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ARSTRACT

In this thesis I implement a new set of scalar equations describing the free
oscillations of rotating self-gravitating compressible fluids, to solve for the wobble and
inertial modes of a rotating Earth with rigid mantle and liquid core. A Galerkin method
is used to integrate these cquations in the liquid core. It is shown that by using the
divergence theorem it is possible to make use of the ‘natural’ boundary conditions to
reduce the order of the derivatives from second to first in the Galerkin formulation of the
governing equations. As a partial test of the reliability of our formulation, the
eigenperiods of the Earth’s Chandler wobble (CW), nearly diumal free wobble (NDFW)
and some of the other inertial modes are computed for the case of a compressible, but

neutrally stratified, core and compared to those for the homogeneous incompressible core

model,
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CHAPTER 1: INTRODUCTION

The innermost region of the earth consists of a liquid outer core and a solid inner
core. The radius of the inner core is estimated to be 1221.5 km and that of the outer core
3480 km. The fluidity of the outer core and the solidity of the inner core have been
established through studies of ray seismology, tides and the Earth’s normal modes.

The core of the Earth plays a key role in many geophysical studies. An example
of this is the role of the liquid core on the periods of the Earth’s Chandler wobble and
the nearly diurnal free wobble. A perfectly rigid body with the same mass distribution
as the Earth is expected to have a free Eulerian wobble with period of about 306 days.
The presence of a liquid core the size of the Earth’s changes this period to about 270
days and gives rise to an additional retrograde wobble of nearly diurnal period,
corresponding to a nutation of about 350 days. Elasticity and oceans lengthen the
Eulerian wobble period to 435 days (the Chandler wobble) and the free core nutation
period to 460 days, assuming that the steadily-rotating configuration is ane of hydrostatic
equilibrium.

Since the core is not directly accessible, much is still unknown about its
properties. The distributions of material properiies such as the density p and Lamé
parameter A in the core are established through theoretical and observational studies using
ray seismology and free oscillations. However, the stability parameter p (Pekeris and
Accad 1972) cannot so far be inferred from the seismological data and is therefore poorly

controlled, uncertain and varies from one model to another.
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The spectrum of free oscillations possible in the liguid core can be conveniently
divided into:

(a) short period free oscillations, with periods of the order of an hour or less, for
which elasticity is the primary restoring force. For these oscillations the effects of
rotation and ellipticity can be treated as small perturbations on the solution of the
governing equations for a non-rotating spherical Earth;

(b) long period free core oscillations, with periods of the order of half a day and
longer. These oscillations are considerably affected by the rotation and, in some cases,
the ellipticity of the Earth.

Long period free core oscillations are of three types:

(a) Slichter (inner core translational) modes, with periods of several hours, for
which the primary restoring force is gravitational (due to the dens'ty difference across the
inner core boundary);

(b) gravity waves (or core undertones) whose essential restoring force is negative
buoyancy. Since negative buoyancy implies stable stratification, some parts of the outer
core must be stably stratified (f< 0) for gravity waves to exist;

(c) inertial waves, which depend on the Coriolis effect as their dominant restoring
force. Therefore, the rotation of the Earth is necessary to the existence of these modes.

Among the first who studied the inertial modes of the Earth were Hough (1895)
and Poincaré (1910). The Earth model they considered consists of an inviscid

incompressible homogeneous liquid filling the region bounded by an ellipsoidal container
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which is rigid but can change its orientation. Analytical solutions were found for the
Earth’s Chandler wobble and nearly diumal free wobble and other inertial modes using
this simple Earth model.

During the last four decades the theory of Hough and Poincaré has been greatly
extended to treat more realistic Earth models. Jeffreys & Vicente (1957a, 1957b)
considered Earth models with radially stratified clastic mantle and a homogeneous
incompressible liquid core. Molodensky (1961) included core compressibility. Shen and
Mansinha (1976) used the theory of Molodensky (1961) but added non-neutral
straification in the liquid core. Smith (1974) derived the elastic-gravitational normal
modes theory in which an infinite set of coupled differential equations describe the
dynamics of a rotating, slightly elliptical Earth. This theory was utilized by Smith (1977)
to compute the periods of the Earth’s Chandler wobble and the nearly diurnal free
wobble, with inner core. Also Wahr (1981) used Smith's formulation to study the effects
of Earth’s rotation and ellipticity on the body tides. Moon (1982) derived the linearized
equation of motion for the slightly elliptical rotating earth in order to study Earth's free
oscillations, free wobbles and core modes.

In the hope of finding an alternative, more simplified, solution to the governing
equations of core dynamics Smylie & Rochester (1981) made the subseismic
approximation (SSA) to derive the subseismic wave equation (SSWE). The SSWE is a
scalar second order partial differential equation (PDE) involving only one scalar potential,

and (to the extent the SSA is valid) once the SSWE is solved, all other dynamical
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variables can be readily obtained. As shortcomings in the subseismic description became
apparent (Crossley and Rochester 1992, Rochester and Peng 1993), Wu & Rochester
(1990) derived the exact two potential description of core dynamics (TPD). They showed
that the dynamics of the inviscid liquid core is described without approximation by two
scalar second order PDEs involving two scalar potentials. Although the TPD is
mathematically elegant, it also has some shortcomings which we discuss in chapter 3.
Rochester (unpublished) has derived an alternative set of three scalar PDEs
involving three scalar potentials which exactly describe the dynamics of the inviscid
liquid core (hereafter we refer to this description as THPD). The motivation for this new
description and its advantages will be discussed later in this thesis. In this study, we
implement the THPD to solve for some of the normal modes of a rotating ellipsoidal

liquid core.

1.1 The Governing Equations and Boundary Conditions

The liquid core is taken as inviscid, with the reference state being one of

hydrostatic equilibrium in a coordinate system rotating steadily with angular velocity

w,=0é, (1.1)

r

where Q is the rate of rotation of the Earth. The rate of change of direction of a unit

vector, éj, is therefore




(1.2)

d‘l
'-at—- =Q£3xl!

In the reference frame stated above the equilibrium density p;, pressure py and

gravitational acceleration g are related by
VPy=P o0

&=V%,

VW,=-4nGpy+2Q° a.5)

Voq=(1-PIpy— 1.6)

where G, a, f are respectively the gravitational constant, the local compressional wave
speed and the stability parameter.

The parameter B measures the extent and sign of any departure of density gradient
from purely adiabatic stratification; it is proportional to the square of the local Brunt-

Viiisiili frequency N:
)]

A region is stably stratified if B<0, unstably stratified if B>0 and neutral if =0 (i.e. the
Adams Williamson condition is satisfied). Although an exact value for B has not been

established, Masters (1979) shows that current seismological data sets a limit | B | <0.03-




0.05.
The equations governing the isentropic small oscillations of an inviscid liquid core
are given (Rochester 1989) by the conservation laws for mass, momentum, gravitational

flux and entropy. These equations are as follows:

dp
7’=-V(p°v) (1.8)
v 1 P,
—+2Qé&,xv=-—VNp +VV + —¢g (1.9)
a 3 po 1 1 po 0
VV,=-41Gp, (i.10)
op, ,9p
& PR -

In the above equations v, p,, p; and V, (ail regarded as first order departures from
the equilibrium reference state) stand for velocity, the Eulerian perturbation in density,
Eulerian pressure disturbance and the Eulerian penturbation in the gravitational potential
respectively, with

=ou (1.12)
x

where u is the Lagrangean displacement from equilibrium.

In dealing with free oscillations it is convenient to assume that all the disturbance

variables have time dependence ¢'*®. After operating with the time derivative on the
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disturbance variables in equations (1.8)-(1.11) and cancelling the common factors we get

p,=-V{pgu) .13

2 . l p[ 1 14

~0'u+2i0 Qb xu=-—Vp +WW,+—g, (1.14)
Po Po

V¥,=-4xGp, 1.15)

py=-uVp,+a(p,+u-Vpy 1.16)

We use (1.13) to write equations (1.14)-(1.16) as

(©u-2i0Q épa)=—LVp, -V, + Ly p u) (L.17)
Po Po
VYV, =-4nGV{p ). (1.18)
P 2
—==(a’Vu+ugy) (1.19)
Po

The five differential equations above [three components of the vector equation
(1.17), equations (1.18) and (1.19)] are linear in five variables: three components of u,
P, and V. These are the equations governing the dynamics of the liquid core.

To these equations we add the boundary conditions, which require continuity of
i, V,, #(VV,-41Gp,u) and A.T across core boundaries. Here f is the unit vector
normal to the boundary surface and € is the stress tensor. In the outer core the stress

tensor can be written as




t= ~(p,+uVpyl

and in the solid mantle it takes the form

T=(AVU) T +2p [Vu+(Vie)")
where y and A are the Lamé parameters and 1 is the unit dyadic.
The traditional approach to solving these equations is to represent the variation
fields in spherical polar coordinate by spherical harmonics

u!i i S, +T

VopeY, Y 40, val Y7

Sy =uy F+rvy V] YT

T, =-t] FxVY)

Y™ =P l(cosB)e™ (1.25)

m

m m m m 4 m ; . "4
where u " Vo s 4 ¢, and ¢, are functions of r only and P," is the associated

Legendre function of degree n and azimuthal order m.
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For the acoustic modes (short period free oscillations) the effects of rotation and
ellipticity are small and equations with different degree n are independent when these
effects are neglected (Alterman et al. 1959). Therefore, the traditional approach is an
effective tool in solving the goveming equations for the acoustic modes.

