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ABSTRACT 

A new vertically integrated model is developed for the growth of bottom 

mixed layers. Unlike the usual slab models this model retains the vertical varia

tion of mean speed with height, which appears as a parameter in the energy bal

ance. The mixed layer growth problem is solved analytically for a horizontal flat 

bottom and numerically for a sloping flat bottom. A ~ elaxation problem, the 

decay or motion in the bottom mixed layer after the geostrophic ftow in the inte

rior ceases, is also solved analytically and numerically. Finally solutions includ

ing thermal wind effects on bottom mixed layer growth are obtained for both a 

horizontal flat bottom and a sloping Oat bottom. 

For the horizontal flat bottom case, an algebraic formula for mixed layer 

thickness is obtained for arbitrary values of the Brunt-Vaisala frequency and 

Coriolis parameter. The results show that the vertical variation or speed must be 

taken into account when the ratio of the Brunt-Vaisala frequency to the Coriolis 

parameter is less t.han or of order unity, and that the formula is consistent with 

that obtained by Weatherly and Martin (1078). Formulae for dependence of !ric

tion velocity and veering angle on stratification are also obtained. 

For a sloping bottom at the initial stage of bottom boundary layer growth 

the vertically integrated model produces results very similar to those obtained by 

Weatherly and Martin (1078) using the Mellor and Yamada Level II turbulent 
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closure m<Jdel. The main etrect of bottom slope is to produce upwelling or 

downwelling within the bottom boundary layer. After the initial period of boun

dary layer development the vertically integrated buoyancy force can grow to 

reach a balance with the vertically integrated driving pressure gradient so that 

the Ekman transport is extinguished and the layer becomes arrested. The length 

of the initial period greatly depends on the sign of bottom slope. 

The efFects of thermal wind are shown to be important. For a horizontal flat 

bottom if the vertical shear in the interior is positive the mixed 1ayer grows 

indefinitely. If the vertical shear is negative the thickness reaches a constant 

value or decreases with time. For a sloping flat bottom the thermal wind is 

important when the isopycnal slope is comparable to or much greater than the 

bottom slope. The results are in agreement with the observations made by 

Weatherly and Van Leer {1977) on the western Florida Continental Shelf. 

-
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CHAPTER 1 

INTRODUCTION 

The bottom boundary layer in the ocean is nearly uniform in terms of its 

physical and chemical properties because or turbulent mixing induced by bottom 

friction. Therefore it is often called the bottom mixed layer. When the sea Ooor is 

inclined, upwelling or downwelling ca.n occur parallel to the bottom within the 

mixed layer due to the effect of the earth •s rotation. This vertical mixing and 

upwelling or downwelling can have important physical and biological conse

quences. 

In the interior of the ocean we can often assume that the flow is nearly geos· 

trophic. Near the bottom boundary, however, the flow speed must deerease 

because of friction, and the Coriolis force no longer balances the pressure gradient 

force. This imbalance drives a near-bottom transverse flow which is directed in 

the northern hemisphere to the left or the interior geostrophic flow, as first 

demonstrated by Ekman (!DOS). Using a const2nt eddy viscosity for steady Oow 

in a neutrally stratified fluid he showed that the velocity vector follows a loga

rithmic spiral with distance from the boundary. 

In the presence of stratification, a. bottom mixed layer is formed and the 

transverse motion is largely confined to this mixed layer. This transverse How 
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affects the budgets of beat, nutrients and other scalars on the continental shelf 

(Bowden, 1978), mixing at the ocean boundaries (Armi, 1978 and 1979; Garrett, 

1979), and the response of the ocean to forcing at tim_e scales larger than the iner

tial period (Wimbush and Munk, 1970). 

There have been several different approaches to the bottom mixed layer 

problem. In one approach the vertical variation of the turbulent Ouxes is 

retained. This may be through the use of a mixing length hypothesis (Zilitinke

vich, 1970) or an eddy viscosity, which may be a function or time and height 

(Gutman, 1969; Ng and Spalding, 1972). These assumptions permit the set or 

governing equations to be closed, and the results are given in the form of vertical 

profiles of velocity, density and other quantities. Recently very promising results 

have been obtained by requiring closure assumptions for the triple turbulence 

moments. This approach was reviewed by Mellor and Yamada {1974), and sum

marized as Levels I to IV of their turbulent closure scheme. Weatherly and Mar

tin (1978) were the first to use a Level ll turbulent closure model to investigate 

the effects' or stratification and bottom slope on mixed layer growth in the ocean. 

In this thesis extensive comparisons are made with their results. 

A number or contributions have been made in terms ol this approach (Mel

lor, 1973; Yamada and Mellor, 1975; Weatherly, 1975; Weatherly et al., 1980; 

Dickey and Van Leer, 1984; etc.). The second order scheme created by Launder et 

al. (1975) and further developed by Gibson and Launder {1978), Richards {1982) 
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and Morjeld and Lavelle (lg84) also belongs to this category. 

Another approach bas been to use similarity theories. Csanady {1967) used 

dimensional analysis, matching a wall layer with an outer layer in terms of a log

arithmic layer existing between them, and obtained a resistance law for a tur

bulent, stationary, horizontally homogeneous and neutrally stratified atmospheric 

Ekman boundary layer. For this same problem Bla.ckadar and Tennekcs (Jg68) 

deduced directly from the equations or motion the wall law, velocity-defect law 

~nd the logarithmic law between them Cor the planetary boundary layers in terms 

of similarity theory. Brown (lg74) achieved a continuous solution for semi

infinite flow over a surface consisting of geostrophic, Ekman-layer, and surface

layer solutions in terms or dimensional analysis. 

The third approach is to use equations or motion which are integrated over 

the boundary layer thi<'kness, which reduces with certain assumptions to the so

called slab model. The advantage or this approach is that after vertical integra

tion the turbulent momentum flux appears in the form of stresses at the bottom 

boundary and at ti.ie interface between the boundary layer and the interior. 

There was some early observational evidence which indicated that the slab model 

should be useful, particularly in stably stratified environments. Riehl et al. 

(lg51) and Kraus (lg68) showoo that there was no apparent evidence or a velo

city spiral, logarithmic or otherwise, in the atmospheric boundary layer over the 

sea. Instead the observations seemed to show the existence of a well-stirred layer 
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or almost .uniform potential temperature, and that even the velocity was more or 

less constant in this layer. (This result has been corroborated in the ocean more 

recently by Weatherly and. Van Leer (1977), who found that most of the Ekman 

veering occurs in the strong density gradient region between the bottom mixed 

layer and the overlying fluid.) This led Geisler and Kraus (1969) to use the slab 

model with vertically uniform potential temperature and velocity within the 

well-stirred layer to simulate the growth and the dynamics or the atmospheric 

boundary layer in the presence of stable stratification. Subsequently, slab models 

were applied to the oceanic surface mixed layer by Pollard et al. ( 1973) and to 

the oceanic bottom mixed layer by Thompson (1973). With assumptions that 

there exists a thin layer with linear distributions of velocity and density between 

the mixed layer and the interior the slab model has also been extended by Manins 

(1982) to include the effects of thermal wind in the interior, and successfully 

applied to the atmospheric boundary layer. Similarly Price et al. (1986) applied 

the slab model, with a transition zone to eliminate the density jump between the 

mixed layer and the interior, to the dynamics of deepening or oceanic upper 

mixed layers solely driven by the local surface fluxes of heat and momentum. 

1.1. Prevloae Reaulte 

ThE-.s·~ three approaches have yielded the following results for the boundary 

layer thickness over a horizontal bottom. According to similarity theory 
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(Csanady, 1967 ) the thickness h of the Ekman layer for neutrally stratified flow 

is 

(l.la) 

where I is the Coriolis parameter, and u, is the friction velocity defined by the 

bottom friction r1 and the density p, , that is 

u, = . /TIT. (l.lbj V·P:-
The value of u, is often estimated by 0.03- 0.05 v, (Weatherly, Blumsack and 

Bird, 1980) where V1 is the geostrophic velocity. The value of k is usually taken 

as 0.4, based on laboratory experiments by Caldwell et al. (1972) and Howroyd 

and Slawson (1975), and field observations made for example by Mercado and 

Van Leer (1D76). Zilitinkevich (1972) theoretically deduced that i is von 

Karman's constant, which is about 0.4. 

When stratification is included it can be shown by using the Rayleigh 

method and the 2r ~ theorem (Pao, 1961) that the thickness for a horizontal Oat 

bottom must take the form 

(1.2) 

where N, is the Brunt-Vaisala frequency, N, 2 = _J_ l ~· • The constant A and '• ., 
function + need to be determined from additional physical considerations. 

--------·---- ------------·--··-----····-- · 
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Thompson (1973) showed using a slab model that 

u, 
" - 1.2 n-;;;- , 

VI N, 
(1.3) 

for constant N, . Using the Mellor and Yamada Level D closure scheme, Weath-

erly and Martin {1978) obtained: 

1.3 u, 
h=----~1' 

I (1+ N,2)4 
/2 

(1.4) 

for O< ~ <200. It is important to note that Equation (1.4) is not an analytic 

result, but was shown to provide a reasonable fit to their computed thicknesses. 

Each of Eqs. (1.3) and (1.4) has the form (1.2). 

Note that the physical meaning or Ia in each of E<p. (1.1), (1.3} and (1.4} is 

somewhat different. In Eq. (1.1), the thickness of the Ekman layrJr is defined by 

Howroyd and Slawson (1075) as the height at which the v~locity is parallel to the 

geostrophic velocity. Caldwell et al. {1972) and Nowell (1983) define the thickness 

in Eq. (1.1) to be the height where the velocity is 99%-99.9% o( the geostrophic 

velocity. In Eq. (1.3), A is the thickness of the bottom mixed layer, while in Eq. 

(1.4) Ia is defined as the height at which the turbulent kinetic energy goes to zero. 

Other definitions of bottom boundary layer thickness are similar to these three 

above. For example, Richards (1982) defined tht: ~hickness as the height at which 

the turbulent kinetic energy is redu~ed to 5 % or its value at the bottom. This 

·---:--·~~---.. ·" ':"'" - · · ·- ·------.,--.--···-······ -~··-·---......---.. --~---------
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gives Ia - 0.88u.// for constant geostropbic velocity and Ia ... O.lt7t~.// for a 

bottom boundary layer driven by the M 2 semi-diurnal tide. 

When j >> 1, Eq. (1.4) approaches t.a ~ which is very similar to Eq. 

(1.3). The small difference between them may be due to the different definitions 

of thickness. Both are in rough agreement with the observations made by Weath-

erly and Van Leer {1Q77) on the western Florida Shelf, for which ~o == 203. 

For the cese of j = o, it is found that the thickness obtained from Eq. 

(1.4) is more than three times that obtained from Eq. { l. l). Weatherly and Mar

tin (1Q78) attributed this to the different definitions of thickness. Thomps<.:!.l's for

mula. does not apply to this case. 

For a sloping Oat bottom in the ocean, theoretical results have been 

presented by Weatherly and Martin (1978) and by Bird et al. (1982). Weatherly 

and Martin (1978) assumed horizontal isopycnals (no thermal wind) with the inte

rior flow parallel to isobaths, and again used the Mellor and Yamada Level D clo

sure scheme. They solved the problem numerically, for a situation in which den

sity varied solely with temperature. They showed that the bottom mixed layer is 

no longer a simple, laterally homogeneous well-mixed layer. Instead, it is strongly 

affected by upwelling (downwelling) of denser (lighter) water induced by Ekman 



-8-

veering. In the northern hemisphere, lor the case ol sha.Uow water to the left ol 

the interior Bow (upwelling) the density of the bottom mixed layer increases with 

time due to advection ol water from greater depths, and the thickness reaches a 

constant value which is approximately equal to that given by Eq. (1.4). For the 

case or shallow water to the right (downwelling) the density or the layer decreases 

and the thickness increases with time. These results were compared with obsP.rva· 

tions made by Weatherly and Van Leer on the western Florida Continental Shell, 

with basically favourable agreement being round, except that lor the downwelling 

case the observed thickness was round to be constant and less than that for the 

upwelling case. Bird et al. ( 1982) also used the level II closure model, and 

included thermal wind effects. They still assumed that all departures from geos-

trophic ftow within the bottom boundary layer were independent or position on 

the plane parallel to the bottom. Their thermal wind sensitiv :ty studies show that 

when the isopycnal slope increases, the thicknesB decreases and the veering angle 

increases. Rhines and MacCready ( 198Q) showed that the driving pressure gra-

dient force in the upslope direction must finally be balanced by the buoyancy 

force and the Ekman ftux will be extinguished. The Ekman layer ·becomes 

arrested. 

Contributions to mixing on a sloping bottom in the ocean made by Phillips 

(1Q70) and Wunsch (1Q70) show that a mean upwelling current along the slope 

induced by the sloping bottom which is dift'erent from the simple diffusive process 

---:-----· · ·-·· ~ - · .. .. - · .. ···· -·- ·--.......,.--,:----oo,· -.....- - -·--- --· --~----:-;--·__...,.-_ --~~-· ........... ,r-:.--·.--:----:«:--:- ·~ . 
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might account for the vertical velocity needed in the abyssal circulation. Phillips 

et al. (1Q86) show that on a sloping bottom there exists a bidirectional secondary 

Row in the turbulent boundary layer with a n~t significant downslope buoyancy 

flux. Garrett (1000} discussed the secondary circulation and the related the tur

bulent Ekman layer in detail and particularly, verified theoretically the existence 

of secondary circulation when the turbulent eddy viscosity decreases exponen

tially with distance away from the bottom. 

1.2. Present Approach 

In this thesis the vertically integrated equations of motion are used, as in the 

slab model. The approach differs from that usually employed in slab models, how

ever, in that the vertical dependence of mean speed on height is retained, appear

ing as a parameter in the energy equation. The objectives are to provide a unified 

interpretation or Eqs. (1.1), (1.3) and (1.4) for the horizontal bottom case, and to 

apply the model to bottom mixed layers on a slope and in the presence of ther

mal wind in the interior flow, which Weatherly and Martin (1078) did not include 

in their simulations. The results are compared primarily to those~ obtained by 

Weatherly and Martin (1Q78), Bird et al. (1982), and to Weatherly and Van 

Leu's observations. Chapter 2 presents the analytic solutions for the horizontal 

flat bottom case. Chapter 3 gives the formulation of the boundary layer problem 

for a sloping flat bottom. Chapter 4 gives the numerical results for mixed layer 

---~---· -· -··----···-.-7-:·~·,.._---;.1"·-.-.- · -· - " ·-·-·~ .... ---,···~.--.---;- ..... ·- ·-·-·-- ...... ···-···-- ..... - .. - ~ . 



• 10. 

growth over a Oat bottom for both the horizontal and sloping <. Jses. Chapter 5 

shows how the thermal wind afFects the growth or the bottom mixed layer over 

both a horizontal Oat bottom and a sloping Oat bottom. The summary and con

clusions are presented in Chapter 6. Analytic and numerical results for a relaxa

tion problem in bottom mixed layers are given in Appendix 3. 
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CHAPTER2 

ANALYTIC SOLUTIONS 
FOR THE HORIZONTAL FLAT BOTTOM CASE 

The problem or bottom mixed layer development over a horizont-al Hat hot-

tom due to constant geostrophic velocity in the interior is formulated in this 

chapter. A continuous velocity profile is considered, and vertically integrated 

governing equations are derived, consisting or the momentum equations, a mass 

conservation equation and a new energy equation. The energy equation is derived 

both from first principles and from bulk energy arguments. Analytic solutions for 

thickness, veering angle and other flow quantities are obtained and compared 

with previous results. 

2.1. Momentum Equations 

It is assumed that the fluid is stratified and incompressible, and that the 

motion is hydrostat.ic and driven by a constant geostrophic velocity V1 in the .,. 

direction (Fig. 2.1) so that the How is assumed to be independent or II· Based on 

observations (see for example, Riehl et al., 1Q51; Kraus, 1Q68; Weatherly and Van 

Leer, 1Q77; Dickey and Van Leer, 1984), the density within the boundary layer is 

assumed to be uniform in the vertical direction while the velocity varies with 

height (Fig. 2.1). This distinction between the dependence of velocity on height 

and that ol other quantities on height is important in the analysis to be 
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presented. 

Let (u ,v) be the local time averaged velocity components in the layer minus 

the interior geos~rophic velocity (0, v, ). Then the vertical averages or these 

quantities are given by 

and 

A 

i1 == .!. I u dz 
h 0 

• 
ii = .!. I t1 dz 

h 0 

where A is the height over which the density is well-mixed and uniform. 

The continuity equation in the bottom boundary layer is 

au aw 
8z =- 81' 

(2.1) 

(2.2) 

(2.3a) 

When there is entrainment, the interface at z = A is not a material surface and 

the kinematic boundary condition can be written in the form 

w (A ) - w, == u ( Ia ) Ia, + h1 • (2.3b) 

where w, is the entrainment velocity. When mass is entrained downward into the 

bottom boundary layer, w, is negative and the interface moves upward with an 

extra speed or w, besides w(la ). Making use or Eq. (2.3b) and integrating Equa-

tion (2.3a) the following can be deduced: 

a ,., + az(hu) = -w, . {2.4) 

. . -~ - ··--:··· ··.- ·-· . .. .. -
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Assuming uniformity in the z -direction (since v, ~ independent or a:) 

a az (Au)- o, (2.5) 

and substituting Eq. (2.5) into Eq. {2.4) yields 

A, == -w,. (2.6) 

The linearized vertically integrated momentum equations may, therefore, be 

shown to be 

a(u/a) - fiila ==- _1_,,. 
at Po 

(2.7) 

a(ii/a) ,-L 1 f + un -==- -r6 at Po 
(2.8) 

where p0 is a reference density, aud T; = ( r6 •, r6 ') is the stress at the bottom. 

These are the same as the momentum equations for the slab model used by 

Geisler and Kraus (IQ60}, Pollard et al. (IQ73), and Thompson (IQ73). To obtain 

them it has been assumed that the vertical scale is much less than the horizontal 

scales so that horizontal variations or mean quantities including the horizontal 

Reynolds stresses can be ignored. The Rossby number is therefore small (Geisler 

and Kraus, IQ6Q), so that the nonlinear terms can be ignored. Also the Bous-

sinesq approximation bas been used. Furthermore, it is assumed that during 

growth the friction at the interlace T; is given by 

-+ 
r· 
~ = [u(la ), v(A )) tD,, 
Pe 

(2.0) 
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so that the interfacial friction is due solely to the entrainment or water from the 

interior into the bottom boundary layer. This assumption was also made by Pol

lard et al. (1973). 
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2.2. Ener~ Equation 

The energy balance in the entire water column from surface to bottom is 

considere~, since the geostrophic ftow in the interior provides the energy source 

(or mixed layer development. Two approaches are used to obtain an approximate 

energy equation, one starting from first principles, the other based on a bulk 

energy argument. 

2.2.1. Derivation from flrst principles. 

The derivation or the energy equation starts with the momentum equation: 

8i1 ..... ::;:t ... .... 2 ,81 + p (il·v)u + p(2uXit) = -'VP - pgk + P'V it (2.10) 

where p is the molecular shear viscosity or the ftuid, f is the vertical unit vector, 

n is the angular speed or the earth's rotation and 'it is the velocity or a fluid par-

ticle. Ir "d is the turbulent part or the total velocity and lJ - ( u, " + v,) is the 

local time averaged velocity, the total velocity u is 

it = V + fi = ( u + u , v + V1 t D , w ). (2.na) 

Similarly p and p can be written as 

p=p'+p (2.llb) 

and 

p = P' + p (2.llc) 

where; is the turbulent part or the density, p the turbulent part or the pressure, 

P' the local time averaged density and P' the local time averaged pressure. Sub-

atituting Eqs. (2.11a) to (2.11c) into Eq. (2.10), taking the dot product or the 
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resulting equation with V and time-averaging yields the mean kinetic energy 

equation for incompressible ftow 

'; ;,(u2 + (t1 ~ V1 )~=-uP',- Po u/;<tUJ > 

- Po ( t1 + V1 ) :Z < WV > 1 (2.12) 

where the Boussinesq approximation bas been invoked in order to set p' == Po , 

and the assumptions that :~ << :, and :~ << :, have been made which 

permits the horizontal advection of mean quantities to be ignored. The viscous 

terms have been dropped because the Reynolds number is large (Wimbush and 

Munk, 1970; Tennekes and Lumley, 1972). 

Similarly the dot product of Eq. (2.10) with "l produces the turbulent kinetic 

energy equation 

Po 8<q2> a < A A > < A - >au <A - > a(tl + v,) 
-~-"""'-- wp -p wu --p UJt1 2 ac 8z • a: 0 8z 

_ '• _g_< w 2> + .!.(<u (au + au,)> + <ti( a;, + au,)> + 2<• au, >I 
2 a, 9 " a z a, a z a, a~ a. 

-~-<til ;>g, (2.13a) 

where 

'== 2p<iij i;; > (2.13b) 

i.Q. the dissipation term (see Appendix 1), 

• 1 [ aui au; 
1 , .. =---+-'1 2 a3 · lJz. J I 

and 
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The second term and the third term on the right hand side or Eq. (2.13a) are the 

shear production terms. The last term is the buoyant produetion term (Mellor, 

1973). Adding Eq. (2.13a) to Eq. (2.12) yields the total kinetic energy balance, 

!!.. 88 (u 2 +(t~ + V1)2+ <q2>)=-p0 -
8
8 [u<wu>+(v + v,)<Wti>} · 

2 ' z . 

P I Po a < .. 2> a < .... > < .. "> - u - -- wq - - wp - w p g - ( • 2 8z az 
+ ..!.[<u( au + au,)>+ <v( av + au,)>+ 2<wau, >J. (2.14) 

p IJz 8z az az a, 8z 

After integration from t.he bottom to the sea surface, Eq. (2.14) reduces to terms 

involving integrals of quantities which are non-zero only in the mixed layer: 

(2.15) 

The :, terms in Eq. (2.14) do not appear in Eq. (2.15} both because they 

vanish in the interior above the mixed layer, where it is assumed that the tur-

bulence vanishes, and because they are zero at the bottom boundary due to the 

no slip condition and w being zero at the bottom. These terms redistribute 

energy within the mixed layer but do not result in any net flux into or out or the 

layer. 

Substituting Eqs. (2.lla) and (2.11b) into the mass conservation equation, 

,, + v·(u p) = o, and time-averaging the result yields 

(2.16a) 
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Therefore when z < Ia 

(2.16b) 

because the mean density of the mixed layer is independent or I. Note that I is 

equal to Po at z = :, where Po (z) is the distribution of density before formation 

or the bottom mixed layer: that is 

Po (I) = Po (0) + Poa z. (2.16c) 

Therefore p1 ' = ! l'oa lac • Note also from the hydrostatic relation that 

A 

P' = P0 + f(p'- Pe )gdz 

' 
where P0 is the undisturbed pressure, and that therefore P.' == P,. which is 

independent or .r. Eq. (2.15) can therefore be rewritten as 

'; ! [ :,(u2 + (• + V1 )
2 + <v2>)] dz =- AUP., 

' + g':• la 2A1 -I ~tlz. 
0 

(2.17) 

The left hand side of this equation represents the time rate of change of total 

kinetic energy. The right-hand side is the sum of the rate of work done by the 

geostrophic pressure gradient, the negatiYe of the time rate or change or potential 

energy, and total dissipation per unit area. in the mixed layer. It remains to 

express the dissipation in terms of mean flow quantities. 

