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ABSTRACT 

Volcanic-sedimentary facies and structural 

relationships of the Silurian Springdale group in west 

central Newfoundland are indicative of a large collapse 

caldera, with an area of more than 2,000 km2• Basaltic 

flows, andesite flows and pyroclastics rocks, silicic 

ash-flow tuffs, high -silica rhyolite domes, and 

volcanically derived debris-flows and breccias and 

mesobreccias, fluviatile red sandstones and conglomerates 

make up the group Five new uranium/lead zircon dates 

provided in this study show for the lowermost ash-flow tuff 

of the group an age of 432.4 + 1.7/-1.4 Ma, the Burnt Berry 

rhyolite dome of 430.8 ± 2 Ma, and the topmost Indian River 

ash-flow tuff of 425 ± 3 Ma, as well the age of 427 ± 2 Ma 

for both the King's Point complex and the cape st. John 

Group. 

The Springdale Group is bounded on the east and west 

by up-faulted basement rocks which include gnesisses, 

amphibolites and pillow lavas derived from Lower Ordovician 

volcanic rocks, and in the northwest unconformably overlies 

the equivalent less metamorphosed Lower Ordovician 

submarine volcanics. These margins are intruded by 

oogenetic and younger granitoid rocks. The volcanic rocks 

form a calc-alkaline series, although gaps in silica 
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content between 52 to 56%, 67 to 68%, and 73 to 74% 

separate them into four groups, basalts, andesites-dacites, 

rhyolites, and high-silica rhyolites. 

The high-silica rhyolites are chemically comparable 

to melts thought to form the upper parts of large layered 

silicic magma chambers of epicontinental regions. such an 

environment is also suggested by the large area of the 

Springdale caldera, and the probability that it is one of 

at least five calderas which make up a large Silurian 

volcanic field. An epicontinental tectonothermal 

environment for central Newfoundland in Silurian-Devonian 

times is readily explained by the fact that this magmatic 

activity followed a period of destruction and closure of 

the Lower Paleozoic Iapetus Ocean, with trapped heat and 

basaltic magma causing large scale crustal melting in an 

overall transpressional tectonic regime. 
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INTRODUCTION 

1.1. statement of the Problem 

1 

Calderas are the topographic and volcanological 

manifestations of shallow magma chambers, which result from 

deeper-seated thermal processes ultimately reflecting 

global scale tectonic activity. Accordingly, the 

documentation of ancient calderas and their products 

provides essential insights into the magmatic and tectonic 

evolution of ancient terranes. Since the Silurian-Devonian 

volcanic belts of the Appalachians are variably eroded, the 

recognition of such features is enhanced by the variety of 

structural levels at which they are now exposed. They thus 

have much to offer for understanding the tectono-thermal 

evolution of the Appalachian orogen, especially since such 

volcanic sequences are known throughout the orogen, at 

least from Scotland to Maine (Fig. 1.1). 

The purpose of this study is to characterize and 

attempt to understand the magmatic and tectonic processes 

which controlled the development of the Springdale Group, 

newly recognized by the author as comprizinq a full caldera 

assemblage (Coyle and strong, 1987). It is based on about 

twelve months of geological mapping over a three year 

period, petrographic study of some 400 thin sections, 165 

whole-rock chemical analyses, and radiometric dating of 

five samples by the U/Pb (zircon) method. The study also 

included some work on correlative sequences in western 

Newfoundland. 
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Figure 1.1. Distribution of Silurian-Devonian ~olcanic 

(black) and sedimentary (shaded) rocks in the northern 

Appalachians (Williams, 1980), and of correlative volcanic 

and sedimentary rocks of northern Britain (Thirlwall, 

1981). Lines show major faults in Britain (GG =Great Glen; 

HB = Highland Boundary; su = southern Uplands) and 

Newfoundland (C =Cabot; R =Reach). 
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1.2. Appalachian/Caledonian Silurian Volcanic sequences 

Throughout much of scotland and northern England 

(Fiq.l.l), volcanic rocks are associated with the 

Silurian-Devonian Old Red Sandstone series of continental 

sediments. They have received contrasting interpretations, 

basically centering on whether they were subduction-related 

or not. Stillman and Francis (1979) considered them to be 

continental., with any relation to subduction being 

unlikely, although they did recognize them as a high-K 

calc-alkaline suite. Others, e.g. Groome and Hall (1974), 

French et al. (1979), Thirlwall (1981), interpreted the 

chemistry . of these suites as requiring a subduction-related 

origin, although not all characteristics of subduction are 

present. 

Similar controversies surround the correlative rocks 

in Maine and Quebec. The Lower Devonian Piscataquis 

volcanic belt of Maine (Fig. 1.1) was interpreted by Rankin 

(1968) as part of "a real island arc system", and he 

suggested that qarne·.t phenocrysts in the rhyolites reflect 

their "genera-cion frr;:,m partial melting of sediments in the 

deeper parts of the Appalachian geosyncline". He 

subsequentl.y rejected this interpretation (Rankin, 1980), 

although he did not suggest any precise alternative. Other 

Silurian-Devonian volcanic-sedimentary sequences of Maine 

(e.g. the Spider Lake volcanics, the Hedgehog Formation, 

the Deboui11e Stock, the Five-mile Brook Formation) may 
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Correlative rocks along strike in Quebec and 

northern New Brunswick contain a larger proportion of 

basaltic and andesitic rocks, and recent studies in Quebec 

have provided new interpretations. According to Laurent and 

Belanger (1984), Silurian-Devonian volcanism of the Gaspe 

area took place within an intracontinental or continental 

border regime of compression, a~d was controlled by 

strikP-slip faults. They suggest that the volcanic rocks 

differ from those of arc-trench systems, being rich in Ti, 

P and other incompatible elements. They proposed a tectonic 

model analogous to that of the Alpine system in no~~hern 

Anatolia and Iran, where Quaternary volcanism is associated 

with major transcurrent fault zones. This transprecsional 

model provides an elegant resolution to the problem of 

contrasting Siluro-Devonian volcanic types, and is 

comparable to that suggested by Strong (1980) for 

similar-aged granitoid rocks throughout the orogen. 

The Springdale Group occurs near the western margin 

of Newfoundland's lower Paleozoic Central Mobile Belt 

(Figs. 1.1 and 1.2) Despite their extent and potential 

importance to understanding mid-Paleo~oic magmatic activity 

in the App~lachians, no volcanological or geochemical 

studies have previously been carried out on rocks of the 

Springdale Group. This study provides the first geochemical 

data for the Springdale Group, and demonstrates that they 

are calc-alkaline and comparable to orogenic calc-alkaline 

suites of circum-Pacific regions (cf. Ewart, 1982J. 

·.1 
.,1 

i 
I~ 

~ 

' ,, ' 
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Figure. 1.2. Settinq of the Sprinqdale Group within the 

tectonic-stratiqraphic subdivisions of central Newfoundland 
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However the Group also includes a suite of 

high-silica rhyolites which are similar to the high-silica 

rhyolit~s derived from large layered siliceous magma 

chambers of continental regions such as the Basin and Range 

area of southwest u.s.A. (cf. Lipman et al., 1978). The 

Springdale caldera is unlike any found with orogenic 

calc-alkaline suites in that its large size, representing a 

minimum eruption volume between 103 and 104 km3 , is 

matched only by the largest epicontinental calderas, like 

those of the southwestern USA. This, as do the high-silica 

ash flow compositions, implies a similar tectono-thermal 

environment for Silurian-Devonian times in west-central 

Newfoundland. 

1.3. Calderas and Ash-Flow Tuffs 

Before presenting the interpretation that the 

volcanic, plutonic and sedimentary facies of the Springdale 

Group described below represent the products of caldera 

collapse and fill, it is useful to review the features and 

terminology upon which ~he conclusions are based. 

"Epicontinental-type" calderas are characterized by 

large diameters and associated eruptions of large volumes 

of pyroclastic material. Smith (1979) estimated 

relationships between these two parameters and developed 

the correlation between volumes of eruption and volumes and 

compositions of the associated magma chambers. In general 

large calc-alkaline systems produce vf:>.:r.·tically zoned 
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pyroclastic eruptions, and in fact all products exceeding 1 

km3 are compositionally zoned (Hildreth, 1981). Within 

such systems processes such as crystal fractionation, 

thermodiffusion, volatile and liquid complexinq and many 

others may occur and produce specialized fractionates such 

as hiqh-silica rhyolitic magma. 

such large systems are well-represented by the zoned 

ash flow sheets of the western u.s.A., e.q. the Bishop 

tuff, the San Juan volcanic field, and different levels of 

exposure of the salient tectonic features of caldera and 

subsidence structures are seen in many other areas, e.g. 

the Oslo Graben (Ihlen gt al., 1982), the Arabian Shield 

(Roobol and White, 1986), and the Taupo depression (Cole, 

1985). They occur as arrays ~ituated within, outside or 

along rifts or other major structural discontinuities which 

can reflect an overall plate tectonic regime from 

separation to collison, in the latter case local extension 

being produced in the back-arc environment (Fig. 1.3). 

Collapse calderas are defined as being produced by 

the collapse of a magma chamber roof due to the eruption of 

the magma as pyroclastic and lava flows (Bates and Jackson 

1980). These eruptive products are characterized by 

raear-source and intermediate-source facies rocks that 

accumulate both within and outside the caldera walls. 

CUnningham and Steven (1979) have termed these the 

intracaldera facies and the caldera outflow facies, 

respectively, related to eruption and outflow of 
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Figure. 1.3. Tectonic settings of the calderas in the Taupo 
• 

depression (Cole, 1985) and the Oslo rift (Ihlen et al., 

1982; Russell and smythe, 1983). 
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Figure 1.4. A generalized ash-flow caldera cycle based on 
a composite of features from a number of calderas (after 
Lipman, 1984). (a) "Pre-collapse volcanism. Clustered 
intermediate- composition strato-volcanoes form over 
isolated small high-level plutons that mark the beginning 
of accumulation of a batholith-sized silicic magma body 
that will feed ash-flow eruptions. Uplift related to 
emplacement of the plutons leads to the development of 
arcuate ring fractures which form the sites of subsequent 
caldera collapse (dotted lines). Heavy arrows indicate 
upward movement of magma. (b) Caldera geometry just after 
ash flow eruptions and concurrent caldera collapse. Central 
area of clustered earlier volcanoes caves into collapsed 
caldera. Intracaldera tuff ponds during subsidence and is 
an order of magnitude thicker than cogenetic outflow 
ash-flow sheet. Initial coll&pse along ring faults is 
followed by slumping of over- steepened caldera walls and 
accumulation of voluminous collapse breccias that 
interfinger with ash-flow tuffs in the caldera fill 
sequence. Caldera floor subsides asymmetrically and is 
tilted to the left side of the diagram. Main magma body 
underlies entire caldera area and is compositionally zoned 
prior to eruption, becoming more mafic downward. (c) 
Resurgence and post-caldera deposition. Resurgence is 
asymmetrical, with greatest uplift in area of greatest 
prior collapse. Extensional graben faults form over crest 
of the dome. Some resurgent uplift is accommodated by 
movement along ring faults in the sense opposite that 
during caldera subsidence. Maqma body has risen into 
volcanic pile and intrudes cogenetic intracaldera welded 
tuff. Original caldera floor has been almost entirely 
obliterated by rise of the maqma chamber to near the level 
of pre-volcanic land surface. Caldera moat is partly filled 
by lava domes and volcaniclastic sediments. Hydrothermal 
activity and mineralization become dominant late in the 
cycle." 
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pyroclastic material with concurrent collapse of the source 

area. Such collapse may be followed by development of a 

resurgent cauldron as shown in Fig. 1.4(c), or there may be 

continuous collapse without resurgence, i.e. just stages 

(a) and (b) of Fig. 1.4. 

As described by Fisher ard Schmincke (1984, p. 361), 

"the intra-caldera facies within the subsided ar~a may 

include ignimbrite deposits measuring hundreds of meters in 

thickness. If resurgence occurs, the resulting moat may be 

filled by pyroclastic rocks, lava flows, lake sediments, 

epiclastic volcanic sediments, and particularly by 

landslide or talus breccias from the caldera wall. The 

caldera-outflow facies is characterized by ignimbrite 

sheets that may extend for many tens of kilometers outside 

the caldera. Resurgence may occur without filling, and 

filling may occur without resurgence. Moreover, fills 

within calderas can be derived from younger ash flows from 

any nearby younger source." 

Other important features to be noted are the 

presence of associated marginal ring or linear fault~ 

considered to form the major conduits of eruption, and to 

control location of late intrusions and/or "nesting" in 

complex areas. Perhaps the most diagnostic signature of 

these complex structures ~s the combination of post-caldera 

collapse volcanic facies, associated plutonics and specific 

structural elements such as ring dykes and structural 
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boundaries of the caldera-collapse block. Preservation of 

all caldera features is rare and it is often necessary to 

make comparisons between a number of reasonable models for 

the interpretation of a given caldera and its setting. The 

general features by which calderas might be recognized are 

summarized in Table 1.1. 

Table 1.1. Summary of the characteristics of collapse 

calderas. Note that any one of these features may occur 

unrelated to a caldera, so these criteria should be used as 

a group rather than singly <after Panze et al •• 1988). 

1. Extensive rock units of lavas, breccias, and lahars 

of intermediate composition (andesite, dacite, 

quartz latite). 

2. Intra-caldera ash-flow accumulation. Large 

thicknesses (500-2000 m) of silicic ash-flow tuffs 

(quartz latites, rhyolites). Often ponds within 

collapsing caldera. 

3. Large-volume (greater than 100 km3) ash-flow units 

eruption causes collapse). 
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Table 1.1. Ccontinuedl. 

4. Landslide or slump breccia deposits (mass wasting 

from caldera walls), May consist of very larqe 

blocks (greater than 1 km) or unusual (exotic) 

breccias. 

5. Intracaldera volcanic rocks and volcaniclastic 

sedimentary rocks. 

6. curved zones of faulting, fracturing, and 

brecciation (ring fracture zone). 

7. Reqional propylitic alteration with local occurrence 

of argillic, sericitic, and advanced argillic 

alteration. 

a. Resurgent dominq evidence by: 

a. outward dip of intracaldera units 

b. central qraben 

c. plutonic or hyabyssal resurqent magma 

9. Rinq-fracture domes of rhyolite and/or quartz 

latite. 
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Table 1.1. (Continued). 

10. structural depression marked by collapsed block. 

11. Radial and/or concentric fault, drainage, and 

topographic patterns. 

12. Clustering of mineral occurrences. 

13. Circular patterns on high-altitude photographs or 

remote imagery. 

14. Geochemistry: The distribution of metal values (Au, 

Ag, cu, Mo, Pb, Zn, etc.) may aid in defining 

caldera structures. 

15. Geophysics. Gravity, magnetics, resistivity, and 

radiometries may show evidence of caldera structure. 



2. GEOLOGY OF THE SPRINGDALE GROUP 

2.1. Introduction 
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This thesis is based on fieldwork carried out mainly 

on the Springdale Group, a sequence of volcanic and 

sedimentary rocks located near the town of Springdale (lat. 

49°JO'N, and long 56°5'W) a prosperous distribution 

centre for the mining and fishing industries of west 

central Newfoundland (Fig. 2.1). The area is found on NTS 

map sheets Springdale (sheet 12H/8), the Great Gull Pond 

(sheet 12H/1), King's Point (12H/9), and Topsails (12H/2). 

Ancillary detailed work was carried out in the 

Sheffield Lake Group on the adjoining map sheet to the west 

(Sheffield Lake sheet 12H/7), so as to assess its 

continuity with the Springdale Group. Reconnaisance 

investigations were also made of the King's Point, MicMac 

Lake, and cape st. John Groups in order to compare them to 

the Springdale Group (Fig. 2.2). Brief visits were also 

made to the Sops Arm area for the same purpose. 

The mapping was generally recorded at 1:12,500 

scale, and at larger scales where outcrop was sufficient or 

geological features justified it, using both orthophotomaps 

and coloured air photographs for field control. In general 

the exposure is moderate, with local ridges surrounded by 

poor exposure, and excellent river coverage. Access to the 

area is fair with many gravel roads provided throughout the 
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area by logging operations. Much of the mapping was carried 

out by foot aided by the use of four wheel drive vehicles 

and was followed up with helicopter traverses where outcrop 

was limited over wide areas or where access was difficult. 

Final maps were constructed at a scale of 1:100,000, with 

larger scales used where details are illustrati·1e of 

important lithological relationships and structure. 

This thesis contains (in pocket) one summary map at 

1:000,000 scale (Map 1), with more detailed maps at 

1:10,000 for areas where geophysical data were available, 

termed the Springdale central (Map 2) and Springdale east 

(Maps 3 and 4) areas. 

2.2. Local Geological Setting of the Springdale Group 

The geology of the island of Newfoundland, at the 

northern extremity of the Appalachian orogen, has been 

reviewed by numerous writers (e.g. most recently by swinden 

et al., 1989; Williams et al •. 1988) and so need not be 

repeated here. The essential feature is that Precambrian 

rocks are known to underly platformal Paleozoic sedimentary 

rocks on both the western (Humber Zone) and eastern (Avalon 

Zone) sides of a central (Dunnage) zone of volcanic, 

plutonic and sedimentary rocks thought to have formed 

through the development and destruction of Cambro

Ordovician oceanic and island arc sequences, whi~n were 
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then overlain and intruded by the Silurian and younger 

rocks \Fig. 2.1). Williams et al. (1988), on the basis of 

contrasts in geological, metallogenic and isotopic 

characteristics, subdivided the Dunnage Zone into two 

subzones, the Notre Dame and Exploits Subzones northwest 

and southeast, respectively, of a tectonic boundary which 

they termed the "Red Indian Line" (Fig. 2.1). currie and 

Piasecki (1989) have suggested that differences in 

metamorphic grade and lithological assemblages justify 

further subdivision of central Newfoundland, with the 

designation of three more subzones. 

Williams (1967) recognized nine different belts of 

Siluro-Devonian rocks on the island of Newfoundland which 

are not restricted by any of the zone boundaries described 

above. The largest of these are the Springdale, belt in the 

Notre Dame Subzone, and the Botwood belt in the Exploits 

Subzorae. The Springdale belt extends continuously for 60 

km, and possibly a further 100 km southwestward if volcanic 

inliers within the Topsails complex are included (see Fig. 

2.2 of Whalen and Currie, 1983), and reaches a maximum 

width of 35 km across the centre of the b~lt (Fig. 2.2). It 

is also correlated with rocks of the King's Point complex 

and the Cape st. John Group, found up to 50 km to the north 

and the MicMac, Sheffield Lake and Sops Arm Groups to the 

west (Fig. 2.2). The Springdale Group (Fig. 2.2) is not 

fossiliferous, so that .prior to this study its Silurian age 
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was only indirectly inferred through correlation with the 

fossiliferous Botwood belt. Chandler and Dunning (1983) 

compared the Springdale Group with rhyolites of southern 

Newfoundland which yielded zircon date of 431 + 5 Ma. This 

correlation was subsequently supported by a U/Pb zircon 

date of 429 +6/-5 Ma from an ash flow tuff of the 

Springdale Group {Chandler et al., 1987). 

Rocks of the Springdale Group generally show no 

penetrative deformation, but are folded about a 

northerly-plunging synformal axis (see Plate 2.1). 

Sedimentary rocks of the Group are gently dipping (Plate 

2.1, 2.2.b), but locally inclined up to so0 on either 
• 

side of the fold axis (Fig. 2.2.a). If all units were 

folded to the same degree, this would indicate 

across-strike structural shortening of up to about 20%, 

contributing to the present elongate distribution pattern 

of the Group. 

Although the radiometric dates (Chapter 5) indicate 

that the numbering sequence for the map units described 

below is indeed in chronological order, such volcano-facies 

stratigraphy is typified by abrupt truncation and wedging 

out of lithological units. Correlation of volcanic and 

sedimentary markers are made even more difficult by the 

discontinuous exposure in the area. Dramatic variation in 

the eruptive facies precludes 



Plate 2.1. Helicopter views of folded ridges of Springdale 
sandstones. Location is south of Springdale and 
north of the junction of routes 1 and 391, with 
views from the northeast (a) and east (b). 
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Plate 2.2(a). Red sandstones of the Springdale Group 
(Unit 9) on the east limb of the central syncline. 
On Route 1, viewing north. 

Plate 2.2(b). Gently-dipping Springdale Group sandstones 
(Unit 9) exposed on Burnt Berry Brook north of the 
Route 1 (viewing south). 
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reliable correlation and stratigraphic control except where 

noted. Accordingly, the units are presented as lithological 

divisions, and not necessarily in a stratigraphic sequence, 

in the legend of Figure 2.3 and Map 1. 

The eastern and western boundaries of the Group 

(Fig. 2.3~ Map 1), although intruded by granitoid rocks, 

mark early boundary faults along which the Group was 

down-dropped, and which partially controlled volcanism, 

sedimentation, and intrusion of the granitoids. Along its 

eastern boundary, rocks of the Group lie unconformably on, 

or are faulted against, a basement of foliated 

granodiorite, diorite and tonalite which correlates with 

the Mansfield Head complex (Bostock et al., 1979) and the 

Hungry Mountain complex (Thurlow, 1981). Whalen and Currie 

(1983a, b) also show rocks of the Hungry Mountain complex 

on the southwestern margin of the Group. Whalen et al. 

(1987) provided a U/Pb zircon date of 467 ± 8 Ma for 

tonalite of the Hungry Mountain Complex, comparable to a 

date of 456 ± 3 Ma given by Dunning et al. (1989) for the 

vast tonalite terrane intruded by the Topsails and other 

Silurian rocks to the southwest, and to the date of 463 + 5 

Ma for the Burlington Granodiorite (Hibbard, 1983) which is 

intruded by the Silurian King's Point Complex to the 

northwest (Fig. 2.2). All of these granitoids have zircons 

inherited from elder Precambrian rocks. 
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These basement rocks are grouped as Unit A on Figure 

2.3 and Kap 1, on the eastern and western margins of the 

map area. In the east they extt•nd from South Pond 

southwards to Joe Glodes Pond for at least 45 km along a 

faulted unconformable contact. In the west they are exposed 

as an up-faulted block, and as roof pendants within the 

Topsails Complex. These rocks range from amphibolite and 

diorite through granodiorite and granite in composition. 

The former are mainly foliated amphibolite and gabbro 

occurring as large screens and xenoliths in foliated 

diorite and granodiorite. Green and black, medium- to fine

grained diorite, with hornblende and biotite, are intruded 

or net-veined by a pale fine-grained granite, with a 

typical tectonic fabric emphasized by amphibole alignment 

(Plate 2.3). These are locally intruded by variably 

deformed tonalite and amphibole-biotite granite. Intrusive 

contacts are intermittently exposed, and are locally 

fault-modified, but it is clear that both the basement 

rocks and the Springdale Group were intruded by granitoid 

rocks. 

Three groups of Lower Ordovician volcanic rocks form 

the basement along the northern margin of the Springdale 

Group. They are the Lushs Bight, catchers Pond and 

Buchans/Roberts Arm Groups, all Arenig in age. Zircons from 

the Buchans Group yield an age of 473 + 3/-2 Ma (Dunning gt_ 

~, 1987). The Lushs Bight Group is dominated by basaltic 

pillow lavas and dikes representing the upper parts of 



Plate 2.3. 
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Foliated amphibolite of Unit A, taken near the 
southern end of South Pond. 
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Iapetus oceanic crust, and it is assumed that the deeper 

parts of such ophiolitic suites were the source of 

ultramafic clasts within the ash flows of the Springdale 

Group. Silicic pyroclastic rocks are found with the pillow 

lavas of the Catchers Pond and Buchans/Roberts Arm Groups, 

which are generally interpreted as of island arc/back arc 

origin (e.g. Swanson et al., 1981; Kean, 1988). 

In general it can be said that the volcanic and 

plutonic rocks of the Springdale Group have had access to a 

variety of source rocks for their derivation and 

contamination, including subducted Precambrian continental 

crust and over1ying platformal sediments, Calubro-Qrdovician 

oceanic crust and mantle, and early.Ordovician island 

arcjback arc volcanic rocks and associated sediments. Their 

influence on the Springdale rocks can be seen in the 

following descriptions. 

2.3. Unit 1 

Unit 1 is located along the eastern margin of the 

map area, and extends as an elongate lens towards the 

south, to at least 15 km southwest of south Pond (Fig. 2.3~ 

Map 1). It is the lowermost recognized of the volcanic 

units, is intruded by younger granitoid rocks (unit E), and 

has a fault-modified unconformable relationship with the 

older granodiorite (Unit A) to the east. 
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Unit 1 is a moderately welded, crystal-lithic tuf.f, 

commonly highly fractured or sheared along its eastern 

margin. It differs from the other overlying ash-flows in 

that fractured and broken crystals of both plagioclase and 

K-feldspar are present, along with accessory biotite, 

quartz, and rare opaques (Plate 2.4a). The lithic component 

includes clasts of plagicphyric basalt, andesite, 

ultramafics, red jasper, granophyre and perlitic felsic 

fragments. The matrix includes shards, rock and crystal 

fragments and partially welded eutaxitic pumice lapilli 

(Plate 2.4b). The occurrence of two feldspars and biotite 

in .the crystal component of this tuff suggest that it was 

erupted from water-saturated magma chamber, perhaps 

relatively deeper than those of the later ash flows. 

2.4. Unit 2 

Unit 2 is a distinctive and complex assemblage of 

clastic rocks forming a composite unit, best developed as 

elongate lenses alo~q the eastern margin of the caldera 

(Fiq. 2.3; Map 1). These eastern exposures form two main 

bands. The northernmost is about 8 km long and only metres 

wide in the north, expanding southwards to cover an 

irregularly shaped lobate area about l km wide. The 

southern band is seen as separate elongate ridges, in 

contact with basement rocks, extending the unit for a 

further 18 km. The western equivalent is found in two 



Plate 2.4(a). Lithic clasts and biotite phenocrysts in 
glassy groundmass with crystal fragments, Unit l. 

Plate 2.4(b). Perlitic, spherulitic and eutaxitic textures 
in clasts of Unit 1. 
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separate smaller exposures, a northern one about 1 km2, 

and a southern one about 1 by 5 km. Smaller areas of this 

lithology have been mapped in the western parts of the 

caldera, and other elongate lenses in the south central 

parts of the area indicate that this lithology has been 

generated throughout the deposition of most other units of 

the Springdale Group. 

It is dominated by mesobreccias, laharic flows, with 

tuffites and peperites, volcanic conglomerates and local 

red sandstones, and volcanic explosion breccias (Plates 

2.5a-e). The term mesobriccia is used as defined by 

Lipman (19 ) for a comples caldera-margin clastic 

assemblage including a range of blocks up to lkm across. 

In general the volcaniclastic lithologies are characterized 

by poor sorting a~d massive to very coarse bedding. The 

lahars have dominantly sub-angular blocks in a locally 

vesicular muddy or ashy matrix. Both the coarse and fine 

fractions of these deposits are compositionally variable 

from basalt to rhyolite. Bedding is commonly absent in the 

lahars, but where present it is reversely graded, with the 

finer basal horizon much thinner than the overlying coarse 

beds. The laharic flows locally exhibit imbrication of 

elongate clasts (Plate 2.5a). 

The tuffites are composed of predominantly 

pyroclastic debris and reworked volcanic cla~ts, and can be 

subdivided into tuffaceous conglomerates and tuffaceous 

breccias. Boulders in the tuffites are not as large as 

those of the lahars, but are also commonly subanqular to 



Plate 2.5(a,b). Coarse laharic breccia of Unit 2, west of 
South Pond on the eastern margin of the map area. 

35 



Plate 2.5(c). Coarsely bedded mesobreccia block of Unit 2 
along southeast margin of the caldera. It contains 
both epiclastic volcanic debris and reworked 
material. 

Plate 2.5(d). Volcanic conglomerate in mega-breccia 
collapse blocks found along the northwest margin of 
the caldera. 
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Plate 2.5(e). Partially abraded blocks in a microbrecciated 
"frothy" matrix of Unit 2, near Barney's Brook. 

37 

Plate 2.6. Photomicrograph of glomerocrystic andesite of 
Unit 3. Mineralogy includes clinopyroxene, 
plagioclase, minor olivine replaced by serpentine in 
a trachytic groundmass with opaques and oxides. 
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and bombs to rhyolitic tuffs of varied texture. The matrix 

is dominated by vitric shards and broken crystals, with 

minor lithic fragments, and is locally vesicula,presumably 

due to de-watering during and after deposition (Plate 

2.5b). 

The peperites are composed of fine- to medium

grained volcanogenic sandstones which have been baked and 

oxidized by injection of basaltic and intermediate lavas. 

They contain a range of detritus, including cobbles and 

pebbles of underlying flows, breccias, and pyroclastic 

deposits. 

Volcanic conglomerates differ from the above 

lithotypes in that they have been more extensively 

reworked, sorted and redeposited as clastic sediments. They 

contain large, subrounded to rounded boulders and cobbles 

in a sand-sized matrix (Plate 2.5c). Most of the clasts are 

of silicic volcanics, with some of andesite and basalt. 

Sorting in these conglomerates ranges from poor to good. 

Bedding is common, and may be thick and structureless, thin 

and finely laminated, or crossbedded (Plate 2.5d). These 

deposits commonly show normal grading, especially obvious 

in scour fills or channel deposit horizons of red arkosic 

sandstones interbedded with the more silicic and 

well-bedded conglomerate horizons. 

Rocks which are very similar to monomictic lahars 

are interpreted to be degassing explosion breccias because 

of their microbrecciated matrix, in contrast to the muddy 



laharic matrix. They are commonly composed of intermediate 

or basaltic volcanic material, as both clasts and matrix 

(Plate 2.5e). Bedding is commonly absent and the fabric is 

isotropic, or shows "streaming" from the gas brecciation 

process. 

Unit 2 was produced by a mixture of volcanic and 

sedimentary processes. The predominant feature in all 

subunits is the large size of the clasts, suspended in a 

finer matrix, i.e. a strongly bimodal size distribution. 

These lithologies represent facies developed during 

volcanic activity, ranging from near-source explosion 

deposits, to more distal, fluvially reworked sediments. 

Some debris flows may have been activated on unstable 

slopes and rapidly deposited, whereas others could have had 

long periods of reworking. The lithologies of unit 2 are 

similar to those seen at caldera margins and, as discussed 

below, this unit is important as a marginal facies marker 

for the Springdale caldera. 

2.5. Unit 3 

Unit 3 includes intermediate flows, flow breccias, 

and intrusive rocks. They are distributed along thEr 

eastern and southern border of the caldera in a belt about 

24 km long and up to 3 km wide (Fig. 2.3, Map I). A number 

of isolated exposures are also found in the central and 

western parts of the map area. Unit 3 is interbedded with 
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units 1, 2, 4, and 5, and intrudes unit 5. It consists of 

intermediate composition (dacite, andesite)non-vesicular 

flows, commonly very aphanitic but l~cally with 

qlomerocrystic aggregates of plagioclase and phenocrysts of 

altered mafic minerals (olivine? and hornblende? Plate 

2.6). The massive to strongly flow-foliated flows are 

typically brecciated. Intrusions of massive diorite are 

also 1~ound. 

The flows and intrusions of unit 3 represent a 

period of volcanism dominated by andesitic-dacitic 

chemistry, unlike the other major lava flows which are of 

basaltic composition. A minor phase of this unit consists . 
of interbanded silicic and mafic compositions on the scale 

of centimetres and smaller, suggesting that some of these 

intermediate rocks may have been formed by mixing of more 

mafic and silicic magmas. 

2.6. Unit 4 

Unit 4 forms a narrow band, about soo m. wide, of 

intermediate ash-flow tuff, extending from southern Hall's 

Bay for about 10 km toward the ssw (Fig. 2.3: Map 1: also 

Fig. 2.7.a). It overlies unit 3 and is succeeded by 

basaltic flows of unit s, and may be locally gradational 

into unit 6. It ranges in composition from rhyolite to 

andesite, although it is predominantly dacite. Its 

lithologies include pyroclastic breccia, crystal-lithic and 

lapilli ash-flow tuffs. 



Plate 2.7(a). Weakly welded dacitic lapilli tuff of Unit 4 
(northern Barney's Brook). 

Plate 2.7(b). Welded part of Unit 4 (south of route 1 on 
power line). 
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Xn the lithic-dominated portions, the cognate clasts 

are andesite and aphanitic rhyolite in an ashy matrix. 

These lithic tuffs are generally layered, tend to have 

reverse grading, and vary in their degree of welding. The 

tuff breccias contain angular and flattened pumice clasts 

(>65 mm long) in an ashy matrix, with minor lithic clasts, 

and also show variable degrees of welding (Plate 2.7). The 

lapilli tuff has pumice lapilli up to 65 mm long, in a 

welded ashy matrix. These lithologies tend to be 

discontinuous along strike. 

2.7. Unit 5 

Unit 5 consists mainly of basaltic flow rocks which 

occur throughout the map area (Fig. 2.3; Map 1), with 

prominent exposures along the coast of Hall's Bay, along 

Barney's, Burnt Berry, and West Brooks, and to the 

southwest on flat-topped hills (Plate 2.8). They are 

interbedded with the other lithologies, are intruded by 

younger granitoid rocks of the Topsails Complex, and rest 

disconformably upon and are faulted against the basement 

rocks. 

These flows are typically aphanitic, with notable 

local concentrations of plagioclase phenocrysts (Plate 

2.9). They range from non-vesicular to highly vesicular, 

with amygdales of quartz, calcite and chlorite. The flows 

are variably altered throughout the entire Springdale Group 



Plate 2.8. Flat-topped ridge composed of a sequence of 
basalt flows of Unit 5 (southwest corner of the map 
area, viewing east) . 

Plate 2.9(a). Coarsely porphyritic vesicular basalt, Unit 5. 
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Plate 2.9(b). Typical features of basaltic flows, with 
tabular base and vesicular top, Unit 5. 
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Plate 2.9(c). Basalt flow-top breccia; looking down at the 
top surface of the lava flow. Clasts of basalt 
suspended in a rubbly matrix of rock flour and some 
sandy dykes generated as flows incorporate wet 
sediments. 
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and the secondary assemblages show no systematic geographic 

variation, except along the eastern margins of the map 

where they have the greatest diversity of secondary 

minerals. 

2.8. Unit 6 

Unit 6 consists of silicic ash-flow tuffs, exposed 

continuously along Barney's Broc.k, in conformable contact 

with basaltic flows of unit 4 (Plate 2.10a), over a strike 

length of 14 km with a maximum width of 3 km (Fig. 2.3; Map 

1). The unit has been extended southwards from a 

discontinuous exposures for an additional 30 km, with 

maximum width of 6 km in the extreme south of the map area 

(Plate 2.10b). These ash flows are reddish-brown to grey 

and display varying proportions of crystals, lithic 

fragments, and spectacular flattened vitroclasts 

(Plate 2.lla). In the north along Barney's Brook the basal 

part of the unit is a thick lithophysae-rich horizon 

resting on irregular flow tops of the basaltic Unit 5. The 

individual lithophysae may be as large as 10 em in 

diameter, with central cavities partially or completely 

filled with radiating quartz crystals, microlites, and 

chalcedony (Plate 2.1lb). This horizon grades up into a 

partially welded crystal-lithic lapilli tuff. In the south 

Unit 6 has an extensive area where lithphysae for dykes and 

tubes formed where gas-charged fluids were injected along 



Plate 2.10(a). Shows the clear contact between basaltic 
flows of Unit 5 in the foreground and Unit 6 in 
middle and background. Photgraph taken on the 
northern part of Barney's Brook, viewing 
south-southwest. 

Plate 2.10(b). Contact between Units 5 and 6, as well as 
large sill intruded along bedding. Photograph taken 
in the south part of Barney's Brook, viewing south. 
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Plate 2.10(c). Close-up of sill at contact shown in 2(b). 

Plate 2.ll(a). Welded basal zone of Unit 6 with large 
flattened pumice bombs. 



Plate 2.11(b). Large lithophysae in ash-flow tuff, Unit 6. 

Plate 2.11(c). Coalesced lithophysae forming gas-charged 
dykes and tubes injecting along the upper contact of 
Unit 6. 
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the contact with a dacite sill (Plate 2.1lc). The 

phenocrysts are plagioclase, K-feldspar and quartz, which 

are commonly broken and concentrated in the matrix in 

preference to the pumice vitroclasts. A crude bedding is 

defined by flattening of pumice lapilli up to a metre long 

(Plate 2.12), as well as by their concentration. 

The densely welded parts of Unit 6 are maroon to 

brown ash-flow tuffs, with phenocrysts of plagioclase, 

K-feldspar and quartz, with strealty variations in relative 

proportions. A welding lamination is seen on weathered 

surfaces, but on fresh surfaces they look massive and 

stru.ctureless. The welded zones are locally extremely 

massive and have the superficial appearance . .:f an intrusive 

quartz-feldspar porphyry. Unit 6 includes a number of 

pyroclastic flow units, each characterized by different 

proportions of lithic and vitroclastic clasts. They cooled 

as a simple cooling unit suggesting that the ash flows 

followed one another in rapid succession, with no 

substantial development of internal thermal gradients. 

2.9. Unit 7 

Unit 7 is found along West Brook and across the 

south central parts of the map area. This unit is dacitic 

to rhyolitic, and includes massive, strongly welded vitric 

ash-flow tuffs, vitroclastic breccias and domes. The 

ma~sive tuffs are locally porphyritic, with small euhedral 

flow-aligned plagioclase and rare quartz phenocrysts jn a 
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Plate 2.12. Flat-lying orientation of welding and flattened 
pumice in Unit 6. 
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brown to maroon glassy matrix. Welding can be observed on 

weathered surfaces and is apparently flat-·lying in the 

southern exposures (Plate 2.13a) of this unit and becomes 

more steeply inclined towards the north (Plate 2.13b). 

CUrviplanar joint surfaces are very common in the massive 

portions c:f the unit, and internal plastic shear zones and 

local brecciation can been seen, as well as flow folds: 

features indicative of domes. Petrographic studies show 

that the welded vitroclastic breccia of Unit 7, with very 

angular variably flow-folded and chaotically oriented 

"pumice fragments", represents the autobrecciated debris of 

cooling domal intrusions in the vicinity of contacts with 

their oogenetic pyroclastic apron (Plate 2.13c). 

2.10. Unit 8 

Unit 8 is a rhyolitic ash-flow tuff sequence 

extending throughout the centre of the map area (Fig. 2. 3: 

Map 1), mappable with the aid of the geophysical maps in a 

number of separate fault-bounded lenses and bands about a 

synformal axis, despite the intermittent exposures. Because 

the exposures are intermittent, it is not possible to 

measure thicknesses in a straightforward manner. However, 

the map pattern allows for some inferences, based on the 

regional variations in dip as measured on clearly exposed 

bedding criteria. The band of Unit 8 as seen on the 

northwestern limb is less than 1 km wide and extends for 14 



Plate 2.13(a). Photograph on Great Gull Pond map sheet, 
viewing south, showing Unit 7 in the left 
background, Unit 6 in the medium, and an igneous 
breccia phase of Unit 2 in the foreground. 
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Plate 2.13(b). Ash-flow tuff of Unit 7 exposed on West 
Brook, with moderately-dipping welding fabric 
visible on weathered surface. 

Plate 2.13(c). Large block of flow-banded densely welded 
very fine-grained dacitic ash-flow tuff of Unit 7 
found in carapace of dome on West Brook. 
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km from the fold closure. Exposures on the southeastern 

limb form two horizons separated by red sandstones. The 

outer one is about 40 km long, several 100 m wide in its 

northern extremity and broadens toward the southwest to 2 

km. The inner band is only several 100 m or less wide and 7 

km long. Another band of this lithotype is found in the 

western part of the map area, about a km wide and six long. 

Unit 8 includes an assemblage of devitrified, 

variably welded, pink and red rhyolitic ash-flow tuffs and 

breccias (Plate 2.14) , displaying a variety of rheomorphic 

features. Since this ash-flow tuff grades into a sandstone 

at a few local.ities, it may be part of ~ complex rather 

than a simple cooling unit. Certain parts of this unit are 

very massive due to intense welding, others not strongly 

devitrified, and all have internal auto- or gas-breccias 

with clasts of plastically deformed rhyolitic lava and 

pumice (Plate 2 .15) • Others consist of unwelded 

vitroclastic tuffs with large individually devitrified 

shards (Plate 2 .16) , each showing independent development 

of spherules. 

A few outcrops of unusual vi troclastic breccias 

within Unit 8 are interpreted as a dome apron or carapace, 

although exposure is inadequate to determine its geometry. 

Mixed magmas are found within the breccias, with 

alternating thin basaltic and silicic bands (Plate 2 .17). 

Near central Burnt Berry Brook the silicic tuffs are 

intruded by a rhyolitic dome, the Burnt Berry Dome (Unit c, 

Plate 2 .18). 



Plate 2.14. Rhyolitic ash-flow tuff of Unit 8. Moderately 
welded with red fiamme in a white weathered matrix. 

Plate 2.15(a). Pyroclastic breccia of Unit 8. Note plastic 
deformation of clasts. 
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Plate 2.15(b). Unwelded pyroclastic breccia with angular 
cognate and accidental lithic clasts. 

Plate 2.16(a). Breccia of Unit a, with pink glassy clasts 
in a siliceous matrix, probably a dome carapace 
breccia derived from the cooling surface of a still 
mobile dome. 
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Plate 

Plate 

2.16(b). Photomicrograph of sample 
2.16(c). The vitric clasts are 
devitrified with axiolitic texture. 

shown in Plate 
individually 

2.17(a). Small "dykelet" 
some droplets of felsic 
Unit 8. 

of mafic magma entraining 
melt, in ash-flow tuff of 
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Plate 2.17(b). Ash-flow tuff of Unit 8. The black pumice 
clasts are mildly welded, in a crystal-lithic matrix 
which contains abundant mafic xenocrysts. 
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2.11. Unit 9 

Unit 9 comprises a sequence of redbed sedimentary 

rocks distributed in the central portion of the syn·t'·,.,rm 

(Fig. 2.3; Map 1). As with Unit 8, estimates of its 

boundaries can only be inferred from the distribution 

patterns, as seen on Figure 2.3. It forms belts up to 25 km 

long, 3 km wide in the northeast and narrowing to 500 m at 

the inner fold closure. An outer band of sediments a~e 

disposed about the central synclinal axis over a distance of 

20 km and width between 2 and o. 5 km. Unit 9 is 

interbedded with units 5, 8 and 10, and grades into unit 8 

in a few locations. 

These sedimentary rocks have been described in detail 

by Wess~l (1975). In general they consist of two types of 

conglomerate, sequences of sandtones, and sandy siltstones 

with localized development of caliche (Plate 2.19). 

Structures such as cross-bedding, ripples, laminations, 

rip-up horizons, scour channels, and many other ~edimentary 

features are present (Plate 2.20a). Wessel (1975) suggested 

that they represent stream-flood and proximal and distal 

fluviatile deposits. 

Distinctive polymictic cobble conglomerates are found 

at local contacts with the volcanic rocks of the Springdale 

Group. These conglomerates are commonly massive to poorl y 

bedded, with bedding marked by sandy scour channels which 

pinch and swell and obscure true bedding orientations. The 



Plate 2.18. Rhyolite dome (Unit C) found on upper Burnt 
Berry Brook. 
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Plate 2.19. ("Newfoundland Gothic"!) Typical sequence of 
Springdale "redbeds" (Unit 9) . Thick basal pebble 
conglomerate fining up to fine-grained sandstone 
beds capped with caliche. Photo taken on . coastline 
in town of Springdale. 
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larqer clasts may be imbricated and larqe-scale coarseninq 

upward sequences can be recoqnized. The subrounded to 

subanqular cobbles consist predominantly of aphanitic and 

porphrytic rhyolites, intermediate volcanics, and rarer 

basaltic and granitoid clasts (Plate 2.20b). The cobbles 

are aupported in a medium-grained pale beige to maroon 

sandy matrix composed of the sa~e lithic material pl~~ 

abundant alkali feldspar and quartz. 

Pebble conglomerates delineate basal portions of 

sandy cycles, thus occurring repeatedly throughout the 

sequence, and are usually massive and indurated, with 

little recognizable grading or other internal structures. 

Pebbles in this conglomerate are subrounded, and composed 

of silicic volcanic rocks, red and green cherts, and rare 

ultramafic, basaltic, ~ne granitoid clasts. These pebbles 

are supported in a fine- to medium-grained matrix of 

subangular sand which is composed of the same lithic 

components as the pebbles and a high proportion of quartz 

and feldspar. 

2.12. Unit 10 

Unit 10 is an orange~to brown, densely welded 

crystal-lithic tuff found mainly in the interior of the 

central syncline, and in one other exposure in the 

southwestern part of the area (Fig. 2.3: Map 1). The larger 



Plate 2.20(a). Ripple marks on the surface of a bedding 
plane in sandstone of Unit 9. 

Plate 2.20(b). Polymictic conglomerate. Note weathering 
rims on some cobbles. 
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Plate 2.21. Eutaxitic texture in a crystal ash-flow tuff of 
Unit 10. Note resorbed quartz and feldspar and 
typical Y and X-shaped bubble wall shards in matrix. 
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synclinal exposure trends northeast for 18 km, with the 

northwestern limb formed by a broader band as wide as 2.5 

km in the centre and narrowing both northwards and 

southwards. The southeastern limb is up to 1 km wide, 

becoming less than 150 m at its northern limit on the coast 

of Halls Bay. The southwestern exposures form a belt about 

6 km long by 1.25 km wide. 

This crystal tuff is very massive and so strongly 

welded as to look like an intrusive porphyry. It has large 

phenocrysts of quartz and feldspar, clasts of mafic and 

ultramafic lithologies, and does not demonstrate many 

fluidal characteristics. The feldspars are often zoned and 

fractured, and together with the quartz can constitute up 

to 60% of the rock. The crystals are found in a red, brown 

or orange vitric aphanitic matrix. The lithics are commonly 

angular, and may have reaction halos, especially around the 

ultramafic clasts (Plate 2.21). 

2.13. Domes and Vent Centres of the Springdale Caldera 

Unit c is a glassy rhyolite with microphenocrysts of 

quartz and feldspar, and may contain finely disseminated 

bluish-green amphibole and hematite in the groundmass 

(Plate 2.22). This unit comprises rhyolitic dykes, sills 

and high-silica domes. such domes are found as a number of 

separate roughly oval exposures in the southern and central 

parts of the mLp area (Fig. 2.3, Map 1), as an elongate 
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lens intersected by Burnt Berry Brook, and as an isolated 

exposure, cut by intermediate dykes, near Barney's Brook. 

The rhyolite domes have similar compositions and 

textures, and intrude Units 3, G and 8, as well as the 

microdiorite of unit B,. They are flow-foliated, with 

extreme convolution shown by fluidal folds (Plate 2.23) and 

disruption of flow banding (Plate 2.23b), auto-brecciated 

and contain zones of intense development of spherules and 

other indications of gas-streaming. Auto-brecc~ated aprons 

composed of disrupted fragments of the dome are considered 

to be part ot this unit. They are not reworked clasts in 

any sense and are commonly found in a glassy matrix which 

represents maqma injected into the cooled rind along the 

margins of the domes (Plate 2.24). Curviplanar jointing and 

ductile flow-shear f(.ltures are found within the body of 

the domes. 

At least three.main centres of eruption can be 

recognized in the Springdale Caldera whi.ch are now 

manifested as domes and/or plugs and vent complexes, each 

with distinctive features and emplacement characteristics. 

Domes can be described as 11stP-ep-sided, rounded 

extrusions of highly viscous lava squeezed out from a 

volcano, and forming dome-shaped or bulbous masses of 

congealed lava above and around the volcanic vent" (Bates 

and Jackson, 1980). Although this definition is accurate 

for most "exogenous" domes in which the lava is · e•"truded at 



Plate 2.22. Microlites of riebeckite in groundmass of 
rhyolite from _Burnt Berry Dome. 

Plate 2.23(a). Fluidal flow folds in Burnt Berry Dome. 
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Plate 2.23(b). Convoluted flow-foliation in the Burnt Berry 
Dome. (Unit C) . 
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Plate 2.24. Autobrecciation in gas-rich zones of the Burnt 
Berry Dome. 
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the dome surface, another type of emplacement behavior is 

preserved as "endogenous" domes wherein the fresh lava is 

added to the interior of the structure and may not reach 

the surface. There is a continuum of physical 

characteristics between these types of domal structures as 

well as their associated lateral lava flows and co-genetic 

pyroclastic deposits, ~s shown in Fig. 2.4, which should be 

followed in the following descriptions and discussion. 

The Mount Saint Helens eruption of 1980 has allowed 

for observations of the actual physical mechanisms of dome 

emplacement and related pyroclastic eruption (Swanson 

~ ~, 1987). It was noted there that periods of 

endogenous inflation alternated with exogenous extrusion 

and explosive eruption, direct evidence that a dome site 

can be a vent source which is subsequently plugged with the 

non-explosive viscous lava of the subjacent magma 

reservoir. 

Dome systems typically occur around the margins of 

calderas and may be distributed along arcuate or linear 

features which define the fracture systems related to the 

collapse and emplacement history of the caldera. Collapse 

geometry as well as chemical composition, volatile content 

of the magma, and surface conditions (e.g. wet or dry 

emplacement) control the distribution of domes and vents. 

Although more detailed geophysical interpretations 

are made in the following sections, it is expedient to make 

passing reference to the geophysical maps in discussing the 
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Figure 2.4. Schematic interpretations of the features seen 
in domes and tephra deposits of the Springdale 
caldera. 

(a). Johnson's Lookout, based on Burt and Sheridan's 
(1987) description 'Jf "Mexican-type" rhyolite flows. 
1. Internal fractures that cut flow banding; 2. Flow 
banding; 3. vitrophyric carapace breccia (See also 
Unit 8 and Plates 2.15(a,) and 2.16(a); 4. breccia 
beneath and at the front of the flow. 

(b) • Tuff ring and lava cone wlth overflowing lava plug. 
Note inward-dipping bedding of the tuff-cone, as 
observed in Plate 2.29(b) (after-Heiken and Wohletz, 
1987). 

(c). Hypothetical cross section through a rhyolite dome 
showing the ~teepening and overturning of flow 
foliations as the upper contact or cara~ace is 
approached (after Burt ~nd Sheridan, 1987). 

(d) • Scheroatic ill:ustration of pre-eruptive (A) and 
post-eruptive (B) stages for vulcanian activity, 
showing the crater-fill and vent breccia seen on 
West Brook (Sea Plate 2.35) (modified from Heiken 
and Wohletz, 1987). 
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domes. For example, the bounding fractures can be inferred 

from the total field aeromagnetic map (Fig. 2.7a)~ Buried 

plutons along the margins can also be inferred with the use 

of these magnetic data and the limited outcrop (Fig. 2.7 

and maps 3 and 4 below). 

At each end of one such lineament on the eastern 

margin of the caldera two elongate domal strllCtures or 

spines are present. These structures represent dome/plug 

facies which delineate the fissure system along which the 

major caldera-forming ash flow tuffs erupted. The two 

features are named Johnson's Lookout and Wolf Head 

(Map la). They are described separ~~·~ly although they could 

represent two points of emplacement along a dyke feeder 

that may have erupted simultaneously. Also the present 

structural configuration has not preserved these features 

at the same erosional level and therefore different depths 

are represented at each feature. Although late stage 

volcanic and sedimentary facies cover most of the feeder 

system to Johnson's Lookout and Wolf Head, the lineament 

upon which these two features are found can be traced along 

a trend on the geophysical maps (see Fig. 2.7, below). 

Johnson's LoOkout is a prominent topographic feature 

which occurs along the eastern margin of the Springdale 

Caldera. As mentioned above it appears to be the source or 

vent area for at least one ashflow eruption in the caldera, 

based on the facies variation of the ash flow 



Plate 2.25(a). The 
eastern side of 
Johnson's Lookout; 
view towards the 
northeast. 