However, for the long period free oscillations, where neglecting rotation and, in
some cases, ellipticity is no longer valid, equations with different order m are decoupled
but those of different degree are not. Instead to each m there correspond solutions in the

form of two coupling chains
s|:| "T;:;.x +S|:|.z +T|:|.3+--- (1.26)

L » L] L_J
Tim| *Simier *Tinjcz +Sjmpuz+ee. {1.27)
(Smith 1974). Numerical estimates of the eigenperiods and eigenfunctions then
necessarily rest on heavy truncations of these coupling chains.

Shen & Mansinha (1976) used a three term truncation, e.g.

T} S} +T} (1.28)
to compute the periods of the Earth’s nearly diumal free wobble and some of the liquid
core undertones of a rotating ellipsoidal eath. Smith (1977) seriously questions the
validity of the numerical results for undenone periods based on such heavy truncations,
and concludes that the latter are inadequate for the free wobble of the inner core and

other internal core modes. He was convinced, however, that (1.28) was sufficient to yield
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reliable periods for the Chandler and nearly diurnal free wobble. This belief seems not
yet to have been seriously tested by using less severe truncation than (1.28).

The problems of truncation presented by the traditional approach motivated a
search for alternative solutions to the govemning equations [Smylie & Rochester (1981),
Wu & Rochester (1990)]. The three-potential description of core dynamics is the result
of one such attempt. We will give the derivation of the THPD in this thesis (chapter 3).
To test the reliability of our description, we use the well-known analytical solutions to
compute the periods of the Earth’s Chandler wobble, nearly diurnal free wobble and some
of the other inertial modes using a simplified Earth model consisting of a rigid mantle and
a homogeneous incompressible liquid core. These results will then be compared to the

ones computed using the THPD.




CHAPTER 2: THE EARTH MODEL

We adopt PREM [the Preliminary Reference Earth Model (Dziewonski &
Anderson 1981)], as the base for our Earth model. The mantle is assumed to be rigid
and its properties are taken directly from PREM. The presence of the solid inner core is
ignored for simplicity. The liquid core is assumed to be ncutrally stratified and therefore
we must make sure that f=0 everywhere in its interior. Also, since we ignore the
presence of the inner core in computational work, we will make sure that the density
profile p and the compressional wave speed profiles a in the liquid core are extended to
the centre of the Earth as smooth functions of the radius. The method to compute the

ellipticity of the equipotential surfaces will also be described in this chapter.

2.1 Modification of « in the Liquid Core

In the liquid core of PREM a is expressed as a third order polynomial

a=¢, +C, X+Cy X2+c, x° (2.1)
where ¢,=11.0487, ¢,=-4.0362, ¢3=4.8023, c¢,=-13.5732, x=r/R and R is the mean radius
of the surface of the Earth. Since the first derivative of this profile with respect to r does

not vanish at r=0, this profile can not be used when the inner core is ignored.

In the inner core of the PREM a is a smooth function of the radius and has the form
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a, =a,+a, x* (2.2
with a,=11.2622 and a,=-6.3640. Since p-waves travel faster in solid media than in fluids,
we will have a maximum error of about 17% (at the CMB) if we choose the inner core
profile for a as an approximation to that in the liquid core. Compromising to reduce this
discrepancy, we modity o so that in our model its first derivative vanishes at r=0 and
its numerical values are close to those of PREM in the range ICB-CMB.

The function

a= 10.6752-8.7490 x* (2.3)

satisfies the requirement of vanishing first derivative at x=0, gives the PREM values at
the ICB and CMB, and involves a maximum error of about 0.7% (at r=2900 km). Table
1 shows the a distribution in the liquid core using: (a) equation (2.3) and (b) expression

from PREM.
2.2 Modification of the Density Profile in the Liquid Core
As mentioned in chapter 1, the density gradient in the liquid core has the form

Voo= (1-p)2e (24)
a

For a spherically stratified Earth (2.4) becomes
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-1-H25 Pofo 2.5

which can be written as

———24(1-p)=0 (2.6)
Poso dr +(1-P)

As suggested by PREM, we choose a density profile which has the form

s> da'! @7

i

where x is defined as in previous section, N is an integer and d; are constant. Substituting

(2.7) into (2.5) [and setting d,=0 to satisfy (2.5) at x=0] we get

EU 1= Rd,r’" «(1-B)=0 (2.8)
i3 PoBo

where
dpo dedt =R E(] l)d x"z (2'9)

dar didr 5

To solve (2.8) for a best fitting density function, py, we use a Galerkin method

with weight functions X! (i=1,..N-2):
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- [
N R 2
E (l-l)dl fR_axb/"dx +(1 _p) fxi-ldt=0 (2.10)
=3 o PoBo 0

for each i, i=1,..,N-2, b is the mean radius of CMB. We write (2.10) as

N
EAv d= F, (211
j*3

where

b
r]
A‘,-!(i-l)f R_"zxw-zdx (2.12)
o PoSo
1-B. b
F=- ‘B(E)‘ (2.13)

In (2.13) B is set to a desired value, 8, and PREM density profile is used as a
starting value to find py and g, in (2.12). The starting values for the coefficients of the
density profile, therefore, are: d,=12.5815, d,=0, d4=-3.6426, d,=-5.5281, all other d;=0,
In PREM N=4, but our computational experience has shown that a higher value of N
results in a much faster convergence of fi to By, and here we set N=12.

The gravitational acceleration, g, in the liquid core is computed as

8(r)=————— (2.14)

GM(r)
r?

where M(r) is the total mass of the body enclosed by the shell of radius r and is given




M(r)= 4= f por2 dr
0

Using (2.7), (2.15) becomes

3 * 3 4d
M()=4xR’Y d, [x' ! &' =4xR® Y —L x*?
=1 9 i 42

Substituting (2.16) into (2.14) we get

N d xl
= 4xG R !
8(r)= 4x g )

15

(2.15)

(2.16)

2.17)

IMSL subroutine dslsarg is then called to solve (2.12) for the coefficients ds,....dy

To solve for d; we use the mass conservaiion of the liquid core as a constraint and

proceed as follows:

[ogtv=2n<pb’
ic 3

(2.18)

where <p> is the average density of the outer core. Using (2.8) we can write (2.18) as

b

N R
41:R’2 d‘fx"'dx=$“—;—2—>-b’
0

(2.19)
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Ry 4, b
d=<p> 3(Bp v % (bya (2.20)
1= <P (b)§i+z(k)

Once d; are known, we use them to solve for f in

p=1.-8- %P0 221)

Po8o dr

If |B-Bgyl>u, where ¥ is the desired accuracy, we use the new d; as the starting values.
This process is repeated until |B-B,|<i. In this problem we set $=0 and 1=10. The
coefficients of the density profile in the modified liquid core are given in table 2. Tables
3 and 4 show the density and f distributions in the outer core before and afier

modification respectively.
2.3 Ellipticity

Since the departure of the shape of the Earth from sphericity is small, we use a
first order theory to include the effect of ellipticity in the governing equations. We follow
Chandrasekhar and Roberts (1963) in assigning the equipotential surfaces of mean radius

ro (over which the equilibrium properties are constant) the polar equation

re ro(l—-g-e(ro) P,(cos8)) (2.22)

For a hydrostatically prestressed Earth Clairaut’s equation
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2
£+_6_[ Po _1]e+_6_ Po_de_ (2.23)
dr* r? <p,> r <py> dr

(Jeftreys 1970) describes the ellipticity of the equipotential surfaces. In writing (2.23) we

use the fact that e(rp)=¢(r) to first order.

We use¢ a Runge-Kutta integration method to solve (2.23) for e. Since equation
(2.23) is singular at r=0, it cannot be used directly to start the integration from the
geocentre, To get around this problem we proceed as follows. Using Taylor expansion we

can write £ and p near the geocentre as

2
e=e(0)+ (L) r2... (2.24)
2 drio
pody+dyr+d,r’+ .. (2.25)

The average density <p> is given as

<p>=(én [px?ds] | (Znr)=2 [ld edx?e Jidx = dyeddrts. (220
0 3 % 5

Substituting (2.24)-(2.26) into (2.23) we get

de, 124 (2.27)
L0 ~

We use (2.27) and an arbitrary value for €(0) to start the integ; ation at the geocentre, and

then scale €(0) so that £(R) is the observed hydrostatic value of Earth’s surface ellipticity.