It is assumed that during the growth of the mixed layer, 

l ' '" I a<,'l> I :-r -2 8 tl: + '"' ==r, ·u, 
0 ' 0 

(2.18) 
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where 1J == {ii, v + V1 ) is the vertically averaged mean velocity. Eq. (2.18) indi-

cates that the total time rate of change of turbulent kin 1tic energy per unit area 

plus the total dissipation per unit area is equal to the rate of work done by the 

mean flow against bottom friction. Justification for assuming this balance is given 

below. 

When the flow is statistically steady Eq. (2.18) can be deduced from Eq. 

(2.13a). From Eq. (2.16b) <pw > a= 0 for steady flow, and after vertical integra

tion from the bottom to the sea surface Eq. (2.13a) becomes 

! rdz =- H'• <WU > :: + '• <tini > B(• :, v,)l 4:. 

which is the balance between sbclar production of turbulent energy and viscous 

dissipation. Equation (2.18) therefore represents the essentially well known result 

for homogeneous, steady, pure sh6ar flow that the rate or shear produet.ron or tur-

bulent kinetic energy equals the rate of viscous dissipation. The velocity distri-

bution is quite uniform in the upper part or the mixed layer above the inertial 

sublayer so that most or the shear production of turbulent energy occurs within 

the lower part of the mixed layer, the inertial sublayer (constant r.tress layer, 

Mellor 1973; Kline et al., 1967). Therefore the integral of the shear production 

term can be rewritten as an integral from 0 to 6 where 6 is the inertial sublayer 

thickness. Furthermore the Reynolds stresses are constant in the inertial sub-

layer, so the right hand side of the above equation can be written as 

& v 
fr-4--tlz ~r, ·U. 
0 vZ 
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where lJ, is the velocity at the outer edge or the inertial sublayer, assumed to be 

close to the vertically averaged velocity. 

For the case of unsteady flow the term 8<;,2> in the inertial sublayer is 

small relative to other terms in Eq. {2.13a) (Mellor, 1973). The measurements 

made by Wyngaard and Cote (1071) in the inertial sublayer or the atmospheric 

boundary layer under stable conditions show that this is true and that the rate of 

shear production or turbulent energy almost equals the rate or viscous dissipation 

because the buoyant production and other terms are also quite small. Therefore 

the integral or Eq. (2.13a) from 0 to 6 becomes 

1
6 

[ A A au A A 8(" + v,) ] tl ~ :f 16 ~ 
- 0 Po <wu >a, +Po <wv > a, ' s:::::: T. ·u - 0 raz. 

In the upper part of the boundary layer viscous dissipation is small when th~ 

. 6 j 

Reynolds number is large, and therefore J ~tlz ~ J ~tlz • For completeness the 
0 0 

term involving the integral of 8<;,2> is included (although it is expected that 

this term is small) and Eq. (2.18) is, approximately, obtained. Equation (2.18) was 

also used by Manins (1982) with sn additional turbulent kinetic energy produc-

tion term caused by surface heat transfer. 

Substituting Eq. (2.18) into Eq. {2.17) yields 

' ?. I aa lu2 + (" + v, )2)tlz - !, , •• Ia 2A, =--Ail,, I v, - ilr,. 
2 0 I 4 

- (V + V1 )r,' (2.10) 
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since a;; - p,/ v,. In Eq. (2.10) the last two terms represent the power lost to 

bottom friction. The first two terms on the left hand side are respectively the 

time rate of change of local mean kinetic energy per unit area ·and the time rate 

of change of potential energy per unit area. The first term on the right hand side 

is the rate of work done by the geostrophic pressure gradient. 

2.2.2. Derlvatlon using bulk energy arguments. 

Equation (2.lg) can also be obtained using bulk energy arguments. The 

mean kinetic energy KE in the total water column (see Fig. 2.2) is 

H A H 

KE == J[u 2 + (v + V1 )
2)dz = f[u 2 + (v + V1 )

2)dz + JV1
2dz 

0 0 ' 

where H is the total depth. Therefore 

• 
a:,E- '; (! :,(u2 +(v + V1 )~clr + (u2 +(v + V1 fll,=• ~~- Y1 2 ~~) 

' - '; £:, [u2 + (v + V1 )
2Jclz. 

The potential energy per unit area of the water column is 

I H 

PE ....,., J p1zgdz + J Po (z) zgtlz 
0 ' 

== - 1
1
2 gPo, A3 + :Po (O)H2 + : Po1 H

3
• 

Thus 

8PE 1 2 8h m = - 4' Po• h 81 • 

The rate of working by the geostrophic pressure gradient is 
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sea surface 
~ 

water column 
I 

sea floor 

.. 

" 

- D · ( aP. n) 
Vro = az'v 

u == (. J " + v,) 

vP'= ( BP', 0) az 

H 

/ 

Figure 2.2. A sketch of the water column during bottom mixed layer growth 
in the view of bulk total energy balance. H is the total depth of water column 
from the sea floor to the sea surface. h ( t) is the thickness of the bottom mixed 
layer. U(t) is the velocity in the layer. "16 is the bottom friction. V, is the geos
trophic velocity. v P is the pressure gradient. 
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- fvP'·fltlz - f~P. · V, liz =-Au,./ v, 
o A 

where, as in Eq. (2.17), P', = P, • has been used. If it is assumed that the time 

rates or change or total mean flow kinetic· energy and potential energy in the 

water column from z == 0 to H, plus the power gained from the geostrophic 

pressure gradient in the bottom boundary layer, are balanced by the power Jost 

to bottom friction, then Eq. {2.19) results. This energy balance basically has the 

same Corm as that used by Pollard et al. (1973) except for the geostrophic pres· . 

sure gradient term which does not enter their wind-mixed layer problem. The 

balance implies that the role of turbulence is to change the potential energy and 

that the turbulent kinetic energy, the dissipation and the surplus or the power 

lost to bottom friction acting on the real velocity other than the vertically aver· 

aged velocity, which are omitted here, reach a balance themselves. 

2.2.3. Introduction ot the veloelt)' proBie parameter (o') 

Examining Eq. (2.19) the velocity components appear in vertically averaged 

form as in the momentum equations except for the first term on the left. hand 

side. It is needed to express this integral in terms of vertical means. Referring to 

Fig. 2.3, the deviations or the velocity components from their vertical means are 

Au == u ·· u 
Av = v - ii. 

(2.20a) 

(2.20b) 

Substituting Eqs. (2.20a) and (2.20b) in Eq. (2.19) and using Eqs. (2.7) and (2.8) 

gives 



I 

I 

------~~-------~u 
-ii' 

2S 

-v I 

• 

I 

Figure 2.3. Schematic profiles or u and " I the components or velocity less 
geostrophic velocity, and the difrerenees ~. 'lnd ~" from the vertical means ii' 
and iT during mixed layer growth. 
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!!__.!_ [i((.1u )2 + (.1v )2)clz] + !..!._ r !N, 2/a 2 - (u2 + u2
)] IJ/a a:: 0 (2.21) 

2 at 0 2 L 2 ae 

where it is assumed that the speed at the interface is equal to the geostrophic 

speed. Eq. (2.21) is identical to the equivalent relation obtained by Pollard et al. 

(1Q73}1 except for the additional term involving departures from the vertically 

averaged velocity. 

The integral in Equation (2.21) can be expressed in terms of bulk parameters 

by using dimensional analysis and a similarity argument. During the growth of 

bottom boundary layer the velocity profile varies as thickness increases. The velo-

city profile also depends on z I N0 1 I and u,. Thus 

.1u == g (Ia, 1, / , N0 , u,) 

.1tl == / (Ia, I, / 1 N0 1 u,) 

where the dependence on V1 is incorporated into the friction velocity v, (Weath-

erly et al., 1Q80 and Bird ,1081). The dimensional analysis yields 

.1u-= a(..!., N,, A/) 
u, A I u, 

.1v =F(..!., N,, A/), 
u, Ia I u, 

If it is furthermore assumed that the velocity profiles remain self-similar during 

growth, then F and G cannot depend on the thickness, and therefore not on Ia/ • 
u, 

Therefore we may write 

A I 

J[(Au)2 + (Av)2Jclz = u, 2AJ(G2 + F 2)dr1 = o'u, 2A (2.22a) 
0 0 
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where r1 = z /A . The dependence on : has been lost as a result of the integration 

with respect to r1 from 0 to 1, and thus 

I 

a.' == J( G2 + F 2)d c1 
0 

can only depend on ~ . From Eq. (2.22a) it is deduced that when v, is con· 

stant (so that u, is constant) 

_aa j[(~u )2 + (~v )~tlz = a'u, 2 aa" 
t 0 ' 

(2.22b) 

for a given value or ~0 
• 

Krauss { 1973) has also equated the vertical integrals of the products of the 

deviations of velocity components from their vertical means to stresses, in his 

case to horizontal shear stresses. However, Krauss was dealing with the vertically 

integrated non-linear momentum .equations. His ap• ~·oach is therefore fundamen· 

tally different, because here the momentum equations are linearized and the pro-

ducts (Au )2 and (~v )2 therefore appear only in the energy equation. 

Arter substituting Eq. (2.22b) into Eq. (2.21) the energy equation be~omes 

{o'u 2 + .!N 2A 2 _ (u2 + v2)] 8A = 0 • 2 o at 
which has two possible solutions: 

(2.23a) 

and 
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ala -=0. 
81 

(2.23b) 

Because when 1 ::a 0, Ia = o, Eq. (2.23b) only gives the trivial solution Ia Eli 0 at 

all later times: that is there is no bct.tom mixed layer formed. Therefore the solu-

tion Eq. (2.23b) is meaningless. Only Eq. (2.23a) is an acceptable solution and 

represents the energy balance. 

Rewriting Eq. (2.23a) in the Corm 

!.No 2112 = (ii2 + v2)- o'u, 2, 
2 

it can be seen that the left-hand side is the change in potential energy due to 

mixing, ~nd therefore the right-hand side defines the kinetic energy available for 

mixing. It can also be seen that there is less kinetic energy available for mixing 

when considering the velocity profile (a' =1: 0) than in the slab model. Noting from 

Eqs. (2.22a) and (2.20} that 

(2.24) 

where u is the magnitude or fJ' it becomes clear that the physical reason for this 

is the fact that the actual total mean kinetic energy in the boundary layer is 

greater than the squared mean velocity. 

Equation (2.23a) is a central result in the present development. If the distri-

bution of velocity in the vertical direction were uniform, as it would be in the 

usual slab model, a' would vanish and Eq. (2.23a) would become 

(2.25) 

This specifies that for a growing boundary layer the overall Richardson number 



R, is unity, since R, is given by (Turner, 1073) 

1 A fl,/,, N, 2A2/2 
R, = ii2 + v2 = v2 + v2 • (2.26) 

Here flp = p'- p, (A), the density difference across the interface. &:. (2.25) is the 

marginally stable condition used by Pollard et al. {1073) and Thompson (1073). 

The velocity is not vertically uniform however (Fig. 2.1). It is therefore 

interesting to explore the consequences of taking o'rO. This is done in the next 

section. 
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2.1. Analytle Solution 

In the limit 1 - oo lor V1 ..,. consbnt, a steady state solution is sought and 

the time-dependent terms in Eqs. (2.7) and {2.8) are therefore dropped. Then the 

governing equations become 

I l. - I I ,. u ==- r6 
Po 

I A ii "'"" - _t_,, ' 
Po 

a'u. 2 + l N0 
21J 2

- (u2 + u2
) = o. 

2 

Squaring Eqs. (2.27a) and {2.27b) and using 

t I 
1
_ 2 

- '• - u,' Po 

Eq. (2.27c) can be rewritten as 

(2.27a) 

(2.27b) 

(2.27c) 

!12N• 21J-4 + a'u, 212/a2- u, 4 = 0. (2.28) 
2 

Solving Eq. (2.28) for A 2 and taking the positive root, eventually yields 

Expressions lor the veering angle and velocity components (u, u) are also 

needed. The veering angle is defined by (see Fig. 2.4) 

u tano=---
ii' + v, 

(2.30) 

so that in the northern hemisphere a < 0 since i1 < 0: that is, the transverse flow 

in the mixed layer is directed to the left of the interior geostropbic flow (Fig. 2.4). 
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v, J. 

Figure 2.4. Velocity components and veering angle (at< 0 as shown). 
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Tbe bottom stress components may be written as: 

• 2. 16 ,... ,, u, SIDO 

r6 ' = ,, u, 2c:oso 

(2.3la) 

(2.3lb) 

which when substituted in Eqs. (2.27 a and b) yields an expression for tano in 

terms or ii and c; alone: 

ii 
tann- = -

il 

as shown in Fig. 2.4. 

Now, since 

u =U ..... a 

(2.32) 

(2.33) 

where U2 
a::: ii2 + (ii + v, )2 as before, both Eqs. (2.27a) and (2.27b), using Eqs. 

(2.30), (2.31) and (2.32), reduce to 

u 2 
Utano--~. (2.34) ,,. 

U can be expressed in terms or u, by defining a bottom drag coefficient Ci auch 

that 

(2.35) 

This was also the form for bottom stress used by Thompson (1973) in his slab 

model of the bottom mixed layer. Then, using Eq. (2.20), Eq. (2.34) becomes 

(2.36) 

where~ is 

(2.37) 
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Using Eqs. (2.35) and (2.36), Eq. (2.33) becomes 

- ~ J' o' 
u = - V 2~2 + o'C~ u, (2.38) 

and thus from Eq. (2.32) 

- o'~ 
tl ==- u, 

tv4~2 + 2o•c., 
(2.30) 

Finally, Equation (2.35) can be shown, by equating Eq. (2.30) and Eq. (2.32), 

to reduce to: 

u, = 

::::1 [ c., ]i v,. 
c _ J' 2N 2 

1 + T<o' + V o/l + -fr-l 
(2.40) 

The model therefore yields an explicit relation between u, and V1 (This relation 

can also be obtained by recognizing from Fig. 2.4 that U == V
1 

coso.) 

Finally it is worth noting with respect to Eq. (2.36) that a is non-zero when 

o' is zero. Using Eq. (2.37) it is seen that 

- I ~ I 2N 2 

tano = - .,fCi72 V o' + V a
12 + Ji- (2.41) 

so that in fact when o' = 0 

rc;r;:-
tano=-v~ 

which is the result obtained by Thompson ( IQ73). 
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2.4. Comparison• with Prevloue Reeulta 

II the velocity distribution w~e uniform as in the slab model, then o' - 0 

and Eq. (2.29) reduces to Eq. (1.3), the result obtained by Thompson (1973). 

When ~· is large, Eq. (2.29) also reduces to Thompson's result. Equation {2.29) 

represents an improvement over Thompson's result in the sense that by including 

the velocity profile parameter o', the mixed layer thickness does not become 

infinite as ~ - 0. Equation {2.29) is also comparable in form to Eq. {1.4) 

obtained by Weatherly and Martin {1978), although the two results are clearly 

not identical. 

It was argued earlier that o' should depend only on ~· . Furthermore, it can 

be seen that Eq. (2.29) is consistent with Eq. (1.2), the expected form, if o' is a 

function of ~ . We now estimate the range or possible values for o' when the 

mixed layer is fully developed. 

For the neutrally stratified case ~· = 0, and At= 0.4 (Eqs. 1.1 and 1.2). 

Using this in Eq. (1.2), and equating Eqs. {1.2) and (2.20) yields 

o' -&.3. (2.42) 

Substituting this value or o' into Eq. (2.29) gives 

A - 0.67 [ u, II ] • 
N 2 2 

I+ JI+OSYSI i• 
(2 .. ~3) 

..... ' ·-.- -···---·-··· .... · · ---· ;-'"'~..--·-·- ·.- .. "--:'- .... ·-'""\-~--·-··:--~-----.~,.--.r:--·-·---·----
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An alternate value for a' can be obtained by setting Eq. (2.29) equal to 

Weatherly and Martin's formula Eq. (1.4) when N. -=0. This gives 

a'= 0.59 

and Eq. (2.29) becomes 

u,ff 
Ia = 1.8 -=---[ ~] l • 

- I N i 2 
1 + v 1 + 5.7 ;2 

(2.44) 

(2.45) 

Now, how should the value of o' vary with the buoyancy frequencyT This 

can be investigated by equating the analytic solution or thickness obtained here 

to ·Thompson's result Eq. (1.3) or Weatherly and Martin's result Eq. (1.4). In 

order to be consistent with both Eq. {1.3) and Eq. (1.4) Jet Eq. (2.29) be 

(2.46a) 

l 

replacing the factor 1.3 in Eq. (1.4) by 2 4 ~ 1.2. Solving Eq. (2.46a) Cor o' yields 

l 
a' == --:===::;;;;= 

- I N 2 v 2(1 + ;2) 
(2.46b) 

which is plotted in Fig. 2.5. Eq. (2.46b) shows that the value of a' will decrease 

when the stratification increases and eventually tends to zero. However at large 

~ , it is readily shown that the expression (2.29) for Ia hecomes independent ol 
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·~------~------~------~~------~-------'\.00 1.00 2.00 3.00 4.00 5.00 
N/F 

Figure 2.5. Variation of o' with ~ according to Eq. (2.46b). 

------ ·· · · ·-··--~--~-----· ·- -··- .. · ·~·--.~~-~ r-.---:--·_..,..-- ---;.--;-··-. --··---:-~--.-.-··-



o:' since 

_!_ N,2 >> 1 
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· which leads to Thompson's result Eq. (1.3) with an error less than 6% when 

j > 2. Therefore when f is larger than 2 the thickness is almost indepen· 

dent of the value of o:'. Within the range of ~· from 0 to 2 the effective values 

of o:' change from 0. 7 to 0.3. This variation of o:' is not large. 

Equations (2.43}, (2.45) P.nd (2.20) with o:' given by Eq. {2.46b) are compared 

with Weatherly and Martin's formula (Eq. 1.4} in Figures 2.6 and 2.7. The 

numerical values are those obtained by Weatherly and Martin (1078}, and were 

supplied by Weatherly (Table 2.1). Fig. 2.6 shows that Eq. (2.45) gives results 

which are almost the same as Weatherly and Martin's result, Equation (1.4}, in 

spite of the fact that the two equations are clearly ditrerent. This c11n be under· 

stood by examining Table 2.1. It is seen that the values of N~ used by Weatb-
1 

erly and Martin are either zero or much larger than one. When j >> 1, Eqs. 

(2.45) and (1.4) are nearly identical. That is, Eq. (2.45) reduces to Eq. (1.3): 

"· Ia == 1.2 ..fN,T , 

while Eq. ( 1.4) becomes 

"• Ia r= 1.3 ..fN,T . 
N, 

4 .. :--· -~· - · • • ·:--;··~-~~-~~-: ---:· .. _.._.__...~-···--:- .. - ---..-~ ... -·- · --..... . ..... . ___ · · -·-- · - · -- ... ,... ... ~--- .. -· · - --· • • ·- · - •• ···· - · · -·· -
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Figure 2.6. Bottom mixed layer thicknesses plotted against 
u, /(/ (l + N. 2// ~0.2&). 

The symbols: 
+ stands ror the numerical resu!ts rrom the Level n turbulent closure model 

given by Weatherly and Martin {1978), 
X (or Eq. (2.43), 
A for Eq. (2.45), and 
)E rro Eq. (2.29) when a' is Eq. (2.46b). 

The straight line is Eq. (1.4) . 

. ·----.....,._...--·- · . .... ... .. ·-····- ·-·-··- '"' .... .. -·- --·~~--·--·-------~-----........---·-----· 
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Figure 2.7. The thicknesses plotted against buoyancy frequency N. for 
u. -= 0.58 cm/s and 1 == 0.63X to-• /s. The symbols: 

+ stands for Eq. (1.4) (Weatherly and Martin, 1Q78), 

x for Eq. (2.43), 
t& for Eq. (2.45), and 
)IE fro Eq. (2.2Q) when o' is Eq. (2.46b). 
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At=O f v, N, 
N, 

u, 
I 

(m) (Xl0-4)/s cmjs (Xl0-3 /s} (X 10-s)cm/s 
ISQ .63 20 0 7.56 0 
80 .63 15 0 4.05 0 
63 .71 40 3. 17.8 42.3 
33 .63 20 l.Q 7.45 30.16 
13 .63 20 12.8 7.68 203.17 
7 .63 15 12.8 5.97 203.17 
6.2 .63 10 12.8 4.46 203.17 

12.8 .68 5. .7 2.29 10.2Q 

Table 2.1. Values for "•=O• I, V1 , N, provided by Weatherly, 
corresponding to Fig. 8 in Weatherly and Martin (1Q78). The values 
for u, are evaluated from Fig. 8 or their paper. The thickness "f=O 

is defined as the height at which the turbulent kinetic energy goes 
to zero, where q is the turbulent kinetic energy. 

~ -.- ... ·"'1•·· · •. ----, . ... ·-... ··- •. . . ... . ·- -- -· - ... · ---... -· .. - . . ..... -·· ··----~---- -·--·---·-··-··-· .. .. - ____ ... _ ______ ____ _ __ _ 
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When f == o Eqs. (2.45) and (1.4) are identical, because or the choice o' == 0.59. 

Even at intermediate values or ~ , however, Eq. (2.45) is not very much 

different from Weatherly and Martin's result. This is demonstrated in Figure 2.7, 

where the thicknesses are plotted as " function o( N, and ~ for values of 

u, (0.58 cm/s) and f (0.63Xl0-t /s) used by Weatherly and Martin (1D78). Figs. 

2.6 and 2.7 show that the thickness given by Eq. (2.45) with o' = 0.59 is very 

close to the thickness with o' given by Eq. {2.43b ). 

Figure 2.7 also shows a comparison between Eqs. {2.43) and ( 1.4). When 

~ >> 1, Eq. (2.43) also tends to Eq. (1.3), explaining the good agreement 

between Eq. (2.43) and Eq. ( 1.4) at large ~ . But the difference between these 

two equations is very large when ~ << 1. The . ~ason for this is that the thick

ness calculated from Eq. (1.4) when ~· == 0 is A = 1.3 7 which is three times 

greater than the thickness computed from Eq. (2.43) with ~ :::so, which t!" ~~. ~n 

the same as Eq. (1.1). Weatherly and Martin (1978) attributed this difference to 

their use or q = 0 to define the thickness Ia • 

It is concluded that the predicted mixed layer thickness depends critically on 

the choice of o' only when ~· is or order unity or smaller, consistent with the 

•• • -··- • • · • •.--••· •- • • .. • •• ---·-· -· -· • - - ••• - .... • ...... • ,••• •• ,. •• '' • I ' • • • - · • -• •# '"\-•--• •• ···•• .,. ---·-
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fact that the vertically-integrated model tends to Thompson's model in the limit 

of large ~~ . This could imply that the shape or the velocity profile is less critical 

to the dynamic,1 of bottom mixed layers when f is large, which would .be con· 

sistent. with the ob!:i• 1 ~ation (Weatherly and Van Leer) that for f large, most 

of the veering occurs in the interfacial region, and the velocity within the mixed 

layer is more uniform with height. However, the definitions of bottom boundary 

layer thickness based on turbulence intensity on the one hand, and velocity on 

the other, yield very different thickness estimates when f is small, and this 

appears to account for the larg~t differences in Figs. 2.6 and 2.7 . 

