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ABSTRACT

A new vertically integrated model is developed for the growth of bottom
mixed layers. Unlike the usual slab models this model retains the vertical varia-
tion of mean speed with height, which appears as a parameter in the energy bal-
ance. The mixed layer growth problem is solved analytically for a horizontal flat
bottom and numerically for a sloping flat bottom. A :elaxation problem, the
decay of motion in the bottom mixed layer after the geostrophic flow in the inte-
rior ceases, is also solved analytically and numerically. Finally solutions includ-
ing thermal wind effects on bottom mixed layer growth are obtained for both a

horizontal flat bottom and a sloping flat bottom.

For the horizontal flat bottom case, an algebraic formula for mixed layer
thickness is obtained for arbitrary values of the Brunt-Vaisala frequency and
Coriolis parameter. The results show that the vertical variation of speed must be
taken into account when the ratio of the Brunt-Vaisala frequency to the Coriolis
parameter is less than or of order unity, and that the formula is consistent with
that obtained by Weatherly and Martin (1978). Formulae for dependence of fric-

tion velocity and veering angle on stratification are also obtained.

For a sloping bottom at the initial stage of bottom boundary layer growth
the vertically integrated model produces results very similar to those obtained by

Weatherly and Martin (1978) using the Mellor and Yamada Level IT turbulent



closure mudel. The main effect of bottom slope is to produce upwelling or
downwelling within the bottom boundary layer. After the initial period of boun-
dary layer development the vertically integrated buoyancy force can grow to
reach a balance with the vertically integrated driving pressure gradient so that
the Ekman transport is extinguished and the layer becomes arrested. The length

of the initial period greatly depends on the sign of bottom slope.

The effects of thermal wind are shown to be important. For a horizontal flat
bottom if the vertical shear in the interior is positive the mixed layer grows
indefinitely. If the vertical shear is negative the thickness reaches a constant
value or decreases with time. For a sloping flat bottom the thermal wind is
important when the isopycnal slope is comparable to or much greater than the
bottom slope. The results are in agreement with the observations made by

Weatherly and Van Leer (1977) on the western Florida Continental Shelf.
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CHAPTER 1

INTRODUCTION

The bottom boundary layer in the ocean is nearly uniform in terms of its
physical and chemical properties because of turbulent mixing induced by bottom
friction. Therefore it is often called the bottom mixed layer. When the sea floor is
inclined, upwelling or downwelling can occur parallel to the bottom within the
mixed layer due to the effect of the earth's rotation. This vertical mixing and
upwelling or downwelling can have important physical and biological conse-

quences.

In the interior of the ocean we can often assume that the flow is nearly ‘geos-
trophic. Near the bottom boundary, however, the flow speed must decrease
because of friction, and the Coriolis force no longer balances the pressure gradient
force. This imbalance drives a near-bottom transverse flow which is directed in
the northern hemisphere to the left of the interior geostrophic flow, as first
demonstrated by Ekman (1905). Using a constant eddy viscosity for steady flow
in a neutrally stratified fluid he showed that the velocity vector follows a loga-

rithmic spiral with distance from the boundary.

In the presence of stratification, a bottom mixed layer is formed and the

transverse motion is largely confined to this mixed layer. This transverse flow



affects the budgets of heat, nutrients and other scalars on the continental shelf
(Bowden, 1978), mixing at the ocean boundaries (Armi, 1978 and 1979; Garrett,
1079), and the response of the ocean to forcing at time scales larger than the iner-

tial period (Wimbush and Munk, 1970).

There have been several different approaches to the bottom mixed layer
problem. In one approach the vertical variation of the turbulent fluxes is
retained. This may be through the use of a mixing length hypothesis (Zilitinke-
vich, 1070) or an eddy viscosity, which may be a function of time and height
(Gutman, 1969; Ng and Spalding, 1972). These assumptions permit the set of
governing equations to be closed, and the results are given in the form of vertical
profiles of velocity, density and other quantities. Recently very promising results
have been obtained by requiring closure assumptions for the triple turbulence
moments. This approach was reviewed by Mellor and Yamada (1974), and sum-
marized as Levels I to IV of their turbulent closure scheme. Weatherly and Mar-
tin (1978) were the first to use a Level II turbulent closure model to investigate
the effects of stratification and bottom slope on mixed layer growth in the ocean.

In this thesis extensive comparisons are made with their results.

A number of contributions have been made in terms of this approach (Mel-
lor, 1973; Yamada and Mellor, 1975; Weatherly, 1075; Weatherly et al., 1980;
Dickey and Van Leer, 1984; etc.). The second order scheme created by Launder et

al. (1075) and further developed by Gibson and Launder (1978), Richards (1982)



and Mofjeld and Lavelle (1984) also belongs to this category.

Another approach has been to use similarity theories. Csanady (1967) used
dimensionsl analysis, matching a wall layer with an outer layer in terms of a log-
arithmic layer existing between them, and obtained a resistan(;e law for a tur-
bulent, stationary, horizontally homogeneous and neutrally stratified atmospheric
Ekman boundary layer. For this same problem Blackadar and Tennekes (1968)
deduced directly from the equations of motion the wall law, velocity-defect law
and the logarithmic law between them for the planetary boundary layers in terms
of similarity theory. Brown (1974)lachieved a continuous solution for semi-
infinite flow over a surface consisting of geostrophic, Ekman-layer, and surface-

layer solutions in terms of dimensional analysis.

The third approach is to use equations of motion which are integrated over
the boundary layer thickness, which reduces with certain assumptions to the so-
called slab model. The advantage of this approach is that after vertical integra-
tion the turbulent momentum flux appears in the form of stresses at the bottom
boundary and at the interface between the boundary layer and the interior.
There was some early observational evidence which indicated that the slab model
should be useful, particularly in stably stratified environments. Riehl et al.
(1951) and Kraus (1968) showed that there was no apparent evidence of a velo-
city spiral, logarithmic or otherwise, in the atmospheric boundary layer over the

sea. Instead the observations seemed to show the existence of a well-stirred layer



of almost uniform potential temperature, and that even the velocity was more or
less constant in this layer. (This result has been corroborated in the ocean more
recently by Weatherly and Van Leer (1977), who found that most of the Ekman
veering occurs in the strong density gradient region between the bottom mixed
layer and the overlying fluid.) This led Geisler and Kraus (1969) to use the slab
model with vertically uniform potential temperature and velocity within the
well-stirred layer to simulate the growth and the dynamics of the atmospherie
boundary layer in the presence of stable stratification. Subsequently, slab models
were applied to the oceanic surface mixed layer by Pollard et al. (1873) and to
the oceanic bottom mixed layer by Thompson (1973). With assumptions that
there exists a thin layer with linear distributions of velocity and density between
the mixed layer and the interior the slab model has also been extended by Manins
(1982) to include the effects of thermal wind in the interior, and successfully
applied to the atmospheric boundary layer. Similarly Price et al. (1986) applied
the slab model, with a transition zone to eliminate the density jump between the
mixed layer and the interior, to the dynamics of deepening of oceanic upper

mixed layers solely driven by the local surface fluxes of heat and momentum.

1.1. Previous Resulits

Thes: three approaches have yielded the following results for the boundary

layer thickness over a horizontal bottom. According to similarity theory




(Csanady, 1967 ) the thickness A of the Ekman layer for neutrally stratified flow

is
u,

where f is the Coriolis parameter, and u, is the friction velocity defined by the

bottom friction r, and the density p,, that is

e r‘ 1
U, =/ lﬁ. - (1.1b)

The value of u, is often estimated by 0.03 - 0.05 V, (Weatherly, Blumsack and

Bird, 1980) where V, is the geostrophic velocity. The value of k is usually taken
as 0.4, based on laboratory experiments by Caldwell et al. (1972) and Howroyd
and Slawson (1975), and field observations made for example by Mercado and
Van Leer (1976). Zilitinkevich (1972) theoretically deduced that & is von

Karman's constant, which is about 0.4.

When stratification is included it can be shown by using the Rayleigh
method and the x - theorem (Pao, 1961) that the thickness for a horizontal fiat

bottom must take the form

TR N,
h=A -TQ(-—I—), (1.2)

de. . The constant A and

where N, is the Brunt-Vaisala frequency, N, ? == -—'L
’

function @ need to be determined from additional physical considerations.

s e a n




Thompson (1873) showed using a slab model that

vI N,

A =12

(1.3)

for constant N,. Using the Mellor and Yamada Level Il closure scheme, Weath-

erly and Martin (1978) obtained:

13 4,

h o= (1.4)

l’
2—
f(1+-l;-°2—‘

for 0< % <200. It is important to note that Equation (1.4) is not an analytic

result, but was shown to provide a reasonable fit to their computed thicknesses.

Each of Egs. (1.3) and (1.4) has the form (1.2).

Note that the physical meaning of A in each of Eqgs. (1.1), (1.3) and (1.4) is
somewhat different. In Eq. (1.1), the thickness of the Ekman laycr is defined by
Howroyd and Slawson (1975) as the height at which the v2locity is parallel to the
geostrophic velocity. Caldwell et al. (1872) and Nowell (1983) define the thickness
in Eq. (1.1) to be the height where the velocity is 999%-99.0% of the geostrophic
velocity. In Eq. (1.3), A is the thickness of the bottom mixed layer, while in Eq.
(1.4) A is defined as the height at which the turbulent kinetic energy goes to zero.
Other definitions of bottom boundary layer thickness are similar to these three
above. For example, Richards (1982) defined the chickness as the height at which

the turbulent kinetic energy is reduced to 5 % of its value at the bottom. This
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gives b ==0.86u,/f for constant geostrophic velocity and A = 0.57,/f for a

bottom boundary layer driven by the M, semi-diurnal tide.

v];O]

(1.3). The small difference between them may be due to the different definitions

When iv]1->>1, Eq. (1.4) approaches 1.3

which is very similar to Eq.

of thickness. Both are in rough agreement with the observations made by Weath-

erly and Van Leer (1077) on the western Florida Shelf, for which iv-,’— = 203

For the case of iVIL =0, it is found thet the thickness obtained from Eg.

(1.4) is more than three times that obtained from Eq. {}.1). Weatherly and Mar-
tin (1978) attributed this to the different definitions of thickness. Thompsca's for-

mula does not apply to this case.

For a sloping flat bottom in the ocean, theoretical results have been
presented by Weatherly and Martin (1978) and by Bird et al. (1982). Weatherly
and Martin (1978) assumed horizontal isopycnals (no thermal wind) with the inte-
rior flow parallel to isobaths, and again used the Mellor and Yamada Level II clo-
sure scheme. They solved the problem numerically, for a situation in which den-
sity varied solely with temperature. They showed that the bottom mixed layer is
no longer a simple, laterally homogeneous well-mixed layer. Instead, it is strongly

affected by upwelling (downwelling) of denser (lighter) water induced by Ekman



veering. In the northern hemisphere, for the case of shallow water to the left of
the interior flow (upwelling) the density of the bottom mixed layer increases with
time due to advection of water from greater depths, and the thickness reaches a
constant value which is approximately equal to that given by Eq. (1.4). For the
case of shallow water to the right (downwelling) the density of the layer decreases
and the thickness increases with time. These results were compared with observa-
tions made by Weatherly and Van Leer on the western Florida Continental Shelf,
with basically favourable agreement being found, except that for the downwelling
case the observed thickness was found to be constant and less than that for the
upwelling case. Bird et al. (1882) also used the level II closure model, and
included thermal wind effects. They still assumed that all departures from geos-
trophic flow within the bottom boundary layer were independent of position on
the plane parallel to the bottom. Their thermal wind sensitivty studies show that
when the isopycnal slope increases, the thickness decreases and the veering angle
increases. Rhines and MacCready (1089) showed that the driving pressure gra-
dient force in the upslope direction must finally be balanced by the buoyancy
force and the Ekman flux will be extinguished. The Ekman layer becomes

arrested.

Contributions to mixing on a sloping bottom in the ocean made by Phillips
(1970) and Wunsch (1970) show that a mean upwelling current along the slope

induced by the sloping bottom which is different from the simple diffusive process

i
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might account for the vertical velocity needed in the abyssal circulation. Phillips
et al. (1986) show that on a sloping bottom there exists a bidirectional secondary
flow in the turbulent boundary layer with a net significant downslope buoyancy
flux. Garrett (1990) discussed the secondary circulation and the related the tur-
bulent Ekman layer in detail and particularly, verified theoretically the existence
of secondary circulation when the turbulent eddy viscosity decreases exponen-

tially with distance away from the bottom.

1.2. Present Approach

In this thesis the vertically integrated equations of motion are used, as in the
slab model. The approach differs from that usually employed in slab models, how-
ever, in that the vertical dependence of mean speed on height is retained, appear-
ing as a parameter in the energy equation. The objectives are to provide a unified
interpretation of Eqs. (1.1), (1.3) and (1.4) for the horizontal bottom case, and to
apply the model to bottom mixed layers on a slope and in the presence of ther-
mal wind in the interior flow, which Weatherly and Martin (1978) did not include
in their simulations. The results are compared primarily to those obtained by
Weatherly and Martin (1978), Bird et al. (1982), and to Weatherly and Van
Lees's observations. Chapter 2 presents the analytic solutions for the horizontal
flat bottom case. Chapter 3 gives the formulation of the boundary layer problem

for a sloping flat bottomn. Chapter 4 gives the numerical results for mixed layer
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growth over a flat bottom for both the horizontal and sloping (1ses. Chapter 5
shows how the thermal wind affects the growth of the bottom mixed layer over
both a horizontal flat bottom and a sloping flat bottom. The summary and con-
clusions are presented in Chapter 6. Analytic and numerical results for a relaxa-

tion problem in bottom mixed layers are given in Appendix 3.
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CHAPTER 2

ANALYTIC SOLUTIONS
FOR THE HORIZONTAL FLAT BOTTOM CASE

The problem of bottom mixed layer development over a horizontal flat bot-
tom due to constant geostrophic velocity in the interior is formulated in this
chapter. A continuous velocity profile is considered, and vertically integrated
governing equations are derived, consisting of the momentum equations, a mass
conservation equation and a new energy equation. The energy equation is derived
both from first principles and from bulk energy arguments. Analytic solutions for

thickness, veering angle and other flow quantities are obtained and compared

with previous results.

2.1. Momentum Equations

It is assumed that the fluid is stratified and incompressible, and that the
motion is hydrostatic and driven by a constant geostrophic velocity V, in the y-
direction (Fig. 2.1) so that the flow is assumed to be independent of y. Based on
observations (see for example, Riehl et al., 1951; Kraus, 1968; Weatherly and Van
Leer, 1977; Dickey and Van Leer, 1984), the density within the boundary layer is
assumed to bLe uniform in the vertical direction while the velocity varies with

height (Fig. 2.1). This distinction between the dependence of velocity on height

and that of other quantities on height is important in the analysis to be
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Figure 2.1. Coordinate system and schematic profiles for the horizontal flat
bottom problem.
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presented.

Let (u,v) be the local time averaged velocity components in the layer minus
the interior geostrophic velocity (0, V,). Then the vertical averages of these

quantities are given by

A
U= -l-f u dz (2.1)
L
and
A
F-——=-l-fv dz (2.2)
by

where & is the height over which the density is well-mixed and uniform.

The continuity equation in the bottom boundary layer is

o4 . oY (2.3a)

When there is entrainment, the interface at z = & is not a material surface and
the kinematic boundary condition can be written in the form

wh)-w, =u(h)h, +4. (2.3b)
where w, is the entrainment velocity. When mass is entrained downward into the
bottom boundary layer, w, is negative and the interface moves upward with an
extra speed of w, besides w(h). Making use of Eq. (2.3b) and integrating Equa-

tion (2.3a) the following can be deduced:

h + 385(”) == —1,. (2.4)
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Assuming uniformity in the z-direction (since V, is independent of z)

9 (1=

-a';'("“ ) =0, (2.5)
and substituting Eq. (2.5} into Eq. (2.4) yields

b =-w,. (2.6)
The linearized vertically integrated momentum equations may, therefore, be

shown to be

L ) (27)
ﬂ‘%l + fih =- i—n' | (2.8)

where p, is a reference density, and 7, = (r,*,7,?) is the stress at the bottom.
These are the same as the momentum equations for the slab model used by
Geisler and Kraus (1969), Pollard et al. (1973), and Thompson (1973). To obtain
them it has been assumed that the vertical scale is much less than the horizontal
scales so that horizontal variations of mean quantities including the horizontal
Reynolds stresses can be ignored. The Rossby number is therefore small (Geisler
and Kraus, 1969), so that the nonlinear terms can be ignored. Also the Bous-
sinesq approximation has been used. Furthermore, it is assumed that during
growth the friction at the interface r; is given by

-

;—" = [u(h), v(h)] w,, (2.9)
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so that the interfacial friction is due solely to the entrainment of water from the
interior into the bottom boundary layer. This assumption was also made by Pol-

lard et al. (1973).
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2.2. Energy Equation

The energy balance in the entire water column from surface to bottom is
considered, since the geostrophic flow in the interior provides the energy source
for mixed layer development. T'wo approaches are used to obtain an approximate
energy equation, one starting from first principles, the other based on a bulk

energy argument.
2.2.1, Derivation from first principles.

The derivation of the energy equation starts with the momentum equation:

-‘;—7“’ + 0 (T-D)F + p(2TIXT) = -Tp - ogF + pvtd (2.10)
where g is the molecular shear viscosity of the fluid, K is the vertical unit vector,
{1 is the angular speed of the earth's rotation and @ is the velocity of a fluid par-
ticle. If @ is the turbulent part of the total velocity and U' == (u, v -+ V,)is the
local time averaged velocity, the total velocity ¥ is

t=U+T=(u+4da, v+ V, +0, D) (2.11a)
Similarly p and p can be written as

p=p+5 (2.llb)
and

p=P'+p (2.11¢)
where j is the turbulent part of the density, 5 the turbulent part of the pressure,
¢' the local time averaged density and P! the local time averaged pressure. Sub-

stituting Egs. (2.11a) to (2.11c¢) into Eq. (2.10), taking the dot product of the
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resulting equation with U and time-averaging yields the mesn kinetic energy

equation for incompressible flow

-—-i 2 ‘ _— ! - i it
Bt[" +(v+ V) uP’, p.uaz<w0>
-t (v + V.)-%«ba >, (2.12)

where the Boussinesq approximation has been invoked in order to set p' = p,,

and the assumptions that —‘;’— << — 8 and av g have been made which

permits the horizontal advection of mean quantities to be ignored. The viscous
terms have been dropped because the Reynolds number is large (Wimbush and

Munk, 1870; Tennekes and Lumley, 1972).

Similarly the dot product of Eq. (2.10) with ¥ produces the turbulent kinetic

energy equation

2d

5-21--——-—-3<;:> =2 <op> - p,<oa > 28— p, <0 w0 >0+ V) ;z V)
_Pe 9 cagt> 4 pdica(dly By 4 (38 4 O )> +2<tb o a“’
2 s dz d: dz dz
-¢-<bp>yg, (2.133)
where
= 2p<iy; 6 > (2.13b)

is the dissipation term (see Appendix 1),

R 1 3ﬁ; 80,-
iij '5-[-587 + 53—}

and



18

The second term and the third term on the right hand side of Eq. (2.13a) are the
shear production terms. The last term is the buoyant production term (Mellor,

1973). Adding Eq. (2.13a) to Eq. (2.12) yields the total kinetic energy balance,

-%’--%(u2+(v F VP4 <qP>) == gy fu <> + (o + V,)<05>]
~uPl - P00 cigt> D cipS - <hp>g -
uP’, > ag(wq) a'<wp> <wp>g -¢

0 (. 06, O s 09 , OB . Ot
+ #5;[<“('$ + -5-;)> + <v(—5; + W» + 2<w—‘,’7>]. (2.14)
After integration from the bottom to the sea surface, Eq. (2.14) reduces to terms

involving integrals of quantities which are non-zero only in the mixed layer:

A A
L.f {_Q.(,,z,,_(,, +V, )+ <¢1’>)]dz =-{«P'. dz

2 9| 0¢
A (} '
~ [<bp>gds - [¢ds (2.15)

0 0

The -0%- terms in Eq. (2.14) do not appear in Eq. (2.15) both because they

vanish in the interior above the mixed layer, where it is assumed that the tur-
bulence vanishes, and because they are zero at the bottom boundary due to the
no slip condition and & being zero at the bottom. These terms redistribute
energy within the mixed layer but do not result in any net flux into or out of the

layer.