Table 5 shows the distribution of the ellipticity in the interior of the Earth.




a: Modified Model
b: PREM Model

(a)

Table 1. Distribution of a in the Liquid Core

radius
km

a

km/s

0.00000D+00
0.81433D+02
0.16287D+03
0.24430D+03
0.40717D+03
0.48860D+03
0.57003D+03
0.65147D+03
0.73290D+03
0.81433D+03
0.89577D+03
0.97720D+03
0.10586D+04
0.1140iD+04
0.12215D+04
0.13404D+04
0.14592D+04
0.15781D+04
0.16970D+04
0.19347D+04
0.20536D+04
0.21724D+04
0.22913D+04
0.24102D+04
0.25291D+04
0.26479D+04
0.27668D+04
0.28857D+04
0.30045D+04
0.31234D+04
0.32423D+04
0.33611D+04
0.34800D+04

0.106776D+02
0.106762D+02
0.106719D+02
0.106647D+02
0.106418D+02
0.106261D+02
0.106075D+02
0.105860D+02
0.105617D+02
0.105345D+02
0.105045D+02
0.104716D+02
0.104358D+02
0.103972D+02
0.103557D+02
0.102900D+02
0.102182D+02
0.101403D+02
(.100563D+02
0.987003D+01
0£75774D+01
0.965936D+01
0.954489D+01
0.942431D+01
0.929764D+01
0.916487D+01
0.902601D+01
0.888105D+01
0.872999D+01
0.857283D+01
0.840958D+01
0.824023D+01
0.806479D+01

0.103557D+02
0.102857D+02
0.102131D+02
0.101373D+02
0.100578D+02
0.988576D+01
0.979209D+01
0.969263D+01
0.958684D+01
0.947420D+01
0.935417D+01
0.922624D+01
0.908987D+01
(.894453D+01
0.878969D+01
0.862483D+01
J.844941D+01
0.826290D+01
0.806479D+01




Table 2. Coefficients of the Density Profile
in the Modified Liquid Core

kg/m?

d,= 12.4780 x 10°
d-00

3_-7 7460 x 103
d,= 1.1811 x 10°!
d5-~2 5083 x 10°
dg= 2.7304 x 10
dy=-1.0422 x 10°
d = 7.6678 x 10°!
d9_~2 3423 x 10
dyo= 3.4341 x 1()3
d;,=-3.3502 x 10°
d o= 13934 x 0}




in the Liquid Core of PREM

Table 3. Distribution of Density and Stability Parameter

radius
km

P
kg/m>

0.12215D+04
0.12968D+04
0.13721D+04
0.14474D+(4
0.15226D+04
0.15979D+04
0.16732D+04
0.17485D+04
0.18238D+04
0.18991D+04
0.19743D+04
0.20496D+04
0.21249D+04
0.22002D+04
0.22755D+04
0.23508D+04
0.24260D+04
0.25013D+04
0.25766D+04
0.26519D+04
0.27272D+04
0.28025D+04
0.28777D+04
0.29530D+04
0.30283D+04
0.31036D+04
0.31789D+04
0.32542D+04
0.33294D+04
0.34047D+04
0.34800D+04

0.121663D+05
0.121267D+05
0.120852D+05
0.120416D+05
0.119959D+05
0.119482D+05
0.118982D+05
0.118460D+05
0.117916D+05
0.117347D+05
0.116755D+05
0.116139D+05
0.115497D+05
0.114829D+05
0.114136D+05
0.113416D+05
0.112668D+05
0.111893D+05
0.111089D+05
0.110257D+05
0.109395D+05
0.108503D+05
0.107580D+05
0.106626D+05
0.105641D+05
0.104624D+05
0.103573D+05
0.102490D+05
0.101373D+0S
0.100221D+05
0.990344D+04

-0.278235D-01
-0.209509D-01
-0.150552D-01
-0.101290D-01
-0.612425D-02
-0.297092D-02
-0.588442D-03
0.110760D-02
0.220173D-02
0.277648D-02
0.291137D-02
0.268248D-02
0.216239D-02
0.142035D-02
0.522422D-03
-0.468165D-03
-0.149081D-02
-0.248731D-02
-0.340165D-02
-0.417991D-02
-0.477018D-02
-0.512257D-02
-0.518931D-02
£.492491D-02
-0.428642D-02
-0.323377D-02
-0.173026D-02
0.256870D-03
0.275574D-02
0.578897D-02
0.937268D-02




Table 4. Distribution of Density and Stability Parameter
in the Liquid Core of the Modified Earth model

radius
km

P 3
kg/m

0.00000D+00
0.12000D+03
0.24000D+03
0.36000D+03
0.48000D+03
0.60000D+03
0.72000D+03
0.84000D+03
0.96000D+03
0.10800D+04
0.12000D+04
0.13200D+04
0.14400D+04
0.15600D+04
0.16800D+04
0.18000D+04
0.19200D+04
0.20400D+04
0.21600D+04
0.22800D+04
0.24000D+04
0.25200D+04
0.26400D+04
0.27600D+04
0.28800D+04
0.30000D+04
0.31200D+04
0.32400D+04
0.33600D+04
0.34800D+04

0.124775D+05
0.124748D+05
0.124665D+05
0.124528D+05
0.124335D+05
0.124086D+05
0.123782D+05
0.123421D+05
0.123004D+05
0.122529D+0S
0.121995D+05
0.121403D+05
0.120752D+05
0.120039D+05
0.119265D+05
0.118478D+05
0.117527D+0S
0.116560D+05
0.115527D+05
0.114425D+05
0.113253D+05
0.112008D+05
0.110690D+05
0.109295D+05
0.107822D+05
0.106267D+0S
0.104629D+05
0.102904D+05
0.101089D+05
0.991810D+04

-0.116976D-05
-0.908067D-06
-0.835353D-06
-0.818009D-06
-0.800050D-06
-0.765664D-06
+0.716400D-06
-0.658616D-06
-0.597716D-06
-0.536469D-06
-0.475462D-06
-0.414311D-06
-0.352816D-06
-0.291631D-06
-0.232358D-06
-0.177163D-06
-0.128157D-06
-0.867970D-07
-0.535222D-07
-0.277709D-07
-0.835182D-08

0.596607D-08

0.159118D-07

0.215309D-07

0.226098D-07

0.196996D-07

0.152089D-07

0.131259D-07

0.144800D-07

0.344820D-08




Table §. Distribution of Ellipticity in the

Modified Earth Model

km

ellipticity

0.00000D+00
0.18316D+03
0.36632D+03
0.54947D+03
0.73263D+03
0.91579D+03
0.10989D+04
0.12821D+04
0.14653D+04
0.16484D+04
0.18316D+04
0.20147D+04
0.21979D+04
0.23811D+04
0.25642D+04
0.27474D+04
0.29305D +04
0.31137D+04
0.32968D+04
0.34800D+04
0.34800D+04
0.36865D+04
0.38930D+04
0.40995D+04
0.45125D+04
0.47190D+04
0.49255D+04
0.51320D+04
0.53385D+04
0.57515D+04
0.59580D+04
0.61645D+04
0.63710D+04

0.2461D-02
0.2461D-02
0.2462D-02
0.2463D-02
0.2464D-02
0.2466D-02
0.2469D-02
0.2472D-02
0.2475D-02
0.2479D-02
0.2483D-02
0.2488D-02
0.2494D-02
0.2500D-02
0.2507D-02
0.2514D-02
0.2522D-02
0.2531D-02
0.2541D-02
0.2551D-02
0.2551D-02
0.2574D-02
0.2614D-02
0.2665D-02
0.2783D-02
0.2846D-02
0.2909D-02
0.2972D-02
0.3034D-02
0.3153D-02
0.3212D-02
0.3273D-02
0.3335D-02




CHAPTER 3: THE THREE POTENTIAL DESCRIPTION OF
LIQUID CORE DYNAMICS

In section 3.1 we give the derivation of the THPD following unpublishked notes
by Rochester, and discuss its advantages. In section 3.2 we include the effect of

ellipticity in the equations.
3.1 The Three Potential Description

First we define two scalar variables

{=alVu

llﬂ—Vl
Po

Using these variables and equation (1.6) we can rewrite equations (1.17)-(1.19) as

0lu-2ioQd,xu="y +—ﬁ—f—g. (3.3)

a2 SR (1 .
4nGpov¢V'-Bc Q-p)(x+V)

ugy=-(C+x+V)

We cross multiply &, with equation (3.3) to get




mzl,xu-2iw0[l,i,'u-u]= XV *-p—;"-i, A Q.6)
a

To find &;-u we take the dot product of &, with equation (3.3) to get

tust1,95 - Ba gy 3.7
W a

Using (3.6) and (3.7), the momentum equation can be written as

‘ ¥(1-ohu=T, vy -LE ¢ (3.8)
) a?
with 0=2Q/w and
Tl -0%é,é,+ioé,x1 3.9
C=-g,+0%, ggé,+iod,xg, (3.10)

It should be emphasized that our o is the inverse of the definition used by Smylic and
Rochester (1981), Wu and Rochester (1990). Taking divergence of (3.8) and using (3.2)

we get

w¥(1 —o’)i;V(T‘,-Vx) -V("L;C) G.11)
a a

Taking the dot product of (3.8) with g, we get

0¥(1-0)ug,=-CVy +%[g§-oz(:,-go)2]c (3.12)

Substituting for u.g, from (3.5) into (3.12) we get




W (1-oDx+ ¥+ BB ¢ cvy
[+ ]

L w? a¥(1-0%)

B=
P

Substituting (3.1) and (3.2) into Poisson’s equation we get

+l. 'go - oz(‘ 3 fa)z

«? “BC-(1 By s
4nGpoV°V. BL-(1-P)(x+Vy)

Rewrite equations (3.13), (3.11) and (3.15) as

CVy=0i(1-a0+ V)« B2¢
a

v, V) =WLE) w21 -09)-L
1 4 al az

4nGp,

a?

