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THHEE PERSPECTIVES ON THE ORIGIN AND 
INTERPRETATION OF GRANITES 

"Field studies of granites deal with end products of 
processes long since completed, and the most aetailed 
mapping and study of these products may tail to give 
convincing evidence concerning the exact nature of the 
processes responsible tor the relations." 

From : O.F.Tuttle and N.L.Bowen, 1958. Origin of 
granite in the light of experimental studies in 
the system NaAlSi 3o 8 - KAlSi 3o 8 - Si02 
-H

2
0. 

From the book that ended the "granite 
controversy", and laid the foundations tor most 
current thought on silicic magmatism. 

"The road to understanding orogenic processes, 
particularly in Precambrian terranes, is littered with 
misused discriminant diagrams and the hope of a simple 
link between the trace element compositions of igneous 
rocks and tectonic environment." 

From: C.J .Ha'iiltesworth, M.A. Menzies and P. van 
Calsteren, 1986. Geochemical and tectonic 
evolution of the Damara Belt, Namibia. 

From a symposium on collision tectonics, 
organized by the Geological society of Great 
Britain. 

"I would certainly hope that 100 years hence, we will 
not be debating the origins of granites!-

From: W.S.Fyfe, 1988. :ranites and a wet convecting 
ultramafic planet . 

From a conference on the origin of granites, 
organized by the Royal Society of Edinburgh to 
coftmemorate the bicentennial of James Hutton. 
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Thesis Abstract 

The Lower to Middle Proterozoic Trans-Labrador Granitoid Belt 
in the Makkovik Structural Province is divided on the basis of 
field relationships and geochronology into Hakkovikian and 
Labradorian plutonic assemblages, representing approximate 
time intervals of 1840 - 1720 and 1670 - 1600 Ha respectively. 
The Makkovikian assemblage includes both syn- and post-tectonic 
associations, but precise U-Pb zircon ages mostly cluster around 
1800 Ma, suggesting a single main intrusive episode that 
transcended the later deformation associated with the Makkovikian 
orogeny. The Labradorian assemblage is not associated with local 
deformation or metamorphism, but is probably a distal effect of 
the ca. 1650 Ma Labradorian orogeny, prevalent south of the study 
area. Both assemblages are broadly correlative with volcanic 
sequences of similar age and geochemical affinity. 

The Makkovikian assemblage is dominated by siliceous, 
potassic, commonly porphyritic, granites and alkali-feldspar 
granites, associated with subordinate monzonite to quartz 
syenite. High-silica granite suites are commonly fluorite­
bearing. In geochemical terms, most Makkovikian granitoids are 
metaluminous to slightly peralkaline, Fe-enriched, and enriched 
in Zr, Nb, Hf, REE, Zn and fluorine. A comparative analysis 
suggests that they are transitional in character betwePn 
Phanerozoic post-orogenjc (post-collisional) assemblages and 
"A-type" or "within-plate" granitoid assemblages. Similarly 
enigmatic characteristics have been reported from Early 
Proterozoic granitoid batholiths elsewhere in the world. 

The subordinate, bimodal, Labradorian plutonic assemblage 
comprises gabbro-diorite-monzonite-syenite suites, derived from 
mafic parental magmas, and an assortment of siliceous, generally 
leucocratic, granitoid :~ocks. Mafic rocks resemble high-1< 
calc-alkaline or shoshonitic basalts, and their associated felsic 
differentiates are enriched in Rb, Cs, Th, and u, as a 
consequence of protracted fractionation. Other Labradorian 
granites (s.s.) are metaluminous to peraluminous in composition, 
and depleted in Zr, Nb, Hf, REE, Zn and fluorine, indicating that 
they had quite different sources from their Makkovikian 
cc-unterparts. 

The Makkovikian asse1ablage displays geographically systematic 
Nd isotopic variations. In the west, negative £NdCHUR indicates 
ancient (probably Archean) crustal material in sources, but 
values are too high to permit derivation eneirely from such 
material. These rocks probably represent mixtures of juvenile, 
mantle-derived, magma and older polycyclic Archean crust. In the 
east, positive £NdCHUR indicates juvenile, Proterozoic sources, 
and gneissic rocKS r~presenting possible basement have 
depleted-mantle Nd n 'del ages of ca. 2100 Ma. Discrete, high­
silica, "A-type" grar ite plutons show an east-west shift in 
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fNdCHUR from +6 to -6, but retain remarkably similar 
ele~ntal characteristics in both domains. It is concluded 
that magmas in the east also contained a significant crustal 
component, but that this component had a short crustal residen~e 
period. Nd isotopic data thus define a fundamental crustal 
boundary between an Archean Craton and a younger (accreted?) 
Proterozoic c~ustal province. Makkovikian magmatism accompanied 
and followed accretion of the younger domain, and is suggested to 
have resulted from emplacement of anhydrous, hot, mantle-derived 
mafic magmas into the lower crust, where they crystallizej, 
assimilated and mixed with crustal rocks and melts thereof. 

Labradorian rocks mostly have ENdCHUR of +1 to -2, 
regardless of composition or location. Olivine-bearing mafic 
rocks, which cannot represent crustally-derived magmas, have 
fNdCHUR of ca. +1, significantly below postulated ··alues for 
concurrent depleted mantle. It is suggested that this crustal 
component was introduced to depleted mantle via subduction of 
continent-derived sediment, as suggested for modern arc magmas. 
However, some Labradorian granites that lack mafic parents could 
be derived by anatexis of Makkovikian "mixed" crust, or juvenile 
material underplated during Makkovikian events. Labradorian 
magmatism is tentatively interpreted as a distal-arc assemblage 
above a subduction zone that records renewal of tectonic activity 
following Makkovikian terrane accretion and magmatism. 

The isotopic characteristics of both assemblages underline 
the importance of the Early Proterozoic as a period of new 
crustal growth. Makkovikian magmatism reorganized previously 
generated crust, and added significantly to it, particularly in 
the "juvenile" eastern domain. Largely ensialic crustal 
growth of this type may have been more important in a hotter, 
Proterozoic Earth and, in concert with ensimatic crust generation 
linked to subduction, may account for the high crustal growth 
rates deduced for this crucial period in planetary evolution. 

The transitional characteristics of the Makkovikian 
assemblage may also be a function of greater heat flow. Recent 
models for "anorogenic" magmatism invoke insulation of the mantle 
by newly-accreted crust or aggregated megacontinents, resulting 
in mantle upwelling, plume act~~ity, magmatism and (eventually) 
rifting. In a hotter Proterozoic Earth, the time-lag between 
aggregation and mantle upwelling would be shorter, and conditions 
now associated with "anorogenic" magmatism would prevail widely 
in post-orogenic environments. It is perhaps significant in this 
respect that worldwide Lower Proterozoic (1900 - 1700 Ma) 
orogenic events have recently been interpreted to record the 
assembly of an early Pangean-type supercontinent. 

KEY WORDS : Labrador, Precaabrian Proterozoic, Granitoids, 
Granite, BathQliths, Petrology, ~che•istry, Coaparative, 
Isotopes, Neodyaiu., Petrogenesis, crustal Evolution. 
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Proterozoic Magmatism and Crustal Evolution 

Sir Charles Lyell (1885) established the framework for 

most geological thought with his principle of 

uniformitarianism. Although this concept of the present 

as the key to the past remains a cornerstone of our 

science, some of the broader applications of Lyell's 

doctrine are actively debated by geoscientists who study 

the Precambrian. 

The Proterozoic Eon, extending from 2500 Ma to 570 Ma 

ago, is the longest segment of Earth history for which the 

ge0logical record is complete. This vast period is the be::;t 

vehicle for testing concepts of long-term uniformitarian 

(e.g. Windley, 1983), unidirectional (e.g. Dickinson, 1981) 

or cyclic (e.g. Sutton, 1963; Hoffman, 1989) evolution of 

the Earth. 

There is now general agreement that mobile lithospheric 

plates existed throughout the Phanerozoic, and probably 

during the Late (i.e., post-900 Ma ago) Proterozoic (e.g. 

papers in Kroner, 1981 and Medaris et al., 1983) • 

Application of plate tectonics tc the earlier Proterozoic 

record, however, is not as widely accepted, particularly 

amongst geologists working in the southern hemisphere (e.g. 

Kroner, 1983; Etheridge et al., 1987). 

Hallmarks of the Wilson Cycle of ocean creation and 

destruction are diverse, including thick Atlantic-type 

miogeoclinal sequences, and the crucial ophiolites that 
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attest to former oceanic crust. Such features are absent 

(perhaps eroded) or strongly metamorphosed in many 

Proterozoic orogenic be 1 ts. Reconstruct ions of Proterozoic 

tectonic cycles thus dPpend heavily on interpretation of 

orogenic igneous rocks. Volcanic sequences are present in 

many areas (e.g. papers in Pharoah et al., 1987), but 

Proterozoic magmatic assemblages are dominated by intrusive 

rocks, mostly of granitoid composition. These differ 

radically from the sodic tonalites and trondhjemites that 

dominate Archean terranes (e.g. Taylor and McClennan, 

1985), but their relationship to modern assemblages remains 

equivocal. 
Several Proterozoic granitoid batholiths in the 

northern hemisphere have been described as "Andean" or 

"Cordilleran" (e.g. Hoffman, 1980; Lewry et al., 1981; 

Nystrom, 1982). However, geochemical studies of some have 

proved inconclusive, and illustrate many contrasts with 

modern arc magmas (e.g. Fumerton et al., 1984; Halden et 

al., 1987). The northern hemisphere Proterozoic also 

contains abundant, siliceous, potassic, evolved granitoid 

rocks ( "rapaki vi granites") and associated mafic intrusions 

of so-called "anorogenic" setting (e.g. Emslie , 1978; 

Anderson, 1983). Phanerozoic analogues of these rocks 

exist, particularly in Africa (e.g. Kinnaird and Bowden, 

198 7), but they are volumetrically insignificant compared 

to these Proterozoic examples. 

Wyborn et al.(l987), Etheridge et al.(1987) and Wyborn 

( 19 88) have drawn attention to geochemical contrasts 

between Proterozoic and Phanerozoic granitoid assemblages 

in Australia, and propose that the former are products of 

ver deal crustal accretion processes in an intracontinental 

environment, and unrelated to plate-margin processes. Page 

( 1988) po~nts out the episodic and continent- wide nature of 

Proterozoic magmatism in Australia, in contrast to the 
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tigh~ly focussed, linear patterns of the Phanerozoic. These 

authors co~ment also on the siliceous, potassic and evolved 
geochemistry of Proterozoic granitoid rocks, and thei.: 

partial affinity tu anorogenic suites. 
The Proterozoic was a critical period for growth of the 

continental crust. Orogenic belts of 1900 - 1700 Ma age are 

abundant en a global scale, and (in the northern hemisphere 

at least), comprise vast tracts of "juvenile" crust 

separated from the mantle after 2000 Ma ago (Patchett and 

Arndt, 1986). It has been suggested that crustal growth 

rates at this time were several times greater than current 

global arc magma production (Reymer and Schubert, 
1986). As crustal growth is synonymous with granitoid 

magmatism, Proterozoic batholiths are a vital key in 
unlocking the mechanism(s) of early crustal evolution. In 

particular, if such growth occurred primarily via arc 

magmatism (as is widely suggested), how can this be 

reconciled with the apparen~ geochemical contrasts between 

Proterozoic and Phanerozoic granitoid batholiths ? 

Resolution of these questions is hampered by poor 

knowledge of Early Prote~ozoic granitoid assemblages. Also, 

many modern or Phanerozoic granitoid assemblages that 
supposedly define tectonic environments are themselves 

poorly characterized, particularly in representative 

geochemical terms. This thesis attempts to address some of 

these problems via a large-scale geochemical and isotopic 

study of a major Proterozoic batholith in eastern Labrador, 

with reference to Phanerozoic magmatic assemblages, and the 

role of Proterozoic magmatism in crustal evolution. 

Aims and Objectives • 

The focus of this study is referred to as the 

Trans-Labrador Granitoid Belt (TLGB). The TLGB is an 
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enormous zone of Lower and Middle Proterozoic plutonic 

rocks (and their metamorphic equivalents) that extends for 

ca. 600 km across Labrador (Figure 1.1). The study is 

localized in a well-exposed portion of the TLGB in the 

Makkovik Structural Province (Gower and Ryan, 1986) on the 

Labrador Coast. The principal objectives a re listed below. 

1. To document the geology, petrology and geochemistry of 

these plutonic rocks. Some have been described previously 

by localized studies, but integration of petrological and 

geochemical data over the entire area has never been 

attempted. Geochronological studies using Rb-Sr (this 

study) and U-Pb methods (Krogh et al., in prep.) play an 

important role in this work, particularly in defining 

discrete assemblages within the TLGB, as do results from a 

large-scale mapping and lithogeochemical program. 

2. To examine the sources of TLGB magmas via Sr and Nd 
isotope geochemistry, and to provide models for their 

petrogenesis and evolution. This is the first Nd isotopic 

study of granitoid rocks in Labrador. In addition to this 

specific objective, Nd isotope studies are relevant to the 

origins of granitoid magmas and Proterozoic crustal 

evolution, particularly in terms of crustal growth models. 

3. To attempt a quantitative comparative assessment wi th 

respect to Phanerozoic assemblages developed in various 

tectonic settings. In particular, can the TLGB magmatic 

assemblages be related directly to younger suites, or are 

they so distinct as to require a unique, non-uniformitarian 

tectonic model ? If modern analogues are identifiable, what 
• 

type of environment(s) or process(es) do they suggest for 

generation of th~ TLGB and similar assemblages ? 
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Figure 1.1. Locatioo of the st1K:ly area in I.al':lraalr, ~ the 
~te o.rt.line of the Trans-Labrador Granitoid Belt ('lt.GB). 
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4. To assess the role that the TLGB played in local cru~tal 

evolution and, on a wider scale, to examine implications 
for the role of Proterozoic magmatism in Ea rth history, a nd 

possible reasons for differences between these rocks and 

younger analogues. In particular, can such suites be 

accomodated in a plate-tectonic framework that is 
influenced by changing physical conditions (notably 

declining global heat production), or are non­
uniformitarian tectonic models such as those of Kroner 

(1983) and Etheridge et al.(l987) required ? 

Scale Considerations 

This study is aimed at regional geologic problems and 

large-scale questions of Precambrian crustal evolution: the 

study area is huge, and sev~ral of the intrusive suites 
described herein are veritable research topics in their own 

right. It is impossible to deal fully with all aspects of 
this project within a Ph.D. dissertation. Many local 

details and contact relationships between units remain 

unresolved, and descriptions of units and their field 

relationships have been condensed. Some aspects of this 
study (e.g. specialized granites and mineral potential) are 

discussed elsewhere (Kerr, 1986; 1987; 1988). U-Pb 
geochronological data are being prepared for publication 

elsewhere as part of a joint project (Krogh et al., in 
prep.), and are only briefly summarized in Appendix D. 

Studies of restricted areas or time-slices in the TLGB 

(although undoubtedly of interest) would be uninformative 

in terms of the objectives above. It is important to 

consider the TLGB (and comparative assemblages) at the 
• 

largest possible scale, and some local detail must 
unavoidably be sacrificed to acheive this. 1 ·~ is hoped that 

this study will establish a framework for future work. 
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1.2 GENERAL INFORMAriQH 

Location, Topography and Access 

The study area is located approximately 150 krn 

northeast of Goose Bay (Figure 1.1), and includes the 
northern half of NTS 1:250,000 sheet 13J, the eastern edge 

of sheet 13K, and parts of sheet 130. A rugged, 
well-exposed, mountainous terrain (maximum elevation 875 m 

above sea level) dominates eastern and northern portions of 
the area. The coastline is incised by several deep fiords 

(e.g. Makkovik Bay) and is protected from the vagaries of 
the r,~brador Sea by numerous offshore islands. The southern 

and w<>stern parts of the study area cor:sist of a variably 
wooded, boulder-strewn plat~au that is largely obscured by 

glacial drift, with the exception of hilltops and 
watercourses. "Summer" conditions prevail from late June to 

late August, and are an extreme mixture of cold, damp 
weather and hot, humid, fly-infested periods. In Labrador, 

geologists are widely regarded as the only individuals 
foolish enough to attempt inland travel during the summer. 

The communities of Makkovik and Postville (Figure 1.1) 
are served by Marine Atlantic coastal boat service from 

June to November, and by year-round scheduled ( sensu 

lato ) flights operated by Labrador Airways. The project 

from which this thesis evolved was operated from Makkovik, 

and from a dormant mineral exploration camp at Melody Lake, 

some 30 km south-west of Postville. 
The coastline provides access to some of the northern 

and eastern parts of the area, but easy access to the 
hinterland is possible only by air. The size Qf the area 

involved in this project is such that its coverage would 
have been impossible without extensive helicopter support. 
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Previous Work From 1814 to 1985 

Geological research on the coast of Labrador commenced 

with the work of Steinhauer (1814). This, and subsequent 
studies (e.g. Leiber, 1860; Packard, 1891; Daly, 1902), 

consisted largely of descriptions of coastal outcrops. The 
first mapping in coastal areas was conducted by the 
Newfoundland Geological Survey and Geological Survey of 
canada (Kranck, 1939;1953; Christie et al., 1953; Douglas, 

1953). 1:250,000 geological mapping, including coverage of 
inland areas, was completed by the Geological Survey of 

Canada in the 1970s (Stevenson, 1970; Taylor, 1975). 
In 1954 Murray Piloski of British Newfoundland 

Exploration Company Ltd (BRINCO) discovered pitchblende 
near Makkovik. This led to a 25-year period of uranium, 
molybdenum and base-metal exploration by BRINCO and several 

joint venture partners (see Gower et al.,1982 and Ryan, 

1984 for details). Most of the exploration and research 
work from 1955 to 1978 was related to the search for 

economic mineralization in uranium-bearing supracrustal 
sequences. Many of these studies remain confidential, but 

some general results were published by BRINCO geologists 
(e.g Beavan, 1958; Gandhi et al., 1969; Gandhi, 1978). 
Uranium deposits at Kitts and Michelin were evaluated for 

commercial development in the late 1970s. Several more 

general studies with economic implications were carried out 
via university theses supported partly by BRINCO. These 

included documentation of mineralization (e.g. Gill, 1966; 
Barua, 1969), and also regional geological and structural 

syntheses (Clark, 1973,1979; Marten, 1977) in the Makkovik 
and Kaipokok Bay areas. The study of Marten (1977) was 
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particularly influential in unravelling the structural 

evolution of the area. A t~ird group of thesis studies 
emphasized petrological and geochemical studies of 

uranium-bearing volcanic rocks (White, 1976; Evans, 1980). 

The Newfoundland Department of Mines (NDM) started 

work in the area in 1976 and completed regional 1:100,000 

mapping in 1980 (Bailey, 1979; Bailey et al., 1979; Ryan 

and Harris, 1978; Doherty, 1980; Gower, 1981). Compilation 
and synthesis of this infcrmation was presented by Gower et 

al.(l982) for the eastern half and by Bailey (1979) and 
Ryan (1984) for the western half of the area. These 

prog~ams focused mostly on supracrustal sequences, but the 
areal importance of post-tectonic granitoid rocks was 

recognized, as was their polyphase and compositionally 
variable nature. 

Central Mineral Belt Granitoid Project 

Re-examination and sampling of a number of mineral 

occurrences in the study area during 1984 (Wardle, 1984; 

Wardle and Wilton, 1984) awakened interest in both the gold 

potential of the area and the possible importance of 

post-tectonic granitoids as hosts or progenitors to 

mineralization. The "Central Mineral Belt Granitoid 
Project" (CMBGP) was initiated to define and delimit 

plutonic associations and assess their potential for 

economic mineralization. This commenced with geochemical 

sampling and mapping in 1985, leading to revision of 
existing unit designat '. 1s and definition of new regional 

granitoid units (Kerr, 1986). Analysis of geochemical data 
led to the identification and delineation of several 

granitoid_associations considered to have some of the 
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characteristics of specialized granites (Kerr, 1987). The 

1986 field season included follo~-up mapping and sampling 

in these areas, and extension of regional coverage eastward 

into the Beredict Mountains. The petrology and geochemistry 

of possible specialized granitoid rocks in the area was 

discussed in more detail by Kerr (1988a). 

The CMBGP was co-ordinated throughout its duration 

with related metallogenic studies by Derek Wilton and 

co-workers. These include thesis studies of granite­

related mineral prospects (e.g. MacDougall, 1988; 

MacKenzie, 1988), and general assessment of the role of 

granitoid rocks in metallogenesis throughout the Central 

Mineral Belt (Wilton et al., 1986, 1987). 

Relevant Work outside The study Area 

Systematic rr.apping conducted by the NOM has led to 

substantial re-interpretation of geotectonic divisions 

within Labrador. Geological and geochronological 

investigations in central Labrador (Wardle et al., 

1982,1986; Nunn et al.,l985; Thomas et al.,1986) defined 

the geologic entity termed the Trans-La brador Satholith, 

and also identified a ca. 1650 Ma old cryptic orogenic belt 

(Labrador Orogen) within the area occupied by the ca.1100 

Ma Grenville Province. Geologic mapping in areas adjacent 

to the study area (Ryan and Kay, 1982; Gower et al.,1980; 

Gower, 1986; Gower and Ryan, 1986, Owen et al.,1986) is 

also relevant to this project, and is discussed in the 

appropriate chapters. 

• 
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L _3_.1'L8MINOLQGY and N.OMENCLATURE 

Classification and Nomenclature of Plutonic Rocks 

The nomenclature of plutonic rocks is based on modal 

proportions of qudrtz, alkali feldspar and plagioclase 
feldspar. The lUGS classification (Streckeisen, 1976; 

Figure 1.2a) is employed in this thesis, with substitution 
of the term "monzogranite" for the "Jb" granite field of 

the lUGS scheme; the term "granite" is restricted to the 
11 3a" granite field, although it is used sensu lato in 

some unit names. Rock names assigned in this thesis are 
visual estimates from cut slabs stained for K-feldspar. No 
point-counting of sections or slabs was ~ttempted, as most TLGB 

rocks are coarse grained and/or porphyritic. 

In comparative studies, an unbiased method of defining 
rock types is required; classification via normative 

mineralogy is·the preferred method. Streckeisen and 
LeMaitre (1979) provide an empirical equivalent to the lUGS 

scheme using the parameters Q' = [ Q 1 (Q + Ab + An + Or) ] 
and ANOR [ An 1 (An+ Or) ) (Figure 1.2b). The recommended 

normative calculation scheme is the mesonorm•of Barth 
(1955), which incorporates hydrous minerals such as 

hornblende and biotite. This system is used widely in this 
thesis to provide a method of comparing and subdividing 

suites or assemblages. It is not used to assign unit names, 
but there is general agreement between names based on modal 

estimates and those calculated from norms. 
The term "granitoj i" lacks precise definition, but is 

generally used for all 1haneritic plutonic rocks from 
diorite to alkali-feldspar granite (e.g. Strong, 1981). It 

• 
includes most of the fields in Figure 1.2, with the 
exception'of gabbro. 

* see note in caption for figure 1.2 
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AFGT- Alkali Fsp Granite 
AFQS- Alkali Fsp Quartz Syenite 
AFST- Alkali Fsp Syenite 
GRNT- Granite (s.s.) 
QSZT - Quartz Syenite 
SENT- Syen1te 
MZGT - Monzogranite 
QZMZ - Quartz Monzonite 
MNZN - Monzonite 
GRDR - Granodiorite 
QZMD - Quartz Monzodiorite 
MZDR- Monzodiorite 
TNLT- Tonalite 
QZDR - Quartz Diorite 
DORT- Diorite 
OZGB - Quartz Gabbro 
GBBR- Gabbro 

(all values are mesonorms) 

Figure 1. 2. Classification and nomenclature of COII'[OC)n 
plutonic rocks. (a) Modal classification of streckeisen (1976). (b) 
Nonnative classification of streckeisen and I.emaitre (1979). 

NOTE: In practice, CIPW and Barth mesonorms yield almost identical 
results in the Streckeisen and LeMaitre system, as shown also by 
~owden et al.(l984} for a range of rock types. For the sake of cons­
~stency with the original paper, I have employed the mesonorm. 
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Descriptive Geochemical Terminology 

Simple, descriptive geochemical terms outlined by 

Shand (1927) are used extensively in this thesis. In 

contrast to many other geochemical terms (see below), these 

have direct implications for varietal mineralogy. 

Tbe alumina index or A/C+N+K ratio [ molecular 

Al 20 3/(CaO+Na20+K20)] divides rocks into 

metaluminous (A/C+N+J< < 1) and oeraluminous (A/C+N+K > 1) 

categories. Alumina oversaturation in the latter group 

permits formation of aluminous phases such as muscovite, 

garnet and cordier i te. 

The .sumaiti~ index or K+N/A ratio ( molecular (K 20+ 

Na20)/Al2 o3 ) provides distinc ~ m into peralkaline 

( K+N/A > 1) and subalkaline ( K+N/A < 1) categories. There 

is a common misconception (e.g. Bowden et al., 1984) that 

peralkalinity is also implied by A/C+N+K < 1: this is not 

so, except in rocks with negligable cao. Peralkaline rocks 

are oversaturated in ( Na 20+K 20), and may contain 

alkali-bearing mafic silicates, e.g. reibeckite and 

aegirine. If this property is combined with a low silica 

content, such rocks may contain feldspathoids such as 

nepheline or leucite. The term peralkaljne is distinct from 

"alkaline", as commonly applied to mafic rocks. The latter 

has no precise definition, and refers only to relatively 

high (Na 20+K2o) at a given cao or sio2 content (see 

below). 

Peac~ck ( 1931) introduced the alkali-lime index (ALI: 

sio2 content at which K
2

0+Na
2
c• is equal to CaO), and 

also the t~rms alkaline (ALI < 51\ sio2 ), stl.J_,\ali-calcic 

(51\ < ALI < 56% sio2 ), calc-alkaline (56% < ALI < 61% 

Si02 ) and calcic (ALI > 61% Si02). These are arbitrary 
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divisions, but modern petrology has endowed the terms with 

genetic meanings beyond their original definition. The ALI 

cannot be measured directly in granites with high 

( K20+Na 2o) I CaO ratios, but may be estimated by linear 

regression. 
Two other descriptive terms employed in this thesis 

are the soda-potash ratio [ N/N+K ; Na20/(Na2o+K20) ] 

and the iron-magnesium ratio ( F/F+M ; FeOt/(FeOt+MgO) ]. 

The latter uses total iron expressed as FeO ( FeOt). The 

term sodic is used where N/N+K > 0. 5 and potassic where 

N/N+K < 0.5. No descriptive labels are attached to F/F+M, 

which is a measure of relative iron enrichment. 

Geochemical classifications developed by French 

researchers (e.g. La Ro'=he, 1980; Debon and Lefort, 1982) 

are employed locally in this thesis. The "characteristic 

minerals" method of Debon and LeFort (1982) expresses 

oxides as cation proportions (xlOOO), and defines the 

following parameters. 

Q = Si/3 - (K + Na + 2Ca/3) [measure of silica saturation] 

p = K - (Na + K) 

A = Al - (K + Na + 2Ca) [measure of alumina saturation] 

B -- Fe + Mg + Ti 

F = 555 - (Q + B) 

These methods are hampered by the the need for 

sequential calculations, and by complex descriptive 

terminology. Conventional normative parameters or molecular 

ratios provide the same infonnation in a more familiar 

mineralogical framework. Nevertheless, the Q-B-F ternary 

projection of Oebon and LeFort ( 1982) was found to have 

some utility in this study. 
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Descr i pti ve tcr~inology used to subdi~iic trace 

elements into groups (Table 1.1) is adapted from Saunde rs 

ct al. ( 1979). The new term "Octahedrally Co-ordinated 

cation·• (OCC) elements refers to the ability of divalent 
. . f 2+ d 2 + . f. cat1ons to subst1 tute or Mg an Fe ~n common rna ~c 

silicate minerals. These correspond to the "compatible" 

trace elements of conventional terminology. The distinction 

is made because elements such as Ba and Sr may be 

compatible in granitoid magmas, yet are geochemically 

distinct from V, Cr, cu and Ni. 

Environments of Granitoid Magmatism 

The theory of plate tectonics provides a framework for 

classification of present-day and recent (i . e. Mesozoic -

Cenozoic) environments of granitoid magmatism. Large-scale 

silicic magmatism is essentially a continental phenomenom , 

although minor amounts of felsic volcanic rocks are 

associated with oceanic settings, particularly island arcs. 

Tectonic settings of continental granitoid magmatism are 

grouped loosely into three environments (e.g. Pitcher, 

1983; Pearce et al., 1984). 

Volcanic Arc Magmatism Arcuate orogenic belts 

associated with subduction beneath continental margins 

(e.g . the Andean-cordilleran belt) are characterized by 

long-lived zones of volcanism and plutonism that parallel 

the trench axis. The least differentiated granitoids have 

affinities to plutonic rocks in intra-oceanic islan<~ arcs, 

but most continental arcs contain compositionally ex, anded 

suites dominated by metaluminous to peraluminous, sodic 
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Table 1.1. Descriptive terminology used for trace element 
associations. Classification adapted fran Sall!'X3ers et al. ( 1979) with 
m:x:tifications to suit granitoid rocks rather than basalts. ' 

1. OCTAHEDRALLY CO-ORDINATED CATION (OCC) ELEMENTS 

Elements with divalent cations that substitute readily in 
the octa.~edral (co-ordination = 6) sites in rock-forming Hg 
and J.'e silicates. They accuDIUlate in crystallizing phases 
and therefore show COMPATIBLE behaviour. 

Sc V Cr Co Ni Cu (also MnO in most granites) 

2. LOW FIELD STRENGTH ( LFS) ELEMENTS 

Elements with a charge/radius ratio of < 0.2. In general, 
they are excluded from common silicates and accumulate in 
residual liquids, showing INCOMPATIBLE behaviour. This is, 
however, not so for Ba and Sr, which can enter .feldspars. 
Rb may enter biotite or muscovite. 

Rb Cs U Th Pb Sr Ba 

3. HIGH FIELD STRENGTH (HFS) ELEMENTS 

Elements with a charge/radius ratio of > 0.2. These 
co.m1110nly show INCOMPATIBLE behaviour, but are very strongly 
influenced by residual phases, particularily zircon, 
allanite, JDOnazite, sphene and apatite. They are also 
widely regarded as • illUilObile•. 

zr Hf Nb Ta sn w Mo (also Tio2 and P2o5 
in granites) 

4 • RARE EARTH ELEMENTS ( REJo:) 

Trivalent (except Eu) elements whose behaviour is 
sensitive both to accessory and major phase assemblages in 
residual material. Y is included, although not technically 
a meJilber of the rare earth (lanthanide) series. 

Y La Ce Pr Nd Sm Eu Gd Tb 
Dy Ho Er Tm Yb LU 

5. "INDETERMI. 'ATE" TRACE ELEMENTS 

Elements whose behaviour may vary widely depending on 
major phase assemblages in residual •aterial and upon other 
chemical and physical factors . 

Li Be Ga Zn As Sb F 
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diorite, tonalite and granodiorite. These suites are 

commonly calcic to calc-alkaline. "Mature" oceanic island 
arcs include intermediate plutonic rocks that overlap 

extensively with continental arc suites. 

Collision Zone Magaatis• : Zones where subduction of 
oceanic lithosphere has ceased, but continental blocks 
continue to converge (e.g. the Alpine-Himalayan belt), are 
also characterized by large-scale granitoid magmatism. 

Geophysical data commonly indicate that such zones are 
underlain by anomalously thick continental crust, implying 

tectonic thickening via thrusting. Collisional zones 
contain a wide variety of igneous rocks, but most that 
accompany or follow collision are compositionally 
restricted monzogranite to granite. Peraluminous two-mica 
leucogranites are a characteristic component of many such 

zones. In detail, collisional orogens are tectonic collages 

of pre-, syn- and post-collisional magmatic environments 
(Debon et al.,1986; 1987a; Harris et al., 1984), and thus 

commonly include rocks of volcanic-arc type amongst their 
earliest components. Post-collisional suites associated 
with tensional or transcurrent tectonics may also resemble 
granites of the within-plate group (see below). 

Within-Pla~e Kagaatis• : Silicic magmatism is also 

associated with uplift and tensional tectonics in stable 
cratonic areas. Examples include the modern East African 

Rift sytem, and Mesozoic granites of Nigeria and Niger 
(Kinnaird and Bowden, 1987). The latter were probably 
associated with the break-up of Gondwanaland. Continental 
within-plate magmatic zones contain diverse magmatic 



- 18 -

assemblages, commonly of bimodal, alkaline-peralkaline or 

silica-undersaturated character. Peraluminous compositions 
are rare. In terms of volume, within-plate zones are 

insignificant compared to the huge batholiths generated in 
volcanic arc and collision zone environments. The term 

anorogenic is also commonly used for granites of this 
association. 

Continuity of Tectonic Environments : The above 

tectonic environments do not occur in temporal or spatial 
isolation, but are transient situations in orogenic 

evolution. For example, collisional events are an 
unavoidable consequence of subduction. Current models for 

the evolution of complex belts such as the North American 
cordillera (e.g. Coney et al.,1980) suggest accretion of 

island arcs and continental fragments against active 

margins. Such models imply that collisions occur repeatedly 

during orogenic evolution. Similarly, rifting and uplift 
associated with within-plate magmatism may occur in 

post-collisional situations (Harris et al., 1984), or in 
back-arc settings, jistal from the locus of subduction 
(Brown et al., 1984). It is also important to realize that 
unique rock typet ~haracteristic of specific environments 
do not exist; there is instead a continuum of compositions. 

Classifications Based On Source Materials 

The restriction of granitoid magmatism to continental 
areas has led some (e.g. Chappell and White, 1974; White 
and Chappell, 1977) to suggest that most granitoid rocks 
are derived wholly from continental crust. Others contend 
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that they are mostly of mantle origin (e.g. Brown, 1981) or 

represent mixtures of crust and mantle (e.g. Didier et al., 
1982). This has given rise to a veritable jungle of 

terminology. 

I, s, A and H-type Granites A viewpoint prevalent 

in Australia contends that granitoid magmas "image" their 

sources in a simple and direct manner (e.g. Chappell and 
White, 1974: Chappell et al., 1988: Chappell and Stephens, 

1988). Chappell and White (1974) divided granites into 
!-type (igneous source) and s-type (sedimentary source) 

categories. These terms were later redefined to denote 

"infracrustal" and "supracrustal" respectively (White and 
Chappell, 1983). s-type granites are peraluminous, and are 
defined by a parameter equivalent to the A/C+N+K ratio. In 

contrast, !-type granites are metaluminous, calcic and 

compositionally varied suites. The characteristics of 

s-type granites are supposedly inherited from sources that 
have passed through the surface environment. 

Loiselle and Wones (1979) and Collins et al. (1982) 

added "A-type" (anorogenic or anhydrous) granites to the 

list. These are evolved, metaluminous to peralkaline rocks, 
considered to be anatectic derivatives of dehydrated lower 

crustal rocks. Pitcher (1983) introduced "M-type" (mantle) 
granites for calcic, plagioclase-rich intrusive rocks of 

oceanic areas considered to have mantle or mafic sources. 

Antipodean Viewpoints and 'the Resti 'te lfodel : Many 
petrologists (particularly in Australia) contend that 

compositional variation in granites results from "unmixing" 
of residual source material and anatectic melt (e.g. White 
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and Chappell, 1976). In extreme cases, the process of total 
mobilization, or "remagmatization" (Chappell and Stephens, 
1988) has been invoked to explain calcic or tonalitic 

I-type granites that are otherwise difficult to accomodate 
in this model. The restite model is so entrenched that 

other types of information, e.g. Nd and Sr isotopic data 
indicative of crust-mantle mixing, have been questioned on 
the basis of incompatibility with predictions of the model 
(e.g. McCulloch and Chappell, 1982). Most workers accept 

that "source" is indeed an important factor in magmatism, 
but dogmatic application of the restite hypothesis has been 

widely questioned (e.g. Strong, 1980; Gray, 1984; Hildreth, 
1987; Wallet al., 1987). 

The Pseudo-Descriptive Viewpoint : The restite model 
has not been widely accepted in Europe or North America, 

but its associated terminology is epidemic. I, S, A and 

M-type granitoids are, however, viewed as broad 
petrochemical groups that owe their differences to both in 

source characteristics gng processing environment. For 
example, I-type granites are subdivided into Cordilleran 

and Caledonian subcategories developed at different stages 
in orogenesis {Pitcher, 1983). M-type and r-type 
(Cordilleran) granites are viewed as partly gradational; an 

implicit recognition that the latter are not wholly of 

crustal origin. Although this sensu lato usage of the 
source-image terminology is probably more realistic than 

the antipodean view, there is a tendency to view these 
granite types as simplistic indicators of geotectonic 

environments (e.g. Nystrom, 1982). 
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Classifications Based On Tectonic Environment 

Empirical classifications based on the trace element 

geochemistry of granitoid rocks from "known" tectonic 

settings (see above), are currently popular. 

Pearce et al. (1984) coined the terms Ocean-ridge 

(ORG), Volcanic-Arc (VAG), Collisional (COLG) and 

Within-Plate (WPG) granites, and proposed distinction using 

trace element patterns. In general terms, these correspond 

to M-type, I-type, S-type and A-type granites as defined by 

Pitcher (1983), but there is significant overlap, 

particularly in "collisional" granites, which coincide 

partly with VAG and WPG fields. Harris et al.(1984) 

analyzed collisional granites in a similar fashion, and 

recognized four discrete types, including rocks that 

correspond to the VAG and WPG groups of Pearce et al. 

(1984). A similar study of arc-related granitoids by Brown 

et al. (1984) outlined a concept of "arc maturity" (i.e. 

age or distance from the locus of subduction). Mature (old 

or distal) arcs include granites similar to the COLG and 

WPG groups defined by Pearce et al. ,(1984) and Harris et 

al. (1984). All three studies employ essentially the same 

trace elements (Rb, Zr, Y, Nb, Ta) as discriminants ! 

It is clear that there are no simple correlations 

between tectonic setting and trace element geochemistry. 

However, this has not prevented almost universal use of 

such discrimination diagrams in studies of ancient 

granitoid rocks. In a subsequent chapter of this thesis, it 

is shown that examination of compositional spectra and 

evolutionary trends may, in combination with these methods, 

provide better definition of contrasting granitoid 
• 

assemblages. 



- 22 -

Investigative Methods 

The general geology of the study area is established 

by previous studies (Gower, 1981; Gower et al.,1982; Ryan, 
1984). This project is thus a thematic mapping and sampling 

project, aimed largely at the plutonic rocks of the TLGB. 
In view of the large area (Figure 1.1), this work was 
accomplished mostly by a large-scale, grid-based mapping 
and geochemical sampling program carried out with 
helicopter support. Ground-based work was carried out only 
in well-exposed or critical parts of the area, and along 

the superb coastline exposures. 

sample Populations 

In total, over 1500 samples were collected and 
analyzed under the auspices of the the Central Mineral Belt 

Granitoid project. These can be divided into three groups. 
Regional samples were collected on a regular grid at 

intervals of ca. 2 km using a sample site preselected on a 
random basis. These provide an unbiased view of the 

compositional anatomy of intrusive suites and units, and 
are representative of the areal abundance of rock types. 

Follow-up samples were collected on a regular grid at 
intervals of ca. 1 km using random site selection methods. 

They were collected from selected suites defined by 
regional sampling, to provide assessment of mineralized or 

potentially specialized granitoid rocks. Geological samples 
were collected routinely during mapping. They represent 

typical examples of units, or mineralogical-textural 

variants thereof. 
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Regional and follow-up sampling methodology is based 

on geochemical exploration techniques (e.g. Garrett, 1983), 

and sampling projects in the Ackley Granite of southeastern 

Newfoundland (Dickson, l983, Tuach et al., 1987). The 

regional population is representative of the TLGB as a 

whole, with no bias towards specific compositions or areas. 

The follow-up population, on the other hand, is strongly 

biased towards evolved, high-Sio2 granitic compositions. 

It is therefore excluded from discussions relating to 

large-scale, regional patterns, but is retained for 

descriptions of specific units or suites. The geological 

sample population is the smallest and, although 

compositionally representative, is slightly biased towards 

coastal areas. Assessment of frequency spectra and 

univariate statistics indicates, however, that the 

characteristics of the regional population are unaffected 

by its inclusion. The two populations have therefore been 

combined for most interpretative discussions. 

Geochronology samples, consisting of 20-40 Kg of fresh 

material, were acquired for U-Pb geochronology at selected 

localities (Krogh et al., in prep.), and were also used for 

rare earth element (REE), Sm-Nd and Rb-Sr isotopic 

analysis. Additional REE, Sm-Nd and Rb-Sr analyses were 

performed using samples selected from regional, follow-up 

and geological populations. 

Overview Of Geochemical Analysis Program 

Full details of anlaytical techniques, including 

estimates of precision and analyses of international 

standards, are presented in Appendix A. A brief overview is 
• 

presented below as a convenience to the reader. 
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Hajor Elements : Major elements were analyzed by 
atomic absorption spectrometry (AAS) at the Newfoundland 

Department of Mines (NDM) Laboratory in St,John's. Based on 
73 random duplicate analyses, the median {50th percentile) 

analytical precision is ± 5.0 % or better for all oxides 
except Fe

2
o

3 
(6.5%). 

Trace Elements by AAS : Li, V, Cr, Ni, Cu, Zn, Rb, 

Sr, Ba and Pb were determined by AAS at the NDM laboratory. 
Median precision for all is ± 5.0 % or better, except for 

Li (8.2%). 

Trace Elements by ICP-ES : Ga, Y, Zr, Nb, La, Ce and 
Th were determined by inductively-coupled plasma emission 

spectroscopy at the NDM laboratory. Median precision for 
all is ± 5.0 %or better, except forTh (13.3 %). The 

latter is affected by determinations at or near detection 
limit in mafic rocks; precision for granites is 

considerably better. 

Trace Elements by INAA : Sc, Cs, Srn, Yb, Hf and U 

were determined by instrumental neutron-activation analysis 

by Becquerel Ltd. and Nuclear Activation Services Ltd.(U) 
laboratories. Median precision is ± 6.0 % or better, except 

for Sc (9.5%) and Hf (12.2%). 

Other Trace Element Hetbods : Fluorine (ion-selective 
electrode method; NOM) has median precision of ± 9.4%. Sn 
(XRF, Bondar-Clegg) has poor median precision of ± 66 % ; 

this reflects near- detection limit levels of Sn in most 

samples; the method is capable of resolving anomalous data 

only. 
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Rare-Earth Element Analyses by ICP-MS : The rare 

earth element (REE) analyses presented here were determined 

by inductively-coupled plasma mass spectrometry (ICP-MS) 

at Memorial University. Precision for all elements by this 

method is estimated at ~ 5.0 % or better (H.Longerich 

and s.Jackson, pers. comm., 1988). 

• 
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CHAPTER TWO 
GEOLOGICAL FRAMEWORK 

Chapter Abstract 

In southern and eastern Labrador, the Makkovik Province and 
the Grenville Province are part of a long-lived Proterozoic 
mobile zone that can be traced from Scandinavia to Mexico. Much 
of the Grenville Province in Labrador is a reworked ca. 1650 Ma 
old mobile belt termed the Labrador Orogen. A major, arcuate 
belt of granitoid rocks, termed the Trans-Labrador Granitoid 
Belt (TLGB), forms the northern edge of the Labrador Orogen. In 
the Makkovik Province, the TLGB is a composite belt including 
Makkovikian (ca. 1800 Ma) and Labradorian (ca. 1650 Ma) plutonic 
assemblages. 

The oldest rocks in the study area are Archean gneisses. 
These form the basement to metasedimentary - mafic volcanic 
supracrustal sequences (Moran Lake and Lower Aillik Groups) that 
are at least 1860 Ma old. These rocks are overlain by a thick 
felsic volcanic sequence (Upper Aillik Group), deposited ca. 
1860 - 1800 Ma ago. All of these rocks were affected by 
Makkovikian deformation ca. 1800 Ma ago. 

Early Proterozoic plutonic rocks form three main 
associations. "Syn-tectonic" Makkovikian plutonic rocks 
(emplaced ca. 1840-1800 ~a ago) underwent the final episode(s) 
of Makkovikian deformation. "Post-tectonic" Makkovikian plutonic 
rocks (1800-1760 Ma) overlap in age with the syn-tectonic 
association, suggesting that both groups form a single magmatic 
pulse that transcends the Makkovikian orogeny. The plutonic 
rocks are dominated by quartz monzonite to qranite, and are 
probably temporally equivalent to parts of the Upper Aillik Group. 
Labradorian plutonic rocks (1670-1600 Ma) are entirely 
post-tectonic, and consist of layered gabbro-monzonite-syenite 
intrusions, and quartz monzonite to granite plutons. A 
Labradorian volcanic sequence (Bruce River Group) occurs west of 
the study area. There is no evidence of Labradorian deformation 
in the Makkovik Province. 

The southern part of the area was subsequently affected by 
Grenvillian deformation, which imposed east-trending fabrics on 
most of the above. A number of major east-trending Grenvillian 
faults divide the remainder of the area into structural blocks 
that expose differing crustal levels. 

• 
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General Geology Of Labrador 

The geology of Labrador is illustrated and discussed 

by Greene ( 1974) ar.J Nunn et al. ( i n prep.). Lab:cador is 

divided into five Precambrian structural provinces (Figure 

2. 1), based on trends and "stabilization events" defined by 

Rb-Sr and K-Ar age data (after Stockwell, 1972). The Nain 

and Superior Provinces are of Archean age (stabilized ca. 

2800-2500 Ma ago), and are separated by the Proterozoic 

Churchill Province (stabilized ca. 1800 Ma ago ) . The Nain 

Province is part of the North Atlantic Archean Craton 

(Bridgwater et al., 1973), and was originally contiguous 

with west Greenland (Figure 2 .1). The Nain P:covince is 

bounded to the southeast by the Proterozoic l".;_a_1~ov ik 

~rQY..i nc_~ (Gower and Ryan, 1986), which was most l y 

stabilized ca . 1800 Ma ago, but includes s ome ca . 1650 Ma 

old intrusive rocks. 

The southern part of Labrador forms part of the 

Grenville Province, which was stabilized ca. 1100 Ma ago. 

Geochronological studies completed since 1980 (e . g. Wardle 

et al., 1986; Thomas et al., 1986) have shown that many 

gneisses in the Labrador portion of the Grenville Province 

were fo r med and/or metamorphosed ca. 1650 Ma ago. Mapping 

has shown that it is composed of a number of thrust-bounded 

terra nes that were assembled into their current posit i ons 
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references. Dashed line in southern Labrador indicates current limit 
of mapping. 



during or prior to the Grenvillian Orogeny. These terranes 

represent a structurally reworked belt of ca. 1650 Ma old 

crust termed the L__a_Qr_fi_do:::- P.r..Qg~n (Thomas et al., 1986), and 

are termed the L_q_Q~gp_prj_~..n h i._gb..=..g;rac;i~ t.e...rr~tll.eS. The 

interface between the high-grade terrar.es and older 

structural provinces to the north is marked by the 

Trans-Labrador Granitoid Belt ( TLGB), discussed in detail 

below. 

In addition to the major structural provinces 

discussed above, the Nain and Churchi 11 Provinces are 

intruded by anorogenic gabbro-anorthosite-granite plutons 

of ca. 1500-1300 Ma age (e.g. Emslie, 1978). 

Labrador as Part of a Proterozoic Supercontinent 

Paleomagnetic evidence (e.g. Piper, 1983) suggests 

that the shield areas of the northern hemisphere formed a 

single mass throughout much of the Proterozoic. Lower and 

Middle Proterozoic mobile belts occur all along the 

southern margin of this supercontinent (Figure 2. 2), but 

are largely overprinted by the younger Grenville Province. 

The Makkovik Province is continuous with the Keti 1 idian 

mobile belt of Greenland (~llaart, 1976: Gower and Ryan, 

1986), and (ultimately) with the Svecofennian Province of 

Scandinavia (Gower and Owen, 1984). Equivalents of the 

Labradorian high grade terranes are present in the 

Sveconorwegian belt (Gower and Owen, 1984). As in Labrador, 

the interface between these ca. 1650 Ma old terranes and 

older parts of Scandinavia is marked by a major belt of 

granitoid plutonic rocks, termed the smAland-Varmland or 

T.r.9.[1S-S_ccrn_din_a_yj__g_n ~.ran_ito_ig ~ (Lindh, 1987). Gower and 
• 

Owen ( 1984) suggested that this is equivalent to the TLGB. 
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In the central and western United States, a number of 

Lower and Middle Proterozoic terranes have been recognized 

in the subsurface and as basement uplifts (Condie, 1981, 

1982; Van Schmus and Bickford, 1981; Sims et al., 1987). 

These include probable equivalents of the Makkovik Province 

and Labrador Orogen (Thomas et al., 1985) . 

Post-1600 Ma rocks in the midcontinent region can also 
be correlated broadly with Labrador geology. The 1500 to 

1300 Ma granite- rhyolite terrane (Sims et al., 1987) is 

probably equivalent to the anorogenic magmatism in canada 

(Emslie, 1978; Anderson, 1983). The Grenville Province is 
largely coincident with the younger Appalachian Orogen, but 

energes to form the ca. 1100 Ma old Llano Province of Texas 

and Hortheastern Mexico (Condie, 1981). 

Trans-Labrador Granitoid Belt 

Definition : The Trans-Labrador Granitoid Belt (TLGB) 

corresponds generally to the Trans-Labrador Batholith of 
Wardle et al.(1982). It was previously considered to be 

mostly ca. 1650 Ma in age (Gower and Owen, 1984; Wardle et 

al., 1986; Kerr, 1986, 1987) and, in general terms, to be 

part of the Labrador Orogen. Rb-Sr and U-Pb geochronology 
(this study; Krogh et al.,in prep.) demonstrate, however, 

that undeformed plutonic rocks in the study area include 
suites of both ca. 1650 Ma and ca. 1800 Ma age. The latter 

are similar in age to foliated granitoid rocks that had 
previously been recognized as a distinct, older, assemblage 

(Gower and Owen, 1984; Gower and Ryan, 1986). 

Trans-Labrador GranitoLg ~, as defined here, 

includes both foliated and undeformed Early Proterozoic 
plutonic rocks in the study area. The older and younger 

components of the belt are termed ~vikian and 
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J_,_aJ2_r_(!p_o:r:_:lf!J1 assemblages respectively, with reference to the 

orogenic events with which they appear to be broadly 

associated (see belo1.\'). The term "granitoid belt" is 

preferred over "batholith", as it more clearly indicates 

the probable composite nature of the belt. 

In central and western Labrador, the TLGB is deformed 

and metamorphosed, and there is (as yet) no 

geochronological evidence of a Makkovikian component. Field 

relationships and geochronological data suggest that its 

emplacement post-dated Labradorian deformation and 

metamorphism (Wardle et al., 1986). 

Geological Relationships : To the north, the TLGB is 

in cont~ct with older supracrustal rocks and gnei sses of 

the Makkovik ~nd Churchill Provinces. In central and 

western Labrador (within the Grenville Province), this 

contact is mostly a thrust fault of probable Grenvillian 

age; in eastern Lahrador (outside the Grenville Province), 

it is an intrusive ~ontact (Wardle et al., 1986). The 1'LGB 

is bounded to the south by the Labradorian high-grade 

terranes; this contact is generally a thrust, and 

corresponds with a rapid increase in metamorphic grade and 

deformation state (Gower and Owen, 1984; Wardle et al . , 

1986). Orthogneiss assemblages, and gabbroic to granitoid 

intrusive rocks within the high-grade terranes, are 

probably equivalent to the less deformed parts of the TLGB 

to the north, and some yield U-Pb zircon crystallization 

ages of 1670- 1630 Ma (Scharer et al., 1986; Scharer and 

Gower, 1988). The original width of the TLGB was probably 

greater than it now appears, due to shortening during later 
deformation. 

• 
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Plutonic Assemblages : The TLGB in eastern Labrador is 

divided in this study into ~kkovikian and Labradorign 
plutonic assemblages. These terms refer broadly to periods 

of time from 1860 to 1750 Ma (c.f. Gower and Ryan, 1986; 
see below) and 1700 to 1600 Ma (Thomas et al., 1986) 

respectively. The minimum age for the Makkovikian 
assemblage differs from the 1790 Ma limit suggested by 

Gower and Ryan (1986), as there is evidence that 

Makkovikian plutonism continued until at least 1750 Ma, and 

possibly beyond (Krogh et al., in prep.). 
Makkovikian plutonic rocks are further subdivided into 

syn-tectonic and post-tectonic associations. These are 
compositionally similar and are regarded by the author as 

closely related. Rb-Sr (this study) and U-Pb (Krogh tt al., 
in prep.) data indi~ate that they are also partly of 

similar age. The distinction is convenient for descriptive 

purposes, although the syn·· and post-tectonic aspects may 

simply reflect heterogeneous Hakkovikian deformation, 
rather than a significant difference in emplacement age. 
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£..__2 GEOLOGY OF THE MAKJ<OVIK PROVINCE AND ADJ_ACENT__NU:}.S 

The geological evolution of the Makkovik province is 

depicted in simplified form in Table 2.1. Fo~ the purposes 

of description, it is subdivided into several lithological 

packages, which are indicated on a simplified g~oloqical 

map (Figure 2.3). 

Archean Rocks 

Archean gneisses are exposed in the northwest of the 

Makkovik Province, and in the adjacent Nain Province (Ryan 

et al., 1983; Korstg~rd and Ermanovics, 1985). They 

represent probable basement material for the western 

portion of the study area. They comprise banded 

quartzofeldspathic orthogneiss (possibly as old as 3100 Ma; 

Loveridge et al.,l987), containing lenses of older 

amphibolite and pa~agne]ss. These orthogneisses nre 

jntruded by sadie granitoid rocks dated at ca. 2800 Ma 

(Loveridge et al., 1987), and by several generations of 

mafic dykes. In the Makkovik Province, all of these rocks 

have been affected by Lower Proterozoic orogenic events 

termed the Makkovikian orogeny (Gower and Ryan, 1986), and 

possibly also by earlier events. The degree of metamorphic 

3nd structural reworking of the Archean increases from 

northwest to southeast towards Kaipokok Bay (Ryan and Kay, 

1982). Small areas of similar gneisses ~ccur southeast of 

Kaipokok Bay, associated with the Aillik Group (see below). 

These are undated, but are presumed to he Arche~n (Gower et 

al., 1982). 

• 
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SUPRACRUSTAL SEQUENCES 
r=::::::=J Bruce River Group: 
t::::l sandstone

1 
congromerate, arkose, 

mafic to fe sic vOlcanics. 

~ Upper Aillik Group: 
~ predominantly felsic volcanics 

with minor metasedimentary rocks. 

LEGEND 

~ Moran lake Group and lower Aillik Group: 
E::3 metasedimentary rocks and mafic 

metavolcanic rocks. 

ARCHEAN BASEMENT ROCKS 

r--1 Ouartzofeldspathlc banded orthogneiss, 
L......J amphibolite, foliated granitoid roclts. 

PLUTONIC IGNEOUS ROCKS 
POST-LABRADORIAN PLUTONIC ROCKS 

• Michael Gabbro Sui1e. 

' 
l:•j,~j Plutonic rocks of uncertain age and affinity. 

LABRADORIAN PLUTONIC ROCKS 

j+ • +I Granitoid Rocks (mostly quartz monzonite to granite). 

fiHm Gabbro and diorite (Includes Adlavik Intrusive Suite). 

MAKKOVIKIAN PLUTONIC ROCKS 

1":,"~ Massive, post-tectonic quartz monzonite to granite. 

f77l Foliated, possibly syn-tectonic quartz monzonite to granite. 
~ May Include some pre-Makkovlktan material. 

METAMORPHIC ROCKS 

r:::;::r, Granitoid Gneisses of The Grenville Province: 
L:t:J foliated granites and gneisses. probably 

deformeij and reworked equivalents of 
Makkovikian and Labradorian plutonic rocks. 

f""J"'ill Ca~ Harrison Metamorphic Suite: 
L.!:.:.!:J tonatitic gneisses and foliated granitoid rocks 

of Makkovikian or pre-Makkov!Kian age. 

Figure 2.3. Generalized geological map of the Makkovik Prov~ ard 
adjacent areas of LabraOOr. Geology oat~>iled fran Gower ( 1981), Gower 
et al.(1982), Ryan (1984), Ryan et al. (1983) ard Kerr (1986, 1987, 
1988). 
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Cape Harrison Metamorphic Suite 

The Cape H~rrison Metamorphic SuitP (Gower, 1981) is 

the oldest recognized component in the eastern part of the 

s~udy area (Figure 2.3). It consists of massive to banded 

orthogneiss, ranging in composition from diorite to 

granodiorite, with lesser amounts of foliated granodiorite 

and granite. In terms of field appearance, it resembles the 

Archean gneisses in many respects. Brooks (1983) obtained a 

Rb-Sr errorchron age of 1740 ± 85 Ma, with a low initial 

ratio of 0.7034 that apparently precludes extensive crustal 

prehistory. Nd isotopic compositions (Chapter 9; Kerr and 

Fryer, in press) also indicate that the suite is unlikely 

to be older than 2100 Ma, and must therefore represent 

Proterozoic material which has undergone a period of 

high-grade metamorphism not recorded by adjacent 

Makkovikian plutonic rocks. It is thus the only candidate 

for pre-Makkovikian basement in the eastern part of the 

study area. 

Moran Lake Group and Lower Aillik Group 

The Moran Lake and Lower Aillik Groups are Early 

Proterozoic supracrustal rocks of uncertain age that are 

dominated by sedimentary and mafic volcar.ic rocks. The 

Moran Lake Group (Ryan, 1984) rests unconformably upon 

Archean gneisses in the west of the Makkovik Province. It 

consists of a lower sedimentary sequence i ncluding 

quartzite, shale, dolostone and iron formation, overla i n by 

mafic volcanic rocks. It has been metamorphosed to 

greenschist facies, and is moderately deformed. 

The Lower Aillik Group (described by Gandhi, 1978; 

Gower et al., 1982) is exposed in a zone of intense folding 
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and thrusting along Kaipokok Bay and consists ot arenaceous 

to pelitic metasedimentary rocks overlain by mafic 

metavolcanic rocks. It is at least 1860 Ma old, based on 

U-Pb ages from an overlying sequence and granitoid plutons 

that intrude it (see below). The contact between the Lower 

Aillik Group and the A1chean is a mylonite zone (Marten, 

1977), and a number of similar structures (interpreted as 

slides or thrusts) occur in higher parts of the sequence. 

It may have been deposited as a cover sequence upon the 

Archean, but no unconformity is preserved. The Lower Aillik 

Group was metamorphosed to amphibolite facies, and 

underwent several phases of folding (Marten, 1977; Gownr et 

al., 1982). 

The similarity in stratigraphy and setting of the Moran 

Lake and Lower Aillik Groups suggests that they are equivalent 

(Wardle and Bailey, 1981; Gower and Ryan, 1986). 

Upper Aillik Group 

The Upper Aillik Group (described by Gandhi, 1978 and 

Gower et al., 1982) consists of felsic volcanic and 

volcaniclastic rocks, related volcanogenic sedimentary 

rocks and subvolcanic intrusions. The volcanic rocks yield 

U-Pb zircon ages of ca. 1860 and 1807 Ma (Scharer et al., 

1988), suggesting at least two episodes of volcanism. The 

relationship between Lower and Upper Aillik Groups is 

unclear; their mutual contact is a mylonite zone that may 

represent a modified unconformity (Marten, 1977). 

The stratigraphy of the Upper Aillik Group is poorly 

known; in general terms, it consists of a lower sequence of 

sandstone, arkose, conglomerate and tuff overlain by a 
• 

massive accumulation of dacitic to rhyolitic flows and 
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Table 2 .1. Sunrnary of the geological evolution of the Makkovik Province 

TlMI ~<.; 

< lOtJU Ma 

1200 · 1000 Ma 

1450 . 1300 l1a 

1670 . 1600 l1a 

1800 . 1750 l1a 

1850 . 1800 !1a 

ca . 1860 Ka 

? 

ca . 1900 Ka 

2000 • 1860 Ka 

? 

2500 . 2000 Ka 

2800 • 2500 Ma 

DESCRIPTIOS OF EVEST(S) 

Emplacement of mafic dvkes of several ag~s . deposition of 
Late Proterozoic Double ~er Formation in r ift or graben 
basins of the Lake !1~1\'ille area . 

GRE.S\'ILLIA!'-J OROGENY · Thrusting and metamorphism south of 
Grenville Front Zone, minor effects in Makkovik Province . 

Emplacement of Mich~el Gab~ro Suite (ca. 1430 Ha). Minor 
gabbro to syenite intrusions in adjacent Labradorian 
high-grade terranes. Emplacement of anorthosite-granite 
intrusions in Nain and Churcill Provinces . 

Emplacement of Labradorian plutonic rocks (gabbro, diorite 
and granitoids). Extrusion of Bruce River Group volcanic 
rocks and possibly some volcanic rocks in Kakkovik Province. 
Emplacement of ca. 1 . 65 Ga plutonic rocks following 
deformation/metamorphism in adjacent high-grade terranes. 

Emplacement of post - tectonic Kakkovikian intrusive rocks 
(quartz monzonite to granite). possibly coeval with 
localized late deformation (see below). 
Extrusion of parts of the Upper Aillik Group felsic volcanic 
sequence . 

Emplacement of syn- tectonic and late-tectonic Kakkovikian 
plutonic rocks {quartz monzonite to granite). S?me of these 
are similar in age to undeformed Makkovikian granitoids, 
suggesting that def~rmat!on may have been heterogeneous. 
Extrusion of parts of the Upper Aillik Group sequence. 

Extrusion of earliest ~nown volc•nic rocks in the Upper 
A ill ik Group. 

Deformation and metamorphism of Lower Aillik Group. 
This may postdate depc•sitionjextrusion of earliest Upper 
Aillik Group. 

Emplacement of poorly known pre-Makkovikian granitoid rocks. 
Kay predate deposition of Koran Lake · Lower Aillik Group. 

Deposition of sedimentary and volcanic rocks of the 
Koran Lake Group and Lower Aillik Group. 

HigmatizAtion of Archean basement rocks (poorly defined) . 

Emplacement of mafic dyke swarms into Arc~ean gneiss 
complex. 

Stabilization of Archean gneiss complex. 
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pyroclastic rocks (Gower and Ryan, 1987). The sequence is 

variably metamorphosed, but is generally at or below 
greenschist facies; some parts of the sequence show little 

or no evidence of deformation. Volcanic sequences in the 
east of the study area are included with the Upper Aillik 

Group in Figure 2.3 but may represent a younger sequence 

(see discussion in Chapter 7). The Upper Aillik Group 
overlaps partly in age with the TLGB Makkovikian assemblage 
(see below), and is regarded partly as a Makkovikian 
volcanic sequence (c.f. Gower and Ryan, 1987; see Chapter 7 

for discussion). 

syn-Tectonic Makkovikian Plutonic Rocks 

These granitoid plutons have NE or NNE-trending 
fabrics. They intrude the Archean gneisses, Lower Aillik 

Group and parts of the Upper Aillik Group, but share their 
general structural trends. They are therefore syn-tectonlc 

with respect to deformation during the Makkovikian orogeny 

(Marten, 1977). U-Pb zircon, Rb-Sr and K-Ar ages from these 
rocks are mostly between 1840 and 1800 Ma (Loveridge et 

al., 1987; Gandhi et al., 1988; Krogh et al., in prep.). 
They include quartz monzonite, granodiorite and 

fluorite-bearing granite south of Kaipokok Bay, and a 
large, complex, polyphase tonalite-granite body that 
intrudes the Archean gneisses north of Kaipokok Bay. Gandhi 
et al. (1988) and Brooks (1983) report ages greater than 

1900 Ma from poorly-known foliated granites to the west of 
the study area. The extent and significance of this earlier 

(pre-Makkovikian) magmatism is presently unclear. 
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Post-Tectonic Makkovikian Plut..>nic Rocks 

These are massive, unfol iated plutonic rocks that 

intrude the Upper Aillik Group. They comprise monzonite­

qu.::trtz monzonite - syenite intrusions, and granite to 

alkali-feldspar granite, commonly fluorite-bearing. Rb-Sr 

(this study) and U-Pb ( Erogh et al., in prep.) ages of ca. 

1800 Ma are similar to those from some of their 

syn-tectonic counterparts (see above), ar.d it is 1 ikely 

that both groups represent a single pulse of magmatism that 

transcended late Makkovikian deformation. Some members of 

this group may, however, be as young as ca. 1760 Ma. In the 

south of the area 1 these rocks have east-west structural 

trends that were imposed by the Grenvillian Orogeny. 

Labradorian Plutonic Rocks 

The TLGB Labrador ian assemblage consists entirely of 

undeforrned plutonic rocks that intrude the Upper Aillik 

Group and Makkov ikian plutonic rocks. They include layered 

g abbro - rnonzoni te - syenite intrusions 1 regionally 

extensive quartz monzonite to granite, and small 

leucocratic granite plutons. U-Pb zircon ages (Brooks, 

1983; Krogh et al., in prep.) are between 1670 and 1630 Ma, 

but cluster around 1650 Ma. In the south of the area, these 

rocks have east-west structural trends that were imposed by 

the Grenv i 11 ian Orogeny. 

Unclassified Plutonic Rocks 

There are no field criteria for separation of 

post-tectonic Makkovikian and Labradorian assemblages. 

Several units are therefore unclassified at present. These 

r a nge in composition from quartz monzonite to granite. 
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Bruce River Group 

The Bruce River Group (Ryan, 1984; Rya:-: et al., 1~8 -.') 

is a supracrustal sequence in the '""est of the <t rG.:t depicted 

in Figure 2. 3, but outside the confines of the study .:trea. 

It rests unconformably upon the Moran Lake Group, and h-.1s 

suffered only minimal (Grenvillian) deformation and 

metamorphism. It consists of arkose, conglomer a te and 

sandstone, over lain by a thick ( 8 km) accumulation of mafic 

to felsic volcanic and pyroclastic rocks. U-Pb zircon 

dating (Scharer et al., 1988) indicates an age of ca. 1 6 49 

± 1 Ma, in contrast to previous Rb-Sr ages of ca. 1530 -

1510 Ma ( Kontak 1 in Ryan, 1984). It is thus regarded as a 

volcanic sequence equivalent to the TLGB Labradorian 

assemblage ( c:fter Ryan, 1934; see Chapter 7 for 

discussion ) . 

Michael Gabbro Intrusions 

Small bodies of mafic intrusive rocks (Micha el Gabbro) 

are widespread in the southern part of the Ma kkov ik 

Province and adjacent Grenville Province. The y consist o f 

olivine-gabbro and gabbronorite e mpl aced ca. 14 2 5 Ma (U-Pb 

zircon; Scharer et al. 1 1986) 1 and have variably d e veloped 

coroni tic structures that record the effects of Grenvillian 

metamorphism or metamorphic conditions at the time of their 

emplacement (Gower, 1986). 

Granitoid Gneis~es Of The Grenville Province 

The Grenville Front Zone is represented in the study 
• area by the Benedict fault system (Fi gure 2. 3; see below ) . 

The area south of the fault is dominat ed by .ie forme d 



- 4) -

qranitoid rocks and granitoid gneisses with relict 

porphyritic (i.e. augen) textures and cataclastic fabrics. 

These are associated with fine-grained, banded, mylonitic 

rocks. These gneisses are probably reworked equivalents of 

the granitoid intrusive rocks of the Makkovik Province 

(Gower and Owen, 1984), but Makkovikian and Labradorian 

components cannot be discerned. The grani told gneisses are 

thus describ~d in conjunction with unclassified plutonic 

rocks (see above). Deformed (variably coronitic) intrusions 

of the Michae 1 Gabbro suite (see above) are most common 

south of the Benedict fault system. 

Structural and Metamorphic Patterns 

Structural Trends The structure of the study area 

has been discussed by Gower et al.(1982), Ryan (1984), 

Clark (197),1979) and Marten (1977). It is dominated by two 

major structural trends (Figure 2. 3). The older trend has a 

NE or NNE orientation, and is typified by the fold and 

thrust belt along Kaipokok Bay. This trend is present also 

in syn-tectonic Makkovikian plutonic rocks. It represents 

structures developed during the Makkovikian orogeny at or 

before ca. 1800 Ma ago (Gower and Ryan, 1986). Major faults 

associated with this trend include slide and thrust zones 

in the Lower Aillik Group (Marten, 1977). 

The second trend is of broadly east-west orientation, 

and is probably related to the Grenvillian Orogeny at ca. 

1100 Ma. The NE to NNE "Makkovikian trend" and the E to ENE 

"Grenvillian trend" are distinct in the east and north of 

the area, but their discrimination becomes more difficult 

in the south-west, where both trends converge into a 

general NE direction (Figure 2. 3). There is no evidence of 

Labradorian (ca. 1650 :-~a) deformation in the study area. 



The Grenvillian trend is most s trongly ~cvcloped south 

of the Benedict fault system, but several fault zones in 

the Makkovik Province share i ts genera 1 orientation. 

Major Paul ts : A number of major east-trending faults 

divide the area into structural blocks. The most important 

is the Benedict fault system, which is the locus of the 

Grenville Front Zone (Go...,•er et al., 1980). This is probubly 

a high-angle reverse or thrust fault (Gower, 1981; Owen et 

al., 1986). The subparallel Adlavik Brook fault system 

(Gower et al., 1982) has a transcurrent displacement of ca. 

20-30 km. This fault mar'k.s the northern limit of 

recognisable Grenvi 11 ian deformation. The area bct~t.~cen 

these two fault systems is characterized by local, strongly 

foliated to cataclastic, zones subparallel to the rna jor 

faults. It is domin3ted by areally extensive "regional" 

granitoid units (Kerr, 198 7 ). North of the Adlavik 13rook 

fault system , t~1e Upper J.. i llik Group i s areall y domina n t, 

and TLGB plutonic rocks occur as discrete, isolated bodies. 

The distribution and characteristics of these plutonic 

rocks suggest that the upper surface of the TLGB is close 

to the erosion surface in this area. 

Contrasts across the Benedict and Adlav i k Brook fault 

systems are interpreted to reflect differences in crus t a l 

levels imposed by reverse faulting and thrusting during the 

Grenvillian Orogeny (Gower and Ryan, 1986: Kerr, 1987 : Owen 

et al., 1988), which exposed progressively deeper levels 

of the crust in the south. 

Metamorphism : Metamorphic events correspond to 

development of Makkovikian and Grenvillian structural • 
trends. Makkovikian metamorphism affected the Archean 
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gneisses, Aillik Group and syn-tectonic Makkoviklan 

plutonic rocks. In the Lower Aillik Group, upper 

amphibolite facies conditions were attained, and pelitic 

rocks were partially meltet: . The Upper Aillik Group ranges 

from greenschist to lower amphibolite facies, with a 

regional decrease in grade from northwest to southeast 

(Gower et al., 1982). Foliated granitoid rocks are variably 

recrystallized, but most retain relict igneous mineral 

assemblages, suggesting that their emplacem~nt post-dated 

the peak of metamorphism. Grenvillian metamorphism is 
prevalent south of the Adlavik Brook fault zone, and is 

manifested by recrystallization, strain, and variable 

retrogression of igneous mineral assemblages in all 

components of the TLGB. These effects become stronger 

within the Grenville Province, but relict igneous textures 

are locally visible well to the south of the Benedict fault 

system. 

Contact metamorphic effects associated with plutonic 

rocks of the TLGB appear minor; this is probably a function 

of the unreactive quartzofeldspathic compositions of the 

Upper Aillik Group felsic volcanic rocks that form the 

dominant country rocks. In areas adjacent to plutonic 

rocks, these are commonly saccharoidal in texture, 

suggesting static, thermal recrystallization of quartz and 

feldspar. 
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2.3 ST&ATIGBAPHIC GROUPINGS AND TEBMINOLQG¥ 

General Information 

Makkovikian and Labradorian plutonic assemblages are 

each divided into a number of units and intrusive suites. 

New names are proposed for some of these divisions (Table 

2.2). This terminology is introduced here to familiarize 

the reader prior to definition and description of these 

associations in subsequent chapters. Locations of units and 

divisions in Table 2.2 are shown on the 1:250,000 

geologj~al map (enclosure) and in summary location maps at 

the start of the relevant descriptive chapters. 

Intrusive Suites and Units 

The term "intrusive suite" is used in two senses. 

Firstly, it is used to group geographically discrete units 

that are closely similar in petrology and geochemistry. 

These geographically discrete units have generally been 

given individual names. Secondly, it is used to group units 

of differing composition that are spatially and genetically 
related. In the latter case, individual units are generally 

not named. This corresponds with conventional use and with 

suggestions made by Salvador (1987) and Bateman (1988) for 

the International Subcommission on Stratigraphic 
Conventions. In descriptions of units and suites in 

subsequent chapters, the qualifier "intrusive" is sometimes 

omitted for the sake of brevity. 
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Jut ruSL ve Suite 

not named 

"onkey Hill* 
Intrusive Suite 

not na-d 

Unit( a) 

Otter Lake Walker Lake 
Granitoid 
(na.e after Ryan. 1984) 

Konkey Hill Granite* 
Little Konkey Hill Granite* 
Duck Island Granite* 
Sent'• Cove Granite* 
Round Pond Granite 
Kidlaluit Granite* 

Burnt Lake Granite 

Witchdoctor Granite* 

(but data) 

1641 +/· 2 Ka (U- Pb zircon) 
(Krogh et al . , in prep . ) 
1)~0 +/· ~~ Ka (Rb-Sr WR) 
(Kontak. in Ryan, 1984) 

Konkey Hill Granite : 
1640 +/· 10 Ka (U-Pb zircon) 
(Krogh et al . , in prep . ) 

Round Pond Granite : 
1620 +/- 60 Ma (K -Ar biotite) 
(Wanless et al . . 19/0) 

1)48 +/- 90 Ka (Rb -Sr WR) 
(HacKenzie and Wilton . 1988) 

1632 +/· 9 Ka (U -Pb zircon) 
(Brooks, 1983) 

c~nta 

R~gionally ~xt~nsiv~ unit 
ran~ing I n cu•pos lt ion fro. 
quartz .anzonlte to ~ranit• . 

Consists of • nuaber of 
... 11. eplzonal plutons 
ca.priaing fine -grained 
leucogranite . 
Little Monkey Hill Grani t~ 

Cuts gabbro and d i orite ol 
Adlavik Intrusive Suite . 

Leucocratic granit• units . 
probably tvo phaaea of the 
aa.e body . Locally al•l l ar 
to Kortkey Hill lntruaive 
Suite grani tea . 

• & . . .............. . & ... .. & .... & ..... & .... & ........... - ................ - .... . ... - ... - .. - .......... - .. - .. & ...... - ............. & .... .... - ............. - .... -- .... - .. & ...... .... ...... - .......... - .. .. ............... - & & . .. -

Layerad •••e•blage. dior ite and 
gabbro at base, evolv~d syenite 
at the top . Gabbro and diorite 
are very ai•llar to Adlavik 
lntrualve Suite . 

"aunt Benedict* 
Intrusive Suite 

(units not na.ed) 
Gabbro to diorite unit 
"onzonite to syenite unit 
Syenite to granite unit 

16~0 +/- 10 Ka (U - Pb zircon) 
(Krogh et al . , in ~rep . ) 

162~ +/- 50 Ka (Rb-Sr, w. r . ) 
(Brooks , 198)) 

.. - .. - ... .. -- .... -- - .. - .. -- ... - .. - ..... -.... --- .. --- --- --- ---- - -- .... --. - .... -.. - .... - .... --.-- - .. .. . ......... -.. -- .. - .... -.. - .. - ............ -.... --- .... - .. -- .. .. .. - .. - .. -- ... -.. --- .... -- -- .. 
Polyphase layered .. ftc 
intrusion . evolving to diorite 
and aonzonite . Parts of suite 
reae•ble "ount Benedict Suite . 

Adlavik 
Intrusive 

Suite 

(unit• not na~d) 
Diorite to Monzonite unit 
Gabbro ar~ leucogabbro unit 

Big River Granite* 

1649 +/· l Ka (U-Pb zircon) 
(Krogh et al ., in prep . ) 

1798 +/- 28 Ka (Rb-Sr WR) 
(this at..Sy) 

Regionally ektensive granite 
unit with .. ntl ed - fap tekture . 

.. ............ ......... .. .. ............... .. ....... .. .............. .. .......... .... ...... .. ........................................ ..... ...... .... ... .... ........................... .. .. . .. .. .... .... ........ .. . .. . ..... . .. .... .... 

St ravbe rrv* 
Intrusive 

Suite 

Bayhud Granite* 
Cape Strawberry Granite 
October Harbour Granite 
Dog lslanda Granite* 
Tu~ialik Granite* 

Prell•inary Data (discordant) : 
1800 to 1760 Ka (U-Pb zircon) 
(Krogh et al . • in prep . ) 
1694 +/- ~6 Ka (Rb-Sr WR) 
( thll 1tudy) 

Array of eplzonal pluton• of 
closely ai•llar. coarse grained 
biotite granite, co.-only K-fsp 
porphyritic, and fluorite - bear ing . 

-.... .. .. --.. -- . ..... - ... -- -- --- .. ----. ----- . . ---- -.. - -- .-- .... - ... .. .. - -- .... ---.-- ...... -.--- .... -.... -- --- -.. .. ........ -.. .. -- .. .. .. -- --- .. ....... - ...... -.. --- - .. - .... ---- -- .. ... -.-
Lancegr-ound '* 

Intrusive 
Suite 

Lanceground Hill• Granite* 
Pistol Lake Granite 
Tarun Granite* 

Lanceground Hilla Granite : 
1692 +/- 32 Ka (Rb-Sr WR) 
(thla study) 
(Age ia considered disturbed) 

Coarse grained, locally hyper ­
aolvua. quartz ay~nite t o 
granite plutons, with abundant 
zircon, allani t e , fluorite. 

-- .. --.------ .. - .. -- .. --.- .. -. - . - .. . - ... ------ ... --- .. -.. .. --.-- .. -.. ---- . .. -. ..... --- ...... --- .. - .. -.... .... ------.. -.. -.... -.. -- .... -- .. -...... -.- ... -........ -- - - .. -.... - -- .. -- --- .. 

Nwaok* 
Intrusive 

Suite 

(units not na.ed) 
Monzonite to quartz •onzonite 
Syenite to quartz syenite 

1801 +/- 2 Ka (U- Pb zircon) 
(Krogh et al . , in prep.) 

Coarse grained .anzonite to 
quartz syenite. so .. ayenitic 
rocka rese•ble Lanceground 
Intrusive Suite. 
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not na..,d 

not na11ed 

not named 

not na•ed 

Kennedy Mountain* 
Intrusive Suite 

!~land Harbour Bay 
Intrust ve Suite 

(after Ryan et al . . 198)) 

not na,.ed 

not na.aed 

not nacaed 

Long island Quartz Monzonita 
(after Gover et al . , 1982) 

Melody Granite* 

8ru.vater Granite 
Pitre Lake Granite 
Hanak laland Granitoid* 

Deus Cape Granitoid* 

Kennedy Mountain Granite* 
Narrova Granite* 
Cross Lake Granite* 
Other (not na~d) 

(units not naaoed) 

freshateak Lake Granitoid* 
Noarse Lak~ Granitoid* 

Stag Bay Granitoid* 

Thunder Mountain Syenite* 
Jeanette Bay Quartz Syenite* 

Granitoid ~tnelsses South 
of 8en•dlct raul t lone 

1802 +!3 1 -1 Ka (U-Pb zircon) 
(Gandhi et al . , 1988) 

age unknovn 

agea unknovn, but foliation 
auggesta > 1800 Ha for all. 

1837 +6 I -4 Ma (U - Pb zircon) 
(Krogh et al., in prep . ) 

1778 +/· 98 Ka (Rb-Sr WR) 
(thh atudy} 
(age conaidered disturbed( 

180~ +/- 5 Ka (U-Pb zircon} 
(Loveridge et al . , 1987) 
(coarse ·grained granite only) 

freshat~ak Granitoid : 
1198 +I· 48 Ka CRb · Sr WR) 
(thh study) 

foliated , ~lanocratic 
quartE ~nzonite . 

Strongly foliated granite 

s .. ll, leucocratic granitoi d 
unita. 

Part of a reslonally extensive 
unit expos~d east of study area . 

Coarse grained, fol i ated, K-fsp 
porphyritic granite , co-.only 
fluorite-bearing . 

Co11plex, polyphase tonalite to 
granite Intrusion e11placed 
Into Archean gneiss ca.plex . 

Cloae1y ai•ilar ~lanoc ratlc 
quar~z .onzonlte to monzo~ranite . 

probably Makkovikian age . 
-- ----------- ---- ------ -- --------- --- --- --------------- ---- ----- ---- --· 
1714 +/ - 44 Ma (Rb · Sr WR) 
(t~h •tudy} 

Affinity uncertain . 

-------------...... -----.. - ~ --~ --. --------. ----..... - . -. .. . . . . - --. --. --.. ---

undat•d 

s .. ll, aaaalv• svenltlc bodlea 
of uncertain efflnity . 

Probably r•pr•aents d•lor~d 
equivalents of both M•kkovikian 
and Labradorian asse11blagea . 

Table 2. 2. SUnlnary of stratigrapric terminology eq>loyed in this thesis. 
New names are irdicated t:7f ( *) • 

.._ 
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CHAPTER THREE 
SYN-TECTONIC MAKKOVIKIAN 
PLUTONIC ROCKS 

Chapter Abstract 

Syn-tectonic Makkovikian plutonic rocks have regionally 
developed north or northeast-trending foliations that indicate 
imposition of at least some Makkovikian deformation upon them. 
U-Pb zircon ages indicate emplacement between 1840 and 1800 Ma 
ago. They are divisible into two principal associations on both 
geological and geochemical grounds. 

The first (areally dominant) association is formed by the 
LQng Island Quartz Monzonite, granites of the Kennedy Mountain 
Intrusive Suite, and the Melody Granite. The first two are 
homogeneous, regional units that show sharp, intrusive contacts 
with their country rocks, and appear to have source regions well 
below the present level of exposure. They range in composition 
from quartz monzonite to alkali-feldspar granite, are commonly 
plagioclase and/or K-feldspar porphyritic, and show increasing 
biotite/hornblende ratios with differentiation. Leucocratic 
(alaskitic} granites of the Kennedy Mountain Suite are 
honblende-free and fluorite-bearing. In geochemical terms, this 
association is metaluminous to weakly peralkaline, and shows 
enrichment in fluorine, Zr, Y and REE. Trace element trends are 
consistent with evolution via plagioclase ± K-feldspar 
fractionation. High HFS and REE contents indicate a source 
enriched in these elements, and also reflect the role of 
fluorine in retarding crystallization of accessory minerals. The 
Kennedy Mountain Suite has undergone local alkali-metasomatism. 
This is correla~ed with similar geochemical disturbance reported 
from felsic vol~~nic rocks of the Upper Aillik Group, which may 
be partly equivalent to these plutons. This disturbance has 
affected LFS trace element patterns, but had little effect on 
HFS elements and REE. The Melody Granite resembles the Kennedy 
Mountain Suite in most respects, but displays more intense 
deformation and hematization. 

In contrast, two small intrusions near Kaipokok Bay 
(Brumwater and Pitre ~ Granites) appear to have been derived 
by anatectic melting of local country rocks at or slightly below 
the present level of exposure. Their contacts are diffuse, and 
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they contain abundant gneissic and meta~~dimentary xenoliths 
respectively. They are variably peraluminous in composition, and 
have low levels of Zr and REE that suggest residual hornblende, 
zircon or sphene in their source regions. The Pitre Lake Granite 
shows LREE depletion suggesting residual monazite or allanite in 
its source, and F and Li enrichment suggesting muscovite 
breakdown. The Manak Island Granitoid is geochemically similar 
to the Brumwater Granite, and may have had a similar origin. 

A large, composite plutonic body to the north of the study 
area (Island Harbour a.gy Intrusive Suite) appears to contain 
elements of both settings, as it has a partially migmatitic 
exterior, but a homogeneous core. It also contains tonalitic and 
trondhjemitic rocks, that are atypical of intrusions within the 
study area. Such compositions appear to preclude complete 
derivation by anatexis of older sialic crust, although such 
material may have contributed partly to the magmas. 

In summary, although anatexis of local country rocks was 
important in the Kaipokok Bay area, where metamorphic grade is 
highest, major syn-tectonic Makkovikian plutons mostly came from 
deeper sources and evolved by fractional crystallization. The 
character of this magmatism in the study area is granitic, with 
only minor quartz monzonite to granodiorite. 
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Introduction 

Syn-tectonic Makkovikian plutonic rocks are those 

that have north to northeast-trending foliations similar in 

orientation to structural trends within the Aillik Group. 

They have thus experienced at least the latest period (s ) of 

Makkovikian deformation. The label "syn-tectonic" is 

therefore applied to these rocks. It is recognized, 

however, that the contrast in deformation state between 

these rocks and their "post-tectonic" Makkovikian 

counterparts {Chapter 4) may reflect heterogenous 

deformation, rather than significant age differences 

between them. 
Syn-tectonic Makkovikian plutonic rocks are mostly 

located in the north-west of the study area (figure 3.1). 

The most areally extensive units are the Long Island Quartz 

Monzonite, Kennedy Mountain Intrusive Suite and Melody 

Granite. Two units in the Kaipokok Bay area ( Brumwater and 

Pitre Lake Granites) are of limited extent, but show 

critical field relationships with deformed Archean gneisses 

and supracrustal rocks. foliated granites also occur 

locally in the east of th~ study area (Deus Cape and Manak 

Island Granitoids). 

The largest single member of this association is the 

Island Harbour Bay Intrusive Suite (Ryan et al., 1983), 

which intrudes Archean rocks north of Kaipokok Bay, and is 

outside the study area. Key field and petrographic 

characteristics of all units (excluding the Island Harbour 

Bay suite) are summarized in Table 3.1. 

• 



INTRUSIVE ROCKS 

Pitre Lake Granite 
Brumwater Granrte 
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Figure 3.1 (INSFT). Geology of part of the eastern side of Kaipokok Bay, 
showing the location and setting of the Brumwater and Pitre Lake 
Granites. After Marten (1977) and GcNer et al.(l982). 
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Figure 3.1. Summary map illustrating the distribution and extent of 
syn-tectonic Makkovikian plutonic rocks. Inset is an enlargement of 
the east side of Kaipokok Bay, and illustrates location and setting of 
Brumwater and Pitre Lake units. Geology in inset after Marten (1977} 
and Gower et al. (1982}. 
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Table J.l. Key features of syn-tectonic Makkovikian plutonic rocks. 

!lap Unit SuitetGnit/Age 

Lonq Island 
Quartz lion z on i te 

10 
1832 +/· 58 [K/Ar biotite] 

1802 +13/·7 [O·Pb zircon] 
(Gandhi et al. , 1969; 1988) 

11 KDIIIED'I IJOIITAIII 
IIITRUSIVE SUirE 

[ including ) 

! L. Kennedy llountain Granite 
11.2 llarrovs Granite 
11.3 Cross Lake Granite 
11.4 Onn~lled ainor bodies 

1531 +/· 38 [K·Ar biotite) 
1778 + 1- 98 !Ia (ib-Sr WR) 
( ages are not reliable ] 

12 Jlelody Granite 

[? 1910 +/· 10 !Ia (O·Pb zircon) ?] 
(Gandhi et al. 1 1988) 

See telt for discuss1on; def:nds 
on a rather uncertain corre ation 

13 B~;ater Granite 

> 1794 +/· 2 !O·Pb 10nazite) 
(SCharer e al., 1988) 

14 Pitre Lake Granite 

(Description partly after 
Jlarten, 1977) 

15 llanak Island Granitoid 

> 1801 t /· 2 Ia ( 0-Pb I j 
(based on aqe fro• JIUiok SUIte) 

( Kroqb et al. , in prep. ) 

16 Deus cape Granitoid 

1837 +6/·4 Ia [0-Pb zircon] 
(Kroqb et al., in prep.) 

General Characteristics 

Grey, ael!nocratic, foliated l!b·Bi 
quartz -aonzoni te to aonzognni te. 
Fabric is stronql y developed in 
aarginal portions; core is less 
defor.ed. Contains deforled leno­
litlls of dioritic aaterial. 

Pink to vhite or buff, foliated, 
variably porphyritic, llb-Bi 10n· 
zogranite, granite and alka:~­
feldspar 9l'anite. Generally 
leucocrahc, locally alask1tic. 
ME· trendinq fabric is obvious in 
porphyritic I aelanocratic types, 
but d1ffuse in leucogranites. 
Locally K-fsp depleted, posl?ibl~ 
albitized. W1despread fluorite, 
particularil y in leucocratic 
variants. 

Pink to brick-red, variably 
porphyritic, stronqly foliated, 
leucocratic granite and alkali· 
feldspar granite. 

Grey to pale pink, foliated to 
lineated, e<JIIlgranular, leuco· 
cratic biot1te-qraJiodiorite and 
10nzogranite. 

White to pale pink or buff, 
equiqranular, foliated Bi -lis 
leucoqrani te toning tabular body 
within lll!tase~illelltary rocks of 
Lower Aillik Group. 

Wbi te to pale grey, foliated, 
locally porpbyrit1c, leucocratic 
Bi-granodiorite to aonzoqranite. 

Grey to pink, porpbyrit! to 
aeqacrystic, foliated Bb-Bi 
graJiod1orite. 

Tertural Characteristics 

Fine to lediua grained, porphy­
ritic with plag phenocrysts up to 
1 ca diateter. Fabric defined 
by Bb·Bi agqreqates, flattened 
phenocrysts and inclusions . 
SCbliem to banded near aargin. 

Couonly Jediua to coarse-qrained, 
with K-fsp and lesser p1aq pheno­
crysts, variably auqened by fabric. 
Fabric defined by llb-Bi-Sph 
aqqreqates and/or auqen telture. 
Equigranular, leucocratic varian~ 
aay awear aassive. 
ODlt 1s generally inclusion-free. 
peqaati te veining widespread. 

Coarse grained, porphyritic to 
porpbyroclastic vitb •auqen" 
textlll'es, local{y aylonit1c. 
'l'extlll'al variants are defined 
by variations in aafic content. 

llediua to coarse-grained, locally 
{>Orpbyritic. Contains gneissic 
1nclusions1 locally nebulitic. 
Fabric deflned by Bi agqreqates 
and pequtitic seaas. 

kJiua-grained and botoqeneous. 
locally displays (Jbost layering 
that defines fold str.:ctures. 
concordant pequtite and quartzose 
seqreqati ODS. 

lledi ua to coarse-grained and 
boiiOqeDeOIIS; inclusion-free. 

CoiiCinly K-fsp porphyritic, 
locally seriate-teltlll'ed. 
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Table 3.1 (continued) 

Ke, Field Relationships 

Cuts ear 1 y 1 D1, 021 structures in 
~.i 11 ik Group and Archean, but has 
53 fabric. Intruded br Duck Island 
Granite of Monkey Bil Intrusive 
Suite. 

Intrudes supracrustal rocks of 
Upper Aillik Group, and truncates 
beddinq and early tS1:S2i fabrics . 
Kennedy Jlountain Granite and 
llarro•s Granite are cut by Jlonke)' 
Bill Granite. 

Contact relations unkno'ill . 
Ur.it is bounded by inferred 
faults and une~posed zones. 

Oni t intrudes refoliated Archean 
qneisses ·titb Sl/52 fabric. 
Fabric in qranite considered 
to be 03 feature. Gradational 
relationship vith aiqaatitic 
Archean qnusses. 

Truncates Sl or S2 fabrics in 
Lower Aillik Group, but contains 
foliation parallel to layering. 
Contains inclusions of pelitic 
seditents siailar to bost rocks. 

Probably forE a screen beheen 
younqer units. Onit is intruded 
by Gabbro of Adlavik lntrJSi ve 
Suite, probably also by IIUIOk 
Intrusive SUite. 

Lacks pol ydefoned character of 
adjacent Cape Harrison lleta10rpbic 
Cotp1ex. 

llinmloqy 

Q~ 110-20\ i IIi 130-40\ l 
Plaq tAn30; 30-4011 
l!t·Bi 110-25\ total) 
Sph'Fe Oxide ( 1-2\) 
Accessorr Z r, Ap, All 

Qz t15-35\ 1 IIi ( 25-60\) 
P laq 1 An20- 30; 10-50\) 
Bb•Bi tl-15\ total, nomlly < 5\) 
spb n-m Fl (0-211 
Abundant Accessory Zr, Ap 1 All 

Qz ( 15-40\) IIi ( 30-651) 
Plag (An20-30; 20-40\) 
Bitdll+Ep+Spb (2-71 total) 
Bb (relict) 
Accessory All, rare Zr 1 Fl 

Qz (15-30\) IIi (25-40\) 
Plag (An25; 25-401) 
Bi (2-7\), rarelluscovite 
Accessory All, Zr. 

Qz ( 2o-30\) IIi (30-60\) 
Plaq (An20-30; 2Q-30\) 
llstBi (5-lOl total, lis > Bi) 
Accessory Fl 1 '1'1 ? 

QE ( 15-20l) Jli ( 20-40\) 
Plaq (An25-J5; 4Q-60\) 
Bi (5\) 
Accessory Spb1 Ap. Rare Zr, All . 

Petroqraphy 

Ground1ass Qz-Fsp recrystallized. 
Plaq phenocrysts variably sauss­
uritized1 recrystallized and zoned. 
Bb and 81 present in subequal 
a10unts, recrystallized to 
agqreqates, ;nth Sph, Ep, Chl. 

Variably recrystallized, but K-fsp 
phenocrysts preserved 11th local 
1nterst1tial quart:. IIi is patcb­
pertbite, •ith local Na-plaq rillS. 
Bb/Bi ratios variable; leucocratic 
variants are Hb-free. 
Re~rystallization is very stronq 
in flne-qrained variants, vbicb 
are saccbaroidal. 
K-fsp depleted types dotinated by 
Na-plaq + Qz. 

Extensively rextallized and tylon­
itized. Qz, IIi, Plaq fort ribbons 
or 9I'anular agqreqates. 
Jlaf1c tinerals reduced to Chl­
Ep-Spb agqreqates, with reli~ Bi 
+J- lib. 111 phenocrysts betatued. 

ie-..""rystallized 1 fabric defined 
by orientation of Bi aqqreqates. 

Recrystallized extensively. 
Fabnc defined by aliqntent of 
Bi -lis aqqreqates and faint 
layering. 

All co1ponents mtallized to 
polygonal aqqreqates. Scattered 1ti 
phenocrysts are preserved. 
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3. 1 GEOLOGY and PETROLOGY 

3 .1.1 Long Island Quartz Monzo~ 

This unit forms an elongate body in the Kai}:lokok Bay 

area (Figure 3.1), and was originally t~rmed the "Long 

Island gneiss .. (Gandhi et al., 1969). I't is rarely 

gneissic, and subsequent workers used the term "Long Island 

Quartz Monzonite" (Gower et a l. 1 1982; Kerr 1 1986) . 

Definition and boundaries of the unit remain unchanged from 

those of Gandhi et al. ( 1969) and Gower et a l. ( 198 2) • The 

unit consists 0f medium-grained 1 melanocratic, foliated, 

hornblende-biotite quartz monzonite, granodiorite and 

(rare) monzogranite (Table 3.1; Plate 3.1). It is 

characteristically plagioclase-porphyritic, containing 

srna 11 ( 1 ern) equant phenocrysts. 

A penetrative fabric is strongly developed around its 

margins, but parts of the interior appear rnassi ve. Marten 

( 1977) stated that the unit truncates early ( s 1 and s 2 ) 

fabrics in surrounding Archean and Aill ik Group units, and 

considered the foliation to be a re l atively late ( D
3

) 

feature. In the area around Mark's Bight, the unit is 

disrupted and net-veined by the Duck Island Granite of the 

Monkey Hill Intrusive Suite (see Chapter 5). 

The unit is recrystallized, but igneous textures (e.g. 

zoned plagioclase phenocrysts) are variably preserved. In 

the more strongly deformed variants, hornblende and biot i te 

are retrogressed to biotite - chlorite - epidote - sphene 

aggregates. 

The Long Island Quartz Monzonite has been dated at 

1832 ± 58 Ma by K-Ar whole-rock methods (Gandhi et al., 

1969} and at 1802 + 13/-7 Ma by U-Pb zircon methods (Gandhi 

et al., 1988). The latter sample also yielded a U-Pb sphene 

(titanite} age of 1746 ± 2 Ma, wh i ch provi 1es a minimum age 

for deformation and metamorphism. 
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Plate 3.1. Features o f the Long Island Quartz Monzonite. (a) Diori~ic 
inclusions (deformed) in grey quartz monzonite, Mark's Bight. (b) 
Typical weathered surface with plagioclase phenocrysts, Mark's Bight. 
(c) Massive quartz monzonite from centre of body (phenocrysts ca. 0.5 
em diameter). (d) strongly deformed variant from eastern margin of 
body. All slabs stained to turn K-feldspar yellow. 
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This is a new name introduced for several discr~te 

bodies of similar foliated arani toid rocks in the Makkovik 

Bay area (Figure 3.1). These include units 17a and l7c of 

Gower et al. (1982), and foliated granitoid rocks outlined 

by Kerr (1966, 1987). The type area (Kennedy 'Mountain 

Granite) corresponds to the Kennedy's Cove "gneiss" of 

Clark (1973), but is rarely gneissic. The suite is 

dominated by foliated, variably K-feldspar porphyritic, 

monzogranite, granite and alkali-feldspar granite, commonly 

containing accessory fluorite (Table 3.1; Plate 3.2). The 

unit is not dated reliably. Gandhi et al. (1969) obtained a 

K-Ar (mixed hornblende and biotite) age of 1531 ± 38 Ma, 

¥:hi ch is probably anomalously young. A composite Rb-Sr 

isochron (Chapter 8) suggests an age of 1778 ± 98 Ma, but 

this is not considered reliable. No U-Pb data are available 

as of writing. 

Field Relationships : The Kennedy Mountain Granite 

and Narrows Granite intrude the Upper Aillik Group, but are 

cut by the Labradorian Monkey Hi 11 Granite (Chapter 5). 

Units assigned to the suite contain a single NE-trending 

foliation; by analogy with the Long Island unit, this is 

interpreted to be a n3 feature resulting from Late 

Makkovikian deformation, and implies a similar minimum age of 

1800 Ma. Foliations are most obvious in relatively 

rnelanocratic, porphyritic variants, whereas equigranular 

and leucocratic variants commonly appear massive and 

unfoliated. However, all are recrystallized and display 

fabrics in thin section: in leucocratic variants, 

orientations are defined by elongation of quartz and 

feldspar. Coarse grained, fluorite and/or p:rr i te-bearing 
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Plate 3.2. Features of the Kennedy Mountain Intrusive suite. (a) Coarse­
grained monzogranite (Narrows Granite, Makkovik Bay). (b) Fine-grained 
~laskitic variant of the Cross Lake Granite; the superb glacial polish 
1s a refl~ction of the pervasive recrystallization, which reduces the 
natural tendency of granite to disaggregate. (c) Fluorite-bearing 
leucogranite (Kennedy Mountain Granite, Makkovik Bay), foliation is 
Parallel to slab label. (d) Coarse-grained biotite-hornblende granite 
(Narrows Granite), section cut normal to foliation. (e) Fine-grained 
Potassic leucogranite (Cross Lake Granite). All slabs stained to turn 
K-feldspar yellow. 



pegmatite veins (locally containing am~zonite, a green 

variety of K-feldspar) intrude many outcrops, particularly 

in the Cross Lake Granite. Xenoliths of country rocks are 

rare except adjacent to contacts; cognate xenoliths 

(normally darker than their host ) occur locally. The Cro~~ 

Lake Granite appears to be more leucocratic than other 

units of the suite, and is locally alaskit i c (i.e., a 

fine-grained rock consisting essentially of quartz and 

alkali-feldspar; Johannsen, 1920). 

Petrography : Most examples contain both hornblende 

and biotite, but leucocratic variants are hornblende-poor 

or hornblende-free. Purple f~uorite is widespread 

(particularily in leucocratic rocks), and forms coarse 

patches along foliation planes. ~phene is also prominent in 

many hand samples. In thin section, most examples are 

recrystallized, but original igneous textures (K-felds par 

phenocrysts and, more rarely, interstitial quartz) are 

variably preserved. Mafic minerals and sphene form 

aggregates, associated with prominent and abundant zircon, 

allanite, aratite and fluorite crystals. Chlorite and / or 

epidote are locally important as alterat i on products of 

hornblende and biotite. 

Anomalous rock types consisting almost entirely of 

sadie plagioclase ( < An
15

) and quartz are present local ly 

within all units of the Kennedy Mountain Suite. These are 

considered to be Na-metasomatized, rather than original, 

compositions (see 3.2 and 3.3). Rare albite rims or p a t c hes 

on K-feldspar phenocrysts in "nor mal" variants f orm the 

only petrographic evidence for this process; the 

anomalously sadie rocks are thoroughly recrystallized • 

• 
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The new name Melody Granite is introduced for an 

elongate unit of strongly foliated granitoid rocks in the 

western part of the study area (Figure 3.1). The unit is 

dominated by pink ~o brick-red, K-feldspar-rich granite and 

alkali-feldspar granite (Table 3.1; Plate 3.3). It 

corresponds to parts of unit 14 of Bailey (1979) and parts 

of unit 27 of Gower et al. (1982). 

Field Relations : The contact relations of the Melody 

Granite are unknown, as most of its boundaries correspond 

with inferred fault zones or unexposed areas. It has a 

widely developed cataclastic to protomylonitic fabric and 

commonly shows augen texture. There are two textural 

variants, defined by variation in total mafic mineral 

content. The melanocratic variants commonly show more 

obvious relict porphyritic textures, b~t leucocratic 

variants are also stron~ ly K-feldspar porphyritic where 

weakly deformed. The distribution of these two variants 

corresponds generally to units 23 and 24 of Ryan (1984), 

described as granite and granodiorite respectively 

Petzography : In thin section, the Melody Granite is 

strongly recrystallized. It displays a granular texture, and 

many examples contain quartz and feldspar ribbons, oriented 

parallel to microcrystalline mylonitic zones. The mafic 

mineral assemblage varies with intensity of deformation and 

metamorphism; weakly-deformed samples contain aggregates of 

fine-grained green-brown biotite and local relict 

hornblende, whereas strongly deformed variants contain only 

sphene - chlorite - epidote aggregates along foliation 

planes. 
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Plate 3.3. Features of the Melody Granite. (a) Strongly deformed granitoid 
with ribbon quartz and cataclastic texture, but with relict K-feldspar 
phenocrysts. (b) Weakly deformed, porphyritic, melanocrat i c variant. 
All slabs stained to turn K-feldspar yellow. 

A B 

' 
Plate 3.~. Features of the Brumwater Granite. (a) Vein of grey granite 

cutt1ng refoliated Archean gneiss, Kaipokok Bay area. Note that vein 
truncates banding, t~t is affected by later deformation, and shares the 
same general fabric. (b) Typical stained slab, showing heterogeneous 
and slightly banded < ppearance of many examples. 
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Age Uncertainty : The Melody Granite is undated. Ryan 

(1984) mapped it as continous with his unit 23, based on 

compilation of unpublished BRINCO descriptions. Ryan's unit 

23 has yielded an age of 1910 ± 10 Ma about 50 km west of 

the study area (Gandhi et al., 1988). This result may 

indicate a pre- Makkovikian age for the Melody Granite: 

however, the correlation is based purely on general 

lithology, and the author has not examined the sample of 

Gandhi et al. (1988). For the purposes of the current 

discussion, therefore, the Melody Granite is regarded as a 

syr-tectonic Makkovikian intrusion, although this may be 

subject to revision. 

3.1.4 Brumwater granite 

The Brumwater granite (Marten, 1977) is a small, 

tabular body that intrudes reworked Archean basement rocks 

southeast of Kaipokok Bay (Figure 3.1, inset). It was 

defined and mapped by Marten (1977), and visited briefly 

during this project. It consists of grey to pink, foliated, 

leucocratic, biotite- granodiorite and monzogranite (Table 

3 . 1: Plate 3.4). Marten (1977) describes similar rock types 

from other parts of the Archean inlier along Kaipokok Bay, 

which he correlated with the Brumwater Granite (Figure 3.1, 

inset) . 