Substituting Eqs. (2.11a) and (2.11b) into the mass conservation equation,

o + v(¥p) = 0, and time-averaging the result yields

3 ..
P = -5-<i>. (2.16a)
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Therefore when s < A

- <@p> =pls (2.16b)
because the mean density of the mixed layer is independent of z. Note that o is
equal to p, at z = -’é." where p,(z) is the distribution of density before formation

of the bottom mixed layer: that is

Po(2)=p,(0) + pos = (2.160)

Therefore p,' = -%-p,, h;. Note also from the hydrostatic relation that

A
P' =P, + [(o' - p, gd1
z

where P, is the undisturbed pressure, and that therefore P,'= P,, which is

independent of :. Eq. (2.15) can therefore be rewritten as

A
N AR P
0

‘ .
+ g2 2, - [ods. (2.17)

4 )
The left hand side of this equation represents the time rate of change of total
kinetic energy. The right-hand side is the sum of the rate of work done by the
geostrophic pressure gradient, the negative of the time rate of change of potential
energy, and total dissipation per unit ares in the mixed layer. It remains to

express the dissipation in terms of mean flow quantities.

It is assumed that during the growth of the mixed layer,

A

A
Po_r8<g®*> .
; { =-ds + {;Jz 7 -U, (2.18)
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where U = (7, 7 + V,) is the vertically averaged mean velocity. Eq. (2.18) indi-
cates that the total time rate of change of turbulent kin-tic energy per unit area
plus the total dissipation per unit area is equal to the rate of work done by the
mean flow against bottom friction. Justification for assuming this balance is given
below.

When the flow is statistically steady Eq. (2.18) can be deduced from Eq.

(2.13a). From Egq. (2.16b) <p& > = 0 for steady flow, and after vertical integra-

tion from the bottom to the sea surface Eq. (2.13a) becomes

[} [}

d 14
[edz =-f[,<wﬁ>-"1-“-+p,<zb6>-£"—i—-!-)- dz.
° s oz oz

which is the balance between shear production of turbulent energy and viscous
dis'sipation. Equation (2.18) therefore represents the essentially well known result
for homogeneous, steady, pure shear flow that the rate of shear production of tur-
bulent kinetic energy equals the rate of viscous dissipation. The velocity distri-
bution is quite uniform in the upper part of the mixed layer above the inertial
sublayer so that most of the shear production of turbulent energy occurs within
the lower part of the mixed layer, the inertial sublayer (constant stress layer,
Mellor 1973; Kline et al.,, 1967). Therefore the integral of the shear production'
term can be rewritten as an integral from 0 to § where § i3 the inertial sublayer
thickness. Furthermore the Reynolds stresses are constant in the inertial sub-

layer, so the right hand side of the above equation can be written as

(2.0
#2304 ~7,0,
0
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where U, is the velocity at the outer edge of the inertial sublayer, assumed to be

close to the vertically averaged velocity.

2
For the case of unsteady flow the term -Q—<-5"‘—Z- in the inertial sublayer is

small relative to other terms in Eq. {2.13a) (Mellor, 1973). The measurements
made by Wyngaard and Cote (1971) in the inertial sublayer of the atmospheric
boundary layer under stable conditions show that this is true and that the rate of
shear production of turbulent energy almost equals the rate of viscous dissipation
because the buoyant production and other terms are also quite small. Therefore

the integral of Eq. (2.13a) from 0 to § becomes

6
dr =7, -U = [¢ds.
0

oo +V,
-f[,<®ﬁ>——+p,<”>-————(”;; ')]

In the upper part of the boundary layer viscous dissipation is small when the

. é [}
Reynolds number is large, and therefore f ¢dz =~ f ¢dz. For completeness the
0 0

8<q’>

term involving the integral of T

is included (although it is expected that

this term is small) and Eq. (2.18) is, approximately, obtained. Equation (2.18) was
also used by Manins (1982) with an additional turbulent kinetic energy produc-

tion term caused by surface heat transfer.

Substituting Eq. (2.18) into Eq. (2.17) yields

A
-62'—1'-‘;1‘-[“2 +(v + V,)Yds - -i-g Pos BNy = - hip, IV, -} *
0

-G+ V) (2.19)
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since -?—;;— = p, fV,. In Eq. (2.19) the last two terms represent the power lost to

bottom friction. The first two terms on the left hand side are respectively the
time rate of change of local mean kinetic energy per unit area and the time rate
of change of potential energy per unit area. The first term on the right hand side

is the rate of work done by the geostrophic pressure gradient.
2.2.2. Derivation using bulk energy arguments.
Equation (2.19) can also be obtained using bulk energy arguments. The

mean Kinetic energy KE in the total water column (see Fig. 2.2) is

H A H
KE = [[u? + (v + V,)]dz = [[u®+ (v + V,)]dz + [V,%d:
0 0 A

where H is the total depth. Therefore

Oh _y 20k,

at FTRT)

A
OKE _, %"_[f%[u’ +(v + V, 4 + [W?+ (v + V, )|,
0
A
=P [0 1,2 2
2 {m[u +(v + V, )ldz.
The potential energy per unit area of the water column is

H
PE = f p'agdz + f Po(z) 29dz
0 A

=L gp b+ %ﬁ. (0)H? + -‘;—p.. H>.

12
Thus

OPE _ 1 2 0h

at 19 Pu

The rate of working by the geostrophic pressure gradient is
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Figure 2.2. A sketch of the water column during bottom mixed layer growth
in the view of bulk total energy balance. H is the total depth of water column
from the sea floor to the sea surface. A(t) is the thickness of the bottom mixed
layer. U(t) is the velocity in the layer. 7, is the bottom friction. V, is the geos-
trophic velocity. ¥P is the pressure gradient.
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b H
- [vp"Ud: - {GP,,-V, d: = -hiip, IV,
0

where, as in Eq. (2.17), P’y = P,, has been used. If it is assumed that the time
rates of change of total mean flow kinetic' energy and potential energy in th;a’
water column from z =0 to H, plus the power gained from the geostrophic:
pressure gradient in the bottom boundary layer, are balanced by the power lost
to bottom friction, then Eq. (2.19) results. This energy balance basically has the
same form as that used by Pollard et al. (1973) except for the geostrophic pres-
sure gradient term which does not enter their wind-mixed layer problem. The
balance implies that the role of turbulence is to change the potential energy an._d
that the turbulent kinetic energy, the dissipation and the surplus of the power
lost to bottom friction acting on the real velocity other than the vertically aver-

aged velocity, which are omitted here, reach a balance themselves,

2.2.3. Introduction of the velocity profile parameter (a')

Examining Eq. (2.19) the velocity components appear in vertically averaged
form as in the momentum equations except for the first term on the left hand
side. It is needed to express this integral in terms of vertical means. Referring to
Fig. 2.3, the deviations of the velocity components from their vertical means are

A =u - T (2.20a)

Av = v - ¥ (2.20b)
Substituting Eqs. (2.20a) and (2.20b) in Eq. (2.19) and using Eqgs. (2.7) and (2.8)

gives
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Figure 2.3. Schematic profiles of v and v, the components of velocity less

geostrophic velocity, and the differences A« snd Av from the vertical means @
and ¥ during mixed layer growth.
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122-% [zl(Au P+ (Av)’]dz] + %’- [%N,’h’ - (@ + v’)]ig—"‘ =0 (221
where it is assumed that the speed at the interface is equal to the geostrophic
speed. Eq. (2.21) ‘is identical to the equivalent relation obtained by Pollard et al.
(1973), except for the additional term involving departures from the vertically

averaged velocity.

The integral in Equation (2.21) can be expressed in terms of bulk parameters
by using dimensional analysis and a similarity argument. During the growth of
bottom boundary layer the velocity profile varies as thickness increases. The velo-
city profile also depends on 2z, N,, f and u,. Thus

A“ =ﬂ(’l, z’ ,1 Na’ “0)

Av = f(h,z,f,N,,u)

where the dependence on V, is incorporated into the friction velocity u, (Weath-

erly et al., 1980 and Bird ,1981). The dimensional analysis yields

Ay — L] No ’lf
w =)
v _ oz Noo A
";"':' "‘F(‘;” T, ;:"')’

If it is furthermore assumed that the velocity profiles remain self-similar during

growth, then F and G cannot depend on the thickness, and therefore not on —:L

Therefore we may write

] 1
JiAs) + (AvV}dz = u,2h[(G? + F?)d g = a'u.%h (2.22a)
[} 0 .
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where ¢, = z /h. The dependence on —;- has been lost as a result of the integration

with respect to ¢, from 0 to 1, and thus

1
o' = [(G? + F?)dg
0

N,
can only depend on -IL From Eq. (2.22a) it is deduced that when V, is con-

stant (so that u, is constant)

2

o (2.22b)

A
-g—‘-f[(Au)’ + (Av)i]dz = a'u,
0

. N,
for a given value of —-.

/

Krauss (1973) has also equated the vertical integrals of the products of the
deviations of velocity components from their vertical means to stresses, in his
case to horizontal shear stresses. However, Krauss was dealing with the vertically
integrated non-linear momentum .equations. His ap} ;oach is therefore fundamen-
tally different, because here the momentum equations are linearized and the pro-

ducts (Au )’ and (Av)? therefore appear only in the energy equation.

After substituting Eq. (2.22b) into Eq. (2.21) the energy equation becomes
1
2
which has two possible solutions:

[a'u,® + —N, 22 - (a2 + v’)]%"‘. =0

a'u,? + -;.N,zl."’ - (@ +79) =0 (2.23a)

and
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ah

_— . 2.23b
Because when ¢ =0, A = 0, Eq. (2.23b) only gives the trivial solution A == 0 at
all iater times: that is there is no bettom mixed layer formed. Therefore the solu-

tion Eq. (2.23b) is meaningless. Only Eq. (2.23a) is an acceptable solution and

represents the energy balance,

Rewriting Eq. (2.23a) in the form

-;-N, %2 = (7° + 7°) - a'u,?,
it can be seen that the left-hand side is the change in potential energy due to
mixing, #nd therefore the right-hand side defines the kinetic energy available for
mixing. It can also be seen that there is less kinetic energy available for mixing
when considering the velocity profile (a' 7 0) than in the slab model. Noting from
Eqs. (2.22a) and (2.20) that

a'e,?=UF-I? (2.24)
where U is the magnitude of U, it becomes clear that the physical reason for this

is the fact that the actual total mean kinetic energy in the boundary layer is

greater than the squared mean velocity.

Equation (2.23a) is a central result in the present development. If the distri-
bution of velocity in the vertical direction were uniform, as it would be in the

usual slab model, o' would vanish and Eq. (2.23a) would become

N,2h?
L =g 4 ¥ (2.25)

This specifies that for a growing boundary layer the overall Richardson number



R, is unity, since R, is given by (Turner, 1973)

g h A'/Po _No‘z"z/z
7 + 72 a2+

Here Ap=¢'-p,(h), the density difference across the interface. Er, (2.25) is the

R,

(2.26)

marginally stable condition used by Pollard et al. (1073) and Thompson (1973).

The velocity i3 not vertically uniform however (Fig. 2.1). It is therefore
interesting to explore the consequences of taking a'7£0. This is done in the next

section.



2.3. Analytic Solution

In the limit ¢ — oo for V, = consiant, a steady state solution is sought and
the time-dependent terms in Eqs. (2.7) and (2.8) are therefore dropped. Then the

governing equations become

J AT = ’,l— nt (2.272)
b == -’l—-n' (2.27b)
a'u,? + -;- N,24? - (a2 + 7%) = 0, (2.27¢)

Squaring Eqgs. (2.27a) and (2.27b) and using

—ln|=w?

Eq. (2.27¢) can be rewritten as
%/ 2N, %04 + o'u,2f 2h2 - u, 4 = 0. (2.28)

Solving Eq. (2.28) for A? and taking the positive root, eventually yields

b= \/%- u. /1 . (2.29)
2
[, /1+ %-}'—,+ 1]

Expressions for the veering angle and velocity components (@, ) are also

needed. The veering angle is defined by (see Fig. 2.4)

v+ V,

so that in the northern hemisphere a < 0 since ¥ < 0: that is, the transverse flow

tana =

(2.30)

in the mixed layer is directed to the left of the interior geostrophic flow (Fig. 2.4).
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Figure 2.4. Velocity components and veering angle (@ < 0 as shown).
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The bottom stress components may be written as:

7* = p,u,sina (2.31a)
r? = p, t, cosa (2.31b)
which when substituted in Eqs. (2.27 a and b) yields an expression for tana in

terms of @ and v alone:

v
t T emi 2.32
ane ( )

as shown in Fig. 2.4,

Now, since

U == U‘ LA (2.33)
where U? = @+ (v + V, )’ ss before, both Egs. (2.27a) and (2.27b), using Egs.

(2.30), (2.31) and (2.32), reduce to

Utana = - u,—':- (2.34)

U can be expressed in terms of u, by defining a bottom drag coeflicient C, such
that

u?=0c, U (2.35)
This was also the form for bottom stress used by Thompson (1973) in his slab

model of the bottom mixed layer. Then, using Eq. (2.28), Eq. (2.34) becomes

\/0'0;72

t .
ana ry

(2.36)

where ® is

¢ = 1 T
2
[‘/1+:—n——1!'2+l]

(2.37)




Using Eqgs. (2.35) and (2.36), i%q. (2.33) becomes

- a
u 1 / 2°2 n a,c‘ u, (2.38)

and thus from Eq. (2.32)

- a'y/Cy
V =2 —— —— u‘
¢/ 107 + 2a'Cy

Finally, Equation (2.35) can be shown, by equating Eq. (2.30) and Eq. (2.32),

(2.39)

to reduce to:

U, = C 1
’ 1+ ('C,)/(20%) '
1
c L
T e ‘ A g
1+ -—2‘—(a'+ a” 4 !; )

The model therefore yields an explicit relation between u, and V, (This relation

(2.40)

can also be obtained by recognizing from Fig. 2.4 that U = V, cosa.)

Finally it is worth noting with respect to Eq. (2.36) that a is non-zero when

a' is zero. Using Eq. :(2.37) it is seen that

tana = - \/0"72\/0' + 4 / a? + 2,; (2.41)

so that in fact when o' = 0

tana — /TN,
anax == Wf—

which is the result obtained by Thompson (1973).
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2.4. Comparisons with Previous Results

If the velocity distribution tvere uniform as in the slab model, then o' == 0

and Eq. (2.20) reduces to Eq. (1.3), the result obtained by Thompson (1973).
When -%— is large, Eq. (2.29) also reduces to Thompson's result. Equation (2.29)

represents an improvement over Thompson’s result in the sense that by including

the velocity profile parameter a', the mixed layer thickness does not become
infinite as -1-\;4--»0. Equation (2.29) is also comparable in form to Eq. (1.4)

obtained by Weatherly and Martin (1978), although the two results are clearly

not identical.

It was argued earlier that o' should depend only on %- Furthermore, it can
be seen that Eq. (2.29) is consistent with Eq. (1.2), the expected form, if o’ is a
function of —)Y'—- We now estimate the range of possible values for o' when the

/

mixed layer is fully developed.

For the neutrally stratified case -1;'- =0, and A $ = 0.4 (Egs. 1.1 and 1.2).
Using this in Eq. (1.2), and equating Eqs. (1.2) and (2.29) yields
a' =0.3. (2.42)

Substituting this value of o' into Eq. (2.29) gives

uw.//
1

[1 + 4 /1+o.051__ll:’2]2

A = 0.57 (2.43)

A SeVee cer St = 08 T et g1 e et et S A rA S et - oty oo
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An alternate value for a' can be obtained by setting Eq. (2.29) equal to

Weatherly and Martin's formula Eq. (1.4) when N, =0. This gives

o' = 0.5 (2.44)
and Eq. (2.29) becomes
uw/f
T
[N, Z|?
[l + 1+ 5.7?-]

Now, how should the value of o' vary with the buoyancy frequency? This

h =18

(2.45)

can be investigated by equating the analytic solution of thickness obtained here
to Thompson's result Eq. (1.3) or Weatherly and Martin's result Eq. (1.4). In

order to be consistent with both Eq. (1.3) and Eq. (1.4) let Eq. (2.29) be

1
gt e
\/.?: s/s —_— I _ (2.46a)
* 2 N, N2 |7
‘¢1+\/1+72-1I2 [1+ ,2]
1

replacing the factor 1.3 in Eq. (1.4) by 24 22 1.2, Solving Eq. (2.46a) for o' yields

1

A /2(1+—7',—)

which is plotted in Fig. 2.5. Eq. (2.46b) shows that the value of o' will decrease

a' =

(2.46b)

when the stratification increases and eventually tends to zero. However at large

ivf—-, it is readily shown that the expression (2.29) for & hecomes independent of

/

- o o . ae B - omeme = e s
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Figure 2.5. Variation of a' with 7 according to Eq, (2.46b).
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a' since

2 N,?
T > 1

" which leads to Thompson's result Eq. (1.3) with an error less than 6% when
No N. . . . .

T > 2. Therefore when a is larger than 2 the thickness is almost indepen-

dent of the value of o'. Within the range of N, from 0 to 2 the effective values

!

of o' change from 0.7 to 0.3. This variation of a' is not large.

Equations (2.43), (2.45) and (2.29) with o' given by Eq. (2.46b) are compared
with Weatherly and Martin's formula (Eq. 1.4) in Figures 2.6 and 2.7. The
numerical values are those obtained by Weatherly and Martin (1978), and were
supplied by Weatherly (Table 2.1). Fig. 2.8 shows that Eq. (2.45) gives results
which are almost the same as Weatherly and Martin’s result, Equation (1.4), in

spite of the fact that the two equations are clearly different. This can be under-

stood by examining Table 2.1, It is seen that the values of % used by Westh-

. . N,
erly and Martin are either zero or much larger than one. When —- >> 1, Egs.

!
(2.45) and (1.4) are nearly identical. That is, Eq. (2.45) reduces to Eq. (1.3):

while Eq. (1.4) becomes

h =12

vN. T

h =13

'; 1

- oy e ] e v-avyy
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Figure 2.8. Bottom mixed layer thicknesses plotted against
w J(S I8+ N2/ L),
The symbols:

4 stands for the numerical results from the Level II turbulent closure model
given by Weatherly and Martin {1978),

x for Eq. (2.43),

A for Eq. (2.45), and

% fro Eq. (2.20) when o is Eq. (2.46b).
The straight line is Eq. (1.4).
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+ stands for Eq. (1.4) (Weatherly and Martin, 1978),
x for Eq. (2.43), ‘

A for Eq. (2.45), and

% fro Eq. (2.29) when o' is Eq. (2.46b).
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N
h, =0 f V' N. u, —!i-
(m) (xX10°Y)/s | em/s | (X107 /s) | (X107%)em/s
159 83 20 0 7.56 0
80 .63 15 0 4.05 0
63 71 40 3. 17.8 42.3
33 .63 20 1.9 7.45 30.16
13 .63 20 12.8 7.68 203.17
7 .63 15 12.8 5.97 203.17
6.2 .63 10 12.8 4.46 203.17
12.8 .68 5. q 2.29 10.20

Table 2.1. Values for h;, /, V,, N, provided by Weatherly,
corresponding to Fig. 8 in Weatherly and Martin (1978). The values
for u, are evaluated from Fig. 8 of their paper. The thickness b, o
is defined as the height at which the turbulent kinetic energy goes
to zero, where ¢ is the turbulent kinetic energy.
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When ivi'— = 0 Eqgs. (2.45) and (1.4) are identical, because of the choice o' = 0.59.

N,
Even at intermediate values of ——, however, Eq. (2.45) is noi very much

/

different from Weatherly and Martin's result. This is demonstrated in Figure 2.7,

where the thicknesses are plotted as a function of N, and N for values of

/
u, (0.58 cm/s) and f (0.63X107* /s) used by Weatherly and Martin (1978). Figs.