.. --··· ~· ... :· · . . . .. ,--.. ·...-·---~ ··- ·-------·----· ··- ·-· -·--



2.5. Direct Estimates of a' 

The velocity profile parameter a' can be estimated directly from measured or 

theoretical velocity profiles using Eq. {2.24). Note that different definitions of 

thickness will yield different values or o'. As an example, consider the speed 

profile obtained by Weatherly and Martin (1078) using the Level D turbulent clo-

sure scheme Cor a horizontal bottom Cor ~· == O, v, == 15 cm/s and u ..... 0.58 

cm/s (Fig. 6 in their paper). This profile is replotted in Fig. 2.8a, and the profile 

or U2 in Fig. 2.8b. Computed values or u I iJ'I and o' based on Fig. 2.8 and three 

definitions of thickness are given in Table 2.2. From this Table it can be seen 

that all three values of o' are in the range spanned by Eq. (2.43) ( o' == 6.3 ) and 

Eq. (2.45) ( o' = 0.59 ). Furthermore, the results in Table 2.2 exhibit the proper 

trend. That is, o' is smaller when the thickness is defined as 11, ~, as in Eq. 

(2.44); whereas a' is larger when the thickness is defined by Eq. (1.1) or by 

U == 0.999 v,, as in Eq. (2.42). 

2.1. Richardson Number Dependence 

The magnitude of the overall Richardson number Eq. (2.26) is, using Eq. 

(2.23a) 

-1 ofl v 2 N, 2 ( ) Ro = 1 + 2/ 2 (1 + 1 + 7 - 2 J. 2.47 
N, I o I 

. ·····- ---· .. --·· --... ·----=-- ···--·~ .-:-- ·--: ·- -----·· --· ·--- ---- ·- ----- . . ·· ··· ------ - --· . 
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Figure 2.8. (A) Speed and turbulent kinetic energy (! q 2) profiles given in 

Fig. 6 of Weatherly and Martin's paper (1Q78) and (B) the profile of U 2• 
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Definition h u iJ'1 o' 
jm) (em/s) (em /a f 

1 80 14.87 222.0 2.2 
2 36.83 14.54 212.0 4.2 
3 16.15 13.67 188.0 5.6 

Table 2.2. Comparisons of average speed U, average speed 
squared fj'! and the values or o' for different definitions or thickness. 
In Definition 1 the thickness is defined as the height at which the 
turbulent kinetic energy goes to zero. In Definition 2 the thickness 
is calculated based on Eq. (1.1). In Definition 3 the thickness is 
defined as the height where the speed is 90.9% or the geostrophic 
speed . 

• • . _,. - .. ~_,,..... --·- ··- -- -··-· .... - · ---- · ·-: "' ...... · ·oo:-... - ... ···--.-·····.-----.,....--·-· · - · · · -- • .• .,.._ .... _ __ __ ___ .,.. ________ - -



For ~· << 1, it is seen that 

N, 2/l2 
R, ==-~-

2o12 

48 

which is much less than unity, implying supercritical flow. For f >> 1, Eq. 

{2.47) shows that R, ,.._, I, which is consistent with the marginally stable condi· 

tion used by Pollard et al. (1973) and Thompson (1973). 

Hower1er, because most of the shear at the interface between the boundary 

layer and the interior is due to the transverse component of velocity u, it is con-

venient to define the ·"Werall Richardson number R ', due to i' alone as pointed 

out by Weatherly and Martin (1978). From Eqs. (2.23a), (2.32) and (2.34) it can 

be shown that 

[ ~
N, 

1+ 1+ 122) 
o I 

=----------~--~~--------

N,2 ' ~· 12"'2 (o 01 + 2/(1 + 1 + 12 2 )) 
o I o I 

(2.48) 

N N 
Therefore for -j-<<1, R '• <<I as was the case for R, . For -j->> 1, Eq. (2.48) 

becomes 

R, • -• ... ___ ../2;..,2 __ 

CJNo .rn' 
I + v2 

(2.49) 

and thus R 1, > 1. By using this Richardson ~umber definition it is seen that for 

• - ••• • •• ~· .. . - · --· - · • - ---· ··- ·· ····-··-·-~·-------._.... .. -·-·-----.-·-- · .. T" ----~~·--.---..,... -·""-· ~..,..... ------ --··-· • 
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N./1 << 1 the transverse flow is supercritical, while lor N,/1 >> 1 it is sub

critical. 

·-··---.. ··-··· ·· ··-- -4··- ··...------·.- - - ·-·- ----- ... --····· . 
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CHAPTER3 

THE SLOPING FLAT BOTTOM CASE 

For a sloping flat bottom it is more convenient to set up the coordinate sys-

tern (~, f, z) with the z -axis perpendicular to the sea bottom, the so-called bo~ 

tom coordinate system, in place or the coordinate system (.r', ,•, z') in which the 

z '-axis is vertical (Fig. 3.1). It is assumed that the bottom slope {J is small, the 

velocity v, or the mean flow in the interior or the ocean is in the r-direction 

parallel to the isobaths, and Po = Po (z '), so that the density gradient in the inte-

rior is solely vertical and constant. Clearly, 

and 

Thus 

2' z= .r cos{J - zsin{J 

r' _. II 

a'= zsin{J + 1cos{J 

, .. == {Jp, 

when {J is small. 

1.1. Momentum Equations 

(3.1) 

(3.2) 

(3.3) 

(3.4) 

The same assumptions are made here as in Chapter 2 ror a horizontal bo~ 

tom. It can then be shown that in the bottom coordinate system the momentum 

equations in the interior or the ocean are 

. -~--.,-~· - • . . ¥-· ... _ · ---·· --·-·----·--·----- .,...._...,... __ .. ..,--::-.. -··----------------·-------
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X 

Figure 3.1. A sketch of a sloping flat bottom with horizontal isopycnab. 
The mean How in the interior is directed into the page, as indicated by the sym
bol®. 
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(3.5) 

(3.6) 

Based on the observations made by Van Leer and Ross (1070), Weatherly 

and Van Leer {1077), Bird et al. (1082), Armi (1078), and Dewey {1087). the den-

sity in the bottom boundary layer on either a sloping sea door or a horizontal ftat 

sea floor is quite uniform. Therefore it is assumed that the density p' is indepen-

dent of I during the growth of the layer because or mixing. Since all quantities 

are independent of 11, 

p' == p'(% ' ' ). (3.7) 

Let 

,. = (I 0 (% ' : ) + p"(: ' ' }! + t(' ). (3.8) 

In Eq. (3.8) the density p' in the mixed layer bas been separated into two parts: 

the first part (Po (z, 1) + 11 is caused by local mixing in the :-direction; the 

second part «(C) is the advective contribution due to Ekman transport. 

It is important to note that in this problem both N, and v, are independent 

or z. It is therefore reasonable to expect that the mixed layer thickness will also 

be independent or II at any instant or time. In particular during initial growth 

before £ becomes appreciable, the difference in density across the interface 

between the mixed layer and the overlying fluid should then also be independent 

of z. This further implies that if should be independent of z, and hence at later 

times that £ will remain independent of z . 
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As in the case of a horizontal flat bottom, at any time tbe first part or Eq. 

(3.8) should be equal to the density at z =- : before mixed layer formation, i. e. 

Po (z, z) + p"(z, I)=- Po (z, :) -Po (z, 0) + p,. : 

since 

p0 (z,z)=p06 1 +p,(z,O)=p0 (z,A)-I 1 (A -z). 

Therefore 

A A 
p' = P0 (Z 1 2) + E(C) = P0 (z,O) + P01 2 + E(t). 

From Eqs. (3.9) and (3.10) 

p" = p Dl ( : - I ), 

Obviously 

' fp"l.z = 0. 
0 

(3.9) 

(3.10) 

(3.11) 

(3.12) 

(3.13) 

From Eq. (3.8) and the hydrostatic condition, the pressure P' in the boun-

dary layer can be shown to be of the form 

P1 = P0 (z, z) + P "(z, t) (3.14) 

where P" represents the perturbation to the geostrophic pressure field induced by 

mixing and advection. Arter making use of Eqs. (3.5}-(3.6), (3.8), and (3.13)-

(3.14), and the assumptions made in Chapter 2 for deriving the momentum equa-

tions, it can be shown that the momentum equation!l in the boundary layer above 

a sloping bottom are 

au I' tg fJ 1 a~ __ ,., =- -g{J-- + ---
81 Po Po Po 8: 

(3.15) 

---~··· -... -··---·-·-·~...-.-.. -- -·-,--·-..... -=---*-·--·-····---··-·-·- ·- ------ --........ . ... 
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8u + I u z= ...!.. a,. . (3.16) 
81 Po a1 

aP" , 0 =- 8z- g p - fg. (3.17) 

oi which Eqs. (3.15} and (3.16) are the same equations as used by Weatherly and 

Martin ( 1Q78). 

8.2. Mass and Volume Conservation. 

The continuity equation is the same as Eq. (2.3). Equations (2.4)·(2.6) are 

also valid for the sloping bottom case because both Ia and ii are constant in the 

down-slope direction as discussed previously. 

The mass conservation equation is 

(3.18) 

where the turbulent mass flux is assumed to vary mainly in the direction perpen-

dicular to the bottom. The turbulent mass ftux gradients in the z and 11 direc-

tions are ignored, because the scale or the layer in the direction perpendicular to 

the bottom is much smaller than that in the direction parallel to the bottom. 

Substituting Eqs. (3.7) and (2.3) into Eq. (3.18) yields 

8p' 8p' a A A - + u - = --<pw > 
81 8z az (3.19) 

where, in contrast to the horizontal bott01J c2Se, a second term appears on the 

lert~hand side due to the advection or mass . 

.. . ..... -- .... --- .---·· - .. ~ .. ··· .-o;~···- ·_.... ·i ·--. -··. -· · ....... ·--- - - ------""!:---::-r--..._~___,......._, ..... 
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3.3. Vertleallr-averaged Equations 

Now integrating Eqs. {3.15) and (3.16) in the z -direction yields 

~(uh)- /iii& .... _ _!_r, • + ...Lri • + u (Ia )h1 - p . .L~.h at p, Po Po 
{3.20) 

a
a {vh) + juh == --1 r, f + -1 Tjr + u(/a )h,. 
t p, p, 

(3.21) 

Again by making use of the assumption Eq. (2.9) the momentum equations (3.20) 

and (3.21) become 

~(uh)- fvh =- -1 r, • -p..L~.h at Po Po 
(3.22) 

~(fila)+ Juh == -lr, r at ,, {3.23) 

Integrating the mas~ conservation equation (3.19) yields 

LaP' L_a,• <.. 
1 "Tt + nu az = - ptD > l =A • (3.24) 

The turbulent mass flux at the upper interface can be written in terms of an 

entrainment velocity: 

- <pw > I , =A = (p'- Po (z, h)] toe. (3.25) 

Tllis relation was also used by Geisler and Kraus (1969). Equation (3.11) can be 

written in two forms: 

p1 =p,{z,O)+p,: +f.(t)=p,(z,h)-p,: +f(l) 

Therefore 

ap' = p,, ah + !!!... 
at 2 at at 

From Eqs. (3.8) and (3.4) it is seen that 

(3.26) 

(3.27) 

--·-- -····· .... .. .. ........... .. ___ .. _____ ., ··.· - ··---· --r-·---··---·-- .. ... ,.------.............. _ ....... --., ... ---·-----· · ......... . 
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a; a,. 
- .... - 1:= fJp., . {3.28) az az 

Substituting Eqs. (2.6), (3.25), {3.26), (3.27) and (3.28) into Eq. (3.24) yields 

L(Ja t)1 = {JiauN0 
2• (3.20) 

Po 

3.4. Energy Equations 

Now the energy equation is derived below. In the bottom coordinate system 

the component forms or the momentum equations are 

au + au + ( + A) a( u + u) + ( + v + A) a( u + u) 
Po at Po at Po u u az Po v r t1 a, 

+ Po ( W + w) a( u a: u) = - aJz' - :: -(p' + r)g fJ + PV2u + PV2u 

-p0 (20Xi1). {3.30) 

a(" + v,) av ( , ) a(" + v, + ~) 
Po 81 +Po at +Po u + u az 

8( t1 + v, + ") a( tl + v, + & ) 
+ p0 (v + v, + v) a, + p0 (W +til) a: 

aP' ap -== - a, - a, + PV2
(" + V,) + PV2

fJ - Po (20 Xil), (3.31) 

a w + ,. aw + ( u + A ) a( w + w ) + ( + v ·t A ) a( w + w) 
Po at ro at Po u az Po " ' " all 

a( w + " ) aP • a A + Po(W + w) 10 
= --- _f- (P' + p)g + PV2

to a: az az 
+ P'V2w -Po (20Xu),. (3.32) 

The dot product or the momentum equation with fJ and time averaging produces 

(Appendix 1) 

!..!_ aa (u 2 + (v + V1 )
2) =- uP'• - p'g {Ju -Po u a<uw > 

2 I 3z 

_ P (" + v ) a< vw > 
0 

, az ' (3.33) 

···•·•-- ·- •·•·-·--... - • .. - •""':'-·· · •·•··- ·.--·-. ~ -·- . r·· ·· .·· .. _., .... - ... ··· •-··-- ---·-- .... ... ,~ ....... •• ··· ·: •· ·-~- ... •• 
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where as before the viscous terms have been ignored because the Reynolds 

number is large. Taking the dot product of the momentum equation with ~ and 

time averaging yields 

{3.34) 

where ~is the dissipation term (see Appendix I) and q 2 = u2 + ti 2 + w2• In Eqs. 

(3 . .33) and (3.34) the Boussinesq approximation, W = 0, the assumptions 

JL << 
8
8 and 

8
8 << aa have been used. The term <pug /1> (assuming it to 

8J ' Jl ' 

be much less than <pwg >) and the advection or kinetic energy parallel to the 

bottom have also been ignored. Adding Eq. (3.34) to Eq. (3.33) yields 

Po 8 ( 2 ( V )2 2 ) Po a . 2 a • . P' Tai u + ., + I + < q > + T a, < wq > + 01 < wp > - - u I 

- p'g/Ju + p..!. f<u( au + a.o)> + <v( a.;+ a.o)> + 2<wau. >] 
0% 8z ar a, au a, 

" 
_,o;,(u<dw>+(v + v,)<tiw>J-<wp>g -~. (3.35) 

3.5. Vertlca111-lntegrated Energ1 Equation 

It is assumed that Eq. (2.18) IS still valid and that 

[ 21'<ue,, + ;,;, + u,;, > -( P; <wq2> + <pw >)J at the bottom and the sea 

surface can be ignored. By using these two assumptions the integral of Eq. (3.35) 

from the bottom to the sea sudace becomes 

- · · - ... --·- ~-- ..... • .. ·-·-··-· - -···· - .. - --t _ _ _ ___ ,_.,..,_~-- ... ~ . .. --· -. -·. --· · ·-·-- ·-... - · · --· - - · ---·,....._.... .. - ~-- • 
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' ' , !!.-fa8 (u 2 +(u + v,)2)dz =-fuaap dz-iir,• -(ii+ v,)r,• 
2 0 ' 0 , 

' - p'g {Juh- f <pw > gdz (3.36) 
0 

where r6 • and r6 ' come lrom Eq. (2.18). It is noticed that the last term but one 

in Eq. (3.36) is the time rate of change ol potential energy due to a vertical dis-

placement when a column ol water moves along the slope, and the last term is 

the time rate of change of potential energy due to mixing. Therelore if these two 

terms are moved to the left hand side, Eq. {3.36) indicates that the sum of the 

time rates of change of kinetic and potential energy equals the rate or working by 

the transverse pressure gradient less the power lost to bottom friction, as in Eq. 

(2.1D) for the horizontal bottom case. 

Substituting Eqs. (3.27), (3.28) and (2.20a) into Eq. {3.1Q) and integrating 

the resulting equation from 0 to z yields 

• 
- <pw > 1. = '•• ta'Jia z + t 1 z + ii fJp., z + (/ fludz ~{Jp.,. (3.37) 

2 ' 0 

From Eq. (3.2D) it is seen that 

gh l, ..... '• {JhuN. 2 
- g d 1 • (3.38) 

Using Eq. (3.38) multiplying Eq. (3.37) by g and then integrating yields 

' ' . -f<pw>gdz =-(
2
1 N. 21a 2 + gdJ'•

2
"' +fJgp.,f[JAudz~dz. (3.3D) 

0 '• 0 0 

Substituting Eq. (3.3D) into Eq. {3.36) yields 

. -·· ------.- ... · -· · ·~ ·- . . ... .. .. --.. -·---·----~-·--:----"'-·----------.... ---------·· 
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, . . 
-121 No21a2+ gd•J''2 • +~gp.,fiJAudz,d:. 

Po 0 0 

As in Chapter 2 the integral on the lert-hand side is 

• f .!.[u 2 + ( v + V1 )~ dz = [u2 + V2 + 2iiV1 )Ia, 
0 at 

' 

(3.40) 

+ 2/a (uaau + uaau + v, aaul + aa f[(Au )2 + (Av )~dz. (3.41) 
t I I t 0 

Using Eqs. (2.20a), (3.10), (3.5} and (3.11) it can be deduced that . , 
- f u flaP dz =- ii/ V1 A Po + p,(s, O)iig {Jia + !u p0 , g ~11 2 

0 z 2 

• 
+ J Poa Au zg {Jdz. 

0 
(3.42) 

Substituting Eqs. (3.11), (3.41} and (3.42) into Eq. (3.40), and using Eqs. (3.22) 

and (3.23) to eliminate the bottom stresses yields 

(3.43) 

The integral multiplied by 2N. 2{J is identically zero, as can be shown by integrat-

ing either term in the curly brackets by parts. 

By using Eqs. {2.22a) and (2.22b) Eq. {3.43) reduces to 

N 21a2 A 
0 + ~ - (u2 + iT2

) + a'u. 2 = 0. 
2 Po 

(3.44) 

Note that here a' may also depend on the bottom slope. 

--~ . 4 ...... - · -~~··t ..... ... -: ·-. - · ~-·-. .-.,...... --.·-~,-- . .. . . ···.,.--·-4

..-.-..---,··-... - - · - · - •• ·--· --· ·-·· - .. - -
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Substituting Eq. (3.26) into Eq. (2.25) yields the overall Richardson number: 

gh(l- p0 (s, Ia)) 
R = == 

0 (-2 + -2) Po U V 

.1!!_ + No 2/a 2 

Po 2 
-2 + -2 u t1 

(3.45) 

Therefore from (3.44), when o' = 0 the overall Richardson number is again equal 

to one during growth. 

3.8. Summary or Sloping Bottom Equations 

The ~overning equations Cor a sloping bottom are therefore: 

a( laii) - I hu = - _I_r, • - p..!Ld 
81 Po Po 

a(vta) + fuh = - _l_r,' 
81 Po 

.L( Ia E), c:os {JhuN0 
2 

Po 
N 21a2 

1 2 (-2 + -2) + g/a E + t1 0 au, - u ~ - = . 

'· 2 

(3.46) 

(3.47) 

(3.48) 

(3.49) 

which are respectively Eqs. (3.22), (3.2.:!), (3.2Q) and {3.44). They are to be com-

pared with their counterparts Cor the horizon tal bottom case: (3.46) and (3.47) 

with (2.7) and (2.8); (3.48) has no counterpart since l is zero when the sea bed is 

horizontal; and (3.40) with (2.23a). It can be seen that the only difl'erences are the 

terms involving P and E. 

-··- ··- -,- ·-----~ .. .,..--:- ..... ,.. .. "':' __ ... ... ........ .... -----,---_ ................. ~ .. - ....... ~ , .. ·----·---·--·-·- .. ---··-·· 
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CHAPTER4 

NUMERICAL SOLUTIONS FOR 
HORIZONTAL AND INCLINED BOTTOM CASE 

The solutions for mixed layer develovment are going to be presented as a 

function of <:me over both horizontal and sloping Oat bottoms. The governing 

equations (3.46}-(3.49) must be solved numerically. First Eq. (2.35) is ur.ed to 

eliminate the bottom stress on the right-hand side of Eqs. (3.46) and (3.47) and 

then A and :~ can be obtained from Eq. {3.49). Eliminating :~ from Eqs. 

(3.46)-(3.48) yields 

where 

and 

[ Ia + 2u2

1 au + 2uv au + ( g
2
t _ 11 )iiat. 

ViJ at "'Jij at N, 2p, 2..fif N
0 

2,, at 

= fiil& - c~ Uu - fJg 1. t 
Po 

_1_2wau + (h + 2u
2 

1 au + ( 11
2t _ 11 )v.at 

.flf at .,fJf at N, 2,, 2..{0 N, 2,, at 
=-full - c1 U(li + v,) 
(~)au+ 2giit av + ( g

2
t
2 

_ 11 t +, ).L~ 
Po Vlf at Po J'ij at N0 

2p
0 

2Ji) N0 2p, ,, at 
== fJN0 

21au 

D -= f1
2t.: + 2N, 2(u2 + ii2 - o:'u. 2), 

Po 

1.=- flf +..fD 
n 2 2' p0 N, N0 

{4.1) 

(4.2} 

(4.3) 

(4.4a) 

(4.4b) 

----..-···--·-··- . · -----:-~-:--·---------:----....--,.-- -· -· - . .. .. -··--- -·---···---....,..._---- · - ··-- ·- ... -- ... '"' .. 
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Using the slab model Pollard et al. (1973) found a solution for the oceanic 

surface mixed layer thickness which tended to oscillate witu time. Since a 

decrease in mixed layer thickness implies that the water is "unmixing", such 

oscillations can, according to Pollard et al. (1973) and Thompson (1973), not be 

real and they therefore kept the thickness h constant after it reached its max· 

imum value. Mter the thickness h reaches its maximum value, the governing 

equations therefore become 

" au - /iiA - c~ Vii - pg A f 
81 Po 

(4.5) 

h ~~ = -fuh - c4 U(v + v,) (4.6) 

BE '· PN 2-- =- 0 u. at , (4.7) 

The initial conditions at I = 0 are: 

, = f = ii = 0; {4.8a) 

but 'ii should satisfy the nonslip condition: 

ii =- v,. (4.8b) 

However, Phillips et al. (1986) and Garrett (1990) show that a bidirectional 

shear flow induced by the buoyancy force can occur and result in restratification 

within a boundary layer on a sloping bottom. In this sense the thickness of bot-

tom mixed layer may decrease and "unmixing" is possible. Therefore both cases 

of "unmixing" and "not unmixing" are presented and discussed in this thesis. 