F.ield Relationships and Aqe : Marten ( 1977) described 

a gradational relati~nship between this unit and adjacent 

migmatized Archean gneisses, and suggested that it may be 

an anatectic derivative of them. Enclaves of gneissic 

material are locally present, and a "ghost layering" is 

present in some outcrops. The granite truncates layering in 

refoliated Archean gneisses that is considered to be a o2 
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structure, and foliation in the granite is thus considered 

to be a o 3 feature (Ma~ten, 1977). Its relationship to 

deformation is therefore analogous to the Long Island 

Quartz Monzonite (see above). The foliation is defined by 

biotite aggregates and concordant pegmatitic and qua rtzose 

seams. An augen texture is locally developed. 

Scharer et al.(1988) obtained a U-Pb monazite uge of 

1794 ± 2 Ma from a biotite leucogranite that cuts 

migmatites correlated with the Brumwater granite; this 

provides a lower limit on the age of the unit. An attempt 

to date the granite itself failed due to a highly 

discordant, U-rich zircon population (U.Scharer, pers.comm. 

to R.J.Ward!e). 

3.1.5 Pitre Lake Granite 

The Pitre Lake granite, defined and mapped by Marten 

(1977), is a thin, tabular, subconcordant body that is 

confined to metasedimentary rocks of the Lower Aillik Group 

in the Kitts Pond area (Figure 3.1, inset). It wa s visited 

only briefly during this study. The unit consists of 

medium-grained, equigranular biotite-muscovite granite 

(Table 3.1; Plate 3.5). 

The granite truncates the foliation in the host 

metasediments {a composite o
1
;o

2 
structure; Marten, 

1977), but contains a weak to moderate foliation 

subparallel to or slightly oblique to its contacts. Marten 

(1977) considered this to be a o3 feature, and suggested 

that the unit was a syn-o
3 

intrusion. 

Metasedi~entary xenoliths similar to the pelitic to 

psammitic country rocks are common, and amphibolite 
• 

inclusions occur locally. Folding defined by "ghost 

layering may indicate a more complex structural hiatory 

than other foliated granitoids. However, this la¥dring 
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Plate 3.5. Features of the Pitre Lake Granite. (a) Part of a concordant 
metasedimentary inclus ion (centre) within the granite, which is the 
white material to lef= and right. (b ) Complex ly folded "ghost" 
layering, possibly i nherited from the metasedimentary protolit h. 

A B 

Plate 3:6· Features of the Manak Island Granitoid. (a) and (b) Typical 
~ta1ned sl~bs of weakly foliated, leucocratic monzogranite. Foliation 1s not obv1ous in slabs, but is easily rec1 gnized on outcrop surfaces 
(no photo available). 



f. 
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C:()Uld be an i:-. he~·i ~ed fe:.t. ~re if t he q1·anite ""~H'· de: ived by 

an3texis of i~s host rocks, wh ich sho~ s'milarly in:~i ~~ :e 

fo l ding in nearby outcrops. No geochronolog lc:al dat~ arc 

available from the unit. 

2.1.6 Manak Island Granitoid 

This unit is located near Adlavik Bay (Figure 3.1), 

and ""as previously grouped with the Cape Strawberry Granite 

by Doherty (1980) and Gower et al.(1982). It is lithologically 

distinct from the latter in all respects and has a 

N-trending foliation. It consists of white to grey, 

foliated granodiorite and monzogranite (Table 3.1: Plate 

3.6). The unit resembles the more homogeneous variants of 

the Brumwater Granite (see abc ve), but is generally free o i 

xenoliths and ghost layering. 

The unit forms a narrow zone between gabbro and 

diorite of the Adlavik Intrusive Suite (see Chapter 5) and 

adjacent monzonite and quartz monzonite of the Numok 

Intrusive Suite (see Chapter 4). These surrounding units 

are massive ar.d undeformed, and the Manak Island unit 

probably represents a screen between younger intrusions. It 

is intruded ty gabbro and diorite of the Adlavik Suite on 

the adjacent mainland, but contacts with the Numok Suite 

and the Upper Aillik Group at the southern end of Ma nak 

Island have not been observed. 

In thin section, the unit is variably recrystallized 

to a polygonal mosaic, although scattered microcline and 

' locally) zoned plagioclase phenocrysts are preserved. It 

t~ntains only minor amounts of sphene, apatite, zircon and 

allanite. 

No geochronological data are available fr~m the unit, 

but undeformed rocks of the adjacent Numok Suite have given 

a U-Pb zircon age of 1801 ± 2 Ma. (Krogh et al., in 
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prep.). If differences in deformation state indicate 

differences in age, this provides a lower limit for the 3ge 

of the Manak Island Granitoid. 

3.1.7 Deus C~e Granitoid 

This unit occurs in the extreme east of the study 

area, adjacent to the Cape Harrison Metamorphic Suite 

(Gower, 1981). It has been visited only in a few localities 

during this project. The unit consists of coarse grained, 

pink to grey, foliated, K-feldspar megacrystic to seriate 

granodiorite (Table 3.1; details partly from Gower, 1981). 

Contact relations are unknown, but the unit displays a 

single NNE-trending foliation, and contrasts with the 

adjacent polydeformed migmatitic rocks of the cape Harrison 

Suite (Gower, 1981). This contrast suggests that it 

occupies a time slot between the Cape Harrison Metamorphic 

Suite and undeformed Makkovikian plutonic rocks. Krogh et 

al.(in prep) report a U-Pb zircon age of 1837 +6/-4 Ma from 

this unit, ~hich provides a minimum age fr- the Cape 

Harrison Metamorphic Suite, which is the only candidate for 

"basement" in the east of the area. 

~.8 Island Harb9ur Bay Intrusive Suite 

The Island Harbour Bay Intrusive Suite (Ryan et al., 

1983) lies outside the study area, but, as the largest 

single Makkovikian plutonic body, merits some discussion. 

The following outline is taken from Ermanovics et 

al.(1982), Ryan et al.(l983) and I.Ermanovics (pers. comm., 

1988). 

The suite includes a wide variety of roc~ types that 

display complex field relationships. Ryan et al. (1983) 

divided it into a grey tonalite to granodiorite, and a 
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homogeneous pink granite. The former is more abundant and 

forms the outer part of the intrusion; it is 

compositionally varied, inclusion-rich and polyphase. Ryan 

et al.(1983) distinguished diorite, quartz diorite, 

K-feldspar megacrystic granodiorite, and leucocratic 

granite, all of which show mutually intrusive relationships 

suggesting synchronous emplacement. The central granite 

unit lacks this complexity, and is commonly inclusion-free. 

It consists of pink to grey, feldspar porphyritic, locally 

megacrystic, biotite granite, locally containing 

interstitial fluorite. All of the above phases are intruded 

by pegmatite and aplite dykes. 

The contact between outermost tonalite-grar.odiorite 

and Archean gneisses is described by Ryan et al.(l98J) as a 

complex lit-par-lit migmatite zone, where foliations in the 

granitoid rocks are parallel to those in the gneisses. 

Early foliated granitoid dykes are cut by later undeformed 

phases, indicating syn- to post-tectonic emplacement. 

Foliations in the outer parts of the intrusion are locally 

cataclastic to mylonitic, and have concentric structural 

trends (Ryan et al., 1983). Rafts of Archean gneiss within 

this marginal zone display the strong "straightened" 

layering associated with early Makkovikian deformation 

(Ryan and Kay, 1982). The central portion of the body, in 

particular the granite unit, is massive to weakly foliated, 

and appears post-tectonic. 

The Island Harbour Bay Intrusive Suite has been dated 

by a variety of methods. U-Pb zircon data from the dominant 

grey granodiorite (Loveridge et al, 1988) suggests an age 

of 1805 ± 5 Ma, similar to that of the Long Island Quartz 

Monzonite. This agrees well with Rb-Sr ages of 1805 ± 42 • 
for the granite unit, and 1843 ± 90 Ma and 1794 ± 71 Ma for 

the tonalite-granodiorite unit (Grant et al., 1983). An 
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U-Pb zircon age of 1973 ± 15 Ma (Brooks, 1982) from the 

tonalite unit is enigmatic. It may reflect inheritance, but 

there is no evidence of inclusions in outcrop (B.Ryan 

pers. comrn., 1988) , and no cores are repnrted from the 

zircons. I.Errnanovics (pers. comrn., 1988) considers the ca. 

1800 Ma ages from the granite unit to be !!lil'}_i mum ages only, 

and states that the tonal i tic rocks may be somewhat older. 

As wi 11 be shown later, these tonali tic and trondhjemi tic 

cornposi tions are not typical of the Makkovikian plutonic 

assemblage in the study area. 

• 
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3. 2. DESCRIPTIVE GEOCHEMISTRY 

syn-tectonic Makkovikian plutonic rocks are 

represented by 186 samples: 121 of these are from 

"regional~' samples collected on a 2 km grid spacing. The 

remainder are follow-up samples (mostly from the Kennedy 

Mountain Suite) 1 and a small number of geological samples 

from all units (see Chapter 1 for explanation of sample 

populations). No samples were collected from the Island 

Harbour Bay Intrusive Suite; this is represented by 20 

unpublished analyses supplied by B.Ryan (pers. comm. 1 1987). 

3. 2.1 General Geochemistry 

Summary of Numerical Data 

Average ma jar 1 trace and partial CIPW normative 

compositions of syn-tectonic Makkovikian plutonic rocks are 

listed in Table 3.2. The Long Island Quartz Monzonite and 

ton a 1 i te to granodiorite of the Island Harbour Bay 

Intrusive Suite are silica-poor ( 63-65% sio2 ) compared to 

all other units (72-75% Sio
2

). The four component units 

of the Kennedy Mountain Intrusive Suite have similar major 

and trace element compositions, as do the two geographic 

subdivisions of the Long Island Quartz Monzonite. The 

Melody Granite is broadly similar in composition to 

granites of the Kennedy Mountain suite. 

The remaining units show similar major element 

compositions but distinct trace element patterns. The Pitre 

Lake Granite is characterized by high Rb 1 F and Li relative 

• 
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Table 3.2 . Average compositions of syn-tectonic Makk.ovikian plutoni c 
rocks, subdivided by principal units. 

UIHT 10.1 10.2 11.1 11.2 11.3 11.4 12.0 --------.... ---.......... ---------------------· ----------------------------.. -.. ----................ ------.... ---------.. --.. ---------.. 
nl 14 9 19 18 74 5 31 
n2 5 8 1 16 1 19 

., ----------------------------------------------------------------------------------------------------------.. -------
(lit!) lie an S.D. lie an S.D. !lean S.D. lie an S.D. Mean S.D. !lean S.D. llean S.D. --------------------------------------------------- .. --------------------------------------------------------------
Si02 63.22 1.27 65. 46 7.11 75.05 1.37 71.05 2. 73 74.49 2.63 69.35 4.36 72.27 3. 26 
Ti02 0.88 0.06 0.69 0.34 0.28 0 .24 0.42 0.15 0.23 0.13 0.51 0.22 0.35 0.21 
Al203 15. i9 0.23 15.84 2.42 12.31 0.48 13.71 0.82 12.32 1.01 14.45 1.55 13.50 1.10 
Fe203 1.81 0.38 1.95 1.18 1.32 0.41 1.39 0.72 1.27 0.75 1.11 0.55 0.97 0.68 
FeO 3.09 0.75 1.90 0.59 0.91 0. 32 1.69 0.83 1.28 1.26 2.05 0.59 1. 74 1.12 
llnO 0.10 0.01 0.07 0.03 0.04 0.01 0.07 0.03 0.06 0.03 0.07 0.02 0.04 0.02 
~ 1.26 0.44 0.99 0.63 0.13 0.04 0.38 0.22 0.12 0.20 0.58 0.44 0.41 0.37 
cao 2.97 0.49 2.71 1.82 0.51 0.27 1.25 0.42 o. 76 0.59 1.64 o. 76 1.18 0.72 
Na20 4.28 0.26 4.28 0.31 4.61 1.16 4.30 0.92 4.34 1.13 3.99 0.43 3.80 0.76 
K20 4.77 0.51 4.50 0.31 4.14 1.82 4.84 1.15 4.19 1.56 5.25 0.49 4.59 0.99 
P205 0.26 0.03 0. 25 0.20 0.03 0.01 0.09 0.04 0.03 0.04 0.11 0.07 0.09 0.07 
WI 0.63 0 .24 o. 72 0 . 34 0.36 0. 13 0.42 0. 19 0.47 0.23 0.41 0.03 0.70 0.34 
TOTAL 99.16 99.36 99.67 99.60 99.55 99.53 99.63 

(ppa) Trace Ele~ents ------------------------------------------------------------------------------------------------------------------
Li 23.6 4.6 19.9 15. 8 15.2 10.2 25 . 6 15.5 10.4 7.0 27.2 8.1 18.1 13.5 
F 873.2 214.7 809.8 499 . 5 661.5 5U. 7 936.1 315 .2 1092.4 982.5 1145.8 484.2 613.7 481.2 
Sc 9.6 1.7 1.5 0.6 0.8 o.o 1.1 0.7 4.4 0.0 2.9 1.6 
v 76.3 19.2 49.0 31.8 12.7 6.2 21.4 8.6 12.3 1M 45.6 21.5 24.3 17.7 
Cr 5.6 3.6 3.2 1.4 4.3 4.0 3.6 1.9 5.3 4.0 3.2 2.2 3. 7 3.5 
Ni 2.7 1.9 1.2 0.4 1.4 1.1 1.3 0.7 1.3 1.3 1.6 0.9 1.7 1.5 
cu 9.3 3.9 5.2 2.0 2.5 0.8 5 . 2 4.3 3.6 3.9 6.2 4.1 7.3 15.1 
Zn 74 . 0 8.8 61.8 17.9 65.8 29.7 73.7 24.7 87.3 61.8 60-6 19.2 45.0 27.9 
Ca 18.4 1.2 14.4 4.4 16.5 7.1 14.5 5.7 17.3 7.7 18 2.0 18.3 2.2 
Rb 127.9 24.4 118.0 29.2 129.7 62.1 163.0 49.3 127.9 67.4 185 42.0 m.o 36.0 
Sr 327.2 40.5 348.8 274 . 2 31.8 9.4 103.9 55.2 51.6 78.5 137.2 86 .1 106.8 89 .9 
y 36.5 2.0 32.3 7.0 52.5 14.2 55.1 15.5 82. 8 31.3 45.8 9. 4 45.2 17.8 
Zr 227.9 66.6 250.1 107.2 409.5 126.5 356.7 119.6 401.4 156.2 237.6 54.2 361.9 162.9 
Nb 14.1 1.1 13.2 3. 7 19.9 4.1 23.9 6.4 32.0 15.1 19.6 5.0 20.6 !>.6 
llo 4.3 0.5 5.4 3.2 3.4 2.3 4.4 2.1 3.4 1.5 4.6 1.1 3.4 1.0 
Sn 1.0 0.0 3.5 2.0 7.0 0.0 3.4 2.9 5 0.0 4.4 3.7 
Cs 1.3 1.2 0.7 0.5 0 . 5 0 .0 0.6 0.4 0.5 o.o 2. 2 1.4 
Ba 1424.3 120.6 1243.6 449.1 152.6 77.4 717.6 315.9 390.0 439.9 846 390.9 827.6 481.8 
La 53.6 4.9 44.9 16.4 62.8 28 .4 73.1 22.7 85.0 39.1 57.2 9.7 85.2 38.2 
ce 103.0 6.2 89.3 26 . 9 130.9 52.7 143.1 40. 3 177.2 73.2 117.2 18.8 171.4 66 .8 
Sl 9.2 0.8 10.5 2.0 13.0 0.0 13.7 3.8 11 0.0 13.8 s.o 
Yb 2.5 0.0 4.2 2.4 10.0 0.0 8.9 3.0 7 0. 0 5.2 2.5 
Bf 8.0 1.2 12.8 3.5 12.0 o.o 12.2 3.5 12 o.o 10.8 4.1 
Pb 15.5 3.8 18.6 4.3 17.7 6.6 24.9 4.5 18.1 11.9 22.6 2.3 14.1 7.5 
fb 9.5 2.7 8.1 9.6 10.7 7.7 19.2 6 . 8 15.9 10.3 23.8 12.0 12.1 6.1 
D 4.9 0.8 3.3 1.0 3.7 2.5 6.3 2.9 4.5 2.9 7.}!) 2. 8 3.7 2.0 

(IIU) Partial CIPII norE -----------------------------------------------------------------------------------------------------------------
Q 12. 07 1.68 17. 31 11.38 31.61 2.89 24.31 5.12 31.64 5.41 21.40 a. 76 29 .06 5.53 
c 0.00 0.00 0.09 0.15 0.03 0.07 0. 01 0.03 0.01 0.07 0.02 0.05 0.38 0.46 
Or 28.59 3.02 26.91 1.83 24.63 10.87 28 .84 6.85 24.96 9.31 31.32 3.06 27 .43 5.87 
Ab 36.73 2.08 35. 85 1.28 39.17 9.84 36.67 7.84 36.86 9.30 34.09 3. 77 32 .48 6.48 
All 9. 97 1.50 10.61 5.54 0.66 0.47 3.82 1.88 1.84 1.97 5.98 2.69 5.24 3.02 
Di 3.05 1.23 1.34 2.07 0.84 0.63 1.53 1.07 1.08 1.21 1.42 0.99 0.20 0.45 

gr 4.62 1.78 2.n 1.72 0.26 0.39 1.81 1.51 0.94 2.08 2.89 1.12 2.94 2.30 
0.00 0.00 0.39 o. 78 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Rt 2.67 0.56 2.63 1.35 1.64 0.57 1.69 0.90 U7 0.80 1.62 0.81 1.25 0.74 
11 1.69 0.13 1.34 0.66 0.53 0.45 0.77 0.31 0.44 0.24 0.98 0.42 0.67 0.41 ----------------------------------------------------------------------------------------------------------------

KEY TO DNITS (JailS - Kennedy llountain Intrlisi ve SUite) 
10.1 -- I.onq Island Quartz llonzonite (1ain b'.ldy) 10.2 -- Lonq Island Quartz llonzonite (other) 
11.1 -- (IOOS) l(ennedlJ>untain Granite 11.2 -- ()(]liS) larrovs Granite 
11.3 -- iKKIS) Cross e Granite 11.4 -- (IQIIS) otber units 
12. o -- Melody Giani te 
nl -- nlllber of analyses for all ele1ents erce~t tbose listed below. 
n2 -- nlllber of analyses for Sc, sn, Cs, S1, Y and Bf. 
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Table 3.2 (continued) 

ORIT 13.0 14.0 15.0 16.0 18.1 U.2 ------ .. --.. ------.... ---.. --------.... ---........................ -----------------------------...... ------... --------------
n1 4 4 6 2 15 5 
n2 -----------------------·-----------------------------------------------·---------------------------
(wtt) !lean S.D. !lean S.D. !lean S.D. !lean S.D. !lean S.D. !lean S.D. ---------------------------------------------------------------------------------------------------
Si02 72.73 1.26 76.18 0.38 70.13 0.69 75.68 4.42 66.13 6.51 73.38 1.52 
Ti02 0.16 0.09 0.05 0.02 0.31 0.03 0.17 0.10 0.52 0. 36 0.20 0.05 
Al203 14.66 0.44 12.87 0.23 15.83 0.40 12.64 1.94 16.44 1.40 14.52 o. 73 
Fe203 0.64 0.44 0.36 0.24 1.06 0.26 1.03 0.28 1.19 0.97 0.30 0.15 
reO 0.66 0.29 0.43 0.25 0.90 0.19 0.54 0.20 2.26 1.46 0.96 0.11 
llnO 0.03 0.01 0.03 0.01 0.04 0.01 0.04 0.01 0.05 0.04 0.03 0.01 
~ 0.65 0.27 0.02 0.01 0.54 0.03 0.31 0.23 1.41 1.36 0.38 0.23 
cao 0.99 0.03 0.47 0.17 1. 78 0.21 0.63 0.11 3.48 1.94 0.97 0.61 
lla20 5.06 0.93 4.31 0.26 4.89 0.19 3. 36 1.08 4.61 0.50 4.03 0.28 
K20 3.34 1.46 4.32 0.24 3.93 0.14 4.79 0.08 2.52 1.08 4.08 1.16 
P205 0.06 0.02 0.02 0.01 0.12 0.01 0.03 0.03 0.19 0.19 0.04 0.01 
1.01 0.93 0.29 0.62 0.04 0.42 0.16 0.67 0.11 0.98 0.42 0. 78 0.02 
rom 99.91 99.66 99.95 99 .86 99.78 99.67 

(ppl) ---------------------------------------------------------------------------------------------------
Li 11.5 1.7 162.5 98.0 22.5 6.1 12.0 o.o 
F 187.5 68.4 2660.5 746.6 411.3 133.9 230.0 14.1 
sc 
v 21.5 8.5 13.0 2.4 29.0 4.9 14.0 7.1 55.7 48.4 28.0 24.1 
cr 7.5 5.7 4.5 1.7 2.5 0.8 1.0 0.0 15.0 37.5 5.0 o.o 
IIi 3.0 2.7 1.5 0.6 1.5 0.5 1.5 0.7 
cu 3.5 1.3 2.0 1.2 4.5 1.2 8.5 5.0 
Zn 29.3 3.9 61.3 23.9 43.2 10.2 54.0 4.2 
Ga 6.8 1.7 16.5 7.2 13.2 2.9 16.5 2.1 21.5 2.6 19.6 3.4 
Rb 96.5 41.0 411.5 163.4 79.3 24.9 164.5 37.5 70.7 24.1 257 .o 166.0 
Sr 273.5 47.5 7.8 2.2 596.3 75.3 48.0 25.5 540.2 290.5 m .o 177 .a 
y 5.8 1.7 125.0 32.8 8.5 1.2 41 .5 21.9 10.9 7.1 45.0 5}.3 
Zr 88.0 38.0 114.3 23.1 162.0 26.1 256.0 53.7 163.3 76.4 110.0 19.1 
Jib 2.0 0.0 36.5 11.6 5.0 1.3 23 .5 0.7 8.3 5.7 20.8 18.6 
llo 2.0 o.o 2.0 o.o 2.0 0.9 3.5 0.7 
sn 
Cs 
8a 912.5 446.6 42.0 38.2 1560.0 174.4 209.5 171.8 774.4 330.4 674.0 592.0 
La 13.8 4.6 12.3 4.3 26.0 5.3 49 .0 2.8 29.2 11.0 22.6 5.2 
Ce 19.0 11.6 32.5 9.9 46.0 8.7 103.0 5. 7 50.3 17.0 36.4 8.6 
Sl 
Yb 
Bf 
Pb 12.5 7.9 61.5 1.3 11.3 2.8 " 14.8 
Tb 1.8 1.0 23.3 18.2 u 2.9 7.8 6.3 4.1 24.0 19.2 
u 1.7 0.5 8.6 8.2 1.8 0.4 _,a 2.8 

(wtt) --------------------------------------------------------------------------------------------------
Q 27.56 2.39 33.68 0.70 22.02 1.87 36.33 11.44 19.78 8.28 31.51:1 5.77 
c 0.98 0.48 0.30 0.23 0.40 0.24 0.86 0.05 0.51 0.46 1.80 1.73 
or 19.88 8.64 25.77 1.40 23.32 0.82 28.50 0.57 15.08 6.46 24.39 6.87 
Ab 43.23 8.08 36.77 2.22 41.55 1.66 28 . 67 9.27 39.48 4.30 34.42 2.37 
An 4.84 0.26 2.24 0.90 8.59 1.06 2.99 0.40 15.51 7.54 4.75 3.13 
Di o.oo 0.00 0.00 0.1.0 0.00 /'Ill,) 0.00 0.00 0.84 1.89 0.00 0.00 

~r 2.12 0.72 0.60 0.40 I. 78 0.41 0.77 0.59 5.52 4.53 2.22 0.45 
0.00 0.00 0.00 0.00 o.oo 0.1)() 0.00 0.00 0.07 0.26 0.00 0.00 

It 0.94 0.64 0.38 0.14 1.40 0. 32 1.37 0.38 1.75 1.43 0.44 0.21 
11 0.31 0.17 0.10 0.03 0.58 0.07 0.33 0.19 0.99 0.70 0.38 0.11 --------------------------------------------------------------------.. -----------------------------

KEY !0 OIII'fS (IBBIS •• Island Barbour Bay Intrusive SUite) 
13.0 -- Brulvater Granite 14.0 -- Pitre Lake Granite 
15.0 -- llanak Island Granitoid 16.0 -- Deus cape Granitoid 
18.1 -- IBBIS (tonalite-qranodiorite) 18.2 -· IBBIS (qranite) 

n1 -- r.lllber of analyses for all eletents excect those listed belov. 
112 -- nuaber of analyses for SC, Sn, Cs, Sl, Y and Bf. 
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to all other units. The Manak Island and Brumwater units 

are similar, but the former shows higher Ba and sr, 

co~sistent with a lower sio content. These units, and 
2 

the granites from the Island Harbour Bay Suite, are 

distinguished by low Zr, Y, Nb, La and ce compared to the 

Long Island and Kennedy Mountain units. The mean 

composition for the Deus Cape Granitoid (2 samples only) is 

probably not representative of the unit. 

Abundance and Distribution of Rock Types 

IUGS rock types were calculated from normative data 

(after Streckeisen and LeMaitre, 1979, see Chapter 1) for 

regional and geological sample populations. This provides 

an unbiased method of comparing compositional spectr.a. 

Relative abundances (Figure 3.2) indicate that this 

association is dominated by granite (s.s.) and 

alkali-feldspar granite, with lesser amounts of quartz 

monzonite, quartz syenite and monzogranite. 

The Long Island unit contains most of the quartz 

monzonite to monzogranite, whereas the Kennedy Mountain 

Intrusive suite and Melody Granite are dominated by granite 

and alkali-feldspar granite. Minor units (not figured) are 

also dominated by granite (s.s), except for the Manak 

Island unit, which is a monzogranite. No analysis has been 

attempted for the Island Harb~ .~ Bay suite (data are 

insufficient), but a major-element study by Ermanovics 

(pers. comm., 1988) suggests a wide range of compositions, 

including significant tonalite - trondhjemite (see also 

Ryan et al., 1983) 
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Figure 3 . 2 • Relative abundance of lUGS r ock types calculated from 
normative minerftlogy using the method o f Streckeisen and LeMaitre 
(1979). Note th~t this is based on Barth mesonorms, not the CIPW norms 
listed in Table ; ,2 . Abundances are not given for minor units, due to 
small numbers of &~mples. 
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3.2.2 Geochemical Trends and Contrasts 

Syn-tectonic Makkovikian plutonic rocks are subdivided 

into three groups (A,B and C) represented by separate 

columns of diagrams in Figures 3.3 to 3.11. This method is 

intended to reduce "clutter", and no genetic links are 

implied by these groupings. 

Major Element Patterns 

Major element variations show expected patterns. All 

elements (except Na2 o and K20) are negatively 

correlated with Si02 (e.g. Ti02 and FeOt: Figure 3.3), 

and do not discriminate between units. Within the Kennedy 

Mountain Suite, the Kennedy Mountain and Cross Lake 

Granites show the most evolved, high-Sio2 compositions. 

The Melody Granite coincides with the Kennedy Mountain 

Intrusive Suite. Na 2o (Figure 3.3) and K2o (not shown) 

display little systematic variation and exhibit 

considerable scatter above 70% sio2 in the Kennedy 

Mountain Suite. 

Agpaitic Index (K+N/A) and Alumina Index (A/C+N+K) 

(see Chapter 1 for details) distributions provide better 

unit discrimination. K+N/A defines two subparallel trends 

(Figure 3.3: dotted line defines tx..,undary). The "upper 

trend" includes the Long Island Quartz Monzonite and 

Kennedy Mountain Intrusive Suite, and terminates in a dense 

grouping at 75-78% sio2 that includes some peralkaline 

compositions (K+N/A > 1.0). The "lower trend" is defined by 

the Melody, Manak Island, Brumwater and P:tre Lake units, 

and by parts of the Island Harbour Bay Suite: this 

terminates at K+N/A values below 0.94. A/C+N+K values 

(Figure 3.3) indicate that the "lower trend" units are 
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Figure 3.3 Variation of selected major elements and derived ratios in 
syn-tectonic Makkovikian plutonic units. See text for discussion. 
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largely peraluminous (A/C+N+K > 1.0), whereas the "upper 

trend" is metaluminous. These two contrasting groups are 

referred to below as the metaluminous-peralkaline and 

peraluminous ~ssociations respectively. F/F+M ratios 

(Figure 3.3) indicate that the former association shows 

Fe-enrichment relative to most members of the peraluminous 

association. Note also that the latter are D2t "S-type" 

granites in the sense of Chappell and White (1974), which 

are defined as having A/C+N+K ~ 1.1. 

Ternary AFM [(Na 20+K 20) - FeOt- MgO] and CNK 

[Na
2
o - K

2
o- CaO) projections (Figure 3.4) show a 

superficial "calc-alkaline" trend for all units. Linear 

regression of all data suggests that the alkali-lime index 

(i.e. Sio2 value at which Na 20+K2o = CaO) is ca. 57%; 

in the original definition of such terms (Peacock, 1931) 

this association is alkali-cal~ic. The Q-B-F ternary 

projection of Debon and LeFort (Figure 3.4) suggests an 

affinity to subalkaline or alkaline- oversaturated (their 

terminology), rather than calc-alkaline suites. 

The CNK projection (Figure 3.4) indicates alkali 

disturbance (mostly Na-enrichment) in granites of the 

Kennedy Mountain Intrusive Suite. Variation of N/N+K 

(Na
2
0/(Na

2
o+K

2
0] ratios and total alkali content 

(Figure 3.5: c.f. Hughes, 1973) indicate that disturbed 

compositions lie outside the normal igneous spectrum, 

suggesting post-crystallization alteration (see later 

discussion). Total alkali content is unaffected by alkali 

disturbance (Figure 3.5). 

Normative Compositions 

All units of the peraluminous association are 

corundum-normative (Table 3.2). Variations in the Q- Ab­

An - Or quaternary system (Figure 3.6) indicate that the 
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Kennedy Mountain Suite and Melody Granite contain less than 

10% normative anorthite, and lie close to the ternary 

eutectic minima for bulk compositions with appropriate 

Ab/An ratios (James and Hamilton, 1969). Granite units of 

the peraluminous association are displaced from this 

location towards the Ab corner, but still lie in the 

general area of ternary minima for the granite system. The 

Long Island Quartz Monzonite lies close to the pl~gioclase 

- K-feldspar cotectic lines of James and Hamilton (1969) 

for An-poor compositions. Note the anomalously calcic 

composition of tonalites and granodiorites from the Island 

Harbour Bay Suite compared to all other units. 

Trace Element Patterns 

Trace element patterns are discussed in terms of 

element groupings defined in Chapter 1, adapted from 

Saunders et al. (1979). 

Octahedrally co-ordinated Cation (OCC) Elements 

These "compatible" trace elements show strong inverse 

correlation with sio2 (e.g. V, Figure 3.7). Only the Long 

Island Quartz Monzonite has significant enrichment, 

consistent with its lower sio2 content compare~ to other 

units. 

Low Field Strength (LFS) Elements : Incompatible 

(e.g. Rb, Th, Cs) and compatible (e.g. Ba, Sr) LFS elements 

show antithetic behaviour (Figure 3.7). Ba and Sr are 

inversely correlated with sio2 , particularly above 70% 

Sio2 . The Manak Island and Brumwater units, and parts of 

the Island Harbour Bay Suite, are characterized by high Ba 

and sr for their Sio2 content. Extreme depletion in both 

elements is shown by high-silica rocks of the Kennedy 

Mountain Suite, and also by the Pitre Lake Granite. 
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Rb and Th (Figure 3. 7) lack good correlation with 

Sio2. Weak positive trends exist below 70% Sio 2 , but 

data are scattered in high-silica granites, particularly in 

the Kennedy Mountain Intrusive Suite. Partial data for Cs 

(Figure 3. 7) suggest ~ i. ~t the Melody Granite is enriched 

relative to all other units for which data are available. 

The Pitre Lake granite has very high Rb; 2 samples have 

over 400 ppm Rb and are excluded from the figure. Some of 

the granites from the Island Harbour Bay Suite have Rb and 

Th contents similar to the Pitre Lake granite. 

High Field Strength (HFS) Elements : Zr (Figure 3. 8) 

and also Nb and Hf (not figured) are enriched in t .he 

Kennedy Mountain Intrusive Suite relative to most other 

units, and are disorganized above 70% Sio2 . The Melody 

Granite is partly coincident with the Kennedy Mountain 

Suite for these elements, but shows generally lower Zr. 

Most other members of the peraluminous association are 

depleted in Zr. The Pitre Lake shows an unusual combination 

of Nb enrichment and Zr depletion 1 which is also shown by 

some granites of the Island Harbour Bay Suite. 

Rare Earth Elements ( REE) : Variati on patterns for 

Ce and Y (Figure 3. 8) resemble those for Zr and Nb 

respectively. The Island Harbour Bay Suite , Manak Island, 

and Brurnwater units are characterized by low REE abundances 

relative to the Kennedy Mountain suite. The Pitre Lake 

Granite shows Y enrichment and Ce depletion . Partial data 

for Srn and La resemble Ce; partial data for Yb resemble Y. 

Indeterainate TracE-'! Ele11ents : Li is strongly 

enriched in the muscovite-bearing Pitre Lake Granite (two 

samples contain over 150 ppm Li) 1 but is low in most other 
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units. The Kennedy Mountain Intrusive Suite shows variable 

Zn and F enrichment at high sio 2 contents, and is locally 

strongly F-enriched (up to 4000 ppm). Granitoids of the 

peraluminous association are low in F, except for the Pitre 

Lake Granite. 

Trace Element Variation and Alkali Disturbance 

Correlation between trace element behaviour and alkali 

disturbance in the Kennedy Mountain Suite was assessed by 

using N/N+K as the X-axis variable (Figure 1.9). For LFS 

trace elements (e.g. Rb, U, Ba and Sr, possibly also Li), 

disturbed Na-rich compositions show depletion, but there is 

little systematic variation of H7S elements, REE, Zn and F. 

This indicates that any metasomatic processes affected 

feldspars and micas, and had minimal effect on accessory or 

mafic phases. In conjunction with constant total alkali 

contents, it suggests cation-exchange as a possible 

mechanism (c.f. White and Martin, 1980). It also indicates 

that the enhanced levels of fluorine, HFS elements and REE 

that characterize the Kennedy Mountain Suite are pr inlflr_y 

features of the parent magmas, not a consequence of 

hydrothermal activity (see later discussion). 

Trace Element Ratios 

Trace element ratios provide a method of assessing 

fractionation history, as evolution paths resulting from 

fractional crystallization should de.fine lines or smooth 

curves in log-log plots (e.g. McCarthy and Hasty, 1976). 

Reference paths for common silicates, using crystal-liquid 

partition cuefficients from Arth (1976) and Hanson (1978) 

are illustrated in the key to figure 3.10. 
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K/Rb ratios show minimal variation (Figure 3.10) trom 

500 to 200: only the Pitre Lake Granite, parts of the 

Island Harbour Bay Suite and a few granites from the 

Kennedy Mountain Suite show ratios below 200. The general 

trend is towards lower K/Rb with increasing Sio
2

. The 

Kennedy Mountain Suite includes a disturbed population 

depleted in both K and Rb (note the different X-3xis scale 

for the group B diagram). 

Rb/Sr ratios vary widely (Figure 3.10). The Long 

Island unit, Kennedy Mountain Suite (note disturbed 

population) and Melody Granite have flat-lying trends 

suggesting moderate Rb enrichment, consistent with feldspar 

fractionation. 

sa;sr ratios are broadly similar (1 - 30) for all 

units (Figure 3.10). The metaluminous-peralkaline 

association and Melody Granite have curvilinear trends 

indicating progressive Ba and Sr depletion, and increasing 

depletion of Ba relative to Sr. The remaining members of 

the peraluminous association show higher Ba and Sr, and 

define a shallower depletion trend. The steep, curved 

trends are consistent with significant effects from 

K-feldspar or biotite fractionation. 

Variation in LaN/YN ratios (subscript indicates 

normalization to chondrite) indicates REE fractionation, as 

Y mimics the heavy rare-earth element (HREE) Yb. It also 

provides a fingerprint for effects caused by ar.cessory 

phases (see key to Figure 3.10 for details). The 

metaluminous-peralkaline association is tightly clustered 

and positively correlated, with a range in LaN/YN from 

20 to 80. A similar distribution is shown by the Melody 

Granite. La and Y are correlated weakly with sio 2 (Figure 

3.8: L~ is similar to Ce), but strong enrichment expected 



-en 
0 

.-4 

CD a: 

-en 
0 

.-4 

< 

sooo 
K-Feldspar 
D(K) •1.49 
D<Rb>•0.66 

) 
100 

1' 
Biot.it.e 
D<K> •5.63 
D<Rb)•3.26 

so 
10000 

Plaqioclase 
D<K> •0.10 
D(Rb)•0.04 

1 
~Hornblende 0(10 •0. 08 

0(Rb)•0.014 

Garnet. 
D<K> •0.02 
D(Rb)•O.OS 

100000 
K (1 og) 

CD 1000 

100 

10 L---L-~~~~~--L-~~~~ 
so soo· · sooo 

-01 
0 -

SR (log) 

soo 

1\11 Zircon 
0(La)•2.6 
O<Y> •323 

J 

- 88 -

en 
0 
.-4 

CD 
a: 

en 
0 

so 

1000 

'\ 
Hornblende 
D< Rb >•O. 014 

100 t D<Sr)•0.22' 
!<-Feldspar ::l 
D<Rb>•0.66 Biot.ite 
D(Sr)•3.87 k-o< Rb >•3. 26 

0(Sr)•0.12 

10 
so 100 1000 

SA (log) 

1000 r---~, .. ~~~--r-~rT .. TQ 
Biot.it.e ~ 
D< La )•0 ,32 
D(Y) •0.44 

Garnet. \ 
D<La)•0.28 
0( y) •11. 0 

100 1-"":;=:::::!!!:::::f:r:--4 

Hornblende 
O<La)•0,90 
D< y) •5 .0 

K-Feldspar 
0(La)•0.13 
0( y) •0. 015 

~ 
Plaqioclase 
O<La)•0.4 
0( y) •0. 06 

Reference Trend 
Bulk D • 0.1 
for La andY. 

1 
1• Allanit.e 
0(La)•1000 
0( y) •15 

100 

Idealized fractionation trends for Rayleigh fractionation (i.e. perfect 
separation of crystals and liquid). The LaN/YN trends for accessory 
Phases show the effects of only 1% of each phase upon a reference trend 
where bulk partition coefficients for the remaining 99% of the fractionate 
are 0.1 for both La and Y. The latter approximates a "normal" path for 
fractionation of common silicates. Partition coefficent data from 
compilations by Arth (1976) and Hanson (1978) for most minerals, and from 
Gromet and Silver (1983) for allanite and sphene. 



89 

1000 

100 

10 10 
10 10000 100000 10000 100000 100000 1000 
10000 

PPM K (log) PPM K(log) PPM K (log) 

1000 
1000 1000 

"9-'o\c$ 
~ 

,o ... ... 

~~in~ 
... 

X 0 # 
~· ~X # 6 

~x~x~ x, 0 
•o ~ o oO • 100 100 v~z 100 @30 0 0 X X 0 0 • X 6 ~ 0 6 v 

0 vv ,9 

100 
10 1~0~~--~~~LU1~0~0---L~~-L~LU1000 10 1~0~~--~~LLLU1~0~0---L~LJ-L~~1000 

SR(log) SR(log) 
10000 ~--~~.-roTr~---.~ro-.~..- 10000 c---~~~,.~~----r-.-,-~~10000 

1000 1000 1000 

X 

100 100 100 

0 

10 10 
10 100 1000 10 100 1000 

SA (log) SA (log) 
1000 1000 1000 

100 100 

10 100 
10 

100 
10 

GROUP 'A' DIAGRAMS 
Y N (log) 

10 

GROUP 'B' DIAGRAMS 

Q Long Island Quartz Monzonite (Main Body) •x ~}>nlgdlslaGnd <;luartz Monzonite (Other Areas) 
me 6 y ran1te 

• Kennedy Mountain Granite] a Cross Lake Granite Kennedy Mountain 
¢ Narrows Granite Intrusive Suite 
+Other (unnamed) _ 

100 

10 

GROUP 'C' DIAGRAMS 

6 Brumwater Granite 

SR (log) 

* * * 

YN(log) 

A Manak Island Granitoid * Pitre Lake Granite 

# Deus Cape Granitoid 

1000 

100 

V Tonalite-Granodiorite J Island Harbour Bay 
"' Gramte Intrusive Suite 

Figure J.lo . Variation in the trace element ratios K/Rb, Rb/Sr, Ba/Sr and 
LaN;yN in syn-tectonic Makkovikian plutonic units. See opposite 
for reference fractional crystallization trends. 

Ol 
0 

m 
a: 

Ol 
0 

.---1 

m 
a: 

cr 
0 

<{ 

m 

Ol 
0 

z 
<{ 

-' 



- 90 -

from feldspar fractionation is not obvious. There is, 

however, no evidence for the Y depletion that should 

accompany significant fractionation of sphene, zircon or 

apatite, or La depletion caused by allanite or monazite. 

Remaining granitoids of the peraluminous association 

show low La andY, but greater variation of LaN/YN. 

Their trends are consistent with effects from "removal" of 

accessory phases: in the case of the Pitre Lake Granite, 

this must have been a LREE-rich phase such as allanite or 

monazite. As discussed subsequently (3.3), this may be a 

function of ~~ material, rather than fractional 

crystallization. 

Rare-Earth Element (REE) Patterns 

Representative samples have been analyzed for the full 

REE spectrum (Figure 3.11: data listed in Appendix B). The 

Kennedy Mountain suite granites have fractionated LREE 

patterns (200-300 x chondrite), strong negative Eu 

anonalies, and HREE patterns that vary from flat to steep. 

Deepening of the Eu anomaly is associated with increasing 

HREE fractionation. The least fractionated patterns 

resemble the Long Island REE pattern. The Eu anomaly 

indicates plagioclase and/or K-feldspar fractionation (see 

also Figure 3.10); HREE fractionation is probably a 

function of sphene and zircon extraction in the most 

fractionated rocks. The Melody Granite REE pattern 

resembles typical Kennedy Mountain Suite examples. 

REE patterns for the Manak Island and Brumwater 

Granitoids are remarkably similar; they are steep, and lack 

negative Eu anomalies. A similar profile is shown by the 

tonalite-granodiorite unit of th~ Island Harbour Bay Suite. 

The Pitre Lake Granite has an unusual flat REE pattern with 

a strong negative Eu anomaly. 
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3.3 SUMMARY AND DISCVSSIQN 

Geological and Petrographic Associations 

Syn-tectonic Makkovikian plutonic rocks can be divided 

into two groups based on their field and petrographic 

characteristics. 

The Long Island Quartz Monzonite, Kennedy Mountain 

Intrusive Suite and Melody Granite are regionally 

extensive, homogeneous units. They dre xenolith-poor; 

inclusions, where present, commonly appear to be cognate, 

darker-coloured phases. There is no evidence of anatectic 

melting in their country rocks, suggesting that they were 

derived from well below the current level of exposure. The 

Long Island and Kennedy Mountain Suite units are both 

dominated by hornblende - biotite granitoids, with 

hornblende-poor leucocratic variants. Whatever the ultima~e 

sources of these intrusions, they were not derived from 

their country rocks at the present level of exposure. 

A totally different environment is represented by 

small foliated granitoid units of the Kaipokok Bay area 

(Brumwater and Pitre Lake Granites). These units are 

confined to specific units in the basement complex or Lower 

Aillik Group, and, although intrusive, have contacts that 

are regionally concordant to layering and/or stratigraphy. 

Both the Pitre Lake and Brumwater Granite locally appear 

gradational with surrounding rocks (Marten, 1977), and 

contain abundant metasedimentary and gneissic xenoliths 

respectively. There is evidence of migmatization in the 

country rocks, and Marten (1977) suggested that the 

Brumwater Granite was gradational with migmatitic Archean 

gneiss. The composition and setting of the Pitre Lake unit 
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suggests derivation by anatexis of local metasedimentary 

rocks. Both units were apparently derived by melting of 

their country rocks at (or slightly below) th0. p·escnt 

level of exposure. They are the only rocks in the study 

area for which such a relationship can be demonstr~ted. lt 

is interesting to speculate also that the Ma nah Island 

Granitoid, which is compositi0nally similar to the 

Brumwater Granite (note, for example, their coincident RF.E 

patterns) is a product of the same process in the east of 

the area. This unit, however, is not obviously 

xenoli th-ricn. 

The Island Harbour Bay Intrusive Suite was not 

examined directly in this study, but apparently has 

elements of both settings (Ryan et al., 1983; I.Erman~vics, 

pers.comm., 1988). The outer portion is rich in gneissic 

xenoliths, and has a migrnatitic contact with surrounding 

gneisses. In contrast, the inner portions of the body arc 

massive and relatively xenoiith-free. The presence of 

dioritic and tonalitic roc ks, however, indicates that the 

suite cannot be ~ntiJ.~~ of anatectic origin, as such rocks 

are impossible to derive by partial melting of the Archean 

gneisses, which have a bulk composition approximating 

tonalite or granodiorite (Korstgard and Ermanovi c s, 1985). 

Geochemical Associations 

Syn-tectonic Makkovikian plutonic rocks a re also 

divisible into two associations on geochem i cal grounds. 

These partially correspond to those outlined above. 

The Long I s l a nd Quartz Monzonite and Kennedy Mountain 

Intrusive Suite define a metaluminous-peralkaline 
• 

ass, elation that shows re-enrichment and sporadic 

peralkaline compositions in the latter. They Jefine smooth, 
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co~tinous, major and trace element trends, that terminate 

with evolved high-silica granites of the Kennedy Mountain 

Suite. They are regarded here as genetically related, 

possibly as a magm3 sequence derived by fractionation of a 

single parent. This association is characterized by 

distinct enrichment in fluorine, Zn, HFS elements and REE. 

In contrast, remaining syn-tectonic granitoid units 

define a mostly peraluminous association. Peralkaline rocks 

are absent, and F/F+M ratios are lower at a given sio
2 

content, except for the Melody Granite (see below). These 

show (as a group) significantly lower F, Zn, HFS elerr.ent 

and REE abundances, indicating a quite different origin (or 

source material). The Pitre Lake Granite has a distinct 

mineralogy and geochemistry (high Li, Rb, Th, low LREE) 

consistent with field evidence for a metasedimentary 

source. The Melody Granite is enigmatic; it is variably 

peraluminous, but in most other respects (including trace 

element geochemi~try), it is akin to metaluminous -

peralkaline granites of the Ker.nedy Mountain Suite, and 

probnbly has a sirr.ilar origin. 

Origin of Compositional Variations 

Hetaluminous - Peralkaline Association : This 

association is characterized by geochemical trends that are 

explicable either by fractional crystallization or unmixing 

of an~tectic residue (e.g. White and Chappell, 1977; Wall 

et al . , 1987). In the case of the Kennedy Mountain Suite, 

alkali metasomatism has superimposed scatter on LFS element 

trends (see below). In the granite quaternary system, this 

association evolves from the plagioclase volume to the 

plagioclase - K-feldspar cotectic, and then t~minates 

close to the eutectic minimum (Figure 3.6). Such 

characteristics favour control by cry~tal fractionation, 

also indicated by the porphyritic nature of many rocks. 



- ns -

Trends for Ba, Sr, K and Rb (Figure 3.10) are close to 

those predicted by idealized fractionation of plagioclase 

(± mafics) in the Long Island unit, and plagioclase ± 

K-felds~ar in the Kennedy Mountain Suite (also the Melody 

Gran1~e). Curvature of the Ba-Sr trend probably reflects a 

greater proportion of K-feldspar fraction~tion at high 

Si02 contents. This interpretation is consistent with 

observed phenocryst assemblages in these ro~ks. It is also 

consistent with the prominent negative Eu anomalies in REE 

patterns. There is some evidence of accessory mineral 

fractionati~n in the most evolved rocks. Late 

crystallization of accessories, and resultant HFS and REE 

enrichment, is a common feature of F-enriched granitoids 

with high K+N/A ratios, and probably reflects retention of 

these elements in the melt as alkali-fluoride or 

alkali-zirconosilicate complexes (Collins et al., 1982; 

Linthout, 1984; Whalen et al., 1987). 

Peraluminous Association : Field evidence for local 

anatectic derivation of the Brumwater and Pitre Lake 

Granite~ implies that partial melting had greater influence 

on geochemistry than any subsequent fractional 

crystallization (c.f. White and Chappell, 1977). The 

Brumwater Granite has unusually high Sr and low Rb for an 

anatoctic melt; this probably reflects incorporation of 

plagioclase-b~aring restite. such material is also required 

to explain the absence of a negative Eu anomaly (Figure 

3.11). The low HFS element and REE abundances in all 

peralumir.ous units (except Melody Granite) indicate that 

sphene and zircon were "removed" early in crystallization: 

it is likely that this reflects their stability in 

anatectic residuum. Low Y in most of these units may 

indicate similar residual hornblende. Large, euhedral 
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~phene crystals in some Island Harbour Suite granitoids 

(B.Ryan, pers. comm., 1988) suggests fractional 

crystallization in this particular case. Strong La 

depletion andY enrichment in the Pitre Lake Granite 

probably indicates an allanite or monazite-bearing 

residuum. (c.f. Mittlefeldt and Miller, 1983). 

Metasomatism in The Kennedy Mountain Intrusive Suite 

High-silica granitoids of the Kennedy Mountain 

Intrusive Suite include a population that has N/N+K ratios 

beyond the normal range of magmatic rocks. There is no 

systematic geographic variation in NjN+K; these ultrasodic 

samples ::1ppear to be dispersed randomly through areas of 

"normal" composition. 

It is suggested that this reflects deuteric or 

hydrothermal albitization related to late-magmatic or 

post-crystallization processes. Similar alkali metasomatism 

has been documented in felsic volcanic rocks of the Upper 

Aillik Group by White and Martin (1980) and Evans (1980), 

and in this study (see Chapter 7). White and Martin (1980) 

suggested that the Upper Aillik Group alteration is 

analogous to fenitization, a process commonly associated 

with alkaline magmas. They also recognized K-metasomatism, 

which they interpr,ted to occur at a lower temperature than 

the predominant albitization. The alteration in the Kennedy 

Mountain Suite is interpreted here to record the same event 

that affected the Upper Aillik Group; this is consistent 

with the inferred age of the former (> 1800 Ma) and 

measured ages for the latter ( 1860 - 1810 Ma). The 

predominance of Na-metasomatisrn is consistent with a deeper 
• level, plutonic environment (c.f. !1;)1ite and Martin, 1980). 
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Since the Kennedy Mountain Suite granites cut the 

Upper Ai 11 ik Group, this metasomatism and a 1 terat ion must 

have been post-volcanic in timing. There are, however, no 

firm constraints on the time interval between volcanism, 

granitoid intrusion and alteration, and they may have 

followed each other rapidly. As wi 11 be shown 1 ater 

(Chapter 7), there are strong geochemical similarities 

between the Kennedy Mountain Suite and Upper Aillik Group 

felsic volcanic rocks, that suggest partial equivalence. 

White and Martin ( 1980) suggested that trace element 

variations, particularily U, Th, Pb, Zr and F, could be 

linked to the degree and type of alteration in the Upper 

Aill ik Group. In contrast, this study suggests little 

coherent variation, except for some LFS trace elements and 

Li, which are variably depleted in metasomatized granites. 

The data of White and Martin (1980), however, included 

mineralized samples which had suffered silica loss in 

association with albitization and K-metasomati sm. None of 

the granite samples in this study display such extreme 

alteration, and silica levels remain relatively constant 

with alteration (e.g. Figures 3.5; 3.6). 
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CHAPTER FOUR 
POST-TECTONIC MAKKOVIKIAN 
PLUTONIC ROCKS 

Chapter Abstract 

Post-tectonic Makkovikian plutonic rocks are generally 
undeformed, except in the south of the area, where they have 
generally east-trending (Grenvillian) foliations. U-Pb zircon 
and Rb-Sr ages indicate that most were emplaced ca. 1800 Ma ago, 
although so11e may be 1760 Ma old or younger. They are divisible 
into a monzonite to quartz syenite association, and three suites 
of siliceous rocks dominated by granite and alkali-feldspar 
granite. 

The ID.Jl&Qk Intrusive SY.i.U ranges from 
plagioclase-porphyritic monzonite to hypersolvus, 
alkali-feldspar quartz syenite. These rocks are biotite and 
hornblende-bearing, with variable amounts of clinopyroxene. The 
syenitic rocks locally contain fayalite. Sio2 contents are 
moderate (58-66\), but all members of the suite are alkali-rich 
and potassic. Trace element patterns are characterized by HFS 
element and REE enrichment . LFS elements (e.g. Rb) approach 
abundance levels typical of high-sio 2 units. Geochemical 
trends suggest that the Numok Suite evolved by fractional 
crystallization of plagioclase and K-feldspar (± mafic 
minerals). The parent magmas must have been at least as mafic as 
monzonite to generate the observed compositional range. 

The Strawberry Intrusive Suite comprises several discrete 
plutons consisting of closely similar fluorite-bearing, 
K-feldspar porphyritic, subsolvus, biotite granite and 
alkali-feldspar granite. Sodic amphibole (reibeckite or 
arfvedsonite) occurs locally in some of these. The plutons were 
emplaced at shallow depths, and probably had low viscosities and 
solidus temperatures as a consequence of their fluorine 
enrichment. They show direct evidence of biotite (± hornblende) 
and accessory mineral (zircon, allanite) fractionation in the 
form of cumulate mafic mineral layers. The close similarity of 
five plutons over a lateral distance of 125 km indicates 
identical sources and/or processes. The Lanceground Intrusive 
Suite comprises three plutons of K-feldspar porphyritic, 
variably hypersolvus, biotite-hornblende quartz syenite and 
alkali-feldspar granite. These locally contain fayalite, 
reibeckite and aegirine-augite, and locally resemble syenites of 



the Numok Intrusive Suite. The I?lg R.i.Y.~!': Grgnite is a regional 
unit of K-feldspar porphyritic, subsolvus, biotite- hornblende 
granite and alkali-feldspar granite that has mantled- feldspar 
phenocrysts with plagioclase interiors (pseudorapakivi texture). 

In geochemical terms, all siliceous granitoid suites are 
closely similar, and resemble the Numok Suite. They are 
metaluminous to weakly peralkaline, potassic and re-enriched 
(F/F+M > 0.85). The more e·Jolved members lie close to the 
ternary minimum in the Q - Ab - Or - An system. All are 
characterized by enrichment in fluorine, HFS elements (e.g. zr, 
Nb and Hf), REE (Y, La, Ce, Sm), depletion in Ba and Sr, and 
moderate enrichment in incompatible LFS elements (Rb, u and Th). 
Trace element patterns vary in detail; for example, the 
Lanceground Suite has the greatest HFS and REE enrichment, 
whereas the Strawberry suite is richest in fluorine. The Big 
River Granite is generally less evolved and more variable in 
composition than the smaller plutons that constitute the 
Strawberry and Lanceground Suites. 

Geochemical trends indicate that all evolved primarily by 
fractionation of plagioclase and K-feldspar (±mafic minerals). 
Hypersolvus suites show little or nc evidence of plagioclase 
extraction, and K-feldspar fractionation dominated the later 
stages in the subsolvus suites. In the the Strawberry Intrusive 
Suite, geochemical variation caused by liquid-state processes 
(e.g. thermogravitational diffusion, convective fractionation) 
has been superimposed on trends generated by crystal-liquid 
processes. Some fractionation of accessory phases and biotite 
also occurred in this suite. 

These suites collectively have a strong affinity to the 
syn-tectonic metaluminous-peralkaline association describeJ in 
Chapter 3. This is most evident for the F-enriched granites, 
which resemble the syn-tectonic Kennedy Mountain Intrusive suite 
in both geochemical and petrological terms, if the effects of 
deformation in the latter are disregarded. A close temporal 
relationship between syn- and post-tectonic Makkovikian 
plutonic associations is indicated by geochronological data, 
which cluster around 1800 Ma in both. The consanguinous and 
partly contemporaneous nature of these associations suggests 
that they represent a single episode of magmatism that 
transcended Makkovikian deformation, which may also h3~e been 
inhomogeneous in its effects. There are, however, no obvious 
post-tectonic equivalents of the syn-tectonic Makkovikian 
peraluminous association described in Chapter 3 • 

• 
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Introduction 

This association comprises largely undeformed plutonic 

rocks. There are few field criteria to separate these from 

simjlarly undeformed Labradorian plutonic rocks (Chapter 5) 

and this association is presently defined mostly by 

geochronological data. As discussed previously (Chapter 2, 

Chapter 3), "post-tectonic" is a label of convenience; it 

does not necessarily mean that they are significantly 
younger than the "syn-tectonic" Makkovikian association: in 

fact, U-Pb geochronological data (Krogh et al., in prep., 

see below) suggest a close similarity in age. The term also 

d~es not imply a universal absence of foliations; in the 
south of the area, these rocks locally display evidence of 

deformation. However, the predominance of east-trending 

fabrics (parallel to the Grenville Front Zone) in such areas 

suggests that these represent Grenvillian, rather than 
Makkovikian, deformation. Post-tectonic Makkovikian 

plutonic rocks are divided into four main associations 

(Figure 4.1; Table 4.1). 
The Numok Intrusive suite ranges in composition from 

monzodiorite to quartz syenite, but is dominated Ly quartz 

monzonite. The Strawberry Intrusive Suite includes several 

plutons of distinctive fluorite-bearing granite. The 

Lanceground Intrusive Suite consists of three quartz 
syenite to granite plutons that locally show hypersolvus 

characteristics. The ftig River Granite is an extensive body 

of porphyritic granite that shows distinctive mantled 

feldspar ("pseudorapakivi") textures. 

• 
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Figure 4.1. Summary map illustrating the distribution and extent 
of post-tectonic Makkovikian plutonic units. 
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Table 4.1. ~ey features of post-tectonic Makkovikian plutonic units. 

llap Unit Suite/Onit/Aqe General Cbaracteriatics Te1tural <llaracteristics 

NUIItOK INTRUSIVE SUITE 
8o110qeneous, vbite1 grey or pink, 
vari~bly porpbyri t1c, .ussive 

20.1 Jlonzonite • Quartz Jlonzonite 

lb-81 (+/· Pl ) IOnZOntte, quartz 
10nzonite and lesser syenite. 
Ondeforwd and ussi ve in all areas 
e1r.ept at tM western urgin of tbe 
nortbern rone near Adlav it Bay. 
K·feldspar +/· plagioclase 
pbenocrysts I K-fsp 10re abundant. 

Coarse IJ!'Iined1 coaonly porphyr· 
i tic. wttb pbenocrysts of Hsp 
and Plaq1 up to 2 Cl in diueter. 
Bb and 81 fora eubedral crystals, 
up to 5·10 • in leoqth. 
Interstitial uterial is atly 20.2 1101 +/· 2 lla [ O·Pb Zircon ) 

(Kr~ et d., in prep.) Qz IJid K·fsp. Inclusions of 

21.1 
21.2 

22.2 

23.0 

24.1 

24.3 
24.2 
25.0 
26.0 

Syenite and Quartz Syenite 
.il01 +/· 2 Ia [ O·Pb Zircoc 1 

Plaqiopllyric llonronite 

loiiOqeneous, Cjl"tY-qreeD to brown, 
Hsp porpbyr1tic 1 Cp1·1b-Bi (+/· Pa) 
&yllllte, alkali-fsp syuite, qr-ayen1te 
aiKI 9fanite. !«ally byperaolV\16. 
llasalYe iD nortb; loc.dl y deforlld 
_;'I aoutb. Displars intense surface 
veatberi119 to ye lov-brovu 9f1Yel. 
81111 quartz occurs in silic1c rocks. 

Grey to brovn1 plaq·porpbyritic 
PJ-Bb 10nrodionte aDd 10nzonite. 
For. a uppable 1111it oaly in 
aoutbern zone, but siailar rocb 
occur locally ia tile nortbern rone. 

gabbro and diorite occur locally, 
particularly near Adlavik Bay 1 but 
tbe unit is 106tly inclusion-poor. 

Coaonl y coarse to 'llY coarse 
qraiaed, witb lllbedral to OYOidal 
pbenocryats of come perthitic Hap. 
Ulcally fine-qrailled syenite. 
laf ic liner all ud quartz are 
interstitial. Generally inclusion· 
poor. !ut·treading fabrics COIIOn 
1n soutllern zone (Grenvillian?). 

Coarse to very coarse qrainedi vith 
larqe, rounded to subbedr a1 p aq 
pbenocryats. lafic lioerals, Ql and 
k-rsp m interstitial to locally 
oikocrystic. Onit locally bu a 
CUIUlate terture, but is not layered. 

STRAWBERRY INTRUSIVE SUITE 
Bayllead Cruite 

1570 + !· 50 laJ K-lr Bi 1 
(Wanless tt ., 1970) 
Clpe Stravbtrry Granite 

ca. 1760 Ia l o-Pb lircon ) 
(Jtr~ et I • 1 ill prep.) 
1565 +/ 50 Ill I Hr &i j 
1600 +/ 34 Ia Hr Bi 
I INnlesa et a • , 1970) 

1694 +/ 56 Ia !lb-Sr WI, COipolite) 
(tbil ltudy) 

Poodle Pold Cr ani te 
October !arbour Cr ani te 

Dog Is lucia Crani te 
Tllkialik Granite 

eo.oDl y COlrll to 'try coane 
111 UDits (ucept Poodle Pond) graiaed or peqlltitic 1n te1ture. 
consist doliaaaUy of IUSitt, Pioe--qraiaea liarolitic rocb occur 
lloeocJelleous, vbite, pi.ak, or&Dqt or u IUIJind plluel ud linor bodies. 
brick-red, K-feld&par·porpllyritic lelated Qa·Fap porpbyry ud ,..atite 
biotite 'JlWte1 quartz syenite IJid dykes ud Mins cut idjaceat ulits. 
al.bli-fsp (Jrwte, co•nly viti! eo.only po=~ or .eqacrystic. 
COIIIpiCIIOUS purple fluorite. It-feldspar ts up to 3 ca 
Fi111·qnined pbuel (including Qz-rap in diueter. Dog Islands Cruite is 
PDn*ml are present locally ia locally Ql·porpbyritlc. 
iolt imits, u4 doaiute the lenolitb-ricll Ollly ia contact zooes. 
Poodle Pond Cruite. TUffiaite Yeilllets ud breccia 
!be kybead 91'lDite is the 101t zooes1 vitb rl-Bi ricb utr.iJ, cut 
telanocratic, llld tile !Ukialik ~anite 1enolltha lDd come-qniaed ~anite. 
is the at potassic. Clpe Stravbem OiatiDCthe lllfic lileral lazering, 
Granite is tbe at miable terturdly. with trOIII)b·bedded •cua!ate qeo.etry. 

27.0 

LANCEGROUND INTRUSIVE SUITE Ulllllits COIIiat doaiiWilly of 
baoqeaeous, pint to buff or brovu, 

Lanceqrolllld Iilla Granite Hap porpbyntic quartz syenite 

lediwa to COlrll qraioed, co.oaly 
l-feldapar porpllyritic1 viti! 
edledral plllllocryats or coane 
~tic l-fap llil, viti! relict 
ai~le tviuing or CJiully Or?). 
laDy uuples lack pliCJioclue 

21.0 
29.0 

30.1 

30.2 

1692 +/· 32 Ia ( lb-Sr Ill 1 9tan1te IDd altalf·tsp 9fanlte. 
(this study, aqe prObably disturbed) Lanc:eC)round Iilli and P1stol Lake 

Crani tea are usa!" IJid lllldeforlld 
Pistol Lake Crani te in at places; Tarun qrani te is 

Tarua Granite Yariably foliated and r~talliled. 

Big liver Granite 
ma •t· 21 1a [ lb-Sr Ill 1 

(tbis study) 

Locally aililu to ay111i te IDii t 
of the 11.ot latrusiYe SUite. 

Illite, ~iat ud brick·red, K-fsp 
porpbyritic Bi·lb ~anite ud alkali· 
feld&p&r 91'uite, lesaer quartz IOD&· 
onite to quartz syenite. 
All equiqrlDUlar Yariant (30.2) occurs 
on a uppable scale iD tile aoutb­
east ua· nortil¥est of the body. 

!be southern part of tile unit bas 
Yarilbl y deYeloped auqe~~ tertla'e IJid 
cataclutic fabric (Crenlillian). 

ud are b}peraolYIII ~anitea. 
lounded lllf ic c:lota occar loe&ll y, 
but iDCllllioaa are unco.on. 

eo.only coane to yery come­
~aiaed 1 Vi tJI K-f&p pbenocrysts 
1f to 5 ca iD size. biatiDC:the 
Pltlldor apakhl terture ( 1-fsp rl• oa 
~liCJ oon~) ia dettloped videly. 
l'ertl:le locally •aries to aeriate. 
lhllllltled Plaq pbenoc:rysts occur 
loc:alli, lDd 11411 l-fsp pbenocrysts 
lack p aqioclue cores. 
Foliations Ia aoutb defillld by 
Hap IIIIJIII I lllf ic 199fe<J4te&. 
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Table 4.1 (continued) 

J<ey Field Relationship& 

llestern boundary ot northern zone 
is a eotplu aqutite, includinq 
blocks of qabbro and diorite. this 
zone bas a variably developed 1-
trendinq foliation (see text). 
lelationsbip vitb syenite Wlit is 
CJladational in tbe northern zone. 
on Adlavik Isllllds, IDiit is cut by 
Qz-Fsp porphyry dykes correlated 
vitb adJacent Doc) Islands Granite. 
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llineraloqy 

Qz ('HOI) Ri ( 30-501) 
Plaq ( AnlO·tO; 30-501) 
Bb + Bi (S·2S\ total, subequll) 
Cpx (relict, < ~I) 
Accessory Spb, %r, Ap, FH>x 
lare .Ul, rl 

Petroquplly 

Well-preserved Iqneoua textures and 
interstitial quartz crystals. 
K-tsp (IIi) pbenocrysts are variabl~ 
pertbiti<', &nd llrqer Ulan coexistlnq 
!>lag pbenocrysts. Plaq pbenocrysts 
locally bive-K·feldspar ri•. 
llaf ic liner ala ton sllbbedral to 
eubedr al crystals 1 aqqreqa tea. Bb 
locally contains relict Cpx cores. 

- - - ---- - --. ----- - -- - -- - - ---- - --.......... --. --... -... -. - . -. -
lelationsbip to Aillik Group is 
Wlltnovn, but probably intrusive. 
Contact vitb quartz 10nzonite unit 
appears CJladatiOMl in tbe 110rtbern 
zone, but t.bey are separated by 
plaqlopb¥fic .,nzonite in soutllern 
zone (unlt 22). 

Qz (G-1~1), K-fsp (60·801) 
Plaq ( ~-301{ excluding perthi te) 
(free Plaq ocally allwt) 
ctx + Bb + Bi (~251 total) · 
(Cpl + Bi > Bb) 
Payalitic Clhuae (relict, <51) 
SO• variants lack Ill. 
Accessory lr, Ap, Spb. (lr proli11e11t) 

Iqneous textures well-preserved in 
110rtblrn zone, variable recryatall­
iutioD in IOUtbern zone. 
Pertbitic Hsp ~ata bm 
relict silple tnDDing (oriqiully Or?) 
Cp1 is CJl'eeD, re-ridl nriety. Bi is 
rtd iD color, also re-ricb. 
Olivine strongly lltered to Fe-<lxide . . ---------.. -- ----- --- -- -..... -.......... - - . -- -.... - - - ..... - .... -.. - ...... -

lelationshi~ vi tb other Wli ts 
of tu.ok Sutte unknovD. 
Probably a uf ic end·lelber of tbe 
IODZODite-quartz IODZODite IDiit, vbicll 
it locally resnbles. 

cape strawberry Granite intrudes 
Opper .lill ik Group but fi~~e-qr ained 
<Jl'Uite is ditfi~t to distillqlliab 
fro. COWitry rocks. contacts ranqe 
fro. clw, ~and iDtrushe, to 
bJbrid lODeS of lntenctiOD vitb iDd 
1 teratiOD of COIIIltry rocbi. 
Qz-fsp porpllyry dvkel conelated vitb 
DocJ Isllllds <Jl'Uite cut q&·IOD&oni te 
of llmoi IDtnllitt Sllite. 
Cape Strawberry Granite ia as&oeiated 
vitb atoctvort lo-Py liaeraliutioe. 
DocJ Island Granite floats disasinated 
CU-Pb aiiiUalizatioa. Ol-Io &nd Pb-ln 
uin aiiiUalhatioa iD lillit Group 
COWitry rock& near to qranitea. 

~ltes correlated vitll Luceqroad 
lila Granite cut aqutitic western 
coatact zone of 1111ot •,trusive su.ite. 
Pistol Late Cruite a·~ 
Opper 1illik croup, and ia cut 
by 9111bro (possibly ldlnik su.ite?) 
!arun crantte is fault·bounded, 11!3 
lies topoqraphlcally below Qz·Pp 
porpbyry at liU te Bear llowltaiD, tbat 
ls 9t0uped vith Opper lillit GriiUP. 

Qz (G-101) IIi (15-401) 
Plaq (An35·50; 30-7011 
Cpx + Bi +Ill (lQ-251 totall 
(Cpl > Bi > lb, ~txcept if a tered) 
Opx (rare< 51) 
Accessory Ap, Spb, Fe-<ll. 

Qz (20-451) IIi (40-701) 
Phq (.lnl~25: lQ-351) 
Bi +/- Oil (1-6l) 
(Bi altered to Oil) 
Bb (relict, altd to Bi) 
rare bl111 sodic a..Wbole 
lccellory lr I Spb I lll I Pl 

Doq Islands Gruite iDCludes 
a syeni tic pbase tllat local! y 
coatains a qree11 nlict Cpx, 
poasibl y le-auqi te. 
Pine-qraiDed pbues of Cape 
Stravberry Granite coataia 
poikolitic bl111 IJIIIIlibole. 

Qz ( ~ 351 ) li ( !50-101) 
Pla1 (blQ-25; G-25t, excl. Dtrtltite) 
Bi red, Fe-ridl) + a (Q-10\ total) 
Cpx (relict, < 2t, le-11111ite ?) 
lare blue sodic IJIIIIlibole. 
rayalitic oliviM (rare, &ltd to Fe--<ll) 
Accessory lr, .Ul, PI, Spb 
Biotite typically red nriety 
llorpbul.w PH>l clots are probably 
after olid•. 

contact relations unblovD. oz (20-351) IIi (40-701) 
llestem bowldary of 1111it ia a ujor Plagioclase (AII20-35; lQ-401) 
fault escarp~~~~t alonq Biq liYer. Bb + li (2-lOt total, lb > li) 
SOutberD boudary is fol'lld by (lb is blue-qree~~ ia colOIIl') 
Benedict Fault aystel. Cp1 (relict, < 2l, le-auqite?) 
Eastern bowldm is difficult to Accessory Spll, lll, r:p, Zr 
define. Poliatecl CJley granitoids llell lare rl, dilseaiuted Py. 
eutern edQe are at~icali &nd uy be 19Ui9taaular variants bave sililar 
a screeJI of older uteria • lliiUaloqy, but are ricller in quartz 
Granitoid qDti.ssea south of lleDedict &nd biotite, poorer i• lb. 
fault zone uy be defoned equinlenta. 

Iqneous textures are vell·preserved. 
Pla9 pbenocrysts are locall~ zoned. 
llahc-linerala ia fresb taranta are 
Cpx aDd leuer Bi. ID 10re altered 
mianta, Plaq is strongly &a\111-
uritized and ufica are retrogressed 
to lct-Ep-Spb aqqriCJits. 

Igneous textures vell·preaentd. 
K-fap (llil is Yariably beutized, coarse 
patcb perthite. Plaqioclue 110rully 
oocun iD qrOWidlasa Ollly, but forw 
local pbeaocrysta iD Baybead Gran! te. 
oa ia inbedral to illterstitid. 
led-brown biotite la tariabl y 
al tertcl to clllor i te and Fe-<ll aloaq 
cleavage traces. lD atronqly belat­
hed roc:b, Bi ia totally chloritiztd. 
Bl~ee~~ lb occurs locally u 
a rehct pbue altered to Bi. 
Fl ia pr~~e~~t !atmtitidly, il 
ufic IC)CJl'eqates, and tiDy nialets. 
OO.Uate• I a yen 001taiD lllbedrll Bi, 
lb,lr,lll. 

IqiiiOUI textures vell·pr•ned in 
DOrtb, recryatelliaed i.J aout.ll. 
Placpoclue lllleDocrYats are rare. 
~~ ~~~ovs· iateratitid lllbit. 
lb &Dd Bi lateratitill, locally 
poiti li tic. lb cryatai.J locally lbov 
relict pale CJl'eeD Cpr corea. 
Plwite iatentitid, uaociattd 
vitb ufic linerall. 
IUbedrd lirCOM If to 4 • leaqtb. 

Iqaeou~ textures are best preserved 
iD DOrtllerD part Of IDii t. 
Colpaaitt plleDocryats are li-pertbite 
vith zoned, lllllllllithed, rlaq corea. 
~~ 1111 •ariably intent tial 
lllbit. li and Plaq botb occur iD 
CJloadlllaa. lb ud Bi fon clots, 
uaceiated vitb re-01 and accessory 
linerala. Foliated and cataclutic 
m~uts abov retroqreuioa of 
ufic alnerall to ~. r:p &nd Spb. 



- 104 -

t.l GEOLQGY AND PETROLQGY 

Key field and petrographic characteristics of 
post-tectonic Makkovikian plutonic rocks are summarized in 

Table 4.1. 

t.l.l Nuaok Intrusive suite 

Definition and Distribution 

This is a new name introduced for monzonite, quartz 
monzonite, syenite and quartz syenite exposed in two areas 

referred to below as the northern and southern zones 
(Figure 4.1). These rocks were previously grouped with the 

Adlavik Intrusive suite by Kerr (1986, 1987), because they 
resemble some of its more differentiated variants. U-Pb 

geochronological data, however, indicate that this 
interpretation is incorrect (see below). The northern and 

southern zones of the Numok suite are interpreted as 
disrupted halves of an originally continuous pluton. Three 

compositional units (not named) are defined within the 
suite, and are described below in order of abundance. 

Monzonite and Quartz Monzonite 

In the northern zone, this unit corresponds broadly 

with Unit 23 of Gower et al. (1982); in the southern zone, 
it is a new subdivision of their Unit 26. The unit is 

dominat.ed by homogeneous, coarse grained biotite-hornblende 
monzonite, quartz monzonite and (locally) syenite (Table 

4.1; Plate 4.1). 
In the northern zone, on the Adlavik Islands, this unit 

appears to be gradational with syenite and quartz syenite. 
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Plate 4.1. Features of the Numok Intrusive Suite (monzonite - quartz 
monzonite unit). (a) Typical homogeneous quartz monzonite, Long Tickle 
Island. (b) Porphyritic variant, same area. (c) Typical example with 
part of cognate xenolith, Big River Area. (d) Undeformed agmatitic 
border zone, north side of Adlavik Bay. (e) Flow fabric around mafic 
xenolith in agmatite. (f) Foliated agmatite cut by later fine-grained 
granitoid material, south side of Adlavik Bay. Slabs are stained for 
K-feldspar. 
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The western boundary of the unit in the north consists of a 

complex agmatite zone up to 1 km wide, exposed near the 

mouth of Adlavik Bay. The northern part of this zone 

comprises gret-brown quartz monzonite containing numerous 
stoped blocks of diabase, gabbro, leucogabbro and 
porphyritic diorite, some of which display cumulate 

layering. A fabric around some of the larger inclusions is 

probably a flow feature, as the inclusions themselves are 

undeformed. On the south shore of Adlavik Bay, less than 1 
kilometre along strike, the same agmatite has a 

north-trending foliation, present also in the mafic 

inclusions, which are here transformed to amphibolite. This 
complex zone was previously interpreted in terms of 
forcible emplacement of quartz monzonite into gabbro and 

diorite of the adjacent Adlavik Intrusive Suite (Gower, 
1981; Gower et al.,l982; Kerr,l986). However, U-Pb ages 

from the aqmatite neosome at Adlavik Bay indicate 
crystallization at 1801 ± 2 Ma (Krogh et al., in prep.) , 

indicating that the mafic inclusions are older ~han 1800 

Ma, and are hence unrelated to the nearby Adlavik Suite, 
dated at 1649 ± 1 Ma (Krogh et al., in prep). The fabric in 

the deformed part of the zone may result from 
syn-emplacement deformation at the original margin of the 
Numok Suite, or it may be associated with emplacement of 

the adjacent Adlavik Intrusive Suite. As it affects both 
paleosome and neosome in the agmatite, it must be younger 

than 1801 Ma. It is clearly of local extent only, as it 

dies out quickly to the north. 
Excluding this complex western margin, the unit is 

undeformed and homogeneous in both northern and southern 

zones, generally inclusion-poor (although it contains 
sporadic gabbroic blocks) and consistent in both mineralogy 
and texture (Table 4.1 for details; Plate 4.1). 
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Plate 4.2. Featur es of the Numok Intrusive Suite (syenite - quartz syenite 
unit: (a) Homogeneous syenite, Dunn Island. (b). Coarse-grained quartz 
syen1te, north of Wh ite Bear Mountain. (c) Hypersolvus, K-feldspar­
porp~yritic, fayalite-pyroxene syenite, Cape Kitchener. (d) Quartz 
syen1te, ·Kikkertavak Island. (e) Fine-gr ained phase in same general 
area. (f) Coarse-grained syenite with ovoidal·phenocrysts and weak 
deformation, north of White Bear Mountain. Slabs are stained for 
K-feldspar. 
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Syenite and Quartz Syenite 

This unit occurs on the outer Adlavik islands, but is 

most extensively exposed in the south~rn zone. In the 

north, it corresponds generally with Unit 31 of Gower et 

al. (1982), and in the south, with the Tarun Syenite of 

Gandhi et al. (19 )9) and Gower et al. (1982; Unit 26c). 
Similar rocks occur on the Ragged Islands (Gower, 1981), 

suggesting that it may also be regionally extensive in the 
north. It is dominated by pink, brown or grey-green, coarse 

grained, K-feldspar porphyritic, pyroxene - biotite -
hornblende syenite, quartz syenite and alkali-feldspar 

syenite with interstitial quartz and mafic phases (Table 

4.1: Plate 4.2). Intense weathering to a yellow-brown 

gravel i~ characteristic in many areas, particularly on the 
Adlavik Islands. The southern zone displays variable 

recrystallization and deformation, particularly close to 
the Adlavik Brook fault zone. Massive syenite from 

Kikkertavak (Numok) Island has given a concordant U-Pb 
zircon age of 1801 ± 2 Ma (Krogh et al., in prep.). 

Distinctive petrographic features include a green, 

locally pleochroic,re-rich clinopyroxene and red-brown 

biotite. Pyroxene is commonly mantled by variable amounts 

of hornblende. Variably retrogressed fayalitic olivine 

occurs locally, surrounded by clots of amorphous iron oxide 
and hydroxide ("iddingsite"). Patches of this material in 

other samples are probably pseudomorphs after fayalite. The 
intense weathering is probably related to the former 

presence of fayalite; similar effects are present in 

fayalite-bearing rapakivi granites elsewhere in Labrador 

(Hill, 1982; Ryan, pers.comm., 1988). 

• 
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A 8 

Plate 4.3. Features of the Numok Intrusive Suite {plagiophyric monzonite 
unit). (a) Monzonite with zoned, ovoidal, plagioclase pheno~rysts and 
interstitial pyroxene-amphibole. (b) Plagioclase-rich varian t 
(cumulate?), with oikocrystic mafic minerals. Both samples from area 
west of Big River. Slabs are stained for K-feldspar. 
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Plagiophyric Monzodiorite and Monzonite 

This unit is sandwiched between the quartz monzonite 
and quartz syenite units in the southern zone. It consists 

of distinctive, plagioclase - porphyritic, pyroxene­
hornblende monzodiorite and monzonite (Table 4.1; Plate 

4.3). 
Textures in many samples are of "cumulate" aspect, and 

mafic minerals commonly show an oikocrystic habit. Fresh 
variants are augite (± hypersthene) - biotite monzonites 

with minor amphibole, but altered variants dominated by 
saussuritized plagioclase and fine-grained actinolite are 

more common. The unit is probably a mafic variant of the 
monzonite to quartz monzonite unit, which is locally 

plagioclase-porphyri~ic. The rounded, zoned plagioclase 

phenocrysts impart a distinctive texture. 

4.1.2 strawberry Intrusive Suite 

Definition and Distribution 

Strawberry Intrusive suite is a new name proposed for 

several discrete plutons scattered over an east-west 
distance of 125 km (Figure 4.1). All show very similar 
characteristics, and they are considered to be equivalent. 
Each pluton is dominated by coarse grained, homogeneous, 

white, pink or red, K-feldspar porphyritic to megacrystic, 
biotite granite, commonly with accessory fluorite (Table 

4 • 1; Plates 4. 4 and 4 • 5) • The granites from the type area 
(Cape strawberry) are der.;cribed in most detail below. 
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Bayhead Granite 

This is a new subdivision of unit 27 of Gower et al. 

( 1982) . Its southern boundary is formed by the Adlavik 

Brook fault zone, and its northern boundary by an inferred 

fault. contact relations are thus unknown. No displaced 

equivalent of the Bayhead Granite has been recognized south 

of the Adlavik Brook fault zone 1 suggesting that it was 

either restricted to the north side or perhaps that the 

(presumably upthrown) block to the south represents a level 

of the crust ~ its emplacement level. 1<-Ar data from 

this unit (Wanless et al. 1 1970) gave an age of 1570 ± 50 

Ma. On the basis of correlation with the Cape Strawberry 

Granite 1 it is considered here to be ca. 1760 Ma old (see 

later discussion). 

The Bayhead Granite is the least differentiated pluton 

in the Strawberry Suite: it is relatively melanocratic (up 

to 10% total mafic minerals) 1 locally plagioclase­

porphyritic, and commonly contains minor relict amphibole. 

Most of the unit is homogeneous, although it includes a few 

gabbroic blocks up to 10 m in diameter. Faint mafic mineral 

layering is present locally (see below tor discussion). 

Cape Strawberry Granite and Related Rocks 

General Infor.ation These form the type locality 

for the Strawberry Intrusive Suite. The Cape Strawberry and 

october Harbour Granites correspond to part of Unit 29 of 

Gower et al. ( 1982) 1 and the Poodle Pond granite was 

formerly included in their unit 28a. The Cape Strawberry 

Granite is dominated by pink or red porphyritic granite, 

associated with subordinate fine-grained material: the 

October Harbour Granite tends to be white in color. The 
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Plate 4.4. Features of the strawberry Intrusive Suite (see also Plate 
4.5).(a) Pale pink, coarse-grained Bayhead granite, Makkovik Lake 
area. (b) Orange-red, slightly quartz-porphyritic, hematized Dog 
Island granite, Iron Island (typical also of Cape Strawberry Granite). 
(c) Trou9h-bedded, cumulate, mafic mineral layering, near Cape 
Strawberry. (d) Rhythmically layered granite block, Ford's Bight. (e) 
"Tuffisite" breccia, near southern contact of Cape Strawberry Granite. 
(f) Sill of fine-grained, white-weathering granite, with feeder dyke, 
near Poodle Pond. Sill has a thickness of 30 - 50 m, and intrudes 
Upper Aillik Group (grey in photo). 
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Poodle Pond Granite consists of two or more sill-like 
bodies of medium grained equigranular granite. Single and 
multiphase aplite, granite and pegmatite dykes and sheets 
cut the Upper Aillik Group throughout the area around Cape 

Strawberry. Many are fluorite-bearing, and they are 
considered to be mino:~ intrusions related to the strawberry 

suite. some pegmatites near Ford's Bight host molybdenite 
mineralization (Gower et al., 1982: Wilton and Wardle, 

1987). 

Geochronology : U-Pb zircon data from the Cape 
Strawberry Granite (Krogh et al., in pre~.) are discordant 

due to Pb loss, but indicate an age of 1800-17EO Ma. The 
uncertainty is a function of a lack of fractions near 

concordia; if a 1000 Ma (Grenvillian) lower intercept is 
assumed (this is shown by other discordant U-Pb zircon data 

from the stuc':y area), the age could be ca. 1800 Ma, whereas 

a regression of the data points alone suggests ca. 1760 ± 

15 Ma. In the remainder of this thesis, the latter age has 
been employed. A second sample, collected from a zone 

containing low-u cumulus zircon (see below) is currently 
being analyzed in an attempt to better resolve this 

. * uncerta1nty • 

* NOTE : When the final copy of this thesis was almost 

ready tor submission, U-Pb data from the second sample 

became available (Krogh et al., in prep.). The data are 
concordant at 1719 ± 3 Ha, some 40 Ha younger than the ca. 

1760 Ha age used herein. This makes little difference to 

initial Nd calculations (Chapter B) and tables and text 

have not been amended. The strawberry suit.e is still viewed 

as a post-tectonic Hakkovikian association, but it is 

obvious that the younger limit of the •Hakkovikian• time 

slot must be now be further revised. 
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Wanless et al. (1970) report K-Ar ages of 1565 ± 50 and 

1600 ± 34 from the Cape Strawberry Granite. A composite 
Rb-Sr isochron from plutons of the suite (this study; 

Chapter 8) yields an age of 1694 ± 56 Ma, but shows 
evidence of disturbance (i.e. unreasonably low initial Sr 

isotope ratio). 

Field Relationships : Contact zones range from clean, 
sharp boundaries to zones of interaction and hybridization 

where the Upper Aillik Group C·>Untry rocks appear strongly 
altered. The contacts of the Cape Strawberry granite are 

steep where exposed on the coast, but the southern contact 
is more complex, and several enclaves of country rock occur 

acjacent to it. These are in~erpreted as roof pendants, and 
the contact probably dips gently southward. 

Xenolith-rich zones near contacts contain fragments of 
fine-grained granite, Aillik Group metavolcani~ rocks, and 

"hybrid" rock types. Brecciated zones with a biotite-rich 
matrix are present in xenoliths and in outcrops close to 

contacts. Alteration, bleaching and pyritization of 
adjacent country rocks are evident adjacent to contacts. 

Irregular silicified zones, aplites and pegmatites crosscut 
the contacts. These features suggest volatile exsolution 

and hydrothermal activity, which in turn suggest a high 
level of emplacement. Amphibolites in country rocks at the 

margin of the October Harbour Granite contain calcite -
diopside - andradite ± fluorite skarnoid patches, and the 

margin of the granite itself contains a pale green-brown 
(andradite?) garnet that is probably a xenocrystic phase 
derived from this material. 

Co•positional and Textural Varia~ion : Granites of the 
Cape Strawberry area display the greatest textural 

variation in the Suite. Fine grained, locally miarolitic, 
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equigranular variants occur locally around contacts, 

crosscut contacts, and form the Poodle Pond Granite. A 

distinctive fine to medium grained grey phase is present in 

the northeast part of the Cape Strawberry body, and occurs 

as xenoliths in the coarse facies, suggesting that it is an 

early component. Locally, this shows a diffuse foliation 

and ghostly inclusion textures suggesting that it could be 

an altered Upper Aillik Group porphyry, but in other areas 

it appears massive and resembles a fine-grained version of 

the granite. It also has a distinctive mineralogy (see 
below). 

The Cape Strawberry Granite contains distinctive mafic 

mineral accumulations with a trough-bedded, locally 

cross-bedded, geometry indicative of cumulate processes. It 

also contains a single large (10x10 m) block of 

rhythmically layered granitoid. The presence of such 

features suggests a low viscosity during crystallization of 

the granite, probably due to its high fluorine content (see 

later discussion). 

Petrographic Features : Biotite in the Cape Strawberry 

Granite is almost invariably altered to chlorite along 

cleavage traces. In strongly hematitic variants, chlorite 

is the only mafic silicate. Fluorite is prominent, and 

accessory phases such as allanite, apatite, zircon and 

sphene are obvious and abundant. 

Fine-grained pink phases of the Cape Strawberry granite 

have a similar mineralogy to the dominant coarse-grained 

phase, but are commonly miarolitic andjor graphic in 

texture. The distinctive grey phase described above 

contains poikilitic crystals of deep blue reibeckite or 

arfvedsonite amphibole, and displays some evidence of 
• recrystallization. "Cumulate" mafic mineral layers consist 
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Plate 4.5. F:atures of the Strawberry Intrusive Suite (see also Plate 
4.4). (a) Molbdenite-bearing pegmatite, Ford's Bight. (b) Melanocratic 
variant of the Bayhead Granite, south of Kaipokok Bay. (c) Typical 
Cape Strawberry Granite. (d) Fine-grained, reibeckite-bearing, grey 
phase of Cftpe Strawberry Granite. (e) Quartz-feldspar porphyry 
associated with Dog Islands Granite, note oscillatory feldspar zoning. 
(f) Medium-grained, variably porphyritic Tukialik Granite. Slabs 
stained for K-fe l dspar. 
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of euhedral biotite and hornblende crystals, associated 
with euhedral sphene, allanite and zircon. They indicate at 
least local fractionation of biotite and accessory 

minerals. 

Dog Islands Granite 

The name Dog Islands Granite is introduced for granites 
on Dog Island, Iron Island, Burnt Island, and the adjacent 
mainland (Figure 4.1), corresponding to Units 17 and 18 of 
Gower (1981). Fluorite-bearing quartz-feldspar porphyry 
dykes that resemble the granite cut quartz monzonite of th9 

Numok Intrusive Suite on nearby islands. This suggests a 
maximum age of ca. 1800 Ma; correlation with the Cape 

Strawberry Granite suggests an age of ca. 1760 Ma. The Dog 
Islands Granite is almost identical to the type area, but 

is more homogeneous, and locally quartz-porphyritic (Plate 

4.5) . Mafic mineral layering occurs at the western end of 
Iron Island (see also Gower, 1981), and is interpreted here 
as a cumulus feature. A syenite to quartz syenite variant 

present in the east of Dog Island and on Burnt Island 
(corresponding partly to unit 18 of Gower, 1981) locally 

contains distinctive blue poikilitic amphibole (reibeckite 

or arfvedsonite). A pleochroic, green, clinopyroxene 
(probably aegirine-augite) is present in one sample. Other 

mafic phases include green hornblende and biotl~e, 
associated with fluorite, zoned allanite and euhedral 
zircon. The minet?logy is very similar to the fine-grained, 

marginal, grey phase of the cape Strawberry Granite (see 

above). 
Feldspar and quartz-feldspar porphyry dykes assigned to 

the Dog Islands granite are mineralogically similar to the 
coarse phase. Qua~tz phenocrysts show rounded and resorbed 
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outlines. K-feldspar phenocrysts locally contain cores of 
saussuritized plagioclase and, in one instance, alternating 
rings of K-feldspar and plagioclase indicate oscillatory 
growth. Chloritized biotite, fluorite, magnetite and sphene 

form interstitial clots. 

Tukialik Granite 

Tukialik Granite is a new name introduced for rocks 
exposed on Bear Island and in the eastern Benedict 
Mountains, corresponding to Unit 23 of Gower (1981). It 
consists dominantly of coarse grained biotite granites 

similar to those described above. 
The unit is in contact with monzonite and syenite of 

the Mount Benedict Intrusive Suite (see Chapter 5) along 
its southern boundary; this contact is interpreted to be 

the continuation of the Adlavik Brook fault zone in the 
west. The nature of the southern contact in the east is 

unknown. To the west, the Tukialik Granite may be 

continuous with the Dog Islands Granite. Bailey (field 

notes, 1979) suggested that the granite was gradational 
with metavolcanic rocks east of Tukialik Bay; however, this 

enclave is locally cut by veins of pink graaite. 
In comparison to other members of the Strawberry Suite, 

the Tukialik Granite is richer in K-feldspar, slightly 
finer-grained, and locally equigranular. Blue quartz is 

prominent in many samples. A quartz-feldspar porphyry 
variant occurs locally on Bear Island and resembles similar 

rock types grouped with the Dog Islands granite. Alteration 
of biotite to chlorite appears less intense than in the 

Cape Strawberry or Dog Islands Granites. 
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4.4.3 Lanceground Intrusive suite 

Definition and Distribution 

Lanceground Intrusive Suite is a new name introduced 
for three discrete plutons; two of these are located near 

Adlavik Bay, and the third is adjacent to the Adlavik Brook 
Fault zone (Figure 4.1). All three show similar 
characteristics, but the most southerly has been affected 

by Grenvillian deformation and metamorphism. There appears 
to be a spatial association between these granites and the 
Numok Intrusive suite, although a case could also be made 
for a spatial link to the Adl~vik Intrusive suite. A Rb-Sr 
isochron from the Lanceground Hills Granite (Chapter 8) 

suggests an ambiguous age of 1692 ± 32 Ma, but is probably 
disturbed, as it has a very low initial ratio. U-Pb zircon 

geochronology is in progress as of thesis submission. The 

Lanceground Suite shows a strong geochemical affinity to 

other known members of the post-tectonic Makkovikian 
association (see section 4.2). 

Lanceqround Hills and Pistol Lake Granites 

The Lanceground Hills Granite corresponds to part of 

unit 26c of Gower et al.(l982), and the Pistol Lake Granite 
to part of their unit 28a (Monkey Hill Granite). The two 

units are, however, closely similar, and both consist 
dominantly of coarse grained, K-feldspar porphyritic, 

locally hypersolvus, biotite-hornblende syenite, quartz 
syenite, granite and alkali-feldspar granite (Table 4.1; 

Plate 4.6). 

Field Relations : Contact zones of the Lanceground 
Hills Granite coincide with the aqmatite zone at the 
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western margin of the Numok Intrusive Suite. A dyke of 
brown-weathering, hypersolvus, quartz syenite (typical of 
the suite) cuts the foliated agmatite, indicating that 
emplacement of the granite post-dated the leucosome (dated 

at ca. 1800 Ma, see above) and also deformation 
(unconstrained). The relationship between the Lanceground 

Hills Granite and adjacent gabbro-diorite of the Adlavik 

Intrusive Suite is unknown. The Pistol Lake Granite is in 
contact with the Upper Aillik Group for 10 km, but most of 
the contact is obscured by drift. The granite intrudes the 

Aillik Group in two localities, and is locally intruded by 
biotite-bearing gabbro that resembles parts of the Adlavik 

suite. 
Both units are generally fresh and massive, although 

the western part of the Lanceground Hills granite locally 
displays a moderate northeast to east-trending foliation. 
syenitic variants resemble equivalent rocks of the Numok 

suite (see above), and parts of the Lanceground Hills 

Granite show the same intense weathering to yellow gravel. 

Petrographic Characteristics : Both units include 
rocks that show hypersolvus characteristics, and virtually 

all contain euhedral to rounded phenocrysts of very coarse 
microcline-perthite, locally displaying relict simple 

twir&ning suggesting original orthoclase or sanidine 
crystals. Free plagioclase (where present) is confined to 

the groundmass, although it locally forms isolated 
phenocrysts mantled by K-feldspar. 

Red-brown biotite is the most common mafic mineral, and 
in relatively melanocratic variants, is accompanied by 

variably poikilitic blue-green hornblende. A few samples 
also contain small amounts of an intense blue arfvedsonite 
or reibeckite amphibole. A green, pleochroic clinopyroxene 
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Plate 4.6. Features of the Lanceground Intrusive Suite. (a) Intense 
weathering of the Lanceground Hills Granite, near Adlavik Bay, 
probably indicating the former presence of fayalite. (b) Hypersolvus 
syenite, Adlavik Bay. Note coarse perthite, and similarity to Numok 
Suite syenites (Plate 4.2). (c) Alkali-feldspar quartz syenite of the 
Pistol Lake Granite, south of Bernard Lake. (d) Coarse-grained, 
deformed alkali-feldspar granite from the Tarun Granite, near White 
Bear Mountain. Slabs stained for K-feldspar. 
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that locally occurs as relict grains within hornblende is 

probably aegirine-augite. Amorphous iron-oxide - hydroxide 

clots locally contain relict fayalitic olivine. Minor 

phases include prominent interstitial fluorite, prominent 

allanite (intergrown with mafic silicates), apatite, 

sphene, and euhedral zircon crystals up to 2 mm in length. 

Tarun Granite 

The Tarun Granite is located near the Benedict fault 

zone, and around White Bear Mountain. It corresponds to 

part of Unit 26c of Gower et al (1982). Original igneous 

textures and mineralogy have been obliterated by 

recrystallization ir ~any samples. Well-preserved examples 

are pink or buff, coarse grained, K-feldspar porphyritic 

granites that resemble those from the type area: there is 

also a strong geochemical similarity (see 4.2). 

Contact relationships of the Tarun Granite are poorly 

known. The northern limit is difficult to place as there is 

little contrast between the granite and syenite-quartz 

syenite of the Numok suite. The most likely position 

coincides with the projected trace of a fault indicated by 

Gower et al.(1982): alternatively, the two might be 

gradational. 

The Tarun granite is spatially associated with 

quartz-feldspar porphyry (assigned to the Upper Aillik 

Group; see Chapter 7) that forms the main peak of White 

Bear Mountain. The northern contact of the porphyry unit 

(from Gower et al., 1982) is approximately coincident with 

the 1200-1400 feet (400-475 m) contour interval, and 

follows the topography , It is suggested that this contact 

has a shallow inclination, and that the Tarun granite is 

• 
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continuous beneath the peak. The nature of the granite -
porphyry contact is unknown, but there is a strong 
compositional similarity between them (Chapter 7) that may 

indicate a genetic link. 

4.1.4 Big River Granite 

This is a new name proposed for an extensive granitoid 
unit in the southeast of the study area (Figure 4.1). It 
corresponds to unit 26b and part of unit 23 of Gower et al. 
(1982). It is dominated by pink to red or white, coarse 

grained, K-feldspar porphyritic, leucocratic, 

hornblende-biotite granite and alkali-feldspar granite, 
locally ranging in composition to quartz monzonite and 

quartz syenite (Table 4.1: Plate 4.7). Textural variants 
include a dominant porphyritic granitoid, and a subordinate 
equigranular phase. The former is characterized by mantled 

plagioclase phenocrysts with K-feldspar rims for which the 
term "pseudorapakivi texture" is used here (classical 
rapakivi or "wiborgite" textures consist of albite on 

orthoclase: e.g. Vorma, 1976). 

Field Relationships : The western boundary of the 
unit coincides with an inferred fault zone that links the 

Benedict and Adlavik Brook fault zones, marked by a 
prominent linear escarpment. The southern boundary 
corresponds with the Benedict Fault system. The nature of 
the poorly-exposed eastern boundary is unclear: a foliated 

grey dioritic granitoid in this area is atypical of most of 
the unit, and may represent a screen of older material 

between it and adjacent units. 
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Plate 4.7. Features of the Big River Granite. (a) Red-weathering 
pseudorapakivi granite, south of t h e estuary of Big River, note 
ovoida l phenocrysts. (b) Fine-grained, porphyritic phase, with 
f eldspar zoning par tly defined by mafic inclusion trails, near Big 
River. (c) and (d) Typical coarse-grained pseudorapakivi granites, 
from the escarpment east of Big River Valley. Slabs stained for 
K- fe ldspar. 
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Geochronology : A Rb-Sr i scchron f rem the dominant 

porphyritic granite (Chapter 8) yields an age of 1798 ± 28 

Ma, and shows no evidence of disturbance. 

Lithology and Petrography : Pseudorapakivi te>:turc is 

variably developed, but is present in at least vestigia -l 

form in most porphyritic variants. Massive, undeformed 

variants dominate the northern part of the unit 
1 

but 

variably foliated and/or cataclastic rocks occur in the 

south. Foliations have a general east-west trend, but are 

locally variable. The transition from foliated to massive 

granite appears to be gradational 1 and the cataclastic 

rocks probably form local zones of high strain parallel to 

the Benedict Fault zone. Medium-grained equigranular 

variants occur mostly in the southeast and northwest of the 

unit. They are more siliceous than the porphyritic phc:se 

and have a higher bioti tejhornblende ratio. 

Hornblende in this unit is a deep green or bl ~'?-green 

variety. Pale green, locally faintly pl eochroic 

clinopyroxene (possibly aegirine-augite) is present rarely 

as a re 1 ict phase, altered to amphibole andj or biotite. 

Gower ( 1981) also reports reibecki te in two such sa, ples 

from the unit, but this mineral does not appear to be 

widespread in the unit. Sphene is a prominent minor phase 

(up to 1% in some samples), and is commonly euhedral. Other 

accessory phases are prominent, but not as abundant as in 

the Strawberry and Lanceground Suites. Cornposi te 

phenocrysts commonly have zoned, variably saussuritized 

plagioclase cores, surrounded by perthitic rnicrocl ine. In 

most cases, there is a single mantle only; asci llat i ng 

zones of plagioclase and K-feldspar are very rare . 

• 
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4 I 2 DESCRIPI'IYE GEOCHEMISTRY 

Post-tectonic Makkovikian plutonic rocks are 

represented by 460 samples: 264 of these are regional 

samples collected on a 2 km random grid spacing. The 

remainder include 114 follow-up samples, collected from 

granites of the Strawberry and Lanceground Intrusive 

Suites, and 82 geological samples distributed approximately 

equally amongst all units. Characteristics of and usage of 

sample populations are explained in Chapter 1. 