2.6 and 2.7 show that the thickness given by Eq. (2.45) with a' = 0.59 is very

~ close to the thickness with of given by Eq. (2.43b).

Figure 2.7 also shows a comparison between Eqs. (2.43) and (1.4). When

NO

/

>> 1, Eq. (2.43) also tends to Eq. (1.3), explaining the good agreement

between Eq. (2.43) and Eq. (1.4) at large —1;‘— But the difference between these

/

two equations is very large when << 1. The . 2ason for this is that the thick-

N . ‘s .
ness calculated from Eq. (1.4) when —~ =0is A = 132 which is three times

/ /

greater than the thickness computed from Eq. (2.43) with -1%- == 0, which - <. 2n

the same as Eq. (1.1). Weatherly and Martin (1978) attributed this diflerence to

their use of ¢ = 0 to define the thickness A.

It is concluded that the predicted mixed layer thickness depends critically on

N, . . . .
the choice of o' only when -T’ is of order unity or smaller, consistent with the

T L T S R L R e I L ITRY PP S P ) e
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fact that the vertically-integrated model tends to Thompson's model in the limit

of large -d;— This could imply that the shape of the velocity profile is less critical

to the dynamics of bottom mixed layers when -ivi- is large, which would .be con-

/

sistent. with the obs.1vation (Weatherly and Van Leer) that for N large, most

I

of the veering occurs in the interfacial region, and the velocity within the mixed
layer is more uniform with height. However, the definitions of bottom boundary

layer thickness based on turbulence intensity on the one hand, and velocity on

the other, yield very different thickness estimates when N is small, and this

/
appears to account for the largest differences in Figs. 2.6 and 2.7,




2.5. Direct Estimates of o'

The velocity profile parameter a’ can be estimated directly from measured or
theoretical velocity profiles using Eq. (2.24). Note that different definitions of
thickness will yield different values of a'. As an example, consider the speed

profile obtained by Weatherly and Martin (1978) using the Level II turbulent clo-

. N,
sure scheme for a horizontal bottom for —~ =0, V, =15 cm/s and u, = 0.58

7
cm/s (Fig. 6 in their paper). This profile is replotted in Fig. 2.8a, and the profile

of U? in Fig. 2.8b. Computed values of U, U? and o' based on Fig. 2.8 and three
definitions of thickness are given in Table 2.2. From this Table it can be seen
that all three values of o' are in the range spanned by Eq. (2.43) ( o' = 6.3 ) and
Eq. (2.45) ( a' = 0.59 ). Furthermore, the results in Table 2.2 exhibit the proper
trend. That is, o' is smaller when the thickness is defined as A,_,, as in Eq.
(2.44); whereas o is larger when the thickness is defined by Eq. (1.1) or by

U == 0999V,, as in Eq. (2.42).

2.6. Richardson Number Dependence

The magnitude of the overall Richardson number Eq. (2.26) is, using Eq.

(2.23a)

49 2 T
1+ N,’//’[l+ 1+a'2 !2]. (2.47)
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Figure 2.8. (A) Speed and turbulent kinetic energy (-%—q2) profiles given in
Fig. 8 of Weatherly and Martin's paper (1978) and (B) the profile of U2.
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- h U U? a'
Definition (m) (cm/s) | (cm fo}

1 80 14.87 2220 2.2

2 36.83 14.54 2129 4.2

3 16.15 13.67 188.0 5.6

Table 2.2. Comparisons of average speed U, average speed
squared U and the values of o for different definitions of thickness.
In Definition 1 the thickness is defined as the height at which the
turbulent kinetic energy goes to zero. In Definition 2 the thickness
is calculated based on Eq. (1.1). In Definition 3 the thickness is

defined as the height where the speed is 99.9% of the geostrophic
speed.
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For —I;'— << 1, it is seen that

N.2/1?
2a"

R,

.o N,
which is much less than unity, implying supercritical low. For —— >> 1, Eq.

/
(2.47) shows that R, ~ 1, which is consistent with the marginally stable condi-

tion used by Pollard et al. (1973) and Thompson (1973).

Howewer, because most of the shear at the interface between the boundary
layer and the interior is due to the transverse component of velocity @, it is con-
venient to define the ~verall Richardson number R', due to # alone as pointed
out by Weatherly and Martin (1978). From Egs. (2.23a), (2.32) and (2.34) it can

be shown that

2
[R '. r‘ =z .———-.-_.l L]
ZNe?h*
l+ 14 22",]
a”f
= (2.48)

Noz 2 (4
poTE [0'C +2/(1 + 4 /1 + 7T )

Therefore for -1%—<<l, R', <<1 as was the case for R,. For iv!l->>l, Eq. (2.48)
becomes

R'.'l = ___.—Vi_—

N,
/

and thus R', > 1. By using this Richardson number definition it is seen that for

(2.49)
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N,/f << 1 the transverse flow is supercritical, while for N,/f >> 1 it is sub-

critical.
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CHAPTER 3
THE SLOPING FLAT BOTTOM CASE

For a sloping flat bottom it is more convenient to set up the coordinate sys-
tem (z, y, z) with the z-axis perpendicular to the sea bottom, the so-called bot-
tom coordinate system, in place of the coordinate system (z', y', z) in which the
'-axis is vertical (Fig. 3.1). It is assumed that the bottom slope g is small, the
velocity V, of the mean flow in the interior of the ocean is in the y-direction
parallel to the isobaths, and p, = p,(z'), so that the density gradient in the inte-

rior is solely vertical and constant. Clearly,

2! = zcosf - zsinf (3.1)
y'=y (3.2)
32! = zsinf + 31cosf (3.3)
and
e,
3z
Thus
Pos = Ptos (3.4)

when g is small.

3.1. Momentum Equations

The same assumptions are made here as in Chapter 2 for a horizontal bot-
tom. It can then be shown that in the bottom coordinate system the momentum

equations in the interior of the ocean are
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Figure 3.1. A sketch of a sloping flat bottom with horizontal isopycnals.
The mean flow in the interior is directed into the page, as indicated by the sym-
bol ®.
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1 ap,
_/v'.__m._aT_,p (3.5)
1 9P,
ke (3.0)

Based on the observations made by Van Leer and Ross (1979), Weatherlsr
and Van Leer (1977), Bird et al. (1982), Armi (1978), and Dewey (1987). the den-
sity in the bottom boundary layer on either a sloping sea door or a horizontal flat
sea floor is quite uniform. Therefore it is assumed that the density o' is indepen-
dent of z during the growth of the layer because of mixing. Since all quantities
are independent of y,

d=p(z,¢) (3.7)
Let

P =1lp(z,2)+ oz, 2)} + €(t). (3.8)
In Eq. (3.8) the density ' in the mixed layer has been separated into two parts:
the first part [p,(z,s) + p"] is caused by local mixing in the z-direction; the

second part ¢(t) is the advective contribution due to Ekman transport.

It is important to note that in this problem both N, and V, are independent
of z. It is therefore reasonable to expect that the mixed layer thickness will also
be independent of z at any instant of time. In particular during initial growth
before ¢ becomes appreciable, the difference in density across the interface
between the mixed layer and the overlying fluid should then also be independent
of 2. This further implies that ¥ should be independent of z, and hence at later

times that ¢ will remain independent of =.
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As in the case of a horizontal flat bottom, at any time the first part of Eq.

(3.8) should be equal to the density at : = -3- before mixed layer formation, i. e.

p,(z,z)+p"(z,t)=p,(z,%)=-p,(z,0)+p,,% (3.9)
since

Fo(” z) = poy 2z + ’0(310) = Po(’s ")- f l(h - z)' (3'10)
Therefore

P = e, 5) + )= 1, (5,00 + por 3 + c(t). (3.11)
From Egs. (3.9) and (3.10)

= Po:(% - z) (3.12)
Obviously |

A

f pd: = 0. (3.13)

0

From Eq. (3.8) and the hydrostatic condition, the pressure P’ in the boun-
dary layer can be shown to be of the form

P'=P,(z,2z)+ P"z,t) (3.14)

where P" represents the perturbation to the geostrophic pressure field induced by

mixing and advection. After making use of Eqgs. (3.5)-(3.8), (3.8), and {(3.13)-

(3.14), and the assumptions made in Chapter 2 for deriving the momentum equa-

tions, it can be shown that the momentum equations in the boundary layer above

a sloping bottom are

du " g P 1 or
—— =t e e - ——— o —— 3.15
ot I Po o8 Po b, 92 ( )
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dv 1 ar

W + f“ :T (3.18)
__ap" . ’

0= = = 98" - €0. (3.17)

of which Egs. (3.15) and (3.18) are the same equations as used by Weatherly and

Martin (1978).

8.2. Mass and Volume Conservation.

The continuity equation is the same as Eq. (2.3). Equations (2.4)-(2.6) are
also valid for the sloping bottom case because both A and @ are constant in the

down-slope direction as discussed previously.
The mass conservation equation is

a—p' 8 ' i ' =-—-i 51D
at + E(p u)+ az(""’) 0z <P >, (3.18)

where the turbulent mass flux is assumed to vary mainly in the direction perpen-
dicular to the bottom. The turbulent mass flux gradients in the z and y direc-
tions are ignored, because the scale of the layer in the direction perpendicular to

the bottom is much smaller than that in the direction parallel to the bottom.

Substituting Eqs. (3.7) and (2.3) into Eq. (3.18) yields

9 4B 0 s
TR 3, P> (3.19)

where, in contrast to the horizontal bottoi.a case, a second term appears on the

left-hand side due to the advection of mass.

O ———— . —_— o o s S s b T L A e el
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3.3, Vertically-averaged Equations

Now integrating Eqs. (3.15) and (3.18) in the z-direction yields

%(m)- foh =L s %r.-' +u(h)h - ﬁ-;go—eh (3.20)
g‘-(ah) + fah = --:Tr.' + -‘-’l:—r,-’ +v(h)h,. (3.21)

Again by making use of the assumption Eq. (2.9) the momentum equations (3.20)

and (3.21) become

-—-—(uh) Joh =— -p—r. - L ch (3.22)

W 7/ uh = - -l. y

a‘(vll) + fuh o r; (3.23)
Integrating the mass conservation equation (3.19) yields

‘;‘;' + r"’” ——<pi> |,y (3.24)

The turbulent mass flux at the upper interface can be written in terms of an
entrainment velocity:

"<a‘;’>|z=h =[#'Pa(31b)]w¢‘ . (3'25)
This relation was also used by Geisler and Kraus {1969). Equation (3.11) can be

written in two forms:

P' =Po(3v0) + Paz'g"*' ‘(‘)= Po(zr h) - Pu%'{' ‘(‘) (3‘26)
Therefore
20 _ pu 3h

ot 2 9t ot (3.27)

From Eqs. (3.8) and (3.4) it is seen that

. St 1 ST ¢ S3%: 4@ e B Eew ed s SSemsedy s Bongs o LB el Se il 4 e (e bt o e Siw Bate Sm = & 4 B8 ) R et mamaa Vremrt v 1 PO S B tbem N por s
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3z oz BPas (3'28)

Substituting Egs. (2.8), (3.25), (3.26), (3.27) and (3.28) into Eq. (3.24) yields
7,‘1-(1. ¢) = BhiN,*. (3.29)

3.4. Energy Equations

Now the energy equation is derived below. In the bottom coordinate system

the component forms of the momentum equations are

a".}.po 8! +p,(u +U)M+p,(v+ V +0 )_.(.“_"'_").

Po a‘
.\a(u +4d) _ _OP' _ 3p _ . 2 24
+p.(W + & 3: 3 " Da (¢ + FgB + pv'u + pvii
- p, (261X ), (3.30)
av + V,) Py v +V, + )
Po—37—— t o 57 + p(u + i) e
‘8(v+V+€') Ho +V, +0)
+po(v + V, +9) a; + po(W + ) PR
= ——a—v—— —E +pvv + V) + pvPi - p, (2IXT), (3-31)
020 4 5, 82 4 p,(U + u)M+p,(v + v, + )2 E 9
(W +w) _9p _ s
+ pytd - p, (20iXT), . (3.32)

The dot product of the momentum equation with U and time averaging produces

(Appendix 1)

4
L2+ (v + V) =-uP', - p'gfu - p,u

< i >
Iz
I<iv D> (3.33)

—P0(0+V’) a: ’

e el R et R T et L L S e e i LI By AR e L R R A - fom st mme s armms et mrp s e s e
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where 8s before the viscous terms have been ignored because the Reynolds

number is large. Taking the dot product of the momentum equation with & and

time averaging yields

Po 3<q?®> 3 __ 9 .. du
o o + 2 32 =-<wg®> 57 <wp> - p, <u >_¢')—
+p—-[< (&2 +-—-)>+<v( )>+2<‘3"’>]
B(v + V,
- pp <O >—("—8—:—'-)--<.ba>y - (3.34)

where ¢ is the dissipation term (see Appendix 1) and ¢? = 4% + #% + @2, In Eqgs.

(3.33) and (3.34) the Boussinesq approximation, W =0, the assumptions

-‘% << g and ay << 8— have been used. The term <pig #> (assuming it to

be much less than <pig >) and the advection of kinetic energy parallel to the

bottom have also been ignored. Adding Eq. (3.34) to Eq. {3.33) yields

Po_ 8

? 2 Po @ _. 2 B ociin P!
5 m(u +(v +V,)+ <gq >)+ az<wq >+ 5, <wp> uP',
. 0w
- p'g Bu +p—-[ ( )>+< ( +-—-)>+2< -5—>]
p,-aé;-[u<{1ﬁ:> +(v + V,)<o6>] - <ap>g - ¢ (3.35)

3.5. Vertically-Integrated Energy Equation
It is assumed that Eq (2.18) is still valid and that
| 2p<iiby, + U6, + Wi, > —(-—P—2°-—<|bq2> + <pi>)| at the bottom and the sea

surface can be ignored. By using these two assumptions the integral of Eq. (3.35)

from the bottom to the sea surface becomes
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1 A
[ 0.2 P! ¥ v
—é-{ﬁ-lu + (v + V, )?dz =—.£u—53—dl-"fb' -(V+ Vy)n?

A
- 'y Buh- [ <pio >gds (3.36)
0

where 7,* and r;? come from Eq. (2.18). It is noticed that the last term but one
in Eq. (3.36) is the time rate of change of potential energy due to a vertical dis-
placement when a column of water moves along the slope, and the last term is
the time rate of change of potential energy due to mixing. Therefore if these two
terms are moved to the left hand side, Eq. (3.36) indicates that the sum of the
time rates of change of kinetic and potential energy equals the rate of working by
the transverse pressure gradient less the power lost to bottom friction, as in Eq.

(2.19) for the horizontal bottom case.

Substituting Eqs. (3.27), (3.28) and (2.20a) into Eq. (3.19) and integrating
the resulting equation from 0 to z yields

Pes O —z + 6z +UPp,z + lfAudz NBp,s - (3.37)

2 ot
From Eq. (3.29) it is seen that

- >, =

ghe, = p, BhiiN,% - geh, . (3.38)
Using Eq. (3.38) multiplying Eq. (3.37) by g and then integrating yields

8
<pir>gds =[N, %% + £ "'1-——+ﬂm.f ([Aud:d  (3.39)
0

o'—-..-

Substituting Eq. (3.39) into Eq. (3.36) yields

A A
LN —q—[uz-}-(v + V,Pld: =-wr* - (v +V,)n,* —fuﬂidz - p'g Pk
2 oa‘ 0 dz
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A
-IEN “Pz"]' gt Poeu A uds 1 (3.40)

As in Chapter 2 the integral on the left-hand side is

A
{-‘%luz + (v + V,)]dz = [@® + 7° + 27V, ]h,

~0U av

+ 2h [..__. + o5 + v, m f (Au) + (Av)Yds. (3.41)

Using Eqs. (2.20a), (3.10), (3.5) and (3.11) it can be deduced that

- fu——dz =-uUfV,hp, + p,(z, 0)ig fh + %ﬁh-ﬂﬂflz

A
+ [ 0. Au 29 Bd:. (3.42)
0

Substituting Eqgs. (3.11), (3.41) and (3.42) into Eq. (3.40), and using Egs. (3.22)

and (3.23) to eliminate the bottom stresses yields

232
[ v ghe e +»’>]'~=-—IKM)’+<M)’1"’

A 2
+ 2N, %8 [ [Auz + [ Aulz'] dzl. (3.43)
0 0
The integral multiplied by 2N, %8 is identically zero, as can be shown by integrat-
ing either term in the curly brackets by parts.

By using Eqs. (2.22a) and (2.22b) Eq. (3.43) reduces to

o 2h? ghe 2
> o -(@ + 7)) + a'v,2=0. (3.44)

Note that here o' may also depend on the bottom slope.

.. s s aany i ep e s e Y 2 P 1~ -~ e e Stmm e pmeeme tteatie e et — a8 e i w4 =



58

Substituting Eq. (3.26) into Eq. (2.25) yields the overall Richardson number:

]h( . N°2h2
R, = gh(p’*h(’ 92" ) —_ Po - 22 (3.45)
po (T +77) it

Therefore from (3.44), when o' = 0 the overall Richardson number is again equal

to one during growth.

3.6. Summary of Sloping Bottom Equations

The governing equations for a sloping bottom are therefore:

ﬂ‘,’;_f). - T = - .;‘._r, . ppid. (3.46)
fﬁg"_l + fah =-Lg (3.47)
t Po
7‘2-(1. €), = BhaN,? (3.48)
[
2,2
o', ? - (@ + 5% + ":‘ + N‘zh =0. (3.49)
[ ]

which are respectively Eqs. (3.22), (3.23), (3.20) and (3.44). They sre to be com-
pared with their counterparts for the horizontal bottom case: (3.46) and (3.47)
with (2.7) and (2.8); (3.48) has no counterpart since € is zero when the sea bed is
horizontal; and (3.49) with (2.23a). It can be seen that the only differences are the

terms involving g and .
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CHAPTER 4

NUMERICAL SOLUTIONS FOR
HORIZONTAL AND INCLINED BOTTOM CASE

The solutions for mixed layer development are going to be presented as a
function of (.me over both horizontal and sloping flat bottoms. The governing
equations (3.46)-(3.49) must be solved mumerically. First Eq. (2.35) is used to

eliminate the bottom stress on the right-hand side of Egs. (3.48) and (3.47) and

then A and BI: can be obtained from Eq. (3.49). Eliminating —3—?- from Eqgs.

(3.48)-(3.48) yields

2av v gle g \=-0¢
['l"' ] +—\/==3‘ ( 2 2\/___ NQ’.)—
= [k -c,Ua-ﬁlke (4.1)
1 ... 0U ov 2 R ) Je
——m2uua‘ + (b + \/—]Bl +(N 3,200 M., )Fa‘
=-fuh-C, U@ +V,) (4.2)
8u 2gVe 3V g’é g g O¢
(_Qﬁ] at —T’al +(N,2p,’\/ﬁ N,?%, +‘)h ot
= AN, *ha (4.3)
where
D = —- + 2N, %a? + v? - a'u,?, (4.4a)
l’o
and

(4.4b)
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Using the slab model Pollard et al. (1973) found a solution for the oceanic
surface mixed layer thickness which tended to oscillate with time. Since a
decrease in mixed layer thickness implies that the water is "unmixing”, such
oscillations can, according to Pollard et al. (1973) and Thompson (1973), not be
real and they therefore kept the thickness A constant after it reached its max-
imum value. After the thickness A reaches its maximum value, the governing

equations therefore become

ﬂ:: v~y U --ég-
hogp =T -0, U7 - “Lhe (45)
h %—?——1-]?/: -G, U(m +V,) (4.6)
de _______’L 2.
% . BN, %4. (4.7)

The initial conditions at ¢ = 0 are:

h=e¢=1 =0 (4.8a)
but 7 should satisfy the nonslip condition:

T=-V,. (4.8b)
However, Phillips et al. (1986) and Garrett (1990) show that a bidirectional
shear flow induced by the buoyancy force can occur and result in restratification
within a boundary layer on a sloping bottom. In this sense the thickness of bot-
tom mixed layer may decrease and "unmixing” is possible. Therefore both cases

of "unmixing” and "not unmixing” are presented and discussed in this thesis.