It is noticed that when substituting the initial conditions (4.8a) and (4.8b) 

into Eq. {3.49) it is found that this equation can not be satisfied except by 

·· ·· ~---· ... - · - ·~ ·· · - - 4 •• · · ---.-··--~-"""':' ....... __.. _ _ . .... -- .... .... - - - --- .. - · - - · - --- - -· --· - .. ----~·~-·--· · - - -- ---
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initially setting V1 = 0. This means either that the geostrophic nlocity as a forc

ing term must start from zero or that the no-slip condition cannot be satisfied 

initially. But when V1 = 0 only the trivial solution Ia ,..,. 0 is obtained. Therefore 

the geostrophic velocity must start from a small value even though the no-slip 

condition cannot be satisfied at time zero. Thompson (1Q73) had the same prob

lem. He used the overall Richardson number equal to one to close the set or 

governing equations. But from the no-slip initial conditions the overall Richard

son number is zero except when V1 :=s 0. This indicates that I =- 0 with a small 

value of the geostropbic velocity is a singular point of the governing equations. 

Fortunately this singular point doesn't affect the solutions very much. For most 

runs the solutions are stable with respect to the initial value of V1 , especially for 

strong stratification. 

An additional problem results when V1 is allowed to increase rapidly to its 

steady value. This causes the thickn~s to overshoot and then oscillate at the 

inertial frequency, with unmixing problems as a result. For surface mixed layer 

problems the forcing may occur suddenly, due to a storm for example, and tbe5e 

inertis.l oscillations should produce additional mixing. Hence Pollard et al. (1973) 

used the maximum thickness during the first oscillation as their prediction or the 

surface mixed layer thickness. But the bottom mixed layer problem considered 

here concerns the equilibrium thickness due to steady geostrophic ftow, for which 

the additional mixing through inertial oscillations generated by sudden start-up 

would result in overestimation of the thickness. This is why Weatherly and 

.. -- ..... , __ ·-- --··--·--·-~ .. -- ··-·-. - ··· --- ~ .. -----:-- ··--.·-----···-- .... .,.,-~-"' · "t ----.. ···- ··-·- . 
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Martin ( 1Q78) and Bird et al. (IQ82) used a ramped geostrophic velocity to 

suppress the inertial oscillations. Several different ramp functions which helped to 

diminish the inertial oscillations were tried here. They are 

{
151/T, em/s I< T1 

v, = 15 em /s I > T1 

which was used also by Weatherly and Martin (1Q78) with T1 = 48 h, and 

V
1 

= 15 (1- e -{I/T,)'J em /s, 

{
-151 (I -2 T1 )/T/ em /s 

v, = 15 em /s 
I< T, 

I > T,' 

(4.Q) 

(4.10) 

(4.11) 

where T1 is here respectively taken to be 48 and Q6 hours. The third ramp is 

continuous at t ~..,. 0 and T1 , and its first derivative is continuous at t ==- T1 • 

During the ramp period the friction velocity varies with the geostrophic velo-

city and extra terms will appea~· in the energy equation and momentum equation 

caused by the variation of V1 with time. Numerical experiments were carried 

out with and without these additional terms, and showed that their effect is 

small. The reason for this is that, for the ramp periods used, the thickness 

responds on a much shorter time scale than the time scale at which V1 is chang-

ing. This allows 11li to use Eq. (3.4Q). The term o'u, 2 in Eq. (4.4r) is therefore 

kept constant during growth, and set equal to the value corresponding to the 

fully developed mi'!ed layer. That is, the value of o' is taken to be either 0.5Q or 

6.3 and the value of u. is calculated for a given bottom drag coefficient from Eq. 
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(2.40) using V1 == 15 em /•. 

The program used to solve Equations (4.1}-(4.3) !s based on the DGEAR rou

tine in the International Mathematics Subroutine Library (IMSL). The DGEAR 

routine is a first order ordinary differential equation solver. It requires a subrou

tine provided by the user to determine the first order derivatives. For the prob

lem discussed here the first derivatives can be obtained from Eqs. (4.1) to (4.3) 

easily as explicit functions of ii, 'ii and t {note that Ia is a function of ii, v and t 

based on Eq. 3.49} by computing determinants. Then the Adams methcd is used 

with funct,ional iteration by choosing two parameter values in the DGEAR rou

tine (see IMSL user's manual, Edition 9.2, 1984, Vol. 1, page: DGEAR-2 and 3). 

The DGEAR routine worked very well for all the numerical experiments. The 

time step used was in the range 0.1--0.001 second. The error bound was 10-4• The 

sampling interval for most runs was one hour. A few runs were sampled at inter

vals equal to 30 seconds, 8 minutes and 20 minutes. No detectable differences 

were found. The numerical results were also very stable for the different time 

steps. 

4.1. Horizontal Flat Bottom (/l = 0) 

Much of the discussion of the results is related to observations made on the 

Western Florida Shelf by Weatherly and Van Leer (1977). The parameter values 

typical of these ouservations are: f = 0.63X10-4/•, v, = 15 cm/s, and 

N0 = 1.28Xl0-2/s. This case was also solved by Weatherly and Martin (1978) 

- -·--··-··· · - ·-· -----
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using the Level D turbulent closure model. 

In the horizontal bottom case only Eqs. (4.1) to (4.3) were solved. "Unmix

ing" was not a serious problem so Eqs. (4.5) to (~!.7) were not used. Typical 

parameter values and results are presented in Table 4.1. The range of ~ given 

in this Table is large, from 0.875 to 203. The purpose of presenting these results 

is to check the sensitivity to particular parameter values and for later comparis

ons. The time series of thickness, speed and veering angle for a typical case are 

given in Fig. 4.1 which shows that the flow approaches a steady state very 

quickly after v, reaches its final value. A small amount of inertial overshoot does 

occur especially in the thickness (i. e. the water is allowed to unmix here). This 

causes some error. For example when the ramp function (4.9} is used as in Figure 

4.1, the flow at 1 - 48 hours is within a relative error of 5 %of the final steady 

state. Arter the overshoot there appear small oscillations but these quickly decay. 

Oscillations with a relative amplitude error larger than 10-2% disappear in a few 

hours after the geostrophic velocity reaches a constant value. 

The drag coefficient has a large effect on the thickness of the mixed layer 

and on the veering angle. This can be seen by examining Table 4.1. For example, 

using o' ... &.3 for the observed case (N, - 1.28 X 10-2 /s, f = 0.63 X 10-t /s, 

v, == 15 cm/s, Weatherly and Van Leer, 1Q77), the thickness is about 7.2 meters 

(Fig. 4.1} and the Ekman veering angle~ ·26.5 degrees if 01 == 0.17X 10~. In con

trast, the thickn~~s is 9.9 meters and the veering angle is -37.5 degrees if 

-·-···· . ~ -... --... -- -·---- - ·- .. --·-- ·-·-~--···- .. ··- -·-· .. ~·---·-------·--·-----
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run 145 174 117 112 107 382 
v, cm/s 15 15 15 30 15 18.92 

N. XlO-t/a 128 128 64 7 7 0.7 
N./1 203 203 102 11 11 0.88 

o' 6.3 6.3 0.59 0.59 0.59 6.3 
CJ X104 1.7 4. 1.7 1.7 1.7 1.6 

numerical h (m) 7.2 9.0 !0.9 68.1 34.1 37.3 
a {deg) ·26.5 ·37.5 ·10.3 -6.7 ·6.7 -5.8 
fl (cm/s) -6.0 -7.2 -4.7 -3.5 -1.7 -1.9 
v. (em/sl 12.0 0.4 13.4 20.7 14.8 18.7 

analytic h (m) 7.3 10.0 10.9 68.1 34.1 37.8 
a (deg) -26.3 -37.2 -!9.3 -6.7 -6.7 -5.8 
u (cmfa) -6.0 •7.2 ·4.7 ·3.5 -1.7 ·1.9 
u.-(cm/s) 12.1 0.5 13.4 29.7 .•. 8 18.7 

Table 4.1. The comparisons between the analytic solutions for 
steady ftow and the asymptotic numerical results for unsteady fiow 
over a horizontal flat bottom. In the table V' 1 - V' + Y

1 
is y· 

component or averaged velocity in the layer. The Coriolis parameter 
I - o.eaxto-4 for runs 145, 174, 117, 112 and 197, while 
I - o.sxto-t tor ruuasg and 383. Ramp function (4.9) was used. 

383 
18.92 
0.7 
0.88 
0.5G 
1.6 

95.5 
. -2.3 

-0.75 
18.0 
02.0 
-2.3 
-0.77 
18.7 I 
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c~ ICI 4X 10-3. The latter results are more consistent with the observed values: 

Ia a::: 6 to 11 meters and Ekman veering o """'-30 to -75 degrees. 

Again when ~· is. small the numerical results show that the choice of a' is 

important. This is illustrated by Runs 382 and 383 in Table 4.1. The difference of 

thickness between a' == 0.59 and a' = 6.3 is about three times which is attributed 

to different definitions of thickness as discussed before. Also the veering angles 

and the transverse velocities are quite difl'erent. 

The comparisons between the analytic solutions for Ia , o, u and ii, Eqs. 

(2.29), (2.36), (2.38} and (2.39}, for steady flow and the steady-state results from 

the numerical solutions using the ramp function (4.9} are also given in Table 4.1. 

Because for a horizontal flat bottom the numerical solutions reach a. steady state 

quickly, all numerical results presented in Table 4.1 are the equilibrium values. 

Both a' == 6.3 and 0.59 are also used. It can be seen that the numerical results 

are almost identical to the analytic values. This supports the assumption that o' 

only depends on ~ for the horizontal bottom case, and also shows that the 

ramp function doesn't afl'ect the application of the assumption. 

Inertial oscillations do appeP..r at 1 = T1 for some values of the Brunt

Vaisala frequency, drag coefficient, and Corio lis parameter for certain ramp func

tions. If the water is not allowed to unmix when overshoot occurs, the thickness 

is then larger than that obtained from the analytic solution. However th~ 

differences are sm!ill. Furthermore, it was found that the overshoot and the 
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inertial oscillations could be eliminated by choosing ramp (unctions or the rorm 

(4.10) or (4.11), and T1 sufficiently long. This suggests that the overshoot 

phenomenon is an artifact c~used by the ramp (unction . 

. ·· ---~ .. :-.... --------_.,......-:------.· ··-:- ----··· -···-..... .. -.. - .._ ... .. -·-· :---- - -·-··- .. -··· · ... : - ... - ···--· ..... _._..,.. .. _~_ .,. .,. ... --··---- -
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4.2. Sloplns Flat Bcttom 

4.2.1. Summary of Weatherly and Van Leer's observations 

The observations discussed here were made by Weatherly and Van Leer 

(1977) on the western Florida Continental Shelf be~ween 3 and 8 July 1976. The 

mooring was located near the shelf break. From the topography (see Fig. 4.2 

replotted here from Fig. 3 in Weatherly and Martin, 1978) the bottom slope 

varies from 0.26X to-s to 2.4X to-s. Figure 4.2 also indicates that the isotherms are 

approximately parallel to the isopycnals. The water depth at the location was 

~bout 101 m. The· profiles or velocity, temperature and conductivity (Fig. 4.3) 

were made by cyclosonde (Van Leer et al., 1974) and were sampled at intervals of 

2.5 m from 3 m above the bottom to 13 m below the water surface. During the 

observations the interior velocity was northward for the first 48 hours. From 48 h 

to 72 h it shifted to westward, and then became southward afterwards. 

Wh~n the interior flow was northward, shallow water was to the right and 

the transverse flow in the boundary layer therefore caused downwelling of 

warmer water. Therefore hereafter the northward interior flow is often referred to 

as the downwelling r.ase. When the interior flow was southward, shallow water 

was to the left therefore upwelling or colder water occurred. The southward inte

rior flow is often referred as the upwelling case. 

The tempcratu::e time series recorded by cyclesonde at fixed depths are 

reproduced in Fig. 4.4. From the profiles (see Fig. 4.3) and temperature time 

. - ·-· - · ~··- · . . -· _ ......... . -..... . ·--- .. - ... . -... ~ ··.-. ~ ··-·····-- .. ...., .... ~.""'"----· - ·· ·--·---------.. - -... ·····--- - -
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Figure 4.4. Observed temperature time series at various heights above the sea 
floor at the location 26 • O'N, 83 • 49'W on the western Florida Continental Shelf. 
This Figure is copied from Fig. 2 of Weatherly and Martin (1978). 
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series Weat.herly and Van Leer (1977) deduced that when the interior flow was 

northward, the thickness of the bottom boundary layer was a m, the average 

(with respect to time) veering angle between the interior flow and the flow near 

the sea-floor was -30 degree.:.~, and the temperature in the mixed layer increase~ 

slowly with time (see Fig. 4.4). During southward flow the thickness was 11 m, 

the average veering angle was -75 degrees, and the temperature decreased rapidly 

with time. In both cases, most or the veering occurred in the region or maximum 

temperature gradient at the top or the mixed layer, so that the veering angle was 

nearly constant within the mixed layer itself. 

4.2.2. Weatherly and Martin's numerical results 

Weatherly and Martin ( 1978) simulated the above obse"ations using the 

Level D turbulent closure model. They assumed that the isotherms were horizon

tal (no thermal wind), that in the interior the flow was geostrophic and parallel · 

to the isobaths, that the stratification in the interior was constant and all devia

tions in the bottom boundary layer from th~ interior quantities varied only with 

distance normal to the bottom and with time. During northward flow the bottom 

slope was defined to be positive and chosen as 0.26X10-3, since the transverse flow 

at the mooring site was coming from the less steeply sloping region to the east of 

the mooring (Fig. 4.2). During the southward interior flow the bottom slope is 

negative and chosen to be - 2.4X 10-3, since the transverse flow was then coming 

from the more steeply sloping region to the west or the mooring (Fig. 4.2). The 

--.. ···---- -·····---:---· - ....... --.--.. ·-· ·~· __ .,.. _____ ... .... _ . .... -- ...... -- ··-· ·- ---- ···-------· ----· 
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temperature time series and temperature profiles obtained are reproduced here in 

Fig. 4 5 for both the downwelling case (/l =- 0.28X 10-3) and the upwelling case 

(fl =- - 2.4 X 10-3). 

The results show that the temperature in the mixed layer decreases with 

time for the upwelling case, and increases with time for the downwelling case. 

For the upwelling case the thickness reached a nearly constant value of about 5 

m (see Fig. 4.5) but other quantities like veering angle and temperature varied 

with time. At Day 4 (1 = 96 h) the temperature in the mixed layer was 21' C, the 

vertically averaged speed was about 4.5 cm/s, the total veering angle was - 28 

degrees, the vertically averaged (over the depth of the mixed layer) veering angle 

was estimated from Fig. 10 in their paper to be - 18 degrees and the thickness 

was about 5 m. 

For the downwelling case the computed thickness and the temperature 

increased with time (see Fig. 4.5). At day 4 the temperature was 22.S' C, the total 

veering angle was about -23 degrees, the vertically averaged veering angle was 

estimated to be -19 degrees, and the thickness was about 10 m. 

· -· --•---•--------·....--- -•---~·-•,__,.. . .. _ .. _ __ • • ·•••,- · ... ·~· •••• • - •. - ...... , . .. • _ . .. .., ,..._ - · - •-••a•• • • - • · ... • - · 
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4.2.3. VertleaiiJ-lntearated model reau•ta 

In order to compare this model with the Level 0 turbulent closure model and 

the observations on the western Florida Continental Shelf, the same parameter 

va.lues are used here including bottom slope {J: 2.6Xl0-t and -2.4Xlo-s, 

corresponding to the downwelling and the upwelling cases respectively. 

I = 0.63Xl0-4/s and N0 = 1.28Xl0-2/s {corresponding to the initial temperature 

gradient S == tl2 = 7X 10-4° C/cm used by Weatherly and Martin). It is 

assumed that the dependence of a' on the bottom slope can be t:>mitted so that 

the term a'u, 2 in Eq. (4.4a) is again constant during growth, and equal to the 

value corresponding to the fully developed mixed layer. This is justified because 

f is large {203) for the case considered, and therefore the results are not 

expected to depend strongly on the value of a'. Thus, the value of a' is taken to 

be either 0.50 or 6.3 as for the horizontal flat bottom case, and the value of u, is 

calculated from Eq. (2.40) for a given bottom drag coefficient and V1 == 15 cm/s. 

Equations (4.1) to (4.3) are then solved with ramp function (4.9). 

The values of density given by the solutions for Eqs. (4.1) to (4.7) must be 

converted to temperature in. order to make comparisons with Weatherly and 

Martin's results ( 1078), since they took density to be a function of temperature 

alone. The thermal expr.nsion coefficient e is 

e =- ! ~;. (4.12) 

----~--· ···-···- -·-.- - ·- ... ·-·-.. ··-·----·------····-· ·~ ---~---------:·-·· · ... - ····-·-···-,......------ -····------·- .... ·. - . . ··- -· 
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Therefore it can be written that 

2 g J /J ~Ti 
N 0 =- --L- .... g(-- gS(. 

p Jz J1 
(4.13) 

Using Weatherly and Martin's values of S and N, (see above), this gives 

e =- 2.39X 10~'/C, which is comparable to tabulated values (see for example Gill, 

1982, p. 603). Using this value of e, the time series or temperature can be 

obtained from Eqs. (4. 12) and (3. 11). That is, 

N. 2 t 
l:fT 1 - T (z, 0)) = -Ia - ·-
\\ 

0 2g Po 
(4.14) 

The computed time series of temperature in the bottom mixed layer, and the 

computed temperature profiles are given in Fig. 4.5, together with those obtained 

by Weatherly and Martin. Fig. 4.5 shows good agreement between the two 

models. This implies that the dependence of a' on bottom slope P can be ignored. 

The results for the downwelling case and the upwelling case are discussed 

separately below. 

4.2.3a. Downwelling case 

As pointed out in Section 4.2.2 during northward ftow the bottom s!ope is 

positive (shallow water is on the right) and downwelling occurs. The results given 

in Figs. 4.5 and 4.6 show that the thickness continues to increase with time after 
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the geostrophic velocity reaches a constant value. The computed thickness time 

series is also given in Fig. 4.5. The thickness time series is very comparable to 

that obtained from the Level D turbulent closure model. 

The advective density anomaly E is negative and small during the ramp 

period, but increases in magnitude as time progresses. Similar behavior is evident 

in the temperature t.ime series in Figs. 4.5 a utd a 1 Cor both models. 

The speed in the mixed layer is 12.4 cm/s at t=~ hours then increases 

slowly and approaches a constant value oi 14 cmfs. The Ekman veering increases 

to a maximum -26.4 degrees then decrea.c;es slowly. 

For the downwelling case there is no overshoot and no inertial oscillations 

appear in the numerical results, probably because the thickness still inc,· ~ases 

with time after the geostrophic velocity reaches a constant value. 

Because results were given at I = 96 h by Weath~rly and Martin (1978), for 

comparison results at the same time obtained from the VPrtically integrated 

model are presented. These, together with the Level II model results and observed 

data are listed in Table 4.2. The values of veering angle and speed frCim the 

Level D model presented in Table 4.2 have been vertically averaged in order to 

make direct comparisons with those obtained from the vertically integrated · 

model. 'l'he observed temperature values in Table 4.2 are estimated from Fig. 

4.4, corresponding respectively to the values at the end or northward interior ftow 

and at the end of southward interior flow. The observed speed is the vertically 

~ --~ ... -~....-- ··-- ·---·- .. ---·-· · ·- ······--· -- ··.--~--.... --·-..---- --- · ........ ·. · ·-··~----·,....._-- .. --... ----..--- ..................... - • 
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averaged value estimated from Fig. 4.3. Table 4.2 shows that the vertically 

integrated model results are very close to those computed from the Level II tur

bulent closure model. 

---·· .. ........ . -.. -.. ._ .. -·-~·---·-.- ··-,.,._.- ·-··--- ·-- .... -........ ··- ........ ----... -.-- - - ---- -·- ·-·- -1·-··- -··- ·-·· .. 
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A (m) 
TCC) 
Q (degrees) 
u·ccm/.s) 

• 

, 

Vertically Inteuated Level n Turbulent Closure model Observation 
downwelliD«: apwelliDr downwellin.: UDWellinsr ease downwellinr unwelliDsr 

G.8 4.8 10 5 : Ia (m) 
22.58 20.G7 22.5 21 T(•C) 

-23.5 -14.3 -19 -16 Q (degrees) 
13.8 4.7 13.5 4.5 u·{em/sl 

Table 4.2. The values or thickness A, temperaturt T, (vertical
ly averaged) veering angle Q and speed U at time t - OG h in the 
mixed layer obtained from the vertically integrated model and the 
values of the same parametem obtained by Weatherly and Martin 
(1G78) using the Level D turbulent closure model. The observed 
temperature valu• are estimatl!d from Fig. 4.4, eorreeponding 
respectively to the values by the end of northward interior Bow and 
by the end of aouthward interior flow. The observed speed is the 
vertieally averapd value estimated from Fig. 4.3. The observed 
veering angle is the time-averaged angle between the interior flow 
and the Bow near the sea-floor. 
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4.2.3b. Upwelling ease 

Figures 4.7 and 4.8 show the time series or thickness, density anomaly, speed 

and veering angle for th'- t.~pwelling case (southward interior ftow, fJ .... -2.4X 104 ). 

"Unmixing" was a problem for this case, as cau be seen from Fig. 4.7. Inertial 

oscillations can also be seen to be present, particularly in the veering angle 

results. The results when "unmixing" is inhibited are shown in Fig. 4.8. The 

differences between Figs. 4.7 and 4.8 are small at times either less than or much 

greater than the ramp time or 48 h. From Figure 4.8 it can be seen that the 

thickness reached its maximum value of about 4.6 m at 50 hours. The thickness 

is also presented as A function or time in Fig. 4.5, which shows that the 

thicknesses are basically the same as those obtained from the Level n turbulent 

closure model. 

The advective density anomaly ! is positive and increases with time, since 

deeper and colder water is advected up the slope. The temperature time series 

and temperature profiles as a function of time are given in Fig. 4.5, which shows 

that the temperatures a!ld mixed layer thicknesses obtained from both the verti

cally integrated model and the Level II turbulent closure model are comparable. 

The speed increases to a maximum value of Q.2 cm/s then decreases mono

tonically. The maximum veering angle is - 29.3 degrees. 

For more direct comparison with the Level D turbulent closure model, again 

the results at t = 96 h (Table 4.2) are presented. It is seen that the two models 

. ·-- ··- ... ·--~----- · - · ·-·· . ........ - ·-·-···-· ···· ·· . . - ·· ···· -- ......... :-...... ~. _,. ··- ..-·- -;-··. --~- .... ....... _ ... __ -· 
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yield very similar results. 

When the thickness is permitted to decrease (Fig. 4.7) the thickness reaches 

about 4.6 m and then drops to about 3.5 m. Mter that the thickness gradually 

approaches an almost constant value of 4.7 m which is nearly the same as that 

obtained by Weatherly and Martin (1978). The amplitude of the overshoot and 

subsequent inertial oscillations are much larger Cor a sloping bottom in the upwel

ling case than Cor either the downwelling case or for a horizontal Oat bottom. 

However, when different ramp functions Eqs. (4.10) and (4.11) with T1 > 48 (Eq. 

4.10 is better than Eq. 4.11) are used it is found that the overshoot and the iner

tial oscillations can be largely eliminated. 