4 I 2.1 General Geochemistry 

SWIIlDary of Numerical Data 

Average major element, trace element and partial CIPW 

normative compositions of post-tectonic Makkovikian units 

are listed in Table 4~2. The Numok Intrusive Suite is 

characterized by lower sio2 ( 60-65%) than other units, 

and is discussed separately from remaining units, which are 

referred to below collectively as "siliceous granitoids" I 

Nu110k Intrusive suite : The plagiophyric monzodiorite 

and monzonite unit has the least differentiated 

composition. There are significant compositional 

differences between the quartz monzonite unit in northern 

and southern zones; in the south it has lower sio2 , and 

is closer in composition to the plagiophyric monzonite unit 

than to the syenite unit. In contrast, the quartz monzonite 

and quartz syenite units of the northern zone are similar 

in composition, although the latter is richer in x2o. 
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Table 4.2 . Average compositions of post-tectonic Hakkovikian plutonic 

rocks, t:\Ubdivided by principal units. 
tfijft 2o.i 20.2 21.1 21.2 22.2 23.0 24.1 24.l -----------------------------------------------------------------------------------------------------------------------
nl 42 15 18 22 10 57 42 7 
n2 10 2 4 2 3 35 38 6 -------------.. -------...... ------------.. ----------.. ----------... --------------.. -... -------------------------... -... --------.. --.. -- ... 
(lit\) !lean S. D. Mean S.D. !lean S.D. !lean S.D. !lean S.D. Mean S.D. !lean S.D. !lean S.D. --------------------··----------------------------------------------------.. ------... ------------.................. ----------... ---... ---
Si02 64.98 4.21 59.64 4.32 64.31 5.04 66.73 2.80 57.60 2.33 69. 78 5.20 72.85 3.56 70.59 3.83 
Ti02 o. 73 0.35 0.83 0.23 0.72 0.40 0.54 0.17 0. 91 0.21 0.43 0.3j 0.21 0.11 0.26 0 . 0~ 
Al203 15.62 1.28 17.76 1. 70 15.35 1.41 14.79 1.00 17.87 0. 77 13.94 1.27 12.99 1.42 14 .54 1.71 
Fe203 1.43 0.67 2.00 0.82 1.40 0. 74 1.47 0.47 2.10 0.39 l.OS 0.75 1.14 0.80 1.14 0.59 
FeO 3.22 1.24 3.60 0.99 4.07 2.14 3.24 1.36 4.45 1.02 2.37 1.47 1.34 0.82 1.37 0.56 
llnO 0.13 0.06 0.10 0.03 0.17 0.09 0.13 0.05 0.11 0.02 0.07 0.05 0.06 0.06 0.07 0.06 m o. 72 0.54 1.71 1.20 0.49 0.43 0.31 0.14 2.35 0.62 0. 51 0.61 0.29 0.62 0.28 0.14 

2.05 0.92 3. 78 1.68 1.90 0.88 1.61 0.54 5.02 1.09 1.49 1.08 0.96 1.33 0.95 0.21 
lla20 4.68 0.53 4.45 0.29 4.56 0.77 4.46 0.37 4.44 0. 73 3.95 0.71 4.16 1.26 4.18 0.57 
J(20 5.35 0.77 4.92 1.40 5.93 0.86 5.68 0.47 4.01 0.57 5.07 1.04 4.92 1.15 5. 76 1.16 
P20S 0.21 0.17 0.27 0.11 0.20 0.19 0.10 0.06 0.32 o.o8 0.10 0.11 0.03 0.03 0.07 0.04 
l.OI 0.50 0.21 0.65 0.48 0.49 0. 27 0.42 0.19 0.76 0.42 0.59 0.19 0.62 0.35 0.56 0.12 
!'arAL 99.62 99.71 99 .59 99.48 99.94 99.35 99.57 99.77 

(ppl) Trace Ele.ents 
-----------------------------------------------------------------------------------------------------------------------
Li 20.0 12.3 22.1 7.1 14.7 9.8 11.3 5.5 18.5 4.9 22.5 18.7 29.7 26.2 20.6 6.5 
r 732.0 404 .6 1125.7 468.1 465.6 312.3 390.1 228.4 696.9 370.S 922.9 723.5 1669.0 942.1 893.9 551.7 
Sc 10.5 3.5 10.5 0.7 14.9 7.1 7.0 0.6 10.1 3.9 4.6 4.3 1.6 1.5 3.9 1.1 v 33.5 25.2 78.2 49 .7 20.1 11.9 15.4 8.0 103.6 29.7 28.9 30.4 22.2 47.7 14.4 9.1 
cr 3.1 3.9 lo.9 16.0 2.0 1.2 4. 8 3.5 22.1 9.1 4.7 u 5.8 7.4 8.4 12.7 
li 1.3 0.5 6.1 8.8 1.0 0.0 1.2 1.1 11.8 4.1 2.1 3.5 2.6 6.6 1.9 1.6 
cu 6.7 3.6 20.S 15.5 7.5 4.5 5.3 1.7 34.6 9.1 4.6 4.1 13.2 51.2 5.3 3.6 
In 93 .5 26.2 79.1 20.7 107.9 42.4 120.7 46.0 79.4 13.7 74.0 38.1 14.7 70.5 115.7 149.5 
ca 20.2 3.6 20.7 2.3 20.1 2.6 22 .5 10.0 19.7 2.3 17.4 7.0 17.1 7.3 18.4 6.1 
l.b 102.4 42.3 141.3 53.4 94.8 55.9 126.1 53.0 109.5 31.2 151.7 63.6 181.7 64.0 170.3 33.3 
Sr 204.1 132.2 453.9 201.0 114.9 75.1 102.1 79.0 512.1 103.2 119.4 110.4 66.5 67.0 113.6 73.5 
y 39.6 12. 9 38.8 14.2 33 .4 15.5 73.6 24.2 34 .0 4.5 57.1 37.3 66.8 48.2 46.7 6.6 
Zr 460.1 260.2 564.6 233.9 577.8 446.6 951.0 328.7 352.6 236.5 467 .a 399.5 447.2 314.1 454.6 166.0 
lb 18.0 7.2 20.3 9.8 15.3 5.3 27. 3 8.5 15.7 3.6 25.7 13.2 30.8 36.3 21.4 2.2 
110 3.9 1.1 4.3 0.8 2.9 0.9 3.9 1.3 4.1 1.0 4.3 1.8 3.9 2.2 3.3 1.4 
511 2.4 2. 5 3.0 2.8 1.5 1.0 1.0 0.0 2.3 1.5 4.0 2.9 5.3 3.3 3. 7 3.0 
Cs 1.9 2.3 1.3 l.l 0.9 0.8 0.5 0.0 1.5 0.9 1.2 1.1 1.1 0.7 1.4 1.1 
Ba 1134.0 804.3 1063.9 311.6 743.2 656.5 832.2 427.6 860.3 166.7 706.4 479.6 327.7 266.4 504.0 220.6 
La 73.4 46.3 56.2 17.2 60.9 28.6 93. 4 24.3 53.8 6.5 101.5 101.0 78 .0 43.1 10S.3 46.9 
Ce 144.2 87.0 117.7 39.5 115.9 56 .8 196.8 52.6 104.5 18.0 198.5 199.2 161 .7 81.5 196.3 83.1 
Sl 11.5 4.8 15.0 1.4 11.5 1.3 17.5 6.4 8.8 0.7 13 .1 7.3 12.9 6. 7 14.2 4.5 
Yb 3.3 1.7 4.3 2.5 2.5 o.o 8.0 o.o 2.5 0.0 5.3 2.2 8.2 5.5 5.3 2.2 
Bf 8.7 5.5 15.0 1.4 11.5 7.1 17.0 2.1 7.7 1.2 11.0 6.5 13.6 1.1 13.3 4.0 
Pb 16.3 6. 9 15.5 6.3 14.5 6.8 17.1 7.4 13.2 3.7 23.6 7.9 22 .5 u 26 .9 9.5 
1'b 6.7 6.9 u.s 14.5 1.8 2.5 8.4 7.2 7.4 4.4 17.0 16.4 27.0 3). 3 14.0 1.1 
D 3.2 1.9 3.1 1.5 1.8 1.5 3.1 1.4 3.6 ].6 4.5 3.8 8.0 11.3 4.7 1.0 

(lltl) Partial ClPW DOriS -----------------------··---------------------------------------------------------------------------------------------
Q 11.33 8.12 4. 70 4.67 7.14 9.46 14.40 6.02 2.40 2.11 23.06 9.88 27.54 1.62 21.90 10.29 
c 0.00 0.00 0.09 0. 35 0.03 0.09 0.00 0.00 0.00 0.00 0.16 0.21 0.04 0.11 0.18 0.21 
Or 31.90 4.54 31.03 5.07 31.19 7.99 33.14 2.79 23.16 3.36 30.30 6.19 29.36 6.&1 34 .26 6.93 
Ab 39.95 4.43 37.96 2.52 42.45 8.60 38.11 3.11 37.61 5.15 33.79 6.01 35.17 lO.U 35.25 4.03 
An 5.84 3.12 12.19 5.84 6.97 5.74 3.58 1.81 17.11 3.99 5.00 2.9) 2.33 1.66 3.46 1.57 
Di 2.86 1.57 2.14 1.39 3.62 2.71 3.41 1. 71 5.12 1.70 1.65 2.36 1.57 4.16 0.40 o.85 

gr 
4.14 2.01 4.91 2.50 3.22 2.54 3.22 1.61 7.03 3.99 3.39 2.15 1.48 1.39 1.80 0.98 
0.01 0.01 o.ao 2.09 1.21 2. 72 0.00 0.00 1.12 2.37 0.02 0.13 0 .00 0.03 0.00 0.00 

lit 2.09 0.97 2.72 0.94 2.15 0.94 1.96 0.62 3.06 0.51 1.51 1.04 1.25 0.90 1.66 0.17 
11 1.40 0.68 1.56 0.44 1.31 0.66 1.04 0.32 1.73 0.40 0. 83 0.64 0.41 0.22 0.50 0.17 -------------------------------------------------------------------------------------------------------------·---------

KEY to OIITS (IllS · bot Intrushe SUite. SIS - St.ravbe~ Intrusive SUite) 
20.1 -- (liS) Jlonzonite to QuArtz Jlonzonite (Jiortbern Zone 
20.2-- !nsl Jlonzoaite to Quartz JloDzoniterrn zo~~e) 
21.1 - liS Syenite to ~rtz Syenite (Jo ru Zone) 
21.2 -- (liS) srenite to Quartz Syenite ( Soutbem Zone) 
22 .2 -· !IISl P ·~1~ic Jlonzochorite llld Jlonzonite 
23.0 -- SIS Bay a anite 
24.1 -- (SIS) ~ Stravberry Gran!te 
24.2 -- (SIS) ober Barbour Grantte 
n1 -- nlllber of analyses for all ele~ents ercegt tbose listed belov 
n2 - - nlllber of analyses for Sc, Sn, C&, Sl, Y and Bf 
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Table 4.2 (continued). 

llltT 24.3 25.0 26.0 27.0 28.0 29.0 3o.l 30.2 
................................................ -----------------------------------------------------------------------------------------
nl 4 33 50 22 19 41 64 15 
n2 3 31 29 20 15 31 13 0 ···--------------------------------------·-----------------------------------------------------------------------------
(lltt) !lean S.D. !lean S.D. !lean S.D. !lean S.D. lle!n S.D. !lean S.D. !lean S.D. !lean S.D. -----------------------------------------------------------------···----------------------------------------------.. -···· 
Si02 74.58 0.83 70.80 5.02 71.99 4.15 72.50 2.01 70.12 3.39 72.84 2. 75 69.00 5.09 74.81 1.47 
Ti02 0. 14 0.04 0.32 0.36 0.28 0.15 0.26 0.07 0.44 0.32 0.30 0.11 0.44 0. 21 0.16 0.08 
Al203 13.14 1.39 13.91 1.40 13.64 1. 76 13.16 0.77 13.76 1.72 12.99 1.34 14.75 1. 77 13.09 0.65 
Fe203 1.43 1.28 0.95 0.94 1.00 0.51 1.10 O.!lO 1.65 0.74 1.07 0.39 1.25 0.57 0. 78 0.18 
FeO 0.34 0.23 1.92 2.37 1.20 0.80 1.30 0.56 1.79 1.35 1.35 0.68 1.72 0.93 0. 49 0.26 
llnO 0.03 0.01 0.06 o.o8 0.05 0.04 0.05 0.02 0.09 0.05 0.06 0.03 0.07 0.04 0.04 0.02 
~ 0.11 0.06 0.26 0.36 0.31 0.27 0.17 0.21 0.23 0.15 0.17 0.15 0.59 0.91 0.13 O.ll 
cao 0.51 0.34 1.06 o.u 0.95 0.73 o. 77 0. 38 1.14 0.60 0.82 0.42 1.56 1.25 0.53 0.30 
la20 3.52 0.50 4.08 0.48 4.ll 0.68 3.95 0.43 4.09 0.68 3.92 0.66 4.21 0.72 4.59 0.84 
K20 5.76 0.60 5.41 1.25 5.15 0.69 5.~,8 0.41 5.46 1.57 5.42 0.67 5.25 0.92 4.47 1.18 
P205 0.01 0.01 0.07 0.11 0.06 0.08 0.04 0.03 0.07 0.07 0.04 0.02 0.11 0.07 0.03 0 . 0~ 
LOI 1.44 1.97 0.62 0.18 0.79 0.26 0.56 0.11 0.56 0.30 0.50 0.18 0.61 0.31 0.49 0.12 
TOTAL 101.01 99.46 99.53 99.44 99.40 99.48 99.56 99.61 

(ppl) --·--··----------------------------------------------------------------------------------------------------------------
Li 11.0 6.5 31.2 30.3 22.7 23.3 15.6 7.2 10.3 4.9 14.6 15.2 15.4 6.1 12.1 6.0 
r 62U 11~ 1868.1 145~ 1592.0 1256 1804.5 1069 941.4 879.6 1084.7 763.1 590.7 387.9 1105.4 533.5 
Sc 0.6 0.2 4.0 6.6 2.5 1.6 2.5 1.7 7.0 10.2 3.2 1.7 2.4 0.9 
v 19.3 1.7 18.8 11.1 21.2 13.3 10.6 8.9 13. 3 6.9 13.8 7.4 24.1 17.7 10.1 5.8 
cr 5.5 2.7 1.9 1.2 6.3 7.8 3.3 2.3 4.1 2.8 3.8 3.3 u 14.9 4.7 7.0 
li 2.0 1.4 1.1 0.4 2.3 2.8 1.3 0.9 1.1 0.3 1.8 2.4 2.2 8.0 4.1 7.5 
cu 5.8 3.9 16.1 72 .9 6.5 5.4 5.7 3.5 9.0 18.1 4.7 3.5 7.0 6.5 3.1 1.6 
Zn 60.0 52.2 82.0 107.1 61.7 48.7 87.9 53.6 106.1 67.2 82.1 59.0 63.6 42.5 17.3 1U 
ca 1.3 2.5 22.1 8.1 12.1 6.5 27.1 9.2 26 .0 10.6 16.2 7.3 16.1 4.9 11.1 4.5 
lb 169.0 34.1 20().6 73 .6 198.8 52 .6 186.5 29.2 168.1 35.9 167.1 52.5 123.8 53.3 144 .6 42.5 
sr 151.5 14.9 94 .5 64.5 m.a 190.9 54.6 57.8 71.3 69.9 60.0 68.8 179. 3 154.7 11.3 110.0 
y 37.3 21.2 60.2 65.3 41.4 23.3 69.6 36.3 77.6 36.1 75.5 29.3 u.1 17.7 32. 4 10.3 
Zr 325.5 246.4 573.5 103.3 465.9 637 .o 776.0 707.5 691.7 330.0 560.7 280.9 409.4 213.0 195.9 50.0 
lb 18.0 6.5 26.7 18. 3 22.2 a. 1 28 .6 10.9 30.4 13.8 29.2 10.1 11.4 7.3 22.3 6.2 
Jlo 2.8 0.5 6.3 18.4 3.6 2.6 5.1 2.9 u 2.8 3.6 1.5 3. 7 1.2 3.4 1.5 
Sn 3.3 0.6 10.0 20.4 5.1 2.7 3. 7 2.3 4.1 2.7 4.2 2.8 2.7 2.7 
Cs 1.1 0.5 0.7 0.5 1.7 1.5 1.1 0.7 1.1 0.6 1.1 0.7 0.7 0.6 
Ba 396.0 247.0 448.2 192.2 456.4 360.0 274.5 222 .0 440.0 311.4 308.1 244.0 762.3 465.6 227.7 272.3 
La 29 .8 29.1 137.6 214.3 65.3 40.5 147.6 73.6 133.0 82.1 104.7 36.4 67. 2 29.1 45.9 26.1 
Ct 76.5 63.7 249.1 367.9 134.7 10.6 293 .2 145.2 270.3 155.0 211.9 71.6 134.6 59.2 93.6 47.7 
Sl 8.1 5.4 16.1 18.7 10.3 4.6 21.5 10.0 25.8 13.1 18.0 6.6 10.4 3.9 
Yb u 2.3 7.1 6.9 6.0 2.5 7.8 4.7 10.5 5.7 1.5 2.9 4.2 2.0 
at 9.1 6.2 17.1 25.1 12.1 6.2 20.1 13.4 22.6 11.0 16.8 7.0 10.1 3.0 
Pb 26.8 3.6 113.6 500.5 11.8 10.2 23.6 11.0 25.0 18.9 24.7 12.0 19.4 11.5 10.1 4.6 
Tb 6.1 1.7 20.7 22.1 12.8 9.3 16.4 7.4 14.3 7.0 22.3 7.3 13.0 10.2 13.1 6.5 
D 3.0 0.7 5.4 3.3 5.3 2.1 5.2 2.0 4.1 1.6 6.3 2.4 4.2 2. 7 5.9 2.0 

(lltt) --------------------------------------------------------------------------------------------------------------------
Q 30 .86 4.()() 23.27 8.74 26.17 8.48 26.46 4.40 23.17 10. 42 27.49 7.01 20.30 10.05 30.06 2.46 
c 0.19 0.16 0.06 0.12 0.16 0.21 0.03 0.09 0.35 1.45 0.01 0.05 0.07 0.15 0.02 0.07 
or 34.17 3.56 31.23 3.82 30.S3 4.12 33.33 2.43 32.53 9.25 32.33 3.97 31.35 5.43 26.65 7.01 
Ab 29.87 4.30 35.21 3.75 35.09 5.63 33 .64 3.65 34.66 5.96 33.46 5.51 35.93 6.02 39.13 7.19 
AD 2.53 1.82 3.63 1.93 3.21 3.18 1. 70 1.58 2.26 1.88 1.84 1.57 5.69 4.27 1.18 1.67 
Di 0.00 0.00 1.18 2.03 o.aa 1.31 1.51 1.34 1.98 1. 71 1.50 1.17 1.21 1.80 0.40 0.26 

~~ 0.36 0.26 2.34 3.54 1.35 1.17 0.15 0.89 1.16 1.50 0.92 0.89 2.16 1.22 0.29 0.52 
0.00 0.00 0.07 0.31 0.06 0.39 0.00 0.00 0.00 0.00 0.00 0.00 0.22 1. 78 0.00 0.00 

Rt 0.71 M2 1.40 1.40 1.35 o. 73 1.53 o.n 2.03 1.00 1.50 0.57 1.74 0.14 0.97 0.34 
Il 0.21 0.04 0.64 0.73 0.53 0.28 0.50 0.14 0. 85 0.62 0.57 0.20 0.14 0.41 0.31 0.16 
----·--··-------------------------------·····-·------------------------------------------------------------------------

ICEY 1'0 DII!S (LIS • Lanceqround Intrusive SUite. SIS • Strawberry Intrusive SUite. ) 
24.3 (SIS~ Poodle Pond Granite 
2S.O (SIS ~ Isluda Granite 
26.0 (SIS idik Granite 
27.0 jLIS) ~ound llills Granite 
28 .o LIS) Pisto Lake Granite 
29.0 (LIS) Tanm Granite 
30.1 Biq liver Granite (po~yritic phase) 
30.2 Biq liver Granite (~tgralllllar phase) 
al -- alllber of analyses or all elewnts excegt tbose listed below 
112 -· nlllber of analyses for Sc, Sn, Cs, S., Y and at 
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Trace ele~ent patterns are also similar, except for :ewer 

F, Sr and Ba in the syenite unit. This similarity is 

consistent with apparent gradational contacts between them 
in this area. 

Siliceous Granitoid Units : Contrasts in geochemistry 

amongst these units are subtle. The Lanceground Intrusive 

suite has slightly higher mean K2o, and lower mean 

Al2o3 and MgO than other granitoid units. The Bayhead 

granite 1as the least evolved and most variable major 

element composition in the Strawberry Suite: the Cape 

Strawberry and Poodle Pond Granites have the most evolved 

compositions. In the Lanceground Suite, the Pistol Lake 

Granite has the least evolved composition. 

Trace element patterns in the strawberry and 

Lanceground Intrusive Suites are similar, but there are 

small but consistent differences between them. Fluorine 

contents tend to be higher in the Strawberry Suite, as do 

Li, Sr and Ba. The Lanceground Suite shows generally higher 

levels of Zr, La, ce, Y and other REE. Note that 

the high Pb content of the Dog Islands granite is a 

reflection of a single anomalous sample: if this is 

excluded, it is similar to other members of the suite. 

The Big River Granite is similar to all of the above 

in major element compostion, but has higher Ba and sr, and 

lower F, Zn, Rb, Nb, La, Ce, Th and Y contents. Trace 

element abundances in the main phase of the Big River 

Granite are similar to those of the Numok Intrusive Suite 

although the latter has a much less evolved major element 

composition. The equigranular phase of the Big River 

Granite is more siliceous than the main phase, and has 

lower Ba and Sr, but shows similar levels for most other 

trace elements. 
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Ill lilt l15.illll 

AFGT - Alkali Fsp Granite MZDR · Monzodiorite SENT· Syenite 
AFQS -Alkali Fsp Quartz Syenite TNL T- Tonalite MZGT- Monzogranite 
AFST - Alkali Fsp Syenite QZDR - Quartz Diorite OZMZ - Quartz Monzonite 
GRNT- Granite (s.s.) DORT- Diorite MNZN- Monzonite 
QSZT - Quartz Syenite QZGB . Quartz Gabbro GADA - Granodiorite 

GBBR- Gabbro QZMD- Quartz Monzodiorite 

Figure 4.2 • Relative abundance of lUGS rock types calculated from 
normative mineraloqy using the method of Streckeisen and LeMaitre 
(1979), Note that this is based on Barth mesonorms, not the CIPW norms 
listed in Table 4.2. Regional and geological sample populations only. 
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Abundance and Distribution of Rock Types 

Relative abundances of lUGS rock types calculated from 
normative data (regional and geological samples only, after 
Streckeisen and LeMaitre, 1979) show that post-tectonic 
Makkovikian rocks are dominated by alkali-feldspar granite 

and granite, with lesser quartz monzonite and quartz 
syenite (Figure 4.2). The general distribution resembles 
that of their syn-tectonic counterparts (Figure 3.2, p.74). 
The Numok Intrusive Suite is dominated by quartz monzonite, 

quartz syenite and alkali-feldspar quartz syenite. 
Siliceous granitoid units are dominated by alkali-feldspar 

granite and lesser granite (s.s). Alkali-feldspar granite 
is most abundant in the Lanceground Suite (ca. 80\ of 

total). Within the Strawberry Suite, only the Bayhead 
Granite is dominated by granite (s.s); all other units are 
dominated by alkali-feldspar granite (up to 60\ of total). 

4.2.2 Geochemical TXends and Contrasts 

Post-tectonic Makkovikian plutonic rocks are divided 
into three groups (A, Band C), represented by separate 

columns of diagrams in Figures 4.3 to 4.10. These 
subdivisions are intended primarily to reduce "clutter"; 

they do not necessarily imply genetic links between units. 
Note that variation diagrams using sio2 as the 

X-axis employ a different horizontal scale for the Numok 
Suite, as it has a greater 3io2 range. Y-axis scales are 

constant for all figure groups. 

Major Element Patterns 

Major element trends against sio2 show expected 
patterns, and do not discriminate between units well. The 
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Figure 4.3 . Variation of selected major elements and derived ratios in 
Post-tectonic Makkovikian plutonic units. See text for discussion. 
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Nurnok Suite is dominated by rocks with < 65 \ sio2 : these 
have the highest levels of other major elements except 

Na 2o and K2o (see Table 4.2). Amongst the siliceous 
granitoid rocks, the Big River.Granite and Bayhead Granite 

show the greatest range of major element compositions. 
Other units within the Strawberry Suite, and the 
Lanceground Suite, have restricted sio2 ranges (70-77%). 

Ti02 and P2o5 (Figure 4.3) define separate 
trends for the northern and southern zones of the Numok 
Suite that coalesce at ca. 65\ silica; the northern zone is 

enriched in both. N/N+K [Na 20/(Na 2o + K20)J ratios 
(Figure 4.3) show a pronounced negative trend against 

sio2 in the Numok Suite, indicating relative enrichment 
of K2o with differentiation, but are approximately 
constant in other units. N/N+K is almost invariably ~ 0.5 
above 70% sio2 , except in a few Na-enriched samples from 

the Strawberry Intrusive Suite. 

K+N/A (agpaitic index) values are generally > 0.95, 
and both the Strawberry and Lanceground Suites are locally 
peralkaline. A/C+N+K ratios increase smoothly with sio2 
(reflecting decreasing Ca for the most part), and parts of 
the Strawberry Suite (notably the Bayhead Granite) are 
weakly peraluminous. No units are dominated by peraluminous 

rocks. All units show high F/F+M (generally~ 0.85), with 

the exception of parts of the Numok Suite. They lie above 
the calc-alkaline field indicated by Anderson (1983), and 

are akin to his "anorogenic" association. 
Ternary AFM and CNK projections (Figure 4.4) 

demonstrate a superficial calc-alkaline trend for all 
units. Note the alka~i-rich nature of even the 
silica-deficient roc'~s in the Numok Intrusive Suite. 

Alkali-lime indices (Si02 content at which Na 2o+K2o s 

CaO) are difficult to calculate, as very few samples have 

cao > (Na
2
o + K20). Linear regression of all 
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post-tectonic Makkovikian data suggests a value of ca. 55 % 

sio2 , i.e. alkali-calcic in the terminology of Peacock 

(1931). The CNK diagram also illustrates minor alkali 

disturbance in the Strawberry Suite. 

The Q-B-F ternary projection (Figure 4.4) of Debon and 

Lefort (1982) indicates an affinity to their 

"alkaline-oversaturated" association, rather than typical 

calc-alkaline suites. In the (Na2 0+K20)-sio2 plot 

(Figure 4.4), many of the Numok Intrusive Suite rocks fall 

in the alkaline field of Irvine and Baragar (1971). 

Normative Compositions 

No units contain significant normative corundum (Table 

4.2). In the quartz- albite- anorthite- orthoclase 

quaternary system (Figure 4.5), only the Numok Suite 

contains significant anorthite. The total proportion of 

normative An in the quaternary system is ~ 5% for virtually 

all of the siliceous granitoid units. 

In the Q-Ab-Or projection, granites of the strawberry 

and Lanceground suites are clustered tightly around the 
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ternary minimum for appropriate Ab/An ratios (James and 

Hamilton, 1969). The Numok Suite defines a smooth trend 

from quartz-free monzodiorites to granites that are close 
to minimum melt compositions. This trend is coincident with 

plagioclase - K-feldspar cotectic lines derived 
experimentally by (James and Hamilton, 1969; Figure 4.5), 

but these are not strictly applicable to the least evolved 
rocks of the Numok Suite, which contain 7-20% An (relative 

to quaternary system). The less differentiated members of 
the Bayhead and Big River Granites cluster around this same 

trend. 

Trace Element Patterns 

octahedrally Co-ordinated Cation (OCC) Bleaents : vI 
cr, cu, Ni, and Sc all show strong inverse correlation with 

Sio2 (e.g. V, Figure 4.6). These elements do not 

discriminate between units. 

Low Field Strength (LFS) Elements : Incompatible LFS 

elements (e.g. Rb and Th, Figure 4.6) provide little 
distinction between units. Rb defines two trends in the 

Numok Intrusive Suite; many rocks with < 65% sio2 in the 
southern zone show Rb contents similar to those of 

siliceous granitoid units. 
Rb and Th are enriched in Strawberry suite granites, 

and are scattered above ca. 70\ sio2 • Similar 
disorganized variation is shown by U and Pb (not figured). 

sr and Ba show inverse trends against sio2 (Figure 
4.6), and resemble patterns for compatible OCC trace 

elements. sr is highest in parts of the Numok Intrusive 
suite, particularily the southern area, where the 

plagiophyric monzonite unit is probably partly a 



200 

150 • 

100 

50 

0 
50 

400 

300 

200 

!00 ~ • 

A 

60 80 

0 L--------L--------~------~ 
50 60 70 80 

80 .-----------.-----.------, 

60 

40 

20 

60 70 80 

1000 .---------.------.-------, 

3000 .-----.------.------, 

4ooo r------,.-------.------, 

3000 

2000 

1000 ~ 

• 

GROUP 'A' DIAGRAMS 

; ~~~g~~ghyrdicQMonzodiorite and Monzonite 
A Me ~n uartz Syenite (SOUTH) 
'V ~y0e~Wen~edanQd QuartZ Monzonite (SOUTH) 
6 Me . n uartz Syenite (NORTH) 

onzon•te and QuartZ Monzonite (NORTH) 

200 

300 

200 

100 

0 
60 

60 

40 

20 

2000 

Oo 
1000 X 

o +o 
~ 

3000 

2000 0 
0 

1000 ~ 

0 

138 

8 

'Xx<:l. <> <> 
.;J .. <>x o 

€} ~ .. ~ X 
0 Xoo Cb X o 

0 

70 

70 

0 

X 
0 

70 

<>~ 0 

ox 

80 

80 

80 

80 

60 70 80 

GROUP 'B' DIAGRAMS %Si02 
+ Tukialik Granite 
X Dog Islands Granite 
0 Cape Strawberry Granite 

and Associated Rocks 
o Bayhead Granite 

200 

200 * 0 # 

100 ~0~ 

60 

500 

3000 

0 

2000 § 

3000 

2000 

1000 

0 
60 

0 

# 

GROUP 'C' DIAGRAMS 

* Tarun Granite 
# Pistol lake Granite 

c 

80 

80 

70 80 

# * ... ... ct 
• o* 

* 

70 80 

%Si02 

> 

..0 
a: 

..c 
I-

..... 
(/) 

u. 

-E 
0.. 
0.. I -

• lanceground Hills Granite J Lanceground lntrusiv 
Suite 

v 
Q Big River Granite 

Figure 4.6 . v, Rb, Th, Sr, Ba and F versus sio
2 

in post-tectonic 
Makkovikian plutonic units. See text for discussion. 



- 139 -

plagioclase cumulate. Ba patterns define separate trends 

for the geographic zones of the Numok Suite. The northern 

zone shows a rapid decrease in Ba with sio2 up to ca. 65\ 

sio
2

, where its trend coalesces with the shallower trend 

of the southern zone. 

High Field Strength (HFS) Elements : Patterns for Zr 

and Nb are similar for most units (Figure 4. 7). High-silica 

granites of the Strawberry and Lanceground suites show 

extreme variation in both, but are generally enriched. Zr 

and Nb levels in the Numok suite show very little contrast 

with the siliceous granitoid rocks, considering the 

differences in major element compositions. syenites from 

the southern zone have high Zr contents similar to those of 

the Lanceground Intrusive Suite. 

Rare Barth Elements (REB) : Variation patterns for Y 

(Figure 4. 7) are similar to those for Zr, and Y is also 

enriched in syenites of the Numok suite. La (also Ce) is 

enriched most strongly in the Lanceground suite, which has 

the highest overall REE contents (Table 4.2). 

Indetera.inate Trace Bleaents : Fluorine (Figure 4. 6) 

shows strong variation, especially in rocks with > 70\ 

sio
2

. The strawberry and Lanceground suites, although 

highly variable at a sample level, show strong enrichment 

as a group (several samples containing > 4000 ppm F are 

excluded from figures). The Cape Strawberry .Jrani te of the 

strawberry suite and the Lanceground Hills Granite show the 

strongest F enrichment. Li (Figure 4. 7) is enriched in the 

Strawberry suite relative to the Lanceground Suite. Both 

suites, and syenites of the Numok suite, show local 

enrichment in Zn at high sio2 contents. 
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Trace Element Ratios 

K/Rb ratios (Figure 4.8) range from ca. 1000 in the 
northern area of the Numok Intrusive suite to less than 150 
in granites of the Strawberry Suite. The southern zone of 
the Numok suite shows lower K/Rb than the northern zone. 

Rb/Sr ratios range from 0.1 to 10.0 (Figure 4.8) and 
define flat-lying to slightly negative trends for all 

units. 
Ba/Sr ratios (Figure 4.8) vary from 10.0 to 1.0, and 

define ljnear or curvilinear positive trends. The Numok 
Suite has two distinct trends; the southern zone trend is 

initially flat-lying (i.e. constant Ba, increasing Ba/Sr) 
whereas the northern zone has essentially constant Ba/Sr 

throughout. The Strawberry Intrusive Suite has a 
well-defined curved trend, where Ba/Sr initially increases 
to ca. 10.0, but decreases to < 1.0 in the most Sio2-rich 

rocks. The Big River Granite shows a similar curved trend, 

but the Lanceground Intrusive suite shows essen~ially 
constant Ba/Sr. 

In comparis~~ to reference trends for fractionation of 
common minerals (Figure 4.8, inset), these trends are 

consistent with fractionation of plagioclase and/or 
K-feldspar. The contrasting trends in the Numok Suite imply 

that plagioclase extraction was initially more important in 
the southern zone. The curved Ba/Sr trend of the Strawberry 

Intrusive suite suggests an increase in the relative 
proportion of K-feldspar extracted (assuming that partition 

coefficients for both minerals remained constant). It is 
closely similar to the trend for the syn-tectonic Kennedy 

Mountain Intrusive Suite (Figure 3.10, p.89). The constant 
Ba/Sr trend of the Lanceground Intrusive Suite implies 

little or no plagioclase fractionation, consistent with its 
variably hypersolvus character. 
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LaN/YN ratios (both elements normalized to 
chondritic values) are remarkably consistent during 

evolution of the Numok Intrusive suite and Lanceground 

Suite (LaN/YN ca. 10). Increases in both with sio2 
(Figure 4.7) argue against significant extraction of 
accessory phases. The Strawberry Suite shows a similar 

range of values, but is locally anomalous (LaN/YN < 10, 
or even < 1). This is consistent with local fractionation 

of LREE-enriched phases such as allanite, which occurs in 

"cumulate" mafic mineral layers in some of these granites. 

Rare Earth Eleaent (REE) Patterns 

REE patterns are similar for all post-tectonic 

Makkovikian units (Figure 4.9; data in Appendix B). The 
Numok Intrusive Suite shows the least fractionated REE 

pattern, but absolute REE abundances approach those shown 

by siliceous granitoid units. A monzonite from the northern 

zone shows a small negative Eu anomaly, but syenites from 
both zones appear to lack Eu anomalies. This is puzzling in 

view of evidence for feldspar fractionation outlined by 

Ba-sr-Rb behaviour (Figure 4.S), but it is not yet clear if 

this absence is a general feature of syenites in the suite. 

K-feldspar was probably the dominant fractionating phase in 

these rocks, but should also generate a negative Eu anomaly 

(e.g. Hanson, 1978). 

Strawberry Intrusive Suite granites show identical REE 
patterns that are characterized by steep LREE profiles, 

coupled with negative Eu anomalies and flat to slightly 
fractionated HREE patterns. These are closely similar to 

REE patterns from the syn-tectonic Kennedy Mountain 
Intrusive Suite (Figure 3.11, p.91). Patterns for the 

Lanceground Intrusive Suite are identical in shape to both, 
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but show higher overall REE abundances (up to 800 x 
chondrite). The Big River Granite shows an unremarkable 

pattern that resembles both of the above in general terms, 

but has a smaller Eu anomaly. 

4.3 SUMMABY AND DISCUSSIQN 

Geological and Geochemical Continuity 

All post-tectonic Makkovikian units described here are 

of regional extent in the sense that they outcrop over 
hundreds of square kilometres, or occur as discrete, 

closely similar bodies dispersed over wide areas. Those 
that retain contacts with country rocks show intrusive 

relationships, and there is no sign of extensive 
migmatization around them. They are generally homogeneous, 

and contain xenoliths only in their marginal zones. They 

are clearly discordant magma bodies that have risen from 

depths well below the current level of exposure. 
A generalized distinction can be made between the 

Numok Intrusive suite and siliceous granitoid rocks. The 
former is dominated by quartz-poor rock types (monzonite to 

quartz syenite) that are associated (in the south) with 
plagiophyric monzodiorite and monzonite of probable 
cumulate origin. Mafic inclusions in the aqmatitic border 
zone of the quartz monzonite unit (in the north) also 

suggest a general association with mafic magmas. 
Siliceous granitoid units, in contrast, are dominated 

by quartz-rich, K-feldspar porphyritic, commonly 
fluorite-bearing, biotite or biotite-hornblende granite and 

alkali-feldspar granite. Although textural and 
mineralogical differences allow suites and units to be 

defined amongst these rocks, the similarities between them 

far outweigh any differences. 
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The separation between the Nurnok Suite and these rocks 
is not, however, absolute; the most differentiated variants 

of the former include granites and alkali-feldspar 
granites, and some Numok Suite quartz syenites resemble the 
Lanceground Intrusive Suite. A possible link between them 
is suggested by local relict fayalite in both; this is an 

uncommon phase, reported mostly from granites of anorogenic 
or "rapakivi" associations (e.g. Anderson, 1983). 

Siliceous granitoid rocks also have some features in 
common. For example all units locally contain minor blue 
sadie amphibole and/or relict aegirine-augite, and a small 
proportion of peralkaline rocks; such features are also 

common in anorogenic granitoid assemblages. 
Trace element geochemistry further emphasizes the 

continuity of the post-tectonic assemblage. The Numok 
Intrusive suite is distinct in terms of major element 
patterns (i.e. less siliceous, yet obviously alkali-rich), 

and also for some compatible occ and LFS trace elements. 
However, it has REE, LFS and HFS element contents similar 
to siliceous granitoid units. The latter have very coherent 

trace element patterns. There are some absolute 
distinctions, e.g. higher F in the Strawberry Suite, and 

higher zr, Y and REE in the Lco.nceground suite, but there is 

an overwhelming similarity between all these rocks. 
This geochemical continuity is also geographically 

continuous; the various units of the Strawberry Intrusive 

Suite show closely similar characteristics over large 
distances (125 km). Such continuity implies a close 
similarity in petrogenetic processes and source materials 
or magmas across this distance, and indicates that a single 

model is required for all these granites. It is 
particularly significant in interpretation of Nd isotopic 
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data from these rocks (Chapter 8). Similar arguments apply 
to the Lanceground Suite, although the geographic area 
represented by these rocks is somewhat smaller. 

origin of Coapositional Variations 

Ru.ak Intrusive SUite : Trace element data (notably 
Rb, sr and Ba) indicate that compositional evolution 

reflects feldspar (± mafic mineral) fractionation, and that 
there were differences in the fractionation histories of 

northern and southern zones. In the southern zone, 
extraction of plagioclase was initially prevalent; the 

subsequent Ba depletion indicates increasing removal of 
K-feldspar. In the northern zone, K-feldspar fractionated 

throughout evolution, and both feldspars were removed in 
relatively constant proportions. This is consistent with 
the presence of the plagiophyric monzonite (which is 
probably a plagioclase cumulate) in the southern zone. The 

differences between northern and southern zones suggest 
that each represents a different level or magma batch 

within the Numok magma chamber. The identity and 
composition of the parental magma is uncertain, as the 

least evolved rocks (plagiophyric monzonites) are not 
liquid compositions. To produce the observed compositional 

range, it must have been at least as mafic as monzonite, 
assuming that the plagiophyric unit is a crystal 

accumulation. 

Strawberry Intrusive suite : Rb, sr and Ba data 
indicate that evolution of these magmas was dominated 
initially by plagioclase fractionation but that K-feldspar 
quickly became dominant. This is consistent with the 

presence of plagioclase phenocrysts in the least 
differentiated rocks (e.g. Bayhead Granite). 
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Euhcdral accessory minerals in mafic mineral layers in 

som~ of these granites imply that fractionation of such 

phases became important at high sio
2 

contents but, as 

most granites are enriched in HFS elements and HEE, this 

must have been a late phenomenon. Fine-grained granites of 

the Poodle Pond area, which are interpreted as high-level 

sills linked to subsurface Cape Strawberry Granite, show 

depletion of LREE and Fluorine relative to normal levels in 

the suite (Table 4.2). Such features are compatible with 

extraction of biotite and allanite (± amphibole) in the 

latter stages of evolution. The presence of cumulus 

textures implies a low viscosity during crystallization. 

·ruffisite breccias and miarolitic cavities indicate that 

the Cape Strawberry Granite attained high emplacement 

levels and exsolved volatiles, which also implies a low 

solidus temperature. 

The high F content of the suite (as there is evidence 

of volatile loss, this is probably an underestimate of the 

actual F content at the time of emplacement) provides an 

explanation for theEe f e a tures, as fluorine reduces 

viscosity and solidus temperatures in experimental melts 

(e.g. Dingwell, 1988). 

Kerr (1988) has shown that the Cape Strawberry Granite 

shows well-developed compositional variation, independent 

of obvious petrographic contrasts, that is related to 

distance from its southern contact. sio
2

, u, Rb, Th and 

Pb increase towards this contact, and Ba, Sr and Li are 

depleted. HFS and RE elements show contradictory behaviour; 

they are depleted towards some areas of the contact, but 

enriched in others. Zonation patterns of this type resemble 

those reported from rhyolitic ash-flow tuffs (e.g Hildreth, 

1979, 1981) and also from high-silica granites (e.g., Tuach 

et al., 1986). Although fractional crystalliz~tion, 
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particularly_· involving accessory phases, can account for 

such patterns (e.g. Michael, 1983), in-situ geochemical 

gradients of this type may also reflect liquid-state 

processes such as thermogravitational diffusion or 

convective fractionation (e.g., Hildreth, 1981; Rice, 1981; 

MacDonald and Smith, 1988). Dingwell (1988) pointed out that 

F-enrichment may promote the operation of such processes, 

by a direct increase in diffusion rates, and also by 

increasing the longevity of magmatic systems via solidus 

depression. Processes of this nature may have modified and 

disturbed trace element patterns produced by fractionation. 

Strong variation in a range of trace elements above ca. 70% 

Sio2 (Figures 4.6; 4.8) is probably a result of these 

effects. 

Lanceground Intrusive Suite : The Lanceground 

Intrusive Suite is locally a hypersolvus granite. Such 

characteristics imply relatively dry magma and high levels 

of empl~cement. Geochemical variation is largely a result 

of K-feldspar fractionation, as the BajSr trend is very 

close to the ideal Rayleigh fractionation trend for this 

mineral (Figure 4.8). Mineralogical similarities (e.g. 

fajalitic olivine, local hypersolvus character) suggest a 

genetic link between the Lanceground Suite and syenitic 

rocks of the Numok Suite. HFS element and REE enrichment, 

and Sr depletion, is qualitatively consistent with 

derivation by fractionation of the Numok Suite, which shows 

similar tendencies at a lower sio2 content. 

Big River Granite : Evolution of the Big River Granite 

appears to have been generally similar to that of the 

Strawberry Intrusive suite, i.e. initial plagioclase-
• 

dominated fractionation, followed by increasing removal of 

K-feldspar. 
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Pseudorapakivi textures are consistent with this 

interpretation, but provide an interesting problem in 

themselves. Classical rapakivi textures are commonly 

interpreted to result either from intersection of the 

liquidus and feldspar solvus due to high vapor pressure 

(Tuttle and Bowen, 1958), or from expansion of the 

plagioclase field in the granite system due to vapor 

pressure reduction (Stewart, 1959). Both readily explain 

mantling of K-feldspar by plagioclase, but do not provide a 

simple explanation for reverse textures, which apparently 

require contraction of the plagioclase stability field . The 

best explanation is that crystallization of the Big River 

Granite took place close to the plagioclase-alkali feldspar 

cotectic, where a small change in physical conditions 

would produce the required effect. This is supported by the 

proximity of the Big River data to the cotectic lines 

determined by James and Hamilton (1969) (Figure 4.5). 

Similarity of Post-Tectonic and Syn-Tectonic Makkovikian 

Associations 

There are many similarities between post-tectonic 

Makkovikian plutonic rocks and some of the syn-tectonic 

associations described in Chapter 3. This is most obvious 

in the case of the syn-tectonic metalumi nous-pera lkaline 

association comprising the Long Island quartz monzonite and 

Kennedy Mountain Intrusive Suite . In contrast, there are no 

presently recognized post-tectonic equivalents of the 

syn-tectonic peraluminous asf JCiation. 

Table 4.3 lists average major element, trace element 

and partial CIPW normative compositions for several syn­

and post-tectonic suites. There is a good cor~espondence 

between the granites of the strawberry and Kennedy Mountain 
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Table 4. 3 . Comparison of average compositions for selected syn-tectonic 
ar.d post.-tectonic Makkovikian plutonic units. 

OliiT 

nl 
n2 

(lltlj 

Si02 
Ti02 
Al203 
Fe203 
reo 
llnO 
lkj) 
cao 
Ma20 
K20 
P205 
!.01 
TOTAL 

to 

15 
5 

"e~n S.D. 

63.32 1.27 
o. 88 0.06 

15.81 0.24 
1. 79 0.37 
3.06 0. 73 
0.10 0 .01 
1.25 0 .42 
2.95 0.48 
4.27 0.25 
4.75 0.49 
0.26 0 .03 
0.63 0.23 

99.07 

20 

57 
12 

21 

40 
6 

"ean S.D. "ean S.D. 

62 . 31 4.27 
0. 78 0.29 

16.69 1.49 
1.72 0.75 
3. 41 1.12 
0.12 0.05 
1.22 0.87 
2. 92 1.30 
4 . 57 0.41 
5. 14 1.09 
0 . 24 0.14 
0.58 0.35 

99.67 0.00 

65.52 3.92 
0.63 0. 29 

15.07 1.21 
1.44 0.61 
3.66 1. 75 
0.15 1).07 
0.40 0.29 
1.76 o. 71 
4.51 0.57 
5.81 0.67 
0.15 0.13 
0.46 0.23 

99.54 

11 (all) 

108 
22 

Mean S.D. 

73. 74 3.09 
0.28 0 . 18 

12.65 1.13 
1.29 0 .67 
1.34 1.13 
0.06 0.03 
0.19 0.24 
0.84 0 .61 
4.40 1.08 
4.29 1.56 
0.05 0.05 
0.45 0.21 

99.58 

11 (unaltd) 

97 
23 

Mean S.D. 

73.58 2.98 
0. 29 0.19 

12.67 1.15 
1.24 0. 70 
1.39 1.17 
0.06 0.02 
0. 19 0.25 
0.82 0.56 
4.00 0.48 
4.85 0.64 
0.05 0.05 
0.45 0. 22 

99.57 

IPP•) Trace Ele~ents 

Li 
F 
sc 
v 
cr 
IIi 
cu 
Zn 
Ga 
lb 
Sr 
y 
Zr 
lb 
llo 
Sn 
Cs 
Ba 
La 
Ce 
Sa 
fb 
Hf 
Pb 
!b 
0 

22.7 5. 7 
860. 5 212.7 

9.6 1.7 
74 . 6 19.6 
5.5 3.5 
2.6 1.9 
9.1 3.8 

74.1 8.5 
18 . 3 1.2 

126.4 24.2 
327.6 39.0 
36. 5 1.9 

236.6 83.2 
14.2 1.1 
4.3 0.5 
1.0 0.0 
1. 3 1.2 

1424.0 116.2 
53.3 4.9 

10l. 7 6.1 
9.2 0.8 
2.5 o.o 
a.o 1.2 

15. 9 3.9 
9.2 3.0 
4.8 0.9 

21.0 9.7 
928.9 436.3 
10.5 2.1 
55.9 37.5 
7.0 9.9 
3.7 4.7 

13.6 9.5 
86.3 23.4 
20.5 2.9 

121.9 47.9 
329.4 166.6 
39.2 13.6 

486.3 255.9 
19.1 8.5 

4.1 1.0 
2. 7 2.7 
1.6 1.7 

1099.0 558 .0 
64 .8 31.7 

131.0 63.2 
13.3 3.1 
3.8 2.1 

11.9 3.5 
15.9 6.6 

9.1 10.7 
3.1 1.7 

13.0 7.6 
427.8 270.3 
11.0 3.8 
17 .7 10.0 
3.4 2.4 
1.1 0.5 
u 3.1 

114.3 44.2 
21.6 6.3 

110.8 54 .5 
108.S 77.0 
53.5 19 .9 

794.8 411.2 
21.3 6.9 
3.4 1.1 
1.3 0.5 
0. 7 0.4 

787.7 542 .1 
77.2 26.4 

156.4 54.7 
14.5 3.8 
5. 3 0.0 

14.3 5.0 
15.1 7.1 
5.1 4.8 
2. 4 1.4 

14.6 11.3 
1014.0 847.4 

1.3 0 . 9 
15.6 12.7 
5.0 3.8 
1.4 1.2 
3.8 3.8 

81.8 53 . 3 
16.6 7.3 

134.6 64.9 
62.0 75.6 
72.2 30.5 

388.7 146.8 
28.3 13.8 
3.6 1. 8 
3.3 2.1 
0.7 0.4 

433.8 433.5 
78.9 35.2 

163.1 66.9 
12.4 3. 7 
7.2 3.6 

12.2 3.4 
19. 3 10. 6 
15.7 9.7 
u 2. 9 

14.9 11.7 
1029.9 803.8 

1.4 o. 9 
15.9 13.4 
4.7 3.8 
1.3 1.2 
3.9 3.9 

77.1 29.9 
16.5 6.8 

153 .5 47. 1 
60.8 77.5 
70.9 28.9 

387.0 151.8 
27.9 14.0 
3.7 1.9 
3.5 2.5 
0.6 0.4 

453.1 411.7 
76.6 33.3 

158.7 65.7 
12.6 3.5 
7. 7 3.2 

12.1 3.1 
20.3 10.4 
15.2 9.6 
4. 7 3.0 

(vU) CIPII non (partial) 

0 
c 
Or 
Ab 
An 
Di 

~~ 
lit 
11 

12.25 1.76 
0. 00 0.00 

28.50 2.93 
36.71 2.01 
10.08 1.50 
2. 88 1.35 
4.65 1.72 
0.00 0.00 
2. 64 0.55 
1.69 0.12 

8.02 6.40 
0.05 0.18 

31.47 4.81 
38.96 3.48 
9.37 4.48 
2.85 1.41 
4.53 2.26 
0.41 1.09 
2.41 0.96 
1.48 0.56 

10.77 7. 74 
0.02 0.05 

32.52 5. 39 
40.28 5.85 
5.28 3. 78 
3.52 :!.25 
3.22 2.08 
0.61 1.36 
2.06 0. 78 
1.21 0.49 

29.87 6.15 
0.01 0.06 

25.57 9.35 
37. 39 8. 96 

2.16 2.24 
1.15 1.07 
1.08 1. 93 
0.00 0.00 
1.63 0. 78 
0.54 0. 34 

29.80 6.01 
0.02 0.06 

28.89 3. 89 
34.11 4.02 
2.30 2.27 
1.08 0.87 
1. 22 2.00 
0.00 0.00 
1.58 o. 75 
0.54 0.36 

KEY TO OJIITS (liS - llllllo!; Intrusive Suite, KillS - Kennedy Kountain suite) 
10 -- Lonq Island 9Uartz llonzonite l all data) 
20 -- lfu110k lntruslVe Suite (llontoDlte to Quartz Jlonzonite) 
21 -- IIUIIOk Intrusile Suite (Syenite to Quartz Syenite) 
11 (all data) - (KillS) All data incllidinq albitized rocks 
11 (unaltd) • (lOllS) Excluding rocks vith 1/K+K < 0.3 or > 0 . 65 
n1 •• !limber of analyses fo! all ele~ents except those list~ below 
n2 •• llullber of analyses for sc, Sn, es, 511, Yb and Bf 
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Table 4.3 (continued) . 

OHIT 23-26 24 27-29 30 --........ ---------...... ------------.. ----------------- .... -.. -------------.... --
nl 197 55 82 79 
n2 142 47 66 13 ------·----..... -.. ---.. ---------... -----------...... ---------.... --.. ---.. --.... ....... -
(wt\) Mean S.D. !lean S.D. Mean S.D. Mean S.D. --------------------------------------........... ------------------------
Si02 71.29 4. 71 72.81 3.56 72.12 2.93 70.11 5.15 Ti02 0.31 0.27 0.21 0.11 0.32 0.19 0. 39 0.~2 
Al203 13.68 1.55 13.20 1.50 13 .22 1. 34 14 .43 1. 74 
Fe203 1.05 0.74 1.14 0.80 1.21 0.57 1.16 0.55 reo 1.68 1.47 1.23 0.81 1.44 0. 87 1.49 0.97 
MilO 0.06 0.06 0.05 0.05 0.06 0.04 0.06 0.04 
MqO 0. 36 0.50 0.27 0.55 0.18 0.17 0.50 0.84 
CaO 1.14 1.04 0.91 1.17 0.88 0.47 1.36 1.20 
lla20 4.09 0.86 4. 21 1.26 3.97 0.61 4.28 0.75 
K20 5.12 1.10 4.97 1.33 5.47 0.90 5.11 1.01 
P205 0.07 0.09 0.04 0.03 0.04 0.04 0.10 0.08 
LOI 0.67 0.37 0.67 0.60 0.53 0.20 0.58 0.29 
TOTAL 99.52 99.71 99.44 99.57 

(ppl) 
-....................... ----------------------------------.... --........ ---------- ...... --
Lj 25.0 23.5 26 .5 23 . 8 1! .9 11 .7 14 . 8 6. 2 
F 1420.0 1141 1541.1 1021 1244.6 935.7 688.5 462.5 
Sc 3.1 4. 1 1.9 1.7 3.8 5.3 2.4 0.9 v 23.3 29.2 20.4 41.9 12.8 7.7 21.5 17.1 
Cr 5.1 6.5 6.3 7.9 3. 7 2.9 4.8 13.7 111 2.2 3.9 2.6 5.8 1.5 1.8 2.6 7.9 cu 9.3 38 . 4 11.3 44 . 8 6.0 9.2 6.3 6.1 
Zn 75.1 69 .6 84.3 82 . 3 89.6 59.6 54 . 8 42.8 
Ga 16.9 8.6 17.6 10.2 21.4 10.0 15.2 5.2 
lb 178.4 65.0 176.1 62 .1 172.5 44.1 127.8 51.8 
Sr 111.7 130.2 77.5 71.8 61.2 65.8 160. 7 151.6 y 55.4 43 . 8 64.3 46.9 74.4 32.8 42.5 17.2 
zr 491.5 558.5 471.5 418.2 675.7 439.3 368.8 210.3 
Jib 26.0 21.0 29.9 33.4 29.3 11.1 19.1 7.2 
Ko 4.3 7. 7 3. 7 2.0 4.3 2.3 3.7 1.2 
Sn 5.8 9. 9 5.0 3. 2 4.0 2.6 2. 7 2.7 
Cs 1.2 1.0 1.1 0. 7 1.1 0. 7 0.7 0.6 
Ba 501.9 382 .6 344.9 264.0 329.6 260.1 660. 8 482.6 
La 90.7 111.7 75.4 46 . 8 122.8 62.6 63.1 30.2 
ce 178 .7 197.0 156.9 84.8 247.2 121.1 126.8 59.2 
Sl 13.1 10.4 12.8 6.4 20.8 9.8 10. 4 3.9 Yb 6.6 4.7 7.6 5. 1 8.8 4.3 4.2 2.0 
Hf 13.3 1:).3 13.3 7.5 19.1 10.3 10.1 3.0 
Pb 37.3 205. 3 23.3 9.6 24.5 13.5 17.6 11.2 
Tb 18.3 20.5 23.4 28.3 18.9 8.0 13.0 9.6 
0 5.8 7.0 8.0 11.9 5.5 2.3 4.5 2.6 

(wt\) 
---···· ---------------------------.. -----------··---------------------
Q 24.90 9.23 27.17 8.65 26.22 7.51 22.16 9.88 c 0.12 0.23 0.07 0.14 0.10 0.70 0.06 0.14 
Or 30.38 5. 96 29.63 7.92 32.64 5.34 30.45 6.00 
Ab 34 .90 7.35 35.58 10.85 33 .79 5.15 36.54 6.34 
An 3.66 2.94 2.43 1.67 1.90 1.64 4.97 4.19 Di 1.28 2.82 1.25 4.29 1.62 1.35 1.11 1.66 
By 2.15 2.26 1.39 1.32 0.96 1.05 1.81 1.34 
01 0.03 0. 26 0.00 0.02 0.00 0.00 0.18 1.60 
Itt 1.38 1.00 1.25 0.~8 1.63 0.77 1.60 0.82 
11 0.61 0.52 0.39 0.22 0.62 0.36 0. 74 0. 43 

--------------------------------------------------------------------
KEY TO ()JilTS (SIS - Strawberry SUite, LIS - Lanceqround Suite) 
23-26 -- Strawberry Intrusive Sui te (all data) 
24 -- Cape Strawberry Grani te and Related Rocks 
27·29 ~- Lanceqround Intrusive Suite (all data) 
30 -- Big River Granite (all data) 

n1 -- Nlllber of analyses for all ele.ents e1cept those listed below 
n2 - - llulber of analyses for 5<:, Sn, Cs, 51, Yb and Bf 
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Intrusive Suites, especially when altered granites with 

N/N+K < o. 3 or > o. 65 are excluded from the latter. This 

complements their obvious similarity in texture and 

mineralogy, if the effects of deformation are disregarded. 

However, alkali disturbance is not present to the same 

extent in the Strawberry Suite, although there are signs of 

some minor effects (e.g. Figure 4.4). The Long Island 

Quartz Monzonite and Numok Intrusive have similar major 

element compositions, but dissimilar trace element patterns 

(Table 4. 3) . 

Geochronological Relationships 

The geochemical continuity discussed above is 

consistent with closely similar U-Pb and Rb-Sr ages 

obtained from the Island Harbour Bay Intrusive suite, Long 

Island Quartz Monzonite, the Numok. Intrusive Suite and the 

Big River Granite, all of which fall in the interval 1800 ± 

15 Ha (Loveridge et al., 1987; Gandhi et al., 1988; Krogh 

et al., in prep) • Data from the Strawberry Intrusive Suite 

are more difficult to assess; these rocks may be somewhat 

younger at ca. 1760 Ha. These geochronological and 

geochemical data indicate that "syn-tectonic" and 

"post-tectonic" Mak.kovik.ian associations are (at least in 

part) manifestations of the same event. They are regarded 

by the author as closely related, and, in subsequent 

chapters (e.g. Chapter 9), are treated as a single 

assemblage. 

They may collectively r~present a single pulse of 

magmatism tha': transcended a very short-lived deformational 

event -- i.e., the age difference between "syn-tectonic" 

and "post-tectonic" suites is real, but below isotopic 

resolution. A second possibility is that late Makkovik.ian 
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deformation at ca. 1800 Ma may have been heterogeneous in 

nature. As discussed recently by Paterson and Tobisch 

(1988), the response of plutons to deformation is highly 

variable, and the use of foliations to date them may be 

misleading. As neither deformation or intrusion are 

instantaneous events, the distinction between these two 

alternatives is largely semantic. 
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CHAPTER FIVE 
LABRADORIAN PLUTONIC ROCKS 

Chapter Abstract 

Labradorian plutonic rocks are undeformed suites for which 
geochronology and/or field relationships indicate ages between 
1670 and 1600 Ma. There is no evidence of Labradorian 
deformation that preceded or accompanied their emplacement in 
the study area, but deformation and metamorphism of this age is 
widespread in high-grade terranes to the south. Labradorian 
units in the southwest of the area have variably-developed 
east-trending fol\ations, that are presumed to record 
Grenvillian deformation. The Labradorian assemblage is 
characterized by two contrasting groups of rocks that were 
derived respectively from mafic parental magmas and more 
siliceous granitoid magmas. 

The Adlavik Intrusive Suite (ca. 1650 Ma) is a mafic to 
intermediate association that forms a complex, multiphase, 
layered intrusion and a number of isolated bodies. These mafic 
rocks are compositionally and texturally diverse, and include 
ultramafic rocks (originally pyroxenites), layered mafic 
cumulate rocks, plagioclase-cumulate leucogabbro, diabase and 
pegmatitic gabbro. These are associated with lesser amounts of 
diorite and monzodiorite. Fi eld relationships are exceedingl y 
complex, and suggest multiple batches of mafic magma, including 
both gabbroic and gabbronoritic compositions. Cumulate textures 
are widespread. An original pyroxene (± olivine) -bearing 
mineralogy was variably transformed to an amphibole-bearing 
assemblage, probably via late-magmatic or deuteric volati l e 
build-up during crystallization. The gabbro is moderately 
K a-rich, and shows major and trace element affinity to 
"~hoshonitic" basalts, and possibly to "appinitic" gabbro suites 
associated with some Phanerozoic granites. 

The Mount Benedict Intrusive suite (ca. 1650 Ma) ranges in 
composition from gabbro and diorite to alkali-feldspar granite, 
but is dominated by hornblende-biotite monzonite, syenite and 
quartz syenite. The suite is crudely layered, with evolved 
compositions at high elevati ons. The least evol ved rocks are 
locally olivine-bearing p l agioclase cumulates that resemble the 
Adlavik Suite. Variably preserved plagioclase phenocrysts in all 
members of the suite imply significant fractionation of this 
mineral. Well-defined geochemical trends withi n the suite are 
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consistent with derivation from a mafic to i~:ermediate parent 
by sequential fractionation of mafic minerals, plagioclase and 
K-feldspar. Strong incompatible element enrichment is consistent 
with this extended fractionation history, and trace element 
modelling confirms that Adlavik Suite mafic ~agmas 
are a possible parent composition. The Adlavik and Mount 
Benedict Suites are thus regarded as closely related, 
complementary associations. 

The Monkey ~ Intrusive Suite (ca. 1640 Ma) comprises 
several small, closely similar, epizonal, biotite-leucogranite 
plutons that probably represent cupolas connected to a larger 
body at depth. These are slightly peraluminous, and depleted in 
fluorine, HFS elements and REE. Two plutons that belong to the 
suite are associated with endocontact Mo and exocontact Mo-Cu ( 
± Pb-Zn) mineralization, and show strong depletion in a range of 
trace elements. The latter is probably due to hydrothermal 
activity associated with mineralization. Two ca. 1630 Ma old 
granitoid plutons in the southwest of the area (Witchdo~ and 
Burnt~ Granites) have closely similar petrographic and 
geochemical features, contain minor muscovite and garnet, and 
are also associated with Mo mineralization. These show evidence 
of Grenvillian deformation, as they lie close to the Benedict 
Fault zone. 

The Otter Lake - Walker Lake Granitoid (ca. 1650 Ma) is a 
regionally extensive, variably deformed, porphyritic granitoid 
suite ranging from biotite-hornblende quartz monzonite to 
biotite granite. It has a mildly peraluminous composition, and 
is generally poor in fluorine, HFS elements and REE. 

As a group, Labradorian siliceous granitoid units differ 
from their Makkovikian counterparts in their lack of 
transitional peralkaline behaviour, general peraluminous 
affinity and lack of fluorine, HFS element and REE enrichment. 
Such features probably reflect different source materials andjor 
generative processes for the two groups of granitoid rocks, 
rather than different fractionation histories or hydrothermal 
effects in epizonal plutons. 
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Introduction 

This association comprises post-Makkovikian, largely 

undeformed, post-tectonic plutonic rocks for which 

geochronological data and/or field relationships suggest 

ages between 1670 and 1600 Ma. As discussed previously 

(Chapter 4), "post-tectonic" does not imply a universal 

absence of deformation, as some units in the south have 

east-trending foliations of probable Grenvillian age. There 

is no evidence of Labradorian deformation in th~ study 

area. The term "anorogenic", however, is not appropriate 

for these plutons, as there is clear evidence for 

Labradorian deformation and metamorphism in high-grade 

terranes to the south (e.g. Wardle et al., 1986). 

Labradorian plutonism may thus be temporally related to 

orogenesis, but the study area apparently lay outside the 

zone affected directly by metamorphism and deformation. 

Labradorian plutonic rocks are divided into five main 

associations. The Adlavik Intrusive Suite consists of 

layered gabbro, leucogabbro and diorite. The Mount Benedict 

Intrusive Suite includes minor diorite and gabbro of 

similar aspect, but is dominated by monzonite to quartz 

syenite. The Monkey Hill Intrusive Suite comprises a number 

of small, leucocratic, epizonal granite plutons. The 

Witchdoctor and Burnt ~ Granites are similar leucocratic 

granites. The Otter ~ - Walker Lake Granitoid is a 

regionally extensive porphyritic quartz monzonite to 

granite unit. The latter two associations have been 

affected by Grenvillian deformation. 
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Figure 5.1. Summary map illustrating the distribution and extent of 
Labradorian plutonic units. 
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Table 5.1. Key features of Labr.'idorian plutonic units. 

Kap Unit Suite;llnit ,'Aqe 

AlJLAVI._ INTRUSIVE SUITE 
40.1 
40. 2 Clbbrt•, Gabbronorite 
40. 3 and ~~ucoqabbro 
40.4 

41.1 
41.2 
41.3 
41.4 

Diorite and llonzodiorite 

1649 +/· 1 lla [ O·Pb zircon ] 
( Kroqh et al., in prep.) 

MOUNT BENEl>ICT INTRUSIVE SliiTE 

42.0 Diorite and llonzodiorite 

43.0 

44.0 

[possibly includinq Gabbroic locks] 

llonzonite, Syenite and 
Quartz Syenite 

syenite, Quartz Syenite, Granite 
and alkali-feldspar Graaite 

162!1 +/· so lla (lb-Sr ill) 
(Brooks, 1982) 

16!10 +/· 10 11a (O·Pb zircon) 
(Kroqh et al., in prep.) 

MONKEY HILL INTRUSIVE SUITE 

4!1.1 
4!1.2 
4!1.3 
4!1.4 
4!1.!1 
4!1.6 

46.0 

47 .0 

48 .0 

lollkey !ill Granite 
1640 +/· 10 Ia (O·Pb zhcon) 

( Kroqh et al. , in prep. ) 
lound Polld Gran1te 

1620 + t· 60 ( K-lr Bi 1 
(llanless et al., 1970) 

( For other plutons, see Fiqure S.1 

llitcbdoctor Granite 
1632 +/· 9 [ D·Pb %r 1 

1!195 + /· 34 [ lb-Sr ill 1 
!Brooks, 1982, 1983) 

&irnt Lake Granite 
1SU +(· 90 [ lb-Sr ill 1 

(llacKenue and Wilton, 19881 

otter Lake • Walker Lake 
Granitoid 

1647 +;· 2 11a (O·Pb zircon) 
(Kroqh et al., in prep.l 

General Characteristics 

Text'.lnlly variable, layered assea· 
bl ~qe of ul trataf ic rocks, qabbro, 
qabbronorite, plagioclase 
CUJUlate leucoqabbro, and diorite. 
All of the above are cut by aq~atitic 
coaposite diabase (coaonly net· 
veint!d) and by coarse peqtatitic 
qabbro. 

Bo1109tneous, qrey to yello<·brooll, 
aassm, locally plag1oclase· 
porphyritic Pl-Bb or Bb·diorite, 
aonzodiorite to (locally) aonzonite 
and s1enite. 

lassive, grey to black·and·O'bite, 
p~ag~oclase·porpby~i* leucoqabbro, 
alonte and aonzoalonte. 
Sbo•s a stronq reselblance to 
parts of tile Adlavilt Intrusive 
Suite (see above). 

Ranges trot a Cfiey to bro'ill or buff 
Plag·porpbyrit1c aonzonite (sitilar 
to above) to pink or buff syenite 
and quartz syenite. 
Relict, aantled plagioclase 1tals 
give •speckled-eqqsbell" te1ture. 

Doainated by boaoqeneous, pink, 
grey and buff-obite, locally porpb· 
yritic syenite to alltali·fsp qranite. 
Plag·porpbyritic variants reseable 
tile above, but witb stall vestigial 
plagioclase phenocrysts only. 

All plutons are doainated by qrey to 
buff or pink, locally sliqbtly 
porphyritic, boaoqeneous, leuco· 
cratic biotite-cblorite aonzoqranite, 
granite and (locallyl alltali-fsp 
qranite. llio includes qraphic leuco­
granite and Oz·Fsp porpbyry. 

Boaoqeneous, leucocratic, l'bi te to 
pink1 Bi·ls granite to alltali-fsp 
qran1te located close to Benedict 
fault zone. 

Dolinated by boaoqeneous, white, 
pale !ffey to pink, leucocratic to 
ahskltic aon109tanite and qranite. 
Parts of tile uut reseable fine­
grained llitcbdoctor Granite. 

D011nated by coapos1honally 
variable qrey to pink or qreen· 
wbite, two-feldspar porphyritic, 
biotite-bornblende quartz aonzonite, 
granodiorite, aonz?Cflanite and 
qranite. llelanocrat1c dioritic 
variants occur locally. 

Textural Characteristics 

Doainantly coarse-qrained to very 
coarse-qrained. CUJulate layerinq is 
variably developed. Kaf ic CUIU!ates 
occur at the base and;or urgin 
of tbe intrusion, and also occur 
sporadically oitbin the doainant 
plagioclase CIIIUlate facies. 

Generally coarse-qrained and boao· 
qeneous. Locally displays l'ispy 
aafic aineral layering, and tb1n 
taf ic CUJUlate zones. 
Contains 1enolitbs of gabbro, 
leucoqabbro and aafic cuaulate. 

Coarse to very coarse-grained, •i tb 
larqe ( S Cl) Plag aeqacrysts, ranqinq 
in shape frot eubedral to rounded. 
llaf ic tinerals sbow interstitial to 
oikocrystic babit. Interstitial 
qranopbyric aaterial. 

llediua to coarse-grained, aassive, 
ranqes fro• porphyritic to seriate 
and (locally) equ1qranular. 
Interstitial oz + K-fsp, local 
K·feldspar phenocrysts. llaf ic ainerals 
fora eubedral or subbedral aqqreqates. 

Generally fine to ledilll-ql'ained1 
aasshe and It-feldspar porpbyritlc. 
Fine-qrained equiqranular rock 
types and quartz-feldspar porphyry 
occur locally. Rapid local qrain 
size variations. 

Generally hne to iied1ut qra1Ded. 
Slall, eubedral pla9ioclase crystals 
iapart a •porpbyr i tlc" te1ture. 
Jtineralired plutons are locally 
aiarolitic and/or peqaatitic. 
Inclusions are rare, e1ce~t near 
contacts. Tllffisite breccus suqgest 
volatile exsolution and biqb level 
eaplaceaent. 

Generally Jed1111 to coarse-qrmed. 
llostly equiqranular, but locally 
It-feldspar Jl')rpbyritic. Foliation 
defined by ribboned quartz. 

Generally fine to lediua-qrained, 
equiqranular to locally porphyritic. 
variably foliated, but invariably 
bas a •suqary• appearance due to 
recrystallization: locally it is 
siailar to aetavolcanic country rocks. 

Generally ied1111 to co~uiled, 
aassive, porphyritic to senate in 
texture. Heldspar pbenocrysts are 
1ar91r p-5 ca) tban· coelistinq Plaq. 
llaflc 11nerals are interstitial, or 
fora rounded clots. Oait locally 
bas east-trendinq foliation. 
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Table 5.1 (continued). 

Key field Relationships 

Gabbro cuts Cpper Aillik Group, 
but is cut by tonzoqranite 
of llonkey Bill Intrusive Suite. 
Gabbro appears to be gradationil 
•ith the diorite and aonzodiorite 
(see beloo), but locally it 
1ncludes anqular diorite xenoliths. 
Gabbro appears to occur botll above 
and belo• the diorite unit. 

Appears gradational <ith qabbros at 
Aalavik Bay, yet contains qabbro 
xenoliths. Cut by net-veined 
aaf ic dykes and veins identical 
to those in qabbroic unit. 

Appears to be gradational lith 
doainant aonzonite and syenite 
unit (see below). 
Interpreted to fort lo·,;enost 
(and/or aarqinal) facies of the 
Suite. 

llaf ic and felsic end-aelbers are 
sillilar to other units in suite; 
relationship is probably gradational. 
Tbis unit q1ves 1ay to syenite and 
granite at hiqh elevations. 

Least differentiated exa11ples are 
siailar to the doainant aonzonite 
to syenite unit. llostly restricted 
to b1qh elevations, but orcurs 
sporadically in other units. 
Relationship gradational ? 

IIOIIItey Blil Ci' an1 te 1 ntrudes the 
Opper Aillik Group and KenDedy 
llountain Suite. 
Duck Island Granite intrudes the 
Lonq Island Quartz Monzonite. 
Little Jlollkey Bill Granite cuts 
Adlav ik Intrusive Suite. 

ContactS are not exf:fc· 
Tbis unit is ainera oq1cally 
and collpOSitionally akin to 
tbe Burnt Lake Granite (see bel ov ) • 

Intrudes felsic volcanic rocks of 
tbe Opper Aillik Group, but locally 
appears qradational. 
lineraloqically 111d coapositionally 
siailar to the Witcbdoctor Granite. 

Inti'ildeS fels1c volcan1c aild aeta­
sed i aentary rocks of Opper A ill ik 
Group. Granites correlated with this 
unit intrude Bruce River Group. 
In fault contact with llelody Granite 
and Arcbean qneisses. 

llineraloqy 

Plaqiochse 1An40-80; 30-75 ll 
Cpx 1 auqite, 10-50\1 
Opx (Gabbronorite only , 5-201 l 
Bb 1 qre~:n or bro•n, 5-50\ 1 
Bi ( red-)rOo11, 5-20\ l 
Qz • Hsp tinterstltial, 0-711 
Olivine (ainor, 5-201 in Gabbronvri '.el 
Accessory Ap, Fe -ox. 

Plaqiochse (An4o-50; 40-65\ l 
Qz (0-81, interstitial •itll K-fsp) 
K-fsp (5-2511 locally abundant) 
Cpx + Bb + 81 (1o-20I total) 
Opx ( o-101, in Plaq and Cpx-rich 

variants.) 
Accessory Ap, Zr, Fe-ox 

Qz (o-2t1 1nterstltul fiab1t) 
K-fsp ( 111, 5·201, interstitial) 
Plaq (An40-60; 50·80\, sauss.) 
Cpx + 1- Opx ( 5-20\ total) 
Bb + Bi (o-101 total) 
Olivine (o-101, aostly relict) 
Accessory Ap, Fe-Qx. 

Qz (o-10\, interstitial habit) 
Plaqioclase (2 types, 30-60\) 
K-fsp (IIi, locally pbenocrysts) 
Bb + Bi (5-15\ total) 
Cpx (0-5\, coaonly relict) 
Acc-essory Spb, Zr, All, Fl. 

Qz (5-151, up to 30\ locally) 
K-fsp (50-80\ l 
Plaq (1Q-J5\) 
Bi + Bb (3-8\ total, Bi > Bb) 
Accessory Sph, Zr, fl 

Oz (20"'35\, 1ntersbhal hab1t) 
Plaq (An15-25; Jo-50\ l 
K-fsp (IIi, Jo-50\) 
Bi + 011 (Q-4\ colbined) 
Epidote (priaary?) lis (ainor) 
Gilt (Kidlaluit granite only) 

Oz (25-401) k-fsp (R1, 40:7ot) 
Plaq (An20, 1Q-25\l 
Bi + lis (1 - 5\ total, Bi > lis) 
Bb (relict l Gilt ( ainor, « 1\ l 
Chl, !p, Spb, All 

Qz (20-40\) 
K-fsp (IIi, 25-m l 
Plaq (20-50\) 
Bi + lis (o-5t total, Bi > lis l 
Accessory All, Gnt (rare) , Spb. 

Qz (15-)0l) 
IH sp (IIi , 30-501) 
Plaq ( An25-40, 25-50\ l 
Bi t Bb (3-1\, Bi > Bbl 
Cpx (rare, relict l 
Abundant Spb (up to 2\ l 
Accessory All, Zr, Ap 

Petroqnphy 

Coarlete nnqe fro• fresh, ··ell­
presened euap1es to altered rocks 
doainated by saussuriti:ed Plaq and 
secondary Actinolite - epidote. 
Bb co110nly foras rias on Cpx , 
suqqestina late ldeuteric?l oriqin. 
Q! !nd K-!sp (ohere present l for• 
interstitial granopbyric aaterial. 

Continuua fro• fresh Pl-Bi beuinq 
diorite to Bb·diorite to variably 
altered Pla9·Act·Ep asselbhqes. 
Priaary Bb 1n soae variants, e1seob 
Bb foras rias on Cpx. 
Qz and IHsp are interstitial 
(trapped liquid ?) . 

!lost exa11pJes contain serpentine­
Fe-ox patcbes, probably pseudo­
to~ after ollvine. Altered 
varants contain saussuritized P1aq 
and Act-Ep-Spb-<:1!1 aqqreqates. 

Clear iqneous textures. Plaq forE 
zoned pbenocrysts riaed by fresh 
Plaq aDd/or )(-feldspar. 
Cpx occurs in aafic variants, riued 
by Bb. llost Hsp ( + ; - Qz l interstitial. 
Sphene locally tons cores to Bb. 

Qz and K-fsp ton graphic i~tergro• ths 
;;itb interstitial hab1t. IIi pheno­
crysts bave relict siaple t•1nninq. 
Local phqioclase phenocrysts 
are eabayed and resorbed. 
Bb locally shows poikilitic habit. 

lqneous textures 1ell preserved. 
lc-tsp is aostl y a groundlclss phase; 
in equigranlllar variants it tons 
qrapbic interqrootbs ~ith quartz. 
Bi 1s penasi vell altered to Chl: uny 
rocks contain on y Chl. 

Foluhon dehned by aqqreqates of 
Bi + lis, Bi altered to Chl. 
Pink qarnet is rare; coaonly 
broken aDd cracked. 
Epidote intergrovn with Bb + Bi. 

Variably recrystallized; relict 
pol(byntic textures presened. 
lis 1s interqrovn vitb Bi, aDd 
also occurs as tery f i~~e-qraiDed 
(secondary ?) aaterial. 

Iqneous textur~ 9fneraqpell­
preserved. Qz 1s 1nterst1tlal. 
IIi pbenocrysts are fine pertbite, v ith 
local rias of &Odic Plaq. Plaq 
phenocrysts have zoned, saussuritized 
ce:.tres. Biotite bas qreen colour . 
Sphene very proainent; eubedral or 
interstitial habit. 
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5.1 GEOLQGY AND PETROLOGY 

Locations and extent of principal Labradori3n plutonic 

units are indicated in Figure 5.1. Key field and 

petrographic characteristics are summarized in table 5.1. 

5.1.1 Adlavik Intrusive Suite 

Definition and Distribution 

This suite includes layered gabbroic and dioritic rocks 

exposed at Adlavik Bay and Big River valley, and also as a 

number of isolated bodies, of which the most important is 

at Pamiulik Point (Figure 5.1). The type locality at 

Adlavik Bay is referred to below as the "main body". 

The main body was defined initially by Gandhi et 

al.(1969) and Stevenson (1970), and termed "Adlavik 

Complex", which was later modified to Adlavik Intrusive 

suite by Gower (1981). A U-Pb zircon date of 1649 +/- 1 Ma 

was obtained from a potassic monzodiorite at Adlavik Bay 

(Krogh et al., in prep.). Gower et al. (1982) summarize 

previous K-Ar dates (Gandhi et al., 1969; Wanless et al., 

1970) from minor intrusions possibly related to the suite: 

these range from 1660 to 1540 Ma. A postulated link to the 

rocks now termed Numok Intrusive Suite (Kerr, 1986) has 

since been disproved by ca. 1800 Ma U-Pb zircon ages from 

the latter (see Chapter 4). 

The main body is a very complex, layered, multi­

component intrusion that could easily form an extended 

Ph.D. topic by itself. The scale of mapping and sampling in 

this regional project is inadequate to resolve all of the 

problems inherent in its geometry and stratigraphy, and the 

following account is undoubtedly an oversimplification. 
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Mafic Plutonic Rocks 

These correspond to unit 13 of Gower (1981) and unit 

22a of Gower et al.(1982), and exhibit great variety in 

composition and texture. Clark (1973) mapped the northern 

fringe of the main body, and outlined five subunits or 

"facies". These have been revised and augmented during this 

project (Kerr, 1987b; Figure 5.2), and are used as a 

framework for description. The following descriptions apply 

mostly to the main body; other areas of the suite are 

dominated by melagabbro and leucogabbro facies. Plates 5.1 

and 5.2 illustrate various field characteristics of mafic 

rocks within the Adlavik Intrusive Suite. 

Marginal Gabbro and Diabase : This is best exposed in 

the Big Bight area (Figure 5.2), but occurs locally around 

the western edge of the main body, where it forms a thin 

(usually < 5 m) discontinous margin against the Upper 

Aillik Group country rocks. It is a fine to medium-grained, 

equigranular, grey rock with variably diabasic texture. In 

the Big Bight area it contains primary acicular hornblende 

and is closer to diorite in composition. In parts of the 

mafic cumulate facies, it occurs as rounded xenoliths or 

pillows in coarse gabbro. These agmatites probably record 

disruption of a chilled margin by later magma, also 

suggested by Gower (1981) for a similar texture at Pamiulik 

Point. 

Hafic CUmulate Facies : This corresponds partly to the 

rhythmic layered facies of Clark (1973). It is well-exposed 

at Big Bight, where it forms the base or side of the 

intrusion. It is also present locally within the dominant 

leucogabbro facies and the diorite unit. Rhythmic layering, 



LABRADORIAN PLUTONIC ROCKS 

1• + +) 9 Monkey Hill Intrusive Suite 
(Little Monkey Hill Granite) 

ADLAVIK INTRUSIVE SUITE 

~4 
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Diorite and Monzodiorite 

ldj leucogabbro Facies 
c Melagabbro Facies 
b Mafic Cumulate Facies 
a Marginal Gabbro and Diorite 

POST-TECTONIC MAKKOVIKIAN PLUTONIC ROCKS 

rn 7 Big River Granite 

E;:Ja Strawber~ Intrusive Suite 
(Poodle Pond Granite) 

~ 10 Lanceground Intrusive Suite 

~ 5 (a) Numok Intrusive Suite (Agmatitic Border) 
~ (b) Numok Intrusive Suite (Monzonite- Quartz Monzonite) 

l(~i)js Numok Intrusive Suite (Syenite- Quartz Syenite) 

SYN-TECTONIC MAKKOVIKIAN PLUTONIC ROCKS 

[I]] 2 Manak Island Granitoid 

SUPRACRUSTAL ROCKS 

c=J 1 Upper Aillik Group (Undivided) 

SYMBOLS 

~.::-.:-:-:- Geologlcel contact (approximate, lnf#trr.cl) 

Igneous layering or folia/ion 

....,.... Penetrellve foliation 

""'""" Fault (Inferred) 

1:r. Location of pegmel/1/c gebbro·dlorilfl metflrlel conteln/ng minor sulphidtl 

Figure 5.2. Simplified geological map of the main body of the Adlavik 
Intcusive Suite. Partly after Clark (1973), Gower et al.(l982) 
and Kerr (1988b). 
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graded bedding, and cross-bedding are well developed in 

these rocks. At Big Bight, they form at least two irregular 

cyclic units (Figure 5.3). Each cycle commences with 

coarse-grained ultramafic rocks, dominated by amphibole and 

biotite, but with a relict pyroxenite mineralogy. These are 

interlayered with and overlain by layered gabbro and 

gabbronorite, where hornblende crystals with a "stubby" 

habit (after pyroxene?), containing augitic cores, define 

rhythmic layering and graded bedding. The upper portion of 

each cycle consists of very coarse-grained amphibole­

bearing "pegrnatites" (pegmatite facies: see below) that 

also occur as irregular, diffuse, veins and pods that 

disrupt the underlying cumulates. 

Helagabbro Facies : The mafic cumulate facies is 

overlain in the Big Bight area by massive, dark grey to 

black, coarse-grained, melanocratic rocks (termed "massive 

di1base facies" by Clark, 1973, but not generelly 

diabasic), which in turn grade upward into the dominant 

leucogabbro facies. The melagabbro generally contains less 

than 50% plagioclase; it is locally a gabbronorite, but in 

most areas mafic phases have been transformed to· amphibole 

(see below). It is locally strongly epidotized around 

networks of fractures or veinlets. 

Leucogabbro Facies : This areally dominant facies is a 

grey to white or purple-brown, coarse to very coarse­

grained, leucogabbro or leucogabbronorite. It is 

distinguished from the melagabbro by a higher plagioclase 

content (up to 70%), but the two are gradational. It 

contains interstitial (locally oikocrystic) mafic minerals 

and locally has a magmatic foliation defined by plagioclase 

alignment. Diffuse mafic mineral accumulations and thin 

zones of rhythmic layering provide evidence of cumulus 



- 1 66 -

Plate 5.1. features of mafic rocks in the Adlavik Intrusive Suite (see 
also Plate 5.2). (a) Mafic cumulate with amphibole megacrysts up to 5 
em diameter, containing augite cores, Pamiulik Point area. (b) Stoped 
blocks of diorite in melanocratic gabbro, Adlavik Bay. (c) Graded 
bedding ip mafic cumulate, Big Bight, tops to right of photo. (d) 
Coarse "diabasic" texture, probably a plagioclase cumulate, coastline 
sou~h of Manak Bay. (e) composite diabase body intruding leucogabbro 
fac1es, Adlavik Bay. Note chilled margins on diabase lozenges. (f) 
D7tail from same locality, white v ein is about 5 em wide. Note 
d1sruption of chilled margins by grey, intermediate material. 



- 167 -

processes, and it is viewed as a plagioclase cumulate. 

Leucogabbronori te is restricted to the northern margin and 

inner part of Adlavik Bay, but many samples retain only 

relict primary mineralogy (see below), and it is therefore 

difficult to assess the original extent of orthopyroxene 

and olivine-bearing rocks. 

This facies is homogeneous, except for locally 

voluminous cross-cutting composite diabase and gabbroic 

pegmatite (see below). In one locality it includes angular, 

stoped blocks that resemble the diorite unit (described 

below . . 

Gabbroic Pegmatite Facies : This consists of 

coarse-grained, generally quartz-free, gabbroic and 

dioritic "pegmatite", containing acicular hornblende 

(locally as unusual hollow crystals), and variable amounts 

of K-feldspar. It is associated with the mafic cumulate 

facies (see above), and occurs as sporadic masses (rarely 

more than 400 m2 ) that intrude all the above and the 

diorite unit. In the mafic cumulate facies, it is probably 

a local volatile-rich residual magma formed by 

crystallization of the underlying cumulates. It is 

suggested that it forms a late phase formed by the 

operation of similar processes on an intrusion-wide scale. 

Composite Diabase Facies : Fine to medium-grained 

diabase forms numerous outcrop-scale dykes, veins and 

irregular masses that intrude and disrupt mafic and diorite 

units. These have a chaotic internal structure, where 

diabase is 1 ntruded and disrupted by grey, intermediate 

material that appears to originate in the local wall rocks. 

Chilled margins are present around individual diabase 

"pillows", but these are cut and net-veined by this 

intermediate material. Preferred orientation of diabase 
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Plate 5.2. Features of mafi c roc ks in the Adlavik Intrusive Suite (see 
also Plate 5.1). (a) and (b) Typical p lagioclase-cumulate leucogabbro 
samples. (c) Amphibo le phenocrysts ( a fter pyroxene) in a fine-grained 
variant from Big Bight, note cores (altered augite). (d) Amphibole­
b~aring Regmatite, with unusual, hollow hornblende crystals up to 2 em 
d1?meter (cross-section), Adlavik Bay. (e) Pervasive zones of 
ep1dotization in melagabbro facies, Big Bight. (f) Amphibolitization 
of gabbro around thin felsic veinlet, Jacques Isla nd. Slabs stained 
for K-feldspar. 
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lozenges in some a~eas suggests that these were zones of 

flow, and they are interpreted as conduits through which 

mafic magma batches ascended to higher parts of the 

intrusion. They were probably emplaced into hot, partly 

consolidated cumulates that contained residual liquid 

capable of mobilization and interaction with ascending 

mafic magma. Their presence in the diorite unit indicates 

that multiple batches of mafic magma were emplaced at 

Adlavik Bay, and that diorite is not the youngest 

component. 

Petrographic Features : Mafic rocks of the Adlavik 

Intrusive Suite range from fresh variants where 

plagioclase, pyroxene and biotite are the dominant minerals 

to altered variants dominated by hornblende, saussuritized 

plagioclase and actinolite. Samples that lie between these 

extremes commonly contain hornblende as mantles on pyroxene 

crystals, suggesting that it is a late primary phase or a 

deuteric alteration product. In hydrated variants, 

clinopyroxene (± orthopyroxene) occurs only locally as 

relict cores in hornblende. Red biot ! is present in 

hornblende-free rocks, and is probably part of the primary 

assemblage. 

This mineralogical continuum is interpreted to reflect 

variations in the water content of the magma during 

crystallization (c.f. Clark, 1973) . Although some 

pyroxene-free rocks (especially gabbroic pegmatites and 

parts of the diorite unit, see below) contain euhedral, 

primary hornblende, it is suggested that most were modified 

extensively by late-magmatic or deuteric effects. In some 

areas, amphibolitization is concentrated around fractures 

or thin felsic veinlets, indicating that at least some 

transformation was post-crystallization. 
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Fresh gabbronorite variants contain variable amounts of 

pleochroic hypersthene, and fresh to locally relict 

olivine, commonly mantled by orthopyroxene aggregates. 

Olivine does not occur widely in orthopyroxene-free rocks, 

but many are olivine-normative (see 5.2.2). 

Ultramafic rocks, and associated mafic cumulates, 

contain large (up to 10 em) megacrysts or crystal 

aggregates of amphibole with cores of clinopyroxene. They 

contain abundant pale (Mg-rich?) biotite (possibly 

phlogopite), and were probably originally 

biotite-pyroxenites. 

Diorite and Monzodiorite 

The most extensive area of this unit is in the main 

body (Figure 5.2), but similar rocks occur at Pamiulik 

Point and East Micmac Lake. It is more homogeneous than the 

mafic component of the Adlavik Suite, but locally resembles 

the most leucocratic gabbroic variants. The dominant rock 

type is a pale brown to pink or yellow-weath~ring, 

coarse-grained, equigranular to plagioclase porphyritic, 

pyroxene - hornblende - biotite or two-pyroxene diorite, 

quartz diorite or monzodiorite (Table 5.1; Plate 5.3). 

At Adlavik Bay, the diorite appears to be gradational 

with adjacent plagioclase cumulates. However, it also 

includes angular xenoliths of gabbro and mafic cumulate 

indicating that it is younger than some of the mafic rocks. 

Discontinous mafic mineral layers, primary foliations 

defined by plagioclase alignment, 3nd thin (< 10 m) zones 

of Jnafic cumulates occur locally. The unit is cut by the 

composite diabase facies, and zones of coarse amphibole­

feldspar pegmatite; the latter also occurs as isolated 

patches within coarse diorite that probably represent local 

volatile-rich pockets. 
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Plate 5.3. Features of the dioritic unit in the Ad'avik Intrusive Suite. 
(a) Typ ical homogeneous diorite, with wispy mafic mineral layers 
suggesting cumulus processes, Adlavik Bay. (b) Xenoliths of 
l~ucogabbro and c umulate-layered gabbro (layered xenolith about 20 em 
d1ameter) in diorite, Adlavik Bay. (c) Coarse-grained, 
plagioclase-rich variant, probably a plagioclase cumulate, Adlavik 
~ay. (d) Typical examples of diorite unit, Adlavik Bay, note 
1nterstitial K-feldspar. (e) Monzonitic to syenitic variant of unit. 
(~) Fine-grained, marginal, diorite with acicular hornblende, Big 
B1ght area. Slabs stained for K-feldspar 
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As in the mafic rocks, there is a continuum from 

near-anhydrous variants to rocks which lack pyroxene and 

contain euhedral, probably magmatic hornblende. Red-brown 

biotite is present in most examples, and its presence 

appears independant of amphibole content. K-feldspar and 

quartz are interstitial and late. A few plagioclase-rich 

diorites contain both hypersthene and augite, suggesting a 

possible link to gabbronoritic variants of the mafic 

sequence. 

Geometry and Stratigraphy of The Adlavik Bay Layered 

Intrusion 

There are wide variations in primary layering attitudes 

within single outcrops around Adlavik Bay. Reconstruction 

of the geom~try and stratigraphy of the intrusion is thus 

very difficu:t. There is also no guarantee that layering 

represents the same reference orientation in all locations , 

or that all components were originally conformabJe; in 

fact, field relationships suggest that there are probably 

also internal intrusive contacts. 

Layering attitudes around Adlavik Bay indicate, 

however, that the diorite unit is at least partly overlain 

by mafic rocks (assuming that their mutual contact is 

parallel to layering in both). A possible interpretation 

(Figure 5 . 4) is that the diorite is associated with a 

lower, gabbronoritic sequence that is overlain (perhaps 

"unconformably") by gabbro and leucogabbro. Contrasts in 

normative mineralogy (see 5.2.2) also indicate that there 

are spatially discrete gabbronorite and gabbro sequences. 

It must be stressed this is only one of a number of 

possible interpretations, and that space does not permit 

discussion of all. The composite diabase facies is 
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i 

ULTRAMAFIC 
CUMULATES 

Figure 5.3. Schematic illustration of cyclic units in the Mafic 
cumulate Facies in the Big Bight area, at the northern margin of 
the main Adlavik Bay intrusion. 

NORTH 

ADLAVIK INTRUSIVE SUITE (Main 

(Very) Schematic Cross-Section 

SOUTH 

Composite 
Diabase 
Facies 

Figure 5.4. Schematic, interpretative cross-section of the main body 
of the Adlavik Intrusive Suite. See text for discussion. 

(Legend as for Figure 5.2) 
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interpreted as the feeder system for higher parts of the 

intrusion, and the pegmatite facies as residuum from the 

crystallization of individual batches of magma. 

5.1.2 Mount Benedict Intrusive Suite 

Definition and Distribution 

Mount Benedict Intrusive Suite is a new name introduced 

for compositionally varied rocks exposed in the Benedict 

Mountains (Figure 5.1). The term is D2t synonymous with 

"Benedict Mountains Intrusive suite", introduced by Gower 

(1981) as a general label for intrusive rocks throughout 

this area. It is recommended that this older term be 

abandoned, as it includes both Makkovikian and Labradorian 

plutonic reeks, which cannot be directly related. The three 

units of the Mount Benedict Intrusive Suite correspond 

generally to textural variants described by Gower (1981) in 

his unit 21. They form a continuum from diorite and 

monzodiorite through monzonite and syenite to granite 

(s.s.} (Table 5.1: Plate 5.4}. The overla~ between them 

suggests that they are closely related and probably 

mutually gradational. 

The svuthern boundary of the Mount Benedict Suite is 
marked by a narrow belt of strongly deformed felsic 

volcanic rocks that is probably bounded by faults 

associated with the Benedict Fault system. In the east, it 

is bounded by the Tukialik granite of the Strawberry 

Intrusive Suite, which it is presumed to intrude. The map 

pattern suggests dextral displacement across a fault 

cutting through the suite, which is here interpreted as the 

continuation of the Adlavik Brook Fault zone. The nature of 

the western contact wi th the volcanic rocks east of Stag 

Bay is unknown. 
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Geochronology : Brooks (1982) obtained a Rb-Sr whole 

rock isochron suggesting an age of 1625 +/- 50 Ma for 

syenite at Mount Benedict, but alluded to possible 

disturbance. U-P•! zircon data from a nearby locality (Krogh 

et al., in prep.) are slightly discordant, and indicate an 

age of 1645 ± 10 Ma, or a maximum age of 1668 Ma assuming a 

1000 Ma lower intercept. The Mount Benedict and Adlavik 

Suites are thus of essentially the same age. 

Gabbro and Diorite 

Gabbro and diorite are restricted mostly to the 

southwestern edge of the suite, but occur sporadically 

within the other two units. An area of mafic cumulate, 

melagabbro and monzodiorite exposed at Pamiulik Point 

(grouped here as Adlavik Intrusive suite) may also be part 

of this unit. Gower (1981, pers.comm., 1988) states that 

there is no obvious structural break between these rocks 

and syenite to the south. As discussed subsequently (5.3), 

the similarity between the least evolved rocks of the Mount 

Benedict Suite and parts of the Adlavik Suite suggests a 

genetic link between them. 

The unit consists of plagioclase-porphyritic pyroxene 

(± olivine) - bearing gabbro, leucogabbro and diorite, 

locally transitional to monzonite. Plagioclase alignment, 

and the oikocrystic habits of mafic minerals, indicate a 

cumulate origin. sever~! samples contain equant 

serpentine-iron oxide clots with cores of fresh olivine. 

Fresh examples contain pleochroic hypersthene, and a purple 

to brown titanaugite with prominent exsolution lamellae 

(probably an inverted pigeonite). Red-brown biotite is also 

common. Altered variants cor.sist of saussuritized 
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Plate 5.4. Features of the Mount Benedict Intrusive suite. A 
continuum of compositions from plagioclase cumulate (a), thr ough 
diorite (b), monzonite- syenomonzonite (c), syenite (d) to quartz 
syenite (e). Note persistence of vestigial plagioclase phenocrysts in 
all but.(e). (f) A combinat ion of textures, with plagiocla se crystals 
entrained in syenite. All samples from Mount Benedict - Jeanette Bay 
area. Slabs stained for K-feldspar. 
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plagioclase, hornblende and actinolite(± epidote, sphene). 

This unit has many petrographic similarities to gabbro and 

diorite o! the Adlavik Intrusive Suite. 

Monzonite, Syenomonzonite and Syenite 

This unit forms a cowpositional and textural continuum 
from plagioclase-porphyritic, pyroxene monzodiorite to 

coarse-grained, biotite-hornblende syenite containing only 

minor plagioclase (Table 5.1; Plate 5.4). The dominant rock 

type is a grey to buff, seriate to porphyritic, monzonite, 

quartz monzonite or syenomonzonite (i.e. potassic 

monzonite). It is corr~only plagioclase- porphyritic, 

although the contrast in grain size between groundmass and 

phenocrysts is slight. The groundnass consists of a 

medium-grained aggregate of quartz, K-feldspar and mafic 

silicates. Gower (1981) termed this "speckled-eggshell 

texture", and suggested that the plagioclase phenocrysts 

had been resorbed by the magma. In some samples, 
plagioclase phenocrysts have K-feldspar rims, and resemble 

pseudorapakivi feldspars such as those in the Big River 

Granite (see Chapter 4). Speckled-eggshell texture is 

present throughout the unit, but is developed most widely 

in monzonite and eyenomonzonite; syenitic rocks contain 

only scattered vestigial plagioclase phenocrysts. 

Plagioclase phenocrysts are zoned and saussuritized, 

whereas groundmass material forms clear laths. Interstitial 
quartz, or graphic quartz - K-feldspar micropegmatite, is 

commonly present. Relict clinopyroxene occurs in the cores 

of euhedral hornblende crystals in mafic variants. Locally, 

hornblende crystals have sphene cores, s~ggesting "early" 
crystallization of the latter. 
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Syenite, Quartz Syenite and Granite 

This unit is prevalent on the higher peaks of the 

Benedict Mountains, and is best exposed 3round Mount 

Benedic~. It also occurs sporadjcally within the dominant 

monzonite-syenite. Partial restriction to higher elevations 

suggests that it may be a roof facies (Gower, 1981) or, 

alternatively, the uppermost portion of a compositionally 

layered body. The latter interpretation is supported by 

systematic geochemical changes with elevation (see 5.3). 

It is dominated by homogeneous, pink, grey or huff 

colored, locally porphyritic, fine to medium-grained, 

leucocratic, syenite, quartz syenite or granite. Potash 

feldspar is a common phenocryst phase, but vestigial 

plagioclase phenocrysts and speckled-eggshell texture are 

present locally. In one location, it contains large (2 em), 

embayed plagioclase crystals that appear to have been 

entrained in syenitic magma. The unit locally grades into a 

feldspar or quartz-feldspar porphyry of subvolcanic aspect, 

suggesting a high level of emplacement. 

Graphic quartz-microcline intergrowth textures in 

the groundmass, and coarse perthite phenocrysts, suggest 

epizonal characteristics. Biotite is the dominant mafic 

phase, forming subhedral single crystals or aggregates with 

associated (usually relict) hornblende. Accessory minerals 

(sphene and zircon) are prominent, and fluorite occurs as 

interstitial material and discordant veinlets. 

5.1.3 Monkey Hill Intrusive Suite 

Definition and Distribution 

Monkey Hill Intrusive suite (Kerr, 1988) is a new name 

proposed for several discrete, small, epizonal plutons 
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located in the Kaipokok Bay - Makkovik Bay area (Figure 

5.1). The type localit~ (referred to below as the "main 

body" is at Monkey Hill, near Makkovik. All of these 

plutons intrude the Upper Aillik Group, and all consist of 

similar fine-grained, leucocratic monzogranite and granite 

(Table 5.1; Plate 5.5). They are probably small stocks or 

cupolas connected to a larger body at depth. In a 

discussion of potential specialized granitoids, Kerr (1988) 

included the similar Witchdoctor and Burnt Lake granites 

(see below) with this suite. In view of the distance 

between these units and the type locality, and some 

differences in petrography, these are here treated 

separately. The Monkey Hill Intrusive Suite corresponds to 

parts of Units 28a and 28b of Gower et al. (1982). 

Geochronology :Wanless et al.(1970) obtained a K-Ar 

age of 1625 ± 60 Ma from the Round Pond Granite. A Rb-Sr 

isochron of 1520 ± 35 Ma from this body (Wilton and 

MacDougall, pers. comm., 1988) is probably disturbed by 

hydrothermal activity related to mineralization. U-Pb 

zircon data from the main body (Krogh et al., in prep.) are 

discordant, but suggest an imprecise age of ca. 1640 ± 10 

Ma. They are colinear with zircon data from other 

Labradorian plutonic rocks, suggesting that all are of 

broadly similar age. 

Litho logy and Field Relationships 

Field Relationships : The Monkey Hill Granite is a 

small {< 50 km2 ) pluton that intrudes the Upper Aillik 

Group and foliated granitoid rocks of the Kennedy Mountain 

Intrusive Suite. The ~ Island Granite is a small stock 

or cupola restricted to a small islet in Mark's Bight; 
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Plate 5.5. Features of the Monkey Hill Intrusive Suite. (a) Two phases of 
the Monkey Hill Granite; the dominant p ink granite cuts a darker, 
grey-brown phase, Gull Island, Makkovik Bay. (b) Vein correlated with 
Little Monkey Hill Granite cutting gabbro of the Adlavik Intrusive 
Suite, B~g Bight (large gabbro block about 30 em across). (c) 
Tuffisite breccia, with clasts of miarolitic granite and 
biotite-chlorite matrix, Makkovik Bay. (d) and (e) Typical Monkey Hill 
Granites, from the m.ain body. (f) Molybdenite-bearing, sl i ghtly 
pegmatitic phase of the Duck Island Granite, Duck Island. 
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however, numerous veins and sheets of similar material 

intrude the Long Island Quartz Monzonite within a 2 km 

radius of the island. The Round Pond Granite (described by 

MacDougall and Wilton, 1987, and MacDougall, 1988), 

consists of two small bodies that intrude the Upper Aillik 

Group, and are associated with hydrothermal alteration and 

mineralization. The Little Monkey H..il.l. Granite forms a 

prominent peak about 12 km east of the main body, and 

intrudes the Upper Aillik Group; dykes and veins associated 

with this body also cut mafic rocks of the Adlavik 

Intrusive Suite. The Bent's ~ Granite intrudes 

metasedimentary rocks of the Upper Ai 11 ik Group. The 

Kidlaluit Granite occupies most of Kidlaluit Island, and 

includes large blocks of coarse gabbro that resemble those 

of the Adlavik Suite. Contacts of all bodies are sharp, 

intrusive interfaces characterized by stoping and 

net-veining of the country rocks. The relationship with the 

Adlavik suite gabbro suggests that the Monkey Hill 

Intrusive Suite is younger than ca. 1650 Ma. 

Li t.hology and Pet.rology : All members of the Suite 

are dominated by grey to buff or pink, fine to medium 

grained, faintly porphyritic, leucocratic monzogranite, 

granite and (locally) alkali-feldspar granite (Table 5.1; 

Plate 5.5). They are homogeneous, and lack inclusions 

except near contacts. The Duck Island and Round Pond 

Gr. ani tos, and parts of the Kidlalui t Granite, are locally 

pegmatitic an1;or miarol i tic. The main body at Monkey Hill 

contains xenoliths of a darker-coloured phase on Gull 

Island, but is otherwise remarkably homogeneous over 900 m 

of vertical relief. At the northern end of Kidlaluit 

Island, an earlier grey phase is cut by the dominant 

pinkish granite. "Tuffisi te" breccias consisting of granite 
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clasts in a bictite-rich matrix are locally exposed around 

Makkovik Bay, and suggest exsolution of dissolved 

volatiles. Shallow emplacement is also suggested by the 

local occurrence of a very fine-grdined feldspar porphyry 

of subvolcanic appearance in the main body, Bent's Cove 

Granite, and associated with the Duck Island Granite. 

The circular-shaped body northeast of the Duck Island 

granite consists of graphic micropegmatite that forms a 

network of sheets and veins intruding the Upper Aillik 

Group. Although petrographically atypical of the suite, it 

is grouped with it on the basis of proximity to three other 

members. 

Petrographic Characteristics : Plagioclase forms 

small (up to 5mm), euhedral to subhedral laths that appear 

to have crystallized early and, although similar in size to 

other grains, impart a "porphyritic" or "speckled" 

appearance. They have saussuritized cores, and are locally 

zoned. Quartz is interstitial or graphically intergrown 

with microcline. Green or green-brown biotite forms 

dispersed crystals or aggregates, and is altered to 

chlorite along cleavage traces. In many samples, chlorite 

is the dominant mafic mineral. Epidote is common in 

chlorite-bearing variants, and locally displays an 

interstitial habit suggesting that it may have been a 

primary magmatic phase. Garnet has been observed only at 

the northern end of the Kidlaluit Granite. 

5.1.4 Witcbdoctor and Burnt LAke Granites 

The Witchdoctor and Burnt Lake Granites occur in the 

southwest of the study area, between the Benedict Fault 

zone and an area of Upper Aillik Group volcanic rocks. 



- 183 -

The two units are similar in many respects, and the Burnt 
Lake Granite is interpreted as a fine-grained marginal or 

roof phase of the Witchdoctor Granite. 

Witchdoctor Granite 

This is poorly exposed, and its contact relationships 
are unknown. It corresponds to Unit 26e of Gower et al. 

(1982), and to part of the "Walker Lake Granite" of BRINCO 

geologists, which also included parts of the Otter Lake -

Walker Lake Granitoid (see below). It was previously 
described as hornblende monzonite and granodiorite (Bailey, 

1979: Gower et al.,1982), but this description largely 

reflects its supposed correlation with the quite different 

granitoid rocks to the west. Brooks (1983) dated this unit 
at 1595 ± 34 Ma (Rb-Sr, whole rock) and 1632 ± 9 Ma (U-Pb, 

zircon). It is dominated by pink to white, medium to coarse 
grained, variably foliated, leucocratic biotite and biotite 

- muscovite monzogranite to alkali-feldspar granite (Table 
5.1: Plate 5.6). Most examples are homogeneous and 

equigranular, but recrystallization and deformation are 
widespread, and local east-trending fabrics are present. 