V= [BS- (1-P)x+V)] (3.18)

The three scalar differential equations above, two of which are of second order
and one of first, constitute the THPD. They describe without approximation the dynamics
of the inviscid, non-conducting liquid core through three scalar potentials ¥, ¢ and V-
We note again that these equations are linearized in the field variables and therefore the
Earth’s configuration at all time is assumed to be close to its equilibrium configuration.

If the liquid core is assumed to be incompressible and homogeneous, t/a®=0 and




equation (3.17) reduces to the Poincaré equation

VAT, Vx) =2 -0(6; W)y =0
and (3.18) reduces to the Poisson equation.
If w. solve for § in (3.16)

2
=-l‘;7[c-vx -0¥(1-0})(x +V))]

and substitute into (3.17) and (3.18) we get

VT, k- SOVt - 031 -0y + )

_wi(l-¢®)

55 [CVx-0¥(1-0%) (3 +V,)]=0

Y, ) CVx-w¥(1-0%)(x +V)) _(-pYx+V) - (3.22)
4rGp, B al

Equations (3.21) and (3.22) constitute the two potential description (Wu and Rochester
1990). The subseismic approximation (SSA) is equivalent to dropping the term in x+V,.
Then (3.21) reduces to the subseismic wave equation (SSWE) [Smylie & Rochester 1981,
Rochester 1989).

The advantages of THPD are that:

(a) all dependent field variables are scalar, so there is no need to introduce the

spheroidal/toroidal representation of vector fields;
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(b) in a non-neutrally stratified liquid core it is possible that B=0 for some

frequency ranges i.e. when

—p;[g.'g.-az(i‘, 2o’ 1=0’(1-0%) G.23)
a

Since B appears in denominators in both equations of TPD (Wu and Rochester 1990), this
description is not approgriate at and near these frequency ranges and the equations must
be replaced by a more complicated form of TPD. In THPD this disadvantage never
occurs;

(c) in THPD B appears only in the combination BB which remains finite as p—0;

(d) the description involves no derivatives higher than second. In chapter 5 we
show that when a Galerkin method is used to solve the goveming equations, the
divergence theorem can be used to replace the volume integrals involving second
derivatives by surface integrals involving first derivatives in a form for which the
boundary conditions are ’natural’;

(¢) THPD can be solved using a variational principle as shown by Rochester.

3.2 Adjustments for Ellipticity

There are different methods of including the effect of ellipticity in the equations
of core dynamics. Wu (1993) adopts a coordinate system in which all variables are

functions of rg, the mean radius of the equipotential on which the field point is positioned.




We find it more appropriate to adopt a procedure similar to, but slightly improving on,
that suggested by Smith (1974). This procedure is as follows.

In the interior of the outer core we let all variables be functions of 1,0,¢. The
governing equations are then integrated over the volume of radius r given by (2.22}. In
the interior of the outer core

ki

pcr)spo(r.g=po(r+§rerz)=po(r)+—§-eP, s

2 2 ,d
a()=a(r)=a(r+=reP)=a() +-§eP2;¢ (3.25)

using Taylor expansion and ignoring terms higher than first order in cllipticity. The

expression for the gravitational acceleration, g, is given as

2 2d 2
zo(r)=-ﬂg,(r)-;nzr+§;(reeo(r)) P -egeg.,(r)P', (3.26)

(see derivation in appendix 1) where gy(r) in right hand side of (3.26) is the gravitational
acceleration at point r in a spherical non-rotating body of radius r.

Substituting (3.24)-(3.26) into (3.16)-(3.18) we get
CVyx=0'(1-0)(x+V)) +BB,{

. 2 2 4 reP.
VAT, V)= V(BC",{)-w*(1-0%)1
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2 da ldp

4G
whe uazpon‘z o Byupc-a-pav 629

3

Equations (3.27)-(3.29) are the three scalar differential equations governing the dynamics

of the liquid core in the three potential description. Here B, and C'l are defined as

-2 0NIP-0%cosd dysickx]  B30)

1-09 1
“’—-B—"—)+-a—z((g 2oya- uzcoszﬂ)@°+———(rego)}’z)-—u ego(p,); 7 o

A4 2 4 da
Er d: o(go“‘nz’)(l -a?cos? 9)]'3(1-ozcos20)8002r [l—-:-’:rePz-Er—])

using Taylor expansion and ignoring terms higher than first order in ellipticity. Spherical

harmonics are then used to represent the field variables in (2.27)-(2.29) as

&)= Y o Yy (3.32)

In this thesis we consider constant values of B. In more realistic Earth models we

could substitute

=B(+2rep. 38 (3.33)
B(N=p(® 3reP,dr

in the equations and keep terms to first order in ellipticity, although even this may be an

unnecessary refinement since f is so poorly known.




CHAPTER 4: BOUNDARY CONDITIONS ON AN
ELLIPSOIDALLY-STRATIFIED EARTH

The boundary conditions require continuity in a number of functions (r,0,¢)
[normal displacement, gravitational potential, gravitational flux, normal stress) across the
surfaces (2.22), i.e. continuity in

2 &
Ar0.0) 1 =fr,09)-=ry e(r) Py( =) .1
reRHS (2.22) 3 or i,
using Taylor expansion to first order in ellipticity. Therefore at the core mantle boundary

(CMB) we require continuity in

n-[u(ro)-—re P —-] 4.2
2 av,

Vl(ro)— Ere P —5— (4'3)

B {VV (ry)-4nGp, u(ry- re Pz( VV —4qu°—)] (4.4)

A iy --§-re P,%] (a5)

where for brevity we write
AT 4 4.6)
or rery ar

We use conservation of the Earth’s total angular momentum in place of (4.5). To

satisfy (4.2)-(4.4) we need information from the dynamics of the liquid core as well as
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those of the mantle. We have already dealt with the dynamics of the outer core in
chapters 1 and 3. The dynamics of the mantle are dealt with in this chapter. In section
4.1 the expressions for u and V, in the mantle are derived; in section 4.2 we derive the
expression for the conservation of the Earth’s total angular momentum and in section 4.3
we expand the boundary conditions (4.2)-(4.4). For lack of tirne we implement these
boundary conditions only for the Earth model described in chapter 2. However, these

boundary conditions can easily be adjusted to include the inner core boundary (ICB) as

well,

4.1 Dynamics of a Rigid Wobbling Mantle

In section 1.1 we chose a reference frame which rotates steadily with angular
velocity Qé,. We let a set of principal axes Ei fixed in the (supposedly rigid) mantle

rotate with angular velocity

w, = Qé;+ m) 4.7)

where m is purely oscillatory. Therefore,
G 4.8)

In this thesis we are concerned with pure wobble, with no change in the length of the day,

therefore we set !::3-wm=§2, i.e. m3=0. Therefore




2

m=y (&, -id,)e'! 4.9
where y is real and positive, provided we adopt the convention that w>0 corresponds to
a prograde wobble and w<0 to a retrograde one. A particle dm at r in the wobbling

mantle will have a velocity relative to the reference frame given by

v= (0 ~wIxr= Q mxr (4.10)

Now

4.11)

[{]
E.

@@

Therefore we can write the displacement u in the disturbed mantle as

= Samxr (4.12)
iw
In terms of éi' Ei can be written as
E=Y a4, (4.13)
J

Since E; remain in close alignment with &, we can write

ay=bv+ﬁy (4.14)

where ﬁij are of order y. Substituting (4.14) and (4.13) into (4.8) we get
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P,

dt =n¥ ev"nk (4-15)

to first order in small quantities. €ijk in (4.15) is the standard permutation symbol. From

(4.10) and (4.15) we conclude that

Bi1= B= Bx=0,

B,=0 (since m,=0),

Q o
(B;p ﬂ32)= --;Y(l,—i) e

At a point r in the disturbed mantle the Eulerian perturbation in the gravitational

potential V, is

Vi= Vi(m)+V (lc) 4.17)
where V,(m) and V(Ic) are the contributions to V, from rearrangement of mass of the
mantle and liquid core respectively. Outside the liquid core V,(Ic) must be a solution of

Laplace’s equation and must vanish as r tends to infinity, so we write

N
Vo)== Y 0,,(2)"'P,;"(cos6)e“"‘° (4.18)

ns] r

were b is the mean radius of the CMB and is used as a scale factor so that o, have the
dimensions of potential. The factor ¢' is dropped from (4.18) for convenience.
To evaluate V,(m) we proceed as follows. In the equilibrium configuration the

gravitational potential due to the mantle, at a point r=(r,8,4) in the mantle, is




