canals filled with microquartz. The 

polycrystalline nature of most calcitic spicules suggests that these 

were originally siliceous. In the limestone microfacies, microquartz 

' ... 
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. spicules are more common than microquartz radiolaria, although such 

spicules are not as co~non as they are in the sha1e microfacies 

(discussed belo~). 

In mudstones to grainstones, radiolaria and spicules usually occur 

togetner, are evenly dispersed within the host sediment, and seldomly 

exceed 2% of the sediment volume (visual estimate). 

Radiolaria~dominated, grain-supported sediments (grainstone or packst~ne 

radiolarite) are comparatively rare (Plate SOe;f). Conventional 
~ 

petrographic examination of ur~~~dowackestones'' shows that they are 

apparently dominated by peloids floating in a neospar matrix, thus 

giving these sedimerrts a wackestone deposition~! fabric. Discernible 

radiolaria and spicules aie minor or absent (Plate 5 a,c,e). This same 

sediment with CL examination, is commonly seen to be grain-supported. 

(grainstone or packstone) with radiolaria and spicules composing up to 

half of the grains (Plate 5 b,d,f). 

13.2.4.4 Group 2: Shale Microfacies 

~ 

In contrast to the limestone microfacies, radiolaria and spicules 

consist of either ferroan calcite or more commonly, microquartz. 

Radiolaria and spicules are occasionally preserved by finely crystalline 

pyrite (Plate SOd,g). As with the limestone microfacies, radiolaria and 
r 

spicules are generally mixed together and .evenly dispersed. Unlike the 

limestone microfacies, however, it is much more common to see sediments 
J 

dominated by radiolaria (radiolarites) or spicules (spiculites) or 

mixtures of both. Shales are silicified to varying degrees and based on 

the presence of undeformed vertical burrows, many are uncompacted. 

• ' " <• ' ,' 
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Millimetre-thick, site-graded laminations dominated by radiolaria or 

spicules are rare (Plate SOh). 

13.2.4.5 Evidence for Vanished Radiolaria 

The followirrg example is discussed in orde·r to illustrate that 

silicification is both an early and a late (post~compactional) process 

and that si~iceous bioclasts can indeed vanish without a trace, adjacent 

to exceptionally well-preserved bioclasts. 
'· 

.i 

ObservatioBs: A sample of silicified shale from Martin Point contains a 

centimetre-thick bed . with abundant radiolaria, most of'whi2h consist 
J 

entirely of microquartz; Dispersed among the silicified radiolarra ··are· 

pyritized radiolaria in which the pores, ornamentation~ and double wall 
~- : 

of the test are remarkably well-preserved (Plate 50g). These radiolaria 

have their chambers filled with microquartz identical to that in the 

associated, unpyritized radiolaria. Other pyritized radiolaria in the 

shale surrounding the radiolaria-rich bed lack the internal microquartz 

fill, are compacted and broken, and in many cases, are almost 

unrecognizable 's being radiolaria (Plate SOi). 

Interpretation: Pyritization of ~he radiolaria, within snd outside the 

band, was clearly the earliest alteratioh to this sediment and occurred 

prior to any significant compaction. [1]. Pref~rential silicification of· 

the radiolaria-rich bed, perhaps contrelled by higher permeability in 

1. ~elts (1976) also described pyritized radiolaria with excellent 
microfabric preservation from Miocene calcareous oozes drilled from the 
Central Pacific. Pyritization was suggested to be be due to the effect 
of organic surface coatings. 
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· this .portion of the sediment, followed pyritization_~ f~l_ling the 

chambers of both pyritized and unpyritiied radio.laria. Pyri tized · 

radiolaria outs1de the bed were not filled with micrOquartz and were 

subsequently compacted and broken and ultimately reduced to irregular 

patches of microcrystalline pyrite. Unpyritized radiolaria in this 

portion of th.e sediment -~ere completely removed. Silicification of this 

part of the shale appears to have post-dated compaction which crushed 

the pyritized-only radiolaria. 

If early pyritization of selected radiolaria had not occurred, the 

radiolaria-rich bed would contain silicified radiolaria only, and th~s 

bed would be surrounded by shale devoid of these microfossils. The 

fortuitous preservation of pyritized, but crushed radiolaria in the 

surrounding shale is clear proof that radiolaria did exist outside the 

bed. Unpyritized, unsilicified radiolaria in this portion of the shale 

vanished without a trace. 

Similar relationships are found in other samples, though in many, 
' 

interpretations are far more equivocal. For example, si l icified 

radiolaria may be confined to burrow-fills and the surrounding, 

silicified shale is barren. Such an occurrence may be explained either 

by preferential dissolution of radiolaria in the host sediment, as 

proposed in the above example, or by the burrow-fill sediment having a 

different primary composition than the host sediment. 

) 
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13.2.5 Interpretation 

13.2.5.1 Origin of Replacement Minerals 

Based on their common association with silicified sediments and analogy 

with extant "forms (see Scholl~ ' et ~·, 1983 for review), the original 

mineralogy of bot~ radiolaria and sponge spicules is interpreted to have 

been opaline si'J:!_ca. In ' addition, the polycrystalline calcite 

composition of many spicules and the presence of axial canals further 

suggests an original, siliceous composition. 

Calcite which replaces radiolaria .and spicules is interpreted to 'be 

cement based on euhedral CL zones within calcite crystals (Plate 5fb) 

and the occasional presence of rhombic faces buried by later microquartz 

cement (Plate 5le; cf. Faupl and Beran, 1983). Microquartz spicules and 

radiolaria typically l_ack internal microstructure and are also 

interpreted to be cement-filled molds, especially those containing 
. . 

geopetal pyrite crystals . Silica cement also occurs as interpart i cle 

chalcedonic rinds, microveinlet fills, and inter- dolomite microquartz. 

The preservation of the double-wall structure in some radiolaria and the 

axial canal and inclusions in spicules implies that either complete 

dissolution of these components did not occur prior to cementation by 
~ 

calcite or microquartz or that organic templates helped preserve 

microstructure. Hicxoquartz replacement of calcite without intervening 
l 

porosity is suggested in some sediments by the high degree of fab r ic 

preservation associat~d with silicification of peloids and other 

.) 
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allochems. Changes in pH have the opposite effect on calcium carbonate 

and silica and it is therefore not surprising that one may Teplac~ the 

other, either witH -or without the ~reation of visible porosity ~e.g. 

Ge,eslin and Chafetz, 1982; Eleyand Ju11, , 1982). A decrease in pore water 

pH, for example, would cause calcite to dissolve and silica to 

precipi~ate. · For discussion on. the physico-chemical controls of 

' sili~ification the reader is directed . to Hein et al. (1978); Kastner 

(1979); Garrison rt~· (1981); · and Kastner and Gieskes (1983). 

Silicification of terrigenous muds is common in the modern oceans, and. 

along with silici(ied limestones and chalks, they constitute the 

principal protoliths of chert. However, the degree to which clay 

minerals are altered and importance of silica as a sim~le impregnation 
,. 
of the porous, uncompacted sediment is poorly known (e.g. Pl"sciotto, 

1980; He in and Karl, ·1983). 

13.2.5.2 Timing of Silicification: Relative and Absolute 

The less luminescent. more ferroan calcite cement replacing spicules in 

limestones indicates -that s~icules were altered later than radiolaria, 

which are usually ~omposed of non - ferroan caliite. With regards to th~ 

3 luminescence stage~ defined earlier, rad~olaria are composed mainly of 

Stage B calcite whereas spicules are S~age C. That calcite precipitation 

oGcurred shortly after silica dissolution is suggested by this 

difference in.1uminescence of radiolaria and spicules, The relative 

order qf alteration of radiolaria and spicules is also predi~ed by 

studies of modern, biogenic, siliceous components. In the present-day 

ocean, resistance to dissolution increases from (1) silicoflagellates, 
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(2) ..diatoms, (3) delicate radiolaria, (4) robust radiolatia, and (5) 

sponge spicules (Scholle£.!. !l·, 198~). This sequence is in part 

c·~ntrolled by orga~·ic and inorganic protective coa~ings, surface areas, 

adsorbed ions, and crystallographic characteristics of the bioge'nic' opal 

(Hein ~ !l· .. 1978). 

Frc.m petrographi-c relationships, alteration of radiolaria and spicules 

in the CHG may be contemporaneous with the main phase of calcite 

authigenesis, but may also extend beyond this. Early silicific~on 

indicated by: ~) ~eservatio~ of uncompacted burrows tn silicified 

shales; ( 2) compactive drape ~ unsilicified shale laminations around 

is 

earlier-formed chert· nOf!ules; ( 3) uncompacted graptolites in silicified 

~ ~ shales ·; (4) silicified parted limestone scoured by overlying 

conglomerate; · and (5) incorporation of chert clasts in conglomerate. 

Silicification postdating the main phase of calcite precipitation .is 

indicated by: ( 1) the presence of nodul.es in and crusts on limestone 

beds; (2) evidence of grain compaction prior to cementation by . 
( 

chalcedony (Plate 2lc); (3) compacted and silicified shales draping 
t' I •· , 

. I , .. 

earlfer'-formed limestone nodules (cf. Baltuck, 1983); and (4) compacted, 

silicified shales containing crushed, pyritiz~d- radiolaria (previousl)l 

discussed). 

Precipitation of minor a.mounts of p~rite, occasionally as geopetal 
' . ~ ~ 

crystals within radiolaria and ~picule mol~~ :~~d aa.. ~tal replac/eten~s '·-

of these, indicates p"yritizat~_on prior to silicification in thes~ case's, 
• , 'f • 

but usually no order 'of precip.itatiton is apparent. Silicification of 
. . 

' ' 
"' limes~one also .. pl8Y be accompanied by lllinor dolomitization and also 

postdates dolomitization, as indic'ated by etched rhombs encased in chert 

'r • 
\ ~ ~~ . ... 

~ 

,, 
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in some silicified siltstones {Plate 48b). 

13.2.6 Discussion 

Since the Cambrian,radiolarians and siliceous sponges have contributed 

to pelagic (i.e. open marine [2]) sedimentation. In the modern ocean; 

radiolaria are concentrated in the upper reaches of the water col ~n 

(Scholle ll !!.!:..·, 1983) whereas siliceous sponges ra.nge from shallow to . 

deep waters (Rigby, 1983). · 

In grainy sediments, spicules occurring with shallow-w'ater al lpchems 

such as algal clasts are either derived from shallow-water or .'they could 

hav• been incorporated during sediment gravity flow. In mudstones and 

shales, the ubiquity of sponge spicules and radiolaria suggests they arc 

pelagic, de~ived by r'adiolaria settling out of the overlying water 
I ' ,, 

column. and by dispersal of spicules from benth1c, in situ(?) sponge . . --. 
communities. The occurrence of radiolaria and spicule grain-support 

fabrics may reflect turbidity current deposition of reworked pelagic 

debris or winnowing by bottom currents leaving rhese components behind 

as a lag (cf. Baltuck, 1983; Imoto, 1983). Such grain-supported beds, 
0 • 

however, are rare. Although pressure solution also must be considered 

as as pQssible mechanism for the formation of grain-supported beds of 

radiolaria or spicules, there is no evidence to , suggest this. 

Radiolaria and sponge spicules were especially, important in the 

' Paleozoic as calcareous plankton (e.g. ammonites, tentaculitids, 

-----~----

2. see Scholle et a1. ( 1983) for discussion of t~e term "pelagic". -- . 
< 

\ 

) 
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styliolinids) w~o1 umetrically minor as well as spatially restricted 
I 

(Scholle!!_ a-1., 1983). This lack of a significant Paleozoic plankton is 

re~ponsible for the abundance of "starved-basin" and condensed facies 

which are commonly characterized by abundant radiolar:ra· and spicule 

cherts, and graptolitic shales. The presence of numerous spicules in 

many ancient deep-water sediments ha.~ lead to their recognitio·n a.s a 

potential indicator of basinal facies (e.g. Wilson, 1969 ; Rigby, 1983) 

although not necessarily representing abyssal depths (e.g. McBride and 

Folk, l979). 

13.2. 7 Summary and Conclusions 

Chert appears in a variety of ways in outcrop: as crusts 9n 

conglomerates· and thinly-bedded limestones, as nodules in limestone and 

shale, as pervasively silicified limestone and shale, and within clasts 

in conglomerates. Chert occurs both as a replacement as well as a 

cement, although the latter is re-latively uncommon. The sil icification 

' 
history of the CHG is protracted and there is evidence to indicate 

silicification prior to and after compaction .. Chert occurrences in the 

CHG are remarkably· similar to those in present-day oceans which occur 

mainly as millimetre- to centimetre-size nodules, lenses, 'Or stringers 

in limestones, chalks, and shales (Hein Slld Karl, 1983). This similarity 

im~ies ' that modern processes can 'be confidently used to explain silica 

diagenesis in these . ancient sediments. 

Radiolaria and spicules are commonly found in the Ordovician part of the 

succession and th~s is where most siliceous sediments occUT. CL study . . 

dramatically illustrates that calcite-replaced radiolaria and spicules · 
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are much more common than is apparent using standard petrographic 

anaTfs"is. In addition, there is sound petrographic evidence to suggest 

that large quantities of radiolaria and spicules were dissolved without 

leaving a trace. Based on the above evidence, dissolution of radiolaria 

and spicules during shallow-burial diagenesis is interpreted to be 
~ . 

responsible for most of the silicification in the CHG . Detrital 

siliciclastics, notably quartz sand grains, are uncorroded and therefore 

remobilized detrital silica is not a possible source of any i mportance . 

• 
Hydrothermal emanations and volcanism are not considered to be plausible 

sources of silica. 

13.3 BARITE 

13.3.1 Occurrences and PetFOgraphy 

Barite [3] is a minor phase present throughout the CHG but is only' 

locally important at Green Point. Barite occurs as: 

(1) equant to elongate, anhedral to euhedral crystals dispersed or 

concentrated into layers in mud'~tones, or as fringes under and over 
\ 

mudstones .<common; Plate 52a, b); \ 

( 2) centimetre~size nodules of equ~nt ' crystals or rosettes of subhedral 

to euhedral, elongate crystal:; in mcdstone, shale, or dolomitic marl 

(rare; Plate 52c,d); 

----------~ 

3. Barite mi neralogy was confirm·~d by microprobe analys i s and X-ray 
diffraction. 
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(3) large, anhedral crystals replacing neospar (rare); and 

~ 

(4) ,anhedral to subhedral cements in grainstones and fractures, . both 

early and late (rare; Plate 20a). 

"' ---~ 
lsari~crystals, . especially elongate prisms, may reach 2 em in size, but 

1 

most cr~ls range from 100-1000 pm. They contain variable amounts of 

. ' micrometre-~ize inclusions and only rarely are two-phase fluid-filled 
\ 

inclusions encountered. In some cases the former presence of barite is 

inferred from the presence of calcitic, polycrystalline pseudomorphs 

(Plate 52e). Other phases, such as hydrated carbonates, may have also 

been responsible for the now-filled crystal molds (cf. Boggs, 1972) but 

there is no evidence for this. Some crystal molds are only partially 

filled with either calcite or megaquartz (Plate 52£). 

Paragenetic relationships between barite and calcite are variable. When 

barite is found within mudstone, either as bands or rosettes, and where 

· it is replac_ed ·by calcite, either totally or part i ally, it is 

interpreted to predate calcite precipitation. When barite replaces· 

microspar ·or pseudospar, occ urs as fringes on and under mudstone beds, 

and poikilotopically encloses dispersed microspar c r ystals, it is 

interpreted to have postdated calcite. In some cases barite and 

pseudospar are i_~Jimately mixed together and replacive relationships are 

not seen, suggesting synchronous precipitation of barite and calcite 

(Plate 52g). 

-....... 
J 
' 
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13.3.2 Interpretation and Discussion 

The association of most barite occurrences with early-diagenetic neo~par 

implies that barite is also an early diagenetic precipitate. Barite in 

veins interpreted to be tectonic in origi~ is precipitated much later in 

th\ diagenetic history. The history of barite precipitation is 

obv1ously protract~d although late occurrences are comparatively rare 

and are ignored in the following discussion. 

Authigenic barite is commonly formed during early diagenesis in many 

modern, deep-sea sediments, especially those from the eastern tropical 

Pacific, and it is also found in.older sediments drilled from the sea 

floor (Dean and Schreiber, 1978). Most marine barite consists of 

euhedral cryst{ls, 1-20 um in size, which constftute up to 2% of the 

sediment (Cron~~~~)74; Scholle~~·, 1983). Barite which is 

strikingly similar to that of the CHG occurs in Lower Cretaceous 

organic-rich sediments drilled from the continental margin of northwest 

Africa (Dean and Schreiber, 1978). Here, barite forms rosettes, 

displacive lenses, and laminations and. is associated with relatively 
i 
I 

pure limestones: Some crystals a,te pseudomorphically-replaced by 

calcite, and elsewhere barite replaces calcite. Other relationships 

suggest simultaneous precipitation of barite and calcite. 

·Numerous organiims concentrate Ba and consequently their metabolic or 

degradational by-products are considered to be the primary source of 

this cation · (Cronan, 1974; Dean and Schreiber, 1978). Sulphate is 

readily obtained from the overlying seawater column but in some 
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instances may also be derived intrastratally from dissolved evaporites 

as well as from the oxidation of earlier-formed pyrite Dean and 
. 

Schreiber, 1978). The first alternativep however, is cl arly not 

applicable to the CHG. The amount of sulphate in pore-we rs thus 

reflects .the balance of input from seawater and elimination to due 

bacteriological sulphate reduction. Precipitation of barite is thought 

to occur under oxidizing or slightly reducing conditions (Church, 1970 -

cited in Dean and Schreiber, 1978; Bjorlykke and Griffin, 19·73). 

The uppermost few centimetres to tens of centimetres of sedi ment is 

where the neces&ary conditions for barite authigenesis are most easily 

met; this is the meeting-place of oxidized, sulphate-be~ring pore-waters 

derived from the overlying seawater column and substrata!, anoxic or 

sub-oxic Sa-bearing pore-waters derived from oxidation oforganic 

material within these sediments and from underlying sediments. The 

as~ociation of most barite occurrenc~s with non-ferroan calcite implies 

that pore-waters were not sufficiently reduced to liberate Fe from 

various oxides and hydroxides, but some oxidation of organics must occur 

so as to increase pore-water alkalinity and precipitate · non-ferroan 

calcite. Calcite replacing barite, barite replacing calcite, and 

simultaneous precipitation of calcite and barite may be explained, by 

slight fluctuations of pore-water Eh-pH in this critical zon{ . 



\ 
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13.4 PYRITE 

13.4.1 Occurrences and Petrography 

Pyrite is a ubiquitous authigenic phase in the CHG and is particularly 

prominent "in mudstones, and especially black and green shales: Pyrite 

is found as dispersed, single crystals or in small aggregates which 

range from less .than 1 pm to 100 pm in size. Crystal shapes vary from 

anhedral .(framboidal?) to euhedral, the latter ranging from equant to 

rod-shaped. Pyrite is occasionally concentrated and occurs in the 

following ways: 

(1) As pre-compaction nodules in shale up to 5 em in size; 

(2) Replacing or outlining trace fossils (Plate 13b), beds (Plate 13b), 

allochems (Plate 34c), siliceous components (Plate 50d,g,i), or 

authigerrtc components; 

(3) As continuous to discontinuous crusts on the upper and/or lower 

surfaces of mudstones to grainstones; 

(4) It precipitates in various fractures from early-diagenetic (e.g. 

ladder, septarian, and V-shaped marginal) to tectonically-related (Plate 

20b); 

(5) It forms the earllest cement in grainstones or leach~d radiolaria 

and spicules. Occasionally these !riystals are geopet.:ll. I_t may also 

occur as a cement. overlying an earlier phase of calcite cementation 
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(Plate 32c; 33c). 

13.4.2 Interpreta~ion and Discussion 

The . ubiqijity of pyrite in the CHG is typical of organic-rich sediments 

of all ages and it has been reported on almost all DSDP cruises (Kelts, 

1976; Clark and Lutz, 1980). Pyrite is thought to.be initially 

precipitated ' in the form of various fine-grained, poorly crystallized 

monosulphide.s; but with time, these metastable phases transform to 

pyrite, th~ stable end product (Berner, 1971). The rod-shaped crystals 

may be pseudomorphs ~'fter marcasite or some other iron sulphide (cf. 

Hudson, 1982). 

In the CHG, . interpretable paragenetic relationships with other phases 

are comparatively rare, considering the abundance of this mineral. In 

some samples, pyrite appears to be an early cement, preceeding calcite 

or microquartz cement. In other samples, for example in pyrite-cored 

mu·dstone nodules, it precedes precipitation of neospar or may form 

pre-compaction nodules. More often than not, however, the 

interpretation of petrographic relationships is equivocal. 

During early diagenesis, the depth _ ~imit of sulfide formation is 

controlled by n~erous comple~ly-interwoven variables including 

T 

availability of sulphate from the ove,J"lying water column, sediment 

permeability, bioturbation, rate of sedimentation, and availability of 

" 

reactive organics (Hudson, 1982). The occurrence of pyrite in restricted' 

areas, such as burrows or at the centres of dolomite crystals, implies 

th~t a reducing microenvironment is the major controlling factor on its 

• 
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occurrence rather tban the existence of widespread reducing 

pore-waters. 
\ -

Theref6~. the utility of pyrite as an_ indicator of the 
'-) 

general oxidation state of p'ore-waters is unreliable. During later 

diagenesis, however, a more widespread precipitation of pyrite is 

expected (Kelts, 1976; Hudson, 1982). 

Sulphate reduction is usually considered to be responsible for the 

formation of pyrite by combining HzS produced from the bacterial 

sulphate reduction reaction (Table 11.1) with Fe liberated by other 

microbiological processes (Hudson, 1978; Berner, 1980; see Chapter 11). 

The role of organic material is two-fold, causing sulphate reduction on 

one hand as well as reduction of various Fe-oxides and ~hydroxides on 

th~ other. During later diagenesis, Fe may be derived from the 

alteration of clay minerals or pressure solution (e.g. Oldershaw and 

Scoffin, 1967; Boles, 1978; Hudson, 1982L ~ 

• 

_(_ 
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PART C ---

Chapter 14 

ORIGIN OF PARTED, RIBBON, AND NODULAR LIMESTONES 

14.1 INTRODU.CTION 

In Chapter 2 the rhythmite or "periodite" [ 1] character of parted and 

ribbon limesion~s was interpreted to be either a primary .depositional or 

early diagenetic effect based on the contrasting rheologic behavior of . ,. 

interbedded mudstones and shales or marls in deformed rafts. The 

lateral continuity of par~ed and ribbon limestones, the intimate 

assod.-MjQn of mudstones with paralle_l- and ripple-laminated 

grainstones, and compositional differences between burrows and host 

sediment collectively suggest that the mudstone-shale or -marl rhy t hmite 

is, in part, a reflection of primary sedimentation; either .as fine 

grained turbidites or the cesult of settling of peri-platform ooze . 
• 

. Integration of field, petrographic, CL, and geochemical data confirms 
,. 

~ and characterizes the nature of early lithification in grainstones to 

mudstones. The importance of early diagenesis in these sediments is 

1. "Periodi tes" are cyclical sediments which consist of "periodically 
alternating beds'which were deposited in a pelagic to hemipelagic 
environment below wave base. · Sedimentation rate, texture, and fabric as 
well as composition changes gradu'ally ·within one period while features 
of omission or erosion are atypical." (Einsele, 1982a, p. 4). 
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underlined by the inadequacy of the pr1mary qepositional models for 

mudstones to explain the relationships between continuously-bedded and 

nodular mudstones, ~ well as: (1) the striking rhythmicity of these 

sequences; (2) the generation ot· fitted fab{.ics; (3) the origin of 

composite beds and nodules with mudstone surrounding, on one or both 
. ,. 

sides, .a more. grainy sedi111en't; and (4) marginal aggradation. The close 

association of primary and diagenetic attributes in these sequences is 

typical of parted, ribbon, and nodular !~ones described from other, 

ancient, deep~water successions (see volume edited by Einsele and 

Seilacher, 198i). 

The purpose of this chapter is to: (1) synthesize the previously 

discussed , re)evant information on parted, ribbon, and nodular 

limestones; (2) develop a model which accounts for the intimate 

association of physical featu;es suggestive of both~ primary deP,osition 

and diagenetic modification; and (3) _develop a complimentary model 

emphasizing the temporal aspects of calcite authigenesis based on stable 

isotope 013C analyses. 

14.2 DIAGENETIC MODELS FOR PERIODITES 

The inadequacy of the ptimary depositional models to explain the 

generation of parted, ribbon, and nodular mudstones in conjunction wi.th 

the early .lithi~ication of these sedi~ents suggests that t he 

mudstone-shale or -marl rhythmite is, at least in part, a product of 

~diagenesis. I~ the following section, several diagenetic models for the 

• 
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generation of periodites are considered. These models include: (1) 

rhythmic unmixing, (2) pressure solution, and (3) diagenetic overprint . 

The first two are purely diagenetic, the third involves a diagenetic 
. f 

modification of primary sediments. 

14.2.1 Rhythmic Unmixing Model 

In this model alternating limestone and marl beds are envisaged to 

res~lt from the unmixing of an originally homogeneous sediment 

(Sujkowski , 1958; Hallam, 1960, 1964). Limestone .beds and nodules are 

formed by the dissolution of carbonate from specific sit es in the 

protolith and reprecipitation elsewhere as discrete be ds or nodules . , .• 
The homogeneity of the protolith demanded by this model is unlikely in 

most sedimentary successions. Furthermore, as nodules are usually found 

in discrete horizons and mudstone beds are often laterally continuous 

with little or no change in thickness, this implies some pr imary 

sedimentary control. The rhythmic unmixing model is therefore rej ccte~ 

as a working hypothesis. 

14.2. 2 Pressure Solution Mode~ 
) 

The rhythmite character of these sediments is clearly established early 

in their history and •therefore a purely pervasi ~}, "non- s eam" pressure 

solution origi n i s unlikely (see Wanless, 19"79'·: 1983). In addition, 

rar i ty of stylolites, prominent argillaceous seams, microstylolite 

swarms, and accumulations of other insolubles in the transition zone .. 
between argillaceous sediment and continuously-bedded or nodular 

mudstones indicates that these limestones are not remnants of once 

. . 

I 
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.. 1 thicker beds; nor are nodules pressure solution relicts of once 

~ 

' ' continuous be'ds (c\~ga:t and Sc!meniuk, 1976; Wa~less, 1979, 1983). 

This is also sugg~sted by· the common occurrence of marginally-aggraded . ' '· 

mudstones. Coarsening of neospar crystals tovard bed or· nodule .margins 

i& not · a mitrofabrk expected from dissol~tion but fnstead fro~ 

centrifugal precipitation ~n progressively m9re disperse.d 'nuclei. 

~ear !DSrgins of nodules, grainy laminatioFis .often converge .tovard ' t1te 
.. ' ,. ' . 

h"orizontal axia:t plane of the nodule (PlatE! 13g; 53a-e). This could be 
. ' ~ 

interpreted to indicate pressure solution of a once-continuous limestone 

~ed . , with one or sever~l laminations, often silicicla~tic-silt-rich, 
' . 

linking together the solution remnants (e.g. Wanless, · 1983, fig. 11). 

In the CHG, hoveve
1
r; nodules with drapiag laminations exhibiting 

margi~al iron enrichment and aggrading crystal size suggest 

lithification duri~g progressive compaction of the surrounding shales or 

. marls. Furthermore-, there is no evideryce of pressure solution .of t:he 
' ' 

; I ~ 

marginal crystals. Convergent laminations at nodule margins have been 

reported in numerous oth~ studies of concretions -(e.g. · Raiswell 197la; 

Oertel and Curtis, 1972·; Henningsmoen, 1974) .. 

That pressure solution features, such as argillaceous seams ·and ~ ... 
microstylolite seams, do appear occasionally implies that some pressure 

solution does occur at the contact between mudst~ne and shale as well aSi 

within argillaceou~sediments. A particul~rly informative example· is 

illustntted in Plate 53a-d vhere a grainy laniination emerging from an 

ell'rly-formed limestone nodule can be traced for several centimetres into 

the adjacent, intelnodular matrix until it fl.nally disappears. Thr; · 

. lamination is initially subject to mechanical compacti?n, then j)ressure· 
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solution. It remains tQ be shown, however ·, that this is other than a 

localized effect; 

_) 

Pressure solution appears to only modify earlier-forme<! structures by 

enhancing continuous or nodular mudstone-shale or -marl boundaries and 

possibly dissolving dispersed calcite within argillaceous sediments. 
-,., 

Both of these processes are catalysed by the presence of abundant c1:ays 

~hich provide sol vent for diffusion of ions away from the site of 

pressure solution (Weyl, 1959; Garri~on and Kennedy, 1977; Wanless, 

\. 
1979,· 1983). In addition, pressure solution is enhanced at lithological 

transitions due to competenc.y contrasts between adjacent units 

(Bathurst, 1980b; Buxtfbri'·and Sibley, 1981)'. Enha'!,.:ement of . 

eariier-formed structures has been suggested in numerous studies, 

especially those concerned with the origin of no9u1ar limestones (e.g . 

Bernoulli, 1972; Jenkyns, 1974; Jones~- ~·, 1979; Fuzesy, 19RO; Rieken 

and Hemleben, . l982; Schwarzacher and Fisher, 1982). Pressure solution 

has an analogous role in conglomerates in the .CHG 'where "ci rcum-idcnic" 

stylolites. or shale seams (Logan and Semeniuk, 1976) occur around 
0 

pebbles. The role of clays ~n encouraging pr,essure solution is not 

proven, hl>)weve~, and experimental compact ion of calcitic deep-sea oozes 
. ' ... 

suggests that clays may actually retard the proces·s (Baker ~ _!!~ • . 

1980). 

\.. 

14.2.3 Early Diagenetic Overprint Model 

This .. model as outlined "by ·Einsele (1982b) and Eder (1982) is similar to 
" . 

the rhythmic unmixing model as it assumes the sedimentary column is-

homogeneous with respect to the carbonate/clay ratio, but differs in 
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- that the sedimentary column is inhomogeneous with respect to the nature 

of the . c;:arbonate, either·· compositionally or texturally. Consequently, 

more porous or permeable layers .are ce,mented earlie.t". thus forming the 

1 imestone beds, and uncemented layers dissolve carbonate to generate the 
·':--

' -· 
shale or marl layers. ·) 

A homogeneous prot:olith, as assumed by. Einsele (1982b) and Eder (1982), 

was not present in the CHG where some characteristics of parted and 
I 

ribbon limestones are interpreted to reflect primary deposition. Their 

model does, however, provide a conceptual frame-work for the devjlopment 

of a diagenetic overprint model applicable . to the CHG (discussed 

b~low). 

14.3 PHYSICAL MODEL 

14.3.1 Introduction 

- r--- /' ..... 
,/ ' / . 

\ . 
In 'the sections which follow, a physical model which accou]ls fci'r the 

origin of parted and ribbon limestones, their association wi;h ndtlular 

mudstones, mudstone envelopes under and over grainy sediments, and 

fitted fabrics is outlined. Early diagenetic dolonjitization, 

silicification, and t _he precipitation of barite also relate to this 

model but these phases are tre.ated later i n a separate section. Late 

authigenesis of calcite, dolomite, silica~ barite, and pyrite is poorly 

constrained temporally and no further consideration is giv,en to ~hese 

" late phases. A chemical model which compliments the physical model is 

presented in the following section. 

I 

J 
.• 
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14.3.2 Details ' 

The physical model involves the following processes: (1) a climatically 

controlled carbonate rhythm which determines the basic periodicity of 

the mu~stones; (2) formation of a primary sedimentary 'rhythm to prov'ide 

fabric heterogeneity which allows carbonate to concentrate in specific 

horizons after remobilizatiori; and (Y) a remobilization process in which 

interaction of primary fabric heterogeneity and the carbonate rhythm 

·produces a parted or ribbon limestone sequence. 

Periodicity of per~odi~i results from fluctuations in carbonate 

productivity, terr1genots mud content, or dissolution of carbonate 

(Einsele, 1982b). Based on measureable periodicity in numerous 

sequences, climate, as governed by astronomical factors, : appears to be 

the principle control on periodicity (Einsele, 1982b) 12]. For 

simplicity in the following discussion;~- - it is assumed climatic cycles 

control fluctuations in carbonate ·production. 

In Chapter 2 the argillaceous "background" sediment in the CHG (shale 

lithofacies to siltstone lithofacies) was interpreted to comprise 

fine-grained turbidites interbedded with hemipelagites. Thes~ sediments 

2. The duration of periods is generally thought to be controlled by the 
earth's orbital cycles of precession (21,000 years), obliquity (41,000 
years), .and eccentricity ( 100,"000 years). These effects, often termed 
th-e Milankovitch parameters or hypothesis, affect climate which in turn 
regulates sei levels, current regimens, relative masses of the global 
carbon reservoirs, as well as the abuhdance and composition of 
sediments. Periods in ·many Quaternary and older sequences typically 
span 20,000-100,000 years and are interpreted to be climati~ally 
controlled (Fisher, 1980; see tables 1 and 2 in Einsele, 1982b). 

.. 

/". 
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were occasionally interrupted by coarser-grained, silt- and sand-size 

carbonate turbidites (siltstone lithofacies and calcarenite 

lithofacies), ~nd sediments derived from high density flows (calcarenite 

lithofacies) and debris flows (conglomerate lithofacies). 

During times of.higher carbonate productivity in the shallow-water 

platform and possibly upper slope environments, these gravity f-low 

deposits an~ hemipelagit~s wsre enriched in dispersed, silt- and 

clay-size carbonate mud. Hemipelagites may have also been enriched in 

dispersed carbonate mud, resulting either from storms washing out dense 

clouds of carbonate mud. away from the platform, carbonate mud-rich 

gravity flows spreading out over pychnoclines and settling as a rain to 

the sea floor, or settling from nepheloid layers. During times of lower 
. 

carbonate productivity, less carbonate fines were incorporated into the 

slope sediments. 

Toe spectrum of gravity flow deposits, ranging from fin~-grained 

turbidite to conglomerate, are event de~osits and interbedded with 

hemipelagites, form the framework of the physical model. The carbonate 

abundance cycl~s are superposed upon this framework to create a sequence 

of s~diments that is notably rhythmic in character with tespect to 

carbonate content. yet retains abundant evidence of gravity flow 

deposition.~ rapid entombment of organic matter within turbidites 

results ' in further heterogeneity in the sedimen~. At deposition, 

therefore, the distribution of organics and carbonate is suggested· to. 

have been distinctly heterogeneous, alrhough these two components were 

not necessarily correlated. Hand-in-hand with ~hes~ compositional 

variations were porosity and permeability variations. Diagenetic 
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Figure 14.1: Schematic physical model for the generation of parted 
and ribbon limestones. From left to right across the 
diagram is a temporal/burial sequence showing the 
protolith and some of the common alterations which 
occur during-early burial diagenesis. The model is 
simplified as it considers the calcite system only 
and ignores other possible effects such as early 
silicfication and· dolomitiz~tio~. 

The .primary sedill!ent of beds "A" and "B" are 
clay-rich carbonate muds which were deposited either 
as a fine-grained turbidites or as hemipelagites 
(fine stipple pattern). The terrigenous muds 
surroundfhg this layer are calcareous hemipelagites 
which reflect high carbonate productivity on the 
shallow-water platform. With burial, dispersed 
calcite in the hemipelagite is remobilized and 
reprecipitated i~ the adjacent, more calcite-rich bed 
which becomes the typical homogeneous or 
marginally-aggraded neospar mudstone (brick 
pattern). The dissolution-reprecipi tat ion p.rocess 
has the effdct of accentuating the primary 
depositional" rhythm. · With time and further calcite 
dissolution in the surrounding argillaceous sediment, 
DFC may be precipitated on bed "A", or as illustrated 
by bed "B", no more calcite is available for 
remobilization and therefore lithification ceases. 

A similar situation is invoked for the early 
lithification of grainstones (coarse stipple 
pattern)_. Bed "C" is a turbidite deposited during a 
time of high carbonate productivity and, 
cons~quently, surrounding hemipelagite is 
calcite-rich. With burial, dispersed calcite in the 
hemipelagite is remobilized and reprecipitates as 
cement in the grainstone, and, if sufficient ca lcite 
is available and remobilized, additional calcite is 
rep:ecipitated fO ~orm a mudst~ne envelope around the 
gra1nstone, pto~uc1ng a compos1te bed. · 

At times of low~(carbonate productivity (bed "D"), 
grainstone turb diteS remain unlithified for a longer 
period of time are only partially lithified, and 
the remaining porosity is filled with other 
authigenic ~hases such as chert or dolomite. In 
these beds calcite cementation depends on 
allochthonous carbonate ·from beds below or above 
which were deposifed during times of high carbonate 
productivity. 



) 

ARGILLACEOUS 

OISPLACIVE 

FIBROUS CALCITE 



- 410 -

modification of these compositionally and texturally heterogeneous beds 

results in the limestone-shale or -marl rhyt~ite (also see.Hallam, 

1964; Campos and Hallam, 1979). 

The heterogeneous distribution of organic material as well as variations 

in permeability suggest that carbonate (assumed t? be calcite) 
·~ 

dissolution will occur in some areas of the sediment from aerobic 
.· 

oxidation of organic matter, and in other areas wher~ free molecular 

oxygen has been eliminated~ oxidation continues by anaerobic processes 

and calcite precipitation occurs (cf. Sass and.Kolodny, 1972). 
4 • 

Calcite-rich horizons, occurring eitner as a primary grainy sediment 

(e.g. grainstone turbidite) or simply a carbonate-rich hemipelagit~. are 

most likely to remain following dissolution caused by aerobic 

oxidation. Perhaps by initially providing a site for heterogeneous 

nucleation (Figure 14.1), these primary carbonate-rich beds become the 

locus of furttler calcite precipitation due to the establishment o( a 
~ 

concentration gradient (Berner, 1980; Irwin, 1980). The calcite bed 

~ontinues to lithify and grow until the supply of solute ions is · . . 

eliminated, either by permeability decrease .concomitant with further 

burial or by the cessation of anaerobic oxidation. In this model 

precipitation can occur above, below, or laterally within a bed, 

depending on theavailability of! calcite nuclei,· a concentration 

gradient, suitably reactive organics, and basic sediment properties such 

as permeability • 

• 

14.3.3 Origin of· Continuous Mudstone Beds 

~rom pre~ious discussion, early-lithified nodular mudstones or 

" 
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concretions, are common in the CHG and except for their lateral 

discon;inuity, ~ny are identical to planar, continuously-bedded 

mudstones. The genetic relationship of the two is examined ~w. 

It has already been argued on the basis of microfabric evidence that 

nodular mudstones are not the product of solution of a once continuous 

mudstone bed. The remaining possibilities to explain the relationship 

are: (1) nodular mudstones laterally coalesce ·to form a continuous 

mudstone bed (e.g. Shinn, 1969; Henningsmoen, 1974; Jenkyns, 1974; 

Kennedy and Garrison, 1975; Bromely, 1978; Jones· et al., 1979), or (2) 

planar-bedded mudstones are lithified as "sheet concretions''. 

As discussed previously in Chapter 2, many mudstone nodules demonstrate 

' 
~rginal aggradation commonly concomitant with an increase in 

intercrystalline paste and iron content of calcite. If coalescence of 

these nodular concretions was responsible for the generation of 

,/ 

continuous mudstone beds, internal concentric structures in the bed · 

should be obvious, as illustratea in Plate 36a. Such structures are, 

however, rare. Homogeneous mudstone nodules would not leave such 

revealirtg evidence, but it can be arg~ed in apy ca~e that lateral 

coalescence of nodular mudstones would be unlikely to produce such 

perfectly planar mudstone beds as is commonly found. Rather coalescence 

of homogeneously crystalline nodules would be expected to result in the 

formation of wavy beds. Chaotic nodules (see Chapter 2) and some 

"lumpy" mudstone beds are thought to result · from bioturbation of the 

protolith to provide the irregular template which influences subsequent 

calcite precipitation (Plate lOd). 

The overall lack of concentric structures in most continuous beds, in 
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concert with their remarkable planarity, is interpreted to indicate 

their origin as sheet concretions, formed by synchronous, widespread 

precipitation of calcite in the host strata. Precipitation may be 

focussed on obvious primary sedimentary laminations, or simply 

controlled by the permeability characteristics of the enclosing 

terrigenous muds. 

14.3.4 Source of Calcium Carbonate 

.... 
As discussed in Chapter 11, in organ{c-rich sediments, oxic bacterial 

decay of organics results in dissolution of carbonate whereas anoxic. 

decay causes carbonate to precipitate. Dep~nding on the quantity of 

reactive organics and availability of free oxygen, within a few metres 

of the sediment-water ' interface the necessary conditions for wholesale 

redistribution of carbonate occur. 

