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Abstract 

The Karmoy ophiolite is a remnant of Early Ordovician oceanic crust whid1 is thought 
to have formed in a supra-subduction zone environment, and undergone d~vclopmcnt in 
a back-arc basin before its final emplacement on the Baltic craton. The up('k:nnost 
sections of this ophiolite are exposed in the study area; the rock types arc gahhws. 
sheeted dykes, plagiogranites, and lesser amounts of pillow lavas, diorites. volcaniclastic 
sediments, and breccias. 

Contained within these rocks are two sulfide deposits, the Yisncs massive Fc-Cu.J.n 
sulfide deposit and the Feoy massive Fe-Cu-Ni-PGE sultidc dcposiL While they arc 
spatially quite closely related, these deposits record two distinctly different J'k:riods ul 
mineralization during the evolution of the ophiolite complex. 

The Yisnes deposit formed as a result of sub-seafloor alteration of basaltic rocks of thl' 
Visnes High Level Complex. Rxks of this complex are altered to spilitcs on a regional 
scale. Geochemically, alteration of the sheeted dykes is defined by: a relative loss ol 
K20, CaO, MnO, Al203, MgO, Cr, Ni , Cu, Zn, Pb and Sr; a relative g:\ill of Ti02, 
Fe203, Na20 and Zr, and; variable changes in P205 and Si02 relative to unaltered 
rocks from similar tectonic environments. 

More local zones of intense alteration and mineralization with in the sheeted dykes an: 
called ";!pidosite zones", and these represent flowthrough zones for highly corrosive, 
magma-influenced hydrothermal fluids. "Epidotites", or deuterically formed rocks 
composed of nearly 100% coarse crystalline epidote, arc closely associated with such 
zones, and their presence suggests that the hydrothermal fluids responsible for format ion 
of epidosite zones may well have had a direct magmatic war.cr input. However, o xygen 
isotope evidence from epidotites and plagiogranites suggest that the magmatic fluids may 
ultimately have been derived from magma-chamber assimilation of seawater altcn:d roof 
rocks. 

The Feoy deposit is a small, orthomagmatic Ni-sulfide body which appears to have very 
few known aHalogues elsewhere in the world. Petrogenetic modelling using Platinum 
Group Element (PGE) abundances and sulfur isotopes indicates that the sulfides 
precipitated from an already-depleted partial melt during its ascent from a mantle source_ 
The deposit is predominantly a massive pyrrhotite/chalco::>yrite deposit with minor pyritl: 
and pentlandite. It is unique in its high concentrations of Platinum Group Minerals 
(PGM's); this is a reflection of the PGE-enrichcd nature of the residual sulfidl! fraction 
present in an already-depleted (previously melted) mantle parent. 

The co-magmatic silicate host rocks for the Feoy deposit are high-Mg basalt dykes, and 
these contain Ni-sulfides interstitial to silicate minerals. The host rocks (:an bl! 
petrogenetically modelled using PGE's, and as ex~tcd show PGE patterns indicative 



of formation from a second stage melt, or from partial melting of an already-depleted 
mantle. 

Th~.: h:oy deposit formed later than the Yisncs deposit; rocks associated with the Vi sne~ 
deposit arc spilitized, and arc dated at ca. 493ma (using Pb/Pb Zircon dating techniques); 
rocks associated with the feoy deposit (high-Mg dykes, Type 2 plagiogranites and 
clinopyroxenc-phyric intrusioro; in the Feoy area) are not spilitized, and are dated at ca. 
470ma. 

All rocks in the study arl!<l are variably altered and deformed . It appears that such 
deformation post-dates fvrmation of both sulfide deposits as well, since they have both 
been mobilized alon~ shear zones. Also, volcaniclastic sediments of the Torvastad Group, 
which arc compositionally and genetically ielated to late clinopyroxene-phyric intrusions 
in the area, and which represent a period of arc-basin formation following arc-volcanism, 
arc thcmsclvr;5 quite deformed and cut by shear zones. 

The (X:currcr.ce of tourmaline-bearing breccias in the Feoy area is an intriguing addition 
w the study of late deformation features. Breccia, containing rounded Ni-sultide and 
tourmalinite fragments in a hydrothermal cement matrix, is found in the Feoy area. 
Textural, isotopic and chemical analysis of the breccia and tourmaline strongly suggests 
that it formed as a result of the forceful intrusion of a hydrous granitic body into the 
surrounding country rocks. This may well represent part of the nearby West Karmoy 
lgn~:ous Complex . which is a large granitic pluton that intrudes all rocks of the Karmoy 
ophiolite. Indeed, shear zone formation in the study area may also be related to this late, 
post -cmplaccml.!nt event. 
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Chapter 1: Introduction 

1.1: Local ion and access 

The Visnes and Fcoy regions are part of the island of Karmoy in southwest Norway 

(Figure 1.1 ). Th~> town of Visnes is easily accessible by automobile and ferry, and is 

ahout three hours drive south from Bergen, the nearest city. The largest town in the 

immediate area is Haugesund, which is approximately 30km's drive from Visnes. There 

is a large airfield in the Visnes area which serves Haugesund, and daily flights are 

ttvailablc to and from Bergen and Oslo. 

The Visncs region is an area of approximately three square kilometers comprising the 

northwest section of the island of Karmoy (Figure 1.1.). The area has a population of 

ahout 2000, with small scale farming and fishing as the main ind· ~tries. In earlier, more 

prosperous times, the Visnes copper mine was very productive, and the population was 

l:onsidcrably larger. The copper mine has not been worked for over 15 years. 

The Fcuy area (Figure I. I) includes a cluster of about 4 islands, with many more smaller 

skcrrics. situated about I .5 km northwest of Yisnes. Feoy is a sparsely populated fishing 

wmrnunity which is accessible only by boat. The Feoy Ni-sulfide occurrence was mined 

'111 a smttll scale.! from the 1890's to the 1920's. 

. ~ ... . -- .. . 
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Figure 1.1: Location maps of the Visnes and Feoy areas. 
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1.2: Phy .. iography and climate 

The Vi-,ncs region is dominated by a rugged, coastal topography with extensive 

liug-covcrcd barren grounds and excellent rock exposure along coastal areas. Further 

iuland, exposure is reduced as grassy fields and evergreen stands become more 

fn.!4ucnt. Along the coast, numerous small (from lO to lOOm in width), vegetation free 

skcrries serve as a protective barrier to the open North Atlantic Ocean. 

The Fcoy islands further offshore offer much better exposure than at Yisnes, being 

relatively flat, treeless and wave washed. Field work in the Feoy area wz.s faci litated by 

U'>e of a Zodiak or light boat, as much of the best outcrop is on very small skerries. 

1.3: l,rt~viuus work 

The first major geological study of the island of Karmoy had not been initiated until 

n:n.·rH times, when Gcis (1962) attempted to define the nature of the 

lav~t -grecnstone/gabbro boundary. Geis concluded that the gabbros were of metamorphic, 

not igneous, origin, based on the lack of a clearly intrusive boundary with the 

surrounding rocks. Birkland (1975), on the other hand, suggested that the presence of 

layered crystalline rocks could only result from cooling of a magma. 

Initial interpretation of the Karmoy ophiolite as such was made by Sturt and Thon 

( 1978). a study which paved the way for subsequent reinterpretation of numerous other 
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mafic-ultramafic bodies throughout Norway as ophilllitcs. Sinl"c th~n. scn~ra1 dctaikd 

geochemical, geochronological and ~trographk studies of th~s~ rocks haw 1ll·cn 

completed (Sturt ~. 1979; Furnes £.U!l. 1980; Pcdl·rscn. 1982; 1\xkrsen and Malpas. 

1984; Pedersen klill., 1987; Dunning and Pedersen, 1987: Pedersen anJ lkrtogl'll, lll!\7). 

The old Yisnes copper mine is now owned by Norsk Hydro. anJ the f<K'ilitics ;uc 

presently being converted for use as an aluminum processing plant. As .1 n:sult. III<IIIY 

of the old mine reports and much of the accompanying drill core have been disposl·d 

of. However, the sulfide occurrence has been well documented over the years (cg .. l'l'r 

Singsaas, 1958; Vokes, 1968: Geis. 1962; Vokes and Gale, 1976). 

The Ni-sulfide deposit of Feoy has not been thoroughly studied from an al·;u .. h.:mil· 

standpoint since its closure in the 1920's. In this respect the data presented on the h·oy 

Ni-sultides are new, although Feoy was previously known to contain high contents of 

Platinum Group Elements (Foslic, 1938). Also, a recent review of Cu-Ni-sulfidc deposit\ 

in Norway (Barnes tl_lli., 1987) h::t.; documented elevated PGE valucs from Ni ·sulliJe 

grab samples in the study area. As a result of the lack of recent mining a<.:tivity, it ha\ 

been difficult to locate data from the mine's operative years. Consequently, the prc\cnt 

study relics on an extensive sampling program on both Vism:s and F~oy , anJ on field 

mapping by R.B. Pedersen (1982; 1986) and by this writer (1985, and prc~cnt study). 
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1.4: Aims of the present study 

Original interpretation of the Karmoy ophiolite implied late Caledonian obduction of a 

slice of oceanic crust which formed, along with the several sulfide occurrences, in a 

major ocean basin (Sturtand Than, 1978). Since then, geochemical studies have indicated 

that the ophiolite may have a closer affiliation to a supra-subduction zone spreading 

center (Fumes~., 1980; Furnes kl..al., 1982; Pedersen, 1982; Pedersen and Hertogen, 

1987). More specifically it is now possible to trace the ophiolite's history from early 

spreading activity above a subduction zone (forming a sheeted dyke complex), to a later 

cnsimatic-arc environment (with associated plagiogranitic intrusions), to final intrusion 

of highly magnesian, low-Ti ba~Jt dykes (similar to rocks recovered from the Bonin 

Islands in the Western Pacific Ocean), diorites and clinopyroxene-phyric stocks. This 

intcrprction is based both on field studies of the dyke rocks in the area, and on their 

geochemistry. 

It had been previously assumed (Vokes, 1976; Vokes and Gale, 1976; Bjorlykke ~. , 

19XO; Stevens ct al . . 1984) that Fe-Cu-Zn sulfide deposits in the Visnes area were similar 

to typical Cyprus-type cupriferous pyrite deposits, believed to be ancient analogues of 

those deposits currently forming in the "Black Smoker" environments of the Pacific and 

Atlantic oceans (Sillitoe, 1972; Spooner and Fyfe, 1973; Spooner, 1977; Cann tl.AL.. 

1985/86; Richardson~. 1987; Von Damm, 1988; Cowan and Cann, 1988; Kelley k1 

a!., in prep.). This interpretation was based on their stratigraphically high position in the 

ophiolite, and on the apparent MORB nature of the host rocks. In the case of the Feoy 
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Ni-sulfidc body, its proximity to the Visncs orcbody, its position within shl·ar wn~s 

similar to those hosting the Visnes orcbody (see Chapters 2 and J). and the apparl·ntly 

similar geochemical affinity of its host rocks all suggested an interpretation as simply a 

deeper-rooted extension of the "high level" Visncs or~body (Scott, 1985). With thl· 

present state of knowledge, however, it is apparent that these interpretations need some 

revision and modification. That is, the Visnes deposit can now be shown to be gcnl·tirally 

related to intrusion and subsequent alteration of a sheeted dyke compll'x ahow a 

subducting oceanic plate (see Chapters 2 and 3), while the Ni-sultidc dl'posit of Fcoy l·an 

be shown to be temporally and genetically unique (see Chapters 4 and 7). 

The aims of the present study then, arc fourfold: 

1- to present evidence showing that the two sulfide occurrences in the area (the 

Visnes Fe-Cu-Zn deposit and the Feoy Fe-Ni-Cu deposit) arc unrelated to one another, 

other than spatially; 

2- to postulate origins for these deposits in terms of their d~:pcndcnc:c (or lark 

thereof) on magmatic or hydrothermal activity, and in terms of the tectonic cnvironmeut 

of formation , and also to examine links between alteration and mineralizat ion; 

3- to qualify those features (deformation, alteration and metamorphism) seen in the 

field which have had either dirt:et genetic, or secondary (structural and metamorphiC} 

effects and controls on sulfide formation in both deposits; 

4- to use geochemical and isotopic data to support and expand upon conclusions 

derived from field and petrographic studies. 
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Charters 3 and 4 examine the two sulfide deposits in the study area. They are essential 

components of this study, since they reflect the systematic evolution of magmatism and 

associated metallogeny within a subduction zone environment. 

With reference to point 4 above, it is this writer's opinion that detailed geochemical and 

isotopic studies on rocks from an area with such a complex magmatic and tectonic history 

can be of most use when combined with observations made during classical 

field/petrographic work. Several authors (Sturt et al. , 1979, 1980; Fumes et a!., 1982, 

19!U; Pedersen, 1982; Pedersen and Hertogen, 1987) have discussed the geotectonic 

environment in which the main dyke and volcanic units of the Karmoy ophiolite 

formed . In the tina! analysis however, geochemical variation and discrimination diagrams 

have been unable to distinguish, without some ambiguity, between truly mid-oceanic and 

possible island-arc/back-arc signatures of these particular rocks. This is in part because 

of the variability and inconsistency in the degree of element mobility during intense 

alteration of the sheeted dyke complex in the study area. The mobility of certain trace 

clements, and major oxide changes during alteration, are discussed in Chapter 5. 

While there are no completely unaltered rocks in the study area from which to make 

comparisons with the highly altered rocks, unaltered analogues from similar tectonic 

environments can be used to monitor relative chemical char.ges during alteration. 

Analysis of these alteration effects will allow a better understanding of the relationships 

between host rock modification and massive sulfide formation in the Visnes region. 
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Geochemical variation diagrams arc used for the purpt1se of tlistinguishing the m•un 

chemical modifications in the host rocks for both sulliJc depusits. As mcntiorwd, till' 

primary geochemical nature of thcsL~ rocks has already been cxhaustiwly studied. M\lr~· 

recently, Pedersen and Hertogcn (1987), Pedersen ~ ( llJ~7). and l>unnin!! and 

Pedersen ( 19R7) have provided evidence for an arc-related evolutionary L·ydc for llw 

Karmoy ophiolite, based on extensive tield work. REE geochemistry and gcochron 

ological studies. This involves initial arc v..>lcanism. later arc-basin dcvclupmL·nt ami 

subsequent back-arc activity, and is similar to the model pmposed by Crawford l,'l 

ill. (1981) for the evolution of the Mariana arc system in the Pacitic <kean. 

The definition of tectonic environments using samples of the main shccteJ Jykc wmpkx 

risks courting redundancy, simply because of their extremely altered nature. On the otlll·r 

hand, some valuable petrogenetic insight might be gained from PGE analysis of the k" 

altered, late ~tage high-Mg, low-Ti dykes and associated Ni -sultidcs of Fcoy, since some 

studies (Naldrcit and Duke, 1980; Harnyln and Kcays, 1986; Keays ct ~tl. , 1982; llamyln 

tl..M..., 1985) have successfully modelled similar rock types in terms of their P<iL 

abundances. Therefore, some attempts arc made in Chapter 7 to ddinc the pctrogcne'i' 

and tectonic environment of formation of th~sc rocks, bas~.:d on mcthotls tlcscrihctl hy the 

above authors. 

1.5: Methods 

Mapping of the Visncs area was based on I :5000 scale topographic map-. (map number-. 
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AHJ32-5-I, 2. and 3), and from I :50,000 aerial photographs (see Figure 2.1a). Maps are 

avail<tblc from the offices of the Haugesund Gcographicai Survey in Haugesund. The map 

of the Feoy area (sec Figure 2.lb) has been moditicd from a previous map produced by 

Pedersen (1987, pcrs. comm.). 

Major clement analyses of the Visnes and high-Mg dykes (see Chapter 5) were obtained 

by Atomic Absorption Spectrophotometry after HF-dissolution, using the method of 

l.angmhyr and Paus (1968). Precision and accuracy data for major oxide analyses is 

given in Appendix 1. 

Trace clement analyses of both silicates and sulfides were obtained by X-Ray 

Fluorescence (XRF) analysis of pressed powder pellets, at Memorial University of 

N::wfoundland (MUN). In terms of the precision of these data, the relative standard 

deviations of clements with K alpha lines (Ti through Nb in the periodic table) is 1% at 

1000 ppm: at 0 concentration the standard d~~viation becomes 2 ppm. The agreement of 

determined versus accepted values of pressed powder pellet standards is considered very 

satisfactory {Longerich and Veinott, 1986). The limits of detection for the trace elements 

arc: 2 ppm for Ni and Zr; 3 ppm for Nb and Cu; 4 ppm for Rb; 5 ppm for Cr Sr and 

Y : 6 ppm for V; 9 ppm for Zn. and 12 ppm for Pb (Long erich and Vei nott, 

I'JSh). Major and Trace Element analyses of rock powder samples from this study are 

given in Appendix .'\. 
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Electron microprobe analyses of 23 tourmaline samples from shear lOJK'S, and of sde<.·t~.·d 

chlorites and amphiboles from country rocks of the study area, wer~ carried out on a Jcol 

JXA-50A Electron Probe Microanalyscr, at Memorial University of Newfoundlard, using 

an international clinopyroxene standard block (f-cpx) for instrument ~:alibration. 

Acceptable working limits for deviations from actual values for each of the major oxides 

were: -0.02 to +0.1% for Na20; -0.1 to +0.3% for MgO; -0.13 to +0.11% for Al~OJ; 

-2.0 to +0.9% for Si02; +0.01% for K20; -0.38 to +0.25% for CaO; -O.lto +0.07% 

for Ti02; +0.05% for Cr203; -0.1% for MnO; -0.2 to +0.02% for FeO; +0.07% for 

NiO; -2.03 to +0.83% for % total oxides. Data for the chlori!cs and amphiholes arc 

given in Appendix 2; data for the tourmaline samples arc given in Table 8.2 . 

Sulfur isotope ratios for pyrrhotite/chalcopyrite assemblages from the feoy Ni-sullides. 

and for sphalerite/pyrite assemblages from the Yisncs Cu-Zn deposit were obtained from 

two sources: 1- samples F24a, V9, and V2 were analyzed commercially by Coastal 

Science Laboratories in Austin, Texas, on a Micromass Isotope Ratio Mass Spectrometer 

(Model 6020 and 602E); 2- samples F56, Fll, F33, Yl4 and F35 were analyzed at the 

University of Waterloo, Ontario. Sulfide fractions were separated manually, and sulfur 

isotope ratios were determined by extraction of S02 using Cu20 oxidation at 1000 

degrees Celsius, followed by analysis on a VG-Isogas Micromass 602E 

Spectrometer. Two internal standards with delta 34S values of 1.13 and 30.5 per mit 

were run before and after analysis of the Visnes and feoy sulfide samples. 

Oxygen isotope analyses were completed at the University of Alberta, using standard 
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Brl·5 c.Ji'isolution methods. 

Platinum Group Element (PGE) contents, along with Gold (Au), were analyzed at 

Memorial University of Newfoundland from selected sulfide and silicate samples by the 

following method: 1- initial preconcentration of these metals into a Ni-sulfide bead by 

fire assay; 2- subsequent crushing, HCI dissolution of the bead, and precipitation of the 

PGE's and Au using a Tellurium solution and filter paper. Analysis of this final product 

by Inductively Coupled Plasma Mass Spectrometry (ICP/MS) provided results accurate 

at sensitivities of the order of 0.113 ppb for Ru, 0.016 ppb for Rh, 0.044 ppb for Pd, 

0.444 ppb for Os, 0.214 ppb for Ir, 0.229 ppb for Pt, and 0.5 ppb for Au. 

Platinum Group Minerals (PGM's) and sulfides were analysed on a Hitachi S570 

Scanning Electron Microscope at Memorial University of Newfoundland. In 

determination of specific PGM phases, a semiquantitative stoichiometric method using 

X-Ray analysis was performed on a beam spot mode with a Tracer Northern 5500 

Energy Dispersive X-Ray Analyser, Model 70152, with a spectral resolution of 

145cV. Stoichiometric analysis ("SSQ") was carried out without standards, using a ZAF 

correction program to calculate element or oxide percentages. 

Rock samples were taken from representative outcrops, from mine dumps, and from drill 

<.·ore samples in the case of some mineralized specimens from Visnes. Sample 

descriptions for selected rock samples used in this study are given in Appendix 4. 
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1.6: Terminolog.)' 

In the study area, there are two genetically and temporally unique occurrctll'es of fl'lsil· 

dyke rocks with a composition of typical low-K oceanic plagiogranites (Coleman and 

Peterman, 1975). For purposes of clariiy, pbgiogranitic segregations of the Visncs an:a 

associated with gabbros and basalt dykes of the sheeted complex arc hereafter rl.'fcrrl·d 

to as Type 1 Pla~io~ranitcs. Plagiogranitic to quartz dioritic dykes associated with later. 

cnsimatic arc activity, and which are petrographically distinguished by a prqxmderancc 

of quartz phenocrysts in an autobrecciatcd groundmass, arc hereafter referred to as l.YlX' 

2 Plagiogranites. 

There are also two important groups of mafic dyke rocks in the study area, each of 

which have different geochemical signatures and field appearances. They also have 

different genetic and temporal relationships with respect to the Visnes and feoy sulfide 

deposits. In this thesis the dykes are described as follows: 

1- altered basic dykes of the sheeted complex, which are shown to be genetically 

related to the Visnes Fe-Cu-Zn sulfides, but which contain little or no Cr. arc calll.'{] the 

Visnes dykes. Some of the more inter.sely altered dyke samples arc composed of simple 

epidote, quartz and chlorite alteration assemblages, with epidote predominating. This 

alteration style has been termed "epidosite" (Aidiss, 1978; Richardson e.U!L., 1987 ); 

2- very late, high MgO-Ni-Cr dykes which crosscut all other basalts in the area, and 

which can be shown to be genetically related to the Fcoy Ni-sulfides, arc called the Mb.: 

Mg dykes. 
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In Chapters 2 and 6, the term "epidotite" is used to describe rocks composed of near 

I 00% warsc crystalline epidote, without any evidence of having formed from secondary 

alteration of pre-existing lithologies. The term "epidosite", as mentioned, refers to 

heavily altered basalts of the Visnes dyke group. Geochemically, division between 

primary crystallized "epidotite" and secondary or replacement "epidosite" is clear (see 

Figure 2.2). 

1.7: c;eneral geology of the Kannoy ophiolite 

The Karmoy ophiolite in southwest Norway (Figure 1.2) is an almost complete and well 

exposed ophiolitic assemblage, and the present study area contains only a portion of the 

suite. This is the most southerly of Norway's ophiolite complexes, and was thought to 

have formed and been finally emplaced onto the Baltic Craton between the Late 

Precambrian Finmarkian and Middle Silurian Scandian orogenic events. In this sense it 

was assumed to be an older, Type 1 (Sturt.tl..a!., 1978) ophiolite which represents a slice 

of oceanic crust formed at a major ocean basin spreading center. However, Pb/Pb 

(Zircon) dates of 493Ma for the sheeted dyke-plagiogranite-gabbro sequence, 

485 +/-2Ma for the Type 2 plagiogranites, and 470 +9/-SMa for late clinopyroxene-­

phyric intrusions in the area all indicate that the ophiolite is in fact younger tha.! previou­

sly thought (Dunning and Pedersen, 1987). This, along with the discovery (Pedersen~ 

al. 1987) of volcanic equivalents to late mafic intrusions {pyroclastic deposits and lava 

tlows within the Torvastad Group of sediments), suggests that at least some of the rocks 

of this ophiolite formed in an Early Ordovician {Tremadoc) island-arc/back-arc/arc-basin 
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Figure 1.2: Geological map of the Karmoy Ophiolite Complex (Pedersen and Malpas. 
1984). 
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type of environment. 

The K<trmoy Ophiolite is intruded by a granitic pluton, the West Karmoy Igneous 

Complex (WKIC), which has been dated at ca. 450Ma by Rb/Sr methods (Priem and 

Torskc, 1973). This means that final emplacement of the ophiolite had been completed 

at least by Upper Ordovician, Llandeilian times. 

The Karmoy Ophiolite comprises a large plutonic body which grades upwards into an 

impressive sheeted dyke complex capvd by a thin pillow lava unit. In the Visnes area, 

sheeted dykes and sparse pillow lavas are overlain by pyroclastic deposits of the Torvast­

ad Group. In areas where granites of the WKIC intrude the ophiolite, the contact between 

the two is almost everywhere marked by extensive shearing which has produced 

quartt.-augcn gneisses. 

On the basis of field relationships, the Karmoy Ophiolite has been divided into three 

major plutonic units (Sturt and Thon, 1978a): 

1- The East Karmoy Igneous Complex (EKIC); 

~ - Tht: Vcavagcn Igneous Complex (VIC); 

3 The Visncs High Level Complex (VHLC), which constitutes the study area for 

this th~..·sis. 
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I. 7 .I: The East KarmoJ lgnrous C omplt.•x 

The EKIC is composed of relatively large bodies of cumulate uhramati~ w\.·ks whil:h 

grade into layered and non-layered gabbros. In some areas tlwsc arc ~ut hy Sl'Wral 

generations of plagiogranitic intrusions. 

This complex represents perhaps the oldest and lowermost section of the ophioli!l:. and 

has been subject to several generations of folding, faulting and high ll'mperattlrl· 

shearing. The high temperature (amphibolite facies) shear 1oncs arc conspicuously rut 

by basic dykes with a low-Ti chemistry . In the ticld, plagiogranites arc SCl'n to tk· ..:lml'ly 

related to these high temperature shear zones. and arc clearly rooted in amphiholik ~r;11k 

meta-gabbros found both along and adjacent to the shear zones. These plagiogranitl·~ arl' 

suggested to be a product of partial melting of the amphibolite gahhro (Pedersen and 

Malpas, 1984), and contrast sharply with ophiolitic plagiogranite of the Visnl.'s region 

(Type 1 ), which is interpreted as a differentiate of a hasic magma. They also contra\! 

with plagiogranitc dykes of the Feoy area (Type 2), which arc rdatcd 10 mud1 lah:r. 

supra-subduction zone activity (Pedersen ct al., ll.}X7). Unfortunately. no date~ arc 

available for these rock types. 

1.7 • .2: The Veavagen Igneous Complex 

The VIC to the nonh, the largest of the three complexes, is cumpo~~.:d of lay<.:rcd gahhro\ 

and lesser am0unts of layered ultramafic rocks, as well as nun-layered and varitcxturcd 
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gabbros, which arc intrusive into the EKIC. Layered gabbros are the most voluminous 

rock type, and arc texturally similar to the gabbros of the EKIC. They occ:ur in the 

northern sections of the VIC, and are structurally separated from the rest of the complex 

by a major shear zone between Vcavagen and Kopcrvik. 

Ultra1rafic rocks are found in layers up to lOOm thick, and on a small~r scale exhibit 

rhythmic layering. As is typical of nearly all rocks in the Karmoy area, alteration is 

ex tcnsivc, as well as faulting and shearing. Plagiogranites are also present, and occur 

as dykes and veins intruding microgabbro and varitextured gabbro. These dykes have 

approximately the same trend as the basic dykes which a!so cut this complex (strike 

north, dip 75-90 degrees east). Geochemically these plagiogranites are akin to those of 

the t:KJC, once again suggestive of partial melting of metamorphosed gabbro (Pedersen 

and Malpas, 19X4)(see Figure 1.3). 

I. 7.3: The Vism·s High Level Complex 

The VHLC in the northwestern part of the plutonic zone is composed of mainly gabhroic 

material and roof assemblage rocks (microgabbro, non-cumulate gabbro and dykes), with 

significant amounts of plagiogranite occurring in the upper (northern) sections. The 

complex has a gradational contact with the uppermost portion of the ophiolite, the Visnes 

Group (in the same arl.!<l), which consists of sheeted dykes, dyke-breccia, microgabbro 

and pillo.v lavas. The VHLC is, like the EKIC and VIC, cut by several generations of 

basic dykes. 



18 

It is important here lO examine the nature of plagiogranitic rod\.s (Type I) lk.\.-urring 

within this complex, since they are thought to represent a sandwi~:h horiwn. togethl·r 

with small patches of biotite diorite. between a roof 70nc of sheeted uykcs, minogabhn) 

and pegmatitic gabbros, and a tloor of isotropic gabbros. 

Compared with plagiogranitcs of the EKIC, which are considered partial melts of ll<1scr 

gabbro, these plagiogranites have distinct geochemical signatures (Figure I .J). They arc 

found only in association with sheeted dykes or gabbros. and in some areas with biotite 

diorite and epidotite. Because of this. they were probably cogcnctic with the original 

basaltic magma, and represent the latest stages of fractional crystallization of ti lll·r 

pressed interstitial liquid from the varitcxturcd gabbros (Pedersen and Malpas. 

1984). Their close association with epidotites has a signiticancc which will he discussed 

in Chapters 2 and 6. 

A 2km thick sequence of metabasalts forms part of the Visncs Group. These vary from 

aphanitic greenstones to dolerites (sometimes porphyritic), and arc separated from tl1c 

pillow lavas by large shear zones. Chilled margins are common in the dykes. (icoc­

hemically, these mctabasalts possess three distinct characteristics (Furnes ~-. llJXO): 

1- a consistent depletion in the LREE; 

2- a large variation in incompatible and compatible clement abundances; 

3- large variations in some incompatible clement ratios. 

It is suggested by Fumes et al. (1980) that these large scale variations arc a n:\ult ol 

batch melting of a depleted mantle source. Later interpretation (Pedersen, 1982) suggc\t\ 
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that these variations in trace element composition may be accounted for by deriving the 

basaltic liquid(s) from different sources and injecting them concurrently (i.e. a multiple 

magma chamber system). Some of these variations may be a result of seafloor alteration 

and mobility of supposedly "immobile" elements; geochemical and field data which bear 

on this problem are presented in Chapter 5, insofar as they relate to alteration and 

mineralization of the Visnes dykes. 

1.7.4: Regional patterns of deformation and metamorphism 

Rocks of the Karmoy Ophiolite have not escaped the effects of several periods of 

deformation and metamorphism associated with Caledonian orogenesis. In light of this, 

Sturt et al. ( 1979) divided the deformation and metamorphism in this area into three 

temporal divisions: 

I- oceanic metamorphism and deformation (MO and DO); 

2- syn-emplacement metamorphism (M 1), and 

3- post-emplacement metamorphism and deformation (M2 and 02). 

Metamorphism and deformation which occurred on the ocean floor predated the intrusion 

of low-Ti basalt dykes, and is a higher temperature process than later episodes; gabbroic 

rocks affected by MO are metamorphosed up to amphibolite facies, and arc related to 

plagiogranite generation by shear heating and subsequent partial melting of gabbro 

(Pedersen, 1982; Pedersen and Malpas, 1984). Associated amphibolitizcd shear zones 
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themselves cut deformed, layered gabbros, suggesting that multiple stage deformation 

occurred on the ocean floor. 

Other, much lower temperature features in rocks of the study area which also formed in 

an ocean basin arc: sub-seafloor alteration of the upper parts of the ophiolite; massive 

Fe-Cu-Zn sulfides of the Visnes deposit (see Chapter 2). However, these are clearly 

unrelated to high temperature MO metamorphism, and so are considered as 

post-MO/pre-M I features. 

Because of the pervasively altered nature of almost all rocks in the Karmoy region, it is 

quite difficult to define the exact nature of syn-emplacement metamorphism 

(M I) . However, it is clear that all metamorphism post-dating MO is of a lower 

grade. Sturt ~ (1979) suggested that a regional penetrative cleavage, well developed 

in the uppermost parts of the ophiolite, formed during the latest stages of obduction of 

the ophiolite (Sl). 