4.2 ••• Comparisons wlth Observations 

From Figs. 4.4 and 4.5 it can be seen that when the interior flow was north

ward (time < 48 hours), temperature time series obtained from both the verti

cally integrated model and the Level ll turbulent closure model are basically con

sistent with the observations made by Weatherly and Van Leer {1977). The tem

perature increases slowly with time. When the interior Oow was southward (time 

> 72 hours) the temperature time series from both models again have the same 

tendency as the observations: that is, the temperature decreases with time. How

ever, the observed cooling rate is much larger than predicted. 

The thicknesses computed from both models are about the same and are in 

the same range as the observed values (Table 4.2). But there are two 

. . . . . . ..... - ·- .. ... · -· ... · -·1- ·• ...... ___ .... ........__. -..... - .. ·-·--··~ ·- ·-· .. ·-- ·- ·-· ·----- --- ·------- ··-- - · - ·- - ·· 
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discrepancies. One is that for the downwelling case the observed thickness 

remains constant at 6 m while the computed thickness increases with time. 

Within S days the computed value can reaeh 10 m (Fig. 4.5). The other is that 

the predicted thickness (about S m) for the upwelling case is less than the 

predicted thickness (about 10m) for the downwelling case, whereas the opposite 

is true for the observations: the observed thickness is 11 meters for the upwelling 

case, and 6 m for the downwelling case. 

The computed veering angles from both models are smaller than those 

observed, especially for the upwelling case (Table 4.2). Furthermore, comparing 

Figure 4.6 with either Figure 4.7 or 4.8 shows that at times greater than the 

ramp period the predicted veering for the downwelling case is substantially 

greater than that for the upwelling case. As with the thicknesses, this is the 

opposite of the observations. Therefore even the fact that the model results 

represent a vertical average, while the observed values are the difference between 

the direction or the interior ftow and that near the bottom, is unlikely to fully 

account for the discrepancy. 

There are several possible causes of the discrepancies between the numerical 

results obtained here and by Weatherly and Martin {1978), and the observations 

reported by Weatherly and Van Leer (1977). The first is that both models ignore 

the possible effects or thermal wind. From Fig. 4.3 it can be seen that the vertical 

shear in the interior was negative during northward ftow (downwelling case). 

When the thickness or the mixed layer increases the geostrophic velocity at the 

• -·- · · · ···-··· ··· · · - · ··-- · _ _ _ .... .... ... .... . . .. . . ... ·· · --· · ·- - · - .. ......... · -- · ·· 0 ... .. ... - ··- . · ·-· - ·-.- 0 
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interface would therefore decrease under these conditions. Therefore the kinetic 

energy or water entrained into the mixed layer would also decrease, which should 

lead to diminished energy available for mixing and retard the growth of the 

mixed layer. For southward flow on the other hand, because the vertical shear in 

the interior was positive (Fig. 4.3), the velocity at the interface would increase 

during growth, potentially leading to greater thicknesses. The effects or including 

thermal wind on the vertically-integrated model results are presented in Chapter 

5. 

A second possibility is that the calculations ignore the actual history or 

mixed layer development. For example, when the interior flow reverses to the 

southward direction a bottom mixed layer already exists, unlike the initial condi

tions assumed in the numerical computations (Ia = 0 ). Furthermore in the obser

vations the interior flow was westward for 24 hours before shifting to southward 

flow. The westward interior flow must have induced upwelling near t.he coast, 

and may have contributed to the higher observed cooling rate. 

-........_ .... ....,.._ .. __ ...... . . . . .. ......... - ~ --· .. ·· ..... ·---------.--.. ···- . .. ·---·-···-- ··-----.-·------ ·- ·· ........ ·--.... ···--···---
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4.2.6. Asymptotic Solutions for Steady Flow over a SloplDa Bottom 

The principal results ol the 5-day simulations obtained above show that the 

temperature ol bottom boundary layer can increase (corresponding to down wei-

ling case) or decrease (upwelling case). But the recent work by Rhines and Mac-

Cready ( 1080) shows that when the development time of the bottom boundary 

layer is larger than a time scale given by 2/ (N, !!lin.BY2 the buoyancy force can 

reach a balance with the driving pressure gradient Ioree. Alter this time upwel-

ling or downwelling ceases and the Ekman ftux is extinguished. However, it 

should be noted that this time scale is independent or the sign or the bottom 

slope, in apparent contradiction with the results in Figure 4.5. 

Phillips (1086}, Thorpe (1087) and Garrett (1000} presented a difJcrent pic-

ture of flow on a sloping bottom. When the ftow within the bottom boundary 

layer becomes steady a bidirectional secondary ftow forms parallel to the bottom 

in the z -z plane. Therefore it is interesting to investigate the steady Dow in 

terms or the vertically integrahr:l model. 

For steady ftow the time-dependent terms are dropped and the governing 

equations (3.46}-(3.40) become 

/Ia -1 s {Jg l 
- ii = -T· ---

'• '· 
I lafi =- --1-T, , ,. 
,8/auN, 2 = o 

L N 2,. 2 
1 2 ( -2 + -2) + gn l + o O Q u, - u v -- 2 a:= • 

Po 

. . .. -. - ···--- -· ... -·- ...... . ·- .. . -- --- --- - . . ..... -- ······ ... -.. . ---- ·. ··- .... .. .. .. .. . - . . . ·-

(4.15) 

(4.16) 

(4.17) 

(4.18) 
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From ~~. ( 4.17) it is deduced that 

ii == 0. (4.10} 

That is the Ekman Oux is extinguished as demonstrated by Rhine and Mae-

Cready (1989} in their experiment. The bottom boundary layer becomes arrested. 

By using a quadratic drag law Eq. (4.16) results in 

1i == v, (4.20} 

which can also be obtained from the equation used by Rhines and MacCready 

(1989). Substituting Eqs. (4.19) and (4.20) into Eq. (4.15) yields 

-IV, = {Jgt. 

'· From the geostrophic balance equation (3.5), therefore, 

{Jg t == _J_ DP, _ g {J. 
Po Po 8z 

The driving force in the boundary layer in the z -direction is 

(4.21} 

(4.22) 

_ DP' _ p'g p == _ OP, _ P'l fJ (4.23) 
8z 8z 

where Eq. (3.14) bas been used. Substituting Eq. (4.22) and using Eq. (3.8) we 

therefore have 

8P 1 
- - - p'g fJ == _,, /1. az (4.24) 

The driving force is, according to Eq. (4.24), equal to the buoyancy force only 

caused by the local mixing which locally is not zero and varies with height above 

bottom (Eq. 3.12). But the vertical integral of Eq. (4.24) over the mixed layer 

thickness shows that the vertically integrated pressure gradient is balanced by 

. . .. . .-~·-·-- ..... .... . . . . ...... .... ,_ .......... . "'-·· ... · - ···· ·- ·--~···-·--·--·- .. .......... ' · · · -·~-· - ---· ----·-



vertically integrated gravity. This result is different from the pressure gradient 

being balanced by gravity, given by Rhines and MacCready (1089). Eq. (4.24) 

also shows that for the upwelling case ( fl < 0 ) the driving Coree in the upper 

half or the bottom mixed layer is always larger than zero, since ,. > 0 for 

z > A /2: that is, the driving Coree always tries to drive fluid down slope, while 

the driving force in the lower half or bottom mixed layer is always less than zero, 

since p" < 0 for z < Ia /2, and tries to drive fluid up slope. For the downwelling 

case ( fl > 0 ) the driving force in the upper half or bottom mixed layer is always 

less than zero due to p" > 0 and also tends to drive fluid down slope while in the 

lower half the driving force also tries to drive Ouiti up slope. Therefore the driv-

ing force in the bottom mixed layer should produce a secondary circulation 

within the boundary layer, which tends to restore the stratification, as shown by 

Phillips et al. (1986) and Garrett (1g9o). 

From Eqs. (4.18) and Eq. (4.21) the asymptotic solutions for Ia , and f 1 are: 

and 

f =- '·' v,. flg 

(4.23) 

(4.24) 

For the observations made on the western Florida Continental Shelf by Weath-

erly and Van Leer (1077) the calculated values or A and t based on Eqs. (4.23) 

and (4.24) are: II = 5.17 m and t = 0.41 X 10-3 g/cm -3 for the upwelling case 

.... ___ ..... ····-· .. .. . - . . .. .. ................. . --· . . - ~ ·· .. . 
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(11 =- -2.4 X to-3)1 and A == 440 m and t == - 3.7 X 10-3 g/cm -3 for the downwelling 

case (/1 = 0.26XI0-3
). As shown in Figs 4.9 and 4.101 these results are consistent 

with the numerical solutions for sufficiently long mixed layer development times 

after the ramp period. Fig. 4.9 presents the time series of A 1 t 1 speed and veering 

angle for 4800 h (200 d) obtained from the numerical results for the upwelling 

case. The thickness A has reached 5.1 m and t = 4.07X lo-t g/cm -3. The verti-

cally averaged veering angle and the speed tend to zero and the bottom boundary 

layer becomes arrested. Fig. 4.10 presents the time series of A 1 ( 1 speed and veer-

ing angle for the downwelling case. Mter almost 217 years the thickness Ia is still 

approaching a nearly constant value or about ago m. The vertically averaged 

veering angle and the speed are still tending to zero but the bottom boundary 

layer has not yet been completely arrested. The reality or results for the 

downwelling case is doubtful because after so many years the How or the ocean 

would have changed its type long before. 
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CHAPTER& 

EFFECTS OF THERMAL WIND 
ON BOTTOM MIXED LAYER GROWTH 

When thermal wind effects were ignored in Chapter 4, the 5-day's simulation 

results obtained from both the vertically integrated model and the Mellor· 

Yamada Level ll turbulent closure model showed that the thickness continued to 

increase with time for the downwelling case. This was shown to be inconsistent 

with the observations on the western Florida Continental Shelf during northward 

flow. As discuc;sed before, the negative vertical shear of V
1 

in the interior (Figs. 

4.3 a and b) might be expected to limit mixed layer growth. In this Chapter this 

aspect or the problem is examined. 

The importance of the thermal wind to bottom boundary layer dynamics bas 

been demonstrated by Yamada and Mellor (lg7S). They used their Level ill tur-

bulent closure model to simulate atmospheric data from W angara {Clarke et al., 

1Q71). Their sensitivity studies showed that the thermal w;nd was essential to 

explain the mixed layer growth observed at Wangara. Manins (1Q82) compared 

results from a slab model to the Wangara data.. When the geostrophic wind was 

weak he assumed, as in the so-called 'encroachment' model of Carson and Smith 

(1Q74), that mixing was driven by convection due to surface heating. But when 

the geostrophic wind is strong the 'encroachment' assumption is no longer appli-

cable. Manins therefore used the turbulent kinetic energy equation derived by 



Mahrt and Lenschow (1Q76). They assumed that there exists both a temperature 

jump and a velocity jump at the top of the mixed layer, with linear changes in 

the thin jump region. Manins assumed that the whole mixed layer was uniform 

and moved like a slab, and set up a closure model which he called th ~ Froude 

Dynamics Model. Tbi~ model gave additional mixed layer growth when the geos

trophic wind was strong. For both strong and weak geostrophic wind cases the 

results reconfirmed the importance or the thermal wind for predicting mixed layer 

height and vector wind in the mixed layer during the Wangara experiment. 

At Wangara the stratification was very strong (N0 ,..., 7X 10·2 /s, I ,....._ 10-f /s 

and thus f ,...... 700 ), and slab models can therefore be expected to be appropri

ate. But as shown in Chapter 2 when N0 /I is not large the slab model is no 

longer valid, and the 'Variation of velocity with the height must be taken into 

account. The advantages or the vert~cally averaged model, when comparing with 

the slab model used by Manins (1Q82), are that the vertical distribution of velo

city is included, and it need not be assumed that there is a velocity jump with 

linear distribution within the thin jump region. Note as well that convection due 

to surface heating does not play a role here. 
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6.1. Governlns Equations. 

The density in the interior is assumed to vary in both the horizontal and the 

vertical directions. That is, ~:·, == C 1 r;' 0 and a:,•, == C 2 yl: 0 where C 1 and C 2 

are constants. A sketch showing the flow geometry and density field is given in 

Fig. 5.1. 

The governing equations in the bottom coordinate system, in which the ,_ 

axis is perpendicular to the sea floor and the u-direction is the direction of the 

geostrophic velocity as sbnwn in Fig. 5.1 are (Appendix 2): 

a(u/a) _ fV/a = __ 1_,
6 

• _ Eg/a {J 
at Po Po 

!{¥!1 + fiih =- _!_r,' 
8t p, 

~fl. "'\ . tan.B1 N 2_/a 
~==--p, 0 u at , 

1 2 (_2 _ 2) N, 21. 2 Egl. 2/a a'Cl UN, 2tan.81' 
au, - u +" + + ------:-----

2 '• I 

fJ 1 [ N, 
2oo N, 

4
h 

2
tanflt'] 0 - tan 1 I + 412 = ' 

where u = vu2 + ( tl + ¥;)2 as before, and where 

[
8Po 8po ] 

tanfl1 = - -a;: 1--a;-

is the isopycnal slope relative to the sea floor, and 

, [a,, 1 a,, ] tanfl1 = - -- -
8z 1 8z 1 

(5.1} 

(5.2} 

(5.3) 

(5.4) 

(5.5a) 

(5.5b) 
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Figure 5.1. A sketch of a sloping bottom with horizontal density gradient. 
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is the isopycnal slope relative to the horizontal. Note that (see Fig. 5.1) 

(5.5c) 

The equations in a bottom coordinate system with geostrophic balance in the 

interior are (see Appendix 2) 

8P, 
-Po I v,{z, z) =----a;-- g /Jpo{z, z) {5.6a) 

aP, 
0=-au {5.6b) 

aP, 
0 = 8z + p,{z, z)g (5.6c) 

where the geostrophic velocity V1 varies only in the vertical direction but, in the 

bottom coordinate system, V1 is in general a function of both z and z. From 

Eqs. (5.6a), (5.6c) and (5.5a) the thermal wind relation can be deduced by using 

scale analysis: 

a v, N, 2tan/N vs = - =- ----:~-az I (5.7) 

where VS is the vertical shear of geostrophic velocity. Thus the geostropbic vel~ 

city can be expressed as 

V1 (z, z) = V1 {0, 0) + {JzVS + z VS. (5.8) 

From the energy condition (5.4) A can be expressed in the Corm: 

-B 1 + J B 1
2 - 4.A 1 C 1 

A= 2A
1 

(5.9) 

(the reasons Cor choosing the positive square root will be given) where 

N/ [ N. 
2 

2 •] A 1 = - 1 - -tan {J1 2 2/2 
(5.10) 

B €g N,2 {Jrt- 20 'U) 
1 = - - -

1 
tan 1\" + ~ o 

Po 
(5.11) 



C , 2 (-2 + -2) I= o u, - U t1 , (5.12) 

Consider the gradient Richardson number in the interior: 

N2 
R· = - 0

- (5.13) ' vs2 
The flow in the interior is required to be stable. When Ri ~ 1/2, from Eqs. (5.7) 

and (5.13) it is seen that 

N2 
-

0
-tan2 P 1 < 2 

/2 1 -
{5.14) 

and therefore that A 1 > 0. 

The reason for choosing the positive square root in Eq. (5.9) is therefore that 

because A l is positive, and c I is generally negative, the magnitude or the square 

root is greater than B 1• Choosing the positive sign ensures that Ia will be positive. 

In the sloping bottom case because the geostrophic velocity depends on s, 

the along slope coordinate, as shown in Eq. (5.8). Therefore the thickness, and 

consequently the velocity vector and the advective density anomaly could also be 

expected to vary with z . But in Appendix 2 it is assumed, provided the bottom 

slope is small enough, that these quantities were an independent or z (as also 

assumed by Bird et al., 1Q82). How small must the bottom slope be? Examining 

Eq. (5.8) it is seen that the '-dependence may be ignored provided 

P << A/z. 
This is quite a stringent condition. For example if horizontal uniformity over 

scales or 100 A is required (1 km if A == 10 m), then {J must be much less than 

to-2 {0.6 degree) . 

. ·--··· -- ~- ... - -..-·······--:-: ............ -.... -... ---:------:-----'-·--.. .... -~ .... --·-~--,.- ·:--···.~-. -. ~ ............ --, .. -·-·-· 
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The governing equations (5.1)-(5.4) were solved numerically in a way similar 

to that discussed in Chapter 4, with the same initial conditions and using the 

DGEAR routine in IMSL. That is, by using Eq. (5.Q) to solve for Ia , then substi

tuting h into Eqs. (5.1}-(5.3), these equations can be solved for the variables fl, 1T 

and f. The same ramp function Eq. (4.Q) with v, (0, 0) replacing 15 cm/s is used. 

The ramp period T1 is 48 hours, unless stated otherwise. 

The results for a horizontal flat bottom and for a sloping flat bottom are 

presented separately in the next two subsections. 

·- ·.-.,.............----·:--·-----:-~ ...... , .. 7 .. "'1't~----...--~~~-·-----"""!··-·~·--·-... ·--·· -· , .... ~ - ~- _...,.,..,,........., ~~-··:--·..o:--..,...·-t"":'"-·-: .... .. - .- ·.· 
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5.1. Results tor a Borlsontal Flat Bottom 

For a horizontal flat bottom when thermal wind elects are included the 

mass conservation equation and energy equation are different. from before. The 

main distinction is that f is non-zero. The governing equations are F41. (5.1)-

(5.4) with {J1 = {J1' (see Appendix 2). It is assumed that {11' << 1. For a given 

value of VS, V1 {0, 0) was determined by setting V1 == 15 cm/s at z = 20 m 

based on Fig. 4.3. Test runs for the range of N, from 10-3 to 10-2 /s, I = 10-4 /s 

and values of VS in the range to-2 to 10--t /s showed no obvious difference for 

a' = 0.59 or 6.3. This implies that the variations of ol are not important and the 

dependence or o:' on ~s can be ignored when ~ is large. 

When a v, > o, the thickness of the bottom mixed layer always increases 
8t 

with time. As an example, a 5-day's computation results are shown in Fig. 5.2. It 

was found that the greater the magnitude of the vertical shear, the larger the 

thickness. The veering angle decreased with increasing magnitude of VS. There-

Core the tendency of the thermal wind effect is the same for the vertica.Uy-

integrated model as obtained by Bird et al (1Q82) using Level D turbule11.t clo-

sure. In the northern hemisphere f is always less than zero in this case and 

increases in magnitude with time, because a:: < o and the transverse Oow 

advects less dense water in the negative :~-direction. This is therefore similar to 

the downwelling case for a sloping bottom presented in Chapter 4. 

_ _ ,...,., ,. .. " •·-- I .. --·- • •-..,-----· .. ~------:---,•- : • .. - . ~·---,....--:-_...,-.. .. - ·•• • • • ' .. . _ , ,...__..,... ----·· -·· ····• #"• . ~ 
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In order to make comparisons with the sloping bottom ease without thermal 

wind the example given in Fig. 5.2 is for IN- -0.2&Xl0-$, the negative of the 

bottom slope used in Fig. 4.6. All other parameters have the same values as in 

Fig. 4.e .. Figure 5.2 shows that the results are almost the same as those in Fig. 

4.6. Therefore at the initial stage (5 days) ol bottom boundary layer dcve~opment 

the horizontal density gradient in this case plays a role similar to that or bottom 

slope. But for a long period or bottom boundary )aVP1' development the eft'ect or 

thermal wind is different from the effect or bottom slope. The thickness and the 

verticaJly averaged speed of the layer always increase with time. This can be seen 

in Fig. 5.3 for a case or 21.7-year's developing time in which aU parameters are 

same as in Fig. 5.2. 

When a:: < 0 (Fig. 5.4), the isopycnal slope is taken as 2.4X 10-3, the 

negative of the bottom slope used in Fig. 4.7. The 5-day simulation results show 

that in the northern hemisphere E is always larger than zero aecause a:; > 0 

and the transverse flow advects denser water in the negative s -direction. This 

corresponds to the upwelling case for a sloping bottom discussed in Chapter 4. 

Overshoot phenomena appear, as in the upwelling case for a sloping bottom and 

no thermal wind (Fig. 4.7). However, after the ramp period the thickness 

decreases continuously with time. This is very diff<:ient from the corresponding 

sloping bottom case ~ithout thermal wind. The reason for this difference is that 

for a sloping bottom, when E increases, the restoring force due to the component 

------------
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or buoyancy parallel to the slope, tf' ~ (Eqs. 5.1 and 3.48) increases to prevent 

'· 
the further increase of t. For the Oat horizontal bottom case with thermal wind, 

this term is not present (Eq. 5.1, with ~- 0), and f could increase indefinitely. 

Furthermore, if the thickness didn't decrease the potential ener~ term tfla in 
'• 

the energy equation {5.4) caused by advection would increase to infinity. This is 

unphysical, and this term must have a limit. That is, Ia t muut have a limit. 

Time series or Ia t, hi, Ia ( V1 + V}, V1 + v and i are shown in Fig. 5.5, in 

which HE stands for the product of Ia t, HU for /au and HV for Ia ( v, + ii). Fig. 

5.5 shows that Ia t approaches a constant value, and therefore the thickness must 

decrease due to the increase of t. The 11 -component of vertically averaged velo-

city decreases much faster than the z -component of vertically averaged velocity. 

Therefore in the asympototic sense it can be assume·d that V1 + 1i = 0. Then 

from Eq. {5.2) 

ala = /Au< 0 at v, 
is obtained. The equation above shows that the thickness must decrease with 

time in this limit. 
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The results when unmixing is not allowed are shown in Fig. 5.6. Note that 

in Fig. 5.6 not only is the thickness constant (about ft.7 m), the speed and veering 

angle are also constant: IQ.3 cm/s and --tl degrees respectively. Only the advec-

tive density anomaly increases with time but at a much smaller rate (one order of 

magnitude "maHer) than the rate in Fig. 5.{. These are different from the l'P.Sults 

for the negative bottom slope without thermal wind presented in Fig. 4.8. 

Finally, time series of lu, /au, Ia ( v, + 1T ), V1 + v and ii' for the first case in 

this section (a;: > o, Fig. 5.2), when the isopycnal slope is taken as- 0.26Xl0-3, 

are shown in Fig. 5.7. Comparing this figure with Fig. 5.5 the results, when the 

isopycnal slope is negatiYe, are quite different: the h ( V1 ., ... 'ii) and magnitude of 

h f increase with time, and contrary to the case in Fig. 5.5 the magnitude of ~-

component of vertically averaged velocity increases with time while the magni-

tude of z -component of vertically ·averaged velocity decreases with time. The 

reason (or these differences is that when the isopycnal slope is negative the poten-

tial energy term tgh in the energy equation (5.4) always decreases (negative £ ) 
Po 

so that the thickness can increase as shown in Fig. (5.2). When the thickness 

increases more kinetic energy is entrained into the mixed layer from the geos-

trophic ftow above and the ~-component of vertically averaged velocity of the 

mixed layer also increases. 
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6.3. Results tor a Sloplns Flat Bottom 

When comparing the governing equations (3.46)-(3.49) for mixed layer 

growth over a sloping flat bottom without thermal wind with Eqs. (5.1)-(5.4) 

including thermal wind, it is found that the differences are in the last two equa-

tions: the mass conservation equation and the energy equation. The bottom slope 

{J in the mass conservation equation (3.48) has been replaced by - {11, the negative 

isopycnal slope relative to the bottom (Fig. 5.1) in Eq. (5.3), and there are three 

extra terms involving the isopycnal slope in the energy equation (5.4). Three spe-

cial cases are discussed. 