Quartz is extensively recrystallized and forms elongate 
ribbon-like aggregates, although it locally retains a 

vestigial intersti tiaJ. habit. Green-brown bi,;,ti te is 

intergrown with lesser amounts of muscovite, forming 

aggregates parallel to foliations. Relict hornblende occurs 
locally in muscovite-poor variants, and chlorite occurs 

locally as an alteration product of biotite. Pale pink 
garnet is a minor constituent of several samples. 
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Pla t e 5.6. Features of the Witchdoctor and Burnt Lake Granites. (a) and 
(b) Typical examples of the Witchdoctor granite, showing variable 
recrystallization and deformation, Witchdoctor Lake area. (c) and (d) 
Foliated and unfoliated Burnt Lake Granites, Burnt Lake area. (e) 
Miarolitic Burnt Lake granite, adjacent to Burnt Lake moybdenite 
showing.·slabs stained forK-feldspar. 
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Burnt Lake Granite 

The Burnt Lake Granite is dominated by white to pale 

grey or pink, fine to medium grained, equigranular, 

leucocratic monzogranite, granite and (locally ) alkali 

feldspar granite (Table 5.1; Plate 5.6). 

bailey (1979) described its contacts with the Upper 

Ailik Group as gradational, a reflection of the similarity 

betwe~n fine-grained granite and sugary, recrystallized 

rhyolite. However, MacKenzie and Wilton (1987) described 

sharp i~trusive contacts from several localities. Rb-Sr 

data presented by MacKenzie and Wilton (1988) give a 1548 

+/- 90 Ma errorchron, which they suggested to be disturbed 

by Grenvillian events. This could, however, also be 

interpreted as a reflection of post-crystallization 

hydrothermal activity (c.f. Walraven et al., 1986). 

Disseminated Mo mineralization is present in the contact 

zone of the granite, and it has also been linked to uranium 

- base metal mineralization in adjacent country rocks 

(MacKenzie and Wilton, 1987). 

Most samples are recrystallized, and original igneous 

textures, except for relict microcline phenocrysts, are not 

readily discerned. Muscovite occurs both as intergrowths 

with biotite flakes of a similar siz~ range, and as 

fine-grained fibrous aggregates of secondary appearance. It 

is absent in the more melanocratic variants. Minor garnet 

is present locally, but is less common than in the 

Witchdoctor Granite. 

~5 Ot~~~a~~~er Lake Granitoid 

This is a regionally extensive granitoid ~nit in the 

southwest of the study area (Figure 5.1), which extends for 

50-75 km beyond the western edge. It corresponds to unit 32 
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of Ryan (1984), which he grouped with spatially associated 

muscovite-biotite granites (Crooked River Granite) to form 

the Nipishish Lake Intrusive suite. The crooked River 

Granite does not outcrop within the study area. 

Descriptions below apply only to quartz monzonite, 

monzogranite and granite within the study area. 

Kontak (in Ryan, 1984) obtained a Rb-Sr errorchron 

suggesting an age of 1550 ± 55 Ma from granite at Walker 

Lake. This is similar to ages from the Witchdoctor and 

Burnt Lake Granites, and is probably disturbed. U-Pb zircon 

data (Krogh et aj., in prep.) are concordant at 1647 ± 2 

Ma. Ryan (1984) describes an intrusive contact between 

granodiorite assigned to this unit and metasedimentary 

rocks of the Upper Aillik Group in the Walker Lake area. 

The contact with the syn-tectonic Makkovikian Melody 

Granite corresponds with an inferred fault zone. 

The Otter Lake - Walker Lake Granite is dominated by 

grey to pink or green-white, medium to coarse grained, 

porphyritic to seriate quartz monzonite, granodiorite and 

monzogranite (Table 5.1: Plate 5.7). Melanocratic dioritic 

variants occur locally. Both K-feldspar and plagioclase 

phenocrysts are present: in most examples the former are 

larger, up to 3-5 em in size. Characteristic features 

include pale green, saussuritized plagioclase, and 

blue-grey interstitial quartz, both noted also by Ryan 

(1984). 

Recrystallization is most intense in the south and close 

to inferred faul~s: many samples in the north are 

undeformed and retain good igneous textures. Microcline 

phenocrysts are finely perthitic and locally have rims of 

sadie plagioclase. Plagioclase phenocrysts display normal 

zonation, and contain saussuritized centers. Green or 

green-brown biotite is the dominant mafic silicate, 
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Plate 5.7. Features of the Ot ter Lake - Walker Lake Granitoid. (a) to (d) 
Typical quartz monzonite to monzogranite samples, showing variable 
recrystallization and deformation, but with well-preserved igneous 
textures. All samples from the Walker Lake area. Slabs stained for 
K- f .. ldspar. 
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associated with lesser green hornblende. Relict 

clinopyroxene, altered to hornblende, is present rarely. 

Sphene is abundant in most samples, and locally occurs in 

amounts comparable to hornblende or biotite. It forms 

euhedral or subhedral crystals up to 3 mm in size, and in 

places displays a clear interstitial habit. Epidote and/or 

chlorite are important as alteration products of 

plagioclase, and are the dominant mafic silicates in the 

rnost strongly deformed samples. 
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5.2 DESCRIPTIVE GEOCHEMISTRY 

Labradorian plutonic rocks are represented by 429 

samples; 247 of these are regional samples collected on a 2 
km random grid spacing. The remainder include 99 follow-up 

samples (from the Monkey Hill, Adlavik and Mount Benedict 
Intrusive suites), and 83 geological samples distributed 

amongst all units. 

5.2.1 General ceochemistry 

summary of Numerical Data 

Average compositions of principal Labradorian plutonic 

units are listed in Table 5.2. Four main groupings are 

apparent. 
The Adlavik Intrusive Suite is dominated by sio2-poor 

(< 60\) rocks, and has the highest levels of cao, MgO, FeO 
and Tio

2 
and compatible occ trace elements. Geographic 

divisions of the 3uite have similar mean compositions, 
except for the relatively siliceous gabbro at East Micmac 

Lake. 
The Mount Benedict Intrusive Suite is dominated by 

rocks with 60 to 70\ sio2 • It is strongly enriched in Rb, 
cs, U, Th, F and Zr compared to~ other Labradorian 

units; enrichment is generally strongest in the syenite to 
granite unit. The least differentiated unit is similar in 

mean composition to diorite of the Adlavik Suite. 
The Monkey Hill Intrusive suite consists of high-silica 

(72-75% sio
2

) granites that have low l~vels of cao, FeO 
and MgO. However, trace element patterns are relatively 
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Table 5.2 . Average coruposit i ons of Labradorian plutonic units, 
subdivided by principal units. 

CHIT 40.1 40.2 40.3 40.4 41.1 41.2 41.3 ------- .. ------- ... --------------.. --... -....... --..... ------... ---------------.... ---.. ---... -- ....... ----...... ---------.... --.. -- ........ ----...... 
n1 85 17 2 11 12 6 3 
n2 15 1 0 0 2 2 1 ------------------------------....... --------.. ------------------... ----...... --... ---.. ---------.... -----.. -.. -........ ---- .. -.. ------.... 
(ltU) lie an S.D. lie an S.D. lie an S.D. !lean S.D. lie an S.D. lie an S.D. lle!n S.D. -----.. ------------------------ .. -.. ---...... --.... --.. ---------... ---------.. -----------------..... -----------.. ----.. --.. ... ---.. ----
Si02 49.94 4.57 48 .03 1.82 55.55 0.35 49.77 3.34 58.21 3.21 56.46 2. 79 58 .43 1.33 
Ti02 0.94 0.44 1.03 0.32 0.60 0.01 ~.15 0.46 0.82 0.31 0.86 0.21 0.80 0.12 
Al203 15.80 3.98 14.81 3.23 16. 24 1.49 15.79 2.61 17.86 1.26 11.61 1.08 17.44 0.67 
Fe203 3.05 1.48 3.65 1.11 1.90 0.00 2.61 0.81 1.93 0.76 2.13 0.40 1.91 0.28 
reo 6.15 1.77 6.82 0.80 5.41 1.03 6.65 1.25 3.85 1.43 4.49 1.46 5.15 0.02 
llnO 0.16 0.04 0.18 0.03 0.12 0.03 0.17 0.03 0.13 0.03 0.12 0.03 0.11 0.01 
llqO 7.62 5.32 8.42 3.08 5.45 0.76 7.42 5.16 2.26 1.57 2.35 1.13 2.94 0.26 
cao 9.67 3.04 10.45 1.92 7.07 0.59 8.11 2.00 4.60 1.99 5.71 1.57 4.88 o.8o 
lla20 3.08 1.20 2.63 0.91 3.67 0.44 3.36 1.12 5.38 1.02 4.35 0.50 3.84 0.03 
K20 1.47 0.92 1.51 0. 48 2.05 0.25 2.17 1.07 3.40 0.97 3. 39 1.31 3.42 0.26 
P20S 0. 34 0.39 0.29 0.17 0.25 0.00 0.41 0.43 0.30 0.15 0.38 0.12 0.31 0.14 
LOI 1.38 o. 79 1.61 0.56 1.31 0.35 1.45 0.84 0.75 0.31 0.94 0.31 1.19 1.16 
roTAL 99.60 99.43 99.62 99.06 99.49 99.79 100.42 

(ppl) Trace Eleaents -------------------------------· ----------------------------------------------------------------------------------
Li 21.7 9.2 21.7 6.4 18.5 2.1 31.0 9.9 20.6 7.8 20.0 4.0 22.3 2.5 
r 732.6 1120 &73 .5 393.0 m.o 62.2 654.4 317.9 IOU 340.9 913 .3 353.4 716.7 127 .2 
Sc 32 .3 16.2 32.9 1~.0 0.0 16.9 9.8 12.0 
v 203.5 llo.6 223.8 68.0 172.0 36.1 183.2 56.2 79.3 67.7 117.0 41.9 97.7 66.7 
cr 275.8 444.3 288 .1 276.5 171.5 46.0 338.9 463.7 29.7 34.4 19.2 13.6 23.7 2.1 
li 78.2 128.4 57.2 41.4 45.5 6.4 98.3 150.9 11.0 12.0 8.3 5.4 15.3 0.6 
Cll 50.7 41 .0 41.9 23.2 11.5 37.5 50.0 35.1 18.1 14.4 33.0 18.4 18.0 11.3 
Zn 96.7 40.1 97.4 22.0 75.5 3.5 100.9 22.7 7~.7 19.6 83.1 10.2 71.0 13.2 
Ga 20.5 6.1 19.9 3.6 20.5 0.7 18.9 5.2 16.3 5.6 21.7 1.4 17.7 0.6 
lb 41.6 29.9 44.1 18.0 42.5 0.7 56.6 31.5 73.8 23.5 13.5 26.8 91.7 6.7 
sr 760 .5 297 .1 661.5 382.2 804.0 234.8 677.5 182.0 687.0 225.6 612 . 3 125.0 615.0 150.7 
y 19.2 1o.5 23.2 6.5 11.0 4.2 19.3 9. 7 21.3 6.9 33.5 9.3 17.0 1.7 
Zr 73.1 64.4 115.4 79.9 87.5 1.0 116.3 17.5 99.3 58 .5 351.0 159.1 116.0 12.3 
lb 3.6 4.2 3.9 4.2 2.0 o.o 3.4 2. 7 10.2 3.5 13.2 6.6 5.0 0.0 
llo 3.4 1.1 5.7 8.6 3.0 'l .O 4.0 2.5 3.1 0.7 4.2 2.1 3.3 0.6 
Sn 1.0 0.0 1.0 1.0 o.o 1.5 0.7 1.0 
cs 1.1 1.7 0.5 1.3 1.1 2.0 0.0 0.~ 
8a ~97.9 338.3 504.5 227 .I 913.5 79.9 ~40.1 139.7 1734.6 1297 902 .1 209.2 m.o 113.5 
La 22.5 14.6 28.8 18.6 30.5 2.1 28.6 15.6 34.8 9.8 47.2 9.5 21 .7 ~.1 
ce 48.0 30.2 55.7 39.9 55.5 3.5 54.4 32.4 61.1 23.5 96 .5 29.6 58.0 1.0 
Sl 5.4 2.2 1.1 6.5 0.5 7.1 0.3 5.4 
Yb 2.5 0.0 2.5 2.5 o.o 2.5 o.o 2.5 
at 2.3 2.0 1.0 3.0 0.0 3.5 0.7 ).0 
Pb 5.2 7.0 1.9 1.7 8.5 0.7 3.8 3.8 9.4 4.2 10.7 4.3 7.0 5.2 
'1'h 2.2 2.9 1.3 1.3 1.5 0.7 1.7 1.9 3.1 3.8 7.0 4.3 12.3 9.0 
0 1.0 0.9 1.1 0.1 0.9 0.1 1.2 1.0 1.8 1.3 3.2 1.3 1.8 0.1 

(lltt) Partial CIPII lOrE ------------------------------------------------------------------------------------------------------------------
0 0. 11 2.64 0.00 0.00 2.82 0.10 0.05 0.00 1.60 2.92 2.57 3.67 6.68 
c 0.03 0.19 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.57 
Or 8.80 5.50 9.09 2.90 12.31 1.48 13.06 0.11 20.32 5.14 20 .24 7.14 20.34 
Ab 24.11 10.13 20.09 7.20 31.56 3.11 27.11 2.46 45.71 1.57 37.13 4.27 32.71 
An 25.29 9.12 24.67 5.39 22.12 2.91 22.08 0.25 14.73 5.61 21.48 6.27 11.15 
le 0. 89 1.35 1.42 1.14 0.00 0.00 1.08 0.00 0.14 0.35 0.02 0.05 0.00 
Di 17.21 12.49 21.39 10.65 9.98 4.68 13.48 0.86 5.51 4.30 4.17 2.12 3.19 

~~ 5.20 6.01 4.15 6.40 16.63 1.49 2.59 0.47 5.10 4.25 7.27 • 7q 12.60 
9. 70 10.15 11.02 3.55 0.00 0.00 13.)8 2.26 1.69 2. 73 1.42 2.69 0.00 

lit 4.50 2.21 5.40 1.65 2.80 0.01 3.17 0.13 2.83 1.11 3.12 0.58 2. 79 
Il 1.12 0.16 2.00 0.63 1.15 0.02 2.23 0.03 1.57 0.61 1.66 0.39 1.53 ------------------------------------------------------------------------------------------------------------------

KEY TO tlliiTS (AIS - Adlavik Intrushe Suite) 
41.1 (AIS) Diorite (Type Arta) 40.1 (AIS) Gabbro-Gabbronorite (Type Arta) 

40. 2 ( AIS) Gabbro-Cabbronor i te (Southern Area) 41.2 (AIS) Diorite (Southern Area) 
40.3 (AIS) Gabbro-Gabbronorite (East ltie~~c) 41 .3 (AIS) Diorite (East llicuc) 
40.4 (AIS) Gabbro-Gabbronorite (Eastern Area) 

nl -- llllber of analyses for all ele.e~~ta except tbost listfd below. 
n2 - - limber of analyses for Sc, Sn, cs, Sa, Jb and Bf. 
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Table 5.2 (continued). 

om 42.0 43 .0 44.0 46.0 47.0 48.0 -------... -... ------......... -- ... ------------·--------... ---------------------------------.... -------------------
n1 17 53 67 17 17 49 
n2 1 22 39 12 17 11 
--... ----.. --... -........ .. ------------... ------... ------· ------------------------------.. --.. ----------------------
(WUI !lean S.D. !lean S.D. !lean S.D. !lean S.D. !lean S.D. !lean S.D. ---------... ----...... -----.. ----............... ------... --------------------------... -----------------...... ------------
Si02 55 .52 3. 22 64.46 4.46 70.69 3.31 73.78 3.33 72.71 3.11 68 .54 4.42 
Ti02 0.97 0.20 0.61 0.24 0.30 0.18 0. 15 0.15 0.16 0.07 0.44 0. 20 
Al203 18.23 1.64 16.03 0.93 14.39 1.06 13.77 1.22 14.18 1. 74 14.98 1.62 
re203 1.99 0.49 1.40 0.66 0.97 0. 40 0.65 0.59 0.57 0.25 1.20 0.61 
reo 4.43 1.16 2.53 1.12 1.09 0.66 0.63 0.26 0.60 0.36 1.87 1.01 
llnO 0.13 O.C3 0.09 0.03 0.05 0.02 0.04 0.01 0.03 0.01 0.~ 0.03 
~ 2. 79 1.89 1.12 0.~7 0.38 0.27 0.15 0.12 0.21 0.14 0.86 0.54 
cao 5.52 1.54 2.37 1.52 0.97 0.49 0.75 0.41 0.80 0.30 2.04 1.02 
lla20 4.37 0.44 4.51 0.36 4.28 0.43 4.13 0. 40 4.40 l.S3 3.89 0.55 
K20 3.61 0.~ 5.41 0.93 5.58 0.51 5.04 0.64 4.93 1.07 4.70 0.62 
P205 0. 42 0.24 0.19 0.17 0.05 0.06 0.02 0.03 0.03 0.02 0.15 0.09 
WI 1.26 0.56 0.84 0.23 0.75 0.11 0. 45 0.14 0.54 0.10 0.77 0.24 
TOTAL 99 .24 99.56 99.50 99.56 99.16 99.50 

(ppl) ---------------------------------------------------------------------------------------------------
Lj 32.7 12.4 31.0 10.4 25.3 11.0 14.3 13.6 27.2 23.1 25.7 12.5 
r 975.1 365.5 1298.0 410.7 1240.5 617.4 137.9 97.7 217.5 130.7 679.1 257.1 
Sc 6. 7 5.1 2.1 2.9 1.7 2.3 1.4 1.6 1.0 6.8 2.4 
v 107.9 39 .5 50.6 40.9 23.1 13.1 13.1 5. 7 16.3 7.7 44 .6 30.2 
cr 42. 3 11.7 14.5 16.6 6.5 3.8 3.1 4.9 3.2 2.3 6.5 7.0 
li 20 .7 43.2 4.3 5.3 1.9 1.7 1.8 2.3 1.5 1.9 2.1 3.0 
Cll !>6 . 9 40.0 11.9 16.9 10.1 8.1 3.4 2.6 4.2 4.6 9.1 11 .7 
ln 92.1 25.5 60.3 19.1 39.9 14.0 25.1 8.2 32.5 12.1 46.9 21.4 
ca 19.4 4.5 11.3 4. 7 8.6 2.1 11 .5 7.1 11.9 4.1 12.8 4.1 
lb 130.0 46.4 233.2 81.8 315.3 81.3 169.5 49.6 212.1 71.4 140.S 38.7 
sr 766.5 216.7 308.9 191.0 126.8 108.3 75 .4 83.5 98.8 67 .7 277 .7 154.8 
y 24.7 6.1 30.3 a. 1 27.1 7.6 23 .7 27.5 27.1 6.2 28.2 10.2 
lr 236.0 190.9 408.0 190.7 345.0 140.0 198 .5 232.5 172.7 82.7 240.0 83.8 
lib 10.7 5.0 21.2 1.1 29.0 1.6 16.9 16.4 25.1 8.0 13 .6 4.4 
llo 4.7 3.5 4. 7 1.5 4.3 2.7 3.4 0.9 52. 8 202.1 3.2 1.2 
sn 14.0 6.1 4.2 7. 2 4.2 1.8 1.1 2.8 2.5 3.9 3. 3 
cs 6.4 10.7 5.3 9.0 4.3 1.8 1.2 2.0 1.4 4.1 1.8 
8a lll5. 7 409.1 742.1 360.6 381.9 352.6 515.1 912.7 522.9 321.7 961.5 542.3 
La 44.0 10.5 50.7 13.1 !>6.3 22 .9 28 .0 25.9 34.3 17.6 50.6 14 .8 
ce 19.9 22 .5 108.3 30.3 114.0 43 .7 60.9 55.4 65.9 33.2 100 .1 28.5 
Sll 10.1 8.2 1.7 6.9 1.7 3.9 1.4 4.4 2.2 9.3 3.0 
Yb 4.5 4.1 1.0 4.5 0.9 2.5 0.0 3.0 0.7 2.5 o.o 
Bf 20.0 12.2 3.0 9.9 3.1 5.0 1.0 6.0 1.6 12.5 21.1 
Pb 12.5 4.6 17.1 6.1 23.4 1.1) 22.2 5.8 31.4 14.0 16.1 1.1 
Tb 7.1 5.5 21.6 13.6 37.5 13.1 11.0 7.7 20.3 10.S 14.1 7.3 
D 3.3 1.7 6.8 3.2 10.4 4.4 5.6 4.0 9. 3 5.2 4.0 2.4 

(wt\l ------------------------------------·----------------------------------·---------------------------
Q 1.10 1.15 10.94 6.32 22.13 7.27 27.10 9.76 26.52 9.12 22.14 1.29 
c 0.00 0.00 0.02 0.10 0.12 0.24 0.25 0.20 0.26 0.23 0.26 0.36 
Or 21.71 5.63 32.33 5.51 33.36 3.06 30.05 3.80 29.51 6.44 28.14 3.71 
Ab 37.43 3.77 31.63 3.09 36.65 3.61 35.25 3.46 37.53 12.63 33.29 4.70 
An 19.16 5.90 7.58 4.35 3.30 1. 71 3.49 1.66 3.73 1.66 1.~ 4.23 
Je 0. 13 0.35 o.oo 0.00 o.oo o.oo 0.00 0.00 0.11 0.47 0.00 o.oo 
Di 4.71 2.44 2.60 2.33 0.79 0.82 0.14 0.41 0.11 0.42 0. 49 0.74 

gr 7.01 4.62 3.90 2.01 1.41 1.11 0.12 0.!>6 0.92 0.119 3. 77 2.10 
2.11 3.19 0.25 1.80 0.00 0.00 0.00 0.00 0.00 0.00 0. 00 0.00 

lit 2.~ 0.73 2.03 0.96 1.36 0.59 0.15 0.54 0.79 0.38 1.76 0.90 
ll 1.19 0.39 1.17 0.47 0.58 0.34 0.21 0. 28 0.31 0.14 0.15 0.31 ---------------------------------------------------------------------------------------------------

KEY 10 DII!S (118IS • lloiDit Benedict Intrushe SUite) 
46.0 •• Wit cbdoctor Granite 42 (IIBIS) Clbbro to llonzodiorite 

43 (!IBIS) llonzo,lite, Syenoaonronite, Syenit e 47 .o -- Burnt Lake Granite 
44 (IIBIS) Syenite, ~rt& Syeni te, Granite 48.0 - - otter Lake - Wilker Lake 

Granitoid 

nl •• lllllber of analyses for all ele~ents tlctpt tbost Usttd belov. 
112 •• lulber of analyses for Sc, Sn, Cs, S., Yb IJid Bf. 
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Table 5 . 2 {continued). 

ORIT 45.1 45.2 45.3 45.4 45.5 45.6 -------------.... ----------------------.. -----........ ----------.. ----- ... -... ------.. --------------......... --------
n1 33 4 8 :3 6 
n2 29 2 6 10 5 ---------------------------------------------------------------------------------------------------
(lit I) lie an S.D. lie an S.D. lie an S.D. lie an S.D. lie an S.D. lie an S.D. --------------------------------·---------------------------------------------·-·· ·-----------------
Si02 72.97 5.86 75.69 1.69 72.49 2.89 74.62 2.44 72.77 3.16 74.05 0.68 
Ti02 0.14 0.14 0.04 0.01 0.14 0.12 0.12 0.07 0.18 0.09 0.18 0.04 
Al203 13.39 1. 48 12.75 0.21 13.82 1.11 13.47 0.84 14.38 0.94 13.59 0.13 
Fe203 1.57 4.65 0. 42 0.07 0. 78 0. 78 0.55 0.23 0.59 0.62 0.66 0. 28 
FeO 0.88 2. 23 0.12 0.08 0.58 0.47 0.49 0.52 0.90 0.40 0.84 0 23 
llnO 0.06 0.04 0.01 0.00 0.04 0.02 0.04 0.02 0.04 0.03 0.04 0.01 
~ 0.21 0.22 0.06 0.02 0.15 0.13 0.26 0.37 0. 26 0.20 O . j~ 0.28 
cao 0.75 0.54 0.38 0.10 0. 84 0.29 0.80 0.36 1.01 0.42 0.86 0.16 
Jla20 4.23 0. 85 4. 34 0.28 4.78 2.50 4.24 0.25 4.13 0.25 3.84 0.65 
1(20 4.69 1.23 4. 33 0.44 4.59 1.89 4.58 0.37 4.99 0.27 4.98 1.18 
P205 0.03 0.04 0.01 0.00 0.04 0.03 0.03 0.04 0.06 0.04 0.04 0.01 
Uli 0.63 0.20 0.50 0.11 0. 72 0.44 0.54 0.33 0.47 0.19 0.43 0.13 
TOTAL 99.55 98.65 98 .97 99.74 99.78 99.86 

(ppl) 
---------------------------------------------------------------------------------------------------
Li 24.1 14.6 5.5 1.0 13.1 5.4 15.0 5.6 16.7 3.5 32.8 15.8 
F 685.2 463.3 258.3 201.4 199.4 194.1 369.5 295.0 119.3 109.6 780.2 502 .0 
Sc 1.3 o.a 0.3 o.o 1.9 1.2 0.7 0.3 1.6 0.9 2.5 0.9 
v 17.7 24.9 12.0 5.3 2{1.1 7.1 14.8 11.1 22.0 7.2 19.3 8.2 
Cr 3. 7 2.4 2.0 0.8 1.8 1.0 7.9 13.6 1.0 o.o 3. 7 4.4 
Ni 1.2 ~.7 1.0 o.o 1.0 0.0 2.3 2.8 1.0 0.0 1.0 0.0 
cu 11.1 25.2 11.8 7.4 15.9 28.7 5.4 6. 7 3.3 2. 3 3.0 3.2 
Zn 42.5 40.3 9.0 3.2 24 .3 13.0 29.5 13.9 35.7 4.7 40.5 12.5 
ca 12.8 8.6 11.3 2.6 11.3 (.7 9.7 3.3 13.7 1.2 13.0 4.7 
Rb 201.1 77.7 184.8 38.9 119.5 51.2 160.1 31.7 102.0 11 .5 229.3 44.1 
Sr 156.2 294.4 29.0 16.8 130.1 101.9 145.6 79.7 176.7 110.0 95.2 20.1 
y 34.5 30.1 11.5 1.3 20.3 11.9 20.5 7.4 12.0 2.7 25.0 7.4 
Zr 178.1 111.4 10o.3 31.9 155.3 80.7 116.0 53.8 123.3 14.5 219.0 48 .1 
lib 19.6 10.4 17 .0 9.7 13.3 2. 7 15.1 4.6 8.7 3.8 20.7 2.2 
Ito 146.1 826.9 2.3 1.0 129.1 356 .7 1.9 0.5 2.3 0.6 1.8 1.0 
Sn 3.0 2.2 1.0 0.0 1.1 1.6 2.4 2.1 1.0 o.o 5.4 2.6 
Cs 3.0 2.5 0.5 0.0 1.0 o.8 1.6 1.3 0 .5 0.0 2.4 1.2 
Ba 343.9 263.1 47.0 21.4 519.0 l39.6 292.6 387.7 892 .0 549. 1 424.8 160.8 
La 22.8 2l.S 3.8 3.5 24 .9 22.9 16.2 9.5 14 .7 10.3 37.3 22 .2 
Ce 49.1 47.7 4.0 4. 8 46.1 38.6 30.9 18.5 -~ . 3 13 .6 79.0 37.2 
SJ 5.1 4.9 1.0 0.4 5.1 2.7 2.5 0.9 2.7 0.6 5.3 2.2 
Yb 5.0 4.7 2.5 0.0 3.3 1.8 2.6 0.2 2.5 o.o 2.9 0.6 
Bf 6.0 3.2 3.0 0.0 5.5 2.7 4.0 o.a 4.0 1.0 8.3 2.8 
Pb 23.5 9.6 13.0 ~.4 19.4 8.3 22.6 7.5 15.7 6.4 29.8 11.2 
Th 14.5 9.2 7.0 2.9 13.3 8.2 13.2 7.5 3.3 4.0 20.2 3.9 
u 6.1 6.4 5.0 2.7 4.2 2.2 u 2.2 2.3 1.1 9.6 4. 7 

(lit\) -------------------·--·--··------------------------------------------------------------------------
Q 28.74 5.32 33.60 1.86 25. 39 9.02 30.50 4.64 26. 87 4.34 30.17 I. 71 
c 0.23 0.24 0. 27 0.23 0. 22 0. 25 0.23 0.25 0.40 0.35 0.37 0.17 
Or 27.62 7.13 26.04 2.64 26.01 11 . 37 27.27 2.19 29.69 1.47 29.56 16.89 
Ab 36.50 7.10 37.45 2.64 42.22 19.80 36.13 2.16 35.13 2.32 32.66 14.46 
An 3.14 1. 77 1.85 0.49 2.82 1.72 3.62 1.43 4.91 2.00 4.17 1.73 
lie 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0. 00 0.00 0.00 0.00 
Di 0.26 0.66 o.oo 0.00 0.65 1.69 0.19 0.34 0.00 0.00 0.01 0.66 

gr 0.75 0.87 0.16 0.06 0.81 0.77 0.96 1.45 1.60 0.87 1.64 0.40 
0.00 0.00 0.00 o.oo o.oo o.oo o.oo 0.00 0.00 0.00 0.00 0.00 

It 2.09 7.19 0.30 0.25 0. 35 0.39 0.66 0.40 0.17 0.91 0.97 0.12 
11 0.27 0. 27 0.08 0.01 0.21 0.24 0.23 0.14 0.34 0.17 0.34 0.20 ---------------------------------------------·-----------------------------------------------------

KEY !0 UWITS (!IBIS - llonkey Bill Intrusive Suite) 
45.1 (IIBIS) Jtonkey Bill Granite 45.5 (!IBIS) Bent's Cove Granite 
45.2 (JIBIS) Round Pond Granite 45.6 (JIBIS) JC.idlalui t Granite 
45.3 (IIBIS) Duck Island Granite 
45.4 (IIBIS) Little Jlonkey Bill Granite 

nl -- luiOer of analyses for all elnents excect tbose listed belov. 
n2 -- lulber of analyses for Sc, Sn, ca, Sl, Y and Bf. 
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unevol ved: Rb 
1 

Cs 1 U and Th abundances are moderate and F 1 

Zr 
1 

La and Ce are depleted relative to most other units. 

Note that high mean Mo values fer some plutons reflect 

mineralized samples, and are not typical of the units as a 

whole. Individual plutons are otherwise similar, except for 

the Round Pond Granite 1 which shows strong depletion of Zn I 

Sr 
1 

Y, Zr, Ba 
1 

La, Ce, Pb and Th. The Wi tchdoctor and Burnt 

Lake Granites are similar in composition to granites of the 

Monkey Hi 11 Suite. 
The Otter Lake - Walker Lake unit has unremarkable 

major and trace element characteristics, and shows no 

striking enrichment or depletion patterns. 

Abundance and Distribution of Rock Types 

lUGS rock types were calculated from normative data 

after Streckeisen and LeMaitre (1979). Labradorian plutonic 

rocks include a higher proportion of low-sio2 rock types 

than the Makkovikian assemblage, and are obviously bimodal 

(Figure 5.5). The Adlavik Intrusive Suite is dominated by 

gabbro, with lesser diorite to monzonite. The Mount 

Benedict Intrusive suite overlaps this range, but is 

dominated by quart"' monzonite to quartz syenite. The Monkey 

Hill Intrusive suite and Witchdoctor - Burnt Lake Granites 

are dominated by granite and alkali-feldspar granite. The 

Otter Lake - Walker Lake granite is dominated by 

monzogranite and granite. Maf ;;.c or intermediate rock types 

are essentially absent from the latter three associations, 

termed "siliceous granitoid units" in subsequent 

discussions. 
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------------------------------~ ·~--------------------

ALL DATA (n=306) 

MT BENEDICT INTRUSIVE SUITE {N=94) 

" ADU..VIK INTRUSIVE SUITE (n=97) 