Because Ca and bicarbonate ions are also derived from other than 
• 

dissolved CaC03 , the precipitation of early calcite cement and neospar 

is not n~~ssarily a diagenetic remobilization of a precursor carbonate 

(e.g. Eder,' 1982). Carbon isotopes suggest that bacterial decomposition 

.of organic matter supplies'significant bicarbonate to pore-waters. 

Other sources of Ca besides a precursor CaC03 include trapped seawater, 

breakdown of feldspars, and clay mineral interactions (Irwin, 1980) 

although the latter two processes are only likely of any significance at 

greater depths. Upward expulsion of ~eeper pore~waters which do contain 

Ca from these sources, however, remai ns a possibility. 
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14.3.5 Origin of Mudstone Envelopes and Composite Bedding 

The enhanced permeability of grainstone beds, dikes, ~nd burrows allo~s 

pore-waters to readily travel through these sediments relative to the 

surrounding terrigenous muds and, ~onsequently, their interparticle 

spaces are the sites of earliest cementation (also see Raiswell, 1971a). 

The concentration gradient t~us established leads to precipitation of 

neospar on and/or under these beds to form composite beds (Figure 14.1), 

or around grainy nodules, dikes, or burrows to form cored nodules (see 

Chapter 2). The tendency for the precipitation bf massive mudstone 

nodules to occur within certain horizons .is interpreted to reflect a 

higher abundance of organic material, enhanced permeability, or both in 

these sediments. 

Cored concretions are usually symmetrically developed around their 

nuclei. Nodules with asymmetric or incomplete development of the 

mudstone envelopes may reflect local permeability differences in the 

' sediments ~urrounding the nucleus or the direction of greatest flux of 

Ca and bicarbonate to the site of precipitation. 

Cored nodules are extremely common in other nodular limestones 

interpreted as early-formed concretions (e.g. Weeks, 1953; Waage, 1964; 

Baird, 1981). The association of organic cores, such as fish fossils', 

with the enveloping mudstone brought early attention to the role of 

organic matter in the development of concretions long before this· vas 

substant\ated using stable isotope techniques (e:g. Tarr and Twenhofel, 

1932, and references therein). 
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14.3.6 Origin of Fitted fabrics 

,. 
' 

'"" . ) 
·' 

To explain fitted fabrics observed in many wavy, continuously-bedded, 

parted and nodular mudstones it is suggested that dispersed calcite is 

dissolved from the argillaceQus interbeds and is locally reprecipitated 

onto nearby carbonate-rich beds. This results in conservation of CaC03 

within a given stratigraphic thickness and accounts for the rema~kably 

constant thickness of parted and ribbon limestone, even though 

individual beds may be wavy or discontinuous. 

14.3. 7 Origin of OfC and DFC _ .- - -

The precipitation of CFC, although strictly a submarine cement, 

incorporates bicarbonate derived by upward advection or diffusion from 

underlying or laterally equ.ivalent, decaying organics. The i r typical 

non-ferroan composition and dull to weak luminescence suggests they are 

synchronous with iliJearliest stages of pr ecipitation in many equan.t 

cements and neospar calcite:_)aJ.so see Figure 8.2). Their elongate 

morpholo_gy i!J interpre~ ~o ~esult from the larger pore s.paces in which 

they grew,· allowing a higher degree of "m<\turity" (~Dixon, 1983) to 

the final mosaic than afforded by smaller pore spaces in grainstones. 

Based on identical or gradational CL characteristics, precipitation of 

DFC is also controlled by the same or similar pore- waters which 

precipitate equant cements and neospar. Rheology of the immediately 

adjacent terrigenous muds, however • may dictate whether o.r not this 

peculiar type of displacive growth occurs (see Chapter 9) . The 
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occurrence of DFC fringes above or b,{low their substr ate is attributed 

( 
to the direction of- greatest· flux of solute ions, analogous to the 

development of asymmetric cored nodules or composite beds. 

14.3.e Original Mineralogy ~d Other Considerations . . '-... 

The calcitic mineralogy and ubiquitous pyrite in CHG mudstones and 

grainstbnes is typical of early-formed concretions descr i bed from most -

other ancient sequences (e.g. Noble and Howells, 1974; J?ickson · and 

Barber, 1976). From microprobe analyses, CHG calcites generally contain 

less than 1 mol % MgCO~, levels which are low in comparison with 
~- .' 

Quaternary deep-water concretions and hardgrounds which usually have a 

few mol % to 10 mol % or more MgC03 '(Fisher and Garrison, 1967; , 

compilations in Milliman, 1974; Muller and Fabricius, 1974; Schlager and 

James, 1974; Mullins~~·· 1980). Submarine or sl~ghtlx-~odified 

submarine cements precipitated from c<>ld, deep wate'rs ~ould, however, 

have such low Mg cont~nts as are prese~t in the CHG calcites, depending 

on ~he value assumed for the Mg partitioning coefficient (see Chapter .,.. 
10). Based on their sharp CL zoning and microfabrics, trace el~ment 

trends with progressive precipitation, and distinct i sotopic signatures, 

authigenic calcites in the CHG are interpreted to be unaltered from 

their original low Mg-calcite compositions. This interpretation of 
. ' 

original minefAogy and chemistry is consistent with conclusions reached 

in other studies of concretions (e.g. Galimov.!!, !.!.··· 1968; Hoefs, 1970; 

Raiswell, 1970b). Other aspects of th~ mineralogy, morphol~gy, and 

geochemistry of authigeni c calcites in the CHG are considered in 

Appendix 0~ 
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Although calcite cement and neospar are largely unaltered, the 

mineralogy of the presumed di,spersed carbonate mud which is remobilized 

during shallow burial is unce(tain. In addition, influence of the 

carbonate (calcite or aragonite) ~mpensation depth may also be 
<J 

important in determining the primary distribution of carbonate in these 

sediments. There is, however, insufficient data on this aspect of the 

paleoocea'nography as well as mineralogy of Lower Paleozoic muds to 

determine whether deposition was above or below compensation levels (see 

review in James and Choquette, 1983). 

14. 4 CHEMICAL MODEL 

14.4.1 Introduction 

· - The relative ages of the vari6us authigenic calcites is easily 

determined by staining, petrographic relationships, and especially CL 

when they occur within the same ~ample. Regional correlation based on a 

"cement str atigra.phy" approach ( Evamy, 1969; Meyers, 1974), however, is 
\ 11 

not possible i n this succession. Int~rsample correlations based on tL 

is of little use due, to thf7_ wide variety of re~ctions ~hich liber~te Fe 

and Mn into pbre-wate~s. thus conttolling calcite luminescence.- · A 

CL-based model is also inappropriate to tempora.lly rel_ate dolomite to · 

calcite by theii CL characteristics as Fe partitioning in each of these 

two phases is pobrly- known (however, see Oglesby, 1976, p. 113-116). 
' 

In the .previous section a "physi,cal m·odel" fo.r_ the generation of parted, 
I 

ribbon, and nodular limestones was discussed. The following section 

-· 

• 

, 
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outlines a compliment'ary "chemical model,.. which emphasizes the relative 

timing of calcit~ authigenesis based on o13
C, support~d by petrographic 

' • 

and CL data. These serial trends previously detailed in Chapter 11 also 

provide information on the bacterial oxidation reactions governing 

""" . 7 
pore-water compo~lN__QJl!at the time _ of calcite precipitation. 

r· / 

14.4.2 Features of the' 513
C Model 

Irwin~!!..!.· 's (1977) idealized sequence of bacterially-controlled, 

di.age~c._ zones in. organic-rich sediments provides the conceptual 
./ 

. framework for this model (discussed ,in Chapter 11; Figure 14 .2). Also 
. ._ ...... , . 

inc~uded in Figure \}4.2 are curves indicating the onset of other, 

relatively less important, "sub..::oxic" reduction reactions, namely 

nitrate, Fe, and Mn · reduction (Froelich H al., 1979). Their order of . --
6ccurrence is dependent on the nature of the Mn o·r Fe compound being 

oxidized. .J 

"'h f t 
13c 1 · 1 d h 1' e curve o pore-water u qua itat1ve y emonstrates t e i mportance 

of bicarbonate produced by sulphate re<fuction in Zone II and by 

methanogenes~s in Zone III. .. The iine~ 013
C scale is presented this .. way 

for.a simplicity, the minimum . o13C value of -10 o/oo PDB b~ing close to 

the most negative 013
C analysed. Keeping all other sourc~-s and 

13 c 13 
influenc~s on~ bicarbonate 0 C constant 1- changes in 0 C with depth will 

be controlled mainly by sulphat~ reducing and methane-produiing -

reactions. Obviously, the bicarbonate o13
C curve as well as the linear 

o~'~c scale is a simplif{cat.fon of a potentially complex diagenetic ( 

system. The ultimate o1~c of the pore-waters depends on several . 

important factors: 

/ 
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Figure 14.2:· Chemical (isotopic) model for the evolution of parted 
and ribbon limesto-nes • . On the left sid~ of the 
diagrant ("A") are the various organic matter 

«'l oxidation zones -(I, II, Ill, IV from Irwin et al., . 
1977; I+ from Froelich~ .21·, 1979). The "COe
PRODUCTION RATE" column is a qualitative 
repre·sentation of the rate as well as magnitude of 
C02 produced in the various oxidation zones. The 
"CONCENTRATION" column depicts the changes in 
concentration of nitrate and divalent Fe and~ as a 
function of progressive burial and decrease in\ 
pore-wate~ Eh. The . " 013C PORE WATER" column is a . 
.representation of the 013C -of pore-water bicarbonate 
as a function of the changilfg importance of the 
>/arious bacterial oxidation reactions with depth. 
Maximum· and minimum values are those analysed in this 
study. 

In "B", the various authig nic phases encountered in 
the. CHG are ylotted against assumed depth and 
pore-water o13c::. The inflection point at -
01 ~C = -10 o/oo is based on the most negative 013

C 
analysed in this study. Solid bars for RFC and CFC 
are based on actuai values of 0 1~. The thick, solit' 
portion of the dolomite lirie delin·eates the range of 
o13c' determined by the regression· analysis in Figure 

12.4. The various serial trends discussed in Chapter 
ll are shown as circles, squares, t·rian~les, and 
diamonds. The broken lines showing the precipitation 
of · dolornite, s.ilica, barite, and pyrite arr .based on 
field and petrographic relationships. Opaline silica 
is considered to dissolve over an equally wide depth 
range as the silica line, and so is not indicated on 
tlhs diagram. Late, tectonically- related calcite, 
dolomite, silica., barite, and pyrite are ·not 
considered in this model . 

/ 
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(1) production rate of bic&rbonate generated by ~he various oxidation 

"·reactions balanced by removal by calcite preqpitation or outward 

diffusion; 

~13 (2) u C of the original organic carbon; 

(3) degree of mixing of bacterially-derived bicarbonate with other 

bicarbonate. Mixing can occur when "end member" isotopic signatures_ are 

diluted by remobilized. carbonate (e.g. bioclasts or peloids); 

bicarbonate is a mixture of the products of two or more diagenetic' 

zones; ~ethan~ diffuses upward into Zone II and is oxidized during 

sulphate reduc~ion thus contributing extremely light carbon to the 

dissolved carbon pool (less than -20 o/oo PDB) ; and the re is "biologica~ 

interference" and unaccounted for deviations in the source of organic 

carbon (Barnes and Goldberg, · 1976; Savin and Yeh, 1981; Anderson and 

Arthur, ' 1983). 

The order-of-magnitude depth limits shown in Figure 14.2 are compatible 

with the copious evidence for shallow-burial diagenesis in the CHG. The 

maximum depth 1 imi ts for the zones are from Irwin !:.!._ a.l. ( 1977). The 

boundaries between these di agenetic zones are transitional and their 

positions are a function of numerous variables including: amount and 

reactivity of the organic material, sedimentation rate, and geothermal 

gradient (Claypool, 1974). Sulphate reduction usually begins within 1m 

of the sediment-~ater interface (Berner, 1980; Fruth 

and Snerreiks, 1982). Once sulphate is removed, oxidation of organic 

mattei continues by the formation . of methane which presumably continue~ 

until temperatures are too high (greater than 50 ·degrees C) or suitable 
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substrate is depleted (Claypool and Kaplan, 1974; Irwin et al., 1977). 

The recent study of peri-platform sediments cored from the northern 

slope of Little Bahama Bank at a seafloor depth of 600 m (Mullins et 

al. (1984) illustrates the shallow burial depth at which methane may 

form. These authors interpreted the relatively high 613C of authigenic 

dolomite a~ 1.2 m depth and below to reflect precipitation in. the zone 

of methanogenesis after. sulphate had been depleted by bacterial 

activity. -
The use of this model depends on the following critical assumption -

that with increasing burial, pore-water 613C trends do not fluctuate 

' · sufficiently to revers~ the overall trend of reducing or increastng 

o13C; except at the transition between Zones II and III. 

14.4.3 Application of the Mod~~s for the 

Lithification of "Ordinary" CHG Mudstones , 

Using serial samples, the bacterial oxidation reactions which governed 

pore-water chemistry at the time of precipitation can be known by noting 

whether 613C increases or decreases with progressive precipitation. 

Most of the serial samples a{lalysed are dominated by 613C trends which 

show decreasing 613C with progr~ssive calcite . precipitation (Figure 
\ 

14.2) ."This can occur either durj.ng shallow .burial (Zone II) where 

progressively more negative bicarbonate 613c is -produced mainly by 

sulphate r.eduction, and possibly also nitrate, Fe, and Mn reduct'ion; or 

during deeper burial as a result of abiotic reactions (Zone IV). All 

,.vidence points to the first alternative as being the only reasonable 

one and, abiotic reactions are not considered further. By analogous 
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reasoning, some serial samples, mainly those related to DFC-1, 

• ~13 
demonstrate an increase in u C with progressive precipi~ation and are 

interpreted to have been precipitated in the fermentation zone (Zone 

III). 

Single analyses, however, are not easily interpreted and many provide no 

indication of an early, shallow-bbrial origin, for examp1~ Groups D,F,H, 

and E in Figure 11.2. Yet, {1) mudstone envelopes (Group F) are 

~onfidently interpreted as early-formed mudstone concretions; (2) 

microspar in Group E marginal~ aggrades to isotopically-l i ghter 

pseudospar, and these, too, were f~rm~d during shallow-burial; and one 

\..l_of the grainstones in Group H is a substrate to a DFC-1 fringe and was 
\ . . 

J 

therefore lithified prior to the precipitation of DFC-1, which, from 

reasoning discussed in Chapter .9, was precipitated during shallow 

burial. 

Isotopic analysis of) typical homogeneous, non-ferroan, microspar 

mudstones (Group D) provides no indication of their early l i thifi cation, 

yet these mudstones are identical in every respect to the ·ubiquitous 

mudstone clasts in most tonglomerates ~n .the CHG. Mudstones i~ Group D 

must have .been lithified earli, especially ihe 9ne which shows evidence 

of having been exposed on the sea-floor (Plate 53f; di scussed later) . 

Their rion-ferroan composition and identical petrographic and CL 

~ properties to obvious early-lithified mudstones [3] suggests that these 

3. These would be obviously lithified early due to eiiher: (1) 
distinctly negative o13C (e.g. Trend 1t}, or i(~ association with later 
calcite having. distinctly negative 01~C (e.g. microspar in. Trends 8 and 
10). 



- 423 -

typical and unremarkable mudstones must have been lithified close to the 

sediment-water interface, probaply in Zone I+ or the upper part of Zone 

II, before pore-water bicarbonate became ch~racterized by -distinctively 

~1'3 negative u C. Suboxic or anoxic bacterial oxidation of organic matter 

is, nevertheless, still' reqttir.e4 to increase pore-water alkalinity in 

order to precipitate carbonate. 

r 
The depth at which lithification is more or less completed by either 

growth of neospar or cementation is not known, . but based on the: (1) 

ubiquity of mudstone clasts in conglomerates; (2) occasional evidence 

for seafloor exposure of exhumed nodull!r mudstones , ( see Plate 53e, f and 

Appendix N); and'(3) comparison with studies, which estimate depth using 

other criteria" lithification of CHG limestones is thought to occur 

within 5-10 m of the sediment-water interface. Depths as shallow as 1 m 

are compatible with all previously discussed evidence for shallow- burial 

lithification. Even if lithification oc~urred in Zone III rather that 

Zone I+ or II as is suggested above, limestones could still have been 

lithified within a few metres of the sediment-water interface otherwise 

their contri~u~ion to conglomerates would be considerably reduced . 

Theconclusion that not only are the ordinary parted and ribbon 

mudstones li thified close to the sediment-water interface, but ~~~t.. - ~hey 
/ 

are li thified before the formation of distinctly negative b-icarbonate. _ 
• 
o'~c, emphasizes the importance of field and petrographic obser~ation, 

and the supportive, not determinative role, of geochemical study. 
'-.. / 

. -
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14.5 OTHER DIAGENETIC COMPONENTS 

14.5.1 E&cly Dolomite 

14.5.1.1 Pervasive Dolomitic Siltstones 

Field and petrographic evidence d~monstrates that pervasive dolomitic 

siltstones and ~heir associated shales were _dolomitized early, prior to 

compaction (refer to Chapter 12) . The apparently high degree of 

"sorting" of the dolomite crystals implies that the replac ed peloidal 
, 

grainstones were also h i ghly sorted and therefore had hi gh 

permeability. This, in conjunction with lateral continuity of the beds, 

suggests that the precursor grainstones would have been a preferred 

pathway for the lateral migration of dolo~itizing fluids·. 

Dolomitization of the ad jacent cla~ muds may have depende9 upon their 

permeabilities and possib[y also on the pre~ence of su i ta ble nuclei. 

"' The high degree of microfabric preservation in these sediments s trongly . . . 

suggests that they were dolomit i zed at the outset without hav i ng been 

lithified to limestone first. If they were previously lithified 

limestones·, they would not have been accessi-ble pathways for lateral 
~ 

migration of pore-waters. The total lack of limestone relicts as we~l 

as the lack of variation in the degree of dolomitization within 

individual beds further suggests direct alteration of these sediments to 

dolomite. 

The reasons for early dolorq_i~ization ratber than l i mestone formation are 

·' 
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not known. Sulphate, which is considered to be a major inhibitor in\the 

formation of sedimentary dolomite (Baker and Kastner, 1~81)~ may hav~ 

been eliminated or significantly reduced fr,om pore-waters ~oner 

normally would have been, either by an extensive barite sink (for 

than it 

which 

there is no evidence) or anaerobic-bacterial oxidation. Dolomite m~ght 

~ then have precipitated as a replacement of calcitic peloids and 

overgrowth of detrital dolomite cores, That dolomite precipitated 

before calcite possibly reflects the lower solubility of this min~_ral in 

slightiy modified marine pore-waters. The relatively high sulphate 

concentrations in the more common calcite-precipitating por~-waters 

precluded such an early, wholesale dolomitization. 

14.5 .I. 2 Conglomerate Matrix Dolomite 

The occurrence of conglomerate matrix dolomite as a cement which 

periodically interrupts growth of CFC submarine cement fringes suggests 

that this dolomite precipitated from pore-waters which probably had a 

direct connectiori with seaw,ter, but which must have also been 

influenced by alkaline, bacterially-modified pore-waters expelled upward 

from the underlying strata. The identical character of conglomerate 
• 

matrix d9"t>mite which postdches CFC either as a cement or a· replacement 

of internal sediment indicates that all conglomerate matrix dolomite~ 

were precipi(ated from chemically-similar pore-waters. Gradual 

reduction of pore-water sulphate concentration may be responsible for 

the later dolomite which postdates, CFC and replaces internal sediment, 

but a sli.ght dip in sulphate concentration may be responsible for 

dolomite crystals which temporarily interrupt CFC growth. 
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Based on the,common presence of ferroan rims on these crystals, they are 

thought to have completed their growth after the main phase of calcite 

authigenesis; These dolomite crystals probably started as small, 

. scattered detrital(?} crystals dispersed in terrigenous muds early in 

the diagenetic history of these sediments and may have been an important 

• 
sink for Mg throughout the period of calcite authigeriesis. This readily 

available sink explains the progressive depletion of Mg concentration in 

·various cement and neospal"crystals. 

The slightly- to moderately-compacted interbeds dominated by matrix 

dolomite are interpreted to result from their having not attained a 

crystal-support framework until later burial, past ~he main phase of 

calcite authig_enesis. Consequently, they underwent some compaction 

before cessation o.f growth. Alternately, they may be explained by 

compac~ion of dolomite- rich, terrigenous muds to mechani ca lly produ(e a 

crystal-support framework after they had ceased to grow. Regardless of 

which hypothesis is c;rre~t. the ferroan rims on most of these dolomite 

crystals suggests that they terminated their growth after calcite 

authigenesis, but they could have been growing along with calcite since 

tfie outset providing _sulphate concentration was sufficiently reduced, at 

.least locally. 

14.5.1.4 Limestone-Hosted Dolomite 

Limestone-hosted dolomite crystals may or may not have ferroan rims. 
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Crystals with ferroan rims suggest that they completed their growth 

after calcite authigenesis, as suggested for matrix dolomites. 

Non-ferroan dolomite may have been synchronous with calcite 

authigenesis. 

14.5.1.5 Dolomite and the Chemical Model 

The positive correlation of 013C with bulk FeO composition suggests that 

the outer, most ferroan zones in the dolomit~rystals have positive 

~13 u C values. This implies precipitation in the fermentation zone (Zone 

III in Figure 14.2). The bulk of these crystals was probably 

precipitated at shallower depths in Zone III or in Zone II once sulphate 

levels were sufficiently depressed (dash-dot line in Figure 14.2). The 

solid bar in Figure 14.2 is the range of ol3C derived from the linear 

regression of o13
C and FeO in Figure 12.4 for compositions of 0-4 wt % 

J 

FeO. The v~riability in the CL microstratigraphy underscores the 
-

importance of the local chemistry of pore solutions. 

14.5.2 Silicification 

As, indicated in Chapter 13, silicification spans the entire diagenetic 

history of, the CHG (Figure 14.2). Petrographic evidence in conjunction 

with field relationships indicate that radiolaria and siliceous sponge 

spicules are the principle contributors of silica to these sed~ments. 

\ 
Early silicification may be related to fluctuations in pore-water pH in 

sediments close to the sediment-water interface. Higher pH 
~· 

characterizes suboxic to anoxic pore-waters in Zones I+, II, III whereas 

lower pH is generated by aerobic oxidation in Zone I. Whether 

precipitati?n or dissolution of silica occurs depends on the net 
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influence of seawater and bacterial oxidation in the various zones. 

Higher and lower pH pore-waters encourage dissolution and precipitation, 

respectively. Intrinsic variations in the solubility of various species 
.,£, 

of .radiolaria and sil~ce_ou~ sponges could conceivably ·provide dissolved 

silica over a wide depth interval~ Silicification of ~orne argillaceous 

interbeds in parted and ribbon limestone sequences appears to have 

post-dated dolomitization (and therefore calcite authigenesis), based on 

the presence of floating, corroded(?) dolomite rhombs in an 

argillaceous chert matrix. In other parteO and tibbon limestone 

sequences, the presence of diffuse, slightly sil~ceous, tan-weathering 

crusts on the margins of some mudstones (Plate 9c) suggests that the 

later stages of mudstone lithification may have coincided with chert 

precipitation. Totally silicified sequences in which parted or ribbon 

limestones are not clearly differentiable are suggested to be the 

early-silicified protolith of these limestones. The lower portion of 

B~d 11 at Cow Head North is an example of this, where the onlj 

limestones encountered are isolated, widely-scattered nodul es . 

. r 

14,5.3 B~ite Authigenesis 

/ 

Most barite occutrences are interpreted to be early diagenetic (Figure 
, _ 

14.2; Chapter 13). Petrographic relationships involving barite and 

neospar in mudstones of parte~. ribbon, and nodular sequences illustrate 

that barite predates, postdates, and is synchronous with calcite 

precipitation. These relationships are interpreted to represent slignt 

fluctuatior:s in Eh and pH within a few centimetres of the sediment-water 

interface. 

.f4. 
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14.~.4 Pyrite Authigenesis 

. 
Pyrite is found in all sediments; however, paragenetic relationships are 

seldom unequivocally interpreted. Within parted, ribbon, and nodular 

li~estones pyrite occurs ~s both a replacement phase, a cement, and as 

nuclei for late~ neospar precipitation to form mudstone. As cement ~nd 

nuclei pyrite predates calcite authigenesis, but such clearly defined 
.r-'\ . 

relationships are exceptional. 

14.6 MUDSTONE LITHOFACIES AND TIME 

From previous discussion, the association of concretions and dark, 

organic-rich shales is a common one for reasons that have already been 

discussed at length. The conclusion that parted and ribbon mudstones 

and early lithification in general in the CHG are controlled in large 

part by suboxic and anoxic bacterial decay of otganics indicates that 

this type of early lithification is widespread and probably also 

important in. parted and ribbon limestones from numerous other localities 

that are associated with dark, finely laminated, pre·stmably organic-rich 

shales (e.g. Wiison, 1969; Cook and Taylor, 1977; and other ref~rences 

in Section 2. 10 of Chapter 2). 

It is generally recognized that the ~ost spectacular development of 
. 

black, organic-rich shales occurred in the early .Paleozoic (Berry and 

Wilde,l978; Jenkyns, 1980: Leggett, 1980). Mesozoic, especially upper 

Jurassic to middle Cretaceous, black shales are also widespread 

-
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' 
(Jenkyns, 1980; Southam!! al., 1980). Although there exist several 

mpdels for the formation· of black sha.les (refer to above cHatioos), , 

recent studies generally ascribe these to have been deposited during 
. . 

eustatic high-stands~hich had the effect of increasing the area of 

basin floor ~nderlying highly. fertile zones (Leggett, 1978; Berry an9 

Wilde, 1978; Jenkyns, 1980). 

Berry and Wilde (197B) considered the dimin~shing importance of the 

black shale facies from the early Pa.leozoic to the present to be due to 

progressive ventilation of the world ocean as a result of repeated, 
.. f 

major ~la~iations; Consequently, widespread anoxic sedimentary facie~ 
9 

are not found in the modern oceans: although organic-rich muds which . 

c~uld eventually form black shales do accumul~te in 
1
certain physicalLy 

restricted fjords as well as in some bays, estuaries, and in the Black 
/ 

Sea (Berry and Wilde, · 1978)~ 

The i~portance of organic-rich sediments for the generation of this 

distinctive style of slope sedimentario~ in many Lo~er Paleozoic and 
. . . 
Mesozoic slope sequences is underscored by the observation t~at in the 

I .,_ 
modern ocean, there are no "ibbon and parted sequ~nces, which, beCfluse 

of their shallow eubsurface depth of formation. sh<;>uld be rou~inely 
.. 

encountered in deep-sampling of carbonate slopes such as in the Bahamas. 

Instead, what is found'are micritic, commonly pelleted iumps~nd ~rusts 

and micrite-cemented grainstones (e.g. Mullins!! !l·• 1980a) -

sediments which are quite unlike those encountered in the fossil 

record. 

• 

, 

· r--···- - - ------ -. 
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' 
Chapter 15 

CONCLUSIONS 

15.1 SEDIMENTATION 

The Cow Head Group was deposited as a !Jase-of-slope apron on the western 

continental margin qf Iapetus. Five lithofacies are recognized in this 
\ 

succession • 

. Conglomerate Lithofacies: Most conglometates ·are inter preted as debris 

flows based on the the following: ( 1) lack of or poor normal grading; 

(2) irr.egular tops with projecti!lg boulders; (3) abrupt thinning at 

margins; ( 4) lack of stratification; ( 5) 'and incorporation of 

penecontem.poraneously-deformed materi?l. The lack of mud matrix (lime 

mud or terrig~nous mud) in conjunction with occasi~nal normal grading, 

coarse foreset beds, and local clast. imbrication suggests that in some 

of these conglom!l!rates, ~ther parti<;:le-support: mechanisms, such as 

dispersive pressure or turbulence, are important in addition to yield 

s~rehgth an·d bouyancy. 

C!lcarenite Lithofacies: The generally massive bedding trl these 
. .,..-

grainstones and occasional normal grading and trough cross-lamination 

are inadequ<;ttely accounted for by the classical turbidit'y current 

J 
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model. These sedi•ne.nts do, however, resembl,e proximal siliciclastic 

turbidites described in other studies. The typical massive bedding with 

less common normal grading is interpreted to result from a direct ·. 
suspension settling stage from these high density flows as they :slowed 

and gradually became more dilute. The lack of dewatering structures is 

accounted for by an initial lack of fine, interstitial sed11i•ent. ) 

I 
Thinly-bedded grains_tones within par~ed and ribbon 1 imestone sequences 

are probably turbidites. 
./ 

Siltstone Lithofacies and Shale Lithofacies: Silt-shale couplets 

consisting of equal thicknesses of .. .siltstone and shale (siltstone . 

lithofacies), or isolated stringers ot siltstone within shale (shale 

' 
lithofacies) are interpreted as fine-grained turbidite- hE>mipelagite 

' cycles. Turbidites are regarded as sLt o·r terrige~ous mud turbidites 

based on · wh-ether siltstone or shale is dominant. Silt turbidites . 

exhibit the same sequence of sedimentary structu-res as the the Bouma 

(1962) sequence for sandy turbidites and were thus deposited by a 

waning, dilute turbidity current. Terrigenous mud turbid ites are 

similar to \hose de·scribed by Stow (1982) from silicidas tic deep-water 

sed'iments arid likewise demonstrate .a predictable sequence of small-scale 

sedimentary structures. By analogy with terrigenous mud turbidites 

described from elsewhere, these sediments were depo~ited from thick, 

slow-moving, very dilute turbidity c.urrents. 

Millimetre-cycles of inter laminated black and green or red and green 
• 

shales are interpreted to be a reflection of the different abundances as 

well as preservatl.on potential of organic material in turbidite 

terrigenous muds versus hemipelagic terrigenqus muds. The thicker · 
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metre-eye les in shales ar:e interpreted to result . from 

c 1 imat ically-controlled. periodic variations in the amount of organic 

matter delivered from the source regions of the terrigenous muds.or 
' 

oxygen levels of bottom waters. 

Mudstone Lithofacies: The mudstone-shale or -marl rhythmite, 'although 

not perfectly understood on the basis of fieid work and petrography 

al~me, is clearly an early feature. It has primary depositional 

chara.cteristics, such as fine, parallel laminations and scattered 

allochems as well as those conventionally regarded as d-iagenetic in 

origin, such as nodules. Attempts ~o explain this complex lithofacies 

by deposition from carbonate mud-rich, dilute turbidity currents or 

settling of hemipelagic (peri-platform) fines fails to account for its 

most salient. characteristics, such as the remarkable planarity of some 

.beds;, the association with nodular lime·stones; fitted fabrics; composite 

beds; and marginal aggradation on conti·nuous and nodular mudstones. A 

con'tourtte origin · for both grainstones and mudstones, 'although a 

' . 
possibility, is not likely ' to be sufficiently distinc;t from turbidites 

to be recognizable . Except for their lenticular shape, many nodular 

mudstones are identical to their more continuous~y-bedded counterparts 

although, based on field work and petrography alone, the exact nature of 

their relationship is not clear. 

i As is typical for most modern and . .ancient carbonate slopes, packages of 

.these lithofacies occur in an unpredictable, disorganized array, quite 

unlike submarine fan deposits where fan progradation creates a 

distinctive succession of fan environment!f) A base-:of-slope apron 

depositional model, as suggested by Ja111es and Stevens (in prep.), is 
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...--------) also supported by th.e general lack of obvious channelling. The various 

gravity flows which do occur in the CHG are interpreted to have spread 

out as large sheet-flows from a semi-cont'1nuous 1 ine source at or ncar 

the platform margin. 

15,2 INTRASTRATAL DEFORMATION 

The occurrence of intraformational truncation surfaces, slide masses, 

and shear zones in the most distal outcrops of the CHG indicates . that 

deposition occurred on a sloping surf'-. ce. A simple model to relate the 
. ) 

above features is outlined, based on several exceptionally informative 
/ 

outcrops. Practical recognition and tlifferentiation of .truncation 

surfaces, slide masses, and shear zq~es requires extensive strike 

exposure. Instead, what is most commonly encountered are· nUJnerous, 

minor bedding disruptions which are the result of shear zone deformation 

either (1) at the 9'1ace of detachment of a slide mass (i.e. truncation 

surface); (2) at the base of the slide mass or at the surface of the 

.overridden, in~ sediment; or (3) within a shallow, substrata! shear 

zone along which minor creep of the overlying sediment has occurred, but 

. there has been ·no detachment. These often subtl,y-expressed deformation 

fabrics include: (1) intrafolial folding, (2) brecciation, and (3) 

rotation of slabs of limestone. Phacoidal bedding (4) is produced in 

some mudstones and grainstones by the development of irregular, 

• 
anastomosing, argillaceous seams. In addition, finely laminated shales 

and marls contain domains where laminations are (5) redriented or (6) 

homogenized. Small-scale (7) isoclinal folding and (8) microfaulting 
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are also locally developed, Although the exact origin of the . ' deformation may not be known due to outcrop' limitations,. their prese~ce 
~ , I 

in strata is an important signpost that synsedimentary fail~ has \ . 

occurred and that the depositional surface was not flat. The ~~quen~ 
-of ~his type of intrastratal deformation in the CHG indicates tha~~', . ) 

,_ 
sediment f~_!lure was a ·common occurrence. 

Association of the above shear-zone deformation fabrics with clearly 

defined slide masses and truncation surfaces, along with evidence to 

indicate a pre-compactive origin precludes ~ tectonic origin foi this 

type of intrastratal deformation. In contrast, contorted limestones are 

interpreted to reflect layer-parallei shortening generated by 

~orizontal, tectonic compression. U~equivocal evidence of a sur~cial 
, 
or shallow subsu}ficial sliding origin fo~· these enigmatic limeston~s is 

entirely lacking. T~e.interpretation of contorted limestones as 

tectonic · is compatible with the northeast-southwest trends of their fold 

hinges, similarly oriented vertical styloli tes (see below), and regional 

structures. The amount of shortening accounted for by contorted 

limestones and vertical stylolites is not known. 

15.3 MECHANICAL AND CHEMICAL COMPACTION 

Based on measurement of clastic dikes, the .CHG has been compacted by an 

estimated 50-60%. Sequences dominated by thick grainstones or 

conglomerates may have compacted less, depending on the importance of 
-

intrabed pressure solution. Sequences with greater amounts of 

t 
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argillaceous sediment may have compacted more, up to 80%, a value 

consistent with original depositional por~sities of "terrigenous muds. 

This implies that the measured compaction can be explained largely as 

the result of mechanical compaction of terrigenous mud-rich sediments, 

with pressure solution general!~ being relatively unimportant. The role 

of pressure solution in the formation of nodular limestones as well as 

the parted and ribbon limestones has been mainly to modify 

earlier-formed structures. Pressure solution of grainstone laminations 

between nodules may be related to the original lack uf cementation of 

the grainstone. 

·15.4 ORIGIN OF PELOIDS ~~D INTRACLASTS 

• 
Micritic peloids and peloidal intraclasts characterized .bY structure 

grumeleuse a're dominant silt- and sand-size particles in CHG 

limestones. In this respect, the se limestones are s i mil a r to ma ny 

others described from Paleozoic sequences. Other prima ry components 

include -detrital dolomite, s i liciclastic sand and silt, shelly bioclas~s 

and other fossils, and various types of Girvanella clasts - oncolites, 

_rafts~ single tubules, and intraclasts. Based·on comparison of 

microfa'brics in silt- ~nd sand- size peloids and peloidal intraclasts 

with thqse of Gi rvanella sheets within algal boundstone boulders in 

conglomerates, it is concluded that this platform margin lit hofacies 
~· 

could· have been a major contributor of sand-size and smaller particles 

to CHG. Girvanella sheets in the boundstones often do not conta i n c l ear 

evictence of tubules. Ins.tead the microfabric is most often 
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appropriately described as structure grumeleu~e and thus Girvanella 

sheets are a likely progenitor of many intra~lasts having this 

microfabric. Girvanella sheets which are less cemented could 

conceivably provide rafts an.d single tubules. Further destruction of 

these grains w~uld yield silt-sized4 peloids, some of which may retain a 

vestige of their algal origin a~ a slightly more coarse~y crystalline, 

m'icrospar centre. Most peloids, however are devoid of tell-tale 

microfabrics which may be the result of intra-tubular micrite 

cementation. 

In contrast to Girvanella, the petrographic evidence for Epip~yton in 

the fine grained limestones is comparatively rare, occurring only as 

intraclasts. The homogeneous micritic composition of many Epiphyton 

suggests that frag~eotation .of their branches will ,readily provide silt

to fine sand-size peloias but . the lack of disti~cti ve microstructure 

precludes the differentiation of such algally-derived pelpids from those 

of other origins. 

15.5 DIAGENETIC CALCITES 

15.5 . 1 Field Data, Petrography, and Cathode Luminescence 

. Cements, neospar, and DFC are all significant authigenic component.s - in 

the CHG, although , th~ first two are volumetrically more important than 
.!./ '?_, . . • 

the last. The follow~n~- #Uggests individually, and· especially 

collectively, that lithification, res~lting from precipitation of 

c·alcite cement, neospar, or DFC occurred during shallow burial 

'· 

·= 



0 · 

·"' 

438 

.-

diagen·esis: ( 1)' grains tones and mudstones have similar cement and 

neospar characteristics to those which occur as clasts in conglomerates; 

(2) ther~ is n~ evidence for compaction ·of most limestones whereas 

interbedded arglllaceous sediments are often obviously compacted: (3} 
.. 

microspar mudstone nodules may show evidence of exposure on the sea 

floor; (4) mudst~ne nodul~s. occasionally septarian, occur as clasts and 
. . 

in rafts in conglomerates: (5) mudstone rafts in conglomerates may 

develo·p fracture cleava~e and fragmented clasts are often angular; (6} 
... 

mudstones may~be fragmented and rotated in synsedimentary shear zones; 

(7) DFC occurs as clasts in conglomerates; (8) curved DFC crystals 

s4ggest growth during shear: (9) displacive crystal growth would be 

easier ~f surrQunding terrigenous muds were largely uncompacted and 

easily compressible; (10) CFC i~ associated with }eopetal internal 

13 . 
sediment and is interpreted as a submarine cement, .although 0 C values 

indicate an o1·ganic carbon influence. 

Early lithification of these limest.ones is also supported by stable 

rl?> 
isotopic analyses in which negative u C values indicate the 

incorporation of organically-derived bicarbonate. The general lack of . 

evidence for submarine exposure suggests that !hese limestones be 

regarded as concretions (i.~. early lithification below sediment 

surface) rather than hardgrounds. 

A generalized CL microstratigraphy is recognized for cements, neospar, 

and DFC which is identical to that described from shallow-water 

carbonates. The luminescence trend from dark to bright to dull is 

interpreted as a response to decreasin& Eh conditions in which first . Hn 

and then Fe is remobilized from ·various oxides and hydroxides aftd 
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incorporated into pricipitated calcite. Intrasample correlation of CL 

characteris·tics of cements, neospar, and DFC indicates that these 

diagenetic calcites can all form from identical pore-waters, althoUih 

DFC. is usually later than the others. Detailed zoning correlation on a 

regional basis_or even from outcrop to outcrop is not possible, 

underscoring the importance of local pore-water effects. This is also 

supported by variations in trace element geochemistry and stable isotope 

analyses. The sharp CL zoning in these calcites strongly suggests that 

they are largely unaltered and that their chemistry is primary . 

15.5.2 Geochemistry of Calcite 
. I 

Neospar, cements, and DFC commonly demonstrate decreasing Sr. and MgO 

concentrations and increasing FeO concentra~ions with progressive 

precipitation. MnO concentration trends are not consistent although 

this may be in part a function of low concentrations. The decrease in 
, 

Sr and MgO is explained by incorporation into mineralogic sinks (e . g. Mg 

in dolomite) or possibly diffusion upward into the overlying water 

~ass. Fe and Mn enrichment in the later stages of crystal growth -

.results from a low~ring'of Eh which remobilizes these elements from 

various dispersed oxides and hydroxides. The above trends are nQt, 

however, _without exceptions~ Trace element trends such as those frqm 

the CHG are also typical of meteorically-altered limestones where 

mineralogical stabilization proceeds by replacement of aragonite, 

incongruent· dissolution of Mg-calcite, and precipitation of calcite with 

lower Sr and Mg concentratiorrs. 

