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ABSTRACT 

In this thesis I implement a new set of scalar equations describing the free 

oscillations of rotating self-gravitating compressible fluids, to solve for the wobble and 

inertial modes of a rotating Earth with rigid mantle a:1d liquid wre. A Galerkin method 

is used to integrate these equations in the liquid core. It b shown that hy using the 

divergence theorem it is possible to make use of the ·natural' boundary conditions to 

reduce the order of the derivatives from second to first in the Galerkin formula: ion of the 

governing equations. As a partial test of the reliability of our formulation, the 

eigenperiods of the Earth's Chandler wobble (CW), nearly diurnal free wobble (NDFW) 

and some of the other inertial modes are computed for the c;.se of a compressible, hut 

neutrally stratified, core and compared to those for the homogeneous incompressible core 

model. 
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CHAPTER 1: INTRODUCTION 

The innermost region of the earth consists of a liquid outer core and a solid inner 

core. The radius of the inner core is estimated to be 1221.5 km and that of the outer core 

3480 krn. The fluidity of the outer core and the solidity of the inner core have been 

established through studies of ray seismology, tides and the Earth"s normal modes. 

The core of the Earth plays a key role in many geophysical studies. An example 

of this is the role of the liquid core on the periods of the Earth"s Chandler wobble and 

the nearly diurnal free wobhle. A perfectly rigid body with the same mass distribution 

as the Earth is expected to have a free Eulerian wobble with period of about 306 days. 

The presence of a liquid core the size of the Earth's changes this period to about 270 

days and gives rise to an additional retrograde wobble of nearly diurnal period, 

corresponding to a nutation of about 350 days. Elasticity and oceans lengthen the 

Eulerian wobble period to 435 days (the Chamller wobble) and the free core nutation 

period to 460 days, assuming that the stt:adily-rotating (~onfiguration is one of hydrostatic 

equilibrium. 

Since the core is not directly accessible, much is still unknown about its 

properties. The distributions of material properties such as the density p and Lame 

parameter A. in the core are established through theoretical and observational studies using 

ray seismology and free oscillations. However, the stability parameter ~ (Pekeris and 

Accad 1972) cannot so far be inferred from the seismological data and is therefore poorly 

controlled, uncertain and varies from one model to another. 



The spectrum of free oscillations possihlt• in the liquid core l'an he Cl'nwniently 

divided into: 

(a) short period free oscillations, with periods of the order of an llllur l'r less. for 

which elasticity is ihe primary restoring force . For these oscillations the effects of 

rotation and ellipticity can he treated as small perturbations on the solution of the 

governing equations for a non-rotating spherical Earth; 

(b) long period free core oscillations, with periods of the order of half a day and 

longer. These oscillations are considerably affected by the rotation and, in some cm;es, 

the ellipticity of the Earth. 

Long period free core oscillations are of three types: 

(a) Slichter (inner core translational) modes, with periods of several hours. for 

which the primary restoring force is gravitational (due to the dens' ty difference across the 

inner core boundary); 

(h) gravity waves (or core undertones) whose essential restoring force is negative 

buoyancy. Since negative buoyancy implies stable stratification, some part-; of the outer 

core must be stably stratified (~< 0) for gravity waves to exist; 

(c) inertial waves, which depend on the Coriolis effect as their dominant restoring 

force. Therefore, the rotation of the Earth is necessary to the existence of these modes. 

Among the first who studied the inertial modes of the Earth were Hough ( l H<JS) 

and Poincare (1910). The Earth model they considered consists of an inviscid 

incompressible homogeneous liquid filling the region bounded hy an ellipsoidal container 
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which is rigid hut can change its orientation. Analytical solutions were found for the 

Earth's Chandler wobble and nearly diurnal free wobble and other inertial modes using 

this simple Earth model. 

During the last four decades the theory of Hough and Poincare has been greatly 

extended to treat more realistic Earth models. Jeffreys & Vicente (1957a, 1957b) 

considered Earth models wtth radially stratified elastic mantle and a homogeneous 

incompressible liquid core. Molodensky (1961) included core compressibility. Shen and 

Mansinha (1976) used the theory of Molodensky ( 1961) hut added non-neutral 

stratification in the liquid core. Smith (1974) derived the elastic-gravitational normal 

modes theory in which an infinite set of coupled differential equations describe the 

dynamics of a rotating, slightly elliptical Earth. This theory was utilized by Smith (1977) 

to compute the periods of the Earth ' s Chandler wobble and the nearly diurnal free 

wobble, with inner core. Also Wahr (19Rl) used Smith's formulation to study the effects 

of Earth's rotation and ellipticity on the hody tides. Moon (19R2) derived the linearized 

equation of motion for the slightly elliptical rotating earth in order to study Earth's free 

oscillations, free wohhles and core modes. 

In the hope of finding an alternative, more simplified, solution to the governing 

equations nf core dynamics Smylie & Rochester (1981) made the subseismic 

approximation (SSA) to derive the suhseismic wave equation (SSWE). The SSWE is a 

scalar second order partial differential equation (PDE) involving only one scalar potential, 

and (to the extent the SSA is valid) once the SSWE is solved, all other dynamical 
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variables can be readily obtained. As shortcomings in the suhseismic description became 

apparent (Crossley and Rochester 1992, Rochester and Peng 1993), Wu & Rochester 

(1990) derived the exact two potential description of core dynamics (TPD). They showed 

that the dynamics of the inviscid liquid core is described without approximation hy two 

scalar second order PDEs involving two scalar potentials. Although the TPD is 

mathematically elegant, it also has some shortcomings which we discuss in chapter 3. 

Rochester (unpublished) has derived an alternative set of three scalar PDEs 

involving three scalar potentials which exactly descrihe the dynamics of the inviscid 

liquid core (hereafter we refer to thi:t description as THPD). The motivation for this new 

description and its advantages will be discussed later in this thesis. In this study, we 

implement the THPD to solve for some of the normal modes of a rotating ellipsoidal 

liyuid con:. 

l.l The Governing Equations and Boundary Conditions 

The liquid core is taken as inviscid, with the reference state hdng one of 

hydrostatic equilibrium in a coordinate system rotating steadily with an~'lllar velocity 

(1.1) 

where Q is the rate of rotation of the Earth. The r~te of change of direction of a unit 

vector, ej. is therefore 
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(1.2) 

In the reference frame stated above the equilibrium density p0, pressure p0 and 

gravitational acceleration Co are related by 

(1.3) 

(1.4) 

(1.5) 

(1.6) 

where G, a, ~ are respectively the gravitational constant, the local compressional wave 

speed and the stability parameter. 

The parameter ~ measures the extent and sign of any departure of density gradient 

from purely adiabatic stratification; it is proportional to the square of the local Brunt-

Viiisiilii frequency N: 

(1.7) 

A region is stably stratified if f.\<0, unstably stratified if ~>0 and neutral if ~=0 (i.e. the 

Adams Williamson condition is satisfied). Although an exact value for ~ ha<> not been 

established, Masters ( 1979) shows that current seismological data sets a limit I ~ I <0.03-
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0.05. 

The equations governing the isentropic small oscillations of an inviscid liquid cure 

are given (Rochester 1989) by the conservatio:t laws for mass, momentum. gravitational 

flux and entropy. These equations are as follows: 

(1.8) 

(1.9) 

(LIO) 

apt 2°P1 
-=ex --PP '"~ at at 0 0 

(1.11) 

In the above equations v, pl' p1 and V 1 (all regarded as first order departures from 

the equilibrium reference state) stand for velocity, the Eulerian perturbation in density, 

Eulerian pressure disturbance and the Eulerian perturbation in the gravitational potenti:~l 

respectively, with 

au 
l'=- (1.12) 

Ot 

where u is the Lagrangean displacement from equilibrium. 

In dealing with free oscillations it is convenient to assume that all the disturbance 

variables have time dependence ei1" 1
• After operating with the time derivative on the 



7 

disturbance variables in equations (1.8)-(1.11) and cancelling the common factors we get 

(1.13) 

(1.14) 

(1.15) 

(1.16) 

We use (1.13) to write equations (1.14)-(1.16) as 

(1.17) 

(1.18) 

(1.19) 

The five differential equations above [three components of the vector equation 

(1.17), equations (1.18) and (1.19)) are linear in five variables: three components ofu, 

p1 and V 1• These arc: the equations governing the dynamics of the liquid core. 

To these equations we add the boundary conditions, which require continuity of 

n·u, V 1, ft'(VV 1-4nGp0u) and ft.t across core boundaries. Here n is the unit vector 

normal to the boundary surface and i: is the stress tensor. In the outer core the stress 

tensor can be written as 



(1.20) 

and in the solid mantle it takes the fonn 

i =(A.V·u)i +2JA[Vu +(Vu)1) (1.21) 

where# and 'A are the Lame parameters and i is the unit dyadic. 