3
r 12 dl (rlose(r/o))
r r
V=4nG ([pif-o-2 0 p (cost)] ar,
r 15 r}
[ 4.19)
x 2 de(r')
+f Pl Dlry-5 — r?P,(cos)] dr')
r ]

using D.10 but replacing the lower limit 0 in the first integral by b, the mean radius of
the CMB. Here r is the mean radius of the spheroid of constant density through r. In
the wobbling configuration the mass element at r is displaced to r+u, where u is given

by (4.12). The gravitational potential there, due to the mantle, is

r+u)=Vy(r) (4.20)

since the mantle is taken as rigid. The Eulerian perturbation in gravitational potential at

ris
Vi(m)=W(r)-V(r) a.21)
=Vy(r-u)-Vy(n) (4.22)
using (4.20)
=-u-VV, 4.23)

to first order in u. Using (4.19) and (4.12) we reduce (4.21) to

av,
Vx("‘)='-.'n— m —2 4.24)
W
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R
167:GQ de(E) -1 . 4.
= [fpo(E)EE-(E’E(E))dE+r’[po(6)-§-E——dE]Pz (cosBle®  (4.25)

dropping the factor ¢ and using (4.19), (4.9) and the result

sin® cosf=2 P,
4.1 Angular Momentum Conservation of the Earth

The equation for the conservation of Eaith’s total angular momentum H, (for our

Earth model) is

d”x___ d”-¢de= L 4.27)
ar dad adt

where H_ = and H, are respectively the angular momentum of the mantle and liquid core
and L is the external torque exerted on the Earth; L=0 for free wobble.

The angular momentum of a wobbling rigid mantle has the form

H_= f Ex8 dm fEx((o xE)dm =i -w_ (4.28)

where & is the position vector of dm in the wobbling mantle and im is the mantle’s inertia
tensor,

i» [ (&€ 1-¢6)xdm= A,1+(C, -4 )E L,

mantie
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since E; are principal axes for the wobbling mantle. Substituting for E, from (4.13) we

get .
A, 1+(C -A)[84,+F B, (6,6,+6,6)) (4.30)
&

where 1 is the unit dyadic. Substituting (4.30) and (4.16) into (4.28) we find

H_=Q(C,é,+A_[1-Ze 1m) (4.31)
@

where A and C | are the moments of inertia of the mantle with respect to an equatorial

and a polar axis respectively and e, is defined as

e C" = (4.32)

dH Q . dm Q dm A
—-dt——"=A_ 0(-Ze,) 5 A~ n(l-ze_)(); 7"6“ Qé,xm)

4.33)
Q

=A,, Q(l-—e ) (w+Q)¥,xm
W

The anguiar momentum of the liquid core is
H, =C, 0é,+Q [[2ur é,~(u r+r wyéJdm+ [rxv dm
3 ke
(Wu 1993). Substituting for u from (4.12) into above equation we get
H =C,_Qé-+Q f[2u-r €y-(u r+r w)éJdm+io [rxu dm
& k

Therefore




dH, _ dH
—E=Y —E..Q 6,xH,
& T d

Substituting (4.35) into (4.36) we get

—d"“—iunj[z ur é,-(ur+ru) €] dm-o? dm
Z = - 3] W frxu
k k

-0 [&x((ur eru)d,) dm+ioQ [é,x(rxu) dm
ic [

In a slightly elliptical liquid core the displacement u takes the form

w¥(1-odu= L, Vx-pCi¢
using (3.8).

We substitute (4.33), (4.37) into (4.27) and use (4.38) and the following two

identities

P2 Pl-= A: Pn.- +B: P-+ C:l P::2

dp
P) de =2(n+A; Pr,+3B)" Pr-2nC” P,

a_3 (n+m)(n+m-1) B"= n(n+1)-3m?
"2 @r+1)@n-1)" " @2n+3)@2n-1)’

C"=2 (n+2-mY(n+1-m)
"2 (2n+3)(2n+1)

and define




2 2
Sg= 80'502"—380.

3
2540y 25 1dp _2da
Se 3[r d’(ego) €8, +re(g, - Q r)( odr dr)]

to obtain the final form of (4.27):

o no*2+0) ' |
24,87 (1-— e)(@+Q)- [f[ Pol—>

15(1 +o )
2 dPo -1 X;l -1 -1 dlz
3 “u, ( 5 . )+(5B;" 2) @

-l 1
3-“1(2 1)—)]r dr-Zb‘epo(b X A;‘(T 5—-)

- Xz- dlz 3,0 Bpo
+(5B;'-n)22 gt 22 e 0 1._)
OB =B — 2aq? i)

R L R NP P -1
+Se (A, {, +B," {; )‘(E"l)(a"l)ego(z ) ridr

Be,

3b‘ (b)( (g.,-—m A, B! c;‘)21=o
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(4.42)

(4.43)

Here we have made use of the orthogonality relations among associated Legendre

functions. Expressions for A, and e are given in appendix 1. Expression (4.43)

indicates that only quantities of azimuthal order number m=-1 contribute to angular

momentum in our representation,




4.3 Expansion of the Boundary Conditions

We now tum to the boundary conditions (4.2)-(4.4). We treat fi as pointing
opposite 10 g, on the core-mantle boundary. The first boundary condition requires

iu(r)-2rep. 3t (i) -2rep, S8 4.44
[i{u(ry Brel’2 a’)(b'.]e,o) [R(u(ry 3reP2 ar)(,,.,],,, 4.44)

where b™ and b* denote the fluid and solid side of the CMB respectively. Substituting

for u in the mantle from (4.12) and using

R=F-4e()P;' 8

(Smith 1974) and keeping terms up to first order in ellipticity we get

[ Aulrg-2rep, 2%y ] = 38 epp;t o4 (4.46)
3 a" Y (A
Since we are making use of the ‘natural’ character of the boundary conditions in the next

chapter we need not expand (4.46) any farther.

At the CMB, equation (4.3) implies

1% av.
[Vl(ro)-§re(r)l’2—;' ] =[V,(r°)-%re(r)l’2—-—' ] (4.47)

@04 o 04

Using (4.18), (4.25), (3.29) and keeping terms up to first order in ellipticity, (4.47)

reduces to




6GQ  8nb?r
[

de
Vs Pogr 0o,

+%e(b)[(n+3)A,;,’,a_,,+(n+1)3;‘o,+(u-1)c;,‘,a,_,1 (4.48)

=0~ Zpeyia,, ( °‘1’> B“( a0, ) +C;} (‘”’;l )1
3 "t dr 2o )

using the linear independence of the associated Legendre functions. In (4.48) 0,,=1if
n=2 and O otherwise. Also at the CMB the boundary condition (4.4) requires

v, Ze(r) 19V, 010

[——-re( P

230 4 0m

- 16nGQ
w

YE(B)DIpy(d*) -py(b )P, e *

where we have made use of the continuity of fi-u(r) across CMB. Using (4.18), (4.25),

(4.39) and (4.40), (4.49) can be written

15"00”[2 f ode+5p,(b )e(b')]-y+———([ (Ml)——c’J",(n+l)(n+2)ll"1

4.50)

ar;' do" 4o} dr’
+3ep;‘ 2, ep, " nyp1 280 1p1 5 )
3 3 dr? 3r a8 ,

In the next chapter it will become clear why we have not removed P'ln from equation

(4.50).




CHAPTER 5: THE GALERKIN METHOD AND THE NUMERICAL
INTEGRATION OF THE GOVERNING EQUATIONS

In this chapter we use the Galerkin method to obtain approximate solutions of the
governing equations of core dynamics. In section 5.1 we give a summary of the Galerkin
method applicable to a system of simultaneous PDEs subject to boundary conditions. In
section 5.2 this method is applied to the governing equations and in section 5.3 we

describe a method which we use to integrate the Galerkin equations with respect to 0.

5.1 The Galerkin Method

Suppose we have a set of functions

X=Xy X oo Xp)

which satisfies, in a region V, the set of simultaneous PDEs

N
E LU %= 0 (5.2)
Jsl

for every i (i=1,...,N) where Lij are linear partial differential operators. Suppose also that
there are a number of associated boundary conditions which have to be satisfied or the
boundary S of V

M
Y B, x,=0 (5.3)

Sa]

for every i (i=1,...,N) where Bij are linear (possibly partial differential) operators.




Using a basis set f,, k=1,...,.L, we introduce trial functions

L
= ‘Z; Cuf, (=1, . N) (5.4)

which need not a priori satisfy the boundary conditions. The Galerkin method trics to

make szinj as nearly null as possible by requiring

N L
YY [fLcpfdv=0

J=1 ksl yp

for I=1,...L, where * denotes the complex conjugate. The resulting set of linear

homogeneous Galerkin equations have the form

H,= ff; L, f, av (5.7)
1 4

Since in general the trial functions do not a priori satisfy the boundary conditions, we
choose a set of basis functions 1, equal in number to those used in constructing the trial

functions X and extend (5.5) to require that

N L
Y YU LLC, £) dV+ [} BYC, 1) ds]= 0

Jel k=l

The Galerkin equations then take the form




L N
2 Y FuCu=0

ksl jul

F= Hy + [V] B f, ds (5.10)
s

By proper choice of weight functions, and by use of the divergence theorem, it
may be possible to remove the surface integral from the boundary conditions (i.e. by
choosing v, so that the surface integral arising from the boundary conditions is cancelled
by the surface integral produced by using the divergence theorem.) When this is possible,
the boundary conditions are called natral.