5.3.1. Jsopyenals parallel to the bottom (fJI = 0) 

When the isopycnals are parallel to the bottom fJ1 == 0 and Equation (5.3) 

becomes 

(5.15) 

which is the same as for a horizontal flat bottom with no thermal wind: that is, 

f = 0. This was confirmed in numerical experiments. lt implies that the thermal 

wind and bottom slope cancel each other. For example, with 

fJ == 0.26X10-3 == {J1
1, and the other parameters the same as in Fig. 4.6, results are 

obtained (Fig. 5.8) which are very similar to those in Fig. 4.1. 
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6.3.2. Growth dominated by bottom slope (P >> fJ1') 

When p >> fit' it is seen from Eq. (5.5c) that 

-fJ. ~ p. 
This implies that the bottom slope dominates the mass conservation equation. 

From numerical experiments Cor this case it is found that the two terms iDvolving 

{J1' in the energy equation did not affect the flow very much, which is not surpris-

ing since {J1
1 << {J and thus IN << 1. Therefore the bottom mixed layer growth 

has basically the same features as the sloping bottom case without thermal wind. 

5.3.8. Growth dominated b7 thermal wind (P << P1') 

When fJ << {J1', Eq. (5.5c) becomes approximately 

llt' ~ p •. 
This implieS that the vertical shear dominates the mass conservation equation, · 

and the two terms involving fJ1' in the energy equation become important. The 

bottom slope loses its importance. The numerical experiments showed that the 

results were very similar to that for a horizontal Bat bottom with thermal wind. 

For example no matter what sign {J bas the sign or E depends only on the sign or 

vs . 

· · ·--·-·- · -------~· · ·--·- -··--- - -·----~-·~---·-·.....-·-----.....--,............, · .. . . • " .. ·· . • 0. •. · ~ O • . . .... • 0 0 • • O --:-.... ~~·- O P 
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&.4. Comparisons with Observations and Level D Model Result.. 

6.4:.1. Comparisons with the observations made b)' Weatherl7 and Vu 

Leer and Weatherly and Martin's model results . 

The model results including thermal wind effects are again compared with 

the observations made by Weatherly and Van Leer (1D77) on the western Florida 

Continental Shelf. 

During northward interior Dow the value or VS estimated from the velocity 

profiles (Figs. 4.3a and b) is -2.0X 10-3 fs. From the density field in Fig. 4.2 the 

estimated horizontal density gradient over the sheiC is - 1-
8
8
1', == 0.94X 10-a /m 

Po J 

giving, therefore, 

VS = BV, =--'- 8
Po =-1.5X10-3/s. 

8z 1 /Po 8z' 

These two estimates or the thermal wind shear are thus roughly the same, evea 

though the data presented in Fig. 4.2 were taken on 2 June 1D72, four years ear· 

lier than those in Fig. 4.3 (3 to 5 July 1D76). During southward interior How the 

vertical shear in the interior is or opposite sign and is estimated to be 2.ox 10-3/s 

(Fig. 4.3d). 

The bottom slopes are still taken as P = 0.26X 10·3 during northward interior 

flow, and fJ = -2.4X10-3 during southward interior Oow, which are the values 

used by 'Neatherly and Martin (1D78). The time series of thickness, f, speed and 

veerin~ angle obtained from the vertically integrated model with thermal wind 

··-· -. --:-""·-·;-· -·~----. -----~-·-·---·--------- .. __ ,., .. - ~--..--.-. -~--· · · . ..,..-----r··- ···· ... .. . . . . , . 
• • 0 
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are presented in Figs. (5.Q) oo (5.15). As in the previous section, V1 (0, 0) was 

determined for a given value or VS by setting V1 == 15 cm/s at z cz 20 m. Both 

values or a' (0.59 and 6.3) were used but the results were very similar. 

During northward interior flow, corresponding to the downwelling case, the 

parameters are: N, = 1.28XI0-2/s, I = 0.63X10 .... /s, VS = -2.0Xl0-3/s and 

p = 0.26Xl0-3. Therefore from Eq. (5.7) 

{J1' = - VS/ == 0.77 X 10-3• 
N2 , 

and thus the magnitude of IN exceeds {J, and the mixed layer growth should 

depend mainly on the thermal wind. Because VS is negative as pointed out in 

Section 5.2 the thickness will decrease with time if unmixing is not inhibited. 

The results are shown in Fig. 5.Q, which is similar to Fig. 5.4 for a horizontal flat 

bottom with negative vertical shear. From Fig. 5.Q it can be seen that the max-

imum thickness is 7.8 m. When "unmixing" is inhibited (Fig. 5.10) the thickness 

is 7.8 m, as compared to the 6.0 m observed, and the veering angle is 32" (from 

I = 55 h to I = 159 h), comparable to the observed value 30". 

Because VS is negative and the isopycnal slope is larger than the magnitude 

of the bottom slope (/J11 > {J ) E increases with time after 45 hours. If the density 

is dominated by temperature, then this implies a decrease in temperature with 

time, contradictory to the observations of Weatherly and Van Leer (1Q77) during 

northward flow. The reason for this may b e related to the choice or bottom slope. 

The station is located where the slope is 2.4X10-3, but following Weatherly and 

-··-........ - ....... - ... ..... · ·- .. .... - - :---.-- --:-- ·- -.. -.- ~··- ... --: :-7- --·- ·--: -:-:-.~·· -··· -.. :-~·.-·.------·--:-::--::--·-·-;· . . . · . .. 
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or the bottom mixed !ayer on a sloping Jlat bottom, with negative vertical shear and positive 
bottom r.dope. Unmixin1 is not inhibited. VS --2.0Xl0-3 /s, '- 0.2GX10-3, '•'- 0.77Xl0""
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and ali c:ther parameter Yalues are the same as in Fig. 4.6. The units or EPSILON~ g/cm 
3. 

Compare to Fig . .t.6, the downwellin1 eue with no thermal wind. 
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Martin (lg78) the smaller value (0.26X to-3) has been used, as explained in 

Chapter 4. rl his value may be too small. If a tangent to the bottom is drawn on 

th.e shallower side passing through the station (see Fig. 4.2) fl-= o.sx 10-3• This is 

comparable to fN. The results lor this case are presented in Figs. 5.11 and 5.12. 

In Fig. 5.11 unmixing is allowed to occur. It can be seen that the thickness 

reaches a local maximum of 9 .2 m at t = 59 h, decreases until 1 = 70 Ia , and 

then increases but more slowly than in Fig. 4.6, and is thus in better agreement 

with the observations on the western Florida Continental Shelf made by W eath

erly and Van Leer, which show that the thickness does not increase with time. 

When unmixing is not allowed (Fig. 5.12), the differences are small. The thickness 

is about 9.2 m in contrast to the observ~d value of 6 m. The veering angle is 

about 281) (!rom t = 52 h to t == 180 h) compared to the observed value ao• . The 

time series of temperature is given in Fig. 5.13. The temperature increases mono

tonically with time, but at a rate slower than the equivalent (downwelling) case 

in Fig. 4.5, and the thickness no longer increases indefinitely with time. 

These results are summarized together with the observations in Table 5.1. 

Comparing Table 5.1 with the downwelling case values in Table 4.2, it is seen 

that the vertically-integrated model results including thermal wind are in better 

agreement with observation than those obtained from the Level D and the verti

cally integrated model without considering thermal wind. In particular, the 

predicted thickness has become constant as observed. 
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model Vertically lnte~ated Observations 
case downwellinrt upwellinsc downwellin~t upwelling 

Ia (m) 9.2 5.2 6 11 
T (•c) 22.4 21.3 22.8 18.9 
& (degrees) -28 -2Q -30 -75 
U ·(cm/s) 16.0 6.1 20.0 4.6 

Table 5.1. The values or thickness Ia I temperature T, veering 
angle a and speed U in the mixed layer obtained from the vertical
ly integrated model when including thermal wind for the runs in 
Figures 5.12 and 5.15. The observed values are the same as in 
Table 4.2 . 
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When the interior flow is southward, corresponding to the upwelling case, 

N0 == 1.28X10-2/s, VS = 2.0X10-3/s, I = O.&aXl0-4/s and {J = -2.4XJ0-3. 

Therefore from Eq. (5.7) 

/l1'== VS/ =-0.77X10-s. 
No2 

Thus the magnitude of lla' is less than the magnitude or p, and the growth of the 

mixed l&.:ter should depend mainly on the bottom slope. The results are shown in 

Figs. 5.14 and 5.15. In Fig. 5.14 unmixing is allowed to occur and overshoot 

appears in the time series or thickness at t = 50 b. In Fig. 5.15 unmixing is not 

allowed. When Figs. 5.14 and 5.15 are respectively compared with Figs. 4.7 and 

4.8, the upwelling case without thermal wind, the differences are small. The 

thickness in Fig. 5.15 is 5.2 m, compared to 4.6 m in Fig. 4.8. The maximum 

veering angle is 29° reached at t == 54 h, one hour later than the results in Fig. 

4.8. 

6.4.2. Comparisons with the results or Bird et al. 

Using the Level D turbulent closure model including thermal wind, Bird et 

al. (1982) simulated observations made on the Eastward Scarp of t.he Bermuda 

Rise in a water depth or 4620 m. The velocity time series were recorded by four 

vector averaging current meters (VACMs) positioned at 0.8, 6.9, 12, 62 m above 

the bottom from September 1978 through April 1979. A 5-day section or the data 

in September 1978 was used for comparison with the simulations. The averaged 

geostrophic speed at 62 m above the bottom over the 5-day section was 18.92 

.. __ ,_ -, .. ....... ...-- ....---~.-. -·-..- -··.-·.-----=----· ·---:--- _ .... -... --.-.--- ·--,·--... ~·~- ·-- _ ___,.._.,. ____ ... _. 
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cm/s. The ~-direction was always taken in the direction of the geostropbic vel~ 

city, and in this coordinate system the bottom slope P was positive and equal to 

0.035: that is, this is a downwelling c.ase. The Brunt-Vaisala frequency 7XIO-& /s 

was estimated from potential temperature profiles obtained at the time or deploy

ment and the potential temperature-salinity relation for the area. The Coriolis 

parameter I = SXIO-s/s. Based on the VACM temperature data they inferred 

that during the 5-day period the thickness or the mixed layer was between 12-62 

m, and the observed veering angle was 4.6 degrees (Table 5.2). The isopycnal 

slope was not available. 

When the geostrophic velocity is 18.Q2 cm/s the estimated thickness from 

Weatherly and Martin's formula Eq. (1.4) is g2,g m. When the bottom slope and 

thermal wind are excluded the analytic and numerical results from the vertically 

integrated model are given in Table 4.1 (run 382 and 383). It shows that the 

thickness is about 37 m and the veering angle is -5.8 degrees when velocity profile 

coefficient o' = 6.3, and that the thickness is about Q3 m and the veering is about 

-2.3 degrees when o' = 0.59. The results for o' = 6.3 are in better agreement with 

the observations. 

Because the isopycnal slope was not available Bird et al. (lg82) assumed is~ 

pycnal slopes such that {J1 = 0, -0.01, -0.035 in order to make thermal wind sensi

tivity tests. Here the same values or {J1 are used and the velocity profile coefficient 

ol is set equal to 6.3. Using the above values or {J11 the corresponding values or 

IN and VS can be calculated, and then V1 (0, 0) can be obtained from the 

: - · · · - ·~--.-·--· . ·- ·---,-~~ ·- ... , ~-- · ·---:--·· ,- , . .. . - ·- -- - ... . . , . . . , . .. . 
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Computed from 
Comparison Observation Vertically Integrated Moclel (Level ll Model) 

8, = 0 -0.01 -0.035 

V1 cm/s 18.92 
u, cm/s 0.7 
h (m) 41 78.7(36.7) 80.0{36.7) 82.0(90.4) 
a (degrees) -4.6 -2.7_(-13.9) -2.4{-13.4) -2.3{-0.3) 

Table 5.2. Observed and computed thicknesses h and veering angles a from 
the Level II turbulent closure model (Bird et al., 1982) and the vertically integrat
ed model presented in this thesis when including thermal wind. Observed values 
and the Level n model results are taken from Table 3b in Bird et al. {1982) . 

... . -· ... , .. -·. ·- .. --·~--- --... -----~·--
---:--:--:~-.~----··-. -.-- ·.~~~.~---· . 
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geostrophic velocity of 18.92 cm/s at 62 m above the bottom based on Eq. (5.8). 

From Eq. (5.7) it can be seen that the values or VS are very small due to the 

very small Brunt-Vaisala frequency. Therefore V1 (0, 0) is almost the same as 

18.92 cm/s. From Eq. (5.5c) the isopycnal slope P1' is respectively much less than 

or less than the bottom slope {J for the cases {11 =- -0.035 and {11 = -0.01. Accord-

ing to the discussions given in the last section the ftow will therefore mainly 

depend on the bottom slope Cor these cases. Therefore the thickness should 

increase with time since the bottom sfope is positive (downwelling case). 

Note that it was round for these runs that when using Eq. (5.4) to eliminate 

~~ first in Eqs. (5.1)-(5.3), the singular point of Bqs. (5.1)-(5.4) at 1 """'0 was a 

serious problem. 8 1
2 - 4A 10 1 (Eq. 5.9) became negative. It is believed that this 

problem was caused by the very small value or ~ in this case. In order to over

come this difficulty, Eqs. (5.1)-(5.4) were solved by eliminating * first based on 

Eq. (5.4). The results obtained from the vertically integrated model are also 

given in Table 5.2. The ramp period T1 is 24 h, as in Bird et al. ( 1982). The 

values from the Level ll turbulent closure model listed in Table 5.2 are taken 

from Table 3b in Bird et al. (1g82). 

All values listed in Table 5.2 from the vertically integrated model are taken 

at t = 24 h, the end or the ramp period. (Note that Bird et al. ( Jg82) did not 

specify at what time the values listed in their Table 3b are taken.) When {11 "'"" 0 

. ...... -... -............ --... --.. - .... --.---·~····- -·~-::· - :-··· ... - ....... ---·-........ --·--~· -····-· ... -..,-... ~--~ ..... -... -.- - ·· · ·--·--~:·~ .. : · , ............. .. ·--.. · ·~-· ··. 
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the results are very similar to that for a horizontal ftat bottom (see Fig. 5.8) and 

all variables reach a steady state. But there are some oscillations appearing just 

after the ramp period because the Brunt-Vaisala frequency is much smaller than . . 

in Fig. 5.8. These oscillations diminish ~rter several days. Table 5.2 shows ~hat 

for {J1 = 0 and -0.01 the thicknesses are much greater than the values obtained 

from the Level II model, but the veering angles are much smaller and in better 

agreement with the observations. For {J1 = -0.035 both the thickness and the 

veering angle are Jess than those computed from the Level ll turbulent closure 

model and are closer to the observed values. 

Note that here the value or o' greatly affects the results because the f is 

less thnn one. Th~ .. ,.'ore the dependence of o' on the bottom slope P and the ratio 

~S may be important but cannot be determined here. This may contribute to 

the discrepancies between the model results and thP ~bservations. 

Another factor which may also contribute to the discrepancies is the 

stringent limit of small bottom slope for the assumption of s -independence in the 

mixed layer in both the Level II turbulent closure model (Bird et al., 1Q82) and 

the verticnl integrated model, because the bottom slope here is not small . 

. . ._ ...... ~ .. -· .......... --........... . ·.-·- · ·--·.~---- ,--··· · ... --·· ............. ... : ..... -.... . ____ .., - ·-·--~ -·--· ... - · ··------~----
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CHAPTER& 

SUMMARY AND CONCLUSIONS 

A new vertically-integrated model for bottom mixed layer growth bas been 

presented. An important feature of the model is that the vertical variation or 

mean velocity with height is retainr::d throughout the derivation, finally appearing 

as a parameter in the vertically-integrated energy equation. This distinguishes it 

from conventional slab models. A second feature is the separation or mixed layer 

density into two components: one due to local vertical mixing, and one to advec

tion parallel to the bottom. The efl'ects or both bottom slope and thermal wind in 

the interior geostrophic flow are included. 

For a horizontal flat bottom without thermal wind an analytic solution is 

obtained which yields a formula for bottom mixed layer thickness containing the 

velocity profile parameter a'. This formula is consistent with all previous formu

lae for bottom boundary layer thickness, including that proposed by Weatherly 

and Martin (1Q78) on the basis of their numerical results from the Level II tur-

bulent closure scheme. Although o' depends explicitly on the stratification ( f ), 
this dependence appears to be rather weak. Two choices for o' arr ~herefore sug

gested: one (o' = 0.59) for thicknesses defined as the height at which the tur

bulent kinetic energy vanishes; the other (o' = 6.3) for thicknesses defined in 

terms of the mean velocity profile. The latter is consistent with Ia == 0.4 ~ in the 

.... - ... --- 4·~- ·-- --:·-.-·- ·-·--:--,.,...·· ---:--··-.---- --·-- ·- -·- .. ..... ~ ···-- ·--·-. .... -· ·· · -~.,._-.. -.... .. - ··-··------.--- -· 
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neutrally stratified case. The choice o( a' is most important (or the case ~0 less 

than or of order unity. Formulae (or the dependence of friction velocity and 

veering angle on geostrophic velocity and stratification are also obtained for this 

case. 

For a sloping flat bottom at the initial stage o( bottom boundary layer 

growth the vertically integrated model gives results similar to those obtained by 

Weatherly and Martin (1Q78) using a Level ll turbulent closure model. The main 

effect ol bottom slope is to produce upwelling or downwelJing within the bottom 

mixed layer depending on the sign of the bottom slope. Alter the initial period of 

bottom boundary layer development the vertically integrated buoyancy force can 

grow to reach a balance with the vertically integrated driving pressure gradient 

so that the flow becomes steady and the Ekman transport is extinguished. The 

layer is arrested in a vertically integrated sense. The length of the initial period 

greatly depends on the sign of bottom slope, and in the downwelling case may 

approach infinity. 

The effect o( thermal wind in the interior flow on bottom mixed layer growth 

is shown to be important. For a horizontal flat bottom when the vertical shear in 

the interior is positive, at the initial stage of bottom boundary layer development 

the effect of thermal wind is similar to that of positive bottom slope. However 

after the initial stage the effect of thermal wind is different, and the mixed layer 

thickness and the speed of mixed layer can increase indefinitely. When the verti-

,--·.--.--·-~-~ ·.- --. 
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cal shear is negative the thickness cannot grow if the geostrophic velocity is con-

stant. This is readily understood physically. When the vertical shear is positive 

the geostrophic velocity at the interface increases as the mixed layer grows, and 

thus the kinetic energy or water entrained into the mixed layer increases with 

time, providing a steadily increasing source or energy for mixing. When the vert-

ics.! shear is negative the geostrophic velocity at the interface decreases as the 

layer grows, and the kinetic energy supply for mixing decreases. Besides, the 

transverse How always drives denser fluid from the positive x-direction towards 

the negative x-direction along the bottom, and therefore f. is always positive and 

the potential energy term EgA can increase indefinitely if the thickness doesn' t 
Po 

decrease. 

For a sloping flat bottom with thermal wind, when the isopycnals are para)-

lei to the bottom, the flow approaches a steady state quickly and the results are 

very similar to that for 3 horizontal flat bottom wjtb no thermal wind: that is, 

the effects of bottom slope and isopycnal slope offset each other. When the bot-

tom slope is much larger than the isopycnal slope, thermal wind is unimportant 

(and vice-versa). 

Solutions are also obtained for the relaxation or motion in the boundary 

layer after the interior geostrophic velocity is suddenly stopped, and are 

presented in Appendix 3. It is shown that the frequency or inertial oscHJations is 

increased by bottom slope and Brunt-Vaisala frequency, because the buoyancy 

. ·-·-·-.-! ........ ·~- .. -- -..... ,.. :---: ~------ ----- ---~---.-.--.-~-- ·-·--· ·- ··-·-- .. -.. -···· ··- .. . --..... -·-:---·---·---- --.- ... - ....... -... ... . 
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force parallel to the bottom provides an ~dditiona1 restoring force. 

The dependence or o' on bottom slope, {J, and on the ratio ~S has not been 

obtained. When ~· < l, or of order I, the dependence oro' on bottom slope {J, 

and ~s could be important because the value or o' appears then to have a 

greater effect on the results. This should probably wait for further experiments 

and observations to determine. 

The discontinuity of density at the interrace may be another problem in this 

model, particularly on a sloping bottom. The improvement of this aspect may be 

expected through adding a transition layer outside the well mixed layer to incor

porate the effects of restratification produced by secondary circulation. 

The vertically integrated model could be extended to include variations in 

the plane parallel to the bottom, which the observations made by Armi and 

D'Asaro (lUSO) have shown to be important. Such an extension would permit, for 

example, investigation of bow the bottom mixed layer separates from the sea 

Ooor and intrudes into the ocean interior. Finally, the vertically integrated model 

is readily adapted to the wind-driven surface mixed layer. 
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APPENDIX I 

Derivation of Energy 
Equation lor Sloping Bottom Cue. 