The traditional approach to solving these equations is to represent the variation 

fields in spherical polar coordinate by spherical harmonics 

u!! E E s,."'+r; (1.22) 

••-• n•l•l 

• 
v1, Pt!! r E rc~~:. v:J Y,."' (1.23) 

••-•n•l•l 

with 

s:=ru; f+rv,."' V] Y,."' 
(1.24) 

.. "'.~: VY"' r. : - t11 rX II 

(1.25) 

Legendre function of degree n and azimuthal order m. 
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For the acoustic modes (short period free oscillations) the effects of rotation and 

ellipticity are small and equation:. with different degree n are independent when these 

effects are neglected (Alterman et al. 1959). Therefore, the traditional approach is an 

effective tool in solving the governing equations for the acoustic modes. 

However, for the long period free oscillations, where neglecting rotation and, in 

some cases, ellipticity is no longer valid, equations with different order mare decoupled 

hut those of different degree are not. Instead to each m there correspond solutions in the 

form of two coupling chains 

(1.26) 

(1.27) 

(Smith 1974). Numerical estimates of the eigenperiods and eigenfunctions then 

necessarily rest on heavy truncations of these coupling chains. 

Shen & Mansinha (1976) used a three term truncation, e.g. 

(1.28) 

to compute the periods of the Earth's nearly diurnal free wobble and some of the liquid 

wre undertones of a rotating ellipsoidal earth. Smith (1977) seriously questions the 

validity of the numerical results for undenone periods based on such heavy truncations, 

and concludes that the latter are inadequate for the free wobble of the inner core and 

other internal core modes. He was convinced, however, that (1.28) was sufficient to yield 

. . . . 
" I I ~ • • - - 9 
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reliable periods for the Chandler and nearly diurnal free wohhle. This helief seems not 

yet to have been seriously tested hy using less severe truncation than ( 1.28). 

The problems of truncation presented hy the traditional approach motivated a 

search for alternative solutions to the governing equations [Smylie & Rochester (19M 1 ), 

Wu & Rochester ( 1990)]. The three-potential description of core dynamics is the result 

of one such attempt. We will give the derivation of the THPD in this thesis (chapter 3). 

To test the reliability of our description, we use the well-known analytical solutions to 

compute the periods of the Earth's Chandler wohhle, nearly diurnal free wobhle and some 

of the other inenial modes using a simplified Earth model consisting of a rigid mantle and 

a homogeneous incompressible liquid core. These results will then he compared to the 

ones computed using the THPD. 



CHAPTER 2: THE EARTH MODEL 

We adopt PREM [the Preliminary Reference Earth Model (Dziewonski & 

Anderson 1981)], as the base for our Earth model. The mantle is assumed to be rigid 

and its properties are taken directly from PREM. The presence of the solid inner core is 

ignored for simplicity. The liquid core is assumed to be neutrally stratified and therefore 

we: must make sure that fl=O everywhere in its interior. Also, since we ignore the 

presence of the inner core in wmputational work, we will make sure that the density 

profile p and the compressional wave speed profiles a in the liquid core are extended to 

the centre of the Earth as smooth functions of the radius. The method to compute the 

ellipticity of the equipotential surfaces will also be described in this chapter. 

2.1 Modification of a In the Liquid Core 

In the liquid core of PREM a is expressed as a third order polynomial 

(2.1) 

where c1=11.0487, c2=-4.0362, c3=4.8023, c4=-13.5732, x=r!R and R is the mean radius 

of the surface of the Earth. Since the first derivative of this profile with respect to r does 

n0t vanish at r=O, this profile can not be used when the inner core is ignored. 

In the inner core of the PREM a is a smooth function of the radius and has the form 
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(2..2) 

with a 1=11.2622 and a 2=-6.3640. Since p-waves travel faster in solid media than in fluids, 

we will have a maximum error of about 17% (at the CMB) if we choose the :nner core 

profile for a as an approximation to that in the liquid core. Compromising to reduce this 

discrepancy, we modify a so that in our model its first derivative vanishes at r=O and 

its numerical values are close to those of PREM in the range ICB-CM B. 

The function 

"= 10.6752-8.7490 x 2 (2.3) 

satisfies the requirement of vanishing first derivative at x=O, gives the PREM values at 

the ICB and CMB, and involves a maximum error of about 0.7% (at r•2900 km). Table 

1 shows the a distribution in the liquid core using: (a) equation (2.3) and (h) expres.'lion 

from PREM. 

2.2 Modification of the Density Profile in the Liquid Core 

As mentioned in chapter 1, the density gradient in the liquid core has the form 

(2.4) 

For a spherically stratified Earth (2.4) becomes 



which can be written as 

-(1-fl) Pofo 
cx2 

a2 dpo 
--+(1-13)=0 
Polo dr 

As suggested by PREM. we choose a density profile which has the form 

13 

(2.5) 

(2.6) 

(2.7) 

where xis defined as in rrevious section, N is an integer and dj are constant. Substituting 

(2.7) into (2.5) [and setting d2=0 to satisfy (2.5) at x=O] we get 

(2.8) 

where 

d d N 
Po=~ dr =R L (j-I)d. xJ-2 

dr cb: dr J-3 J 

(2.9) 

To solve (2.8) for a best fitting density function, p0, we use a Galerkin method 

with weight functions ~-t (i=l, ... N-2): 
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(2.HI) 

for each i, i=l, ... ,N-2, b is the mean radius of CMB. We write (2.10) as 

(2.11) 

where 

(2.12) 

(2.13) 

In (2.13) f:l is set to a desired value, fld· and PREM density protile is used as a 

starting value to find p0 and !k> in (2.12). The starting values for the coefficients of tht 

density profile, therefore, are: d1=12.5815, dz=O, d3=-3.6426, d4=-5.52XJ, all other c.li=O. 

In PREM N=4, but our computational experience has shown that a higher value of N 

re!'ults in a much faster convergence of f:l to fld, and here we set N= 12. 

The gravitational acceleration, !k>· in the liquid core is computed as 

() 
GM(r) 

8o r = ,2 
(2.14) 

where M(r) is the total mass of the body enclosed by the shell of radius r and is given 



as 

Using (2.7), (2.15) becomes 

,. 
M(r) = 4tt J p0r 2 dr 

0 

Substituting (2.16) into (2.14) we get 

N d x' 
g0(r):: 4n G R L -.1-

i•l 1+2 

15 

(2.15) 

(2.16) 

(2.17) 

IMSL subroutine dslsarg is then called to solve (2.12) for the coefficients d3, ... ,dN. 

To solve for d1 we use the mass conservation of the liquid core as a constraint and 

proceed as follows: 

J PcPv= 4 n<p>b3 
LC 3 

(2.18) 

where <p> is the average density of the outer core. Using (2.8) we can write (2.18) as 

b 
N lr 

4nRJE d,J x•·•t~x= 4tt<p> b3 
i•l 0 3 

(2.19) 



Once di are known, we use them to solve for f\ in 

a2 dpo 
P=l+---

Polo dr 

16 

(2.20) 

(2.21) 

If 1~-~di>H, where H is the desired accuracy, we use the new di as the staning values. 

This process is repeated until lf\-~di~H. In this problem we set f\=0 and H=to·5. The 

coefficients of the density profile in the modified liquid core are given in t1ble 2. Tables 

3 and 4 show the density and f\ distributions in the outer core before and after 

modification respective I y. 

2.3 Ellipticity 

Since the depanure of the sh:tpe of the Earth from sphericity is small, we use a 

first order theory to include the effect of ellipticity in the governing equations. We follow 

Chandrac;ekhar and Roberts ( 1963) in assigning the equipotential surfaces of mean radius 

r0 (over which the equilibrium propenies are constant) the polar equation 

(2.22) 

For a hydrostatically prestressed Earth Clairaut's equation 
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(2.23) 

(Jeffreys 1970) describes the ellipticity of the equipotential surfaces. In writing (2.23) we 

use the fact that t(ro)=t:(r) to first order. 

We use a Runge-Kutta integration method to solve (2.23) for E. Since equation 

(2.23) is singular at r=O, it cannot be used directly to start the integration from the 

geocentre. To get around this problt:m we proceed as follows. Using Taylor expansion we 

can write r and p near the geocentre as 

(2.24) 

(2.25) 

The averagt: density <p> is given as 

Substituting (2.24)-(2.26) into (2.23) we get 

(2.27) 

We use (2.27) and an arbitrary value for r(O) to start the integ;ation at the geocentre, and 

then scalt' E(O) so that r(R) is the observed hydrostatic value of Earth's surface ellipticity. 

Table 5 shows the distribution of the ellipticity in the interior of the Earth. 