Plate 2.25(b). The eastern side of Johnson's Lookout. 
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tuff preservea around this feature and.the chemistry of the 

tuff in comparison to that of Johnson's Lookout Spine 

itself. The feature is a massive spine roughly 800 feet 

above sea level with a ve~ical rise of 50 feet (Plate 

2.2Sa,b). It trends in a northeasterely direction and the 

prominent feature is about 750 metres long. The main 

feature is surrounded by adjacent, topographically 

prominent outcrops that are composed of both the massive 

dacitic composition (66.80 % silica) domal material and 

brecciated apron material consisting of autoclastic 

fragments either produced by auto-injection and fracturing 

of the melt along cooling joints or spalling of cooled rind 

material along the flanks of the feature (Plate 2.26). 

These rock types are pervasive in the vicinity of Johnson's 

Lookout (Johnson's Lookout) for a range of 2 km along the 

trace length of the elongate northeasterly direction and 

across the short axis direction of less than one km in 

outcrop distribution (Fig. 2.4~). Both geophysical data 

and mapping show a wider distribution of the pyroclastic 

deposit which appears to be a cogenetic ashflow or proximal 

deposit to this source area (Fig. 2.7, maps 3 a1&~ 4 below). 

A number of characteristics of Johnson's Lookout 

suggest that a magma reservoir drove the melt upward and in 

part outward from a deeper source and cooled at or near the 

surface. Not all of the plug/dome/apron features are 

preserved, but enough are to reconstruct the basic elongate 

orientation and primary features of the spine. 



Plate 2.26. Autoclasis of flow-banded dacite of Johnson's 
Lookout. Note fine flow-banding marked by 
devitrification spots. 

Plate 2.27. Columnar joints and cooling fractures along the 
eastern scarp of Johnson's Lookout. 
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Johnson's Lookout is composed of aphyric glassy 

dacitic materia.l with plagioclase crystals, and has zones 

or regions of color bands and cleaved cooling joints. These 

cleaved areas appear to radiate around the structure 

although the greatest portion of them are found along the 

southeastern fl~nk of the feature. Along some of these 

congealed joints, localized autobrecciation is observed, 

which suggests that they may be primary flow channels in a 

solidifying carapace. In plan view along the top of 

Johnson's Lookout they are steeply dipping and are at most 

10 centimetres wide These steeply dipping or locally 

inclined joints divide the spine into elongate columnar 

masses (joints) up to a few metres across (Plate 2.27). 

These features can readily be observed along the 

eastern scarp of Johnson's Lookout. The scale and 

irregularity of these joints would suggest that they 

represent vertical shrinking fractures. Also observed is at 

least one set of subhorizontal or curviplanar sheeting 

joints. Where the Johnson's Lookout slopes off to the north 

and south, oblique cuts through these "fractures" show a 

distinctive kinking pattern with centimetre-wide 

repetitions of the peaks. The orientation of the kinking is 

broken up in domains or fracture blocks along the dominant 

joints. Small-scale flow banding is also present and where 

it has become brecciated, pieces of the flow-banded glass 

are rotated or pushed aside and rest in an isotropic glassy 



groundmass. Where the flow-banding is well developed, 

devitrification spots or blebs overprint the banding and 

are more pervasive. 
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On the eastern scarp vertical striations are seen 

which are similar to those produced by shearing of viscous 

and solid siliceous melt during intrusion. The eastern 

scarp appears to be the limit of solid melt material of the 

spine and may thus approximate the fracture along which the 

melt was injected against wall rock (that is now eroded 

away). Late stage fluids may have accentuated these 

features either as as conduits for melt emplacement or 

later as fluid~ passed through the fractures. Near the base 

of Johnson's Lookout a swarm of "dykes" appears to feed up 

into the surface of the structure. These dykes or pipes 

have distinct margins, appear stony or more grainy than the 

spine matrix but are chemically and physically equivalent 

with the glassy dacitic material. However they cross-cut 

the prexisting fabrics. Veining associated with these small 

scale intrusions may suggest a late vapor-phase or residua 

at the waning stage of dome emplacement. 

In thin section, the color bands or layering appear 

to be alternating areas of greater or lesser parallel 

cracks or discrete fractures. Where the fracturing is dense 

and they are aligned or in conjugate sets, the band has a 

reddish stain due to an oxidation of the iron-rich 

microlites. The greyish layers are either massive isotropic 



Plate 2.28. Greyish layers of isotropic dacite (left) with 
little or no fracturejautoclasis, with oxidized band 
in upper right displaying conjugate microfractues 
with microlites aligned obli~e to fractures. 

Plate 2.29(a). Eastern scarp of the Wolf Head peninsula, 
view to southwest. 
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glass with little or no f~acture/autoclasis, or bands of 

uniformly shattered dacitic melt in a relatively unaltered 

state (Plat~ 2.28). These variations may represent primary 

shear planes along which the melt flowed. 

wolf Head is a small peninsula in the southern part 

of Hall's Bay which divides a section of water known as 

West Bottom from Goodyear's Cove (Wolf Cove). The feature 

trends northeasterly and is just over one kilometer in 

length, less than 500 m wide, and rises out of the sea over 

65 metres at it's highest point (Map 1). The main body of 

Wolf Head is composed of brownish to maroon massive dacite 

that has greasy to glassy surfaces. Th'e most pro~inent 

cliff face on the east side of the peninsula displays a 

gross bedding which is composed of large angular blocks in 

a brecciated dacitic matrix (Plate 2.29a). The bedded 

blocky material forms a skin along both the eastern and 

western scarps of the peninsula (Plate 2.29b). Massive and 

autobrecciated material composes the central core and for 

this reason the brecciated material is interpreted as a 

fallback breccia along the margins of an original vent 

fracture which was subsequently plugged with viscous melt 

at the cessation of eruption'(Fig. 2.4b). 

This sequence of events is also indicated by the 

occurrence of an ash-flow tuff (Unit 4) which originates 

from and centres on Wolf Head, and overlies some 

,pre-eruptive andesite flows that are found along the very 



Plate 2.29(b). Base of the Wolf Head vent, looking north. 
Note Coarse bedding in the vent breccias seen in 
cliff. Red andesite flows underlying these breccias 
are seen in the left foreground. 
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base of the cliffs and in the general vicinity (see Maps 3 

and 4). Wolf Head is along strike from Johnson's Lookout 

and is virtually identical in terms of its physical 

characteristics and geochemistry. It is inferred that Wolf 

Head and Johnson's Lookout represent distinct locations of 

ash-flow tuff eruption (either contemperaneous or at least 

oogenetic) along an original fracture vent system on the 

eastern edge of the Springdale Caldera. Some prominent 

jointing surfaces run lengthwise along the extent of the 

penin~ula and two prominent joints cut across it. No major 

displacement appears to have taken place across these 

joints, although one fracture set forms a bench o~ the 

eastern side, separating the massive material from the 

blocky intrusion breccia, and may represent some original 

instability along the emplacement wall. 

In thin section the bulk of samples are glassy 

pilotaxitic-textured dacite with flow aligned plagioclase 

laths (Plate 2.30). The majority of samples show little 

evidence of heavy alteration although clots of carbonate 

and alteration of the plagioclase is typical. Where the 

rock appears brecciated along flow fractures, as in 

Johnson's Lookout, the areas of brecciation are zones where 

microlites are oxidized along parallel and conjugate 

fractures (Plate 2.31). 



Plate 2.30. Glassy pilotaxitic-textured dacite with flow
aligned microlites, Wolf Head. 

Plate 2.31. Autobrecciated Wolf Head dacite. 
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Tbe Burnt Berry Dgme is located near the central 

~~gion of the caldera and is seen to intrude ashflow tuffs 

and basaltic flow rocks of the late-stage caldera fill. 

This dome appears to have two "lobes" which may represent 

two coalesced plugs or may be a single structure that has 

been deformed by folding and faulting. The outcrop in this 

vicinity is very poor except for the river section along 

the Burnt r~rry Brook (for which the dome is named). A wide 

variety of physical chacacteristics can be noted in the 

brook where the dome is exposed for over 750 metres. The 

contact between it and adjacent lithologies is not actually 

exposed. 

Recent exploration trenching in the area has exposed 

a northwest-trending fault where two units, an ash-flow 

tuff (Indian River Tuff, Unit 10) and a lens of red 

sandstone and pebble conglomerate (Unit 9) are rotated to 

near vertical position along the edge of the Burnt Berry 

Dome. This section of the caldera fill was interpreted as 

representing a late keystone block with a high degree of 

both vertical and strike-slip faulting. This may have been 

accompanied by emplaceme.lt of the dome along fractures 

produced by slight upwarping from asymmetrical resurgence 

beneath the caldera. This faulting and the more complicated 

fault and geophysical patterns in the central caldera area 

(see Map 3 and Fig. 2.6 below) support this interpretation. 
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The Burnt Berry dome is made up of pink to brown 

glassy rhyolite. Good examples of curviplanar joint 

surfaces are found thoughout, and zones of flow-foliation 

or banding ar~ common (Fig. 2.4c). In plan view domains of 

~etre-scale columnar joint complexes are seen, and 

flow-generated breccias are common along congealed 

fractures. Near the margins of the structure, splay-like 

intr.usions of lithophysae dykes (Plate 2.32) and 

gas-breccias are found that bud off as irregular or 

radiating fracture sets. 

In thin section the rhyolite is extremely 

fine-grained to glassy with a spherulitic texture developed 

thr~ughout from devitrification of the glassy matrix. 

Phenocrysts of plagioclase and quartz are found along with 

zircon. Where gas-brecciation is prevalent, thin sections 

show an abundance of miarolitic cavities now infilled with 

drusy quartz. Small fractures off-set flow banding, on a 

scale from thin section (Plate 2.33) to outcrop-scale, 

typically filled with quartz and minor calcite and 

fluorite. 



Plate 2.32. Splay-like intrusions of lithophysae dykes 

Plate 2.33. Micro-fractures off-setting flow banding of 
Burnt Berry rhyolite. 
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A few other rhyolitic domes occur in the Springdale 

caldera. One is partially exposed on the southern part of 

Barney's Brook on the Great Gull Pond Sheet (12H/l). This 

dome is roughly 500 m in diameter anq shows most of the 

features described for the Burnt Berry Dome above, as well 

as a well defined autobrecciated ap~on. This dome is fed by 

a number of massive rhyolitic dykes that were heavily 

gas-charged and in some cases these dykes contai1~ ~~s 

tubes. In this area there is also a massive sill of 

rhyolitic composition sandwiched between two pyroclastic 

units, and many of the qas-charged dykes are seen to "feed" 

into the sill. 

Two other rhyolite domes have been identified in the 

southeastern part of the map area. They can ~a see:n on Map 

1 and are generally ovoid with more gently sloping contact 

relationships with the surrounding units (i.e. they are not 

steep-sided plug-like intrusions at their current level of 

exposure). These two larger domes, one near Misery Hill, 

and the r.;ther to the sonth of it, have well preserved 

aprons. and may represent e"cogenous flow domes with their 

lateral f:"..ows preserved. These domes appear to be emplaced 

in a concentric pattern around the Topsails intrusion to 

their south. The volcanic sequence in this area is tilted 

up towa4d the north by the intrusion of the Topsails 

Granite. 
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The West Brook Dome, like the.Burnt Berry Dome, is 

named for the brook along which it is exposed and where it 

forms prominent waterfall outcrops (Plate 2.34). The West 

Brook Dome is found in close association with its cogenetic 

py~oclastic deposits and because of the structural 

disposition and relief variation in the area of exposure 

almost a complete cross-section can be reconstructed. 

I have included the West Brook Dome into unit 7 

along with its surrounding pyroclastic deposit (ash-flow 

tuff). It is dacitic (62.8% silica), brown to maroon with 

obvious pink stained plagioclase crystals in a dense glassy 

matrix. A thick ash-flow tuff of this composition with 

variable welding orient~tion, is mapped along the main 

banks of West Brook. Its contact with the surface of the 

dome is demarcated by a coarse apron of blocky autobreccia 

which is composed of angular blocks (45cms and greater) of 

flow-banded and flow-folded dacite (Plate 2.l3c), identical 

with the domal material beneath this carapace. The blocks 

are in a matrix of the same composition and in places the 

breccia appears to be flow aligned. The dome is beneath 

t~ls autoclastic autobreccia but in part is overlain 

directly by the welded tuff of the same composition. The 

base of the tuff unit is a coarse pyroclastic deposit in 

some places which grades up into a fine ash-flow tuff. 

Where the coarse pyroclastic breccia is preserved, large 

pumice bombs are seen along 



Plate 2.34. waterfall on cliffs of the West Brook dome. 

Plate 2.35. Vent 
brecqia exposed 
in cliffs of 
the West Brook 
dome. 

...... ~~'-· 
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with some accidental lithic material such as angular, dense 

rhyolite clasts.The dome is exposed for 50 metres along its 

surface and in cross section for more than 10 metres. 

In part the dome is massive, but areas of extensive 

shearing and ductile/brittle fracture are also preserved 

where the dense glassy matrix appears to form discrete 

closely spaced and sheeted flow planes. The sheetingis 

produced by alternating bands of dince glassy material and 

granular gas-charged material and are curviplanar to 

concentric around the more massive core of the dome. The 

massive material of the dome appears to plug a vent 

structure at the base of the lowest waterfall. 

In ·the gorge formed by the West Brook Falls, · He 

wall opposite the falls has a distinctive hackly fracture 

and forms a large v-shaped structure up the wa~l. The 

interior of the V-shape is filled with large angular blocks 

of dacitic material in a fine, ashy, reddish matrix (Plate 

2.35). The walls around this v-shape are the massive 

dacitic compostion matrix of the dome material. At the top 

of the "V", the vent breccia is overlain by a lens of fine 

red sandstone, similar in composition to the breccia 

matrix. This is all capped by several basaltic flows. This 

feature is interpreted as a preserved vent through which 

was erupted the surrounding pyroclastic deposit and which 

was eventually plugged and quenched by the intrusion of the 

West Brook Dome, closely analogous to the events of the 
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1980 Mount st. Helens eruption (Swanson et al., 1985). It 

was subsequently filled with the silty debris and covered 

(and preserved by) basaltic flow~. 

2.14. Intrusive Rocks 

The intrusive rocks around the margins of the 

Springdale Group have not been studied in any detail, but 

they were sampled and their approximate contacts with the 

volcanic units have been delineated. Some of the 

information about these rocks has been compiled from Whalen 

et al. (1983), Thurlow (1981), Kalliokoski (1955, 1953) and 

Coyle et al. (1985) 

Units B and c app~ar to be genetically related to 

the springdale volcanic rocks. Unit B is a black massive 

microdiorite exposed near both margins of the group. It is 

intruded by dykes and sills of unit c, (but may be 

relatively contemporaneous) and intrudes units A and 3. 

Unit D may also intrude it in the west, although this 

contact is obscured by faulting. 

Units D and E, the younger granitoid rocks, were 

intruded along faults bounding the Springdale Group in the 

east and west, and truncate much of the stratigraphy in the 

south. These are part of the Topsails Complex which extends 

over tens of km southwards (Whalen and currie, l983a, b). 

These intrusions exhibit contact aureoles of major extent 

and intensity, indicated by the regional aeromagnetic maps, 



93 

although they have not been mapped in this study. Along 

the northwestern boundary with the volcanic rocks, the 

qraniteB tend to be hiqhly deformed and altered, possibly 

resulting from the faulting responsible for uplift and 

elimination of units 1 to 7 in this area. Most previous 

workers (e.g. Taylor et al., 1980: Whalen et al., 1983a) 

considered the granites of both Units 0 and E to be 

offshoots of the Topsails Complex. 

2.15. structural Geology. 

2.15.1. Faults 

In order to interpret the main faults affecting the 

Springdale Group it is useful to review the major faults 

which have affected the general area and their relative 

importance with regard to the Springdale and other 

correlative groups. The many faults of central and western 

Newfoundland have received variable attention and differing 

interpretations, depending upon the perspective and 

background, as well as the objectives of the particular 

investigator (e.g. see reviews by Dean and strong, 1976: 

Hibbard, 1983: Vander Pluijm, 1986). Recent mapping of the 

Silurian volcanic and associated rocks, particularly those 

of the Springdale and King's Point calderas (Coyle and 

Strong, 1985, 1986: coyle et al., 1985, 1986; Kontak and 

Strong, 1986: Mercer et al., 1985), has shown that several 

different styles of faulting can be recognized, reflecting 

a changing stress regime with time. 
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The most important and continuous fault system of 

the area is the Lonq Ranqe - Baie Verte fault system (Fig. 

2.1), first recognized by Murray and Howley (1881) and 

named by Wilson (1962) as the Cabot Fault. Because in the 

north this Cabot Fault splays into a number of branches, 

which are the main subject of this review, it is referred 

to here as the Cabot Fault Zone, with each of its branches 

discussed under their individual names. On the scale of the 

Appalachian-Caledonian orogen, attention has been focussed 

on the Cabot Fault Zone because of its correlation with the 

Great Glen Fault of scotland, both of which have been 

interpreted as a major crustal break related to the 

ancestral Lower Paleozoic Iapetus ocean marqin (Wilson, 

1966). Wilson (1962) correlated the Cabot Fault with others 

as far south as Boston, but it is more fundamentally 

correlated with faults further west, the "Baie Verte -

Brompton Line" of Williams and st. Julien (1982), i.e. with 

emphasis on its earliest role as the Iapetus ocean

continent suture. 
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Figure 2.5(~). The major faults of western Newfoundland 
(modjLfied from currie and Piasecki, 1989) • (b) • 
Reconstruction of the major fault zones of the 
Springdale region (See Fig. 2.2 for further 
details). 

I 
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The genera1 evidence is strong that the Cabot-Great 

Glen Fault system has been intermittently active throughout 

the development o~ the Appalachian-caledonian orogen, with 

style of movement changing from rifting and normal faulting 

when Iapetus was formed in the latest Precambrian, to 

obduction and thrusting during closure and destruction of 

Iapetus in the Middle Ordovician, to variable extents and 

senses of strike-slip faulting following closure, i.e. from 

the late Ordovician to the Carboniferous. Early or 

pre-Devonian sinistral displacement of up to 104 km, along 

with some eastward down-dropping, has been demonstrated 

along the Great Glen Fault by Kennedy (1946) 1 but 

megametre-scale displacements suggested from paleomagnetic 

studies (e.g. Kent and Opdyke, 1978; Van der Voo ~nd 

Scotese, 1981; Dewey, 1982) have not been supported by more 

detailed investigation in Scotland (Smith and Watson 1 1983) 

or in Newfoundland (Irving and Strong, 1984, 1985). 

There are five splays of the Cabot Fault system 

which are important for understanding the Silurian magmatic 

activity of west central Newfoundland. They are named, from 

west to east, the Ooucer' s Valley 1 White Bay 1 Baie Verte, 

Green Bay, and Lobster Cove faults (Fig. 2.5a,b). The local 

faults within and surrounding the Springdale Caldera 

(especially splays of the Lobster Cove fault) are discussed 

in more detail following description of each of the above. 
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Doucer's Valley Fault: Lock (1969) suggested that 

the Devil's Room and Gull Lake Granites (Fig. 2.2) are 

correlative, and were separated by a dextral displacement 

of about 15 km along the Doucer's Valley fault. This 

interpretation is supported by similar radiometric age 

dates around 400 Ma (reviewed below). Similar-aged ash-flow 

tuffs of the Sops Arm Group (Fig. 2.5b) are interbedded 

with fossiliferous middle to late Silurian marine sediments 

(Lock, 1972), and it is suggested that these are 

qenetically related to the intrusive rocks, together making 

up part of what can be termed the Sops Arm caldera. 

The Wbite Bay Fault, also termed the Hampden Fault 

(Webb, 1969; Belt, 1969) and the Cabot Fault (Wilson, 1962; 

Hibbard, 1983), has variable significance at different 

positions along strike, emphasizing the difficulty of 

qeneralizing about major fault zones. With regard to this 

thesis, the main concern is its effect on the Silurian 

igneous suites of the White Bay area. The Wild Cove Pond 

Granite might be tentatively correlated with the Sop's Arm 

Group and associated intrusions because of its similar 

biotite K/Ar date of 392±16 Ma (Wanless et al., 1972), and 

its lithologicaljqeochemical similarities (Hibbard, 1983; 

D.F. strong, unpubl. data). There is no indication of 

lateral displacement along the White Bay fault, and it is 

suggested that exposure of the relatively coar~er grained 

Wild cove Pond :Igneous Suite in juxtaposition with the Sops 
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Arm and MicMac Lake volcanic rocks result from uplift of 

the Wild Cove Pond suite as a central horst (here termed 

the "Fleur de Lys horst") between these two faults (Fig. 

2.5b). This is also indicated by the much higher 

metamorphic grade of country rocks (the Fleur de Lys 

Supergroup) within this block than those outside it, and 

further south by direct contact between the metamorphic 

rocks and Carboniferous sedimentary rocks (Hibbard, 1983). 

The latter relationship indicates that the White Bay Fault 

was active into the Carboniferous, and may have controlled 

Carboniferous sedimentation to some degree (Hyde, 1979). 

The Baie Verte Fault is best known for its role as 

the main suture between rocks of the Iapetus Ocean and the 

North American continent, and its relevance for the 

Silurian magmatism may be less obvious. The main Silurian 

evidence of this fault is a deformation of pyrQclastic 

rocks of the MicMac Lake Group. It also separates them from 

the Wild Cove Pond Igneous Suite, obscuring any correlation 

between them. The MicMac Lake Group might at first glance 

be considered part of the King's Point complex, and has 

historically been correlated with the volcanic rocks 

associated with the Springdale Group redbeds, but MicMac 

conglomerates contain clasts of black qlassy comenditic 

tuffs that are typical of the King's Point volcanic rocks, 

suggesting that the MicMac are younger than the King's 

Point. Furthermore, the 427 Ma age of the King's Point, as 
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discussed below, is substantially older than the MicMac 

Rb/Sr whole rock dates of 404±24 Ma (Wanless, in Neale and 

Kennedy, 1967) and 386±15 Ma (Pringle, 1978). Thus, it 

seems more probable that the MicMac Lake Group is 

correlative with the late Silurian Sops Arm Group and 

associated intrusive suites which make up the Sops Arm 

caldera. If this interpretation is valid, it means that 

post-Silurian movement on the Baie Verte Fault was mainly 

vertical, i.e. forming the east side of the Fleur de Lys 

horst. 

The Green Bay Fault was first noted by Neale et al. 

(1960) and later named by Upadhyay et al. (1971). According 

to Hibbard (1983) it truncates the Wild Cove Pond Igneous 

suite, the Baie Verte Fault and the MicMac Lake Group. 

Along the shore of Green Bay it is exposed as a steep scarp 

in excess of 330 metres, where the eastern margin of ~he 

King's Point Complex is juxtaposed against the Lush's Bight 

Group ophiolitic rocks. Both the deeper level of erosion 

and the higher altitude of the west side of the fault 

accords with vertical uplift along it, but it appears that 

its dextral motion is more important. Hibbard (1983, p. 

188) has reviewed the evidenc~provided by previous workers 

for dextral displacement of at least 25 km, up to a maximum 

of 100 km. As suggested below (Chapter 5), such an 

interpretation would result in the juxtaposition of the 

S~ringdale and ~ape st. John Groups which, along with other 

evidence, implies that their origin may have been related 

to the same caldera. 
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Support for such displacement is also given by the 

compelling similarities between the oikocrystic comendites 

and porphyries of the King's Point Complex and the 

Sheffield Lake Group (Coyle et al., 1986). The similarity 

between these unique rocks strongly suggest that the two 

were part of the same King's Point caldera, which was also 

dissected and displaced about 50 km by the dextral movement 

along the Green Bay Fault. This fault was also active until 

at least the Lower carboniferous, as seen by deformation of 

Lower carboniferous strata along its full extent. 

The Lobster Cove Fault: Like most of these faults, 

the Lobster Cove Fault has received differing 

interpretations, especially at different places along its 

length. These were reviewed by Dean and Strong ( 1977) , who 

concluded that across Notre Dame Bay it is mainly a thrust 

fault which has been folded into a vertical to slightly 

overturned orientation. :rn the Springdale area it has not 

been folded, and can be seen in cliff faces to be a gently 

northward-dipping thrust fault. 'l'Wo new features of the 

Lobster Cove fault have been recognized by this study. It 

OV'Jrsteps several mappable units of the Springdale Group, 

i.e. sandstones, basal tic flows and the interbedded Indian 

River ash-flow tuff. Furthermore, it exhibits a number of 

splays which separate imbrications within a duplex 

structure of the ~ushs Bight Group, formed by ramping at a 

bend in the fault. 
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The detailed map of the northem margin of the 

Springdale caldera (Fiq. 2.6) shows a simpllfied 

"football-shaped" structure to the north of the Lobster 

Cove fault which encloses marginal fault blocks of the 

caldera, some retaining limited internal stratigraphy. This 

feature really comprises a complex assemblage of juxtaposed 

fault blocks disposed about an asymmetrical fold axis with 

an axial planar fault axis, all of which is sandwiched 

between the Lobster Cove Fault to the south and several 

east-west trending faults which divide this duplex from 

others in the catcher's Pond Group to the north (Fig. 

2.5.c). 

Along its western extension, the Lobster Cove Fault 

changes orientation to a more north-south direction 

parallel to the dextral and vertical faults, and may also 

change in sense of movement. To the east the fault is 

straight, and has been interpreted by Calon and szybinski 

(1988) as having a dominantly dextral sense of motion, at 

least during part of its history. They also interpret the 

thrusting in the Springdale area as resulting from a 

contractional duplex in the otherwise dextral strike-slip 

fault, supporting the basic interpretation made earlier by 

the author (Coyle and Strong, 1986). An age of 425 Ma for 

the Indian River Tuff (discussed in Chapter 5) predates at 

least this dextral movement along the Lobster Cove Fault., 

which Cal on and s zybinski suggest was synchronous with the 

overlying caldera-fill sedim~ntation. 



Figure 2.5(c). Geology and major faults of the northern 
edge of the Springdale caldera (See Fj.g. 2. Sb and 
Map 1 for location). 
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The demonstrable syn-caldera dextral motion on the 

Lobster cove and other faults contrasts with the suqqestion 

by currie and Piasecki (1989) that Silurian faulting in the 

area was sinistral, although the latter do recognize that 

this sense of motion could have been reversed "prior to 

carboniferous time". It must be pointed out that the 

extensional nature of the Springdale caldera does not 

favour the loca ?.ly compressional stress regime which would 

have resulted from sinistral motion in the Silurian, at 

least during caldera formation. Clearly further detailed 

studies will be necessary to determine precisely both the 

timing and sense of motion on ~hese faults. 

All of the fault patternE' described above are 

reflected in the smaller scale faults within the Springdale 

Caldera recognized by this study. A number of thrust faults 

within the upper sedimentary rocks of the Springdale Group 

give some confidence in inferring similar faults to explain 

discontinuities in less distinctive units within the 

caldera. Within the sedimentary rocks of the Springdale 

Group there are two main thrusts which truncate sedimentary 

trends (Fig. 2.3: Map 1}, clearly visible on geophysical 

maps (e.g. the total field aeromagnetic map, Fig. 2.5.c). 

The northernmost of these appears to have developed along 

the Burnt Berry syncline, which it cuts and displaces along 

its southernmost extent. The southern of the two marks the 

approximate southeastern boundary of the redbed sedimentary 

caldera infill (Unit 10). 
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2.15.2. Folds 

Deformation of the Springdale Group was dominated by 

one major fold, an open syncline with its axis trending 

southwestward through the western part of the caldera (Fig. 

2.3; Map 1). It is particularly easy to recognize in the 

north over a distance of about 30 km, e.g. where the 
• 

caldera-fill redbeds are intersected by the Trans-canada 

highway. To the south it becomes more difficult to trace, 

but it can be seen from the geological map pattern to 

extend for at least another 30 km, where it is truncated by 

a NE-trending fault. This pattern is seen on the 

aeromagnetic map (Fig. 2.6) where, ~s discussed below, 

magnetic lineaments indicate faulting oblique to and along 

the hinge of this asymmetrical fold. The synclinal axis is 

also complicated by a thrust;strike-sl!p fault trending 

northeast along Saunders Brook. 

2.16. Detailed Geology, Springdale Central Map Area (Map 2) 

2.16.1 Geophysics 

Total field aeromagnetic maps were produced by 

Aerodat Ltd. under contract to Equity Silver Mines Ltd. as 

part of a mineral exploration program under the author's 

supervision. They provide ancilla.ry evidence for some of 

t~e main structures of the caldera, and two have been 

selected for specific discussion. 
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Figure 2.6. Total field aeromagnetic map of the Springdale 
Central map area (See also Map 2, in pocket). 
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The aeromagnetic ma~ for the Springdale Central map 

area (Fig. 2.6) exhibits high positive anomalies in the 

northwest and southeast corners of the map area which are 

inferred, or can locally be demonstrated, to result from 

granitic int~tsions, as shown on Map 2. Next to the granite 

contact in the northwest are seen several distinct bands of 

intermediate level positive anomalies, reflecting the 

interbedded tuffs, basaltic flows and sandstones. The 

centre of the map area is marked by a broad low magnetic 

swath interrupted by two narrow higher magnetic bands which 

clearly outline the main synclinal/anticlinal structure 

shown on Figure 2.3. 

The southern half of the map area is marked by a 

generally positive magnetic character, with a strong 

northeast-trending anomaly which separates a broadly 

low-relief area in the southeast from a complex high-relief 

area to the northwest. This abrupt change in character is 

most readily interpreted as the result of faulting, and its 

parallelism with thrust faults outside the map area (e.g. 

the Lobster cove fault) suggests a similar origin, although 

it might equally have some relation to the resurgent 

updominq postulated for this area. There are a number of 

shorter sub-parallel lineaments between this fault and the 

main low-relief synclinal area, and it may be that they 

represent faults of the same type. It is also possible that 

the magnetic character of these lineaments, although 
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ultimately fault-controlled, is the result of intrusions 

which are not exposed at the surface. Contours on maps of 

apparent resistivity and VLF-EM total field intensity (not 

included in this thesis) generally confirm the magnetic 

indications, with the fold structures and main fault zones 

clearly evident. 

2.16.2. Geology 

The Springdale Central map area (Map 2) is underlain 

by volcanic, intrusive and sedimentary rocks which 

represent intra-caldera fill facies erupted and deposited 

during the waning stages in the evolution of the Springdale 

Caldera. These rock types range in composition from 

basaltic flows to rhyolitic ash-flow tuffs and domes. They 

are disposed about a north-northeast trending fold axis 

which plunges to the north. This fold axis has been 

augmented by axial faulting oblique to and along the hinge 

of this asymmetrical fold, and local thrust faulting occurs 

along the same structure to the north of this figure, 

within the caldera. The area is also complicated by the 

thrust/strike-slip fault which trends northeasterly along 

saunders Brook. The area has been domed up by later 

intrusions exposed as silicic domes in the vicinity of 

Burnt Berry and Saunders Brooks. The more detailed scale of 

Map 2 (discussed below), in conjunction with the 

geophysical data, allows for some refinement of the 

distribution and structure of the units shown on Map 1. 
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The basaltic flow rocks of Unit 5 can ba 

distinguished as at least five different folded and faulted 

lenses within the stratigraphic sequence. They are 

interbedded with both the sedimentary and pyroclastic 

units, and are intruded by rocks of the Burnt Berry Dome. 

The rhyolitic ash-flow tuff of Unit a, which extends 

throughout the centre of the caldera,. is divisible (Map 2) 

with the aid of the geophysical maps into a number of 

separate fault-bounded lenses and bands about the synformal 

axis, despite the intermittent exposures. It includes an 

assemblage of mostly devitrified, welded, pink and red 

rhyolitic ash-flow tuffs and breccias, displaying a variety 

of rheomorphic features. certain part~ of this unit are 

very massive due to intense welding, and others consist of 

unwelded vitroclastic tuffs with large ii,dividually 

devitrified shards with perfectly preserved axiolitic 

textures, as described above. Other parts of the ash-flow 

breccias are not strongly devitrified, and all have 

internal auto- or gas-breccias with clasts of plastically 

deformed rhyolitic lava and pumice. Mixed magmas are found 

within the breccias, with alternating thin basaltic and 

silicic bands. These silicic tuffs are intruded by the 
~ 

Burnt Berry rhyolitic dome. 

Unit 9 is divisible into a number of thin lenses of 

redbed sedimentary rocks which clearly outline the syncline 

and'part of the anticline in this area. It is very 
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extensive outside the area of Map 2, forming belts up to 25 

km long, 3 km wide in the northeast and narrowing to soo m 

at the inner fold closure. An outer band of sediments is 

disposed about the central synclinal axis over a distance 

of 20 km and widths between 2 and o.s km. Unit 9 it is 

interbedded with units s, 8 and 10, and appears to grade 

into unit 8 in a few localities. As described above, these 

sedimentary rocks in the area of Map 2 include 

conglomerate, red sandstones, and sandy siltstones with 

localized calich~-

Unit 10, the orange-brown crystal-lithic Indian 

River Tuff forms four separate lenses in the interior of 
• 

the central syncline, interbedded with and overlying unit 

9, i.e. is the youngest unit of the area. As described in 

Chapter 2, the larger synclinal exposure extends 

northeasterly outside of Kap 2 for a distance of 18 km to 

the coast of Halls Bay. Unit c is a glassy rhyolite with 

microphenocrysts of quartz and feldspar, locally with 

finely disseminated bluish-green amphibole in the 

groundmass, forming dykes, sills and high-silica domes best 

exposed as an elongate lens intersected by Burnt Berry 

Brook, i.e. the Burnt Berry Dome. 

The large positive magnetic highs on the northwest 

and southeast corners of the total field magnetics map 

(Fig. 2.6) were both interpreted above as indicating 

granitic intrusions. The northwestern was already 



identifi~d as the marginal granite Unit D. That of the 

southeast was not indicated on the larger-scale Map 1 or 

Figure 2.3, but a number of granitic outcrops were 

identified, and it is inferred that the magnetic anomaly 

indicates a substantial pluton there. Hence it is also 

shown as Unit D on Map 2. 

2.17. Detailed Geology of the Springdale East Map Area 

(Maps 3 and 4) 

2.17.1. Geophysics 
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Two adjoining total field aeromagnetic maps are 

shown in Figure 2.7 for the northern (Fig. 2.7a) and the 

southern (Fig. 2.7b) parts of the Springdale east map area. 

These are acco1a1panied by the geological Maps 3 and 4 (in 

pocket). The most outstanding feature of the total field 

magnetic intensity map for the northern half is the large 

oval-shaped magnetic high which ranges from a high of 

57800, consistently zoned outwards for a radial distance of 

about 3 ~ to a low of 54480 nanoTeslas. Although there are 

slight variations within this zone which might reflect 

lithological variations, it generally overides any known 

lithological boundaries and hence defies definitive 

explanation. Nevertheless, the pattern and shape, and its 

similarity to the anomalies of known intrusive aureoles, 

e.g. those surrounding the Topsails Granite w~ich intrudes 

the Springdale caldera to the south, compels one to suggest 

that it must be the reflection of a buried pluton. 
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Figure 2.7(a). Total field aeromagnetic anomaly map of the 
Springdale East map area, northern half. Adjoins 
Figure 2.7(b) to the west (bottom). See also Map 3 
(in pocket). 
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Figure 2.7(b). Total field aeromagnetic anomaly map of the 
Springdale East map area, southern half. Adjoins 
Figure 2.7(a) to the east (top). see also Map 3 (in 
pocket). 
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Although some magnetic effects are seen around and 

within the South Pond Granite in the northeastern part of 

Figure 2.7a, they are much weaker, possibly the result of a 

number of factors including the different depth of exposure 

(i.e. magnetic roof-rocks removed, and steep sides giving a 

narrow aureole). Both the apparent resistivity and the 

VLF-EM total intensity maps support this interpretation, 

showing clearly the South Pond granite contact. A major 

positive linear anomaly of intermediate range clearly 

outlines the ~:~tribution of intermediate composition rocks 

of unit 4 (See Map 3). Several linear magnetic lows within 

both the caldera rocks and the basement Unit A are 

interpreted as indicating fault zones which have also been 

identified in the field by fault gouge and breeccias. In 

general the caldera rocks have low magnetic relief, with 

low-level lineaments delineating contacts between units. 

The basement rocks on the eastern edge of the map area have 

a much more complex relief, reflecting their much more 

complex geology. 

Coyle and st~ong (1986) speculated that the dioritic 

plug of unit B and the andesitic flows dipping away from it 

(See cross-section B-B', Fig. 2.3), along with laharic and 

other lithologies, indicate the former presence of a 

strato-volcano. This interpretation is spectacularly 

supported by the total field aeromagnetic map shown ~n 

Fiqure 2.7b, which shows a clear-cut series of concentric 
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alternating high and low magnetic bands around the 

granodiorite body (see Map 4). This intrusion is itself on 

the edge of an irregular-shaped broad magnetic high. 

Together these features are readily interpreted as 

indicating a large intrusive volcanic centre with 

concentrically disposed flows, pyroclastics, sediments and 

sills, as shown in Map 4 (in pocket). Equally outstanding 

are the series of structures which radiate out from this 

centre, which are clearly analogous to the radial faults 

and dyke swarms which are seen in more recent 

stratovolcanos (e.g. the Summer Coon volcano of the san 

Juan Mountains in Colorado (Lipman, 1976)). It is also 

clear from these structures that they were synvolcanic, 

since there is clearly some relative fault displacement 

across them, both the radial and concentric, all of which 

are typical features of up-doming effects around central 

volcanoes. Although outcrops in this area are sparse, there 

are a few distinct magnetic lows which can be seen from 

several exposures to be represented, on surface at least, 

by rhyolite domes. In one exposure it can be seen that the 

radiating magnetic high is represented on surface by 

diabase dykes. 
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2.11.2. Geology 

Detailed attention was focussed on the Springdale 

East map area because it includes the critical facies of 

the eastern caldera marqin, including mass wastinq deposits 

or mesobreccias located and gener.ated at the caldera walls; 

a complex of caldera margin emplacement-related intrusions; 

and a post- emplacement granitic stock with associated 

dykes and hydrothermal system. The geology of the eastern 

margin is complex, with a wide variety of pyroclastic 

facies varying in both composition and physical 

characteristics. Also this margin hosts two domal/spine 

complexes (.Johnson's Lookout and Wolf Head, described 

above) and their associated pyroclastic aprons. The 

pyroclastic assemblages are interbedded with mafic and 

intermediate composition lava flows and some local 

sedimentary rocks derived from these lithologies. 

The lithologies of the Springdale East (northern) 

area are grouped into five units on Figure 2.3 and Map 1 

(Units 1-5), recognizable on the regional 1:100,000 scale, 

but the combination of the larger scale and the newly 

available geophysical data allow for eight subdivisions on 

Map 3. This map also includes the intrusive unit D which is 

related to the development of the caldera, and the foliated 

granodioritic complex intruded by tonalite (unit A) which 

is the local basement lithology and not related to the 

genesis of the caldera. The eight subdivisions shown on Map 

3 can be described as follows. 
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Uni.t 1 is a welded crystal-lithic tuff of 

metaluminous affinity (plagioclase, K-feldspar, kiotite, 

quartz) which is locally deformed along its eastern contact 

with the basement by both shearing and small-scale 

southeastward-directed thrusting. It is also intruded by 

unit o, a granitic stock on the northern limit of the map, 

where it displays brittle deformation caused by the 

intrusion. 

Unit 2, the mesobreccias, is located along the eastern to 

central portion of the map and oriented roughly in a 

northeasterly direction. In the northern map (2.7b) the 

mesobreccias are associated with and are distributed in a 

lobate manner around Johnson's Lookout (part of Unit 3, 

described in detail above). Unit 3 can be recognized both 

in outcrop and on the aeromagnetic map as forming a 

northerly-trending belt extending over 14 km. Using the 

geophysical maps with detailed geological mapping, it can 

be divided into subunits 3a, 3b, and 3c. The first is the 

massive porphyritic andesite and dacite intrusions and 

flows which exhibit the lowest magnetic signature. The 

second (3b), although lithologically similar to unit 4, is 

marked by resistivity and magnetic lows, and a weak 

argillic and carbonate-chlorite alteration. Unit 3c forms 

the dacitic autoclastic apron with ashy reworked volcanic 

debris. Unit 3 marks the major magmatic conduit on the 

caldera margin, possibly also the eruption sites for the 

other ash-flow tuffs (units 1, 3b and c, and 4), as 3 
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well as hydrothermal alteration systems which might be 

buried by these units. The latter is indicated where more 

heavi1y altered rocks are exposed by deeper erosion along 

the banks of Barney's Brook. Unit 4 is a dominantly 

intermediate composition lithicjlapilli ash-flow tuff with 

variable welding. In part, this tuff hosts thick sections 

(-2m) of porous, moderately to strongly altered, 

lithophysae z~ s. This unit can be traced up to its 

possible vent source, Wolf Head. 

Unit Sa consists of thin flows of basaltic 

andesites, generally massive and aphyric to 

trachytic-textured, with plagioclase and minor amphibole 

phenocrysts, and abundant accessory altered magnetite. Unit 

Sb is mainly thick basaltic flows with massive bases 

grading up to vesicular tops and flow-top breccias, 

typically with plagiuclase phenocrysts, with amygdales of 

quartz, calcite and chlorite. 

The exposed geology of the Springdale East southern 

area (Map 4) is similar to that of the north, except that 

in addition to Units 1, 2, 3, 4, and s, Units 6 and B are 

also seen. Indeed, Unit 6 may be at least in part 

equivalent to Unit 4, although Unit 4 in the north has such 

distinctive lithological and geophysical characteristics 

that it is retained for present purposes. 



122 

Unit 6 consists of silicic ash-flow tuffs, exposed 

continuously along Barney's Brook, in conformable contact 

with basaltic flows of Unit 4, over a strike length of 14 

km with a maximum width of 3 km. They have been extended 

southwards from discontinuous exposures outside of Map 4 

for an additional 30 km, with maximum width of 6 km in the 

extreme south of the map area. These ash flows are 

reddish-brown to grey and display varying proportions of 

crystals, lithic fragments, and vitroclasts. Along Barney's 

Brook the basal part of the unit is a thick, 

lithophysae-rich, horizon resting on irregular flow tops of 

the basaltic Unit 5. The individual lithophysae may be as 

large as 10 em in diameter, with central cavities partially 

or completely filled with radiating quartz crystals, 

microlites, and chalcedony. This horizon grades up into a 

partially welded crystal-lithic lapilli tuff. The 

phenocrysts are plagioclase, K-feldspar and quartz, 

commonly broken and concentrated in the matrix in 

preference to the pumice vitroclasts. A crude bedding is 

defined by flattening of the pumice lapilli, which can be 

as long as 50 em, and by concentrations of the large 

vitroclasts. 

The densely welded parts of Unit 6 are maroon to 

brown ash-flow tuffs, with phenocrysts of plagioclase, 

K-feldspar and quartz, which vary in relative proportions 

in a streaky manner. A welding lamination is seen on 
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weathered surfaces, but on fresh surfaces they look massive 

~nd structureless. The welded zones are locally extremely 

massive and have the superficial appearance of an intrusive 

quartz-feldspar porphyry. Unit 6 includes a number of 

pyroclastic flow units, each characterized by different 

proportions of lithic and vitric clasts. They cooled as a 

simple coolinq unit, suggesting that the ash flows followed 

one another in rapid succe~sion, with no substantial 

development of internal thermal gradients. 

Units B and c appear to be genetically related to 

the Springdale volcanic rocks. Unit B is a black massive 

microdiorite exposed near both margins of the group. It 

intrudes units A and 3, and is contemporaneous with or 

intruded by dykes and sills of unit c. Unit c is a glassy 

rhyolite with microphenocrysts of quartz and feldspar, and 

locally contains finely disseminated bluish-green amphibole 

in the groundmass, and is seen as dykes, sills and 

high-silica domes. These rhyolitic lithologies intrude 

Units 3, 6 and 8, as well as the microdiorite of unit B, 

and have similar compositions and textures. They are 

iiow-foliated, with extreme convolution seen as fluidal 

folds and disruption of flow banding, auto-brecciated and 

contain zones of intense development of spherules and other 

indications of gas-streaming. Auto- brecciated aprons 

composed of disrupted frP~ents of the dome are included in 

this unit. They are not reworked clasts in any sense, and 

are commonly found in a glassy matrix which represents 
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maqma injected into the cooled rind along the margins of 

the domes and sills. Curviplanar jointing and ductile 

flow-shear features are found within the body of the domes. 

2 .18. summary and Discussion 

The Springdale Group comprises a sequence of 

ash-flow tuffs, basaltic and andesitic flows and 

pyroclastics, rhyolite domes and intrusive clJntres, 

mesobreccias, and clastic sediments, all of which are 

typical of those found in caldera sequence:1 throughout the 

world. 'l't.air distribution within a topographic depression 

and their appropriate disposition about this depression 

lead to the interpretation that the GrQup forms a classic 

caldera of a similar scale and characteristics to those of 

epicontinental regions such as the southwestern United 

States. The Springdale caldera is part of a larger volcanic 

field. 

In such large volcanic fields a number of 

overlapping centres andjor calderas are commonly :::ound 

toqether, especially within a particular period of 

geological time, e.g. about 4 million years in the San Juan 

field of Colorado (Steven and Lipman, 1976) • At least three 

such centres, and possibly more, can be demonstrated in 

west-central Newfound1and, with the various volcanic and 

intrusive exposures representing different structural 

leve1s of the individual calderas and subjacent plutons. 
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For example in the King's Point complex, a composite ring 

dyke (Neale and Nash, 1966: Kontak and strong, 1986) 

provides clear evidence for cauldron subsidence, the 

complex representing a caldera exposed at a depth 

intermediate between that of the Springdale caldera and the 

Topsails complex. 

Although it is fairly clear from the above 

descriptions that an abundance of volcanic facies typical 

of cauldron subsidence and related pyroclastic volcanism 

are represented in the Springdale and correlative groups, 

their extent, and indeed the great extent of similar-aged 

magmatism throughout central Newfoundland, indicates that 

thA tectonic controls of magmatism as well as caldera 

collapse were of regional significance. It is well known 

that calderas are in many case locally controlled by 

basement structures, and it is probable that tho~e of 

west-centra~ Newfoundland, with their NE-trending elongate 

shapes and pattern of distribution are ultimately related 

to the NE-trending faults and other structures seen in the 

basement rocks (Fig. 2.5). 

Because Silurian-Devonian magmatic activity in 

Newfoundland followed closure of Iapetus (e.g. Strong, 

1977, 1980), and the recognition that these Silurian 

calderas are located along the paleo-suture zone, it was 

suggested (Coyle and Strong, 1987) that this was due to 

melting of the subducted continental crust, with intrusion 
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and ascent focussed by the inherent structural weaknesses 

at the suture. Most correlative rocks in the orogen, from 

Scotland to at least as far south as Maine, are also found 

near this or other suture zones. For example Laurent and 

Belanger (1984) have suggested that Silurian volcanism of 

the Quebec Appalachians was produced in an overall dextral 

strike-slip tectonic regime, and numerous authors (e.g. Van 

der Pluijm and Van Staal, 1988, and references therein) 

have suggested a dextral strike-slip regime for the 

northern Appalachians. Given that such large calderas 

demand an extensional environment, at least local , ,y, it can 

be suggested that such extension t ..... uld be most readily 

produced in local pull-apart basins in this dextral regime. 

This would imply that the oblique sinistral closure of the 

"Iapetus II" of Van der Pluijm and Van Staal· (1988) would 

have taKen place before Springdale volcanism, possibly 

coinciding with the 438 Ma "island arc type intrusive 

rocks" of the Rainy Lake complex (Whalen et al. ('!.987). 
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3. PETROGRAPHY OF THE ROCKS OF THE SPRINGDALE CALDERA 

3.1 Introduction 

The Springdale Group rocks represent a 

volcano-plutonic complex which is best described as a 

caldera as it has all of the inherent and definitive 

characteristics that are indicative of the 

collapse-explosive volcanicity seen in most modern and 

ancient calderas. It consist1:; of a suite of pyroclastic 

rocks, domes and their associated deposits, both mafic and 

intermediate lava flows and sedimentary rocks as well as 

granitic rocks along the marqlns of ~he volcanic complex. 

The rocks range in composition from basalt through 

high-silica rhyolite as described in chapter 4. 

This chapter deals with the petrographic 

descriptions of the volcanic rocks and associated domal 

intrusions. It does not deal with the late-~tage, redbed 

sedimentary rocks in the northern part of the caldera nor 

the granitic suites that are found to the caldera's south 

and along the eastern and western margins. For the purposes 

of this chapter the rocks are divided as follows; mafic 

flows, intermediate flows, pyroclastic ash-flow tuffs, 

dacite domes, and high silica domes, dykes and sills. 
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The rocks of the Sprinqdale caldera are remarkably 

well preserved with respect to primary textures and 

mesoscopic characteristics. They also preserve evidence of 

a pervasive propyllitic alteration otherwise described as 

low greenschist metamorphism. However, areas of extensive 

or intense alteration at the surface are rare and limited 

to discrete localities. The alteration can be traced out of 

such zones into fresh examples of the host rock type. 

A total of 440 thin sections were made and studied 

in the course of this thesis. Three hundred and twenty 

samples are directly related to the Springdale Caldera with 

the following distribution: 90 basalts, 15 andesites, 40 

dacitic dome;autobrecciasjdykes, 35 high-silica rhyolitic 

dome/sills/dykes, 105 pyroclastic rocks, 20 epiclasticjmass 

wasting deposit rocks, 10 late-stage redbed sedimentary 

rocks, and 5 marginal qranitic rocks. An additional 20 thin 

sections were made in the course of the zircon 

geochronology discussed in chapter 5, and the remaining 100 

thin sections represent the Sheffield Lake Complex 'co the 

west of the Springdale cr tdera which was mapped and studied 

during the summer of 1986 but is only made reference to in 

this thesis in terms of its local re., atig_nsh:lps to the 

Springdale caldera. 
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Appendix A is a generalized table of selected, 

representative petrographic descriptions which is meant to 

qive a few "type" examples from each petrographic group as 

outlined above. It is not a full nor exhaustive list of all 

rock types or the full array of samples collected or 

thin-sectioned within the scope of this thesis study. It 

does provide however a realistic representation of the 

range of petrographic features for each group. 

3.2 The Mafic Flows 

The Springdale basalts are dominantly distributed 

in three belts as shown on Map lA and described in chapter 

2. They are however interbedded with most of the other . 
lithologies of the caldera throughout the complete range of 

the volcanic stratigraphy and therefore such relationships 

suggest that there were conduits to mafic composition magma 

throughout the evolution of the caldera. This relationship 

is also displayed in rocks that have a mixture of mafic 

material within dominantly felsic ash-flow tuffs, as 

described for parts of units 3 and a. The significance of 

this observation will be discussed in chapter 7. 

The mafic rocks can be classified into four 

different types as follows: l)plagioclase + olivine + 

clinopyroxene-phyric basalts, 2)plagioclase + 

clinopyroxene-phyric basalts, J)plagioclase-phyric basalts, 

4)plagioclase + o1ivine-phyric basalts, in descending order 

of abundance. 
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A full range of grain sizes are found within each 

of the four qroups of basalts. In general the thin, single 

basaltic flows are aphanitic with tabular and non-vesicular 

basal portions which grade up to highly vesicular 

(amygdaloidal), (see Plate 3.1) rubbly tops. When a series 

of flows are stacked up in sucession the middle flows are 

phaneritic and typically porphyritic with ophitic, 

subophitic or glomeroporphyritic (Plate 3.2) texture in 

thin section. The coarser grained nature of central flows 

is probably due to slower cooling and crystallization as 

well as concentration of fluids there. The plagioclase

phyric basalts typically display trachytic texture. 

Along the western and southeastern margins of the 

caldera a few isolated outcrops of coars.ely 

plagioclase-phyric "cumulate" basalts (Plates 3.3 a, b) are 

found and boulders of this rock type are found throughout 

the glaciated low-lying depression which now 

topographically defines the Springdale caldera. 

It is difficult to determine the sequence of 

crystallization within the basalts because of alteration of 

some phenocryst phases and the groundmass. However the 

majority of flows have ophitic (Plate 3.4) to subcphitic 

texture (Plates 3.5) which would suggest the 

coprecipitation of the phases involved (i.e. plg-cpx, 

plq-cpx-ol, and in a few rare cases plg-ol). 



Plate 3.1. Amygdale showing complex array o 
minerals. Radiating clear sprays in core are 
prenite, rimed with chlorite and clotty patches of 
brownish epidote (DS-86-10A, 10X, PPL.) 