Now the energy equation is derived. In the bottom coordinate system the dot 

product of Eqs. (3.30}-(3.32) witb V produces 

,, a1 u 
2

\ au ( 2 + -) a ( + -) -~a + Po -a u + Po u uu ~ u u 
2 t ' uz 

+ p0 (uv + uV1 + uu):,(u + u)+ p0 (uW + uw):
1

(v + u) 

, , a(., + v, )2 a" ) ( X • ) a ( . 
+ 2 at + Po at(" + v, + Po " + v, u + v {Jz " + V, + " ) 

+ Po ( t1 + V1 X t1 + V1 + fJ) :, ( t1 + V1 + fJ) 

+ Po ( w + w X" + v,) :, (" + v, + ;, ) + p; a :;
2 

+ ,, ~7 w 

+p0 W(u +u):
1
(W+w)+p0 W(v + v, +u>:,(W+w) 

+ p0 (W2 + Ww) :,cw + w) =- a:,' u - :: u- (I+ ;)gpu 

- aP'w- a;W-(l+;)gW.- aP'<., + v,)- a;(P + v,) az az a, a, 
+ p [uv2(u + u) + (v + v,)v2(v + v, + u) + Wv2(W :+ w)] (Al.l) 

Time-averaging Eq. (Al.l) yields 

p; :,(u 2 + (v + v,)~ + '; (v + v,) :,(u2 + (v + v,f] 

P a a< -2> n< ·· > + ; ua
1

(u 2 +(v + V1 )~=-uP'. -p'gPu -p0 u a: -:e:u ;; 

_ a<uw > _ ( + v ) 8<uv > _ P (v + v ) a<v2> 
Po U az Po " 1 az o 1 ar 

a<vw > 
-p0 (v+V1 ) {Jz , (Al.2) 
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where W = 0 is assumed, the mean quantities are independent of 1 and 11 , the 

viscous terms are ignored because the Reynolds numbtr is lar~e and the 

incompressibility condition is used. Since the horizontal ~cates are much larger 

than the vertical scale :
1 

<< :, and :., << :, . Therefore the mean mechani-

cal energy balance equation is, after ignoring the advection terms, 

Po a ( 2 ( v >2> P 1 1 fJ a< uw > 2 at u + v + I =- u I - p g u -Po u az 
iJ<vw> 

- Po(u + VI) az . {A1.3) 

The dot product or the momentum equations with tj yields 

Po au 2 au A ( A A 2) a ( A ) ( v ) A au --a + Po -a u + Po uu + u -a u + u + Po ., + ' u-a 2 t t I II 

+ !!..( + v )au 2 + .. au+ !..!_Aau
2 + "(W +. )_!_' + ") 2 ., I iJJJ Po Uti a., 2 ., a, Po u tD a;' u u 

Po a;,
2 

.a( V) "(A )a( v A) + Tat + Po "at V + 1 + Po v u + u az Cll + 1 + t1 

+ Po(v + v,)va8 (v + V1 )+ p(;v 2

8
8 

(v + v,)+ '• (., + v,)av
2 

11 , 2 iJr 

Po A au2 
A ( w A ) iJ ( + v A) 2" aJI + Po v + w az v ' + " 

Po iJw 2 AiJW A(A )a(W A) + Tlil + Po wa, + Po tD u + u a, + tD 

+ Pc w(v + v, + v) ;,cw + w) +Po w(W + w):
1

(W + w) =- a:,• u 

a;, A ( , + A) PA A aP' A a;, . (-' A) iJP' A A a;, - -u - p p g u - w-- - w- - gw , + p - --v - v-az iJ: a: 8, a., 
+ pti [v2u + v 2u] + pu [v' v + v,) + v2v] + pw [v2 W + v 2w ). (A1.4) 

The last terms involving the viscosity can be rewritten using 

~-·~-~.----- . -· . - -·-.. ·-·~·------:----.. -:-----..~.,.-~·---··· .. -;--- ....... -.---· . . .. ~--·--·· ··-- . . .· ·· 
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.. 1_, a;,i au; ) 
••. = -;;-\- + --. 1 2 az. az. I I 

We also have 

2
.. au; 

2
• • , .. __ = ... , .. 

II az· II tl 
I 
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(Monin and Yaglom, 1979, p. 375). Substituting the above result in Eq. (A1.4)
1 

tim~averaging and making use of the condition \V = 0 result in 

2 2 2 Po a<q >+Po ua<q > + ~(v + y )a<q > + <•2>au 
2 at 2 az 2 I aJI Po u a1 

< . . au < • • > au • • > ~ 1 y ) +Po uu> ay +Po uw az + Po<uu 8%'" + 1 

+Po <u2> :JI(u + v,) +Po <Wti > :,(u + v,) 

+ Po a <. 2> + Po a <. 2> + Po a < . 2> -- uq -- vq -- wq 
2 az 2 aJI 2 Bz 

a<pu> B<iJu> a<pw> <"" > fJ <". > = - - - - pu g - g pw az a, az 
a a;,. a;, . 

+ p-<u·(-'- + - 1-)>- 2p<; .. ; .. > az. 1 az . az· 11 IJ ' 
I I t 

(At.5} 

By ignoring advective terms, taking :z << :, , _!_ << .!_ and assuming all az 

<pu >fJ << <pw >, Eq. (At.5) reduces to 

a<q2> + Po a < . 2> _ a < .. > < .. >au Po -- wq - - - top - Po UtD -at 2 az az az 
" • a(" + v, ) • • 

-Po<t~w> az - <wp>g 

2 a<.. .. + • . > + paz Ulu + "'r• WI., - r (A1.6} 

in which S' = 2p<ii; ii; > is the average mechanical dissipation rate. Adding Eq. 

• • •-- ~ ·:-""'"--:- -:-· ., ·~--·-· .. -·.- •o--.7••--·-, ~·-·-,.,-~ · - ·- ,•·,•••• -••--:--w--.--·._ • - I -•• -·-~ ·,,....--- --~-- · · : • • •• ••- - : ·-·--:-- - ---• ,.. 
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(A1.6) to Eq. (A1.3) yields 

!!__!_(u2-+ (v + v, )2 + <q2>) + Po 
8
a <wq2> + 

8
a <wp > 

2 at 2 z z 

-=-uP'. - p'g Pu - ,o :, [u <tiw > + (v + V1 )<vw >) 

2 a AA AA AA > <AA> + paz <u111 + "'•• + Wlu - r- Wp Q 

which is Eq. (3.35). 

(A1.7) 

• ••••__,..--- • - · - r ••• ·- - ···-..,:---~-·~·--- •..-•• • ·--;-~--~·-:---::--··':--·- • •. ,.. ""•·-·:~ .... ...----......... ---···-·~-~-. - . - - .. • 



- 138-

APPENDIX2 

Derivation of Governing Equations 
Including Thermal Wind 

A.2.1. Horl1ontal Flat Bottom Case. 

A.2.1.1. Interior Flow. 

As in Chapter 2 the flow in the interior is assumed to be geostrophic: 

(A2.1.1) 

Note that now v, depends on the vertical coordinate z 1, whereas before it was 

independent of dep~ll. The component equations of Eq. {A2.1.1) become 

8P0 -p,/V1(z)=-a;-

8P, 
0= - a, 

aP. 
0 = a;- + p11 (z 1 z )g 

(A2.1.2) 

(A2.1.3) 

(A2.1.4) 

Assuming the isopycnals in the interior are inclined at an angle {J1' (see Fig. 

A2.1) to the horizontal, then 

8pll 

fJ 1 8z tan 1 =- - -
8p, 

(A2.1.5) 

az 
From Eqs. {A2.1.2), (A2.1.4) and (A2.1.5) it can be deduced that 

av, , N, 2 

-- = - tan{J1 -- = VS az I (A2.1.6) 

-·-·-··.-.--· ·····-..,.....-·:"'-:-· ·. --·- ·--·-·--- - -·-·-- - #·--·--r-·-·· ........ ___ _,_ -:---.. - ·- ·· ... ...,.--·------·---·-
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I 

Figure A2.1. A sketch of a horizontal Oat bottom with horizontal density gra-

dieof . 
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which is the usual thermal relation (Pond and Pickard, 1981), and where VS 

stands for the vertical shear. When {J1' is small this becomes 

(A2.1.7) 

It is important to note that N. 2 and therefore VS are independent or both s and 

z. Integrating Eq. (A2.l.7) with respect to z yields 

V1 (z) = V1 (o) + zVS (A2.1.8) 

and the geostrophic velocity averag~d over the bottom mixed layer height A is 

A 

V, = hl f v, (z )d: = v,(o) + .!.hvs 
0 2 

(A2.1.9) 

A.2.1.2. Density 1n the Mixed Layer. 

When thermal wind is included the density p' in the mixed layer is still 

assumed to be uniform in the z -direction and can be separated into two parts: 

(A2.1.10a) 

where as before the first part caused by local mixing is always equal to the aver-

age of the density profile prior to mixing and is given by Eq. (3.9) which is 

rewritten here for convenience 

p0 (z, z) + p"(z, t) = p0 (z, 0) + p01 : . (A2.1.10b) 

The second part E is the advective contribution caused by Ekman transport, 

present DOW in the horizontal bottom case because or the thermal wind. Note 

that it is again assumed that E and h are independent or z since the geostrophic 

av 
velocity, N. and --1 are independent of z. Therefore Eqs. (3.9)-(3.13) and az 

..... ...... -.. -····- · -· -~:·.-·: .. ..... --......-··-... - ·· "· --· --- ~ --- , .. ·----... -·--- --·· .. ----·---· .... --r--- 4 • • • - -· · · --~-----~ - - · 
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(3.26)-(3.27) are still valid here. 

A.2.1.8. Momentum Equations 

The assumption made is that in the mixed layer the flow is still hydrostatic. 

Therefore 

DP' I - = - p g. (A2.1.lla) az 
By substituting Eq. (A2.1.10a) into Eq. (A2.1.11a) and using Eq. (A2.1.4), Eqs. 

(3.14) and (3.17) can be deduced. Therefore 

P's = Poa • (A2.1.11) 

The momentum equation in the bottom mixed layer is 

p' ~? + p'OX V == -vP' + ptg + ::, (A2.l.l2) 

where all the assumptions made in Chapter 2 lor linearizing the momentum equa-

tion have been used. By using tbe Boussinesq approximation and Eq. (A2.1.11) 

the z and 11 components become 

au DPo ar' 
Po - - Po I ( t1 + Y1 ) = -- + -at lJz az (A2.l.13a) 

D(u + v,) I fJPo ar' 
Po + Po U = -- + -. 

81 a, az (A2.1.13b) 

Arter substituting Eqs. (A2.1.2) and (A2.1.3) and because a;: = 0 the momen-

tum equations become: 

o a •• •--•• •• -:""- ·-_..,-.a • - ••• - - - ••• • ••-••- #•,-· - ·--.. .- •·~-~-----:--·--·...- -• • .. , 

(A2.1.14a) 

(A2.1.14b) 

'-.-.<T.,.._,~-..~.---:-..,.,.~ .. .....,.. __ .... .... :- . . . 
. . 
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which, after vertical integration and making use or Eq. (2.6) and the assumption 

(2.g), identically become Eqs (2.7) and (2.8), the momentum equations in the 

mixed layer in the absence or thermal wint!. 

A.2.t • .f. Mass Conservation. 

The continuity equation is the same as Eq. (2.3) and Eq. {2.4) can be applied 

here. It is also assumed that Eq. (2.5) and t.herefore (2.6) are valid, again since v, 

and N0 are independent of :r • 

Because when including the thermal wind the density is no longer indepen-

dent of z, deriving an equation for mass conservation must begin with Eq. (3.19). 

The vertically integrated form (3.24) also holds, a.s does the expression (3.25) Cor 

the turbulent mass flux at the interface in terms or entrainment, since it includes 

the dependence of the density of the entrained fluid on , and A. The density in 

... the mixed layer may still be written in the form Eq. (3.26), but now 

8p' 8po ,aPo ( ) 
8 , =a,=- tanP1 --a;- A2.1.15a 

where use bas been made of (A2.1.5). Otherwise the derivation which led to Eq. 

{3.2g) is unchanged, and its equivalent Cor the present case is therefore 

L(A t)1 = - tanP1' huN0 
2 (A2.1.15) ,. 

which is to be compared with Eq. (3.29). It is seen that for P1' small the two 

equations have the same form, with the negative isopycnal slope now taking the 

place or the bottom slope . 

.. -- ----:----~ -'7"····-· ··-· -·~··~-.- -~-.-. ----roo-~.-- - -- ··.-···· ·----· -~--:·-.. --.. ·~':"·:·-·-·· ... - :--:-·-·--~ ... . ·-
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A.2.1.&. Ener17 Equation 

For the horizontal flat bottom case including thermal wind Eq. (2.15} is still 

valid. For convenience it is rewritten here: 

Po i[a8 (u2+(v + V,)2+ <q2>)]tlz =-iuP',lz 
2 o I o 

II II 

-I <wp>gdz- Irdz. (A2.1.16) 
0 0 

Note that Eq. (2.16a) is not applicable because the density varies in the horizon-

tal plane. Instead the mass conservation Eq. (3.19} can be applied· for calculating 

II 

the buoyant production term J <w p>gdz on the right-band side of the equation 
0 

above. Substituting Eqs. (3.27), (A2.l.l5a) and (2.20a) into Eq. (3.19) and then 

integrating the resulting equation from 0 i o z yields 

' - <pw > I, = p;, :! z + Et z - utan/ll'Poa z -I£ A uti: ~tan,8J'p., .(A2.1.17) 

Mter integrating from 0 to Ia and by making use of Eq. (A2.1.15), Eq. (A2.1.17) 

becomes 

II II • 

-I g <pw > dz = .!.p0, gh 2/a1 - '
2
(h A, - tanfJ1'p0 , fiili llutlz ~dz. (A2.1.18} 

0 4 0 0 

Substituting Eqs. (A2.1.11) and (A2.l.l8) into Eq. (A2.1.16) yields 

'; H :,<•' + (• + v,)' + <v'>l ]~· =-! uP.,Iz 

II ' II 

!PoafiiJ2A,- g;lah, - tanflt'Po,g/fiAudz~tlz - J~dz, 
0 0 0 

(A2.1.19) 

which corresponds to Eq. (2.17) b~t is different because the buoyant production 

-·:-. :··-:---~~-.. --··~··-; .. -·-!"·~.~~:-:-::~·------------r-:--:"':'': .. _. -··-·~---· .... -'"'1!.'·~·.-. ____ .. ___ .... 
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term is now not only caused by local mixing, but also by the advective contribu-

tion l and the vertical variation of u, and because the pressure gradient in the 

interior varies in the z·direction (see Eq. A2.1.2). 

Again the assumption Eq. (2.18) is mnde which is rewritten here 

A 2 A 
P2o fa<: > Jz + f rtlz = "Tt .'iJ. 

0 ' 0 

Substituting Eq. (A2.1.20) into Eq. (A2.1.19) yields 

II 

= - J uP0 s dz - ur6 
1 

- (ii + V, )r6 '. 
0 

(A2.1.20) 

(A2.1.21) 

The first term on the right-hand side or the equation above is the rate or work 

done by the geostrophic pressure gradient. Letting 

u = il + ~u {A2.1.22a) 

u + V1 == V + ~" = V1 + 1i + At~. (A2.1.22b) 

and using Eqs. (A2.1.2), (A2.1.6), (A2.1.8) and (A2.l.g) this term becomes: 

A II 

- J uP0, dz =- J(ii +Au),./ V1 dz 
0 0 

II 

= -p,/iiV1 A -p0 /VSfzAudz 
0 

A 

- 'f == -Po /fiV1 A - Pu gtan/l, z ~udz (A2.1.23) 
0 

As in Chapter 3 it can be shown using integration by parts that the sum or 

II II • 

J Auzdz in Eq. (A2.1.23) and flf Audz'Jclz in Eq. (A2.1.2l) vanishes. Therefore 
o e o 

-__...-., -:-.. -··--·;--- .. -~-.-·:-·· ... ~·.- ..... : ... -·------~·:-··· · - --·-r·--~,.·-·--... -· -- ..... ···-· -.--· ... -·----··-- -----·-.... -· ·---:-·-·· \ .. 
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substituting Eq. (A2.1.23) into Eq. (A2.1.21) yields 

A 

Po J .!.[u2 + (.., + v, )2]cfz - !p., gla 2/a, + g2d• Ia, 
2 0 at 4 

==-Po fuV1 Ia- ur6 • - (v + V, ~r6 ', (A2.1.24) 

which corresponds to Eq. (2.1Q). Note that now V, is the vertical average of V1 

over the boundary layer thickness. 

The first term of Eq. (A2.1.24) becomes, after using Eqs. (A2.1.22a.) and 

(A2.1.22b) 

A A 
!!__ f aa [u2 + ( ll + v, )2)dz == !.!... aa J[u2 + ( t1 + v, )2jclz - !.!._u21,==A ala 
2 0 ' 2 '0 2 at 

' == Po aa [~a (ii2 + ii2 + 2iiV, >] + !.!._ aa /[(~u )2 + (~v )~dz 
2 I 2 1 0 

+ !.!_ [_£_< v 2") _ v 21 _ ala] 
2 81 , , ·-· 81 

(A2.1.25) 

where U2 == V1 
2 at z = Ia has been used. From Eqs. (A2.1.8) and (A2.1.Q) it can 

be shown that 

a,v 2A)- v 21 _ a1a =-!cvs)211 2aJa Iii' , , s _, 81 4 81 (A2.1.26} 

and 

8V, =! vsa" 
81 2 81 

(A2.1.27} 

Substituting Eqs. (A2.1.26) and (A2.1.27} into Eq. (A2.1.25) yields 

• 
,

0 I iL[u2 + (v + v,)2)clz 1:= !!...(u2 + v2 + 2vV,) 81a 
2 0 al 2 81 

' + Po A.f,(u2 + ii2) + p0 AV1 Bii + !!-.!.J[(Auf + (Av)2)11z 
2 81 81 2 810 

... . - ,-!- ·-·~~--:-~--;-:----·- ...... -..-:-~-··""· ·--· ···--- ... ·-~·-·-. -··-·· -- ·or--·---~-·-· -----·-· .. 
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- Po VS2A 2!_! + Po VS/iU.BA. 
8 81 2 81 

(A2.1 .28) 

By using Eqs. (A2.1.28) and (2.7) and (2.8), Eq. (A't t.24) reduces to 

Po [ N, 2/a2 + .f.!!_ (u2 + v-2)-.!. VS2A2 + VShu] aA 
2 2 Po 4 81 

' + !!..
8
8 /[(Au )2 + (~t1 )~Jz -= o 

2 lo 
(A2.1.20) 

which reduces to Eq. (2.21/ in the absence or thermal wind. 

A.2.1.8. The Velocity Pro81e Parameter 

' As discussed in Chapter 2 the integral j[(~u )2 + (~v )~Jz is approximately 
0 

proportional to V1
2 1, ... 11 A, because it is assumed that the velocity profiles 

remain self-similar during growth: 

Au =-- v, 1, ... 11 G'(r1) 

At1 ~~a V1 1,=, F'(S't)· 

Therefore 

II 

j[(Au )2 + (At1 )2)clz 
0 

1 

= ( v, I. = A )
2
, f ( G r2 + F 12)tl S'l = E 'A v, 2 1, =A 

0 

where E' is a proportionality coefficient, and then 

A 

aa j[(Au )2 + (~ll )2jdz = 2E'V, '·= A a( v, ~ I = A) Ia 
' 0 I 

+ E'V1 
2 1,=11 :~ = [E'V1

2
1 •=II + 2E'V1 1,==11 VS Ia] :~ 

{A2.1.30) 

(A2.1.31) 

where Eq. {A2.1.8) has been used. Note that from the dimensional analysis here 

·······• ------.... -·-.~-:---. -.....---· -~ .. - -··· -·-,·-~··· _ ...... ·-----·--·- ~ ... ·-.. - ·--·--·-··4--- -
0 • • • • • 
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o' should depend on ~S and ~· . Substituting Eq. (A2.1.31) into Eq. (A2.1.20} 

yields 

'• [ No 2/a 2 + g lla- {ii2 + v2)-! VS2A 2 + VSiav 
2 2 Po .f 

+ E'V, 
2

1 •=• + 2E'V, I •=• vs , ] :~ = 0. (A2.1.32) 

During mixed layer growth :~ :/: 0 it is deduced that 

N2A2 I. 1 
0 + .!!.!!,_ (u2 + v2)-- VS 21a 2 + VShv 
2 Po 4 

+ E'V, 2 1 •=• + 2E'V, I •=• VSh = 0. (A2.1.33) 

The only problem left in Eq. (A2.1.33} is how to deal v.ith E'. Again the velocity 

profile parameter is introduced using Eq. (2.22a). Substituting Eq. (2.22a) into 

Eq. (A2.1.30) yields 

E'V 2j ' 2 I •=A = o u, . 

Using Eq. (2.35) it may be written 

I I , - [/ 
E v, •=" = 0 01 u v I . , •=• 

When the approximation: 

u 
~..,--- ~ 1 
v, I •=• 

is made, 

(A2.1.34) 

(A2.1.35) 

(A2.1.36) 

E'V1 la=l = o1C1 U (A2.1.37) 

can be obtained. Equation (A2.1.34) is used to replace the first E' term in 

(A2.1.33). The second is replaced using (A2.1.36) and (A2.1.37), yielding 

(. ··-··.- ... -...... . ---· ·. · · --·· -··-- ···-··--~--~·-=-·~--,-·--·~---.··--. ·.-. ·----: ·: · 
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N 21a2 
o'u. 2 - (u2 + ii2) + 2/a o'C~ Uvs + -•-

2 

+ Egla + Ia VS (U- !h VS) :::::~~ 0 
Po 4 

(A2.1.38) 

Note that the approximation (A2.1.36) is not necessary but makes the prob-

lem easier to solve because Eq. (A2.1.38), which is quadratic in A, would other

wise be cubic. Numerical tests showed that {A2.1.37) has little effect on the 

results. This is readily understood. Comparing the two terms which are first order 

in l'S in (A2.1.38), it is seen that since o'......, 0 (1), I U I - I i' I and C~ << 1, 

that the contribution from the term involving C~ (which was obtained using the 

a.pproximatio& A2.1.36) is small. 

A.2.1.7. Summary ofGovernlns Equations 

The governing equations including thermal wind for a horizontal flat bottom 

are: the momentum equations are the same as Eqs. (2.7) and (2.8), the mass con-

servation equation (A2.1.15) and the energy equation (A2.1.38). For convenience 

they are written out together as follows, for liN I << 1: 

(A2.1.39) 

(A2.1.40) 

(A2.1.41) 

(A2.1.42) 

. •. . ·--··-·--.--:-: ......... ·~· ····--.. - ·--..· .. --:.--.. - ---· .... --... ·----~----. . '-:"' ''' ' .. . -~ - - · - .. ..... ··- ·- - . - ---: --;---.!""~~ .. --·-· ·- ·--· ., .. 
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A.2.2. Sloping Flat Bottom Case. 

A.2.2.1. M~mentum Equations. 

In the interior the geostrophic balance is 

,,ox v, == -vP, +Poi (A2.2.t) 

wbich is the same as Eq. (A2.1.1). In the unrotated (2! ', ,., I') coordinate system 

(Fig. 6.1) fi = (n,,, nY'' 1 ), V, = (0, v, (z '), O) and 1 == (0, o, -g). IC ; is the 

latitude and 0 is the angle between the z '-direction and due east, then 

n,, = 20cos ,P cos I, n,, = 20cos t/J sin I. 

From Eqs. (3.1)-(3.3) the bottom coordinates (z, 11, z) are: 

z = z 1cos{J + z 'sin{J ~ z' + z 'fJ 

11 = 11
1 

z = -z'sin{J + z'cos{J ~ -z 1{J + z'. 

So that in the bottom coordinate system, 

ft = (n,, + 1 fJ, n,,, -n,,p + 1 ) 
V1 = (0, Y1 (z '), 0) 

The component equations or Eq. (A2.2.1) become 

. ap 
-p,IY1(z,z)=- a: -g{Jp,(z,z) 

BP, 
0=-au 

aP. 
0 = a;-+ Po (z 1 z )g 

(A2.2.2) 

(A2.2.3) 

(A2.2.4) 

(A2.2.5) 

(A2.2.6) 

(A2.2.7) 

because n,,{J << I when fJ << 1 and ; is not too small, and 

{n,, +I fJ)V1 <<g. Note that in the bottom coordinate system, v, is in general 

.... . : .. : .. - .- ~---··--:··---·-:--:--·· -:~ .. ·~·-~-:--~--:-:-:· .~---,·- .. :---~--. - .. -·;r · -,~ ... -· .. ~.~ . ....---
• • .. t • . . . ' .· 
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a function or both % and z . 

Again it is assumed that the isopycnals are inclined at a constant angle {J1' to 

the horizontal. Then from Fig. (5.1) 

(A2.2.8a) 

where ~~ is the isopycnal slope relative to the bottom. k ; shown in Eq. (A2.1.5) 

it is known that 

ap, , ap0 - = - tan{J1 --a:' a:' (A2.2.8b) 

and 

(A2.2.8c) 

Note that from the coordinate transformations Eqs (3.1}-(3.3) and (A2.2.2)-

(A2.2.4) 

Pos == PostCos/J + P01tSin{J 

Po, =- PostSin{J + PostCos/J. 