It is noticed that when substituting the initial conditions (4.8a) and (4.8b)

into Eq. (3.49) it is found that this equation can not be satisfied except by
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initially setting V, = 0. This means either that the geostrophic velocity as a forc-
ing term must start from zero or that the no-slip condition cannot be satisfied
initially. But when V, = 0 only the trivial solution A == 0 is obtained. Therefore
the geostrophic velocity must start from a smasll value even though the no-slip
condition cannot be satisfied at time zero. Thompson (1973) had the same prob-
lem. He used the overall Richardson number equal to one to close the set of
governing equations. But from the no-slip initial conditions the overall Richard-
son number is .zero except when V, = 0. This indicates that { =0 with a small
value of the geostrophic velocity is a singular point of the governing equations.
Fortunately this singular point doesn’t affect the solutions very much. For most
runs the solutions are stable with respect to the initial value of V,, especially for

strong stratification.

An additional problem results when V, is allowed to increase rapidly to its
steady value. This causes the thickness to overshoot and then oscillate at the
inertial frequency, with unmixing problems as a result. For surface rnixed layer
problerus the forcing may occur suddenly, due to a storm for example, and these
inertisl oscillations should produce additional mixing. Hence Pollard et al. (1973)
used the maximum thickness during the first oscillation as their prediction of the
surface mixed layer thickness. But the bottom mixed layer problem considered
here concerns the equilibrium thickness due to steady geostrophic flow, for which
the additional mixing through inertial oscillations generated by sudden start-up

would result in overestimation of the thickness. This is why Weatherly and

tombam amy 84 v e S
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Martin (1978) and Bird et al. (1082) used a ramped geostrophic velocity to
suppress the inertial oscillations. Several different ramp functions which helped to

diminish the inertial oscillations were tried here. They are

15¢/Ty,em /s ¢t <T,
Yy = { l5ecm/fs ¢ 2T, (4.9)
which was used also by Weatherly and Martin (1978) with T, = 48 h, and

V, =15]1- e /T )'] cm [s, (4.10)

~15t(t -2 T,)/T,2em /s t < T,
Vy = { ’ ;5 cmfs ¢ > T, (4.11)

where T, is here respectively taken to be 48 and 96 hours. The third ramp is

continuous at ¢ == 0 and T,, and its first derivative is continuous at ¢t = T,.

During the ramp period the friction velocity varies with the geostrophic velo-
city and extra terms will appea. in the energy equation and momentum equation
caused by the variation of V, with time. Numerical experiments were carried
out with and without these additional terms, snd showed that their effect is
small. The reason for this is that, for the ramp periods used, the thickness
responds on a much shorter time scale than the time scale at which V, is chang-
ing. This allows s to use Eq. (3.49). The term a'u,? in Eq. (4.4s) is therefore
kept constant during growth, and set equal to the value corresponding to the
fully developed mived layer. That is, the value of o' is taken to be either 0.59 or

6.3 and the value of u, is calculated for a given bottom drag coefficient from Eq.




(2.40) using V, =15 cm /.

The program used to solve Equations (4.1}(4.3) :s based on the DGEAR rou-
tine in the International Mathematics Subroutine Library (IMSL). The DGEAR
routine is a first order ordinary differential equation solver. It requires a subrou-
tine provided by the user to determine the first order derivatives. For the prob-
lem discussed here the first derivatives can be obtained from Eqs. (4.1) to (4.3)
easily as explicit functions of @, ¥ and ¢ {note that A is a function of &, v and ¢
based on Eq. 3.49) by computing determinants. Then the Adams methcd is used
with functional iteration by choosing two parameter values in the DGEAR rou-
tine (see IMSL user's manual, Edition 9.2, 1984, Vol. 1, page: DGEAR-2 and 3).
The DGEAR routine worked very well for all the numerical experiments. The
time step used was in the range 0.1-0.001 second. The error bound was 107, The
sampling interval for most runs was one hour. A few runs were sampled at inter-
vals equal to 30 seconds, 8 minutes and 20 minutes. No detectable differences
were found. The numerical results were also very stable for the different time

steps.
4.1. Horlzontal Flat Bottom (8§ =0)

Much of the discussion of the results is related to observations made on the
Western Florida Shelf by Weatherly and Van Leer (1977). The parameter values
typical of these ovservations are: f =0.63x10%/s, V, =15 cm/s, and

N, = 1.28%X10"%/s. This case was also solved by Weatherly and Martin (1978)
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using the Level II turbulent closure model.

In the horizontal bottom case only Eqs. (4.1) to (4.3) were solved. "Unmix-

ing” was not a serious problem so Eqs. (4.5) to (1.7) were not used. Typical

. N, .
parameter values and results are presented in Table 4.1. The range of —- given

/

in this Table is large, from 0.875 to 203. The purpose of presenting these results
is to check the sensitivity to particular parameter values and for later comparis-
ons. The time series of thickness, speed and veering angle for a typical case are
given in Fig. 4.1 which shows that the flow approaches a steady state very
quickly after V, reaches its final value. A small amount of inertial overshoot does
occur especially in the thickness (i. e. the water is allowed to unmix here). This
causes some error. For example when the ramp function (4.9) is used as in Figure
4.1, the flow at ¢ == 48 hours is within a relative error of 5 % of the final steady
state. After the overshoot there appear small oscillations but these quickly decay.
Oscillations with a relative amplitude error larger than 102% disappear in a few

hours after the geostrophic velocity reaches a constant value.

The drag coeficient has a large effect on the thickness of the mixed layer
and on the veering angle. This can be seen by examining Table 4.1. For example,
using o' == 6.3 for the observed case (N, = 1.28 X107 /s, f = 0.63 X10™* /s,
V, == 15 cm/s, Weatherly and Van Leer, 1977), the thickness is about 7.2 meters
(Fig. 4.1) and the Ekman veering angle ic -26.5 degrees if ¢; = 0.17X107, In con-

trast, the thickncss is 9.9 meters and the veering angle is -37.5 degrees if
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Figure 4.1. The variation of the thickness, speed, and veering angle wita time during the
growth of the bottom boundary layer on a horizontal flat botto:n. The parameters are:
o' m63, Vg =15 cm/s, Cd =017X102, No == 128X10%/s and / = 0.63X107'/s. Ramp

function (4.9) was used.
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run 145 174 117 112 197 | 382 383

V, cm/s 15 15 15 30 15 18.92 | 18.02
N, X%10™ /s 128 128 64 7 7 0.7 0.7
N, /1 203 | 203 | 102 11 11 0.88 | 0.88
a' 6.3 6.3 059 | 059 | 059]| 6.3 0.59

C; X107 1.7 4 1.7 1.7 1.7 1.8 1.8

9.9

numerical 7.2 10.9 68.1 . 37.3
o (deg) -28.5 | -375 | -19.3 -8.7 -6.7 | 5.8 -2.3
7 (cm/s) -8.0 -7.2 -4.7 -3.5 -1.7 -1.9 -0.75
7, (cm/s) 12.0 0.4 134 | 29.7 148 | 18.7 18.9

analytic h (m) 73| 100 109 | 68.1 34.1 | 378 | 929
a (deg) 263 | -372 | -103 | -67 | -67 | -58 | -2.3
u (cm/s) 60 | 72| -47 | -35 | -L7 | -1.9 | -0.77
7; (cm/s) 12.1 9.5 13.4 20.7 " .8 | 18.7 18.7

Table 4.1. The comparisons between the analytic solutions for
steady flow and the asymptotic numerical results for unsteady flow
over a horizontal flat bottom. In the table T, =7 + V, is y-
componeut of averaged velocity in the layer. The Coriolis parameter
/ ==063X10" for runs 145, 174, 117, 112 and 167, while
/ = 0.8X10™ for runs 382 and 383. Ramp function (4.9) was used.




67

C, = 4X107. The latter results are more consistent with the observed values:

h =6 to 11 meters and Ekman veering a = -30 to ~75 degrees.

/
important. This is illustrated by Runs 382 and 383 in Table 4.1. The difference of

is small the numerical results show that the choice of o' is

Again when

thickness between o' = 0.59 and a' = 6.3 is about three times which is attributed
to different definitions of thickness as discussed before. Also the veering angles

and the transverse velocities are quite different.

The comparisons between the analytic solutions for A, @, ¥ and v, Egs.
(2.20), (2.38), (2.38) and (2.39), for steady flow and the steady-state results from
the numerical solutions using the ramp function (4.9) are also given in Table 4.1.
Because for a horizontal flat bottom the numerical solutions reach a steady state
quickly, all numerical results presented in Table 4.1 are the equilibrium values.
Both o' = 6.3 and 0.59 are also used. It can be seen that the numerical results

are almost identical to the analytic values. This supports the assumption that o'

N,
only depends on — for the horizontal bottom case, and also shows that the

/

ramp function doesn't affect the application of the assumption.

Inertial oscillations do appes: at ¢ = T, for some values of the Brunt-
Vaisala frequency, drag coeflicient, and Coriolis parameter for certain ramp func-
tions. If the water is not allowed to unmix when overshoot occurs, the thickness
is then larger than that obtained from the analytic solution. However ike

differences are small. Furthermore, it was found that the overshoot and the
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inertial oscillations could be eliminated by chocsing ramp functions of the form
(4.10) or (4.11), and T, sufficiently long. This suggests that the overshoot

phenomenon is an artifact caused by the ramp function.
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4.2. Sloping Flat Bottom

4.2.1. Summary of Weatherly and Van Leer’s observations

The observations discussed here were made by Weatherly and Van Leer
(1977) on the western Florida Continental Shelf between 3 and 8 July 1976. The
mooring was located near the shelf break. From the topography (see Fig. 4.2
replotted here from Fig. 3 in Weatherly and Martin, 1978) the bottom slope
varies from 0.26 X107 to 2.4X10°%. Figure 4.2 also indicates that the isotherms are
approximately parallel to the isopycnals. The water depth at the location was
zbout 101 m. The profiles of velocity, temperature and conductivity (Fig. 4.3)
were made by cyclosonde (Van Leer et al., 1974) and were sampled at intervals of
2.5 m from 3 m above the bottom to 13 m below the water surface. During the
observations the interior velocity was northward for the first 48 hours. From 48 h

to 72 h it shifted to westward, and then became southward afterwards.

When the interior flow was northward, shallow water was to the right and
the transverse flow in the boundary layer therefore caused downwelling of
warmer water. Therefore hereafter the northward interior flow is often referred to
as the downwelling case. When the interior flow was southward, shallow water
was to the left therefore upwelling of colder water occurred. The southward inte-

rior flow is often referred as the upwelling case.

The temperatuve time series recorded by cyclesonde at fixed depths are

reproduced in Fig. 4.4. From the profiles (see Fig. 4.3) and temperature time
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Figure 4.2. Temperature, salinity and o, transect along 26°N on 2 June 1972.
The site of the observation (arrow) is about 100 m depth and near a shelf break
point where the bottom slope changed from 0.26 X107 to 2.4x107%. This Figure is
copied from Fig. 3 of Weatherly and Martin (1978).
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Figure 4.3. Representative temperature, speed and current direction profiles taken
from data reported in Weatherly and Van Leer (1977). Profiles (a) and (b)
correspond to northward interior flow. Profiles (c) were taken when the interior
flow was westward. Profiles (d) correspond to southward interior flow. Dotted

doy . A
curves are o, profiles. Note that for z > 10 m %-’f— is nearly constant. This Fig-
ure is taken from Fig. 1 of Weatherly and Martin (1978).
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Figure 4.4. Observed temperature time series at various heights above the sea
floor at the location 26°O'N, 83°49'W on the western Florida Continental Shelf.
This Figure is copied from Fig. 2 of Weatherly and Martin (1978).
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series Weatherly and Van Leer (1977) deduced that when the interior flow was
northward, the thickness of the bottom boundary layer was 8 m, the average
(with respect to time) veering angle between the interior flow and the flow near
the sea-floor was -30 degrees, and the temperature in the mixed layer increased
slowly with time (see Fig. 4.4). During southward flow the thickness was 11 m,
the average veering angle was -75 degrees, and the temperature decreased rapidly
with time. In both cases, most of the veering occurred in the region of maximum
temperature gradient at the top of the mixed layer, so that the veering angle was

nearly constant within the mixed layer itself.

4.2.2. Weatherly and Martin’s numerical results

Weatherly and Martin (1978) simulated the above observations using the

Level II turbulent closure model. They assumed that the isotherms were horizon-

tal {no thermal wind), that in the interior the flow was geostrophic and parallel -

to the isobaths, that the stratification in the interior was constant and all devia-
tions in the bottom boundary layer from the interior quantities varied only with
distance normal to the bottom and with time. During northward flow the bottom
slope was defined to be positive and chosen as 0.26 X107, since the transverse flow
at the mooring site was coming from the less steeply sloping region to the east of
the mooring (Fig. 4.2). During the southward interior flow the bottom slope is
negative and chosen to be - 2.4X 107, since the transverse flow was then coming

from the more steeply sloping region to the west of the mooring (Fig. 4.2). The

i eem 4 eeus . sare - f e meer mmmwem pea s ems e memgeTne Mas ¢ s ferm s S 4e - eq  @et—ee e sieb



a —————

74

temperature time series and temperature profiles obtained are reproduced here in
Fig. 45 for both the downwelling case (# = 0.26%10™°) and the upwelling case

(B == -2.4%107%).

The results show that the temperature in the mixed layer decreases with
time for the upwelling case, and increases with time for the downwelling case.
For the upwelling case the thickness reached a nearly constant value of about 5
m (see Fig. 4.5) but other quantities like veering angle and temperature varied
with time. At Day 4 (¢ = 96 h) the temperature in the mixed layer was 21°C, the
vertically averaged speed was about 4.5 ecm/s, the total veering angle was - 28
degrees, the vertically averaged (over the depth of the mixed layer) veering angle
was estimated from Fig. 10 in their paper to be - 16 degrees and the thickness

was about 5 m.

For the downwelling case the computed thickness and the temperatare
increased with time (see Fig. 4.5). At day 4 the temperature was 22.6°C, the total
veering angle was about -23 degrees, the vertically averaged veering angle was

estimated to be -19 degrees, and the thickness was about 10 m.




Temperonse(°C)

° o y —d e
Rmperoture (°C)

Figure 4.5. Time series (a) of the temperature of the bottom mixed layer as a
function of time for a’=0.59 and V, as indicated in (b), temperature profiles (c)
at times 0, 24, 48, 72, 96 and 120 hours, and solid curves are for the case
B = -2.4X10™ and the dashed curves are for the case § = 0.26x1073. (a'), (8") and
(¢') are Weatherly and Martin's results (1978)



76

4.2.3. Vertically-integrated model results

In order to compare this model with the Level II turbulent closure model and
the observations on the western Florida Continental Shelf, the same parameter
values are used here including bottom slope #: 2.6Xx10™* and -24X10°,
corresponding to the downwelling and the upwelling cases respectively.

/ =0.63%10"*/s and N, = 1.28X10°%/s (corresponding to the initial temperature

]

d
gradient § = -JZL=7)<10'“C/cm used by Weatherly and Martin). It is

assumed that the dependence of o' on the bottom slope can be cmitted so that
the term a'u,? in Eq. (4.4a) is again constant during growth, and equal to the
value corresponding to the fully developed mixed layer. This is justified because

N is large (203) for the case considered, and therefore the results are not

/

expected to depend strongly on the value of a'. Thus, the value of o' is taken to
be either 0.59 or 8.3 as for the horizontal flat bottom case, and the value of u, is
calculated from Eq. (2.40) for a given bottom drag coefficient and V, = 15 cm/s.

Equations (4.1) to (4.3) are then solved with ramp function (4.9).

The values of density given by the solutions for Egs. (4.1) to (4.7) must be
converted to temperature ir order to make comparisons with Weatherly and
Martin’s results (1978), since they took density to be a function of temperature

alone. The thermal expr.nsion coeflicient £ is

1d
§=- —’-—fa (4'12)
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Therefore it can be written that

dT;
No"=-':-%f' =g{——=205( (4.13)

Using Weatherly and Martin's values of S and N, (see above), this gives
¢ = 2.3910*/C, which is comparable to tabulated values (see for example Gill,
1982, p. 603). Using this value of £ the time series of temperature can be

obtained from Eqs. (4. 12) and (3. 11). That is,

2
NoZ)_ e (4.14)

§T'- T,(2,0) = -

The computed time series of temperature in the bottom mixed layer, and the
computed temperature profiles are given in Fig. 4.5, together with those obiained
by Weatherly and Martin. Fig. 4.5 shows good agreement between the two
models. This implies that the dependence of a' on bottom slope 8 can be ignored.
The results for the downwelling case and the upwelling case are discussed

separately below.

4.2.3a. Downwelling case

As pointed out in Section 4.2.2 during northward flow the bottom slope is
positive (shallow water is on the right) and downweliing occurs. The results given

in Figs. 4.5 and 4.6 show that the thickness continues to increase with time after




o~ o
{,8 Wi
§9:_‘ She
g k/
o
i — O
cQ
@ © Lig
"% 00 200.00 400.C9 600.00 > ‘0. 00 200.00 400.00  600.00
T (HGURS) T (HOQURS)
©
® [ wp )
~o =S
z - [
) e
170
(s} HN
W, o ©
b ot Y T “3 u"'? 2 ] T “3
S Sh. oo 200.00 400.00 600.00 .00 200.00 400.00 600. 00
= T (HOURS) T (HOURS)
b
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2

79

the geostrophic velocity reaches a constant value. The computed thickness time
series is also given in Fig. 4.5. The thickness time series is very comparable to

that obtained from the Level II turbulent closure model.

The advective density anomaly € is negative and small during the ramp
period, but increases in magnitude as time progresses. Similar behavior is evident

in the temperature time series in Figs. 4.5 a snd a' for both models.

The speed in the mixed layer is 124 cm/s at t=48 hours then increases
slowly and approaches a constant value of 14 cm/s. The Ekman veering increases

to a maximum -26.4 degrees then decreases slowly.

For the downwelling case there is no overshoot and no inertial oscillations
appear in the numerical results, probably because the thickness still incr>ases

with time after the geostrophic velocity reaches a constant value.

Because results were given at ¢ = 98 h by Weatherly and ldartin (1978), for
comparison results at the same time obtained fron: the vertically integrated
model are presented. These, together with the Level Il model results and observed
data are listed in Table 4.2. The values of veering angle and speed from the
Level I mode] presented in Table 4.2 hp.ve been vertically averaged in order to
make direct comparisons with those obtained from the vertically integrated
model. The observed temperature values in Table 4.2 are estimated from Fig.
4.4, corresponding respectively to the values at the end of northward interior flow

and at the end of southward interior flow. The observed speed is the vertically




averaged value estimated from Fig. 4.3. Table 4.2 shows that the vertically
integrated model results are very close to those computed from the Level I tur-

bulent closure model.
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model Vertically Integrated | Level Il Turbulent Closere | model Observation

case downwelling | upwelling | downwellin upwellin case | downwelling | upwellin
h (m) 0.8 4.8 10 5. |h(m) 8.0 11.0
T(*C) 22.56 20.97 225 21 T(*C) 22.80 18.90
a (degrees) -23.5 -14.3 -19 -16 a (degrees) -30.0 -75.0
U (cm/s) 13.6 4.7 13.5 4.5 U (cm/s) 20.0 48

Table 4.2. The values of thickness A, temperature T, (vertical-
ly averaged) veering angle a and speed U at time ¢ == 98 h in the
mixed layer obtained from the vertically integrated model and the
values of the same parameters obtained by Weatherly and Martin
(1978) using the Level II turbulent closure model. The observed
temperature values are estimated from Fig. 4.4, corresponding
respectively to the values by the end of northward interior flow and
by the end of southward interior flow. The observed speed is the
vertically averaged value estimated from Fig. 4.3. The observed
veering angle is the time-averaged angle between the interior flow
and the flow near the sea-floor.

