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ABSTRACT 

An extremely heterogeneous section of upper mantle exposed over 2 km1 

in the Springers Hill area of the Lewis Hills Massif, Bay of Islands Ophiolite 

Complex, consists of two distinct associations: law-AI peridotites and 

pyroxenites (LALPP), and high-AI peridotites, pyroxenites and gabbros 

(HALPPG). These represent the processes of magma and fluid generation, 

migration and evolution in the mantle wedge of a subduction zone. 

The LALPP have Cr-spinel of Cr#=47-90, Mg#=-23-65, and fo~med in 

the order of harzburgite--orthopyroxenite (and associated dunite and 

chromitite)--clinopyroxenite (and associated dunite, chromitite and websterite). 

Harzburgite is a refractory residue from partial melting and complete removal 

of low-Ti tholeiitic magma. This harzburgite has straight, positively sloping 

chondrite-normalized REE patterns and Pd/lr < 1. Dykes of orthopyroxenite have 

U-shaped chondrite-normalized REE patterns and very high Pd/lr ratios, and 

formed from hydrous, As-saturated magma of boninitic affinity, which 

previously had fractionated significant quantities of Cr-spinel and relatively 

minor olivine. By mechanical mixing or magmatic impregnation, a component 

of orthopyroxenite was added to some harzburgites; these harzburgites have 

U-shaped chondrite-normalized REE patterns and Pd/lr > 1. Dykes of 

clinopyroxenite formed from LREE-depleted, high Pd/lr, S-saturated, low-Ti 

tholeiitic magma. The LALPP formed at P s 7-8 kbar in upwelling asthenosphere 
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(T = 1300 ± 1 00°C) below a zone of crustal accretion in a supra-subduction 

zone environment. 

The HALPPG contain spinel of approximately Cr# = 30, Mg# = 65, and 

comprise dunite, wehrlite, olivine clinopyroxenite, gabbro and amphibole 

peridotite. The HALPPG formed in the lithosphere (T = 900 ± 1 00°C) at P =5-9 

kbar by combined assimilation and crystal fractionation, which involved fluid­

bearing magma and LALPP. The replacement of LALPP by HALPPG involved 

dissolution of ortho- and clinopyroxene, precipitation of clinopyroxene, 

plagioclase, Ca-amphibole and phlogopite, and recrystallization of olivine and 

spinel. In minerals and whole-rock samples of HALPPG, the Mg# is largely 

controlled by the LALPP protolith, whereas concentrations of Ti, AI, Ca, Na, K 

and REE are controlled by the magma or fluid. 

The magma parental to the HALPPG was fluid-bearing, LREE-depleted, 

Sr-rich and Si02-undersaturated, and formed by partial melting of amphibolitized 

oceanic crust during intra-oceanic thrusting and obduction of the Bay of Islands 

Ophiolite Complex. The fluid component of this magma became LREE- and Eu­

enriched and Si02-saturated by fractionation of Ca-amphibole and reaction with 

LAI.PP. As such, this suggests a link between fluids within metamorphic soles 

of ophiolites, metasomatized mantle peridotites and pyroxenites, and forearc 

magmatic and fluid procPsses leading to the formation of wehrlitic bodies and 

high-MgO, Si02-saturated magmas or fluids of boninitic affinity. 
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Chapter 1 

INTRODUCTION 

1.1 GENERAL STATEMENT 

Understanding physical and chemical processes in the upper mantle is 

critical to our understanding of global chemical budgets and the geochemical 

and geodynamic evolution of the crust-mantle system. The upper mantle is a 

massive reaction vessel that is best considered as a series of chromatographic 

columns, in which magmas and fluids interact with a variety of solid phases as 

they migrate away from their source regions (Navon and Stolper, 1987; 

Bodinier ru .2J.., 1990) . The mineralogy and chemical composit ions of upper 

mantle materials are controlled by partial melting and magma- and fluid -rock 

interactions over a wide range of temperatures and pressures in specific 

tectonic environments . This thesis reports on an investigation of the processes 

involved in the generation, migration and evolution of magmas and fluids in the 

uppermost mantle. 



2 

1.2 THE UPPER MANTLE 

The mantle is located between the crust and the core of the Earth. It is 

divided into upper and lower regions . The upper mantle extends from the crust­

mantle interface (the Mohorovicic Discontinuity, or Moho) to a depth of 600-

1 000 km. The lower mantle occupies the region between the upper mantle and 

the outer core which begins at a depth of 2900 km. 

The upper mantle comprises lithosphere and asthenosphere, which lie 

above (lower temperature) and below (higher temperature) the 1 ooooc 
isotherm, respectively (Nicolas, 1986a). The lithosphere is relatively stronger 

than the asthenosphere, is thought to behave in a relatively brittle fashion, and 

consists of the crust and uppermost mantle. The lithosphere is 1 00-200 Km 

thick in continental regions, 50-70 km thick in oceanic regions, and 0 km thick 

at oceanic ridges where magma is erupted onto the surface of the Earth. 

1 . 2.1 Samples of Upper Mantle 

ln-.sllu mantle beneath a crustal carapace is at present inaccessible, but 

fragments of upper mantle ranging in size from < 1 m3 to > 1000 km3 occur in 

the crust as: 

1) Mantle xenoliths entrained during eruption of kimberlites and alkali basalts. 

The majority of these xenoliths consist of mineral assemblages which were 

stable at depths of < 150 km (Boyd and Nixon, 1975). 

2) Ophiolitic and orogenic mantle material tectonically emplaced into the crust 
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in zones of compression. 

31 Tectonically uplifted portions of lithosphere, such as St. Paul's Rocks on the 

transverse ridge of St. Paul's Fracture Zone in the Atlantic Ocean (Melson ~ 

£f., 19721. and Zabargad Island in the Red Sea (Bonatti ~ 21.. 1 983). 

Each type of sample has advantages when used to examine the upper 

mantle. The most significant of these, is that tectonically emplaced or uplifted 

mantle material allows in-situ examination of lithological and structural relations 

and mapping of mantle heterogeneities. This is not possible for mantle 

xenoliths, and yet much of our present knowledge of the processes and 

chemical and isotopic compositions of the mantle is based on information from 

xenoliths. 

1 .2.2 Composition of the Upper Mantle 

The rock nomenclature of Streckeisen ( 1976) is applicable to the study 

of ultramafic rocks of the mantle and is used throughout this thesis (Fig. 1.1 ). 

Based on mineralogical, geochemical and geophysical data as reviewed by 

Ringwood (1975) and Yoder ( 1976), the upper mantle beneath stable 

continental regions and oceanic basins is composed of peridotite (Fig. 1.1) or 

eclogite (almandine-pyrope garnet and omphacite). The need for olivine as an 

essential constituent of the upper mantle, suggests that the upper mantle is 

composed dominantly of peridotite, but this does not preclude the existence of 

regions of eclogite, especially where subducted oceanic crust has been 

transformed to eclogite (Green and Ringwood, 1968; Ringwood, 1969, 1 975). 
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Upper mantle material is described as 'fertile', 'refractory' or 'residual', 

and 'depleted' or 'enriched'. Fertile, refractory and residual are terms used to 

describe mineralogy and major element composition. Fertile mantle is capable 

of generating basaltic magma during partial melting, whereas refractory mantle 

is not. Residual mantle has experienced partial melting. Owing to single or 

multiple episodes of different degrees of partial melting and extraction of 

basaltic magma, residual mantle covers a wide range of compositions, from 

that which still is capable of yielding basaltic magma on partial melting (i.e., is 

fertile). to that which is incapable of yielding basaltic magma during further 

partial melting (i .e., is refractory). Examples of fertile peridotite are pyrolite 

(Ringwood, 1966). Tinaquillo lherzolite (Jaques and Green, 1980), Hawaiian 

pyrolite (Jaques and Green, 1980). mid-ocean ridge basalt !MOAB) pyrolite 

(Falloon and Green, 1987), and the lherzolite compositions of Maal0e and Aoki 

!1977) and Jagoutz ~m. (1979). 

In agreement with Menzies and Hawkes worth ( 1987a), enriched and 

depleted are used as simple geochemical (trace element or isotopic) descriptions 

without any implication for the process(es) responsible. Enriched and depleted 

are used relative to a defined composition, such as another sample or group of 

samples, or the bulk Earth. 

Mineral, major and trace element, and isotopic compositions of upper 

mantle materials are controlled by processes of partial melting, magma- and 

fluid-rock interactions, and mechanical mixing. The important aspects of these 

processes are summarized in the following sections. 
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1.2.3 Upper Mantle Heterogeneity 

Attention has focused on the distribution and composition of physical 

and chemical components in the mantle and their influence on the compositions 

of magmas erupted at the Earth's surface. In essence, this has been a study 

of Earth evolution and mantle heterogeneity based on trace element and 

isotopic studies of samples of crust and mantle (Schilling, 1973; Wasserburg 

and DePaolo, 1979; O'Nions ~ 5l!., 1980; All~gre m g!., 1981, 1982; 

Anderson, 1981; Thompson~ ru., 1984; Menzies and Hawkesworth, 1987bl . 

Owing to the compositional variation exhibited by crustal materials, 

mantle heterogeneities have been mapped on scales of (i) > 1000 km 1 as 

evidenced by the evolution of the Earth's crust over the last 3800 Ma (Q'Nions 

!U £!., 1980), (ii) > 1000 km as exemplified by the Dupal anomaly in oceanic 

basalts which encircles the Earth at about 30°5 (Hart, 1984), and (iii) < 5 km 

as in the Lamont seamounts near the East Pacific Rise (Fornari ~ g! ., 1988). 

Ultimately, this leads to the question posed by Carlson (1988): "Is the Earth's 

mantle chemically stratified or are there chemically distinct regions of various 

sizes distributed like plums in a pudding throughout the whole mantle ?". On 

a global scale there is sub-oceanic mantle and sub-continental mantle, but 

within these regions there are relatively local variations which could result from: 

1) Marble cake mantle, in which bands of subducted oceanic lithosphere are 

present in the convecting mantle (AII~gre and Turcotte, 1986; Kellogg and 

Turcotte, 1986/87, 1990). Evidence for this comes from the extreme isotopic 

variability exhibited by pyroxenite bands in orogenic peridotites (Polv~ and 
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All~gre, 1980; All~gre and Turcotte, 1986), and by basaltic glasses from the 

East Pacific Rise (Prinzhofer ~ £l., 1989). 

21 Veining of thr: mantle by magmas and fluids (Wood, 1979), and the 

consequent magma- and fluid-rock interactions, especially those involving 

volumes of magma or fluid which occupy < 0. 1 o/o of the mantle (McKenzie, 

1989; Menzies, 1990). 

A classic example of upper mantle heterogeneity has been documented 

in the Ronda Peridotite, Spain. These peridotites range from lherzolite to 

harzburgite and exhibit a wide range of whole-rock major eiement compositions 

iFrey ~ 2f., 1985). Partial melting of fertile lherzolite and extraction of MOAB 

magma left residues of refractory harzburgite (Frey ~ g!., 1985). However, 

isotopic compositions of Cr-diopside separates from these peridotites are 

extremely variable and are not restricted to the field of MOAB (Reisberg and 

Zindler, 1986/87). This suggests that after partial melting, the peridotites 

interacted with a fluid which modified isotopic evolution (Reisberg and Zindler, 

1986/87). 

1 . 2.4 Mantle Metasomatism 

The concept of mantle metasomatism is unavoidable in any study of the 

mantle, but before it can be assessed it is essential to define terminology. 

Wilshire ( 1987) defines metasomatism as "a process or processes whereby the 

mineralogy and/or chemical composition of a solid rock is altered by the 

introduction of chemical components from an external source; the alteration 
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process is commonly accompanied by loss of other components from the 

altered rock." Where components are introduced with the aid of intergranular 

fluids (including magmas), it is called infiltration metasomatism; where 

components are introduced without the aid of these intergranular phases, it is 

termed diffusion metasomatism (Korzhinskii, 1970). The terms cryptic and 

patent metasomatism (Dawson, 1984) and modal metasomatism (Harte, 19831 

have been applied to mantle xenoliths. Patent and modal metasomatism 

essentially are synonymous and are recognizable through replacement textures 

and development of hydrous phases in the altered rock. Infiltration obviously 

is a dominant process. Cryptic metasomatism is recorded by trace element 

enrichment apparently unaccompanied by mineralogical changes; this implies 

the operation of diffusional processes. 

There is some confusion over use of the term 'fluid'. Wyllie ( 1987) 

states: '"Fluid' is a descriptive term applicable in geological contexts to liquid 

(melt, magma, silicate melt with dissolved volatile components), vapour (dense 

gas, pneumatolytic gas, hydrothermal solution), supercritical solution, or to an 

undefined fluid phase. Fluid also has a more restricted meaning in phase 

equilibria; it is the phase that is indeterminate between liquid and vapour, where 

critical phenomena occur." Magma will be used in this work to imply a silicate 

melt that can contain crystals, rock fragments and dissolved volatile 

components; in the classification of Eggler ( 1987), this is a fluid-bearing melt 

(Fig. 1.2). Fluid will be used to imply a volatile component which corresponds 

to the melt-bearing fluids of Eggler (1987) (Fig. 1.2). 
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Frey and Green ( 1974) presented data on lherzolite xenoliths from 

Australian basanites that clearly demonstrated the concept of mantle 

metasomatism through a two component mixing model. Component A was the 

residue from partial melting which controlled the major mineralogy, major 

element composition, and abundances of compatible trace elements such as Ni, 

Co and heavy rare earth elements (HREE). Component B was a migrating fluid 

which was not genetically related to component A. It controlled the 

abundances of incompatible trace elements such asK, P, Th, U and light rare 

earth elements (LREE). 

Following Frey and Green ( 1974) and Lloyd and Bailey ( 1975), mantle 

metasomatism became an essential process by which to explain the 

mineralogical, chemical and isotopic diversity of mantle peridotites and the 

magmas derived from them. 

1.2.5 Magma- and Fluid-Peridotite Interactions 

During the emplacement of intrusions of various sizes into mantle 

peridotites, associated reaction zones develop at the intrusion-peridotite 

interface. These zones are the sites of magma- and fluid-peridotite interactions, 

of which there are two types. The first type occurs where peridotites become 

enriched in Fe, Ti, AI, Na, K and incompatible trace elements (LREE) by injection 

of basaltic magma and/or associated fluid (Wilshire and Jackson, 1975; 

Stewart and Boettcher, 1977; Irving, 1980; Wilshire ~ a!., 1980); this 

enrichment may result from the crystallization of new phases in the peridotite 
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(Wilshire, 1984). The second type is equatable with the process of zone 

refining (Harris, 1957), by which magma or fluid assimilates the minimum 

melting component of the peridotite and becomes enriched in Na, K, Ca, AI, Ti, 

Si, Rb, Sr, U and LREE (Green and Ringwood, 1967; Quick, 1981 a). Both 

these interactions can occur together by the simultaneous solution and 

precipitation of mineral phases in the peridotite. 

1.2.6 Magma and Fluid Migration in the Upper Mantle 

The mode of magma and fluid migration in the upper mantle is extremely 

important, as it controls the extent of magma- and fluid -rock interactions and 

mantle metasomatism. Magmas and fluids migrate by (i) diapiric ascent, (iii 

magma fracture and conduit flow, (iii) percolation, and (ivl transport along shear 

zones. 

As a solid diapir rises in the upper mantle due to buoyancy effects (free 

convection of Spera ( 19801) or stress induced flow (forced convection of Spera 

( 1980)), it will partially melt by adiabatic decompression (Bottinga and All~gre, 

1978). Magma will accumulate in zones where the permeability threshold of 

the diapir is reached and exceeded (Maal0e, 1981, 1982). Two possibilities 

exist at this point: (i) at depth, magma will accumulate and escape by fluid or 

magma assisted shear fracturing in the deforming peridotite (Weertman, 1972; 

Nicolas, 1986b), whereas at shallower depth this will occur by hydraulic 

fracturing (Shaw, 1980; Nicolas and Jackson, 1982; Nicolas, 1986b; Spera, 

1987; Spence and Turcotte, 1990); (ii) magma will percolate through the 
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peridotite matrix by porous flow ISieep, 1974; Turcotte and Ahern, 1978; 

McKenzie, 1984; Scott and Stevenson, 1984; Phipps Morgan, 1987). The 

abundance of veins and dykes in samples of upper mantle peridotite (Nicolas 

and Jackson, 1982; Nicolas, 1986b; Wilshire and Kirby, 1989), suggests that 

hydraulic fracture is the dominant mechanism of magma extraction in the upper 

mantle. Extremely refractory peridotites such as dunites, may be residues from 

highly efficient drainage of the magma conduit (Nicolas, 1986b). Percolation 

will be important where a magma cannot maintain hydraulic fracture and 

impregnates its host-rock (Nicolas, 19891. If ascent rates of magma are high 

and conduits are well defined, there will be minimal interaction between magma 

and host-rock. 

Conditions for migration of fluid are significantly different from those of 

magma, because of the lower viscosity and reactive nature of fluid. If a fluid 

is in equilibrium with its host-rock, then it will migrate without reacting and 

hydraulic fracture theory can be applied in this situation (Spe::;·a, 1987). 

Generally, however, it would appear that fluids infiltrate their host-rock by 

percolation by porous flow and react with it (Spera, 1987). Large volumes of 

fluid may be concentrated in shear zones in the lithosphere (Beach, 1976; 

McCaig, 1984; Sinha ~ _2!., 1986; Kerrich and Rehrig, 1987). which then 

become important zones of heat and mass transport (Bickle and McKenzie, 

19871. Because fluids generally have a more pervasive mode of migration than 

magmas, they are capable of significantly modifying the composition of their 

host-rock. 
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1.2. 7 Factors Affecting the Composition of Upper Mantle Peridotite 

From the previous sections it is evident that the upper mantle is a 

dynamic reaction vessel. Mineralogical, chemical and isotopic compositions of 

upper mantle peridotites and the magmatic and fluid components which they 

host, are controlled by processes of (il partial melting, (ii) magma- and fluid­

rock interactions, and (iii) mechanical mixing, all of which occur over a wide 

range of temperatures and pressures in specific tectonic environments. Only 

by integrating field, petrographic and geochemical studies can we begin to 

unravel the complexities of these P• ocesses. Hence, ophiolitic and orogenic 

peridotites must be primary targets of investigations of upper mantle processes. 

1.3 OPHIOLITIC AND OROGENIC PERIDOTITES 

1 .3.1 Classification and Origin 

Tectonically emplaced peridotite massifs were called alpine-type 

peridotites by Thayer ( 19601 and have been divided into two groups (Thayer, 

1960; Green, 1967; Den Tex. 1969; Jackson and Thayer, 1972): the lherzolite 

group (known also as orogenic root zone or high temperature peridotites), and 

the harzburgite group (known also as ophiolitic or low temperature peridotites). 

By a sequence of tectonic events, both groups have been emplaced into or onto 

continental crust as bodies which are< 15 km thick (Spray, 1989). 

It is here proposed that peridotite bodies conforming to the Penrose 

Conference definition of an ophiolite (Anonymous, 1 972), be called ophiolitic 
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peridotites, and those which do not, be called orogenic peridotites. In cases 

where bodies have not been severely dismembered, the former are associated 

with an oceanic crustal sequence, whereas the latter are not (Spray, 1989). 

This classification is by no means rigorous, but is in keeping with previous 

definitions and will serve its purpose in this work. 

Orogenic peridotite massifs are composed of peridotites (mainly 

lherzolite) containing variable proportions of bands and dykes of pyroxenite and 

gabbro, e.g., Ronda (S. Spain), Lherz and Ari~ge (S. W. France), Lanzo (N. 

Italy) and Beni Bousera (N. Morocco). Equilibration is recorded in the garnet, 

spinel and plagioclase stability fields, e.g., the Ronda Peridotite (Obata, 1980). 

Nicolas and Jackson ( 1972) interpreted orogenic peridotite massifs as 

fragments of sub-continental mantle or deep sub-oceanic mantle. Prior to 

melting, many of these peridotites were fertile sources for the generation of 

MOAB magmas, e.g., the Ronda Peridotite (Frey~ al .• 1985). 

Ophiolitic peridotites (mostly lherzolite and harzburgite) contain variable 

proportions of bands and intrusions of dunite, chromitite, pyroxenite, wehrlite 

and gabbro. Equilibration occurred predominantly in the spinel stability field. 

As examples, ophiolitic peridotites occur in the Troodos Ophiolite (Cyprus), the 

Oman Ophiolite, and the Bay of Islands Ophiolite (Canada). There is a complete 

spectrum of compositions in ophiolitic peridotites which can be related to their 

crustal sequence. This has led to a number of classification schemes for 

ophiolite complexes and these are compiled in Table 1 .1. Nicolas and Jackson 

( 1972) interpreted ophiolitic peridotites as fragments of uppermost sub-oceanic 
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mantle. This view is held currently, but there is a debate prompted by 

Miyashiro ( 1973) concerning the exact tectonic environment which ophiolites 

represent, e.g., mid-ocean ridge, back-arc basin or forearc region. The mantle 

section of an ophiolite will be extremely sensitive to this environment, because 

it will record the degree of partial melting and the compositions of magmas and 

fluids that have traversed the mantle peridotites (Table 1.1 ). 

1.3.2 Mafic and Ultramafic Bodies Hosted by Peridotite 

Bodies of mafic and ultretmafic material hosted by ophiolitic and orogenic 

peridotites occur as layers (called bands from here on so as to have no genetic 

implication), dykes, veins, lenses and pods that have been documented in all 

peridotites (Spray 1982, 1 989). They typically are < 1 m thick and parallel 

(concordant) or cross-cut (discordant) the high temperature tectonitf. fabric of 

their hosting peridotite. Textures where mi11erals are coarse grained with 

interlocking grain boundaries are indicative of magmatic crystallization, whereas 

granoblastic, mylonitic, schistose or gneissose textures are indicative of 

subsolidus deformation. Mineralogy is dominated by pyroxene .± olivine ± 

plagioclase ± spinel ± garnet ± amphibole ± mica . Mafic and ultram·-1fic 

bodies in lherzolites are dominated by clinopyroxene and have a basaltic bulk 

composition (loubet and Allegre, 1982; Spray, 1982, 1989). Those in 

harzburgite frequently are monomineralic, such as dunite, chromitite, 

orthopyroxenite and clinopyroxenite, and do not have a basaltic bulk 

composition (Reuber ~ aJ... 1985). Bo~ies of websterite, wehrlite and gabbro 

• . - . • , ~ . • I., ... 9 , 
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also occur in harzburgite. 

Numerous models have been proposed to ~xplain the origin of mafic and 

ultramafic bodies hosted by ophiolitic and orogenic peridotites . These bodies 

represent: 

1) Crystallized magmas that may be in-~ and primary (Boudier and Nicolas, 

1972; Dickey ~ a}., 1979; Reuber ~ a.!.. 1985). or crystallized magma 

fractions (Moores, 1969; Malpas, 1978; Harkins .e.t al., 1980; Quick, 1981 b; 

Boudier and Coleman, 1981; Hopson gt 21 .• 1981; Loubet and ~ll~gre, 1982; 

Reuber gt 2.1 .• 1982; Sinigoi ru a}., 1983; Gregory, 1984) that could form by 

gravitational crystal accumuiation (Raleigh, 1965; Conqu~r~. 1977). 

2) Material introduced downward into the mantle from the base of a magma 

chamber by subsidence of cumulates (Dickey, 1975) or injection of dykes 

(Reuber~ 2.1 .• 1982, 1985). 

3) 'Xenocryst cumulates' produced by high temperature minerals accumulating 

when a peridotite undergoes >50 % partial melting (lshiwatari, 1985a). 

~) Flow layers within a crystal mush (Thayer, 1963). 

5) Metasoma!ites (Bowen and Tuttle, 1949; Carswell ru 2.1 .• 1 974; loomis and 

Gottschalk, 1981). 

6) Metamorphic differentiates produced by (i) deformation (Walcott, 1969; 

Moores, 1969; Loney and Himmelberg, 1976; Dick and Sinton, 1979). (ii) 

pressure solution creep (Dick and Sinton, 1979), or (iii) anatexis (Dick and 

Sinton, 1979). 

7) Restites produced by the partial melting of pre-existing bands or dykes 
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(Shervais, 1979; loubet and All~gre, 1982, Sinigoi ~ 21., 1983). 

8) Recycled oceanic crust (AII~gre and Turcotte, 198f; Kellogg and Turcotte, 

1986/87, 1990). 

Any of the above may be transposed into parallel alignment with the 

peridotite foliation (Wilshire and Pike, 1975; Boudier, 1978; Cassard _ru 2f., 

1981; Nicolas and Jackson, 1982). 

1.3.3 Magma- and Fluid-Peridotite lnteractioos 

Magma- and fluid-peridotite interactions were described in section 1.2.5. 

Classic examples of both types of interaction are found in ophiolitic and 

orogenic peridotites: 

1) Clinopyroxene and feldspar crystallize from magmas impregnating 

harzburgites and dunites (Dick, 1977; Sinton, 1977; George, 1978; Savelyev 

and Savelyeva, 1979; Violette, 1980; Nicolas iU a!., 1980; Boudier and 

Coleman, 1981; Nicolas and Prinzhofer, 1983; Nicolas and Dupuy, 1984; 

Evans, 1985; Evans and Hawkins, 1989). This often occurs where magma is 

expelled into the peridotite ahead of the intrusion, because the magma or fluid 

can no longer hydraulically fracture the peridotite (Nicolas, 1989). 

2) The other type of interaction is exemplified by the formation of dunite by i!l­

.slli!. reaction of pyroxene-bearing peridotite with an i'1troduced magma or fluid 

(Boudier and Nicolas, 1972, 1977; Dick, 1977; Sinton, 1977; Dungan and Ave 

Lallemant, 1977; leblanc 1tl 21., 1980; Quick, 1981a; Cassard §.1 ru., 1981; 

Nicolas and Prinzhofer, 1983; Gregory, 1984; Kelemen, 1990) (Fig. 1.3). 
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1.4 OBJECTIVES AND APPROACH 

The following testable hypothesis forms the basis of this thesis: 

Processes of partial melting and magma- and fluid-rock interaction in 

different tecton:c environments are likely to be similar, but the compositions of 

residues, magmas and fluids will differ. As a magma or fluid migrai.t:s away 

from its source region it will attempt to equilibrate with the environment 

through which it passes. A fast moving magma or fluid undergoing little or no 

equilibration will reflect the composition of its source, whereas a magma or 

fluid Jndergoing continuous equilibration will reflect the composition of the rock 

with which it last equilibrated. Magmatic and fluid componentl:i in the upper 

mantle range from complr~tely crystallized primary compositions to 

monomineralic crystal fractionates, all of which have experienced different 

degrees of magma- and fluid-rock interaction. The mantle is a dynamic system 

that experiences numerous episodes of partial melting and magma and fluid 

activity during continuous deformation. The most complete record of these 

episodes is preserved in regions of low strain. Heterogeneities are rapidly 

destroyed by diffusion and mechanical mixing in regions of high strain. 

A test of this hypothesis requires a very practical approach which 

integrates field and petrographic observations with geochemical data. In this 

thesis the emphasis is on understanding the processes of magma and fluid 

generation, migration and evolution in the uppermost mantle. Special attention 

is paid to developing the platinum group elements (PGEl as petrogenetic 
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tracers. 

1 . 5 AREA OF STUDY 

The Bay of Islands Ophiolite Complex (BlOC), western Newfoundland, 

Canada, was selected for this study because of its excellent exposure of 

uppermost mantle, and convenient accessibility. Following reconnaissance 

work in the BlOC, the Springers Hill area of the Lewis Hills Massif was selected 

for a detailed study. Before discussing the geology of the latter, the geology 

of the BlOC is considered. 

1.5.1 Regional Geology and Origin of the Bay of Islands Ophiolite Complex 

The island of Newfoundland lies at the centre of the Appalachian­

Caledonian Orogen. From west to east the island is divided into the Humber, 

Dunnage, Gander and Avalon tectonostratigraphic zones (Williams, 1979). The 

Humber Zone documents the opening and closing of the proto-Atlantic Ocean 

(Wilson, 1966). The Humber Arm Allochthon was emplaced onto the ancient 

continental margin of North America during the Middle Ordovician Taconian 

Orogeny as an assembled series of stacked thrust slices of east to west 

derivation (Malpas, 1976). The BlOC and the Coastal Complex (CC) are two 

adjacent Cambro-Ordovician ophiolite terranes that occupy the highest 

structural slices of the Humber Arm Allochthon (Stevens, 1970; Church and 

Stevens, 1970a, b, 1971; Bird and Dewey, 1970; Williams, 1971; Williams and 
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Malpas, 1972; Church, 1972; Malpas, 1973, 1976). Together they form a 

discontinuous, nJrth-northeast trending belt of mafic-ultramafic rocks some 

100 km long and 25 km wide (Fig. 1 .4) . From north to south the BlOC 

comprises the Table Mountain, North Arm Mountain, Blow Me Down Mountain 

and lewis Hills massifs. There is disagreement over the definition of the CC. 

For Karson and Dewey (1978), Casey ~2.!- (1983) and Karson (1984). the CC 

is that defined in Figure 1 .4, whereas for Williams ( 1973) it is called the Little 

Port Complex and does not include the western part of the Lewis Hills Massif 

which oelongs to the BlOC. In keeping with the terminology of Karson and 

Dewey (1978), Casey~ 2.1. (1983) and Karson (1984), their definition of the 

CC will be used throughout this work (Fig. 1.4). 

Two distinctly different origins have been proposed for the BlOC and CC: 

(i) the BlOC formed at a major seafloor spreading centre (Casey m ru., 1983, 

1985), whereas the CC represents oceanic crust that has experienced a 

transform fault tectonic history within an oceanic fracture zone (Karson and 

Dewey, 1978; Karson, 1984); (ii) in contrast, Malpas ~ 2.1. ( 1973) and Malpas 

(1979al interpreted the CC as an arc assemblage, which is supported by the 

supra-subduction zone/back-arc basin origin proposed by Mal pas ( 1976), Searle 

and Stevens ( 1984), Edwards ( 1990) and Jenner ~ a.J.. (in press) for the 

evolution of the BlOC and CC. Age data are crucial for determining which 

origin is most plausible . The BlOC has been dated at 501 -508 Ma (Mattinson, 

1976; Jacobsen and Wasserburg, 1979) and 476-489 Ma (Dunning and Krogh, 

1985; Jenner §1 ru., in press), whereas the CC has been dated at 505-508 Ma 
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(Mattinson, 1975; Jenner~ a!., in press). Similar ages of the two complexes 

are likely to support origin (i), whereas origin (ii) may accommodate similar or 

dissimilar ages. 

The metamorphic sole underlying the BlOC has been dated at 454-460 

Ma (Dallmeyer and Williams, 1975; Archibald and Farrar, 1976) ac.d forms an 

integral part of the ophiolite which documents dynamothermal metamorphism 

during transport of the ophiolite slice (Church and Stevens, 1971; Williams, 

1971; Williams and Smyth, 1973; Maipas ~a!., 1973; Malpas, 1976, 1979b). 

Intra-oceanic thrusting and obduction of the BlOC is recorded by the mylonitic 

fabric in the sole and basal peridotites of the mantle sequence (Girardeau and 

Nicolas, 1981 ). The metamorphic sore may represent the hanging wall of a 

once east-dipping subduction zone, in which the BlOC occupied the forearc of 

the overriding plate (Casey and Dewey, 1984). According to Karson and 

Dewey (19781 and Casey and Dewey (1984), the fracture zone preserved in 

the CC was the nucleation site for the subduction zone and obduction of the 

BlOC. 

1 .5.2 The Mantle Section of the Bay of Islands Ophiolite Complex 

In the mantle section of the BlOC, harzburgite is the most abundant 

residual peridotite and occurs with lesser amounts of lherzolite and dunite. 

These peridotites crop out in each massif and reach a maximum thickness of 

5 km (Malpas, 1978). The occurrence of fertile lherzolite in Table Mountain 

(Malpas, 1978) and abundant refractory peridotites in the southern rr.cssifs, 
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suggests either a change in tectonic setting or degree of fertility in a given 

tectonic environment. According to the classification 1n Table 1. 1, this 

southward trend rerlects a change from the lherzolite to the ha,·zburgite 

ophiolite type. This agrees with the relatively high abundances of chromitite 

and wehrlite in the Lewis Hills Massif (Dunsworth ~ at., 1986). 

1.5.3 The Springers Hill Area of the Lewis Hills Massif 

The Lewis Hills Massif preserves an original, subvertical contact between 

the BlOC and CC. This contact is marked by the Mount Barren Assemblage of 

the CC, which is a prominent belt of highly deformed greenschist, amphibolite 

and granulite facies rocks that are intruded by wehrlite-lherzolite crystal mush 

intrusions (Karson, 1977, 1979, 1984; Karson and Dewey, 1978; Karson~ 

al., 1983) (Fig. 1.5). The Mount Barren Assemblage records the transform 

domain of the fracture zone in model (i) of section 1 .5.1. 

The Springers Hill area conforms to the harzburgite ophiolite type (Table 

1.1), and is situated in the eastern part of the Lewis Hills Massif in the BlOC, 

but lies directly adjacP.nt to the CC (Fig. 1.5). Dunsworth~ at. (1986) defined 

an early suite of refractory harzburgite, dunite and mafic-ultramafic cumulates, 

and a late suite of dunite, wehrlite, clinopyroxenite and gabbro. These record 

a complex history of syn-kinematic multiple intrusion and ductile deformation 

(Dunsworth .e.t 21., 1986). 

The area investigated in the present study is 2 km2 and provides 40-50 

%exposure of uppermost mantle peridotites which exhibit spectacular evidence 



21 

for magmatic and fluid activity dnd interaction. As such, it is the best locality 

in the BlOC to study the processes of magma and fluid generation, migration 

and evolution. The structure of the area has been extensively documented by 

Karson ( 1979), Dahl and Watkinson ( 1986), Dunsworth~ a!. ( 1986) and Suhr 

~a!. (in press;, which provided an excellent foundation on which to base this 

petrologic study. 

1.5.3a Mapping and Access 

The area was mapped by the author during the Summer of 1987. 

Mapping was undertaken at a scale of 1:4000 on enlargements of the Province 

of Newfoundland and Labrador Department of Forest Resources and Lands 

1 : 1 2 500 scale colour aerial photographs NF84020-14, -1 21 and -122. The 

Department of Energy Mines and Resources 1:50000 scale map sheet 12 8/16, 

Georges Lake, covers the eastern part of the Lewis Hills Massif. 

There are no roads close to the field area and access by helicopter is a 

necessity. Camp equipment and provisions were flown in from the 

communities of Pasadena and Fox Island River which are easily accessible by 

road. The field area is barren, rugged and gently undulating, and is easily 

traversed on foot. 

1.5.3b Chemical Classification of the Springers Hill Area 

Based on mineral chemistry, the rock types in the mantle section of the 

Springers Hill area occupy two compositionally distinct fields (Fig. 1 .6). Olivine 
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and clinopyroxene plot in two fields, but there is some degree of overlap. 

Spinels define two well separated fields and are used to classify the rock types 

as low·AI peridotites and pyroxenites (LALPP), and high·AI peridotites, 

pyroxenites and gabbrvs (HALPPG). The classification of rock types of the 

Springers Hill area as LALPP and HALPPG is similar to those mapped by 

Dunsworth e..t 21. ( 1986) as early suite and late suite, respectively. 

1.6 FORMAT OF THE THESIS 

The subsequent chapters of this thesis are arranged in such a way that 

after description and interpretation of the field relations and petrography in 

Chapter 2, each chapter is a study which can stand alone. Chapters 3 and 4 

are concerned with the chemistry and petrogenesis of LALPP and HALPPG, 

respectively. Chapter 5 examines the physical and chemical interactions of 

fluid in mantle lithosphere, and Chapter 6 is a summary of the Lhesis which 

emphasizes the importance of the Springers Hill area in studies of the upper 

mantle. 



. .. . . . -. . . . . ' . . . ~ . 

Chapter 2 

FIELD RELATIONS AND PETROGRAPHY 

2.1 INTRODUCTION 

This chapter describes the rock types found in the Springers Hill area and 

the deformation which they record. Emphasis is placed on the spatial relations 

of rock types with respect to one another and to domains of deformation. 

Particular attention is paid to features which document interaction between 

low· AI peridotites and pyroxenites (LALPP) and high-AI peridotites, pyroxenites 

and gabbros (HALPPG). 

Petrographic descriptions are broad owing to wide variations in modal 

composition within a given rock type, and between certain rock types. Detailed 

descriptions are reserved for features particularly relevant to this study. The 

terminology adopted for textures arising from deformation and recrystallization 

follows that of Mercier and Nicolas (1975), except that coarse granular (Boullier 

and Nicolas, 1975) is used as a purely descriptive term in place of 

protogranular. Terminology of cumulate textures is based on Wager~ .a!. 

(1960). Recognition of textLtres frequently is hampered by the development of 

serpentine, bastite, uralite, chlorite and other minor phases arising from low 

temperature alteration. Thin sections were made from samples cut 

' ' . . . 
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perpendicular to their foliation and parallel to their lineation where lineation 

could be defined. 

2.2 OVERVIEW OF THE FIELD AREA 

As previously defined by Dunsworth !U a!. ( 1986), the Springers Hill area 

comprises rocks of the mantle and crust. The mantle sequence is divisible into 

LALPP, HALPPG, and a marginal zone which in places separates the two (Fig. 

2.1 in map pocket). The LALPP are harzburgite, dunite, chromitite, 

orthopyroxenite, clinopyroxenite, amphibole dunite and minor websterite, 

whereas the HALPPG are dun1te, wehrlite, olivine clinopyroxenite, gabbro and 

amphibole peridotite. The marginal zor1e contains all these rock types. The 

geological map (Fig. 2.1) illustrates that the uppermost mantle in the Springers 

Hill area is extremely heterogeneous with respect to the distribution of rock 

types and deformation. The crustal sequence was not mapped or sampled in 

any detail in this study, and its relation to the mantle sequence is not known. 

Hence, the crustal rocks are •mcorrelated, but consist of wehrlite and gabbro 

which host amphibolite dykes (Fig. 2.1 ). 

Two episodes of deformat:on have affected the area, and these , !'~ 

thoroughly documented by Dahl and Watkinson ( 1986), Dunsworth ~ a!. 

( 1986) and Suhr e.ta!. (in press). These episodes are denoted 0 1 and D 2 , and 

are recorded by high temperature 5 1 or L,-S, and L2 ~52 tectonite fabrics, 

respectively. D, is preserved only in LALPP along the southern portion of the 
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mapped area, where S, tfends N-S to NE-SW and has a vertical to steep W to 

NW dip. Mylonitic ductile simple shear zones that record 0 2 are s 700 m wide 

and occur in all rock types throughout the area. Along the western portion of 

~he mapped area, 5 2 trends NNE-SSW to NE-SW and has a shallow WNW to 

NW dip; lineations are N to NNE and shallow plunging. Along the southern 

portion of the mapped area, s~ is E-W with a shallow N dip. The variation in 

orientation of 5 2 in the northern part of the mapped area was produced by 

doming of this region during formation of the HALPPG (Dunsworth ~ 21.., 

1986). Faulting appears to correlate with 0 2 because of high temperature shear 

displacement along fault surfaces. The thrust faults at the northern extent of 

the mapped area are completely hosted within 0 2 shear zones and thrust 

surfaces lie parallel to the plane of 5 2 • Multiple thrusting has juxtaposed slices 

of LALPP and uncorrelated wehrlite and gabbro, which has produced an 

interleaved stack of slices (Fig. 2.2). 

To understand the mantle section of the Springers Hill area, it is 

imperative that magmatic and fluid activity and deformation are considered 

together, because deformation continually modifies primary magmatic and fluid 

features and relations, and magmas and fluids assist recrystallization and 

deformation. The relative time of formation of rock types is summarized in 

Figure 2.1. 
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2.3 LOW-AI PERIDOTITES AND PYROXENITES 

VJithin the LALPP generally there is a west to east distribution of the rock 

types, which results in a regional banding parallel to the dominant tectonite 

fabric (Fig. 2.1 ). The west is dominated by harzburgite and dunite and their 

amphibole-bearing equivalents. On moving east, harzburgite, dunite, 

orthopyroxenite (OPXT I, see section 2.3.4a) and clinopyroxenite give way to 

harzburgite, dunite and clinopyroxenite. Harzburgite almost always is the host 

of OPXT I, whereas dunite usually hosts clinopyroxenite. Consequently, on 

moving from west to east, the ratios of harzburgite/dunite and OPXT 

1/clinopyroxenite both decrease. Because concentrations of chromiti~e correlate 

with abundances of dunite and clinopyroxenite, chromitite is more abundant in 

the east than in the west, and culminates in the Springers Hill chromitite 

showing. Dunites, chromitites and clinopyroxenites in the southeastern part of 

the mapped area often are displaced along shear zones. Folded structures have 

developed which were attributed to shear folding by Dahl and Watkinson 

( 1986). These features correlate with the western limb of a synform defined 

by Dunsworth ill a.t. ( 1986). 

2.3.1 Harzburgite 

2.3.1 a Field Relations 

Harzburgite apparently is the oldest rock type preserved in the Springers 

Hill area. Large volumes of pure harzburgite are rare due to the abundance of 
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intrusive phases and local gradation into dunite. Porphyroclasts of 

orthopyroxene define 5 1 and 5 2 , and these fabrics are enhanced by concordant 

and subconcordant mm- to m-wide veins and dykes and their boudinaged 

equivalents of dunite, OPXT I and clinopyroxenite. Veins and dykes may be 

isoclinally folded, especially in 0 2 shear zones . 

Harzburgite has a modal composition of 50-90 % olivine, 10-50 % 

orthopyroxene, < 2 % Cr-spinel, frequent, but modally insignificant amphibole, 

and rare clinopyroxene. The olivine/orthopyroxene ratio of harzburgite is 

extremely variable. Where harzburgite grades into dunite, there is a progressive 

decrease in the concentration of orthopyroxene as the dunite is approached. 

A high concentration of orthopyroxene correlates with the presence of OPXT 

I, and manifests itself as (i) individual grains and veins associated with the 

margins or terminations of massive dykes of OPXT I (Fig. 2.3), or (ii) stretched, 

boudinaged and highly disaggregc:.ted veins of OPXT I. A screen of harzburgite 

may separate OPXT I from adjacent dunite. These relations suggest that a 

significant percentage of the modal orthopyroxene in harzburgite may have 

been derived from OPXT I. 

2.3. 1 b Petrography 

The petrographic description of harzburgite is restricted to those samples 

recording the 0 1 deformation. The 0 1 event is recorded by porphyroclasts ( s 5 

mm) and neoblasts of orthopyroxene distributed unevenly throughout a matrix 

of olivine. This heterogeneity can result in alternating bands of orthopyroxenite 
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and dunite (Fig. 2.4). Olivine is coarse granular ( s 10 mm) in dunite, but is 

much finer grained in the presence of orthopyroxene, where polygonized grains 

of olivine ( s0.1 mm) define a mosaic equigranular texture. Olivine interstitial 

to orthopyroxene in aggregates of orthopyroxene is coarser grained ( ~ 0. 5 mm) 

and embays orthopyroxene. Grain boundaries of olivine and orthopyroxene 

usually are well equilibrated (curvilinear to straight grain boundaries, well 

equilibrated triple junctions), but bent and kinked substructures occur in 

orthopyroxene porphyroclasts and neoblasts and coarse granular olivine. 

Orthopyroxene rarely has exsolutions of clinopyroxene, but contains round and 

oval inclusions of olivine and equant to oval inclusions of spinel. Inclusions and 

trails of inclusions of spinel and unidentified opaque, transparent and 

translucent phases are more common in finer grained olivine than in 

orthopyroxene and coarse granular olivine. The silicate portion of harzburgite 

is 40-70 % altered depending on the modal abundance of olivine. 

Cr-spinel is most abundant in samples richest in orthopyroxene. Cr-spinel 

most commonly is found in orthopyroxenes or at the grain boundaries of 

orthopyrox~nes, but also occurs at the grain boundaries of coarse granular 

olivines. The grain size of Cr-spinel exhibits a bimodal distribution occurring as 

large grains ( s 1 mm) containing inclusions of olivine, serpentine and 

orthopyroxene, and as minute grains disseminated throughout a sample. 

Porphyroclastic and pull-apart textures are dominant, but their less deformed 

and recrystallized equivalents do occur (Fig. 2.5). The foliation defined by Cr­

spinel either is concordant or discordant with respect to S 1 defined by 
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orthopyroxene (Fig. 2.4). 

A relatively late generation of orthopyroxene manifests itself as delicate, 

interstitial grains ( s 1.5 mm). This urthopyroxene is most obvious where it is 

oblique to banding in coarse granular olivine (Fig. 2.6). In areas of low strain, 

the interstitial texture is preserved, but in areas of higher strain, the texture is 

obliterated and the orthopyroxene inherits a porphyroclastic texture. The 

orthopyroxene exhibits partial replacement by olivine (Fig. 2.6) . 

A very distinct feature in many harzburgites is the occurrence of olivine­

orthopyroxene clusters hosted in coarse granular olivine (Fig. 2. 7). The clusters 

contain remnants of porphyroclasts and aggregates of porphyroclasts of 

orthopyroxene in a matrix of mosaic equigranular olivine. Spinel is a minor 

phase in these clusters; it occurs as minute blebs and vermicular grains in 

mosaic equigranular olivine, and along the contact between olivine and 

orthopyroxene (Fig. 2.8). The highly embayed grain boundaries of 

orthopyroxene in contact with olivine, and the optical continuity of islands of 

orthopyroxene in olivine, demonstrate that orthopyroxene has been replaced by 

olivine with the production of minor spinel (Fig. 2.8). In extreme cases, zones 

of mosaic equigranular olivine ( s 7 mm) exist which do not contain 

orthopyroxene. The irregular morphology of or4hopyroxene, olivine and spinel, 

indicates disequilibrium with no overprint of deformation or recrystallization 

associated with D,. Olivine-orthopyr')Xeile clusters most commonly are 

encountered in harzburgites adjacent to HALPPG. 

Ca-amphibole occurs in association with orthopyroxene and Cr-spinel in 
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many harzburgites. It commonly is encountered in samples with olivine­

orthopyroxene clusters, but may or may not be associated with the cluster 

itself. Cr-spinel associated with Ca-amphibole often is equant to sub-equant, 

has grain boundaries embayed by Ca-amphibole, and contains inclusions of 

olivine, serpentine, Al-orthopyroxene,clinopyroxene, Ca-amphibole, phlogopite, 

magnetite and magnesioferrite (Fig. 2.9). This Cr-spinel recrystallized in the 

presence of Ca-amphibole after the 0 1 event. 

2.3.2 Dunite 

2.3.2a Field Relations 

The complex nature and 50-98 % serpentinization of dunites makes it 

difficult to correlate them. Dunites dominantly occur within harzburgite and 

bordering chromitite and clinopyroxenite. Their association with chromitite and 

clinopyroxenite is described in sections 2.3.3 and 2.3.4e, respectively. 

Dunites have a modal composition of olivine (85-98 %), Cr-spinel (2-15 

%) and minor pyroxene and Ca-amphibole. Morphologically, dunites occur as 

pods up to 400 m wide, veins and dykes. These occurrences possess both 

sharp (restricted mainly to veins and dykes) and ragged (restricted mainly to 

pods) contacts with harzburgite. Dykes and veins rarely are tabular for more 

than several metres, and are concordant and discordant with respect to the 

orthopyroxene 51 fabric in harzburgite. Dunites that have ragged contacts with 

harzburgite, in some places contain fragments of harzburgite. The concordance 

of the foliation between harzburgite fragments and harzburgite hosting the 
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dunite, suggests !n-.s.ilu. replacement of harzburgite by dunite. The~e junites 

contain a few isolated grains of orthopyroxene and a concentration and 

distribution of Cr-spinel similar to that of the adjacent harzburgite. In certain 

cases, the margin of a dunite may exhibit the aforementioned features, but as 

the centre of the dunite is approached, (i) the proportion of orthopyroxene 

decreases to < 2 modal %, (ii) the concentration of Cr-spinel increases, and (iii) 

a Cr-spinel banding may develop. 

Based on the features observed in the core regions of dunite veins and 

dykes, two generations of dunite have been defined. The earliest contains 

minor orthopyroxene and is rich in Cr-spinel. The Cr-spinel is disseminated 

throughout the dunite matrix, but may concentrate in homogeneous and layer­

like bands in the centre of the dunite (see section 2.3.3). The later generation 

is devoid of orthopyroxene and contains disseminated Cr-spinel at < 1 modal 

%. The latter may offset the former where the two intersect. This two stage 

formation of dunite is consistent with the observation of Suhr and Caton 

( 1987), that the Springers Hill chromitite is cut by Cr-spinel-poor dunite. 

2.3.2b Petrography 

Ounites have coarse granular olivines ( s 18 mm) with well developed 

kinked substructures. In the absence of neoblasts and a well developed 

porphyroclastic texture, grain boundaries are curvilinear and smoothly 

interlocking. Spinel, sulphide and unidentified inclusions occur in coarse 

granular grains and are concentrated around Ca-amphibole enclosed in olivine 
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(Fig. 2.10). 

Cr-spinel ( :S 4 mm) is restricted mainly to the grain boundaries of olivines, 

but s'Tlall ovoid grains occur in olivine. The abundance and grain size of Cr­

spinel approximately is inversely proportional to the grain size of olivine. Cr­

spinel exists as equant, ovoid, round, lobate, cuspate and porphyroclastic 

grains, and granulated margins are common. Inclusions of olivine and 

serpentine are restricted mostly to those Cr-spinels exhibiting the most 

deformation and recrystallization. Olivine and Cr-spinel define the same 

foliation. Clinopyroxene associated with Cr-spinP.I has been documented in a 

concordant dunite which possesses a spinel chain te.~~.ture (Jackson, 1961 1 (Fig. 

2.11 ). 

2.3.3 Chromitite 

Chromitites range from massive true chromitites (95 modal % Cr-spinel) 

with well developed margins, to dunites rich in Cr-spinel ( ~ 30 modal % Cr­

spinel) where the Cr-spinel is disseminated and a faint banding is developed. 

Mineral graded layering may develop in the latter (Fig. 2.12). The extremes 

may occur together. Cr-spinel exists as equant, lobate and cuspate grains and 

their porphyroclastic equivalents. Cr-spinels with granulated margins occur 

where 0 2 shear zones cut chromitite. Pull-apart fractures are filled with chlorite 

or serpentine. Olivine interstitial to Cr-spinel is partially to completely 

serpentinized. Inclusions in Cr-spinel are chlorite. 

Chromitites are always enclosed in an envelope of dunite. Morphologies 
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and textures of the composite chromitite-dunite body are the same as those 

described for dunite, except that lenses, boudins and schlieren of chromitite 

also are present. Dunite envelopes are s4 m wide on either side of chromitite. 

These envelopes contain traces of pyroxene and the widest envelopes retain 

bands of harzburgite that trend parallel to the chromitite. Two types of small 

chromitite body are present within dunite envelopes. The first is very angular, 

is < 10 em wide, and appears to be xenolithic. The second is elongate or pod­

like, possesses smoothly curved margins, measures up to 80 x 1 5 em, and 

exhibits simple zonation ( > 95 modal % Cr-spinel at the rim, >50 modal % 

olivine and <50 modal % Cr-spinel in the core). 

2.3.4 Type I Orthopyroxenite, Clinopyroxenite and Websterite 

2.3.4a Field Relations 

Websterites were not identified in the field and were mapped as 

clinopyroxenite. They are a minor component of clinopyroxenite. Two types 

of orthopyroxenite have been identified, and are described separately as Type 

I (QPXT I) and Type II (OPXT II) in accordance with Suhr and Calon ( 1987) and 

Suhr et aJ.. (in press). Type II orthopyroxenites are described in section 2.3.5. 

Type I orthopyroxenites ( s 95 modal % orthopyroxene) and 

clinopyroxenites ( s 99 modal % clinopyroxene) occur as veins and dykes and 

their boudinaged equivalents. Grain size typically is coarse to pegmatitic ( s 40 

mm). Recrystallization of dyke margins and veins correlates with 0 1 , whereas 

extensive mylonitization of veins and dykes is attributed to 0 2 • No chilled 
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margins have been identified . Clinopyroxenites consistently cross-cut OPXT I 

and are more discordant with respect to S, than are OPXT I (Fig. 2.13) . 

The olivine content of pyroxenites varies along and across strike, and 

many bodies exhibit features akin to lit-par-lit injection. lensoid patches of 

harzburgite and wehr lite occur in OPXT I and clinopyroxenite, respectively . 

Patches of dunite in OPXT I usually are richer in Cr-spinel than those in 

clinopyroxenite. These dunite patches have cumulate texture (Fig. 2.14). 

Elongate bcdies of host-rock occur in pyroxenite dykes where the dykes branch 

into numerous subparallel veins or narrower dykes. These branches may 

coalesce along strike to re-form a massive dyke. 

The consistent association of OPXT I with harzburgite has been 

described in section 2.3. 1 a. Clinopyroxenites are hosted by harzburgite (Fig. 

2.13). or are enclosed in an envelope of dunite which separates them from 

harzburgite (Fig. 2.15). The former is more common for true clinopyroxenites, 

whereas the latter dominates for olivine clinopyroxenites. The width of the 

dunite envelope is unrelated to the width of the clinopyroxenite ( ± olivine) it 

encloses. The dunite need not be continuous along strike, especially where 

there are variations in the olivine/clinopyroxene ratio of the clinopyroxenite and 

in the degree of strain at the dyke margin. Bands of Cr-spinel in dunite are 

parallel to clinopyroxenite (Fig. 2.15). A mm-wide band of chromitite often 

defines the contact between clinopyroxenite and dunite. True clinopyroxenites 

are more common in the west of the mapped area, which explains why there 

is no dunite envelope around clinopyroxenites cutting OPXT I (Fig. 2 .13). In 
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the east of the mapped area, olivine clinopyroxenites are more common than 

clinopyroxenites. 

2.3.4b Petrography of Type I Orthopyroxenite 

Orthopyroxene, olivine, Cr-spinel and amphibole occur in all OPXT I. 

Clinopyroxene is a rare phase in some samples. The oldest texture is well 

equilibrated and coarse granular. Grain boundaries between adjacent grains of 

orthopyroxene are smoothly undulating or serrated with consertal intergrowth. 

Exsolutions of clinopyroxene have not been identified positively in 

orthopyroxene, but acicular grains of amphibole commonly are parallel to the 

cleavage of orthopyroxene. Olivine, Cr-spinel, clinopyroxene and amphibole 

occur as inclusions in orthopyroxene and interstitial to orthopyroxene. Cr-spinel 

( s 1 mm) is equant to rectangular and oval, and generally is coarser grained 

where it is interstitial to orthopyroxene, than where it is enclosed in 

orthopyroxene. Cr-spinel is everywhere associated with Ca-amphibole, which 

suggests that fluid was intimately involved in the formation of Cr-spinel. 

Olivine embays orthopyroxene in a manner characteristic of parallel growth of 

these two phases (Figs. 2.16 and 2 .17). Clinopyroxene has poorly equilibrated 

grain boundaries where it replaces orthopyroxene. Amphibole occurs as 

tabular, acicular and bleb-like grains associated with all other mineral phases. 

Tremolite replaces clinopyroxene (Fig. 2.181 and tremolite and cummingtonite 

replace orthopyroxene (Fig. 2.19). Symplectitic growths of spinel are common 

in amphibole and may define a previous feature such as a pyroxene that 



36 

amphibole has replaced. Tabular grains of amphibole of the anthophyllite­

gedrite series have been identified in association with orthopyroxene. 

Deformation results in porphyroclastic and equigranular (mylonitic) 

equivalents of the features described above. Amphibole always is found in 

zones of deformation. Deformation primarily nucleates at inclusions of olivine 

and Cr-spinel in orthopyroxene, or where olivine embays orthopyroxene. Kink 

band boundaries are smooth to serrated and neoblasts develop at the 

intersection of numerous kink band boundaries. Clinoenstatite has once been 

identified defining a kink band. Grains of orthopyroxene are cut by shear zones 

that are filled with variably equilibrated, fine grains of orthopyroxene, olivine 

and amphibole (Fig. 2.20). Silicates have recrystallized to enclose granulated 

trails of Cr-spinel in zones of high strain. Pull-apart of orthopyroxene is 

recorded in veins of OPXT I. Tremolite and cummingtonite are in places 

deformed, and in others undeformed, as a consequence of the heterogeneous 

distribution of strain in OPXT I during their growth. Serpentinization and 

uralitization of OPXT I post-dates deformation and the formation of tremolite 

and cummingtonite. 

2.3.4c Petrography of Clinopyroxanita 

Orthopyroxene, olivine, Cr-spinel and Ca-amphibole occl•r in 

clinopyroxenite. Where these phases are minor, clinopyroxene is extremely well 

equilibrated and coarse granular (Fig. 2.21 ). Grain boundaries may be less 

equilibrated in the presence of other phases (Fig. 2.22). Clinopyroxene often 
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has a dusted appearance due to exsolutions of orthopyroxene(?) and spinel. 

Grains of Cr-spinel are equant throughout a sample, but are coarser where they 

are interstitial to clinopyroxenetha~ where they occur in clinopyroxene. Olivine 

occurs rarely as embayments or inclusions in clinopyroxene. Ca-amphibole is 

a rare phase restricted mainly to regions interstitial to clinopyroxene. 

Recrystallization of clinopyroxene is recorded by grain boundary 

migration, and possibly by linear trails of spinel grains which traverse several 

adjacent grains of clinopyroxene that have different orient~tions. 

Clinopyroxenites record less deformation than OPXT I. Clinopyroxene has 

ragged grain boundaries and substructures where porphyroclastic textures 

develop. 

2.3.4d Petrography of Websterite 

Orthopyroxene ( s 5 modal %) is present in most samples of 

clinopyroxenite, but localized zones of websterite occur where orthopyroxene 

is more abundant. Websterite that formed by the mutual exsolution of ortho­

and clinopyroxene is relatively rare, and is included in the definition of 

clinopyroxenite from here on. The term 'websterite' is applied to a pyroxenite 

which is a composite assemblage of clinopyroxenite and xenocrysts of 

orthopyroxene. Websterites are most common where clinopyroxenites cross­

cut OPXT I. Orthopyroxene xenocrysts record greater deformation than 

clinopyroxene, and have ragged grain boundaries. Orthopyroxene xenocrysts 

may be totally inert in the presence of clinopyroxene, or partially replaced by 
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clinopyroxene or Ca-amphibole and olivine (Fig. 2.23) . This olivine often 

contains an interconnected network of unidentified symplectitic inclusions, 

which may be indicative of the presence of fluid. Orthopyroxene xenocrysts 

in websterite contain less amphibole than orthopyroxene in OPXT I. 

2.3.4e Petrography of Dunlte Associated with Clinopyroxenite 

Olivine and Cr-spinel have textures as described for dunite in section 

2.3 .2b. Two types of dunite are definable according to the presence or 

absence of pyroxene and Ca-amphibole. Dunites w ith well developed banding 

of Cr-spinel are completely devoid of pyroxene and Ca-amphibole, whereas 

dunites with no banding usually contain orthopyroxene, clinopyroxene and/or 

Ca-amphibole. 

Orthopyroxene is porphyroclastic, whereas clinopyroxene and Ca­

amphibole are undeformed and interstitial with respect to their hosting phases . 

Harzburgites adjacent to these dunites may contain clinopyroxene replacing 

orthopyroxene, and Ca-amphibole replacing ortho- and clinopyroxene (Fig. 

2.24). 

2.3 .5 Type II Orthopyroxenite 

2.3.5a Field Relations 

Dunite is the dominant host of OPXT II. There exist two end-member 

morphologies with a continuous spectrum between the two. Web textures 

occur where ribbon-like veins of CPXT II grade into an intricate network of 
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web-like veins that resemble stockwork veining (Fig. 2.25). Web textures of 

OPXT II have been observed in dunite at the contact between harzburgite and 

dunite. Ribbon mylonites develop in regions of high strain. They exist as mm­

wide ribbon-like veins in shear zones (Fig. 2.26). Type II orthopyroxenites 

generally are discordant with 5 1, but are found commonly in 0 2 shear zones 

(hence the mylonitic fabric) and parallel 5 2 • Bodies of OPXT I are cut by ribbon 

mylonites. 

Perhaps the most significant relationship exhibited by OPXT II is their 

frequent occurrence in or adjacent to zones containing HALPPG and/or 

amphibole dunite, i.e., in the marginal zone and 0 2 shear zones. 

A relatively rare occurrence of websterite is found in association with 

OPXT II. It occurs as < 20 mm wide veins which consist of alternating zones 

of orthopyroxenite and clinopyroxenite along their length {Fig. 2.27). 

lherzolites are produced where these websterites become highly strained and 

mi .... ed with their harzburgite or dunite matrix in 0 2 shear zones. 

2.3.5b Petrography 

The modal composition of the bulk sample (dunite matrix and OPXT II) 

is harzburgite with at least 3-10 modal % Ca-amphibole. Type II 

orthopyroxenites contain 85-98 modal % orthopyroxene and 2-15 modal % 

olivine, Ca-amphibole and minor Cr-spinel. 

In samples with web texture, olivine is coarse granular { s 25 mm) in 

dunitic rel1ions, but is s0.5 mm in association with orthopyroxene. 



40 

Orthopyroxene ( :s3.5 mm) is restricted to veins of anastomosing OPXT II that 

are intergranular with respect to coarse granular olivine. In rare cases, these 

veins cut grains of olivine. Orthopyroxene exhibits straight to undulatory 

extinction. It is embayed by fine grained olivine and contains inclusions of 

olivine. Ca-amphibole (:s0.5 mm) is found with orthopyroxene cnly, and Cr­

spinel ( s 1. 2 mm) is almost always associated with orthopyro)(ene. Cr-spinel 

is equant to porphyroclastic and bears inclusions of serpentine, clinopyroxene, 

orthopyroxene, Ca-amphibole, Cr-cummingtonite, chlorite, sulphide ( pentlandite) 

and magnetita (Fig. 2.28). 

Ribbon mylonites are composed of bands ( s 10 mm wide) of OPXT II, 

dunite and Ca-amphibole (Fig. 2.29). The texture is mosaic equigranular for 

olivine and orthopyroxene, but orthopyroxene is coarser than olivine. Grain 

boundaries generally are well equilibrated. Porphyroclasts of orthopyroxene 

( :s 1 mm) and olivine ( :s 3 mm) are rare. Porphyroclasts of orthopyroxene 

contain inclusionc of olivine. Grains of Cr-spinel ( s 1 mm) are equant to sub­

equant and contain inclusions of olivine, serpentine, magnetite, chlorite and 

amphibole. Bands of Ca-amphibole are restricted to dunitic zones, but 

disseminated Ca-amphibole occurs in bands of OPXT II and dunite. Ca­

amphibole is contemporaneous with the formation of banding during 0 2• 

2.3.6 Amphibole Ounite 

2.3.6a F!eld Relations 

Amphibole dunite is a collective name for compositions that include 
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d11nite with ~ 5 modal % Ca-amphibole, and assemblages of Ca-amphibole + 

orthopyroxene + olivine ± chlorite which contain :S 20 modal % Ca-amphibole. 

Cr-spinel is always present. Amphibole dunites are encountered throughout the 

mapped area as discontinuous sub-metre- and metre-size bodies associated 

with all pyroxene-bearing LALPP, especially those in the marginal zone and 0
2 

shear zones. In the latter, the foliation of Ca-amphibole defines 5
2

• In the 

marginal zone, amphibole dunite often separates LALPP from HALPPG. 

Amphibole in amphibole dunite preserves 5 1 defined by orthopyroxene in 

adjacent harzburgite, despite the amphibole post-dating 0 1 • In a similar 

manner, amphibole dunite may pseudomorph veins and dykes of OPXT I and 

clinopyroxenite (Fig. 2.30). Amphibole is most abundant where amphibole 

dunites are in contact with OPXT I or clinopyroxenite. In extreme cases, 

enclaves of these pyroxenites reside in amphibole dunite and the latter separate 

the former from dunite (Fig. 2.31 ). Undeformed amphibole may exhibit 

poikilitic texture. 

2.3.6b Petrography 

Amphibole dunites with equigranuiar texture are restricted to the 0
2 

harzburgite-dunite mylonite underlying the mylonites of uncorrelated wehrlite 

and gabbro in the northern part of the mapped area. Modal mineralogy is 

olivine (~93 %), Cr-spinel (~2 %) and Ca-amphibole (:S5 %). Textures of 

olivine range from porphyroclastic and tabular equigranular to mosaic 

equigranular. The latter (grain size s 1 mm) dominates and is well eGuilibrated 



42 

with a weak lattice fabric (Fig. 2.32). The coarsest grains of olivine and Cr­

spinel are restricted to those samples richest in Ca-amphibole. Ca-amphibole 

( s 1.2 mm) and Cr-spinel ( s 2mm) are commonly associated; they may exhibit 

a sigmoidal pattern, with Ca-amphibole in the pressure shadow of Cr-spinel. 

The preferred orientation of amphibole and spinel is parallel to the foliation 

defined by olivine. Cr-spinel is porphyroclastic to poikiloblastic, and in extreme 

cases, preserves a sieve texture with inclusions of olivine, serpentine, Ca­

amphibole and phlogopite. These inclusions exhibit a change both in 

morphology and composition from core to rim of the Cr-spinel (Fig. 2.33). As 

in harzburgite (Fig. 2.9), the grain boundary of Cr-spinel in contact with Ca­

amphibole is highly embayed. 

Amphibole dunite at the margin of OPXT I exhibits a progressive 

evolution. As the concentration of Ca-amphibole increases above that normally 

associated with OPXT I, orthopyroxene is replaced by Ca-amphibole and olivine, 

and OPXT I grades through an intermediate composition of harzburgite, into 

amphibole dunite. A discontinuous seam of Cr-spinel separates harzburgite 

from dunite. The grain size of olivine increases with its modal abundance, and 

reaches 20 mm. In extreme cases of replacement of OPXT I by amphibole 

dunite, olivine is cut by veins of Ca-amphibole and chlorite, and Ca-amphibole 

is replaced by chlorite. Magnetite rims occur around most grains of chlorite and 

some grains of Cr-spinel. 
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2.3. 7 Interpretation 

The 51 fabric and coarse textures of har ~burgite are indicative of 

asthenospheric deformation dominated by plastic flow at 1200-1300°C (Mercier 

and Nicolas, 19751. Dykes and veins of dunite ( ± chromitite), OPXT I and 

clinopyroxenite are concordant to subconcordant with respect to 51• As such, 

they were transposed into the mantle flow plane to different degrees according 

to (i) their relative time of formation, (ii) their original orientation with respect 

to the flow plane, and (iii) the intensity of strain (Nicolas and Jackson, 1 982). 

The strain recorded by a dyke need not correlate w ith its relative age of 

formation, as strain partitioning is heterogeneous. Because veins and dykes of 

dunite, OPXT I and clinopyroxenite intrude harzburgite and were transposed 

into parallelism with 5 1 under asthenospheric conditions, they may represent 

a major feeder system for overlying accreting crust. 

Harzburgite records three stages in its evolution: 

1) The earliest event is recorded by the irregular morphology of Cr-spinel (Fig. 

2.5), which suggests progressive melting-out of ~yroxene (especially 

clinopyroxene) and crystallization-recrystallization of Cr-spinel (Lehlanc m 2f., 

1980). 

2) A component of orthopyroxene from OPXT I was \llen introduced into 

harzburgite by mechanical mixing of veins and narrow dykes, or by magma 

impregnation. These early events (1 and 2) occurred in the asthenosphere (01). 

2) The latest event post-dates 0 1, and is recorded by olivine-orthopyroxene 

clusters with or witt.o•Jt associated Ca-amphibole and recrystallized grains of 
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olivine and Cr-spinel. Olivine is well recovered to coarse grains in areas of 

dunite where no other minerals were present to impede growth. Coarse grains 

derive from finer deformed grains by recrystallization (Harte~ .aJ., 19731. Such 

recrystallization requires active migration of grain boundaries at 1300~~ in the 

presence of magma, or 1 ooooc in the presence of hydrous fluid (Nicolas, 

1986a). Olivine in areas of dunite probably recrystallized in the presence of 

fluid, whilst orthopyroxene underwent incongruent breakdown (Bowen and 

Tuttle, 1949) to olivine and spinel in olivine-orthopyroxene clusters. Olivine in 

the clusters did not recrystallize. Fluid did not affect harzburgite 

homogeneously, and reactions occurred in-~ and at a grain by grain scale. 

Dunites in the uppermost mantle of ophiolites either are magmatic 

(O'Hara, 1968; Jackson ~ ID., 1975; Malpas, 1978; Elthon ~ ID·· 1982; 

Komer ~ ID·· 1985; Furnes ~ ID., 1988), or are the product of reaction of 

harzburgite or lherzolite with a magma or fluid, thus being residual (section 

1.3.3). Features documented in LAL dunites suggest both magmatic and 

residual origins. Bands and layers of Cr-spinel in dunite suggest a magmatic 

origin. Textures of coarse granular olivines associated with chains of Cr·spinel 

are identical to those of olivine cumulates (Jackson, 1961). A gradational 

contact with harzburgite, where fragments of harzburgite may be enclosed in 

dunite, suggests formation by reaction. These dunites often contain 

porphyroclasts of orthopyroxene, and are frequently impregnated by 

clinopyroxene and Ca-amphibole. Dunites may exhibit magmatic features in 

their interiors and residual features at their margins, as often observed in dunite 
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surrounding clinopyroxenite. The textural evolution of olivine and Cr-spinel, 

from coarse granular olivine and lobate-cuspate Cr-spinel to their 

porphyroclastic equivalents, results from progressive recrystallization during 

plastic flow (Mercier and Nicolas, 1 975). Mosaic equigranular texture is 

characteristic of amphibole dunites which are considered in Chapter 5. 

The sequence of dyke intrusion is dunite ( ± chromitite)--OPXT 1-­

clinopyroxenite ( ± dunite), but nowhere has any gradation of one rock type 

into another been observed along strike. However, many olivine 

clinopyroxenites have a Cr-spinel dunite envelope, whereas clinopyroxenites 

generally do not. From this it is as~umed that clinopyroxenite ( ± olivine) and 

its associated dunite are comagmatic. Clinopyroxenite bands in olivine 

clinopyroxenites represent relatively evolved fractionates from the magma. 

Type I orthopyroxenites are not related to this sequence, but Dahl and 

Watkinson ( 1986) have documented orthopyroxene in dunitic dykes and veins 

near the main Springers Hill chromitite. Consequently, it would appear that the 

OPXT I event is olivine--orthopyroxene, which is post-dated by a separate event 

of olivine ( ± Cr-spinel)--clinopyroxenite. Further evidence that OPXT I and 

clinopyroxenite record separate events, is that OPXT I contains relatively 

abundant amphibole, whereas clinopyroxenites do not. This amphibole is not 

cogenetic with that in amphibole dunite. 

Clinopyroxenites contain xenocrysts of orthopyroxene from OPXT I. The 

deformation recorded by the xenocrysts pre-dates the crystallization of 

clinopyroxenite. Incorporation of xenoliths of OPXT I into the magma from 
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which clinopyroxenite precipitated, would locally have increased the volatile 

content of the magma. This is additional evidence for OPXT I forming before 

clinopyroxenite. 

Clinopyroxenites and OPXT I preserve textures identical to adcumulates 

and mesocumulates. Apparently undeformed interiors of massive dykes of 

pyroxenite should record relatively primary features, because it is extremely 

difficult for pyroxene to recrystallize or flow under normal mantle conditions 

when isolated in a much weaker olivine-rich matrix (Mercier, 1985). However, 

OPXT I crystallized in the presence of fluid which would have aided 

recrystallization, A~pecially as the solidus of amphibole is lower than that of 

olivine and orthopyroxene. This, and evidence of grain boundary migration in 

clinopyroxenites, suggests that primary magmatic textures of pyroxenites may 

have been modified or obliterated during recryst~llization in the asthenosphere. 

Interpretation of amphibole dunite and OPXT II is reserved for Chapter 

5. 

2.3.8 Platinum Group Minerals and fe-Ni-Cu-S Phases in LALPP 

Extensive documentation of platinum group minerals (PCM) and Fe-Ni-Cu-

5 phases in LALPP is given by Edwards (1990), and only a summary of this 

work is presented here. Platinum group minerals occur as: (i) Os-bearing laurite 

(Ru52) in unaltered Cr-spinel in chromitite (two samples); (ii) trails of inclusions 

of arsenides of Pt and Pd in unaltered orthopyroxene in OPXT I (one sample); 

(iii) an assemblage of Pt-Pd-Fe-Co-Ni-Cu-As phases in unaltered clinopyroxene 
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in websterite (one sample). These PGM formed with their hosting silicate or Cr­

spinel and are primary and in-~. 

Harzburgites, dunites and OPXT I contain minute wisps and flecks of 

undeformed Fe-Ni-Cu-S phases which were derived from silicates during 

serpentinization. Chromitites very rarely contain Fe-Ni-Cu-S phases associated 

with laurite, and these are primary in origin. In clinopyroxenites and 

websterites, Fe-Ni-Cu-S phases form grains < 0 .15 mm in diameter. Nickel-rich 

pentlandite and native Cu, and minor associated Cu sulphide, are the most 

common phases found, both within clinopyroxene and at clinopyroxene grain 

boundaries. Native Cu has exsolved from pentlandite and locally has been 

mobilized during serpentinization. Before crystallization, exsolution and 

serpentinization, the sulphide formed immiscible Cu-bearing, Ni-rich pentlandite 

globules in silica~e magma. Such a sulphide component was derived from a 

mantle source which previously had experienced partial melting and removal of 

Fe and S (Garuti !U a!.. 1984). Harzburgites, dunites and OPXT I adjacent to 

clinopyroxenites, in some places contain minor Fe-Ni-Cu-5 phases derived from 

the latter. 

Fe-Ni-Cu-5 phases are rare to absent in amphibole dunite and OPXT II. 

Where they occur in the silicate matrix, they are most commonly associated 

with Ca-amphibole and have been variably zffected by serpentinization. 

Sulphides occur in orthopyroxene and Cr-spinel in OPXT II with web texture 

(Fig. 2.28). 
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2.4 HIGH-AI PERIDOTITES, PYROXENITES AND GABBROS, AND THE 

MARGINAL ZONE 

The main body of HALPPG crops out in the centre of the mapped area 

and extends eastward (fig. 2.1 ). Upward from the lowest ground, spinel dunite 

progressively grades into clinopyroxene dunite, wehr lite, olivine clinopyroxenite 

and gabbro; all contacts are gradational. The main body truncates lithological 

domains and S1 defined by LALPP. However, in undeformed HALPPG, dykes 

and the foliation defined by clinopyroxene have a very similar trend to dykes 

and S, of LALPP. The trend of S2 in HALPPG is consistent with that in the 

adjacent LALPP. Faulted contacts apart, the contact between HALPPG and 

LALPP is marked by the marginal zone, except along the southern contact 

where HAL dunites are in direct contact with LALPP over a distance of 340m. 

The chromitite-rich zone in the LALPP appears to continue into the HAL dunites 

across this contact (Fig. 2.1 ). This suggests that the chromitite bodies in the 

HAL dunites are xenolithic, as suggested by Dunsworth ~ m. (1986), and 

implies that a marginal zone exists along the contact. 

Localized bodies of HALPPG crop out in LALPP. The most prominent is 

in the southeastern corner of the mapped area. These bodies exhibit the 

features found in the main body. 
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2.4.1 HAL Dunite 

2.4. 1 a Field Relations 

Dunites are composed of C!= 85 modal % olivine, ~ 15 modal % AI-spinel 

and < 2 modal % clinopyroxene and Ca-amphibole. Volumetrically they are the 

most abundant rock type exposed in the HALPPG. Al-spinel is disseminated, 

but banding and modal layering occur on a mm-cm scale (Figs. 2.34 and 2.35). 

Some layers appear overturned. Banding and layering are oriented 

approximately north-south or east-west. The former orientation is concordant 

with the trend of dykes of olivine clinopyroxenite and gabbro, and the foliation 

defined by clinopyroxene in wehrlite. 