Using published· partitioning ~oefficients for Mg and Sr extrapolated to 
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below 5 degrees Cl and assuming Lower Paleozoic seawater was identical 

to modern seawater with respect to Ca, Mg, Sr, and Mn concentrations, 

then the earliest precipitates could have precipitated from unmodified 

or slightly modified seawater, a likely possibility given the abundance 

of field and petr~graphic evidence to suggest early, shallow-burial · 

lithification. 

Stable isotope analysis of calcite demonstrates a considerable range of 

lV~: and o18o values. Distinctly negative values of o13c indicate a 

variable contribution of organically-derived carbon. Seri\11 analyses of . 

successive precipitates within the same sample commonly illustrate .. 
decreasing or increasing 013C with ;progressive precipitation. In the 

fi;st case, precipitation is interpreted to be driven by sulphate 

reduction. In the second case, rising or'c reflects the increasing\ 

importance of fermentation in controlling the o13C of .pore-water 

bicarbonate; Serial 013C analyses in conjunction with staining and 

cathode luminescence data suggest that "ordinary" microspar and 

pseudospar mudstones may .be lithified before o13C becomes dis tinctly 

negative. The negative 01tlo of most calcites in this study is also 

suggested to be related to bacterial oxidation of organic matter. 

15.6 MODEL FOR GENERATION OF PARTED, RIBBON, AND NODULAR 

LIMESTONES 

A model which accounts for the origin of parted, ribbon, and nodular 

t-
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limestones incorporates elements of both primary sedimentation as well 

as diagenetic featu~es. The "background" sedimentation of shales 

consists mainly of millimetre- to centimetre-size terrigenous mud 

turbidite-hemipelagite cycle~. During times of higher carbonate 

productivity in shallow-water platformal areas, terrigenous mud 

turbidites and their associated hemipelagites are carbonate-rich 

relative to times when carbonate is sc·arce. Based on analogy with 

Mesqzoic and Cenozoic periodites, climatic cycles probably controlled 

the periodicity of carbonate abundance. Shortly after deposition 

aerobi~ bacterial oxidation of organic matter causes some of the calcite 

(assuming calcite mineralogy for simplicity) to dissolve. In other 

areas containing mor~organics, anaerobic reactions may continue to 

oxidize organics, increasing carbonate alkalinity, and inducing 

prec~pitation of calcite. With the establishment of concentration 

gradients, dissolved carbonate is driven toward already carbonate-rich 

areas to form: (1) sheet and nodular concretions, (2) cement 

grainstones, (3) precipitate mudstone on grainy sediments to form cored 

• nodules and composite beds, and (4) precipitate DFC fringes. Some 

lumpy-bedded mudstones may result from the lateral coalescence of 

homogeneously crystalline concretions. Fitted fabrics in parted, wavy 

and nodular limestones imply a ' local redistribution of carbonate. Early 

dolomitization to form pervasive dolomitic siltston.es and early 

silicification of the protolith may preclude the formation of parted and 

ribbon limestones. 

In general, it appears that · the most profound diagenetic alteration of 

these sediments occurs during shallow burial. controlled by bacterial 
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oxidation of organic matter. Later diagenetic effects include more 

dolomitization, silicification, barite and pyrite precipitation, but 

these phases are relatively minor. The outcrop-wide late dolomiti~ation 

which occurs in the White Rock Islets is clearly an exception. M~ny of 
. I 

these late phases also often appear to be related"to tectonism. 

15.7 DOLOMITIZATION 

Three generations of dolomite are recognized in the CHG. The first is a 

transported, detrital phase; the second is "Early" diagenetic; and the 

' 
last is related to tectonism ("Late" diagenetic). Early tlblomite occurs 

mainly as a replacement of calcite allochems and overgrowth of dc~ital 

dolomite crystals. Fieid and petrographic relationships indicate that 

the Early dolomitization occurred in non-compacted or partially 

compacted sediments. Dolomite growth may have been synchronous with 

calcite authigenesis, but the presence of ferroan rims on many dolom~te 

crystals suggests that the growth history of dolomite was protracted and 

continuea past the main episode of calcite authigenesis. Pervasive 

dolomitic siltstones, however, are considered to have predated and 

therefore precluded calcite cementation of the precursor grainstones. 

The positive correlation of o11: and bulk FeO content suggests that the 

latest ferroan dolomite rims are characterized by progressively greater 

o1~ values, implying that during the later ~tages of dolomite 

precipitation, bacterial fermentation was important. Anoxic dolomites 

described from numerous shallow-buried, organic-rich sediments are 

analogues for Early dolomites in the CHG. 
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15.8 SILICIFICATION 

Chert oc~s both as a replacement. phase as well as a cement, although 

the latter is relatively uncommon. The silicification history of the 

CHG is protracted and there is abundant evidence for silicification 
./ 

which predates or postdates compaction. CL dramatically.illustrates 

that calcite-replaced radiolaria and spicules are much more common.than 

is apparent using standard petrographic analysis. In ad~ition, there is 

sound petrographic evidence to sugg,est that vast quantities of 
.... .. 

radiolaria and spicules were dissolved without leaving a trace. Based 

on the above evidence, dissolu_tion of radiolaria and spicules during 

s~allow-burial diagenesis is interpreted to be responsible for most of 

the silicification in the CHG. 

15.9 CALCITE HICROFABRICS 

15.9.1 Radiaxial Fibrous Calcite 

RFC is restricted to fractures, vugs, and enrgmatic mound structures in 

shallow-water boulders of conglomerates. In all respects, except CL for 

which there is little comparative data available, RFC is typical of that 

__ jescri be<l. in most other studies. CL of' some RFC froib the CHG 

demonstrates their remarkable similarity to DFC (see below) with regar~s. 

· to the variability of internal growth surfaces. As recently described 

f 
J 
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by Kendall (in press), these crystals grew a~ spherocry~tals at time~ 

and as unit crystals at other times. Although mo8t . of Kendall's (in 

press) reinterpretation of RFC as composit~ crystals is supported by CL 
' 

data from the present study, an alternate ·hypothesis to that of Kendall 

-(in press) is proposed to explain distally-convergent extincti_on. 

Microfabric evidence visible with CL suggests that RFC crystals a re 

actually length- slow and not length-fa~t as perceived optical ly. If 

this is true, the distally-convergent extinction which charac t erizes RFC 
I) ' 

is explained simply as a function of asymmetric spherocrysta l gr owth on 

a length-slow seed crystal. If both length fast and length~slow 

ciystals precipitate initially, this leads to the cohabitat io n of RfC 

and FOC in the same pores, a phenomenon
1

not explayned . by Kenda ll ' s (in 
~·. . . . 

press) hypothesis. 

15.9.2 Neospar 

CL study of neospar in marginall y aggr-aded mud s t ones s ugges t s thu t 

aggrading neomorphism i n. argillaceous sediment s , f or crys t als of 

microspar-size and larger, does not occur by porph yr o id · or coa l es_; ive 

processes as hypothesized by- Folk ( 1965) . Ra t her marginal aggradation 

t results from decreased nucleation density at the edges of t he bed pnd 

precipi tation of progressively younger calcite, not the cannibaliza.tion 

of microspar. CL cle~rly shows that neospar growth often occurs by 

asymmetric, irregular increments. 

15.9.3 pisplacive Fibrous Calcite 

DFC is an impor tant diagenet i c constituent of the CHG ~oth in terms of 

' 

/ 



_, 

445 

, 

its const-raints on the timing of diagenesis as well as the microfabrics'" 

m~de visible by CL. Macroscopically-re~ognizable fringes of DFC grow on 

.both continuo\,is and "flodulat" beds, with crystals oriented in pallisade 

fashion or as a se-ries of mutually interfering cones .. Micro-fringes of 

DFC are 'ubiquitous ~·~d af'e . identical, both genetically and 

petrofabr~cally (where assessable),. to the macro-fringes ~ DFC. A
~---

fibrous, radiating inclusion pattern and the presence of fibrous 

~PHt'allites made visibl¢' with CL indicate that DFC grew as 
~ 

_, spherocrystals at times, and as unit crystals at other times, with both 

. . \ 

types of gr~wth. often· ~ccurriflg within· :-h_e."•same crystal. Neospar 

associated with DFC oc.casidnally al~o shows spheruliti.c inclusion 

pat terns and crystall_it"es~ · ~sed on· staining and CL, DFC grew during 

the later stages, 9r as a conti~uatioa, of m~ginal aggradation in 

mudstones and cemefltation in grainstones . 

--./ 
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PLATES 

All thin section microphotographs are taken in 

plane-polarized light unless otherwise indicated. 
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PLATE 1: CONGLOMERATE LITHOFACIES 

a: Massive polymictic conglomerate overlying thinly-bedded parted 
limestones with minor basal scour. The prominent white-weathering 
bpulders are composed main~y of calcified algae and · synsedimentary . 
cement (see James, _1981 and Chapter 5). The large boulder in the 
upper centre of the photograph is app~o~imately 2 m aero~. 
Stratigraphic top is to upper right of photo. Cow Head North, Upper 
Cambrian, Bed 7. 

b: Conglomerate lens with gradually tapered margin laterally pinc'hing 
out into a. ribbon limestone sequence. Several broad, shallo~ scours 
occur on the sole of this conglomerate (not seen in photo), otherwise 
scour is not detectable. This suggests the conglomerate had 
depositional re~ief on the sea floor. Stratigraphic top is toward 
right. Broom Point South, Upper Cambrian, unit 43. 

c: Conglomerate with sandy matrix demonstrates exceptionally 
well-developed normal grading. Packing fabric varies from 
clast-supported to condensed. With decreasing clast size the tabular 
aspect also decreases. This 1.5 m thick conglomerate immediately 
overlies and is probably genetically related to the 1 m thick slide 
sheet shown in Plate 16b. Cow Head South, Middle Ordovician, Bed 
13s .4. 

d: Soft-sediment folding in parted mudstone raft in conglomerate 
illustrates that the limestone is competent, though brittle, and 
controls folding style whereas interbedded marl flows into the fold 
hinge zone. This contrasting behaviour of mudstone and marl 
indicates that the rhythmite. character is early , and is either primary 
in origin or formed during shallow burial. As a result of interlayer 
shear generated during folding, an early-formed fracture cleavage 
allows offset of limestone microlithons. The high angle intersection 
·of the fold hinge and the fracture cleavage is an uncommon 
relationship (T. Calon, pers. comm., 1982). Cow Head North, Middle 
Ordovician, Bed 14. 

e: Soft- sediment faulting and brecciation within a raft of parted 
mudstone produces numerous clasts with rectangular cross-sections. 
This reflects the existence of an early fracture cleavage. Cow Head 
North, Beachy Cove, Upper Cambrian, Bed 3. 1 

f: Bedding-plane view of shaly conglomerate matrix which preserves 
distorted, vestigial laminations, indicating minor transport or late 
stage incorporation of the precursor ribbon limestone into the 
conglomerate. Hammer head scale to right. Cow Head North, Beachy 
Cove, Upper C.ambrian, Bed 3 . .. 
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PLATE 2: CONGLOMERATE LITHOFACIES 

a: ~!at-pebble imbrication in a 20 m-long lens resembles wave-forms 
described by Hubert et al. ( 1977). Stratigraphic top is up. Green 
Point, base of Upper-cambrian section on wave-cut platform. 

b: Coarse, tabular cross-bedding outlined by prominent fractures and 
alignment of flat mudstone clasts indicates current direction toward 
southeast' (to left of photo) . Stratigraphic top is up. Cow Head 
South, Shoal Cove Section, Lower Ordovician, Bed 9s.l2-.13. 

c: This thin conglomerate with shaly matrix-supported fabric at its base 
grades upward into clast-supported fabric. Stratigraphic top is up. 
Martin Point, Upper Cambrian, unit 33. 

d: Draped, isolated boulder in a ribpon to parted limestone sequence has 
a thin veneer of pebbly conglomerate plastered against its base. 
This suggests the boulder was stranded by a debris flow which was 
eventually deposited further downslope. Refer to text for 
discussion. Stratigraphic top is up. Cow Head North, Upper 
Cambrian, Bed 6.37-.44, 

, 
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PLATE 3: CALCARENITE LITHOFACIES 

a: Thick-bedded massive, pebbly .grainstones are separated by recessive, 
thin beds of dolomitic and peloidal siltstones. The massive bed 
(arro~) immediately above the knap~ck scale i~ foreg\ound is 
approximately 40 em thick. Stratigraphic top is to upper right of 

'photo. Cow He~d North, Upper Cambrian, Bed 6. 

b: Normally-graded grainstone with abundant flat mudstone pebbles grades 
upward.to cross-laminated silt. Martin Point, Upper Cambrian, unit 
33, sample MP-42. 

c: Graded grainstone with centimetre-long flat pebbles and ;bunqant 
'· .siliciclastic sand at its base (dark specks) demonstrates pronounced 

bedding-parailel stylolites which impart a false, _ thin-bedded · 
aspect. Pocket-kr1,ife scale i _s 9 em long. Stratigraphic top is up • 

. Broom Point North, Upper Cambrian, units 20-23. 

d: Mega-rippled and rippled quartzose calcarenite shows flaggy partings 
in the mega-rippled units (arrowed) which are due to stylolitization 
parallel to foresets. Thinner interbeds are mudstones and peloidal 
packstones. Stratigraphic top is up. Martin Point, Upper Cambrian, 
unit 3lc-e. 

.--
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PLATE 4: CALC~RENITE LITHOFACIES 

a: Bedding surface view 'of trough cross-lamination in quartzose 
grainstone. Paleocurrent is toward southeast {bottom right of 
photograph). Outline of troughs is enhanced by stylolites, which 
occasionally cross-cut each other, departing ·from the primary 
sedimentary lamination control. Cow Head North, Upper Cambrian, Bed 
6. ' 

b: Arrow points 
(details not 
mega-rippled 
North, Upper 

to upside ~ down T r.c sequence in peloidal siltstone 
visible in photo) ~hich is eroded and overturned bf" 
grainstone. Stratigraphic top is up."' Broom Point 
Cambrian, unit 22. 

c: Channelled pebbly grainstone scours and incorporates as pebble-size 
intraC'lasts underlyin~ dolomitic siltstone and shale. .Arrows poiRt 
to base of channel. Scale card in 15 em across. Stratigraphic top 
is· up. Cow Head N?rth, Upper Cambrian, Bed 6.20. 

d: This leQt'iculaf calcarenite is slightly graded and has parasitic 
ripple!l···on its sur face. some of which were subsequently scoured. 

·Scale card in 15 em across.' Stratigraphic top is upper r.ig_ht of 
· photo ... Cow Head North, Up,per Cambrian, Bed 6.20 . 

. · 

I 
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PLATE 5': SILTSTONE LITHOFACIES - SHALE LITHOFACIES 

a: A typical siltstone lithofacies interval in which sediments are 
mostly planar-bedded siltstonf!s characterized by Tee. divisions, 
abundant sole marks and basal ichnofauna, and interbedded green 

' shales. Scale card is 15 em long. Stratigraphic top is toward 
left. Green Point, Upper Cambrian, unit S. · 

I 

b: Resistant-weathering, parallel- apd ripple-laminated dolomitic 
siltstones interbedded with recessive red shaies. Stratigraphic top 
is up. St. Paul's North, Middle Ordovician, units 83-84 . · 

c: Interbedded green (light in phot-o) and black (dark) shales. Each of 
these broad 10-30 em-thick bands is further supdi vided into 
centimetre- to millimetre-scale alternating bl'ack and green 
laminations (arrows). Stratigraphic top is to lower left of photo 
(overturned section). Green Point, Lower Ordovician, unit 29. 

d: Numerous completel y dolomi tized si 1 tstone-shale couplets (indicated 
in black ink) in which the dolomitized shales are as resistant as the 
dolomitic siltstones. Stratigraphic top is toward right of photo . 
Cow Head North, Upper Cambrian, Bed 6: 

e: Siltstone sole showing defect-initiated scours. These sediments 
occu·r within a red and green shale sequence. A few horizontal traces 
cross the scour trend. Scours indicate a southeastward paleocurrent 
(upper right of photo). Knife scale is 9 em long. · Green Point, 
Lower Ordovician, unit 35, 

.. 

\ 
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PLATE 6: SILTSTONE LITHOFACIES - SHALE LITHOFACIES 

a: . Slab of dolomitic siltstone stringer in red shale sequence. Numerous 
coarse sand- to granule-size clasts of phosphate and chert are · 
scattered throughout the bed. The dominantly massive lower portion 
of , the bed is overlain by a division of graded laminations and a 
discontinuous siltstone stringer. Compacted burrows (arrows) are 
found in the upper portion of the sample. Stratigraphic top is up. 
Green Point, Lower Ordbvician; units 47-49, sample GP-96-B. 

b: Slatl of paraliel-laminated'" siltstone overlai~ by . convoluted 
laminations of siltstone and shale and finally capped by massive 
shale. The sediment is completely dolomitized. Stratigraphic top is 
up. St. Paul's North, Lower Ordovician, unit 12, sample SPN-30 • 

. c: Slab of dolomitic silt-shale couplets. Sequence A illustrates basal 
scour ftnd upward gradation into fading ripples (arrows) which · pass 
laterally into muddy (shale) troughs; this is overlain by shale. 
Sequenc~ B shows a massive loaded basal division overlain by a . 
division of graded laminations and then shale. Sequence C has a 
distorted massive basal division of fine sandstone which grades" 
rapidly upward to siltstone with fading ripples (arrow). Sequence D 
shews parallel-laminated 5iltstone followed by graded laminations and 
then shale. Stratigraphic top is up. Cow Head North, Upper 
Cambrian, Bed 6, sample CHN-161. · 

d: Slab o£ isolated, dolomitic siltstone ripples, graded laminations and 
grey-green shale. Stratigraphic top is up. Cow Head South, Shoal 
Cove, Low~r Ordovician, Bed lls . 2, sample CHS-41. 

e: Thin section negative prini of mud turbidite which demonstrates 
numerous graded dolomitic siltstone-shale couplets. In this negative 
print, as in all others which follow, the light and dark areas are 
opposite to the rock colours. Sequences A and F illustrate fading 
ripples which grade upward into -a division of graded laminations, 
which in turn passes -upward into massive shale. Sequence F also 
demonstrates basal loading. Sequences C and D show graded 
laminations which pass upward into massive shale. B end E consist of 
very finely laminated (100 ~m-scale) particle-foliated shale. Scale 
bar is 5 mm. Stratigraphic top is up. · St. Paul's Quarry, Upper 
Cambrian, sample SPQ-2. 

' 
• J 
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PLATE 7: SILTSTONE LITHOF~CIES - SHALE LITHOFACIES 

a: Thirr section microphotograph in plane light of particle-foliated 
shale showing numerous black~ elongate particles, scattered c6mpacted 
shale intraclasts (light-coloured spindle shapes) and radiolaria 
replaced by ferroan calcite (round light~coloured particles). Scale 
bar is 500 pm. Stratigraphic top is· up. Green Point, Lower 
Ordovician, unit 30, samp~e GP-78. 

b: Thin section negat.ive print of 3 graded mud (shale) layers which 
abruptly overlie a very fine sand- to silt-size rippled peloidal and 
dolomitic grainstone. Each graded mud layer consists of a lower 
"particle-foliated shale (light shade in photo) which p~sses 
transitionally upward,to massive shale (dark in photo). The graded 
layers are overlain by a faintly-laminated silty shale. Scale bar is 
5 mm. Stratigraphic top is up. St. Paul's NortA, Lower OLdovician, 
unit 63, sample SPN-59. · 

c: Thiri section microphotograph of ''shale" which consists dominant l y of 
compacted shale intraclasts (lig~t-coloured, irregular spindle 
shapes) ~nd dispersed silt- and very fine sand-size peloids and 
dolomitic ~lt. · scale bar is 500 pm. Stratigraphic top is up. 
Martin Po~, Lower Ordovician, unit 42b, sample MP-98. 

d: Slab showing tension cracks in finely laminated green (dominant) and 
black shale. The cracks are compacted and are filled with ferroan 
calcite cement. These cracks could be the result of either 
synaeres i s or down-~lope creep. St. Paul's Quarry, Upper Cambrian, 
sample SPQ- 8. 

' 
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PLATE 8: SILTSTONE LITHOFACIES - SHALE LITHOFACIES 

a: Slab of burrowed dolomitic siltstone stringers {light-colouren) and 
red shale (dark). Branching burrow (arrow) is Chondrites. Scale bar 
is 2 em. Stratigraphic top is up. Martin Point, Middle Ordovician, 
unit )8, . sample MP- 84 . 

b: Thin section negative print of faecal pellet-filled Syncoprulus 
burrow (identified by G. Narbonne, 1984) in siltstone from red shale 
sequence. Se.diment consists mostly of 5-15 pm-size dolomite crystals 
with intercrystalline microquartz. Scale bar is 5 mm . Stratigr~phic 
top is up. St. Paul's North, Middle Ordovician, unit 82, sample 
SPN-2. ""-

c: Thin section negative print of faecal pellet-lined Cylindrichnus(?) 
burrow in siltstone from red shale sequence. Sediment consists of 
10-25 pm-size dolomite crystals. Sca l e bar is 2.5 mm. Stratigraphic 
.top is up. Western Brook Pond North, Lower Ordovician, unit 24, 
sample WN-11. 

d·:· 'fhin section l}.egative print of highly disrupted siltstone stringers 
(dark) and shale {light grey).' This sediment is entirely dolomite. 
Indeterminate bioturbation, such as i l lustrated in this photo, 
characterizes the prominent tan weathering dolomitic beds in Be 
at Cow Head North and South. Scale bar is 1 em. Stratigraphic top is 
up. Cow Head South, Lower Ordovician, Bed lls.16l sample 80-lls.16. 

e: Thin section negative print of silicified green shale with 
uncompacted burrows . Most of this sedi ment consists of equant 
micr9quartz with minor chalcedony in burrows. Numerous radiol aria 
and sponge spicul es are scattered throughout this sediment (arrows). 
Scale bar is 5 mm. Stratigraphic top is up. Western Brook Pond 
North, Lower Ordovician, unit 19 , sample WN-10. 

... 
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PLATE 9: MUDSTONE LITHOFACIES 

a: Ribbon limestone sequence (Type 1) consists mainly of 
continuously-beddedL planar mudstones. This outcrop is fur~her 
.described in Appendix A. Knapsack (arrow) for scale. Stratigraphic 
top is to upper right of photo. Cow Head North~ Lower. Ordovician, 
Bed 9.15-.17. . 

b: Ribbon limestone (Type 1) consisting of mudstone and minor grainstone 
passes gradationally upward into an overlying shale interval through 
an intermediate 1 m-thick nodular transition zone (located just above 
the 30-cm long metal clip-board scale). These nodules consist of 
rippled grainstone cores surrounded by mudstone envelopes. 
Stratigraphic top is to upper right of photo. Martin Point, Upper 
Cambrian, unit 36h-i. · 

c: Planar-bedded parted mudstone (Type 2) has light-coloured, . siliceous 
rinds on bed tops and bottoms. This outcrop is further described in 
Appendix A. Hanuner head points to stratigraphic top . . Cow Head North, 
Lower Ordovician, Bed 9. 6. 

d: Thin ribbon mudstone packages (Type 3) up to 30 cm. thick are 
interbedded with green and black shales of comparable- thicknes~. 
Note continuity of bedding and -slight tectonic flexure in the bedding 
(arrow). Thi~outcrop is further described in Appendix A. Hammer head 
points to stratigraphic top. Green Point> Lower Ordovician, units 
31-33. 

( 

. ' 
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PLATE 10: MUDSTONE LITHOF¥:IES - ; 
/ . 

a: Planar and wavy mudston~s (Type 2) with f{tted fabric preserve 
overall sediment package thickness. Knife scale is 9 em long. This 
outc~ is further described in Appendix A. Stratigraphic top is up. 
Green Point, Lower Ordovician, unit 28. 

b: Close-up of interbedded mudstones (M), grainstones (G), and 
calcareous marls (S) in a parted limestone sequence. Grainstones are 
considerably more -lenticular an~ wavy-bedded than associated 
mudstones. Stratigraphic top is up. Cow Head North, Upper Cambrian, 
Bed 6.52-54. · ·. 

c: 6edding-plane view of sinuously-crested ripples which preserve steep 
lee (to left) and gentl~ stoss (to right) form. Paleocurrent 
direction is 152 degrees to· the southeast. Martin Point, Upper 
Cambrian, unit 23d. 

d: Bedding-plane ~iew of mOdified ripples. Paleocurre~t direction is to 
the •southeast and is pointed to by hammer handle. · Cer"bral 
weathering pattern is interpreted to be the result of bioturbation. 
St. Paul's South, Lower Ordovician, unit 1. 

e: Finely lami'hated mudstones (wide, light grey· beds) grade into black 
marls (dark grey) which in turn grade into green (medium grey) 
marls. Repetition of black-green laminations within marl interbeds 
(arrow) demonstrates that the green to black transition is usually 
abrupt in contrast to the transitional black to green contact. This 
outcrop is further described in Appendix ~· Knife scale is 9 em 
long. Stratisraphic top is up. Green Point, Lower Ordovician, ~unit 
10. 

. · ... , 
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PLATE 11: TRACE FOSSILS IN MUDSTONE LITHOFACIES 

Planolites on the sole of a mudstone within large raft 00f ~arted 
1 imestone in conglomerate. Knife scale is 9 em long. Cow Head 
North, Upper Cambrian, Bed 3. 

Slab of parted microspar mudstone showing grainstone-filled SkolJ'thos 
burrows, ·one of which extends through the ariillaceous parting. In 

' J 

mudstone portions of the slab, burrow~ are uncompacted. In the shaly · 
parting, compac-tion is obvious. A close-up view of these (. 
relationships is shown in the next microphotograph . The scattered 
dark specks are loo~ aggregates of micrometre-size pyrite crystals. 
Stratigraphic top is up. Low,er Head, Lower Ordovician, sample LH-53. 

c.: Thin section negative ptint of burrowed mudstone and shaly parting 
shown in previous photograph. These are not Diplocraterion but 
instead ar·e single Skolithos tubes which were filled at different 

. times with different sediments comprising peloids, intraclasts, and 
bioc~asts. In the shaly parting, most of t~e grains are squashed 
together and not clearly. recognizable, except for a few thin 
'i.rilobit~ shell fragments which have small syntaxial calcite 
"fringes.' Evenly:-spa~ed ".ladder cracks" (arrows) break up the burrow 
on the right . Scale bar :!_s ,? mm. Stratigraphic top is up. Lower 
Head " Lower · OrdO'V~cian, . Sample LH-53. 

d: Slab of microspar IT)UStone containing uncompacted • . peloidal 
grainston~ and mudstone-filled Skolithos burrows. The largest one 
in th~s photograph shows prominent ladder cracks. The (lark mottles 
are loose aggregates of micrometre-s~e pyri~e crystals. 
Stratigraphic top is up~ Broom Point North, Lower Ordovician, un~t 
100, .. sample BPN-35 . 

S 
<7 \ 

e: lab of mq~tled microspar mudstone shows one bed which pinches out 
into a ' finely-laminated, argillaceous parting. The pi nch-out may be 
the result of synsedimentary shear as this .sample was colle~ ted from 
a "sheac zone. The mottled pattern is interpreted to .be due to 
bioturbation. Stratigraphic top is up: Broom Point North, Lower 
Ordovician, uryit 96, sample BPN.:-37. 
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PLATE 12: NODULES IN MUDSTONE LITitOFACIES 

a: Thin section negative print of irregularl.y-shaped, centimetre-size 
mottles of peloidal grainstone ~0 wackestone ("chaotic nodules"). 
Th~ internodular matrix consists mainly of squashed peloids, 
indistinct micritic patches and varying amounts of argillaceous 
sediment. Scale bar is I em. Stratigraphic top is up. Broom Point 
South, Lower ·o ·rdovician, unit. 65, sample BPS-11-B. 

b: Detrital nodule in parted roudstone sequence demonstrates laminations 
oriented at high angle to bedding. 'this nodule consists of 
finely-laminated, siliciclastic-rich, silicified shale. 
Stratigraphic top is up. Lower Head, Lower Ordovician. 

c 
c: Mudstone nodules extracted froiD grey. and green shales demonstrate 

equant, rounded shapes. Black marker lines on e·ach nodule indicate 
strike orientation. Nodules include both mudstone and cored types. 
These nodules .. were measured to evaluate the "synsedimentary boudin" 
Hypothesis of . Hubert et.al. (1977). Further details are provided in 
Appendix M. G.reen Poi;t",Upper Cambrian. 

d: Metre-length mudstone to peloidal packstone oodules ill' ribbon to 
parted limestone sequence are evenly spaced and surrounded by 
dolomitic mar 1. Stratigraphic top is to right. Green Point, Lower 
Ordovician, units 26-27. 

e: Septarian cracks in mudstone nodule are partially-filled with calcite 
cement. Knife scale is 9 em long. Float from Green Point, Upper 
Cambrian. 

f: Nodular limestones separated by d_olomitic marl consist of a. core 'of~ 
rippled grainstone enveloped by homogeneous mudstone. The 
continuous, composite bed at the level of the hammer head shows 
mudstone "caked" both below and· above the rippled grains to¥. Both 
continuous and nodular beds are of comparable thickness. 
Stratigraphic top is up. Broom Point North, Upper Cambrian, unit 24. 

-------- -- ---- -- ---
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PLATE 13: NODULES IN MUDSTONE LITHOFACIES .. 
a: Slab of mudstone nodule demonstrates a rippled, peloidal grainstoni 

core. The lower grainstone is deformed due to loading whereas the 
thinner, upper grainstone shows ripple forms. In the upper part ·of 
the nodule, the discontinuity pointed to by the large arrow ma.rks an 
abrupt transition from_microspar (below) to pseudospar (above). In 
the lower grainstone, the top of the bed is also characterized by. 
faded ripples (small . arrow). Stratigraphic top is up. Martin Point, · 
Upper C~rian, unit 36f, ~ple MP-12. 

b: Slab of nodular limestone shows mudstone envelopes (M) which surround 
discontinuous, horizon~al laminations of pyrite (P), which may be 
replacement of horizontal burrows. Partial pyritization also occurs 
in parallel-lamtnated grainstone (G) and massive grainstone (H) .• 
Stratigraphic top is up. Western Brook Pond North, Lower Ordovician, 
unit 3, 'sample WN-3. 

c: Slab of nodular limestone bed consists of vertically-oriented 
mudstone nodules many of which are developed around grainstone-filled 
vertical burrows (arrows). This bed is slightly tectonized and some 
nodules are in stylolitic contact. Stratigraphic top is up. St. 
P~ul 's North, Lower Ordovician, unit 50, sample SPN-71. 

d: Thin section negative print of mudstone- and spar-filled (grey and 
black in photograph, respectively) burrows surrounded by mudstone (M) 
envelopes. The sub-vertical orientation of the~e nodules-is clearly 
contro.tled 'by burrows. '!nternodular areas vary from carbonate-free 
shale (S) to slightly argillaceous mudstone which' grades 
imperceptably into the nodular mudstone (area around "X" in 
photograph). Scale bar is 1 em. Stratigraphic top is up. St. 
Paul's South, Lower Ordovician, unit 1, sample SPS-10. 

e: This thin section negative print shows part _o{ a cross-shaped 
. mudstone nodule (M) developed around the intersection of a thin 

peloidal grainstone dike (D) and a thi~ peloidal-siliciclastic silt 
lamination (L). The surrounding shale (S) is mostly massive. A 
V-shaped fracture develgped in the , mudstone .surrounding the 
lamination is partially filled with polycrystalline, non-ferroan, 
calcite pseudomorphs after barite(?) (arrow). The irregular white 
lines near the dike are claY. accumulations of a vertical stylolite, 
cut obliquely in this thin section. Scale bar is 1 em. 
Stratigraphic top is tq top right of photograph. Broom Point South, 
Upper Cambrian, unit 42l sample BPS-25. 

f: Thin grainstone dike (arrow) encased in mudstone is found in a 
nodu] ar ll'.'ld contimwusly-bedded ribbon mudstone sequence. Penny for 
scale. Stratigraphic top is up. Martin Point, Lower Ordovician, 
unit 36s-v. - ,..., 

continue.~ - ~" next page 
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PLATE 13 (continued) 

g: Slab of composite mudstone nodule from a ribbon limestone sequence 
demonstrates pelC>idal grainstone "tails" which extend into the 
surrounding argillaceous matrix. Stratigraphic top is up. Cow Head 
North, Lower Ordovician, Bed 9.15, sample CHN-47. 
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PLATE 14: LOWER HEAD TRUNCATION SURFACE 

a: Trace of the Lower Head truncation surface is outlined. A close ·up 
of the rotated mudstone slabs visible in centre of photograph is 
shown in "6". Strat·igraphic top is to upper right. 

b: Fragmented, and sub-parallel aligned mudstone slabs are found in 
ribbon limestdne bed 4 in Figure 3.la. Stratigraphic'top is up. 

c: A cluster of fragmented mudstone beds is found in ribbon limestone 
bed 6 in Figure 3.la. Stratigraphic.top is up. 

d: This ·vertically-oriented mudstone slab in the ribbon limestone of bed 
6 in Figure 3.la demonstrates drape of finely-laminated marls and 
mudstone beds. This illustrates that bed fragmentation and rotation 
of the slab occurred in uncompacted sediment - a synsedimentary 
rather than tectonic disruption; Stratigraphic top is up. 

e: This small pod of mudstone clasts is located approximately 1 m below 
the truncation surface. The origin of the fragmentation and 
piling-up of the clasts is intrastratal shear associated with 
formation of the truncation surface. Pocket knife scale is 9 em 
long. Stratigraphic top is up. 

f: Small domains of re-oriented laminations, often at high angle or 
vertical to bedding, are found in finely~laminated marl (bed 5) below 
the truncation surface. In other places in the marls other small 
domains appear to have been totally homogenized (not shown in 
photo). Pocket knife scale is 9 em long. Stratigraphic top is up . 

. · . 
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PLATE 15: TRUNCATION SURFACES 

a: Truncation surface (under hammer butt) in planar-bedded ribbon 
mudstones is overlain by parted and ribbon grainstones and 
mudstones. Stratigraphic top is to lower right (section is 
overturned). Green Point, Lower Ordovician, u~it 28 (described in 
Appendix A) . 

b: -Prominent drag fold (between hammer and lower arrow) immediately 
underlies the truncation surface (pointed to by arrows) . 
Stratigraphic top is to lower left (section is overturned). G~een 
Point, Lower QOrdovician, unit 28. · 

c: Irregular, discontinuously bedded mudstone 
in the immediate vicinity of the prominent 
Figure 3.1b. Stratigraphic top is to left. 
Ordovician, unit 28. 

is particularly abundant 
drag fold illustrated in 
Green Point, Lower 

d: Truncation surface depression in · parted mudstones is overl ain by 
similar sediments. Shear zone deformation is apparently not 
develbped in this case. The lack of discordance with over l ying ·beds 
indicates that this is a truncation surface rather .than a 
subsurficial shear . Scale card at centre of photograph is 15 em 
long. Stratigraphic top is up. Outcrop is north of the Martin Point 
section. 
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PLATE 16: SLIDE MASSES AND RELATED DEFORMATION 

a: This slide mass consists of burrowed mudstone with domains of both 
homogenized and chaotic bedding. Obvious basal scour of underlying 
argillaceaous sediments and lateral pinch-out indicate that this is a 
slide mass. This particular slide mass was previously interpreted as 
a small massive algal mound by Cumming (1973, v.2, p. 50). 
Stratigraphic top is to left. Green Point, Lower Ordovician, unit 
27. 

b: Slide. mass is indicated by black lines. Both slide mass and . 
underlying sediments are grainstones. Overlying conglomerate shows 
well-developed normal size-grading (see Plate lc). Knapsack scale 
rest~ near top of slide mass. Stratigraphic top is up. Cow Head 
South, Middl~ Ordovician, Bed 13s.4. 

c: Detail of basal shear zone of slide mass in "b". Truncation sud ace 
is seen at the level of the "p" in the ~'trade name "Evergrip" on 
hammer handle. In the overlying slide mass, anastomosing irregular 
partings diminish 41· intensity away fr,pm base of the slide mass and 
bedding becomes more regular. Stratigraphic top is up. Cow Head 
South, ~iddle Ordqvician, Bed 13s.4. 

d: The mudstones in this outcrop are characterized by irregular, 
anastomosing partings which resemble those of "c". This outcrop is 
almost entirely contained within this photograph and this restricted 
exposure does not provide sufficient information to differentiate 
between~ slide mass or subsurficial shear zone origin . . The 
anastomosing partings indicate that the sediment is sheared and 
therefor~ a channel-fill origin is unlikely. Stratigraphic top is 
up. Wesfern Brook Pond South, Lower Ordovician, unit 5. 

\ 
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PLATE 17: SUBSURFICIAL SHEAR ZONES 

a: Thirty centimetre-thick shear zone contains fragmented, folded 
mudst9nes (light ·grey) in a marl matrix (da~k grey). Appatent 
thinning and thickening of the mudstones is an artifact of the two 
dimensional outcro~. Planar bedded, undisturbe~~udstones occur on 
both sides of the shear zone. Stratigraphic top is up. Green Point, 
Lower Ordovician, uni.t 28. ___ 

b: Folded and fragmented mudstones and grainstones are chaotically 
distributed and oriented in a subsurficial shear zone which is 
approximately 50 em thick in the area photographed. Such rare three 
dimensional outcrops strongly suggest caution in attempting · to derive 
quantitative results fr?m measurements of t~o dime~sional outcrops. 
Hammer butt rests on top of shey zone. Stratigraphic, top is up. 
Cow Head North, Upper Cambrian,~ed 6.37-6.44. • v 

0:,'! 

c: Recumbent drag fold in a subsurficial shear zone "suggests transport 
of overlying s~dimen,t mass to the northeast (towards left) in this 
two dimensiona~ outcrop. This photograph clearly illustrates that 
deformation may be extremely localized, ~nd ' in much of the shear zone 
it is not possible to tell whether relative movement of sediment 
packages has occurred. Ham~er butt rests on tbp of shear zone. 
Stratigraphic ~o~ is up. Cbw Head North, Upper Cambrian, Bed 
6.37-6.44 . 

• d: Subsurficial shear zone shows irregular pinching and swelling 
mudstones with discontinuous argillaceaous partings (arrows). 
Stratigraphic top is up . 'Broom Point North, Lower Ordoviciant, unit 
96. 

\ 
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" PLATE 18: CONTORTED LIMESTONES 

a: Broken, disharmonic, anticlinal folds in· ribbon mudstones affect 
overlying and underlying beds to a minor extent only . Compare thes.e 
folds with those illustrated in figure 5 of Fisher ( 1979). 
Stratigraphic top is up. Cow Head North, Upper Cambrian, Bed 6. 

b: This discontinuously-bedded, 10-centimetre thick interval of 
con~orted parted mudstone.s . demonstrates abrupt,. upper and lower 
transitions to unfolded mudstones. A small cavity developed in the 

·fold hinge area (arrow) is fi~led with blocky calcit~. Stratigraphic 
top is up. Pocket knife scale is 9 em long[' Broom Point South, 
Upper Cambrian, unit 30. . 

c: The most impressively folded and fractured contorted 1 imestones in 
the CHG are shown in this photograph from Green Point. The view is at 
the under sur face of the beds. The bed to the right in the photograph 
has prominent fractures developed in the trough hinge areas (close-up 
in "d"). The hammer scale rests on a more gently folded and . 
unfractured mudstone which also clearly demonstrate elongation of the 
dome- and-basi'fl forms. Refer to text for additional details on this 
key outcrop. Green Point, Upper Cambrian, unit 18 . 

d: Close-~p of the contorted and fractured bed shown in "c". The 
fr..as;tures occur in the synclinal hinge ~reas of ~he bed and are most 
prominently developed in a trend going from the lower left to the 
upper right of the photograph. This northeast-southwest trend is 
parallel to several other major and minor stru~tural features in the 
CHG. See text for details. Creen Point; Upper Cambrian, unit 18 . 

.. 
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PLATE 19: CONTORTED LIMESTONES 

a: This 1-:-cm thick ribbon mud~tone bed is undeformed over most of its 
length; it 'is only locally folded and fractured. Other .beds in the · 
photograph are undeformed. Stratigraphic top is up . Green Point, 
Upper Cambrian, wave-cut platform. 

b: A contorted mudstone which directly underlies a conglomerate is 
locally infolded into its base (arH>w). See text for additional 
details. The folds gradually dissipate downward within a 
finely-laminated dolomitic marl. Stratigraphic top is up. Martin 
Point, Upper Cambrian, unit 8; overlying conglomerate is unit 9 . 