18



4.2.3b. Upwelling case

Figures 4.7 and 4.8 show the time series of thickness, density anomaly, speed
and veering angle for thc upwelling case (southward interior flow, g = -2.4x107).
"Unmixing” was a problera for this case, as cau be seen from Fig. 4.7. Inertial
oscillations can also be seen to be present, particulz;rly in the veering angle
results, The results when ”unmixing” is inhibited are shown in Fig. 4.8. The
differences between Figs. 4.7 and 4.8 are small at times either less than or much
greater than the ramp time of 48 h. From Figure 4.8 it can be seen that the
thickness reached its maximum value of about 4.6 m at 50 hours. The thickness
is also presented as a function of time in Fig. 4.5, which shows that the
thicknesses are basically the same as those obtained from the Level II turbulent

closure model.

The advective density anomaly € is positivé and increases with time, since
deeper and colder water is advected up the slope. The temperature time series
and temperature profiles as a function of time are given in Fig. 4.5, which shows
that the temperatures and mixed layer thicknesses obtained from both the verti-

cally integrasted mode) and the Level II turbulent closure model are comparable.

The speed increases to a maximum value of 9.2 ¢cm/s then decreases mono-

tonically, The maximum veering angle is - 29.3 degrees.

For more direct comparison with the Level II turbulent closure model, again

the results at ¢ = 98 h (Table 4.2) are presented. It is seen that the two models
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Figure 4.7, The variation of the thickness, speed, veering angle, and ¢ with time for the upwel-
ling cea2 (8 = -2.4%107%) during the growth of the bottom boundary layer on a sloping flat bot-
tom. The parameters are: o’ = 0.59, V, == 1§ cm/s, C; == 0.19X102, N, == 1.28X10%/s. The
thickness is allowed to decrease: that is, "unmixing” is not inhibited. Ramp function is (4.9)
The units of EPSILON are g/cm®.
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yield very similar results.

When the thickness is permitted to decrease (Fig. 4.7) the thickness reaches
about 4.8 m and then drops to about 3.5 m. After that the thickmess gradually
approaches an almost constant value of 4.7 m which is nearly the same as that
obtained by Weatherly and Martin (1978). The amplitude of the overshoot and
subsequent inertial oscillations are much larger for a sloping bottom in the upwel-
ling case than for either the downwelling case or for a horizontal flat bottom.
However, when different ramp functions Egs. (4.10) and (4.11) with T, > 48 (Eq.
4.10 is better than Eq. 4.11) are used it is found that the overshoot and the iner-

tial oscillations can be largely eliminated.

4.2.4. Comparisons with Observations

From Figs. 4.4 and 4.5 it can be seen that when the interior flow was north-
ward (time < 48 hours), temperature time series obtained from both the verti-
cally integrated model and the Level I turbulent closure model are basically con-
sistent with the observations made by Weatherly and Van Leer (1977). The tem-
perature increases slowly with time. When the interior flow was southward (time
> 72 hours) the temperature time series from both models again have the same
tendency as the observations: that is, the temperature decreases with time. How-

ever, the observed cooling rate is much larger than predicted.

The thicknesses computed from both models are about the same and are in

the same range as the observed values (Table 4.2). But there are two |
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discrepancies. One is that for the downwelling case the observed thickmess
remains constant at 6 m while the computed thickness increases with time.
Within § days the computed value can reach 10 m (Fig. 4.5). The other is that
the predicted thickness (about 5 m) for the upwelling case is less than the
predicted thickness (asbout 10 m) for the downwelling case, whereas the opposite
is true for the observations: the observed thickness is 11 meters for the upwelling

case, and 8 m for the downwelling case.

The computed veering angles from both models are smaller than those
observed, especially for the upwelling case (Table 4.2). Furthermore, comparing
Figure 4.6 with either Figure 4.7 or 4.8 shows that at times greater than the
ramp period the predicted veering for the downwelling case is substantially
greater than that for the upwelling case. As with the thicknesses, this is the
opposite of the observations. Therefore even the fact that the model results
represent a vertical average, while the observed values are the difference between
the direction of the interior flow and that near the bottom, is unlikely to fully

account for the discrepancy.

There are several possible causes of the discrepancies between the numerical
results obtained here and by Weatherly and Martin (1078), and the observations
reported by Weatherly and Van Leer (1977). The first is that both models ignore
the possible effects of thermal wind. From Fig. 4.3 it can be seen that the vertical
shear in the interior was negative during northward flow (downwelling case).

When the thickness of the mixed layer increases the geostrophic velocity at the
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interface would therefore decrease under these conditions. Therefore the kinetic
energy of water entrained into the mixed layer would also decrease, which should
lead to diminished energy available for mixing and retard the growth of the
mixed layer. For southward flow on the other hand, because the vertical shear in
the interior was positive (Fig. 4.3), the velocity at the interface would increase
during growth, potentially leading to greater thicknesses. The effects of including
thermal wind on the vertically-integrated model results are presented in Chapter

5.

A second possibility is that the calculations ignore the actual history of
mixed layer development. For example, when the interior flow reverses to the
southward direction a bottom mixed layer already exists, unlike the initial condi-
tions assumed in the numerical computations (b = 0 }. Furthermore in the obser-
vations the interior flow was westward for 24 hours before shifting to southward
flow. The westward interior flow must have induced upwelling near the coast,

and may have contributed to the higher observed cooling rate.
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4.2.6. Asymptotic Solutions for Steady Flow over a Sloping Bottom

The principal results of the 5-day simulations obtained above show that the
temperature of bottom boundary layer can increase (corresponding to downwel-
ling case) or decrease (upwelling case). But the recent work by Rhines and Mac-
Cready (1989) shows that when the development time of the bottom boundary
layer is larger than a time scale given by 2f (N,sinf)? the buoyancy force can
reach a balance with the driving pressure gradient force. After this time upwel-
ling or downwelling ceases and the Ekman flux is extinguished. However, it
should be noted that this time scale is independent of the sign of the bottom

slope, in apparent contradiction with the results in Figure 4.5.

Phillips (1986), Thorpe (1987) and Garrett (1990) presented a different pic-
ture of flow on a sloping bottom. When the flow within the bottom boundary
layer becomes steady a bidirectional secondary flow forms parallel to the bottom
in the z-z plane. Therefore it is interesting to investigate the steady flow in

terms of the vertically integrated model.

For steady flow the time-dependent terms are dropped and the governing

equations (3.46)-(3.49) become

=1 s Pge
- hﬂ' [ - e 4- 15
/ P (4.15)
fha =-Lgv (4.18)
[ ]
PhiN,% =0 (4.17)
N, 2h?

o'u,? - (@ + 79 + ”P"‘ +—— =0 (4.18)
’ 1
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From L. (4.17) it is deduced that

7 =0. (4.19)
That is the Ekman flux is extinguished as demonstrated by Rhine and Mac-

Cready (1989} in their experiment. The bottom boundary layer becomes arrested.

By using a quadratic drag law Eq. (4.16) results in

T=1V, (4.20)
which can also be obtained from the equation used by Rhines and MacCready

(1989). Substituting Egs. (4.19) and (4.20) into Eq. (4.15) yields

IV, = _ﬂ;u (4.21)

From the geostrophic balance equation (3.5), therefore,

By € _ 1 P, _ 4
e Py Oz 0h. (4.22)

The driving force in the boundary layer in the z -direction is

' 0P,
- 88’: -Vgf=-——-498 (4.23)

where Eq. (3.14) has been used. Substituting Eq. (4.22) and using Eq. (3.8) we

therefore have

381:' -PgB=-"g8. (4.24)

The driving force is, according to Eq. (4.24), equal to the buoyancy force only

caused by the local mixing which locally is not zero and varies with height above
bottom (Eq. 3.12). But the vertical integral of Eq. (4.24) over the mixed layer

thickness shows that the vertically integrated pressure gradient is balanced by



vertically integrated gravity. This result is different from the pressure gradient
being balanced by gravity, given by Rhines and MacCready (1989). Eq. (4.24)
also shows that for the upwelling case ( # < 0 ) the driving force in the upper
half of the bottom mixed layer is always larger than zero, since p” > 0 for
z > h/2: that is, the driving force always tries to drive fluid down slope, while
the driving force in the lower half of bottom mixed layer is always less than zero,
since p" < 0 for z < h /2, and tries to drive fluid up slope. For the downwelling
case ( # > 0 ) the driving force in the upper half of bottom mixed layer is always
less than zero due to p" > 0 and also tends to drive fluid down slope while in the
lower half the driving force also tries to drive fluid up slope. Therefore the driv-
ing force in the bottom mixed layer should produce a secondary circulation
within the boundary layer, which tends to restore the stratification, as shown by

Phillips et al. (1986) and Garrett (1990).

From Egs. (4.18) and Eq. (4.21) the asymptotic solutions for 4, and ¢, are:

AL + \/T]V,)" - 2N,%(a's,? - V,?)
h = A 2
N,?

(4.23)

and

- "; : v,. (4.24)

For the observations made on the western Florida Continental Shelf by Weath-

=

erly and Van Leer (1977) the calculated values of A and ¢ based on Eqs. (4.23)

and (4.24) are: A = 5.17 m and ¢ = 041X10™ g/em ™ for the upwelling case
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(8 = -2.4%10°%), and A =440 m and ¢ = -3.7X 10" g/cm ™ for the downwelling
case (# = 0.26 X10%). As shown in Figs 4.9 and 4.10, these results are consistent
with the numerical solutions for sufficiently long mixed layer development times
after the ramp period. Fig. 4.9 presents the time series of A, ¢, speed and veering
angle for 4800 h (200 d) obtained from the numerical results for the upwelling
case. The thickness A has reached 5.1 m and ¢ = 4.07X10* g/cm . The verti-
cally averaged veering angle and the speed tend to zero and the bottom boundary
layer becomes arrested. Fig. 4.10 presents the time series of A, ¢, speed and veer-
ing angle for the downwelling case. After almost 217 years the thickness A is still
approaching a nearly constant value of about 380 m. The vertically averaged
veering angle and the speed are still tending to zero but the bottom boundary
layer has not yet been completely arrested. The reality of results for the
downwelling case is doubtful because after so many years the flow of the ocean

would have changed its type long before.
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CHAPTER 6

EFFECTS OF THERMAL WIND
ON BOTTOM MIXED LAYER GROWTH
When thermal wind effects were ignored in Chapter 4, the 5-day's simulation
results obtained from both the vertically integrated model and the Mellor-
Yamada Level I turbulent closure model showed that the thickness continued to
increase with time for the downwelling case. This was shown to be inconsistent
with the observations on the western Florida Continental Shelf during northward
flow. As discussed before, the negative vertical shear of V, in the interior (Figs.
4.3 a and b) might be expected to limit mixed layer growth. In this Chapter this

aspect of the problem is examined.

The importance of the thermal wind to bottom boundary layer dynamics has
been demonstrated by Yamada and Mellor (1975). They used their Level I tur-
bulent closure model to simulate atmospheric data from Wangara (Clarke et sal.,
1971). Their sensitivity studies showed that the thermal wind was essential to
explain the mixed layer growth observed at Wangara. Manins (1982) compared
results from a slab model to the Wangara data. When the geostrophic wind was
weak he assumed, as in the so-called 'encroachment’ model of Carson and Smith
(1974), that mixing was driven by convection due to surface heating. But when
the geostrophic wind is strong the 'encroachment’ assumption is no longer appli-

cable. Manins therefore used the turbulent kinetic energy equation derived by
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Mahrt and Lenschow (1976). They assumed that there exists both a temperature
jump and a velocity jump at the top of the mixed layer, with linear changes in
the thin jump region. Manins assumed that the whole mixed layer was uniform '
and moved like a slab, and set up a closure model which he called the Froude
Dynamics Model. This model gave additional mixed layer growth when the geos-
trophic wind was strong. For both strong and weak geostrophic wind cases the
results reconfirmed the importance of the thermal wind for predicting mixed layer

height and vector wind in the mixed layer during the Wangara experiment.

At Wangara the stratification was very strong (N, ~ 7X1072 fs, f ~ 107 /s
N, .
and thus T 700 ), and slab models can therefore be expected to be appropri-

ate. But as shown in Chapter 2 when N, /f is not large the slab model is no
longer valid, and the variation of velocity with the height must be taken into
account. The advantages of the veriically averaged model, when comparing with
the slab model used by Manins (1982), are that the vertical distribution of velo-
city is included, and it need not be assumed that there is a velocity jump with
linear distribution within the thin jump region. Note as well that convection due

to surface heating does not play a role here.
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5.1. Governing Equations.

The density in the interior is assumed to vary in both the horizontal and the

N . .. 0 0
vertical directions. That is, 3%- = C, 5% 0 and 8?'

== C, % 0 where C, and C,

are constants. A sketch showing the flow geometry and density field is given in

Fig. 5.1.

The governing equations in the bottom coordinate system, in which the z-
axis is perpendicular to the sea floor and the y-direction is the direction of the

geostrophic velocity as shown in Fig. 5.1 are (Appendix 2):

@) g L. _cohB .1
at I" Po b Po ( )
ﬂ‘;’::'l + fibh =-Lp” (5.2)
o
B = g | (6:)
ot - (@ 4+ 57 + N,%h? L oh _ 2h a'Cy UN, *tang)!
2 P /
N,%%h  N,*h%anp)/
- tanf,’ | =2 0 Ll=0 5.4
where U = \/@* + (v + V,)° as before, and where
7] d
tanf, = - [ ;: /—;;;:-] (5.5a)
is the isopycnal slope relative to the sea floor, and
dp, ,0p
tanﬂl' = - [—a;-'— ja—za-;-] (5.5b)
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Figure 5.1. A sketch of a sloping bottom with horizontal density gradient.
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is the isopycnal slope relative to the horizontal. Note that (see Fig. 5.1)

B = B, + B. (5.5¢)
The equations in a bottom coordinate system with geostrophic balance in the

interior are (see Appendix 2)

"Pofvg(z’ z)=- 3:: - 980,(z, 2) (5.6a)
apP,
0= 8:: + po(z, 2)g (5.8¢)

where the geostrophic velocity V, varies only in the vertical direction but, in the
bottom coordinate system, V, is in general a function of both z and :. From
Eqs. (5.6a), (5.6¢) and (5.5a) the thermal wind relation can be deduced by using

scale analysis:

vV, _  N,%anp)
3z /
where V$ is the vertical shear of geostrophic velocity. Thus the geostrophic velo-

VS = (5.7)

city can be expressed as

V,(z,2) = V,(0,0) 4 fzVS + : VS. (5.8)
From the energy condition (5.4) b can be expressed in the form:

TR (5.9)
(the reasons for choosing the positive square root will be given) where
N,? N,?
A= --21— 1- 2;2 tan’ﬁ,'] (5.10)
N 2
B, =L - tang(v + 2C,a' U) (5.11)
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¢, =a's,?- (@ + 7). (5.12)
Consider the gradient Richardson number in the interior:
N,?
vs?
The flow in the interior is required to be stable. When R; > 1/2, from Egs. (5.7)

R, = (5.13)

and (5.13) it is seen that

2
No van?ay < 2 (5.14)

I2

and therefore that A; > 0.

The reason for choosing the positive square root in Eq. (5.9) is therefore that
because A, is positive, and C, is generally negative, the magnitude of the square

root is greater than B,. Choosing the positive sign ensures that A will be positive.

In the sloping bottom case because the geostrophic velocity depends on =,
the along slope coordinate, as shown in Eq. (5.8). Therefore the thickness, and
consequently the velocity vector and the advective density anomaly could also be
expected to vary with z. But in Appendix 2 it is assumed, provided the bottom
slope is small enough, that these quantities were all independent of z (as also
assumed by Bird et al., 1982). How small must the bottom slope be! Examining

Eq. (5.8) it is seen that the z-dependence may be ignored provided

B << bh/a
This is quite a stringent condition. For example if horizontal uniformity over

scales of 100 A is required (1 km if A == 10 m), then 8 must be much less than

102 (0.6 degree).
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The governing equations (5.1)-(5.4) were solved numerically in a way similar
to that discussed in Chapter 4, with the same initial conditions and using the
DGEAR routine in IMSL. That is, by using Eq. (5.9) to solve for A, then substi-
tuting A into Egs. (5.1)-(5.3), these equations can be solved for the variables @, v
and ¢. The same ramp function Eq. (4.9) with V, (0, 0) replacing 15 ecm/s is used.

The ramp period T, is 48 hours, unless stated otherwise.

The results for a horizontal flat bottom and for a sloping flat bottom are

presented separately in the next two subsections.

e P A v g ve s smeemy =
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65.3. Results for a Horlsontal Flat Bottom

For a horizontal flat bottom when thermal wind effects are included the
mass conservation equation and emergy equation are different from before. The
main distinction is that ¢ is non-zero. The governing equations are Egs. (5.1)-
(5.4) with g, = ) (see Appendix 2). It is assumed that ' << 1. For a given
value of VS, V,(0,0) was determined by setting V, = 15 em/s at : =20 m
based on Fig. 4.3. Test runs for the range of N, from 10> to 102 /s, f =107 /s
and values of VS in the range 10 to 10~ /s showed no obvious difference for
a' = 0.59 or 6.3. This implies that the variations of o' are not important and the

dependence of o on Y5 can be ignored when

/

[

/

is large.

av . . .
When —8—:- > 0, the thickness of the bottom mixed layer always increases

with time. As an example, a 5-day’s computation results are shown in Fig. 5.2. It
was found that the greater the magnitude of the vertical shear, the larger the
thickness, The veering angle decreased with increasing magnitude of VS. There-
fore the tendency of the thermal wind effect is the same for the veriically-
integrated model as obtained by Bird et al. (1982) using Level 0 turbulent clo-

sure. In the northern hemisphere ¢ is always less than zero in this case and

. . . G e ad
increases in magnitude with time, because —-5’;— < 0 and the transverse flow

advects less dense water in the negative z-direction. This is therefore similar to

the downwelling case for a sloping bottom presented in Chapter 4.
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In order to make comparisons with the sloping bottom case without thermal
wind the example given in Fig. 5.2 is for 8, = - 0.26¢10~, the negative of the
bottom slope used in Fig. 4.6. All other parameters have the same values as in
Fig. 4.€. Figure 5.2 shows that the results are almost the same as those in Fig.
4.6. Therefore at the initial stage (5 days) of bottom boundary layer development
the horizontal density gradient in this case plays a role similar to that of bottom
slope. But for a long period of bottom boundary laver development the effect of
thermal wind is different from the effect of bottom slope. The thickness and the
vertically averaged speed of the layer always increase with time. This can be seen
in Fig. 5.3 for a case of 21.7-year's developing time in which all parameters are

same as in Fig. 5.2.

d
When aV: < 0 (Fig. 5.4), the isopycnal slope is taken as 2.4X10%, the

negative of the bottom slope used in Fig. 4.7. The 5-day simulation results show

. . d
that in the northern hemisphere ¢ is always larger than zera bLecause e 50

Oz

and the transverse flow advects denser water in the negative z-direction. This
corresponds to the upwelling case for a sloping bottom discussed in Chapter 4.
Overshoot phenomena appear, as in the upwelling case for a sloping bottom and
no thermal wind (Fig. 4.7). However, after the ramp period the thickness
decreases continuously with time. This is very diffcrent from the corresponding
sloping bottom case without thermal wind. The reason for this difference is that

for a sloping bottom, when ¢ increases, the restoring force due to the component
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of buoyancy parallel to the slope, -‘-"—“-—’; (Egs. 5.1 and 3.46) increases to prevent

the further increase of ¢. For the flat horizontal bottom case with thermal wind,

this term is not present (Eq. 5.1, with # = 0), and ¢ couid increase indefinitely.

Furthermore, if the thickness didn't decrease the potential energy term "—"‘- in
o

the energy equation (5.4) caused by advection would increase to infinity. This is
unphysical, and this term must have a limit. That is, h¢ must have a limit.
Time series of he, AW, A(V, +7), V, + v and @ are shown in Fig. 5.5, in
which HE stands for the product of h¢, HU for h# and HV for A(V, + 7). Fig.
5.5 shows that & ¢ approaches a constant value, and therefore the thickness must
decrease due to the increase of ¢. The y-component of vertically averaged velo-
city decreases much faster than the z-component of vertically averaged velocity.