Table 1. Distribution of a in the Liquid Core 
a : Modified Model 
b: PREM Model 

radius 
krn 

(a) 

a 
km/s 

(tl) 

u 

km/s 

-----····-------~--······R·····--------·········---··········-·····--------

0.000000+00 0.1067760+02 
0.814330+02 0.1067620+02 
0.162870+03 0.1067190+02 
0.244300+03 0.10664 70+02 
0.407170+03 0.1064180+02 
0.488600+03 0.106261 0+02 
0.570030+03 0.1 060750+02 
0.651470+03 0.1058600 ... 02 
0. 732900+03 0.1056170+02 
0.814330+03 0.1053450+02 
0.895770+03 0.1050450+02 
0. 977200+03 0.1047160+02 
0.1 05860+04 0.1 0435R0+02 
0.114010+04 0.1 039720+02 
0.122150+04 0.1035570+02 0.1035570+02 
0.134040+04 0.1029000+02 0.1028570+02 
0.145920+04 0.1 021820+02 0.1021310+02 
0.157810+04 0.1014030+02 0.1011730+02 
0.169700+04 0.1 005630+02 0.1005780+02 
(J.l93470+04 0.9870030+01 0.9885760+01 
0.205360+04 os -:>7740+01 0.9792090+01 
0.217240+04 0.9659360+01 0.9692630+01 
0.229130+04 0.9544890+01 0.9586840+01 
0.241020+04 0.9424310+01 0.9474200+01 
0.25291 0+04 0.9297640+01 0.9354170+01 
0.264790+04 0.9164870+01 0.9226240+01 
0.276680+04 0.902601 0+01 0.9089870+01 
0.288570+04 0.8881050+01 0.8944530+01 
0.300450+04 0.8729990+01 0.878969 0+0 1 
0.312340+04 0.8572830+01 0.8624830+01 
0.324230+04 0.8409580+01 J.8449410+01 
0.33611 0+04 0.8240230+01 0}!262900+0 1 
0.348000+04 0.8064 79 0+0 1 0.8064790+01 

IX 



Table 2. Coefficients of the Density Profile 
in the Modified Liquid Core 

d 1: 12.4780 X 103 

d2= 0.0 
d3:-7.7460 X 103 

d4= 1.HHt x w:1 

d5=-2.5083 x 10-' 

d6= 2.7304 X 10 
d7=-J.0422 X 103 

d8= 7.6678 x w·1 

d9=-2.3423 X J03 

d 10= 3.4341 x 103 

d 11:-3.3502 X 103 

d 12= 1.3934 x ·o3 
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Table 3. Distribution of Density and Stability Parameter 
in the Liquid Core of PREM 

···········-----------········-···········-·-----------------···-----······ 
radius p p 

km kg/m3 

·····-··--------------------------······················----····---········ 
0.122150+04 0.1216630+05 -0.2782350·0 1 
0.129680+04 0.1212670+05 -0.2095090.01 
0.137210+04 0.1208520+05 -0.1505520-01 
0.144740+04 0.1204160+05 -0.1012900-01 
0.152260+04 0.1199590+05 -0.6124250-02 
0.159790+04 0.1194820+05 -0.2970920-02 
0.167320+04 0.1189820+05 -0.5884420-03 
0.174850+04 0.1184600+05 0.1107600-02 
0.182380+04 0.1179160+05 0.2201730-02 
0.189910+04 0.1173470+05 0.2776480-02 
0.197430+04 0.1167550+05 0.2911370-02 
0.204960+04 0. 1161390+05 0.2682480-02 
0.212490+04 0.1154970+05 0.2162390-02 
0.220020+04 0.1148290+05 0.1420350-02 
0.227550+04 0.1141360+05 0.5224220-03 
0.235080+04 0.1134160+05 -0.4681650-03 
0.242600+04 0.1126680+05 -0.1490810-02 
0.250130+04 0.1118930+05 -0.2487310-02 
0.257660+04 0.1110890+05 -0.3401650-02 
0.265190+04 0. 1102570+05 -0.4179910-02 
0.272720+04 0. 1 093950+05 -0.4770180-02 
0.280250+04 0.1 085030+05 -o.5122570-02 
0.287770+04 0.1 075800+05 -0.5189310-02 
0.295300+04 0.1 066260+05 ·0.492491 D-02 
0.302830+04 0.1056410+05 -0.4286420-02 
0.310360+04 0.1 046240+05 -0.3233770-02 
0.317890+04 0.1 035730+05 -0.1730260-02 
0.325420+04 0. 1 024900+05 0.2568700-03 
0.332940+04 0.1013730+05 0.2755740-02 
0.340470+04 0.1 002210+05 0.5788970-02 
0.348000+04 0.9903440+04 0.9372680-02 

:w 



Tahle 4. Distribution of Density and Stability Parameter 
in the Liquid Core of the Modified Eanh model 

--·······-·································································· 
radius p f3 

km kglm3 

····································· ······················-················· 
0. ()0()()()0+00 0.1247750+05 -0.1169760-05 
0.120000+03 0.124 7 480+05 ·0. 90806 70-06 
0.240000+03 0.1246650+05 ·0.8353530-06 
0.360000+03 0.1245280+05 -0.8180090-06 
0.480000+03 0.1243350+05 ·0.8000500-06 
0.600000+03 0.1240860+05 -0.7656640-06 
0. 720000+03 0.1237820+05 -0.7164000-06 
0.840000+03 0.1234210+05 -0.6586160-06 
0. 960000+03 0.1230040+05 -0.5977160-06 
0. 1 08000+04 0.1225290+05 -0.5364690-06 
0.120000+04 0.1219950+05 -0.4754620-06 
0. 1 32000+04 0.1214030+05 -0.414311 0-06 
0.144000+04 0.1207520+05 -0.3528160-06 
0.156000+04 0.1200390+05 -0.291631 0-06 
0. 168000+04 0.1192650+05 -0.2323580-06 
0.180000+04 0. 1184:-'~0+05 -0.1771630-06 
n. 192000+04 0.1175270+05 -0.1281570-06 
0.204000+04 0.1165600+05 -0.86 79700-07 
0.216000+04 0.1155270+05 -0.5352220-07 
0.228000+04 0.1144250+05 -0.2777090-07 
0.240000+04 0.1132530+05 -0.8351820-08 
0.252000+04 0.1120080+05 0.5966070-08 
0.264000+04 0.1106900+05 0.1591180-07 
0.276000+04 0.1 092950+05 0.2153090-07 
0.288000+04 0.1 078220+05 0.2260980-07 
0.300000+04 O.l 062670+05 0.1969960-07 
0. 312(K10+04 0.1046290+05 0.1520890-07 
0.324000+04 0.1 029040+05 0.1312590-07 
0.336000+04 0.1010890+05 0.1448000-07 
0.348000+04 0.9918100+04 0.3448200-08 
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Table S. Distribution of Ellipticity in the 
Modified Eanh Model 

·············--------··········· ···------········-· 
radius ellipticity 

km 

----········--------······························· 
0.000000+00 
0.183160+03 
0.366320+03 
0.549470+03 
0.732630+03 
0.915790+03 
0.109890+04 
0.128210+04 
0.146530+04 
0.164840+04 
0.183160+04 
0.201470+04 
0.219790+04 
0.23811 0+04 
0.256420+04 
0.274740+04 
0.293050+04 
0.311370+04 
0.329680+04 
0.348000+04 
0.348000+04 
0.368650+04 
0.389300+04 
0.409950+04 
0.451250+04 
0.471900+04 
0.492550+04 
0.513200+04 
0.533850+04 
0.575150+04 
0.595800+04 
0.616450+04 
0.637100+04 

0.24610-02 
0.24610-02 
0.24620-02 
0.24630-02 
0.24640-02 
0.24660-02 
0.24690-02 
0.24720-02 
0.24750-02 
0.24790-02 
0.24830-02 
0.24880-02 
0.24940-02 
0.25000-02 
0.25070-02 
0.25140-02 
0.25220-02 
0.25310-02 
0.25410-02 
0.25510-02 
0.25510-02 
0.25740-02 
0.26140-02 
0.26650-02 
0.27830-02 
0.28460-02 
0.29090-02 
0.29720-02 
0.30340-02 
0.31530-02 
0.32120-02 
0.32730-02 
0.33350-02 

..,.., 



CHAPTER 3: THE THREE POTENTIAL DESCRIPTION OF 
LIQUID CORE DYNAMICS 

In section 3.1 we give the derivation of the THPD following unpublished notes 

t>y Rochester, and discuss its advantages. In section 3.2 we include the effect of 

ellipticity in the equations. 

3.1 The Three Potential Description 

First we define two scalar variables 

(3.1) 

(3.2) 

Using th~se variables and equation (1.6) we can rewrite equations (1.17}-(1.19) as 

(3.3) 

(3.4) 

(3.5) 

We eros.<> multiply e3 with equation (3.3) to get 



(3.6} 

To find e3 ·u we take the dot product of e3 with equation (3.3) to get 

(3.7) 

Using (3.6) and (3.7), the momentum equation can be written as 

(3.8) 

with o=20./w and 

(3.9) 

(3.10) 

It should be emphasized that our o is the inverse of the definition used by Smylie and 

Rochester (1981), Wu and Rochester (1990). Taking divergence of (3.H) and using (3.2) 

we get 

(3.11) 

Taking the dot product of (3.8) with 1:o we get 

(3.12) 

Substituting for u.~ from (3.5) into (3.12) we get 
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(3.13) 

(3.14) 

Substituting (3.1) and (3.2) into Poisson's equation we get 

(3.15) 

Rewrite equations (3.13), (3.11) and (3.15) as 

(3.16) 

(3.17) 

(3.18) 

The three scalar differential equations above, two of which are of second order 

and one of first, constitute the THPD. They describe without approximation the dynamics 

of the inviscid, non-conducting liquid core through three scalar potentials x. l; and V 1• 

We note again that these equations are linearized in the field variables and therefore the 

Earth's configuration at all time is assumed to be close to its equilibrium configuration. 