Pedersen (1982) also described the effects of these three main stages of deformation and 

metamorphism within the Karmoy ophiolite, although there remain some ambiguities 

between delineated metamorphic episodes in this area. There has been no problem in 

interpretation of the high temperature, oceanic deformation and metamorphism patterns, 

but there is considerable overlap in the low-medium metamorphic grade periods of 

deformation and metamorphism which succeeded this first episode (on the ocean floor , 

as well as during and after ophiolite emplacement). Intense and multiple periods of fluid 
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circulation through the country rocks during this time has rcsultc:d in c:xtcnsiw to 

complete alteration of original paragcneses. 

The time of formation of the Visncs and Fcoy sulfide deposits rdativc: to thl.'sl.' 

metamorphic and deformation episodes is delineated in the present study. Thcrdorc. li.lr 

purposes of convenience the present writer has found it necessary to modify previous 

classifications of deformation and metamorphism with respect to massive sui filk 

formation in the study area: 

1- oceanic deformation and metamorphism which prccecdcd formation of the Visncs 

sulfides (MO); 

2- oceanic metamorphism/deformatit ' post-datir.g formation of the Visncs sulfides, 

but which pre-dated intrusion of high-Mg dykes, diorites, Type 2 plagiogranitcs, and the 

Ni-sulfides of Feoy. This is probably related toM 1 metamorphism; 

3- deformation and metamorphism which post-dated intrusion of the late dykes and 

other intrusives mentioned in 2 above, and also post-dated the Fcoy Ni-sulfidcs (M2 and 

02). 

This classification is more relevant because it is correlatable with the current 

interpretation of the magmatic history of the Karmoy ophiolite, and also because it serves 

as a direct link between this magmatic history and the mineralization history. 

The first phase(s) of metamorphism (MO) had apparently no bearing on formation of 

either sulfide body, and hence will not be expanded upon in this study. However, MO 
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metamorphism is discussed in detail by Pedersen (1982). Suffice it to say that it was 

evidently a much higher temperature/strain episode(s) than subsequent events, and may 

have been responsible for generation of plagiogranitic partial melts (the EKIC 

plagiograni tes). 

In conclusion, it is evident that the Karmoy ophiolite represents a very important 

component of Lower Paleozoic volcanic sequences in Norway. Over 20 other areas of 

greenstone, gabbro and plagiogranite have all been now interpreted as part of a once 

continuous and extensive oceanic crust that was later disseminated and emplaced onto the 

Baltic Craton during the evolution of the Caledonian orogenic cycle. 
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Chapter 2: Geology and petrology of the Visnes and Feoy regions 

2.1: Introduction 

The study area represents the uppermost section of the Karmoy ophiolite, ranging from 

isotropic and varitextured gabbros at the base, to sheeted dykes, plagiogranitcs and sparsl' 

pillow lavas at the top of the section. Pelagic sediments are not present in the map area, 

but volcaniclastic rocks of the Torvastad Group do outcrop in one coastal section ncar 

Digermulen. Figures 2.la and bare geological maps of the Visncs and Feoy regions (sec 

back pocket for 2.l.a). 

The Visnes region is host to a large massive sulfide deposit which occurs along a major 

shear zone within the sheeted dyke complex. At one time the largest copper mine in 

northern Europe, the deposit exhibits several of the typical Cyprus-type massive sulfide 

characteristics, with the notable exception of its position in sheeted dykes rather than in 

pillow lavas. Likewise, on the nearby island of Fcoy, a small massive Ni -sullide body 

occurs along a large shear zone in close association with basic and plagiograni tic (Type 

2) dykes, and gabbros. 

The following sections describe the salient field and petrological features of rocks in the 

study area. Particular emphasis is given to those aspects of geology and petrology which 

bear some relevance to the Visnes and Feoy sulfide deposits. The geology and petrology 

of the Visnes and Feoy sulfide deposits themselves are discussed separately in Chapters 
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3 and 4. 

2.2: Sheeted dykes (the "Visnes dykes"), and associated rocks or the Kurnaoy 

Ophiolite 

2.2.1: The Visnes dykes 

The Visnes dykes constitute a thick (about 1.5km thickness) sheeted complex, and an: 

often intermixed with plagiogranitic and gabbroic pods and screens. The dykes arc by far 

the most abundant rock type in this area. 

In some areas the sheeted complex is well exposed, as on the islands of Fcoy and 

Ulvoy. Some dykes are primary biotite phyric, but most arc aphyric, and all arc 

extensively altered and/or recrystallized, so that original mineral paragcncscs arc rare. 

These dyk~s generally strike nonhwest and dip 75-90 degrees cast (sec Figure 

2. 1 ). Cross-cutting relationships are complex; two sets of basic dykes have been noted 

on the west coast (based on textures and chemistry), although field relationships locally 

indicate up to five generations of mafic intrusion, along with several generations uf 

plagiograni te. 

The Visnes dykes range in thickness from 5cm to 4m and in some places show chilled 

margins. Dykes within dykes are common, as are xenoliths of gabbro, plagiogranitc and 
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cpidotite, the latter having only been observed in the Dyrnes area (see Plates 2.9 to 

2.12). Dykes are seen to cut isotropic and varitextured gabbro and Type 1 plagiogranite, 

but in other areas are themselves cut by gabbro and ptagiogranite. The tower boundary 

of the Visncs dykes is a transition to pegmatitic, varitextured and isotropic gabbro and 

plagiogranitc. Intrusive relationships are complex in this boundary zone, and have been 

studied in some detail by Pedersen (1986). The upper parts of the sheeted complex are 

in general sheared, are hosts to the V!snes ore deposit, and rarely show gradational 

relationships with highly altered and variably mineralized overlying pillow lavas. 

Large shear zones cut the area in a conjugate pattern, and where they penetrate the 

sheeted dykes, the dyke structures are lost, and the rocks become simply homophanous 

greenschist. In other areas such as Fransehagen and Kvaloy, the Visnes dykes are more 

uniform, and dyke margins are clearly seen. Dykes are in some areas (eg. Sandholmen 

Island) parallel to the shear zones, suggesting that shearing may have originally 

propagated in a preferred direction parallel to the dyke strike. 

As mentioned, the Visnes Dykes are host to the Visnes massive sulfide deposit. The main 

orcbodies occur along steeply dipping greenschist facies shear zones wwhich cut the 

dykes in a N-S/E-W conjugate pattern (see map in back flap; also see Chapter 3). 

Dykes of the sheeted complex also have an extremely well developed microfracture and 

vein system, and this becomes more intense with increasing proximity to the Visnes 
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orebodies. All dykes are net-veined to variable dcgn:cs with epidote and quart/, with 

lesser amounts of albite, and in some places calcite. Closer to the Visncs orebodil·s. 

disseminated pyrite is much more abundant in the country rock~. >\lith lesser amounts of 

chalcopyrite, and rarely, sphalerite (the latter occurs on:y as vcinlcts). 

In thin section, because of the pervasive altcratioa, most primary textures and 

mineralogies of the Visnes dykes have been obliterated and replaced by typical spilitic 

alteration assemblages. The Visnes dykes are variably altered to epidote, quartz, chlorite, 

albite, sphene, pyrite and apatite (in decreasing order of abundance) (Plate 2.1 ). Some 

dyke samples also contain appreciable amounts of calcite and actinolite. This classic 

"spilitic" alteration assemblage (Cann et al, 1985/86) is present in all rocks which arc 

genetically related to formation of the sheeted complex. This excludes the high-Mg 

dykes, Type 2 plagiogranitic dykes, and plutonic rocks which have clearly different 

alteration mineralogies (see Sections 2.3 and 2.4). The differences in alteration styles that 

exist between these latter rock units and those of the VH LC allow petrographic distinct­

ions to be made between them. Also, coupled with geochronologic data from Chapter I 

indicating an age difference of about 20m.y. between these rock units, it appears that 

there may have been two distinct episodes of alteratiO•l which were separated in time by 

at least 20m.y. 

In thin section, chlorite in the Visnes dyke samples i~ always grecn-hrown under crossed 

nicols, and contains blebs of sphene, suggesting that the chlorite may in fact he a 

re!Jiacement of Ti-rich biotite. This is supported by the presence of relict biotite within 



Plate 2.1: Alteration assen1blages in the Visnes dykes. Epidote is dark green; chlorite is 
light green; quartz and albite are white; note also the black sphene and the small needles 
of apatite (n1agnification: 40X; plane polarized light, ppl). 

Plate 2.2: Alteration assemblages in "epidosite" zones in the Visnes dykes. Epidote is 
yellow brown; quartz is white; chlorite is green; pyrite is black (magnification: 40X; 
ppl). 
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the chlorite. The chlorite is, without exception. of the Fe-rich ripidolitc varil·ty (Sl'l' 

Appendix 2 for microprobe analyses), is always fine grained, and often defines a stwng 

schistosity within the dykes. Epidote in the Visnes dykes ranges from true epidote to 

clinozoisite/zoisite in composition, and forms from 10 to 60% of the modal analysis. Thl' 

groundmass is always fine grained, and in many sections exhibits a sugary texture. Soml.' 

of the more intensely altered \'isnes dyke samples have a simple mineralogy of ahout 70 

to 80% epidote, with lesser amounts of quartz, chlorite, sphene and pyrite (Plates 2.2 

and 2.3). These are "epidositcs", and represent the end products of intense hydrothermal 

alteration of basic dykes (Richardson et al., 1987; also, sec below and Section 2.6). 

Very rarely, less intensely altered samples of the Visncs dykes contain prl.!scrvcd primary 

igneous pyroxenes, which show a crude sub-ophitic texture. These pyroxenes arc altered 

to ferro-actinolite (Plate 2.4). 

In the Fiskdammen and Dyrnes areas (see figure 2.1), important field n;lationships 

between the Yisnes dykes, Type I plagiogranitcs and cpidotitcs arc seen. In Fiskdammcn , 

a small dyke swarm cuts isotropic gabbro. Several of these dykes arc heavily altered to 

epidosites, and arc also heavily mineralized with pyrite and lesser amounts of 

chalcopyrite (Plate 2 .5). Not only this, but they also contain small xenoliths of 

"epidotite". Accompanying these dykes are streamers of epidote and quartz (Plates 2.6 

to 2.8) . Immediately adjacent dykes are considerably less mineralized and less 

altered. Hydrothermal alteration fluids which were responsible for mineralization in these 

dykes were clearly enriched in Fe and Cu. Such areas appear to represent "flowthrough 
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Plate 2.3: Alteration assemblages 111 "epidosites". Mineralogy as 1n Plate 2.2 
(Magnification: 40X; ppl). 

Plate 2.4: Altered Visnes dyke sample showing relict clinopyroxene which is nearly 
completely altered to ferro-actinolite (magnification: 40X; crossed nicols, en). 



Plate 2.5: A selectively mineralized and epidotized dyke, or "epidosite zone" fron1 the 
Fiskdam1nen area of Visnes. The surrounding country rock is neither mineralized nor 
heavily altered. 

Plate 2.6: Epidote and quartz veins, or "streamers", runn1ng parallel to the strike of 
sheeted dykes in the Visnes area. 



Plate 2.7: Epidote veins or "strean1ers" cutting basalt dykes 1n the Visnes area. Note 
hammer handle for scale. 

Plate 2. 8: Epidote "strean1ers" running parallel to the strike of sheeted basalt dykes in 
the Dymes area of Visnes. Note hammer handle for scale. 
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zones" for ascending metal-nch hydrothermal solutions (Richardson et al. 1987). 

In nearby Dyrnes, widt~ basalt dykes contain large ( >0.~5m) xenoliths of cpidotitc and 

Type I plagiogranite (Plates 2.9 to 2.12). The xenoliths haw been dl.'fonned in a plasti'-· 

fashion within the dykes (i.e. as if the xenoliths were not completely Sl'lidificd upon 

inclusion). Surrounding the xenoliths are "streams" of epidoh:-quartt spheruk·s alligncd 

parallel to the flow direction of the dyke itself (sec Plate 2.12), and the spherules han.· 

a "pinched off" appearance from the xenoliths. Also, close examination of the xenoliths 

and spherules indicates that there are distinct, sharp boundaries bdween the l'pidotitc allll 

the plagiogranite, suggesting a possible fluid immiscibility between the two. These 

observations suggest several things: 

1- epidotites may have been cogenetic with the Type I plagiogranites, and arc 

therefore primary magmatic rocks rather than alteration products: 

2- magmatic liquid immiscibility may have exerted strong controls over cpidotill· and 

plagiogranite formation ; 

3- there was a continuation of basic magmatism shortly after formation of the 

epidotites and plagiogranitcs, since these occur as xenoliths in some of the Visncs dykes. 

A more comprehensive discussion of the plagiogranitcs anll cpidotites is presented in 

Sections 2.2.4 and 2.2 .6 (respectively). and in Chaph.:r 6. 

2.2.2: l,illow lavas 

In the Visnes area in general, relatively minor occurrences of variolitic pillow lavas and 

• -- --- I \ • • • • 



Plate 2. 9: Plastically deformed Type 1 plagiogranite xenoliths In basalt dyke In the 
Dyrnes area of Visnes. Xenoliths are about 0.5In in length. 

Plate 2.10: Plastically deforn1ed Type 1 plagiogranite xenolith in a basic dyke. Dyrnes, 
Visnes. 



Plate 2.11: Plastically defon11ed epidotite xenolith in the Dyrnes area of Visnes. 

PlRte 2. I 2; Ph~ti ally deform d pid tit x no!1th in yrn s ar Cl, Vi ,n~s. Not the tiny 
trail of epidotitc "spherules" which rims the xenolith nearest the han1n1er. 
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pillow hrcccias arc seen. Although there arc few distinct pillow lava outcrops in the study 

area, a thick pillow lava sequence occurs just east of Visnes Kobberverk. The boundary 

between pillow lavas and sheeted dykes is marked by a large shear zone of 100 to 200m 

width. It is this same shear zone which hosts the Yisncs massive sulfide deposit at a 

deeper stratigraphic and structural level. 

Jn the study area in particular. pillow lavas occur mainly as minor screens within sheeted 

dykes, and as pillow breccia. However, pillow structures are well preserved on some of 

the nearby offshore skerries. and also on one outcrop near the old bridle path in Yisnes 

(Plat~ 2.13). On these offshore skerries, pillow lavas pass downwards into extensive 

pillow and dyke breccias, and then into sheeted dykes. Brecciation is a result of intrusion 

of plagiogranitc into the upper regions of the sheeted dyke complex (Plate 2.14) . In other 

outcrops epidote and quartz rim the pillows. Where the pillows are rimmed by epidote 

and quartz. they arc intensely corroded, rounded and mineralized with pyrite (Plates 2.15 

and 2.16). and the groundmass assemblages are intensely altered. This is likely a result 

of circulation of corrosive hydrothermal fluids through the pillow lavas, and is a feature 

analogous to similar ?ones of alteration and mineralization in the Visnes dykes (see 

Sl.'l'tillll 2.2.1 ). 

t\11 pillow lavas appear quite altered in the field, and are variably pyritized. In thin 

section they arc all totally altered to epidote-quartz-chlorite-sphene-pyrite alteration 

assL·mhlagcs. 



Plate 2.13: Outcrop of pillow lavas in the Visnes region. 

Plate 2.14: Outcrop of pillow breccia in plagiogranitic 1natrix. Fro1n one of the nearby 
offshore skerries in the Visnes area. 



Plate 2.17: Epidotite "segregations" in peg1natitic gabbro. Note the gradational nature of 
the contact between the coarse grained epidotite and the surrounding gabbro. From the 
Feoy area. 

Plate 2. 18: Epidotite "segregations" in coarse to pegmatitic hornblende gabbro. From the 
Feoy area. 
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2.2.3: Gabbro 

Isotropic, varitextured and micro-gabbros are second only to the Visucs dykes in 

abundance within the study area. They are well exposed and arc usually coarse grained 

with abundant pegmatitic patches. Although there arc large textural variations in the 

field, poikilitic textures are quite obvious in the coarser, hornblende-rich varictit·s. 

The gabbros are intimately associated with the sheeted complex and plagiogranitco; , or 

the "roof assemblage" (Pedersen, 1982). They arc characterized in the til'ld hy highly 

variable textures, from coarse pegmat:.ic hornblende gabbros to microgabhroic 

varieties. They must have formed from fairly hydrous melts , as in some areas 

"segregations" of epidotite and amphibole of apparently dcuteric origin arc seen (Plates 

2.17 and 2.18; also see Section 2.6). 

Ellipsoidal plagiogranitic pods of 10-lOOm width arc scattered in a random fashion 

throughout the main gabbroic body. Contacts between these rocks and the gabbros an: 

equivocal, but appear to be primary and gradational. 

Near the shear zones the gabbros, like the sheeted dyke~, have been extensively altered 

to greenschist facies assemblages, and are also deformed. A folia~ion marked by a 

preferred orientation of secondary amphiboles is moderately developed on a regional 

scale. 



Plate 2.17: Epidotite "segregations" in peg1natitic gabbro. Note the gradational nature of 
the contact between the coarse grained epidotite and the surrounding gabbro. From the 
Feoy area. 

Plate 2.18: Epidotite "segregations" in coarse to pegmatitic hornblende gabbro. From the 
Feoy area. 
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A dominant feature of the gabbro in many areas is the prcserH:e (lf the sanw 

epidote-qua1tz netveins and groundmass alteration assemblages whil:h are so evident in 

the sheeted dykes and pillow lavas. Epidote is again th~ most abundant of these alteration 

minerals. 

It is in these gabbros that the only evidence of stockwork-type sulfi<.le veining can be seen 

(Plates 2. 19 and 2.20); sulfide mineralization in the gabbro occurs both as veins and 

disseminations, and as clusters of euhedral pyrite cubes in cpidotitc veins which cut thl' 

gabbro (see Figure 2.3). 

In thin section, the gabbros are quite altered, and display granophyric texture. They arc 

leucocratic, with a simple mineralogy of plagioclase (albite), hornblende, quart1., epidote, 

sphene, and minor apatite, pyrite and magnetite. The plagioclase is saussuritizcd and 

epidotized. These altered feldspars usually retain a euhedral form, however, and crys1ab 

can be quite large, up to l.5cm. Some sections show large euhcdral plagioclase 

phenocrysts with well developed core to rim saussuritization, set in an interstitial 

quartz-albite granophyric intergrowth; the intergrowth has nucleated on the phenocrysts 

themselves (Plates 2.21 and 2.22). This is an obvious reflection of the hypabyssal and 

volatile-rich nature of the magma during crystallization of these rocks. 

Pyroxenes are rare, and are nearly everywhere pseudomorphcd by actinolite. Amphiboles 

are primary Ca-rich hornblende and secondary actinolite (see Appendix 2), which 

suggests that the original pyroxene component was clinopyroxene. The primary 



Plate 2.19: Stockwork-type pyrite and chalcopyrite ve1ns cutting melanocratic 
gabbro. From the Visnes region. 

Plate 2.20: Stockwork-type pyrite and chalcopyrite ve1ns cutting 1nelanocratic 
gabbro. From the Visnes region. 



Plate 2. 21: Plagioclase phenocrysts in gabbro pegmatite. The plagioclase has well 
developed core to rin1 saussuritization, and is set in a n1atrix of quartz and albite 
intergrowth (magnification: 40X; ppl). 

Plate 2. 22: Plate 2. 21 photographed under crossed nicols to illustrate nucleation of the 
quartz-albite intergrowths on the rim of the plagioclase phenocryst (magnification: 40X; 
en). 
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hornhll:nde phenocry\ts can be large, up to 3cm long , and in some places poikilitically 

i.:nclo~c plagioclase. 

2.2.~: Typt· 1 plagiogranitc 

Although plagiogranitic rocks arc distributed throughout the whole of the region, they 

arc volumetrically not that significant, representing < 10% of all the hypabyssal rocks 

in Visncs and Fcoy. The Visncs (Type I) plagiogranites arc considered as stratigraphic 

intermediates between the roof asscr.1blage and the underlying isotropic gabbros, and arc 

genetically distinct from both the plagiogranites of the EKIC and the Type 2 

plagiogranites. 

The main budics of plagiogranite occur in the southern half of the Visnes map area in 

pods of 10 lOOm width, although there is a larger unit of approximately 500m in length 

in the southeast sector. In the northern section of Yisncs, plagiogranite is restricted to 

small s~:rccns or dykes within the sheeted complex. Where dykes or gabbros are 

hr~..·~ciatcd. as on some of the nearby skcrries, the interclast matrix is invariably 

plagiogranitic . as indeed is much of the material that intrudes and brecciates pillow lavas 

on thl.'sc islands. 

Th1..· plagiogranitcs are predominantly albite and quartz; sericitization of the plagioclase 

is only minor. All quartz shows undulatory extinction with variable degrees of subgrain 

lkn.·lllpmcnt. Graphic quartL-albitc intergrowth, reflecting the hypabyssal nature of the 
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rock, is quite common (Plate ~.:!J). Euhedral hornbkndc is oftL'n prL·~cnt in m111ur 

amounts. as is actinolite, fcrroactinol itc. epidote and fragmentary hiotitl' in \ Mi•thk 

amounts. Magnetite and pyrite occur in trac~ amounts in SlllllC places. The plagiogranitL'~ 

an· on the whole relatively fresh. and feldspars are not turbid as they arc in thL· gahhn1 

and dyke samples. 

In the Dyrnes and Fiskdammcn areas, plagiogranite grades into biotih.: -dioritL', anJ in this 

latter area a dioritic dyke cuts both plagiogranitic and gabbroic rocks (Plates 2. 24 and 

2.25) . The presence of primary biotite in these rLx:ks is believed to bL· a we tll'l' llfrl'lll'l ' 

in ophiolitic terranes, and is of some importance in unucrstanding the gcne:-.is of thr.: 

assocciated plagiogranites in that it provides a link in the fractionation \cries from gabbro 

to silicic, very low-1: end members (Pedersen and Malpas. 19X4). 

The biotite-diorite is composed of plagioclase, quartz. biotite. amphiholc, magnctih..', 

ilmenite, apatite and zircon. Felsic minerals comprise 60 % of the rock , whik biot i t~ and 

amphibole arc the prcdominent malic minerals. 

At Fiskdammen. the diorite has numerous small (0.5-::!cm wide) globuh.:s di-.tnhuted 

throughout it (Plates 2.~6 and 2.27). Pedersen and Malpas ( 19H4) have suggested that 

these globules. or spherules. could be products of !;quid immiscibility. When a dioritic 

liquid was injected into a pocket of plagiogranitic liquid, the compositional difkrences 

between the two resulted in the development of an emulsified two-liquid mixture, whid1 

upon cooling produced the spherules. 



Plate 2.23: Photon1icrograph of graphic quartz-albite intergrowth (mag.: 40X; en). 

Plate 2.24: Diorite dyke cutting Type 1 plagiogranite in the Fiskdammen area, 
Visnes. Note the presence of abundant immiscible "spherules" in the diorite dyke. 



Plate 2. 25: Epidotite veins (note green colored rock to the right of the hand) ritnming the 
contact between plagiogranite (grey- below) and diorite (black- above) in the Fiskdam1nen 
area, Vjsnes. The contact between the epidotite and plagiogranite here is quite sharp. 

Plate 2.26: Photnn11crograph of the "~pherules" seen in Plate 2.24. The core of the 
spherules js composed of quartz-albite intergrowths, while the dark brown ri1n is 

co1nposed of coarse epidcte (magnification: 4UX; ppl). 



Plate 2.27: Plate 2.26 photographed under crossed nicols (n1agnification: 40X; en). 

Plate 2. 28: Photomicrograph of Type 2 plagiogranite illustrating fluxioned quartz-albite 
ground1nass with an overprint of biotite (brown colored) and hornblende (grey colored) 
(magnification: 40X; en). 



so 

The core of the spherules i~ plagiogranitic in composition, with 4U<u·t, and albit~· 

intergrown in a radial pattern, exhibiting wavy extinction. The sph"·ruks arc rimnK·J by 

a thick circular rind of coarse ~pidotc. 

There are several other possible explanations for this feature. It may he simply a result 

of spherulitic devitritication of a fdsic dyke, or a quench texture. llnwc\'Cr, thl' llioritl' 

is a relatively coarse grained rock, and was therefore probably nut qul.'Jll'hcd. If. on tlw 

other hand, this is an immiscibility texture as suggested abllW, the diorite and 

plagiogranite liquids may have cmulsifkd as a result of simple d ifferentiation 

mechanisms. or conversely the dioritic liquid may have been injectl'd into the 

plagiogranite body. creating an emulsion (Pedersen and Mal pas, 1984 ). The rind of 

coarse epidote suggests formation of the spherules under hydrous magmatic condition\. 

2.3: Type 2 plagiogranite 

A set of plagiogranitic or quartz dioritic dykes crosscuts rocks of the plutonic suite and 

associated sheeted complex in the study area. They are easily distinguishable from earlier 

formed plagiogranites on the basis of petrography and geochemistry. They arc most 

abundant in the Feoy area, more specifically ncar the shear wne which hosts the 

Ni-sulfide body, suggesting that these dykes may possibly have intruded along fault 

zones. 

The dykes generally trend about 65 degrees , but there arc variations. They an: 



volumetrically insignificant, amou11ting to less than 5% of all dykes in the area. 

Jn thin section, they have sugary microcrystalline textures, with a highly recrystallized 

and in places, a fluxioned groundmass (Plate 2.28). Plagioclase and quartz phenocrysts 

arc all strained and show marginal subgrain development. In some samples autobrec­

ciaiion is a dominant feature, with abundant fragmental qu<.rtz and plagioclase 

phenocrysts and glomcrophcnocrysts. 

There is a late actinolite-hornblende-biotite overprint on the groundmass; actinolite is 

hluc-grecn pleochroic, with a euhedral habit, while biotites are very fine grained, 

brown-pleochroic needles (Plate 2.29). 

Ncar the Fcoy Ni-sullide occurrence, country rocks bordering a local shear zone have 

been mincralizt!d by pyrrhotite, chalcopyrite and tourmaline. The mineralization ,,c, L'"'i 

only on fracture surfaces of the rocks, and is confined to the area directly around the 

mine dump. This mineralization is likely a result of mobilization of the Feoy Ni-sultides 

and ~irculation of boron-rich hydrothermal fluids along local shear zones during a period 

of metamorphism and deformation (see Chapters 4 and 7). 

An important feature of these dykes is the lack of epidote alteration and netveining, a 

feature which was so prevalent in the rocks of earlier generations. This indicates that the 

Tyrx.· ~ plagiogranites have escaped the spilitic alteration which intensely altered the 



Plate 2.29: Metan1orphic biotite overprint on Type 2 plagiogranite (magnification: 40X; 
ppl). 

Plate 2.30: High-Mg dyke sample illustrating Ni-sulfides (pyrrhotite and pentlandite) 
"interstitial" to actinolite (grey and green colored) (after clinopyroxene) and chlorite 
groundn1ass (n1agnjfication: 40X; ppl). 
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Visncs dykes and pillow lavas. This is consistant with the current interpretation of the 

Type 2 plagiogranitc dykes as products of late ensimatic arc activity (Dunning and 

Pedersen, 1987). 

2.4: lligh-Mg dykes, associated diorite, and related clinopyroxene-ph)Tic intrusions 

2.4.1: lligh-Mg dykes 

The latest stage of intrusive activity in the study area is evidenced by swarms of 

mafic-ultramalic dykes which are petrographically and geochemically unique, with a 

high-MgO. low-Ti02 chemistry, similar to basaltic rocks found in the Bonin Islands of 

the western Pacific Ocean (Crawford~. 1981). They are later than basic dykes of the 

sheeted complex, because: 1- they generally crosscut the sheeted dykes at a high angle 

(roughly north-south); 2- they have been shown by Dunning and Pedersen (1987) to be 

gcodtcmically rcla .ed to very late clinopyroxene phyric intrusions in the area, and; 3-

unmincralizcd and relatively unaltered high-Mg dykes are seen to cut highly altered, 

mineralized and epidotized dykes of the sheeted complex. 

The high-Mg dykes arc more competent than the other basalts, and have a darker green 

~olour. They arc aphyric. and in the direct area of the Feoy Ni-sulfide body they contain 
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abundant pyrrhotite and chalcopyrite. Nowhcr~ do they contain any pyrite or sphakrill· 

as do the Yisnes dykes. 

In thin section pyrrhotite and chalcopyrite can be Sl"'en to be inh:rstitial to gwundmass 

silicates (mainly amphiboles) (Plate 2 .30). Nowhcr~ ds~ in the study arl·a has pyrrhutitl' 

been found either interstitial to, or as veins in the country rucks. The prcscn(e of 

pyrrhotite interstitial to silicates, and its confinement to rocks in the Feuy mine dump 

area, is very important as it suggests that a genetic relationship exists between the high · 

Mg dykes and the Feoy Ni-sultide body. 

In some areas of Feoy, especially near the Ni-sulfidc occurrence, high-Mg dykes comain 

tension gashes filled with coarse crystalline tourmaline and quartt (Plates ~-.~I and 

2.32). They are, however, distinctly less fractured than other dykes, and as mcntioncll 

do not contain any epidote-quartz netveining. They do not host any disseminated pyrite 

as Q.Q the Yisnes dykes, gabbros and pillow lavas. 

Although the dykes look relatively fresh in hand samples, when examim:d 

petrographically they reveal extensive alteration to lower amphibolite, tremolite-actinolite 

facies metamorphic assemblages. In thin section they arc 90-100% chloritc-tremolite­

/ferroactinolite (after clinopyroxene) which is often quite coarse grained. In some 

sections porphyroblastic amphibole growth is observed up to 2cm in length (Plate 

2.33). Miner alteration constituents include talc, calcite, serpentine and tourmaline. B­

ecause much of the amphibole may have grown porphyroblastically from a finer grained 

parent groundmass (as opposed to incipient alteration of clinopyroxene phenocrysts), it 



Plate 2. 31: Large (up to 3cn1) tourmaline crystals along n1icrofractures, cracks and dyke 
margins in basic dykes. Fro1n the Feoy area. 

Plate 2.32: Quartz and rounnalinc filhng tensjon gashes in basic dykes in the Feoy area. 



Plate 2.33: Large (up to 2c1n in length) actinolite porphyroblasts in a groundmass of 
chlorite and actinolite. Fron1 a high-Mg dyke sa1nple from the Feoy 
area (magnification: 40X; ppl). 

Plate 2. 34: Photomicrograph illustrating alteration assemblage in diorites from the Visnes 
area. Note abundant actinolite (yellow/brown), and chlorite (green) (magnification= 40X; 
en). 



i'> lll1Jl<>'i'>iblc to tell whether these dykes were originally porphyritic or not. 

The alteration and mineralitation assemblages seen in the high-.Mg dykes are distinctly 

tlifkrcnt to those seen in the Vi~nes dykes. As mentioned, mineralization in the former 

rods is in the form of pyrrhotite and chalcopyrite as interstitial phases to the silicate 

minerals, and is confined only to the Feoy mine dump area. Mineralization in the latter 

Px:l\s is on a regional scale, and consists of disseminated pyn te, chalcopyrite, and rarely 

sphalerite: mineralitation intensities with increasing proximity to the main Visnes 

orcbodics. These arc important distinctions in that they suggest that the high-Mg dykes 

arc rclatcd to the hoy sulfide deposit, and that they are unreltltPd to the sulfide 

mineralization associated with the Visnes deposit. 

2A.2: Hiorites 

T\\u small (approximatdy 100 and 300m wide) diorite bodies intrude gabbros and dykes 

of the shected wmplex in the Visncs area along the main shear zone. They are texturally 

anJ mineralogically different from the biotite diorites of the Dyrnes area. Unlike the 

latt~·r. they do not ('Ontain biotite. nor do they contain any of the "spherules" found in 

lit~· D) rnes diorites . They arc quite homophanous, and have a creamy colour in the field, 

(llll'>it.Jcrably lighter in colour th;·n the gabbros. They are medium to coarse grained, and 

ar~· quite altered and weathered. 