Plate 3.2. Glomeroporphyritic basalt with twinned 
plagioclase laths, clinopyroxene (medium 
birefrigence) in a seriate groundmass (3-6-35A, lx, 
XPL). 
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Plate 3.3a. Plagioclase-phyric cumulate basalt, plagioclase 
crystals exceed 1 em in length. (DS-84-5, 1X, PPL) 

Plate 3.3b. As above with crossed polars. 



Plate 3.4 Ophitic basalt with plagioclase, clinopyroxene, 
and olivine in a brown interstitial glass. 

Plate 3.5. Subophitic texture with plagioclase, 
clinopyroxenein a felty groundmass (HS-71, 1x, XPL) 

. ~33 
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of flows (and their chemisty, see chapter 4) are typical of 

the sub-alkaline, calc-alkaline series summarized by Ewart 

(1982).Exception to this is notable only in a few flows 

found in the Kinq•s Point Roa~ section on the north western 

marqin of the caldera. There, the basalts are more mafic 

and may represent a late staqe caldera fill event which 

tapped a deeper source within the evolved and devolatilized 

magma chamber. 

The plaqioclase phenocrysts are typically 

completely albititized and albite twinninq is ubiquitous 

(Plate 3.6). some samples were probed and the majority of 

feldspars probed are pure albite. A few zoned feldspars 

qave primary plaqioclase compositions of An(GO-?O)• The 

clinopyroxene phe~'ocrysts appear realatively unaltered in 

thin section, with a pale grey-green color in plane liqht 

(Plate 3.7). There was little variation in the compositions 

of clinopyroxenes selected for probing, typical 

low-titanium auqites. The olivine phenocrysts in the 

basalts are ubiquitously altered to one or more of the 

followinq secondary minerals as simple or complex 

intergrowths: iddinqsite, chlorite and/or epidote (Plate 

3.8). 



Plate 3.6. Same as sample above, shows albite twinning in 
the feldspars (4x, XPL). 

Plate 3.7. Porphyritic basalt showing pale grey 
clinopyroxene· crystals (HS-109, 4x, PPL). 
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Plate 3.8. Olivine pseudomorphs rimmed with chlorite 
(C4-68, 4x, PPL). 
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The secondary mineral phases seen in the basalts 

are numerous and varied in abundance. The basalts that are 

found along the eastern margin of the calder'l are altered 

to the greatest intensity within the suite as a whole. 

H1':)Wever, the alteration is extremely variably even within a 

given f1ow. Zt appears that along the eastern margin the 

rocks have undergone at least one phase of hydrothermal 

alteration associated with the intrusion of both a buried 

granitic pluton and a higher level exposed granite in the 

northeast. This alteration is concentrated in both the 

phenocrysts and groundmass, and appears to superimpose a 

more highly acid-type, focused alteration (i.e. 

quartz-sericite-chl) (Plate 3.9 a,b) onto the more regional 

"volcanic" or syngenatic alteration that involved 

groundwaters and produced less acid alteration products 

(i.e. calcite, carbonates, oxides etc.). Many of the 

alteration types are noted in Appendix A. Veins of calcite, 

epidote and quartz are seen to be locally confined within 

basaltic flows and where such veining is found large vugs 

and amygdales of the same compositions are also found 

(Plate 3.1.0). 



Plate 3.9a. Radial array of amygdale minerals with 
carbonate in the core and rim, and chlorite in the 
centre (3-6-11, 4x, PPL). 

Plate 3.9b. Amygdale andgroundrnass showing diverse 
secondary mineral assemblage including chlorite, 
calcite and epidote (DS-86-10A, 4x, PPL) 
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Plate 3.10. Example of amygdale with prenite, epidote and 
chlorite (DS-10A, 10x, XPL). 
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3.3 The Intermediate Flows 

The intermediate flows of the Springdale caldera 

are typically massive, tabular flows with columnar jointing 

(Plate 3.11). They are thicker than discrete basaltic flows 

of the caldera and individual andesite flows can only be 

indentified by a very slight variation in granularity when 

stacked upon one another. The andesites are commonly 

associated with interbedded laharic flows and rubbly debris 

flows that are composed of material derived from an 

intermediate source in a silty or muddy matrix. 

The intermediate flows are grouped into unit 3 on 

maps la-c, they are found along the eastern margin of the 

caldera intermittently for at least 60 kilometers. One 

source for these flows was a stratovolcano which is found 

on the southeastern edge of the Springdale sheet (see Fig. 

2.7b and Map 4). The andesites dip away from this volcanic 

centre which is plugged by a diorite stock and intruded by 

a plexus of radial dykes and sills which are beautifully 

displayed by the aeromagnetic survey (Fig. 2.7). It appears 

that this stratovolcano is only partially preserved within 

the topographic margin. on the southwestern margin of the 

Springdale caldera in one of the large megga-breccia blocks 

a mass of andesitic material is also seen and may indeed be 

another source area for intermediate flows that are 

sporadically seen in the southwestern part of the caldera. 



Plate 3.11. Surface of intermediate lava flow (andesite). 
Displays good polygonal cross-sections of columnar 
joints in the flow. 
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The andesites are pale brownish-purple and are 

porphyritic or qlomeroporphyric.The textures vary very 

little, but some of the more aphanitic flows have a 

trachytic texture. 
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The andesites have phenocrysts of feldspar, 

clinopyroxene, pseudomorphs of olivine, +/- amphibole and 

opaques. The crystallization sequence cannot be determined 

with certainty for these rocks. The phenocrysts are 

randomly distributed. However, as with the mafic flows, 

plagioclase is the dominant phase and probably preciptated 

first (Plate 3.12). The feldspars range from equant 

blocky or stubby prisms to elongate blades and are 

typically altered and can be complexly zoned or embayed. 

Clinopyroxene phenocrysts are typically a pale grey-green 

with high relief ana show good examples of polysynthentic 

twinning. Olivine phenocrystic ana microphenocrystic 

pseudomorphs have been replaced by serp~ntine/iddingsite, 

chlorite and clots of opaques (probably magnetites.). 

Amphibole phenocrysts are less abundant than the other 

mafic phenocrysts but when seen have typically been 

replaced by chlorite. The phenocrysts are set in a fine 

hyalopilitic groundmass with little evidence of groundmass 

crystals or may less typically have either a pilotaxitic to 

trachytic texture. The groundmass is typically oxidized and 

may have patchy areas of carbonate or chlorite. 



Plate 3.12. Typical andesite with porphyritic texture. 
Sample C4-19 shows blocky altered feldspars with higher 
relief grey amphibole and smaller pseudomorphs of olivine 
(brighter, with dark rims} seen in upper right and lower 
left corners. (C4 - 19, 4x, PPL) 
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3.4 Pyroclastic (Ash-flow) Tuffs 

The pyroclast:tc rocks of the Springdale caldera are 

by far the most diverse and variable assemblage of rocks in 

the suite. They not only comprise six separate units 

(1,4,6,7,8,10) but the variation "within" each unit is 

considerable. Ash-flow tuffs are an admixture of crystal, 

vitric, and lithic debris in an ashy matrix. The 

proportions of these constituents varies not only laterally 

but vertically as well. The degree of welding in a given 

unit imparts dramatic textural differences in rocks of very 

similar bulk composition. Crystal fragments, shards and 

accidental material are typically entrained into parts of 

the flow whereas equivalent "pristine" facies of the same 

unit may not contain such debris. As ash-flows are subject 

to the dynamics of physical as well as chemical variation 

(i.e. proximal to distal facies of a given unit, and 

chemical zonation in a given tuff), a spectacular range of 

variability is found. 

The pyroclastic rocks are also devitrified (no 

examples of glass were recovered during this thesis study) 

and the devitrification also imparts a superimposed texture 

to some of the pyroclastics. Excellent examples of 

devitrification spherules and axiolites are seen in thin 

section.one hundred and five pyroclastic rocks were 

se~tioned and therefore the petrographic features will be 

grouped according to dominant textural differences seen 
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throughout the range of. pyroclastic rocks as well as any 

special, or interesting features. The tuffs all contain 

broken crystals of feldspar, ( +/- quartz). The feldspars 

are probably sanidines, but most are altered to some 

degree. Also it appears that some xenocrysts including 

feldspars may have been entrained into parts of the tuffs, 

therefore it is difficult to determine "true" mineralogical 

associations. The quartz and feldspars are commonly embayed 

and may have melt inclusions. In tuffaceous rocks the 

pumice can preserve the original phenocrysts which 

crystallized in the magma chamber whereas groundmass 

crystals and fragments may have accidential origins. Thus 

in order to define the various ash-flow tuff units of the 

caldera emphasis was placed on the pumice where possible. 

Unit 1 is the only tuff in the caldera wr. i ~h 

appears to have magmatic mica (biotite), shown in Plate 

3. 13. The biotite is partially replaced by chlorite and has 

abundant inclusions. Unit 1 also preserves good examples of 

unwelded zones, as well as a wide variety of lithic 

fragments including some which made up the roof rocks to 

the magma chamber prior to er~ption (Plate 3.14). Excellent 

examples of perli tic fractures are also se£.&1 in the 

groundmass and within fragments of this tuff (Plate 3 .15). 

Unit 4 has a high proportion of mafic and 

intermediate lithic fragments and contains some phenocrysts 

(xenocrysts ?) of clinopyroxene. It has feldspar 

phenocrysts which are heavily altered and resorbed or 



Plate 3.13. Magmatic biotite in unwelded portion of Unit 1 
(C4-288, 4x, PPL) 

Plate 3.14. Banded, unwelded crystal lithic tuff of Unit l 
(C4 - 285, lx, PPL). 
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embayed but does not contain quartz phenocrysts. The tuff 

has a chloritic alteration o~ the qroundmass and therefore 

may contain fragments or microlites of mafic phases such as 

amphibole or clinopyroxene which have altered to chlorite 

(Plate 3.16). This unit has concent~ations of large pumice 

bombs as described in chapter 2. It is a crystal, lithic, 

vitric tuff and these elements can be seen in plate 3.16. 

Unit 6 is an ~xtensive ash-flow tuff with a great 

array of features. It has a variety of lithic clasts 

ranging in composition from basalt through rhyolite and 

therefore appears to have sampled the surface of the 

caldera as it was being emplaced (Plates 3.17 and 3.18). It 

has poth plagioclase feldspar and altered K-feldspar along 

with quartz phenocrysts. Welding is variarle in this unit 

and even on a microscopic scale welding "density" varies 

around the lithic fragments and juvenile pumice fragments 

(Plate 3 .19) 

Unit 7 consists of rhyodacitic crystal-vitric tuffs 

that tend to be massive in outcrop and have a pale 

brownish-purple vitreous luster. There is at least one 

dome;vent complex associated with this unit found on West 

Brook and described in chapter 2. The tuffs are plagioclase 

phyric with rare quart~ ~: ~'enocrysts. In thin section the 

tut:.,·-; are fine and glassy with nicely preserved "inflated", 

as well as, flattened pumice. Lithic fragments although 

present are not abundant and dominantly felsic (Plate 

3.20). Overlying the dome on West Brook a 



Plate 3.15. Example of perlitic fractures in the groundmass 
and devitrified clasts within Unit 1 (C4-285, 4x, PPL) 

Plate 3.16. Crystal-lithic-vitic tuff from Unit 4 with well 
preserved fiamme in centre of the photograph in a 
chloritic groundmass (C4-1B6, lx. XPL). 
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Plate 3.17. Welded crystal-lithic tuff from unit 6 showing 
basaltic fragment and feldspar crystal; welding is 
intensified around clasts (C4-97, 4x, PPL). 

Plate 3.18. Example of moderately welded portion of Unit 6 
with silicic lithic fragment in the centre of the 
photograph. Note devitrification in the lithic 
clast (C4-90, 1x, PPL). 
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Pl ate 3.19. Variation in welding across a microscopic field 
from Unit 6 {C4-207, 1x, PPL). 

Plate 3.20. Unwelded vitric tuff from Unit 7 with well 
preserved pumice (white) in a fine-grained 
groundmass (grey). Felsic lithic clast seen at 
bottom of the photograph (C4-230, 1x, PPL). 
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coarse "autoclastic" breccia is seen. This breccia contains 

angular blocks of flow banded material. The flow banding is 

actually folded and can be seen as variation in color on 

weathered surfaces. These bands in thin section appear to 

be alternating glassy groundmass and pumice. Therefore the 

pumice was being incorporated into a glassy or ashy flow 

being deposited at the surface of the ciome. Plate 3.21 

displays this relationship, but as can be seen in the thin 

section, no obvious glassy shards are seen in the 

groundmass between the darker, porphyritic pumice. 

Unit a is a complex rhyolitic ash-flow tuff and 

contains areas of magma-mixing. It has altered feldspars 

and quartz phenocrysts. Unit 8 is distributed around the 

Burnt Berry Dome and may have been associated with the 

late-stage emplacement of it. It is a fine crystal-vitric 

tuff with scarce lithic debris and small black fiamme 

(Plate 3.22). The coarser parts of this unit have 

millimeter sized bands of mafic material or "dykelets". 

They appear to brecciate the felsic matrix. However, clots 

of the mafic melt are also seen disaggregated in the felsic 

material (Plate 3.23). In these instances mafic xenocrysts 

are also abundant and disequilibrium textures can be seen 

in the feldspars (Plate 3.24). 



Plate 3.21. Alternating flow bands of qlassy groundmass 
(white) and pumice (grey) which have concentrations 
of phenocrysts. Sample from Unit 7 dome 
apron/breccia (C4-233D, lx, PPL). 

Plate 3.22. Fine crystal-vitric tuff from Unit 8 with small 
black fiamme (C4-301, lx, PPL). 
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Plate 3.23. Black glassy pumice disaggregated in a felsic 
ashy groundmass (C4-298, 4x, PPL). 

Plate 3.24. Disequilibrium feldspar in the groundmass of a 
mixed tuff within Unit 8. An olivine xenocryst is 
also seen in the upper left corner (C4-296, lOx, 
PPL) • 
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Unit a also contains a few outcrops of rhyolitic 

material which is wholly composed of vitric clasts which 

are individually devitrified (Plate 3.25). The shards are 

angular with beautiful axiolitic and spherulitic 

devitrification textures. Some of the vitric clasts are 

fibrous and may represent some juvenile material (pumice) 

that is related to a small ashy deposit around the dome 

(Plate 3.26). Such features are characteristic of dome 

carapaces and are similarly interpreted as being 

compositionally similar. 

Unit 10 is a crystal rich ash-flow tuff which is an 

outflow from the King's Polnt caldera. It is interbedded 

with the Springdale caldera's late-stage sedimentary fill 

and basalt flows. It covers all of the Springdale caldera 

volcanic and domal rocks. Unit 10 is massive and contains 

xenoliths of serpentinite and jasper. In thin section the 

tuff displays a beautiful eutaxitic texture with abundant 

phenocrysts of quartz and feldspar. Most of the phenocrysts 

are embayed and have melt inclusions (Plate 3.27 and 3.28). 

3.5 Dacitic Domes 

Chapter 2 describes the occurrences and types of 

dacite domes found within the Springdale Caldera~ The dome 

rocks are typically hyalopilitic to pilotaxitic with rare 

microphenocrysts. Very little variation is seen in this 

suite, except for slightly different alteration products 

., 



Plate 3.25. Vitric shards with axiolitic and spherulitic 
devitrification suspended in a glassy rhyolitic 
matrix. Represents a dome carapace (EL-304b, lx, 
PPL). 

Plate 3.26. Pumice from dome carapace (EL-304b, lOx, PPL). 
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Plate 3.27. Unit 10, excellent example of eutaxitic texture 
in crystal-rich tuff. Note embayed quartz crystals 
with melt inclusions (C4-241, 4x, PPL). 

Plate 3.28. Same as photograph above with detail of the 
welded bubble-wall shards around the edge of the 
quartz phenocryst (C4-241, 10x, PPL). 
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which are related more to the regional propylitic 

alteration than to inherent maqmatic differences in the 

domes. Plate 3.29 shows a typical example of the glassy 

nature of the domes with flow-aligned microlites and 

domains of oxidation. The microphenocrysts are typically 

altered feldspars lathes, and concentrations of oxides in 

the qroundmass cluster around the phenocrysts (Plate 3.30). 

Examples of autobrecciation in the groundmass is typical 

along the margins of the domes as well as locally within 

the body of it. The groundmass is more pervasively altered 

around the autoclasts as these areas become more permeable 

after fracturing (Plate 3.31). 

3.6 High-Silica Rhyolitic Domes, Dykes and Sills 

The Springdale caldera hosts at least one 

high-silica rhyolite dome called the Burnt Berry Dome. A 

second is found at the southern margin of the caldera 

(Misery Hill), but it has an extensive apron which covers 

most of the glassy domal material. The Burnt Berry Dome is 

a pink, curviplaner jointed mass with sheeting and 

variations in volatile content evidenced by alternating 

dense glassy bands and more granular zones of lithophysae 

dykes and miarolitic cavities. In thin section it is very 

fine-grained with microlites defining flow-banding 

orientations. The flow banding can be latminar or highly 

convolute (Plate 3.32). The qlass is devitrified and patchy 

( . 
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Plate 3.29. Typical glassy nature of the dacitic domes 
(C4-209, lx, PPL). 

Plate 3.30. Microphenocryst of feldspar in a pilotaxitic 
groundmass (C4-253b, 4x, PPL). 
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Plate 3.31. Autobrecciated dacite. Fragment is surrounded 
by calcite and fibrous sericite at it's edge 
(C4-266, 4x, XPL). 

Plate 3. 3 2. Burnt Berry Dome, glassy rhyolite with flow 
aligned microlites (EL-325b, lOx, PPL) . 
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as well as spherulitic devitrification is seen (Plate 

3.33). Radial devitrification nucleates on perlitic 

fractures in the groundmass and small microfractures of 

brecciated glass result from the intersection of flow lobes 

where they hava different cooling rates (Plate 3.34). 

Where lithophysae coalesce to form dykes, large 

spectacular devitrification spherules form and can be seen 

in Plate 3.35. 



Plate 3.35a. Large radial devitrification spherule produced 
in gas rich high-silica dykes (DS-20, 1x, PPL) 

Plate 3.35b. Same as above except with crossed polars. 
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Plate 3.33. High-silica rhyolite with radial 
devitrification. Groundmass alteration phases 
include calcite and epidote (EL-325b, 4x, PPL). 

Plate 3.34. Granulation along microfracture within the 
dome. Good perlitic fractures are also seen in this 
section (EL-325b, 10x, PPL). 

162 



4. CHEMISTRY OF SPRINGDALE GROUP IGNEOUS ROCKS 

4.1. Introduction 
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Of some 1500 samples collected from the rocks 

described above, 165 have been analysed for the major 

element oxides by atomic absorption and 18 trace elements by 

X-ray fluorescence techniques. Twenty-four of these samples 

were also analysed by inductively coupled plasma - mass 

spectrometry (ICP-MS) for 14 rare earth elements and an 

additional 10 trace elements. Of the total, 155 samples are 

of volcanic and associated intrusive rocks from throughout 

the map area, and the others are from lithologies not 

directly related to the Springdale Group. Care was taken to 

exclude any rocks containing xenoliths or lithic clasts or 

amygdales, or which show evidence of exceptional alteration. 

Analytical methods are described in Appendix C and the data 

are presented in Appendix o. 

Although an attempt is made to understand the 

petrogenesis of these rocks, it should be noted that this 

was not the primary purpose of this thesis. Hence, the 

suggested petrogenetic model might well be refined by more 

detailed isotopic, mineralogical other studies specifically 

designed for that purpose. 

A h~.stogram of silica distribution (Fig. 4 .1. a) 

demonstrates a range of lithologies from basalts to 
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Fiqure 4.1(a). Histogram of silica distribution in all 
(165) analysed samples from the Springdale Group. 
Classification based on (b) K2o content (after 
Pecerillo and Taylor, 1976), (C) total alkalies 
(after Cox et al., 1979), and (d) total alkalies 
(after Middlemost, 1985). The fields numbered in (d) 
identi£y rock types as follows: 1. Nephelinite; 2. 
Phonolite; 3. Alkali trachyte; 4. Pantellerite; s. 
Comendite; 6. Basanite; 7. Alkali picrite; 8. Alkali 
olivine basalt; 9. Trachybasalt; 10. Trachyandesite 
basalt; 11. Trachyandesite; 12. Trachyte; 13. 
Trachydacite; 14. Trachyrhyolite; 15. Alkali 
rhyolite; 16. Picrite; 17. Tholeiitic basalt; 18. 
Andesite basalt; 19. Andesite; 20. Andesite dacite; 
21. Dacite; 22. Rhyolite dacite; 23. Rhyolite. 
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high-silica rhyolites. It appears from Figure 4.1(a) that 

these rocks fall into four groups separated by silica gaps 

at 52-58,, 67-68% and 73-74% sio2 • For the purposes of the 

following discussion these qronps are referred to as the 

mafic, intermediate, felsic and silicic groups. The latter 

two are equivalent to low-silica and high-silica rhyolites, 

but the precise volcanic terminology to be used for these 

rocks ·would depend upon the particular classification scheme 

applied, as seen in Figures 4.l(b,c,d). 

In the terminology of Cox et al. (1979), tha 

lowest-silica group are basalts and basaltic andesites, the 

intermediate group are andesites and dacites, and both of 

the higher-silica groups are rhyolites. Using the Peccerillo 

and Taylor (1976) plot of K2o vs. sio2 (Fig. 4.l.b), 

these rocks would be clearly classified as a calc-alkaline 

suite ranging f~om basalts through andesites and dacites to 

the low-silica l 'hyolites. The high-silica rhyo}.ite~ show a 

much wider range of K2o up to more than 6%, and \.rou:'.d thus 

be termed high-K rhyolites. This is a characteristic primary 

feature of high-silica magmas with more than 74% Sio2 , and 

in many cases is associated with economic mineralization 

(see review by Tuach et al., 1986). Although some of the 

lower-silica rocks also have anomalous K2o concentrations, 

these result from secondary redistribution of alkalis in the 

volcanic rocks as a whole, and cannot be used to classify 

the springdale Group as a high-potassium suite. In terms of 

the total alkalies vs. s111ca diagrams C~!gs. 4.l.c,d), the 
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Figure 4.2. Classification of volcanic rocks of the 
Springdale Group in terms of silica and a number of 
11 immobile11 trace elements (boundaries after 
Winchester and Floyd, 1977). 
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data show a typically silica-saturated suite, with a few of 

the more altered basalts and andesites plotting in the 

undersaturated fields of alkali basalt ar1d 

trachyandesite-trachyte, respectively. 

Other elements less mobile than alkl'.iies (Fig. 4.2) 

also show the sub-alkalic nature of the Springdale Group. 

With regard to the precise terminology, however, the 

Winchester and Floyd (1977) boundaries based on these 

elements and Sio2 content are different from those of 

Fig. 4.1 and some of the rocks are grouped under different 

names. For example, using the plot of Zr/Ti vs. sio2 , the 

silica gap at basaltic andesites is spanned by the basaltic 

rocks, the andesites are classified as dacites, and the 

low-silica rhyolites are classified as rhyodacites-dacites. 

Given that tectonic classifications of volcanic rocks are 

commonly based on geochemical characteristics for 

particular patrochemical groupings rather than precise rock 

names, the Springdale group geochemical data is discussed 

below in terms of the four groups identified above, i.e. 

mafic, intermediate, felsic and silicic. 

4.2. Mafic Rocks 

Numerous classification schemes have been proposed 

to distinguish between different types of basaltic rocks as 

a means of understanding their petrogenetic history (e.g. 

Yoder and Tilley, 1964: MacDonald and Katsur~, 1964: BVSP, 

1981) or their tectonic .setting ~e.g. Pearce and Cann, 
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1972; Shervais, 1982; Meschede, 1986). For the purpose of 

this thesis it is more important to try and identify the 

tectonic setting in which the basalts were produced, rather 

than to carry out a detailed assessment of their 

petrogenetic history, which would require more 

comprehensive data, such as Nd/Sm and other isotopic 

systems, than could be obtained in the course of this 

study. 

As was shown in Figure 4.1, the mafic rocks are 

su~-alkaline. Using the Irvine and Baragar AFM 

classification (Fig. 4.3.a) they are grouped as dominantly 

calc-alkaline. However, on the Al-[Fe+Ti]-Mg diagram of 

Jensen (1979) they are shown to be tholeiitic (Fig. 4.3.b). 

These inconsistencies are also seen when other major 

elements are used, e.g. the Ti-Mn-P diagram of Mullen 

(1983) where the Springdale Group mafic rocka straddle at 

least three tectonic classification boundaries (Fig. 

4.3.c). The same is seen with immobile trace elements (Fig. 

4.3.d), with most samples plotting within the fields of 

within-plate tholeiites and volcanic arc basalts, and a few 

within the field of primitive mid ocean ridge basalts. 

Using the different comb!nations of sio2 , Tio2 

and FeO*/MgO given by Myashiro (1974) one is led to 

suggest that, despite substantial.overlap (Fig. 4.4.a), 

these rocks are essentially tholeiitic (Fig. 4.4.b,c). 

Using the immobile trace elements Zr and Y with Ti, most of 
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Fiq. 4.3. All data for the Springdale Group plot as a 
calc-alkaline suite according to (a) the 
classification of Irvine and Baragar (1971), but as 
a tholeiitic suite according to (b) that of Jensen 
(1979) • The mafic rocks overlap several fields in 
terms of both !~) minor elements (after I-tullen, 
1983) and (c) high field strength (immobile) trace 
elements (after Meschede, 1986). Abbreviations are 
as follows: 
(b) TR - Tholeiitic rhyolite; TD - Tholeiitic 

dacite; TA - Tholeiitic andesite; CR -
Calc-alkaline rhyolite; CD - Calc-alkaline 
dacite; HFT - High-Fe tholeiite; HMT - High 
magnesium tholeiite; BK - Basaltic komatiite; 
PK - Peridotitic komatiite (after Jensen, 
1979. 

(c) CAB - Calc-alkaline basalt; IAT - Island arc 
tholeiites; MORB - Mid-ocean ridge basalts; 
OIA - Ocean island andesites; OIT - Ocean 
Island tholeiites (after Mullen, 1983). 

(d) AI, AII - Within-plate alkaline basalts; 
AII, C - Within-plate tholeiites; B -
Primttive· mid ocean ridge basalts; c, D -
Volcanic arc basalts; D - Normal mid ocean 
ridge basalts (after Meschede, 1986). 
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Figure 4.4. Classification of Springdale Group basalts 
based on variations in FeO*/MgO as proposed by 
Myashiro (1974). 
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Figure 4.5. Using the discrimination diagrams proposed by 
Pearce and Cann (1973) the Springdale Group basalts 
would classify as mostly as calc-alkaline basalts 
and a few within plat~ basalts (a), or as mostly 
ocean floor basalts with no calc-alkaline trend (b). 
They likewise plot as ocean floor basalts according 
to the classification of (c) Shervais (1982) and (c) 
Pearce (1975). Abbreviations are as follows: 
(a) A, B - Low-K tholeiites: B - ocean floor 

basalts: B, c - Calc-alkaline basalts: D -
Within plate basalts. 

(b) A, B - Low-K tholeiite: A, c - Calc-alkaline 
basalt: B, D - Ocean floor basalt. 

(c,d) ARC - Island arc basalts: OFB - Ocean floor 
basalts: LKT - Low - K tholeiites. 
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these data plot mainly withi~ the calc-alkaline basalt field 

(Fig. 4.S.a), but in the classification based on two of these 

same three elements, Ti-zr (Fig. 4.5.b), they plot mostly within 

the field of ocean floor basalts and show no indication of a 

calc-alkaline trend. 

Although the geological setting of the Springdale Group 

clearly precludes an origin on the ocean floor, it is 

interesting that the basalts do have characteristics of ocean 

floor basalts (Fig. 4.5.c,d). This is not unique for Silurian 

mafic rocks of central Newfoundland, as the Mount Peyton Gabbro, 

which intrudes the Botwood Group, is geochemically similar to 

those of ocean floor basalts (Strong, 1979). It may be that both 

of these suites were derived from melts produced through 

continued sub-crustal activity of the same Iapetus spreading 

center which was earlier active in the Ordovician and, according 

to most tectonic t.odels for central Newfoundland (e.g. see 

review by Swinden et al., 1979), would have been over-ridden by 

both ophiolitic and arc material by closure of Iapetus. 

With regard to the petrogenesis of the Springdale Group 

mafic rocks, the generally high K/Rb ratios around 500 (Fig. 

4.6.a) can be taken to reflect the original mantle ratios, since 

it is well known that crustal rocks average K/Rb ratios around 

230 (Taylor, 1966) or lower (Lambert eta~, 1976). However, the 

Ni and Cr contents (Fig. 4.6b) indicate that these basalts are 

not primitive magmas derived directly from the mantle, but had 
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Fiqure 4.6. covariation of a number of trace element~ in the 
Springdale Group mafic rocks. In (a) basalts plot within 
the enclosed field, and numbers refer to K/R~ ratios of 
1000, 500, 100. In (c) the lower vertical line is through 
the mafic rocks and symbolizes olivine and clinopyroxene 
fractionation (i.e. no Sr va,ria,tion) : the abrupt change 
in slope of the upper line r:eflects the depletion of Sr 
and slight Rb enrichment by plagioclase fractionation. 
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Figure 4.7.(a) Extended rare earth element plots for Springdale 
Group mafic. rocks, with concentrations normalized to 
primitive mantle d.~ta of sun (1982). 
(b) Typical extended rare earth element plots for 

continental flooa basalts (after Thompson §t ~ 
(1983, 1984), other basalt types (after Sun, 1982), 
and continent-derived oceanic se~iment (after Hole 
et al, (19~4) (modified from swinden et al. (1989). 

(c,d) Proposed distinctions between different basalt 
types proposed by (c) Condie et al. (1987) and (d) 
swinden et al. (1989). 

Abbreviations are as follows: IAT - Island arc tholeiite; 
CAB - Calc-alkaline basalt: N-MORB - Normal 
mid-ocean ridge ba~'~l t: E-~!ORB - Enriched mid-ocean 
ridge basalt: OIB - Ocean island basalt: CRB -
Continental rift ba~alt. 



! 
j 
.... 
1 • 

4 

(c) 

MOAB, CAB, 018 

• 

181 

(b) 

---c..tt ...... l ttllltllte 

1 . .... 

• .... "'' "' ft 

N.IIIOIII •llttllltl llllf IUIII rlftl iltlllt 
l . MOIII •lllriellttll - tlllll rltlltl MMII 

(d) 

Non • Arc 

" 



182 

undergone significant fractionation of olivine and possibly 

pyroxene. 

The rare earth elements (Fig. 4.7a) exhibit a ranqe 

of chondrite-normalizod ratios for La between 20 and 40, 

and tor Lu between 5 and 10, with relatively straight-line 

negative slopes similar those of continental tholeiites 

(Thompson et al., 1983,1984; Fig. 4.7b). They do not 

exhib~t significant europium anomalies, indicating that 

plagioclase was not an important component in the g~nesis 

of these mafic rocks, although plagioclase is present as a 

phenocryst phase in most samples. 

Because of the abundance of andesites in the 

Springdale Group, it is important to evaluate the possible 

importance of subduction in the generation of this 

sequence. An attempt at this can be made by means of the 

extended REE plots shown in Figure 4.7(b). Swinden et al. 

(1989) have reviewed the characteristics of "arc 

signatures" and "non-arc signatures" of basaltst supporting 

the conclusions of Wood et a1. (1979) and sun (1980) that 

subduction-related mafic rocks are depleted in the 

high-field-strengttl elements including the heavy rare earth 

elements and particularly Nb and Ta, and are enriched in 

the low-field-strength elements, including the light rare 

earth elements, with a definitive thorium enrichment 

relative to lanthanum. These features are shown for 

different basaltic types on the extended REE plots as a 
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negative anomalies for Nb and Th (Fig. 4.7.b), and allow 

for a distinction between different suites as shown in 

Figura 4. 7 (c). It can be seen from Figure 4. 7 (c) and 4 •• ,, (a.) 

that some of the Springdale Group mafic rocks show the ~D 

depletion and Th enrichment, which might be taken to 

suggest that they were produced by subduction-related 

processes. However, o·ther tJamples of the Group show non-arc 

patterns, and actually form a continuum across the supposed 

boundary between the arc and non-arc fields (Fig. 4.7.c). 

Furthermore, these rocks have Zr-Ti02 ratios of 

tholeiites formed in extensional regimes such as mid-ocean 

ridges, continental rifts or oceanic islands, and are 

unlike those of calc-alkaline basalts or island arc basalts 

(Fig. 4.7.d). 

These features suggest that other explanations for 

these anomalies should be considered, for example crystal 

fractionation and/or contamination of the basaltic magmas 

during their ascent by the sediments and continental crust 

previously subducted during closure of Iapetus, not 

necessarily their partial melting during an active 

subduction process. Figure 4.8(a) shows extended REE plots 

for the mafic rocks normalized to continental crust, with 

most REE enriched by a factor between 1 and 2, slightly 

positive Ti and some Nb anomalies. The Th and some Nb 

ratios are lower than those of continental crust. The other 

LFSE ratios are generally lower than 1, but in these and 

the other diagrams the scatter of these elements is taken 
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Figure 4.8. Extended rare earth element diagrams for the 
four groups of mafic, intermediate, felsic and 
silicic rocks of the Springdale Group, normalized to 
the average continental crust of Taylor and McLennan 
(1985). 



as retlecting alteration, i.e. precluding their use as 

reliable petrogenetic indicators. 
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If contamination by continental crust has influenced 

the compositions of the mafic rocks, one might reasonably 

expect it to have had some control on the other rock 

typesas t~ll, with at least the intermediate 

(granodiorite-like~ i.e. similar ~o average continental 

crust in major elements, e.g. Taylor and McLennan, 1985) 

rocks being progressively more similar to continedtal 

crust. When normalized to continental crust, however, most 

elements of the intermediate (Fig. 4.8.b) and felsic rocks 

(Fig. 4.8.c) are seen to be enriched by factors between 1 

and 2, except for strong depletions of sr and Ti in the 

latter group and Nb in several samples of each. 

Although the intermediate and fels~c rocks are 

discussed in more detail below, comparison of their REE 

patterns with those of ~he basalts does clarify the 

interpLotation of the latter. 

The chondrite-normalized extended REE plots for the 

intermediate (Fig. 4.9.a) and felsic rocks (Fig. 4.9.b) 

show more clearly the continuum from the mafic patterns, 

with the negative .Nb and positive Th anomalies 

progressively increased. These trends are also accompanied 

by progressive enhancement of Ti, Sr and Eu anomalies, 

features which are readily explained by fractionation, 

along with the olivine and clinopyroxene discussed above, 
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of plagioclase and Fe-Ti oxides, both of which occur as 

phenocryst phases in these rocks. In other words, the 

continuum of patterns, including the increasing Nb 

anomalies, rrom the marie to felsic rocks suggests that 

these patterns, including those of the mafic rocks, are all 

the result of fractionation and not partial melting 

processes, and therefor~ cannot be reliably used as 

indicators of arc or non-arc origin. 

The corresponding changes in the HFSE such as zr, 

Hf, Nb and Y with tota~ REE are illustrated in Figures 

4.6(d,e), with strong correlations which can be interpreted 

as due to zircon and magnetite fractionation. 

In general, it seems reasonable_ to suggest that thE't 

Springdale Group basalts are tholeiites, with similaritiet; 

to oce,an floor basalts, possibly produced by the Iapetus 

spreading centre which was over-ridden during closure in 

the late Ordovician, analogous to the southwestern United 

States where the East Pacific Rise was over-ridden by 

continental crust of the American plate (Atwater, 1970; 

Gans et al., 1989). The Newfoundland situation would have 

differed only in that the over-riding material would have 

been an assemblage of North American Precambrian 

(Grenville) continental crust and the Lower Paleozoic 

oceanic and arc sequences, all of which were juxtaposed by 

closure of Iapa~us (see Swinden et al., 1989, for a 

review). The original primary basaltic compositions were 

modified during passage through this crust by fractionation 
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Fi~Jre 4.9. Extended rare earth element plots for 
Sprinqdale Group intermediate (a), felsic (b) and 
silicic (c) rocks, with concentrations normalized to 
primitive mantle data of sun (1982) • 
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ot o1ivine, clinopyroxene, some Fe-Ti oxides and zircon, 

with plagioclase becoming important in the andesites and 

more silicic compositions. Thi~ fractionation could well 

have been accompanied by limited contamination from the 

crustal rocks, as well as mixing with more silicic crustal 

melts. (analagous to the model foe cry~tallization during 

mixing proposed by McBirney, 1984, p. 158, Fig. 5-14) 

4.3. Intermediate Rocks (Andesite-Dacite) 

The "intermediate" rocks of the Springdale Group are 

defined as those with silica values falling between gaps in 

the data at 56 and 69% sio2 , essentially the andesites 

and dacites (Fig. 4.1.a). They plot mainly within the 

calc-alkaline field in terms of K2o vs. sio2, although 

several altered samples are found within the fields of 

high-K andesites (Fig. 4.l.b). The data nevertheless tend 

towards the higher-K side of the calc-alkaline field, with 

a trend comparable to those of suites ranging from an 

extensional setting such as Xceland to subduction settings 

such as the island arcs of the southwest Pacific (Ewart, 

1979) • Given the extensional tholeiite nature of the 

basaltic rocks discussed above, and the abundance of 

high-silica rhyolites, it is unlikely that the Springdale 

Group andesites were produced in a subduction setting. This 

is also in accord with the above interpretation that the 

tectonic setting of the Springdale Group was analogous to 

that of the Basin and Range province where, in an 



extensional tec.tonic setting, voluminous andesites were 

also produced (Gans et al., 1989), 
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The petrogenesis o~ andesites has been a subject of 

controversy since at least the 1920s, with Fenner's (1926) 

suggestion of an origin by mixing of felsic and mafic 

magmas in contrast to Bowen's (1928) interpretation of an 

origin by crystal fractionation. Although these two 

extremes are still the dominant hypotheses, it appears from 

the available evidence that the Springdale Group andesites 

accord with McBirney's (1984) cor,clusion that "andesite is 

a derivative magma, and its parent is basaltic", although 

the transition from parent to derivative might have been 

brought about in a number of ways. For example, it was 

shown above that the REE and other trace element 

concentrations and distribution patterns of the Springdale 

Group form a continuum from the basalts through andesites 

to dacites which can be explained by fractionation of 

olivine, clinopyroxene, Fe-Ti oxides, zircon and 

plagioclase, and possibly with limited crustal

contamination. Given that none of these phases except 

plagioclase should affect the K/Rb ratios, it is useful to 

compare the K/Rb ratios for these mafic and intermediate 

groups (Fig. 4.10). It can be seen from Figure 4.10(a) that 

there is some overlap between the basaltic and intermediate 

rocks. H"'~ever, the intermediate rocks fall into ·two 

groups, one similar to the basalts with K/P~ between 1000 

and 300, and one more enriched in K and Rb with a more 
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restricted K/Rb range between 500 and 300. The latter lies 

directly on a trend to the felsic and silicic rocks, and 

might be explained as resulting from the beginning of 

fractionation of plagioclase in the suite. This has also 

been shown mora clearly in Figure 4.6(c) where, despite the 

fact that the Sr and Rb data are independently scattered 

due to alteration, there is an abrupt kink in the Rb-Sr 

curvewhich marks the beginning of plagioclase fractionation 

within the mafic rocks. As expected, the HFSE such as Zr 

and Nb maintain their positive correlation within the 

intermediate group as was seen in the mafic group, 

indica~inq that there was no change in the fractionating 

phases which controlled their distribution, i.e. oxides and 

zircon (Fig. 4.6.d,e). 

4.4. Felsic Rocks (Rhyodacite-Rhyolite) 

The "felsic" rocks of the Springdale Group are 

defined as those which fall between the silica gaps at 69 

and 74% sio2 (Fig. 4.1.a), i.e. rhyolites-rhyodacites, on 

a direct continuation of the trend from the intermediate 

rocks in virtually all diagrams (e.g. K2o-sio2, Fig. 

4.l.b). They have lower K/Rb ratios than the intermediate 

rocks, around 300 (Fig. 4.10.c), but exhibit the same 

positive HFSE correlations and ratios (Fig. 4.6.d,e). Using 

the classification schemes of Pearce ~ Al· (1984) (Fig . 

4.ll.a) these rocks 
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straddle all three boundaries between volcanic arcjsyn

collisional granites, ocean ridge granites and within plate 

granites, and the boundaries between volcanic a~c granites 

and within plate granites (Fig. 4.11b). The ocean ridge 

granites can be excluded because the Springdale felsic 

rocks have equilibrated in a relatively shallow crustal 

magma chamber, and are also geochemically continuous with 

the rest of Springdale Group volcanic rocks. According to 

Figures 4.11 (c and d), however, these felsic rocks are 

within plate granites, a classification which is in accord 

with their tectonic setting. 

4.5. Silicic Rocks (High-Silica Rhyolite) 

The distinctive group of high-silica rhyolites, with 

more than 74% sio2 (Fig. 4.1.a), are closely similar to 

the "within-plate granites" of Pearce et al. (1984), 

although a sub-group of these samples straddle the boundary 

with volcanic arc granites (Fig. 4.1l.d,e), as do the 

felsic rocks (Fig. 4.11a,b). These rocks are also similar 

to those which are found as late-stage domes and zoned 

ash-flow tuffs derived from the tops of differentiated 

magma chambers in continental calderas (e.g. Hildreth, 

1979). The Sprin~dale Group high-silica rhyolites are also 

mostly associated with small domes and their pyroclastic 

aprons which have been emplaced late in the se~ence, 

although no detailed studies of individual ash flows have 

been conducted to determine their degree of zonation. 



195 

The high-silica rhyolites mostly exhibit the same 

positive covariance between the HFSE, although they are 

somewhat more enriched in these elements (Fiq. 4.12a,b). 

They also differ in that some samples are substantially 

enriched in elements like Nb and Y over Zr. This was also 

indicated for the rare earth elements, particularly the 

heavy REE, in Figure 4.8d. Although these rocks also 

exhibit even more depleted Nb, sr and Ti anomalies with 

respect to other elements on these extended REE diagrams 

than the less silicic rocks, i.e. reflecting even greater 

fractionation of plagioclase and opaque oxides, the overall 

enrichments of REE and associated elements require 

additional processes for their explanation. 

The high-silica rhyolites and the lower-silica 

felsic rocks are compared in more detail in Figure 4.13, 

where a number of trace elements are plotted against 

niobium. These elements are typically strongly enriched or 

depleted not only in high-silica rhyolites (e.g. Hildreth, 

1979) but also in peralkaline granites (e.g. Taylor et al., 

1981). It is clear from Fig. 4.13 that there is virtually a 

complete separation of the two types in terms of their Nb 

contents, as well as Zr, sr andY. The high-silica 

rhyolites also tend to have higher concentrations of Rb and 

Zn, but there is some overlap of the two groups. 
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Of greater interest is the strong correlation of Nb 

with Zn, a feature which seems to be unique to p6ralkaline 

rocks such as those of the adjoining Topsails (Taylor ~ 

~. 1981) and King's Point (Kontak and Strong, 1986). 

Given that the peralkalinity of the King's Point complex 

(and Sheffield Lake Group) is at least partly a result of 

metasomatic (fenitization) processes near intrusive 

contacts (Taylor et al., 1981; Strong and Taylor, 1984; 

Mercer et al., 1985; strong and Coyle, 1987), these 

patterns in the high-silica rhyolites of the Springdale 

Group may suggest that similar intrusions are associated 

with the Springdale, and that similar metasomatic processes 

were operative. Although such intrusions are not exposed, 

these features support the suggestion in Chapter 2 of a 

similar evolutionary history for the King's Point, Topsails 

and Springdale systems. 

The genesis of high-silica magmas has been 

intensively discussed in the current literature. Hildreth 

(1979, 1981) has focussed attention o~ high-level, 

high-silica maqma chambers, interpreting compositional 

variation in ash-flow tuffs as indicating their source from 

a large layered magma chamber. Recent models suggest that 

the layering may arise from a process of 

thermogravitational diffusion (Hildreth, 1979, 1981) or 

through convective fractionation (Rice, 1981; Sparks §t_ 

Al·, 1984; Tuach et al.; 1988). 
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Geochemical trends in the Devonian Ackley Granite of 

eastern Newfoundland led TUach et al. (1988) to infer a 

similarity of processes to those operating for the Bishop 

TUff magma chamber, i.e. with geochemical zonation in the 

upper parts of the Ackley magma chamber developed in a 

silicate liquid with small pro~ortions of crystals, like 

that of the Bishop Tuff. They further noted that at least 

two distinct processes seem to have qpe~~ted in the Ackley 

Granite magma chamber, producing a greater variability and 

higher concentrations of u, F, Y, Nb, Rb, and lower 

concentrations of sr and Ba, at above 74% sio2 , precisely 

as seen for the Springdale Group rocks with greater than 

74% Sio2 • 

As reviewed by Tuach et al. (1988), such trends 

might be attributed to crystal/melt fractionation by 

mechanical processes such as crystal settling or 

filter-pressing, but such an explanation for both the 

scatter and enrichment/depletion would require either a 

sudden change in partition coefficients, or the appearance 

of new phases for both fractionation and accumulation. 

Although it is possible that the former could happen, e.g. 

due to melt depolymerization and complexing by elements of 

high ioni~ potential (e.g. Hess, 1980: Watson, 1979), Tuach 

et al. did not find any evidence for fractionation of the 

accessory minerals which would be necessary to bring about 

such changes. 
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Burnham (1967) has demonstrated that a number of the 

elements of interest would be partitioned into a volatile 

phase which coexisted with a silicate melt, and it may be 

that such a process is operative in high-level magma 

chambers. Again, however, Tuach et al. (1988) have 

convincingly dismissed this process because, among other 

reasons, they could demonstrate that the element 

enrichments are only the end-products of processes which 

formed smooth trends observable over a much larger area of 

the Ackley Granite where there is no physical evidence for 

volatile activity. While the ash-flow volcanism of the 

Springdale Group of course provides abundant evidence of 

volatiles, the Ackley system does demonstrate that such 

volatiles are not necessarily controls of the observed 

element patterns in the high-silica rhyolite domes. Their 

suggestion "that volatile exsolution was another result of 

the magmatic concentration mechanisms within the magma 

chamber, rather than a cause of the range of features" 

seems equally applicable to the Springdale magma 

chamber(s). 

There is no reason to ass\me anything other than 

that the Springdale Group high-silica rhyolites were 

derived from a layered magma chamber like that envisioned 

by Hild:r:eth (1979), with a high-s.ilica LIL and HFS 

element-enriched top overlying less silicic magma. This 

does not necessarily require that Hildreth's model of 
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liquid-state diffusion was operative, and indeed it has met 

considerable opposition in the recent literature from both 

experimental (Lasher et al., 1982) and theoretical 

(Michael, 1~83) points of view. Tuach at al. (1988) 

preferred a process of concentration of elements in a 

high-silica roof zone by convective circulation of the 

magma, involving roof-ward convection of fluid away f.~om 

crystals forming at the walls of the magma chamber where 

cooling wa~ fastest and crystallization most effective. 

Tuach et al. (1988) pointed out that this removes 

one of Hildreth's (1979) major objections to crystal 

fractionation, i.e. the necessity to remove unreasonably 

large proportions of crystals. Michael (1983) also pointed 

out that fractionation of 6f.,70% of the observed phases 

could explain the variations in the Bishop Tuff (e.g. 

extreme Ba and Sr depletion) and Sparks et al. (1984) 

demonstrated that side-wall crystallization provides an 

acceptable physical mechanism. As with the process of 

thermogravitational diffusion expounded by Hildreth (1979, 

1981), the convective fractionation model of Sparks et al. 

(1984) could be self-enhancing in that the zone of 

crystallization would become dspleted in Ba and Sr and 

enriched in volatiles and LIL-HFS elements. The later 

lowest-density material to rise to the top of the maqma 

chamber would produce the most evolved high-silica 

rhyolites, thus accounti~:.oq for their presence in the 
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lata-stage domes. The similarity of these patterns to those 

observed in the Ring's Point and Topsails peralkaline rocks 

would suggest that similar processes ware operative there, 

that is that the metasomatic effects are the result of 

fluids produced at the end-stages of convective 

fractionation within the magma chambers. 

4.6. Summary and Conclusions 

The Springdale Group data, as shown in Figure 

4.1(a), are naturally divisible into four groups based on 

silica values, viz. "mafic" (basalts and basaltic 

andesites), "intermediate" (basaltic andesites, andesites 

and dacites), "felsic" (dacites and rhyodacites), and 

"silicic" (rhyolites and high-silica rhyolites). The first 

three groups form a typical calc-alkaline trend which can 

be interpreted as having been produced by fractionation of 

olivine, clinopyroxene, plagiocla~d, Fe-Ti oxides and 

zircon. The fourth group, found mostly as late-stage domes, 

is typical of high-silica rhyolites produced in the late 

stages of development in the roof zones of large magma 

chambers, and are interpreted to have been similarly 

produced by processes dominated by convective 

fractionation. These latter rocks, along wj.th other 

geochemical characteristics of the less silicic rocks (e.g. 

the basalts being non-arc tholeiites) suggest that the 

Springdale Group was formed in an extensional environment 



which included continental crust. The preferred genetic 

interpretation of these rocks is schematically outline in 

Figura 4.14. 
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Figure 4.14. A schematic representation of the genesis of 
the Springdale Group volcanic rocks. The basalts 
from primary mantle melts modified by olivine ± 
clinopyroxene during ascent. The falsie rocks are 
crustal melts produced by heat from the mantle melts 
during their ascent through the crust. These two 
types of melt accumulated in a shallow magma chamber 
and produced the intermediate compositions by a 
combination of magma mixing and fractionation of 
olivine - clinopyroxene - plagioclase - Fe-Ti 
oxides. The high - silica rocks were produced by 
accumulation in the roof zone of the magma chamber 
of low - viscosity, qas - charged melts which could 
have formed by a combination of processes including 
side - wall crystalliztion, thermoqravitational 
diffusion and volatile transport. 
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5. GEOCHRONOLOGY 

5.1. Introduction 

The method of precise 0/Pb zircon dating (Krogh, 

1982) offers a particularly powerful, perhaps the only, 

method for attacking the problems associated with 

establishing the internal stratigraphy and external 

correlations of altered non-fossiliferous Paleozoic felsic 

volcanic sequences. This approach was used in the present 

study to obtain five new zircon dates. These are for 

samples from the lowermost and uppermost ash-flow tuffs and 

an intermediate-aged rhyolite dome of the Springdale Group 

within the caldera, a syenite from the King's Point 

complex, and an ash-flow tuff from the Cape st. John Group. 

These units were dated for the primary objective of 

bracketing the ages of individual units of the springdale 

caldera, as an independent check on their relative ages 

based on geological observations and interpretations, and 

to determine the time span ~ver which the caldera was 

active. The second importa11t objective was to determine the 

ages of associated volcano-plutonic sequences in order to 

evaluate proposed correl~~ions and volcanic/p!utonic/ 

tectonic interpretations based on these correlations in 

Newfoundland and elsewhere in the orogen. 

The data are summarized in Table 5.1 and Figures 5.1 

to s.s, and details of the method are given in Appendix 5. 
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5.2. Results 

5.2.1. Springdale Group, Unit 1 (Sample Zr-11) 

sample no. zr-11 was taken from unit 1, the 

lowermost of the volcanic units within the Springdale 

caldera. In general this unit comprises a moderately 

welded, lithic-crystal tuff, commonly highly fractured or 

cleave4 along its eastern margin. It differs from most of 

the other overlying ash flows in that fractured and broken 

crystals of both plagioclase and K-feldspar are present, 

along with accessory biotite, quartz, and rare opaques. The 

lithic clasts include plaqiophyric basalt, andesite, 

serpentinite, jasper, and granophyric, perlitic and other 

felsic cl~sts. The matrix includes shards, rock and crystal 

fragments, and partially welded eutaxitic pumice lapilli. 

The actual sample from which the zircons were separated was 

taken from a finer grained ashy lithology of the unit in an 

attempt to avoid lithic debris and thus lessen the 

possibility of zircon xenocrysts. 