We can write (5.7) in matrix form by setting up one-to-one correspondence

m=N(/-1)+i, n=N(k-1)+j, so Cjk""”n’ Hlijk=Gmn' Then (5.7) becomes
E G,a,=0, m=1,_LN. (5.11)
n

G is then a (LN) x (LN) matrix which hereafter we refer to as the coefficient matrix.
5.2 Application of the Galerkin Method to THPD
Since only spherical harmonics of order -1 are needed to represent the field

variables associated with wobble/nutation, we represent the functions defined in chapter

3 as:
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N
wWoL=Y oL ehr! (5.12)

where N denotes the degree of truncation. We construct the trial functions as follows:

L
C;I!E Bin-1)+ J{r (5.13)
Is]
-1 L
Xn "Z; By von-1yen SO (5.19)
-1 L
on !§ au-aﬂwn-l)ol] fl(r) (5'15)

where g; are constant and f] are functions of r only. Before proceeding further we should
note how we integrate the equations over ellipsoidal volumes. Suppose we have an

integral over the liquid core volume,
I=[fir) g(®) dv (5.16)
ke
To first order in ellipticity we can write this as

si1-2eapip)

=2z [ [ Ar) g@)r* sindd® dr G1D
0

after integrating over ¢. To first order in eliipticity we can write (5.17) as




= b
I=2x [g(®)( [f) "dr~§b’e(b) Ab) P,(cosB)] sind do (5.18)
0 0

The volume integral in (5.18) is over a sphere of radius b and the surface integral corrects

this volume integral for an ellipsoidal volume of radius b{1-2/3 £(b) P(cos 8)].
5.2.1 Galerkin Formulation of the Entropy Equation

Rewrite equation (3.27) as

CVx-BB,(-w’(1-0})(x+V¥,)= 0 (5-19)

The Galerkin representation of (5.19) is

L
Y f k Pj.le“(auy.n-l).l (CV, P;le #)-0i(1-0%), Ple®]
ic

I=1

™M=

(5.20)

-[pB, aun_”“.»«mz(l —a’)am’n_l).,](ﬂ P;le -#))dv=0

for each pair of indices (k,j), k=1,...,L, j=1,...N. We have not added any of the boundary

conditions to equation (5.20). Substituting for C and B, from (3.10), (3.26) and

integrating over ¢ equation (5.20) becomes
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L N b= . ldpl

2x] fo P/ [ayy.,. .05, P)'4s, P, P +s, P; =

%Z.;{bfkl LN+n-1) 2 342 40
dP-l

-1
Tﬂ—> un-nlls Pa +ty Py P,

*t, (P P,")-0*(1-0%)a,,y,, .7 P.') r* sinbdo dr

+s, (P? P.lss, P, P}

. (5.21)
2 - - -
Ere(b)sz (fi P l[awv..-n.l[se Plss, P, P,

0

-1

+5,P;" -Gy on-tyills Pu'+t; Py P.'1)b?sin® d9]=0

for each (k,j). Inthe next section we describe a method which we use to integrate with

respect to 8 functions of the type (5.21). Different terms in (5.21) are defined as follows:

51=@o'%92’)[(1 ifl-_f] go(_"_ff_' _f) (5.22)
(5.23)

+_2. (_izgl+2_a

37" 34 7

2
sl 230+ 2eg1-20%, (5.24)
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__402 d€+ dgo GY, (5.25)
SR s ra
-—l ego -8y i igﬂ)lﬁ (5.26)
’6'(80"'02’)[(1 oz)_dﬁ__f] (5.27)
2
-‘7=-2—:—(so--§-02r)% (5.28)
2 .
S.=-%-(go——§-02r)f; (5.29)

2, =(w¥(1 a=)+°[(1--—)(g -—goozr)-—ego(go-znzr)azm (5:30)

B ; o2.2r€ d“(l-—»(go-—O’r)go

o? @ (5.31)
(go-—ﬂzr)(——(rego)(l -—)———ego)l 5

2

2
(= L2 g 0ne, s 2o, 2ot regy-2eggl S, 63D




2
te=[w?(l -oz)+-£2(l--°7)(go——:-02r)golfl
a -

2 4
‘1“;%02 8’0‘30"3‘02)f:

coszﬂ";_(z P,+1), (P)?=2[P,-2(P,+1)

5.2.2 Galerkin Formulation of the Momentum Equation

Equation (3.28 ) can be written as

VAT, Vi -BC - 03 (1-09-K <0
[+ 4

The Galerkin representation of (5.36) is

[ BT, W-pCiD -0 0D L av
lc a

+ [y [(A0)-(hu))ds=0
Sic N *

where we have added boundary condition (4.2) to the above formulation. + and - in
(5.37) denote the fluid and solid sides of the CMB. Applying the divergence theorem to

(5.37) and using (4.37) we get




W' (1-0) [f, P;* e®Giu) ds- [Vif, P;" e*){T,Vx-BC;{ldv
S ok (5.38)
-a¥(1-04)ff, P;'Sodve [} w)-(Fw)lds=0
[ a? 5, - :

Now, by choosing

Vi=-0'(1-0%, P e* (5.39)

we can make use of the natural propenty of the boundary condition (4.46) and cancel
surface integral produced from using the divergence theorem and the one arising from the

boundary condition and write (5.38) as

L N
Y X Bypnyya [V, B T, S, P ) dv
ke

I=] nel

-tﬁ%be(b)lmzu -3 [f;' PleH(P;'eMds ) (5.40)
5

2
ST f[V(fk P}-'l e“)-pC;+§;(1 -o?)f, P;l ¢“]f,P;le'“dv]=0
ke




Substituting for l"p and C, into (5.40) we get

LE["L(N.. |).J 4&?‘1[(1 zcos’e)df‘P 1 ;’

i=1 n«l

q-é-[—oz_ﬁ P'l
r

dp' _olsintg  dP,' dP;‘_ L
3dr

do r ® ®

ar;' . dp;' L ar' dr;’ PP’
+P; )+ )dv

F) ® T ® ® e

4

P, 2

LN n- ,)‘,f B[(g‘.,--—er«r——(rt-:go)l’z)[(l -0 cosze) P,"
o’P, dP'l

df, .
= et ]+—ego[ c::’(Pz)2 P, +(1-0%in’6)

cos™® f,P; ]-i’—ei'ip ((go——ﬂzr)

z -1
(- ocos’e)fﬁr"- P’fld:e

7 --B—re——P IfP,) dv}-4Q w(1-0dbea,, ., ff ' P;lds=0

+—ff, D+ w¥(1-0?) f‘P,"

Here we have labelled Y=a31 NoN+y- Using (5.34) and some other identity relations among

associated Legendre functions (given in appendix 2) we write equation (5.41) as




51

L N b=

219} Effff,l (8. von-1)- {w, P;I*wz P, P

=1 =1 gg

) i i
Wy Pz—l ‘jj‘)“aun-l).l(zn P;‘*zz P, P,'+z. (Pz)z Pnl)

~0H(1-0%,00.0.. ; P1') 7* sinéd® dr+2re(d)

® -1
x[P, ( f, P'la [wg P, P,'+w, P, P,  sw,P;’ P
2 k%) LN+a-1)+76 “2 “ n 7°2%n 2 a8

0

dp! (5.42)

wy(P,)? Plsw, P, Py dg 1-8ynen-1).il%s P:*Q P, P

-1 -1

- dP,. - - dpu .
o e = +2o(P P;'+2,,P, P;' = 1Db%in6 d9]

-8n W(1-0) Byy.,,., Qb e®)[f, P;'P;' bsind dB=0

S

after integrating over ¢. Different terms in (5.42) are

Y A o S S
wim A=) f) 7( =

Y o 2une)-1102-0 - % Jpin 1y 5.43)
Z [3n(n 1)-1)o odr - rn(n 1)

2440 L 90 2 h

=o¥-2 221 A2 v Zpnel) 4 (5.49)
w,=0% 33 3 r[ zdr 3nn 1) r])




- LB L1 2/,
3 3drr r3dr 3r
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%
dar
¢202df, Ji

— — e — -E +])~ 2_ + +
» r[ (3n(n 1)-1)o?-30 +n(n+1))

G Sy Y
-1ty

W.,‘—‘

w.=%(§oz-l)

3 2% S 04 2
A w a3 3 DD

Wg =

= [=

dri3 r3dr 3r

Wi=0

B -2ama-2y %, 0,400 d e
5= Gy 3O~ )=+ 21+ 22 (regy)]

2 2, 24 4L, o, 80*eda w?(1-0?)
T 3 W e W B

9a

(5.45)

(5.46)

(5.47)

(5.48)

(5.49)

(5.50)