If the liquid core is assumed to be incompressible and homogeneous, l;/a2=0 and 



equation (3.17) reduces to the Poincare equation 

(3.19) 

and (3.18) reduces to the Poisson equation. 

If w,; solve for!; in (3.16) 

(3.20) 

and substitute intu (3.17) and (3.18) we get 

(3.21) 

Vlv1 _ C·Vx-c.>2(1 - a2)(x+Y1) _ (l-P><x+Y1) =O (
3
•
22

) 

4nGp0 B cz2 

Equations (3.21) and (3.22) constitute the two potential description (Wu and Rochester 

1990). The subseismic approximatilm (SSA) is equivalent to dropping the term in x+ V 
1
• 

Then {3.21) reduces to the subseismic wave equation (SSWE) [Smylie & Rochester J9Ml, 

Rochester 1989]. 

The advantages of THPD are that: 

(a) all dependent field variables are scalar, so there is no need to introduce the 

spheroidal/toroidal representation of vector field-;; 
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(b) in a non-neutrally stratified liquid core it is possible that B=O for some 

frequency ranges i.e. when 

(3.23) 

Since B appears in denominators in both equations ofTPD (Wu and Rochester 1990), this 

description is not appropriate at and near these frequency ranges and the equations must 

bt: replaced by a more complicated fonn of TPD. In THI.,D this disadvantage never 

occurs; 

(c) in THPD B appears only in the combination ~B which remains finite as p-o; 

(d) the description involves no derivatives higher than second. In chapter 5 we 

show that when a Galerkin method is used to solve the governing equations, the 

divergence theorem can be used to replace the volume integrals involving second 

derivatives by surface integrals involving first derivatives in a form for which the 

boundary conditions are 'natural'; 

(e) THPD can be solved using a variational principle as shown by Rochester. 

3.2 Adjustments for Ellipticity 

There are different methods of including the effect of ellipticity in the equations 

of core dynamics. Wu (1993) adopts a coordinate system in which all variables are 

functions of r0, the mean radius of the equipotential on which the field point is positioned. 



We find it more appropriate to adopt a procedur~ similar to, but slightly improving on, 

that suggest~d by Smith (1974). This procedure is as follows. 

In the interior of the outer core we let all variables be functions of r.O.+. The 

governing equations are then integrated over the volume of radius r given by (2.22}. In 

the interior of the outer core 

(3.24) 

2 2 da a(r)•a(r o>=a(r+-reP2) =a(r) +-eP
2

-
3 3 dr 

(3.25) 

using Taylor expansion and ignoring terms higher than first order in ellipticity. The 

expression for the gravitational acceleration, 2(). is given as 

(3.26) 

(see derivation in appendix 1) where g0(r) in right hand side of (3.26) is the gravitaiional 

acceleration at point r in a spherical non-rotating body of radius r. 

Substituting (3.24)-(3.26) into (3.16)13.18) we get 

(3.27) 

2 2 4 reP2 dCI C V-(1' ·Vx)= V-(pc· C)-w (1-o )U ----]-
, 

1 
· 3 a dr a:z 

(3.28) 
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Equations (3.27)-(3.29) are the three scalar differential equations governing the dynamics 

of the liquid core in the three potential description. Here B 1 and c•1 are defined as 

using Taylor expansion and ignoring terms higher than first order in ellipticity. Spherical 

harmonics are then used to represent the field variables in (2.27)-(2.29) as 

• 
(x, c. V1)= :E <x~. c~. ~:'> r,.• (3.32) 

11•1•1 

In this thesis we consider constant values of~· In more realistic Earth models we 

could substitute 

(3.33) 

in the e4uations and keep terms to first order in ellipticity, although even this may be an 

unnecessary refinement since ~ is so poorly known. 



CHAPTER 4: BOUNDARY CONDITIONS ON AN 
ELLIPSOIDALLY-STRATIFIED EARTH 

The boundary conditions reqllire continuity in a number of functions f(r,6,9) 

[normal displacement, gravitational potential, gravitational tlux, normal stress] across the 

surfaces (2.22), i.e. continuity in 

(4.1) 

using Taylor expansion to first order in ellipticity. Therefore at the core mantle hnundary 

(CMB) we require continuity in 

2 avt 
V:(r '- -re p- (4.3) 

ICY 3 2 0r 

where for brevity we write 

(4.6) 

We use conservation of the Earth's total angular momentum in place of (4.5). To 

satisfy (4.2)-(4.4) we need information from the dynamics of the liquid core a~ well ao; 

- , "'-.... .,- ( I • • 
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those of the mantle. We have already dealt with the dynamics of the outer core in 

chapters 1 and 3. The dynamics of the mantle are dealt with in this chapter. In section 

4.1 the expressions for u and V 1 in the mantle are derived; in section 4.2 we derive the 

expression for the conservation of the Earth's total angular momentum and in section 4.3 

we expand the boundary conditions (4.2)-(4.4). For lack of time we implement these 

boundary conditions only for the Earth model described in chapter 2. However, these 

boundary conditions can easily be adjusted to include the inner core boundary (ICB) as 

well. 

4.1 Dynamics of a Ri~id Wohhlin~ Mantle 

In section 1.1 we chose a reference frame which rotates steadily with angular 

velocity Oe3. We let a set of principal axes Ei fixed in the (supposedly rigid) mantle 

rotate with angular velocity 

where m is purely oscillatory. Therefore, 

dE ~ 
-= w xE 
dt • 

(4.7) 

(4.8) 

In this thesis we are concerned with pure wobble, with no change in the length of the day, 
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(4.9) 

where y is real and positive, provided we adopt the convention that w>O correspunds to 

a prograde wobble and UKO to a retrograde one. A particle dm at r in the wohhling 

mantle wili have a velocity relative to the reference frame given hy 

v= (<a>• -(o),.)xr= 0 mxr 

Now 

au. 
V= -= IWU 

at 

Therefore we can write the displacement u in the disturbed mantle as 

In terms of ei, Ei can be written as 

Omxr 
u=--

i<a> 

Since Ei remain in close alignment with ei, we can write 

where ~ij are of order y. Substituting {4.14) and (4.13) into (4.n) we get 

(4.10) 

(4.11) 

(4.12) 

(4.13) 

(4.14) 
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(4.15) 

to first order in swall quantities. Eijk in ( 4.15) is the standard permutation symbol. From 

(4.10) ar.d (4.15) we conclude that 

~ 12 =0 (since m3 =0), 
(4.16) 

( A A ) Q (1 :"\ iwt t')p t'32 = ---y ,-1, t 
(a) 

At a point r in the disturbed mantle the Eulerian perturbation in the gravitational 

potential V 1 is 

(4.17) 

where V 1(m) and V 1(1c) are the contributions to V 1 from rearrangement of mass of the 

mantle and liquid core respectively. Outside the liquid core V 1(1c) must be a solution of 

Laplace's equation and must vanish as r tends to infinity, so we write 

N 

v.(lc)= II Eo,.( b)ll•lp~ .. (cose)t-"'t 
,... r 

(4.18) 

were b is the mean radius of the CMB and is used as a scale factor so that crn have the 

dimensions of potential. The factor eiwt is dropped from (4.18) for convenience. 

To evaluate V 1(m) we proceed as follows. In the equilibrium configuration the 

gravitational potential due to the mantle, at a point r=(r,8,t) in the mantle, is 
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(4.19) 

.I de( I· +jp' (r' \[r' - 2 ,. oJ ,.2p {cos6}) dr' \ 
0 0' 0 15 dr' 2 ri 

, 0 

using 0.10 but replacing the lower limit 0 in the first integral hy h, the mean radius of 

the CMB. Here r0 is the mean radius of the spheroid of constant density thmugh r. In 

the wobbling configuration the mass element at r is displaced to r+u, wh~re u is given 

by (4.12). The gravitational potential there, due to the mantle, is 

(4.20) 

since the mantle is taken as rigid. The Eulerian perturbation in gravitational potential at 

r is 

using (4.20) 

to first order in u. Using (4.19) and (4.12) we reduce (4.21) to 

a _.~. avo 
V(m)=-- m, -

I iW c38 

(4.21) 

(4.22) 

(4.23) 

(4.24) 
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dropping the factor eiwt and using (4.19), (4.9) and the result 

(4.26) 

4.1 Angular Momentum Conservation of the Earth 

The equation for the conservation of Ea11h's total angular momentum HE (for our 

Earth model) is 

dJIB dJI. dJik 
--= --+--"'L 

dt dt dt 
(4.27) 

where Hm and Hie are respectively the angular momentum of the mantle and liquid core 

and L is the external torque exerted on the Eanh; L=O for free wobble. 