In thin section. these diorites arc distinctive. All plagioclase has been altered to 



grey-black clay mineral assemblages. Th<.:n: arc abundant large trcmolitc-aftl·r-pywxl'lll' 

pseudomorphs (Plate :2.3~). although some relict dinopyrllXl'nc persists. Thl'rl· is also 

some talc and serpentine alteration. although this is not as abundant as amphibnk. As th~.· 

alteration assemblages suggc~t . these diorites arc more matk than the surroundinr 

rocks. This is veriiied gcochcmically . as thl!y contain up to 15 wt. % 1\tgO (Swtt, )l)~~) . 

The alteration mineralogy of the diorites is similar to the high Mg-dyk~.:s , i.e. thl'y han· 

undergone incipient actinolitc-trl.!molitc facies metamorphism, with limitt·J lkvclopment 

of serpentine and talc. Geochemically their relationship ran be verified by their mutually 

high MgO-Cr-Ni, low Ti02 chemistry. as shown by Pclkrscn (1987). 

These diorites illustrate several important field relationships. As mcntion~oxl. the altcratton 

pattern present in these diorites is different from that in the surrounding t·ountry ro<:l-.'i 

(Visnes dykes. pillow lavas and gabbros). However. whih: the lattl..!r ro<.:h an: heavily 

mineralized with Fe-Cu-Zn sultides of the nearby Visncs mas~;ive sulfide dl·posit, till' 

diorites are not. even though these intrusions arc situated only several hundred nwkrs 

from the main Visncs orebody. Therefore, like the high-Mg dykes of 1-'coy. intrusion of 

the diorites likely post-dated : (I) formation of the Visncs dykes , pillow lavas ,111d 

gabbros; {2) seafloor alteration of these rocks, and (3) formation of the Visncs massive 

sulfide deposit. Also, there must have been an episode of altcratum/mctamorphisrn 

subsequent to intrusion of the diorites. This is consistent with interpretation of field data 

from earlier sections. 



2..&.3: Clinup)roxenc-ph)ric intrusion 

In the Feoy area, a small gabbroic intrusion cuts all other rock types. It is texturally 

distinct in its preponderance of large phenocrysts of clinopyroxene, and shows a distinct 

laycnng or banding parallel to the margins of the intrusion . The intrusive boundary itself 

is clearly defined and abrupt, with well developed chilled margins. Pedersen (1987) has 

demonstrated the ensimatic arc affinity of this gabbro, although he suggests that it has 

a somewhat more calc-alkaline affinity than other rocks in the area. There are , however, 

broad geochemical similarities between th!s gabbro and rocks of the high-Mg suite 

(diorites and dykes), and so a possible relationship between the two cannot be dismissed. 

2.5: Sediments 

A small outcrop of highly deformed sedimentary rocks occurs near Digermulen, 

Visncs. These sediments most likely constitute pan of the base of the Torvastad 

Group (Pedersen and Hertogcn, 1987) (see Figure 2. 1 ). They are creamy 

coloured felsic pyroclastic rocks to green coloured mafic, plagioclase-fragmental 

sandstones which have been intensely deformed and stretched parallel to the 

north-south shear zone which truncates them in Digermulen Cove. In this same 

an:a, an adit was sunk into the shear zone adjacent to the sediments, and there is 

abundant quartz-chlorite veining and associated pyrite. The presence of such 
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mineral assemblages along these large sh~ar mnl..'s indicates that a 1x·riod of 

deformation and hydrothermal alteration occurred atkr furmatilm of thl..'sc 

volcaniclastic sediments. 

Pedersen and Hertogen (1987) have indicated that these scdim~.·nts <~rl' tkriwd 

from rocks of the clinopyroxcne-phyric intrusion discussed in St.·ction ~.4.3 . This 

would put a maximum relative age on the deposition of the basal parts of till' 

Torvastad Group of sediments at 470 +9/-5 Ma. In light of this evidi..'IK"e. it is 

possible that the ubiquitous conjugate shear zones in the area arc not. as had bcl'll 

previous! y suggested (Sturt, 1978; Sturt and Thon, 1980), older oceanic shl..'ar 

zones that formed contemporaneously with massive sulfide deposition; rather they 

may be late, possibly post-emplacement shear zones. Allanatcly, they may intkcd 

be older oceanic shear zones that were simply reactivated subsequl'nt to, or 

during, ophiolite emplacement. 

2.6: Epidotites 

"Epidotites" in the study area are defined as rocks composed of I 00% coarse 

crystalline epidote, which are believed to have formed from primary 

crystallization of aqueous magmatic or deuteric tluids (Pedersen and Malpas, 

1984; the present study). 

"Epidosite", on the other hand, is a term used to describe highly altered basalt 
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dyk~:s and pillow lavas, with a ')CC'Ondary groundmass alteration assemblage of 

~pidotc, quartz and chlorite (Heaton and Sheppard, 1977; Aldiss, 1978; 

Richardson ~. 1987; also sec Section 2.2.1). While epidote may occupy up 

to HO% of the groundmass in epidosites, distinction between epidotite and 

cpidositc can be achieved on the basis of their whole rock chemistry. Figure 2. 2 

illustrates the chemical disparities between ''epidotites" and "epidosites" of the 

study area, along with "epidositcs" from Cyprus (Aidiss, 1978) and ideal epidote 

compositions from Deer~ (1962). As expected, the "epidotites" plot closer 

to the field for ideal epidote compositions than do the "epidosites". 

Epidotite "segregations" in coarse hornblende gabbro are s~n on Feoy (see 

Section 2.2 .3) . These segregations are composed of circular patches of coarse 

crystalline epidote (crystals are up to 3cm in length). The epidotite grad'.!S quickly 

outwards into megacrystic hornblende-plagioclase assemblages, and then into 

background varitextured gabbro (see Plates 2.17 and 2 . 18). In thin section, these 

cpidotitcs are composed of nearly 100% coarse, euhedral epidote crystals with 

in•~rstitial quartz and occasionally albite (Plate 2 .35). This appears to be an 

igneous texture, and along with the gradational contact of the segregations with 

the surrounding pegmatite provides convincing evidence for formation by cooling 

of a volatile-rich melt. 

Epidotite is also found in association with Type 1 plagiogranite and biotite-diorite 

in the Fiskdammcn and Dymes areas (as discussed in Sections 2 .2.1 and 2.2.4) . 



Plate 2.35: Photon1icrograph of epidotite "segregation" in gabbro pegmatite from the 
Feoy area. Note the relatively fresh, coarse grained and euhedral epidote crystals in an 
unaltered interstitial quartz matrix (magnification: 40X; en). 



63 

Figure ::! .2 (a and b): Comparison of cpidotitcs of the '>tudy area with "epidosill.'s" from 
Troodos (data from l\ldi~s . 197H). and with ideal epidote (data from D~L'f d al.. 1'-J(d) 
colllpusitiuns (cirdcs rcpn:s~: nt i<.kal epidote compo~itions : triangh:s rcprL·~cnt cpidot itL' 
compositions: stars rcprl'SL'nt Visncs cpidotitcs; squares represent Troodth L'piJo.,it~.: ~). 
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Field r:!lationships in these areas suggest that the cpidotite and Ty(X' I 

plagiogranite were co-genetic, both rock types having formed from a residual, 

water saturated magma. 

There are several other epidotite occurrences of interest in the study an.~a. As 

mentioned. in the Dyrnes and Fiskdammen areas, large ''stream~:rs" of epidotitc 

run parallel to the strike of the sheeted dykes, and in these areas the streamers arc 

closely associated with selectively altered and mineralized dykes (sec Plate:!. I 

and Section 2.2.1). Dykes cut by these streamers arc completely altered to 

"epidosite". 

Some of the epidotite veins cutting gablros and sheeted dykes contain "rinds" of 

euhedral pyrite cubes (Figure 2.3). Also, three epidotite rock samples were 

analysed for major oxides and trace clements (Table 2.1), and one of these 

samples (sample 22EPDT) contains anomalous concentrations of Cu, Zn, Ni and 

Cr. These features suggest that fluids which crystallized the cpidotitcs also carried 

metals in solution through the country rocks, and that sulfides actually 

precipitated directly from these fluids. The high concentrations of Ni and Cr in 

particular in sample 22EPDT is testament to the extremely corrosive nature of the 

hydrothermal fluid, since these metals are considerably less mobile than the base 

metals Cu, Pb and Zn. Table 2.2 summarizes epidotite and epidote occurrences 

in the study area. 
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Table 2.1: Comparison of whole r6J;k major oxide, Cu, Zn, Ni and Cr analyses 
of the Visnes epidotites with "epidosites" from Troodos and Visnes, and with 
ideal epidote analyses from Deer, Howie and Zussman (1962) (data for 
Troodos rocks is from Aldiss, 1978). 

sample Si02 Ti02 Al203 FeO MgO CaO 

Epidotites of the Visnes region 
21EPDT 35.1 1.12 20.7 14.4 2.5 20.6 
22EPDT 37.9 0.64 20.5 13.22 2.51 20.7 
48EPDT 39.1 0.52 21.7 12.88 0.09 22.15 

"Epidosites" from Visnes 
17 55.4 1.64 11.5 18.14 4.75 1.82 
15 58.1 1.64 14.1 8.51 3.47 7.12 
12 65.5 1.2 13.5 6.16 2.98 1.8 

"Epidosites" from the Troodos ophiolite 
TM13 75.69 0.15 11.58 3.95 0.55 3.58 
TM112 72.18 0.37 12.21 2.59 2.22 6.56 

Ideal epidote mineral analyses 
Epidote-1 36.12 0.11 22.77 15.41 0.72 23.61 
Epidote-2 37.01 0.01 21.62 15.78 0.68 23.11 

Sample cu Zn Ni Cr 

21EPDT 30 19 3 0 
22EPDT 363 61 61 101 
48EPDT 6 0 0 0 

17 0 32 0 0 
15 3 19 0 0 
12 4 93 0 0 

Na20 

0.03 
0.32 
0.07 

3.13 
4.26 
6.15 

3.57 
1.88 
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In summary then, field data suggest that the epidotite netveins and streamers 

represent conduits or discharge zones for hydrothermal fluids which circulated 

around an underlying volatile-rich magma. Epidotite "segregations" in pegmatitic 

gabbros, and their association with Type 1 plagiogranites, illustrate the deuteric 

origin of these particular rocks, and provide direct evidence for the deuteric 

nature of at least part of the hydrothermal system. Discharge of these fluids from 

the magma chamber into the overlying sheeted dykes (through veins and microfra­

cturcs, along dyke margins, and through the dykes themselves), along with 

probable mixing of these fluids with circulating hydrothermal fluids, was 

responsible for intense alteration and formation of local "epidosite" zones, and 

also contributed to formation of sulfides in these rocks. 

These field observations are unique in that they illustrate the importance of a 

direct magmatic, deuteric fluid influence on zones of intense alteration and 

mineralization in the Visnes dykes. The oxygen isotopic tenor of the epidotites, 

and by inference the magmatic hydrothermal fluids , is discussed in Chapter 6. 
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Table 2 .2: Epidote/epidotite occurrences in the Visncs area 

.Epidotite 
- as large xenoliths in mafic dykes, along with plagiogranitc 
- as segregations in gabbro 
- as streamers running parallel to the strike of the sheeted dykes 
- as matrix along pillow Java margins 
- as rims or rinds around plagiogranite xenoliths and spherules 

Epidote 
- as grounr!mass assemblage in all rocks affected by sub-sl!afloor alteration 
(spilitization), along with other typical spil itic alteration minerals. 
- in the more intensely altered Visnes dykes (the epidositcs), epidote is the main 
mineral 
- as netveins cutting all rocks of the VHL(' 
- as veins with rinds of pyrite cubes 
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2.7: Late metamorphism and defonn:1tion featm·es in the study area 

The high-Mg dykes, Type 2 plagiogranitcs and diorites of r:coy are altered, deformed, bnxciat~d 

and cross-cut by shear zones. Therefore, they must have undergone a period of metamorphism 

and tectonic activity which post-dates these and all other rock types in the area (since these ar~ 

the youngest rocks in the study area). 

While the rocks of the VHLC and associated Yisnes massive sulfide deposit are also affe,·ll·d hy 

this metamorphism and deformation, t'ley had clearly been emplaced and then subsequently 

affected by seafloor alteration (spilitization) about 20m .y. prior to intrusion of the high·Mg 

dykes, Ni-sulfides, Type 2 plagiogranites and diorites of Fcoy. This is clear because, as 

discussed earlier (see Sections 1.7 and 2.2): 

1- geochronologic data date rocks of the VHLC at 493Ma, and about 470Ma for the afore­

mentioned Feoy rock types; 

2- field and petrographic data from the latter rock types show that there is no evidence of 

the seafloor alteration which is so prevalent in the older rocks of the VHLC. 

This late, possibly post-emplacement (02) deformation resulted in either new formation, or 

reactivation of old large scale shear zones as conjugate sets on a regional scale, along with 

development of a shear zone-parallel biotite overprint on a regional scale . 

The post-emplacement nature of shear zone activity is recorded in the Digermulcn area of Visncs 

(see Figure 2.1). In this area a large north-south striking shear zone appears to form a conjugatl: 



\l:t with the orebody-hosted northwest-southeast shear zone. The shear zone in Digermulen 

contains disseminated pyrite, and cuts volcaniclastic sediments of the Torvastad Group. These 

sedi mcntary rocks have been shown to be the volcanic equivalents to the clinopyroxene-phyric 

intru~ion on fcoy (Pedersen, 1987), the latter having been dated at 470 +9/-5Ma (Dunning and 

Pedersen, 1987). The West Karmoy Igneous Complex is a post-emplacement granitic pluton 

which cuts the Karmoy ophiolite, and it is dated at ca. 450Ma (Priem and Torske, 1973). Given 

a considerable period of tectonic quiescence following intrusion of the clinopyroxene-phyric 

stock, which allowed for the development of a sedimentary basin before tectonic activity 

wmmcnccd, then the development (or reactivation) of these shear zones likely occurred very late 

in the evolution of the Karmoy ophiolite. It is possible that the shear zones may be related to 

intrusion of the granitic pluton, since the age limitations on this latest shear zone activity puts 

them close to the age of this pluton. 

Other late metamorphic features include: 

1- alteration of the high-Mg dykes and associated diorites to amphibole-chlorite assemblages 

(sec Section 2.2); 

:!- development of a biotite overprint on the Type 2 plagiogranites, and a strong schistosity 

<.!dined by actinolite and tremolite in all rock samples from in or near the shear zones; 

3- features such as in situ br~ciation (Types A and B breccias; see Chapter 4), tourmalin-

itation (see Chapter 4), and complete reworking of the Feoy and Visnes sulfides (see Chapters 

3 and 4) are all related to this late metamorphic episode, since they are contained within these 

shear zones; 

. . ~ . 

·, ,. "" 
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As mentioned, whether these shear zones are solely a product or this latl! metamorphism, ur 

represent later reactivation of previously formed oceanic shear zones. cannot be adequately 

assessed. 

2.8: Summary and discussion of field relationships and pl'trology 

Although there has been complex structural reworking and metamorphism within the study arc;.• 

during several periods, basic field relationships and petrographic studies still yield abundant 

information ahout the timing and separation of ore-forming, magmatic and metamorphic events. 

Based on these observations, the following summary and conclusions can be made. 

1- An extensive sheeted dyke complex and associated gabbros, Type I plagiogranitcs and 

pillow lavas (the VHLC) are clearly the first formes:! of all rock units in the study area. 

2- These rocks are characterized by epidote and quartz netveining, a regional pattern of 

extensive seafloor alteration (spilitization), and variable amounts of Fc-Cu-Zn mineralit.ation . 

Within this area of regional alteration are smaller, more discrete zones of very intense alteration 

("epidosite zones"), quartz and epidote "streamers" , and more intense sulfide mineralization . 

3- The pervasive regional scale alteration (spilitization) of these rocks probably occurn.:d as 

a result of large scale circulation of hydrothermal fluids, probably dominated by seawater. 

4- Local "epidosite zones" represent extreme alteration of pre-existing lithologies by the 

passage of more corrosive hydrothermal fluids which likely had a more direct magmatic origin. 

Associated epidotite veins and streamers correspond to "upflow zones" for hydrothermal fluids. 

Deuterically formed epidotite patches (segregations) associated with gabbro pcgmatites and 

plagiogranites represent a magmatic source region for at least part of the hydrothermal system. 
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5- Regional scale alteration by seawater combined with local zones of intense alteration by 

ascending, magmatic hydrothermal fluids could well account for the overall patterns of alteration 

and massive sulfide occurrence in the Visnes region, and indeed correspr,nds very well with field 

relationships in the area. 

6- There is evidence that immiscibility between plagiogranite, diorite, and epidotite played 

an important role in late stage magmatism at the spreading center. Also, subsequent to formation 

of these rocks, these was a renewal of basic magmatism, since epidotite and plagiogranite 

xenoliths are incorporated in large ba•;ic dykes in the Dymes area. 

7- The high-Mg dykes and associated Ni-sulfides, diorites, gabbros, and Type 2 

plagiogra.nitcs formed later than the rocks of t!.e VHLC, and have escaped the period of 

spilitization (and associated Fe-Cu-Zn sulfide mineralization) which affected these earlier rocks. 

They are not netveined by epidote and quartz, as are earlier formed rocks. On the other hand, 

they have been altered to tremolite-actinolite facies as8emblages during a subsequent 

metamorphic episode. Since the earlier formed rocks are dated at 493Ma, and the later formed 

rocks arc dated at 485 +/-2Ma (Dunning and Pedersen, 1987), then spilitization and formation 

of the Visnes massive sulfide deposit must have occurred between these time periods. The study 

area therefore records at least two separate and distinct periods of alteration/metamorphism: 

early seafloor alteration of the VHLC, and; later tremolite-actinolite facies metamorphism and 

associated shear zone formation, affecting all rocks of the study area. 

8- Finally, it is concluded from field data that the conjugate system of greenschist-facies 

shear 1oncs in the area is probably a much later-formed feature than originally thought, and may 

not be related to formation of the Visnes sui tides at an oceanic spreading center, as has been 

suggested by eariicr writers (eg., Sturt, 1979). Since these shear zones cut sediments of the 
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Digermulen group (maximum age, 470 +9/-5Ma, after Dunning and Pedersen, 1987) and in 

places contain remobilized pyrite (on Visncs) and Ni-sulfidcs (on Fcoy), then thcsl' shear wncs 

appear to be the youngest structural features in the area, possibly a post-emplacement (f\12) 

feature, and are responsible for deformation of both the Visncs and h•oy sulfide deposits . 
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<.:hapter 3: Th~ Visnes Fe-Cu-Zn massive sulfide deposit 

3.1: Introduction 

The study area cor.tains two sulfide deposits, the Visncs Fc-Cu-Zn sulfide deposit and 

the fcoy Fe-Cu-Ni-PGE sulfide deposit. Chapters 3, 5 and 6 are concerned only with the 

Visncs deposit and associated country rocks; chapters 4 and 7 are concerned only with 

the Fcoy deJXlsit and associated country rocks_ While both deposits occur within similar 

mck t~·pcs (gabbroic, subvolcanic and volcanic rocks of the uppermost portions of the 

Karmoy Ophiolite Suite), and are in close proximity to one another (see Fig. 1.1 ), data 

from this chapter indicate that they are mineralogically and texturally quite distinct from 

one another. These data, cumbined with geological, geochemical and isotopic data 

presented in subsequent chapters, can be shown to ~e a function of their formation from 

quite different geological processes in different tectonic environments. 

This chapter documents the geology and petrology of the Visnes deposit. This is followed 

in Chapters 5 and 6 by examination of associated country rock alteration as well as 

Jisl·ussion of possible origins of the alteration and mineralization associated with the 

Visncs sulfides. 

f . 
. ' . .. 
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3.2; Historical perspective 

In 1865 a Cu-rich sulfide scam was discovt'red in outcrop at Gronne,·ik, Visncs, and full 

scale mining commenced several years thereafter. By 1895 the nun~· shaft had n .. ·a~o:lwd 

a depth of 730m below sea level, and 1.8 million tons {1f C'u ore had tw~·n 

extracted. During this prosperous era, up to 70% of Norway's Cu expurt came from 

Visnes; indeed Visnes was one of northern Europe's largest C'u mines. 

Visnes was somewhat of a unique mining community at the time. Although w;1rkers wcr~..· 

local Norwegians, the owners were all Belgian and French, with much of the cxpmt 

going to these countries. There was little in the way of local control (lVCr profits. 

although this did not seem to concern the Norwegians, since the mining rofl1pany had 

their own health and community services, complete with a hospital, school and police 

force. 

During the years 1865-1895, 0.85 million tons of Cu-rich concentrate was cxrorted. The 

Rodklev main shaft operated from 1899-1972, and extracted 2.8 million tons of ore. A 

smelting operation produced powdered Cu, Zn-oxidc and Sulfur in 9 large oven., from 

1872-1877 (Plate 3.1 ). 

Today things are relatively subdued around Visnes. However, many relics testify to the 

activity of bygone days; on the rocks stretching out scawards then: arc remains ol 

gunposts, trenches and bunkers which bear witness to the German occupation during 



Plate 3.1: A view of the remains of the old smelting house in the Visnes area. 

Plate 3.2: Hand sample of massive, banded pyrite-sphalerite-chalcopyrite ore from Visnes 
Kobberverk. 
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World War 2. In the Fransehagen area, beautiful old bridle paths still remain whidt were 

probably used to transport ore material in horsc-dri\cn carts. The mine sites themscln.·s 

remain. albeit somewhat weathered by time and the elements. and tlwy arc filkd in with 

rubble, or are flooded with seawat~~r and barred up. 

It has been rumoured that the Statue of Liberty in New York was built from Cu cxtrach..·d 

from Visnes. In 1985, Cu from the Statue was analysed, and the origin wntirnwd hy 

matching of trace elememts. 

3.3: Structural and stratigraphic relationships 

The Visnes ore zone is structurally controlled by shear tectonics; in fact the Visncs 

Kobberverk sits directly on a major greenschist facies shear zone wh1ch dips steeply 

(75-90 degrees east) and strikes northwest to north-northwest. The ore wncs were 

originally composed of six cigar shaped to irregular bodies arranged en e<:hclon (Cicis, 

1962) 

Many smaller mineralized shear zones can be seen in the Visncs and Fcoy areas, such 

as at Digermulen, Kvaloy and Sandholmen (sec Figure 2.1). All of these o~currcnccs arc 

of disseminated to semi-massive pyrite and occasional trace amounts of chalcopyrite. 

As mentioned, the mine itself has been closed for many years now, so that unfortunately 
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\tructural and geological maps and cross-sections of the orebodies were unavailable 

during this study, other than descriptions found in old mine reports. 

Petrographic anaiysis of the sulfides indicates that there has been near complete 

reworking of the sulfides, and exteli::;ve modification by circulating hydrothermal 

solutions (sec following ~..:tions) . While the country rocks do contain disseminated 

sulfides, as mentioned the main orebodies are contained within a conjugate system of 

regional, large scak shear zones. Primary precipitation textures are almost tot?.!ly absent 

in the Visncs sulfides (see following sections), and banding on a microscopic and 

macroscopic scale is now a dominent feature of the Visnes sulfide bodies. 

Stratigraphically, the hvst rocks for the Visnes sulfides are mainly oceanic basaltic rocks 

of the Visncs Sheeted Dyke Complex (see Chapters 2 and 5), along with pillow lavas and 

lesser amounts of gabbros; this makes the Visnes deposit somewhat similar to the 

volcanic-exhalative deposits of the classical CypPJS type (Lydon and Galley, 1987), 

although metamorphism and shear tectonics have oblitented any primary sulfide textures 

in the Visncs sulfides (see following sections). This is in contrast to the host rocks for 

the nearby Feoy Ni-sulfide deposit (see Chapters 4 and 7), which are high-Mg dyke 

rocks of an arc-basin affinity (Pedersen, 1987). 

3A: 1\lt.•tal content of the Visnes sulfides 

The Visncs llCCurrcnce is mainly a Cu-Zn deposit, although in some zones Zn is more 



abundant than Cu. It is therefore classed as a Fc-C'u-Zn (in onkr of abundan~..·l·~) sullilk 

deposit, and b';!cause it occurs along shear 10ncs within ophiolitk shl'Ch:J dykes. it i:-~ 

similar to many other such occurrences within the Appalachian-C'alcdtlllian mount~tins 

(ex .• deposits of the Lokken. Trondheim and Joma areas oi Norway. and the Bathurst. 

New Brunswick, and Ducktown. Tennessee deposits of North AnK·rica: Bjorlykkl' \,'ta l. . 

1980; Foslie, 1926; Craig tl:d.L.. 198~). There is significant Au in the Visnes sultitks. 

and during peak production years the byproduct Au may have paid for much of tlw 

production costs. The orebody is similar to the classic deposits of the Troodos ophiolill· 

of Cyprus. although its localization within sheeted dykes rather than pillow lavas and 

sediments is atypical of Cyprus-type deposits. However. this may well he a n:sult of l<tll'r 

remobilization of the sulfides during deformation . Typical of Cyprus-type dcposit'i . 

galena is present only in trace amounts in this orebody . 

In general the ore is characterized by a predominance of pyrite; pyrrhotite has not hl·cn 

seen in any of the samples analyzed optically. although it has been reportcJ to occ ur in 

trace amounts (Craig et al. , 1984). On the scale of the orebody. sulfur varies from 25-45 

wt.% (average of 35% ); Cu varies from 0.5 to 3 wt.% (average of I. 7% ); Zn varies 

irom < 0.5-2 wt.% (average of 1.4 wt.% ), while Pb is a lways negligible (from 0-0.1 

wt. %) (Per Singsaas et aL, 1958). 

Table 3.1. gives whole rock sulfide analyses for selected samples from the Visncs mine 

dump. 
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T Jble 3. ! : Wh,)ll! rock geocht!mic:ll analysl!s 0f sdect~d vre samples from the 
Visnes massive sui tidt~ deposiT. 

Sample Sulfur Cu Pb Zn Mo Ni 
(wt.%) (-..t.\) (ppm) ( wt.%) (ppm) :ppm) 

- -----
V-2 32.9 0.95 6ppm 22.5 41 0 
V-9 35.1 1. 45 Oppm 26.2 43 0 

V-1~ 42.9 10.9 14ppm 3.2 61 0 
V-22 27.2 •). 71 0.54 2'5.6 )5 Q 

~1-:.8 ~J.l l.l 284ppm 8.2 sa 51 
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3.5: Ore petrology and geology 

The Visnes deposit exhibits several gross similarities to other ancient Cu-Zn volcanog~.·nic 

sulfide deposits. These are: 

1- a preponde1ance of pyrite as the main sulfide mineral, with trace to no pyrrhntit~; 

2- a Cu/Zn ratio in excess of unity, although Zn may locally predominate; 

3- a paucity of Pb; 

4- a lack of any barite or other sulfate minerals which arc so ubiquitous in modern 

day si:.:!s of sulfide precipitation (Lydon and Galley, 1987; 0;1din, 1983; Hayman ct at., 

1984). 

The sulfidt') of Visnes can be divided into 4 groups. These are: massive banded 

pyrite-sphaler.te-chalcopyrite (Plates 3.2 and 3.3); massive pynte and sphalerite (Plates 

3.4 and 3.5); di'lst>rr-.inated to semi-massive pyrite with minor chalcopyrite; miuor 

stringer sulfides in gabbro (see Plates 2. 19 and 2.20) . 

The most abundant sulfide type is the banded ore. This is 85-100% sulfide, with pyrite 

as the main component, and lesser amounts of chalcopyrite and sphalerite. It is invariably 

coarse grained (grains up to 0.4cm wide) and exhibits well developed triple point or 

annealed grain boundaries in thin section (Plate 3.6). These can be interpreted as 

metamorphic recrystallization features (Rockingham and Hutchinson, 1980; R.-.mdohr, 

1980). 

• ~ <> .. \ • 



Plate 3.3: Photomicrograph of sample in Plate 3.2. Note pyrite cubes (white) with 
interstitial chalcopyrite (yellow) and sphalerite (grey) (magnification: lOX; reflected light, 
rl). 

Plate 3.4: Hand sample of mass1ve, banded pyrite-sphalerite ore from Visnes 
Kobberverk. 



Plate 3.5: Photomicrograph of sample in Plate 3.4. Note the embayment of pyrite cubes 
(white) by sphalerite (grey) (magnification: lOX; rl). 

Plate 3.6: Annealed texture in massive pyrite from Visnes Kobberverk. Note yellow 
interstitial chalcopyrite (yellow) (magnification: lOX; rl). 
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Banding is usually on a centimeter or decimeter scale, and is restricted to the main 

orcbodics in the Visnes and Rodklcv shafts. It is possible that this banding may reflect 

a retention of primary sedimentary metal zonations during later deformation. However, 

sphalerite and chalcopyrite might be expected to be easily mobilized during such 

deformation (Ramdohr, 1980), and may have migrated into parallel layers or cracks. 

Several samples contain > 95% massive pyrite or sphalerite. In such samples the pyrite 

is generally fresh and strongly annealed, except where it rtmains as euhedral, individual 

crystals where there is significant interstitial gangue. The massive sphalerite samples are 

completely recrystallized, and may simply be samples of a larger sphalerite band in 

pyrite. Sphalerite in these cases exhibits a strong tectonic fabric (Plate 3. 7). 

Disseminated pyrite and very minor disseminated chalcopyrite are present along many 

of the smaller shear zones in the area. Such occurrences are without exception shear zone 

controlled, where pyrite occupies up to 30% of the host chlorite schist. In one sample, 

the host rock is ferro-actinolite schist (Plate 3.8). These mineralized zones cut all rocks 

in the study area, and show no stratigraphic or lithologic preference. There is no 

evidence of any increase in pyrite-chalcopyrite dissemination with progression towards 

the main orebody. 

The last type of sulfide occurrence associated with the Visnes deposit is a smaiJ zone of 

stringer pyrite-chalcopyrite veins (l-2cm wide) in melanocratic gabbro on one of the 

nearby skcrrics (see Plates 2.19 and 2.20). This occurrence is small enough not to 

warrant being labelled a major stockwork or "discharge" zone; indeed it may well 



Plate 3. 7: Tectonic fabric in massive sphalerite ore from Visnes Kobberverk. Sphalerite 
is light grey, and is strongly alligned from left to right (magnification: lOX; rl). 

Plate 3.8: Actinolite-pyrite schist. Taken from maJ.n shear zone in Visnes Kobberverk 
(magnification: lOX; ppl). 
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represent metamorphic sulfide remobilizatlon along fractures . The possibility remains 

however, that such veins may constitute part of a larger stockwork zone analogous to 

similar "feeder zones" for the main sulfide deposit, as seen in the Cyprus and Bett's 

Cove ophiolites. 

Petrographic analysis of sulfide textures and mineralogy in these ore types is given 

below. 

Pyrite exhibits a wide grain size distribution even within a single thin section, from fine 

( < 0.5mm) to coarse grained (up to 0. 75cm in pyrite porphyroblasts). It is usually 

suhhcdral and coarse grained. Where there is abundant interstitial chalcopyrite or 

sphalerite, the pyrite is often rich in inclusions of these sulfides. It is usually quite fresh 

when massive, with well developed annealing texture (see Plate 3.6}. However, where 

assodat, ·J with quartz and amphibole gangue, the pyrite is sometimes strongly corroded 

or altered . Pyrite illustrates several features indicative of its metamorphic modification: 

1- the association of metamorphic gangue assemblages of quartz-actinolite-calcite 

with lesser albite: 

2- the strong annealing texture in massive pyrite; 

.\ -- the corroded nature of the pyrite when associated with amphibole or quartz in 

s~:histusc rock samples; 

~ - grain growth nf pyrite around older pyrite grains in strongly annealed pyrite 

. . - -
• I ' • - . 
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ground mass; 

5- cataclastic pyrite is replaced by chalcopyrite, and corroded and cut by quartt. vein 

networks. 