.... 
c: This exceptional contorted mudstone demonstrates possible ponding of 

sediments in troughs (arrows~ initially s~ggesting a surficial origin 
for at least some of the contorted limestones. Petrography does not 
bear this out, however. See text for additional details. 
Stratigraphic top is up. Green Point, Upper Cambrian, unit 18, 
wave-cut platform. 

d: Folds such as those shown in this photographl which are harmonically 
folded and have chevron or box _geometries anr well-defined axi<:~l 
planes extending for a-~etre or more, are interpreted to be of 
tectonic origin. F()lds intermediate in character to t hese and 
contorted limestones are common. Stratigraphic top is to lower 
right. Green Point, Lower Ordovician, units 31-33 . 

'.\ 
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PLATE 20: VOIDS I~ FOLD NOSES 

a: Thin section negative print of cavity developed in /anticlinal fold 
nose·~hich contains mostly ferroan, coarse calcite crystals (C) up to 
l em. in size. Endobreccia fragments (B) and surrounding silt-size 
peloids (not resolvable in this photograph) are found at the base of 
the cavity. Minor barite (black in photo) preceeds calcite 
precipitation ·in associated veinlet (arro~). Scale bar is l em. 
Stratigraphic top is up. Green Point, Upper Cambrian, unit 18, 
sample GP-9-A~B. · 

b: Thin section negative print of cerpented mosaic breccia ( "B"; ~ 
Morro~, 1982c) overlies a geopetal accumulation of sand- and 
silt-size peloids (large arro~). Calcite cement (dark grey) · is 
anhedral and iron-zoned. Numerous ~hite specks (small arro~) are 
subhedral pyrite crystals. Scale bar is 1 em. Stratigraphic top is 
up. Green Point, Cambro-Ordovician boundary, unit 23, sample GP-112. 

·, 

I 
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PLATE 21: COMPACTION 

a: Compacted, pebbly grainstone dike in blocky-weathering, slightly 
calcareous, g~een shale. Stratigraphic top ia up. ~artin ' Point, 
Lower Ordovician, unit 38a,b. · 

b: Thin section microphotograph of a fractured trilobite shell in a 
peloidal grainstone. Fracturing clearly predates earliest 
cementation as shown by calcite overgrowing fracture surface (arrow). 
Scale bar is 500 .pm. Stratigraphic top is up. Green Point, Lower 
Ordovician, unit 28, sampl~ GP-66. 

c: Thin section microphotograph of a mechanically-compacted, 
granule-size rudstone composed mainly of phosphatized mudstone(?) 
and shale{?) intraclasts, c~ented by chalcedony. Fractures in . 
~rains (arrows) as well as incompletely filled interparticle spaces 
contain ferroan calcite. Scale bar is 1 nun. Cow Head North, Lower 
Ordovician, Bed 11.1, sample CHN-56. 

~: Vertical stylolites in parted mudstone sequence appear to be more 
closely spaced and insoluble-rich than they are actually d.ue to 

. oblique orieRtation of outcrop. Stylolites are not traceable through 
argillaceous interbeds. Stratigraphic top is up. Broom Point Norlh, 
Lower Ordovic~~n. unit 96~ 

e: Thin section microphotograph of a vertical stylolite containing 
mainly siliciclastic silt. Host sediment is a siliciclastic and 
dolomite-rich peloidal siltstone. Scale bar is 1 mm. Stratigraphic 
top is up. B:room Point North, Upper Cambrian, unit 20, sample 
80-70N-20. 

f: Thin section microphotograph of condense~ packing of peloids in 
grainstone within an outcrop-s_i~ tectonic fold. Ace umulat ion of 
dolomite ·crystals in upper right ("D") is along a stylolite ; Scale 
bar is 500 1-1m. Stratigr.a;phic top is up . Mart·in Point, Upper· 
Cambrian, units 16-20 (tektonized area}, sampie MP-31: . I 

: . 
I 
I · 
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PLATE 22: PELOIDS AND INTRACLASTS 

a: Jhin section microphotogra~h of fine sand-size peloidal grainstone 
~containing minor dispersed dolomite and siliciclastics (quartz and 
feldspar). Scale bar iS 500 ~m. Cow Head Peninsula, Tuckers Cove, 
Upper Cambrian, sample CHN-69. 

b: Thin section microphotograph ~lose-up of homogeneously 
microcrystalline· peloids . Diagenetically-enlarged detrital dolomite 
(d) is seen in field of view. Sediment is from same thin section as 
"a" above. Scale bar is 200 JJm. Cow Head Peninsula, Tuckers Cove, 
Upper Cambriah, sample CHN-69. 

c: Thin section microphotograph of grainstone characterized by a bimodal 
distribution of particles dominated by medium to coarse sand-size 
fragments of pelmatozoans (p), trilobites (t), Nuia {n), and numerous 
dense micritic peloids most of which are coarse-sift-size. Scale bar 
is 500 pm. Broom Point~North, Lower Ordovician, units 103-105, 
sample BPN-22. 

d: Thin section microp~otograph of peloidal intraclast - peloid 
grainstone containing micritic intrac'lasts ( "m", very coarse 
sand-size), peloidal intraclasts (n), and numerous peloids 
(unmarked). Micritic intraclasts are differentiated from peloidal 
intraclasts by their relatively uniform crystal size in contrast to 
the marked heterogeneity which characterizes peloidal intraclasts. 
Micritic intraclasts are distinguished from peloid~ by an arbitrary 
boundary at 500 pm • . Refer to text for discussion. Scale bar is 500 
pm. Cow Head North, Cambro-Ordovician boundary, Bed 8, sample 

.80-8-7. . . 

e: Thin section microphotograph of peloidal intraclast - peloid 
grainstone. These peloidal intraclasts demonstrate part of the range 
of intraclast microfabrics. Intraclast (1) illustrates poorly 
defined micritic patches or "peloids''. In intraclast (2) peloids are 
more sharply defined within the intraclast which also contains 
silt-size siliciclastics (white). Intraclasts (3) are unquestionably 
peloid grainstones. Scale bar is 500 ~m. Martin Point, Upper 
Cambrian, unit 39, · sample 80-39-310. -

f: Thin seciion microphotograph close- up of faint micritic patches 
surrounded by ' microspar (structure grumeleuse) within a peloidal 
intraclast. Light grey areas are bioclasts ("p" pelmatozoan, "t" 
trilobite), white areas are siliciclastic &ilt. Sand-size quartz (q) 
and angular elongate feldspar (f) are also visible in this 
microphotograph. Sediment is from same thin section as "a" above. 
Scale bar is 200 pm. ~art in Point, Upper Cambrian, unit 39, sample 
80-3~3lD. • . 
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PLATE 23: GIRVANELLA CLASTS 

a: Thin section microphotograph of isolated Girvanella tubules (arrow) 
in a peloidal gr*instone. Scale bar is 100 ~m. C6w Head North, 
Middle Ordovician, Bed 13.6-.9, sample · CHN-140. 

b: Thin section microphotograph of peloids with microspar centres 
(arrow) in peloidal grainstone. On top of the arrow is a transverse 
section through a calcitized sponge spicule (S). Scala bar is 100 
pm. Cow Head North, Lower Ordovician, Bed 13, sample 80-13-0. 

J 
c: Thin section microphotograph of silt-size peloidal grainstone with 

dense micritic rods (arrow) interpreted to be poorly preserve4 
Girvanella. Scale bar is 200 pm. Long Point, · Lower Ordovician, unit 
1, sample LP-1-A. 

d: Thin section microphotograph of Girvanella rafts in bioclast-rich 
peloidal-intraclast grainstone. Rafts show parallelism of tubules; 
the raft in the upper portion of the microphotograph is mostly 
oriented perpendicular to the plane of the microphotograph. . 
Interparticle and intra-raft ceme~t is slightly ferroan, blocky ... 
calcite. Intraclast at lower right shows structure grumeleuse. 

· scale bar is 500pm •. St. Paul's North, Lower Ordovician , unit 75, 
sample SPN-51. 

e: Thin section microphotogrpph of an .exceptionally large Girvanella 
oncolite in a peloidal-intraclastic grainstone •. This oncolit~ has a 
nucleus which is "r~placed by an iron free, blocky calcite mosaic 
similar to that which forms the interparticle matrix. Scale bar is 
500 pm. · Cow Head South, Lower Ordov i cian, Bed 12s, sample 80-12s. 

J 
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PLATE 24: GIRVANELLA INTRACLASTS 

a: This thin section microphotograph of an intracl,ast 'tharacterize·d by 
structure grumeleuse also contains Girvanella tubules and dense 
micritic filaments (rectangle is enlarged in "b" below) . Host 
sediment is an ooid-peloid-intraclast grainitone . . Intraparticle spar 
has undulose extinction and suggests.equivalence with radiaxial 
fibrous calcite seen in algal boundstone boulders. Scale bar is 500 
pm. Cow Head North, Upper Cambrian, Bed 6, sample 80-6N-3c: 

b: Thin section microphotograph of enlarged area from "a'~ above 
illustrates Girvanella tubules which-Are int~mately associated with 
micritic patches and microspar (structure grumeleuse}. Scale bar is 
100 pm. Cow Head North, Upper Cambria~. Bed 6, sample 80-6N-3c. 

c: Thin section microphotograph of intraclast with vague, filam~pus 
forms, interpreted as ·poorly preserved Girvanella . Sediment is a 
grainstone consisting of a bimodal mixture of coarse sand-size 
peloidal intraclasts and ooids, and coarse silt-size pelqids. ·scale 
bar is 100 pm. St . Paul's North, Lower Ordovician, unit 40, sample 
80-70N-40. 

d: Thin section microphotograph of Girvanella intra~last rudstone 
(granule-size) within an al-ga.L boundstone boulder in conglomerate. 
Tubules are clearly visible in the. two grains .in the left half of the 
micr~photograph. In contrast, Girvanella tubules can only be · 
distinguished in the lower portion of -the grain on the right, the 
rest of the ~last consi~ting of structure grumeleuse to 1 uniformly 
crystalline micrite, Scale bar is 500 pm. Lower Head, Middle 
Ordovician, sample 78-368~F . 

t 
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PLATE 25: EPIPHYTON 

a: Thin section microphotograph view of a tangentidl section through a • 
small Epiphyton intraclast in an ooid-rich, peloidal intraclastic 
grainstone. Sediment is same as · that illustrated in Plate 23c. Scale 
bar. is 200 pm. St. Paul's North, Lower Ordovician, uni.t 40, sample 
80-70N-40. . 

b: Thin section·microphotograph of Epiphton clusters with variable 
thallus diameters suggest the ultimate prpduction of dense micritic 
peloids of variable size, but still within the coarse silt- to fine 
sand-size range. Epiphyton is contained within an algal boundstone 
boulder. Scale bar is 500 pm . Lower Head, Middle Ordovician, sample 
78-371-B. • 

. ' 
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PLATE 26: BOUNDSTONE BOULDERS 

a: Thin section microphotograph of an algal bounds.tone boulder which · 
consists of numerous Girvanella sheets and arbor~cent Epiphyton ' 
clusters cemented by radiaxial f'i:brous calcite. · Geopetal sediments 
(pointed to by. arrows) indicat~ ttrcft- cte~~1onarway.:;ttp is to the 
upper left. Rectangular et'eas are shown in greater detail in "b" and 
"c" below. Scale bar is 3 mm. Cow Head North, Upper Cambrian, Bed 
7, sample CHN-28. 

b: Thin section microphotograph of a thick Girvahella sheet which has 
wel1-preserved, loosely intertwined tubules. Inter-tubule spar 
demonstrates undulose extinction and suggests that it is co-genetic 

I 

with larger, more easily studied radiaxial fibrous calcite. Position 
of microphotograph is ind~cated in "a" above • . Scale bar is 500 F.. 

c: Thin section microphotograph illustrates ( 1) Girvanefla tubules which 
laterally grade to str~c~ure ru~eleuse and ( 2). mi~ro~abric: ':"it!:i~ a 
Girvanella sheet. Pos1t1on o m1crophotograph 1s 1nd1cated 1n 3 

above . . Scale bar is 200 pm. 

: 
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PLATE 27: RADIAXIAL FIBROUS CALCITE: FIELD RELATIONSHIPS 

a: ShalJow-~ater boulder in conglomerate has vugs lined with fringes of 
r RFC (R) ' foUowed either by megaquartz cement (Q) -or internal sediment 

(I). Bases of .the RFC fringes are partially replaced by micr.oquartz · 
(M). Penny for scale. Cow Head North, Middle Ordovician, Bed 14. 

I 

b: RFC fracture-fill '(R) in shallow-water boulder. Prominent 
microquartz crust (Q) occurs at the base of the fringe. Knife scale 
is 9 em long. Cow Head North, Lower Ordovician~ Bed 10. 

c: "Zebra" rock consists of alternating bands of RFC and mudstone to 
._ packstone host sediment. Cow Head South, Lower Ordovician, Bed lOs. 

d: Shallow-water clast probably derived from a mound (s,ee "e" below) 
co.ntains a thick, inclusion-banded fringe of RFC. Cow Head Nort}J, 
Lower Ordovician, Bed 8.19. 

e: _A promintftt crust of RFC surrounds a mound (light grey beneath 
hammer) In the Large Boulder at Lower Head. Both .the mound and the 
lighter-coloured intermound sediments contain abundant calcified 
algal clasts. Lower Head, Middle Ordovician r · · ... . 

• ·-...~ . 
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PLATE 28: RADIAXIAL FIBROUS .CALCITE: PETROGRAPHY 

a: ~n section cross-polarized light microphotograph of two fringes of 
RFC meeting at a medial suture in a shallow-water boulder of "zebra" 
rock • . The host lithology is peloidal grainstone. Scale bar is 2 
rru_n. Cow Head North. Upper Cambrian, Bed 7, sample CHN-31. 

b: Thin section microphotograph of a botryoid of RFC. This sample comes 
fro~ a fringe which surrounds one of ~h~ enigmatic mounds in the 
Large Boulder at Lower Head. Scale bar is t mm. Lower Head, Middle 
Ordovician, sample LH-8. 

c: Thin section cross-polarized light microphotograph of a RFC fringe in 
a fracture within a shallow-water boulder. Concertal 
intercrystalline boundaries are especially well-developed in this 
particular sample. Scale bar is 500 pm. Cow Head North, Lower · 
Ordovician, Bed 10, sample RAX-10. 

d: Thin section microphotograph of numerous anhedral dolomite inclusions 
(l'ight shades) in a RFC crystal . . This crystal forms part of a fringe 
precipitated in a fracttire within a shallow-water boulaer. Scale bar 
is 100 pm. Cow Head North, Lower Ordovician,· Bed 12, sample -~ 
RAX-12-A. 

e, f: Thin section cross-polarized c;~nd plane light microphotographs of a 
RFC fringe which fills a fracture in a shallow-water boulder. This 
fringe · demonstrate~ a botryoidal growth surface (large . arrows) · 
defi~ed by the Type B inclusioa-pattern. Above this, the fringe is 
less inclusion-rich and subcrystals are clearly outlined by the Type 
C inclusion pattern (small arrows). In the crytal at the far left of 
the ~icrophotographs, concave upward twins are visible. Scale bar is 
1 mffi. Cow Head North, Middle Ordovician, Bed 14, sample RAX-14-A • 

• 
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PLATE 29: RADIAXIAL FIBROUS CALCITE: 
CATHODE LUMINESCENCE 

a, b: Cross-polarized light and CL micrOphotographs of the base of a ·RFC 
fringe illustrating obtuse ~hombohedral growth surfaces outlined by 
thin brightly-luminescent zones. Most of· this fringe is 
non-luminescent·. Sample is from a fracture in a shallow-water · ' 
boulder. Scale bar is 2.50 pm. Cow Head North, Lo:oter Ordovician, Bed 
12, sample RAX-12-A. 

c, d: Cross-polarized light and CL microphotograp~s of a RFC fring~ . 
showing a botryoidal surface in the non-lumine~cent, basal portion. 

· This surfac·e is also outlined by inclusions :in microphotograph "c". 

. I 

This is overlain by dull ·to weak....:luminescent rods, and . finally 
weak-luminescent calcite showing little microfabric.. Subcrystals 
consist of small groups of rods which dominate the middle portion of 
the microphotograph. ·Sample is from a fracture in a shallow-watet · 
boulder. Scale bar is 1 mm. Cow Head North, Middle Ordovicia~, Bed 
14, sa~ple RAX-14-A . 
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PLATE 30: RADIAXIAL FIBROUS CALCITE: 
. CATHODE LUMINESCENCE 

&, b: Cross-polarized light and CL m"idophotographs of RFC from a vug in 
a shallow-water boulder. In the central third of the crystal in the 
middl~ of the ~icrophotograph; the CL growth surface is approximately 
euhedral and suggests growth as a single crystal. Upward, however, 
the growth surface becomes more irregular and CL zones appear 
jagged. A few non-luminescent rod-like domains are seen (arrows). 
The transition to irregular growth zoning and presumably crystallite
growth is accompanied by the develoP.ement of obvious subcrystals, 
readily visible in cross-polarized light. .The numerous black dots 
scattered in the lower half of these microphotographs are artifacts 
of thin sectiop preparation. Scale bar is 2 mm. Cow Head North, · 
Middle Ordovician, Bed 14, sample CHN-63. .. 

c, d: Cross-polarized light and ~ microphotographs of RFC showing the 
upper part of the fringe seen ·n microphotographs "a" and "b"fabove. 
In microphotograph "c" the co act between the two inwardly-growing 
RFC fringes is outlined in bl k ink. The numerous black dots • 
scattered in the lower half o these microphotographs -are artifacts 
of thin section preparation. Scale bar is 2 mm. 

.._ 
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PLATE 31: RADIAXIAL FIBROUS CALCITE: . ....... CATHODE LUMINESCENCE 

a, b: Cross-polarized light and CL microphotographs-of an RFC fringe in 
a mound within the Large Boulder at Lower Head. In this fringe, 
flat-topped and obtuse rhombohedral growth surfaces are common. 
Subcrystals seen in cross-polarized li8ftt are correlated with the 
smaller, elongate domains visible with C~. Further along the fringe, 
zoning becomes more diffuse and irregular. Rectan§le at bottom of 
microphotograph is enlarged in microphotographs "c and "d". Scale 
bar is ·2 mm. Lower Head, Middle Ordovician, sample LH-6. 

c, d: Cross-polarized·ligln and CL microphotog·raphs of RFC-from outlined 
area in microphotograph "b" above. Growth surfaooes vary from 
euhedral, obtuse rhombohedra to anhedral. Scale bar is 500 pm . 
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PLATE -32 : CONGLOMERATE FIBROUS CALCITE 

a: Approximate bedding-plane view of conglomerate cemented by a rind of 
CFC o.verlain by cc;>arse, equant spar . Shale matrix occurs i~ close 
proximity. Penny for scale (arrow). Cow ~ead North, Upper Cambrian, 
Bed 2. 

I 

b: Approximate bedding-plane view of conglomerate cemented by rinds of 
CFC overlain by dolomite ' (D) . Penny for _scale (arrow_). Cow Head 

' North, Upper Cambrian, Bed 2. : · 

c: Thin section negl!tive print illustratin-g-complexity of pore-filling 
history. Internal sediments (I) directly over .lies • pebbly mudstone 
clasts and the~e overlain by CFC (C). A sucrosic dolomite mosaic 
(D), commonly associated with dispersed pyrit'e, overlies the CFC. ~ 
Coarse-ly crystalline pyrite (P) and equant calcite (E) · postdate 
dolomite . V-shaped fracture in flat mudstone clast in centre of view 
indi_cates some mechanical compaction prior to precipitation of <;:FC. 
Boxed area is shown in detail in Plate 33c. Scale bar is 1 em. 
Stratigra'phjc to~ to upper right. Cow Head North, Upper Cambrian, 
Bed 'J., sample CHN-li'S-8. 
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-PLATE 33: CONGLOMERATE FIBROUS CALCITE 
I 

a: Thin section microphotograph showing scalenohedral terminations of 
CFC crystals and ~h~ overlying sucrosic dolomite mosaic which 
repl8ces internal · sediment. Faces of calcite crystals are serrated 
due to minor replacement by dolomite. Scale bar is 500 pm. 
Stratigraphic top is to upper right. Cow Head North, Upper Cambrian, 
Bed 2, sample CHN-15-A. 

b: Close-up thin section microphotograph of scalenohedral _termination· on 
CFC crystal. Dolomite preci.pitation was only a minor interr&ption 
during growth of this fringe. Calcite crystal faces ar~ serrated due 
to minor replacement by dolomite. Note~ighly irregular 
intercrystalline boundary (arrow). Scale bar is 500 pm. 
Stratigraphic top is up. Cow Head North, Uppe·r Cam~ri~n, Bed 2, . 
sample CHN-15-A. 

c: Close-up thin section microphotograph of boxed area shown in Plate 
32c. Peloidal packstone/grainstone (I) difectly overlies a ~udstone 
pebble (M). The internal sediment is followed by a fringe of CFC (C) 
showing prominent scalenohedral terminations, and then a sucrosic ~ 
dolomite mosaic (D) and pyrite (P). The upper equant calcite mosaic 
(E) appears to postdate _precipitation of dolomite and possibly also 
pyrite. Scale bar . is 2 mm. Stratigraphic top is up. Cow Head 
North, Upper Cambrian, Bed 2, sample CHN-1 ?8-B. 

d: Thin section microphotograph of peloidal and intraclasti~ grainstone 
perched between two mudstone pebbles (M). The internal sediment is 
overlain by CFC. Scale bar is 2 mm. Stratigraphic top is to _right. 
Cow Head North, Upper Cambrian, Bed 2, sample CHN-l78-AB. 
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~·PLATE ~4: CEMENT AND NEOSPAR 

.a: Thin section microphotog:r:aph of peloidal grainstone illustrating 
calcite. cement and replacive dolomite. The non-ferroan calcite 
cement shows numerous sharp, compromise boundar.ies (small arrows). 
Th~se boundaries and ttte Jllicrite to microspar composi.tion ot the 
sand~size peloids is clearly seen because this 10-15 ~m thick thin 
section was polished prior · to and after :ounting on the glass slide. 
Inclusion-rich~ dispersed dolomite crystals ap~ear ~o replace both 
peloids and interparticle cement. The peloid-dolomite contact may be 
either a dolomite ·crystal face or very it regular. The euh8.!iera1, · · 
occ~sionally gently curved, dolomite cryst~l faces abutting 
interparticle calcite cement is typical. The cloudy central region 
of the dolomite crystal in the centre of the photograph is likely, a 
detrital core / The relatively ··inclusion-free rim contains scattered 
relics of one peloid it has partially replaced (large arrow). Scale 
bar is 200 ~m. Stratigraphic top is up. Cow He~d North, Tucker's 
Cove, Upper Cambrian, Bed 6, sample CHN-69 • 

• 
b: Thin section microphotograph of a peloidal grainstone initially 

cemented by rhombic, non-ferroan calcite crystals (c) and then later · 
by chalcedony (q). The grain labelled '.'N" is Nuia. Scale bar is 500 
pm. Unoriented thin se(ction. Martin Point, Middle Ordovician, Ul'lit 

60, sample 80-39-60. 
' 

c: Thin section microphoto~raph of perched siliciciastic silt grains 

........ . 

·~ 

(arrowS} in a--petoidal grainstone-cemented-iryi!Oh"'ferroan crtrt.,.._...-. ------- --
Dark s~ots within the grains are pyrite crystals. Scale ~r is 500 
pm. Stratigraphic top is up. Green Point, Upper Cambrian, · unit 10, -
sample SP-42. 

d: Thin section microphotograph of a coarse p~eudospar matrix in a 
conglomerate. Clasts are mainly peloidal grairistones: The 
pseudospar crystals are non-ferroan, anhedral, 6ften show curved 
outlines, and .exhibit a prominent intercrystalline argillaceous 
paste : Scale l.Jar is 500 pm. Unoriented ~hin section. Cow Head 

, N~rth, Middle _Ordovician, Bed 13.15, sample 80-13N-1S. 

e: Thin section negative print of a planar-~edded mud.stone showing 
~entral ferroan miirospar (m) grading marginally to coarse, fe~roan 
pseuiiospar· (p). Burrows also contain lotif-shaped pseudospar crystals 
and a prominent argillaceous matrix. Scale bar is 1 em. 

' Stratigraphic top is up. St •• Paul's North, Lower Ordovician, unit 
43, sample SPN-66-C. 

f: Thin section negative prtnt of~ complex n6dule from a ribbon 
limestone sequence which consists mainly of ·nQn-ferroan microspar (m) 
which grades to more dispersed and more ferroan pseudospar (p) . both 
laterally and vertically (see Plate 13g). Peloidal silt laminations 
within the nodule are easily traced into the surrounding argillaceous 
matrix. CL of the boxed area is illustrated in Plate 35e. Scale bar 
is 1 em. Str~tigraphic top is up. Cow_Head Nortq, Lower Ordovician, 
Bed 9.15, sample CHN-47, · 

(. 
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PLAl'E 35: CEMENT AND NEOSPAR:. CATHODE LUMINESCENCE 

a: Peloidal · grainstone -vi th interparticle cement shoving all 3 CL 
stages: A (dark), B (bright), and C ~dull). Dull luminescence of 
peloids is ty~cal. Scale bar is 250 pm. Stratigraphic top is up. 
Martin Point, .Upper Cambrian, ,unit 23d, sample MP-105. ··-

b~Coarse, equant, non~ferro~n calcite cement in conglomerate, probably 
contemp()raneous vith CFC. These crystals demonstrate a finely-zoned, 
Stage A CL vhich was corroded subsequent to precipitation of the 
weak-luminescent Stage B calcite which fills remaining porosity. 
Arrows point to zoning truncations and scalloped surfaces developed 
between thes~ two stages of growth. Scale bar is . l mm. Unori~nted 
thin section. Cow Head North, Upper Cambrian, Bed 4, sample CkN-13. 

c: Dull-luminescent fringe of CFC is in stylolitic contact with mudstone . 
pebble substr.ate. The early stage of growth is characterized by 
dull-luminescent Stage A calcite vhich is subsequently overgrown -by 
dull- t~weak-luminescent Stage B calcite exhibiting scalenohedral 
terminations. Finely-zoned rhombs -of conglomerate matrix dolomite 
overlie th~ CFC fringe and replace internal sediment. A ~icroprobe 
traverse across a dolomite crystal (arrow) is shown in Figure 12.la. 
Light specks betweEin the dolomite crystals are blue-luminescent 
feldspar silt. Scale bar is 200 pm. Unoriented . thin section. Cov 
Head.North, Upper Cambrian, Bed 2, sample CHN-2. 

d: Leached bioclast ( ?) preserved by a dull-luminescent micrite envelope 
(M) conr-ains intramoldic ceme.nt which is identical to interparticle 
cement. The cement il'lustrates CL stages A (dark) and B (bright). 
The occurrence of leached bioclasts is rare in . the CHG. :Scale bar is 
250 pm; St~atigraphic top is up. Lower Head, Lower Ordovician, 
sample LH-73. 

e: Close-up of marginally aggraded mudstone nodule pi~viously 
illustrated in Plate 13g; 34£. From right .. to left, psue~ospar has 
dominantly .Stage B bright luminescence then .. St_age C dull 

: luminescence. Minor zoning fluctuations occur near the contact with 
enclosing argilJaceou$ matrix. Scale bar is 500 ~m. ~tratigraphic 
top 'is up. Cow He.ad North, Lower Ordovician, &d'"9.T5", sample 
CHN-47. 
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PLATE 36: DISPLACIVE FIBROUS CALCITE ' . -

a: Slab of ferrQan 'oFC-1 developed on both sides o-f a _mudstone bed. 
, This mudstone is sli,ihtly wavy-bedded and is .obviously formed _ by the 

\

coalescence of concretionary nodules. Centres of the nodules are 
composed of non-ferroan .microspar (M). which passes into non.,-ferroan 

• pseudospar (P). The pseudospar links the' nodules together into a 
continuous bed and grades upward and downward into the DFC fringes. 
Unoriented sample. Co~ Head North, LQwer Ordovician, Bed 8. 30, · 

. sample ~HN-36 . . 

b: Slab of non-ferroan to slightly ferroan DFC-2 overlying a substrate 
composed of non-ferroan to slightly ferroan ·microspar and pseudospar. 
with scattered silt lamin'ations. The interfering cones or "tufts" 
are clt~arly seen to the right in the photo_, whereas 3 aberrant 
cone-li.ke structures are seen in tl:te left half. one of which is shown 
1n detail in "c'' below. This fringe is a multiple fringe where a' 
discontinuity (arrows) separates lower and upper halves. Renewed 
fringe growth was independent of- any control by the older substrate 
of DFC. The ~berrant cone-like structures,grew unimpeded throug~ the 
discontinuity. Unoriented sample ~ Green Point, Upper Cambrian, 
sample GP-108. 

c: Thin siction negative pri~i of one of the aberr~nt cone-like 
structures seen .in "b" above. 'l'he. outer shell of the cone is 
characterized by numerous, closely-spaced argillaceous seams (white 
in photo). ' This cone-like structure grows through the discontinuity 
(arrow). Scale bar is 5 mm. Unoriented sample. Green~Point, Upper 
Cambrian, sample GP-108. 

d: Thin.section negative print of a ferroan DFC-2 fringe overlying a 
substrate of ferroan pseudospar. This fringe has well-developed .cone 
structures in the upper half but the lower half is dominated by 
numerous, iaterally and vertically interfering bundles of fibrous 
calcite. The U-shaped white and light grey seams are accumulations 
'e-t clays. The numerous spindle-shaped medium grey areas in the top 
half of the fringe are the relatfvel~ inclusion-free "cores" 
-illustrated in Plate 38a. Scale bar is 5 mm. Stratigraphic top_ is 
up. .Green Point, Upper Cambrian, unit 1, sample GP-2. 

\. ' . 
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PLATE 37: DISPLACIVE n ·BRous .CALCITE 

~= Thin section microphotograph of a ferroan DFC-1 fringe with a ~ype B 
inclusion pattern growing into a medial shale seam (black in 
photograph). Base and tips of crystals are non-ferroan~ This fringe 
clearly illustrates ·convex-upward (botryoidal) growth increments 

'(' . • 
except for 8 few crystbls left of centre which demonstrate 
sc8lenohedr8l terminations. Scale bar is 1 inm. Stratigraphic t~p is 
up. Cow Head North, Lowe,r OrdOYician, Bed 8.30, sample CHN-104. 

b: Thin section negative print of 8 slightly ferroan to non-ferroan 
DFC-1 fringe composed of stubby ~rystals having anhedral. blunt 
terminations. Substrate grades from microspar (at base of 

. photograph) to pseudospar (below lower fr~ to coarse fringe 
.-· ~aicites. Black patches in-:snne (white) are artifacts of thin 

-' · . ction preparation. Scale bar is 5 mm. bar. Stratigraphic top is 
up. Black Brook, Lower Ordovician, unit !5, sample BB-5. 

-. 

c': Thin section. riegative print of ferroan DFC-1 fringes meeting at a ' 
medial shale seam (white). Several of the DFC crystals exhibit 
prominent, well-developed scalenohedral terminations. Scale· bar i~ 1 
mm. Stratig~aphic top is up. Cow Head North, Lower Ordovician, Bed 
8.30, sample CHN-37-B. ; 

d: Cross-polarized light microphotograph illustrating slightly ferroan, 
equant . pseudospar mosaic between two DFC-2. crysta:ls. The elongate 
crystals also demonstrate an obvious fibrous Type D inclusio~ pattern 
and sharp exti?ction. Scale bar is 500 pm. Stratigraphic top is 
up. Green Point, Upper ~ambrian, sample GP-47-B. 

e: Thin section negative print of planar-bedded mudstone .with a 
poorly-developed, ferroah DFC-2 fringe overlying the bed and a 

· fer roan, marginally aggraded lower portion. In some places, upper 
fringe growth is interrupted by pseudospar growth. · Th~ DFC fringe at 
the top of this bed and the aggrading pseudospar on the lower margin · 

. (boxed area . enlarged in. "f") are synchronous precipitates as · 
indicated by iron stain, CL,· and stable isotope analysis (Trend 10 in 
Figure 11.4). The mudstone substrate exhibits a slightly coarser 
mic r0£P4L band runn~· n through the centre of the bed. The jagged 
wbite line traversin the mudstone "left of centre is a vertical 
stylolitC with accu lated argi.Haceous material. Scale bar is 1 
em. Stratigraphic top is up. Lower Head, Lower Ordovician, sample 
LH-76-A.. ' 

f: Close-up, thin section microphotograph of boxed area from the 
marginally-aggraded lower mudstone surface shown in "e". The largest 
pseudospar. crystals are elongate and tend to be oriented 
perpendicular to bedding. The increase in crystal size and shape and 
the amount of intercrystalline p&ste is clearly seen in this 
microphotograph. Scale bar is 1 mm. Strat1graphic top is up. 

.. . .. ~ 
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PLATE . 38 :· DISPLACIVE FIBROUS CALCITE 

a: Thin section....microphotograph C?f spindle-shaped, inclusion-free cores 
in a single .crystal of ferroan DFC-2. This sample is the same as that 
shown in Plate .36d ~ Th.ese doni~ins are up to 100 urn in . width and 
appear to- be di:scont'inuous in ~-dimensional views. ( Most of the 
crystal is inciusiun-Tich and appears fibrous. The . intercrystalline 
boundary to the right in the microphotograph (arrow) sh~s-a smooth, 
planar boundary abutted by a jagged, stepped boundary. Scale bar is 
500 pm. Stratigraphic top is up.. Green· Point, Upper Cambrian, unit 
1, sample GP-2. 

b: Thin section microphotograph of DFC-1 crystal · show -former subhedral 
te~minations outlined by Type B inclusion pattern Non-ferroan (N) 
and ferroan (F) zones are · relatively inclusion-{ ee and 
i ncl usion-ri c h, respectively. Note the concertal nature of the 
intercrystalline boundaries (arrow~). Scale · bar is 500 pm • 

• Unoriented sample. Lower Head, Lower Ordovician, sample LH-73. 
. -

c: Thin section microphotograph of ferroan DFC-1 crystals cut normal to 
crystal elongation. These crystals have anhedral outlines and 
usually consist of 3-5 relatively inclusion-free core areas (labelled 
"A"- "D" in one crystal) joined together t-o form one major crystaL 
The core a.reas are separated from each other by inclusion-rich 
calcite. Light areas surrounding crystals in right half of 
microphotograph are artifacts Of sample preparation. Scale bar is 
500 pm. Cow Head North, Lower Ordovician, Lower Ordovician, Bed 
8 . 30, ,sample CHN-104 . 

d: Thin ·section microphotograph near termination of a ferroan DFC-2 
fringe sho~s _inclusion-rich, fibrous crystals which are overgrown on 
their margins by inclusion-free calcite to form exceptionally planar 
intercrystalline boundaries (arrows). The fringe is growing downward 
from the base of its substrate. A view of this fringe cut normal to 
crystal elongation is shown in. "e". Scale bar is 1 mm. Stratigraphic 
.top. is up. Green Point, Upper Cambrian, sample GP-25. ., 

e: .. Thin section microphotograph of the fringe shown in the "d" cut 
normal to crystal elongation. The inclusion-rich, main portion of 
the cryst·als are trigonal-shaped and these are surrounded by 
relatively ·inclusion-free overgrowths which meet one another along 
remarkably plsnar intercrystalline boundaries. Inclusions are 
p8rt\cularly abundant at the contact of the overgrowth and the 
inclusion-rich trigona.! co,e. Each trigonal centre consists of 
numerous, - irregularly-shaP,ed, inclusion-free micro-domains. Scale 
bar is 500 p111. Green Point, Upper Cambrian, sample GP-25 • 

. continued on next-page 
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PLATE 38 (continued) 

f: Thin section microphotograph of a DFC-2 fringe vie...,ed normal to 
crystal elongation. .The prominent trigonal-shaped central area 
consists of nunterous irregular to circul ar micro-domains which range 
from 25-60 urn across. These are separated from one another by · 
inclusion-rich -areas. These micro-domains are interpreted to 
represent small bundles of fibrous crystallites. The trigonal-shaped 
areas are overgrown by inclusion-rich calcite. Scale bar is 5,00 )Jm. 
Green Point, Upper Cambrian, s~le GP(Sl-7). 

/ 
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PhATE 39: DISPLACIVE FIBROUS CALCITE 

a: Thin section micropl)otograph of a non-ferroan DFC-1 fringe which 
demonstrates a prominent radiating Type D inclusion pattern at the 
base of an elongate cr-ystal. Twins traverse the crystal. A wavy 
intercrystalline boundary is seen at the right. Scale bar is 500 

· ~m. Stratigraphic nop is up. Cow Head North, Lower Ordovician, Bed 
8.30, sample C~-37-B. 

b: Thin section microphotograph tion of an elongate 
calcite crystal with Type D inclusion tt n. Sample is from the 
same fringe as shown in the Plievious · croph ograph. The 
termination of this crystal is characterized b pointed, 
inclusion-rich "tufts" which penetrate the ove l ying medial shale 
seam. The crystal to the upper right of the m crophotograph ·is 
growing down,.,ard and is part of the overlying fringe. This crys t al 
also shows a relatively planar crystal face . Scale bar is 500 ~m. 
Stratigraphic top is up. Cow Head North, Lower Ordovician, Bed A. 30, 
sample CHN-37-B. 

\ 
c: ThtR section microphotograph of equant pseudospar at the base of a 

non- ferroan DFC-1 fringe. The crystal at the .centre of the 
microphotograph demonstrates a spherulitic, fibrous inclusion pattern 
(Type D). The elongate crystal to the uppe r l e ft also shows radiat i ng 
fibrous inclusions, but from a medial zone along the length of the 
crystal. Scale bar is 500 pm. Stratigraphic top is up. Cow Head 
North, Lower Ordovician, !3ed 8.30, sample CHN-37-D. 

d: Thin section microphotograph of non- ferroan DFC-1 fringe showing the 
corrugated nature of the intcrcrystalline boundary by patches of 
trapped clays. -With l«tss clay "paste", int~rcry.stalline boundaries 
become concertal in apf>earance. Scale bar is 500 ~m. Stra t igraph i c 
top is up. Ano t her microphotograph of this fringe is s hown in Plate 
39a. Cow Head North, Lower Ordovi c ian, Bed 9.6, sample CHN - 115. 

e: Thin sect ion mic rephotograph of .Jt f e.r roan DfC- 2 fringe showing an 
oblique section through a "tuft" of splayed calcite crystals. Tips 
of the vaJ;ious segments of the crystal are anhedral, · consisting of 
stubby, finger-like projections. This sample is a clast within a 
conglomerate. Scale bar is 1 mm. Broom Point North, Uppe r Cambrian, 
unit 37, sample BPS-16 . 

·• 
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PLATE 40: DISPLACIVE. FiBROUS CALCITE 

a: Thin section microphotograph of a non-ferroan DFC-1 fringe containing_ 
calcified radiolaria (arrows) with calcite crystals optically 
continuous with those of the enclosing cry~tals. In each of the 3 
radiolaria illustrated in this microphotograph, th~ double wall 
mi~ostructure has been retained. Note wavy intercrystalline 
boundaries. Scale bar is 500 pm. Stratigraphic top is up. Another 
microphotograph of this fringe is shown in Plate 39d. Cow Head North, 
Lower Ordovician, Bed 9.6: · sample CHN-115 . . 

b: Thin section microphotograph of non-ferroan pseudospar at t1le base of 
a DFC-2 fringe. This mosaic demonstrates (1) pronounced 
lenticularity of the crystals parallel to bed8ing, (2) a prominent 
intercrystalline paste, and (3) cryst~l size increase from the top to 
the bottom of the microphotograph, i.e. toward the ~FC-2 fringe. 
Scale bar, is 500 pm. Str_atigraphi~ top is up. Martin Point, Upper• 
Cambrian, unit 36m-n, sample MP-52. 

c: Thin section microphotograph of peloid-bioclastic 
grainstone/packstone containing several shale intraclasts surrounded 
by mi~ro-fringes of DFC (labelled 1-4). The fibrous crystals as well 
as the interparticle matrix are non-ferroan, except near terminations 
of the fibrous crystals. This sample is from a limestone nodule 
enclosed within silicified shale. Scale bar is 500 pm. 
Stratigraphic top is up. Cow Head North, Lower Ordovician, Bed 11, 
sample CHN-183. 