Three types of Al-spinel are found in dunite. Spinel-rich bands (em-wide) 

cross-cut disseminated spinel (Fig. 2.35), and chromitite bands ( < 20 mm wide) 

cross-cut spinel-rich bands. Lenses and angular pods ( < 1 m long) of chromitite 

occur in all HALPPG; these are the chromitite xenoliths of Dunsworth jU a!. 

(1986). 

Bands of At-spinel in places define the contact between spinel dunite and 

spinel wehrlite. In contrast, the foliation defined by clinopyroxene in wehrlite 

may cross-cut spinel banding at a high angle. 

2.4.1 b Petrography 

Th'd features described here have not been affected by 0 2• Olivine ( s 10 

mm) cor.,monly is coarse granular with well equilibrated to lobate, cuspate 

interl,,cking grain boundaries. Kink bands and deformation lamellae are 
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common. Olivines have been observed having grown through one another. Ti­

s pine I and Ti-Cr-magnetite occur as inclusions. Mosaic equigranular olivine is 

very rare. 

Clinopyroxene and Ca-amphibole are interstitial to olivine and Al-spinel. 

Veins of clinopyroxene and Ca-amphibole occur within coarse granular grains 

of olivine associated with mosaic equigranular olivine. The veins may define 

original grain boundaries of olivine which have been destroyed during 

recrystallization of olivine to coarser grains. 

AI-spinel ( s 8 mm) is equant to lobate-cuspate. It is disseminated 

throughout the olivine matrix with a preference for grain b.:>undaries of olivine 

rather than grain interiors; grain size is similar in both environments. Chains of 

Al-spinel frequently occur parallel and perpendicular to layering defined by Al­

spinel in layered dunite (Fig. 2.36). Sharp contacts are preserved between 

zones of coarse and fine grained Al-spinel. Al -spinel may protrude along grain 

boundaries of adjacent olivines, where the grain boundary is filled with 

clinopyroxene (Fig. 2.37). Porphyroclasts are rare. 

One case has been documented of a band of Al-spinel hosted by wehrlite 

in dunite. The band has a higher concentration of Al-spinel and sulphide than 

its host, in which Al-spinel is finer grained. Inclusions in Al-spinel in the host 

usually are single round grains of olivine, whereas those in Al-spinel of the band 

are abundant and comprise olivine or serpentine, chlorite (clinochlore), ilmenite, 

pargasite, tremolite, phlogopite, Ca-plagioclase and orthopyroxene (Fig. 2.38). 
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2.4.2a Field Relations 
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Modal compositions are not defined fo; the rock types bearing 

clinopyroxene, because proportions of constituent minerals are so highly 

variable. This arises because of multiple generations of a complete spectrum 

of compositions, which may grade from clinopyroxene dunite to gabbro over 

a distance of < 1 m to > 10 m. The complete spectrum is observed along 

strike of gabbro dykes and normal to these dykes. The .:omplete gradational 

sequence hosted by dunite is anorthositic gabbro (core)--olivine gabbro-­

plagioclase, olivine clinopyroxenite--olivine clinopyroxenite--wehrlite-­

clinopyroxene dunite (Fig. 2.39), which suggests a crystallization sequence of 

olivine--clinopyroxene--plagioclase. The grain size of clinopyroxene decreases 

from pegmatitic in gabbro and olivine clinopyroxenite, to medium-coarse in 

wehrlite and clinopyroxene dunite. The orientation of the foliation defined by 

clinopyroxene ir. wehrlite and clinopyroxene dunite is concordant with the strike 

of dykes of gabbro and olivine clinopyroxenite. It is rare to find the complete 

gradational sequence because dyke interiors concentrate strain and much of the 

sequence may be sheared out (Fig. 2.39). Also, multiple injection of these 

dykes causes overprinting of one sequence by another, and foliations and dyke 

orientations may cross-cut one another. Discontinuous em- to m-wide bands 

and irregular zones of dunite separate sequences where the sequences do not 

overlap. The contacts between this dunite and wehrlite or olivine 

clinopyroxenite are both gradational and sharp (Fig. 2.40). Grains of Al-spinel 
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in the dunite generally are coarser and more abundant than those in adjacent 

wehrlite (Fig. 2.41 ). Gabbros outside of the composite dunite-gabbro 

sequences, occur as isolated, discrete ( < 1 m wide) dykes with sharp margins 

against their host-rock. 

Unlike the gradational dyke contacts described above, there exist 

essentially plagioclase-free olivine clinopyroxenite dykes with well defined 

margins. These dykes are < 1 m wide and have a margin of pegmatitic 

clinopyroxenite and a core of coarse grained olivine clinopyroxenite, wehrlite or 

dunite. The pegmatitic margin in some places is developed on one side of the 

dyke only. Along strike, non-poikilitic olivine clinopyroxenite (clinopyroxene 

:s 12 em) often grades into poikilitic olivine clinopyroxenite (clinopyroxene s 5 

em), wehrlite with interstitial clinopyroxene ( < 1 em), and finally dunite. These 

dykes often contain bands of At-spinel at their margin with dunite. Olivine 

clinopyroxenite dykes of this nature are relatively abundant in the marginal zone 

and traversing LALPP outside of the marginal zone (Fig. 2.42). They are most 

voluminous where they grade into LAL clinopyroxenites in the marginal zone 

(Fig. 2.43). Associated with these dykes, are amphibole peridotites which crop 

out as dykes ( < 1 m wide) in LALPP and the marginal zone. These dykes have 

olivine (~55 modal%) and Ti-amphibole (s45 modal%). 

The central regions of some dykes exhibit a., intense l ~ S fabric which 

is attributed to 02• The orientation of the fabric and dyke are the same. 0 2 is 

preserved in the form of shear zones in the northern extent of the HALPPG. 
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2.4.2b Petrography 

The features described here have not been affected by 0 2 • Textures are 

gradational in parallel with progressive evolution of modal compositions from 

wehrlite to gabbro. The crystallization sequence in gabbro is olivine-­

plagioclase--clinopyroxene, which is a reversal of the order of crystallization of 

plagioclase and clinopyroxene that is predicted from field relations. Th:s is an 

important point and is dealt with in Chapter 4. 

Olivine in wehrlite is similar to that in dunite. Clinopyroxene is interstitial 

to olivine in wehrlite, but develops into more massive crystals exhibiting broad 

twins as its modal abundance increases (Figs. 2.44 and 2.45). Clinopyroxene 

embays olivine and may dissect a large grain of olivine into a number of islands 

that are optically continuous. Rarely, isolated veinlets and negative crystals of 

clinopyroxene occur in olivine. Al-spinel is equant and decreases in abundance 

and grain size with increase in abundance of clinopyroxene and plagioclase. Al­

spinel is rare to absent in gabbro. Plagioclase is present in most cases, but is 

less abundant with respect to clinopyroxene. The morphology of plagioclase, 

or its altered equivalent of hydrogrossular garnet, is similar to that of 

clinopyroxene. Clinopyroxene or a Ca-amphibole-spinel symplectite separates 

Al-spinel from plagioclase. Plagioclase always is separated from olivine by an 

inner symplectitic intergrowth of Ca-amphibole and spinel, and an outer rim of 

orthopyroxene. Ca-amphibole mimics the morphology of clinopyroxene and 

plagioclase, except where it occurs as rare veins with magnetite. Ca-amphibole 

may partially replace clinopyroxene. Brown Ti-amphibole occurs as interstitial 
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grains associated with olivine and also enclosed within or rimming 

clinopyroxene. Phlogopite occurs with Ti-amphibole and as inclusions in Al­

spinel. Sphene has been identified in Al-spinel in olivine clinopyroxenite. Ti­

amphibole partially replaces olivine in amphibole peridotite. 

There is little sign of deformation outside of 0 2 shear zones. That which 

is present, is recorded by undulatory extinction, deformation lamellae and kink 

bands in olivine. Porphyroclastic textures are poorly developed in other phases. 

2.4.3 The Marginal Zone 

2.4.3a Field Relations 

The marginal zone is s 160 m wide and contains alllALPP and HALPPG. 

Consequently, this zone is extremely complex and preserves essentially all the 

features documented so far. The striking feature of the marginal zone is the 

local abundance of spectacular xenoliths of harzburgite, LAL and HAL dunite, 

and minor chromitite in HAL wehrlites and HAL olivine clinopyroxenites. Two 

types of xenolith are found: (i) xenoliths with straight edges and angular or 

rounded corners, and (iil xenoliths with extremely irregular margins that are 

diffuse (Fig. 2.46). Features of both types can be found in an individual 

xer. / ~;: This situation arises commonly where a rim ( < 2 em wide) of Al­

spinel and/or clinopyroxene is discontinuous around a xenolith of LAL or HAL 

dunite. Where the rim is present, the xenolith margin is sharp, but where the 

rim is absent, the margin is very diffuse due to clinopyroxene impregnation (Fig. 

2.47). Trails of Cr-spinel in harzburgite xenoliths in some places are traceable 
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into their enclosing HAL wehrlite or HAL olivine clinopyroxenite. 

Dykes and anastomosing veins of dunite, wehrlite, olivine clinopyroxenite 

and amphibole peridotite of HALPPG which traverse LALPP, exhibit features 

similar to those documented for xenoliths. The development of HAL olivine 

clinopyroxenite is governed by the composition of the LALPP encountered. It 

develops where harzburgite is intersected (Figs. 2.48 and 2.49), but is 

discontinuous or absent adjacent to LAL dunite (Figs. 2.42 and 2.43). Dyke 

margins may be diffuse adjacent to LAL dunite, but sharp adjacent to 

harzburgite. Most dykes of HAL olivine clinopyroxenite and HAL amphibole 

peridotite have a zone of HAL or LAL dunite separating them from LALPP. The 

same feature is observed for dyke-like LAL amphibole dunites (Fig. 2.30). 

2.4.3b Petrography 

Xenoliths of harzburgite and LAL dunite contain variable proportions of 

impregnated HAL clinopyroxene, and olivine-orthopyroxene clusters at different 

stages of development. Narrow zones (mm- to em-wide) of HAL dunite which 

separate harzburgite (with olivine-orthopyroxene clusters) from HAL olivine 

clinopyroxenite dykes, contain minor HAL clinopyroxene and abundant Al­

spinel. LAL dunites defining this zone, contain minor HAL clinopyroxene, and 

Cr-spinel in no greater abundance than that in the adjacent harzburgite. In any 

of these situations, Cr-spinel contained within HAL clinopyroxene frequently is 

skeletal. 

Type I orthopyroxenite in contact with HAL wehrlite or HAL olivine 
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clinopyroxenite either is replaced by clinopyroxene, olivine and minor spinel, or 

is replaced by Ca-amphibole and olivine to amphibole dunite. Type I 

orthopyroxenite in contact with HAL amphibole peridotite is replaced by 

harzburgite. 

Inclusions of ilmenite rimmed by perovskite occur in spinel in a chromitite 

xenolith in HAL dunite. 

2.4.4 Interpretation 

The temperature and pressure of equilibration of HALPPG can be 

estimated from mineral assemblages and texwres. The close spatial association 

of Al-spinel and plagioclase, with plagioclase occasionally rimming Al-spinel, 

demonstrates that the HALPPG equilibrated at or below the spinel-plagioclase 

boundary. Under hydrous conditions, maximum temperatures and pressures are 

875°C, 6 kbar to 1 050°C, 9 kbar according to the phase relations for ultramafic 

rocks modelled by Jenkins ( 1983) for the system H20 -Na20 -Ca0-Mg0-AI20 3-

Si02 (Fig. 2.50). Corona textures in HALPPG are (i) orthopyroxene between 

olivine and plagioclase in gabbro, and (ii) symplectites of amphibole-spinel and 

rare clinopyroxene-spinel around plagioclase in contact with olivine in wehrlite. 

These coronas may correspond to the Seiland subfacies of the spinel lherzolite 

facies as defined by O'Hara ( 1967). The low pressure side of this subfacies is 

bounded by reaction R2.1: 

[R2.1 1 Plag + OJ = = Al-Px + Sp 

Experimental studies in the system pure anorthite-forsterite ( ± H20) yield 
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pressures of 8 kbar at 11 00-1300°C (Kushiro and Yoder, 1966) and 7 kbar at 

900°C (Yoder, 1967) for this reaction. At 800°C the pressure can be reduced 

to 6 kbar (Herzberg, 1978) or 5 kbar (Obata, 1976). These conditions restrict 

the formation of HALPPG and 0 2 shear zones to a high pressure environment 

within the lithosphere. This in turn, requires that LALPP were part of the 

lithosphere by this time. 

All HALPPG are intimately associated through gradational contacts and 

textures. These features are characteristic of cumulates and rocks impregnated 

by magma. Nicolas (1989) states that fabric studies of olivine are necessary 

to distinguish between true cumulates and impregnated mantle rocks. Fabric 

studies have not been undertaken in this study, but mineral and whole-rock 

chemical criteria will be used to assess the possible origins of the HALPPG, 

which are: 

1) If a magmatic origin is assumed, then HAL dunites are adcumulates that 

have experienced very efficient removal of intercumulus material. During 

compaction of the cumulate pile, Al-spinel was jostled into vertical and 

horizontal alignment along channels accessed by migrating postcumui•Js 

material in a manner similar to that proposed by Irvine ( 1980) for the Muskox 

lntntsion, Canada. Postcumulus growth of Al-spinel resulted in grains joined 

by bridges of Al-spinel and sulphide, and protrusions of Al-spinel along olivine 

grain boundaries occupied by clinopyroxene. Alsf.> consistent with Irvine's 

model, is that maximum compaction of the cumulate pile occurred in zones 

where crystals are aligned. It is in these zones that extreme adcumulate 
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textures develop, and weak substructures develop in olivine due to compaction. 

The postcumulus material concentrated progressively in zones of wehrlite, 

olivine clinopyroxenite and gabbro. Cross-cutting relations demonstrate that 

expulsion of postcumulus material was not a single stage event. It is possible 

that postcumulus material impregnated its host-rock as it migrated away from 

the zone of maximum compaction of cumulate crystals. In this model, the 

marginal zone repres~nts a zone of reaction surrounding a large igneous 

intrusion. A simple model of fractional crystallization may be used to estimate 

the composition of the parental magma. A variation of the magmatic model 

would involve gabbroic or more evolved magma impregnating HAL dunite and 

p;ecipitating clinopyroxene. This also would explain the concentric zonation of 

decreasing clinopyroxene and absence of plagioclase away from a gabbroic 

dyke. 

2) If a metasomatic origin is assumed, then the marginal zone represents the 

extent of a metasomatic front which passed through LALPP and metasomatized 

them to HALPPG. Within the main body of HALPPG, all evidence of LALPP •. as 

been obliterated by dissolution and diffusion. Reaction would have been most 

extensive in regions containing clinopyroxene and plagioclase. Gabbros may 

represent extreme reaction, or conduits through which passed the magma or 

fluid responsible for metasomatism. Estimation of the parental magma or fluid 

may require complicated modelling of combined assimilation and fractional 

crystallization (Bowen, 1928; Taylor, 1980; DePaolo, 1981 ). 

Evidently, any model for the origin of HALPPG must consider the features 
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observed in zones of interaction of HALPPG and LALPP. The most important 

of these are here summarized. Pyroxene in harzburgite, OPXT I and LAL 

clinopyroxenite has been replaced by Ca-amphibole, olivine and minor spinel. 

Concentrations of chromitite and distributions of Cr-spinel in harzburgite are 

traceable into HAL dunites and HAL wehrlites in much the same way as 

sedimentary structures are preserved in granites produced by granitization (see 

review by Hatch ~ a{. (1972)). Contacts between HALPPG and LALPP 

commonly are defined by HAL olivine clinopyroxenite and/or Al-spinel, which 

likely represent reaction fronts. In the absence of these reaction fronts, 

contacts are diffuse and LALPP are pervaded by HAL clinopyroxene. All these 

features suggest replacement reactions involving LALPP and magma or fluid 

related to HALPPG. Reactions occurred mostly in-~. The close spatial 

association of some xenoliths of LAL dunite, harzburgite and mylonitic 

harzburgite prohibits an in-.§..ilu origin for these xenoliths. Interactions betNeen 

LALPP anc.l magma and fluid related to HALPPG are considered in chapter· + 

and 5. 

2.4. 5 Fe-Ni-Cu-S Phases in HALPPG 

Fe-Ni-Cu-5 phases occur as <0.5 mm grains, which rarely exceed 1 

modal % and occur nearly always with clinopyroxene. Outside of 0 2 shear 

zones, Fe-Ni-Cu-S phases are undeformed. Pentlandite is the most primitive 

sulphide and volumetrically is most abundant. Pyrrhotite which pre-dates 

serpantinization, increases in abundance with increasing modal proportion of 
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plagioclase. In gabbros, pyrrhotite occurs with unaltered heazlewoodite. 

Harzburgites, LAL dunites and OPXT I adjacent to HALPPG, in some places 

contain minor Fe-Ni-Cu-S phases derived from the latter. 

During serpentinization, sulphides were alterad to an assemblage of 

awaruite, wairauite, native Cu, digenite, chalcopyrite, pyrrhotite (believed to be 

mackinawite), magnetite, pentlandite, and possible goethite and cuprite. Such 

an assemblage is characteristic of ultramafic rocks serpentinized by extremely 

rrducing fluids (Eckstrand, 1975; Moody, 1976). 

The morphology of pentlandite and pyrrhotite and their serpentinized 

equivalents, and their common association with clinopyroxene, is very similar 

to that of Fe-Ni-Cu-S phases in upper mantle peridotites of Table and Blow Me 

Down mountains of the BlOC (lorand, 1987), and the Oman Ophiolite (lorand, 

1988). In these localities, Fe-Ni-Cu-S phases are of metasomatic origin, having 

precipitated from S-saturated basaltic magmas which became trapped as they 

percolated through dunite at the top of a mantle diapir (lorand, 1987, 1988). 

The origin of Fe-Ni-Cu-S phases is intimately associated with the formation of 

clinopyroxene in HALPPG, which is discussed in Chapter 4. 

2.5 0 2 SHEAR ZONES AND THRUST FAULTS 

The contemporaneity of HALPP13, LAL amphibole dunites, OPXT II, and 

D2 shear zones and thrust faults, is evidence of magmatic and fluid activity 

associated with a significant tectonic event. Constraining the nature and origin 
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of 0 2 is essential to understand the tectonic environment within which HALPPG 

formed. 

The abundance of LAL dunite and chromitite in the Springers Hill area 

suggests that this section of mantle was situated just below the petrologic 

Moho (Malpas, 1 973) during formation of the HALPPG. The normal ophiolite 

sequence of harzburgite grading upward into olivine-pyroxene-plagioclase 

cumulates was disrupted by ductile sheari~g and thrusting of the 0 2 event. 

This event removed evidence of the petrologic Moho, as partially 

amphibolitized, uncorrelated wehrlite and gabbro mylonites were thrust against 

mylonitic LALPP. Thrust-bound lenses of uncorrelated wehrlite and gabbro 

mylonites occur in mylonitic LALPP (Fig. 2.2). Obviously there has been 

~ignificant tectonic disruption, which resulted in the removal of at least several 

hundred metres of uppermost mantle and lower crustal cumulates. 

2.5. 1 Possible Tectonic Setting 

The models of Girardeau and Nicolas ( 1 981), Nicolas and Violette 

(1 982), Casey~ .a.t. (1983), Nicolas and Aabinowicz (1 984), Dunsworth~ .a.I. 

(1 986) and Caton ~ aJ.. (1 988), suggest that 0 2 shear zones may relate to 

subhorizontal flow directed away from a ridge axis. Several features are 

inconsist9nt with this interpretation: (i) 0 2 mylonites and amphibole-bearing 

LALPP mylonites are atypical of ophiolites, c.f., the Oman Ophiolite 

(Christiansen, 1 985); (ii) high pressures (5-9 kbar) recorded by HALPPG are far 

too deep for HALPPG to have formed just below normal oceanic crust; (iii) in 
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a spreading environment, fabrics of 0 2 should be contemporaneous and 

gradational with those of D1, but clearly they are not in the Springers Hill area. 

Many of the features in 0 2 shear zones and HALPPG are similar to those 

of the Ingalls Complex, Washington, which is a fracture zone ophiolite that has 

widespread amphibole·rich mylonites in imbricate thrust slices of ultramafic 

rocks (Miller and Mogk, 1987; Miller, 1988). Based on evidence from the St. 

Paul's Rocks (Melson e..t ID·· 1972), Miller and Mogk (1987) suggested that 

mylonitic amphibole peridotites are an important component of oceanic 

transform· fracture zones. D2 shear zones and HALPPG may be explained in this 

way if the Mount Barren Assemblage represents a fracture zone (Karson and 

Dewey, 1978), but this explanation cannot account for the high pressures 

recorded by HALPPG, as oceanic crust is thin at fracture zones (Fox e..t ru., 

1980). 

Karson ( 19791 proposed that WSW to ENE shear zones in the Lewis Hills 

Massif (Fig. 1.5) were tear faults that developed and evolved during early 

obduction of the BlOC and CC. 0 2 shear zones correspond with these zones 

and, therefore, may relate to obduction. This possibility is considered below. 

2.5.2 0 2 Shear Zones and Ophiolite Obduction 

There are striking similarities in rock type, metamorphic grade and 

structural style between D2 shear zones and the Mount Barren Assemblage 

(Dunsworth e..t.aJ.., 1986), and between these and the basal peridotite mylonites 

and metamorphic sole of the BlOC as documented by Mal pas ( 1979b), McCaig 
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(1983) and P. Cawood and G. Suhr (pers. comm., 1990). The Mount Barren 

Assemblage grades from granulite to amphibolite and greenschist facies 

mylonites over a distance of several kilometres on moving away from the BlOC 

(Fig. 1.5). The same change is true in the metamorphic sole over a distance of 

several hundred metres (Malpas, 1979b). 

A noticeable difference between the Mount Barren Assemblage and 

metamorphic sole, is the abundance of syn- to post-kinematic intrusions of 

feldspathic wehrlite and lherzolite, diabase and plagiogranite in the former 

(Karson, 1984). These intrusions are lacking in the metamorphic sole of the 

BlOC, but plagiogranites produced by anatexis of amphibolites during obduction 

are relatively common in some other ophiolites, e.g., Oman (Searle and Malpas, 

1980, 1982; Boudier JU aj., 1988), the lizard, England (Malpas and Langdon, 

1987), and Karmoy, Norway (Pedersen and Malpas, 1984). 

Despite similarities between the metamorphic sole of the BlOC and the 

Mount Barren Assemblage of the CC, very different origins have been 

proposed. The basal peridotite mylonites and metamorphic sole of the BlOC 

record intra-oceanic thrusting and obduction of the ophiolite (Williams and 

Smyth, 1973; Malpas, 1979b; Girardeau and Nicolas, 1981; McCaig, 1983). 

The Mount Barren Assemblage records the transform domain of a ridge­

transform-fracture zone system (Ktuson and Dewey, 1978). Massive hydration 

of the crust and upper mantle along the fracture zone resulted in the formation 

of amphibolite and serpentinite (Karson JU a!., 1983). Consequently, it would 

appear that the Mount Barren Assemblage and metamorphic sole developed in 
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distinctly different tectonic environments. In fact, this may not be so, because 

the model of Karson and Dewey ( 1978) has the site of obduction of the BlOC 

at the transform-fracture zone. With the intensity of deformation during the 

obduction process, the original features of the Mount Barren Assemblage are 

likely to have been obliterated. 

A new interpretation of the Mount Barren Assemblage is suggested here, 

which has it as a thick sequence of metamorphic sole. This interpretation 

explains the similarity between shear zones and thrust faults in the Springers 

Hill area, the Mount Barren Assemblage, and the metamorphic sole. In 

particular, it explains the generally consistent north, shallow plunging lineations 

in shear zones in the Springers Hill area, Mount Barren Assemblage, and 

harzburgites and metamorphic sole at the base of the Lewis Hills Massif (data 

from Karson ( 1979) and Dunsworth e.t ilJ.. ( 1986)), which may correlate with 

northward thrusting during obduction of the BlOC (Girardeau, 1982). The 

original morphology and origin of the Mount Barren Assemblage is open to 

question, but indeed it may once have been part of a transform-fracture zone. 

Casey and Dewey ( 1984) proposed that the metamorphic sole of the 

BlOC represents the hanging wall of a once east-dipping subduction zone, in 

which the BlOC occupied the forearc of the overriding plate. An evaluation of 

this tectonic situation is not possible here, but if it were so, the Mount Barren 

Assemblage would represent a thick metamorphic sole accreted to the leading 

edge of the forearc region of the overriding plate. 
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2.5.3 The Importance of Thrusting in the Springers Hill Area 

The HALPPG formed at the very top of the mantle, and the high 

pressures of 5-9 kbar which they record must be accounted for in the crust. 

The minimum pressure of 5 kbar requires 15 km of crust above the HALPPG. 

There are at least four possible explanations of these high pressures: 

1) The assemblages of minerals from which the pressures are estimated are 

metastable, and actually they formed at pressures of 2-3 kbar, which is 

expected for the thickness of normal oceanic crust. This possibility cannot be 

evaluated. 

2) McCaig ( 1983) used the model of Nicolas and Le Pichon ( 1980) to explain 

high pressures in the metamorphic sole of Table Mountain, by detachment of 

the BlOC from below a subduction zone. This mechanism cannot be evaluated 

at present. 

3) Similar pressures as those in HALPPG occur in granulite facies 

metacumulates of the Yakuno Ophiolite, Japan, where they record thick 

oceanic crust like that beneath the Black Sea (lshiwatari, 1985b). There is no 

evidence for such thick crust in the BlOC, but 0 2 shearing and thrusting may 

have transported HALPPG and LALPP from a higher pressure environment. 

4) Tectonic thickening by stacking of thrust slices. The interleaved stack of 

thrust slices of uncorrelated wehrlite and gabbro and LALPP attest to the 

importance of thrusting in the Springers Hill area. However, there are several 

problems with this explanation: (i) the overall effect of thrusting in the area was 

the removal of material; (ii) if the crustal sequence originally was 5 km thick, 
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thrusting would have to add a further thickness of 10-22 km; (iii) pressures in 

the crustal sequence permit little, if any, tectonic thickening. 

At this time it is not possible to say which explanation is most plausible. 

Clearly this is a problem which requires further investigation. 

2.6 SUMMARY 

Harzburgite is a refractory residue from extensive partial melting and 

complete axtraction of magma, as attested by its total lack of clinopyroxene 

other than that resulting from impregnation. Dunite, chromitite, OPXT I and 

clinopyroxenite of the LALPP intruded harzburgite under asthenospheric 

conditions (01 , T= 1200-1300°C) below a region of crustal accretion. A 

component of the dunite is residual by replacement of harzburgite. Harzburgite 

has a component of OPXT I that was introduced by impregnation or mechanical 

mixing. Type I orthopyroxenites were derived from hydrous, As-saturated 

magma which fractionated olivine ( ± Cr-spinel) and orthopyroxene, whereas 

clinopyroxenites were derived from relatively anhydrous, S-saturated magma 

which fractionated olivine, Cr-spinel and clinopyroxene. Clearly these magmas 

are not comagmatic. 

Dunite, wehrlite, olivine clinopyroxenite and gabbro constitute the 

HALPPG, which are essentially devoid of orthopyroxene. They formed in the 

uppermost mantle lithosphere at abnormally high pressure, by magmatic 

crystallization, or magma or fluid metasomatism. Olivine, clinopyroxene and AI-
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spinel formed as reaction fronts at the interface between HALPPG and LALPP. 

0 2 shear zones and thrust faults, HALPPG, and amphibole dunite and 

OPXT II of LALPP, are contemporaneous with intra-oceanic thrusting and 

obduction of the BlOC and formation of the metamorphic sole. The Mount 

Barren Assemblage in the lewis Hills Massif represents an unusually thick 

sequence of metamorphic sole, which was accreted to the leading edge of the 

BlOC as it was obducted in a northerly direction. 



Chapter 3 

CHEMISTRY AND PETROGENESIS OF 

LOW-ALUMINA PERIDOTITES AND PYROXENITES 

3.1 INTRODUCTION 

The aim of this chapter is to characterize the chemistry of LALPP, and 

use it in combination with field relations and petrography (Chapter 2) to 

determine the petrogenesis of LALPP. Data for amphibole dunite and OPXT II 

are presented, but they are not discussed until Chapter 5. Chemical analyses 

of LALPP at LALPP-HALPPG contacts and in LALPP-HALPPG reaction zones are 

not considered in this chapter. They are dealt with in chapters 4 and 5. 

A major aim of this thesis has been to develop a method to analyse the 

rare earth elements, La-Lu (REE), at sub-ppm concentrations by inductively 

coupled plasma-mass spectrometry. The analysis of REE in Lt,LPP caused 

many problems owing to extremely low aosolute concentrations of REE. 

Sample preparation procedures, and precision and accuracy of the analyses, are 

discussed in Appendix 1, which should be read before assessing the 

significance of REE data presented in this chapter. 

Analytical met~•ods are described in Appendix 1, and mineral and whole­

rock chemical analyses of LALPP are presented in appendices 3 and 4, respectively. 
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3.2 MINERAL CHEMISTRY 

Unless stated otherwise, the compositions reported below are for 

analyses of cores of grains. 

3.2. 1 Olivine 

The composition of olivine in LALPP is summarized in Figure 3.1, which 

illustrates that the Mg# of olivine generally occupies the compositional range 

88.3-91.9, but extends to 85.7 and 92. 7. Olivine has the highest Mg# in 

harzburgite, dunite, amphibole dunite, OPXT I veins, OPXT II, and dunite 

associated with clinopyroxenite, whereas olivine in OPXT I dykes, websterite 

and clinopyroxenite has a slightly lower Mg#. The Mg# of olivine associated 

with Cr-spinel is high; olivine of Mg# = 92.7 occurs in Cr-spinel in OPXT I, and 

the Mg# of olivine increases from 89.9 to 91.9 over 6 mm on passing from 

dunite into a band of chromitite in a dunite envelope around clinopyroxenite. 

Olivine of Mg# = 85.7 in websterite sample L288 is anomalous and may 

correlate with olivine in HALPPG. 

The NiO content of olivine is 0.08-0.73 wt. %, but the majority of 

analyses cluster about 0.40-0.50 wt. %. 

3.2.2 Orthopyroxene 

Orthopyroxene in all LALPP has very low concentrations of Ti02 ( s0.08 

wt. %) and Al 20 3 ( s 1.40 wt. %), and high Mg#. The Mg# ranges from 88.6 in 
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clinopyroxenite to 92.2 in harzburgite, and exhibits the same trend as olivine 

(Fig. 3.2). Orthopyroxene in harzburgite exhibits wide variation in CaO (0.26-

1. 73 wt. %1 and Al 20 3 (0.32-1.40 wt. %) for a narrow range of Mg# (91.1-

92.2). Variation in CaO may be attributed to extremely fine lamellae of 

clinopyroxene parallel to the cleavage of orthopyroxene. Analyses of dykes of 

OPXT I and clinopyroxenite are limited, but they exhibit a slight FeO enrichment 

trend as CaO and Al 20 3 increase. 

3.2.3 Clinopyroxene 

Clinopyroxene in all LALPP is diopside having extremely depleted 

chemistry of Ca0=23-26 wt.%, Ti02 :s0.07 wt.%, Al 20 3 <1.0 wt.% and 

Fs :s 4.0. Clinopyroxene in harzburgite, dunite and OPXT I has Mg# = 94.3-

95.3, whereas in websterite Mg#=94.3 and in clinopyroxenite Mg# = 92.5-

94.3, which is the same trend as for olivine and orthopyroxene. 

3.2.4 Ca-Amphibole 

Ca-amphibole exhibits a continuous compositional range from tremolite 

to pargasite. The chemistry of Ca-amphibole is dealt with in Chapter 5. 

3.2. 5 Cr-Spinel 

Cr-spinel exhibits the widest variability in composition of all the mineral 

phases in LALPP. It occupies the compositional range of Cr#=47-90, 

Mg# = 23-65 (Fig. 3.3). Cr-spinels exhibit a relatively uniform change in 
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composition from low Cr#, high Mg# in chromitites, changing through 

harzburgites, dunites and amphibole dunites, to high Cr#, low Mg# in 

pyroxenites. The widest variation is exhibited by amphibole dunite (Cr# =55-

89, Mg# = 37-61 ). A bimodal distribution occurs in harzburgite, where grains 

of Cr-spinel associated with Ca-amphibole have lower Cr# than those 

associated with olivine and orthopyroxene. As observed for silicates, OPXT II 

and the vein of OPXT I plot in the field of harzburgite. Ounites overlap with 

OPXT I and clinopyroxt!nite. Websterites, and clinopyroxenites containing 

xenoliths of OPXT I, have lower Cr# than OPXT I and clinopyroxenite. 

3.2.6 Interpretation 

3.2.6a Silicate Chemistry 

Harzburgites have olivine and orthopyroxene that are similar in 

composition to these phases in (i) harzburgites of the Lewis Hills Massif (Smith 

and Elthon, 1988), the whole BlOC (Malpas, 1978), and the White Hills 

Peridotite, Newfoundland (Talkington, 1981 ), and (iii abyssal peridotites (Prinz 

~ af., 1976; Hamlyn and Bonatti, 1980; Shibata and Thompson, 1986). As 

such, they represent residues from extensive partial melting (approximately 23 

%) of fertile lherzolite and efficient extraction of magma (Malpas, 1978). 

Nicolas (1989) suggested that magmatic dunites should have olivines 

with Mg# that are less than or equal to those in adjacent harzburgite, whereas 

residual dunites should have olivines with Mg# that are greater than or equal 

to those in adjacent harzburgite. The trend of olivine in LAL dunite is to lower 
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Mg#, but limited data do not permit a conclusive statement. 

The highly magnesian and depleted chemistry of silicates in OPXT I, 

clinopyrcxenite and websterite, is unusual for pyroxenite dykes and crustal 

cumulates of the BlOC, which generally are richer in Al20 3 (Eithon ~ £!., 1982; 

Komor ~.a!., 1985; Smith and Elthon, 1988). Elthon et£!. (19821 explained 

the depleted chemistry and absence of plagiocic:lse in pyroxenites, by high 

pressure (P > 10 kbarl polybaric crystal fractionation of primary MORB magmas 

beneath a mid-ocean spreading centre. However, large volumes of 

orthopyroxenite were not documented by Elthon ~a.[. ( 19821, who suggested 

that o. ~hopyroxenite would be related to boninitic magmatism. 

Pyroxenite bodies in several localities have been attributed to arc 

magmatism. Jan and Windley ( 1990) proposed that the highly depleted mineral 

chemistry of pyroxenite bodies in the Jijal Complex, Pakistan, correlates with 

high pressure (P > 8 kbarl crystallization of arc-related magmas. 

Orthopyroxenite dykes cutting mantle harzburgite in the Papuan Ultramafic Belt 

contain orthopyroxene with Mg# = 89.4, Al20 3 < 0.09 wt.% and CaO = 0.14 

wt.% (Jaques and Chappell, 1980). These orthopyroxenites are related to 

tonalites, which represent the early stages of island arc magmatism 

immediately prior to emplacement of the Papuan Ultramafic Belt (Jaques and 

Chappell, 1 980). Pyroxenites associated with chromite in the White Hills 

Peridotite, Newfoundland, have highly depleted mineral chemistry, and 

crystallized from a second-stage magma of magnesian quartz tholeiite (Duncan 

and Green, 1980) at P < 8 kbar (Talkington, 1981). Similar silicate mineral 
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chemistry is found in boninitic lavas (Crawford, 1980; Crawford §.1 £!., 1989; 

Co ish, 1989; Falloon §.1 aJ., 1989). Silicate mineral assemblages and chemistry 

in LAL OPXT I, clinopyroxenite and websterite, are very similar to those in the 

aforementioned occurrences, and suggest that these LAL pyroxenites correlate 

with high-Si02, high-MgO arc-related magmas. 

3.2.6b Cr-Spinel Chemistry 

The considerable solid solution exhibited by spinel makes it a very useful 

monitor of magma composition and the extent of partial melting recorded by a 

peridotite residue. Spinel also is sensitive to subsolidus reequilibration and 

alteration, and these effects must be determined prior to using spinel chemistry 

as a petrogenetic indicator. 

il Alteration. Serpentinization has affected all LALPP, and 

serpentinization is often most severe around grains of Cr-spinel, which is why 

olivine in chromitite generally is completely serpentinized. Cr-spinel may be 

altered to magnetite and ferrichromite at grain margins and along internal 

fractures. Alteration and metamorphism increase Cr# and decrease Mg# 

relative to the unaltered parent grain (Frost, 1975; Bliss and Maclean, 1975; 

lipin, 1984; Jan and Windley, 1990). Analyses of Cr-spinels in LALPP are from 

cores of grains which are unfractured and exhibit no optical evidence of 

alteration. It is assumed that the analyses record little evidence of alteration, 

which is supported by the increase in Cr# and decrease in Mg# of LALPP 

exhibiting progressively less alteration, i.e., chromitite, dunite and harzburgite 
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are significantly more altered than pyroxenite. 

iil Subsolidus reeguilibration. Mg = = Fe2
• and Cr = =AI substitutions 

control the chemistry of spinel. Subsolidus Mg = = Fe2 + exchange between 

spinel and silicate lowers the Mg# of spinel (Irvine, 1967; Dick and Bullen, 

1984; Jan and Windley, 1990). The lower Mg# of accessory Cr-spinel in 

dunite and harzburgite relative to chromitite (Fig. 3.3), probably is the result of 

subsolidus reequilibration. Two major reactions affect the Cr# of spinel: (i) 

transfer of Cr from spinel to pyroxene (Irvine, 1967; Komar _ru a.f. 1985), and 

(ii) transfer of AI frorn spinel to plagioclase (Irvine, 1967; Henderson, 1975). 

Plagioclase is not present in LALPP and is not involved in reequilibration. The 

Cr# of Cr-spinel in pyroxenite, especially clinopyroxenite, may be lower than its 

original value due to subsolidus reequilibration. 

iiil Chromjtite. Cr-spinel in chromitites from the Springers Hill area lies 

within the field of podiform chromitites of ophiolites, and overlaps with 

chromitites from stratiform intrusions (Figs. 3.3 and 3.4) . The wide range of 

Cr# and narrow range of Mg# are typical of podiform chromitite deposits 

(Thayer, 1964). The low Ti02 content (0.12-0.23 wt. %) of Cr-spinel in 

Springers Hill chromitites is characteristic of podiform deposits (Dickey, 1975). 

In ophiolite mantle sequences, Al-rich and Cr-rich chromitites occur at the 

harzburgite-dunite and iherzolite-harzburgite transitions, respectively (Leblanc 

and Violette, 1983). The Cr-rich chromitites precipitated from Cr-rich magmas 

that were produced by the complete melting-out of Cr-diopside (leblanc and 

Violette, 1983). The Al-rich chromitites have a genetic relation with Al-rich 
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magmas that were parental to crustal cumulates (Thayer, 1969; Golding and 

Johnson, 1971). Such a correlation does not hold for the Springers Hill area, 

as all chromitites are hosted in dunite associated with harzburgite. Subsolidus 

reequilibration or reaction may be responsible for the observed variation in 

composition, as one traverse of a Cr-spinel grain in sample L289 shows a core 

of Mg# = 65, Cr# =47 and a rim of Mg# =58, Cr# = 61, i.e., a large variation 

in Cr# for a relatively small change in Mg#. 

iv) Accessory Cr-spinel. The Mg# of accessory Cr-spinel appears more 

susceptible than Cr# to change with alteration, metamorphism and subsolidus 

reequilibration. The Cr# is here considered more representative as a 

petrogenetic tracer than Mg#. Apart from several Cr-spinel grains associated 

with Ca-amphibole in harzburgite and amphibole peridotite, all Cr-spinels 

analysed have Cr# > 60. According to Dick and Bullen ( 1984), Cr# > 60 are 

indicative of arc environments. 

Harzburgites lie in the high Cr# field of harzburgites from the BlOC, but 

at higher Cr# than harzburgites previously analysed frorr. the Lewis Hiils Massif 

(Figs. 3.3 and 3.4). Using the argument of Dick and Fisher (1984), the low 

content of CaO and Al20 3 in orthopyroxene, and high Cr# of Cr-spinel, indicate 

that partial melting occurred well into the three phase field of olivine­

orthopyroxene-spinel-magma. This is in total agreement with the petrographic 

evidence that harzburgite is devoid of clinopyroxene. If the precursor to 

harzburgite approximated the composition of Tinaquillo lherzolite, then, untler 

anhydrous conditions, 12-15 % magma could have been extracted from the 
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lherzolite before clinopyroxene in the residue was exhausted (Jaques and 

Green, 1980). Cr-spinel in harzburgite of the Springers Hill area is similar to 

that in harzburgite of the Miyamori Ophiolite Complex, Japan (Figs. 3.3 and 

3.4), which represents residual mantle of an island arc (Ozawa, 1988). 

Dunites, OPXT I, clinopyroxenites and websterites lie in the field of 

stratiform intrusions (Figs. 3.3 and 3.4). Dunites lie in the field of peridotites 

of the BlOC and Miyamori Ophiolite Complex (Figs. 3.3 and 3.4). Type I 

orthopyroxenites, clinopyroxenites and websterites have Cr#(Sp) similar to 

those of low-alumina orthopyroxenites of the White Hills Peridotite, olivine 

clinopyroxenites of the Miyamori Ophiolite Complex, boninites, and basaltic 

komatiites (Figs. 3.3 and 3.4). Dunites, OPXT I and clinopyroxenites do not 

exhibit the fractionation trend of decreasing Mg# and Cr# that is observed in 

stratiform intrusions (Figs. 3.3 and 3.4). This is expected as OPXT I and 

clinopyroxenite (and their associated dunites) are not comagmatic. Type I 

orthopyroxenites and clinopyroxenites precipitated from different magmas 

which had fractionated olivine ( ± Cr-spinel), and yet they have very high 

Cr#(Sp), which may have been even higher prior to subsolidus reequilibration. 

High Cr#(Spl and lack of fractionation recorded by Cr#(Sp) was explained by 

Irvine ( 1976) and Dick and Bullen ( 1984) in terms of Cr-spinel precipitating 

from a magma with high molecular Si/AI. Pyroxenites (and their associated 

dunites and chromitites), therefore, precipitated from magmas with high Si02 

and low Al20 3, which is in total agreement with silicate mineral chemistry. 

These magmas are diagnostic of an arc environment (Dick and Bullen, 1984). 
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3.2.7 Summary 

Mineral chemistry, field relations and petrography of LALPP demonstrate 

that harzburgite, dunite, OPXT I and clinopyroxenite are not cogenetic, except 

perhaps for dunites associated with their respective pyroxenites. Prior to 

intrusion of magmas from which dunite, chromitite and pyroxenite precipitated, 

harzburgites had experienced melting well into the three phase field of olivine­

orthopyroxene-spinel-magma. Following the argument of Dick and Bullen 

I 1984), this melting would have occurred in an arc environment. 

Clinopyroxenites and OPXT I (and their associated dunites and chromitites) 

precipitated from magmas with high MgO and Si02 and low Al20 3 • These 

magmas are present in arc environments (Dick and Bullen, 1984), and the 

pyroxenites could not have formed by high pressure (P > 1 0 kbar) poly baric 

crystal fractionation of a basaltic magma parental to MOAB, as proposed by 

Elthon e..t a!. 119821 for cumulates in North Arm Mountain. 

The mineral chemistry of OPXT II and veins of OPXT I indicates that they 

are in equilibrium with harzburgite. Veins of OPXT I equilibrated with 

harzburgite by subsolidus reequilibration. The harzburgitic composition of 

OPXT II is considered in Chapter 5. 
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3.3 WHOLE-ROCK CHEMISTRY 

3.3. 1 Major and Trace Elements 

Major elements and Sc, V, Cr and Ni reflect the modal mineralogy and 

mineral chemistry of LALPP. Extremely low concentrations of Ti0 2 ( < 0 .02 

wt. %), Rb ( s 1 ppm), Y ( s 2 ppm) and Zr ( s 2 ppm) are consistent with the 

depleted mineral chemistry of LALPP. Concentrations of Sr range from s0.8 

ppm to 64 ppm, and these values will be considered in the next section on rare 

earth elements. Native Cu and minor associated Cu sulphide account for 125-

313 ppm Cu in clinopyroxenite. 

Whole-rock Mg# is equivalent to that of Mg#(OI) for harzburgites, 

dunites, amphibole dunites and OPXT II, which have olivine as the dominant 

phase. Whole-rock Mg# is noticeably higher than Mg#(QI) for OPXT I, 

clinopyroxenite and websterite, which have pyroxene as the dominaf'lt phase 

and Mg#(Px) > Mg#(QI). Whole-rock Cr# are lower than those of Cr-spinel for 

all LALPP because Cr-spinel is an accessory phase. Whole-rock Cr# of dunite 

approach those of Cr-spinel because pyroxene and amphibole are minor phases 

or absent. In all other rock types, the modal abundances of pyroxene and 

amphibole are significantly higher than in dunite and Cr#(whole-rock) is 

approximately half that of Cr#(Sp) becau~e of the low Cr# of pyroxene and 

amphibole. 
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3.3.2 Rare Earth Elements 

Absolute concentrations and specific ratios of REE in LALPP are not used 

because of uncertainty of the quality of the REE data (Appendix 1 ). Despite 

this, chondrite-normalized REE (CNREEI patterns of LALPP are assumed to 

closely approximate the true patterns of LALPP, because CNREE patterns of 

standard PCC-1 determined in this study are very similar to those determined 

in other studies (Appendix 1 ). 

All CNREE patterns of LALPP lie in the range 0.001-1 .0 x chondrite (Fig. 

3.5). The lowest abundances of REE occur in harzburgite, dunite, amphibole 

dunite, OPXT I and OPXT II, whereas the highest abundances occur in 

clinopyroxenite and websterite. Flat to positively sloping CNREE patterns occur 

in harzburgite (sample L225) and dunite (samples L246 and L262), which are 

composed of olivine, Cr-spinel and orthopyroxene (harzburgite only). 

Harzburgite sample L225 records the earliest documented partial melting event 

and apparently does not contain introduced OPXT I, clinopyroxene or Ca­

amphibole. Harzburgite containing OPXT I (sample L 106) has a U-shaped 

CNREE pattern very similar to those of OPXT I. Type I orthopyroxenites have 

negative Eu anomalies. Harzburgite containing Ca-amphibole (sample L 1031 has 

a positive Eu anomaly and U-shaped CNREE pattern similar to amphibole 

dunites. Type II orthopyroxenites have U-shaped CNREE patterns similar to 

OPXT I, harzburgite containing OPXT I, and amphibole dunite. Ounites 

(samples L216 and L217) enveloping clinopyroxenite contain orthopyroxene 

(both samples), clinopyroxene (sample L216) and Ca-amphibole (sample L216), 
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and have CNREE patterns similar to the LREE-depleted patterns of 

clinopyroxenites. Websterites are composite pyroxenites of OPXT I and 

clinopyroxenite and have flatter CNREE patterns than clinopyroxenite, which 

may be explained by the LREE-enriched patterns of OPXT I. 

Concentrations of Sr correlate well with the CNREE patterns of LALPP. 

Consistent values occur in amphibole dunite (2-13 ppm Sr) and amphibole­

bearing harzburgite (8 ppm Sr), which have U-shaped CNREE patterns with 

positive Eu anomalies. Type I orthopyroxenites and clinopyroxenite have 2-6 

ppm and 2-19 ppm Sr, respectively; these concentrations cannot account for 

53-64 ppm Sr in websterite. Concentrations of Sr in harzburgite and dunite are 

s 0.8-15 ppm. 

3.3.3 Platinum Group Elements 

Harzburgites have flat chondrite-normalized platinum group element 

(CNPGE) patterns at approximately 0.01 x chondrite (Fig. 3.6a). Ratios of Pd/lr 

are 0.6-1. 7. The lowest value occurs in sample l225, which records the 

earliest documented partial melting event, whereas the highest value occurs in 

harzburgite sample l106, which has been impregnated by OPXT I. Sample 

L218 is from harzburgite adjacent to dunite enveloping clinopyroxenite, and it 

contains clinopyroxene and Ca-amphibole, and has Pd/lr = 1 .2. 

Chromitites have remarkably uniform CNPGE patterns despite the wide 

range of composition of Cr-spinel in these samples (Fig. 3.6b). The V-shaped 

Os-lr-Ru patterns support the occurrence of Os-bearing laurite in these samples. 
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The CNPGE pattern of a xenolith of chromitite in HAL olivine clinopyroxenite is 

indistinguishable from the other chromitites, except for Pd. Osmium-br'3ring 

laurite occurs in the xenolith. All samples have characteristic CNPGE patterns 

typical of ophiolites (e.g., Page itt .a!., 1982, 1983; Page and Talkington, 

1984), but exhibit a positive slope from Pt to Pd, which is a characteristic 

feature of Newfoundland ophiolites (Page and Talkington, 1984). 

The dunites that have been analysed for PGE are all associated with 

clinopyroxenite. The samples that have CNPGE patterns similar to chromitite 

(Fig. 3.6c), either contain minor orthopyroxene and clinopyroxene (sample 

L254), or they are devoid of these phases (sample L054). Those samples with 

very different patterns (Fig. 3.6d) contain orthopyroxene (samples L216 and 

L217), clinopyroxene (sample L216) and Ca-amphibole (sample L216). Similar 

CNPGE patterns and Pd/lr ratios of chromitites and dunites (Figs. 3.6b and 

3.6c), suggest that the Cr-spinel component of these dunites controls their 

abundances of PGE, although no platinum group minerals (PGM) or base metal 

phases have been identified. This is supported by the highest abundances of 

PGE in the dunite richest in Cr-spinel (sample L054). Consequently, a similar 

origin is suspected for the chromitites and these dunites. The low Os/Ru value 

of the highly serpentinized dunite (sample L054) may argue for the presence of 

Os-poor to Os-free laurite in this sample. Osmium-free laurite has been 

observed in serpentine and chlorite interstitial to chromite grains in chromite­

rich samples from the Shetland Ophiolite (Tarkian and Prichard, 1987). Dunites 

in Figure 3.6d contain minor base metal sulphide and native Cu associated with 
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clinopyroxene and Ca-amphibole. These dunites have relatively high Pd/lr ratios 

and a somewhat positive slope from Os to Pd. 

Type I orthopyroxenites have Pd/lr = 32-4 70 and CNPGE patterns which 

approximate a mirror image of the patterns for chromitite (Fig. 3.6e). The 

CNPGE patterns of OPXT I support the occurrence of Pt- and Pd-arsenide grains 

in orthopyroxene. Websterite has Pd/lr = 120 and a CNPGE pattern similar to 

that of OPXT I (Fig. 3.6f). The pattern is consistent with the occurrence of Pt 

and Pd phases in clinopyroxene. Clinopyroxenites have Pd/lr > 44-1040 and 

highly variable CNPGE patterns (Fig. 3.6f). Clinopyroxenites without a dunite 

envelope, have CNPGE patterns somewhat similar to OPXT I, whereas those 

with a dunite envelope, exhibit extreme depletion of Ru and negative slopes 

from Os to lr. Both types of clinopyroxenite contain abundant primary native 

Cu and base metal sulphides, but PGM have not been identified. 

The CNPGE patterns of OPXT II are very different from those of OPXT 

I, and are more like those of harzburgite and chromitite !Fig. 3.6g). Their Pd/lr 

ratios are equivalent to those of harzburgite. The anomalous enrichment of Ru 

in the web-textured OPXT II could be inherited from Cr-spinel, as legendre 

( 19821 reports chromitites with extreme enrichment in Au from ophiolites of 

Oman and Cyprus. Alternatively, the high concentration of Ru could represent 

contamination from HCI during sample preparation (Jackson et ill.., 1990). The 

latter is favour~d because a sample previously analysed and reanalysed with 

sample L271 shows no change in abundances of PGE, except for extreme 

enrichment in Au. The sulphide content of OPXT II may influence their CNPGE 
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patterns. No sulphide is observed in the ribbon mylonite which has a 

harzburgitic CNPGE pattern. Harzburgites do not contain sulphide that pre­

dates serpentinization. Sulph:de occurs in the web-textured OP:.<T II which has 

a chromititic CNPGE pattern. 

Only amphibole dunites associated with OPXT I have been analysed for 

PGE. Their CNPGE patterns exhibit remarkable similarity with those of OPXT 

I (Fig. 3.6h). Ratios of Pd/lr in amphibole dunite are lower than those of OPXT 

I. Platinum group minerals have not been identified in these samples and 

s•Jiphide is absent, except for rare altered sulphide or native Cu in amphibole­

rich areas. 

3 .4 CHEMICAL EFFECTS OF SERPENTINIZATION 

In order to use whole-rock concentrations of major and trace elements, 

REE and PGE as petrogenetic tracers, the effects of alteration must be known. 

The silicate portion of LALPP is always serpentinized. Serpentinization is most 

severe in areas rich in olivine and the silicate portion of some dunites is 1 00 % 

serpentinized. An extensive discussion of the effects of serpentinization is 

beyond the scope of this thesis, but the most important points are considered 

below. 

3 .4. 1 Major and Trace Elements 

Under conditions of non-constant voll!me, serpentinization is an 
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isochemical process except for the introduction of H20 and loss of Ca (Coleman 

and Keith, 1971; Eckstrand, 1975). Frey e.t aJ. (19851 report no change in 

major eiement abundances for serpentinized peridotites of Ronda ( s 31 % 

serpentinization). Concentrations of Si, Mg, Fe, Cr, AI and Ni in Archean 

dunites of Western Australia are unaffected by serpentinization (Donaldson, 

1981 ). Concentrations of Fe, Ni and Cu are redistributed during 

serpentinization, but are unaffected at the scale of a whole-rock sample (Shiga, 

1 987; Edwards, 1990). Peridotite samples in the Springers Hill area have 

Mg#(whole-rockl = Mg#(QI), which demonstrates that Mg#(whole-rock) is 

unaffected by serpentinization. Pyroxenite samples are much less serpentinized 

than peridotite samples. 

For the purpose of this thesis, it is adequate to assume that 

serpentinization in the Springers Hill area had relatively little influence on 

abundances of major and trace elements, except for the introduction of H10. 

3.4.2 Rare Earth Elements 

There is no clear consensus as to the mobility of REE during 

serpentinization. It has been argued that hydrol.iS alteration can result in either 

a subparallel shift downward of CNREE patterns, or development of negative 

Ce anomalies with preferential loss of LREE (Ottonello e.t a!., 1979). Frey 

( 19691 also predicted that LREE are removed during serpentinization. Mobility 

of Eu2 • during serpentinization (Sun and Nesbitt, 19781 may account for 

positive Eu anomalies in peridotites lacking plagioclase (Frey, 1984). On the 



85 

other hand, there is strong evidence to argue that concentrations of REE are 

unaffected by serpentinization. Michard I 1989) suggested that because 

hydrothermal fluids have low concentrations of REE, hydrothermal activity is 

not expected to change REE abundances of a rock unless water/rock ratios are 

extremely high. In agreement with this argument, Frey 11 984) presented data 

for serpentinites which appear to preserve the original CNREE patterns of their 

ultramafic protoliths. Further agreement comes from the harzburgites and 

dunites of the New Caledonia Ophiolite, where there is no correlation between 

the degree of serpentinization ( s 40 %) and LREE enrichment (Prinzhofer and 

All~gre, 1985). Frey (1984) made a similar observation for the peridotites of 

Ronda that were :s30% serpentinized. 

In the Springers Hill area, serpentine and associated alteration products 

occur mostly in areas rich in olivine. Pyroxene and amphibole generally are 

unaltered to partially altered. Because partition coefficients of REE are so much 

greater for pyroxene and amphibole than olivine (Fig. 3. 7), and because 

pyroxene and amphibole control CNREE patterns of peridotites (Stosch and 

Seck, 1980), the removal of REE from olivir.- will have little effect on CNREE 

patterns of whole-rock samples. This appears to be the situation in the 

Springers Hill area, especially as all CNREE patterns of LALPP are adequately 

explained by their mineralogy which pre-dates serpentinization. Consequently, 

CNREE patterns of whole-rock samples of LALPP reflect processes pre-dating 

serpentinization of the Springers Hill area. 
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3.4.3 Platinum Group Elements 

Platinum group elements generally are immobile during serpentinization 

(Keays and Davison, 1976; Groves and Keays, 1979; Oshin and Crocket, 

1982; Prichard and Tarkian, 1988; Edwards, 1990), and concentrations of PGE 

in whole-rock samples of LALPP reflect processes pre-dating serpentinization 

of the Springers Hill area. This is well supported by the similarity of CNPGE 

patterns of dunite (sample L254) and extensively serpentinized Cr-spinel-rich 

dunite (sample L054) (Fig. 3.6c). The mineralogy of PGM in LAL.PP is primary 

and relateo to fractionation of immiscible As-S-rich liquids in the early stages 

of crystal fractionation (see sections 2.3.8 and 2.6). 

3.5 PETROGENESIS OF HARZBURGITE 

3.5.1 Ca0/AI20 3 Ratio as an Index of Partial Melting 

Harzburgites have experienced melting well into the three phase field 

olivine-orthopyroxene-spinel-magma. Klein and Langmuir ( 1987) stated that 

melting-out of clinopyroxene from lherzolite to produce harzburgite, causes an 

increase in Ca0/AI20 3 ratio of the whole-rock until clinopyroxene is exhausted; 

as melting continues, the CaO/ Al20 3 ratio decreases. Extremely refractory 

harzburgites in the Papuan Ultramafic Belt (Jaques and Chappell, 1980). 

provide evidence that Ca0/AI20 3 ratios drop sharply as orthopyroxene is 

progressively melted out of harzburgite (Fig. 3 .8a). Falloon and Green (1987) 

demonstrated this trend in experiments of equilibrium partial melting of MORB 
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pyrolite at 10 kbar. Further work by Falloon ~at. ( 1989) confirmed this trend 

(Fig. 3 .8al. 

Samples of harzburgite from the Springers Hill area record melting well 

beyond the melting-out of clinopyroxene. These samples should have 

Ca0/AI20 3 ratios similar to, or lower than, those in lherzolites, but they have 

Ca0/AI20 3 ratios which generally are higher than lherzolites (Fig. 3.8a). The 

lowest rat;os (samples L097 and L225l correlate with harzburgites from other 

ophiolites, and agree with petrographic and chemical evidence that they are 

residues from the earliest documented episode of partial melting and efficient 

extraction of magma. Due to the abundance of chemical data on sample L225 

relative to sample L097, the former will be used as the harzburgite end-member 

of partial melting and efficient extraction of magma. This sample has not been 

modified petrographically or chemically by subsequent processes, except for the 

formation of serpentine from olivine. 

Harzburgites having Ca0/AI20 3 ratios higher than that of sample L225, 

contain clinopyroxene and/or Ca-amphibole, or infiltrated OPXT I (Fig. 3 .8a) . 

Clinopyroxene and Ca-amphibole have high Ca0/AI20 3 ratios. Petrographic 

evidence shows that 1-2 modal % of these phases in harzburgite cause the 

observed increase in Ca0/AI20 3 ratio. Type I orthopyroxenite has a lower 

Ca0/AI20 3 ratio than clinopyroxene orCa-amphibole, and yet the harzburgite 

containing introduced OPXT I (sample L 1 06) has the highest Ca0/AI20 3 ratio. 

Figure 3.8b shows that sample L 106 contains a large component of OPXT I in 

addition to a component of sample L225. The composition of sample L 106 
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estimated from Ca0/AI20 3 ratios is 58 % sample L225 and 42 % OPXT I 

(Appendix 5). Modal abundances of orthopyroxene are 15 %in sample L225. 

90 % in OPXT I and 45 % in sample L 106. Therefore, sample L 106 contains 

an estimated 8.7 % orthopyroxene from sample L225 and 37.8 % 

orthopyroxene from OPXT I, which is a total of 46.5 % orthopyroxene, i.e .• 

essentially identical to the 45 % orthopyroxene estimated visually. 

The introduced component of orthopyroxene in harzburgite is not 

apparent from mineral chemistry, even though compositions of minerals in 

OPXT I are very different from those in harzburgite. The changes in mineral 

chemistry associated with the introduction of OPXT I into harzburgite should 

be accounted for by reequilibration at magmatic and subsolidus temperatures 

with or without the later effects of serpentinization. To determine the response 

of mineral chemistry to these changes is an immense task well beyond the 

scope of this thesis . 

3.5.2 Rare Earth Elements 

At the present time, the key to understanding the origin of ophiolite 

harzburgites lies largely in understanding their CNREE patterns. Unfortunately, 

the REE data acquired in this thesis limits interpretation, and modelling using 

the REE is not possible. The essence of the following discussion is that CNREE 

patterns of harzburgites of the Springers Hill area are representative of 

processes which pre-date serpentinization of the area. 

Sample L225 has a straight, positive sloping CNREE profile from La-Lu 
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(Fig. 3.5a). The pattern is controlled by orthopyroxene as suggested by (i) 

modal mineralogy, (ii) partition coefficients of REE in orthopyroxene (Fig. 3. 7), 

and (iii) REE analyses of orthopyroxene separates from anhydrous spinel 

peridotite nodules from Dreiser Weiher, Germany (Stosch and Seck, 1980). 

Patterns of this type are rare in ophiolites, but they have been documented in 

harzburgites from the New Caledonia (Nicolas and Dupuy, 1984) and Trinity 

(Brouxel and Lapierre, 1 988) ophiolites. They also have been documented in 

the Ronda Peridotite (Ftey gta,!., 1985). Schilling (1975), Menzies eta!. (1977) 

and Frey e.t a!. ( 1985) have calculated that positive sloping CNREE profiles in 

residues can be produced by 9-30 %partial melting of LREE-depleted lherzolite. 

The magmas vvhich segregated from the Ronda peridotites were picritic ( 12-22 

wt.% MgOl and may have been parental to MOAB (Frey .e1.21., 1985). Ronda 

harzburgites with CNREE patterns similar to that of sample L225 were in 

equilibrium with the picritic magma for 26-32 % partial melting (Frey e.t aJ., 

1985). Experiments performed by Green gt a!. ( 1979) show that such pic rites 

are multiply saturated in olivine and orthopyroxene at P = 20 kbar (60-70 km 

depth) and T = 1430°C. The harzburgite residue left after extraction of this 

picrite would contain or~hopyroxene with > 5 wt.% Al20 3 and > 2.5 wt.% 

CaO, and would recrystallize to spinel lherzolite at lower pressure (Green~ aJ., 

1979). 

The mineral chemistry of sample L225 is inconsistent with it being a 

residue from extraction of picritic magma at P = 20 kbar. Cr-spinel in sample 

L225 lies in the range of those analysed from the Troodos Upper Pillow Lavas 
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by Duncan and Green ( 1987). Many of these lavas are severely LREE-depleted 

(Kay and Senechal, 1976; Smewing and Potts, 1976), which correlates with 

the CNREE pattern of sample l225. Consequently, this sample could be a 

residue from (i) continuous melting of a lherzolite diapir (Smewing and Potts, 

1 976), or (iii 5-10 % second-stage partial melting of an anhydrous, residual 

lherzolite diapir at P = 7-8 kbar ( s 25 km depth) and T = 1 360°C, and extraction 

of a LREE-depleted magnesian quartz tholeiite or olivine-poor tholeiite (Duncan 

and Green, 1 980). The latter would correlate with melting in a back-arc basin 

(Duncan and Green, 1 987). 

The majority of harzburgites in the Springers Hill area are assumed to 

have an initial origin similar to sample l225, but some experienced subsequent 

modification by the addition of OPXT I (sample l 1 06) and Ca-amphibole 

(sample l 103), which produced U-shaped CNREE patterns. Although these 

modifications occurred during separate events, they both produced significant 

enrichment in the LREE. If these harzburgites had undergone further melting, 

they would have produced high-MgO and -Si02 magmas with U-shaped CNREE 

patterns. Magmas of this type occur as boninites in arc environments (Hickey 

and Frey, 1 982). 

It has been argued on the basis of CNREE patterns of ophiolitic rocks, 

that harzburgites possessing U-shaped patterns are not genetically related to 

overlying rocks of the crustal sequence through a simple parent-daughter 

relationship because of the relative LREE depletion exhibited by the crustal 

sequence (Suen §1 ~. . 1 979; Pallister and Knight, 1981; Frey, 1 984). 
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Harzburgites of the Springers Hill area having U-shaped CNREE:: patterns support 

this view, but the positively sloping CNREE pattern of sample L225 suggests 

that prior to involvement of fluids and fluid-rich magmas, ophiolite harzburgites 

may indeed have LREE-depleted CNREE patterns and be related to the LREE­

depleted component of the crustal sequence. Such a suggestion disagrees with 

the sequential integrated disequilibrium melting model developed by Prinzhofer 

and All~gre (19851. which requires that LREE-enriched residues and LREE­

depleted magmas are cogenetic. Prinzhofer and All~gre ( 1985) developed this 

model from harzburgites in the New Caledonia Ophiolite which have CNREE 

patterns similar to that of harzburgite in the Springers Hill area which contains 

OPXT I. The importance of this will be discussed in section 3.5.4. 

3.5.3 Platinum Group Elements 

Before interpreting the PGE chemistry of harzburgites, it is necessary to 

understand the behaviour of PGE, base metals and sulphides in these rocks. 

The sulphide component of the upper mantle has a low melting point (Naldrett, 

1973) and is largely involved in mantle melting (Garuti ~a,!., 1984). This 

allows the abundance of Fe-Ni-Cu-S phases to be used as a depletion index, 

especially as their abundance correlates with the modal abundance of 

clinopyroxene and plagioclase in residual mantle material (lorand, 1988). The 

Springers Hill harzburgites are devoid of primary Fe-Ni-Cu-S phases and residual 

clinopyroxene and plagioclase, which is consistent with their having 

experienced extensive partial melting prior to local modification by infiltrating 
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fluid and fluid-rich magma. 

It is possible to estimate the degree of partial melting required of a 

mantle source to yield a harzburgite residue totally barren of sulphide (Barnes 

e..t a!., 1985). Garuti e..t i!. (1984) report an Fa-depleted, Ni- and Cu-enriched 

mantle sulphide component for the Baldissero and Balmuccia lherzolites of the 

Ivrea-Verbano mantle peridotites, western Italian Alps. These lherzolites 

preserve S contents of 140-320 ppm, which are representative of the S 

content of undepleted to partially depleted upper mantle (Garuti ~ 21. .• 1984). 

For the Springers Hill harzburgites, it is assumed that the initial S content of the 

mantle source was 140-320 ppm, that partial melting occurred at a depth of 

< 40 km (Duncan and Green, 1987), and that S solubility in basic silicate 

magmas is 0.19 wt.% (Wendlandt, 1 982) . For these parameters, 7-17 % 

partial melting is required to remove all of the mantle sulphide into the magma 

for, respectively, S concentrations between 1 40-320 ppm in the initial mantle 

source. Partial melting to produce Springers Hill harzburgites was far in excess 

of 1 7 %. These rocks contain no petrographically visible sulphide phase, apart 

from that resulting from serpentinization of the silicate phases . During partial 

melting, the dissolution of all of the mantle sulphide left no sulphide residue 

into which the PGE could partition. Magma has been very effectively removed 

from the Springers Hill harzburgites, as there is no evidence for trapped silicate 

or sulphide magma. 

The Springers Hill harzburgites contain 23-38 ppb total PGE. Because 

there is no sulphide in which the PGE can exist, they must be present in either 
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Cr-spinel and silicate phases, or an intergranular phase. It has been postulated 

that refractory Cr-spinel and olivine in S-poor ultramafic rocks may act as a sink 

for lr (Crocket, 1979; Naldrett ~ .a}., 1979). In addition, Mitchell and Keays 

( 1 981) predicted that high-temperature lr alloys may exist under upper mant:e 

P-T conditions in environments of low fS2 • Iridium in this form would remain 

as a residual phase during partial melting of the mantle (Mitchell and Keays, 

1981). In contrast to lr, Pd is more volatile (Arculus and Delano, 1981) and, 

therefore, during partial melting Pd fractionates from lr which is left in the 

residue (Hertogen §.1 .aJ., 1980; Mitchell and Keays, 1981). Hence, highly 

depleted and refractory mantle peridotites have low total PGE contents, 

fractionated CNPGE patterns with negative slopes from lr to Pd, and Pd/lr < < 1. 

Such patterns have been reported from the Thetford Mines Ophiolite, Quebec 

(Oshin and Crocket, 1982), and the Ronda Peridotite, Spain (Stockman, 1 982), 

and calculated for the Vourinos Ophiolite Complex, Greece (Cocherie §.1 aJ.., 

1989). 

The CNPGE pattern and Pd/lr = 0.6 of sample L225 is consistent with it 

being a residue from partial melting. However, more extreme fractionation of 

Pd and lr is expected for harzburgite as refractory as sample L225. The PGE­

depleted (lr = 2.1-2.9 ppb, Pd = 0.45-0.68 ppbl Black Lake harzburgites of the 

Thetford Mines Ophiolite have average Pd/lr = 0. 22 (Oshin and Crocket, 1982), 

which are expected to be more typical of harzburgites that are residues from 

extensive partial melting and efficient extraction of magma. Despite this, 

sample L225 will be used as tho starting composition for discussing the PGE 
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content of harzburgite with Pd/lr > 1 . 

The CNPGE patterns and Pd/lr = 1.2-1. 7 of Springers Hill harzburgites 

that contain OPXT I, and Ca-amphibole and clinopyroxene derived from 

clinopyroxenite, are completely inconsistent with a simple residual origin. In 

fact, the flat PGE patterns coincide with the CNPGE data compiled by Arculus 

and Delano ( 1981) for undepleted upper mantle (Jagoutz e.1 a.t., 1979; Morgan 

and Wandless, 1979; Morgan e.1 a!., 1980; Mitchell and Keays, 1981). The 

discrepancy can be explained by the introduced components. That involving 

a component of clinopyroxenite is of minor significance based on petrographic 

evidence; it will be considered with the origin of dunite in section 3. 7 .1. The 

addition of OPXT I to harzburgite is, however, significant. 

The formation of sample L 106 by addition of OPXT I to sample L225 has 

been demonstrated earlier. Using the same approach as for Ca0/AI
2
0

3 
ratios, 

the proportions of OPXT I and sample L225 in sample L 106 are calculated 

using Pd/lr ratios (Appendix 5). Concentrations of lr are similar for all 

components, whereas concentrations of Pd differ significantly, so that addition 

of OPXT I to harzburgite will produce large variations in concentrations of Pd 

at approximately constant concentrations of lr. The composition of sample 

L 106 estimated from Pd/lr ratios is 98 % sample L225 and 2 % OPXT I. This 

clearly is inconsistent with petrographic evidence and the calculation involving 

Ca0/AI20 3 ratios, which estimated 58 %sample L225 and 42 % OPXT I for 

sample L 106. Using the OPXT I sample poorest in PGE (sample L071), the 

estimate becomes 81 % sample L225 and 19 % OPXT I (Appendix 5). 
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Significant variations are expected in the calculation using Pd/lr ratios because 

these ratios in the mixing components are very diff,uent relative to Ca0/AI20 3 

ratios. Consequently, it is predicted that the component of OPXT I in sample 

L 106 has a lower Pd/lr ratio and total abundance of PGE than the massive 

dykes sampled in this study. Alternatively, Pd may have been removed from 

sample L 106 by fluids associated with the formation of the HALPPG (section 

5.5.3). Some orthopyroxene in sample L 106 was converted to olivine during 

this late event. 

3.5.4 Orthopyroxene in Harzburgite 

Although extensive field and petrographic work has documented the 

addition of OPXT I to harzburgite by magmatic impregnation or mechanical 

mixing, the chemical data base is limited to several carefully selected samples. 

The question arises as to how significant are the orthopyroxene-addition 

processes in terms of modifying harzburgite compositions in mantle sequences 

of ophiolites. In the Springers Hill area, dykes and veins of OPXT I are 

abundant, and a significant proportion of the harzburgite appears to be 

modified. However, the area mapped in this study is only 2 km2
• There is 

evidence of orthopyroxene impregnation in other massifs of the BlOC (G. Suhr, 

pers. comm., 1990). A survey of literature data on the PGE content of 

harzburgites from ophiolites, reveals that many of them preserve Pd/lr > 1, e.g., 

the Troodos Ophiolite (Becker and Agiorgitis, 1978), the Thetford Mines 

Ophiolite (Qshin and Crocket, 1982), and the Vourinos Ophiolite (Cocherie 11. 
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Q!., 1989). A similar survey reveals that harzburgites from the ophiolites of 

Othris, Vourinos, Troodos, Oman, New Calf:!donia and Bay of Islands, exhibit 

U-shaped CNREE patterns (Prinzhofer and All~gre, 19~~; compilation of Frey 

(1984)). Without detailed field and petrographic studies of harzburgites from 

these ophiolites, it is premature to attributt! elevated Pd/lr ratios and U-shaped 

CNREE patterns to addition of orthopyroxenite. If such a process operated in 

these ophiclites, then significant modification of the trace element composition 

of harzburgite, with iittle or no evidence of this in the petrography or mineral 

chemistry, would appear to be the rule rather than the exception. Partial 

melting of these harzburgites should produce magmas of the boninitic series 

which have U-shaped CNREE patterns, negative Eu anomalies, and high Pd/lr 

ratios. 

3.6 PETROGENESIS OF CHROMITITE 

Lago !U .a!. (1982) have discussed the origin of chromite deposits in 

ophiolites. They concluded that chromitite& represent magmatic accumulations 

from basaltic magmas. Field, petrographic, mineral chemical and PGE data 

support a similar origin for the chromitites of the Springers Hill area, which are 

magmatic accumulations from magmas with high molecular Si/AI ratios. This 

is in agreement with Roberts (1988), who proposed that extensive chromite 

mineralization is restricted to ophiolites with supra-subduction zone 

characteristics. 
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The CNPGE pattern of the xenolith of chromitite (sample L326) from the 

marginal zone of the HALPPG, and the occurrence of Os-laurite in this sample, 

suggests that it is a xenolith of LALPP affinity (Fig. 3 .6b). This evidence 

disagrees with the interpretation of Bedard ( 1991 ), that chromitites may be 

products of the assimilation of gabbro and pyroxenite by invading primitive 

magma. 

3. 7 PETROGENESIS OF DUNITE 

The origin of dunites in ophiolites as residual versus magmatic is a topic 

of major discussion which is largely beyond the scope of this chapter. For a 

review of the problem see Nicolas (1989, pages 225-236). Field and 

petrographic observations presently are the best way to examine the origins of 

dunite in LALPP. These observations have been interpreted in section 2 .3.7. 

The chemical data available for dunites is varied, limited, and may be affected 

by serpentinization, but some general statements will be made based on 

abundances of PGE in dunites enveloping clinopyroxenites. 

3. 7 . 1 Platinum Group Elements 

The CNPGE patterns of dunites with chromititic patterns (Fig. 3.6c) are 

controlled by Cr-spinel, which is inferred to be magmatic based on the origin of 

chromitite. Whether or not olivine is magmatic is questionable because rare 

porphyroclasts of orthopyroxene are hosted in one sample. According to lago 
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~ 21. ( 1 982), residual dunite is expected to develop by the incongruent melting 

of orthopyroxene at the interface between harzburgite and the magma conduit 

in which olivine and Cr-spinel are accumulating by magmatic crystallization. 

Olivine and Cr-spinel in dunites having chromititic CNPGE patterns would 

appear to have developed by this process. 

A more complicated situation is portrayed by dunites containing Ca­

amphibole and relatively abundant pyroxene (Fig. 3.6d). To explain the CNPGE 

patterns of these dunites, they are considered with the clinopyroxenite dyke 

which they envelope and the harzburgite which hosts them (Fig. 3.9). Figure 

3.9 shows that Pd/lr = 1.2 in harzburgite is due to a component of 

clinopyroxenite. The same conclusion was reached using Ca0/AI20 3 ratios (see 

section 3 .5.1). Dunite (sample L217) sampled 1.5 m from this harzburgite is 

residual in origin as supported by (i) olivine of Mg# = 91 .3, which is the same 

as that in harzburgite, (ii) orthopyroxene porphyroclasts, and (iii) a CNPGE 

pattern almost identical to harzburgite except for Pd. The elevated Pd value 

demonstrates that a component of clinopyroxenite is contained by sample 

L217, although it is not visible in the field or in thin section. This variation in 

Pd is testimony to the much higher degree of incompatibility of Pd relative to 

Pt (Peck and Keays, 1990). The dunite (sample L216) sampled 0. 7 m from 

sample L217 has clots of Cr-spinel and a very different CNPGE pattern. The 

pattern is a mirror image of that of chromitite and may indicate that a 

significant amount of Cr-spinel had fractionated previously from the magma . 