• 
10 

• 
• 
.. .-•. ....,.. ..,... 
~~~----------------------------~ 

• 
• 
• 
• 
• 

MOUNT BENEDICT SUITE BY UNIT 

II ~ro-Diorl\o Unl\ 

tS) "OftlOfti\O · Syonlto Unl', 

II Syonlto·Granl\o Unit 

. ~------------------------------, .. ~----------------------- ---.. .. 
• 
• 
• 
• 
•• 
•• 
• 

MONKEY HILL INTRUSIVE SUITE (n=66) 

1nclud1nq WITCHDOCTOR and 
BURNT LAKE Granitu ) 

1110CK 'M'£ (lUGS) 

• 
• 
• 
.. 
.. 

OTTER - WALKER LAKE GRANITOID 

(n=49) 

M)Q( l'tP£ (lUGS) 

AFGT- Alkali Fsp C:.i1 1nite MZDR - Monzodiorite SENT. Syenite 
AFQS- Alkali Fsp Quartz Syenite TNLT- Tonalite MZGT. Monzogranite 
AFST • Alkali Fsp Syenite QZDR - Quartz Diorite OZMZ • Quartz Monzonite 
GRNT. Granite (s.s.) DORT · Diorite MNZN. Monzonite 
OSZT- Quartz Syenite QZGB ·Quartz Gabbro GADA- Granodiorite 

GBBR - Gabbro OZMD • Quartz Monzodiorite 

Figure 5.5. Relative abundance of IUGS rock types calculated from 
normative mineralogy using the method of Streckeisen and LeMai tre 
( 1979). Note that this is based on Barth mesonorms, not the CIPW 
norms listed in Table 5. 2. Regional and geological sample 
populations. 
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~2.2 Geochemistry of The Adlavik Intrusive Suite 

This discussion is based mostly on geochemical data 

from the main body at Adlavik Bay. Average compositions of 

':e>:tural and mineralogical facies from this area are listed 

in Table 5.3: the criteria used for subdivision are 

outlined below. 

Subdivisions of The suite 

In addition to subdivision by facies, as outlined in 

5. 1. 1, Table 5. 3 incorporates a second-order grouping based 

on the relative abundance of normative diopside ( Di), 

hypersthene (Hy) and olivine (Ol). 

Rocks with well-preserved anhydrous mineral assemblages 

include both gabbronoritE> and gabbro variants, which appear 

to be discrete spatially. However, the widespread late 

magmatic and/or secondary hydrous mineral assemblages make 

it difficult to assess primary mineralogy in all arf'as via 

petrography. 

A Di-Ol-Hy ternary projection (Figure 5.6) illustrates 

contrasting Hy-normati ve and Hy-free groups. Both contain 

variable normative 01, but most of the 01-free rocks are 

also Hy-normative. The diorite unit is also dominantly 

Hy-normative. 

Examination of fresh samples suggests that there is 

good correspondence between normative and modal 

hypersthene: the CIPW norms therefore provide a method of 

classifying altered and hydrated samples, and those for 

which no petrographic data are available. 

The distribution of Hy-normative and Hy-free variants 

is geographically systematic (Figure 5. 7). The leucogabbro 
• 

facies is predominantly Hy-free, whereas the melagabbro 
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Table 5.3 . Average compositions of textural and mineralogical 

subdivisions in the ma i n body of the Adlavik Intrusive Suite. 

K£1 1.0 2.1 2.2 2.3 3.1 3.2 
.................. -.. -----.. ---. ---------------_______ ... __ -------------------------------............... -...... ----........... -----
n1 7 7 2 2 7 
n2 1 2 0 1 1 
......... --- ... -------- ... --------------------..... ............... ---.. ---------------......... -.. ----.. ............ -........... -.. ---.. -... ----- ... -
(lit I) !lean S.D. Kean S.D. Kean S.D. !lean S.D. !lean S.D. Ke3n S.D . 
...... ...... ... --------... ------------------------------------------... ---------.. --------.............. -..... ---.. -- .. --------
Si02 45.07 2.62 46.39 4.29 53.35 1.48 52.08 0.46 48 .78 4.19 50 .24 2.18 
Ti02 0.86 0.56 0.88 0.50 l.fl() 0.26 0.82 0.08 o. 73 0.19 1.04 0.18 
Al203 10.46 3.01 13.97 1.64 16.08 1.91 14 .64 3.43 21.23 4.34 19.69 U1 
Fe20J 4.08 1.82 4.41 3.07 3.06 0.15 2.36 0.43 3.12 1.44 3. 79 o. 78 
FeO 6.92 1.30 6.57 2.41 5.87 1.82 7.46 1.20 4.30 1.99 5.13 0.98 
KnO 0.17 0.01 0.17 0.02 0.19 0.06 0.19 0.01 0. 11 0.04 0.13 0.03 
~ 17.03 8.09 8.91 1.35 5.13 1.45 8.24 4.18 4.05 2.40 3.68 1.08 
cao 8.93 2.56 13 .96 2.01 7.31 0.18 7.36 0.30 10.36 2.60 9.00 1.00 
lla20 1.88 0.71 1.89 0.94 3.58 0.77 3.32 1.23 3.49 1.26 3.68 0.24 
1<20 1.35 0.51 0. 77 0.69 2.07 0.33 1.92 0.47 1.74 1.09 1.28 0.54 
P205 0.49 0.79 0.09 0.10 0.39 0.25 0.22 0.04 0.37 0.27 0.80 0.46 
WI 2.62 1.64 1.49 0.45 1.56 0.37 1.06 0.98 2.01 0.80 1.13 0.62 
MAL 99.86 99.50 99.59 99.67 100.29 99.59 

(ppl) Trace Ele.ents --·-----------------------------------······-------------------------------------------------------
Li 26.9 11.6 20.7 4.7 25.5 2.1 20.0 4.2 33 .5 23.6 20.4 3.7 
F 638 .3 324.5 305.9 325. 4 804.0 189.5 765.5 27 .6 600 .5 484 .5 1881.4 3570 
5c 25.7 48.8 0.8 23.0 19.0 
v 232 .7 158 .7 323.9 243 . 4 216.0 33.9 167.0 15.6 213 .5 19o.9 201.7 64.4 
cr 1014.0 665.7 140.1 193.7 96.5 123.7 113.0 62.2 78.3 127.9 24.3 19.7 
li 348.4 277.7 45.1 27.6 26.5 29.0 55.0 19.1 19.0 17.5 13.3 11.2 
cu 52.9 39.2 88.6 49 .6 63.5 30-4 28 .5 2.1 37.0 29.4 26.4 9.9 
Zn 94.6 32.3 100.6 40.7 132.0 41.0 168.5 94.1 71.3 29.9 9U 16.0 
Ga 19.0 8.2 21.6 10.6 19.5 0.7 18.0 7.1 21.3 2.2 25.1 3.3 
lb 41.6 49 .9 18.6 7.9 71 .0 19.8 61.5 16.3 64.0 45.0 28.4 15.1 
Sr 495.6 231.2 730,4 114.9 682.5 202.9 516.0 63.6 1030,5 122.1 981.4 93 .0 
y 13.4 11.1 15.3 4.3 25.0 9.9 24.0 2.8 13.3 S. l 20.6 6.4 
Zr 38.6 7.7 39.6 20 .2 116.0 32.5 104.0 15.6 53.0 52.0 65.4 43.0 
lb 2.9 2.0 1.4 1.7 3.5 0.7 1.0 1.4 5.3 6. 7 2.3 2.9 
llo 2.9 0.9 3.9 2.8 3.5 0.7 3.5 0.7 3.8 0.5 3.6 0.5 
Sn 1.0 1.0 0.0 1.0 1.0 
Cs 7.0 D.5 0.0 0.9 0.5 
Ba 419.7 98.8 281.7 144.6 m.o 267.3 578.5 161.9 594.8 293.8 647.9 195.6 
La 18.4 17.3 8.6 7.5 30.5 10.6 26.5 6.4 22.8 14.4 25.9 9.4 
ce 42 .0 45. 2 30.7 11.9 58.5 10.6 46.5 7.8 45.8 33.4 57.4 21.5 
5I 3.5 4.4 0. 4 5.0 5.6 
lb 2.5 2.5 o.o 2.5 2.5 
at 1.0 1.0 0.0 3.1 3.0 
Pb 2.0 1.7 1.7 1.3 18.5 17.7 11.0 11.3 3.5 3.1 4.1 3.3 
Tb 2.6 1.5 1.4 1.1 1.0 o.o 1.0 0.0 5.4 u 4.2 3.1 
0 0.6 0.3 0.5 0.4 2. 7 0.9 0.8 0.3 1.3 1.7 0.8 0.4 

(lltt) Partial CIPW Non ---------------------------------------------------------------------------------------------------
0 o.oo o.oo 0.00 0.00 1.81 1.12 0.00 0.00 0.00 0.00 0.98 1.26 
c 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.13 0.25 0.24 0.64 
Or 8.20 3.08 4.65 4.13 12.47 1.92 11.46 2. 74 10.44 6.47 7.67 3. 32 
Ab 13.59 6.00 13.63 7.09 30.82 6. 55 28 .52 10.80 25.36 9.60 3U4 2.03 
An 16.46 6.43 27.88 7.79 22.13 0. 74 19.66 5.48 37.45 15.96 33.25 5.69 
le 1.47 2.01 1.44 1.64 0.00 0.00 0.00 0.00 2.53 1.n 0.00 0.00 
Di 20.47 6.65 33.18 6. 95 10.26 0.13 13.14 2.66 10.14 11.34 5.00 3.24 

~~ 1.89 2.57 0.17 0.33 15.11 6.60 12.09 11.56 0.00 o.oo 11.15 3.38 
28.75 15.59 9.83 4.15 0.00 0.00 9.55 0.08 6.98 2.37 0.45 1.09 

lit 6.(18 2. 73 6.52 4.56 4.51 0.23 3.46 0.67 4.5S 2.12 5.51 1.14 
n 1.67 1.07 1.70 0.98 1.93 0.51 1.58 0.18 1.40 0.37 2.00 0. 35 ---------------------------------------·-···-------------------------------------------------------

KEY '1'0 AIIALYSES 
3.1 -- llelanocratic Gabbro Facies (Cpl +/- Ol) 1.0 -- Oltraaafic locks 

2.1 -- llafic C.llllllate Facies (Cpx +/- Ol) 3.2 -- llelanocntic Gabbro Facies (Cpx t Opx) 
2.2 -- llafic CU.Ulate Facies (Cpi + Opx) 
2.3 -- llafic cu.ulate Facies (Cpi + Opx + 01) 

n1 -- llulber of analyses for all ele~~ents excett tbose belo~ 
n2 - - Huaber of analyses for sc, Sn, Cs, 51, Y and Bf 
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Table 5.3 (continued) 

)([l 4.1 •• 2 4.3 5.0 7.0 
-.. -... --......... ---... -..... -........... -... ----------.. -------.............. ----........ ---.. -.... --- ... --.. ---.. ------
n1 26 8 10 14 7 
n2 5 0 2 2 1 
-----.. -----... --------...... --.. ----.. --.. ------------...... --- ..... -------- ... ------------------...... 
(WU) Mean S.D. lie an S.D. l!ean S.D. lie an S.D. Mean S.D. 
----------.... ----...... ------.. -------.. --------......... -----------...... ---.. ------------------
Si02 47.64 2.86 54.07 2.17 51.49 1.69 57.90 3.01 53.42 5.46 
Ti02 1.01 0.55 0.86 0.20 0.81 0.18 0.81 0.30 1.16 0.72 
Al203 14.59 3.93 18.88 2.76 16.36 3.89 17.85 1.28 15.07 2.46 
Fe203 2.88 1.35 2.41 0.75 2.38 0.56 1.94 0.72 2.98 1.42 
FeO 6.98 1.56 4.88 1.47 6.09 0.81 4.01 1.45 6.04 2. 14 
l!nO 0.18 0.04 0.13 0.04 0.15 0.04 0.13 0.03 0.17 0.03 

~ 9.22 4.68 3.62 1.46 7.45 4.94 2.46 1.55 6.07 3.54 
cao 11.57 2.80 7.50 1.48 8.82 1.30 4.83 1.92 7.31 2.60 
lla20 2.59 1.29 4.20 0.46 3.40 1.09 5.27 1.02 3.60 1.07 
K20 0.99 0.70 1.86 0.62 1.44 0.57 3.31 0.93 2.28 0.86 
P205 0.30 0.37 0.27 0.08 0.17 0.10 0.31 0.15 0.41 0.40 
Wl 1.49 0.51 0.77 0.39 0.97 0.3€ o. 77 0.34 1.21 0.39 
TOTAL 99.44 99.45 99.53 99.59 99.72 

(PP•l ------------------------------------------------------------------------------------
Li 17.8 7.3 20.4 5.5 20.3 u 19.2 7.0 26.0 8.1 
F 516.2 404 .1 547 .a 196.6 583.7 452.0 840.2 394.4 1286.0 896 .0 
S-: 43.0 19.0 21.9 6.9 15.0 0.0 20.0 
v 202.6 82.3 156.3 57.0 185.6 35.0 91.8 68.0 171.0 60.4 
Cr 345.2 440.8 47.3 36.5 365.8 ~3.4 29.4 33.1 234.9 253.8 
IIi 83.3 85.2 16.8 9.1 88.1 104.5 10.9 11.3 !.8.1 44.3 
cu 72.3 49 .1 22.8 15.9 41.2 28 .6 23.0 16.2 33.0 24.0 
Zn 87.9 44.6 88.0 22.6 88.6 20.8 77.4 18.8 129.1 51.2 
ca 18.5 6.1 22.4 2.7 20.2 3.1 16.6 5.1 22.3 6.1 
lb 28.0 22.1 49.1 19.1 41.4 19.9 75.8 23 .2 64.1 29.1 
Sr 774.6 381.5 927.5 202.3 7~8.1 295.3 711.8 202.7 610.1 243.3 
y 17.8 10.3 18.1 4.6 16.1 5.5 20.7 4.6 37.3 17.2 
Zr 52.3 43.0 83 . 4 39.4 69.4 47.0 95.9 50.6 179.0 102.8 
lib 2.3 3.1 5.1 2.9 3. 7 3.1 10.0 3.4 1.9 6.4 
Jlo 3.0 0.5 3.8 0.5 3.6 1.7 2.9 0.8 3.6 0.1 
Sn 1.0 o.o 1.0 o.o 1.0 0.0 1.0 
Cs 0.5 0.0 0.5 0.0 1.3 1.1 2.0 
Ba ~2. 2 455.0 776.4 215.4 S93.4 276.9 1554.1 1251 124.0 483.5 
La 17.5 13.9 27.5 7.0 20.1 11.0 33.4 8.2 38.3 16.5 
ce 40.3 31.3 51.1 !4.1 39.3 18.8 58.6 20.7 81.6 34.9 

S• 4.5 2.5 7.0 1.5 6.5 0.5 6.2 
Yb 2.5 0.0 2.5 n.o 2.5 0.0 2.5 
itt 1.5 0.9 2.0 1.4 3.0 o.o 5.0 
Pb 2.5 3.4 5.8 3.5 9.3 14.0 9.7 4.6 1.9 5.7 
'l'b 1.3 0.9 1.7 2.6 0.1 0.3 3.0 3.3 5.2 4.5 
0 0.5 u 1.5 1.0 0.9 0.6 2.0 1.3 1.9 1.1 

(WU) ------------------------------------------------------------------------------------
Q 0.36 1.13 1.13 1.07 0.00 0.00 1.31 1.64 2.19 4.02 
c 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
or 5.94 4.23 11.09 3.72 1.62 3.45 19.79 5.61 13.63 5.06 
Ab 19.29 1M5 35.94 3.99 29.01 9.30 44.86 8.61 30.82 9.13 
An 25.76 7.97 27.56 1.91 25.46 6.67 15.42 5.94 18.51 5.n 
lie 1.65 1.29 0.00 0.00 0.00 0.00 0.12 0.33 0.00 o.oo 
Di 24.95 13.43 7.05 3.71 14.57 8.25 5.84 4.05 12.59 10.01 

~r 
0.40 2.01 10.84 4.18 1.07 3.07 6.06 4.82 9.64 4.21 

14.59 7.34 0.49 1.34 1.64 6.09 1.4!i 2.58 4.90 4.63 
lit 4.26 2.02 3.54 1.10 3.49 0.82 2.85 1.06 4.39 2.12 
Il 1.97 1.07 1.65 0.38 1.56 0.34 1.55 0.58 2.23 1.41 
------------------------------------------------------------------------------------

KEY !0 AIAL Y SES 
u -- Plagioclase CUJulate Facies (Cpl +/- Ol) s.o -- Diorite Dnit (IOStly Cpi + Opi) 
4.2 -- Plagioclase cu.ulate Facies (Cpl + Opx) 7 .o -- Jlarginal Gabbro and Diorite 
4.3 -- Plagioclase CUiulate Facies (Cpl + Opi + 01) 

111 -- 11\mber of analyses for all eleaents except those belov 
112 -- Nlmber of analyses for Sc, Sll, Cs, Sl, Yb and Bf 
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e Ultramaf•c Rocks 
• Maf•c Cumulates 1 Cpx • OD• • /· 01 J Mal•c Cumulate Facres 
0 Maf•c Cumulates Cpx • 1- 01 J 

• Metanocrahc Gabbro 1 Cpx • 012• • '· Ot) Metagabbro Fac•es 
6 Meta,,ocrat•c Gabbro Cpx • 1-01 J 

• Leucocrat•c Gabbro 1 CP• • OQ.• + / · Ot J leucogabbro Fac•es 
0 leucocrai•C Gabbro Cp• • / · 01) 

X l>torote Untl 

+ Margtnal Gabbro and Chortle 

NOTE · Mrneratog•cal Oestgnattons are Based on CtPW Normatrve Oat a 

HY 

Figure 5.6. Normative olivine - diopside - hypersthene proJection, 
showing the division of the Adlavik Intrusive Suite into 
hypersthene-normative and hypersthene-free components. 

facies is Hy-normative. The mafic cumulate facies contains 

both types. As expected, there are major element 
geochemical contrasts between Hy-normative and Hy-free 

rocks, and also some trace element differences (Table 5.3). 
It is suggested on this basis that the intrusion be 

divided into gabbronorite and gabbro sequences. The former 
includes the mafic cumulate facies, melagabbro facies and 

part of the leucogabbro facies, and is probably associated 
with the Hy-normatlve diorite unit. The gabbro sequence 
includes most of the leucogabbro facies, and is considered 
to represent stratigraphically higher parts of the complex 

(see cross section, Figure 5.4). The gabbronorite sequence 
includes Hy-free mafic cumulate rocks, but the gabbro 

sequence is only rarely Hy-normative. 



- 199 -

+ 
+ 

0 

... -- -..,.; 
AOLAVIK BROOK FAULT ZONE + .' 

~~?',... .... ~ .z::-,-;;-,.,... ....--

y 

0 

* 
(I 

+ 

,---
"-"" 
-r-

Cpx Only 
Cpx + Olv 
Opx + Cpx 

Opx + Cpx + Olv 

NO INFORMATION 

Contact !approx> 

fault ! Inferred> 

Layn I ng 
Or lentat I on 

N 

0 km 4 

0 

Fig~1re 5. 7. Spatial variation of normative mineralogy in the •a in 
body of the Adlavik Intrusive Suite, illustrating distribution ot 
gabbronorite and gabbro sequences. 



- 200 -

Major Element Patterns 

Major clement variation is assessed using MgO as a 
differentiation index (Figure 5.8). The clearest 

distinction between gabbronorite and gabbro sequences is 
shown by Tio2 , which is strongly enriched in the latter 

below 10% MgO. The gabbronorite sequence has convex-upward 

cao and FeO trends, and lower cao and FeOt than the gabbro 

sequence above 10% MgO. It also shows higher Sio2 and 
K2o (sge also Table 5.3), but there is considerable 

overlap between the two. Samples from fine-grained marginal 
rocks have varied compositions, and clearly do not 

represent any one homogeneous "parental" composition. 

Trace Element Patterns 

Trace elements show predictable trends for mafic magmas 

(Figure 5.9), and there are few systematic differences 

between gabbronorite and gabbro sequences. 
Compatible OCC trace elements (e.g. Cr, V, cu: Figure 

5.9) are positively correlated with MgO. High Cu contents 
characteriz~ parts of the gabbro sequence. V shows minimal 

variation from 30% to 5 \ MgO, and possibly increases 

slightly down to this pcint. It is, however, depleted very 

rapidly below 5% MgO, and in the diorite unit. 
LFS and HFS elements, and REE, increase with 

decreasing MgO, and, except for Sr, are highest in the 

diorite unit. Sr enrichment is most apparent in the gabbro 

sequence, reflecting the presence of plagioclase cumulates. 
The dioritic unit shows lower Sr than either the 

gabbronorite or gabbro sequence, but is closer to the 

former. Ba is incompatible throughout, and is strongly 

enriched in some samples from the diorite unit, which 
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Figure 5.8. variation of selected major elements and derived ratios 
against MgO in the main body of the Adlavik Intrusive Suite. See 
text for discussion. 
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Figure 5.9. variation of selected trace elenents against HgO in the 
main body of the Adlavik Intrusive Suite. See text for 
discussion. 
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Figure 5.10. Rare Earth Element (REE) patterns for samples from the 
Adlavik Intrusive Suite. Normalized to chondritic values. 

locally has over 4000 ppm Ba. All of these trer.ds are 

broadly consistent with evolution by fractional 
crystallization of mafic minerals (olivine, pyroxenes), 

followed by plagioclase fractionation. 

Rare Earth Element (REE) Patterns 

REE analyses are available for four samples (Figure 

5.10), of which two are from the main body. The mafic 
sample is a melanocratic olivine-bearing gabbronorite, and 
shows no Eu anomaly. A small positive Eu anomaly is present 

in the diorite sample, suggesting that it is a feldspar 

cumulate, but the overall shape of the pattern is similar 
to the gabbro. Melanocratic gabbro from Pamiulik Point is 

almost identical to the main body, but the sample from the 
East Micmac Lake body is REE - enriched, consistent with 

its higher sio2 content (see also Table 5.2). 
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5.2.3 Geochemistry of Labradorian Granitoid Rocks 

Labradorian granitoid rocks are divided into three 
groups (A, B and C) to reduce clutter in variation 

diagrams. Diagrams that use sio
2 

as the x-axis employ a 
wider horizontal scale for the Mount Benedict Suite (Group 

A). This group of rocks is probably genetically related to 
the Adlavik Suite (see later discussion), but it is 

convenient to describe it in conjunction with siliceous 
granitoid units. 

Major Eleaent Patterns 

Major elements follow predictable behaviour patterns 

(Figure 5.11), and all oxides except Na2o and K2o are 
negatively correlated with Sio2 • The Mount Benedict 

Intrusive Suite has, predictably, the greatest range of 

major element compositions, and the Monkey Hill Intrusive 
Suite the narrowest range. The Mount Benedict Suite has 
smooth, well-defined trends for all major elements from the 

least (diorite) to most differentiated (syenite to granite) 
units. Some (e.g. cao, Na2o) are curvilinear, and show 

inflections at a Sio2 content of ca. 62%. N/N+K ratio 
patterns indicate minor disturbance of alkali elements in 
leucocratic granites of the Monkey Hill Intrusive Suite. 

K+N/A (agpaitic index) patterns indicate that there are 
no Labradorian pera! kaline rocks. A/C+N+K (alumina index) 
patterns indicate that the Monkey Hill Intrusive suite and 

Witchdoctor - Burnt Lake Granites are mostly peraluminous, 
and that the Otter Lake - Walker Lake granitoid is 

peraluminous above 70% Sio2 • A few high-Sio2 rocks from 
the Mount Benedict Suite are also peraluminous. 

Ternary AFM and CNK projections (Figure 5.12) are 
useless for unit discrimination. In the QBF ternary 
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projectio.1 (Figure 5.12) of Debon and Lefort (1982), the 

Mount Benedict Suite approximates to their alkaline­

oversaturated association, rather than to typical 

calc-alkaline associations. 

Normative Compositions 

In the Quartz - Albite - Anorthite - Orthoclase 

quaternary system, only parts of the Mount Benedict 

Intrusive suite contain > 20 % anorthite component. In the 

Q-Ab-Or projection (Figure 5.13), this suite has a 

well-defined trend that partly corresponds to the location 

of plagioclase - K-feldspar cotectic lines f ""~r high Ab/An 

ratios (James and Hamilton, 1969), and ter~1nates in the 

ternary minimum area. In detail, there is an inflection in 

this trend corresponding to the ca. 62% Sio2 inflecti<Jn 

noted above; the least evolved part of the suite lies 

within the plagioclase field. Granites of the Monkey Hill 

Intrusive suite, Wi tchdoctor Granite and Burnt Lake Granite 

are also clustered around the ternary minimum, although 

some samples are scattered towards the albite corner 

(reflecting alkali-disturbance). 

Trace Eleaent Patterns 

octahedrally Co-ordinated Cation (OCC) Elements : vI 
cu, cr, Ni and Sc all show similar 1 uninformative inverse 

trends against Sio2 (e.g. V; Figure 5.14). High levels of 

these elements are observed only in parts of the Mount 

Benedict 4ntrusive suite. 

LOw Field Strength ( LFS) Elements : Incompatible LFS 

trace elements (e.g. Rb, Th; Figure 5.14) are positively 

correlated with sio2, and discrb.inate the Mount Benedict 
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Suite from all other Labradorian units. This suite is 

enriched in Rb and Th (also Cs, Sn, U: not figured) at all 

sio
2 

levels. 

sr and Ba show generally inverse trends against sio
2

• 

There is an inflection in the Ba trend for the Mount 

Benedict Suite at ca. 62% sio
2

: up to this point, Ba 

remains constant or increases slightly. The Monkey Hill 

Intrusive suite and similar granites show rapid depletion 

of Ba with increasing sio2 • 

High-Field Strellgth (HFS) Elements : Zr and Nb 

(Figure 5.15) have convex-upward trends with inflection 

points at ca. 67% sio2 in the Mount Benedict Suite. At 

higher sio
2 

contents, both are rapidly depleted. High zr 

in the 60-67% Sio2 range distinguishes this suite from 

other Labradorian units, which mostly contain less than 300 

ppm Zr, and have constant or decreasing Zr with increasing 

Sio2 • 

Rare-Earth Elements (REE) : Y and Ce (Figure 

5.15) have subhorizontal trends in the Mount Benedict 

suite, and are depleted above 67% sio
2

• Absolute REE 

levels are similar for all Labradorian granitoid rocks, 

unlike Zr patterns. 

Indeterainate Trace Elements : The Mount Benedict 

Suite is enriched in fluorine (Figure 5.14) relative to all 

other Labradorian units (except parts of the Adlavik Suite: 

Table 5. 3). The convex-upward F-Sio2 trend in the Mount 

Benedict Suite is remarkably similar to the Zr .rend. and 

shows the same inflection at ca. 67% sio2 . Li (F Lgure 

5. 15) does not discriminate between units, and has a 

scattered distribution in the Monkey Hill suite and similar 
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granites. Zn (Figure 5.15) shows trends that rese~ble those 
of OCC trace elements in all units, and there is no Zn 
enrichment at high sio2 values. 

Trace Element Ratios 

K/Rb decreases systematically throughout 
differentiation in the Mount Benedict Intrusive Suite 

(Figure 5.16}. Variation of K and Rb appears to be partly 
decoupled in the Monkey Hill Intrusive Suite, which has 
constant K but variable Rb. 

Rb/Sr ratios are similar for all units, but trends are 
subtly different (Figure 5.16). The Mount Benedict Suite 
has a well-defined curved trend characterized by initially 

strong Rb enrichment. All other units have flat or slightJ.y 
inverse Rb/Sr trends that lack curvature. 

The Mount Benedict Suite has a well-defined Ba-Sr trend 

(Figure 5.16}, that is inflected at ca. 500 ppm Sr, 
corresponding to ca. 62\ Sio2 (Figure 5.14). The 
monzonite-syenite and syenite-granite units show 

essentially constant BajSr, and depletion of both elements. 
The Monkey Hill Suite and similar granites show scattered 

Ba and Sr distributions. The Otter Lake - Walker Lake trend 
is similar in orientation to that of the Mount Benedict 

suite. 
Compared to idealized trends for Rayleigh-type 

fractionation of common silicates (Figure 5.16, inset), the 
Rb/Sr trend for the Mount Benedict Suite indicates the 

influence of plagioclase fractionation (± mafic phases at 
high Sr contents). The Ba/Sr trend indicates that 

K-feldspar was also fractionated in more differentiated 
rocks. This is consistent with the presence of plagioclase 

and K-feldspar phenocrysts. The inflection point at ca. 62\ 
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Sio2 noted above probably records the onset of 
significant K-feldspar fractionation. The trends for the 
Otter Lake -Walker Lake granitoid similarly indicate 
fractionation of both feldspars, consistent with the 

observed phenocryst assemblages. 

LaN/YN (chondrite normalized) ratios (Figure 5.16) 

are relatively constant at 10-20 in the Mount Benedict 
Intrusive Suite, and there is little absolute difference 

between the three units. La and Y abundances are scattered 
in the Monkey Hill Intrusive Suite; the pattern suggests La 
(thus LREE) depletion . 

Rare Earth Element (REE) Patterns 

Three samples from contrasting units of the Mount 
Benedict suite have similar REE patterns and abundances 

(Figure 5.17) • The least evolved pattern resembles the 

Adlavik Intrusive Suite REE pattern (Figure 5.10). A strong 
Eu anomaly in the more evolved rocks indicates feldspar 
fractionation. 

Granites of the Monkey Hill Intrusive suite have varied 
REE patterns (Figure 5.18). The main body and Little Monkey 

Hill Granite have low total REE (< 100 x chondrite) and 
modest negative Eu anomalies. Excluding Eu, they are most 

depleted in Oy and Ho, and have dish-shaped patterns. The 
Round Pond Granite has strong LREE and MREE depletion, and 

inverse HREE fractionation. MacDougall (1988), in a 
detailed study of the Round Pond area, reported that this 

depletion intensifies with increasing sio2• He suggested 
that the REE were lost to a hydrothermal fluid. As these 

granites have low total REE, even minimal extraction of 
allanite or monazite (in which REE are stochiometric 

components) would have drastic effects, as effective 
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partition coefficients are inversely proportional to liquid 
concentrations (e.g. Miller and Mittlefehldt, 1982; Gromet 

and Silver, 1983). Depletion is, however, not confined to 
the REE (Table 5.2), and normal igneous processes cannot 

account readily for the overall trace element pattern of 
the Round Pond Granite. The Witchdoctor and Burnt Lake 

granites have closely similar REE patterns; the former has 
the same "valley" at Dy and Ho. This feature indicates 

compatible behaviour of some HREE, which may indicate 
effects from hornblende or (more likely) garnet as a 
liquidus or residual phase; It is most obvious in the 
slightly garnetiferous Witchdoctor Granite. The affinity of 

Zircon or sphene for HREE (e.g. Arth, 1976; Watson, 1982: 
Gromet and Silver, 1983) suggests that these minerals might 

also contribute to such a pattern. The Otter Lake - Walker 
Lake Granitoid has unremarkable REE patterns, consistent 
with its wide range of other totally unremarkable features. 
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~.3 SUMKARY AND DIScuSSION 

Contrasts Between Labradorian and Makkovikian 
Plutonic Associations 

Labradorian plutonic rocks differ from their 

Makkovikian counterparts in several respects. Firstly, the 
Makkovikian assemblage does not include layered mafic 
intrusions such as the Adlavik Intrusive Suite, although 

such rocks might be present below the present level of 

exposure (there are, for example, mafic inclusions in the 
border zone of the Numok suite). Secondly, Labradorian 

granitoid rocks do not evolve to the marginal peralkaline 
compositions typical of syn- and post-tectonic Makkovikian 

gramites (Chapters 3 and 4). They are instead mostly of 
slightly peraluminous character, especially above 70\ 

sio2 • 
These contrasts are summarized in Table 5.4, which 

lists mean compositions for units of similar sio2 content 
in both assemblages. At a given Sio2 value, Labradorian 

intrusions are poorer in fluorine, HFS (e.g. Zr, Nb, Hf) 
elements and REE (e.g. La, ce, sm, Yb). They show no sign 

of Zn enrichment at higher sio2 contents. LFS element 
abundances are similar in both assemblages, except for the 

Mount Benedict Suite, which is enriched relative to all 
other units of equivalent or higher sio2 • This suite also 

has F and Zr contents (particularly at 62-67\ Si02) that 
approach those of some Makkovikian units, but is depleted 

at higher sio2 contents. 
It must be stressed that, in spite of these 

differences, Makkovikian and Labradorian plutonic rocks 
exhibit extensive geochemical overlap. It is therefore 
difficult to classify single samples or small sample suites 

on the basis of geochemistry alone. 
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Table 5.4. Comparison of average compositions for selected 

syn-tectonic and post-tectonic Makkovikian plutonic suites, and 
Labradorian units of similar Sio2 content. 

Oil IT 10 20 21 42-44 11 23-26 
.......... --......... -- .. ----....... ---.. --------.. -......... -... ---...... ------------.. -----............ ------........... ---- .. --.. -----------
n1 15 57 40 137 97 197 
n2 5 12 6 62 23 142 
.. --------------...... ----------------.... -----------.. ------............. ------------------------.. ---........ ---------
(wtt I !lean S.D. !lean S.D. !lean S.il. !lean S.D. !lean S.D. !lean S.D. ----------------------------------------------------------------------------------------------------
Si02 63.32 1.27 62. 31 4.27 65.52 3.92 66. 40 6.28 73.58 2.98 71.29 4. 71 
Ti02 0.88 0.06 0. 78 0.29 0.63 0.29 0.50 0.31 0.29 0.19 0.31 0.27 
Al203 15.81 0.24 16.69 1.49 15.07 1.21 15.50 1.69 12.67 1.15 13.68 1.55 
Fe203 l. 79 0.37 1.72 0.75 1.44 0.61 1.27 0.62 1.24 0.70 1.05 0.74 
reo 3.06 0.73 3.41 1.12 3.66 1. 75 2.07 1.45 1.39 1.17 1.68 1.47 
llnO 0.10 0.01 0.12 0.05 0.15 0.07 0.07 0.04 0.06 0.02 0.06 0.06 
~ 1.25 0.42 1.22 0.87 0.40 0.29 0.96 1.19 0.19 0.25 0.36 0.50 
cao 2.95 0.48 2.92 1.30 1. 76 0.71 2.08 1.84 0.82 0.56 1.14 1.04 
11a20 4.27 0.25 4.57 0.41 4.51 0.57 4.38 0.42 4.00 0.48 4.09 0.86 
K20 4.75 0.49 5.14 1.09 5.81 0.67 5.27 0.98 4.85 0.64 5.12 1.10 
P205 0.26 0.03 0. 24 0.14 0.15 0.13 0.15 0.18 0.05 0.05 0.07 0.09 
WI 0.63 0.23 0.58 0.35 0.46 0.23 0.85 0.30 0.45 0.22 0.67 0.37 
MAL 99.07 99.67 0.00 99.54 99.49 99.57 99.52 

(ppl) Trace Ele.ents ----------------------------------------------------------------------------------------------------
Li 22.7 5.7 21.0 9.7 13.0 7.6 28.5 11.3 14.9 11.7 25.0 23.5 
r 860.5 212.7 928.9 436.3 427.8 270.3 1229.8 524.6 1029.9 803.8 1420.0 1141 
sc 9.6 1.7 10.5 2.1 11.0 3. 8 4.0 2.3 1.4 0.9 3.1 4.1 
v 74.6 19.6 !)5.9 37.5 17.7 10.0 44 .3 40.6 15.9 13.4 23.3 29.2 
cr 5.5 3.5 7.0 9.9 3.4 2.4 14.0 32.0 4.7 3.8 5.1 6.5 
li 2.6 1.9 3.7 4. 7 1.1 0.5 5.1 16.3 1.3 1.2 2.2 3.9 
cu 9.1 3.8 13.6 9.5 6.4 3.1 19.3 23.5 3.9 3.9 9.3 38.4 
Zll 74.1 8.5 86.3 23.4 114.3 44 .2 54.3 24.6 77.1 29.9 75.1 69.6 
ca 18.3 1.2 20.5 2.9 21.6 6.3 11.0 5.0 16.5 6.8 16.9 8.6 
lb 126.4 24.2 121.9 47.9 110.8 54 .5 260.5 99.6 153.5 47.1 178.4 65.0 
Sr 327.6 39.0 329.4 166.6 108.5 77.0 276.6 258.1 60.8 77.5 111.7 130.2 
y 36.5 1.9 39.2 13.6 53.5 19.9 28.3 8.1 70.9 28.9 55.4 43.8 
Zr 236.6 83.2 486.3 255.9 794.8 411 .2 356.3 174.2 387.0 151.8 491.5 558 .5 
lb 14.2 1.1 19.1 8.5 21.3 6.9 23.7 10.1 27.9 14.0 26.0 21.0 
Jlo 4.3 0.5 4.1 1.0 3.4 1.1 4.5 2.4 3.7 1.9 4.3 7.7 
Sn 1.0 o.o 2.7 2.7 1.3 0.5 6.9 4.3 3.5 2.5 5.8 9.9 
cs 1.3 1.2 l.o 1.7 0.7 0.4 9.6 4.7 0.6 0.4 1.2 1.0 
Ba 1424 .o 116.2 1099.0 558.0 787.7 542.1 612.5 440.7 453.1 411.7 501.9 382.6 
La 53.3 • 9 64.8 31.7 77.2 26.4 52.6 18.7 76.6 33.3 90.7 lll. 7 
Ce 102.7 6.1 131.0 63 .2 156.4 54.7 108.8 37.3 158.7 65.7 178.7 197.0 
s. 9.2 o.8 13.3 3.1 14.5 3.8 7.4 1.8 12.6 3.5 13.1 10.4 
Yb 2.5 o.o 3.8 2.1 !>.3 0.0 4.4 0.9 7. 7 3.2 6.6 4.7 
Bf a.o 1.2 11.9 3.5 14.3 5.0 10.8 3.4 12.1 3.1 13.3 13.3 
Pb 15.9 3.9 15.9 6.6 15.8 7.1 19.9 7.9 20.3 1Q.4 37.3 205.3 
Tb 9.2 3.0 9.1 10.7 5.1 4.8 27.7 11i. 7 15.2 9.6 1&.3 20.5 
u u 0.9 3.1 1.7 2.4 1.4 8.1 4.4 4.7 3.0 5.8 7.0 

(vtl) partial CIPW DOllS ------------------------------------------------· --·--------------------------------------------........ 
Q 12.25 1.76 8.02 6.40 10.77 7.74 15.19 9.84 29.80 6.01 24.90 9.23 
c 0.00 0.00 0.05 0.18 0.02 0.05 0.07 0.19 0.02 0.06 0.12 0.23 
Or 28.50 2.93 31.47 U1 32.52 5.39 31.52 5.81 28.89 3.89 30.38 5.96 
Ab 36.71 2.01 38.96 3.48 40.28 5.85 37.51 3.57 34.11 4.02 34.90 7.35 
An 10.08 1.50 9.37 4.48 5.28 3.78 7.01 6.36 2.30 2.27 3.66 2.94 
Di 2.18 1.35 2.85 1.48 3.52 2.25 1.98 2.21 1.08 0.87 1.28 2.82 

~r 4.65 1.72 4.53 2.26 3.22 2.08 3.07 2.89 1.22 2.00 2.15 2.26 
0.00 0.00 0.41 1.09 0.61 1.36 0.37 1.71 0.00 0.00 0.03 0.26 

lit 2.64 0.55 2.41 0.96 2.06 0.78 1.81 0.93 1.58 0.75 1.38 1.00 
11 1.69 0.12 1.48 0.56 1.21 0.49 0.97 0.60 0.54 0.36 0.61 0.52 

----------------------------------------------------------------------------------------------------
KEY TO UIIITS fst1 -syn·tect Jlakkovikian; Pl'll - ~t-tect Jlakkovikian; L - Labradorian) 
10 -- Lonq Is and Quartz Jlonzonite 1 all data~ s ) 
20 -- IIIIOk Iatrusive SUite (Jionzoatte to Qu z Jlonzonite) (MIJ 
21 -- IIIIOk Intrusive SUite (syenite to Quartz S}eni te) ( PTJI J 
42-44 -- lloullt Benedict IntruSIVe SUite (all data) [L] 
11 • Kennedy Jlo11Dtai11 Intrusive SUite (all data , IIDaltered) [STI) 
23-26 -- strawberry Intrusive SUite (all data) [PTII] 

n1 -- Julbe~ of analyses for all ele.ents exce~t those listed below 
n2 - - lulber of analyses for Sc, Sn, Cs, s., Y and Bf 
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Table 5.4 (cont i nued) 

OR'IT 27-29 13.0 45 46-47 30 u ---------------------------------------------------------------------------------------------------
nl 82 4 70 34 79 49 
n2 66 57 29 l3 11 --------------------------------------------------------------------------------------------------
(Wt.\) Jlean S.D. !lean S.D. lie an S.D. lie an S.D. lie an S.D. lie an S.D. ---------------------------------------------------------------------------------------------------
~i02 72.12 2.9) 72.73 1.26 73.50 4.42 73.24 3.22 70.11 5.15 68.54 4.42 
Ti02 0.32 0.19 0.16 0.09 0.14 0.12 0.15 0.11 0.39 0.22 0.44 0.20 
Al203 13 .22 1.34 14.66 0.44 13.49 1.1& 13.98 1.49 14.43 1. 74 14.98 1.62 
Fe203 1.21 0.57 0.64 0.44 1.08 3.23 0.61 0.45 1.16 0.55 1.20 0.61 
FeO 1.44 0.87 0.66 0.29 0.70 1.56 0.62 0.31 1.49 0.97 1.87 1.01 
l!nO 0.06 0.04 0.03 0.01 0.05 0.04 0.04 0.01 0.06 0.04 0.06 0.03 
llgO 0.18 0.17 0.65 0.27 0.21 0.24 0.11 0.13 0.50 0.14 0.16 0.54 cao 0.88 0.47 0.99 0.03 0.76 0.44 0. 71 0.36 1.36 1.20 2.04 1.02 
la20 3.97 0.61 5.06 0.93 4.26 1.07 4.27 1.11 4.28 o. 75 3.89 0.55 
K20 5.47 0.90 3.34 1.46 4.72 1.22 4.98 0.87 5.11 1.01 4.70 0.62 
P205 0.04 0.04 0.06 0.02 0.03 0.03 0.02 0.03 0.10 0.08 0.15 0.09 
WI 0.53 0.20 0.93 0.29 0.58 0.27 0.50 0.13 0.58 0.29 0. 77 0.24 
TOTAL 99.44 99.91 99.48 99.37 99.57 99.50 

(ppl) 
---------------------------------------------------------------------------------------------------
Li 13.9 11.7 11.5 1.7 20.5 13.6 20.7 19.8 14.8 6.2 25.7 12.5 
F 1244.6 935.7 187.5 68.4 511.7 436.6 177.7 120.6 688.5 462.5 679.1 257.1 
Sc 3.8 5.3 1.4 1.2 1.9 1.2 2.4 0.9 6.8 2.4 
v 12.8 7.7 21.5 8.5 17.4 18.1 14.6 6.8 21.5 17.1 44 .6 30.2 
Cr 3. 7 2.9 7.5 5.7 4.0 6.4 3.5 3.8 u 13.7 6.5 7.0 
li 1.5 1.8 3.0 2.7 1.4 1.3 1.7 2.1 2.6 7.9 2.1 3.0 
cu 6.0 9.2 3.5 1.3 9.2 20.2 3.8 3.7 6.3 6.1 9.1 18.7 
Zn 89.6 59.6 29.3 3.9 34.9 30.5 21.8 10.9 54.8 42.8 46.9 21.4 
Ga 21.4 10.0 6.8 1.7 12.0 6.6 11.7 5.8 15.2 5.2 12.8 4.1 
lb 172.5 44.1 96.5 41.0 181.7 71.7 191.1 68.2 127.8 51.1 14M 38.7 
Sr 61.2 65.8 273.5 47.5 134.5 210.4 87.1 75.8 160.7 151.6 277.7 154.8 
y 74.4 32.8 5.1 1.7 26.5 23.0 25.3 20.2 42.5 17.2 28.2 10.2 
Zr 675.7 439.3 88 .0 38.0 160.1 99.3 115.6 172.3 361.8 210.3 240.0 83.8 
lb 29.3 11.1 2.0 0.0 17.2 a.5 20.8 13.6 19.1 7.2 13.6 4.4 
110 4.3 2.3 2.0 0.0 84.5 578.7 28.1 142.9 3. 7 1.2 3.2 1.2 
Sn 4.0 2.6 2.9 2.3 2.4 2.1 2.7 2.7 3.9 3.3 
cs 1.1 0.7 2.2 2.1 1.9 1.3 0.7 0.6 4.1 1.8 
Ba 329.6 260.1 912.5 446.6 391.2 360.5 519.0 675.5 660.& m .6 961.5 542.3 
La 122.8 62.6 13.8 4.6 22.1 21.4 30.9 22.3 63.1 30.2 50.6 14.8 
Ce 247.2 121.1 19.0 11.6 45.4 43.8 63.2 45.7 126.8 59.2 100.1 21.5 
S1 20.8 9.8 4.4 4.0 4.2 1.9 10.C 3.9 9.3 3.0 
Yb u 4.3 3.9 3.6 2.8 0.6 4.2 2.0 2.5 o.o 
Bf 19.1 10.3 5.6 3.0 5.6 1.5 10.1 3.0 12.5 21.1 
Pb 24.5 13.5 12.5 7.9 22.6 9.2 26.8 11.5 17.6 11.2 16.8 8.1 
'I'll 18.9 8.0 1.8 1.0 13.6 a.5 19.1 9.2 13.0 9.6 14.8 7.3 
0 5.5 2.3 1.7 0.5 6.0 5.1 7.4 5.0 4.5 2.6 4.0 2.4 

(vU) ---------------------------------------------------------------------------------------------------
Q 26.22 7.51 27.56 2.39 28.99 5.57 26.82 9.65 22.16 9.88 22.14 8.29 
c 0.10 0.70 0.98 0.48 0.25 0.24 0.26 0.21 0.06 0.14 0.26 0.36 
Or 32.64 5.34 19.11 1.64 27.12 7.14 29.78 5.21 30.45 6.00 28.14 3.71 
Ab 33.79 5.15 43.23 8.08 36.63 1.56 36.39 9.20 36.54 6.34 33 .29 4.70 
An 1.90 1.64 4.84 0.26 : .22 1.70 3.61 1.64 4.97 4.19 8.95 4.23 
Di 1.62 1.35 0.00 0.00 0.25 0.72 1-.16 0.41 1.11 1.66 0.49 0.74 

~r 0. 96 1.05 2.12 0.72 0.16 0.99 0.87 0.62 1.11 1.34 3.n 2.10 
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.18 1.60 0.00 0.00 

lit 1.63 0. 77 0.94 0.64 1.29 4.96 0.82 0.46 1.60 0.12 1. 76 0.90 
Il 0.62 0.36 0.31 0.17 0.26 0.22 0.30 0.22 0.74 0.43 o.85 0.38 

--------·-------------------------------------------------------------------------------------
KEY TO UJIITS (st'll - srn-tect Jlakkovikian; PTII - post-teet Jlakkovikian; L - Labradorian) 
27-2S - LanceqroUDCI ntrusive Suite (all lista) [Prll] 
13 -- Br\llvater Granite (STIJ 
45 -- I!Onkellill Intrusne SUite (all data) f L 1 
46-47 - Wi clldoctor and Burnt Lalce Granites a 1 data) [LJ 
30 -- Biq liver Granite (all data) (PTIIJ 
48 -- otter Lalce - Walker Lake Cran1toi (all data) (LJ 

n1 -- Jlllber of analyses for all elnents evcegt tbose listed belov 
112 -- lllllber of analyses for Sc, SD, Cs, Sl, Y aDd If 
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Evolution of The Adlavik Intrusive Suite 

The Adlavik Intrusive Suite is a rnul tiphase mafic 

intrusion that evolved via crystal accumulation processes. 

Field relationships within the main body indicate at least 

two (and probably many more) pulses of mafic magmatism, and 

it likely represents the proverbial "periodically refilled, 

periodically tapped, continously evolving maqma chamber" 

(words of O'Hara, 1977). 

Although reconstruction is difficult, normative 

mineralogical variations (Figure 5. 7) indicate that higher 

levels are dominated by gabbro (± olivine), that is poorer 

in sio2 , K2o and incompatible elements than a lower 

gabbronorite (± olivine) sequence. This suggests that the 

parental magma(s) were derived from a fractionating magma 

chamber at much deeper levels (the general similarity of 

trace element patterns in all a!"gues against two radically 

different sources). The gabbronorite sequence may have been 

derived from the upper, fractionated, portion of such a 

body, whereas the overlying gabbro sequence originated at 

deeper, less fractionated levels. 

Once emplaced, the Adlavik Suite magmas evolved by 

fractionation of olivine "'nd pyroxenes, and a later 

plagioclase-dominated assemblage. Residual liquids were in 

some cases trapped within cumulate zones (bounded by 

viscosity or density contrasts?), where they crystallized 

to form the pegmatite facies. Some residual magmas migrated 

on an intrusion-wide scale to form the more potassic 

members of the diorite unit, but much of this is probably a 

plagioclase cumulate with variable amounts of trapped 

liquid. Volatile concentration and circulation as a 

consequence of crystClllization (and perhaps ascent) led to 

widespread transformation of earlier pyroxenes, and 

crystallization of primary hornblende from more 

fractionated liquids. 
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Evolution of The Mount Benedict Intrusive Suite 

Geochemical trends in the Mount Benedict Suite are 

readily interpreted in terms of fractional crysta 11 ization, 

and provide constraints for numerical modelling (see 

below). 

RbjSr and BajSr trends (Figure 5.17) indicate that 

plagioclase, K-feldspar and mafic minerals were the 

dominant liquidus phases, consistent with the observed 

phenocryst assemblages. Plagioclase phenocrysts occur in 

all but the most evolved rocks, and accumulated in the 

diorite unit. Initial strong Rb enrichment (Figure 5.7) is 

characteristic of plagioclase ( ± mafic mineral) 

fractionation, as is the antithetic behaviour of Ba and sr. 

Both features predominate below 62% sio
2 

(Figure 5.15). 

The inflection of Ba trends at this point indicates the 

onset of K-feldspar crystal! i zation: constant Ba;sr during 

subsequent evolution suggests that both feldspars continued 

to crystallize in roughly constant proportions (assuming 

that distribution coefficients rema i ned constant). The 

inflection at ca. 62% sio
2 

also marks the point at which 

the evolving liquid reached the plagioclase - alkali­

feldspar cotectic line (Figure 5.13). 

The convex-upward zr-sio 
2 

trend (Figure 5.16) defines 

the appearance of a Zr-rich phase (probably zircon) at ca. 

67% sio
2

• The close correspondence between Zr and F 

trends suggests that Zr solubility may have been reduced by 

loss of fluorine from the magma, or that both were affected 

by a third factor, perhaps an increase in melt 

polymerization. The generally flat REE and Y trends 

indicate that these elements were buffered at an earlier 

stage, probably by accessory phases such as sphene, which 
• 

locally cores hornblende. Depletion in Th and REE (Figures 
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5. 15, 5. 16) at the highest sio2 contents may indicat~ the 

effects of allanite fractionation (c. f. Michael, 1982: 

Miller and Mittlefehldt, 1982). 

Relationship Between The Adlavik 

and Mount Benedict Intrusive Suites 

The Adlavik and Mount Benedict Intrusive suites are 

viewed here as complementary associations, i.e., the mafic 

and plagioclase cumulates of the Adlavik Suite represent 

material removed from a mafic parental magma to produce the 

more evolved rocks of the Mount Benedict suite. The diorite 

unit in the Mount Benedict Suite includes plagioclase 

cumulates that resemble leucogabbro and diorite of the 

Adlavik Suite. Their presence at the margins of the suite, 

and at low topographic elevations suggests a crude 

layering or zonation, and suggests that mafic rocks may 

occur below the present 1evel of exposure. The mafic rocks 

at Pamiulik Point, although grouped above with the Adlavik 

Suite, possibly represent some of thi s mater i al. 

There are indications that the Mount Benedict Intrusive 

Suite is a crudely layered body. In the field, this is 

suggested by the preferred occurrence of the most evolved 

syenite and granite at high elevations. Compositional 

layering or zonation is also indicated by geochemical 

variation with elevation (Figure 5. 18). Chemical -

elevation correlations are far from perfect, but the most 

evolved compositions are dominant at higher altitudes. 

The Adlavik and Mount Benedict Suites also define 

smooth and continous geochemical trends against sio2 
(Figure 5.19), with some scatter at low sio2 values that 

reflects the presence of cumulate rocks. The strong • 
incompatible element enrichment in the evolved rocks of the 
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Figure 5.18. Variation of selected major and trace elements against 
elevation (metres above sea level) in the Mount Benedict 
Intrusive Suite, illustrating the dominance of evolved 
compositions at high elevations. 
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Mount Benedict Suite is consistent with extended 
fractionation of a mafic parent magma, for which the most 
logical candidate is the contemporaneous Adlavik Suite. 

Fractional Crystallization Models 

The above hypothesis was tested with a numerical 
crystallization model using Adlavik Suite mafic rocks as a 

theoretical parent magma for the Mount Benedict Suite. 
Mineral/melt partition coefficients {~'s) used in 

the model are mostly mean values measured by Villemant et 
al. (1981) from a compositionally varied volcanic suite of 

alkali-basalt parentage. ~'s for orthopyroxene and 
amphibole, and values for V and Y in all minerals. are from 

a compilation of basalt-related studies by Jenner {1984). A 
hypothetical composite "accessory" was awarded an arbitrary 

K0 value of 100 for elements considered to be 
concentrated in these minerals at various stages. All K0 
values employed are listed in Appendix C. The model was 
constructed for u, Th, La, Y, Rb, Zr, Ba, Sr, V, Cr, Ni and 

Ti; these elements provide a spectrum of trace element 
behaviour. 

Calculations were performed using the Rayleigh 
fractionation equation (e.g. Arth, 1976~ Hanson, 1978), 

which assumes perfect instantaneous removal of solid from 

equilibrium. The term FL is used below to denote the 
fraction of liquid remaining at each step. An incremental 
equilibrium crystallization model (c.f. McCarthy and Hasty, 

1976) was also tested, but, unless increments are 
u~~ealistically large (> 0.2), differs minimally from the 

Raylc~igh model. Model compositions are represented using 
spider··type charts normalized to the model parental maqma 
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composition (Figure 5.20b). The observed compositions were 
summarized by calculation of arithmetic means for 5% Sio2 
intervals, and displayed in the same manner (Figure 5.20a). 

Mount Benedict Suite Fractionation Model 

Starting Materials : The average composition of 
Adlavik Suite mafic rocks in the east of the area (Table 

3.2, partially listed in Figure 5.20) was taken as a 
parental magma. The mean major element composition 

(excluding K2o; see below) approximates average basalt 
(from LeMaitre, 1976), suggesting that jeviations due to 

mafic or plagioclase cumulates are cancelled in the mean. 
Note that for U and Th, poor precision at low levels 

(Appendix A) causes some uncertainty in the "parent" 
composition, which is propagated throughout the model. 

Description of lfodel : Stage 1 is domina.ted by 

removal of mafic minerals (60% clinopyroxene, 20% 
orthopyroxene, 10% olivine, 5% oxide and 5% biotite). At 

F
1
=0.65, the model corresponds well to the observed 

composition at ca. 55% sio2 (except for Th). It is 
unlikely that this phase assemblage remained constant, but 
modest variations in the proportions of Cpx, Opx and 01 do 

not affect the results significantly. Oxide fractionation 
is required to deplete V and Cr. 

Stage 2 assemblages consist of 55% plagioclase, 25% 
hornblende, 15% clinopyroxene and 5% biotite. 

Crystallization until FL = 0.26 creates a model 
composition that approximates the observed composition at 

60-65% sio2 , corresponding to the dominant monzonite to 
syenite unit. Key features for this interval are constant 

Ba, slight Sr depletion, and enrichment in Rb and Zr. 
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Figure 5.20. Comparison of observed geochemical evolution in the 
Mount Benedict Intrusive Suite (A) and the results of a 
four-stage fractional crystallization model {B). See text for 
details of model and discussion. 

MOUNT BENEDICT SUITE 
PARENTAL COMPOSITION 
·············•·····• 
S102 49.77 
u 1 .2 
Th 1.7 
La 28.6 
y 19.3 
Rb 56.6 
Zr 116 . 3 
Ba 940.1 
Sr 677.0 
v 183.2 
Cr 338.9 
Nl 98.3 
Tl02 1 . 15 
···············•·••· 

N 
N 
CXl 
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Observed Th enrichment is greater than predicted, and La 
and Y are stabilized at ca. 2 x parent. The former may 
reflect uncertainties in the U and Th contents of the 
assumed parent (see above). If the discrepancy between 

observed and model compositions is real, an alternative 
explanation is enrichment of U and Th by assimilation of 

sialic material (see later discussion, also Chapter 8). La 
and Y behaviour probably reflects the precipitation of 
sphene, not included in the model up to this point. 

Stages 3 and 4 produce the most evolved rocks by 
crystallization along the plagioclase - K-feldspar 
cotectic. The liquidus assemblage includes these minerals, 

plus minor hornblende, biotite and accessory minerals 
(Figure 5.20). At FL=O.l, the model fits observed 

compositions for ca. 70\ Sio2. Buffering of La andY, and 
Ti depletion, is maintained by sphene, and z i rcon 
crystallization initiates Zr depletion in the most evolved 

liquids, which correspond to model compositions at 

FL=0.05 (except for the persistent Th problem!). The 
observed Ba and Sr depletion is less than predicted; 

however, this is easily explained via retention of 
feldspars in the by now viscous high-silica liquid. 

Feasibility of The ~odel : The model fits the 
petrographic and geochemical features of both suites, and 
the proportion of crystallization required appears 

reasonable. The largest crystallization interval 
corresponds to the areally dominant complementary 

association of plagioclase- cumulate leucoqabbro and 
diorite (Adlavik Suite) and plagioclase- porphyritic 

monzonite and syenite (Mount Benedict Suite). The 
restricted extent of the most evolved rocks is consistent 

with a highly fractionated residual magma from a mafic 
source. The characteristic "speckled-eggshell" textur9 
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ptobably results from transportation of cumulus plagioclase 

by convection currents (c.f. Marsh, 1988), which carried 
them to regions where they were out of equilibrium, and 

reacted with the liquid or were mantled by K-feldspar. 

Crystallization at shallow depths along a cotectic phase 

boundary also allows periodic fluctuations in the liquidus 
assemblage due to changes in vapour pressure. 

Discrepancies for u and Th may, as explained above, be 

a function of poor estimates for parental compositions. 

There is, however, independent Nd isotopic evidence for 
minor crustal assimilation in the Mount Benedict Suite 

(Chapter 8). Such a process, in combination with crystal 

fractionation, would further reduce the proportion of 

crystallization required to generate the most evolved 

liquids (c.f. DePaolo, 198la), and thus increases the 

feasibility of the model. 

Affinities Of Labradorian Mafic Magmas and Derivatives 

Clark (1973) described the Adlavik Intrusive Suite as a 

water-rich basaltic magma of "appinitic" affinity. 

Appinites are small, ccmpositionally varjed, mafic to 

intermediate, subvolca:tic, volatile-rich intrusions 

described from the British Caledonides (e.g. Pitcher and 

Berger, 1972; Wright and Bowes, 1979; Fowler, 1988). They 

are characterized by large amphibole crystals; in this 
respect, the pegmatite facies has an "appinitic" texture. 

Wright and Bowes (1979) describe rock types and textures 

from Scotland that are broadly analogous to those described 

above from the Adlavik Suite. However, such features are 
• 

not necessarily characteristic, as Mullan and Bussell 

(1977) report analogous features from hydrous mafic 

intrusions associated with Mesozoic arc batholiths in Peru 

and Mexico. 
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Table 5.5. Comparison of average compositions for the Adlavik 
Intrusive Suite, Scottish "appinites" (Wright and Bowes,l979; 
Fowler, 1988), and modern basalt and andesite types (Condie, 
198lb). 

n1 
n2 

(wt\) 

Si02 
Ti02 
Al203 
fe203 
feO 
JtnO 
~ 
cao 
Jta20 
K20 
P205 
WI 
'fOUL 

40 

117 
16 

!lean S.D. 

49.74 4.19 
0.96 0.43 

15.72 3. 73 
3.05 1.39 
6.29 1.61 
0.16 0.04 
7.67 4.93 
9.59 2.83 
3.05 1.15 
1.54 0.89 
0.34 0.36 
1.42 o. 76 

99.52 

4'. 

22 
5 

!lean S.D. 

57.64 2.89 
0.84 0.26 

1&.10 1.21 
1. 99 0.59 
4. 17 1.36 
0.12 0.03 
2.36 1.29 
4.95 1.72 
4.87 0.99 
3.42 0.96 
0.33 0.14 
0.90 0.51 

99.67 

A1 

n=19 

Nean S.D. 

48.31 3.66 
0.97 0.29 

12.71 1. 74 
2.6 0.98 

6.63 1.18 
0.13 0.03 
11.6 2.46 
8.4 1. 79 

2.44 0.7 
2.13 0.67 
0.25 0.13 
3.96 0.86 

100.15 

A2 

n=a 

Nean S.D. 

57.76 1. 92 
0.63 0.12 

16.65 1. 9 
1.79 0.75 
3. 33 1.37 
0.07 0.02 
4.24 2.36 
4.11 1.33 
3.76 0.61 
4.31 1.56 
0.26 0.09 
2.51 0.88 
99.9 

A3 

n=12 

!lean S.D. 

52.41 4.46 
1.12 0.46 

16.02 2.5 
3.43 1.03 
5.89 1.58 
0.15 0.03 
6.16 3.02 
6.66 1.37 
2.8 1.06 

1.84 o. 72 
0.26 0.17 
3.75 0.98 

99.89 

n=4 

!lean S.D. 

49.21 1.10 
1.32 0.32 

12.52 1.03 
7.39 0.72 

0.15 0.01 
7.37 1.14 
9.61 1.22 
3.49 0.32 
3. 72 0.52 
1.68 0.80 
2. 76 1.05 

99.20 

15 

n=5 

!lean S.D. 

58.41 3.68 
0.86 0.34 

15.62 1.93 
4.84 1.16 

0.09 0.02 
3.10 1.97 
4. 71 2.04 
4.35 0.93 
5.34 0.61 
0.64 0.37 
1.55 o. 78 

99.51 

(ppt) Trace Ele~e~~ts 

Li , 
sc 
v 
cr 
li 
cu 
1D 
ca 
lb 
Sr 
y 
lr 
Jib 
Jlo 
Sn 
Cs 
Ba 
La 
Ce 
s. 
Yb 
If 
Pb 
'!'b 
u 

22.4 9.2 
732.6 973.4 
32.4 15.7 

202.6 100.0 
210.0 415.7 
76.5 119.4 
50.6 38.0 
96.5 36.0 
20.2 5.6 
43.0 21.4 

20.9 6.1 
136.4 316.4 
15.2 5.3 
91.7 59.5 
24.9 26.5 
10.5 9.5 
22.8 15.6 
76.9 16.3 
11.0 u 
11.6 25.5 

10 5 

43 16 
223 63 
453 179 
160 90 
107 73 
93 24 
11 3 
44 18 

133 291 
16 4 

10 7 

10 7 
227 273 
13 73 
49 96 
82 48 
66 21 
14 2 

131 49 
1055 433 

13 4 

26 14 
269 163 
151 140 
67 110 
63 60 
94 17 
21 3 
50 33 

474 199 

156.3 22.9 
296.5 45.0 
81.3 36.9 

110.0 15.0 

86.1 40.1 
113.4 111.3 
34.1 19.4 

7o.4 18.1 

2271.5 206.5 2211.2 91.8 139.7 299.0 
19.5 10.0 
12.9 70.1 
3.6 4.0 
3.1 3.5 
1.0 0.0 
1.0 1.6 

667.3 192.4 
24.0 9.1 

175.6 143.3 17 26 227 96 185 n 341.5 104.1 359.2 n.o 
10.4 u 
3.4 1.3 
1.2 0.4 
1.4 o.8 

a I 9 5 14 6 

622 4 406.6 
23.1 15.3 
49.3 31.6 
5.6 2.2 
2.5 0.0 
2.2 2.0 
4.6 6.3 
2.0 2.6 
1.0 0.9 

1399.4 1042 
37.7 10.1 
71.3 27.9 
6.5 o.8 
2.5 o.o 
3.2 0.4 
9.5 4.2 
5.5 5.5 
2.2 1.3 

199 372 1120 153 
61 33 
17 21& 

480 687 2536.0 644 .1 2471.6 420.4 
43 24 190.0 7.2 154.2 12.7 
37 7 24 22 416.1 36.2 300.0 39.7 

15 6 23 9 16 2 
5 2 9 3 16 24 

UY fO AIALYSES: 
40 -- ldlavik Intrusive SUite llafic locks lall data) 
41 -- Adlavik Intrusive SUite Diorites (al data) 
Al -- •Appinite• Gabbro, Ballachulisll Area (Wriqllt &lid Bowes, 1979) 
A2 -- •Appinite• Diorite , Ballacbulisll Area (Wrigbt and Bowes, 1979) 
ll -- •Appinite•, Loeb ~10nd Area (Wriqbt and Bowes, 1979) 
A4 -- •Appinites• with < 52l Si02, lch'uaine Area (fowler ,1988) 
A5 -- •Appinites• with > 52l Si02, Ach'uaine Area (Fowler ,19111 

nl -- Julber of Allalyses for all eletenta e1cept tbose listed below 
n2 -- lllllber of analyses for sc, Sn, CS, Sl, Yb and Bf 

21.1 2.4 11.8 2.0 
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Table 5.5 (continued) 

U!tiT IIORB lAB C}.B CFB IASB CASB 1AA CAA IASA --------------------------------------------------------------------.... --------· -----------
n1 n=42 n=21 n=22 
n2 -----------·---. ------·---------------.-----------..... ---.. -------.. ------... ----...... ------....... 
(lit\) Mean Mean Mean Kean !lean lie an Mean !lean Mean ----------------------------------------------------------------------------------------·-
Si02 49.80 51.10 50.20 50.30 50.62 51.41 57.30 59.50 55.46 
Ti02 1.50 0.83 1.00 2.20 0.83 0.83 0.58 0.70 0.93 
Al203 16.00 16.10 17.70 14.30 16.01 15.73 17.40 17.20 16.75 
Fe203 2.00 3.00 3.90 3.50 4.11 4.54 2.50 2.50 2.55 
FeO 7.50 7.30 6.30 9.30 4.55 3.60 2. 70 5.00 4.01 
IIIlO 0.17 0.11 0.10 
~ 7.50 5.10 5.40 5.90 6.24 5.98 3.50 3.40 4.81 
cao 11.20 10.80 9.80 9.70 9.26 6.96 8.70 7.00 6. 71 
Ja20 2.80 2.00 2.70 2.50 2.93 3.12 2.60 3. 70 2.94 
K20 0.14 0.30 0.90 o.ao 2. 74 3.16 o. 70 1.60 3.66 
P205 D.44 0.61 0.60 
WI 
'l'O'l'AL 

(ppl) 
------------------------------------------------------------------------------------------
Li 
F 
Sc 
v 
cr 
Ji 
cu 
Zn 
Ga 
Rb 
Sr 
y 
Zr 
Nb 
llo 
Sn 
Cs 
Ba 
La 
Ce 
Sl 
Yb 
Bf 
Pb 
Tb 
u 

25 
290 

300 50 50 100 156 40 55 
100 20 50 100 50 15 18 
70 80 80 100 159 50 30 
75 80 80 90 60 80 

1 5 10 30 59 10 30 
135 225 300 350 943 200 385 
30 20 23 30 16 23 20 

100 60 100 200 67 90 110 

11 60 100 200 683 100 270 
3.5 3.9 9.2 27 3 12 
12 7 25 140 6.8 25 

3.9 2.2 3.1 8.2 2.5 3 
3 2 2.5 2.5 2.7 1.9 

K!Y TO AVERAGE AIIALYSES: 
IIORB - llid Ocean lidqe Basalts lcotpiled by Condie, 1981b) 
lAB - Island Arc Basalts (cowpi ed by Cond1e, 198lb) 
CAB - calc-Alkaliue (contlnental arc) Basalts (COiptled by Condie, 19Ub) 
CFB • Continental Flood 8asalts (cotpiled by Condie, 198lb) 
USB • Island Arc Sbosbonitic Basalts (COI!aled by Jlorrison, 1910) 
CAS8 • Continental Arc Sbosbonitic Basalts (COipiled by Jlorrison, 1980) 
IAA • Island Arc Andesites (cotpiled by Condie, 198lb! 
CAA • Calc-Alkaline (continental arc) Andesites (COiplled by Condie, 1981b) 
USA • Island Arc Sbosbonitic Andesites (ootpiled by Jlorrison, 1910) 

26 
m 
141 

53 
m 

63 
956 

18 
121 

567 

lkl'fE : Condie (198lb) does DOt list sources or nlllbers of analyses for llis cotpilation. 
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Table 5.5 lists mean compositions for the Adlavik 
Suite, appinites from scotland (Wright and Bowes,1979; 

Fowler, 1988), and average modern basalt and andesite types 

(compiled by Condie, 1981b, and Morrison, 1980). The mafic 

rocks of the Adlavik Suite are richer in K20 than all 

common modern basalt types, but are less potassic than 

shoshonitic basalts. The high Cr, Rb, Sr and Ba content of 

the Adlavik Suite, however, corresponds well to 

shoshonites. The latter arc potassic basalts and andesites 
that occur in "mature" (i.e. long-lived or distal to trench 

axis) portions of island-arc or continental volcanic arcs 

(e.g. Morrison, 1980). 
Scottish appinites analyzed by Fowler (1988) have much 

greater enrichment in K2o, Rb, La, Ce, sr, Ba and Zr than 

typical Adlavik suite gabbro or diorite . There is, however, 

a reasonable correspondence to appinites analyzed by Wright 

and Bowes (1979), although the Adlavik Suite has lower 

K
2
o. 

Fowler (1988) has proposed that Scottish· appinites are 

plutonic equivalents of shoshonitic magmas. The Adlavik 

suite is closer in composition to shoshonite than any other 

basalt type, and thus probably also represents a 

"shoshonitic pluton" in general terms. Morrison (1980) 
points out that there is complete gradation between high-K 

calc-alkaline volcanic rocks and shoshonites . The Adlavik 
Suite is obviously at the other end of the spectrum from 

the compositionally extreme appinites of Fowler (1988). 

Evolution of Labradorian Siliceous Granitoid Rocks 

Labradorian siliceous granitoid units are a 

metaluminous to peraluminous association that has low • 
levels of fluorine, HFS elements and REE. In these 
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respects, they resemble some of the minor syn-tectonic 
Makkovikian granitoids, e.g. the Brumwater and Manak Island 

units (Chapter 3), but are distinct from most other 
Makkovikian units (Table 5.4). 

Honkey Hill Intrusive Suite and Similar Rocks : The 

Monkey Hill suite shows great scatter in LFS element 
abundances over a narrow range of major element 
compositions. Intense depletion of a wide range of elements 
is shown by the mineralized Round Pond Granite (Table 5.2, 

see also MacDougall, 1988). MacDougall (1988) suggests that 
this is a function of hydrothermal alteration associated 

with mineralization: the scatter of data for unmineralized 
plutons (e.g. the main body) suggests that it may have 

affected these to a lesser extent. 
Several characteristics of this suite are ~nigmatic. It 

attained fairly high levels in the crust, as demonstrated 

by associated tuffisite breccias and mineralized veins. 

MacDougall (1988) argued that these maqmas were F-enriched, 
but that volatiles were mostly lost to hydrothermal fluids 

(c.f. Bailey, 1977). The regional geochemistry of the 
Monkey Hill Suite suggests that this is unlikely, as 

unmineralized plutons show similarly low F contents. Also, 

experimental studies indicate that F is preferentially 
associated with the silicate magma, and is not strongly 
partitioned into fluids (Dingwell, 1988). For example, the 

Cape Strawberry Granite (also associated with volatile loss 
and mineralization), locally retained up to 5000 ppm 

fluorine. 
Low REE and HFS element levels in these granites 

probably indicate early crystallization of accessory 
minerals or presence of such phases in the source regions 
of partial melting. Hydrothermal depletion of REE was 



suggested by MocDougall (19EB) tor the Round Pond Granite, 

and linked to high REE contents in associated veins. 

However, as in the case of fluorine, there is little 

evidence of REE enrichment in i:!D.Y. Monkey Hill Suite 

granites. It is more likely that these granitoid magmas had 

low F, HFS element and REE abundances throughout evolution, 

and not simply as a consequence of late hydrothermal 

activity and mineralization. This suggests in turn 

radically different origins from the metaluminous ·­

peralkaline Makkovikian granitoid magmas. 

Otter Lake - Walker Lake Granitoid This unit lacl:s 

the LFS element scatter evident in the Monkey Hill suite, 

and trace element trends are consistent with removal of 

both plagioclase and K-feldspar, as indicated by 

phenocrysts of both. Low HFS and REE values may indicate early 

stabilization and removal of sphene andjor zircon. However, 

interstitial sphene (5.1.5) argues against early removal of 

this particular phase. Lack of HFS and REE enrichment in 

these rocks may, as outlined above, therefore reflect low 

levels of these elements from the outset, as a function of 

the source ( s) and generative process ( es) . 
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CHAPTER SIX 
UNCLASSIFIED PLUTONIC ROCKS 

Chapter Abstract 

Unclassified plutonic rocks comprise four largely 
undeformed U!iits within the Makkovik Province, and an extensive 
belt of strongly foliated granitoid gneisses within the 
Grenville Province, south of the Benedict Fault zone. 

The Freshst~ and Noarse Lake ~ranitgids are 
lithologically similar, hornblende-biotite quartz monzonite to 
monzogranite units that probably represent an origina) ly 
continuous pluton that was disrupted by dextral movements along 
the Adlavik Brook fault zone. They both show petrographic and 
geochemical similarities to the syn-tectonic Makkovikian Long 
Island. Quartz Monzonite. 

The Stag 5.9-Y Granito_j_g is a compositionally variable, 
porphyritic to megacrystic, biotite-hornblende granodiorite to 
granite unit. In terms of field appearance and petrography, it 
resembles the Labradorian Ott-er Lake - Walker Lake Granitoid. 

The J_eanette Ba~ Quartz ~ni te and Th.u.ndet;: Mot.;nt&i..n 
Syenite are minor units that show no obvious similarity to other 
Makkovikian or Labradorian units and, in geochemical terms, 
could belong to either asserr:blage. The former was previously 
grouped with the Mou:1t Benedict Intrusive Suite, but is shows 
much less incompatible element enrichment. 

~rani toid gneisses predominate south of the Benedict Fault 
system, and probably represent reworked equivalents of TLGB 
granitoids in the north. The Benedict Fault is a composite zone 
of intense deformation and mylonitization that dips steeply to the 
south. The gneisses form a composite unit, repre!:enting a range 
of protoli th cornposi tions in variable states of deformation. 
Locally, they appear to be strongly deformed equivalents of 
rocks that occur immediately to the north of the fault zone. 
Fine-grained, variably banded, muscovite-bearing granitoid 
gneisses that occur south of the fault only are probably 
strongly mylonitized rock types. The bulk major element 
compositional spectrum of the gneisses resembles that of the 
Makkovikian assemblage, but transitional peralkaline 
compositions are absent. 

A Rb-Sr isochron obtained late in this study indicates a 
Makkovikian age of 1798 ± 48 Ma for the Freshsteak Granitoid. 
Prelinlinary (discordant) U-Pb zircon data (Krogh et al., in 
prep.) suggest that the Stag Bay Granitoid is probably also of 
Makkovikian age. 

• 
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Introduction 

This association comprises four largely unde~ormed 

units within the Mak.kovik Province, and a large area of 

qrani toid gneisses within the Grenville Province south of 

the Benedict Fault zone. In the case of one unit 

(Frcshsteak Granitoid), Rb-Sr isotopic data acquired late 

in thesis preparation indicate a Makkovik.ian age of ca. 

1800 Ma. Locations and boundaries of unclassified units are 

indicated in Figure 6.1. Key field and petrographic 

features of these units are summarized in Table f .1. 

6 I 1 GEOLQGY and PETRom 

6 ~1~1 Freshsteak and Hoarse Lake Granitoids 

These two units are closely similar in litho logy, and 

are interpreted to be portions of an originally continous 

pluton, that has been displaced dextrally by the Adl~vik 

Brook fault zone (Figure 6 ~1) I The northern area 

(Freshsteak Granitoid) is a new subdivision of unit 27 

(undivided granitoid rocks) of Gower et al.(1982)~ The 

southern area (Noarse Lake Granitoid) is broadly equivalent 

to Unit 13 of Bailey (1979), grouped also by Gower et 

al~(1982) in their unit 27~ Both areas are dominated by 

brown to grey medium-grained, plagioclase porphyritic, 

melanocratic quartz monzonite, granodiorite and 

monzogranite (Table 6.1; Plate 6.1). 

The full areal extent of the Noarse Lake Granitoid is 

unclear, as a large area to its east is obscured by glacial 

drift. Matching plutonic units and the Upper Aillik Group 



Turnavtk laland• 

r,::i7';1 Granitoid Gneisses South of 
~ Benedict Fault Zone (6) 

--~ 
Fault Zone 

1*1 Archean Gneiss Complex 

tf~~4 Aillik Group (undivided) 

J ronbound lalanclt 

la99•d l•l•nd• 

Freshsteak Granitoid (1) 
Noarse lake Granitoid (2) 

!';c. 51 Stag Bay Granitoid (3) 

~ Thunder Mountain Syenite (4) 

~ Jeanette Bay Quartz Syenite (5) 

Figure 6.1. Summary map illustrating the distribution and extent of 
unclassified plutonic units. 

N 
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Table 6.1. Key features of unclassified plutonic units. 

ll~p Unit 

60.0 

61.0 

62.0 

63.0 

64.0 

66.0 

Suite '~nit •Aqe 

Freshsteak Granitoid 
1798 • ;- 48 !Ia ( Rb-Sr liR ] 

(this study) 

Noarse Lake Granitoid 

Stag Bay Granitoid 
1712 + 1· 24 !Ia ( Rb·Sr liR ] 

(this study l 

Jeanette Bay Quartz Syenite 

Thunder llountain Syenite 

Granitoid Gneisses South 
of tlle Benedict Fault Zone 

General Chancteristics 

Grey to green or bro•n. varhbly 
PI aq·porphyr i tic, ~elanocratic 
quartz 10nzonite, gnnodiorite and 
10nzoqranite. Generally aassive but 
sliqhtly recrystallized, and 
locally foliated. 
Siailar to the least defor~ed 
variants of Long Island ~artz 
llonzonite. 

Grey to pink or buff, porphyritic 
to seriate granodiorite, aonzo­
qranite, granite and local alkali· 
feldspar granite. 
Northern part of unit is qenerally 
aassi ve; locally foliated or sheared 
in the south. 

Pink to grey, variably K-fsp 
porphyritic, boaoqeneous quartz 
syenite and granite. 
Generally aassive, but locally bas 
sheared appearance. 

Grey to buff or pink, ((·feldspar 
porpbyritic, 10nzonite, syenite, 
quartz syenite to local granite. 
Cooonly sbo•s interstitial blue 
quartz. Very fresh and aassi\·e. 

!iqhly variable asselblaqe of 
foliated granitoid rocks, granitoid 
gneisses, and banded, aylonitic 
rocks. 
The lOSt co110n rock types are auqen 
gneisses with cataclastic textures, 
probably derivatives of K-fsp 
porphyritic or lle<jaczystic granites. 

Tertunl Characteristics 

Cer.'!rally Jlediua-qrained, •!th 
s1all, equant Plaq phenocrysts up 
to 1 c1 dia~eter. Locally K·feldspar 
jX.rpbyritic. Local foliations are 
defined by aliqn~ent of aafic 
silicates. Interstitial quartz in 
ussive variants. Interstitid 
~artz - K·feldspar graphic 
intergrootbs in places. 

Generally Jlediua to coarse grained, 
couonly oith phenocrysts of both 
Plaq and K·fsp; K-fsp phenocrysts up 
to ~ Cl dia~eter. 
Texture locally seriate or aeqacrystic. 
eroundlass equigranular to seriate. 
Cataclastic variants in the 
south are local! y auqen·textured. 

Generally coarse-grained, with 
phenocrysts of K-fsp and Plaq in 
lOSt saaples ( K-fsp > Plag ). 
Locally shoos pseudorapaki vi 
textures, rarely true rapakivi 
textures. 

Coarse to very coarse grained, •itb 
large (up to 5 Cl) K-fsp phenocrysts. 
Saaller Plag phenocrysts occur 
locally. 
Sliqbtly recrystallized, but not 
foliated. 

Couonly Jlediua to coarse grained, 
stronqly foliated rocks. K-fsp and 
lesser Plag auqen fon defoned 
phenocrysts: relict pseudorapakivi 
te1tures occur local! y in area 
south of Big liver crani te. 
Fine~ained, banded variants bave 
grey and pink layers, but do not 
appear •iqaatized. 
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Table 6.1 (continued). 

--------------------------- ----------- - - -
Key Field Rehtionships 

Contact relations <ith surrounding 
units uni.llo;;n. Presu.ed to intrude 
adjacent foliated syn-tectonic 
llakkovikian qnnitoids. Unit is 
disrupted by Adlav ik Brook Fa~ol t 
zone. 
Freshsteak and lloarse Lake bodies 
are probably displaced portions of 
a single pluton. 

Contact relations IOStly u."lkno•11. 
lortbern part of unit is cut by 
Feldspar-porphyry dyke tbat reselbles 
the Doq Island Granite. 
Southern part of unit is cut by 
several faults and 1ylonitic 
zones. 

Contact relationships unknoon. 
Previously considered to be related 
to syenites of llount Benedict Suite, 
obicb adjoin it. Bo•ever, geocheaical 
data suqqests tbat it is distinct. 

lortbern and southern contacts are 
inferred fault zones, other contact 
relations unknoo~. 

Northern boundary is SP~edict Fault 
zone, a 1 kl • ide zone of intense 
~efomtion, local 1ylo~itization. 
several East-trending structures in 
tbe qranitoid qneisses are defined 
by tylonitic zones. Fine· }rained, 
banded qneisses are interpreted as 
•ylonitized qranitoids. 

Mincraloqy 

Quartz tl0-30\, qenenlly < 2011 
1<-fsp (IIi, perthitic, 30-~\) 
Phq I An25-40; 30-~\ I 
Rb • Bi t 5-20\ tot!l, subequall 
Cpx t relict l 
Accessory Spb, Ap, lesser Zr, All 

Quartz ( 15-35\ l 
Hsp (IIi, 25·65\ l 
Plaq (saussuritized, 15-~\ 1 
Rb (0-5\ I 
Bi (qreen, 5·10\) 
Accessory Spb, Ap, Zr, All 
Ep + Cbl in foliated variants 

Quartz ( 10-20\ l 
K·Fsp (IIi, ~-70\ I 
Plaq ( 10· 30l) 
Bb + Bi ( 5·15l, su.bequal l 
Cpx (relict) 
Accessory Spb, All, Zr 
Ep + Cbl (secondary) 

Quartz (interstitial, 10-20\) 
K·fsp (IIi, 50-75\) 
Plaq ( > An30, 5-30\ l 
Rb + Bi (S-12\ total, Rb > Bi) 
Cpx (relict) 
Accessory Spb, Ap, Zr. 

Generally leucocratic, 'iitb 80·95\ 
total Qz + Fsps. llineral proportions 
variable; lOSt are K·fsp rich 
siliceous qranitoids, but syenitic 
gneisses occur lxally. 
llost cooon aaf ic tinerals are 
qreen Bb and brovr. Bi, present 
as tin~ained aqqregates defininq 
foliatiuns. Cpx very rare, Chl +/· lis 
present locally. Gnt very rare. 

Petroqnph'i 

Iqneuus textures qenenll)· ·.-ell­
presened. Phg phcnocr1sts zoned 
and have saussuriti:ed cores ·;ith 
clear sodic rias . Graphic Qz • K-tsp 
interqro•ths occur local! y, Qz is 
couonly inter~titial. lelict Cpx 
riued by Rb. Rb locally poikilitic. 

Quartz variably strained, locally 
interstitial. Plaq pbenocrysts are 
subbedral, strongly saussuritired and 
couonly toned. IIi is coarse patch 
pertbite. Bi (+ / · Hb) for.s aggregates 
or clots, witb variable Sph + Ep. 

CJr ~ of Plag phenocrysts are 
saussuritized, locally zoned. 
Groundtass consists of Plag + Hsp 
+ Qz. In aany saaples, aaf ic 
ainerals are altered to £p + Chl. 

Quartz slightly recrystallized. 
IIi phenocrysts bave relict si~ple 
twinning, originally orthoclase? 
Cpz is locally qreen, reselbles 
Ae·auqite, but unit is not peralkaline. 

\'ery strong recrystallization, with 
Qz + Fsps foninq polygonal or 
(aore coaonly) blasto1ylonitic to 
ribboned aggregates. Augen locally 
preserve pertbitic texture, but 
couonly polygonal aggregates. 
llicrocrystalline aylonitic zones 
parallel to foliation, and ·mppinq 
around Fsp augen. 
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after removal of dextral displacement along the Adlavik 

Brook fault zone suggests that the Noarse Lake granitoid 

may underly much of this unexposed zone. Contact 

relationships of both units are unknown. A Rb-Sr isochron 

from the Freshsteak Granitoid indicates an age of 1798 ± 48 

Ma (Chapter 8), suggesting that this is a Makkovikian 
* intrusion of probable post-tectonic affinity 

Both units are predominantly medium-grained and 

melanocratic, and contain small plagioclase phenocrysts (up 

to 1 em diameter), commonly with zoned and/or saussuritized 

cores. Groundmass quartz and feldspar is variably 

recrystallized, but graphic quartz/K-feldspar intergrowths 

or angular interstitial quartz grains are preserved in many 

areas. Slight foliations, of variable orientation, are 

present close to the trace of the Adlavik Brook fault zone: 

the Noarse Lake body shows generally more intense 

recrystallization than the Freshsteak Granitoid. 

Field appearance and petrographic characteristics of 

these units are similar to massive and weakly deformed 

examples of the Long Island Quartz Monzonite. The Rb-Sr age 

obtained for the Freshsteak unit (Chapter 8) is similar to 

K-Ar and U-Pb ages from the Long Island unit (Gandhi et 

al., 1969: 1988). 

6.1.2 Stag BaY Granitoid 

This unit corresponds to Unit 19 of Gower (1981), and 

to a portion of Unit 26 of Gower et al. (1982). Gower 

(1981) grouped the unit with megacrystic granodiorite 

* NOTE : Preliminary Rb-Sr data were inconclusive, and 

additional data did not become available until after text 

and illustrations tor Ch~pter 4 were finalized. The 

descriptive material on this unit has thus been retained in 

this chapter. 
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A 8 

Plate 6.1. Peatures of the Freshsteak and Noarse Lake Granitoids. (a) 
Freshsteak Granitoid. (b ) Noarse Lake Granitoid Note that these unics 
are locally more foliated and recrystallized than these slabs. Slabs 
stained for K-feldspa ~ . 

Plate 6 2 F · · eatures of the Stag Bay Granitoid. (a) and {b) Typical 
ior~hy~ 1tic granodiorite to monzogranite, Stag Bay. Note weak 
t 011at 1 on in {b). Note that t h is unit is variable in composition 
exture. Slab~ stained for K-feldspar. 

and 



cxpc~cd ncar Deus Cape, and with ~imilar megacrystic 

granitoids east at the study area. The unit includes a 

variety at rock types, the most abundant ot which is a 

seriate to two-feldspar porphyritic granodiorite, 

monzogranite or granite (Table 6.1; Plate 6.2; see also 

description of Gower, 1981). 

Contact relationships of the unit are unknown. At Stag 

Bay, it is cut by a feldspar-porphyry dyke which may be 

related to the nearby Dog Islands Granite, but might also 

be associated with nearby subvolcanic porphyry uni~s 

assigned to the Upper Aillik Group (Jagged Edge assembalge: 

Chapter 7). Rb-Sr data (5 point only) yielded an ambiguous 

1714 ± 44 Ma isochron (Chapter 8). U-Pb zircon dating is in 

* progress .. 

K-feldspar and plagioclase are commonly both present 

as phenocryst phases; the former are generally larger, 

ranging up to 5 em in size. In the north the unit is 

generally rnassivP., but the southern part is locally 

foliated and/or cataclastic in texture. This area is cut by 

several faults that link the Adlavik Brook and Benedict 

fault zones, and foliation directions are highly variable. 

Gower (1981) indicates ~-trending foliations in two areas 

near the coast that were not visited during this study. Of 

the units described in preceding chapters, this unit shows 

the closest resemblance to the Otter Lake - Walker Lake 

Granitoid, which is also two-feldspar porphyritic in most 

areas. The distance between the units suggests, however, 

that a direct connection is unlikely. 

* NOTE Preliminary U-Pb zircon data (Krogh et al., in 

prep.) are slightly discordant, but appear colinear with 

other post-tectonic Hakkovikian units, and indicate a 

similar age of 1790 - 1805 Ha. The Stag Bay unit is 
theretore.almost certainly a Makkovikian intrusion. 
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6.1.3 Jeanette Bay Quartz Syenite 

This small body is located in the Benedict Mountains 

south of Jeanette Bay. It corresponds to unit 22 of Gower 

(1981), and was considered by him to be related to the 

rocks here termed Mount B•nedict Intrusive Suite (unit 21 

of Gower,l981). However, it mostly lacks the distinctive 

textural characteristics of these rocks, and is 

geochemically distinct (see 6.2). It is dominated by pink 

to grey, coarse-grained, variably K-feldspar porphyritic 

quartz syenite to granite (Table 6.1; Plate 6.3). Contact 

relationships are unknown. It is commonly massive, but 

locally appears slightly foliated and/or sheared. 

Microcline is the most common phenocryst phase. Plagioclase 

cores in sporadic pseudorapakivi phenocrysts are commonly 

zoned and saussuritized. In many samples, the mafic mineral 

assemblage has been retrogressed to chlorite - epidote -

sphene aggregates. The groundmass is plagioclase-rich 

compared to the K-feldspar and quartz groundmass typical of 

the adjacent Mount Benedict Suite, a contrast previously 

noted by Gower (1981). In general, it appears more 

recrystallized than the normally pristine rocks of the 

Mount Benedict Intrusive Suite. 

6.1.4 Thunder Mountain Syenite 

This small body occurs southwest of Stag Bay, between 

the Benedict fault system and another northwest-trending 

fault mapped by Gower (1981). It is equivalent to a portion 

of unit 26 of Gower et al. (1982). It consists mostly of 

coarse grained, massive, K-feldspar porphyritic, 

hornblende monzonite, syenite, quartz syenite and granite 

(Table 6.1; Plate 6.4). It is in (inferred) fault contact 
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Plate 6.3. Feat ures of the Jeanette Bay Quartz Syenite . (a) and (b) 
Typical examples. Slabs stained for K-feldspar. 

A B 

Plate 6.4. Features of the Thunder Mountain Syenite. (a) and (b) Typical 
examples. Slabs sta ~ned for K-fe ldspar. 
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with the Stag Bay Granitoid and part of tne Mount Benedict 

Intrusive Suite to the north, and with granitoid gneisses 

of the Grenville Province to the south. Eastern and western 

concact relations are unknown. In most areas, it is massive 

and undeformed, and is characterized by distinctive 

interstitial blue quartz grains. Large (up to 5 em 

diameter) microcline phenocrysts have both simple and 

polysynthetic twinning, possibly indicating original 

orthoclase phenocrysts. Zoned plagioclase phenocrysts are 

locally present. Green clinopyroxene is a local relict 

phase, and is altered to hornblende and a red-brown phase. 

The pyroxene resembles aegirine-augite, but is generally 

non-pleochroic. 

6.1.5 Granitoid Gneisses Soutb Of The Benedict Fault Zone 

General Characteristics : South of the Benedict fault 

zone (Figure 6.1), all units exhibit moderate to intense 

east-trending foliations attributed to Grenvillian 

deformation, and many are gneissic or banded in texture. 

These rocks have not been studied in detail in this 

project, and are thus grouped as a single map unit. This 

composite unit clearly consists of a variety of rock types 

in highly variable states of deformation. All areas south 

of the Benedict Fault zone are poorly exposed (excluding 

river courses), and the most prominent outcrops are 

invariably Michael Gabbro intrusions. Characteristics and 

relationships of different granitoid gneiss variants in 

this part of the Grenville Province are thus poorly known. 

Field Relations and Lithology : The northern boundary 

of the gneissic terrane is the Benedict Fault zone itself, 

although some areas north of the generally accepted 
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Plate 6.5. Feature s of the granitoid gneisses exposed south of ~he 
Benedict fault zone. (a) to (d) Typical examples, s h owing development 
of augen textures , and banded, myloniti c appearance resulting from 
ultradeformatior Slab s stained for K- f eldspar. 
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position of this fault exhibit deformation of equivalent 

intensity, and are included in the gneiss unit (Figure 

6.1). The Benedict f3ult is a composite zone that cannot be 

represented adequately by a single line on a map. In the 

west of the study area, it is described by Bailey (1979) as 

a broad zone of ~ylonitization displaying a subvertical 

lineation. The zone is well exposed in Big River, where it 

is a composite feature consisting of a broad zone of 

intense deformation (up to 1 km in width) within which 

occur a number of individual mylonite zones, dipping at 

40-70° s, with steeply plunging lineations upon foliation 

surfaces. In the Benedict Mountains, Gower (1981) described 

it as a south-dipping reverse fault displaying evidence 

also of dextral motion. The contrast in deformation state 

across the fault is extreme in this area, and it appears to 

be a narrower, more tightly focussed structure than in the 

west (see below). 

South of the main fault zone, a number of discontinous 

cataclastic and mylonitic zones occur within the granitoid 

gneisses. Fine-grained, strongly foliated granitoid 

gneisses form concordant layers within coarser foliated 

granitoids; these may be original textural variants, but 

more likely represent mylonitic zones developed on a 

hand-sample or outcrop scale. On a regional scale, these 

are interpreted to have an ana~ ' .omosing pattern, similar to 

that seen in many hand specimens that have relict 

porphyritic textures (Plate 6.5). 

The granitoid gneisses appear (at least locally) to 

resemble adjacent rock types north of the Benedict Fault 

zone. For example, in the area south of the Big Riv~1 

Granit~, they comprise pink or buff, coarse grained, 

cataclastic to mylonitic, augen-textured rocks that have a 

composition approximating biotite-hornblende granite or 
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al ka 1 i-feldspar granite. Vestiges of pseudorapaki vi texture 

are preser.t in the least deformed examples, and they 

contain blue-green hornblende t ypical of the Big River 

Granite. A similar relationship 1o1as noted by Go1o1er ( 1981) 

in the eastern Benedict Mountains, where megacrystic 

granitoids and augen gneisses occur north and south of the 

fault respectively. So11th of the rna in Benedict Mountains 

massif, the contrast in deformation state across the fault 

is extreme, and occurs principally across faults that 

bound a narro1o1 metavolcanic enclave (Figure 6. 2). The rocks 

south of the fault zone in this area comprise a 

heterogeneous mixture of two contrasting rock types. 

Coarse- grained biotite-hornblende augen granitoids display 

relict K-feldspar porphy:r:-itic textures, and 

characteristically contain blue-green hornblende. The mafic 

assemblage is variably retrogressed to sphene and epidote. 

These rocks are interspersed with fine to medium grained 1 

equigranular to locally banded, leucocratic 1 granitoid 

gneisses containing minor biotite and muscovite. These two 

variants do not neccessarily represent discrete rock types; 

Gower (1981) suggests that they may represent variable 

deformation and metamorphism of a common protoli th, 

although the presence of muscovite implies some 

compositional contrasts. Gower (1981) distinguished a 

strongly deformed augen gneiss of monzonitic to syenitic 

composition close to the fault zone 1 and also two areas of 

supracrustal rocks, which he considered to be of 

volcaniclastic origin . 
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6.2 DESCRIPTIVE GEOCHEMISTRY 

Unclassified plutonic rocks are represented by 221 

samples, of which 211 are regional samples cullected on a 

2km grid spacing. Over 60% of this population represents 

the granitoid gneiss unit. 

6. z .1 General Geochemistry 

Summary of Numerical Data 

Table 6.2 lists mean composit i ons of unclassified 

plutonic units, and also mean compositions of selected 

Makkovikian and Labradorian plutonic units that have 

similar Sio
2 

contents. 

Mean compositions of the Freshsteak and Noarse Lake 

units are similar, supporting their interpretation as 

disrupted components of an originally continous pluton. 

However, the Noarse Lake unit has a lower mean si 1 ica 

content, and a slightly less evolved trace element pattern. 

Both units are similar in composition to the Long Island 

Quartz Monzonite. The Thunder Mountain Syenite has a 

similar sio
2 

content to these rocks, but is poorer in 

Tio2 and P2o5 . 

The Stag Bay and Jeanette Bay units have similar Sio 2 
contents (ca. 68%), but are otherwise dissimilar. The 

latter is richer in K2o and Rb, and depleted in Sr 

relative to stag Bay. However, the Jeanette Bay unit has 

lower levels of Rb , U, and Th than rocks of comparable 

Si02 content in the Mount Benedict Intrusive Suite. Note 
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Table 6. 2 . Average compositions of unclassified plutonic rocks, 
subdivided by principal units, and Makkovikian and Labradorian 
units of similar sio2 content. 

n1 
n2 

Si02 
Ti02 
Al203 
l'e203 
FeO 
llnO 
llqO 
cao 
Na20 
K20 
P20S 
1.01 
rom 

60 

17 
4 

Mean S.D. 

63 .66 5.47 
0.87 0.39 

15.48 1.57 
2.26 0.67 
3.34 1.33 
0.12 0.04 
1.37 0.91 
3.19 1.62 
4.29 0.41 
4.19 1.08 
0.30 0.20 
0.58 0.26 

99.65 

(ppll) Trace Eleaents 

Li 
f 
Sc 
\' 
cr 
Iii 
cu 
Zn 
Ga 
Rb 
Sr 
y 
Zr 
lib 
llo 
Sn 
Cs 
Ba 
La 
ce 
S1 
Yb 
Rf 
Pb 
Th 
v 

21.6 8.5 
728.3 258.0 

9.0 4.7 
66.9 47.0 
6.9 6. 7 
2. 5 2.5 

11.7 7.2 
102.9 27.5 

21.5 3.1 
109.1 36.7 
359.9 184.7 
49.6 22.0 

307.1 156.4 
16.4 7.3 

4.2 1.2 
2.3 1.5 
1.9 1.0 

1368.4 545.3 
68.5 29.4 

128.4 58.8 
14.0 4.1 
4.8 2.7 

11.5 3.4 
15. 3 3.6 
5.0 5.9 
3.2 1.6 

61 

10 
1 

Mean S.D. 

60.44 4.30 
1.05 0. 35 

16.28 0.67 
2.12 o. 74 
4.46 1.54 
0.14 0.04 
1.88 0.99 
3.98 1.43 
4.44 0.34 
3.88 1.16 
0.32 0.10 
0.53 0.28 

99.52 

56.7 44.5 
999 .1 671.9 

3.9 
93 .2 52.6 
10.1 6.6 
4.1 2. 3 

10.8 5.0 
102.8 34.6 
21.9 3.6 

118.3 61.8 
410.4 138.2 
35.4 6. 9 

2;11. 9 103.8 
10.7 3.6 
4.4 1.6 
1.0 
5.0 

1906.0 685.8 
43.5 8 .o 
82.9 15.4 
4.3 
2.5 
5.0 

13.8 4.7 
2.9 2.6 
2.8 1.0 

(lit\) Partial ClPW non 

Q 
c 
Or 
Ab 
An 
Di 

~r 
Mt 
11 

14.00 8.06 
0.00 0.00 

24.96 6.38 
36.58 3.45 
10.74 5.53 
3.04 1.64 
5.03 3.06 
0.00 0.00 
3.31 1.00 
1.66 0.75 

KEY TO UIIITS: 

8.04 6.31 
0.00 0.00 

23.13 6.89 
37.94 2.90 
13.16 3.92 
4.28 2.44 
7.62 2.80 
0.00 0.00 
3.11 1.07 
2.01 0.66 

62 

21 
1 

Mean S.D. 

68.31 4.68 
0 . 36 0.12 

15.52 1.47 
1.19 0.83 
1.52 0.69 
0 .06 0.02 
o. 77 0 . 52 
2. 20 1.40 
4.51 0 . 43 
4. 17 0.93 
0.12 0.08 
0.80 0.32 

99.53 

18.2 4.3 
741.2 612 . 2 

2.6 
28.3 26.8 
4.1 2.4 
2.4 1.7 

45.9 175.0 
49.3 17.2 
14. 1 5 .6 

104.7 44 .8 
474.5 267.3 
24.6 19.5 

254.4 149.6 
12.9 9. 7 

3.0 1. 9 
2.0 
2.0 

987.8 406.4 
44.9 35.8 
90.1 74.8 

4.6 
2 5 

13.0 
17.3 19.8 
10.4 17 .1 
4.3 3 .4 

19.44 8.14 
0.21 0.26 

24.95 5.55 
38.61 3. 78 

9. 36 4.97 
1.02 2.17 
2.58 1.28 
0.15 0.70 
1. 75 1.20 
0.69 0.24 

63 

12 
0 

13 
0 

llean S.D. Mean S.D. 

67.93 4.62 
0.47 0.19 

14.99 1.58 
1.31 0.62 
1.48 o. 71 
0.06 0.02 
0.64 0.33 
1. 79 0.96 
4.18 0.42 
5. 35 0.83 
0.12 0.06 
1.00 0.55 

99.32 

15.0 3.8 
700.5 349.7 

32.7 11.5 
7.5 3.5 
2. 3 2.2 

13 . 3 11.3 
59 . 8 32.0 
9.5 3.4 

162.9 50.6 
232.8 129.0 
31.5 9.5 

322.0 126.8 
15.9 5.2 
5.3 5. 7 

64.37 8.04 
0.55 0.29 

16.44 2.21 
1.41 o. 71 
2.51 1. 72 
0.09 0.05 
1.86 3.16 
3.14 2.89 
4.49 0.95 
4.14 1. 7fi 
0.15 0.09 
0.46 0.17 

99.61 

14.4 4.2 
703.8 591.2 

42.9 47.8 
30.3 74.6 
13.6 32.2 
8.9 10. 1 

70.3 26.8 
12.9 6.9 
69.5 55.7 

462.0 326.8 
22.9 16.1 

340.3 455.6 
11.7 10.8 
3.3 1.0 

819.0 189.7 1512.1 1628 
48.6 22.5 36.2 28 .6 
93.6 38 .7 74.9 62.2 

23.8 9.7 
13 . 3 7.9 
4.0 1.1 

19.24 9.00 
0.03 0.06 

32. 18 5.19 
35.07 2.52 
6. 35 3.53 
1.50 1. 73 
1. 90 1.44 
0.00 0.00 
1.89 0.87 
0.91 0.36 

12.2 a.o 
4.5 8. 5 
1.5 1.9 

13.37 11.05 
0.10 0.20 

24.65 10.43 
38.22 8.01 
12 .33 11.13 
2.32 3. 10 
3.56 2.13 
1.95 4.96 
2.07 1.05 
1.06 0.55 

66 

146 
0 

Mean S.D. 

68.75 5.54 
0.48 0. 35 

14.57 1.61 
1. 21 0.63 
2.03 1.38 
0.07 0.04 
0.72 0.70 
1.81 1.20 
4.14 0.50 
4. 85 0.98 
0.15 0.14 
0.55 0.20 

99 . 33 

19.8 9.4 
649.7 413.7 

31.2 27.4 
9. 2 29.6 
2.7 7.5 

12.9 54.5 
66.2 36.7 
12.3 5.8 

112.6 44.7 
253.4 188.7 
32.1 14.9 

338.6 162.0 
15.3 7.1 
3.8 2.1 

907 .3 637.2 
43.8 27. 4 
89.6 52.4 

18.6 42.4 
7.8 7.8 
3.6 2.6 

20.55 10.35 
0.08 0.16 

28.97 5.84 
35.53 4.22 
6.72 4.24 
1.41 1.62 
3.21 2.76 
0.02 0.19 
1.76 0.93 
0.94 0.67 

60 - - Freshsteak Granitoid 
61 -- Jloarse Lake Granitoid 
62 -- Staq Bay Granitoid 

63 - - Jeanette Bay quartz syenite 
64 -- Thunder Jlountain Syemte 
66 -- Granitoid Gneisses south of Benedict Fault 

nl -- NUiber of analyses for all eletents except those listed belo• 
n2 -- NUiber of analyses for Sc, Sn, Cs, S1, Yb and Rf 
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Table 6.2 {continued). 

UIIIT 10 20 43 44 48 1tl--------------- .. ------------- .. ---..... ----.............................................. --- .. ---- ..... -.. -... ---- ................... ------.......... -......... --
n1 15 57 53 6-:' 49 79 
n2 !) 12 22 39 11 13 .............................. -------------------- ... ----............. ... ... .............. -------- .. -..... -- ...... -------................................... ----............ 
(Itt I) !lean S.D. lie an S.D. !lean S.D. !lean S.D. !lean S.D. !lean S.D. ·---·------·------------------------------------------------·-------·------------------------------
Si02 63.32 1.27 62.31 4.27 64 .46 4.46 70 .69 3.31 68.54 4.42 70.11 5.15 
Ti02 0.88 0.06 0. 78 0. 29 0.61 0.24 0.30 0.18 0.44 0.20 0.39 0.22 
Al203 15.81 0.24 16.69 1.49 16 .03 0.93 14 .39 1.06 14.98 1.62 14.43 1.74 
Fe203 1. 79 0.37 1. 72 o. 75 I. 40 0.66 0.97 0.40 1.20 0.61 1.16 0.55 
FeO 3.06 0.73 3.41 1.12 2.53 1.12 1.09 0.66 1.87 1.01 1.49 0.97 
llnO 0.10 0.01 0.12 0.05 0.09 0.03 0.05 0.02 0.06 0.03 0.06 0.04 
llqO 1.25 0.42 1.22 0.8? 1.12 0.97 0.38 0.27 0.86 0.54 0.50 0.84 
cao 2.95 0.48 2.92 1. 30 2.37 U2 0.97 0.49 2.04 1.02 1.36 1.20 
Na20 4.27 0. 2!> 4.57 0. 41 4.51 0. 36 4.28 0.43 3.89 0.55 4.28 0.7!> 
K20 4.75 0.49 5.14 1.09 5.41 0.93 5.58 0.51 4.70 0.62 5.11 1.01 
P205 0.26 0.03 0.24 0.14 0.19 0.17 0.05 0.06 0.15 0.09 0.10 0.08 
WI 0.63 0.23 0.58 0.35 0.84 0. 23 0.75 0.11 0.77 0.24 0.58 0. 29 
rom 99.07 99.67 99.56 99 .50 99.50 99 .57 

(pp1) --------...... -------..... ----...... -.. -...... -.. --............... ----------.... --------- .. --... -... ------.............. -·-... ----- .. --.. -----
Li 22.7 5.7 21.0 9.7 31.0 10.4 25 .3 11.0 25.7 12.5 14.8 6.2 
F 860.5 212.7 928.9 436 .3 1298.0 410.7 1240.5 617.4 679.1 257.1 688.5 462.5 
sc 9.6 1.7 10.5 2.1 5.8 2.1 2.9 1.7 6.8 2.4 2.4 0.9 
v 74.6 19.6 5!>.9 37.5 50.6 40.9 23.1 13.1 44 .6 30.2 21.5 17.1 
Cr 5.5 3.5 7 .o 9.9 14.5 16.6 6.5 3.8 6.5 7.0 4.8 13.7 
Ni 2.6 1.9 3.7 4.7 4.3 5.3 1.9 1.7 2.1 3.0 2.6 7.9 
cu 9.1 3.8 13.6 9.5 18.9 16.9 10.1 8.8 9.1 18.7 6.3 6.1 
Zn 74.1 8.5 86.3 23.4 60.3 19.1 39.9 14.0 46.9 21.4 5U 42.8 
Ga 18. 3 1.2 20.5 2.9 11.3 4. 7 8.6 2.1 12.8 4.1 15.2 5.2 
Rb 126.4 24.2 121.9 47.9 233.2 81.8 315.3 81.3 14o.5 38.7 127.8 51.8 
Sr 327.6 39.0 329.4 166.6 308.9 191.0 126.8 108 .3 277.7 154.8 160.7 151.6 
y 36.5 1.9 39.2 13.6 30.3 8. 7 27.8 7.6 28 .2 10.2 42.5 17.2 
Zr 236.6 83.2 486.3 255.9 408.0 190.7 345 .0 140.0 240.0 83.8 368.8 210.3 
Nb 14.2 1.1 19.1 8.5 21.2 8.1 29.0 8.6 13.6 4.4 19.1 7.2 
llo 4.3 0.5 4.1 1.0 4.7 1.5 4.3 2.7 3.2 1.2 3. 7 1.2 
Sn 1.0 0.0 2. 7 2.7 6.1 4.2 7.2 4.2 3.9 3. 3 2. 7 2. 7 
cs 1.3 1.2 1.6 1.7 10.7 5.3 9.0 4.3 4.1 1.8 0.7 0.6 
Ba 1424.0 116.2 1099.0 558.0 742.8 360.6 381.9 352.6 961.5 542.3 660.8 482.6 
La 53.3 4.9 64.8 31.7 50.7 13.1 56 . 3 22.9 50.6 14.8 63.1 30.2 
Ce 102.7 6.1 131.0 63.2 108.3 30.3 114.0 43.7 100.1 28.5 126.8 59.2 
St 9.2 0.8 13.3 3.1 8.2 1.7 6.9 1.7 9.3 3.0 10.4 3.9 
Yb 2.5 0.0 3.8 2.1 4.1 1.0 4.5 0.9 B 0.0 4.2 2.0 
Bf 8.0 1.2 11.9 3.5 12.2 3.0 9.9 3.1 12.5 21.1 10.1 3.0 
Pb 15.9 3.9 15.9 6.6 17.8 6.1 23.4 8.0 16.8 8.1 17.6 11.2 
Tb 9.2 3.0 ~.1 10.7 21.6 13.6 37.5 13.8 14.8 7.3 13.0 9.6 
u 4.8 0.9 3.1 1.7 6.8 3.2 10.4 4.4 4.0 2.4 4.5 2.6 

(wtl) ---------------------------------------..... ---------------------------------------------------------
Q 12.25 1.76 8.02 6.40 10.94 6.32 22.13 7.27 22.14 8.29 22.16 9.88 
c 0.00 0.00 0.05 0.18 0.02 0.10 0.12 0.24 0.26 0.36 0.06 0.14 
Or 28.50 2.93 31.47 4.31 32.33 5.51 33.36 3.06 28.14 3.71 30.45 6.00 
Ab 36.71 2.01 38 .96 3. 48 38.63 3.09 36.65 3.68 33.29 4.70 36.54 6.34 
An 10.08 1.50 9.37 4. M 7.58 4.35 3.30 1. 78 8.95 4.23 4.97 4.19 
Di 2.88 1.35 2.85 1.48 2.60 2.33 0.79 0. 82 0.43 0.74 1.11 1.66 
By 4.65 1.72 4.53 2.:t6 3.90 2.08 l.U 1.11 3. 77 2.10 1.81 1.34 
01 0.00 0.00 0.41 1.09 0.25 1.80 0.00 0.00 0.00 0.00 0.18 1.60 
lit 2.64 0.55 2.41 0.96 2.03 0.96 1.36 0.59 1. 76 0.90 1.60 0.82 
11 1.69 0.12 1.48 0.56 1.17 0.47 0.58 0.34 0.85 0.38 0.74 0.43 -----------------------------------------·-·----------------------------------------.. --------------

KEY TO UNITS {IUS - llulok Intrusive Suite !IBIS - Mount Benedict Intrusive Suite) 
10 -- Lonq Island Quartz Monzonite 48 -- otter Lake - Walker Lake Granitoid 
20 -- (MIS) tonzonite to quartz aonzonite 30 -- Biq River Granite 
43 -- (!IBIS) tontonite to syenite 
44 -- (liBIS) syenite to qranite 

n1 - - KUJber of analyses for all ele~ents exce~t those listed belo• 
n2 -- NUJber of analyses for Sc, Sn, Cs, St, Y and Bf 
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that the high Cu content of the Stag Bay unit is a function 

of a single anomalous sample that has over 600 ppm Cu, a nd 

is not representative of the unit as a whole. 

The mean major element composition of the granitoid 

gneiss unit is similar to means for either Makkovikian and 

Labradorian plutonic assemblages. In view of the varied 

lithology, this average cannot be considered representative 

of this composite unit. 

Abundance and Distribution of Rock Types 

Relative proportions of IUGS rock types were calculated 

from normative data after Streckeisen and LeMaitre (1979), 

and are shown in Figure 6.2. 

The Freshsteak and Noarse Lake units are generally 

similar, but the Noarse Lake unit contains a higher 

proportion of diorite and monzodiorite. The Stag Bay unit 

is dominated by monzogranite with subordinate granite, and 

the Jeanette Bay unit by granite, rather than quartz 

syenite. The Thunder Mountain unit is of variable 

composition, but is mostly quartz-poor (i.e. quartz diorite 

to alkali-feldspar quartz syenite). 

The large sample population for granitoid gneisses has 

a bimodal pattern, dominated by granite to alkali-feldspar 

granite, but with a smaller peak at quartz monzonite to 

quartz syenite. This pattern resembles that shown by syn­

and post-tectonic Makkovikian plutonic associations 

(Chapters 3 and 4). 
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GRANITOID GNEISSES {n= 1 40) 

ROCK T'IP£ (lUG:";) 

AFGT - Alkali Fsp Granite MZDR - Monzodiorite SENT - Syenite 
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~2 Geochemical Trends and Contrast~ 

Major Element Patterns 

Major element patterns (Figure 6.3) follow expected 

trends and offer poor unit discrimination. High Tio
2 

(also P2o5 : not figured) contents below 65% Sio2 
(Figure 6.3) characterize the Freshsteak and Noarse Lake 

units. This feature is also shown by the petrographically 

similar Long Island Quartz Monzonite (Table 6.2; Figure 

3.3, p.76) 

All units show K+N/A (agpaitic index) values below 1.0. 

A/C+N+K indices are greater than 1.0 in part of the Stag 

Bay unit, and also in a few samples from Thunder Mountain 

and Jeanette Bay (Figure 6.3). All other units are wholly 

metaluminous. Parts of the Stag Bay unit have high (> 0.5) 

N/N+K ratios and low F/F+M (< 0.8) ratios above 60% sio2 , 

compared to other units. 

Major element patterns for the granitoid gneiss unit 

are similar to the overall pattern shown by discrete 

unclassified units (Figure 6.3). It includes no peralkaline 

compositions, but contains some peraluminous rocks. 

Trace Element Patterns 

Compatible OCC trace elements (e.g. V, Figure 6.4) do 

not discriminate between units. Rb and Th (Figure 6.4) are 

highest in the Jeanette Bay and Stag Bay units, c0nsistent 

with their generally higher sio2 . sr, Ba and F (Figure 

6.4) are scattered, but high Sr contents partly distinguish 

the Stag Bay unit. Zr, Y, Nb and Ce (Figure 6.5) provide no 

distinction between units, although there is some Y 

enrichment in the Freshsteak unit. Zn (Figure 6.5) is 
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Figure 6.7. Rare Earth element (REE) patterns for representative 
unclassified plutonic rocks. Values are normalized to chondritic 
values (listed in Appendix C). 

locally enriched in the Freshsteak and Noarse Lake units 
above 70% sio2, and Li is enriched in some biotite-rich 

rocks from the Noarse Lake unit. 
The granitoid gneiss unit shows a similar range of 

trace element variation. Scattered distributions for LFS 

trace elements such as Th, Rb, Ba and Sr may in part 
reflect element mobility during Grenvillian metamorphism, 

rather than primary magmatic trends. 

Rare Earth Element (REE) Patterns 

TWo samples from the Freshsteak and Noarse Lake units 
have identical REE patterns (Figure 6.6). The Thunder 

Mountain pattern is similar, but shows a larger negative Eu 
anomaly. The Stag Bay unit has a dish-shaped MREE pattern, 
similar to patterns observed in some Labradorian granitoids 
(e.g. Figure 5.17, p.216). No data are available for the 

granitoid gneiss unit. 
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~and DISCUSSION 

Geochemical contrasts between unclassified plutonic 

units are subtle, and they cannot be classified as 

Makkovikian or Labradorian on this basis alone. The 

fluorine, HFS element and REE contents of these units fall 

into the middle ground shared by both assemblages. 

The Freshsteak and Noarse Lake units are, however, 

petrographically and geochemically similar to the 

Makkovikian Long Island quartz monzonite, particularly 

with respect to their Ti02 and P2o5 enrichment. A 

general correlation between them is consistent with the 

Rb-Sr age (1798 ± 48 Ma) obtained from the Freshsteak 

Granitoid, which indicate a Makkovikian age (details in 
Chapter 8). 

Remaining unclassified units cannot be assigned with 

confidence. The partially peraluninous composition of the 

Stag Bay unit resembles that of some Labradorian 

granitoids, and differs from cor1positions of typical 

Makkovikian granitoids. The Jeanette Bay unit shows lower 

incompatible element abundances than rocks of equivalent 

composition in the adjacent Mount Benedict Intrusive Suite, 

and is probably unrelated to them. The Thunder Mountain 

Syenite is broadly similar to the Freshsteak and Noarse 

Lake units in major and trace element composition, but 

different in texture. 

The granitoid gneiss unit overlaps in composition with 

both Makkovikian and Labradorian plutonic assemblages, but 

the distribution of rock types within it resembles the 

former more closely. However, it lacks the marginally 

peralkaline compositions typical of the Makkovikian 

assemblage, and shows no extreme fluorine, HF~ element and 

REE enrichment. There is no firm basis for correlating it 
with either Makkovikian or Labradorian associations alone, 

and it probably includes reworked equivalents of both. 
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CHAPTER SEVEN 
MAKKOVIKIAN AND LABRADORIAN 
VOLCANIC ASSEMBLAGES 

Chapter Abstract 

The most extensive volcanic assemblage in the study area is 
the Upper Aillik Group, a complex Makkovikian sequence that 
includes at least two components of ca. 1860 and ca. 1810 Ma age. 
Geochemical studies of these rocks are hampered by widespread 
alkali-metasomatism, which appears to be a regional feature of 
this assemblage. In geochemical terms, unaltered variants are 
closely similar to Makkovikian high-silica granites such as the 
Kennedy Mountain, Strawberry and Lanceground Intrusive Suites, 
but do not show fluorine enrichment. They do, however, display 
borderline-peralkaline affinity, HFS element enrichment,and REE 
enrichment typical of most Makkovikian plutonic assemblages. 
Hypabyssal intrusive rocks within the Upper Aillik Group show the 
closest resemblance, and also display local fluorine enrichment. 
Alkali-metasomatism is closely similar to analogous patterns 
recognized in the syn-tectonic Kennedy Mountain Intrusive suite. 

It is suggested here that the Upper Aillik Group is a 
two-stage sequence comprising broad equivalents of syn- and 
post-tectonic Makkovikian plutonic rocks. This is consistent with 
geochronological data from both groups, which overlap in part. 
However, ca. 1860 Ma volcanic rocks predate most of the 
syn-tectonic plutons, and younger post-tectonic granites such as 
the Strawberry Intrusive Suite may be significantly younger than 
1800 Ma. 

The Bruce River Group (described by Ryan, 1984) includes a 
Labradorian bimodal (felsic > mafic) volcanic sequence. Although 
similar to the Upper Aillik Group in terms of major element 
chemistry (particularly in felsic compositions), this sequence 
evolves to peraluminous compositions, and has lower HFS element 
and REE abundances. On the basis of map patterns, it appears to 
contain a higher proportion of basaltic and basaltic andesite 
compositions than the Upper Aillik Group. such features are 
consistent with the mafic compositions observed in the 
Labradorian plutonic assemblage, and with subtle geochemical 
contrasts noted between Makkovikian and Labradorian plutonic 
assemblages. 

Volcanic sequences in the Benedict Mountains (here termed 
Ja~ ~ assemblage) have previously been grouped with the 
Upper Aillik Group. In geochemical terms, however, they resemble 
the Labradorian Bruce River Group, and may be a younger sequence. 
However, they are geochemically distinct from local Labradorian 
plutonic rocks of the Mount Benedict Intrusive Suite. 



- 262 -

Introduction 

Volcanic and metavolcanic assemblages were not examined 

in detail during this projec.t, but are an important 

component of Proterozoic magmatism in the study area. This 

chapter is mostly concerned with their possible relationship 

to plutonic associations described in preceding chapters. 

Descriptions are based partly on previous work (Bailey, 

1979; Evans, 1980; Gower at al., 1982) and partly on the 

author's more limited observations in selected areas. 

The most extensive volcanic assemblage is the 

Makkovikian U~per Aillik ~gup, which is dominated by rocKs 

of felsic composition, with minor mafic metavolcanic rocks. 

The Bruce River Group, exposed beyond the western boundary 

of the study area, includes a thick sequence of mafic and 

felsic volcanic rocks, and is of Labradorian age. Volcanic 

rocks also form several discontinous belts in the Benedict 

Mountains, which have previously been correlated with the 

Upper Aillik Group. The term "Jagged Edge assemblage" is 

used below as a label of convenience for these, although it 

is recognized that they may actually be part of the Upper 

Aillik Group sequence. 

7 • 1 GEOLQGY and PETRQLQGY 

7.1.1 Upper Aillik Group (Type Area Only) 

General OVerview 

The Upper Aillik Group has the dubious distinction of 

being the most studied yet least understood Proterozoic 



- -- Fault Zone 

0 ... 

KEY TO UNITS AND AREAS (Map Number In Parentheses) 

SUPRACRUSTAL ROCKS OF THE BENEDICT MOL!IITAINS 

~Jagged Edge assemblage (6) 
~ Deus Cape and Double Island Areas (7) 

t-~J BRUCE RIVER GROUP (5) 

UPPER I.ILLI!< GROUP (type area) 

LATE UPPER AILLIK GROUP 
White Bear Mountain Area (2) 
Michelin Ridge Area (3) 
Ranger Bight Area (4) 

EARLY UPPER AILLIK GROUP 
IX.~\:~) Round Pond Anticline (1) 

Figure 7.1. Summary map illustrating the distribution and extent 
of Makkovikian and Labradorian volcanic assemblages. 



- 264 -

sequence in eastern Labrador. This reflects rapid lateral 

facies changes that complicate its stratigraphy, and the 

variable overprint of greenschist to lower amphibolite 

facies metamorphism and associated deformation (Gower et 

al., 1982; Gower and Ryan, 1987). Parts of the sequence are 

structurally complex and polydeformed (e.g. Clark, 1973), 

but (paradoxically) some rhyolites and hypabyssal intrusive 

rocks are massive or only weakly cleaved (e.g. Bailey, 

1979). Metamorphic grades range from lower amphibolite near 

Kaipokok Bay, to sub-greenschist in the east and south of 

the area (Gower et al., 1982). 

The sequence is most extensive in the north of the 

study area, where it is areally dominant over plutonic 

units. It also forms a narrow zone extending into the 

southwest of the area, where it is bounded mostly by faults. 

This area (termed the Michel in area) has been the focus of 

most previous studies (e.g Bailey, 1979; Evans, 1980; White 

and Martin, 1980). 

No systematic mapping of the Upper Aillik Group was 

conducted during this project, but the sequence was examined 

in a number of coastal areas, and also during helicopter and 

ground mapping of adjacent plutonic rocks. Upper Aillik 

Group country rock types were sampled routinely for 

geochemistry, but no grid sampling program was undertaken 

over these units. 

Concepts of Aillik Group stratigraphy 

The term "Aillik Series" was proposed initially by 

Kranck ( 1939), and subsequently modified to "Aillik Group" 

by King ( 1963). Many of the rocks now grouped in the upper 

portion were initially described as quartzite~ arkose, 

feldspathic quartzite and banded quartzite - misnomers that 
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reflect the saccharoidal textures of many recrystallized 

rocks exposed on the coast. King (1963), Clark (1973) and 

White (1973) recognized that at least some of these 

siliceous rocks were of volcanic origin, and this was 

subsequently confirmed on a regional scale (e.g. Gandhi, 

1978; Bailey, 1979; Gower et al., 1982). 

The contact between Lower and Upper Aillik Groups is 

tectonized, and, despite repeated examination (Marten, 

1977;Evans, 1980; Wardle, pers. comm., 1985), no concensus 

has emerged regarding its significance. Marten (1977) 

suggested that deformed conglomerate at the base of the 

Upper Aillik Group (which contains clasts typical of the 

Lower Aillik Group) represents a major unconformity. There 

is concensus that the Upper Aillik Group has a generally 

simpler structural style than the Lower Aillik Group, which 

has undergone isoclinal folding and thrusting (Marten, 

1977). There are, however, equally strong contrasts in 

deformation state within the Upper Aillik Group (Gower et 

al., 1982; Gower and Ryan, 1987) 

These contradictions led to a revised concept of Upper 

Aillik Group stratigraphy, in which it was divided into an 

"early" and "late" component (Gower and Ryan, 1987). The 

late Upper Aillik Group is dominated by felsic volcanic 

rocks, whereas the early portion comprises a mixed volcanic 

and clastic sedimentary assemblage. It was suggested that 

these early and late components could be separated by a 

mafic metavolcanic marker horizon. Gower and Ryan (1987) 

further speculated that early and late components correlated 

with syn-tectonic and post-tectonic plutonic assemblages 

respectively: the latter were at that time considered to be 

wholly of ca. 1650 Ma (Labradorian) age. Scharer et al. 

(1988) subs~quently reported U-Pb zircon ages~of 1856 +/- 2 

Ma and 1807 +/- 3 Ma from two separate localities assigned 
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by G~w~r and Ryan (1987) to the late Upper Aillik Group. A 

rhyolite flow interbedded with volcaniclastic sediments that 

are probably part of the early sequence gave a U-Pb zircon 

age of 1861 + 9/- 3 Ma (Scharer et al., 1988). These ages 

appear to rule out a relationship between the Upper Aillik 

Group and Labradori~n plutonic rocks. 

The two-stage stratigraphic concept is, however, still 

valid in the light of new Rb-Sr and U-Pb zircon data (this 

study and Krogh et al., in prep.). Post-tectonic Makkovikian 

plut~nic rocks dated at ca. 1800 Ma are similar in age to 

the youngest rocks recognized within the Upper Aillik Group, 

and to some of their syn-tectonic, foliated counterparts. It 

is suggested here that early and late components of the 

Upper Aillik Group correspond broadly to syn-tectonic and 

post-tectonic Makkovikian plutonic associations, and that 

an unconformity or discontinuity may be present within the 

sequence. However, contrasts in deformation state amongst 

the metavolcanic rocks may also be a function of 

inhomogeneous deformation, as discussed for equivalent 

plutonic assemblages (Chapter 4). There is, however, no 

evidence of plutonic rocks of equivalent age to the earliest 

rocks (ca. 1850 Ma) recognized in the Upper Aillik Group. 

The oldest age yet obtained from plutonic rocks is ca. 1840 

Ma (Deus Cape Granitoid; Krogh et al., in -ep.), although 

Gandhi et al. (1988) report ages of ca. 1~ J Ma to the west 

of the Study area. 

This interpretation must be confirmed by systematic 

mapping of the Upper Aillik Group, and by dating its 

components with reference to stratigraphy. The central 

problem is the delineation of early a a late components, 

complicated by the possibility that the mafic volcanic 

"marker" may not be the same unit everywhere,.a conclusion 

supported by recent geochemical data (MacDougall, 1988). 
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Undeformed granitoid rocks invariably intrude the Upper 

Aillik Group. Foliated Makkovikian plutonic rocks also 

appear to post-date adjacent supracrustal rocks, but in most 

areas these correspond to the early Upper Aillik Gro~p of 

Gower and Ryan (1987). However, the inverse relationship 

(i.e. Upper Aillik Group hypabyssal intrusive lithologies 

intruding older granitoid rocks) would be indistinguishable 

from normal outcrop-scale details observed in most granitoid 

units. Also, many plutons are known to intrude their own 

ejecta as a consequence of the greater longevity of plutonic 

systems and cauldron subsidence (e.g. Lipman, 1988). 

Early Upper Aillik Group 

The early Upper Aillik Group, as outlined by Gower and 

Ryan (1987), forms the core of an anticline at Round Pond, 

and also three broadly parallel belts that are infolded with 

the predominant later sequence (Figure 7.1). It also occurs 

in minor amounts in the southwest of the area. It has not 

been examined in detail during this study, and descriptions 

below are summarized from Gower et al. (1982). 

The sequence is lithologically varied, but dominated by 

metasedimentary rocks. These include arkose, banded tuff, 

laminated arenite, siltstone, pebble conglomerate and 

breccia with volcanic clasts. Subordinate volcanic rocks 

include dacite-rhyolite compositions, and lesser mafic flows 

and tuffs. The top of the sequence is supposedly defined by 

the "marker" mafic- intermediate tuff horizon, which locally 

includes pillow lavas and possible subaerial volcanic rocks. 

The rock types present immediately below this unit are 

laterally variable: this could indicate rapid lateral facies 
changes, the presence of an angular unconformity at its 

base, or both (Gower and Ryan, 1987). Alternatively, as 
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discussed above, it may indicate the presence of more than 
one "marker" horizon within the sequence. The early Upper 

Aillik Group is deformed and metamorphosed in most areas. 
~eformation is most evident in lithologies such as 

conglomerate, which show intense flattening, but most other 
rock types are also completely recrystallized. 

General Features of the Late Upper Aillik Group 

The late Upper Aillik Group, as outlined by Gower and 

Ryan (1987), corresponds essentially to unit 9 of Gower et 
al. (1982). It is dominated by felsic volcanic and 

pyroclastic rocks, with lesser tuffaceous arkose and 
sandstone. It also includes hypabyssal intrusive rocks. All 

of these were examined during this project, but geochemical 
sampling is biased towards areas marginal to plutonic 

bodies. Recrystallization during regional metamorphism, 
particularly in the northwest, and thermal metamorphism 

around younger intrusions, have destroyed primary volcanic 
textures in most areas. In general, recrystallization is 