(5.51)




ut (g2 200 S0 2 4 gy -2 %

a 3 3dr

Zf‘_ _m__. _23..:”_‘5_( 20 )9{5-40 Ji Zof,‘
3 r 3r r

—1;-51’5[@0--02 l-3 )5"—‘ 3"—% =y

JAreda w(l -0%) P
"3 ar e

(1-5’—)é )5y

Bt 2d . yh 8 S areda 20,01
Zs'az 3dr °)3r9 o, 3¢d(g° ) )f'

.z_éof;

0‘#-&20-{&0-{&
3°dr 3 r

2
e 20 ‘”f,f,

u=L @-amia-Z
[ 4

(5.59)
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B, 202 0i )i (5.59)
G~ &30

5.2.3 Galerkin Formulation of Poisson’s Equation

The Galerkin formulation of equation (3.29) and the corresponding boundary

condition (4.50) is

4 Po ,p-1py 2 ,1dpy 2 da
{f‘p, V“Vldv-4nG[ = 1P, [1+-§re P"TOTTTJF)}[N

(5.60)
-(1-B)(x+Vldv+ [f, P, [left hand side of (4.50))ds=0
Sic

Using the definition of the Laplacian operator and some of the identity relations (from

appendix 2) among associated Legendre functions and defining

2%1 . dz,ffl ) n(n+l)f..1 (5-6])
2 ]

tr)=
81(r) PR Y -

we rewrite (5.60) to first order in ellipticity as




2u):): [fff, P;' {ayyn . 810 Pyle ffg%_f’ [P

a=l Is1 go a

2 (_:%-%-‘1‘1)1’ L (R CHNI BG

~Bay, .1 ) r? dr sinb da--be(b)f( S P @y ry 810

® G po £,
—T"’X(l-B)(am.,.-l,.ﬁam...-n.:)

. 1., df
-Bay,. ,,J)PZP 1p2 sin0d8-a ., oo P‘[f, ’P,,‘

2 af & & A
Ul D arapoaci RS

-1
+——f,f z-lf’_; 2 sin@ 4O ]+am‘.f1’," [(-(n+1)f,

-%re(b)((mz)(mlm (r—— +2f)(n+1)] P,) P;!

~1
2eb) , 1 4P . . 167G b de
+ bsin® d8]+——2 1 [p L
3 F ) LA [,,p°dr

+590(17 ')e(b)]am,,. 1)1 5 k(b D f P ;-IP z.lb *sin*6d0=0
1]

The contribution of V,(oc) in the mantle, and the wobble of the mantle, introduce
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N+1 additional unknown coefficients to the Galerkin formulation of the governing
equations. We have labelled these coefficients a3 N+pe P=1,...N+1¢ ie. every o in the
boundary conditions corresponds to ay ., and y corresponds to A3 N+N+1+ TO solve for
these coefficients we need the two boundary conditions nct yet incorporated into the
Galerkin equations, namely (4.43) and (4.48). The coefficient matrix of our Galerkin

formulation then has (3LN+N+1) x (3LN+N+1) entrics.
53 Integration with Respect to 0

Suppose we have a functional of the form

T [

m m 1 dpn
I=E,[ [IF, () P]+F, (r) P, P?+F, () P} —
rno

2 ph 1 dpu.
+F, (rY(Py)* P, +F, (") P, P, 09

1P" sin® d9 dr

where E, are constant. We could use a standard double integration technigue to evaluate
but this method takes too much CPU time, so we look for an alternative technique.

In this thesis we choose to use the orthogonality relations among associated
Legendre functions to remove the 8 dependence from the equations and then integrate
with respect to r. In what follows we need the two identities (4.39) and (4.40), and in

addition




(Pz) 2 P: =A: A:-‘z Pn -4 +An'[Bu.-2 +B:] P:-‘z + [A nn C:-.z

B +CrAL) P +C B +B,] Pry+Cy Cy Py,

dp
P, Py —"=2n+DAS A% P, +AT2(n+1)B7, 438 P,

H{2(n+1)A,} C. ,+3(B))*~2nC. A)PT+Cr(3B;-2nB )P, (5.65)

-znc Cn +2 P

Using these identities (5.63) takes the form

u:jp smedejp(r)dr

4

The orthogonality relation can now be applied:

fp-xp-n sinB dg=—2_ @+ml, (5.67
2g+1 (g-m)! ¢

To apply the above technique to the Galerkin formulation of the governing
equations we use a procedure which employs a five-step do loop to integrate the
equations with respect to 8. The algorithm for this method is given in appendix 3. After

integrating the Galerkin equations with respect to 6 we let
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EAYE 5.68)
J{n=( R) (

and the IMSL subroutine dqdag is called to integrate the equations with respect to T.




CHAPTER 6 : DISCUSSION, NUMERICAL RESULTS AND
CONCLUSION

The aim of this thesis is 1o utilize the THPD by computing the periods of the
Earth’s Chandler wobble, nearly diurnal free wobble and some of the Earth’'s other inertial
modes. In chapter 3 we showed the derivation of the equations constituting THPD and,
in the same chapter, we included the effect of cllipticity in the equations.In chapter 4 we
expanded the boundary conditions which must be invoked on a wobbling Earth.In chapter
5 we applied the Galerkin method to approximate the solution of the equations.

In this chapter we first apply the Galerkin method to the Poincaré Earth model,
for which analytical solutions exist for the modes mentioned above. These results will

then be compared to the ones computed using the Earth model described in chapter 2.

6.1 The Poincaré Carth model

The Poincaré Earth model consists of a rigid stratified rmantle and an

incompressible homogeneous liquid core. The analytical solution (Wu 1993, Rochester

lecture notes) yields a period of about 270 days for the Earth’s Chandler wobble (CW)

and a nutation period of about 350 days for the Earth’s nearly diurnal free wobble
(NDFW).

The other inertial modes of the above Earth model have solutions of the form




dP,’(x)
=m

(1-x%) =

l'ffxz'% n
( 1o )¢ P (x)

(Aldridge and Lumb 1987) where

g 6.2
x=(a?-f) 2 (6.2)

and f=1/(1-e)>-1, € is the ellipticity of the CMB and has a value of 0.002551 (table 5).
We compute some of the Earth’s inertial modes using a: equation (6.1) and b: applying
the Galerkin method to Poincaré’s equation to make sure that the same resulls are

obtained. To compute periods of the Earth’s CW and NDFW in the Poincaré model we

use the well known analytical resuits

(63)

where eg and Ag are respectively the Earth’s dynamical ellipticity and moment of inertia

with respect to an equatorial axis. The frequency of the free core nutation (FCN) is then

given as

@ oon =1+ © vprw (6.4)
Q Q

As we showed in chapter 3, when the liquid core is assumed to be homogeneous

and incompressible, the momentum equation reduces to the Poincaré cquation
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Py -0%(é;0)% =0 (6.5)
Since x is the only dependent variable in (6.5) the entropy and Poisson equations are
redundant and are removed from the formulation. Also the boundary conditions involving
V, are redundant [V, does not appear explicitly in (6.5)] and hence removed. Therefore
we are left with one Galerkin equation (5.43) which includes the boundary condition
(4.46) and the boundary condition equivalent to the total angular momentum conservation
of the Earth, which we treat as an independent equation to soive for y (of course in these
equations B and L/a> are both 0). The coefficient matrix of this formulation therefore has
(LN+1)x(LN+1) entries. The roots of the determinant of the ccefficient matrix, regarded
as a function of frequency w, correspond to the frequencies of the Earth’s oscillations.
Table 6 shows the periods of the normal modes computed using the two methods
described above. Except for the penods of the Chandler wobble and the nearly diurnal
free wobble which differ slightly from those computed using (6.3) and (6.4), the inestial
modes computed using the Galerkin method are identical, to 4 significant figures, with
those computed using (6.1).
Table 7 shows the periods of the same modes as in table 6 using the formulation
given in chapter 5. Except for the CW all the modes whose periods are reported here are

retrograde modes.




6.2 Convergence of the Solutions

For the Poincaré case the convergence of the Galerkin formulation is very fast.
For aimost all the modes w hose periods are reported, the solutions converge when we set
N=2 and L=4. We tested our program for higher values of N and L to make sure of the
convergence.

For the Earth model described in chapter 2, the solutions converge for the period
of the Chandler wobble when N=2 and L=5, but for the case of nearly diurnal free
wobble convergence required N=2 and L=13. We tested our program for the cases N=3
and 4. The results are almost identical to the case N=2. For some of the inertial modes
whose periods are listed in table 6.2 we needed higher values of L ie. L>12 for the
solutions to converge. For some frequency ranges the determinant of the coefficient
matrix becomes unstable when L>16 and many false roots appear in the eigenperiod
spectrum. For this reason we were not able to achieve convergence for the modes whose

periods are not listed in table 7.

6.3 Conclusion

The close agreement between the periods of the modes listed in tables 6 and 7
show that THPD may well be an effective tool in solving the governing equations of core

dynamics for the long period free oscillations. Although we considered :nly the case of

i
|
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a neutrally stratified liquid core in our computations, the equations and the Galerkin
formulations were derived so that they include any value of B.