However, porphyroclasts of orthopyroxene are present, which indicate that a 
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component of the dunite is residual. The extreme depletion of Au in 

clinopyroxenite also may support the conclusion that the magma had 

fractionated significantly large amounts of a Au-bearing phase (most likely 

laurite). 

Thus, CNPGE patterns are very sensitive to the magmatic and residual 

components in a dunite. A better understanding of the PGE, and careful use 

of the data in combination with field and petrographic observations, may make 

these elements an important tool for solving the dunite problem. 

3.8 PETROGENESIS OF TYPE I ORTHOPVROXENITE AND CLINOPVROXENITE 

3.8.1 Magmatic versus Metasomatic Origin of Pyroxenites 

In section 1.3.2, numerous models were outlined that can be used to 

explain the origin of pyroxenites. From the field and petrographic observations 

and geochemical evidence presented for OPXT I and clinopyroxenite, there are 

two plausible origins for these rocks. Either they may have crystallized dir~ctly 

from two distinct magmas, or they may represent the products of 

metasomatism of harzburgite and dunite by two distinct fluids. 

Bowen and Tuttle ( 1949) suggested that pyroxenites are produced by 

the int~raction of hydrous, Si02-saturated fluid with olivine (dunite). 

Pyroxenite-amphibolite bands have a hydrothermal origin in the Seiad Complex, 

Ca.ifornia (loomis and Gottschalk, 1981). These authors stated that as fluid 

equilibrates with peridotite, the minerals that precipitate in the bands should 
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have compositions similar to those in the peridotite. Orthopyroxene is the 

dominant pyroxene in most metasomatic bands (Carswell_ru .2] . , 1974; loomis 

and Gottschalk, 1981 I. 

There are a number of difficulties in accepting this interpretation. The 

first is that clinopyroxenites essentially are anhydrous. Secondly, OPXT I are 

hydrous, but they do not contain the abundance of amphibc!P. expected for a 

metasomatic origin. Thirdly, the CNPGE patterns of OPXT I may be explained 

by previous fractionation of a significant volume of Cr-spinel as chromitite; 

chromitites are magmatic in origin (section 3.6). Alternatively, field and 

petrographic observations and mineral chemistry of OPXT and 

clinopyroxenites, are best explained by these pyroxenites having precipitated 

from hydrous and anhydrous magmas with high molecular Si/AI ratios which 

fractionated olivine, Cr-spinel and pyroxene. 

3.8.2 Compositions of Parental Magmas 

At least two parental magmas were required to produce OPXT I and 

clinopyroxenite. These magmas had high MgO, high molecular Si/AI ratios, and 

high Pd/lr ratios. The high Mg# of olivine and pyroxene in the pyroxenites, 

suggests that the magmas from which they precipitated had undergone very 

little olivine fractionation before pyroxene became the dominant fractionating 

phase. Cr-spinel fractionated with olivine as exemplified by the strong control 

of Cr-spinel on CNPGE patterns of pyroxenites. Despite these similarities, there 

were important differences between the two magmas: OPXT I precipitated from 
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a hydrous magma with abundances of REE very different from the ess.:mtially 

anhydrous magma which precipitated clinopyroxenites. 

3.8.2a Rare Earth Element Abundances of Parental Magmas 

The uncertainty in the REE data of the pyroxenites does not preclude an 

estimation of the CNREE patterns of the magmas from which they precipitated. 

If all crystalline products remained in chemical equilibrium with the magma, the 

situation is a reversal of batch melting. This is a plausible situation in the 

pyroxenite dykes because crystals are unzoned (although this may be the effect 

of subsolidus reequilibration) and dykes internally are unfractionated. For 

clinopyroxenites, the latter applies to any dyke without a dunite envelope. 

Crystals in the dykes probably grew dominantly by an adcumulus process, 

whereby all interstitial magma was physically removed as a result of crystal 

growth. This process is in agreement with the assumption of mineral-magma 

equilibrium. It is assumed that the system was open and homogeneous crystal 

growth occurred by crystals plating to dyke walls. The composition of the 

magma passing through the dyke was constant because no mineralogical 

zonation is present. 
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Equation E3.1 is the Berthelot-Nernst equation and is used here to 

calculate the composition of the magma in equilibrium with the pyroxenite: 

[E3.1] CL/C5 = 1/(F+D-FD), if F=O, then 

CL = C5 /D, 

where CL is the concentration of the element in the magma, C
5 

is the 

concentration of the element in the pyroxenite, F is the proportion of material 

representing trapped magma in the pyroxenite, and D is the bulk partition 

coefficient of the element (calculated as the product of the weight proportion 

of each mineral in the pyroxenite multiplied by its mineral/matrix partition 

coefficient (K0 U. 

For the clinopyroxenites, the equation with F = 0 provides a good 

estimate of the composition of the magma because there is no interstitial 

material representing trapped magma. For the OPXT I, the equation with F =0 

is used, but it is questionable because amphibole is present, which may 

represent a component of trapped magma. In OPXT I sample l268 used for the 

calculation, amphibole is 5 wt. %. It is unlikely that F = 5 wt.% because 

amphibole replaces clinopyroxene and orthopyroxene, i.e., F < 5 wt. %. Because 

partition coefficients of clinopyroxene and amphibole are similar (Fig. 3. 7), 

amphibole is considered in the calculation for F = 0. 

The estimated CNREE patterns of magmas in equilibrium with pyroxenites 

are very different (Fig. 3.101. Type I orthopyroxenite was in equilibrium with 

a magma with a U-shaped CNREE pattern, whereas clinopyroxenites formed 

from a magma with a relatively flat CNREE pattern. These patterns are 
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characteristic of boninites and low-Ti arc tholeiites, respectively. Locations 

where these two magma types are juxtaposed are the western Pacific island 

arcs (Hickey and Frey, 1982), the Betts Cove Ophiolite, Newfoundland (Coish 

§ll a!., 1982), the Upper Pillow Lavas of the Troodos Ophiolite (McCulloch and 

Cameron, 1983; Cameron, 1985), and western Tasmania (Brown and Jenner, 

1 989). Whether boninites are produced before or after low-Ti tholeiites varies 

from one location to the next. In the Betts Cove Ophiolite, boninites formed 

before and during the formation of low-Ti tholeiites (Coish §ll 2!., 1 982), which 

is similar to the sequence in the Springers Hill area. 

3.8.2b lREE Enrichment of Mantle Sources of Boninites 

The LREE enrichment of the source region of boninites is explained by 

invasion of a LREE-depleted harzburgite by small volumes of a LREE-enriched, 

Ti-depleted component (Sun and Nesbitt, 1 978; Jenner, 1981; Hickey and 

Frey, 1982; Coish ~ aJ., 1982). This component may be from a sedimentary 

source, or a mantle source with recent to ancient LREE enrichment (Hickey and 

Frey, 1 982; McCulloch and Cameron, 1983; McCulloch §ll g!., 1 983). The 

LREE-enriched component may be similar to that associated with ocean island 

basalts (Hickey and Frey, 1982). The fluid or magma which produces the LREE 

enrichment may crystallize as veins (Wood, 1979), or react with harzburgite 

and crystallize new minerals such as mica, amphibole, rutile, ilmenite and 

diopside (MARIO) that are found in MARIO suite xenoliths in kimberlites 

(Kramers ~ aJ.., 1983). The lREE-enriched source may then experience partial 
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melting . Alternatively, flushing of harzburgite by fluid may trigger incongruent 

melting of orthopyroxene, given the experimental evidence of Kushiro ( 1969. 

1972) and Nicholls and Ringwood ( 1973). 

3.8.2c La Enrichment of Mantle Sources of Low-Ti Tholeiites 

The analytical uncertainty in the LREE data of clinopyroxenites does not 

permit a conclusive statement to be made about the positive La, or negative 

Ce, anomaly diagnostic of this rock type. If the anomaly is not associated with 

contamination during sample preparation, then it would correlate with similar 

anomalies found in supra-subduction zone volcanics (Rautenschlein ~ 21 .• 

1985; Brown and Jenner, 1989) and island arc volcanics (White and Patchett, 

1984), and could correlate with a sedimentary component in the mantle source 

(Hole ~ st.!., 1984). 

3.8.3 Melting Models for the Generation of Boninites and Low-Ti Tholeiites 

Smewing and Potts ( 1976) explained the variation in chemistry of the 

lava sequences in the Troodos Ophiolite by continuous partial melting of a 

lherzolite diapir. Cameron (1985) propos~d that the Upper Pillow Lavas of 

Troodos were produced by incremental melting of a variably depleted and 

residual source region. The latter is similar to the model proposed by Hickey 

and Frey ( 1982) for production of boninites and low-Ti tholeiites in western 

Pacific island arcs by partial melting of a variably depleted and residual source 

which had been pervasively enriched in LREE. This kind of model was used by 
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Coish ~a,! . (1982) to explain the lava sequence in the Betts Cove Ophiolite. 

The OPXT I are very similar in composition to orthopyroxenite veins and 

dykes in the mantle sequences of the Pindos Ophiolite, Greece (Montigny ~ af., 

1973), the Troodos Ophiolite (Menzies and Allen, 1974), the Papuan Ultramafic 

Belt (Jaques and Chappell, 1980), the White Hills Peridotite (Talkington, 1981 ), 

and the Oman Ophiolite (Lippard ~ Q!., 1986) (Table 3.1 ). Montigny ~ af. 

(1973), Menzies and Allen (1974) and Jaques and Chappell (1980) interpreted 

orthopyroxenites as the final products of partial melting of extremely residual 

peridotite. Talkington ( 19811 proposed that orthopyroxenites formed from a 

magma of magnesian quartz tholeiite produced by localized second-stage partial 

melting at P s 8 kbar of lherzolite nearly devoid of clinopyroxene (Duncan and 

Green, 1980). This magma crystallized significant quantities of chromitite, 

orthopyroxenite and websterite, in this order. The situation in the White Hills 

Peridotite most closely approaches that of the Springers Hill area, except that 

websterite is not present in the latter, and mineral compositions are more 

depleted in the latter with respect to the former. 

Harzburgites, as exemplified by sample l225, are residues from the 

extraction of magnesian quartz tholeiite, which probably was LREE-depleted, 

low-Ti tholeiite. This residue subsequently was intruded, respectively, by OPXT 

I (boninite magma) and clinopyroxenite (low-Ti tholeiite magma), and their 

respective dunites and chromitites. The juxtaposition of these rock types, 

suggests that partial melting and magma intrusion occurred within a well 

defined vertical column of upwelling asthenosphere. The experimental work of 
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Duncan and Green ( 1987) demonstrated that all these events could have 

occurred through partial melting of residual lherzolite and harzburgite diapir(sl 

at P s 7-8 kbar ( s 25 km) with and without the presence of hydrous fluid. 

These conditions agree with the supra-subduction zone environment proposed 

for the BlOC by Malpas (1976), Edwards (1990) and Jenner~ at. (in press). 

3.9 ENVIRONMENT OF FORMATION OF THE SPRINGERS HILL AREA 

3.9. 1 Spreading Centre 

The S, fabric and coarse textures of harzburgite are indicative of 

asthenospheric deformation dominated by plastic flow at 1 200-1 300° C (section 

2.3. 7). These fabrics and textures are indicative of the low velocity zone 

beneath a ridge (Mercier and Nicolas, 1975), and this environr:1ent has been 

proposed for the Springers Hill area by Dahl and Watkinson (1986). 

Consequently, the Springers Hill area could represent a zone of asthenospheric 

upwell, extreme partial melting and magmatic activity below a spreading centre 

in a supra-subduction zone. Such an interpretation is consistent with the steep 

foliations in the mantle sections of the Troodos and Oman ophiolites, which 

have been ascribed to asthenospheric flow beneath a spreading centre (George, 

1978; Ceuleneer ~ ilf., 1988). Also consistent with this interpretation are the 

occurrence of veins and dykes of pyroxenite and economic concentrations of 

chromitite in the residual mantle peridotites of ophiolites such as Troodos 

(Menzies and Allen, 1974; Greenbaum, 1977). 
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3.9.2 Fracture Zone 

In section 1.5, the models for the origin of the BlOC were summarized. 

In the model of Karson and Dewey ( 1978), the Springers Hill area would have 

been situated adjacent the non-transform domain of an oceanic fracture zone. 

Several features in the Springers Hill area are consistent with this environment 

of formation: 

1) Fabrics similar to those in harzburgites of the Springers Hill area have been 

documented in the Bogota Peninsula, New Caledonia (Prinzhofer and Nicolas, 

1980), the Antalya Ophiolite, Turkey (Reuber, 1984), and the Western Limassol 

Forest Complex, Cyprus (Murton, 1986). In all three cases the fabric was 

formed in a transform fault zone. 

2) Chromitite mineralization is associated with fracture zone ophiolites. One of 

the largest chromite deposits in the world is the Ti~baghi chromitite pod in New 

Caledonia. This chromitite contains Cr-spinel of 59 wt.% Cr 20 3 and marks the 

lherzolite-harzburgite contact (leblanc, 1987). The deposit is located along the 

Ti~baghi-Poum-Belep Fracture Zone, which represents a palaeotransform fault 

(S~cher, 1981 ). 

3) Magmas having highly depleted chemistry are associated with fracture zone 

ophiolites. Separating the Troodos Complex from the limassol Forest Complex 

in Cyprus, is the Arakapas Fault Belt, which Moores and Vine ( 1971 l 

interpreted as a palaeotransform fault. Murton (1986) explained LREE-depleted 

or U-shaped CNREE patterns of lavas in the Arakapas Fault Belt, by partial 

melting of mantle material associated with a once active palaeotransform fault 
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zone in a supra-subduction zone environment. 

Evidently, features in the LALPP of Springers Hill area can be explained 

by the presence of a fracture zone. If such a tectonic environment existed, 

then, as the CC is older than the BlOC by 14-29 Ma (Jenner~ a}., in press), 

relatively cold lithosphere (T < 1 000°C) of the cc would be juxtaposed against 

relatively hot (T = 1200-1300°C) asthenosphere of the BlOC at the fracture 

zone. The lithosphere would act as a thermal and mechanical boundary to the 

upwelling asthenosphere (S~cher, 1981; Nicolas, 1989), and flow would be 

channelled parallel to the fracture zone (Vogt and Johnson, 1975). Fluids and 

magmas also would be channelled parallel to the fracture zone. Casey and 

Dewey ( 1984) explained the association of boninites with a fracture zone by 

initiation of subduction along a transform-fracture zone. In this model, 

underthrusting of the CC would explain arc magmatism in the overriding BlOC. 

At the present time, it is not possible to make a conclusive statement 

about the possible involvement or influence of a fracture zone adjacent to the 

Springers Hill area, especially as (i) the original morphology of the Mount Barren 

Assemblage (which would represent the fracture zone if it existed) is open to 

question (section 2.5.2), and (ii) the fabrics, textures and chemistry of LALPP 

(excluding amphibole dunites and OPXT Ill are adequately explained by a 

spreading centre in a supra-subduction environment. However, Suhr ~a}. (in 

press) suggest that the proximity of a fracture zone explains many features in 

the Springers Hill area. Once again, this aspect requires further investigation. 
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3 .10 IMPLICATION OF THE SPRINGERS HILL AREA FOR THE ORIGIN OF THE 

BAY OF ISLANDS OPHIOLITE COMPLEX 

The mapped area is 2 km2 and is anomalous with respect to the rest of 

the Lewis Hills Massif and BlOC. Nowhere else in the BlOC has such an 

abundance of pyroxenite and chromitite bodies been documented. Comparison 

of mineral chemistry of harzburgites and LAL pyroxenites with the data of 

Mal pas and Strong ( 1975) and Smith and Elthon ( 1988), demonstrates that the 

Springers Hill area may represent the most residual and depleted section of 

mantle in the BlOC. This would agree with the proposed idea that the 

Springers Hill area is located in a zone of extreme partial melting and magmatic 

activity. The mineralogical and chemical signatures of harzburgite, OPXT I and 

clinopyroxenite reflect a supra-subduction zone environment, which may or may 

not be recorded in the rest of the BlOC. Jenner !U il!. (in press) propose that 

the whole BlOC has this signature. 

The mineralogy and chemistry of cumulates in North Arm Mountain need 

not be explained by high pressure (P > 1 0 kbar) polybaric crystallization of a 

MOAB parent (Eithon !U il!., 1982), if these cumulates crystallized from 

magmas of arc tholeiite composition. It is important to mention that MOAB-like 

chemistry is to be expected in a supra-subduction zone environment. The arc 

may be built on MOAB basement and MOAB-type magmatism is to be expected 

as an arc evolves (Crawford !U il!., 1981 ). 
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3.11 SUMMARY 

Three partial melting events are recorded by LALPP (excluding amphibole 

dunite and OPXT II). All occurred at P s 7-8 kbar under anhydrous or hydrous 

conditions. Harzburgite was the residue from melting and extraction of low-Ti 

tholeiite. These harzburgites then were intruded by boninitic magmas which 

·i'ractionated hydrous OPXT I ( ± dunite and chromitite). Subsequently, low-Ti 

tholeiitic magmatism returned with the formation of anhydrous clinopyroxenite 

( ± dunite and chromitite). This sequence of intrusion, and the extremely 

depleted nature of all components involved, is predicted for a supra-subduction 

zone setting of the Springers Hill area. The steep foliation of orthopyroxene in 

harzburgite, and the parallel to subparallel alignment of veins and dykes of 

dunite and pyroxenite to this foliation, was produced as asthenosphere flowed 

up below a zone of crustal accretion. 

Harzburgites with slightly LREE-depleted CNREE patterns are refractory 

residues from the removal of low-Ti tholeiitic magma. Addition of a component 

of OPXT I or Ca-amphibole to some of these harzburgites has produced U­

shaped CNREE patterns. These modified harzburgites are a potential source of 

boninitic magma. 

3. 11.1 Platinum Group Elements 

The PGE are essentially immobile during serpentinization. Ratios of Pd/lr 

used in conjunction with CNPGE diagrams are a very powerful tool for 
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understanding the petrogenesis of highly depleted ultramafic rocks where other 

more conventional trace elements fail. Further development of the PGE as 

petrogenetic tracers, particularly with the Re-Os isotopic pair, should be 

pursued in the future. Although ophiolites have not yet yielded economic 

concentrations of PGE, it is possible that pyroxenites which fractionated from 

arc-related magmas may be of economic interest. 



Chapter 4 

CHEMISTRY AND PETROGENESIS OF 

HIGH-ALUMINA PERIDOTITES, PYROXENITES AND GABBROS 

4 .1 INTRODUCTION 

Bodies of wehrlite are diagnostic of the harzburgite ophiolite type (Table 

1. 1 ), and the occurrence of HALPPG in the Springers Hill area is in keeping with 

this classification. However, the HALPPG are d ifferent from wehrlite crystal 

mush intrusions in other ophiolites, as these intrusions contain orthopyroxene 

and either are never found in harzburgite (Benn and laurent, 1987; Benn !tl al. , 

1988; Juteau ~ 21., 1988), or have sharp intrusive contacts with harzburgite 

(Murton, 1986). The observation that the HALPPG post-date asthenospheric 

deformation, is inconsistent with the model of Benn and Laurent (1987) and 

Benn ~ .a.f. ( 1988), who proposed that wehrlite intrusions are a normal product 

of magmatic activity at a fast spreading centre. One feature that is common 

to the HALPPG and most wehrlite intrusions is that olivine may be a cumulus 

phase or a xenocryst from the mantle. The difficulty in distinguishing between 

these two origins of olivine arises because adcumulate and heteradcumulate 

textures may be produced by the corrosion and recrystallization of olivine and 

spinel xenocrysts during crystallization of clinopyroxene and plagioclase as 
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poikilitic grains (Violette, 1980; Nicolas and Prinzhofer, 1983; Donaldson, 

1985). 

According to Figure 1.5, the HALPPG do not correlate w1th the wehrlite­

lherzolite crystal mush intrusions in the Mount Barren Assemblage of the CC. 

These intrusions contain orthopyroxene, but otherwise possess many features 

which ~e similar to the HALPPG (Karson ru 2.1., 1983). 

The aim of this chapter is to examine the processes involved in the 

formatinn of the HALPPG. As discussed in section 2.5, the contemporaneity 

of HALPPG, amphibole dunites and OPXT II of LALPP, and 0 2 shear zones and 

thrust faults, is evidence of magmatic and fluid activity in the lithosphere during 

intra-oceanic thrusting and obduction of the BlOC. The magmatic activity is the 

focus of this chapter, whilst the fluid activity associated with the formation of 

the HALPPG is the subject of Chapter 5. 

4.2 CHEMISTRY 

Analytical methods are described in Appendix 1; mineral analyses of 

HALPPG and LALPP-HALPPG contacts and reaction zones are presented in 

Appendix 3, and whole-rock analyses of HALPPG are presented in Appendix 4. 

The effects of alteration and subsolidus reequilibration on mineral and whole­

rock chemical analyses have been discussed in Chapter 3. 
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4.2. 1 Mineral Chemistry 

Unless stated otherwise, the compositions reported below are for 

analyses of cores of grains. 

Olivine has a composition of Mg#=80.2-90.4 and Ni0=0.10-0.40 

wt. %, and has fairly constant values of NiO with decreasing Mg# (Fig. 4.1 ). 

Within-sample variations are limited, except in gabbros where the Mg# of 

olivine varies by as much as 1. 7. 

Al-soinel ranges from approximately Cr# = 30, Mg# = 65 in dunites and 

wehrlites, to Cr# = 78, Mg# = 22 in amphibole peridotite (Fig. 4.2). This wide 

variation also is exhibited by Ti02 (Fig. 4.2). For a given Mg#, Al-spinel in 

dunite has a higher Cr# than Al-spinel in wehrlite. Within-sample and within­

grain variations are present, but these have not been studied systematically . 

Clinopvroxeru: is high-Ca diopside and occupies the compositional range 

En =43.5-48.6, Fs = 3.2-8.0 , Wo =45.1-52.3 (with the exception of sample 

L 115). Iron enrichment is very limited through the compositional range from 

dunite to gabbro. Variation diagrams are plotted in Figure 4.3. There is a clear 

positive correlation between Mg# and CaO, whereas the converse is true of 

Mg# and Al20 3 • Concentrations of Na20, Ti02 and Cr 20 3 exhibit no systematic 

change with Mg#. The Mg# of clinopyroxene is significantly higher than that 

of olivine with which it is associated. The composition of clinopyroxene varies 

to different degrees within a given sample. 

Plagioclase has been analysed only in gabbroic parts of HALPPG. 

Plagioclase is labradorite (An= 66. 7, Ab = 33.3) to bytownite (An = 75.5, 
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Ab = 24.5) ,~nd essentially is devoid of K20. 

Ca-amohibole is pargasitic and its chemistry is described and discussed 

in Chapter 5. 

4.2.2 Whole-Rock Major and Trace Element Chemistry 

The Ca0-AI20 3-Mg0 (CAM) diagram reflects the modal mineralogy of 

HALPPG, in that the progressive increases in abundances of clinopyroxene and 

:.:1en plagioclase produce enrichment in CaO and then Al/1 3 (Fig . 4.4) . A 

surprising feature of the Na20 + K20-Fe0(t)-Mg0 (AFM) diagram is that gabbros 

do not show any enrichment in FeO with increase in their proportion of alkalies 

(Fig. 4.4) . The enrichment in alkalies essentially is caused by Na20, which 

supports the evidence from mineral chemistry that minerals in HALPPG 

essentially are devoid of K20, except for rare phlogopite. In the CAM and AFM 

diagrams there is little evidence of olivine control on the composit ional 

evolution of the HALPPG. 

Variations in trace element concentrations correlate with modal 

mineralogy. Nickel and Cr decrease with decreasing modal abundance of 

olivine and Al-spinel, respectively. Scandium and V increase with increasing 

modal abundance of clinopyroxene, and Sr increases with increasing modal 

abundance of plagioclase. Zirconium is concentrated in gabbro. 

4.2.3 Whole-Ror.k Rare Earth Element Chemistry 

Appendix 1 should be read before assessing the significance of REE data 
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presented in this section. However, because absolute concentrations of REE 

in HALPPG are so much greater than those in LALPP, analyses of the former are 

more reliable than those of the latter. 

The CNREE patterns of HALPPG all exhibit LREE depletion with the 

exception of dunite (Fig. 4.5). The evolution of CNREE patterns from dunite to 

olivine clinopyroxenite is simply explained in terms of an increase in the ratio 

of clinopyroxene/olivine. The shape of the CNREE pattern of the amphibole 

peridotite is indistinguishable from those of wehrlite and olivine clinopyroxenite. 

The CNREE patterns of gabbros are controlled by clinopyroxene and plagioclase, 

and this control is in agreement with concentrations of REE in plagioclase and 

clinopyroxene mineral separates from cumulate gabbros of the Oman Ophiolite 

(Pallister and Knight, 1981 ). The CNREE patterns of amphibolite dykes are 

discussed in section 4.3. 

4.2.4 Mineral Chemistry of LALPP in Contact with HALPPG 

The mineral chemistry of phases in LALPP in contact with HALPPG have 

been examined at a scale of < 40 mm unless otherwise indicated. Olivine, 

orthopyroxene, clinopyroxene and Cr·spinel in LALPP all exhibit significant 

changes in composition adjacent to HALPPG. 

The Mg# of olivine in harzburgite (Mg# = 90.9·91.9) decreases to 

Mg# = 89.0·90.2 adjacent to HALPPG (Mg# = 80.2·90.4). Harzburgite rarely 

is in contact with HALPPG as the boundary is marked by a 7-12 mm wide zone 

of dunite which has olivine of Mg# = 8~S.3-88.5. Olivine in dykes of OPXT I has 
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Mg# = 89.6-90.9, but adjacent to HALPPG this decreases to 89.3 . Similarly, 

where u~XT I has been converted to an olivine orthopyroxenite-harzburgite 

assemblage adjacent to a dyke of HAL amphibole peridotite. olivine in the 

assemblage has Mg#=86.9. 

Orthopyroxene in harzburgite and OPXT I adjacent to HALPPG exhibits 

enrichment in CaO and Al20 3 (Fig . 4.6), in addition to FeO, relat ive to the 

unaffected protolith. Orthopyroxene in xenoliths of harzburgite record the 

greatest change. The Mg# of orthopyroxene adjacent to HALPPG is always 

lower than that not associated with HALPPG. 

The composition of Cr-spinel straddles the gap between LALPP and 

HALPPG (Fig. 4 . 7). Where amphibole dunite replaces OPXT I, spinel exhibits 

a decrease in Cr# and increase in Mg#, much the same as observed for Cr-

spinel associated with Ca-amphibole in harzburgite (Figs. 3 .3 and 4.7). 

Concentrations of Ti02 are highly variable, often higher than those in HALPPG, 

and almost always are higher than those in precursor LALPP (Fig . 4.7). Cr-

spinels in harzburgite intruded by HAL olivine clinopyroxenite exhibit smooth 

and symmetrical increases in concentrations of V20 3 and Ti0 2, which peak in 

the HAL olivine clinopyroxenite, but show less regular patterns for Mg# and Cr# 

(Fig. 4.8). 

Only one case has been studied of LAL olivine clinopyroxenite in contact 

with HAL olivine clinopyroxenite. On passing from LAL olivine clinopyroxenite 

into HAL olivine clinopyroxenite, (i) the Mg# of olivine remains approximately 

constant, (ii) the Mg# of cl inopyroxene decreases, (i ii) the concentrations of 

- - --
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Al20 3 and Ti0 2 in clinopyroxene increase, (ivl the Cr# of spinel decreases, and 

(v) the Mg# of spinel increases (Fig. 4.9). 

4.2.5 Interpretation 

4.2.5a HAL Gabbro 

No clear fractionation trend is apparent for the HALPPG. The HAL 

gabbros do not represent magma compositions because of their (il hig'l whole­

rock Mg#, (ii) high Mg# of olivine, and (iii) positive Eu anomaly which is 

supportive of textural •9vidence for the accumulation of plagioclase. Using 

sample L294 as an example, the anorthite content {An= 69) of plagioclase is 

much lower than predicted for olivine of Mg# = 83 with which it coexists . As 

a comparison, leucogabbros in North Arm Mountain with olivine of Mg# = 76-88 

have plagioclase of An= 78-88 (Komor ~ aJ.., 1987). This ~sscciation of high 

MgO in olivine and relatively high Na20 in plagioclase is portrayed in the AFM 

diagram by the lack of FeO enrichment with increasing proportion of Na20 (Fig. 

4.4). Consequently, the HALPPG do not exhibit a tholeiitic or calc-alkaline 

trend, but a trend where enrichment in FeO is suppressed below that of the 

normal calc-alkaline trend. This trend may be explained by combined 

assimilation and crystal fractionation. The effect of assimilation of rocks rich 

in MgO by a fractionating magma. is to produce a less FeO-enriched, more 

alkaline derivative magma than would be prnduced by crystal fractionation 

alone (Kelemen, 1986). Such a process is believed to have operated during 

formation of the HALPPG and is considered in section 4.3. 
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Another striking feature of the HAL gabbros is their high concentration 

of Sr (320-860 ppm~ These high values and associated positive Eu anomalies 

(Fig. 4.5), attest to the precipitation of plagioclase. Gabbros in the BlOC have 

significantly lower concentrations of Sr (60-290 ppm) (Malpas, 1976; Komer 

~ 2f., 1987; Komer and Elthon, 1990). as do gabbros from the Oman Ophiolite 

(70-200 ppm) (Lippard m 2.!., 1986). Such high concentrations of Sr in HAL 

gabbros indicate that plagioclase could not have been retained in the magma 

source during melting, unless concentrations of Sr in the source were extremely 

high. Alte1natively, the magma from which HAL gabbro precipitated could have 

been contaminated by seawater or continental material. 

4.2.5b Contacts between HALPPG and LALPP 

Chemical differences between LALPP and HALPPG confirm field and 

petrographic observations that these two associations are not .::ogenetic. This 

especially is supported by steep chemical and mineralogical gradients at the 

contact between LALPP and HALPPG, which imply extreme disequilibrium and 

limited reequilibration, i.e., the contact represents a reaction front which has 

not been smoothed by subsolidus reequilibration. The mechanisms by which 

LALPP are modified are (i) by the interaction of magma and fluid as evidenced 

by the presence of HAL clinopyroxene and Ca-amphibole in LALPP, and (ii) by 

diffusion according to the criteria of McCaig and Knipe (1990), as evidenced 

by smooth compositional variations and symmetrical profiles in Figure 4.8. 

Mineral chemistry described in section 4.2.4, demonstrates that in the 
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immediate vicinity of HALPPG, LALPP experience a depletion in Si. especially 

by the incongruent breakdown of orthopyroxene to olivine and spinel, and an 

enrichment in Ti, AI, c~ and Fe. In many cases, Cr-spinel experiences 

Mg = =Fe exchange favouring Mg in the spinei structure, in order to 

accommodate the increase in Al20 3 as Cr-spinel evolves toward MgAI20 4 by 

Cr = =AI exchange. By these exchange reactions, Cr-spinel in LALPP is 

converted to Al-spi:1el in HALPPG. All these compositional changes are very 

similar to those reported by Evans ( 1985) for the Zambales Ophiolite, 

Philippines, where peridotites have reacted with mafic mat9rial impregnated 

from mafic dykes. 

4.:S PETROGENESIS OF HIGH-AI PERIDOTITES, PYROXENITES AND GABBROS 

4.3. 1 Interaction between LALPP and the Parent Magma of HALPPG 

Evidence that reaction has occurred between LALPP and the parent 

magma and associated fluid of HALPPG is supported by (i) reaction zones at the 

contact between HALPPG and LALPP, (ii) mineral compositions in this zone that 

bridge the compositional gap between LALPP and HALPPG, (iii) impregnations 

of HAL clinopyroxene and Ca-amphibole in LALPP, (iv) the lack of FeO 

enrichment exhibited by HALPPG, and (v) HAL gabbros having plagioclase with 

a lower content of anorthite than predicted from the Mg# of coexisting olivine. 
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4.3.1a Assimilation and Crystal Fractionation 

Several reactions best summarize the evidence for reaction of m~gma 

ar•d its associated fluid with LALPP: 

[R4. 1 1 Mg-01 + Opx + Cpx + Cr-Sp + Fluid = = 

[R4.2} 

[R4.3j 

[R4.4] 

0: (lower Mg#) + Cr-AI-Sp + Ca-Amph + Phlog + Si-Fiuid 

Mg-01 + Opx + Cpx + Cr-Sp + Magma = = 

01 (lower Mg#l + AI-Sp + Cpx {assemblage A} 

{A} + Magma 

01 (even lower Mg#) + AI-Sp + Cpx + Plag {assemblage 8} 

{8} + Magma = = Cpx + Plag 

At low pressure, fluid exsolves from magma (Burnham, 19791 and a fluid 

front advances ahead of the magmatic front. In so doing. it would convert 

pyroxene-bearing LALPP to pyroxene-poor LALPP or dunite with affinities to 

HAL dunite (reaction R4.1 ). 

F'3actions R4.2 to R4.4 describe the evolution of the HALPPG in terms 

of magma/rock ratio . In the gabbros, magma/rock ratios are highest and 

plagioclase crystallizes before clinopyroxene. As the magma/rock ratio 

decreases, dyke-like intrusions grade into impregnations along olivine grain 

boundaries. This is observed as gabbro dykes grade into HAL dunites by the 

progressive decrease in modal abundance of plagioclase and then 

clinopyroxene. Hence, clinopyroxene in wehrlite represents the complete 

reaction of magma with olivine . These relations explain the crystallization 

sequence of plagioclase before clinopyroxene in gabbros, and the appearance 

- - - - . ' -- - - -
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of clinopyroxene before plagioclase in wehrlites as the proportion of 

impregnated material in the olivine matrix decreases. In terms of field relations, 

the highest magma/rock ratios are recorded in the northern extent of the 

HALPPG, where dunite is absent and gabbro, olivine clincpyroxenite and 

wehrlite are most abundant. 

4.3. 1 b Thermodynamics and Kinetics of Reactions 

Much of the discussion in this section is based on the work of Kelemen 

( 1986) and Kelemen and Ghiorso ( 1986). 

Reaction between LALPP and fluid-bearing magma parental to HALPPG 

was possible only if the temperature of LALPP was high enough to permit 

reaction. Temperatures estimated from assemblages of hydrous phases in 

amphibole dunite and OPXT II of LALPP are 750-1050°C (section 5.4), which 

approximate the temperature of the lithosphere at the time of formation of 

HALPPG. The addition of magma to the lithosphere would locally have raised 

the ambient temperature at sites of reaction, and the reactions themselves may 

liberate heat. Consequently, it is considered that the temperature of LALPP 

was high enough to permit reaction. 

Thermodynamic modelling by Kelemen and Ghiorso ( 1986) shows that 

isothermal assimilation of olivine-rich rocks in hydrous dioritic magma is 

spontaneous and exothermic because reactions involve large negative changes 

in enthalpy, volume and free energy of the magma-rock system. This system 

may approximate the LALPP-magma system; a negative volume change during 
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reaction of magma with LALPP may have produced fracturing concordant with 

5 1 in LALPP, as evidenced by the concordance of dykes and foliations of 

HALPPG with dykes and 5 1 of LALPP. However, upward doming of the wide 

0 2 shear zone arounti the nortt-.ern part of the mapped area during the formation 

of the HALPPG, demonstrates that the overall volur.1e cr.ar.ge during the 

formation of the HALPPG was positive. This results because not all the fluid­

bearing magma reacted, and the volume of unreacted magma exceeded the 

negative volume change produced by reaction. 

Where fracturing could not be sustained, magma was injectP.d along grain 

boundaries of olivine in a manner demonstrated experimentally by Stolper 

( 1980) anci Watson ( 1982). Viscosity influences the kinetics of infiltration and 

is related to the surface energy difference which determ·nes the equilibrium 

wetting ar.gle in a given system (Bulau and Waff, 1979; McKenzie, 1984). The 

ability of silicate magma to infiltrate is greatly enhanced by H20, which 

de polymerizes the mc!ten silicate phase and lowers the viscosity of the magma 

(Burnham, 1979). H20 also is important in diffusion of magmatic components 

into wall-rocks, as diffusion is significantly enhanced in the presence of H20 

(VValther and Wood, 1984). Infiltration and diffusion both have been important 

in producing HALPPG from LALPP (section 4.2.5b). 

High activities of H 20 and alkalies in the magma would cause dissolution 

of pyroxene and greatly expand the olivine stability field (Kushiro, 1975). Ca­

amphioole and phlogopite attest to the presence of H20 and alkalies in the 

ma~1ma, but the formation of clinopyroxcr.a from magma reacting with olivine 
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suggests that activities of H20 and alkalies were low enough to permit stability 

of clinopyroxene. Amphibole dunite and OPXT II in LALPP are evidence that 

the activities of H 20 and alkalies in HALPPG were kept low by the release of 

these components into LALPP. 

At the present time, it is difficult to distinguish between rocks 

precipitated entirely from the magma and those which have been recrystall ized 

and reacted in the presence of magma. Even cumulate textures and chemistry 

of Al-spinel and olivine in the HALPPG are probably the product of in-~ 

recrystallization of Cr-spir.~: and Mg-rich olivine of LALPP parentage in the 

presence of the magma and its associated fluid. 

4 .3.2 Possible Parent Magma of the HALPPG 

It has been previously stated that the HAL gabbros do not represl'!nt the 

composition of the parent magma of the HALPPG. The compositions of HAL 

gabbros, olivine clinopyroxenites and wehrlites do, however, reflect the 

composition of the parental magma. They require that the magma was fluid­

bearing, LREE-depleted, 5r-enriched, and was capable of precipitating 

plagioclase before clinopyroxene. 

In the upper thrust slice in the northern part of the mapped area there are 

brown amphibolite dykes < 1 m wide, which intrude uncorrelated wehrlite and 

gabbro. These dykes have sharp contacts with their host and exhibit variable 

deformation. Three samples have been examined: 50194, 50380 (kindly 

donated by 5. Dunsworth) and L341. Mineralogically they consist of 
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plagioclase, Ti-ferroan pargasite, clinopyroxene and minor opaques. Plagioclase 

and pargasite are most abundant and the latter may reach 60 modal % . 

Clinopyroxene contains abundant inclusions of pargasite. Orthopyroxene and 

olivine have not been found. The amphibolite dykes have CNREE patterns very 

similar to those of HALPPG (Fig. 4.5). 

The amphibolite dykes have relatively low Si02, low P20 5 , high CaO and 

high Mg#, which correlate them with diabase dykes of the Lewis Hills Depleted 

Suite of Casey ~ a.J.. ( 1985) and Elthon ~ a.J., ( 1986). Petrographic and REE 

data are unavailable for the diabase dykes, but they are high in Sr ( 1 1 7-649 

ppm) (Eithon !tl g!., 1986). All samples studied by Elthon ~ a.J.. ( 1986) in the 

vicinity of the Springers Hill area belong to the lewis Hills Depleted Suite. The 

diabase dykes of the Lewis Hills Depleted Suite are syn- to post-kinematic with 

respect to deformation in the Mount Barren Assemblage (Casey e..t ru., 198 5 l . 

These dykes often strike ENE (Casey e.t aJ.., 1985), which is approximately 

consistent with the orientation of HAL dykes of gabbro and olivine 

clinopyroxenite. Consequently, there may be a genetic link between diabase 

dykes of the Lewis Hills Depleted Suite, amphibolite dykes in the uncorrelated 

wehrlite and gabbro, and the HALPPG. 

4.3.3 Modelling of Magma-Rock Interactions 

In order to determine whether the diabase dykes of the lewis Hills 

Depleted Suite and amphibolite dykes represent the parent magma of the 

HALPPG, it is convenient to model magma-rock interactions on AFM and CAM 
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diagrams (Fig. 4.10). This modelling is at best semi-quantitative. As will be 

expounded in section 4.4, it is reasonable to assume that dykes having sharp 

contacts with their hosting metamorphosed mafic rocks are close to their 

source region and record little if any crystal fractionation or assimilation. This 

is supported by the high Mg# of amphibolite dykes (Mg# = 65-71) and diabase 

dykes (Mg# = 56-77 (Eithon it g!., 1986)), which may be controlled by fe;·roan 

pargasite (Mg# = 68) in the case of amphibolite dykes. 

The FeO enrichment trend followed by the diabase dykes is assumed to 

represent crystal fractionation alone (Fig. 4. 1 Oa I. Based on field, petrographic 

and chemical evidence, reaction of the magma of these dykes and amphibolite 

dykes with LAL harzburgite, dunite, OPXT I and clinopyroxenite will generate 

HAL wehrlite, olivine clinopyroxenite and clinopyroxenite. HAL gabbros do not 

represent complete reaction of the magma with LALPP; their Mg# is controlled 

by reaction which produced clinopyroxene and perhaps olivine, whereas their 

relative proportions of alkalies reflect the compositional evolution of the magma 

(Fig. 4. 1 Oa). The AFM diagram demonstrates that following reaction, the 

resultant magma will have a higher Mg# than predicted from its proportion of 

alkalies, i.e., plagioclase with a relatively low anorthite content can coexist with 

olivine with a relatively high Mg#, as is observed in the HAL gabbros. 

The CAM diagram (Fig. 4.1 Obi is more sensitive of the reactive system 

magma-LALPP, because it considers proportions of element oxides that are 

more sensitive of the system than the AFM diagram. The triangle HC-MA-LO 

in Figure 4.10b represents the three component system of 100 % unreacted 
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olivine and orthopyroxene in LAL dunite, harzburgite and OPXT I (LOI, 100 % 

HAL clinopyroxenite produced by 100 %reaction of magma with LO (HC), and 

100 % magma not having experienced any reaction with LO (MAl. LAL 

clinopyroxenite is a minor reactant relative to LAL olivine and orthopyroxene. 

and is not considered for simplicity. Most of the whole-rock compositions of 

HALPPG are restricted to the triangle HC-MA-LO, which supports the field and 

petrographic evidence that they are composite rocks containing variable 

proportions of the end-members HC, MA and LO. The relative proportions of 

these end-mP.mbers in a sample, as estimated from the triangle HC-Mt.-LO. 

agree well with the modal abundances of minerals in the sample. Problems 

arise with the HAL gabbros because the proportion of unreacted magma (MA) 

is overestimated due to the accumulation of large amounts of plagioclase, 

which drives the composition of HAL gabbro toward anorthosite (indicated by 

P in Figure 4.10b). Despite this problem, Ca0/AI20 3 ratios of HAL gabbros 

(0. 70-0 .80, average 0. 741 are similar to those in dykes of amphibolite (0. "10· 

0. 76, average 0. 731 and diabase (0.46-0.98, average 0. 731. Consequently, the 

magma controls this ratio in HAL gabbros. 

In summary, Ca0/AI20 3 ratios and relative proportions of alkalies in HAL 

gabbros reflect the composition of the magma, whereas their Mg# is controlled 

by olivine and clinopyroxene produced by reaction of magma w ith olivine and 

orthopyroxene in LAL dunite, harzburgite and OPXT I. Olivine in HAL gabbro 

may represent incompletely reacted xenocrysts, which have reequilibrated to 

a lower Mg# by interaction with the magma. ~lternatively, olivine may have 
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formed by chemical stoping (Watson, 1982), whereby chemical solution of 

olivine is accompanied by simultaneous precipitation of olivine in the magma 

reservoir (represented by HAL gabbro). In a magma which does not have 

olivine on the liquidus, as appears to be the case for the amphibolite dykes, the 

process of chemical stoping enables olivine to appear as a liquidus phase by 

driving the magma in~o the olivine stability field. Considering all the evidence 

presented in this section, magmas represented by the diabase dykes of the 

Lewis Hills Depleted Suite and amphibolite dykes are capable of reacting with 

LALPP to produce HALPPG. 

4.4 THE PARENT MAGMA OF THE HIGH-AI PERIDOTITES, PYROXENITES 

AND GABBROS 

4.4. 1 Origin of the Parent Magma 

Diabase dykes of the Lewis Hills Depleted Suite were not derived from 

magmas produced by partial melting of the mantle because they are not 

saturated with respect to orthopyroxene (Eithon .e.t a.t., 1986). Diabase dykes 

(and amphibolite dykes) are significantly different in composition from MOAB, 

island arc tholeiites, calc-alkaline basalts and within-plate basalts (Casey e.t. a[. , 

1985). In order to explain the unusual chemistry of Si02 undersaturation and 

low concentrations of incompatible trace elements of diabase dykes, Elthon e.t. 

m. ( 1986) proposed that these dykes formed from magmas derived by partial 

melting of gabbroic and troctolitic cumulates at 2-3 kbar within a fracture zone. 
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This partial melting occurred under dominantly anhydrous conditions in order 

to produce Si02-undersaturated magmas (Eithon e.t a.f., 1986). There are three 

major problems with this model: 

1) Fracture zones are sites of fluid circulation at temperatures as high as 900°C 

(Kimball e.t a.f., 1985), where fluid and stress induce ductile deformation and 

equilibrium recrystallization of gabbro under amphibolite facies conditions 

(Honnorez !U 2!., 1984). Under these conditions it is unlikely that partial 

melting of gabbroic and troctolitic rocks could have occurred under anhydrous 

conditions. 

2) Amphibolite dykes are syn-kinematic with respect to deformation in 0 2 shear 

zones (section 2.2), and diabase dykes of the lewis Hills Depleted Suite are 

syn- to post-kinematic with respect to deformation in the Mount Barren 

Assemblage (Karson, 1984). This deformation is attributed to intra-oceanic 

thrusting and obduction of the BlOC and is unlikely to record deformation in a 

fracture zone (section 2.5). 

3) The HALPPG equilibrated at pressures of 5-9 kbar (section 2.4.4). 

Evidently, it is necessary to have a period of magmatism and associated 

fluid activity during intra-oceanic tl'lrusting and obduction of the BlOC. The 

composition of amphibolite dykes indicates that amphibolite in the metamorphic 

sole and Mount Barren Assemblage may have been the source of this magma. 

Melting under hydrous conditions is documented in amphibolites of the Mount 

Barren Assemblage, where net veins and massive bodies of plagiogranite are 

associated with granulite facies mafic gneiss, which is the residue of partial 
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melting and magma extraction (Karson, 1984). 

Plagiogranites produced by partial melting of amphibolite are enrrched in 

Si02 relative to Al 20 3 , depleted in Sr. and enriched in LREE and Eu, because of 

preferential melting-out of plagioclase and stabilization of amphibole and Ca­

plagioclase in the amphibolite residue (Helz, 1973, 1976; Pedersen and Malpas, 

1984). ThP.se plagiogranite magmas are unsuitable as parents to the HALPPG. 

However, continued melting of amphibolite beyond the point required for the 

production of plagiogranite, or second-stage melting of the amphibolite residue 

from which plagiogranitic magma had been extracted, will generate magma 

approaching the composition of amphibolite. This magma will be fluid-bearing, 

Si02-undersaturated, LREE-depleted, and have a f13t to positive Eu anomaly. 

Such a composition is identical to the amphibolite dykes. High concentrations 

of Sr in HAL gabbros attest to the melting of plagioclase and involvement of 

seawater. 

4.4.2 Thermal Regime for Partial Melting of Amphibolite 

Partial melting of amphibolite to produce magma saturated with 

plagioclase before amphibole requires T > 925°C and P(H20) > 2 kbar (Yoder and 

Tilley, 1962). Several sources of heat may produce these temperatures in 

amphibolite: 

1 I Wehrlite-lherzolite crystal mush intrusions in the Mount Barren Assemblage 

(Figure 1. 5) . Many diabase dykes of the lewis Hills Depleted Suite are spatially 

associated with these intrusions (Eithon itt aJ., 1986). 
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2) Subduction of a dying spreading centre (Boudier ru 21 .• 1988; Ernewein ~ 

£t .• 1988). 

3) Juxtaposition of hot abducted lithosphere (T = 1 OOO"Cl against subducted 

lithosphere (Malpas, 1979b; Boudier ru a!., 1988). 

4) Frictional heating during obduction (Malpas, 1979b; Pavlis, 1986). 

5) Thickening of the lithosphere (England and Thompson, 1984). 

These sources of heat constrain distinct tectonic environments. The 

question is how does all the syn- to post-kinematic magmatism recorded by 

diabase dykes of the Lewis Hills Depleted Suite, amphibolite dykes, 

plagioqranites, wehrlite-lherzolite crystal mush intrusionc;, and HALPPG re:ate 

to a tectonic environment. This question is addressed in section 4 .5. 

4.5 ORIGIN OF BODIES OF WEHRLITE IN OPHIOLITES 

Field and petrographic evidence suggests that the HALPPG are quite 

different from wehrlite crystal mush intrusions in ophiolites (section 4.1 ). This 

difference is borne out by mineral and whole-rock chemistry in the Oman 

Ophiolite, where gabbros associated with wehrlite exhibit FeO enrichment and 

have 50-180 ppm Sr (Lippard ru aJ.., 1986), and wehrlites have spinel of 

Cr# =50-70, Mg# = 5-70 and plagioclase of An= 73-95 (Ernewein e..t a!., 1988). 

Despite these differences, wehrlite crystal mush intrusions in the Oman 

Ophiolite may indicate a genetic link with the environment of formation of the 

HALPPG, as they are contempor~neous with magmatism at a ridge during intra-
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oceanic thrusting and obduction of the ophiolite (Boudier jU ru., 1988; Ernewein 

m at., 1988; Juteau jU a!., 1988). Picritic to ankaramitic dykes which are 

cogenetic with these wehrlites (Ernewein ~a!., 1988; Juteau ~ 2!., 1988), 

correlate with the Lasail Lava Unit and the Alley and Clinopyroxene-phyric lava 

units, which record an arc seamount environment and a rifting event in a supra­

subduction zone, respectively (Alabaster~ .a!., 1982). 

In conclusion, although the HALPPG appear quite unique, these and 

wehrlite crystal mush intrusions suggest a link between fluids within 

metamorphic soles derived from oceanic crust, metasomatized mantle 

peridotites, and forearc igneous processes leading to the formation of wehrlite. 

To test for this link, age determinations of all components involved are crucial. 

4.6 SUMMARY 

The HALPPG do not represent crystal mush intrusions, but an extensive 

zone of lithospheric mantle metasomatized during obduction of the BlOC. Fluid­

be;uing, Si02-undersaturated, LREE-depleted, Sr-rich magmas were produced 

by llartial melting of dominantly amphibole and plagioclase in amphibolite. 

These magmas reacted with LAL dunite, harzburgite, OPXT I and 

clinopyroxenite to produce HALPPG. A situation of this type suggests a link 

between fluids within metamorphic soles derived from oceanic crust, 

metasomatized mantle peridotites, and forearc igneous processes leading to the 

formation of wehrlite. 
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Reactions which produced the HALPPG involved a fluid front preceding 

a magmatic front. The clinopyroxene content of the reaction product is 

proportional to the extent of reaction, which in turn is proportional to the 

magma/rock ratio. Increasing modal abundances of clinopyroxene and then 

plagioclase reflect a.1 increasing magma/rock ratio . Unreacted magma is 

represented by plagioclase, which is cumulus in HAL gabbros, and minor Ca­

amphibole. The Mg# of HAL gabbros is controlled largely by the Mg# of the 

LALPP with which the magma reacted. Ca0/AI20 3 ratios and relative 

proportions of alkalies in HAL gabbros essentially were unaffected by reaction 

and reflect the composition of the original magma and the compositional 

evolution of the magma. Through reaction with LALPP, the magma evolved 

toward Si02 saturation, as the precipitating ferromagnesian mineral changed 

from Ca-amphibole (amphibolite dyke) to clinopyroxene (HAL gabbro dyke). 

Evidently, the chemical and mineralogical composition of a magma may 

change significantly during magma-rock interactions, to the point where it is 

difficult to define the original composition of the magma. For example, a 

magma which does not have olivine on the liquidus, may react with an olivine­

bearing solid by chemical stoping (Watson, 1982) to the point where olivine 

appears on the liquidus. Such possibilities must be considered when modelling 

magma evolution. 



Chapter 5 

COGENETIC ORIGIN FOR 

AMPHIBOLE DUNITE, TYPE II ORTHOPYROXENITE, 

HIGH-ALUMINA PERIDOTITES, PYROXENITES AND GABBROS, 

AND D2 SHEAR ZONES 

5. 1 INTRODUCTION 

A knowledge of the physical and chemical behaviour of fluids is central 

to our understanding of the upper mantle. Fluids have a tremendous influence 

on the physics and chemistry of mineral stability, heat and mass transport, 

melting, and processes of deformat:on and recrystallization. Much attention in 

mantle petrology focuses on the influence of fluids in the development of 

petrographic features and chemical variations in mantle samples. In recent 

years, this has culminated in compilations devoted solely to this topic, 

especially mantle metasomatism (Menzies and Hawkesworth, 1987a; Morris 

and Pasteris, 1987; Nixon, 1987). Despite this interest, a hitherto poorly 

documented aspect of mantle petrology is the role of fluids in ophiolite mantle 

sequenc : s. Perhaps a reason for this is that magmas associated with ophiolites 

often are considered anhydrous. With the occurrence of boninites and hydrous 
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wehrlites in ophiolite sequences. there is a need to consider fluid activity 0 

This chapter attemp~s to place some constraints on fluid processes in 

ophiolitic upper mantle, by investigating amphibole-bearing harzburgite, 

amphibole dunite, OPXT II, HALPPG, and 0 2 shear zones in the Springers H•ll 

area. The field, petrographic and chemical features of these have been 

documented in chapters 2, 3 and 4, and should be referred to if necessary 0 

Certain points are crucial and must be emphasized : 

1 l The HALPPG formed by reaction of fluid-bearing magma with LALPP under 

lithospheric conditions. Amphibole in LALPP is concentrated at the contact of 

LALPP with HALPPG. Amphibole dunite and OPXT II are often rooted in the 

rnarginal zone of HALPPG and are most abundant in D2 shear zones which are 

contemporaneous with HALPPGo 

2) Olivine-orthopyroxene clusters in harzburgite were produced by the 

incongruent breakdown of orthopyroxene to olivine and minor spinel in the 

presence of fluid (Figs. 2. 7 and 2o8)o In amphibole-bearing harzburgile and 

amphibole dunite, grains of Cr-spinel which recrystallized in the presence of 

fluid are associated with Ca-arnphibole and phlogopite (Figs. 209 and 2033). 

Some olivine in LAL dunite recrystallized to coarse grains in the presence of 

fluid (Fig. 2.1 0). 

3) The mineral and whole-rock chemistry of OPXT II is very similar to that of 

harzburgite. The bulk modal composition of web-textured OPXT II and its 

dunite matrix is harzburgite. 

As already stated in section 2.5 and Chapter 4, these points emphasize 
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that OPXT II, HALPPG, 0 2 shear zones and amphibole in dunite and harzburgite 

are contemporaneous. They all relate to magmatic and fluid activity during 

intra-oceanic thrusting and obduction of the BlOC. 

5.2 MINERAL CHEMISTRY 

5 .2 .1 Ca-Amphibole 

Ca-amphibole exhibits a continuum of cc·mpositions from tremolit ic to 

pargasitic end-members as Na + K (formula units) increases and Si (formula 

units) decreases (Fig. 5. 1 a). Ca-amphibole in harzburgite and OPXT II generally 

is tremol itic, whereas amphibole dunite contains edenite-pargasite amphibole. 

Ca-amphibo:es in HALPPG contain a large component of pargasite, and overlap 

with the compositions of Ca-amphibole in amphibole dunite and OPXT II. Ca­

amphibole in harzburgite, amphibole dunite and OPXT II exhibits a relatively 

narrow range of Mg#, but wide range of Na + K (formula units); Ca-amphibole 

in HALPPG exhibits the opposite trend (Fig. 5. 1 b). The Mg# of Ca-amphibole 

is always higher than that of olivine and orthopyroxene with which it is 

associated . An exception occurs in the web-textured OPXT II sample L271, 

where the Mg# of olivine is greater than that of Ca-amphiboiP. Concentrations 

of TiO 2 in Ca-amphibole (Fig. 5.1 c) are 0 .04-0.14 wt.% in harzburgite and 

OPXT II, with the exception of 1.4 wt.% Ti02 in the web-textured OPXT II 

sample l271. In amphibole dunites, Ti02 =0.07-0.58 wt. %. Ca-amphibole in 

the HALPPG has Ti02 = 0 .01 -3.1 wt. %. Ca-amphibole exhibits within-sample 
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variation of all elements. 

5.2.2 Cr-Spinel 

Cr-spinel exhibits significant w ithin-grain and within-sample variation. but 

certain trends have been identified . In harzburgite, Cr-spinel has a lower Cr# 

where it is associated with Ca-amphibole than where it io; not (Fig. 3.3a). A 

detailed study of a grain of Cr-spinel associated with Ca-amphibole in 

harzburgite sample l173, reveals little w ithin-grain variation (Fig . 2.9) . Within 

the same sample, grains of Cr-spinel associated w ith Ca-amphibole cover a 

wide compositional range of Cr#; 59-71, Mg# ;44-54. A wide range o f 

compositions occur in amphibole dunite (Fig. 3.3b), and extreme w ithin-grain 

variation is preserved in some samples (Fig. 5 .2) . Cr-spinel in OPXT II is very 

similar to that in harzburgite (Fig. 3.3). 

5 .3 INTERACTION BETWEEN FLUID Af~D LOW-AI PERIDOTITES AND 

PYROXENITES 

5 .3. 1 Source of Fluid 

The contemporaneity of rock types and deformation (02) associated with 

fluid, necessitates a common source of f luid and a well defined period of flux 

of fluid. Several features support a source of fluid in, or associated with, 

HALPPG: (i) the occurrence of Ca-amphibole and phlogopite in l AU=»P and 

HALPPG, (ii) the continuous chemical evolution of Ca-amphibole be~ weer 
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LALPP and HALPPG, (iii) the rooting of some amphibole dunites and OPXT II in 

the marginal zone of HALPPG, (ivl the syn-kinematic formation of HALPPG with 

0 2 , and (vi the common occurrence of amphibole dunite and OPXT II in 0 2 

shear zones. 

5.3.2 Incongruent Breakdown of Orthopyroxene to Olivine 

Bowen and Tuttle ( 19491 showed that orthopyroxene transforms to 

olivine in the presence of H20-fluid. This concept has since been applied to the 

formation of dunite bodies by the metasomatic transformation of harzburgite 

in the Canyon Mountain Ophiolite, northeast Oregon (Dungan and Ave 

Lallemant, 1977). Many of the features described by Dungan and Ave 

Lallemant { 19771 are found in the Springers Hill area, such as the replacement 

of orthopyroxene by amphibole, and the abundance of amphibole dunite at the 

contact between dunite and OPXT I. 

Olivine-orthopyroxene clusters in harzburgite formed at the same time as 

amphibole dunite and OPXT II; all formed in the presence of fluid. The clu~ters 

are poorly equilibrated and represent the incongruent breakdown of 

porphyroclasts and neoblasts of orthopyroxene to olivine and minor spinel. 

Breakdown occurred locally, in-~, and at a grain by grain scale, depending on 

the presence of fluid. Grains of orthopyroxene at different stages of 

breakdown, attest to heterogeneous distribution of fluid in harzburgite. The 

conversion of orthopyroxene to olivine orCa-amphibole appears isovolumetric. 

Silica is liberated by the conversion of orthopyroxene to olivine (Nakamura and 
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Kushiro, 19741; the consequence of this is addressed in section 5.3.4. 

5.3.3 Formation of the Assemblage Phlogopite-Amphibole-Oiivine-Spinel 

The assemblage phlogopite-amphibole-olivine-spinel is found in LALPP 

and HALPPG. Phlogopite and amphibole are important constituents of many 

mantle xenoliths in kimberlites and alkali basalts, but they are rare in orogenic 

and ophiolitic peridotites. In both occurrences, spinel and hydrous phases are 

associated, but two different modes of formation are postulated: 

1) In the orogenic and ophiolitic peridotites, the hydrous phases usually are 

associated with chromite in pediform chromitites. Inclusions of olivine, ortho­

and clinopyroxene, edenite-pargasite amphibole, phlogopite and plagioclase 

occur in chromite (Johan §1 .a!., 1983; Talkington §1 g!., 1984; Aug~. 1987; 

Leblanc, 1987; Leblanc and Temagoult, 1989; Bacuta e..t a!., 19901. An 

extensive discussion of the origin of these inclusions is inappropriate here. It 

is sufficient to say that .ne silicate inclusions in chromite are believed to be 

magmatic phases crystallized at high temperature with their chromite host 

(Talkington ~ 21., 1984; Aug6, 1987; Bacuta ~a!., 19901. 

2) Based on textural criteria from xenoliths sampled by kimberlites, spinel and 

hydrous phases often are associated as a result of metasomatic reaction. 

Phlogopite frequently is observed replacing orthopyroxene (Kushiro and Aoki, 

1968; Dawson, 1987; Hatton and Gurney, 1987; Erlank ~ 2f., 19871, and 

garnet and clinopyroxene (Hatton and Gurney, 1987; Erlank ~ £[., 1987). 

Phlogopite forms more easily from orthopyroxene than clinopyroxene or garnet, 
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as the latter minerals possess substantial amounts of Ca which cannot be 

accommodated in the structure of phlogopite (Hatton and Gurney, 1987). Of 

course, Ca is involved in the formation of amphibole. Spinel, as a reaction 

product, is an essential constituent where phlogopite replaces garnet, olivine, 

and ortho- and clinopyroxene; the amount of Cr-spinel in phlogopite-bearing 

garnet peridotites is indicative of the amount of garnet replaced (Erlank m a..[., 

1987). In metasomatic reactions, amphibole appears generally after phlogopite, 

but in rare cases, pargasite and edenite accompany replacement of garnet by 

phlogopite (Erlank §.1 a!., 1987). 

The textural relations of the assemblage phlogopite-amphibole-olivine­

spinel (Figs. 2.9 and 2.33), and the occurrence of such an assemblage in 

harzburgite, which is a refractory residue from partial melting and complete 

removal of magma, disagree with a magmatic origin. A metasomatic origin for 

phlogopite and amphibole is more likely, but garnet and clinopyroxene were not 

present as reactants, and orthopyroxene was low in Al20 3 • Cr-spinel could 

have supplied Mg and A' needed for the production of phlogopite and eden!te­

pargasite amphibole. Cr-spinel was present in the rock prior to metasomatism, 

and would have also been produced by the incongruent breakdown of 

orthopyroxene to olivine. The involvement of Cr-spinel in reaction is supported 

by its variable Cr# and Mg# in amphibole dunite, and its textural disequilibrium 

with respect to phlogopite and Ca-amphibole. 

The formation of olivine-amphibole-spinel symplectitic intergrowths (Fig. 

2.33) can be accounted for by reaction R5.1 (Jenkins, 1983; Schneider and 
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Eggler, 1986; Piccardo H .a! .• 1988): 

[R5.1 I Opx + Cpx + Sp + Fluid - - 01 + Amph 

The reaction involves clinopyroxene. With the exception of LAL 

clinopyroxenite, which appears to be a relatively minor rGactant, protoliths for 

the metasomatites did not contain significant clinopyroxene or Ca. However, 

significant quantities of Ca were cont;tined in the fluid-bearing magma which 

was parental to the HALPPG. 

In summary, Ca-amphibole and phlogopite could not have been produced 

from LALPP simply by the addition of H20, although Mg and AI could have been 

supplied by orthopyroxene and Cr-spinel. Mineral chemistry of hydrous phases 

suggests that at the site of formation of Ca-?.mphibole and phlogopite the fluid 

contained appreciable concentrations of C:i, I'Ja, K, Ti, AI and H20 . The 

breakdown of orthopyroxene during reaction liberated Si into the fluid. 

5.3.4 Origin of Type II Orthopyroxenite 

Field relations, petrography, and mineral and whole-rock chemistry are 

supportive of a non-r.ogenetic origin for OPXT II and OPXT I, but a cogenetic 

origin for OPXT II, amphibole dunite and HALPPG. The fluid-bearing magma 

parental to the HALPPG had alkaline affinities (Chapter 4). ThE: fluid ex:;olved 

from this magma, or liberated during the reaction of this magma with LALPP, 

was Si02-undersaturated. This fluid reacted with Cr-spinel and LAL pyroxene, 

and Si was liberated. Reaction continued until the fluid equilibrated with L/\L 

pyroxene, i.e ., until the fluid was saturated with Si. At this point, the fluid was 
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in equilibrium with harzburgite, OPXT I and LAL clinopyroxenite, but in 

disequilibrium with dunite. Consequently, as the Si-saturated fluid passed from 

harzburgite, OPXT I or LAL clinopyroxenite into dunite, it reacted with olivine 

to form pyroxene (reaction R5.2): 

[R5.2) 01 + Si-saturated Fluid = = Px + Si-undersaturated Fluid 

Fluid in equilibrium with harzburgite and OPXT I reacted to form OPXT II. 

Clinopyroxenite in websteritic veins associated with OPXT II, indicate that the 

fluid was in equilibrium with LAL clinopyroxenite. The scarcity of clinopyroxene 

associated with OPXT II, agrees with the field evidence that LAL 

c;linopyroxenite was a relatively minor reactant with respect to harzburgite and 

OPXT I. Such an origin for OPXT II is similar to the hydrothermal production 

of pyroxene according to Bowen and Tuttle ( 1949). In keeping with their 

model, OPXT II does not extend into the HALPPG, which are the source of 

fluid. 

Similar fluid-rock interactions have been documented in other localities. 

A classic example are the pyroxenite-amphibolite layers in the Seiad Complex, 

California, which have a hydrothermal origin (loomis and Gottschalk, 1981 ). 

1 nese authors stated that as a fluid equilibrates with peridotite, the 

hydrothermal pymxenes that precipitate will be similar in composition to those 

in the peridotite. The OPXT II have the modal composition of harzburgite, 

when considered as a bulk sample with their dunite host, and have mineral 

chemistry and CNPGE patterns similar to harzburgite. These features are proof 

that OPXT If precipitated from fluid that was in equilibrium with harzburgite. 
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5.4 CONDITIONS OF PRESSURE AND TEMPERATURE 

Before examining the compositional evolution of the fluid from which 

hycrous phases precipitated (section 5.5), it is necessary to define T, P 

conditions because the composition of Ca-amphibole varies with T and P 

(Jenkins, 19831. Fluids are associated with HALPPG, which record maximum 

T, P conditions of equilibration of 875-1 050°C, 5-9 kbar (section 2 .4.4). The 

assemblages of minerals in amphibole-bearing harzburgite, amphibole d unite and 

OPXT II span the T, P range of 750°C, 5 kbar, for the breakdown of chlorite 

(Zen, 1972), to 1 050°C, 6 kbar for the upper limits of stability of pargasite and 

phlogopite (Holloway, 1973; Westrich and Holloway, 1981; Montana and 

Brearley. 1989). The upper limit of stability of Al-tremolite is 870°C, 6 kbar 

(Jenkins, 1983). LAL dunites and amphibole dunites that are unaffected by 0 2• 

may preserve coarse granular olivines containing inclusions of Ca-amphibole. 

This is evidence of growth of olivine in the presence of fluid at temperatures 

of about 1000°C (section 2.3.7). 

The wide range of temperature has important consequences for the 

stability of hydrous phases: (i) phlogopite and pargasite formed at about 

1 ooooc by reaction of a fluid that caused recrystallization of olivine to coarse 

grains in areas not experiencing 0 2; (ii) tremolite and pargasite formed a 

continuous series of solid solution at about 850°C (Oba, 1980), which suggests 

that phlogopite and coarse grains of olivine formed at this lower temperature 

in the presence of fluid. 
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Although the intrusion of fluid-bearing magma may have caused local 

heating, fluids are important transporters of heat (Bickle and McKenzie, 1987) 

and should have carried heat into LALPP. A fairly constant thermal regime, 

therefore, is likely for the formation of hydrous phases. This is supported by 

the occurrence of tremolitic end edenitic amphibole in the same sample, with 

no overgrowth of one on the other. Consequently, Ca-amphibole and 

ph'ogopite formed at approximately 900°C, and compositional variations 

between tremolite and pargasite end-members are due to solid solution. This 

is corroborated by Dahl and Watkinson ( 1986), who estimated T :s 900°C for 

0 2 shear zones in the Springers Hill area. 

5.5 CHEMISTRY OF FLUID 

In Chapter 4 it was demonstrated that HALPPG formed by the interaction 

of fluid-bearing magma with LALPP. This magma is arguably represented by 

amphibolite dykes located in the uncorrelated wehrlite and gabbro in and 

adjacent to the Springers Hill area. In keeping with th!s, the compositions of 

these dykes will be used as an approximation of the ultimate source of the fluid 

which reacted with LALPP. In the amphibolite dyke sample L341, Ca­

amphibo!e is ferroan pargasite of Mg# = 68 and has 3.3 wt. o/o Ti02• 
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Two reactions govern the assemblages of minerals arising from 

metasomatism. The first involves the disappearance of orthopyroxene and 

formation of amphibole (sections 5.3.2 and 5.3.3), whereas the second 

involves the formation of orthopyroxene as OPXT II (section 5.3.4). The former 

is considered here. 

With increasing metasomatism, the assemblages of minerals change in 

the sequence: olivine-orthopyroxene-spinel (unmetasomatized harzburgite and 

OPXT 1)--olivine-orthopyroxene-spinel-tremolite--olivine-spinel-edenite-phlogopite 

(amphibole dunite)·-olivine-spinel-cliilopyroxene-plagioclase-pargasite-phlogopite 

IHALPPG). largely, this sequence correlates with the fluid/rock ratio as 

estimated from the abundances of orthopyroxene and Ca·dmphibole. Ca­

amphibole exhibits en.richment in Ti, AI, Fe, Na and K, and depletion in Si and 

Mg, as fluid/rock ratio increases, i.e, as the occurrence of Ca-amphibole 

changes fiOm rare, dominantly interstitial grains in harzburgite, to more 

abundant and occasionally poikilitic grains in HALPPG. These trends correlate 

with progressively larger volumes of fluid (Best, 1974), and have the effect of 

increasing the apparent metamorphic grade of amphibole (Jenkins, 1983), 

because of the solid solution series between tremolite and pargasite (Oba, 

1980). Hydrating the assemblage olivine-orthopyroxene-spinel is retrogressive, 

which is the opposite of what the chemistry of Ca-amphibole indicates. This 

apparent contradiction is explained by looking at small volumes of fluid. Within 
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a given sample of harzburgite, Al-tremolite replaces orthopyroxene, whereas 

edenitic amphibole and phlogopite occur in textural disequilibrium with spinel. 

This suggests that the AI required in metasomatic reactions was provided 

dominantly by the phase being replaced, and does not relate to the volume of 

fluid involved when the volume is relatively small. When fluid volumes are 

large, as indicated by extensive metasomatism, the chemistry of amphibole 

correlates with the volume of fluid (Best, 1974}. 

5.5. 1 b Sodium and Potassium in Hydrous Phases 

Ratios of Na/K of the fluid change through fractionation and reaction. 

A feature of this is the zonal distribution of hydrous phases in grains of Cr­

spinel, where phlogopite occurs in the core and Ca-amphibole at the rim (Figs. 

2.9 and 2.33). On a much larger scale, Arai (1986} attributed decreasing 

phlogopite/amphibole ratios in upper mantle peridotites to fractionation of rising 

metasomatic fluids. Similarly, K/(K + Na} ratios of phlogopites in the Horoman 

Peridotite Complex, Japan, reflect this fractionation (Arai and Takahashi, 

1989). 

The variation of Na + K (formula units) and Mg# of Ca-amphibole (Fig. 

5.1 b), demonstrates that Na + K in HALPPG is controlled by that of the parent 

magma (pargasite in amphibolite dykes has Na + K = 0.8 7 4 formula units), 

whereas Mg# is controlled largely by the Mg# of LALPP which HALPPG 

replaced. The same conclusion was reached in Chapter 4, where the Mg# of 

olivine in HAL gabbros was higher than expected for the alkali content of 
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coexisting plagioclase. Consequently, reaction of magma and fluid with LALPP 

has a much greater influence on the composition of ferromagnesian minerals 

formed in HALPPG, than does simple fractionation. The alkali content of these 

minerals is controlled by that of the parent magma or fluid. Because Ca­

amphibole is a ferrorr.agnesian mineral with a relatively high concentration of 

Na20, it records the alkali content of the fluid from which it precipitated, but 

its Mg# is controlled by that of LALPP. As such, the composition of Ca­

amph:bole is a very powerful tool for monitoring the extent of reaction (Mg#) 

and fractionation (Na + K) of magma or fluid . 

5.5.2 Rare Earth Elements 

The CNREE patterns of amphibolite dykes and HAL amphibole peridotite 

are LREE-depleted, whereas those of LAL amphibole dunite, OPXT II and 

amphibole-bearing harzburgite are U-shaped, but overall more depleted (Fig. 

5.3). These patterns are controlled by Ca-amphibole, as it has the highest 

mineral/matrix partition coefficients for REE of any phase in these rock types 

(Fig. 3. 7; see Arth and Barker ( 1976) for comparison of partition coefficients 

of hornblende and plagioclase). Consequently, the CNREE patterns in Figure 

5.3 trace the evolution of fluid by assimilation of LALPP and fractionation of 

Ca-amphibole. With progressive evolution, the fluid evolves from Si01-

undersaturated and LREE-depleted (amphibolite dykes and HAL amphibole 

peridotite), to Si02-undersaturated and LREE- and Eu-enriched (amphibole­

bearing harzburgite and amphibole dunite), and Si02-saturated and LREE- and 
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Eu-enriched (OPXT II). This is much the same origin as for LREE and Eu 

enrichment in trondhjemitic-tonalitic magmas (Arth and Barker, 19761. The 

negative Eu anomaly of the web-textured OPXT II must be treated with caution, 

as Pr-Tb values are affected by the blank and fall below the limit of detection. 

5.5.3 Platinum Gtoup Elements 

Data are not available for the PGE content of the fluid. The CNPGE 

patterns of harzburgite, chromitite and OPXT II are similar (Figs. 3.6a, band g, 

respectively), which suggests that the fluid from which OPXT II precipitated 

was in equilibrium with harzburgite and Cr-spinel. This is in total agreement 

with mineral chemistry. 

The CNPGE patterns of amphibole dunite (Fig. 3.6h) reflect the pattern 

of their protolith, i.e., OPXT I (Fig. 3.6e). During metasomatism, 

concentrations of Os, lr, Ru and Rh in the whole-rock were unaffected, 

whereas Pt and Pd were removed. The greatest loss of Pt and Pd is recorded 

for the most extensively metasomatized sample, where minor orthopyroxene 

remains from OPXT I. This fractionation of the PGE may be produced by high 

temperature, Cl-bearing, supercritical fluids (Mitchell and Keays, 1981; Keays 

~a.!., 1982; Ballhaus and Stumpfl, 1986; Boudreau~ £l., 1986; Wood, 19871. 

An important conclusion is that the concentrations of Os, lr, Au and Rh can be 

used as a fingerprint of the rock type which existed prior to metasomatism, 

whereas the REE reflect the composition of the fluid that caused 

metasomatism. This property of the PGE should be a very powerful tool in 



149 

defining the composition of a rock type prior to metasomatism, where there is 

little or no record remaining of that rock type. 

5.5.4 H-0-C Species in Fluid 

Fluid inclusions in olivine of the mantle are typically found to be of C0
2 

(Roedder, 1965). Inclusions in olivine in the Springers Hill area have not been 

investigated and their composition is unknown. However, the absence of 

carbonate in metasomatic assemblages in the area, suggests that 

H 20/(H20 + C02 ) of the fluid was high. The ability of the fluid to dissolve Si02 

supports this, as there is a marked increase in the solubility of Si02 in H20-tluid 

relative to H20-C02--fluid (Walther and Orville, 1983). The CNPGE patterns of 

amphibole dunites, suggest that Cl was present in the fluid. Consequently, the 

fluid appears to have been H 20-rich and Cl-bearing. The ultimate provenance 

of such a fluid could be seawater, which is consistent with the origin of the 

fluid-bearing magma of the HALPPG, by partial melting of oceanic crust that 

had been altered to amphibolite by seawater interaction. In support of this, 

Peacock ( 1990) estimated that hydrothermally altered oceanic basalts and 

gabbros contain 1-2 wt.% H 20 and 0.1 wt.% C02 bound in minerals. 
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5.6 TRANSPORT OF FLUID 

Magmatic and fluid activity associated with the formation of HALPPG is 

contemporaneous with the 0 2 event, which is attributed to deformation during 

obduction of the BlOC (section 2.5). Fluid migrated by two distinct processes: 

(i) by migration along grain boundaries as evidenced by interstitial Ca­

amphibole; (ii) by flow along shear zones. The latter is oy far the most 

important mechanism of fluid transport, and attests to the importance of 0
2 

shear zones in focusing fluid flow during obduction of the BlOC. Consequently, 

metasomatism is most prevalent in shear zones. Shear zones probably 

nucleated in zones of high pore fluid pressure, as evidenced by the rooting of 

OPXT II ribbon mylonites in the marginal zone of HALPPG. The olivine­

orthopyroxene-amphibole banding developed in ribbon mylonites may not 

represent metamorphic differentiation, but lit-par-lit injection along shear zones 

of fluids at different stages of their evolution. 