Because of the extent of recrystallization, it is not possible to qualify the physical nature 

(either crystalline or as a colloidal sediment) of the pyrite prior to deformat ion and 

metamorphism. The observation of grain growth in one sample, the complete lack of <lny 

primary sedimentary or colloidal features , and the presence of relatively unfral.·turl·d. 

large pyrite porphyroblasts might suggest (according to Ramdohr, 19R0) that then: was 

already a relatively coarse grained pyrite component before metamorphic coarsening nf 

grain size. 

There is no evidence for any sedimentary sulfidt.: textures in this deposit (o;uch as 

framboidal or colloform pyrite), with the exception of small amounts of "Vasskis". This 

amorp110us, Fe-rich silicatc-sultide "mud" (Plate 3.9) may represent the original seafloor 

sulfide precipitate; it is also recorded from several other Norwegian and Canadian 

massive sulfide deposits (Vokes, 1980; Stevens, 1980; Grcnnc ct al. 1979). Apart from 

this however, all evidence of the primary chemical precipitation of the sulfide has hccu 

obliterated. 

Chalcopyrit~ 

On the scdle of the orcbody chalcopyrite is more abundant than sphalerite, hut io; prco,cnt 



Plate 3.9: Fe-rich "Vasskis" (black material), which is thought to represent ancient 
seafloor chemical precipitates from "black smokers". The Vasskis is contained in a highly 
altered, silicified basalt dyke sample in this section (magnification: 3.2X; ppl). 

Plate 3.10: Pyrite (py)-chalcopyrite (cpy) assemblages intensely veined and corroded by 
quartz. The chalcopyrite may have replaced the pyrite along cracks (py is darker grey, 
cpy is lighter grey) (magnification and scale at base of photograph). 
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in thin sections in varying amounts. The chalcopyrit~ 0\.'l'Urs interstitial tu. ,,r as 

inclusi0ns in pyrite, except in one sample (Plate 3.10) where chalcopyrite has r~plan.-d 

pyrite along fractures. 

Intergrowths of chalcopyrite with sphalerite arc commonly observed, as wl'll as abundant 

inclusions of one in the other. Chalcopyrite inclusicns in sphalerite have hl'en t·allcd 

"chalcopyrite disease" (Barton and Skinner, 1979), and may be a function of the solid 

solution of chalcopyrite-sphalerite at elevated temperatures of formation . Alternatdy, 

Eldridge et at. (1983) invoke replacement processes as a means of producing sud\ 

textures. It is possible that replacement processes have taken pl<ll:e herl' (it is. 

unfortunately, difficult to say whether Plate 3.10 represents replacement or -;impk 

fracture filling by chalcopyrite), although in light of the upper greenschist facies 

biotite-actinolite signaturt~ of this area, it seems likely that tcmpcraturl's in cxct•ss of 

those reqJJired for chalcopyrite-sphalerite solid solution (Barton and Skinner, 197Y) were 

achieved on at least one occasion. 

Sphalerite 

Sphalerite may locally constitute up to 80% of the samples of banded ore, and tx:curs a' 

discrete bands with calcite ( +1-ferroactinolitc) . It is always n:ddish·brown in hand 

samples. and shows good internal reflections under the reflecting microscope. In some 

samples sphalerite is strongly deformed, and clearly wraps around brittle -deformed pyrite 
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masses. It forms distinct folds in one other sample (Plate 3.11) . Owing to its 

susccptability to solution or plastic flowage during deformation, sphalerite is most often 

recrystallized completely. Sphalerite occurs also as intergrowths with chalcopyrite, and 

as inclusions in pyrite. 

Galena was observed in only two samples, and then only in trace amounts as interstitial 

matrix to pyrite cubes (Plate 3. 12). 

3.6: Summary 

The Visnes orebody is a large Fe-Cu-Zn sulfide deposit which is stratigraphically situated 

in the uppermost portions of the Karmoy Ophiolite. It has been exteflsively reworked and 

altered by subsequent periods of deformation and metamorphism, so that primary sulfide 

textures are all but absent, with the possible exception of the presence of minor amounts 

of "Vasskis". Despite its modifications, the deposit exhibits mineralogical, structural and 

stratigraphic similarities to the volcanic-exhalative deposits of the Troodos Ophiolite in 

Cyprus. It is also similar to numerous other ophiolitic sulfide deposits of the Norwegian 

Caledonides and the Appalachians of North America. 

lt is one of two main sulfide deposits in the study area. On the nearby island of Feoy, 

a small Fe-Cu-Ni-PGE-sulfide deposit occurs within highly magnesian dykes of an arc-



Plate 3.11: Hand sample of highly deformed, folded sphalerite layer (brown) in calcite. 

Plate 3.12: Photomicrograph of trace amounts of galena (Pb) In massive pyrite and 
sphalerite (sp) (magnification and scale at base of photograph). 
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ba~in affinity. While the two deposits are situated fairly close together, they can be 

shown to be unrelated to one another; these distinctions are more clearly made in Chapter 

4 after an examination of the geology and petrology of the Feoy deposit. 
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Chapter 4: The Feoy Fe-Cu-Ni-I'GE sulfide deposit 

4.1: I nt roduct ion 

The Feoy area is host to a small Ni-sulfidc deposit which sits along a majl'f sl11:ar /lllll' 

within a country rock assemblage of isotropic and varitextured gabbro. sht:l'tcd tholc.:iitil· 

and high-Mg dykes, and minor plagiogranitic dykes. The high-Mg dykes arc tlw onlv 

rocks '.\·hich are internally mineralized with Ni-sulfides (sec Plate ~ .. ~0). However. latl'r 

metamorphism and deformation has resulted in rcmobilization of the Ni-sulfidcs along 

shear zones. 

A number of breccia sarnph!s and quartz-tourmaline vein asscrnhla!!cs \Wrc colll'l'tl·d 

from the old Fcoy mine dump (sec Figure 2. 1 ). The breccia cxx:urrencc itself must he 

below the surface. as is the sulfide deposit, since no outcrops of this type were observed, 

and such samples arc only found around the mine shaft. The breccia ~tmplcs illustrate 

some interesting relationships between the Ni-sulfidcs and later met<unorphisrn and 

deformation, since some samples contain milled Ni-sulliuc fragrncnt-. in a matrix of 

chlorite, calcite, tourmaline and quartz. They arc considered important in interpretation 

of the nature of later metamorphism. deformation and hydrothermal activity. and arc 

therefore discussed in some detai! ,,. this chapter and in Chapter H. 

The feoy sulfide deposit is an anomalous occurrence in o;cvcral rc'ipccts: 

I - the occurrence of Cu-Ni -sul fides within Phanerozoic ophiolite complcxc'i io; 
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relatively rare, and; 

2- such occurrences are themselves only seldom as enriched in PGE's as this 

deposit. The only other deposit comparable in terms of age, size, PGE enrichment, and 

tectonic envirc.:~mcnt of formation known by this writer is the Lilletjellklumpen (Lfk) 

deposit of northwestern Norway (Gronlie, 1988). 

Therefore, attempts will be made in this chapter to thouroughly document the ore 

geology and petrology of this deposit. In Chapter 7, the origin of this deposit and its host 

rocks, as well as its classification with respect to other Ni-sulfide occurrences, is 

discussed. 

4.2: Ore geology and petrography 

Ni-sulfide mineralization appears to be mainly shear zone controlled, and according to 

old mine reports occurs in several massive sulfide lenses parallel to the shear zone 

walls. The entire deposit is quite small, probably not containing much more than 100,000 

metric tons of sulfide; only 37,000 tons were produced during the active mining period 

at the turn of the century (Buyd and Nixon, 1985). Unfortunately, structural and 

geological maps of the sulfide body were unavailable. 

Average grades for the Ni-sulfides are (after Foslie and Johnson-Host, 1932): 2.1% Cu, 

:!.63?-'J Ni, 0.031% Co, with average Cu/Ni at 0.56, Co/Co+Ni at 0.06, and Pt/ Pt+Pd 

at 0. 275. This deposit is unique with respect to other such ophiolitic Ni-sultide deposits 
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in its high concentrations of PGE's, and it is clearly distinct from th~ nl!arby Visncs 

deposit, the latter which contains no PGE's or Ni-sulfidcs (see Chapter .'1). Average 

grades of Pt and Pd are 1.12 and 2.97 g/t respectively. These arc contained within an 

interesting array of Platinum Group Minerals (PGM's) in the Ni-sultidc and gangue, as 

opposed to as solid solution in the sulfide (see Cabri and Naldrett, 1984). 

The sulfides are mainly 95-100% massive, fine grained pyrrhotite, chalcopyrite and 

pentlandite. Minor minerals include pyrite, magnetite, hematite, chromitc, ilmenite, 

violarite, cubanite, mackinawite, and PGM's. There are some disseminated interstitial 

Ni-sulfides in high-Mg dykes which occur along the shear zone ncar the orcbody, and 

these may represent orthomagmatic Ni-sulfides which were trapped as interstitial liquills 

between crystaJiizing silicates in cooling silicate/sulfide melt (see Plate 2.30). 

The ore mineralogy of the Feoy deposit is examined in order of abundances in hand 

samples and thin sections. 

Pyrrhotite 

Pyrrhotite is the main sulfide mineral, and constitutes up to 70% of the massive ore 

samples. It is generally fine to medium grained (up to 0 .5mm) and is of the monoclinic 

(Fe 1-xS) variety. The pyrrhotite exhibits ubiquitous 3-point grain boundaries in all 

samples as a 1 .~suit of later recrystallization . In some of the more massive, 

mono-mineralic pyrrhotite samples, this feature may conform to the ideal dihedral , or 
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120 degree, interfacial angle (Plate 4.1). Because of the strongly deformed nature of the 

sulfides, it is assumed that this feature represents a slow heating process during 

progressive metamorphism (henr.e the development of pyrite porphyroblasts). It should 

he noted, however, that such a texture could also be achieved by slow cooling of massive 

pyrrhotite after its deposition from an initial monosulfide solid solution (mss), with 

conformity of the interf~cial angles to ideality (120 degrees) being directly related to the 

number of mineral phases in the cooling sulfide melt (Vaughn and Craig, 1982). Because 

of the intense deformation which affects these sulfides, the former explanation is 

preferred here. 

Some pyrrhotite has been hydrothermally altered to marcasite, although the majority of 

the pyrrhotite is relatively fresh. Exsolution of pentlandite as "flames" along cleavage 

planes in the pyrrhotite is quite common in these samples, albeit on a minor scale (Plate 

4.2). 

In several samples pyrrhotite exhibits strong cataclastic textures, or "Durchbewegung" 

structure (Vokes, 1969) (Plate 4.3). In such samples magnetite is also quite common, 

suggesting that ;dteration of the pyrrhotite during metamorphism occurred under elevated 

f02 conditions. This is elsewhere supported by the presence of abundant hematite (Plate 

4.4). Howeve r, at least some of the magnetite is primary, since it does not rim the 

pyrrhotite in thin section, and occurs in some plac~s as euhedral to rounded, fresh 

grains. The appearance of magnetite at high temperatures may have ensured an elevated 

pyrrhotite/pyrite ratio in this deposit (Stanton, 1978). 



Plate 4.1: Well developed annealed texture (with triple point grain boundary angles 
approaching 120 degrees) in massive, pyrrhotite ore from the Feoy area 
(magnification: lOX; reflected light, rl). 

Plate 4.2: Exsolution "flames" of pentlandite (cream coloured) in massive pyrrhotite 
(grey) and chalcopyrite (yellow) (magnification: 40X;rl). 



Plate 4.3: "Durchbewegung" texture, illustrating cataclastic deformation of pyrrhotite 
(white), along with abundant amphibole (black) (magnification and scale at base of 
photograph). 

Plate 4.4: Magnetite (dark grey), pyrite (light grey), and hematite (black) in massive 
pyrrhotite ore from Feoy. The magnetite has formed as a result of the decomposition 
of pyrite, while the hematite is an alteration product of magnetite (magnification and 
scale at base of photograph). 
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Pyrrhotite occurs as minor e..<solution bkbs in the chalcopyrite:; according to Stanton 

(1978), this feature is indicative of its formation under very high temperatures. 

As mentioned, pyrrhotite occurs as an interstitial sulfide phase, along with pcntlanditl'. 

in some of the high-Mg dykes in the area (see Plate 2.30). The sulf1des arc intl·rstitial 

to actinolite and tremolite, the latter which are alteration products of clinopyroxene. The 

presence of these interstitial sulfides may be interpreted as having resulted from trapping 

of sulfide liquids during primary crystallization of silicates from a co-magmatic 

silicate-sulfide melt (see Chapter 7). 

Chalcopyrite 

Chalcopyrite is present in all samples in variable amounts, from < 2-30% of each 

sample, and occurs as different textural varieties. 

In the massive ore samples, chalcopyrite is most abundant as an interstitial phase to the 

pyrrhotite. In some of the more deformed samples, remobilized chalcopyrite often occurs 

interstitial to foliated amphibole (Plate 4.5). 

Chalcopyrite "segregations" were also observed. These are almost pure chalcopyrite 

patches within massive pyrrhotite that are neither interstitial nor banded. Such 

segregations might be expected during separation of a Cu-rich phase in a sulfide melt, 

with conversion of mss to iss (Stanton, 1978). 



Plate 4.5: Remobilized chalcopyrite (yellow) interstitial to amphibole in highly 
deformed pyrrhotite-chalcopyrite ore sample from Feoy (magnification: 3.2X; rl). 

Plate 4.6: Pyrite porphyroblast rimmed and corroded by chalcopyrite (yellow) and 
magnetite (dark grey). Note the inclusions of chalcopyrite and magnetite in the pyrite 
porphyroblast (magnification: 3.2X; rl). 
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The remobilized nature of chalcopyrite is quite obvious in many samples, as it forms 

distinct bands parallel to the amphibole overprint in deformed ore. In such samples, 

chalcopyrite is also seen to rim (along with magnetite) highly corroded pyrite porphyrobl­

asts (Plate 4.6). Chalcopyrite and magnetite also occur as inclusions within these same 

porphyroblasts. This feature can be interpreted as replacement or alteration of !he pyrite 

which post-dated porphyroblast formation. 

Pentlandite 

Pentlandite is abundant in the Feoy Ni-sulfides, occupying from 3 to 25% of the samples 

in thin section. Although at temperatures approaching its parent silicate/sulfide liquidus, 

pyrrhotite can certainly accomodate considerable Ni in solid solution or in mss (0-11%; 

Yund and Kullerud, 1966), it is suggested that upon equilibration during cooling of mss, 

all of the Ni is either taken up by a later precipitating pcntlandite phase, or is cxsolvcd 

as "flames" of pentlandite within crystallographic axes of the earlier formed pyrrhotite 

(Skinner, pers. comm.) (sec Plate 4.2), such that at low temperatures there can IJc no 

"Ni-pyrrhotite" as is suggested by earlier writers (eg. Ramberg, 1968). Attempts were 

made in this study to determine the distribution of Ni in the massive ores. Ni was 

initially determined on a scanning electron microscope to be present as free pentlandite 

grains, as flames of pentlandite in pyrrhotite, and as solid solution in pyrrhotite. Upon 

closer observation of this "Ni-pyrrhotite" however, minute flames of pcntlandite were 

always observed in the pyrrhotite. Therefore, it appears that pcntlandite represents the 

only Ni-rich phase in these sulfides. 
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The pcntlandite occurs as cracked, occasionally cuhedral octahedrons (Plate 4. 7), but 

mainly as xenomorphic chain-like veinlets or rims around the pyrrhotite, owing to its 

precipitation at a later stage than the pyrrhotite (Plate 4.8). This also accounts for the 

abundant exsolution of pcntlandite flames in pyrrhotite. The blocky, free pentlandite 

grains arc usually medium to coarse grained owing to their precipitation at unusually high 

temperatures. 

The pcntlandite is vanably altered to violarite and bravoiite (Plate 4.9; also see Plate 

4 . 8). The resultant texture is highly distinctive, with dirty grey fractured rims and fresh, 

creamy coloured pentlandite cores, the outline of which follows the shape of the 

fractures. The alteration to violarite corresponds to a loss of Ni up to 10 wt%. 

Minor Minerals 

There is very little primary pyrite present in the Feoy deposit; pyrite occurs as large, 

highly embayed, inclusion-rich porphy10blasts which are variably altered and rimmed by 

magncti te and chalcopyrite. 

Magnetite is present in variable but minor amounts, up to 3% in some samples. It occurs 

as two distinct textural types in these sulfides: some samples contain subhedral grains or 

blebs of magnetite rimmed by chalcopyrite; magnetite also occurs as a product of the 

decomposition (oxidation) of pyrite (see Plates 4.4 and 4.6). In these latter occurrences, 

magnetite rims and is inciuded in the pyrite, along with chalcopyrite (see Plate 4.6). It 



Plate 4.7: Blocky, altered pentlandite crystals (dark grey, at center, labelled PH) in 
massive pyrrhotite-chalcopyrite (labelled CPY) ore from Feoy (magnification and 
scale at base of photograph). 

Plate 4.8: Highly altered pentlandite veins (dark grey with cream coloured cores) 
cutting and rimming massive pyrrhotite (light grey) (magnification and scale at base 
of photograph). 



Plate 4.9: Pentlandite which has been heavily altered to violarite. The dark brown 
violarite rims fresh, cream coloured cores of pentlandite. The surrounding material is 
pyrrhotite (white) and chalcopyrite (yellow) (magnification: lOX; rl). 

Plate 4.10: Tiny grain of chromite (Cr) in a pyrite (PY) grain. This is in a massive 
pyrrhotite (darker grey at base of photo) ore sample from Feoy (magnification and 
scale at base of photograph). 
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seems clear that the former variety represents primary formation from a sulfide melt with 

coalescence of chalcopyrite after its exsolution from iss, while the latter variety represen­

ts a product of the alteration of pyrite. 

Hematite is seen in small amounts as a product of hydrothermal alteration of ma~netitc 

(see Plate 4.4), since it is quite common as rinds along cross-cutting quart7./calcitc veins 

in the sulfide. 

Chromite and ilmenite are present in only trace amounts as small euhcdral grains within 

the pyrrhotite (Plate 4.10), and occasionally also within the pyrite; these bear witness to 

the high temperature nature of this deposit. The paucity of chromite attests to very low 

f02 conditions during probable formation of the sulfides from a silicatc/sullidc melt, so 

that most of the chromium in the initial melt must have partitioned into the silicate 

fraction . 

Violarite is a common alteration proJuct of pentlandite, and indeed has extensively 

replaced pentlandite in the Feoy Ni-sulfides (see Plates 4.8 and 4.9); in some samples 

the alteration is complete. 

Mackinawite was found in one sample only as very small, pinkish-red to grey inclusions 

in pentlandite and pyrrhotite. Cubanite was also identified in one thin section as pink 

lamellar inclusions, intergrown with pyrrhotite, in chalcopyrite. 



106 

Platinum Group Minerals <PGM's) 

Although evidently mobilized and reconcentrated during later metamorphism, deformation 

and hydrothermal activity, the PGE tenor of this deposit is considered to reflect primary 

PGE enrichment in a host silicate/sulfide melt(s) (See Chapter 7). All sulfide samples 

were analysed by quantitative electron microscopy for PGM's, which are easily 

recognizable in a scanning electron microscope (SEM) because of the brightness induced 

by their high atomic numbers. 

In total, five PGM phases were recognized by this author. All of these were present in 

trace amounts as minute sub to euhedral grains that were in places associated with late 

chalcopyrite veins and metamorphic silicates, and in other places with massive pyrrhotite 

and pcntlandite. PGM's do not seem to show preference for any part1cdar sulfide or 

silicate species. Samples on average contained 1 to 3 grains of PGM's, although some 

arc devoid of PGM's. All PGM's found are tellurides, although Ramberg (1968) has 

recorded the presence of native Pt from a hand sample from Feoy. 

Two of the five PGM species identified microscopically were analysed on a SEM using 

a semi-quantitative stoichiometric method. These results indicate that the analysed grains 

of Pt-Pd-Bi-Te and Hg-Pd-Te were actually Michenerite, (Pd,Pt)BiTe, and Temagamite, 

Pd3HgTe3. Table 4.1 is a list of the analysed PGE grains and their probable names, 

while Plates 4.11 to 4.15 are scanning electron photomicrographs of some of the PGM's 

observed. 



Plate 4.11: A scanning electron photomicrograph of a Platinum Group Mineral 
(PGM), probably michenerite (PT-PD), in massive pyrrhotite (PO) from Feoy 
(magnification and scale at base of photograph). 

Plate 4.12: A euhedral grain of temagamite (Pd3HgTe3, labelled HG-PD in photo) in 
massive pyrrhotite (PO) from Feoy (magnification and scale at base of photograph). 



Plate 4.13: Temagamite grain (bright white, at center, labelled HG-PD-TE) in highly 
deformed amphibole (black)-pyrrhotite (white, labelled PO) assemblage (magnification 
and scale at base of photograph). 

Plate 4.14: Michenerite (PD-BI-TE) grain in massive pyrrhotite (PH) from Feoy 
(magnification and scale at base of photograph). 



Plate 4.15: Kotulskite (PdTe, labelled PD-TE) and probable hessite (Ag2Te, labelled 
NI-AG PH and AG) grains in tourmaline-pyrrhotite assemblage from Feoy 
(magnification and scale at base of photograph). 

Plate 4.16: Photograph of Type A breccia from the Feoy mine dump. Note the large, 
rounded tourmalinite fragment at right, and the sub-rounded, massive pyrrhotite 
fragment at left (brown). At the top of this sample is an elongate fragment of Type 2 
plagiogranite. The matrix material is chlorite and calcite. Note pen for scale. 
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Table 4. 1: Platinum Group Minerals found in the Feoy Ni-sul tides. 

Com~i.Qn 
Pt,Pd,Bi, T 1! 

Pd.Bi,Te 
Pd,Hg,Te 
Pd,Te 
Ag,Te 

Ag,Fe.S 
Pt 

P0ssible name 
~fichenente, (Pd.Pt,Ni)(Bi,Sb)T ~ 
~fichenerite 

Temagamite, Pd3HgTe3 
Kotulskite, PdTe 
Empressite, AgTe; Stutzite. Ag5Te3 
or Hessite, Ag2Te 
Unknown 
~:uive ?t 1. after R.1m~rg. 196«3} 
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Also found was one grain of a Ag-telluride within an assemblage of tourmalin~. 

pentlandite and Pd-telluride (see Plate 4.15). The Ag-tclluride is probably hcssitc 

(Ag2Te), since similar grains of hessite have been recorded from other Ni-sullidc 

deposits (Rowland and Berry, 1951), and most other Ag-telluridcs arc generally 

associated with lower temperature auriferous deposits (Ramdohr, 1980). 

4.3: .Metamorphic and deformation features associated with the Froy Ni-sulfidt•s 

Brecciation and associated tourmaline formation, plastic deformation and rcmobili7.ation, 

alteration and leaching of the Feoy sulfides all occurred during a period of metamorp­

hism, deformation and hydrothermal activity which post-dated intrusion of the high-Mg 

dykes and formation of the associated Ni-sultides This section deals with some of the 

effects of this late episode on the Feoy Ni-sulfide deposit. 

4.3.1: Breccias 

The occurrence of breccias and quartz-tourmaline vein assemblages along shear zones in 

the Feoy mine area is considered to represent cataclastic deformation and hydrothermal 

activity which accompanied late metamorphism (see Chapter 8). Breccia and vein samples 

were taken from the mine dump on Feoy, and of20 breccia samples collected, two types 

can be recognized in hand samples. Type A breccia contains a tri-lithologic assemblage 

of rounded tourmalinite fragmen~s (these are fragments composed of >90% tourmaline, 
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which have undergone varying degrees of dissection by chlorite and calcite matrix), 

plastically deformed and remobilized, sub-rounded, massive Cu-Ni-sulfide fragments, and 

Type 2 plagiogranitic fragments (Plates 4.16 and 4.17). There are also some heavily 

tourmalinized and mineralized (with chalcopyrite and pyrhhotite) high-Mg dyke fragments 

present. These fragments are set in a matrix of coarse crystalline metamorphic chlorite, 

minor tourmaline, and calcite. There is no quartz in this breccia type, although coarse 

grained quartz-tourmaline veins are also found along the same shear zone (Plate 

4 . 18). The cement material in this breccia has clearly formed from hydrothermal fluids, 

as the chlorite, tourmaline and calcite are all coarse crystalline, and are intergrown with 

one another. This is contrasted with a "··ock flour" matrix, .vhich is chaotic, 

non-crystalline cement material that is found in breccias which have formed as a result 

of tectonic activity (Sillitoe, 1985). 

The presence of tourmaline in the breccia cement indicates that there was a boron-rich 

component to these hydrothermal fluids. The occurrence of tourmaline as tourmalinite 

fragments in the breccia as well suggests that tourmaline formation occurred both before 

and during brecciation, i.e. tourmalinization was a prolonged process during this 

hydrothermal activity. It may be that tourmalinites which formed in the early stages of 

hydrothermal activity were later incorporated as fragments during brecciation and 

continued boron-rich fluid circulation. 

Type B breccia is composed of fine grained, milky, and sometimes colloform-banded 

(due to open space filling) calcite-quartz-chlorite assemblages (Plate 4.19). The cement 



Plate 4.17: Type A breccia sample. The black areas at far left and far right are zones 
of tourmalinization. Close observation of the cement material in this sample reveals 
abundant tourmaline in the matrix. 

Plate 4.18: Quartz-tourmaline vein assemblages from the Feoy mine dump. Large (up 
to 3cm long), black, radially disposed tourmaline crystals are intergrown with coarse 
grained quartz in these samples. 



Plate 4.19: Photograph of Type B breccia from the Feoy mine dump. Note the 
massive pyrite fragments in a quartz-calcite (minor chlorite) matrix. 

Plate 4.20: Fresh, euhedral tourmaline crystals (dark and pale blue) set in a matrix of 
calcite (white) and chlorite (light green). Note the growth lines in the tourmaline at 
upper right (magnification: 20X; ppl). 
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material in this breccia type is also considered to have formed from hydrothermal fluids 

rather than from tectonic activity. because of the presence of quartz-calcitc-chlnritc 

intergrowths in the matrix, and also because of the absence of any "rock 

flour" component. 

This breccia contains sub-rounded fragments of massive, fine grained and collofnrm 

banded pyrite. This type of sulfide is not seen in any of the massive Ni-sulfidc sampks 

or in Type A breccia, nor does it resemble any of the Visnes-type sulfides. Also, it was 

found to have an isotopically unique signature (sulfur isotope ratio of 17 per mil), quite 

unlike either the Feoy or Visnes sulfides. It is difficult to say whether the pyrite in this 

breccia is truly fragmentary, or whether it actually precipitated from hydrothermal fluids 

accompanying Type B breccia formation. 

The presence of Type 2 plagiogranite and high-Mg dyke fragments in Type A breccia is 

significant (the surrounding country rock is also plagiogranite and high-Mg dykes). It 

suggests that brecciation was in general an in.....s..i1Y feature, with little upward or 

downward displacement of the fragmented country rock. Sillitoe ( 1985) has demonstrated 

that although there is normally some small downward displacement component to many 

non-tectonic breccias, there need not necessarily be any appreciable vertical displacement 

of fragments during brecciation, except in the case of breccias produced as a result of 

tectonic movement or thrusting. He has also shown that there can be considerable and 

abrupt changes in temperature of formation, pressure, host rock lithology, discharge 

velocity, and morphology of the breccia within a single breccia occurrence. 
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There arc considerable differences in the lithology and morphology of breccia Types A 

and B. However, both breccia types are always found together, and are both localized 

along a shear zone which cuts the Ni-sulfide body in the vicinity of the mine 

dump. Likewise, both breccia types have a "hydrothermal cement" matrix as opposed to 

a "rock flour" matrix. Also, both contain coarse crystalline tourmaline as well as 

tourmalinite fragments. This evidence, coupled with data from Sillitoe (1985) which 

show that there can be abrupt lithologic and morphologic changes within a single breccia 

occurrence, suggests that the Types A and B breccias from the study area may have 

formed at the same time by the same mechanisms (see Chapter 8). 

4.3.2: Tounnaline and tounnalinite 

Tourmaline is found in the Feoy area as tourmaJinite fragments in Type A breccias, as 

course crystalline quartz-tourmaline vein assemblages in the shear zones, and filling 

fractures in the country rocks surrounding the Ni-sulfide deposit (see Chapter 2). 

The distribution of tourmaline is problematic, and tourmaline-breccia relationships 

suggest that there was more than one period of tourmalinization, or that tourmaJinization 

was a prolonged process during breccia formation. Firstly, the Type A breccia contains 

milled, rounded fragments of tourmalinite (see Plate 4.16). These are composed of 

> 90% tourmaline with minor calcite and remobilized sulfides. This tourmaline is fine 

grained, sub- to euhcdral tourmaline of the black schorl/dravite (Fe> Mg) variety. In 

places the fragments are veined and dissected by chalcopyrite and calcite, indicating 
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remobilization of the latter during deformation. This tourmalinitc clearly pre-dat.:d 

brecciation, as it is incorporated as fragments in the breccia. However, the matrix of the 

breccia also contains non-fragmental, euhedral tourmaline within a metamorphic chlorit­

e-calcite assemblage (Plate 4.20), indicating that tourmalini1..ation was an ongoing pr<X·ess 

during brecciation. 

Elsewhere in the mine dump another interesting tourmaline fragment was found, and 

yields information supporting the pre-brecciation nature of some of the tourmaline. This 

sample is a tourmalinite, as in the Type A breccia fragments, but has been strongly 

deformed, so that a pronounced schistosity and kink banding arc well developed (Plate 

4.21). At the same time the tourmaline is quite altered and corroded. 

In thin section, some Type A breccia samples contain radially disposed tourmaline, or 

tourmaline "suns" (see Plate 4.28) that have been interpreted as products of replacement 

of pre-existing minerals (Deer rut.., 1962). Some of the amphiboles in the high-Mg dyke 

samples are also replaced by tourmaline "suns". On the other hand, the tourmalinites and 

the coarse crystalline vein tourmaline are clearly not replacement products, so that there 

is evidently both primary and secondary (replacement) tourmaline in these rocks. 

Tourmaline "suns" are usually quite turbid, and are in some places sulfide-inclusion rich 

(see Plate 4.28), while tourmaline from vein assemblages is always quite fresh, and never 

contains inclusions (see Plate 4.24). Where tourmaline overgrows amphibole, remobilized 

sulfides are commonly present along cleavage planes or growth lines in the tourmaline 
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(Plate 4.22). 

The tourmalinite fragments exhibit several interesting textures. In some samples, 

tourmaline is subhcdral to irregular, and is strongly foliated (see Plate 4.21). In other 

samples, tourmaline is sub- to euhedral, fine to medium grained and generally randomly 

orientated (Plate 4.23). This type is always fresh and inclusion-poor. In sulfide-rich 

samples, tourmaline crystals are often broken or shattered by sulfides or calcite (Plate 

4.24), while in other such samples euhedral, unaltered tourmaline sits in an interstitial 

sulfide matrix, with significant separation bewteen tourmaline crystals (Plate 4.25). 

Both the early and late formed tourmaline exhibit optical zoning on a moderate scale, 

with blue-green colour variations possibly corresponding to variations in Na, Mn, and 

Ti (sec Table 8.2) from cores to rims. 

About 400m south along the coastline from the mine dump, there is an outcrop of well 

exposed dykes of both the Visnes and high-Mg type. Although the dykes are relatively 

fresh and unaltered, they contain abundant coarse (up to 3cm long, lcm wide) black 

tourmaline crystals along microfractures which are copious in these rocks (see Plates 

2.31 and 2.32). In the context of the nearby tourmaline- bearing breccias, this feature 

suggests that boron-rich hydrothermal circulation which post-dated all rocks in the area 

was not localized to shear zones alone, but rather that it was more widespread and 

diffuse, and permeated through microfractures in the surrounding C:.)Untry rocks. 