more intense in extrusive rock types than in the hypabyssal 
intrusive rocks. General characteristics of these rocks are 

illustrated in Plate 7.1. 

Volcanic, Pyrolclastic and Volcaniclastic Rocks 

Field Relations and Lithology : Outcro~& are commonly 

heterogeneous. The best candidate for a "dominant" lithology 

is a fine to very fine-grained, pink to grey or buff., 
variably banded metavolcanic rock that has a saccharoidal 

texture. Volcanic textures are only rarely preserved, and in 

many cases it is impossible to differentiate between massive 

rhyolite and crystal tuff. Larger grains of quartz, 
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Plate 7.1 Features )f the Upper Aillik Group (see also Plate 7.2). 
(a) Flow-bandeu, porphyritic rhyolite, Manak Bay area. (b) Rhyolite 
breccia, with rounded clasts of porphyry and flow-banded rhyolite, 
Manak Bay area. (c) Recrystallized tuff with deformed lithic 
fragments, Ranger Bight. (d) Purple feldspar-porphyry, including part 
of.a rhydlite xenolith, Ironbound Islands. (e) and (f) Typical 
en1gmatic Upper Aillik Group lithologies, that could be flows or 
pyroclastic rocks. Slabs stained for K-feldspar. 
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K-feldspar and plagioclase are com~0nly present, and 
represent either phenocrysts or crystal fragments. Banding 

is :ocally recognizable as a primary flow-banding, but 

relict fragmental textures suggest that iL may also result 

from strong deformation of lithic tuff or agglomerate. 

Lithic fragments, in many cases recognisable only as 

blotches or diffuse ellipsoids, occur widely and, unless 
they represent xenoliths in rhyolitic flows, indicate a 

fragmental origin for much of the recrystallized material. 

The few areas where Upper Aillik group volcanic rocks 

preserve original volcanic textures (e.g. at Ranger Bight in 

Makkovik Bay, and at Michelin Ridge) also consist dominantly 

of pyroclastic material that resembles ash-flow tuff, 
associated with subordinate rhyolite flows. 

Petrography : Pervasive recrystallization has 

obliterated most original textures, leaving a groundmass of 

very fine grained quartz and feldspar. Broken crystals or 

phenocrysts are preserved as coarser grain aggregates. The 

most common "phenocryst" phases are K-feldspar and 

plagioclase; quartz is less abundant. The mafic mineral 
assemblage in most samples has been degraded to aggregates 

of iron oxide, sphene, chlorite and epidote. Amphibole 

(actinolite, more rarely hornblende) and pyroxene are 

present locally. Blue amphibole of sodic composition, 

associated with accessory fluorite, is a distinctive 

component in some areas, particularly adjacent to some 
small granitoid plutons in :~he north. It is uncertain 

whether this is a primary or metasomatic feature, since 

metasomatic effects involved with mineralization and/or 

granitoid intrusion have been documented in several areas 

(White and Martin, 1980; Evans, 1980; Kerr, 1~88; see also 
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sections 3.3 and 7.2). Upper Aillik Group rocks are not 

commonly fluorite-bearing, except in areas adjacent to 

plutonic units. 

Hypabyssal Intrusive Rocks 

Field Relations and Lithology : Massive feldspar and 
quartz-feldspar porphyry form several mappable bodies, and 

also occur as dykes and veins on an outcrop scale within the 

metavolcanic rocks. The largest body, at White Bear 

Mountain, consists of purple or grey porphyry with large (up 

to 2 em) K-feldspar phenocrysts and less abundant, smaller, 

rounded, blue quartz eyes. Similar (but less spectacular) 
rock types are present near Round Pond (MacDougall, 1988}, 

south of Cape Strawberry, and on offshore Islan(.s north of 

Cape Strawberry. Relationships between these and the 

dominant metavolcanic rocks were not examined in this study. 

Bailey (1981) suggested that subvolcanic intrusive rocks 

passed gradationally into felsic volcanic rocks in several 
areas. 

Petrography : Samples from White Bear Mountain consist 

of a recrystallized microcrystalline groundmass assemblage 

of quartz, microcline and sodic plagioclase, that locally 

retains a granophyric texture. Euhedral to ovoidal perthitic 

microcline phenocrysts locally show rims of sadie 

plagioclase. Quartz phenocrysts are less common; in places 

they have a bipyramidal habit suggesting that they were 

originally a high-temperature polymorph (Payette and Martin, 

1986). Fine aggregates of biotite and chlorite are present 

in most samples, blue-green amphibole occurs locally, but 
the most obvious mafic species are opaque oxides associated 
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with granular sphene. Other Upper Aillik Group porphyry 
bodies are similar in mineralogy, and commonly show less 

evidence of recrystallization than adjacent metavolcanic 

rocks. 

7.1.2 Supracrustal Rocks of Tbe Benedict Mountains 

(Jagged Edge Assemblage) 

General OVerview 

The label "Jagged E~ge assemblage" is used here for 

felsic volcanic and volcaniclastic rocks in the east of the 

study area (Figure 7.1), that are geographically isolated 
from the type area of the Upper Aillik Group. Gower (1981) 

correlated these with the type area (7.1.1), but stated that 
their equivalence was mostly an assumption. The name is 

introduced mostly to avoid tedious repetition of the phrase 
"volcanic sequences of the Benedict Mountains area". There 

is however, no guarantee that all these belts are of the 
same age or affinity. However, if dextral displacement along 

the suggested continuation of the Adlavik Brook Fault zone 
is removed (Figure 7.1), most of them coalesce into a single 

discontinuous unit. Occurrences on the mainland were 

examined and sampled during this project; those on Double 

Island and near Deus Cape were not visited, but are 
described by Gower (1981). Archibald and Farrar (1979) 

report an Ar-Ar age of 1630 ± 10 Ma from muscovite in a 
pegmatite pod within volcanic rocks southeast of Stag Bay, 

which provid~s a younger limit on the age of the sequence. 
Typical features of these rocks are illustrated in Plate 

7.2. 
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A 8 

Plate 7.2 Features of the Upper Aillik Group and the Jagged Edge 
Assemblage. (a) and (b) Quartz-porphyry and quartz-feldspar porphyry 
from White Bear Mountain area. (c) Glassy, silicif i ed rhyolite with 
spherulitic appearance, Jagged Edge. (d) Fine-grained, very fresh, 
quartz-feldspar porphyry, Jagged Eda e. Slabs stained for K-feldspar. 
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Field Relations and Lithology 

The best exposures are in a rugged area east of Stag 

Bay (Figure 7.1), and comprise a sequence of pink, grey and 

purple-brown felsic tuffs, agglomerates, flows(?), and 

hypabyssal intrusive rocks associated with lesser 

volcaniclastic sedimentary rocks (Gower, 1981). The 

agglomerates are essentially undeformed, and contain 

rhyolite fragments up to 30 ern in diameter. A distinctive 

lithology observed during this project is a grey, extremely 

hard, highly siliceous tuff that locally retains flattened 

shard-like fragment shapes and spherulitic textures. 

Massive, undeforrned, grey to purple feldspar-porphyry (and 

lesser quartz-feldspar porphyry) is also present. 

East of Tukialik Bay, a similar assemblage of rock 

types forms a triangular enclave within the Tukialik 

Granite. D. Bailey (pers.comrn to C.F.Gower, 1979) suggested 

that these may have a gradational relationship with the 

surro~nding granite, but they ?.re cut locally by granite 

veins (however, these veins are not obviously similar to the 

nearby Tukialik Granite). Volcanic rocks are also present in 

an elongate, east-trending belt immediately north of the 

Benedict fault zone that, based on its strongly sheared 

appearance, is interpreted as a fault-bounded sliver. 

Original characteristics in this area have mostly been 

destroyed by cataclasis, and it is possible that some 

banded, rhyolite-like rocks are in fact mylonites. However, 

quartz-eye and fragmental textures are locally preserved. 

Supracrustal rocks also occur on Double Island, and as 

a narrow coastal strip south of Deus Cape. Gower (1981) 

reports more intense deformation in these areas, and a 

higher proportion of metasedimentary material~ These 

descriptions are reminiscent of the early Upper Aillik Group 



of Gower and Ryan (1987). It is therefore possible that 

"Jagged Edge assemblage" also includes more than one 

sequence; geochemical features discussed here (7.2) apply 

only to the fresher rocks exposed on the mainland . 

.L_l_.J Bruce River Group 

General overview 

The Bruce River Group (defined initially by Smyth et 

al., 1978) is a well-preserved volcanosedimentary sequence 

exposed beyond the western boundary of the study area 

(Figure 7.1). It has been examined only in scattered 

localities during this study but, as geochemical data ar~ 

used below for comparative purposes, a brief review (drawn 

from Ryan, 1984, and Ryan et al., 1987) is included here. 

The Bruce River Group rests unconformably upon t~e 

pre-Makkovikian Moran Lake Group, and is affected only by 

Grenvillian deformation. It has a well-defined stratigraphy 

consisting of three formations defined by Ryan (1984). The 

two lower formations are dominated by terrestrial 

sedimentary rocks, whereas the uppermost and thickest 

(Sylvia Lake For~3tion) comprises a bimodal (felsic > mafic) 

volcanic assemblage. 

Previous Rb-Sr geochronological studies (Wanless and 

Loveridge, 1972; Kontak, in Ryan, 1984) suggested ages of 

1530 to 1510 Ma for the voJcanic rocks. U-Pb zircon dating 

(Scharer et al., 1988) yielded 1649 +/- 1 Ma for a rhyolite, 

indicating that it is of Labradorian age. It is the only 

known Labradorian volcanic assemblage in eastern Labrador, 

although parts of the Pets~~~iskau group in central Labrador 

have yielded Labradorian agef . (Krogh, 1985) •• 
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Field Relations and Lithology 

The lowermost (Heggart Lake) formation is a laterally 
discontinous package of conglomerate, sandstone, arkose and 

lesser mafic flows. The ov~~lying Brown Lake Formation 
consists dominantly of conglomerates and arenites containing 

significant amounts of volcanic detritus. The uppermost 
(Sylvia Lake) formation is over 8 km thick, and consists of 

mafic and felsic (and minor inte~ffiediate) volcanic rocks, 
agglomerates, breccias and (especially in the upper part) 

welded and non-welded tuff. Ryan et al. (1987) distinguish 
two large-scale cycles of volcanism, that each commence with 

mafic and intermediate rocks, and culminate in thick felsic 

sequences. They estimate the ratio of felsic to 

mafic/intermediate rocks as approximately 2.2:1; the 
intermediate compositions are rare. on the basis of outcrop 

areas, the sequence appears to contain a higher proportion 
of mafic volcanic rocks than the Upper Aillik Group. 

Mafic and intermediate volcanic rocks comprise grey to 
green, vesicular and/or porphyritic flows containing 

phenocrysts of plagioclase and clinopyroxene, with lesser 
orthopyroxene and olivine. Felsic rocks are dominated by 

grey, red, green or purplish welded ash-flow tuffs with 
prominent fragments and/or phenocrysts of feldspar. 

~ell-preserved original features include eutaxitic 

foliations and lithophysae. Coarse fragmental rocks occur 

locally, as do cross-bedded (aeolian?) sandstones. Detailed 
petrographic descriptions of the volcanic rocks are 

presented by Ryan (1984). 
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7.2 DESCRIPTIVE GEOCHEMISTRY 

Volcanic and hypabyssal intrusive rocks sampled during 

this project are represented by a total of 73 analyses. No 

distinction is made below between regional, follow-up and 

geological sample populations, as grid sarnpl ing systems 

were not employed. Most of the samples were collected in 

areas adjacent to intrusive rocks. Data presented here do, 

however, provide a good indication of the compositional 

spectrum of the Upper Aillik Group as, unlike most previous 

studies (see below) , they were collected without refel..·ence 

to mineralized areas. Comparative data from the Bruce River 

Group used below are from Ryan ( 1984). 

7.2.1 Previous Studies 

Several geochemical studies of the Upper A ill i k Group 

have been conducted in areas of uranium mineralization, 

particularly in the Michelin area. These rocks have 

variously been described as calc-alkaline, alkaline or 

peralkaline in affinity. 

Geochemical investigations are hampered by strong 

compositional (particularly alkali) disturbance, recognized 

initially by White (1976) and White and Martin (1980). 

White and Martin ( 1980) concluded that the rocks of the 

Michelin area were originally of alkaline composition, but 

were affected by Na-metasomatism and desi 1 ication, and by 

lower-temperature K-metaEomatism, both associated with 

mobility of U and Zr. 

Subsequent studies in the same area by Evans ( 1980) 

further emphasized the links between metasomatism and 

• 
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ur~nium mineralization and suggested that metasomatism took 

place via c:.ttion-exchange and substitution of Na-Al for Si 

in feldspars. A high-K calc-alkaline affinity was suggested 

for the sequence as a whole. Similar conclusions were 

reached by Bailey (1979) and Wardle and Bailey (1981). 

Gower et al.(1982) did not speculate on such matters, but 

pointed out that there were geochemical differences between 

th!:: early and late components of the Upper Aillik Group. 

Payette and Martin ( 1986), working also in the Michelin 

area, attempted to circumvent metasomatic complications by 

analyzing "melt inclusions", i.e., tiny glassy pockets that 

represent globules of magma trapped in growing phenocrysts. 

However, microprobe analyses revealed strong alkali 

variation amongst inclusions, implying that even these did 

not escape compositional disturbance. They suggested that 

an alkaline magma was most consistent with the observed 

compositional range of melt inclusions. MacDougall (1988) 

examined the sequence in the mineralized Round Pond area, 

and suggested a bimodal compositional spectrum, partly 

reflecting the presence of one of the few mafic units in 

the sequence in this area. He documented metasomatic 

patterns analogous to those of the Michelin area, and 

suggested that apparent peralkaline compositions were due 

to alteration. 

Ryan (1984), and Ryan et al. (1987) conducted 

petrochemical studies on the Bruce River Group. This 

sequence appears to be less disturbed than the Aillik 

Group: they also suggested that it had affinities to high-K 

calc-alkaline sequences, at both mafic a ,:d felsic ends of 

its compositional spectrum. 
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Table 7.1 • Average compositions of Makkovikian and Labradorian 
volcanic assemb~ages. Bruce River Group data from Ryan ( 198 4). 

UNIT 1.0 1.0 /unaltd) 1.1 1.2 1.2 /unaltd\ 1.3 1.4 

n1 
n2 

13 
3 

5 
5 

16 
15 

9 
9 

14 
13 

21 
6 -----------------------------.. ----- ......... --------------------------------............... , -----....... ----.. ------- .. --------------

(wtl) !lean S.D. Kean S.D. !lean S.D. !lean S.D. llean S.D. !lean S.D. !lean S.D. 

Si02 
Ti02 
Al203 
Fe203 
Feo 
llnO 
~ 
cao 
Jla20 
)(20 

P20S 
WI 
'MAL 

72.81 3.54 
0.32 0.22 

13.61 1.59 
1.47 1.10 
0 . 60 0.62 
0.04 0.02 
0.44 0.40 
1.09 0.93 
4.02 1.90 
4.67 2.89 
0.07 0.06 
0.69 0.38 

99. 83 

(ppll) Trace Ele~~ents 

Li 
F 
sc 
v 
cr 
li 
cu 
ZD 
Ga 
lb 
Sr 

' zr 
Jib 
lo 
Sn 
Cs 
Ba 
v. 
Ce 
Sa 
Yb 
Bf 
Pb 
Tb 
D 

16.5 19.0 
378.5 339.8 

1. 7 0.9 
21.1 9.6 
6.0 10.4 
2.5 3.3 
4.2 3.4 

u.o 34.1 
12.6 4.3 

138.1 105.8 
156.4 144.7 
32.0 24.3 

317.3 m.6 
15.5 7.1 
2.9 1.2 
3.0 3.5 
1.0 0 .9 

695.3 593.1 
40.1 32.0 
85.1 63.1 
11.6 10.0 
5.1 2.9 

10.3 5.7 
14.9 1.3 
7.2 4. 7 
2. 7 1.3 

73 . 12 354 
0.35 0.16 

13.25 1.86 
2.00 0.95 
0.24 0.18 
0.05 0.02 
0.25 0.17 
0.86 0.67 
3. 72 1.01 
5.08 0.88 
0.06 0.04 
0.66 0.37 

99.64 

13.S 12.2 
384.0 290.1 

0.7 0.0 
22.0 6.5 

3. 3 2. 7 
1.5 o.s 
2.0 1.5 

52.0 47.1 
12.3 5.0 

llU 26.8 
142.3 157.3 

33.3 20.3 
407.7 137.2 
18.7 4.5 

2.5 1.0 
1.0 o.o 
0 .5 0.0 

965.3 779.0 
51.2 38.7 

106.2 72.4 
21.4 o.o 
1.0 0.0 

15.0 o.o 
16.2 4.9 

5.5 u 
3.0 1.3 

(wtl) Partial CIPW nom 

75.42 1.56 
0.22 0.08 

11.75 0.24 
1.86 o. 78 
1.20 0.50 
0.05 0.02 
0.07 0.06 
0.52 0.22 
5.62 1.60 
2.22 2.17 
0.02 0.00 
0.46 0.28 

99.41 

7.4 1.8 
331.1 346. 3 

1.8 1.4 
ll.4 1. 7 
7.2 11.8 
5.4 9. 8 

14.6 24.3 
66.8 64.9 
24.2 6.7 
56.4 41.2 
48 .8 35.1 
71.2 22.4 

593.6 354.3 
33.8 19.5 
14.0 22.5 
9.2 9.4 
0.5 o.o 

540.6 643.1 
43.0 33.0 

122.2 53.0 
12.1 4.1 
1.3 3.1 

17.0 5. 2 
9.6 3. 7 

13.6 4.2 
4.3 0.6 

74 .26 3.29 
0.23 0 . 11 

12.49 1.35 
1.65 0.56 
0. 77 0 .67 
0.04 0.02 
0.23 0.52 
0.59 0 . 59 
4.08 1.62 
4.77 2.81 
0.03 0.03 
0.44 0 . 22 

99.58 

11.7 15.4 
272.0 401.2 

2.2 1.9 
18.4 22.1 
7.6 8.2 
1.4 1.5 
4.7 3. 7 

86.1 11.0 
15.4 6.9 

139.4 16.2 
53.4 46.3 
54.7 32.2 

529.8 264.6 
27 .8 10.7 
7.4 15.2 
5.2 2.8 
1.0 0.9 

507.8 Sl7.6 
62.8 42.0 

138.7 74.2 
12.6 7.0 
7.5 4.0 

14.6 6.9 
20.7 12.5 
12.2 7.9 
5.6 3.4 

74.53 1. 79 
0.20 0.09 

12.39 0.96 
1.57 0.58 
0.81 0. 55 
0.04 0.02 
0.10 0.09 
0.55 0. 27 
4.12 0.48 
4.71 0.52 
0.03 0.02 
0.39 0.13 

99.44 

16.2 19.7 
419.1 491 .5 

1.8 1.3 
13.0 6.9 
7.8 9.1 
1.0 o.o 
4.4 3. 3 

112.2 94.8 
16.7 7.9 

149.4 48.8 
57.2 50.5 
69.1 31.0 

550.2 338 .7 
30.4 11.0 
4.7 5.9 
6.1 3.1 
1.2 1.1 

423.6 492.9 
71.9 37.0 

1S2.6 68.2 
13.5 6.3 
7.9 4. 3 

14.6 a. 1 
23 .4 11.7 
13.2 8.3 
6.1 4.1 

71.27 3.99 
0.36 0.11 

13 . 61 1.80 
1.82 o.u 
0.79 0 . 46 
0.06 0.02 
0.28 0 . 28 
1.19 1.13 
3.90 0.28 
5.52 0.45 
0.04 0.04 
0.57 0.31 

99.41 

13.1 6.2 
541.1 3#' . 2 

4.8 .:..7 
13.3 9.9 
5.9 3.7 
2.0 2.8 
6.9 1.8 

77.1 41.7 
11.!> 6.7 

168.2 21.8 
140.9 226.4 
69.9 17.1 

490.4 129.4 
29.2 7.6 
2.8 1.1 
6.4 2.9 
1.3 0.5 

512. 4 189. 2 
86 . 2 22.1 

180.6 40. 3 
13.4 3.5 
7. 9 1.6 

13. 3 2.6 
24.0 9.1 
22.6 6.6 
7.9 3.5 

71.62 4.)7 
0.26 0.13 

14.15 2.01 
1.28 M5 
o. 70 0.51 
0.05 0.02 
0.50 0.5S 
1.40 1.13 
3. 72 1.10 
4. 81 1.17 
0.06 0.04 
0.95 0.72 

99.49 

19. 0 u. 7 
540.7 491.0 

3.4 1.4 
25. 1 14.8 
19.0 55.) 
5.3 14.9 
6.9 5.1 

44 .9 22.9 
7.8 1.7 

156.3 Sl.2 
216 .6 117.0 
25.2 9.4 

262.5 71.8 
14.2 u 

2.6 0.9 
2 . 3 1.4 
1.3 1.6 

648.6 49S.3 
40.S 14.8 
12.1 30.0 
7.9 4.0 
4.0 l.S 
9.0 2.2 

11.1 10.2 
1.6 6.9 
5.1 1.9 

------------------------------------------------------------------------------------------------------------····--
0 
c 
Or 
Ab 
An 
Di 

gr 
lit 
Il 

25.59 10.28 
0.45 o. 74 

27.61 17.17 
35.12 16.65 
4.45 4.15 
0.50 0.61 
1.42 1.41 
0.00 0.00 
0.49 0.16 
o.52 o.n 

23 . 12 1).49 
0.46 1.02 

30.49 s.u 
33.18 .... 

3.90 3.54 
0.4S 0.60 
0.53 0.54 
0.00 0.00 
0.13 0.21 
0.55 0.25 

33.41 1.&1 
0.00 o.oo 

13.23 12.91 
47.18 12.78 
0 .73 0 .59 
1.07 1.25 
0 .51 1.13 
0.00 o.oo 
1.92 1.13 
0.42 0.15 

31.06 1 .sa 
0.05 0.11 

28.38 16.61 
34.37 14. 19 
1.79 3.01 
0.42 0.48 
0.81 2.07 
0.00 0.00 
1.22 0.97 
0.42 0 . 21 

31.61 4.03 
0.03 0.07 

21.05 3.06 
34.96 4.58 
1.48 l. 71 
0.39 0.44 
0.50 0.71 
o.oo o.oo 
1.42 1.00 
0.39 C.l7 

25.11 6 . 96 
0.00 0.01 

32.96 2.68 
33.38 2.36 
3.36 4 .90 
1.(,9 0 . 67 
0 .47 o. 77 
0.00 0.00 
1.24 0.78 
0.61 0.22 

28 . 41 10.34 
o. 72 2.21 

21.13 6.97 
31.92 9.40 
!1.87 5.51 
0.41 0.19 
1. 35 1.15 
0.00 0.00 
1. 21 0.64 
0.46 0.27 --------------------------------··------------------------· ----------------------------------------------------

UY TO OIIITS (DAC - Opper Aillilt Group Jl.A - Jaqqed !dqe asselblaqe) 
1.0 -- IDAC) Dndivi4e4 volClllic and •olcaniclutic rocks 1.3 -- (UAC) Hypabyssal Intrusive locks 
1.0 (IDIIltd) -- As aboYe, e1cllldinq lfltK > 0.65 or < 0.3 1.4 -- (JEA) Volcanic IJld volcaniclastic rock 
1.1 - - (DAC) Early sequence of Cover and Iyaii (1988) 
1.2 •• (OAC) Late sequence of Cover &lid ly&D ( 1911) 
1.2 (IDIIltd) -- As above, ucludinq lfltK > 0.65 or < 0.3 

111 -- !Iaber of analyses for all ele•nta except tbost listed belov 
112 -- IIIDiber of analyses for SC, Sll, Cs, Sa, Yb &lid Bf 
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Table 7.1 (continued) 

uti!T 1.5 2.1 2.2 2.3 2.4 2.5 2.6 ------------------------------------------·--······----------------------------·----------------------------------
n1 4 3 9 6 3 27 22 
n2 1 0 0 0 0 0 0 ------·----------------------------------------------------------------------------------------------------------
(wtl) !lean S.D. lie an S.D. llean S.D. !lean S.D. !lean S.D. !lean S.D. !lean S.D. ------------------------------------------------------------------------------------------------------------------
Si02 73.~4 3.28 54.43 5. 46 60.17 3.83 51.2~ 5.43 55 .20 3.22 71.20 2.99 70.10 8.38 
Ti02 0. 28 0.15 0.69 0.14 0.73 0.10 1.41 0.82 0.71 0.02 0.34 0.11 0.37 0.23 
Al203 11.90 2.17 13.38 2. 76 1~.36 1.16 16.78 1.01 15.77 0.64 14.22 1.12 13.80 1.67 
Fe203 2.38 0.67 2.88 0.96 4.72 1.61 ~.71 3.44 3.08 0.77 1.73 0.57 1.25 1.15 
FeO 0.62 o.cs 4.27 1.33 1.07 1.16 3.63 1.61 4.06 0.60 0. 40 0 .26 1.2~ 1.47 
llnO 0.07 0.06 0. 12 0.03 o.oa 0.03 0.13 0.04 0.13 0.03 0.04 0.02 0.07 0.07 
~ 0.28 0.29 9.45 6.59 3.06 2.48 4. 59 1.72 5.07 1.41 0.37 0.22 1.43 2.42 
cao 1.85 2.00 5. 70 1.15 3.08 1.37 ~ . 64 1.33 6.93 1.33 O.S1 0.49 1.87 2. 37 
lla20 2. 38 1.29 2.90 1.43 3. 75 0.75 3.25 0.83 2.92 o.u 4.20 0.91 3.1i0 0.66 
1(20 5.80 0.85 2.92 0.81 4.67 1.53 2.63 0.,5 3.31 0.35 5.20 0.90 c.cn 1.31 
P205 0.07 0 .06 0.19 0.07 0.22 0.08 0. 30 0. 15 0.11 0.07 0.04 0.04 0 . 08 0.08 
w: 0.56 0.11 3. :!5 0 . 61 2.98 0.90 4.39 2. 67 2.11 0.53 1.13 0.46 0.88 0.46 
'l'O'l'AL 99.72 100.18 99.89 99. 71 99. 40 99.68 99.63 

(ppl) -------------------------------------------------------------------------------·····------------------------------
Li 12 .5 10. 9 
r 551.3 377.6 
Sc 2.7 0.0 
v 21.1 14. 9 141.3 22.6 107.4 37.6 182.8 46.4 182.3 54.7 11.4 6.8 37.2 53.7 
Cr 7.0 2.6 682.7 594 .5 208.3 273.6 57 . 3 67.6 114. 7 57.5 4.9 0.4 44.2 93.7 
IIi 1.0 o.o 274.0 231.0 18.9 97.5 36.3 20.4 46.3 13.5 13.7 5.3 20.9 21.8 
cu 17.3 24.2 58.7 43.8 1o.9 19.9 10.5 14.9 4.0 3.5 2.4 1.5 6.0 11.2 
Zn 54.3 10.0 54.7 4. 2 49.6 20.4 114.8 51.9 66. 0 3.5 33.1 1M 43.2 53.4 
ca 1.8 2.9 12.0 2.7 15.4 2.9 20.0 6.1 16.0 1.0 15.2 2. 7 13.9 2. 2 
lb 183.5 44.6 74.3 9.5 123.9 45.1 86.8 28.8 92.7 17.8 169.7 40.0 163.7 40.6 
sr 14&.8 164.0 407.7 103. 9 375.0 150.1 388.7 165.3 499.7 100.0 134.3 96 .9 173.9 185. 9 
y ~.3 36.4 23.7 5. 1 29.9 4.2 29.3 9.7 23.3 2.1 42.9 10.4 31.1 6.0 
Zr 509.3 330.4 149.3 79.4 m.1 50.9 177.3 57.2 126. 7 51.8 312.7 6&.4 178.5 59.7 
Jib 21.3 13.6 10.0 2. 7 13.4 3.1 10.0 3.3 7.3 3.1 19.7 4.1 U.9 5. 4 
llo 2.3 0.5 
sn s.o o.o 
cs 0.9 o.o 
Ba m.s m.o 899. 7 328.5 1268.1 189.2 972.8 261. 7 1080. 3 257.5 983.2 540.1 614.0 551.9 
La 54.0 14.7 
Ce 125.5 52.5 
Sa 10.5 o.o 
Yb 6.6 o.o 
Bf 12.0 0 .0 
Pb 20.1 4.0 13.3 1.2 13.6 7.1 9.7 ... 10. 3 0.6 20.7 5.8 28.2 15.7 
!II 14. 3 12.6 4.7 4.7 9.0 5.4 s.s 5. 3 1.3 0.6 17.4 6.5 14.0 6.6 
0 6.4 3.0 1.0 0.0 2.1 1.1 1.7 1.0 1.0 0.0 3.4 2.0 3.1 2.0 

(wtl) ------------------------------·---------------------------------------------------------------------------------
0 34.51 5.73 3.73 3.81 10.65 5.81 6.16 5.22 4.65 4.06 24.94 5.59 25.00 13.18 
c 0.21 0.33 o.oo 0.00 0.26 0.52 0.66 1.04 0.00 0.00 0. 36 0.43 0.31 0. 41 
or 34.56 5 .12 17.75 4.86 21.44 9.19 16.31 3.59 20.12 2.23 31.15 5.34 29.48 7.69 
Ab 20.25 10.95 25. 22 12. 31 32.69 6.49 21.15 6. 48 25.39 3.14 36.08 7.14 30.77 5.66 
An 4.13 4.49 15. 32 4.00 10.94 4.31 22.80 3. 21 20.65 4.36 3.67 2.48 6 . 18 7.19 
Di 0.33 0.62 10.17 6.49 2.14 3.42 3. 87 3.60 11.45 2.12 0.19 0.36 2.15 4.02 

~r 0.55 0.11 15.15 6.69 7.01 6.51 6 .17 6.35 11.34 2.94 o.ea 0.61 2.60 4.31 
0.00 0.00 6.38 11.05 0.00 0.00 3. 76 5.83 0.15 0.25 0.00 0.00 0.76 2.70 

lit 1.44 1.19 4.29 1.44 0.11 1.42 5.08 2.16 4.59 1.12 0.41 0.51 1.40 1.65 
11 0.53 0.28 1.35 0.27 1.37 0.24 2.79 1.60 1.31 0.03 0.61 0.24 0 .69 0. 44 --------------------------------------------------------------------------------------------------------

UY 'J'O Ollrs : (JIA - Jaqqed Edge ISSelblaqe, BIG - llrllce lher Croup) 
1.5 -- (J!A) lyp&byssal intnashe roclls 2. 4 - - ~BiG) Basalt and andesite (Pearl Lake) 
2.1 -- (BIC) Imer.ost basalt and andesite 2.5 -- BIG) Tracb e and lb olite S Ilia Lake l'l) 
2.2 -- (BIC) Andesite and Tracbyte 2.6 -- BIG) Ondiv~ded (aostly fels1cl volcanic ror~ 
2.3 -- (BIC) Basalt &1111 andesite (caael Lake) 

n1 ·- Iuber of analyses for all eleaenta except those listed below 
n2 -- Jlulber of anal~ses for Sc, sn, ca, Sl, Yb and Bf 
(For analytical cleta .la of BIG data, see lyan, 1914) 



- 281 -

7.2.2 General Geochemistry 

Summary of Numerical Data 

Mean compositions of various volcanic units are listed 
in Table 7.1. Data for the Bruce River Group are from Ryan 

(1984), and are subdivided into his six principal units. 
The Upper Aillik Gruup in its type area is subdivided 

into "early" and "late" components (c.f. Gower and Ryan, 
1987), hypabyssal intrusive rocks and unclassified samples 

(most of these are strongly recrystallized). The Jagged 

Edge as3emblage is similarly subdivided into volcanic or 

pyroclastic rocks and hypabyssal intrusive rocks. 

Major element compositions of all felsic rock types are 

closely similar. The mean composition of samples from the 

early Upper Aillik Group (c.f Gower and Ryan, 1987) is 

sodic (i.e. Na 2o > K20) compared to other subdivisions. 

However, this average is based on only 5 samples, and is 

radically different from representative compositions listed 

by Gower and Ryan (1987). It is, however, similar to the 

mean for these units in the Round Pond area reported by 
MacDougall (1988). There are problems in differentiating 

recrystallized arenites from rhyolites in the early Upper 

Aillik Group, and these averages are not neccessarily 

"igneous" compositions. Undivided Upper Aillik Group rocks 

are similar in mean composition to the Late Upper Aillik 

Group and hypabyssal intrusive rocks. "Unaltered" mean 

compositions (for samples where 0.3 < N/N+K < 0.65) are 

similar to those for all data. This reflects complementary 

patterns of Na and K-metasomatism, with total alkali 

contents remaining approximately constant (see below). 

Trace element patterns are broadly similar for all 

felsic units, but the Jagged Edge assemblage and Bruce 
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~~-------------------------------~ 

• UPPER AILLIK GROUP (n=4S) 

• THIS STUOY ONLY 

.. 
• 
• 

BRUCE RIVER GROUP .. 
• 

• 

.. 

• 
• 
.. 
• 
• 
.. 

UPPER AILLI K GROUP ( n-1 41) 

INCLUDING DATA FIIOII ,..cOOUGALL < 1911) 
AND UN PUlL I SHED JEGIDNAL DATA FIDft 
D.WILTDN • 

·~-,~~~~~~~~ 

·~-------------------------------, 

BENEDICT MOUNTAINS AREA (n•25) 

• 
THIS ST\JDY ON I. Y 

• 

• 

.. 
• -'-r""""T-"'1•· 

AFGT- Alkali Fsp Granite MZDR - Monzodiorite SENT • Syenite 
AFQS- Alkali Fsp Quartz Syenite TNL T- Tonalite MZGT- Monzogranite 
AFST - Alkali Fsp Syenite QZDR - Quartz Diorite QZMZ • Quartz Monzonite 
GRNT- Granite (s.s.) DORT- Diorite MNZN. Monzonite 
QSZT ·Quartz Syenite QZGB - Quartz Gabbro GRDR . Granodiorite 

GBBR -Gabbro OZMD- Quartz Monzodiorite 

Fiqure 7.2. Relative abundance of IUGS rock types calculated from 
normative mineralogy After streckeisen and LeMaitre (1979). Note 
that this is based on Barth mesonorms, not the CIPW norms listed 
in Table 7.2. 
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River Group display somewhat lower La, Ce, Zr and Y 

contents than the Upper Aillik Group. All volcanic 

sequences have relatively low fluorine contents. 

Abundance and Distribution of Rock Types 

Relative abundances of IUGS rock types, expressed as 

equivalent plutonic rocks (Figure 7.2) have been calculated 

from normative data using the method of Streckeisen and 

LeMaitre (1979). It is recognized that sampling is 

unstructured compared to that for plutonic suites, and that 

these patterns may not be fully representative. 

The Upper Aillik Group is dominated by equivalents of 

alkali-feldspar granite, with only minor equivalents of 

granite, tonalite, monzongranite and granodiorite. 

Addition of regional data from D.Wilton (unpublished) and 

MacDougall (1988) does not change the distribution of rock 

types significantly. Note that mafic volcanic and 

tuffaceous rocks were not included in this compilation. The 

Jagged Edge assemblage includes a higher proportion of 

granite and monzogranite equivalents. If the data of Ryan 

(1984) are representative, the Bruce River Group has a 

strongly bimodal distribution of rock types. 

Alkali-feldspar granite equivalents are dominant, but there 

is a lesser population corresponding to quartz 

monzodiorite, quartz monzonite and quartz syenite. True 

basaltic compositions (i.e. equivalent to normative gabbro) 

a:e absent. Ryan et al. (1987) also note a bimodal Sio2 
distribution in a larger dataset including upublished data 

obtained from W.R.Baragar. The Upper Aillik Group has also 

been described as bimodal in previous studies (see above) 

but, on the basis of map areas, is poorer in mafic 

compositions. 
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7.2.3 Geochemical Trends and Contrasts 

Geochemical data are divided into three groups (A, B 
and C) to avoid clutter in diagrams. The X-axis scales in 

Harker variation diagrams are expanded for the Bruce River 
Group to compensate for its greater sio2 range. Y axis 

scales are constant for all figure groups. 

Major Element Patterns 

Major element oxides show expected trends. All except 

Na2o and K2o have strong negative correlations with 

sio2 (e.g. Tio2 and FeO total; Figure 7.3). K+N/A 

(Agpaitic Index} values (Figure 7.3} are mostly> 0.9 in 

the Upper Aillik Group, and several samples are 

peralkaline. There are no peralkaline rocks in the Jagged 

Edge assemblage or Bruce River Group, which show lower 
K+N/A at equivalent sio2 contents. The Upper Aillik Group 

includes a few peraluminous samples (Figure 7.3}, but most 
samples have A/C+N+K < 1.0. In contrast, ca. 50\ of the 

Jagged Edge assemblage and Bruce River Group samples are 
peraluminous above 65\ Sio2 . 

Alkali disturbance in the Upper Aillik Group is 
indicated by variation of N/N+K ratios versus total alkali 

content (Figure 7.4}. As noted previously (Evans, 1980; 

MacDougall, 1988}, many Upper Aillik Group volcanic rocks 

lie outside the "igneous spectrum" of Hughes (1973). The 

Jagged Edge assemblage and Bruce River Group show less 

evidence of alkali disturbance. 
AFM projections (Figure 7.5} are totally useless in 

unit discrimination. CNK projections (Figure 7.5} 
illustrate the alkali disturbance in the Upper Aillik Group 

well. Alkali- Sio2 plots (Figure 7.5} indicate that all 
volcanic suites are subalkaline, at least in terms of 

thelr present compositions. 
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Normative Compositions 

The Upper Aillik Group has a scatt~red distribution in 
the Q-Ab-Or-An system (Figure 7.6), due to alkali 

disturbance. The Bruce River Group has the most coherent 
distribution, but all volcanic sequences are scattered 

compared to plutonic suites described in preceding chapters 
(Figure 3.6, p.81; Figure 4.5, p.136; Figure 5.13, p.208). 

The felsic volcanic rocks of all sequences occupy the 
general area of ternary minima in the granite system (James 

and Hamilton, 1969). 

Trace Element Patterns 

octahedrally Co-ordinated cation (OCC) Ble.ants 
cu, Ni, Sc, Cr and V) have closely similar, negative trends 

against Sio2 and do not discriminate sequences (e.g. V; 
Figure 7.7). Mafic volcanic rocks of the Bruce River Group 

show the highest levels of these elements. 

Lov-Field Strength (LFS) Trace Elements : Incompatible 
LFS elements (e.g. Rb and U: Figure 7.7) have similar 

average abundances in all sequences (Table 7.1), but 
exhibit considerable scatter in the Upper Aillik Group, 

probably in response to alkali metasomatism. Volcanic rocks 
show much greater scatter than hypabyssal intrusiv~ rocks. 

Compatible LFS elements (e.g. Ba and Sr: Figure 7.7) 
show negative trends against Sio2 , but some high-sio2 
Upper Aillik Group volcanic rocks show suspiciously high sr 
and Ba. The convex-upward Ba trend in the Bruce River Group 

resembles patterns in compositionally expanded plutonic 
suites such a~~ the Labradorian Mount Benedict Intrusive 

Suite (Chapter 5), but the felsic compositions do not show 
strong incompatible element enrichment. 
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High J'ield Strength ( HFS) Elements : Zr and Nb (Figure 

7.8) are enriched in the Upper Aillik Group relative to the 

Bruce River Group and Jagged Edge assemblage volcanics. The 

volcanic rocks of the Upper Aillik Group show greater 

variation than hypabyssal intrusive rocks. Upper Aillik 

Group patterns closely resemble those of syn- and 

post-tectonic Makkovikian granites, in particular the 

Kennedy Mountain, Strawberry and Lanceground Intrusive 

Suites, whose distribution is indicated by dashed boxes in 

Figures 7.7 and 7.8. 

Rare Earth Elements ( REE) : Ce and Y ( Figure 7 • 8) are 

enriched in the Upper Aillik Group relative to the Jagged 

Edge assemblage. Their distribution resembles those of HFS 

elements described above. 

Indeterllinate Trace Elements : Fluorine (Figure 7. 7) 

is generally low (< 700 ppm) in the Upper Aillik Group and 

Jagged Edge assemblage, but locally ranges up to 1500 ppm. 

There appears to be a negative trend against Sio2 in the 

latter sequence. Hypabyssal intrusive rocks have higher F 

contents than volcanic rocks, but not to the levels of some 

Makkovikian granites. Zn (Figure 7.7) has an inverse trend 

against sio2 in the Bruce River Group (Figure 7.8), but 

is scattered in the Upper Aillik Group, where Zn contents 

are anomalously high abo•re 70% sio2 . 

Trace Element Variation in Response to 

Disturbance of Major Element Compositions 

Strong negative correlations are present between LFS 

trace elements (e.g. Rb, U, Pb, also Li) an<.! N/N+K ratios 

(Figure 7.9), indicating that soda enrichment is 



291 

2oo~~.AJ 
150 

100 

150 8 

100 

x,---·-1 ~ o L ........ ...L ......... ~~M~·~ 
50 

60 70 80 

•oo~, 'I''' l''''j I -L--, 

300~ xl el 

l I I 200L ~~X~ 
100 X ~);•' X 

X 0 
0 ~~~~~~~ 

60 10 eo 

• I II " I 

• 
300 

0 

0 
0 

200 

100 

80 70 

20 I""T.......--r-r-,1r-ro .,.., ..,.....,,,....., ..,,....,....,.., ,.., •1· ~~~ 

15 f-

10 f-

5 1-

500 

2000 

ISOO 

1000 

1000 

X 

)( 

X 

GROUP .A. DIAGRAMS 

UPPER AILLIK GROUP 

• 0 

• • 

X 

15 1-

10 1-

1000 

!100 

0 
60 

2000 

1!100 

1000 

500 

0 

0 

X Und•v•ded wokan•c •nd volcan•clast•c rocks 
a Earty Sequence ol Goweoond Avon 

0 

• 

70 

• 
00 

00 0 

% 

2~0 ·- ··--~ ·- --·-~·- --"J 

~.o o • C i. 
150 r .. tP ~·~ 

• 0 0 

100 r .. . . ~ 

50 ::- • • .l 

L -*+ •. • 1 0 ----...__ --+~dlff . ..:l 
so 60 >o eo 

•oo r ·----.......---- - ..,..------, 
I 
I 

300 r 
200 I 

0 

~ • 

100 ~ 0~0 o..ft• 
o L~ -. 0 

• t :f+~oj . ~·;~~-
50 so 70 80 

20f 15 

10 

5 + t 

r o: o : !+~:4 
0 ~-<1!'!1!-t---'-+-'+-

t 

·t 

50 60 ;o 10 

1000 ,...-----.-----...----., 

!100 
+ 

.,. + + 
0 +. J +,l+ + 

1.---.~-· _..u:_:~~. 0 
50 

2000 

1!100 

1000 

!100 

flO 10 

• + 
cf*qo; 
+ ' 

0+ 0 • 0 

NO OAT~ 

GROUP ·c DIAGRAMS 

BRUCE RIVER GROUP 

0 Maf.c wok:ante ro.. "' 
• tnletrned•ate wolc intC rock I 

10 

> 

.0 
a: 

,_ 
en 

e 
a. 
a. -

• Late Sequence of Gowe• •"tt "'''" ., HypoDyssolonlrusove rockt (Oz ·~•c oorphyty) -t Fetac wo&cante: roc:kl end und•v•d~ we>'cante rock I 

Fiqure 7.7. V, Rb, U, Sr, Ba and F versus Sio2 in volcanic 
asser.olages. See text for discussion. 



J~O~ r,- , r ' r , r 1 , 1 -, -, , , . , 

8~<i r A 

..... , ... . 

._ ,_ . J 

1?0 

100 

80 

40 

20 

60 

20 

lOO 

200 

X 

X 

100 

50 

GROUP 'A' DIAGRAMS 

UPPER AILLII( GROUP 

70 

• 

• 
• X 

I I ' l ~ ~~ '; r I t I 

,.J 

8~ 

i'·.'·. 

o L 
6~ 

• l . 

292 -
' ~ - .... , ' ~ ' 
B 

• 1 J.. ...l l .. J • 
70 

•• • , 1000 ·----.-----.----~ 

. . .J 
~--

c 

+ + + ++ 
0 • .. ... ~ +"-+t 
~ rlJIItr> + + ~ 

0 

O 5'':0----6~0:-----7"'-0---.....JBO 

toO r--,-,......-.,.,.....,...T""""T"T""T"'T""o--T-.-,......,..., 
I 

1•0 ~ 

80 

120 

100 

80 

60 

•o ·~ 
0 0 <> 0 _r,O 

• 
120 

100 

80 

60 
+ 

0 5-Lo---~so----7•0---_Jeo 

20 $~•<>0 0 v 
0a~O~~.._~I~~~7LO~~O~J_~~80 

60 

<> 

70 

I 

<> 
100 

~ o <>•<> •o 
<>oo ~ ~~ 50 0 

I I 

GROUP ·a· DIAGRAMS 

BENEDICT MOUNTAINS AREA 
(Jaggad Edge Assemblage) 

• 

• 
0 
c 

80 r----r-------~----~ 

20 • + t•t~ 
~~·· ............ 

0 0 
50 60 70 

NO 01.T1. 

NO 01.TA 

150 ·---,-----.-----, 

100 1-
+ 

t> 0 + 
o e ~~~ 

50 • 

GROUP 'C' DIAGRAMS 

BRUCE RIVER GROUP 

0 Maloc: volCanic rocka 
e lnterme1•••• v~cantc rocka 

80 

... 
N 

.D 
z 

(I) 
(.) 

c 
N 

A ~~~;--tqdu:~~:~fccf~.~~~"A~:~ttc rocks 

~ ~~~:.~~:r.~~~~~~~~:;ro~~,~p porphyry) 

0 Volcln•c and volcl. •~1aatre roctts 
• Hypabyaaar .nlrus••• rock a 

+ Fetaoc: volcanic rocka and undivided volea~le rex ka 

Figure 7. 8. Zr, Nb, Y, Ce, Li and zn versus sio2 in volcanic 
assemblages. See text for discussion. 

-E 
Q. 
Q. -



- i~J -

accompanied by depletion of these elements, and potHsh 

enrichment by an increase. Other trace elements (e.g. ~r, Y 

and Nb) are uncorrelated with N/ N+K, and fluorine is 

depleted in both sodic and potassic variants. This 

indicates that the higher Zr, Y and Nb in the Upper Aillik 

Group (compared to other sequences) is a primary feature, 

and u~related to metasomatic effects. The patterns of 

alkali disturbance, and trace element behaviour, are 

remarkably similar to those documented from the plutonic 

rocks of the Kennedy Mountain Intrusive Suite (Chapter 3; 

Figure 3.9, p.86). 

Trace Element Ratios 

K/Rb ratios (Figure 7.10) are constant in all three 

groups of volcanic rocks at ca. 400 - 500, but the Upper 

Aillik Group includes a disturbed population with very low 

K/Rb. 
Rb/Sr ratios (Figure 7.10) range from less than 0.1 to 

greater than 10 in all three suites, and show great 

variation in the Upper Aillik Group; this variation is 

almost certainly related to alkali metasomatism. In 

contrast, the Bruce River Group has a well-defined 

curvilinear trend, which becomes flat-lying in high-silica 

rocks. 
Ba/Sr ratios (Figure 7.10) are obviously disturbed in 

the Upper Aillik Group, but show a consistent trend (BajSr= 

2 to 4) in the Jagged Edge assemblage. The Bruce River 

Group has a curvilinear trend. LaN/YN ratlos are 
consistent (ca.lO to ;)) in all groups, but the absolute 

abundances differ (see Figure 7.8 also) 
Bruce River Group trends are consistent with removal of 

plagioclase (± mafic minerals) from less evolved 
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compositions, and increased K-feldspar fractionation in 

more siliceous magmas. Jagged Edge assemblage trends are 

also consistent with feldspar fractionation. No conclusion 

can be drawn from Upper Aillik Group data. 

Rare-Earth Element (REE) Patterns 

Five samples were analyzed for the complete REE 

spectrum (Figure 7.11): samples from the Upper Aillik and 

Bruce River Group are from fresh, unaltered localities 

dated by Scharer et al. (1988). All have closely similar 

patterns, which are similar to those of Makkovikian and 

some Labradorian granites (Figures 3.11, p.91; 4.9, p.145; 

5.17, p.216). 

This similarity is not, however, an indication of a 
direct relationship between the volcanic sequences, as the 

White Bear Mountain porphyry is 50 Ma younger than other 

Upper Aillik volcanic rocks and 15C Ma older than the Bruce 

River Group (Scharer et al., 1988). Patterns are similar to 

those previously reported by White and Martin (1 980), Gower 

and Ryan (1987) and Ryan et al.(1987) from the Upper Aillik 

and Bruce River Groups respectively. 

Correspondance of Volcanic and Plutonic Assemblages 

Table 7.2 compares the average compositions of volcanic 

and hypabyssal rocks of the Upper Aillik Group and Jagged 

Edge assemblage to granitoid plutonic units that have 

similar major element compositions. 
With the exception of fluorine, trace element patterns 

• for the Upper Aillik Group are very close to those of the 

Kennedy Mountain, Strawberry and Lanceground Intrusive 
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Table 7.2. A comparison of average compositions of volcanic 

assemblages to Makkovikian and Labradorian plutonic units of 
aiailar aajor eleaent composition. 

OIIT l.O 1.1 1.2 1.3 11 23-26 27-29 
... .. --.. ----...... -------... ------------------.-........ -----.. ------------------. -----.... --.---------------... ---......... -----
,1 13 5 16 14 97 197 82 
n2 3 5 15 13 22 142 66 --.... ---------... ---..... ------------.. -- ....... ------------..... ------------...... --------------------.. --------..... -----..... -----
(Wtl) !lean S.D. !lean S.D. Jlean S.D. !lean S.D. lie an S.D. llean S.D. Jlean S.D. ----------------------------------------------------------------------------------------------------------.. -------
Si02 72.81 3.54 75.42 1.56 74.26 3.29 71.27 3.99 73.58 2.98 71.29 4. 71 72.12 2.93 
Ti02 0.32 0.22 0.22 0.08 0.23 IJ .ll 0.36 0.11 0.29 0.19 0.31 0.27 0.32 0.19 .. 
Al203 13.61 1.59 11 .75 0.24 12.49 1.35 13.61 1.80 12.67 1.15 13.68 1.55 13.22 1.34 
Fe203 1.47 1.10 1.86 0.78 1.65 0.56 1.82 o.aa 1.24 0.70 1.05 o. 74 1.21 0.57 
feO 0.60 0.62 1.20 0.50 0.71 0.67 0. 79 0.46 1.39 1.17 1.68 1.47 1.44 0.87 
llnO 0.04 0.02 0.05 0.02 0.04 0.02 0.06 0.02 0.06 0.02 0.06 0.06 0.06 0.04 
~ 0.44 0.40 0.07 0.06 0.23 0.52 0.21 0. 21 0.19 0.25 0.36 0.50 0.11 0.17 
cao 1.09 0.9) 0.52 0.22 0.59 0.59 1.19 1.13 0.12 0.56 1.14 1.04 0.11 0.47 
Ja20 4.02 1.90 5.62 1.60 4.08 1.62 3.90 0.21 4.00 0.41 4.09 0.16 3.97 0.61 
K20 '-67 2.19 2.22 2. 17 4.17 2.81 5.52 0.45 U5 0.64 5.12 1. 10 5. 47 0.90 
P205 0.07 0.06 0.02 o.oo 0.03 0.03 0.04 0.04 0.05 0.05 0.07 0.09 0.04 0.04 
WI 0.69 0.31 0-46 0.21 0.44 0.22 0.57 0.31 0.45 0. 22 0.67 0.37 0.53 0.20 
!O'I'AL 99.a3 99.41 99.5a 99.41 99.57 99.52 99 .U 

(ppl) rrace Ele~ents -----------------------------------------------···-----------------------·---------------------------------·-------
Li 16.5 19.0 7.4 1.1 11.7 15.4 13.1 6.2 14.9 11.7 25.0 23.5 13.9 11.7 
r 371.5 m.a 331.1 346.3 272.0 401.2 541.1 343.2 1029.9 803.1 1420.0 1141 1244.6 935.7 
sc 1.1 0.9 1.8 1.4 2.2 1.9 u 2.7 1.4 0.9 3.1 4.1 3.1 5.3 
v 21.1 9.6 11.4 1.7 11.4 22.1 13.3 9.9 15.9 13.4 23.3 29.2 12.8 7.7 
cr 6.0 10.4 7.2 11.8 7.6 1.2 5.9 3.7 4. 7 3.a 5.1 6.5 3. 7 2.9 
li 2.5 3.3 5.4 9.8 1.4 1.5 2.0 2.8 1.3 1.2 2.2 3.9 1.5 1.8 
cu 4.2 3.4 14.6 24.3 4.7 3.7 6.9 ... 3.9 3.9 9.3 3a.4 6.0 9.2 
Zn 44.0 34.1 66.1 64.9 16.1 u.o 77.8 41.7 77.1 29.9 75.1 69.6 89.6 59.6 
ca 12.6 4.) 24.2 6.7 15.4 6.9 11 .5 6.7 16.5 6.8 16.9 a.6 21.4 10.0 
lb 131.1 105.1 56.4 41.2 139.4 16.2 161.2 21.1 153.5 47.1 178.4 65.0 172.5 44.1 
Sr 156.4 144.7 41.1 35.1 53.4 46.3 14o.9 226.4 60.1 77.5 111.7 130.2 61.2 65.1 
y 32.0 24.3 71.2 22.4 54 .7 32.2 69.9 11.1 70.9 28.9 55.4 43.1 74.4 32.1 
lr 317 .3 m.6 593.6 354.3 529.8 264.6 490.4 129.4 m .o 151. a m.5 55&.5 675.7 439.3 
Jb 15.5 7.1 33.1 19.5 27 .8 10.7 29.2 7.6 27.9 14.0 26.0 21.0 29.3 11.1 
110 2.9 1.2 14.0 22.5 7.4 15.2 2.8 1.1 3. 7 1.9 4.3 7.7 4.3 2.3 
Sn 3.0 3.5 9.2 9.4 5.2 2.1 6.4 2 9 3.5 2. 5 5.1 9.9 4.0 2.6 
Cs l.U 0.9 0.5 0.0 1.0 0.9 1.3 0.5 0.6 0.4 1.2 1.0 1.1 0.7 
Ba 695.3 593 .1 540-6 643 .1 507 .a 517.6 512.4 189.2 453 .1 411.7 501.9 382.6 329.6 260.1 
La 40.8 32.0 43.0 33.0 62.8 42.0 a6.2 22.1 76.6 33. 3 90.7 lll.7 122.a 62.6 
ce 15.8 63.1 122.2 53.0 138.7 74.2 180.6 40.3 158.7 65.7 111.7 197 .o 247.2 121.1 
Sl 11.6 10.0 12.1 4.1 12.6 7.0 13.4 3.5 12.6 3.5 13.1 10-4 20.1 9.1 
Yb 5.1 2.9 8.3 3.1 7.5 4.0 7.9 1.6 7.7 3.2 6.6 4.7 u 4.3 
If 10.3 5. 7 17.0 5.2 14 .6 6.9 13.3 2.6 12.1 3.1 13.3 13.3 19.1 10.3 
~ 14.9 1.3 9.6 3. 7 20.7 12.5 24 .0 9.1 20.3 10.4 37.3 205.3 24 .5 13.5 
!II 7.2 4.7 13.6 4.2 12.2 7.9 22.6 6.6 15.2 9.6 18 .3 20.5 18.9 8.0 
D 2. 7 1.3 4.3 0.6 5.6 3.4 7.9 3.5 4.7 3.0 5.8 7.0 5.5 2. 3 

(lltl) Partial CIPII nons ---------·-------------------------------------------------------------------------------------·------------------
0 25.59 10.21 33.48 ua 31.06 7.5a 25.18 6.96 29.10 6.01 24.90 9.23 26.22 7.51 
c 0.45 0.74 0.00 0.00 0.05 0.11 0.00 0.01 0.02 0.06 0.12 0.23 0.10 0.70 
Or 27.68 17.17 13.23 12.91 28.31 16.68 32.96 2.68 21.89 3.89 30.31 5.96 32.64 5.34 
lb 35.12 16.65 47.1112.78 34. 37 14.19 33.38 2.36 34.11 4.02 34.90 7.35 33.79 5.15 
All 4.C5 4.15 0.73 0.59 1. 79 3.01 3.36 4.90 2.30 2. 27 3.66 2.94 1.90 1.64 
Di o.so 0.61 1.07 1.25 0.42 0.41 1.09 0.67 1.08 0.17 1.28 2.82 1.62 1.35 

~r 1.42 1.41 0.51 1.1) 0.11 2.07 0.47 0.77 1.22 2.00 2.15 2.26 0.96 1.05 
0.00 0.00 o.oo 0.00 0.00 0.00 0.00 0.00 0.00 o.oo 0.03 0.26 0.00 0.00 

Rt 0.49 0.16 1.92 1.13 1.22 0.97 1.24 0.78 1.58 0.75 1.31 1.00 1.63 0.77 
11 0.52 0.37 0.42 0.15 0.42 0.21 0.61 0.22 0.54 0.36 0.61 0.52 0.62 0.36 -----------------------------------------------------------------------------------------------------

K!l !0 UII!S (DAG -- Opper Aillii Gr~) 
11 -- Kemledy lountain Intrusive SUi te ... 1.0 -- (OAG) Dlldivi ded volcanic and vo caniclastic rocks 

1.1 -- (OAG) Early sequence of Gover ancllyan (1981) 23-26 -- Strawberry Intrusive Sui te 
1.2 -- (DAG) Late sequence of Gover and ly111 (1988) 27-29 -- Lanceqrollll<l Intrusive SUite 
1.3 - (OAG) Hypabyssal iotrusive rocks 

nl -- flllber of analyses for all eleJeJ!ts e1ce£t tbose listed below 
n2 -- IUiber of analyses for SC, Sn, Cs, Sa, Y and If 
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Table 7.2 (continued) 

OliiT 29 liBll 1.4 45 46·47 -..----- - -u--
. -------------- ... ----------...... --.. -......... ---------.. -.. ---....... -... -... ------ ...... ---....... --------.. --.... ---.. -----... -- .. -.. -----.... .... -- ..... .... 
n1 41 11 21 70 34 67 4~ 

n2 31 11 6 57 29 39 11 ---------------------------.......... ----.. ----- ... -----------... ---------------.. -... -.. ---- .. ---...... ---------- .. ..... .. ------...... .. -- .. -.... 
(WU) lie an S.D. !lean S.D. lie an S.D. lie an S.D. !lean S.D. !lean S.D. lie an S.D. ----...... ---------------------------------------------------------------------------------------------------------..... -
Si02 72.84 2.75 72.28 1.25 71.62 4.37 73.50 4.42 73.24 3.22 70.69 3.31 68.54 4.42 
Ti02 0.30 0.11 0.35 0.06 0.26 0.13 0.14 0.12 0.15 O.ll 0.30 0.18 0.44 0.20 
Al203 12.99 1.34 13.32 0.55 14.15 2.08 13.49 1.18 13.98 1.49 14.19 1.06 14.98 1.62 
Fe203 1.07 0.39 1.57 0.33 1. 28 0.55 1.08 3.23 0.61 0.45 0.97 0.40 1.20 0. 61 
YeO 1.35 0.68 0.73 0.33 0.10 0.51 0.70 1.56 0.62 0.31 1.09 0.66 1.87 1.01 
llnO 0.06 0.03 0.06 0.02 0.05 0.02 0.05 0.04 0.04 0.01 0.05 0.02 0.06 0.03 
JlqO 0.17 0.15 0.21 0.09 0.50 0.55 0.21 0. 24 0.18 0.13 0.38 0.27 0.86 0.!>4 
cao 0.82 0.42 0.11 0.25 1.40 1.13 0.76 0.44 0.78 0.36 0.97 0.49 2.04 1.02 
lla20 3.92 0.66 3.90 0.27 3. 72 1.10 4.26 1.07 4.27 1.11 4.28 0.43 3.89 0.55 
K20 5.42 0.67 5.67 0.30 4.81 1.17 4.72 1.22 4.98 0.87 5.58 M1 4.70 0.62 
P205 0.04 0.02 0.04 0.02 0.06 0.04 0.03 0.03 0.02 0.03 0.05 0.06 0.15 0.09 
LDI 0.50 0.18 0.46 0.09 0.95 0.72 0.58 0.27 MO 0.13 0.75 0.11 0 .11 0.24 
TO'I'AL 99 .48 99.48 99.49 99.48 99. 37 99.50 99 .50 

(ppi) 
---···· ·------------------------------------------------------------------------------------------------··--------
Li 14.6 15.2 12.5 4.2 19.0 14.7 20.5 13 .6 20.7 19.8 25.3 11.0 2!>.1 12.5 
r 1084.7 763.1 588.6 340.5 540.7 491.0 511 .7 436.6 177.7 120.6 1240.5 617.4 679.1 257 .1 
sc 3.2 1.7 4.5 1.0 3.4 1.4 1.4 1.2 1.9 1.2 2.9 1.7 6.8 2.4 
v 13.8 7.1 11.5 6.) 25.8 14.1 11.4 18.1 14.6 6.8 23.1 13.1 44.6 30.2 
cr 3.1 3.3 5.3 3.0 19.0 55.3 4.0 6.4 3.5 3.8 6.5 3.8 6.5 7.0 
IIi 1.1 2.4 1.4 1.2 5.3 14.9 1.4 1.3 1.7 2.1 1.9 1.7 2.1 3.0 
cu 4.7 3.5 8.2 9.6 6.9 5.1 9.2 20.2 3.8 3.7 10. 1 1.1 9.1 18.7 
Zn 82.8 59.0 69.4 34.6 44.9 22.9 34.9 30.5 28.8 1D.9 39.9 14.0 46.9 21.4 
Ga 16.2 7. 3 1.7 1.0 7.8 1.7 12.0 6.6 11.7 5.8 8.6 2.1 12.1 1.1 
lb 167.1 52.5 176.3 20.4 156.3 58.2 181.7 71 .7 191.1 61.2 315.3 11.3 140.5 38.7 
sr 60.0 61.8 16.5 34.1 216.6 117.0 134.5 210.4 17.1 75.8 126.1 108.3 277.7 154.1 
y 75.5 29.3 63.1 11 .8 25.2 9.4 26.5 23.0 25.3 20.2 27.8 7.6 21.2 10.2 
Zr 560.7 210.9 446.5 106.6 262.5 78.1 160.1 99.3 185.6 172.3 345.0 140.0 240.0 13.1 
Jb 29. 2 10.1 26.1 3.7 14.2 5.6 17.2 8.5 20.1 13.6 29.0 8.6 13.6 4.4 
IO 3.6 1.5 2.6 0.9 2.6 0.9 84 .5 578.7 28.1 142.9 4.3 2.7 3.2 1.2 
Sn 4.2 2.1 5.7 2.2 2.3 1.4 2.9 2.3 2.4 2.1 7.2 4.2 3.9 3.3 
cs 1.1 0.7 1.5 0.5 1.3 1.6 2.2 2.1 1.9 1.3 9.0 4.3 4.1 1.8 
Ba 308.1 244.0 550.1 155.9 648.6 495.3 391.2 360,5 519.0 675.5 311 .9 352.6 961.5 542.3 
La 104.7 36.4 78.8 17.4 40.5 14.8 22.1 21.4 3Q.9 22.3 56. 3 22.9 50.6 14.1 
Ce 211.9 71.6 166.4 30.9 82.1 30.0 45.4 43.8 63.2 45.7 114.0 43.7 100.1 21.5 
Sa 18.0 6.6 12.5 2.9 1.9 4.0 4.4 4.0 4.2 1.9 6.9 1.7 9.) 3.0 
Yb 8.5 2.9 7.5 1.1 4.0 1.5 3.9 3.6 2.8 0.6 4.5 0.9 2.5 o.o 
Bf 16.1 7.0 12.6 2.1 9.() 2.2 5.6 3.0 5.6 1.5 9.9 3.1 12.5 21.1 
Pb 24.7 12.0 25.5 1.6 18.1 10.2 22 .6 9.2 26.5 11.5 23.4 8.0 16.8 8.1 
Tb 22.3 7.3 21.5 4.4 8.6 6.9 13.6 1.5 19.1 9.2 37.5 13 .1 14.8 7.) 

0 6.3 2.1 7.6 u 5.8 1.9 6.0 5.1 7.4 5.0 10.4 4.4 4.0 2.4 

(wtl) ---·--·-------------------------------·---------------------------------------------------------------------------
Q 27.49 7.01 26.50 3.51 21.41 10.34 28.99 5.57 26.82 9.65 22.13 7.27 22.14 8.29 
c 0.01 0.05 0.01 0.02 0.72 2.21 0.25 0. 24 0.26 0.21 0.12 0.24 0.26 0.36 
Or 32.33 3.97 33.83 1.81 21.13 6.97 27 .82 7.14 29.78 5.21 33 . 36 3.06 21.14 3. 71 
Ab 33.46 5.51 33.32 2.32 31.92 9.40 36.63 8.56 36.39 9.20 36.65 3.61 33.29 4.10 
An 1.84 1.57 2.11 1.03 5.87 5.51 3.22 1.70 3.61 1.64 3.30 1. 78 8.95 4.23 
Di 1.50 1.11 0.19 0.31 0. 41 0.19 0.25 0.72 0.16 0.41 0.79 0.82 0.49 0.74 

~r 0.92 0.19 0.27 0.55 1.35 1.85 0.86 0.99 0.87 0.62 1.41 l.ll 3.77 2.10 
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 o.oo 0.00 

lit 1.50 0.57 1.24 0.69 1.21 0.64 1.29 4.96 0.12 0. 46 1.36 0.59 1.76 0.90 
11 0.57 0.20 0.67 0.11 0.46 0.27 0.26 0.22 0.30 0.22 0.51 0.34 0.85 0.38 
---------------------------------------------------------------------------------------------------------------

KEY !0 DIU'S 
29 ·- (Lallceqround Intrusive suite) tal'llll GraDite 46- 47 •• Wi tcbdoctor and Burnt Lake Granites 
WBil -- (OAG) Wbite Bear Rountain porphyry body 44 •• JIOunt Benedict Intrusive SUite lcp:anitic unit) 
1.4 -- (JEA) Volcanic aDd volca~~iclast1c rocks 41 ·- otter Lake • Walker Lake Granito1d 
45 -- lollkey Bill Intrusive Suite 

n1 •• IUiber of analyses for all eletents ercect tbose listed below 
n2 -- IUiber of anal yses for SC, 511, CS, Sa, Y and Bf 
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Suites (see also Figures 7.7 and 7.8). They also resemble 

patterns from the post-tectonic Makkovikian Big River 

Granite (not listed). High Zn, Zr, Y and Nb contents are 

characteristic of all, but the plutonic rocks have higher 

REE abundances. Hypabyssal intrusive rocks show tne closest 

similarity (including high fluorine); this is particularly 

so for the White Bear Mountain porphyry and the spatially 
associated Tarun granite (Table 7.2). Differences in 

fluorine content between volcanic and plutonic associations 

are to be expected, as volatile components would be lost in 

extrusive environments. The HFS element and REE patterns 

for the Upper Aillik Group are dissimilar to those of most 

Labradorian plutonic rocks of equivalent major element 

composition, although Zr contents are similar to parts of 

the Mount Benedict Intrusive suite. LFS element patterns of 

all units are broadly similar; however, the Upper Aillik 

Group shows great scatter, and generally higher Sr contents 

than most plutonic rocks. 

The close compositional similarity between the Upper 

Aillik Group and Makkovikian high-silica granites is 

consistent with, but not definitive of, a genetic link 
between them. In the case of younger components of the 

former, geochronological data (Loveridge et al., 1987; 

Scharer et al., 1988; Gandhi et al., 1988: Krogh et al., in 

prep.) indicate that they are of essentially the same age. 

However, the Upper Aillik Group also includes volcanic 

rocks of ca. 1850-1860 Ma age (Scharer et al., 1988); for 

which there are, at present, no recognized plutonic 

equivalents. The oldest syn-tectonic Makkovikian granitoid 
is of ca. 1840 Ma age (Deus Cape Granitoid, Krogh et al., 

in prep.). It appears that, although the Upper Aillik Group 

spans the time-period represented by composit~onally 
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similar plutonic suites, it also includes older episodes of 
volcanism that show closely similar characteristics. 

Similarly, the younger (ca. 1760 Ma) post-tectonic plutonic 
rocks of the Straw~erry Suite lie outside the known period 
of Upper Aillik Group volcanism. 

Geochemical Disturbance in Upper Aillik 
Group Volcanic Rocks 

Upper Aillik Group data collected in this study show 

clear evi~ence of soda and potash metasomatism. As sampling 
was conducted without reference to minerali7.ation, this 

suggests that disturbance is a regional feature of the 
Upper Aillik Group, and not restricted to mineralized 

areas. However, as data in this study is somewhat biased 

towards areas near intrusive contacts, it could also be 
argued that this disturbance is linked to plutc. ic rocks. 

Hypabyssal intrusive rocks within the Upper Aillik Group, 

however, do not have disturbed compositions. 
There is a striking similarity between these patterns 

and those identified in the foliated granites of the 
Kennedy Mountain Intrusive Suite (Chapter 3). As previously 

discussed (3.3), if these are indeed manifestations of the 

same event, it indicates post-volcanic, rather than 

syn-volcanic metasomatism with respect to extrusion of the 
Upper Aillik Group. The strong compositional similarity 

between the Upper Aillik Group and the Kennedy Mountain 
suite (Table 7.2; Figures 7.7; 7.8) may indicate that they 

are in part equivalent. This is, however, difficult to 
prove without precise dates and evaluation of the 

proportions of ca. 1850 and 1800 Ma volcanism in the Upper 

Aillik Group. It should also be noted that there is also 
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some minor alkali disturbance in the post-tectonic Cape 
Strawberry Granite and the Labradorian Monkey Hill 

Intrusive Suite (Chapters 4 and 5) . Alkali-metasomatism is 
probably a general feature of high-silica granitoid suites, 

but was obviously of greatest intensity in the Upper Aillik 
Group and Kennedy Mountain Suite. 

Contrasts Between Makkovikian and 

Labradorian Volcanic Sequences 

Geochemical contrasts between Makkovikian and 
Labradorian plutonic assemblages are subtle (chapters 3,4 

and 5), and their compositions overlap. The differences 
between the Upper Aillik Group and Bruce River Gro11p are, 

however, analogous to contrasts previously noted between 
their plutonic equivalents. 

Specifically, The Bruce River Group evolves to 

peraluminous compositions, and shows generally lower levels 

of HFS elements and REE than the Upper Aillik Group, which 
evolves instead to "borderline-peralkaline" compositions. 

The latter characteristic could arguably be imposed via 
metasomatism, but the HFS element and REE patterns of the 

latter are also consistent with transitional alkaline or 
"A-type" character (e.g. Whalen et al., 1987), and are 

independant of alteration (see Figure 7.9). Previous 
conflicts over the affinity of Upper Aillik Group volcanism 
are explicable if, as this study suggests, it shares the 

characteristics of Makkovikian plutonism, i.e., it is 

alkali-calcic to slightly peralkaline in composition, 
rather than calc-alkaline in the original sense of the 

word. 
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The Jagged Edge assemblage is, broadly speaking, closer 
in composition to the Bruce River Group than the Upper 

Aillik Group. It also lacks alkali disturbance seen in the 
Aillik Group and (as noted previously), is extremely fresh. 
Such characteristics suggest a possible equivalence to the 
Labradorian plutonic assemblage, but there is no 

geochronological proof of this as yet. The only unequivocal 
Labradorian suite in the general area is the Mount Benedict 

Intrusive Suite, but the incompatible element enrichment 
and lower Sio2 content of these rocks does not correspond 

to the features of the Jagged Edge assemblage (Table 7.2). 
A further complication is provided by Nd isotope data, 

which give a distinctive mantle-like signature shared only 
by certain plutons of the Strawberry Intrusive Suite 

(Chapter 8). U-Pb zircon dating, preferably of a volcanic 
sample, is required to resolve these contradictions, and is 

planned. It is conceivable that these rocks are equivalents 

of the younger post-tectonic plutons such as the Strawberry 

Suite, but their geochemistry appears at variance with this 

interpretation. 
It should be noted also that the data presented here do 

not cover all supracrustal rocks in the Benedict Mountains 

area, as Gower (1981) describes N or NE-trending foliations 
suggesting a Makkovikian age for localities on Double 

Island and Deus Cape. 
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Chapter Abstract 

Variable disturbance of the Rb-Sr isotopic system in the 
study area limits geochronological applications of the method, 
particularly in high-silica, Rb-enriched, granitoid rocks. 
Nevertheless, Makkovikian emplacement ages were obtained for the 
Big River Granite (1798 ± 28 Ma) and Freshsteak Granitoid (1798 ± 
48 Ma). Both units have low initial Sr isotope ratios(< 0.703). 
An ambiguous age of 1714 ± 44 Ma was obtained from the Stag Bay 
Granitoid. Data from the Lanceground Intrusive Suite yield an 
apparent age of 1695-1670 Ma 1 but evidence for loss of radiogenic 
sr suggests that this is an underestimate. A composite isochron 
from the Strawberry Intrusive Suite yields a similar age, and an 
unreasonably low initial Sr isotope ratio ( < o. 698). This age is 
not in agreement with U-Pb ages of ca. 1760 Ma. High-silica 
granites of the Kennedy Mountain Intrusive Suite yield no useful 
Rb-Sr data, probably due to alkali disturbance and metasomatism. 

Initial Sr isotope ratios from isochron studies of TLGB 
granitoid rocks in all areas generally lie within or slightly 
above the spectrum of mantle isotopic evolution. Few useful 
initial Sr isotope ratios can be obtained from single-sample 
Rb-Sr data, due to age uncertainties and generally high Rb-Sr 
ratios in granites. Also, the probable existence of depleted 1 

granulite facies lower crust under the Archean Craton block 
limits the ability of Sr isotope data to distinguish mantle and 
crustal sources in this area. In contrast, Nd isotope 
geochemistry is much less sensitive to age and analytical 
uncertainty and, due to relatively constant Sm/Nd in crustal 
rocks, is a powerful indicator of source materials and their 
crustal residence periods. 

Makkovikian plutonic and volcanic rocks display striking 
geographic variations in initial Nd isotopic composition. In the 
west of the area, Makkovikian units have ~N CHUR of -J to -14: 
these negative values indicate signific:int Rmounts of older 
(pre-1800 Ms.) crust in their source materials. One unit 
( Brumwater Granite, £ dCHUR = -14) was derived entirely by 
anatexis of Archean ctfust, but most have ~ CHUR values above 
those predicted for Archean crust at ca. 1DBo Ma. It is suggested 
that they represent variable mixtures of juvenile, mantle-derived 
magma and older sialic crust. Simplified mixing calculations 
indicate from 25% to 40\ Archean component in thes~ magmas, using 
reasonable assumptions about the juvenile end-member. 

In the east of the area, units with equivalent bulk elemental 
geochemistry have £NdCHUR from +1 to +6 : these positive values 



- 305 -

preclude significant contributions from Archean material, and the 
higher values are similar to those postulated for a depleted 
mantle reservoir at ca. 1800 Ma. Older crusta 1 components, if 
present, must have had short crustal residence times. 

The sharp boundary between these contrasting domains is 
interpreted as the eastern limit of Archean lower crust in the 
study area. Granites of the Strawberry Intrusive Suite show an 
east-west shift in f dCHUR from +6 to -6 across this line. The 
geochemica 1 continui ~y of the suite suggests that the eastern 
plutons must include crustal contributions of similar magnitude 
to those indicated by negative £ CHUR in the west. It is 
therefore suggested that the eas~~rn domain is floored by 
Proterozoic sialic crust generated during pre- Makkovikian or 
Makkovikian orogenic events. The Cape Harrison Metamorphic Suite 
may represent part of this basement, but it does not fulfill all 
isotopic requirements for the Strawberry suite. 

The Nd isotopic compositions of Makkovikian magmas were 
clearly influenced by the nature of local sialic crust. This 
suggests that crust-mantle interaction took place via direct 
melting, assimilation and homogenization of lower crust by 
mantle-derived, presumably mafic, juvenile magmas. 

Labrador ian plutonic and volcanic rocks show significantly 
less variation in E:NdCHUR, and compositions from gabbro to 
alaski tic granite have consistent fNdCHUR values -1 to +1, 
i.e. they approximate bulk-earth compositions of o. Geographic 
variations are subdued compared to those amongst Makkovikian 
units. There is evidence for crustal contamination in suites that 
had mafic parental magmas (Adlavik and Mount Benedict Suites) 1 

but the covariance of isotopic and major element compositions 
suggests that this was a high-level process that accompanied 
fractionation. Even mafic rocks of the Adlavik Suite have modest 
fNdCHUR values of ca. +1, significantly lower than depleted 
mantle at 1650 Ma. 

Derivation of these magmas from an undepleted mantle 
reservoir is unlikely in view of above evidence for depleted 
sources at 1800 Ma 1 and suites with mafic parental magmas cannot 
be derived by anatexis of older crustal material. It is concluded 
that Labradorian magmas are also mixtures of crustal and depleted 
mantle materials, but that the proportions of each are relatively 
constant and largely independent of the nature of the local lower 
crust. The proportion of older crust, assuming it approximates 
the Archean terrane, is probably no more than 10-15%. similar 
"bulk-earth" characteristics in Proterozoic granitoids of other 
shield areas have been attributed to efficient subcrustal mixing 
and homogenization, possibly via the subduction of continent­
derived sediment, as documented by studies of modern arc systems. 
This is a plausible and attractive explanation for some 
Labradori an magmas, but direct derivation by anatexis of 
Makkovikian crust remains possible for some g:~anitoid units that 
l:::tck associated mafic compositions. 
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Introduction 

This chapter is concerned mostly with the use of Sr and 

(particularly) Nd isotopic systematics to constrain 
petrogenetic models. Rb-Sr geochronology is also employed 
in an attempt to determine the emplacement ages of several 
units. Although this method is inherently less precise than 
U-Pb zircon geochronology, it provides some constraints 
(probably minimum ages) that may be used to assign units to 

Labradorian or Makkovikian associations. Nd isotopic 
variations provide the best petrogenetic information, as Sr 

isotopic compositions are variably disturbed. Preliminary 
Nd isotope data from this project are reported by Kerr and 
Fryer (in press): this thesis provides data from a greater 
number of samples, and more detailed discussion of results. 

Analytical Methods 

All Sr and Nd isotope ratios were measured via thermal 

ionization mass-spectrometry at Memorial University, 
following separation of Sr and Nd by standard ion-exchange 

methods. 87Rb;86sr ratios were determined by repeated 
high-precision Atomic Absorption (AA) Rb and Sr 
measurements at the Department of Mines Laboratory, and 
147sm;144Nd ratios were measured directly by 

high-precision Inductively-Coupled Plasma (ICP) mass 
spectrometry at Memorial University. Concentrations of Rb 

and Sr were measured by AA (Dept. of Mines), and Sm and Nd 

concentrations were measured by ICP-MS (KUN). Details of 
isotope analysis procedures are given in appsndix A. 
Precision for concentration data is estimated at ± 5 %. 
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8 .1 STRONTIUM ISOTQPE GEOCHEMISTRY 

~ Rb-Sr Geochr.QnQ.l.Qg_'l 

Data and Methodology 

Rb and Sr concentration and isotopic data employed in 
geochronology are listed in Table 8.1. All errors a~e 

within-run statistics quoted at the 95% confidence level (2 
0). 

Isochron regressions were performed with a regression 
spreadsheet program written by H.Longerich of Memorial 

University, corresponding essentially to the method of York 
(1969). A decay constant for 87Rb of 1.~2 x 10 - 11 yrs 
-1 (Steiger and Jager, 1977) was used in all isochron 
regressions. 

The Mean Square of Weighted Deviates (MSWD) is used to 

assess the presence of scatter not accounted for by 

analytical error (Brooks et al., 1972): regressions with a 

MSWD value above 2. 5 are termed er~~' and their 

uncertainty in age is amplified by the square root of the 
MSWD (j MSWD). Analytical uncertainties used as input for 

regression are the 2 o within-run values listed in Table 
8.1: these represent a good approximation to 1 o errors 

based on duplicate analyses (Appendix A), and are a 
conservative estimate of analytical uncertainty. 

Constraints From Previous Rb-Sr Investigations 

Previous Rb-Sr geochronological studies in the study 

area indicate that the Rb-Sr isotopic system is 
commonly disturbed and that results must be interpreted 

with caution. 
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Table 8.1. Rb-Sr concentration and isotopic data used for age 
determinat~9ns. 8~ome of the Sr data is also listed in Table 8.3. 
Note that Rb/ Sr ratios are corrected for measured Sr 
isotopic compositions. See Appendix A for analytical techniques. 

CO~CEST~~TIO~S (ppm ) ISOTOPE RATIOS Samp1<­
Nurobt- r 

!.:nit or 
COIDIUI'Ilt Rb Sr 87Rb/ 86Sr +/ · 2 cr 87Sr/86St· +/· 2 cr 

.BIG RI\'ER GPA~ITE 

0/41137 193 79 7 . 209 +/· 71 0.887087 +/· 180 
Q;11,1138 162 122 3 . 242 +/· 57 0 . 787668 +/· 110 
0241158 150 117 3 . 070 +/· 31 0 . 781498 +/· 134 
0241167 105 469 0 . 655 +/· 14 0 . 719634 +/· 52 
0241)38 132 126 3 . 081 +/· 74 0.779743 +/· 518 
0241560 111 32 10.993 +/· 370 0.995702 +/· 1143 
0241562 98 216 1. 325 +/· 27 0. 736004 +/· 104 

FRESHSTEAK GRANITOID 

0241286 97 408 0.694 +/· 14 0 . 721194 +/- 106 
0241290 85 85 2.983 +/· 38 0 . 779526 +/· 120 
0241305 81 413 0 . 569 +/· 7 0 . 718135 +/· 35 
0241307 106 69 4 .472 +/· 93 0 . 816171 +/- 60 
0241308 130 65 5.968 +/· 127 0 .860213 +/· 62 
0241325 126 354 1.029 +/· 17 0 . 727454 +/ · 62 
0241342 64 443 0.416 +/- 7 0 . 713432 +/· 76 

STAG BAY G~~ITOID 

0241164 134 116 3 . 34 7 +/· 60 0 . 783465 +/· 122 
0241166 195 117 4.896 +/- 49 0 . 826132 +/- 72 
0241253 65 801 0 . 236 +/- :; 0. 709118 +/- 89 
0249060 67 631 0 . 316 +/- 8 0 . 711426 +/- 69 
AKZ-6 163 102 4.680 +/- 57 0.817134 +/· 60 

LANCEGROUND HILLS GRANITE 

0241152 130 6<; 5 . 529 +/- 87 0.834173 +/- 440 
0241154 178 19 28.729+/· 381 1.368654 +/· 628 
0241332 Pistol Lk Granite 155 24 19.828 +/· 295 1 .192142 +/· 1050 
0248125 168 28 18 . 313 +/- 189 1.140939 +/- 668 
0248126 169 35 14.613 +/- 143 1 . 05~059 +/- 874 
0249038 178 17 32.973 +/- 301 1. 503070 +/- 1574 

STRAWBERRY INTRUSIVE SUITE 

0241391 Bayhead Granite 198 45 12 . 542 +/- 198 1.012539 +/· 296 
AKZ - 14 C . Stra~berry Grnt 160 77 6.257 +/- 95 0 .847986 +/- 82 
AKZ -4 Dog Islands Grnt 153 76 5 . 984 +/- 111 0 . 842791 +/- 56 
GSZ- 1 Tukialik Granite 195 10, 5.452 +/- 66 0 .831219 +/· 230 
GSZ-2 Tukia1ik Granite 164 19 27.009 +/- 283 1.349971 +/· 480 

KENNEDY MOUNTAIN INTRUSIVE SUITE 

0241020 Kennedy Htn Grnt 135 19 22 . 424 +/- 230 1.333317 +/- 462 
0241043 Na rro~s Crani te 196 96 6 . 001 +/- 41 0 .849300 +/- 1080 
0241044 Narro~s Crani te 198 95 6.148 +/- 38 0 .853896 +/- 240 
0241068 Narrows Crani te 170 77 6 . 523 +/- 73 0 .862445 +/- 99 
AKZ-13 Narrows Granite 103 78 3 . 864 +/- 63 0 .801955 +/· 390 

0241041 Long Is. Qz-mnznte 113 348 0 . 945 +/- 10 0 . 724362 +/- 62 

-------------------
NOTE : Errors in 87Rb/86 Sr are x 10'3, Errors in 87Srj86Sr are x 10'6 
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In the west of the study area, several Rb-Sr ages 

(White, 1976: Kontak, in Ryan, 1984; Brooks, 1982) are 50 

to 150 Ma younger than subsequent U-Pb zircon age 

determinations from the same units (Brooks, 1983; Scharer 

et al., 1988). Most units in the ~est have uoderqone at least 

minor Grenvillian tectonism, and isotopic disturbance may 

be a function of these effects (MacKenzie and Wilton, 

1988), or of post-crystallization magmatic-hydrothermal 

activity (e.g. Walraven et al., 1986). Resetting of Rb-Sr 

ages is not, however, restricted to areas near the 

Grenville Front zone, as the Round Pond Granite near 

Makkovik yields a suspiciously young Rb-Sr age of less than 

1500 Ma (D.Wilton and C.MacDougall, pers. comm., 1988). 

In the eastern part of the TLGB, ages ranging from 1787 

± 35 to 1677 ± 77 Ma from granitoid rocks in the Smokey 

area (Owen et al., 1988) are broadly in agreement with the 

ca. 1800 Ma U-Pb zircon ages subsequently obtained from 

undeformed TLGB granitoid rocks in the study area (Krogh et 

al., in prep.). Similarly, the 1625 ± 50 Ma Rb-Sr age from 

the Mount Benedict Intrusive Suite (Brooks, 1982) agrees 

generally with its U-Pb zircon age of 1650 ± 10 Ma (Krogh 

et al., in prep.). 

In summary, there are indications that Rb-Sr 

geochronology ~ resolve Makkovikian and Labradorian 

associations in the east of the study area at least. 

Disturbance acts generally to lower apparent age, via 

partial homogenization (Faure, 1978) or hydrothermal loss 

of radiogenic Sr (e.g. Walraven et al., 1986). Rb-Sr ages 

are therefore regarded conservatively as minimum estimates 

of actual emplacement age. 
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Big River Granite 

Seven samples were analyzed (Tabl e 8.1; Figure 8.1a). 
These are regional geochemical samples collected from a 

relatively small (< 20 km2 ) area in the north-central 
part of the body. All but one have the characteristic 

pseudorapakivi texture of the unit; the exception (0241560) 
is a coarse-grained, equigranular granite. 

The data define an isochron (MSWD = 0.83), indicating 
an age of 1798 ± 28 Ma (2 a), and an initial 87sr;86sr 
ratio of 0.70173 ± 88 (2 a). Sample 0241560 has a large 
error in 87Rb; 86sr, but exclusion of this point does 

not affect the age significantly. The initial 87sr;86sr 
ratio is consistent with mantle compositions at ca. 1800 Ma 

(Faure and Powell, 1972), and the age is geologically 
reasonable*. It is therefore interpreted to date 
crystallization, and indicates that the Big River Granite 

is a post-tectonic Makkovikian Intrusion. 

Freshsteak Granitoid 

Seven samples were analyzed (Table 8.1; Figure 8.1c,d). 

These are regional samples clustered in the centre of the 
body; all are typical medium-grained melanocratic granitoid 
rocks, and show variable, but slight, recrystallization. 

The data define an errorchron (MSWD = 4.67), indicating 
an age of 1776 ± 80 Ma (2 a), and an initial 87sr;86sr 
ratio of 0.70288 ± 94 (2 a). If the age error is amplified 

* NOTE Just prior to submission of this thesis, a U-Pb 
zircon age (concordant) of 1802 ± 2 Ma was obtained from 

this unit (Krogh et al., in prep.). This confirms (with 
greater precision) the Rb- Sr age obtained here. 
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by J MSWD, this becomes an inconclusive 1776 ± 173 Ma (2 

a). The high MSWD is a largely due to sample 0241325. If 

this is excluded, the data define an isochron (MSWD = 1.49) 

indicating an age of 1798 ± 48 Ma (2 o) and an initial 
87 86 . Sr/ Sr rat1o of 0.70290 ± 60 (2 o). Sample 0241325 

is saussuritized and epidotized relative to the other 

samples, and contains chlorite. Its position to the right 

of the isochron is consistent with a loss of radiogenic sr, 

and the second result is thus preferred. Both age and 
initial ratio are geol~gically reasonable, and indicate that 

the Freshsteak Granitoid is a Makkovikian intrusion, of 
generally similar age to the Big River Granite. 

Stag Bay Granitoid 

Five samples from this unit were analyzed (Table 8.1: 

Figure B.lb). These are regional geochemical samples 

distributed around Stag Bay, plus a geochronology sample 

(AKZ-6). The data define an errorchron (MSWD = 2.98), 

indicating an age of 1714 ± 44 Ma (2 o), and an initial 
87sr;86sr ratio of 0.70352 ± 46 (2 o). In view of the 

small number of samples, this is regarded here as an 

isochron. (c.f. Brooks et al., 1972; Fryer and Taylor, 

1985). 

The initial ratio is reasonable, but the age is between 
Makkovikian and Labradorian episodes, yet similar to Rb-Sr 

ages reported from granites in the Smokey area (Owen et 
al., 1988). As a minimum, it suggests a Makkovikian age* , 

but the error suggests a younger limit of 1670 Ma. 

* NOTE Discordant U-Pb zircon data (Krogh et al., in 

prep., see note on p.243) indicate that this Rb-Sr age is • 
too young, and the unit is 1790 - 1805 Ma old, i.e. of 

similar age to the Big River and Freshsteak units. 
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Lanceground Intrusive Suite 

Five samples from the Lanceground Hills Granite (within 
an 8 km 2 area), and one from the adjacent Pistol Lake 

Granite, were analyzed (Table 8.1; Figure 8.1e,f), All have 

high Rb/Sr ratios and are thus susceptible to loss of 

radiogenic Sr (c.f. Faure, 1978: Walraven et al., 1986). 
Data for the Lanceground Hills Granite alone almost 

define an isochron (MSWD = 2.62) indicating an age of 1668 

± 46 Ma (2 o), and an initial 87sr;86sr ratio of 

0.70155 ± 900 (2 a). sample 0241332 lies very close to this 

line, suggesting a similar age: regression of all data 

gives 1675 ± 48 Ma (2 a). The large uncertainty in initial 
87sr;86sr ratio reflects the very high 87Rb;

86
sr (5 

- 33) of all samples. 
one sample (0241154) lies below the regression line. It 

is probable that this sample has lost radiogenic Sr, and 

the same may also be true of others. If it is excluded the 

fit is much better (MSWD = 1.13), and the age becomes 1692 

± 32 Ma (2 o) or 1685 ± 22 Ma without the Pistol Lake 

Granite sample. Both produce unreasonably low (< 0.70) 

initial 87sr;86sr ratios, but with large uncertainties. 
It is suggested that post-crystallization hydrothermal 

effects have reduced the apparent age with partial 

retention of isochron behaviour, similar to effects 

described by Walraven et al (1986). The age is thus 

interpreted as an underestimate, and the Lanceground Suite 
is regarded as a Makkovikian association, consistent with 

its distinctive trace element geochemistry (see 4.2). 

Strawberry Intrusive Suite 

Several samples analyzed from this suite as part of 

regional isotope geochemistry (see below) can be used to 
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construct a composite isochron, but this is vulnerable to 
d 'ff .... 1 87 86 . 1 erences 1n 1n~t1a Sr/ Sr between plutons. FlVP-

samples from the suite (Table 8.1; Figure 8.2a) defin~ a 
surprisingly good line (MSWD = 1.83) yielding an age of 

1694 ±56 Ma (2 o), and an initial 87sr;86sr ratio of 
0.69790 ± 640 (2 o). The large uncertainty in the initial 

ratio is due to the high 87Rb; 86sr of all samples. 
The slope of this line is controlled by the most 

Rb-rich samples, in which isotopic disturbance is likely. 
If GSZ-2 is excluded (Figure 8.2b), the age becomes 1778 ± 

98 Ma (2 a), but the initial 87sr;86sr ratio is 
unreasonably low (0.69050 ± 900). Results are similar to 

those from the Lanceground Hills Granite (see above), but 
younger than the ca. 1760 Ma age indicated by U-Pb zircon 

data (Krogh et al., in prep.) for the Cape Strawberry 
Granite. The apparent Rb-Sr age is probably not significant 
in view of source differences between plutons indicated by 

Nd isotope data (see 8.2.2) and the high probability of 

disturbance in these rocks. 

Kennedy Mountain Intrusive Suite 

As discussed previously (3.2, 3.3), there is strong 
evidence for alkali-metasomatism in some members of this 
suite, and thus no reason to expect coherent isotopic 
behaviour. Four samples (mostly from the Narrows Granite; 

Table 8.1; Figure 8.2c) define an errorchron (MSWD = 17) 
indicating an age of 1956 ± 202 (2 o}, and an impossible 

initial 87sr;86sr ratio of 0.68280 ± 180. If amplified 
by J MSWD, the age error is huge ( > 800 Ma). The slope is 

controlled by sample 0241020, which has a very high 
87Rb;86sr ratio, and is probably disturbed. 
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As the unit intrudes the Upper Aillik Group, it cannot 

be older than 1860 Ma, and this "age" is meaningless. A 

more reasonable errorchron (MSWD = 3.28) age of 1733 ± 36 
(2 o) with an initial ratio of 0.70087 ! 120 (2 a) is 

obtained if 0241020 is excluded (Figure 8.2d), and a sample 
from the possibly related Long Island Quartz Monzonite 

added. The rationale for doing this is, to say the least, 
tenuous, and no conclusions are drawn from these data. 

8.1.2_Rggional Variations In Sr Isotope Geochemistry 

Sri Variation : Isochron Studies 

Table 8.2 lists Sri values from the isochrons 

discussed above (preferred solutions), and published and 
unpublished data compiled from other Rb-Sr studies of TLGB 

granitoid rocks (sources listed in table). It should be 
noted that some of these ages are known, or suspected, to 

be disturbed, and their Sri values are similarly suspect. 
In most isochrons, however, Sr. is fixed by the sample 

l 
with lowest Rb/Sr and is hence less subject to disturbance 
than is the age. 

Sri values from isochrons in all parts of the TLGB 
fall dominantly within the field of 87sr;86sr ratios 

for the mantle in the interval from 2000 to 1400 Ma (Figure 
8 . 3a; Faure and Powell, 1972). Isochrons with sr

1 
below 

mantle evolution are mostly known to be disturbed. Several 

Sri values lie above the mantle spectrum; these include 

the Makkovikian Island Harbour Bay Intrusive suite (data of 
Grant et al., 1983), and possibly disturbed isochrons from 

the Labradorian Witchdoctor, Burnt Lake and Otter Lake -
Walker Lake units. There is no apparent syste~atic 

variation in Sri values between different portions of the 
TLGB. 
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Table 8.2. Initial Sr isotopic compositions calculated from R~-sr 
isochrons throughout the Trans-Labrador Granitoid Belt (this and 
previous studies). 

l!nit or Suite Age +/- 2 <Y' 

WESTERN TLGB SEGMENT ('.J£~t " f L.Hichikamau ) 

Monzonite, Churchill falls 
Granite, Michi kamau Lake 
North Pole Brook Int . Suite 
North Pole Brook Int . Suite 
North Pole Brook Int . Suite 
North Pole Brook Int . Suite * 
Blueberry Lakt Group * 

1720 +/- ~) 

1715 +/- 100 
1669 +;- 36 
1637 +/- 12 
1709 +/- 188 
1513 +/- 100 
l'J40 +/- 40 

Sr( o) +/- } c:r 

0. 70253 +/ - 28 
0 . 70260 +/ - 22 
0 . 702)0 +;- 40 
0 . 70190 +/ - 20 
0. 70240 +/ - 100 
0 . 70•·)0 +/- 120 
0 .70310 +/- 80 

CENTRAL TLGB SEGMENT (L.Michikamau to MichelLI area) 

Island Harb0ur Bay Int . Suite 
Island Harbour Bay Int . Suite 
Island Harbour Bay Int . Suite 
Foliated Granitoid, Anna Lake* 
Witchdoctor Granite 
Burnt Lake Granite 
Otter Lk - -alker Lk Granite 
Otter Lk - Walker Lk Granite * 
Bruce River Group Volcanics * 
Bruce River Group Volcanics * 
Bruce River Group Volcanics * 
Upper Aillik vroup * 

1794 +/- 71 
1805 +/- 42 
1843 +/- 90 
179':J +/- ':JO 
1595 +/- 34 
1548 +/- 90 
1548 +/- 73 
1498 +/- 46 
1506 +/- 40 
1530 +/- 35 
1526 +/- 42 
1786 +/- 38 

0 . 70•.40 +/ - 30 
0. 70?0G +/ - 150 
0. 70440 +/- 30 
0. 70':JOO +/- 80 
0. 70380 +/- 30 
0. 70673 +/- 356 
0 . 70718 +/- 8':J 
0. 70':J17 +/ - 98 
0 . /0109 +/- 56 
0 . 70717+/-56 
0 . 70380 +/ - 150 
0 . 69':J89 +/- 124 

EASTERN TLGB SEGMENT (Michelin area to Smokey Islands) 

Cape Harrison Met . Suite 
Mount Benedict Intr . Suite 
"Late" Syenite, Benedict Mt ns 
Granodiorite, Smoket Area 
Monzodiorite , Smokey Area 
Granite, Smokey Area 
Big River Granite 
Freshsteak Granitoid 
Stag Bay Granitoid 
Lanceground Hills Granite * 
Strawberry Int . Suite (comp) * 
Round Pond Granite Stock * 

1740 +/- 85 
1625 +/- 50 
1725 +/- 135 
1787 +/- 35 
1697 +/- 41 
1725 +/- 31 
1798 +/- 28 
1798 +/- 48 
1714 +;- 44 
1692 +/- 32 
1694 +/- 56 
1483 +/- 40 

0 . 70340 +/- 60 
0 . 70160 +/- 240 
0. 70240 +/- 410 
0. 70233 +/- 20 
0. 70400 +/- ':JO 
0. 70320 +/- 60 
0. 70173 +/- 88 
0. 70290 +/- 60 
0. 70352 +/- 46 
0. 69914 +/- 628 
0.69790 +/- 640 
0 . 70584 +/- 213 

NOTE : All errors in initial 87Sr;86Sr ratios are x 10•) 
*This age has been shown to be, or is suspected to bt>, disturbed . 

Source 

Brooks. 1 '182 
Brooks, 1982 
Fryer, 1984 
FryH , 1984 
Fryer, 1984 
Fryer, 1984 
Brooks , 1919 

Grant et al .. 1983 
Grant et a1 . , 1983 
GraTOt et al . , 1983 
Brooks . 1979 
Brooks , 1979 
MacKenzie and Wilton, 19811 
Kontak, in Ryan, 1984 
Kontak, in Ryan, 1984 
Kontak, in Ryan, 1984 
Kontak, in Ryan. 1984 
Wanless and Loveridg~ . 19/) 
Kontak, in Ryan. 1984 

Brooks, 1982 
Brooks , 1982 
Brooks, 1982 
Owen et al. , 1988 
Owen et al . , 1988 
Owen et a!. , 1988 
This study 
This study 
This study 
This study 
This study 
Wilton and MacDougall 
(unpublished) 
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Table 8. 3. Initial Sr isotopic compositions calculated from single 
sample measurements conducted via this study, using ages based 
on U-Pb and Rb-Sr determinations. Note that samples with high 
Rb/Sr ratios generally give unreasonable values. 

-· ..,---·-··-~- ' -----·-.,..---------------
s~mpl f 

~~umbt:·t· 

t.:nit .-.nd Cotnmrnrs Assum<d 
Age 

8/Rhj 86St· 
M~an +/ · 2 a 

Syn·tt.-ctonir H~kkovikian lntt·usive 1 Extrusive Rocks 

AKZ-1 'l* 
ioi81tl38* 

AIC '. · 2 

t :pper Ai II ik Gr . 
CppH Aillik Gr. 

Rangt>r Bif,hl 
'1ichPlin 

'1.lnak Island Granitoid 

18)0 
1850 

02410'.!* Long Island Quartz Monzonite 
1800 
1800 

0241020 
AK?.-11 

AKZ·Il 

! Kennedy Mountain Intrusive Suire ] 
Kennedy Mountain Granite 1800 
Narrows Granite 1800 

Mt'lody GranitE' 1800 

Post-tectonic Makkovikian lntrusiv" Rocks 

( Numok I nt rus i ve Suite 1 
AKZ-1 Monzonite to Quartz Monzonite 1800 
AKZ~ ;* Syenite to Quartz SyenitP 1800 

( Strawberry lntrusi ve Suite 
0241391 Bayhead Gran! t e 1760 

AKZ - 14 Cape Strawberry Granite 1760 

AKZ· '• Uog Islands Granite 1760 

GSZ-1 Tukiallk Gran! te 1760 
(:57.-2 Tukialik Granite 1760 

( Lanc•ground Intrusive Suite 
Ol£.1 i ~~.. l....lnc•ground Hills Granite 1800 

02'•13 32 Pistol Lake Granite 1800 

071..1)38 Big River Granite 1800 

0241286 Freshsteak Granitoid 1800 

l....lbradoriai . lntrusi ve and Extrusive Rocks 

0741173 Adlavik Intr . Suite Gabbro 1650 

024'l030* Ad1avlk lntt. Suite Diorite 1650 

CSZ-4 M. Benedict Intr . Suite Syenite 1650 

AKZ - 12 Hankey Hi 11 Granite 1650 

AKZ-1 ;.;(t chdo<'tor Granite 1630 

AKZ -8 Otter Lk llalker Lk Granitoid 1650 

AKZ-9 OttH Lk lla1kt>r Lk Granitoid 1650 

BR84187* Bruce River Group Volcanic 1650 

16 . 701 +/ · 534 
9.656 +/· 149 

0 . 313 +/· 
0.94') +/ · 

5 
10 

22.424 +/ · 230 
3. 864 +/ . 63 

7.379 +/ · 130 

3 . 322 +/- 63 
l . 368 +/· 33 

12 . 542 +/· 198 
6.257 +/ · 9"> 
5.984 +/· 111 
5 . 452 +/· 66 

27 . 009 +/· 283 

28 . 729 +/· 381 
19 . 828 +/· 295 

3 . 081 +/· 74 
0 .694 +/· 14 

0 .032 +/· 5 
0.314 +/· 9 

11. 535 +/· 198 

3 . 489 +/· ">0 
22 .602+/· 439 

1 . 358 +/· 20 
1 . 203 +/· 21 

18 . 580 +/ · 354 

·-----------·-------...... -· 
87Srj 86Sr 

Mean +/ · 2 cr 
87Sr ;86Sr( l) 

Me-an +/· ! cr 

1 . 092711 +/ · 
0 .914201 +/· 

0 . 710627 +/ · 
0.724362 +/ · 

I . 333317 +/· 
0 . 801955 +/ · 

136 0.64 81"> +/ · 1434 
6 7 0 . 6~718 +/ · 403 

281 0 . 702~3 +/ · 
62 0.6Q990 +/· 

462 0 . 7~2 76 +/ · 
390 0. 70191 +/ · 

42 
31 

61.. ) 

70 2 

0 . 8872('9 +/· 186 0.69616 +/ · 3;6 

0. 780105 +/ · 130 0.69410 +/ · 17; 

0 . 734">27 +/ · 64 0.69911 +/· 92 

1 . 012">39 +/ · 296 0.69514 +/ · 54.2 
0.847986 +/ · 82 0 . 68965 +/· 2">3 
0 . 842791 +/ · 56 0 . 69137 +/· 29.2 
0 . 831219 +/· 230 0 . 69324 +/ · 19'· 
1 . 349971 +/ · 480 0.6661·5 +/ · 780 

1 . 368654 +/ · 628 0 . 62488 +/· 1048 
1 . 192142 +/· 10">0 0 . 67881 +/ · 868 

0 . 779743 +/ · 518 0 . 69998 +! · 243 
0 . 721194 +/· 106 0.70323 +/· 47 

0. 703137 +/ · 133 0 . 70239 +/ · 24 
0 . 711421 +/ · 108 0 . 70399 +/· 3 2 
0. 945953 +/· 496 0 . 67250 +/· ">20 

0. 782133 +/· 440 0 . 69943 +/· 162 
1. 224032 +/· 498 0 . 69479 +/ · 1077 

0 . 7 36971 +/ · 106 0 . 70477 +/· 58 
0 . 730720 +/· 106 0 . 70219 +/ · 61 

l. 142885 +/ · 149 0 . 70242 +/· 85"> 

.. .... . -- -- .. -- --- ----------- ...... ... -.......... .. .... .. ..... ..... ..... ..... .. ..... ........... ------------- -·-- ------ --- -------------- ----
Oth<>r 

AKZ-6 Stag Bay Gran itoid 1725 4 .680 +/· 57 0 . 81 7134 +/ · 60 0 . 70107 +/· 146 

__________ ............ ·····---... ·--·-------------------------------------· .. ------------------------------
* Ag• cons train<'d bv Precise U-Pb detHmination 
NOTF. : Errors in 81Rb; 86Sr are x 10·3, H rors in initial 8 /Srj86Sr are x 10'5 
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At face value, these sri values indicate derivation 

largely from the mantle, with variable admixtures of older 

continental crust enriched in radiogenic Sr. However, 

studies of high-grade gneisses indicate that 

granulite-facies rocks commonly have very low Rb/Sr ratios 

that differ only minimally from postulated upper mantle 

compositions (e.g. Faure, 1978). Lower crustal rocks of 

this type are known to exist in the Archean Nain Province 

( Collerson and Bridgwater, 1979), and cannot be precluded 

as sources on the basis of Sr isotope data alone. They may, 

however 
1 

be identified via Nd geochemistry (see 8. 2). 

Sri Variation : Single Sample Data 

If the age of a rock is known, Sri may be calculated 

from the systematics of a single sample. This method has 

been used widely in Phanerozoic and recent rocks (e.g. 

Thirlwall
1 

1982 ~ Pankhurst et al., 1988: Hildreth and 

Moorbath 
1 

1988) , and has even been applied to Archean 

amphibolites (Wooden and Mueller, 1988). Table 8. 3 lists Sr 

isotope data and calculated Sri for a subset of the 48 

samples analyzed for Nd compositions, using ages based on 

U-Pb zircon or whole-rock Rb-Sr dates. Information on these 

samples is listed subsequently (Table 8. 5). Calculated 

Sri values vary wildly, and many fall well below mantle 

evolution (Figure 8. Jb: Faure and Powell, 1972) • In 

general, only samples with low 
87

Rb;
86

sr ( < 3. o) have 

calculated Sri values that are geologically reasonable 

(Table 8 . 3) . 

Problems In Calculating Sr 1 

TLGB granitoid rocks present significant problems for 

single-sample Sr. studies. Firstly, their age allows 
1 
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Figure 8. 3. Initial Sr isotopic compositions with reference to 
postulated mantle evolution. (a) initial ratios calculated from 
isochrons. (b) initial ratios calculated by extrapolation from 
single-sample data. Sources for isochron data are 1 is ted in 
Table 8 . 2. Mantle growth band after Faure and Powell ( 197 2). 



- 321 -

ample time for Sr isotope evolution, increasing the 

magnitude of corrections required for isotopic growth. 

Secondly, large uncertainties in 87Rb;86sr resulting 
from generally high Rb/Sr ratios propagate during 

extrapolation to 0 to obtain Sri, and generate ve~y large 
errors (e.g. Table 8.3). Thirdly, even slight loss of 

radiogenic Sr from high Rb/Sr samples displaces their 
calculated Sri to unreasonably low values. A consequence 

of these problems is that calculated sri is extrem~lY 
sensitive to small variations in assumed age. Note that the 

2 a uncertainties listed in Table 8.3 do not include 

possible age uncertainty (see 8.2.2 for details of error 

caiculation methods). 
These problems are illustrated by three samples (Table 

8.4), dated by precise U-Pb zircon methods (Scharer et al., 

1988; Krogh et al., in prep.). Sample 0249030, which has a 
87 86 . low Rb/ Sr rat1o, produces a reasonable Sri value 

that changes only minimally if its assumed age is altered 
87 86 by up to 100 Ma. In contrast, BR-84-187 ( Rb/ Sr = 

18.6), which provides a reasonable result using its U-Pb 

zircon age of 1650 Ma, has a range of calculated Sri (for 
a 100 Ma range) that covers the full range from basaltic 

achondrites to evol~ed continental crust ! Sample 
W-84-138, dated precisely at ca. 1850 Ma, shows similarly 

extreme behaviour, and impossibly low Sri at all assumed 
ages, presumably resulting from loss of radiogenic Sr. In 

contrast, all three show only small changes in calculated 

initial Nd isotopic composition (expressed as ENdCHUR; 

see 8.2.2) as a result of age uncertainty. 
No furth€r attempt is made here to use calculated 

whole-rock Sri values. The only solution is to separate 
and analyze minerals with low Rb/Sr ratios, s~ch as 

plagioclase or (ideally) apatite or sphene, in which 

measured 87sr;86sr deviates only minimally from Sr .. 
l 
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Table 8.4. An illustration of the great sensitivity of rocks with 
high Rb/Sr ratios to age uncertainties in the calculation of 
initial Sr isotopic compositions from a single sample. Note that 
Initial Nd isotopic compositions, expressed as ~NdCHUR, are 
much less sensitive to variations in assumed age • . ______ .... - -,_ ... ,.. '=" _,.._ .. _____________ ,_ ___ ..,._._. _______________________ ._ __ --~--=--- .-.--

+/- Estimated 
2 a Error Assumt·d 

Age 
Calculat ed +/· Estimated 

; 81Srj86Sr ]o 2 cr l:..rror 

SAMPLE 024':W30 (Adlavik lntrusiv<' Suite Diorite) 
!l7Rbj86Sr- 0.31, 147Smjl44~d- 0.1099 

1700 0 . 70376 
1615 0 .70387 

* 1650 0 . 70398 T/· 32 
1675 0 .70410 
1600 0.70421 

SAMPLE W-84-138 (Upper Aillik Group Rhyolite ) 
87Rbj86Sr - 9.66, 147Smjl44Nd - 0.0978 

1900 0 . 65014 
1875 0 . 65336 

* 18'>0 0 . 65718 +/- 403 
18.?'> 0.66070 
1800 0 . 664 21 

Calculated 
£ (Nd)CHUR 

0 .30 
0.02 

- 0.26 
- 0.54 
- 0.83 

- 4.83 
- 5 . 15 

5 . 47 
- 5 . 79 
- 6.11 

SAMPLE BR-84-187 (Bruce River Group Felsic Volcanic) 
87Rbj !H>Sr • 18 .6. l 47Smjl44Nd- 0 . 1014 

1700 0 . 68890 0 . 09 

16/ '> 0.69)66 - 0 .22 

* 16'>0 0. 70241 +/- 854 - 0.53 

162'> 0 .70917 - 0 .84 

1600 0.71'>91 - 1 . 14 

+/- 0 .82 

+/- 1.0 

+/· 0 .68 

----------------------------------~---------------------------------------------* Indicates age given by precise U·Pb zircon determination 
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8. 2 NEODYMIUM IS()j'QPE GEOCii.EMISTRY 

Neodymium as a Petrogenetic Tool 

Neodymium has inherent advantages over strontium in 

isotopic studies of Precambrian granitoid rocks. 
Sm/Nd ratios vary minimally in crustal rocks (their 

mean 147sm;144Nd is estimated at ca. 0.115 ± 0.01~ 
Goldstein et al., 1984), and this ratio is largely 

independent of magmatic differentiation. Age corrections to 
obtain initial Nd isotopic compositions are small compared 

to those required for Sr (due to the long half-life of 
147sm), and are almost constant for all rock types (e.g . 

Table 8.4). The uncertainty in correcting single-sample 

data is thus much smaller than for Sr. 

The coheren~ behaviour of Sm and Nd reflects the 

supposed inability of crustal processes to strongly 

fractionate two closely similar rare-earth elements. There 
are, however, significant diLf~renc~~ in Sm/Nd between the 

crust and values inferred for the mantle on the basis of 

meteorite studies (e.g. DePaolo and Wasserburg, 1976). The 

initial Nd isotopic composition of crustal rocks thus 

constrains the time elapsed since their precursor(s) 

separated from the mantle, re~x_dJLe~~ of the number of 
times this material was "reprocessed" in the crust. In this 

regard, Sm and Nd differ radically from Rb and Sr, which 

• 
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Figure 8.4. Locations of samples analyzed in neodyaiua isotope 
geochemistry study. Some of these (see Table 8.3) were also 
analyzed for Sr. See Table 8.5 for sample and uni t details. Note 
that sample BR-84-187 (froa the Bruce River Group) lies to the 
west of the study area. It is from the outcrop located by 
Scharer et al.(l988). 
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are strongly fractionated by magmatic processes in the 
crust, and commonly undergo multi-stage evolution in 

crustal reservoirs (e.g. Faure and Powell, 1972). 

Finally, Nd and srn reside primarily in accessory and 

mafic phases (as opposed to feldspars), and are g~nerally 

less subject to disturbance by hydrothermal activity or 

alteration, although the REE may be mobile under certain 
conditions (e.g. Taylor and Fryer, 1982: Windrim et al., 

1984). 

Such flawless behaviour is, of course, subject to 

exceptions! McCulloch and Black (1984), and Windrim et 

al.(1984), have discussed the effects of granulite facies 

metamorphism and hydrothermal processes on Sm and Nd 

behaviour, and the unusual isotopic characteristics of the 

Pitre Lake Granite determined in this study (see 8.3.1) 
imply local strong fractionation of Sm from Nd during 

anatexis. The geochronological applications of Sm and Nd 

indicate that there must be slight fractionation of Sm and 

Nd during igneous processes (O'Nions et al., 1979), but it 

is minimal compared to that observed for Rb and Sr. 

overview of Neodymium Isotope Geochemistry Database 

Nd isotopic data are reported here for 48 samples: about 

half of these were also analyzed for sr isotopic 

composition (see 8.1.2: Sr results listed in Table 8.3). 

The samples are representative examples of major 

geological units, and (wherever possible) are from 

localities for which U-Pb zircon dates are available or 

planned. All samples are listed and described in Table 

8.5, and located in Figure 8.4. In addition to the plutonic 
and volcanic rocks, two orthogneisses from the Cape 

Harrison Metamorphic Suite (Gower, 1981) were analyzed to 
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Table 8.5. Listing of samples analyzed for Nd isotopic compositi~ns, 
with descriptive comments and aqe inforaation. Sanple locatlons 
are shown in Figure 8.4. Note that some of these were also 
analyzed for Sr (see table 8.3 for results) 

SA:11'l.E 

Cl/41 fl)li h·rllu··dy !1nunt A i 11 t · r.ml t,.. 
AY.Z · l '\ Srlr r t~W S t :rtt.nitt> 
(J/ 'l(fJ'lH t ' rns :-; l..Akt- t ; r..tnl tt-

0}/•lflllO Cross Lak~ <-irAni tf' 

180} +llj -111 :1« 
i t: - Pb Zr : 

Not Yet 
Datt-d 

DPscription and Comments 

Hb - Bi Quartz :1onzonite . close to 
location dated bv <-andhi et al.(lq88) . 

Fluoritt'·bt'aring biotite granite . 
P-i ot i u -Hornblende Honzograni te . 
Btotite granit• with fluoritt', allanitt' . 
Porphyritic Bi · Hb leucogranite . 

JSI.ANJ) HARBOliR BAY IHRI'SI\' [ Sl. JT[ (Sa11plu provided by Bruce Ryan) 

OJ t,Oill/ Tonalit~ · grAnodioritt" unit 

18"~ +/· > !1a 
t: -Pb zr · 

OTHER SYN-TEC:T•JSIC ~KO\'IK I AS <'RANITOIOS 

~KZ-1 I 11..! ody Grant t • 
CIJ4•f)l i Rnuawatf"r (;ranitr 
(1)4'11'1~ Pit rp Lake Granite 
Af'.Z-7 Ma nak Island Granitoid 

fl/4~111 '> O.••s Cape Granitoid 

Pos·J -TECTO!' I C I'IAKI<UV I K I AN PLUTONIC ROCKS 

N\'1101< INTRUSIVE Sll I TE 

AKZ - 1 Quartz !1on1onitr (Sorthorn Zont') 
tMjac-en! to AgiiiAtitir bordH) 

OJ41llR Quartz Syenitr (SouthHn Zonr) 

Al'l.-14 

Ol4llqJ 
U/4 I I Rl 
AKZ-4 
(:SZ - 1 
GS7. · 2 

STRA\18ERRY INTRUSI VE SUITE 

Cape St raw~rry C.uni t• 

Ravh•ad \.rani te 
Urt obPr Harbour Gran! t• 
Dog Islands Granlt• 
Tukialik l> ranite 
Tuklal ik Granite 

I.ANC:EGROliND INTRUSIVE SUITE 

014 1 I ~4 l.anc-f'ground Hi !Ia Gran! te 

0)1,1 \l} Pi .r ol l.~k• <'rani r. 
0.'4RIOI TArun Granitr 

1837 +6/ -4 Ma 
iU·Pb Zr ) 

1801 +/- 2 !1a 
IU-Pb Zr ] 

1801 +/- 2 ~ 
!U-Pb Zrj 

Not Daud 

1800-1760 Pia 
IU-Pb Zrj 

Not 
YPt 

Dated 

1691 +/· 32 !1a 
!Rb -Sr IIR J 

Not YH 
Dat•d 

l>THt:R POST· Tt:CTON I C !1AKKOV I K I AN <.;RANI TO IDS 

0}41~1!1 ~ l f, River CrAnia 1798 +/- 28 Ha 
{Rb -Sr WR J 

0)41]86 t' rp s hs!eak f.rAnitold 1798 +/- 48 Ha 
{Rb-Sr WRJ 

0)411~6 So;~r s f' I.AkP C.·:ani told Not Dated 

Porphyritic biotit• p.ranite , part o: 
unit daud by Loveridge et al . ( 198 7) . 

~elanocratic 8i - Hb granodiorit• . 

Porphyritic biotIte grani u . he~~at !zed . 
biotite lDOnzogranite, faintly lay•red . 
biotite-muscovit<' granite . 
leucocratic, slightly porphyritic . granodiorite . 

Porphyritic. leucocratlc granit<' . 
Dated by Krogh et al ., in prep . ) 

Coarse grained Cpx-fayalite syenite 
dated by Krogh et al . (in prep . ) 

Coarse grained Hb-8i IPx) quartz 110nzonite 
ca . 2 ka from dated locality. 

Slightly defor .. d porphyritic quartz syenite . 

Coarse grained . porphyritic biotite 
granite, with accessory fluorite . 
Dat•d by Krogh •t al . (in prep . ) 

Coars• grainPd, porphyritic. biotite 
granites similar to AKZ-14 . 

Coars~·grainpd Bi-Hb alkali-fsp 
granite; age is probably disturbed . 

Porphyritic alkali-fsp quartz syenite . 
Coarse grained granite , slightly deformt'd . 

Coarse-grained Hb -Bi granit• with 
pseudorapaklvi texture. 

H•dlum-grained .. Janocratic Hb-81 
quartz monzonite . 

Simi lar to above. 



Table 8.5 

SAl1PLE !'nit 

LABRAJ>OI!IAS PLt:TO~IC ~un:~ 

-'lOLA \. I K I STRUS I\·~: Sl' I TE 

0.'411/3 l :abb.-o rnit (M~in Bod\·) 
0149<161 l;dbhro tntt (P .. miul i k. !'oint) 
Ol 4Jl,4l Gahbro Unit (East Mic l110c Lllke) 

0249030 Diorit~ Unit (Main Body) 

MOL'NT !IENI::D I CT I NTI<l'S I VE Sli I Tl:: 

0}41136 Diorit~ Unit 

0242144 Monzonite to Syenite Unit 

GSZ-4 Qua c t z Syenl te 

MONKEY HILL INTRUSIVE SL' ITI:: 

AKZ-12 Monkey Hill Granite 
0248191 L!tth Monkey Hill Granite 

OTHER LABRADORIAN GRANITOIDS 

AKZ-7 Wltchdoctor Granite 

0249074 Burnt Lake Granite 

AKZ-8 Ott~r Lake - Walker Lake Gran 

UNCLASSIFIED PLUTONIC ROCKS 

AKZ-6 Stag Bay Graniotid 

0141030 Thunder Mountain Sy~nite 

VOLCANIC ROCKS 

UPPER AILLI K GROUP 

AKZ-IS Euly Uppu Mlllk Group 7 

W84138 Late t'pp"r Ai!lik Group ? 
(provided by R . J . Wardle) 

0248237 Hypabyssal Intrusive Rocks 

0249324 Jagged Edg~ Assemblage 

BRUCE RIVER GROUP 

BR84187 Svlvia Lake ."ortUtion 
(Provided by B . Ryan) 

CAPE HARRISON METAMORPHIC S"ITE 

AKZ-20 Tonalitlc gneiss unit 

AKZ - 11 Foliated Granod iorl te 

327 -

Sot 
\'rt 

Da ad 

1649 +/ - ~ .. 
! t;-Pb Zr . 

165(1 +;- 10 Ma 
) t;-Pb Zr j 

1615 +/ - 50 Ma 
: Rb · Sr o'R , 

1640 +/· 10 Ma 
I U-Pb Zr I 

H18 +/· 9 
! t; - Pb Zr ) 

1548 +/· 73 Ma 
!Rb-Sr WR ) 

1714 +/· 44 Ma 
! Rb - Sr WR ) 

1861 +9/-3 IU 
IU-Pb Zr ) 

18 56 +/· 2 IU 
IU·Pb Zrl 

1807 +/· 2 Ma 
lt: - Pb Zr ) 

1649 +/ · 1 Ka 
{U· Pb Zr ) 

Not Yet 
Dated 

Ol tvinf' ~atJbr onorttt> 

~t>lanot.:ritt l c ol l\' ltlt> ~.thhr ~ m,)t'l tf" 

HornblE"ndt> E,abbro . ginor i nt.-rsti t lctl K t s J• 

Potassic rDOn::odiortrf' to s vr·no<il or trt· 
dated bv Krogh~~ al (in pro·p . l 

Plar.·po rphynnc (cumul~to ? l Cpx · dl ori!~ . 

Sv .. nite with relict Plag·porphvritic 
t~xtur• DatPd bv Krogh Pt al .C in prPp. l 

Sillilar to abov~. bt. t rich.r In quartz . 
Datf'd bv Brooks \1 ~8 2 ) . probably dtst urb .. d 

fine-grained biotit~ mun:o~ranit~s . 

Monkev Hill Granite dat•d bv 
Kro1.h et al . (in prep . ) 

Recrystall l zed Bi ( Ms) l•uco,.ranl tP vi t h 
accessory garnet . Site dated by Brooks fl~8j) 

fine grained, leucocratic 81 (Hs) granite . 

Quartz Monzonite to Monzogranite vlth 
ph•nocrysts of both feldspars . Sa~~e 

areil dated by Kontak (in Rtan. I 984) . 

K· fel dspar porphyritic Hb · Si 
granodiorite to 11onzogranite . 

Coars• grained Cpx·Hb quartz sy~nite 

Thin rhyolite flow or sill In aetasod -
. illents. Sa11ph dated by Schar~r et al . II 988 ) . 

Woakly dofor~~ed rhyolitic ash - flow tuff . 
Sa11ple dated by Scharer et al . ( 1988) . 

Quartz·foldspar porphyrv . Sa~~e locality as 
sample dated bv Scharer PI al . ( 1988) . 

f' rosh f ~ldspar · porphyrv . 

Woaklv dolorm•d rhvolit ic a sh · tlow 
tuff .. Sall~ locality as sample dated bv 
Scharer et al. (1~88). 

Grey, lolta!~d . locallv bandod 
tonalitic to granodioritic 11noiss . 

Homop,en~ous. hucoc ratic, fol iat~d 
granod1orit ~ or ronzogranit~ . 
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represent possible "basement" in the east of the area. No 

samples from the Archean basement rocks in the west of the 

area were analyzed; however, data for these are provided by 

Brooks (1983). Note that the Freshsteak and Noarse Lake 

granitoids are here grouped as Makkovikian intrusions, 

based on Rb-Sr data (8.1.1). 

8.2.1 sm-Nd "Geocbronology• 

Sm and Nd are of limited value as geochronometers in 

post-Archean rocks (e.g. O'Nions et al., 1979; Cox et al., 

1979). However, isochron diagrams may define quasi-linear 

trends that may be significant in terms of other processes 

such as mixing and variation in initial 143Nd;144Nd 

ratios amongst units. "Ages" were obtained by least-squares 

regression as outlined previously (8.1.1), but no attempt 

is made to assess them statistically; they are quoted 

mostly as an indication of the slope of correlations 

relative to those expected for isochron behaviour. Sm and 

Nd concentration and isotopic data are listed subsequently 
147 (Tables 8.6; 8.7). A Sm decay constant of 6.54 x 

10-12 yr-1 (Steiger and Jager, 1977) was used in 

calculation of age, and subsequent calculation of ENd 

(see 8.2.2 for details of the latter). 

Syn-Tectonic Makkovikian Plutonic Rocks 

Units in the west of the study area mostly define a 

1553 ± 330 Ma (2 o) pseudoisochron (Figure 8.5a), except 

for AKZ-11 and 0249213, which are below this line. Units 

from the east (Manak Island and Deus Cape; AKZ-2, 0249015) 

lie well above this line and, with AKZ-13 and two samples 

from the Cape Harrison Metamorphic Suite, define a 2046 ± 
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694 Ma (2 cr) pseudoisochron. Sample 0249195 (Pitre Lake 
Granite) has an anomalous 147sm;144Nd ratio (ca. 0.23) 
and lies well to the right of the diagram: it is discussed 

separately (8.3.1). 

Post-Tectonic Makkovikian Plutonic Rocks 

No obvious pattern exists amongst these samples (Figure 

8.5b): possible "ages" range from 2741 Ma to 3364 Ma, 
depending upon which samples are included in the 
regression. Assuming that groupings based on petrology and 
elemental geochemistry (Chapter 4) are valid, this points 

to differences in their initial Nd isotopic composition. 
This is shown well by six samples from the Strawberry 

Intrusive Suite (Figure 8.5c), which are highly variable; 
their apparent age of 4516 ± 680 Ma (1 a), is meaningless, 
and AKZ-14 and AKZ-4 both lie well away from this "line". 

Not~ that 5 of these samples (including the two most 

deviant) define a reasonably well-fitted composite 1695 Ma 
Rb-Sr isochron (8.1.1). In view of their strong 

petrological and geochemical affinity (Chapter 4), this 
variation indicates significant differences in initial Nd 

isotopic composition, that are apparently not present for 
Sr. Note that the highest 143Nd;144Nd values are from 

plutons in the east (Tukialik and Dog Islands Granites: 
GSZ-1, GSZ-2, AKZ-4). Plutons in the west lie close to the 

lower pseudoisochron described above from syn-tectonic 
Makkovikian units and, if regressed with 3 samples from the 

Kennedy Mountain suite and one from Long Island, yield a 
reasonable 1902 ± 142 Ma (2 o) pseudoisochron (Figure 

8.5c). 
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Labradorian Plutonic Rocks 

The ca. 1650 Ma old Adlavik and Mount Benedict 

Intrusive Suites (excluding 0241441; a gabbro from East 

MicMac Lake) define a 2177 ± 410 Ma (2 o) pseudoisochron 
(Figure 8.5d). The slope is strongly influenced by sample 

0241173; if this is excluded, the remaining samples define 

a 3170 ± 217 Ma (2 o) pseudoisochron. A similar age is 

defined by three samples from the Mount Benedict suite 

alone. This "age" is obviously untenable. This 

pseudoisochron could be interpreted as an argument against 
a genetic relationship but the presence of a linear array 

would be a remarkable coincidence under such conditions. 
Also, there is independent geochemical evidence for a 

genetic link (Chapter 5). An alternative explanation is 

that the more differentiated rocks are variably 

t . d b . 1 . 1 147 /144 d d con am~nate y mater~a w~th ow Sm N an 
143 d 144 d . h. . d . h . N 1 N , 1.e. t ~s ~s a §J:ee~ne l.~Q~_ron. B1nary 

mixing of this type would produce a linear array. A similar 

proposal was advanced by Ashwal et al.(l986) to explain 

anomalously old (3300 Ma) Sm-Nd isochron ages from the ca. 

1300 Ma old Harp dykes of central Labrador. 
Labradorian granitoid plutonic rocks (not figured) 

define no obvious trends in isochron diagrams, and, in 

general, show much less variation in present-day 
143Nd;144Nd than their Makkovikian counterparts. 

Similar comments apply to unclassified units from Stag Bay 

and Thunder Mountain. 

8.2.2 Regional Variation~In Nd Isotope Geochemistry 

Sm and Nd concentration and isotopic data.are listed in 

Tables 8.6 and 8.7, with the calculated parameters 

£NdCHUR, ENdDM and ToM' (DePaolo and Wasserburg, 
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1976; DePaolo, 1979). All e~rors are within-run statistics 

quoted at the 2 o level; errors for 
14 7 

sm/
44

Nd are 

calculated as ± o. 5%, based on duplicate analyses (see 

Appendix A). 

Data Notation and Representation 

Epsilon {f:Nd) Notation : The initial 
143Nd; 144Nd ratio of a sample at time T is readily 

calculated from the radioactive decay equation, assuming 
14 7 144 d d T " · t · 1 t that Sm/ N an are ,..nown. It ~s cor.ven ~ona o 

represent initial Nd compositions as ENd units 
(DePaolo, 1979). These indicate deviations (in parts per 

104 ) from the calculated 143Nd;144 Nd of a reference 

. 1 h l d . h k 14 7 144
Nd · mater 1. a t at evo ve w~ t a nown Sm/ rat1o. 

Unless an age is specifically stated, ENd' as used below, 

refers to Nd isotopic compositions at the time of 

formation, i.e. time of crystallization. 

ENd is commonly expressed relative to a chondritic 

uniform reservoir (CHUR), for which accepted present-day 

values (employed here) are 143Nd;
144

Nd = 0. 512638 and 
147sm;144Nd = 0.196593 (Jacobsen and Wasserburg, 1980; 

146 144 . normalized to a Nd/ Nd rat~o of 0.7219). The 

parameter ENd at time T is given by the expression: 

143Nd/44Nd at T 
(sample) 

-1 

Negative ENdCHUR values indicate initial 
143Nd; 144Nd ratios below chondritic evolution (typical 

of crustal material, with a lower Sm/Nd ratio than the 
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mantle) a~d positive values indicate derivation from 

material that bas a high~t: Sm/Nd than CHUR. Positive 

ENdCHUR values are common in modern and ancient mafic 

extrusive rocks (e.g. Nelson and DePaolo, 1984; White and 

Patchett, 1984). They indicate that substantia 1 portions of 

the earth's mantle were depleted in Nd re 1 a ti ve to sm at an 

early stage; this is inferred to result from the extraction 

of the continental crust. 

As post-Archean crust formation probably tapped this 

depleted mantle reservoir, the notation ENdDM is also 
' d l 1 d . d ' t' .. . 1 143 d I44 d w1. e y emp oye , 1n 1.ca 1ng 1.n1. t1a N 1 N 

relative to postulc:.ted depleted mantle evolution. However, 

there is no firm concensus regarding the isotopic evolution 

of the mantle, and ENdCHUR values are preferable for 

comparison of data from different sources. ENdDM values 

quoted below are with reference to evolution from ENdCHUR 

of ca +2 at ca. 2800 Ma to ca + 5 at ca. 1800 Ma ago (c.f. 

Patchett and Bridgwater, 1984: Chauvel et al., 1987). This 

is consistent with observed ENdCHUR values for ca. 1700 

Ma old mafic volcanics of up to + 6 (Nelson and DePaolo, 

1984). For the sake of simplicity, mantle evolution over 

this time interval is assumed here to be linear. 

Hodel Aqes and Crustal Residence Aqes : A Nd Model 
. h . h . h h 14 3 d 14 4Nd t . f age 1.s t £> t1me at w 1c t e N 1 ra 10 o a 

sample and a reference material (model) have the same 

value. In the ENd notation used here, TCHUR is the time 

at which ENdCHUR = 0, and TDM the time at which ENdDM 

= 0. In each case there is a unique solution, which can be 

calculated by iteration or equations presented by DePaolo 

(1979,198lb). The key assumption is that, if a sample is 

the end product of a multi-stage crustal process, its Sm/Nd 

ratio has not changed significantly since its initial 
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::X: 
(.) -0 "0 z -
"" 

-

Figure 8. 6. Schematic illustrations of the principles of Nd isotope 
geochemistry. (a) Contrasting variation of crustal material and 
depleted mantle relative to CHUR, and geometric representation 
of model ages T0M and TCHUR.._ (b) Complications due to mixed 
sources: model llges Ml ana· "M2 for two rocks result from 
different mixtures of mantle- and crustal-derived magmas, and 
have no true geochronological meaning. Adapted partly from Arndt 
and Goldstein (1987). 
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derivatic~ from the mantle. Extrapolation of its Nd 

isotopic qrowth line back to CHUR or OM evolution lines 

thus prov~des the earliest time at which it or its 

precursorrs) could have been generated from such a source 

(Figure 8. 6a). 

It is important to note that the above is true gnly if 

the sample was derived from a $1.nglg source material with a 

simple history. If a rock is derived from two or more 

sources themselves derived from the mantle at different 

times (e.g. a juvenile magma assimilating much older crust; 

Figure 8.6b), any Nd model age is a function of the 

relative proportions and Nd contents of these end members 

and has no direct geochronological significance (e.g. 

Patchett and Bridgwater, 1984; Arndt and Goldstein, 1987). 

Nevertheless, there may be situations in which model ages 

reflect the actual time at which the precursor separated 

from the mantle, particularly when model ages correspond 

with orogenic events documented via geochronology. 

Estimation of Uncertainty : Analytical uncertainty in 

£Nd and TDM was calculated using a "worst-case" 