Therefore in the asympototic ‘sense it can be assumed that 'V, + ¥ =0, Then

from Eq. (5.2)

is obtained. The equation above shows that the thickness must decrease with

time in this limit.
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The results when unmixing is not allowed are shown in Fig. 5.8. Note that
in Fig. 5.6 not only is the thickness constant (about 6.7 m), the speed and veering
angle are also constant: 19.3 cm/s and —41 degrees respectively. Only the advec-
tive density anomaly increases with time but at a much smaller rate (one order of
magnitude ~maller) than the rate in Fig. 5.4. These are different from the results

for the negative bottom slope without thermal wind presented in Fig. 4.8.

Finally, time scries of ke, Auw, A(V, +7), V, + 7 and @ for the first case in
. .9V, . . . s
this section (—‘-?z—- > 0, Fig. 5.2), when the isopycnal slope is taken as -0.26 107,

are shown in Fig. 5.7. Comparing this figure with Fig. 5.5 the results, when the
isopycnal slope is negative, are quite different: the A(V, + v) and magnitude of
he¢ increase with time, and contrary to the case in Fig. 5.5 the magnitude of y-
component of vertically averaged velocity increases with time while the magni-
tude of z-component of vertically averaged velocity decreases with time. The

reason for these differences is that when the isopycnal slope is negative the poten-

tial energy term b in the energy equation (5.4) always decreases (nmegative ¢ )

]
so that the thickness can increase as shown in Fig. (5.2). When the thickness
increases more kinetic energy is entrained into the mixed layer from the geos-
trophic flow above and the y-component of vertically averaged velocity of the

mixed layer also increases.
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5.3. Results for a Sloping Flat Bottom

When comparing the governing equations (3.46)-(3.49) for mixed layer
growth over a sloping flat bottom without thermal wind with Eqs. (5.1)-(5.4)
including thermal wind, it is found that the differences are in the last two equa-
tions: the mass conservation equation and the energy equation. The bottom slope
A in the mass conservation equation (3.48) has been replaced by - g,, the negative
isopycnal slope relative to the bottom (Fig. 5.1) in Eq. (5.3), and there are three
extra terns involving the isopycnal slope in the energy equation (5.4). Three spe-

cial cases are discussed.
5.3.1. Isopyenals parallel to the bottom (3, = 0)

When the isopycnals are parallel to the bottom §, =0 and Equation (5.3)

becomes

2%‘51 =0 (5.15)
which is the same as for a horizontal flat bottom with no thermal wind: that is,
¢ = 0. This was confirmed in numerical experiments. {t implies that the thermal
wind and bottom slope cancel each other. For example, with

B = 0.26X10% = 4,', and the other parameters the same as in Fig. 4.6, results are

obtained (Fig. 5.8) which are very similar to those in Fig. 4.1.
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5.3.2. Growth dominated by bottom slope (8 >> 4,')

When g >> g/ it is seen from Eq. (5.5¢) that
-p = .
This implies that the bottom slope dominates the mass conservation equation.
From numerical experiments for this case it is found that the two terms involving
B," in the energy equation did not affect the flow very much, which is not surpris-
ing since f,' << # and thus g << 1. Therefore the bottom mixed layer growth

has basically the same features as the sloping bottom case without thermal wind.
6.3.3. Growth dominated by thermal wind (8 << 5,')

When g << 8/, Eq. (5.5¢c) becomes approximately
By ~ py.
This implies that the vertical shear dominates the mass conservation equation,
and the two terms involving §;' in the energy equation become important. The
bottom slope loses its importance. The numerical experiments showed that the
results were very similar to that for a horizontal flat bottom with thermal wind.
For example no matter what sign 3 has the sign of ¢ depends only on the sign of

Vs.
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5.4. Comparisons with Observations and Level Il Model Results.

6.4.1. Comparisons with the observations made by Weatherly and Van

Leer and Weatherly and Martin's model results

The model results including thermal wind effects are again compared with
the observations made by Weatherly and Van Leer (1977) on the western Florida

Continental Shelf.

During northward interior flow the value of VS estimated from the velocity
profiles (Figs. 4.3a and b) is -20%10 /s. From the density field in Fig. 4.2 the

. 4 13 [ . a
estimated horizontal density gradient over the shelf is -pl—-aL:,- = 0.94X10°® /m
]

giving, therefore,

_.BV, _ g 9 _ )
= i =gy = 16x10%.

These two estimates of the thermal wind shear are thus roughly the same, evea

£

though the data presented in Fig. 4.2 were taken on 2 June 1972, four years ear-
lier than those in Fig. 4.3 (3 to 5 July 1976). During southward interior low the
vertical shear in the interior is of opposite sign and is estimated to be 2.0X107/s
(Fig. 4.3d).

The bottom slopes are still taken as 8 = 0.26X 10" during northward interior
flow, and B = -2.4X10™ during southward interior flow, which are the values
used by Weatherly and Martin (1978). The time series of thickness, ¢, speed and

veering angle obtained from the vertically integrated model with thermal wind

ot e oy e o s [ . > e e
g o T d .
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are presented in Figs. (5.9) to (5.15). As in the previous section, V,(0, 0) was
determined for a given value of VS by setting V, = 15 em/s at z = 20 m. Both

values of o' (0.59 and 6.3) were used but the results were very similar.

During northward interior flow, corresponding to the downwelling case, the
parameters are: N, = 1.28X10%/s, [ = 0.63X107/s, V§ =-2.0X10"/s and

B = 0.26X107%. Therefore from Eq. (5.7)

By = - K,Sg =0.77 X107

[

and thus the magnitude of B,' exceeds B, and the mixed layer growth should
depend mainly on the thermal wind. Because VS is negative as pointed out in
Section 5.2 the thickness will decrease with time if unmixing is not inhibited.
The results are shown in Fig. 5.9, which is similar to Fig. 5.4 for a horizontal flat
bottom with negafive vertical shear. From Fig. 5.9 it can be seen that the max-
imum thickness is 7.8 m. When "unmixing” is inhibited (Fig. 5.10) the thickness
is 7.8 m, as compated to the 6.0 m observed, and the veering angle is 32° (from

t = 56 h to ¢t = 159 h), comparable to the observed value 30°.

Because VS is negative and the isopycnal slope is larger than the magnitude
of the bottom slope (8, > B ) € increases with time after 45 hours. If the density
is dominated by temperature, then this implies a decrease in temperature with
time, contradictory to the observations of Weatherly and Van Leer (1977) during
northward flow. The reason for this may be related to the choice of bottom slope.

The station is located where the slope is 2.4 X107, but following Weatherly and
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Figure 5.9. Time series of thickness, speed, veering angle and ¢ (EPSILON) during the grgu‘rth
of the bottom mixed layer on a sloping flat bottom, with negative vertical shear and positive
bottom slope. Unmixing is not inhibited. VS == -2.0X10™ /s, § = 0.26X1073, 8, = 0.77X%107
and ali cther parameter values are the same as in Fig. 4.6. The units of EPSILON are g/em3.
Compare to Fig. 4.8, the downwelling case with no thermal wind.
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EPSILON are g/cm®. Compare to Fig. 4.8, the downwelling case with no thermal wind.

L1



B e arwtase b B

-—— P s s ——eve e m f et s am e araem
g T 3

118

Martin (1978) the smaller value (0.26X107%) has been used, as explained in
Chapter 4. i bis value may be too small. If a tangent to the bottom is drawn on
the shallower side passing through the station (see Fig. 4.2) § = 08X 10, This is
comparable to 8. The results for this case are presented in Figs. 5.11 and 5.12.
In Fig. 5.11 unmixing is allowed to occur. It can be seen that the thickness
reaches a local maximum of 9.2 m at ¢ = 59 h, decreases until ¢t = 70 A, and
then increases but more slowly than in Fig. 4.6, and is thus in better agreement
with the observations on the western Florida Continental Shelf made by Weath-
erly and Van Leer, which show that the thickness does not increase with time.
When unmixing is not allowed (Fig. 5.12), the differences are small. The thickness
is about 9.2 m in contrast to the observed value of 6 m. The veering angle is
about 28° (from ¢ =62 h to ¢t = 180 h) compared to the observed value 30° . The
time series of temperature is given in Fig. 5.13. The temperature increases mono-
tonict;lly with time, but at a rate slower than the equivalent (downwelling) case

in Fig. 4,5, and the thickness no longer increases indefinitely with time.

These results are summarized together with the observations in Table 5.1.
Comparing Table 5.1 with the downwelling case values in Table 4.2, it is seen
that the vertically-integrated model results including thermal wind are in better
agreement with observation than those obtained from the Level Il and the verti-
cally integrated model without considering thermal wind. In particular, the

predicted thickness has become constant as observed.




Figure 5.11. Time series of thickness, speed, veering angle and ¢ (EPSILON) during the growth
of the bottom mixed layer on a sloping flat bottom, with negative vertical shear and positive
bottom slope Unmixing is not inhibited. # == 0.83¢10°%. All other parameter values are the
same as in Fig. 5.0. The units of EPSILON are g/cm®. Compare to Fig. 4.8, the downwelling

. case with no thermal wind and smaller slope (8 == 0.26X107%).
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Figure 5.12. The time series of thickness, speed, veering angle and ¢ (EPSILON) during the
growth of the bottom mixed layer on a sloping flat bottom, with negative vertical shear and
positive bottom slope. Unmixing is inhibited. All parameter values used here are the same as in
Fig. 5.11. The units of EPSILON are g/em3. Compare to Fig. 4.6.
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Figure 5.13. Time series (a) of the temperature of the bottom mixed layer and
temperature profiles (b) at times 0, 24, 48, 72, 96 and 120 h for the case
f=08X103 N, =1.28X10? /s, VS ==-20X10"° /s, f =063X10"* /s, and
gerstrophic velocity at height 20 m above the bottom is 15 c¢m/s and northward.
The dashed curve in (a) shows the result from Fig. 4.5a with no thermal wind.
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model Vertically Integrated Observations
case upwelling | downwelling | upwelling
h (m) 5.2 6 11
T (*C) 21.3 22.8 18.9
o (degrees) -20 -30 -75
U (cm/s) 6.1 20.0 4.6

Table 5.1. The values of thickness A, temperature T, veering
angle o and speed U in the mixed layer obtained from the vertical-
ly integrated model when including thermal wind for the runs in
Figures 5.12 and 5.15. The observed values are the same as in

Table 4.2.
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When the interior flow is southward, corresponding to the upwelling case,
N, = 1.28X10%/s, VS =20X10%/s, [ =063X10"/s and J=-24X10"
Therefore from Eq. (5.7)

By = ;’,Si = -0.77X10%,

Thus the magnitude of g, is less than the magnitude of g, and the growth of the
mixed layer should depend mainly on the bottom slope. The results are shown in
Figs. 5.14 and 5.15. In Fig. 5.14 unmixing is allowed to occur and overshoot
appears in the time series of thickness at ¢ = 50 h. In Fig. 5.15 unmixing is not
allowed. When Figs. 5.14 and 5.15 are respectively compared with Figs. 4.7 and
4.8, the upwelling case without thermal wind, the differences are small. The
thickness in Fig. 5.15 is 5.2 m, compared to 46 m in Fig. 48. The maximum
veering angle is 20° reached at ¢t = 54 h, one hour later than the results in Fig.

4.8.

5.4.2. Comparisons with the results of Bird et al.

Using the Level I turbulent closure model including thermal wind, Bird et
al. (1982) simulated observations made on the Eastward Scarp of the Bermuda
Rise in a water depth of 4620 m. The velocity time series were recorded by four
vector averaging current meters (VACMs) positioned at 0.8, 6.9, 12, 62 m above
the bottom from September 1978 through April 1979. A 5-day section of the data
in September 1978 was used for comparison with the simulations. The averaged

geostrophic speed at 62 m above the bottom over the 5-day section was 18.92
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Figure 5.14. The time series of thickness, speed, veering angle and ¢ (EPSILON) during the
growth of the bottom mixed layer on a sloping flat bottom, with positive vertical shear and
negative bottom slope. # == -0.24X10%, VS = 2.0X107 /s 8, == -0.8X10°%. All other parame-
ters are the same as in Fig. 4.7. Unmixing is not inhibited. The units of EPSILON are g/em®.
Compare to Fig. 4.7, the upwelling case without thermal wind.
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cm/s. The y-direction was always taken in the direction of the geostrophic velo-
city, and in this coordinate system the bottom slope § was positive and equal to
0.035: that is, this is a downwelling case. The Brunt-Vaisala frequency 7Xx10~ /s
was estimated from potential temperature profiles obtained at the time of deploy-
ment and the potential temperature-salinity relation for the area. The Coriolis
parameter { = 8X107%/s. Based on the VACM temperature data they inferred
that during the 5-day period the thickness of the mixed layer was between 12-62
m, and the observed veering angle was 4.5 degrees (Table 5.2). The isopyenal

slope was not available.

When the geostrophic velocity is 18.92 cm/s the estimated thickness from
Weatherly and Martin’s formula Eq. (1.4) is 92.9 m. When the bottom slope and
thermal wind are excluded the analytic and numerical results from the vertically
integrated model are given in Table 4.1 (run 382 and 383). It shows that the
thickness is about 37 m and the veering angle is -5.8 degrees when velocity profile
coefficient o' = 6.3, and that the thickness is about 93 m and the veering is about
-2.3 degrees when a' = 0.59. The results for o' = 6.3 are in better agreement with

the observations.

Because the isopycnal slope was not available Bird et al. (1982) assumed iso-
pycnal slopes such that g, = 0, -0.01, -0.035 in order to make thermal wind sensi-
tivity tests. Here the same values of g, are used and the velocity profile coeflicient
o' is set equal to 6.3. Using the above values of 8, the corresponding values of

B! and VS can be calculated, and then V,(0,0) can be obtained from the
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Computed from
Comparison | Observation | Vertically Integrated Mocel (Level II Model)
=0
==
V, cm/s 18.92
u, cm/s 0.7
h (m) 41 787(36.7) |  80.0(36.7) 82.0(90.4)
a (degrees) -4.6 -2.7(-13.9) -2.4(-13.4) -2.3(-9.3)

Table 5.2. Observed and computed thicknesses & and veering angles o from
the Level II turbulent closure model (Bird et al., 1982) and the vertically integrat-
ed model presented in this thesis when including thermal wind. Observed values
and the Level II model results are taken from Table 3b in Bird et al. (1982).
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geostrophic velocity of 18.92 em/s at 62 m above the bottom based on Eq. (5.8).
From Eq. (5.7) it can be seen that the values of VS are very small due to the
very small‘Brunt-Vaisala frequency. Therefore V,(0,0) is almost the same as
18.92 em/s. From Eq. (5.5¢) the isopycnal slope 8,' is respectively much less than
or less than the bottom slope 8 for the cases 8, = -0.035 and §; = -0.01. Accord-
ing to the discussions given in the last section the flow will therefore mainly
depend on the bottom slope for these cases. Therefore the thickness should

increase with time since the bottom slope is positive (dlownwelling case).

Note that it was found for these runs that when using Eq. (5.4) to eliminate
% first in Eqs. (5.1)-(5.3), the singular point of £qs. (5.1)-(5.4) at ¢ = 0 was a
serious problem. B,?-44,C, (Eq. 5.9) became negative. It is believed that this

problem was caused by the very small value of LV-’— in this case. In order to over-

/

come this difficulty, Eqs. (5.1)-(5.4) were solved by eliminating %:' first based on

Eq. (5.4). The results obtained from the vertically integrated model are also
given in Table 5.2. The ramp period T, is 24 h, as in Bird et al. (1982). The

values from the Level II turbulent closure model listed in Table 5.2 are taken

from Table 3b in Bird et al. (1982).

All values listed in Table 5.2 from the vertically integrated model are taken
at ¢ = 24 h, the end of the ramp period. (Note that Bird et al. (1982) did not

specify at what time the values listed in their Table 3b are taken.) When §; = 0
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the results are very similar to that for a horizontal flat bottom (see Fig. 5.8) and
all variables reach a steady state. But there are some oscillations appearing just
after the ramp period because the Brunt-Vaisala frequency is much smaller than
in Fig. 5.8. These oscillations diminish after several days. Table 5.2 shows that
for f; =0 and -0.01 the thicknesses are much greater than the values obtained
from the Level II model, but the veering angles are much smaller and in better
agreement with the observations. For §, = -0.035 both the thickness -and. tile
veering angle are less than those computed from the Level II turbulent closure

model and are closer to the observed values.

Note that here the value of a' greatly affects the results because the N is

!
less than one. The-~*ore the dependence of o' on the bottom slope # and the ratio

&S may be important but cannot be determined here. This may contribute to

/

the discrepancies between the model results and the vbservations.

Another factor which may also contribute to the discrepancies is the
stringent limit of small bottom slope for the assumption of z-independence in the
mixed layer in both the Level II turbulent closure model (Bird et al., 1982) and

the vertical integrated model, because the bottom slope here is not small.
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CHAPTER 6

SUMMARY AND CONCLUSIONS

A new vertically-integrated model for bottom mixed layer growth has been
presented. An important feature of the model is that the vertical variation of
mean velocity with height is retain~d throughout the derivation, finally appearing
as a parameter in the vertically-integrated energy equation. This distinguishes it
from conventional slab models. A second feature is the separation of mixed layer
density into two components: one due to local vertical mixing, and one to advec-
tion parallel to the bottom. The effects of both bottom slope and thermal wind in

the interior geostrophic flow are included.

For a horizontal flat bottom without thermal wind an analytic solution is
obtained which yields a formula for bottom mixed layer thickness containing the
velocity profile parameter a'. This formula is consistent with all previous formu-
lae for bottom boundary layer thickness, including that proposed by Weatherly
and Martin (1978) on the basis of their numerical results from the Level 11 tur-

N,
7

bulent closure scheme. Although a' depends explicitly on the stratification (

this dependence appears to be rather weak. Two choices for a' arc *herefore sug-
gested: one (a' = 0.59) for thicknesses defined as the height at which the tur-

bulent kinetic energy vanishes; the other (o' =6.3) for thicknesses defined in

terms of the mean velocity profile. The latter is consistent with & = 0.4“7' in the
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. N,
neutrally stratified case. The choice of a' is most important for the case ; less

than or of order unity. Formulae for the dependence of friction velocity and
veering angle on geostrophic velocity and stratification are also obtained for this

case.

For a sloping flat bottom at the initial stage of bottom boundary layer
growth the vertically integrated model gives results similar to those obtained by
Weatherly and Martin (1978) using a Level II turbulent closure model. The main
effect of bottom slope is to produce upwelling or downwelling within the bottom
mixed layer depending on the sign of the bottom slope. After the initial period of
bottom boundary layer development the vertically integrated buoyancy force can
grow to reach a balance with the vertically integrated driving pressure gradient
so that the flow becomes steady and the Ekman trarnsport is extinguished. The
layer is arrested in a vertically integrated sense. The length of the initial period
greatly depends on the sign of bottom slope, and in the downwelling case may

approach infinity.

The effect of thermal wind in the interior low on bottom mixed layer growth
is shown to be important. For a horizontal flat bottom when the vertical shear in
the interior is positive, at the initial stage of bottom boundary layer development
the effect of thermal wind is similar to that of positive bottom slope. However
after the initial stage the effect of thermal wind is different, and the mixed layer

thickness and the speed of mixed layer can increase indefinitely. When the verti-
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cal shear is negative the thickness cannot grow if the geostrophic velocity is con-
stant. This is readily understood physically. When the vertical shear is positive
the geostrophic velocity at the interface increases as the mixed layer grows, and
thus the kinetic energy of water entrained into the mixed layer increases with
time, providing a steadily increasing source of energy for mixing. When the vert-
ical shear is negative the geostrophic velocity at the interface decreases as the
layer grows, and the kinetic energy supply for mixing decreases. Besides, the
transverse flow always drives denser fluid from the positive x-direction towards
the negative x-direction along the bottom, and therefore ¢ is always positive and

tgh

the potential energy term can increase indefinitely if the thickness doesn't

Po
decrease.

For a sloping flat bottom with thermal wind, when the isopycnals are paral-
lel to the bottom, the flow approaches a steady state quickly and the results are
very similar to that for a horizontal flat bottom with no thermal wind: that is,
the effects of bottom slope and isopycnal slope offset each other. When the bot-
tom slope is much larger than the isopycnal slope, thermal wind is unimportant

(and vice-versa).