5.7 SUMMARY 

The kinetics and mode of fluid migration will govern the type and extent 

of reactit)n between fluid and wall-rock. A fluid unable to equilibrate with the 

environment through which it migrates, will reflect the composition of its 

source; a fluid experiencing continuous equilibration with its wall-rock, will 

reflect the composition of the rock with which it last equilibrated. 
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The compositions of hydrous phases produced by metasomatic reactions 

involving small volumes of fluid, strongly reflect the composition of the solid 

phase(s) involved in reaction. For example, in a given sample, Al-tremolite was 

produced by fluid reacting with orthopyroxene, and edenitic-pargasitic 

amphibole and phlogopite were produced by reaction of fluid with Cr-spinel. 

This reflects the microscopic scale. As the volume of fluid increases, so the 

compositions of precipitated hydrous phases reflect more the composition of 

the fluid; hydrous phases will also reflect variations in the bulk composition of 

the protolith. This reflects the megascopic scale. 

Caution must be exercised when using modal proportions of hydrous 

phases to estimate fluid/rock ratios. Consider a fixed volume of fluid fluxing a 

fixed volume of rock in which olivine remains a stable phase, and let the 

volume of fluid be in excess of that required to completely replace 

orthopyroxene in harzburgite and orthopyroxenite by amphibole. The 

metasomatite produced from orthopyroxenite will have a higher modal 

abundance of amphibole and will appear to record a higher fluid/rock ratio than 

the metasomatite produced from harzburgite, and yet both protoliths 

experienced the same fluid/rock ratio. Consequently, modal proportions of 

hydrous phases can be used as an indication of fluid/rock ratio, provided that 

similar protoliths are considered. Fluid/rc- .. } . ratios can be estimated when 

different protoliths are involved, by using 0.: i•, Ru and Rh as a fingerprint of 

the protoliths, as these PGE appear essentially immobile during metasomatic 

reactions. H20-fluid does not appear to carry significant concentrations :>f PGE, 



152 

especially Os, lr, Ru and Rh, at 800-900°C, and is unlikely to add these PGE to 

metasomatites during metasomatism. 

5. 7. 1 Mantle Sources of Boninitic Magmas 

The formation of olivine-orthopyroxene-spinel-amphibole assemblages 

with U-shaped CNREE patterns and positive Eu anomalies could be an important 

mechanism by which to generate the mantle source of boninites. Boninites 

derived from such a source would have positive Eu anomalies, which is in 

contrast to those that would be produced by partial melting of harzburgites 

containing a component of OPXT I, which have negative Eu anomalies (section 

3.5.4). 

Fluids from which OPXT II formed were boninitic, in that they had a high 

Mg#, were Si02-saturated, and had U-shaped CNREE patterns. These fluids 

were in equilibrium with Cr-spinel and harzburgite, which is a requirement of 

boninite genesis. Some OPXT II ribbon mylonites are 1-2 m w ide, which 

suggests that large volumes of boninitic fluid may have been transported away 

from the Springers Hill area via shear zones during the formation of HALPPG. 

If this were the case, then although HALPPG and wehrlite bodies in other 

ophiolites do not have compositions anywhere approaching those of boninites, 

they may be an essential source of fluid and heat for the generation of high­

MgO, SiOrsaturated magmas or fluids. Once again, Lhis emphasizes the 

importance of fluids within metamorphic soles derived from oceanic crust, 

metasomatized mantle peridotites and pyroxenites, and forearc magmatic and 
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fluid processes leading to the formation of wehrlites and high-MgO, Si01-

saturated magmas or fluids (section 4.5). Plagiogranites with U-shaped CNREE 

patterns may be the evolved component of the boninitic fluid. Some 

plagiogranites in the Mount Barren Assemblage may represent this component, 

but a genetic link cannot be made without a detailed study of the bodies. 



Chapter 6 

SUMMARY 

6.1 CONCLUSIONS FROM THIS STUDY 

Integrated field, petrographic and chemical studies of veins and dykes in 

ophiolite mantle peridotites can be used to construct a sequence o'f magmatic 

events in much the same way as can be done for the extrusive sequences of 

ophiolites. Modelling is required to determine the origin of mineral and chemical 

compositions of extrusive sequences, whereas studies in the mantle allow first· 

hand definition of the processes by which these compositions arise. 

The Springers Hill area of the Lewis Hills Massif, BlOC, is a section of 

extremely heterogeneous ophiolitic upper mantle which dew31oped in a supra· 

subduction zone environment. Harzburgite, dunite, chromitite, OPXT I and 

clinopyroxenite of LALPP, formed at pressures of s 7-8 kbar during upwelling 

of asthenosphere below a zone of crustal accretion. Harzburgite formed as a 

refractory residue from partial melting and complete removal of low-Ti tholeiitic 

magma. Harzburgite was intruded by hydrous boninitic dykes which 

fractionated OPXT I (and associated dunite and chromitite), and these were 

intruded by dykes of anhydrous low-Ti tholeiite which fractionated 

clinopyroxenite (and associated dunite and chromitite). This sequence was 
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metasomatized at 5-9 kbar in the lithosphere, by fluid-bearing magmas that 

were produced by partial melting of underthrust amphibolitized oceanic crust 

during intra-oceanic thrusting and obduction of the BlOC. The metasomatites 

are HALPPG, and amphibole dunites and OPXT II of LALPP. These document 

a link between amphiboiite and granulite facies oceanic crust in metamorphic 

soles of ophiolites, metasomatized mantle peridotites, and forearc igneous 

processes leading to the formation of wehrlitic bodies. 

6.1.1 Types of Harzburgite 

Harzburgites that are products of extreme partial melting and complete 

magma extraction should have positive sloping CNREE patterns, relatively low 

Ca0/AI20 3 ratios, and Pd/lr < < 1. There are several ways of producing U­

shaped CNREE patterns in harzburgites: 

1) By impre·gnation of boninitic magma, or by mechanical mixing of 

onhopyroxenite precipitated from boninitic magma. These harzburgites have 

Ca0/AI20 3 ratios higher than expected, Pd/lr > 1, and may have negative Eu 

anomalies. Harzbvrgites with these characteristics may also form from dunites. 

2) By introducing minor Ca-amphibole which precipitates from Si0 2-

undersaturated fluid that previously fractionated hornblende. These 

harzburgites have Ca0/AI20 3 ratios higher than expected, Pd/lr ratios similar to 

those of the harzburgite prior to introduction of fluid, positive Eu anomalies, and 

orthopyroxene partially replaced by olivine and Ca-amphibole. 

3) By formation of orthopyroxene by reaction of dunite with SiO 2-saturated fluid 
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that had previously fractionated hornblende. These harzburgites have the 

chemical characteristics of the olivine-orthopyroxene assemblage with which 

the fluid was in equilibrium. 

If these harzburgites with U-shaped CNREE patterns are homogenized by 

deformation in the upper mantle, they will not exhibit textural evidence for 

processes ( 1) to (3) . Formation of harzburgite in this way, may explain the 

absence of a simple parent-daughter relatiunship between crust and mantle in 

many ophiolites, because harzburgite is a hybrid rock with mineral chemistry 

and textures indistinguishable from those of a true residue. However, these 

harzburgites are potential sources of boninitic magmas. 

6.2 IMPORTANCE OF THE SPRINGERS HILL MANTLE SECTION TO MANTLE 

PETROLOGY 

Similar physical and chemical processes of interaction of rocks, magmas 

and fluids occur in all tectonic environments, but compositions differ. The 

results from this study are specifically pertinent to processes in ultramafic rocks 

at pressures < 10 kbar (30 km depth) in the mantle wedge of a subduction 

zone, and more generally to processes in ultramafic rocks over a wide range of 

temperature and pressure in all tectonic environments. It is at shallow de'pth 

that fluid exsolves from magma (Burnham, 1979), and this is where significant 

changes will occur in fluid, magma and wall-rock compositions, as found in the 

Springers Hill area. 



157 

6.2.1 Processes in the Mantle Wedge of a Subduction Zone 

Subduction zones are one of the most dynamic parts of the Earth and 

processes in them have fundamental consequences for energy and chemical 

budgets in the asthenosphere-lithosphere-hydrosphere system. Although the 

volume of magma reaching the Earth's crust is relatively small in comparison 

to mid-ocean ridges, the processes in subduction zones have important 

implications for the generation of crust in island arcs and continents. The 

petrogenesis of HALPPG, and LAL amphibole dunite and OPXT II is directly 

applicable to studies of assimilation and hybridization of peridotites by fluid­

bearing mafic and fels ic magmas. Thus, it is suggested that the magmatic and 

fluid processes associated with the formation of these HALPPG and LALPP are 

applicable to the deeper levels of subduction zones, which are important for 

production of magmas of the calc-alkaline rock series. Studies of these deep 

processes have concentrated on experimental phase relations (Green and 

Ringwood, 1968; Sekine and Wyllie, 1982b, 1983; Carroll and Wyllie, 1989). 

and modelling of reactions and phase relations (Sekine and Wyllie, 1982a, c ; 

Wyllie and Sekine, 1982; Kelemen, 1986, 1990). Such studies are hampered 

by the lack of mantle exposure and this is why the Springers Hill area is so 

important for these studies. 

6.2.2 Mantle Heterogeneity 

Although the Springers Hill area may represent an exceptional piece of 

uppermost mantle because of its abundance of peridotites and pyroxenites 
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which formed over a period of time from distinctly different sources, it 

demonstrates the extreme mineral and chemical heterogeneity which may be 

present in the upper mantle. The heterogeneity arises from mechanical mixing, 

and magma and fluid intrusion, impregnation and reaction. Small volumes of 

magma or fluid (McKenzie, 1989; Menzies, 1990) derived from heterogeneous 

mantle will very effectivelt transfer heterogeneities to other regions of 

asthenosphere or lithosphere, whereas larger volumes will not, due to 

homogenization in the resulting magma or fluid. The latter is partly dependent 

on the mode of melting, as successive batches of magma produced by 

equilibrium modal melting will be relatively homogeneous with respect to those 

produced by non-modal melting. 

6.2.3 Mantle Xenoliths 

Several important points are applicable to the study of mantle xenoliths 

where there is not the advantage of a regional overview: 

1) The mantle is extremely heterogeneous on a sub-km scale, and xer:cliths 

that are derived from adjacent parts of the mantle may reflect very different 

environments even if they record similar pressures and temperatures. 

2) Xenoliths having cumulate textures may be products of extreme textural 

and chemical reequilibration of non-cumulate mantle material in the presence 

of magma or fluid. An example of this are the dunites, wehrlites and olivine 

clinopyroxenites of the HALPPG. 
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Appendix 1 

ANALYTICAL METHODS 

A1.1 MINERAL ANALYSES 

Silicate minerals were analysed at Dalhousie University using a JEOL 733 

automated electron microprobe. Spinels were analysed at Memorial University 

using a JEOL JXA-50A automated electron microprobe. Both machines utilize 

wavelength dispersive spectrometers. 

Operating conditions for the JEOL 733 electron microprobe were 15 kV 

accelerating voltage, 5 nA beam current, 10 pm diameter electron beam, and 

40 seconds counting time for each element. Data was reduced with a Tracer 

Northern data processor using ZAF matrix correction . Only one calibration was 

required for all silicates analysed, which was based on natural mineral 

standards and Cr metal. 

Operating conditions for the JEOL JXA-50A electron microprobe were 

15 kV accelerating voltage, 22 nA beam current, 10 pm diameter electron 

beam, and 30 seconds counting time or 60000 counts for each element . Alpha 

corrections (Bence and Albee, 1968) were used in data reduction. Two 

calibrations were required because of the compositional variation of spinel in 

LALPP (high Cr#) and HALPPG (low Cr#); these were based on spinel standards 
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531N8 (12.82 wt.% Al 20 3 , 49.31 wt.% Cr20 3 ) and SPIN-B (59.40 wt.% Al20 3, 

8.05 wt.% Cr 20 3 ). respectively, and other natural mineral standards and 

metals . 

Accuracy and precision are reported in Table A 1.1. Precision, measured 

as the coefficient of variation (COV), generally is < 6 %. The high COV of NiO 

and Cr 20 3 in silicate standards, would appear to result from heterogeneity 

associated with the standard. Analyses of apparently homogeneous silicates 

in samples, give COV < 6% for both these oxides. Two tests were undertaken 

to examine the poor accuracy of Cr 20 3 indicated by analyses of the Cr-diopside 

standard: (i) the spinel standard 531N8 at Dalhousie University was analysed 

using the same calibration as for Cr-diopside, and results were within ± 2 %of 

the accepted value; (ii) several grains of clinopyroxene in samples of LALPP 

were reanalysed at Memorial University, and excellent agreement was obtained. 

Hence, values of Cr20 3 appear both accurate and precise. 

A 1.2 WHOLE-ROCK MAJOR ELEMENT ANALYSES 

A 1.2.1 Preparation of Rock Powder 

Samples selected for whole-rock analyses were trimmed to remove 

weathered surfaces, and broken into chips ( < 1 0 mm diameter) using a steel 

jaw crusher. Chips were washed, dried, and ground in an agate puck mill for 

at least 6 minutes until a fine powder was obtained. This powder was used for 

all whole-rock analyses. The use of agate for grinding should not produce 
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measurable contamination (Hickson and Juras, 1986). 

A 1 .2.2 Samples Analysed at Memorial University 

Major element analyses were obtained by atomic absorption 

spectrophotometry using a Perkin-Elmer digitized spectrophotometer at 

Memorial University. Samples were prepared for analysis using the following 

procedure. Add 5 ml concentrated HF to 0.1000 g of rock powder in a 

digestion flask. Tightly cover and heat for 30 minutes on a steam bath (residue 

should be white) . Remove from heat, cool, and add E:xactly 50 ml saturated 

boric acid solution. Place back on steam bath until solution is clear. Remove. 

cool, add exactly 145 ml distilled H20, cover and shake. This solution is 

treated with lanthanum oxide solution for the determination of CaO and MgO. 

FeO was determined by dissolving rock powder in HF and ammonium 

metavanadate, adding ferrous ammonium sulphate. and titrating the solut ion 

against potassium dichromate (Wilson, 1955); Fe20 3 = Fe20 3(total)- (1 .1114 

x FeOl. P20 5 was determined by calorimetry. Loss on ignition (LOll was 

determined after heating a known amount of rock powder at about 1 ooooc for 

2-3 hours . Accuracy and precision are given in Table A 1 .2. Values of 0 .42 

wt.% Al20 3 were obtained for USGS peridotite standard PCC-1 by this method, 

which are much lower than the accepted value of 0.67 wt. % from Govindaraju 

(1989) . This low y ield of Al20 3 resulted from incomplete dissolution o f spinel, 

even when the rock powder was treated with aqua regia . 
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A 1.2.3 Samples Analysed at the Department of Mines and Energy 

In order to determine Al 20 3 , samples were analysed by atomic absorption 

spectrophotometry at the Mineral Development Division of the Department of 

Mines and Energy, Government of Newfoundland and Labrador. Samples were 

prepared using the following procedure. Place rock powder (0.1 000 gl in a 

graphite crucible and mix with 0 .5 g LiB02 • Fuse mixture for 1 hour at 1000°C 

and transfer to a digestion bottle containing 25 ml 4 % HCI and 5 ml 

concentrated HF. Place bottle in steam bath at 90°C for 1.5 hours, remove, 

add 50 ml saturated boric acid solution, and return to steam bath 'or a further 

1.5 hours . Cool and make up to volume. 

Values of Al 20 3 are very accurate and precise (Table A 1 . 21. Standard 

PCC-1 was analysed by both methods and excellent agreement was obtained 

tor all oxides except Al20 3 • Consequently, the incomplete dissolution of spinel 

has relatively little effect on concentrations of major element oxides except 

Al 20 3 . 

A 1 .3 WHOLE-ROCK TRACE ELEMENT ANALYSES 

Trace element analyses were obtained on pellets of pressed powdered 

sample ( 1 0 g sample, 1 .45 g Bakelite brand phenolic resin binder} using a 

Philips PW1450 X-ray fluorescence spectrometer at Memorial University . Ti0
2

, 

Sc, V, Cr, Ni, Cu and Zn were determined using the TRACE2 program, whilst 

Rb, Sr, Y and Zr were determined using the TRACE4 program. 



203 

Accuracy and precision are given in Table A 1.3. Problems exist with the 

determination of Cu, as there are Cu-bearing components in the Philips 

machine. For this reason, Cu values are reported solely for the purpose of 

comparing Cu-rich and -poor samples. and the data are not considered 

quantitative. 

A 1.4 WHOLE-ROCK RARE EARTH ELEMENT ANALYSES 

A 1.4. 1 Sample Preparation 

The REE were analysed using the SCIEX ELAN inductively coupled 

plasma-mass spectrometer (ICP-MS) at Memorial University. Sample solutions 

of peridotite, pyroxenite and gabbro were prepared by dissolution of rock 

powders in a clean laboratory. Several dissolution procedures were used . The 

procedure adopted depended on the pre~icted concentrations of REE in a 

sample, which was based on mineral analyses and whole-rock major and trace 

element analyses. FEP teflon beakers and double-distilled reagents were used 

for all procedures. Dissolutions for procedures 1, 2 and 3 were carried out in 

teflon beakers on a hot plate at low heat. Samples were covered at all stages 

during the dissolution procedure, except during evaporation . Sample solutions 

were always evaporated slowly over a period of 2-3 days. The quartz and 

pyrex columns used for cation exchange were packed with CG 120 Amberlite 

(200 mesh) cation exchange resin. The resin was in the chloride or nitrate form 

for HCI or HN03 separation of the REE, respectively. All sample solutions 
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analysed by ICP-MS were calibrated by standard addition, which involved 

splitting the sample solution. The first split was composed of sample solution 

(9 g) and 0.2 N HN03 ( 1 g); the second split was composed of samp!e solution 

(9 g) and mixed spike solution (1 g). 

A 1 .4.1a Procedure 1 (ICP-MS Runs 116 and 153) 

This procedure was adopted for the most depleted samples. To the rock 

powder ( 1.00000 ± 0.1 g) add several drops of 6.0 N HCI to test for the 

presence of carbonate, then dissolve in a mixture of s 3 ml 8 .0 N HN03 , 10 ml 

HF and 2-3 ml HCI04, and evaporate. Add 1-2 ml HF and 2-3 ml 8.0 N HN03 , 

and evaporate. Dissolve residue in 2 ml 8 .0 N HN03 , evaporate and repeat. 

Dissolve residue in s 5 ml 2 .5 N HCI and filter onto a quartz column whilst 

rinsing with s3 ml 2.5 N HCI. Flush the column with 20 ml 2.5 N HCI and 

discard filtrate. Refill column with 100 ml 6.0 N HCI, collect filtrate and 

evaporate. Take up residue in a minimum amount of 8.0 N HN03 and 

evaporate. Dissolve residue in 0 .2 N HN03 and make sample solution up to 

20.0 ± 0 .1 g with 0.2 N HN03• The approximate concentration of sample in 

solution is 50 g/1. 

During dissolution of the rock powder, a poorly soluble gel-like material 

formed; this may have been a fluoride complex. With continued acid digestion 

and evaporation the gel dissolved. Opaque grains and a rare transparent gel 

remained as residues in the filter paper during loading of the sample solution 

onto the column. The effect of these residua on the concentrations of REE in 
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the final sample solution is presently unknown. The dominant residue was 

spinel, which is unlikely to have affected whole-rock concentrations of REE, as 

it has the lowest concentrations of REE of minerals found in ultramafic rocks 

(Stosch, 1982). However, spinel does contain silicate inclusions which may 

contain significant concentrations of REE. It is assumed that because rock 

samples were crushed and gmund to a very fine powder, the majority of 

inclusions were dissolved. The incomplete dissolution of spinel will affect the 

computed absolute concentrations of REE in a sample, as the actual weight of 

sample dissolved is less than that weighed initially, which is the weight used 

in computation. 

A 1 .4.1 b Procedure 2 (ICP-MS Run 240) 

Procedure 2 (D. Scott, pers. comm., 19891 was used for samples similar 

in composition to those prepared by procedure 1. To the rock powder (0.5 g) 

add 3 ml HF and 4 ml 8 .0 N HN0 3 , and evaporate. Add 4 ml 8.0 N HN03 and 

4 ml 6.0 N HCI, and evaporate. Add 4 ml 8.0 N HN0 3, dry and repeat. 

Dissolve residue in 5 ml 1.5 N HN03 , filter with washing, and evaporate. 

Dissolve residue in 2 ml 1.5 N HN03, load onto a Quartz column, flush with 45 

ml 1.5 N HN03 , discard filtrate, flush with 23 ml 8 .0 N HN03, collect filtrate 

and evaporate. Dissolve residue in 2 ml 2.5 N HCI, load onto a quartz column, 

flush with 5 ml 2 .5 N HC!, discard filtrate, flush with 25 ml 6.0 N HCI, collect 

filtrate, evaporate, take up residue in a minimum amount of 0.2 N HN03 , and 

make sample solution up to 50 g with 0.2 N HN03 . Tl'e approximate 
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concentration of sample in solution is 1 0 g/1. 

A 1 .4 . 1 c Procedure 3 (ICP-MS Run 1 82) 

Procedure 3 (P. Moore, pers. comm., 19891 was adopted for samples 

relatively enriched in REE. Dissolve the rock powder (0.2 g) in HF, 6.0 N HCI 

and HCL04 (2 ml, 3 ml and 1 drop, respectively). evaporate, add 6.0 N HCI, 

evaporate, and dissolve residue in 5-8 ml 2.5 N HCI. Filter onto a pyrex column 

and rinse filter paper with 2.5 N HCI. Flush the column with 20 ml 2.5 N HCI, 

discard filtrate, flush column with 120 ml 6.0 N HCI, retain filtrate, and 

evaporate. Repeat the column procedure to clean up the sample. Add and 

evaporate 10 ml8 .0 N HN03 , dissolve residue in 0.2 N HN03 , and make sample 

solution up to 20 g with 0 .2 N HN03 • The approximate concentration of the 

sample in solution is 10 g/1. 

A 1.4. 1 d Procedure 4 (ICP-MS Run 024) 

This procedure was used for samples richest in REE. and as a comparison 

for samples whose concentrations of REE were determined using procedures 

1, 2 and 3. Mix rock powder (0.2 g) and Na 20 2 (0.8 g) in a 30 ml Ni crucible, 

place in an oven for 1 hour at 480-490°C, remove and allow to cool for 15 

minutes. Very slowly add H20 until effervescence ceases. Wash cake and 

solution into a teflon centrifuge tube. Centrifuge for 10 minutes at high speed, 

decant and discard liquid , add s 5 ml H 20, stir with a teflon rod, and repeat. 

Centrifuge for 10 minutes, decant and discard liquid, pour sinter and cake into 
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a 125 ml teflon bottle, add 2.0 ml 8.0 N HN03 and shake vigorously. Rinse Ni 

crucible with 0.5 ml 8.0 N HN03 and add washings to the bottle. Stir sample 

solution with a teflon rod and filter if sample solution contains residue. Make 

up to 90.0 g with H 20. The approximate concentration of sample in solution 

is 2 g/1. 

A 1.4.2 Limits of Detection (LOD) 

Limits of detection (Table A 1.4a) are s0.01 x chondrite (runs 116 and 

153), s0.02 x chondrite (run 240), s0.05 x chondrite (run 182) and s0.4 x 

chondrite (run 024). 

A 1.4.3 Blank 

Blank solutio'1s were prepared in exactly the same way as sample 

solutions, except that no 'sample' was used. The composition of the blank 

generally lies at or below the LOD for runs 116, 153, 240 and 024, but 

significantly above the LOD for run 182 (Table A 1.4a). The influence of the 

blank on sample data is discussed below. 

A 1.4.4 Precision 

Based on duplicate analyses of samples in a given run, the ~OV is 7-40 

%for runs 116, 153 and 240, and 2-4 %for runs 024 and 182 (Table 1.4b). 

Within a given run, precision of CNREE patterns is good (Fig. A 1.1 ). 

The COV for USGS basalt standard BCR-1, for one determination in each 
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of runs 182 and 024, ranges from 0.1 % (Yb) to 6 % (La and Ce) (Table 

A 1.4c). The precision of CNREE patterns of a given sample analysed in both 

these runs is good, except for concentrations of La below chondrite (Fig. A 1.1 ). 

The CCV for PCC-1, for one determination in each of runs 116, 153 and 240, 

ranges from 4 % (La) to 64 % (Tb) (Table A 1.4d). These values are reflected 

in the CNREE patterns of PCC-1 (Fig. A 1.2), and suggest that HREE are more 

susceptible to sample preparation procedure and operating conditions of the 

ICP-MS, than are LREE. 

A 1.4.5 Accuracy 

Standards BCR-1 and PCC-1 were analysed to determine the accuracy 

ot (he sample preparation procedures and the subsequent analyses. The results 

for BCR-1 indicate that although yields of REE are somewhat lower than 

accepted, CNREE patterns will be consistent with the accepted pattern (Table 

A 1.4c). Run 024 is more accurate than run 182 at the REE concentrations 

found in BCR-1 . 

The accuracy of concentrations of REE in PCC-1 are difficult to ascertain, 

as the concentrations of REE in this standard are not known to better than ± 1 0 

%(Frey, 1984). The best way to examine the quality of the data is on CNREE 

diagrams. The CNREE patterns of PCC-1 determined in runs 116, 153 and 

240, consistently exhibit U-shaped patterns, but analyses from these runs lie 

at the lower end of, or out of, the range of REE valuus published for PCC-1 

(Table A1.4d; Fig. A1.2). High La values in PCC-1 result from laboratory 
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contamination. The CNREE patterns arising from this study have a shallower 

U-shap~ than those published. The problem of yield is most prevalent for Tm, 

Yb and Lu, especially in runs 116 and 153, but loss of HREE may occur over 

the range Ho-Lu. In order to test for HREE loss in samples analysed in runs 

116, 153 and 240, PCC-1 and some of these samples were analysed using 

procedure 4 and run 024. Ytterbium values obtained in run 024 are as much 

as 2-3 times higher than Yb values obtained in runs 116, 153 and 240. 

Extrapolation of the slope Ho-Er on CNREE diagrams, predicts Yb and Lu values 

in close agreement with those determined in run 024. With the exception of 

PCC-1, thi~ generally also applies for CNREE patterns of samples for 

extrapolation of the slope Gd-Dy. The slope Gd-Dy is more reliable than the 

slope Ho-Er, due to the possible loss of HREE over the range Ho-Lu. Hence, in 

cases where Tm, Yb and Lu deviate significantly from the trend defined by the 

slope Gd-Dy (and Ho-Er), it is likely that there has been a major loss of Tm, Yb 

and Lu. The CNREE patterns of samples where this is observed are treated 

with caution, as Tm-Lu have been selectively lost with respect to the other 

REE. Ytterbium and Lu values from run 240 are probably more representative 

of true values than are those obtained from runs 116 and 153. 

The description and discussion of CNREE patterns in chapters 3, 4 and 

5 are based on uncorrected patterns, bearing in mind the HREE trend defined 

by the slope Gd-Dy. Unfortunately, it was not possible to check LREE values, 

as procedure 4 and run 024 t:tre not sensitive enough for these elements at low 

concentrations. However, LREE trends of CNREE patterns generally are smooth 

I - - . ---

~ I 
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and any breaks in the pattern are explained in terms of the mineralogy of a 

sample. Consequently, it is not possible to predict the relative loss of individual 

REE throughout the series, and the data cannot be corrected . In summary, 

despite the apparent overall loss of the REE and the lower yield of Tm, Yb and 

Lu with respect to all other REE, the values obtained for REE in runs 116, 153 

and 240 are representative of concentrations of REE in a given samp!P.. 

A 1.4.6 Influence of the Blank Composition on Sample Data 

As previously mentioned, the concentrations of REE in the blank are 

significantly above the LOD in run 182 (Fig. A 1 .3). The concentrations of La 

and Ce in the blank for run 024 are also well above the LOD (Fig . A1.3) . The 

blanks are enriched in LREE relat ive to HREE. In order to test for a blank 

signature in a sample, REE data are compared for blank and sample. The LAL 

clinopyroxenite sample l213 is used as an example; comparison of Figures 

A 1 . 1 and A 1 . 3 for run 182, shows that La, Ce and Pr lie at or below the 

composition of the blank, and that the Ce anomalies are inconsistent. Likewise 

for run 024, La and Ce lie at or below the blank composition, and the trends of 

the La-Ce slopes in the blank and sample oppose one another. There is obvious 

inconsistency between CNLREE patterns of sample and blank, and the 

occurrence of samples with LREE abundances less than those of their 

associated blank. Even the disagreement between the sample data for La, Ce 

and Pr from runs 182 and 024 cannot be explained by the abundances of REE 

in the blanks. 
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Unlike the procedure used to analyse the PGE (see section A 1.5), no 

'sample' was used in preparation of blanks tor REE analysis. The problem with 

v -.e REE blank is that solution chemistry throughout a given procedure will likely 

be different when a sample is present compared to when it is not. Therefore, 

the blank may not be representative of the blank associated with a sample. 

This manifests itself in situations where concentrations of REE in a sample fall 

below those of their blank, and where samples have CNREE patterns which are 

inconsistent with those of their blank. In this situation it becomes meaningless 

to subtract the composition of the blank from the sample data, because it is not 

possible to quantify the component of the blank in the sample data. 

Consequently, REE data for samples from the Springers Hill area have not been 

corrected for the blank. Sample analyses where the blank is thought to 

interfere are indicated in parentheses in Table A4.2. 

At this time it is difficult to assess the involvement of the blank in 

samples analysed in runs 116, 1 53 and 240. However, in Table A4. 2, values 

from these runs which lie at or below the LOD, or appear to contain a 

component of the blank, are p!aced in parentheses. These analyses are plotted 

in CNREE diagrams, as they are consistent with the overall CNREE pattern of 

a sample (see chapters 3, 4 and 5). 
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A 1.5 WHOLE-ROCK PLATINUM GROUP ELEMENT ANALYSES 

The PGE were analysed using the SCIEX ELAN ICP-MS at Memorial 

University. Samples were prepared by fusing a mixture of rock powder ( 15.0 

g), Ni carbonyl (9.6 g), S (6.0 g), Na 2C03 (18.0 g), Na2B4 0 7 (36.0 gland Si01 

(15.0 g) in a clay crucible at 1000°C for 1.25 hours to produce a NiS button. 

This button was dissolved in HCI and the PGE were collected by Te 

precipitation (Jackson et ru., 1990). Blanks were prepared in the same way as 

samples, except that an additional 15.0 g of Si02 was used in place of rock 

powder. 

Accuracy and precision of PGE analyses vary widely, but are good for Pd 

and lr (Table A 1.5). The average blank composition has been subtracted from 

all sample analyses (Appendix 4), in order to remove the effects of 

contamination from samples having low concentrations of PGE. Prior to 

correction, samples low in Pd and lr exhibited Pd/lr ratios biased by the blank 

component. Some corrected values lie at or below the LOD, but these are still 

considered because they were above the LOD before correction. 

. . . 



Appendix 2 

SAMPLES ANALYSED 

A2.1 GENERAL STATEMENT 

All samples contain spinel, with the exception of some HAL olivine 

clinopyroxenites and gabbros. Abbreviations are in parentheses. 

A2.2 LOW-AI PERIDOTITES AND PYROXENITES (LALPP) 

SJE-L097 
SJE-L 103 
SJE-L 106 

SJE-L 157 
SJE-L 173 
SJE-L218 

SJE-L225 
SJE-L263 
SJE-L264 

SJE-L 153 
SJE-L 193 
SJE-L226 
SJE-L336 

SJE-L 143 
SJE-L 162 

Harzburgite (H). 
Harzburgite containing Ca-amphibole (H) . 
Harzburgite containing an introduced component of type I 
orthopyroxenite (H). 
Harzburgite (H). 
Harzburgite containing Ca-amphibole and phlogopite (H). 
Harzburgite containing clinopyroxene and Ca-amphibole (H); 2.4 
m from clinopyroxenite ( L211-L214). 
Harzburgite (H). 
Harzburgite (H). 
Harzburgite (H) . 

Harzburgite (H) cut by vein of type I orthopyroxen :~e (01). 
Harzburgite (H)-dunite (0) contact. 
Harzburgite band (H) in dunite (0) . 
Harzburgite (H)-amphibole dunite (AD) contact. 

Spinel-rich dunite (0). 
Spinel-rich dunite (0). 

• o : • Al . 



SJE-L254 

SJE-L262 

SJE-L050 
SJE-L053 
SJE-L054 

SJE-L055 
SJE-L 176 
SJE-L 199 
SJE-L216 

SJE-L217 

SJE-L246 

SJE-L 130 
SJE-L 161 
SJE-L203 
SJE-L244 
SJE-L245 
SJE-L289 

SJE-L 125 
SJE-L 129 
SJE-L 132 
SJE-L 140 
SJE-L 148 
SJE-L 172 
SJE-L200 
SJE-L265 
SJE-L266 
SJE-L275 

SJE-L066 
SJE-L067 
SJE-L068 
SJE-L071 
SJE-L073 
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Dunite containing orthopyroxene and clinopyroxene (D) from 
dunite envelope around clinopyroxenite (C). 
Dunite containing Ca-amphibole (D). 

Spinel-rich dunite envelope (D) around clinopyroxenite ICI . 
Spinel-rich dunite (D)-olivine clinopyroxenite ICI contact. 
Extensively serpentinized spinel-rich dunite from dunite envelope 
(D) around clinopyroxenite (C). 
Spinel-rich dunite (D)-olivine clinopyroxenite (C) contact. 
Spinel-rich dunite (D) in type I orthopyroxenite (01). 
Spinel-rich dunite (D) in clinopyroxenite (C). 
Spinel-rich dunite containing orthopyroxene, clinopyroxene and 
Ca-amphibole (D); 0.2 m from clinopyroxenite (L211 -l214). 
Dunite containing orthopyroxene (D); 0.9 m from clinopyroxenite 
ll211-L214). 
Dunite envelope (D) around chromitite ICRI; 0 .4 m from massive 
chromitite (l244 and L245). 

Chromitite vein (CRI. 
Chromitite schlieren (CR). 
Massive chromitite from Springers Hill chromite showing (CR). 
Massive chromitite (CR). 
Massive chromitite (CR). 
Massive chromitite (CR). 

Amphibole dunite (AD). 
Amphibole dunite (AD). 
Amphibole dunite (AD). 
Amphibole dunite (AD). 
Amphibole dunite (AD). 
Amphibole dunite (AD). 
Amphibole dunite (AD). 
Amphibole <Junite (AD) replacing type I Oit!lopyroxenite (01). 
Amphibole dunite (AD) replacing type I orthopyroxenite (01). 
Amphibole dunite (AD) replacing type I orthopyroxenite (01). 

Type I orthopyroxenite (01). 
Type I orthopyroxenite (01). 
Type I orthopyroxenite (01) . 

Type I orthopyroxenite (01) . 

Type I orthopyroxenite mylonite from dyke margin (01). 



SJE-l267 
SJE-l268 
SJE-l286 

SJE-l271 
SJE-l351 

SJE-l004 
SJE-l012 
SJE-l026 
SJE-l211 
SJE-l212 
SJE-l213 
SJE-l214 
SJE-l231 
SJE-l293 

SJE-l069 
SJE-l283 
SJE-l288 
SJE-l290 

SJE-l201 

Type I orthopyroxenite (01). 
Type I orthopyroxenite (01). 
Type I orthopyroxenite (01). 

Type II orthopyroxenite (011); web texture in olivine matrix. 
Type II orthopyroxenite (011); ribbon mylonite. 

Olivine clinopyroxenite (C). 
Olivine clinopyroxenite (C). 
Clinopyroxenite and olivine clinopyroxenite (C). 
Clinopyroxenite (C). 
Clinopyroxenite (C). 
Clinopyroxenite (C) . 
Olivine clinopyroxenite containing shear bands (C). 
Olivine clinopyroxenite (C). 
Clinopyroxenite (C). 

Websterite (WB); orthopyroxenes are xenocrysts. 
Websterite (WB); orthopyroxenes are xenocrysts. 
Websterite (WB); orthopyroxenes are xenocrysts . 
Websterite contai'ling mutual exsolution intergrowths of 
clinopyroxene and orthopyroxene (included in definition of 
clinopyroxenite (C)). 

Wehrlite (W). 

A2.3 HICH-AI PERIDOTITES, PYROXENITES AND GABBROS (HALPPG) 

SJE-l 107 
SJE-l108 
SJE-l229 
SJE-l298 
SJE-l299 
SJE-l302 
SJE-l305 
SJE-l324 
SJE-l350 

Dunite (0). 
Dunite (0). 
Spinel-rich dunite (0). 
Ounite (0). 
Spinel-rich dunite (0). 
Spinel-rich dunite (0). 
Clinopyroxene, plagioclase dunite (0). 
Dunite (0). 
Layered dunite (0). 



SJE-L093 
SJE-l109 
SJE-l114 
SJE-l301 
SJE-l307 
SJE-l316 
SJE-l317 
SJE-l331 

SJE-l310 
SJE-l315 

SJE-l186 
SJE-l241 
SJE-l296 
SJE-l297 
SJE-l303 
SJE-L312 
SJE-l349 

SJE-l309 
SJE-l314 

SJE-l090 
SJE-L294 
SJE-l295 
SJE-l313 

SJE-l273 
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Wehrlite (W). 
Plagioclase wehrlite (W). 
Wehrlite containing Ca-amphibole (W). 
Spin~l-rich wehrlite containing plagioclase and Ca l'!rnphibo!e (W) . 
Wehrlite (W). 
Plagioclase wehrlite (W). 
Wehrlite (W). 
Pla~ioclase wehrlite (W) . 

Plagioclase wehrlite (W)-olivine clinopyroxenite (C) contact. 
Wehrlite (W)-clinopyroxenite (C) contact. 

Olivine clinopyroxenite (C). 
Olivine clinopyroxenite (C). 
Olivine clinopyroxenite (C) . 
Olivine clinopyroxenite (C). 
Plagioclase, olivine clinopyroxenite (C). 
Plagioclase, olivine clinopyroxenite (C). 
Olivine clinopyroxenite (C). 

lnterbanded wehrlite and gabbro in dyke (WG). 
lnterbanded wehrlite and gabbro in dyke (WG). 

Gabbro (G). 
Olivine gabbro mylonite (G). 
Clinopyroxene troctolite (G). 
Gabbro (G). 

Amphibole peridotite (AP). 
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A2.4 LALPP-HALPPG CONTACT RELATIONS AND REACTIONS ZONES 

SJE-L 115 
SJE-l177 
SJE-l221 
SJE-l274 

SJE-l32'7 
SJE-l328 

SJE-l329 
SJE-l330 

SJE-L326 

SJE-L333 

SJE-L348 

SJE-L234 

SJE-L236 

Harzburgite (H) cut by vein of HAL olivine clinopyroxenite (C). 
Harzburgite (H) cut by v~in of HAL clinopyroxenite (C). 
Harzburgite (H)-HAL clinopyroxene dunite (0) contact. 
Harzburgite mylonite (H) and type I orthopyroxenite (01) cut by 
HAL amphibole peridotite (AP). 
Harzburgite xenolith (H-X) in HAL olivine clinopyroxenite (C). 
Harzburgite xenolith (H-X) in HAL olivine clinopyroxenite (C). 

Ounite xP10iith (0-Xl in HAL olivine clinopyroxenite (C). 
Ounite xenolith (0-X) in HAL olivine clinopyroxenite (C). 

Chromitite xenolith (CR-X) in HAL olivine clinopyroxenite (C). 

Type I orthopyr"xenite (01)-HAL Ca-amphibole wehrlite {W) 
contact, with development of amphibole dunite (AP) . 
Type I orthopyroxenite {01)-HAL dunite (0) contact, with 
development of clinopyroxene (C). 

Olivine clinopyroxenite reaction front (C) 20 m from L231 and 20 
m from L241 . 
Olivine clinopyroxenite reaction front (C) 20 m from L231 and 20 
m from L241. 

A2.5 UNCORRELATED (UC) 

SJE-L341 
50194 
50380 

Amphibolite dyke (AMPT). 
Amphibolite dyke (AMPT). 
Amphibolite dyke (AMPT). 
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Appendix 3 

MINERAL ANALYSES 

A3.1 GENERAL STATEMENT 

Mineral analyses of olivine, orthopyru.i<ene, clinopyroxene, amphibole, 

plagioclase and spinel are presented in Tables A3. 1 to A3.6, respectively. 

Analyses are tabulated in the sequence of LALPP, HALPPG, LALPP-HALPPG 

contact relations and reaction zones, and uncorrelated samples (see Appendix 

2 for sample listing and abbreviations). 'Location' is the spot number and 

mineral analysed in a sample. With the exception of several very small grains, 

all analyses in Tables A3.1 to A3.6 are the average of 2-3 adjacent points in 

a mineral grain. 

A3.2 CHEMICAL CLASSIFICATION OF THE SPRINGERS HILL AREA 

The classification of samples as LALPP or HALPPG is based on spinels 

with high or low Cr#, respectively. This classification does not hold strictly for 

LALPP-HALPPG contact relations and reaction zones, because Cr-spinel may 

occur in HALPPG, and Al-spi!lel may occur in LALPP. In these situations, 

classification as LALPP or HALPPG is based on (i) the presence or absence of 
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orthopyroxene, (ii) deformation features, and (iii) chemistry of silicate minerals. 

No record in 'type' in Tables A3.1 to A3.6, indicates that it is not possible to 

assign to LALPF or HALPPG in this case. 

A3.3 SPINEL ANALYSES 

Sp • in 'location' for harzburgite in Table A3.6, indicates spinel is 

associated with Ca-amphibole ± phlogopite. 

A3.3.1 Calculation of Fe3
• in Spinel 

Calculated Fe3
• values from electron microprobe analyses of spinels are 

comparable to Fe3
• values determined by wet chemical techniques and 

Mossbauer spectroscopy (Osborne !U a,t., 1981; McGuire !U a!., 1989; Wood 

and Virgo, 1989). Consequently, in Table A3.6, Fe3
• values of spinels are 

calculated from electron microprobe analyses, assuming charge balance and 

perfect stoichiometry of cations to 0 2
- in the ratio of 24:32 for the ideal spinel 

structure A 8B1e032 • Cations (A and 81 are not assigned to sites of tetrahedral 

or octahedral coordination because the degree of inversion of the spinel 

structure is not known. 

Redox ratios calculated from electron microprobe analyses, with the 

assumption of ideal stoichiometry, tend to overestimate Fe3
• values (Osborne 

!U a!., 1981; Canil ~ al., 1 990), but this is not too significant (Osborne !U a!., 

1981 ). 
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WHOLE-ROCK ANALYSES 

Major and trace element analyses in wt.% and ppm, respect,vely, are 

tabulated in Table A4.1 . Values of Cu are not quantitative. 

Rare earth element analyses in ppb are tabulated in Table A4.2. Values 

in parentheses either are at or below the LOD, or appear to contain a 

component of the blank. Yb • and lu • are values of Yb and lu in extremely 

REE-depleted samples that were determined by procedure 4 and rur. 024. The 

chondrite values used for normalization are those of Wakita ~ 21. ( 1971): 340 

ppb La, 910 ppb Ce, 121 ppb Pr, 640 ppb Nd, 195 ppb Sm, 73 ppb Eu, 260 

ppb Gd, 47 ppb Tb, 300 ppb Dy, 78 ppb Ho, 200 ppb Er, 32 ppb Tm, 220 ppb 

Yb and 34 ppb Lu. 

Platinum group element analyses in ppb are tabulated in Table A4.3. The 

composition of the average blank has been subtracted from all analyses. The 

composition of this blank is: bdl Au, 0.05 ppb Rh, 0.92 ppb Pd, 0.15 opb Re, 

bdl Os, 0.03 ppb lr and 0.33 ppb Pt. The chondrite values used for 

normalization are those compiled by Naldrett and Duke ( 1980): 69G ppb Au, 

200 ppb Rh, 545 ppb Pd, 514 ppb Os, 540 ppb lr and 1020 ppb Pt. 

Refer to Appendix 2 for sample listing and abbreviations. 
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Appendix 5 

ORTHOPYROXENE IN HARZBURGITE 

In Chapter 3, evidence was presented which suggested that some 

harzburgites contain an introduced component of OPXT I. In this appendix, the 

proportion of introduced OPXT I is estimated from values of CaO, Al20 3 and 

Ca0/AI20 3 (Table A4.1 ), and Pd, lr and Pd/lr (Table A4.3). All values used in 

calcui;Jtions have been recalculated to 100 wt.% on an anhydrous basis with 

all iron oxide as FeO. Sample L225 is a harzburgite residue from partial melting 

and complete removal of magma, whereas harzburgite sample L 1 06 contains 

a component of OPXT I . Samples L225 and L 106 have 15 and 45 modal % 

orthopyroxene, respectively. The proportions of residual harzburgite 

(represented by sample L225) and introduced OPXT I in sample L 106 are 

estimated by simultaneous solution of equations of the form: 

xL225 + yOPXT = L 106. 

(i) CaO and Al20 3 

CaO 0.30x + 1.67y = 0.90 

Al 20 3 0.21x + 0.66y = 0.41 

Solvinggivesx=0.59397andy=0.43222, butx + y = 100%andx=57.9 

%andy =42.1 %. Therefore, the composition of L 106 is 58% L225 and 42 
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% average OPXT I. 

(ii) Pd and lr 

Pd 1.90x + 182.2y = 9.23 

lr 3.22x + 3.57y = 5.38 

Solving gives x = 1.63353 andy =0.03362, and therefore, the composition of 

L 106 is 98 % L225 and 2 % average OPXT I. 

(iii) Pd and lr using OPXT I sample L071 

Pd 1.90x + 16.6y = 9.23 

lr 3.22x + 0.46y = 5 .38 

Solving gives x = 1.61783 andy ==0.37085, and therefore, the composition of 

L106 is 81% L225 and 19% L071 (OPXT 1) . 



Appendix 6 

PUBLISHED MATERIAL RELEVANT TO THIS THESIS 
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HARZBURGITES AND REFRACTORY MELTS IN THE LEWIS HILLS MASSIF. 
BAY OF ISLANDS OPHIOLITE COMPLEX: THE aASE-METALS AND PRECIOUS-METALS 

STORY 

STFPHF~ .1. 1'1)\\'.·\RDS 

Ct•/1/l't' Jor l:'urtll Rt'WIITI'<'-' Rt•,t•arch. [)t'f'llflllll'lll of l:'artll ..... ,,.,,. .,., , .\fcmori<J! l "llll'<'"" • ul .\ , ·" '"' " ;til .:·•· · 

.\r. John\, \cn:friiiiUIIatlll .·1 I II 3 .\ "5 

AilS I R .. \l" I 

lh~ immobility of the platinum-grour clcm~nl' (/'(i/:'l 
durin~ "'rp,•minit:Jtion enable•. th~''' l'l•·mcm' to pnwidc 
important inlnrmatinn nn I he hi,wry of ophiolit~ mantk . 
In th~ Sp.-ingcr' Hill area. I.e" i' H ill' \!;~"if . Ha'" ,,f l'land' 
Ophi!llitc Complex, Newfoundland. a rc,iduum ,,r har , . 
burgit~ and m inor dunih: i' imrudcd 'u..:..:c""cl'" h~ a, .. ,,,. 
,,r dnnitc :: ,·hrmnit.:. mthnpyro\cnitc and ,·linopyrn\l·nitc 
, c;n, and d yke, . l hl' 'C imru'i'.: hudic' r~prc,~lll ''~' t al 
tra.:tinn;ll<'' rath~r than li4uid .:ompn, it;nn' . Thl' fr:~.:tin ­
nati!ln '''4uzncc j, typka l nf rclm.:tory melt ' 'udt "' 
hontnite\ . l'l.tttnum-gwup mineral' t f>Ci .\1) and o:hnnd ritc­
n<'rmali!ed f>GE pattern' lho•· that a' the melt C\llhc,, 
'"lid grain' of Q,.tocaring lauritc h,-.:.,me en trapped in .:hro­
mit~ . 11 h.:rea' "'lid l't-Pd arwnid.: pha'c' ;,rc in.:!lrporatcd 
in pml\ene. Ct'll'CllliCillly. the Pd - lr \aluc !lt the melt 
in~r~.·;.t~ooc ... "ilh progn:'''' l~ ..:ry'lltl fra..:tionat1nn . a' th1.· 
immi,.-ihlc li4uid pha'c chan!!C' fwm S-'<atmatcd Ill "'· 
,;uur:u,-J . Harthurgitc' of rc,idual nrigin ha1~ Pd h < < I . 
Th,· Sprin)!ef\ I lilt har tt'our!,!itc' arc PGl:'-enrio:h,•d (I'd · I r 
- 1.~- 1.7), hut othcr\\i'<..: l'""c" rc,idual .:hara.-t,·ri,tl'' 

a/1\ing frnrn a minimum of n•·u partial m~lt i ng . Partial 
mdtin;• \\lluld ha\C part ittoned a ll 'uil lllc mthc '""'''' ""'' 
th~ mdt. \kh e\t ra.-tinn "a' ltt~hly dti.-1~111, and 1111 '"' · 
fid~ or ,jJi,·:~t~ melt r,·m.tincd in th~ Spring~r' IIIII ha rt ­
t>wglll'' · Thcrc1<11~. I'Ci/' 111 th~ Spnnj!<:r' llill hauhur~itc\ 
all' lh' l prc,ent in ,ulfid,., . Field and pet ro)!raphi• C\ idcn.:~ 

'ho1" that cnridun~nt of the /'( i /-: 111 Springer' II ill hall ­
hur~uc' r.·,u lt,·d fn>m add it i<>n <>fan ~arl\ .,uit,· <>rth•'PYII>\· 
,· nit~ .:<>mpnnent (a, cra)!C I'd II 511. Onh<>r>Vfl\\<'11<' 
additi<>n u .·.-urred h~ mdt ilolpr~gnat inn '" m~dtano,·a l 
llll\lll!! . 

f;t•nmrt/\ : B.l\ ,,f hland' nplm,htl' , ' '' " hHIItdl.ntd, h.lll · 
l>ur!!tll', duni1c .• :hrnrni tc, plrt>\en itc , ml'lt1111Pil')!lla ­
lion. platiiHtrn-group clement, , ha,,·.m,·t al 'ulfidc' 