Plate 4.21: Schistose tourmalinite fragment. Sample consists of 100% tourmaline 
which has been deformed and metamorphosed to tourmaline schist. Note the dark 
band in the center of the photograph, which is a kink band (magnification: 20X; en). 

Plate 4.22: Pyrrhotite (PO) along growth lines in tourmaline (TRM) (magnification 
and scale given at base of photograph). 



Plate 4.23: Randomly orientated tourmaline from tourmalinite sample 
(magnification: 20X; ppl). 

Plate 4.24: Tourmaline (green) from tourmalinite sample being dissected by pyrrhotite 
and chalcopyrite (black) (magnification: 20X; ppl). 



Plate 4.25: Fresh, euhedral tourmaline (TRM) set in a matrix of chalcopyrite (CPY) 
and pyrrhotite (magnification and scale at base of photograph). 

Plate 4.26: Massive pyrrhotite-chalcopyrite ore sample from Feoy. Note the highly 
deformed nature of this sample, with strong chalcopyrite banding. Pen top for scale. 
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4.3.3: Leaching of PGE's from the Feoy Ni-sulfides 

PGE mobility in both silicates and Ni-sulfides, as a result of post-magmatic hydrothermal 

processes, has been demonstrated by several writers (Keays ~. 1982; Rowell and 

Edgar, I 986; Stumptl, 1987). While there is little doubt that most significant PGE 

concentrations in basic-ultrabasir. rocks must primarily be a result of the presence of an 

immiscible sulfide or oxide melt, it had long been assumed that such magmatophile 

PGE's were chemically inert and resistant to hydrothermal alteration. 

Recently there has been an abrupt change in attitude about the role of hydrothermal fluids 

not only in later modification of pre-existing deposits, but aJso in the primary 

concentration of the PGE's themselves. For example, the Pt-rich pegmatites of the 

Bushveld Intrusion (South Africa) are now suggeHed to be products of infiltration 

metasomatism of PGE-rich chromite by late magmatic chloride solutions (Irvine~. 

1983). This fluid facilitated solution of Pt from the chromite, while leaving behind the 

less soluble Pd, Ru, Rh and lr; this may account for the Pt-rich nature of the Bushveld 

deposits. 

While infiltration metasomatism may be a plausible aJtemative for formation of the 

Rushveld deposits, such a fluid phase is not necessary in sulfide bodies like the Feoy 

deposit, since a sulfide fraction will adequately concentrate any PGE's present in a 

silicate/sulfide partial melt (Naldrett and Duke, 1980; also, see Chapter 7). Also, 

MacMillan tl.iL. ( 1985) have shown that, contrary to suggestions of Irvine ruL. (1983) , 
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low temperature hydrothermal fluids (as opposed to high temperature, nK,6 ; •• Jtk 

hydrothermal fluids in the case of the Dushveld deposit) arc also capable of leaching not 

just Pt, but in fact all PGE's from Ni-sulfide deposits. 

In the Feoy sulfides, all fresh, unaltered samples of massive Ni-sultides contain high 

contents of PGE's (see Table 7.2, samples F-41, F-31, F and F-b), even those that arc 

highly metamorphosed and completely recrystallized. On the other hand, equally 

metamorphosed and recrystallized samples that are also highly altered and corroded by 

hydrothermal fluid~ (samrte·; F-7, F-10, F-11, F-19, F-35, f-36, and JS-b) have highly 

erratic PGE abundances. Sample F7 (see Table 7.2) is an extensively altered sample that 

illustrates complete i~ss of all PGE's. Since only those samples that have been altered 

by hydrothermal fluids have erratic PGE abundances, then it is clear that such lluids 

were responsible for the remobilization of PGE's within the Feoy sulfides. 

The economic implications of SIJCh hydrothermal modification of PGE-rich sulfi<k 

deposits are self-evident. 

4.3.4: Metamorphic textures in the Feoy Ni-sulfides 

As is the case in the Visnes deposit (see Chapter 3), recrystallization of the Fcoy 

Ni-sulfides appears to be complete, as all samples show well developed annealed textures 

(see Section 4.3 and Plate 4. 1). Many ore samples, especially those rich in the more 

brittle magnetite, exhibit classic cataclastic textures. Massive pyrrhotite-chalcopyrite--
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magnetite orcs rich in actinolite gangue exhibit excellent "Durchbewegung" structure (see 

Plate 4.3). This was defined by Vokes (1969) as minor brecciation which grades into 

complete cataclasis of both ore and gangue minerals. 

The formation of small (up to 0.5cm) pyrite porphyroblasts is indicative of 

post-formational metamorphism of the Ni-sulfides (see Plate 4.6). In the study area, 

pyrite porphyrobl<t~ts have formed at the expense of pyrrhotite (see Plate 4.6). 

In many ore samples, chalcopyrite and pyrrhotite have been remobilized during 

deformation. Chalcopyrite has coalesced into bands in the massive pyrrhotite ore, giving 

it a streaked appearance (Plate 4.26), and has also been remobilized into veins in the 

breccia samples. 

Actinolite overprints on the sulfides and high-Mg dykes are often incipiently altered to 

tourmaline of the schorlldravite, Fe-rich variety (Plate 4.27). Tourmaline "suns" occur 

in some samples (Plate 4.28), and these are suggested to be products of feldspar or 

amphibole replacement followed by radial growth ol tourmaline on the relict minerals 

(Deer~. 1962). 

Pyrite por!'hyroblasts in the 11assive pyrrhotite samples are highly corroded by 

chalcopyrite, and arc rimmed by magnetite as well; this must have occurred subsequent 

to porphyroblastic growth of pyrite during metamorphism. The magnetite itself is in 

places altered to hematite as a result of low grade hydrothermal alteration or even 



Plate 4. 27: Photomicrograph of amphibole porphyroblast being replaced by tourmaline 
(blue-white). From high-Mg dyke sample from Feoy (magnification: 20X; en). 

Plate 4.28: Tourmaline "sun", from Type A breccia sample from Feoy. Note 
abundant inclusions of pyrrhotite in the tourmaline (magnification: 20X; en). 
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meteoric weathering. 

hnally, all pcntlanditc is variably altered to violarite. However, it is possible that this 

may also have occurred during primary precipitation of the Ni-sulfides, since violarite 

alteratton can occur equally well at low or very high temperatures. 

4.4: Comparison of the Feoy and Visnes deposits 

The two sulfide deposits in the study area are situated about l/2km apart (sec Fig. 1.1). 

11.tl both deposits are contained within shear zones cutting the uppermost parts of the 

Kannoy Ophiolite. As a result. they were previously felt to be genetically related to one 

another (Scott. 1 985). It is now clear, however. that they are quite dissimilar in both 

mineralogy and structure. and that these differences probably are a function of their 

formcttion by different geological processes in distinctly different geological 

environments. 

The Visncs deposit (sec Chapter 3) contains elements of typical ophiolitic, Cyprus-Type 

massive Fe-Cu-Zn sulfide deposits which are currently felt to be ancient analogues of 

present day "black smoker" deposits. Mineralogically, structurally, and stratigraphically, 

the Ft.•oy dq)()sit has been shown to be different in the following ways: 

(I) meta l content- the Feoy deposit contains predominently Fe-Cu-Ni-PGE-rich sulfides, 

as opposed to Fc-Cu·Zn-rich sultides in the Visnes deposit; 
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(2) mineralogy- Feoy contains prcdominently pyrrhotitc-chalcopyrite-(X·ntlanditc-PG 1\1 

assemblages, as opposed to pyrite-chalcopyrite-sphalerite in the Visnes deposit; 

(3) structure- Feoy is a very small ( < 20,000 tonnes) massive sulfide deposit, with very 

little evidence of sulfide-gangue mineral veining or "stockwork zones". This is in disti•wt 

contrast to the Visnes deposit, which is characterized by extensive sulfide-silicate · 

carbonate veining both on a local and regional scale; 

(4) stratigraphy- the Ni-sulfides are only found along one local shear zone on the Island 

of Feoy, and are associated with high-Mg dykes and tourmaline breccias. In contrast, the 

Yisnes sulfides occur along several large shear zones within a country rock assemhlagc 

of sheeted dykes and pillow lavas. 

While there is little doubt that the Visnes deposit is similar to other volcanogenic 

massive sulfide deposits found all along the Appalachian-Caledonian Mou11tain System, 

data presented in this chapter and in Chapter 3 suggests an entirely different formational 

history for the Feoy deposit. Data given in the preceeding sections, and listed again 

below, are consistent with formation of the Feoy sulfides from a PGE-cnriched sulfide 

melt in association with a basic, highly magnesian subvolcanic intrusion: 

(I) essential mineralogy- pyrrhotite-pentlandite-chalcopyritc-PG M -sui fide deposits arc 

uncommon, and the vast majority of such mineral assemblages arc found in 

orthomagmatic Ni-sulfide deposits (see Chapter 7); 

(2) accessory mineralogy- the presence of primary magnetite, chromite, Ilmenite and 

PGM ·s all point to a very high temperature origin for the deposit. Indeed most authors 

would consider these primary magmatic minerals (see Ch<tptcr 7); 
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(3) mineral textures- "exsolution flames" of pentlandite in pyrrhotite, exsolution blebs of 

pyrrhotite in chalcopyrite, and "segregations" of chalcopyrite in pyrrhotite, are all 

wnsidcrcd very high temperature features (Stanton, 1978), and most likely result from 

conversion of mss to iss in a primary sulfide melt. Also, the presence of interstitial 

sulfides in a silicate host is strong evidence for magmatic sulfide precipitation from a co­

magmatic silicate melt; 

(4) the paucity of any Ni-sulfide veining or "stockwork zone", the Jack of any 

disseminated Ni-sulfides outside the immediate mine dump area, and the highly localized, 

massive nature of the deposit itself are all non-specific evidence for a non-hydrothermal 

origin of the Feoy Ni-sulfides. 



Part n: l\lajor oxide, trace clement. J•GE. OX)'~('Il 
and sulfur isotope chemistry 
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Chapter 5: Alteration geochemistry of the Visnes dykes 

5. J: Introduction and literature review 

The relationship between alteration and mineralization in the study area is not surprising, 

since many writers consider hydrothermal alteration (spilitization) of sub-volcanic and 

volcanic ophiolitic rocks and formation of volcanogenic massive sulfide deposits to be 

one and the same process (eg., Stevens, 1980; Alabaster and Pearce, 1985; Saunders and 

Strong, 1985; Constantinou, 1987; Richardson et al., 1987; Neh1ig, 1989; Richards and 

Cann, 1989; Butterfield, tll!l., 1990; etc.). Assuming that such relationships are indeed 

real, then the following section deals with the nature and extent of geochemical alteration 

in the Visncs dykes. 

Spilitization of seafloor volcanic rocks and dykes is characterized by the following 

physical and chemical changes (Amstutz, 1974): 

1- a low grade mineralogy that completely, or nearly so, masks the original basaltic 

textures and mineralogy, and; 

2- an apparent and/or real increase in Na20, with a real decrease in CaO, and often 

K20, relative to unaltered basalts. 

Many authors have discussed the effects of spilitization on the major and trace element 

chemistry of basalts (cg .. Cann, 1970; Hart ~., 1974; Co ish, 1977; Seyfried ~- , 

1978; Ludden and Thompson. 1979; Hellman~ .• 1979; Fumes~. 1980; Stevens, 
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1980; Stephens~., 1984; Cann tlJll.... 1985/86; Richardson ~. 11}87; Hudson, 

1988; Butterfield~. 1990; etc.). Some consistencies arc evident in these studies, Slll'h 

as the behavior of Na20, CaO, K20, Sr, Ba, and FeO. Strong and Saunders ( 11}87) have 

documented the "immobility" of Zr, Ti02 and Cr in basalts of the Bctt's Cove area of 

Newfoundland during spilitization, and suggest a genetic link between intense spilitization 

of basalts and formation of the Bctt's Cove massive sultidc deposit. Likewise. Stevens 

(1980) demonstrated the immobility ofTi, Y. Si, AI, Fe and P within sheeted dykes <tnd 

volcanics of the Swedish Caledonides, although he found Zr. Ni and Cr to be somewhat 

mobile in this case. Leaching of base metals from the volcanic pile by convcl:ling 

hydrothermal fluids was shown by Stevens ( 1980) and Richardson ct al.. (I I}X7) to he 

responsible for formation of large massive sulfide deposits. 

With these considerations in mind, alteration nf the Visncs dykes is described in terms 

of relative gain or loss of material. 

5.2: Alteration geochemistr,y 

Appendix 3 is a compilation of major oxide and selected trace clement data f(Jr dykes of 

the sheeted complex (the Visnes dykes), and high-Mg dykes of Fcoy. In order to assess 

the chemical changes during alteration, it is necessary to compare these dykes to 

unaltered dykes, as well as to true spilites, from similar environments. 

Data from Appendix 3 are plotted in Figures 5.1 and 5.2. Major oxides and tra~c 
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Figure~ 5.1.1 to 5. 1.10: Major oxides (in wt. %) versus Na20/Na20+Ca0 for: 1- the 
Visncs dykes (denoted by asterix- unshaded); 2- the high-Mg dykes of Feoy (denoted by 
(' rosses- darkly stippled field); 3-typical unaltered island arc tholei ites (data from Basaltic 
Volcanism Study Project, 1981) (denoted by circles- intermediate stippled field); 4- the 
fidd for 231 spilitized basalts of an island arc tholeiitic nature (data from Stevens, 1980) 
(denoted by squares- lightly stippled field); 5- an average of 66 typical unaltered MORB 
samples (data from Engel~. 1965; Cann, 1969; Engel and Engel, 1970; Shido~, 
1971) (denoted by triangles); 6- the average compositions of 32 typical unaltered 
boninitcs (data from Hamlyn and Keays, 1986) (denoted by invened triangles). 
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Figures 5.2.1 to 5.2.8: Trace elements (in ppm) versus Na20/Na20+Ca0 for rock 
suites I through 6 in Figure 5 .I (symbols as in Figure 5.1 ). 
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dements arc plotted against Na20/Ca0. This index has been chosen to assess the effects 

of alteration since Na20 and CaO mobility during spilitic alteration of basalts has been 

well documented (Bachinskii, 1977; Stevens, 1980; Mottl, 1983; Stevens tl...AL_, 1984; 

Strong and Saunders, 1986; etc.) . 

The Visncs dykes have geochemical and rare earth element (REE) similarities to both 

island arc (IAT) and mid-ocean ridge (MORB) basalts (Pedersen, 1982, 1987). 

Therefore, comparison of the Visnes dyke rock samples to representative samples from 

these environments is reasonable. Figures 5.1.1 to 5.1.10 plot Na20/Ca0+Na20 

vs. major oxides . The Visnes and high-Mg dyke samples are compared to: (l) the field 

of typical unaltered IAT (data is from Basaltic Volcanism Study Project, 1981); (2) the 

average compositions of 66 typical unaltered MORB (data is from Engel~. 1965; 

Cann, 1969; Engel and Engel, 1970; Shido ~. 1971); (3) the average compositions 

of 32 typical unaltered boninites (data is from Hamyln and Keays, 1986), and; (4) the 

field for n 1 true spilitized basalts of an IAT affinity (data is from Stevens, 1980). The 

following features are noteworthy: 

1- the Visnes dykes show considerable overlap with the field for true spilites in all 

cases; 

2- in no case docs the field for spilites overlap significantly with the fteld for the 

high-Mg dykes of f'coy, and there is little to no overlap between the field for the high­

Mg dykes of Fcoy and the distribution of the Visnes dykrs. On the other hand there is 

considerable overlap in nearly all cases between the field for unaltered lA T and the field 

for the: high-Mg dykes of Fcoy; 
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3- relative to the field for unaltered lAT and MORB. the Visncs dykc.·s sh,,w 

enrichment in Na20, Fe203 (as total Fe) and TiO~; dcplc.·tion in 1\.~0. CaO, 1\tnO anJ 

Al203; moderate depletion in MgO, and variable changes in P~05 and SiO:!. 

Figures 5.2.1 to 5.2.10 plot the trace elements Nb, Sr. Zr, Cr. Ni, V, Cu. In 

""· Na20/Ca0. Data for V, Nb and Sr were unavailable from the sptlites, MORB, and 

boninite sources. The following features are noteworthy: 

1- in all cases where the field for true spilites is shown, there is considerahll' owrlap 

between this and the distribution of the Visncs dykes. The exception to this is Zr, whidt 

is more enriched in the Visncs dykes relative to the tidd for spilitcs. This suggc.·sts onn: 

again that the Visnes dykes have undergone spilitization; 

2- in all cases except V, Zr and Cu, there is little or no overlap bctWl'l'll the field for 

the high-Mg dykes of Feoy and the distribution of the Visncs dykes, while there is nearly 

complete overlap between the field for unaltered IAT and that for the high-Mg dykes of 

Feoy. Assuming that at least some trace elements would have been rnohilitcd during 

seafloor alteration (spilitization) , as appears to have been the case with the Visncs uykc\ 

and the field for true spilites, then these data suggest that the high-Mg dykes of 1:coy 

have escaped spilitization; 

3- relative to the field for unaltered lA T, the Visncs dykes show: an overall 

enrichment in Zr and V; depletion in Cr, Ni and Cu; moderate overall depletion in Zn 

and Sr. and; no change in Nb. 

4- relative to the field for unaltered MORB, the Visncs dykes show depletion in C:r, 

Ni and Cu, and show no change in Zr. 
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In -.ummary, Figures 5.1 and 5.2 support earlier suggestions (from Section 2.2) that the 

Vi\nes dykes nave undergone spiliti7..ation during sub-seatloor hydrothermal circulation, 

while the later high-Mg dykes of Feoy have escaped this period of alteration. In 

comparison with unaltered IAT and MORB, spilitization of the Visnes dykes appears to 

have resulted in a relative loss of K20, CaO, MnO, Al203, MgO, Cr, Ni, Cu, Zn, Pb 

and Sr from the rocks; a relative gain of Na20, Fe203, Ti02 and Zr. P205 and Si02 

appear to have acted in a variable manner relative to lA T and MORB. However, because 

of the variability in primary geochemistry of the different rock types, the changes 

suggested above must be considered relative ones at best. 

It is interesting to note that in Figure 5.2.8 and 9, there is a general relation~;hip between 

im:reasing Na20/Ca0 + Na20 and decreasing Cu and Zn concentrations. The most 

heavily altered of the Visnes dyke samples are from the "epidosite zones" (for eg. , 

samples 12, 15, 17 in Appendix 3), and these are usually the most severely Cu and Zn 

depleted. Richardson ~ ( 1987) have suggested that epidosites from the Troodos 

ophiolite represent "root zones" for ore-forming hydrothermal fluids. The highly altered 

and metal-depleted nature of epidosite samples from the study area suggests that these 

nx:ks might also have represented root zones for hydrothermal fluids responsible for 

formation of the Visnes sulfide deposit. 
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Chapter 6: The origin and o:\·ygen-isotopic tenor of t•pidotitrs and 

Type 1 plagiogranites 

6.1: Literature re,·ie" 

Studi~s on the origin oi plagiogranitl.!s and epidotitcs within llphiolites an:- rare (Aidass. 

1978; H!.!aton and Sheppard, 1977; Taylor . 1979, llJSO; ShL'ppard, 197~; PcJ~:rscu aud 

Malpas, 1984; Kclky ~.in prep. ). Aldiss (1978) d.:monstrateJ th..: critical role that 

water satumtion in the residual mdt played in plagiogranitc formatiou iu th..: TrooJos 

ophiolite of Cyprus. He suggcst.:d that an initially thol..:iitic magma hcl"<IIHC pmg.rc~sivcly 

Fc-enriched during differentiation, until wat..:r saturation caused an inncasc in tO~ . 

thereupon resulting in fcTi02 fractionation. A corrcsponlling decrease in the littuidus 

tcmpcratur~ of plagioclase might allow for separation of a plagiograniti~· mdt from the 

varitcxtured gabbro matrix. Aldiss ( 1978) also suggested that vigorous di~chargc of <Ul 

aqueous magmatic phase may have been rcsponsibl\! for alteration of the overl ying 

sheeted dykes and pillow lavas of Troodos, resulting in the formation of "cpido~itcs" C'>cL' 

Section 2.2). 

Pedersen and Malpas (1984) have modelled formation of the (Visncs) Type I 

plagior,ranites as a result of filter pressing of a differentiated interstitial liquid from the 

varitextured gabbros (see Chapters 1 and 2). The depletion of the hydro-magmatophik 

ekmcnts K, Rb and Ba could not be adequately explained by this model , and so they 

suggested loss of these elements from the system by auto-mctasom<ttic procc<os(.!~ 
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involving volatile evolution. Evidence of such loss was given by the presence of 

cpidotit~.:s and sericite alteration. These writers recognited the primary nature of the 

~.:pidotit~.: in the study area, and its essentially co-genetic relationship wnh the 

plagior,ranitcs. 

A third model for formation of ophiolitic plagiogranites and epidotitcs is that of Taylor 

( 19H0). He combin~:d field and oxygen-isotopic data from granophyrcs and rhyolites in 

several an<.:ient and modern spreading centers, all of which have been subj~t to the 

action of convecting meteoric fluids. These are compared with plagiogranites of an 

<.x:canic (seawater influenced) environment, such as the Troodos plagiogranites. Firstly, 

it is shown how the two different types of acid rocks are mineralogically, texturally and 

stratigraphically identical to one another, except for the absence of K-feldspar in oceanic 

plagiogranitcs, and their depletion in Rb with respect to granophyres and rhyolites 

(Figure 6.1). Taylor (1980) used whole rock oxygen isotopic data to show that 

continental or sub-aerial granophyres, which have a significant K-feldspar component, 

form as a result of direct or indirect, late stage assimilation of meteoric water by a 

fractionally crystallizmg gabbroic melt. He suggested that direct assimilation might result 

from diffusion of meteoric water along fracture zones; indirect assimilation would occur 

from incorporation of meteoric water altered roof rocks into the magma chamber. 

Assimilation of such material would provide the necessary influx of K20 into an 

essentially K20-depleted melt. The result of this assimilation would be to produce a 

K~O-rich rock. or a rhyolite or granophyre. Since meteoric water is enriched in Rb 

rdativc to scawat~r. then assimilation of meteoric water would result in the formation 
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of rock\ relatively rich in Rb (Coleman and Peterman, 1975), such as continental 

granophyres. 

Conversely, assimilation by a gabbroic melt of seawater altered roof rocks would provide 

<trl influx of Na and H20, but very little K or Rb to the melt. Interaction of the residual 

melt with this Na-H20 enriched material would produce rocks reflecting this elevated 

Na-H20 activity, such as plagiogranites and epidotite segregations. As a result, such 

rocks should possess oxygen isotopic signatures consistent with a seawater origin. 

Beaton and Sheppard ( 1977) offered 0/H isotope evidence for seawater hydrothermal 

alteration of the ophiolitic rocks of the Troodos massif, Cyprus. Temperatures of 0 to 

:!50 degrees Celsius are suggested for formation of the spilitic alteration assemblages in 

the volcanic rocks and upper regions of the Troodos sheeted complex, while epidote 

bearing vein assemblages from gabbro pegmatites, plagiogranites and sheeted dykes 

rcmrd temperatures of 350 to more than 500 degrees. Where temperatures were greater 

than 500 degrees, a deutcric water component may have been present, although these 

writers suggest that this was ultimately of seawater origin. This corresponds well with 

suggestions of Taylor c I 980) that both the epidote veins and plagiogranites of Troodos 

forml'd from incorporation of seawater into a residual magma. 

Kelley ~ (in prep.) provide fluid inclusion evidence of highly saline brines which 

forml'd at temperatures in excess of 450-600 degrees Celsius; these authors suggest that 

late stage cxsolution of such brines from a hydrous, residual melt may well have been 
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responsible for formation of epidotitcs. as well as local Will'S of intcnsl' hyJwthl·rm<tl 

alt~ration. 

Richardson Q.LaL ( 1987) recognized the importance of "epidosites" in Troodos as "root 

zones" for convecting. ore-forming hydrothermal fluids driwn by an urHkrlying magma 

chamber. However, these writers do not rccogni1e a magmatil· watl'r intllll'lli:l' lin 

formation of an evolved hydrothermal fluid, as suggested by Aldiss (1()78). Taylor 

(1980), Kelley et al. (in prep.), and this writer. This is perhaps bet:ause dearly dcutcri~ 

epidotite "segregations"(sce Chapter 2), which provide a link between magmatic lluids 

and overlying epidosite zones. have not been documented from the Troodos <.trl\l as thl'Y 

have in Visncs. 

Jn conclusion, while there is clearly a paucity of data on cpidotite and plagiogranitc 

formation in ophiolites, some features of this data arc common : 

1- most writers are aware of the importance of a volati !e-rich residual magma "' 

formation of plagiogranites and cpidotites; 

2- the magmatic water component responsible for epidotite formation is probably of 

seawater origin, the seawater having been incorporated into the magma chamber by 

assimilation of seawater altered roof rocks. Assimilation may also have been responsible 

for plagiogranite formation; 

3- evolved, epidote-forming hydrothermal fluids were responsible for alteration of 

sheeted dykes to epidosite zones ir, the Troodos ophiolite, and were al~o responsible for 

formation of the Cyprus-type massive sulfides. There is di~grecmcnt as to whether thi-. 
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hydrotncrmal 11uid was directly magma influenced or not. 

With thc~c considerations in mind, the oxygen isotopic tenor of Type l plagiogranites 

and cpidotitc~ from the study area is examined. 

6.2: Oxygen isotopes from epidotites and T.)pe 1 plagiogranites 

Five whole rock epidotitc and plagiogranite samples were analysed for oxygen isotope 

ratios (delta I 80): results are given in Table 6.1 along with data of Heaton and Sheppard 

( 1977) from plagiogranites, gabbro pegmatites, epidote veins, and sheeted dykes in the 

Troodos ophiolite. Because the epidotites from the Visnes region are 98-100% epidote, 

then these samples are equivalent to mineral separates; the isotopic tenor of the Type l 

plagiogranitcs may not, however, be an accurate representation of the isotopic tenor of 

plagioclase, since the latter is much more susceptible to oxygen isotopic exchange during 

alteration than is quartz (Taylor, 1979). Notwithstanding such limitations, the isotopic 

tenor of these essentially cogenetic magmatic products has been investigated. 

The Visncs cpidotitcs have isoiOpic signatures quite similar to epidote from veins in the 

Troodos plagiogranitcs and gabbros, while whole rock oxygen isotope (delta 180) values 

of thc Visncs (Type 1) plagiogranites are somewhat enriched relative to the Troodos 

plagiogranitcs. However, quartz separates from associated gabbro pegmatites in Troodos 

give values of +7.6 per mil. which are identical to values obtained from Type 1 

plagiogranitcs in the present study . 
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Table 6.1: O xygen isotopic data from se lected rocks o f the Troodos Ophiolite (data for 
the T roodos samples are from Heaton and Sheppard , 1977) , and from the Visnes region . 

sample 

Troodos 

11-1 plagiogranite 
49-plagiogranite 
92-plagiogranite 
gabbro 
35-2 gabbro 
79-gabbro 
33-1 sheeted dyke 
32 sheeted dyke 

Visnes region 

c-12 epidotite 
05-04 epidotite 
05-5 plagiogranite 
05-2 plagiogranite 
22-5 Visnes dyke 
( epidot i zed ) 

delta 180 delta 180 
(whole rock) (mineral) 
(data is in per •il notation) 

+4.4 
+5.3 
+5.0 
+6 .. 2 

+5.8 

+7.98 
+7.56 
+5.07 

0.00 ( epidote) 

+3.8 ( epi dote) 
+1.6 (epidote) 
+7.6 (quartz) 
+3.4 ( epidote) 
+0.9 (epidote) 

+1.57 
+2.33 
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A !though there is a distinct lack of published data on minerai-H20 fractionations for 

epidote which hinders gcothcrmometric studies, epidote veins in the Troodos 

plagiogranitcs arc believed to have formed from seawater hydrothermal fluids in excess 

of 500 degrees Celsius (Heaton and Sheppard, 1977). Epidotites of the Yisnes region 

have quite similar oxygen-isotopic signatures to the Troodos epidotites, and as such 

similar temperatures of formation can be inferred for these epidotites. This supports 

suggestions that the epidotitcs of Visnes formed from magmatic, deuteric 

tluich. However, because of the lack of published data, the possibilty exists that the 

isotopic tenor of epidote from both Visnes and Troodos may reflect of the poor 180 

fractionating capacity of epidote in general. 

In general terms then, the low oxygen isotope values for the Visnes epidotites may be 

l'xplaincd in any of the following ways: 

I· formation from high temperature (350-500 degrees) alteration processes in the 

region of the magma chamber. This is consistant with data from Richardson ~ 

( 19~7), and accounts well for cpidosite formation; 

2- formation from low S 180 seawater influx into the magma by assimilation of 

seawater alll•rcd roof rocks. This accounts well for both field relationships (which 

suggests tlu:ir formation from deuteric fluids) and for the isotopic tenor of the Visnes 

cpidotitcs, and is considered the most plausible explanation by this author; 

3- from the low oxygen-isotopic fractionation capacity of epidote in general, 

rt•gardless of source or temperatures of formation. Due to the lack of available data on 

isotope fr<K"tionation in epidote. this possibility cannot be adequately assessed. 
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As for the isotopic signatures of the Type I plagiogranite::. which are about 2.5 (X'r mil 

higher than seawater-hydrothermally altered plagiogranites qf the Trnodos ophiolite. tht•rt' 

can be several explanations: 

1- the "seawater imprint" from the Troodos plagiogranites is detel·tahlc as a funl·tion 

of 180 exchange during alteration of the plagioclase component ol the plagiogranitcs. 

Since such alteration is not as intense in tile Yisncs plagiogranitcs, then it may be that 

the albite component of the Visnes plagiogranites has retained a magmatil: {igneous) 

signature despite the presence of seawater during its crystallization; 

2- plagiogranites of Troodos are on average between 66-76wt.% Si02, while the 

Visnes plagiogranites contain 75-79wt.% Si02 (see Table 6.2). This corresponds to a 

significant modal increase in quartz in the Yisncs plagiogranites. Quart/. preferentially 

fractionat~s 180 reiative to 160, and retains its original isotope signature much hl'lter 

than does plagioclase (quartz from gabbro pegmatites in Troodos haveS I dO about + 7.6 

per mil). Therefore, one might expect this absolute Si02 increase in the Yisnes 

plagiogramtes to correspond to a variation in S 180. assuming similar formational 

histories; 

3- the third alternative is that the Visncs plagiogranitcs arc indeed representative of 

normal unaltered igneous rocks. &cause of the intense alteration of the other rock types, 

and because of their close relationship to epidotites, however. this is likely not the case. 

6.3: Summary 

In conclusion, it is evident that the isotopic tenor of the epidotitc~ and Typl! I 
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Table 6 .2: Major oxide analyses of Type 1 plagiogranites from the Visnes 
region, along with analyses from Aldiss (1978) for plagiogranites from the 
Troodos ophiolite in Cyprus. 

sample Si02 Ti02 

Type 1 plagiogranites 
46TRN 75.5 
73TRN 68.9 
18TRN 79.1 
51TRN 75.8 
47TRN 76.8 

Plagiogranites of 
TM33 
TM89 

Sample 

46TRN 
73TRN 
18TRN 
51TRN 
4 7TRN 

TM33 
TM89 

77.02 
71.02 

Na20 

3.74 
5.89 
6.13 
1.23 
4 . 25 

3.09 
6.4 

the 

0.2 
0.32 
0.2 
0.2 

0.24 

Troodos 
0.09 
0.38 

K20 

0.04 
0.21 
0.07 
0.04 
0 . 04 

0 68 
0.12 

Al203 FeO* 

9.3 1.85 
13.9 3.87 
11.1 0.78 
8.74 4.14 
10.2 3.04 

ophiolite 
13.66 
12.32 

P205 

0.02 
0.02 
0.01 
0.03 
0 . 03 

0.01 
0.07 

2.24 
5.39 

LOI 

2.12 
0.97 
0.24 
0.67 
0.38 

MnO 

0.05 
0.05 
0.01 
0.03 
0.02 

0.01 
0.07 

Total 

98.2 
98.17 
98.75 
98.89 
98 43 

100 . 32 
98.46 

MgO 

0.04 
0.84 
0.05 
0.05 
0.09 

0.42 
0.71 

cao 

5.34 
3.2 

1. 06 1 

7.96 
3.34 

3.1 
1.98 
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plagiogranites from the study area is quite similar Ill that of ~piJl1tc n.·ins and 

plagiogranites from the Troodos ophiolite in Cyprus. The lowS I HO ratillS llf thl' cpidl1tit 

cs of the study area, coupled with their primary dl'Utl'ric natun:, suggests that thl'Y 

formed from a magma which was rich in seawater derived fluids. This is nmsistt:nt with 

Taylor (1980), and to a lesser degree can be supported hy thl' isotopic ll'llllr of the Ty]X' 

1 plagiogranitcs. 