Solutions are also obtained for the relaxation of motion in the boundary
layer after the interior geostrophic velocity is suddenly stopped, and are
presented in Appendix 3. It is shown that the frequency of inertial oscillations is

increased by bottom slope and Brunt-Vaisala frequency, because the buoyancy
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force parallel to the bottom provides an additional restoring force.

The dependence of a' on bottom slope, 8, and on the ratio YS has not been

/

obtained. When X < 1, or of order 1, the dependence of a’ on bottom slope 8,

/

and YS could be important because the value of o' appears then to have a

/

greater efect on the results. This should probably wail for further experiments

and observations to determine.

The discontinuity of density at the interface may be another problem in this
model, particularly on a sloping bottom. The improvement of this aspect may be
expected through adding a transition layer outside the well mixed layer to incor-

porate the effects of restratification produced by secondary circulation.

The vertically integrated model could be extended to include variations in
the plane parallel to the bottom, which the observations made by Armi and
D'Asaro (1980) have shown to be important. Such an extension would permit, for
example, investigation of how the bottom mixed layer separates from the sea
floor and intrudes into the ocean interior. Finally, the vertically integrated model

is readily adapted to the wind-driven surface mixed layer.
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APPENDIX 1

Derivation of Energy
Equation for Sloping Bottom Case.

Now the energy equation is derived. In the bottom coordinste system the dot

product of Egs. (3.30)-(3.32) with U produces

Po afu ) di
2 at + 2 at

+ po(uv + uV, + “6)_8—;(“ + )+ p,(uW + mb)-a—a;(u +4)

Sru + . (u* + W)——(u + i)

+ p_,a(v + V,)2

90 .\ O R
> a5 -——(v+V,)+p,(v +V')(u+u)-5;(v+V,+v)
+0,(v + V,Xv + V, +v) (v+V + i)

Po BW Bw
ETH te ‘8tw

+po W(u + ﬁ)a-(W to)+p, W +V, + 6)a—v(W+ W)

+Po(W+va+V)—(v+V +6)+ —-

+ P, (W? + w.a)_'?;(w +.a)=-7ziu —%L:-u ~ (¢ + p)g pu

_opr! 9p
oz w- kN

+p[uv2(u +id)+(v + VW (v +V, +0)+ WOA(W + -b)] (AlL.1)

ap! ap
W - (o' + p)gW. - 3 (v + V,)-ﬁ(v +V,)

Time-averaging Eq. (Al.1) yields

-—-i[u’+(v+v,)’]+ (o+V) [u +(v+ V)

Lo O 1.2 = _ uP! _a _ d<i?> _ 0<uv>
+ 7Y z[u +(v+V,) uP', - p'gBu - p,u o o u 3y

d<ih> a<ib > <>
"'Po“"‘"_a;_— 'o(” + V') dz Po(” + V,) av

- Po(” + V' ).QS;_"”Z, (Al.2)
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where W = 0 is assumed, the mean quantities are independent of 2 and y, the
viscous terms are ignored because thke Reynolds number is large and the

incompressibility condition is used. Since the horizontal scales are much larger

than the vertical scale 9 << L and 9 << —'?—. Therefore the mean mechani-

dJz En dy dz

cal energy balance equation is, after ignoring the advection terms,

5 < iih >
-—;,7(“’+ (v + V,)) =-uP's - g fu - pu—p—=
- po(v + Vy)is‘ai;ﬂ?—' (Al.3)

The dot product of the momentum equations with ¥ yields

[4 d6 .

2’8‘;" + po 8': +Po(uu+u)——(u +@)+p,(v +V,)i z:
_°(v+v,)—'i-+p, b8 o 28 +0,8(W + @)2(u + 4)
dy 2 oy
+f-"—-a" + po ¥ (v+V)+p v(u+u)—(u+V+ }

2 ot ¢ at o

- ~ a
+ p,(v + V,)v-a—y(v +V,)+ p‘vz—a-;(v +V,)+ —2'—(11 + v,)_5'1_

Tﬁ%+p,v(w + a;)-"’—(v +V, + )

+£§°—--Q‘,;sz+ Po ‘aa‘:’ +pow(d + u)—(W + w)

+ oo+ V, +o)-ﬁ(w +0) 4+, B(W + .b)o_z(w i) =- "’a‘Z'a
- o0 -0+ g - 65 - 63k - gy +9)- E0 - oZB

+ ni [VPu + V] + pi V(v + V,) + 9% + po [P*W + 9%@). (AL.4)

The last terms involving the viscosity can be rewritten using

V% + 09 + 0V = 4 v + 9V + oo + (TGO
_ a (a 8&, 8&, . 8&
93, ‘“'(az,- t g -ty
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where

We also have

. 04; ..
28.',' az: =2C",'8",'

(Monin and Yaglom, 1979, p. 375). Substituting the above result in Eq. (A14),

time-averaging and making use of the condition W = 0 result in

_PLa<q2> Po 8<q2> Po, vV 8<q2> Y] _a_u_
2 ot T2V as TtV e <i>o
an 0 .. OU aa O
+p,<uv>-5%+p,<uw>?z-+p,<uv>a-(v +V,)
+p,<a’>aiy(u + V) +p, <thd >aiz(” +V,)
Po @ irg p P D ong P D o
+ ) a3<uq > + 2 a”<vq>+ 3 al<wq>
__9<pi> 8K > A<D s o ..
52 3y 2 Lpi>gB-g<pw >
o _. 00 04 . .
, -9 i hee S, .
+”a‘i <"'(az,- + 7z, )> - p<iiiy > (Al.5)
By ignoring advective terms, taking 2 << b 9 <<i and assuming
! dz 9:' dy dz
<pi >f << <pw >, Eq. (Al.5) reduces to
0<g®> P 8 .oy D .o o _... du
Po =3¢ ¥t 55, W > =3P > -p <>
.. v+ V) . .
— P VW D> ————— - WPy
oz
+ 2p-§z—<as,, + By + > ¢ (ALS)

in which ¢ = 2u<i;;i; > is the average mechanical dissipation rate. Adding Eq.
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(A1.6) to Eq. (A1.3) yields

[ 1 h <at>) 4 P2 ity 4 D i
2 3" +(v+V, )+ <¢g>)+ > a:<wq>+az<wp>

=—uP', - fgBu - p,-a?;[u <iw> + (v + V,)<iw >]
ol <, + Uiy + B> -5 <Bi>9 (AL7)

which is Eq. (3.35).
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APPENDIX 2

Derivation of Governing Equations
Including Thermal Wind

A.2.1. Horizontal Flat Bottom Case.
A.2.1.1. Interior Flow.

As in Chapter 2 the flow in the interior is assumed to be geostrophic:

p.0XV, =-9P, + p,7 (A2.1.1)

Note that now V, depends on the vertical coordinate z', whereas before it was

independent of depth. The component equations of Eq. (A2.1.1) become

apP,

0 SV, (2) =- 2 (A2.1.2)
oP,

0= —8T (A2.l.3)

0= %+p,(z, z)g (A2.1.4)

Assuming the isopycnals in the interior are inclined at an angle g’ (see Fig.

A2.1) to the horizontal, then

o,
dz
9p,
K3
From Eqs. (A2.1.2), (A2.1.4) and (A2.1.5) it can be deduced that

tang,! = - (A2.1.5)

%4 2
9%, = —tanﬂ,'-NT"- =VS (A2.1.6)

dz
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Figure A2.1. A sketch of a horizontal flat bottom with horizontal density gra-

dient. '

-
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which is the usual thermal relation (Pond and Pickard, 19081), and where VS

stands for the vertical shear. When g,’ is small this becomes

v N,?
—5zL =-p/ = (A2.1.7)

It is important to note that N,? and therefore VS are independent of both s and
z. Integrating Eq. (A2.1.7) with respect to : yields

Ve(z) = V,(0) + zVS (A2.1.8)
and the geostrophic velocity averaged over the bottom mixed layer height A is

=1
V—h

A V,(2)d: = V,(0)+ _;./.vs (A2.1.9)

© e,

A.2.1.2, Density in the Mixed Layer.

When thermal wind is included the density o' in the mixed layer is still
assumed to be uniform in the z-direction and can be separated into two parts:

¢ =lp(z,2) + oz, )] + (1) (A2.1.109)

where as before the first part caused by local mixing is always equal to the aver-

age of the density profile prior to mixing and is given by Eq. (3.9) which is

rewritten here for convenience

L]
>
The second part € is the advective contribution caused by Ekman transport,

po(z,2)+ p"(2,t) = p,(2,0) + p,, (A2.1.10Db)

present now in the horizontal bottom case because of the thermal wind. Note

that it is again assumed that € and A are independent of z since the geostrophic

av,

8: are independent of z. Therefore Eqs. (3.9)-(3.13) and

velocity, N, and

h e e B e tan e v s e netig s v e e e Ae e bt e = o Se1 mee o " YTy p—— g oy St
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(3.26)-(3.27) are still valid here.

A.2.1.3. Momentum Equations
The assumption made is that in the mixed layer the flow is still hydrostatic.

Therefore

ggg," = — gy (A2.1.11a)

By substituting Eq. (A2.1.10a) into Eq. (A2.1.11a) and using Eq. (A2.1.4), Eqs.
(3.14) and (3.17) can be deduced. Therefore

P, =P,. (A2.1.11)

The momentum equation in the bottom mixed layer is

p’-%—?- + pTXU =-gP' + o'g + g?;-, (A2.1.12)

where all the assumptions made in Chapter 2 for linearizing the momentum equa-
tion have been used. By using the Boussinesq approximation and Eq. (A2.1.11)

the 2 and y components become

du __ 9P, art

Po i Pf(v +V,)= e + 57 (A2.1.13a)
8(0 + V’) _ apﬂ ar

0 9t +p, fu = "‘“—'—av + TR (A2.1.13b)

A v
After substituting Eqs. (A2.1.2) and (A2.1.3) and because -f%"— = 0 the momen-

tum equations become:

o, o
Po 55 = P v = T (A2.1.14a)
o dv P Ju = f—, (A2.1.14b)

at dz
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which, after vertical integration and making use of Eq. (2.8) and the assumption
(2.9), identically become Eqs (2.7) and (2.8), the momentum equations in the

mixed layer in the absence of thermal wina.

A.2.1.4. Mass Conservatlon.

The continuity equation is the same as Eq. (2.3) and Eq. (2.4) can be applied
here. It is also assumed that Eq. (2.5) and therefore (2.6) are valid, again since V,

and N, are independent of z.

Because when including the thermal wind the density is no longer indepen-
dent of z, deriving an equation for mass conservation must begin with Eq. (3.19).
The vertically integrated form (3.24) also holds, as does the expression (3.25) for
the turbulent mass flux at the interface in terms of entrainment, since it includes
the dependence of the density of the entrained fluid on z and A. The density in

the mixed layer may still be written in the form Eq. (3.26), but now

a3 _ 90 _ 1905
9z 0z tanf, dz

where use has been made of (A2.1.5). Otherwise the derivation which led to Eq.

(A2.1.15a)

(3.29) is unchanged, and its equivaient for the present case is therefore

—:—(hc). = - tanf,’ haN, ? (A2.1.15)
[ ]

which is to be compared with Eq. (3.20). It is seen that for ' small the two
equations have the same form, with the negative isopycnal slope now taking the

place of the bottom slope.

oo — e e e T e e T TP
g X . * T " A
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A.2.1.6. Energy Equation

For the horizontal flat bottom case including thermal wind Eq. (2.15) is still
valid. For convenience it is rewritten here:

A A
(4 d
_é"_{ -b—‘-(uz+(v + V,)2+ <g¢?>)|d: ._._{uP'. dz

A A
- [<bp>gde - [ods. (A2.1.16)
0 0

Note that Eq. (2.16a) is not applicable because the density varies in the horizon-

tal plane. Instead the mass conservation Eq. (3.19) can be applied for calculating

A
the buoyant production term <& p>gdz on the right-hand side of the equation
0

above. Substituting Egs. (3.27), (A2.1.15a) and (2.20a) into Eq. (3.19) and then

integrating the resulting equation from 0 to : yields

2 at
After integrating from 0 to » and by making use of Eq. (A2.1.15), Eq. (A2.1.17)

}
-<pp> |, = Por OB, €z - Wtanfy'p,, z - [[ Aud: Ttangyp,, .(A2.1.17)
0

becomes

[} [ ]
- fo<bio>dr = Lowoh®h - £2£’il., - tangp,, gf|fAudz)de.  (A2.1.18)
[ ]

Substituting Eqs. (A2.1.11) and (A2.1.18) into Eq. (A2.1.18) yields

A A
Po ]9 (y2 2 4 <q? -
2 (Ut + (0 + V)P + <¢®>)|ds {uP,, dz
1 A s A
T ghh, ~ -"?‘-/., ~ tanfy'p,, of [ Aud:)dz ~ [¢dz, (A2.1.19)
00 0

which corresponds to Eq. (2.17) but is different because the buoyant production
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term is now not only caused by local mixing, but also by the advective contribu-
tion ¢ and the vertical variation of u, and because the pressure gradient in the

interior varies in the z-direction (see Eq. A2.1.2).

Again the assumption Eq. (2.18) is made which is rewritten here

A 2 A
_Pf_f 0<¢°> dr + Ifdl _.=._?..U_ (A?.I.QO)
2 0 at 0

Substituting Eq. (A2.1.20) into Eq. (A2.1.19) yields

A A
% -gi-[uz +(v + V,)|d: - -‘li-p,, gh2h, + -g—;!‘-h, + tanB,'p,, gf[fAudz']dz
) 00
A
= - [uP dr -Tr,* (¥ + V)Y (A2.1.21)
0

The first term on the right-hand side of the equation above is the rate of work

done by the geostrophic pressure gradient. Letting

¢ =17+ Au (A2.1.22a)
v+ V,=V+av =V, + 7+ Av. (A2.1.22b)
and using Eqs. (A2.1.2), (A2.1.8), (A2.1.8) and (A2.1.9) this term becomes:

A h
- JuPydz =~ [( + Au)p, [V, dz
(1] 0

A
= ~p,JGV,h - p, fVSfz Audz
°

A
= - p, fTV,h - p,, gtanp'[ 1 Audz (A2.1.23)
]
As in Chapter 3 it can be shown using integration by parts that the sum of

A h s
{ Auzd: in Eq (A2.1.23) and { l{ Aud:')dz in Eq. (A2.1.21) vanishes. Therefore




145

substituting Eq. (A2.1.23) into Eq. (A2.1.21) yields

A
-’-;L --8—[02 + (v + V,)d: - lp,, gh%h + “" EALY N
X
=~ p, fuV h-ury* - (Vv + V mY, (A2.1.24)

which corresponds to Eq. (2.19). Note that now ¥, is the vertical average of V,

over the boundary layer thickness.

The first term of Eq. (A2.1.24) becomes, after using Eqs. (A2.1.22a) and

(A2.1.22b)
A
’T'{_g_‘[.ﬂ +(o+ V, Pz = —--f[u +(v + V,)ds - _u2|,_,,"’8_"'
=35 [h(u + 0+ 2'67,)] + %%f{(Au)’ + (Av)]d:
0
¥ I [—;}’; %) - v.=|,=.gz;-] (A2.1.25)

where U? = V,%at z = h has been used. From Eqgs. (A2.1.8) and (A2.1.9) it can

be shown that

O (v 2y v2) b _ L ysppadh
2W,%)- v, BB = L (vsyp2dh (A2.1.26)
and
av,
el _—._vs‘;’: (A2.1.27)

Substituting Eqs. (A2.1.26) and (A2.1.27) into Eq. (A2.1.25) yields

[ ]
B f Bt 4o+ VPl = Sat 4 57 4 207, ) 2

+ _ng-( + 72 + p, AV, ";:’ Sl f[(Au)2+(Av)’]dz

4

e
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- Lo ys2p2dh y Be oo

8 ot 2 at
By using Eqs. (A2.1.28) and (2.7) and (2.8), Eq. (A?2.1.24) reduces to

Po | NN geh 2. o 252 ah
2 3 +P¢ (@ +'))— VS*h* + VShd a

+ T—I[(Au)’ + (Av)dr =0

which reduces to Eq. (2.21) in the absence of thermal wind.

A.2.1.8. The Velocity Profile Parameter

A

(A2.1.28)

(A2.1.29)

As discussed in Chapter 2 the integral f[(Au)? + (Av)?]d: is approximately
°

proportional to V,%|,_yh, because it is assumed that the velocity profiles

remain self-similar during growth:

Au =-V, |, G's)
Ay = V’ lleFl(fl)'
Therefore

A
fl(Au) + (Av))dz
0

1
= (Vg I:=l )2",!;(0'2 + Fn)dfl = E"'V’2I:=A

where E'! is a proportionality coefficient, and then

A
AP
-a—fl(Au)’-%(Av lds =2E'V, |, (Vy | A)’.
aty — 3
+ E'V,2|,__.____ [E"V 2| ,ma + 2E'Y, | A VS h] oh

(A2.1.30)

(A2.1.31)

where Eq. (A2.1.8) has been used. Note that from the dimensional analysis here
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o' should depend on -—‘;ﬁ and -%- Substituting Eq. (A2.1.31) into Eq. (A2.1.29)
yields

22 '
Po [ Do ® y ek g2y 50 Lysazs v
2 2 o 1

+E',?|,_p +2E, |, VS h]-i;—’:- =0 (A2.1.32)

During mixed layer growth %:— # 0 it is deduced that

232
N,k +2h g o Lysat 4 vane
2 b 4
+ E'V, 2|,y +2E', |, VSh =0. (A2.1.33)

The only problem left in Eq. (A2.1.33) is how to deal v.ith E'. Again the velocity
profile parameter is introduced using Eq. (2.223). Substituting Eq. (2.22a) into
Eq. (A2.1.30) yields

E'V,?|,o) =a'u,? (A2.1.34)
Using Eq. (2.35) it may be written

E'V, | ,op =0a'Cy o—Y_ (A2.1.35)
V' I 1=k

When the approximation:

u =
—— =1 A2.1.36
V, |l=l ( )
is made,
E'V' I 1=k = O'C‘ U (A2.1.37)

can be obtained. Equation (A2.1.34) is used to replace the first E' term in

(A2.1.33). The second is replaced using (A2.1.36) and (A2.1.37), yielding




i
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N, 242

a'u,? (@ + 7+ 2ha'C,UVS +

+ -‘p"—" +h VS [7- Lhvs) =0 (A2.1.38)

Note that the approxirhation (A2.1.36) is not necessary but makes the prob-
lem easier to solve because Eq. (A2.1.38), which is quadratic in A, would other-
wise be cubic. Numerical tests showed that (A2.1.37) has little effect on the
results. This is readily understood. Comparing the two terms which are first order
in VS in (A2.1.38), it is seen that since o’ ~ O(1), |U| ~ |7 | and C; << 1,
that the contribution from the term involving C, (which was obtained using the

approximatior. A2.1.36) is small.
A.2.1.7. Summary of Governing Equations

The governing equations including thermal wind for a horizontal flat bottom
are: the momentum equations are the same as Eqgs. (2.7) and (2.8), the mass con-

servation equation (A2.1.15) and the energy equation (A2.1.38). For convenience

they are written out together as follows, for | 8,'| << 1:

Aoy oo Lo

(A2.1.39)
ﬂgTﬁ)_ + fuh =-Lg (A2.1.40)
Po
[}
1"1‘_9'_"_). = f‘;_,, N, 2ah (A2.1.41)

N°2h2 + ggh _ 2h Q'C‘ UpIIN'Q
2 Po /
N 23’. ﬂ'N |h2
- Bl ", + 14;2 ] =0, (A2.1.42)

ﬂ'“¢2 - (172 + .0-2) +
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A.2.2. Sloping Flat Bottom Case.

A.2.2.1. Momentum Equations.

In the interior the geostrophic balance is

Poﬁx Vg = —GPO + 0.0 (A2.2.l)
which is the same as Eq. (A2.1.1). In the unrotated (z', y', ") coordinate system

(Fig. 8.1) i =(Q,,0,, f), V' = (0, V,(¢'),0) and § =(0,0,~¢). If ¢ is the
latitude and @ is the angle between the z'-direction and due east, then

{1, == 20cos ¢ cos 6, Ny = 2[icos ¢ sin 4.