In thin section this sample is seen to be a 

fine-grained recrystallized ashy portion of Unit 1, 

representing a lithic-poor or distal facies of this unit. 

It shows little evidence of primary welding textures or 

vitric clasts although such features were noted on the 

outcrop. The thin section is composed of qroundmass quartz 

and feldspar (albite) in roughly equal portions. The 

groundmass has abundant sericite alteration, both as 
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individual sheaves projecting into cavities, as 

intergrowths along grain boundaries, and as alteration of 

the feldspars. Small epidote needles are seen as a common 

alteration product. Zircon can be seen in this thin section 

only under the highest magnif1cations, not surprizingly in 

this sample which contains only 133 ppm Zr (see Appendix D, 

sample 3-6-8). 

Each sample was examined with the scanning electron 

microscope and analysed with the energy dispersive 

ruicroprobe in order to ensure an adequate zircon population 

for age-dating. Plate 5.1 is a split-screen photograph of 

sample Zr-11 showing a typical back scatter electron image 

on the top half with three zircons present. The bottom half 

is an X-R~y map for Zr which identifies the three crystals 

of zircon. 

The zircon population of sample Zr-11 was relatively 

small (i.e. low yield) and the zircon crystals are small 

(-100->+200 mesh), thin, elongated clear prisms with cracks 

running the length of the crystal (see Plate 5.2). The 

sample showed no evidence of cores and therefore only light 

abrasion was necessary to remove the problems of surface 

leaching and lead loss. Four fractions were run to 

establish a truly concordant point (See Table 5.1 for 

weights and other pertinent data). The first two fractions 

were picked from the M 3° yield so as to preserve the 

small M1° and NM fractions and to bracket the Pb 
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ZR-11 BASAL TUFF: 

432. 4 +1. 7/-1. 4 Ma 

.069 
NH •1 CLEAR NEEDLES P. 45 

ZR-JJ CDI.ORI.ESS CRACK-FREE P.53 

ZR-IJ H • 3 CRACKED NDNABR 

207 235 

ZR•J J H • 3 CRACKED NONABR Pb/ U 

.065~~----~------~~----_.--------~~--~ .sa .s2 .54 

Fig. 5.1. Concordia plot for sample ZR-11. Springdale 
Group, Unit 1. 



Plate 5.1. Split-screen 
photograph of sample Zr-11 
showing a typical back 
scatter electron image on 
the top half, with three 
zircons present. The 
bottom half is an X-Ray 
dot map for Zr which 
identifies the three 
crystals of zircon. 

Plate 5.2. Small (-100->+200 mesh), thin, elongated clear 
zircon prisms with cracks running the length of the 
crystal. Sample Zr-11. 
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concentrations for s~iking the final fractions properly. 

This method is typically employed to produ~e a "lead-loss 

line" with limited zircons. The final fraction was abraded 

and produced clear, relatively crack-free, glassy elongate 

ovals (See Plate 5.3) which plotted on concordia. Figure 

5.1 shows the relationships between the various fractions 

on the concordia diagram, based on regression calculation 

carried out as outlined by Davis (1982), with errors on the 

calculated ages quoted at the 95% confidence level. The 

clear abraded fractions plot directly on concordia at an 

estimated age of 432.4 +1.7/-1.4 Ma, with the cracked 

non-abraded fractions and a discordant abraded fraction all 

plotting linearly away from it along a lead loss line. 

5.2.2. Springdale Group, Burnt Berry Dome (Zr-7) 

Sample Zr-7 was taken from the Burnt Berry Dome, a 

rhyolite dome which was interpreted to have been emplaced 

in the middle stages of the Springdale caldera sequence, 

although with its high-silica composition and proximity to 

late-stage caldera in-fill lithologies, it appears to be a 

late-~tage feature, as is typical for high-silica domes 

observed in other such calderas. As described above, these 

rocks are flow-foliated with extreme convolution seen as 

fluidal folds and disruption of flow banding, 

auto-brecciated and contain zones of intense development of 

lithophysae and other indications of gas-streaming. These 



Plate 5.3. Selection of the final abraded fraction used for 
dating - clear, relatively crack-free, glassy 
abraded prisms - of zircon from Unit 1, sample no. 
Zr-11. 
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rocks were earlier suggested to be corre1ative with younger 

granitoid rocks which were intruded along faults bounding 

the Springdale Group in the east and west, and truncate 

ntuch of the stratigraphy in the south as part of the 

Topsails complex (Coyle and Stronq, 1986). 

In thin section the Burnt Berry Dome is made up of 

devitrified fine "glassy" rhyolite with granophyric 

texture, microphenocrysts of K-feldspar are common. Patches 

and sprays of hematite are characteristically disseminated 

as microlites in the groundmass. Sample no. Zr-7 from which 

the zircons ;;.;ere extracted has a typical devitrification 

mosaic texture under crossed polars (intergrowths of quartz 

and feldspar) • Devitrifica·tion spherules (radiating 

axiolitic sprays of· quartz and feldspar) are common and in 

general the section shows a predominance of granophyric 

patches. Resorbed and hematite-stained phenocrysts of 

K-feldspar are common. Zircons are distributed as isolated 

blocky crystals throughout the thin section, with no 

preference for the granophyric groundmass or phenocrysts. 

The zircon population obtained from sample ZR-7 

consists of stubDy, vitreous, clear, beige, eUhedral prisms 

(Plate 5.4) with no evidence of cores or cracks, i.e. no 

suggestion of inheritance or alteration. With strong 

abrasion the zircons are well polished clear crack-free 

ovals as seen in Plate 5. 5 and accordingly they plot 

directly on concordia, with an estimated age of 4 ~o. 8 ± 2 

Ma (see Fiq. 5.2 and Table 5.1). 



Plate 5.4. Selection of the zircon population obtained from 
sample ZR-7 consists of stubby, vitreous, clear, 
beige, euhedral, prisms with no evidence of cores or 
cracks. 

Plate 5.5. Strong ly a braded, well polished, beige 
crack-free ovals of zircon from Burnt Berry dome 
sample Zr-7. 
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ZR-7 BURNTBERRY DOME 
.e73~----------------------------------------~ 
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Figure 5.2. Concordia plot for zircon sample no. zr-7, 
Burnt Berry Dome. 
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5.2.3. Springdale Group, Unit 10 (Sample Zr-3) 

Sample no. Zr-3 was taken from Unit 10, the Indian 

River TUff, an orange to brown crystal-lithic tuft found 

mainly in the interior of the caldera but overlapping its 

margin in the northwest. This crystal tuff is very massive 

and generally strongly welded, with abundant (up to 60%) 

large phenocrysts of quartz and feldspar, and clasts of 

jasper, mafic and ultramafic lithologies. It caps the 

volcanic sequence of the caldera and is interbedded with 

red sandstones of the caldera-fill stage of development, 

and is seen to directly overly basement. rocks of the Lushs 

Bight Group outside the northwestern margin of the caldera. 

Its similarity to phases of the King's Point Complex led 

Coyle and strong (1987) to suggest that it was in fact 

derived from the King's Point and not the Springdale 

caldera. This unit was dated at 429 +6/-5 Ma by Chandler et 

~ (1987), who suggested that one discordant sample 

reflected inheritance from older xenocrysts which they 

observed as cores in euhedral zircons. 

In thin section (Plate 5.6) sample no. ZR-3 from 

which the zircon was taken is spectacularly phenoclastic 

with large broken and resorbed phenocrysts of quartz, 

K-feldspar and plagioclase comprising (in roughly equal 

proportions) about 60% of the rock with about 10% vitric 

and lithic clasts in a moderately welded eutaxitic matrix 

littered with fine crystal fragment debris. Melt inclusions 



Plate 5.6. Photomicrograph of sample no. ZR-3. Large broken 
and resorbed phenocrysts of quartz, K-feldspar and 
plagioclase, with vitric and lithic clasts in a 
moderately welded eutaxitic matrix littered with 
fine crystal fragment debris. 

Plate 5.7. Crystal clusters of zircon identified in 
sample Zr-3, using the scanning electron microscope; 
back-scattered electron image. 
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are abundant in the quartz c~enocrysts ca1'\d rare in the 

feldspar phenocrysts. Both the matrix and feldspar 

phenocrysts have been oxidized and lightly sericitized. 

Zircon crystals tend to be sm.111 and difficult to detect in 

the oxidized groundmass. They are, however, readily 

detectable as individual cryst.als, fragments and clusters 

using the scanning electron microscope (Plate 5.7). 

The zircons separated from sample zr-3 were all 

stubby to blocky euhedral prisms, with some containing 

darker cores, as observed by Chandler et al, (1987). Both 

the clear crystals and clear beige sh~rds and tips of cored 

crystals were used for dating (Plate 5.8), and one crystal 

was abraded for analysis of the core to assess inheritance. 

As shown in Figure (5.3), all fractions except the core 

plot on or near concordia, giving an estimated age of 425 ± 

3 Ma. This is 4 Ma younger than the age estimated by 

Chandler et al. (1987), but the higher precision suggests 

that this younger dote is preferable. This is supported by 

the fact that the core sample dated in this study is, like 

the discordant sample of Chandler et al., offset from 

concordia to indicate an inherited age of 1346 ± 230 Ma. 

While this age is not readily identified in the known 

potential Precambrian source rocks of the region, the 

precision on the "inheritance age " is not adequate to 

assess precisely, any such origin. Nevertheless, it is not 

unreasonable that zircons of this age would be found in 

rocks which are precursors to the Grenville basement seen 



Plate 5.8. Clear crystals and clear beige shards and tips 
of cored crystals of sample Zr-3, Unit 10. 

Plate 5.9. King's Point Complex, sample no. KP-1000. 
Biotite intensely altered to hematite, sericite, 
chlorite and epidote, with rim overgrowths of sadie 
amphibole. 
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Figure 5.3. Concordia plot tor zircon sample no. zr-3 , 
Indian River 'rUt r. . 
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to the west of the Springdale Group and inferred to be 

beneath it by previous workers. These observations support 

the interpretation from other independent geochemical data 

that these rocks were derived from underlying continental 

crust, as is typical for such large siliceous volcanic 

terranes. 

As described above, the striking similarity between 

the Indian River Tuff of the Springdale Group and some 

rocks of the King's Point complex suggests that this tuff 

is an outflow facies of the King's Point caldera. If this 

is so, its position at the top of the Springdale Group 

indicates that the King's Point complex (or at least this 

phase of it) is somewhat younger than, but overlapping in 

time wi~h the Springdale caldera volcanism. 

5.2.4. King's Point Complex (Sample KP-1000) 

The sample dated from the King's Point Complex, no. 

KP-1000, is a holocrystalline qu3rtz syenite with very 

large (up to 1 em long ) phenocrysts of K-feldspar jn a 

coarse granular to granophyric groundmass of intergrown 

quartz, K-feldspar, plagioclase, biotite, magnetite, and 

accessory apatite and calcite. Alteration of the feldspars 

is characterized by hematitic and bericitic dusting. The 

biotite is more intensely altered to hematite, sericite, 

chlorite and epidote. A particular feature of this sample 

is the replacement of the biotite by sodic amphibole 

(riebeckitic arfvedsonite) (Plate 5.9). The zircons occur as 

large stubby crystals which tend to cluster with the 

biotites. 
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Zircons obtained from KP-1000 were stubby euhedral 

prisms, without cores or alteration. They plot on concordia 

with an estimated age ot 427 ± 2 Ma (Fig. 5.4). 

5.2.5. Cape st. John Group (Sample CSJ-10) 

The Springdale Group biotite-bearing ash flows, 

intermediate andesitic-dacitic flows and pyroclastic 

deposits, and the basaltic flows are similar to lithologies 

of the cape st. John Group and the cape Brule porphyry 

which grades into the volcanic suite. If these three 

suites are correlative, it is possible that they are 

related to the same caldera, with part of the Cape Brule 

porphyry forming a sub-volcani~ pluton. 

Two samples were selected for dating, one of 

ash-flow tuff at the contact wi.th the cape Brule porphyry 

(CSJ-6) and one from ash-flow tuff presumed to be 

stratigraphically higher (CSJ-10). Both of these occur in 

the north central parts of these units, where they have 

been subjected to variable degrees of deformation. Both 

units are characterized by an abundance of lithic clasts 

including those derived from the underlying ophiolite 

suite, jasper, basalt and ultramafics, similar to those 

found in the Indian River ~lff. 

Zircor:s obtained from CSJ-6 were highly altered and 

cored, and the single sample which looked to be suitable 

tor analysis was found to be highly discordant due to 

inheritance and multiple zircon populations. Thus no age 
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estimate from that sample was possib1e within the scope of 

this proj act. Thus efforts were focused on the more 

suitable samp1e no. CSJ-10. 

In thin section sample CSJ-10 is an intensely 

sericitized and carbonatized crystal lithic ash-flow tuff. 

Phenocrysts of albite K-feldspar and quartz are almost 

completel.y repl.aced by sericite. Primary groundmass 

textures are destroyed and a faint tectonic cleavage is 

defined by undulose domains of sericite and carbonate. The 

most obvious zircons seen in thin section are stubby 

crystals overgrowing obvious cores. Other, much smaller 

zircon crystal.s, are yellow-brown and more elongate (Plate 

5 .10) • 

'l'he zircons of sample CSJ-10 form three populations, 

stubby euhedral crystals with xenocrystic cores, slender 

prisms, and cracked needles. The needles appeared to be 

most sui table for dating, and strongl.y abraded samples of 

the best cracked needles (Plate 5.11) plotted on concordia 

with an estimated age of 427 + 3 Ma (Fig. 5. 5) •. The prisms 

and euhedral crystal populations are both strongly 

discordant, pl.otting on a chord with its lower intersect at 

the 427 Ma date and an upper intersect with the very 

approximate date of 2287 +98 -88 Ma. 



Plate 5.10. Small yellow-brown elongate zircon crystals in 
sample CSJ-10. 

Plate 5.11. Strongly abraded samples of the best 
zircon prisms of sample CSJ-10 used for dating. 
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Plate 12(a). Photomicrograph of cored zircon crystal in 
sample CSJ-10 (plane light, 20x). 

Plate 12(b). As above, with crossed nicols. 
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No source rocks with the older age are known in the 

Appalachians, so it would not be advisable to attach very 

great significance to it without much more investigation of 

the inheritance • The similarity of the younger date, 427 

Ma, with that of the King's Point syenite and the Indian 

River TUff, as well as their close lithological similarity, 

suggest that the three are closely correlative, and that 

all three were derived from the King's Point magma chamber. 

Nevertheless, it is clear that much more work is necessary 

to determine just where in the cape St. John stratigraphy 

the dated tuff occurs, and indeed just what is the 

stratigraphy of the Cape st. John Group. 

5.3. Discussion 

Although the stratigraphic sequence shown in Figure 

2.3 and Map 1 for the volcanic and sedimentary units within 

the Springdale caldera was assigned with some uncertainty 

because of the discontinuous exposure, the radiometric 

dates of this study do confirm that the sequence is 

correct. These dates are summarized in Figure 5.6. 

It was suggested in Chapter 2 that the Springdale, 

Cape st. John, «ic Mac Lake, Sops Arm and Sheffield Lake 

Groups and the King's Point and Topsails Complexes have 

many features in common, and form a volcanic field (the 

"Springd~le volcanic field") of nested calderas on a scale 

comparable to those of large epicontinental volcanic 
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SPBINGPALE GROUP COBRELATIVE SUITES 

Indian R. 'ruff, Unit 10 (ZR-3) 
425 ± 3 Ma 

King's Point (KP-1000) 
427 ± 2 Ma 

Cape St. John (CSJ-10) 
427 ± 2 Ma 

Burnt Berry Dome (ZR-7) 
430.8 ± 2 Ma 

Basal Tuff, Unit 1 (ZR-11) 
432.4 + 1.7/-1.4 Ma 

Fiqure.5.6. summary of the U/Pb zircon dates produced in this 
study. 
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terranes (Figure 2.2). The latter have been documented as 

being active for tens of millions of years, although the 

actual caldera-forming events may be much shorter-term. For 

example, the entire san Juan volcanic field, i.e. calderas 

and associated ash flows, were formed over a period of only 

seven million years (Steven and Lipman, 1976), although 

other magmatic activity of the area extended over a longer 

period of 35 million years (Lipman et al., 1976). The 7 Ma 

time span of the Springdale, King's Point and Cape st. John 

ash-flow volcanism accords well with that of comparable 

volcanic fields, but it is important to also assess it in 

their context within the Appalachian orogen. 

Radiometric dates for the Baie Verte Peninsula and 

other suites relevant to this study are summarized in Table 

5.2. Different ~echniques have been used for these dates 

and hence do not have precisely the same geochronological/ 

geological meanings, some have large erro~s, and some are 

not consistent with field relations. They do, nevertheless, 

provide some indication of the timing and sequence of 

events in this area. 

Ash-flow tuffs of the Sops Arm Group are interbedded 

with fossiliferous marine sediments of Middle to Late 

Silurian age (Lock, 1972; Berry and Boucot, 1970), 

overlapping the age of the Devil's Room and the Gull Lake 

granites which give a combined U/Pb zircon date of 398 

+27/-7 Ma and Pb/Pb dates on apatites, sphenes and 
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K-feldspars of about 405 Ma (Erdmer, 1986 and pars. comm.), 

and the K/Ar date of 392 ± 16 Ma for the Wild cove Pond 

Granite (Wanless et al., 1972). R. F. Cormier (pars. comm., 

1989) also reported a Rb/Sr date of 401 ± 8 Ma for the 

lower rhyolite of the Sop's Arm Group. Clasts of King's 

Point-like comendite within conglomerates of the Mic Mac 

Lake Group imply that they are also younger than the King's 

Point caldera, and it is tentatively suggested that they 

are correlative with the Sop's Arm Group. 

Altogethe~, these rocks appear to comprise a 

cogenetic volcanic-plutonic suite, tentatively interpreted 

as making up the Sops Arm caldera. It can be seen from 

Figure. 2.2 that separation of the Devil's Room and Wild 

cove Pond Granites implies a dextral displacement of about 

15 km along the Doucer's Valley fault, as suggested by Lock 

(1969), and this has been allowed for in Figure 2.5(b). 

There is no strong evidence for lateral displacement along 
~ 

either the White Bay or Baie Verte Faults, and it can be 

suggested that exposure of the relatively coarse-grained 

(i.e. deeper-seated) Wild cove Pond Igneous Suite in 

juxtaposition with the Sops Arm and Mic Mac Lake volcanics 

can be explained by their vertical uplift as a central 

horst between these two faults (Fig. 2.5.b). This is also 

indicated by the much higher metamorphic grade of Fleur de 

Lys Supergroup country rocks within this block than those 

outside it (Hibbard, 1983). 
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On the southern boundary of the Springdale Group 

(Piq. 2.2), the Topeails Complex has both peralkaline and 

metaluminous granitoid suites (Taylor et al., 1980, 1981), 

and according to the map of Whalen and currie (1983b), 

there are a number of volcanic-plutonic assemblages within 

the Topsails Complex. The distribution of some of these in 

circular patterns suggest that the complex includes at 

least two calderas. 

The U/Pb dates provided by Whalen et al. (1987) for 

zircons from different units of the Topsails Complex, one 

of which they correlate with (indeed term) a "Springdale 

Group rhyolite", at 427, 429 and 429 Ma (Table 5.2), are 

all within the range of 432 to 425 Ma obtained for samples 

within the Springdale Group sensu stricto (i.e. within the 

caldera) , and indeed for the King's Point and Cape st. John 

Group. Whalen and CUrry have also combined samples from a 

number of units within what they term the "Topsail's 

terrane" to produce a composite Rb/Sr "whole rock" isochron 

date of 429 Ma. Although the validity of this approach 

(i.e. combining samples which could have been derived from 

different magma sources) is questionable, it is notable 

that the dat&'does correspond with the zircon dates. To the 

extent that it is reliable, and given that Rb/Sr dates can 

be readily re-set (e.g. Kontak et al., 1988) ,· this 

"isochron" can be taken to indicate that there was no 

subsequent thermal event to re-set t.his date. on the Baie 
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Verte peninsula, however, the numerous argon ~0/39 dates 

provided by Dallmeyer (1977: in Hibbard, 1983 •· Table s. 2.) 

suggest that there was re-setting of the argon system of 

biotite as recently as 343 Ma, and a similar explanation 

may obtain for the Rb/Sr dates as young as 324 Ma. 

The Cape Brule porphyry was dated by Mattinson 

(1977) at 475 ± 15 Ma. However, as r.~viewed by Hibbard 

(1983) this porphyry intrudes post-tectonically the 

Burlington Granodiorite, and thus must be younger than its 

preferred age of -460 Ma. From its transitional 

relationship and similarity to the Cape st. John Group, 

Hibbar~ suggested that they were equivalent, an 

interpretation which I support. The Cape st. John Group has 

produced a wide range of Rb/Sr radiometric dates, from 353 

± 15 to 441 ±soMa (Pringle, 1978), and from 385 ± 15 to 

520 ± 40 Ma(Bell an~ Blenkinsop, 1978), and a zircon U/Pb 

date of 475 ± 10 Ma was reported by Mattinson (1977). 

Hibbard'g suggestion and interpretation that "the 441 ± 50 

Ma date seems to fit best with the age of formation of the 

Group", and that "the 475 ± 10 Ma date may reflect the age 

of an inherited zircon, as zircon morphology analyses were 

not conducted on this sample". This interpretation is 

supported by the new data of this study. 

The basement rocks of the reqion all appear to be 

related to early Ordovician plutonic and volcanic rocks 

produced in an oceanic or island arc regime, with some 
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dates subsequently affected by the Silurian-Davonian 

caldera-forming events. For example, the Burlington 

Granodiorite exhibits Rb/Sr dates of 434 ± 10 Ma (Pringle, 

1978) and 494 ± 39 (Hibbard, 1983, quoting Dallmeyer), and 

a U/Pb zircon date of 461 ± 40 Ma (Hibbard, 1983, quoting 

Dallmeyer). Mattinson (1977) provided U/Pb dates of 434 ± 9 

Ma on sphene and a Pb/Pb date of 461 ± 15 Ma for the 

Burlington Granodiorite. The inconsistency and large errors 

cast some doubt on the validity of most of. these dates, but 

the deformed state of the Burlin·qton Granodiorite prior to 

intrusion of th~ .ing's Point Complex suggests that the 

date of 434 (so close to the more precise King's Point 

zircon dates of this study) is especially dubious. Indeed, 

its similarity may indicate that some of ~he common 

intrusions from the King's Point Complex were mistakenly 

sampled as Burlington Granodiorite. The range of 461 Ma to 

494 Ma may be possible, but the younger date seems more 

consistent with other basement rocks to the Silurian 

sequ~nces of the area. 

For example, zircon from gabbro of the Betts cove 

ophiolite, intruded by the Burlington Granodiorite, was 

dated by Dunning and Krogh (1985) at 488.6 +3.1/-1.8 Ma. 

Dunning et al. (1987; Table 2)) provided precise U/Pb 

zircon dates for basement rocks around the Springdale 

caldera. Rhyolite of the Roberts Arm Group, directly 

overlain by the basal tuffs of the Springdale Group, was 

dated at 473 ± 2 Ma. South and east of the Springdale 
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Group, rhyolite of the Buchans Group was dated at 473 +3/-2 

Ma and of the Victoria Lake Group at 462 +4/-2 Ma. The 

deformed and metamorphosed Mansfield Cove complex 

plagiogranite, also direc~ly overlain by the basal tuffs of 

the Springdale Group, was dated at 479 + 3 Ma. 

It is important to eJJaphasize that the 

tectonomagmatic event which produced the Springdale Group 

was widespread throughout central Newfoundland, in the 

Exploits as well as the Notre Dame Subzone. For example, 

rhyolites at Xing George IV Lake in southern Newfoundland 

have yielded an Early Silurian U/Pb zircon date of 431 ± 5 

Ma (Chandler and Dunning, 1983). Dunning et al. (1988, 

1989) have reported precise zircon ages between 428 and 435 

Ma for granites, rhyolites and gabbros for southwestern 

Newfoundland, and an age of 423 Ma for the Stony Lake 

rhyolite, a dome-dominated caldera suite which 

unconformably overlies the Botwood Group in ce~~ral 

Newfoundland. 

5. 4 • Summary 

The new dates provided in this study are the first 

available for the Springdale caldera ~, although less 

precise dates have been provided by earlier workers for 

samples inferred to be part of the Springdale Group. They 

bracket the age of the caldera between the lowermodt 

ash-flow tuff at 432 Ma and the uppermost ash-flow tuff at 
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425 Ma. A rhyolite dome within the caldera dates at 431 Ma, 

as would be expected from its position in the middle of the 

stratigraphic sequence. This study is also the first 

successful of many attempts to provide a precise date for 

the Cape st. John Group and the King's Point Complex, both 

at 427 Ma. The precision of t~ese dates shows qreat 

potential for volcanoloqical studies which were previously 

impossible in such ancient non-fossiliferous volcanic 

sequences. They also allow for correlation with other 

suites of central Newfoundland, identifying a major 

tectonothermal event tightly focussed around 430 ± 5 Ma. 



238 

Table &.2. Radiometric do~~~ available for Paleozoic volcanic and plutonic 
rocka of central Newfoundland. 

Stratigraphic Unit Method 

Dunamagon Granite Rb/Sr 

Burlington 
Granodiorite 

U/Pb zircon 

K/Ar 
48Ar/39Ar 
(biotite) 

Rb/Sr 
Rb/Sr 

.. 
It 

U/Pb zircon 
U/Pb sphene 
U/Pb apatite 
Pb/Pb zircon 
48Ar/39Ar 
(hornblende) 

48Ar/39Ar 
(biotite) 

t</Ar 
Micmac Lake Group Rb/Sr 

Rb/Sr 

Cape St. John Group Rb/Sr 
Rb/Sr 
Rb/Sr 

Rb/Sr 

U/Pb zircon 

425 +/·1f 
568 +/·1fJ 
368 +/·1f 
345 +/·1·· 
468 +/·12 
455 +/·15 
355 +/·15 

345 +/-5 
~43 +/-5 . 
344 +/-5 

434 +/-18 
494 +/-34 
461 +/-15 
434 +/-9~ 
345 +/-31 
451 +/-5 

463 +/-5 
418 +/-5 
417 +/-8 
414 +/-5 
413 +/-5 
412 +/-5 
4"6 +/-5 

414 +/-18 
412 +/-18 
4"9 +/-1f 
345 +/-5 
343 +/-5 
381 
386 +/-15 
4"4 +/-24 

353 +/-15 
441 +/-51 
385 +/-15 

521 +/-41 

475 +/-11 

Refer"ence 

Pr"ingle (1978) 

Mattinson (1977) 

Wanless at al. (1972) 

Hibbard (1983) 
tl 

" 
Pringle (1970) 
Hibbar"d (1983) 
Hibbard (1983) 
Mattinson ( 1977) 
Matt1nson (1977) 
Mattison (1977) 

Hibbard (1983) 
Hibbard (1983) 
Hibbard (1983) 
Hibbard (1983) 
Hibbar"d (1983) 
Hibbard (1983) 
Hibbard (1983) 

Hibbard (1983) 
Hibbard (1983) 
Hibbard (1983) 
Hibba(d (1983) 
Hibbard (1983) 
Lowden~. (1963) 
Pr"ingle (1978) 
Neale & Kennedy 
(1967) 
Pringle (1978) 
Pringle (1978) 
Bell & 8lenk1nsop 
(1978a) 
Bell & Blenk1nsop 
(1978a) 
Matt.inson (1977) 



Table 1.2 Ccanttnued) 
ltrottaraphtc Unit 

Cape Brule Porphyry 

Seal leland Bight 
Syenite 

Rattling Brook Group 
Wild Cove Pond 
Igneoue Suite 

Partridge Point 
Granite 

East Pond Metamorphic 
Suite 
Old House cove Group 

" 
" 
" 

Rattling Brook Graup 

Hungry Mountain 
Complex 

Hinds Brook Granite 
Rainy Lake complex 
Springdale Group 
rhyolite 
Topsails amphibole 
granite 
Topeaile quortz
K-feldepar porphyry 
Bette Cove Complex 
(trondhjemite) 
(gabbro) 
Buchone Group 
(rhyolite) 
Roberti Arm Group 
(rhyolite 
Manefield Cove Complex 
(plagiogranite) 

Method 

Rb/Sr 
Ab/Sr 

U/Pb zircon 

Ab/Sr 

U/Pb 
K/Ar 

K/Ar 
K/Ar 

K/Ar 

4tAr/39Ar 
4fAr/3tAr 
" " 
" " 
" " 
" " 

" " .. 
" 
" " 
" " 
" " 
" " 
U/Pb zircon 

U/Pb zircon 
" " 

" " 
U/Pb zircon 

" " 
U/Pb zircon 
U/Pb zircon 

U/Pb zircon 

U/PB zircon 

U/Pb zircon 

414 +/-25 
534 +/-14 

475 +/-11 

324 +/-25 

435 +/-15 
362 

365 
384 +/-16 

368 +/-16 

394 +/-5 
383 +/-5 
388 +/-5 
388 +/-5 
4"11' +/-5 
416' +/-5 
421 +/-6 
419 +/-5 
429 +/-1, 
373 +/-5 
375 +/-5 
394 +/-5 
398 +/-5 

2t9t +/-75 
467 +/-8 

461 +/-11 
438 +/-8 

429 +/-4 

429 +/-3 

427 +/-3 

239 

Reff!rence 

Pringle (1978) 
Dell I Blenkinaop 
( 1977) 
Mott1nson ( 1977) 

Dell & Blenkinaop 
( 1977) 
Mott1nsort ( 1977) 
Lowden (1961) 

LowcJon (1961) 
Wanless et ol. 
( 1972) 

Wanless et ol. 
(1972) 

Oollmeyer ( 1977) 
Oollmey~r- ( 1977) 

II 

" 
" 
II 

II 

It 

II 

II 

" 
It 

II 

Whalen !1_2! (1987) 
It 

It 

Whalen !l_2! (1987) 

" 

" 
II 

463 +/-6 Cunning & Krogh (1985) 
488.6 +3.1/-1.8 " 

473 +3/-2 Cunning !!_21. (1987) 

473· +/-2 " 

479 +/-3 " 



Table 5.2 (continued) 
Strattaraphtc Untt 
Victoria Lake Group 
(rhyoUte) 
Devils Room Granite 

Burgea Batholith 

Port aux Basques 
Gnetsa 
Little Pasaage Gneiss 
Poat-tectonlc North 
Bay Granite 
Stony Lake Rhyolite 
Main Out Mafic 
Boogie Lake Mafic 
Rhyolite• tn Red Beds 
Cope Ray Granite 
King George IV Lake 
red felaic flow 

Method 

U/Pb zircon 
U/Pb zircon 

U/Pb zircon 

U/Pb titanite 
U/Pb zircon 

" 
" 

"Sptngdale Group Rhyolite" 

Aqe 

lt82 +lt/-2 

lt28 
lt15 +/-2 

lt12 +/-2 
'+25 +/-5 

596 +/-3 
lt25 +/-5 
lt5i +/-2 

240 

Rof'el"ence 

" 
Erdmel" (1986: I pers. 
comm.) 
Dunning et al. (1988) 

" 
" 
" 
" 
" 

lt35 •+5/-2 Ma 
'+31 +3/-2 Ma 

" 
" 

lt28 +/-lt1 Dunning et al. (1989) 

lt31 +/-5 Chandler & Ounn1ng (1983) 

429 +6/-5 Chandler et nl . (1987) 
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6. Mineralization Potential 

6.1. IntrodUction 

The potential economic importance of this study 

hinges upon the fact that epithermal precious metal 

deposits are dominantly associated with calderas, and thus 

the newly-recognized Springdale caldera should have sr.~e 

potential for such mineralization which woula not have been 

investigated prior to that recognition. Given that the only 

such exploration ~o date has been that generated by the 

author, and the true economic potential has thert~fore not 

been assessed fully, it is useful to provide a brief 

overview of the main characteristics of epithermal deposits 

and other mineralization aspects of calderas, as well as a 

brief review of correlative rocks and associated 

mineralization in Newfoundland. 

6.2. Calderas and Mineralization 

As reviewed i& Chapter 1, large collapse-type 

caldet·as and associated subjacent intrusive assemblages are 

produced by the collapse of a ma~~a chamber roof due to 

eruption of the magma as pyroclastics and lava flows. These 

eruptive products are characterized by near-source and 

intermediate-source facies rocks that accumulate both 

within and outside the caldera walls. such collapse may be 

followed by development of a resurgent cauldron or there 

~ay be continuous collapse without resurgence. The 
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intra-caldera facies may include ash-tlow deposits 

measurinq hundreds of metres in thickness. If resurgence 

occurs, the resulting moat may be filled by pyroclastic 

rocks, lava flows, lake sediments, ep~c\astic volcanic 

sediments, and particularly by landslide or talus breccias 

from the caldera wall. The caldera··outflow facies is 

characterized by ash-flow sheets that may extend for many 

tens of kilometres outside the caldera. Other important 

features to be noted are the presence of associated 

marginal ring or linear faults considered to form the major 

conduits of eruption, and to control location of late 

intrusions and/or "nesting" in compleK areas. Perhaps the 

most economically important signature of these compleK 

structures is the combination of post-collapse volcanic 

facies, associated plutonics and specific structural 

elements such as ring dykes and structural boundaries of 

the caldera-collapse block, and in many cases blocks and 

faults associated with late resurgence, particularly within 

graben structures of keystone blocks. 

6.3, Epithermal Deposits 

Buchanan (1981) suggested a general model for 

epithermal precious metal mineralization (Fiq. 6.1), based 

on a compilation of more than sixty gold-silver vein 

deposits in unmetamorphosed volcanic to sub-volcanic 

envirorunents, which has been used with some modification 

for numerous subsequent studies. one particularly detailed 



r 
I 

r .. 

... 

.. 

---
~101110 

ltH1 llllllllfLCuYI 

D C\AYI llLITL 
IIIIICifl Af OIP'flll 

OVAII'I1.AOU\AIIIA. 
.. ~C.II"Yaatl. 
ICALCITC. C....O•ITI, 
NIOMI. a..oOOCM•oenet 

OIIMTI. """'' IC"LOUTL MIIIMfiTL 

""0"''" 

OVIollft. IIOIIIITL "''llfL 
l'tiiii..OmL MU,.OmuTt • 

Figure 1. Idealized model of epithermal precious metal 

deposits (after Buchanan, 1981). 

24:S 

......... ,.,.,. .......... 

"""'""'" At·t~IM" 

t 
A 

r 
~mtTL 
"'0VImL 

"""'""' IACMTMITP 
I\ICTIIUM. 

o\IIOI!fflTL 
ILCCTIIIIM· 

OALINA. I'"ALIIIIrl. 
C"ALCO"'RilL 
o\IIOINflfl. 

'""""'""'. """""'"'· ro""'"· 
'""""" 



244 

study of a smaller number (16) of these deposits by Heald 

et al. (1987) showed that two types of epithermal deposits 

can be distinguished, mainly on the basis of vein and 

alteration mineral assemblages, as indicated in Table 6.1. 

The two types are well illustrated by examples from the San 

Juan volcanic field of Colorado (Fig. 6.2), namely Creede 

and Summitville. 

The adUlaria-sericite type (e.g. Creede, Eureka, 

Lake City I), is generally found in a regional structural 

setting along the margins of calderas, although other 

structurally more complex volcanic environments may also be 

associated, e.g. alor1g fault zones (e.g. Col qui) of 

different types within the calderas or within domes (e.g. 

Silver City, De Lamar). There is a large range in size of 

these deposits, from close to 200 sq. ~. for Guanajuato, 

Mexico (silver and base metals), to smaller areas of around 

10m •• The paleodepths of mineralization may range from 300 

to 1500 metres, with vertical ranges of mineralization on 

the order of 400 to 700 metres. The importance of the 

volcanic setting is primarily one of providing the plumbing 

system and heat to drive circulating hydrothermal fluids, 

so that virtually any rock type may be a favourable host 

for mineralization. The adularia type deposits are 

characterized by ti: presence of vein adularia and 

o;1ericite, with chlorite, manganese minerals, with base 

metal sulfides, sulfosalts, and native silver and gold. The 
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Figure 6.2. Calderas of the San Juan volcanic field. 

Abbreviations are as follows: s - Silverton; LC - Lake 

City7 CP - Cochetopa Park7 Bz - Bonanza: LG - La Garita; SL 

- san Luis; B - Bachelor: c - creede; MH - Mount Hope; P -

Platoro: SM - summitville: L - Lost Lake: u - Uta Creek; SJ 

- San Juan; UN - Unco~pahgre; M - General Location of the 

Mammoth Mountain caldera. From Hayba et al. (1985; after 

Steven and Eaton, 1975). 
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TABLE &1. Chlracterf.Uca of thladufarfa • ..,cftt type and acld-aulfltt type dtpoalta (complied from 
Heald tt al., 1181). 

Structural setting 

Size 
length:wldth ratio 

Host rocks 

Timing of ore and 
host 

Mineralogy 

Production data 

Alteration 

Temperature 

Salinity 

Source of fluids 

Source of sulfide 
sulfur 

Source of lead 

Acid Sulfate 

Intrusive centers, 4 out 
ci the 5 studied related 
to the margins of calderas 

RelatJvely small 
equldlmenslonal 

Rhyodacite typical 

SlmRar ages of host 
and ora (<0.5 m.y.) 

Enargite, pyrite, 
native gold, 
Electrum, and base
metal sulfides 
Chlorite rare 
No selenldes 
Mn-mlnerals rare 
Sometimes blsmuthlnite 

Both gold- and silver
rich deposits 
Noteworthy Cu production 
production 

Advanced argillic to 
argillic (± - serfcftlc) 

Extensive hypogene alunite 
Major hypogene kaolinite 
No adularia 

1 to 24 WI% NaCI eq. 2 

Dominantly meteoric. 
possibly significant 
magmatic component 

Deep-seated, probably 
magmatic 

Volcanic rocks or 
magmatic fluids 

1 Umited data, possibly unrelated to ora. 

AdularJa.Serfc!ta 

Structurally complex 
volcanic environments, 
commonly In calderas 

Variable; some very large 
usually 3:1 or greater 

SDiclc to lntannadiate 
volcanics 

Ages of host and ore 
distinct (> 1 m.y.) 

Argentite, tetrahedrite, 
tennantlte, native 
sliver and gold. and 
base-metal sulfides 
chlorite common 
selenldes present 
Mn gangue present 
no blsmuthlnlte 

Both gold- and sliver
rich deposits 
variable base-metal 

Serlcltlc to argillic 

Supergene alunite 
occasional kaolinite 
abundant adularia 

200• to 300• 

o to 13 wt% Naa eq. 

Dominantly meteoric 

Deep-seated, probably 
derived by leaching 
wallrocks deep In 
system 

Precambrian or Phanerozoic 
rocks under volcanics 

2 Salinities of 5 to 24 wl% NaC1 eq. are probably related to the Intense acid-sulfate alteration which preceded 
ore deposition. 
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ratio of gold to silver is highly variabl.e, and there 

appears to be a continuum from base metal-silver rich 

districts to the b.m.-poorjAu-rich deposits, although a low 

ratio is more common. Wall-rock alteration is in general 

marked by silica, sericite, K-feldspar, chlorite, near the 

veins, gradinq outwards into a broader propyli tic 

alteration which may have subatantially preceded 

mineralization and be unrelated to it. 

Althouqh all of these features are not fully 

illustrated by the Creede mining district (Fig. 6.3), these 

deposits are especially important in that they have been 

studied in great detail (Hayba et al., 1985). They actually 

occur within a set of fractures forming a graben structure 

between the Creede and the San Luis calderas, and are 

hosted by the intracaldera fill of the older resurgent 

Bachelor caldera (Fig. 6.3.a,b). Radiometric dating of the 

alteration minerals has shown that the mineralization 

formed about one million years after the youngest volcanic 

event, and is inferred to have been deposited by 

hydrothermal fluids driven by and unexposed pl.uton which 

interacted with groundwaters of the area (Fig. 6.3.c). 

Acid-sulfate deposits have a similar structural 

aetting to some adularia-sericite deposits, but the 

presence of intrusive centres, particularly ring-fracture 

volcanic domes on the margins of calderas, appears to be a 

critical genetic factor, as seen in Fiqure 6. 4 • These 
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Figure 6.3Cal. Generalized geology of the creede and san 

Luis calderas in relation to the Bachelor (B) and La Garita 

calderas and to the Creede mining districtn (b) • 

Generalized geology of the Creede mining district (location 

shown in (a)). (c). Schematic representation of the Creede 

hydrothermal system, where upwelling plume (within the 

200°C isotherm), driven by inferred sub-surface pluton, 

displaces and interacts with groundwater to deposit ore. 
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~igure 6.4Cal. Generalized geology of the Platoro and 

Summitville calderas, showing location of Summitville 

mining district (pick and hammer) and the cross-section 

A-A' of the restored South Mountain volcanic dome and 
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mineralization shown in (b). (All from Hayba et al., 1985, 

and references therein). 
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deposits tend to be smaller than the adlll-~ia-sericite 

deposita, with a less elongated surface expression (e.g. 

only about 2 x 1.5 km at Goldfield, Nevada), and a shorter 

vertical extent of generally less than 500 metres. They are 

also different in that the host rocks are almost 

exclusively porphyritic rhyodacite, although at Julcani 

some ore is hosted by dacite, and at Goldfield by 

trachyandesite and rhyolite as well as the rhyodacite. 

This, together with the close age relationship 

between mineralization and intrusion, suggests a closer 

genetic relationship than for the adularia-sericite type. 

The acid-sulfate types are characterized by the occurrence 

of the vein mineral assemblage enargite + pyrite ± 

covellite, with ore occurring as either native gold and 

electrum, with sulfosalts, sulfides, and tellurides. 

Gold/silver ratios tend to be high, reflecting the high 

proportion of free gold and gold-bearing minerals. The 

wall-rock alteration is marked by advanced argillic 

alteration with the ore, with kaolinite, alunite and silica 

near the veins, and argillic and sericitic alteration 

surrounding the advanced argillic, passing outwards into 

propylitic alteration. 

The Summitville district (Fig. 6.4) differs somewhat 

from the above-noted examples in having relativ~ly lower 

proportions of silver, lead and zinc. The mineralization is 

located in the South Mountain volcanic dome on the 
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northwestern edqe or the Platoro caldera and the 

southwestern edqe or the younger nested summitville 

caldera, at a major fault zone which cuts across both 

calderas (Fiq. 6.4.a). The dome is made up of quartz-latite 

rich in K-feldspar and smaller plagioclase phenocrysts. The 

mineralization is localized along the core of the dome ln a 

series of irregular pipes and veins of quartz and alunite 

which mostly replace the quartz latite (Fig. 6.4.b). As 

reviewed by Hayba et al. (1985), it is generally agreed 

that a magmatic vapour phase was the dominant fluid 

responsible for summitville mineralization, but it is not 

clear how important was interaction with groundwater as a 

cause for deposition. 

6. 4. Appalachian s ilurian-Devonian Caldera suites 

Preservation of all caldera features is rare and it 

is often necessary to make comparisons between a number of 

reasonable models for the interpretation of a given caldera 

and its setting. Nevertheless, there are numerous examples 

of such rocks in the Silurian-Devonian terranes of the 

northern Appalachians, both in and outside of Newfoundland, 

to indicate that caldera-type volcanism was prevalent 

during this time, and correspondingly that caldera-type 

mineralization is also to be found. Examples which warrant 

detailed investigation are the Lower Devonian Piscataquis 

volcanic belt, the Spider Lake volcanics, the Hedgehog 
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Formation, the Debouille Stock, the Five-Mile Brook 

Formation, all in Maine. Similar-aged rocks in Quebec and 

northern New Brunswick appear to include a larqer 

proportion of basaltic and andesitic rocks, hence being 

more tenuously related to calderas. 

The Springdale and Kinq's Point volcano-plutonic 

complexes, occuring alonq the western margin of 

Newfoundland's Lower Paleozoic Central Volcanic Belt, are 

two of nine separate Silurian subariaJ volcanic-

sedimentary-plutonic suites found on the island (See Fig. 

2.2). Despite their extent and potential importance to 

understanding post-orogenic magmatic activity in the 

Appalachians, prior to the present study they have not been 

targets for mineral exploration based on caldera models. 

The Springdale Group can be traced for at least 60 km along 

strike, and possibly a further 100 km southwestward, and 

reaches a maximum width of 35 km across the centre of the 

belt. The King's Point Complex, somewhat more deeply eroded 

than the Springdale, has a greater proportion of intrusive 

rocks exposed, with a mixture of both peralkaline and 

metaluminous granites, syenites and ash-flow tuffs. 

Comparable Silurian volcanic-plutonic rocks occur in the 

Cape st. John Group to the north, and the Mic Mac, 

Sheffield Lake and Sops Arm Groups to the west. 

' . 
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Tuach et al. (1988) reviewed the full ranqe of qold 

mineralization types in Newfoundland (Fiq. 6.5), so only 

the briefest of cv~ents are necessary here. The most 

important of the epithermal types, and the only one 

currently beinq mined, is the Hope Brook deposit, which 

cc•ntains about 11 million tons of ore qradinq at 4. 54 g/t. 

I~ consists of an ore lens about 60 by 400 m in a 5-~ long 

zone of pyrophyllite-sericite-silica alteration, with 

fine-grained gold disseminated with pyrite and chalcopyrite 

associated with tellurides, bismuthenite, cassiterite, 

native silver, and elevated values of Sb, Aq and Sn. These 

are hosted by a sequence of felsic tuffs, volcaniclastic 

sediments, and granitic rocks of the LaPoile Group, and 

Tuach et alL (1988) list numerous other prospects within 

this sequence. Nevertheless, there is some inconsistency in 

the age estimates for this sequence, with ~he subaerial 

felsic volcanic rocks of the La Poile ~roup dated at 426 to 

4J.9 Ma, comparable in age to the Springdale Group, whercaas 

the "stratified rocks of the Group 11 must be older than the 

563 j: 4 Ma determined for the Roti GJ:·anite which is thought 

to intrude it (Dunning et al. , 1988). 

The Cape Ra~ deposit is perhaps the ne~t most 

promising of these deposits, with about a million tons 

qradinq at 5.75 qjt qold, occurring as lenses within 

mylonitic rocks of the cape Ray Fault Zone. The Main Zone 

of mineralization is associated with quartz veins within 
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mylonitized graphitic sediments, mafic and felsic tuffs. 

The WindowglasR Hill zone consists of sheeted and stockwork 

quartz veins in albitized brecciated graphic granite of the 

Devonian Windowglass Hill Granite. In both deposits, the 

gold is associated with galena, chalcopyrite, sphalerite 

and pyrite within the quartz veins. Clearly, this 

mineralization would have formed at a substantially deeper 

level than the Hope Brook deposit, with the fault zone 

providing the necessary plumbing system for the 

mineralizing fluids. 

Both faults and volcanic structures have controlled 

the different types of gold mineralization associated with 

the Silurian-Devonian caldera-related rocks of Western 

Wbite Bay. The ~ackson's Arm gold mineralization is 

associated with intense potassic alteration of a range of 

rock types ranging from Late Precambrian granites and 

sediments to Early Devonian granites. In the most intensely 

altered areas gold and sulfides are associated with fine 

grained albite, Fe-carbonate, quartz, and arsenopyrite. At 

Unknown Brook gold is associated with quartz-carbonate

alkali feldspar-pyrite veins in a deformed lithophysae zone 

of the Upper Silurian Sops Arm Formation (not a 

conglomerate bed, as suggested by Tuach et al., 1988). The 

Browning Mine is found in deformed and brecciated ~artz 

veins associated with intensely Fe-carbonatized-sericitized 

fine-grained schistose tuffs of the Sops Arm Formation. 
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In summary, many of the volcanic sequences which are 

similar to and in some cases directly correlative with the 

Springdale Group are known for significant gold 

mineralization, lending support to the proposition that the 

latter may also have some exploration potential. 

6.5. The Springdale Caldera 

Some of the following is based upon observations 

made while the author supervised an exploration program in 

the Springdale Caldera during the summer of 1988, developed 

on the basis of the epithermal/epigenetic models discussed 

above. This activity was focussed on the two main areas 

within the Springdale caldera described in Chapter 2, 

Springdale Central and Springdale East. Other exploration 

work was done as part of that program outside the caldera 

in the King's Point ana and Sheffield Lake Complexes, but 

it is not included in this thesis. Each of these areas was 

assessed by the author with exploration for sites of 

alteration andjor mineralization, and geological mapping at 

1:10,000 scale, as shown in Maps 1 to 3 This exploration 

and mapping was augmented by geophysical (aeromagnetic, EM 

and IP) surveys as discussed in Chapter 2. 

The main indicator of potentially economic 

mineralization in most geological environments is secondary 

alteration, and this is especially true for caldera 

environments. Three areas of alteration were located in the 
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Springdale calder~l, all being limited in areal 

distribution, mainly because of poor exposure. The most 

promising alteration type of the Springdale Central area 

was found along the eastern side of Burnt Berry Brook (Map 

2) where rubbly outcrop and scree are exposed along a small 

woods road. The alteration is found along a sub-vertical 

fault trending Northwest, moderate to strong· sericitic in 

porcelanitic tuffs in contact with redbed sedementary 

rocks, and ranges from weak to moderate argillic alteration 

in spherulitic zones within silicic volcanics. An 

exploration grid was centered in this area for geochemical 

soil sampling, and gold grains were recognized in the till. 

A second area of interest in this central part of 

the caldera occurs as local quartz veining and hydrothermal 

brecciation of the volcanics and granite. Another area of 

possible interest is along the Saunders Brook fault where a 

regular and lengthy EM conductor is found although the 

available outcrop along the brook is relatively pristine 

except for calcitejquartzjepidote veining in the basalt 

flows and very local small scale veining and brecciation in 

the rhyolite of the Burnt Berry Dome. 

The Spr.ingdale East area was identified as a 

caldera-margin target since, as reviewed above, this is a 

favoured setting for epithermal gold deposits, especially 

the sericite-adularia type. The caldera marginal facias are 

well-exhibited her·.:!, including mass wasting deposits or 
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mesobreccias located and generated at the caldera margin, 

margin-related int~'sions, and a post-emplacement granitic 

stock with associated dykes and hydrothermal system. The 

"ring fault", or fracture faults which demarcate the 

structural margin of the caldera in the north and the 

topographic margin further south, typically act as conduits 

for the circulation of fluids, both groundwaters and those 

generated in the magma chamber at time of caldera 

foundering and collapse, have obvious potential for ore 

deposition. 

One rock sample of Unit 1 was anomalous for gold in 

the vicinity of South Pond, and stream-silt samples in this 

area also proved anomalous for gold and associated trace 

elements. In the vicinity of Johnson's Lookout stream 

samples from tributaries of Barney's Brook which drain Unit 

2 have anomalous gold, arsenic and zinc. Unit 4 hosts some 

of the strongest alteration in the Springdale F.ast area 

(Map 3), with thick (-2m) porous lithophysae zones 

moderately to strongly altered with quartz-pyrite veining 

in limonitic/argillic alteration zones. 

In the southeastern part of the Springdale East area 

(Map 4), Unit 2 is dominantly conglomeratic or a reworked 

facies of the marginal messobreccia~ exposed further north 

along strike. Here Unit 2 is intruded by Units B and c, and 

the conglomerates are weakly to moderately altered (silica, 

hematite, amphibole, chlorite and pyrite). one rock sample 
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was anomalous for gold (>5 ppb) and four others from this 

unit, in this vicinity were also anomalous for arsenic (5 

ppm) and antimony (>1 ppm). stream silt samples from this 

area also provided anomalies in all these elements plus 

zinc. The intrusive units in this area are not 

significantly altered, except for minor pyrite seen in both 

the microdiorite and felsic sill and dykes that cut the 

conglomerates. 