So\t\1 -\11<1 

I 'imnll'l> ili tc J,., dcrn.:nt' du ~""'r>c du r latmc 1/-Cd'1 
rcndam l;t 'crp,•tllllll\;tlt<l ll pcrnll'll ' u t til''""'" <k ,.,., ,·k­
lltl'nh P<HH dcduir,· de l'intnrmali<' ll uti k ""I'~"'""' k 
mant,·au it lot""'' d,., tlphwltt<'' · Dan' lot r~~u>n dc 'it'll II 
~~~ ' lt1il. da11' k ll10t"il 1k I C"l' IIIII' dt' l'<>phi< >l nr d,· 
lla' <>I hland, , it {,•rrc -'em~. un r<:\tdu d~ h.111h111 ~ tl< 
t.'l d.: Jumt .: ;.H:~l'' '"l trt.: c'l r~.·~t,upC ,u~,.· ~,.· '-·'''\ "'lllt:lll par \IIH.' 

,uit~ tk duntte o ehromne. orthnpvrnxcnlll' ct e1mor~ rtl\r· 
Hlll'l'll \ C'illl'' Ct .:n tllllll\, <.' l ' l' l lrtCg\.." dt• IP(h ~-.. 101111'1\l'' 

..:Pma~ma t 14\1'-'' 1 Cf'H''t'1lh.'ra ll dl'' r• n dlll" d'un tr.h.:IH'Il 
th'ltl<'nt <k "1\tau\ pi utili que J,•, <'lllllP<"""'n' de !14111 

de..·' · I a 'l'4"'·'1h.'l' d'"· 1' ;K1H'IIIH.'Ilh.'H1 ~..·,t 1' I'" I'": ,k \ ·. •· 
'"i' rail un 111\!)!111<1 tl''tJud. ".,,mnh: un m.trrn.t !·· ·; 
4111: . I~' mi11~ra 11\ d,., 1.-UI'•·t k' tt'll<'llh ,k ,.,., .·t, .:. 
nmmali'e'' ' par lapp<llt "1111,· dh>lldllt<·. Ill•'""''' '' 
llH.'\\II'l' quc..· h.• Tllill!llla l'\ P ill<l' \. , 1.,_•, ~..:n, l .. l ll \ lk l.t l lf II 

tenant ~.h.·l·,,,tnturn '-'llll'h.' ~..·n~h'b"'' I'·'' l.t ''"''ttht \ 
J,, quc..· lc-, ar'l'tuurc.·, ~.h.: Pt ~..·t ,k Pd ""' r11.: Hh ' '' I • 
dan' k r~''''""'nc..· . P.u "'''ll'l'\flh.'ll l . l.t ,,,h,out l ',t ; · 
mag rna au~nH.:ntall ~~ nh.''Uir qth: I'' ''L'h.' ''·"' h: ••·" · 
nc.'Tlll'fll ~~ 4lll' kt ph a,~,.· hqmdr IIIli ,,,·,hk ,h,-, ,·u .u t ,, ,1 

l'll "' pl11tl>t 411'~11 '- · ll.1n' k' h.t ll bll<~· •~<·• l <'''" ·" ·lk · 
h.· rarr~'rl Pd lr l''--1 hl'illh:t'IIP pin' t.ubl .. · q th: 1 I ,., I • u . 
hur~i t , . J,· 'iprrn~,-r, ll 1ll "'"I ,.,.,,d.,,., ,·tt I 1 ,/ ' 1 I .' · 
Pd lr < 1.7). lll ill' \lllll ollll l\.'llh.'HI 1\jlhl\h .. ' I\H' I II lt.' 'hl ud 

!.,•,, a~antll''ldtl· c.funnununum d~.· 1-•• n , ~~,,. fu,u,n p.n :1dl· 
(\'Ill' C:lt.lf'C: de: fli,I\Hl auralllOIII'l' IHUI ,uJhttl" dl' l '••ltd •h 
" Ia ' uur •. :l ' a laHlfl'l' l l.1 ph .• , ... · Ju.tllllk . I -... ,, ~,, .. t hll l du t ~o~ tl : 

fnndu ;~ urait l't<' lr<'' dlt.:a.-o·, ,k tdk "'"'' " "'' 111 1"1""" 
~ullur,·. n i i14111<k ""'"t'' "'' " ''1;111 " ·"'' 1.1 h;ttt lou"''" 
l . ._.,, don.- di rl' qlll' dan' Ia h.u thotl !!"'' <k "'pt ut~·,· t' I ii ii. 
J..-, 1-C.il, IH.: "'Ill pa' 'II Ill'' d.m .. J..o, '""""-'' · ·\ l.t l uuu~.·h 
dl'' tdatillll' lk l\'ll .lllll'l d ~,· l. l)'l'II P~' I ,IJ'IHl", l \·tu h:h l'''­
llll'llt ~.k .. /-. (i/' 'l'tnbk ~non .h:l t'lll l'·• ~n~.· l'.h!.huttu .. r unt 
t,."UI1lpc.h,l1\11.' Oll lhlp~ l\l\f.'lhllqlll'. p.UIIf.' t.l' lll1\.' 'HI!l ' )'I C'\. tt; ·\. , 

4 11 i ac;11t. ,·n nll>~cltll<'. 11 11 t<lf'('lllt I'd It de ~I ( t'll t' t ,,,, 
IU.lll c..l'tlrllh)p~r\l\\.'11111.' ,\.,1 ;qnUI\.'\' 'HI I p .ll U11ptn•ll.tlld11 

c..l"u11 l1q11 idt• . .. . ,,, p ;tt llh'l. tn!''' Ufl'\ .lllhl'"' 

Cl t. l dtJII p .l l 1.1 1{\•tl.h l l t iUI 

.\Inti .-!•'' : oplunlltl' lk ll•ll o>l l ,l , tt ~<l · . l ett< " '""""· h.11 1 
hut !J ill'. c..l u 11itt.· . dHtllllltt. P' rt1\l'ltlll'. III IJHt.' L' n.t t 1t n . 

d ' un illJliH.k . l'll'lllt.:llh dtl 1-'II'UJ't' dtt p l.tlult· .... u lf tllt' ' 

tk' llll'l ~tll\ ,~...- h , t,l.,.' 

It j, no " we ll ~'tahh,fwd I hat '"alll·>ll ll cllfltpk \l' ' 
'lldt "' tho,cofth~ ll thhldd. <•lt':o : l h~,· .111d '-, t ill 
\\:IIL't all' unportant It•"" lnt thl' pl.tru run t ->.'t""l' d, 

llll' lll , (/'(i/."1: "" till' <~ lh,· r h .111d . ' ''"" " ""' '' '"' ' ' ' ' 
tr:tllllll' of the't: ,·knll'!lh h:t\ l' \l't h> lo,· lntttld " ' 

ophitlht,· ,·omrk'''' · 111 'Pill" ol t lll' ll .-low ''""b"' ' 
to 'tratrfotllll'OtllPk'''' · In d .ttl'. thcl<' h.t ll' l'n'll 

'n~ k" ..:ompkt..: ' tudte' nl tit,· "·'"' a!HIJ'Il' 'l"" ' 
lll~tal clHic'l.'llll:tll<lll' ttl ;w npl ll<~l ttl' ' ''dlo>to ( 1'111 11 
~{'[I t( ~~· ( IWC! . 1'1~(1) lill l"ll'd IIIII tit,- tttol\t ' "" 
rott ).' h 111\l.',l<gat lllll, JIIU l< lc"II'L'd <llltli,· ll ill ,ll!l .tlt , 

~ahhrorc and ' "k<lll•"cdlll ll'tl:. t l\ "'' I'""·· "' th· . 
1 h~l lt1rd \line, Opluohtl' . (.Ju,·h ·:, 

5) '7 



I h" paper ..:ombme' ficl:.l. pctro~:~raphic, and ba\C· 
and pn:uou~·llll'tal data 111 order to e.~plain thcoc..:ur­
rt'lll.:l' and ori!!innf ha'c and prc..:iou~ metah in rc,i­
Ju;~l and magmatil· lithologic' of th.: Springer' Hill 
;uca, l.c,,i, Htll' \la\\if. Bay of hland' Ophiolite 
( ompll.'.~ I B IOC), \\ 1.'\ler n :"Je'' foundland. Empha­
''' "pl;"·cJ upnn trend' of tnJgtl'.atit: fractionation 
dl'luwd hy the PG/: . and 1 he U\t: of thew ekmcnh 
to dtodlfllent llltH.lifi~.:ation' to pyro\cnitc and peri­
dot tle nuncralogy and t.:hcmi,try. 

< >n the \\C\tcrn ..:na't of :"Je\' found land. the Hum­
hl·r ,\1111 :\lloduhon (\\'illintn' & Cawood 19R9) of 

10 km 

the Humber /one (William~ 1979) pn:,crH' ' t\\O 
ophiOlite terrane': the HIOC and the Coa,tal Com­
plex (CC) . The~e adjacent terrane' form an approxi­
mately north-south-trending zone some 100 km lor.g 
and :!5 km wide (Fig. I). The CC lies to the \\C\t of 
the BlOC. The BlOC compri,cs four ophiolite mas­
sih that. from north to south, .:rop out as the Table 
\lountain. North Arm :\lountain, Blow ~le Down 
~ountain and Le" is Hills mas~ifs . rcspccti,cly . The 
Lewi' l-lilb is unique in that it preser\es an original. 
sub,cr . ~at contact between the CC to the we't and 
BlOC to the cast (Karson 1977, 1979, Karson & 
D~wey !978). The BlOC formed at a 'prcading cen­
ter (Ca\ey er ul. 1983, 1985;, whereas the CC repre­
\ent' oceanic cru't that has experienced a transform-

z 
0 
I: .... 
I: 
0 
0 .... 
::1 
<( 

5 km -
Ill•. I. li•·n.:ra!ill·d !!l.'<>lt>~i.:;tlmar ,,f the Humhl.'r Arm Allnduhon (William' & 

(';""'''" 1'1:\9) . Cicol·•~y t>f the I e"i' Hilh \1a,,if i' ta~cn fwm 1\aNIIt (19711) . 
BlOC: Bay of hlallll' Ophi<>lil~ C'otnpk\, T : T ;,l'!ll.' \l<>uOlain. N: ~orth Arm 
\h>untain . 1\: Bl•'" \lc ll•"' n \h>untain. and I : I C\\ i' llilb \hl'>il': C '"'""' 
h>r the ('na,tal C'ompk\ . 
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fault te.:10nk hi,tory within an o-:canh: fra..:lllrc-ton~· 
(Kar~on & Dewey 197R. 1\ar,on 191\~) . 

The Springer~ Hill area i' lo..:a1ed in thl' ~outhcrn 
part of the lcwi' Hill' :\la~,ir. "ithin the BlOC (l'ig . 
I). The area has been "tudied by 1\aNln ( 19791. ~)ahl 
& \\'atkin,on ( 1986), Dum worth et ul. ( 191<6), Suhr 
& CaJon ( 191\7) and Edward' (19RRa). Two magmati.: 
'uitcs arc hosted within a har7burgit~·-dunite rc,id­
uurn (Ed .1·ard~ 1988a. b). The early 'uitc i~ defined 
by 'u.:.:e~'ivc intrusions of variably deformed dun it..: 
(\\ ith or without chromitite). orthopyro\enitc and 
dinopyn,\cnitc. a~ millimeter- to meter-wid,• H'ith 
and dykes lying parallel and subparallel to the plane 
of mantle flow defined by the tectonite fabri.: of th~· 
n:siduum . The order of crystalli7ation among ,iJi­
~·atc minerah mimi.:' the s..:quen.:c of ,·ry,tallitation 
of melts derived from highly refractory mantle 
\Our.:cs . The later suite i' relatively undd0rmed. 
cropping out a' a kilometer-sized body of Junite. 
\\ehrlitc. dinopyro\cnitc and gabbro. The margin 
of the late 'uite cross-cuh the foliation defined by 
the residual tectonitcs and early-suite 1cin' and 
dyke~. Thi" margin .:ontains \enolith' of re,iduum 
and early-,uite lithologie~. The abundance of early ­
suite wim and dykes and the rrescn.:e of the ma'­
,i,c. late-suite intru'i'c body arc unique to the 
Springers Hill area. In no other part of the BlOC 
ha' su.:h a .:on.:entration of 1aried intrmi1c pha,,., 
been obscr1·ed in the mantle sequcn~.·c . The late 'uite 
i' not .:onsidcred in thi' study: attention \\ill fo.:u' 
on th~· origin and e1·olution of the re,illuum and 
early-suite lithologic, . 

The residual nature of the hartburgire i' 'upptlrted 
by the ab"en.:c of clinopyroxene. pre,en.:c of.: .. 
mite. oc.:urrcn.:e of porphyrodasti.: urthop~TO\Cnl' 
11 it h margins .:orrodcd ro oli1 inc. and o.:.:urrl'n.:e of 
minor residtnl dunite. The Iauer is produ.:ed either 
by ~5-45a:o partial melting of pyrolit~ (Jaque' & 
Green 1980), or by rca.:tion of peridotite with an 
introduced lluid . re~ulting in in.:ongrucnt mdting of 
orthopyroxene (e.g .• Did 1977). In the Springer' 
Hill area. residual dunite\ .:ontain i\olatcd graim of 
orthopyroxene and a chromitc foliation and .:on.:en­
tration ~itnilar to those in the adja.:~nt har1burgitc 
(Edllard". 19R7, 19RRa). "'the modal abundan.:e of 
orthopyrnxenc decrea~~\. har1.burgitl' grade' imo 
re~idual dunite. R~~idual dunitcs ar~ mo\t ea,il~ 
re.:ognitcd where they ~ro,~-.:ut the foliation of the: 
har tburgitc: ; remnant\ of the foliation they .:nh'·~ut 
arc preserved. Ma,~ivc bodic\ of pure har7burgitc: 
arc rare owing to the pre\en,·c: of abundant early· 
suite vcim and .;.lykes. 

1\lagmat k dunite' arc generally dyJ...c-liJ..e in 
appcaran.:c. pre,cnc a higher .:on.:cntration of dtro· 
mite than their har tburgite ho't. and paralkl ;1r 
.:ro,,-~ut the hartburgitc foliation. lhl· margin' of 
'omc magmati~ dunitc• han: rc,idual ~hara.:tcrt\ti~s. 
Chromititc bodic' are all1ay' IHhtl·d in a dunit~· 

em elope . 
lh~· ortllllJl~Hl\~·nir,· and •lin•'l'' "'''''""~· b,,,lt,, 

<l<:.:ur "' (llill''''·!!raincd to P•'!!lllatllt,· 1 \'II" and ,h ~ •. , 
and tlll·ir hl'lldmag~·d ,·quil a (,·nh . ll••tlt t ~l'''' ,q 

p~n''~·nitc pr<''<'fll' m;~gm;~ri .- r~·\lut ,., '"'h ,,, 
olilitw-p~w\en,· p;~ralkl gt<lll th , ad,·umuht' :ntll t<' 
anJ ,,,n,..:rtal itl' :·rgr.nlth ll'\ !ttt\'. I h,· l"''''''tlllc• 
rarely o.:,·m tllg~·th,·r. aud it i' 1\' tl '·'''' '"' 

dinopyrn,,·nitl' t<• int ru.k ,,, t h•'i'l 1 ", ,· tn t,· 
( lrthopyrownitl·~ ar,· lllht,·d b1 har 1btt1 !! II<'. "lwtc;t, 
..:linop~ nl\cnit'' ' ar,· u'ual11 hll,t,·d b1 dutut,· . < ·,,,, 
'l'4ttentJI , the p~ ro\elltl~'' ;tnd !hell ·''"'-';tt\·,f ho"l 
ro\'J..~ dc:finl·domatth. 11hid1 '"n b,· ,,.,,.,,tl h ut hlt ,, ' 
meter~ in 11iJth . 

Thl· orth<'flYW\c:nc: nllll~·tH<lf h;u;htu 1·••·· ,, II''"" 
1ariabk and ran)!c:' ftlllll · IO u~<•d . tl "·· 
(orthopnowm· dunitellll · · 'Hl lll<'d;tl " " '' " '' '' ''. 
orthopyrll\l'nitel. llo\\C:Il'r . thl: tnai<ll'ttl ,,t h. tt ;i•ll t 
girc' ha1c an intcrmc:diatl' .:ompo,Hitlll, t. , · . . h,·'" ''' " 
10 and 50 nwJal 0 o orr hopHO\<'Ill' . l'ttc J, "' 1.'11d , •I 
thi' ran)!c ;, a"o,·iated with dun ire. 11 h,·, ,-;,, l "'' ;u,·d 
llrthopyroxenc ·:ontc:nr' almo'r ah1a1.·, ll.-,:ut tllt l> r 
1 i.:init~ o f ort llllfl\W\<'nirc ll'in' ;111d d1·J..c:, . 

Tllll typ''' of hauhurgir,· hall' b~·,· n dl'ltlll'd 1111 1h,· 
ba'i" of fidJ and petrtl).!raphi.: "'"~·nat in•" · lit,· t"'' 
type j, n:,iJual. and ha' ,·hara,·t~·ri,ri,·, ,,, a ·~·"d tt,·. 

a' alrl•;tdydt·-.-ribcd . Th,·otha r~p~·•, '''"dual h;ttt 
burgir.:. nr 111 rare ~.·a'l''· r~·,idual nr lll<IJ.!IIIat 1.: dt11111.-. 
\lith an 0\l'rrrint olup to 20 mndal "i• orth<'Jlii P\ 
l'tll' d.:rilcd from rh~ carll ·'lltte llrthotWt tl\l'llll<'' 
The addittonof orthopyn,\Clll' to har;hm).! it~·o.-,· tt t' 
cithl•r hy nh:dlani,·al n:i\ing or melt llnpre,!.!llalion. 
The: f<lflll<'T ,.a,e aJi,e, lw partial tn t:<•mpkr,· rn 
toni,· di,agf!TC(!ation ol orr hopyro\l'llttc 1 \'Ill' and 
narnl\\ d yke' (<I ml in harthttrj!ttl' durinJ.! pro)!l<'' · 
'il l' llo11 lll mant lc: . I he Jt,! tthut ton ol ott hPJ' \I "' · 
cne in the tc,ulring harlhlllgite i' p;trtl~ tn ~·ontpktdl 

homogenited . and orr hopno,~·n,· h;;' " por 
phywda,tk tc.\turc: . \ldr nnpreJ.!nattonn,·,·ur' 11h•·•r 
orthopyrll\rnitc 1 c:in' anJ dyh·' lw~·ont,· drt t ll'l' . I It,· 
difflt,e (l,,die' o,·..-ur in tone' 1\lwt ~· lltl'lt ,·.,uld ttt• 
lonf!er hydmuli.:all~ h ;ll·tur,· rh~· IHl't ltl.:J.. to lo 11 n: 
d~ J..e, . l'ctrographiGtll~. thl' imptCJ.!IIattl'n' , . 
undclorml·d orthopyHl\l'nc: a rc pa·,.:nt "' ddr,·;tlr. 
int~·r,tirial )! rain,, 11hcrl'a' impt c)! llatto n' " ' 
<k•formed orthopyro\l'lle aJ,o c\hihir a put ph' '' ,, I; ... 
ti.: texture. :'\linlla' & l'rtt11hol.:r ( I'JX.'> ;rnd '- •··ol;" 
& l>upuy (IIJM~I ha1c u'cd ml'lt tlllprq•llalttll t ro 

l' \fllain th•· cnridunc:nt of dtnop~ ''"''Ill' and kid 
'par in harthttrj!itc ;md d11ni t•· "' 'tl'ld lltt't l llltl<' . 
11chrlitl' and rro.:rolirc . 

Pr tl<fll ""\I'll' 
PoJi,hcd thin w..:riom lll'fl' ,·,amtlll'd 111 •.kt:ttl 

u'ing t ran,mittcd- and rl'fk ,·rn l ·h)! h i Jll ld "'" ' Jll 111 

order to dctcuninc the n;rtmc ;rnd "" '111 \' ll<l' o l b;tw 
and pr..:.·iott, ·m~·t al 'ulfidc:, , ill ' c11idn. ;tl lol' ;11 td 



nati\1.: rm:t<tl'-. A llit;Khi S 570 '~:anning electron 
minm..:opl' ""' U\cd to identify mineral grains and 
obtain wmiquantitative analy~cs where appropriate. 
I he <.Ji,trilmt ion of ba,c-mctal pha~c' and PGM i~ 
hetnoj!o:ncou' 011 the scale of a thin \et:tion. 

1'/utllllllll ·~rfi/I{J minerals fPCil>fJ 

l>•,..:tcto: PG.'\f have been iJcntificd in only three 
'"'"PI<:' bdon11in!! to the early suite: a <:hromitite 
tl 2-l~l. 01 rc!!matitil· orthopyroxenitc dyke (l068), 
ami a dinopyroxcnite dyke that intrude' an 
onhupyroxenitc dyke (1.2R3). 

J\ 'in11le grain of 0\-bearing laurite (RuS~) ha~ 
hccn found in the chromititc ~ample . The grain is 
I<K;IteJ ~Aithin unaltered chromite, in a~sodation with 
natiVI.' l'u and a Ca- 1\fg-AI silicate (Fig. 2A). Os­
hcaring lauritc is commonly founJ in t:hromitite from 
ophiolite' (Talkington et ul. 19!!4). 

I he on hopyro.xcnitc sample pre\erves a trail of 
l't- and Pd-arwniJc mineral grains at the margin of 
a pcgrnatit k orthopyroxene grain that is in contact 
"ith Ca-amphiholc (l·ig . 28). Of the seven graim in 
I i11urc 2B. 'ix arc l'd-ar~enide amJ one is Pt-arsenide. 
The I'd .' As 'aim: is lower in the Pd-arsenide 
""o.·iatcd with the Pt-arsenide than in any other 
11rain of Pd-arsc~ide. Low concentrations of Fe and 
Ni oc.:ur in Pd-arsenide. 

In the dinopyroxenite sample, a ~ingle. hexagonal. 
~:ompo,itc grain of PGM occurs fully enclosed within 
the margin of a clinopyroxene grain (Fig. 3). Pha~es 
pre,ent in the composite grain are native Pt. native 
Cu, Pd-Cu and minor Pt-Cu alloys, and P t- Pd 
ar\enide phases with or without Fe. Co and Ni. The 
Pt-Cu alloy probably is hongshiite (PtCu), which has 
only been described from Hung. China (Pcng et ul. 
!97!l) and the Shetland Ophiolite (Prichard & Tar­
kian 198!!). The Pd-Cu alloy identi fied in the 
Srrir.gers Hill area may be a new mineral. 

Sulfides. ulloys and nati1·e metal~ 

In har:.burgite, residuul dunite, and drmite, C'hro­
mitite and orthopyroxenite of the early suite, rare 
base-metal phases occur a s minute wisps, necks and 
grains in serpent ine. Grains are commonly too small 
to be identified positively. Awaruit(: (Ni-Fe alloy) 
and magnetite are the mo~t common phases ident i­
fied. In some harzburgites, wustitc h as altereJ to 
magnetite and nati'e Fe. Pentlandite, heazlewoodite 
(Ni,S,), awar!.lite and millerite (NiS) occur in ~orne 
dunite~ . Copp~:r sulfides and native Cu are found in 
orthopyroxene, parallel to the cleavage and in frac­
tures, respectively. All the base-metal phases are 
belie,ed to be of secondary origin. related to serpen­
tinization. In the harzburgite-dunite tectonite, 

It• ·· ~ . s,·;mnin~ ck,·tt~>n plh•ll>mi..:n>~rarh' . (:\) tuhcJral (),-hearing laurite (\\hitel. cuhcJral Ca- \lg -.'\1 'ilio:atc 
'"'·''"I, and h>ll!!ll.: ,,r nati\e ('u in a !!rain of unaltered o.:hr.,mite (!!reyl. tarly-,uitc d~romititc, I ~-'~ - ( Bt Trai l 
••t ,·uh<'tlral l't · ;md Pd -;~r,emJc gr;1in' t" hi tel in unaherc<l orth<•pyro\ene (grey). The trail of ar,cnidc gratn' i' 
l'<'lf'<'ll<h..:ul;n '" th<· dea<a)!c in~~rthllpyr<lxenc. "hil:h i' partly altered (dark tHey) . Earl) · 'uit e <'rlhnpyw"·nire. 

I tlf>!\ . s,,,,,. "ar 10 ,.m m "'''" .... , ... ,. 
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Fr< ... . l . lin~..· dra,,in}! nf a ''-·anning l.'h:~..·tr"'" phoh'llli"-fl'~raph th.u ilht,trotll'' rh~-.· "''""l''l"'H"· u~tlllh' til ,, J•t ,\1 ~·1.t1n 
hmll'U tly dinup) rnwn.: . Lui) .,uil<: dim•r' ro\\.:nil.: . I ~~~ -

magnetite and Fc- Ni -Cu - S pha~cs are undeformcd 
and ~how no evidence of recry~tailiLation. which 'liP· 
rom their late origin . 

In dinopym.1enite of the ear~1· mitt,. Fe-Ni -( ·u ­
S pha~cs form grain~ < 0 . 1 S mm in diameter, and 
arc more abundant in the early-,..;ite dinopyroxenites 
than in any other lithology of the early ~uitc . 
1\toreover. within meter-wide dyke~ of clinopyrox­
cnite, which contain variable amount~ of oli,ine, the 
l·e - Ni-Cu-S phases occur ubi4uitou,ly. but not 
cxdu~i\'ely, in dinopyroxenc-rich area'. Hcnc~·. 1 he 
Ji,trihution of Fe- Ni- Cu-S pha\e' is heterogeneou' 
and suggestive of localized 10ne~ of S \aturation in 
clinopyroxene-rich area~. 

Pentlanditc and nati\·e Cu "ith minor a"ociated 
Cu \Ulfide arc the mo't common pha'e" found, both 
"ithin eli nopyroxcne and at .:li nopyrnxene­
dinopyroxenc grain boundaries. The~e ba\C-ml'tal 
phases may or may not be a~sociated with chromitc 
and amphibole. Pentlanditc and nati\'e Cu com­
monly exhibit a 'ympleetitic texture (1-'ig. 4), which 
probably resulted from the ex .. olution of native Cu 
from pentlandite and it~ sub~equcnt migration to the 
margin of the grain. In pla~·e~. pentlanditc fragment' 
arc wholly endo,ed in nati\e Cu. Di!~>crete O\'oid 
grains of native Cu occur in unaltered, unfractured 
clinopyroxene graim. 

The tl<Xllrl'l'll<:l' of pcntlamlitl' and nati\l' < u a' 
indu,ion' in dinopyroxenc. and at ~ra in houmlarie' 
of dinopyrox~nl'. i' ht:'t ~:-.plai11l'd in tcnm of inuni'­
l'ible glohuiC\ of li4u id ftlrlllinv ar tlr lll'ar 1 h .. · ''II ­

fa~e of ~rowing ny,tal' of o.: linop~ro\l'lll' . ~omc 

glt,hulc' h~·~;unc cntrappt•d. \\ hl·rca' o thl'l' \H'IC 

pu,hed ahead of the cry,tallilation lltlllt ll'l'tl'l '"II 
& l·r;m~i~ 1~77. Sharl..o\' I<JlO . .-\ndl'l 'l'll t'l a/. IIJX71 . 
rhi' \\Otild a l\\1 explain \\!1y the majolit~ ol indu ­
\ion, in th~· Sprin~l'r' Hill 'ampl~' arl' ho\tl'li in the 
mar11in of <.:linopyroxen~: ny,tal, . .-\ltl·rnat l\cl~. 

native Cu could haH: e:-.,ohnl from dinop}ro\,'lll' , 
c'pco.:ially in .:a'c' "hl·rc IWt i\ c < ·u o,·l·ur' "' i1 l'l')!ll · 
lar hlcl1' paralklto I he dea\ilgc in grain' of unahl'l"l'll 
dinopyroxenc. 

During latc-\tagc altcriltion, ('u '"a' mohdc .• md 
\\a' renHn cd from pent Ia nc.J ill'. Other ll'all ion' 
include the formation of awaruite at thl' ,·onta.:t 
between pcntlanditt· and nat i\'c Cu. lhl' rl·plan-ml·nt 
of pentl;mc.Jite by magnetite, and thl' fo1mation ol 
~uprite "here nati\e Cu i' oxidi1ed 111 thl' prl·wnn· 
of magnetite. 

Cohalt -hearing a\\;truite or a compmitl' ii\\;UIIIIl' 
wairauitc (Co-l·c alloq ~rain ha' hl'l'll idl·ntificd at 
the 'ilicate - ~hromite cont;H:t ol •• 'ili.:at~ indu\1011 
in a ~hromite grain hll\led h} d inop~ rt>\l'lll' . 

Slmi4uantitati\C anal~'l'' ot rwn:landlll' ami 



I ill < -\\, \1>1\'- \Jl'-1 K-\1 O<.J"d 

a\\;lllllle 'ho" that they arc Ni-rkh. The ah,encc of 
nil\ im· in the 'icinity of the a"emhlage pentlanuite 

;l\1a111ite ma\ explain the clr.:\ated Ni ' Fe \alu~·-

\\11011 -Ro< t.. B\-.t-\11 L\1 

\\,IJ I'KI< l<ll <, - \It 1·\1 CHI \ti',JIO 

. ·l nahrwul 11'<"11111<111<'1 

hvllll'Cil '' l•olc-rock "tmplc' were anahtcd for 
/'(if : ;111J Au u'in)! the SCIEX El A:"'l inducti,ch 
,·oupkd pl<a,ma - ~ola\\ 'peetromcter (ICI'-f-ISI ~~ 
\kmnri;al Une,er,ity . :"'lid.cl and Cu concentration' 
"''~· d~·termined hy X-ray fluore,cen~·e (:'\RFI in 
I """''l'll "holc·n•d> 'ample' u'ing t hl' Philip' 
l'\\ ' 1.1~11 in,trument at Memorial Univer,ity. Large 
'ampk•, w,·re powdered in order to minimi1e 'am­
phil)! ceror ari,lll)! lrom grain 'ite and mineral db­
t 1 ihlllion . 

l'l'ikt' of rrl·,wd plmdered \ample till g ~ampk. 
I A~ )! Bal..ditl' llrand phenoli~· re,in binder) were 
;malytl'U nn the XRF. Ba~cd on \tandard~. Cu 'alue' 
all' cnn,i<.kreJ to he .:on~i,h:ntlv much lower than 
rru,· 'aht~''· Con~c4uently , Cu ~alue' arc reported 
'''ld~ forth,· purpow cl comparing Cu-rich and Cu­
l'<llll .,;unpk,, and tiH: data .ue not u~ed lJUantita­
t "'''' . Standard' demon,! rate that Ni ,·alue' are prc­
d,~· and a~·.:urate ITa hie I). 

I" .. .1 . S..-itlllllll ~ l'll'<' lll•n plhltomi..:r.•~raph of 1crmifnrm 

' ''"'lllli<•n llld" Ill 11.111\C l'u tllhilel in Ni-rkh f'lClll · 
!.llhhll' lj!ICI I h<hlClf h1 ..-flnllp) fll\CIIC thlad j . J·arJ) · 

'""'' ..-hn••PII•''''Illll' . I :1-1. s..-alc llar ~~~ ,.m. 

Sample~ run on the IC'P-f..IS were prepared by fu,­
ing a mixture of rod; ( 15.0 g). Ni carbonyl (9.6 g). 
S (6.0 g). :'-la:CO, ( l!l.O g). Na:B,O- 06.0 g) and 
SiO. ( 15 .0 .zl w produce a NiS buuon. Thi~ buuon 
wa' -then di~"))vcd in HCI. and the PGE and Au were 
collcctl·d byTe predpitation (Jad~on eta/. 1988). 
Detection limits arc at or below 0.3 ppb (Table ll . 
The pre~·i,ion and accuracy of the Au and PGE ana­
ly'e' \ary widely, :,ut Pd and lr both exhibit good 
pred,ion and accuracy (Table I). The average blank 
compo,ition (Table 21 ha\ been subtracted from all 
Springers Hill data in order to remove the effect\ of 
contamination from ~am pic' yielding lm' elemental 
concentration, . Prior to correction. ~amples low in 
Pd and lr exhibited Pd/ lr values bia~l-d b~ the blank 
component . Some corrected value' lie at or helo" 
the detection limit (Tables I. 2). The'c ' aluc' arc 'till 
con~idercd recau'c they were abm·e the detect inn 
limit before correct ion . 

ll 'hole-rod. chemistry 

:"'lil'kcl. Cu and PGE value' (Table 21 support the 
petrographic e1idence for the prc,erKc of pent land­
ire. a"aruite. native Cu and PGJI. Based on all of 
the analy'e'· only the carly-,uite onhopyroxenites 
con\i,tently ~ho" <;ignificam enrichment in PGE. 
Gold cxhihih an affinity for dinopyroxenite\. The 
highe't Au value~ arc reMrictcd to thmc 'ample~'' irh 
high C'u 'alue\. 

OKJ<il" Ol I HI B-\'-1 -\'I,J) Pll.l ( !OL<., Ml· l.\1 ... 

Prior to an interpretation of thl' ba,e- and 
preciou,-mctal data, it i<; fiN nece,,ary to determine 
whether the mea,ured value' reflect primar~ or 
secondary proce~\C\ . The di.,tribution of the element' 
may reflect .:ondition' durint~ initial cry,talli7ation 
of the melt, \Ub\equent \ltb,olidu\ rc-equilibration. 
and later lo\\ -temperature alteration related w 'ter­
pentinization. 

Primary Rroins of bose- and predoul-metul minero/.1 

It i' a"umed that grain' of ha\C· and prel·iou'­
metal minerab endo~cd in unaltered and unfra~.:turcd 
.:hromite and .\ilicate grain' arc primary beeau\C 'ub­
'olidus reactions occurred as a dosed sy,tem (l .o rand 
1987a). Pha'e' intcf'tlit ial to chromite and ~ilil·atc 
grain' ha1c clearly reacted with \crpcntiniling fluich. 

The laurite - native Cu - 'ilicate a\\emblagc in 
chromite (Fig. 2AI i' primary and 111 situ. The 
euhedral nature of the laurite and 'ilicate graim indi­
~.:ates that they ''ere incorporated into l·hromite as 
\Oiicl grain' during chromite growth . Johan & LeBel 
( 1978), C'on,tantinides eta/. ( 1980). Pri~.:hard et al. 
(1981 ), Stockman (1982) and Talkington et of. (19831 
abo ha\c found that euhedral graim of PG.\1 arc 



- - ---- ---- ----

' 

II ·\1(/lll IHolll 'o, II ·\' 1 >I '"' \ "'" I ll' IIIII I I I ( ll\11'1 I\ '.J ~ 

TAIL! 1 Plt[C1SION ,\HO ACC\:MCY tlf 1\JiiAt.YfiCAL ll([ntoDS rh,· ('ri!,!lll ,,r .. \, in /'( i .\ I 1, ,·q ul\, ''·"· .u1d t h,· ,,,, 
)!In of thl·l't-PJ arw111d.: rh.1,,., '' I.'WI'<'d t.•1 1h,· 

St•ndard El••nt Dl Ptf' t" hlon Mran Ill 'II .. , ft>llll'' in)! '>:..:ti(•n ''" a ltl'lalll>tl. .... .. .. ... . ..... 
PCC · I "' I• I I 1Hl ).:.llO fh,· r1 nnar~ l'lllllJ'I''III\>11 1>1 

'"'' ''·'"' 111.-1,11 '"' nc -1 Au 0 14 H 2 "' 401 "" fide in 1 hl' l'arh . ,lilt,· din•'l'' 1 '''('1111'' ' 1' rn'"' hk.-1' ne-t lu 0 08 14 I 410 440 .-o 
ne -t Oh 0 01 II .o, •o• •IO .lrrru\lm;II,·J .,, !,!r<nn' ••lp,·nt l<tndi rl' 1 h;u h,,,, ,.,,,, 
PTC - 1 Pd 0 II I I 111~4 llt.O"> 1) .'(10 
PTC · I .. 0 04 II I 61 ., !Uiil'll hkh' (If nall\c l ·u il l)!. ~~ - If ' ll l'" 'ildll' II' PTC -1 Oo 0 ll 11' 160 101 : .. o 

l'quilihr;tll(lftl•f '""'' !,! r;un' 11 ,1, i" ''h('l\ll,,tl . lh,· hli~ PTC · l lr 0 01 I I Ill ••• 110 
PTC - 1 .. 0 01 11 .4 llll 16n 1000 .:(•mr(l,iti(lll ,,f lhl' ••ri)!inal ,ulfid,- ph a,,· " ,., :11.11 Pd/ lT •• 4 .. ' 14 : 

••f a Cu-hl·ar ing. :\ i-rich J'l'll tlandu,·. ~;u.-h ;1 '"11 1.1 ,· 
Con<"•nrratlona In ppe for Nl •nd ppb tot' Au and P'C[ n • ntahf'r pha'l' i' likl'l\ Jcri,l'd lwm a tn<llllk w111,.,. th.u h.•d 
of aMly••• of th~ standard DL- dfot•cr lon ltelt ''•'" '"'"" rrl'\ inu'l~ lltllkrg••n,· ""' t~;tl llll'lt tilL!. " In,! t ( •a I) rf"poru•d •s thf' c-o.rtklf·nt of v•rlatlon """' Uf' lhf' 
"•.ortal Uulv~rsltv r .. pnrud v•luu fnr n c. t Rf'f arP arc-Pptrd d.:..:rl'a'<.'U 1 he l·l' and S ''""''lit,,,- th,· 111.1111"' "tl 
uandard vall .. •• : "' ( Abb•1 I QA)), Au and PC[ {" c- Ad .. U &l 

filk ,·omroncnt ((i;~ruti era/. 191)) 1'11\·ll. 

TAIU 2. •t, tu, Au All) I'G( COIITUT Of Sl'ti.GUS RILL UU LIIIIOUJCI£S - ppb ........... .... .... ....... .. ....... . ... .. ... .. . ..... ... . ... . .. . .......... . ........ . ... ..... . .. . . ... . . . . 

'-'• l ttlloiOVY li tu Au lu ... "" •• 0. lr Pt S\JO Pc;t ' 'J/ I r 

LI06 ... ,. 1901 bdl 0.14 8.75 1.51 a . 16 0.39 4.61 4. 76 9 . 54 } 7 . "· Ill 
L218 ... ,. 1992 bdl 0 .32 7.Zl 1.84 ] .87 o.os ] . 16 J.U 5 . 19 24 .47 1 ~It 

LOS4 ES S.rp ... ... 0.09 20.98 ] . 59 2 .67 0.00 4.04 9.60 1.13 42 .01 0 .28 
Ll54 liOn 2186 bdl o . :sa ] .56 044 0. 71 bdl 1.90 2.00 o.zo 8 .81 O. lb 

L203 ES Ch,. ... "'' 0.14 50.66 4 . 62 2. 1'9 0.06 14 .61 15 , 0'; 1. 511 89 . 17 O. IY 
l244 u tho-. ... ... 4.57 50.41 2 .Ill 0 .00 0 .00 22 .41 11.91 2 . 1] 89.69 
L219 u tho-. ... ... 0.12 25.60 2.35 5 . ]1 0.00 13.31 6 . 05 2.13 54 . 75 O.M 

L0611 u Opat 721 bdl 0. 59 0.13 0.48 17tJ . :sa 0.00 0 . 14 0 . 36 170 . 115 }42. }4 471 .28 
L07t u Opat m bdl 0.94 0. 19 1. 60 15 .92 16.43 bdl 0.44 14 . 511 49 . 16 16. 18 
L267 rs Opat 711 bdt 0 .50 0.56 10 . 12 104 . 74 0.30 1.29 1.12 141.70 262 .OJ JUS 
lio61 u Opat 703 bdl 0 .63 2.02 30.92 405 .68 0.00 2.1'9 lUI 517 . 20 968 . 12 42 .66 

.... Opllt 7211 bdl 0.66 o.n 10.71 174. 11 4.18 1.06 3.41 2!1 .08 405 .41 51 .08 

LOl6 u tpllt 744 113 29 .2) 0 . 17 0 . 74 67.98 0 .00 0 .26 0 .11 61 . 24 I W. 70 219.29 
L211 u tpllt 948 176 28.81 bdl 0 . 31 10.J8 0.94 0 . 13 0.01 ] . 47 15 .24 10J8.00 
L21Z u tpllt 794 nz 21 . II bdl o.n 0 .44 0.54 0.6] bdl 0 . 111 1.92 
LZIJ u tpllt 558 bdl 2.n bdl o.n 3.113 LOS 0.51 0 .01 o.n 6 .54 117.61 
L214 u tpllt 1154 125 16. 34 bdl O. OJ 6 .05 1l.28 bdl 0.07 1.00 20 .4) 116.41 
lllll u tpat '•J b.! I 7.94 0.23 s.n 19J. 71 o.os 0 . 35 1.62 520.53 12~.11 I 19.51 
L29S u Cplt 560 bdl o.u 0.16 o.oe 10. 16 o.oc o .os 0 . 06 J . 41 U .92 169. 11 

ltri 0 .56 bdl 0 . 05 0 .92 0. IS bdl 0.03 o.n 1.48 10 .67 

Au end I>GI. .,., ... ••• rtpOrt ... n the orig inel volun oinua the reovent blri c"""""itian. bdl • bel001 dete.:t•an li0111 ; no • 
,.1 .,.lyald; Av • ..... , ... ; Marr • t\erzburett•: ES • eerly· •uHto; S.rp • chr•it• · ric" ••rpentinit•; On • cll' •tt; 
Ch,. • cllr•lttu: Qpat • ouhopyroa..,ite; Cpu • cli""P'froa..,it•. 

entrapped in chromitc, "here a' ,jJi,·at.:' bc~om.: ini­
tially trapped a' liquids or euhcJral ..:ry,taJ, ITalt..in~­
ton er ul. 191!4). Therefare. the 'uggcslion h~ (iij ­
beJ, er ul. (1974), Agiorgitb & Wolf (l97XI. Crnclo...:t 
( 1~71J) and :\lit..:hcll & !\:cays( 1981 I that thd'GL arc 
in 'olid ~oolution in the spinel \tructure do.:' not apply 
to the Srringers Hill ~amplcs . Gijbels eta/. (l'f74) 
ha,·e 'ugge,ted that grains of PG.\1 are produ~cd hy 
expuJ,ion of the PGJ:: from structural '>itc' in spind 
during '"h'oliJu, rc-equilibration . ln..:hl\io"' in 
..:hromite from the Springer~ Hill chromitite 'ample 
do not 'upport this proce\\. The oc..:urren..:e of ,uJ­
fide in chromite probably results becau'c the ~:ry'­
tallita tion of chromite locally rcdUl'C' the f e() ..:on­
tent of the melt. allowing ,uJfide to prl·..:iritatc !P<~gc 
1971. H<~ughton er ul. 1974). 

In nrJ,·r toll'l' ha,c- and pr..:,·ullt, · llll'l al ,·on,-,.11 
lratillll' in \\hnt.--rnclo. 'amrk' a' rl'llll).!l"lll'tt( 
tra..:cr,, the dk..:t' of alt,·rationmll't lw kno 11 11 . II"· 
pr.:wnt l·c - '.:i - Cu -S a".:mhl<t)!l' rq1rl.,,.,,., illl' ..:11d 
produ~t of \Crpcntinitalinn rl'al·liom . "lnd1 'tddnl 
an a"cmhlagc of magn..:titc. aw;~ruitl', n<~tl\..: tn,·t.d ' 
(Cui. pcntlanditc and other minor rh;"..:' . ""' h .111 
a"cmhlagc i' d1ara..:t.:ri't k of -.·rpl'lll i tll t l'll u ll • ·' 
mafi..: rod.- (h:k,trand 1117 ~. \lomh 1'1- ' •l : I ll· 

penllanJitc - magnetite a\\aruitc n.ll l\l· t t: 
a'wmhlagl' i' ..:umnwn in all en' 11 1llllltl'llh \\ ltl'll' 
rdi..:t oli' inc and 'crr.:nt in.: ,."~'"'t. '" " tL''"" ' '' 
lo11 {(0;1 a nd Ill\\ f(S:) ..:<llldil ~t lll' II ' ~'''""" 
1117 ~) . The maj!ll>:tilc a"arllill' "''.:mhla).'l' 111 , , .,I'' 11 



lllllll' i' c\idcncc: lor a n:ry 0:-dl'fi..:i..:nt. 11:-ri..:h 
l'll111011111..:nt at 1..:111pcratur..:' hclo11 420 ·C l\1oody 
I'J7(,) . 

ti1Hkr ..:onditiom ol non..:on,tant \Oium..:. \erpcn­
tmilatu>n i' an i'o..:h..:mi.:al prucc:'' C:Xl'l'Pl for the 
llllrndu,·tion of If,() and io" of Ca (Coleman & 
ll:l·ith 1971. h:J..,trand l'l75). <irn'c:'& J..:eay,(l979) 
pll'dll'll'U that a 'Y'tcm und..:rgoin~ 'erpentini1ation 
rna\ )!a IllS from an t'\tcrnal 'ourn• and lo'e :'lli from 
the 'ih,·;lll' lr ad1on into opaque pha<...:\, or from the 
'Y'rcn1 alto).!\'1111'1 . In 11:rrm of mol"lility, Fe. Ni, Co 
;uul -; •a11 Ill<",. "' mudr "' 10 .:m Juring the mo't 
a<llll' ''"J.!l' ol "'rpentillilarion (Shiga 1987): Fe~· 
I' 11H>Il' mot,lk rh;tn Ni~ · ix'cau'..: :'~liS ha' a \maller 
,.,lubilit 1 pnH.Ju,·r rh;m l·eS (liro'e' & J..:eay' 19791. 
I he· l'<'ll"•' raphi,· ,·,amination of the l·c - :'lli-Cu-S 
.lw'nll>la~" in '"IIIPII.'' lrurn the Springc:r' Hill ;nea 
mdl,.llc'' rhat h· and "ii rcntaineJ ..:"cntially in situ 
111 p,·flll<tiH.IIII', a11aruit..: and magnet it..:. or nal\ed a 
'"''~"~ d1,tan..:,• 1111111 "·al..:l to b..: in..:orporated into 
·•rlwt npaquc pha'..:' in ~..:rpentinc . Coppl'r "a' the 
11'n't nll>l"lilc cl..:111..:nt (mm -..:rn '..:al..:l: in ..:a~c,, it wa' 
'''nll>H'J from pcntlandir..: and pr..:..:ipitated along 
trac"lllfl'' II ig .. 11 and grain holmdari..:,. lkn..:e, h:. 
:'1;1 anu Cu .n..: ur situ. at J..:a,t at rhe \..:alc of a hand 
'Jll'l"llll•. a: data on t hc'c cl..:111cnl\ 'hould. thc:rcfore. 
h..: ,,·prc'l'lltath..: of the original..:ompo,ition of the 
"hole rod rrim to 'crpcntini1ation . 

Platinum-group ekmcnt' arc immnhilc during ,,·r­
p,·nt rni1at ion 1 J..:cay' & Da1 i'on IIJ7t>. Grove' & 
~ca~' IIJ79. (),hin & Crodct 19X2. Prkhard &. Tar­
l..lan 19XX1: thcrdnre, rrimary magmati..: ahundan..:e' 
,h,>uiJ '"fl iw thi' alteration l<hhin & Crodct 
l'lX21. J>ri.:h;ml & farJ..ian ( 19!!X) ha1c found. 
IHll\clcr . tlr;:t the pha"'' ,·olllpri,ing the: PU\1 a'~em­
hla).'l' "ill dran~l' Jurinp 'rrpcntini1a1ion: for e\am­
pk. hnn~'hiitl' may he an alteration prlldu..:tol \)1Cr­
r~lill' ll'tA':I ll'rr.:hard & TarJ..ian 198R) or 
'"''''Pl' ritc (l'tS) (Cahri 19X I). Hy infcrcn.:c. hong,hiite 
111 th..: Sprin~cr' Hill 'ample~ prol"lably ha' a 'imilar 
•>ri!!in . If'" · the: 'llllfl'l' of Cu wuld be: nati1c Cu 
hkl" and pcntlandrrc in rhc l'arl) .,ullc dinopym\­
,·nit''' · t"l>pp,·r rl'rtll >hil11;tt inn in dinop~ roxcnite i' 
pr••hahl~ ll'lar,·d to 'l'rrcntininllion of th1· haubur­
!-'lll' and Junirc "'"tin!! thc dinopyr:JXcnitc. The 
prdcn·n,·c nl nall\c ( ·u and Cu -J>(i/:' alloy' for the 
111<11!-'lll' ,,r l'li.\1 ar,cnilk graim (l·i)!. ~~ 'tnlllgly 
'11!!!-'l''t' that ar,,·nidc minl·ral' cxi•tc:d prior to thl' 
in•n>,lu,·ti<'ll nf < ·u 

\n,>tlt,·r l''<llnpk ol a nwdil1.:at1tlll in th1· PG.\1 
a"''lllhla)!c ma~ ll''ult fwrn thc rntn>duc"tinn of"'­
n,,· •>ri).'in ,,f _.,,in l'li.\1 i.; un..:J.:ar: N.-.ldrett & Cahri 
I~~~,., fl'J'l<lltl'd that during ,·oolin~. 'ulfiJc, undergo 
ph·_,,,. tr;m,lnrm;ll 11>n' and th<' /'G/- C\,oh l' . 
''''" 'talhll' . and ..:<>mhur,· "llh -''· ., , .. Bi and Sh 
t.• ,,,,Ill ,·,'llrpk\ /'(i \I pha,,.,_ nrc IO\\ s .-\\ \ ahte\ 
l<'l'lll"ll'd h1 (ir'"''' ll. Kl'il\\ ( 1979) lor \01111.: \errx·n ­
lllllll'' (lll<llnll tak -,·arb<>natl' r,,,~.,,, 'll!!!!l'\l that-"' 

wa• inrroduced by an alteration tluid. Similarly, 
Pri..:hard & Tarkian (1988) argucd that A' ..:ould be 
introdu..:cd with late-magmati..: tluid,, or during or 
after low-temperature hydrous condition~ \Uitable 
for ..:hlorite formation . In the Springers Hill !>ample\, 
the euhedral nature of the ar\cnidc grain\ in rcla­
tilely unaltcred pyro,ene (Fig~. 28, 3) implies that 
the <tr,enidc' rre..:ipitatcd as primary pha\e\ from a 
fra.:tionating melt . Support for this was pro1idcd by 
Oen (11)73). Lorand (1987b) and Lcblan..: et ul. 
( 1981)), "ho propmed that the PGE are fra..:t ionated 
in an immi,dhle As-S-rich liquid in the early stage\ 
of ..:rystal fractionation during mantle upwelling. 

(iold may be lmt during 'erpcntinization (£'.R . . 
!-;,·ay' & Da1·i,on IY76). hut O,hin & Cro,·kct (1982) 
'lllmcd that Au may he added to harzburgitc dur­
ing the formation of a\OC:\10\ vein\. Grove~ & Keays 
1 1979) propo\cd rhat the di\\Oiution and rem01 al of 
Au in an alteration cn1ironmcnt arc enhan..:ed by 
high .f(O:I. hut •trongly O\idi1ing .:onditiom do 
not arrear to ha1e prc1ailed in the Springer' Hill 
arc a . 

In condusion. 1111: .:oncemrations of Fe (as total 
Fe). :'loli. Cu and PGI:. in lithologies of the residuum 
and early-suite rod;' in the Springer' Hill area arc 
mo't likcly primary in origin. dc\pit1' lo..:al rcmobili­
zation. Solid sulfide and ar,cnidc grains wcre incor­
porated into chromite and pyro"enc as the melt 
cvol1ed. (hmium-Ru-S saturation wa\ followed by 
Pt-Pd-A' and h:- :-.Ji -Cu -S saturation . re,rcctively. 
all undcr magmati,· .:ondition,_ 

PlttHXot "-I· IIC ('O,'itR.-\1'\il.., 

The conl·cntration\ of PGE enahk const rainh to 
be pla.:t:d uron tht: origin or the lithologiC\ in the 
Springcf\ Hill area. The PGI:: data are pre~ented as 
Pd . lr \alue' (Table 21 and in ..:hondrite-normalited 
P<;t· plot' (Fig . 5). Gold is not comidercd becat~>c 
it i' "'ore: mobile than the PGE during, serrentini­
zation . 

Ori.llifl t~/ the SprinJ?erS Hill hur:.hurRite 

Before examining the PGt chcmi,try of the 
Springcrs Hill har1burgite, it i' ne.:e\Sary to under· 
'land th~: origin of the~e rods. The ,uJfide l'Ontpo­
nenr or the: upper mantic ha\ a lm' melting point 
(:-.laldn:ll 1973) and i' largely in1·oh·cd in mantle 
melting IGaruti et at. 19R~I- Thb rhcnomcnon allm1' 
thl' abundan.:c of Fc-Ni-Cu -S phas..:s to hl' u,cJ a.; 
an indcx of depletion. c'pe,·ially a' their abundan.:c 
n>rrclat..:' with the modal ahundan..:e of dinopyrox­
cne and pla!!iodase in rc,idual mantle matcrial 
(l.urand 198!1). The Srrin!lef\ Hill hauburgite' arc 
UC\ oid or primary I c- :"'I i -Cu -S rhaSl'\, dinopynl\­
l'lle and plagi1>da-.· . Tl•,·y ha1c highh· dcpletcd tra..:e-



II \1<1111 l:<olll "· 11\\ Ill 1'1 \'II' Cll'lll<>llll I Cl\11'11' 

10 

HARZBURGITE 

0 1 

~ 
i; 001 ; c 
0 
.c: 
u 
.ii 

0001 ! 
~ 

o ooo1 I 
A 

000001 
Ru 1'1 ~- : 

1 0 1 0 

EARLY· SUITE CHROMITITE EARLY SUITE OUNIIE 

01 ! 0 1 

~ 
i; 001 1 
c i 2 

001 ' .--
, ·----. 

~ 
.X 

0001 t 

~ 1 
0001 ! 

01)001 I 

f B 

00001 ! 

c 
000001 

o. Ru pt P o1 
0 000()1 

o, n., H t t " 1"1 

I 0 
! 

EARLY SUITE /' - - - : EARLY SUITE 
' 

10 

01 ! 01 CLINOPYROXE Nl T E 

~ 
~ 001 i 

2 i 
u 
:il 

0 001 ! 

~ I 

.~ I 

• 
/ . / 

' /; . ... ·.- _, . , _ .. . 

0 01 

, 001 I 

• 
o 0001 I 

D I 

'• . 00001 

000001 
Os Ru Rio PI ' ' 1 o, Uu Ht, " ,., 0 0000 1 

1-u .. ~ . t"honLirit~-nnrmalilcd />(i/: ;chundach:L'' on h.cuhur~i t,• t.·\l.ond htlh•ln~"'' PIth,· .:.ut-. ""''' oil . 1 . 11 .o L.J 1, 
frnm I he srri11!1Cr' It ill area. 1110( .. All 'amrlc' an· ~CI'Il''C111l'd h~ .-or .-f.·,, l'\l'l'l'l Ill ( l•:ll,k : """"'"'' I" h , , 'I '• .. 
tinitc. '4\li.Ht..' : Juniac~ anJ l-. ('quar..: : ~rr.· linop~ ro\t..'f1th: d~lt..l' ""·unt;,s uun~ \t..'llu~o: r~'' ' tll nrlhnp\tll\l' lll' ~ ktl \ l'd lt11 t11 

nrlhnryrn\cnitd. /'(i/: lalu~' U'L'd ft>r nnrrnali1ation ;ore th<"C ,·,•norokd h~ , ,oldr,·tt ,\. ll11h· Cl'l~llllor ·'" .o· ,., , ., 
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and rare-earth-e!ement charac:tl!ri,tiL''· and they l'Oil· 
tain chromite a\sodated "ith 1\ttz-ric:h oli\ inc and 
orthopyroxene. Thc\C feat ure' arc all c:haral·ler i,tic: 
of a highly depleted mantle rc\iduum. 

It i<> po<>~ihle to l''limau: the dcgrco: of parli<~l mch ­
ing required of a mantle source to yield a harlhur ­
gile ro:,idue lotally barren of \Uifide (Bar111:' el ul. 
1985). Garuti e1u/. (19!!4) reported an 1-e-llcpletcd. 

Ni- and Cu·cnri.:h.:d maruk 'ullode l"\1 tllpurll:llt 1111 
lho: Haldi"t'ro and Balllllll"l"lir lh.:t1olo1~·, ol lh~· 
h rca · 'v\•roano marule pcridoltll''· "t''lt'tlo ltaloa11 
:\lp, . ·r hew lherwlllc:' prc,Cr\l' '> l'OIII~'"'' ol 
1-lO- J:!Oppm. \\hid1ar.: rqlrl'WIIIatl\l'lll thc'-,.-nn 
lent of undcpklcd lo p;rrtl y dl·pklt·d upper rn;orJtk 
IGarull r•/u/. IIJK-l)_l·m lhc'>rHinJ!c" lltll h ;orthm 
tzile,, 11 i' a"umc:d rhar lht' 11111ral <., .:oflll'fll ol riot· 

. . ' 7 



urautk 'our..:l' "a' I~0-320 ppm, that partialrnclt-
1111! o..:wrrc:d at a dc:pth of < 40 km (Duncan & Green 
I'IX71, and that S 'uluhility in ha'K \ilicatc: mdt' i~ 
O.I'J \\I. 0 'o !Wendlandt 19R2). For thc\e parameter,, 
7o ·,. to J7 11 'o partial melting i' required to remove all 
of thl· mantlc: 'ulfidc: into the: melt for, re,pectivcly, 
"i .:nntl'lll\ hc:t\\l'Cll I .tO and 320 ppm in the initial 
mantle: 'our.:r . l>c:pktnl mantle: peridotite\ in the 
BlOC "crc pwdu,·ed hy 2~ 0:o partial melting of 
IUC I( ,pincllhcr/Oiitc: (\lalpa' 19711). which would 
kaH· ;t hartllurgitc rc,iduc totally devoid of any 
pr rmary 'ulfidc pha'c aftcr .:omplc:tc: extraction of 
me: It . lla,al 'Pinel lhc:uolitc' in the RIOC ha,·c an 
I c.: :'-li Cu -S nm;poncnt of < 0.00511'o by \Oiume. 
and the~ grade: 11110 h;trlhurgih:' totally devoid of 
a ,uJtidc component (Lor and 19R7a). Springer\ Hill 
haullurgitl'' .:ontain no petrographically vi,ihlc \UI· 
tide ph;l'c, apart from that rc,ulting from \Crpcn­
tiui~<Hion of the ,iJicarc phaw,, During partial melt· 
iug, the di"olution of all the: mantle \Uifide lca'c' 
110 'ulfidl' rc,idUl' into whi.:h the PG£ can partition. 
\lclt ha' heen \Cry cffc.:tively rcmm·ed from the 
Sprinvcr' llill harthurgitc,, a' thcrc: is no e\idcnce 
for trappl'U 'ili.:atc trr \Uifidc melt rc,iding in the 
r c:'iduum . 

lit..- Sprin!!cr' I! ill har1burgite' .:ontain 24-38 ppb 
total/'(i/:'. llc.:au'c there: i' no \Uifidc: in which the 
/'(if.' .:an ni't. they mu't be pre,ent in either chro­
mitc ;rnd 'ili,·atl' pha'e'· or an intergranular pha,c. 
It ha' hc:,·n pt'-:ulatc:d that refractory Cr-spinel and 
tlli\ inc in S-poor ultramafic rock' may act a' a sink 
for lr t< ·rodct 1979, :'-Jaldrctt t?l ul. 1979). In addi· 
tlt'll. \lit.:hl'll & "cay' ( 19RI) predicted that high­
tl·mpcrature lr alloy' may exist under upper-mantle 
I' 1' .:ondit ion' in t'n\ ironment\ of low f (S~). 
Iridium in thi' form \\ould remain as a rc.,idual pha'e 
Jurin!! partial melting of thc mantic (1\litchell & 
"l'i'Y' llJHII. In ,·ontra't to lr, Pd is more \Oiatile 
(:\r,·nhl' & Delano 19111); therefore, during partial 
mclting I'd fral'tionates from lr. which i~ left in the 
rc,iJu,· tllertogl'n ,., ul. 19!!0, l\1itchcll & Keay\ 
19X I). I kncl'. highly dl·pletcd mantle peridotites have 
ltr\\ total l'(i/:' l'Ontents. fractionated chondrite· 
normalitcd PC it: pattern'" ith negative ~lope~ from 
lr 111 I'd, and I'd lr <I. Such patterns have been 
H'PI•rtl·d fnrm thl' Thetford Mines Ophiolite, Que­
hl'l' (O,hin & Crorkct 19~21 and the Ronda perido· 
till' ma"il. Spain tStockman 19112), and cakulated 
ftH thl' \'trurino' Ophiolite ('omplcx, Grel.'ce 
t< 'trl'hl'ril· ,., ul. 19R9). The l'hondritc-normalized 
/'(if piltlt'rns (l'i~ . ~AI and Pddr \'alue~ 11 .2- 1.7) 
,,f thl' Sprin~cr~ Hill har1burg11e~ are completely 
in.:on'i'tcnt \\ith a rc,idual origin. In fact, rhe nat 
/'(i/: pattl'rth for Springcr' Hill hartburgite' .:oin­
,;itk \\it h t hl· dttmdritl!'-normalitcd PGE data com­
pikd hy :\r,·uhl' & Dela:to ( 19111) for undepicted 
upJ'l'r mamlc (Ja~·outt ,., a/. 1979, Morgan & \\'and· 
lc" 1979. \hH~an t?t 11/. 19RO, Mit,·hell & Keays 

19RI 1. and yet the Springers Hill harzburgite is clearly 
re,idual in origin. In or~er to explain the apparent 
di,crcpancy between th.: Pr1E data and the residual 
origin for the harzburgite, it is necessary first to con­
sider the origin and PGE chemistry of the early-suite 
lithologies. 

The early suite 

Lithologies of the early suite are magmatic in ori­
gin . a' demonstrated earlier, and both their silicate 
mineralogy and PGE chemistry define a fractiona­
tion sequence. All of the chromitite ~amples (Fig. 58) 
have characteristic chondrite-normalized PGE pat­
terns typical of ophiolites (e.g .• Page et a/. 19R2, 
:983, Page & Talkington 1984), but exhi"it a posi­
tive slope from Pt to Pd. which appear~ to l>c a diag­
no,tic feature of Newfoundland ophiolites (Page & 
Talkington 19R4). The V -shaped Os-lr-Ru patterns 
of the chromitites reflect the occurrence of Os­
bearing laudte inclusions in chromite grain~. It b 
important to note that a discrete lr-bearing pha'c has 
not been found in any lithology investigated in this 
study. 

Ounitc has a nearly identical chondrite-normalized 
PGE pattern to that of serpentinite (Fig. 5C), which 
'trongly ~uggest' that serpentinization has not 
affected whole-rock PGE chemistry. The PGE pat­
terns in Figure 5C are best explained by chromite 
fractionation (tf. Fig 58), and the higher PGE con­
tent or the serpentinite is attributed to it~ greater 
abundance of chromite relative to the dunite. The 
low Os/ Ru value of the serpentinite may argue for 
the presence of Os-poor or Os-free laurite in this sam­
ple. Osmium-free laurite has been observed in ser­
pentine and chlorite interstitial to chromite grains 
in chromite-rich samples from the Shetland Ophio­
lite (Tarkian & Prichard I 987) . 

Chondrite-normalized PGE patterns for the 
orthopyroxenitt:s (Fig. 50) show an inver'c correla­
tion with respect to the chromitite and dunite pat­
terns (Fig\. 58, 5C), which reflects the presence of 
Pt and Pd phase' in the orthopyroxenite. Oshin & 
Crocket ( 19R2), Page & Talkington (19R4), Barnes 
et ul. ( 19R5) and Prichard & Tarkian ( 19R8) have stog­
gcsted that a' a magma evolve,, it becomes enriched 
in Pt and Pd relative to lr, implying a fractionation 
trend. The PGE patterns presented in Figures 58, 
~C and 50 suggest that the o, thopyroxenites precipi­
tated from a basic melt that had previously under­
gone fractionation of a chromite component. The 
intrusive relationships, magmatic textures, fraction­
ated PGE patterns, and high Pd/ lr values exhibited 
by the orthopyroxenite~ all argtJe against their ori­
tzin as residues after partial melting. Loubet et a/. 
(1976) and Loubet & Allegre (1979) propo\ed a 
r~~idual origin for the garnet pyroxenitcs of 8eni­
Rousera. Morocco. 
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Chondrite-normaliz~d PGt: pallern' an: highl~ 
variable in dinopyr,>x..:nit~' (Fig. ~Fl. Th..: 
dinopyrox~nite rkh~st in PGI:' ha' a Nil:' pall~rn 
almo\t identical to those of the: orthnpyro,..:nit~' · 
This ..:linopyroxc:llit..: intrud..:' ;Ill orthl>p~n>\..:nit..: and 
nmtain' l>rtllllp~n>x..:n..: ,,·nncry't' lkriH·d frnmthl· 
,,rtlll•pyro\enit,·. ,.\, a r,•,ult. in pia,.,.,, lhl' 
..:lilll>pyro,,·nite oe..:,>m~' a ,,,.O,le• .te, and inh..:rit' 
a 'ignifi..:ant ,·l>lllPllllelltl>f ih PGL:: pa11..:rn fmm th~ 
ortlwpyrox~n,• \~no..:rysts. Primary 'ulfid..:' fir,t 
appear in the dillllpyrox~r;ites, hut thl•ir influ..:ncc: 
on the PGt: patterns presently is unknown . 

During fractionation in the early suite. there ''a' 
a \ignifi..:ant flu..:tuation i,l the con..:entration of lr 
fractiona:ing from the melt relati\·e too, and Ru. 
If an lr-rich alloy remained in the residuum upon 
melt e:.traction (l\litchell & Keays 1981), then thi' 
could account for the V -shaped Os-1 r- Ru pattern 
of chromitite. However, even if this were the ..:a,e. 
the PGM in chromitites should he lr-depleted. rela­
tive to Os and R:.~. in order to account for the upward 
V-~haped Os-lr-Ru pattern in orthopyroxenit~. Thi~ 
trend suggests that the relative proportions of o,, 
lr and Ru present in ,...,GM are ,·ery sensitive to the 
crystallization environment in terms of whether chro­
mite or pyroxene is precipitating. 

The wmplementary evolution of the PGE chemb­
try with mineralogy of the early-suite veins and dykes 
\trongly \Uggests that the veins and dykes of thi' suit~ 
may be comagmatic and that the PGE patterns have 
not arisen through alteration. Clearly the , ·ein' and 
dykes are crystal fractionates and do not represent 

liquid ..:olliPll\itil'n'. I h·· fra..:ti<>n;llll'n 'l\llll'n,·l· ,,[i, llll' 
- ortlll•pyro\l'll~' - .:linopyH•\l'lll' i' ty·pi,·al ,,f ln)!hly 
rl'l'ra,·tllry llll'''' \UO:h a' hnnini il'' · rill' ,.,,1 l'l' 'l'''lld · 
ing fra.:tion;11i1•n of the I'GI:' to yil'ld high I'd lr 
\ahll'' in th~ l'arlv -,llitc pyw\l·nit~' al"' 1' ''''1'1' 
ll'nt '' ith a Ollllinill,. 1>rigin f111 thi' '"ill' , ,1, " ' 'llllllll' ' 
and Ill\\ · J'i Ja\il\ ha\ ~ J'd lr \ aim•, in llll' I ,lll!!l' 
~o - ~oo tdata l·nmr1kd hy B.trn''' ct a/ . 19SSl. 

.\lod(f/wtion c~l tilt' .'iprmgas /It// llttr~l•tlrgll<' 

Th~ r.:l;ll iv~ly unfra.:tll•nal<'d I'< i /-' dt<'llll'''' 
~\hit'lit~d hy th~ nth..:rwi'..: highly dq>ktl·d -.;pllllf'<'l' 
Hill har£burgit~' i, h,.,, nplain~d in ll'llll' 11f ''"' 
field and petwgraphi..: ,., idl'l\1.:~ ftll .1ddioi<•11 •• I ;o11 
early-suite ortl.opyw\~nit~ ,.,,mp<•n~ul ' " r<''ldll ;d 
harzourgi,c. 1\' d~,l·rih~d <';u· li~r . 1h~ addlll<''' ,,, 
orthopyrollcnc in\oh~' l'ith~r m,·lt 1nt'il11 .lli11n ,,, 
orthopyro\~llil<' in111 rc , id11al hauhur)'il<', -'I 

m.:chanical m ixing of urrhupy·ro,..:nilc i11t11 h.11 t b11o ­
gil~ hy 1he 'lr~t.:hing and p•lllin).! .1p;11 1 ••I 
orthopyro:\~nit~ 'ein' and narnl\l d\ h ·, I· I 111 l 
ho\ted \\ithin rc,idual har1b11rgil~ . Thl''~ 1''"'.<'"''' 
would in..:rca~l' th~ orthopyH•x..:nc ,·nllt<'llt ••I 
d~pletcd harthurgit~. In a 'imilar \lay, i1 i' l'""lhk 
to produce har1hurgit~' hy adding onlwp~~'<''''lll' ''' 
r~'idual or m.· ~mat k dunilc'. 

Plott~d in hgur<' 6 ao~ th~ I'd allll h data !<•1 lh•· 
PGL-d~plctcd Iliad. l.ak~ har thurgit~ (\;unpk ll. · l 
fllHllth.: Tlwtfmu !\lin~' Ophiolitl' t<hhin & C ·,,,,·)..,·! 
19N2), 1 h~ PGI:'-enri.:h,·d Spring~r' If ill ha r thllf!.!ll~ 
('ampk 1.106), and lhl' aH·rag: Sprin).!<'f' IIIII 
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ollllop~ll>\Cililc C<Hllpo,ition I Ltl:>k 21. The I'G/­
c·ont.:lll ol the Iliac~ l.a~c hauhurgitc h a"UJncd to 
rc'f"'"'llt th•· /'(if :' content of r,•,idual mautlc . 
It i.Jilllll I'J \lop<'' p110t <tO<llll all c"etll ially COil\· 

t;utl It -.tlue I<>T large l'ariati<>n' in 1\l ..:nth.'<'lllra­
ll<>n 11 ig . 1>1 . (on,,·qucnill'. llll' ;tddi lion ol c:arly­
"'itc· ott j,op) l'<l\<'llilc' to f'(i/: -dcpktcd har thurgilc 
11 ill f!rc·atlv alter till' I'd cout.:nl of the harthurgitc 
11 11luuo1 ''~nili.-:tn : ly ll!<>dil yiug I he lr n>nlcnl . Thi' 
ll<'fllli' fun her 'upponc:J h~ th<' dillcrcn..:''' in Pdi lr 
and I'd l't 1;olu,., "!the /'(if .. ,·nridtcd har~hurgite . 
,·ontparc•d to tiH"<' '''the :1\cr:tg<' <>rthupyro.\cnite . 
\\'hc·oc•;t' I'd lo 1:tlll<'' ftn lh<' 1110 litlwlogi.:' <tr.: 
1a,th difktcnl . 1.7 and 51. r.:,r•·..:til.:ly. Pd · Pt 
1aluc' arc e"cnti;,ll) iJcntic"al, 0.~6 and IUn. r.:spec"-
1111.'11 . ·1 h<· prll p<~rli<Hl of ;1\cragc early-suite 
••rth<'Pl o ""nit<' ,,·quir,·d 10 dtangc r.:, idual harthm­
~llc' ,·<>mpmitinll' ('ampk I(· nf (hhin IJ,; Crude! 
l'l!CI int<• ~pllll~<'' ' II ill hat/bL•rgitl' (\ampk I 1061 
<'<Ill b,· .:akul;ll,·d lrom ,imultanenu' .:qua1ion' 
11111>h iuc th•· I'J . It and PJ ' lr 1aluc' of 1hc'e 1hree 
'"mpon:·nh. I he /'(if:' dtcmi,try 'uggc'h 1ha1 1hc 
<'Ill idtl'd Spnn~··r, II ill hauburgitc tl 106) is c'Ulll · 

po,cd nl •JSU'u re,iJual haul:>urgit.: and ~··· 
ott hop1 ro\en•· I rom carly-,utt.: Sprin!!er' Hill 
<HI hop \I "''·nil<' . The add it ion of 2°:u urt hopyr<l\­
<'11<' ''' ,,.,idual harthurgitc i' dcarl~ in•omi,tcnl 11ith 
the tidd ant.l pctroj!raphi.: dala , 11hkh o,uggeo,t that 
up to ::!Onwt.lal" 'u unhopyrox.:n.: from orthopyro\· 
..-nil<' i' aJJ,·J Ill hattl:>urg it,· . On.: cxplana1ion for 
1 hi' dh<'I'<'P""'l app<'<th 1 n 1 he h~terog.:n.:ouo, db· 
!lihutll>ll ••f /'(i\1 in orthopyrox.:nit.:; the a ddi tion 
of ort hopywwn<' thu' n.:cd not rc,ult in a prnpnr· 
ll<>llal a ddition nf Nile' 10 the harzburgit.: . A' an 
alt,·rnati~e. th<' fl(il:-..-nridll.'U harthur~ite' may ha1e 
<'\f'l'l"i<'II«'J a -mall J..-~r.:c of partial mdting Ill 

t<'IIH>H· I'd rdati1.: tnlr. Thi' i' unlikely, huw.:1er , 
"''' ""''' the finl' . ddi.:atl'. impregnated orthopyru\­
<'11<' in th<' hauhtu)!itc c\hibit' llll<' ' ·iJ.:n..:.: for .:or­
,,,,i,m r<.',uhing fwm partial melting . !\tore f'(i f:' 
J;~t;t fl<llll hauhurgitc' arc requirct.l in order to b~t· 
,, ... umkr,tand th<· h,•hal·ior of the /'(if:' in mantle 
r,·,idullm in opltiolitl.' Wl.Jll<'II<'C'· 

I h<' qllnlitHtnoll ari'e' a' 10 l1011 'ignifi.:ant arc 
thl.' <lrtlwpyr<>\<'n<·-adJitinn pro..:.:"'' in term' of 
ni<>dil\ing hauhlltgit<.' <'tlmpo,itim" in mantle 
'l.'lfll<'ll<'<'' in ••rhic.lil<''· In the Springer' Hill area, 
••rtll<lplf<l\l.'nitc 1-:in, and d yke' arc abundanl , and 
a 'i)!nifil';ull pwportit>n of the harthurgitl.' app<.'ar-
1<> be n1<•difi.:d . lhmn•·r. 1he ar~a mapped inthi\ 
'""" i' ''"I' ~ ~m~. ,.\ nHnc n:gitnlal ~tudy of the 
BIO( · mantk ,,•.:tion i~ prc'<'lllly under "ay, and 
th,·r,· i' ,·,idcllcc f,ll <>rthopynl\l:'nc imrn:gnation in 
••th,·r ma"if, ((i . Suhr . P<'"· <.:tnnm .). A ~un..-y of 
tlt,· literatur<.' d;ll;t <lltth,· PG/:. n>ntcnt of other harl· 
btu gil<'' fromuphi<>litc' indieal.:' th'Jt many of I hem 
"'''''.' 1 ,. I'd I r 1 a Ill<'' grcall·r than I . e.~ .. Troodo' 
Ophi,•li t<.' Cnmpk\, l')pru' (lk.:kcr &. Agiorgiti' 

I'.J7X), Tlll:l ford \l in<' ' Ophiolitl.', Que he• (O,hin &. 
Croc"ke! 19!<2), Vouri•'•" Ophiolite Complex. Greece 
(Codt<•ri<: et ul. l<JX<J) . Without de~ailed fidd and 
p.:trographi.: \lUdiC\ Of I he hartburgil~ > from the'><! 
ophiolitc,, it i'> premature 10 a!lrihutc the dnat.:d 
I'd • lr 1alu.:., to orthopyro\ene at.ld it ion. Howe~ cr. 
if 'u.:h a pr<lel.'" do..-, npcralc in theo,c ophiolite\. 
then nwdifi.:atio n• of Pdi lr \aluc' of hartl:>u rgile 
h1· orthnpyro"n.: addit ion would appear 10 be I he 
rule rather than the .:xc·.:ption. 

rh,· main nm.:Ju,iotl\ Jra1\ n from th.: Springer\ 
Hill ar~a of the BlOC arc ~ummarit.:d a' f,•llo11' : 
I 1 The PGL arc .:'":mial ly immobile du ring ~crpcn· 
tinitation , Jc,pit.: modification.. of PG:\1 pha'.: 
a"..:mhlage., fC\IIIting fwm I he addition or Cu. Con­
SCl.Jlll:lllly. dtondrile-normalilt:d PGL diagram' anJ 
PGl:.' 1aluco, arc U'>cful wob to d.:terminl' th.: p.:tro­
!!<'lle'i' of ultramafi..: ro..:k,. 
~)Copper i., loc"ally mohilit.:d Ju ring ,crpentinila­
tion,l:>ut h:, :-li and Cu rcmain e"emially in situ al 
the hanJ-.,pc.:imcn s.:alc. Original l'e-Ni -Cu-S pha~e 
a"cmhlagc~ arc affected by "'rpcntinitation. 
31 The carly-,uitc 1ein., and dyke'> fra..-tionat<.' ,l)i\ine 
1: chromit.: - ortlwpyro,cn.: - d inopyroxcnc . 

11 hic:h i'> 1 he order of .:ryslalli7ation of rcfraewry 
mdh. e.~., boninitcs. Fractionation of the PGI:.' from 
a melt oc.:ur.. by remo1 al of sul fides in .:hromit.: (0'. 
Ru and po,sibly lr) and a"cnide' in pyro\Cnc (Pt 
and I'd) . ua,c-m.:tal ,u)fid.: ., do not 'cemt<l play a 
role in thi' frac"lionation. 
~)Part ia l melting of mantle with a dwndritic: di.,tri ­
bution of the PGE yield'> mdt and r.:,idu~ 11ith high 
and lOI\ I'd 1 I r , ·a lues, rc..pe.:l i1ely. Prc.:ipita• ion of 
c"hromite from thi-. mdt enhance' the Pd! lr 1aluc 
of the rc,idual melt . Pyroxenite' with highly cle1 a ted 
PJ · lr <a lues prc.:ipitatc from 'u.:h a re, idual mdt. 
51 The Springers H ill hauburgit.:~ that e~hihit a 
Pd i lr 1alu.: greater than I .:ontain a componenl of 
carly-suilt> orthopyrmcnit.: . Th.:I'C har1burgitc.. •on­
tain CO<'.xi-.ting r.:,idual and magmalil: orthopyrox ­
ene,. The rc,idual orthopyroxene i' porphyroda'>­
tic and .:orroded, wher~a' the magmalic" 
orthopyroxene i'> purphyroda, tk if deformed, or a 
Jdicah: impregnation if unddormed. 
6) Rdra..:10ry pyHl\cnites in mantle sequence' in 
ophiolite' m ay he of c.:onomic: intcr.:-.t for future 
mineral exploration. 
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NOTES 
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FIGURE 1.1. Classification of ultramafic rocks (Streckeisen, 1976) . 
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FIGURE 1.2. Solubilities of H20 and C02 in silicate melts and of solute (melt) 
in H 20 - and C02-fluids with variation in pressure. Fluid-saturated melts: (a) H20 
in tholeiitic melt: (b) H 20 in diopside melt; (c) C0 2 in d iopside melt; (d ) C02 in 
albite melt . Melt-saturated fluids : (a) H20 -fluid--gran1tic melt ; (b) H20 -C02-fluid­
-basalt melt; (c) C0 2-fluid--diopside melt; (d) H20-fluid--diopside melt; (e) H 20 -
fluid --andesite melt; (f) H 20 - f luid --NaAISi04 melt. Diagram from Eggler (1987). 



TABLE 1.1. Classification of ophiolites as harzburgite ophiolite types (HOT) 
and lherzolite ophiolite types (LOTI (modified from Boudier and Nicolas, 1985; 
Nicolas, 19891. 

Alternative 
classification 

Mafic crustal section 

basalt 

crystallization 

late intrusives 

low-T plastic 
deformation 

Mantle section 
peridotites 

pediform chromitites 

partial melting 

LOT 

high-Ti type 
Type I 
mid-ocean ridge type 
Liguria type 
W. Mediterranean type 
chromite·barren type 

0-3 km thick 

tholeiitic and alkalic, 
high·Ti 

01--Piag--Cpx 

diabase dykes and sills 

very common 

plagioclase lherzolite and abundant 
dunite within 2 km below Moho. 
Cr#(Spl <60 

uncommon to absent 

HOT 

low· Ti type I 1 l 
Type Ill (21 
supra-subduction zone type (3) 
Papua type 141 
E. Mediterranean type (5) 
chromite-mineralized type (51 

2-7 km thick 

tholeiitic and quartz tholeiitiC, 
low-Ti 

01-·0px--Cpx--Piag 

wehrlite bodies 

absent, except local shear 
zones 

harzburgite and abundant 
dunite to 10 km below Moho. 
Cr#ISpl >60 

always present 

high at shallower depth and 

3 

low at greater depth and small 
volume of magma extracted large volume of magma extracted 

high-T plastic 
flow structures 

Spreading rate 

Environment 

Examples 

steep foliation and 
moderately plunging lineation 

incipient/slow rift 

mid-ocean ridge 

Trinity, Liguria 

flat foliation, locally vertical 
with vertical lineation 

mature/fast rift 

supra ·subduction Lone 

Troodos, Papua 

(1) Serri 119811. 121 Dick and Bullen (19841 , (3) Pearce~ a! . (19841. 141 lshiwatari 11985al. 
(51 Roberts (19881. 
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FIGURE 1.3. ln-situ formation of dunite. Top: foliated plagioclase wehrlite 
hosting a pyroxenite vein which has a symmetrical dunite envelope that 
contains traces of the wehrlite; Stowbridge area, North Arm Mountain, Bay of 
Islands Ophiolite Complex. Bottom: dunite replacing harzburgite and veins of 
orthopyroxenite; Table Mountain, Bay of Islands Ophiolite Complex. 
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FIGURE 1.4. Generalized geological map of the Humber Arm Allochthon, 
western Newfoundland, Canada, after Smith ( 1 958), Wil'iams ( 1 973) and 
Karson (1 979). The Bay of Islands Ophiolite Complex (BlOC\ comprises Table 
Mountain (T), North Arm Mountain (N), Blow Me Down Mountain (B) and Lewis 
Hills (L); C is the Coastal Complex; barbs on upper thrust slice. 
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FIGURE 1.5. Geological map of the lewis Hills Massif from Karson (1977, 
1979, 1984). Bay of Islands Ophiolite Complex (BlOC): harzburgite (coarse 
stipple); dunite cumulates (unpatterned); variably deformed layered cumulates 
of dunite, wehrlite, clinopyroxeniteand gabbro (dense stipple); mafic gneiss and 
amphibolite (metamorphic sole according to Williams and Cawood (1989)) 
(vertical lines which approximate orientation of foliation and mineral lineation). 
Coastal Complex (CC): highly deformed mafic gneiss and amphibolite of Mount 
Barren Assemblage (dashed lines which approximate orientation of foliation and 
mineral lineation); wehrlite-lherzolite crystal mush intrusions (black); gabbro and 
metagabbro (fine stipple); sheeted dyke complex (d); mafic dykes (short bold 
lines); small bodies of plagiogranite occur throughout (not sh"wn). Faults and 
shear zones (thick black lines), with barbs on upper thrust slice; Springers Hill 
(black triangle); area of this st:.Jdy enclosed in thick black line. 
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FIGURE 1.6. Composit ion of olivine, clinopyroxene and spinel in rocks of the 
Springers Hill area . Using spinel , the rocks are classified as I.Jw-AI peridotites 
and pyroxenites (LALPP) (o), and high-AI peridotites, pyroxenites and gabbros 
(HALPPG) (x). 
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FIGURE 2. 1. Geological map of the Springers Hill area (in map pocket). 

FIGURE 2.2. Stacked sequence of thrust slices of harzburgite and LAL dunite 
(brown), and uncorrelated wehr lite and gabbro (grey). All rocks are 0 2 

mylonitesL 
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FIGURE 2.3. Type I orthopyroxenite dyke pervasively intruding harzburgite. 
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FIGURE 2.4. Bands of serpentinized coarse granular olivine and relatively 
unaltered porphyroclasts and neoblasts of orthopyroxene, which define S1 in 
harzburgite. The foliation defined by Cr-spinel (black) is at a high angle to this 
banding. Harzburgite sample L 106. Length of photograph 15.5 mm; crossed 
nicols. 
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0.2 mm 

FIGURE 2.5. Partially recrystallized Cr-spinel (black) in an aggregate of 
porphyroclastic grains of orthopyroxene (lines defining cleavage) which have 
well equilibrated and embayed grain boundaries adjacent to o liv ine (undefined). 
Harzburgite sample L225. In many samples of harzburgite, similar textures of 
Cr-spinel are developed in olivine adjacent to orthopyroxene. 

- --- - - ~~ ---~ ' . 
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FIGURE 2.6. Impregnated orthopyroxene (yellow) in serpentinized coarse 
granular olivine (grey). Orthopyroxene grains are partially replaced by olivine. 
Harzburgite sample L 106. Length of photograph 3.0 mm; crossed nicols. 
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FIGURE 2. 7. Olivine-orthopyroxene cluster in serpentinized coarse granular 
olivine. Aggregates of porphyroclasts and neoblasts of orthopyroxene are 
replaced by mosaic equigranular olivine. Harzburgite sample L263. Length of 
photograph 6.0 mm; crossed nicols. 
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FIGURE 2.8. Disequilibrium texture between orthopyroxene (green) and olivine 
in an olivine-orthopyroxene cluster. Minute grains of spinel (dark spots) occur 
at or near the contact of olivine and orthopyroxene. Harzburgite sample L263. 
Length of photograph 0.55 mm; crossed nicols. 



15 

s s 

s 

10 0 JJm 

FIGURE 2.9. Recrystallized grain of Cr-spinel (black) hosting inclusions of 
olivine (0), serpentine (5), magnetite (M), phlogopite (Pl and Ca-amphibole (A). 
The grain boundary of Cr-spinel is even in contact with serpentinized olivine, 
but highly embayed in contact with Ca-amphibole and phlogopite. 
Serpentinization has affected all phases. Harzburgite sample L 173. (Numbers 
are Cr#, Mg# of points analysed in Cr-spinel). 
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FIGURE 2.1 0. Grain of Ca-amphibole enclosed in serpentinized coarse granular 
olivine. The abundance of unidentified inclusions in olivine decreases away 
from Ca-amphibole. Narrow, discontinuous veins of Ca-amphibole and 
magnetite run parallel to trails of inclusions in the olivine (not shown). LAL 
dunite sample L262. Length of photograph 1 .4 mm; plane-polarized light. 
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FIGURE 2.11. Chain texture exhibited by Cr-spinel {black) along the grain 
boundaries of grains of olivine (white) . LAL dunite sample L 162. Length o f 
drawing 6.6 mm. 
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FIGURE 2. 12. Multiple F, folds in a band of chromitite exhibiting modal layering 
of Cr-spinel in LAL dunite. 
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FIGURE 2.14. Cumulate texture exhibited by Cr-spinel in serpentinized olivine. 
Dunitic zone in LAL olivine clinopyroxenite sample L 199. Length of photograph 
11 mm; plane-polarized light. 
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FIGURE 2.15. Thin bands of Cr-spinel in LAL dunite envelope around LAL 
olivine clinopyroxenite. The bands of Cr-spinel run parallel to the olivine 
clinopyroxenite. 
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FIGURE 2.16. Parallel intergrowth of olivine (partially serpentinized) and 
orthopyroxene (grey). Tremolite (with cleavage and near extinction) and olivine 
occur along the grain boundary of adjacent grains of orthopyroxene. Type I 
orthopyroxenite sample L066. Length of photograph 1.3 mm; crossed nicols. 
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FIGURE 2.17. Embayment of olivine (orange and blue/purple), tremolite (purple 
near extinction) and cummingtonite (grey) in orthopyroxene. Type I 
orthopyroxenite sample L066. Length of photograph 1 .4 mm; crossed nicols. 
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FIGURE 2. 18. Clinopyroxene (green-yellow) partially replaced by tremolite 
(tabular grains and purple/blue grain). Tremolite contains grains of olivine and 
orthopyroxene. Type I orthopyroxenite sample L066. Length of photograph 
1.4 mm; crossed nicols. 
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FIGURE 2.19. Tremolite (blue, purple, orange and brown) and cummingtonite 
(pale yellow) replacing orthopyroxene (grey). Type I orthopyroxenite sample 
L066. Length of photograph 1 .4 mm; crossed nicols. 
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FIGURE 2.20. Orthopyroxene cut by shear zones filled with orthopyroxene, 
olivine and amphibole. Early shear zones (horizontal) are cut by later shear 
zones (dia9onal). The latter are fin~r grained and contain higher abundances 
of amphibole than the former. All orthopyroxene in the photograph originally 
constituted a single pegmatitic grain, but deformation has produced numerous 
subgrains. Type I orthopyroxenite sample L067. Length of photograph 6.6 
mm; crossed nicols. 
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FIGURE 2.22. Irregular grain boundary of clinopyroxene (blue) in contact with 
Cr-spinel (black) and partially serpentinized olivine. LAL clinopyroxenite sample 
L026. Length of photograph 1 .4 mm; crossed nicols. 
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FIGURE 2.23. Orthopyroxene (yellow-green) re.placed by tremolite (pink) and 
olivine (green). Olivine contains unidentified symplectitic inclusions. LAL 
websterite sample L283. Length of photograph 1 .4 mm; crossed nicols. 
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FIGURE 2.24. Clinopyroxene (deep orange) replacing orthopyroxene (grey), and 
tremolite (orange, purple and blue) replacing ortho- and clinopyroxene. 
Harzburgite sample L218. Length of photograph 0.55 mm; crossed nicols. 



31 

FIGURE 2.25. Web texture exhibited by type II orthopyroxenite in LAL dunite. 
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FIGURE 2.26. Vein of LAL clinopyroxenite offset by narrow 0 2 shear zones 
filled with type II orthopyroxenite ribbon mylonite. Clinopyroxenite is partially 
replaced by the orthopyroxenite. 
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FIGURE 2.27. Boudin of websterite associated with ribbon mylonite of type II 
orthopyroxenite in 0 2 shear zone. Clinopyroxene is green and orthopyroxene 
is bronze. 
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FIGURE 2.28. Cr-spinel hosting inclusions of olivine, serpentine, chlorite, ortho­
and clinopyroxene(?), Ca-amphibole, Cr-cummingtonite and sulphide. Web­
textured type II orthopyroxenite sample L271 . Width of SEM photograph 430 
pm. 
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FIGURE 2.29. Monomineralic bands of orthopyroxene (bottom), olivine (middle) 
and Ca-amphibole (top) which define S2 • Orthopyroxene is well equilibrated. 
Type II orthopyroxenite ribbon mylonite sample L351. Length of photograph 
3. 7 mm; crossed nicols. 
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FIGURE 2.30. Conjugate vein of type I orthopyroxenite (OPXT I) partially 
pseudomorphed by amphibole dunite (AD) . The amphibole dunite is bordered 
by dunite (d) which has olivine of a lower forsterite content than that in 
harzburgite. 51 of harzburgite indicated by dashes. 
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FIGURE 2.31. Enclaves of type I orthopyroxenite (bronze) in amphibole dunite 
(fibrous texture) which separates orthopyroxenite from amphibole-free dunite 
(light brown). 
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FIGURE 2.32. Well equilibrated mosaic equigranular texture of olivine 
(serpentinized). Ca-amphibole (dark brown) and Cr-spinel (black) both define 
S 2 • Amphibole dunite sample L 132. Length of photograph 4.3 mm; plane­
polarized light. 
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<a> 

(b) (c) 

FIGURE 2.33. (a) Sieve texture in poikiloblastic Cr-spinel. Highly reflective 
areas are magnetite. (b) Core of the Cr-spinel, showing inclusions of phlogopite 
and edenitic amphibole. The fibrous lamellae in these silicates are Ca-Fe 
silicate. The highly reflective grains in the fracture in Cr-spinel are native Cu. 
{c) Margin of the Cr-spinel in contact with edenitic amphibole. The vermiform 
silicates are edenitic amphibole and olivine or serpentine. Amphibole dunite 
sample L 125. Width of SEM photograph 1 .6 mm (a), 350 pm (b) and 190 pm 
(c). 
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FIGURE 2.34. Modal layering of Al-spinel in HAL dunite. 
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FIGURE 2.35. Band of fine grained Al-spinel cutting coarse grained Al-spinel 
in HAL dunite. 
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FIGURE 2.36. Chain texture exhibited by Al-spinel in serpentinized olivine. 
Highly reflective areas at the margins of grains of Al-spinel are magnetite and 
sulphide. Magnetite occurs along fractures in Al-spinel. HAL dunite sample 
L299. Width of SEM photograph 1 .0 mm. 
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FIGURE 2.37. Protrusion of Al-spinel (light grey) associated with clinopyroxene 
(darker grey) along the grain boundary of adjacent grains of olivine. HAL dunite 
sample L350. Width of SEM photograph 370 pm. 
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FIGURE 2.38. Al-spinel containing inclusions of olivine or serpentine, chlorite 
(clinochlore), tremolitic to pargasitic amphibole, phlogopite, Ca-plagioclase, 
orthopyroxene(?) and ilmenite. Fractures post-date inclusions. HAL wehrlite 
sample L301. Width of SEM photograph 1 .5 mm. 
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FIGURE 2.39. HAL gabbro dyke (white) grading to HAL wehrlite in a HAL 
gabbro-clinopyroxene dunite association. The left side of the dyke has been 
removed by shearing. 