From Eqs. (3.1)-(3.3) the bottom coordinates (z, y, z ) are:

2 =z'"cosf+ zsinf~z'+:'8 (A2.2.2)
y = y' (A22.3)
z = -z'inf + z'cosp = -2'f + z'. (A2.2.4)

So that in the bottom coordinate system,

= (ﬂ,l + f B8, ny’t -nz’ﬂ + , )
V’ == (0, V’(’.)’ 0)
The component equations of Eq. (A2.2.1) become

' aP
~0o [ Vy(z,2) =~ —=-gBp,(2,2) (A2.2.5)
0= —— (A2.2.6)

P,
0= —a—;— +p.(z, 2)9 (A2.2.7)

because 1,8 <<f when A<<1 and ¢ is mnot too small, and

(0, + f AV, << g. Note that in the bottom coordinate system, V, is in general
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a function of both z and :.

Again it is assumed that the isopycnals are inclined at a constant angle 4, to

the horizontal. Then from Fig. (5.1)
Pr=58'-8 (A2.2.8a)
where g, is the isopycnal slope relative to the bottom. As shown in Eq. (A2.1.5)

it is known that

apd — [} apo

W = - tanﬂ. -73-7 (A2.2.8b)
and

99, e,

-5? = - tanﬁl 3z (A2280)

Note that from the coordinate transformations Eqs (3.1)}(3.3) and (A2.2.2)-

(A2.2.4)

Pos == Posc0sf + p,.sinf
Pos = — Pogtinf + p,,c088.

Therefore
0 dp 3, |,
;: 820' cosf + ﬁsmﬁ
i -— E——4 hod —— , -
tanf, 3, 7, 99, tan(By’ - f)

ar aarfm gyt
which also leads to g, = f)' - 8, the same as Eq. (A2.2.8a). By using the Bous-
sinesq approximation from Eqs. (A2.2.5), (A2.2.7) and (A2.2.8¢) the thermal wind

relation in the bottom coordinate system is:

av, N,? N,?
_‘# =-~ (tang, + B) =~ - 7 tanf,' = VS (A2.2.9)
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because A is small. When 8,' is also small

Ny 2
VS = - ﬁL’}’L (A2.2.10)
From Eq. (A2.2.9) and the fact that V, depends only on the vertical coordinate
z!, the geostrophic velocity can be written as
Vy(2,2) =V,(2,0)+ z VS. (A2.2.11)

where
Vy(z,0) = V,(0,0) + pz VS (A2.2.12)
For a sloping bottom it is still assumed that the second part ¢ in Eq.
(A2.1.10a) is independent of z. Note that this is approximately true only when
the bottom slope is small since for a sloping bottom the geostrophic velocity
varies with z. (Note also, however, that Bird et al. (1982) also assumed that all
deviations in the bottom boundary layer from the interior quantities only vary
with the distance away from the bottom and time, even in the presence of ther-
mal wind.) This assumption allows us to employ Egs. (A2.1.10a), (A2.1.10b),

(3.28) and (3.27) for the sloping bottom case.

The momentum equation in the bottom mixed layer is

pl_%?_ + pTixXU = -yP' + o' + _g; (A2.2.13)

The hydrostatic assumption is still used so that Eq. (3.17) is valid here. There-
fore

P, =P, (A2.2.14)
By using the Boussinesq approximation and Eqgs. (3.8) and (A2.2.14), the z and y
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component equations of momentum equation (A2.2.13) in the bottom coordinate

system are
du __opP, ar
".5‘__”’,(0 + V')__—_a.z__pgﬂ-f.ﬁ. (A22153)
a(v +V,) ap, ar’
Po T +pfu = __a_;_ + .32_. (A2.2.188.)

After substituting Eqs. (A2.2.5) and (A2.2.8) and because %’—=0, Eqs.

(A2.2.15a) and (A2.2.16a) become

du 4 egh 1 or

—_— Y =~ I —_— i A2.2.15
at / Po 08 Po po 0z ( )
dv _ 1 a7

¥ + fu= e T (A22.16)

which are the same as Eqs. (3.15) and (3.18). Integrating Egs. (A2.2.15) and
(A2.2.18) in the z-direction from 0 to A, and making use of Eq. (2.6) and the

assumption (2.9), yields Eqgs. (3.22) and (3.23).

A.2.2.2, Mass Conservation.

As before it is assumed that @, v, ¢ and A are independent of z. Therefore

Egs. (2.5) and (2.8) still bold.

The derivation of the mass conservation equation can start from Eq. (3.19)

which is valid here. Integrating Eq. (3.19) from : =0 to & yields Eq. (3.24).

Making use of Eqgs. (2.5), (3.25), (3.27), and the fact that -%';'- = 8;: , then using

(A2.2.8¢) it can be shown that Eq. (3.24) becomes

—:—(h ¢); = - tanB,haN, 2. (A2.2.17)

R e ke R T et U —— — .-‘- c e 498e s omsrmamm——ye——— O
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Note that g in Eq. (3.29) is replaced by - tang, in Eq. (A2.2.17).

A.2.2.3. Energy Equation

Deriving the energy equation begins with Eq. (3.36):

& [ ]
!
!z_fi[u2+(u + V, ldz =-fu-"’—f—dz-17n‘ -7+ V!
2 oot o 92

[}
- Vg Bk - [ <piv >gdz, (3.38)
0

because it remains valid for the case i, cluding thermal wind.

In order to calculate the first term on the right-hand side of the equation
above, using Eq. (A2.2.14) and then Eqs. (A2.1.22a), (A2.2.5) (A2.29), and
(A2.2.11) yields

[ [

-fuP', dz =-[uP,, d:
0 0

]
=-J@ +80) [0, £V, (5, 0+ VS 2]~ (0,2, 0) + pu2)0 8 de

— A
=-p, [TV, (2)h + o,(z, 0)g fTh + -;'-h, g Bh* - (tanpy! - )p,, ¢f Auzd:.
0

=-p, [TV, (z)h + p,(z,0)9pTh + -g-ﬂ..aﬂh’

A
- tanp, p,, 9f Auzd:. (A2.2.18)
0

From the mass conservation equation (3.19) it can be shown, as in deriving Eq.
(A2.1.18), that:

A
-fa;?vdz = —:'Pos ghzhl -
0

9Pu;'3“pl ah? + 9":‘0

e s s B b ame8e Eeresh Sieetban e r .- ~ - . v =
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|
- tanfB;p,, gf[fAudz "dz. (A2.2.19)
00
From Eq. (A2.2.17)
%gc, B2 = %tanﬂ,hzﬁN, ?_ -";—"l., (A2.2.20)

is obtained. Substituting Eq. (A2.2.20) in Eq. (A2.2.19) yields

h h s
~ [gptbdz = -:—p,, ghth, - -%‘!'-h, ~ tanfyp,, gf [ Audz']dz. (A2.2.21)
0 00

The expression for the time rate of change of local mean kinetic energy per unit
area, Eq. (A2.1.28), is still valid for the sloping bottom case. Substituting Eqs

(A2.1.28), (3.22), (3.23), (3.26), (A2.2.18) and (A2.2.21) into Eq. (3.36) yields

Pe N02h2 geh ,_2 2 1 2,2 | Oh
—_— - — V. —
5 3 +p, (@ +v)4 S°h* + VShv 2t
h
+ ’—2"-% [lAu) + (Av)d: =0 (A2.2.22)
o

which is identical to Eq. (A2.1.29). Note that in deriving the Equation (A2.2.22),

A | ]
the sum of [Auw:d: from Eq. (A22.18) and [[fAud:')d: from Eq. (A2.2.21)
0 00

appears. As before, this sum can be shown to be zero by integration by parts.

A.2.2.4. The Velocity Profile Parameter

The last term of Eq. (A2.2.22) is handled in exactly the same way as in Sec-
tion A.2.1.6, so that after introducing a', the energy equation again reduces to

Eq. (A2.1.38). But here o' slso depends on the bottom slope §.
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A.2.2.56. Summary of Governing Equations

For a sloping bottom the governing equations are: the momentum equations

are the same as Eqs. (3.22) and (3.23), the mass conservation equation (A2.2.17)

and the energy equation (A2.1.38). For convenience, all of them are presented

together as follows

) N WU Y
ot Po Po

M-’-Iﬂh =——l_f.’
at Pe

a(h t! ﬂl N 2‘_‘."
at g

NO 2h2 (gh 2’. a'C‘ Uﬂl'NO ?

u2-(@+ )+ > +h- 7
2-1. ﬂx'N 4"2
- ' f —4
ﬂ [ 4,2 ] o!

where g; = - 8;: 9%, ,,8, =f+Pfand U = \/i’ +(v + VD’.

(A2.2.23)
(A2.2.24)

(A2.2.25)

(A2.2.26)
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APPENDIX 3

A MIXED LAYER RELAXATION PROBLEM

The results obtained in Chapter 4 show that during mixed layer growth over
a sloping bottom, potential energy is stored in the density field as fluid columns
are advected either up or down the slope within the bottom boundary layer. The
component of buoyancy parallel to the slopz therefore provides an additional res-
toring force, and the frequency of oscillatory motion of fluid columns must be
modified accordingly. This section investigates the relatively simple problem of
the oscillations generated when the geostrophic flow is suddenly stopped after the

mixed layer has been formed.

A.3.1. Analytic Solutions

Because "unmixing” is not allowed, the thickness will remain constant after
V, is suddenly set to zero. Therefore the governing equations for the relaxation

problem become (see Eqs. 4.5 to 4.7)

ou 1 _+ Bg

AT S ST R A3.1
o =7 P (A3.1)

O _pan - Ly (A3.2)
ot Po

e _ 1 2

57 = gPe PN, T (A3.3)

The initial conditions are taken to be the values of @, ¥ and € at four and half

days (108 hours) during the growth of the layer with ramp function (4.9). Note
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that the geostrophic velocity is zero for the relaxation problem, and therefore ¥

and v are the same as the depth-averaged velocity components.

Using a linear drag law

b g (A3.4)
Po

nY

— =17, (A3.5)
)

it can be deduced from Egs. (A3.1) to (A3.3) that

'ﬂ::V"za=o. (A3.8)

d%v 2r d%v r? 2 oy dU
I—;—+T?+(F+ﬂ2N. +!)Jl+

Eg. (A3.6) has been solved for three cases: (1) sloping bottom with no fric-
tion (r == 0); (2) horizontal flat bottom with friction (8 = 0); (3) sloping bottom

with friction.

A.3.1.1. Sloping bottom with no friction.

The solution is

F=A1+B,cos[f-‘/l+:;_v: t + C)) (A3.7)

wheve the constants A; B;andC, are determined by the initial conditions. These

are modified inertial oscillations with frequency f \ /1+ | 7 ; : that is, the fre-

quency is slightly higher than f , being modified by the additional buoyancy force

parallel to the slope as expected.
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A.3.1.2, Horizontal flat bottom (8 = 0) with friction.

~——

The solution is

"

T =- A,e-‘cos(ﬂ + ¢)
u

T =-Age Ysin(ft +¢)

(A3.8)

(A3.9)

where the constants A, and ¢ are determined by the initial conditions. These are

just frictionally damped inertial oscillations.
A.3.1.3. Sloping boitom with friction.

The solutions are

T =u Ay’ + (u,By - uyCy)e’ > cosp oy ¢
+(u,Cy + usBs)c“"sinpu ¢
T=Ase" + Bsc”"‘cosp,gl + C,c”"sinp”t
€ =€, Age”" + (aBy+ €3C3)e” ™ cospyy t
+ (€,Cs - csBa)e”“sinp” ¢

where

2
al=ﬁ2Noe+f2' d

382
_r 2ar 2 9r2 2
az—mgﬁNo ——P——ISI)
i
ﬂz gy ﬂl 3
b= T+"'27_]
5 ag ag a-lr 3
LI 4 27
2
= b bo - ==
Py 1+ 0 3%
by+ by 9

(A3.10)
(A3.11)

(A3.12)

(A3.13)

(A3.14)
(A3.15)

(A3.18)

(A3.17)

(A3.18)
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pay = !2'.3.(5, - by) (A3.19)
u; =--I'7--’;l (A3.20)
w =g - (A3.21)
uy = f—;!- (A3.22)
oo 5Lt o
Oy J o
6 = ;"g;u,+ bt BH (A3.25)

The constants A 4, B;, and C4 can be determined from the initial conditions.

A.3.2. Numerical Solutions

The Eqgs. (A3.1) to (A3.3) are also solved numerically with both a linear drag
law and quadratic drag law. The linear drag coefficient r was estimated by
assuming that the range of u, is 0.19 to 0.6 cm/s and the speed in the mixed
layer U = 0( 10) cm/s. Therefore the range of r is 3.6%10° to 3.6X10°? cm/s.

The range of the quadratic drag coefficient C; was chosen as 0.2X102 to 1102,

The results obtained from the analytic solutions and numerical solutions are
presented together for two typical cases in Figures A3.1 and A3.2. The parameter
values for Fig. A3.1 are C, =0002, r =0.36X10%cm/s, #=1X107?,
N, = 1X102 /s and V, =15 ecm/s. In Fig. A3.2 C, =001, r == 3.6X10%m/s,

p = -24X10%, N, =1.28X102 /s and V, = 15 ecm/s. During the growth of the

-

layer a' =~ 3 is used (Note that here -1%- == 203, It is very large therefore the
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Figure A3.1. The variation of the speed, the s-component @ and the y-component ¥ of velo-
city, and ¢ when the geostrophic velocity is suddenly set to zero after four and half days of
bottom boundary layer growth. The parameters are: o' = 2.5, the quadratic drag law coeflicient
C, == 2X 107, the linear drag law coefficient r == 0.36X107%cm/s, N, == 1X107*/s and g == 102,

091



+ANALYTIC SOLUTION WITH LINEAR DRAG. LAKW

(e ]
3 MNUMERICAL SOLUTION WITH QUADRIC ORAG LAW ©
@] XNUMERICAL SOLUTION WITH LINEAB DRAG LAK ©
(Jp])
=
Q3
o
[
o
0
s o
T T T ) ’: . | Y 1
“b. 00 50. 00 100.00  150.00 0. 00 50. 00 100.00  150.00
T (HBGURS) T (HGURS)
= b=
. .1
o~ o Ha
o (7p)
* s
o~ EP=
S o T
o
[ &
= 5
wn L
a- o
Wwo JO
c [ J
- -1 - ? T L R
%, 00 50. 00 100. 00 50. 00 0. 00 50. 00 100.00  150.00
T (HOURS) T (HGURS)

Figure A3.2. The variation of the speed, the z-component @ and the y-component ¥ of velo-
city, and ¢ when the geostrophic velocity is suddenly set to zero after four and half days of
bottom boundary layer growth. The parameters are: o’ == 2.5, the quadratic drag law coefficient
Cy == 1X107, the linear drag law coeflicient r == 8.6X10%cm/s, N, == 1.28X10°?/s and
f = -2.4X107,
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value of o' doesn't affect the results).

The results show that the numerical solutions with a linear drag law are
almost identical to the analytic solutions, and the numerical solutions with a qua-
dratic law are very close to the analytic solutions. Figure A3.1 indicates that the
flow oscillates at the modified inertial frequency and decays with time. In Fig.
A3.2 the flow only decays with time and no oscillations appear because the values
of the drag coeflicients are an order of magnitude larger than in Fig A3.1. The
decay times in Figs. A3.1 and A3.2 are long: at least two days to diminish to half

the mean value.

Different values of the Brunt-Vaisala frequency, bottom slope nnd drag
coefficient were tried. With the quadratic drag coefficient C; = 2X 107, the
results for different values of § and N, are presented in Tables A3.1-A3.4. In the
Tables the oscillation frequency w is calculated from, the analytic soiution with
linear drag law in which w is P, , since from Figure A3.1 based on numerical and
analytic solutions there is little difference in the frequency of oscillation between
the solutions with quadratic drag and with linear drag. The mean value is the
average over one oscillation. The amplitude is the difference between the max-
imum and mean. The results show that when the bottom slope and the Brunt-
Vaisala frequency increase the oscillation frequency increases. The mean flow
decay rate decreases when the bottom slope and the Brunt-Vaisala frequency

increase. The decay rate of oscillation amplitude in speed, ¢ and the z-component

e o . . ~ L w— e eree ey ey

S £t e ape et gt - e e Ve
> p b
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Speed U(cm/s)
B(x10%) | N, (x10% /s) | w(x10% /s) |~ ::Pm‘“‘f —1 0M°3:1= ”

0 10. 1.18 18 1.0 55 | 20

1. 0.638 03 | 02 | 145 | 52

) 10, ~ 238 22 | 20 | 135 | 15

1 0.630 00 | o0 | 148 | 25

10 10, 1.18 2.1 10 52 | 13

L 0.638 2.0 L9 | 130 | w7

B 10. 0.635 10 | 00 90 | 27

1. 0.630 00 | 00 | 148 | 25

Table A3.1. The comparisons of results for speed between a high value of
B =10 and a low value of 8= 1073, a high value of N, =10 /s and a low
value of N, =10" /s when C; =2X10% and the Coriolis parameter
/ =063x10™" /s,

Advective Density Anomaly € (X107 /cm ®
B(x10%) | N, (x10° fs) | w(x10% /5) = :’;‘pm‘“‘t —t oMea': —

10 10. 1.18 0.73 03 0.1 0.0

1. 0.638 0.027 0.012 -0.01 -0.007
1 10. 0.638 0.2 0.05 -0.75 -0.6

1. 0.630 0.002 0.0008 | -0.0038 | -0.0033
-10 10. 1.18 0.65 0.18 0.13 0.0

1. 0.638 0.015 | 0.003 0.09 0.08
1 10. 0.635 0.008 0.0 2.6 2.1

1. 0.630 0.002 0.0007 0.005 0.0045

Table A3.2. The comparisons of results for the advective density anomaly ¢
between a high value of # =10 and a low value of =103, a high value of
N, =10 /s and a low value of N, =10° /s when C, =2X10° and the
Coriolis parameter / = 0.63X10™* /s.
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z-Component of Velocity @ (em/s)
B(x10%) | N, (x10° /5) | w(x10% /s) |~ :’;‘pl‘t‘“‘i — OM""‘“‘= Py

10 10. 1.18 80 2.5 -0.1 0.0

1. 0.638 11.0 6.0 -0.3 0.0

1 10. 0.638 70 1.7 0.2 0.2

1. 0.630 8.5 4.0 0.8 0.0

-10 10. 1.18 7.0 1.6 0.2 0.0

1. 0.638 7.0 1.8 0.4 0.0

-1 10. 0.635 5.5 0.5 0.3 0.0

1. 0.630 8.0 3.1 0.5 0.0

Table A3.3. The comparisons of results for the z-component of velocity
between a high value of # =10 and a low value of § =103, a high value of
N, =102 /s and a low value of N, =10 /s when C, = 2Xx10™ and the
Coriolis parameter f = 0.63X10™ /s.

y-Component of Velocity v (cm/s)
B(x107) | N, (x107 /s) | w(x10 /) t :r;lpllt‘m: 54 | ¢ =;\4ea:1=54

10 10. 1.18 4.0 1.5 0.8 0.2

1. 0.638 13.0 4.5 0.8 0.0

1 10. 0.638 9.1 2.1 0.7 0.0

1. 0.630 13.2 3.5 0.9 0.1

10 10. 118 37 | 11 | 05 | 00

1. 0.638 9.1 2.0 -1.7 -1.0

1 10. 0.635 5.2 0.0 -1.6 -3.5

1. 0.630 11.9 2.5 2.0 -0.4

Table A3.4. The comparisons of results for the y-component of velucity
between a high va'ue of # =10 and a low value of § =103, a high value of
N, =107 /s and a low vslue of N, =10 /s when €, = 2X10° and the
Coriolis parameter / = 0.63X10™ /s.
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of velocity increase with increasing bottom slope and/or Brunt-Vaisala frequency,
but the decay rate of oscillation amplitude of the y-component of velocity

decreases when the bottom slope and/or the Brunt-Vaisala frequency increase.
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