6.6. summary 

It is clear from both the geological mapping for the 

main part of this thesis study, as well as the limited 

subsequent exploration, that there are a number of 

indica\~ions of alteration and geochemical anomalies which 

were predicted on the basis of typical models for caldera 

style mineralization. These are obviously important as 

indicators of mineral potential and warrant much more 

intensive exploration and i~!Vestigation. They are perhaps 

equally important to this study in that they provide yet 

another line of evidence in support of the interpretation 

that the Springdale Group represents the products of a 

large collapse caldera. 
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The purpose of this study was to characterize and 

attempt to understand the magmatic and tectonic processes 

which controlled the development of the Springdale Group, 

newly recognized by the author as comprizing a full caldera 

assemblage, occurring along the western margin of 

Newfoundland's lower Paleozoic Central Mobile Belt (Coyle 

and Strong, 1985, 1987). This study provides the first 

geochemical data for the Springdale Group, and demonstrates 

that they mimic some calc-alkaline trends comparable to 

orogenic calc-alkaline suites of circum-Pacific regions 

(cf. Ewart, 1982). However, they also include tholeiitic . 
basalts, and a suite of domes, intrusions and pyroclastic 

rocks which are similar to the high-silica rhyolites 

derived from large layered siliceous maqma chambers of 

continental regions. Furthermore, the Springdale caldera is 

unlike any found with orogenic calc-alkaline suites in that 

its large size, representing a minimum eruption volume 

between 103 and 104 km~, is matched only by the 

largest epicontinental calderas, like those of the 

southwestern USA. This, along with the high-silica rhyolite 

compositions, implies a similar epicontinental 

tectonothermal environment for Silurian-Oavonian times in 

west-central Newfoundland. 
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The Springdale Group exhibits virtually the full 

range of features which characterize such calderas (listed 

in Table 1.1), namely [uncertain examples in square 

brackets): 

Extensive rock units of lavas, breccias, and lahars of 

intermediate composition (andesite, dacite, 

rhyodacite). 

Intra-caldera ash-flow accumulation. Large thicknesses of 

silicic ash-flow tuffs (dacite, rhyolite). 

Landslide or slump breccia deposits (mass wasting from 

caldera walls), with very large blocks and unusual 

(exotic) breccias. 

Intracaldera volcanic rocks and volcaniclastic sedimentary 

rocks. 

curved ~ones of faulting, fracturing, and brecciation 

marginal· fracture zone). 

Regional propylitic alteration with local occurrence of 

argillic, sericitic, and advanced argillic 

alteration. 

Resurgent doming evidence by: 

a. [outward dip of intracaldera units]; 

b. central graben [inferred]: 

c. plutonic or hyabyssal resurgent magma; 

Ring-fracture domes of rhyolite and dacite (e.g. Wolf Head, 

Johnson's Lookout). 

Structural depression marked by collapsed blocks. 
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[Radial and/or concentric fault, drainaqe, and topographic 

patterns.] 

[Clusterinq of mineral occurrences.] 

[Circular patterns on high-altitude photographs or remote 

imaqery.] 

(Geochemistry: The distribution of metal values (Au, Ag, 

cu, Mo, Pb, Zn, etc.) may aid in defining caldera 

structures.] 

Geophysics. [Gravity], magnetics, resistivity, (and 

radiometries] show evidence of caldera structure. 

The Sprinqdale Group extends continuously for 60 km, 

and possibly a further 100 km southwestward, and reaches a 

maximum width of 35 km. It is correlated with rocks of the 

King's Point Complex and the Cape st. John Group, F~und up 

to 50 km to the north, and the MicMac, Sheffield Lake and 

Sops Arm Groups immediately to the west. Rocks of the 

Springdale Group are folded about a main northerly-plunging 

synformal axis locally marked by a steeply-dipping spaced 

fracture cleavage. Sedimentary rocks of the Group are 

gently dipping, but locally inclined up to to 50° on 

either side of the fold axis, possibly indicating 

across-strike structural shortening of up to about 20%, 

inferred to contribute to the present elongate distribution 

pattern of the Group. A schematic outline of the main 

structural elements of the caldera is shown in Figure 7.1. 
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The eastern and western boundaries of the Group, 

although intruded by granitoid rocks, mark early boundary 

faults along which the Group was down-dropped, and which 

partially controlled volcanism, sedimer.tation, and 

intrusion of the granitoids. Along its eastern boundary 

rocks of the Group lie unconformably on, or are faulted 

against~ a basement of metamorphic rocks derived from Lower 

Ordovician (467 - 456 Ma) island arc volcanic sequ~nces. 

The volcanic rocks of the Springdale Group show evidence 

for a variety of source rocks for their derivation and 

contamination, from continental (Precambrian zircon cores) 

to oceanic crust (ultramafic to cherty lithic clasts in ash 

flows). 

7.2. Chemistry 

The Springdale Group data are divisible into four 

groups based on silica contents, viz. "mafic" (basalts and 

basaltic andesites), "intermediate" (basaltic andesites, 

andesites and dacites), "felsic" (dacites and rhyodacites), 

and "silicic" (rhyolites and high-silica rhyolites). The 

first three groups form a typical calc-alkaline trend which 

can be interpreted as having been prc1uced by fractionation 

of olivine, clinopyroxene, plagioclase, Fe-Ti oxides and 

zircon. The fourth group, found mostly as late-stage domes, 

is typical of high-silica rhyolites produced in the late 

stages of development in the roof zones of large magma 

chambers, and are interpreted to have been produced by 
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processes dominated by convective fractionation. These 

latter rocks, along with other geochemical characteristics 

of the less silicic rocks (e.g. the basalts being non-arc 

tholeiites) suggest that the Springdale Group were formed 

in an extensional environment which included continental 

crust. 

7.3. Geochronology 

Five new precise U/Pb zircon dates have been 

jtermined for the Springdale Group in this study. These are 

for samples from the lowermost and uppermost ash-flow tuffs 

and an intermediate-aged rhyolite dome of the Springdale 

Group within the caldera, a syenite from the King's Point 

Complex, and an ash-flow tuff from the cape st. John Group. 

These units were dated for the primary objective of 

bracketing the ages of individual units of the Springdale 

caldera, as an independent check on their relative ages 

based on geological observations and interpretations, and 

to determine the time span over which the caldera was 

active. The second important objective was to determine the 

ages of associated volcano-plutonic sequences in order to 

evaluate proposed correlations and volcanic/plutonic/ 

tectonic interpretations based on these correlations in 

Newfoundland and elsewhere in the orogen. 
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Clear abraded fractions plot directly on concordia 

at an estimated agg of 432.4 +1.7/-1.4 Ma, with cracked 

non-abraded fractions and a discordant abraded fraction all 

plotting linearly away from it alonq a lead loss lJne, i.e. 

with no evidence of contamination from older zircons. 

Strongly abraded zircons from the Burnt Berry dome also 

plot directly on concordia, with an estimated age of 430.8 

± 2 Ma. 

All fractions except crystal cores separated from 

sample Zr-3, the Indian River Tuff, plot on or near 

concordia, giving an estimated age of 425 ± 3 Ma. The core 

sample is offset from concordia to indicate an inherited 

age of 1346 ± 230 Ma. This age would be found in rocks 

which are precursors to the Grenville basement seen to the 

west of the Springdale Group and inferred to be beneath the 

King's Point caldera from which the tuff is considered to 

have originat~~ . 

Zircons obtained from the King's Point Complex, 

stubby euhedral prisms withr.,•• '; cores or alteration, plot on 

concordia with an estimated age of 427 ± 2· Ma. Zircons 

obtained from the Cape St. John Group form three 

populations, stubby euhedral crystals with xenocrystic 

cores, slendc~ prisms, and cracked needles. Strongly 

abraded samples of the best cracked needles plotted on 

concordia with an estimated age of 427 ± 3 Ma. The prisms 

and euhedral crystal populations are both stronc;;.·ly 
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discordant, plotting on a chord with its lower intersect at 

the 427 Ma date and an upper intersect with the very 

approximate date of 2287 +98 -88 Ma. 

The new precise dates provided in this study, the 

first availa~le for the Springdale caldera Aa, bracket the 

age of the caldera between the lowermost ash-flow tuff at 

432 Ma and the uppermost ash-flow tuff at 427 Ma. A 

rhyolite dome within the caldera dates at 431 Ma, as would 

be expected from its position in the middle of the 

stratigraphic sequence. This study is also the first 

successful of many attempts to provide precise dates for 

the Cape st. John Group and the King's Point Complex, both 

at 427 Ma. The precision of th~se dates shows great 

potential for volcanological studies which were previously 

impossible in such ancient non-fossiliferous volcanic 

sequences. They also allow for correlation with other 

suites of ~entral Newfoundland, identifying a major 

tectonothermal event tightly focussed around 430 ± 5 Ma. 

7.4. Caldera Evolution 

Ten broad units were mappable in the Springdale 

Group at the scale of this study. They are interpreted as 

having the following volcanological significance, as 

illustrated in Figure 7.2. 
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Figure 7.2. Schematic outline of the sequence of even1~s 

whi~h produced the Sprinqdale caldera and its products 

(baaed on Smith and Bailey, 1968, from Fisher and 

Schmincke. 1984). 

I. Regional tumescence, propagation of ring and radial 

fractures with possible apical graben subsidence. 

Eruptions from radial or ring fractures. Erosion of 

the volcanic highland with sediments deposited on 

flanks and surrounding lowland areas. 

II. ·Major ash-flow eruptions with flows extending tens of 

miles beyond the volcano. 

III. Caldera collapse. Ash flow deposits within the 

caldera form part of the intra-caldera facies along 

with avalanches and slides from caldera wall. Ash-flow 

deposits beyond the caldera walls form the dominant 

rock of the outflow facies. 

IV. Pyroclastic eruptions, domes and lava flows occur on 

caldera floor of some calderas and occu~ with 

continuing deposition of slides, fans, and l~ke 

deposlts. 
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I ( 432 Ma) 

Source of Unit 2 
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Figure 7.2 (continued). Schematic outline of the sequence 

of events which produced the Springdale caldera and its 

products. 

v. Eruption of stratovolcano with andesitic flows and 

pyroclastics concentrically dispersed around a central 

dioritic pluton. 

VI. Resurgent doming and possible ring-fracture volcanism 

and/or eruption or intrusion in dome fractures. 

VII. Continued resurgence and intrusion/eruption of silicic 

domes and basaltic lava flows. Caldera fill from 

non-volcanic sedimentary processes continues. Incursion 

of ash-flow tuffs from adjacent calderas (King's Point, 

Topsails?) are interbedded with other caldera-fill 

material. 



Stra to· volcano la 

Burnt Berry Dome ( 430.8 Ma) 
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Stage I 

Clasts of plagiophyric .basalt, granophyre and 

perlitic felsic clasts found in Unit 1, and these are taken 

as evidence of the volcanic activity during. the 

pre-collapse stage of regional tumesence. 

Stage II 

Unit 1, dated at 432 Ma, is the earliest erupted ash 

flow and is thus taken to represent the product of initial 

evacuation of the Springdale magma chamber. The abundance 

and variety of lithic clasts (basalt, andesite, 

ultramafics, jasper) indicate that the roof of this maqma 

chamber was essentially the ophiolitic and island arc 

material which forms the basement to the Springdale Group 

and is common around the caldera margins. 

Stage III 

Unit 2 is dominated by mescbreccias, laharic flows, 

with tuffites and peperites, volcanic conglomerates and 

local red sandstones, and volcanic explosion breccia. In 

general the volcaniclastic lithologies are characterized by 

poor sorting and massive to very coarse bedding. The lahars 

have dominantly sub-angular blocks in a locally vesicular 

muddy or ashy matrix. Both the coarse and fine fractions of 

these deposits are compositionally variable from basalt to 

rhyolite. 
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The rocks of Unit 2 are considered to represent the 

major unit deposited by collapse and erosion of the cald~ra 

wallR following the initial collapse due to the eruption of 

Unit 1. However, these lithologies clearly represent facies 

developed during different stages of volcanic activity, and 

range from near-source explosion deposits to debris flows 

to more distal, fluvially reworked sediments. Some debris 

flows may have been activated on unstable slopes and 

rapidly deposited, whereas others contain clasts which 

suggest longer periods of reworking. 

Stage IY 

This caldera stage was one of pyroclastic eruptions 
• and lava flows on the caldera floor, ~s described by Fisher 

and Schminke (1984), but it is taken as the stage during 

which most of the rocks within the caldera, i.e. Units 3 to 

6, were deposit~d. 

Unit 3, occurring mainly as an extensive belt along 

the east side of the caldera, consists of intermediate 

composition (dacite, andesite) flows, domes and intrusions. 

They represent a period of non-explosive volcanism 

dominated by andesitic-dacitic chemistry, although a minor 

phase of this unit consists of silicic and mafic 

compositions interbanded on the scale of centimetres and 

smaller, suggesting that these intermediate rocks may have 

been formed by mixing of more mafic and silicic magmas. 
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Unit 4 ia also intermediate in compoaition, but it 

occurs as a narrow band of ash-flow tuff extending over a 

distance of 10 km, overlying unit 3 and succeeded by 

basaltic flows of unit 5. It is predominantly dacite, but 

ranges in composition from rhyolite to andesite. The tuff 

breccias contain large angular and flattened pumice clasts 

and the lapilli tuff has pumice lapilli up to 65 mm long, 

and these lithologies tend to be discontinuous along 

strike. These features are taken to indicate a near source 

for these rock~, probably tha same fracture system which 

fed the rocks of the adjacent Unit 3. 

Basaltic flows of Unit 5 occur as three dominant 

bands, one on each side of the caldera and one in the 

centre. Although outcrop of the less resistant basaltic 

rocks is generally poor, those of the western belt form 

particularly striking ridges exposing multiple flows 

typical of fissure eruptions. It is probable that all three 

bands were erupted through fissures, possibly in the 

caldera floor, but dominantly along the margins as appears 

to be typical for calderas. A number of later basaltic 

flows are also found in the northern part of the caldera 

interbedded with the late caldera-fill redbeds of stage VI. 

Silicic ash-flow tuffs of Unit 6 occur in 

discontinuous exposures for more than 30 km within the 

caldera. These ash flows are particularly characterized by 

basal thick lithophysae-rich horizons, with individual 
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lithophysae as large as 10 em in diameter. This indicates 

that these ash flows trapped substantial fluid during 

eruption, possibly from the rivers and lakes which would 

have been forming in these intermediate to late stages of 

caldera evolution. Different ash flows cooled as a simple 

cooling unit, suggesting that they followed one another in 

rapid succession. 

Stage y 

Although probably overlapping in time with stage IV, 

Stage V is isolated in order to emphasize the small central 

volcano originally identified on the basis of andesitic 

l~va flows apparently emanating from a central dioritic 

pluton, and subsequently affirmed by aeromagnetic data. The 

latter shows a near-perfect pattern of concent~ic and 

radial lineaments from the central pluton which compels an 

interpretation in terms of concentric flows and ring dykes 

with presumably co-genetic radial dykes. 

Stage VI 

Units 7 and a, occurring as broad bands through the 

central part of the caldera, is dominated by massive, 

strongly uelded vitric ash-flow tuffs, vitroclastic 

breccias and domes. The massive tuffs and domes are locally 

porphyritic, with small euhedral flow-aligned plagioclase 

and rare quartz phenocrysts. These rocks mark a change in 

composition of ash-flow tuffs from the andesitic to dacitic 

compositionQ of stage IV to rhyolitic-dacitic rocks which 

suggest either or both of more advanced differentiation of 
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the maqma chamber, or th~ tappin.q of more siliceous 

(shallower) portions ot it. The latter would accord with 

the fact that these rocks are found in the centre of the 

caldera, i.e. where the shallower parts of the magma 

chamber would be tapped, as shown in Fiqure 7.2. 

Weldinq in Unit 7 is flat-lyinq in its southern 

exposures and becomes more steeply inclined towards the 

north where the Burnt Berry and West Brook Domes are 

exposed. These features together are taken to indicate that 

both Units 7 and 8 heralded the period of resurqence shown 

in stage a. Mixed magmas within the breccias of .unit 8 are 

interpreted as resulting from mixing of the shallow silicic 

lavas with the late basaltic lavas interbedded with the 

caldera-fill sediments. The date of 430.8 for the Burnt 

Berry dome gives a time-span of 2.2 million years for 

development of the caldera to thig staqe. 

Stage VII 

Staqe VII appears simple as it is shown in Figure 

7.1, but it actually includes four important components. 

Unit 9 comprizes a sequence of redbed sedimentary rocks 

distributed in the central portion of the springdale 

syncline. It forms belts up to 25 km lonq, disposed about 

the central synclinal axis over a distance of 20 km, and 

records the activity of fluviatile and lacustrine processas 

within the caldera, with clast assemblages representing 

virtually all lithologies produced during the caldera 
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development. These sedimentary rocks are interbedded with 

basaltic flows, not •hown on Fig. 7.2(VII). unit 10, the 

Indian River Tuff, occurs throughout the interior of the 

central syncline in the north of the caldera, and in one 

other exposure in the southwestern part of the caldera, and 

has been interpreted as being an outflow facies of the 

adjacent King's Point caldera. It is comparable to Unit 1 

of the Springdale caldera in that it has clast~ of mafic, 

ultramat~c and cherty lithologies, indicating that like the 

Springdale caldera, the roof of the King's Point magmjs 

chamber consisted of the Ordovician oceanic crust and arc 

sequences. 

The third element of Stage VII is represented by 

rhyolitic domes such as that of Misery Hill and others in 

the southern parts of the caldera. These are inferred to be 

offshoots of the Topsails pluton which truncates the 

southwestern part of the caldera, because of their . 
concentric distribution with respect to its intrusive 

contact. Although the estimated age of 427 Ma for the 

Topsails complex is not as precise or reliable as those 

provided by the present study, its similarity to the date 

of 427 Ma provided by this study for both the King's Point 

caldera and the Cape St. John Group attests to the 

climactic importance of this time in the development of the 

"Springdale volcanic field" of western Newfoundland. 
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Lithologies produced by the earliest caldera-forming 

avant• (Piq. 7.2) are summarized in Figura 7.3(a), and 

later lithologie• in Fiqure 7.3(b). They appear to show a 

pattern of eruption which can be related to depth within 

the magma chamber, also shown on Figure 7.3(b). It is 

assumed that the springd~le magma chamber was layered, with 

the most siliceous melts at the top, the basaltic melts 

rocks at the bottom, and intermediate compositons in a zone 

of mixing as outlined in Fiqure 4.14, based on the magma 

chamber models proposed by many workers (e.g. Hildreth, 

1981). Unit 1 was so contaminated with accidental roof 

material that no samples were chemically analysed, but one 

might assume that the magma came from the roof zone. 

During Stage IV intermediate compositions of Units 3 

to 6 were erupted from within the zone of mixing. Likewise, 

in Stage V, the marginal strato-volcano was erupted from a 

marginal feeder tapping into the andesitic magma-mixing 

levels. The rift basalts (Unit 5) were erupted mainly 

through marginal fractures which tapped deep into the 

basaltic magma at the caldera bottom. The more silicic 

magmas of Units 7 and 8 (Stage VI) were erupted from the, 

by now, highly differenti~ted top of the maqma chamber. 

Stages VI and VII marked the final emptying of the chamber 

by eruption of the late caldera-fill basalts. The other 

eruptions of stage VII came from the adjacent King's Point 

(Unit 10) and Topsails (silicic domes and granites) 

calderas. 



Figure 7.3. A schematic outline of the events 
associated with generation of (a) the early 
caldera-forming (Units 1 and 2), and all later 
lithologies (b). Based upon a layered magma 
chamber, with the most siliceous magma at the 

• top, the basaltic magma at the bottom, and 
interm~diate compositions in a zone of mixing 
between the two. Numbers and arrows within the 
chamber suggest the site of origin of the 
material reaching surface. 
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7.5. Tectonic Controls 

Syn-caldera dextral motion on the Lobster cove and 

other faults of the area sugqest that the Springdale 

caldera, indeed the whole volcanic field from Cape St. John 

to topsails, was generated in a transpressional tectonic 

environment. This followed closure and destruction of the 

CaDbro-Ordovician Iapetus Ocean, when continental crust was 

juxtaposed against that of the ocean basin. Evidence for 

this juxtaposition is seen in both the King's Point and 

Cape st. John rocks, where ophiolitic clasts are included 

along with zircons deriv~ i from continental crust. No such 

zircons are found within rocks of the Springdale Group, 

possibly indicating that it occurs to the east of the 

ancient continental margin. 

Deformation of the Springdale Group was dominated by 

one major fold, an open syncline. This, along with other 

minor folds and both thrust and strike-slip faults allow 

for east-west shortening of the order of 20 to 30%, which 

in turn explains the present elongate shape of the caldera. 

Location of the Springdale volcanic field straddling 

the continent-ocean suture zone leads to the suggestion 

that this volcanism was focussed by the inherent structural 

weaknesses at the suture. Most correlative rocks in the 

orogen, from Scotland to at least as far south as Maine, 

are also found near this or other major tectonic 

boundaries, with a similar dextral strike-slip tectonic 
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regime. Given that such large calderas demand an 

extensional environment, at least locally, it can be 

suggested that such extension would be most readily 

produced in local pull-apart basins in this dextral regime. 

7.6. Economic Potential 

Epithermal precious metal deposits are commonly 

associated with calderas, and the Springdale caldera should 

have similar potential. The adularia-sericite type of 

epithermal deposits are generally found in a regional 

structural setting along the margins of calderas, although 

other structurally more complex envb:·onJT.tents may also be 

associated, e.g. along fault zones of different types 

within the calderas or within domes. The importance of the 

volcanic setting is primarily one of providing the plumbing 

system and h~at to drive circulating hydrothermal fluids, 

so that virtually any rock type may be a favourable host 

for mineralization. Acid-sulfate types of deposits have a 

similar structural setting to some adularia-sericite 

deposits, but the presence of intrusive centres, 

particularly ring-fracture volcanic domes on the margins of 

calderas, appears to be a critical genetic factor. 

The Springdale caldera, prior to the present study, 

has not been a targets for mineral exploration based on 

caldera models, although there are numerous examples of 

caldv~a-related gold mineralization in correlative rocks in 

central Newfoundland, e.q.Hope Brook and Sops Arm areas. 
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Three areas of alteration were located in the 

Springdale caldera. The 2'\ost promising was four.\J, along the 

eastem aide of Burnt Berry Brook, where the alteration is 

moderate to strong sericitic in porcelanitic tuffs, and 

ranges from weak to moderate argillic alteration in 

spherulitic zones within silicic volcanics. This locality 

is within the area interpreted to mark the main keystone 

graben area related to resurgence, a favourable environment 

in many calderas. Gold grains were found· in the till of 

this area. Other zones of interest in this area are seen as 

local quartz veining and hydrothermal brecciation of the 

volcanics and granite, and along faults where EM conductors 

are found. 

In the eastern collapse margin area of the caldera, 

one rock sample of Unit 1 was found to be anomalous ~"'r 

gold, and stream-silt samples also proved anomalous for 

gold and associated trace elements. In the vicinity of 

Johnson's Lookout st.!:-aam samples from tributaries of 

Barney's Brook which drain Unit 2 have anomalous gold, 

arsenic and zinc. Unit 4 hosts some of the st~ongest 

alteration in the area, with thick ( .. 2m) porous lithophysae 

zones moderately to strongly altered with quartz-pyrite 

veining in limonitic/argillic zones. 

In the southeastern part of the collapse margin area 

one rock sample of Unit 2 was anomalous for gold (>5 ppb) 

and four others were also anomalous for arsenic ( 5 ppm) and 

antimony (>1 ppm). Stream silt samples from this area also 

provided anomalies in all these elements plus zinc. 
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It is clear from both the geoloqical mapping for the 

main part of this thesis study, as well as the limited 

subsequent exploration, that there are a number ot 

indications of alteration and geochemical anomalies which 

were predicted on the basis o! typical models for caldera 

style mineralization. These are obviously important as 

indicators of mineral potential and warrant much more 

intensive exploration and investigation. They are perhaps 

equally important to this study in that they provide yet 

another line of evidence in support of the interpretation 

that the Springdale Group represents the products of a 

large collapse caldera. 
• 

7.7. Conclusion 

The Springdale Group of north central Newfoundland 

consists of volcanic and sedimentary rocks produced through 

the formation and evolution of a large epicontinental type 

caldera. These events took place over a five million year 

period in the early Silurian between 430 and 427 Ma. The 

Springdale caldera is at least partly correlative with the 

nearby King's Point caldera, the Cape St. John Group 

(caldera?) and the Topsails comple~ (caldera?), samples 

from all three also dated at 427 Ma. These together make up 

part of an extensive early Silurian volcanic field, here 

termed the Springdale Volcanic Field. The scale of these 

calderas and their abundant highly siliceous volcanic rocks 
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suqqest that they '··.are formed in a substantially thickened 

epicontinental type of crustal reqime, presumably produced 

throuqh crustal thickening followinq closure of the 

Cambro-Ordovician Iapetus ocean. 

The main accomplishment of this thesis has been the 

recoqnition and documentation of the Springdale Caldera. 

With further detailed study, it and its correlatives 

promise to yield greater insights into Appalachian tectonic 

and magmatic processes. It also exhibits most of the 

characteristics which make it a prime target for the 

discovery of epithermal precious mineral deposits. 
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·------------------------------"·--------------------------------------------------------------------------------------------------
~-259 

·189 

194 

Basaltic 
congl0111-

trot• 

Basalt 

lith-
ic 
frog-

llltlltS 

Granular/ 
frothy. Fine 
•~~~atrtx• Plg, 

Q,chll epd. 

Diabasic text
ure Plg, Cpx, 
and Ol. 

y 

v 

v y hm epd n 

01. y Ilm Bi y 

Most clasts ore 
an;ular 1 consist of 
•gtossy~,Plg-phyric, 

or 01-bearing 

basalts. 2nd. alter· 
ation c01m10n ln frogs 

Ab•Jndant secondary 

biotite replacing 
olivine? 

·-----------·--------------------------------------------------------------------------------------------·-----------------------c~ 
·179 

183 

Basalt col 
sarp 

chl 
5-1a. 

y Glossy wlth 
dtndt'itie 
opaques. 

y y hm serp v 
opaq 

Vesicular w/ Chl 
and opaques in 
vesicles. 

·----··-----------------------------------------------------------------------------------------------------------------------------
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A S!P!!rX of D!troq:C!I!hlc dato for rocks of the Sprl!!Qdalt or10. 

PRI~RV 

Phenocrysts • clasts 
-leNo Fltldrdlt 01 Cpx Plg 81 Xeno 

·--------
194 Basalt t. y y 

211 >s• >51& s-, .. 

Opaq 

SECG'IOARV 
Groundlnass 

Text~rn,etc. Olk Chl 5lf' Cal OxS Oth Anal. Gtn.CMts. 

-----
~tlty/dlabaslc 

ftlg, t., • 
Cpx lnt .. gr"CIIoln. 

>7!1C 

-------------------------------------------·-
v The ol1v1nes hove 

Cpx riM: 1110ny af thl 
olivines have gone to 
hiiiiOtitl. 

·-------------------------------··------------------------------·-
C4-279C 
311 

DS-94-2 
K.Pt.Rd. 

HS•49 
4114 

Plg-
phyrlc 
basalt 

Porphy-
ritic 
basalt 

Basalt 

chl prn 
serp ? 
Fe-
oxs. 

chl epd ser 
Q apaq cal 

y 

Pltd-coorse 
seriate texture 
Glass replaced 
by opaques ond 
oxides. 

Sasaltlc,sar-
iota te)(ture 
with prominent 
green color. 

l'lld·coarse 
diabasic tex
ture w/ quench 
Cpx and ~lg. 

y 

y y 

y 

y 

v 

hm prn n 
opq 

y epd n 

Vesicular w/ chl in
rtlling the vesicles . 
Plg. phenocrysts 
heavily altered t o 
pranhlte. Olivlnes 
ho•1e o-<lde "ri:ns" . 

Replacement of both 
groundmass and phano-
crysts by intargro...n 
chl,col l Q. 

v Vesicular w/ chl 
probe and cal alteration. 

-----------~------------------------------·------------------------------------------------------------·---------------------------
C4·170C Vesicular ? v l'lld·coaru v v hell opq n Well rounded vasicle~ 
t73 basalt chl ,...., diobaslc contain cal,chl,Q: 

texture wl pervasive alteration 
Plg,Cp)( inter· to sar l cal: soma 
gr"OW'I but Cpx groundmoss Q. 

resorbed. 

C4·255A Basaltic y y Flaw-top? y v hill opq n some basaltic 

278 auto- Ole, cal auto·b•:bas. fragn'WitS could 
breccia serp frOCJs.in 111icro- be xenolithic: g'moss 

chl.cal. cryst. g'mass silicified. 

-------------------------------------------------------------.-------------------------------------------------------------------
C4·1678 
167 

Vesicular 
basalt 

y 

few 
Fine trachytlc 
te)(ture. 11ost 
of the Plg 
phenocrysts 
altered to cal. 

v v opaq n 
Q 

Vesicles streamed o•Jt 
w/ Q rims: chl 1 
c:cl centers. 

-------------------------------------------------------------------------------------------
DS-211 
4611 

Harnflsed y 
basalt chl 

serp 

y 

ser 
cal 

Some r11111ant 
g'mass Cpx: . 

tr11110Ute 

v v v hnl pren v 
opoq 

Vesicles w/ chl. ,pren 
Some complexly zoned, 
-thars homogeneous. 

---------------..---------··· - ··------------------------------------.. --------------------------------
EL-3418 
522 

Basalt Poikilltic Plg 
-Cpx tottre. 

y A highly vesicular 
ba~olt flow. 

----------------------- ---·------------------------------------
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1. I A S!.!!l!r'f of petroaroohie data for roeks of tht Sprinqdalt arta. 

PRti'WtV SEctNlARV 

Phlnocrysts + clasts 6r0Widlloss 
1 No Fitldnclle 01 Cpx Plg Bi Xeno Opaq Textll"n,etc. Oik Chl 5er Col OlcS Oth Anal, Gtn.Cmnts. 

112 

.Jtt.Rd. 
Basalt Olabellic: tex 

w/ Plg and Cpx 
y y Vtsicles lnfllled w/ 

chl (8trl1n Blut) 

------------------·-------------·-----·-----------·------------
1B7 Basalt 

ZB Basalt 

71 Basalt y 
428 Cal 

Ft· 
OKS 
111-
2U 

7u Basalt y 
14 serp 

y 

y 

Felty I dia· 
basic ttxture, 
Plg,l 01->serp, 
black nt~dles 
?11m. 

01abas1c text 
Plg,CpK,Dl• 
phyrlc.Hrll stain 
Also Apatitt. 

Felty/diabcslc 
texture w/Plg 
CpK intergr01o11 
but aligned 
Ctrachyt1c flu1 
dol) .Plg-phyric 
poikil1t1c cpx. 

Lathy/Felty tax 
Vesicles w/pren 
rl111 l chl, 
p.,.. cores or 
all chl/serp. 
Resorbed cpx. 

y 

? 

v 

y y 

?Um 
?hill 

y 

y hm opat y 

v v 
Fe-
oxs 

y 
hm 

opq? 

Sarp 
pump 
opaq 

v 
opaq 
mt 
epid 

y 

serp v 

Compltte alteration 
of groundmoss to Col 
l Chl. Many vesicles 
infilled w/ Q,Chl,Cal 
pump .Veinletas of 
col throughout. 

Oxidation fronts. 
Vesicles infilled w/ 

cal and pump 
alteration. 

A patchy ye ll01o1 

mineral 1s seen in 
groundmoss,stained 
chl and epidote. 
Jddingsita ,! serp. 
replace ollvina. 

Microphanoxts of 01. 
replaced by serp ~nd 
Fa-oxides. 

··--·-------... ·--------------------------·---------------------------·----------------------------
·6 

.Pt.Rd. 
Vesicular y 
basalt 

opq 

y 

few 

Qutneh/dia• 
boslc texture. 
lntergrewt 
Plg l CplC. 

v ? v y Q 
hill ep1d 

opaq 

n Highly vtsicular 
infilled w/ Chl l 

o carbonate mineral, 
epid and Q.Pervasive-
ly chlo~itizad.Hign 
deg~e• of silici-
fleatfon. 

-----------------------------------~-------------------------------------------------------



.,. A s~~~~~erv of D!trographic dota for rocks of the Sortnqdale areo. 

SECtNlARV 

Phenocrysts + clasts QrCM!dllass 

No Fleldnall 01 Cpx Plg Bi Xeno Clpaq Tatarn,etc. Olk Chl Sir Col OxS Oth Anal. Gtn.Cmnts. 

19111 

15 

.Pt.Rd. 

15·94-5 
:.Pt.Rd. 

·1111 

148 

1113 

158 

:4-1111! 

147 

----------------------------------------------------------
Plg• 
phyrlc 
basalt 

Basalt 

Basalt 

Basaltic 
flow-
top 
breccia 
(Andes?) 

Basaltic 
flowtop 
breccia 

chl 

y 
chl 
Qtz 
cal 

y 

chl 
cal 

y 

? 

cal 
epld. 

y 

y 

ser 

y 

ser 

micro ? 

serp phano pm 
Fe- cryst 
OlCS 

Basaltic chl v 
andesite cal 

ep 
cal 

Highly porphy· 
ritlc w/ lorge 
,lg • 01 pheno-
crysts in a 
srtatlltrachy-
tic groundlllass 
of Plg, Cpx, l 

altered gloss. 

Basaltic/ser
iate texture w/ 

high ~of' 
phenocrysts. 

Basaltlc/ser· 
late texture. 
Grouncboss ser, 
•glass• re• 
placed by 
oddei, opaques 
and chl. 

~bed glossy 
streaks or now 
w/in a now. 
(basaltic). 
Fragr~~~nts of' 
basaltic glass 
c;,ct auto• 
breccia w/ln 
IIIOtf"b. 

HydrathtniiCil 
alteration. 

Seriate/diobos. 
texture. ltlocky 
Plg. Qddlzed. 

y 

y y v 

y y v 

v 

y 

v v 

epd y 
probe 

hm epid n 

pyr ? 

? 

hm pump n 
opq Q 

'( ? v 
htn al- probe 

on· 
itt 
w/in 
Plg 

pran 
opq 

ltlst phenocrysts 
are aligned within 
the 1110trllc. The 
•glass• is replaced 
by 2nd. alteration 
particularly ne9dles 
of Fe-oxides. 

Hea1ily ol~er~c. 

Al~ered vesiculor 
basalt. Vesicles 
ure quite large ~1 

col, Q and possible 
pump. 

Tremolita may also 
replace 01. Very 
quenched texture ln 
the •matrix• which 
surrounljs auto-
brecciated fragments. 
~lgh degree of oxide· 
tion. Could be mlxed 
111091ft0S. 

pran n Complately overgrown 
pump probe w/ prenhita & pump 

like a cob-..eb. 

htn ep v Vas . w/ pump. cor!s 
and col. rims, some 
all calcite. 

---------------------------------------------------------------------------------------------·-------
19 

·1118 

Basalt 

Basalt 

OlC 

idd. 

serp 

Slr'p 

y 

cal 

Felty •lcroet"ys 
0'111011 with 
qutnch Cpx. 

v y n Ves. w. col rlms, 
ehl cores.Groundmoss 
ehl 1 ox and 
opatitt. 

------------------------------------------------------·-----
Srtate, f'elty 
g•-., ir:"l9oOlC 

y hill epd n 
pullp 

Altered w/ chl g'moss 
cqHJtite. 

~-------------------------------------------------------------------------------
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A SU!!!!!ri of p•troaraphtc data for rocks of the Springdale area. 

SEaNlARV 

l'henoc:l"ffts' + clusts Groundllass 

Le No Flel~ 01 Cpx Plg IU Xeno Opoq Tat&rts,etc. Olk Oil S.. Cal IlleS oth Anal. Gtn.Cmnts. 

132a .. 

IS-25 

165 

lS-94-7 

t.Pt.Rd. 

Contact 
bet~o~~en 

basalt 
and 
sandstone 

Basaltic 
auto· 
breccia? 

Basalt 

--------------------------------

v 
Slrp 
chl 

y 

v 

v 

Olaballc/ 
_.late text-
are. RICI"ystal-
llzotlon by 
patchy ser, Q, 

also random 
"blotchy" Q, 

and col 
aggregates. 

Igneous breccia 
wltrachytlc 
textured basalt 
fra~nts cem
ented by a 
frothy host 
matrix. Some 
fro~ts 

have Plg pheno
chrysts, others 
Plg and Cpx. 

P'ledlut-eOCJr"SI 
diobastc basalt 
subophitlc Cpx. 

opaq 01 phtr.ochrysts 

y 

v 

v 

y 

v 

v 

hm 

y 

hln 

n I,.,.egular contact of 
probe basalt flow on top 

of Springdale 
sandstone. Little 
"intermixing" 
between the lith-
ologies. 

epld n Soma of the basaltic 
probe fragments could be 

XeiiOllths (ie. 
foreign). 

serp v Few vesicles lnfll led 
w/ cal and chl. 

Cal velnlets . 

:----------------------------------------~----------------------------------------------------------------------------------------: 

tS-38 Basalt v v v Harrlsltlc wl v v y v High proportion of 
:'193 chl pollclll tlc Cpx. hill Cpx. 

serp Plg ptunocrvsts 
ari CONOnly 
flaw o11gned. 

·--------------------·---------M·--------------------------------------·----------------------------------------------------------
}S-189 Basalt v v 
:<.Pt .Rd. 111-

era 

serp 
chl 

': 

Otosbasic Plg 
w/ polkilltic 
Cpll. Plg has 
srlcltizad ,.. 
cores. 

? ? y Vesicular w/ chl ~nd 
epd stro11ga spherical 

structures in the 
vesicles. These ore 
bright green high w/ 

relief,some sort of 
apid? granular oggreg 

··--------------------------------------------------------------------------------------------------------------------------·-----
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Table 1. (eontlnutd) A S!!!!C!"t of petroaroehlc data for rocks of' the Springdale area. 

~ SECCNlARV 

' 
PhtnoCJ"YStl + clasts GrO\IIdllloss 

Salplt No Fleldnalt 01 Cpx Plg Bl )(eno Opaq Ttxt&rn,etc. Olk Chl Set' Col OlcS Oth Anal. Gtn.Cnrlt~. 

-------------------------------------------------------
~ C4-217 Basaltic v v v 8rcudllal y v Aggregates of Pl g l 
· 22S Andtslte hlaYlly odd· Cpx IIIO•ically ,-.- lZid. Porphy- resorbed. Cpx shows 

··. 
-·· ritle with palysynthetic twin-
'i 

' sw .. e alter- ning • High :C of 

atlan. PUxing? opaques. 

· C4·166 Basaltic y y Very fine y y y y epd y Vesicular w/ bl•Je-
0 162 Andesite serp cal felty ground- hm ? probe gr9en chl (berl !n 

,. ,, chl ser mass w/ zoned mt bl•Je) .High relia f 
y Plg phenocr ysts opqs yellow mineral ts 
... 1110st altered possibly epidote . 
' ~ to cal • sar. Magnetite shows 111 
r~ ,.. PUnor sUi· twin l~elle and ere 
, . ci flcatian. altered to hm. 
·- Opqs • hill. 
' : 

. . C4·1181B ,, Basaltic ? y y Felty/trochytic v y hm y In general many Pt9 
122 Andesite chl 5~ ser texture.Few pat- phenochryst s are 

;. 
1~ to 3B:C glOIItf'o• chy altered to ser, and 

~-. to HllC porphyritic heavi l y included . 

21l:C aggregates, Fresh chl seems to be 

c~~~~~posed of Plg replacing a primary 
Cpu and 01. phenochryst ,01? 

~-
., 

--------·-"·--------------------------------------------------------------------------··-~----------------------------------------
C4·233A 

a: 244 . 
\ 
~-

.. 

Andesite y 

cal 
Sir 

Fine Trachytic/ 

felty ground· 

.ass wl Plg 
phenochrysts 

aligned or sub-
aligned. 

y v v hm y Very patchy 

probe alteration. Ground· 
mass extensively 

calcified and minor 

silic:lflcatian. Few 
small vesicles • 

~ --------------------------------------------------------------------------------------------------------------~-----------------~ g. 

~ 
[: 
.(' 

e 

HS•116 

446 

C4·117G 

115 

Basaltic serp Sfr 
andesite ox. chl 

Basaltic chl v y 

Andesite serp 

Mcroc:rystallin 
dl'lit . glass. 

Felty, patchy 

oxidation. 01 
abundant and 
,...,. epx a 
Plg. 

y y 

v v 

sar;~ y Abund . clear Plg in 
davit. l ox. g'moss . 

tvn serp v A few vesicles w/ 
qtz chl. 
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~inued) A S!!!!!!"f of petrographic data for the basaltic t':ld andnltle rocks or th• Sprtnndale area. 

SEca«lARV 

PMnocrysts + elasts GraundlllaSs 

No Fltldrale 01 Cplc Plg 81 Xtn0 Opoq Tllttt.rn,etc. Oik Chl S.. Cal OilS Oth Anal. Gtn.Cmnts. 

12A 

r.-3128 

-1119 
511 

::t.-276 

5116 

Andnittl ? 
doc itt 

Andesite/ 
dacite 
porphyry 

cal 
c:hl 

ltr 

ser 

Andesite mt v y 
serp ,., 3~ 

AndiSite/ ? cal 
dacite serp 
plag· 
phyric 
flaw 

y 

lCtnO-

c:hrys 

tlc 
frog-
mtnts 

mafic 
phase 
Amphb 
re-
place 
·ed 
by 
chl. 

y 

-------·----------------------------------
Microcrystal-
llnt winter-
gra-n 
Q, l F'spar 
and ser- chl. 

GloqK~rocryst ic 

w/Plg and 
rel1c amph1· 
bole aggregates 
Q, fine chl and 
epidat• inter-
grOWl in ground 
mass. 

GlOIIItf'ocrystic 
Plg, CplC l 01. 

w/ollidu. Felty 
grouncMIQss. 

Fine f•lttd 
flow aligned 
textur•. 
Pl\1 alteration 
to cal. 

y 

v 

y 

y 

y 

y 1'1111 ptJIIp y 

y e~ .:l n 
& 

tl 

mt sarp v 
hm carb probe 

v hm Q n 

opaq 
Chl 

The rock 1s elth•r a 
crystal porphyry or 
flow. The xenoliths 
art resorbed and 
commonly consist or 
fe lsic crystal por 
ph•;ry. The 9roundmoss 
i s •chil led• a~oin~t 
the Kenolithslcr ·,sts . 

Sae sample numoer 
31 2A for compor 1son. 

OHvints replaced by 

serp and Fe·oK, r.hl . 
Polysyntheticollv 
twinned CpK(SII 208 ] 

Also some chl and Q 
alteration. 

----------·--------------------------·-----------------------------------------------------------------
C4•182 Dacite/ v y Plg 
149 andesite Cpx 

~end'l texture 
IIIGtrbc wtr ... 
Plg,Cpx xeno-
crysts ; COII'IIIOn 1 Y 

replac~ and in 
eluded heavily. 
01 microphena-
crysts re-
plaetd by cal 
chl,111nor serp. 

v v sarp y Plag ! Ol form glom
erocrysts in o quench 
matrix. Also si ngle 
xtls of Plg & CpK 

distributed ron~om
ly. 

~--------------------------------------------~---------------------------------------------------------------------------

... 
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A SU!!GrY of petrographic data for the basaltic and ondesitic rocks of the Springdale nreo. 

SEctt«lARV 

Ptltnoc:rySts + clasts Brotniloss 
No Fieldftclle 01 Cpx Plg Bl Xeno Opaq Text~.rn,etc. Oik Chl Sir Col OlcS oth Anal. Gen.Cmts. 

•314 Andtsltl v 
chl 

Z7S Andesite/ 
dacite 

v 

cal 

Vry fa- glc.

• opc11 phyrltlc 
oggregotn of 
Plg I chlorite 
in a trochytic 
rnatrb of Plg 
l chloritized 
grounnss. 

Superfine 
glass wl f~~o~ 

phenochrysts 
of K-spar? 

v 

y y y 

n Areas of tht ground-
probe moss demonstrate flow 

alignment of skeletal 
Plgs xtls but other 
places are more 
randomly orientated. 
F • spar phenocrysts; 
ore also present 
..ilich ore hight·t 

sericit1zed. 

y A "cleavage" is seen 
1~ this rock t ype. 
Sericitization 
develops along it. 
Aleration patchy. 

-----------------------------------------------,------------------------------------------------------------------
·116B Andesitlc y y y Felted/quench y y opaq y ll also alters to 

basalt chl ttxture.Chl probe of talc-
alt.,.ation carbonate. Cp~ has 
prvasive. rims or chl,ccres 
Hornftlsed talc. 

167C Andes itt y Fine felty/ hlft '( Extremely homogenous. 
f~~o~ trachytic The "blotches• are 

ttxture w1 blot common and random-
aU gr~~~~nt a f ChiS ly distributed. 
Plg laths They r:.;.·; represent 
co.on. ~anch• the oxidation of a 
!d grollldllass primary phenochryst 
Cpx. phose? 

·--------------------·-----------~-----------------------------------------------------------------------------------------------
-21!8 

14 

Andesite y y 
serp 

y GlOMtrocrystlc 
Cpx ,Plg,Ol in 
trac:ft. g'moss. 

y y y Polysynthatically 
probe twinned cpx. 

·-----------------------------------------------------------.--------------------------------------------------------------------
·ll!l!l Andesite ? y 

s.,.p 
y Felty w/ polk

illtlc aggre· 
gates of Plg, 
Cpx and poss
ible 01. Ground 
IIICISS 011. 

v opq V Lor~er (low relief) 
strp probe laths of chl hove a 

a pale blue anomalous 
color. Disseminated 
opaques. 



I 

1 j A SU!!!!I!!r'f of petrographic dOt:a fOr" rocks of the Springdale or"ea. 

Phenocrysts + clasts GrOI.IIdllass 
l• No Fleldncllll 01 Cpx Plg 81 xeno Opaq TIKturn,etc. Oik 011 s.. Col OxS oth Anal. Gtn.Ctnnts. ___ , _______________________ , __ ..... ····----------------------------------------

118 

C4-"71lB 

189 

C4•98 

145 

C4·17!l 

183 

Andesite v v v 
? •1cro sr 

pMno 

Vesicular ? y 
basalt Fa-

oxs 

Basalt y v 
serp 15~ 

Vesicular OlC. 

basalt chl 

v 

v 
2~ 

ser 

cal 

Olabollc/ftlttd 

V•lcln rillllld 
with o,aques 
and htavlly 

oddlztd. 
Coiii!IOnly cored 

wl pump. 

Felty/trochyt!.c 

hyalopilitic 
groundmass. 
GlOMropor

phyrl tlc wl 
resorbed Plg, 

Cpx and 01. 
Olcidation•r tillS• 

SUI"'round these 

aggregates. 

Fine diobosic:/ 
seriate 

texture. 

Glassy, heavily 

ox. ~ench cpx 
rosettn ,needls 
feathery pl . 

v v ., v 
111 

v 

hm 

y y hm 

opq y 

PIIIIP probe 

y 

pUIIlp 

opaq y 

cubes 
needles 

Many of the Plg ore 
zoned and the rims 
Or't altered to col. 
Randomly distributed 

hematite blotches. 

Am'l')dules .:;~:'IS Ho!; 1' 

pump,chl, and sar~ . 

They commonly nave 

oddation"rlms". 

Ptg-phyrtc homogen· 

ously textured 

basalt. 

Vesicles have cal/chl 
cores, thin chl rims. 
Pl-rich cumulate. 

----------------------------------------------------------------------------------------------------------------------------------
C4·26:.A 

289 

Basaltic 
congl01111r 

ate. 

r.ost tra~nts 
fairly angular. 

Intersertial 

chl. 

v y tvn PIJIIIP n 

1n 
SOftll 

frog 

9asalt1c clastic rock 
Sand-sized fragments 

of various basalt 
.t ypes ranging from 

ophyric to Plg·phyr1c 

and differently 
altered. 

-----------------------------------------------------···· -- ----------------------------·-------~---------------------------
C4-ll1 1 Scar- v Highly recrys- v y Nl adul v Very excessive 

15 lac:ious cal talllzed ground ? alteration. High ~ 

basalt -t!ICISS of Q and or Plg. 

Adularia? 
Al trot ion is 
patchy. 



11 

. 1. , . A s~y of petrogrophlc dota for rocks of the SprinQdale area. 

SEctNIARV 

Phenoc:rysts + clasts Groundllass 
le No Fleldrale 01 Cpx Plg Bl Xeno Opaq Ttxtw-n,etc. Olk 011 Str Cal Q)cS Oth Anal. Gtn.Cmnts . 

12ZA Vesicular v also 
bosolt chl 

---·---------------------------------·-
Flnt diabosic 
ttxt&re w/ Plg, 
0111 and opqs. 
GI"OI.IIdllaas ch 1 
and col. Plg 
phenocrysts 
have sieve tax-
turt with sar 
alteration. 
11ost are zoned, 
and heavily ln-
eluded. Some 
ore completely 
sericltized, 

v y y hill opq y Vesicles have irreg-
? probe ulor shapes w/ fine 

chl ri-. • cal inter
iors, also aggregate 
chl. Long Prismot ic 
crystals ora also 
.seen? 

--------------------------------------------------------------------------------------------------------------"·--------------
·211 

17 

-2711 

7 

r.-1eG 
53 

Dacite/ ? 
andesite Fe-

OXS 

Dacite 
auto· 
breccia 

Dlortta 

y 

y 

Falty/Trochytic 
pllotaxitic 
tllltUt"t. Opaques 

l biotite flake · 
in grounctloss, 
otter Cpx? 

Fine felted 
tllCture loll th 
recrystoll-
lzotlon to Q, 

cal and ctll 
alteration. 

111d-grained 
dl.orit1c tex., 
interlocking 
alb1 te rllllllld 
Plg, green Hbl 
is replaced by 

biotite • 
oct1nol1te. 
Also 1110\)IIICitlC 

zircon and 

apatite. 

y v y y Patchy alteration 
and colciflcatlon . 
Few •tntoct• pheno-

chrysts of Plg with 
good olblta and pari· 
cline twinning. 

v y v hnl Q n Altered autobrecc ia. 
need Kspr Alteration 1s 

les. pr~domlnantly found 
witt,in t he matrix 
bet~11an fra·~ants. 

Smell frottures/ 
•Jitin!l filled w/ Q 

and col. 

y v y n Plg has care alter-

oct otion to ser and 

bi col. 
Zir 
Apt 

. . ·------------------------------------------



,, 

SEC!NlARV 

Phenoerysts + clasts llroundllass 
No Fleldnale Q ICspar Plg oth Vltr Lith Taturn,etc. Olk Ctll Ser Col ChcS Oth Anal. Gtn.Cmnts. 

1690 
--------------------------------,·----------------------------------

Felsic 
Wllded 

tuff 

V sr cal las. Fine shcrdl ln 
and glau with w
Ands. tCDCltlc texture 

PII'Y•lve alt
eration to col 
and oxides ob

scured the tex· 
ture. 

v V tw serp n 
opq 

Crystal·llthlc turr 
with Plg, K-spar and 
llthlc fragments. 
Lithaphysae with Q 
and radial mlcrolitas 
in devitrified rims. 

·----------------------------------------------------------------------------------------------------------------------------------
''+·1109 

·173 

Welded 
crystal 
vitric 
tuff 

Welded 
crystal· 
vitric
Uthic 
tuff 

v y y y 

Son An 

rare San y Bas 
thru 
Rhy 

Euta:d tic talC. 
with flami that 
are recrystal-
Uzed to granu· 
lor Q.Larger 
tl0111l al tared 
to carbonat a. 

Alkali f' spars 
resorbed, san• 
ldlne displays 
perthitic tex. 

Eutax1t1c crys-
tals often 
broken. 
T.o distinct 
types of fl0111i 
are seen one of 
recrystalllzed 
polygonal Q, 

and pele's 
halr. Other m-
reus, 1110y be 
cognate llthic 
rraiJIIInts. 
Alteration 
da~~~inated 

by cal. 

y y hm prctP. The t-..o fe 1-.l:.p·lrs 

f ~ne ~ugJest subsolicus 
dis· conditions thus con· 
per· sideroble depth of 
sed. formation.A more 

calcic feldspar is 
present replaced by 
ser. Q·ser veinlets. 

y y Q n Lithic frogs. are 
predominantly bas· 
altic with a variety 
of phenocryst ossem· 
blages includlnq 01· 
phyrlc, Plg·phyric: 
aphyric trochytic 
andesite and rhyolite 
Llthophysoe hove cal· 
Q cores with ser rlms 

----------------------------------------------------------------------------------------------------------··--------·------------
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SECtNlARV 

Phenocrysts + clasts GroundmaSs 
le No Fieldnamt Q 1<spor Plg Oth Vitr Lith Tmurts,ttc. Oik Chl Str Cal OlCS Oth Anal. Gtn.Cmnts. 