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FIGURE 2.40. HAL wehrlite (top left) grading to HAL dunite (bottom centre). 
Both are cut by HAL olivine clinopyroxenite (centre), which is at a high angle 
to the foliation in wehrlite (parallel to the length of the scale). HAL dunite lies 
to the right of the HAL olivine clinopyroxenite. 
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FIGURE 2.41. Reduction in grain size of Al-spinel from HAL dunite (top left} to 
HAL wehrlite (bottom right}. 
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FIGURE 2.42. Dunitic portion of a HAL olivine clinopyroxenite dyke (dark 
brown) cutting LAL dunite (light brown). Clinopyroxene is distributed unevenly 
in the dyke. As the forsterite content of olivine decreases, the dunite gets 
darker. 
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FIGURE 2.44. Interstitial clinopyroxene (brown) in a matrix of serpentinized 
olivine. This texture is typical of cumulates and impregnated mantle rocks. 
Partially altered plagioclase (top left) has the same morphology as 
clinopyroxene. HAL wehrlite sample L331. Length of photograph 15.5 mm; 
plane-polarized light. 
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FIGURE 2.45. Large poikilitic grain of clinopyroxene {at extinction) containing 
chadacrysts of serpentinized olivine. HAL olivine clinopyroxenite sample L 186. 
Length of photograph 15.5 mm; crossed nicols. 
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FIGURE 2.46. Xenoliths of harzburgite (H and Hm) and LAL (D) and HAL (d) 
dunite, in HAL olivine clinopyroxenite (stipple). Xenoliths either are angular 
with well defined margins (solid lines), or are irregular with gradational margins 
(broken lines). Irregular dunite xenoliths in some places grade from LAL to HAL 
as the olivine clinopyroxenite is approached . HAL dunite xenoliths often 
contain impregnated clinopyroxene. Offsets in the central LAL dunite xenolith 
are filled by HAL clinopyroxenite. The close spatial distribution of xenoliths uf 
harzburgite (H), harzburgite mylonite (Hm) and LAL dunite (0), suggests that 
these xenoliths may not be in-~. 
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FIGURE 2.47. Irregular HAL dunite xenoliths (d) in HAL olivine clinopyroxenite 
(stipple). HAL clinopyroxenite (thick black lines and Cpxt) forms along the 
margins of dunite xenoliths . Parts of dunite xenoliths (di) conta in impregnated 
clinopyroxene where their margins are gradational (broken lines) to ol ivine 
clinopyroxenite. 
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FIGURE 2.48. Veins of HAL olivine clinopyroxenite at the contact between 
HAL dunite (dark brown) and harzburgite (light brown with bronze speckle}. 
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FIGURE 2.49. Assemblage of HAL olivine-spinel-clinopyroxene (centre, dark 
brown) replacing harzburgite (left, light brown, and right, dark brown). Note 
that the zone of replacement is parallel to S, of harzburgite as defined by 
orthopyroxene. 
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FIGURE 2.50. Partially schematic phase relations for ultramafic rocks modelled 
by the system H20-Na20-Ca0-Mg0-AI20 3-Si02 with excess H20 and Mg2Si04 • 

Solid lines are experimentally determined. Dash-dot lines are approximated. 
Abbreviations: Lherz =lherzolite; Perid =peridotite; A nth= anthophyllite; 
Am ph= pargasite-tremolite solid solutions; Chi= chlorite; Cord= cordierite; 
Cpx =clinopyroxene; Fo = forsterite; Gt =garnet; L =silicate magma; 
Neph =nepheline; Opx =orthopyroxene; Parg = pargasite; Plag = anorthitic 
plagioclase; Sp =spinel; Trem = tremolitic amphibole; V =aqueous vapour. 
Diagram from Jenkins ( 1983). 
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associated with type I orthopyroxen1te ( +) and clinopyroxen1te (x) . chromitite 
(1) , and amphibole dunite (v). (c) Type I orthopyroxenl!e dykes ( 1 I and vein (T), 

type II orthopyroxenite (2) . clinopyroxenite (o), clinopyroxenite containing 
xenocrysts of orthopyroxene (e), websterite (•). and a spinel exsolution or 
inclusion in clinopyroxene in websterite (e) . 



* L. 

(.) 

60 

100 

Cal (b) op (C) [7woP 
IW C1 

50 

OL 

0~----~------~------~------~------~----~ 
100 50 0 

100 
50 

Mg# 

100 
0 

50 0 

FIGURE 3.4. Cr# vs. Mg# composition fields o f sp inel. (a) Mafic-ultramafic 
stratiform complexes (5) (Irvine, 1967) with trends of the Bushveld (b) (De 
Waal, 1975) and Skaergaard (s) (Jackson, 196~); pediform deposits ot 
ophiolite complexes (C) (Leblanc ru al .• 1980). (b) Abyssal peridotites (A) (Dick 
and Fisher, 1984); harzburgites and dunites of the Bay of Islands Ophiolite 
Complex (Bl (Malpas and Strong. 1975); harzburgites of the Lewis Hills Massif 
(L) (Smith and Elthon, 1988) and Papuan Ultramafic Belt (P) (Jaques and 
Chappell, 1980); Cr-spinel harzburgites and lherzolites ot the Miyamori 0phioW'3 
Complex (M) (Ozawa, 1988). (t:: Boninites and basaltic komatiites (Bo) 
(Cameron ~ aJ., 1979); orthopyroxenites of the Lewis Hills Massif (l) (Smith 
and Elthon , 1988) and Papuan Ultramafic Belt (P) (Jaques and Chappell , 1980); 
low-AI orthopyroxenites of the White Hills Peridotite (W) (Talkington and 
Malpas. 1984); Cr-spinel ol ivine clinopyroxenites of the Miyamori Ophiolite 
Complex (M) (Ozawa. 1988). 



-~ 
'0 
c: 
0 
s= 
~ 
(.) 

0 a: 

1.0 ::: -- ·~··-· r·· ·~-·---· 

0.1 '--

,... 

0.01 

0.001 

(a) Harzburgite 
x L 1 03 amphibole-bearing 
o L 1 06 contains OPXT I 
• L..225 

--.... __ _ _ 

----~ - . ~ · 

,. --· ... 

&. • . _ ...._. •• • .• -.-~-- . 

1.0 

0.1 • 

.... 
r-

0.01 I 

0.001 

(b) Dunite 

.. 
~-----· t--:-/ ·-

.--· 

·---.... -·. ... - •--. • • 

.. 
~- ­.. 
• • 

• • 

La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu 

61 

FIGURE 3.5. Chondrite-normalized rare earth element abundances o f LALPP: 
(a) harzburgite samples L 103, L 106 and L225; (b) dunite samples L246 and 
L262. Normalization values are those of Wakita et al. ( 1971 l . 
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FIGURE 3.5. Chondrite-normalized rare earth element abundances of LALPP: 
(c) type I orthopyroxenite samples L066 and L268; (d) websterite samples 
L283 and L288 . Normal ization values are those of Wakita et al. ( 1971 l. 
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FIGURE 3.5. Chondrite-normalized rare earth element abundances of LALPP : 
(e) clinopyroxen ite samples L012, L026, L213, L290 and L293; (f) dunite 
samples L216 and L21 7 from a dunite envelope around clinopyroxenite . 
Normalization values are those of Wakita et QJ . ( 1971) . 
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FIGURE 3.5. Chondrite-normalized rare earth element abundances of LALPP: 
(g) type II orthopyroxenite samples L271 and L351 ; (h) amphibole dunite 
samples L 140, L266 and L275 . Normalization values are those of Wakita e.t 
al. (1971). 
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FIGURE 3.6. Chondrite-normal ized plat inum group element abundances of 
LALPP: (a) harzburgite samples L 106, L218 and L225 ; (b) chromitite samples 
L203, L244, L289 3nd L326 . Numbers to right of pattern are Pd /lr rat ios. 
Normalization values are those compiled by Naldrett and Duke ( 1980) for an 
average C1 chondrite . 
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FIGURE 3.6. Chondrite-normalized platinum group element abundances of 
LALPP: (g) type II orthopyroxenite samples l271 and L351; (h) amphibole 
dunite samples L255, L266 and L275 from where type I orthopyroxenite is 
replaced . Numbers to right of pattern are Pd/ lr ratios. Normalization values are 
those compiled by Naldrett and Duke ( 1980) for an average C1 chondrite. 
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FIGURE 3 . 7 . Mineral/matrix equilibrium partit ion coefficients of rare earth 
elements for olivine, orthopyroxene and clinopyroxene (values co111piled by 
Prinzhofer and All~gre ( 198511. and amphibole (Irving and Frey, 198~·1 : 

01 Opx Cpx A mph 

La 0.00044 0 .0012 0 .12 0.064 
Ce 0 .00030 0 .00162 0 .15 0.097 
Nd 0.00020 0 .0028 0 .2 0 .29 
Sm 0.00018 0.0054 0.24 0.37 
Eu 0.00020 0.0078 0 .25 0.43 
Gd 0 .00025 0 .0111 0 .263 0.62 
Dy 0.0007 0 .01975 0 .29 0.52 
Er 0.00174 0 .0392 0 .294 0 .48 
Yb 0 .00522 0 .06 0 .3 0.19 
Lu 0 .00852 0 .0703 0 .31 0 .13 
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FIGURE 3.8. (a) Ca0/AI20 3 vs . Mg# (whole-rock) of refractory harzburgites 
(closed circle), Ca-amphibole- and/or clinopyroxene-bearing harzburgites (solid 
diamond), and harzburgite containing type I orthopyroxenite (solid square) of 
the Springers Hill area. Fields are: harzburgites of Table Mountain (T) and North 
Arm Mountain (N) (Malpas, 1976), harzburgites of the Oman Ophiolite (0) 
(Lippard~ 2_! . , 1986), harzburgites of the White Hills Peridotite (W) (Talkington, 
1981), harzburgites of the Papuan Ultramaf ic Belt (P) (Jaques and Chappell, 
1980), and harzburgites (H) and lherzolites (L) of the Ronda Peridotite (Frey ~ 
2!.. 19851; fertile lherzolite compositions of Maal0e and Aoki (1977) and 
Jagoutz ~ 21. ( 1979) are open square and open circle, respectively. Trend of 
residue compositions from batch equilibrium partial melting of MORB pyrolite 
at 10 kbar from Fa !loon ~ al. ( 1989). 
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and their constituent silicate phases. 
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FIGURE 3.9. Chondrite-normalized platinum group element abundances of a 
LAL clinopyroxenite dyke and associated dunite envelope and harzburgite. 
Normalization values are those compiled by Naldrett and Duke ( 1980). All 
samples contain sulphide and/or native Cu. 

Clinopyroxenite samples L211, L212, L213 and L214 (open circle): 
Pd/lr= >44-1040, Mg#(01)=88.3. 

Cr-spinel-rich dunite sample L216 (closed circle) : 0 .2 m from clinopyroxenite, 
Pd/lr = 2.1, Mg#(QI) = 90.5. 

Dunite sample L217 (closed square): 0.9 m from clinopyroxenite, Pd/lr = 8 .4, 
Mg#(QI) = 91 .3. 

Harzburgite sample L218 (open square): 2.4 m from clinopyroxenite, Pd / lr = 1.2, 
Mg#(QI) = 91 .3 . 
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FIGURE 3.1 0. Estimated chondrite-normalized rare earth element abundances 
of magmas in equilibrium with type I orthopyroxenite sample L268 (square) and 
LAL clinopyroxenite sample L026 (circle). Normalization values are those of 
Wakita et al. (1971 ). Mineralogy is 95 wt. o/o orthopyroxene and 5 wt. o/o Ca­
amphibole for type I orthopyroxenite sample L268, and 80 wt. o/o clinopyroxene 
and 20 wt. o/o olivine for clinopyroxenite sample L026 (olivine in this sample 
may have been overestimated due to its heterogeneous distribution). Partition 
coefficients are those in Figure 3. 7. Equation used is E3. 1 . 
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TABLE 3.1 . Major and trace element and normative compos1t1ons of 

orthopyroxenites in ophiolitic and orogenic mantle peridoti tes. 

Locat1nn SHA 0 p T PUB WHO WHP BB 

Type LALPP Lt.JVJ-AJ High-Al 

n 8 3 2 3 4 

---------
(wt %) 

S.02 56 02 55 48 5648 55 311 5658 52 53 51 44 5328 

To02 bdl bdl 003 0 03 0 01 oog 013 0 44 

Al203 088 I 87 0 91 0 83 0 19 1 &4 438 4 07 

FeO(t) 8 14 730 7 42 754 7 81 5 88 6 •. 4 754 

MnO 013 017 014 0 22 019 0 12 0 13 0.18 

MgO 35 29 3318 32 67 34 09 34n 37 80 3335 32 43 

CaO 1 117 2 21 233 1 811 0 48 153 398 t 75 

Na20 0 07 bdl bdl 004 0 01 035 0 17 0 31 

K20 0 01 bdl bdl 000 000 0 03 0 14 000 

P205 0 01 bdl 0 02 na 000 0 04 0 07 000 

Mg" 911 890 88 7 8110 88 8 92 0 905 88 5 

Ca01AI203 254 1 32 258 2 25 2 37 0 93 090 0 43 

(wt %) 

c 038 

Oo ooe 0 18 0 83 

Ab 0511 034 0 08 298 1 44 2 62 

An 1 46 456 2 48 2 09 0 47 2 82 10.78 868 

Ne 

D o 533 5 07 7 08 585 1 43 355 684 

Hy 81 91 81 52 88 59 80 63 9159 58 47 51 85 70 91 

01 10 82 8 84 3 74 11 23 8 41 31 75 28 07 11157 

II ooe ooe 0 02 017 0 25 0 84 

Ap 0 02 0 05 oog 0 17 

(ppm) 

Sc 18 na na na 11 na na na 

v 54 128 50 na 25 48 108 na 

Cr 4517 4373 2350 4243 4585 4468 3822 :>588 

No 728 795 425 471 823 1544 1370 na 

Cu bdl 8 2 na bdl 4 44 na 

Zn 20 44 35 na 47 31 33 na 

Rb bdl na 0 na bdl 1 12 na 

Sr 4 bdl 3 na bdl 2-73 1-202 na 

y bdl na na na bdl 3 4 na 

Zr bdl bdl na na bdl 5 7 na 

SHA Springers Hill area: 0 : Oman Ophiolile {Lippard el al. 1988) 

r · Pindoa Or.hoolile (Moologny et al . 1973) 

T Troodos ()phiolite (Menzies and Allen. 1974) 
PUB Paput:n Ultramafic Belt (Jaquea and Chappell. 1980) 

WHP. Who!, Hilla Peridotite (Talkington. 1981) 

BB Beno B·:>usera (Pearson. 1989) 
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these symbols are used throughout this chapter. 
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HALPPG: harzburgite xenoliths in HAL olivine clinopyroxenite (x). harzburgite 
adjacent to veins and dykes of HALPPG (v). chromitite xenolith in HAL olivine 
clinopyroxenite (c), and type I orthopyroxenite adjacent to HALPPG (o). Arrow 
indicates direction of compositional change over a distance of 8.5 mm on 
passing from type I orthopyroxenite into amphibole dunite for sample L333. 
Fieids are from Figures 3 .3 and 4.2: harzburgite (HI. chromitite (CRl and type 
I orthopyroxenite (01), which are the LALPP components of LAL; dunite and 
wehrlite of HALPPG (HAll. 
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FIGURE 4.10. (b) CAM diagram (weight%) of HALPPG from Figure 4.4. Fields 
as for Figure 4 .1 Oa, except average composition of the Lewis Hills Depleted 
Suite (X). Triangle HC-MA-LO represents the three component system of 1 00 
% unreacted olivine and orthopyroxene in harzburgite, LAL dunite and type I 
orthopyroxenite (LO), 1 ~;O% HAL clinopyroxenite produced by 100% reaction 
of magma with LO (HC), and 100 % magma (represented by Xl having 
experienced no reaction with LO (MAl . 
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FIGURE 5. 1. Compositional variation of Ca-amphibole in harzburgite (e), 
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(solid square) . Normalization values are those of Wak ita et al. ( 1971 ). 
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TABLE A1.1 . Accuracy and precis ion of analyses of minerals 

Accepted Mean Min Max so cov 
wt.X wt. X at. X wt.X wt .X X 

· -- -- -------- -- ---- --- -p · ----- --- --- ------ ----------------- ---
Olivine 174 .1: Dalhousie; n=98 
Si02 40.8 40.98 39.93 41 .97 (' 36 0.88 
FeO 9.46 9.34 8.94 9.n 0. 17 1.87 
NiO 0.39 0. 41 0 . 00 0.89 0.13 31. 71 
MgO 49.26 49.25 47.88 50.46 0.38 o.n 
Cr·di opside: Dalhousie; n=18 
Si02 55 . 12 55.15 54.62 55.76 0.37 0.67 
Cr203 0. 58 0 . 26 0.03 0.40 0.08 32. 61 
FeO 1.20 1. 38 1.24 1.50 0.07 5.23 
MgO 17.46 17.30 17. 02 17.68 0. 19 1. 10 
cao 25.54 25 . 52 24.89 25 .82 0.26 1.02 

ICakanui kaersutite (1(1() : Da lhousie; n=SO 
Si02 40 . 37 40 .44 38.11 41 . 19 0 . 45 1.1 1 
Ti02 4.n 4.68 4.24 4.92 0.15 3. 15 
Al203 14.9 14.52 14 .01 15 .06 0.24 1.62 
FeO 10.91 10.36 9.n 10.75 0.19 1.88 
MgO 12.8 12.53 11.49 12.9S 0. 25 2. 03 
cao 10.3 10. 22 9.63 10.61 0.17 1.68 
Na20 2.6 2. 71 2 .47 3 .01 0.13 4.80 
IC20 2.04 1.98 1.31 2. 17 0.12 6.25 

Orthopyroxene grain: Dalhous i e; n=3 
MnO 0.14 0. 13 0.16 0.02 12.37 

Spinel 531N8: Memoria l ; n=25 
Ti02 1.60 1.29 1.17 1.37 0.04 3.39 
V203 0.91 0.99 0 .87 1. 10 0.06 6. 12 
Al203 12.82 12.87 12 . 44 13.32 0.21 1.59 
Cr203 49.31 49. 11 .. 8.42 50. 16 0.43 0.87 
FeO 28 . 15 28. 00 27.23 29. 10 0.40 1.43 
MnO 0.32 0.26 0.18 0.32 0. 03 12.37 
NiO 0 . 06 0. 08 0.04 0 .12 0.02 22 . 71 
MgO 6.12 6.04 5.81 6. 23 0.1 1 1.88 

Accepted values are t hose of Dalhousie Universi t y and 
Memorial University 



90 
TABLE A1 .2. Accuracy and precision of analyses of major el ~ts 

Accepted Mean Min Max so cov 
wt.X wt.% wt.X wt .X wt.X " .... --- ... ------ ..... . --... --- -... -- ... ....... --- ... -- ... -. ... -... -........ .. --- .. --- .... --... . 

Basalt BE·N: Memorial; n•6 
Si02 38.20 38.50 38.21 38.67 0.18 0.47 
Al203 10.07 10.02 9.85 10.10 0.09 0.90 
Fe203 12.84 12.84 12.69 12 .96 0 . 11 O.d6 
MnO 0.20 0.19 0.19 0 . 19 0.00 0.00 MgO 13.15 13.14 13.04 13 .27 0.07 0.53 
CaO 13.87 13.91 13.84 13 .96 0.05 0.36 
Na20 3.18 3.25 3.22 3 .28 0.02 0.62 
1(20 1.39 1.46 1.45 1.47 0.01 0.68 

Basalt BC:R · 1: Memor i al; n=1 
Fe203 3 .59 3.49 
FeO 8.88 8.87 
P205 0.36 0.36 

Peridotite PCC·1: Memorial; n=2 
Si02 41.67 41 .90 41.70 42.10 0. 26 0.68 
Fe203 6.25 8.06 7.98 8.13 0.11 1.32 
MnO 0.12 0.12 0 . 12 0 . 12 1).00 0.00 
MgO 43 .43 43.49 42 .87 44 . 10 0.87 2.00 
C:aO 0.52 0.55 0.54 0.56 0.01 2.57 

Peridotite PCC· 1: Mines; n=6 
Al203 0.67 0.65 0.64 0.67 0.01 1.85 

Accepted values from the compilation of Govindaraju (1989) 

TABLE A1.3. Accuracy and precision of analyses of trace elements 

Accepted Mean Min Max so cov LOO 
ppm ppm ppm ppm ppm :t ppm 

--- --- ---- -- ·--·- · -· ·--····· · · --··--· ----- ----- --- -- ----·· ······· ·· ·---
Basalt BCR · 1 : Memor i al; n=3 
Ti02 22400 22900 22700 23000 0.0 0.7 200 
sc 33 32 31 33 1.2 3.7 3 v 407 424 423 425 1.0 0.2 6 
Zn 130 129 127 130 1.5 1.2 9 
Rb 47 48 47 49 1.0 2. 1 0 .9 
Sr 330 338 336 339 2.3 0.7 0.8 
y 38 37 37 38 0.8 2.1 0 .8 
Zr 190 195 194 197 1.8 0.9 0.7 

Peridotite PCC·1: Memorial; n=16 
sc 8 7 5 10 1.6 24.1 3 v 31 31 26 34 2.1 6.7 6 
C:r 2730 2873 2839 2918 21.0 0.7 5 
Ni 2380 2299 2252 2343 21.0 0.9 2 Zn 42 45 42 47 1.8 3.9 9 

Accepted values from the compi lation of Govindaraju (1989) 
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TABlE A1.4a. limits of deaction and blank COfi"PlSitions of rare eart~ elew~ts 
cconcentruions in PJXI) 

LOO Blank lOO Blank LOO Blank LOO Blank LOO Blank 
Run 116 116 153 153 240 240 182 182 024 024 
n 1 2 1 1 3 
-.. 4'. -. .. ...... .. - .. .. .................. .. ........... .. .. .. .. .. - .. --- ·· --- -.. ......... --- .... .. -- .... .... .. .... - .. - .. -- .. ------ ...... -- ..... --- .. -.... 

La 0.21 0.40 0 . 56 0.55 1.06 1.3 0 . 587 54 . 1 3.06 72.1 
Ce 0.15 0.58 0 . 45 0 . 59 0.35 2.3 1. 168 226 4 .68 67 . 6 
Pr 0.23 0 . 079 0 . 38 0 .36 1.0 0 . 072 0 .599 17. 7 2.60 3 . 91 
Nd 1.5 2 . 1 2 . 9 1 . 5 1.5 1.0 2 .59 92.3 19.6 14.0 
Sm 1 . 00 1.16 1.6 o.n 2. 1 0 . 035 2.85 24 .0 45.9 23 .7 
Eu 0.36 0 . 24 0.50 0 . 038 0.45 0.23 1.57 nd 15.5 nd 
:;d 1. 1 0 . 55 1.8 0.30 3.1 nd 4 .85 20.3 17.0 nd 
Tb 0.16 0 . 119 0.30 0.057 0 . 19 0 . 100 0.391 2.90 4 .95 nd 
Oy 0 . 40 0 . 80 0. 84 0.34 0.86 o. 125 2.45 26.6 7.43 nd 
Ho 0.183 0.162 0.29 0.067 0.160 0.043 1.30 5.06 3. 10 nd 
Er 0.61 0.51 1.13 0.50 1.50 0.170 0.839 15.7 11.6 1.02 
Tm 0 . 070 0.119 0.353 0 . 165 0.360 nd 1.43 3 . 22 12.4 nd 
Yb 0 .66 0.64 1.05 0.62 0 .53 0.0076 1.54 19. 4 14. 1 0.056 
Lu 0.062 0.193 0.33 0 . 043 0.190 0.39 0 .488 1.65 1.40 nd 

TABLE A1 .4b. Prec is ion cas COV in X) of rare earth 
elements 

Rlll 116 153 240 182 024 
.. ·--- ---- -- --- ------ -------------·-- ---· · 
La 26 26 26 2 2 
Ce 26 26 26 2 2 
Pr 31 31 31 2 2 
Nd 35 J5 35 3 3 
Sm 23 23 23 2 2 
Eu 34 34 34 4 4 
Gd 40 40 40 3 3 
Tb 19 19 19 3 3 
Dy 21 21 21 4 4 
Ho 15 15 15 3 3 
Er 7 7 7 3 3 
Tm 7 7 7 3 3 
Yb 9 9 9 3 3 
Lu 13 13 13 3 3 
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TABLE A1.4c. Accuracy and precision of analyses of rare eart~ el~nts 

Basalt BCR· 1: Memorial 

MUN Run 182 Yield Run 024 Yield Mean so cov 
ppm ppn X ppn X ppm ppn \ 

n 1 1 
--·-------·---------------------·-------------------·----------- -- ------ ---· --
La 24.9 22.4 90 24.3 98 23 .4 1.3 6 
Ce 53.4 45.9 86 50.1 94 48 .0 3.0 6 
Pr 6.9 6.26 91 6.54 95 6.40 0. 19 3 
Nd 28.8 24.7 86 26 .4 92 25 .6 1.2 5 
Sm 6.59 6.03 91 6.26 95 6.14 0.17 3 
Eu 1.96 1.57 80 1.67 85 1.62 0.07 4 
Cd 6.64 5.36 81 5.63 85 5.49 0.19 4 
Tb 1.05 0.945 90 1 .01 96 0.98 0.05 5 
Oy 6.42 5.87 91 6.06 94 5.97 0.14 2 
Ho 1.25 1.18 95 1.22 98 1.20 0.03 2 
Er 3.67 3.53 96 3.49 95 3.51 0.03 1 
Tm 0.59 0.490 83 0.509 86 0.500 O.G13 3 
Yb 3.37 3.19 95 3.19 95 3.192 0.004 0 .1 
Lu 0.1.97 0.494 99 0.477 96 0.486 0.012 2 

MUN are the Memorial University accepted values 

TABLE A1.4d. Accuracy and precision of analyses of rare earth elements 

Pe~ idot ~ te PCC- ~: ~emcri~l 

Accepted Min Max Rill 1 16 Rill 153 Run 240 Run 024 Mean so cov 
ppb ppb ppb ppb ppb ppb ppb ppb ppb X 

n 1 1 1 1 ------ -----···-------- .. -- ...................................................................................... .... .......... ...... .. .. .. .............. ....... . ... 

La 1.3 32 55 150 160 150 1'i0 6 4 
Ce 88 66 120 37 44 49 43 6 14 
Pr 11 7 15 5.3 5.8 5.8 5 .6 0.3 5 
Nd 49 33 80 20 23 23 22 2 6 
Sm 6.5 5.4 8.5 3.8 5.1 2.6 3.8 1.3 33 
Eu 6.2 0.96 29 0.75 0 .64 0.65 0.68 0.06 9 
Gd 8 . 1 3.4 14 4.1 5.6 3.6 4 .5 1.0 21 
Tb 1.7 1.2 3 C.50 1.11 2.0 1.2 0.6 64 
Oy 8.7 6.5 10 7.4 8. t 4.8 6.8 1. 7 26 
Ho 2.7 1.3 4 1.49 2.1 1.26 1.6 0.4 27 
Er 8.4 4.7 12 4.9 !! . 4 5 .4 6.2 1.9 31 
Tm 2.6 o.n 4 1.11 1.54 1.79 1.48 0.34 23 
Yb 25 7.5 31 9.8 10.8 15.5 32.9 12.0 3.0 25 
Lu 5.3 1.6 8.5 1.78 2.4 5.0 6.23 3.1 1.7 56 

Accepted, mininuR and 11111ximum values are from the compilation of Frey (1984) 
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FIGURE A 1.1. Precision of chondrite-normalized rare earth element abundances 
of representative analyses from runs 1 53 and 024, and between runs 182 and 
024. Each point represents a single determination. Normalization values are 
those of Wakita e.t£!. (1971 ). 
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FIGURE A 1.2. Precision and accuracy of chondrite -normalized rare earth 
element abundances of USGS peridotite standard PCC-1 . Each point in runs 
116, 153, 240 and 024 represents a single determination. The mean, 
minimum and maximum of published values are from the compilat ion of Frey 
(1984) . Normalization values are those of Wakita~ QJ. (1971). 



Q) 

·E 

1.0 ::. ---,----.-~-r---------·- ---~ -·--

r -

0.1 ~-
.-

0.01 ~-
~ 

~ 
0.001 ~~·· 

Blank 
........ 

.... / 

·----. 
Limit of detection 

• • 
• 

• 

Run 182 

~ I 

c3 0.0001 ~! --' -· . 
.c 
~ 
(,) 
0 a: 

1.0 c ... -~-------

Blank 

I 

0.1 t·:· \ ' .. / . ~ ,/ 
. '/ 

~/ . _..;.< ~ 

0.01 r.- .. 
t.: 

' · 

'-
i 

0.001 E--

i­... 
I 

• 
Limit of detection 

0 . 000 1 :. - _.__ -"-----'-----'--

• 

Run 024 

·---· --------~------ --- - -· 
La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb lu 

95 

FIGURE A 1 .3 . Chondrite-normalized rare earth element abundances of blanks 
and limits of detection in runs 182 and 024. Normalization values are those of 
Wakita ru al. ( 1971). 



TABLE A1.5. Accuracy and precision ~f analyses of plati num group elements 

PTC·1: Memorial; n=S 

Ru 
Rh 
Pd 
Re 
Os 
I r 
Pt 
Pd/lr 

Accepted 
ppb 

650 
620 

12700 

240 
170 

3000 
75 

MUN 
ppb 

440 
609 

11405 
67 

192 
164 

2699 
70 

Accepted values from McAdam et 
University 

Mean 
ppb 

418 
605 

11402 
72 

139 
170 

2609 
67 

Mi n 
ppl) 

346 
582 

10392 
55 
54 

153 
2165 

Max 
ppb 

503 
626 

11813 
90 

218 
184 

3250 

67 
16 

577 
15 
66 
11 

416 

CCV 
~ 

16. 0 
2.7 
5.1 

20 . 4 
47.3 

6 . 7 
15.9 

0.08 
0 . 02 
0.13 
0.04 
0.31 
0.01 
0.05 

al . ( 1973); HUN are accepted values f r om Memor i al 
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Rock 

S.mple 

locahon 
Type 

&02 
Ti02 
AJ203 

Ct203 

FeO 
MnO 

N•O 

MgO 

CaO 

Na20 
K20 

Tolal 

So 
Ti 

AI 
Cr 

Fe2+ 

Mn 
Ni 

Mg 
Ca 

Na 
K 
Total 

TABLE A3 1 Ohvme analy .. e (oxodet on WI %. number ol ions on b&&ll of 4 0) 

H 

LIXI7 

1-01 

LALPP 

40.48 

0.02 
0.01 

005 

8 .58 
0 .02 
0.48 

48 70 

0 .00 

0 .00 

0 .00 

8830 

0885 
0 .000 

0 .000 

0.001 

0 .178 

0000 
0 .008 

1821 

0 .000 

0 .000 

0 .000 

3.004 

Ill 2 

H 
L087 

4-01 
LALPP 

40 58 

0 .02 
0 .00 

0 .00 

8 .77 
0 .06 

0 44 

48 34 

000 

0.01 

0 .00 

88.23 

0 .888 
0 .000 

0000 
0000 

0 .180 

0 .001 
0 .008 

1.810 

0 .000 

0 .001 

0 .000 

3.001 

90.9 

H 

l108 

3-01 
LALPP 

41 .26 

0 .00 
0.00 

0 .04 

8 .-ll 

011 
0 .41 

48 81 

0 .00 

0 .01 

0 .00 

10005 

1.005 
0 .000 

0000 
0.001 

0.171 

0002 
0.008 

1.808 

0.000 

0.000 

0.000 

2.885 

913 

H 

L108 
3-01 

LALPP 

41 .41 

0 .01 
0 .00 

000 

8 .48 
015 

048 

4888 

0 .00 

0 .03 

0 .00 

100.53 

1004 

0.000 

0000 
0.000 

0172 

0.003 
0 .008 

1.807 

0.000 

0.001 

0.000 

2986 

91 .3 

H 

L108 
3-01 

LALPP 

41 40 

001 
0 .00 

0 .00 

856 
0 .13 
0 15 

48 64 

000 

0 03 

000 

8882 

1008 
0.000 

0.000 
0000 

0 174 

0 003 
0.003 

1.802 

0.000 

0.001 

0.000 

2882 

91 2 

H 

L 153 

1-01 
L ... LPP 

41 53 

000 
0 03 

000 

8 61 

0 03 
0 44 

48 85 

0 00 

0 00 

0 00 

8859 

I 015 

0 .000 

0.001 
0 000 

0 176 

0 001 
0 .009 

1 783 

0.000 

0 000 

0 .000 

2 985 

91 0 

H 

L153 

1-01 
LALPP 

40 70 

000 
001 

0 02 

8 45 
000 

0 38 

41146 

0.00 

0 01 

0.00 

8803 

1.002 

0 .000 

0000 
0 .000 

0 .174 

0 000 
0008 

1 814 

0 .000 

0 .000 

0000 

2 998 

913 

H 

L157 

1-01 
LALPP 

41 37 

002 
0 OS 

000 

8 62 

008 
na 

50 12 

000 

0 03 

0.00 

100 211 

1.005 

0 .000 

0001 
0 .000 

0 .175 

0002 
0 .000 

1 815 

0000 

0001 

0 .000 

2999 

91 2 

H 

L157 

1-01 

LALPP 

40 28 

0.02 
000 

0011 
8 61 
0.17 

072 

50 02 

000 

0 04 

000 

89.83 

0 1187 

0 .000 

0000 
0 .002 

0 .176 

0004 
0 014 

1.828 

0 .000 

0 .002 

0 .000 

3.013 

91 2 

H 

L157 

3-01 
LALPP 

40.86 

000 
000 

000 

856 

0 05 
0 45 

4887 

000 

002 

000 

88111 

0 898 
0 000 
0000 
0000 

0 175 
0 .001 
0 .009 

I 819 

0 .000 

0001 

0 .000 

3003 

H 

l157 
S-Ol 

LALPP 

41 28 

0.01 

000 

000 
872 

0 13 

058 

48.73 

0 .00 

000 

000 

100.48 

I 003 

0000 

0000 
0 .000 

o.1n 
0003 
o o;1 
1.802 

0 000 

0.000 

0 000 

2.896 

91 0 

H 

L157 
S-Ol 

LALPP 

41 01 

003 

0 01 

000 

8 26 
0 07 

0 67 

411.73 

000 

0 02 

000 

89 711 

1.002 

0001 

0000 
0 000 

0 leG 
0001 

0 013 

1811 

0 000 

0.001 

0.000 

2 898 

91 5 

H 

L157 

6-01 
LALPP 

41 00 

000 

000 

000 
864 

011 

0 27 

4S 78 
000 

0 02 

000 

9981 

I 001 

0000 

0000 
0.000 

0.178 

0 002 

0 005 

1 813 

0 000 

0 001 

0000 

2899 

91 1 

H 

L1113 

2-01 
LALPP 

41 38 

000 
0 04 

000 
a 42 
0 05 

050 

41137 

0 00 

000 

000 

89 76 

I 010 

0000 
0 001 
0000 

0 172 

0 001 

0 .010 

1 786 
0 000 

0000 

0 000 

2880 

91 3 

H 

L183 

3..01 

LALPP 

41 03 

000 

0 03 

000 
854 

0 03 
0 53 

41123 
000 

001 

000 

89 40 

I 006 

0 000 

0 001 
0 000 

0 175 
0 001 

0 010 

1800 

0 000 

I) 000 

0.000 

2 894 

9 1 1 



Rock 
Sample 
Lcxarion 

Type 

Si02 
Ti02 
Al203 

Cr203 

F.O 
MnO 
NiO 

MgO 

CaO 

Na20 

K20 
loCal 

Si 
Ti 
AI 

Cr 

FeZ• 
Mn 

N1 
M~ 

Cn 
N.t. 

K 

Toea! 

H 
L218 

2-ol 

LALPP 

41 .27 

0.01 

000 

0.02 

8.41 

0.00 
0 .80 

48.44 

0 .00 

0 .04 

0 .00 

88.78 

1008 

0000 

0.000 
0 .000 
0 172 

0 .000 

0012 
1.788 

0 000 

0002 

0 000 

2 883 

813 

H 
L218 

2-ol 

LALPP 

4100 

0 .01 

0 .00 

0 .02 

8 .38 

0 .17 
0 .40 

48 :<'3 
0 .00 

0.03 

0 .00 

88.24 

1.007 

0 .000 

0 .000 
0 .000 

0 172 

0 .004 

0 008 
1 802 

0 .000 

0001 

0 000 
2 884 

91 3 

H 
L225 

2-ot 
LALPP 

41 .00 

0 .00 

0.02 

0 .00 

7.115 
0 .02 
0.45 

5013 

0 .00 

0 .01 

0 .00 

88.58 

1.001 

0000 

0 .001 

0 .000 

0162 

0000 

0009 
1 825 

OJOO 

0 000 
00:10 
21Ml9 

111 8 

H 
L2Z5 
4-ol 

LALPP 

40.99 

0 .00 

0 .03 

0 .00 

8 .28 

0 .01 
0 .48 

41}.90 

0 .00 

0 .00 

0 .00 

88.88 

1001 

0000 

0.001 

0 000 

ll169 

0000 

0 0011 
1 817 

0 000 

0 000 
0 000 
2 gga 

91 5 

H 

l225 

5-.01 

LALPP 

41.10 
0 .00 

0 .01 

0 .00 

1136 
002 
0 .... 

48.61 

0 .00 

0 .01 

000 

8853 

1005 

0.000 
0.000 
0 000 
0 .171 

oooc 
0 0011 
1809 

0000 

0000 
0000 
288! 

91 4 

H 

L225 

6-ol 

LALPP 

41.14 

0 .00 

0 .03 

!: .~ 

7.83 

0.03 

0 .50 
411 ()'> 

0.00 

0 .00 

0.00 

88.45 

1.005 

0.000 
0.001 

0.000 
0180 

0 001 

0 ()10 
1 81~ 

0 (,\)() 

0000 
0 000 

2 995 

91 9 

H 

L226 

1-ol 

LALPP 

41 .04 

0.01 

~ .00 

0 .1)0 

79: 
~1.14 

0.45 

50.03 
000 

0.01 

0.00 

88.58 

1002 

1)000 

0 .000 
0 .000 
0 162 

0 003 

00011 
1 82 1 

0000 

0 000 
0 000 
2 gga 

91 9 

H 
L226 

4-ol 

LALPP 

40.74 

0.01 

0 .00 
0.01 

8.15 
0.15 
0.13 

41154 

:l.OO 

0.02 

000 

88.73 

1.003 

0000 
0 000 
0 .000 
0 188 

0003 

0003 
1 819 

0000 

0 001 

0 000 
2 997 

916 

H 
L::C>4 
1-ol 

LALPP 

41 .35 

o.o:s 
0.00 

0.02 

8 14 

015 

029 

411.93 

000 

002 

000 

88.91 

1.0Ge 

0 .000 
0 .000 

0 .000 
o rae 
0003 

0008 
1 811 

0 000 

0001 

0 000 

2 993 

91 6 

H 

l336 

1-ol 

LALPP 

41 .18 

0.00 

0.01 
0.00 

839 

0.00 
0 .44 

4992 

0.00 

0.01 

0 .00 

90.93 

1.003 

0 000 
0 000 
0 .000 
0.171 

0.000 

:l 009 
1 813 

0 0011 

0 000 
0000 
2 997 

91 4 

0 
L055 

4-ol 

LALPP 

40.88 

0.00 

0 .03 
0 .00 

1168 
004 

0 31 

48.08 
0 .00 

0 .00 

0 .00 

99.02 

1.010 

0.000 
0 001 

0000 
0 200 

0 001 

0008 
tnt 

0 000 
0000 

0000 
2 889 

89 9 

0 
l055 

&-01 

LALPP 

41.19 

0 .00 

0 .04 

0 .03 

8 .39 

0 .00 

038 

411.23 

000 

0 .00 

0 .00 

99.27 

1010 

0.000 
0.001 

0.001 

0 172 

0 00(1 

0007 
1 799 

0000 

0 000 

0 000 
2~ 

91 3 

0 
LOSS 
7-ol 

LALPP 

41 34 

0.00 

0 .03 

0 .05 

7.,11 

0 02 

040 

500«1 
000 

0 01 

0.00 

88.82 

LODe 

0 .000 

0 001 

0.001 

0161 

0 000 

0.008 
1 816 

0 000 
0 000 

0000 

2 993 

91 g 

0 
L143 

1-ol 

LALPP 

41 45 

0 .04 

0 .01 

000 

8 .49 

0 20 

0 32 

41171 

0 .00 

0.05 

000 

10025 

1007 

0.001 

0.000 

0000 

0 172 

0 004 

oooe 
1 800 

0 000 

0 002 

0000 

2 993 

111 3 

0 
L143 

2-ol 

LALPP 

4. i6 

000 

0.00 
004 

848 

0 2~ 

0 51 

41175 
000 

0.03 

000 

100 18 

1002 

0000 
0000 

0 001 
0 173 

0004 

0 010 
1 uoe 
0 000 

0 001 

0000 
2 gga 

9 1 3 



Rock 

S.mple 

Loc:abon 
Type 

Si02 
Ti02 

Al203 
Cr203 
FeO 
UnO 

NiO 

UgO 

CeO 
Na20 

1<20 
TOial 

Si 
Ti 

AI 
Cr 

Fe2• 
Mn 

Ni 

Ug 
Ca 
Na 
I( 

TOial 

Mgf 

0 
l162 

5-01 
LALPP 

4;1.47 
000 
0 .02 

0.00 

184 
0 .00 

028 
4872 
0 .00 

0 .00 

0 .00 

8813 

0 .11118 
0 .000 
0.000 

0 .000 

0 .171 
0 .000 

oooe 
1.824 

0000 

0 .000 
0 .000 

3 .004 

911 

0 
l193 

1-01 

LALPP 

40.110 
0 .01 
0 .03 

0 .00 

131 
000 

0 .48 

4831 

000 

000 

0 .00 

8811 

1.005 
0 .000 
0 .001 
0.000 

0 .172 
0 .000 

0.008 

1.806 

0.000 
0 .000 

0 .000 

2~ 

913 

0 

l188 

s-ot 
LALPP 

40.74 
O.OC 

0 .00 

0 .00 

lOll 

0 .05 

0 .53 

50.34 

0 .00 

0 .00 

0 .00 

88.70 

0 .1185 

0 .000 
0 .000 

0.000 
0185 
0001 

0010 

1.133 
0.000 
0 .000 
0.000 
3.005 

91 8 

0 
L216 

1-ot 

LALPP 

4030 
0 .00 
0 .02 

0 .00 

8.311 

0 .03 

0 .48 

4858 

0 .00 

0 .01 

0.00 

88.80 

0 .11110 
0 .000 
0 .001 

cooo 
0. 183 
0 .001 

0.010 

1.815 

0000 
0000 

0 .000 

3.010 

90.4 

0 

L216 

S-QI 

LALPP 

40.63 
0 .00 
0 .03 
0 .00 

926 

0 .05 

048 
4833 

0.00 

0 .01 

000 

Pl8n 

0.887 
0.000 
0.001 

0.000 
0. 1110 
0 .001 

0008 

1.805 

0.000 
0000 
0.000 

3.003 

90.5 

0 
L217 

1-01 

LALPP 

4128 
002 
000 
0 .05 

845 

0 .21 

0 41 

50 01 

0 .00 

0 .02 

0 .00 

100 45 

1.002 
0.000 

0 .000 
0.001 
0 .172 
0 .004 

0.008 

1.810 

0000 
0 .001 

0 .000 

2.998 

91 .3 

0 
L246 

2-01 
LALPP 

40.84 
0 .00 
000 
0 .00 

8.43 

0 .11 

028 
4841 
000 

0 .02 

0.00 

11820 

1.005 
0.000 

0 .000 
0.~~~ 

0 .173 
0002 

oooe 
1.808 

0.000 
0 .001 

0 .000 

2.995 

91.3 

0 

L254 

1-01 
LALPP 

41 .111 
0 .03 
0 01 
0 .011 

8 .20 

0.18 
0.49 

48.94 
0 .00 

0 OS 

0.00 

100.15 

1.0011 

0 .001 
0 .000 
0 .001 
0 .!81 

0004 

0.010 

1782 
0 .000 

0 .00~ 

0 .000 

2994 

905 

0 

L262 

1-01 
LALPP 

41 .10 
0 .00 
0.02 
0.00 

8.46 

0 02 

0.38 

5015 
000 

0.00 

000 

10013 

1.000 
0 .000 
0 .001 
0 .000 
0.172 
0 .000 

0 .007 

1.8111 

0 .000 
0 000 

0 .000 

3000 

91 4 

0 

L262 

2-01 
LALPP 

41 .14 

0 .00 
002 
000 

835 

0 .01 

0.38 

5018 
0 .00 

000 

000 

10006 

1 001 
0 .000 
0 .001 

0 .000 
0 .170 
0 .000 

0.007 

U20 
0 .000 
0 .000 

0 .000 

2.999 

91.5 

0 
L262 

3-01 
LALPP 

41 .17 

0 .00 
0 .03 
000 

832 

002 

0 .44 

5028 
000 

0 .00 

000 

100.26 

1.000 
0 .000 
0 .001 

0 .000 
0 . 1118 
0 .000 

0008 

1.821 

0 .000 
0.000 

0 .000 

3.000 

91 .5 

AD 

l125 

1-01 
LALPP 

40.88 

000 
0 .00 
O.HI 

8.55 

005 

0 .22 

50.17 
0 .00 

0 .00 

0 .00 

88.81 

0 .984 

0 .000 

0.000 
0003 
0 .175 
0.001 

0.004 

1.828 

0.000 
0.000 

0.000 

3.005 

913 

AD 
l125 

1-01 
LALPP 

40.n 

000 
0 .00 
000 

8.58 

013 

0 .40 
48 42 
000 

0 .00 

0 .00 

118.28 

1.002 
0.000 

0.000 
0 .000 
0.1711 

0003 

0.008 

1.810 

0.000 
0.000 

OQOO 

2.998 

91.1 

AD 

L129 

2-01 
LALPP 

40 88 

0 .00 
004 
000 

838 

0 .03 

0 47 
49 90 
000 

0 .00 

0 .00 

11868 

OIIIIG 

0.000 

0 .001 

0000 
0 171 

0 .001 

0.008 

1.8111 

0 .000 
0000 

0000 

~:.ooo 

9~ 4 

AD 

l129 

~01 

LALPP 

40 57 

0 .00 
0 .03 
0 .00 

8 45 

000 

0 47 

4893 
0 .00 

0 .00 

000 

118.45 

0 .885 
0000 

0 .001 
0000 
0 .173 
0 .000 

0.0011 

1 826 

0 .000 
0 .000 

0 .000 

3 .004 

913 



Rock 
S.mple 

Location 
Type 

So02 

To02 

Al203 
Cr203 
F.O 

MnO 
NoO 

MgO 
c.o 
Na20 
K20 

Tot~l 

So 
To 
AI 

Cr 
Fe2• 
Mn 
Nt 

Mg 
Ca 
Na 
I( 

T01a1 

AO 
l132 

2-<>1 
LALPP 

40.83 

0.02 

0.00 
001 
IIIII 
0 .111 
0 .08 

50.11 

000 

002 

000 

88118 

0 .111111 
0000 

0000 

0000 
otn 
0 003 
0002 
1125 
0 000 
0 001 

0000 

3 004 

1111 

AO 
l140 

1-<>1 
LALPP 

4045 

000 

0 .02 
003 
141 
000 
030 

41185 

000 

000 

000 

11818 

0887 

0000 

0 000 

0 001 
0 173 

0000 

oooe 
1125 
0 000 
0000 

0 000 

3 002 

111 3 

AO 
l140 

4-01 
lAlPP 

40.45 

000 

0.01 
0 .00 
1.47 
000 
0 .32 

411118 

000 

000 

000 

88.21 

01184 

0000 

0 000 

0000 
0.174 
0 .000 

o.ooe 
I 831 

0000 
0 .000 

0 000 

3008 

111 3 

AD 
Ll48 
8-01 

LALPP 

40.58 

0 .00 

003 
0 .00 

152 
0 .05 

0 37 
411 311 

000 

0 .01 

0 .00 

118110 

1000 

0.000 

0001 

0.000 
0 1711 
0001 
0 007 
I 815 
0000 
0000 

0000 

3 oc.o 

111 2 

AD 
l148 
7-01 

LAI.PP 

40.110 

000 

002 
0 .00 
178 
0 .03 

032 
41100 

000 

0 01 

000 

118 83 

I 002 

0000 

0 000 

0.000 
0 111 
0001 
o ooe 
18011 

0000 

0001 

0 000 

2M 

11011 

AD 
L148 
8-01 

LALPP 

41 25 

0.00 

003 
0 .02 
877 

0011 

0311 

41107 

000 

001 

000 

1111.57 

1.010 

0000 

0001 

0000 
0 180 
0 001 
0007 
1 7111 
0000 

0 000 

0000 

2 11110 

11011 

AD 
l172 

2-01-1 
LALPP 

40 78 

000 

0 .03 
0 .00 
8.54 

0 .02 

0411 
50.25 

000 

000 

000 

10008 

01184 

0.000 

0001 

0000 
0 174 

0000 

0010 

1 827 
0000 
0 000 

0 000 

3008 

Ill 3 

AO 
l172 

2-<>1-2 
LALPP 

40.70 

000 

0 .04 
0.00 
8 .24 
004 

0.47 
5032 

0.00 

000 

0.00 

111181 

01184 

0000 

0001 

0000 
0 .1118 
0001 

0 0011 

1 832 

0 c.oo 
0000 

0000 

3005 

1116 

AO 
l275 

2-01 
LALPP 

40.39 

000 

0.02 
0.02 
e.n 
0 .011 

0.25 
411.18 

000 

0.03 

000 

1111.70 

01184 

0000 

0000 

0 .000 
0 201 
0001 

0005 
1 804 

0 000 
0001 

0 000 

3 007 

1100 

AO 
L338 
2-<>1 

LALPP 

4120 

000 

0 02 
0.00 
1 .17 

0.01 
0.38 

41170 

000 

0.00 

000 

111147 

1007 

0000 

0000 

0000 
0 1117 
0000 

0001 

1811 

0000 
0000 

0 000 

21183 

1118 

AD 
L338 
3-01 

LALPP 

41 .33 

000 

0.03 
0 .00 
8 .24 
0 .04 

038 
50.00 

0.00 

0.00 

0.00 

100.00 

1005 

0000 

0 .001 

0 000 
0 1118 

0 001 

0 .007 
1 i13 

0 000 
0 000 

0 000 

2 11114 

Ill 5 

01 

L068 
5-01 

LALPP 

4037 

0.00 

0 .01 
0 .00 
11113 

0 02 

0 411 

48114 
0.00 

000 

000 

1111.74 

01184 

0000 

0000 

0 000 
0 205 

0000 

0 010 
1 7117 
0 000 
0000 

0 000 

3ooe 

898 

01 

L073 

1-01 
LALPP 

41.38 

002 

001 
0 .33 

715 
0 14 

0.25 
50.89 

000 

000 

000 

1111117 

I 001 

0000 

0000 

oooe 
0 145 
0003 

0005 
I 8211 
0 000 
0000 

0 000 

211811 

112 7 

01 

L073 

2-01-B 
LALPP 

40.32 

000 

000 
oos 
IllS 

0 .22 
034 

41189 

000 

0 02 

0 .00 

1111.711 

0 11110 

0000 

0000 
0001 
0 188 
ooos 
0 007 
1 1111 
0000 
0001 

0000 
3 010 

1106 

01 

LISJ 
4-01 

LALPP 

41 .03 

000 

0 .01 
0 .00 
810 
000 
054 

41187 

000 

000 

000 

111155 

I 003 

0000 

0000 

0000 
0 IIIII 

0000 
0011 

1 117 
0000 
0000 

0000 

211117 

1116 

.... 
0 
0 



Si02 
Ti02 

Al203 
Cr203 
F.O 
MnO 
NiO 

MoO 
c.o 
Na20 
K20 
Total 

Si 

n 
AI 
Cr 

Ft2+ 
Mn 
Ni 

Mg 

Ca 
Na 
K 
Total 

01 
L153 

s-ot 
LALPP 

41 .41 

000 

0.04 

0 .00 

7.118 
0 .05 
0 .47 

50.31 
0.00 
0 .01 
0 .00 

100.33 

1.003 

0 .000 
0 .001 

0 .000 

0 .182 
0 .001 
0 .008 

1 .820 

0.000 
0 .000 
0 .000 
2 .11118 

1111 

01 
L153 
8-()1 

LALPP 

40.73 

0 .00 

001 

0 .00 

8 .24 
0 .00 

0.44 

48.71 

0 .00 
0 .00 
0 .00 

IMU2 

1.001 

0 .000 
0 .000 

0 .000 

O.UIII 
0 .000 
0 .008 

1.821 

0.000 
0 .000 
0 .000 

2 .-

1115 

01 

L28l 
2-()1 

LALPP 

40.n 
0 .00 

0 .00 

0 .00 

10.05 

0 .03 

0 .42 

4UO 
000 
0 .00 
0 .00 

1111.88 

1.002 

0 .000 
0 .000 

0000 

0 .207 

0 .001 
0 .008 

1.781 

0.000 
0 .000 
0 .000 

2 .-

8118 

01 
L288 
1-01 

LAI.PP 

41 .00 

0 .00 

0 .01 

002 

8 .110 
002 

0 .45 

4111111 
000 
0 .00 
0 .00 

100.07 

1.000 
0000 

0 .000 

0000 

0 .182 

0 .000 
0 .008 

1.808 

0000 
0 .000 
0 .000 
21199 

110.9 

011 

L271 
1-()1 

LALPP 

41 .37 

0 .00 

0 .03 

0 01 

8 . II 

0 .07 

041 

50.13 
000 
0 .01 
0 .00 

100 ?.I 

1.004 

0 .000 

0 .001 

0 .000 

0185 
0001 
0.008 

1.114 

0000 
0 .000 
0 .000 
2 .11115 

91 .7 

011 

L271 
1-()1 

LALPP 

41211 

0 .00 

0.04 

0 .01 

8.44 

0 .08 

041 

50.12 

000 
0 .00 
0 .00 

100.40 

1.002 

0.000 
0 .001 

0000 

0 .171 

0002 
0 .008 

1.813 

0000 
0 .000 
0 .000 
2 .1187 

914 

011 

L351 

3-01 

LALPP 

41 .34 

0 .02 

0.01 

000 

11n 
0 .12 

o.eo 
411 14 

0 .00 
004 
0.00 

100.15 

1.008 

0 .000 
0000 

0000 
0 .1112 

0002 
0012 

1.787 

0000 
0 .002 
0 .000 

2 .1182 

110.8 

c 
L004 
4-()1 

LALPP 

40.11 

000 

003 

0 .0 1 

10.88 

o.oe 
0 .49 

4827 
0.00 
0 .01 
0 .00 

IIII.M 

0 .1183 
0 .000 

0 .001 

0000 
0 .221 

0 .001 
0 .010 

1.781 

0000 
0 .000 
0 .000 
3 .007 

8110 

c 
Llllll 
2-()1 

LALPP 

40.32 

0 .00 

0.02 

0 .00 

1085 

0 .00 

053 

44137 
0 .00 
0 .01 
0 .00 

100.08 

0 .11114 
0 .000 
0 001 

0000 

0.224 
0 .000 
0 .010 

1.m 

0.000 
0 .000 
0 .000 
3 .008 

888 

c 
l213 
1-01 

LALPP 

40.88 

0 .03 

0 .01 

0.05 
11 25 
0 .21 

0 .73 

41.08 
0 .00 
0 .05 
0 .00 

101 .23 

011118 
0 .000 

0000 

0 .001 

0230 

0 .004 
0 .014 

1.751 

0.000 
0 .002 
0 .000 
3 .002 

88.4 

c 
L213 
2-01 

LALPP 

40.71 

0 .00 

0 .02 

0 .06 

11 .24 

O.H 

043 

47 .62 
000 
U.05 
0 .00 

100.40 

1.002 

0 .000 

0 .001 

0 .001 

0231 

o.ooe 
0 .008 

1.747 

0000 
0 .002 
0 .000 

2.-

88 3 

c 
L231 
3-()1 

LALPP 

40118 

0 .00 

004 

000 

10.111 

o.oe 
oeo 

48.74 
0 .00 
000 
0 .00 

100.81 

1.001 
0.000 

0.001 

0000 
0.208 

0.001 
0.012 

1n5 

0.000 
0.000 
0.000 
2.-

811.5 

WB 

L088 
1-01 

LALPP 

41 43 

0 .03 

0 .00 

(! 02 

1133 
0 .13 

0.33 

48 70 
0 .00 
0 .00 
0 .00 

100.118 

1003 

0 .001 

0 .000 

0.000 
0.1811 
0.003 

o.ooe 
1 7114 
0.000 
0 .000 
0 .000 

2.11118 

1105 

WB 

L283 
1-01 

LALPP 

40511 

0 .00 

0 .0 1 

000 

1021 

0 .07 

0 .40 

48.38 
0 .00 
0 .00 
0 .00 

cee.. 

1001 

0000 

0 .000 

0000 
0 .210 
0 .001 
0 .008 

1.n8 

0000 
0 .000 
0 .000 

2 .1199 

811.4 

we 
L283 
1-01 

LALPP 

40.74 

0.00 

0.02 

0.00 

10.31 

0 .04 

0 .44 

4138 
0 .00 
0.00 

0 .00 
1111.111 

1.002 

0000 
0 .001 

0000 
0 212 

0001 
0 .008 

1.n• 

0000 
0 .000 
0 .000 

2 .11118 



Rock 

SM!ple 
locatoon 
Tn-e 

S.02 
Ti02 
Al203 

Cr203 

F.O 
MnO 
NiO 

MgO 

c.o 
Na20 

K20 
TO(al 

So 

To 

AI 
Cr 

Fe2• 
Mn 

No 

Mg 

c. 
Na 
I( 

TO(al 

WB 
l288 
1-01 

LALPP 

38n 
0.00 

0.01 

0 .00 

13 55 
012 

044 

4551 

000 

000 

000 

111140 

01188 
0 .000 

0000 

0 000 

0 215 

0003 

0008 
1 705 

0 000 

0 000 
0 000 

3001 

85 7 

w 
l201 
2-01 

LALPP 

41 .30 
0 .00 

000 

000 

138 

012 

054 

41188 

001 

001 

000 

100 23 

I 004 
0 .000 

0 000 
0000 

0 171 

0002 

0 011 

1101 
0 000 

0 000 
0 000 

21198 

814 

w 
l201 
3-01 

LALPP 

41 .21 

0 .00 
001 

0 .00 

8. 111 

012 

0 .18 

5005 

000 

000 

000 

111175 

1004 
0000 
0000 

0 000 

0 187 

0 002 
0 004 

1118 

0000 

0 000 

0 000 

2 Qlll5 

1118 

0 

l2211 
0 

l2211 
0 

l2211 

D 
l298 

D 
l21M1 

D 

l.2llll 
0 

L21M1 
D 

l302 
0 

l302 
1-01 2-01 3-01 3-01 1-01 2-01 3-01-1 3-01-2 2-01 3-01 1-01 

HALPPG HALPPG HALPPG HALPPG HALPPG HALPPG HALPPG HALPPG HALPPG HALPPG HALPPG 

0 
l305 

40.41 

0 .00 

0 .02 

0 .00 

10.73 

0 .05 

0.32 

47.115 
0 01 

000 

000 
1111.411 

1000 

0 .000 

0000 

0 000 

0 222 

0001 

o ooe 
I 7811 
0 000 

0000 

0 000 

3000 

88 I 

40.82 

0 .01 

0 .02 

000 

10.38 

0 02 

0 .32 

4855 

000 

000 

000 
100.12 

I 002 
0000 

0001 
0000 

0 213 

0000 

o ooe 
1 7715 

0000 

0000 

0000 

21198 

ag 3 

41 .011 

0 .00 

0 02 
0.00 

10.415 

001 

030 
48.11 

001 

000 

000 
100.01 

1.008 
0 .000 

0000 

0000 
0 215 

0000 

oooe 
1.7151 

0 000 

0 000 

0 000 

211111 

8111 

41 II 

0.00 

0 02 

0.00 

1050 

0.08 

0.33 
48 27 

010 

001 

000 
10042 

1 ooe 
0 000 
0001 

0000 

0 215 

0 002 

oooe 
1 7151 

0 003 

0000 

0 000 

2W4 

88 I 

40115 

000 
0 .05 

0 .00 

1065 

0.04 

038 

47.n 

0 17 

001 

000 
10001 

1 007 

c.ooo 
0001 

0 000 

0 2111 

0001 
0 007 

1 752 

0005 

0 000 

0 000 

21M12 

8811 

40.88 
0 .00 

0 .02 

000 

10153 

0 .07 

033 
4763 

0111 

0 02 

000 
1111715 

1008 

0000 

0001 
0000 

0 2111 

0001 

o ooe 
I 751 

0005 

0001 

0000 

21M12 

889 

40.84 

0 .00 

0 .03 
0 .00 

10.12 

008 
0 .37 

48 23 

0 .15 
0 .00 

000 
111113 

1.005 

0.000 

0.001 
0 .000 

0.208 

0002 

0 007 

1 7158 

0004 

0000 

0000 

211115 

89 5 

40.73 

0 02 
0 .02 

001 

10 42 

0 .07 

038 

47.118 

0 .111 

001 

000 
1111.11 

1.004 

0000 
0.001 

0 000 

0 215 

0001 

0 007 

1 782 

0 005 
O!Y.)() 

0000 

2M 

89 1 

40.70 

0 .00 
0 .00 

0 .00 

10 47 

0 .07 

0 .35 

48.01 

0 .03 

000 

000 
1111153 

1.004 

0000 
0000 

0000 

0 2115 

0001 

0 007 

171515 
0001 

0000 

0000 

2 Qlll5 

1111 

40117 

0 .00 

0 .03 
0 .14 

10 02 

003 

0211 

48.31 

000 

000 

0 .00 
1111.78 

1.007 

0000 

0 .001 

0 003 

0 2015 

0001 

oooe 
1 no 
0000 

0 000 

0000 

2 11112 

8118 

4082 

0.01 

005 
000 

10157 

008 

0 40 

47153 

000 

001 

000 
111175 

I 008 
0000 

0 001 

0000 
0 220 

0002 

0001 

I 751 

0000 

0000 
0000 

2 IIIII 

88 8 

0 
tv 



S.02 

Te02 

Al203 
Cr203 
FeO 
MnO 
NeO 
MgO 
CeO 
Na20 

K20 

TOial 

Si 
Ti 
AI 

Cr 

Fe2+ 
Mn 
Ni 

Mg 
Ca 

Na 

K 
TOiaJ 

Mgl 

0 W W W W W W C C C C WG 
l350 l108 l114 l301 l301 l318 L317 l28e L303 LJIO l315 L308A 

1-ot 2-ot 1-QI 1-QI S-QI 1-QI 1-QI 3-ot 2-QI 2-QI 3-ot 1-QI 

HALPPG HALPPG HALPPG HALPPG HALPPG HALPPG HALPPG HALPPG HALPPG HALPPG HALPPG HALPPG 

41 .12 

004 

000 
001 
8.37 
0.18 
033 

48S3 
018 
002 
0 .00 

100.74 

O.lllle 
0 .001 
0 .000 

0000 

0 1110 
0 .004 
oooe 
1.7114 

0 .004 
0 .001 
0 .000 

3000 

eCl.4 

4054 

0.03 

0 .00 
0 .01 

1120 
0 .18 
0 .31 

4808 
0 .00 
0 .04 

000 

100.42 

0 .887 

0 .000 
o.ooc 
0000 

0230 
0.004 
0 .007 
1 782 

0.000 
0 .002 
0 .000 

3.003 

884 

4032 

002 

0 .00 
0 .02 

11 .73 
020 

012 
4727 
0 .01 
003 

0 .00 

88.70 

1.000 
0 .000 
0000 

0000 
0.243 
0.004 
0002 
1.748 

0000 
0.001 
0.000 

3.000 

87.8 

4023 

0 .03 

0 .01 
000 

12.32 
0 .21 
0 .17 

47.47 

0 .00 
003 

0 .00 
100.45 

08114 
0.001 
0.000 

0.000 
0254 
0.004 
01103 
1.748 

0.000 
0.001 
0.000 

3008 

87.3 

40.22 

0.02 

0 .00 
0 .00 

12 18 

022 
0 24 

48.01 

0 .00 
0 Ol 
000 

100.110 

0 .818 
0.000 

0 .000 

0 .000 
0.251 
0 .005 
0 .005 
1.780 

0.000 
0001 
0.000 

3011 

87.5 

40 75 

000 

0 .00 
003 

10.58 
020 

0 .24 

47.83 

0 .00 
0 .07 

0 .00 

8880 

1.005 
0.000 

0000 

0001 
0218 
0 .004 
0.005 
1.781 
0 .000 

0.003 
0.000 

2.887 

890 

40 72 

0.01 
0 03 
0 01 

11115 
ooe 
0 40 

47 83 
000 
0.01 

0.00 

100.71 

1000 

0000 

0001 

0000 
0.238 
0 .001 
0008 
1.750 
0 .000 

0 .000 
0.000 

3.000 

880 

3843 

000 
0.01 
0.00 

15.82 
009 
0 31 

44 18 
0.00 

0.01 

0.00 

88.85 

0888 
0000 

0000 

0000 
0 .338 
0 .002 
0 .008 
1.884 

0000 
0000 

0000 
3.004 

83.2 

38.31 

004 

0.00 
0.00 

1788 
033 

021 
4084 
000 

003 

GOO 
118 72 

1.014 

0001 

0000 

0 .000 
0 .317 
0 .007 
0 .004 
1.571 
0 .000 
0002 

0.000 

21188 

802 

4005 

0.02 
0.00 
0.01 

1282 

0.17 
031 

45 51 
0 .00 

004 
0.00 

8810 

1.008 

0 .000 

0 .000 

0 000 
0 271 
0.004 

0008 
1.704 
0000 
0.002 

0.000 

2.985 

8tl3 

3852 

003 
0 .00 
0.02 

15.81 

028 
010 

4441 
0 .00 
005 

0 .00 

10020 

0 985 
0.000 

0000 

0.000 
0333 
o.ooe 
0.002 
1.887 
0.000 
0002 

0.000 

a008 

83.4 

4050 

0.00 

003 
0 .01 

12.40 
009 

035 
47.38 
0.00 

002 

0 .00 

100.79 

0.887 
0.000 

0001 

0.000 
0255 
0002 
0.007 
1.738 
0.000 
0.001 

0000 

3.003 

87.2 

WG 
L309A 

WG 
l309A 

WG 
L3098 

3-ol S-QI 2-QI 

HALPPG HALPPG HALPPG 

40 10 

001 
003 
000 

12 28 
ooe 
035 

47.75 
0 .00 

0 .01 

0 .00 

100 81 

0.9110 

0.000 

0.001 

0.000 
02S3 
0.002 
0 .007 

1.757 
0 .000 
0000 
0.000 

3.()10 

87 4 

40.28 

0 .00 
0 .01 
000 

11 .71 

0 12 
028 
47 .~ 

0 .00 

002 

0.00 

100.31 

0.883 
0 .000 

0000 

0.000 
0242 
0.003 
oooe 
1.782 
0000 
0001 
0 .000 

3007 

87.9 

40 57 

002 
0 .03 
0 . .)1 

11114 

010 

0 37 
47.84 
0.00 

0.00 

0.00 

10088 

0 .888 
0 .000 

0001 

0 .000 
0 .245 
0002 

0 .007 

1 751 
0 .000 
0 .000 

0.000 

3 .003 

87.7 

..... 
0 
w 



Rock 
Sample 
Locelion 
Type 

5102 

1102 
Al203 

Cr203 

FeO 
UnO 
NtO 
MgO 

CeO 

Na20 

K20 
TOCel 

s. 
Ti 

AI 
Cr 

Fe2• 
Mn 
No 
Mg 

Ca 

Na 
K 

local 

WG WG WG WG WG WG G G G 
l.30IIC l.30IIC LJOIK: L309C L314 L314 L21N l2115 L2115 

2-01 4-01 ~I 7-01 2-01 3-01 1-01 3-01 11-01 
HAlPPG HALPPG HALPPG HALPPG HALPPG HALPPG HAlPPG HALPPG HAlPPG 

38.76 

0 .00 

0 .04 
0 .01 

1267 

0 .13 
035 

47.35 
000 

002 
0 .00 

.00.35 

0887 
0 .000 

0001 

0 000 
0 2113 

0003 

0 007 

1 751 
0 000 

0 001 

0 ()lVI 

3 013 

4020 

000 
0.04 
000 

11 74 

002 
0 .30 

47 82 
000 

0 02 
0 .00 

118e4 

01185 

0000 
0001 

0000 
0 243 

0000 
oooe 
I 751 
0 000 

0 001 

0000 
3 005 

8711 

40.78 

~ . .:..> 
0 .03 
002 

1158 
0 .08 
032 

47.77 
0 .00 

0 .00 

000 
100 58 

1002 

0000 

0001 

0 000 
0 238 

0002 
0008 
1 7411 
0000 

0000 

0000 

21198 

88 0 

40.31 

0 .00 

0.04 
000 

12 2Q 

011 
0 .32 

47.20 
000 

0 02 
000 

100 28 

011117 

0 000 
0001 

0000 
0 254 

0 002 

oooe 
1 741 
0000 

0001 

0 000 

3 003 

87 3 

40.54 

0 .00 

0.02 
001 

11 .94 

0.11 
0 .33 

47.24 
0.00 

0 .02 

000 
100.20 

1.002 

0 000 
0 001 

0000 
0 247 

0 002 

0008 
I 740 
0000 

0 001 

0000 
21198 

87 6 

38.80 

000 
0.04 
0.01 

13.77 
0.13 
0 .32 

45.113 

000 

000 
000 

100.00 

011115 

0.000 
0001 

0000 
0288 

0 003 

0008 
I 711 
0000 

0000 

0 000 
3 005 

8511 

38.27 

0.00 
0.05 

0.04 

Hl.14 

0.14 
032 

44 00 
000 

003 
0.00 

1111.118 

0 11113 

0000 
0 .001 

0001 

0 341 

0003 

0007 
1 11511 
0 000 

0 001 

0000 

3008 

8211 

38.75 

000 

003 
0.00 

1582 

0.13 
0 .28 

4323 
000 

000 

000 
118.24 

10011 
0 .000 
0001 

0 000 
1•338 

0003 

o.ooe 
1 11311 
0000 
0 000 

0000 
2 11110 

83 0 

40.00 

000 

000 
0 .01 

14.47 

004 
O.N 

45.00 
000 

000 

000 
118.11 

1.003 

0000 

0 000 
0000 
0 304 

0 .001 

0008 
1 1113 

0000 

0 000 

0000 
211117 

84 7 

H 

L177 
2-01 

LALPP 

40.80 

000 
0 .02 
0.00 

10.38 

0 .04 
054 

48 50 
0.00 

000 
0.00 

10007 

0 11118 

0000 
0000 
0000 

0 213 

0001 

0.011 
1 778 
0 000 
0000 

0000 

3 001 

8113 

H 

L177 
2-01 

LALPP 

40 42 

0.00 
0 .01 
0.00 

10.68 

001 
0 .45 ...... 
000 

000 

000 
100 05 

0 11115 

0000 
cooo 
0 (!()() 

0 220 

0000 
0 O<XI 
1 7il0 

0000 
0 000 

0000 
3004 

8110 

H 0 
L177 L221 

7-01 3-01 
LALPP HALPPG 

40.34 

000 
0.00 
0 .00 

11 .13 

0 .10 
0 .32 

4824 
000 

002 
0 .00 

100.13 

01185 

0000 
0 000 

0 000 
0 228 
0 002 

oooe 
1773 
0 000 
0 001 
0000 
3ooe 

88 5 

40.28 

000 
0.02 
000 

12.16 

004 
0 31 

46.113 

0 .00 

0.00 

000 
111145 

1003 

0000 
0.001 

0 000 
0 253 

0 001 

oooe 
1 732 

0 000 
0000 

0 000 
2 111111 

87 2 

H 

l221 

5-01 
LALPP 

4044 

0.00 
(I 02 
0.00 

11 .3e 

0.00 
ON 

47118 

0 02 

000 

000 
118.81 

1000 

0 .000 

0000 
0.000 
0 235 
0000 

oooe 
1 751 
0 001 

0000 

0000 

3000 

882 

.... 
0 
~ 



Rock 
SAmple 

Loc:Mocn 

Type 

Si02 
Ti02 
Al203 

Ct203 

F.O 

MnO 

NiO 

MgO 

CeO 
Na20 
1(20 

TOIAI 

Si 
Ti 
AI 
Cr 

Fe2• 
Mn 

Hi 
Mg 

c. 
Na 

K 
TOial 

H 
l221 
..a~ 

LALPP 

40.40 

0 .01 

0 .00 
0 .00 

1137 

0 .08 

0 .38 
47.86 

000 

0.00 
0.00 

1111.1& 

011118 

0 .000 

0000 

0000 

0 235 
0.002 

0 .008 

1 757 
0 000 
0 .000 

0000 

3 .001 

882 

H 
l221 
8-01 

LALPf> 

4058 

000 

0.01 
0.00 

8 .55 

001 

0 .45 
4e1o 

000 

000 
0.00 

1111.71 

0 .~ 

0000 

0.000 

0.000 

0.1118 

0000 

0 008 
1 7118 
0000 
0 000 

0000 

3.002 

H AP AP 
l221 l274 l274 

10-ot 2-()f 3...()1 

LALPP HALPPG HALPPG 

4082 

000 

000 
0 .00 

8 .87 

005 

044 

•e 11 
0.00 

0 .01 
000 

100.25 

0.1185 
0.000 

0.000 

0.000 
0204 
0.001 

0008 
1 7118 

0000 
0.000 

0000 
3.005 

sea 

38.28 

0 .03 

000 
0 .04 

17.80 

0 .33 
0.12 

42.17 

0 .01 

0 .05 
0 .00 

llll.a3 

1.002 

0.000 

0.000 

0.001 

0.380 

0.007 

0002 

UI03 

0000 
0.002 

0000 
2ggjl 

aoe 

3838 
0 .03 

000 
0 .03 

17.81 

0 .34 

0.25 

41.88 

000 

002 
0.00 

1111.111 

1.005 

0.001 

0.000 

0001 

0384 
0 007 

0.005 

1.582 

0.000 

0001 

0.000 
2 11115 

80.8 

01 
l274 
4-ol 

LALPP 

4032 

0.03 

001 
0 .02 

12 55 

025 

027 

4e87 

0.00 

002 
0.00 

100.12 

1.000 

0.000 

0 .000 

0.000 

o.:zeo 
0.005 

0005 

1.728 

0000 

0.001 

0000 

2-

au; 

H-X 
L327 
1-()f 

LALPf> 

40.50 

000 
003 
001 

13 52 

0.07 

034 
4826 

0.00 

000 
0.00 

100.73 

1002 

0 .000 

0001 

0.000 

0.280 

0002 

0 .007 

1.708 

0000 

0.000 

0000 
2 .11117 

85e 

H-X 
L327 
2-ot 

LALPP 

4072 

0.00 

0 03 
000 

1181 

008 

048 
47.27 

000 

000 
0.00 

10045 

1.003 

0 .000 

0.001 

0.000 

0245 
0 .001 

0.008 
1.738 

0 .000 

0.000 

0000 

2-

87.6 

H-X 
L327 
3-01 

LALPP 

40.58 

000 
0 01 

001 

10 34 

0 01 

0 .48 
4864 

0.00 

001 
0 .00 

100.08 

0.1187 
0000 

0.000 

0.000 
0212 

0 .000 

0.010 

1.782 

0.000 

0.000 

0.000 
3.003 

8113 

H-X 
L327 
3...()1 

LALPf> 

4018 

0.00 
0 .03 

0.00 

10.07 

0.03 

0 .3:' 
48.01 

0.00 

000 
0.00 

8186 

1000 

0 .000 
0.001 

0 .000 
0.210 

0 .001 

0.008 
1.781 

0000 
0 .000 

0000 

2 .-

8115 

H-X 
L327 
3...()1 

LALPP 

41 07 

0 .00 

000 

001 

882 

0.03 

048 
48.15 

0 .00 

0 .00 
0 .00 

100.541 

1.001 

0.000 
0.000 

0.000 

0.200 

0.001 

0.008 

1.787 

0.000 
0.000 

0000 
2.1108 

ae.e 

H-X 
L328 
2-01 

LALPP 

40.08 

000 
0.02 

000 

13.72 

0 05 
0 .34 

4e04 

0 .00 

000 
0 .00 

100 22 

0.888 

0.000 

0.000 
0000 
0.288 

0.001 

0.007 

1.710 
0.000 

0.000 

0.000 
3.002 

85 7 

H-X c 
L321 L328 
4-ol 7-01 

LALPP HALPf>G 

4018 

000 

0 02 

000 
1381 

011 

0.38 
4536 

0.00 

0.01 
0 .00 

1111114 

1.004 
0000 

0.001 

0000 
0 2111 
0.002 

0008 
1.8110 
0.000 

0.000 

0000 
2 .-

85.3 

38n 
0.00 

0.03 

0.00 

15.31 

0.08 

0.38 
43.118 

000 

0.00 
0 .00 

111152 

1.005 

0 .000 

0 .001 

0000 

0 .324 

0 .001 

0.007 

1.857 
0.000 

0 .000 

G.OOO 
2 11115 

83.7 

0-X 
L32e 
1-01 

LALPP 

40 25 

001 

0 03 
0.00 

13.54 

0.11 

0 32 
45.63 

000 

000 
0 .00 

111187 

1.005 

0 .000 
0001 

0 .000 

0 213 

0.002 

0.008 
1.8U8 
0000 
0.000 

0000 
2 .11115 

85.7 

0 
(J1 



Rock ~ w 01 01 c c c 
'3ample L328 L333 L333 L333 L348 L2J.4 L236 
Locetoon 3-01 1-ol &-01 e-<>1 3-0l 1-QI 1-QI 
Type HALPPG HALPPG LALPP LALPP HALPPG 

S.02 3881 4014 40 78 4088 41 07 4062 40 52 
Tt02 000 0 02 0 04 0 .04 0.04 004 0 01 
Al203 002 0 01 0 .01 ,)00 0.00 000 0 02 
Ct203 000 0 .05 000 0 .07 0.07 0.10 000 
FeO 14 27 12 33 10 40 10.37 12.08 1010 10 25 
MnO 0 07 0 27 0 .24 0 .18 0.18 0.23 005 

NtO 0 32 015 034 028 043 0.45 0 42 
MQ() 45 41 481M1 48 87 48 12 47.31 48 43 4834 
CeO 000 000 000 000 000 000 000 

Na20 000 008 0 07 0 .04 005 003 000 

K20 000 000 000 000 0.00 IJOO 000 
Tolal 100011 100 02 100 51 101 .00 101 24 100 00 1M1 81 

St 0 IIIII 0 111M! 01188 0 111M! 1.005 08811 I 000 
Tt 0 000 0 000 0001 0 001 0 001 0.001 0 000 
AI 0 001 0 000 0 000 0000 0 000 0000 0001 
Cr 0 000 0 001 0 000 0001 0001 0002 0 ()()(J 

fe2• 0~ 0 2511 0 213 0 211 0 247 0 208 0 212 
Mn 0001 o ooe 0005 0 004 0 004 0005 0001 
Nt o ooe I) 003 0007 oooe 0 008 0008 0008 

Mg I ll8e I 739 1 778 I 783 1 728 1778 1778 

c. 0 000 0 000 0 000 0000 0 000 0 000 0 000 
Na 0 000 0 003 0003 0 002 0002 0001 0 000 
K 0000 0 000 0000 0 000 0 000 0000 0 000 
To:Aal 3001 3 004 3003 3004 2 885 3000 3000 

M~j• 85 0 87 2 89 3 89 4 87 5 8115 89 4 

0 
0) 



Rock 

Sample 

Localoon 

Type 

So02 
Ti02 

Al203 

Cr203 
FeO 
MnO 

NtO 

MgO 

CaO 
Na20 
K20 

TOCal 

So 

T1 

AI 

Cr 

Fe2+ 
Mn 
Ni 

Mg 
Ca 

Na 
K 
Tocal 

En 
Ft 
Wo 

Ug~ 

c.~ 

TABLE A3 2 Orthopyro•ene analyse a (o•odea m w1 % . number ol1on1 on ba111 ol6 0) 

H H H 
L108 l108 L108 

1-0px 1-0p•-1 1-0p•-2 

LALPP 

5834 
0 .00 

0 32 

0 41 

527 
0 18 

0.00 

34110 
0 45 
0 02 
000 

11881 

2002 

0 .000 

0 013 

0 .011 

0 151 

0 .005 
0.000 

1780 
0 .018 
0 .001 

0 .000 

3888 

111 .42 

7.74 

084 

92 2 

46.2 

lAlPP 

57.47 

000 

0 .83 

0 .44 

5 42 
0 .12 

011 
33 81 

1 22 
0 .02 
0 .00 

11841 

1888 

0000 

0 034 

0 012 

0 .157 

0 .004 
0 .003 

1.744 

0.045 
0001 

0 000 

38811 

1883 

8 05 
2 32 

918 

261 

LAlPP 

57 75 

003 

0.81 

0 .47 

550 
015 

000 

3413 

0118 
0 02 
000 

118 •• 

1 1181 
0 .001 

0.038 

0 .013 

0158 
0 .004 
0000 

1 752 

0.035 

0 .001 
0 .000 

3888 

11005 

8 14 

1.81 

91 7 

26 5 

H 

ll08 

3-0p• 

core 
lAlPP 

57 48 

001 

0 81 

0 .38 

5 41 
0 HI 

000 
3381 

143 
003 
000 

118.54 

1.881 

0 .000 
1)033 

0 011 

0 157 
0005 
0 .000 

1 743 

O.OSJ 

0002 

0000 

3891 

88.27 

8 02 

2 71 

91 8 

24 6 

H 

L108 
3-0px 

um 

LALPP 

57 83 

002 

081 

0 43 

573 
0 12 

0 .00 

34 52 

0 .511 
0 .02 
000 

10015 

'985 
0 000 

0 037 

0 012 

0164 
0 003 
0000 

1 766 

0 022 

0 .001 

0 000 

3891 

90 47 

8 43 

1 10 

91 5 

24 1 

H 
L1SJ 

1-0px 

LALPP 

57 81 

000 

088 

0 42 

5.87 
004 

016 
34 211 

0118 
000 
0.00 

10024 

1985 
0000 

0 .038 

0 .011 

0 163 

0001 
0004 

1.755 
0 035 

0 .000 

0 000 

3991 

19 85 

834 

'81 

91 5 

Z4 0 

H 

L157 
1-0px 

core 
LALPP 

56 78 

000 

1 40 

053 
6.01 

0 20 

0 03 

3483 
0 37 
0.02 

000 
1111.117 

1858 

0000 

0057 

0 .014 

0 .173 

0006 
0001 

1781 
0 .014 

0001 

0 .000 

4 .006 

liiO 411 

8 81 

069 

91 1 

20 3 

H 

ll57 
1-0px 

nm 

LALPP 

57 75 

008 

0.82 

0 .30 

5.eo 
0111 

0.00 

34113 
0 24 
0 .03 

0 .00 

118112 

11185 
0 .002 

0033 

0 .008 

0 .161 

0 .006 
0 .000 

1 7811 

00011 

0002 

0 .000 

3.1184 

11133 

8 21 
0 45 

Ill 7 

197 

H 

ll57 
1-0px 

LALPP 

57 eo 
001 

1.21 

011 

5 .34 
0 .08 

0011 
34 25 

1 73 
0 .00 

000 
10042 

11175 
0 .000 

0 .0411 

0 .003 

0.153 
0 .002 
0002 

1 751 
0084 

0000 

0 .000 

3 111111 

88 89 

7.78 

323 

92 0 

57 

H 

l157 

3-0px 

LALPP 

57 24 
0 (14 

130 

0 47 

5112 

021 

0011 
34 711 

0 211 

0 02 
000 

1111118 

1989 

0 001 
0053 

0013 

0162 
0 .006 
0 002 

1 782 

00011 

0001 

0 .000 

3.898 

Ill 25 

8 27 

0 48 

91 7 

19 6 

H 

l157 
5-0px 

lALPP 

57 54 
003 

1.08 

0 .38 

5n 
0 .18 

0 .08 

34 01 

0 75 
003 

000 

1111.811 

1983 
0.001 

0044 

0.011 

0166 

0005 
0.002 

1 747 
0028 

0002 

0000 
3.11110 

110 01 

856 

1 43 

91 3 

19 5 

H 

l157 
6-0px 

lALPP 

57 21 

0 .03 

105 

03!1 
5.80 

0 .18 

010 

34.27 
0114 

002 
000 

1111.83 

19n 

0001 
0 043 

0.0011 

0.166 

0006 
0.003 

1.766 

0.024 

0.001 

0000 
311117 

110 24 

856 

1 20 

91 3 

181 

H 

llll3 

2-0px 

I.ALPP 

57.85 

0 .00 

0 .92 

na 

538 

0 .04 

0 22 
33.711 

0117 

000 
000 

88811 

2 005 

0 000 

0037 

0 .000 

0 .156 

0 .001 
0 .006 

1 74(! 

0 025 

0 000 

0 .000 

31178 

90 82 

809 
1 29 

9 1 8 

H 

l218 

2-0px 

core 
LALPP 

57.83 
0 02 

0.71 

035 
5 55 

0.20 

000 

3408 
0110 

0 02 
0 .00 

11844 

1893 

0000 
0 0211 

0010 

0160 

0 .008 

0000 

1 757 
0033 

0001 

0 000 

3888 

900~ 

8 22 

1 70 

91 6 

24 9 

H 

L218 
2-0px 

rom 
LALPP 

57 51 

0 .02 

oee 
Ole 
587 

0 .111 

0 .00 

3388 
104 

0 OJ 
000 

111138 

111112 

0000 

0 028 

0010 

0164 

0 .005 
0000 

1 750 
0038 

0002 

0000 
3.11110 

8963 

8 41 
1.117 

914 

25 8 .... 
0 
-...,j 



Rock 

Sample 
Locallon 

Type 

5102 
To02 

Al203 
Cr203 

FeO 

MnO 

NrO 

MoO 
CeO 

N&20 
K20 
Toe~ 

s. 
To 
Al 

Cr 

Fe2+ 

Mn 
No 

Mg 
c. 
Na 

K 
Total 

En 
Fl 
Wo 

H 

L225 
2-<>px 

core 

LALPP 

57.37 

0 .00 

0 82 
na 

5 47 

002 

0 .13 

33&a 
1 oe 
003 

000 
118.7a 

11185 

0 .000 

0 033 

0 000 

0158 
0000 
0 004 

I 750 

0 040 

0 002 
0 000 

3 i90 

li 84 

a 13 

2 03 

i1 7 

H 

l225 
H 

l225 
H 

l225 
H 

l225 
H 

L225 
H 

l225 
2-<)px 8-0px-1 8-0px-1 8-0px-2 8-0px-2 8-0px-2 

nm 

LALPP 

5712 

0 .00 

0 .49 

na 
5 51 
001 

0 Ul 
34118 

0111 

000 
000 

111114 

1 IIIIi 
0000 

0020 

0 000 

0 15Q 

0 000 

0 004 

1102 

0 007 

0 ooc 
0 000 
311111 

i1 55 

a 011 
0 36 

it 9 

c:ore 
LALPP 

57 34 
0 .00 

0 .85 

na 
5 .33 
0 05 

0 .17 

34 37 
1 07 

002 

000 
111118 

1 11811 

0000 

0035 

0 000 

0 154 
0 001 

0 005 

1 775 

0 040 

0001 

0 000 
311117 

110 15 

7 84 

2 02 

rom 
LALPP 

57.25 
0 .00 

0.85 

na 
5 .42 
0 01 

000 
34 08 

110 

002 
000 

118 73 

111111 

0000 

0035 

0000 

0158 
0 000 

0 000 

1 787 

0041 

0 001 

0 000 
311112 

811811 
8 02 

2 09 

c:ore 
LALPP 

57.18 

0 .01 

082 

na 
538 
003 

021 
34.02 

101 

004 

000 
118117 

111111 
0000 

0 034 

0000 

0.157 

0001 

o ooe 
1 711(1 

0038 

0 002 

0000 
311113 

IIOOQ 

71111 
1 112 

nm 

LALPP 

5120 
0.00 

078 

na 
4114 

0.04 

0 18 

:J.4 110 

058 

000 
000 

1111110 

1 IIIIi 
0000 

0 031 

0000 

0 142 

0001 

0005 

1 787 

0 021 

0 000 

0000 
311811 

Q1 e3 

7 28 

1 oa 

92 8 

rim 

LALPP 

57110 

000 

048 

na 
5.0Q 

0.00 

0 13 
35 30 

0.21 

000 
000 

IIIIDe 

1 IIIIi 
0000 

001i 

0000 

0 147 

0 000 
0004 

1818 

0008 

0000 

0000 
311112 

112 15 

7 45 

Oli 

92 5 

H 

l228 
1-Qpx 

LALPP 

57.2a 
0.00 

0.84 

0.53 
5 15 

0 .18 

000 

33.115 
1 24 

003 
0.00 

111120 

1.1185 

0 000 

0034 

0 .015 

0 1411 

0005 

0000 
1 754 

0 0411 

0002 

0000 
3 IIIII 

aa 118 

7M 

236 

Q2 2 

29 7 

H 

l284 
t-<>px 

c:ore 
LALPP 

57112 

0.01 

0 .77 

038 

5.40 

0 .16 

000 

35 04 

0 39 

003 

000 
100 07 

1 1186 

0000 
0 031 

0 .010 

0 155 

0 005 
0000 
1 7Q1 

0 014 

0 002 

0000 
31194 

Q1 38 

7110 

072 

92 0 

24 6 

H 

l284 
1-<>px 

rim 

LALPP 

58 12 

001 

0 45 

018 
5 74 

0 18 

000 
35 01 

0 32 

0 01 
000 

100 02 

111115 

0000 
001a 

0005 
0165 

0.005 

0000 

1 7112 

0 012 

0001 

0000 
311113 

Q1 04 

• 37 

0 511 

Q1 6 

21 2 

H 

l338 
4-<)px 

LALPP 

571Kl 

0 .00 

0 .110 

0 47 

5.Ji 

0.00 

0 14 

3-433 

081 

001 
000 

111114 

11110 
0 .000 
0037 

0.013 

0.158 

0000 
0004 
1 775 

0030 
0 000 

0000 
3 11115 

110 411 

7118 
153 

91 9 

25 7 

H 

L338 
5-<>px 

LALPP 

57.41 

000 

085 

0 42 

5.110 

008 

0 .10 

34 28 
0 .114 

0 01 
000 

IIIIM 

1 1183 

0 000 
0035 

0011 
0182 
0002 

0003 

1 784 
0035 
0 000 

0 000 
31194 

811 Q7 

8 25 
177 

91 6 

24 7 

0 
l218 

2-<>px 

LALPP 

57114 

000 

c 73 

0 31 

11.11 

0.03 

0 12 
3-4112 

0.25 

000 

000 
10011 

1 1182 

0 000 

0030 

0008 

0 178 

0001 

0003 

1 7110 

OOIKI 

0000 

0 000 
3111111 

110114 

a 811 
0 47 

91 1 

21 9 

0 

l218 
4-<)px 

LALPP 

51113 
0.00 

OliO 

0211 

8.o:.> 
007 

0.15 
33110 

1 07 

0 01 
000 

118 110 

1 1183 
0000 

0025 

0007 

0 1711 
0002 
0004 
, 784 
0040 

0000 

0000 
4 001 

811 11 

8 88 
2 01 

1109 

22 4 

AO 

L120 
5-<>px 

LALPP 

57 48 

0.08 

135 

048 

5110 
0 Ill 

0 04 

34 ell 

035 

0 02 
000 

100 211 

, 1171 

0002 

0055 
0013 

0 1110 

0005 

0001 

1 773 

0013 

0 001 

0000 
31194 

i1 10 

8 24 

oee 

91 7 

111 3 

0 
CD 



Type 

St02 
To02 

Al203 
Cr203 

F.O 

MnO 
NrO 

MgO 
c.o 
Na20 

K20 
Tal .. 

Si 

Ti 
AI 

Cr 

Fe2+ 
Mn 
Ni 

Mg 

Ca 
Na 
I( 

TOlal 

En 

F• 
Wo 

Mgl 
Crl 

AD 
Ll72 

1-Qpx 

LAL.PP 

5804 
000 

050 

020 
552 

o.oe 
011 

3525 
0 .30 
000 

0 .00 

100.05 

1.1181 

0000 
0020 
0.005 
0158 

0002 

0005 

1103 

0.011 

0 .000 

0000 

311118 

lt1 41 

I OJ 
0.58 

81 a 
21 2 

01 

LOU 

2-Qpx 

core 
LAL.PP 

57.55 
0 .01 
0 .118 

0 .34 
8 .112 

000 

0 .12 

33.71 

048 

000 

0 .00 

118.7a 

1.1118 

0000 
0 .038 

o.ooa 
0 .11t1 

0000 

0.003 

1737 

0 .011 

0 .000 

0 .000 

3.887 

llt.25 

8.13 

O.lt1 

110 1 
18.2 

01 

Loel 

1-()px 

tom 
LAL.PP 

57 42 
001 
o.ae 
0.33 

8 .75 

004 

0 11 

3402 
0.40 

0.00 

0.00 

100.03 

1882 

0 .000 

0 .038 
o.ooa 
0185 
0001 

0003 

1.750 

0 .015 

0 .000 
0 .000 

3884 

18.31 

8.83 

0.75 

1100 
18.7 

01 

LOU 

1-()px 
tom 

LALPP 

58 44 
0 .00 

034 
0 .10 
8 .78 

0 .05 

0 .01 

34.31 
0 .21 

000 

0 .00 

100 38 

2005 
0000 
0.014 

0.003 
0185 
0.001 

0002 

1.758 

0001 
0 .000 

0 .000 

3.887 

aa.e7 

8 .83 

0 .38 

1100 
1115 

01 

L073 

2-Qpx 

core 
LAL.PP 

58.07 
0.02 

031 
0.21 
8.02 

0 .18 

0.04 

34 27 
110 
007 

0 .00 

100.40 

1884 

0001 
0015 
0007 

0.173 
0005 

0001 

1.754 

0 .040 

0 .004 

0 .000 

311118 

88.111 

a.78 

2.05 

Ill 0 

33.0 

01 

L073 

2-Qpx 

rim 

LALPP 

5714 
0 02 
034 

0 31 

1114 

0 23 

000 

3388 

1 32 
004 

000 

10022 

1883 
0001 
0014 
0001 

o .1n 
0007 

0000 

1 74e 
0.048 

0 .003 

0 .000 

3 .1187 

18 58 

a 87 

2 411 

1108 
37 6 

01 01 

l073 l073 

2-Qpx 2-Qpx-A 

tom 
LALPP 

5847 
001 

010 

O.IXI 

8 .30 

0 .21 

013 

34 82 
0 211 

0 03 

0.00 

100 50 

2003 
0000 

0004 
0 .002 
0 .110 

O.OCII 

0004 

1 714 

0 .008 

0002 
0 000 

3884 

11038 
814 

0 47 

1108 
37.6 

LAL.PP 

57.74 
0.03 

0.13 
0 14 

8.os 

0.15 

000 

3520 
030 

000 

000 

118.74 

1882 
0001 
0005 
0 .004 

0175 
0004 
0 .000 

1110 

0011 

0000 

0 .000 

4 003 

110.70 

8.75 

058 

81 2 
41 9 

01 

L153 

5-0px 

LALPP 

57.73 
0 01 

OQII 

0.41 

5114 
o.oe 
0.15 

34.43 
0 87 

000 

000 

100 35 

1880 
0000 
0.038 
0.011 
0.182 

0.002 

0.004 

1 781 

0.0311 

0 .000 

0000 

3.884 

88.82 

a 28 
1 82 

11111 

22 3 

01 

L2118 

2-Qpx 

5748 
000 
044 
018 

845 

0 .00 

0 .14 

3384 

038 
000 

0 .00 

81112 

2.001 
0 .000 

0 011 

0 .005 
0 .118 

11.000 

0 004 

1758 

0014 

0 .000 

0 .000 

3.887 

a8ee 

8 .58 
0 72 

1103 
22 5 

011 

L271 

1-Qpx 
core 

LALPP 

58.34 
0.01 

0.75 
012 

5.42 

0 12 

0.18 

34.15 
0 52 

0.04 

0.00 

100.34 

1.885 
0 .000 
0 .030 

0003 
0 .156 

0 .003 

0.005 

1.n8 

0018 

0002 
0 .000 

3888 

81 .!XI 

7.84 

0.117 

112 0 

113 

011 
L271 

1-Qpx 
tom 

LALPP 

58 74 
003 
0.53 

0 12 
5.14 

011 

0.18 

34.78 

028 
0 02 

000 

81.83 

1810 
0.001 
0 022 
0003 

0 .170 
0.003 

0.004 

1 110 

0.011 
0.001 

0000 

4.007 

110.110 

858 
054 

Ill 4 

13 2 

011 
L271 

1-Qpx 
tom 

LALPP 

58 73 
0.00 
044 

011 

5 57 

010 

0 .18 

31133 
0 .03 

001 

000 

111148 

1 1183 
0 .000 
0 011 
0003 
0.181 

0003 

0004 

1174 

0.001 

0001 
0.000 

4 027 

8203 

782 
005 

92 I 

14 4 

0 11 
L271 

1-Qpx 
rrm 

LALPP 

5804 
0.02 

0.83 

0 12 
5 811 

005 

0.13 

35.27 
030 
003 

000 
100 42 

1 aa8 
0 000 

0 .025 
0003 
0 .1118 

0 001 

0 .003 

1 7118 
0011 
0002 
0000 

4 000 

11081 
8 47 

055 

Ill 5 

114 

on 
L271 

1-Qpx 

LALPP 

58 03 
000 

055 

0 .01 

5 52 

009 

017 

35 02 
0 .22 

000 

000 

1111118 

I 11118 
0 000 
0 022 
0 002 
0.158 

0003 

0.005 

1788 
0.008 

0000 

0 000 

31181 

8150 

808 
0 .41 

818 

88 



Rock 

Sample 

Loc:at100 

Type 

5002 
To02 
Al203 
Cr203 

F.O 
MnO 
NtO 

MgO 

CaO 
Na20 

K20 

Tolal 

s. 
To 
AI 

Cr 

Fe2+ ..... 
Nt 

Mg 

Ca 
Na 

K 

Tocal 

En 

Fa 
Wo 

011 
L27t 

2-<)px 
core 

LALPP 

57.85 

0 .00 

083 
018 

5 .41 

005 
018 

3410 

0 82 

003 

000 

8882 

1885 
0 000 
0 034 

0 005 

0 1511 

0001 

0 005 

I 753 

003-f 

0 002 

0 000 

3 il7 

110 13 

8 12 
, 75 

81 7 

133 

011 

l271 

2-Qpx 
rim 

LALPP 

511.45 

0 .01 

0 .51 

0 .10 

5.110 
008 

0 .18 

l-'61 
0 27 

0 02 

000 

88115 

2 005 

0 000 
0 021 

0 003 

01112 

0003 

0 004 
, 774 

0 010 

0 001 

0 000 

31183 

Ill ,. 

83-f 

0 52 

81 8 

116 

011 

L351 

1-Qpx 

511.1. 

0 .03 

088 
0 .21 

801 

0 .18 

0.04 

34.35 

0.24 

0 02 

000 

100 21 

I 885 
0 .001 
0 Ole 
o ooe 
0 174 

0 0011 

0001 

I 758 

0 008 
0 001 

0 000 

3 il4 

110 57 

8~ 

0 45 

81 0 

13 4 

c 
l188 

2-Qpx 

LALPP 

58.11 

0 .00 

063 
0 28 

701 

005 

0 .18 

33 71 

oeo 
000 

000 

118::0 

I 1183 
0000 
0028 

0008 

0204 
0001 

0004 

I 752 
0 022 

0 000 

0 000 

4 000 

88 55 

10 32 
113 

89 6 

:3 0 

c 
l213 

1-Qpx 

LALPP 

57 21 

003 

0 78 
0 28 

753 

0 .25 

000 

32 78 

082 

0 03 

000 

8861 

IWI 

0001 
0 032 

0 008 

0 218 
0 007 

0000 
1 700 

0 031 

0 002 

0000 

3 il8 

87 19 

11 24 

1 57 

88 6 
19 4 

LALPP 

57.42 

0 .05 

0 .72 
035 

7 .34 

0 24 

0 .04 

3328 

0111 

005 

000 
10007 

11188 
0001 

0 028 

0 008 
0 213 
0007 

0 001 
, 717 

0 023 

0 003 

0 000 

31182 

87115 

10 89 
1 Ill 

890 
24 3 

c 
l213 

4-Qpx 

LALPP 

57.27 

0 .00 

0 .70 

0.31 
749 

0 .22 

013 

33.47 

028 

003 

000 

118110 

I 1187 
0000 
0028 

0008 
0 217 

0 0011 

0004 

I 731 

0011 

0 002 

0000 

3W5 

llle 
1109 

0 55 

8811 

2211 

WB 
L08v 

1-Qpx 

LALPP 

sa.1a 
0.03 

0.58 

022 
5 83 

0.13 

0 .14 

34 az 
0 .44 

001 

000 

100 48 

1 .1182 

0 .001 
') 023 

0.008 
0 170 

0004 

0004 

1.777 

00111 

0 001 

0 000 

31183 

11053 

88S 
0 82 

111 3 

20 5 

w 
l201 

3-Qpx 

LALPP 

5788 

004 

081 

0 32 
5111 

0 .20 

0 17 

34.711 

0 35 

0 05 

000 
81181 

I il7 

0001 

0 025 
0 1)08 
0 181 

00011 

0 005 

I 787 

0 013 

0003 

0000 

31187 

Ill II 

8 23 

01111 

Ill 7 

2511 

H 

l177 

2-Qpx 

LALPP 

58.70 

0 .04 

1.31 
0 .41 

870 

005 

013 

32511 

1110 

0 04 

000 
81118 

11170 

0001 

0 054 

0011 
0 1115 

0001 

0004 

I 618 
0 071 

0 002 

0000 

3 887 

8e 42 

11117 

3111 

8117 
17 4 

H 

L177 

3-Qpx 

LALPP 

57 53 

0 .00 

100 
0 42 

1130 

008 

0 .15 

3430 

Ole 
000 

000 

100 12 

I ill 

0000 
0 041 

0011 
0 111 

0 002 

0004 

I 780 

0 013 

0000 

0000 

311113 

110 04 

9 28 
06& 

1107 

22 0 

H 

L177 

4-Qpx 

LALPP 

57.71 

0 .00 

1.08 

044 

1127 

004 

0 Ill 
3311 

141 

0 01 

000 

100 28 

I ill 
0000 
0043 

0012 

0181 

0001 

0004 

I 700 

0055 

0001 

0000 

3885 

87 85 