Data from this chapter, coupled with ticld evidence fmm Chapter 2. arc significant 111 

that they focus attention on the importance of magma til· Jeuteric pnll'CSSl'S in format ion 

of an evolved hydrothermal fluid . Assimilation of scawatt:r into the nMg.ma chamber(~! 

may ultimately have been responsible for formation of the magmatic hyJmtllermal lluids 

in Visnes. Field data suggest that ascent of this magmatic fluid through the owrlying 

Visncs dykes was responsible for formation of epidositc 1ones. the latter whkh <trl· 

believed to represent root zones for associated overlying massive sulfide tkpmil\ 

(Richard~on et al. 1987). By infcn:ncc. one can sec the possibly strategic role <ll 

magmatic hydrothermal tluids in the evolution of both the Visncs and the Cyprus massivc 

sui fide deposits . 
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Chapter 7: PGE's, trace elements, sulfur isotopes, and their 

relationships to the petrogenesis of the Feoy Ni-sulfides and their 

host rocks 

7.1: Introduction 

The vast majority of PGE-rich sulfide deposits are felt to be of an orthomagmatic origin 

(Naldrett and Barnes, 1986), although there are some authors that advocate hydrothermal 

alteration of ultrabasic rocks as a means of forming PGE-rich deposits (ex., Keays et al., 

1982; Rowell and Edgar, 1986; Stumptl, 1987). The Feoy deposit has been shown (see 

Chapter 4) to contain the essential elements of an onhomagmatic, PGE-rich Ni-sulfide 

deposit, although it has undoubtedly been modified by later hydrothermal and 

metamorphic events. 

It has long been known that the composition of magmatic sulfide deposits is strongly 

controlled by the composition of the co-magmatic silicate melt in terms of the base and 

precious metal reservoir initially available for scavenging by the sulfide melt. Recently, 

th~: importance of other factors such as the tectonic setting and degree of partial melting, 

th~: rdatiw volumes of silicate and sulfide melt (or the "R factor", after Naldrett and 

Barnes. I 986). the interaction of this melt with country rock during ascent, and the 

internal changes that occur within the melt during cooling, have been emphasized 

(Naldrett and Duke, 1980: Hamlyn and Keays, 1986; Naldrett and Barnes, 

1986). Therefore, since the sulfides of the Feoy area appear to be genetically related to 

the host high-Mg dykes, then any meaningful analysis of the sulfides of the area must be 
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accompanied by similar analysis of these dykes. In this respect, a discussion of tiK· 

sulfide and high-Mg dyke geochemistry is offered in the iollowing Sl~Ctions. 

Petrogenetic modelling of co-magmatic sultidc-silicate deposits tnrough tlw usc of PGL's 

is a relatively recently developed technique (eg., Naldrett and Duke, 19SO; Hamlyn and 

Keays, 1986), and unfortunately there is a fairly small number of similar PGE-rirh 

deposits worldwide from which to make comparisons with Fcoy. Thcrcfurl!, it is 

constructive to review some of the literature on petrogenetic PGE-moddling tlf these 

magmatic sulfide deposits befon! attempting to analyse data from the Feoy sulfidl·s. 

Firstly however, classification of the Fcoy Ni-sulfidc deposit with respect to othl·r Ni 

sulfide occurrences is discussed. 

7.2: Classification or the feoy Ni-sulridc deposit 

Naldrett (l98la) has presented a comprehensive classification scheme fur all availal>h: 

data on Ni-sulfide deposits. Table 7.1 is a modification of this classification, and some 

examples of the various deposit types are given, including some relevant Norwegian 

occurrences (data for Norwegian deposits other than Fcoy arc from Boyd and Nixon, 

1985; data for Feoy arc from the present study). 

Although the effects of later metamorphic and hydrothermal episodes can be shown to 

have profoundly modified Cu-Ni-sulfides in several areas (Panayiotou, 1985; McMillan 
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Table 7. 1: Classification of i-sulfide deposits from vanous geological 
environments (modified after Naldrett, 1981a). 

setting 

1- Astrobleme related 
noritic intrusions 

2- Intrusions in 
cratonic areas 

3- Archean komatiites 

4- Tholeiitic volcanics 
in Precambrian 
greenstone belts 

5- Synorogenic, generally 
tholeiitic intrusions 
of Phanerozoic age 
a- ophiolite related 

6- Setting uncertain 

Examples References 

-Sudbury (Naldrett, 1 981a ) 

-Noril'sk, Siberia, USSR (Glazkovsky and 
Gorbunov, 1974 ) 

-Minnamax, Duluth, Minnesota (Mainwaring 
and Naldrett, 1977) 

-Kambalda, Australia (Ross and Hopkins, 1975 
-Pipe, Manitoba (Naldrett and Cabri, 1976) 

-Pechanga, USSR (Gorbunov, 1968) 
-Montcalm, Ontario (Naldrett, 1981a) 

-Rona, Norway (Boyd and Mathieson, 1979) 

-Feoy (present study) 
-Lillefjellklumpen (Gronlie, 1988) 
-Lyngen, Norway (Boyd and Nixon, 1985) 
-Ste, Norway (Boyd and Nixon, 1985) 

-Stillwater, Montana (Naldrett, 1981a) 
-Bushvel d, South Afri ca ( Naldrett , 1981a) 
-Espedalen , Norway (Na l drett et a l . , 1979; 

Hei:m, 1981) 
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~. 1984; also, see Chapters 4 and 8). there seems little doubt that must of thl' 

Ni-sultide deposits hosted by basic-ultrabasic igneous and volcanic rocks have ultimately 

formed from cooling of a silicate/sulfide mclt(s) (Naldrett. 198Ia; C'abri and Naldrett. 

1984 ). Such deposits are characterized by a prcdominarKe of pyrrhotite. chakupyritl' anJ 

pentlandite in variable amounts, with pyrrhotite being the main sultiJc wmpunmt; 

PGM's may or may not be present. Direct evidence for a primary magmatic origin of 

Ni-sulfides can be present in several forms: 

1- the presence of immiscible sulfide droplets in volcanic rocks; 

2- the presence of an in:erstitial sulfide phase in igneous or volcanic host nx:ks. and; 

3- the stratigraphic position of the sulfide deposit within plutonic or volcanic rocks. 

Parageneticall y, the suggested order of crystallization from such a sil icatc/sulfidc rnl'lt 

would be (after Yund and Kullerud, 1966): 

silicates - magnetite (possibly Ti-rich) + ilmenite + chromite - Fc-Cu·Ni -rich 

monosultide solid solution {mss) - pyrrhotite - chalcopyrite, pcntlandite (as cxsolution in 

pyrrhotite, and as free pentlandite grains) - PGM's, tclurides, etc. 

It should be noted that not all PGE-rich deposits form from a sulfide/silicate melt. There 

are PGE-rich chromitite deposits (eg., the Unst Ophiolite, Scotland; the Bush veld, South 

Africa), and other sulfide deposits which may have concentrated PGE's as a result of the 

activity of chloride-rich aqueous magmatic fluids (Stumpfl, 1987). Still other writers 

provide evidence for formation of PGE-rich Ni-sulfide deposits from hydrothermal 

alteration of mafic/ultramafic country rocks (MacMillan et al., 1984). 
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The Fcoy tkpo~it fulfills 2 and 3 of the criteria outlined above (see Chapter 4), in that 

there is evidence for interstitial Ni-sulfides in host silicate rocks, and in that the deposit 

is situated within subvolcanic rocks. 

The Feoy deposit can be classified as a syn-orogenic Ni-sulfide body (Barnes ~. 

1987: also see Table 7.1 ). It is ~hown in the present study (see Sections 2.2 and 7.3) to 

have been magmatically emplaced during the later stages of development of the Karmoy 

ophiolite in a supra-subduction zone environment. Field and petrographic evidence for 

the orthomagmatic origin of the Feoy Ni-sulfides, and for its distinction from the Visnes 

sulfide deposit, was discussed in Chapters 2. 3, 4 and 6, and is again summarized below: 

1- mineralogically, the Feoy deposit meets all criteria for typical orthomagmatic 

massive Ni-sulfides, with a preponderance of massive pyrrhotite, chalcopyrite and 

pcntlandite as the main sultides (see Section 4.3) . Also there is evidence of a zone of 

disseminated Ni-sulfides interstitial to silicates in the high-Mg dykes (see Chapter 

2). These rocks are interpreted as "trapped sulfide liquids in a crystallizing silicate melt" 

(Naldrett , 1979); 

2- primary Ni-sulfidcs are restricted to the main massive Ni-sulfide deposit along a 

shear zone, and are found as an interstitial phase to silicate minerals in the high-Mg 

dykes. There is no evidence of primary Ni-sulfides in any of the other rock types in the 

area. nor is there any evidence of Ni-sulfide veins or other features which might indicate 

a hydrothermal origin for these sulfides. 

3- nowhere in this deposit is there any evidence for mineralization of the Visnes Fe­

Cu-Zn sulfide types. Likewise, there are no Ni or PGE-rich sulfides in the Visnes 

- - ----- --



152 

deposit. 

4- as the high-Mg dykes themselves have been shov.·n to han· funned late in th~o.· 

evolution of the Karmoy ophiolite (sec Chapters I and:!). then so to must ha\·c the Ni 

sulfides. 

Sulfur isotopes and PGE patterns from selected Feoy Ni -sultidc samples an~ dis~..·usscd 

in Section 7 .4 , and al:;o support an orthomagmatic origin for the Fcoy sullidcs. 

7.3: Petrogenetic considerations from other l'ii-sulfidf..' depusits 

The occurrence of Cu-Ni -sultidcs in ophiolitic terranes is not at all well donuw.:ntcd. 

indeed magmatic (as opposed to hydrothermal) ore deposits within such rock types arc 

predominantly of the chromite-ilmenite association. It is evident then , that SJX'cial 

conditions must be met before separation of a magmatic sulfide component <:an occur in 

such environments. 

The Fcoy, Lillefjellklumpen and Bruvann deposits of Norv.·ay, along with one of the Tilt 

Cove deposits of Newfoundland, and the gabbro-related deposits of the Troodos area of 

Cyprus all represent ophiolitic or ophiolite-related deposits of Ni -sulfidcs and 

arsenides. Of these 5 deposits, two of them (the Troodos and Tilt Cove deposits) arc 

arsenide-rich deposits structurally controlled along serpentinized fault zones, and neither 

deposit contains the textural and mineralogical signatures tv~ical of orthomagmatic Ni 
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(h,;posits (Stanton, 1978). The Troodos occurrence has recently been interpreted in terms 

of hydrothermal alteration and leaching of mafic-ultramafic plutonic rocks (Panayiotou, 

J9g5), and it is suggested that based on the stratigrapl,ic, structural and lithologic 

similarities between this and the Tilt Cove deposit, the latter deposit may also have 

formed from hydrothermal alteration of mafic-ultramafic rocks. These Ni-sulfide and 

ars~.:nidc deposits arc not enriched in PGE's, undoubtedly because the ability of a 

hydrothermal fluid to effectively leach and concentrate PGE's from consolidated rock is 

relatively minimal in comparison to a sulfide melt scavenging PGE's from a co-magmatic 

silcatc melt. 

Unfortunately, not all truly magmatic sultide deposits in ophiolitic terranes arc 

PGE-rich . While the Feoy and Lillefjellklumpen deposits are PGE-rich, the Bruvann 

deposit in the Rana mafic intrusion of northern Norway is a large magmatic Ni-sulfide 

deposit in a similar type of environment which has very low abundances of PGE's (see 

Table 7.2). The two main questions that arise, therefore, are: 

1- what controls magmatic sulfide formation in such environments, and; 

~ - what controls the PGE tenor of these deposits? 

Subsidiary to these questions are other concerns such as the origin of the sulfur (mantle 

derived, country rock derived, or some combination thereof), the petrogenesis of the 

co-magmatic host rock, and the physico-chemical changes that may have affected the 

magma during its ascent. It is shown in the following sections that the PGE ratios, sulfur 

isotoJ)\!s and host rock geochemistry of the Feoy deposit can be used to successfully 
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resolve these questions. 

Most of the world's major Ni-sulfide deposits are formed in continental settings, while 

ophiolitic complexes are dominated by oxide mineralization within the plutonic ultramafic 

assemblages. Rarer still is the occurrence of such ophiolite rdated sullide '.kposits that 

are also enriched in PGE's. 

One of these, the Lillefjellklumpen Ni-Cu-PGE deposit is situated in gabbros and 

greenstones of the Seve-Koli Nappe Complex in the Grong area. northeast of Trondhcim, 

Norway (Gronlie, 1988). Eruptive sequences in the area arc interpreted as ensimatir 

island arc, formed to the west of the Fenno-Scandian continent during Lower to Middk 

Ordovician times (Rein~bakken, 1980). The sulfide deposit probably represents a 

magmatic sulfide segregation related to an ensimatic gabbro body, later remobili1cd 

during a tectonic event and redeposited in its present position (Gronlic, 198H). The 

analogous nature of this deposit to both the sulfidc:s and co-magmatic host ro': ks (the 

high-Mg dykes) of Feoy arc self-evident. 

There are several possible reasons for the paucity of PGE-rich, magmatic sulfide deposits 

in ophiolites. Thayer ( 1976) suggested that in the crystallization of a mafic-ultramafic 

silicate melt, the Ni and PGE's would partition favourably into the mafic ph< scs, so that 

in the absence of a co-magmatic oxide or sulfide melt (which would effectively scavenge 

all PGE's from the silicate portion of the melt) the PGE's would become widely 

distributed in the silicates. Of course, any chromite, ilmenite and magnetite present with 
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the crystalli:t.ing silicates would be expected to be enriched in PGE's, and indeed it 

appears that this may well be the case in some ophiolites (eg., Tilt Cove, Newfoundland, 

and Lcka, Norway; Strong and Vokes, respectively, pers. comm.). Since most ophiolitic 

cumph:xcs are barren of significant oxide or sulfide deposits, then the fate of the PGE's 

in most ca~s is wtde distribution into disseminated oxides and other mafic minerals. 

Alternately, if f02 or fS2 conditions are adequate then an oxide or sulfide melt will 

form, and such a melt will effectively scavenge or partition most of the PGE's from the 

silicate melt into the oxide or sulfide melt. However, what of the ophiolite related oxide 

and sullide deposits, of orthomagmatic origin, which are not enriched in PGE's (eg., 

Troodos, Cyprus, and Bruvann, Norway)? Clearly, in such cases the original partial melt 

must have been depleted in PGE's, or else the PGE's were somehow lost from the 

system before formation of the oxide or sulfide melt (barring any later leaching of the 

deposits by hydrothermal fluids). 

Naldrett and Barnes ( 1986) have suggested that the "R factor", or the ratio of silicate to 

sulfide melt, is also a critical factor in the concentration of PGE's, and that variability 

in R can account for variations in the concentration of PGE's within deposit types. For 

examph:, the PGE-rich Sudbury deposit is associated with a very large mafic intrusive 

complex (Naldrett, 198la), and therefore had formed from a magma with a large R 

factor, while the PGE-poor Bruvann deposit of Norway (Boyd and Mathieson, 1979) 

would have been produced from a magma with a low R factor. In both cases, howe-ver, 

usc of the R factor in determination of the PGE tenor of a deposit assumes that the 



15G 

concentration of PGE's .n the original panial melt was not a limiting fa~.:tl'L Obviously 

then, if the original melt was depleted in PGE's, then whether or not any later-separating 

sulfide melt had a large or small R factor would make little difkn:ncc in terms of thl· 

absolute PGE concentrations in the dcpo~it. 

Another possible reason for the paucity of ophiolitic magmatic sullidcs could be that 

there was simply not as much sulfur in the Phanerozoic mantle as there was in Archean 

and Proterozoic mantle material. Nearly all of the major Ni-sullidc occurrences arc at 

least Precambrian in age, and in fact tho~e with purely mantle derived sultidcs (such as 

the Sudbury and komatiitic deposits, with mantle sulfur isotope values of ncar 0 per mil) 

are confined to the Archean and early Proterozoic (Naldrett. 198la). The only major 

deposit which is of Phanerozoic age, which has sulfur isotope values indicative of large 

scale assimilation of a foreign, country rock sulfur component (i.e . . with variahlc 

isotopic values, but usually highly positive), and which is also associated with a continen ­

tal setting, is the Noril'sk deposit of the Soviet Union. Accordingly then. 

pre-Phanerozoic deposits such as Sudbury, and the komatiitic deposits of Australia, have 

mantle isotopic values of -0.2 to +5.9 per mil and 4.4 to 6.2 per mil respectively 

(Naldrett, l98la; Naldrett and Barnes, 1986). On the other hand, the much younger 

Noril'sk deposit (Triassic gabbro hosted) has isotopic values of + 7 to + I 7, indicative 

of assimilation of large quantities of country rock sulfur (Godlevskii and Grincnko, 

1963). 

However, a simple Proterozoic or Archean mantle source, or an influx of foreign sulfur, 
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may not always ensure the formation of a sulfide melt. It can now be shown with some 

confidence that in many cases, regardless of the origin of the sulfur, special conditions 

must prevail before the conditions for sulfide segregation are met. Irvine (1975) has 

shown that in mafic-ultramafic melts contaminated by felsic material there is a dilution 

factor which favours separation of magmatic sulfides. In continental settings, it is more 

likely that inclusion and melting of more felsic material is occurring. If there is an 

intrusion of a refractory mantle diapir into felsic crust, then the diapir might be expected 

to assimilate large volumes of felsic crustal material upon melting. This could make the 

melt more felsic, and such a process has been shown to favour sulfide immiscibility and 

Ni-PGE concentration in several respects (Irvine, 1975): 

1- as the melt is being made more felsic, the effective f02 is lowered, the fS2 is 

raised, and the segregation of sulfides becomes possible. Polymerization of the silicate 

melt would result in precipitation of orthopyroxene instead of olivine, thereby decreasing 

the available lattice sites for Ni and PGE's. Therefore these elements would become 

more concentrated in the sulfide melt; 

2- the possible assimilation of sulfur-rich country rock might increase the sulfur 

~:ontent of the melt, or might induce sulfur saturation in a previously Sulfur-undersat­

urah:d melt. 

Such processes can be modelled in geochemical and isotopic terms: assimilation of felsic 

material effectively reduces the maficity of the initial magma, and it has been shown that 

the Cu/Cu + Ni ratios of sulfide deposits increase with decreasing maficity (Wilson and 

Anderson, 1959; Naldrett and Cabri, 1976; Naldrett and Duke, 1980); the assimilation 
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of a foreign sui fur component can b~ monitored by variation of isotope values fwm 

normal mantle values (0 per mil). 

Accordingly, continental magmatic sulfide deposits, where larg\! scale assimilation of 

sulfur-rich crustal material has occurred, have high Cu/Cu + Ni ratios and variabk 

isotopic values. Thus, Noril 's!~ and Sudbury have quite high Cu/Cu + Ni ratios, while 

komatiitic deposits (highly MgO rich rocks with little or no evidence of assimilation) 

have typically low Cu/Cu+Ni ratios (Naldrett, 198la) (see Table 7.'2.). 

In all deposit~.. however, the parent magma was of a relatively MgO·rich, 

mafic-ultramafic nature. Whatever compositional variations occur after crustal 

assimilation, there is evidence from all major deposits to support this statement (Naldrett, 

198la). 

Assimilation accounts well for the Sudbury and Noril'sk deposits, but c;,nnot account for 

komatiitic or ophiolite-related Ni-sulfide deposits. Komatiitic deposits show no evidence 

of assimilation of crustal material, although they are without cxct.:ption pre-Phanemwic 

in age, and therefore may have had access to good (i.e., undepicted) mantle sulfur 

reservoirs. Ophiolitic deposits, on the other hand, are generally Phanerozoic (the vast 

majority of ophiolites are from late Precambrian to Mesozoic in age), and the deposits 

discussed here show no isotopic evidence of assimilation of a significant foreign sulfur 

component (Boyd and Mathieson, 1979; present stud}' How then docs one account for 

the formation of sulfide deposits in these areas? 
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In the case of komatiite associated deposits, the answer is relatively straightforward. One 

is dealing with highly MgO-rich (and therefore probably Ni-rich) melts that are believed 

to have formed from advanced partial melting of an undepicted and previously unmclted 

(Barnes ~ell.... 1985), pre-Phanerozoic mantle which was therefore probably rich in 

mantle sulfur. It has been shown (Naldrett and Duke, 1980; Campbell tlJU., 1983) that 

the Pt+Pd/Os+Ir+Ru ratios of Ni-sulfides can be related to the source region of the 

co-magmatic host rock. When partial melting of an undepicted mantle occurs, Pt and Pd 

will partition preferentially into the melt over Os, Ir and Ru, while the latter clements 

prefer to remain in the mantle residuum (Hamlyn and Keays, 1985). The amount of 

PGE's and mantle sulfide which are taken into this "first stage" melt will obviously 

depend on the degree of partial me'ting of the mantle, so that the lower the degree of 

partial n1elting, the higher will be the Pt+Pd/Os+Ir+Ru ratio in the melt. In the case 

of komatiites, partial mt:lting is quite extr:nsive, so that most of the mantle s~lfidc 

component, and most of the mantle PGE's, will be extracted. The result will be 

formation of a MgO-rich, ultramafic melt with a PGE-rich Ni-sulfide component of pure 

mantle origin. 

Since most or all of the mantle PGE's were extracted in komatiite Ni-sulfidc generation , 

the Pt + Pd/Os + Ir+ Ru ratios for such deposits would not be as high as for those deposits 

which formed from lesser degrees of first stage partial melting, such as the Bruvann 

deposit (Boyd and Nixon, 1985), since in the latter case much of the mantle Os, lr and 

Ru would have remained in the mantle residuum (see Figure 7.3 for the PGE patterns 

for Bruvann). Also, the fact that little or no assimilation has occurred in komatiitic 

---- -- . 
' ' 
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deposits (which would have facilitated earlier separation of the sulfide melt), coupled 

with the fact that komat1itic melts are generally believed to have formed from rapid 

ascent from their mantle source region (Hudson, 1986; Cowden ~. 1986; Keays ~ 

ru.,_, 1982), may have ensured that the exsolution of a significant sulfide melt from a 

silicate melt was delayed until quite late in the evolution of the magma, giving rise to the 

association of Ni-sulfide deposits with volcanic to sub-volcanic komatiites. 

But what of the late Precambrian and Phanerozoic ophiolite and ophiolite-related deposits 

(Bruvann and Lilletjellklumpen)? Firstly, it is necessary to qualify the source of sulfur 

in these deposits. Boyd and Mathieson (1979) have shown that the Bruvann Ni-sulfides 

formed from a mantle derived sulfur source, with isotopic values at 0. 7 to 2 per 

mil. There may have been a minor country rock sulfur component, and if so, this had 

little effect. Unfortunately, no isotopic data is available for the Lilletjellklumpen 

deposit. Both of these deposits are relatively young compared to other deposits of 

Archean and Proterozoic ages (Lillefjellklumpen is Lower to Middle Ordovician, while 

Bruvann is dated at 400Ma by Roddick, 1977), and therefore any possible mantle derived 

sulfur source would not be as enriched in sulfur as the mantle sources for the older 

deposits which had not undergone previous melting episodes. 

Secondly, one must identify the source region for the co-magmatic silicates. In the case 

of Bruvann, the low Cu/Cu + Ni ratio of the sulfides indicates a high-MgO parent silicate 

melt for the sulfides, while the fairly high Pt+ Pd/Os+ Ir+ Ru ratio (which is indicated 

by the steep slope for Bruvann in Figure 7.3) indicates only moderate to low degrees of 

- - - -- --
... • • < 4 . . " 
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partial melting of a first stage or previously unmelted source. Barnes ~ (1987) have 

shown that the initial liquid at Rana (Bruvann) was llQ1 depleted in highly incompatible 

elements such as Cs, Rb and the LREE's, and therefore was likely derived from a fertile, 

non-depleted mantle. This is in agreement with the interpretation of the PGE patterns for 

this deposit, and contrasts with the interpretation of high degrees of first-stage partial 

melting for komatiitic deposits, the latter which have lower Pt + Pd/Os + lr+ Ru ratios. 

and shallower slopes in Figure 7.3. 

Hamlyn et al. (1985), Naldrett and Barnes (1986) and Hamlyn and Keays (1986) have 

all examined the possibilities for sulfur saturation in first stage and second stage (already 

depleted) melts. It is concluded in these studies that average first stage melts are sulfur 

saturated at the :x>int of their extraction from the mantle. Such melts are depleted in 

PGE's for two main reasons: (1) Low to moderate degrees of first stage partial melting 

of fertile mantle would only partially extract the mantle sulfur component, leaving behind 

a significant sulfide fraction in the mantle residuum. This mantle sulfide residue would 

be enriched in PGE's; (2) These first stage partial melts would become quickly depleted 

in PGE's in the early stages of fractional crystallization during ascent, because sulfur 

saturation would ensure co-precipitation of the magmatic sulfides (Hamyln and Keays, 

1986). Consequently, later separation of any subsequent sulfide fractions during ascent 

of this partial melt would be expectedly low in PGE's. 

Because of initial sulfur saturation however, such first stage melts would have the 

capacity to form relatively large magmatic sulfide deposits. Therefore,thc largest and 
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most PGE-enriched Ni-sulfide neposits in ophiolitic terranes would be found in rocks 

where high degrees of first stage partial melting (thus ensuring extraction of most PGE's 

and mantle sulfides from a fertile mantle) had occurred. 

Any subsequent (second stage) partial melt produced from an already depleted mantle 

would have access to the residual mantle sulfides, and these sulfides would be highly 

enriched in all PGE's. Therefore, a second stage melt would be PGE-rich . Also, second 

stage melts have been shown to be undersaturated in sulfur (Hamyln and Keays, 1986; 

Hamyln ~. 1985), and therefore are less likely to lose their PGE's during ascent of 

the partial melt by early precipitation of sulfide fractions. If sulfur saturation was attained 

in such melts, however (perhaps because of country rock assimilation or fr.1ctional 

crystallization), the resultant deposits would undoubtedly be small but PGE-rich. Also, 

the sulfides would have a PGE distribution which reflected a depieted mantle source (that 

is, low Pt+Pd/Os+Ir+Ru ratios, and a relatively shallow slope in Figure 7.3), and 

would have a co-magmatic host rock geochemistry which supported this mechanism of 

formation. The Lillefjellklumpen deposit has Pt + Pd/Os+ Ir+ Ru ratios indicative of such 

a mechanism of formation (see Figure 7.3); the co-magmatic host rocks have been 

suggested to have affinity to ensimatic island arc, and indeed the deposit is also quite 

small and PGE-rich (Gronlie, 1988). 

Thus it is clear that special conditions must be met in order to form PGE-rich magmatic 

sulfide deposits in ophiolitic terranes. That such deposits are extremely rare suggests that 

these physico-chemical (adequate fS2 conditions) and compositional (adequate 
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concentrations of PGE's in the initial partial melt) conditions are in fact rarely achieved 

in magma chambers within ophiolite complexes. The Feoy sulfide deposit and its 

co-magmatic host rocks therefore represent an exception, and so the following sections 

will attempt to delineate the special conditions that must have existed for its formation. 

7.4: The geochemistry, PG E and sulfur-isotopic signature oft he Fc.·'>y Ni-sullidt.'S n nd 

their host rocks 

7.4.1: Sulfur isotopes 

Figure 7.1 is a histogram of average sulfur isotope values for several major Ni-sulfidc 

deposits (after Naldrett, 1981a). These are compared with data from the Feoy Ni-sulfidcs 

obtained during this study (the absolute values for sulfur isotope ratios are also given in 

Figure 7.1). It is evident that most value~ . including those from Feoy, plot very close to 

0 per mil, which is to be expected for sulfides from truly magmatic sources. Samples 

from the Feoy deposit are fresh, massive, metamorphosed pyrrhotite-chalcopyrite 

assemblages, and indicate the following: 

1- there is a total delta 34S range of only 0.9 per mil, from 3.0 to 3.9 per mil; 

2- the range for pyrrhotite is 0.9, while that for chalcopyrite is 0.4 per mil; 

3- the delta 34S (pyrrhotite-chalcopyrite) is very small, with a minimum of 0.2 and 

a maximum of 0 .3 per mil. 

While there are only a limited amount of data presented here, the following conclusions 
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Little Stobie 
(Sudbury) 
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(Sudbury) 
Mnt. Edward 
(Sudbury) 
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Figure 7.1: Histogram of average sulfur isotope values from sel~cted 
orthomagmatic Ni-sulfide deposits (after Naldrett, 198la; data for Bruvann is 
from Boyd and Mathieson, 1979; data for Feoy is from present study). The 
absolute values for sulfur isotope ratios of the Feoy samples are given below: 

Sample 
F33-cpy 
Fll-cpy 
F35-cpy 
F35-po 
F33-po 
F24A-po 
F24A-cpy 

Sulfur isotope values 
3.3 per mil 
3.7 
3.7 
3.9 
3.0 
3.7 
3.5 

+30 
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can be made from existing isotope data: 

1- all samples plot very clo~ to mantle sulfur values (0 per mil). The consistently 

low nature of their isotope values suggests that the Feoy Ni-sulfidcs formed from a 

magmatic, mantle-derived sulfur source. Deviation of sulfur isotope ratios from 0 per mil 

in magmatic sulfide deposits might be explained in terms of metamorphism or 

hydrothermal alteration, assimilation of a foreign sulfur component into the melt, or 

mantle isotopic heterogeneity; 

2- there is negligible isotopic fractionation between sulfide species, which may 

indicate an isotopically homogeneous source of sulfur, although isotopic fractionation 

may be temperature/redox controlled ultimately. This also supports an orthomagmaiic 

origin for the sulfides; 

3- the Feoy Ni-sulfides were extensively recrystallized and variably altered during 

later metamorphism and deformation. However, since all samples still retain sulfur 

isotope signatures consistent with an orthomagmatic sulfide origin, then it is suggested 

that neither recrystallization nor alteration has significantly affected the original sulfur 

isotope composition of the Feoy sulfides. The possibility remains, however, that the 

narrow range of sulfur isotopes observed in these samples may have been partially a 

result of later metamorphism. 

Assimilation of a foreign sulfur component was suggested for the Noril'sk deposit to 

acount for variation of the isotopic signature from 0 per mil, and also to account for the 

large size of the deposit. This may have occurred to a small extent in the Fcoy sulfides, 

since the country rock in the area does indeed contain significant amounts of 
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disseminated sulfides from the earlier-formed Visnes sulfide deposit. 