·~ 
d: Thin section microphotograph of a shale intraclast within a pebbly 

grainstone. This intraclast contains dispersed euhedral to subhedral 
calcite crystals and is surrounded by a microfringe of DFC many of 
which demonstrate scalenohedral terminations. The fibrous crystals 
as well as the interparticle matrix are non-ferroan, except near ./ 
terminations of the fibrous crystals. Scale bar is 500 pm. 
Stratigraphic top is up. Broom Point North, Upper Cambrian, unit 33, 
sample 80-70N-33. · 
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PLATE 41: DISPLACIVE FIBROUS _CALCITE 

a, b: Thin sectiQn and CL microphotographs of the basal por~ion of a 
DFC-1 fringe which occurs as ~ clast in a conglomerat~ Growth zones 
parallel to the substrate are defined by varying concentrations of 
inclusions as. well as iron content in "a", and CL zones in "b", The 
inclusion-rich calcite is ferroan but there is little correlation 
between the CL intensities and the iron content (compare largest 
crystal on far left of each microphotograph). Most of these growth 
surfaces are anhedral, but some occasionally demonstrate ~lanar 
crystals faces (arrpws). The growth surfaces in the )ower part of the 
fringe grade transitionally to more euhedral surfaces which 
characterize the upper part of the fringe ("c" and "d" below). Scale 

- bar is 2 mm. Lower Head, Lower Ordo~ician, sample LH-73. 

c, d: Thin section and CL microphotographs of upper (distal) portion of 
·the same DFC-1 fringe as shown in the above microphotographs. CL 
zones are sharp and euhedral. A latest dull-luminescent zone 
unconformably mantles the earlier zones and suggests possible 
corrosion of these crystals prior to renewed calcit~ precipitation. 
The contact between these two generations of calcite is delineated by 
arrows. The latest calcite is embayed and replaced by 
non-luminescent megaquartz (Q), which also fills the spaces between 
the DFC crystals as a cement. The latest calcite zone and megaquartz · 
are interprete~ to be effects related to local diagenesis in the 
conglomerate. Scale bar is 1 mm. 
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PLATE 42: DISPLACIVE FIBROUS CALCITE .. 
a: Thin section microphotograph (;{ a DFC-1 fringe which occurs as a 

clast in a conglomerate. The upper and lower rectangles are the 
positions of CL microphotographs "c" and "d" below. Scale bar is 2 
mm. Broom "Point North, Upper Cambrian, sample BPN-14. 

b-d: "b" is a CL view of the same crystals at same scale as s~own :ln. __ _: 
"a". The part of the fringe seen in the microphotograph is 
non-ferroan. This grades into a fer roan upper part (not shown). The 
crystal in the centre of the field of view clearly demonstrates 
varying degrees of crystal face and crystallite development . The 
lower portion of the crystal (sHown at greater maginification in "d" 
below with scale bar -·of 250 pm) exhibits a subhedral growth surface 
(faces in4icated by arrqws in "d") which quickly passe• upward into 
an anhedral surface. With further crystal growth, crystallites and a 
very irregular growth surface are obvious (magnified in "c" with 
scale bar of 500 pm). Offsets·df CL zones are easily seen in this 
part of the crystal. The anhedral surfaces progressively become more 
regular upward until the they approximate acute rhombohedra (or 
scalenohedra - delineated by arrow in "b"). Beyond this the crystal 
is not sufficiently inescent to observe zoning. The 
dull-luminescent, ertical to sub-vertical streaks through some of 
the crystals (sh wn in upper left hand portion of "c'!) are 
calcite-filled fractures, possibly tectonic in or i gin . 
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PLATE- 43: DFC AND ASSOCIATED PSEUDOSPAR 

a, . b: Plane light and CL microphotographs.of the . transition zone between 
pseudosp~r and the base of a DFC-2 fringe developed on a wavy to 
·nodular bed. Most of the relief on this bed is due to the presence 
,of the fringe. Both the underlying pseudospar as well as the base of 
the fringe are non-luminescent. 'Younger parts of the DFC crystals 
are dull. These basic relationships demonstrate that lithification 
of the mudstone substrate occurred prior to growth'of DFC. All of the 

i calcite in this· sample is fer roan . Scale bar is 500 J.lm. 
Stratigraphic top is up . Green Point, Upper Cambr:l"lin, unit 8,· sample 
GP-3-A. . 

c: CL microphotograph of ·a conglomerate clast containing coarse · 
pseudospar at the base of a DFC fringe (hybrid of DFC-1 and DFC-2 
characteristics). Pseudospar is dull-lwninescent and fer roan a·t the 
centre and has mo~erately bright-luminescent, non-ferroan rims. The 
prominent shale paste between the calcite crystals contains abundant 
zoned dolomite crystals and blue-luminescent detrital feldspar silt 
(seen as light specks~. The pseudospar aggregate f~oating within the 
dolomitized shale consists of 3 crystals (intercrystalline boundaries 
traced in ink) with varying orien~ations. These crystals as well as 
those in the lower left of the microphotograph illustrate CL zone 
offsets and obvious crystallites. Scale bar is 250 pm. 
Stratigraphic top is up. Cow Head North, Lower Ordovician, Bed 8 , 
sample CHN-30. 

d: CL microphotograph of 2 coarse ferroan pseudoapaL crystals overlying 
· a DFC-1 fringe developed between mudstone nodules. In the crystal on 
~he left, crystallites and CL zone offsets are conspicuous. Both 
crystals demonstrate asymmetrically-developed zoning. Scale bar is 
250 pm. Cow Head North, Lower Ordovician, Bed 8.30, sample 6E. 

l 
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PLATE 44: EQUANT ·PSEUDOSPAR 

a., b: Plane lig'ht and CL microphotograph~ of 'dull- to weak-luminescent, 
non-fer roan, equant pseudospar at the. ~ase of a DFC-1 friT'ge 
(illustrated in Plate 42a) .. Crystal ~4iemonstrates obvious 
cr.ystallites as well a~ subhedral to anhedral g-rowth surfaces (also · 
crystals~ and 3). In addition, this microphotograph shows that 
initially equant pseudospar may grow to elongate crystals by 
asymmetrical crystal growth preferentially toward the bed margin. 
Scale bar is 250 pm. Stratigraphic top.is u~. Broom Point North, 
Upper Cambrian, sample BPN-14. 

c, d: Plane light and cathode luminescence microphotographs of· 
pseudospar in conglomerate matrix. The earliest precipitates are 
bright-luminescent. · Later calcites have dull to weak luminescence. 
Ferroan zones occur but are not correlated with CL zones in thi~ 
particular sample. Crystals adjacent to the shale (squashed 
intraclast?) develop obvious crystallite~ in the later stages ~f · 
growth, making crysta}s ·elongate by asymmetric~! growth (e.g. 
crystals 1, 2, and 3). Scale bar is 250 pm. Stratigraphic top is 
upN Cow Head South, Lower Ordovician, Bed 9s.21, sample CHS-23-A. 

\ 

·' 

,, 



- JUJ -



- 584 · -

PLATE 45: DF.C: EVIDENCE FOR EARLY ORIGIN 

a: DFC-1 fringe (arrow) .developed on mudstone nodule clast in 
conglomerate. Stratigraphic top is up. Stearing Islands, Lower 
Ordovician, unit 6, sample SI-3. 

b-: Clast of DFC-1 fringe and grainstone substrate in conglomerate. 
Knife scale is 9 em long. Broom Point North, Upper Cambrian, sample 
BPN-12. 

c: Wide DFC-1 fringe developed on parted limest'one raf~ .in conglomerate 
within melange zone at Lower Head. Knife scale is 9 em long. Sample 
LH-1. l. 

d:· Thin section negative print of curved DFC-2 fringe which is 
interpreted · to represent deformation related to submarine sliding. 
See text for details. Scale bar is 5 mm. Stratigraphic top is up. 
Green l?oint, Upper Cambrian, units 7-8., sample GP-109. 

' 
e: Thin1ection negative print of curved DFC-2 fringe >is 'interpreted to 

represent deformation related to submarine sliding. The fringes 
which over lie and underlie the se.am thicken and thin out of phase 
with one another thus maintaining the multiple fringe thickness. 
This also indicate'S growth during shearing. Scale bar is 2 mm. 
Stratigraphic top is up': . Green Point, Upper Cambrian, units 4-10, 
sample GP-23. · •• 

· f: R~oriented mudstone bed fragments underlie the major truncation 
·surface at Lower Head (discussed in Chapter 3). Some of these 
.lJ;.agments have DFC-2 fri'nges (arrows). whose patchy distribution 
suggests a syndeformational origin. Stratigraphic top is up. Lower 
Head, Lower Ordovician. • 

g: Thin section negative print of DFC-2 fringe c9ntains a spherulite of 
DFC-2. This fringe intersects the truncation surface at Lower Head. 
The anomalous dev·elopment of a spherulite is interpreted to be a 
response to disturbance in the sediment pile rela.ted to the formation 
Of the overlying truncation sur.face. Scale bar is 5 mm. 
Stratigraphic top is · up. Lower Head, Lower Ordovician, sample 
LH-76-A. 
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PLATE 46: CATHODE LUMINESCENCE .AND MICROPROBE TRAVERSES 
N.B.: Black lines indicate positions of microprobe traverses used 

for the elemental oxide profiles plotted in Figure 10.1. 

a: Cement in septarian ladder crack in parted mudstone dominated by CL 
Stage A .microspar. The. analysed cement crysta± clearly demonstrates 
an MgO-rich, non'-luminescent, CL Stage A calcite with low FeO and MnO 
and increases in these elements along with concomitant decrease of 
MgO in later (Stages B and C) precipitates. Traverse length is 91 
um.· Scale bar is 250 pm :_ Sample is from a raft in a conglomerate. 
St. Paul's South, Lower Ordovician, unit 2, sample SPS-13-B. 

b: Intraparticle cement within intact brachiopod shell. MgO decreases 
with successive precipitation and FeO and, to a lesser extent, MnO 
increase. Traverse length is 304 urn and goes from CL Stage B to C. 
Scale bar is 250 pm. Cow · Head South, Lo~er Ordovician, Bed 9s.21, 
sample CHS-23-A. 

c: Pelmatozoan fragment and syntaxial cement overgrowth. The earliest 
cement is characterized by an increase 'in MgO over the levels present 
in the pelmatozoan, but these relatively high levels fall off with 
tne latest precipitates. MnO and FeO are both low in the pelmatozoan 
and only MnO is present in any significa-nt amount in the earliest 
cement. Scale bar is 250 pm. _ Tra~erse length is 195 pm .and goes 
from CL Stage B to C. Scale .bar is 250 pm. Cow Head North, Lower 
Ordovician, Bed 8.30, sample CHN-177. 

d: Cement in conglpmerate matrix. This sample demonstrates that the 
earliest, non-luminescent precipitate is depleted in all the trace 
elements, but with later precipitation, MgO and FeO are important. 
This calcite is followed by megaquartz cement (black in 

~icrophotograph); Traverse length is 341 um and ~oes fro:n CL Stage A 
( ~p C. Scale bar · is 250 pm. Cow Head South, Lower Ordovician, lied 

· 9s .16, sample CHS-16. . . \ · 
\ 

e: Coarse neospar at. the base of DFC-1 fringe shows fibrous 
cryst.allites, Cl; zoning offsets, and an uneven growth surface. This 
sample demonstrates a general decrease in MgO with successive 
precipitation and a corcomitant increase in FeO. The lates t. calcite Q 

also shows an iRcreas.i in MgO. Traverse length is 271 .urn and is 
mostly within CL Stag.e B calcite. Scale bar is 250 pm. Cow Head 
North, Lower Head, Bed 8.30, sample CHN-37-D. ' 

continued on next p~ge 
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PLATE 46 (continued) 

f: Isolated, floating pseudospar crystal in lower part of 
marginally-aggraded mudstone. This trav~rse demonstrates a slight 
increase in MgO with successive precipitation and decreases in MnO 
and FeO. FeO increases slightlr near the margin of the crystal. Note 
uneven growth surfaces. Small points visible in the microphoto are 

t 
artifacts of various microprobe step analyses. Traverse length is 
108 urn and goes from CL Stage B. to C. Scale bar is 250 pm. Cow Head 
North, Lower Ordovician, Bed 8.30, sample CHN-37-C. 

g: DFC-1 fringe at base of grainstone. ~ith successive precipitation, 
MgO, FeO, and MnO all increase. Prominent CL zoning allows 
distinction of obvious crystal pseudofaces. Traverse length is 813 
urn· and goes from CL Stages B to C. Scale bar is 350 pm. Cow Head 
North, Lower Ordovician, Bed 8.24, sa~ple CHN-169. 

h: Termination of DFC-1. MgO increases slightly toward crystal 
termination whereas both FeO and MnO decrease. Traverse length is 
1052 urn and is mostly within CL Stage C. Scale bar is 2 mm. Cow Head 
North, Lower Ordovician, Bed 8.30, sample CHN-104 . 

. -
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PLATE 47: OOLOMITIZATION: FIELD RELATIONSHIPS 

a: Cross-lam~nated grainstone contains a few resistant-weathering, 
selectively-dolomitized parallel and foreset laminaiions. 
Stratigraphic top is up. Western Brook Pond South, Lower Or~ovician, 
unit .5. : 

b: In an argillaceous interbed between a partea mustone interval and a 
massive grainstone is a 15 em-thick, dolomitic marl (M) which extends 
for over 20 m until it is hidden by cover, This marl_ transforms 
laterally into an 8 em-thick, relatively carbonate-free shale (S). 
Petrographic characteristics of the marl and shale are indentical to 
those of other marls and shales in ·the CHG. This key outcrop provides 
unequivocal evidence that dolomitzation preceeds final compaction of 
the argillaceous sed-iments. Stratigraphic top is up. Cow Head 
North, Upper Cambrian, Bed 6 . 52-6.54. 

c: Massive and ripple-laminated grainstone (L) is in relatively sharp 
contact with a joint-~lomitized zone (D). Stratigraphic top is up. 
Broom Point South, Upper Cambrian, unit 34. 

d: Joint-dolomitized zone (D) in a parted mudstone sequence. 
Stratigraphic top is up. Broom Point South, Upper Cambrian, unit 33. 

e: Coarsely crystalline, pervasive replacement dolomite shows numerous, 
large vugs whose tabular shape suggests they are leached 
'flat-pebbles. Stratigraphic top is up. Outcrop is the Arches, 
stratigraphic affinity is uncertain. 
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PLATE 48: DOLOMITIZATION: PETROGRAPHY 

a: Thin section microphotograph of dolomitic siltstone composed of 
cloudy-centered, clear-rimmed ( "CCCR") crystals which have fer roan 
rims and ' non-ferroan centres. ·; White patches are scattered 
siliciclastic silt grains. Arrow points to rounded, cloudy centre 
whic~ is a de~rital dolomite core. Scale bar is 200 pm. 

"Stratigraphic top is up. Martin Point, Upper Cambrian, unit 32, 
sample MP-41. 

b: Thin section microphotograph of silicified dolomitic siltstone in red 
· shale sequence illustrating etched dolomite crystals floating in a · 
microquart~ matrix. Scale bar is 100 pm. Stratigraphic top is up. 
St. Paul's North, Middle Ordovician, units 83-85, sample SPN-38. 

c: Thin section microphotograph of a dispersed dolomite crystal - in 
peloidal grainstone which partially replaces a radial ooid cortex 
while retaining sufficient relics to outline the replaced portion. 
Scale bar is 200 pm. Unoriented thin section. Martin Point, Upper 
Cambrian, unit 23, sample 80-39-23. 

d: Thin section microphotograph of a vertical stylolite zone (bracketed)" 
which consists of numerous dolomite crystals with CCCR and 
intercrystalline argillaceous material. Host sediment is a peloidal 
grainstone cap which overlies a conglomerate. Scale bar is 500 ~m. 
Stratigraphic top is up. Cow Head North, Lower Ordovician, Bed 8.35, 
sample CHN-110. 

e: Thin section microphotograph of anhedral to locally sucrosic (see "f" 
and "g" be1ow), joint dolomite mosaic which thoroughly overprints 
grainstone precursor . . Microfabric preservation in rare clasts such 
as the radial o~id is due t0 replacement by dolomicrite. The cloudy, 
patches surrounding the ooid are interpreted to be the inclusion 
relicts of replaced peloids and other allochems. Scale bar is 500 
pm. Stratigraphic top is up. Broom Point South, Upper Cambrian, 
unit 25, sample BPS-32. 

f: SEM view of fractured surface from same sample as in "e" and "g". The 
dolomite crystals show smooth rhombic forms and a nondescript 
intercrystalline substance (clays?) along with a microquartz prism 
(arrow). Scale bar is 10_pm. 

g: SEM view oj fractured surface from same sample as in "e" and "f" 
above. Overlying the dolomite rhombs, possible clays, and authigenic 
quartz (Q) is a s~ooth,. draping mantle interpreted to be bitumen (B). 
Scale bar is 20 pm. 

I · 

, 
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PLATE 49: DOLOMITIZATION: CATHODE LUMINESCENCE 

a: Dolomitic siltstone with numerous bright-luminescent detrital 
dolomite cores showing irregular, often angular, shapes and 
truncation of zoning. Finely-zoned authigenic overgrowths are weak 
red-luminescent. Weak blue luminescent grains are mostly quartz 
silt. Scale bar is 200 ~· Broom Point North, Upper Cambrian, unit 
9, sample 80-70-9. 

b: ~lomitic sil~stone with non-lu~inescent (ferroan) outer rims 
overgrowing an earlier stage of bright red-luminescent dolomite. 
Scattered yellow-orange centres are detrital dolomite. The dominant 

· dull centres may be dolomitized peloids. Numerous bright blue specks 
are detrital feldspar silt grains. Scale bar is 200 pm. St. Paul's 

\North, Upper Cambrian, unit 6, sample SPN-17. 

c: ~omitic siltstone from red shale sequence is typ~cally finely 
crystalline with thin bright red-lumin~scent rims and dull cores. 
Additional details are usually not resolvable with CL. Numerous 
bright blue specks are detrital feldspar silt grains. Scale bar is 
200 pm. Hartin Point, Middle Ordovician, unit 58, sample MP-84. 

· d: Dolomitic siltstone from red shale sequence is seldom as coarsely 
crystalline as that shown in this microphotograph. The dull · centres 
of the crystals may have rhombic or rounded shapes. These are 
overgrown by bright red-luminescent rims. Seal~ bar is 200 pm. St. 
Paul's North, Middle Ordovician, units 83-84, sample SPN-43-B . 

•= Dispersed d6lomite crystals have detri~l cores which show variable 
luminescence, angular to rounded shapes, and truncated zoning (black 
arrow). In the upper part of the microphotograph, a rounded 
polycrystalline dolostone cuast is seen. Also near the top i s a 
rounded, monocrystalline detrital core (white arrow) which appears to 
have been micritized prior to authigenic overgrowth by dark, ferroan 
dolomite. Evenly weak-luminescent material between dolomite crystals . 
is the peloidal grainstone host sediment. Scale bar is 200 pm. 
Broom Point North, Upper Cambrian, units 20-23, sample BPN-42. 

f: Large polycrystalline dolostone- clast is replaced on margins by 
bright red-luminescent (Early?) dolomite. Host sediment is a 
peloidal grainstone. A brown-luminescent calcite microveinlet which 
cut through the -dolostone clast postda~es all other diagenetic 
effects. Scale bar is 250 pm. Cow Head North, Lower Ordovician, Bed 
8.30, sample CHN-177. 

continued on next page 
~~ · 
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4 PLATE 49 (continued) 

g: Det{ital nodule consists of partially ~licified shale and abundant 
siliciclastic siit (blue-luminescent feldspar and dark quartz). The 
lates~red-luminescent zone in the dolomite crystals corrodes an 
earlier non-luminescent zone (arrows). Scale bar is 200 pm. Lower 
H~ad, Lower Ordovician, sample LH-28. 

h: Matrix dolomite (marl interbed) . within a ribbon mudstone raft in a 
conglomerate demonstrates that the dolomite crystals share. a common 
microstratigraphy throughout and that detrital cores are apparently 
absent. The confinement of blue-luminescent feldspar silt to the 
intercrystalline areas indicates that dolomite crystal growth was 
displacive. Scale ba·r is 200 pm. Cow Head South, Lower Ordovician, 
Bed lOs, sample CHS-55. 

i: Fracture-filling joint dolomite crystals (D) illustrate fine-seal~ 
zoning until the final broad, dark, ferroan pre~ate. Remaining 
porosity is filled with brown-luminescent calcite (C). The~e - dolomite 
crystals have curved crysta.l faces and pronounced undulosj.ty. A 
traverse across a typical dolomite cement crystal from this sample is 
shown in Figure lO.lb. Scale bar is 500 pm. Broom Poi~t South, Upper 
Cambrian, unit 33, sample BPS-33-A. > 

j: Joint dolomite replaces peloidal grainstone and engulfs 
earlier-formed, dark, authigenic rims which overgrow grains of 
detrital dolomite (arrows). Scale bar is 200 pm. Broom Point South, 
Upper Cambrian, unit' 34, sample BPS-29-A. 

k: These moderately bright-luminescent matrix dolomite crystals occur in 
a 5 mm thick band within a peloidal grainstone. The intercrystal!ine 
argillaceous(?) material contains abundant detrital feldspar dust 
and was displaced by the growing dolomite crystals. Scale.bar is 200 
pm. Cow Head North, Lower Ordovician, Bed 8 in Tucker's Cove~mple .· 
CHN-73. 
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PLATE 50: SILICEOUS SEDIMENTS 

a: Chert cap (below hammer head) on conglomerate varies in ~omposition 
from silicified gr~instone to silicified shale. Strat~graphic top is 
t~ right (right half of field of view is bedding surface). Cow Head 

.North, Lower Ordovician, Bed 10. 

' b: Congl~merate eroded into silicified, dark-coloured parted mudstone. 
This suggests early diagenetic silicification of the m~dstone. 
Stratigraphic top is up. Lower Head, Lower Ordovician. 

c: This photograph shows diffuse elongate, silicification zones 
develo~d in a massive mudstone (1) and more completely silicified 
zones in a ydrallel- and ripple-laminated silt-size · 
grainstone/packstone (2). Stratigraphic top is up. Cow Hea~ North, 
Lower Ordovician, Bed 9.6. 

I 

d: Thin &fCtion microphotograph of pyritzed sponge spic~les (S) in a · 
bright green-coloured, silicified shale. Arrow points to a pyritized 
radiolarian test. Scale bar is 250 pm. Stratigraphic top is up. 
Western Brook Pond North, Lower Ordovician, unit 12, sample WN-9-C. 

e: Thin section negative print of completely silified radiolaria 
packstone in a silicified.shale sequence. Scale bar is 2 mm. 
Western Brook Pond South, Middle Ordovician, unit 52, sample WS-9. 

f: Thin section microphotograph of a limestone nod~ft half of 
photograph) consisting of radiolaria packstone · , ' nded by ~otally 
silicified equivalent, but with less microfabric rvation (right 
half of photograph). Scale bar is 1 mm. Stratigr ic top is up. 
Unmeasured section south of St. Paul's South, / Lower Ordovician?,· 
sample SPS-12-B. · · / . 

g: Thin section microphotograph of silicified (s) and partially 
pyritized (p) ~adiolaria . in a silicified, dark'green-coloured shale. 
In places, · pyritization "has clearly p'reserved microfabrfcs to a 
higher degree than when radiolaria are calcified or replace~ by 
chalcedony. This view is from the same thin section as that if} "i" 
below~ Scale bar is 100 pm. Martin Pbint, Lower Ordovician, uriit 
54, sample ·MP-82-A. 

· continued on next page 
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. PLATE 50 (continued) 

h: Thin section microphotograph of a graded, spicule-rich bed in a 
silicified, red shale. Scale bar is 250 pm. · Stratigr-aphic top is 
up. Western Brook Pond South, Middle Ordovician, sample \o.'S-1 . 

i: Thin section microphotograph of a collapsed, pyritized radiolarian in 
a silicified shale (same as , that · in "g" above). This radiolarian was 
initially pyritized but not silicified sufficiently quickly' in order 
to prevent mechanic'al compaction. After compaction, a later stage of 
silicification occurred. Scale bar is 100 P.in. Martin Point, Lower · • 
Ordovician, unit 54, sa·mple MP-82-A. .. 

• 
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PLATE 51: PSEUIX}-M!ACKE;STONES: CATHODE LUMINESCENCE 

a, b: Plane light and CL microphotographs of a limestone nodule from a 
silicified shale sequence. In plane light , the sediment appears to be 
a peloid9l wackestone, containing numerous specks of pyrite (black) 
and the occasional calcified radiolarian and sponge spicule. With 
CL, however, both radiolaria and spicules &re abundant and the 
depositional fabric is interpreted to be packstone. The matrix of 
the sediment as well as the earliest cement in the radiolaria is 
bright orange-luminescent (Stage B), non-ferroan calcite. The 
spicules were replaced· at a later time and are dominantly 
dull-luminescent (Stage C), very slightly ferroen calcite. Scale bar 
is 250 11m. Stratigraphic top is up. Un~asured outcrop' in Saint 
Patll's Inlet, south of St. Paul's South section, Lower Ordovician, 
sample SPS-12. 

c, d: Plane light and CL microphotographs of a limestone nodule from a 
·silicified shale sequence. As with the above microphotographs, only 

scattered spicules are differen.tiat?le in plane light, but CL 
illustrates calcifred spicules are the volumetrically most important 
de positional components of this sediment. Their axial canals are 
t"illed with bright orange-luminescent (Stage B), non-ferroan calcite 
identical to the matrix . neospar(?). Spicules are very slight·ly 
ferroAn , dull-luminescent (Stage C) calcite. These spicules now 
consist of. polycrystalline caltite and are interpreted to have 
orginally been sili~eous. Scale bar is 250 pm. Stratigraphic top is 
up. Cow Head North, Lower Ordovician, Bed 11.1, sample CHN- 183. 

e, f: Plane light and CL microphotographs of a limestone nodule from a 
silicified shale sequence (same. sample as "c" and "d" 'above.). In the 
centre of the microphotographs a micro- fringe of DFC is dominat~d by 
Stage B calcite and has thin tips of Stage C calcite, identical to 
that which replaces the spicules . Fibrous crystallites in these DFC 

·crystals are barely discernible. Arrow points to microquartz which 
has interrupted filling of the sp_icule mold by calcite cement, 
burying its rhombic termination. The shale intraclast (S) surrounded 
by the DFC fringe has been squashed and exhibits numerous b~ue 
luminescent detrital feldspar silt grains (light specks in 
mi crophotograph). Scale bar is 250 pm. Str-atigraphic top is up. 
Cow Head North, Lower Ordovician, Bed 11.1, sample CIIN-183. 

' 
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PLATE 52: BARITE 

a: Thin section neg~tive print of .a barite layer (b) within a nodular to 
wavy bed dominated by ferroan pseudospar (p). Barite increases in 
crystal size and becomes more elongate downward, and larger crystals 
also tend to be oriented at high angle to bedding. Inter-barite 
crystal matrix is argillaceous sediment. A fringe of ferroan, DFC-2 
(i) underli~s the bed .• In the lower portion of the bed are faint 
ripple laminations outlined by silt-si~e siliciclastics and peloids 
(s). Slab photograph "d" below is also taken from this -sample. Scale 

. bar is 1 em. Stratigraphic top fs up. Green Point, Upper Cambrian, 
units 16-18, sample GP-47-D. 

b: Thin section negative ptint of a microspar mudstone-wackestone nodule 
with coarse barite crystals (dark) on the upper and lower margins. 
Scale bar is 1 em.· Stratigraphic top is up. Green Point, Upper 
Cambf~an, sample G~-31. 

c: Thin section microphotograph of a barite nodule in which barite 
crystal~ (b) marginally aggrade and become progressively more 
replaced by non-feroan calcite (c). Scale bar is 1 mm. Stratigraphic 
top is up. Black Brook, LowerOrdovician, unit 9, sample BB-3. · 

d: ~lab of a pseudospar nodule with a coarse barite rosette (b) locally 
developed near the centre of the bed. The lower portion of the 
nodule is underlain by DFC-2. Negative print "a" above is also taken 
from this sample. Stratigraphic top is up. Green Point~ Upper . 
Cambrian, units 16-18, sample GP-47-D. 

e: Thin section microphotograph of barite pseudomorphs in a 
microspar mudstone. The psuedomorphs are interpreted to 
molds completely filled with non-ferroan calcite cement. 
also substrate to DFC-1 (not shown). Scale bar is 1 mm. 
Point, Upper Cambrian, sample GP(81-7). 

non-fer roan 
be- barite 
This bed is 
Green 

f: Cross-polarized ligh~ microphotograph of incompletely-filled barite 
molds. The calcite cement and surrounding microspar are 
non-ferroan. Scale bar is 1 mm. !)tratigraphic top is up. Green 
Point, Upper Cambrian, units 16-17, sample GP-115. 

g: Thin section microphotograph of a barite (b) and ferroan pseudospar · 
(c) mosaic in a mudstone. The lack of replacement microfabrics 
suggests that these phases grew simultaneously. 9tale bar is 500 
}lm. Stratigraphic top is up. Green Point, Upper Cambrian, units 
16-17, sample GP-116. 

• 
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PLATE 53: NODULE-MATRIX RELATIONSHIPS 

a: Thin section negative print of nodule consisting of peloidal ' 
wackestone (W) overlain by peloidal .grainstone (G). Thin peloidal 
grainstone laminations are found.in the lower part of the nodule. A 
grainstone lami'nation which extends from the nodule into the 
internodular ~atrix is examined in the next 3 microphotographs, their 
locations shown . by the arrows b, c, and ,d. Scale bar is 1 em. 
Stratigraphic top is up. St~ Paul's Quarry, Upper Cambrian, sample 
SPQ-6. 

b: Thin section microphotograph of peloidal grainstone lamination 
surrounded by pseudospar of nodule (white) which shows well-defined 
peloids cemented by non-ferroan calcite. Larger wh'ite specks in this 
lamination are bioclastic grains. Scale bar for this and the 
subsequent 2 microphotographs is 1 mm~ 

c: Thin section microphotograph of the lamination (lower 3/4 of view) as 
it emerges from the nodule. The peloids rapidly loose their 

· defil'li t i~n and are pressed one into the other. The white specks in 
this l~ation are patches of ceme~t and bioclastic grains. 

d: Thin section microphotograph of the lamination at a distance of a 2.5 
em from the edge of the nodule. The lamination (bracketed) consists 
of indistinct, clotted, argillaceous micrite with scattered dolomite 
crystals and siliciclastic silt (white specks). The large white 
patches are pelm~tozoan debris. ~eyon~ this the micrite fades out 
into the argillaceous matrix, probably due to pressure solution. 

e: Thin section negative print of a composite mudstone nodule . 
illutrating evitlence. for exposure on the.sea floor. Numbers and 
explanation are provided in Appendix N. Scale bar is 1 em. 
Stratigraphic top is up. Cow Head North, Upper Cambrian, Bed 6, 
sample CHN-25. 

f: Slab of nodular mudstone (M) and grainstone between (G) and overlying 
(H) nodules. This sample suggests submarine exposure of the mudstone 
based on its relationship with the overlying grainstone lamination. 
This is further explained in Appendix N. The mudstone and the · 
overlying planar-bedded, parallel~laminated grainstone above this 
contain vertical stylolites (S). The nodular bed near the top of the 
slab consists of isolated ripples. Stratigraphic top is up. St. 
Paul's Quarry, Upper Cambrian, sample SPQ-19. 
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Appendix A 

OUTCROP LISTS AND DESCRIPTIONS OF LITHOFACIES 

... 
A.l CALCARENITE AND SILTSTONE LITHOFACIES 

The following tables list prominent outcrops· of the calcarenite and--
siltstone lithofacies in the CHG. "*" indicates that variable 
proportions of other lithofacies are included in the interval. 

TABLE A.1: CALCARENITE LITHOFACIES 

Brooni Point . North: units 9, 15-17, 20-23*. 73-76 

Broolll Point South: units 34-38 

Cow Head North (Tucker's Cove): Bed 8 
• 

Cow Head North: Beds 6*, 8*, 11*. 13.0-13.5 

Cow Head South: Bed 13s.2· 

Martin Point: units 16, 22-23a*, 31, 33 

TABLE }.2: SILTSTONE LITHOFACIES 
· ~ 

Broom Point North: units 9, 26*, 31-33, 35-38*, 44, 47, 68, 81 

Broom Point South: units 19, 25-31"*, 47 

Cow Head North (Beachy Cove): Beds 6.16e~g 

Cow Head North (Point of Head): Beds 6.16, 6.20, 6.26, 6.31, 8.2,, 9.1 

Green Point: units 1-9*, 20-24* 

St. Paul's North: uniti 4*, 5*, 9*, i2 
0 

Martin Point : units 8, 10, 18, 20, 32, 36d 

.. 
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A.2 MUDSTONE LITHOFACIES: OUTCROP DESCRIPTIONS 

The following outcrops of mudstone lithofacies contributed significantly 
' 

to the generalized description in Chapter 2. 

Cow Head North Bed 9.6: This 5 m thick interval is an excellent example 

of a parted limestone (Type 2) sequence which is dominated by 

planar-bedded mudstones and fine sand-size peloidal grainstones and 

packstones (Plate 9c). Mudstones vary from 2-20 em in thickness, 

averaging approximately 10 em. · These are separated by centimetre-thick 

fissile mar l.s. 

Most beds consist of massive mudstone, but occasional parallel and 

ripple laminations also.occur. Many beds have tan to buff weathering 

(> siliceous "rinds" on their tops and bottoms, and one 30 em thick bed 

contains similarly-coloured nodul~r forms within, along with 

discontinuous lenses of black chert. Some bed surfaces have 

accumulations of sponge spicules, trilobite and brachiopod fragments, 

and horizontal traces. 

Cow Head North Beds 9.15-9.17: This 11m thick ribbon limestone (Type 1) 

interval is dominated by planar, massive- or parall~l-laminated 

mudstones with minor wavy and lenticular, locally spicule-rich 

grainstone (Plate 9a). Grainstones are parallel~, wavy-, or . 
ripple-laminated. Near the top of the sequence rippled grainstones. are 

surrounded by massive m~dstone "envelopes". Bedding thickness varies 
I · 
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from 5-15 em with comparable thicknesses of black shale. 

Local silicification occurs as .arall.ie-brown or tan to buff-weathering, ,, 
resistant crusts on the upper and lower surfaces of beds. Minor fitted 

fabrics are also developed. The top of the sequence demonstrates 

approximately 1 m of scour by an overlying conglomerate (Bed 9.18). 

~Head North Beds 6.37-6.44: This interval is 8 m thick and is exposed 

as a substantial strike section stretching over 200m (Plate 17b,c). In 

addition to mudstone, this interval also contains abundant silt- and 

very fine sand-size grainstones~ This is reflected in the presence of 

numerous wavy and lenticular beds. This int~rval also contains evidence 

of sediment failure and intrusion by clastic dikes. 

-
The sequence is a hybrid of parted (Type 2) and ribbon (Type 3) 

;::. 

\ limestones. Some portions are dominated by planar mudstones similar to 

those desc'ribed from unit 28 at Green Point, whereas others contain 

subequal quantities of planar_, wavy, an~ lenticular mudstones and 

grainstones. Bed thickness varies from 2-5 em and interbedded marls 

vary from a few millimetres to 4 em in thickness, rarely attaining 10 em 

thickness. Composite beddins is common and 

overlying parallel-laminated ~udstones, and 
! 

includes rippled grainstones 

composite m~dstones(with 
.. 

faint colour banding •. Size-graded T K grains tones also occur. · 

Interbedded lenses of conglom~rate up to -80 em thick locally scour 

underrylng- beds. 

Green Point Unit 28 ~ Southwe$t Outcrop: This parted (Type 2) to ribbon 

(Type 3) sequence can be followed along strike for approximately 700 m 

and is well-exposed on wave-c t platform and along shoreline outcrop 
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(Plate.lSa,b). The interval is a maximum of 8 m thickness at the 

southwesternmost outcrop but diminishes to 2·m thickness along strike to 

t~~ northeast. The southwestern end of the outcrop is also 

characterized by several 15-20 em thick zones of disturbed b_edding. The 

lateral change in thickness and the disturbed zones are the result of 

submarine sliding (see Chapter 3)~ '"'-

Sediments consist of planar- and wavy-bedded mudstones and minor 

grainstones interbedded with marls. Mudstones vary from 2-5 em in 

thickness and ~re typically parallel-laminated but may also have mindr 

wavy and ripple cross-lamination. ·· Marl interbeds are massive or 

parallel-laminated and vary f~om 1 mm to 2 em· in thickness. The 

transition from mudstone to marl may be gradational or sharp. 

Grainstones oc'cur in lenticular beds..Uom less th~n 1 m to over 10 m in 

length. Fitted fabrics preserve the sediment package thickness. 

Green Point Upits 31-33: Thi~ 15 m thick interval "is well-expos.ed on the. 

wave-cut . platform and clearly illustrates mudstone and shale lithofacies 
I 

I inte{relationships and their occasionally arbitrary distinction (Plate 

9d). -This interval consists of ~everal 0.3-3 m thick packages of r i bbon 

limestones (Type 3) separated by green and minor black shale p~ckages of 

comparable thickness. 

f 

Ribbon limestohes are.·la~erally persistent and consist of 1-2 em thick 
\ •. -. ~: 

mudstone'\.a~~-m!~~)-1-t~size grainstones interbedded with 5-10 mm thic~ 

marls. Beds are massive or they may be parallel-, wavy-, or 

ripple-laminated. T&c sequences are locally common. Some mudsto~e beds 

· are irregular and lumpy; have thin vertical argillaceous seams; or are 
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Green Point Unit 30: Several 1 m thick packages of ribbon limestone 

{Typ~ : · 3f-occur near the base of unit 30, a 15 m thick shale-dominated , 
interval {Plate 10e). The ribbon limestones consist of laminated 

mudstonei;~i~h- are plapar, wavy, and lenticular and which vary fro~ 1-2 

em in thickness. These are interbedded with black and green marls of 

comparable thickness. 

One of the exceptionally well-polished ribbon limestone sequences 

provides high resolution of the mudstone-marl relationships. The marl 

interbeds are characterized by 1-5 
I / - )-

mm' t~ick\laminations. In.this • 

sequence mudstone typically grades upward '~to a black marl lamination 

which in turn grades into green. Where several black-green alternations 

, ' 
occur, the green to ~ack transition is abrupt · relative to ~ the black to 

green tran_sition. Where green laminations are absent from the marl 

interbed, the black marl interbeds are · identical to marls seen in most 

other parted and ribbon limestones. The only situation in which gre~n 

marl directly overlies mudstone (i.e. without interfening black marl) is 
,,J··~ 

in the absence of black marl from the interbed: The laminations in the 

marls are interpreted to be mud turbi~ite-hemipelagite cycles and the 

mudstones appear· to be localized by the darker, more organic-rich 

laminations or beds. The above relationships may be applicable to 
.. 

other, similar outcrops in the CHG. Most outcrops, however, are not 

sufficiently well-polished to demonstrate~se small- scale 

relationships other than in slab or thin section. 

Hartin Point ~ 42a: This 2 m thick parted limestone {Type 2) 
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resembles the more heterogeneous portions of the above interval from Cow 

Head North. It differs, however, in that it coritains a greater number of 

wavy and lenticu,ar beds in a tightly fitted fabric. Bed thickness 

varies from 1-4 em and sediments consist of parallel-, ripple-, and 

convolute-laminated grainstones. Marl partings are less than 1 em 

thick. Locally, horizontal t~eces are found. 

• 

, 

0 

. . 

l 
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Appendix B . 

CLAY MINERALOGY OF SHALES . 

B.l INTRODUCTION 
I ' I 

c_::'-. 
Twenty-five shale samples were qualitatively analysed by X-ray -

diffraction' to establi,sh the nature of the dominant clny minerals; 

results are summarized in Table B.l. These samples span the CHG, include 

all colours and are taken from extensive shale intervals, interbeds 

• between with ribbon limestones or dolomitic siltstones, and matrix 

separating limestone nodules. Clay mineralogy and geochemistry in the 
' ~ 

CHG [ 1} were previously examined by Suchecki ( 1975), afld the results 

published in significantly revised form in $uchecki ~ ~· (1977). 

. B. 2 SAMPLE PREPARATION 

----
The technique used for sample preparation is outlined in Hiscott's 

(I9B2) report on Labrador Sea Clay Mineralogy, omitting procedures 

1. In their study, Suchecki et ll· (1977) considered the "Red Shale" 
which characterizes the you~gest parts of the CHG as separate from the 
the "Cow Head Breccia". ; 

( 
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' 
related to using the internal talc standard. The preparation uses the 

less t~c:n _2 JJm fraction of the ~hales, removes amorphous iron and 

• ultimately yields 3 oriented mounts per sample. Carbonates are not 

removed. ' 

Oriented clay . mounts are deposited · on Gelman Metricel 0.45 pm filters 

using suction. The filters are then glued onto microscopic glass 

slides. One clay. mount H> left untreated. Another mount is - exposed to 

ethylene glycol vapour overnight in a warm oven in order to expand th~ 
-to 

basal\ lattice spacing in srfiectite from 15 A to 17 A. A. mount of 

acidified sediment (9 M HC1) eliminates the chlorite contribution to the 

combined chlorite-kaolinite peaks at approximately 12.5 and 25 degrees 2 

theta. 