~~~ 

2 82 

1104 
21 9 

H 

L177 

S-Qpx 

LALPP 

57.611 

0 .01 

1 21 

0 .50 

en 
0.01 

0 II 

3328 

108 

001 

000 

100 52 

I ill 

0000 
00411 

0013 
0 1115 

0000 

0003 
I 708 

0 040 

0000 

0 GOO 

31187 

17111 

10 04 
2 OS 

8118 

21 5 

H 

l221 

7-Qpx 

cora 
LALPP 

58711 

0 .00 

I 20 

na 
845 

003 

013 

32 27 

1117 

003 

000 

118 17 

I 817 

0000 

0 048 

0000 
0 1111 

0001 

0004 

I 813 

0 074 

0002 

0 000 

31188 

81150 

1170 

3 80 

81111 

0 



Rock 
Sample 

locatoon 

Type 

5102 
TI02 
Al203 

Ct203 

F.O 
UnO 
NiO 

t.tgO 
CeO 
Na20 
K20 
Totlll 

Sl 

Ti 
AI 

Ct 
Fe2+ 

un ... 
Ug 

Ca 
Na 
K 

Total 

En 
Fa 
Wo 

H 

l221 
7-0px 

rom 
LALPP 

57.13 
0.00 

0 .41l 
na 

885 
0 .07 
0 .15 

34.;4 

0 .28 
0 .00 
000 

118.71l 

1.1187 

0 .000 
0 02G 
0 .000 
0 .11l2 

0 002 

0 .004 
1.788 

0.010 
0.000 
0 .000 
3 .1183 

Ill 78 

$ .75 

0 .48 

80.2 

H 

U21 
o-opx 

LALPP 

57.12 
0 .00 
010 

O.Ja 

8 .27 
004 
0 .13 

33 28 
1.74 
005 
000 

llll.78 

1 1182 

0 .000 
0033 

0010 
0.182 

0 .001 

0 .003 
1.720 

0.064 
0.003 
0.000 
3.llllll 

87.48 

ll24 

3 .28 

80.4 
24.3 

H 

l221 
ll-opx 

lALPP 

57.18 
000 

0111 
na 

8 28 
0 .01 
0 .18 

3341 
1.53 
002 
000 

118 41l 

uae 
0.000 

0.037 

0.000 
0.112 

0000 

0004 
1 72.i 

0.057 
0.001 
0.000 

3llll7 

8785 

8 .28 

280 

80.5 

01 
l274 

4-0px 

cOfe 

LALPP 

58.87 
0 .05 

0118 
032 
a 01 
0 .28 

000 

33.28 
0 .28 
0 .03 
000 

118.1l1 

1 ll72 

0001 
0040 

oooe 
0 235 

0.008 
0000 
1725 

0.010 
0.002 
0.000 

4003 

87.55 

11 .8:> 

0.53 

880 
17.7 

01 H-X 
l274 l327 

4-opx 3-0px-1 
rom 

LALPP 

58 81 
0 .05 

048 

0 .11 

8 .02 
0 .21l 
0 .00 

33.10 
020 
0 .03 
0 .00 

11807 

1.1181 
0 .001 

0.020 

0.003 
0 235 

oooe 
0.000 
1721l 

0.007 
0.002 
0.000 
3.llll7 

87.71 

11 .$2 

0.37 

88 0 
13.3 

LALPP 

57 02 

001 
084 

038 

8.82 
0.08 
0 .17 

33.18 
084 
0.00 
000 

llll53 

Ull 
0 .000 

0.038 

0.010 
0.11l8 

0003 
0005 
1720 

0035 
0.000 
0 .000 
3 .llll3 

8805 
10.18 

1.78 

81l7 
20 8 

H-X 
l327 

3-0px-2 

LALPP 

5781l 
0 .00 
0 .48 

0 .08 

7.25 
0.05 
018 

34.28 

0.13 
0.00 
0.00 

100.34 

1.1ll14 

0 .000 

0 .018 

0.002 
0 :zoe 
0001 
0 .004 

1.780 

0.005 
0.000 
0 .000 
3 .llll5 

lll.18 

1058 

0.24 

81l.4 
11 .2 

H-X 
l328 

1-0px 

LALPP 

5885 
0 .08 
2 13 
0.38 

8 28 
0 .13 
0.13 

3148 
1 25 
0 .03 

000 
100.57 

1.1183 

0002 
0.087 

0011 
0 .240 

0.004 
0 .004 
1.1127 

0.048 

0.002 
0 .000 
3.1l87 

85.04 

12.54 

2.42 

87 2 

10.8 

H-X 
L328 

1-opx 

LALPP 

5558 
0 22 
254 
0 48 

828 
010 
009 

31 40 
111 
0.00 
0.00 

llll71l 

1843 

0008 
0 .104 

0 .013 
0 .242 

0003 
0 .003 
1.838 

0042 
0 .000 
0 .000 
3 .llll2 

8521 

12 112 
2.17 

87.1 
11 2 

H-X 
l328 

5-opx 

lALPP 

55.28 

011 

184 
035 

8 21 
008 
012 

3018 
2 52 
0 .04 

000 
118.82 

I ll58 

0003 
0 .081 

0010 
0.243 

0.003 
0 003 
1 5ll5 

ooee 
0 .003 
0 .000 
3llll5 

82.47 

12.58 

4.85 

88.8 
10.8 

01 
l333 

8-opx 

LALPP 

57.70 

0 .08 
081 

008 

728 

0 .28 

0 04 

34.54 
0 20 

005 
000 

100.88 

IIllO 
0002 
0.025 

0002 
0 .208 

0.008 
O.OCII 

1787 

0.007 
0.003 
0.000 
4.008 

81l.08 

10.55 

0 .37 

88.4 
8 .1 

0 1 
l»J 

7-opx 

LALPP 

58 07 

0 .08 
032 
0 25 

811 
0 .22 
008 

34.71 
040 
0 .05 
0.00 

100.88 

1.1l81l 

0 .002 
0.013 
0.007 
0 11l2 

0008 
0002 
I 772 

0.015 
0.003 
0.000 
4.001 

88.55 

871 

0.74 

80.2 

34.4 

01 
l348 

1-opx 

LALPP 

5805 
0.07 
23a 
0 32 

785 
021 

000 

33 21 
0.34 
005 
0.00 

100.58 

1 llJa 

0002 

0087 

o.ooe 
0230 

0008 
0.000 
1.712 

0013 
0.003 
0 .000 
4 .001J 

87.51l 

11 .78 

0.84 

88.2 

8 .3 



Rock 

Sample 

locatoon 

Type 

Si02 
To02 
Al203 

Cr203 

FeO 

MnO 

NiO 

MQO 
c.o 
Ne20 

K20 
Tol•t 

Si 
To 
AI 

Cr 

FeZ+ 

Mn 

No 
Mg 

c. 
N• 
K 

Tolal 

En 

F• 
Wo 

TABLE A3.3. Ctinopyro~ene analyeeo (oxideo in wt %, number of oon1 on baeoa of 8 0) 

H 

L157 

4-Cpx 

LALPP 

54 73 

0 .03 

0.97 

0.82 

1.59 

011 
013 

17 82 

24 45 
0 15 

000 
100.38 

11177 

0 001 

0 041 

0 018 

0 048 
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00111 

0 .108 
0 .000 

0.003 
0 .765 

0188 

0 .043 

0 .000 

3.1184 

43.45 

8.11 

50.44 

877 
511 

c 
l115 

1..Cpx 

0 
l221 

4..Cpx 

core 
H.\LPPG HALPPG HALPPG HALPPG 

c 
l177 

t-cpx 

0 
l221 

1..Cpx 

54111 

008 

1.00 
0 .52 
1.81 
0 .08 
0011 

17 71 

24.44 

024 

000 

10088 

1.1177 

0 .002 

0042 

0015 

0041 
0 .002 
0003 
0 .1151 

01143 

0 .017 

0 .000 

4000 

41115 

2 .50 

48.55 

115.1 

25.11 

52 .35 

0 .57 

3111 
0 .114 
2.113 
0 .01 
010 

1552 

23.54 

0 .42 

000 

10029 

1 1105 

00111 

0 .1(18 

0 .027 

0 .0111 
0 .000 

0 003 
0142 

01118 

0030 

0 .000 

3 .1187 

45.54 

482 

411.114 

110.4 
13.8 

5152 

0 .411 

3811 
0 .114 
2.27 
0 .00 
010 

15 (18 

2562 

0 .20 

0 .00 

100.70 

1 878 

0 .013 

0187 

0027 

0 .01111 
0 .000 

0 .003 
0 .851 

1.000 

0 .014 

0 .000 

4 .021 

4434 

3 .110 
52.08 

112.5 
13.8 

50.72 

0 72 

4(13 
1.01 
2 .18 
000 

0 07 

15 .25 

25.17 

037 

000 

100.13 

1.857 

0020 

0200 

0 0211 
0087 
0000 

0002 
0832 

0.1187 

0.028 

0 .000 

4022 

44 12 

3 .55 
52.33 

82 5 
12.1 



Rock 
Sample 

Localio.1 

0 
l221 

4-cpx 

rim 

c 
l327 

1-cpx 

c 
l328 

e-cpx 

COf8 

c 
l328 

11-Cpx 

rim 

c 
l328 

8-cpx 

c 
l329 

2-cpx 

c 
L329 

4-cpx 

w 
l333 

2-cpx 

c 
L348 

2-cpx 

w 
L333 

3-cpx 

core 

w 
l333 

3-cpx 

flm 

c 
L34i 

1-cpx 

core 

c 
L348 

1-cpx 

rim 
Type HALPPG HALPPG HALPPG HALPPG HALPPG HALPPG HALPPG HALPPG HALPPG HALPPG HALPPG HALPPG HALPPG 

St02 

Ti02 

Al203 

Cr203 

FeO 

MnO 

N10 
MgO 
CaO 
Na20 

K20 
Tolal 

St 

Ti 

AI 

Cr 

Fe2• 
Mn 

Ni 
Mg 

Ca 
Na 
K 

Tolal 

En 
Fa 

Wo 

51 .24 

0 .84 

3 .88 

0 93 

2 .37 

000 

0 12 
15 711 
25 32 

0 .29 
0 .00 

100.38 

1.874 

0018 

0.159 

0027 

0 072 

0000 
0 004 

0 861 

0 992 
0021 

0000 
4 0211 

U71 

3 711 

51 53 

92 2 

145 

50 95 

0 .84 

4 41 

0 48 

3 51 

005 

0 11 
15 58 
23 55 

0 28 
000 

99.73 

1872 

0 023 

0191 

0 014 

0 108 

0 001 

0 003 

0 853 
0 927 
0 020 
0 000 
4 013 

45 20 
5 70 

4910 

88 8 

67 

50 32 

0 .86 

553 

0 78 

4 .15 

0.00 

0 09 
14.85 
22 .75 

0 61 
0 .00 

99 73 

1853 

0 .024 

0 .240 

0 023 

0128 

JOOO 
0 003 

0 .804 
0 8117 
oou 
0 .000 
4 014 

4396 

1199 

49.05 

8e 3 
8e 

50.78 

0.&5 

5.211 

077 
3.44 

000 

000 
1538 

22 85 

0 42 

0 .00 

91U6 

1.859 

0 .023 

0 .228 

0 022 

0105 

0 000 
0 000 

0 838 
01100 

0 030 
0 000 
4 007 

45 47 

5 71 

4812 

881 
811 

51.44 

0.67 

4 211 

0.47 

398 

0.00 

0.00 
15. 17 
23.72 

038 

000 
100.12 

1.885 

0 018 

0185 

0 014 

0122 

0000 

0000 

0 8211 
01131 
0 027 

0 000 
4 011 

44 03 

II 48 

49 48 

87 2 

68 

52 30 

0 .53 

3 57 

0 54 

2 82 

000 

0 07 
15 110 
24.47 

030 
0 .00 

100.48 

1 1102 

0 014 

0153 

0 015 

0 088 

0000 

0 002 

0 862 
01153 
0 021 

0000 

4009 

45 34 

450 
50 1(! 

1110 

111 

52.27 

0 .44 

2.114 
0 .57 

2 .90 

000 

006 
15.83 
24 75 

01 1 

0.00 

9987 

1.915 

0 012 

0 127 

0 017 

0 0811 

0000 

0 002 

oaes 
0 971 
0 008 
0000 

4 005 

44 92 

4112 

50 47 

1107 
116 

5409 

0.20 

0.81 

0.30 

2 23 

0.14 

000 
1738 
24.86 

0.13 

000 
100.10 

1968 

0 005 

0 035 

0 009 

0 088 
0 004 

0 000 

0 842 
01168 
0 008 

0 000 

4 009 

47 58 

3 43 

48111 

1133 
11111 

54 12 

0.14 

0.65 

029 
2.25 

0 15 

0.00 
17.53 
24.80 

013 

0 .00 
10006 

1 971 

0004 

0 .028 

0 008 
006Q 

0 005 

0 000 

01152 
0 8117 

0008 

0 000 
4 012 

47 88 

3 45 

4888 

1133 

23 0 

53.51 

0 22 

096 

0 .40 
2 .33 

021 

000 
17 23 
25.20 

0 .13 

0 .00 

100.111 

1952 

oooe 
0041 

0 012 

0 071 

0006 

0 000 

01137 
01185 
0009 

0 000 

4 020 

47 01 

357 

41142 

11211 

21 8 

53.96 

0 .15 

1 71 

0 .61 
2 .47 

0.13 

0 .01 
16 52 
24 72 

0 .14 

0 .00 
100.41 

1958 

0 004 

0 073 

0 018 

0075 
0 004 

0 000 

0184 
0 961 
0 .010 

0 000 

39117 

4630 

388 
41181 

112 3 

1114 

5484 

0 .10 

126 
0 .55 
2 41 

0 .16 

000 
1728 
24 51 

0 .15 

0 .00 
101 04 

1968 

0003 

0053 

0018 

0 073 

0 005 

0 000 

01127 
01148 
0010 

0 000 

4 000 

47 84 

3 73 

48 62 

112 7 

22 7 

53 34 

0 .16 

2 32 

077 

2311 

016 

000 
16 45 

24 71 

018 

000 
100 411 

1.937 

0 004 

0.0911 

0 022 

0 073 

0 005 

0 000 

08~ 

0 8111 

0 013 

0 000 

4 005 

46 27 

377 

411 96 

112 5 

18 2 

c 
l234 

2-cpx 

54111 

003 

0 73 

0 55 

230 

0 .21 

012 
17 42 

?.3 82 

028 

0 .00 
100 51 

1.087 

0001 

0031 

0 018 

0070 

0006 

0 003 

0 11311 
01126 
0 011 

0 000 

3 11118 

48 52 

358 

47111 

1131 
33(! 

c 
l238 

3-cpx 

COf8 

53.52 

016 

2 04 

084 

2 62 

000 

012 
16 95 
23 34 
036 

0 .00 
118.95 

1849 

0 004 

0018 
0024 

0010 

0000 

0003 

01120 
0910 
0 025 

0 000 

4 004 

48 111 

4 18 

47 ee 

112 ~ 

216 .... .... 



Rock 
Sample 
Location 

Type 

So02 
To02 

Al203 
Cr203 
FeO 

t.AnO 

NiO 
t.AgO 

CaO 
Na20 
K20 

Total 

Si 
n 
AI 

Cr 

Fe2• 
Mn 
Ni 
Mg 
Ca 
Na 

K 
Total 

En 
Fa 
Wo 

c 
l238 

2-Cpx 
rom 

54.13 

0 . It 

1.41 
0 .43 
2 .51 

0 .00 

0 .10 

17.05 

24.111 

0 .24 

0.00 

100.14 

I .IHI7 

0.003 

0 .060 

0012 

0.076 
0 .000 
0.00:\ 

0824 

0.~1 

0 017 

0 .000 

4003 

47.eo 
3.113 

48.48 

82.4 

16.8 



Rock 

Sample 

Location 
Type 

St02 
Tr02 

Al203 
Cr203 

FeO 
MnO 

NiO 
t.lgO 
CaO 

Na20 

K20 
Total 

s. 
Ti 

AI 
Cr 
Fe2+ 
t.ln 

Nr 

t.lg 

Ca 

Na 

K 
TOial 

TABLE A3.4. Amphibole analyeea (ox idea in wl .% . number of ion a on baara ol23 0) 

H 

l157 

2-Amph 

LALPP 

54 31 

0 10 
4 .10 
I 11 

2 27 

0 07 

0 02 

21 90 

12 93 

0 55 

0 00 

87 34 

7511 

0 010 

0 867 

0 121 
0 283 
0 008 

0 002 

.. 514 

I 915 

0 147 

0 000 

15 158 

~s 

IS 4 

H 

L157 

3-Amph 

LALPP 

53 26 

009 
5 .06 
I 26 
2.37 

0 09 

21 .35 

12 50 

0 71 

0 00 

e682 

7.414 

0 008 

0 830 
0138 
0 278 

0011 

0 027 

4 429 

I 863 

0190 

0 000 

IS 188 

~1 

14 3 

H 

L1S7 

5-Amph 

LALPP 

51 66 
0 04 

7.16 
0 .65 

2 33 

0 .04 

0 .00 

20 38 

12.85 

105 

0 05 

e619 

7 247 

0 004 

1184 
0.072 
0 273 
0 005 

0 000 

4 258 

I 931 

0 286 

0 009 

15288 

94 0 

57 

H 

L218 

1-Amph 

LALPP 

54 14 

0 .05 
388 
077 

2.16 

0 03 

0 .00 
21 .71 

12.88 

0 70 

0 00 

ile 32 

7 556 

0005 

0 638 
0 085 
0 252 

0 004 

0 000 

4 517 

1 928 
0 189 

0 000 

15 172 

94 7 

11 7 

H 
L2 18 

1-Amph 

LALPP 

56 47 

0 08 
2 .29 
0 57 

1.98 

000 

000 

22 72 

12 92 

0 51 

000 

97 54 

7 747 

0 008 

0 370 

0 062 
0 227 

0 000 

0000 

4 1147 
I 899 

0 138 

0 000 

15 Oile 

9S 3 

14 3 

D 
L218 

2-Amph 

LALPP 

55 18 

0 .04 

3 .00 
0.94 

2 07 

0 .00 

0 .15 

22.53 

12 76 

0 64 

0 0(1 

97 29 

7 821 

0004 

0 488 

0 102 
0 2311 

0000 

0 017 

4 638 
I 887 

0 170 

0 000 

15186 

951 

17 3 

AD 
L125 

1-Amph 

LALPP 

46 58 

0 18 

10 75 
2 .47 

2.56 

0 05 

0.39 
111611 

1201 

2 74 

011 

97 49 

e 582 

0 019 

1 790 
0 275 
0 302 

0 005 

0 044 

4 147 

I 818 

0 751 

0 020 

IS 752 

Ill 2 
133 

AD 
L12S 

1-Amph 

LALPP 

47 99 

0 21 

1184 
2 24 

261 

0.08 

0 12 

20.01 

12 02 

2 41 

0 08 

97 39 

6 754 

0 022 

1 599 
0 2411 
0 307 

0010 

0 014 

4 199 

1 813 

0656 

0 014 

15838 

93 2 

135 

AD 
l125 

1-Amph 

LALPP 

49 04 

0.19 
8111 
165 

2 67 

017 

0.16 

20.54 

12 00 

2 24 

008 

97 65 

6866 

0 .020 

1 470 
0 183 
0 313 

0 020 

0 018 

4 287 

1800 

0 608 
0014 

IS 599 

93 2 
111 

AD 
L125 

1-Amph 

LALPP 

48 92 

0 22 
1111 
2.04 

2 32 

0.06 

0.23 

20.56 

12 40 

2 42 

000 

98.28 

6 813 

0 023 

1 4a5 

0 225 
0 270 

0 007 

0 028 

4 288 

1850 

0 653 
0 000 

IS 631 

~0 

13 I 

AD 
L129 

3-Amph 

LALPP 

4920 
0 07 

8 73 
206 
2.58 

0.00 

0 .1 4 

20 24 

12 114 
2 03 

0.14 

97 as 

6 882 

0008 

1 440 

0 228 
0 302 

0000 

0018 

4 221 

I 81M 

0 S50 

0 026 

15 564 

113 3 

13 7 

AD 
L129 

4-Amph 

LALPP 

48 82 
0 07 

817 

1 87 

2 .38 

000 
021 

19~ 

12 71 

180 

015 

e609 

8~4 

0 007 

1368 
0 210 

0 282 

0 000 

0023 

4 227 

1938 

0 4ile 

0 028 

15 521 

113 7 

13 3 

AD 
L132 

1-Amph 

LALPP 

5005 
0 28 
7 04 

1 70 

250 

0 .07 

050 
21 .12 

12 38 

2 84 

0 02 

98 48 

61177 

0 0211 
1 1S7 

0 187 
0 291 

0 .008 

0 055 

4 :188 

IUS 

0 788 

0 003 

15 708 

93 8 
131l 

AD 
L132 

3-Amph 

LALPP 

50 08 
0 .27 
8 .82 

I 80 

2 211 

0 .10 
0 .48 

2130 
1199 

2 85 

0 .03 

ll7 .91l 

7 002 

0 028 
1 123 

0 1118 
0 287 
0 012 

0 0!>4 

4 440 

1 795 
0 773 

0 004 

15897 

1M3 

15 1 

AD 
l148 

2-Amph 

LALPP 

4430 
053 

11.57 

206 

2 88 
000 
012 

18 88 

12 88 

3 45 

011 

e6 78 

e 363 

0 057 

11158 

0 234 
0 34e 

0 000 

0014 

4 042 

1 979 

0 ilel 

0 020 

151174 

ll2 1 

10 7 

...... 



Rock 

sample 

Locetoon 

Type 

5102 

To02 

Al203 

Co203 

FeO 

1.4n0 
NoO 
MgO 
CeO 

Na20 

K20 
Total 

Si 
Ti 
AI 
Cr 
Fa2+ 
Mn 

Ni 
Mg 
Ca 
Na 

K 
Total 

Mgt 

Crl 

AD 
l148 

4-Amph 

LALPP 

44 24 

058 

11 .110 

1 82 

3.01 

0 .00 
0 .14 

18.110 

12.84 

3 .55 

012 

81150 

11.373 

0.0113 
1.870 

0 .207 

0 .303 
0 .000 

0 .018 

3 .1185 
UMI2 

011112 

0 022 

15.882 

81.7 

8 .5 

AD 
l.275 

4-Amph 

LALPP 

4827 

0 .25 

12.33 

1.31 

3 27 

002 
0 .07 

II .IMI 

12.17 

2 .58 

008 
8738 

11.528 

0 .0211 

2050 

0 .153 

0 .385 

0002 

0008 

3IMII 
1.838 
0 .707 

0 .018 

15.705 

111.2 

7.0 

AD 
l.275 

s-Am ph 

LALPP 

~13 

0 24 

11 .83 

1 40 

3 47 

0 .00 
0 .07 

181M! 
11 .85 

2111 

008 
811.82 

11.5112 

0 .028 

1.884 

0 .157 

0 .412 

0 .000 

0 .007 
4 020 

1.8011 

0 .7111 

0 .018 

15.709 

110.7 

7.3 

AD 
l~Je 

3-Amph 

LALPP 

47.18 

031 

10.115 

1.52 

2 80 

0 .00 
0 .12 

18.52 

12.03 

2 .54 

008 
117.02 

11.11111 

0 .032 

1.822 

0 .170 

0 .331 

0 .000 

0 .014 
41011 
1 820 

0 .1184 

0 .010 

15.8112 

112.11 

85 

01 

LOlli 

1-Amph 

LALPP 

52811 

011 

5 20 

147 

252 
000 
013 

21 .13 
12.43 

108 
0 .02 

811.75 

7 .3611 

0.011 

0858 

0182 

0 .284 

0 .000 

0 .014 
4 403 
18111 
0 .2111 

0 .003 

15.281 

1137 

1110 

01 

LOlli 

3-Amph 

LALPP 

5587 

0 .05 

3 .011 

0112 

2 31 

0 .00 
0 .18 

22.58 
12.43 

0 .82 

000 

117.4a 

7 .1158 

0.005 

0.4811 
0.0117 

0 .2115 

0 .000 

0018 
4 831 
1832 

0 1114 

0000 

15 137 

a.c.ll 

1111 

01 

L068 

4-Amph 

LALPP 

58.12 

0 02 

2 .30 

0 .51 

2 .111 

0 .00 
015 

22.83 
12 87 

o . .ca 
0 .00 

117.03 

7.748 

0 .002 

0 .373 

0055 

0 .252 

0.000 

0 .018 
4 .1158 

1 873 
0 .128 

0 .000 

15.102 

01 

L068 

11-Amph 

LALPP 

55 50 

0011 

3 .311 

0 .67 

2 .48 

000 
0 .12 

22.28 

12.55 

0 .71 

0 .00 

87.70 

7 .630 

0 .008 
0 .545 

0 .073 

0 283 

0 .000 

0 .014 
4 .5112 

1.848 

0 .1811 

0000 

15.;50 

a42 
11 .8 

011 
l271 

1-Amph 

LALPP 

43811 

143 

12.13 

1.111 

6 .10 

0.111 
0 .05 

111.88 

11 .85 

2.75 

0 .16 

117.08 

11.3411 

0.155 

2.0114 
0.184 

0.7311 

0020 

0.008 
3.833 
1.833 

0.770 

0.028 

15.775 

83.1 

8 .2 

Oi; 

L351 

1-Amph 

LALPP 

50.80 

0.14 

1.111 

1.05 

2.75 

-'11 
0 .00 

20.48 

12.45 

I 52 

000 

11748 

7 .070 

0 .015 

1 343 

0 .118 

0 .320 

0012 

0 .000 
4 248 

1 8511 

0 410 

0000 

15.381 

113.0 

7.11 

011 
L35t 

Z-Amph 

LALPP 

54 03 

0 Oil 
428 

0 .811 

2.30 

0.07 
0 .01 

22.02 

12 82 

0.70 

000 

117.15 

7 .487 

0 .008 

0 .700 

o.oa.c 
0 .21111 

0008 

0 .001 
4.548 
11103 
0 .187 

0000 

15 201 

a.c5 
1111 

011 
L351 

4-Amph 

LALPP 

58 35 

0 08 
2.113 

0 44 

220 
0 14 
0 07 

22 44 

12115 

054 

000 

117 52 

7 737 

0008 

0 4211 

0 .048 

0 .252 

0 016 

0 007 
4583 

I 881 

0144 

0000 

15 0111 

a-ce 
10.1 

c 
l.213 

1-Amph 

LALPP 

5347 

014 

4 70 

1 28 

2.88 

0 .04 
000 

21 .04 

12110 

100 

000 

117.43 

7 .421 

0 .015 

0 .770 

O.U1 

0 .332 

0005 

0000 
4 357 
11120 

0 21111 

0 000 

15 237 

11211 
154 

WB 

loell 
1-Amph 

LALPP 

54811 

004 

333 

0111 

220 
0 .011 
007 

22 48 

12.70 

1 12 

000 

117.411 

7 .558 

0004 

0 542 

0018 

0254 

0 .007 

0 .008 
4 831 
I 880 

0300 

0 .000 

15273 

aoC8 
140 

WB 

LON 
2-Amph 

LALPP 

58.55 

0 01 
1.54 

0 .47 

211 
0 .07 
0 .14 

2301 

12 58 

058 

0 .00 

117.21 

7.7113 

0 .001 

0 .250 

0 .051 

0 243 

0.008 
0 0111 
4 .742 
1.858 

0155 

0 000 

15.125 

1151 

170 



Rock 
Sample 
Location 

Type 

S.02 

To02 

Al203 
Co203 

FeO 

MnO 
NoO 
UgO 

CaO 

Na20 
K20 
local 

Si 
Ti 
AI 
Cr 

Fe2+ 

Un 

Ni 

Mg 
Ca 
Na 

K 
local 

WB 
Loee 

3-Amph 

LALPP 

53.26 

0 .11 

4.53 

131 

2 67 
0.08 

000 
21 .66 

12.63 

154 
000 

97.711 

7 385 
0 011 

0 740 

0 144 

0 310 

0 .0011 

0000 

4 478 

I 878 

0 414 

0 000 

IS 388 

113 5 

182 

D 
l305 

w 
l109 

w 
l109 

w 
l301 

w 
l301 

5-Amph 1-Amph 1-Amph 1-Amph 2-Amph 

HALPPG HALPPG HALPPG HALPPG HALPPG 

44 .05 

0 .01 

16.24 
0 .00 

366 

0 00 

0 00 
17.63 

12 30 

311 

000 
116911 

6 240 

0 .001 

2711 

0000 

0 434 

0 000 

0 000 

3 724 

I 866 

c 853 

0000 

15830 

8116 

00 

43 25 

0.66 

16 70 

0 .13 

4.23 

0 14 

0 .00 
17.22 

1238 

2 87 
0 14 

97.72 

6 117 

0070 

2 784 

0015 

0 500 

0.017 

0.000 

3630 

I 876 
0 787 

0 025 

IS 820 

87 II 

05 

43 17 

2 .47 

13.56 
159 

359 

0.14 

0.09 
17.211 

12.011 

2.52 
0 .38 

116.85 

6187 

0 266 

2.290 

0 .180 

0 430 

0016 

0 010 

381M 

I 856 
0 700 

ooee 
IS 895 

8116 

73 

43111 

0 .15 

1!104 

0 08 

4 22 

0 .12 

0.00 
17.63 

12.52 

2 78 
000 

97.42 

6 21tl 

0015 

2 875 

00011 

0500 

0 .014 

0 .000 

3 7111 
I Pgg 

0 758 

0000 

IS 80S 

88 2 
03 

44 84 

0.08 

15.88 
0 .00 

4 32 

010 

000 
17.55 

12 27 

2 32 

000 

97.31 

6 325 

0006 
2 638 

0 000 

0 .510 

0012 

0000 

3891 

1 ass 
0 635 

0000 

15668 

87 9 
00 

w w c c c 
l315 l3UI l2116 l2ll6 l310 

4-Amph 3-Amph 2- Amph 4- Amph 1-Amph 

HALPPG HALPPG HALPPG HALPPG HALPPG 

48115 

0 .117 

6 .08 
0.59 

310 

013 

000 
1586 

21 44 

080 
000 

117112 

81187 

0104 
1 024 

0087 
0 371 

0 018 

0000 

3 380 
3 284 

0 222 

0 000 

1S 484 

110 I 

81 

42119 

1 t.8 

14 62 

1.77 
318 

000 

000 
1766 

12 50 

3 oa 
0 14 

97.43 

8 118 

0158 

2 452 

0 .11111 

0 378 

0000 

0 000 

3 747 

1 1108 

0 853 

0 025 
15 837 

1108 

75 

4196 

307 

14 32 

I 22 

805 

000 

0 10 
15.35 

12 10 

2 84 
034 

117 34 

8080 

0 333 

2 438 

0 IJ9 
0 730 

0 000 

0012 

3 304 
I 872 

0 7116 

Ooel 
15 748 

819 

54 

53111 

0 .16 

534 
001 

488 

0 05 

009 
20.83 

12 07 

0 711 
0 .00 

117111 

7 458 

0 017 

0 870 

0 001 

0 .541 

0 005 

0 010 

4 285 
I 7811 

0211 

0 000 

15 1116 ... 
01 

45 211 

184 

1288 

I 13 

390 

0.12 

000 
17 74 

12 77 

2 25 
000 

97 52 

8 411 

0 175 

2 .116 

0 120 
0 482 

0 014 

0000 

3 744 
1 1137 

0 818 

0 000 

15802 

890 

511 

c AP 
un l274 

~Amph 2-Amph 

HALPPG HALPPG 

44 67 
1.52 

13 50 

0119 

518 

000 

013 
18 4.• 

12 30 

2 28 
0 411 

117 47 

11370 

0163 

2 21111 
0 112 
0 815 

0 000 
0 015 

3 4113 

I 879 

0830 

0 0811 

15G38 

85 0 
4 7 

43 87 

148 

12 13 

I 47 

5 88 

0 15 

0 04 
18 711 

11 80 

2 75 

0 14 

118 44 

8363 

0159 

2 073 

0 IIIII 

0 710 

0 018 

0 004 

3 830 
1 833 

on3 
0028 

15 757 

1311 
75 

N 
0 



Rock w AD AMPT AMPT 
Sample l333 l333 l341B l341B 
Loca11on 2-Amph 8-Amph 1-Amph 1-Amph 
Type HALPPG LALPP uc uc 

S.02 47.111 48e5 42.01 41 45 
To02 o.a5 027 3.31 3.27 
Al203 II.Sl 820 13.23 13.211 
Cr203 1.53 1.10 0.28 034 
FeO 3.38 3.13 1103 10.84 
MnO 0.12 0.15 0.22 0.23 
NiO 0.00 0.04 0.18 0.00 
MgO 18811 20.43 12.87 13.00 
CaO 12.e5 12.28 11 .110 1188 
Na20 2.28 1.711 302 2 711 
K20 0.00 0.00 0.24 0.211 
Tolal 118.78 117.33 88.27 117.10 

Si 8713 1111118 8.144 11125 
Ti 0 .102 0 .028 0 .384 0 :;a] 
AI 1.58e 1.353 2.280 2 308 
Cr 0 .172 0 .122 0 .032 0.040 
Fe2+ 0.400 0.387 1.3411 1.3311 
Mn 0.014 0.018 0 .027 0028 
Ni 0 .000 0005 00111 0 .000 
Mo 4.0011 4.288 2100 2 8114 
Ca 1.1175 1.842 1885 1.8411 
Na 0.832 0 .488 o sse 0 .7al 
K 0 .000 0 .000 0 .045 0048 
Tolal 15.8111 15.482 15.787 15.7112 

Mo• aoa 112.1 87.5 88.1 
Crt 11.7 8 .3 1.4 1.7 



Rock 
Sample 

L~tion 

TABLE A3.5. PlagiociAie enaiYM• (oxidee in wt. 'lb. number of ion a on baaia of 32 0) 

WG 
l3098 

3-Pieg 

WG 
l3098 
5-Piag 

WG 
L308C 
3-Pieg 

WG 
L308C 
4-Pieg 

WG 
L309C 

&-Piag 

WG 
L314 

1-Piag 

WG 
L314 

2-Piag 

WG 
L314 

4-Piag 

WG 
L314 

5-Piag 

WG WG WG 
L314 L314 l314 

5-Pieg &-Piag-1 &-Piag-2 

WG 
l314 

7-Pieg 

WG 
l314 

7-Piag 
core rim core 

Type HALPPG HALPPG HALPPG HALPPG HALPPG HALPPG HALPPG HALPPG HALPPG HALPPG HALPPG HALPPG HALPPG HALPPG HALPPG 
um 

S.02 
Ti02 

AJ203 
Cr203 
FeO 

MnO 
NiO 
MgO 
CaO 

Na20 
K20 
Total 

Si 
To 
AI 

Cr 
Fe2+ 
Mn 
Ni 
Mg 
Ca 

Na 
K 

Total 

An 

Ab 
Or 

50.75 
0 .00 

31 .84 

0 .00 

0.13 

0 .00 

0 .05 
0 .00 

14.74 

308 

0 .00 

100.5? 

11.1111 

0 .000 
8 785 

0000 
0 .020 

0 .000 

0 .007 

0000 

2 858 
1080 

0000 

1111151 

72 58 

27 41 

000 

48.48 
0 .00 

32.611 
0.00 

0.15 

000 

0 .04 

0 .00 

15 •a 
2.78 

0.00 
10081 

8884 

0 .000 
7000 

0 .001 

0023 
0 .000 

o.ooe 
0000 
3014 

0878 

0000 

20005 

75.50 

24 50 

000 

50.02 
0 .00 

31 .117 

0 .00 

0 .18 

0.00 

0.04 
0 .00 

14.n 

3 .011 

000 

100.05 

11117 

0000 
8888 

0000 
O.U24 

0 .000 

0005 

0000 
2 884 

1083 

0000 

11111114 

72 51 

27 48 

000 

48.88 

0.28 

32.04 

0.00 
0 .13 

0.00 

0 .05 
0 .00 

15.08 

3 .03 

000 

100.28 

11051 

O.O:ll 
8 .878 

0000 
0 .020 
0 .000 

0007 

0 000 

2~2 

1 070 

0000 

20 007 

73 33 

28 87 

000 

5065 
0.01 

31 .81 

000 
0.10 

0.00 

0 .011 
0 .00 

14.65 

3.31 

0 .00 

100 82 

IHn 
0001 
8 783 

0000 
0 015 

0000 

0 013 

0000 

2 a•5 
1 164 

0 000 

20 007 

70 86 

28 04 

000 

50.84 

0.00 

31 .58 
0.00 

0.08 

000 

0.07 
000 

14 22 

3.50 

0.00 

100.08 

11.215 

0 .000 
8 .n4 

0000 
0 DOll 

0000 

0 010 

0000 
2n3 
1 235 

0000 

20 1)15 

8818 

30 82 

000 

50.88 

0.00 

31 .10 

0 .00 

0.18 

0.00 

0.07 

000 

1424 

3311 
000 

88 84 

11.278 

0 .000 

8885 

0000 
0 028 
0 .000 

0 010 

0000 
2 783 

1 187 

0000 

1111180 

8882 

3008 
000 

50.43 

0 .00 

31 .511 

0 .00 

0 .11 

0 .00 

0 .04 

000 
14.38 

3.211 

000 

111183 

11.188 

0 .000 
8 .781 

0000 
0 .017 

0000 

0008 
0 .001' 

2811 
1 184 

0 .000 

111.1187 

70 72 

21128 
000 

50.38 

0.00 

3143 
0 .00 

0 .011 

0 .00 

003 
0 .00 

14 54 

343 

004 

1111.83 

111112 

0 .000 

8 .782 

0000 
0014 
0000 

0005 

0 000 
2 843 

1 215 

0 008 

200311 

8881 

21188 
0 21 

50.72 

000 

31 33 
0 .00 

012 

0 .00 

007 
0 .00 

14.28 

333 

0 .01 

1111.88 

11247 

0 000 
8 .732 

0000 
0 011 

0000 

0010 

0 000 
2 .781 

1.175 

0002 

1111178 

7033 

211111 

008 

48.70 

000 

311111 
0 .00 

0 .10 

0 .00 

0 .05 
0 .00 

1482 

301 

0 .00 

1111n 

110811 
0 .000 

81115 

0 000 
0 .015 
0 .000 

0007 

0000 
2 824 

1.087 

0 000 

111887 

73 28 

21174 

000 

50.18 

000 

3131 
0 .00 

0 .08 

0 .00 

0 .04 
0 .00 

14 52 

334 

000 

1111.44 

II 1118 
0.000 

8 765 

0 000 
0011 
0000 

0 005 

0 000 
2151 

1 117 

0000 

20015 

10 eo 
21140 

000 

50.31 

0 .01 

31 .21 
000 

008 

000 

0 .02 
0 .00 

14 73 

3 45 

000 

111182 

1111111 
0001 

8 731 

0000 
0 0011 

0000 

0 002 

0000 

2111 

1220 

0 000 

20.044 

70 211 

21174 

000 

41170 

0 .':10 

~· 87 
0 .00 
0011 

000 

003 
000 

1502 

3.14 

000 

1111.84 

11108 
00'.)() 

8140 

0 000 
0 014 
0000 

0 004 

0 000 
2~ 

1 114 

0000 

200211 

7258 

27 42 

000 

50.83 

0 .00 

31 ... 1 

0 .00 

012 

0 .00 

012 

000 
, .. 53 

383 
000 

10043 

11202 
0.000 

e 728 

0000 
0011 
0000 

0 01? 

0000 
2130 
1 271 

0 000 

20073 

88110 
31 10 

000 



Rock G G G G AMPT 
Sample l2G5 l2G5 L.2Q5 L.2Q5 L3418 
LocatiOn 2-PI-o 11-Piag 11-Ptag 11-Piao 1-Pieo 

core rim 
Type HALPPG HALPPG HALPPG HALPPG uc 

Si02 S2.02 5043 50.34 51 .02 50.88 
Ti02 0 .00 0.00 0.00 0.15 0.02 
Al203 3UO 3208 3208 31 .411 31 .01 
Cr203 0.00 0 .00 0.110 0.00 0.0 1 
F.O 0.08 0.13 0.10 0.10 025 
MnO 0.00 000 0.00 000 0.08 
NiO 008 0.05 o.08 0.03 0.00 
MgO 0.00 0.00 0.01 c.oo 0.03 
CaO 13.78 1433 14.47 1187 13.118 
Ne20 3.81 3.40 3.51 3.80 3.64 
K20 0.00 0.00 0.00 0 .00 0.00 
Total 101 .68 100.43 100.54 100.43 IMI.IMI 

Si 11288 11150 8131 8.247 8 .2811 
Tl 0 .000 0 .000 0.000 0.020 0 .003 
AI 8.721 88110 8854 8728 81151 
Cr 0 .000 0000 0.000 0.000 0 .001 
Fe2+ 0013 0 .020 0 .015 0.014 0 .03a 
Mn 0.000 0 .000 0 .000 0.000 0 .010 
Ni 0.008 0007 0.008 0.004 0 .000 
Mo 0.000 0 .000 0.003 0 .000 0 .007 
Ca 2.838 2 .785 2.813 2.1183 2.728 
Na 1.320 1.187 1.233 1334 1.285 
K 0.000 0 .000 0 .000 0.000 0 .000 
Total 20.001 20.018 20.058 20037 20.021 

An 88115 88e.t till 52 0688 88.00 
Ab 33.35 3008 30.48 33.12 3200 
Or 0.00 0.00 0.00 0.00 0.00 

-~ 
(.,) 



Rock 

Sample 

Localt<Yt 

Type 

Ti02 
11203 

Al203 

Cr203 
FeO 

MnO 

NoO 
MgO 

Tolal 

To 
II 

AI 

Cr 
Fe3• 
Fe2+ 
Mn 

No 
Mg 
local 

TABLE A3.8. Spinelanaly .. a (oxidea in wt .'M> . number ol iona on ba•i• ol32 01 

H 

L0117 

7-Sp 

LALPP 

0 .05 

0 .28 

11.18 

55.01 

23.08 

034 

0.08 

1138 

111133 

0.010 

0 .055 

3 487 

11 537 

0 1101 

4 218 

0 075 

0 017 

3-
24 000 

4117 

7118 

H 
L103 

1-Sp· 

LALPP 

0. 111 

0 111 

111.33 

45.28 

24 04 

026 

004 

10 57 

111186 

0 030 
0038 

5 757 

9 048 

1 0117 

31183 

0 055 

0 008 

31184 
24 000 

500 

1111 

H 
L103 
1-Sp 

LALPP 

0 .11 

0 .111 

12.58 

51 711 

21157 

0 33 
000 

8 111 

111172 

0 022 

0 040 

31123 

10.838 

1155 

4 728 

0 073 

0000 

3 221 

24 000 

40 5 

73 4 

H 
l103 

4-Sp 

LALPP 

0.011 

0 .24 

1247 

511.113 

21 ae 

028 

0 04 
11.45 

101 011 

0017 

0 051 

3 820 

111134 

0 4110 
4 2110 

0 0111 

0 008 

311511 
24 000 

H 

L108 

1-Sp 

core 
LALPP 

0 .12 

024 

1132 

5547 

20.72 

028 

007 
11.83 

118.05 

0 024 
0 .052 

3.568 

11 728 

01105 

4 028 

0 0113 

0015 

311111 

24 000 

4113 

7117 

H 

L1011 

1-Sp 

rim 

LALPP 

0.18 

0.27 

11.711 

55.51 
22 44 

0 26 

0 .04 

1184 

100.30 

0 .031 

oo511 

3 833 

11 473 

0 778 
4 130 

0 057 

0 008 

3838 

24 000 

48 2 
75 II 

H 

L1011 

1-Sp 

rim 

LALPP 

0 14 

0 .25 

12.411 

54 .113 
21 87 

0 25 

0 OS 

II 73 

1111.411 

0 027 

0 053 

3868 

11 .413 

0812 

4 151 

0 055 

0 010 

3 811 

24000 

H .ll 
74 7 

H 

L106 

4-Sp 

LALPP 

0.12 

0 .25 

11 .80 

54.811 

23 14 

0 29 

008 

888 

111142 

0 .024 

0054 

3 8111 
11 514 

0 8114 
4 440 

I) 084 

0 017 

3 503 

24 000 

44 1 

75 7 

H 

L106 

5-Sp 

LALPP 

0.11 

0 .28 

13.07 

55.85 

20 70 

029 

0.02 
10011 

10020 

0 021 

0 .0511 

4004 

11 438 

0 .4511 

4 045 

Ooe3 

0004 
311011 

24000 

4112 
74 1 

H 

l1011 

11-Sp 

LALPP 

0 .11 

0 .25 

13.24 

54.38 
21 12 

028 

006 
1148 

118.87 

0 022 
0 .053 

4 117 

11 345 

0 441 

4 220 
0 .057 

0013 
3 732 

24 000 

411 II 

73 4 

H 
l1011 

7-Sp 

LALPP 

0 .15 

0 .27 

1215 

55.41 

21 .3i 

0 .27 

005 

10.05 
111173 

00211 

o .o511 

3 .753 

11 4711 

0 853 
4 034 

0 0511 

0010 
31125 

24000 

4113 

75 4 

H 
l1011 

8-Sp 

LALPP 

0 .17 

0 .28 

11 .110 

55.22 

23118 

0 .30 
0 .05 

1142 

100.71 

0 033 

0 055 

3 575 

11 412 

08113 

4 218 
0 .068 

0010 
31171 

24 000 

4111 

781 

H 

L153 

2-Sp 

LALPP 

0 .13 

0 22 

11 ee 
511.42 

21 .78 

0 .31 

004 

II 21 

111174 

0 025 

0 047 

31130 
11 714 

0418 
4 3111 

0068 
0008 

311211 

24 000 

45 7 

78 4 

H 

L173 

1-Sp· 

LALPP 

0 .12 

0 111 

14 38 

52.53 
21 54 

0 .211 

0 .04 
II 52 

118 81 

0 023 

0 038 
4 482 

10 928 

0 524 
4218 

0 084 

0001 

3 735 

24 000 

47 0 

710 

H 
l173 

1-Sp· 

LALPP 

0.13 

0 .20 

20 52 

48150 
20 57 

011 

0 .011 
1140 

1111.511 

0024 

0 .041 

8070 

11228 

0813 

3 705 

0 031 
0011 
4 2114 

24 000 

535 

1103 



Rock 
Sample 
locetoon 

Type 

Ti02 

V203 
Al203 

Cr203 

FeO 

MnO 
NrO 
MgO 
Tocal 

Ti 

v 
AI 
Cr 

Fe3+ 

Fe2+ 

Mn 
Ni 
Mg 
Tolal 

H 
Ll73 

2-Sp· 

LALPP 

013 

0 .20 
15.18 

50.&2 

21 .57 

032 

0 02 
a.ae 

IMI.1Q 

0.025 

0043 

4.887 
10.588 

0842 
4.0Q4 

0.070 

0 .004 

3.857 

24.000 

48.5 

882 

H 
l173 

2-Sp· 

LALPP 

0.11 

0 .25 
22.11 
48.57 

201M! 
0 .14 

0 .08 
10.81 

101 .03 

0.020 

0050 

8.44Q 
8 .112 
0 .348 
3.8Q3 
0028 

0 .012 

3 .1M18 

24.000 

50.0 

58.8 

H 
l173 

3-Sp" 

LALPP 

0.08 

0.21 
17.88 

4Q.78 
21 .4Q 

0.21 

0 .03 

IU3 
8Q.28 

0 .015 

0044 

5 .358 
10.132 
0 .435 

4.181 

0045 

0008 
3773 

24000 

47.4 

65.4 

H 
L173 

3-Sp· 

LALPP 

0.11 

0 .20 

14i8 

5288 
2231 

031 

0.04 
888 

IMU2 

0.021 

0.041 

4 .583 
10.1114 
0 .410 

4.488 

0 .088 
0 .008 

3478 

24.000 

43 8 

70 4 

H 
L173 

3-Sp" 

LALPP 

0 .11 
0 .21 

1427 

5202 

22.14 

0 .33 
0 .08 
IUO 

IMI.35 

0022 

0045 
4.44Q 

10.878 
0 .587 
4308 

0073 

0013 

3827 

24.000 

45.7 

71.0 

H 
L173 

3-Sp· 

LALPP 

0.07 

0 .15 

18.48 

50 35 
2122 
0.24 

0.05 
10.31 

IMI88 

0 .013 

0030 

5025 
10301 
0 .817 

31178 

0052 

0010 

3 .Q75 

24.000 

50.0 

87.2 

H 
l173 

3-Sp· 

LALPP 

008 
0.28 

17.33 

5115 
21 58 

032 

0.02 
10.1Q 

10082 

0015 

0053 
5.178 

10.255 
0 .484 

4 .0i2 

0088 

0 .004 

3 .852 

24.000 

48.5 

116.4 

H 
Ll73 

3-Sp" 

LALPP 

O.Oi 

0.23 

1558 

5183 

22 02 
0.18 

0.07 

850 

M27 

0 .017 

0 .048 
4.781 

10.1128 
0.512 

4.283 

0.035 

0 .014 

3885 
24.000 

48.3 

118.0 

H 
l218 

3-Sp 

LALPP 

na 
na 

18.04 

5233 

23 25 

n• 
na 

10.38 

101 Q7 

0.000 

0 .000 
4788 

10.435 

0.7Q7 
4.108 
0.000 

O.COO 

38&4 
24.000 

48.7 

IIU 

H 
l225 

7-Sp 

LALPP 

0.14 
0.17 

12.17 

58.73 

1&.88 

0 .28 
0.01 
11.50 

88.87 

0028 

0038 
3808 

11 .1100 
0.202 

4 205 
0084 

0.002 

37:il 
24.000 

47.2 

75.1 

H 

l225 

8-Sp 

LALPP 

0.14 
0.111 

10 88 

5513 

22.38 

0 .34 

0 .03 
11.18 

Q8 72 

0028 

0 .040 
3385 

11 .817 

0 .722 
4.283 

0 .078 

0 .008 

3.882 

24.000 

48.1 

na 

H 

l225 

~Sp 

cOfe 
LALPP 

0.18 
024 

1138 

57.88 

2145 

028 
0 .01 
IH3 

10045 

0031 

0 .050 
3.5111 

11 .Q88 

0 .313 

4 334 

0084 

0.017 

3 .817 

24.000 

45.5 

n3 

H 

l225 

~Sp 

um 
LALPP 

014 

021 

1131 

57 52 

21 118 
027 
0 .00 
838 

100.55 

0027 

0 .044 
35111 

11 1133 
0.4411 

4308 
O.OSQ 

0 .000 

3.880 

24.000 

4511 

77.2 

H 
l228 

2-Sp 

LALPP 

J.20 
0 .20 

13.00 

5588 

1Q.8Q 

0 .27 
0 .05 

10.711 

100.28 

0031 

0042 
3.883 

11424 
0 .4Q4 

3808 

0 .058 

0.010 

4182 

24000 

52.2 

74 2 

H 

l..283 

1-Sp 

LALPP 

0.11 

0 24 

1358 

5332 
22.41 

0 .27 

0 .07 

a 44 

111.43 

0022 

0.050 
4287 

11238 

0.404 
4 581 

0 080 

0015 

3.355 

24000 

42.2 

725 



Rock 
Sample 
Location 

Type 

Ti02 
V203 
Al203 
Cr203 
FaO 

MnO 
NoO 

MgO 
local 

To 
v 
AI 
Cr 

Fe3+ 

Fe2+ 
Mn 
No 
Mg 
lOCal 

H 

L263 
2-Sp 

LALPP 

0 .18 

0 .19 

14 43 
52.43 

22.118 
0 .23 

0 .011 

1182 
10002 

0 037 

0 .0311 

4 408 
10.744 

0 736 
4 175 

0050 

0 0111 

3 7113 
24 000 

47 8 

70 II 

H 

L283 
3-Sp 

LALPP 

0111 

0.23 

1«1.88 
411.24 
22 83 

0.28 

0 .05 

10.73 
100 40 

0 036 

0048 

5048 
88811 

0 .1147 

31104 

0 0511 

0 010 

4 083 
24 000 

51 0 
1182 

H 

L338 
&-Sp 

LALPP 

0.17 

0.20 

11 23 

58.08 
22.75 

0 27 

005 

8.58 
1111.33 

0 .034 

0 .042 

3 532 
11830 

O!o;>8 
4 548 

0080 
0 011 
3 415 

24.000 

42 8 

170 

0 
L050A 
2-Sp 

LALPP 

0 .14 
0 .28 

8.18 

5878 
27 08 

0.38 

008 

8 81 
1111.85 

0 028 

0 .058 

2.8: 3 
12.248 

1015 

5 .157 

0 087 

0013 
2771 

24 000 

350 
82.; 

0 
L053 
5-Sp 

LALPP 

0.17 
0 .18 

11 .25 

57.32 
2122 

0 .28 

004 

10 25 
100 811 

0 033 

0 033 

3 453 
11 807 

0 842 
31182 

0 081 
0 008 

31182 

24 000 

500 
774 

0 
LOSS 
3- Sp 

LALPP 

0.13 
0.211 

11 .48 

58.711 
2340 

0.28 

0.05 

8 74 

10108 

0 025 

005<: 

3 5311 
11 .788 

0 5811 
4.5311 

0 081 

0010 

3 415 

24.000 

0 
l143 
3-Sp 

LALPP 

na 
na 

1228 

54.111 
2381 

na 
na 

10.11 

100.17 

0 000 

0 000 

3 772 
11 155 

1 073 
4 072 

0000 

0 000 

31128 

24.000 

4111 

74 7 

0 
L182 
1-Sp 

LALPP 

0.22 
0.111 

12.17 

51 51 
24.83 

0 28 

0 04 

1145 

11883 

0 .043 

0 .034 

3807 
10 805 

1.288 
4 241 

0 051 

0 008 

3 736 
24.000 

488 
7311 

0 
L182 
2-Sp 

LALPP 

0 24 
0.11 

10 83 

52 88 
2537 

028 
0.03 

1183 

111148 

0 .047 

0 023 

3406 
11 .053 

1 424 
41U 

0 .084 

0008 
3 7113 

24 000 

47 5 
78.4 

0 
l176 
3-Sp 

LALPP 

0 22 
035 

12.33 

51 87 
28.80 

0 .34 

0 .08 

81111 
100.78 

0 .043 

0.073 

3848 
10.854 

1 1311 
5.181 
0 07!i 

0 .017 

2 780 
24 000 

347 

73 8 

0 
l11111 
&-Sp 

LALPP 

na 
na 

841 
55.04 

2582 

ne 

na 
834 

117.82 

0 .000 

0000 

2 7111 
11 .1142 

1.338 
4 517 

0000 

0 .000 

3 413 
24 000 

42 7 

81 5 

0 
l218 
3-Sp 

LALPP 

na 
na 

1122 
5180 

23.55 

na 
ne 

877 

100 44 

0 .000 

0 .000 

28112 
12 3111 

0 717 
4 523 
0000 

0000 
3477 

24 000 

43 5 
811 

0 
l218 
8-Sp 

LALFP 

ne 

na 
1118 

57.38 
28.20 

na 
na 

7 .37 
100.10 

0000 

0000 
2.1108 

12 227 

0.885 
5040 
0000 

0000 

21180 
24.000 

37 0 

108 

0 
l2111 
11-Sp 

LALPP 

na 
na 

11.20 
57 53 

23.85 

na 
na 

8 .88 

1111.58 

0 000 

0.000 

2 804 

12 184 

01111 
4 454 

0000 

0000 

3 548 

24.000 

443 

101 

0 
l217 

2-StH 

LALPP 

na 
na 

8 .811 
58.13 

24.81 

na 
na 

782 

11855 

0.000 

0000 
3172 

12072 

0 757 
41108 
0.000 

0 000 

J081 

24.000 

388 

7112 



Rock 

Sample 

LocoiiiOO 

Type 

Ti02 

V203 

Al203 
Cr203 
FeO 

MnO 
NiO 

MgO 
Total 

Ti 
v 
AI 

Cr 

Fe3+ 
Fe2• 
Mn 
Ni 
Mg 
Total 

Mgt 
Crt 

0 
L217 

2-Sp-2 

LALPP 

na 
na 

10 S4 

57.78 
24.18 

na 
na 

8 21 
100.73 

0.000 
0000 
3.282 

12.105 

0 .1103 

4758 
0 000 
0000 

3.244 

24 000 

40 8 
78.11 

0 
L217 

3-Sp 

LALPP 

na 
na 

1U!1 
55.GG 
2355 

na 
na 

g 411 
100.112 

0000 
0.000 
3.580 

1157U 

0.840 

4 312 

0000 
0.000 

3.1188 

24.000 

48.1 

78.4 

0 
L2211 
3-Sp 

core 
LALPP 

0111 

0 20 

12 13 
53U2 
22.77 

038 

010 

10.40 
100 05 

0.031 
0042 
3723 

11.103 

1088 
38111 

0083 

0.021 

4 0311 

24.000 

SOli 

748 

0 
L2211 
3-Sp 

rim 
LALPP 

0 27 

0.20 

1185 
54.118 
21 47 

030 

008 

11.111 
Ill 53 

0 .053 
0 .043 
3 .1147 

11484 

0 .719 

4 050 

0.087 

0013 

3.1124 

24.000 

4!1 2 
75.8 

0 
L2411 
1-Sp 

LALPP 

017 

0 19 

11 .82 
55.87 
23.18 

0 23 

0.03 

g 88 
101 .411 

0033 

0 039 
3 .1131 

11421 

0844 

4 188 

0 050 
0 .008 

38011 

24.000 

47.7 
75U 

0 
L254 
4-Sp 

LALPP 

na 
na 

8.03 
57 88 
21155 

na 
na 

877 
101 22 

0 .000 
0 .000 
2 .5011 

12.1311 

1.355 

4534 
0 .000 

0 .000 

3 .488 

24.000 

43.3 
82.11 

0 
L2112 
11-Sp 

LALPP 

019 

0.24 

U.52 
51183 
23.38 

0 .31 

0 07 

8.U1 
98 44 

0038 

0.052 
3 .005 

12 031 

0 8311 

4 398 

00811 

0.015 

3555 

24.000 

44 .7 
80.0 

0 
L282 
7-Sp 

LALPP 

0.23 

0.24 

13.113 
51 .12 
23 81 

0.25 

000 

uso 
9807 

0 .045 
0 .050 
4 307 

10.1105 

0 .949 

4275 

0055 

0000 

3 .714 

24.000 

411.5 
71 .1 

CA 
L130 
1-Sp 

LALPP 

013 

0.19 

1U.44 
48 73 

111.33 

0.23 

0.02 
11 .511 

98112 

0024 
0 .038 
5 .770 

II 703 

0 .441 

3 .830 

0 048 

0 .004 

4 .341 

24.000 

S4.5 
112.7 

CA 
L130 
4-Sp 

LALPP 

0.21 

019 

111111 
48.i2 

20 "' 
0.25 

0 02 
11.83 

100.711 

O.Oli 

0.037 
5.1127 

9839 
0820 

3587 

0 .052 

0 .004 

4 .3U5 

24000 

55.1 
113.1 

CA 
L181 

Sp 

LALPP 

0.17 

0 .19 

14.72 
51 .22 
20.71 

0 09 

004 
1101 
118.15 

0 .033 

0 .038 

4528 

10.588 

0 .798 

3 .721 

0 .020 

0 .008 

4284 

24.000 

53.5 
70.0 

CA 
l203 

Sp 

LALPP 

0 .23 

0 .11 

10811 

511.11<1 

111.118 

0.20 

0 .14 
12.05 

100.54 

0.044 
0 .022 
3.3011 

11 8011 

01172 

3 3311 
0 .043 

0 .0211 

4.833 

24.000 

58.1 
77.8 

CA 
L245 
7-Sp 

LALPP 

013 

0 15 
13.72 
52.11 

18.48 

015 

0 .11 
12 15 
87.87 

0 .02S 
0 .031 
4.2011 

10.727 

0 .984 

3 .253 

0 .033 

0023 

4.717 

24.000 

58.2 
71.8 

CA 
l2111 
2-Sp 

LALPP 

012 

0.17 
25.011 
42.111 

17.43 

0 .18 

0 .12 
14 34 

100.02 

0021 
0033 
7.114 

8 113 

0888 
2.815 

0 0311 

0.023 

5 147 

24.000 

11411 
533 

CA 
L2BII 
4-Sp 
COf& 

LALPP 

018 

0 .17 

21170 
38211 

1612 

0 21 

0 .011 
14.711 

101 .111 

0028 
0032 
• 117 

7.2110 

0.488 
2824 

0.041 

0.017 

5 148 

24 000 

114.11 
47.0 

.... 