Future work on this subject should consider a non-neutrally stratified liquid core,
include the presence of the solid inner core and take into account the elasticity of the

mantle and the solid inner core. This would permit study of the effects of (a) non-

neutral stratification of the liquid core on the inertial modes, including those involving

wobble /nutation, and (b) truncation at fow values of N.
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Table 6 Periods of the Chandler Wobbie (CW), Nearly Diurnal Free Wobble (NDFW),

Free Core Nutation, and some of the other inertial modes of the Poincaré Earth
Model

a: Using eq. (6.1), (6.3) and (6.4)
o: Using The Galerkin Method

(periods are in days)

Mode a b
CW 2726 271.7
FCN 3474 348.6
NDFW 0.99713 0.99714
P, 0.9980 0.9980
0.5851 0.5851
P,
1.6313 1.6313
0.5371 0.5371
P! 0.7645 0.7645

2.2676 2.2676
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Table 7 Periods of the same modes as in table 6 using the Earth model described in
chapter 2

Mode Period (in days)
Ccw 273 2
FCN 3474
NDFW 0.99713
p,! 0.9973

0.5849
Ps’
0.5371

Pe
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Appendix A

A.1 Derivation of the Expression for A

The equation for A is given as

A= [ rlcos’0ssin®® sin’$ldm
mantle

(A1)
=[Fpy(r)[cos’8 +sin’® sinp] dV
4

where 6 is the colatitude and ¢ is the longitude. Integrating (A.1) with respect to ¢ we

get

x k2
a,=2xf[ r‘po(r)[cosze+-;-sin26]sin0 dodr (A.2)
ot,

where &, and §, are the radii of the CMB and the Earth’s outer surface of the Earth

respectively and

x
f sin’p dd=n (A3)
0

Substituting for cos®0 and sin®6 from (5.34) and for r in terms of ry from (3.24)
g 0

into (A.2) we get
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A8 4 -—2“}} ) ®,+2) ri(1-2P (Se+r,%))sind dBdr

Integrating (A.4) with respect to 6 we get

R
8 1 de
A_=-§’1 { polrorall -5 Gerra M (A.5)

A.2 Derivation of the Expression for A e

Since e, appears in the equations in the combination A e only we show the
derivation of Aj e . To derive the expression for A e  we proceed as follows

Anen=C,-A,= [ [rsind cos¢)*-(r coseyldm
mantie

(A.6)
= f po(lsin’® cos?$p-cos?B)r? AV
y-

where C, | is the Earth’s moment of inettia with respect to a polar axis. Substituting for
sin°0 and cos>0 in terms of Legendre polynomials and for r in terms of ry into (A.6) we

get

= R
A, =-2n [ po(ro)[1-§(5e¢ro-‘;-:w21 P,risind dodr, (A
0bd

Integrating (A.7) with respect to 0 using orthogonality relation for associated Legendre
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functions,

R
L) de, 4 (A.8)
A.C.-—E{pOISC'PrE] rdr

Expressions (A.5) and (A.8) are then integrated numerically for A, and A_e
respectively.

A.J3 Derivation of the Expression for g,

In the interior of the Earth the gravity potential is given as
1
WD =W (r)=V (n+ §r202(1 -P) (A.9)

where V(r) is the gravitational potential at point r on a surface of mean radius - (AY9)

can be written as

Wo(ro)--;nzr%vo(r)-%nzr’s () (A.10)
To first order in ellipticity, LHS of (A.10) is constant over the surface of mean radius To
and therefore so must be the RHS. We can interpret Uy(r) as the gravitational potential
at r due to the density distribution pg(r) in the non-rotating spherical Earth model.

Therefore we can write (A.10) as




du
Wo(r)=Uo(r)+-§—re 2 F Jaz, (A-11)

3

to first order in ellipticity. Then

z.(r)=—VWo=-ﬂgo(r)—%ﬂzrl-gv(resol’z)
(A.12)

= [g)- 200 2L regyP,)-b Zeg,]

where gi(r) on the RHS is gravity in the non-rotating spherical Earth model. The
correctness of (A.12) can be verified by showing that Clairaut’s equation (2.23) results

from requiring that (A.12) satisfy Poisson’s equation (1.5).




Appendix B
Some Useful Identity Relations Among Spherical Harmonics

In what follows we have used integration by parts to derive the final expression.

The integrations are taken from 0 to x.

dp;’ dar;'
1 n -1 . _fp- -1 _p-1 . B.1)
[P, —— P, sin® db=[P'[6P, P;'-P; —-sind a8 (

dP-l dP-l
f [sin?0—" -B—e'-]sinﬁ a9

® (B.2)
.
-[r.'i2P] —&- 2gg+ 1(1-P)- P, sind
4! dp-!
Py ;! —L_1sin® do=[P;" P;'sind db B3)
sin

. e' ]sin6 ae=q(q+1)fp,;‘ P;' 5in@ d8 (B.4)

-1 -1 -1 p-l
f dP,’ dp,” P, P
a9 do sin?




) S ] -
[P, P, —p~ Pe sin® do=-[P'(2P, P;'-10(PP’

(B.5)
dP-l
+2P,'+P, P; —L]sin d®
a0
dr;' dp;’ 2 dp;'
sin?® [P, —2 ®_]sin® d8=-[P'[=(1-2P,)P, —2
[sin®® (P, —- —o-1sin® db=-[P,'(S(1-2P)P,— 5o

-Pz<-§-q(q+1)(1 ~P)-1P; 1sin6 do

dP-l
+P]! d; Ising d8=[(3P,+1)P;' P! sing 49 (BT

P!
fpz cf)se [P;l n
sin@ doe

dpldap' pp!
[PI—2—2 -2 )5ng de
M Jd9 in?
sin“6 (B.8)
-]

; 4y dP
=[P, la(q+1)P, P;'-P; d; Jsin® 4




APPENDIX C
Integration with Respect to 0

Here we show the algorithm which we use to integrate the Galerkin formulation of the

governing equations of liquid core dynamics with respect to 6. We rewrite equation

(5.62) as

3

r f2 "2
I=fP,;l Pq'lsinﬂ dBlE,,.,,fE1,..4(’)‘1'*Eu~szz.m2(’)d”EnfE3-ﬂ(’)d’
0 n

n n

n n

+Ey 3[84, oD E, ([E, (0)dr]

n "
after operating on the associated Legendre functions with the identities (4.39), (4.40),

(5.63), (5.64) and collecting terms of the same degree.

The algorithm we use to evaluate §;; in (5.66) is as follows:

m=n+4

do1i=1,5

if(m.1t.2.or.m.gt.N) goto 2 {N is the degree of truncation}
if (i.eq.1) then

s1=0

s2=0

s3=0

- -1 -1
54-An+4 An+2







k=n-2

else if (i.eq.5) then
s1=0

52=0

$3=0

s4=C, ,' C, 5!
s5=-2(n-4) C, ;1 C, "
k=n-4

endif

Ek= 81 F +s2 Fy ) +53 F3, +54 Fy 455 Fsx
2 m=m2

1  continue

{Fjx are as defined in (5.62)]

76







78

Integrating (D.2) over r’ using (D.3) we get

Goy R [ T gcosat
cosa)f1
a0 (n+3)r" g0 (D.4)

—Se(R)Pz(cosﬂ’)]""sine'dB’dtb’

To evaluate (D.4) neglecting all quantities smaller than the first order in ellipticity we use

the binomial theorem in the integral, then substitute for

1
P,(cosB)? - +-§ z(cosﬂ')+ ‘(oose') (D.S)
and finally use the addition theorem for spherical harmonics, which gives

2nn

f f P (cosa)P, cosﬂ')sme’de'dd;' P (cos0)8 (D.6)
00

The result is that

V,24rGpRI X - 2 Ry P (cost)) (D.7)
3r 15 r

The internal potential of such a body must satisfy Poisson’s equation and be

continuous with (D.7) across the boundary (D.1). The function

o2
V=4nGpRYL- T -2

eP. 0)(L)2 (D.8)
2 smE 15 (cos )(R)]

satisfies these requirements.

Now we shall suppose that the heterogeneous body of mass M is built up of a ser
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of concentric spheroidal surfaces

r=ryl -%e(ro)l’z(cosﬂ)] (D.9)

on each of which the density p=p(ry) is constant, according to the hypothesis of
hydrostatic equilibrium. Thus a particular equipotential is specified by its mean radius
and ¢ is a function of 1,

For the heterogeneous mass the standard technique is to regard the contribution
to the potential V at an interior point r from a shell of density p,’ bounded by the
spheroids ry’, ry'+dr)’ as just the difference between (a) the potential at r due to a
homogeneous mass of density p,’ bounded by the spheroid ry'+dr,’ and (b) the potential
at r due to a homogeneous mass of the same density bounded by the spheroid 1y Taking
into account that the contributions from spheroids containing/not containing r will be
given by (D.7)/(D.8) we have the gravitational potential at a point r=(r,0,4) interior to

the mass:

To rﬂ e !\l
—-iwpz(cose)]dr'o
15 7dri,

(D.10)

2 de(r'y
+ f p/o[’IO"B @, r’P,(cos@)}dr'y)