However, another possible source of sulfur for the Feoy Ni-sulfide deposit could have 

been from reduced seawater sulfate (Malpas, pers. comm.). Above a subduction zone, 

any sulfate in seawater would be reduced to sulfur, and this might enrich a partial melt 

in sulfur. If this was the only source of sulfur for the Feoy deposit, then these sulfides 

might be expected to have a st.t.water sulfur-isotopic signature. On the other hand, if 

there was addition of only small amounts of reduced seawater sulfate to a melt which 

already contained a small mantle sulfide component, then the resultant sulfide deposit 

might have sulfur isotope values intermediate between seawater (generally highly 

positive) and mantle (0 per mil). Such a mechanism might equally well explain the small 

deviation (3 per mil) of the Feoy sulfur isotope values from mantle sulfur values of 0 per 

mil. The data presently available cannot be used to distinguish between these sources. 

7.4.2: Ore geochemistry 

Table 7.2 is..: compilation of gcnchemical data for the Feoy deposit, along with selected 

Ni-sulfide deposits from Norway and other areas. Data from Feoy and other Norwegian 

deposits have been collected in this study, and also from Boyd and Nixon (1987). Data 

for other deposits are from Naldrett and Duke (1980). Also included are PGE abundances 

for the co-magmatic silicate host rock (the high-Mg dykes) of the Feoy sulfides. Unless 

otherwise indicated, data were collected during this study. 
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Table 7.2: The geochemistry of massive Ni-sulfide samples from Feoy, along 
with data from several other i-sulfide deposits (data sources are the same as 
in Figure 7 .1) . 

sample Os (ppb) Ir (ppb) Ru (ppb) Rh (ppb ) Pt (ppb)Pd (ppb ) Au (ppb) 
---------~ -----------------------------------------------------------

FEOY 
F-41 155.2 279.5 282.5 353.3 1044.9 2530.1 23.4 
F-41b 152.4 275.4 285.3 358.5 1038.8 2587.6 24.2 

F 150.7 208.1 330 422.2 1943.3 2140.4 158.8 
F-b 110.8 201.9 347 415.6 1874.4 2077.8 94.9 

JS-b 241.1 272.8 395.2 400.6 587.1 4116.3 13.1 
F-36 239.2 325.6 399.9 445.4 821.2 3623.1 18.1 
F-36b 265.5 376.3 481 519.8 957.5 4201.8 16.5 
F-11 71.48 120.58 208.37 143.2 857.27 4117.04 10.62 
F-35 250.19 339.01 507.61 362.26 443.94 3971.4 245.15 
F-35b 337.5 346.4 582.1 428.9 432.5 4458.1 274.6 
F-10 0.6 0.9 1.7 5.1 3561.4 6388.8 224.1 
F-10b 1.2 0.8 1.4 3.9 3413.8 6465.7 368.6 
F-31 93.8 188 213.7 267.6 323.3 2004.3 42.6 
F-31b 156 225.6 285.3 357.5 386.6 2680.6 66.2 

F-7 1.8 2.1 3.1 2.9 4.1 25 1.4 
F-19 254.2 268.7 415 421.2 567.9 4405 6 

15-Visnes 0.01 0.01 0.1 0.01 0.01 0.6 1.7 
43-highMg 0.01 0.01 0.6 0.4 5.3 6.7 8.2 

Bruvann 6 6.9 2 52 70 1010 
Lillefjel 139 170 189 214 1799 3068 219 
Komatiite 402 219 803 <730 1314 402 
Komatiite 380 320 1980 800 4130 15530 460 
Sudbury 1 29 62 120 120 1930 2120 862 
Sudbury 2 46 110 250 300 2130 3170 860 
Noril'sk 950 1500 1500 2240 13700 36000 1600 

C1-Chond 514 540 690 200 1020 545 152 



- Iable 7. 2 (~ontin:ued) Values No~li:zed to Cl-Chondrite 

sample I Os Ir Ru Rh pt Pd u 
-----------------------------------------------------------------------

FEOY 
F-41 0.302 0.516 0.41 1.767 1.02 4.64 0.154 

F 0.293 0.385 0.478 2.11 1.91 3.93 1.04 
F-b 0.216 0 . 374 0.503 2.08 1.84 3.81 0.62 

F 31 0.183 0.35 0.31 1.34 0.317 3.68 0.28 
15-Visnes 0.01 0.01 0.02 0.01 0.01 1 1.1 
43-highMg 0.01 0.01 0 . 1 0.2 0.52 12.3 5.4 
Bruvann 0.01 0.01 0.01 0.051 0 . 128 6.645 
Lillefjel 0.27 0.315 0.274 1.07 1.764 5.63 1.44 
Komatiite 0.78 0.406 1.164 0.716 2.41 2.645 
Komatiite 0.74 0.593 2.87 4 4.05 28.5 3.03 
Sudbury-1 0.056 0.115 0.174 0.6 1.89 3.89 5.67 
Sudbury-2 0.09 0.204 0.36 1.5 2.09 5.82 5.66 
Noril'sk 1.85 2.78 2.174 11.2 13.43 66.06 10.53 

Pt+Pd/ 
Sample Os+Ir+Ru Ni (ppm) Cu (ppm) CujCu+Ni 

---------------------------------------------
FEOY 
F-41 4.98 21584 11055 0.34 
F-41b 5.09 

F 5.93 24229 14880 0.38 
F-b 5.99 

JS-b 5.17 
F-36 4.61 22650 41218 0.65 
F-36b 4.61 
F-11 12.42 3994 190119 0.98 
F-35 4.03 21906 44563 0.67 
F-35b 3.86 
F-10 3109.44 18585 41825 0.69 
F-10b 2905.74 
F-31 4.72 23219 30625 0.57 
F-31b 4.61 

F-7 4.16 
F-19 5.31 22805 15221 0.4 

5-Visnes 6.0~ 

43-highMg 20.01 

Bruvann 9% 2.1% 0.19 
Lillefjel 9.8 4% 1.2% 0.33 
Komatiite 12.1% 0.84% 0.07 
Komatiite 7.3 15.5% 3.71% 0.19 
Sudbury 1 19 3.83% 4.41% 0.54 
Sudbury 2 13 4% 3.6% 0.47 
Noril'sk 13 7.6% 10.9% 0.59 
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Data from the ore samples are based on the assumption that rock samples are composed 

of 100% Ni and Cu-sultide~. Tl'~ method of stating Ni and Cu in 100% sultid~s is 

discussed by Naldrett ( 1981a), and is designed to eliminat~: discrepancies in PGE 

abundances caused by variations in the amount of sulfide in a given sample. It assumes 

an average of 38% sulfur in the sulfide, with the remaining % being taken up by Ni and 

Cu as pure pentlandite, (Fe,Ni)9S8, and chalcopyrite, CuFeS:!, with Ni in the pcntlanditc 

at 36%. For the PGE diagrams, the PGE values given in Table 7.2 arc considcn:d ro 

represent their concentrations in 100% sulfides, as selected samples were >9X% 

sulfides. These samples are normalized against equivalent elemental concentrations in 

Cl-chondrite, after Naldrett and Duke (1980). 

Cu. Ni. Pt and Pd relations 

Figures 7 .2a and 7 .1b show the relationships between Cu, Ni and Pt/Pt + Pd for rocks 

of the Feoy deposit along with data from other Ni-sulfide deposits. Sources of this data 

are from the present study, from Panayiotou (1985), and from Naldrett (198la). 

Figure 7.2a is a histogram of Cu/Cu+Ni ratios for the Fcoy sulfides and other 

deposits. From Table 7.2, it is clear that the Feoy sulfides have highly variable 

Cu/Cu+Ni ratios, from 0.34 to 0.98. AIJ of the Feoy sulfide samples have been 

completely recrystallized and ddormed during later metamorphism and deformation, and 

have also been variably altered by hydrothermal and meteoric fluids (see Chapter 

4). Therefore, an attempt is made to determine whether this variability in the Cu/Cu + Ni 
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;:igurc~ 7.2.a and 7.2.b: Cu, Ni, Pt and Pd relations for sultides o f the Feoy deposit, 
compared with data for Ni-sulfidcs from various other environments (data for all deposits 
except Visncs is from Naldrett, 1981a). Fields for Fig. 7.2b arc from Panayioutou 
(1985). 
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ratios corresponds to variations in the intensity of hydrothermal alteration in the 

samples. Accordingly, the relatively fresh samples (samples F41, F. Fb, F31) arc 

grouped separately from those that are extensively altered (samples FlO and Fll). 

Cu/Cu+Ni ratios for the unaltered samples vary from 0.34 to 0.57, with an average of 

0.43; Cu/Cu + Ni ratios for the heavily altered samples vary from 0.69 to 0. 98, with an 

average of 0.84. Clearly, the hydrothermally altered samples have considerably higher 

Cu/Cu + Ni ratios than relatively unaltered samples. This is in agreement with data from 

Paktunc (1987), which examines variations in Cu/Cu + Ni ratios from N i -sui fides of the 

St. Stephen intrusion in New Brunswick in terms of metamorphism and rcmobili7.ation 

of the sulfides. 

Lillefjellklumpen is similar to Feoy in terms of its inferred tecto:1ic environment of 

formation in an arc environment (Gronlie, 1988), and the sulfides arc remarkably similar 

in terms of their r ~ .. ation within an ophiolite and their PGE enrichment (sec Table 

7.2). Accordingly, its Cu/Cu+Ni ratio is quite close to that of the fresh Feoy samples 

at 0.33. The Cu/Cu+Ni ratios for both Feoy and Lillefjellklumpcn are consistant with 

the expected Cu/Cu+Ni ratio for the relatively MgO-rich co-magmatic host rocks that 

are present in these areas. This is based on suggestions of Wilson and Anderson ( 1959) 

·-
that the Cu/Cu + Ni ratio will increase with decreasing maficity of the initial panial melt. 

The Cu/Cu + Ni ratio for Bruvann is somewhat low for the peridotitic co-magmatic host 

rocks that are present in this deposit (Boyd and Mathieson, 1979). 
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In Figurt' 7.2b, the fresh Feoy sulfide samples plot in the field for gabbro related 

deposits, and very close to the Lillefjellklumpen deposit. The Bruvann deposit, although 

not PGE-rich, has a Pt/Pt + Pd ratio higher than that for both Feoy and LilletjellkJumpen. 

POE abundances 

Figures 7.3a and b illustrate chondrite-normalized POE abundances for the Feoy, 

Lillcfjcllklumpen and Bruvann deposits of Norway, along with average abut.dances for 

komatiite-hosted, Noril'sk and Sudbury deposits. Only those samples from Feoy that 

appeared relatively fresh and unaltered in thin section were used in Figure 7.3 (samples 

F41, F, F-b, F31). Also, only the highest (samp:e F41) and the lowest (sample F31) 

abundances of PGE's in these samples are plotted in order to show the total range of 

patterns for the Feoy sulfides. Data sources for LillefjellkJumpen and Bruvann are from 

Barnes~. (1987); data for Feoy were obtained during the present study; data sources 

for other deposits are from Naldrett (1981a). Several features are noteworthy. Firstly, 

for the Feoy deposit, PGE abundances are less than chondritic values for Os, Ir and Ru 

in all cases; about 2 times chondrite for Rh; between 0.3 and 2 times chondrite for Pt; 

between 4 and 6 times chondrite for Pd, and from 0.15 to 1 times chondrite for Au. The 

average Pt + Pd/Os +I r + Ru ratio for the Feoy sui fides is 5 .41. 

Secondly, relative to other deposits the Feoy deposit is most similar to the 

Lilletjellklumpen deposit and the field for komatiites, both in absolute and relative 

abundances. The intermediate to low Pt+Pd/Os+Ir+Ru ratios for the Feoy and 
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Figures 7.3.a and 7.3.b: Cl-chondrite normalized PGE patterns for the Fcoy sultidcs. 
along with patterns for other Norwegian Ni-sulfidc deposits, and patterns for Ni-sullidcs 
from various other tectonic environments (data for Norwegian deposits other tha.1 Fcoy 
is from Barnes ~. 1987; data for Feoy is from the present study; data for all other 
deposits is from Naldrett and Duke, 1980). 
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Lillefjellklumpen deposits are indicative of their origins from second stage panial 

melting, or partial melting of a depleted mantle. This is in agreement with REE and other 

geochemical data from the high-Mg dykes of Feoy, and from volcanic rocks of the .J 

Nord-Trondelag region (the host rocks for the Lillefjellklumpen deposit; Reinsbakken, 

1980) which suggest that the co-magmatic host rocks formed from partial melting above 

a subducting oceanic plate (Pedersen, 1987; Reinsbakken, 1980)). 

The field for the Sudbury deposits has a steeper slope with higher ( > 10) 

Pt+Pd/Os+lr+Ru ratios than Feoy or Lillefjellklumpen. The Bruvann deposit has the 

steepest slope, and the lowest absolute abundances of POE's. 

7.4.3: Co-magmatic host rock geochemistry 

The geochemistry of magmatic Cu-Ni-sulfides is directly related to the geochemistry of 

the co-magmatic silicate host rocks, and therefore a brief analysis of the nature of the 

host rocks in the Fcoy area is warranted. 

Figure 7.4 illustrates the Pd-lr tenor of a high Mg-dyke sample from the vicinity of the 

Fcoy sulfide deposit (sample 43-high Mg), as well as a sample from the Visnes dykes 

of the sheeted complex (sample 15-Visnes) for comparison. This diagram illustrates the 

dependence of the PGE content on the environment of formation of the partial melt 

(fields for MORB and low-Ti lavas from Hamyln ~. 1985). MORB lavas, which form 
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from relatively undepicted mantle, have on average much lower Pd-Ir abundances than 

do the Iow-Ti (boninitic) melts, the latter which form from a previously melted, and 

therefore depleted, but PGE-rich residuum. The high-Mg dykes of Feoy plot well within 

the field for low-Ti lavas, consistent with their chemistry (see Table 5.1). The Visnes 

dykes, alternately, are an order of magnitude more depleted in Pd, as would be expected 

from dykes of a lower-Mg. non-boninitic nature (see Appendix 3). 

Figure 7.3a plots these same two dyke samples on PGE diagrams, along with the field~ 

for the Feoy Ni-sulfide samples. In order to facilitate comparison of PGE patterns, the 

abundances for the basalt dyke samples have been multiplied by a factor of 100. It can 

be seen that although the high-Mg dyke sample contains about 3 orders of magnitude less 

PGE's (which corresponds to a partition coefficient, Dsul/Dsil, for the PGE's between 

the co-magmatic silicate melt and the sulfide melt of approximately 1000), the relative 

patterns for both the Feoy sulfides and the high-Mg dyke sample are somewhat similar, 

with a fairly steep positive slope from Os to Pt, an even steeper slope from Pt to Pd, and 

a sharp drop from Pd to Au. Such patterns are not observed in the Visnes dyke 

sample. This lends support to earlier suggestions (see Chapter 2) that the high-Mg dykes 

are the co-magmatic host rocks for the Feoy sulfides. 

The l'eoy sui fide Pt + Pd/Os +I r + Ru ratio is 5 .41, but the same ratio for the high-Mg 

dyke sample is 19.4. This difference exists because the partitioning of Os, Ir and Ru into 

any crystallizing silicate is somewhat greater than for Pd and Pt (which are more 

"incompatible". with a lower Dsui/Dsil). Therefore, any fractionation occurring during 
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ascent, cooling and eventual sulfide formation from the magma would invariably have 

the effect of depleting the silicate melt in Os, lr and Ru. thereby increasing its 

Pt+Pd/Os+Ir+Ru ratio. 

7.5: Summary and discussion 

Geochemical and isotopic data presented in this chapter are consistent with field and 

petrologic data from Chapter 4 in that they all support an orthomagmatic origin for the 

Feoy Ni-sulfides and PGM's. The host silicate rocks for the Feoy deposit appear to be 

highly magnesian basaltic rocks of an arc-basin affinity (the geochemistry of these 

basaltic rocks is discussed in detail by Pedersen, 1987). In these respects the Fcoy 

deposit, while spatially quite close to the Visnes orebody, records an entirely different 

genetic and geotectonic history. 

The Feoy deposit has been geochemically modelled by comparison of selected PGE 

abundances with data from other orthomagmatic Ni-sulfide deposits throughout the world. 

It has been shown that the PGE signature of the sulfide deposits under consideration is 

a direct function of the nature of the source region for the host rocks. In all cases where 

second stage partial melting (Feoy and Lillefjellklumpen) or advanced first stage partial 

melting (the komatiitic deposits) had occurred, and sulfur saturation had been achieved, 

the melt has produced a PGE-rich sulfide deposit, since all or most of the mantle sulfide 

and PGE's had been extracted. In the case of moderate to low degrees of first stage 
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partial melting, however, result"'.nt sulfide deposits are PGE-poor (eg., Bruvann). 

The very small size of the Feoy and Lillefjellklumpen deposits suggests a large R factor, 

so that the small amount of sulfide melt would have had a relatively large volume of 

silicate melt from which to extract PGE's. However, it is suggested here that in this case 

the R factor is of secondary importance after the primary geochemical nature of the 

co-magmatic host rock. In fact, the silicate/sulfide ratio may actually ~ from the 

nature of the source region of the co-magmatic host rock just as does the PGE tenor of 

the associated deposit. For example, it is logical to assume that if there were a larger 

amount of magmatic sulfide (or a lesser volume of silicate magma) present, and therefore 

a smaller R factor, then the PGE concentration of the Feoy deposit would be effectively 

decreased, since there would be more sulfide and less silicate from which to scavenge 

PGE's. However, because of the very nature of the parent magma, itself a second stage 

melt, then it was~ capable of forming a very small volume of magmatic sulfide at 

best. Also, such a small concentration of magmatic sulfide in a magma already enriched 

in PGE's wo~ld necessarily result in the formation of a small, but PGE-rich deposit. In 

other words, the R factor does not control, but is an associated feature of the deposit, 

since the only deposit that could possibly form from such a melt (barring assimilation) 

would be one with a very large R factor. 

Accordingly, it might be expected that wherever there is evidence of magmatic sulfides 

in co-magmatic host rocks of a second stage (depleted) nature, such as the high-Mg dykes 

of Fcoy, then such sulfides would very likely be rich in POE's. This might prove 
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attractive as an exploration tool. were it not for the very low volume of sulfide to be 

expected from such environments. Of course the ideal situation in exploration would be 

when some kind of enrichment process had occurred during intrusion of second stage 

melts. 

While the only such deposits known to this author appear to be the f'coy and 

Lilletjellklumpen deposits, confirmation of this theory must await data from similar 

environments. However, it is intriguing that of all the Ni-sulfide deposits of an ophiolite­

related nature in the Norwegian Caledonides, Cyprus and Newfoundland, only those of 

a truly magmatic nature (i.e. this excludes Tilt Cove and Troodos), and which are clearly 

associated with second stage mantle melts, are enriched in PGE's (Fcoy and 

Lilletjellklumpen). 
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Chapter 8: Major oxide and oxygen isotope chemistry and the origin of 

tourmaline and breccia occurrences in the Feoy area 

8.1: Introduction: the origin or iounnaline 

Tc.urmaline occurs in several geologically distinct environments, the most common of which are: 

1- granites; 

2- placer deposits; 

3- evaporites; 

4- seafloor chemical precipitates. 

Since tourmalioe occurrences in the study area are either 100% fttourmalinite" fragments, 

tourmaline replacement of amphibole, or coarse crystalline vein tourmaline, with no evidence 

of either evaporitic or placer types of sediment, geotypes 2 and 3 can be discounted here. The 

question is then, is the tourmaline related to submarine exhalative processes, or rather to an acid 

intrusion of some sort. 

Taylor and Slack ( 1984), and Appel (1985) have demonstrated the textural, chemical and isotopic 

differences between granitic and sedimentary exhalative types of tourmaline. Using methods 

outlined in these studies, as well as from Slack (1980), it is possible to determine the origin of 

tourmaline from the study area. For the purposes of clarity and comparison, the data supplied 

in this section is presented in a similar format to that of Taylor and Slack (1984), since the latter 

study deals with othe ·Norwegian sulfide-tourmaline associations which bear some similarity to 
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the study area. 

8.2: Tourmaline field relationships 

In an environment such as the study area, where ophiolitic mafic-ultramafic rocks and associated 

seafloor exhalative and orthomagmatic sulfide deposits are the main rock types, it would be easy 

to assume that tourmaline had its origin in a seafloor exhalative type of environment, especially 

considering the proximity of the Visnes massive sulfide deposit. However, several field 

relationships of the tourmaline in the study area do not support this conclusion. Firstly, there 

is no tourmaline found in the Visnes massive sulfides (see Chapter 3). Secondly, tourmaline is 

only found in and around the shear zones. These are related to metamorphism and deforrr.ation 

which post-dated intrusion of the high-Mg dykes and associated Ni-sulfides, since these shear 

zoues cut the latter rock types. Consequently, tourmalinization cannot be related to formation 

of the Visnes massive sulfides. 

8.3: Mi\ior element chemistry 

11 tourmaline-rich samples w-ere used to obtain electron microprobe analyses for 23 tourmaline 

crystals. Data for these samples is given in Table 8.1, in comparison with data from Taylor and 

Slack (1984), for tourmaline from massive sulfide deposits in the Norwegian Caledonides and 

the Appalachians of North America. The following features are noteworthy: 

1- tourmaline from the study , rea is all characterized by relatively low Na20, MgO, Al203 

and CaO; 
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Table! 8.1 : Eiectron mtcroprobe J.nalyses oi tourmaline from the Fr:!oy area (data r'rorn 
the prc)Cnt study), al•mg with data froJT. se!cctcd massive sultidl! rc!atcd tourrnai inc 
uccurrenc~:s (data are from Taylor and Slack, 198~). 

Sample Na20 MgO A1203 Si02 1(20 CaO 

Feoy 

Ria 2.77 6.64 29.76 37.75 0.03 0.47 
Rim 2.8 6.59 29.19 36.99 0.03 0.69 
Rim 2.9 6.65 29.32 )6.61 0.04 0.72 
F-54 2.8 5.65 28.12 39.07 0.04 0.7 
F-54 2.78 5.55 27.57 38.58 0.02 0.72 
F-43 2.42 6. 55 29.48 37.55 0.03 0.57 
F-43 2.7 6.86 29. Jl 37.67 0.01 0. 58 
F-43 2.38 6 . 12 28.89 37 . 09 0.04 0.59 
Trm 2.99 6.56 30.2 36.27 0.03 0. 48 
JS-2 1.22 5.94 26.6 34.56 0 . 02 0.73 
JS-2 2.94 6.1 27.83 32 . 13 0.08 0.53 
JS-2 2.7 5.57 25.37 34.71 0.06 0. 72 
F-60 ) 6.29 30 . 03 35.54 0.03 0. 36 
F-60 2.62 5.96 28.86 34.53 0.03 0. 29 
F-60 2.82 6. 35 28.32 36.24 0.02 0.68 
F-68 2.63 6.28 29.92 36.53 0.02 0. 31 
F-68 2.6 6.69 28.49 35.31 0.02 0.6 
F-78 2.88 6.46 27.15 28.59 0.03 0.54 
P-7B 3.04 6.87 28.87 35.01 0.02 0.49 
F-78 2.75 6.98 26. 16 36.09 0.02 1.32 
F-24 J 6.52 28.25 36.07 0 0. 36 
P-40A ) 4.67 29.03 34.64 0.02 0.18 
F-40A 2.97 5.01 29.35 35.35 tl.OJ 0.18 

Elisabeth 2.81 11.51 34.01 39.01 0.06 0.6 
Ely 2.33 11.92 32.22 38.05 0 . 02 1.54 
Bleikvassli 1.63 10.71 35.61 38.61 1.18 
Black Hawk 1.95 10.01 34.01 37.61 0.1 1.95 

Ti02 

0.19 
0 . 34 
0. 36 
0 . 52 
0.7 

0 . 25 
0.32 
0.33 
0.11 
0.61 
0.23 
0.86 
0.07 
0.11 
o. 38 
0.2 

0.52 
0.43 
0.27 
0.44 
0 . 12 
0.04 
0.08 

0.31 
1.54 . 
0. 2 . 

0 . 26 . 
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T1bie 3. 1: (continut!d) 

Sample Cr20l MnO FeO NiO Total 

Feoy 

Rim 0.02 0.03 10.17 0.05 87 . 86 Rilll 0.02 0.04 10.48 0.04 87.21 Rim 0.01 0.09 9.79 0 86.47 F-54 0 0.03 13.96 0.04 90.91 
F-54 0 0.04 13.95 0.01 89.9) 
F-43 0.04 0.02 9 . 91 0.01 86.8.! F-43 0.08 0.11 10 . 04 0 . 05 87.7) 
F-43 0.16 0.04 9.97 0.02 8'5 . ~2 Trm 0 0.09 8.29 0.12 85. 14 
JS-2 0.04 0.07 12.09 0.09 83.95 
JS-2 0.04 0.05 10.88 0 80.81 
JS-2 0 . 07 0.07 14.03 0 84. 16 
F-60 0. OJ 0.07 9.49 0 .0) 84 . 94 
F-60 0 0. ll 11J.S8 0.0) 83. 12 
F-60 0 0 . 04 10 . 01 0.05 84.89 F-68 0.02 0.06 9.59 0.02 85.58 P-68 0.01 0.0) 9.61 0.04 8). 92 F-78 0.04 0.05 10.49 0.11 76.77 F-78 0.18 0.07 8. 58 0.05 83.45 F-78 0.18 0.04 9.65 0.07 83.7 F-24 0.02 0 . 06 10.66 0.01 85.06 F-40A 0.02 0.04 11.2 0 82.84 

F-40A 0 0.03 11.41 0 84.42 

Elisabeth 2.13 91.01 Ely 3.02 90.65 
Bleik·1assli 0.98 89.47 
Black Ha•k 3.15 86 .'51 

Chemical end members of the tourmaline group (from Taylor and Slack, 1984). 

Mineral Ideal compcsi tion 

Schorl NaFe3+Al683Si6027(0H, F)4 
Elbai te Na(Li 1 Al) 3Al6B3S i6027 (OH I f) 4 Oravi te Na (MgJA1 6BJSi60) 27 ( OH, F)4 
E!uergeri te NaFeJ+Al6BJSi 6030F 
Tsilaisite NaMn3Al6B3Si6030F 
Liddicoati te Ca( Li, Al)3Al6B3Si6027 ( 0H, F )4 
Uvite CaMg3 ( Mq ,AlS )83Si6027 (OH , F)4 
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2- the concentrations of K20, Ti02, Cr02, MnO and NiO are all low, and some are below 

the limits of detection; 

3- the low Al203 precludes the presence of any elbaite component here, and the MgO-FeO 

contents indicate that all samples are near the schorl endmember in the schorl-dravite solid 

solution series (Deer~ .• 1962; note that the chemical compositions for the Schorl-dravite 

solid solution are included in Table 8.1). 

Compared with tourmaline occurrences elsewhere in the Caledonian-Appalachian orogen, the 

following variations are noted: 

I· tourmaline from the study are:t is on average similar to other occurrences in its Si02, 

K20 and Ti02 contents; 

2- tourmaline from the study area is on average enriched in Na20 and depleted in CaO 

relative to other occurrences. This is reflected in a higher Na20/Na20+Ca0 ratio for the 

tourmaline of Feoy; 

3- tourmaline from the study area is clearly enriched in FeO and depleted in MgO relative 

to other areas. Consequently, FeO/FeO+ MgO ratios are significantly higher than ratios for ill 

other massive sulfide-related deposits of tourmaline. 

Figure 8.1, and Table 8.1 outline the marked chemical disparities between tourmaline of the 

study area and tourmaline from other sulfide related occurrences in the Norwegian Caledoni­

des. This data is compared with data from granite related tourmaline from Portugal and England 

(data from massive sulfide deposits is from Taylor and Slack, 1984; data from granites is from 

Nciva, 1974, and Power, 1968). In Figure 8. J, the Feoy tourmaline plots in the lower range of 
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Figure 8. 1: Chemical dispanty bctw~:l!n tourmalinl! from Fcoy and tourrualinl: from 
massive sultide and grani te related environments (data tor all areas except f·l:oy arc trum 
Taylor and Slack, 1984). 
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sc.:horl compositions in terms of FeO/FeO+MgO, and is more closely related to the granite 

related tourmaline in this respect, although it is not dissimilar to tourmaline from the Blackhawk 

(Maine) and Ore Knob (North Carolina) mines. 

Although not plotted here, schorl tourmaline has been recorded from the Vassfjell massive 

sulfide deposit in the Trondheim District of Norway (Greene~ .• 1980). This deposit is an 

ophiolite related occurrence, and along with the tourmaline from the ~tudy area represents the 

only known occurrence of schorl tourmaline from this type of environment. Unfortunately, the 

origin of this tourmaline has not been discussed. 

In terms of its Na20/Na20+Ca0 ratios, the Feoy tourmaline is clearly dissimilar to all massive 

sullidc related tourmaline, and is intermediate bewteen tourmaline of the Portugese and English 

granites, thereby putting the Feoy tourmaline well within the field of average granite related 

tourmaline. 

8.4: Oxygen isotopes 

Ox ygcn isotopes from tourmaline and quartz in granite related and massive sulfide related 

occurrences are distinctly different, and these differences can be used to qualify the origin of the 

Ft.-oy tourmaline occurrence. Three tourmaline separates and three quartz separates were 

analysed from vein and breccia samples in the Feoy area, taken mainly from the area of the 

mine dump. Their oxygen-isotopic tenor is reported in Table 8.2. 
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Table 8.~: Chcmic:ll disparitit:s between tourmaline trom F~ov .lth.J 1ourmalin~ r·rtlln 

granite related lPortugcsc granite d.ua from Nei~a. t97J; English g.ran1t~ Ja1.1 r"r,lnl 
Power. t 968) and massive sultidc related (data from Taylor and Sl;ll·k. 1 •lS-lt 
environments. 

Olemical Messiw ~ ~lish Feoy 
~ sulfides gx:Mites granites t:rDl 
I of SC!q)les 15 18 17 23 
!'«>~ 0.21 0.86 0.91 0.65 
Ma20~0.66 0.97 o.e~ 0.88 

Table 8.3: Oxygen isotope values of tourmaline: and quartz from i=~oy . 

Saltple I 

F-54 
F-9 
F-40A 
F-24 
F-6 
F-61 

ciel 1ao ctrml 

+7. 55 per mil 
~-53 
~-4 

del 100 (C$2) 

+10.16 
+9.44 
+10.24 

Rarqe of del lOO 
~tm_ __ _ 

l'lli..ninull of 1 . 89 
maxi!IL1D ot 3, 84 

prcb:lble= 2. 40 

Note: !sotq:)ic values are the ratias of heavy ( 100) to light 
OX'Jqen (160) relative to the international st.aroard ~ (starda­
rd Mean Ccean water) of o per mil. 

• All six ati.neral separates are fraa trm tear~ vein ard breccia 
~les. Ha.tever, tr.D SC!q)le F-54 is vein asscciated tna, ard is 1 
per mil heavier than t:na ~les F-9 an:i F-40A, the latter etllch 
are saq:>les of the toJnBlinite fragments in 'type A treccia. All 3 
quartz se~tes are frau trm bearirq vein ~laqes, am so 
saq:>le F-54 my be o:::re i.sotop.icall y representative of 
~ fluids, an:! of del 1~ ( qtz-trm) , than are F-9 or 
F-40A. For the p.Irp05E!S of Ol::q'leteness, tx7wever, the ~le rarqe 
of passible del 100 (qtz-trm) are qivel. 1he JDC6t representative 
tnt saq>le, F-54, is paire;i with an average del 180 (qtz) of 9.95 
per ail to qive a pra::;eble del 180 (qtz--t:n) of 2.4 per ail. 
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Figures 8.2 and 8.3: Oxygen isotope relations for tourmaline and quartz assemblages 
from the study area, along with data from massive sulfide and granite related 
environments (data from all areas except Feoy from Taylor and Slack, 19H4). 
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Figure 8.2 plots delta 180 (tourmaline) against delta 180 (quartz) for some pcgmatitic and 

massive sulfide related deposits, as well as for the Feoy tourmaline. It has been shown (Garlick 

and Epstein, 1966; Slack and Taylor, 1984) that quanz is relatively resistant to isotopic 

exchange during metamorphism; the linear relationship exhibited here between the various 

deposits demonstrates the probable isotopic stability of tourmaline as well as quam: during 

metamorphism. It also suggests that variations in the isotopic signatures of the different deposits 

reflect differences in the thermal and/or isotopic nature of the hydrothermal fluid itself. In the 

study area, it appears that the isotopic integrity of tourmaline was indeed maintained throughout 

metamorphism, since earlier formed (deformed) tourmaline (samples F-9 and F-40A, which arc 

tourmalinite fragments in Type A breccia) samples are only l per mil lighter than later formed 

(undeformed) tourmaline (sample F-54, which is a sample of coarse crystalline vein tourmaline). 