174 

·231A 

·299 

Welded 
vitric 
tuff 

Wtldad 
massive 
rhyolitic 
tuff 

apron 

re- Son 
sor- cal 
bed Str" 

Son An 

ser 

rora v 

v 
--------------------------------------

Eutodtic 
text1r~ 

. beautifully 
deVeloped. 
Patchy zones 
of c:ol and oxs 
alteration 
nuclaote around 
phenocrysts. 
Fiami rare and 
are rec:rystal-
lized Q and 
? albite. 

Very fine/ 
glossy with 
suggastion of 
ollgnmant or 
~lding marked 
by straoky col 
oxs,ond opq 
alteration. Few 
punic• suggast
ivt of intru
siva nature as 
as is the eu
hedrol nature 
of the seriate 
but rcre 
phanocrysts. 

Few Intergr01on Q 

Bas and albite re
crystallized 
as dtvltr1f1ca
t1on texture. 
Secondary al
bitization. 
Sphtr"Ults of 
htii!Citite stain 
feldspar, punp 
are c:0111110n. 

v 

y 

y hm Q n 
ob 

v hm ? 

hm pump ? 

ob 

This unit grades into 
a sphtrulitic zone 
\lolhtrt most of the 
oxidizing fluids 
were generated. 

Found in contact with 
a rhyolitic breccia 
moy be a flow dome? 

Very near a dome and 
this unit is composed 
or rhyolitic: frogs. 

many or which hove 
perlitic: crocks sug
gestive or massive 
glassy intrusives. 

---------------------------------------------------------------------------------------------------------------------------------
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SECCNlARV 

Phenocrysts + clasts Groundless 
le No Fielcr.t Q Kspar Plg Oth Vitr Lith Textw-es,etc. Olk Chl Ser Cal OKS Oth Anal. Gen.Cnnts. 

~-163 

H85 

:4-224 

----------------------·------------------------------------------------
Crystal- re-
Uthlc sor 
tuff bed 

Lithic 
tuff 

Falsie 
lahar or 
sandy 
pyro· 
clastic 

v 

1\Js 

y 
col 

y v 

y Bas 
thru 
Rhy 

lolide 
var-
ietv 

Flne diYltrfltd 
..trlx wlth 
~ous frogs 
w1 th grano-
phyrlc,graphlc 
l men~~ikitic 

textures. Other 
frogs are rhyo· 
lltlc w/perllt-
ic cracks or 
fibraus.Altern 
hill, Q. 

Glassy quenched 
matrix w/patchy 
pervasive olt· 
erotlon in both 
frogs.and 
motrix ,pumice 
are rare. 
Carbonit1zation 
and varied in 
individual 
lithic clasts. 

A granular rock 
with good sort· 
ing.l'latrix is 
altered and 

thus features 
such as gloss 
shards ere 
obscured if 
there. Most 
lithic clasts 
ore felsic 
voles. ,also Bas 
Andesltic. 
Alteration 
depends an 
lithology. 

y 1"111 Q ? 
opq_ 

v v n 

y y y hill pump n 
Q 

This is a high-level 
porphry -nich has 
erupted thus it has 
both cognate and 
foreign clasts dar-
lved from local rocks 
Also some •chlllao" 
frogs which represent 
mor~in of lntrusl~n. 

Lock of autoxitic 
texture suggests no 
welding as does the 
unflottened pumice. 
In the field a 
fl~ttening was ob-
served whiCh suggests 
welding however. 
Some bomb size fr~gs. 

Difficult to access 
the ~enesis of the 
rock due to the fine 
•dust·like• matrix. 
Most fragments touch 
each ather with re· 
crystallized aggre· 
gates of Q between. 
In places matrix 
looks •quancnad•. 

----------------------------------·---~------------------------------------------------------------------------------------------
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. roble 1. (cont'd.) Petroarophle dHerlptloM of rocks of thl Sc!rlnQdale Area. 

Phenocrysts • clasts 8roundlllass 
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SECCNJARV 

SaMple No Fleldnae Q Kspcr Plg oth Vltr Lith Text&rn,etc. Olk Qll Sir Cal ChcS oth Anal. Gln.Cmnts. 

-------·-----·-------------------·---------------------
:4·315A Andnltlc 

breccia 
y 8os 

Fe- Md 

OXI Fels 
srp 
Opq 

Troctlytic/vu• 
ulr fragMnts 
in a hlavlly 
~ltizld 

and oddlzed 
grouM!Ioss. 
Difficult to 
detel'llline the 
nature of 
matrix due to 
alteration and 
fine groin size 

y hi n There may be foreign 
opq clasts as well which 

are felsie.Vesicles 
flllld with chl and 
smell rims of col • 
Some vesicles re-
placed by Q. May be a 
separate Opq pheno-
Cr'/St phose. 

~ ----------------------------------"-----------------------------------------------------------------------------------------------
\; :4-96 
l; 

~. 

l~-
C4·167B 

f' I'J 

~ 
~ 

Basaltic 
laharic 
breccia 

Basaltic 
laharic 
breccia 
•pepertta• 

Opq 

Q 

~in- Glossy,raplacad 
ly by opqs. Alter
Ande- ld to carbonate 
site and Fe-oKidts. 

~in A clastic rock 
Bas. with a fine 
few felsic silty 
Ands. groundrlloss 
and COIIfiOStd of 
rare Q, feldspar and 
Fels. •ica.Tht frogs. 
vole are •tnfil tro-
clast tid by the 1111ds 

upeciolly the 
vesieles.Frags 
crt ol ttrtd to 
carbonates and 
Fe·oddes. 

y y hm n 

y y y n 
hm 

opq 

Most of lithic frogs. 
have trochytic to 
felty texture. They 
range from aphyrtc to 
Plg•phyric with var
ied states of alt
eration. 

Fragments ora predom-
inantly mafic ~ith 
a range of textures 
and phenocryst assam-
blages.There appears 
to be some auto-
brecciation in the 
basaltic clasts and 
may represent contemp 
-oroneous \avos flows 
during daposition of 
this unit. 

basaltic breccias 
in the area. 



1. Cc:ont'd.) Petrographic dnc:riptions of rocks of the Sprtnadolt Area. 

ltld No,/ 
.No. 

i'J4 

C4-283 

C4-93 

C4-287 

Fltldnmlt Q 

Barney's n 
8rk tuff 

Barney's n 
Brk tuff 

Barney's v 
fault 

Barney's n 

Brk. tuff 

PRIMARY 
Phtnoc:rysts + clasts 
Plg ICs9 Oth Xeno 

y n zlr ol 

y n zir al 

v n ? n 

v n Y ol 

GroundlloSs 
Opoq Tt~ttw-es,etc. Olk Chl 

t.,~~giUtCDC -'Cibun 2nd n y 

ser,cal,dtvltrlf. 
t1Xta.Fl~C2 types) 