scenario where 143 Nd;144 Nd and 147sm;144 Nd both 

deviate by 2 o in opposite directions. As it is highly 

unlikely that perfect anticorrelation of errors would 

occur, an arbitrary value corresponding to 66% of this 

worst-case error is used below to indicate 2 o uncertainty. 

In most cases (Tables 8.6; 8.7) this is ± 0.7 ENd units 

or less. Errors due to age uncertainties are more difficult 

to assess; however, variations of ± 50 Ma in assumed age 

(e.g. Table 8.4) cause only small changes in !Nd' that 

are within analytical errors, and have a negligable impact 

on model age calculations. 
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Age Assumptions : Ages assumed in calculations are 

listed in Tables 8.6 and 8.7; in most cases these are based 

on U-Pb or Rb-Sr geochronology, rounded to the nearest 10 

Ma. For some units of uncertain age, values were calculated 

for both 1800 and 1650 Ma, or for an intermediate value of 

1725 Ma. £Nd Values for Archean gneisses (Brooks, 1983) 

are calculated for 2600 Ma (Sru/Nd isochron age, probably 

metamorphic; Brooks, 1983), 1800 Ma and 1650 Ma; the latter 

values indicate their characteristics during Makkovikian 

and Labradorian magmatism respectively. An age of 1850 Ma 

has been assumed for the Cape Harrison Metamorphic Suite, 

by reasoning that it predates the Deus Cape Granitoid (ca. 

1840 Ma; Krogh et al., in prep.), and its £Nd at ca. 1650 

Ma is also listed. 

Syn-Tectonic Makkovikian Plutonic Rocks 

£NdCHUR values for these units range from -13.8 to 

+3.6 (Table 8.6). Units in the west of the area mostly have 

negative ENdCHUR (generally < -2.0), whereas those in the 

east have ENdCHUR of ca. +3.0. The Narrows Granite of the 

Kennedy Mountain Suite (sample AKZ-13; ca. + 3.0) is an 

exception to this pattern. Positive values in the east are 

similar to those of the Cape Harrison Metamorphic Suite at 

an assumed 1850 Ma age. This confirms pseudoisochron 

behaviour noted above (8.2.1). 

In the east, TOM model ages are ca. 2000 - 1950 Ma 

for the Manak Island and Deus Cape Granitoids, and also for 

the Cape Harrison Suite. As the latter is undated, its 

model age may correspond to its time of formation. These 

values indicate that the precursor(s) to units in the east 

had a short crustal residence period, probably less than 

200 Ma (subject to qualifications previously outlined with 
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respect to model ages). It also indicates unequivocally 

that the Cape Harrison Metamorphic suite is of Proterozoic, 

and not Archean, age. 

T0M model ages in the west vary from 3100 Ma to 1940 

Ma, but are mostly older than 2300 Ma. The ca. 3100 Ma 
model age for the Brumwater Granite is close to the 

probable formation age of the Archean gneisses (Loveridge 

et al., 1987), and, with its very low £NdCHUR value, 

indicates that this unit was derived from Archean crustal 

material. This result is consistent with the gradational 

relationship with surrounding migmatites described by 

Marten (1977). 

Most other units in the west have £NdCHUR values 

higher than the Archean gneisses, and model ages that are 

younger than 3000 Ma. They cannot therefore be derived 

entirely from Archean crust formed prior to 3000 Ma, 

although they may incorporate some of this material. 

Similar values of -2.0 to -3.0 for the Long Island unit 

and two granites of the Kennedy Mountain Intrusive Suite 
support the suggestion that they are related (Chapter 3), 

and had similar source(s); however, the value for the 

Narrows Granite (+3.0) is inconsistent. Note, however, that 

this is imprecise compared to the other samples, and should 

carry less weight . 

The Pitre Lake Granite, which appears to be a product 

of anatexis, has surprisingly high £NdCHUR (-1.9), 

considering its sedimentary protolith, and a very high 
147sm;144Nd ratio (s~e 8.3.1 for further discussion). 

Post-Tectonic Makkovikian Plutonic Rocks 

£NdCHUR values for these rocks vary widely (Table 

8.6). 
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ln the Nu~ok Intrusive suite, syenites from northern 

~nd southern zones both have cNdCHUR of ca. +1.4. 

However, quartz monzonite from near to the agmatitic 

western border of the suite in the northern zone has an 

anomalous low value of -4. 0 , and a high Nd content (94 

ppm). 

Granites from the Strawberry Intrusive suite display 

remarkable variation. Three plutons in the west (Bayhead, 

cape Strawberry and october Harbour Granites) have 

£NdCHUR of -6.0 to -3.0, whereas those in the east (Dog 

Islands and Tukialik Granites) have fNdCHUR of up to 
+5.0. There are obviously profound differences in the 

sources of these rocks from east to west. The Lanceground 

Hills and Tarun Granites have identical £NdCHUR (within 

error) of ca. O; the Pistol Lake Granite is slightly, but 

significantly, lower (-1.9). 

To summarize, post-tectonic Makkovikian units show 

negative fNdCHUR in the west, and positive £NdCHUR in 
the east -- a pattern very similar to that of their 

syn-tectonic counterparts (see above). 

Most units have negative fNdDM, indicating some 
component of older crustal material, except for the eastern 

plutons of the Strawberry Intrusive Suite, which are very 

close to depleted mantle evolution (i.e. €NdDM = 0). If 

these granites have a crustal component, it has a crustal 

residence time below isotopic resolution. Several units in 

the east have consistent TOM model ages of ca. 2000 Ma, 

similar to those noted above for the syn-tectonic units. 

Makkovikian Volcanic Rocks 

The Upper Aillik Group at Ranger Bight has an 

approximate bulk-earth value (£NdCHUR = 0) for 1850 Ma 

whereas the Michelin Ridge locality has a low va l ue (-5.5). 
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The White Bear Mountain porphyry has a moderate (+1.0) 

value. This is just within error of the adjacent Tarun 

Granite, which may be a plutonic equivalent of the 

porphyry. If the Jagged Edge assemblage porphyry is 

Makkovikian, it would have ENdCHUR of +4.5. Amongst 

plutonic rocks, only the eastern plutons of the Strawberry 

Intrusive Suite show such characteristics. 

On the basis of 4 samples, it is an act of faith to 

discuss geographic variation: however, the eastward change 

from -5.5 to +4.5 is consistent with patterns in 

Makkovikian plutonic rocks described above. 

Labradorian Plutonic and Volcanic Rocks 

In general, Labradorian rocks show less variation in 

ENdCHUR than their Makkovikian counterparts (Table 8.7: 

also Figure 8.7). Most samples are clustered around 

bulk-earth ENdCHUR values of ca. o. 
In the Adlavik Intrusive suite, units from the main 

body and Pamiulik Point areas have similar ENdCHUR of ca. 

+1.0 to -0.5. However, a gabbro from the westernmost 

intrusion at East MicMac Lake has significantly lower 

ENdCHUR of -6.1, indicating a crustal input. Three 

samples from the Mount Benedict Intrusive Suite have 

variable, slightly negative ENdCHUR. The lowest value 

(-2.9, but with a large error) is shown by quartz syenite 

(0242144) from the most evolved unit. As a group, the 

Adlavik and Mount Benedict suites (excluding 0241441) show 

a smooth progression from values of ca. +1.0 in mafic rocks 

to ca. -2.0 in syenite and granite, consistent with their 

Sm-Nd pseudoisochron behaviour (8.2.1). 
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Two samples from the Monkey Hill Intr~sive Suite have 

identical (within error) !NdCHUR of o to -1.0, a 

surprisingly high value for siliceous leucogranites. The 

Witchdoctor a~d Burnt Lake Granites, despite lithological 

similarity to the above, have significantly lower !NdCHUR 

of ca. -4.0. The Otter Lake - Walker Lake Granite has an 

approximate bulk-earth value. Kerr and Fryer (in press) 

report similarly neutral !NdCHUR from two samples 

(including a biotite-muscovite leucogranite) correlated 

with this unit in the Nipishish Lake area , 100 km west of 

the study area. 

The Bruce River Group sample has ENdCHUR of ca. -0.5, 

also surprisingly high for a siliceous rhyolite. The Jagged 

Edge assemblage, if assumed to be of ca. 1650 Ma age, would 

have ENdCHUR of +3.2. This is lower than its !NdCHUR at 

1810 Ma (see above), but is still higher than any 

Labradorian plutonic unit, including gabbros of the Adlavik 

Suite. 

All Labradorian samples have negative ENdDM, and 

TOM model ages are remarkably consistent at 2100 - 2000 

Ma. Spatial variation in ENdCHUR and TDM is muted 

compared to that shown by Makkovikian units. The Monkey 

Hill suite lies within the same area as older granitoid 

rocks ~ith negative ENdCHUR, but clearly does not share 

their isotopic characteristics. In general, widely 

different Labradorian rock types show consistent initial Nd 

compositions -- a pattern that contrasts with the wide 

ENd variations shown by Makkovikian intrusions with 

relatively constant compositional features. 

Unclassified Plutonic Rocks 

The Stag Bay Granitoid and Thunder Mountain Syenite 

have £NdCHUR within 1 ENd unit of bulk-ea~th values (0) 
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forT= 1725 Ma. Changing their age to 1800 or 1650 Ma 

does not affect €Nd beyond the limits of analytical 

uncertainty. Values of this general magnitude are typical 
of some Makkovikian and most Labradorian plutonic rocks in 

the east of the area. In subsequent discussions, these 
unclassified units are arbitrarily grouped with the latter; 

in practice, their assignation has no impact on 
interpretation of results. 

spatial Variation in £NdCHUR and TOM 

Geographic variation of €NdCHUR and T0~ is 
illustrated in Figures 8.8 and 8.9. The western and eastern 

parts of the area are characterized by negative and 

positive eNdCHUR respectively. The variation is shown 
most clearly by Makkovikian units. North of the Adlavik 

Brook fault zone, the generalized boundary between domains 

is in the vicinity of the Adlavik Islands, where there is a 

mixture of positive and negative values. South of the 
Adlavik Brook fault zone, the boundary must be further to 

the west, as Makkovikian Granitoids west of Big River have 

positive £NdCHUR. This dextral displacement of ca. 20-30 

km is broadly equivalent to that indicated by outcrop 
patterns of granitoid and supracrustal units north and 

south of the Adlavik Brook fault zone (Chapter 2: Gower et 

al., 1982). 

The simplest explanation of this variation is that the 
inversion line indicates the eastern limit of Archean crust 

in the Makkovik Province. The nature of the crust east of 
this line ' s debatable (see later discussion), but it is, 

without doubt, significantly younger than Archean. A very 
similar variation pattern is indicated by the distribution 

of T0M model ages (Figure 8.9). In both cases the 
inversion line is a sharp boundary, not a gradational one. 
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B._?_._;L N9 _l..§Q_t.9pic __ 'r.r~nd~ and Contrasts 

Trace element data discussed below are ICP-MS data 

(MUN) determined on the samrle splits used for Nd analysis 

(sec Appendix B; precision and accuracy estimates in 

Appendix A). The Jagged Edge porphyry has been grouped 

tentatively as Xal<kovikian (on the basis of high E:Nd), 

and Stag Bay and Thunder ~auntain are i ncluded with 

Labradorian units. 

Major Element Patterns 

E:Nd is poorly carrel a ted with ma jar element 

composition (Figure 8.10). The initial isotopic composition 

of Labradorian units appears independent of rna jor element 

·Jariation, except for a tendency towards slightly negative 

fNdCHUR at high Si02 . 

However, Makl<ovikian rocks show great variation in 

fNdCHUR at high sio2 contents. In the western domain 

fNdCHUR decreases with increasing sio
2

; this is a 

~ammon pattern in igneous suites, where siliceous 

compositions usually contain a greater crustal component. 

However, the .i_Dcr easi ng E: NdCHUR seen at high sio 2 
contents in the east is very unusual. It should be noted, 

however, that this trend is imparted largely by samples 

from the eastern Strawberry Suite and Jagged Edge 

assemblage, and may not be typical of all units. Similar 

antithetic behaviour of E:NdCHUR in Makl<ovikian rocks is 

showr by correlations against FeO, Na 2o and N/N+K ratios, 

but no correlation is present against l\1 2o 3 and K2o 
(Figure 8.10). 

• 
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Trace Element Patterns 

There is no correlation between ENd and either Nd or 

Sm (Figure 8.11). Trace elements which measure 

differentiation (e.g. Rb and Th; Figure 8.11) illustrate 

the same divergent behaviour as analogous major element 

parameters (e.g. Si0 2). In the east, ENdCHUR increases 

with differentiation, whereas it decreases with 

differentiation in the west. In the western domain, there 

is a good inverse linear relationship between ENdCHUR and 

Th, defined by the Long Island unit, Kennedy Mountain 

Intrusive Suite and western plutons of the Strawberry 

Suite. There are no obvious correl ations between ENdCHUR 

and these trace elements amongst Labradorian or 

unclassified rocks. Ba, Sr and Cs (Figure 8.11) show no 

clear patterns for either group. 

Initial Ratio Trends 

Initial Sr and Nd isotopic compositions are commonly 

inversely correlated in crustal rocks (e.g. DePaolo, 1981b; 

McCulloch and Chappell, 1982: Farmer and DePaolo, 1983; 

Wilson et al., 1985), and are commonly assessed via ENd­

Esr diagrams, where hyperbolic trends are characteristic 

of mixing processes (e.g. Gray, 1984). This method cannot 

be used in this study due to the unreliability of 

whole-rock Sr data. However, "initial ratio isochron" 

diagrams where initial Nd compositions are plotted against 
14 7 /144 . . h ld d t•. 1. Sm Nd rat~os (F1gure 8.12) s ou e 1ne 1near 

trends in situations dominated by simple mixing, although 

such trends may be complicated by subsequent fractionation 

(Gray, 1984). 
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Makkov ikian units in the eastern doma:~ define a gently 

inclined to flat-lying array (Figure 8.12 ~ . Two samples 

from the Strawberry Intrusive Suite (AKZ-~; GSZ-2) lie well 

above this trend. 

Makkovikian units in the western domain are scattered, 

but define linear subtrends (Figure 8.12); however, these 

trends do not correspond to petrological associations or 

suites. They are steeply inclined, and the Archean gneisses 

of Brooks (1983) plot close to the lower end of one 

feature. 

Labradorian units mostly lie on a positive linear array 

(Figure 8.12): this has an orientation intermediate between 

those defined by Makkovikian units from eastern and western 

domains. 

Linear trends of this type are consistent with (but not 

diagnostic of) two-component mixing relationships (e.g. 

Gray, 1984). If they have such a cause, the flat-lying 

trend of Makkovikian units in the east indicates similar 
143Nd;144Nd for both end members, whereas the steep 

trends in the west indicate significant differences in 

their Nd isotopic composition. The disorganized pattern 

amongst Makkovikian units in the west suggests a complex 

mixing system with a variety of end-member compositions. 

Note that the Cape Harrison Metamorphic Suite lies in 

the centre of the data array for Makkovikian (east) units, 

and cannot therefore strictly represent an end-member of a 

two-component system. However, any fractionation of Sm and 

Nd would move points along the trend to lower 147sm; 
144Nd, so this is not an absolute constraint. The Cape 

Harrison Suite lies above the Labradorian array at T = 1650 

Ma. 
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~.3 SUMMARY and DISCUSSION 

This section is concerned mostly with the implications 

of Nd isotopic data, and also attempts to model the sources 

of Makkovikian and Labradorian magmas quantitatively. 

8.3.1 The unusual case of The Pitre Lake Granite 

Isotopic Evolution The Pitre Lake Granite has 
147sm;144Nd (0.226) that is higher than accepted 
present-day values for CHUR (ca. 0.1966). It is evolving in 

the opposite direction (relative to CHUR) from most crustal 

rocks, i.e. its ENdCHUR is increasing with time. Isotopic 

evolution of this granite is subparallel to postulated 

depleted mantle evolution, and its T0M model age is 

infinite (Figure 8.13). These unusual features are 

demonstrated by its contrast with the anatectic Brumwater 

Granite, which evolves "normally" within the spectrum of 

its Archean precursors (Figure 8.13). 

Fractionation of Sm and Nd 

ratio indicates strong parent/daughter element 
fractionation during its generation. Such anomalous values 

have rarely been reported from crustal rocks. 

Stevenson and Patchett (1988) attributed a similar 

value in an Archean leucogranite to garnet fractionation, 

but do not specify whether the anomalous granite is itself 

garnetiferous. Windrim et al.(1984) interpreted huge 
. t" f 147 144 d d . h" . var1a 1ons o Sm/ N an ~Nd 1n sapp 1r1ne 

granulites in terms of pre-metamorphic hydrothermal 
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processes. Unusual LREE-depleted geochemical patterns in 

Himalayan leucogranites have similarly been attributed to 

fluid activity (Vidal et al., 1982: Searle and Fryer, 1988) 

The Pitre Lake Granite is not garnetiferous, and any 

residual garnet during anatexis would decrease Sm/Nd in an 
anatectic melt, based on distribution coefficients. Garnet 

fractionation could also not generate the unusual REE 

pattern of the granite (Figure 3.11, p.91). The normal 

behaviour of the adjacent Brurnwater Granite, also of 

anatectic origin, argues against regional hydrothermal or 

metamorphic effects. 

It is tentatively suggested that a residual accessory 

phase may have retained Nd during anatexis. Allanite and/or 

monazite are possible culprits, as both could strongly 

deplete partial melts in Nd (Miller and Mittlefehdlt, 1982: 

Michael, 1983). As no samples were collected from the 

metasedimentary rocks, this cannot be tested directly at 

present. 

Source Characteristics : Regardless of subsequent 

evolution, the high ENdCHUR of -1.9 indicates the 

characteristics of the source to the granite at 1800 Ma. 

This indicates a dearth of ancient Archean material in 

precursor metasediments, a surprising result in view of 

previous suggestions that they were deposited on local 

Archean crust (Sutton, 1972). It may indicate that 

metasedimentary rocks of the Lower Aillik Group represent 

detritus from juvenile Proterozoic material, andjor a 

highly allochthonous setting for the sequence, which is 

everywhere separated from Archean basement by ductile 

slides (Marten, 1977). 
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Implications : Any discussion must remain speculative 

until the mineralogy and geochemistry of the 

metasedimentary precursors of the granite are better known. 

A detailed examination of Nd behaviour during anatexis of 

different components of the Kaipokok Bay fold belt is an 

interesting avenue for further work. Rocks such as the 

Pitre Lake Granite represent low melting-point components 

of the crust, and their importance as potential 

contaminants to other magmas (given time for isotopic 

evolution) outweighs their actual abundance. This example 

shows that crustal rocks do not invariably contrast 

strongly with the mantle in terms of Nd isotopic 

composition. It would also be interesting to test the 

equivalence of Moran Lake and Lower Aillik Group 

supracrustal sequences via their Nd isotopic compositions, 

which would record the proportion of Archean versus 

Proterozoic detritus in each. 

8.3.2 Possible Sources of Makkovikian Magmas 

Nature of Basement In The Makkovik Province 

Variations in initial Nd isotopic composition indicate 

that Makkovikian rocks had different source material(s) in 

east and west (Figures 8.8; 8.9). Negative €NdCHUR in the 

western domain indicates a contribution from older 

material, probably Archean continental crust. Generally 

positive €NdCHUR in the eastern domain precludes a 

significant contribution from such material. Possible 

"basement" in the east (Cape Harrison Metamorphic Suite) is 

unlikely to be older than 2100 Ma, based on TOM model 

ages (Table 8.6). 
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This striking geographic variation suggests that the 

isotopic features of Makkovikian magmas were influenced by 

the nature of local basement rocks, and implies that they 

were in part derived from such materials. 

Continuity of elemental geochemical patterns from east 

to west, particularly amongst post-tectonic units, 

indicates that magmas in both domains had similar sources 

(and proportions thereof) in ~ compositional terms. For 

example, five plutons of the Strawberry Intrusive Suite 

have almost identical petrological and geochemical 

features, yet have a westward shift in eNdCHUR from +5.0 

to -6.0. If the western plutons contain a component derived 

from sialic crust, it follows that the eastern plutons also 

contain such material. 

It is therefore concluded that the eastern Makkovik 

Province is underlain by sialic continental crust of 

Proterozoic age generated during pre-Makkovikian and/or 

Makkovikian episodes. The Cape Harrison Metamorphic Suite 

may represent some of this material: however, as discussed 

below, it does not fulfill all isotopic requirements. 

The inferred edge of the Archean Craton is offset 

dextrally by the Adlavik Brook fault zone (Figures 8.8, 

8.9). Taken at face value, this indicates a major structure 

that extends through the continental crust. However, as the 

fault zone was active during the Grenvillian orogeny, the 

apparent displacement may only be in the upper levels of 

the crust-- i.e., intrusions may no longer be above their 

original source regions. 

Sources of Makkovikian Magmas 

Western Doaain Low eNdCHUR and high TDM in the 

west indicate contributions from older crust. The most 

extreme example is the Brumwater Granite, which is 
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isotopically indistinguishable from the Archean (Table 8.6; 

Figure 8.13), and was probably derived entirely by anatexis 

of this material. Most other units in the west, however, 

have higher €NdCHUR than the Archean gneisses would have 

at 1800 Ma. 

It is suggested here that they are mixtures of juvenile 

mantle-derived material and older continental crust. An 

alternative explanation is that they were derived by 

anatexis of continental crust generated at a variety of 

times between 2600 and 2000 Ma ago (c.f. McCulloch and 

Chappell, 1982). This is considered unlikely, as there is 

no evidence of orogenic activity during this period in 

Labrador, or on a worldwide scale (Patchett and Arndt, 

1986). Mantle-crust interaction during granitoid magmatism 

was suggested by DePaolo (1981b) in the western U.S.A, and 

by Halliday (1984) in the British Caledonides. However, the 

initial ratio isochron diagram for the western domain 

(Figure 8.12) suggests that there is no simple 

two-component mixing system in this area. 

In view of the lithogical and structural complexity of 

the Archean Nain Province, this is not unexpected. The 

€NdCHUR of the Brurnwater Granite (ca. -14.0) indicates 

that, at least locally, values calculated from the data of 

Brooks (1983).are representative, but anatexis commonly 

samples the lowest melting-point compositions within its 

precursor. The Archean of the Hopedale area also includes 

extensive tonalitic and trondhjemitic granitoid rocks of 

ca. 2800 Ma age (Loveridge et al., 1987), and a range of 

Archean supracrustal rocks. These would all have different 

Sm/Nd ratios and €NdCHUR values at 1800 Ma, and cannot 

therefore be represented as a point-source in a mixing 

diagram. 
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Eastern Domain : Units in the eas't.ern domain define a 

1 inear initial ratio trend that is almost flat-lying 

(Figure 8.12). This is consistent with simple mixing of two 

components with similar 143Nd;144Nd, but different 
147 144 . 

Sm/ Nd. It 1s suggested here that these magmas 

were mixtures between a "juvenile" component and slightly 

older Proterozoic sialic crust perhaps represented by 

material such as the Cape Harrison Metamorphic Suite. The 

well-defined linear trend suggests a simpler system, 

possibly with only two end-members. Two samples from 

eastern plutons of the Strawberry Suite (e.g. AKZ-4, GSZ-2) 

lie above this trend, but a third (GSZ-1) lies within it. 

These units may therefore have had somewhat different 

sources. 

Crust-Mantle Mixing Models 

Methodology : The proportion of continental crust (X) 

added to one part of a more juvenile magma to form new 

crust is given by the simplified expression 

X = 

where JV = juvenile component, NC = new crust, cc = crustal 

component, and eNd = Nd concentration (Pushkar et al., 

1972; Patchett and Bridgwater, 1984; Chauvel et al., 1987). 

The percentage of crustal component is given simply by 

lOOX 1 ( 1 + X). Results depend heavily on Nd concentrations 

in the end-members; in the case of the juvenile component, 

these are difficult to constrain. An upper limit to its 

ENdCHUR is provided by depleted mantle at ca. 1800 Ma 
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(+5.0; Nelson and DePaolo, 1984~ Patchett :md Bridgwater, 

1984). However, modern island-arc magmas commonly have 

s 1 i ghtly lower ENd than inferred depleted 1r.antle 

compositions (e.g. White and Patchett, 1984). The Nd 

content of a mantle-derived basalt to andesite magma could 

range from 5 to 20 ppm, based on modern island arcs (White 

and Patchett, 1984). A Nd content of 25 ppm is assumed for 

the crustal component, based on data from Brooks ( 1983). 

This is slightly lower than estimated mean values for 

sialic crust based on composite samples (e.g. Patchett and 

Bridgwater, 1984). 

Results Due to the difficulty in constraining 

end-members, model results are given as matrices (Table 

8.8), which give the percentages of crustal material 

required to generate a specific final ENdCHUR value. The 

parameters of crustal end-members are based on the Archean 

gneisses and Cape Harrison Suite in west and east 

respectively; the average €NdCHUR of the former is 

increased to -12.0, to accou:1t for younger ( 2 800 Ma) 

material within it. . It is assumed that the juvenile magma 

had ENdCHUR of +5.0. All are conservative estimates 

which, if anything, will overestimate the proportion of 

crustal material required. 

For a value of 10 ppm Nd in the juvenile compo!'lent 

(c.f. Patchett and Bridgwater, 1984), a typical Mal<kovikian 

magma in the west must include from 26% (final €NdCHUR = 
-3.0) to 42% (final ENdCHUR = -6.0) Archean crust (Table 

8. Ba). The proportion of Archean material required varies 

in sympathy with the Nd concentration in the juvenile 

component. In the eastern domain, equivalent amounts of 

mixing using Cape Harrison material as "crust" .... auld reduce 

ENdCHUR by less than two ENd units (Table 8.8b). 
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WESTERN DOMA I~ (:\rchf-an ContinPr!al Crust) A 
-

(<Nd>CHtR of Crustal Component - -u .u ( Consc·rva r i ,_.,. l 
(\NdJCHl.iR of Junnile Component - +::> . U I D< plE'tt:d Mdnt 1 E l 
Concentration of Nd in Crustal Compont>nt - h ppm 

Concentration of Nd in Juvenile Cor.~ponent 
Fin'll 
£(Nd)CHL'R s ppm 7 . 5 ppm 10 ppm 1:> ppm lU ppm ..') ppm 
Value 

+5 0 0 0 0 u 0 I 
I 

+4 1 2 2 4 ) 6 I 
I 

+3 3 4 5 7 10 12 I 
I 

+2 4 6 8 11 1) 18 I 
I 

+1 6 8 11 16 20 24 ' I 
0 8 11 14 20 2'> 21.J I 

I 

-1 10 14 18 25 30 )) I 
I 

-2 12 17 22 30 36 41 Pe rct!nt ar,e ut 
-3 15 .21 26 35 4 2 47 Crustal Conopont-nt 
-4 18 25 31 40 47 )3 Required 
-5 22 30 36 46 53 SI.J 
- 6 27 35 '•2 5! 59 65 
-7 32 42 49 59 66 71 
- 8 39 49 S7 66 72 76 
-9 48 58 6S 74 79 8.2 
- 10 60 69 7S 82 86 88 
-11 76 83 86 91 93 94 
-12 100 100 100 100 100 100 I 

I 

EASTERN DOHAIN (Juvenile Proterozoic Continental Crust) B 
£(Nd)CHUR of Crustal Component - +2 . 0 (Cape Harrison Suite) 
((Nd)CHL~ of Juvenile Component - +S.O (Depleted Mantle) 
Concentration of Nd in Crustal Component - 25 ppm 

Concentration of Nd in Juvenile Component 
Final 
£(Nd)CHUR s ppm 7.5 ppm 10 ppm 15 ppm 20 ppm 25 ppm 
Value 

+5.0 0 0 0 0 0 0 I 
I 

+4.5 4 6 7 11 14 11 I 
I 

+4.0 9 13 17 23 2~ 33 I Percentage Of I 

+3 . S 17 23 29 38 44 so I Crustal Component I 

+3 . 0 29 3!! 44 )5 6.2 67 I Required I 

+2.5 50 60 67 75 80 83 I 
I 

+2.0 100 100 100 100 100 100 I 
I 

Table 8.8. Two-component mixing matrices for Makkovikian magmas, 
showing percentages of crustal component required to generate a 
specific final fNdCHUR value. (a) Western domain (Archea~ 
Crust). (b) Eastern Domain (Proterozoic Crust). 
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These are model-dependant results, and no unique 

solution is possible. However, the amounts of mixing 

required in the west are reasonable for combined 

assimilation- fractional crystallization (DePaolo, 1981a), 

and it is clear that eguivalent interaction in the east 

would be very difficult to recognize isotopically, 

particularly if the Nd content of the juvenile component 

was lower, or its €NdCHUR higher than postulated. 

However, eastern plutons of the Strawberry Intrusive 

suite have higher €NdCHUR than permitted if they 

incorporate significant amounts even of Cape Harrison-type 

materials. Any crustal component in these rocks must have a 

minimal crustal prehistory. Three samples in the east also 

have €NdCHUR values that are equivalent to or slightly 

below those for the Cape Harrison Metamorphic Suite at 1800 

Ma, but within analytical error of these rocks. If this 

difference is real, it may indicate that material with 

lower €NdCHUR than the Cape Harri&on suite also 

contributed some material to the magmas. 

8.3.3 PoSSible sources Of Labradorian Magmas 

continuity of Isotopic Compositions 

Labradorian suites show less variation in €NdCHUR 

(Tab]e 8.7), and show no strong geographic variatio•, 

(Figure 8.8). With the exception of three samples in the 

west, most have values close to those of CHUR (0), 

regardless of their composition or location. There are, 

however, some slightly negative €NdCHUR values in the 

Benedict Mountains area (see below). 

Similar observations were made by Patchett and 

Bridgwater (1984) and Patchett and Kouvo (1986), who found 
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that a wide range of Proterozoic igneous rocks in Greenland 

and Finland also clustered around approximate bulk-earth 

ENdCHUR values (ca. 0). 

Sources Of Labradorian Magmas 

Processes which could account for ENdCHUR values of 

ca. 0 include derivation from an ~ng~pleted mantle 

reser~oir or melting of slightly older continental crust. 

In terms of the study area, the first appears unlikely in 

view of direct evidence for depleted source materials in 

Makkovikian granitoid rocks. The second cannot be ruled out 

for granites (s.s), as the Cape Harrison Metamorphic Suite 

and some Makkovikian rocks in the east would have ENdCHUR 

of ca. 0 at 1650 Ma, and some have similar TDM to the 

Labradorian samples. However, it is difficult to visudlize 

a partial melting process that could generute mafic and 

intermediate magmas of the Adlavik and Mount Benedict 

Intrusive suites from such materials; these must surely be 

derived from mantle m~~erials. Also, the ENdCHUR of 

Makkovikian rocks in the western domain indicates that some 

Makkovikian crust in this part of the area would have had 

£NdCHUR of -4.0 to -8.0 at 1650 Ma. 

A third alternative is that Labradorian magmas are 

mixtures of juvenile material and older crust -- but in 

relatively constant proportions. Patchett and Bridgwater 

(1984) and Patchett and Kouvo (1986) preferred this 

alternative in their studies, and suggested that mixing and 

homogenization of end-members was acryieved by subduction of 

continent-derived sediment into zones of mantle melting. 

Observed compositional variation was then produced by 

fractionation and remelting of this material ~ the crust. 

In general terms, this model appears to be applicable 

to Labradorian plutonic rocks, but it should be noted that 
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the role of subducted sediment in arc magmatism has been 

questioned (e.g. Pankhurst et al., 1988; Hildreth and 

Moorbath, 1988; see chapter 9). Distal (subcrusta}?) mixing 

is also consistent with the lack of evidence for direct 

contributions from local Archean basement rocks, and with 

the constancy of ENdCHUR across the Labradorian 

compositional spectrum. 

The Witchdoctor and Burnt Lake Granites, however, 

contain greater amounts of an older component. These could 

incorporate local Archean basement material or, 

alternatively, could be anatectic melts derived from 

Makkovikian granitoid rocks. However, they lie on a 

well-defined initial ratio isochron with other Labradorian 

samples (Figure 8.12), suggesting that they may simply be 

part of the same mixing spectrum. 

Mixing and Contamination Models 

Mixing calculations for Labradorian magmas are 

summarized in Table 8.9a. Using ENdCHUR = +5.5 and 10 ppm 

Nd for juvenile mantle-derived material, and -12.0 and 25 

ppm respectively for the crustal component (c.f. Patchett 

and Bridgwater, 1984; 8.3.2), a Labradorian magma with 

fir.al £NdCHUR of 0 must contain ca. 15% crustal material. 

This is geologically reasonable, and similar to estimates 

of the sedimentary component in some modern arc magmas 

(White and Patchett, 1984). It is also a reasonable 

proportiLn for direct assimilation but, as discussed above, 

such an explanation requires that gabbro and leucocratic 

granites ~oth contain the same proportions of assimilated 

crust, which is unlikely. 

Variation of ENdCHUR in the Adlavik and Mount 

Benedict Suites is treated in the same manner to assess 

contamination by crustal material {Table 8.9b). The 
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Labradorian Plutonic Rocks (~~neral) 

£(Nd)CHL'R ot Crustal Component - -1.:' . 0 ( Conset·va t i v.-· I A 
£(Nd)CHLR of Juvenile Compon~nt - +J . 5 !Dt>plet~d M.mtlcl 
Concentration ot Nd in Crustal Component - 2J ppm 

Concentration of Nd in Jun·ni I e Compon('nt 
Final 
E<Nd)CHt.:R ; ppm /.)ppm 10 ppm b pp:-n 20 ppm 2~ ppm 
\'alue 

+5 0 1 1 2 2 ..\ 
+4 1 3 4 ') I 'J 
+3 2 5 6 9 12 14 
+2 2 7 9 l3 I 7 20 
+1 3 9 1.2 11 22 26 

0 4 12 15 22 21 31 
-1 6 15 19 26 ..\2 31 
-2 7 18 23 31 38 43 I Percentage v ! 
-3 9 22 27 36 43 49 I Crustal Compone-nt I 

-4 11 26 32 42 49 54 I Required I 

-5 l3 31 38 47 5') 60 I 
I 

-6 16 37 43 )3 61 66 I 
I 

-7 20 43 50 60 67 11 I 
I 

-8 25 50 57 67 73 II I 
I 

-9 33 59 66 74 7Y !:13 I 
I 

- 10 44 70 76 82 86 8Y I 
I 

-11 62 ~3 e1 91 93 '14 I 
I 

-12 100 100 100 100 lOU lUO I 

' 

Contamination Of Adlavik and Mount Benedict Intrusi~·e Suites 

((Nd)CHUR of Crustal Component - - 12 . 0 8 
((Nd)CHUR of Parental Magma- +1 . 0 (Adlavik Gabbro) 
Concentration of Nd in Crustal Component - 25 ~·pm 

Concentration of Nd in Parental Magma 
Final 
((Nd)CHUR 5 ppm 7.5 ppm 10 ppm 15 ppm 20 ppm 25 ppm 
Value 

+1.0 0 0 0 0 0 0 I 
I 

+0 . 5 1 1 2 2 3 4 ' I 
0.0 2 :' 3 5 6 8 I 

' -0.5 3 4 ') 7 y 12 I 

' -1.0 4 5 7 10 13 1) I Percentage Of I 

-1. 5 5 7 <:, 13 16 19 I Crustal Component I 

-2.0 6 0 11 15 1'1 23 I Required I 

-2.5 7 10 13 18 23 21 I 
I 

-3.0 8 12 15 21 26 31 I 

' -3.5 10 14 17 24 30 35 ' I 
-4.0 11 16 20 27 33 38 ' ' -4.5 l3 18 23 31 3/ 42 I 

I 

-5.0 15 20 '}6 34 41 46 ' I 

Table 8.9. Two-component mixing matrices for Labradorian magmas, 
showing percentages of crustal componen~ required to generate a 
specific final E CHUR value. (a) General crust-mantle 
mixtures. (b) Co"@amination of Adlavik or Mount Benedict Suite 
mafic magma by Archean crust. 
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ENdCHUR o~ the parental magma is taken to be +1.0 (based 

on Adlavik Suite gabbro), considered to be a signature 

acquired ~Q~ to emplacement. If it had 10 ppm Nd, such a 

magma must assimilate a further 10-15% of crustal material 

(ENdCHUR = -12.0) to obtain a final value of -2.0 to -3.0 

in the most differentiated material. This proportion is 

substantially reduced (< 7.5%) if the Nd content of the 

parent magma was below 10 ppm, or if the contaminant 

actually had £NdCHUR of ca. -17.0, which is the 

calculated value for Archean gneiss (Brooks, 1983) at 1650 

Ma (Table 8.7). Contamination effects also explain the 

negative (ca. -6) ENdCHUR of the gabbro at East Micmac 

Lake in the western domain, which also has a higher sio2 
than gabbro in the west. The amount of Archean material 

required to generate this value, however, is over 30%, 

assuming 10 ppm Nd for the juvenile magma (Table 8.9). This 

unreasonable figure is reduced significantly if the 

conditions discussed above applied here also. 

Only Archean crustal material is a viable contaminant 

for Adlavik and Mount Benedict Suite magmas; however, the 

latter lies well east of the edge of the Archean craton as 

inferred from Makkovikian data (Figures 8.8;8.9). It is, 

however, unlikely that this crustal boundary is a simple 

vertical interface. The signatures of Makkovikian g~anitoid 

rocks probably reflect their partial lower crustal sources, 

whereas contamination of the Mount Benedict Suite probably 

took place in the upper crust, which may have contained 

some Archean or Archean-derived material. The presence of 

some upper crustal Archean material would also explain the 

mixture of positive and negative ENdCHUR values along the 

proposed boundary (Figure 8.8), and anomalously low 

ENdCHUR at the border of the Numok Intrusive Suite, close 

to the proposed boundary (Sample AKZ-3; Table 8.6) • 
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CHAPTER NINE 
A COMPARATIVE ANALYSIS 

Chapter Abstract 

In order to evaluate the affinities and possible tectonic 
settings of the TLGB Makkovikian and Labradorian ~lutonic 
assemblages, a quantitative comparative analysis ~as attempted. 
This employs published and unpublished data from several 
granitoid batholiths taken to represent specific tectonic 
environments. 

Volcanic-arc batholiths are represented by data from Mesozoic 
to Cenozoic, circum-Pacific batholiths of Peru, Chile and 
southern California. All are associated with ac~ive or 
recently active zones where oceanic crust is subducted beneath a 
continental margin. Collisional environments representing later 
stages of orogenesis are represented by Cenozoic granitoid rocks 
from the Himalayan belt of Afghanistan, and by the late- to 
post-orogenic Paleozoic granites of the Newfoundland 
Appalachiar.s. The latter assemblage probably represents the most 
complete sampling of the later magmatic products of orogeny. 
Within-p:ate granitoid bathol i ths are represented by Midd l e 
Proterozoic granitoid rocks from norther~ Labrador, which are 
closely similar in petrology to Phanerozoi~ anorogenic suites. 
Large amounts of generally representat i ve data are available from 
most of these areas. This allows the use of extensive parameters 
such as frequency spectra, abundance of rock types and 
evolutionary trends as comparative tools, in addition to 
conventional intensive methods such as discrimination diagrams. 

The Makkovikian assemblaga contrasts very strongly with 
volcanic arc batholiths. Specifically, it is characterized by 
en~ichment in sio 2 , K2o, Na 2o, K+N/A, F/F+M, and depletion 
of MgO, cao and NfN+K. It is compositionally restricted in 
comparison to the broad, expanded spectrum of arc compositions. 
Although most major element frequency spectra resemble the 
Newfoundland assemblage, Makkovikian granites dre significantly 
more agpaitic and Fe-enriched at all Sio2 contents. Such 
features suggest that they are tra1 . ~itional towards within-plate 
assemblages such as Flowers River, which has similar, but more 
extreme, tendencies in these directions. Compositional evolution 
in the Makkovikian assemblage follows a "quartz-poor" trend via 
mon:Gonite and syenite, that is distinct from the "quartz-rich" 
(via granodiorite and monzogranite) trend of the Newfoundland 
granites. Trace element data indicate enrichment in Zr, Y, F anti 
REE relative to Newfoundland, but not to levels ~ypical of 
Flowers River. The Makkovikian assemblage falls in within-plate 
granite o~ A-type granite fields in trace element discrimination 
plots. 
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It is suggested that a post-orogenic, possibly 
post-collisional, affinity is more consistent with the geological 
setting of the Makkovikian assemblage than an anorogenic 
environment. It is clear, however, that the Makkovikian 
assemblage has many fea~ures that are akin to granites generated 
in such settings. These differences require explanation in any 
tectonic model incorporating a post-collisional setting for these 
granitoid magmas (see Chapter 10). 

The Labradorian assemblage is difficult to classify via 
geochemical comparisons, partly because it is only the northern 
fringe of a much wider belt, and may not represent its full 
compositional anatomy. It includes a range of compositions 
similar to those of volcanic-arc batholiths, but has a bimodal 
compositional spectrum, and is generally more siliceous and 
potassic. Labradorian granitic rocks have some tendencies towards 
Fe-enrichment and high K+N/A, but not to the same degree as the 
Makkovikian assemblage. They do not show the distinctive trace 
element signatures of Makkovikian granites, and could belong to 
either arc or collisional assemblages. The Labradorian assemblage 
falls mostly in the volcanic-arc or !-type granite fields on 
trace element discrimination plots. Labradorian mafic and 
intermediate rocks, as discussed in Chapter 5, have affinities to 
high-K calc-alkaline or shoshonitic associations, and fall 
dominantly in the calc-alkaline basalt field in trace element 
discrimination plots. 

A distal portion of a magmatic arc (i.e. well removed from 
the locus of subduction) is one possible setting for Labradori?.n 
magmatism. This is consistent with its siliceous and potassic 
character relative to proximal volcanic-arc batholiths, and the 
lack of a recognisable Labradorian "orogeny" in the study are 
could be then attributed to great distance from the main orogenic 
belt. However, similar assemblages also occur in post-orogenic, 
post-collisional settings, where granite compositions overlap 
partly with those of mature or distal arcs. At the present time, 
it is difficult to select between these alternatives. However, 
the Nd isotopic signatures of Labradorian mafic rocks favour a~ 
arc environment, and there are obvious contrasts between 
Labradorian granites and the categorically post-orogenic 
Makkovikian assemblage. 
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Introduction 

This chapter assesses TLGB magmatic assemblages with 

reference to Proterozoic and Phanerozoic assemblages that 

represent diverse environments of granitoid magmatism. 

This c~mparative analysis is presented partly in terms 

of their compositional spectra and evolutionary trends, 

combined with traditjonal methods based or. intensiye 

parameters such as major and trace element abundances. Kerr 

(in press) presents a preliminary analysis of this nature, 

for the TLGB, which was completed prior to the recognition 

of discrete post-tectonic Makkovikian and Labradorian 

assemblages. The following discussion employs a wider 

selection of comparative data, and revises some earlier 

conclusions in the light of this improved geochronological 

framework. 

Genetic andjor tectonic classifications of granitoid 

rocks are a veritable "growth industry'' in petrology. 

Current mainstream vic~points concerning environwcnts and 

classification of granitoid magmatism are reviewed in 

Chapter 1. 

Spectral Analysis of Granitoid Batholiths 

Phanerozoic granitoid magmatism forms a compositional 

continuum, and unigue rock types characteristic of ~ggcifiQ 

environments do not exist. Furthermore, diverse tectonic 

environments are likely to be spatially andjor temporally 

superimposed in ancient orogenic belts. This reality poses 

formidable problems in classification, particularly when 

conclusions are based on small numbers of data that 

represent rest~icted areas or time-slices in the history of 

a belt, as is normally the case. 
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Modern geochemistry emphasizes intensive parameters 

such as element abundances or REE patterns as 

classification tools (e.g. Pearce et al., 1984). An 

alternative approach is to use extensive parameters ~uch as 

frequency spectra, proportions of rock types and 

geochemical changes with space, time and differentiation. 

"Spectral analysis" of this type is not a new concept (e.g. 

Martin and Piwinski, 1972; Petro et al., 1979), but it has 

not been widely applied. 

Spectral analysis methods require large, statistically 

representative, geochemical databases, such as the 

information presented here for the TLGB. Such information 

is increasingly available (e.g. the ARTEMISE data bank, 

maintained by CNRS in France; Leterrier et al., 1983) and, 

coupled with unpublished data available to the author, 

allows an analysis of this type to be attempted here. There 

are, naturally, difficulties in assessing the degree to 

which such data represents specific environments, and some 

potential problems in comparing trace element data of 

variable quality from different sources. However, these 

problems are also inherent in trace element discrimination 

schemes based on intensive parameters. 

9 I 1 OVERY I EW OF COMPARATIVE GEOCUEMICAL DATA 

Seven comparative geochemical databases were assembled 

(Table 9.1). A brief description of each is presented 

below, and any problems in interpreta~ion or use of these 

data are noted. Wherever possible, tectonic environments 

have been duplicated, to allow a parallel assessment of 

variations in the character of a single setting. Note that 

the TLGB data used in comparisons conprise the regional 

(grid-based) sample population only, and that unclassified 

plutonic rocks and all volcanic rocks are excluded. 



t\rt·a and 
Source(sl 

Trans-Labrador 
(;ranitoid Kelt 

! This St udv ) 

co ... st .• 1 K •• t h o ll th 
Of Pt-ru 

; Pllchf•r F- 1 al . ,I4K'> j 

Mt· soz olt.' ti;tthuliths 
Ul S•>rth -C.,nt ra J Chile 

· Brown , pE> r s.l·omm . I 

B •• rhol ithic Rocks Of 
!'lnuflu· rn Ca l ifon1l ii 

li·•ltd .ttul ~ it-sch. )'-ltil•l 

AI p!:oo·· 
ttimrtltt\'ftn 

Plutonic.: Bt-lfs 
Of At~~h.tnistan 

llt.·bott , 1 aJ .I'IM/ii. b : 

l'n!->t T~u· ,mif' 
, ,r.,ni t ,, jd Ruc.·ks 

or Ttu · :\t··.:t ouu, tl <ind 
1\ ppo~ I ach i .tns 

Sl I'Pil~: l t •• ) 14 .'4. 
Dt·pf ,, , :-i t llt' S, 

l'npuhl i s iH d O.tt ~t' 

:\unr'lf.t 111,· l .ran t ft"s 
ut ;' " ' t tu· ru l .... ,brado r 

~~· \ :nnllt· ll . 

l"nruhl1 s tu-d dat <i : 

Ag" and 
St!tt lng 

Hakkovikian 
Assemblage 

Labrarlo ri an 
Ass ... mblap," 

Mt-so?.oi c 
Hagraatic Arc 

Batholith 

Mt-sozoic 
Hagraatic Arc 

l!at hoi i th 

Mesozoic 
M.agraa t i C' Arc 

llathol it h 

Mt-sozoic Tu 
Ct-nozolc 

Collisional 
Orogt'n 

C:~uozoic 
Onlv 

{Col lisional I 

Htsozo i r Onl v 
l~agllldtlc Ar,·s ? I 

Hid<llf' P.1 l •·u">ic 
Svn- a "d Post· 

Coli i siona l 
l!at holirhs 

: Ex,· l udt> s Ordovician 
Arr l ; rHn i to ids ! 

~1ddl~ ProtPr~zoic 
' ,. ,. . l l/IJ Ma : 
' ""no rof,e-ni c " 

II~ tho it h 

> 
I 

Area 
lsq . kmf 

11.~00 

110.000 

11 ,000 

2U.OOO 

100.000 
t'St imates 

ca . 
30.000 

l . ~uo 

Number Density 
Analyses 

~11 1/10 kml 

332 ljl O km2 

211 nj a 

280 1/40 km2 

4Hl lj40 kml 

670 1/ iOO kll2 
VE"ry app~oxis.atE" I 

334 

336 

Trace Ele15ent 
Analysis Suite 

F Be Ll V Cr Co Ni Cu 
Zn Ga Rb Sr "i Zr Nb Ho Sn 

Ba La C~ W Pb Th U 

Sc V Cr Co Ni Cu 
Zn Ga Rb Sr Y Zr N~ 

Cs l!a La Ce Hf Pb Th U 

V Cr Co Nt Cu 
Zn Ga Rb Sr Y lr Nb 

8a La Ce Pb Th U 

raajor E-lements only 

V Cr Co Ni Cu 
ltb Sr 8a 

•. I!<' Li V Cr Co Ni Cu 
JlU} ljl~ km2 Zn (;a Rb Sr 'i Zr Nb Ho Sn 

Sa La Ce W Pb Th 0 

367 
F Se Ll V Cr C:<> Ni Cu 

1/7 km2 Zn Ga ltb Sr Y Zr Nb Mo Sn 
Sa La Ce ~ Pb Th V 

Collltl.ents 

Samples from regional gr i d 
population twly. 
all 

excluding 
unclassi f!ed and volcanic 

rocks. 

Traverse-b~sed sampling . 
Trace eiement cove~age is 
h"terogeneous . 

Setting is analogous to Peru . 
Generall y rE'pre~entative of 
all rock types areally . 
Homogene ous t race element data. 

Grid - based sampling used in 
multivariate statistical 
model. Numerous orhe r s t u dies 
of bathol i th are publ i shed. 

Si ze of s~udy preclude•· estim· 
atlon of Stimpling densl ty. 
Poor detec t ion ll11lts fer 
Cr, Co, Ni . 

Pt!raluminous biotite-musct•vlte 
I eucograni t"s and coeval 
metaluminous granitoid roc~s . 

Polvpha se tonallte·p,rano · 
di orite-granite batholiths 

~ost recent data used wherever 
possi ble . 
A~gregate database Is thought 
to ~ geog~arhica l ly and 
l ithological y representative . 
Early ( 1914) data has a 
l iiDi t ed t.-ac~ suite compr i sing 
f Cu Zn Rb Sr Zr Sa U. 

Grid Sam~ling Progra11 si11 i lar 
to TL<.8 project . 
Database mostl y reprt sents 
per a I kall ne gra nt tes . 
Associ ated Granitoid rocks are 
under-represented . 

Table 9.1. Summary of databases (including TLGB 
data) employed in comparative geochemical studies. 

w 
-...1 
1\.,) 



- 373 -

Coastal Batholith Of Peru 

The Mesozoic-Cenozoic Coastal Batholith of Peru 

(Pitcher, 1977; Atherton, 1984; Pitcher et al., 1985) is 

the type example of a "cordilleran" or "volcanic-arc" 

batholith. It is situated 200 km east of the trench of an 

active subduction zone, stretches for over 2000 km, and has 

an average width of ca. 70 km (Figure 9.1). The following 

summary is taken from the above sources. 

Geological Setting : The batholith is composite, and 

is divided into segments (longitudinal sectors), and 

"super-units" (Cobbing et al., 1977). The latter are mafic 

to felsic intrusive sequences. Diorite, quartz-diorite and 

tonalite, associated with lesser mafic rocks, are their 

dominant components; granitic (s.s) plutons commonly form 

ring-complexes that are the youngest intrusive phases. 

High, probably subvolcanic, emplacement levels were 

attained by many plutons. Subaerial basalt, dacite and 

rhyolite (Calipuy Group), are younger than most of the 

plutonic rocks, and may not be directly related to the 

exposed plutons. The dominant host rocks are Mesozoic 

turbidites and mafic volcanic rocks. However, much of the 

batholith is probably underlain by Phanerozoic or 

Precambrian basement at depth. 

Geochemical Database : Pitcher et al. (1985) list 217 

XRF and INAA analyses, including volcanic rocks. These 

represent "traverses" across the batholith, and are not 

geographically representative of any specific area. Trace 

element data are heterogeneous, due to collection by 

different workers over a 20 year period. It is not clear if 

they are truly representative of the Coastal Batholith. 

• • li • -- -. . . . . . 
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Figure 9.1. Distribution of major volcanic-arc batholiths 
in the Andean - Cordilleran orogenic belt, showing areas 
discussed in this study. Adapted from Read and Watson ( 1975). 
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Mesozoic Batholith Of North-Central Chile 

The coasta 1 cordillera of northern Chile (Figure 9.1) 

ar2 formed by a Mesozoic batholith that is continous with 

the Peruvian example and has a similar setting (Coira et 

al., 1982; Naranjo et al., 1986; Brown, 1987; 1988). The 

following summary is taken from the above sources. 

Geological Setting : Plutonic rocks in this area are 

Triassic to Jurassic ( 220-160 Ma) and Cretaceous ( 130-100 

Ma) in age. The locus of magmatism migrated eastward from 

the trench axis with time. Country rocks include Paleozoic 

metasediments containing leucogranite intrusions, overlain 

by Mesozoic basinal sedimentary rocks. The Paleozoic rocks 

are unrelated to Andean orogenesis. Most of the batholith 

is considered to be underlain at depth by basement of at 

least Paleozoic age. It is dominated by diorite, tonalite 

and granodiorite, with subordinate gabbro and granite 

(Brown, 1987; 1988). Volcanic cover rocks are not 

widespread, but Cenozoic volcanic rocks are widespread 

inland, reflecting continued eastward migration of the 

active volcanic front. 

Geocheaical Database : M.Brown (pers.comm., 1988) 

provided 280 unpublished analyses from this batholith. 

Sample collection was not rigidly structured, but the data 

are geographically and lithologically representative, and 

are far more homogeneous than those of Pitcher et al. 

(1985). Major and trace elements were analyzed by XRF at 

the British Geological Survey, and appear reliable, at 

least in terms of their detection limits. 



~· 

J 

f 

f 

i 
t 
I 
~ 

t 

J 

I 

! 
l 

- 376 -

Mesozoic Batholith Of southern California 

This is also a classic area of "cordilleran" magmatism, 

and has been intensely studied (Baird et al., 1974; 

DePaolo, 1981b: Baird and Miesch, 1984: Silver and 

Chappell, 1988). This area includes part of the Peninsular 

Ranges Batholith (Silver and Chappell, 1988), and also the 

Transverse Ranges, where the batholith is transitional to 

the Sierra Nevada Batholith (Figures 9.1 and 9.2). The 

following description is taken from the above sources. 

Geological Setting : The batholith is largely of 

Cretaceous (140-80 Ma) age. The oldest rocks are in the 

west, suggesting that magmatism migrated away from the 

trench, as in Chile. The area in Figure 9.2 has 

well-developed transverse petrographic, geochemical and 

isotopic trends, suggesting progressively more evolved 

compositions to the east. Major shifts in composition 

coincide with faults of the San Andreas system, and it is 

possible that transverse trends may have been telescoped 

(see Baird and Miesch, 1984, for a review of discussion). 

The country rocks are mostly Mesozoic metasediments in 

the Peninsular Ranges, but include possible Proterozoic 

basement material east of the San Andreas fault and in 

adjacent Mexico. 

Geochealcal Database : Baird and Miesch ( 1984) list 

482 major element =analyses fro!! a grid-based, 

representative sample population analogous to the TLGB 

database, but with a lower sample density. Data are 

subdivided by geogr~phic block (Figure 9.2). Gabbroic rocks 

(mostly in the west) were excluded by Baird and Miesch 

(1984) as they were considered to have a separate origins 

from the granitoid rocks. Data were acquired by XRF. 
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Plutonic Belts of Afghanistan 

The Alpine-Himalayan Belt is the type area for 

collisional orogenesis. The following account is summarized 

from studies by the CNRS of France (Debon et al.,l986; 

1987a,b,c) in Afghanistan, Pakistan, Nepal and Tibet. 

Geochemical data from Afghanistan (Debon et al.,1987b) were 

utilized. 

Geological setting : Major plutonic b.~ l ts in 

Afghanistan (figure 9.3) comprise a tectonic collage of 

pre-, syn- and post-collisional magmatic provinces that 

belong to both Eurasian and Gondwanaland portions of the 

Himalayas. The oldest granitoid rocks are Lower Paleozoic 

(ca. 500 Ma~ leucogranites, associated with earlier 

(unrelated) Gondwanaland events. These were followed by 

Triassic (210-160 Ma) and cretaceous (100-70 Ma) polyphase 

granitoid batholiths that are considered to record 

subduction of Tethys under the Eurasian and Gondwanaland 

margins respectively. All of these rocks were formed prior 

to collision between India and Eurasia ca. 54 Ma ago. 

Syn- and post-collisional magmatism occurred in 

Cenozoic (Eocene to Miocene) times. Rocks of thi~ age 

comprise two-mica peraluminous (S-type) leucogranites of 

classical "Himalayan" affinity (e.g. T_,anord and LeFort, 1988) , 

and also metaluminous (1-type) granitoid rocks. Both 

associations transgress the tectonic boundaries between 

older plutonic belts, and they appe~r to be partly coeval. 

The dominant country rocks are poorly-known Mesozoic 

metasediments, but metavolcanic sequences, ard Paleozoic 

(possibly also Proterozoic) metamorphic rocks occur 

locally. 
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Geochemical Database : F.Debon (pers.comm., 1988) 

provided 723 analyses from the ARTEMISE data bank. The data 

are subdivided according to age and plutonic belt; this 

study is concerned with 334 Cenozoic granitoid rocks and 

336 samples from Mesozoic batholiths; analyses from 

Paleozoic granites were excluded . Mesozoic batholiths are 

of interest mostly in terms of their correspondence to 

assemblages that retain a spatial relationship to 

subduction (e.g. Peru, Chile). The area covered by the 

Afghan data is immense, and sample locations were governed 

largely by access; however, Debon et al.(l987b) consider 

the database to be representative on a broad scale. All 

data are XRF; the trace element suite is very limited, and 

useful data are present only for V, Rb, Ba and Sr. 

Late- and Post-orogenic Granitoid Rocks Of Newfoundland 

Appalachian-Caledonian granites define an important 

subtype in the classification of Pitcher (1983). The 

Newfoundland Appalachians are a two-stage collisional 

orogen that have been compared directly to the 

Alpine-Himalayan belt (Colman-Sadd, 1982). Voluminous 

granitoid rocks in the central portion of the orogen 

(Figure 9.4) mostly post-date closure of Iapetus (locally) 

during the Taconic Orogeny. Although it is simplistic to 

burden these suites with a single label such as 

"collisional", they provide a good representation of the 

ch~racter of magmatism in later stages of Phanerozoic 

orogenic cycles. The following summary is drawn largely 

from Hayes et al.(l987), Dickson et al.(l988), and Williams 

et al.(l989). 
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Figure 9.4. Distribution and setting of granitoid intrusive 
rocks in the Newfoundland Appalachians. From Williams et 
al. ( 1989). 
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Geo.logical Setting : Granitoid rocks in Newfoundland 

are divisible into several groups, which are assigned names 

from type localities (Figure 9.4). Ordovician suites are 

considered to represent volcanic-arc environments thot 

predate the Taconic orogeny. Post-Taconic, (largely 

Siluro-Devonian) magmatism continued for up to 100 Ma, and 

transcends the Devonian Acadian orogeny. The country rocks 

vary from ocean-floor and island-arc volcan i c assemblages 

in the Dunnage Zone to high-grade metamorphic rocks in the 

Gander Zone and Precambrian volcanosedimentary sequences in 

the Avalon Zone. 

Variably foliated, metaluminous to peraluminous 

("S-type") granites (Burgee and Middle Ridge type) in the 

metasedimentary Gander Zone are considered to have been 

generated during accretionary or collisional events 

(Williams et al., 1989). Undeformed Siluro-Devonian 

(predJminan~ly I-type) plutons of the Topsails, Ackley and 

Mount Peyton associations (Figure 9.4) transgress the major 

zones of the orogen, and are probably post-collisional. 

Some (e.g. Topsails) are peralkaline; a number of others 

are described as "A-type" granites (Hayes et al., 1987). No 

attempt is made here to subdivide these diverse rocks 

according to age or zone: they are treated a s a single 

assemblage. There appear to be systematic differences in 

geochemistry and isotopic character betwe en the various 

tectonic zones (Dickson et al., 1988; B.Fryer, pers.comm., 

1988), that probably record the influence of contrasting 

lower crustal blocks. 

Geochemical Database : Geochemical studies include 

early work (Strong et al., 1974), and several recent 

investigations (e.g. Dickson, 1983; Dickson e~ al.,1989). 

Since 1982, grid-based sampling programs akin to the TLGB 

study have been employed. Data for the Topsails I gneous 

Suite were provided by Whalen et al. (1987b). 
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There are great variations in sample density amongst 

these studies. An optimum sampling density (ca. 1 sample 

per 25 km 2 ) was therefore established, and intensely 

sampled plutons were reduced to this level by random 

selection of a sample subset. It is felt that the aggregate 

database of 1202 analyses is approximately representative. 

Individual plutons are not equally represented, but 

as~ociations defined by Williams et al.(1989) are included 

in rough proportion to their areal extent. 

Wherever possible, the most recent data have been 

employed; analytical methods and precision for these are 

equivalent to this study (Appendix A). Other sources are 

primarily XRF data, and of reasonable to good quality 

(Strong et al., 1974; Whalen et al., 1987b). 

Proterozoic Anorogenic Granites Of Northern Labrador 

Anorogenic, within-plate suites of Phanerozoic age 

(e.g. Kinnaird and Bowden, 1987) are very poorly 

represented by public-domain geochemical data. 

However, published and unpublished data are available 

from the ca. 1270 Ma old Flowers River Igneous Suite 

(Figure 9.5) in northern Labrador (Hill, 1982: Collerson, 

1982; Hill and Thomas, 1983). This is similar to c l assic 

anorogenic granitoid complexes such as the younger granites 

of Nigeria, and has an anorogenic setting (Collerson, 1982; 

Hill, 1982). 

Geological Setting : The complex is part of a major 

belt of Middle Proterozoic plutons extending from Labrador 

to the midcontinent United states (Emslie, 1978; Anderson, 

1983). The Flowers River Suite is spatially associated with • 
granitoid rocks of the Nain Igneous Complex, and is similat· 



t 
N 

I 

A 
Atlantic 

Ocean 

C~chill 
Structural 
Province 

E] peralkaline gran i te 
0 volcanic rocks ._ 

II' )(I' "'()()" 

Figure 9.5. Location and distribution of peralkaline, anorogenic 
granitoid rocks of the Flowers River Igneous Suite in Northern 
Labrador. Stippled areas in (A) are the anorthosite-granitoid 
plutons (e.g. Nain Igneous Complex) with which these rocks are 
spatially associated. From Hill (1982). 
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in age to some of them (Collerson, 1982). It is dominated 

by subsolvus and hypersolvus metaluminous to peralkaline 

granites and associated volcanic rocks. The Nain Igneous 

Complex includes anorthosite, monzonite, fayalite-bearing 

syenite and granite. Anorthositic rocks are probably not 

~jr_ec_t.l.Y related to the granites, but are an integral part 

of most Proterozoic anorogenic complexes (Emslie, 1978). 

The country rocks are high- grade Archean and Proterozoic 

yncisses of the Nain and Churchill Provinces. The 

peralkaline granites were emplaced as high-level ring 

complexes (Hill, 1982; 1988). The granitoid rocks of the 

Nain Complex probably form sheath-like units around and 

above the anorthosites (B.Ryan, pers.cornm., 1988) 

Geochemical Data : McConnell (1986) sampled the 

complex using a 2 x 2 krn random grid system, and provided 

367 unpublished analyses. Most represent peralkaline and 

rtSsociated metaluminous granites, but there is a 

~ubordinate population from the Nain Complex. These are 

augmented by data from Collerson (1982) and Hill (1982) 

representing granitoid rocks of the Nain Complex, and a few 

anorthosites. The database is representative of the area 

around the Flowers River Suite but, compared to other 

within-plate associations, is probably somewhat biased 

towards peralkaline compositions. Trace element analysis 

suites and data quality are equivalent to TLGB and 

Newfoundland databases. 

A-type Granites of The Lachlan Fold Belt 

The Paleozoic Lachlan Fold Belt of southeastern 

Australia was used by Collins et al.(1982) topefine the 

characteristics of "A-type" granites. 45 analyses from 
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these rocks (Whalen et al.,l987b) are used here. These are 

post-orogenic, metaluminous, variably hypersolvus granites 

(s.s.) that have enhanced levels of LFS and HFS trace 

elements (Collins et al., 1982) . The database is too sm~ll 

for analysis of compositional spectra, but it has been used 

to assess differentiation trends for ''A-type" granites 

relative to the other assemblages. This i s required because 

there is some disagreement about the diagnostic features of 

so-called "A-type" suites (e.g. Tuach et al., 1986: Whalen 

et al., 1987) versus highly fractionated granites assigned 

to I- or s-type associations. 

• 
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2 • 2 COMPARATIVE HhJOR ELEMENT GEOCHEMISTRY 

~2.1 Com_parative Freguency Spectra 

To facilitate comparisons between assemblages, all 

histogram::; for each variable are scaled equally, using 20 

frequency intervals (Figure 9.6). This procedure requires 

exclusion of small amounts (<1%) of outlying data. Vertical 

(percentage freq~ency) scales may differ between 

assemblages. 

Major Element Frequency Spectra 

sio2 (Figure 9. 6a) : Magmatic arc assemblages (e.g. 

Peru, Chile) have broad, approximately normal, frequency 

distributions with maxima at 57 to 65 % sio
2

: those from 

California and Afghanistan (Figure 9. 7) are displaced to 

slightly higher sio
2

• All arc assemblages have expanded 

Sio
2 

frequency distributions. In contrast 1 Newfoundland 

and Afghanistan (Cenozoic), and Flowers River, have 

asymmetric, negatively-skewed distributions with maxima at 

71-77% Si0
2

• 

Both TLGB assemblages have bimodal Sio
2 

histograms: 

in Labradorian rocks 1 the lesser peak is at gabbro-diorite 

composition, compared to monzonite-syenite in the 

Makkovil:ian rocks. In general terms 1 Makkovikian rocks 

resP~ble collisional or within-plate assemblages, and are 

totally distinct from volcanic arc assemblages. 

HgO (Figure 9.6b) : MgO frequency spectra are 

superficially similar for all assemblages. However 1 

cell isional and within-plate assemblages are strongly 
• 

depleted in MgO relative to volcanic arcs. Makkovikian 
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suites resemble both collisional and within-plate 
assemblages, but more closely resemble the latter. 

Labradorian suites show a wide range of MgO (mostly 
reflecting the mafic rocks of the Adlavik and Mount 

Benedict Suites), but are also dominated by MgO-poor 
compositions compared to arc assemblages. 

cao (Figure 9.6c) : cao spectra resemble MgO 

spectra, and distinguish arc and collisional assemblages in 
a similar manner. The Makkovikian suites have a closer 

affinity to collisional assemblages than to within-plate 

assemblages. The Labradorian assemblage is distinctly 
bimodal. 

Major Element Ratio and Function Frequency Spectra 

TTDI (Differentiation Index) (Figure 9.6d) : The 
Thornton-Tuttle Differentiation Index (TTDI: sum of 

normative Q + Ab + Or + feldspathoids) is superior to 
Sio2 as an indicator of igneous differentiation, as it is 

less dependent upon silica-saturation. 

TTDI spectra discriminate arc and collisional 

assemblages in a similar manner to Sio2 . The bimodal 

Sio2 frequency distributions of TLGB assemblages are, 

however, less obvious in their TTDI spectra. This contrast 
reflects the presence of evolved intermediate felsic rocks 

(e.g. monzonite and syenite) in both TLGB assemblages; 
these have moderate Sio2 contents, but high TTDI values. 

NfN+K (Figure 9.6e) : Arc assemblages are 

predominantly sadie (Na 20>K 2o), and have broad, normal 
to neg~tively skewed, frequency spectra. They contrast 

• 
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parameters in Mesozoic batholiths from Afghanistan. Compare with 
arc assemblages (PERU, CHILE, S.CALIFORNIA) in Figure 9.6. 
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strongly witn the narrow, positively skewed, potassic 
(K 20>Na 2o) frequency distributjons of collisional and 

within-plate assemblages. 
The Makkovikian assemblage is closely similar to 

Newfoundland and Afghanistan (Cenozoic) assemblages, but 
also resembles Flowers River. The Labradorian spectrum is 

unique, but is clearly potassic relative to the arc 

assemblages. 

K+NfA --Agpaitic Index (Figure 9.6f) : Arc 

assemblages have positively skewed, commonly bimodal, 
patterns with maxima at ca. 0.5 and ca. 0.7; they do not 

include peralkaline rocks. Collisional assemblages have a 
more restricted range (maxima ca. 0.8), and Newfoundland 

includes ca. 7 % peralkaline compositions. 
The Makkovikian assemblage is similar to the 

Newfoundland assemblage, but has distinctly higher K+N/A at 
0.9 to 1.0. The Labradorian assemblage is bimodal, but 

includes some rocks with similarly high K+N/A values. 
Neither TLGB assemblage is as extreme in composition as 

Flowers River, where ca. 60% of compositions are 

peralkaline. 

A/C+B+K -- Alumina Index (Figure 9.6g) : All suites 
except Chile and Flowers River have similar frequency 
spectra with peaks at ca. 1.0. Collisional assemblages 

include by far the largest proportion (> 50%) of 
peraluminous rocks, whereas the Flowers River assemblage is 

devoid of such material. Both Makkovikian and Labradorian 
assemblages contain fewer peraluminous rocks than 
collisional or arc assemblages, and rarely include rocks 

with A/C+N+K > 1.1 (lower limit for S-type granites; 

Chappell and White, 1974). 

. . - . . -
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FJF+H (Figure 9.6h) : Arc and collisional assemblages 
both have peaks at ca. 0.7 - 0.8. Granitoid rocks from 

Flowers River are distinguished by very high F/F+M (>0.95). 
The Makkovikian assemblage has a negatively skewed 

distribution (maximum at 0.9 to 0.96) that has some 
affinity to the Flowers River Spectrum, but is not as 
extreme or restricted. Labradorian suites are bimodal and 

compositionally expanded, but also include Fe-enriched 

compositions. 

9.2.2 AbUndance and Distribution Of Rock Types 

Contrasts in compositional spectra may also be assessed 
via proportions of lUGS rock types (Figure 9.8} calculated 

from normative mineralogy (after Streckeisen and LeMaitre, 

1979). 
Arc assemblages are dominated by normative tonalite, 

granodiorite and monzogranite, with significant quartz 

diorite and quartz monzodiorite. Collisional assemblages 
from Newfoundland are more evolved than those of 

Afghanistan, but both are dominated by monzogranite to 

alkali-feldspar granite, and lack eignificant 
quartz-diorite or tonalite. The Flowers River assemblage is 
dominated by alkali-feldspar granite. TLGB assemblages are 

obviously bimodal, and both contain monzonite-syenite 
components that are essentially absent from all other 

assemblages. In general, the Makkovikian assemblage most 
closely resembles the Newfoundland assemblage. The 

Labradorian assemblage has no obvious analogue. 
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9.2.3 Evolutionary Tr~ 

Quartz-Poor Versus Quartz-Rich Trends 

Contrasts of compositional anatomy described above are 

placed in an evolutionary context in the Q'-ANOR diagram 

(Figure 9.9) of Streckeisen and LeMaitre (1979). Arc 

assemblages have quasi -1 inear trends extending from gabbro 

to granite (s.s.), but cluster primarily in the quartz and 

anorthite-rich tonalite and granodiorite fields. 

Collisional assemblages are shifted to more evolved 

compositions (monzogranite to granite), but lie essentially 

on the same "quartz-rich11 evolutionary t1 : j. 

Both TLGB assemblages have arcuate, "quartz-poor" 

trends that proceed from gabbro to alkali-feldspar glan1te 

via monzonite and syenite (Figure 9.9). The Flowers Rivt:.r 

assemblage, although restricted in compositional range, has 

a similar quartz-poor evolutionary trend, but is virtually 

anorthite-free at silicic compositions. These trends are 

analogous to those defined by Bowden et al. ( 1984) using the 

ternary Quartz - Plagioclase - Alkali -feldspar modal 

diagram, where "within-plate" assemblages such as the 

N~gerian younger granites have similar quartz-poor 

evolutionary trends. 

These quartz-rich and quartz-poor trends are visible 

also in the Q-Ab-Or system (Figure 9.10), where ·:he TLGB 

and Flowers River assemblages have well-defined trends from 

the Ab-Or join at Or 
40 

to the ternary minumum area. These 

correspo~d to the general location of the plagioclase -

alkali-f !ldspar cotectic at low pressures and An contents 

(James arj Hamilton, 1969), 
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Major Element Differentiation Trends 

Differentiation trends were summarized by aggregating 

data into Sio2 intervals of 5% width, and calculating 

univariate statistics for each interval. Minor numbers of 

data (< 1%) with Sio2 < 37.5% or sio2 > 82.5% were 

excluded in this procedure. "A-type" granites of the 

Lachlan Fold Belt (Collins et al.,1982; Whalen et al., 

1987b) are also included in this compilation. No direct 

association via liquid line-of-descent is implied by this 

largely descriptive aggregation procedure. 

AFH and CNK trends : These methods, despite wide 

application, are of little or no value in discrimination 

(see also Debon and Lefort, 1982; Bowden et al., 1984). 

Summary trends (Figure 9.11) are almost identical for all 

assemblages. The Flowers River assemblage lies closest to 

the Alkali-Feat join, reflecting its Fe-enrichment. Pe tro 

et al. ( 1979) and Brown ( 1981) suggf" st this as a 

discrimination method for extensional or anorogenic su i t e s, 

but there is no separation at the alkali-rich end of the 
trends. 

Harker Variation Trends : summary major element 

trends are closely similar for Ti02 , Al 2o 3 , CaO, 

P2o5 , MnO, and MgO (not figured) in all assemblages. 

TLGB assemblages show enrichment in K2o and Na 2o 

(Figure 9.12) at all Sio2 contents, and their high-Sio2 
trends partly coincide with Flowers River. K+N/A, A/C+N+K 

and F/F+M trends for TLGB assemblages lie between those of 

collisional assemblages and Flowers River, as indicate d 

also by frequency spectra (Figure 9.6). • 
"A-type" granites from the Lachlan Fold belt lie 

closest to the Newfoundland trend, and are significantly 

less agpaitic than Flowers River or TLGB assemblages. 
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9.3 COMPARATIVE TBACE ELEMENT GEQCHEKISTRY 

Trace element data from comparative assemblages vary in 
completeness and quality. The Chile, Newfoundland and 

Flowers River databases include a trace element suite 
comparable to that available for the TLGB (Table 9.1), and 
can be compared fully. Other databases contain incomplete 
and/or restricted trace element suites. Mesozoic batholiths 
from Afghanistan are regarded here as an arc assemblage, 
based on their major element spectra (9.3.1: Figure 9.7) 

and other arguments presented by Debon et al. (1987a,b) 

9.3.1 Comparative Fregyency Spectra 

Trace element frequency spectra were standardized in 
the same manner as for major elements. The number of valid 

cases indicated for each element (Figure 9.13) provides an 
indication of the completeness of data in each assemblage. 

Trace Element Spectra 

Vanadiu• (Figure 9.13a) : Vanadium spectra are broad 

and flat in arc assemblages, whereas collisional 
assemblages have log-normal, positively skewed 
distributions similar to MgO. There is a clear affinity 
between Makkovikian and collisional assemblages: the 

Labradorian assemblage has a wide V range similar to some 
arc suites, but contains a higher proportion of low-V 

compositions. 

Rubidiua (Figure 9.13b) : Rb spectra show only subtl~ 
variation. Collisional and within-plate assemblages have 

higher median Rb contents than arcs, and tend towards 
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normal or negatively-skewed patterns. Makkovikian and 

collisional assemblages show general similarity, but the 

former have slightly lower median Rb contents. The 

Labradorian spectrum resembles those of arc assemblages, 

but includes more Rb-rich compositions. 

Zirconium (Figure 9.13c) : Zr characterizes the 

Flowers River assemblage very clearly. The Makkovikian 

spectrum includes a greater proportion of high-Zr rocks 

than the Newfoundland or Labradorian assemblages, but is 

similar in shape to both. Zr does not discriminate arc and 

collisional assemblages effectively. Zn and Y spectra (not 

figured) are closely similar to Zr. 

Barium (Figure 9 .13d) : Ba provides poor distinction 

of arc and collisional environments. Both Makkovikian and 

Labradorian assemblages contain a higher proportion of 

high-Ba compositions than either arc or collisional 

assemblages. The former resembles the Newfoundland spectrum 

in general shape. 

Ceriu• and Fluorine (Figure 9.13e) :Data are 

incomplete for these elements. Ce characterizes the Flowers 

River assemblage, and partly discriminates the Makkovikian 

and Newfoundland assemblages. Both TLGB assemblages have 

higher median F contents than the Newfoundland assemblage. 

The simiJ arity in the Labradorian and Makkovikian patterns 

is deceptive, as their F evolution trends are distinct. 

(Figure 9.18; see below). 
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Trace Element Ratio Frequency spectra 

BajRb ratios (Figure 9.13f) : These elements behave 

in contrasting fashions in arc and collisional assemblages 

(see also Figure 9.17). Collisional and anorogenic 

assemblages ~characterized by Ba compatibility) have 

positively-skewed log-normal spectra, and lower median 

values than arc assemblages. The Makkovikian spectrum is 

similar to collisional assemblages, but richer in high-Ba 

composit1ons (see also Ba spectra). 

ZrjRb ratios (Figure 9.13g) : Zr/Rb offers little 

distinction between Newfoundland and arc assemblages, but 

characterizes Flowers River well. Zr /Rb spectra also 

illustrate the Zr-enriched and slightly Rb-depleted nature 

of much of the Makkovikian assemblage compared to 

Newfoundland. 

GajAl ratios (Figure 9.13h) : This parameter has been 

proposed as a fingerprint of "A-type" granites (Collins et 

al., 1982; Whalen et al., 1987), and characterizes the 

Flowers River assemblage well. The Makkovikian and 

Newfoundland assemblages are closely similar. 

9. 3. 2 Trace Element Discriaination Diagrams 

Tectonic Setting Discrimination Diaqraas 

The Rb- (Y + Nb) diagram (Figure 9.14a) of Pearce et 

al. (1984) demonstrates a marked contrast between 

Makkovikian and Labradorian assemblages, which plot mostly 

in WPG (within-plate granite) and VAG (volcanic arc 

granite) fields respectively. There is some overlap in the 
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VAG field, and at the "triple point", but the TLGB (as a 
whole) lacks significant data within the COLG (collisional 
granite) field. However, the latter is primarily defined 
using syn-collisional suites; post-collisional suites 

(Harris et al., 1984) cannot be classified effectively in 
this system. This is shown well by Newfoundland data, which 

are smeared across all three fields. The Chile and Flowers 
River assemblages are correctly classified as VAG and WPG 
respectively. The Nb- Y diagram (Pearce et al., 1984) 
provides essentially the same divisions (Figure 9.14b), but 

shows greater overlap between TLGB assemblages. 
In the Rb/Zr - Nb diagram (Figure 9.15) of Brown et al. 

(1984), the Labradorian assemblage lies partly within the 
mature portion of the arc spectrum, and corresponds to the 

most evolved Chilean data. The Makkovikian assemblage lies 
mostly below the arc spectrum, reflecting its Zr 
enrichment; a similar, but much more extreme, distribution 

is shown by Flowers River. The Newfoundland assemblage is 

widely scattered, but more strongly biased towards the 
mature arc area than Makkovikian granitoids. 

Discrimination Diaqraas for Identification of A-type 

Granites 

Whalen et al. (1987) propose methods for separation of 
"A-type" granites from other evolved granitoid rocks. Their 

Zr - Ga/Al diagram (Figure 9.16a) discriminates Makkovikian 
and Labradorian assemblages, which fall predominantly in 

"A-type" and "Other" fields respectively. The Flowers River 
assemblage, however, has significantly higher Ga/Al and Zr 

than either Makkovikian or Newfoundland assemblages (see 
also Figure 9.13). The (K20+Na2o 1 CaO) - (Zr + Y + Nb 

+ Ce) diagram (Figure 9.16b) provides less effective 



. ' ... .... 

t:. 

~ 

t 

+ 
1·: 

: o.:;v 
~ 
r 
t 
' .... 

;... 

100 r f i 
... + + .f 
~ + .f -+tt+ 
t-+ + t~ 
~ ~ + 
~ -~,++ ++ 
I + 

... 
t>. 

+ 

t 

CHILE 

1.:: L_. -~....L_....___.___.__~ 
1 

:. 

!0 l 

_j 

-1 
] 

~ 
I 

10 

-J 
_J 

: u 

- 422 -

1( (, ( -

~ 
r + 

I 

! v ~--

Ga/ AI x 1 0000 

ATG --A-type Granites 
OGT -- Other Granite Types 
(Whalen et al., 1987) 

+ 

I I • 

1 
·j 

TLGB . 
~Ma~k~vi~ian! .J 

10 

I T j 

+ + ~ 
I 

+ 
j 

t" + + , j 

+ N~WFOUNDLAND 1j 
_ _ _ _,I. . . J _...J..__J___ ·- ...L . . J. l . 1.....J.. _ 

t + 

t 

FLOWERS 
RIVER 

10 

.J. __ J. . ..J. J. 1 L 

10 

Ga/ AI x 1 0000 

(ppm) 

Figure 9.16a. Zr - Ga/Al discrimination diagrams (after Whalen et 
al, 1987) for TLGB and comparative assemblages. 



•t-.J• I • 

,)-.·1 -. 
't· . ~ ~a~/ . . 

- -;- -: ,. -.. ~ 
• f ••• '~ " • ... ... 

l 

J 

, .... + TLGB j 
+ (Labradorian) · 

1 
l vt 

r FGT 

10 f----
~-

~ 
· OGT 

1 .. 
fll l' 

••· J~J1Ll . _ _ _._ • .. .L .J...~L....: 
l0~ L 10 000 

CHILE 
LJ-L.w .d _..__.._.LJ.. 

1000 

I I I I II I 

ATG 

1 ..1. L Ll4.tl._J._ L .. J. .J. 

1000 

10000 

10000 

- 423 -

~ 

i 
r 

I _ 
lC t 

, . . 
f: 

l t1 

1 
100 

1000 

-i 
I 
I 

+ j 

+ ~ 

10000 

NEWFOUNDLAND 

1000 10000 

+ 

Zr + Y + Nb + Ce Zr + Y + Nb + Ce 
ATG --A-type Granites 
OGT -- Other Grantte Types 
FGT -- Fractionated Grantte Types 

(Whalen et al.. 1 987) 
(ppm) 

_.... 
0 
N co z 
+ 
0 
N 
~ ........ 

Figure 9.16b. [(K20+Na20)/CaOJ - [Zr+Y+Nb+Ce) discrimination 
diagrams (aft~r Whalen et al, 1987) for TLGB and comparative 
assemblages. 



- 424 -

discrimination, but classifies Makkovikian and Flowers 

River assemblages as A-type granites. The definition and 

significance of so-called "A-type" granites is a subject of 

discussion (e . g. Whalen et al.,1987), but there is no doubt 

that many Makkovikian granitoid rocks belong to this 

category on the basis of these parameters. 

9.3.3 Evolutionary Trends 

Trace element evolution trends were assessed by 

aggregating data into 5% sio 2 intervals (Figure 9.17), as 

described above for major elements. Problems caused by 

outlying data at extreme Sio2 contents are more acute for 

trace elements; this applies particularly to the 

Makkovikian assemblage at 50% Sio2, which is biased by 

two cumulate rocks with very high Zr, Y and REE reflecting 

concentration of accessory minerals. These aberrant points 

have been ignored in constructing trends. 

Ba evolution varies widely. Both Labradorian and 

Makkovikian assemblages have convex-upward trends reaching 

peak Ba contents of 1000-1500 ppm Ba at 55-60% sio 2. Arc 

assemblages have largely incompatible Ba behaviour up to 

70-75% sio2 , but variu~le Ba content at a given sio2 
value. Newfoundland and Flowers River assembl ages both show 

inversion of Ba behaviour at ca. 60% Sio2 , similar to the 

TLGB trends. This contrast reflects the "early" 

fractionation of K-feldspar in these potassic suites 

compared to the relatively sadie arc assemblages. 

Sr trends in arc assemblages are remarkably similar. 

Both TLGB assemblages are enriched in Sr below 60% sio2 
compared to all oth~r areas, except Afghanistan Cenozoic 

granites. Both Ba and Sr are sensitiVP to changes in 

feldspar stability, which depend on a var iety.of factors, 



. ~ . ' 
• ,J " J 

., ,, 
• .J ., 

A 
·-- ···--

' ~ 

4 :, .; r_; ~0 ~5 <;O f.'S 70 7'5 E'O 
!C ·. . ,-- ---------r--- - , 

j 

~ 

J 
I 

~ 

1 

80 

1 

j 
j 

J 
"l 
200 

100 

0 
40 45 50 55 60 65 70 75 80 

::: r 
[ 

50 ~ lt!l:.-.... , 
LJ..~ .. " - - · / 

~--~~ 
Jf:~-::,<c. ..... ~----'-· · -L---~ 

40 45 50 55 60 65 70 75 80 

425 

.JC .J5 "~'· ss 6 ) t-5 70 ·: 5 eo 
l r . -- ' . 

~ 

r 
! 
r 

SOv 
L 
I 

r 
~ 
• 0 ! _ __ _ __ ......i_ __ ___J__ __ ...___.._L_ _ _ _____j 

4C ..:5 5C 55 6C 65 70 75 80 
lOCO 

0 
40 45 50 55 60 55 70 75 eo 

300 

GROUP '1.: DIAGRAMS 
SiO ~ 

- • - TLGB (l1br1d0rianl 2 • 
Midpoint Value GROUP '8' DIAGRAMS 

-+- TLGS (Makkovikien) 
- u-- Coastat Bath011t~ 01 Peru \PERU! 
- A- MUOlOIC BatPlohtPl 01 Ch1 1 !CHILE) 
_ -<:> •. AlgPlan1stan 

1 ... ao1oc1 

• -<>-· Newloundland Granitoids INEWF) 
-- 0 ·. Afghanistan Cenozoic: !AFGHAN) 
-e--Fiowera R1ve< (FLOWERS) 

- +- ~~~'b~~~1t!-ltA, 
Figure 9.17. Trace element evolution trends for the TLGB and 

comparative assemblages, expressed as mean compositions for 5' 
Si02 intervals. 

... 
(/) 

.tl 
cc: 



2000 

1500 

1000 

500 

0 

- 426 -

-- 1LGB (Labradorian) 
-+- TLGB (Makkovikian) --o-- Newfoundland Granitoids (NE'NF) 

40 45 50 55 60 65 70 75 80 

o/oSi02 

u. 

E 
a. 
a. -

Figure 9.17 (continued) . Fluorine (F) evolution trends for TLGB and 
Newfoundland asse~lages 

including pressure and H2o content. Although absolute 
values vary widely, the contrasting trends appear to be 

viable discrimination methods. Despite its use in 

discrimination plots (e.g. Figure 9.14), Rb shows little 
systematic variation between assemblages. 

Zr and Y trends amplify contrasts noted in frequency 
spectra and discrimination diagrams (see above). Flowers 

River is strongly enriched at all Sio2 contents: lesser 
enrichment is shown by the Makkovikian assemblage. Similar 

patterns are shown by Zn and REE (not figured). The 
Labradorian trend is similar to arc assemblages, except for 

a Zr peak at 65% sio2 that represents part of the Mount 
Benedict Intrusive Suitb. Note the similarity between 

A-type granites of ~he Lachlan fold belt and parts of the 
Makkovikian assemblage. 

The Makkovikian assemblage shows strong F enrichment 
above 70% Sio2 compared to the Labradorian and 

Newfoundland assemblages (Figure 9.17). Depletion ofF is 
evident amongst Labradorian high-sio2 granites compared 

to their Makkovikian counterparts. 
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9.4 SUMMARY and DISCQSSION 

9.4.1 Evaluation of Geochemical Discrimination Ketho4s 

Frequency spectra for major element parameters such as 

Sio2 , TTDI, F/F+M, N/N+K, Agpaitic Index and A/C+N+K, 
discriminate volcanic-arc, collision-zone and within-plate 

settings effectively (Figures 9.6; 9.7). Martin and 
Piwinski (1972) and Petro et al. (1979) previously 

suggested that "compressional" and "extensional" 
environments could be discriminated via Sio2 or TTDI 

spectra. It is suggested here that different types of 

"compressional" environment may also be resolved 
effectively by use of a wider range of parameters. 

Frequency spectra for trace elements are less effective 

in dividing the compressional assemblages into arc and 
collisional environments. However, several elements, in 

particular Zr, Y and Zn, and the ratios Zr/Rb and Ga/Al, 
characterize within-plate granites of the Flowers River 

assemblage very clearly (Figure 9.13). The contrasting 
behaviour of Ba with differentiation appears to be the most 
consistent trace element parameter for distinction of arc 

and collisional assemblages. 

Trace element discrimination diagrams suggested by 
Pearce et al. (1984) also distinguish arc and within-plate 

assemblages weJl, but encounter problems with the 
Newfoundland assemblage. They also simplify relationships, 

e.g. by suggesting a much closer affinity between the 
Makkovikian and Flowers River assemblage than indicated by 
spectral comparisons (see below). They are certainly 
useful, but are best used in combination with other types 

of data that emphasize extensive parameters. 
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A criticism that may be levelled at all empirical 
comparisons is that reference databases may not be truly 

representative of a specific environment. This is most 
acute for within-plate assemblages, represented here by 

only one database of Proterozoic, rather than Phanerozoic 
age. However, where environments are duplicated, as in arc 
assemblages, frequency spectra are internally consistent 

(Figures 9.6; 9.7; 9.13). 
A second problem exists with respect to space - time -

composition trends in arc environments (Brown, 1981; Brown 

et al.,l984), which migrate to siliceous, potassic 
compositions with age (maturity) and distance from the 

locus of subduction, and possibly in response to changes in 
s~bduction angle (e.g. Pankhurst et al., 1988). The Andean­

Cordilleran arc assemblages used in this study are located 
close to subduction zones, and probably do not represent 

the full range of arc compositions. The generally more 

evolved composition of the Afghanistan (Mesozoic) 

assemblage relative to Peru and Chile (Figures 9.6; 9.7) 
may reflect preservation of both proximal and distal arc 

granitoids in Afghanistan, where these batholiths have been 
deformed and presumably telescoped. Such considerations are 

particularly important in interpretation of the Labradorian 

assemblage (see below). 
Variations in the fourth dimension may be equally 

signific~nt in assessing collisional zone magmatism. In the 

Appalachians, magmatism continued for up to 100 Ma after 
the Taconic orogeny (Colmann-Sadd, 1982; Williams et al., 

1989; Figure 9.4). In the Himalayas, collision occurred a 
mere 50 Ma ago, and it is probable that some post­

collisional suites are not yet generated or emplaced or 
exposed. There are also significant differences in erosion 

level between recent and ancient collisional belts, which 

complicate direct comparisons between them. 
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9.4.2 Geochemical Affinity of the Makkovikian AsSemblage 

Major Element Characteristics 

The Makkovikian assemblage shows a number of distinct 

features. The most important of these are generally high 

Sio2 and (particularly) TTDI values, indicating evolved 

compositions, depletion in CaO and MgO, high K+N/A and 

F /F+M indices at all sio2 contents, and a notable absence 

of peraluminous compositions. Comparative frequency spectra 

(Figures 9.6; 9.7) illustrate these characteristics well, 

a~d set the Makkovikian assemblage apart from comparative 

assemblages, with which there is no exact correspondance. 

It is clear, however, that there are fundamental 

contrasts hetween these rocks and volcanic arc assemblages, 

as represented by data from California, Chile and Peru. The 

latter are dominated by intermediate sio2 contents, show 

much higher CaO and MgO and, most importantly, have low 

N/N+K and K+N/A indices that emphasize their relatively 

sodic and alkali-depleted compositions. 

There is a much closer affinity between the Makkovikian 

assemblage and post-orogenic, broadly "collisional" 

assemblages from Afghanistan and (particularly) 

Newfoundland. Frequency spectra for sio2 , MgO, cao, TTDI 

and N/N+K are similar for all three assemlages. There are, 

however, contrasts in K+N/A, A/C+N+K and F/F+M frequency 

spectra and trends. The Makkovikian assemblage has higher 

K+N/A and F /F+M at all Sio2 contents, indicating a 

tendency towards agpaitic and Fe-enriched behaviour during 

evolution. It also has very few peraluminous compositions 

compared to Newfoundland and (particularly) Afghanistan 

assemblages, and shows a quartz-poor evolution trend 

characterized by the presence of monzonite and syenite. 
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Within-plate assemblages (represented here by Flowers 

River) show extremely agpaitic and Fe-enriched tendencies, 

and are of much more restricted ::omposi tion than the 

Makkovikian assemblage. Nevertheless, the Makkovikian 

assemblage has some affinity to them. 

In summary, the Makkovikian assemblage most closely 

resembles the Newfoulldland assemblage, but is transitional 

towards the agpaitic and alkalic granitoid rocks of Flowers 

River . This is shown well by evolution trends (Figures 

9.10; 9.11) where the Makkovikian trend lies between the 

Newfoundland and Flowers River trends for most parameters. 

Trace Element Characteristics 

V, Rb and Ba frequency spectra, and Ba evolutionary 

trends, suggest contrasts between the Makkov ikian and 

volcanic arc assemblages 1 but show greater overlap than 

rna jor element parameters. Zr, Ce, Zr /Rb and Ga/Al frequency 

spectra illustrate the distinctive character of the Flowf!rs 

River asse1rh.lage, which is enriched in all thes e 

parameters. In general, there is a very good cor respomknce 

between the Makkovikian and Newfoundland assemblages. 

However, the former shows some relative enrichment in Zr, 

Ce and Y 1 but falls well short of the strongly enriched 

Flowers River assemblage. Such characteristics are in 

agreement with the transit i onal major element 

characteristics noted above. 

Trace element discrimination diagrams demonstrate clear 

contrasts with volcanic-arc assemblages, and suggest a 

general affinity to within-plate granitoid suites. The 

similarity to the Newfoundland assemblage is maintained, 

but Makkovikian granites are more strongly biased towards 
• 

the within-plate field. The Makkovikian assemblage also 
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corresponds in part to 11A-type" granite suites, as defined 

by :oll ins et al. ( 1982) and Whalen et al. ( 1987), although 

it does not show the strong HFS element, REE and Ga 

enrichment of Flowers River, also clearly of A-type 

affinity. Evolutionary trends resemble those of A-type 

granites from the Lachlan fold belt in Australia. 

Conclusions 

The Makkovikian assemblage is best described as 

transitional between collisional and within-plate 

assemblages, as represented here by Newfoundland and 

Flowers River respectively. Some discrimination diagrams 

indicate a strong affinity to the latter, but this is 

misleading, as its extreme trace element compositions are 

rarely observed in Makkovikian granites. Major and trace 

element frequency spectra closely resemble Newfoundland, 

with the exception of F/F+M, A/C+N+K and K+N/A (see below). 

The temporal setting of the Makkovikian assemblage is 

also consistent with the zyn- to post-orogenic environment 

of the Newfoundland assemblage. Post-tectonic Makkovikian 

granites were emplaced within a 50-80 Ma * period 

following final deformational events, a period of time that 

is similar to the 100 Ma (Silurian to Carboniferous) 

duration of post-Taconic Appalachian plutonism. 

The systematic differences between the Makkovikian 

assemblage and this possible Phanerozoic analogue must, 

however, be explained in any model of their development. 

• NOTE : The ca. 1720 Ha U-Pb age for the Cape 

Strawberry Granite obtained just prior to submission (Krogh 

et al., in prep.) indicates that Makkovikian plutonism 

continued for at least 80 Ma after final deformation. 
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Agpaitic and Fe-enriched tendencies may indicate 

different source materials and/or different conditions in 

their environment of generation. Granites of "supracrustal" 

or s-type affinity, widely viewed as derivatives of 

sedimentary rocks, are noticeably absent from the 
Makkovikian assemblage. Such absence may indicate an 

absence of such sources, which has obvious implications for 

plate tectonic models involving destruction of oceanic 

basins and attendant sedimentary basins. These problems, 

and possible models, are discussed in Chapter 10. 

9.4.3 Geochemical Affinity Of Tbe Labradorian Assemblage 

Major Eleaent Characteristics 

The Labradorian assemblage has expanded Sio2 , TTDI 

and major element spectra that resemble (in terms of range) 

arc assemblages from Peru and Chile. The Labradorian 

assemblage, however, is bimodal, and includes few rocks in 

the 55% to 67% sio2 range typical of these volcanic arcs. 

Most major element frequency spectra indicate a relative 

bias towards silicic, potassic compositions. The 

Labradorian assemblage also has a quartz-poor 
differentiation trend, and relatively high F/F+M and 

agpaitic index values (at high Sio2): such features 
partly resemble the Makkovikian assemblage. 

Trace Element Characteristics 

Bimodal major element compositional spectra have widely 

been proposed as hallmarks of anorogenic or within-plate 

magmatism (e.g. Martin and Piwinskii, 1972; Petro et al., 

1979). However, trace element frequency spectra suggest no 
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affinity between Labradorian gr3nites and those from 

Flowers River. Most resemble spectra from volcanic-arc 

suites such as Peru or Chile, although some also resemble 

Newfoundland. Granitoid rocks with enhanced levels of Zr, Y 

and REE (typical of the Flowers River and, to a lesser 

extent, Makkovikian assemblages) are not abundant. 

An affinity to some arc assemblages is also suggested 

by discrimination diagrams, where the Labradorian 

assemblage lies mostly within the VAG (volcanic-arc 

granite) field of Pearce et al. (1984). In the terminology 

of Brown et al.(1984), the Labradorian assemblage lies at 

the "mature" end of the arc compositional spectrum. 

Relatively few Labradorian granites qualify as within-plate 

or A-type granites. 

Affinity Of Labradorian Mafic and Intermediate Rocks 

Labradorian granitic (s.s.) rocks could belong to any 

of the comparative assemblages (except Flowers River), and 

plot essentially at the triple point in trace element 

discrimination diagrams of Pearce et al.(1984). Mafic and 

intermediate rocks, however, generally have simpler 

differentiation histories than felsic i~trusive rocks, and 

are thus more likely to preserve original geochemical 

contrasts (e.g. Pearce and Cann, 1973: Brown et al., 1984). 

Labradorian mafic-intermediate rocks are here defined 

simply as those with < 60% sio2 . 

Alkali-silica relationships (Figure 9.18a,b) and mean 

compositions (Table 5.5, p.231 ·-232) indicate that these 

rocks correspond broadly to "shosho~ites", and are enriched 

in K2o relative to "normal" calc-alkaline compositions of 

similar Sio
2 

content. A few fall within the field of 

alkaline volcanic rocks (Irvine and Baragar, 1971). 
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Trace element discrimination diagrams (Figure 9.18c,d) 

place Labradorian mafic rocks within LKT (Low-K tholeiite, 

typical of island arcs) and CAB (calc-alkaline basalt) 

fields (Pearce and Cann, 1973). A few are transitional to 

the WPB (within-plate basalt) field. 

Discussion and Conclusions 

Previous studies of Labradorian volcanic rocks (Ryan, 

1984; Ryan et al., 1987) did not reach any firm conclusions 

regarding tectonic setting. Problems in classification 

remain partly unresolved, and the following discussion 

echoes some of their suggestions and viewpoints. 
An anorogenic, within-plate setting is partially 

supported by bimodal sio2 and TTDI frequency spectra, and 

relatively high F/F+M and K+N/A in some granitic rocks 

(e.g. Martin and Piwinski, 1972; Petro et al., 1979). 

However, distinctive trace element patterns typical of 

granites in such settings (Anderson, 1983; Pearce et al., 

1984) are absent. Also, although there is no evidence of 

orogeny in the study area, Labradorian deformation and 

metamorphism was widespread to the south (Wardle et al., 

1986), and may be directly or indirectly connected to 

magmatism. 

A second possibility is a distal ("mature") arc setting 

analogous to bimodal basalt-trachyte volcanism east of the 

main Andean volcanic arc or Cenozoic volcanism in the 
western U.S.A. Calc-alkaline to shoshonitic mafic rocks are 

important components of such mature arc assemblages 

(Morrison, 1980; Brown et al., 1984; Munoz and Stern, 

1989). Labradorian granitoid rocks have more evolved 

compositions than proximal arc assemblages (e.g. Peru, 

Chile), which is consistent with a distal location. The 
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absence of regional Labradorian deformation in the study 

area may thus be a consequence of its position relative to 

active subduction. 

A post-collisional setting is also possible, as 

potassic magmatism in such settings overlaps geochemically 

with the magmas of mature arcs (e.g. Pearce et al., 1984; 

Brown et al., 1984). The 150 Ma interval between the 

Makkovikian orogeny and Labradorian magmatism argues 

against a post-orogenic relationship to this event, but the 

ca. 1650 Ma deformation and high-grade metamorphism south 

of the Grenville Front Zone (Wardle et al., 1986) may 

record a collisional event outside the study area. 

It is difficult to choose between the latter two 

alternatives. Labradorian igneous rocks in the study area 

are at the northern fringe of a much wider magmatic 

province, probably do not record the full range of 

compositions in this belt. This difficulty may be 

resolvable via scrutiny of Labradorian granitoid rocks 

within the high-grade terranes, particularly in terms of 

their transverse compositional variations. The presence of 

unidirectional compositional and isotopic trends, as 

described by Brown (1981) and Brown et al.(1984) would 

support a "mature-arc" tectonic setting. 

This uncertainty does not, however, dissuade the author 

from speculation in Chapter 10. 
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CHAPTER TEN 
MAGMATISM AND CRUSTAL EVOLUTION 
IN THE MAKKOVIK PROVINCE 

Chapter Abstract 

It is suggested that most Makkovikian magmas were generated 
as part of a complex syn- to post-orogenic process involving the 
emplacement of anhydrous, mantle-derived, mafic magmas into 
intermediate rocks of Archean and slightly older Proterozoic 
sialic crust. This interaction took place via coupled 
assimilation-fractional crystallization, and generation of and 
mixing with crustal anatectic melts. Anatexis took place under 
conditions where zircon and accessory phases were unstable. This 
is not compatible with the prevalent model for generation of 
other similar "A-type" granites, which invokes anatexis of 
previously dehydrated and melted lower crustal rocks. However, 
material of this type may have contributed to magma genesis 

As a consequence of greater heat production in the Early 
Proterozoic Earth, mantle-derived magmas may have been 
high-tb~perature, high-Mg liquids of komatiitic affinity, which 
have enormous capacity for direct assimilation and thermal 
transfer. The transitional "anorogenic" affinity of the 
Makkovikian assemblage (and other Proterozoic granitoid suites) 
may thus be a consequence of the volume and characteristics of 
this subcrustal magma flux, rather than any one specific crustal 
source. In younger environments, such conditions only occur in 
zones of exceptionally high heat flow, such as rift zones related 
to thermal plumes ir. the mantle. 

Labradorian magmatism is more difficult to model. A generally 
similar mantle-crust interaction model is proposed, but it is 
suggested that cooler, wetter, mantle-derived mafic magmas were 
generated by hydrous melting of peridotite, and thus had 
significantly less capacity for assimilation and thermal 
transfer. It is suggested that such magmas were generated by 
addition of volatiles (and recycled crustal material) to the 
mantle wedge overlying a subduction zone. Labradorian granites 
(s.s.) were probably generated by melting of Makkovikian lower 
crust with varied Nd isotopic characteristics under less extreme 
conditionf, where zircon and refractory phases remained stable. 

The pt~sence of mantle-derived material in virtually all 
Makkovikia . and some Labradorian magmas supports the importance 
of Early Proterozoic crustal growth, as documented by other 
studies of the Northern Hemisphere American Precambrian. In this 
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case, however, at least some of this growth occurred in a 
post-orogenic setting with many characteristics ~f "anorogenic" 
magmatism. In addition to adding to the crust, these events 
contributed to the gross compositional stratification that 
appears to discriminate Proterozoic domains from undisturbed 
Archean cratons. 

A model is proposed where juvenile terranes generated in 
ensimatic arc environments were accreted to the margin of the 
North Atlantic Craton. The insulating effects of newly accreted 
crust induced melting of the subjacent mantle, and underplating 
of the crust by mantle-derived mafic magmas. This model resembles 
several recent proposals for Precambrian and Phanerozoic magmas 
of similar affinity . This protracted Makkovikian magmatism was 
followed by the establishment of a new northward-dipping 
subduction zone, of which Labradorian magmatism was a distal 
manifestation. A possible younger analogue to these events took 
place on the South American margin of Gor.dwanaland, where Andean 
arc magmatism is partly superimposed on Late Paleozoic to Early 
Mesozoic post-orogenic to "anorogenic" plutonism. The latter was 
the final stage in the assembly of Gondwanaland, an event that 
resembles the Proterozoic assembly of proto-Laurentia recently 
proposed by Paul Hoffman. 

On a broader scale, this model is consistent with recent 
speculation concerning cyclic patterns in orogenic history, that 
propose aggregation of continental plates over mantle 
downwellings, followed by insulation of subjacent mantle, thermal 
upwe:ling (leading to anorogenic magmatism) and (eventually) 
rifting. In a hotter, Proterozoic Earth, the time-lag between 
continental aggregation and mantle upwelling would be reduced, 
and conditions analogous to those of "anorogenic" magmatism would 
prevail in post-orogenic settings. Distinctions between 
"post-orogenic" and "anorogenic" granitoid magmatism should 
become increasingly blurred in Early Precambrian orogenic belts, 
a prediction that that is consistent with the transitional 
affinity of the Makkovikian assemblage, and Early Proterozoic 
batholiths from other shield areas. Also, growth and vertical 
reorganization of the continental crust by post-orogenic 
magmatism may have been proportionally more important in a hotter 
Earth, particularly during and following periods of continental 
aggregation. This may (in part) explain the apparently high rates 
of crustal growth calculated by some workers for this period in 
Earth history. 
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Introduction 

It is difficult to concisely summarize and synthesize 

the varied information discussed in this thesis. The 
characteristics of specific magmatic assemblages are 
discussed in the concluding sections of previous chapters 
and reviewed in individual chapter abstracts. This final 

chapter is concerned with wider models for Lower 
Proterozoic magmatism and crustal evolution in the Makkovik 

Province. 
The first two sections examine the petrogenesis of 

Makkovikian and Labradorian magmatic assemblages. Source 
materials, source regions and generative mechanisms are 

evaluated and coordinated into petrogenetic models for 
each. Some possible younger analogues for the Makkovikian 

assemblage (in addition to those assessed in Chapter 9) are 
discussed. The third section presents a model for crustal 
evolution of the Makkovik Province, that integrates these 

petrogenetic models and other information in a 
plate-tectonic framework. Following this model, some 
speculative discussion concerning the role of Proterozoic 

magmatism in Earth evolution is presented, drawing upon 

recent work concerned •-~h long-term cyclic or secular 

behaviour in tectonic processes. 
The final section briefly reviews some avenues of 

further investigation that could fill gaps remaining in 
this study, or form future projects in their own right. 

This is by no means an exhaustive list ! 
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10.1 PETROGENESIS OF MAKKQVIKIAN MAGMAS 

Summary of Important Characteristics 

The syn- to post-tectonic Makkovikian assemblage is 
dominated by metaluminous to slightly peralkaline, 

siliceous, potassic, K-feldspar porphyritic, granite and 

alkali-feldspar granite, and volcanic equivalents (Chapters 

3, 4 and 7). A subordinate (syn-tectc~ic) association 

consists of peraluminous granitoid rocks that appear, in 

some cases, to have been derived by anatexis of local 
country rocks. Both associations have evolved major element 

compositions, and the most "mafic" Makkovikian rocks are 

monzonite and syenite. 

The dominant plutonic association shows variably 

agpaitic behaviour (K+N/A = 0.9 to 1.05) and Fa-enrichment 

(F/F+M > 0.85). Distinctive trace element features include 
enrichment in fluorine, HFS elements and REE (3.2, 3.3). 

These granitoid rocks qualify as "within-plate" or "A-type" 

granites in popular classifications (Chapter 9), but 

generally lack the extremely agpaitic compositions 

associated with peralkaline or undersaturated suites. A 

comparative analysis indicates that they are transitional 

in character between the post-orogenic, post-collisonal 

granitoid suites of the Newfoundland Appalachians, and true 

"anorogenic" suites such as Middle Proterozoic granites in 

northern Labrador (Chapter 9). They are distinct in all 

respects from volcanic arc suites such as Andean or 

Cordilleran batholiths. 
Subordinate peraluminous granites have generally low ~, 

AFS element and REE contents that indicate different 
sources and/or conditions of generation from the dominant 

association (3.2, 3.3). These are not strongly aluminous 

"S-type" granites (A/C+N+K > 1.1) in the sense of Chappell 
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and White (1974), and their peraluminosity is not 

necessarily indicative of metasedimentary sources, except 

in the case of the Pitre Lake Granite. AS noted in Chapter 

9, the Makkovikian assemblage is notably deficient in 

strongly peraluminous compositions. 

source Materials and Source Regions 

Isotopic Argu.ants : In the west of the area, 

negative ENdCHUR (-3 to -14) unequivocally indicates 

older crustal material in Makkovikian magmas (8.2.2). 

However, excluding one anatectic granite, their ENdCHUR 

is too high to permit derivation entirely by melting of 

3100 - 2800 Ma old Archean crust, which would have 