The angular momentum of a wobbling rigid mantle has the form 

H = f ex d~ dm = f ~ x(w xe)dm =i ·w • dt • • .. 
-"* --

(4.28) 

where:; is the position vector of dm in the wobbling mantle and im is the mantle' s inenia 

tensor, 

i.• f (~·~ i-~~)dm,. ...t .. i•(C .. -A.)E3E3 (4.29) --
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since Ei are principal axes for the wobbling mantle. Substituting for Ei from ( 4.13) wr 

get 
i. =A. i +(C. -A..)[I,i, + L p3k(l,i,.. +Ill,)] (4.30) 

1: 

where i is the unit dyadic. Substituting (4.30) and (4.16) into (4.28) we find 

(4.31) 

where ~ and Cm are the moments of inertia of the mantle with respect to an ~4uatorial 

and a polar axis respectively and em is defined as 
c.-A .. 

e •---.. A .. 

c 
=A. 0(1--e..)(cu +0)13xm 

(,) 

The angular momentum of the liquid core is 

(4.32) 

Hk=Ck 013+0 f£2u.,. 13 -(u r+r u)iJdm+ Jrxll dm (4.34) 
k k 

(Wu 1993). Substituting for u from (4.12) into above equation we get 

Hk=Ck Oi3+0 fl2u·r 13-(u r+r u)i3]dm+iw Jrxu dm (4.35) 
k k 

Therefore 
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(4.36) 

Substituting ( 4.35) into ( 4.36) we get 

(4.37) 

-c2J13x[(ur+ru)-13] dm+iwC J13x(rxu) dm 
k k 

In a slightly dliptical liquid core the displacement u takes the form 

(4.38) 

using (3.8). 

We substitute (4.33), (4.37) into (4.27) and use (4.38) and the following two 

identities 

where 

and define 

P1 dP~~· -2< ,) ... • P., 3B• p•--2 c• p• 
2 d8 - PI+ • ;nil 11-2 + II II PI II 11+2 

A 11= 3 (n+m)(n+m-1) 
• 2 (2n+l)(2n-1) ' 

B"'= n(n+l)-3m2
, 

11 
(2n+3)(2n-1) 

C"'= 3 (n+2-m)(n+l-m) 
11 2 (2n+3)(2n+l) ' 

(4.39) 

(4.40) 

(4.41) 



S 2n2 2 g= Bo--~ r--qOJ 
3 3 

2 d 2 2 1 dp 2 du 
~"'-[r-(egJ-q0+n:(g0--C r)(-----)] 3dr 3 pdradr 

to obtain the final form of (4.27): 

6 d -1 3 -1 
2 A Oy (1-.Q e,.)((a)+Q)- 1ta2(2+a)£/£Po(~+2!.._) 

.. (a) 1S(l +a) 
0 

dr r 

d d -1 -1 -1 d -1 
2 Po 1 ...-1 X4 X. -1 X2 -1 X2 

+-re- vs .. (--+S-)+(S~ -2)-+B., --
3 dr dr r r ·dr 

3N 

(4.42) 

(4.43) 

Here we have made use of the orthogonality relations among a-;sociated ugendre 

functions. Expressions for ~ and em are given in appendix 1. Expression (4.43) 

indicates that only quantities of azimuthal order number m=-1 contribute to anb'Uiar 

momentum in our representation. 
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4.3 Expansion or the Boundary Conditions 

We now tum to the boundary conditions (4.2)-(4.4). We treat n as pointing 

opposite to~ on the core-mantle boundary. The first boundary condition requires 

where b. and b+- denote the fluid and solid side of the CMB respectively. Substituting 

for u in the mantlt from (4.12) and using 

(4.45) 

(Smith 1974) and keeping terms up to first order in ellipticity we get 

(4.46) 

Since we are making use of the 'natural' character of the boundary conditions in the next 

chapter we need not expand ( 4.46) any farther. 

At the CMB, equation (4.3) implies 

2 a~ 2 a~ 
[ V1(ro)--

3
re(r)P2- ] =[V1(rcJ--re(r)P

2
- ] 

or (6 ·.e .• ) 3 Or (b ..... , 

(4.47) 

Using (4.1H), (4.25), (3.29) and keeping tenns up to first order in ellipticity, (4.47) 

reduc~ to 



2. 
6GC [81th J dedr]• --y -- Po- u +a 

(A) 15 dr a2 II • 
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using the linear independence of the associated legendre functions. In (4.4X) 0
111

=1 if 

n=2 and 0 otherwise. Also at the:: CMB the boundary condition (4.4) requires 

av1 2 c)2yl 2e(r) J av1 (b',l.t) 
[---re(r)P2--+--P2 - ] 

ar 3 0,2 3r ae (b -,t.t) 

= 161tGC ye(b)bfp
0
(b·)-p

0
(b-)]Pi1e-it 

(,) 

(4.49) 

where we have made use of the continuity of ii·u(r) al~ross CMB. Using (4.1X), {4.25), 

( 4.39) and ( 4.40), ( 4.49) can be written 

• l61tGCb J _ _ a,.( 2 -1 
Sc.> [2 p~+5p0(b )e(b )]y •-,; [ -(n+l)-3eP2(n+l)(n+2)]P,. 

b ~~ 
dP -1 d...,-1 .sz..,-1 dP-l 

2 -1 11 ) ( "*'11 2 a-w,. -1 2 £ -1 I II ) +-E:P2 ---[----reP --]P +--~ P2 - - ::0 
3 d8 b dr 3 l tJr2 II 3 T II d8 

6
-

In the next chapter it will become clear why we have not removed p-l n from equation 

(4.50). 



CHAPTERS: THE GALERKIN METHOD AND THE NUMERICAL 
INTEGRATION OF THE GOVERNING EQUATIONS 

In this chapter we use the Galerkin method to obtain approximate solutions of the 

governing equations of core dynamics. In section 5.1 we give a summary of the Galerkin 

method applicable to a system of simultaneous PDEs suhject to boundary conditions. In 

section 5.2 this method is applied to the glweming equations and in section 5.3 we 

describe a method which we use to integrate the Galerkin equations with respect to 6. 

S.l The Galerkin Method 

Suppose we have a set of functions 

(5.1) 

which satisfies, in a region V, the set of simultaneous PDEs 

(5.2) 

for every i (i=l , ... ,N) where Lij are linear partial differential operators. Suppose also that 

there are a number of associated boundary conditions which have to be satisfied or. the 

boundary S of V 

(5.3) 

for every i (i=l, ... ,N) where Bij are linear (possibly partial differential) operators. 



Using a basis set f~<t k=l, .. . ,L, we introduce trial functions 

(j=l, ... , N) (5.4) 

which need not a priori satisfy the boundary conditions. The Galerkin method tries to 

make l:jLijXj as nearly null as possible by requiring 

N L 

E Eft: L11 c~* 1. dV=O <S.S) 
J•l .hl v 

for l=l, ... ,L, where • denotes the complex conjugate. The resulting set of linear 

homogeneous Galerkin equations have the form 

N L 

EEHIIJi. Cjt= 0 
1•1 k•l 

(5.6) 

with 

HfiP:= ft; Ltl ft dV (5.7) 
y 

Since in general the trial functions do not a priori satisfy the boundary conditions, we 

choose a set of basis functions 1p1 equal in numher to those used in constructing the trial 

functions Xj and extend (5.5) to require that 

N L 

L L £ft: LI-CJt /,) dV+ J .; BI-CJic /,) dr]= 0 
J•l k•l y s 

(5.8) 

The Galerkin equations then take the fonn 



where 

L N 

L L FliJk Cit= 0 
hi J•l 

Flifl= Hlil + f1Jr; B,f.dS 
$ 
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(5.9) 

(5.10) 

By proper choice of weight functions, and by use of the divergence theorem, it 

may be possible to remove the surface integral from the boundary conditions (i.e. by 

choosing 'PI so that the surface integral arising from the boundary conditions is cancelled 

by the surface integral produced by using the divergence theorem.) When this is possible, 

the boundary conditions are called natural. 

We can write (5.7) in matrix form by setting up one-to-one correspondence 

m=N(/-l)+i, n=N(k-l)+j, so Cjk=a0 , Hlijk=Gmn. Then (5.7) becomes 

I: G_a,=O, m=l, ... .LN. (5.11) 
II 

G is then a (LN) x (LN) matrix which hereafter we refer to as the coefficient matrix. 