hll,~~~g ~ above n 

roult breccia n 
poss. intrusion 

tww,mg tutax.os 2114, n 
flat pualce 

v 

n 

v 
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SECMlARV 

SeC' Cal OKS Oth MOl. Gtn.Cmnts. ______ ._ ______________________________ 

v v v v wtldtd lith, vi t . 
tuff,abun lith1c:s 
~~~~~ny basaltic. 
Vti~ltts ser, cal. 

--------------------------------------------
v 

v n y 

v y y 

y 

sll y 

y 

As above 

[ n o ' croo fz w/:la•, l t, 
spherul'!s and ·l :lU'J '! 

Abun vitric clasts 
fewer basaltic clasts 



APPENDIX B 

SPRINGDALE GROUP 

SAMPLE LOCATIONS 

(UNIVERSAL TRANSVERSE MERCATOR COORDINATES) 



S~le 

Nl.lltMir EIStlng Northing 

d83 514877 5458m 
d82 515232 5458426 
d81 5,5316 5458385 
d57 517307 5459363 
d56 517249 5459358 
d55 517184 5459360 
d60 516519 5459284 
d61 516298 5459206 
d62 516645 5458822 
d63 516807 5458801 
d64 517569 5459085 
d67 517649 5459427 
d66 518Ct6 5459621 
d53 518836 5460999 
d52 518990 5461102 
d51 519208 546,111 
d59 519501 5461420 
d50 519500 5461416 
d49 519589 5461480 
d48 519694 5461532 
d47 519740 5461487 
d46 519865 5461624 
d45 519889 5461698 
d44 519782 5461672 
d18 522969 5460501 
d17 522967 5460280 
d16 523009 5460149 
d15 523165 5459897 
d14 523261 5459893 
d13 523316 5459947 
d12 523110 5460286 
d11 523094 5460375 

35211 523014 5460533 
35210 523004 5460372 
35212 523006 5460242 
35213 523068 5460290 
35214 523118 5459968 
35215 525353 5459768 

d89 523555 5464341 

APPENDIX 1: SPRINGDALE GRClJP SAMPLE LOCATIONS. 

S-.:tle S-.:tle 
Nud>er Eaatlng Northing N~r Eaatfng Northing 

C4022A 547685 5478820 
C4022B 547660 5478820 
C4023A 547965 5478560 
C4023B 547940 5478560 
C4024A 5482~5 5477960 
C4024B 548280 5477960 
C4024X 548230 5417955 
C4025• 548240 5474850 
C4026A 547390 5473580 
C4025X 548220 5477930 
C4026B 547355 5473580 
C4026X 548225 5474850 
C4027A 547165 5473240 
C4027B 5(7190 5473240 
C4027C 547135 5473240 
C4028· 546800 5473130 
C4029· 547130 5472990 
C4030· 550720 5473390 
C4031· 550890 5471245 
C4032· 549115 5470620 
C4033· 549400 5477070 
C4034· 549920 5476930 
C4035A 550285 5476920 
C4035B 550260 5476920 
C4035C 550225 5476920 
C4036A 550285 5476840 
C4036B 550250 5476840 
C4037· 549020 5475450 
C4038· 548360 5475000 
C4039· 547790 5474875 
C4040A 548045 5474495 
C4040B 548010 5474495 
C4040C 547985 5474495 
C40400 547650 5474495 
C4041· 548015 5474390 
C4042· 546800 5472785 
C4043· 545740 5472275 
C4044· 545420 5472105 
C4Q45w 545150 5471320 

C4312A 558195 5458410 
C43128 558165 5458395 
C4313A 558010 5458350 
C4313B 558045 5458350 
C40314 558540 5456620 
C4315A 558255 5458640 
C4315B 558210 5458640 
C40316 554930 5457890 
C40317 559680 5457675 
C4318A 560590 5459480 
C4318B 560555 5459480 
C4319A 560495 5459465 
C4319B 560460 5459460 
C4320· 560490 5459150 
C40321 560340 5460045 
C40322 559999 5457485 
C40323 559675 5458950 
C40324 559015 5457850 
C40325 556500 5457495 
C40326 556930 5457950 
C40327 556090 5458250 
C40328 556120 5457750 
C40329 554520 5458190 
C40330 555190 5460550 
C40331 555250 5466080 
C4332A 550995 5459010 
C4332B 550956 5459020 
C4332C 550910 5459000 
C4333A 538955 5456060 
C4333B 538920 5456040 
HS0029 543620 5465060 
HS0031 545220 5466325 
HS032A 545310 5466815 
HS032B 545370 5466845 
HS0035 545785 5467305 
HS0036 546015 5467975 
HS0037 546175 5468100 
HS0038 551490 5455860 
HS0039 551390 5455780 



s..,t. 
Nu.ber Eeatlng Northing 

dU 523442 5464015 
d20 523162 5462386 
d21 523258 5462466 
d22 523926 5463389 
d23 524003 5463587 
d24 524222 5463879 
d25 524437 5464039 
d38 524361 5464189 
d26 524379 5464282 
d39 524364 5464391 
d19 524116 5462285 

3590 524014 5465126 
3591 524003 5465077 
3592 524047 5465025 
359~1 523988 5464953 
3594 524025 5464921 
3595 524152 5'64883 
3596 524306 5464792 
3597 524358 5464761 

35100 524282 5464733 
c5t.:S 524392 5464552 
c562 524414 5464582 

3511)2 524520 5464555 
cS64 524698 5464523 
c565 524731 5464458 

35103 525117 5464444 
35104 525227 5464444 
35106 525456 5464559 
35107 525519 5464549 
35108 525738 5464714 
35117 525945 5464847 
35116 526130 5464882 
35114 526224 5464794 
35114 526234 ~464777 

35115 526224 5464783 
35114 526302 5464742 
35113 526537 5464686 
3550 526650 5464675 
3545 526719 5464633 

APPENDIX 1: SPRINGDALE GROUP SAMPLE LOCATIONS. 

S.-ple Se~pte 

Nuar Eeatlng Northing NU!tltr Eestlng Northing 

C4046• 544450 5471020 HS0040 552520 5456935 
551860 5463520 
551890 5463675 
551855 5463675 
551665 5464000 

C4047• 547050 5472700 HS0041 
C4048· 546550 5472020 HS042A 
C4049· 546420 5471830 HS0428 
C4050· 546050 5470290 HS0044 
C4051• 550110 5475925 
C4052· 550670 5473475 
C4053· 550690 5473415 
C4054A 550895 5473175 
C40548 550870 5473175 
C4055· 551085 5472895 
C4056A 546670 5467390 
C40568 546650 5467390 
C4056C 546615 5467390 
C40560 546695 5467390 
C4057· 547095 5466850 
C4058· 546245 5465700 
C4059· 546690 5465230 
C4060· 549605 5466010 
C4061A 551550 5470530 
C40618 551515 5470530 
C4062· 552015 5467150 
C4063· 549980 5463490 
C4064A 551935 5463420 
C40648 551900 5463420 
C4065· 553155 5459730 
C40066 563860 5472925 
C467A· 563860 5472725 
C40671 563815 5472730 
C4067C 563785 5472725 
C40068 563760 5472610 
C4069A 563765 5472620 
C40698 563520 5472520 
C4070A 563075 5470475 
C40708 563105 5470495 
C40071 563015 5470320 
C40012 563055 5470160 
C40073 563315 5470500 
C40074 563245 5470280 

HS0045 551655 5464070 
HS047A 551690 5464135 
HS047B 551655 5464135 
HS047C 551616 5464135 
HS0048 551625 5464200 
HS0049 551665 5464350 
HS0050 551790 5464495 
HS0051 551820 5464645 
HS0053 552005 5465150 
HS054A 551695 5464245 
HS054B 551656 5464245 
HS054C 551610 5464245 
HS0055 5S1720 5464430 
HS0056 551815 5464525 
HS057A 551895 5464800 
HS057B 551870 5464800 
HS0059 552080 5465225 
HS0061 552310 5465815 
HS062A 552395 5465000 
HS0063 552465 5466190 
HS0064 555520 5468395 
HS0065 554395 5468145 
HS0066 552830 5467520 
HS067A 552590 5467380 
HS067B 552555 5467380 
HS0068 554000 5467105 
HS0069 553695 5466550 
HS0070 553535 5466285 
HS0071 553180 5466160 
HS0072 558490 5466290 
HS0074 558235 5466115 
HS0075 558085 5466285 
HS0077 558480 5466675 
HS0078 557745 5465395 
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APPENDIX 1: SPRINGDA!.E GRU SAMPLE LOCATIONS. 

s....,t. S-.:>le SMPle 
Nunber E11tfng Northing NIJM)er E11tfng Northfng Nunber Eeatfng Northfng 

3546· 526696 5464654 C40075 562925 5470140 HS0080 557170 546491."115 
3540 526652 5464620 C40076 562930 5469945 HS0082 556925 5464780 
3548 527063 5464034 C40077 562800 5469690 HS0084 555940 5464050 
e535 5278&3 5463036 C40078 562765 5469445 H$0086 555565 5463210 
3566 527529 5463013 C40079 561215 5468320 HS0087 564420 5473290 
e534 527211 5463176 C4080A 564155 5473345 H$0088 564785 5473210 
3575 535659 5459588 C4080B 564190 5473340 !·.:0093 561035 5460280 
3574 535074 5459738 C4081A 561450 5465410 HS094A 560560 5460140 
3573 535137 5461266 C4081B 561415 5465415 HS094B 560435 5460155 
3564 524584 5461047 C40082 561500 5465140 HS096A 560460 5459810 
3563 524431 5461155 C40083 561380 5465020 HS096B 560415 5459810 
3586 525234 5461838 C40084 561290 5464860 HS0098 560385 5459570 
3585 525224 5461931 C40085 561425 5464830 HS0116 555930 5468985 
3583 525160 5462047 C40086 561545 5464820 HS0118 557080 5470285 
3584 524817 5462173 C40087 561505 5464610 HS0119 558110 5471125 
e552 524928 5462259 C4088A 559090 5464040 HS0120 559970 5470930 

35241 524827 546~176 C4088B 559160 5464090. HS0121 560000 5470400 
e553 526028 5461118 C47173 561415 5465415 HS0123 559300 5469500 
e554 526488 5460981 C408AC 559220 5464110 HS0126 558890 5468640 
3588 526381 5460941 C40089 555605 5460495 DM003Z 555720 5474390 
3587 526235 5460874 C40090 555560 5460610 DM0034 556000 5473940 
e540 526924 5461523 C4091A 555555 5460705 DM0035 556120 5474200 
c539 527405 5461421 C4091B 555500 5460700 DM0037 557910 5474215 
e538 527260 5461290 C4092A 555495 5461305 DM0039 559380 5475550 
e537 527157 5461155 C4092B 555440 5461400 DM0040 557180 5476180 
3560 527027 5461030 C4092C 555415 5461375 DM0029 557310 5479550 
3561 527000 5460938 C40093 555370 5461320 050020 537485 5458165 
e547 527485 5460310 C40094 555345 5461280 050021 53n1o 5458025 

e5466 527076 5459\58 C40095 555430 5461220 050022 537925 5457635 
3570 527111 5459146 C40096 555385 5461190 050023 538420 5460775 
3571 527028 5459022 C40097 555345 5461150 050024 538375 5461130 

35200 530863 5455497 C40098 564090 5473250 050025 538010 5461010 
d70 533307 5470272 C40099 564000 5472995 050026 537725 5462205 
d71 533271 5470426 C40100 564005 5472995 DS0027 54~0 5461690 
d73 532945 5470267 C40101 563745 5472300 EL301A 554915 5472595 
d74 532763 5470180 C40102 563750 5472615 EL201B 554960 5472595 
d75 532471 5469981 C40103 563710 5472510 EL302A 554865 5472310 
d76 532238 5469824 C40104 564650 5472420 EL302B 554810 5472310 
d77 531568 5469639 C40105 564160 5471100 EL303· 552995 5469410 
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APPENDIX 1: SPRINGDALE GltClJP SAMPLE LOCATIOIIS. 

Se~ple S~le SMple 
Nl.lllber Eutfne Northing Nllllber EHtfng llorthfng NUIIber Eaatfng Northing 

d78 
d79 
d80 

c576 
c575 

35122 

531294 5469537 
531248 5469305 
531257 5469110 
531329 5468573 
532450 5467686 
532283 5467424 

35123 531815 5467790 
35114 531611 5468100 
351Z5 531573 5468345 
35217 542756 5435488 
35218 543118 5437054 
35219 543699 5436886 
35220 544267 5438090 

la1 545062 5439019 
lt2 545041 5438849 
la3 544999 5438685 
la4 
ta5 
la6 
ta7 
laB 
lt9 

lt10 
35221 
35208 

545060 5438673 
545363 5438301 
545218 5437930 
545220 5435692 
546016 5435485 
546300 5435380 
546815 5435343 
546427 5440222 
544785 5442976 

c5201 545063 5444751 
c622 551662 5443884 
c614 556656 5452751 

35233 546832 5447698 
35207 546217 5447883 
c5202 546020 5448242 
35232 5467'98 5448500 

11 545409 5448592 
12 545467 5448864 
13 545324 5449190 
14 545697 5449313 
15 545736 5449516 
t6 545390 5450010 
17 545264 5450170 

C40106 
C40107 
C40108 
C40159 
C40160 
C40161 

564005 
563920 
563810 
53&200 
538020 
537620 

5470960 
5470945 
5470990 
5458000 
5457890 
5460185 

C40162 537575 5460280 
C40163 538440 5462630 
C40165 556800 5464280 
C40166 557300 5464805 
C4167A 557535 5465020 
C40168 557700 5465180 
C4169A 557755 5465220 
. 1698 557700 5465220 
C4167B 557588 5465020 
C4167C 557508 5465020 
C4169C 
C4169D 
C4170A 
C4170B 
C4170C 
C40171 
C40172 
C40173 
C40174 

557670 5465220 
557635 5465220 
557726 5465250 
557777 5465250 
557800 5465200 
557840 5465250 
557'900 5465375 
557990 5465315 
558215 5465850 

C40175 558490 5466300 
C4176A 558650 5466370 
C4176B 558610 5466370 
C40177 558690 5466490 
C40178 558900 5466980 
C40179 558890 5467200 
C40180 560010 5468250 
C4181A 560250 5468250 
C40181 560210 5468250 
C40182 560540 5469220 
C40183 560730 5469690 
C40184 560700 5469880 
C40185 560750 5469910 
C40186 560790 5469990 

EL304A 
EL3041 
EL305· 
EL306· 
EL307A 
EL3071 

552946 5469490 
552990 5469490 
554965 5470675 
554950 5473210 
555385 5475370 
555340 5475370 

EL308A 555765 5474400 
EL3088 555725 5474400 
EL309· 556190 547392~ 

EL310· 557585 54T.S970 
EL311· 558215 5473850 
EL312· 557555 5473620 
EL313· 557060 5472990 
EL314· 552745 5472380 
EL315· 552310 5471710 
EL316· 552215 5471820 
EL317· 
EL318· 
EL319A 
EL31:'tl 
EL320· 
EL321· 
EL322· 
EL323· 
EL324• 

552280 5471880 
548585 5470000 
547955 5471690 
547990 5471690 
548050 5471800 
548510 5472500 
550100 5473115 
550400 5473175 
550645 5473095 

EL325A 550755 5473395 
EL325B 5507'96 5473395 
EL325C 550710 5473395 
EL326• 551015 5473460 
EL327· 551345 5473660 
EL328A 551950 5472595 
EL3288 551996 5472595 
EL328C 551915 5472595 
EL329· 552005 5472560 
EL330· 546980 5472590 
EL331· 547020 5472600 
EL332· 547850 5471410 
EL333A 547590 5471095 
EL3338 547515 5471095 



APPENDIX 1: SPRINGDALE GROUP SAMPLE LOCATIONS. 

S111ple SIIIPle SMple 
NUIIber Eaatfnt Northing NUIIber Eaatfng Northing NU!Iber Eaatfng Northing 

.a 545048 5450161 C40187 5601::t0 5470120 EL334· 547490 5470910 
19 544865 5450888 C40188 560690 5470200 EL335• 547225 5470090 

a10 545001 5451053 C401a9 560700 5470280 EL336· 546545 5467395 ., 545204 5451112 C40190 560610 5470400 EL337A 546560 5467460 
a12 545420 5451286 C40191 560520 5470500 EL3378 546505 5467460 
a13 545578 5451547 C4192A 560495 5470700 EL338· 545980 5467930 
114 545786 5452046 C41928 560450 5470700 EL339A 546355 5468460 

35226 545930 5452179 C40193 557'930 5464790 EL339a 546390 5468460 
35227 545947 5452251 C40194 555520 5462390 EL340· 546745 5469030 
35228 546223 5452582 C40195 555450 5462350 EL341A 546990 5469260 
35229 547079 5451712 C40196 555450 5462290 EL341B 546945 5469260 
c5203 546961 5451388 C40197 555400 5462100 EL901A 548140 5478735 
35230 546890 5451248 C40198 555430 5461900 EL901B 548185 5478735 
35231 546796 5451078 C40199 555450 5461710 EL337C 5465H 5467460 
3520 542978 5450502 C40200 555450 5461590 EL373· 556730 5479280 

.. 3521 543056 5450484 C40201 555450 5461400 EL374A 554095 5480145 
c522 542895 5450450 C40202 555480 5461250 EL374B 554070 5480145 
3522 543754 5450829 C40203 5554!0 5461250 EL375· 554215 5479685 
3523 543733 5450923 C40204 555390 5461230 EL376· 555020 547'9680 
c523 543797 5450858 C40205 555390 5461230 EL377· 553930 547'9595 
3524 543867 5450871 C40206 555350 5461200 EL378A 554095 51.79690 
3526 543921 5450864 C40207 555300 5461090 EL3788 554066 547'9690 
3525 543926 5450804 C40208 564620 5474790 EL318C 554010 547'9690 
3527 544043 5450881 C40209 564885 5475400 EL379A 564495 547'9220 
3528 544135 5450961 C40210 564790 5475430 EL379B 564456 547'9220 
3529 544327 5451155 C40211 564960 5475720 EL37'9C 564410 547'9220 
3530 544502 5451332 C40212 565090 5475750 EL380· 565530 547'9485 
3533 544583 5451364 C40213 565010 5475690 EL381· 564530 547'9235 
3534 544961 5451444 C40214 565040 5475610 EL383· 563810 547'9195 
3535 545262 5451633 C40215 565000 5475500 EL384· 563815 5479320 

c4344 544775 5451318 C40216 564930 5475510 EL385· 563920 54m1o 
c4343 541642 5453260 CI,0217 5628?.0 5473090 EL386A 564066 5479625 
c4342 540698 5452873 C4~218 563'i;v 5474040 EL386B 564005 547'9625 
c4341 540168 5452302 C40219 ~~.500 5474060 EL387· 561695 5476590 
c4340 539554 5452982 C40220 563500 5474005 EL388· 561590 5476645 
c4340 539597 5453022 C4221A 563790 5474120 EL389A 562460 5476055 
c4339 538815 5454386 C4222A 562885 5473250 EL389a 562425 5476055 
c4338 538617 5453463 C4222B 562846 547.5300 EL390· 564890 5478445 
c4337 . 537837 5452770 C4222C 562810 5473310 EL391· 564810 5478480 



APPENDIX 1: SPRINGDALE GRCU' SAMPLE LOCATICIIIS • 

S1111ple S~~~ple . ..,,. 
NUIIIblr E11th'11 Northing NUIIIblr Elating Northing II Wilber Eaath'G llorthfng 

c4336 53n76 5452730 C40ZZ3 562950 5473370 EL392· 564690 5478505 
3634 543191 5433278 C40224 562930 5473405 EL393· 564615 5478500 
3639 544570 5430757 C4022S 562885 5473410 EL394· 562700 5478010 
3640 545110 5431614 C40226 562800 5473410 EL395· 5625ZO 5478010 
3641 545737 5429741 C40227 563115 54 7'!-.6.00 £1..396· 562425 5477780 
3642 545444 5428575 C40228 562720 5472920 EL397A 559625 5476380 
3635 545781 5433422 C40229 565510 5474630 EL397B 559555 5476500 
3636 545898 5433434 C40230 551350 5463500 EL398· 558885 5476025 
c625 546008 5433392 C4231A 551685 5464195 EL406· 562895 5476395 
3638 546234 5433146 C4232A 551695 5464110 EL407· 564300 54n60o 
3637 547489 5433983 C42328 551656 5464110 EL408· 564395 54 moo 
3633 549046 5435719 C4232C 551610 5464110 EL409· 564520 54n725 
]632 549401 5435888 C4231B 551605 5464195 EL410A 564565 54m10 
3631 552611 5440710 C4233A 551695 5464100 EL410B 564500 54m1o 

36301 553802 5442230 C4233B 551656 5464100 EL411· 563035 5476325 
3630b 553818 5442254 C4233C 551617' 5464100 EL412· 557480 5473415 
3630c 556979 5447272 C42330 551570 5464040 EL413· 558180 5473975 
3644 547581 5439671 C4234A 551895 5463625 EL414· 558695 5474200 
3545 547849 5440499 C4234B 551850 5463710 EL415· 564660 5478875 
3646 548260 5441350 C40235 5517'95 5463750 EL416· 559020 5476690 
3647 548827 5442050 C4236A 551765 5463850 EL417· 557350 51.80500 
3648 547995 5445394 C42368 551725 5463910 EL418A 557275 5480420 
3649 547706 5444140 C42237 551290 5462920 EL4188 557230 5480420 
3658 546558 5447907 C40238 551290 5462920 EL432· 554590 5478175 
3625 553226 5443911 C40239 551205 5471600 EL433· 554635 5480675 
3624 552306 5443954 C4240A 551055 5471505 EL434· 553395 5478495 
3623 551768 5444899 C42408 551016 5471505 EL435· 553825 5479000 
3627' 550616 5444812 C4240C 551090 5471505 EL436· 554555 5480490 
3629 550012 5449865 C40241 548790 5469850 EL437· 554375 5480330 
c623 550287 5449720 C40242 549100 5470490 EL438· 552795 5479020 

36281 550402 545027'1 C40243 549196 5470790 EL439· 552380 5478080 
3628b 550385 5450446 C40244 549205 5470905 EL440· 551430 54n995 
3618 558295 5448633 C40245 549350 5471300 EL441· 552315 5478115 
3619 557991 5449571 C4246A 549185 5471600 EL442· 551475 5477520 
3616 558549 5453077 C4246B 549205 5471115 EL443· 552200 54m3o 
3615 55804(' 5453384 C4247A 548755 5470380 EL444A 551885 5476110 
3614 558116 5453396 C4247B 548790 5470380 EL4448 551880 5476110 

36131 558131 5453865 C40248 548725 5471300 EL445· 552685 5476620 
3613b 558149 5453830 C4249A 548595 5471295 EL446· 554165 5480230 



SMple 
NUIIber 

3612 
3611 

3610• 
361Gb 
3620 
3621 
3622 
3650 
3651 
3652 
3653 
3654 

ds861 
ds861 
ds861 
ds861 
ds861 
3655 
3656 
3601 
3617 
c610 

3609• 
3609b 
3602 
3603 
3604 

3605• 
3605b 
3607 
3608 
3665 
c643 
3663 

Eeatfng Northfng 

558260 5455081 
559430 5454948 
560020 5455210 
560042 5455176 
554046 5452002 
552769 5451711 
553295 5450760 
549237 5451832 
551926 5454121 
551300 5454519 
550685 5453513 
551720 5455211 
546292 5452139 
546606 5452546 
546740 5452701 
547167 5452189 
547504 5452611 
552282 5455330 
551782 5455674 
557151 5456813 
558428 5459537 
559323 5455831 
559379 5455934 
559405 5455949 
561363 5459902 
561045 5460016 
560853 5460193 
560441 5460126 
560434 5460095 
560645 5459243 
561146 5459067 
543468 5417729 
541534 5476560 
541250 5476509 

3662 541140 5476496 
3661 541068 5476511 
3660 541070 5476444 
c642 541049 5476349 
3664 541217 5476417 

APPENDIX 1: SPRINGDALE GRCU SAMPLE LOCATIOIIS. 

SIIIPll 
Nllllber 

C42491 
C4249C 
C40250 
C40251 
C40252 
C4253A 
C42538 
Cl.0254 
C4255A 
C42558 
C40256 
1:40257 
C4258A 
C4258B 
C40259 
C40260 

. C40261 
C40262 
C40263 
C4264A 
C4264B 
C40265 
C40266 
C4267A 
C4267B 
C40268 
C402f4 
C40270 
C4271A 
C4271B 
C4212A 
C4272B 
C4273A 
C4273B 

Eaatfng Northfng 

548630 5471350 
548650 5471400 
560905 5464670 
560175 5464170 
560700 5464165 
560240 5464385 
560285 5464385 
560195 5464380 
559755 5464280 
559710 5464280 
559565 5465200 
559365 5465030 
559280 5465020 
559250 5464960 
561080 5466905 
561090 5466710 
560700 5466550 
560190 5466270 
560120 5466190 
559935 5466120 
539980 5466020 
559765 5465855 
559945 5465765 
560470 5465355 
560425 5465395 
560470 5465300 
560400 5465100 
559195 5465690 
559230 5465165 
559250 5465205 
558930 5465585 
558960 5465545 
558540 5465000 
558515 5465035 

C4275X 559220 5464225 
C40275 559295 5464185 
C40276 557915 5464895 
C40277 558100 5464935 
C40271 557050 5464345 

EL447A 
EL4471 
EL448· 
EL457· 
EL458· 
EL459A 
EL4598 
EL459C 
EL469A 
EL4698 
EL470· 
G4043· 
G4044A 
G4044B 
G4045· 
G4046A 
G4046B 
G4047· 
G4048· 
G4049· 
G4050· 
G4051· 
G4052· 
G4053· 
G4054A 
G40548 
G4055A 
G4055B 
G4056· 
G4033· 
G4034· 
G4035· 
G4036· 
G4040· 

Eaatfng Northfng 

553855 5480030 
553800 5480030 
554725 5480500 
562950 5418810 
562750 5478650 
552590 5469380 
552545 5469380 
552515 5469290 
541155 5467520 
541190 5467520 
555450 5470950 
554425 5480820 
554705 5480860 
554750 5480860 
553740 5480130 
553855 5480135 
553890 5480135 
555680 5480595 
562745 5402625 
5~2790 5480325 
561250 5476005 
560730 5476550 
560720 5476600 
560705 5476920 
560775 5477530 
560700 5477530 
560664 5477810 
560620 5477810 
559500 5478640 
560320 5480795 
562695 5479720 
561990 5480380 
561690 5480530 
565960 5480510 

G4041A 566750 5481295 
G40418 5667'95 5481295 
G4042A 566665 5480390 
G40428 566690 5480390 
G4021· 567210 5481710 



APPENDIX 1: SPRINGDALE GROUP SAMPLE LOCATIONS. 

S•l• SMple SMPl• 
N~r Eaating Northing Nlll'ber Euting Northing NUIIbar Eaatfng Northing 

c640e 561199 5479886 C427'9A 557715 5463990 G4022- 567400 5481995 

c640b 561628 547'9823 C427'91 557775 5464015 G4024- 567185 5481725 
c640c 561602 547'9949 C4279C 557835 5464045 G4025· 567045 5481895 
c640d 561864 5480043 C4274A 559770 5466695 G4026· 567415 5482820 
c640e 562003 5480226 C42741 559125 5466695 G4029- 560990 5411060 
c640f 562097 5480309 C4274C 559690 ~466630 G4030· 560920 5477220 
c641a 562258 5480503 C4273C 558470 5465005 G4031- 560805 5477600 
c641b 562380 54a0635 C40266 559885 5465615 G4032- 560260 5479320 
c641c 562621 5480802 C4280A 557585 5463290 G4011- 567470 5482430 
c641d 562185 5480646 C42808 557530 5463260 G4012- 567650 5482l00 
c641e 562058 5480481 C4280C 557495 5463230 G4013- 567690 5482330 
c641f 561158 5480311 C40281 550815 5474410 G4014- 567325 5482560 

C4002B 567435 5482580 C40282 550885 5474460 G4015- 567325 5482500 
C4002A 567410 5482580 C40283 550915 5474495 G4016· 567695 5482190 
C4002D 567390 5482580 C40284 562980 5469690 G4017- 567690 5482130 
C4003A 559955 5480590 C40285 563205 5469805 G4018- 567615 5482185 
C40038 559920 5480590 C40286 563100 5469405 G4019· 567685 5481980 
C4004A 559985 5480720 C40287 562880 5469560 G4020· 567550 5481815 
C40048 559960 5480720 C40~88 562810 5469005 G4001- 565850 5479600 
C4005A 555905 5480650 C40289 562775 5468830 DM0066 546230 5412195 
C4006· 563730 547'9020 C40290 563405 5468810 DM0068 546100 5471435 
C4007A 565665 5479480 C40291 564620 5473090 DM0069 545620 5469305 
C4007B 565690 5479480 C4292A 549130 547Z030 DM0070 547005 5472875 
C4008· 565520 547'9090 C4292B 549280 5472075 DM0073 558595 5456820 
C4009· 565560 5479230 C4292C 549360 5472070 DM0076 558550 5455595 
C4010· 565930 547'9720 C40Z93 549500 5472275 DM0042 551890 5463450 
C4011· 564890 5475240 C40294 549505 5472085 DM0043 551850 5463400 
C4012· 564950 5475340 C4295A 548645 5471450 DM0045 551710 5463300 
C4013A 553915 5474080 C42958 548120 5471540 DM0046 551665 5463220 
C4013B 553950 5474080 C40296 548730 5471740 DM0047 551530 5462535 
C4014· 550600 5468720 C40297 548415 5470950 DM049A 551255 5462595 
C4015A 551545 5464740 C40298 548340 5471195 DM0498 551290 5462595 
C40158 551520 5464740 C40299 548255 5471150 DM0051 551210 5462360 
c4u16A 551565 5463470 C40300 548300 5471285 DM0053 551150 5462205 
C40168 551540 5463470 C40301 548205 5471205 DM0054 564260 5472760 
C4016C 551515 5463470 C40302 548125 5471150 DM0055 564335 5472550 
C40160 551500 5463470 C40303 562810 5464515 DM0057 564270 5472220 
C4016E 551580 5463475 C40304 561475 5460640 DM058A 564180 5472080 
C4016F 551470 5463480 C4305A 558580 5459500 DM0059 564020 5471150 



APPENr•IX 1: SPRINGDALE GRU SAMPLE LOCATIONS. 

~l· SMple SMple 
Nwt.r E11tfng Northfng NUIIber E11tfng Northfng Nllllber Eeating Northfng 

C4017· 562095 5464110 C43051 558640 5459490 DM0060 564095 5471750 
C4018• 562620 5465660 C4305C 558610 5459425 DM0061 564580 5471395 
C4019• 564096 5474525 C40306 558260 5459280 DM0062 564695 5472010 
C4020A 550865 541'8560 C40307 558275 5459250 DH063A 546540 5472890 
C40201 550840 5478560 C40308 558400 5459100 DM0064 5l ~900 5472170 
C4020C 550815 5478560 C40309 558295 5458875 DM0065 546500 547220(1 
C4021A 548725 5478750 C40310 558000 5458780 
C4021B 548700 5478750 C40311 558350 5458580 

.. 



APPENDIX C 

ANALYTICAL PROCEDURES 

FOR MAJOR AND 

TRACE ELEMENTS 

(AA, XRF, ICP-MS) 
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APPENDIX C 

Aanalytical Procedures for Major and Trace Elements. 

Samples for analysis were chosen to exclude as much 

as possible any secondary material such as weathering, 

alteration, veins, amygdales, lithic clasts (in ash-flow 

tuffs), etc. These samples were crushe•.:". into chips and then 

pulverized for 2-3 minutes using a tungsten carbide puck 

mill to produce a powder of approximately -100 mesh. 

Major elements, except for phosphorous, were 

determined on a Perkin-Elmer Model 370 atomic absorption 

spectrometer with digital readout, by G. Andrews in the 

Memorial University Department of Earth Sciences, using her 

well-established methods based on those described by 

Lanqmhyr and Paus (1968). Phosphorus was determined 

colorimetrically using a Bausch and Lomb Spectronic 20 

Colorimeter, based on a modification of the method 

described by Shapiro and Brannock (1962). Loss on ignition 

was determined by weighing approximately one gram of the 

powdered sample into a porcelain crucible and heating it to 

approximately 1000°c for about 90 minutes to volatilize 

s, co2 , H2o etc. Analytical errors are estimated at <5% 

for all major elements except MnO, MgO, LOI (<8%), and 

Tio2 and P2o5 (<20%). 



C2 

Most trace elements (Pb, U, Th,Rb, Sr, Y, Zr, Nb, 

Ga, Zn, cu, Ni, La, Ti, Ba, v, Ce, Cr) were determined 

usinq a Phillips 1450 X-Ray fluorescence (XRF) spectrometer 

with a rhodium tube. Sample pellets for trace element 

ana1ysis were made by mixing 10 q of powdered sample with 

approximately 1.5 q of bakelite bindinq resin, compressinq 

the mixture and bakinq the resulting pellet for ten minutes 

at 200°c. samples were run in batches of nine with 

u.s.G.S. standard W-1 run as a tenth sample. A monitor 

saturated with trace elements was used to calibrate the 

machine against standar~ v~lues and correct for instrument 

drift. Precision (2-sigma) is within 10% for most of these 

trace elements, increasing to higher percentages for those 

in very low concentrations of about 10 ppm or less. 

Most of the above trace elements, as well as the 

rare earths and sc, Bi, w, Mo, cs, Li, Ta, and Hf were 

determined by Drs. H. Longerich and s. Jackson with 

inductively coupled plasma - mass spectrometry (ICP-MS) 

using the following procedures. A standard HF/HN03 

digestion of a 0.1 g sample aliquot: analysis of the 

solution by inductively coupled plasma mass spectrometry 

(ICP-MS) using the method of standard addition to correct 

for matrix effects. Any sample material that did not 

dissolve in HF/HN03 was attacked with HC1/HN03. Any 

samples that did not dissolve fully even after multi-acid 

attach (usually due to presence of graphite, sulphides, 



C3 

cl.aromite etc.) and required filtering of insoluble residue 

prior to analysis are indicated (none for this study). 

Zircon may not always dissolve completely so that Zr and Hf 

values from ICP-MS should be considered minimum 

concentrations. The W data are also invalid beacuse the 

samples were crushed using tungsten carbide-lined 

equipment. 

A reagent blank (RBK) and a sample of the CANMET 

geological reference standard SY-2 (syenite) were prepared 

and analysed with the Famples. Reagent contamination is 

insignificant and reagent blank concentrations were not 

subtracted from sample concentrations. One or more of the 

sample solutions were analysed in duplicate (DUP) in each 

analytical run (18 solutions) and no significant 

differences were detected. sample detection limits were at 

the ppb level for all alements except Li which was less 

than 2 ppm. All determinations for standard SY-2 were 

within <5% of the accepted values (complied from 

Govindaraju, 1984, Geostandards Newsletter (Special Issue), 

a, 3, except for the REE data from Doherty and Vander Voet, 

1985, CJS, 30, 135) and the average values (23 runs) 

determined in our laboratory (SY-2 MUN). 



APPENDIX D 

.. 
ANALYTICAL DATA 

FOR ROCKS OF 

THE SPRINGDALE 

GROUP 



hllple.._ C4•187 DS•20 HS·3a HS•4a HS·57A HS·63 HS•71 HS·109 HS•112 HS·114 

... Nulibet' 54 64 55 55 52 58 58 61 65 " Si02 46.20 44.30 49.10 50.70 47.60 49.20 50.70 48.30 47.80 51.20 
Tf02 1.71 1.40 1.40 1.44 1.52 1.42 1.44 1.21 1.22 1.22 
Al203 14.70 16.50 16.00 15.50 16.~0 15.60 15.70 15.10 16.00 15.90 
Fe203 1.50 1.58 1.53 1.50 1.62 1.42 1.43 1.49 1.36 1.37 
FeO 7.66 8.05 7.82 7.63 8.26 7.24 7.54 7.59 6.94 6.97 
MnO 0.19 o. 17 0.11 0. 24 0. 15 0.14 0. 15 0.15 0.11 0.11 
MgO 5.88 9.65 6.37 6.24 5.88 6.61 6.90 8.51 8.46 5.81 
CaO 7.92 8.64 10.00 9.14 7.36 7.54 8.28 8.98 8.94 9.80 
Na20 3.67 2.20 2.63 3.15 3.97 3.62 3.31 2.58 2.67 2.80 
IC20 0.42 0.69 0.31 0.68 1.17 0.98 0.74 0.49 0.30 0.36 
P205 0.33 0.20 0.24 0.35 0.28 0.23 0.24 0.15 0.20 0. 18 
LOI 8.55 3.45 2.74 2.03 4.04 3.97 1.28 3.29 3.36 1.66 

Cr 165 184 116 128 144 141 138 251 181 147 
Nf 77 141 90 68 77 77 74 84 104 92 
Sc 0 0 0 0 0 0 0 0 0 0 
v 21.~ 235 197 207 197 197 168 202 181 198 
C&.: 23 106 63 308 8 7 42 32 22 46 
Pb 16 1 2 28 0 16 3 0 13 !i 
Zn 65 102 53 61 68 69 53 54 61 51, 
Bf 0 0 0 0 0 0 0 0 0 0 
~ 0 0 0 0 0 0 0 0 0 0 
Mo 0 0 0 0 0 0 0 0 0 0 
K 0 5n7 0 0 0 0 0 0 0 0 
Rb 8 53 0 12 13 18 18 7 11 0 
Cs 0 0 0 0 0 0 0 0 0 0 
Ba 179 162 158 247 354 356 229 199 264 220 
Sr 258 273 394 327 418 425 373 216 351 411 
Tl 0 0 0 0 0 0 0 0 0 0 
Ga 16 16 14 16 12 13 17 10 14 14 
Li 0 0 0 0 0 0 0 0 0 0 
Ta 0 0 0 0 0 0 0 0 0 0 
Nb 11 7 9 8 9 8 a 6 8 10 
Hf 0 0 0 0 0 0 0 0 0 0 
Zr .153 105 123 139 126 127 127 87 110 101 
Tf 2 8393 1 1 1 1 1 1 1 1 
y 42 30 38 47 41 41 33 35 36 34 
Th 16 0 10 2 0 10 0 4 13 11 
u 19 0 6 11 0 0 3 29 12 10 
~a 27.00 13.00 12.00 28.00 16,00 7.00 14.00 22.00 20.00 16.00 
Ce 29.00 32.00 43.00 2.00 34.00 38.00 o.oo 21.00 24.00 26. 00 
Pr o.oo 5.00 0.00 0.00 0.00 0.00 o.oo 0.00 0.00 0.00 
Nd 0.00 21.20 0.00 0.00 o.oo o.oo 0.00 0.00 0.00 o.oo 
Sm o.oo 5.00 o.oo o.oo o.oo o.oo o.oo o.oo o.oo o.oo 
Eu o.oo 1.60 o.oo 0.00 0.00 o.oo o.oo o.oo 0.00 o.oo 
Gd o.oo 6.00 o.oo o.oo o.oo 0.00 o.oo o.oo o.oo o.oo 
Tb o.oo 1.40 o.oo 0.00 o.oo o.oo o.oo 0.00 o.oo o.oo 
Dy 0.00 7.50 o.oo o.oo 0.00 o.oo 0.00 0.00 o.oo 0.00 
Ho 0.00 1.80 o.oo 0.00 o.oo 0.00 o.oo o.oo 0.00 o.oo 
Er o.oo 3.80 0.00 o.oo o.oo 0.00 o.oo o.oo o.oo 0.00 
Tm 0.00 51.00 o.oo 0.00 o.oo o.oo o.oo o.oo 0.00 o.oo 
Yb o.oo 3.50 0.00 0.00 0.00 o.oo 0.00 o.oo 0.00 0.00 
lu o.oo 0.70 o.oo o.oo o.oo 0.00 o.oo n.oo 0.00 0.00 
Be 0.00 0.00 0. 00 0.00 0.00 0.00 o.oo 0.00 0.00 0.00 



. ...,, . .,_ C4•179 C4·189 C4·190 HS-41 D$•84•7 DS-14•9 C4•279A C4•2191 C4•310 C42771 

"' ...... ,. 60 54 61 57 62 61 55 40 25 42 
1102 51.50 41.30 46.80 49.30 41.00 41.00 46.70 52.90 51.20 47.70 
U02 , .24 1.52 1.47 1.35 1.51 1.69 1.29 2.06 1.13 3.73 
Al203 16.50 15.60 16.20 15.50 16.30 15.00 16.30 13.90 13.70 13.10 
Fe203 1.27 1.49 1.53 1.37 1.43 1.37 1.53 1.67 2.15 2.22 
FlO 6.47 7.59 7.80 7.00 7.27 6.97 7.82 8.51 10.94 11.34 
MnO o. 19 o. 14 0.17 o. 17 o. 13 o. 17 0. 13 0. 14 0.12 0.26 
Ms~ 6.42 5.91 8.03 6.09 7.93 9.59 6.25 3.76 2.36 5.34 
CliO 6.26 10·.48 8.10 9.80 6,32 5.70 9.54 5.14 5.56 9.08 
Ntt20 3.59 2.80 3.21 2. 71 3.63 3.22 2.48 5.18 3.19 2.51 
ICi!O 0.92 0.61 0.38 0.38 0.36 0.28 0.08 0.29 1.78 0.35 
P:!05 0.17 0.26 0.24 0.23 0.42 0.45 0. 15 0.25 0.24 1.02 
LOI 3.35 3.60 3.48 3.43 4.28 5.31 5.90 4.3~ 5.78 2.14 

Cr 200 242 D 105 319 265 159 41 35 49 
Nl 1 121 D 44 176 150 100 0 0 19 
Sc 0 0 0 0 0 0 0 31 0 53 
v 250 227 D 199 201 213 zoo 348 348 358 
C:u 9 61 0 25 47 0 37 16 0 0 
Pb 0 2 0 9 0 13 0 6 7 5 
;~n 75 69 0 63 69 75 66 81 101 86 
Ill 0 0 0 0 0 0 0 0 0 0 ,, 0 0 0 0 0 0 0 25 0 1 
Mb 0 0 0 0 0 0 0 1 0 2 
I( 0 0 0 0 0 0 0 2407 0 2905 
Rb 19 9 0 9 7 6 0 7 45 5 
Cs 0 0 0 0 0 0 0 1 0 0 
Be 692 229 0 256 409 360 78 146 430 J;;) 

Sr 575 464 0 467 817 764 313 536 18ft 393 
Tl 0 0 0 0 0 0 0 0 0 0 
Ga 17 16 0 20 20 17 32 25 22 18 
Li 0 0 0 0 0 0 0 21 0 3l 
Ta 0 0 0 0 0 0 0 1 0 1 
Nb 7 11 0 12 18 15 6 31 10 16 
Hf 0 0 0 0 I) 0 0 5 0 7 
Zr 114 137 0 128 209 219 115 195 185 315 
Tl 1 1 0 1 2 2 1 12349 2 22361 
y 37 40 0 31 46 47 32 39 41 64 
Th 0 6 0 12 3 28 0 3 1 2 
u 3 13 0 18 a 6 2 1 0 1 
La 24.00 33.00 0.00 27.00 36.00 39.00 o.oo 17.05 0.00 23.64 
Ce 54.00 42.00 0.00 44.00 36.00 12.00 6.00 41.05 44.00 57.38 
Pr 0.00 o.oo o.oo o.oo o.oo o.oo 0.00 5.49 0.00 8.26 
Nd o.oo o.oo 0.00 o.oo 0.00 o.oo 0.00 23.88 o.oo 37.31 
Sm o.oo o.oo o.oo o.oo o.oo o.oo o.oo 5.97 o.oo 9.53 
Eu 0.00 o.oo 0.00 0.00 o.oo o.oo o.oo 1.91 o.oo 3.58 
Gd o.oo 0.00 o.oo o.oo o.oo o.oo o.ao 5.88 o.oo 10.13 
Tb o.oo 0.00 0.00 0.00 o.oo o.oo o.oo 1.07 o.oo 1.66 
Dy o.oo 0.00 o.oo o.oo 0.00 o.oo 0.00 6.82 o.oo 9.7'8 
Ho o.oo 0.00 0.00 0.00 0.00 0.00 o.oo 1.38 0.00 1.95 
Er o.oo o.oo 0.00 0.00 o.oo 0.00 o.oo 3.96 o.oo 5.53 
Til o.oo o.oo o.oo o.oo 0.00 o.oo o.oo 0.57 0.00 0.75 
Yb 0.00 0.00 0.00 o.oo o.oo 0.00 o.oo 3.60 o.oo 4.59 
Lu o.oo o.oo 0.00 o.oo 0.00 o.oo 0.00 0.53 o.oo 0.70 
ae o.oo o.oo 0.00 o.oo o.oo 0.00 o.oo 1.40 0.00 1.58 



Sllple N .. HS71 H$941 HS1051 C4003I C4004A C40071 C4001 C4009 C4010 C4106 

Mg NUIIber 53 56 61 59 65 51 54 52 63 56 
SIOZ 51.10 51.80 "·30 46.60 44.50 44.50 47.50 47.10 42.90 49.90 
TIOZ 1.50 1.20 1.40 1.71 1.60 1.96 2.16 1.93 1.77 1.20 
Al203 16.10 15.80 16.90 16.30 14.80 15.40 16.00 13.30 16.80 15.70 
Ft203 1.58 1.43 1.61 1.59 1.78 1.73 1.88 1.82 1.37 1.26 
flO 8.05 7.29 8.21 8.13 9.09 8.84 9.56 9.29 6.99 6.45 
MnO 0.15 0.25 0.16 0.16 0.17 0.15 0.13 0.17 0.19 0.11 
MgO 6.08 6.25 8.36 7.63 11.21 6.15 7.52 6.56 1.76 5.41 
cao 8.80 7.54 7.72 8.28 7.22 9.12 6.26 9.58 8.78 11.36 
Na20 3.27 4.13 3.14 3.31 2.44 3.58 3.52 2.n 4.00 3.22 
K20 0.75 1. 74 0.12 0.45 0.89 0.48 0.38 0.19 0.43 0.18 
P205 0.22 0.19 0.22 0.27 0.20 0.33 0.26 0.34 0.29 0.24 
LOI 1.82 2.02 4.15 4.57 5.70 6.68 4.04 2.87 7.34 3.23 

Cr 138 94 84 200 213 193 148 225 224 180 
Nf 74 31 91 147 189 62 90 93 105 71 
Sc a 25 0 0 0 0 0 0 0 0 
v 168 202 210 218 236 236 275 247 225 183 
Cu 42 13 22 49 42 2l 27 21 47 36 
Pb 3 4 2 0 0 10 0 3 0 3 
Zn 53 167 70 78 90 az 86 90 19 66 
at 0 0 0 0 0 0 0 0 0 0 
\1 0 7 0 0 0 0 0 0 0 0 
Mo' a 2 0 a 0 0 0 0 0 0 
IC 0 14443 0 a 0 0 0 0 0 0 
Rb 18 103 3 1 11 9 1 1 5 3 
cs 0 3 0 0 (1 0 0 0 0 0 
Ba 229 292 113 281 500 311 342 230 329 109 
Sr 373 294 295 415 44a 592 318 430 403 241 
Tl a 0 0 0 0 0 0 0 0 0 
Ga 17 16 17 17 15 16 17 17 16 35 
Lf a 93 0 0 0 0 0 0 0 0 
Ta 0 0 0 0 0 0 0 0 0 0 
Nb 8 5 1 1a 9 12 9 10 10 9 
Hf 0 3 0 0 0 0 0 0 0 0 
Zr 127 91 124 128 110 156 161 163 155 152 
·TI 1 7194 1 1 2 2 2 2 2 1 
y 33 24 32 28 29 33 34 34 31 33 
Th a 2 0 0 0 3 2 0 0 0 
u 3 1 0 3 0 0 0 0 0 0 
La 14.0a 12.36 o.oo 5.00 0.00 42.00 o.oo 13.00 10.oa o.oo 
Ce o.oa 28.52 0.00 13.0a 0.00 27.00 49.00 0.00 0.00 27.00 
Pr o.oa 3.72 0.00 0.00 0.00 0.00 0.00 0.00 o.oo o.oo 
Nd o.oa 15.95 0.00 o.oo 0.00 o.oo 0.00 0.00 0.00 0.00 
Sill 0.00 4.02 o.oo 0.00 o.oo o.oo o.oo o.oo 0.00 o.oo 
Eu 0.00 1.32 o.oo 0.00 0.00 o.oo 0.00 0.00 0.00 0.00 
Gd o.oo 4.41 o.oo 0.00 o.oo 0.00 o.oo o.oo o.oo o.oo 
Tb 0.00 0.76 0.00 o.oo o.oo 0.00 u.oo o.oo 0.00 0.00 
Dy o.oo 4.78 o.oo o.oo o.oo 0.00 o.oo 0.00 0.00 0.00 
Ho o.oo 0.96 0.00 o.oo o.oo o.oo 0.00 o.oo 0.00 o.oo 
Er o.oo 2.92 0.00 o.oo 0.00 o.oo 0.00 0.00 0.00 o.oo 
Til o.oa 0.41 o.oo o.oo 0.00 o.oo o.oo o.oo o.oo o.oo 
Yb 0.00 2.69 0.00 o.oo o.oo o.oo o.oo o.oo o.oo 0.00 
Lu o.oa 0.36 O.ilO 0.00 0.00 0.00 o.oo 0.00 0.00 o.oa 
Be a.oo 0.73 0.00 0.00 0.00 0.00 0.00 0.00 o.oo 0.00 



s.ple ~- C41071 ELl14 3·6350 3·6·31 3·6·60 3·6·5A 3·6·7 3·6·U 3·6·26 3·630A 

MINultler 5I 41 76 61 5I 56 67 59 50 47 
1102 50.80 50.7'0 44.60 52.90 . 47.20 Sl.ZO 51.90 49.30 50.80 45.30 
TI02 1.32 1.41 1.08 , .12 1.n 1.zo 1.00 1.04 z.oo 1.52 
Al203 16.10 15.50 12.20 17.00 15.50 15.20 15.70 15.20 14.20 15.40 
f'e203 1.42 1. 7'9 1.61 1.22 1.76 1.36 1.10 1.13 1. 72 1.55 
FeO 7.23 9.15 a.z1 6.23 a.97 6.95 5.63 5.78 a.7'9 7.92 
MnO o. 12 o. 16 0.17 o. 14 o. 19 0.13 0.14 o. 14 o. 19 0.22 
HgO 6.67 5.58 17.00 6.47 8.32 5.78 7.46 5.52 5.83 4.68 
CaO 6.76 a.80 a . 18 9.26 12.0a 1.06 6.70 10.40 6.62 . 11 . 16 
Na20 5.04 3.13 1. 10 2.98 2.37 3.7'9 3.01 2.16 3.88 3.80 
IC20 0.32 0.69 0.26 0.41 0.10 1. 13 0.74 0.19 1.11 1.35 
P205 0.25 0.23 0.19 0.19 0.1a 0.17 0.15 0.28 0.48 0.34 
LOI 3.33 2.42 5.31 0.91 0.65 1.38 4.44 8.05 2.61 5.27 

Cr 140 231 676 83 210 68 120 160 83 238 
Nl 90 n 462 13 51 21 125 102 22 98 
Sc 0 0 0 16 35 23 0 0 29 0 
v 222 214 17'9 184 267 201 171 173 249 221 
cu 34 24 30 6 15 5 4 45 21 27 
Pb 0 2 0 5 2 6 0 3 5 0 
Zn 71 69 59 (,2 70 65 67 57 90 100 
If 0 0 0 0 0 0 0 0 0 0 
w 0 0 0 109 131 90 0 0 109 0 
Mo 0 0 0 . 1 1 1 0 0 1 0 
IC 0 0 0 3403 830 9380 0 0 9214 0 
Ab a 14 9 11 1 33 17 3 24 43 
Cs 0 0 0 , 0 2 0 0 3 0 
Ia 146 230 114 136 29 388 510 203 516 452 
Sr 511 324 145 350 229 304 408 404 361 489 
Tl 0 0 0 0 0 0 0 0 0 0 
Ga 14 15 7 16 12 15 14 15 16 12 
Lf 0 0 0 5 3 26 0 0 12 0 
Ta 0 0 0 1 1 1 0 0 1 0 
Nb a 12 8 6 4 5 a 11 17 11 
Hf 0 0 0 3 2 4 0 0 7 0 
Zr 141 133 86 100 50 102 140 232 260 155 
Tl 1 1 1 6714 10311 7194 1 ' 11990 1 
y 31 42 25 17 26 26 Z9 Z9 37 33 
Th 0 0 0 2 0 3 2 0 3 0 
u 0 2 0 1 0 1 0 0 1 0 
La 13.00 36.00 o.oo 11.95 5.89 12.69 0.00 10.00 25.29 1.00 
Ce 20.00 o.oo 47.00 26.32 16.78 29.41 67.00 12.00 58.42 46.00 
Pr o.oo o.oo 0.00 3.40 2.57 3.85 o.oo o.oo 7.84 o.oo 
Nd 0.00 0.00 o. oo 13.94 12.97 16.73 o.oo o.oo 33.99 o.oo 
Sill 0.00 0.00 0.00 3.25 3.93 4.26 o.oo o.oo 7.72 o.oo 
Eu 0.00 0.00 o.oo 1.05 1.40 1.12 o.oo o.oo 2.14 o.oo 
Gd 0.00 o.oo o.oo 3.15 4.45 4.57 0.00 0.00 7.57 o.oo 
Tb 0.00 0.00 o.oo 0.54 o.a5 0.79 o.oo o.oo 1.30 o.oo 
Dy 0.00 o.oo o. oo 3.36 5.Z9 4.92 o.oo 0.00 7.90 o.oo 
Ho o.oo o.oo o.oo 0.69 1.08 1.01 0.00 o.oo 1.57 o.oo 
Er 0.00 o.oo 0. 00 1.98 3.03 3. 12 0.00 0.00 4.48 0.00 
T• 0.00 o.oo 0.00 0.28 0.42 0.45 0.00 0.00 0.62 o.oo 
Yb 0.00 0.00 0.00 1.89 2.65 3.02 o.oo o.oo 4.01 o.oo 
Lu o.oo o.oo 0.00 0.27 0.37 0.44 0.00 0.00 0.61 0.00 
Be o.oo 0.00 0.00 0.02 0.84 1. 30 o.oo 0.00 0.31 o.oo 



Sallple N- 3·6351 3•63SC C4•100 C4•102 C4•166 C4•167A C4•1761 C4•194 C4•201 C4•Z17 

Mt NUIItler 49 " 36 33 4Z 42 33 43 45 sz 
SIOZ 53.60 48.00 61.10 66.40 60.40 57.10 66.80 51.7'0 62.00 59.7'0 
TIOZ 1.76 1.84 o.ao 0.54 1.06 1.40 0.26 1.43 o.ez 0.84 
Al203 15.90 15.80 17.10 15.50 16.50 14.30 14.00 14.7'0 15.00 15.40 
Fe203 1.53 1.62 o.n 0.52 0. 85 1.18 0.35 1.27 0.82 0.96 
FeO 7.79 8.28 3.67 2.63 4.34 6.00 , .78 6.47 4.17 4.91 
MnO 0.16 o. 18 0.07 0.05 o. 14 0.15 0.11 0.16 0.09 0.11 
MgO 4.90 6.86 1.34 0.87 2.09 2.81 0.58 3.26 2.27 3.47 
cao 4.82 8.20 4.52 3.48 3.10 5.30 4.78 4.08 4.22 5.30 
Na20 4.75 3.76 6.15 5.33 4.61 3.95 1.84 4.62 4.74 4.32 
IC20 0.16 o.ss 1.60 2.21 2.35 1.63 1.98 1.86 2.01 1.67 
P205 0.40 0.31 o. 15 0.12 0.22 0.32 0.06 0.33 o. 18 o. 15 
LOI 3.33 3.00 2.36 1.66 3.67 5.21 6.72 1.98 1.94 2.30 

Cr 11 47 57 20 16 22 25 13 32 85 
Nf 0 43 ,, 0 5 0 0 1 0 3a 
sc 0 28 0 0 0 0 0 0 0 0 
v 3 234 127 8J 110 214 72 213 112 134 
Cu 7 17 7 3 0 4 6 1 2 37 
Pb 16 5 18 9 11 11 16 6 25 16 
Zn 89 so 21 27 89 79 25 100 51 6l 
Bf 0 0 0 0 0 0 0 0 0 0 

"' · 0 55 0 0 0 0 0 0 0 0 
Mo 0 1 0 0 0 0 0 0 0 0 
IC 0 4565 0 0 0 0 0 0 0 0 
Rb 4 18 47 34 71 40 34 l8 50 37 
Cs 0 1 0 0 0 0 0 0 0 0 
Ba 88 177 306 977 472 392 326 475 410 737 
Sr 303 452 621 453 278 119 79 478 426 403 
Tl 0 0 0 0 0 0 0 0 0 0 
Ga 18 12 14 15 20 12 14 14 15 14 
Lf 0 17 0 0 0 0 0 0 0 0 

·Ta 0 1 0 0 0 0 0 0 0 0 
Nb 10 6 6 10 9 11 7 9 12 7 
Hf 0 4 0 0 0 0 0 0 0 0 
Zr 197 133 107 139 193 162 87 191 153 122 
Tf 2 11030 1 1 1 1 0 2 1 1 ., 44 30 24 ]1 58 53 26 50 41 32 
Th 0 1 12 14 17 14 16 12 19 25 
u 0 0 1$ l 2 a tO 2 5 16 
La 5.00 12. 7'9 4, 0 J 11.00 34. 00 36.00 26.00 22.00 14.00 10.00 
Ce 70.00 30.78 a.oo sa.oo 89.00 38.00 34.00 39.00 35.00 40.00 
Pr 0.00 4.24 0.00 0.00 o.oo o.oo 0.00 0.00 o.oo 0.00 
Nd o.oo 18.66 o.oo o.oo 0.00 o.ao o.oo o.oo 0.00 o.oo 
Sm 0.00 4.87 a.oo o.oo 0.00 0.00 0.00 0.00 0.00 0.00 
Eu 0.00 1.72 o.oo o.oo 0.00 o.oo 0.00 0.00 0.00 0.00 
Gd o.oo 4.94 0.00 o.oa 0.00 0.00 0.00 0.00 o.oo o.oo 
Tb o.oo 0.87 o.oo o.oo 0.00 0.00 o.oo o.oo o.oo o.oo 
Dy 0.00 5. 18 0.00 0.00 o.oo 0.00 o.oo o.oo 0.00 o.oo 
HO 0.00 t .oa o.oo o.oo 0.00 0. 00 0.00 0.00 o.oo o.oo 
Er o.oo 3.03 0.00 o.oo o.oo 0. 00 0.00 0.00 o.oo o.oo 
T• o.oo 0.44 0.00 0.00 0.00 o.oo o.oo 0.00 0.00 o.oo 
Tb o.oo 2.73 o.oo 0.00 o.oo 0.00 o.oo o.oo o.oo o.oo 
Lu 0.00 0.40 o.oo 0.00 o.oo o.oa 0.00 o.oo 0.00 o.oo 
Be o.oo 1.23 o.oo o.oo o.oo o.oo 0.00 o.oo o.oo o.oo 



....,, ... _ C4•66 C4·61 C4·76 C4·811 C4•88C C4·91 C4·99 C4·101 C4·167C C4·2S3A 

Ml IIUiber 47 42 S4 57 32 55 61 59 41 49 
SIOZ 63.50 66.60 63.40 61.00 66.80 56.40 65.60 61.60 60.10 60.90 
TfOZ 0.74 0.50 0.59 0.84 0.44 0.86 0.64 0.52 1.51 0.30 
Al203 15.80 14.50 14.80 15.80 14.80 16.80 13.50 15.70 15.50 14.70 
Ft203 0.73 0.58 0.68 0.86 0.62 0.97 0.67 0.76 1.12 0.54 
FtO 3.72 2.95 3.46 4.37 3.14 4.96 3.40 3.89 5.69 2.74 
NnQ 0.06 0.06 o.oa o. 14 0.09 o. 10 0.09 o.oa 0.12 o. 15 
MgO 2.17 1.39 2.67 3.76 0.97 4.03 3.50 3.63 2.60 1.76 
cao 1.22 4.40 3.36 4.64 1.54 3.26 3.96 2.00 3.40 3.90 
Na20 5.48 4.22 3.74 3.85 5.30 6.92 3.13 5.70 5.56 6.42 
IC20 3.33 1.34 2.87 1.31 1.40 0.78 0.95 1.18 1.60 0.91 
P205 0.25 0.14 0. 17 0.22 0.20 o. 19 0.14 0.15 0.34 a. 11 
LOI 2.13 2.13 2.2.3 2.83 2. 59 2. 71 3.29 3.16 1 .7'9 5.99 

Cr 24 47 80 44 9 40 44 102 0 7 
Nf 9 20 2.3 25 0 36 24 18 0 3 
Sc 0 0 0 0 0 0 0 0 0 0 
v 113 19 84 147 37 151 124 121 0 18 
cu 12 21 28 18 9 26 19 17 0 4 
Pb 12 2 12 a 1J 0 0 0 0 9 
Zn 68 32 53 56 81 74 44 66 0 106 
Bf 0 0 0 0 0 0 0 0 0 0 
II 0 0 0 0 0 0 0 CJ 0 0 
Mo 0 0 0 0 0 0 0 0 0 0 : 
IC 0 0 0 0 0 0 0 0 0 0 
Rb 64 25 63 12 31 8 16 11 0 8 
Cs 0 0 0 0 0 0 0 0 0 0 
Bl 1023 434 817 642 204 174 221 328 0 47 
Sr 519 562 6n 572 349 676 489 528 0 17'9 
Tl 0 0 0 0 0 0 0 0 0 0 
Gl 16 16 19 19 19 16 15 14 0 15 
Lf 0 0 0 0 0 0 0 0 0 0 
Ta 0 0 0 0 0 0 0 0 0 0 
Nb 13 5 , 10 8 7 5 9 0 9 
Hf 0 0 0 0 0 0 0 0 0 0 
Zr 199 104 180 155 156 114 95 157 0 295 
Tf 1 0 1 1 1 1 1 1 0 1 
y 34 23 211 3l 47 29 31 34 0 61 
Th 16 6 10 1 22 0 7 6 0 a 
u 7 3 4 1 40 0 a 4 0 2 
La 44.00 33.00 41.00 41.00 35.00 33.00 Z9.00 41.00 o.oo 27.00 
Ct 94.00 56.00 n.oo 73.00 39.00 50.00 37.00 64.00 o.oo 48.00 
Pr 0.00 0.00 o.oo 0.00 0.00 o.oo 0.00 0.00 0.00 0.00 
Nd 0.00 o.oo o.oo o.oo o.oo o.oo 0.00 o.oo o.oo o.oo 
Sill 0.00 o.oo 0.00 o.oo o.oo o.oo 0.00 o.oo o.oo 0.00 
Eu 0.00 0.00 o.oo 0.00 o.oo o.oo 0.00 0.00 o.oo o.oo 
Gd o.oo 0.00 o.oo o.oo o.oo o.oo o.oo o.oo 0.00 o.oo 
Tb o.oo 0.00 0.00 0.00 o.oo a.oo 0.00 0.00 a.ao o.oo 
Dy 0.00 0.00 o.oo o.oo 0.00 0.00 0.00 0.00 o.oo o.oo 
No o.oo 0.00 o.oo 0.00 o.oo o.oo 0.00 o.oo o.oo o.oo 
Er 0.00 o.oo o.oo o.oo o.oo o.oo 0.00 0.00 0.00 o.oo 
T• 0.00 0.00 o.oo 0.00 o.oo 0.00 o.oo 0.00 0.00 o.oo 
Yb o.oo o.oo 0.00 0.00 0.00 0. 00 0.00 0.00 o.oo o.oo 
Lu o.oo o.oo o.oo o.oo 0.00 o.oo 0.00 o.oo o.oo o.oo 
Bt 0.00 o.oo 0.00 o.oo 0.00 o.oo o.oo 0.00 o.oo o.oo 



Slllple II- C4•Z33D C4•19 C4•70A C4·263 C4·27'5 C4•27'5XA C4•27'5lCI DS•I4•U C4•313A 

Mtllulber " 46 35 33 21 20 20 60 41 
st02 62.80 61.90 64.90 64.70 64.00 64.20 63.50 62.60 65.00 
Tf02 0.46 0.94 o.n 0.71 o.5a 0.53 0.53 0.98 0.45 
Al203 15.50 15.10 14.70 13.40 14.60 14.80 14.80 15.30 14.70 
Ft203 0.36 0.82 0.68 0.91 0.64 0.67 0.65 0.7'5 0.70 
F.O 1.11 4.19 3.44 4.62 3.26 3.42 3.33 3.80 3.56 
MrO o. 14 0.09 0.05 0.09 0.13 0.07 0.06 0.09 o.oa 
MgO 1.45 2.39 1.20 1.51 0.58 0.56 0.54 3.7'5 2.14 
cao 3.04 5.00 3.44 2.14 3.54 3.18 3.64 1.92 3.52 
Na20 7.48 4.02 4.08 4.71 2.28 4.93 4.89 5.33 4.15 
JC20 1.08 1.75 3.08 0.63 2.54 1.91 1.90 0.69 1.89 
P205 0.12 0.18 0.31 0.25 o. 19 0.20 0.22 0.28 0.08 
LOI 4.62 2.23 1.63 3.68 5.59 4.06 4.39 2.68 2.72 

Cr 6 33 36 8 11 8 a 90 109 
Nf 0 2 3 0 0 0 0 39 5 
Sc 0 14 0 0 11 0 0 0 0 
v 14 117 104 44 53 41 43 130 105 
cu 5 1 8 0 0 0 0 28 7 
Pb 14 11 15 16 11 4 0 7 20 
Zn 71 44 32 n 78 48 44 51 53 
If 0 Q 0 0 0 0 0 0 0 
w 0 79 0 0 107 0 0 0 0 
Mo 0 1 0 0 , a . 0 0 0 
IC 0 14526 0 0 21084 0 0 0 0 
Rb 14 46835 60 a n 32 34 a 30 
Cs 0 1 0 0 3 0 0 0 0 
II 187 398 1603 150 614 330 347 267 542 
Sr 27'9 313 747 254 193 126 136 492 274 
Tl 0 0 0 0 0 0 0 0 0 
Ga 12 15 13 18 15 14 14 18 0 
Ll 0 17 0 0 44 0 0 0 0 
Ta 0 1 0 0 1 0 0 0 0 
Nb 11 6 13 10 26 to 10 14 1 
Hf 0 4 0 0 5 0 0 0 0 
Zr 308 145 196 227 162 150 147 182 149 

" 1 5635 1 1 3477 1 1 , 1 

' 69 26 26 76 31 57 54 27 33 
Th 20 6 9 17 6 19 9 19 5 
u 5 2 0 0 2 2 0 2 5 
La 34.00 19.95 52.00 47.00 17.86 47.00 43.00 41.00 3.00 
Ce 50.00 42.51 aa.oo 63.00 40.13 21.00 ~2.00 61.00 46.00 
Pr 0.00 5.07 o.ao o.oo 5.20 o.ao o.oo 0.00 0.00 
Nd 0.00 ,9.56 0.00 0.00 21.39 0.00 0.00 o.oo o.oo 
Sill 0.00 4.52 o.ao o.oo 5.17 o.oo 0.00 o.oo o.oo 
Eu 0.00 1.14 0.00 0.00 1.28 0.00 0.00 o.oo o.oo 
Gd o.oo 4.59 O.QO o.oo 5.06 o.oo o.oo o.oo o.oo 
Tb o.oo 0.77 o.oo 0.00 0.91 o.oo 0.00 o.oo o.oo 
Dy o.oo 4.76 o.oo 0.00 5.68 o.oo o.oo o.oo o.oo 
Ho o.oo 1.01 0.00 0.00 1.19 0.00 0.00 o.oo o.oo 
Er o.oo 2.98 o.oo 0.00 3.58 0.00 0.00 o.oo o.oo ,. o.oo 0.43 o.oo 0.00 0.52 o.oo o.oo o.oo o.oo 
Yb o.oo 2.91 0.00 0.00 3.38 o.oo o.oo o.oo o.oo 
Lu 0.00 0.46 o.oo o.oo 0,51 o.oo o.oo o.oo o.oo 
Be o.oo 0.97 o.oo o.oo 1.44 o.oo 0.00 0.00 o.oo 



s-plt N- C4•31ZA C4266 C4273C C430SI C4276 C42l9 DM73 HS61 HS62 

Ml Nuletr 52 20 53 47 31 56 Z9 44 39 
1102 65.30 66.40 64.80 61.40 64.90 60.90 65.50 63.10 62.40 
Tf02 0.47 0.64 0.30 o.ao 0.56 0.78 0.60 0.82 0.78 
Al20l 14.30 16.40 14.30 16.50 14.50 15.80 13.90 15.80 15.90 
Fe203 0.66 0.72 0.55 0.86 0.74 o.sa 0.67 o.ao 0.82 
FeO 3.38 3.69 2.78 4.36 3.76 4.47 3.40 4.08 4.19 
MnO 0. 11 0.05 o.oa o.oa 0.09 0.09 0.12 0.09 0.11 
MgO 2.45 0.60 2.09 2.54 1.10 3.69 0.91 2.12 1.78 
CaO 3.62 1.12 4.12 3.96 3.84 2.92 2.76 2.90 3.86 
Na20 3.13 5.04 3.48 3.43 4.07 5.20 4.82 4.89 4.62 
IC20 2.26 1.95 1.51 2.09 1.52 1.85 2.09 2.28 1.88 
P205 0.08 0.19 0.04 0.24 o. 19 0.23 o. 14 0.16 o. 18 
LOI 4.34 2.86 5.30 4.03 4.85 2.64 3. ~3 1.68 1.33 

Cr 58 56 71 52 60 138 64 94 96 
Nf 0 1 9 15 0 13 0 3 2 
Sc 0 0 0 0 0 0 0 0 0 
v 111 51 82 140 91 105 215 111 116 
cu 9 0 115 0 7 14 4 22 30 
Pb 16 5 14 0 13 10 26 21 17 
Zn 46 54 44 73 46 65 76 103 47 
at 0 0 0 0 0 0 0 0 0 

"' 0 0 0 0 0 0 0 0 0 
Mo 0 0 0 0 0 0 0 0 0 

" 0 0 0 0 0 0 0 0 0 
Rb 67 48 27 51 35 35 45 54 34 
Cs 0 0 0 0 0 0 0 0 0 
a. 413 200 646 594 346 543 506 545 673 
Sr 269 186 233 517 187 522 155 507 504 
Tl 0 0 0 0 0 0 0 0 0 
G• 20 16 19 17 14 17 15 20 21 
Lf 0 0 0 0 0 0 0 0 0 
T• 0 0 0 0 0 0 0 0 0 
lfb 7 11 3 9 9 9 9 8 9 

"' 0 0 0 0 0 0 0 0 0 
Zr 150 173 109 154 166 133 225 158 160 
Tf 1 1 0 1 1 1 1 1 1 
T 32 62 34 28 43 215 54 35 33 
Th a 0 3 0 13 0 6 2 0 
u 3 3 0 3 0 1 3 6 0 
L• 7.00 49.00 6.00 35.00 28.00 13.00 38.00 o.oo 16.00 
Ce 73.00 0.00 o.oo 72.00 13.00 41.00 32.00 32.00 65.00 
Pr 0.00 o.oo o.oo o.oo o.oo 0.00 o.oo 0.00 0.00 
Nd o.oo o.oo o.oo 0.00 o.oo 0.00 o.oo o.oo o.oo 
Sill o.oo o.oo o.oo 0.00 o.oo 0.00 0.00 0.00 o.oo 
Eu 0.00 o.oo 0.00 o.oo 0.00 o.oo o.oo o.oo o.oo 
Gd o.oo o.oo o.oo o.oo o.oo o.oo o.oo o.oo o.oo 
Tb o.oo o.oo o.oo o.oo 0.00 o.oo o.oo o.oo 0.00 
Oy o.oo o.oo o.oo 0.00 o.oo 0.00 0.00 o.oo o.oo 
Ha o.oo o.oo 0.00 o.oo o.oo o.oo 0.00 0.00 o.oo 
Er o.oo o.oo o.oo 0.00 0.00 0.00 o.oo o.oo o.oo 
Till o.oo o.oo 0.00 0.00 0.00 o.oo o.oo o.oo o.oo 
Yb o.oo o.oo 0.00 o.oo o.oo 0.00 o.oo o.oo o.oo 
Lu o.oo o.oo o.oo o.oo o.oo o.oo 0.00 o.oo 0.00 

•• o.oo o.oo 0.00 o.oo o.oo o.oo o.oo o.oo o.oo 



:'i _. . 

·.~ 

i 
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1-.:»le N .. C4011 C4012 C4052 C4095 C4222A C4325 C4332A C4332C C4l33A 
· ~ 

Ml NUIIbtr 68 " 33 44 56 31 21 24 30 
Sf02 62.70 51.70 62.90 51.70 60.10 59.30 57.20 59.90 60.70 
Tf02 0.55 0.53 0.65 1.31 0.71 1.97 0.27 1.29 1.32 
Al203 14.10 14.90 12.30 14.50 14.80 14.40 14.20 16.50 14.40 
Ft20l· 0.59 0.6Z o.aa 1.19 0.84 1.50 0.53 0.95 1.38 ~~ FlO 3.03 3.17 4.49 6.05 4.28 7.64 2.72 4.83 7.04 
MnO 0.07 o.oa ~.20 0.13 0.12 0.16 0.06 o. 18 0.21 
MgO 4.18 2.36 1.46 3.11 3.63 3.07 0.49 0.98 2.02 
CaO 3.24 5.38 2.90 2.52 3.68 4.58 1. 32 3.96 2.82 
Na20 3.76 4.98 5.10 6.16 3.40 4. 03 3. 7'9 5.97 4.84 
IC20 0.72 0.65 2.84 0.33 2. 12 1.74 3.00 2. 06 1.60 
P205 0.18 0.23 0.40 0.31 0.14 0. 45 0.08 0.48 0.53 
LOI 6.47 7 .57 4.09 3.89 4.46 1.98 2.99 1.91 1.58 

Cr 70 28 127 50 121 62 TO 81 90 
Nf 22 0 0 0 33 25 0 8 7 
Sc 0 0 0 0 0 0 0 0 0 
v 87 13 59 272 147 258 37 18 <I 
cu 13 5 4 10 21 21 11 0 0 
Pb 20 26 13 17 14 0 17 15 1 
Zn 60 61 102 91 60 98 45 111 142 
If 0 0 0 0 0 0 0 0 0 
II 0 0 0 0 0 0 0 0 0 
Mo 0 0 0 0 0 o · 0 0 0 
IC 0 0 0 0 0 0 0 0 0 
Rb 14 51 70 2 58 41 87 61 96 
Cs 0 0 0 0 0 0 0 0 0 
II 83 231 505 85 512 566 438 704 450 
sr 233 233 112 159 330 447 95 276 354 
Tl 0 0 0 0 0 0 0 0 0 
Ga 16 20 24 12 16 21 19 19 19 
Lf 0 0 0 0 0 0 0 0 0 
Tl 0 0 0 0 0 0 0 0 0 
Nb 8 13 21 9 7 15 7 23 16 
Hf 0 0 0 0 0 0 0 0 0 
Zr 117 310 465 186 122 27'9 235 723 349 
Tf 1 1 1 2 1 2 1 1 1 
y 22 47 ao 46 31 67 45 110 104 
Th 10 a 11 0 9 0 6 1 0 
u 3 0 0 0 0 10 0 20 9 
L1 15.00 45.00 63.00 18.00 15.00 43.00 29.00 73.00 62.00 .· 
Ct 41.00 11.00 54.00 59.00 o.oo 47.00 o.oo 0.00 19.00 
Pr 0.00 o.oo o.oo o.oo o.oo o.oo 0.00 o.oo o.oo 
Nd o.oo o.oo 0.00 o.oo o.oo o.oo o.oo 0.00 0.00 
Sill o.ou o.oo o.oo o.oo 0.00 o.oo o.oo o.oo 0.00 
Eu o.oo 0.00 0.00 o.oo o.oo o.oo 0.00 0.00 0.00 
Gd o.oo 0.00 o.oo o.oo o.oo o.oo o.oo o.oo o.oo 1 

Tb 0.00 o.oo o.oo o.oo o.oo o.oo o.oo o.oo o.oo 
i Dy o.oo o.oo 0.00 o.oo o.oo o.oo 0.00 0.00 o.oo ·I Ho o.oo 0.00 o.oo o.oo o.oo 0.00 o.oo o.oo o.oo • •. Er o.oo . 0 .00 o.oo o.oo o.oo o.oo 0.00 0.00 o.oo 'i 

Til o.oo o.oo o.oo o.oo 0.00 o.oo o.oo o.oo o.oo •1 

Yb o.oo o.oo o.oo o.oo o.oo o.oo o.oo o.oo o.oo 
LU o.oo o.oo 0.00 o.oo o.oo o.oo o.oo 0.00 o.oo 
It 0.00 o.oo o.oo o.oo o.oo o.oo 0.00 o.oo o.oo f 

l 

~ 
l 



Slq)le Nemt C41051 C4086 C4·105 3·637C 3·6·44 3·6·65 DS·10A DS·10C 3·6·91 

Mg Nunber 52 53 52 54 45 32 35 15 38 
SI02 62.20 58.30 62.20 65.20 56.00 58.10 65.70 60.70 61.00 
TI02 0.48 0.86 0.48 0.64 1.M 1.92 1.16 o.sa 1.00 
Al203 14.80 16.60 14.80 14.10 15.10 13.30 12.80 13.70 15.30 
Fe203 0.73 1.02 0.1.$ 0.66 1.44 1.68 0.9~ 1.46 1.12 
FeO 3.70 5.20 3.70 3.39 7.34 8.58 4.69 7.44 5.73 
MnO 0.10 0.11 0.10 0.09 0.15 0.22 0.20 0.28 0.08 
MgO 2.61 3.94 2.6, 2.64 3.93 2.66 1.69 0.85 2.30 
cao 4.58 3.98 4.58 3.68 6.84 5.26 3.26 3.38 5.96 
Na20 3.01 3.88 3.01 4.34 3.86 4.24 3.88 5.98 4.19 
IC20 3.31 1.31 3.31 1.25 1.71 2.26 1.34 1.20 0.44 
P205 0.15 0.27 0.15 0.13 0.40 1.11 o.s1 0.31 0.28 
LOI 3.03 3.38 3.03 2.56 1.10 0.08 2.12 2.30 2.35 

C;r 33 114 33 1 0 0 0 0 36 ~ 

llf 6 27 6 3 4 0 0 0 81 
S-: 0 0 0 0 24 26 16 33 0 
v 135 141 135 92 220 106 24 0 149 
cu 18 15 18 4 20 7 1 0 2 
Pb 11 4 11 6 a 10 12 8 57 
Zn 33 91 33 52 63 97 114 131 80 
Bf 0 0 0 0 0 0 0 0 0 

" 0 0 0 0 111 291 96 89 0 
Mo 0 0 0 0 2 3 1 2 0 
IC 0 0 0 0 1'194 18760 11123 9961 0 
Rb 122 25 122 29 39 56 60 38 12 
Cs 0 0 0 0 0 1 1 1 0 
Ba 1263 301 1263 487 478 685 903 673 175 
Sr 231 592 231 250 414 289 287 310 600 