ENdCHUR of -12 to -15 at 1800 Ma. Derivation by melting 

of assorted 2600-2200 Ma old crust is unlikely, as there is 

little evidence of activity during this period in Labrador. 

It is therefore concluded that Makkoviki~n magmas in the 

west are variable mixtures of juvenile (mantle-derived) 

material and polycyclic Archean crust (8.3.2). 

In the east, positive £NdCHUR (+2 to +5), indicates 

predominantly juvenile sources. Possible "basement" in the 

east (Cape Harrison Metamorphic Suite) has £NdCHUR of +2 

to +3, and is thus unlikely to be older than ca. 2100 Ma. 

The eastern plutons of the Strawberry Intrusive Suite were 

isotopically identical to postulated depleted mantle at the 

time of their emplacement. By analogy with compositionally 

similar granites in the western domain, it is suggested 

that the~g eastern domain magmas were also mixtures of 

mantle an1 "sialic" crust (8.3.2). However, the sialic 

crust in the east consists of Proterozoic material, 

probably no older than 2100 Ma. The Cape Harrison 

Metamorphic Suite is the best candidate for this older 

pre-Makkovikian crustal component with a short crustal 
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residence period. The relative contributions of end-members 

are difficult to assess in the east, as there is little 

contrast in their Nd isotopic compositions (8.3.2). 

There is clear isotopic evidence of an Archean crustal 

component in western plutons of the Strawberry lntrusive 

Suite. The mantle-like €NdCHUR of the eastern plutons, 

however, indicates that any crustal component in them was 

extremely juvenile, and even the Cape Harrison Suite is 

unsuitable. A possible solution is that the "crustal" 

component in these magmas is the "juvenile" component 

derived from the mantle during slightly earlier Makkovikian 

magmatism. This is consistent with geochronological data 

indicating that the Strawberry Intrusive Suite is younger 

than other Makkovikian granites. (Krogh et al., in prep.) 

Elemental Ar]Uments : Several elemental geochemical 

arguments also suggest that Makkovikian magmas contained a 

mantle-derived component. Monzonite, quartz monzonite und 

syenite of the Long Island unit and (particularly) the 

Numok Intrusive Suite are impossible to derive by melting a 

crustal source of intermediate composition (Wyllie, 1984). 

These relatively low- sio 2 rocks have higher sr and Ba 

contents than any comparative assemblage (9.3.1, 9.3.3). 

Such features are inconsistent with partial melting of a 

feldspar-bearing source, and suggest contributions from 

mafic magmas deriyed from the mantle, where partial melting 

and subsequent fractionation would act to .nrich both Ba 

and Sr. 

As a counter argument, many Makkovikian granites are 

close to ternary minimum compositions in the granite system 

(Figure 3.6, p.81; Figure 4.5, p.136j and cou~d be derived 

by crustal anatexis. Their evolutionary trends, however, 

lie close to the plagioclase - K-feldspar cotectic surface, 

indicating that at least some evolved to eutectic 
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compositions via fractional crystallization. Trace element 

trends in most units are cor.sistent with evolution by 

plagioclase and K-feldspar (±mafic mineral) fractionation, 

which also suggests a non-eutectic parental magma 

composition, possibly monzonitic to syenitic. Such features 

ctrgue against wholly crustal sources for Makkovikian 

granites, although they may have partly originated in the crust. 

HFS element and REE enrichment in Makkovikian magmas 

(3.2; 4.2) indicate that zircon, sphene and other accessory 

minerals were not present as residual material in their 

sources. This is consistent with a significant 

mantle-derived component andjor breakdown of these phases 

during crustal anatexis. The latter probably requires high 

temperatures, in excess of 850°C (e.g. Whitney, 1988; 

Clemens et al., 1986), but may also be facilitated by 

fluorine, •:hich encourages comple>:ing of HFS elements and 

REE (Han: is and Marriner, 1980; Collins et al., 1982; 

Whalen et al., 1987). Halogens may be introduced as a 

volatile flux associated with a mantle-derived component 

(e.g. Harris and Marriner, 1980), or released by hornblende 

breakdown, which also requires high temperatures (Wyllie, 

1984, Whitney, 1988). The presence of fluorine dur i ng 

subsequent high-level fractional crystallization would also 

inhibit accef':sory mineral crystallization, leading to HFS 

element and REE enrichment. 

Petrogenetic Model -- General Features 

It is proposed that most Makkovikian magmas were 

generated by thermal and chemical interaction between 

anhydrous, mantle-derived, mafic magmas and lower crustal 
• 

rocks of generally intermediate composition (Figure 10.1). 

similar models have been proposed elsewhere (Barker et al., 

1975; Hi: .:reth, 1981; Fyfe, 1988, Hildreth and Moorbath, 
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1988; Whitney, 1988), and are increasingl y viewed as a 

general mechanism for granite generation in all continental 

environments. 

The model presented here is influenced by Hildreth and 

Moorbath (1988), who suggest that mantle-derived mafic 

liquids solidify at or near the crust-mantle boundary, 

where their crystallization releases energy. These dense 

magmas are "stalled" in the lower crust, where they 

assimilate crustal rocks and mix with melts derived from 

such sources. The continental crust acts as a density 

filter (c.f. Fyfe, 1988), that impedes further ascent of 

magmas until compositions evolve to suitably low densities. 

Increased ductility and plasticity of partially molten 

lower crust also provides a physical barrier to the ascent 

of the mafic magmas. 

Hildreth and Moorbath (1988) coin the acronym MASH 
~ (Melting, Assimilation, storage and 

Homogenization zone) to describe this process. 

"Base-level" geochemical and isotopic signatures are 

established in the MASH zone as a function of the rate and 

characteristics of subcrustal magma flux, and composition 

and thickness of overlying crust. Magmas that ascend from 

the MASH zone undergo further modification by combined 

assimilation - fractional crystallization (DePaolo, 198la) 

at interme6iate and upper crustal levels. 

The east-west contrast of initial Nd isotopic 

compositions observed in Makkovikian rocks illustrates the 

influence of the local lower crust on base-level HQ 
isotopic s;gnatures developed in the MASH zone. The 

base-level ~lemental signature, however, appears constant 

in both domains, indicating that other factors (e.g. bulk 

compositions, rate of transfer) were generally similar. 

In the eastern domain, the Nd isotopic characteristics 

of c r ustal contributors changed with time. Initially, the 
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MASH zone was established in slightly older Proterozoic 

crust, such as the Cape Harrison Metamorphic Suite. During 

emplacement of the Strawberry Intrusive Suite at ca. 1760 

Ma or later, the MASH zone was situated at levels of the 

crust occupied by juvenile rocks emplaced during previous 

magmatic episodes, and "crustal" contributions came instead 

from this material (Figure lO.lb). 

This implies thickening of the eastern domain crust via 

underplating of juvenile material. The greater preservation 

of volcanic sequences in the western domain, and isotopic 

evidence for Archean material in western Strawberry Suite 

magmas, suggests that the western domain was not thickened 

and uplifted to the same degree, and that its MASH zone 

remained fixed in Archean lower crust throughout. 

Minor syn-tectonic peraluminous granites of the 

Makkovikian assemblage are interpreted as products of 

localized anatexis in specific units (e.g. Pitre Lake 

Granite; Brumwater Granite) or crustal melts that escaped 

from the upper part of the MASH zone without encountering 

juvenile material (Figure lO.la). The Manak Island 

Granitoid (3.1.6), which is closely similar in composition 

to the Brumwater Granite, is a possible example of an 

anatectic granite derived entirely from the juvenile 

Proterozoic crust of the eastern domain. 

Petrogenetic Model Some Special Features 

r: is relevant to consider some consequences of a 

significantly hotter Earth ~n early Proterozoic times. 

Komatiites (ultramafic lavat) and komatiitic basalts of 

Archean and Early Proterozoic terranes (e.g. Bickle, 1982; 

Hynes and Francis, 1982) probably reflect extensive mantle 

melting due to higher thermal gradients, and have high (up 

to 1600°C) liquidus temperatures. High-Mg magmas of this 
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qeneral affinity have important implications for the 

ultimate products of the MASH process. Sparks (1986) 

concludes that they have enormous capacities for thermal 

transfer and energy release, as a consequence of high 

li~uidus temperatures and the large heat of fusion of 

olivine, and have great capacities for assimilation and 

melting of crustal rocks. Such magmas will evolve initially 

via olivine fractionation, which could produce the 

Fe-enrichment trends typical of Makkovikian (and other 

Proterozoic) granitoid suites. 

It is therefore suggested, after Sparks (1986), that 

Makkovikian parental magmas were potassic, alkali-rich, 

iron-enriched, intermediate magmas generated by interaction 

and mixing of (fractionated) high-Mg mafic magma and lower 

crustal material. The energy released by olivine 

crystallization provided the high temperatures required to 

break down hornblende and refractory accessory minerals in 

the lower crust. Source materials were probably complex in 

detail, as high-Mg mafic magmas can also assimilate or 

partially melt mafic compositions, including their own 

differentiates (Sparks, 1986). "Zone refining" (e.g. 

O'Hara, 1977) processes may thus also contribute to 

incompatible element enrichment. 

Implications For The Origin Of "A-type" Granites 

The Kennedy Mountain, Strawberry and Lanceground 

Intrusive Suites are "A-type" or "within-plate" granites 

according to most criteria (Chapter~). A popular model for 

generation of such magmas involves mllting of felsic, 

granulite-facies, gneisses ("restite") frorn which anatectic 

melts have previously been extracted (Collins et al., 1982; 

Whalen et ·al., 1987). This premise has rarely been 

investigated using Nd isotopes. 
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The "restite" model is incompatible with isotopic data 

from these rocks, which indicate mixing of mantle and 

crustal materials, particularly in the western domain 

(8.2.2). The negligible residence period of any crustal 

component in the eastern Strawberry Suite also argues 

against a complex polymetamorphic history. Data from these 

eastern plutons suggest that some A-type granites are 

derived entirely from mantle-like sources, although this is 

probably not a single-stage process (see above). 

Nd isotopic data reported here are consistent with an 

earlier model (Barker et al., 1975), that invoked 

interaction of mafic magmas and lower crustal rocks. The 

requirement for prior anatexis in the sources for A-type 

granites has also been questioned elsewhere (e.g. Anderson, 

1983; Kay et al., 1989; Sylvester, 1989). As outlined 

above, the distinctive characteristics of these rocks may 

be controlled by the nature of the subcrustal magma flux, 

rather than by specific sources ~itbjn the crust. 

Two Younger Analogues of The Makkovikian Assemblage 

Chapter 9 documents similarities between Makkovikian 

and Newfoundland granitoid assemblages, but also points out 

important differences. This section refers briefly to two 

other possible analogues that have influenced tectonic 

models presented below. Rapela and Kay (1988) and Kay et 

al. (1989) draw parallels between Permian to Jurassic 

felsic magmatism in southern South America and anorogenic 

magmatism in North America described by Anderson (1983). 

The South American provinces are dominated by 

fluorine-rich, "A-type" granites and rhyolites that appear • 
compositionally similar (on the basis of limited 

geochemical data) to the Makkovikian assemblage. They 

formed over a 100 to 150 Ma period of magmatism that 
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followed accretion of juvenile terranes of island-arc or 

microcontinental affinity to the margin of Gondwanaland. 

Kay et al.(l989) propose that juvenile Paleozoic crust was 

underplated and melted ty mantle-derived mafic magmas, in a 

similar manner to the above model. This area is also 

particularly interesting in view of spatial and temporal 

relationships to younger Andean magmatism, and assembly of 

the Gondwanaland supercontinent (see below). 

A Late Proterozoic to Early Paleozoic analogue of the 

Makkovik Province may exist in the "Pan-African" mobile 

belt of the Arabian Shield (Duyverman et al., 1982; Jackson 

et al., 1984; Stoeser, 1986). This is regarded as the prime 

e~ample of a Late Proterozoic Wilson cycle, and includes 

ophiolitic belts (Pallister et al., 1987). Voluminous, 

post-orogenic, granitoid rocks, many of which have "A-type" 

affinities, were emplaced over 100 - 150 Ma following 

postulated accretion of juvenile volcanoplutonic terranes 

interpreted as fossil island arcs (Stoeser and Camp, 1985). 

The youngest rocks are fluorine-enriched, variably 

peralkaline, mineralized, high-level, granite ring­

complexes of classic "anorogenic" type. 

Jackson et al.(1984) and Jackson (1986) proposed that 

these suites were generated by fusion of newly accreted 

crust, in response to thermal input from the mantle. 

Although mantle sources are not specified, it is difficult 

to envisage thermal transfer that is unaccompanied by mass 

transfer, and consequent geochemical interaction. 

10.2 PETROGENESIS OF LABRADORIAN MAGMAS 

Summary of Important Characteristics 
• 

The Labradorian assemblage comprises a bimodal 

association of gabbro-diorite-monzonite-syenite suites 
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(derived by fractionation of mafic magmas~. and assorted 

siliceous, generally leucocratic granitoid rocks (Chapter 

5). These magmas were emplaced, at least in the study area, 

under passive tectonic conditions. The mafic rocks are of 

high-potassium, calc-alkaline to shoshonitic affinity; 

their felsic differentiates have strong incompatible LFS 

element enrichment as a consequence of protracted 

fractionation (5.3). 

Labradorian granitoid rocks without mafic parental 

suites have weakly peraluminous compositions, and generally 

low levels of fluorine, HFS eleme~ts and REE, compared to 

most Makkovikian granitoid rocks. However, they resemble 

some of the minor, peraluminous, syn-tectonic units of the 

Makkovikian assemblage. 

A comparative analysis of the Labradorian assemblage 

(Chapter 9) is difficult, probably because these rocks are 

a small portion of a much wider belt, and may not be fully 

representative of it. Possible analogues include bimodal, 

potassic volcanism in distal arc settings (e.g. Brown et 

al., 1984; Munoz and Stern, 1989) or post-collisional 

environments (e.g. Sloman, 1989). The former alternative is 

preferred, mostly on isotopic grounds (8.3.3). 

Source Materials and Source Regions 

Nd data provide no evidence for depleted mantle 

sources. Melanocratic, olivine-bearing mafic rocks have 

€NdCHUR of ca. +1, well below postulated values (ca. +5 

to +6) for a o=pleted mantle reservoir at 1650 Ma (8.2.2). 

Most other Labradorian rocks have similarly neutral 

isotopic signatures. Excluding the Witchdoctor and Burnt 

Lake Granites, and a (probably contaminated) gabbro in the 

extreme west, all have €NdCHUR of +1 to -2, regardless of 

composition or geographic location. It is cor.cluded that, 
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although some Labradoria~ granites (s.s) could be derived 

by anatexis of Makkovikian crust, Labradorian mafic magmas 

are mixtures of mantle ar.d crustal materials (8.3.3). It is 

suggested that mixing tock place in a subcrustal 

environment, and not via assimilation and melting of local 

lower crust, although some contamination effects are seen 

in the Mount Benedict Suite. 

By analogy with modern arc magmas (White and Patchett, 

1984) and Nd studies of other Proterozoic calc-alkaline 

granitoid assemblages (Patchett and Bridgwater, 1984; 

Patchett and Kouvo, 1986), it is concluded that crustal 

material may have been introduced to the mantle by 

subduction of continent-derived sediment (see 8.3.3). The 

H2o-rich nature of the Adlavik Intrusive Suite is also 

consistent with thi~ mechanism. Parental magmas to the 

mafic-parent suites possibly originated via hydrous melting 

of the mantle wedge overlying a subduction zone, initiated 

by volatiles and silicic magma derived from the subducted 

slab and sediments (Wyllie, 1984; Tatsumi, 1989). 

Labradorian granitoid rocks without mafic parental 

magmas present a more difficult problem. Their elemental 

geochemical features are consistent with derivation by 

melting of crustal material under moderate (650-750°C) 

conditions, probably as a consequence of biotite breakdown 

(c.f. Whitney, 1988). Low HFS and REE contents indicate 

stable zircon and/or sphene in their source regions, which 

is also consistent with relatively low temperatures. The 

central problem is the identity of a crustal source, 

especially in the western doma5n, where most crustal rocks 

probably had negative ENdCHUR a· 1650 Ma, based on the 

observed features of Makkovikian suites. The Witchdoctor 

and Burnt Lake Granites could be derived from such a 

source, but other Labradorian granitoids require a more 

juvenile source, possibly material underplated to the 

western domain during Makkovikian magmatism. 
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Petrogenetic Models 

A model for Labradorian magma genesis (Figure 10.2) is, 

in general terms, a MASH hypothesis (after Hildreth and 

Moorbath, 1988). The subcrustal magma flux, however, is 

derived by hydrous melting, has a lower liquidus 

temperature, lower MgO, and significantly low£r ENdCHUR 

of ca. +1, compared to the mantle-derived magmas that 

were involved in Makkovikian magmatism. 

The negative displacement of 4 to 5 ENd units relative to 

concurrent depleted mantle is identical (in time-adjus ted 

terms) to the shift observed in primitive mafic arc magmas 

in northern Chile and the Antarctic Peninsula (Pankhurst et 
al., 1988). 

Thermal input from these magmas is limited (compared to 

the Makkovikian input), crustal melting was les s extensive , 

and took place at lower temperatures. The ability of the 

MASH process to homogenize and mix mantle and crustal 

components is also reduced, and there are fewer obs t ac l es 

to the ascent of variably modified mafic magmas, wh l ch 

fractionate and become contaminated at higher leve l s. The 

Mount Benedict Intrusive Suite ascended within the complex 

boundary zone between eastern and western Makkovikian 

domains, where it must have encountered some Archean crust 

at higher levels. 

The b i modal Labradorian assemblage is a consequence of 

suppressed interaction of mantle and crust. In Figure 10.2, 

Labradorian granites (s.s) are depicted as der i vatives of 

Makkovikian "mixed" granites at intermediate levels, and/or 

juvenile Makkovikian material that had solidif i ed in the 

lower crust. It is logical to expect that Arc~ean lower 

crust of the western domain was extensively diluted by 

Makkovikian magmatism. In this model the similarity of Nd 

signatures between Labradorian gabbros and granites (s.s) 

is coincidental, as they have discre te sources. 
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Labradorian magmas above a north-dipping subduction zone at ca. 1650 
Ha. Note that the main locu~ of Labradorian activity is inferred to 
lie south of the study area. Depth scale is approximate. 
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10.3 PROTEROZOIC CRUSTAL EVOLUTION IN THE MhKKOVIK PROVINCE 

Implications For crustal Growth Models 

Hakkovikian Events : The period from 2000 to 1700 Ma 

ago involved widespread orogenic activity and magmatism in 

the northern hemisphere (e.g. Windley, 1977), and is also 

important in the southern hemisphere (e.g. Page, 1988; 

Cordani et al., 1988). Isotopic studies (particularly using 

Nd) demonstrate that most 2000-1700 Ma crust in North 

America and Eurasia consists of ca. 80% newly generated, 

mantle-derived material (Patchett and Arndt, 1986). 

The study area is part of this extensive Early 

Proterozoic tract (e.g. Figure 2.2, p.JO), and Nd isotopic 

data (8.2, 8.3) are broadly co~sistent with these 

conclusions, particularly in the eastern domain, where 

crust formed no earlier than 2100 Ma ago. In the western 

domain, Archean crust contrituted to Proterozoic magmas, but 

rocks produced entirely from such sources are rare; most 

contain 50% or more juvenile material, based on conservative 

mixing calculations (8.3.2). The Makkovik Province was 

therefore an area of new crust generation in both domains. 

However, Makkovikian plutonic rocks retain local lower 

crustal isotopic signatures much more clearly than the 

Greenlandic and Scandinavian rocks of similar age described 

by Patchett and Arndt (1986). 

Labradorian Eve1ts : Nd isotopic data indicate that 

Labradorian eveni s in the Makkovik Province also added new 

material to the crust. The isotopic characteristics of these 

rocks resemble those of the older Scandinavian and 
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Greenlandic suites examined by Patchett and Bridgwater 

(1984) and Patchett and Kouvo (1986) in that they 

consistently contain a small (< 20%) crustal component. 

However, in the case of Labr;;dorian granites (s.s.), 

recycling of slightly older, juvenile, Makkovikian crust by 

anatexis cannot be ruled out. Sch~rer (1988) found that 

most Labradorian igneous rocks within the high-grade 

terranes had neutral or positive €NdCHUR, and therefore 

also represent crust generatP~ at or slightly before 1650 

Ma. 

Stages In Crust Formation : Bickford (1988) reviewed 

continental crust formation as a three-stage process that 

occurs sequentially at mid-ocean ridges, above subduction 

zones, and within accretion-collision zones. In subsequent 

discussion, these are referred to as Stage 1, staae 2 and 

S.tagfL2 crustal growth. Bickford (1988) interprets Stage 3 

as mostly post-orogenic anatectic melting of ~aterial 

formed in stage 2. However, data presented here indicate 

that post-orogenic magmatism in the Makkovik Province 

contributed significantly to new crust generation. 

Stage 3 crustal growth is thus visualized here as a 

consequence of post-orogenic or anorogenic magmatism (the 

distinction may be semantic at this early stage in Earth 

history; see later discussion), that results in a vertical 

reorganization of the crust (after Anderson, 1987; Hoffman, 

1989). The mechanism is addition of mantle-derived mafic 

material at lower levels ( 11 underplating"), coupled with 

migration of potassic m~lts or hybrid magmas to form a 

geochemically evolved upper crust. 

Seismic studies indicate that Proterozoic crust is 
• 

commonly horizontally laye r e d, has a high-velocity lower 

domain of probable mafic composition (e.g. Drummond and 
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Collins, 1986), and may r.ave prominent horizontal 

reflectors in the Middle and Lower Crust (e.g. Pratt et 

al., 1988). Such features are absent from undi~turbed 

Archean cratons, and are progressively diminished in 

younger crustal domains. These features are probably a 

consequence of Stage 3 crustal growth, as described above, 

which may not have operated widely during the Archean. It 

is predicted that a proposed seismic transect in the 

Labrador Sea (Keen et al., 1988) will detect this layered 

crustal structure under the Makkovik Province (particularly 

under the eastern domain) but not under the Archean Nain 

Province. 

Labradorian magmatism in the study area is viewed as a 

distal manifestation of Stage 2 crustal growth processes, 

occurring via melting of the mantle promoted by dehydration 

of wet stage 1 crust (ocean floor), with variable addition 

of continent-derived sediment (White and Patchett, 1984; 

Bickford, 1988). 

SUamary : Data from this project support the 

importance of Early Proterozoic crust formation, as deduced 

by Patchett and Arndt (1988). It has been suggested that 

this implies very high rates or large domains of arc 

magmatism at this time, possibly as much as ~ times 

present global arc magma production (Reymer and Schubert, 

1986). It may, however, be misleading to assume that all 

crust i$ generated by this stage 2 process, as ~ew crust 

generation m~y also take place in post-orogenic 

environments, and this Stage 3 crust production may have 

been of greater importance in a hotter Proterozoic E1rth 

(see later discussions). 
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A Wilson-Cycle Model For The Evolution Of The 

Makkovik Province 

A speculative plate-tectonic model fer the evol uti or, of 

the Makkovik P:~ovince is presented below (Figure 10.3). All 

models of this type are derivati"Je, and this proposal has 

inherited some features from previous reconstructions by 

Ryan (1~84), who presented alternative collisional and 

ensialic models. Gower ( 1985) proposed a tectonic model for 

Labradorian to Grenvillian events, which covers the period 

following the final ( 1650 Ma) step of this proposal. In a 

general sense, it is also influenced by other models 

presented for both Precambrian and Phan~rozoic orogenic 

belts (e.g., Stoeser and Camp , 1985; Hoffman, 1988). 

The cases for and against Proterozoic 1 i thospheric 

plate motions have been discussed in counterpoint for many 

years (e.g. papers in Kroner, 1981, and Medaris et al., 

1983), and are beyond the scope of this discussion. The 

strongest argument in favour of plate tectonics is that it 

is an observable process resulting from mantle convection 

and heat loss, facilitated and lubricated by the 

hydrosphere (Dickinson, 1981; Fyfe, 1988). As Precambrian 

heat flow cannot have been less than that of today, and the 

hydrosphere has sxisted since at least 3800 Ma, it is 

difficult to imagine an Earth on which processes of thi s 

_general type did not take place. 

Early Stages -- Rifting, sedi11entati on and Stage 1 

Crust Generation 

Archean crust of the Nain Province was stabilized by 

ca. 2800 Ma, and remained stable for a long interval. Mafic 

dyke swarms were emplaced at ca. 2200 Ma (Grant et al. , 

1983; Gower and Ryan, 1986). This is ascribe'i to rifting 
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and distension of the Archean crust, preceding development 

of an oceanic basin to the south-east (Figure 10.3a,b). 

There is no direct evidence of this basin, but isotopic 

data from the eastern domain indicate a lack of Archean 

crust beneath this area. 

Supracrustal rocks of the Moran Lake and Lowermost 

Aillik Group were subsequently deposited on the margins of 

the Archean block; Gower and Ryan ( 1986) suggested formation 

at or before 1900 Ma. There is no direct evidenc:e· that the 

Lower Aillik Group was deposited on Archean basement, and 

it may be part of an oceanic domain, later thrust over the 

Archean craton. Mafic volcanic rocks in the upper part of 

the Moran Lake Group resemble mid-ocean ridge basalt 

(MORB), based on trace element geochemistry (J.North, 

pers.cornm., 1988). 

Ensimatic Stages -- Subduction and Stage 2 Crust 

Generation 

Crustal evolution in the oceanic domain eventually 

changed from Stage 1 (ocean-ridge) to Stage 2 (subduction­

zone) crust generation (Figure 10. 3c) . Mafic volcanic rocks 

in the upper portion of the Moran Lake and (possibly) Lower 

Aillik Groups may record a back-arc setting, which is not 

inconsistent with a MORB-like geochemistry. Nd isotopic 

data from the Pitre Lake Granite indicate (albeit 

indirectly) that pelitic metasediments of the Lower Aillik 

Group had a relatively juvenile source (8.3.1), which could 

have been an arc edifice within the area now occupied by 

the eastern domain. It is envisaged that one or more arc 

systems provided sites for generation of juveqile sialic 

crust over subduction zones. 

There is evidence of such primitive calc-alkaline 

magmatism in other Lower Proterozoic domains. The 
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Svecokarelian belt of Finland includes 1930 - 1860 Ma old 

gabbro, tonalite and trondhjemite suites that resemble 

younger ensimatic and continental arc assemblages (Nurmi 

and Haapala, 1986). In Sweden, volcanic belts of 1900-

1850 Ma age are both geochemically and metallogenically 

similar to modern island arcs, and were intruded by 

tonalitic granitoid rocks (Wilson et al., 1985; Lagerblad 

et al., 1987). Nd Isotopic studies suggest that these areas 

all represent juvenile, Proterozoic crust (Wilson et al., 

1985; Patchett and Kouvo, 1986). The southern part of the 

Ketilidian Belt (migmatite zones of Allaart, 1976) may also 

represent such material (see later discussions). 

Direct evidence of oceanic crust has always been a 

central problem in the interpretation of Proterozoic mobile 

belts. Scott et al. (1989) have, however, described a 

convincing 2000 Ma old ophiolitic assemblage from the Cape 

Smith Fold Belt of northern Quebec. To date, however, no 

such assemblages have been reported from the Ketilidian or 

Svecokarelian belts. 

Early Ensialic Stages -- Accretion Of Juvenile Terranes 

and Initiation of Stage 3 Crust Generation 

sucduction of oceanic crust leads inexorably to 

accretion of exotic terranes to the active margin, as 

postulated for modern orogenic systems (e.g. Coney et al., 

1980). This accretion probably took place ca. 1850 Ma or 

earlier (Figure 10.3d), and is recorded by subhorizontal 

deformation and hjgh-grade metamorphism of the Lower Aillik 

Group, and generat:on of minor anatectic granites from both 

juvenile and Archean crustal blocks. The Cape Harrison 

Metamorphic Suite is the largest preserved fragment of an 

accreted, pre-Makkovikian, juvenile terrane. Gneissic rocks 
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east of the study area in Labrador (Owen et al., 1986) are 

also possible candidates. Tonalitic and trondhjemitic rocks 

of the Island Harbour Bay Intrusive Suite (which are highly 

atypical of Makkovikian magmatism) may record a brief 

period of subduction beneath the Archean continental 

margin. 

During accretion, crust generated by Stage 2 processes 

was tectonically thickened. An insulating blanket was 

formed over hot mantle, and the build-up of heat induced 

mantle melting. Early Stage 3 crust generation commenced 

shortly after accretion, via emplacement of mafic magmas 

into the base of both Archean and juvenile domains. The 

consequences of this activity are discussed above (10.1). 

Final tectonic movements were partly contemporaneous with 

this early Makkovikian magmatism, and some intrusions are 

deformed by virtue of their age andjor location. Initiation 

of Upper Aillik Group felsic volcanism dates from this 

period: the mixed assemblage of the earliest Upper Aillik 

Group may record pa.t of the back-arc setting ingicated in 

Figure 10.3c. 

Late Ensialic Stages -- Episodic Post-Tectonic Maqaatisa 
and Staqe 3 Crust Formation 

This stage corresponds to the main Makkovikian plutonic 

as:;emblage of ca. 1800 - 1760 Ma (and possibly younger) 

age. This activity continued vertical reorganization of the 

crust, as discussed previously (10.1). Thickening via 

un~erplating was greatest in the thinner eastern domain 

cr~,t, which was also probably hotter, and richer in 

volatiles than gran~!itic Archean lower crust in the west 

(Figure 10.3e). 

By the time the Strawberry Intrusive Suite was 

emplaced, both domains had similar thicknesses and 
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elemental compositions, accounting for the geochemical 

coherence of these plutons across the margin of the Archean 

craton. Volcanic rocks of the Jagged Edge assemblage may 

record volcanism associated with the Strawberry Suite, as 

they have a similarly primitive initial Nd composition. 

However, they could also be of Labradorian age (see 7.3, 

8.3 for discussions). 

Extensive reprocessing of the juvenile, recently­

accreted crust is implicit in the stage 3 crust formation 

envisaged during this period. Scattered, enigmatic outcrops 

of layered or banded material encountered during mapping of 

plutonic units may be enclaves or screens of older juvenile 

crust, in addition to the larger remnant at Cape Harrison. 

Labradorian Stages -- Initiation of a New Active Margin 

South Of The Makkovik Provinctl 

The waning stages of the Makkovikian episode were 

followed by, or were contemporaneous with, the initiation 

of Labradorian events. It is suggested th~t northward­

directed subduction began under this margin after cessation 

of Makkovik5.an plutonism, and was well underway by 1650 Ma. 

The study area was by now distal to the active zone, and 

magmatic and deformational effects were minor. Bimodal 

Labradorian magmatism, corresponding to the modPl presented 

above (10.2), was the result. 

Gower (1985) proposed that a long-lived convergent 

plate boundary developed during the Labradorian event, and 

offers some interes~ing speculations on the nature of the 

subsequent Grenvill. an Orogeny, a subject deliberately 

avoided here. 

These suggestions do ~ot imply that gll igneous rocks 

in the Labrador orogen are related to this northward­

directed subduction, as it is likely that Sta~e 3 crust 

formation subsequently took place in this area also . 
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Relationship of Makkovikian and Labradorian Magmatic 

Provinces Within The TLGB 

Makkovikian and Labradorian events are viewed as phases 

in long-term crustal evolution along the margin of a 

developing supercontinent. Makkovikian magftatism was 

associated with the accretion of Proterozoic terranes to an 

Archean nucleus, and (in a broader sense) to the assembly 

of this supercontinent (Hoffman, 1988). Labradorian 

magmatism reflects subsequent subduction along its southern 

boundary. The TLGB in the Makkovik Province is thus a 

composite belt, but dominated by Makkovikian rocks. 

A possible reconstruction of the situation at ca. 1650 

Ma is illustrated in Figure 10.4a. Makkovikian and 

Labradorian magmatic belts diverge, and continue into 

southern Greenland and southern Labrador respectively. The 

Granitoid Zone of the Ketilidian Mobile Belt (Allaart, 

1976) contains a similar assemblage of intrusive rocks, but 

may contain more remnants of Stage 2 crust. The folded and 

flat-lying migmatite zones in the south of the Ketilidian 

belt (Allaart, 1976) may represent the accreted juvenile 

block (Ketilidia ?). To the west, th~ Makkovikian belt 

may join with the ca. 1800 Ma old Ungava or DePas batholith 

(Wardle et al., in press) in the Churchill Province. 

Alternatively, it may be continuous with the Penokean belt 

of the midcontinent region, as implied by Thomas et al. 

(1985). 

Either alternative implies that central and western 

portions of the TLGB ar~ also compo~ite Makkovikian­

Labradorian magmatic provinces. Mak~Jvikian U-Pb ages have 

not yet been reported from this area (Thomas et al., 1986), 

but Makkovikian rocks would be very hard to recognize using 

field criteria. Unless these areas are underlain by Archean 

material, Makkovikian and Labradorian components of the 

TLGB would probably also have similar £Nd signatures. 
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Figure 10.4. (a) A possible pal~Jgeographic configuration of Makkovikian, 
Ketilidian and Labradorian magmatic provinces at ca. 1650 Ma. (b) 
Paleozoic, Mesozoic and Cenozoic magmatic belts developed at the 
margin of Gondwanaland in southern South America (after Ramos, 1988; 
Rapela and Kay, 1988). This area is proposed as a possible analogue 
to sequential events in the study area. Note that there is a large 
difference in scale between (a) and (b). 
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A Younger Analogue -- The Margin of Gondwanaland in 

Southern South America 

The southern South American margin of Gondwanaland 

(Ramos et al., 1986; Ramos, 1988; Rapela and Kay, 1988; Kay 

et al., 1989) may provide a general analogue to the above 

model. A simplified map of its major tectonic elements is 

shown in Figure 10.4b. There is a very large difference in 

scale between Figures 10.4a and 10.4b, and no exact 

geographic correspondences are implied. The comparison 

simply illustrates similarly protracted magmatic evolution 

on the margin of a developing supercontinent. 

The earliest rocks in this area consist of Middle to 

Late Paleozoic supracrustal rocks and syntectonic granitoid 

rocks. Ramos et al. (1986) view these as continental margin 

and oceanic terranes that were assembled into Gondwanaland 

at the end of the Devonian, recording final stages in 

assembly of the supercontinent. Their accretion was 

followed by emplacement of the Pampeanas - Somuncura 

(Carboniferous to Permian) and Central Patagonia 

(Triassic-Jurassic) granitoid batholiths (Rapela and Kay, 

1988). Both are siliceous and potassic granitoid belts, 

rather than expanded calc-alkaline suites. In Patagonia, 

their trends diverge from the younger Andean belt. However, 

in the north, they are parallel to it, and rocks of similar 

affinity occur within the Andean magmatic belt. The 

Gondwanaland batholiths are associated with the 

aforementioned Choyoi (Permian) and Chon Aike (Early 

Jurassic) silicic volcanic provinces, for which 

petrogenetic models (Kay et al., 1989) are similar to those 

presented above for the Makkovikian assemblage (10.1) • 
• 

These final Gondwanaland events were soon followed by 

initiation of a new active margin, represented by the Late 

Jurassic to Quaternary magmatism of the Andes, built on a 



- 467 -

Paleozoic substrate in the north and upon juvenile "arc" 

crust in the south (Hildreth and Moorbath, 1988). Where 

Gondwanaland and Andean magmatic provinces are 

superimposed, magmatism was episodic from Devonian to 

Cenozoic, a 250 - 300 Ma period that easily encompasses 

Makkovikian and Labradorian events in Labrador. It is 

suggested here, partly after Kay et al.(l989), that 

assembly of Gondwanaland is analogous to the creation of 

Proto- Laurentia and establishment of a mobile zone along 

its southern margin, as described by Hoffman (1988). 

In this context, it is interesting to speculate on 

eventual destruction of the Pacific Ocean. When this event 

finally transpires, will the resultant collisional orogeny 

bear the same temporal relationship to Gondwanaland and 

Andean cycles as the Grenvillian orogeny bears to 

Makkovikian and Labradorian events ? 

The Makkovik Province as Part of a Chelogenic Cycle 

Sutton (1963) proposed the term "chelogenic cycle" to 

explain the episodic nature of global orogenies in terms of 

the aggregation and disperal of large continents. A recent 

revival of such ideas is exemplified by two brief papers 

from the contrasting disciplines of theoretical geophysics 

and regional geology (Gurnis, 1988; Hoffman, 1989). 

Gurnis (1988) modelled "feedback" between lithospheric 

plate motions and mantle convection patterns. He suggested 

that continents will inevitably aggregate over downwellings 

(cool areas) in the mantle. Once aggregated, they become 

;tationary or slow-moving, and insulate large areas of the 

mantle. Rising temperatures in the mantle create a thermal 

upwelling (i.e., a series of plumes) that eventually rifts 

the continent and disperses the fragments towards colder 

mantle areas (downwellings). 
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Hoffman (1989) applied these (and other) model results 

in an elegant discussion of the North American Precambrian 

Shield, couched in an interesting four-movement musical 

analogy (referred to by the editors of Geology as a 

"Superswell Symphony"). The model proposes that a 

Proterozoic supercontinent (c.f. Piper, 1983) aggregated 

over a mantle downwelling between 1900 and 1700 Ma ago, and 

that its assembly is defined by worldwide orogeny and crust 

generation at this time, followed by further crust 

generation along its margins. These events correspond to 

Makkovikian and Labradorian stages described above. 

Insulation of the mantle by Archean cratons and large 

tracts of juvenile crust induced the long-lived 

"anorogenic" magmatism of the Middle Proterozoic via 

episodic thermal and magmatic input from the mantle. A 

similar model for anorogenic magmatism was previously 

advocated by Anderson (1987). 

The model proposed here fits into these events well, 

and with the proposals of Kay et al.(l989), who also 

applied the models of Gurnis (1988) to the final assembly 

of Gondwanaland. Significantly, the Pan-African belt of 

Arabia, referred to above as another possible analogue to 

Makkovikian events, is also part of a period of continental 

assembly (e.g. Bowden and Kinnaird, 1987). 

Hoffman (1989) suggested qualitatively that the first 

supercontinental assembly would experience the most intense 

"anorogenic" magmatism as a consequence of greater mantle 

heat flow during the Early Proterozoic. A hotter mantle 

also has implications for the relation~hips between 

"post-orogenic" and "anorogenic" magma·. ism, and for crustal 

growth mechanisllts. 
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Proterozoic Magmatism and crust~l Evolution : Reprise 

If, as suggested by this study, Staoe 3 (post-orogenic) 

crustal growth is an important precess, it must have played 

a greater role in a hctter Earth, where the build-up of 

heat in subcontinental mantle would be greater and more 
rapid. Gurnis (1988) proposed a ca. 300 Ma interval b~tween 

assembly and rifting of supercontinents, based on 

present-day Earth parameters. A hotter mantle, and great~r 

radiogenic heat production, would shorten this interval. In 

such a situation, Stage 2 crust accreted to a aggregating 

continent would encounter the effects of overheatej mantle 
very soon after its arrival. Stage 3 crustal growth would 

occur widely ir. post-ororyenic settings, and would be more 

intense and widespread than in younger belts. It may 

therefore have contributed to the apparent high growth 

rates of some Early Proterozoic crustal provinces noted by 

Reymer and Schubert (1986). These authors also proposed 
unusually rapid growth for the Pan-African of Arabia, which 

may also record a period of supercontinent assembly. 

Diminishing importance of Stage 3 crustal growth 

through geological time also accou~ts for differences 

b~tween Proterozoic and Phanerozoic crustal structure noted 

by Drummond and Collins (1986). 
A corollary of this proposal is that the distinction 

between "~est-orogenic" and "anorogenic" magmatism becomes 
progressively blurred as we reach back in geologic~! time. 

In Phanerozoic a:td modern environments, "anorogenic" 

magmatism is ~cen as a separate, discrete ~nvironment 

because the ·cime lag between continental assembly and 
mantle upwelling is long ( ~ 300 Ma). In the Early 

Proterozoic, post-orogenic and anorogenic magmatism 

probably formed a continuum, linked by a common process, 
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i.e. a large thermal and magmatic input from the mantle. In 

a younger , cooler Earth, this is present only in more 

restricted environments such 3S hot-spots, and requires a 

longer preceding period of insulation to develop. 

If the relative importance of Stage 2 (subduction zone) 

and Stage 3 (post-orogenic to anorogenic) crustal growth 

has changed through time, preservation of juvenile 

calc-alkaline material should be less common in older 

terranes, as a consequence of greater reprocessing, and of 

greater uplift and erosion caused by underplating. Testing 

such a prediction is very difficult, but a scarcity of such 

material is the most common objection cited against plate 

tectonic models (e.g. Kroner, 1983; Glikson, 1983). This 

scarcity may be a real feature, but does not imply absence 

of Stage 2 crusta 1 gro-wth processes, but rather greater 

intenf::ii ty of Stage 3 processes, particularly during periods 

of continental aggregation. 

It should be stressed also that preservation of 

juvenile volcanic-arc like assemblages is rare in orogenic 

belts of ill ages, excluding incomplete cycles such as 

those of the circum- Pacific region. In the Appalachians, 

for example, pre-Taconic tonalitic and trondhjemiti c 

granitoid rocks of probable arc affinity represent only a 

fe-w percent of exposed granitoid rocks, most of -which are 

post-orogenic (Hayes et al., 1987; Williams et al., 1989). 

The dominant granitoid intrusive rocks in orogenic belts of 

all ages are invariably the post-orogenic products of Stage 

3 crus tal growth processes. 

Th : s study has shown that Lower Proterozoic magmatism 

in the ~akkovik Province is indeed geochemically distinct 

from younger analogues (Chapter 9). However, it is felt 

that such differences do not necessarily require unique, 

non-uniformitarian models, but are explicable via plate 

tectonics, with some modifications to account for declining 

hea t flow through geological time. 
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10 • 4 FUTURE PATHS 

Regional projects such as this inevitably pose more 

questions than they are able to resolve. Some areas of 

further investigation and possible subprojects are 1 isted 

in point form here. 

Isotope Geochemistry : Multiple isotopic systems are 

required in an ideal study of c:r:ust generation. Sr data 

from mineral separates, and Pb isotope data, could both 

constrain mantle and crustal contributions more precisely, 

by requiring a more unique mixing solution. oxygen i sotope 

studies could discriminate upper, lower and supra-crustal 

sources. 

The Kaipokok Bay fold belt of~ers a chance to examine 

the behaviour of isotopic systems during anatexis of 

different proto! i ths. The very unusual Nd signature of the 

Pitre Lake granite suggests that results could have 

important implications. 

Geochronology : Geochronological problems are as 

numerous as units. Recent revision of the age of the 

Strawberry Intrusive Suite to ca. 1720 Ma (Krogh et al., in 

prep, see footnote on p. 113) has extended the duration of 

post-tectonic Makkovikian plutonism. The extent of this 

younger Makkovikian magmatism requires evaluation . Units 

that require dating include the Kennedy Mountain Suite 

(which may delimit Makkovikian deformation), the 

Lanceground Intrusive St· i te (is this the same age as the 

Numok Suite, or is it si 1ilar in age to the Strawberry 

Suite?), and the volcanic rocks of the Jagged Edge 

assemblage (are these equivalent to the Strawberry Suite, 

or Labradorian ?) • Dating of the Cape Harrison Metamorphic 

Suite is also crucial. 
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Petrological and Geochemical Studies : The Adlavik 

and Mount Benedict Intrusive Suites are fascinating 

intrusions that record the protracted fractionation of 

potassic, ~ossibly shoshonitic mafic magmas. Trace element 

models presented here (5.3) are only a first approximation 

to the problem and require constraining by major element 

mass-balance solutions, and further exploration of coupled 

assimilation-fractional crystallization models (DePaolo, 

l98la). The greatest problem with the mafic intrusions is 

their horrific complexity: they require devoted and 

time-consuming detailed mapping to deline3te their many 

individual magma batches. ThE' scale of this study has 

precluded such rigorous mapping. Amongst granitoid suites, 

the Strawberry Intrusive Suite and similar A-type suites 

are of most interest to the author, particularly in terms 

of their implications for the petrogenesis of such rocks. 

The Cape Harrison Metamorphic Suite requires further work, 

as it has an important role in models. Description as 

~onalitic to granodiorite is presently based mostly on 

field and petrographic data (Gower, 1981), • 

ll.inero!U Chellistry Studies : This asiJect is largely 

untouched here (a few imprecise probe analyses were carried 

out purely for identification purposes). Recent studies by 

Ague and Brimhall (l988a,b) use mafic and accessory mineral 

geochemistry to study source characteristics and conditions 

of emplacement in the Sierra Nevada Batholith. These have 

potential for application in the TLGB, particularly in 

combinatirn with isotopic data, and with reference to 

contrasts )etween eastern and western domains. 

•' -- ------ ---
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Spectral Analysis Of Granitoid Batholiths Thr 

largely univariate treatment of Chapter 9 can be expanded 
with multivariate techniques, and some work of this type 

has already been done using factor analysis (e.g. Kerr, 
1988). It is increasingly apparent that discriminant 

diagramt do not provide &dequate characterization of 

tectonic environments, and it is important ~hat emphasis 

also b~ placed on extensive parameters, and compositional 
structure and evolution. This can only be addressed via 

structured sampling programs of the type employed here, and 
by great~r international availability of representative 

data. It is felt that this general approach has potential, 
and it is hoped that these TLGB data, although far from 

fully understood, will eventually contribute to better 

characterization of granitoid magmatism via geochemistry. 

Data will be made available via the ARTEMISE data bank and 

via the Newfoundland Department of Mines. Much effort is 

addressed in granite petrology towards categorization of 

unique magma types, as exemplified by the ever-popular I-, 

s-, A- and M- type terminology. In the words of Hildreth 
(1987), " •••••• such cryptonyms encourage pigeonholing 

rather than the thoughtful consideration needed to 
understand multicomponent compositional spectra .•.. ". I 

hope, as does Fyfe (1988), that the origins of granites 
will no longer be subjects of debate in 2089 (see 

quotations after title page), but I wondP.r i{ such 
statements might be overly optimistic in view of the 

inherent complexity of the topic ! 
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APPENDICES 

APPENDIX A ; ME'I'HQDS AND PRQCEDVRES 

Al • SAMPLE COLLECTION AHD PBEPABATION 

Site Selection The regional sampling program used 
preselected sample sites (after Dickson, 1983), based ~n a 
2 x 2 km grid cell network constructed from the Universal 
Transverse Mercator (UTM) grid superimposed on National 

Topographic System (NTS) 1:50,000 scale maps. Each cell was 
subdivided into 16 sub-cells, one of which was selected on 

a random basis for the sample site. Where a 2 x 2 km grid 
cell straddled a geological contact indicated on existing 

maps, sites were selected on both sides of the contact. 
Follow-up sampling employed a similar method, but m-:.ed 1 x 

1 km primary cells. 
Samples were collected as close as possible to lh~ 

preselected site, subject to outcrop availability and 
topography. If outcrops contained more than one rock type, 

both were noted and samt ~ -;.( ·' Sites for "geological" samples 
collected during mapping ~0~e chosen on the basis of 

lithology or field relationships, as is normal in mapping. 

Field Procedures : Weathered material was removed and 
discarded on outcrop, and 2 to 5 kg of fresh material was 

reduced to fragments small enough for direct input to the 
jaw crusher (< 5 em maximum dimension). Material for hand 

samples and thin sections was set aside. About ~ alf 
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the samp1es were thin-sectioned, and most were slabbed, 

etched with HF, and stained for K-feldspar with a saturated 

sodium dichromate solution. This turns K-feldspar yellow, 

and alters plagioclase to a white colour. Quartz is 
unaffected. All hand samples depicted in plates have been 

processed in this manner. 

Sample Processing : All samples were processed at the 
Department of Mines laboratory in St.John's. Each was 

reduced to a fine gravel using a jaw crusher, which was 
cleaned between samples. About 20-30 grams of this material 

was reduced to powder using a ceramic disk and ring grinder 
(to minimize contamination by tungsten) an . tored in a 

clean medicine vial. The ceramic grinder was cleaned 
between runs with pure Sio2 sand, distilled water and 

acetone. 

A2 I KAJOR AMP TRACE ELEMENT ANALYSIS PROCEDURES 

A2. 1 Assessment of Geochemical Analysis Progrp 

Precision : Precision of analysis was assessed using 
blind duplicates. At the Department of Mines laboratory, 1 

analysis in 20 was a duplicate, split ~ to grinding. 
"Precision" is defined as : 

absolute value (V 
1 

- V 
2

) 

PRECISION (± %) = 100 X 

(V
1 

and v2 are duplicate determinations of a sample). 
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At low abundance levels, precision is worse (i.e., ! a 

higher percentage) than at high values. Mean precision is 

thus strongly i~fluenced by outlying values at or near 

detection limits, and the median (50th percentile) value is 

p!:"eferred here as an assessment of "average" precision in 

analysis. 

Detection Limit : Detection 1 imi ts quoted for the 

Department of Mines laboratory are concentration values at 

which precision is approximately ± 100%. These are based on 

blind duplicates measured over several years from all rock 

types (Wagenbauer et al., 1983; Wagenbauer, 1988). 

Accuracy : At the Department of Mines laboratory, 1 

sample in 20 is either an internal or international 

standard. Repeated determinations conducted during this 

project were compared with recommended va 1 ues quoted by 

Abbey ( 1979, 1983). Recommended values for internal 

standards are based on measurements over several years by 

different methods. 

A2. 2 Departpent of Mines Malysis PrOCiraa 

Laboratory Procedures 

Laboratory procedures at the Department of Mines 

laboratory are described in detail by Wagenbauer et al. 

(1983). About 0.1 g of sample was fused with lithium 

metaborate and taken into solution via HCl-HF digestion for 

major element and Zr analysis. 

About 1 q of sample was taken into solution via a 

HF-HCl-HClO 4 digestion for trace element analysis 



\'..riablf' Lab . Analytical De tection He an 
PRECISION (+/· l ) 

Ranae Nuaber of NU8ber of ............... .. ........... 
Method Liait Value Analyses* Cupllcates Mean Hedlan 

Oxidt- (wt 1) 

Si02 N D.H MS 0.01 67 .42 39.2> 88 .4) 1489 73 0 . 511 0 . 381 
TiOI !I D.H MS 0 .01 0.48 0 .01 2.17 1489 73 8 . 311 4 . 3~1 
AI {03 N D H MS 0 . 01 14.)3 4.60 25.40 148'1 73 1. 061 0 811 
h10l N D.H MS 0 .01 1.4) 0 .00 21 . 39 1489 7) 10 . 391 6 . ~41 
h•U N. D. I1 Titration 0 .01 2 . 32 0.01 14 04 1481 7l 9 . 161 3 961 
MnO N. l> .M MS 0.01 0 . 08 0 .01 0.4~ 1489 7) ~ . 921 0 001 
11110 N l> .M AAS 0 .01 l. 3~ 0.01 28 . 01 1489 7l 9 .691 2 . 301 
C:aO N 0 .11 AAS 0 .01 2 .44 0.01 16.20 1489 13 4 . 171 1. 461 
Na/0 N 0 .11 AAS 0 .01 4 . 10 o.n 10 . 90 1489 73 1 . 4~1 0.7'11 
Klo N 0 . 11 AAS 0 .01 4.~2 0 .06 12 . 06 1489 73 4. 221 l.Oil 
1'}0~ N. 0 . 11 AAS 0.01 0.13 0.01 2.26 1489 73 12 . 861 4 . o!>X 
LOI N 0 .11 Oven Drying n/a 0.71 0 .02 6.02 148!> 73 13 . 701 1 .on 
Ele...,nl (ppa) 

l.l N. D.H MS ) 21 .0 1 286 1491 73 13 . 291 8 . 221 
f N. l>.H IS£ 30 866.5 11 9968 1487 52 15.!>11 9 . 381 
Sc Secquerel INM 0 . 1 4 . 5 0.2 75 .0 ~29 23 22 .141 9 . 511 
v N. D. I1 MS 20 49. T 1 705 14'14 73 25. !>21 1~ . 401 
cr N. D.H MS 1 34 . 3 1 1840 1491 1l lO . 391 ) . 701 
Ni N. D.H MS I 10.3 1 823 1491 13 18 . 861 0 .001 
Cu N.O.H MS 1 1!>.1 1 d09 1491 13 ' . 411 0.001 
Zn N. D.H MS I 70 .0 ~21 1491 13 3 b91 2 . 5'31 
Ca N. O.H ICP- ES I 15 . 9 1 I I 1490 74 5 . 261 4 .441 l11 
Rb N. O.H AAS 5 144 . 5 I 1250 1491 73 6 . 6~1 2 .841 0 
Sr N. O.H AAS 2 250 . 8 2 1930 1490 73 ~ . 161 1 .901 0 
y N.D.I1 JCP·ES I 40 .9 2 381 1490 74 3 . 901 3 .451 
Zr N. D. I1 ICP-ES 1 229 .4 ll 2880 1490 74 6 . 241 4.441 
Nb N. D. I1 ICP·ES I 19.0 1 249 1490 74 7 . 001 3 .641 
Ho N.D.H MS 2 8.3 1 4752 1491 73 19.601 0 .001 
Sn B·C XRF·ES I 4.4 1 116 '>]9 23 73 . 291 66 .671 
Cs Becquerel NM 0.5 2 .41 0.5 32.0 )29 23 26 .411 ~.9/1 

8a N. D.H MS lO 690 . 8 6 5140 \491 7) 9 . 141 3.131 
La N. D.H ICP·ES 1 ~9 . ) 1 1312 1490 74 ).261 4 . 6~1 

te N. D.H JCP-E.S 2 119. 7 1 - 2226 1490 74 ~.461 4 .061 
S11 8ecquere1 NM 0 . 1 11 . ) 0.1 113 .0 ~19 23 7 .441 4 . 261 
Yb llecquerel NAA 0.) 5 . b 3.0 36.0 )29 23 14 . 8~1 4 .001 
HI Becquere1 NM 1 .0 11 . ~ 1.0 1~0.0 )29 n 24 . 761 12 . 241 
Ph N.D . H MS 2 10.1 1 2900 1491 13 6 . 191 ) , 1); 

Th N.O .H ICP·ES 1 13.3 1 163 1490 74 27 . 851 13.331 
u N.A.S NM 0 . 2 4 . ) O.l 74 . 7 1491 )2 9.201 6 .4)1 

ANALYSTS ANALYTICAL METHODS 
N . D. M - - - N~wfoundland Department ol Mines. St. John's . MS Ato•ic Absorption Spectrophoto.etry 
N . A . S --- Nuclear Activation Services. Ha•tlton . JCP-ES Inductively-Coupled Plaa .. E.ission Spectrometry 
8ecqu~rf' l ··· Becquerel Laboratories, 11lsslssauga INM lnatruaenta1 Neutron Activation Analysts 
8-C ··· 8ondar-C1egg and fo . Ltd , Ottawa. ISE Jon-Selective Electrode 

xa•··ES X-Ray Fluorescence Ealaal~n Spectroaetry 

Table A.l. Abundance levels, detection limits and estimates of 
precision for 11ajor and trace ele11ents deter11ined at, or via, 
t~~ OPpartment of Mines laboratory. 
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(excluding Zr and F). About 0.25 a of sample was fu~ed with 

Na 2co 3 - KN0 3 flux, and taken into solut ~ on with 
citric acid for fluorine analysis. Loss on ignition (LOI) 

was determined after heating a portion of the sample powcter 
to l000°C in a muffle furnace. Separate aliquots of 

sample powder were weighed and sent out for external 
analysis of selected trace elements (see below). 

Analytical Methods 

Hajor Elements : These were determined by atomic 

absorption spectrophotometry (AAS), using standard 
solutions supplied by CANLAB Ltd. Ferrous iron was 

determined by addition of var.adium, followed by titration 
using standard potassium dichromate solutions. Details are 

supplied by Wagenbauer et al.(l983) 

Li, V, cr, Ni, cu, Zn, Rb, Sr, Ba and Pb : These 
elements were determined by AAS, as described above. 

Details of procedures are supplied by Wagenbauer et 

al.(l983). 

Ga, Y, Zr, Nb, La, Ce and Th : These elements were 

determined by inductively-coupled plasma emission 

spectroscopy (ICP-ES) using an ARL 3520 sequential 

spectrometer, and s~andard solutions supplied by SPEX 
Industries Ltd. Note that Zr was analyzed on solutions from 

the major element fusion. 

Fluorine ~ This element was determined via 
ion-selective electrode (ISE) analysis using a digital ion­

analyzer, and standard solutions supplied by CANLAB Ltd. 
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Uranium : This element was determi~ed externally by 
Nuclear Activation Services Ltd, via neutron activation 
analysis (NAA). About 2 g of each sample was irradiated. 

sc, cs, S•, Yb and Hf These elements were 
determined externally in selected samples by Becquerel 
Laboratories, using standard NAA methods. This forms part 
of the "gold+33" commercial package. About 10 g of each 
sample was irradiated. A range of other elements determined 
via this method are not reported here because of low and 
imprecise abundances, or because they duplicate data 

obtained by other methods. 

Tin : This element was determined in selected samples 
by Bondar-Clegg Incorporated, via wavelength-dispersive 

X-Ray fluorescence (XRF) analysis, on a pellet containing 

about 5 g of sample. 

Precision and Detection Li•its 

Table A.l lists relevant information for all elements 

determined at or via the Department of Mines laboratory. 
Detection limits for sn (1 ppm) are those quoted by the 
analyst; all others are based on multiple determinations 

over several years (see above). Detection limits for Sc, 
Cs, Sm, Yb and Hf are based on a survey by Davenport (pers. 
comm., 1988) using lake sedim~nt samples, and are generally 

higher than limits quoted by the analyst. 
The median (50th percentile) value is the preferred 

estimate of analytical precision. For elem• nts with 
generally low abundances (e.g. V), poor mean precision 
results from many determinations at or near detection 
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Table ~.2. Mean analyses of the international standards MRG-1, 
SY-2 and ~SP-1 by the Department of Hines laboratory, compared to 
recommended values of Abbey (1979, 1983). 

STD: SY -2 . MRG-1 GSP- 1 

MAJOR ELEMENTS (wtX Oxide) 
................................................................................................................................................................................................... .. .................. ............ 

Mean S.D . R. V. Mean S.D. R.V. Mean S.D. R.V. 
n-3 n-3 n-6 

Si02 60.02 0.72 60.10 39 .02 0.25 39.32 66 . 83 0 . 56 67. 32 
Ti02 0.14 0.01 0 . 14 3 .89 0 . 0!> 3. 69 0.66 0 .02 0.66 
Al203 12.20 0.13 17..20 8 . )4 0 .04 8.)0 14 . 97 0.13 15.28 
Fe203t 6.36 0.07 6 . 28 17.81 0.3C 17.62 4 . 27 0 .06 4.3 
MnO 0.32 0.01 0. 32 0.18 0.00 0.17 0.05 0 0 . 04 
MgO 2 . 72 0 . 02 2.70 13.89 0 . 12 13.49 0.97 0.01 O.<Jl 
GaO 8.04 0.04 7.98 14 . 7) 0 .04 14.77 1 .98 0.04 2.03 
Na20 4 . 29 0.05 4. 34 0. 71 0 .00 0 . 71 2. 79 0.03 2 . 81 
K20 4.47 0 . 06 4.48 0.17 0.00 0.18 5 . )8 0.11 5. )1 
P205 0 .43 0.03 0.43 0 .06 0 .00 0 .06 0 . 27 0.03 0.28 

- ......... -- ............................ ---·-- ..... --- ......... -- ... --·- ............ -... .. -- ......... --- ..... - ... -..... -- .................. - .......... --- ..... -
TRACE ELEMENTS BY AAS (ppm) 
-----------·-----------------------··- -----·- -------------·------------ ------ ---
N n-18 n-18 
Li 90.2 7.6 93 . 0 10.4 3.9 4 
v 61.4 10.6 52.0 539 .9 19.~ 520 
Cr 7 . 2 1.4 10.0 327 .3 21.2 420 
Ni 4.6 0.9 10.0 14) . 3 5 . 5 200 
Cu 5 . 2 0.6 5.0 109.1 4 136 
Zn 264.3 50 . 3 250.0 193 .4 7 18 5 
Rb 210.0 21.3 220.0 12 . 7 4 8 
Sr 274.5 8.9 275.0 260 . ) 14.6 260 
Mo 3.3 0.4 3 . 0 4.7 1.2 5 . 0 
Ba 460.4 31.3 460 . 0 83 . 5 16 50 
Pb 76.6 2.7 86.0 10 0 10 

TRACE ELEMENTS BY ICP-ES (ppm) 

n-18 n-18 
Ga 23.9 1.4 28.0 24.5 1.2 18 . 0 
y 129.7 4.6 130 . 0 10.5 0.8 16.0 
Zr 31.3.8 18.9 280 . 0 121.3 17.3 105 . 0 
Nb 25.6 1.0 23 . 0 13 . 5 0.8 20.0 
La 69 . 4 3.0 88.0 17 . 5 5.7 10 . 0 
Ce 164 . 8 5 . 7 210 . 0 38 . 7 3.0 25.0 
Th 383.4 27.0 380 . 0 1.0 0.2 1.0 

TRACE ELEMENTS BY NAA (ppm) 

n-12 n-9 
Sc 6 . 0 0.5 7.0 53.8 4.1 48 . 0 
Cs 2.7 0.3 2.3 0.8 0.2 0.6 
Sm 8 . 6 2.1 15.0 4.9 0.3 5.0 
Yb 20 .4 4.0 17 . 0 2.2 2 . 0 1.0 
Hf 8.3 0 . 8 8.0 3. 8 0 . 5 3 . 0 

OTHER TRACE ELEMENTS (ppm) 

Sn 4 .6 2.2 4 . 0 0 3.2 

R.V.- RecoiDIDended Value (Abbey, 1979; 1983) S .D.- St.•dard Deviation 
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limit: note the large differences between mean and median 

precision for Cr, Ni and Mo. In the case of Sn, data are 
capable only of resolving ~nomalous samples. Apparent poor 

precision for Th is mostly induced by mafic rocks 
containing only 1-2 ppm Th; if these are excluded, 

precision is closer to ± 6%. 

Accuracy 

Table A.2 lists mean analyses and standard deviations 
for the international standards MRG-1, SY-2 and GSP-1, 

compared to the recommended values listed by Abbey 
(1979,1983),. There is good agreement for most elements. 

Notable exceptions include Ni and Ce, which are somewhat 
lower than recommended values for MRG-1 and SY-2 

respectively. However, in the case of Ce, ICP-ES data for 

SY-2 are in close agreement with the ICP-MS data from MUN 

(Table A.J). 

Accuracy for U and F was monitored only by internal 

Department of Mines standards. Data for these are in good 
agreement with compilations of previous results 

(Wagenbauer, pers.comm., 1989), and are within their 
respective precision envelopes. 

A2. 3 Me110rial University Analysis Progru 

Selected samples were analyzed for REE and a range of 

other trace elements at Memorial University. About 0.5 g of 
sample w s digested in HF-HN03 in sealed teflon bombs to 

ensure di;solution of zircon. A subset of the samples were 
also processed using NaOH fusion methods followed by HN03 
digestion. This method is now standard for REE analysis at 

MUN: however, in the case of TLGB samples, there was 

little difference between results from the two methods. 
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Table A.J. Mean trace element analysis of SY-2 by ICP-MS analysis 
at Memorial University, compared to recom~ended values of Abbey 
(1979, 1983). 

Element 

(ppm) 

Li 
Be 
Sc 
Rb 
Sr 
y 
Zr 
Nb 
Ho 
Cs 
Ba 
La 
Ce 
Pr 
Nd 
Sm 
Eu 
Gd 
Tb 
Dy 
Ho 
Er 
Tm 
Yb 
Lu 
Hf 
Ta 
Tl 
Pb 
Bi 
Th 
u 

N 

s 
2 
2 
s 
s 
6 
6 
3 
2 
s 
7 
7 
7 
7 
7 
7 
7 
7 
7 
7 
7 
7 
7 
7 
7 
6 
3 
5 
5 
5 
7 
5 

SY-2 

Mean 

90 . 1 
23 . 0 
6.7 

219 . 8 
268.8 
111 . 7 
251.3 

25.1 
0.8 
2.7 

444 . 4 
67.6 

154.0 
18.9 
70 . 9 
15 . 1 
2 . 3 

14.8 
2.8 

19 . 1 
4.3 

14 . 5 
2.3 

16.6 
2.8 
8 . 5 
0.6 
1.5 

68.1 
0 . 1 

365.0 
292.3 

S.D. 

5.1 
1.4 
0.0 
; . 0 

12 .2 
S.l 

11.4 
1.6 
0.1 
~ ) . 0 

18 . 5 
1.5 
3.2 
0.6 
1.8 
0.6 
0 . 1 
1.1 
0.1 
0 . 7 
0 . 2 
0 . 9 
0.2 
1.3 
0.3 
0.5 
0 .4 
0 . 1 

12 . 4 
0 . 0 

56.5 
21.7 

SY-2 
Recommended 
Value 

93 . 0 
23 . 0 

7. 0 
220 . 0 
275.0 
130 . 0 
280.0 

23 . 0 
3.0 
2.3 

460 .0 
88.0 

210.0 
21.0 
75 . 0 
15 . 0 
2.7 

17.0 
2 . 5 

20.5 
5 . 0 

14.0 
2.3 

17.0 
3.0 
8.0 
1.2 
1.4 

86 . 0 
0 . 1 

380.0 
290.0 

Recommended values after Abbey (1979,1983), or accepted 
HUN values in the case of Tl, Ta and Bi . 

Quoted 
Detection 

Limit 

0 . 3 
0.4 
1 . 2 
0.1 
0 . 2 
0 . 1 
0 . 2 
0.1 
0.1 
0 . 1 
0 . 1 
0 . 1 
0 . 1 
0 . 1 
0. 7 
0 . 2 
0 . 1 
0.1 
0 . 1 
0.1 
0.1 
0.1 
0 . 1 
0 .1 
0.1 
0.1 
0 . 1 
0.2 
0 . 1 
0 .1 
0.1 
0 . 1 
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Analysis was conducted on a SCIEX inductively-coupled 
plasma mass spectrometer (ICP-MS). Details of analytical 
techniques and instrument specifications are provided by 

Longerich et al. (in prep.). Precision is estimated at± 6% 
or better for most elements (based on duplicate analyses 

over several years), with the exception of Be, sc, Ta and 
Li, for which it may be as poor as ± 10%, particularly at 

low levels (Longerich et al., in prep.). 
The results of repeated ICP-MS analyses of SY-2 are 

listed in Table A.J. For most elements, there is good 
agreement with the Department of Mines laboratory, even 

where measured values are somewhat lower than recommended 
for (e.g. Ce). Detection limits quoted in Table A.3 are 

based on mean background + 3 o, and are probably 
underestimates of true limits of analytical precision. 

A3. STRQHTIUM ISOTQPIC ANALYSIS PROCEDQRES 

AJ • 1 I,aboratory Procedures 

Samples were prepared for measurement of Rb/Sr ratios 

at the Department of Mines laboratory, as described above 
for trace elements. For Sr isotopic composition analysis, 

0.1 to 0.2 g of sample was taken into solution via 
HF-HN03 digestion, and converted to chloride. Sr was 
separated by standard ion-exchange procedures using 
amberlite resin and chloride solutions. Each sample was 

passed through ion-exchange columns twice to ensure removal 
of all Rb. Sr separates were stored as ::hloride solutions. 

Sr separations were performed by Pamela King at Memorial 
University. 
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A3.2 Determination of 87Rbt86sr 

87Rb; 86sr ratios were determined at the Department 

of Mines laboratory by repeated AAS analysis of each sample 

for Rb and Sr. Precision was assessed by calculating the 

mean and standard error for each sample, based on 10 - 20 

repeated determinations, and by running several samples 

twice (Table A.4). Calculated 87Rb;86sr ratios are 
corrected for 87srt86sr ratios measured by mass 

spectrometry. The precision is poorest at low Rb contents, 
but 2 o within-run uncertainties are ± 2% or better for 

most samples. Duplicate determinations suggP.st that 2 o 

within-run uncertainties approximate or underestimate true 

1 a analytical uncertainty, and 2 o within-run values were 

therefore used in isochron regression (Chapter 8). 

1 . d . t. f 87 Rb 86s . b Table A.4. Dup 1cate eterm1na 1ons o 1 r rat1os y 
repeated AAS analyses at the Department of Mines laboratory. 
Errors are 2 c. 

Sample Number Determination 1 Determination 2 

0241041 0.945 +/- 10 0 . 895 +/- 15 
0249030 0.314 +/- 9 0.351 +/- 4 
0241391 12.542 +/- 198 11.660 +/- 166 
0241173 0.032 +/- 5 0 .021 +/- 5 
0241538 3 .081 +/- 73 3.232 +/- 80 

NOTE: All errors are x lOAJ 

A3.3 Determination of 87srt86sr 

87 86 . Sr/ Sr rat1os were determined by thermal 

ionization mass spectrometry, using the venerable Vacuum 
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Generators Micromass JOB single-collector instrument known 

(affectionately ?) as "Miss Piggy". Most samples were run 

by the author; a few were run in early stages of the 

project by Pamela King. Samples were loaded as chloride on 
single W filaments, and coated with tantalum fluoride. 

During runs, all measured ratios were normalized to a 
86sr; 88sr ratio of 0.1194. 

Samples were run under automatic control !or periods 
ranging from 4 to 24 hours, corresponding to 40 to 250 

cycles of data acquisition, organized into blocks of 20 or 

30 cycles. Samples with low Sr contents are difficult to 

run, as they do not generally last long enough to produce 
high-precision data. Accordingly, samples with 
87s ; 86s 1 o · · f th r r > • were run us1ng a ga1n o xlO on e 
Faraday cup detector, and an ion beam intensity measurement 

of 2 - 3 volts. All other samples were run using a gain of 

xl, and an ion beam intensity of 0.8 - 1 . 0 volts. 

The control program automatically rejects observations 
that fail a Q-test, and blocks of data exhibiting poor 

internal precision were not included in final calculations. 
Data were windsorized a maximum of five times to exclude 

outlying observations that were retained by the program. 

Precision and Accuracy 

Three sampl~s were repeated to check between-run 

precision (Table A.5). Results suggest that 2 o within-run 

errors are a good approximation to true 1 o uncertainties, 
and these values were thus employed ' n isochron regression 

(Chapter 8 ) • 

Accuracy was assessed by running the Sr-carbonate 

stanuard NBS-987, at an average frequency of 1 standard for 

every six"samples. Results for NBS-987 obtained during this 

project are shown in Table A.6. The mean value is slightly 
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higher than the recommended value of 0. 710260 i 20. Data 

have not been normalized to this value because the 

uncertainty associated with most TLGB samples (particularly 

those with high Rb/Sr) is equal to or greater than the 

discrepancy in standard determinations. 

Table A.5. Duplicate determinations of 87sr;86sr ratios by 
thermal ionization mass spectrometry at Memorial University. 
Errors are 2 n. 

Sample Number 

0241538 
0249030 
0241391 

Determination 1 

0 . 779743 +/- 518 
0.711421 +/- 108 
1.012539 +/- 296 

NOTE: All errors are x 10A6 

Determination 2 

0 . 780360 +/- 64 
0.711398 +/- 106 
1.012098 +/- 349 

Table A.6. Determinations and mean value of the sr-carbonate 
isotopic standard NBS-987 during the course of this project. 

Date 

ACCEPTED VALUE 

September 1987 
October 1987 
January 1988 * 
January 1988 
January 1989 
February 1989 
March 1989 
March 1989 

Mean Value 

Mean Value 
Excluding * 

Value +/- 2 <1" 

0. 710260 +/- 20 

0. 710421 +/- 56 
0 . 710344 +/- 66 
0.710581 +/- 88 
0 . 710350 +/ - 78 
0 . 710336 +/ - 54 
0. 710300 +/- 39 
0 . 710376 +/- 55 
0 . 710389 +/- 66 

0 . 710387 +/- 57 

0 . 710359 +/ - 23 

NOTE: All errors are x lOA6 
NOTE : ~oted errors on mean values are s t andard 

errors of the mean, i .e . 2 standard deviations 
divided by square root of number of observ.o.t ions . 
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A4 I NEODYMIUM ISOTQPE ANALYSIS PROCEDURES 

A4.1 Laboratory Procedures 

Samples for determination of 147sm;144 Nd by ICP-MS 

were processed using the NaOH fusion method described above 
for trace element (MUN) determinations. 

For Nd isotopic analysis, 0.1 to 0.2 g of sample was 
taken into solution via HF-HN03 digestion in teflon bombs 

for 1 week under clean-lab conditions. After dissolution, a 
1 ml aliquot of each sample was spiked with 20 microlitres 

of a mixed 150Nd- 147sm solution (MUN spike #1). This 

isotope dilution (ID) split, and the unspiked isotopic 

composition (IC) split, were then processed via a three 
stage ion-exchange procedure to isolate Nd and Sm. 

Stage 1 employs amberlite resin and chloride solutions, 

and separates the REE and Ba from all other elements. Stage 
2 employs amberlite resin and nitrate solutions, and 
separates the REE from Ba. Stage 3 employs teflon beads 

coated with di-2-ethylhexyl orthophosphoric acid, and 
chloride solutions, and separates Nd (IC split) and Nd and 

Sm (ID split) from other REE. Samples were stored as 
chloride or nitrate solutions. All ion-exchange chemistry 
was conducted under clean-lab conditions in a positive 
pressure hood. Twenty samples ~-ere processed initially by 

Patricia Horan, and the remainder of the laboratory work 
was conducted by the author. 

Nd and Sm ID separates were prepared fully for about 
one-third of the samples to asse·· s the accuracy of 

high-precision ICP-MS 147sm;144Nd determinations used 
in this study (see below). 
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A4.2 Determination of 147smj144Nd 

147sm;144Nd values were mostly determined by 

high-precision ICP-MS. This employs a longer counting 

period (180 seconds) for each element compared to the 

ICP-MS multi-element analysis (10 seconds), and is 

theref•>re more precise (S.Jackson, pers.cornrn., 1989). Each 

sample was run twice, and results averaged. Standards used 

in calibration were prepared from pure Nd and Sm metals 

provided by AMES Ltd. Replicate determinations suggest that 

the average 2 o precision for 147sm;144Nd at Sm and Nd 

concentrations typical of TLGB granitoid rocks is ± 0.5 % 

or better (H.Longerich, pers.comm., 1988). This value has 

been used to estimate errors in calculation of €Nd and 

TCHUR (Chapter 8). 
A comparison of ICP-MS data with more precise ID data 

obtained by thermal ionization mass spectrometry (see 

below) shows a generally close correspondence. All except 

three ID measurements lie within the ± 0.5% 2 o error 

envelope of the ICP-MS measurements, and several have 

identical mean 147sm;144Nd by both methods (Table A.7). 

Table A.7. Comparison of 147sm;144Nd ratios measured by 
high-precision ICP-MS methods and by Isotope Dilution (10) 
techniques, using thermal ionization mass spectrometry. 

Sample Number 147Sm/1L.4Nd l47Sm/l44Nd 
Isotope Dilution ( ICP • MS I 

AKZ-2 0.092:.' +/- 21 0 . 0930 +/· 47 
AKZ-3 O.lOJ & +/- 3 0 . 1030 +/· 51 
AKZ - 4 0.0876 +/- 2 0.0872 +/· 44 
AKZ·5 0 .0924 +/- 46 0.0933 +/· 47 
AKZ·6 0 .1018 +/- 3 0 . 1025 +/· 51 
AKZ· 7 0 . 1005 +/· 2 0 . 0933 +/· 47 
AKZ·8 0.1039 +/· 2 0 . 1021 +/· 51 

AKZ - 11 0.1100 +/- 5 0 . 1175 +/·• 59 
AKZ-12 0.1105 +/- 9 0 . 1063 +/· 'j3 
AKZ - 13 0. !070 +/- 2 0 . 1068 +/· 53 
AKZ - 14 0.0910 +/- 4 0.0993 +/· 50 
AKZ · l5 0.1378 +/- 5 0 . 1395 +/· 70 

GSZ·2 0.1116 +/- 9 0.1114 +/· 56 

NOTE: All errors are x 10"4 
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A4. 3 Determination of 143Nd;144Nd 

Mass Spectrometry 

Samples were run on the same Micromass 308 instrument 

used for Sr isotopic analysis. Most were run by the author, 

except for six samples run by Dr.B.J.Fryer in early stages 

of the project. Samples were loaded as chloride or nitrate 

on Re side-filaments in a triple-filament assembly, and 

oxidized after coating with phosphoric acid. All measured 

ratios were normalized to a 146Nd;144 Nd ratio of 

0.7219. Samples were run under automatic control for 

periods ranging from 8 to 48 hours, corresponding to 90 to 

550 cycles of data acquisition, organized into blocks of 30 

cycles. Most were analyzed with a gain of xl on the Faraday 

cup, and an ion beam intensity measurement of 0. 8 to 1. 1 

volts. A f~w ( Nd-poor) leucogranite samples were analyzed 

at a gain of xlO and an ion beam intensity of 2-3 volts, in 

order to extend their running times. Data reduction methods 

were identical to those used for Sr isotopic data. The 

1 imi ts for acceptance of a 30-cycle block of data were set 

at a 1 a within-block uncertainty of 0. 000100 or less. 

Using a more stringent limit (e.g. 0.000050) would improve 

the ar»parent precision of 143 Nd;144 Nd ratios 

considerably, but would almost certainly underestimate the 

true uncertainty of determinations . 

Isotope dilution ( ID) analysis employed similar 

procedures to measure 150Nct;144Nd (Nd ID) and 
147sm;149sm (Sm ID) respecti rely. Molar concentrations 

Of 147sm and 144Nd were d · d · d h t erl\ e us1ng a sprea s ee 

written by H.Longerich. 
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Precision and Accuracy 

Between-run precision was assessed by repeating several 

sample deterrni nations (Table A. 8) . Results for each 

duplicate pair compare Wt!ll, and are identical within the 

respective 2 o error envelopes. The 2 o within-run 

uncertainties are thus regarded as a good approximation to 

true 2 o analytical errors. Duplicate digestions were not 

performed. 

Table A.a. Dl;lpl~cat~ determinations of 143Nd;144Nd ratios by 
thermal 10n1zat1on raass spectrometry at Memorial University. 
Errors are 2 a. 

Sample Number Determination 1 Determination 2 

AKZ -6 0. 511604 +/- 61 0 . 511515 +/ - 85 
AKZ-14 0 . 511188 +/- 29 0. 511184 +/- 35 

AKZ - 3 0. 511326 +/- 25 0 . 511296 +/- 40 
AKZ-4 0 . 511606 +/- 51 0. 510665 +/- 54 

AKZ-20 0 . 511623 +/- 70 0 . 511648 +/- 63 
AKZ-12 0. 511640 +/- 47 0. 511536 +/- 95 

NOTE: All errors are x 10A6 

Accuracy was assessed by replicate determinations of 

the LaJolla Nd isotope standard, at an average frequency of 

one standard for every six samples. Determinations over the 

course of this project are listed in Table A.9. The mean 

values are slightly higher than the recommended value of 

0.511850, but compare well to the average MUN value. £Nd 

values would be reduced by ca. 0. 8 £ units if all 
143 144 . Nd/ Nd rc:tJ.os were normalized to 0.511850, but 

contrasts among samples would remain unchanged. 
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Table A.9. Determinations and average value of the LaJolla Nd 
isotopic standard during the course of this project. 

Date Value +/· 2 C! 

ACCEPTED VALUE 0. 511850 
MUN Average 0. 511892 +/· 20 

October 198 7 0. 511953 +/· 56 
October 198 7 0. 511890 +/· 24 
November 1987 0. 511919 +/· 24 
November 198 7 0.511905 +/· 28 
November 198 7 0.511896 +/· 60 
March 1988 0 . 511887 +/· 78 
Hay 1988 0.511948 +/· 44 
Hay 1988 0 . 511977 +/· 34 
August 1988 * 0 . 512003 +/· 58 
September 1988 0. 511962 +/· 74 
November 1988 0 . 511936 +/· 31 
March 1989 0 . 511940 +/· 26 

Mean Value 0 . 511935 +/· 20 

Mean Value 0.511928 +;- 17 
(Excluding *) 

NOTE Quoted errors on mean values are standard 
errors of the mean, i .e. 2 standard deviations 
divided by the square root of number of observations . 

NOTE: All errors are x 10A6 
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APPENDIX B; GEQCHEHICAL DATA LISTINGS 

Major and Trace Element Data 

Geochemical data employed in this thesis are presented 
in microfiche format. Data are organized into the five 
groupings represented by Chapters 3, 4, 5, 6 and 7, and 
into separate listings for major and trace element 

analyses. Within each category, data are sorted by map unit 
and sample number; a key to the variable MAP UNIT is 

provided on the first page of the microfiche listing. Note 

that regional, follow-up and geological sample populations 
are designated by sample numbering sequences, as follows 

0241000- 0242999 Regional Samples (2 km grid), 

0248000- 0248999 Follow-Up Samples (1 km grid), 
0249000- 0249999 Geological Samples (no grid). 

Locational information included with major element data 
includes National Topographic System (NTS) map sheet 

(variable NTS MAP) and Universal Transverse Mercator (UTM) 
grid coordinates in metres (variar:es EAST UTM and NORTH 
UTM). The lithology (variable ROCK TYPE) listed is the 
normative IUGS plutonic classification according to the 
method of Streckeisen and LeMaitre (1979). 

ICP-MS Trace Ele•ent Data 

ICP-MS trace element data are also listed in microfiche 
format. For locations of all these samples, see Figure 8.4. 

Cc~rdinates for all 024 •••• series samples are also listed 
in the main data listing. Major element data for the AKZ­

and GSZ- series samples were determined at the Oepart~ent 
of Mines Laboratory, as described above. 



UNABLE TO FILM MATERIAL ACCOMPANYING THIS THESIS I.~. 
DISKETTE<S), SLIDES, MICROFICHE, ETC ••• ). 

PLEASE CONTACT THE UNIVERSITY LIBRARY . 

INCAPABLE DE MICROFILMER LE MATERIEL QUI ACCOMPAGNE CETTE TH£SE 
<EX. DISQUETTES, DIAPOSITIVES, MICROFICHE <S), ETC ... ). 

VEUILL~Z CONTACTER LA BIBLIOTHEQUE DE L'UNIVERSITE. 

NATIONAL LIBRARY OF CANADA 
CANADIAN THESES SERVICE 

BIBLIOTHEQUE NATIONALE DU CANADA 
LE SERVICE DES THESES CANADIENNES 

- ~ 



- 517 -

APPENDIX C : MISCELLANE·JUS INFORMATION 

Partition Coefficients 

Table C.l lists mineral/melt partition coefficients 
employed in modelling evolution of the Adlavik and Mount 

Benedict Intrusive Suites. Values for orthopyroxene (Opx) and 
amphibole (Hb) are from a compilation of basalt-related 

studies (Jenner, 1984), as are values for Y and v in all 
minerals. All others are from Villemant et al.(l981). 

Chondrite Normalization Values 

Values (Table C.2) are from Taylor and MacClennan (1985) 

Note on Norm3tive Calculations 

Calculations were performed using computer programs 

developed by K.Parsons of the Department of Mines. CIPW norm 

calculations recalculate all data on an anhydrous basis, 

normalized to a 100% total. Calculation steps follow stand~rd 

procedures, as described in igneous petrology texts. Mesonorm 

calculations are conducted according to the method of Barth 
(1955). H2o contents are assumed to be given by 

loss-on-ignition (LOI) measurements, on the basis that 
hygroscopic water contents are negligable. Assumptions 

regarding mineral formulae correspond to those of Barth 

(1955). Iron is recalculated as FeO, and any excess Al 2o3 
is expressed as normative corundum. 

It should be ~oted that, although Streckeisen and 

LeMaitre (1979) rec~mmend mesonorms for their.classification 

scheme, other studies (e.g., Bowden et al., 1984), and the 

author's own comparisons, indicate that results obtained from 

CIPW and mesonorm data differ only very slightly, except 

where rocks contain large amounts of biotite or muscovite. 
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Table c .1. Mineral-Melt part i tion coefficients empl0yed 
trace element modelling . see text for sources . 

Mineral : P1ag. K-fsp Hb Cpx Opx 01 Bi 

E1 .. mf-n t : 

u 0 . 04 0 . 1 0 . 54 0 . 05 0 .005 0 .04 0 .13 
Th 0.05 0 . 09 0 . 54 0.04 0 .005 0 .03 0 . 12 
La 0 .2 0 . 24 0 . 16 0 . 12 0 .005 0 .03 0 . 7 
y 0 . 03 0.015 1 0.5 0. 2 0 .01 1. 06 
Rb 0.13 ). 3 0 . 25 0.04 0 .02 0 .04 1 . 9 
Zr 0.13 0 . 27 0.5 0 . 27 0 .03 0 .06 2.5 
Ba 0.56 3 . 6 0 . 31 0.04 0 .013 0 .03 10 
Sr 2.7 10 0 . 57 0 . 16 0 .016 0 .02 0 . 7 
v 0.08 o.: 4 1.5 0 . 3 0 .09 23 
Cr 0.08 0 . 6 3 5 . 3 10 2.8 5 . 4 
Ni 0.04 0 . 5 7 2 . 5 4 34 1.3 
Ti 0.05 0 . 05 1.5 1.07 0 . 1 0 . 005 13 

Table C.2. Chondrite normalization values currently in use at Me~orial 
University. Only values for Y and REE were employed here. 

Li 2 .4 La 0 . 376 Hf 0 . 179 
Be 0 .04 Ce 0 . 957 Ta 0 . 026 
Sc 8 . 64 Pr 0 . 13 7 w 0.089 
Rb 3.45 Nd 0. 711 Tl 0. 215 
Sr 11 . 9 Sm 0.231 Ph 3. 65 
'{ 2 . 25 Eu 0 .087 Bi 0.167 
Zr 5 . 54 Gd 0. 306 Th 0.043 
Nb 0. 3 75 Tb 0 .058 u 0.012 
11o 1. 38 Dy 0 . 381 
Cs 0 . 219 Ho 0 . 085 
Ba 3 .41 Er 0 . 249 

Tm 0 .036 
Yb 0 . 248 

• Lu 0 .038 

i n 

Fe-Ox 

0.14 
0 .11 
0 . 1 

0 .001 
0 .001 
0.001 
0.001 
0 .001 

30 
S. 3 
5.5 

12 
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APPENDIX D : SUMMARY OF U-PB ZIRCON GEQCHBONOLQGICAL DATA 

General Statement 

This appendix briefly summarizes recent (unpublished) 

U-Pb zircon ages that are crucial in dividing the TLGB into 

Makkoviki~n and Labradorian assemblages. 

This work was carried out by Drs. Tom Krogh and Urs 

Scharer (and their associates), at the Royal Ontario Museum 

(ROM) geochronology laboratory in Toronto, partly under 

contract to the Newfoundland Department of Mines, and 

partly from their personal interests in this project. These 

U-Pb zircon data are being prepared for full publication 

elsewhere (Krogh et al., in prep.). Note that any reference 

to these unpublished ages should be to Krogh et al. (in 

prep.), and not to this thesis. Note also that some mineral 

fractions (notably sphenes) have yet to be ana 1 vzed, and 

t~at ages and error estimates may be subject tc minor 

revisions. Data from the Big River and Stag Bay units, and 

final data from the Cape Strawberry Granite, were received 

too late for inclusion in the main body of the text, except 

as footnotes. 

No attempt is made here to review the rigorous 

processing, grain selection, abrasion and mass spectrometry 

procedures routinely employed at ROM. These have most 

recently been described by Scharer et al.(l986). 

Adlavik Intrusive Suite 

A potassic, monzonitic variant of the dioritic unit of 

the Adlavik Intrusive Suite was sampled at the entrance to • 
Adlavik Bay, from the 0249030 sample locality (Figure 8.4). 
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ADLAVIK INTRUSIVE SUITE 

1649 +/- 1 MA 

\ .---
AKl-1 CL CDC.Difr.E"SS ~ •CRJf 
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. 33 

Figure 0.1. 206Pb;238u - 207Pb/235u concordia diagram for 
the diorite unit of the Adlavik Intrusive Suite. 
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the Deus Cape Granitoid. 
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Three abraded zircon frac~ions were analyzed in 1987: two 

are concordant, and a third is about 1% discordant. Two 
additional fractions analyzed in 1988 gave slightly 

discordant results. A precise crystallization aqe of 1649 ± 

1 Ma is indicated (Figure D.l), and the zircon population 
appears simple. 

Deus Cape Granitoid 

A foliated, leucocratic granite was sampled south of 
Deus Cape, from the 0249015 sample locality (Figure 8.4). 

Three abraded fractions are from 5% to 8% discordant, and 
define an age of 1837 +6 1 -4 Ma (Figure D.2). A single 

sphene analysis suggested a mini~um age of ca. 1782 Ha (not 
figured). 

Numok Intrusive Suite 

Two samples were collected. AKZ-5 (located in Figure 

8.4) is a fayalite-bearing syenite from Kikkertavak (Numok) 
Island. HSZ-1 is a foliated quartz monzonite that forms the 

neosome to the western contact zone agmatite at Adlavik 

Bay; this was sampled with the intention of providing a 

maximum age for localized deformation here. HSZ-1 is 

located about 1 km east of the 0249030 sample locality 

(Figure 8.4). 
AKZ-5 yielded colourless, euhedral, gem-quality zircons 

that plot on concordia at 1801 ± 2 Ma (Figure D.3). The 
zirc·ln population appears to be simple. HSZ-1 yielded two 

frac\ ions that are 4\ and 6% discordant along a line from 

1800 Ma (concordia) to 1000 Ha (lower intercept). They 

indicate a closely similar crystallization age to AKZ-5 

(Figure 0.3) 
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Figure 0.3. 206Pb;238u - 207Pb;235u concordia diagram for 
units of the Numok Intrusive Suite. 
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Figure 0.4. 206Pb;238u - 207Pb; 235u concordia diagram for 
The cape strawberry Granite, incorporating preliminary data and 
new data obtained in the spring of 1989. 
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Cape Strawberry Granite -- Preliminary Data 

Sample AKZ-14 (located in Figure 8.4) is a 

coarse-grained fluorite-bearing granite. It yielded two 
discordant zircon fractions that are well removed from 

concordia and lie (generally) along a line from 1800 Ma 

(concordia) to ca. 1000 Ma (lower intercept). 

Interpretation of these data is difficult. Drawing a line 
through the two points indicates an age of ca. 1760 Ma, but 

this is not a rigorous regression procedur~. Assuming a 
1000 Ma lower intercept suggests an age close to 1800 Ma 

(Figure D.4). It is evident, however, that a Labradorian 
(ca. 1650 Ma) age is highly unlikely, unless the zircons 

have a very unusual history of Pb loss. The 1760 Ma 
estimate was preferred during preparation of this thesis, 

as it is consistent with field evidence suggesting that the 

related Dog Islands Granite is younger than the Numok 

Intrusive Suite (Chapter 4). 

Cape Strawberry Granite -- Spring 1989 Update 

T.Krogh (pers.comm., 1988), suggested that the evolved 

geochemistry of AKZ-14 was responsible for problems with Pb 

loss, and proposed that another (preferably more "mafic") 

sample should be examined. Sample 0249001 is from a 

biotite-rich "cumulate" band exposed several hundred metres 
south of AKZ-14, which is gradational with identical 

coarse-grained granite. A small sample contained abundant, 

euhedral, "cumulus" zircon prisms, witn no sign of 
inheritance. Two frac ·ions are less than 1\ discordant, and 

indicate a precise age of 1719 ± 3 Ma (Figure 0.4), some 40 

Ma younger than the preliminary estimate of 1760 Ma. These 

data are not fully colinear with AKZ-14, but if regressed 
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with these preliminary data, give a lower :ntercept of 100 

- 2~0 Ma. This revised 1719 Ma age significantly extends 
the duration of post-tectonic Makkovikian plutonism in the 

study area. 

Mount Benedict Intrusive Suite 

sample 0242144 (located in Figure 8.4) is a syenite 
from near Mount Benedict. It contained stubby, euhedral 

zircon prisms. Two unabraded fractions are discordant, and 
plot in essentially the same location. However, a 

Makkovikian age is highly improbable, and the 
207

Pb/ 
206 Pb age of ca. 1642 Ma suggests a Labradorian affinity. 

A second sample of less potassic material (0242125), from a 

locality some 2 km north-east of 0242144, provided a 
similar euhedral zircon population. Two fractions are very 

slightly discordant, and indicate an age of ca. 1650 Ma. 

combination of the data yields an age of 1650 ± 10 Ma 
(conservative error estimate), with a possible maximum age 

of 1668 Ma if a 1000 Ma lower intercept is assumed. 

otter Lake - Walker Lake Granitoid 

Sample AKZ-8 (located in Figure 8.4) is a seriate to 
porphyritic two-feldspar quartz monzonite to monzogranite. 

It yielded cracked, euhedral zircons. Two abraded fractions 
were concordant and 1.2% discordant respectively, and 

indicate a precise age of 1647 ± 2 Ma (Figure 0.6). This is 
within error of the Bruce River Group (as determined by 

Scharer et al., 1988), which was propl~ed by Ryan (1984) as 
a volcanic equivalent of the Otter Lake - Walker Lake unit. 
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obtained in the spring of 1989. 
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Monkey Hill Intrusive Suite 

Sa!t:ple AKZ-12 (located in Figure 8.4) is a medium­

grained equigranular granite from the main Monkey Hill 

Granite pluton. It contained only a small amount of zircon, 

cons is tent with the generally Zr-poor nature of these rocks 

(Chapter 5). Two abraded fractions are 4% and 7% discordant 

(Figure 0.6). Placing a line through the two points 

suggests an age of 1640 Ma or less, whereas a regression 

incorporating AKZ-8 indicates an age of 1648 +3 1 -2 Ma. To 

cover all possibi 1 i ties, a preliminary age of 1640 ± 10 Ma 

is suggested here. There is no doubt that the :Jnit is of 

Labradorian age. This preliminary age brackets the 1632 ± 9 

Ma age (Brooks, 1983) from the compositionally similar 

Witchdoctor Granite. 

Big River Granite 

Sample AKZ-23 is located several kilometres southeast 

of 0241538 (located in Figure 8. 4), and is a typical 

coarse-g1 ained pseudorapakivi granite. Two fractions of 

crack-free grains are 0. 4% and 1.1% discordant, and 

indicate a precise age of 1802 ± 2 Ma (Figure D. 7), that 

agrees well with the 1798 ± 28 Ma Rb-sr age (Chapter 8). 

stag Bay Granitoid 

Sample AKZ-6 (located in Figure 8. 4) is a K-feldspar 

porphyritic granite . T\·o fractions of broken zircon were 

separated, but one was , ost during mass spectrometry. The 

remaining fraction is 2. 6% discordant, but indicates a 

Makkovikian age of ca. 1800 Ma. This shows that the 1714 ± 

44 Ma Rb-Sr isochron obtained during this project (Chapter 

8) is erroneously young. 
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APP;;NDIX E GEOLQGICAL AND TOPQGRAPHIC MAPS 

Thn•e enclosures are provided. Enclosure 1 is a 

1:250,000 summary map of plutonic rocks in the study area, 

with a companion legend (Enclosure 2). Note that this is 

intended as a summary map to illustrate the distribution of 

units, and the geology has been simplified to accomodate 

the relatively small scale. Quaternary deposits are not 

shown, and it should be noted that large areas south of the 

Benedict Fault, around Big River, and north of MacLean Lake 

are largely or completely obscured. 

This map is a combination of mapping conducted during 

this project, and previous work compiled from Gower ( 1981), 

Gower et al. (1982) and Ryan (1984). All details of 

supracrustal rocks have been compiled from these sources, 

as have some external contacts of plutonic units. 

The map and legend were prepared using the GSDRAW and 

GSMAP cartography computer programs developed by the United 

States Geological Survey, and modified by Larry Nolan of 

the Newfoundland Department of Mines. Ken Byrne and the 

staff of the Department of Mines Cartography and Drafting 

Section prepared the final composite negatives. 

A 1:250, ooo scale topographic map is included to allow 

reference to localities not labelled on Er1closure 1. This 

is derived from NTS 1:250,000 sheets 13K (Snegamook Lake), 

13J (Rigolet}, 130 (Makkovik) and 13I (Groswater Bay). 
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ENCLOSURE 2 

Plutonic Rocks of The Makkovlk Province 

1798 +/- 48 

1640 +/- 10 

Unclassified and 

I L 

63 
t1 JEANETTE BAY QUARTZ SYENITE: Grey to pink. medium to coarse-grained, K-feld~l 

.___ _ _ _.J porphyritic, biotite-hornblende ~artz syenite. 

I f:> rl STAG BAY GRANITOID : Grey to buff, coarse-grained, seriate to porphyritic 
§? :J biotite-hornblende granodiorite to granite. Phenocrysts of both feldspars. 

1
-60 61· 1 FRESHSTEAK AND NOARSE LAKE GRANITOIDS : Grey to brown, medlunrgralned, varlet 

_ ,, _ plagioclase-porphyritic biotite-hornblende quartz monzonite to monzogranite. 

Labradorian I 

MONKEY HILL INTRUSIVE SUITE 
Grey to pink. fine to medium-grained, leucocratlc, biotite-chlorite monzo­

~~-=::-:"1 granite and granite, commonly slightly plagloclase-por,hyrltlc. 
45.1- Monkey HIU Granite. 45.2- Round Pond Granite. 45.3- Duck Is. Granite. 

~ ...... ......., 45.4 - Uttle Mookey Hill Granite. 45.5 - Bent's Cove Granite 45.6 - Kldlalult 
Granite. 45.7 - Other Units. 

MOUNT !!:NEDIC~ IM'!RUSIVE SUITE . . . I: 0 • • • • • • • 0 1 Pink to buff, fine to medium-grained, equlgranular to K-feldspar (+/- relict 
, ·0.':'.44.'.:~~. plagioclase porphyritic, biotite syenite to alkali-feldspar granite. 

11 

16 

1650 +/- 10 II · I ~ · I ·1 Grey to buff or pink, medium to coarse-grained, biotite - hornblende (+1-:43 : pyroxene monzonite, quartz monzonite and syenite. Relict (mantled) plagioclase 
phenocrysts Impart a distinctive "speckled eggshell" texture. 

1§0.2§1 Grey to black-and-white, plagloclaae-porphyrltlc,leucogabbro and diorite 
, of probable cumulate origin. Resembles parts of Adlavlk lntrusfve Suite. 

Poet-Tectonic (generally maaa 
LANCEGROUND INTRUSIVE SUITE 

I*Y--2'": M.J TARUN GRANITE : Variably foHated, buff to pink, medium to coarae-gralned, 
;A ~~ biotite- hornblende quartz syenite, granite and alkali-feldspar granite. 

1
~2K 8x '¥\4 PISTOL LAKE GRANITE : Pink to buff, medium to coarse-grained, biotite-hornblende 
_tst_ . . .. W quartz syenite to alkali-feldspar granite, locally hypersoiYusln te)(ture. 

lw2iM LANCEGROUNO HILLS GRANITE: Pink to buff, medium to coarae-gralned, blotlte­
.00 ol ~ hornblende quartz syenite to alkall-feldipar granite, locally hypersolvus. 

NUMOK INTRUSIVE SUITE 

1 _....~2-2_:! Grey to dark brown, coarse grained, plagioclase-porphyritic pyroxene-hornblende 
_ · • ~ monzodiorite and monzonite. Present only In the southern zone. 



LEGEND 

1d Other Plutonic Rocke 

ably 

MI~EL GABBRO SUITE : 

1426 ~ Grey to black. medium to coarse-~alned, oiMne gabbro and clabase, with 
~ minor leucogabbro and diorite. 

GRANITOID GNEISSES OF THE GRENVIllE STRUCTURAL PROVINCE 
r-~.-.-6-6-....... , Foliated granitoid rockland granitoid gneisses, variably K-feldspar 
. · · · · · · . porphyritic andfor augen textured. Locally cataclastlc or rnytonltic. 

I 
/"640 1 ~HUNDER MOUNTAIN SYENITE: Pink to brown, coarse-grained, K-feldspar porphyritic 

...... """v-~_,- hornblende (+/- pyroxene) syenite and ~artz syenite, with blue quartz. 

Plutonic Rocke 

1647 +/- 2 1 ~ 48 ~ OTIER LAKE - WALKER LAKE GRANITOID : Grey to pink. medium to coarse-grained, 
. ,. j seriate to PMJ)hyrltlc, biotite-hornblende quartz monzonite 'to monzogranite. 

Generally fresh, massive and little-deformed: locally foOated. 

1
1'-t' - '--r:-1 BURNT LAKE GRANITE : Grey, white or pink, flne to medkJm-grained, leucocratlc 
;--t.;.11?.1-;-y biotite(+/- muscovite) monzogranite and granite. Locally contains minor garnet. 

t.t"fl ,' ~ .l't"l WITCHDOCTOR GRANITE: White to ~nk. medium to coarse-grained, leucocratlc, 
1632 +1- 98 .4,6~Ti-J blotlte-muscovtte granite, contlinlno accessory garnet. Variably foliated. 

ADLAVIK INTRUSIVE SUITE 

'=q':4 ~ Grey to yelow-brown, coarae-gralned, pyroxene-hornblende diorite and 
1649 +/- 1 ~ 1 ~ monzodiorite. Locally displays cumulate texture « layering. SubdiYidlons as 

as for Unit 40 lbelowt. Locally syinltlc In appearance. . 

Grey to gr"n or brown. coarse-grained gabbro, gabbronorite and leucogabbro. 
lnckJdes ultramafic and mafic C\mllath, massive and composite diabase, and 
hornblende-plagioclase "pegmatite". 40.1- Main Body (Adlavlk Baw. 40.2- Big 
40.3 - East MicMac Lake. 40.4 - Eastern bodies, Including PamkJIIk Point 

alve) Makkovlklan Plutonic Rocke 

1 O I J BIG RIVER GRANITE: 30.1 - pink to red, coarae grained, t<-feldspar porphyritic, 
1198 +/- 28 ~3 biotite-hornblende granite wtth pMudoraPikM texture. 30.2 - ~granular 

to locally ~artz-porphyrltlc phase of oeneralty similar composition. 

STRAWBERRY INTRUSIVE SUITE 
lr,'-2·6' r4 TVKIAUK GRANITE: Pink to rtd, coarse-grained, K-feldspar porphyritic, biotite 
~ -t . t_ ij granl1e and alkalf-feldspar granite, containing acceuory fkM)rlte. 

I 1 • - ~l DOG ISLANDS GRANITE : Pink. coarse-grained, K-feld•r (+1- ~artl} porphyfltlc r ;2?1 " blotlte-orantte, alkall-feldapar granite and quartz-feldspar porphyry, commonty 
with abundant acceseory fluorite. 

CAPE STRAWBERRY GRANITE AND ASSOCIATED ROCKS 
,......,.._,r-.. texturally varied K-feldspsr 

• 
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Post-Tectonic (generally maat 
LANCEGROUND INTRUSIVE SUITE 

12t2$:&) 
10~.~~ 

TARUN GRANITE: Variably foHated, buff to pink, medium to coarse-grained, 
biotite-hornblende quartz syenite. granite and alkali-feldspar granite. 

PISTOL LAKE GRANITE : Pink to buff, medium to coarse-grained, biotite-hornblende 
quartz syenite to alkali-feldspar granite, locally hypersows In texture. 

~2r,~ LANCEGROUNO HILLS GRANITE: Pink to buff, medium to coarse-grained, biotite-
, f· - - hornblende quartz syenite to alkali-feldspar granite, locally hypersolws. 

NUMOK INTRUSIVE SUITE 

I ~2.2. ~ Grey to dark brown. coarse grained. plagioclase-porphyritic pyroxene-hornblende 
_ -::-~ ~ monzodiorite and monzonite. Present only In the southern zone. 

~ " '< : Pink to brown, coarse grained, K-feldspar porphyritic. pyroxene-syenite and 
1801 +/- 2 I !!\! .?1~!~1] quartz syenite, locally with fayalltlc ollvtne. Locally hypersoMis. 

21.1 - Northern Zone (Adlavlk Islands) 21.2 Sou1hern Zone (Big River). 

----- White to ptnk. medium to coarse-gralr.ad, variably plagioclase and K-feldspar 
porphyrl11c, hornblende-biotite monzonite, quartz monzonite and syenite. 

~...:.......-:.-:.......;.~ 20.1- Northern Zone (Adlavlk Islands). 20.2 - Sou1hern Zone (Big River). 

Syn-Tectonic (generally foliated) Makkovlklan Plutonic Rocka 

I <. · i·. -".) ISLAND HARBOUR BAY INTRUSIVE SUITE: Compositionally and texturally variable 
1805 +1- 5 ·.·;d8/·."J diorite, tonalite, quartz monzonite, granodiorite and granite. 

r. . :1 DEUS CAPE GRANITOID : Pink to grey, coarst grained. seriate to K-feldspar 
1837 +61-4 ~=-1.6_=3 megacrystic, foUated biotite-hornblende granodiorite to granite. 

IBI'!MlHI PITRE LAKE GRANITE :White to pale pink. medium-grained, equlgranular blotlte­
Bfl-AW muscovite leucogranite wtth "ghost layering' and metasedimentary xenoliths. 

y /;: · / /1 MELODY GRANITE : Pink to brick-red, coarse grained, varlabty K-feldspar 
t: ( /12 / <1 porphyritic, strongly foliated, biotite granite. generally leucocratlc. 

171 
17 

1
/ ./. • • '/.,.,..i LONG ISLAND QUARTZ MONZONITE : Grey-brown. fine to rnedUn grained, melanocratlt 

1802 +13/-7010 LA plagioclase-porphyritic blotlte-hornblende~artz monzonite to monzogranite 
10.1- Main Body Q.ong Is- Mark's Bight) 10.2- Other units. 

1861 +9/-3, . ,:: 1-:>?:.:1 

~ ~~ o=l 

> 2800 A 

MAKKOVIKIAN OR PRE-MAKKOV 
EARLY UPPER AIWK GROUP: Arkose, bedded tuff, sandstone, siltstone, 
conglomerate, agglomerated, and minor mafic to felsic metavolcanic rocks. 

LOWER AIWK GROUP : AmphlboUtes, pelitic to psamm:tlc metasedimentary rocks. 
mafic metavolcanic rocks a~ silicate-oxide Iron formation. 

11 
1 

ARCHEAN OR PRE-MAKKOVI 
ARCHEAN BASEMENT ROCKS Western Domain Onlyt : Strongly layered and 
foliated orthognelsses of tonalite-granodiorite composition, Intercalated wtth 
amphlbolltes, and cut by massive to foliated oranltold rocks. 

2100 



---------·----------------------------------------:aal'le) Makkovlklan Plutonic Rocks 

1798 1_ 
2 

1 t)O J J BIG RIVER GRANITE : 30.1 - pink to red. coarse grained, K-feldspar porphyritic, 
+ 8 r-'.J biotite-hornblende granite wtth paeudorapakM texture. 30.2- equlgranular 

t to locally quartz-porphyritic phase of generally similar composition. 

STRAWBERRY INTRUSIVE SUITE 
lr'-2G r-'1 TUKIAUK GRANITE : Pink to rid, coarse-grained, K-fetdspar porphyritic, biotite 
L-t . ~ t1 granite and alkaiHeldspar granite, containing accessory fluorite. 

I 1• • · ~l DOG ISLANDS GRANITE: Pink. coarae-gl'llned, K-feldtpar (+/- quartlJ porph)'rltlc r T 2~ .1 .n biotite-granite, alkali-feldspar granite and quartz-feldspar porphyry, commonly 
with abundant accessory fluorite. 

CAPE STRAWBERRY GRANITE AND ASSOCIATED ROCKS 
1160 +!- 10 71 ,....._~-.-2:-..... ~~-t--:n White, pink or red, generally coarse grained, texturally varied, K-feldspar 
1719 +/- 3 . J; ~-~ !J porphyritic, biotite granite to alkall-fuldspar granite wtth fklorlte. 

24.1 - Cape Strawberry Granite. 24.2 - October Harbot~ Granite. 
24.3 - Poodle Pond Granite Sills. 24.4 - Other Minor Intrusions. 

lr'I!:-~-Z-3;=t:_:-l_;t BAYHEAO GRANITE : White to pink. ~coarse grained, K-feldspar porphyritic 
If. If;, U :J biotite granite, monzogranite and alkali-feldspar gl'lnlte wftl'l fluorite. 

-----------------------------------------------------

r1tlc 

NOTE : SYN-TECTONIC M~KKOV1KIAN PLUTONIC ROCKS ARE CONSIDERED 
TO BE 1800 Ma OR OLDER, BUT PROBABLY OVERLAP IN TIME WITH POST­

TECTONIC MAKKOVIKIAN PLUTONIC ROCKS. 

11111511.1 
tMNAK ISLAND GRANITOID: White to pale grey, medium to coarse-grained, 
leucocratlc. foliated biotite-hornblende granodiorite to monzogranite. 

•:.Jl!m BRlMWATER GRANITE: Grey to pink. me~m-gralned, equ!granular, foliated, 
l!l~iWWI~::::~~~WWJ blotlte-oranlte and monzogranite, with gnelallc xenoliths. 

~,_..,.....,..._, KENNEDY MOUNTAIN INTRUSIVE SUITE 
Dominantly pink to white or buff, medium-coarse grained, leucoc,tlc, 

~..-.....~ variably K-feldapar porphyritic, foliated biotite monzogranite and granite 
contalng acceuory fluorite. Locally alaskltlc. 11.1 - Kennedy Mountain Granite 
1t2 - Narrowt Granite. 11.3 - Croaa Lake Granite. 11.4 - Other units. 

)V[KIAN SUPRACRUSTAL ROCKS 
LATE UWER AIWK GROUP AND POSSIBLE CORRELATIVES 

1e56 +/- 21 . . . . . · 11.0 -Undifferentiated • 1.2 - Felsic tuffs and pyroclastic rocks, massive 
1807 +1- 3 ::::::::-1.::::::: rhyolltea and minor tuffaceous metasedimentary rocks. 1.3 - Massive sut·,oic~nlc 

· · · · ' · quartz-porphyry and quartz-feldspar porphyry. 1.4 - Jagged Edge Assemblage 
volcanic rocka. 1.5 - Jagged Edge Assemblage subvolcanlc Intrusive rocks. 
NOTE : Jagged Edge Assemblage may be younger than Upper Allllk Group. 

--·-----------------------------------------------Vli<IAN (?) BASEMENT ROCKS 
CAPE HARRISON METAMORPHIC SUITE : Strongly layered, banded and 
tonated orthognel11es of diorite 10 granodiorite composition, assodated with 
foftated granitoid rocks, and remnants of aupracrus~al material. 
SJmllar to Archean rocks ~ field appearence, but probably Proterozoic. 
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Syn-Tectonic (generally foliated) Makkovlklan Plutonic Rocks 

I 
': ;:: J ISLAND HARBOUR BAY INTRUSIVE SUITE : Compositionally and tex1urally variable 

1805 +/- 5 ·:j1B/:~ diorite, tonante, quartz monzonite, granodiorite and granite. 

F. . rl DEUS CAPE GRANITOID : Pink to grey, coarse grained, seriate to K-feldspar 
1837 +61-4 t==-1.6_:=:J megacrystic, foliated biotite-hornblende granodiorite to gra!llte. 

IHmr:; .. mufti PITRE LAKE GRANITE : White to pale pink, medk.Jm-gralned, equlgranullr blotlte­
llfiill~.tia muscovite leucogranite wtth •ghost layering• and metasedimentary xenoliths. 

y/ ~12. //I MELODY GRANITE: Pink to brick-red, coarse grained, variably K-feldspar r / / / ~ porphyritic, stronoly foliated. biotite granite, generally leucocratlc. 

~~ •, ~ LONG ISLAND QUARTZ MONZONITE : Grey-brown, fine to medium grained, melanocra1 
1802 +131-71Q plagioclase-porphyritic blotlte-hornblendequartz monzonite to monzogranite 

10.1- Main Bocti long Is- Mark's Bight) 10.2- Other units. 

MAKKOVIKIAN OR PRE-MAKKO~ 

1861 +9/-31 •• ·····•1 I >i 
EARLY UPPER AIWK GROUP: Arkose, bedded tuff, sandstone, siltstone, 
conglomerate, agglomerated, and minor mafic to felsic metavolcanic rocks. 

> 2800 A 

LOWER AJWK GROUP : Amphlbolltes, pelitic to psammltlc metaeedimentary rocks, 
mafic metavolcanic rocks and silicate-oxide Iron formation. 

ARCHEAN OR PRE-MAKKO\J 
ARCHEAN BASEMENT ROCKS Western Domain On~ : Strongly layered and 
foliated orthognelsses of tonallte-oranodlorlte composltl.,n, Intercalated with 
amphlbolltes, and cut L!; massive to fonated granitoid ro-:ks. 

210 

GEOLOGICAL SYMBOLS 

- - - - Geological cor.tact (defl~. approximate} 

Geological contact ( Inferred, position uncertain ) 

.. • - Fault (defined, approximate) 

............... _ Fault Onferred, position uncertain) 

./ 
1 

? Foliation and/or layering ftlck Indicates dip direction) 



:ratlc 

TO BE 1800 Ma OR OLDER, BUT PROBABLY OVERLAP IN TIME WITH POST­

TECTONIC MAKKOVIKIAN PLUTONIC ROCKS. 

11111511
'! MANAK ISLAND GRANITOID: Whl1e to pale grey, medkrn to coar~gralned, 

leucocratlc. foliated blotl1e-hornblende granodiorite to monzogranite. 

-~.Jm BRINNATER GRANITE: Grey to pink, medk.un-gralned, equlgranular, foliated, 
miOOffim~-;m~~m!!!!m;mm biotite-granite and monzogranite, with gneissic )(enolltht. 

,..,........,~~ KENNEDY MOUNTAIN INTRUSIVE SUITE ['I\·, 11 '~] Dominantly pink to white or buff, rnedlum-coarae grained, leucocratlc, 
"' " ' variably K-feldapar porphyritic. foliated biotite monzogranite and granite 

contalng acceuory fluorl1e. Locally alaskltlc. 11.1- Kennedy Mountain Granite 
1t2- Narrows Granite. 11.3 - Cross Lake Granite. 11.4 -Other units. 

----------------------------------------------------------------------OVIKIAN SUPRACRUSTAL ROCKS 
LATE lJ'PER AIWK GROUP AND POSSIBLE CORRELATIVES 

1t56 +/- 2l· ...... 1 : .. •j 1.0 -Undifferentiated. 1.2- Felsic tuffs and pyroclastic rocks, massive 
1tl07 +/- 3 -:·:<·> .-:-:;:- rhyoHtes and minor tuffaceous metasedimentary rocks. 1.3 - Massive subvolcanlc 

quartz-porphyry and quartz-feldspar porphyry. 1.4 - Jagged Edge Assemblage 
volcanic rocks. 1.5 - Jagged Edge Aaaembtage subvolcanlc Intrusive rocks. 
NOTE : Jagged Edge Aaaemblage may be younger than Upper Allllk Group. 

----------------------------------------------------------------------)VH<IAN (?)BASEMENT ROCKS 
CAPE HARRISON METAMORPHIC SUITE : Strongly layered, banded and 
foliated orthognelaaes of diorite to granodiorite composition, associated with 
follatvd grantiold rocks, and remnants of supracrustal material. 
Similar to Archean rocks In field appearance, but probably Proterozoic. 

------------------------------------------------------------
NOTES AND REFERENCES 

This 1:250.000 scale map Is intended as a summary only. It represents a 
combination of previous mapping by Department of Mines personnel, and also 
mapping carried out under this project. Differences between this and previous 
maps listed below lie In the distribution and grouping of intrusive rocks, 
particularily in Inland areas. The distribution and grouping of other rock types 
is largely unaltered. although some simplification has been attempted. Sources 
used in compilation are as follows : 

Gower.C.F. 1981 . Geology of the Benedict Mountains, Labrador . MOD Report 81-3. 

Gower, C.F .• Flanagan,M.J .• Kerr, A. and Bailey,D.G. 1982 . Geology of the 
Kaipokok Bay-Big River Area, Labrador. MOD Report 82-7. 

Ryan, A. 8. 1985. Regional geology of the central part of the Central Mineral 
Belt. Labrador. M.D.D. Memoir 3. 
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