5.2 Application of the Galerkin Method to THPD 

Since only spherical harmonics of order -1 are needed to represent the field 

variables associated with wobble/nutation, we represent the functions defined in chapter 

3 as: 
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N 

'"' ' ) ~ ( -1 ,-1 «» -1) y-1 u.. , vl = L.J x,. , " , " " (5.12) 
11•1 

where N denotes the degree of truncation. We construct the trial functions as follows: 

L 

c;t. L a(L(II-1)+1] /~r) 
1•1 

L 

X~t·E alLCN•II-l>•ll f~r) ,., 

L 

«»;1!!L aiL(2N•11-l)•IJ f~r) 
1•1 

(5.13) 

(S.14) 

(5.15) 

where ai are constant andjj are functions of r only. Before proceeding funher we should 

note how we integrate the equations over ellipsoidal volumes. Suppose we have an 

integral over the liquid core volume, 

I= Jj{r) g(8) dv 
k 

To first order in ellipticity we can write this as 

1=21t J 
0 

2 b(l - -1(6)1'2) 
3 

r j{r) g(6)r2 sin8d8 dr 
0 

after integrating over cjl. To first order in ellipticity we can write (5.17) as 

(5.16) 

(5.17) 



45 

II b 

1=21t J g(6)(jf(r) r 2dr-1b3e(b) j(b) P 2(cos6)) sine d8 
0 0 3 

(5.18) 

The volume integral in (5.18) is over a sphere of radius band the surface integral corrects 

this volume integral for an ellipsoidal volume of radius b[1-2/3 E(b) P2(cos 8)]. 

5.2.1 Galcrkin Furmulation of the Entropy Equation 

Rewrite equation (3.27) as 

(5.19) 

The Galerkin representation of(5.19) is 

N L 

L L J!._ Pj1~itf..aU.N•n-J)+l [C·V(f, P;
1e ·it) -<o>2(1-o~ P;1e-itj 

11•1 l•l lc (5.20) 

for each pair of indices (k,j), k=l, ... ,L, j=l, ... ,N. We have not added any of the boundary 

conditions to equation (5.20). Substituting for C and B1 from (3.10), (3.26) and 

integrating over + equation (5.20) becomes 



dP-l 
(p)l p-l p p-l II) /. p-1 p p-l 

+s4 2 ~ +.~, 2 2 d8 -a~ll-t)+l"l 11 +t2 2 11 

+t4 (Pl)l p~l)-c.>2(1-o~L(2N•II-1J•{, p;lJ r2 sin8d8 dr 

" ~re(b)JPz (f" pJ-t(aL(N.,.-ll•'[s6 p;t+s7 Pz p~l 
0 

d.P-1 
+s,P;t ~ ]-aL<N•II-t)•l[t6 p;t+t, p2 p;t]])b2sin8 d8]=0 
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(~.2)) 

for each (k,j). In the next section we descrihe a method which we use to integrate with 

respect toe functions of the type (5.21). Different terms in (5.21) are ddined a.10 follows: 

2 o2 df, 2o 
+-t1D (---+-!J 

3""t'>0 3dr r' 

(5.24) 
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(5.25) 

(5.26) 

(5.27) 

2o2 2 2 ~ s1=--(g0 --0 r)-
3 3 dr 

(5.28) 

(5.29) 

(5.30) 

t2=__@_[ -~(o2+ 2re dcz (1- o2 ))'of9 -~C2r)a 
a 2 3 cz dr 3 \6o 3 60 

(5.31) 

2 2 4 d o2 8o2 

+(go-30 r)(3 dr (rego)(l-3)---gegJ]!, 



4H 

(5.33) 

(5.34) 

with 

(5.35) 

5.2.2 Galerkin Formulation of the Momentum Equation 

Equation (3.28 ) can be written as 

(5.J6) 

The Galerkin representation of (5.36) is 

(5.37) 

+ J "'; [(ri11) -(li 11)]ds-=0 
s - • 
lr 

where we have added boundary condition (4.2) to the ahove formulation. + and - in 

(5.37) denote the fluid and solid sides of the CMB. Applying the divergence theorem to 

(5.37) and using ( 4.37) we get 
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w 2(1-o2
) /It P/ ~,.(liw) ds-Jw!t P1-

1 ~,.>'[I',-Vx -PC1• Cldv 
s,. - le (5.38) 

-w2(1-o2
) J!, P~1 ~dv+ J ljl~[(liw) -(li'fl)]m=O 

re a s,. - • 

Now, hy choosing 

(5.39) 

we can make use of the natural property of the boundary condition (4.46) and cancel 

surface integral produced from using the divergence theorem and the one arising from the 

boundary condition and write (5.38) as 

L N 

E E [aWI,,.-1)+/ <fVC/k P/ e,.)·r,-vct; P~1 ~-~ dv 
1•1 11•1 le 

(5.40) 



Substituting for f P and C1 into (5.40) we get 

L N ,~ ,y ' dP-1 
-~·· 't"" [a J(-UJt p-1[(1-alcosle)-UJ'p·l __ ,, p• -" - a ,.,-•] 
LJ L L(N·•-•H dr 1 ,.~_ • 3 2 d8 J r .. 
1•1 II•) lc UT T T 

(5.41) 

Here we have labelled y=a3LN+N+l ' Using (5.34) and some other identity relations among 

associated Legendre functions (given in appendix 2) we write equation (5.41) a.co 



L N bfl 

21t[L L J fJ;'j' (aL(N•II-1)-l(wt p;
1 
+w2 Pz p;t 

1•1 11•1 0 0 

d.P-l 
0 -1 " ) '- p-1 o p-1 (P )2 p-1) 

+W3 .,-2 d6 -QL(II-1)+1'41 II +~ .,-2 II +z. 2 II 

-w2(1-o2)aL(2N.,.-tH J, P;1
] r 2 sin6d0 dr+~re(b) 

" dP-1 
xJPz (fa Pj'(aL(N•II-1H[w6 Pz p~•+w7 Pz p;l+wrf'z-t ~ 

0 
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dP-1 (5.42) 
+Wg(P2)2 p;l+W1oP2 p~ ~ )-aL(N•~t-t).J~ p;1

+Z, p2 p;l 

d.P-1 d.P-l 
+z,P2-1_"_+~(Pz)2 p;t +t.1oPz P%1 -"-)J)bzsine de] 

de d9 
-8n w(l-o2

) aN<3L.1,.1 Cb e(b) f/1 P1-
1P%1 b1sin8 de=O 

s,. 

after integrating over cjl. Different terms in (5.42) are 

dft o2 dJ, o f~t( /, 2 z dJ, of, /, ) (5 43) w1::-[(l--)---.t;]+- --[-n(n+l)-l]o -o---+-n(n+l) · 
dr 3 dr r 1 r r 3 dr r r 

2( 2 "1. dJ, /, df, 2 J, ) w2=a ----+-[-2-+-n(n+l) -1 
3drdr r dr 3 r 

(5.44) 



(5.45) 

(5.46) 

(5.47) 

(5.48) 

(5.49) 

(5.50) 

(5.51) 



J3 ( 2 2 2 df~; It 2 2 d a2 dft 
~'"' a2 (go-30 r)[ -3 dr -2-;:-lo +3 dr (regJ[(l-3) dr 

2 /, 0
2 o 2 2o2 dh 2a2 6/~; 4o2 h 2a h 

+3-,-•-;:-f.J-3eg0[3 dr -(1-3>-;--)-;•-,-] 

4 n dtt. 2 2 o2 df~; 2o2 !~; a ) 
-3-; dr [(g0 -3° r)[(l-J)dr •3-;•-;/•JJ !, 

+ 4 re da. w2(1-o2)~ ~ 
3 a. Dr a2 • I 

J3 ( 2 2 °2 
h 2 2o2 It ) 

:t_::- (g, --0 r)----eg (1--)- J, 
--, a2 ° 3 3r 3 ° 3 r 

p o2 
( 2 d !~; 4 /" 4 re da 2 2 /1.: ) z,=- --(r€gJ-+-eg -----(g --C r)- ~ 

a.2 3 dr 3r 9 ° r 3 a dr 0 3 3r 1 

2/1.: 2 "'=- a .!, 3r 

Po2 2 2 2 eft lOft 
~::-(g0--C r)[------1 .t; 

a.2 3 3 d? 3 r 1 
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(5.52) 

(5.53) 

(5.54) 

(5.55) 

(5.56) 

(5.57) 

(5.58) 
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(5.59) 

5.2.3 Galerkin Formulation of Poisson's Equation 

The Galerkin formulation of equation (3.29) and the corresponding ooundary 

condition ( 4.50) is 

(5.60) 

-(1-p)(X +V1)]dv+ /ft P1-
1[kft hand siM of (4.50)]df=0 

s" 

Using the definition of the L1placian operator and some of the identity relations (from 

appendix 2) among associated Legendre functions and defining 

(5.61) 

we rewrite (5.60) to first order in ellipticity as 



N L "'" 4 G I' r r J r -1 ( -1 1t Po It -1 2n L.. L, [ 11 .. P1 alJ.N.,._1)+1 gt(r) P,. + 
2 

[ P,. 
11·1 l•J 0 0 a 

P. 