- All mounts are scanned one.-way only from 2-32 degrees 2-theta at a rate 

·of 1 de_gree 2-theta per minute. Results are outpytted t-o a strip-chart 
I 

recorder running at 1 em/minute. Instrumentation used is a Philips 

diffractometer with Cu K-alpha radiation, operating at 40 kV and 20 rnA. 

8. 3 OBSERVATIONS 

~ 

C..· 

. . . 
The prominence of the 10 A illit.e reflection and t~e 7.1 A chlorite 

reflection indicates tha.t these two clay minerals are by far the most 
.. 

important in all samples analysed. Kaolinite is found in most samp-les 

qut is a ··minor phase judging by the relativ~ size of the acidified 

! . ~eflect'ions relative to the untreated ones. -Corrensite is identified in 

7 of the samples, occuring in minor amounts in Lower Ordovici_an 
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(Tremadoc and Arenig) shales. Corrensite, a• mixed-layer clay consisting 

of variable proportions of chlorite and smectite (Hower, 1981), is 

recognized by the shift. of the reflections at approximately 6,.2 and 12.5 

degrees . . 2-theta iri untreated mounts to lower 2-theta positions in 

glycolate:! samples (as low as 5.6 and 11.2 degrees 2-theta, 

respectively). A residual reflection at the 12.5 degree 2-theta 

position suggests the presenc_e of a discrete chlorite phase in addition 

to chlorite interstratified with smectite to form corrensite. In otther 

cases, the 12.5 degree reflection transforms into a broad reflection 

upon glycolation without distinct maxima at either the chlorite or 

expanded corrensi te positions. For unkn-own reasons, a discrete chlorite 

reflection at .approximately the 6.2 degree 2-theta position does not 

occur . 

. Long-lattice reflections. at 31 A (glycolated) or 29 A (untreated) are 

not. found in any of the shale samples. These particular reflections 
I II\ 

characterize order~ corrensite within 10% of the ideal 1:1 chlorite to 

smectite r_?tio (Hower, 1981). It is uncertain. whether the absence of 

these peaks is due to. either disorder or compositional effects (see 

Hower, 1981, for details regarding these combinea reflections). One 

exceptional grainstone, however, contains shale intraclasts, extrdcted 

by acid leaching, · composed largely of o-::dered corrensite exhibiting the 

prominent 31 A (glycolated) long-lattice reflecti,on. 

Usin& the positions of the shifted, glycolated peaks it is possible. to 

make a rough estimate of the percen-tage chlorite layers in the 
• 

corrensite phase based on . theoretical calculations in Hower (1981). 

Based on his table 3.6 which lists .the positions o~ the (001) 14 /(001)1T 

. . 
,I 

' 
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and (002\~ /(002)17 )reflections in glycolated specimens as- a function of 

percentage of .chlorite layers and assuming random interstratific'ation, 

glycolated corrensite peaks from the CHG indicate 42-80% chlorite layers 

(the previously mentioned reflections range ·from 5 ~ 6-5.9 and fro111 

11.2-:-11.6 degrees 2-theta, respectively). If cor.rensite is ordered, the 

range diminishes to 44-74% chlorite layers . · The exceptional ordered 

corrensite intraolasts within the grainstone sample indicate 52-58\ 

chlorite layers. 

One sample of "shale~' und.erlying a grainstone and occur ing locally as 

intraclasts is largely replaced by microcrystalline potassium feldspar 

(i.e. a feldspar' "chert"), though it is not petrographically 

recognizable as such. X-ray diffraction verifies the feldspar 

mineralogy and both atomic .absorption as well as microprobe analysis 

prove its high potassium content (Table 8. 2). 

8.4 INTERPRETATION --

The dominance of illite and <!hlorite in· shales of the CHG is c ons istent 

wit.h the-general ;bservation that ~ith progressive increase in age, 

illite and chlorite become more important at the expe ns_e of kaolinite, 

montmorillonite, and \ixed- layer clays (Weaver, 1967; Dunoyer de 

Segoniac, 1970). Domination of the clay minerals by i 11 ite and chlorite, 

the relative paucity ·of kaolinite, and the absence of a discrete 
~ .·· • 

smectite phase are also consistent w(th observations on clays from 

shallow water, Upper Cambrian sediments from the Port au Port Peninsula 
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in western Newfoundland (Wood, 1983). In these particular sediments it 

was concluded that both illite (1M~ polrtype) and chlorite are mainly 

detrital and were deposited in an outer shelf environment. These clays 

~~re ultimately -derived from weathering of a granitic source terrain 

under arid to semi-arid equatorial conditions. 

Corrensite, along with mixed illite-smectite are the most importa~t 

mixe~ayer clays (Hower, 1981). The elevated Mg concentrations 

necessary to form ~orrensite results in its association with evaporites 

(salts, sulphates), restricted-environment carbonates (limestone and 

dolomite), volcanics, and graywackes (Kubler, 1973): Formation of 

corrensite commences at temperatures as low as 90-100 degrees C and the 
~ 

phase is therefore indicative of intermediate and deeper diagenetic 

zo~e~ (Kubler, 1973). However, the corrensite referred to by Kubler 

(1973) is ordered and the quoted temperature range may be much hi~her 

than randomly interstratified lorrensite. 

The present study confirms the main findings in Suchecki ~ .!!· ( 1977) 

[2] with regards to the importance of illite and chlorite. 

• 

However, • 
they also identified mixed-layer illite-smectite, 14 A chlorite, 

corrensite (ordered), and -expandable chlorite.· Their description of 

~---------
2. In addition to untreated, acidified; and glycolated treatments, their 
methodology also leached carbonate and used MgCl saturation in order to ' 
establish lnterlayer charge characteristics of the corr~nsite. Samples 
were also subjected to heat treatments (350 and 550 degrees C). 

' . 
r . ·--------..... 
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expandable chlorite.suggests it is the disordered corrensite of the 

present study. Unfortunately, details _concerning the recognition of 

illite-smectite mixed-layer clay are not given in Suchecki et al. 

(1977) and the present study does not confirm its presence. 

These variou·s days are subdivided into 3 suites: (1) an illitP.-14 A 

choi'ite suite [middle Caq1brian to early- Lower Ordovician}. ( 2) an 

ill"i te-expandable chlorite suite [early to !,ate Lower Ordovician], and 
. . ~ 

(3) a cbrrensite-illite-smectite suite. This suite is Low~r and Middl~ 
' · 

Ordoviciah in age and apparently also characterizes the 400 m thick 

fverlying Green Sand~tone [3] (now considered as the Lower Head 

Sandstone - Williams~~· 1984). 

.The old.st suite was interpreted to reflect slope deposition of ~ 
. \.~ / continentally-derived clays. Later, the effects of increasing amoun~ 

of volcanic detritus, presumably transported westward from a volcanic 

arc terrain _ in what is now. central Newfoundland, became important. Mg 

was interpreted to have been transported either as Mg-rich clays or 

ferromagnesian minerals whi·ch altered to Mg-smectites during. early 

digenesis at the depositional site. Further alteration durin~ burial 

resulted in the formation of expandable chlorite and corrensite. 

This interpretation is also supported by tpeir geochemfcal analyses of 

the carbonate-free, less-than-1 -~m fraction of the clays. Suite 1 is 

characterized by high K20 content which presumably reflects the 

continental provenance whereas younger clays are more Mg-rich indicating 

3. This information is based on a single(!) analysis from -Black Brook. 

/" 
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their volcanic derivation. It is suggested, however, that this trend 

may also be explained by the smaller amounts of detrital siliciclastic 

silt present in the y"'unger shales, e-specially red shales. Potassium 

feldspar, both as detrital grains and ~yntaxial overgrowths, are locally 
., 

important components of the non-carbonate sil~-size fraction (Chapter 6) 

and glauconite is present in some shales as scattered, silt-size peloids 

scattered in some shales. In addition, a correlation coefficient 

calculated for K~O and MgO analyses listed in Suchecki et al. (1977) 

indicates no~egative correlation, a correlation which is expected to 

exist assuming their hypothesis to be correct (r ~ -0.0523 for n = 32). 

\ f 

• 

• 

. 
~-
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TABLE B.l : CLAY MINERALOGY 

LOCATIOI't, SHALE DOMINANT MINOR OTHER AGE, . STR~TIGRAPIHC 
SAMPLE COLOUR CLAYS CLAYS PHASES POSITION, COMMENTS 
---------------------------------------------------------------------
BPS-24 bl . ill, chl kao* q f d c Tremp, unit 45, from 

ribbon-nodule 1st. 

BPS-28-A bl-gy ill, kao q c d Tremp, units 35- 38 
from ribbon 1st. 

BPS-35 gy ill, chl kao q Ores . , unit 10 , sha l e , 

CHN-9 gn ill chl, kao q f d c Ores, Bed 3.1, sha l e. 

CHN-80 bl ill chl q f d c Franc-Tremp, Bed 6 
from ribbon 1st. 

CHN-1Q6 bl ill, chl q f d c Trem, Bed 8.30, 
from between 
nod liles .. 

' CHN-111 bl ill, chl kao q f d Aren, Bed 9 . 1. from 
dolomi tic siltstone 
unit. 

CHN-122 bl ill .• chl kao q· c Ar en, Bed 9 . 17, from 
I ribbon 1st. 

CHN-129 bl ill kao, chl q d Aren, Bed 11. 1-1 1. 4, 
sil ic ified s hale. 

CHN-140 gn ill , chl corr q Aren, Bed 13.6-13.9, 
/ from be tween 

nodules. 
flo 

GP-14 . gn chl, ill, q d Tremp, un i t 1 • shal e 
kao i nterbedded with 

sample GP-15. 

GP-15 bl ill, chl kao q d c Tremp, unit 1, shale 
interbedded with 
sample GP-14. 

GP-44 gn ill, chl kao q f d c Tremp, un i t 11' shale 
interbedded ~ith 

) ... sample GP-45 . 

continued on next page 
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TABLE B.l (contin~ed) 

DOMINANT 
CLAYS 

MINOR 
CLAYS . 

OTHER 
PHASES . 

\ 

AGE, STRATIGRAPHIC. 
POSITION, · COMMENTS 

---------------------------------------------------------------------GP-45 bl ill, chl kao q Tremp, unit 11, shale 
interbedded with 
sample GP-44. · 

GP-50 bl ill, · chl kao, corr q Trem, units 20-24, 
from ribbon 1st. 

GP-69 gn chl, i ll kao, corr q Trem, units 30-33, 
shale to ribbon 1st. 

GP-85 bl ill, chl kao q f c Trem, unit 30, shale. 

GP-94 rd ill, c hl corr q Aren , unit 47. shale . 

GP-99 pu Ul, chl corr q Aren, units 43- 49, 
kao f1;0m red shale unit. 

MP-46 gy ill, chl q f d c Tremp, unit 36b, 
sha l e. 

MP- 53 gy ill, chl . q f d c Trem , un~_t 36o-r, 
shale. 

MP- 56 gn, ill, chl, . kao q d c Trem, unit 36s-v, f r om 
bl corr r i bbon 1st. 

MP-70 gn ill, ·chl .. q f d c Trem, unit 40a, 
kao siliceous shale assoc 

• with dolomitic ~iltst . r 
82, sha l e. SPN- 42- B rd ill, chl, kao q d Are-n, unit 

corr 
'~ 

SPN-;-42-C gy ill, thl kao, corr q d Aren, unit 82, reduced 
equiv t o SPN- 42-B. 

-----------------------~----------------------------------------.-----*: uncertain due to lack of acidified sample. 

Abbreviations used: bl-biack, gn-green, gy-grey, rd- red, pu- purple, 
·ill-illite, chi-chlorite, kao-kaoli nite, q-quartz, f- f eldspar, 

d-dolomite, c-calcite, corr-corrensite, Dres-Dresbachian , 
Franc-Franconian, Tremp-Trempeauleaui an, Trem-Tremadoc , Aren-Arenig, 
l~t-limestone. · 

\ 

,_ 
: I 
\ ,) -· 
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TABLE B. 2: .. POTASSIUM-METASOMATI ZED SHALE 

AAS ANALYSIS MICROPROBE 
oxide wt % ./ oxi de wt % 
-------------- --------------
Si02 62.4 Si02 69.49 
Ti02 0.43 Ti02 0.49 
Al203 14.8 Al203 16.62 
MnO 0.01 MnO 0.02 
MgO 2.36 MgO 2.42 
CaO 1. 75 CaO 0.34 
Na20 0 . 28 Na20 0.08 
K20 8.02 K20 8.82 
P205 0.29 Ni02 0 .00 
Fe203 2.05 FeO 1. 97 
LOI 5.96 Cr203 0 . 01 • 

------
TOTAL 98.35 Total 100.27 

Sample CHN-1 69 from Cow Head Nor th, Bed 8.24. Petrography and x-ray 
diffraction also i ndicate the presence of quart z , minor pyrite and . 
dolomite , and possibly clay minerals. Mic roprobe analysis is t he 
average of 5 ~pot analyses. These were conducted usi ng a cl i nopyr oxene 
standard and 30 second counts. 

" 

_, 
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Appendix ·c 

CAUSES OF SUBMARINE SEDIMENT FAILURE: ~N OVERVIEW 

C .1 INTRODUCTION 

Sediment failure, which results in slides or mass flows, characterizes 

slope sedimentation on modern {active or relict) and ancient slopes 
' \ 

(Cook~~ •• 1982; Prior and Coleman, 1982). In addition, both active 

arid pa~sive tontinental margins are subject to failure (Scheidegger, 

1982/ Sediment failures h~ve also been reported from isolated oceanic 
i 

ricfges such as the Madeira Rise (Embley and Jacobi, 1978; Embley, 1982), 

ancient cratonic basins (Mcilreath, 1977; Hopkins, 1977), modern deltas 

(Prior~~·· 1981; Prior and Coleman, 1982), and modern fjords (Prior 

~ ~ .• 1982). The plethora of literature devoted to study of sediment 

failure from geological and geotechnical perspectives has recently been 

joined by studies emph.asizing their biologic importance (e.g. ijecker, 
\ 

1982). 

Modern continental slope failures have been recorded on slopes of less 

than 1 degree (see Embley ~d Jacobi, 1978, table 1). Such small angles, 

which are insufficient to generate the required gravitational stress to 

cause failure in normally compacted sediment, emphasize the i ,mportance 

of the relationship between effective shear stress and pore pressures 
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(Prior and Coleman, 1982). Embley (1982) suggested that slope failure 

does not occur o~ slopes less than 20 degrees if there is no excessive 

pore pressure • 
• 

C.2 TECTONIC AND OCEANOGRAPHIC CAUSES 

For purposes of this overview, it is convenient to consider two 

principle controls of sediment failure: tectonic and oceanographic 

causes both of which can gradually or catastrophically induce failure. 

Oceanographic tauses are more directly related to eleme~ts of the 

hydrosphere such as sediment transport and sea level changes. Tectonism 

and oceanographic causes are certainly not unrelated, but for simplicity 

this initial dichotomy is established. The following .discussion ignor~s 

artificial causes of sediment failure. 

The most commonly cited cause of sediment failure for both .modern and 

ancient situations is the earthquake (Table C.l). Volcanic eruptions can 

cause failure v~a their attendant explosions ~nd ejection of rock 

material. Other less catastroph~c tectonic causes include diapirism and 

· gradual isostatic adjustments. · · 

A major oceanographic control of sediment failure results from change~ 

in sea level which, in siliciclastic gystems, is a dominant control on 

the amount of sediment deposited on continental shelves and slopes. 
/. ~ 

Abundant sediment brought to the sfope encourages overloading and ~. 

failure. An increase in .sea leve~ causing rapid vertical growth of a 

carbonate platform rna~ result in overst~epening and subsequent failure 



of the· slope (e.g. Sch)ager and Camber, 1982). Sea level and oceanic 

circulation also control the existence and strengths of bottom currents 

and the position of mineral compensation depths (see Fisher and Arthur, 

1977). A change in calcite or aragonite compensation depth may cause 

patchy dissolution or cementation of sediments, decreasing or increasing 

sediment mass unevenly, and leading to failure (e.g. Hopkins, 1977). 

Other oceanographic effects incl~de generation of surface and internal 

waves which affect sediment pore pressures. 

Biological effects include production and sedimentation of o~ic 

matter which ultimately generate gas. Superimposed on this are · changes 

in gas hydrate - free gas boundaries controlled partly by pressure and 

temperature, which are in turn sea level and c1imatically controlled 

(see Embley and Jacobi, 1978). Biologic effects also include bioerosion 

and bioturbation. 
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TABLE C.1: CAUSES OF SEDIMENT FAILURE 

Earthquak~s [3,7,14,16) 

Volcanism [11 

Diapirism [7] 

Isostatic adjustments 

Depositional factors 

Tectonic 

. "' Oceanographic 

oversteepening [5,6,7,15] 

rapid depositio~ [5) 

overloading [4,7,12,14) 

Pore pressure effects 
... 

. \. . 

change in pore pressure due to surface or internal waves 
[2,5,6,7,10] 

gas generation [5,13,14) 

~ shifting of gas hydrate~ free gas boundary [7,8,14] 

artesian gas or wat~r fro~ deeper, buried sediment~ [5] 

migration of freshwater through aquifers to continental slope [7] 

continued on next page 

• 

' 

• 
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TABLE C.1 (continue$!) 

Erosion 
.. 

undercud.ing by turbidity or · g~ostrophic currents [4,6,7,14] 

bioerosion [8,9] 

- bioturbation [9] 

Change_s in physi~o.,.chemica1 properties of t)le sediment 
1 

dissolution 

- quic;k clay effect .due to 'f)ore water , freshening [ 17). 
·' 

Arti ficii.al. 'causes 

' 
- explosions, vibrations, ship impacts [6] 

physical •. weakening ~ · 

' / 

R~ferences for" Table C.l: 

. q 
(1] Herzer (1979) in Saxov (1982); [2] Her~ke1 (1970) in Sa'Xov (198~); 
(3] He·e~en and Ewing (1952) in Saxov (1982); .[4] Scheidegger (1982); [5]' 
Prior and Cole~an (1982); [6] Koning -{1982); (7] Embley (1982); (8] Ryan 
(1982); [9) Hecker (1982); {10] McGregor (1981); . [p] Nardin et al. 
,(1979a)' (12] Hopkins (1977); [13) ·Monroe (1969); [14) Embleyan'Cf"Jacobi . 
(1978); {15] Schlager and Camber. (1982); ·[16] Morgenstern (1967); [17]. 
Sch\ilarz (1982) 

, l -

' r . 

·> 
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.. 
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TABLE C . 2: SHEAR ZONE AND TRUNCATION 

SURFACE LOCALITIES, COW HEAD GROUP 
. I • 

Broom. Point North units 11, 53; 96 I 
Broom Point ·South unit 62 

Cow Head, North beds 6.37-6.44, 8.30*, 13* 
.. 

Cow Head South beds llS.2l*, 13S.4 

Cow Head Peninsula · Fish Plant .. 
Green Point units 17-18** , 27, 28 

Lower Head Bed 11 equivalent 

Martin Point - unit 40d 

St . · Paul's North units 71, 79' 

Western Brook Pond Sou t h units 5, 36 

·.-,) 

*:_ambiguous. field r.elationshi p with possi~le struc tur a l complicati ons. 

-
;**;occurs within s hale-dominated ·se4uence. 

). 

f 

.. 
\ 
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Appe.ndix D -

CONT6RTED LIMESTONE DATA 
. ' 

TABLE D. l: OUTCROP' LOCATIONS 

Contorted Li mestones 

Broom Point South: units 35-38, 40 
· cowHead North: BE!d 6 
Green Point: units 11, 18, ,21, 23, 31-35 

' Martin Point: units 8, 31. 33, 36 
St. Paul's North: units 4, 9 

Bedding Overlaps 

Cow Head North: Bed 6 f:. . • 

<;:ow He-ad South: Beds' 9s. 2-9s.4 
Green Point: IJ,ni ts 1-10, 26, 27, 
St. P.aul' s North: unit 24 , 

28, 34 

.,. 

.. 
TABLE D. 2: ORIENTATION OF DOME-AND- BASIN ELONGATION .. 

Location Bedding Attitude · Hori zontal 
(strike , dip) Projec t ion 

(degrees) (degrees) ------------- --------------- ----------
Green ·Point*: Pitch 

unit 23 52 NE, 65 SE 20 sw 
unit 18 ·ss NE, 66 SE I 20-30 sw 
unit 18" 55 NE, 66 SE 10 sw 

Martin Point: 
unit 31 b 121 SE , 22 SW 10 NE 
unit 33 123 SE, 26 SW 17 NE 
unit 36m 127 SE, 30 sw 40 NE 

· unit 36s-v 80 NE, 33 SE 96 SE 

------------
*: Green Point strata are overturned 

·'-.. 

. ~-
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Ap-pendix E 

TABLE E.l: COMPACTION ESTIMATION DATA 

-
• 

Clastic Dikes: Calculated Intruded Location 
• Compaction Lithology 

_(%) 

42 rib. BPN units 75-85 
84 ''b) BPN unit 91 
38 rib. BPS unit 40 
40 rib BPS unit 42 
45 rib. BPS unit 42 
37 rib. · BPS unit 42 
59 marl Lower .. Head 
74 shale MP unit 38a,b 

Average: 52% (st. dev. a 15%) ' 

Miscellaneous: Calculated 
Compaction 

Comments and 
Location 

_(%) ______ ~~-:-----

bO vertical mudstone nodule in rib. 1st. 1 

BPN unit 65 
55 rotated mudstone slab, Lower Head 
61 sub-vertical mudstone nodu1e in rib. 

1st., MP unit 40d 
81 pie- compaction silicified shale, 

SPN unit 82 

Average: 64% (st. dev. • 11%)· 

. -
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TABLE E. 2: VERTICAL STYLOLITE DATA 

Bed, 
unit 

Bedding 
strike, dip 

(degrees) 

Horizontal 
Projection 
(degrees) 

-------------------------------------------------------Broom' Point 9 58 NE, 42 SE 40 NE 
North. 20 80 NE, 55 SE 68 NE 

20-23 58 NE, 45 SE 43 NE 
37-38 6.5 NE, 52 SE 66 NE . 
41 86 NE, 36 SE SO NE 

70 .Nf;. 33 SE 44 .NE 
55 61 NE, 68 SE 61 NE 
75-85 73 NE, 45 SE 58 NE 
91 86 NE, ·41 SE 53 NE 
94 80 NE, 43 SE 60 NE 
96 80 NE, 42· SE 59 NE 

73 NE, 50 SE 60 NE 
87 NE, 44 SE 65 NE 
77 NE, 40 SE 65 NE 

100 74 NE, 34 SE 51 NE 

Cow Head East • ,57 NE, 40 SE 38 NE 
Fish Plant 

I 
Cow Head North 4 89"N~i S 40 NE 

6 1 fa SE, 21 sw 52 NE 
6. 1-.2 . 0 NE, 37 SE *51 NE 
6. 37-.44 /?6 NE, 42 SE *52 NE 
6 / 50 NE, 51 SE · *51 NE 

Cow Head South ;;c;;- 111 SE, 19 sw 42 NE 
(Jim C(!)ve) 11s. 24 103 SE, 22 SW 23 NE 

continued on next page 
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TABLE E.2 (continued) 

Bedding Horizontal 
Location Bed; strike, dip Projection 

unit (degrees) (degrees) _____________________ ...; _____________ . ____________________ 
Martin Poi nt 4 

5 
8 

10-15 
16 
23d 
35 
42a 

Western Brook 5 
· Pond South 

Grl!en Point** 2.8 

• 

76 NE, 30 SE 
94 SE , 28 sw 
98 SE, 26 sw 

145 SE, 28 sw 
160 SE , 33 sw 
125 SE , 30 sw 
108 SE, 33 sw 

98 SE, 29 sw 

30 NE, SO SE 

58 NE , 70 SE 
54 NE ; 63 SE 
53 NE, 56 SE 

81 NE 
83 NE 
65 NE 
81 NE 
85 NE 
70 NE 
74 NE 
67 NE 

25 NE 

Pitch 
. 30 sw 

30 sw 
32 SW· 

-·>! . 

~ 

*: projection values after correct i on for plungi ng struc t ure 
**: overturn~ sequence 

.. ·' 

. ,...-- . 
. / 

-~ 
\ 
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Appendix F 

PETROGRAPHY OF OOIDS AND SILICICLASTICS 

F.l OOIDS 

Ooids are ma~nly restricted to Cambrian grainstones where they 

constitute 4% or less of the sediment (Figure 6.1 and Table F .1). Their 
~ 

size typically ranges· from 150~250 pm and the most common nuclei are 

coarse silt-size peloids. Small intraclasts, dolomitic lithoclasts or 

individual detrital dolomite crystals, and bioclast nuclei are 
. /f 

comparatively rare. Cortices are mostly radial althougf c~ncentri\ 
I 

inclusion banding can usually also be differentiated. Broken ooids and 

micr~tic, concentrically-banded ~oids arEr rare. Selectively dolomitized 

or silicified ooids o~cur; howev~r. ~it is un(ertain whether th~ 

alteration is transported or in situ. 

F. 2 QUARTZ SAND 

rhe siliciclastic sand-size fraction is dominated by well-rounded q~artz 

grains which typica.lly range from 0.5-1.0 mm in size. Silt-size, 

angular qu~rtz grains are ubiquitous and intimately mixed with ~eldspar 

\ 
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silt (d~scusSfed below): Extinction varies from straight to undulose and 

• 
some grains are subdivided into subcrystals, each with its own undulose 

extinction. Quartz appears to be non-luminescent although the brighter 

luminescence of associated grains could oasily mask a weak quartz 

luminescence. Authig~nic overgrowths are rare and are only 

di~tinguishable undeihigh magnification. These quartz sand grains 
/ ' 

pC>Ssess all the attributes of "common" quartz typically derived from 

granites and granitic gneisses (see Folk, 1974b). 

Both fluid and solid inclusions are abundant within quartz grairis. 

~luid ~nclusions are less than 5 pm in size and may be irregular or 

spheric~! in shape. Gas-liquid inclusions occasionally demonstrat~ 

Brownian ~ovement, · and some inclusions contain unidentified daughter 

crystals. Solid inclusions include al~gned to randomly disposed needles 

up to 200 ~m long and less than a micrometre in width and· s t ubbier 

needles 20 pm long and 1 ~m wide . .These are probably rutile, apatite, 

or tourmaline. Cubic to anhedral opaque i~£l~sions less than 5 pm in 

size may be pyrite. ·Other solid inclusions include subhedral zircons up 

to 130 pm in length and biotite flakes up to 75 pm in length. 

These quartz ~rains were originally noted by Schuchert and Dunbar (1934, 

p. 76). Baird (1960) suggested an aeolian origin based on their 

·excellent sorting, heavy frosting·, ~nd textural ~nversions. The bluish 

cast of these grains led Baird (1960) to suggest der.ivatiori from the 

Long Range gneisses. Although such a source is unlikely, . the grains 

nevertheless reflect weathering and extensive reworking of te~. 
suprac:rustals. 
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F.3 FELDSPAR AND SAND 

Silt-size (15-75 ~m) feldspar crystals are ubiquitous. Grains range 

from euhedral ·tO subhedral, in part the result of syntaxial overgrowth 

of angular or rounded, slightly turbid, detrital cores to the 

rhombohedral habit of adularia. This is clearly demonstrated by CL and 

to a lesser ~egree by rare "dust" lines visible ~n transmitted light. 

With CL, most feldspar cores luminesce bright blue and ~ss commonly 

yellow-green. !A:. contrast, authigenic overgrowths are i~va~_iably 
t 

non-luminescent. Based on a limited number Qf microprobe\ analyses, 

detrital cores consist of relatively pure potassium feldspar or 

oligoclase (Na/Na+Ca ,. 0. 754-0.808; see Table F. 2). Pure potassium 

feldspar syntaxially overgrows both of these detrital feldspar cores. 

Cores are typically -untwinned but the rare al~ite and pericline twins 

that do occur rarely. extend into the overgrowths. 

Sand-size feldspar grains are usually · syntaxially overgrown by 

authigenic feldspar and are often subhedral • . The ovt!rgrowth is 

invariably unaltered ·vhereas the. detrital core is· turbid and, in places, . 
' . 

altered to calcite, ~Hite mica, and -presumably clays. As with the 

silt-size feldspars, albite twins in plagioclase and Carlbad twins in 

alkali feldspar do not extend into the overgrowth. CL of these large 

grains is identical to that for fel"dpar silt. Some alkali feldspar ·sand 

grains are microperthitic or demonstrate braid perthite exsolution 

textures. 

/ 
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T~BLE F.1: POINT-COUNT DATA OF SELECTED GRAINSTONES. 

CAMBRIAN GRAINSTONE$ % COMPONENT 
sample ·1 2 3 4 5 6 7 8 9 10 11 12 13 14 1.5 16 

CHN-24 
80-6-3 
80-6-SB 

7 
-19 
21 
38 
-44 

80-8-'SA 
-8B 

-40 

7 

--- --- --- --- --- --- --- --- --- --- --- --- --- --- ---
319 26 
331 36 
322 11 
345 11 
311 16 

'307 3 
319 21 
317 2~ 
337 12 
314 53 
331 18 

4 

. 3 

2 
4 
3 

1 • 2 2 
1 3 

10 24 . 2 
3 . 

1 1 
58 4 2 

2 1 2 
2 1 2 
9 1 ' 3 . 3 

4 2 
2 

10 . 1 1· J 
4 1 3 
1 2 3 

8 3 
5 8 

17 18 1 
34 13 
38 1 

6 1 
31 5 

4 2 
31 3 

2 
36 11 
16 . 7 2 

53 
"46 
18 

1 35 
42 
25 
35 

3 56 
32 
41 
33 

39-23 
/ 80-39-310 

J / 80-39-33 

, 352 18 
318 36 
314 39 
326 19 
417 .23 

4 
2 
2 

19 1 2 
5 3 · 1 

3 
17 2 i 
12 1 
12 1 

1 42 
52 
33 
44. 
53 

~-
l • % COMPONENT ORDOVICIAN GRAINSTONE$ 

sample 1 2 3 4 5 6 7 8 9 1 0 11 1 2 . 1-3 14 15 . 16 

80-9$-19 
80-9-5 
80-9S-12E 
80-13S-4 
80-10-0C 
80-11'$-1 
80-61-33 

. 80-61-23 
80-39-60 
80,-71-82 

326 
325 
317 
317 
307 
335 
328 
315 

• 308 
311 

10 
17 
·27 
18 
n 
25 
7 

19 
25 
17 

------------~---

1 
1 

. . 2 

2 . 

9 
1 . 

1 

9 1 
7 3 
9 ' 4 
9 3 
8· 5 

41 · 10 
11 3 
18 8 
18 8 
21 7 

3 3 3 
3 11 11 

40 
2 30 
9 24 

6 - 5 3 
12 . 3 - 4 

4 

11 
2 
2 
3 

6 
4 
3 
3 

16 
1 

1 

1 
47 

2 53 
42 
42 
36 
64 

· 1 24 
3 18 

' 23 
. 42 

Column Headings: 1-number of point~; ·columns 2-16 in volume %: 
2-peloids; 3-ooids; 4-detrital quartz; 5-argillaceous seams; 
6-authigenic quartz; 7-dispersed dolomite• 8-bioclasts (non-algal); 
9-algal clasts; 10-peloidal intraclasts; 11-micritic intraclasts; 

"12-shale and phosphatic i~traclasts; 13-dolost~~e lithoclasts; . 
14-opaques; IS-calcite cement; 16- dolomite or barite cement. 

7 
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TABLE F.2: FELDSPAR SILT MICROPROBE ANALYSES 

Wt % 

.. 
grain 1 grain 1 grain 2 grain 2 grain 3 grain · 3 
core rim core rim core rim Oxide (n=-4) (n .. 2) (n•1) (n=l). ____ (n=1) (n:a1) 

·Ns20 8.43 0.06 8.82 0.04 0.46 0.03 MgO 0.01 0. 04 0.01 0 .02 0.00 0.00 Al203 22.29 . 18.36 22 . 43 18.08 17.81 17.69 Si02 64.08 70.00 65.06 69 . 72 65.43 68.57 K20 · o~l4 17.28 0.64 17 . 70 16 . 82 17.71 CaO 4.~5 0.21 3.80 '0.25 0.02 0.17 . 
Ti02 0.01 0.02 0.00: 0.00 Cr203 0.01 0.00 0.00 0 .01 MnO 0.01 " 0.01 0.00 0.00 0.00 0.03 
FeO 0.02 0.06 0.14 0.04 0.00 0.00 
Ni02 0 .01 . 0.00 0.00 0.01 0.05 0.03 

Total: 99 .. 26 W6.04 100.91 --
105.87 100.59 104.23 . 

Quartz an.d· feldspar s ii t constitute approximately 5% of the sediment 
volume in ' this sample (MP-93-B). Analyses used a clinopyroxene standard 
and 30 second counts. . . . 

TABLE F.3: PHOSPHATE AAS ANALYSIS 

- - -- ·-- · . ~ - ---- Oxide. Wt % 
~----

Na20 0.30 
MgO 0. 79 
Al203 1.16 
Si 02 . 15.45 
K20 0.11 

. - --.--- ·-· . CaO 43.30 
MnO 0.01 
Fe203 0.60 
P205 25.75 

. L.O.I. 5.62 

Total: 93.09 
~ - - . - - - - - - - - --

\ Analy~is also includes approximate ly 15 wt % ferroan calcite and minor 
•· quartz .-· pyrite, and dolopti te (sample CHS-81). 
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Appendix G 

J 
STRUCTURE GRUMELEUSE AND CALCIFIED ALGAE 

G .1 INTRODUCTION 

7'' . 

The prominence of structure grumeleuse or c!'otted texture in the 

spectrum of limestone fabri.cs was first elucidated b\ Cayc.~x. (1935) in 
. . 

describing Carboniferous limestones from France and Belgium. Thi~ fabr~c 
\ . 

is common in .many type.s of limestones througho1,1t the geologic column 

(Bathurst, 1975) in~luding ~tromatolites and thro~bolites~ and appe~rs 

to be a standard microfabric in cryptaigal sediments (e .g. Wolf, 1965; · 
;- . . ... 

Aitken,· 1967; Monty, 1977; Pratt, 1982); Diffuse micri~e p~tihes 

separated by microspar occurs ~n sediments of diYerse nature i n terms of 

both depositional as well as diag~netic origin~ an~ structure grum~leus~ . ,. 
is therefore poly-genetic. Structure grumeleuse has _been descritied in 

sediments froin submarinfi!', intertidal, subaerial, shallow and deep burial 

regimes. ;The microfabric has been variously interpreted as ~he result 

of (1) merging of peloids due to compaction (Beales, 1958; also termed 

pseudomatrix by flugel, 19~2. p.l19); (2) porphyroid neomorphism of an 

original~y homogeneou; micritic matrix, the micrit~ patches bei~g 

residuals of the origi·nal texture (Cayeux, 1935); (3) alteration of 

pelletal limestone by aggradational neomorphism which ~egi?s .in the -
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interparticle_matrix and extend. into pellets (Shinn, 1969; Ba~rst, 

1975); (4) precipitation of high·Mg-calcite s~bmarine cements 

(Macintyre, 1977); (5) precipitation of micritic calcite. in calcrete 

profiles (James, 1972; Harrison, 1977; Coniglio and Harrison, 1983); ~nd 

(6) cryptalgal and bacterial influences, either by subsequent 
./ 

modification of trapped carbonate particles, or precipitation of micrite 

microspherulite~ as a direct or indirect response to metabolic processes 

(Bathurst, 1975; Monty, 1977). 

EETS 

The poor preserva of Girvanella and the abundance· of structure 

grumeleuse withifl shee~~ in the algal boundstones and 

genetically- related Girvan~lla and peloidal intracla~ts may be the 

result of several . processes! If it is assumed that a monospecific flora 

· (i.-e. the Girv,anella-form~ng precursor) iorms the ·sheets in the platform 

margin mounds, the lack of calcified tubules and ih~ prominence of . 

structure grumeleuse may b~ explained as follows: 'fl 

The Girvanella tubule as it is commonly preserved may represent an 

incipient stage of calcification related to algal metabolism or decay 

which, w~en entombed early: by synsedimentary cenieRt, is well-p.reserved. 

Where calcification proceeds to a g-reater 'extel)t, obliteration of the 

fine-scale microfabric occurs due to precipitation of. micritic ; cements 

within and upon the tubules. Precipit~tion within leads to· the 
. ~ . 

I 
formation of dense micritic threads which eventually may be ftagmentea-i ' 

\ . 
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to form short, micritic rods and, ultimately, peloids. If micritic 

cements are precipitated on the tubule, the process may be similar to 

that proposed for the generation of constructive micrite envelopes 

formed between grains in Quaternary __ ~ediments (Kobluk ,and Risk, 1977). 

In these sediments, calcified alga~ filaments underwent further 

calcification and infilling of the interfilament spaces .. by micrite and 

microspar. with the eventual attainment of structure grumeleuse (see 

figure _9 in Kobluk and Risk, 1977; also Rtding, 1977). 

If Girvanella is considered as a diagenetic form o£ a number of 

biolqgically distinct taxa (Kobluk and Risk, 1977; Riding, 1977; 

Danielli, 1981; Pratt and James, 1982a; Pratt, 1984), it may have then 

been possible that some of the Girvanella-forming algae di d . not 
• 

comple~ely calcify, thus explaining the absence of tubules in many 

sheets of the boundstone boulders and their derivative intraclasts. 
. . 

Thes~ non-calcifying algae may~have {orced precipitation of micritic 

carbonate or may have trapped particles, processes analogous to th~e 

which occur in the common str6matolite-iorming algae (Bathurst, 1975i 

~onty, 1977). 

Q 

G.3 SUMMARY 

Although structure grumeleuse microfabric can be derived in numerous 

ways, study of Girvanella shee.ts in the algal boundstone boulders ., 

~uggests that structure grumeleuse may be due to s~nsedimentary , 

processes affecting living or d~ad filamentous algae and probably also ... 
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, t 

~oecoid algae .. Structure grumeleuse. may be either the ·result' of . 

"overcalcificaiion-" with con.sequent loss of diagnast~c_ miq:otabric, ' or 

.the result of insufficient, calcification to define the Girvanella form 

· in conjun.ction with typical "stx:omatolite-forming" p'rocesses. 

~· 
. . 

.{, 

'I 

"' I 
I ' 

~ 
.· _ ._J 

I 
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Appendix H 

CEMENTATION AND NEOMORPHISM 

H. 1 TERMINOLOGY 

Cement refers to "all passively precipitated, spac~-filling carbonate , 

crystalswhich grow attached ~free surface" (Bathurst, 1975, p. 416). 
-jJ 

eomor hism, in'contrast, is "a comprehensive term 'pf ignor~uce .•• J~ 
, 

1 transformations between one mineral and itself or a polymorph -

~th" inve«i~n or recrystallization. whether . • the "'" crystals are 
lar er or smaller or simply differ in shape from the prevwus ones" 

1965, p. 21). Ir1versiori ref e rs to polymor'phic transformations 

without an intermediate stage of visible porosity crea tion, a typi cal 
, _,. 

exa.mJ)'r'¢ being the calcitization of aragonite. Recryst<llli zati on <?c c urs 
' :~ 

when a mineral species r.emains unch~nged, although a ll owing for trace 

element and isotopic changes to occur, for example the change from 

Mg-calcite _to calcite. Aggrading and degrading neomorphism_ refer to an 

increase and decrease, respectively, of the resulting crystal 

aggregate. 

- Microspar · is neospar which 'is 30 J.lm or less in size ·and larger than 

micrite (i.e; greater than 4 J.!m). It is generally characterized by 

uniformity of crystal siTnd equant shape !Folk, 1965). Neospar ( _ 

.. , 
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greater than 30 ~m in size is pseudospar, the boundary in most cases 

·being one of conve-nience rather than of genetic significance (Folk, 

1965). ·This is . the boundary used in this thesis. Bathurst (1975) uses a 

size boundary of SO J.IID to separate microspar and pseudospar. 

The above terminology of cement and neomorphic spar or neospar is 

~learly geared to the microfabric resolution possible with standard 

__ .£!:trographic microscopy (Folk; 1965). As pore spaces progressively 

decr·ease 'beyond microsc'opic detect'ion, the distinction between· 

pore-filling precipitatioQ and neomorphic solution-film or 

·intercrystalline bounda~y processes diminishes (e.g. 5at..hurst, 1975; 

Pingitore, 1976; Brand and Veizer, 1980). 