A second feature evident from Figure 8.2 is that all the Feoy tourmaline plots much closer to 

the isotopically distinct pegmatite group than to massive sulfide related tourmaline. 

Figure 8.3 plots delta 180 (tourmaline) vs. delta 180 (quartz minus tourmaline) for those 

deposits plotted in Figure 8.2. Once again it is evident that for the minimum and probable delta 

180 (quartz-tourmaline) values of the Feoy tourmaline-quartz samples, they are most closely 

related to granite-pegmatitic tourmaline, although some similarity to the Black Hawk (massive 

sulfide related) tourmaline is also observed. 

In summary, it is clear that tourmaline from the study area, although exhibiting some textural 
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~imilaritics to the Blackhawk massive s•Jlfide related tourmaline occurrence, is chemically and 

isotopically distinct from most massive sulfide related tourmaline deposits in the Appalachians 

and Caledonides. Indeed, in these respects the Feoy tourmaline is much more closely related to 

granite, pegmatite and aplite hosted tourmaline occurrences. Likewise, field data suggests that 

there is no relationship between the tourmaline occurrence and the Visnes massive sulfides. 

The only other possible option for the environment of origin of the Feoy tourmaline, having 

ruled out placer, evaporitic and seafloor precipitate deposits, is a granitic environment. Data 

from the breccia occurrence in the Feoy area offers support to this suggestion, and is discussed 

in the following section. The geology and petrology of this breccia was discussed in Chapter 4, 

and therefore the following discussion only involves features which are pertinent to its origin. 

8.5: The origin of the Feoy breccia 

The occurrence of a tourmaline-bearing breccia pipe within arc related rocks of the Feoy area 

is an intriguing addition to the problem of tourmaline formation. The term "breccia pipe" is used 

here instead of "stockwork" or "fault breccia" for several reasons. Firstly, a true massive sulfide 

related "stockwork" zone, as exemplified in the Cyprus and Bett's Cove ophiolites (Lydon, 

1987; Saunders, 1985), contains angular, unmilled fragments of mineralized, highly altered wall 

rock (in both cases pillow lava), and sits below a massive sulfide zone of exhalative origin. Such 

stockworks are characterized by intense silicification and pyrite-chalcopyrite veining which in 

some places reaches ore grade. None of these features are present in the Feoy 
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breccias. Likewise, "fault breccias". or breccias resulting from simple mo\'ement along fault 

zones, are characterized by angular, highly unsorted and irregular fragments set in a matrix of 

clastic silt to sand sized material, termed "rock flour" (Sillitoe, 1985). This "rock flour" is an 

essential component of all fault or tectonic breccias, but is conspicuously absent from the Fcoy 

breccias. On the contrary, the Feoy breccias are characterized by open space breccia filling with 

hydrothermal cement matrix, as opposed to a rock flour matrix in tectonic breccias (otherwise 

known as fault gouge or collapse breccia). Also, it is important to note that tectonic brecciation, 

or the production of dilatent fault zones during ophiolite emplacement, cannot account for the 

close relationship between brecciation, chlorite-calcite-quartz precipitation, and the consistantly 

bi-, or possibly tri-lithologic nature of the breccia fragments (Sillitoe, 1985). That is, breccia 

fragments are composed of tourmalinites, Type 2 plagiogranites, and also high-Mg basalts. 

These features, along with the localization of brecciation to one small area of Feoy (in which 

Ni-sulfides, high-Mg dykes and Type 2 plagiogranite dykes are also abundant), suggest that this 

breccia is part of a "breccia pipe" in its truest sense. 

Sillitoe (1985) has provided an exhaustive study on breccia pipe occurrences in volcano-ph.Jtonic 

arcs, and has been able to qualify 6 main breccia types; these are outlined in Table 8.f. All of 

these breccia types, excluding tectonic breccias, have been explained by a combination of one 

or more of the following mechanisms (after Sillitoe, 1985): 

1- localized dissolution and upward removal of rock by fluid released from a cooling 

magma; 

2- release of volatiles from magma with material carried physically upward; 
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Table: 8.4: Gc:ncraJ char<.ctl!risucs of ore related brc:ccias 10 volcano-plutonic .. m.:s taJ.tcr 
Sillitoe. 19~5). 

Breccia 
category 

Magmatic 
hydrothermal 

Phreiitic 

Phreatomagmatic 

Magmatic 

Intrusion 

Tectonic 

Deposit 
trpe 

Isolated 
pipes 

Porphyry 

Epithermal 

Porphyry 

Kuroko 

Porphyry 

Epithermal 

Porphyry 

Epithermal 

Geometry 

Single or 
multiple pipes 

Diameter 
(m) 

50-300, 
locally >1000 

Single or YP to 2000a 
multiple pipes, 
irregular bodies 

Pipelike but up to soom 
commonly irregular 

Pipes, pebble 
dykes 

Sheets, lenses 

Diatreme 

Diatreme 

Diatreme 

Diatreme 

up to 500m 

up to 1000111 
long 

1000-JOOOm 

1000-JOOOm 

500-SOOOm 

500-5000m 

rntrusion related Irregular up to lOOm 
deposits patches 

Any deposit Steep tabular 
bodies up to 50m wide 
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Table 8A: (continl!cd) 

Breccia Fr- .lgment Reck flour category fona matrix 

Magmatic Angular-subrounded Locally present hydrothermal loca 11 y rounded (<30\) 

Angular to Commonly present 
rounded (>50\) 

Phreatic Angular to Commonly present 
rounded (<50%) 

Angular to Commonly present 
rounded (up to lOOl) 

Angular to Pr~sent (<)0'\ ) 
rounded 

Phreatomagmatic Subrounded to Present (<90t) 
rounded 

Subrounded to Present (<90%) 
rounded 

Magmatic Subrounded to Present 
rounded 

Subrounded to Present 
rounded 

Intrusion Angular Absent 

Tectonic Anqular to Present 
rounded (up to 100~) 



194 

3- downward movement of magma by shrinkage or withdrawal; 

4- development of a vapour bubble on the roof of a stock or pluton by accumulation of 

cxsolvcd fluids. 

Upon examination of the scheme presented in Table 8.4, it becomes evident that there are 

problems in classifying the Feoy breccia pipe. It is clearly not a tectonic breccia for reasons 

discussed above. Neither is it an intrusion breccia, since such a breccia is the result of intrusion 

of a melt into country rock, and requires a matrix of igneous material. 

Magmatic, phreatomagmatic and phreatic breccias all require a significant rock flour matrix, but 

this is not present in the Feoy breccia. While magmatic-hydrothermal breccias allow for the 

possibility of no rock flour in the matrix, and for the presence of rounded fragments, such 

mechanisms imply high temperature hydrothermal fluids along with the presence of an 

underlying hydrous granitic or similar type of intrusion. Indeed, fluid inclusion data from many 

intrusion-related breccia pipes indicate fluid temperatures in the range of 310-470 degrees 

Celsius (So and Shelton, 1983). Unfortunately, the breccia matrix in the Feoy rock samples is 

either pure chlorite (Type A breccia), or chlorite with fine grained, milky quartz and calcite 

(Type B breccia), neither type which yielded any samples suitable for fluid inclusion 

studies. Tourmaline samples were also checked optically for fluid inclusions, but because of their 

dark color and relatively tine grain size, they were unsuitable for such studies. In this respect, 

breccia pipe formation as a result of magmatic-hydrothermal activity canuot be ruled out. 

Whi lc there is no direct evidence from the breccia pipe of tourmaline-bearing granitic fragments, 
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there is still abundant evidence which strongly supports an origin of the breccia pipe and 

associated tourmaline from granitic intrusion related processes. Firstly, the isotopic and chemical 

signature of the tourmaline strongly suggests a granitic origin for the tourmaline. 

Secondly, the morphology (and to a lesser extent the lithology) of the breccia pipe provides 

convincing evidence for its formation as a result of intrusion related processes; the absence of 

rock flour and incipient silicification or mineralization, the roundness of the fragments, and the 

hydrothermal cement matrix virtually precludes the possibility of brecciation as a result of 

tectonic or stockwork related activity. Therefore, the only alternative is that brecciation occurred 

from intrusion related activity. 

Thirdly, the WKIC to the north is a large granitic pluton which contains black tourmaline of the 

schorl/dravite variety along the margins. Intrusion of the WKIC is also accompanied by large 

scale shearing in the country rocks. The WKIC is d2.ted at 450Ma by Rb/Sr methods (Priem and 

Torske, 1973), a date which is younger than intrusion of the clinopyroxene-phyric stock on Fcoy 

(which is dated at 470 +9/-5Ma by Dunning and Pedersen, 1987). Allowing for a significant 

period of tectonic and/or magmatic quiescence, with inter-arc or arc basin deposition of the 

volcaniclastic equivalents to this clinopyroxene-phyric stock ~ the initiation of 

metamorphism, deformation and associated brecciation, then the onset of such activity would 

correspond remarkably well with intrusion of this granite. 

In summary then, it is quite possible that the onset of late metamorphism, along with 

development of regional scale shear wnes, was a direct result of intrusion of the WKIC. 
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Associated brecciation need not have commenced until the granite intrusion had ascended to 

relatively shallow crustal levels, at which stage it would have already exsolved a considerable 

boron-rich aqueous phase (Strong, pers.comm.), and would have had ample time to form 

tourmaline-rich roof rocks prior to their subsequent brecciation (these being the tourmalinite 

fragments in Type A breccia). Continued exsolution of a magmatic, boron-rich aqueous phase 

during brecciation would ensure formation of fresh new tourmaline vein assmblages in addition 

to incorporation of tourmalinite fragments ;n the breccia (which explains the two types of 

tourmaline found in the study a;ea). 

l.ocally, explosive discharge of boron-rich fluids from a crystallizing granitic pluton would have 

been through country rocks composed of high-Mg dykes, the Ni-sulfide depo~!t. Type 2 

plagiogranites ar.d diorites in the Feoy area. Therefore, these are the rock fragments which one 

might expect to find in the breccia pipe, as indeed is the case. This explains the spatial 

relationship between Ni-sulfides and tourmaline. 



197 

Chapter 9: Conclusions 

The preceeding chapters have illustrated the complex interrelationships bctwl·cn 

mineralization, alteration, deformation and magmatism in the evolution of the Karmuy 

Ophiolite. Sulfide mineralization occurred during two distinct periods of magmatic 

activity: firstly as a result of hydrothermal activity at a seafloor spreading center; then 

some 20ma later as a result of precipitation from a sulfur-saturated mafic melt in a supra­

subduction zone environment. Patterns of alteration unique to each deposit have been 

examined, and serve to distinguish petrographically and geochcmically between older and 

younger rock formations. Finally, late deformation has considerably mtxliticd both 

deposits, and it is possible to delineate the nature and probable origin of this activity. 

Because of the complexity of geological relationships in the study area involving multiple 

periods of magmatism, alteration, mineralization and deformation, it is perhaps easier to 

summarize the main findings of this study in the form of schematic diagrams. 1 .. ~sc arc 

illustrated and briefly described in Figure 9.1. In addition, the salient conclusions from 

each chapter are listed below: 

1- the geology of the study area is dominated by heavily altered volcanic, subvolcanic, 

and plutonic rocks of the upper portion of the Karmoy Ophiolite, and records Early 

Ordovician oceanic spreading and subduction zone activity; 

2- a massive Fe-Cu-Zn sulfide deposit (the Visnes deposit) represents a period of seafloor 

sulfide precipitation which occurred early in the evolution of the Karmoy Ophiolite; 
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3- a massive Fe-Cu-Ni-PGE sulfide deposit (the Feoy deposit) represents a period of 

magmatic sulfide formation associated with intrusion of late, highly magnesian dykes. 

This mineralization appears to be related to supra-subduction zone activity; 

4- alteration associated with the Visnes deposit is typical spilitic in nature, and probably 

resulted from large scale regional convection of seawater-hydrothermal fluids. However, 

local epidosite zones, epidotites and plagiogranites provide field, petrographic and 

geochemical data that suggests there may well have been a direct magmatic water 

influence on alteration and mineralization in the Visnes deposit; 

5- a period of alteration which occurred after formation of the Feoy Ni-sulfides has 

resulted in extensive, and in some samples complete leaching of PGE's from the sulfides. 

This alteration may have been a post-emplacement event related to regional shear zone 

formation as well as local formation of tourmaline-bearing breccia pipes; 

6- geochemical, isotopic and petrographic analyses of the Feoy deposit suggest that it 

formed from sulfide precipitation in an already-depleted partial melt during etscent from 

a mantle origin. Petrogenetic modelling of the co-magmatic host silicate rocks for the 

Fcoy deposit show PGE patterns which are, as expected, also indicative of formation 

from a second stage melt, or from partial melting of an already-depleted melt; 

7- volcaniclastic sediments of the Torvastad Group, which represent a period of arc-basin 

formation following arc-volcanism late in the evolution of the ophiolite, are themselves 

quite deformed and cut by shear zones. Therefore, shear zone formation which affects 

all rocks in the study area must have occurred very late in the evolution of the Karmoy 

Ophiolite, and is possibly a post-emplacement phenomenon; 

8- tourmaline-bearing breccias and tourmalinites occur in the Feoy area. Textural, 
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isotopic and geochemical analyses of the tourmaline and breccia strongly suggest that 

they formed as a result of forceful intrusion of a hydrous granitic body into the 

surrounding country rocks. This may well represent an extension of the West 1\armoy 

Igneous Complex. 



Schematic diagrams illustrating the geological events, dates 
and geotectonic environments of formation of sulfide 
occurrences in the Karmoy ophiolite. 
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Appendix I: Accuracy data for major element analyses of the Visnes dykes. 
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Appendix 2: E!ectron microprobe analyses of 
selected m1nera1s from rock sampies in me study area 

Na Mg AJ Si K Ca Ti Cr Mn Fe Ni Total 

Chlorite ;on !he bas•s c:A Je "ltygens) 

bg 6.3 1.59 3.19 3.88 2.1:3 4.92 9.35 22.55 2.83 426 6.45 

Cl 0.06 959 9.15 11.52 0.02 0.05 0 .02 0.0 0.29 16.a5 0.05 

be 0.08 15.9 17 29 24.65 003 0 .06 0 .02 0.0 0.38 21 .67 0.06 

ac 0.11 17 39 18.15 27.30 003 0.07 0 .02 00 0.38 21 .62 0.07 a&24 

tm 0026 J884 3312 •. 1650.004 0009 J .O 0 0 ) 048 2.709 0.004 ~ 4 ' 63 

Hor,blende (on the !:>as•s of 24 oxygens) 

bg 25.95 2.14 3.34 5.34 2.95 606 11 .37 2095 2.98 4.54 6.67 

Cl 0.34 8.46 1.44 2521 0.05 8.11 003 002 028 10.61 0.04 

be 0.46 14.02 2.72 53.93 0.06 11.34 005 0.03 0.36 1365 0.04 

ac 0.53 14.73 2.78 53.27 0.07 11.61 005 0.03 0.37 1384 0.05 97 32 

fm 0.151 3 324 ') 493 13. oe6 r) 009 , 884 0004 00 ~ )44 1.751 0 .01)1 15.732 

Ae11nolite ron :he bas1s ~ :24 •JltyQeflS) 
bg 23.2 us 3. !7 4.60 :3.33 4 95 10.69 ' 954 3.47 ,:30 na 

Cl J .51 ~ 0. 57 0. :3 27.23 ':lO 8d2 l .O 002 a. ~ · !55 na 

be () 69 17.52 ~.25 S8 24 lO •206 J .O 0.03 0'8 ll-4 na 

lC 1 76 17.35 025 5682 ? .0 12.41 0.0 003 ). ~ 9 1004 118 )8J6 

tm 0.207 3.745 O.J41 1002 0.0 1.873 J .O 0 0 O·J21 1182 na '5 J70 

ne ., not 4f'aJiled 
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Appendix 3: Major and Trace element analyses for the Visn~s dyk~·s ( I to ~ J). thl· II i!! II 
Mg dykes (24 to 28), and selected basalts from various tcctonil.' l.'nvironiiH.:nls c 2'1 and 
~~0 arc typical unaltered island arc tholeiites, !AT; 31 to :narc spilik~ or an i-.land ;ul· 
nature; 34 is average unaltered MORB composition ; 35 is ctwra!!~ unaltl.'f\.'d honinill' 
composition). Data sources are given in caption for Fig. 5.1. Major ~:kllll'flts an: ~i\l'll 
in weight per cent, and Trace elements arc in ppm. 



213 

sample Label Si02 Ti02 A120J Fe203 MnO 

1.00 a 53.70 l. fJ4 12.60 ll. 58 0.21 
2.00 a 52.50 0.92 16.00 8.62 0.08 
3.00 a 55.20 1. 88 11.60 18.76 0.10 
4.00 a 60.30 0.24 15.90 8.78 0.11 
5.00 a 53.50 1. 80 12.10 18.41 0.10 
6.00 a 49.90 1.72 13.80 15.09 0.22 
7.00 a 51.30 2.28 13.10 19.27 0.11 a.oo a 48.60 1. 76 13.60 15.37 0.20 
9.00 a 60.30 0.24 15.90 8.78 0 . 11 

10.00 a 56.30 1. 72 14.00 8.58 0 . 09 
11.00 a 50.90 2.00 16.90 9.47 0.13 
12.00 a 65.50 1. 20 13.50 6.16 0.09 
13.00 a 53.40 0.56 15.50 9.85 0.14 
14.00 a 48 .00 1. 88 14.40 16.31 0.19 
15.00 a 58.10 1. 64 14 . 10 8.51 0.09 
16.00 a 48.50 1. 36 14.40 12.44 0.16 
17.00 a 55.40 1.61 11.50 18.14 0.10 
18.00 a so. 40 0.80 15.30 9.50 0.17 
19.00 a 49.10 1. 60 14.60 11.22 0.14 
20.00 a 50.90 1. 48 14.10 12.04 0.20 
21.00 a 54.80 0.92 15 . 50 8.93 0.10 
22.00 a 51.50 1. 32 13.60 12.55 0.18 
23.00 a 46.60 1.96 15.80 10.93 0.17 

24.00 b 49.80 0.76 14.10 9.03 0.21 
25.00 b 43.20 0.68 11.30 20.39 0.31 
26.00 b 46.80 0.40 15.60 8.74 0.15 
26.00 b 50.20 0.76 14.20 10.28 0.17 
28.00 b 47.60 1.04 15.00 10.52 0.18 

2'L 00 c 48.70 0.63 115.00 8.74 0.12 
JO.OO c 53.60 1.15 19.83 11.80 0.29 
31.00 d 50.30 0 . 38 15.50 8.62 0.18 
32.00 d 54.30 0.70 17.10 13.60 0.24 
JJ. 00 d 51.90 1.60 16.30 10.80 0.19 
34.00 e 50 . 20 1.50 16.25 9.63 0.18 
35.00 f 55.30 0.21 9.47 9.48 0.18 
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sample Label HqO CaO lfa.20 Na20/Ca0 

l. 00 a 5.56 6.48 5. )1 0.83 
2.00 a 2.24 13 . 98 2.95 0. 21 
).00 a 5.00 2.16 J. 39 1.57 
4. 00 a 3. 65 1. 52 6.60 4.34 
5.00 a 4.71 3.32 3.08 0 . 93 
6.00 a 4.95 8.04 4.41 0.55 7.00 a 4.71 2.86 3.90 1. 36 8.00 a 5.3:3 7.00 4.18 0 . 60 9.00 a 3.65 1. 52 6.60 4. )4 

10.00 a 4.50 5.08 6.99 1. )8 
11.00 a 6.10 4.08 6 . 50 1.59 12.00 a 2.98 1.80 6.15 3.42 13.00 a 6.)0 6.96 2 . 16 0 . 31 14.00 a 5 . )4 7.28 4. 10 0. 56 
15 . 00 a 3.47 7 . 12 4 . 26 0.60 16.00 a 8.40 6 . 58 1.90 0.59 17.00 a 4.75 1. 82 3. lJ 1. 72 18.1)0 a 7.50 3.52 4 . 48 0.5) 
19.00 a 7.29 7.16 4 . 94 0.69 20.00 a 8.40 5 . 60 4.71 0. 84 21.00 a 4.23 8.72 5.40 0.62 22.00 a 8.21 6.08 4.57 0.75 23.00 a 6.16 9.00 4.06 0.45 

24.00 b 10.83 7.70 3.61 0.47 
25.00 b 8.91 10.86 1. 24 0.11 26.00 b 11.07 12.40 2. 13 0.17 
26.00 b 9.81.) 8.62 3. 4 J 0.40 
29.00 b 10.35 8.28 ). 14 0.)8 

29 . 00 c 3.74 9.00 t. 20 0. 13 JO.OO c 8.96 12.25 3. 30 1).27 
Jl. 00 d 6.10 5 . 20 3.70 0.71 
32.00 d 8.50 8.20 5.90 0.72 
31.00 d 5.60 8.00 4.30 0.54 
34.00 e 7.74 11.30 2 . 84 0.25 JS.OO f 14.98 8.09 1. 75 0.22 
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sample Lace: K20 PZCS Total Rb 

1.00 a 0.13 0.2) 98.89 0.00 
2.00 a 0.12 0.38 99.45 2.00 
3.00 a 0.04 0.20 100.75 2.00 
4.00 a 0.18 0.05 99.92 2.00 
5.00 a 0.04 0.33 99.86 0.00 
6.00 a 0. 18 0.27 100.08 1.00 
7.00 a 0.05 0.20 100.47 1.00 
8.00 a 0.15 0.15 98.13 0.00 
9.00 a 0.18 0.05 99.92 J.OO 

10.00 a 0.10 0.26 98.38 0.00 
11.00 a 0.08 0. OJ 100.43 0.00 
12.00 a 0.08 0.59 99.45 1.00 
13.00 a 0. 17 0.04 98.52 6.00 
14.00 a 0.16 0.16 99.95 3.00 
15.00 a 0.21 0.26 99.19 5.00 
16.00 a 0.07 0.04 98.68 0.00 
17.00 a 0.04 0. 20 99.20 0.00 
18.00 a 0.09 0.13 100.08 0.00 
19.00 a 0.08 0.13 100.45 0.00 
20.00 a 0.06 0.17 100.42 o.oo 
21.00 a 0.09 0.26 100.01 1).00 
22.00 a 0.08 o.o8 100.27 o.oo 
23.00 a 0.23 0.73 98.07 3.00 

24.00 b 0.11 0.05 99.98 2.00 
25.00 b 0.51 0.29 100.28 20.00 
26.00 b 0.05 0.02 100.81 o.oo 
26.00 b 0.07 0.03 100.00 0.00 
28.00 b 0.09 0.06 99.50 4.00 

29.00 c 0.23 0.10 
JO.OO c 2.18 0.40 
3 l. 00 d o.oo 0.05 99.60 
32.00 d 0.40 0.07 99.60 
33.00 d 1. 20 0.32 100.20 
34.00 e 0.20 0.13 99.97 
35.00 f 0.28 
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sample Labe~ cu Ni. v ~r 

1.00 a t. 00 4 . 00 370.00 o.oo 2.00 a 386.00 o.oo 81 . 00 o.oo ). 00 a o.oo o.oo 520.00 o.oo 4.00 a 3.00 o.oo 299.00 o.oo 
5.00 a o.oo 0.00 292.00 0.00 6.0(\ a 16.00 0.00 520.00 0.00 
7.00 a 19.00 0.00 516.00 0.00 
8.00 a 10.00 0 . 00 571.00 o.oo 
9.00 a 17.00 o.oo 315.00 0.00 

10.00 a 4.00 0.00 214.00 o.oo 
11.00 a 125.00 J.OO 340.00 0.00 
12.00 a 4.00 0.1)0 59.01) 0.00 lJ.OO a 49.00 a.oo 265 . 00 0.00 
14.00 a 14.00 o.oo 571 . 00 0.00 
15.00 a 3.00 0 . 00 173.00 o.oo 
16.00 a 9.00 14.00 372.00 o.oo 
17 . 00 3. 0.00 o.oo 485 . 00 o.oo 
18 . 00 a 8.00 28.00 208.00 108.00 
19.00 a 30.00 62.00 366.00 217.00 
20.00 a 26.00 103.00 36J.OO 34 2. 00 
21.00 a 7.00 22.00 182.00 46.00 
22.00 a 0 . 00 57.00 360.00 219.00 
23.00 a 25.00 29.00 259.00 32.00 

24.00 b 15.00 125 . 00 216.00 537.00 
25.00 b o.oo 81.00 233.00 591.00 
26.00 b 129.00 152.00 219.00 532.00 
26 . 00 b 3 . 00 157.00 215.00 398.00 
28.00 b 10.00 133.00 277.00 497.00 

29.01) c 50.00 18.00 188.00 15.00 
10.00 c 159.00 196.00 294.00 '5J5. t)Q 
)1. 00 d 17.00 17.00 7.00 
32 .oo d 43.1)0 27.00 75.1)0 
)3.00 d 
34.00 e 77.00 ~7.00 2'J7.00 
35.00 f 367.00 141 •).00 

!· 
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··f 
;l!, ., 

sample La tel ~b Sr- Zr- Zn :. 
- ~ 
-~ 

~ 

1.00 a 3.00 66.00 162.00 79.00 
2.00 a 5.00 487.00 203.00 2.00 ~ 
3.00 a s.oo 26 .oo 8'5.00 27.00 • -'~ 

4.00 a 2.00 94.00 44.00 55.00 < 

5.00 a J.OO 99.00 114.00 24.00 . .; 

6.00 a 5.00 96.00 94.00 108.00 ' 
7. 00 a 2.00 68.00 108.00 40.00 
8.00 a 2.00 91.00 85.00 109.00 ·t 
9.00 a 5.00 42.00 41.00 67.00 

10.00 a 4.00 50.00 148.00 16.00 
11.')0 a 3.00 53.00 31.00 47.00 
12.00 a 5.00 49.00 186.00 9 3. 00 /": 

13.00 a ).00 186.00 24.00 55.00 ·~ . 14.00 a 4.00 101.00 99.00 110.00 •t 

15.00 a 3.00 226.00 190.00 19.00 ·-~ 
16.00 a 2.00 182.00 78.00 52.00 .~ 
17.00 a 4.00 26.00 88.00 32 . 00 ~ 18.00 a 4.00 349.00 46.00 52.00 > 

19.00 a 2.00 89 .oo 123.00 90.00 4 20.00 a 3.00 55.00 90.00 62.00 ! 21.00 a 5.00 279.00 332.00 26.00 ··I 
'l 

22.00 a 2.00 59.00 69.00 80.00 1 
-:t 

23.00 a 40.00 539.00 237.00 94.00 . 
L~ 

··~ 

24.00 b 3.00 137.00 42.00 174.00 ' 5· 
25.00 b 7.00 127.00 71.00 233.00 

:; 

26.00 b 1.00 125.00 9.00 64.00 
26.00 b 3.00 110.00 38.00 86.00 
29.00 b 2.00 16!.00 S9.00 80.00 

29.00 c 0.28 135.00 15.00 65.00 
)0.00 c ).90 540.00 86.00 89.00 
31.00 d 14.00 69.00 
)2 .oo d 34.00 89.00 
JJ.OO d 
34.00 e 95.00 
35.00 f 
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Appendix 4: Sample descriptions of selected rock samples used in the present study. 



1- Samples used in Table 2. 1 : 

21 EPDT- sample of fine to medium grained, moderately altered epidotite taken from 
an outcrop ncar the old bridle path in Yisnes (see figure 2.1 ). 

22EPUT- as per 21EPDT, except more extensively altered. 

4~EPUT- sample taken from the Fiskdammen area of Visnes, from an outcrop 
containing biotite-diorite. Sample is crosscut by quartz veins and is moderately 
weathered. 

17- fragment of cpidosite taken from selectively mineralized dyke in the Fiskdammen 
area. 

15- as per 17 above. 

12- zone of intensely altered basalt dykes in the Feoy area. There is extensive 
minerali1.ation in this outcrop. 

2- Samples used in Table 3.1: 

V2- sample of metamorphosed, banded cpy-sp-py. Relatively fresh sample. 

V9- banded py-sp. Note minor amounts of cpy. 

V 15- massive py-cpy from drill core in main Visnes deposit. 

V22- massive sp sample from mine dump area of Yisnes. Highly altered sample. 

V28- massive py and minor cpy in quartz gangue from Visnes mine dump. 

3- Samples used in Table 6. 1: 

C 12- sample taken from outcrop of siliceous, epidote-rich dykes cutting through zone 
of brecciation, in the Visnes area. Sample is quite fresh. 

05-04- sample of epidotite xenolith in mineralized basalt dyke. Xenolith is cut by 
(.'hloritc veins. 

05-5- plagiogranite sample from same area as 05-04 above (Fiskdammen). Sample is 
quite fresh, but also quite altered. 

05-2- plagiogranite sample from plagiogranite pod in area dominated by basalt dykes 
and biotit~-diorite (Dymes). Plagiogranite may be a large xenolith. 
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22-5- basalt dyke cutting gabbro. Dyke is heavily min~:raliz..:d, while the host rod' is 
unmineralizcd. 

4- Samples used in Table 6.2: 

46TRN- sample taken from plagiogranite pod in area around Visn..:s milll' dump. 
Sample is medium grained and relatively fresh. 

73TRN- sample taken from plagiogranite ridge in northern Visncs area. Cut by quart/ 
and chlorite veins. 

18TRN- as per 73TRN above. 

51 TRN- sample taken from plagiogranite dyke cutting basalt on one of the nearby 
offshore skerries in the Visnes area. Sample is quite fresh, and is moderately pyritizcd. 

47TRN- as per 51TRN above. 

5- Samples used in Figure 7.1: 

F33- sample of massive cpy-po cut by tourmaline vein . Sample is from Type A hrcl·l·ia 
zone in the feoy mine area. 

Fll- sample of massive cpy fragment in Type A breccia from the Fcoy mine dump. 

F35- sample of massive po with bands of cpy. Sample is relatively fresh. 

F24a- sample of massive po and cpy from Type A breccia. 

6- Samples used in Figure 7.3: 

15Visnes- sample of fresh, unmineralized but quite altered Visncs dyke. From the 
sheeted dyke sequence seen in the northern Fcoy area. 

43-high-Mg- sample of high-Mg dyke from the Feoy area. Sample is quite fresh and 
unmineralized. 

F31 - sample of massive po with pyrite porphyroblasts and minor cpy. 

F41- sample of deformed cpy in massive po with py porphyroblasts. From the Fcoy 
mine dump. 
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7- Samples used in Table 7.2: 

1-"4 1- as per F41 above. 

f- sample of massive po with banded cpy. 

F-b- sample of fresh, massive po with minor amounts of py and cpy. 

JS-b- sample of fresh, unaltered massive po from mine dump in Feoy. 

F36- massive po with deformed cpy bands. 

Fll- sample of massive cpy fragment found in Type A breccia. 

F35- as per F35 above. 

FlO- sample of massive po with abundant cpy banding. Sample is quite altered. 

F31- as per F31 above. 

f7- fragment of rounded, massive po in tourmalinite sample from breccia zone in 
Fcoy. Sample is quite altered and corroded. 

Fl9- sample of massive po. 

15Visnes- as per 15Visnes above. 

43-high-Mg- as per 43-high-Mg above. 
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