Therefore 

tanP1 =-~ = a,, 
az 

ap0 a ap 0 • fJ -a I COSp + -a I SID 
:Z ;: I a a = tan(,81 - P) 
Po • ,8 Po fJ a:z' stn - az' cos 

which also leads to {J1 = {J1
1 - {J, the same as Eq. (A2.2.8a). By using the Bous-

sinesq approximation from Eqs. (A2.2.5), (A2.2.7) and (A2.2.8c) the thermal wind 

relation in the bottom coordinate system is: 

av, N, 2 N0 
2 

1 -- = - -( tan{J1 + fJ) ~ - -tan{J1 = VS a: I I 
(A2.2.9) 
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because {3 is small. When IN is also small 

"S =-/Ja'No2 (A ) .. I 2.2.10 

From Eq. (A2.2.D) and the fact that v, depends only on the vertical coordinate 

z ', the geostrophic velocity can be written as 

Vg(zl z) = v,(z I 0) + z vs. (A2.2.ll) 

where 

V1 (: 1 0) = V1 (0, 0) + Pz VS (A2.2.12) 

For a sloping bottom it is still assumed that the second part £ in Eq. 

(A2.1.10a) is independent or z. Note that this is approximately true only when 

the bottom slope is small since for a sloping bottom the geostrophic velocity 

varies with :. (Note also, however, that Bird et al. (1Q82) also assumed that all 

deviations in the bottom bouildary layer from the interior quantities only vary 

with the distance away from the bottom and time, even in the presence of tber-

mal wind.) This assumption alJows us to employ Eqs. (A2.1.10a), (A2.1.10b), 

(3.26) and (3.27) for the sloping bottom ca~e. 

The momentum equation in the bottom mixed layer is 

au _. v 81 
p'- + p'OX = -VP' + l"i + -. at az (A2.2.13) 

The hy<!rostatic assumption is still used so that Eq. (3.17) is valid here. There-

fore 

P', = P0,. (A2.2.14) 

By using the Boussinesq approximation and Eqs. (3.8) and (A2.2.14), the z and~ 

··- -·-·· ··· ··-- .... .. ...... ... --··· -··· --···- .......... --··----·-·--·~-·--,--·-----.--- ·-·---· · . -· ... _ ···-·-----. ........ -....... ··- · .... ··----·~~--- ~-···· . . • . . . . .· . . . 
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component equations of momentum equation (A2.2.13) in the bottom coordinate 

system are 

au aP, , ar' 
''- - Po/ ( t1 + Y1 ) = --- - P f1 fJ + -at a, az (A2.2.15a) 

a(., + v, ) a P, ar~ 
p, at +Po fu =---a;-+ Tz' (A2.2.16a) 

av, 
After substituting Eqs. (A2.2.5) and (A2.2.6) and because ----a,- == 0, Eqs. 

(A2.2.15a) and (A2.2.16a) become 

au p'' tf} fJ 1 a~ --fv =--gfJ--+---at Po Po Po 8z 
(A2.2.15) 

8
8

v + fu = -1 a~ (A2.2.16) 
t '· az 

which are the same as Eqs. (3.15) and (3.16). Integrating Eqs. (A2.2.15) and 

(A2.2.16) in the z·direction from 0 to Ia, and making use of Eq. (2.6) and the 

assumption (2.9), yields Eqs. (3.22) and (3.23). 

A.2.2.2. Mass Conservation. 

As before it is assumed that ii, ii, £ and Ia are independent or z . Therefore 

Eqs. (2.5) and (2.6) still b0ld. 

The derivation 0f the mass conservation equation can start from Eq. (3.19) 

which. is valid here. Integrating Eq. (3.Hl) from z = 0 to Ia yields Eq. (3.24). 

Making use of Eqs. (2.5), (3.25), (3.27), and the fact that 0:: = a:; , then using 

(A2.2.8c) it can be shown that Eq. (3.24) becomes 

(A2.2.17) 

I •: • '• • ' ,4---·~--:'"'T• • - •• • - ··: ·--.----:~-.,-, ·•• ' •-·---..... ~~~-•:---.~..,..,---:--:- '''\' • • ••••:•··- --- • ,_ , • ' ' 
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Note that fJ in Eq. (3.2Q) is replaced by- tanP1 in Eq. (A2.2.17). 

A.2.2.3. Energy Equation 

Deriving the energy equation begins with Eq. (3.36): 

, ' ' !!.. f 
8
8 (u 2 + (" + v, )2Jdz =-1 u ap dz- ur, • - (u + v, )r,' 

2 0 ' 0 az 
A 

- p'fl {Juh- I <pw >utlz, 
0 

because it remains valid for the case il eluding thermal wind. 

(3.36) 

In order to calculate the first term on the right-hand side of the equation 

above, using Eq. (A2.2.14) and then Eqs. (A2.1.22a), (A2.2.5) (A2.2.Q), and 

(A2.2.11) yields 

A A 

-J uP' • dz = -I uP,, dz 
0 0 

A 

==-£(u +~u)[p,/(V1 (z,O)+ VS z)-(,,,(z,O)+,,z)g,B]dt 

A 

=-p,fuV1 (z)h +p.(z,O)g{Jiih + iip06 g,9h2 -(tan/N-.8)p,,gJ~uzdz. 
2 0 

=z-p,fuV1 (z)h +p.(z,O)g{Juh + :p,,g,Bia2 

It 

- tan{J1 p,, gf Auzdz. 
0 

{A2.2.18) 

From the mass conservation equation (3.lg) it can be shown, as in deriving Eq. 

(A2.1.18), that: 

.-----.-""'"':""-----,-.--------_.,-- -· ... · .... . . ·· . 
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l ' 
- tan{J1p,, gf[J Audz ')dz. 

0 0 

1 1a2 Po {J 1a2-N 2 g t h Ia -gt1 =--tan 1 u , -- 1 2 2 2 

is obtained. Substituting Eq. (A2.2.20) in Eq. (A2.2.1g) yields 

A A ' 
- I g pwdz = .!p0 , gh 2h1 - 9

2
tl• /a1 - t.p,n{J1p, gf(f AuJz ~dz. 

0 4 0 0 

{A2.2.1D} 

(A2.2.20) 

(A2.2.21) 

The expression for the time rate of change of local mean kinetic energy per unit 

area, Eq. (A2.1. 'l8), is still valid for the sloping bottom case. Substituting Eqs 

(A2.1.28), (3.22), (3.23), (3.26), (A2.2.18) and {A2.2.21) into Eq. {3.36) yields 

p, [No 2/a 2 + ~ (ii2 + u2)- .!_ VS21a 2 + VShv] ala 
2 2 Po 4 at 

A 

+ !.!_ aa /((Au )2 + (At1 )~clz = 0 
2 1 0 

(A2.2.22) 

which is identical to Eq. (A2.1.29). Note that in deriving the Equation (A2.2.22), 

A A ' 
the sum of I Auztlz from Eq. (A2.2.18) and /li Auclz1dz from Eq. (A2.2.21) 

0 0 0 

appears. As before, this sum c~n be shown to be zero by integration by parts. 

A.2.2.4. The Veloelty Profile Parameter 

The last term of Eq. (A2.2.22) is handled in exactly the same way as in Sec-

tion A.2.1.6, so that after introducing a', the energy equation again reduces to 

Eq. (A2.1.38). But here a' also depends on the bottom slope {J. 

\ 

····---~-r-------:--:-.. .___, ......... ---~----· ··-:--·------
• . 0 • 0 
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A.2.2.6. Summaey or Governln1 Equations 

For a sloping bottom the governing equations are: the momentum equations 

are the same as Eqs. (3.22) and (3.23), the mass conservation equation (A2.2.17) 

and the energy equat.ion (A2.1.38). For convenience, all of them are presented 

together as follows 

(A2.2.23) 

(A2.2.24) 

(A2.2.25) 

(A2.2.26) 
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APPENDIX3 

A MIXED LAYER RELAXATION PROBLEM 

The results obtained in Chapter 4 show that during mixed layer growth over 

a sloping bottom, potential energy is stored in the density field as fluid columns 

are advected either up or down the slope within the bottom boundary layer. The 

component or buoyancy parallel to the slop'J therefore provides an additional res-

taring Coree, ·1nd the frequency or oscillatory motion or Ouid columns must be 

modified accordingly. This section investigates the relatively simple problem of 

the oscillat.ions generated when the geostrophic Oow is suddenly stopped after the 

mixed layer has been formed. 

A.3.1. Analytic Solutions 

Because "unmixing" is not allowed, the thickness will remain constant after 

V1 is suddenly set to zero. Therefore the governing equations for the relaxation 

problem become (see Eqs. 4.5 to 4.7) 

Ia au = fiih - - 1-r. s - {Jg Ia t at Po p, 
(A3.1) 

L au ~-h 1 f ,. - =- u - -r, 
8t Po 

(A3.2) 

at 1 {JN 2-Tt =-gPo 0 u. (A3.3) 

The initial conditions are taken to be the values or u, ii and l at four and hair 

days (108 hours) during the growth or the layer with ramp function (4.Q}. Note 

-.. ···- .. -·-------.·------· --. -~-.-:-·--.··-~---·-- .. ·-·- -.----· ·-- ----... ---·-.--4·----- ·--:--·--·· ·~--- -------- . 
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that the geostropbic velocity is zero for the relaxation problem, and therefore ii 

and ti are the same as the depth-averaged velocity components. 

Using a linear drag law 

r, II -
-=ru 

Po 

r,' -
- = "'' Po 

it can be deduced from Eqs. (A3.1) to (A3.3) that 

ds- 2 d2- 2 ~ r {PN 2 

-" + _!_V + ( .!.._ + dlN 2 + l2) _av + o - 0 dt 3 , dt 2 , 2 p • Jt , tl = . 

(A3.4) 

(A3.5) 

(A3.6) 

Eq. (A3.6) bas been solved for three cases: (1) sloping bottom with no fric

tion (r = o); (2) horizontal Oat bottom with friction (P = 0); (3) sloping bottom 

with friction. 

A.8.1.1. Sloping bottom with no r.-ictlon. 

The solution is 

V {J2No2 
ii = A 1 + B JCO!I [I 1 + ' + c .J 12 (A3.7) 

whue the constants A 1 B 1 and C 1 are determined by the initial conditions. These 
I I 

are modified inertial oscillations with frequency I ~: that is, the fre

quency is slightly higher than I , being modified by the additional buoyancy force 

parallel to the slope as expected. 

.. :··-·· ·~-:--~:-":'~·~;~-:-~~~·-.-·......,..~ .. :---"'~--~. ·:-- .. -·:-:--· ~. -. ..,..,..,... :·- ·--~-··-..,.--..,...,....._,_.,. . ....,.__,_,,_, -.. ····-::-·-· 
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A.3.1.2. Horizontal Bat bottom(~== o) with friction. 

The solution is 

,, 
ii = - ~ 2e --r cos (/I + ; ) , 
ii =-A 2e--rsin(/t +;) 

(A3.8) 

(Aa.g) 

where the constants A 2 and ~ are determined by the initial conditions. These are 

just frictionally damped inertial oscillations. 

A.3.1.3. Sloping bottom with friction. 

The solutions are 

where 

ii = u 1A 3eh' + (u2B3 - u3C3)e'a.'cosp 26 I 

+ ( u2 C3 + u3B3)e'a. 
1 
sinp 2, I 

ii =A 3e' 11 + B3e 11 a.
1
cosp2,t + C3e'211 sinp 2~t 

E = t 1A 3e' 11 + (E2B3 + E3C 3)e'a. 
1 
cosp 2, I 

+ ( E2 C 3 - f 3B 3)e Pa. 
1 sinp 2, I 

2 
0 1 = /P No 2 + f 2 

- -'-3h2 

r ( 112 2 2r 
2 

/2) 02 = - g,., N0 - - - 18 
21h h2 

[ 
02 ~2 01 lt --+ -+-2 4 27 

2r 
3h 

(A3.10) 

(A3.11) 

(A3.12) 

(A3.13) 

(A3.14) 

(A3.15) 

(A3.16) 

(A3.17) 

(A3.18) 

·------~·.-:--:--.-.. ~·--.. -~ . ...,., -.. .. -_...,,-, _.,.... -~---:·.-··--- ---------~----· --; · -·-·-- ·.--- ..... _,.... ___ -·-·~-,----- . . . . . . . . .. .. 
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(A3.19) 

(A3.20) 

(A3.21) 

(A3.22) 

(A3.23) 

(A3.24) 

(A3.25) 

The constants A 31 B 31 and C 3 can be determined from the initial conditions. 

A.3.2. Numerical Solutions 

The Eqs. (A3.1) to (A3.3) are also solved numerically with both a linear drag 

law and quadratic drag law. The linear drag coefficient r was estimated by 

assuming that the range of u, is 0.19 to 0.6 cm/s and the speed in the mixed 

layer U = 0 ( 10 ) cmfs. Therefore the range of r is 3.6X to-s to 3.6X 10-2 cmfs. 

The range of the quadratic drag coefficient 0 1 was chosen as 0.2x 10-2 to 1 X 10-2• 

The results obtained from the analytic solutions and numerical solutions are 

presented together for two typical cases in Figures A3.1 and A3.2. The parameter 

values Cor Fig. A3.1 are: C~ == 0.002, r = 0.36XI0-2cmjs, fJ = 1 xto-2, 

N, = 1 X 10-2 /s and v, == 15 cm/s. In Fig. A3.2 Cl = 0.01, r = 3.6X 10-2cm/s, 

{J == -2.4Xl0-3
, N, = 1.28Xl0-2 /s and V1 == 15 cmfs. During the growth of the 

layer a' = ": 1 is used (Note that here f = 203. It is very large therefore the 

.·· .. ~~~.·-···· -·-·- · -.- ..................... --·:·-:- :---..... -----. -. ~-----:--.. -----:-~--~-::.~-:-:---...... --- -·-



0 
0 

0 
0 

+ANALYTIC SOLUTION HITH LINEAR D6AG LAN 
.NUMERICAL SOLUTION HITH QUADRIC DRAG lAH 
XNUHERICAL SOLUTION HITH LINEAR DRAG LAN 

·4-------~--------r-------, 
91. a a sa. oa 1 a a. co 1so. oo 

CD 
0 

• 
... 0 

0 
....-4 

• 0 zo 
Od 
...J 

(/) 

Q..CD 
Wo 

T (HOURS) 

• 
0~-------,--------~-------, 'a. ao so. oo 1 oo. oo 1so. oo 

T (HOURS l 

-
0 
0 

en 

' ~0 
Uo -

-

• 
0 

0 
0 

• 
CD 

en 

' ~0 
Uo - • 

0 

'-tj 
.a 

0 
:::JO 

so. 00 100. 00 
T CHOURSl 

so. 00 1 00. 00 
T (HOURS l 

Figure A3.1. The variation of the speed, the s-component if and the r-component 1i' of velo
city, and E when the geostrophic velocity is suddenly set to zero after four and halt days of 
bottom boundary layer growth. The parameters are: a' - 2.6, the quadratic drag law coefficient 
c~ - 2Xto-s, the linear drag law coefficient r - O.Mxto-1cm/s, N. - lXl0-1/s and'- 10·1• 

-g 



-

0 
0 

(/)0 

'o 
:E. 
u .... -
:::::> 

c 
0 . 
~.00 

... 
c . 

C'l 
c 

0 _... 

• N 
zo 
oo 
...J 
....... 
(f) 
a_ 
UJo 

0 . 
~.00 

+ANALYTIC SOLUTION HITH LINEAR DftAG. LAH 0 
.NUMERICAL SOLUTION HITH QUADfti~ DRAG LAN ~ 
XNUHEftiCAL SOLUTION HITH LINEA6 DRAG LAM m -U) 

........ 
~c 
Uc - • c 

c.. 
d 

..0 
c 

> c 
• 

CD 

50.00 100. 00 150. 00 . 'a. oo 
T CHCJURS) 

c 
c 

-en 
........ 
~c 
Uc - • 

0 
c.. 
d 
.0 

c 
:JC . 

50.00 100.00 150.00 'a. oo 
T (HrJURS l 

so. 00 1 00. 00 
T (HOURS) 

so. oo 1 oa. oo 
T (HrJURSl 

Figure A3.2. The variation of the speed, the z -component ii and the v-component u of vel~ 
city, and £ when the geostrophic velocity is suddenly set to zero after four and halt days or 
bottom boundary layer growth. The parameters are: o' - 2.5, the quadratic dtag law coefficient 
C~ - lXl0-2

, the linear drag law coefficient r - 3.8X10-2cm/a, N. - 1.28Xl0-1/s and 
{J- -2.4XI0-3. 

150. 00 

150.00 



··· ··-·- :-. -~-

162 

value oro' doesn't affect the results). 

The results show that the numerical solutions with a linear drag law are 

almost identical to the analytic solutions, and the numerical solutions with a qua-

dratic Jaw are very close to the analytic solutions. Figure A3.1 indicates that the 

How oscillates at the modified inertial frequency and decays with time. In Fig. 

A3.2 the How only decays with time and no oscillations appear because the values 

of the drag coefficients are an order of magnitude larger than in Fig A3.1. Tbe 

decay times in Figs. A3.1 and A3.2 are long: at least two days to diminish to half 

the mean value. 

Different values of the Brunt-Vaisala frequency, bottom slope f\nd drag 

coefficient were tried. With the quadratic drng coefficient C~ .,. 2X 104 , the 

results for different values of {J and N0 are presented in Tables A3.1-A3.4. In the 

T~bles the oscillation frequency w is calculated from_~ the analytic soiution with 

linear drag law in which w is P 26 , since from Figure A3.1 based on numerical and 

analytic solutions there is little difference in the frequency or oscillation between 

the solutions with quadratic drag and with li.near drag. The mean value is the 

average over one oscillation. The amplitude is the difference between the max-

imum and mean. The results show that when the bottom slope and the Brunt-

Vaisala frequency increase the oscillation frequency increases. The mean How 

decay rate decreases when the bottom slope and the Brunt-Vaisala frequency 

increase. The deca)" rate of oscillation amplitude in speed, E and the z -component 

.---·--- ··-··_,...,..-~-:--·- -··.· . .. ····. ~-:··-·7·- ~- .... - -~. ~ -· - - --.~ ,-•-.. r·-··- ·r--- ... ·- ,,, ' • . . 
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Speed U(cm/s) 

fJ (xto-3) N0 (X10-3 /s) w ( XI0-4 /s) 
Amplitude Mean 

1==0 ' -== 54 1==0 ' =-54 

10 
10. 1.18 1.8 1.0 5.5 2.0 

1. 0.638 0.3 0.2 14.5 5.2 

1 
10. "'\38 2.2 2.0 13.5 1.5 

1. 0.630 0.0 0.0 14.8 2.5 

·10 
10. 1.18 2.1 1.0 5.2 1.3 

1. 0.638 2.0 l,g 13.0 1.7 

-1 
10. 0.635 1.0 0.0 g,o 2.7 

1. 0.630 0.0 0.0 14.8 2.5 

Table A3.1. The comparisons ol results lor speed between a high value of 
{J = 10-2 and a low value of {J = 10-3, a high value of N0 -== to-2 /s and a low 
value of N, = 10-3 /s when C~ = 2Xl0"3 and the Coriolis parameter 
I = 0.63X10"4 /s. 

Advective Density Anomaly£ (X1o-4,/cm 3 

fJ (X10-3) N. (X10-3 /s) w (X10-4 /s) 
Amplitude Mean 

1=0 I -=54 1 = 0 I =54 

10 
10. 1.18 0.73 ().3 0.1 0.0 

1. 0.638 0.027 0.012 -0.01 -0.007 

1 
10. 0.638 0.2 0.05 -0.75 -0.6 

1. 0.630 0.002 0.0008 -0.0036 -0.0033 

-10 
10. 1.18 0.65 0.18 0.13 0.0 

1. 0.638 0.015 0.003 0.00 0.08 

-1 
10. 0.635 0.008 0.0 2.6 2.1 
1. 0.630 0.002 0.0007 0.005 0.0045 

Table A3.2. The comparisons ol results for the advective density anomaly l 

between a high value or /1 = 10-2 and a low value or fJ = 10"3, a high value or 
N 0 ~ 10-2 /s and a low value of N. = 10-3 /s when C4 ~ 2X 10-3 and the 
Coriolis parameter I = 0.63X 10-4 Js. 

"'-~·-. • . .... · ·---:·-..-~-·· ... ... - ··---··-~-.. -·-~ . .. -. .. ----- . . ·: ·. . . . . ·~-~-~- ... ~·~::"'-~ .... ··-~·-· .... .._,...--. .. .. 
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z-Component of Velocity i1 (cm/s) 

fJ (x1o-3) N, (X10-3/s) w (x1o-t /s) 
Amplitude Mean 

'=0 '=54 1=0 '=54 

10 
10. 1.18 8.0 2.5 -0.1 0.0 
1. 0.638 11.0 6.0 -0.3 0.0 

1 
10. 0.638 7.0 1.7 0.9 0.2 
1. 0.630 8.5 4.0 0.8 0.0 

-10 
10. 1.18 7.0 1.6 0.2 0.0 
1. 0.638 7.0 1.8 0.4 0.0 

-1 
10. 0.635 0.5 0.5 0.3 0.0 
1. 0.630 8.0 3.1 0.5 0.0 

Table A3.3. The comparisons of results for the z -component of velocity 
between a high value or {J = 10-2 and a low value or {J = to-3

, a high value of 
N, = 10-2 /s and a low value of N, = 10-3 /s when C~ == 2X10-3 and the 
Coriolis parameter I = 0.63X to-• /s. 

u-Component of Velocity ii (cm/s) 

,8 (xto-3) N, (X 104 /s) w (x1o-• /s) 
An!plitude Mean 

'=0 '=54 '=0 '=54 

10 10. 1.18 4.0 1.5 0.8 0.2 
1. 0.638 13.0 4.5 0.8 0.0 

1 
10. 0.638 0.1 2.1 0.7 0.0 
1. 0.636 13.2 3.5 0.0 0.1 

-10 
10. 1.18 3.7 1.7 -0.5 0.0 
1. 0.638 0.1 2.0 -1.7 -1.0 

-1 10. 0.635 5.2 0.0 -1.6 -3.5 
1. 0.630 11.9 2.5 2.0 -0.4 

Table A3.4. The comparisons of results for the r-component of velocity 
between a high va.~ue of {J ..... to-2 and a low value of fJ = to-3, a high val\~e of 
N, = 10-2 /s and a low v~lue of N, = t04 /s when C~ = 2Xt0-3 and the 
Coriolis parameter I = 0.63X to-• /s . 
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of velocity increase with increasing bottom slope and/or Brunt-Vaisala frequency, 

but the decay rate of oscillation amplitude of the 11-component of velocity 

decreases when the bottom slope and/or the Brunt-Vaisala frequency increase. 

-~...,.----....... -=.-... ~.~-.-:---.-~:-'"'~/ .. : . .. . ' .... •. . .. 
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