H. 2 AGGRADING NEOMORPHISM ACCORDING TO FOLK ( 1965) 

Aggrading necmorphism is the process in which numerous, small carbonate. 

crystals are recrys.tallized into fewer, coarser ones (Folk, 1965). This 

transformation is considered to be "wet", i.e . solutions are involved 

in some · capacity, either as thin · filM-or pore fluids. Degrading 

neomorphism is considered to be insignificant under normal diagenetic 

conditions and is relegated to the relatively '!dry" realm of 

metamorphism (Bathurst, 197S;_ hQwever, see Dixon and Wright, 1983, for 

en exception). 

According to Folk (1965), aggrading neomorphism occurs along one of two 

' possible pathways, either by porphyroid or. coalescive processes. · During 
I • 

porphyroid neomorphism only a fe.w crystals grow and a static matrix of 

\ 
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more f:i,nely-s_rystalline calcite is gradually consumed. If the process 

-could be stopped at any point in time, the youngest and large_st ~rystals 

would be enveloped by a matrix of older, smaller crystals. Termination 

of the process occurs when the larger crystals impinge and the finer 

matrix is finally consumed. The mosaic clearly went through a 

porphyroblastic stage. This type of aggrading neomorphism is typical of 

replacement of aragonitic-fossils by calcite (Folk, 1965). 

In contrast, coalescive neomorpkism is characterized by a dynamic matr i x 

wherein crystals enlarge by wet boundary migration at the expense of 

their neighbours (Bathurst, 1975, p. 500). Folk (1965, p. 22) 

described it as follows: 

"a l_arge proportion of the grains are growing at any given 
time, almost every grain is either consuming or being 
~onsumed, the process is continuous in time and in space 
witho~t any static areas or natural stopping point, and at 
any .given time the grain size iS' relatively uniform." 

Folk (1965) suggested this process to be largely responsible for the 

generation of microspar from micrfte. 

The transition from micrite to microspar .was hypothesized to result from 

removal of Mg from intercrystalline positions in the micrite mosaic 

either by freshwater flushing (Folk, 1974) or the action of clays such 

as chlorite and montmorillonite which act as "Mg ion sumps" (Longman, 

1977). Removal of Mg from immedi-ate contact with the crystals was 

thought to be a critical fad tor ill hurt ling micrite through Folk's 

' 
..{1974) "micrite curtain". Zankl (1969), based on his study of Triassic 

shallow- and deep-water fine-grained limestones, suggested that 

limestones with more than 2% clays inhibited aggrading neomorphism. In 

It 



. - 6~3 -

a recent study of Ordovician plat.form carbonates from the St Lawrence 

Valley Lowlands, Bertrand~ ll· (1983) related increased crys'tal. size 

and polyhedrality of the mi•c_rocrysalline calcite to increasing thermal 

maturation. 

The "maturity" concept of mud aggrading to micrite to microspar and 

finally to psetl?ospar was recently as~aulted by Lasemi and Sandberg 

(1984). Based on SEM examination of Pleistocene mi~rit~ and microspar 

from~f~ida and the Bahama~, the transition from unaltered lime mud to 
..... 

micrite or ~pair occurred as a one-step process, without the 

necessity for progressive aggrading neomorphism, as conventionally 

. defined I to have taken place. Their conclusion was ba~d on the similar 

abundances of aragonite relics in micrite- and microspar-size crystals 

they examined. 

~.3 CEMENT AND NEOSPAR 

Differen~iating betw~~~t neospar is certainly not a 

contemporary problem (e.g. Rich, 1982; Bathurst, l983b) but has been an 

ongoing concern for carbonate petrologists for more than the iast twa 

decades. As long ago as 1965 Folk saw the necessity for establi~hing 

guidelines, based on his own obeFvatioris and drawing from th6se of 

earlier publications. that allowed reliable interpretation of diagenetic 

calcite using standard . pet~ographic techniques. Much of Folk's (1965) 

study is. critically revnwed in · ~thurst (1975) ,which currently is the 

most comprehenst.ve discussion of the cement-neospar problem and also 

. : 
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·' 

lists 'criteria for distinguishing between the two calcites. Most 

criteria are equivocal by themselves and the prevalent philosophy has 

been to use a "safety-in-numbers" approach. 

Bathur~t's (1975) criteria for the recognition of cement are divided 

into two groups: (1) criteria whicrr depend on intuitive argument,an~) 

criteria which characterize cements already established f~~m the 
> .... 

intuitive arguments. The first set of criteria establish a cement 

origin based ' on fabric relationships of calcite spar with other 

components of the sediment. Thus these fabric relationships are still 

suggestive of cement even when cement has been subsequently" 

neomorphosed. Examples of this are (1) cement which li.nes a cavity, or 

(2) cements overlain by internal sediments (Bathurst's; 1975, criteria 

numbers · 9 and 10). Both of these former cements would still be 

identifiable as cements due to their spatial arrangement within the 

sed~ment which makes other origins unlikelj, for example aggrading 

neomorphism of lime mud. 

The second set of criteria , i.e. · those which characterized cements 

previously established using the intuitive arguments, has recently been · 

critically reviewed by Diion (1983) : These criteria are that cements are 

characterized by: (l) planar intercrystalline boundaries,_(2) cry~tal 

size increases away from . the substrate, (3) preferre~ orient ation of 

longest axes normal to substrate, (4) preferred orientation of optic 

axes normal to substrate, and (5) enfacial junctions. 

The first 4 criteria are collectively referred to as the "competitive 

growth fabric" (Bathurst, 1975, p. 422). Such 'fabrics are not 

\ 

._ 
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restritted to cement aggregates as th~y also characterize neospar which 

begins recrystallization from a surface and extendS outwards, yielding , 
pr'ogressi vely larger and more preferentiall_y-ori~nted crystals (FolJ<, 

1965; Bathurst, 1975; Fairchild, 1980; Dixon, 1983). Such competitive 

growth fabrics also characterize d~sp_lacive fibrous calcites (see 

Chapter 9). To complicate matters further, Dixqn (1983) demonstrated 

that spar aggregates interpreted to be cement commonly are devoid of 

competitive growth fabrics! 

T~e enfacial j~ction, the Sth cement criteria, is a triple junction 

where one of tti~ - 3 angles is 180 degrees. Bathurst {1975, p. 425) 

considered this to be one of the least equiYOcal of the cement 

criteria. Using graphical representation of crystal growth, Dixon 

,(1983) focussed upon ~hi~ 'problem and demonstrated that enfacial 

junctions were~ present _in m~delled cement aggregates. In addition, 

his work on select examples wbich demonstrated enfacial junctions 

suggested that the occurrence of enfacial junctions may be caused by one 

6f two factors: (1) cessation of growth of certain portions of cryst~ls 

while other crystals continue to grow to eventually contact the halted 

crystals ,thus creating an intercrystalline boundary, or (2) modification 

of intercrystalline boundaries by dissolution. 1~ light of the above, 

Dixon (1983) dismissed the list of text~ral criteria ~s~d to recognize 

cement. 

•. 
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I ' Appendi)!: _I _ 

I 

; . 
GEOCHriCAL ANALYSES: METHOOOLOGY, 

JNSTRUMENTATION, AND DATA 

f 
I 

I.l ATOMIC ABSORPTION SPECTROPHOTOMETRY 
I 
I 

.. 

-., 

Calcite and dolomite were analysed for major and minor elements (Ca, Mg, 
:, 

Fe, Mn, Sr, Na, K, A •• Si) by atomic absorption spectrophotometry (AAS)·. 
J 

~ were washed pith distilled water prior to powdering. Two 
I . 

methods were used to· extract 'sample. A vibrating impact engraver was 
i 
I . 

used for samples whi~h required precise spot sampiing. Where 

contamination was not a concern, slabs were cut into penny-size chips, 
I 

washed with distilled water, and ground in a ball mill. Du~ing all 
': 

stages of sample preparation after the distilled wat~r wash, rubb~r 

gloves were worn in order to minimize contamination. 

Approximately 1. 0-1.5 grams 9f . Tock powder were dissolved in 25 ml of 
' 

dilute ~Cl solu~ion (8% volume/volu~e as sufogested b.Y Brand and Veizer, 
. . 

1980). Calcite was leac~ed for 30 minutes and ~olomite for 90 minutes 

[1]. The leachate.was then filter ed, ~r.e-wl!ighed filter papers, 

1. These times are considerably less than those us~d by Brand and Veizer 
(1980) who suggested 5.5 hours· 

. . 
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and brought to 50 ml of H~~olution by r.ins~ng through the filter 

paper. Filter papers were allowed to air dry -for 2-4 days vrior to 

ri-wei&hing in order to calculate insoltible r~sidue and leachate 

concentcation$. Analyses are listed in Table :il.l (caltite, n=37) an·d 

' I.3 (dolomite, n•48). Duplicate a~alyses were run on~ calcites (Table 

I. 2) and 6 dolomites (Table I .4). Averages of these dJplicate analyses 

were used in tables I.l and 1.3. Samples are briefly described in 

Appendix J. 

Artificial calcite and dolomite standards were prepared in identical HCl 

solutions using Spec-Pure chem~ These standards were used to 

measure all elements except Ca and Mg, which were measured aiainst 

natural dolomit~ (GFS-400) and ealcite (GFS-40i) standards. Prepar~d 

leachates were analjsed by G. Andre~s of Memorial University. 

1.2 STABLE ISOTOPE ANALYSES 

Samples for isotope analysis were extracted usiqg the same ~ethods as . 
for A'AS, ·.n1nus the acid leach. Samples were submitted in 4 lots 'over 

the cou~se of two years and analysed courtesy of Marathon Oil Company, 
.. ------··· -

Denver Research Center in Littleton, Colorado. Analyses were conducted . 

by W. W. Walwey, supervised by P. W. Choquette. 
' 

Isotopic data are reported in per mil (o/oo) versus the PDB-1 carbonate 

standard. Samples ~ere prepared by reaction in lOQ% anhydrous 

phosphoric acid at Z5 degrees C (1 hour for calcite, 4 days for 

dolomite). Samples ~ere not pretreated in any way, nor was dolomite 

" 

' . 

\ ·. 
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• 

corrected downw~rd by -0.8 o/oo for fractionation effects. Isotopes 

were measured on a 5 em, 60 degree, sector-type ratio mass spectrometer 

with a double-collecting system and isotope ratio recording fa"t:ilities; 
. ' 

a substantially modified Nuclide instrument. Pr~cision, based on 

selected replicate analyses, is 0.1 ·- 0.2 o/oo for both o"c and o'!o. 

Isotopic analyses of calcite (n•SS) and dolomite (n•23} are listed in 

Tables I.S, 1.6, and 1.7. Samples are friefly describe~ in Appendix J • . 

The 2 sets .of analyses for MP-4 ( 1 calcite and 1 dolomite) are fr -- .o 

fractional preparations: for 1 hour to react · calcite and ~hen for 4 days 

for dolomite. 
•' .. 

1.3 MICROPROBE ANALYSES 

.Microprobe analyses were .'m~de on polished thin sections, routi.~ely 

.analysing for Ca, Mg, Fe, and Mn in carbonates apd· also Na, K, Al, Si, 

Sr, Ba, Zn, and Cr for other miscellaneous phases~ Analyses were 

performed .on a JEOL JXASOA electron-probe x-ray microanalyser with 

KRISEL automation. Data were acquired using ALPHA matrix corrections. 

Operating conditions were aabeam current of 22 na at a potential of 15 

• 
kv, using a focussed beam of approximately 2 ,pm diameter. Counting 

times were 10 seconds • . For carbonate analyses, Ca and Mg were 

standardized on dolomite; Mn and Fe were Standardized on ~linopyroxene 

(both "in-house" standards}. Other elements used a variety of "ia 

houseu· standards. The 10 second coun~ing time, the small beam diameter, 

and the nature of the . standards used suggest that the microprobe 



' 

·Examples of the reproducibility of croprobe ):malysis of a crystal of 

microprobe fracture-fill dolomite from Broom Point 

South (sample BPS-33-A) shown in Table I.8. 

carried out on a Nuclide Corporation ELM-2A 

Luininosco ambient gas, a beam diameter of approximately 1 em, 

beam cur t of ..0.6 ma, and .an accelerating voltage of 16 kv. The 

' optical ~nd photographic equipment ~as a Wild Photoautomat System 

mounted on a Leitz M-400 ~icroscope. The luminescence chamber was 

positioned and levelled ~sing a stage assembly designed by the author. 

Ektachro_. 400 ASA daylight slide film and Kodacqlor VR1000 daylight 

print film were used. 
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. TABLE 1.1: CALCITE AAS ANALYSES 

I.R. Al Si Na K Sr 
SAMPLE wt % ppm ppm ppm ppm ppm 
----------- ----- ----- ------ ----- ----- -----
CHN-13 24 209 .. 615 856 91 167 
CHN-15-A' 5 69 293 705 27 66 
CHN-32 11 218 524 831 215 342 .. 
CHN-36-B-A* 9 253 423 G632 166 174 
CHN-36-B-B* 15 507 509 ~32 303 135 
CHN-36- B-C* .11 305 558 731 156 110 
CHN-42 16 60 792 2232 75 335 
CHN-101-A 12 439 716 674 335 172 
CHN-101-B 16 396 708 645 271 136 
CHN-101-C 8 . 73 172 868 37 119 
CHN-102-A 17 320 443 821 251 . 286 
CHN-102-B 7 37 354 921 53 117 
CHN-126 29 1048 848 972 669 207 • CHN-168 18 43. 288 832 51 132 
CHN-169 15 134 590 1501 189 157 
GP-2-A 32' 656 843 773 379 2886 
GP-2-B 17 361 643 715 217 462 
GP-9-A 8 38 326 467 27 352 
GP-23-A* 16 635 688 745 437 520 
GP-23-B* 22 894 1624 865 '579 422 
GP-23-C* 17 441 1179 674 260 603 
GP-41-A 34 408 616 876 307 404 -.. 
GP-41-B 19 675 863 805 57o 372 
GP-57-A 30 994 1252 1036 1228 301 
GP-57-B 10 99 410 644 80 173 
GP-106* 17 787 1039 724 497 207 
GP(81-7-AH*) 8 94 304 764 87 304 
GP(81 - 7- BG*) 27 1027 1216 690 775 450 
LH- 76-A-A 12 404 648 540 307 268 
LH-76- A- B 26 1548 1845 681 1323 202 
LH- 76-A-C 24 835 833 842 651 219 
MP- 3 9 407 549 908 386 1~5 
MP- 15 10 286 541 784 150 293 
MP- 57 20 869 842 737 311 256 . 
SPN- 66- D-A 11 298 526 538 162 130 
SPN- 66- D- B 26 857 1214 751 455 87 
SPQ- 9- F. 11 138 373 584 93 372 ,. 

continued on next page 

~-·~ . 
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TABLE I .1 ('continued) 

· FeO MnO . MgO CaO CaO+MgO+ 
SAMPLE ' wt % wt % wt % wt % FeO+MnO 
---------- ---- ----- ----- ----- ----
CHN-13 0.16 0.05 0 ~ 52 69.80 70.53 
CHN-15-A . 0.04 0.04 1.43 59.77 61.28 

~ CHN-32 0.06 0.04 3.82 60.67 6!+.59 
CHN-36-B-A*. 0.07 0.18 0.45 60.92 61.62 
CHN-36-B-B* 0.11 0.07 0 .53 62.10 62.82 
CHN-36-B-C*. 0.25 0.10 0.40 61.08 61.82 
CHN ... 42 ' _ 0.34 0.02 2.04 67.42 69.82 
CHN-101-A 0.08 .0.06 0.49 61.76 ' 62.39 .. 
CHN-101-B 0.11 0.07 0.57 63.10 63.85 
CHN-101-C 0.27 0.10 2.62 60.56 63.55 
CHN-102-A 0.10 0.07 0.93 61.19 . 62.28 . 
CHN-10!-B 0.31 0.11 3.18 61.43 65.03 
CHN-126 0.07 0.12 0.~ 67.20 68.23 

·CHN-168 0.10 0.11 0.48 68.61 . 69.30 
CHN-169 . 0.14 0.10 __ :3.37 65.60 69.22 
GP-2-A 0.28 0.04 0.98 7L13 72.43 
GP-2..:.8 0.38 0.04 0.42 61.93 62.77 
GP'-9-A 0.28 0.09 0.28 61.26 61.90 
GP-23-A* . 0. 12 0.07 0.6b 6~. 76 62 . 56 
GP-23-B* 0.49 0 .07 0.55 60 . 27 61.40 

· GP':.23- C* 0.64 O.OT 0.48 67.95 69.15 
GP-41-A 0.06 0.16 0.70 82.75 . 83.67 
GP-41.-·B 0.28 0.09 0.53 62.09 62.99 
GP-57-A 0.31 0.03 1.46 60.60 62.40 
GP-57-B 0.07 O.Ol__ 0.47 60.31 60.89 
GP-106* 0.55 0.07 0.49 62.54 63.66 
GP(81-7-AH*) 0.17 0.10 1.58 61.38 64.49 
GP(81-7-BG*) 0. 21 0.10 1.23 5.9.67 61.17 "?'. 

LH- 76-A- A 0.07 0.04 0.45 61.33 61.89 
LH-76-A-B 0.32 0.02 0.59 __ 62. 38 63. 31 
LH-76-A-C 0.26 0.02 0.52 61.35 62.15 
MP-3. 0.09 0.03 o. 70 5~.16 . 55 . 98 
MP-15 0.05 0.05 .5.26 59.70 65.06 
MP-57 0.19 0.04 0.64 65.37 66.25 
SPN-66-D-A 0.28 0.13 0.41 61.31 62.13 

. SPN-66-D-B 0.72 0.23 0.65 62.59 64.19 
SPQ- 9-F 0.07 0.04 • 0.50 60.18 60.78 

-------
"*" analyses ~re ave~aged from those in Table 1.2 
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TABLE L2: REPLICATE CALCITE AAS ANALYS·ES 

. ' 
l.R Al Si . Na ·K Sr., 

SAMPLE wt.~ ppm ppm ppm ppm ppm 
---------- ---~- ----- ----- ----- ----- -----
CHN-36-B-AX 10 257 485 548 167 177 

_CHN-36-B-Ay 8 249 362 717 165 . 171 

CHN-36-B-Bx ·~ 569 597 691 307 141 l 
CHN-36-B-r- 13 446 421 ' 773 299 129 '• 

CHN-36-B- ~ 281 493 610 •14~ . 112 
CHN-36~B-Cy 330 623 791 167 108 

GP-23-Ax 15 708 747 765 447 .. 51') . . ' . 
GP-23-Ay 16 562 629 726 427 522 

GP-23-Bx 20 1069 2020 812 604 .409 
GP-23~By 24 720 1228 ' 918 553 434 

GP-23-Cx 22 430 1538 . 65'0 270 632 . 
GP-23- Cy ·- - 11 ' 453 819 699 250 573 ) 

FeO MnO HiO CaO CaO+MgO+ 
SAMPLE I wt % wt % wt % wt % FeO+MnO 
----------- .. ----- ----- ----- ----- -------
CHN-36_:B-AX 0.07 0.18 .. 0. 45 60.92 6L62 . ·~ -

_, 
CHN-36-B-Ay 0.07 0·. 18 0.44 59.38 60-rD6 . . ... '\ 

CHN- 36-B-Bx 0.11 0.07 0.54 62.10 62.82 
CHN-36-B-B~ 0.10 0.07 . 0.52 60. 26 60.95 

r .. 
~ CHN-36-B-Cx 0. 25 . 0.10 0.40 61.08 161.82. 

CHN-36-B-Cy· 0.25 0.10 0.40 60.34 61.08 .. 
GP-23-Ax o: 12 0.07 0; 61 61.76 62.56 
GP- 23- Ay 0.11 0.07 0.60 62 . 42 ' 63.20 

GP- 23- Bx . 0.49 0.07 0.56 60.27 61.40 
GP-23- By 0.48 0.07 0,53 63.60 64.67 

GP- 23-Gx 0.64 0.0-1 0.50 67.95 69.15 
GP-23-Cy 0. 54 0.06 e.46 60.76 . 61.82 

"' \ 
\ 

... 
\ . · · ~ t 

i , 

' 
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TABLE 1.3: DOLOMITE AAS . ANALYSES 

' 
I.R. ·A1 .Si Na K Sr 

SAMPLE wt % ppm ppm ppm ppm . ppm 
-------- ----- ----- ----- ----- ----- -----
A-1 8 142 322 1280 58 122 
BPS-20-A 

.; 
57 4819 5338 · :4J47 6288 279 

BPS-22 /l64 3787 3804 2782 5113 299 
BPS-23-A , 29 1029 · 1850 1151 . 748 140 
BPS-29-A 13 .. 723 739 . 962 325 203 
BPS-30 18 621 486 1090 279 89 
BPS-32 15 613 919 1028 411 88 
BPS-33-B 12 347 734 885 295 180 
CHN-0 44 1423 1434 1507 1522 535 
CHN-12 15 895 730 835 370 205 . 
CHN-15-A 12 403 831 1613 362 176 
CHN-19 26 2777 1141 917. 970 123 

. CHN-57 38 4043 5235 2469 599 253 
CHN-87 24 855 1167 f122 782 133 
CHN-166 44 4104. 3565 2724 2782 196 
CHN-167 66 · 3159 2740 2366 4549 . 265 
CHN ( a0-4-0) 14 371_.--583 . 1324 232 168 
CHS-.55* 42 4462 .. 4817 1868 1429 524 
CHS-69 65 12780 14583 3632 558l 480 
GP-63-B* 51 2853 6316 2406 4112 676 
GP-67* 49 2705 5454 2106 3157 495 
GP-88-A 29 734 1195 1280 , 421 53 
GP.;.89* 33 815 1266 1672 638 57 
GP-95* 43 2428 ;'4645 2948 1371 118. 
GP-96~8* 74 4103 :6992 6149 2482 234 
GP(80-61-34) 29 2218 404 221 1642 ; 2609 
GP ( 80-61...:448) 25 954 1402 2149 133 192 
LC-3 
LC-4 
LC-5 .· 
MP-4 
MP-8 

- MP-30 " 
MP-41 

~ 

MP-69-B 
t-{}>-84 
SPN-1 
SPN-3 
SPN-32 
SPN-38 
SPN-41 
SPN-43-B 
WI-1 
WN-4-A 
WN-11 
ws.:8 
WS-11 
WS..;19 

41--l_~_13 . 3157 2469 

~~ 1965 2805 2375 
2826 3814 2295 

21 886 1241 1477 
21 20.1 695 1294 
69 5138 4531 8439 
21 948 583 1131 
38 2334 1819 2176 
58 1829 2412 2976 
42 . 2532 2506 231.9 . 
48 1856 2208 2423 
42 1900 )506 2242 
70 3964 4846 3366 
38 1315 1744 1980 
l8 731 1013 1274 
"6 242 457 960 
43 4777 6413 1581 
35 2729 . 4134 1490 
61 3240 4847 2485 
37 2426 3635 1368 
22 812 1737 1258 

continued. on next page 

. 
' ,. 

1402 238 
1377 300 
1484 229 
948 147 
215 160 

7173 301 
284 166 
563 89 

1441 . 136 
1938 "' 154 
2264 154 
2i97 565 
3648 158 
983 228 
203 132 
131 113 

3303 .121 
1857 197 
1609 137 
2056 116 
496 222 

.f . 

., 
I 
I 

/ -

·--

·-• 

" ' 
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TABLE• I • 3 ( con.tinued) 

FeO MnO MgO Ca<1 CaO+MgO+ 
SAMPLE wt % wt % wt % wt % FeO+HnO 
------ ----- ----- ----r ------ ------
A-1 0.11 0.03 22.67 34.73 57.53 
Bl.>S-20-A 1.91 0.07 21.98 39.25 63.20 
BPS-'22 · 2.71 .0.06 17.30 47.64 67.n 
BPS-23-A 0.92 0.05 12.48 23 . 29 36.74 
BPS-29-A 0.26 0~04 18.43 32.61 51.-33 
BPS-30 0.98 . 0.05 22.11 32.23 55.j7 
BPS-32 0.93 0.06 21.37 . 32.07 . 54.42 
BPS-33-B 0.41 0.06 . 19.88 35. 14 55.49 
CHN-0 1.15 0.10 22.04 43.01 66.31 . • 
CHN-12 0.84 0.07 16.53 38.78 56.21 • 
CHN-15-A 0.64 0.11 19.81 j7 .67 58.23 
CHN-19 0.59 0.06 20.21 33.94 54.80 
CHN-57 1.06 0.04 23.72 38..14 62.97 
CHN-87 0.71 0.07 20.83 34.87 56.47 

. CHN-166 0.71 0.06 18.45 53.03 72.25 
CHN-167 1.38 0.07 19.47 49.02 69~94 

.•. CHN(80-4-0) . 0.64 o.·1o 18.73 38.-39 57.85 
CHS-55* 1;77 . 0.11 20.53 40.07 62.49 
CHS-69 1.91 0.07 27.37 56.63 85.98 
GP-63-B* 2.83 0.06 18.50 44.09 . 65.48 
GP-67* 3.85 0.06 17.89 W.l . 60 . 63 . 41 
GP-88-A 0.60 0.12 22.75 33 .80 57.27 
GP-89* 0.40 0.16 23'.64 34.90 '59.11 
GP-95* 0.43 1.38 23.49 34.94 60.25 
GP-96-B* 0.53 1.23 23.84 45.90 71 . 50 
GP(80-61-34) 1.24 0.21 20.66 37.24 59.) 5 
GP(80-61-44B) 0.44 . 7.01 15.75 36.85 .60.05 
LC-3 . 2.34 ... 0.09· 23.38 38.40 64.21 
LC-4 2.30 0.08 22.85 37.13 62.37 ( LC-5 1.24 0.18 23.47 34.58 . 59.46 
MP-4 • 3.01 0.08 16.8l 40.20 60 ~ 10 
HP-8 2.60 O.OB 20.10 35.90 58.69 . 
MP-30 2.32 0~06 10.19 36.8,9 •49.46 
HP-41 2.43 0.08 1,9. 42 33.88 55 .·80 
MP-69-B 2.05 0.15 24.81 37.98 64.99 
HP-84 <0.22 0.41 24.52 ~7 .30 '62.45 
SPN-1 0.24 0. 16 - 24.66 36.22 61.28 
SPN-3 0.27 0.19 24 .61 37.14 62.21 
SPN- 32 .. 1.26 0.09 . '15. 78 34.89 52.02 
SPN-38 0.38 . 0.14 27 . 53 42.40 70.,~5 

·sPN- 41 0.17 0.14 22.89 36.42 59.61 
SPN-43- B 0. 14 . 0.14 22.47 36.69 59.44 
WI-1 . 0.21 0.04 .. 17.30 36.'22 53 . 77 
WN~4-A 3.30 0.29 22.15 35.63 61.36 . 
WN-11 1.58 1.36 20.53 35.1:7 58.65 
WS ..&8 0.58 0.47 16.07 25.77 42.89 
WS-11 ,. 0.26 0.45 22.34 32.35 55 .40 
WS- 19 1.14 . 0. 10 '20.80 34.89 56.93 

---- ·---
"*" 1 f ana yses are averaged rom t hose i n Table I .4 

~-- •l' • . 

.JT . 

...... 

' 
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TABLE 1.4: ~EPLICATE DOLOMITE AAS ANALYSES 
~ 

" 
I.R. Al Si Na ' K Sr · 

SAMPLE wt % ppm ppm ppm ppm ppm 
--------- --·-~ ----- ----- ----- ----- -----
CHS-55x 42 4462 4977 1868' 1395 505 

\ ,::..,-
........... 

CHS-55y 15 4462 4658 1868 1464 543 

GP-63-'Bx 50 1916 8806 2512 4240 629 
GP-63-By 52 3791 3825 2301 3983 ~23 

GP.-6 7x · 48 3163 7875 2203 3662 449 
GP::-67y 

. 
51 2247 3032 2010 · 2652 541 . 

GP-89x .. 32 855 1322 1885 640 50 
. GP-89y 33 774 1211 1460 637 ' 64 

I -~ 
/ 

,~ GP-95x 40 2896 6882 3125 1466 lOS 

~ GP-95y 46 1960 2407 2770 1276 130 

/ • 
GP-96-Bx 73 3960 7299 6376 2333 231 

.. GP-,96-By 75 4245 6684 5921 2630 237 

FeO MnO MgO CaO CaO+MgO+ 
SAMPLE wt % . wt % wt % wt %· Feo+MnO 
--------- ----- ----- ----- ------- ------- N 
CHS-55x 1. 76 0.11 . . 20.55 39.93 62. 35 

. CHS-55y 1. 78 0.11 20.52 50.21 .72. 62' 

": .GP-63-Bx 2.92 0.06 18.30 44.03 . 65. 37 
GP-63-By 2:73 0.06 18.71 . 44.16 65.65 

• 
· GP-67x 3.97 0.06 17.46 40.42 61 . 91 

GP-67y 3.73 0.06 18 .. 33 42.79 .. 64.91 

' GP-89x 0 .'40 0.16 23.72 35.10 59.38 
GP-89y 0.40 0.1'6 23.56 34.71 58.83 

• 
GP-95x 0.4) 1.33 22.47 33.33 ·51. sa 
GP-95y 0.42 1.43 24.51 36.54 62 ~90 

GP-96-Bx 0.51 1.17 22.81 4·3.80 68.29 
• GP-96-By 0.55 1.30 . 24.87 47.99 74.71 

0 l . 

. . 
I ·.• .. ' 
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TABLE I. 5: CALCITE STABLE ·~SOTOPE ANALYSES . 
SERIAL -SAMPLES 
SAMPLE 6''c 0 160 ' LOT NO . 
------------ -------
CHN-36-D . -1.30 -6.62 [ 1 ] 
CHN-36-E . . -1.31 -6.44 [ 1] 

CHN-36-B-A -2.74 -5.91 [ 2) • 
CHN.~36-B-B -1.29 . -:-6 .- 12 [21 
CHN-36-B-C ..:1.28 -5.99 . [ 21 

CHN-101-A -6.87. -:-6. 22' [21 
-. ' CHN-101-B - 1.43 -6.09 [2] 

· ' :·· .· 

CHN-101-C · -1.09 ~6. 3.1 [21 

CHN-102-A -1.12 -6~07 - [ 3] 
CHN-102-B -0.96 ' -6.17 [31 

"' GP-2-A -0.68 -7. 44 [21 
GP- 2-B -0.61 -8.41 [2] 

. . 

GP-23-A -3.81 -7.60 ·[ i] 
GP-23-B -2.93 -8.05 [2J 
GP-23-C -2.57 -8.01 J2] 

-GP-41-A -2. H) -6.78 [ 3] 
GP-41-B -5.27 ..:7.55 [3] ' 

....... 
GP-.52-BA -1.54 -6.87 [4] 
GP-52-BB -4.45 -6 •. 91 [ 4] 

~~-57-A -0 .65 -7.26 t 3] 
GP-57-B -2.46 -7.33 [ 3] .· 

GP(81-7-A) -15.09 -8.38 [ 1] 
GP(81-7~B) ,..6,78 -7.90 [ 1] 

GP(81-7-G) • -:-7.78 -7.60 ' [ 31 
GP(81-7-H) -9.93 . -7.93 [3] 

.. LH-76-A-A -1.62 -6 . 21 [ 3] 
LH-76-A-B . -2.92 -6 . 40 [31 

, •· LH-76-A-C .-2 . 92 -6.09 [3] 

SPN-66-D-A - 1.71 - 5.24 [3] 
SPN-66-D- B - 2.06 -:-5 . 69 . [31 

SP.N- 76-A . - 0.78 ·- 5. 29 [41 
SPN- 76-B - 1.20 - 5.55 [ 41 . . 
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TABLE I.6: CALCITE STABLE ISOTOPE ANA~YSES 

SINGLE SAt-Q>LES - . 
SAMPLE ol3c (\ta0 LOT MO. 
----------!- -.-~ -------
BPN-12 +1.04 -6.J9 . [ 4 1 
CHN-13 :_0.58 . -6.85 [ 2 1 
CHN-15-A -1.54 -6.26 l 2 I 
CHN-25 +0.28 -6.04 t 2) 
CHN-32 -1.84 -5.98 . [ 1 1 
CHN-53-B -0.76 -5.46 l 4 I · 

· .. CHN-126 -5.81 - -5.43 l 2 I 
CHN-168~B . 

~ 
. +0.58 -6.29 .. [ 2 J 

. CHN-169 -0.30 ..:.5.96 [ 3 I· • 
CHN-178-AB -2.09 -6.73 [ 41 .,·;:, 

CHN-178-B -1.81 -6.55 . . l 4 I ·. ~ 

CHN-178-F -1.79 -6.81 [4) 
· CHN-178-G . -2.85 -6.10 [ 4] I 

CHN-183 -2.82 "'-5. 71 [ 4 }< 
GP-9-A -2.05 . -8.83 [ 2 I 

· GP-106 -2.92 -3.11 l 3 r 
LH.:..4 +0.50 .:.5 ~ 70 - [ 4l\"-' 
LH-8 +0.54 -5.87 [ 4 I 
MP-3 -0.97 -2.81 'f l 3 I . 
MP-4 -0.6.7 .. - 6.42 l 2 I 
MP-15 -0.41 . -6.88 [ 1 I 
MP:-57 +0;.2-4 -6.53 ·· · ···-· · ·[ 2 I 
MP(80-39-31D) -0.39 -7.47 [41 · 
RAX-12-A +0.04. -5.46 [ 4] 
RAX-12-B -0.84 -5.53 [ 4) . 
RAX-14-A +0.08 - -6.65 [ 4 I . "" ·' 
SPQ-9-F 

~ 
. -0.28 -6.68 [ 2 I 

REPLICATE ~NALYSES 

CHN-101-B -1.49 -6.05 
\ -1.38 -6.06 

-1.41 · -6.17 

C> 

0 
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TABLE I.7: DOLOMITE STABLE ISOTOPE -ANALYSES 

SAMPLE . o'3 . c o'ao Lar NO; 
---------- ------

~ 

[2] BPS-29-A -5 . 89 - 4.30 
BPS-32 -1.60 -3.34 [ 2] 
BPS•33-B ' . -2.3;3 -3.53 '- [3] 
CHN-15-A -2.09 ·-5.17 [2] 
CHN-51' -2.02 -3-.71 [2] 
cffN-87 +0.11 -4.01 [2] 
CHN-166 -0.16 -4.33 [3] 
CHN-178-B -3.11 -5.09 

~ .· 
[4] 

CHN-178-F · -2.78 -5.20 f4] 
CHN ( 80-4-0) -0.40 -5.11 [ 2] 
CHS-55 +0.08 -3.73 [3] 
GP~63-B +1 ."42 -4.83 [ ~· ] 

GP-67 · +1.18 -5.09 [ 2] 
GP-88-A -1.34 -4.51 [2] 
GP-96-B -1.96 -3~89 [3] 
GP(80-61.;.44B) -2~24 -7.73 . [J] 

. -HP-4 ~0.23 ~ -5.43 - [2] 
MP-30 -1.00 -5.9~ [3] .. 

----- . .. SPN-32 '0.76--------- ----- 4.68 [2] 
SPN-38 . ....:2.34 -3.48 l3r 

- WI-1 ( - 0.59 - 4.90 [ 2] 
WN-11 -1.96 -3.81 [3] 
WS.:..11 -2.28 -3.62 [ 3] 

REPLICATE ANALYSES 

CHN-172-B - 3.16 . . ....:5.06 
-3~05 -5 . 12 

. .. 

GP-67 . +1.14 -5.01 
+1.21 -5.07 
+1. 20 • -5.18 

" 

( . 
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TABLE !.8: PRECISION OF MICROPROBE ANALYSES .. 

·r "' 

"" -~CI!E GP-3-A 
.__ . 

NO. OF POINTS OXIDE WT% ST. DEV. ,. 
------------- J .. ----- ---- .._ _______ 

. . . · 

! • 1: n•3 Mgb 0.17 0.02 • CaO 5~.48 0.24 
MnO 0.02 0 ~027 
FeO . 0.17 Q.es .. 

l 
2: nl33 MgO 0.11 0.01 

CaO 55.84 1.88 
MnO 9.03 . 0.06 

. FeO 0.12 0.04 ,. 
3: n.a3 ·! MgO 0.15 0.06 

CaO . 55. !9 0.87 . 
MnO 0.02 0.03 
FeO 0.20 0.05 

• 

4: n=-3 MgO 0.40 0.17 
CaO 53.40 1.11 

· MnO 0.04 0.02 . 
F 0.30 Q.09 .. 

DOLOMITE BPS-33-A 
" 

/ ..,-
NO. OF POINTS. OXIDE WT% ST: DEV. -------------- ----- ~ --------

n=-10 FeO 7.02 0.30 
HnO 0.36 0.08 

~ .. CaO 32.74 0.40 
MgO. - 16.06 ·0. 33 . 

-. .__.. '\ 
··- .. 

. , 
I 

I 
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Apperid1.x J 

• 

J.1 INTRODUCTION 

All calcite and dolomite samples analysed for ~table isotopes and by AAS 
are listed and briefly. desc,ribed below. All calcite samples _-except · 
CHN-42 were analysed for isotopes. Host calcite samples except 
·radiaxia 1 fibrous calci-tes and ' sample HP-4 were analysed by AAS. All 
dolomite samples were. analysed _by AAS· except samples ·CHN-178-B and 
CHN-J 78-F. . · 

The term "ferroan". refers to detectable iron content.using potassium 
ferr~cyanide solution. 

The following. conventions apply to the dolomite sample descriptions: 
~SarOPE" indicat,es tbe sample was analysed for ~table carbon and . oxygen 

. is(ttQpes. CCCR refers to cloudy core with clear rim. Clear refers to 
relatively inclusion-free crystals i n which cores and rims a~ftQ~ 
differentiable in transmitted light. Fe-rims refer to crys(als in" which 
the outermost or' near outermost zones are fer roan. " 

I 
• 

J.i CALCITE SAMPLES 

• 
BP~12: Non-ferroan pseudospar (25-125 pm) which grades int o DFC-1. 

Cl~st in conglomerate.' [Broom Point t{prth, ,units 1- 26]. 

CRN-13, ' 15-A: Non-ferroan CFC. [Cow Head North; Bed 2]. 

CHN-25: Zoned equant cement which fills crack in mudstone nodule. 
Head .North, Bed 6]. 

[ Cow 

/ CHN-32: Non-fer roan .microspar ,mudstone . [Cow Head North, Bed 8. 2Jl]. . . 

• 

CHN-36-B-A,B,C; CHN-36-D,E: Non-ferroan microspar (B-A,D) to pseudospar 
(B-B,E) to ferroan DFC-1 (B-C) transiti~. [Cow Head North, Bed 
8.30] • 

CHN-42: ~erroan calcite vein in wackestone. [Cow Head North , Bed 9.6~ 
, .. 
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I 
. CHN-53~B: RFC. [Cow Head North, Bed 10] -:'· 

' 

CHN-101-A,B,C: Non-ferroan microspar (A) to pseudospar (B) to ferroan 
DFC-1 .(C) transition. [Cow Head North, Bed 8.30]. · 

CHN-W2-A, B: Grainstone and coarse (1~0-500 J.Jm ~i ze) zoned •. equant 
cement ... (A) from centre od bed abruptly overlies f.erroan DFC-1 (B). 
[Cow He~d North, Bed . 8.3 }]. · 

CHN-126: Non-ferroan m~crosJ>ar nodule in chert interval. [Cow Head 
'North;,. ~ed 11.1-11.4]. 

J 

CHN-'168-B: Non-fer_rn CFC. [Cow Head North, Bed 7]. 

CHN-169: Ferroan DFC-1 at base of grainstone. [Cow Head Nort·h, Bed 
. 8. 24]. 

CHN-178-AB,B,F: Non-ferroan CFC.~'[Cow Head North, Bed 2]. 
. 

CHN-178.:.G: Non-fer roan pseu~ospar · in co_nglomerate mat ri.x [Cow Head 
North, Bed 2]. 

. . 

CHN-183: Non-ferroan peloidal wackestone nodule in chert interva l . [ ~ow 
Head North, Bed 11.1]. 

(!P-2-A,B: Ferroan pseudospar (A) grades to ferroan DFC-2 (B). [Gr,een 
Point, unit 1]. 

GP-9-A: Coarse fer roan, :sparry cernent in fold nose cavity of cont. or ted ' 
timestone. [Green Point, unit 18]. 

GP-23-A,B,C: Non-~er·roan mic.rospar (A) and ferroan pseudospar '(B) both 
grade to DFC-2 (C). [Green Point,.units 2-9]~ 

GP-41-A,B: Non-ferroan microspar (25-50 pm size; A) at'centre of bed 
grades 'to fer roan pseudo~ par ( 250-500 pm size; B) .at top of bed. 
[Green Point, u~it unit 9-10]. . 