Rock 
Sample 

Location 

Type 

Ti02 
V203 

Al203 

Cr203 

FeO 
MnO 
NoO 
MgO 
Tolal 

Ti 
v 
loJ 
Cr 

Fe3+ 

Fe2+ 
Mn 

Nt 
Mg 

Tolal 

CR 
L28~ 

4-Sp 
rim 

LALPP 

0 11 
0 . 17 

20 75 

48.48 

18111 

0 22 

0 .10 
12 eo 

101 03 

0 020 
0 034 
11012 
11424 

0 .4110 

3 33tl 

0 045 

0 020 
4 II HI 

24 000 

581 

111 1 

AD 
L125 
1-Sp 

LALPP 

0 . 11 

011 

17 33 

51 .20 

20.411 

0 211 

0 .06 

10 811 
100.42 

0 .021 
0 023 
5 .177 

10 263 

0 4115 

3 .844 

0 081 

0 012 
4 103 

24 000 

518 

8115 

AD 
L125 
1-Sp 

LALPP 

0 .011 

0 .15 

17.114 

4~ .83 

111118 

0 211 

0 .07 

1154 

1111.86 

0 .017 
0 031 
5 .347 
111162 

011211 

3 51111 

0 055 

0 014 

4 3411 

24 000 

547 

85 1 

AD 
l125 
1-Sp 

LALPP 

0 . 11 

0 .22 

18 73 

5043 

1~81 

0 31 

0 .07 

11 42 

101 11 

0020 
0044 
5513 
1111511 
0 4411 

3 11110 

00115 

0 014 

4 .251 

24.000 

53 5 
1144 

AD 
L125 
1-Sp 

LALPP 

0 12 

0.111 

23 74 

4488 

17.58 

0.25 

008 

13.27 
100.08 

0 022 
0 037 
11822 
81150 
0 448 

3138 

0051 

0 012 

4 823 

24.000 

8011 

55 II 

AD 
l125 
1-Sp 

LALPP 

0 .15 

0 20 

23.54 

43118 

2002 

0.25 

011 

12 68 
100.113 

0 .027 
0 040 
11.744 
8 452 
0 710 

3 3110 

0 051 

0 .021 

45~ 

24 000 

57 8 

sse 

AD 
l125 
1-Sp 

LALPP 

0 .14 
0 .20 

24 .15 

44.88 

17.45 

0 28 

011 

1315 
10015 

0 025 
0 .038 
1111211 
8 .001 

0 382 

3 172 

0 057 

0 021 

4775 

24000 

801 
S54 

AD 
l125 
1-Sp 

LALPP 

0 10 

0 .21 

24 53 

44 77 

18111 

0 23 

0 07 
13 14 

101 115 

0 .018 
0 041 
11.1141 
8 .500 

0 483 
3 254 

0 0411 

0013 

4 704 

24 000 

5111 

550 

AD 

l125 
t-Sp 

LALPP 

0 .13 

0 .22 

21 50 

47.37 

18 70 

0 .211 

0.011 
12 17 

100.43 

0.024 
0 .044 
11.2110 
11.255 

0 3113 

3 .470 

o.oeo 
0012 

4 482 
24000 

AD 
l125 
1-Sp 

LALPP 

016 

0 .111 

20 82 

48.50 

20 21 

0 25 

0 011 

12 04 

100 05 

0.030 
0 037 
II 047 
11. 147 
0 7011 

3 4115 

0 052 

0 018 
4 485 

24 000 

581 

802 

AD 
L125 
1-Sp 

LALPP 

0.13 

0 .14 

23.11 

45 14 

18117 

0 25 
0 .11 

12.35 

111188 

0024 
0027 
11.707 
8 .7111 
0 427 
3 418 

0 051 

0 022 
4 533 

24 000 

57.0 

587 

AD 
l125 
1-Sp 

LALPP 

0 .11 

0 . 111 

21 70 

4807 

20 5~ 

0 21 
0 05 

12.38 

101 .30 

0.020 
0 .037 
11254 

8 11011 
0 7110 

3 452 

0 043 

0010 
4 518 

24 000 

587 

588 

AD 
l140 
3-Sp 
core 

LALPP 

0 20 

0 .11 

4 .111 

58.42 

271111 
0 41 

0 08 
7 17 

1111211 

0 041 
0.024 
11101 

12 783 

1510 

4 1187 

0 0117 

0011 

2 1180 
24 000 

37 3 

8811 

AD 
l140 
3-Sp 

rim 
LALPP 

0 .111 

0 .12 

4811 

58.111 

2~ 15 

0 37 
0 .07 

887 

118.34 

0.040 
0 .027 
1 .1108 

12.807 

Ul81 

5150 

0 087 

0 018 

2781 
24000 

351 

887 

AD 
l141 
1-Sp 
core 

LALPP 

0 .31 

0011 

1008 

54.84 

25.84 
0311 

0.011 
8 .42 

100.08 

0 .081 

0.0111 
3 1115 

11 547 

1 148 

41110 

00811 

00111 

3 343 
24 000 

42 0 

78 5 

N 
co 



Rock 

Sample 

location 

Type 

T102 

V203 
Al203 
Cr203 
F.O 

MnO 
NiO 

MgO 
Total 

Ti 
v 
Al 

Cr 
Fe3+ 

Fe2+ 
Un 
Ni 
Mg 
Total 

Mgf 
Crf 

AD 
l148 

1-Sp 

rim 
LALPP 

0.42 
0 .08 

12.15 
51 78 
28.e4 
0 .48 
0 07 
8 f ,1 

100.&.~ 

0083 

0018 

3.740 

10.1188 

1388 

4 485 

0107 
0015 
3487 

24.000 

43.5 

74.1 

AD 
l148 

2-Sp 

LALPP 

0 .38 

0.08 

10.85 
52.811 
27 10 
0 .27 
0 .07 

8 70 

10032 

0 .071 

0018 

3.378 

11.048 

1.418 

4 570 

o oeo 
0 015 
3 .428 

24.000 

42.8 

78.8 

AD 
L148 

3-Sp 

LALPP 

0 .37 

008 

887 
55.24 
25:M 
038 
0 .08 

808 
100.57 

0 .073 

0 .018 

3.103 

11532 
1.201 

4.403 
0084 
0.0111 
3 .588 

24.000 

44.7 

788 

AD 
l275 

&-Sp 

LALPP 

0 .23 

0 .28 

11.14 
55.83 
24. Ill 
0 .211 
0.03 
7.1111 

88 75 

0 .0411 

O.oe:l 

3508 
11.744 

o.sec 
4807 

0 .085 
0 .008 
3.188 

:>.;,()0(, 

38.7 

n.o 

AD 
L338 

7-Sp 

LALPP 

0 .18 

018 

12.25 
58.30 
22 43 
0.38 
003 

8112 
100.35 

0 .035 

0 .038 

3 .801 
11 .717 

0 .372 

45e5 
0078 
0 .008 
3 .314 

24000 

42.11 
75.5 

01 
Loetl 
2-Sp 

LALPP 

na 
na 

7.28 
54.51 
211.75 

na 
na 

7.17 

88.78 

0.000 

0 .000 

2358 
11.882 

1.780 

5.080 
0.000 
0 .000 
2 .e40 

24.000 

38.7 
83.4 

01 
Loetl 
3-Sp 

LALPP 

na 
na 

8 .34 
55.03 
28.45 

na 
na 

7.34 

88.111 

0 .000 

0 .000 

2.1178 

11.857 

1.4115 

5018 

0 .000 
0 .000 
2 .1182 

24.000 

37.3 

81 .11 

01 
Loee 
4-Sp 

LALPP 

na 
na 

11.78 
52.55 
211211 

na 
na 

7.37 

88.811 

0 .000 

0000 
3 .118 

11 .284 
1.818 

5023 

0 .000 
0 .000 
2 .1177 

24000 

37.2 

78.3 

01 
Loetl 
5-Sp 

LALPP 

011 

na 
8.88 

55.18 
27.011 

na 
na 

7,84 

88.711 

0 .000 

0 .000 

2.848 
11.880 
1.271 

48118 
0.000 
0 .000 
3 .101 

24.000 

38.8 

80.7 

01 
L073 

1-Sp 

LALPP 

na 
na 

483 
81.83 

27.12 
na 
na 

U8 
100.25 

0 .000 

0 .000 

1.503 
13.424 

1.073 

5.175 

0 .000 
0 .000 
2.825 

24.000 

35.3 
88.8 

01 
l153 

e-Sp 

LALPP 

0 .12 

0 .22 
12.01 
58.25 
22 48 
0 .211 
0 .08 

8.23 

100.87 

0 .023 

0048 

3.701 
11 .832 
0 .574 

4 .345 

0 .083 
0 .017 
3 .588 

24.000 

45.3 
75.8 

01 
L1711 

2-Sp 

LALPP 

0 .13 

0 .33 
14.05 
51 .55 
27.55 

0 .32 

0 .011 

7.01 

101 .011 

0 .025 

0088 
4.338 

1o.en 
o.aoe 
5.170 
0 .070 
0 .0111 
2.787 

24.000 

34.8 
71.1 

01 
l28a 

3-Sp 

LALPP 

0 .20 
030 

10 28 

54 07 
27.u2 

0 .32 

0 .01 

7118 

118.82 

0 .040 

0084 

3238 
11.441 

1.1118 

U82 
0.072 
0.017 
3 .088 

24.000 

38.11 

n .8 

01 
l281 

4-Sp 
core 

LALPP 

0 .18 

0 .35 
7.811 

57.21 
27.42 
0 .33 
0 .011 

1148 

88711 

0037 

0.0711 

2.412 
12.40:<: 

08117 

5.313 

00711 
0.013 
2 .836 

24.000 

33.2 
13.3 

01 
l28l 
4-Sp 

rim 
LALPP 

0 .18 

034 
7 .25 

57.24 
27.12 
0 .37 

0 .05 

5 .80 
gg 14 

0037 

0075 

23118 
12.538 
0 844 

5502 
0.0811 
0.011 
2.431 

24.000 

30.7 

14.1 

.... 



Rock 
Sample 

Location 

Type 

Ti02 

V203 

Al203 

Cr203 

FeO 
MnO 
NtO 

MgO 
Total 

Ti .. 
AI 
Cr 

Fe3+ 

Fe2+ 

Mn 

N1 

Mg 

Total 

011 
L271 

3-Sp 

LALPP 

0 .14 

0.111 

18.114 

50 78 

21.78 
030 
006 

1133 

101 17 

0 028 

0 033 
41138 

10.102 

0 878 

3 701 

0083 

0 012 

4 251 

24 000 

535 
87 2 

011 
l271 

5-Sp 

LALPP 

0 .08 

0 .18 

18.18 

50811 

22.08 
0.28 
006 

10.211 
1111.115 

0 015 

0 033 

4 888 

10318 

0 7211 

4008 
0 080 

0 012 

3 .1137 

24.000 

41i18 
87 II 

011 
L351 

4-Sp 

LALPP 

0.07 

0 .10 

15.24 

5228 

23.44 
0.31 
007 

7.55 
111104 

0 .014 
0 021 

4758 

10.1151 

0 .243 

41150 

00811 
0 015 

2 1181 
24 000 

37 e 
ee1 

011 

L351 
s-Sp 

lALPP 

0.13 

024 

13.62 

54 22 

2228 
0.27 
0 .05 

aee 

111147 

0 025 

0 052 

4 231 

11 304 

0382 

4550 

0080 
IJ 010 

3405 
24 .000 

42 8 

72 8 

011 

L351 
7-Sp 

LALPP 

0 12 

020 

15.00 

5288 

22.95 
0 .30 
0 04 
• 44 

111174 

0023 

0043 

4830 
10 1108 

0 373 

41153 

ooee 
0 008 

3 288 
24 000 

41 .5 
70.2 

c 
L004 

s-Sp 
core 

LALPP 

0.18 

0.28 

1300 

52.38 

27.28 
0.38 
0011 
7 111 

10073 

0 031 

0058 

4 042 

101120 

0 .1117 

5102 

0 084 

0 .018 

2 .8211 
24 000 

35.8 
73 0 

c 
L004 

S-Sp 

rim 
LALPP 

016 

0.28 

12.43 

53 21 

2893 
0.37 
0 .07 

8.28 
111171 

0032 

o oeo 
31137 

1130e 

0833 
5 4111 

0 083 

0 015 

2 514 
24 000 

31 7 

74 2 

c 
L004 
8-Sp 
core 

LALPP 

0.15 

0 26 

13.00 

53.00 

26.51 
0 .38 
0 .011 

7 52 
100.110 

0 .0211 

0 .054 

4 .027 

11.013 

0 847 

4 1180 
0 084 

0 0111 

2 e47 
24 000 

37.2 

732 

c 
L004 
8-Sp 

rim 
LALPP 

0 .15 

0.28 

11.73 

55.05 

25 84 
0 .40 
0 .07 
7_35 

100 86 

0 029 

0 .054 

3 .8511 

11528 

o.1n 
5021 

0 0111 

0 015 

2 903 
24.000 

388 
75.9 

c 
L028 

1-Sp 

LALPP 

na 
na 

8.ee 

56.92 

21158 
na 
na 

8 .52 

IlSee 

0 000 

0 .000 

2 !l11 

12.381 

07118 
5 324 

0000 
0000 
2 .1178 

24 000 

335 

115 

c 
l028 

1-Sp 

LALf'P 

na 
na 

8 .71 

57.72 

28.47 
na 
na 

8 .15 

111104 

0 .000 

0000 

2 180 

12.471 

1.3811 

4 880 

0.000 

0 000 
3.320 

24000 

., 5 

15 2 

c 
L053 
1-Sp 

LALPP 

0.111 

0 .23 

8 .40 

5615 

25.88 
034 
007 

7 .84 
100.14 

0 .032 

0 .048 

21171 

111102 

1015 

4807 

0 078 

0 015 

3134 
24 000 

385 
80.0 

c 
L055 
1-Sp 

LALPP 

018 

030 
10.03 

55.110 

2511 
0 .33 
0 .05 

7.20 
118.88 

0 .038 

0.084 

3114 

11.1101 

on2 
5058 
0.074 

0 011 

2 8a2 
24.000 

384 
71 II 

c 
l213 
5-Sp 

LALPP 

na 
na 

1285 

5380 

2883 

842 
10130 

0 .000 

0000 

3 942 

11202 

0 858 

5.472 

0000 

0 000 
2 521 

24 000 

318 
74 0 

c 
l213 
8-Sp 

LALPP 

na 
na 

111111 

51 .08 

2812 
na 
na 

8 .ee 

IMI.54 

0 000 

0000 
3.832 

10942 

1.228 

5301 
0000 

0 000 
2 882 

24 000 

(...) 

0 



Rock 
Sample 
Locahon 

Type 

Ti02 

V203 

AJ203 

Ct203 

FeO 
MnO 
NiO 

MgO 
Total 

Ti 
v 
AJ 
Ct 

Fe3+ 

Fe2• 
Mn 
Ni 

Mg 
Total 

Mgl 
Ctlll 

c 
L213 

7-Sp 

LALPP 

na 
na 

1305 

52.53 

28.38 

na 
na 

8.il!l 

1oo.oa 

0 .000 
0.000 
4 050 

10.838 

1.011 

4.7115 

0000 

0 .000 

3205 

24000 

40.1 

73.0 

c 
l231 

1-Sp 

LALPP 

na 
na 

8 82 

58.25 

28.87 

na 
na 

8.74 

88.28 

0 .000 
0 .000 
2 .171 

12822 

1.000 

5.204 
0 .000 

0 .000 

2.7118 

24.000 

35.0 
85.5 

c 
l231 
8-Sp 

LALPP 

na 
na 

8.48 

57.43 

27.73 

na 
na 

8.44 

88.07 

0 .000 
0 .000 
2.130 

12.81111 

1.171 

5 .314 
0 .000 

0 .000 

2.888 

24.000 

338 
85.8 

we 
L088 

Sp 

LALPP 

0.14 

025 

1045 

55.84 
24.84 

0 .35 

0.08 

8.17 

~~e .ao 

0.028 
0 .0!>4 

3.288 
11 788 

0818 
4885 

0.078 

0013 

3252 

24.000 

41 .0 

78 2 

WB 
L283 
2-Sp 
core 

LALPP 

0.12 

0.30 

11 .84 

52.58 

27.82 

0.45 

0 .08 

8~~e 

lle.118 

0024 
0 .083 

3 .887 

11 .118 

1.108 
5 .114 

0 .103 

oo1a 

2 788 

24.000 

35.3 
75.2 

we 
L2&3 
2-Sp 

nm 
LALPP 

0.14 

0 28 

10.31 

5421 

28.07 

0.31 

0.14 

7.18 

100.88 

0 .028 
0 .055 
3 .243 

11 .443 

1.204 
5083 

0 085 
I)J30 

2850 

24.000 

380 
n.a 

WB 
l283 
3-Sp 
core 

LALPP 

0.17 
0 28 

888 

5508 

28.52 

0.31 

0.08 
8.00 

100.18 

0 .034 
0 .0511 
3053 

11838 

1.185 

4 744 

0 .085 

O.Ota 
31U 

24000 

10.2 

78.2 

WB 
L283 
3- Sp 

nm 
L:\LPP 

011 
023 

8.77 

58.88 

24.87 

031 
0 04 
7.18 

118.25 

0 .022 
0 .050 
2.188 

12.878 

0.731 
4 .1188 

0 .0~ 

0 .008 

2838 
24.000 

37.0 

85.5 

WB 
l283 
S-Sp 
core 

LALPP 

0.11 

0 .30 

10.44 

54.78 

2841 

031 

0011 
781 

100.12 

0022 
0083 

32~ 

11581 

1.022 
4.882 
0.087 

0018 

3033 

24.000 

31.3 

77.8 

WB 
l283 
S-Sp 

nm 
LALPP 

0 .14 
0 .28 

10.11 

55.35 
2883 

0 .43 

0 .11 
7.48 

100.74 

0 .028 
0 .061 
3.174 

11.883 

1048 
4 .834 

0 .0118 

0.023 

2 873 

24000 

37.8 

78.8 

WB 
l283 
6-Sp 

LALPP 

0.13 
022 

8 .84 

57.10 

2825 

045 

0.08 
4.78 

a1111 

0.027 
0 .048 
2.284 

12877 

01158 
5813 

0.108 

0.013 

11183 
24.000 

252 

84.8 

WB 
l288 
2-Sp 

LALPP 

0 .18 
0 .31 

10 21 

50.78 

31 .50 

o .4a 

0 .44 
4.72 

i8.58 

0033 
o.oea 
3.330 

11 .111 
1.425 

5.8118 
0.118 

0.0118 
1.a48 

24.000 

24 8 

78a 

WB 
l288 
3-Sp 

LALPP 

0.20 
0 .211 

87a 

51 .37 

3285 

0.44 

007 
4.41 

118.22 

0 .041 
0 .083 

3.188 

11 224 
1.441 
8.103 

0 .104 

0.015 

1.818 

24.000 

23.0 

77.8 

WB 
l288 
4-Sp 

LALPP 

0.18 

0 28 

11 57 

5104 

30.71 

0 .42 

0 .08 

5 .22 

118.44 

0 .032 
0 .058 
3.711 

10.881 
1.187 

5802 
00118 

0.013 

2 118 

24.000 

28.8 

74 7 

WB 
l288 
5-Sp 

LALPP 

011 

0.23 
11 .14 

51 118 

2857 

038 

0 .11 
8 .70 

100.21 

0.022 
0.0411 
3518 

11 .003 

1317 
5 234 
0 OliO 

0023 

2875 

24000 

33.8 

758 



Rock 
Sample 

Locauon 

Type 

Ti02 

'li203 

Al203 

Cr203 

FeO 

MnO 
NoO 

MgO 
Total 

To 

v 
AI 
Cr 

Fe3+ 
Fe2+ 
Mn 
No 
Mg 
Total 

Mgl 
Col 

0 
l108 

2-Sp 

0 
l108 

3-Sp 

D 
L108 

3-Sp 
COI'e rim 

D 
l108 

4-Sp 

HALPPG HALPPG HALPPG HALPPG 

0 .47 

0 .17 

3812 

24.74 

22 82 

0.20 

0 .26 

14 38 

811 111 

0 082 

0 032 

11870 
4 535 
I 31111 

3 025 

0 0311 

0 048 

4 11611 

24 000 

62 2 

31 5 

0 35 

0.18 

31175 

22.118 

18 89 

0 21 

0 20 

15 811 

118.55 

0060 

0 033 

10.667 
4 137 
I 043 

2 554 
0 041 

0 037 

5 429 

24 000 

680 

2711 

032 

0 16 

40.21 

22.711 

18.114 

0 .21 

0.111 

1630 

811.12 

0 054 

0 029 

10 706 
4 070 

1 088 

2 4112 

0 040 

0 035 

5 488 

24 000 

688 

27 5 

0.48 

0.16 

37 63 

23.811 

20.211 

0 22 

020 

15.47 

118.28 

0 080 

0030 
10 228 

4 356 

1 227 
2 881 

0 043 

0 037 

5 3111 

24 000 

665 

2119 

D 

l108 

S-Sp 

D 
L2118 

1-Sp 

0 
L2118 

1-Sp 
cote rim 

D 
L2118 

2-Sp 

D 
L2ll8 

4-Sp 

HALPPG HALPPG HALPPG HALPPG HALPPG 

0 45 

0 18 

39.37 

23115 

18.37 

0.18 

0.21 

16.13 

118 84 

0 .077 

0 033 
10 550 

4 JOe 

01158 

2 535 
0 035 

0 038 

5 4811 

24 000 

683 

29 0 

0.48 

0 15 

35.88 

28.17 

17.40 

0 111 

0.23 

18 45 

98.95 

0 083 

0 028 
11718 
5.117 
01174 

2 3811 

0 037 

0 043 

5834 

~4 000 

70 4 

345 

0 .311 

0.18 

36.118 

21187 

18 88 

013 

023 

16.33 

81177 

0 .087 

0 .033 
111113 
4.7116 
1125 

2 482 

0 025 

0 042 

5 537 

24 000 

1182 
328 

0.46 

0. 111 

30 88 

2387 

31 se 
0 24 

0.29 

12.19 

811.47 

0083 

0 .038 
8 882 
4 465 

2 852 

3845 

0 048 

0 0541 
4 .334 

24.000 

543 

340 

0 .411 

0 .20 

38.72 

27.35 

111.45 

0 .22 

0 .21 

15 57 
10021 

0 084 

0 037 

11888 
41131 
011117 

2 712 

0 042 

0 0311 

5 2111 

24 000 

661 

333 

D 
L21111 

3-Sp 

D 
L2811 

3-Sp 

D 
L21111 

S-~ 

D 
L28ll 
5-Sp 

D 
L21111 

&-Sp 
COI'e rim cOI'e rim 

HALPPG HALPPG ~ALPPG HALPPG HALPPG 

0 .311 

0 .18 

311.67 

2320 

111.58 

0 .15 

021 

15.82 

1111.20 

0 087 

0 033 
10 1108 
4 .181 
1.087 

2 850 
0 0211 

0 038 

5 350 

24 000 

668 

28 2 

0 37 

0.111 

311.58 

22.112 

2007 

0 .16 

020 

15.61 

1111.11 

0.083 

0035 
101108 
4 120 

1.111 

2 705 

0 .031 

0 037 

5 2111 

24 000 

862 
28 0 

0 .38 

0 .19 

40.53 
22.44 

18 75 

018 

021 

15.115 

111161 

0081 

0.034 
10 7110 

3 .-
1 ~87 

2 633 
0 034 
0 038 
5 355 

24 000 

67 0 

27 I 

0 .40 

018 

38. 10 
24.22 

18113 

0 13 

0 20 

111.13 
1111.27 

0 068 

00211 
10 452 

4 343 
10311 

2 551 

0 025 
0 038 

5 455 

24 000 

681 

2114 

0.43 
0 .17 

40.10 

22.118 

1855 

0 17 

0 .111 

15.87 

111151 

0 073 

0 031 
10871 
4088 
1055 

2 637 

0033 

0.028 

5 375 

2( 000 

117 1 
27 7 



Rock 
S.mple 
Localoon 

0 
Lm 
E-Sp 

0 

Lm 
F-Sp 

0 
L21Ml 

G-Sp 

0 
L2~ 

G-Sp 

0 
L302 

5-Sp 

0 
L302 

5-Sp 

0 
L350 

3-Sp 

0 
L350 

3-Sp 

0 
L350 

4-Sp 

0 
L350 
4-Sp 

w 
L1oe 
1-Sp 

w 
uoe 
2-Sp 

w 
L108 
3-Sp 

w 
l108 
3- Sp 

w 
uoe 
5-Sp 

COte r1m core rim core um COfe um core rtm 
Type HALPPG HALPPG HALPPG HALPPG HALPPG HALPPG HALPPG HALPPG HALPPG HALPPG HALPPG HALPPG HALPPG HALPPG HALPPG 

To02 

V203 
Al203 

Cr203 

FeO 
llAnO 
NtO 

MgO 

TO(al 

Ti 
v 
AI 

Cr 

Fe3+ 
Fe2+ 
Mn 

Ni 

Mg 
TO(al 

Mgt¥ 

Crl 

0 42 

0 .19 
40.89 

23 08 

1882 
018 
0 .18 

111.28 

1Ml.ll4 

0.071 

0 .034 
10.7711 

4 100 

0 .847 

2.552 
0034 

0 .033 

5.452 
24.000 

88.1 

27.8 

0 .41 

0 20 
3C.85 

2295 

1934 
0 .13 

0 20 
1573 

11882 

0 .070 
0 .038 

10.887 

4 .129 

1.007 
2 .1173 
0 .025 

0 .037 

5.338 
24.000 

BB.8 

27.9 

0.35 

0 .111 
4008 

22 28 
19.80 
012 
0 20 

15.14 

118.83 

o.oeo 
00211 

10.728 

4000 

1.123 

2838 
0023 

0037 

5382 
24000 

87.0 

27 2 

0.55 

0.21 
38811 

22 5e 
21 50 

0 .18 
0 .21 

15.50 

1Ml40 

0 .094 

0 .038 
10 380 

4 oeo 
1333 
2780 
0 .035 

0038 

52111 
24.000 

85.11 

28.1 

0.37 

0.21 
39211 

24.80 

20.20 
0 23 
0 28 

15.80 

101.13 

0 .082 
0 .038 

10.381 

4 .390 

1 oae 
2 Bll8 
0 044 

0048 

5.278 
24.000 

BB.2 

211.8 

0 .38 

0.21 
38.27 

24.20 

22.80 
0.23 
0.27 

14 77 

101 21 

0081 
0.039 

10.1811 

4 322 

1.329 

2 .11i15 
0 .045 

0048 

4.1173 
24.000 

112.4 

211.8 

0 48 

0 .18 

38.1111 

2902 
17.110 
022 
0.24 

Ul14 

101 .18 

0 .078 

0033 
11829 

5.173 

0 .809 

25BB 
0043 

0044 

5424 
24000 

117.11 

34.5 

054 
0 .18 

3384 

2954 

21.113 
0 .24 

0 18 

14 84 

101.31 

0093 
0.034 
11.150 

5359 

1.271 
2.1138 
0048 

0034 

5 .078 
24000 

0 44 
021 

38.24 

28.28 
111.117 

0 .18 

0.23 

15.82 

100.87 

0 .075 
0 .039 

11.704 

5 .080 

1.027 
2.1oe 

0031 

0.043 

5.2111 
24.000 

811.1 

34.4 

0511 
019 

3282 

27.01 
2523 

0 .18 

032 

1382 

100.17 

0 .104 

0038 
11.035 

4.988 

1.733 

3 IIIII 

0038 

0.0511 

4.813 
24 000 

00.1 

35.8 

0.27 
0 24 

43.28 

22.45 
17.17 
0 .18 
0 .18 

15.74 

91147 

0 .045 

0 .043 
11 .410 

3 .973 

0 .483 

2 .731 

0.034 

0029 

5 .252 
24.000 

85.1 

25.1 

0 .41 
021 

43.55 

21 88 
18.77 
0111 
0 .20 

UIOO 
911.19 

0 .01111 
0.038 

11 481 

3.8118 
o.4n 
2.880 

0038 

0.038 
5.337 

24.000 

BB.7 

252 

0 .112 
0. 111 

38.71 

25.21 
1111 1 
0 .21 

023 

14.711 

911.07 

0 .107 

0 .035 
10.471 

4 575 

0.705 

21183 

0.041 

0 .042 

5.081 
24.000 

113.1 
30.4 

0.40 
0 .111 

42.48 

22 92 
17.15 
0 .11 

018 

15 78 

~.24 

0088 

0 .0211 

11 .254 

4.073 

0509 
2.715 

0.034 

0 0211 
5219 

24.000 

811.1 
211.11 

035 
0 .23 

42.75 

22.84 
18.74 
0 .17 
0 .17 

1551 

118 78 

0 0511 

0.042 

11378 

4.on 
0.388 
2.775 

0.033 

0.031 
5221 

24.000 

85.3 

28.4 

.... 
w 
w 



Rock 

Sample 

Locatoon 

Type 

Ti02 

V203 

Al203 

Cr203 
FeO 
MnO 

NoO 
M110 
To«at 

To 

v 
AI 

Cr 
Fe3+ 

Fe2• 
Mn 

Ni 
Mg 
TOIMI 

w 
LlOII 

5-Sp 

w 
L114 

1-Sp 

w 
L114 

1-Sp 

w 
L114 

2-Sp 

w 
L114 

3-Sp 

w 
L30 t 

5-Sp 

w 
L301 

5-Sp 
core rim core rim 

~ALPPG HALPPG HALPPG HALPPG HALPPG HALPPG HALPPG 

0 .23 

0 .14 

45.28 

20.84 

15.118 

0 .18 

0 20 
18.81 

1111.42 

0 038 

0 .025 

11 7115 

3844 

0 480 

2 4118 

0030 

0 038 

5 477 

24 000 

887 
23 6 

0 .51 

0 21 

42 27 

20.77 

111110 

0 .21 

0 21 
14 75 

118 83 

0 .087 

0.038 

11 305 

3 728 

0 757 

3 0111 

0 040 

0 038 
411811 

24 000 

0.45 

022 

3852 

23.38 

21 711 

022 

0.15 

13.41 
118 .12 

0 0711 

0 .041 

10 5811 

4 308 

01104 

3 346 

0 043 

0 028 

4 882 
24 000 

582 
28 il 

0.43 

020 

4200 

21.22 

111.20 

0.18 

0.111 

14111 
118.34 

0 074 

0 037 

11 277 

3822 

0.717 

21140 

0035 

0 035 

5084 
24 000 

833 
25 3 

0 .82 

0.21 

41 .17 

21.51 

20.08 

0 .18 

0.25 

14112 
118.1M 

0108 

0 .038 

11 032 

3 887 

0851 

21187 

0 035 

0 048 

5 058 
24 000 

0 32 
021 

45.40 

21.23 

17 83 

0.24 

0 23 

1511: 
101 311 

0 052 

0038 

11 702 

3871 

0 488 

2 775 

0 045 

0 041 

51111 

24 000 

852 
2311 

0.21 

0.18 

47. 18 

111.511 

17511 

014 

018 

16.07 
101011 

0 035 

0 028 

12 0118 

3371 

0 434 

2 767 

0 028 

o on 
5213 

24 .000 

853 
21 8 

w 
L301 

7-Sp 

w 
L301 

7-Sp 

w 
L316 

1-Sp 

w 
L316 

1-Sp 

w 
L316 
2-Sp 

w 
L3UI 

2-Sp 
core rim core rim core rim 

c 
L241 

1-Sp 

HALPPG HALPPG HALPPG HALPPG HALPPG HALPPG HALPPG 

045 

0.111 

40.1111 
2484 

111411 

020 

0 .18 

14 811 
10121 

0 .078 

0 .035 

10.811 

4386 
0807 

3040 

0.0311 

0 020 

4 1187 

24000 

820 
2811 

0.25 

0.16 

44.81 

21 .47 

1854 

0.21 

0 24 

15.78 

101.26 

0 042 

0 .0211 

11 .548 

3 .730 

0 .8011 

2 7117 

0040 

0 043 

5162 
24000 

8411 
24 4 

0 .311 

0 .18 

42.40 

24.17 
1662 

0 .21 

0 .111 

15.05 
1111.22 

o oee 
0 033 

11 21M 

4 3 111 

0 .222 

21120 

0 .040 

0 035 

5 072 
24 000 

635 
27 7 

0 .211 

0 .17 

4277 

<24.02 
16.711 

0 .12 

0 .17 

1524 
118.57 

0 .0411 

0 .031 

11 .333 

4270 

0 2611 
2188 

0 023 

0 031 
5 108 

24 000 

6311 
27 4 

0 .55 

0 22 

4042 

25.78 

17.411 

0 .18 

0 .20 

15.15 
118117 

O.OIM 

0 .040 

10.774 

4 .810 

0.3110 
21111 

0 031 

0 038 

5 108 

24 000 

636 
300 

0 .43 

0 .21 

41 73 

21 .38 
18.15 

0 22 

0 .24 

16.21 
118.57 

0.073 

0038 

11.103 

3 817 

0 8118 

2 !>31 

0 042 

0 044 
5 458 

24 000 

683 
256 

0 .43 

0 .28 

211.00 

34.37 
24.112 

0 .23 

0 .10 
1141 

118.71 

0081 

0 .052 

• 454 

8 723 

0 .610 

4 544 

0 048 

0 020 

3 488 

24 000 

433 
443 



Rock 
Sample 
location 

Type 

Tt02 

V203 
Al203 

Cr203 

FeO 
MnO 
NiO 

MgO 
Total 

Tt 

v 
Al 
Cr 
Fel+ 
Fe2+ 
Mn 
Ni 
Mg 
Total 

Mgt 
Crf 

H 
l115 
t-Sp 

LALPP 

0 .08 
0.25 

13.81 

54.11 

21 .84 

0.31 

0 07 
113-4 

1111.58 

0.012 

0.052 

4.284 
11 .204 
045e 

4 283 
0.0811 

0015 

3845 

24000 

48.0 

72.4 

H 

l115 
2-Sp 

LALPP 

0.18 
0.31 

13.54 

5405 

21.80 

0.33 
0 .07 
1172 

ell Ill 

0.031 

0.065 
4.158 

11133 
0 581 
4 1811 

0073 
0.015 

3.775 

24.000 

47.5 

72.8 

H 
L115 
3-Sp 

LALPP 

0 27 
0.35 

12 78 

54.21 

22.311 

0 .33 
0 05 

1183 

100.21 

0.053 

0.073 

3.1128 
11.188 
0.727 
4.152 
0 073 

0010 

3.818 

24.000 

47.11 

740 

H 
l115 
4-Sp 

LALPP 

0 48 
035 

11 .85 

54.47 

22.&8 
0 .32 
o.08 

1102 

ell33 

0 .098 

0074 

3845 
11 .430 

0.11511 

4 .442 
0 .072 

0.013 

3.5811 
24000 

44 8 

75.8 

H 
L115 
ti-Sp 

LALPP 

048 
0.37 

11 .87 

54.ea 

2UI7 
0 .28 
0.07 

1138 

111.81 

0 .0116 

0.0711 

3.745 
11 .477 
0508 
4 303 
0085 

0015 

3 713 

24.000 

48.3 

75.4 

H 
L115 
8-Sp 

c 
l115 
11-Sp 

LALPP HALPPG 

0.18 
030 

12 42 

5467 

21 82 

0 31 
007 

817 

118.115 

0036 

0 .084 
3.883 

11 .485 
0518 
4 324 

0070 

0015 

3828 

24000 

45.8 

74.7 

0.118 
0.43 

12.57 

53.40 

21 .92 
033 
013 
11.52 

118.118 

0.131 

0.081 
3.818 

11181 
05e8 
4.277 
0.0?4 

0.028 

3753 

24.000 

48.7 

74.0 

H 

L177 
1-Sp 

LALPP 

0.88 
0.24 

28.011 

38 17 

22118 

038 
0.12 

11 .17 

9111111 

0 .158 

0.048 
7.528 
7.388 
0 .718 
3.1182 
0 .078 

0023 

4075 

24.000 

50.8 

411.5 

H 
L177 
ti-Sp 

LALPP 

062 
0.24 

18.81 

47.78 

2412 
023 
o.r:~ 

li211 

111.110 

0 .122 

0.048 
5084 
8828 
0 .784 
4 .483 

0 .050 

0004 

3.804 

24.000 

44.7 

8511 

H 

l177 
11-Sp 

0 
l221 
2-Sp 

0 
l221 

11-Sp 

LALPP HALPPG HALPPG 

0 28 
0 28 

22.40 

43 75 

23.21 
0.3-4 
0.04 
1120 

ell411 

0053 

0056 
8.(1711 

1 .751 
0 .401 
4502 
0.072 

0 .008 

3.470 

24.000 

43.5 

56.7 

0.55 
0.15 

3882 
23.118 

2421 
022 
0.15 

1432 

10238 

0 .083 

0 .028 
10.250 
4243 
1.284 

3.242 
0 .041 

0 .027 

4.783 

24.000 

58.8 

283 

0 .55 
0 .18 

37.48 

24.411 

2530 
0.23 
0.17 

1383 

102.21 

0.084 

0032 
8.878 
4377 
1424 
3358 
0 .043 

0031 

4662 
24000 

58.1 

30.5 

H 
l221 

7-Sp 

LALPP 

0 .11 

0 .14 
13110 

52.30 

23.41 

0.28 
0.08 

8 .33 

11822 

0.022 

0.030 
4.283 

11.045 
0 .588 
4 .830 

0058 

0.017 

3.317 

24.000 

41.7 

72.1 

H 
l221 

12-Sp 

AP 
l274 

5-Sp 

LALPP HALPPG 

0.14 
0.18 

15.22 

50.23 

23.58 

0 .30 
0 04 

8118 

118.63 

0027 

0.03-4 
4.720 

10.445 
0.747 
4.441 
0088 

0.001 

3.512 

24.000 

44.2 

68.11 

1.38 
0 .30 

20.20 

37.70 

35.78 

0 .32 
012 

5.51 

101 .30 

0.288 

0082 
8 .118 
7.881 
1.821 
8088 

00811 

0.024 

2.1011 

24000 

25.8 

55.8 

.... 
w 
c.n 



Rock 
Sample 

location 

Type 

Ti02 
11203 

Al203 

Cr203 
F.O 
MnO 

NoO 

MgO 

Tocal 

Ti 

v 
AI 
Cr 

Fe3+ 
Fe2+ 

Mn 

No 
Mg 

Toea! 

AP 

l274 

&-Sp 

AP 

l274 

7-Sp 

HALPPG HALPPG 

0 73 
0 .18 
1173 

51 35 

32 48 
038 
0 .07 

4 27 

111117 

0 152 

0 042 
3 175 

11 .245 

1 234 
e 2aa 
0 083 
0015 

1 7&5 

24 000 

21 II 

78 0 

1 32 

0 25 

20 12 

38114 
31 116 

0 .30 

011 

8 .17 

1111.18 

0 280 

0 053 
8188 

8 035 

1 205 
5 770 

0 0115 

0 023 
2 401 

24.000 

2114 

585 

01 

l274 

8-Sp 

LALPP 

0 .33 

0 22 

18.97 

44.81 
2811e 

0 42 

002 

7 .30 

li8 .53 

0084 

0 048 
5857 
11240 

0 728 
5 114 
0 0114 

0 004 

2 852 
24 .000 

35 8 

81 2 

H-X 
ll27 

4-Sp 

LALPP 

0 .42 
0 .24 

13 24 

51 58 
28 HI 
0 21i 

0 .07 

888 

10087 

0 083 

0 .049 
40118 

10 634 

1081 
4 1132 

0 083 

0 014 

3 374 
24 000 

42 1 

723 

H-X 
l327 

s-Sp 

LALPP 

0 .111 
0 .28 

17.37 

45.50 

27116 
0 31 

0 011 

8 01 

100.42 

0176 

0 .059 
5 283 

li 283 
1 023 
5010 
00117 

0 018 

3081 

24 000 

381 

837 

H-X 
l328 

3-Sp 

c 
l328 

11-Sp 

c 
l330 

1-Sp 

LALPP HALPPG HALPPG 

1.31 
0 .32 

23 28 

38 21 
27 28 

0 .38 

0 .10 

9113 
98711 

0 2411 

0 064 
6 904 

7 .2011 

1.328 
4 420 
0 080 

0 020 
3 729 

24 000 

45 8 

51 1 

0 .63 

0 28 

38.72 

275a 
24 611 

0 23 

016 

1183 

101111 

0110 

0 051 
1111711 

s 028 
0 722 
4 038 
0 044 

0 021i 

311117 
24 000 

4117 

335 

1.12 
0 41 

28 30 

32.18 
28.115 

0 24 

0 .11 

11116 

111128 

0 .206 

0.080 
8 200 

8 254 

1 054 
4 488 

0 048 

0 021 

3 8411 
24 000 

4411 

43 3 

CA-X 
l328 

3-Sp 

LALPP 

0 70 

0 .18 

18 43 
47 38 
21 114 

0 23 

0 18 

11 411 

100.54 

0 .132 

0 .038 
5.450 

II 3118 
0 851 
3 753 

0 048 

0 036 
4 2115 

24 000 

534 

833 

CA-X 
l328 

3-Sp 

LALPP 

0.72 

0 21 

21 .90 
44.18 

20 86 

0 08 

0 11 

12 114 
100 77 

0133 

0 .041 
8311 

8.537 

0 848 
3 3711 

0 .018 
0 021 
4 718 

24 000 

583 

57 5 

CA-X 
l328 

4-Sp 

LALPP 

0 .81 
0 .21 

23.80 

42 .84 
111.81 

0.18 

0 .05 

12.411 

111158 

0 .113 

0042 
8844 

• 2118 
0 582 
34&5 

0 037 
0 010 
4 581 

24 000 

588 

541 

01 

l333 

10-Sp 

LALPP 

0 .511 

0 .111 

8 IIi 

5800 
30 03 

0 43 

0 07 

414 
10035 

0 .122 

0 .041 
2 .1155 

12.175 

0 883 

8023 
0101 

0 015 
1 1183 

24000 

24. 
12 1 

AD 
L333 

11-Sp 

LALPP 

0 .87 

0 .29 

24.13 

38116 
2e 70 

027 

0 .07 

11.58 
IOO.IIe 

0 125 

oosa 
7.048 

7.833 
1010 
4 524 
0 .058 

0014 

3 532 
24 000 

43 8 

52 0 

AD 
l333 

12-Sp 

LALPP 

0 .29 
0 .13 

38 43 

24 .81 
22 .114 

0 211 

0 .03 

14.21 
100112 

00411 

0 .024 
10.284 

4.418 

1 177 
3 110 

0 055 

0 005 
41011 

24 000 

802 

300 

AD 
l333 

13-Sp 

LALPP 

0 .40 

0 .2e 

3li 03 
27.04 
2085 

029 

0 07 

12.53 
100.27 

0 .070 

004& 
10.803 

4 .1127 

0 .282 
3 11118 
0 058 
0013 

4 303 
24 000 

531 
31 7 



Rock AD AD 01 01 01 c c Sample L333 L333 L~8 L348 L~ L238 L238 
Locatoon 14-Sp 14-Sp 4-Sp S-Sp 8-Sp S-Sp 7-Sp 

Type LALPP LALPP LALPP LALPP LALPP 

Ti02 0 40 0.45 025 0.13 025 045 0.78 
V203 0 .21 0 28 0.11 0 15 0.18 0 23 0.24 
Al203 3912 3834 29.11 41 .08 29 tl3 18.14 19.04 
Cr203 28.15 28 90 32.80 25.91 37.19 47~ 44.81 
FeO 19 72 2190 28.78 1980 20.50 21185 28.80 
MnO 0.17 0.25 0.25 0.19 o.18 0.27 0.~ 
NiO 0 10 0.03 0.12 0.03 0.13 0 .11 0.12 
MgO 13 17 12.10 9.38 14.14 12.00 884 9.45 
T01a1 118.05 100.23 100.77 101 .53 100.03 100.23 101 34 

Ti 0071 0.080 0045 0.022 0 .045 0089 0 .144 v 0039 0 .049 0 .022 0028 0.034 0047 0048 
AI 10.882 9998 8331 10.857 8388 5.seo 5848 
Cr 4.789 5~ 8 .298 4594 7.081 8 .733 8 .878 
Fe3+ 0.~9 04110 1.259 0478 0.427 0483 1.138 
Fe2+ 3 472 3 .814 4 584 3253 3.881 5358 4 !;()4 
Mn 0033 0 .049 0 051 0038 0 032 0059 0 072 
Ni 0 .018 o .ooe 0 .023 0 .005 0025 0023 0 .024 
Mg 4 547 4.211 3.387 4 728 4298 2.851 3.545 
TOial 24.000 24.000 24.000 24.000 24.000 24.000 24000 

Mgl 5e7 52.5 42.5 592 538 33.1 44.0 
Crf 31 .0 

~-· 43.1 28.7 45.7 838 81 .1 



Rock 
Sample 
Type 

Sr02 

Tr02 

Al203 

Fe203 

FeO 
MnO 

MgO 

CaO 
Na20 

K20 
P205 
LOI 
TOial 

FeO(I) 

Mg• 
C11r 

Ca0/AI203 

Sc 

v 
Cr 
Nr 

Cu 

Zn 
Ab 
Sl 
y 

Zr 

TABLE A4.1. Major and trace element analyeeacoxidea in wt.%. trace element• in ppm) 

H 
L087 

LALPP 

37.30 

na 

0.24 

3.44 

404 

0 .11 

41.75 

0 .28 
0 .02 

0 .00 

0.00 
12 116 

100.14 

7.14 

81.2 

1 17 

na 

na 

na 
na 
na 
na 
na 
na 
na 
na 

H 
L103 

LALPP 

35.20 

bdl 

0.23 

302 

4.35 

0.11 

42.25 

0 .40 

0 .02 

0.00 

0 .00 
14 51 

100.09 

7 07 
81 4 

1 74 

na 
na 
na 
na 
na 
na 

bdl 
8 

bdl 

l:>.:ll 

H 

LI06 
LALPP 

40.00 

bdl 

0.38 

2.41 

4 .43 
0.12 

40 55 

0 80 
0.02 

000 

0.00 
1100 
88.89 

8 .80 

81 .8 

44 2 

2 22 

8 
28 

2810 

11108 

bdl 

24 
bdl 

2 

bdl 

b<ll 

H 
l218 

LALPP 

38.8C 
bdl 

0.18 

3.37 

4.01 

0.11 

4021 

034 

0 .02 

0.00 

0.00 
12.88 
8883 

7.04 

81 1 

51 0 

I 79 

4 

12 

2013 

1892 

bdl 

28 
bdl 

bdl 

bdl 

b<JI 

H 
L225 

LALPP 

38.30 
bdl 

0.18 

4.13 

3.02 

0 .10 

40 23 

0.28 
002 

0.00 

001 
13 93 

100.18 

6 74 

Ill 4 

I 44 

na 

na 
na 
na 
na 

na 
bdl 

4 

bdl 

''"' 

0 
L218 

LALPP 

38 80 

bdl 

0 .39 

2 .78 

4.83 

0.12 

3949 

0.811 
002 

000 
0 .00 

10 70 

87 82 

7 .14 

eo.8 
nJ 
2 28 

bdl 

83 

13539 
2289 

bdl 

37 
bdl 

I 

bdl 

b.:ll 

0 
L217 

LALPP 

35.80 

bdl 

0.12 

287 

4.85 

0.10 

42.58 

0.14 

001 

000 
0 .00 

12.84 

88.18 

7 32 

81 2 

810 

1.17 

bdl 
bdl 

1814 

2211 

bdl 

28 
bdl 

bdl 

bdl 

bdl 

0 
L248 

LALPP 

na 
na 

0.28 

na 
na 
na 
na 
na 
na 
na 
na 
na 

na 

na 
na 
na 
na 
na 
na 
na 
na 
na 
na 

0 
L254 

LALPP 

33.40 

bdl 

0 .21 

4 42 

3 .28 

0 .11 

40 28 

0 24 
0 01 

000 

0 .00 
18.32 
88.27 

7.28 

eo.8 
72 .1 

I 14 

bdl 

15 

5538 
2188 

bdl 

25 
bdl 

15 

bdl 

bdl 

0 
L282 

LALPP 

39.80 

na 
0 .11 

418 

391 

0 .11 

41.30 
0 .14 
001 

000 

000 
10 39 

8875 

7 .87 

1108 

1 27 

na 
na 
na 
na 
na 
na 

bdl 
bdl 

bdl 

bdl 

AD 
l132 

LALPP 

35.80 

na 
0 .23 

408 

330 
0 .10 

40.77 

084 
0 .04 

0 .00 

0 .01 
15.14 

100.12 

888 

tU.2 

2 78 

na 
na 

na 
na 
na 
na 

bdl 
11 

bdl 

bdl 

AD 
L140 

LALPP 

37.00 

na 
0 .06 

3 .81 

3.1M 

0 .11 

42.118 

044 
0 01 

0 .00 

0 .00 
11110 
QQ 78 

7.18 
81 .4 

733 

na 

na 
na 
na 

na 
na 

bdl 

2 

bdl 

bdl 

AD 

L172 

LALPP 

38 40 

na 
na 

388 
3 .23 

0 .10 

38.48 

0 .41 
0 .05 

0 01 

000 
14.17 
811.84 

8 82 
81 .2 

na 
na 
na 
na 
na 

na 
bdl 

3 

bdl 

bdl 

AD 

L200 

LALPP 

35.10 

na 
021 

358 
3 .55 

0 .10 

41 .54 

0 .38 
0 .03 

0 .01 

0 .00 
15.00 
811.41 

en 
818 

1.71 

na 
na 
na 
na 
na 
na 

bdl 

2 

bdl 

bdl 

AD 

l.2e5 

LALPP 

na 
bdl 

na 
na 
na 
na 
na 
na 
na 
na 
na 
na 

na 

18 

57 

8858 
1011 

bdl 

3e 
bdl 

7 

bdl 

bdl 

..... 
<--' 
CD 



Rock 
Sample 
Type 

Si02 
Ti02 

Al203 
Fe203 
FeO 

MnO 
MgO 
CaO 

Na20 
K20 
P205 
LOI 
Total 

FeO(t) 

Mgl!l 

Crl 
Ca0/AI203 

Sc 
v 
Cr 
Ni 
Cu 
Zn 
Rb 
Si 
y 

Zr 

AD 
l268 

LALPP 

38.20 

bdl 

1.24 

4 .52 
2 .70 

0.11 

38.45 

1.111 

0 .11 
000 

0 .05 

13.02 

81~ 

8.77 
80.8 

30.8 
O.IM 

23 
40 

5&35 
1M3 
bdl 

28 

1101 
13 

bdl 

AD 
L275 

LALPP 

38.80 

bdl 

1.88 
3.44 

4.21 

0 .13 

38 10 

1.10 

0 .14 

0.01 

0 .00 

12.23 

87.84 

7.31 
80.3 

20.9 
0 .59 

18 

32 

5057 

$48 

bdl 

29 
bdl 
12 

I 

2 

01 
Loee 

LALPP 

54.10 

na 
o.eo 
0 .82 
4.73 

0 .13 

33.85 
2.10 

0 .08 

0 .01 

0.03 
1.84 

118.1111 

5.211 
92.0 

4.87 

na 
na 
na 
n& 
na 
na 

4 

bdl 

bdl 

01 
L087 

LALPP 

53 . . 0 

na 
na 

1.18 

5.24 

0.15 

33.85 
1.80 

0 .12 

003 
0 .01 

3.78 
1111.34 

11.30 

80.11 

na 
ne 
na 
na 
na 
na 
na 
na 
na 
na 

01 
Loea 

LALPP 

53.70 

bdl 

1.00 
1.37 

4.81 

0.14 

33.&5 

1.70 

012 

0.02 

0.01 

3.77 
100.28 

8.04 
80.8 

31.2 
1.70 

20 

89 
4831 

721 
bdl 

20 

4 

bdl 

bdl 

01 
L071 

LALPP 

53.00 

bdl 

048 

0.35 
5.50 

0.11 

35.211 

1.30 

0.07 
0.02 

0.01 

3.08 

99.18 

5.81 

111 .5 

44.7 

2.71 

15 

42 

3852 

775 

bdl 

17 

I 
8 

bdl 

bdl 

01 
L073 

LALPP 

54.80 

na 
0.38 
1.18 

4.78 
0.10 

34.85 

154 

0.04 

0.01 

0 .00 

1.42 
99.10 

5.83 
81 .4 

385 

na 
na 
na 
na 
na 
na 
na 
na 
na 
na 

01 
L287 

LALPP 

53.30 

bdl 

0.70 

0 .88 

5.47 

0 .11 
33.88 

1.24 

o.oe 
0.01 

0.00 

3.08 

111.81 

8.35 
80.5 

388 
1 .77 

17 
52 

4888 

711 

bdl 

23 

bdl 
3 

bdl 
bdl 

01 
L288 

LALPP 

54.80 

br'~ 

084 
1.08 

5.18 

0 .15 

32.25 

1.08 

0.08 

0 .01 

0 .00 

2 .87 

111.20 

8.13 
80.4 

42.4 
1.88 

19 
52 

4799 

703 

bdl 

21 

bdl 
2 

bdl 
bdl 

011 
L271 

LALPP 

40.70 

na 
028 
3 .50 

342 

0 .11 
38.52 

0 .34 
0.14 

000 

0 .05 

12.45 

100.52 

8 .57 
81 .5 

1.17 

na 
na 
na 
na 
na 
na 

bdl 
bdl 

bdl 
bdl 

011 
l351 

LALPP 

na 
na 

o.ee 
na 
na 
na 
na 
na 
na 
na 
na 
na 

na 

na 
na 
na 
na 
na 
na 
na 
na 
na 
na 

c 
L004 

LALPP 

48.70 

na 
0 .78 

1.15 

342 
0 .11 

27.35 

14.80 

0 .17 

0 .00 

0 .01 
3 .44 

1111.71 

4 45 

81 .8 

18 21 

na 
na 
na 
na 
na 
na 

bdl 
II 

bdl 
bdl 

c 
l012 

LALPP 

50.20 

na 
0 .82 

110 
3 20 
0 .11 

24.30 

17.55 

0 .21 

0 .00 

0 .01 
2 .20 

1111.70 

4 .19 
81 .2 

21.40 

na 
na 
na 
na 
na 
na 
na 
na 
na 
na 

c 
l0211 

LALPP 

53.20 

bdl 
0 .87 

0 .211 
3 .43 

0 .11 
21 .41 

19.94 

0.18 

0 .00 

0 .02 

138 

100.81 

3 .88 

912 

32.4 

211.78 

42 

94 
3275 

744 

3 13 

bdl 
bdl 
18 

bdl 
bdl 

c 
l211 

LALPP 

na 
bdl 
na 
na 
na 
na 
na 
na 
na 
na 
na 
na 

na 

37 

97 

4781 

948 

178 

bdl 

bdl 
5 

bdl 
bdl 



Rock 

Sample 
Type 

Si02 
Ti02 
Al203 

Fe203 
FeO 

MnO 
UgO 
CaO 
Na20 
K20 

P205 
lOI 

To«al 

FeO(t) 

Ugl 
Crt 

Ca01AI203 

Sc 

" Cr 

Nr 
Cu 

Zn 
Rb 
Sr 
y 

Zr 

c 
l212 

LALPP 

52.40 
bdl 

0 .89 

0.35 
3 .37 

0.11 

21.116 
19.90 

0 .17 
0 .00 

000 

0 .92 

100.07 

368 
81 .4 
31 2 

22 38 

40 

108 

4125 

794 
132 

bdl 

bdl 

2 

bdl 

c 
l213 

lAlPP 

54.80 

bdl 

0.91 

0 .45 
2 .78 

0 .11 

20.00 

20.15 
0 .18 
0.00 

0 .00 

0 .71 

98.89 

3 .18 

81. 

32.0 

2~ 14 

39 

104 

4358 

~ 

na 
bdl 

bdl 

2 
2 

bdl 

c 
l214 

LALPP 

41 .00 

bdl 

0 .81 

0 .97 
4.70 

0 .12 

27.87 

12.7° 
0 .12 
000 

0 .00 

2 .82 

97.98 

5 57 

88 II 

32 2 

20.95 

29 

72 
2853 
1354 
125 

bdl 

001 

2 
bdl 

bdl 

c 
l231 

lAlPP 

50.70 
na 

0.58 

0 .93 
2.81 

0 .11 

23 18 

17.45 
0 .111 
0 .00 

000 

2.71 

88.66 

365 
111 II 

3009 

na 

"" na 
na 
na 
na 

bdl 

11 

bdl 

bdl 

c 
l290 

lAlPP 

53.80 
na 

0.75 

0 .40 
3.41 

0 .11 

22.14 

17.42 
0 .21 
0 .00 

004 

133 

9881 

3.77 
91 .3 

23 23 

na 
na 
na 
na 
na 
na 

bdl 

11 

bdl 

bdl 

c 
l283 

LALPP 

50.50 

bdl 

0 .75 

0 .47 
2.78 

0.08 
21 .74 

19.88 
0.09 

0 .00 

0 .00 

2 80 

88.88 

3.18 
82 4 

23 7 

28 24 

47 

108 

2373 

580 

na 
bdl 

bdl 

2 
2 

bdl 

WB 
l283 

lAlPP 

53.70 

bdl 

0 .87 

1.14 
2.41 

0 .11 
23.58 

15.12 
0 .28 
0 .01 

001 

1.1. 

8817 

3 .44 
82.4 

41 0 

22 .57 

27 

88 
4747 

493 

na 
bdl 

bdl 

53 
1 

2 

t-'JB 
l288 

lAlPP 

53.80 
na 

086 
0.45 
2 82 

0.11 

20.20 

11188 
0 .27 
0 .00 

0.00 

125 

98.54 

3.22 
81 .8 

20 71 

na 
na 
na 
na 
na 
na 

bdl 

84 
1 

2 

w 0 0 0 w w w 
l201 l107 l302 l324 lot3 l307 l318 

LALPP HALPPG HALPPG HALPPG HALPPG HALPPG HALPPG 

35.90 
na 

C. .111 

4 .32 
2 .82 

0 .10 
40.48 

0.58 
003 
0 .00 

0 .01 

14111 

9832 

8 .71 
IU .5 

3 OS 

na 
na 
na 
na 
na 
na 

bdl 

bdl 

bdl 

:xll 

33.40 
na 

1.07 

3 .41 
5 .'7 

0 .14 
42 .05 

0 .20 

0 .02 
0 .00 

0 .00 

1322 

98 28 

8 .84 
89.5 

0 18 

na 
na 
na 
na 
na 
na 
n& 

:lA 

na 
na 

34.20 
bdl 

127 

4 .42 
458 

0 .12 
311.80 

0 .32 
0 .01 

0 .00 
) 01 

: 4 •e 
\.: ; 72 

8 .58 
8112 

2411 

0 25 

bdl 

25 

42811 
2115 

bdl 

35 

bdl 

18 

txll 
bdl 

3500 
bdl 

0 .18 

3 .34 
5 73 

0 .14 
40.27 

041 
002 
0 .00 
000 

12 75 

97111 

8 .74 
892 

5311 

287 

bdl 

15 

2145 

20211 
bdl 

35 

bdl 

8 
bdl 

bdl 

3910 
0 .15 

na 
4211 
4 .81 

0 .14 
32.011 

8 .34 
0 .13 
0 .00 

000 
1141 

86.28 

8 47 
87.1 

28 
118 

4083 
1281 

424 

211 

bdl 

14 

3 

4 

38.00 
0 .04 

1.88 
350 

502 

0 .13 
311.12 

0 .118 
0 .08 
0 .00 

000 

1178 

100 52 

8 .17 
8115 

17 4 

0 .53 

4 

33 

31188 
2088 

na 
31 

bdl 

" bdl 

38.90 
0 .08 

2 .47 
2 .75 

5 .88 

0 .14 
3e.47 

322 
011 

0 .00 

000 

10.70 

8853 

8 .18 
88.8 

114 

130 

13 
54 

3228 
1810 

3 
28 

bdl 

11 

2 
3 

.... 
~ 
0 



Rock 

Sample 
Type 

S.02 

Tr02 
Al203 

Fe203 
FeO 

MnO 

MgO 

CaO 
Na20 

K20 
P205 

LOI 

Tot-' 

Fe<l(t) 

MgW 
Crw 
Ce01AI203 

Sc 
v 
Cr 
Ni 

Cu 

Zn 
Rb 

Sr 
y 

Zr 

w 
L317 

w 
L331 

c 
l186 

c 
l241 

c 
L296 

c 
L297 

c 
L312 

c 
L328 

G 

l090 
G 

l294 
G 

l295 
HALPPG HALPPG HALPPG HALPPG HALPPG HALPPG HALPPG HALPPG HALPPG HALPPG HALPPG HALPPG HALPPG 

G 

L313 
AP 

L273 

3e 110 

na 
2 52 
2 .84 

5 .87 

013 

36.91 

3.30 
0 .11 
000 

0 .00 

10.441 

81104 

8 .43 

888 

1.31 

na 
na 
na 
na 
nc 

na 
bdl 

13 

2 
3 

3580 

0.03 

2 .48 
3.55 
8 .28 

0.14 

38.11 

1.42 

0 .11 
001 

0 .00 

10.78 

98.71 

G.47 

87.8 

12.3 
0 .57 

5 
37 

3563 
1378 

bdl 

38 

bdl 

13 
bdl 

38.30 

0 .10 

2.08 

5.13 
435 

0.14 

33.38 
4.92 
0 .11 
0 .00 

0 .00 

11 .56 

100.08 

897 
88.9 

11 .0 

2 .38 

18 

77 

2595 
121M 

237 
29 

bdl 

25 
2 
4 

40.10 

0 .12 

1.48 
512 
3 .34 

0.13 

31.05 

1154 
0 .11 
0 .00 

0 .00 

10.13 
98.10 

7 .GS 
87.4 

9 .0 

4.48 

28 

97 
1475 
1274 

193 

24 

bdl 

9 
3 
3 

4870 

0 .45 

4.34 
1.44 

5 .55 

0.13 

2110 
14.42 

0.80 
0 .01 

0.01 

3.80 

81125 

8.85 
85.0 

58 
3.32 

8 1 

257 
2723 

857 

18 

19 

bdl 

37 

13 
14 

47.110 

0 44 

5.15 
0 .78 

5.54 

0 .13 

20.114 
1842 
0 .57 

0 .01 

0 .00 

2.15 
99.43 

8 .24 

855 

3.1G 

n8 

na 
na 
na 
na 
na 
na 
na 
na 
na 

4500 

0 .38 

1 .31 
O.GB 
4.12 

010 

18.03 

15.45 
1.02 
0 .011 

0.00 

5.12 
811.57 

5.00 
87.2 

3 .7 
118 

53 

182 

3228 
724 
22 
11 

e 
294 

10 
22 

na 
025 

na 
na 
na 
na 
na 
na 
ne 
na 
na 
na 

na 

211 

1211 

1703 

1275 

na 
34 

bdl 

11 
5 
7 

47 .30 

0.21 

11110 

0.13 
372 

0.07 

11 40 

1410 

1.55 

0 .09 

0.09 

2 02 

99.78 

384 
84.1 

0 .3 
0.74 

34 
108 

805 

242 

27 

bdl 

2 
321 

7 
111 

44.10 

0 .18 

1517 
0 .48 
4.57 

008 

13112 
11.1.14 
396 
0 28 

0.00 

4.10 

99.38 

5.00 
13.2 

0 .8 
0.75 

32 

105 

10211 
385 

58 
13 
14 

884 
4 

34 

42.10 

0 22 

1558 
1 .34 

2 .117 

0 .07 

12119 
12.48 

3 .112 
0 .09 

000 

820 
98.84 

4.18 
84.4 

0 .7 

0 .80 

27 

88 

1057 
508 

33 

9 

4 

740 
5 

33 

48.70 

020 
2133 

0 .21 
2.08 

006 

8.23 
1485 

2 75 
0 .17 

0 .00 

333 
99.96 

2.31 
88.4 

07 
0 .70 

30 

110 

1488 

328 

21 
bdl 

3 
721 

4 
30 

38.70 

0311 

2 .87 

5 .75 
5 .27 

0 .15 

34.114 
2 .88 
0 .32 
0 .05 

0 .00 

11 .33 
99.96 

10.44 
85.5 

1.00 

na 
na 
na 
na 
na 
na 

bdl 

18 

4 
3 

AMPT 

SOl~ 

uc 

43.80 

1.40 

14.70 

1.10 
1 .44 

0 .14 

12.88 
10.24 

2 .21 

0 .17 

001 

380 
8150 

1143 

70.11 

0 .70 

na 
na 
na 
na 
na 
na 
na 
na 
na 
na 

AMPT 

50380 

uc 

43.40 
1.20 

1880 

1.03 

8 .01 

0 .14 

8.50 
12 74 

1.83 

055 

0 .01 

377 
9905 

901 

115.3 

0 .78 

na 
na 
na 
na 
na 
na 
na 
na 
na 
na 



TABLE A4 2 R.t11111~11h element analy&tJB {cuncentrlliOOS m ppb) 

Rock H H H D D D D AD AD AD 01 01 011 011 c Sam pl., l103 l106 L225 L216 l217 L246 L262 l140 L266 L275 L066 L288 L271 L351 L012 Type LALPP LALPP LALPP LALPP LALPP LALPP LALPP LALPP LALPP LALPP LALPP LALPP LALPP LALPP LALPP 

Run 116 116 153 116 116 153 153 153 240 153 153 240 153 240 182 

La 21 4 1 32 3 .7 3.9 2.7 2.4 6.4 21 96 1 8 5.4 1 7 79 {38 5) c .. 44 78 85 7.2 7.2 61 40 11 .5 29 130 4 1 9.2 32 14 {8118) p, 55 0 78 1 3 11 0 811 0 89 0 69 19 29 13 (0 43) {1 0) (0 36) 1 6 (16 J) Nd 24 51 75 7.1 46 6 2 4 8 8. 1 8.0 46 (2 2) 43 (2 6) 64 (96 2) 
Sm 59 (111) (1 9) 37 (1 3) (1 7) {2 1) 26 {2 3) 97 (0 87) (1 28) (1 21) { 1 04) (81 7) 
Eu 25 0 51 10 10 (0 38) 066 (0 49) 10 25 8 7 nd (0 32) (0 10) (0 48) 234 
Gd 72 29 37 44 2.1 23 (1 8) 40 (2 2) 11 (1 7) (2 3) (1 0) (1 0) 107 Tb I 55 0 55 0 61 1 ca 0.55 0 40 (0 34) 0 93 0.71 24 060 0112 (0 31) (0 20) 21 9 Dy 10 6 52 45 91 40 30 22 76 55 18 58 711 3 1 1 23 171 
Ho 20 1 40 103 2 1 098 0 62 0 49 2 1 1 48 38 1 85 28 068 0 29 35 5 
Er 7 1 511 306 79 411 2 04 211 74 62 13 3 63 10 6 3 65 (1 li) 116 
Tm 1 16 1 36 0 43 1 51 1 06 0 49 050 1 24 111 194 090 217 0 61 (0 174) 17.1 
Yb 79 111 43 94 90 37 33 96 97 t3 e 66 17 5 50 2511 101 
lu 1 52 2 05 0 75 1 76 200 0 59 065 1 77 25 2 25 1 07 44 1 07 o a;? 15 0 
Yb" 15 I (13 4) 33 6 29 9 17 7 35 4 17 6 
Lu " 236 2 94 7 98 7 14 1 17 386 439 



Rock c c c c we WB 0 0 w w c c G G AP Semple L028 L213 L2aO L293 LZiiJ L288 L302 L305 L0$3 L317 L298 L328 l.294 L313 L273 
T~ LALPP LALPP LALPP LALPP LALPP LALPP HALPPG HALPPG HALPPG HALPPG hALPPG HALPPG HALPPG HALPPG HALPPG 

Run 182 182 182 182 182 182 118 182 024 024 024 182 024 024 024 

La (41 .2) (38 7) (38.4) (380) (638) (49 4) 83 (71 .2) (117.3) (1289) 449 (179) (222) 431 (83 7) Ce (eD 9) (849) (118.9) (74.0) (139.4) (129 7) 19 (188) 487 418 1700 784 734 1179 422 Pr (18.3) (IIIII) (20.8) (14 .79) (208) (18 9) 2.7 (33 8) 11?..3 88 8 379 1111 138.0 210 120.5 Nd (902) (170) ( 127) (118 3) (110) (102) 13 (180) 800 473 2340 1230 903 124!10 822 Sm (117 8) 1182 (115 4) (588) (4411) (51.11) 48 (711 I) 432 2711 1152 1118 425 f'?2 420 Eu 255 32.11 300 288 15 3 202 I 4 2117 133 811 424 221 195 3011 162 Gd 120 147 132 125 688 112.2 8.o 104 540 347 1540 887 548 eoo 565 Tb 27 2 359 27.0 24 8 17.1 20.3 1.50 21.0 112 eo.o 3 10 178 113 132 118 
Oy 175 229 182 172 117 135 12.1 141 780 434 2140 1180 740 850 780 Ho 40.5 488 388 39.7 27 7 388 33 300 182 97.2 442 237 155 171 151 Et 124 157 toe 113 882 l UI 138 1188 471 278 1260 678 487 504 424 Tm 18.0 22 4 179 1811 13 4 193 2.79 15.7 84.0 39.4 179 117.6 58.0 811.6 829 
Yb 89.1 125 105 8117 884 120 23 I 107 430 270 1070 562 389 405 358 
Lu 12 7 201 18.1 15 8 12 8 181 5.0 18.7 631 38.1 158 827 53.4 57.8 44.7 Yb• 539 
Lu• 12 9 



Rock AMPT AMPT 
Sample 50 11M SO laO 
Type uc uc 

Run 182 182 

La 2050 1330 
Ce 7100 4930 
Pr 129e 1023 
Nd 8700 5710 
Sm 2510 2170 
Eu 850 900 
Gd 2850 2flll0 
Tb 558 528 
Oy 3fl70 ~160 

Ho 748 fl87 
Er 2240 2010 
Tm 308 277 
Yb liMO 1750 
Lu 300 25e 
Yb" 

lu" 



TABLE A4 3. Plaltnum group element analyeea (concentration a •n ppb) 

Rock H H H 0 0 0 0 CR CR CR CR-X AD AD AD Sample Lt06 l218 l225 L054 l2U! l217 l254 l203 L244 l289 L328 l285 l21111 l275 Type LALPP LALPP LALPP LALPP LALPP LALPP LALPP LALPP LALPP LALPP LALPP LALPP LALPP LALPP 

Ru 8 75 723 780 20.98 1.11 5.56 3.56 50841 50 41 25110 40 3." 0 74 0 .71 I 22 All 1 53 1.84 1.111 3 59 1 lie 1.88 0 .44 4 62 2 83 235 4.28 11.59 11 .32 8ea Pd 8 18 3 87 1.83 2.87 4.83 2306 0 71 2.79 000 5 31 1 52 110.72 10601 8 .06 Re 0 .39 005 bdl 0.00 0.00 0.01 bdl o.06 000 000 bdl 009 bdl 0.38 o. 481 318 211e 404 0.44 2 44 1 go 1481 22.41 1331 14.29 0 55 bdl 0 82 lr 4 78 313 2.78 IIIlO 2.20 2.78 200 15 05 11.91 805 10.911 345 440 5 97 PI 854 5.18 8.31 1.13 44.27 558 020 158 2 13 2 13 2 73 11708 18233 3301 Sum PGE 37.74 24.47 22 75 4201 54 8 1 4129 8 81 89 37 89.88 54 75 74 14 194.23 304n 5794 
Pr'.~; 1 71 1 24 osa 0 28 2.10 838 038 018 088 0 .14 17.110 24.08 135 

Rock 01 01 01 01 011 0 11 c c c c c c WB 
Sample Loea l071 l287 l 2118 l271 L351 l028 l211 l 212 L213 l214 L293 L283 Type LALPP LALPP LALPP LALPP LALPP LALPP LALPP LALPP LALPP LALPP LALPP LALPP LALPP 

Au 0 .13 0.19 058 2 02 58.911 8 84 017 bdl bdl bdl bdl 0 .18 0 .23 
Rh 048 1.110 10 12 3082 0 15 1.42 0.74 0 31 013 0 .13 0 .03 008 3 73 
Pd 17038 15.92 104 74 405 68 0.58 2.11 8798 1() 38 0 .44 3 83 8 .05 10 18 19371 Re 0.00 1843 030 000 007 006 0.00 094 0 .54 1 05 13 .28 000 0 05 
Oa 0.14 bdl 1 29 279 0 71 154 0.28 0 .13 083 053 bdl 0 .05 0 .35 
1r 0 .38 0.44 3 32 9 51 049 198 031 0 01 bdl 0 03 0 07 006 162 
PI 170 85 14.58 141 70 517 20 0 24 3 34 8 1.24 3 47 0 18 on 100 3 .41 520 53 
SumPGE 34234 4816 262 03 968 12 6 1 24 1129 130.70 15 24 1.92 634 20 .43 13 .92 72022 
Pdllr 473.28 38.18 31 55 42 66 1 20 1 07 219 29 1038.00 127 67 86 43 189.33 119 57 
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