-Pau,_1H] ) r2 dr sin8 d8-~be(b) pI" P/ ft:IL(N•II-I)•t gt(r) 
0 

4 1t G Po J, 
+ 2 )[(1- P)(aL(N•II·I>•l+aL(2N.,.-I>•t> 

ex 

- paL(,.-I>•'J)P ?;•b2 sin8d8 -aL(2N•11-l)•tj P/rJ" dhdr, p;• 
b 0 

_2re v; d
2
/,+ ttfi(cft+l~)] p p-1 

3 " drz dr dr r 2 
" 
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dp -1 ft 

+ 
2 

!!.j {p; 1
-"-] b2 sin8 d8 ] +a3LN.,.J Pj1 

[{ -(n+ llfk (5.62) 
3r d8& 

0 

2 t!fl ) 1 -3re(b)((n+2)(n+l)f.-(r dr +2~)(n+l)] P2 P; 

dP-1 R 
+ 2e(b)fl'i -"-] bsinO d8]+ 16nG bO l[ Po de 

3r d8 6 s(&) 6 dr 

• 
+Spo(b-)e(b)]aN(3L•1)•1 f~:(b-) J P,-tp;•bzsin28d8=0 

0 

The contribution of V 1(oc) in the mantle, and the wobble of the mantle, introduce 
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N+ I additional unknown coefficients to the Galerkin formulation of the governing 

equations. We have labelled these coefficients a3LN+n' n=l, .... N+ 1: i.e. every o
11 

in the 

boundary conditions corresponds to a3LN+n andy corresponds to a3LN+N+l' To solve for 

these coefficients we need the two boundary conditions not yet incorporated into the 

Galerkin equations, namely (4.43) and (4.48). The coefficient matrix of our Galerkin 

formulation then has (3LN+N+ I) x (3LN+N+ 1) entries. 

5.3 Integration with Respe(:t to a 

Suppose we have a functional of the form 

(5.63) 

where E11 are constant. We could use a standard double integration technique to evaluate 

but this method takes too much CPU time, so we look for an alternative technique. 

In this thesis we choose to use the orthogonality relations among associated 

Legendre functions to remove the a dependence from the equations and then integrate 

with respect to r. In what follows we need the two identities ( 4.39) and ( 4.40), and in 

addition 
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(5.64) 

~·, 2 c• .. • p• c"'[s• s• 1 p• c• c• P +(~,. ) + II .1111+2] II + II II + 11+2 11+2 + II 11+2 11+4 

(5.65) 

Using these identities (5.63) takes the form 

II '2 

I=E,JP,."' pf• sinO d6 jF,.(r) dr (5.66) 

0 '• 

The orthogonality relation can now be applied: 

II 

fp-lp-1 sine de= 2 (q+m)l a 
o " f 2q+l (q- m)l fJt 

(5.61) 

To apply the above technique to the Galerkin formulation of the governing 

equations w~ us~ a procedure which employs a five-step do loop to integrate the 

equations with respect to 6. The algorithm for this method is given in appendix 3. After 

integrating the Galerkin equations with respect to 6 we let 



(5.68) 

and the IMSL subroutine dqdag is called to integrate the equations with respect to r. 



CHAPTER 6: DISCUSSION, NUMERICAL RESULTS AND 
CONCLUSION 

The aim of this thesis is to utilize the THPD by computing the periods of the 

Earth's Chandler wobble, nearly diurnal free wobble and some of the Earth's other inertial 

modes. In chapter 3 we showed the derivation of the equations constituting THPD and, 

in the same chapter, we induded the effect vf ellipticity in the equ.:~tions.ln chapter 4 we 

expanded the boundary conditions which must he invoked on a wohhling Earth.ln chapter 

5 we applied the Galerkin method to approximate the solution of the equations. 

In this chapter we first apply the Galerkin method to the Poincare Earth model , 

for which analytical solutions exist for the modes mentioned above. These results will 

then be compared to the ones computed using the Earth model described in chapter 2. 

6.1 Th~ Poincare Earth model 

The Poincare Earth model consists of a rigid stratified r:1antlt: and an 

incompressible homogeneous liquid core. The analytical solution (Wu 1993, Rochester 

lecture notes) yields a period of about 270 days for the Earth's Chandler wobble (CW) 

and a nutation pt:riod of about 350 days for tht: Earth"s nearly diurnal free wobble 

(NDFW). 

The other inertial modes of the above Earth model have solutions of the form 
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(6.1) 

(Aldridge and Lumb 1987) where: 

(6.2) 

and f=ll(l-E)
2
-1, E is the ellipticity of the CMB and has a value of 0.002551 (tahlt' 5). 

We compute some of the Earth's inertial modes using a: e4uation (6.1) and h : applying 

the: Galerkin method to Poincare's equation tn makt surt• that the same results are 

obtained. To compute ptriods of the Earth's CW and NDFW in the Poincare mmld we 

use the well known analytical results 

(6.3) 

where eE and AE are respectively the Earth's dynamical ellipticity and moment of inertia 

with respect to an equatorial axis. The frequency of the free core nutation (FCN) is then 

given as 

<.t.> FCN (o) NDFW 
--=1+--- (6.4) 

n o 

As we showed in chapter 3, when the liquid con~ is assumed to he homogeneous 

and incompressible, the momentum equation reduces to the Poincart: e4uation 
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(6.5) 

Since x is the only dependent variable in (6.5) the entropy and Poisson equations are 

redundant and are removed from the formulation. Also the boundary conditions involving 

V 1 are redundant [V 1 does not appear explicitly in (6.5)] and hence removed. Therefore 

we:: are kft with one Galerkin equation (5.43) which includes the boundary condition 

( 4.46) and the boundary condition c::quivalent to the total angular momentum conservation 

of the Earth, which we treat as an independent equation to solve f0r y (of course in these 

equations ~ and "r;,/a2 are both 0). The coefficient matrix of this formulation therefore has 

(LN+ l)x(LN+ 1) entries. The roots of the determinant of the coefficient matrix, regarded 

as a function of frequency w, correspond to the frequencies of the Earth's oscillations. 

Tahl~ 6 shows the periods of the normal modes computed using the two methods 

dc::scribed above. Except for the penods of the Chandler wobble and the nearly diurnal 

free wobble which differ slightly from those computed using (6.3) and (6.4), the ine:1ial 

modc::s computed using the Galerkin method are identical, to 4 significant figures, with 

those computed using ( 6.1 ). 

Table 7 shows the periods of the same modes as in table 6 using the formulation 

given in chapter 5. Except for the CW all the modes whose periods are reported here are 

rc::trograde modes. 
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6.2 Convergence or the Solutions 

For the Poincare case th~ convergence of th~ Galerkin fl)rmulation is very fast . 

For almost all the modes whose periods are reported, the solutions converge when we set 

N=2 and L=4. We testt:d our program for higher values of N and L to make sure of tht' 

convergence. 

Forth~ Earth modd described in chapter 2, the solutions converge for the period 

of the Chandler wobble wh~n N:2 and L=S, but for the case of nearly diurnal free 

wobble conv~rgence required N=2 and L:::I3. We tested our program for the cases N=3 

and 4. The results ar~ almost id~ntical to the cas~ N=2. For some of the inert ial modes 

whose periods are listt:d in table 6.2 we needed higher values of L i.t. L> 12 for the 

solutions to converge. For some frequency ranges the dettrminant of the coefficient 

matrix becomes unstable when L> 16 and many false roots appear in the eigenperiod 

spectrum. For this reason we were not able to achieve convergence for the modes whose 

periods are not listed in table 7. 

6.3 Conclusion 

The close agreement between the periods of the modes listed in tables 6 and 7 

show that THPD may well be an effective tool in solving the governing equations of core 

dynamics for the long period free oscillations. Although we considered :rnly the case of 
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a neutrally stratified liquid core in our computations, the equations and the Galerkin 

formulations were derived so that they include any value of ~· 

Future work on this subject should consider a non-neutrally stratified liquid core, 

include the presence of the solid inner core and take into account the elasticity of the 

mantle and the solid inner core. This would permit study of the effects of (a) non

neutral stratification of the liquid core on the inertial modes, including those involving 

wohhle /nutation, and (h) truncation at low values of N. 