\ . . :_, ',/· 

GP-52-B-A,B: Ferroan pseudospar (25-50 pm; A) nodu-le has spindle-shaped 
septarian crack filled with ferroan, zoned, equant to bladed cement 
(·B). [Green Point, units 16-18]. · 

GP-57-A,B~ Non~ferroan microspar (15-35 pm size) wackestone (A) at 
centre of bed grades to non-ferroan DFC- 2 at ~ase of bed. [Green 
Point, unit 26] • · 

GP- 106: Ferroan pseudospar (35-120 pm size) is "ponded" sediment i n 
depression of contor~ed limetone. [Green Point, Upper Cambrian 
~~f wave~cut platform]. 

GP(81-J- A;B,G,H): Non- ferroan pseudospar (35- 200 pm size; B,G) near 
centre of bed grades upwards ~o ferroan DFC-2 (A, H). [Green· Poi nt, 
Upper Cambrian sect~on}. 

., , 
·. ,• 

' . 

\ 
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LH-4, 8: RFC from mound. [Lower Head, Lower Head. Boulder]. 

LH-76-A-A,B,C: Non-ferroan microspar. (10-15 pm $ize; A) at centre of bed 
grades ·into slightly ferroan p~eudospar (50-500 pm s{ze; B) at base 
of bed and slightly fer roan DFC-2 at top of bed (C). [Lower Head, 
strata cut by major truncatioh "surface]. · 

MP-3: Non-ferroan microspar (15-25 pm) nodule surroun~ing rippled 
· grainstone core. [Hartin Point. unit 8]. 

·HP-4: Fetroan. pseudospar dispersed in conglol'llerate matri~ dolomite · 
(decanted fro~ dolomite analjsis). [Martin Point~ ~nit 15]. 

. - . 

HP-15: Non-ferroan microspar of contorted. limetone. · [Martin foint, unit 
36p,q]. 
~ ... 

MP-57: Non-ferroan microspar "jacket" around grainstot'le ·dike. [Martin 
foint, unit 36s-v]. 

MP(S0-39-31~0): Quartz-rich grainstone and non-ferroan, equant cement. 
[Marttn Point, unit 31]. 

RAX-12-A,B: RFC. [Cow Head North, Bed 12]. 

' RAX-14-A: RFC. [Cow Head North, Bed 14]. 

SPN-66-D-A ;B: Non-ferroan microspar (10-~5 pm; A) at ~entre of bed 
grades to fer roan pseudospar (150-250 Jlm; B) at base of bed. [St. 
Paul's North, unit 43]. ~ 

SPN-76-A,i:'Rippl~d grainstone (A) $urrounded tiy rad~olaria and 
spicule-rich wackestone envelope (B). [St~ Paul's North, unit 75]. 

SPQ-9-t: Disc~ntinuous non-ferroan microspar bed. [St.· Paul's. Quarry, 
Cambrian section]. 

J.3 DOLOMITE SAMPLES 

• 
A-1: Porous pervasive replacement breccia with minor bitumen in vuggy 

pores. Crystal size varies from 150~250 ~m. CCCR. No Fe-stain. 
Analysis contamination from calcite in secondary pores, . estimated 
less than 2%. [Arches~ stratigraphic affinity uncertain]. , \ . 

BPS-20-A: · Joint- dolomi tized ijlrted mudstone. Crys.tal size var ies from 
10-20pm. Clear. Fe- rim."[Broom.Point South, unit SO} • . 

BPS- 22: Finely laminated matrix dolomite. Crystal size varie$ from 
10-25 pm. CCCR. Fe-rim. Analysis contamination-from finely dispersed 
Fe- calcite, estimated less than 1%. [Broom Point South, unit 46]. 
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BPS-23-A: Joint-dolomiti~ed mudstone. Crystal size varies from 5-25 
flm: CCCR in larger. crystals_. · Internal Fe-zones. '(Broom P · nt South, 
unit 46]. · ' 

BP~29-A: ISOT.OPE. Joint-dolomitized caJcarenite. 
from 25-50 pm. CCCR. Fe-r~m and internal zone. 
contamination from Fe-calcite in fracture,. 
percent. _!Broom Point South,. unit 34]: 

varies 

~ BPS-30: Probable joint-dolomitized calcsiltite. Crystal stze varies 
from 60-120 pm.~ CCCR. Slight. F11-rim: [Broom Point South, unit 25?]. 

BPS-32: ISOTOPE.· Probable j~int-dolomitized ·calcarenite. Crystal size 
varies from 100-250 pm. CCCR . . Slight Fe-stain overall, minor Fe-rim. 
A'nalysis contamination from calcite in secohdary pores, .. estimated . " 
less than 2%. ~Broom Poi~t South, unit 25] .. 

BPS~33~B: ISOTOPE . . J~int-dolomitized calcarenite. CrySLal size varie~ 
. from 60.:..250 pm. CCCR. Fe-rim and int~rnal zone. Anal y'si s 
cofltamination from Fe-calci te in secondary pt>res, estimated less thRn 
5%. [Broom Point .South, unit 33] • • •' 

' • I 
CHN-0: Armou~ed dolomitic siltstone Clast in . breccia. Crystal size · 

. varies from 10-50 pm. · CCCR. No stain evaluation . . · [Cow He&d North, 
Bed 12h 

CHN-12: 
pm·. 
from 
Head 

Dolomitized calcarenite(?). Crystal Sjze varies from 25-175 · 
Clear. Slight Fe-rim and internal zone·. Analysis contamination 
Fe-zoned calcite in intercrytalline spaces, estimated 10% . . .!Cow 

/ 

North, Bed 3]. . 
, _../-----... 

. \ 

· CHN-15-A: ISOTOPE. Conglomerate matrix ;t6lomite as'so_ciated wi~h CFC... 
Crystal size varies from 6Wl20 PllJ-"' Clear. No i ro""-.~tai n..·. · Possible 

· analysis contamination from'..cEC./1 Cow Head North, Bed 7'(. 'j 
. . . . 

CHN-19: Parallel- and ripple-laminated pervasive dolomiti~ siltstone. 
Crystal size . varies ftom 25-75 pm. CCCR. No Fe-stain. [Cow llead 
North, Bed 6]. 

CHN-:-57;_ ISOTOP~. Pervasive parallel-:Uaminated and bioturbated dolomitic 
siltstone. Crystal size varies fro~ 10-25 pm. CCCR. No F~-stain. 

· [Cow Head North, ~ed 1L.7). 

CHN-87: ISOTOPE; Quartz-silt-rich, parallel- and ripple-laminated 
.. ·· · · dolomitic siltstone. Crystal size varies from 60-120 pm. Local 

Fe-rim. [Cow Head North, Bed--f>]. 

CHN-166: ISOTOP.E. Massive and parallel'- laplinated matrix dolomite between 
mudstone and calcisiltite beds. Crystal size varies from H~-25 )JID. 
CCCR. Local Fe-rims. Analysis cont81fii.\ation from dispersed calcite, 
estimated less than 5%. [Cow Head North, Bed 6.37-.44]. 

CHN-167: Massive matrix dolomite. Crystal size varies from 5-25 ~m. 
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CCCR. Fe-rim. [Cow Head North, Bed 6.37-.44]. 

CHN-178-B: ISOTOPE. ConglciJ'flerate matrix dolomite assqciated with bladed 
· calcite. Crystal size varies from 35-85 pm. Slight internal· 

Fe-zones. Clear-. Analysis contamination from CFC an<i cr0ss-cut ting 
Fe-caicite veinlets, calculated 17 .5%. [Cow 1-leadNor·th, Bed 2]. 

CHN~l73-F: ISOTOPE. Conglomerate matrix dolomite associated with bladed 
calcite. CrystJl size varies from 35-85 pm~ Slight internal 

· Fe-zones. Clear. Analysis contamination from CFC and cross-cutting 
Fe-calcite veinlets, calculated 21.2%. [Cow Head North, Bed 2). · 

CHN(80-4-0): -ISOTOPE. Conglomerate matrix dolomite associated with . 
bladed calcite. Crystal size varies from 60-125 pm. Cle~r with 
minor core cloudiness in some crystals. Minor Fe-rim. Possible 
analysis contamination from proximal CFC. [CHN, Bed 4]. 

CHS-~5: ISOTOPE. Massive {llatri" do1ornite between mudstone beds. Crystal 
size varies from 25 ... .50 pro. CCCR. fe-rim. Analysis coAtamination from 

·- calcite. veinlets,. estimated less 'than 2%. [Cow Head South,; Sho~ Cove 
sec!ion, Bed lOs]. 

CHS-69: Massive mat~ix dolomite" between mudstone beds. ~rysial · size 
vari~s. from 3-lQ.. pm. Cannot evaluate' core cloudiness. No Fe-stain. 
[Cow Head South, Jim Cove/section, Bed 11s.)2]. · . . . 

GP-63-B: ISOTOPE. Parallel-laminated matrix dolomite between mudstone 
beds. Crystal size varies from. 10-25 pm. CCCR. Fe-rim and internal 
zone. Analysis contamination from Fe-calcite veinlet, .estimated less 
than ?%. [Green Point, unit 28] • . 

GP-67: ISOTOPE. Massive matr?x dolomite between mud~tone beds . Crystal 
size varies from 10-25 pm. · Fe-rim and internal . zone. Analysis · 
contamination from dispersed Fe-calcite, estimated 5-10%. [Green 
Po.int, unit 28]. 

GP-88-A: ISOTOPE. Parallel- and ripple-laminated dolomitic siltstone 
strin,ger associated with red shale. Crystal size varies from 30-60 
pm. CCCR. No Fe-stain. (Green Point, _unit 35]. 

GP-89: Parallel- and ripple-laminated dolomitic siltstone stringe~ 
· associated wj.th red shal~. Crystal si~e varies from 30-60 pm. CCCR. 

No Fe-stain. [Green Point, unit 35]. . 

GP-95: _Parallel:.. and ripple-laminated dolomitfc silt;tone stringer 
associated with red shale. Not examined by ~hin section. [Green 
~oint, unit 47]. 

GP-96~B: ISOTOPE. Granule- and coarse sand- size clasts of chert and 
phophat~hich grade upwards into d-olomitic siltstone. Associated 
with red shale. Crystal size varies from 5-35 pm, CCCR. No Fe- stain. 
[Green oint, units 4?-49]. . . _ · 

GP(80-61-34): Pervasively dolomit~zed calcarenite similar to alteration 

. ' 

.-

• 
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seen in conglomesate GP(80-61-44B). Crystal s{ze varies from 25-125 
pm. CCCR. Slight Fe-rim. Analysis contaminati-on from 'Fe-calcite 

' • ve~~~et, estimated le~s than :2%. [Green Point, unit 34). 
11 

'GP(80.!.6J...~4'4B) ·: ISOTOPE. Pervasively doiomitized conglomerate. Crystal. 
size is variable according to clast and matrix-, range is .fr'om 25-250-
pm. CCCR~ No Fe~stain. Analysis contamihation from Fe~calcite 
veinlet, estimated less than · 2%: [Green .Point, unit 44]. 

• 1 

LG-3t _~assive, parallel- and ripple-laminated ~pervas~ve dolomitic 
siltstone. Crystal size variei from 10~50 pm. CCCR. Fe-rim. 
(Lpbster Cove]. · c· · · . · 

'LC-4: Massive- anc;t parallel-laminat~d, bioturbated,· pervasive dolomitic 
siltstone. Crys~al size varies from 10-20 pm. CCCR. Fe~rim. 
[Lobster Cove]. ' · 1a 

~C-5: Massive'and rippled, per~asive dolomitic siltstone. Cryst~l si~e 
varies from 15-40 pm. CCCR. Fe-rim. [Lobster Cove]. 

MP-4; ISOTOPE. Conglomerate matrix do-lomite. Cryst<\1 size varies from 
. 25--125 )Jm. . Clear. Fe-stained' throu~hout. ·· Analysis contamination 

from peloids, estimated 10%. [Martin Po~nl' unit 15]. · • 

MP-8: ParalleL- and ripple-laminated 'pervasive d,olomitic _s\ltstone. 
Crystal size varies fr'Om 35-85 pm. ~CCR. Fe-rim. [Mar'tin Point, un-it 
32] ~ ' . 

MP-30:· ISOTOPE. Matrix {l.nternodule) dolorr)ite between discontinuous 
mudstone beds. Crystal size varies from ~5~as· pm . . CCCR. Fe-rim to 
.F~-stained throughout. Analysis contamination from dispersed 
Fe-cal!:i:te, estimated 15-20%. [Martin Point, units 16-20) ,. 

I . . I I 
. : \ ~ .. ~,.. 

MP-41: Parallel.:.and · convolute-laminated, pervq,sive dolo111itic silts~one. 
Crystal size varies from 35-8~ pm. CCCR. Fe-rim. [Martin Poin~. unit 

. 3z 1. o · · .... • 
MP-69-B: Parallel- and ripp-le-laminated, pervasive dolom.itic si 1 tstone. 

Crystal size varies f~om 25-60 pm. CCCR. Fe-rim. [Martin Poirit, unit 
· ·40a]. 

MP-84: parallel-laminated,-. dolomitic siltstone stringer 
associated wi .. · red shale. Crystal size varies from 15-?5 pm. Cle~r 
mostly . . No F~-s't;ain. [Martin Point,- unit 58]. 

SPN-1: Burrowed, parallel-lami~~ted dol6mitic siltstone stringet 
· asso~·iated with ·ted shale. Crystal size varies from 25-50 pm. 

mostly. N'o Fe-s~ail). [St. Paul's Nor.th, units 84-85]. . ·. .... .. 
Clear 

SPN-3: Massiv~ ~olomitic siltstone stringer associat~ with red shale~ 
Crystal size varies · from 10-25 pm. Clear and · CCCR. Ao Fe-sta in. (St • . ~ 
Paul's North, unit 83). · · 

. 
SPN-32: ISOTOPE. Hassi v\matri x dolomite between mudstone beds··, Crystal 

• 

.. 

• 
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' 
size varies from l0-25 pm. CCCR. Fe-rim. Possible analysis 
contamination. hom ~djacent mudstones, esti~ated less than 2%. [St. 
Paul's North, unit 24]. . 

SPN-38: ISOTOFE. Burr·owed,~d parallel-laminated~siltstone . 
_stringer assodat~d with red shale. Crystal size varies 'froin 10-25 
· ~m. Clear. No Fe-stain. [St. Paul's North, units 83-85]. 

'• J 

SPN-41: Dolomitic si~tstone associated '-'1th silicified beds and red 
shale. Crystal size varies from 25-50 ~m. CCCR. No Fe-stain. [St. 
Paul's North, units 83-84]. 

SPN-43-B: Graded dolomitic siltstone (loose boulder) associated with red 
shale. Crystal size varies from 15-100 ~m. CCCR. _ No Fe-stain. [St~ 
Paul's North,.untts 83-84]. 

WI-1: ISOTOPE. Pervasively dolomitized conglomerate. Crystal size 
varies from 60-600 pm. Very cloudy crystals, some thin clear rims. 
No Fe-stain. Analysis contamination from calcite in secondary pores, 
estimated less than 10%. [White Rock Islets]. 

WN-4-A: Burrowed, pa.rallel-laminate,d dolomitic siltstone stringer 
associated with red shale. Crystal size varies from 15-35 pm. CCCR. 
Fe-rim. [Western Brook Pond N_orth, unit 5]. 

WN-1-1: ISOTOPE. Burrowed, parallel- and ripple-laminated dolomitic 
si 1 tstone stringerrassoc iated with red $hale. Crystal size varies 
from 10-25 pm. · CCCR. Minor Fe-rim. [Western Brook Pond North, unit 
24 I. . . 

WS-8: Ripple-laminated dolomitic siltstone stringer associated with red · 
shale. ·crystal size varies' ~rom 25- 35 pm. Variably cloudy 
throughout. No Fe-stain. [Western Brook Pond South, unit 56]. 

WS-11: ISOTOPE. Burrowed, parallel- and ripple-laminated dolomitic 
siltstone stringer asso~iated with red shale. Crystal size varies 
from 25-35 p.Jm . Variably cloudy throughout. No Fe-stain. [Western 
Brook Pond South, units 49-50]. 

WS-19: Ripple-laminated dolomitic siltstone stringer associated with red 
~hale. ~Crystal .size varies froni 25- 50 ~m. CCCR. Minor Fe-rim. 
[ Westerh Brook Pond South, unit 6] . 

. ,, 
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Appendix K 

11lACE ELEMENTS AND WATER-ROCK RATIOS: BACKGROUND 

The cornerstone of trac·e e_lement study is based on partitioning theory. 

In its simplest form, cons.ideri~g only iJlorganically-precipitated, 

homogeneous crystals, the critical relationship is the Berthelot-Nernst 

equation: 

( mT /mC>.ouiTION 

where "m11 refers to molar concentrations of trace element ("T") and 

carrier or major element ("C"· - Ca in this case) in the mineral 

.. 
(calcite) and solution. "k" is the partitioning coefficient for the 

•trace element in the mineral, at a specific temperature. The above 

relationships assume equilibrium as well as the lack of concentration 

gradients of the trace element within the mineral. In addition the 

solution ·must be su~.ficiently dilute to allow molar concentrations to 

equal activity. In crystals where more than one trace element is 

incorporated into the lattice, th.e relationship between a particular 

trace and major element is independent of other trace-ma-jor element 

relationships (Mcintire, 1963; Pingitore, 1978; Brand and Veizer, 1980; 

Oglseby 1976 p. 7; Veizer, 1983). The parti 'tioning coefficients of 

various metals in carbonates at surface and diagenetic conditions are 

poorlyv known; consequently. partition coeffi'cients ar1! most practically 

used as 

i 

·' 

• 

.. / I 
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order-of-magnitude estimates (Veizer, 1983). Partitioning coefficients 

" are subject to numereus controls among them be·ing temperature (e.g. kMg_ 
·~f 

Fuchtbauer and Hardie, 1976), precipitation rat~ (e.g. k5'- Lorens, 

1981), influence of other solid solutions in host crystals (e.g. k5 ' is 

influenced by MgCO~ content of calCite - Mucci and Morse, 1983), as well 

as trace element c .. oncentrati~ns (e.g k5 ' - Baker et a l :, 1982). 

Informative reviews of the earlier work on Sr, Mg, Fe, and Mn as trace 

elements are found in most of the above references. so I 

discusses the use of trace elements in carbonates in genera l . 

With reference to the common situation of marine sediments unde 

subaerial diagenesis, and assuming that conditions are conducive to t e 

precipitation of calcite, the fate of tracers is determined by the 

interaction of 3 fact'ors: ( 1) the partitioning coeffic i enL.o..f the 

element being considered; (2) the water-rock ratio; and (3) the 

magnitude of the difference in mMe/mCa of freshwa ter and seawa ter 
• I 

(Veizer, , 1983) where Me is the substituting trace cation. Diagenet i c 

systems characterized by high ~ater-rock ratios are considered to be 

open. In such systems the dissolving and precipitatir:lg phase(s) have 

little effect on the chemistry of pore solutions. In contrast, systems 

with low water-rock ratios are closed, and a relatively small amount of 

pore Huid is strongly c·ontrolled or "buffered" by the partitioning 

characteristics of associated minerals (Veizer, 1983). Systems with 

intermediate degrees of closure (partially open or partially c losed) 

more closely approximate natural diagenetic systems in which there is a t 

least minor loss of some component. 

. ·. 
Figur:e 10.4a sunvnarizes the ·expected trace element trends in greatly 

t 
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simplified open and closed d;agenetic system composed of aragonitt' , .. 
Mg-calcite, arxi a typical fres!l pore-water. The dissolution o f 

( 
aragonite .and Mg-.calcite is assumtd to be the d~minant control. on tlw 

availability of Sr and Mg. Mn ana Fe are , initi~lly _. at "background" 

levels.in the pore-wate~. Under more.reducing·conditions,·. Mn <md FP (' <Jil 

be released from a wide variety of dispersed oxide and hydroxide pha st•s 

thus greatly increasing tf1eir concentration in so lution . Situations an· 

considered for tracers having k less thart unity (e.g. Sr and ~lg) and k 

greater than unity (e.g. Mn and Fe [1)). • 

In an open diagenet.{c system, released Sr and Hg _ arc removed from tlw 

-....... system. Any calcite that does pr.ecipita te will be d e p leted rn bo t h Sr 

and Mg, incorporating only "background" levels of t 'hese eleme nts, 

distributed according to their k values. No !mild-up of Sr and Mg 

occurs in the pore- water despite k less than unity. Considering th t•sP 

same elements in a closed diagenetic system, k's l e ss t han unity impl y 

that Mg and ·Sr levels will progressively increase in the pore-w4ter s a nd 

successive precipitates will contain greater amounts o f Sr an-d Mg, til(' 

limiting concentratj.ons being those of the source aragonit e and 

Mg- calcite. 

Trace elements having k's greater than unity (e.g . Fe and Mn) in a-n open · 
l .· 

diagenetic s~stem at constant Eh wi 11 result in calc i·te with a 
f 

homogeneous distribution of these elements, regardless of whether Fe a nd .. 

1. '{'he range of value~ for k'• is estimated between 1 and 20 in Ve i zer 
(1983, table 3-1) but for pur:.poses of the following discussion , it i s 
assumed that k is. greater than unity, 'a l i kelihood based on the similar 
size and charge to Mn (also see Oglesby, 1976) . 

.. 

• 
· .. , 
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Mn is scarce or abundant in pore-waters. In closed systems at constant 
' 

Eh, however, any Fe and Mn in pore-waters will be scavenged by the . 
~ 

earliest precipitates, and successive precipitates will contain 

progressively less of these el~ments. 

\ 

~ . 

\ 
i 
( \ 
·, ' 
·\ . -' 
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Appendij< .L 

MINOR AUTHIGENIC MINERALS 

L.l SPHALERITE 

Subhedral to euhedral sphalerite [ 1] crystals usually range from 40_.40(.) 

~m· in Size and reach a maximum of 1 mm. These crystals are assoc i at~d 

wi~h both early and late diagenetic features, _ o~curring in the folluwinK 

ways: 

, 
(1) dispersed in shales and limestones; 

'I> 

(2) in contorted l i mestones and tAeit assoc i ated sha les or ot her . 
tectonized sedime~ts; and 

\ 

(3) in pressure- slladow zones in nodular li~tone;:; and with cal c-ite in 

fractures in nodules. 
/ 

Most sphalerite crystals are radially zoned and exhibit a prominent 

"Maltese Cross"-type pattern of dark, inclusion-rich sect:ors (the cross) 

and transl~cent, inclusion-poor sectors which are occasionally replaced 

. 
1. X-ray diffraction demonstrates the presence of the 9.12 A peak which 
indicates sphalerite rather than the wurtzit~ polymdrph. However, only 
one sample was analysed using a one.-way scan. 

" 
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by calcite. Microprobe analyses demonstrate iron enrichment in the 

~translucent sectors of tbe c:rystal relative tp• the · dark sectors (0.45 

versus 0.17 metal ~t %; "data ~n Table L.l). CL examination shows some 

translucent .zones·to have a bri'ght. yellow luminescehce with 

micrometre-scale growth zoning. The incl~sion-rich sectors and most 

sphalerite crystals in g~neral, howe~er, 7 non-luminescent. 

L. 2· FLOURITE 

Flourite is exir~~eiy rare and has been identified, f~llowing initial 

verification by X-ray diffraction, in only a few thin sections from 

Green Point and M~rtin Point. It .forms .50-250 1-1m-size cube!! or mosaics 

of anhedral crystals which occur i'n veins along with dolomite or 

calcite! fills moldic(?) pores, and ~artially ' replaces shale 

intraclasts. 

• 
L. 3 CHLORITE 

A minor amount of chlorite occurs in veins within dolomitic slltstones 

in red shale. These fibrous crystals range up to 750 1-1m irt leng~h and 

exhibit strong green pleochroism and anomalous blue birefringence. 

Chlorite, identified by its light green colour, also locally forms the 

intercrystalline matrix between dolomite crystals. One sample examined 

contains sponge spicules replaced by chlorite. 

I 
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TABLE L.l: SPHALERITE MICROPROB& ANALYSIS 

• -r ·~ ' 

Sphalerite from Green Point (sample GP-7-C) was anal1sed u s ing a 
sphalerite standard and 30· second counting time. ' 

Dark, Inclusion-rich Sectors: n 5 

. Translucent Sectors: n .. 5 

s 
~ 

..,.Fe Zn Tota l 
------

Metal % 33.20 0 . 45 68.03 l 0 1.68 
St. Dev. 0.67 0.07 0.92 
Stoic h. 0 . 997 0 .007 0.996 1. 999 

t. 

.. 
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Appendix M 

SYNSEDIMENTARY BOUDINS 

M.l ~NTRODUCTION 

Synsedimentary or sedimentary boudinage was invoked to explain the 
(' 

origin of nodules in the Ireton Formation of western Alberta (McCrossan, 

1958). These structures were interpreteq to have formed in the shallow 

subsqrface of the sea floor from penecontemporaneous sliding on a slope 
\ 

or from turbidity current drag (McCrossan, 195~). The resultant ·nodules 

are analogous to "pull~apart" structures of Natland and Kuenen (1951) .. 

The contrasting rheology betw~en carbonate layers and interbedded 

argHlaceous sediments resulted in plastic flowage of the surrounding, 

incompetent shales or marls and stretching or necking of the more 

competent limeston'ts to ultimately produce isolated nodules. The 

process also accounts for b!ittle fracturing of the nodules and the .. . 

formation of V-shaped cracks on the margins of nodu l es. These 
,.,.. 

structures were subsequently modified by burial. 

Synsedimentary boudinage was invoked by Hubert et al. (1977; also see 

Suchecki, 1975? to account for the origin o{ nodular limestones or 

"boudins'' in the CHG. These boudins were reported to have length to 

width ratios of 2-~:1 with the long axis parallel to their reconstructed 

• 
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paleoslope -contours. Boudin orientations were used to,substant iate 

their complex paleogeographic reconstruction. 
-----._ 

M. 2 FIELD TEST 

To assess the reliability of the.above interpretation, two localities 

were selected where nodules ' (boudins) could be easily extracted frl>m 

enclosing green and gray shales (Upper Cambrian at Green Point and St. 

Paul's North). The nodules · comprise the "mudstone" and "cored" types 

~ ,(refer to Chapter 2), the latter having cores of grainstone or pebble 

conglomerate. A total of 21 nodules were oriented, extracted, and then 

, measured (Plr2c.' !•bkM.l). 

A<;cording to Hubert ~ ~· (1977), the paleoslopes at Gr(ien Point and 

St. Paul's North are oppositely-dipping (northeast and southwest, 

repectively -see their fig~re 20), however, both depositional slopes 

strike northwest-southeast. For both localities maximum boudin 

elongation should then occur parallel to this strike. At both 

localities, outcrops strike approximately northeast-southwe~t and 

therefore, maximum elongation of the nodules should be approximately 
,-

perpendicular to outcrop ~trike. 

The measurements in Table M.1 indicate that no preferred ori:nt~ 

exists parallel to Hube.rt!!. !.!_. 's (1977) paleos1ope contour 

Furthermore, the reported 2 to 4:1 axial ratio also does ~ot occur; 

rather, the long.axes are only 30-40% longer than the short axes at 

right angles to them. The round to subrounded shapes in plan view are 
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coflsistent with concretionary growth shapes reflecting homogeneous 

permeability along bedding planes (Raiswell, 1971a). The ~imilarity of 

M'tCrossan's (1958) boudins from tt\e. Ireton Formation to other no"dular 

limestones interpreted to be mainly the result of early lithification on 

or just below the sea floor (e.g. Raiswell, 1971a). suggests that the 

"type" boudins are probably also isolated, discrete concretions . 

.1. 

r 

• 

.. 

I 
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TABLE M.1: NODULE MEASUREMENTS 

·At Green Point, strike is 50 degree~ NE with strata overturned 
anJ steeply dipping. At St. Paul's North, strike is 43 degrees 
NE, dip is 40 degrees SE. Ali measurements are in centimetres. 

cperpe.nd. 
strike 

' X 

para. 
strike 

y 

GREE~ POINT (UPPER CAMBRIAN) 

ratio 
X/Y 

max. 
axis 

A 

min. 
axis 

B 
rat-io . 

A/B 
-------------------------------------------------------. 
8.0 10.5 0.8 10.5 8.0 1.3 
7+ 4.5 7+ 4.5 

18.5 19.0 l.O 21.-0 17.8 1.2 
8.8 13.4 . 0.7 13.5 9.2 1.5 

13.5 7.2* 1. 9 ~ 13.5 7.2* 1.9 
7.0 7.0 l.O 8 . .5 5.5 1.5 

14.0 14.0 l.O 17.4 13.4 1.3 
8.8 11-.8 0.7 11.8 - -8.8 1.3 

13.2 12 .0* 1.1 13.2 12.0* l.l" 
14<, 5 17.0* o.tJ 17 .0* 14.5 1.2 
16.0 18.5 0.9 18.5 16.0 1.2 
17.0 34+ 34+ 17.0 

Avera,ge (1 sigma): l.O (0.3) 1.3 

ST. PAUL'S NORTH (UPPER CAMBRIAN) 

perpend. para. max. min. 
strike strike ratio axis axis ratio 

X y X/Y A B A/B 
-------------------------------------------------------
11.5 16.5 0.7 16.5 11.5 1.4 
6.0 8.5 0.7 8.5 6.0 1.4 

13.0 21.0 0.6 21.0 13.0 1.6 
11.0 15.5 0.7 18.0 10.5 1.7 

7.5 5.0 1.5 7 .. 5 5.0 1.5 
11. S· 11.0 1.0 r'l. 5 11.0 1.0 
8.0 7.0 l.l 8.0 7.0 1.1 

12.0 9.0 1.3 12.0 9.0 1.3 
9.5 8.5 1.1 9.5 8.5 l. 1 . 

"J 

( 0. 2) 

Average (1 sigma): l.O (0.3) 1.4 (0.2) 

*:complete nodule form is extrapolated, +:minimum estimate 
(extrapolation was uncertain). Both * and + data are exc 1 uded 
from averages. 

., I 

' 
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Appendix N 

EVIDENCE FOR SUBMARINE EXPOSURE OF NODULAR MUDSTONES 

N. 1 INTRODUCTION 

During this investigation, evidence for submarine exposure ~f nodular 

limestones was observed only twice (see Plate 53e,f): ·Two 

interpretations a-re offered for each occurrence. The first ' 

intE;?rpretation appeals to submar i ne ~pos•Jn•, wh'ereas the second does 

not require exposure, but is instead explained by selective calcite 

precipitation. 

N.2 EXAMPLE 1: NODULE FROtl COW ~EAD NORTH 

Description: A compound nodule from Cow Head North consists of 

non-ferroan microspar wi th dispersed, fine tamedium silt- size 
~ . . 

siliciclastics (Plate 53ee_. The upper ( l) and lower (2) nodules are 

separated by an argillaceous seam which is locally stylolitic (3) . .., 
V-shaped marginal cracks (9) are found in ·the upper nodule, and 

septarian ladders (4) fracture a peloidal silt lamination (5) which can 
' · 

be followed into the adjacent i nternodule matrix (6). The internodule 

.. 

, 

) 

\ 
/ 

J 
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• 

matrix which is laterally equivalent to the lowe~ nodule (2) contains 

abundant •25-35 ~Jm, sili~iclastic_s ( 7). A key oberservation is that no 

comparable-size sili~iclastics are - found in the lateralfy equivalent 

nodule ( 2). ' ,, 
• 

Interpretation 1: The lower nodule (2)
0 

formed either at . the surface or 

slightly below the sediment surface and 'was subsequently exhumed. Th t~ 

laterally equivalent silty sediments (7) were deposited next to this 

obstacle and also lapped onto its top (8). This explains the _lack of 

25-35 ~Jm siliciclastics in ~e lower nodule and their presence in the 

lower internodular matrix (7). Deposition of cla y muds (6) conta ining a 

• 
thin lamination of peloidal siltstone ( 5) follow~d .and buried the lower' 

-
nodule. Subsequent calcite precipitation (1) was initiat ed around the 

iamination above the lower nodule, thus forming the compound nodul e . 

Tnterpretation _l: ,~eposition of inte rnodular matrh sediment ( 7) .hay 

have taken place in a shallow scour within uncompacted clay m~ds - " 

(later~lly equivalent to insoluble component of lower nodu le). 
1- . ' ,. 

Additional ~lay muds {6) and the peloidal silt lamination (5) were ... 
subsequently deposited. Calc ite precipitation in the clay muds adjacent 

to the lowe~m~trix (7) as well as around the overlying peloida l silt 
, --< 

1\mination (5) followed thus forming the lower (2) and upper (l) 

nodules, respectively. 

j"''J 
N.3 EXAMPLE 2: NODULE FROM ST. PAUL'S QUARRY 

Description: 'The second example is taken from a quasi-autochthonous 

' 

) 

l 

. . 
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block of ri-bbon limestone e~posed in the quarry wall in St. Paul's · 
' 

Quarry (Plate 53f) .• Blasting dislodged this block from its origina'i 

~sit ion which is presently covered. Bedding could not be traced 

laterally .. for more tha.n 1 m. 

This outcrop ·.con'tains a hon-~roan, microspar, nodular mudstone (M) 

" 

• > 

with a conspicuous sand-size pebbly grainstone (Y) lodged b~tween the 

~dules. The pebbles consist of mudstone identical to that of the 

nodules. A1 1 111111-thick lamination of shale covers both the nodules as . . 
well as the grainy intern~ular1 fill, and this is subseq,uently overlain 

by a 1 mm-thick continuous grainstone lamination (H). As with the first 
~ 

example, there a~e two possible explanations. 

Interpretation l: The first interpretation is th<,it a mudstone bed was 

formed either at the surface or was exhumed fr.om the shallow 

subsurface. This mudstone bed may have been continuous and then eroded 

(dissolved?) into nodyles or it may have ortginally been nodular. 

Subsequent sedimentati9n o{ the grain~~one (G) occurred, incorporating 
... 

some of the smaller exhumed 

mud and then grainsto'ne. (H) 

mudstyne nodules or pieces of nodules. · Clay 

d~ition followed. 

-
Interpretation 2: The second explanation is identical to that in the , 

first example calling. upon fortuitous calcH·e· pr~cipitation to postdate 

a grainstone-filled scour within clay mlMls • 

• 

., 
II • 

. , .... 

. '• 

. . ~ 
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0 N. 4 CONCLUSION 

It is concluded that the nodules in both examples I <!nd 2 Wl're expostqi 

on the sea-floor at some during their early history: This cone lusinn is 

based on the improbability of second interpretation b~·ing rorrL•ct in 

each case. The siliciclastic-rich internodule matrix in the first 

example and the pebbly grainstone in the second example both would havt> 

been the preferred sites of early cementation due to their high 

~epositional porosities. and permeabilties. 
/ 

Any subsequent calc ill' 

precipitation in th~se sediments would have occurred as mudstonl' 

envelopes on these grainy cores, based on this extremely c ommon and 

consistent relationship seen elsewhere in the Cow Head Group. 
\, 

..'' 
/ 

, . 

., 
.. . • \ ... 
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Appendix 0 

' I 
) 
I 

\ 

MINERALOGY OF CONCRETIONS AND HARDGROUNDS 

0. l INTRODOCTION 

Cone ret ions are continuous to discontinuous crusts; which, if •P
form hardgrounds (Bathurst, l983a; "hiatus concretions" of Baird, 1976). 

The classical hardground develops at the sediment surface but it is now 

well established that many hardgrounds are exhumed concretions which 

begin to- form slightly below t:he sediment-seawater interface, usually 

within the first SO em (Bathurst; l983a). Evidence for exposure"of' 
0-, 

submarine-hardened crusts on the sea-floor implies that the crusts are 

hardgrounds, but the opposite case, the lack of evidence for exposure, 

cannot be used to preclude such an origin. In light of this, ~ the 

mineralogy as well as morphology of submarine cements and concretionary 

cements cannot be. divorced from one . another. 

' ·' 

; . 

0. 2 DISCUSSION 

.. 
The calcitic mineralogy and ubiquitous pyrite in CHG mudstones •and 

grainstones is typjcal of early-formed concretions described from . most 
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other ancient · sequences. Based on their sharp CL zoning and 

f . ' micro abrics, trace element trends with progressive precipitation, and 

distinct isotopic signatures, authigenic calcites in the CHG are 

interpreted to be u~altered from their original low Mg-calcite 

comp?sitions. ~his interpretation of origiRal mineralogy and chemistry 

is consistent with conclusions reached in other studies of concretions 

(e.g. Galimov ~ ~·· 1968; Hoefs, 1970; Raiswell, 197lb). .. 
In contrast, cements in Quaternary hardgrounds and concretions are 

conunonly /Mg-calcite and micritic [ 1] and often appear "pelleted" 

(Mullins~~·, 1980a). quite unlike the equant calcite cements in 

1... grains tones and CFC in conglomerates, Two h~potheses are . proposed to 

explain this: (1) precipitatiori from modified seawater, assuming a 

composition identical to modern seawa~er; or ( 2 ~seawater chemistry was 

different. 

Considering the first possibility, if Mg-poisoning does determine the 

composition and morphology of calcite as suggested by , Folk ( 1974), then 

depletion of pore-water. Mg/Ca below the ratio in seawater may explain 

the sparry calcite crystals. If, however, Lahann's (1978) 

surface-charge _m?del more realistically explains morphological and 

chemical v~riations in submarine_ precipi_tates, increases in Ca and 
\ 

bicarbonate concentrations in shallow-bur-ial pore-waters could, 

\. Sparry intermediate Hg-calcite~ do exist, howeter, but these are 
rare: Al-Hashimi: (1977) described intermediate Mg-calcites up to 750 pm 
in size with 2~ mol % HgC03 • These calcites were found in secondary . 
pores developed within Carboniferous dolostones exposed in the modern 
intertidal zone on the North Sea Coast of northeast England. Purser 
( 1980, p.. 82) described sparry Hg-calcites with 7-&. mol % MgC03 dr·edged 

-from depths of 250-500 ~ in the Mediterranean. 

\ , __ 
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depending on their relative abundances, have the opposite effect and 

~ncourage micritic or fibrous morphologies instead. It remains unclear 

as to which factors govern the precipitation of sparry versus micritic 

or fibrous calcites. 

The remaining hypothesis is that these calcites were preiipitated from 

se~ater or slightly-modified seawater characterized by physico-chemical 

conditions. different from those of the modern ocean. These conditions 

may have favoured calcite or aragooite or perhaps lower levels of Mg in 

Mg-ca1cite. Examination ot fossils (Pigott and Mackenzie, 1979; 

Wilkinson, 1979), carbonate mud (Folk, 1974; Sandberg, 1975), marine 

ooids (San\! berg, 1975; Wilkinson and Landing, 1978), cements (Folk, 

1974; Wilkinson, 1982; Sandberg, 1983), and stable isotopes (James and 

Choquette, 1983) suggests that the . Phanerozoic has been c ~aracterize~ by 

major oscillations .in oceanic chemistry. The causes for these change\ 

are not obvious. Mg/Ca ratio of marine waters (Folk, 1974), atmospheric 
J . • 

pCOz.. levels (Pigott a~d MacKenzie,_ 1979; Pigott et al., 1980), or some 

other as y;t unknown variable affecting carbonate equilibria may have 

peen·a major control (Wilkinson et ~-· 1982). Further discussion on the 

above can be found in James and Choquette (1983~0tt-numerous reference 

therein. 

Whereas sparry calcite cements are unkn-own from modern tropical marine 

environments they have been recently reported from several Paleozoic and 

Mesozoic shallow-w~er carbonate environments (e.g. Delgado, 1979; 
I 

Wilkinso~ ~ !.!.· f 1982). These studies demons_trate unequivocal evidence 
I 

of submarine exposure in the form of organic borings and encrustations. 

This does not imply, however, that the sparry calcites were precipitated 

, 
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at the sediment- seawater interface and a 5hallow burial orig.in is at 

least likely for the cements described by Wilkinson ~ al. ( 1982), Thi s 

suggestion is base~ on the ·r~ported bri ght orange fuminescence of thes~ 

sparry calcites which Wi.lkinson ~ ~· ( 1982) attributed to 

\ M~-activ~tion· and therefore precipitation · in a 

~1croenv1ronment close td, perhaps millimetres 

reducing, anoxic 

away from, the 

sediment-seawater interface, These cemented grainstones could 

alt~rnately be explained as exhumed concret ions (early•cemented 

grainstones) which had relatively little to do with true marine 

cementation • 

I 