Tl 0 0 0 0 0 0 0 0 0 
Ga 11 23 11 15 18 21 16 14 18 
Lf 0 0 0 0 12 5 30 13 0 
Ta 0 0 0 0 1 z , , 0 
Nb 8 10 8 10 13 19 16 19 10 
Hf 0 0 0 0 6 53891 7 14 0 
Zr 73 148 73 171 236 205 ;J.57 691 297 
Tf 1 1 1 1 9831 115l0 6954 5275 1 
y 21 215 21 35 34 64 42 68 31 
Th 28 4 28 0 5 7 4 6 0 
u 18 1 18 0 , 2 2 2 0 
I. a 35.00 13.00 35.00 12.00 26.98 39.56 40.~0 39.67 0.00 
Ce 64.00 82.00 64.00 28.00 58.90 91.50 85.42 91.10 81.00 
Pr o.oo 0.00 o.oo o.oo 7.35 12.07 11.45 11.64 o.oo 
Nd 0.00 0.00 0.00 o.oo 29.55 53.47 47.11 48.65 0.00 
Sm o.oo 0.00 0.00 0.00 6.54 12.65 10.43 11.47 o.oo 
Eu o.oo 0.00 o.oo o.oo 1.75 4.05 2.90 3.65 0.00 
Gd 0.00 0.00 0.00 o.oo 6.04 12.80 9.19 10.34 o.oo 
Tb o.oo o.oo o.oo o.oo 1.02 2.11 1.51 , .85 o.oo 
Oy o.oo o.oo 0.00 o.oo 5.89 12.79 8.~ 11.62 o.oo 
Ho o.oo o.oo 0.00 o.oo 1.22 2.53 1.63 2.40 o.oo 
Er 0.00 o.oo 0.00 0.00 3.54 7.20 4.41 7.05 o.oo . 
T• o.oo o.oo 0.00 o.oo 0.50 1.00 0.58 1.05 0.00 
Yb o.oo o.oo o.oo 0.00 3.21 6.41 3.60 6.93 o.oo 
l.u o.oo 0.00 0.00 0.!'10 0.50 0.97 0.49 1.10 0.00 
Be o.oo o.oo o.oo O.liJ 2.12 2.35 2.34 3.08 o.oo 



Slq)le Name 3·6·15 36281 3·632A 3·6328 3·632C 3·635A C4•175 C4•203 C4·209 

Mg Nl.lltler 43 58 37 36 62 50 za 24 28 
5102 55.80 54.30 66.30 62.40 55.10 54.10 69.30 71.50 71.90 
Tf02 1.52 0.84 0.84 1.04 0.84 1.84 0.36 0.40 0.06 
Al203 15.00 18.30 14.60 14.70 :s.ao 15.10 13.60 13.10 13.40 
Fe203 1.21 0.96 0.71 1.08 1.01 1.45 0.55 0.41 0.37 
Feo 6.16 4.90 3.64 5.50 5.17 7.37 2.80 2.11 1.87 
MnO 0.16 0.09 0.11 0.13 0.13 0.14 0.07 0.06 0.10 
MgO 3.02 4.41 1.43 2.05 5.55 4.84 0.73 0.43 0.47 
cao 6.46 7.98 3.32 4.16 4.92 7.22 1.98 1.34 0.90 
Na20 3.58 3.83 5.80 4.14 3.76 2.68 3.11 4.08 5.00 
K20 0.87 1.00 0.74 2.12 2.33 1.29 2.64 3.23 2.33 
P205 0.32 0.14 0.29 0.55 o. 10 0.42 0.08 0.06 0.03 
LOI 3.54 1.57 1.24 1.69 .'5.88 2.31 3.63 2.07 1.62 

cr 0 31 0 0 74 7 10 13 7 
Ni 0 23 0 0 36 2 2 0 0 
Sc 0 0 0 0 0 0 0 0 0 
v 148 152 43 91 142 224 28 14 0 
cu 19 23 2 0 15 7 0 0 6 
Pb 0 2 4 0 5 3 5 17 25 
Zn 84 47 47 n 57 79 34 41 52 
Bi 0 0 0 0 0 0 0 0 0 
\1 0 0 0 0 0 0 0 0 0 
Mo 0 0 0 0 0 0 0 0 0 
IC 0 0 0 0 0 0 0 0 0 
Rb 12 490 14 37 61 30 70 67 54 
Cs 0 0 0 0 0 0 0 0 0 
Ba 6C5 373 242 917 831 5 305 760 665 
Sr 327 22 27i! 335 307 335 138 139 313 
Tl 0 0 :] 0 0 0 0 0 0 
Ga 15 16 18 14 10 15 14 15 16 
Lf 0 0 0 0 0 0 0 0 0 
Ta 0 0 0 0 0 0 0 0 0 
Nb 9 0 10 11 7 9 12 12 10 
Hf 0 0 0 0 0 0 0 0 0 
Zr 180 6 317 213 124 204 zn 278 174 
Tf 1 1 1 1 1 2 1 1 0 
y 45 98 57 52 35 42 59 55 48 
Th 0 27 0 0 r 0 19 20 19 
u 0 0 0 0 IJ 0 4 7 16 
La o.oo o.oo 7.00 16.00 0.00 o.oo 55.00 (.6.00 18.00 
c. 50.00 19.00 68.00 55.00 31.00 83.00 54.00 66.00 40.00 
Pr o.oo 0.00 o.oo o.oo o.oo o.oa 0.00 0.00 o.oo 
Nd o.oo o.oo 0.00 o.oo o.oo o.oo o.oo o.oo 0.00 
Sill o.oo o.oo o.oo o.oo 0,0!1 o.oo o.oo o.oo 0.00 
Eu 0.00 0.00 o.oo o.oo 'l.OO o.oo 0.00 0.00 0.00 
Gd o.oo o.oo o.oo o.oo 0.00 0.00 o.oo o.oo 0.00 
Tb o.oo o.oo o.oo o.oo o.oo 0.00 0.00 o.oo o.oo 
Oy o.oo o.oo 0.00 0.00 o.oo 0.00 o.oo o.oo o.oo 
Ho o.oo o.oo o.oo o.oo o.oo 0.00 o.oo 0.00 0.00 
Er o.oo 0.00 0.00 o.oo o.oo o.oo o.oo o.oo o.oo 
T11 o.oo o.oo o.oo o.oo o.oo 0.00 o.oo o.oo o.oo 
Yb 0.00 o.oo o.oo 0.00 o.oo o.oo o.oo o.oo 0.00 
Lu o.oo o.oo o.oo 0.00 0.00 0.00 0.00 0.00 0.00 
Be 0.00 o.oo 0.00 0.00 o.oo o.oo o.oo o.oo o.oo 



S~le N.,.. C4·169A C4·169C C4·2!131 C4·211 HS•116 C4·zaa C4·219 C4·2551 C4285 

Mg Nuft)er 28 :sa 17 24 47 48 37 33 44 
5102 71.80 71.50 68.40 70.10 68.70 72.00 71.60 70.40 71.10 
Tf02 0.25 0.20 0. 44 0.22 0.53 0.28 0.24 0.36 0.28 
Al203 12.40 12.10 14.30 13.30 14.50 13.40 12.50 14.10 13.60 
Fe203 0.38 0.29 0.61 0.50 0.43 0.32 0.28 0.71 0.37 
FeO 1.95 1.50 3.10 2.52 z.zo 1.64 1.45 3.62 1.87 
MnO 0.12 0.09 0.04 0.08 0.02 0.08 0.09 0.07 0.06 
MgO 0.49 0.60 0.43 0.53 1.28 0.98 0.56 1.19 0.97 
cao 2.06 3. 16 2.36 1.06 0.22 0.84 2.32 0.22 1.84 
Na20 2.75 2.31 3.78 4.71 4.06 2.68 3.90 4.10 3.26 
IC20 2.51 2.74 2.35 1.95 3.68 3.50 2.33 1.5'1 2.13 
P205 0.05 0.05 0.13 0.05 0.05 0.04 0.00 0.07 0.02 
LOI 3.82 4.47 3.33 2.26 2.68 2.52 3.39 2.82 4.01 

Cr 5 5 6 3 15 64 75 37 71 
Ni 1 1 0 0 1 0 0 0 1 
Sc 9 0 0 11 0 0 0 0 0 
v 6 18 15 0 71 25 15 9S 57 
Cu 7 9 5 4 0 6 6 6 18 
Pb 8 10 10 14 28 20 8 16 27 
Zn 58 32 45 64 48 42 :sa 55 37 
Bf 0 0 0 0 0 0 0 0 0 
w 94 0 0 166 0 0 0 o· 0 
Mo 1 0 0 2 0 0 0 0 0 
IC 20835 0 0 16186 0 0 0 0 0 
Rb 70 76 48 55 125 96 49 34 49 
Ca 2 0 0 3 0 0 0 0 0 
Be 571 289 425 480 583 765 631 109 602 
Sr 87 71 211 294 157 287 135 110 309 
Tl 0 0 0 0 0 0 0 0 0 
Ga 14 16 16 14 18 18 4 23 193 
Lf 13 0 0 10 0 0 0 0 0 
Ta 1 0 0 2 0 0 0 0 0 
Nb 10 14 9 6 11 11 10 7 9 
Hf 7 0 0 5 0 0 0 ·a 0 
Zr 269 286 161 185 228 141 247 160 115 
Tf 1498 0 1 1318 ' 0 0 1 0 
y 34 66 49 30 30 32 43 27 23 
Th 9 21 13 7 28 10 8 7 12 
u 3 12 7 2 15 2 0 3 0 
La 34.81 48.00 42.00 17.77 52.00 89.00 54.00 0.0(. o.oo 
Ce 74.55 74.00 51 .00 40 .62 44.00 53.00 23.00 o.oo 61.00 
Pr 8.86 0.00 o.oo 4.99 0.00 o.oo 0.00 o.oo o.oo 
Nd 33.51 o.oo o.oo 20.23 o.oo o.oo o.oo o.oo o.oo 
Snl 6.87 0.00 o.oo 4 ~94 o.oo o.oo 0.00 0.00 0.00 
Eu 1.19 0.00 0.00 1.14 0.00 o.oo 0.00 o.oo o.oo 
Gd 5.85 0.00 o.oo 4.56 o.oo o.oo o.oo o.oo o.oo 
Tb 1.01 o.oo o.oo o.a:s o.oo 0.00 o.oo o.oo o.oo 
Dy 6.23 o.oo 0.00 5.20 0.00 0.00 o.oo o.oo 0. 00 
Ho 1.33 0.00 0.00 1.10 0.00 0.00 O." 'l 0.00 0.00 
Er 4.08 o.oo 0.00 3.45 o.oo 0.00 o.oo o.oo o.oo 
Till 0.62 o.oo 0.00 0.53 0.00 o.oo o.oo o.oo o.oo 
Yb 4.15 0. 00 o.oo 3.59 0.00 0.00 0.00 0.00 o.oo 
LU 0.65 0.00 o.oo 0.56 0.00 0.00 0. 00 0.00 0.00 
ae 1.25 o.oo 0.00 1.63 o.oo o.oo o.oo o.oo o.oo 



Sallplt Name C4222C DMS71 DM621 EL3251 H$84 H$961 HS119 HS121 HS12l 

Mg Nl.ftltr za 35 36 13 19 39 29 19 20 
SfOZ 70.70 72.20 72.20 72.80 73.30 68.10 71.80 69.50 61.60 
TfOZ 0.44 0.16 0.16 0. 14 0.22 o.za 0.54 0.42 0.48 
Al20J 13.80· 13.60 13.70 12.70 12.80 14.00 11.70 15.40 15.30 
Fe203 0.44. 0.29 0.26 0.36 0.34 0.47 0.57 0.60 0.65 
FeO 2.25 1.47 1.31 1.82 1. 71 2.42 2.91 3.04 3.30 
HnO 0.05 0.04 0.06 0.25 0.05 0.04 0.06 0.05 0.08 
MgO 0.57 0.52 0.49 0.18 0.27 1.02 0.77 0.47 0.53 
cao .2.00 1.16 1.52 1.32 1.04 2.78 2.22 0.66 1.32 
Na.!O 1.85 3.78 3.62 7.36 4.90 3.99 2.34 4.93 5.48 
JC20 2.69 4.28 4.60 0.18 2.35 2.57 1.47 2.17 2.45 
P205 0.06 . 0.06 0.06 0.03 0.03 0.1 1 0.13 0.10 0.12 
LOI 5.01 0.88 0.61 1.67 1.80 3.76 5.31 2.42 1.77 

Cr 58 74 86 104 84 0 77 28 48 
Ni 10 0 0 0 0 0 0 0 0 
Sc 9 0 0 0 0 0 0 0 0 
v 90 25 25 5 29 48 49 13 10 
Cu 1 6 6 8 5 3 17 5 5 
Pb 15 23 17 39 11 16 16 26 19 
Zn 61 14 10 57 40 12 39 61 61 
Bf 0 0 0 0 0 0 0 0 0 
w 1 0 0 ·o 0 0 0 0 0 
Mo 1 0 0 0 0 0 0 0 0 
IC 22329 0 0 0 0 0 0 0 0 
Rb 64 182 216 0 48 81 28 51 54 
Cs 6 0 0 0 0 0 0 0 0 
Ba 299 750 861 173 554 464 141. 231 837 
Sr 322 127 155 189 79 139 100 233 265 
Tl 0 0 0 0 0 0 0 0 0 
Ga 14 13 12 17 15 16 14 20 19 
Lf 14· 0 0 0 0 0 0 0 0 
Ta 1 0 0 0 0 0 0 0 0 
Nb 10 9 8 26 11 8 9 13 13 
Hf 1 0 0 0 0 0 0 0 0 
Zr 232 102 \~ 5n 268 196 192 380 387 
Tf 2637 0 " 0 0 1 1 1 0 
y 33 17 17 99 58 37 38 47 59 
Th 8 21 18 16 4 10 4 8 5 
u 2 0 0 0 0 0 0 0 1 
L• 28.91 32.00 56.00 104.00 75.00 28.00 23.00 45.00 34.00 
Ce 63.16 56.00 51.00 103.00 34.00 27.00 25.00 11 .00 14.00 
Pr 7.38 0.00 o.oo 0.00 o.oo o.oo o.oo 0.00 o.oo 
Nd 27.79 o.oo o.oo o.oo o.oo o.oo o.oo 0.00 o.oo 
sm 5.91 o.oo o.oo o.oo 0.00 o.oo 0.00 o.oo 0.00 
Eu 1.25 0.00 o.oo 0.00 o.oo 0.00 0.00 0.00 o.oo 
Gd 5.68 o.oo o.oo o.oo o.oo o.oo 0.00 0.00 0.00 
Tb 1.01 o.oo o.oo o.oo o.oo o.oo o.oo ~' .00 0.00 
Dy 6.34 o.oo o.oo 0.00 o.oo o.oo 0.00 ~.00 0.00 
No 1.31 o.oo o.oo 0.00 o.oo o.oo o.oo o.oo o.oo 
Er 3.91 o.oo o.oo o.oo 0.00 o.oo o.oo 0.00 0.00 
Till 0.58 o.oo o.oo o.oo o.oo o.oo o.oo o.oo o.oo 
Yb 3.96 o.oo 0.00 0.00 o.oo o.oo o.oo o.oo o.oo 
Lu 0.58 o.oo o.oo o.oo 0.00 0.00 o.oo 0.00 0.00 
Be 1.n 0.00 o.oo o.oo o.oo 0.00 0.00 0.00 0.00 



s.ple MIN C4018 C4097 C4186 C4204 C4207 HS41 3-6-61 3-6-6 3-6-12 

MgN..-.r 32 28 26 17 21 33 4 45 34 
Sf02 72. 10 71.90 70.20 69.80 69.10 68.7'0 73.30 68.50 67.20 
TI02 0.28 0.33 0.52 0.49 0.20 0.54 0.40 0.28 0.48 
Al203 14.10 13.60 13.20 15.00 14.00 14.60 12.30 14.20 13.90 · 
Fe203 0.31 0.47 0.43 0.53 0.44 0.61 0.56 0.45 0.61 
FlO 1.58 2.41 2.20 2.72 2.22 3.11 2.85 2.31 3.09 
MnO 0.05 0.05 0.07 0.05 0.04 0.10 0.09 0.04' 0.08 
HgO 0.49 0.61 0.52 0.38 0.39 0.99 0.08 1.27• 1.04 
ceo 1.40 0.88 2.22 t. 16 1.64 1.60 0.54 2.30 2.30 
Na20 4. 16 5.28 3.50 5.05 5.35 5.43 4.68 4.10 ·4.79 
IC20 2.50 2.51 2.14 2.02 2.24 2. 24 4.66 2.97 2. 22 
P205 0.09 0.06 0.08 o. 10 0.03 o. to 0.03 0.09 0.13 . 
LOI 1.64 1.ss 3.94 2.48 2.59 t .38 0.34 2.95 2.48 

Cr 95 160 44 77 69 136 0 0 4 
Nl 0 0 0 0 0 2 0 0 0 
Sc 0 8 0 0 0 0 0 0 12 
v 26 23 17 31 18 12 3 39 24 
Cu a 7 a 7 3 0 1 2 0 
Pb 26 13 12 11 29 11 2 11 14 
Zn 41 58 63 40 39 52 65 14 84 
Rl 0 0 0 0 0 0 0 0 0 
\1 0 8 0 0 0 0 0 0 135 
Ho 0 2 0 0 0 0 0 0 1 
IC 0 20835 0 0 0 0 0 0 18428 
Rb 54 57 45 59 51 50 68 83 53 
C1 0 1 0 0 0 0 0 0 . 1 
Ba 649 570 17'9 124 393 452 178 510 461 
Sr 377 142 98 113 77 224 21 147 186 
Tl 0 0 0 0 0 0 0 0 0 
Ga 18 18 24 17 15 17 25 17 17 
Ll 0 7 0 0 0 0 0 0 16· 
Ta 0 1 0 0 0 0 0 0 1 
Nb 10 10 12 13 13 12 24 9 13 
Hf 0 7 Q 0 0 0 0 0 6 
Zr 138 239 359 2!;7 290 300 384 196 185 
Tl 0 1978 1 1 0 1 0 1 2877 
y 30 35 58 49 59 72 50 41 l8 
Th 14 9 1 9 18 0 0 1 7 
u 0 3 0 0 2 14 1 8 2 
La 58.00 27.27 71.00 47.00 18.00 44.00 72.00 15.00 26.28 
Ce 56.00 59.28 54.00 74.00 70.00 24.00 102.00 102.00 'i8.24 
Pr o.oo 7.22 o.oo o.oo o.oo o.oo 0.00 o.oo 7.40 
Nd 0. 00 28.10 0.00 0.00 o.oo o.oo o.oo o.oo 29.66 
Sill o.oo 5.97 0.00 0.00 o.oo 0.00 o.oo 0.00 6.93 
Eu 0.00 1.15 0.00 0. 00 0. 00 0.00 o.oo o.oo 1.62 
Gd 0. 00 5.59 0.00 .J.OO o.oo 0.00 0.00 o.oo 6.56 
Tb o.oo 1.04 o.oo o.oo o.oo 0.00 0.00 o.oo 1.19 
Dy 0.00 6.43 0.00 0.00 0.00 0.00 0.00 0.00 7.82 
Ho o.oo 1.37 o.oo o.oo 0.00 0.00 o.oo o.oo 1.62 
Er o.oo 4.25 o.oo 0.00 o.oo o.oo o.oo o.oo 4.78 
Til o.oo 0.61 0.00 o.oo o.oo o.oo o.oo o.oo 0.69 
Yb o.oo 3.97 0.00 o.oo o.oo o.oo 0.00 o.oo 4.75 
Lu 0.00 0.62 0.00 o.oo o.oo 0.00 0. 00 o.oo 0.74 
Be 0.00 1.56 o.oo 0..00 o.oo o.oo u.!lll o.oo 1.76 



Slq)le N- 3·6·31 C4·281 C4·50 C4·181 HS·67A DS·84·41 C4•239 .C4·246A C4·296 

Mg Nunber 31 18 10 28 0 56 34 14 3 
Si02 67.DO 77.90 76.60 76.50 75.50 7'9.20 76.60 76.50 76.20 
Tf02 0.76 0.20 0.13 0.15 0.00 0.38 0.07 0.13 0.28 
Al203 14.10 9.74 11.50 11.60 11.00 7.35 11.70 11.50 , .20 
FeZ03 0.61 0.34 0.34 0.29 0.00 0.58 0.19 o.n 0.55 
FeO 3.10 1.n 1.n 1.48 0.00 2.94 0.99 1. 70 2.7'9 
MnO 0.06 0.05 0.02 0.02 0.03 0.05 0.02 0.04 0.04 

.; MgO a.~ 0.25 0.12 0.38 0.08 2.48 0.34 0.19 0.06 • cao 2.42 0.44 0.04 0.24 0.24 1.10 0.22 0.02 0.08 
Na20 5.33 3.50 3.81 2.63 3.32 0.56 3.12 3.28 3.87 

~ 
K20 1.96 2.66 3.40 4.57 5.28 1.32 4.80 4.98 3.83 
P205 0.17 o.oo 0.00 0.02 0.02 0.12 0.00 0.00 0.00 

r. ! LOI 1.60 1.08 0.93 1.39 0.47 3.11 1.10 0.68 0.52 ., 

Cr 0 2 1 0 1 64 136 97 189 
Nf 0 7 5 3 9 37 13 l 0 
Sc 0 1 0 0 0 0 0 0 0 
v 38 0 0 9 0 78 4 2 11 

f 
cu 1 0 4 0 7 10 8 6 7 
Pb 4 11 9 18 27 12 39 34 25 )i 
Zn 20 12 89 71 104 30 55 87 57 
If 0 0 0 0 0 0 0 0 0 

" 0 229 0 0 0 0 0 0 0 
Mo 0 1 0 0 0 0 0 0 0 
K 0 22080 0 0 0 0 0 0 0 
Rb 65 10 65 108 142 52 203 128 81 
cs 0 1 0 0 0 0 0 0 0 
Ba 517 460 503 848 707 380 15 694 125 
Sr 248 50 9 119 30 88 24 23 35 
Tt 0 0 0 0 0 0 0 0 0 
Ga 13 19 20 20 19 11 25 26 22 
Lf 0 10 0 0 0 0 0 0 0 
Ta 0 3 0 0 0 0 0 0 0 
Nb 9 21 28 25 31 11 Z9 26 25 
Hf 0 13 0 0 0 0 0 0 0 
Zr 219 451 606 386 618 95 103 519 531 
Tf 1 1199 0 0 0 0 0 0 0 
y 46 82 134 80 142 19 79 94 80 
Th 3 14 27 24 23 27 22 18 18 
u 0 4 14 8 29 12 8 5 a 
La 9.00 47.11 47.00 95.00 103.00 36.00 16. 00 24.00 67.00 
c. 71.00 121 .58 92.00 153.00 134.00 5.00 89.00 116.00 78.JO 
Pr o.oo 20.74 o.oo o.oo o.oo o.oo o.oo o.oo o.oo 
Nd o.oo 89.85 o.oo 0.00 o.oo o.oo o.oo o.oo o.oo 
Sill o.oo 18.57 o.oo o.oo o.oo o.oo o.oo o.oo o.oo 
Eu o.oo 2.67 0.00 0.00 o.oo 0.00 0.00 0.00 o.oo 
Gd o.oo 15.65 o.oo o.oo o.oo o.oo .IJ.OO o.oo 0.00 
Tb o.oo 2.46 o.oo 0.00 0.00 0.00 6.00 o.oo 0.00 
Dy o.oo 14.96 0.00 o.oo o.oo 0.00 0.00 o.oo 0.00 
Ho o.oo 2.98 o.oo o.oo o.oo 0.00 0.00 0.00 o.oo 
Er o.oo 9.02 o.oo 0.00 0.00 0.00 0.00 o.oo 0.00 
T11 0.00 1.30 o.oo o.oo o.oo 0.00 o.oo 0.00 o.oo 
Yb O.Oit 8. 51 o.oo o.oo o.oo 0.00 o.oo o.oo 0.00 
Lu 0.00 1.34 o.oo o.oo 0.00 0.00 0.00 o.oo 0.00 
Be o.oo 3.09 o.oo 0.00 0.00 0.00 0.00 o.oo o.oo 



s...,l• N- C4236A C4241 C4297 C4301 C4305C DN54 Dtt79 EL324 EL325A 

Mg NudJer 7 32 3 2 31 23 10 1 Z2 
Sf02 74.40 7'5.30 77.70 7'5.50 74.30 76.70 81.70 77.20 78.00 
Tf02 0.36 0.07 0.20 0.26 0.10 0.14 o.1a 0.20 0.20 
Al203 12.70 11.80 11.60 11.20 11.50 12.10 9.DZ 11.60 11.20 
Fe203 0.50 0.20 0.36 0.57 0.14 0.29 0.21 0.37 0.35 
FeO 2.55 1.02 1.86 2.91 0.71 1.49 1.07 1.88 1.79 
MnO 0.04 0.02 0.04 o.oa 0.03 0.03 0.04 0.03 0.07 
MgO 0.12 0.32 0. 04 0.04 0.21 0.30 o.oa 0.01 0.34 
CaO 0.34 0.24 0.00 0.38 3.50 0.24 0.06 0.08 0.34 
Na20 5.73 3.08 4.06 4.76 3.53 3.46 1. 11 5.54 2.59 
IC20 1.47 5.29 4.31 3.00 1.89 4.91 5.88 2.44 2.38 
P205 0.06 0.00 0.02 0.08 o.oo 0.02 0.01 0.01 o.oo 
LOI 0.48 0.69 0.29 0.41 3.83 o.n 0.48 0.10 1.86 

Cr 135 183 148 238 95 98 78 191 122 

~· 0 17 0 0 0 0 0 3 2 
:Sc 0 0 0 5 0 1 0 0 0 ,, 7 4 2 a 7 30 0 6 5 
t:u 0 2 9 7 13 6 5 4 3 
F'b 0 19 22 16 17 15 24 30 29 
2n 26 31 41 22 1 68 25 30 112 
Bf 0 0 0 0 0 0 0 0 0 
w 0 0 0 16 0 9 0 0 0 
Mo 0 0 0 2 0 2 0 0 0 
IC 0 0 0 24903 0 40757 0 o . 0 
AI:» 18 200 96 64 39 161 155 48 67 
C:l 0 0 0 0 0 1 0 0 0 
81 169 0 744 498 157 301 775 389 J69 
Sr 101 ~3 30 26 264 32 12 28 56 
Tl 0 0 0 0 0 0 .0 0 0 
f£1 17 1,9 24 15 19 21 13 22 22 
l.f 0 0 0 1 0 2 0 0 0 ,. 0 0 0 9 0 2 0 0 0 
Nb 10 28 26 15 7 23 21 26 28 
Hf 0 0 0 11 0 11 0 0 0 
Zr 264 112 606 401 104 290 501 590 608 

'' 1 0 0 1558 0 839 0 0 0 
y 62 83 106 49 30 58 68 100 108 
Th 0 1 10 14 6 20 16 15 25 
u 6 9 1 4 1 4 2 0 11 
L1 57.00 33.00 64.00 45.82 25.00 16 ~ 77.00 100.00 138.00 
c. 0.00 59.00 52.00 107.09 0.00 99.70 0.00 98.00 52.00 
Pr 0.00 o.ao o.oo 12.70 0.00 4.78 o.oo o.oo o.oo 
Nd 0.00 o.oo 0.00 49.59 o.oo 20.17 o.oo o.oo o.oo 
Snl o.oo 0.00 0.00 11.11 o.oo 6.76 0.00 0.00 0.00 
Eu 0.00 o.oo 0.00 1.96 0.00 0.52 o.oo 0.00 o.oo 
Gd 0.00 o.oo o.oo 9.69 o.oo 8.20 0.00 0.00 o.oo 
Tb 0.00 o.oo 0.00 1.64 0.00 1.66 0.00 o.oo 0.00, 
Dy o.oa o.oo o.oo 9.94 0.00 10.96 o.oo o.o<' 0.00 
Ho o.oo 0.00 o.oo 2.11 o.oo 2.34 o.oo o.oo o.oo 
Er 0.00 0.00 0.00 6.30 0.00 7.21 0.00 o.oo 0.00 ,. 0.00 0.00 o.oo 0.96 0.00 1.10 o.oo o.oo o.oo 
Yb o.oo o.oo 0.00 6.33 o.oo 7.18 o.oo o.oo o.oo 
Lu 0.00 o.oo o.oo 0.94 0.00 1.12 0.00 o.oo 0.00 
a. 0.00 o.oo 0. 00 0.86 o.oo 2.38 o.oo o.oo o.oo 



,_.,le Millie DS8401 3•637A 3·6371 3·6·63 3·6·51 3·6·8 3·6·33 

Mg Nud)er 40 30 38 z 13 18 32 
SIOZ 75.60 75.70 75.70 75.20 76.80 71.00 75.80 
TIOZ 0.40 o.2a 0.24 0.32 0.00 o.oa 0.28 
Al203 12.20 12.20 12.20 11.20 12.90 13.30 12.60 
Fe203 0.14 0.24 0.11 0.46 0.17 0.20 0.20 
FeO 0.72 1.21 0.54 2.36 0.89 1.04 1.02 
MnO 0.02 0.02 0.01 0.07 o.o~ 0.02 0.03 
MgO 0.31 0.34 0.22 0.04 0.09 0.15 0.32 
cao 1.04 0.40 0.30 0.32 0.52 0.12 0.5~ 
Na20 5.78 3.6~ 3.52 4.34 4.91 2.22 4.00 
IC20 0.51 4.16 3.92 4.94 2.96 2.50 3.82 
P205 0.11 0.03 0.06 0.01 0.00 0.00 0.00 
LOI 1.44 0.73 1.22 0.30 0.45 2.15 o.n 

· Cr 9 0 0 0 0 0 0 
Nf 0 0 0 0 0 0 0 
Sc: 0 0 0 1 0 0 0 
v 3 8 4 0 0 0 9 
Cu 0 5 2 0 1 3 2 
Pb 16 15 14 16 16 9 11 
Zn 8 6 1 73 25 16 4 
If 0 0 0 0 0 0 0 
\1 0 0 0 333 0 0 0 
No 0 0 0 2 0 0 0 
I( 0 0 0 41006 0 0 0 
Rb 0 118 118 S6 85 74 108 
Cs 0 0 0 1 0 0 0 
•• 64 739 7'98 104 713 671 754 
Sr 140 71 85 7 53 51 92 
Tl 0 0 0 0 0 0 0 
Ge 12 11 14 27 17 18 14 
Lf 0 0 0 21 0 0 0 
Te 0 0 0 4 0 0 0 
Nb 9 1~ 14 30 12 12 12 
Hf 0 0 0 9 0 0 0 
Zr 171 245 254 249 IS4 133 262 
Tf 0 0 0 1918 0 0 0 
T 6a 39 37 37 50 52 42 
Th 21 11 13 15 6 7 14 
u 5 1 0 4 0 0 1 
L" 44.00 44.00 24.00 23.51 9.00 28.00 37.00 
Ce 42.00 95.00 74.00 53.81 124.00 108.00 157.00 
Pr o.oo o.oo 0.00 6.63 o.oo 0.00 o.oo 
Nd o.oo o.oo 0.00 24.78 0.01) o.oo 0.00 
Sll o.oo o.oo 0.00 5. 18 o.oo o.oo 0.00 
Eu o.oo o.oo 0.00 0.76 0.00 0.00 o.oo 
Gd o.oo o.oo o.oo 4.61 o.oo o.oo o.oo 
Tb o.oc o.oo o.oo 0.94 o.oo o.oo o.oo 
Dy o.oo 0.00 0. 00 6.61 0.00 o.oo o.oo 
Ho 0.00 0.00 o.oo 1.51 0.00 o.oo 0.00 
Er o.oo o.oo o.oo 5.03 o.oo 0.00 o.oo 
Til 0.00 0.00 0.00 (1.85 o.oo o.oo o.oo 
Tb o.oo o.oo o.oo 6.22 0.00 0.00 o.oo 
Lu 0.00 o.oo o.oo 0.97 o.oo o.oo o.oo 
Be o.oo 0.00 o.oo 3.86 o.oo o.oo 0.00 
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APPENDIX E 

Laboratory Procedures tor Uranium/Lead (Zircon) Dating 

The details of the methods used at the Jack Satterly 

Geochronoloqy Laboratory of the Royal ontario Museum for 

the selection and analysis of zircons for uranium/lead 

dating have been presented by Krogh (1982). This Appendix 

reviews the basic procedures and techniques for each of the 

five major steps: 1) sample selection and rock crushing; 2) 

mineral separation; 3) zircon picking and abrasion; 4) 

chemistry; 5) mass spectrometry. 

E.l. Sample Selection and Rock crushing 

A representative suite of rock samples was collected 

specifically for the purpose of zircon age dating. Each 

sample weighed between ~o and 50 kilograms in an attempt to 

gau~antee an abundant supply of zircons for analysis. Each 

sample was taken through a series of crushing procedures . 
and reduced to a fine powder. The equipment and crushing 

room are completely cleaned with water and alcohol between 

every sample. A large filter vacuum is kept running in the 

room and individual vacuums are strategically placed around 

each piece of equipment during each phase of crushing. 



The sequence of procedures is as follows: 

(1) Smash the sample with a sledge hammer on a metal 

plate until the entire sample consists of pieces a 

few centimetres across. 

E2 

(2) Pass the pieces produced individually through a 

jaw-crusher which produces "coarse sandy-gravel", 

this step is often repeated due to variation in the 

hardness of the rocks. 

(3) The sample is then passed through a disc mill which 

reduces it to a very fine powder, this step may also 

be repeated due to variation of hardness and how 

"wet" (i.e. hydrated or altered) the rock might be. 

The final step in the crushing room is actually the 

first phase of mineral separation wherin the sample is 

passed across a Wilfley Table. This table can be inclined 

to differing degrees while water is passed across the 

entire surface. The sample is mounted near the "top corner" 

of the table and gently vibrated through a funnel and 

"fed-out" across the table. The table rocks back and forth 

thus producing two streaks of heavy minerals by gravity 

separation and settling, whereas the very light and fine 

minerals wash off the table with the sheeting water. This 

process produces a heavy mineral concentrate from the whole 

rock. 
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E.2. Mineral Separation Techniques 

Two different types of mineral separation are 

necessary, magnetic separations and heavy liquid 

separations. The laboratory space is cleaned wi.th alcohol 

and large sheets of clean paper are spread out on all 

counters and equipment. Sanitized containers are assembled 

and labled for each sample. As in the cleaning procedure 

for the crushing room, the mineral separation laboratory 

and its equipment are disassembled and thoroughly cleaned 

between each sample. For each sample a primary sieving 

procedure produces two size fractions of +70 mesh and -70 

mesh by pa~oing the sample through a 70 mesh screen. The 

fine fraction (-70) is then used in the following 

separation steps, and a small glass vial of the +70 

fraction is retained for ~eference or processing. 

Magnetic Separation 

The first step in the magnetic separation is to use 

the Frantz Isodynamic Separator rotated to a vertical 

position. The sample is mounted and allowed to free-fall at 

0.5, 1.0, and 1.8 amps, thus eliminating the majority of 

hematite, magnetite and any silicate minerals with magnetic 

inclusions or coat:ings. At this stage it may be appropriate 

to run some sample~ through a Waller Solution which removes 

oxidation products in heavily oxidized rocks. The Waller 

Solution can be made up easily by co~bining 71 grams of 

sodium citrate with 8.5 grams of. bicarbonate in 1 litre of 
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water as a stock solution. Add 1/2 teaspoon of the stock 

solution to 1 gram ot sodium dithionate in 50 mls of water, 

and put sample in a beaker with the solutions: ultrasound 

then decant; ultrasound the sample in water twice (decant 

each time), then ultrasound the sample in alcohol: this 

should remove ~11 oxidation products. At this stage the 

sample is put through a heavy liquid separation, described 

in the following section. 

Upon completiot~ of the first heavy liquid 

separation, the sample goes through a series of magnetic 

separations on the Frantz. 'rhe machine is balanced in a 

horizontal position then rotated back 10 degrees for the 

"initial Frantz". sucessive runs are continued while 

increasing the amps from .25 A to full field by passing the 

non-magnetic split each time. Various magnetic minerals are 

removed at each stage of this separation and it is useful 

to keep the magnetic fractions from each run if other 

mineral separation might be considered. The "initial 

Frantzing" produces a "non-magnetic" heavy mineral 

separate. A second stage of heavy liquid separation takes 

place here. 

The non-magnetic mineral separate is then passed 

through the Frantz which is rotated toward horizontal at 

settings of s, 3, 2, 1 and o degrees all at full-fielu. At 

each stage a smaller fraction of "non-magnetic" minerals is 

produced until finally an almost pure population of zircons 



ES 

results. It should be pointed out that not every sample 

will continue to split nll the way down to 0 degrees, 

either because of a small population size or inclusions in 

and coatings on the zircons. 

Heavy Liquid Separation 

The first heavy liquid separation takes place after 

the freefall in most cases. Bromoform is used, with a 

density of 2.85. Clean air hoods are set up in the mineral 

separation laboratorJ, each chamber holding three heavy 

liquid stations. Each area is carefully cleaned and fresh 

paper covers the entire work space. From the top of each 

separatory apparatus the unit is as follows; funnel with 

filter to load bromoform into a separatory flask with a 

stopcock aparatus at its base; below this is another funnel 

through which the separated sample is released and washed 

down with alcohol into a beaker at the base. At this stage 

it may be necessary to use K-amylxanthate on the heavy 

separate to float pyrite out of the sample ·if it was 

present .in the rock. 

The second stage of heavy liquid mineral separation 

takes place after the initial Frantz. This procedure uses 

methylene-iodide (CH2I2) and the same apparatus as the 

f!rst, although acetone is used for rinsing the sample 

through the funnels, DQt alcohol. At this stage a roughly 

50/50 split of heavy and light minerals results. The heavy 

separate is then passed through tha final Frantz stages 
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described above. The specitic order ot these steps can be 

altered depending on the rock sample and it's mineralogy. 

E.3. Flnal Zircon Sample Selection 

Upon completlon of the steps outlined above a final 

selection of sub-mill.igram fractions are hand-picked in 

ethyl alcohol under a binocular microscope using care to 

select grains devoid of inclusions, foreign minerals and 

imperfections. The zircon fractions are polished in an air 

abrader (Krogh 1982) and cleaned in distilled water, hot 6N 

nitric acid and distilled acetone prior to dissolution 

(Krogh 1973). 

E.4. Small Column Chemistry 

The following steps are taken for zircon chemistry: 

1. Wash resin in minituriazed columns ie. four times 

with 3 X H2o, three times in X1 6.2N H~l. 

2. Condition the columns; 3.1N HCl, 0.15 ml., i.e. 16 

drops 

3. Convert sample with 3.1N HCl overnight, dry sample 

down on hot-plate to one tiny drop, not completely, 

add 10 drops of 3.1N HCl just before loading. 

4. Load sample; 3.1N HCl, 0.10 ml ie. 10 or 16 drops 

(dep. on standards) zr-Wash, 3.1N (2 or 3 drops) 

three times, then (10 or 16 drops) once for a total 

of 0.15ml. 



5. Take the Pb ott in 6.2N HCl 0.20 ml ie. 15 or 21 

drops (dependant on standard). 

6. Taka the u off in X 3 H2o 0.20 ml ie. 16 or 19 

drops (dependant on st~nd~rd). 

E.5. Mass Spectrometry 

The zircon fractions are apiked using a mixture of 

2o5Pb-235u isotopic tracer solution (Krogh and Davis 

E7 

1975) and loaded into 0.5 ml, Krogh-type Teflon bombs. 

Extraction ot U and Pb was explained by Krogh (1973), 

although mineraturized exchange columns are now employed 

which are scaled-down to one-tenth the originally published 

resin and reagent volumes. Average dissolution blanks for 

Pb and U measured in this study were 10 and 3 pg, 

respectively. 

The lead and uranium were loaded onto outg~ssed, 

single R~ filaments using silica gel and phosphoric acid 

(Cameron et al. 1969), and isotopic ratios were measured on 

a VG354 mass spectrometer. Lead and uranium isotopes were 

measured in sinqle-collectt)r mocle and all ratios except 

205Pb/204Pb, were measured on the axial Faraday 

collector. All F~ and u isotopic data were corrected for 

mass fractionation by a'factor of +0.1%/AMU (+/-0.05%) 

determined from replicate analyses of NBS-SRM 981 common Pb 

and NBS-SRM u 500 standards. For 205ps;2°4Pb ratios 

measured with a Daly photomultiplier detector, a 
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Daly-Faraday empirical correction factor of +0.35\/AMU was 

applied. 

Analytical results are presented in Table 5.1 and 

Figures 5.1 to s.s. Uncertainties in the Pb/U and 

207Pb/206pb ratios were calculated using a modified 

version of the error propogation program of Ludwig (1980)1 

these errors are shown graphically in Figures 5.1-5.5. 

Common lead corrections were made by first correcting the 

measured ratios for instrumental fractionation and 

introduced spike, then subtracting lead equal in amount and 

composition to the dissolution blank: any remaining 204Pb 

was assumed to represent ca.420 Ma model Pb with a 

composition given by Stacey and Kramers (1975). In all 

cases, the uncertainty in the amount and composition of 

common lead calculated in this manner represents an 

insignificant contribution to the error in the age 

calculation. Linear regression was carried out as outlined 

by Davis (1982) and errors on the calculated ages are 

quoted at the 95% confidence level for errors of 2-siqma. 

The decay constants and isotopic abundance ratios in all 

age calculations are those recommended by lUGS 

Subcommission on Geochronology (Steiger and Jager 1977). 
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M. COYLE, PH.D. THESIS, 1990 

GEOLOGY, GEOCHEMISTRY AND GEOCHRONOLOGY 
OF THE SPRINGDALE CALDERA 

LEGEND FOR MAPS 1, 1A, 18, 2, 3, 4 

CARBONIFEROUS 

14. Red to grey mudstones to pebble 
conglomerates with local carbonate 
cement. 

SILURIAN-(DEVON~AN?) 

SHEFFIELD LAKE GROUP 

13. Andesite. Aphyric to 
plagioclase-microphyric. 

12a. Vitric tuff. Orange to red, welded. 
Characterized by large sodic amphibole 
oikocrysts with rare resorbed 
K-feldspar phenocrysts •. 



LEGEND (continued) 

12. Ash-flow tuff. Massive, maroon, - -----
aphanitic to flow-banded quartz- and 
feldspar-phyric. 

11. Red and brown crystal, vitric and 
lithic-rich ash-flow sheets. Laharic, 
fault and gas-breccias. Rhyolite domes 
and dykes. Minor basalt. 

SPRINGDALE GROUP 

10. Crystal-lithic tuff. Densely welded 
and massive large phenocrysts of quartz 
and feldspar, clasts of mafic and rare 
ultramafic lithologies. . 

9. Clastic sedimentary rocks. Red 
conglomerate, sandstone, and sandy 
siltstone, local caliche horizons; 
cross-bedding, ripples, laminations, 
rip-up horizons, scour channels, etc. 
indicate stream-flood and proximal and 
distal fluviatile origin; clasts 
essentially volcanic or plutonic 
provenance. 



LEGEND (continued1 

8. Rhyolitic vitric ash-flow tuffs snd 
breccias. Welded, devitrified, locally 
massive; areas of unwelded vitroclastic 
tuffs with large individually 
devitrified shards with axiolitic 
texture; locally passes into 
sandstones; alternating thin basaltic 
and silicic bands in some horizons. 

7. Dacitic to rhyolitic ash-flow tuffs, 
vitroclastic breccia and domes. 
Massive, vitric, strongly welded; 
curviplanar joint surfaces in the 
domes, with internal plastic shear 
zones, local brecciation, and flow 
folds; tuffs locally porhyritic, with 
small euhedral plagioclase and rare 
quartz phenocrysts in glassy matrix. 



LEGEND (continued) 

6. Silicic ash-flow tuffs. Crystals, 
lithic fragments, and vitroclasts; 
basallithophysae-rich horizons, 
grading up into a partially welded 
crystal-lithic lapilli tuff; broken 
phenocrysts of plagioclase, K-feldspar 
and quartz; flattened pumice bombs up 
to a metre long; clasts of silicic 
volcanics, andesite and rarely basalt. 

5. Mainly basaltic flows, some of 
intermediate composition. Locally 
plagiophyric; with amygdales of quartz, 
calcite and chlorite; variably 
altered. Note that map units include 
large areas of no outcrop. 

4. Felsic to intermediate, dominantly 
dacitic, ash flow tuff. Crystal-lithic 
and lapilli ash-flow tuffs; clasts of 
andesite, rhyolite, angular and 
flattened pumice; variably welded. 

3. Andesitic to dacitic flows. Locally 
plagiophyric, massive to flow-foliated 
to brecciated; local intrusions of 
massive andesite. 



LEGEND (continued) 

2. Mesobreccia. Laharic flows, tuffites 
and pepperites, volcanic conglomerates 
and breccias, red sandstones. 

1. Welded, lithic-crystal tuff. 
Plagioclase and K-feldspar, accessory 
biotite, quartz, and rare opaques, 
clasts of granophyre, plagiophyric 
basalt, andesite, ultramafics, and 
• Jasper. 

INTRUSIVE and BASEMENT ROCKS 

I. Quartz-K-feidspar porphyry. Orange to 
green, with sodic amphibole oikocrysts 
and minor aegrine and altered fayalite. 

H. Granite to quartz syenite. Red 
medium-grained plagioclase, K-feldspar 
and amphibole porphyritic. Granophyfic 
textured; heavily altered. 



LEGEND {continued) 

G. ~hyolite domes, dykes and sills. 
High-silica. Microphenocrysts of 
quartz and feldspar, with finely 
disseminated riebeckite in groundmass; 
flow-foliated, auto-brecci~ted, zones 
of intense development of spherules and 
other indications of gas-streaming. 

F. Felsic microporphyry sills and dykes. 
E. Microdiorite. Black, fine-grained, 

massive. 
D. Granite. Medium to coarse grained; 

characterized by quartz and pink 
feldspar with finer grained crystals of 
black amphibole, intruded by fintlr 
grained whitish grey granite, with 
locally riebeckite pegmatite and 
abundant amphibole-lined miarolitic 
cavities and fractures; offshoots of 
the Topsails Complex. 

C. One-feldspar granite. White to red, 
medium to coarse grained, equigranular 
with amphibole :!: sodic pyroxene; in 
large part peralkaline. 



LEGEND (continued) 

B. Granite, granodiorite, minor diorite. 
May in part be correlative with the 
Twin Lakes Complex. 

A. Amphibolite, diorite, granodiorite, 
granite. Foliated amphibolite and 
gabbro occurring as large screens and 
xenoliths in foliated diorite and 
granodiorite; intruded by variably 
deformed tonalite and 
amphibolite-biotite granite; intruded 
or n~t veined by a pale fine-grained 
granite. 

RA. Roberts Arm Group. Mafic to felsic 
submarine volcanic rocks. 

CP. Catchers Pond Group. Mafic to felsic 
submarine volcanic rocks. 

LB. Lushs Bight Group. Mafic, 
ophiolite-related submarine volcanic 
rocks. 
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of K·Ioldspor, aRpllbole lndblotitr. 

lljgh;_sJ!l~U~..Jill!. •~(.!.IJ!s: !ic,phonxq·"" ol 
q\ltlll :. .md {('\dspcll , '.l : t~ ! l!l"l'l .! :·.:.~: :J.t'.,•.\ 
!Jho !--!•· w•·n tlphil •1!!' !r, ··t~·"~:~d n· 1: · :: ~· :· ·· •; ·~ 
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51UlFJII E!.D I .ME GROUP 

1!1..! Qr._angc t o red we lded vitr ic tuff chatactcn:cd by I" 
sodlc iiJnphibole ulkocrysts I<H•h t.Uc tcs:.>rbcd K·~elds 
phenocrysts. 

!1..; !led a'l!!_£!_~Y!!!!L vltrlc and l ithic ash·tlow l 
sheets . Laha: lc, f~ult and 'ldS brccc1.1s. E<hyolJte de 
rtnd d;·~:cs nnd mtnot has~lt occur tcnccs. 

§fR!HGDALE GROUP 

10: <;r_ystal ·lithic tucr. ll<:n5c•l;· ·.:e ldcc itnd M•ssi ·tc: J; 
phcnoct•1•st5 of qud l t: and fc l dspat, cl.J.s::s at mu! lC 
tare ult t a~afic lttholoq~c" . 

Red clastic Sedimentary __ ~.. C~nqlc:netat~, r.•ndtc 
and sandy stlt~toncs , local cailchc ho11zons: etc 
heddinq, r:ppJC's, la:nut.Htons, lip-up horl:nns, sr 
channels, etc, lndtcatc s:tedm-flood, prox:mal and d · • 
!lu'llaUlc Ot ~gln : clasts essent ially vo lcantc 
pl~ton!c provenance. 

!!hyolllic ash•flow vltric tuffs o1nd breccias. Welc 
dc~l~ll!:cd, locally maLsi va: a1c~s of unwc : 
·nt toc) ,Jsttc t uffs Oiith lat •IC :ndtvtdu•lly dc'lttttl 
shdtds; lor.a l li' passes Into sa<~dston~; alternattnq t 
hasaltlc an1 ~Jlic ic b.1nds bdtcdtc m•gma-mix ~ nq. 

~!!!lli~ill~!E....!!!~·flow tuffs ,_ vltrocJa&tlc brcc 
and domes. l~asstvc, 'lltttc, s~r'>nqly wcl<lcd; curvi~ J , 
J rJ ~n._ 5:Jr!acc!'; tn the dm:1cs. ·.nth 1nternal p l dt~c s t 
:!ones, local brcc:lation, Jnd ! lo'..l folds: tuffs loc, 
p~rph;'t:ttc, With small c•Jhcdrnl pldq,oclasc Mtd 1 
:;Jdrt: phen~Cl¥stz tn q l ~ss~ mdtrix. 
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Silicic ash-flow tuffs. Cl~·stals, lilhtc fr.tqmcnts, and 
••itroclasts; I>Jsal l i tholphysac-rich hottzons, Qtadin~ up 
into a partially we lded crystal-llth~c lapilli tut!; 
broken phcmocaysts of p]aqloclasc, f.-feldspar and quar t z: 
t lattcncd pumice bombs up to a metre lonq ; clasts o! 
s llictc volcan i cs , a ndesi t e and rMely basalt. 

~lnly basaltic (lows, sumo of intc~late com~sltlon. 
Thin [leNs of basaltic andcslt<l Wlth plagioc asc and 
mtnor amphtbolc phenocrysts, non-•Jcsicular ar.:l masst'IC to 
taachytic-tcxtuacd. 
Thick ~saltlc flows wnh plagioclase phenocrysts, and 
a bundant quartz, chlorite, epi dote and calcttc 1n 
vrslclcs and fault zones. 

Felsic to intermediate, dominantly dacite, turL 
crysta l-lHhlc and lap ill l ahs-flow tuffs: c lasts of 
a ndcsltc, 'th•;olite, ,wqular and flattened pum1ce; 
•;.u lab l y '..lcldcd. 

Andcsit lc to dacltic flows. 
:-la~si 'IC ~yrltic andesite-dacite i nt r u s ive domes and 
flows. 
~/ laptlli andcsltic-dacltic ash-flow tuff ••lth 
Vil tl ab lc we ld inq .1nd weak argllllc and carbonate-chlorite 
<iltetiltion. 
iJac lt tc· anclesl uc ~utoclastic al!!!?!} of rcwor ked v olcanic 
debris <~lound the d omes ~f un1t 1a. 

Mc gab[ccc i a. Laharic f lows, tuf! l tcs and pcp;:-~ritcs, 
volcanic conqlomcr d~cs l nd brccci~s. ted sandstones . 
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VcldO<!_,_llihic·cr stal tuff. Plagioclase and Hc!dspar, 
acccmly botltc, quml, and we opaques, clasts o! 
qrlnaph·;IO, plaqloph•;ric t;salt , ar~csltc, ultmaf lcs, 
and jdS~t. 

arme to 91ccn Q!utz+fcldspar !l!!rpbm with sodlc 
uphillolc oi~ocrysts and alnor acqlrlnc and altered 
fayalitc. 

~11110 to coarse gralood granite, characttrlrod by quaru 
and pint. feldspar vlth finer grained crystals of black 
aphibolc, lntru~ by fifll'r qralntl<l whitish qrcy 
qldnltc, vith locally dcbcc:.ltc ~qllltlte and abll11tllnt 
"'Phlbolc·llne<l nlarolitic cavi: les and fractures ; 
offshoots of the !ops!lls Cor~ ex, 

Roo IIC<I I111 graln<d granite to quart1 ~ Phcnoorym 
o! t:-letdspar, otphlbolc aol biotite. 

Hlqh·slllca <~oaos, Mcs alld sills, Hicrophcnm·;sts of 
q~~am ar.d ftldspu, vlth finely drm11ln<ted 
blutsh·qmnuphlbolt lrlcbcckitclinqrOJnd:um: llw· 
fclia~cd , !Ulo·brccclatcd, ""'" of intcosc dcvelojr.Cnt 
ol sphcilllts and other 'ndlcat!ons of qas-mculnq. 

Black fl~<·gnln<d Iiiii"! olorollorlte, 

.llphlbolltc, diorite, gmodiorltc, gunltc. Foliated 
uphlbolltc ;nd qabbro ocMrlnq as large scrccns aol 
xenolt:hs In foliated diorite and qranoJiorltc: tntr~cd 
by variably dcfofii.'IJ ton!l itc and itjJhlbole·hlotltc 
qunltc: lntrudoi or ntt vclnoi ~~ a palt fl"·qrai ncd 
qunltc. 
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Orange to red welded vitrlc tuff chatacten:cd by 
sadie amphibole otkocrysts with rare reset bed K-te : 
phenocrysts. 

Red and brawn crystal, vitrlc and lithic ash-ClCN 
shoots. Lahdtlc, fault and qas btccclas. Rhyolite 
and dykes and mi not basalt occutrcnces. 

~PRlNGDALB GROUP 

£!.Y.Btal-11thlc tu[f. Dense l y welded and masstve r 
phenocrysts of quartz and ~cldspar, e lrlst s of m<lf: 
Jare ultramafic l itho loq les . 

Red c lastlc sed1111Cntary rocks_,_ Conglomer.tte, san 
and sandy siltstones , l ocal caliche horizons; 
bedding, r ipples, lamlnanons, rip-up horizons, 
channels , etc. indicate sttr.am-[lood, prox ima l and 
Cluviatlle oriqln: clast s essent i ally vol c.~nJ 
plutonic ptovenance. 

Rhyolitic ash-flow vltrlc tuffs and brecclas. 
devitrlf l cd, loeall}' massive; areas ot ur 
vitroclastic t uf fs with la t ge i ndividuall y dc:vi t 
shards: locally passes into sandstone: alternat in 
basdltic and silicic bdnds ind icate mdqma -mlx lng. 

Dacitic to rhvoll tic ash-flow tu!fs, vitroclastic I 
and domes. Massive, vttnc , st r onql y welded: cuzv! 
joint surfaces in the domes, With i nternal plati ~ 
zones, local b tecc i at l On , and { low folds; lUI f s 
porphyritic, with small c uhcdral plagioclase an 
quartz phenocrysts in glassy matr ix . 

Silicic ash~flow tuffs. crys t als , lithi c fraqrncnl 
v i troclasts ; basal lltholphysac-rlch horl:ons, gr~ 
Into a partially we l ded crystal-lithic lapillt 
broken phcnoctysts of pl agioc lase , K- fcldst.><lr and ' 
flattened pumice bombs up to a met re l onq ; c la 
silicic volcanics, andesite and Jd tcly basdl t . 

Mainly basaltic flows, some of intermediate c~~ 
Thin flows of basaltic andesite wt th pJ.tqrocl~ 
minor dmphlbolc phenocrysts , non ... vcs lculat ,tnd mas 
ttachytic -tcxtutcd . 
Thtck basaltic flows w llh p lagi o~ lasc phcnoc:tyb' 
abundant quut:, chl or ltC , <>pJdotc dnd c:a l c: 
vcstc l CIS dnd f au lt zones. ' 
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J::.clsic to intermediate, dontlnant.ly dacite, tuff. 
Crystal-lithic and lapilli ahs-flow tuf[s: clasts of 
andes i te, rhyolite, angular and flattened punnce: 
var !ably welded. 

Andcsltlc to dacltlc flows. 
Ma~sive porphyr(tic andeslte·dacltc intrusive dOIIICB and 
flows. 
LTtiiTCtlapl lli nndcsitic·dacltlc ash·llow luff wit h 
variable welding and weak argillic and carbonate-chlorite 
a Iter at ion, 
Dacitic-andesit!c ~astlc apf.!!!! a! rcwor~cd valcdnic 
debris around the domes ot unit "la. 

~abrcccia. Laharic !lows, tu((!tcs and pcppentcs, 
volcanic conglomerates and breccias, red candstoncs . 

Welded, Uthlc·crystal tuff. Pl•qioc tasc a nd K·fcldspar, 
accessory biotite, quartz, and rare opaques, clasts of 
qranophyre, plagiophyric basAlt, ~ndcslte, ultro)lllaf ics , 
and 1asper. 

Qrange to green quartz.-1\-feldapar porphyry with s adie 
amphibo l e olkocrysts and minor aegi ri ne a nd altered 
f,lyall te, 

MedlW11 to coarse grained granite, chardctenzed b;· quat t" 
olnd pinro feldspar with finer grained t:tystals of b l ack 
olmphiboJe, tntt udcd by finer ql olilled l.lh \ ti s h grey 
qranltc, with locally rlebcckite peqmat i tc and rlbundilnt 
o~mr-hibole-iincd miatolltit: call i tles and fract oues; 
offshoots of ~he Topsai ls Complex. 

!!.cd medium grained granilo to quartz syenite. Phenocrysts 
of K-fcldspar, amphibole and blotitc . 

Uigh-silica dOCIICs, dykes and sills. Microphcnoctysts of 
quart z and feldspar, wi th finely disseminated 
bl•tlsh·qrecn amphibole I r Iebeck it c) In Qroundmass ; flow
foliated , auto·brecclated, zones of Intense development 
of spherules and other indi cations of cas- streaming, 

Black fine-grained ~sslvc mlcrodlorito . 

Alnphlbolltc, diorite, granodiorite, qranltc . ~·oliated 
amphibolite and gabbro occutring as larqe screens and 
xcnoltths in foliated dior i te and qranodiarite ; intruded 
by variab l y 1efotmcd tona lt te and amphlbolc·b l otrte 
'II anlte; tnt rudcd or net veined by ,, pale t i ne·qra tnco 
qtanl t e . 
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J.t Orall9!l to red ~~elded vitrlc tiff cllaractcrltcd by largo 
sodlc a!!!!l!lbolc oltocmts with rm resorbed K·fcldspar 
plwnocrym. 

lli Red and brown CtYital, vltrlc aod llthlc asb·flow tuff 
sheets. Lillartc, tautt ond qa; breccias. Rlr/OI!tc diiiCs 
iiird;Ics and ml"r ba;alt occurrcr.cc.<. 

'/: 

cmtll-llthk b!!t. Dor•oly "ldOII and Nllhcr IArqc 
ph!nocryau of quam 11\d fcldapar, cluta ot lloltlc and 
urc ultrwf!clltholoqlca. 

Rod elastic scdt.!ntarx rocks. CooqiOIICratc, sandtcnc, 
ao4 sandy slltstcnoa, local cdlcoo horlzcnsr cress· 
bcddloq, rl~ks, la.al~~ttlcna, rlp·up horhoos, socur 
channels, etc. Indicate mcan·flood, prcdnat and distal 
lluvlatllc orlqlnr clasts essentially vcleantc or 
plutonic prO\~nall:c. 

Rl!):olltlc asb·flow vttrlc tuffs and brca:las. Welded, 
dcvltrlficd, locally omlvc: areas of w:.rctdcd 
vllroclast!c tuffs with larqo todlvidual!y dcvhrltled 
shards: locally passes lotc Sdl\dstclll!: alternating thin 
b.lu!Wandsllic!cbandsindlcatclllqll\a-lhlng. 

~pltlc to rhl'!!lltlc iSh·llowtuffs, vttroclastlc brocd_! 
anddclcs. Mi5slvr,vttric, strong1y .. oeld~;.-ul'.' i pid:~dl 
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9rystal-lithic tuff. Densely welded and massive; large 
phenocrysts of quartz and feldspar, clasts of mafic and 
rare ultramafic lithologies. 

Red clastic sedilll!ntary rocks. Conglomerate , sand tone, 
and sandy siltstones, local caliche horizons: cross
bedding, ripples, laminations, rip-up horizons, scour 
channels, etc. indicate stream-flood, proximal and distal 
fluviatile origin; clasts essentially volcanic or 
plutonic provenance. 

Rhyolitic ash-flow vitric tuffs and breccias. Welded, 
dcvitrified, locally massive; areas of unwelded 
vitroclastic tuffs with largo individually dovitrifled 
shards: locally passes into sandstone: alternating thin 
basaltic and silicic bands indicate magma-mixing. 

O.Scitic to rh·tolitic ash-flow tuffs, vitroclastic breccia 
and dames. ~assive, vitrlc, strongly welded; curvi planar 
joint sur!accs in the domes, with internal platic shear 
zones, local brecciation, and flow fohls; tuffs locally 
porphyritic, with small euheclral plagioclase and rare 
quartz phenocrysts in glassy matrix. 

Silicic ash-flow tuffs. crystals, lithic fragments, and 
vltroclasts; basal litholphysae-rich horizons, grading up 
into a partially welded crystal-lithic lapilli tuff ; 
broken phenocrysts of plagioclase, K-fcldspar and quartZ J 
flattened pumice bombs up to a metre long l clasts of 
silicic volcanics, andesite and rarely basa l t. 

Mainly basaltic flows, some of intermediate CC!1!p0Sition. 
Thin flows of basaltic andesite with plagioclase and 
minor amphibole phenocrysts, non-vesi cular and massive to 
trachytic-texturcd. 
Thick basaltic flows with plagioclase phenocrysts, and 
abundant quartz, chlorite, epidote and calci te in 
vesicles and fault zones. 

Felsic to intermediate, dominantly dacite, tuff. 
crystal-lithic and lapilli ahs-flow tuffs; clasts of 
andesite, rhyolite, angular and flattened pumice ; 
variably welded. ~~ 

Andesitic to dacitic flows. 
Massive porphyritic andesit•t-dacite Intrusive domes and 
flows. 
Lithlc/lapilli andesitic- dacitic ash-flow tuff with 
variable welding and weak argillic and carbonate-chlorite 
alteration. 
Dacitic-andesitic autoclastic apron of reworked volcanic 
debris around the domes of unit la. 

Meqabrcccia. Laharic flows, tuffitcs and pcppcritcs , 
•·olcanic conglomerates and breccias, red sandstones. 

~eldcd, lithic-crystal tuff . Plagioclase and K-fcldspar , 
at 1sory biotite, quartz, and rare opaques, clasts of 
gr ... ophyre, plagiophyric basalt, andesite, ultramaf ics , 
and jasper . 

Orange to green quartz-It-feldspar porphyry with sodlc 
amphibole oikocrysts and minor aegirine and altered 
fayalitc. 

Medium to coarse grained granite, characterized by quart z 
and pink feldspar with finer qraincd crystals of black 
amphibol e, intruded by finer grained whitish grey 
gtanite, with locally riebockite pegmatite and abundant 
• mphibole-l l ncd miarolitic cavities and fract ures ; 
offshoots o! the Topsails Complex. 

Red medium grained granite to fOartz syenite. Phenocrysts 
of K-feldspar, amphibole and b ctitc. 

High-silica domes, dykes and sills. Microphenocryats of 
quartz and feldspar, with finely disseminated 
bluish-green amphibole (riebcckitel in groundmass : f low
foli ated, auto-brecciated, zones of intense deve lopment 
of spher ules and other indicati ons of gas-streaming. 

Black fine-grained massive microdiorlte . 

Ampli!W.,Ute, diorite, granodiorite, granite. Foliated 
amphibolite and gabbro occurring as l arge scre ens and 
xenoliths in foliated diot·ito and granodiorite; intruded 
by variably oeformed tonalite and amphibole-biot ite 
granite; intruded or net veined by a pale fine -grai ned 
granite. 
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SPRINGDALE EAST 

MAP 4 

SPRINGDALE EAST 
(Southwest Sheet) 
GEOLOGY 

(Partly Inferred from Aeromagnetics) 

M. Coyle, Ph. D. Thesis, 1990. 
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M. COYLE, PH.D. THESIS, 1990 

GEOLOGY, GEOCHEMISTRY AND GEOCHRONOLOGY 
OF THE SPRINGDALE CALDERA 

LEGEND FOR MAPS 1, 1A, 18, 2, 3, 4 

CARBONIFEROUS 

14. Red to grey mudstones to pebble 
conglomerates with local carbonate 
cement. 

SILURIAN-( DEVONIAN?) 

SHEFFIELD LAKE GROUP 

13. Andesite. Aphyric to 
plagioclase-microphyric. 

12a. Vitric tuff. Orange to red, \Velded. 
Characterized by large sodic amphibole 
oikocrysts with rare resorbed 
K-feldspar phenocrysts. 



LEGEND {continued) 

12. Ash-flow tuff. Massive, maroon, 
aphanitic to flow-banded quartz- and 
feldspar-phyric. 

11. Red and brown crystal, vitric and 
lithic-rich ash-flow sheet~. Laharic, 
fault and gas-breccias. Rhyolite domes 
and dykes. Minor basalt. 

SPRINGDALE GROUP 

10. Crystal-lithic tu.!f. Densely welded 
and massive large phenocrysts of quartz 
and feldspar, clasts of mafic and rare 
ultramafic lithologies. 

9. Clastic sedimentary rocks. Red 
conglomerate, sandstone, and sandy 
siltstone, local caliche horizons; 
cross-bedding, ripples, laminations, 
rip-up horizons, scour channels, etc. 
indicate stream~flood and proximal and 
distal fluviatile origin; clasts 
essentially volcanic or plutonic 
provenance. 



LEGEND {continued} 

8. Rhyolitic vitric ash-flow tuffs and 
breccias. Welded, devitrified, locally 
massive; areas of uowelded vitroclastic 
tuffs with large individually 
devitrified shards with axiolitic 
texture; locally passes into 
sandstones; alternating thin basaltic 
and silicic bands in some horizons. 

7. Dacitic to rhyolitic ash-flow tuffs, 
vitroclastic breccia and domes. 
Massive, vitric, strongly welded; 
curviplanar joint surf aces in the 
domes, with int~rnal plastic shear 
zones, local brecciation, and flow 
folds; tuffs locally porhyritic, with 
small euhedral plagioclase and rare 
quartz phenocrysts in glassy matrix. 



LEGEND (continued) 

6. Silicic ash-flow tuffs. Crystals, 
lithic fragments, and vitroclasts; 
basal lithophysae-rich horizons, 
grading up into a partially welded 
crystal-lithic lapilli tuff; broken 
phenocrysts of plagioclase, K-feldspar 
and quartz; flattened pumice bombs up 
to a metre long; clasts of silicic 
volcanics, andesite and rarely basalt. 

5. Mainly basaltic flows, some of 
intermediate composition. Locally 
plagiophyric; with amygdales of quartz, 
calcite and chlorite; variably 
altered. Note that map units include 
large areas of no outcrop. 

4. Felsic to intermediate, dominantly 
dacitic, ash flow tuff. Crystal-lithic 
and lapilli ash-flow tuffs; clasts of 
andesite, rhyolite, angular and 
flattened pumice; variably welded. 

3. Andesitic to dacitic flows. Locally 
plagiophyric, massive to flow-foliated 
to brecciated; local intrusions of 
massive andesite. 



LEGEND (continued) 

2. Mesobr~ccia. Laharic flows, tuffites ___ .._._. __ 
and pepperites, volcanic conglomerates 
and breccias, red sandstones. 

1. Welded, lithic-crystal tuff. 
Plagioclase and K-feldspar, accessory 
biotite, quartz, and rare opaques, 
clasts of granophyre, plagiophyric 
basalt, andesite, ultramafics, and 
• Jasper. 

INTRUSIVE and BASEMENT ROCKS 

I. Quartz-K-feldspar porphyry. Orange to 
green, with sodic amphibole oikocrysts 
and minor aegrine and altered fayalite. 

H. Granite to quartz syenite. Red 
medium-grained plagioclase, K-feldspar 
and amphibole porphyritic. Granophyric 
textured; heavily altered. 



LEGEND (continued) 

G. Rhyolite domes, dykes and sills. 
High-silica. Microphenocrysts of 
quartz and feldspar, with finely 
disseminated riebeckite in groundmass; 
flow-foliated, auto-brecciated, zones 
of intense development of spherules and 
other indications of gas-streaming. 

F. Felsic microporphyry sills and dykes. 
E. Microdiorite. Black, fine-grained, 

• mas save. 
D. Granite. Medium to coarse grained; 

characterized by quartz and pink 
feldspar with finer grained crystals of 
black amphibole, intruded by finer 
grained whitish grey granite, with 
locally riebeckite pegmatite and 
abundant amphibole-lined miarolitic 
cavities and fractures; offshoots of 
the Topsails Complex. 

C. One-feldspar granite. White to red, 
medium to coarse grained, equigranular 
with amphibole + sadie pyroxene-; ~n -
large part peralkaline. 



.. 

LEGEND (continued} 

B. Granite, granodiorite, minor diorite. 
May in part be correlative with the 
Twin Lakes Complex. 

A. Amphibolite, diorite, granodiorite, 
granite. Foliated amphibolite and 
gabbro occurring as large screens and 
xenoliths in foliated diorite and 
granodiorite; intruded by variably 
deformed tonalite and 
amphibolite-biotite granite; intruded 
or net veined by a pale fine-grained 
granite. 

RA. Roberts Arm Group. Mafic to felsic 
submarine volcanic rocks. 

CP. Catchers Pond Group. Mafic to felsic 
submarine volcanic rocks. 

LB. Lushs Bight Group. Mafic, 
ophiolite-related submarine volcanic 
rocks. 