Table 6 Periods of the Chandler Wubhle (CW), Nearly Diurnal Free Wobble (NDfo"W), 
Free Core Nutation, and some of the other inertial modes of the Poincare Earth 
Model 

a: Using eq. (6.1), (6.3) and (6.4) 
o: Using The Galerkin Method 

(periods are in days) 

Mode a b 

-----------------------------···················------------------········· 
CW 
FCN 
NDFW 

p -! 
4 

p -1 
6 

272.6 
347.4 
0.99713 

0.9980 

0.5851 

1.6313 

0.5371 

0.7645 

2.2676 

271.7 
348.6 
0.99714 

0.9980 

0.5X51 

1.6313 

0.5371 

0.7645 

2.2676 
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Tuhle 7 Periods of the same modt:s as in table 6 using the Earth model described in 
chapter 2 

Mode Period (in days) 

cw 273 .2 
FCN 347.4 
NDFW 0.99713 

p .. -1 0 .9973 

0.5849 

P4 
- l 

0 .5371 
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Appendix A 

A.l Derivation or the Expression for A
18 

The equation for ~ is given as 

A .. = J r2[cos28+sin28 sin2~]dm 
lltiMIW 

= Jr2p0(r)[cos28+sin'-e sin24»] dV 
I' 

(A. I) 

where 6 is the colatitude and tj) is the longitude. Integrating (A.l) with respect tu +we 

get 

,. ~1 

A .. =21tf Jr4p.,(r)[cos2e+.!sin26]sin8 dedr 
o~, 2 

(A.2) 

where i;1 and s2 are the radii of the CMB and the Earth's outer surface of the Earth 

respectively and 

2n 

f sin24> d4>=1t 
0 

(A.J) 

Substituting for cos26 and sin26 from (5.34) and for r in terms of r0 from (3.24) 

into (A.2) we get 
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(Aat) 

Integrating (A.4) with respect to 0 we get 

Jl 
81t J 4 1 de A.,=- p0(rJr0 [1--(Se+r0-)]dr0 3 b 15 dr 

(A.S) 

A.2 Derivation ul' the Expression for Amem 

Since em appears in the equations in the combination ~ern only we show the 

dt:rivation of A
01

em. To derive the expression for ~em we proceed as follows 

A.,e.,=C
101

-A,.= J [(r sine coscl>i-(r cos8)2]dm _,.,. 

= J p0(r)[sin26 coslct>-cos28]r2 dY 
v. 

(A.6) 

where C 01 is the Earth's moment of inertia with respect to a polar axis. Substituting for 

sin10 a'\d cos20 in terms of Legendre polynomials and for r in terms of r0 into (A.6) we 

gt:t 

(A.7) 

Integrating (A.7) with respect to 9 using orthogonality relation for associated Legendre 



70 

functions, 

ll 8nJ ck 4 A,..~,..=- p0[Se+r-] r dr 
15. dr 

(A.8) 

Expressions (A.S) and (A.S) are then integrated numerically fnr Am and Amem 

respectively. 

A.3 Derivation of the Expression for ~ 

In the interior of the Earth the gravity potential is given a-; 

(A.9) 

where V 0(r) is the gravitational potential at point ron a surfact: of mean radius rO' (A.9) 

can be written as 

(A.lO) 

To first order in ellipticity, LHS of (A.lO) is constant over the surface of mean radius r
0 

and therefore so must be the RHS. We can interpret U0(r) as the gravitational potential 

at r due to the density distribution p0(r) in the non-rotating spherical Earth model. 

Therefore we can write (A.IO) as 



71 

(A.ll) 

to first order in ellipticity. Then 

g8(r)=-VW0=-I{g0(r)- 2 C2r]-~V(regcf2) 3 3 
(A.l2) 

=-f [g0(r)-~r02 + 2 ..!.(rego)P1]-A ~.egcl'~ 
3 3 dr 3 

wh~r~ &>(r) on th~ RHS is gravity in the non-rotating spherical Earth model. The 

correctness of (A.l2) can be verified by showing that Clairaut's equation (2.23) results 

from requiring that (A.12) satisfy Poisson's equation (1.5). 



Appendix B 
Some Useful Identity Relations Among Spherical Harmonics 

In what follows we have used integration hy parts to derive the final expression. 

The integrations are taken from 0 to n . 

(8.1) 

(8.2) 

dP-l dP-1 

Jcos6[P -1 -"-+p-1 -'-]sin6 de=JP-1 p-1sin6 d8 
sin6 f d8 II de II f 

(8.3) 

(8.4) 
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(B.S) 

dP-1 d.P-1 dP-1 

Jsin2e [P - 9
- --"-]sine de=-JP-1[~(1-2P )P2

1
-

9
-

2d6 de "3 2 de 
(B.6) 

dP-1 dP-l 

fp cosB[P-1 -"-+P-1-'-]sine de=f(3P +l)P-1 P-1 sine de 2 sine 9 de " de 2 
" 9 

(B.7) 

dP-1 dP-l p-1 p-1 

JP £-"---4
-- " 

9 ]sine de 2 
d6 de sin28 

(B.8) 

dP -l 
=JP~ 1[q(q+l)P2 P;

1-P; ~ ]sin6 d6 



APPENDIX C 
Integration with Respect to 8 
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Here we show the algorithm which we use to integrate the Gakrkin formulation of the 

governing equations of liquid core dynamics with respect to e. We rewrite equation 

(5.62) as 

" "z 'z "z 

I= JP; 1 
P;

1
sin8 d8rE,.,..J~ 1,._.(r)dr+E,..2J~2.~~.2(r)dr+E,.J~ 3.~~(r)dr 

0 "I 'I 'I 
(C.l) 

'z "z 

+E,._2J ~4,. •. 2(r)dr+E,.~J t, .... _.(r)dr) 

after operating on the a<;sociated Legendre functions with the identities ( 4.3lJ), ( 4.40), 

(5.63), (5.64) and collecting terms of the same degree. 

The algorithm wt: use to evaluate Si,j in (5.66) is as follows: 

m=n+4 

do 1 i=1,5 

if(m.lt.2.or.m.gt.N) goto 2 {N is the degree of truncation} 

if (i.eq.l) then 

sl=O 

s2=0 

s3=0 



k=n+4 

else if (i.eq.2) then 

sl=O 

s2=~+2-1 

s3=2(n+3) ~+2-1 

s4=~+2-1 [ Bn-1+ Bn+2-1] 

s5=Au+2-1 [2(n+3) 8
0

-
1+3 B

0
+2-1 ] 

k=n+2 

else if(i.eq.3) then 

sl=l 

s2=B -l 
D 

4=A -1 C -1 (B -1)2 A -1 C -1 
S ~ "n n-2 + n + ~ "11+2 n 

s5=2(n+ l)A -1 C -1 +3 (B -1)2 -2 n A -1 C -1 
•"n n~ n •"11+2 n 

else if(i.eq.4) then 

sl=O 

s3=-2(n-2)C
0

_2 -
1 
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k=n-2 

el&e if (i.eq.S) then 

sl=O 

s2=0 

s3=0 

4 C -1 c -1 
S = n-4 n·:! 

5 __ ..,( -4) c "1 c "1 
s - - n n-4 n-:! 

k=n-4 

end if 

[Fjk are as ddint:d in (5 .62)) 

2 m=m-2 

1 continue 
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APPENDIX D 

Gravitational Potential in an Ellipsoidally Stratified Body 

The exterior gravitational potential, at a point (r,S,cj>), of a homogeneous body of density 

p bounded by the surface 

is 

where 

2 
~ =R[l--€P2(cos6')] 

3 

2x 11: ~ 

v.= J J J .£.r1sin61d61dcl>1 

0 0 0 c 

(D.l) 

(D.2) 

(D.3) 



- - . 
\' / ~ ' . ,- \ - ' \ . ) 

7S 

Integrating (0.2) over r' using (0.3) we get 

- 3 z ... 
G R"• v.=_.e. E J JP,.(cosa)[l 
r ,...() (n+3)r" o o (D.4) 

-~e(R)P (cos8')]' .. 3sin8'd8'd4>' 3 2 

To evaluate (0.4) neglt:cting all quantities smaller than the first onkr in dlipticity Wt< ust 

the binomial theorem in the integral, then substitute for 

(0.5) 

and finally use the addition theorem for spherical harmonics, which gives 

z .... 

J JP11(cosa)P1{cos8)sin8'd8'd4>'=~P,.(cos8)6111 
0 0 2n+l 

(D.6) 

The result is that 

(0.7) 

The internal potential of such a body must satisfy Poisson's equation and he 

continuous with (0.7) across the boundary (D.l). The function 

(0.8) 

satisfies these requirements. 

Now w~ shall suppose that the heterogeneous body of mass M is huilt up of a set 
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of concentric spheroidal surfaces 

(0.9) 

on each of which the density p=p(ro) is constant, according to the hypothesis of 

hydrostatic equilibrium. Thus a particular equipotential is specified by its mean radius 

and E is a function of r0 . 

For the heterogeneous mass the standard technique is to regard the contribution 

to the potential V at an interior point r from a shell of density p0' bounded by the 

spheroids r0 ', r0 ' +dr0 ' as just the difference between (a) the potential at r due to a 

homogeneous mass of density p0 ' bounded by the spheroid r0'+dr0' and (b) the potential 

at r due to a homogeneous mass of the same density bounded by the spheroid r0'. Taking 

into account that the contributions from spheroids containing/not containing r will be 

given by (0.7)/(0.8) we have the gravitational potential at a point r=(r,O,cp) interior to 

the mass: 

'o I r~ 2 d[e(riJriJ I 
V=4nG (fp 0[---- P2(cos8)]dr 0 r 15 r3drl 

0 0 
(0.10) 

J
R 2 de(r1J 

+ p1 [r 1 - r 2P (cos8)]dr1 \ o o lS dr 2 0' 
'o 0 






